Verification of Selection and Heap Sort Using Locales

Danijela Petrović

June 11, 2019

Abstract

Stepwise program refinement techniques can be used to simplify program verification. Programs are better understood since their main properties are clearly stated, and verification of rather complex algorithms is reduced to proving simple statements connecting successive program specifications. Additionally, it is easy to analyze similar algorithms and to compare their properties within a single formalization. Usually, formal analysis is not done in educational setting due to complexity of verification and a lack of tools and procedures to make comparison easy. Verification of an algorithm should not only give correctness proof, but also better understanding of an algorithm. If the verification is based on small step program refinement, it can become simple enough to be demonstrated within the university-level computer science curriculum. In this paper we demonstrate this and give a formal analysis of two well known algorithms (Selection Sort and Heap Sort) using proof assistant Isabelle/HOL and program refinement techniques.

Contents

1 Introduction 2
2 Locale Sort 4
3 Defining data structure and key function remove_max 5
 3.1 Describing data structure 5
 3.2 Function remove_max 6
4 Verification of functional Selection Sort 10
 4.1 Defining data structure 10
 4.2 Defining function remove_max 11
1 Introduction

Using program verification within computer science education. Program verification is usually considered to be too hard and long process that acquires good mathematical background. A verification of a program is performed using mathematical logic. Having the specification of an algorithm inside the logic, its correctness can be proved again by using the standard mathematical apparatus (mainly induction and equational reasoning). These proofs are commonly complex and the reader must have some knowledge about mathematical logic. The reader must be familiar with notions such as satisfiability, validity, logical consequence, etc. Any misunderstanding leads into a loss of accuracy of the verification. These formalizations have common disadvantage, they are too complex to be understood by students, and this discourage students most of the time. Therefore, programmers and their educators rather use traditional (usually trial-and-error) methods.

However, many authors claim that nowadays education lacks the formal approach and it is clear why many advocate in using proof assistants[?]. This is also the case with computer science education. Students are presented many algorithms, but without formal analysis, often omitting to mention when algorithm would not work properly. Frequently, the center of a study is implementation of an algorithm whereas understanding of its structure and its properties is put aside. Software verification can bring more formal approach into teaching of algorithms and can have some advantages over traditional teaching methods.

- Verification helps to point out what are the requirements and conditions that an algorithm satisfies (pre-conditions, post-conditions and invariant conditions) and then to apply this knowledge during programming. This would help both students and educators to better understand input and output specification and the relations between them.

- Though program works in general case, it can happen that it does not work for some inputs and students must be able to detect these
situations and to create software that works properly for all inputs.

- It is suitable to separate abstract algorithm from its specific implementation. Students can compare properties of different implementations of the same algorithms, to see the benefits of one approach or another. Also, it is possible to compare different algorithms for same purpose (for example, for searching element, sorting, etc.) and this could help in overall understanding of algorithm construction techniques.

Therefore, lessons learned from formal verification of an algorithm can improve someone's style of programming.

Modularity and refinement. The most used languages today are those who can easily be compiled into efficient code. Using heuristics and different data types makes code more complex and seems to novices like perplex mixture of many new notions, definitions, concepts. These techniques and methods in programming makes programs more efficient but are rather hard to be intuitively understood. On the other hand highly accepted principle in nowadays programming is modularity. Adhering to this principle enables programmer to easily maintain the code.

The best way to apply modularity on program verification and to make verification flexible enough to add new capabilities to the program keeping current verification intact is program refinement. Program refinement is the verifiable transformation of an abstract (high-level) formal specification into a concrete (low-level) executable program. It starts from the abstract level, describing only the requirements for input and output. Implementation is obtained at the end of the verification process (often by means of code generation). Stepwise refinement allows this process to be done in stages. There are many benefits of using refinement techniques in verification.

- It gives a better understanding of programs that are verified.

- The algorithm can be analyzed and understood on different level of abstraction.

- It is possible to verify different implementations for some part of the program, discussing the benefits of one approach or another.

- It can be easily proved that these different implementation share some same properties which are proved before splitting into two directions.

- It is easy to maintain the code and the verification. Usually, whenever the implementation of the program changes, the correctness proofs must be adapted to these changes, and if refinement is used, it is not necessary to rewrite entire verification, just add or change small part of it.
• Using refinement approach makes algorithm suitable for a case study in teaching. Properties and specifications of the program are clearly stated and it helps teachers and students better to teach or understand them.

We claim that the full potential of refinement comes only when it is applied stepwise, and in many small steps. If the program is refined in many steps, and data structures and algorithms are introduced one-by-one, then proving the correctness between the successive specifications becomes easy. Abstracting and separating each algorithmic idea and each data-structure that is used to give an efficient implementation of an algorithm is very important task in programmer education.

As an example of using small step refinement, in this paper we analyze two widely known algorithms, Selection Sort and Heap Sort. There are many reasons why we decided to use them.

• They are largely studied in different contexts and they are studied in almost all computer science curricula.

• They belong to the same family of algorithms and they are good example for illustrating the refinement techniques. They are a nice example of how one can improve on a same idea by introducing more efficient underlying data-structures and more efficient algorithms.

• Their implementation uses different programming constructs: loops (or recursion), arrays (or lists), trees, etc. We show how to analyze all these constructs in a formal setting.

There are many formalizations of sorting algorithms that are done both automatically or interactively and they undoubtedly proved that these algorithms are correct. In this paper we are giving a new approach in their verification, that insists on formally analyzing connections between them, instead of only proving their correctness (which has been well established many times). Our central motivation is that these connections contribute to deeper algorithm understanding much more than separate verification of each algorithm.

2 Locale Sort

theory Sort
imports Main
 HOL-Library.Permutation
begin

First, we start from the definition of sorting algorithm. What are the basic properties that any sorting algorithm must satisfy? There are two basic features any sorting algorithm must satisfy:
• The elements of sorted array must be in some order, e.g. ascending or descending order. In this paper we are sorting in ascending order.

\[\text{sorted} (\text{sort } l) \]

• The algorithm does not change or delete elements of the given array, e.g. the sorted array is the permutation of the input array.

\[\text{sort } l \triangleleft \triangleright l \]

locale \textit{Sort} =
\begin{itemize}
\item \textbf{fixes sort ::} `\textit{a::linorder list} \Rightarrow `\textit{a list}
\item \textbf{assumes sorted:} \text{sorted} (\text{sort } l)
\item \textbf{assumes permutation:} \text{sort } l \triangleleft \triangleright l
\end{itemize}

end

3 Defining data structure and key function \texttt{remove_max}

\texttt{theory RemoveMax imports Sort begin}

3.1 Describing data structure

We have already said that we are going to formalize heap and selection sort and to show connections between these two sorts. However, one can immediately notice that selection sort is using list and heap sort is using heap during its work. It would be very difficult to show equivalency between these two sorts if it is continued straightforward and independently proved that they satisfy conditions of locale \textit{Sort}. They work with different objects. Much better thing to do is to stay on the abstract level and to add the new locale, one that describes characteristics of both list and heap.

locale \textit{Collection} =
\begin{itemize}
\item \textbf{fixes empty ::} `\textit{b}
- Represents empty element of the object (for example, for list it is [])
\item \textbf{fixes is-empty ::} `\textit{b} \Rightarrow \textit{bool}
- Function that checks weather the object is empty or not
\item \textbf{fixes of-list ::} `\textit{a list} \Rightarrow `\textit{b}
- Function transforms given list to desired object (for example, for heap sort, function \textit{of_list} transforms list to heap)
\item \textbf{fixes multiset ::} `\textit{b} \Rightarrow `\textit{a multiset}
- Function makes a multiset from the given object. A multiset is a collection without order.
\item \textbf{assumes is-empty-inj:} is-empty \textit{e} \implies \textit{e} = empty
\end{itemize}
— – It must be assured that the empty element is empty
assumes is-empty-empty: is-empty empty
— – Must be satisfied that function is_empty returns true for element empty
assumes multiset-empty: multiset empty = {#}
— – Multiset of an empty object is empty multiset.
assumes multiset-of-list: multiset (of-list i) = mset i
— – Multiset of an object gained by applying function of_list must be the same as the multiset of the list. This, practically, means that function of_list does not delete or change elements of the starting list.

begin
lemma is-empty-as-list: is-empty e ⇒ multiset e = {#}
using is-empty-inj multiset-empty
by auto

definition set :: 'b ⇒ 'a set where
 [simp]: set l = set-mset (multiset l)
end

3.2 Function remove_max

We wanted to emphasize that algorithms are same. Due to the complexity of the implementation it usually happens that simple properties are omitted, such as the connection between these two sorting algorithms. This is a key feature that should be presented to students in order to understand these algorithms. It is not unknown that students usually prefer selection sort for its simplicity whereas avoid heap sort for its complexity. However, if we can present them as the algorithms that are same they may hesitate less in using the heap sort. This is why the refinement is important. Using this technique we were able to notice these characteristics. Separate verification would not bring anything new. Being on the abstract level does not only simplify the verifications, but also helps us to notice and to show students important features. Even further, we can prove them formally and completely justify our observation.

locale RemoveMax = Collection empty is-empty of-list multiset for
empty :: 'b and
is-empty :: 'b ⇒ bool and
of-list :: 'a::linorder list ⇒ 'b and
multiset :: 'b ⇒ 'a::linorder multiset +
fixes remove-max :: 'b ⇒ 'a × 'b
— — Function that removes maximum element from the object of type 'b. It returns maximum element and the object without that maximum element.
fixes inv :: 'b ⇒ bool
— — It checks weather the object is in required condition. For example, if we expect to work with heap it checks weather the object is heap. This is called invariant condition
assumes of-list-inv: inv (of-list x)
— — This condition assures that function of_list made a object with desired
property.
assumes remove-max-max:
\[\neg \text{is-empty } l; \text{inv } l; (m, l') = \text{remove-max } l \rightarrow m = \text{Max } (\text{set } l) \]
--- First parameter of the return value of the function remove_max is the maximum element.

assumes remove-max-multiset:
\[\neg \text{is-empty } l; \text{inv } l; (m, l') = \text{remove-max } l \rightarrow \addmset m (\multiset l) = \multiset l \]
--- Condition for multiset, ensures that nothing new is added or nothing is lost after applying remove_max function.

assumes remove-max-inv:
\[\neg \text{is-empty } l; \text{inv } l; (m, l') = \text{remove-max } l \rightarrow \text{inv } l' \]
--- Ensures that invariant condition is true after removing maximum element. Invariant condition must be true in each step of sorting algorithm, for example if we are sorting using heap than in each iteration we must have heap and function remove_max must not change that.

begin

lemma remove-max-multiset-size:
\[\neg \text{is-empty } l; \text{inv } l; (m, l') = \text{remove-max } l \rightarrow \size (\multiset l) > \size (\multiset l') \]
using remove-max-multiset[of l m l']
by (metis mset-subset-size multi-psub-of-add-self)

lemma remove-max-set:
\[\neg \text{is-empty } l; \text{inv } l; (m, l') = \text{remove-max } l \rightarrow \set l' \cup \{m\} = \set l \]
using remove-max-multiset[of l m l']
by (metis Un-insert-right local.set-def set-mset-add-mset-insert sup-bot-right)

As it is said before in each iteration invariant condition must be satisfied, so the inv l is always true, e.g. before and after execution of any function. This is also the reason why sort function must be defined as partial. This function parameters stay the same in each step of iteration – list stays list, and heap stays heap. As we said before, in Isabelle/HOL we can only define total function, but there is a mechanism that enables total function to appear as partial one:

partial-function (tailrec) ssort' where
ssort' l sl =
(if is-empty l then
sl
else
let
(m, l') = remove-max l
in
ssort' l' (m # sl))
declare ssort'..simps[code]
definition ssort :: 'a list ⇒ 'a list where
\[ssort\ l = ssort' (of-list\ l) \]

inductive ssort'-dom where

\[
\text{step: } [\forall m\ l'. (\neg\ \text{is-empty}\ l; (m, l') = \text{remove-max}\ l] \implies ssort'-dom\ (l', m \# sl)] \implies ssort'-dom\ (l, sl)
\]

lemma ssort'-termination:

assumes \(inv\ (\text{fst}\ p) \)

shows \(ssort'-dom\ p \)

using assms

proof (induct \(p \) rule: \(\text{wf-induct[of measure (} \lambda(l, sl). \text{size (multiset } l)\text{)]} \))

let \(?r = \text{measure (} \lambda(l, sl). \text{size (multiset } l)\text{)} \)

fix \(m l' \)

assume \(\neg\ \text{is-empty}\ l\ (m, l') = \text{remove-max}\ l\)

show \(ssort'-dom\ (l', m \# sl) \)

proof (rule \(*[\text{rule-format}] \))

show \((l', m \# sl, p) \in ?r\ inv\ (\text{fst}\ (l', m \# sl)) \)

using \(p = (l, sl); \ (\text{inv\ (fst}\ p); (\neg\ \text{is-empty}\ l)); \)

using \((m, l') = \text{remove-max}\ l\)

using \(\text{remove-max-inv[of } l\ m\ l'\text{]} \)

using \(\text{remove-max-multiset-size[of } l\ m\ l'\text{]} \)

by auto

\[\text{qed} \]

\[\text{qed} \]

\[\text{simp} \]

lemma ssort'Induct:

assumes \(inv\ l\ P\ l\ sl \)

\[\land\ l\ sl\ m\ l'. \]

\[(\neg\ \text{is-empty}\ l; \ inv\ l; (m, l') = \text{remove-max}\ l; P\ l\ sl) \implies P\ l'\ (m \# sl) \]

shows \(P\ \text{empty}\ (ssort'\ l\ sl) \)

proof –

from \((\text{inv}\ l)\ \text{have}\ ssort'-dom\ (l, sl) \)

using ssort'-termination

by auto

thus \(\text{?thesis} \)

using assms

proof (induct \(l, sl \) arbitrary: \(l\ sl\ \text{rule: ssort'-dom.induct} \))

case \((\text{step}\ l\ sl) \)

show \(\text{?case} \)

proof (cases is-empty \(l) \)

case \(\text{True} \)

thus \(\text{?thesis} \)
using step\(4\) step\(5\) ssort'.simps[of \ l \ sl] \ is-empty-inv[of \ l]

by simp

next

case False

let \ ?p = remove-max \ l
let \ ?m = fst \ ?p \ and \ ?l' = snd \ ?p

show \ ?thesis

using False step\(2\)[of \ ?m \ ?l'] step\(3\)

using step\(4\) step\(5\)[of \ l \ ?m \ ?l' \ sl] step\(5\)

using remove-max-inv[of \ l \ ?m \ ?l']

using ssort'.simps[of \ l \ sl]

by (cases \ ?p) auto

qed

qed

qed

lemma mset-ssort':
assumes \ inv \ l

shows \ mset (ssort' \ l \ sl) = \ multiset \ l + \ mset \ sl

using \ assms

proof –

have \ \multiset \ empty + \ mset (ssort' \ l \ sl) = \ multiset \ l + \ mset \ sl

using \ assms

proof (rule ssort'Induct)

fix \ \ l \ \ sl \ m \ \ l'

assume \ ¬ \ is-empty \ l

\ inv \ \ l

\ (m, \ l') = remove-max \ l

\ multiset \ l + \ mset \ sl \ l = \ multiset \ l + \ mset \ sl

thus \ multiset \ l' + \ mset (m \ # \ sl) = \ multiset \ l + \ mset \ sl

using \ remove-max-multiset[of \ l \ l \ m \ sl]'

by (metis union-mset-add-mset-left union-mset-add-mset-right \ mset.simps(2))

qed simp

thus \ ?thesis

using \ mset-empty

by simp

qed

lemma \ sorted-ssort':
assumes \ inv \ l \ sorted \ sl \ ∧ \ (∀ \ x \ ∈ \ set \ l. \ (∀ \ y \ ∈ \ List \ sl. \ x \ ≤ \ y))

shows \ sorted (ssort' \ l \ sl)

using \ assms

proof –

have \ sorted (ssort' \ l \ sl) \ ∧ \ (∀ \ x \ ∈ \ set \ empty. \ (∀ \ y \ ∈ \ List \ (ssort' \ l \ sl). \ x \ ≤ \ y))

using \ assms

proof (rule ssort'Induct)

fix \ \ l \ \ sl \ m \ \ l'

assume \ ¬ \ is-empty \ l
inv l
(m, l') = remove-max l
sorted sl ∧ (∀x∈set l, ∀y∈List set sl, x ≤ y)
thus sorted (m # sl) ∧ (∀x∈set l', ∀y∈List (m # sl), x ≤ y)
using remove-max-set[of l m l'] remove-max-max[of l m l']
by (auto intro: Max-ge)
qed
thus łthesis łby simp łqed

lemma sorted-ssort: sorted (ssort i)
unfolding ssort-def
using sorted-ssort[of of-list i [] of-list-inv]
by auto

lemma permutation-ssort: ssort l <~~> l
proof (subst mset-eq-perm[symmetric])
 show mset (ssort l) = mset l
 unfolding ssort-def
 using mset-ssort[of of-list l []]
 using mset-of-list of-list-inv
 by simp
qed
end

Using assumptions given in the definitions of the locales Collection and RemoveMax for the functions multiset, is_empty, of_list and remove_max it is no difficulty to show:
sublocale RemoveMax < Sort ssort
by (unfold-locales) (auto simp add: sorted-ssort permutation-ssort)
end

4 Verification of functional Selection Sort

theory SelectionSort-Functional
imports RemoveMax
begin

4.1 Defining data structure

Selection sort works with list and that is the reason why Collection should be interpreted as list.

interpretation Collection [] := [] id mset
by (unfold-locales, auto)
4.2 Defining function remove_max

The following is definition of remove_max function. The idea is very well known – assume that the maximum element is the first one and then compare with each element of the list. Function \(f \) is one step in iteration, it compares current maximum \(m \) with one element \(x \), if it is bigger then \(m \) stays current maximum and \(x \) is added in the resulting list, otherwise \(x \) is current maximum and \(m \) is added in the resulting list.

\[
\text{fun } f \text{ where } f (m, l) x = (if x \geq m \text{ then } (x, m\#l) \text{ else } (m, x\#l))
\]

\[
\text{definition } \text{remove_max where } \text{remove_max } l = \text{foldl } f (\text{hd } l, []) (\text{tl } l)
\]

\[
\text{lemma } \text{max-Max-commute: }
\begin{align*}
\text{finite } A &\implies \text{max } (\text{Max } (\text{insert } m A)) x = \text{max } m (\text{Max } (\text{insert } x A)) \\
\text{apply (cases } A = \{\}, \text{ simp) } \\
&\text{by (metis Max-insert max.commute max.left-commute)}
\end{align*}
\]

The function really returned the maximum value.

\[
\text{lemma } \text{remove_max-max-lemma: }
\begin{align*}
\text{shows } \text{fst } (\text{foldl } f (m, t) l) &= \text{Max } (\text{set } m \# l) \\
\text{proof (induct } l \text{ arbitrary: } m t \text{ rule: rev-induct) } \\
&\text{case (snoc } x xs) \\
&\text{let } ?a = \text{foldl } f (m, t) xs \\
&\text{let } ?m' = \text{fst } ?a \text{ and } ?t' = \text{snd } ?a \\
&\text{have } \text{fst } (\text{foldl } f (m, t) (xs @ [x])) = \text{max } ?m' x \\
&\text{by (cases } ?a) \text{ (auto simp add: max-def) } \\
&\text{thus } ?\text{case} \\
&\text{using snoc} \\
&\text{by (simp add: max-Max-commute)}
\end{align*}
\]

\[
\text{qed simp}
\]

\[
\text{lemma } \text{remove_max-max: }
\begin{align*}
&\text{assumes } l \neq [] (m, l') = \text{remove_max } l \\
&\text{shows } m = \text{Max } (\text{set } l) \\
&\text{using assms} \\
&\text{unfolding remove_max-def} \\
&\text{using remove_max-max-lemma[of hd } l [] tl l] \\
&\text{using fst-conve[of m l']} \\
&\text{by simp}
\end{align*}
\]

Nothing new is added in the list and noting is deleted from the list except the maximum element.

\[
\text{lemma } \text{remove_max-mset-lemma: }
\begin{align*}
&\text{assumes } (m, l') = \text{foldl } f (m', t') l \\
&\text{shows } \text{mset } (m \# l') = \text{mset } (m' \# t' @ l) \\
&\text{using assms} \\
&\text{proof (induct } l \text{ arbitrary: } l' m m' t' \text{ rule: rev-induct) }
\end{align*}
\]
case (snoc x xs)
let ??a = foldl f (m′, t′) xs
let ??m′ = fst ??a and ??t′ = snd ??a
have mset (??m′ # ??t′) = mset (m′ # t′ @ xs)
 using snoc(1)[of ??m′ ??t′ m′ t′]
 by simp
thus ??case
 using snoc(2)
 apply (cases ??a)
 by (auto split: if-split-asm)
qed simp

lemma remove-max-mset:
 assumes l ≠ [] (m, l′) = remove-max l
 shows add-mset m (mset l′) = mset l
using assms
unfolding remove-max-def
using remove-max-mset-lemma[of m l′ hd l [] tl l]
by auto

definition ssf-ssort' where
 [simp, code del]: ssf-ssort' = RemoveMax.ssort' (λ l. l = []) remove-max

definition ssf-ssort where
 [simp, code del]: ssf-ssort = RemoveMax.ssort (λ l. l = []) id remove-max

interpretation SSRemoveMax:
 RemoveMax [] λ l. l = [] id mset remove-max λ _. True
rewrites
RemoveMax.ssort' (λ l. l = []) remove-max = ssf-ssort' and
RemoveMax.ssort (λ l. l = []) id remove-max = ssf-ssort
using remove-max-max
by (unfold-locals, auto simp add: remove-max-mset)

end

5 Verification of Heap Sort

theory Heap
imports RemoveMax
begin

5.1 Defining tree and properties of heap

datatype 'a Tree = E | T 'a 'a Tree 'a Tree

With E is represented empty tree and with T 'a 'a Tree 'a Tree is represented a node whose root element is of type 'a and its left and right
branch is also a tree of type ‘a.

primrec size :: ‘a Tree ⇒ nat where
 size E = 0
| size (T v l r) = 1 + size l + size r

Definition of the function that makes a multiset from the given tree:

primrec multiset where
 multiset E = {#}
| multiset (T v l r) = multiset l + {#v#} + multiset r

primrec val where
 val (T v - -) = v

Definition of the function that has the value True if the tree is heap, otherwise it is False:

fun is-heap :: ‘a::linorder Tree ⇒ bool where
 is-heap E = True
| is-heap (T v E E) = True
| is-heap (T v E r) = (v ≥ val r ∧ is-heap r)
| is-heap (T v l E) = (v ≥ val l ∧ is-heap l)
| is-heap (T v l r) = (v ≥ val r ∧ is-heap r ∧ v ≥ val l ∧ is-heap l)

lemma heap-top-geq:
 assumes a ∈# multiset t is-heap t
 shows val t ≥ a
 using assms
 by (induct t rule: is-heap.induct) (auto split: if-split-asm)

lemma heap-top-max:
 assumes t ≠ E is-heap t
 shows val t = Max-mset (multiset t)
proof (rule Max-eqI[symmetric])
 fix y
 assume y ∈ set-mset (multiset t)
 thus y ≤ val t
 using heap-top-geq [of y t] (is-heap t)
 by simp
 next
 show val t ∈ set-mset (multiset t)
 using (t ≠ E)
 by (cases t) auto
qed simp

The next step is to define function remove_max, but the question is weather implementation of remove_max depends on implementation of the functions is_heap and multiset. The answer is negative. This suggests that another step of refinement could be added before definition of function remove_max. Additionally, there are other reasons why this should be done, for example,
function \texttt{remove_max} could be implemented in functional or in imperative manner.

\textbf{locale Heap = Collection empty is-empty of-list multiset for}

\begin{verbatim}
empty :: 'b and
is-empty :: 'b \Rightarrow bool and
of-list :: 'a::linorder list \Rightarrow 'b and
multiset :: 'b \Rightarrow 'a::linorder multiset +
\end{verbatim}

--- This function is not very important, but it is needed in order to avoid problems with types and to detect that observed object is a tree.

\textbf{locale RemoveMax empty is-empty of-list multiset remove-max}

\textbf{proof}

\begin{verbatim}
fix x
show is-heap (as-tree (of-list x))
by (rule is-heap-of-list)
\end{verbatim}

\textbf{next}

\begin{verbatim}
fix l m l'
assume \neg is-empty l (m, l') = remove-max l
thus add-mset m (multiset l') = multiset l
by (rule remove-max-multiset')
\end{verbatim}

\textbf{next}

\begin{verbatim}
fix l m l'
assume \neg is-empty l is-heap (as-tree l) (m, l') = remove-max l
thus is-heap (as-tree l')
by (rule remove-max-is-heap)
\end{verbatim}

\textbf{next}

\begin{verbatim}
fix l m l'
assume \neg is-empty l is-heap (as-tree l) (m, l') = remove-max l
thus m = Max (set l)
unfolding set-def
using heap-top-max[of as-tree l] remove-max-val[of l m l']
using multiset is-empty-inj as-tree-empty
by auto
qed
\end{verbatim}
primrec in-tree where
 in-tree v E = False
| in-tree v (T v' l r) ←→ v = v' ∨ in-tree v l ∨ in-tree v r

lemma is-heap-max:
 assumes in-tree v t is-heap t
 shows val t ≥ v
using assms
apply (induct t rule:is-heap.induct)
by auto

end

6 Verification of Functional Heap Sort

theory HeapFunctional
imports Heap
begin

As we said before, maximum element of the heap is its root. So, finding maximum element is not difficulty. But, this element should also be removed and remainder after deleting this element is two trees, left and right branch of original heap. Those branches are also heaps by the definition of the heap. To maintain consistency, branches should be combined into one tree that satisfies heap condition:

function merge :: 'a::linorder Tree ⇒ 'a Tree ⇒ 'a Tree where
 merge t1 E = t1
| merge E t2 = t2
| merge (T v1 l1 r1) (T v2 l2 r2) =
 (if v1 ≥ v2 then T v1 (merge l1 (T v2 l2 r2)) r1
 else T v2 (merge l2 (T v1 l1 r1)) r2)
by (pat-completeness) auto
termination
proof (relation measure (λ (t1, t2). size t1 + size t2))
fix v1 l1 r1 v2 l2 r2
assume v2 ≤ v1
thus (((l1, T v2 l2 r2), T v1 l1 r1, T v2 l2 r2) ∈
 measure (λ(t1, t2). Heap.size t1 + Heap.size t2))
 by auto
next
fix v1 l1 r1 v2 l2 r2
assume ¬ v2 ≤ v1
thus (((l2, T v1 l1 r1), T v1 l1 r1, T v2 l2 r2) ∈
 measure (λ(t1, t2). Heap.size t1 + Heap.size t2))
 by auto
qed simp

lemma merge-val:
val(merge l r) = val l \lor val(merge l r) = val r

proof(induct l r rule:merge.induct)
 case (1 l)
 thus ?case
 by auto
next
case (2 r)
thus ?case
by auto
next
case (3 v1 l1 r1 v2 l2 r2)
thus ?case
proof(cases v2 \leq v1)
case True
 hence val (merge (T v1 l1 r1) (T v2 l2 r2)) = val (T v1 l1 r1)
 by auto
 thus ?thesis
 by auto
next
case False
 hence val (merge (T v1 l1 r1) (T v2 l2 r2)) = val (T v2 l2 r2)
 by auto
 thus ?thesis
 by auto
qed

Function merge merges two heaps into one:

lemma merge-heap-is-heap:
 assumes is-heap l is-heap r
 shows is-heap (merge l r)
using assms
proof(induct l r rule:merge.induct)
 case (1 l)
 thus ?case
 by auto
next
case (2 r)
thus ?case
by auto
next
case (3 v1 l1 r1 v2 l2 r2)
thus ?case
proof(cases v2 \leq v1)
case True
 have is-heap l1
 using (is-heap (T v1 l1 r1))
 by (metis Tree.exhaust is-heap.simps(1) is-heap.simps(4) is-heap.simps(5))
 hence is-heap (merge l1 (T v2 l2 r2))

qed
using True (is-heap (T v2 l2 r2)) 3
by auto
have val (merge l1 (T v2 l2 r2)) = val l1 ∨ val (merge l1 (T v2 l2 r2)) = v2
using merge-val[of l1 T v2 l2 r2]
by auto
show ?thesis
proof (cases r1 = E)
case True
show ?thesis
proof (cases l1 = E)
case True
hence merge (T v1 l1 r1) (T v2 l2 r2) = T v1 (T v2 l2 r2) E
using (r1 = E) (v2 ≤ v1)
by auto
thus ?thesis
using 3
using (v2 ≤ v1)
by auto
next
case False
hence v1 ≥ val l1
using 3(3)
by (metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps)
thus ?thesis
using (r1 = E) (v1 ≥ v2)
using (val (merge l1 (T v2 l2 r2)) = val l1

∨ val (merge l1 (T v2 l2 r2)) = v2)
using (is-heap (merge l1 (T v2 l2 r2)));
by (metis False Tree.exhaust is-heap.simps(2)

is-heap.simps(4) merge.simps(3) val.simps)
qed
next
case False
hence v1 ≥ val l1
using 3(3)
by (metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps)
show ?thesis
proof (cases l1 = E)
case True
hence merge (T v1 l1 r1) (T v2 l2 r2) = T v1 (T v2 l2 r2) r1
using (v2 ≤ v1)
by auto
thus ?thesis
using 3 (v1 ≥ val r1)
using (v2 ≤ v1)
by (metis False Tree.exhaust Tree.inject Tree.simps(3)

True is-heap.simps(3) is-heap.simps(6) merge.simps(2)

merge.simps(3) order-eq-iff val.simps)
next
case False
hence $v_1 \geq \text{val } l_1$
 using 3(3)
 by (metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps)
have $l_1 (T v_2 l_2 r_2) \neq E$
 using False
 by (metis Tree.exhaust Tree.simps(2) merge.simps(3))
have is-heap r_1
 using 3(3)
 by (metis False Tree.exhaust \(r_1 \neq E \) is-heap.simps(5))
obtain $l_1 b_1 l_1$ where $r_1 = T l_1 l_1 b_1$
 using \(r_1 \neq E \)
 by (metis Tree.exhaust)
have r_1 using 3(4)
 by (metis True Tree.exhaust)
 using is-heap.simps(5)[of v_1 $l_1 l_1 b_1 r_1 r_1 r_1$]
hence is-heap \((T v_1 l_1 r_1) \) using False \((T v_1 l_1 r_1) \)
 by auto
have $\text{val } (T v_1 l_1 r_1) = \text{val } l_2 \lor$
 $\text{val } (T v_1 l_1 r_1) = v_1$
 using merge-val[of l_2 $T v_1 l_1 r_1$]
 by auto
show ?thesis
proof\((cases r_2 = E) \)
case True
 show ?thesis
 proof\((cases l_2 = E) \)

qed
qed
case True
hence merge \((T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2) = T \ v2 \ (T \ v1 \ l1 \ r1)\) \(E\)
using \(\langle r2 = E \rangle \ (\neg v2 \leq v1)\)
by auto
thus \(?thesis\)
using 3
using \(\langle \neg v2 \leq v1 \rangle\)
by auto

next
case False
hence \(v2 \geq \text{val} \ l2\)
using 3(4)
by \(\text{metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps}\)
thus \(?thesis\)
using \(\langle \neg v2 \leq v1 \rangle\)
by \(\text{metis False Tree.exhaust is-heap.simps(2)}\)
\(\text{is-heap.simps(4) linorder-linear merge.simps(3) val.simps}\)

qed

next
case False
hence \(v2 \geq \text{val} \ r2\)
using 3(4)
by \(\text{metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps}\)

next
case True
hence merge \((T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2) = T \ v2 \ (T \ v1 \ l1 \ r1)\) \(r2\)
using \(\langle \neg v2 \leq v1 \rangle\)
by auto
thus \(?thesis\)
using 3 \(\langle v2 \geq \text{val} \ r2 \rangle\)
using \(\langle \neg v2 \leq v1 \rangle\)
by \(\text{metis False Tree.exhaust Tree.simps(3) is-heap.simps(3)}\)
\(\text{is-heap.simps(5) linorder-linear val.simps}\)

next
case False
hence \(v2 \geq \text{val} \ l2\)
using 3(4)
by \(\text{metis Tree.exhaust in-tree.simps(2) is-heap-max val.simps}\)

have merge \(l2 \ (T \ v1 \ l1 \ r1) \neq E\)
using False
by \(\text{metis Tree.exhaust Tree.simps(2) merge.simps(3)}\)

have is-heap \(r2\)
using 3(4)
by \(\text{metis False Tree.exhaust (r2 \neq E) is-heap.simps(5)}\)

obtain \(l1 \ l1 \ l1 \ l1\) where \(r2 = T \ l1 \ l1 \ l1 \ l1\)
using $r_2 \neq E$
by (metis Tree.exhaust)
obtain $rl_1 rr_1 rv_1$ where $\text{merge } l_2 (T \, v_1 \, l_1 \, r_1) = T \, v_1 \, rl_1 \, rr_1$
using $\langle\text{merge } l_2 (T \, v_1 \, l_1 \, r_1) \neq E\rangle$
by (metis Tree.exhaust)
have $\text{val } (\text{merge } l_2 (T \, v_1 \, l_1 \, r_1)) \leq v_2$
using $\langle\text{val } (\text{merge } l_2 (T \, v_1 \, l_1 \, r_1)) = \text{val } l_2 \lor$
$\text{val } (\text{merge } l_2 (T \, v_1 \, l_1 \, r_1)) = v_1\rangle$
by auto
hence $\text{is-heap } (T \, v_2 \, (\text{merge } l_2 (T \, v_1 \, l_1 \, r_1))) \, r_2$
using $\langle\text{is-heap } \text{.simp} (5) [\text{of } v_1 \, l_1 \, l_1 \, l_1 \, r_1 \, r_1 \, r_1]\rangle$
using $\langle r_2 = T \, l_1 \, l_1 \, l_1 \, l_1 \, r_1 \, r_1 \, r_1\rangle$
using $\langle \text{is-heap } r_2 \rangle \langle \text{is-heap } (\text{merge } l_2 (T \, v_1 \, l_1 \, r_1))) \, r_2 \geq \text{val } v_2\rangle$
by auto
thus thesis
using $\langle \neg v_1 \geq v_2 \rangle$
by auto
qed
definition insert :: 'a::linorder => 'a Tree => 'a Tree where
insert v t = \(\text{merge } t (T \, v \, E \, E) \)
primrec hs-of-list where
hs-of-list [] = E
| hs-of-list (v # l) = insert v (hs-of-list l)
definition hs-is-empty where
[simp]: hs-is-empty t <-> t = E
Definition of function remove_max:
fun hs-remove-max :: 'a::linorder Tree => 'a * 'a Tree where
hs-remove-max (T \, v \, l \, r) = (v, \, \text{merge } l \, r)
lemma merge-multiset:
\multiset l + \multiset g = \multiset (\text{merge } l \, g)
proof (induct l g rule:merge.induct)
case (1 l)
thus $?\text{case}$
by auto
next
case (2 g)
thus $?\text{case}$
by auto
next
case (3 v_1 \, l_1 \, r_1 \, v_2 \, l_2 \, r_2)
thus \(?\text{case} \)

proof\((\text{cases } v2 \leq v1)\)

 case True
 hence \multiset (\text{merge } (T v1 l1 r1) (T v2 l2 r2)) =
 \{#v1#\} + \multiset (\text{merge } l1 (T v2 l2 r2)) + \multiset r1
 by auto

 hence \multiset (\text{merge } (T v1 l1 r1) (T v2 l2 r2)) =
 \{#v1#\} + \multiset l1 + \multiset (T v2 l2 r2) + \multiset r1
 using 3 True
 by (metis union-assoc)

 hence \multiset (\text{merge } (T v1 l1 r1) (T v2 l2 r2)) =
 \{#v1#\} + \multiset l1 + \multiset r1 + \multiset (T v2 l2 r2)
 by (metis union-commute union-lcomm)

 thus \?\text{thesis}
 by auto

next

 case False
 hence \multiset (\text{merge } (T v1 l1 r1) (T v2 l2 r2)) =
 \{#v2#\} + \multiset (\text{merge } l2 (T v1 l1 r1)) + \multiset r2
 by auto

 hence \multiset (\text{merge } (T v1 l1 r1) (T v2 l2 r2)) =
 \{#v2#\} + \multiset l2 + \multiset r2 + \multiset (T v1 l1 r1)
 using 3 False
 by (metis union-commute union-lcomm)

 thus \?\text{thesis}
 by (metis multiset.simps(2) union-commute)

qed

qed

Proof that defined functions are interpretation of abstract functions from locale Collection:

interpretation HS: Collection E hs-is-empty hs-of-list multiset

proof

 fix t
 assume hs-is-empty t
 thus \(t = E \)
 by auto

next

 show hs-is-empty E
 by auto

next

 show \multiset E = \{#\}
 by auto

next

 fix l
 show \multiset (hs-of-list l) = mset l
 proof\((\text{induct } l)\)
 case Nil
 thus \?\text{case}
by auto

next
case (Cons a l)
 have multiset (hs-of-list (a # l)) = multiset (hs-of-list l) + {#a#}
 using merge-multiset[of hs-of-list l T a E E]
 apply auto
 unfolding insert-def
 by auto
 thus ?case
 using Cons
 by auto
qed

qed

Proof that defined functions are interpretation of abstract functions from locale Heap:

interpretation Heap E hs-is-empty hs-of-list multiset id hs-remove-max
proof
 fix l
 show multiset l = Heap.multiset (id l)
 by auto
next
 fix l
 show is-heap (id (hs-of-list l))
 proof (induct l)
 case Nil
 thus ?case
 by auto
 next
 case (Cons a l)
 have hs-of-list (a # l) = merge (hs-of-list l) (T a E E)
 apply auto
 unfolding insert-def
 by auto
 have is-heap (T a E E)
 by auto
 hence is-heap (merge (hs-of-list l) (T a E E))
 using Cons merge-heap-is-heap[of hs-of-list l T a E E]
 by auto
 thus ?case
 using (hs-of-list (a # l) = merge (hs-of-list l) (T a E E))
 by auto
 qed
next
 fix t
 show (id t = E) = hs-is-empty t
 by auto
next
 fix t m t'

22
assume \(\neg \) hs-is-empty \(t \) \((m, t') = hs\text{-}remove\text{-}max \ t \)
then obtain \(l \ r \) where \(t = T \ m \ l \ r \)
 by (metis Pair-inject Tree.exhaust hs-is-empty-def hs\text{-}remove\text{-}max.simps)
thus add-mset \(m \) (multiset \(t' \)) = multiset \(t \)
 using merge-multiset[of \(l \ r \)]
 using \((m, t') = hs\text{-}remove\text{-}max \ t \)
 by auto

next
fix \(t \ m \ t' \)
assume \(\neg \) hs-is-empty \(t \) is-heap \((id \ t) \) \((m, t') = hs\text{-}remove\text{-}max \ t \)
then obtain \(v \ l \ r \) where \(t = T \ v \ l \ r \)
 by (metis Tree.exhaust hs-is-empty-def)
hence \(t' = merge \ l \ r \)
 using \((m, t') = hs\text{-}remove\text{-}max \ t \)
 by auto
have is-heap \(l \wedge is\text{-}heap \ r \)
 using (is-heap (id \(t \)));
 using \(t = T \ v \ l \ r \)
 by (metis Tree.exhaust id-apply is-heap.simps(1)
 is-heap.simps(3) is-heap.simps(4) is-heap.simps(5))
thus is-heap \((id \ t') \)
 using \(t' = merge \ l \ r \);
 using merge-heaps-is-heap
 by auto

next
fix \(t \ m \ t' \)
assume \(\neg \) hs-is-empty \(t \) \((m, t') = hs\text{-}remove\text{-}max \ t \)
thus \(m = val \ (id \ t) \)
 by (metis Pair-inject Tree.exhaust hs-is-empty-def
 hs\text{-}remove\text{-}max.simps id-apply val.simps)
qed

end

7 Verification of Imperative Heap Sort

theory HeapImperative
imports Heap
begin

primrec left :: 'a Tree ⇒ 'a Tree where
 left \((T \ v \ l \ r) \) = \(l \)
abbreviation left-val :: 'a Tree ⇒ 'a where
 left-val \(t \) ≡ val (left \(t \))

primrec right :: 'a Tree ⇒ 'a Tree where
 right \((T \ v \ l \ r) \) = \(r \)
abbreviation right-val :: 'a Tree ⇒ 'a where
right-val t ≡ val (right t)

abbreviation set-val :: 'a Tree ⇒ 'a ⇒ 'a Tree where
set-val t x ≡ T x (left t) (right t)

The first step is to implement function siftDown. If some node does not satisfy heap property, this function moves it down the heap until it does. For a node is checked whether it satisfies heap property or not. If it does nothing is changed. If it does not, value of the root node becomes a value of the larger child and the value of that child becomes the value of the root node. This is the reason this function is called siftDown – value of the node is places down in the heap. Now, the problem is that the child node may not satisfy the heap property and that is the reason why function siftDown is recursively applied.

fun siftDown :: 'a::linorder Tree ⇒ 'a Tree where
siftDown E = E
| siftDown (T v E E) = T v E E
| siftDown (T v l E) = (if v ≥ val l then T v l E else T (val l) (siftDown (set-val l v)) E)
| siftDown (T v E r) = (if v ≥ val r then T v E r else T (val r) E (siftDown (set-val r v)))
| siftDown (T v l r) = (if val l ≥ val r then
 if v ≥ val l then T v l r else T (val l) (siftDown (set-val l v)) r
 else
 if v ≥ val r then T v l r else T (val r) l (siftDown (set-val r v)))

lemma siftDown-Node:
assumes t = T v l r
shows ∃ l' v' r'. siftDown t = T v' l' r' ∧ v' ≥ v
using assms
apply(induct t rule:siftDown.induct)
by auto

lemma siftDown-in-tree:
assumes t ≠ E
shows in-tree (val (siftDown t)) t
using assms
apply(induct t rule:siftDown.induct)
by auto

lemma siftDown-in-tree-set:
shows in-tree v t ↔ in-tree v (siftDown t)
proof
assume in-tree v t
thus in-tree v (siftDown t)
 apply (induct t rule:siftDown.induct)
by auto

next

assume in-tree v (siftDown t)
thus in-tree v t

proof (induct t rule:siftDown.induct)
 case 1
 thus ?case
 by auto

next

 case (2 v1)
 thus ?case
 by auto

next

case (3 v2 v1 l1 r1)

show ?case

proof (cases v2 ≥ v1)
 case True
 thus ?thesis
 using 3
 by auto

next

case False

show ?thesis

proof (cases v1 = v)
 case True
 thus ?thesis
 using 3 False
 by auto

next

case False

hence in-tree v (siftDown (set-val (T v1 l1 r1) v2))
 using (¬ v2 ≥ v1) 3(2)
 by auto

hence in-tree v (T v2 l1 r1)
 using 3(1) (¬ v2 ≥ v1)
 by auto

thus ?thesis

proof (cases v2 = v)
 case True
 thus ?thesis
 by auto

next

case False

hence in-tree v (T v1 l1 r1)
 using (in-tree v (T v2 l1 r1))
 by auto

thus ?thesis
 by auto

qed
qed

next

case (4 v2 v1 l1 r1)
show ?case
proof (cases v2 ≥ v1)
case True
thus ?thesis
using 4
by auto

next

case False
show ?thesis
proof (cases v1 = v)
case True
thus ?thesis
using 4 False
by auto

next

case False
hence in-tree v (siftDown (set-val (T v1 l1 r1) v2))
using (¬ v2 ≥ v1) 4(2)
by auto
hence in-tree v (T v2 l1 r1)
using 4(1) (¬ v2 ≥ v1)
by auto
thus ?thesis
proof (cases v2 = v)
case True
thus ?thesis
by auto

next

case False
hence in-tree v (T v1 l1 r1)
using (in-tree v (T v2 l1 r1))
by auto
thus ?thesis
by auto

qed

next

case (5-1 v' v1 l1 r1 v2 l2 r2)
show ?case
proof (cases v = v' ∨ v = v1 ∨ v = v2)
case True
thus ?thesis
by auto

next
case False
show ?thesis
proof (cases v1 ≥ v2)
case True
show ?thesis
proof (cases v' ≥ v1)
case True
thus ?thesis
using (v1 ≥ v2) 5-1
by auto
next
case False
thus ?thesis
proof (cases in-tree v (T v2 l2 r2))
case True
thus ?thesis
by auto
next
case False
hence in-tree v (siftDown (set-val (T v1 l1 r1) v'))
using 5-1(3) (∃ in-tree v (T v2 l2 r2) (v1 ≥ v2) (∃ v' ≥ v1)
using (v = v' ∨ v = v1 ∨ v = v2)
by auto
hence in-tree v (T v1 l1 r1)
using 5-1(1) (v1 ≥ v2) (∃ v' ≥ v1)
by auto
hence in-tree v (T v1 l1 r1)
using (∃ v = v' ∨ v = v1 ∨ v = v2)
by auto
thus ?thesis
by auto
qed
qed
next
case False
show ?thesis
proof (cases v' ≥ v2)
case True
thus ?thesis
using (∃ v1 ≥ v2) 5-1
by auto
next
case False
thus ?thesis
proof (cases in-tree v (T v1 l1 r1))
case True
thus ?thesis
by auto
next
case False
 hence in-tree v (siftDown (set-val (T v1 l1 r1) v))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l2 r2)
 using 5-1(2) (∼ v1 ≥ v2) (∼ v' ≥ v2)
 by auto
 hence in-tree v (T v2 l2 r2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 thus ?thesis
 by auto
 qed
qed
qed
qed
qed
next
case (5-2' v l1 r1 v2 l2 r2)
 show ?case
 proof(cases v = v' ∨ v = v1 ∨ v = v2)
 case True
 thus ?thesis
 proof(cases v1 ≥ v2)
 case True
 show ?thesis
 proof(cases v' ≥ v1)
 case True
 thus ?thesis
 using (v1 ≥ v2) 5-2
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v1 l1 r1) v'))
 using 5-2(3) (∼ in-tree v (T v2 l2 r2); (∼ v1 ≥ v2) (∼ v' ≥ v1)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v l1 r1) v'))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v l1 r1) v'))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v l1 r1) v'))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v l1 r1) v'))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 next case False
 hence in-tree v (siftDown (set-val (T v l1 r1) v'))
 using 5-1(3) (∼ in-tree v (T v1 l1 r1); (∼ v1 ≥ v2) (∼ v' ≥ v2)
 using (∼ (v = v' ∨ v = v1 ∨ v = v2))
 by auto
 hence in-tree v (T v' l1 r1)
 by auto
 thus ?thesis
 by auto
 qed
qed
qed
qed
next
using 5-2(1) \langle v1 \geq v2 \rangle \langle \neg v' \geq v1 \rangle
by auto

hence in-tree v (T v1 l1 r1)
using \langle \neg (v = v' \lor v = v1 \lor v = v2) \rangle
by auto

thus ?thesis
by auto

qed

next
case False
show ?thesis
proof(cases v' \geq v2)

case True
thus ?thesis
using \langle \neg v1 \geq v2 \rangle 5-2
by auto

next
case False
thus ?thesis
proof(cases in-tree v (T v1 l1 r1))

case True
thus ?thesis
by auto

next
case False
hence in-tree v (siftDown (set-val (T v2 l2 r2) v'))
using 5-2(3) \langle \neg in-tree v (T v1 l1 r1) \rangle \langle \neg v1 \geq v2 \rangle \langle \neg v' \geq v2 \rangle
by auto

hence in-tree v (T v' l2 r2)
using 5-2(2) \langle v1 \geq v2 \rangle \langle \neg v' \geq v2 \rangle
by auto

hence in-tree v (T v2 l2 r2)
using \langle \neg (v = v' \lor v = v1 \lor v = v2) \rangle
by auto

thus ?thesis
by auto

qed

qed

qed

qed

qed

qed

next
case False
show ?thesis
proof(cases v' \geq v2)

case True
thus ?thesis
using \langle \neg v1 \geq v2 \rangle 5-2
by auto

next
case False
hence in-tree v (siftDown (set-val (T v2 l2 r2) v'))
using 5-2(3) \langle \neg in-tree v (T v1 l1 r1) \rangle \langle \neg v1 \geq v2 \rangle \langle \neg v' \geq v2 \rangle
by auto

hence in-tree v (T v' l2 r2)
using 5-2(2) \langle v1 \geq v2 \rangle \langle \neg v' \geq v2 \rangle
by auto

hence in-tree v (T v2 l2 r2)
using \langle \neg (v = v' \lor v = v1 \lor v = v2) \rangle
by auto

thus ?thesis
by auto

 qed

lemma siftDown-heap-is-heap:
assumes is-heap l is-heap r t = T v l r
shows is-heap (siftDown t)
using assms
proof (induct t arbitrary: v l r rule:siftDown.induct)
 case 1
 thus ?case
 by simp
next
case (2 v')
show ?case
 by simp
next
case (3 v2 v1 l1 r1)
show ?case
proof (cases v2 ≥ v1)
case True
 thus ?thesis
 using 3(2) 3(4)
 by auto
next
case False
show ?thesis
proof
 let ?t = siftDown (T v2 l1 r1)
 obtain l' v' r' where *: ?t = T v' l' r' v' ≥ v2
 using siftDown-Node[of T v2 l1 r1 v2 l1 r1]
 by auto
 have l = T v1 l1 r1
 using 3(4)
 by auto
 hence is-heap l1 is-heap r1
 using 3(2)
 apply (induct l rule:is-heap.induct)
 by auto
 hence is-heap ?t
 using 3(1)[of l1 r1 v2] False 3
 by auto
show ?thesis
proof (cases v' = v2)
case True
 thus ?thesis
 using False (is-heap ?t) *
 by auto
next
case False
have in-tree v' ?t
 using *
 using siftDown-in-tree[of ?t]
 by simp
hence in-tree v' (T v2 l1 r1)
 using siftDown-in-tree-set[symmetric, of v' T v2 l1 r1]
 by auto
hence in-tree v' ($T \ v1 \ l1 \ r1$)
 using False
 by simp
hence $v1 \geq v'$
 using 3
 using is-heap-max[of $v' \ T \ v1 \ l1 \ r1$]
 by auto
thus ?thesis
 using (is-heap $?t$) $\land \neg v2 \geq v1$]
 by auto
 qed
qed
qed
next
 case (4 $v2 \ v1 \ l1 \ r1$)
 show ?case
 proof (cases $v2 \geq v1$)
 case True
 thus ?thesis
 using (2−4)
 by auto
 next
 case False
 let $?t = siftDown \ (T \ v2 \ l1 \ r1$
 obtain $v' \ l' \ r' \ where \ ?t = T \ v' \ l' \ r' \ v' \geq v2$
 using siftDown-Node[of $T \ v2 \ l1 \ r1 \ v2 \ l1 \ r1$]
 by auto
 have $r = T \ v1 \ l1 \ r1$
 using (4)
 by auto
hence is-heap $l1$ is-heap $r1$
 using (3)
 apply (induct r rule:is-heap.induct)
 by auto
hence is-heap $?t$
 using False 4(1)[of $l1 \ r1 \ v2$]
 by auto
 show ?thesis
 proof (cases $v' = v2$)
 case True
 thus ?thesis
 using * (is-heap $?t$) False
 by auto
 next
 case False
 have in-tree v' $?t$
 using *
 using siftDown-in-tree[of $?t$]
 by auto
hence $\text{in-tree } v' (T \ v2 \ l1 \ r1)$
 using $\ast \ \text{siftDown-in-tree-set}[\text{of } v' \ T \ v2 \ l1 \ r1]$
 by auto

hence $\text{in-tree } v' (T \ v1 \ l1 \ r1)$
 using False
 by auto

hence $v1 \geq v'$
 using $\text{is-heap-max}[\text{of } v' \ T \ v1 \ l1 \ r1]$ 4
 by auto

thus thesis
 using $\langle \text{is-heap } ?t; \ \text{False } \ast \rangle$
 by auto

qed

qed

next

\text{case } (5-1 \ v1 \ v2 \ l2 \ r2 \ v3 \ l3 \ r3)

show thesis

proof ($\langle \text{cases } v2 \geq v3 \rangle$)

 case True

 thus thesis
 using $\langle v2 \geq v3 \rangle$ 5-1
 by auto

next

 case False

 let $\ ?t = \text{siftDown } (T \ v1 \ l2 \ r2)$

 obtain $l' \ v' \ r'$ where $\ast: \ ?t = T \ v' \ l' \ r' \ v' \geq v1$
 using siftDown-Node
 by blast

 have $\text{is-heap } l2 \ \text{is-heap } r2$
 using $5-1(3, 5)$
 apply (induct l rule: is-heap.induct)
 by auto

 hence $\text{is-heap } ?t$
 using $5-1(1)[\text{of } l2 \ r2 \ v1] \ (v2 \geq v3); \ \text{False}$
 by auto

 have $v2 \geq v'$

 proof ($\langle \text{cases } v' = v1 \rangle$

 case True

 thus thesis
 using False
 by auto

 next

 case False

 have $\text{in-tree } v' \ ?t$
 using $\ast \ \text{siftDown-in-tree}$
 by auto

next
hence in-tree \(v' \) \((T \; v1 \; l2 \; r2)\)
using siftDown-in-tree-set[of \(v' \) \(T \; v1 \; l2 \; r2 \)]
by auto

hence in-tree \(v' \) \((T \; v2 \; l2 \; r2)\)
using False
by auto

thus \(?thesis\)
using is-heap-max[of \(v' \) \(T \; v2 \; l2 \; r2 \)] 5-1
by auto

qed
thus \(?thesis\)
using \(\langle \text{is-heap \; ?t} \rangle \langle v2 \geq v3 \rangle \ast \) False 5-1
by auto

qed

next
case False

show \(?thesis\)

proof(cases \(v1 \geq v3 \))
case True
thus \(?thesis\)
using \(\langle \neg v2 \geq v3 \rangle \ast \) 5-1
by auto

next
case False

let \(?t = siftDown\) \((T \; v1 \; l3 \; r3)\)

obtain \(l' \; v' \; r' \) where \(*: \; ?t = T \; v' \; l' \; r' \; v' \geq v1 \)
using siftDown-Node
by blast

have is-heap \(l3 \) is-heap \(r3 \)
using 5-1(\(4, 5 \))
apply(induct \(r \) rule:is-heap.induct)
by auto

hence is-heap \(?t\)
using 5-1(\(2 \))\([\text{of } l3 \; r3 \; v1] \; \langle \neg v2 \geq v3 \rangle \) False
by auto

have \(v3 \geq v' \)

proof(cases \(v' = v1 \))
case True
thus \(?thesis\)
using False
by auto

next
case False

have in-tree \(v' \) ?t
using * siftDown-in-tree
by auto

hence in-tree \(v' \) \((T \; v1 \; l3 \; r3)\)
using siftDown-in-tree-set[of \(v' \) \(T \; v1 \; l3 \; r3 \)]
by auto
hence in-tree \(v'\) (\(T v3 l3 r3\))
using False
by auto
thus \(?\)thesis
using is-heap-max[of \(v'\) \(T v3 l3 r3\)] 5-1
by auto
qed
thus \(?\)thesis
using \(\langle\text{is-heap } t, \neg v2 \geq v3 \rangle\) * False 5-1
by auto
qed
qed

next
case (5-2 \(v1 \ v2 \ l2 \ r2 \ v3 \ l3 \ r3\))
show \(?\)case
proof(cases \(v2 \geq v3\))
 case True
 show \(?\)thesis
 proof(cases \(v1 \geq v2\))
 case True
 thus \(?\)thesis
 using \(\langle v2 \geq v3 \rangle\) 5-2
 by auto
 next
 case False
 let \(?t = \text{siftDown} (T v1 l2 r2)\)
 obtain \(l' \ v' \ r'\) where \(*: \ ?t = T \ v' \ l' \ r' \ v1 \leq v'\)
 using siftDown-Node
 by blast
 have is-heap \(l2\) is-heap \(r2\)
 using 5-2(3, 5)
 apply(induct \(l\) rule:is-heap.induct)
 by auto
 hence is-heap \(?t\)
 using 5-2(1)[of \(l2 \ r2 \ v1\)] (\(v2 \geq v3\); False
 by auto
 have \(v2 \geq v'\)
 proof(cases \(v' = v1\))
 case True
 thus \(?\)thesis
 using False
 by auto
 next
 case False
 have in-tree \(v' \ ?t\)
 using * siftDown-in-tree
 by auto
 hence in-tree \(v'\) (\(T v1 l2 r2\))
 using siftDown-in-tree-set[of \(v'\) \(T v1 l2 r2\)]
by auto
hence in-tree \(v' \) \((T \ v2 \ l2 \ r2)\)
 using False
by auto
thus thesis
 using is-heap-max[of \(v' \) \(T \ v2 \ l2 \ r2 \)] 5-2
by auto
qed
thus thesis
 using \langle is-heap \(?t \) \(\langle \) \(v2 \geq v3 \rangle \rangle \ast False 5-2
by auto
qed
next
case False
show thesis
proof(cases \(v1 \geq v3 \))
 case True
 thus thesis
 using \(\langle \neg v2 \geq v3 \rangle \rangle \ast 5-2
 by auto
next
case False
let \(?t = \text{siftDown} \ (T \ v1 \ l3 \ r3) \)
obtain \(l' \ v' \ r' \) where \(\ast: \ ?t = T \ v' \ l' \ r' \ v' \geq v1 \)
 using siftDown-Node
 by blast
have is-heap l3 is-heap r3
 using 5-2(4, 5)
apply(induct r rule:is-heap.induct)
 by auto
hence is-heap ?t
 using 5-2(2)[of l3 r3 \(v1 \)] \(\langle \neg v2 \geq v3 \rangle \) False
 by auto
have \(v3 \geq v' \)
proof(cases \(v' = v1 \))
 case True
 thus thesis
 using False
 by auto
next
case False
have in-tree \(v' \) \(?t \)
 using \ast siftDown-in-tree
 by auto
hence in-tree \(v' \) \((T \ v1 \ l3 \ r3) \)
 using siftDown-in-tree-set[of \(v' \) \(T \ v1 \ l3 \ r3 \)]
 by auto
hence in-tree \(v' \) \((T \ v3 \ l3 \ r3) \)
 using False
by auto
thus ?thesis
using `is-heap-max [of v’ T v3 l3 r3] 5-2
by auto
qed
thus ?thesis
using ⟨is-heap (?t) (∼ v2 ≥ v3) * False⟩ 5-2
by auto
qed
qed

Definition of the function heapify which makes a heap from any given binary tree.

primrec heapify where
heapify E = E
| heapify (T v l r) = siftDown (T v (heapify l) (heapify r))

lemma heapify-heap-is-heap:
is-heap (heapify t)
proof (induct t)
case E
thus ?case
by auto
next
case (T v l r)
thus ?case
using siftDown-heap-is-heap[of heapify l heapify r T v (heapify l) (heapify r) v]
by auto
qed

Definition of removeLeaf function. Function returns two values. The first one is the value of removed leaf element. The second returned value is tree without that leaf.

fun removeLeaf :: 'a::linorder Tree ⇒ 'a × 'a Tree
where
removeLeaf E = (v, E)
| removeLeaf (T v l E) = (fst (removeLeaf l), T v (snd (removeLeaf l)) E)
| removeLeaf (T v E r) = (fst (removeLeaf r), T v E (snd (removeLeaf r)))
| removeLeaf (T v l r) = (fst (removeLeaf l), T v (snd (removeLeaf l)) r)

Function of_list_tree makes a binary tree from any given list.

primrec of_list_tree :: 'a::linorder list ⇒ 'a Tree
where
of_list_tree [] = E
| of_list_tree (v # tail) = T v (of_list_tree tail) E

By applying heapify binary tree is transformed into heap.

definition hs-of-list where
hs-of-list l = heapify (of_list_tree l)
Definition of function hs_remove_max. As it is already well established, finding maximum is not a problem, since it is in the root element of the heap. The root element is replaced with leaf of the heap and that leaf is erased from its previous position. However, now the new root element may not satisfy heap property and that is the reason to apply function $siftDown$.

Definition $hs_remove_max :: 'a::linorder\ Tree \Rightarrow 'a \times 'a\ Tree$ where

$hs_remove_max\ t \equiv$

$(\text{let } v' = \text{fst (removeLeaf } t);$
$t' = \text{snd (removeLeaf } t)\text{ in}$
$(\text{if } t' = E\text{ then } (\text{val } t, E)$
$\text{else } (\text{val } t, \text{siftDown (set-val } t' v')))\}$

Definition hs_is_empty where

[simp]: $hs_is_empty\ t \iff t = E$

Lemma $siftDown_multiset$: $multiset\ (siftDown\ t) = multiset\ t$

Proof (induct t rule:$siftDown_induct$)

- **case** 1
 - thus ?case
 - by simp

- **next**
 - **case** (2 v)
 - thus ?case
 - by simp

- **next**
 - **case** (3 $v1\ v\ l\ r$)
 - thus ?case
 - proof (cases $v \leq v1$)
 - **case** True
 - thus ?thesis
 - by auto
 - **next**
 - **case** False
 - hence $multiset\ (siftDown\ (T\ v1\ (T\ v\ l\ r)\ E)) = multiset\ l + \{\#v1\#\} + multiset\ r + \{\#v\#\}$
 - using 3
 - by auto
 - moreover
 - have $multiset\ (T\ v1\ (T\ v\ l\ r)\ E) = multiset\ l + \{\#v\#\} + multiset\ r + \{\#v1\#\}$
 - by auto
 - moreover
 - have $multiset\ l + \{\#v1\#\} + multiset\ r + \{\#v\#\} = multiset\ l + \{\#v\#\} + multiset\ r + \{\#v1\#\}$
 - by (metis union-commute union-lcomm)
 - ultimately
 - show ?thesis
by auto
qed
next
case (4 v l r)
thus ?case
proof(cases v ≤ v1)
case True
thus ?thesis
by auto
next
case False
have multiset (set-val (T v l r) v1) =
 multiset l + {#v1#} + multiset r
by auto
hence multiset (siftDown (T v1 E (T v l r))) =
 {#v#} + multiset (set-val (T v l r) v1)
using 4 False
by auto
hence multiset (siftDown (T v1 E (T v l r))) =
 {#v#} + multiset l + {#v1#} + multiset r
using multiset (set-val (T v l r) v1) =
 multiset l + {#v1#} + multiset r
by (metis union-commute union-lcomm)
moreover
have multiset (T v1 E (T v l r)) =
 {#v#} + multiset l + {#v#} + multiset r
by (metis calculation monoid-add-class.add.left-neutral
 multiset.simps(1) multiset.simps(2) union-commute union-lcomm)
moreover
have {#v#} + multiset l + {#v1#} + multiset r =
 {#v1#} + multiset l + {#v#} + multiset r
by (metis union-commute union-lcomm)
ultimately
show ?thesis
by auto
qed
next
case (5-1 v l1 r1 v2 l2 r2)
thus ?case
proof(cases v1 ≥ v2)
case True
thus ?thesis
proof(cases v ≥ v1)
case True
thus ?thesis
 using (v1 ≥ v2)
 by auto
next
case False
hence \(\text{multiset} (\text{siftDown} (T \ v \ (T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2))) = \)
\[
\text{multiset} \ l1 + \{\#v\#\} + \text{multiset} \ r1 + \{\#v1\#\} + \\
\text{multiset} (T \ v2 \ l2 \ r2)
\]
using \(\langle v1 \geq v2 \rangle: 5-1(1) \)
by auto
moreover
have \(\text{multiset} (T \ v \ (T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2)) = \)
\[
\text{multiset} \ l1 + \{\#v1\#\} + \text{multiset} \ r1 + \{\#v\#\} + \\
\text{multiset} (T \ v2 \ l2 \ r2)
\]
by auto
moreover
have \(\text{multiset} l1 + \{\#v1\#\} + \text{multiset} r1 + \{\#v\#\} + \\
\text{multiset} (T \ v2 \ l2 \ r2) = \)
\[
\text{multiset} l1 + \{\#v\#\} + \text{multiset} r1 + \{\#v1\#\} + \\
\text{multiset} (T \ v2 \ l2 \ r2)
\]
by (metis union-commute union-lcomm)
ultimately
show ?thesis
by auto
qed
next
case False
show ?thesis
proof(cases v ≥ v2)
 case True
 thus ?thesis
 using False
 by auto
next
case False
hence \(\text{multiset} (\text{siftDown} (T \ v \ (T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2))) = \)
\[
\text{multiset} \ (T \ v1 \ l1 \ r1) + \{\#v\#\} + \text{multiset} l2 + \\
\{\#v2\#\} + \text{multiset} r2
\]
using \(\langle v1 \geq v2 \rangle: 5-1(2) \)
by (simp add: ac-simps)
moreover
have \(\text{multiset} (T \ v \ (T \ v1 \ l1 \ r1) \ (T \ v2 \ l2 \ r2)) = \)
\[
\text{multiset} \ (T \ v1 \ l1 \ r1) + \{\#v\#\} + \text{multiset} l2 + \\
\{\#v2\#\} + \text{multiset} r2
\]
by simp
moreover
have \(\text{multiset} \ (T \ v1 \ l1 \ r1) + \{\#v\#\} + \text{multiset} l2 + \\
\text{multiset} r2 = \)
\[
\text{multiset} \ (T \ v1 \ l1 \ r1) + \{\#v2\#\} + \text{multiset} l2 + \\
\{\#v\#\} + \text{multiset} r2
\]
by (metis union-commute union-lcomm)
ultimately
show \(?\text{thesis} \)
 by auto
qed
qed

next

case \((5-2 \, v \, v1 \, l1 \, r1 \, v2 \, l2 \, r2)\)
thus \(?\text{thesis} \)
proof(cases \(v1 \geq v2\))
case \(True \)
thus \(?\text{thesis} \)
proof(cases \(v \geq v1\))
case \(True \)
thus \(?\text{thesis} \)
 using \(\langle v1 \geq v2 \rangle \)
 by auto

next

case \(False \)
hence \(\text{multiset (siftDown (\, T \, v \, (T \, v1 \, l1 \, r1) \, (T \, v2 \, l2 \, r2)))) = \}
 \text{multiset l1 + \{\#v\#\} + multiset r1 + \{\#v1\#\} +}
 \text{multiset (\, T \, v2 \, l2 \, r2) =}
 \text{using \(\langle v1 \geq v2 \rangle \), 5-2(1) =}
 \text{by auto}

moreover
have \(\text{multiset (T v (T v1 l1 r1) (T v2 l2 r2)) =} \}
 \text{multiset l1 + \{\#v\#\} + multiset r1 +}
 \{\#v\#\} + \text{multiset (T v2 l2 r2) =}
 \text{by auto}

moreover
have \(\text{multiset l1 + \{\#v\#\} + multiset r1 + \{\#v\#\} +} \}
 \text{multiset(T v2 l2 r2) =}
 \text{by (metis union-commute union-lcomm) =}
 \text{ultimately}

show \(?\text{thesis} \)
 by auto
qed

next

case \(False \)
show \(?\text{thesis} \)
proof(cases \(v \geq v2\))
case \(True \)
thus \(?\text{thesis} \)
 using \(False \)
 by auto
next

case \(False \)

hence \(\text{multiset (siftDown (\, T \, v \, (T \, v1 \, l1 \, r1) \, (T \, v2 \, l2 \, r2)))) = \}
 \text{multiset (T v1 l1 r1) + \{\#v2\#\} + multiset l2 + \{\#v\#\} +}
multiset r2
using \(\neg v1 \geq v2 \) 5-2(2)
by (simp add: ac-simps)
moreover
have multiset \((T \, v \, (T \, v1 \, l1 \, r1) \, (T \, v2 \, l2 \, r2)) = \)
multiset \((T \, v1 \, l1 \, r1) + \{#v\#\} +\) multiset \(l2 + \{#v2\#\} +\)
multiset \(r2\)
by simp
moreover
have multiset \((T \, v1 \, l1 \, r1) + \{#v\#\} +\) multiset \(l2 + \{#v2\#\} +\)
multiset r2
by (metis union-commute union-lcomm)
ultimately
show \(?thesis\)
by auto
qed
qed
qed

lemma mset-list-tree:
multiset \((\text{of-list-tree} \, l) = mset \, l\)
proof (induct \(l\))
 case Nil
 thus \(?case\)
 by auto
next
 case (Cons \(v\) \(tail\))
 hence multiset \((\text{of-list-tree} \, v \# tail) = mset \, tail + \{#v\#\}\)
 by auto
also have \(\ldots = mset \, (v \# tail)\)
 by auto
finally show multiset \((\text{of-list-tree} \, v \# tail) = mset \, (v \# tail)\)
 by auto
qed

lemma multiset-heapify:
multiset \((\text{heapify} \, t) = \text{multiset} \, t\)
proof (induct \(t\))
 case E
 thus \(?case\)
 by auto
next
 case (Cons \(v\) \(l\) \(r\))
 hence multiset \((\text{heapify} \, (T \, v \, l \, r)) = mset \, l + \{#v\#\} +\) multiset \(r\)
 using siftDown-multiset[of T \(v\) (heapify \(l\)) (heapify \(r\))]
 by auto
thus \(\alpha\) case

by auto

qed

lemma multiset-heapify-of-list-tree:
 multiset (heapify (of-list-tree \(l\))) = mset \(l\)
using multiset-heapify[of of-list-tree \(l\)]
using mset-list-tree[of \(l\)]
by auto

lemma removeLeaf-val-val:
 assumes \(\text{snd} (\text{removeLeaf} \(t\)) \neq E \ t \neq E\)
 shows \(\text{val} \ t = \text{val} (\text{snd} (\text{removeLeaf} \(t\)))\)
using assms
apply (induct \(t\) rule:removeLeaf.induct)
by auto

lemma removeLeaf-heap-is-heap:
 assumes \(\text{is-heap} \(t\) \(t \neq E\)
 shows \(\text{is-heap} (\text{snd} (\text{removeLeaf} \(t\)))\)
using assms
proof (induct \(t\) rule:removeLeaf.induct)
 case (1 \(v\))
 thus \(\alpha\) case
 by auto
next
 case (2 \(v\) \(v1\) \(l1\) \(r1\))
 have \(\text{is-heap} (T \(v1\) \(l1\) \(r1\))\)
 using \(2(3)\)
 by auto
 hence \(\text{is-heap} (\text{snd} (\text{removeLeaf} (T \(v1\) \(l1\) \(r1\))))\)
 using \(2(1)\)
 by auto
 let \(\alpha t = (\text{snd} (\text{removeLeaf} (T \(v1\) \(l1\) \(r1\))))\)
 show \(\alpha\) case
 proof (cases \(\alpha t = E\))
 case True
 thus \(\alpha\) thesis
 by auto
 next
 case False
 have \(v \geq v1\)
 using \(2(3)\)
 by auto
 hence \(v \geq \text{val} \alpha t\)
 using False removeLeaf-val-val[of \(T \(v1\) \(l1\) \(r1\)]
 by auto
 hence \(\text{is-heap} (T \(v\) (\text{snd} (\text{removeLeaf} (T \(v1\) \(l1\) \(r1\)))) \(E\))\)
using \(\text{is-heap} \left(\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right) \right) \)
by \(\text{metis} \; \text{Tree.exhaust} \; \text{is-heap.simps(2)} \; \text{is-heap.simps(4)} \)
thus \(?\text{thesis}\)
using 2
by auto
qed
next
case \((3 \; v \; v_1 \; l_1 \; r_1)\)
have \(\text{is-heap} \left(T \; v_1 \; l_1 \; r_1 \right)\)
using 3(3)
by auto
hence \(\text{is-heap} \left(\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right) \right)\)
using 3(1)
by auto
let \(?t = (\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right))\)
show \(?\text{case}\)
proof(cases \(?t = E)\)
 case True
 thus \(?\text{thesis}\)
 by auto
next
case False
have \(v \geq v_1\)
using 3(2)
by auto
hence \(v \geq \text{val} \; ?t\)
using False removeLeaf-val-val[of T \; v_1 \; l_1 \; r_1]
by auto
hence \(\text{is-heap} \left(T \; v \; E \; \text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right) \right)\)
using \(\text{is-heap} \left(\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right) \right)\)
by \(\text{metis} \; \text{False} \; \text{Tree.exhaust} \; \text{is-heap.simps(3)}\)
thus \(?\text{thesis}\)
using 3
by auto
qed
next
case \((4-1 \; v \; v_1 \; l_1 \; r_1 \; v_2 \; l_2 \; r_2)\)
have \(\text{is-heap} \left(T \; v_1 \; l_1 \; r_1 \right) \; \text{is-heap} \left(T \; v_2 \; l_2 \; r_2 \right) \; v \geq v_1 \; v \geq v_2\)
using 4-1(3)
by \(\text{simp add:is-heap.simps(5)}+\)
hence \(\text{is-heap} \left(\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right) \right)\)
using 4-1(1)
by auto
let \(?t = (\text{snd} \left(\text{removeLeaf} \left(T \; v_1 \; l_1 \; r_1 \right) \right))\)
show \(?\text{case}\)
proof(cases \(?t = E)\)
 case True
 thus \(?\text{thesis}\)
 using \(\text{is-heap} \left(T \; v_2 \; l_2 \; r_2 \right) \; \left(v \geq v_2 \right)\)
by auto
next
case False
then obtain \(v' \) \(l' \) \(r' \) where \(? t = T \ v' \ l' \ r'\)
by (metis Tree.exhaust)
hence is-heap (T \ v' \ l' \ r')
using is-heap (snd (removeLeaf (T \ v1 \ l1 \ r1)))
by auto
have \(v \geq v1 \)
using 4-1(3)
by auto
hence \(v \geq \text{val} ?t \)
using False removeLeaf-val-val[of T \ v1 \ l1 \ r1]
by auto
hence \(v \geq v1' \)
using (?t = T \ v1' \ l1' \ r1')
by auto
hence is-heap (T v (T \ v1' \ l1' \ r1') (T \ v2 \ l2 \ r2))
using is-heap (T \ v1 \ l1 \ r1')
using is-heap (T \ v2 \ l2 \ r2) \(v \geq v2 \)
by (simp add: is-heap.simps(5))
thus ?thesis
using 4-1 (?t = T \ v1' \ l1' \ r1')
by auto
qed
next
case (4-2 v v1 l1 r1 v2 l2 r2)
have is-heap (T \ v1 \ l1 \ r1) is-heap (T \ v2 \ l2 \ r2) \(v \geq v1 \ v \geq v2 \)
using 4-2(3)
by (simp add:is-heap.simps(5))+
hence is-heap (snd (removeLeaf (T \ v1 \ l1 \ r1)))
using 4-2(1)
by auto
let \(? t = (snd (removeLeaf (T \ v1 \ l1 \ r1)))\)
show ?case
proof(cases \(? t = E\))
case True
thus ?thesis
using is-heap (T \ v2 \ l2 \ r2) \(v \geq v2 \)
by auto
next
case False
then obtain \(v' \) \(l' \) \(r' \) where \(? t = T \ v1' \ l' \ r'\)
by (metis Tree.exhaust)
hence is-heap (T \ v1' \ l' \ r')
using is-heap (snd (removeLeaf (T \ v1 \ l1 \ r1)))
by auto
have \(v \geq v1 \)
using 4-2(3)
by auto
hence $v \geq \text{val } ?t$
 using False removeLeaf-val-val[of $T \ v1 \ l1 \ r1$]
 by auto
hence $v \geq v1'$
 using $?t = T \ v1' \ l1' \ r1'$
 by auto
hence is-heap ($T \ v \ (T \ v1' \ l1' \ r1') \ (T \ v2 \ l2 \ r2)$)
 using is-heap ($T \ v1' \ l1' \ r1'$)
 using is-heap ($T \ v2 \ l2 \ r2$) ($v \geq v2$)
 by (simp add: is-heap.simps(5))
thus \vdashthesis
 using 4-2 ($?t = T \ v1' \ l1' \ r1'$)
 by auto
qed

next
 case 5
 thus $?case$
 by auto
qed

Difined functions satisfy conditions of locale Collection and thus represent interpretation of this locale.

interpretation HS: Collection E hs-is-empty hs-of-list multiset
proof
 fix t
 assume hs-is-empty t
 thus $t = E$
 by auto
next
 show hs-is-empty E
 by auto
next
 show multiset $E = \{#\}$
 by auto
next
 fix l
 show multiset (hs-of-list l) = mset l
 unfolding hs-of-list-def
 using multiset-heapify-of-list-tree[of l]
 by auto
qed

lemma removeLeaf-multiset:
 assumes ($v', \ t'$) = removeLeaf $t \ t \neq E$
 shows $\{#v'#\} + \text{multiset } t' = \text{multiset } t$
using assms
proof(induct t arbitrary: $v' \ t'$ rule:removeLeaf.induct)
 case 1

45
thus \(\text{?case} \)
 by auto
next
 case \((2 \ v \ v1 \ l1 \ r1)\)
 have \(t' = T \ v \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1)))) \) \(E \)
 using \(2(3)\)
 by auto
 have \(v' = \text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))} \)
 using \(2(3)\)
 by auto
 hence \(\{ \#v'\# \} + \text{multiset} \ t' = \)
 \(\{ \#\text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))}\# \} + \)
 \text{multiset \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})} + \)
 \(\{ \#v'\# \} \)
 using \(t' = T \ v \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))}) \) \(E \)
 by (simp add: ac-simps)
 have \(\{ \#\text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))}\# \} + \)
 \text{multiset \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})} = \)
 \text{multiset \ (T \ v1 \ l1 \ r1)}
 using \(2(1)\)
 by auto
 hence \(\{ \#v'\# \} + \text{multiset} \ t' = \text{multiset} \ (T \ v1 \ l1 \ r1) + \{ \#v'\# \} \)
 using \(\{ \#v'\# \} + \text{multiset} \ t' = \)
 \(\{ \#\text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))}\# \} + \)
 \text{multiset \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})} + \{ \#v'\# \};\)
 by auto
 thus \(\text{?case} \)
 by auto
next
 case \((3 \ v \ v1 \ l1 \ r1)\)
 have \(t' = T \ v \ E \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))}) \)
 using \(3(3)\)
 by auto
 have \(v' = \text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))} \)
 using \(3(3)\)
 by auto
 hence \(\{ \#v'\# \} + \text{multiset} \ t' = \)
 \(\{ \#\text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))}\# \} + \)
 \text{multiset \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})} + \)
 \(\{ \#v'\# \} \)
 using \(t' = T \ v \ E \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})\)
 by (simp add: ac-simps)
 have \(\{ \#\text{fst \ (removeLeaf \ (T \ v1 \ l1 \ r1))}\# \} + \)
 \text{multiset \ (\text{snd \ (removeLeaf \ (T \ v1 \ l1 \ r1))})} = \)
 \text{multiset \ (T \ v1 \ l1 \ r1)}
 using \(3(1)\)
 by auto
 hence \(\{ \#v'\# \} + \text{multiset} \ t' = \text{multiset} \ (T \ v1 \ l1 \ r1) + \{ \#v'\# \} \)
 using \(\{ \#v'\# \} + \text{multiset} \ t' = \)
 \text{multiset} \ (T \ v1 \ l1 \ r1) + \{ \#v'\# \} \)
 by auto

46
\{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} + multiset (\text{snd (removeLeaf } (T \text{ v1 l1 r1})\} + \{\#v\#\};

by auto
thus ?case
by (metis monoid-add-class.add_right-neutral
 multiset.simps(1) multiset.simps(2) union-commute)

next

\text{case } (4-1 \text{ v v1 l1 r1 v2 l2 r2})

\text{have } t' = T \text{ v (snd (removeLeaf } (T \text{ v1 l1 r1})) (T \text{ v2 l2 r2})

using 4-1(3)
by auto

\text{have } v' = \text{fst (removeLeaf } (T \text{ v1 l1 r1})

using 4-1(3)
by auto

\text{hence } \{\#v'\#\} + multiset t' =
\{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} + multiset (\text{snd (removeLeaf } (T \text{ v1 l1 r1})\} + \{\#v\#\} + multiset (T \text{ v2 l2 r2})

using (t' = T \text{ v (snd (removeLeaf } (T \text{ v1 l1 r1})) (T \text{ v2 l2 r2})
by (metis multiset.simps(2) union-assoc)

\text{have } \{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} + multiset (\text{snd (removeLeaf } (T \text{ v1 l1 r1})\} =
multiset (T \text{ v1 l1 r1})

using 4-1(1)
by auto

\text{hence } \{\#v'\#\} + multiset t' =
multiset (T \text{ v1 l1 r1}) + \{\#v\#\} + multiset (T \text{ v2 l2 r2})

using \{\#v'\#\} + multiset t' =
\{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} + multiset (\text{snd (removeLeaf } (T \text{ v1 l1 r1})\} + \{\#v\#\} + multiset (T \text{ v2 l2 r2})

by auto
thus ?case
by auto

next

\text{case } (4-2 \text{ v v1 l1 r1 v2 l2 r2})

\text{have } t' = T \text{ v (snd (removeLeaf } (T \text{ v1 l1 r1})) (T \text{ v2 l2 r2})

using 4-2(3)
by auto

\text{have } v' = \text{fst (removeLeaf } (T \text{ v1 l1 r1})

using 4-2(3)
by auto

\text{hence } \{\#v'\#\} + multiset t' =
\{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} + multiset (\text{snd (removeLeaf } (T \text{ v1 l1 r1})\} + \{\#v\#\} + multiset (T \text{ v2 l2 r2})

using (t' = T \text{ v (snd (removeLeaf } (T \text{ v1 l1 r1})) (T \text{ v2 l2 r2})
by (metis multiset.simps(2) union-assoc)

\text{have } \{\#\text{fst (removeLeaf } (T \text{ v1 l1 r1})\#\} +
multiset (snd (removeLeaf (T v1 l1 r1))) =
multiset (T v1 l1 r1)
using 4-2(1)
by auto
hence \{#v'\#\} + multiset t' =
multiset (T v1 l1 r1) + \{#v\#\} + multiset (T v2 l2 r2)
using \{#v'\#\} + multiset t' =
\{fst (removeLeaf (T v1 l1 r1))\#\} +
multiset (snd (removeLeaf (T v1 l1 r1))) +
\{#v\#\} + multiset (T v2 l2 r2)
by auto
thus ?case
by auto
next
case 5
thus ?case
by auto
qed

lemma set-val-multiset:
assumes t \neq E
shows multiset (set-val t v') + \{#val t\#\} = \{#v'\#\} + multiset t
proof-
obtain v l r where t = T v l r
using assms
by (metis Tree.exhaust)
hence multiset (set-val t v') + \{#val t\#\} =
multiset l + \{#v'\#\} + multiset r + \{#v\#\}
by auto
have \{#v'\#\} + multiset t =
\{#v'\#\} + multiset l + \{#v\#\} + multiset r
using (t = T v l r)
by (metis multiset.simps(2) union-assoc)
have \{#v'\#\} + multiset l + \{#v\#\} + multiset r =
multiset l + \{#v'\#\} + multiset r + \{#v\#\}
by (metis union-commute union-lcomm)
thus ?thesis
using (multiset (set-val t v') + \{#val t\#\} =
multiset l + \{#v'\#\} + multiset r + \{#v\#\}):
using \{#v'\#\} + multiset t =
\{#v'\#\} + multiset l + \{#v\#\} + multiset r
by auto
qed

lemma hs-remove-max-multiset:
assumes (m, t') = hs-remove-max t t \neq E
shows \{#m\#\} + multiset t' = multiset t
proof-
let \forall v1 = fst (removeLeaf t)
let \(t_1 = \text{snd} \ (\text{removeLeaf} \ t) \)

show \(\text{thesis} \)

proof (cases \(t_1 = E \))

case True

hence \(\{ #m\# \} + \text{multiset} \ t' = \{ #m\# \} \)

using assms

unfolding hs-remove-max-def

by auto

have \(v_1 = \text{val} \ t \)

using True assms

apply (induct \ t \ rule: removeLeaf.induct)

by auto

hence \(v_1 = m \)

using assms(1) True

unfolding hs-remove-max-def

by auto

hence \(\text{multiset} \ t = \{ #m\# \} \)

using removeLeaf-multiset[of \ v_1 \ t \ t] True assms(2)

by (metis empty-neutral(2) multiset.simps(1) prod.collapse)

thus \(\text{thesis} \)

using \(\{ #m\# \} + \text{multiset} \ t' = \{ #m\# \} \)

by auto

next

case False

hence \(t' = \text{siftDown} \ (\text{set-val} \ t_1 \ v_1) \)

using assms(1)

by (auto simp add: hs-remove-max-def) (metis prod.inject)

hence \(\text{multiset} \ t' + \{ #\text{val} \ t_1\# \} = \text{multiset} \ t \)

using siftDown-multiset[of set-val \ t_1 \ v_1]

using removeLeaf-multiset[of \ v_1 \ t_1 \ t] assms(2)

using set-val-multiset[of \ t_1 \ v_1] False

by auto

have \(\text{val} \ t_1 = \text{val} \ t \)

using False assms(2)

apply (induct \ t \ rule: removeLeaf.induct)

by auto

have \(\text{val} \ t = m \)

using assms(1) False

using \(t' = \text{siftDown} \ (\text{set-val} \ t_1 \ v_1) \)

unfolding hs-remove-max-def

by (metis (full-types) fst-conv removeLeaf.simps(1))

hence \(\text{val} \ t_1 = m \)

using \(\text{val} \ t_1 = \text{val} \ t \)

by auto

hence \(\text{multiset} \ t' + \{ #m\# \} = \text{multiset} \ t \)

using \(\text{multiset} \ t' + \{ \text{val} \ t_1\# \} = \text{multiset} \ t \)

by metis

thus \(\text{thesis} \)

by (metis union-commute)
Difined functions satisfy conditions of locale *Heap* and thus represent interpretation of this locale.

interpretation *Heap* *E* *hs-is-empty* *hs-of-list* *multiset* *id* *hs-remove-max*

proof

fix *t*

show \(\text{multiset} \ t = \text{multiset} \ (\text{id} \ t) \)

by auto

next

fix *t*

show \(\text{is-heap} \ (\text{id} \ (\text{hs-of-list} \ t)) \)

unfolding \(\text{hs-of-list-def} \)

using \(\text{heapify-heap-is-heap[of of-list-tree} \ t \)\]

by auto

next

fix *t*

show \((\text{id} \ t = \ E) = \text{hs-is-empty} \ t \)

by auto

next

fix *t* *m* *t’*

assume \(\neg \text{hs-is-empty} \ t \ (m, t’) = \text{hs-remove-max} \ t \)

thus \(\text{add-mset} \ m \ (\text{multiset} \ t’) = \text{multiset} \ t \)

using \(\text{hs-remove-max-multiset[of m t’] \)

by auto

next

fix *t* *v’* *t’*

assume \(\neg \text{hs-is-empty} \ t \ \text{is-heap} \ (\text{id} \ t) \ (v’, t’) = \text{hs-remove-max} \ t \)

let \(?v1 = \text{fst} \ (\text{removeLeaf} \ t) \)

let \(?t1 = \text{snd} \ (\text{removeLeaf} \ t) \)

have \(\text{is-heap} \ ?t1 \)

using \(\neg \text{hs-is-empty} \ t \ (\text{is-heap} \ (\text{id} \ t)); \)

using \(\text{removeLeaf-heap-is-heap[of]} \)

by auto

show \(\text{is-heap} \ (\text{id} \ t’) \)

proof(cases \(?t1 = \ E \))

 case True

 hence \(t’ = \ E \)

 using \((v’, t’) = \text{hs-remove-max} \ t \)

 unfolding \(\text{hs-remove-max-def} \)

 by auto

 thus \(\text{thesis} \)

 by auto

next

 case False

 then obtain \(v\cdot t1 \ l\cdot t1 \ r\cdot t1 \) where \(?t1 = T \ v\cdot t1 \ l\cdot t1 \ r\cdot t1 \)

 by (metis Tree.exhaust)

 hence \(\text{is-heap} \ l\cdot t1 \ \text{is-heap} \ r\cdot t1 \)

qed

qed
using \(\text{is-heap} \ ?t1 \)

by (auto, metis (full-types) Tree.exhaust
 is-heap.simps(1) is-heap.simps(4) is-heap.simps(5))

(metis (full-types) Tree.exhaust
 is-heap.simps(1) is-heap.simps(3) is-heap.simps(5))

have set-val \(?t1 \ ?v1 = T \ ?v1 \ l-t1 r-t1 \)
 using \(?t1 = T \ ?v1 \ l-t1 r-t1 \)
 by auto

hence \(\text{is-heap} \ (\text{siftDown} \ (\text{set-val} \ ?t1 \ ?v1)) \)
 using \(\text{is-heap} \ l-t1 \) \(\text{is-heap} \ r-t1 \)
 using \(\text{siftDown}-\text{heap}-\text{is-heap} \ [\text{of} \ l-t1 r-t1 \ \text{set-val} \ ?t1 \ ?v1 \ ?v1] \)
 by auto

have \(t' = \text{siftDown} \ (\text{set-val} \ ?t1 \ ?v1) \)
 using \(\langle \langle v', t' \rangle = \text{hs}-\text{remove-max} \ t \ \text{False} \rangle \)
 by (auto simp add: hs-remove-max-def) (metis prod.inject)

thus \(\langle \text{thesis} \) \(\rangle \)
 using \(\text{is-heap} \ (\text{siftDown} \ (\text{set-val} \ ?t1 \ ?v1)) \)
 by auto

qed

next

fix \(t \ m \ t' \)

let \(?t1 = \text{snd} \ (\text{removeLeaf} \ t) \)

assume \(\neg \text{hs}-\text{is-empty} \ t \ (m, t') = \text{hs}-\text{remove-max} \ t \)

hence \(m = \text{val} \ t \)

apply (simp add: hs-remove-max-def)

apply (cases \(?t1 = E \))

by (auto, metis prod.inject)

thus \(m = \text{val} \ (\text{id} \ t) \)

by auto

qed

end

8 Related work

To study sorting algorithms from a top down was proposed in [?]. All sorting algorithms are based on divide-and-conquer algorithm and all sorts are divided into two groups: hard_split/easy_join and easy_split/hard_join. Following this idea in [?], authors described sorting algorithms using object-oriented approach. They suggested that this approach could be used in computer science education and that presenting sorting algorithms from top down will help students to understand them better.

The paper [?] represent different recursion patterns — catamorphism, anamorphism, hylomorphism and paramorphisms. Selection, bubble, merge, heap
and quick sort are expressed using these patterns of recursion and it is shown that there is a little freedom left in implementation level. Also, connection between different patterns are given and thus a conclusion about connection between sorting algorithms can be easily conducted. Furthermore, in the paper are generalized tree data types – list, binary trees and binary leaf trees.

Satisfiability procedures for working with arrays was proposed in paper “What is decidable about arrays?”[?]. This procedure is called SAT_A and can give an answer if two arrays are equal or if array is sorted and so on. Completeness and soundness for procedures are proved. There are, though, several cases when procedures are unsatisfiable. They also studied theory of maps. One of the application for these procedures is verification of sorting algorithms and they gave an example that insertion sort returns sorted array.

Tools for program verification are developed by different groups and with different results. Some of them are automated and some are half-automated. Ralph-Johan Back and Johannes Eriksson[?] developed SOCOS, tool for program verification based on invariant diagrams. SOCOS environment supports interactive and non-interactive checking of program correctness. For each program tree types of verification conditions are generated: consistency, completeness and termination conditions. They described invariant-based programming in SOCOS. In[?] this tool was used to verify heap sort algorithm.

There are many tools for Java program developers maid to automatically prove program correctness. Krakatoa Modeling Language (KML) is described in[?] with example of sorting algorithms. Refinement is not supported in KML and any refinement property could not automatically be proved. The language KML is also not formally verified, but some parts are proved by Alt-Ergo, Simplify and Yices. The paper proposed some improvements for working with permutation and arrays in KML. Why/Krakatoa/Caduceus[?] is a tool for deductive program verification for Java and C. The approach is to use Krakatoa and Caduceus to translate Java/C programs into Why program. This language is suitable for program verification. The idea is to generate verification conditions based on weakest precondition calculus.

9 Conclusions and Further Work

In this paper we illustrated a proof management technology. The methodology that we use in this paper for the formalization is refinement: the formalization begins with a most basic specification, which is then refined by introducing more advanced techniques, while preserving the correctness. This incremental approach proves to be a very natural approach in formal-
izing complex software systems. It simplifies understanding of the system and reduces the overall verification effort.

Modularity is very popular in nowadays imperative languages. This approach could be used for software verification and Isabelle/HOL locales provide means for modular reasoning. They support multiple inheritance and this means that locales can imitate connections between functions, procedures or objects. It is possible to establish some general properties of an algorithm or to compare these properties. So, it is possible to compare programs. And this is a great advantage in program verification, something that is not done very often. This could help in better understanding of an algorithm which is essential for computer science education. So apart from being able to formalize verification in easier manner, this approach gives us opportunity to compare different programs. This was showed on Selection and Heap sort example and the connection between these two sorts was easy to comprehend. The value of this approach is not so much in obtaining a nice implementation of some algorithm, but in unraveling its structure. This is very important for computer science education and this can help in better teaching and understanding of an algorithms.

Using experience from this formalization, we came to conclusion that the general principle for refinement in program verification should be: divide program into small modules (functions, classes) and verify each modulo separately in order that corresponds to the order in entire program implementation. Someone may argue that this principle was not followed in each step of formalization, for example when we implemented Selection sort or when we defined is_heap and multiset in one step, but we feel that those function were simple and deviations in their implementations are minimal.

The next step is to formally verify all sorting algorithms and using refinement method to formally analyze and compare different sorting algorithms.