Secondary Sylow Theorems

Jakob von Raumer

April 20, 2020

Abstract

These theories extend the existent proof of the first sylow theorem (written by Florian Kammüller and L. C. Paulson) by what is often called the second, third and fourth sylow theorem. These theorems state propositions about the number of Sylow p-subgroups of a group and the fact that they are conjugate to each other. The proofs make use of an implementation of group actions and their properties.

Contents

1 Group Actions ... 2
 1.1 Preliminaries and Definition 2
 1.2 The orbit relation 3
 1.3 Stabilizer and fixed points 4
 1.4 The Orbit-Stabilizer Theorem 5
 1.5 Some Examples for Group Actions 6

2 Conjugation of Subgroups and Cosets 7
 2.1 Definitions and Preliminaries 7
 2.2 Conjugation is a group action 8
 2.3 Properties of the Conjugation Action 8

3 The Secondary Sylow Theorems 9
 3.1 Preliminaries 9
 3.2 Extending the Sylow Locale 10
 3.3 Every p-group is Contained in a conjugate of a p-Sylow-Group 10
 3.4 Every p-Group is Contained in a p-Sylow-Group 11
 3.5 p-Sylow-Groups are conjugates of each other 11
 3.6 Counting Sylow-Groups 11

theory GroupAction

imports

HOL-Algebra.Bij
1 Group Actions

This is an implementation of group actions based on the group implementation of HOL-Algebra. An action a group \(G \) on a set \(M \) is represented by a group homomorphism between \(G \) and the group of bijections on \(M \).

1.1 Preliminaries and Definition

First, we need two theorems about singletons and sets of singletons which unfortunately are not included in the library.

theorem singleton-intersection:
assumes \(A:\text{card} \, A = 1 \)
assumes \(B:\text{card} \, B = 1 \)
assumes \(\text{noteq}; A \neq B \)
shows \(A \cap B = \{} \)
⟨proof⟩

theorem card-singleton-set:
assumes \(\text{cardOne}; \forall \, x \in A. \,(\text{card} \, x = 1) \)
shows \(\text{card} \,(\bigcup A) = \text{card} \, A \)
⟨proof⟩

Intersecting Cosets are equal:

lemma (in subgroup) repr-independence2:
assumes \(\text{group}; \text{group} \, G \)
assumes \(U;U \in \text{rcosets} \, G \, H \)
assumes \(g;g \in U \)
shows \(U = H \#> g \)
⟨proof⟩

locale group-action = group +
fixes \(\varphi \, M \)
assumes \(\text{grouphom}; \text{group-hom} \, G \,(\text{BijGroup} \, M) \, \varphi \)

context group-action
begin

lemma is-group-action:group-action \(G \, \varphi \, M \)⟨proof⟩

The action of \(1 \) has no effect:

lemma one-is-id:
assumes \(m \in M \)
shows \((\varphi \, 1) \, m = m \)
lemma action-closed:
 assumes m : m ∈ M
 assumes g : g ∈ carrier G
 shows ϕ g m ∈ M
〈proof〉

lemma img-in-bij:
 assumes g : g ∈ carrier G
 shows (ϕ g) ∈ Bij M
〈proof〉

The action of inv g reverts the action of g
lemma group-inv-rel:
 assumes g : g ∈ carrier G
 assumes mn : m ∈ M n ∈ M
 assumes phi : (ϕ g) n = m
 shows (ϕ (inv g)) m = n
〈proof〉

lemma images-are-bij:
 assumes g : g ∈ carrier G
 shows bij-betw (ϕ g) M M
〈proof〉

lemma action-mult:
 assumes g : g ∈ carrier G
 assumes h : h ∈ carrier G
 assumes m : m ∈ M
 shows (ϕ g) ((ϕ h) m) = (ϕ (g ⊗ h)) m
〈proof〉

1.2 The orbit relation

The following describes the relation containing the information whether two elements of M lie in the same orbit of the action

definition same-orbit-rel
 where same-orbit-rel = {p ∈ M × M. ∃g ∈ carrier G. (ϕ g) (snd p) = (fst p)}

Use the library about equivalence relations to define the set of orbits and the map assigning to each element of M its orbit

definition orbits
 where orbits = M // same-orbit-rel

definition orbit : `c ⇒ `c set
 where orbit m = same-orbit-rel "\{m\}"

Next, we define a more easy-to-use characterization of an orbit.
lemma orbit-char:
 assumes m: m ∈ M
 shows orbit m = {n. ∃ g. g ∈ carrier G ∧ (ϕ g) m = n}
⟨proof⟩

lemma same-orbit-char:
 assumes m ∈ M n ∈ M
 shows (m, n) ∈ same-orbit-rel = (∃ g ∈ carrier G. ((ϕ g) n = m))
⟨proof⟩

Now we show that the relation we’ve defined is, indeed, an equivalence relation:

lemma same-orbit-is-equiv:
 shows equiv M same-orbit-rel
⟨proof⟩

1.3 Stabilizer and fixed points

The following definition models the stabilizer of a group action:

definition stabilizer :: 'c ⇒ -
 where stabilizer m = {g ∈ carrier G. (ϕ g) m = m}

This shows that the stabilizer of m is a subgroup of G.

lemma stabilizer-is-subgroup:
 assumes m: m ∈ M
 shows subgroup (stabilizer m) G
⟨proof⟩

Next, we define and characterize the fixed points of a group action.

definition fixed-points :: 'c set
 where fixed-points = {m ∈ M. carrier G ⊆ stabilizer m}

lemma fixed-point-char:
 assumes m ∈ M
 shows (m ∈ fixed-points) = (∀ g ∈ carrier G. ϕ g m = m)
⟨proof⟩

lemma orbit-contains-rep:
 assumes m: m ∈ M
 shows m ∈ orbit m
⟨proof⟩

lemma singleton-orbit-eq-fixed-point:
 assumes m: m ∈ M
 shows (card (orbit m) = 1) = (m ∈ fixed-points)
⟨proof⟩
1.4 The Orbit-Stabilizer Theorem

This section contains some theorems about orbits and their quotient groups. The first one is the well-known orbit-stabilizer theorem which establishes a bijection between the the quotient group of the an element’s stabilizer and its orbit.

Theorem orbit-thm:

- **assumes** \(m : m \in M \)
- **assumes** \(\text{rep} : \forall U. \ U \in (\text{carrier} (G \text{ Mod} (\text{stabilizer} m))) \implies \text{rep} \ U \in U \)
- **shows** \(\text{bij-betw} (\lambda H. (\varphi \langle \text{inv} (\text{rep} H) \rangle m)) (\text{carrier} (G \text{ Mod} (\text{stabilizer} m))) (\text{orbit} m) \)

⟨proof⟩

In the case of \(G \) being finite, the last theorem can be reduced to a statement about the cardinality of orbit and stabilizer:

Corollary orbit-size:

- **assumes** \(\text{fin} : \text{finite} (\text{carrier} G) \)
- **assumes** \(m : m \in M \)
- **shows** \(\text{order} G = \text{card} (\text{orbit} m) \ast \text{card} (\text{stabilizer} m) \)

⟨proof⟩

Lemma orbit-not-empty:

- **assumes** \(\text{fin} : \text{finite} M \)
- **assumes** \(A : A \in \text{orbits} \)
- **shows** \(\text{card} A > 0 \)

⟨proof⟩

Lemma fin-set-imp-fin-orbits:

- **assumes** \(\text{fin}M : \text{finite} M \)
- **shows** \(\text{finite orbits} \)

⟨proof⟩

Lemma singleton-orbits:

- **shows** \(\bigcup \{ N \in \text{orbits}. \ \text{card} N = 1 \} = \text{fixed-points} \)

⟨proof⟩

If \(G \) is a \(p \)-group acting on a finite set, a given orbit is either a singleton or \(p \) divides its cardinality:

Lemma p-dvd-orbit-size:

- **assumes** \(\text{order} G : \text{order} G = p \uparrow a \)
- **assumes** \(\text{prime} : \text{prime} p \)
- **assumes** \(\text{fin}M : \text{finite} M \)
- **assumes** \(N : N \in \text{orbits} \)
- **assumes** \(\text{card} N > 1 \)
- **shows** \(p \ \text{dvd} \ \text{card} N \)

⟨proof⟩
As a result of the last lemma the only orbits that count modulo \(p \) are the fixed points

lemma fixed-point-congruence:
- **assumes** order \(G = p \cdot a \)
- **assumes** prime \(p \)
- **assumes** \(\text{finM} \): finite \(M \)
- **shows** \(\text{card } M \mod p = \text{card fixed-points } \mod p \)

\(\langle \text{proof} \rangle \)

We can restrict any group action to the action of a subgroup:

lemma subgroup-action:
- **assumes** \(H \): subgroup \(H \subset G \)
- **shows** \(\text{group-action } (G\{\text{carrier } := H\}) \not\varphi M \)

\(\langle \text{proof} \rangle \)

end

1.5 Some Examples for Group Actions

lemma (in group) right-mult-is-bij:
- **assumes** \(h \in \text{carrier } G \)
- **shows** \((\lambda g \in \text{carrier } G. h \otimes g) \in \text{Bij } (\text{carrier } G) \)

\(\langle \text{proof} \rangle \)

lemma (in group) right-mult-group-action:
- **shows** \(\text{group-action } G (\lambda h. \lambda g \in \text{carrier } G. h \otimes g) (\text{carrier } G) \)

\(\langle \text{proof} \rangle \)

lemma (in group) rcosets-closed:
- **assumes** \(HG : \text{subgroup } H \subset G \)
- **assumes** \(g \in \text{carrier } G \)
- **assumes** \(M \in \text{rcosets } H \)
- **shows** \(M \not\varphi g \in \text{rcosets } H \)

\(\langle \text{proof} \rangle \)

lemma (in group) inv-mult-on-rcosets-is-bij:
- **assumes** \(HG : \text{subgroup } H \subset G \)
- **assumes** \(g \in \text{carrier } G \)
- **shows** \((\lambda U \in \text{rcosets } H. U \not\varphi g) \in \text{Bij } (\text{rcosets } H) \)

\(\langle \text{proof} \rangle \)

lemma (in group) inv-mult-on-rcosets-action:
- **assumes** \(HG : \text{subgroup } H \subset G \)
- **shows** \(\text{group-action } G (\lambda g. \lambda U \in \text{rcosets } H. U \not\varphi g) (\text{rcosets } H) \)

\(\langle \text{proof} \rangle \)

end
theory SubgroupConjugation
imports Group.Action
begin

2 Conjugation of Subgroups and Cosets

This theory examines properties of the conjugation of subgroups of a fixed group as a group action

2.1 Definitions and Preliminaries

We define the set of all subgroups of G which have a certain cardinality. G will act on those sets. Afterwards some theorems which are already available for right cosets are dualized into statements about left cosets.

lemma (in subgroup) subgroup-of-subset: assumes G:group G assumes PH: $H \subseteq K$ assumes KG: subgroup $K G$ shows subgroup $H \ (G[\text{carrier} := K])$
⟨proof⟩

definition subgroups-of-size :: nat ⇒ - where subgroups-of-size $p = \{H. \text{subgroup } H G \land \text{card } H = p\}$

lemma lcosI: $[h \in H; H \subseteq \text{carrier } G; x \in \text{carrier } G]\implies x \otimes h \in x <\# H$
⟨proof⟩

lemma lcoset-join2: assumes H: subgroup $H G$ assumes g: $g \in H$ shows $g <\# H = H$
⟨proof⟩

lemma cardeq-rcoset: assumes finite (carrier G) assumes $M \subseteq \text{carrier } G$ assumes $g \in \text{carrier } G$ shows card ($M #> g$) = card M
⟨proof⟩

lemma cardeq-lcoset: assumes finite (carrier G) assumes M: $M \subseteq \text{carrier } G$

assumes $g : g \in \text{carrier } G$
shows $\text{card } (g <\# M) = \text{card } M$
(proof)

2.2 Conjugation is a group action

We will now prove that conjugation acts on the subgroups of a certain group. A large part of this proof consists of showing that the conjugation of a subgroup with a group element is, again, a subgroup.

lemma conjugation-subgroup:
assumes $HG : H \subseteq \text{subgroup } G$
assumes $gG : g \in \text{carrier } G$
shows $\text{subgroup } (g <\# (H > \text{inv } g)) G$
(proof)

definition conjugation-action :: nat \Rightarrow -
where

conjugation-action p = (\(\lambda g \in \text{carrier } G. \lambda P \in \text{subgroups-of-size } p. g <\# (P > \text{inv } g)\))

lemma conjugation-is-size-invariant:
assumes fin: finite (\text{carrier } G)
assumes $P : P \in \text{subgroups-of-size } p$
assumes $g : g \in \text{carrier } G$
shows $\text{conjugation-action } p \ g \ P \in \text{subgroups-of-size } p$
(proof)

lemma conjugation-is-Bij:
assumes fin: finite (\text{carrier } G)
assumes $g : g \in \text{carrier } G$
shows $\text{conjugation-action } p \ g \in \text{Bij } (\text{subgroups-of-size } p)$
(proof)

lemma h-coset-assoc:
assumes $g : g \in \text{carrier } G$
assumes $h : h \in \text{carrier } G$
assumes $P : P \subseteq \text{carrier } G$
shows $g <\# (P > h) = (g <\# P) > h$
(proof)

theorem acts-on-subsets:
assumes fin: finite (\text{carrier } G)
shows $\text{group-action } G \ (\text{conjugation-action } p) \ (\text{subgroups-of-size } p)$
(proof)

2.3 Properties of the Conjugation Action

lemma stabilizer-contains-P:
assumes fin: finite (\text{carrier } G)
assumes $P : P \in \text{subgroups-of-size } p$
shows \(P \subseteq \text{group-action.stabilizer } G \text{ (conjugation-action } p) \) \(P \)

(proof)

corollary stabilizer-supergp-P:
assumes fin:finite (carrier \(G \))
assumes \(P: P \in \text{subgroups-of-size } p \)
shows subgroup \(P \) \((G\{\text{carrier := group-action.stabilizer } G \text{ (conjugation-action } p) \} P)\)
(proof)

lemma (in group) P-fixed-point-of-P-conj:
assumes fin:finite (carrier \(G \))
assumes \(P: P \in \text{subgroups-of-size } p \)
shows \(P \in \text{group-action.fixed-points} \left(G\{\text{carrier := } P\} \right) \text{ (conjugation-action } p) \) (subgroups-of-size \(p \))
(proof)

lemma conj-wo-inv:
assumes \(Q: \text{subgroup } Q G \)
assumes \(PG: \text{subgroup } P G \)
assumes \(g: g \in \text{carrier } G \)
assumes conj: \(\text{inv } g <\# \) \((Q >\# g) = P \)
shows \(Q >\# g = g <\# P \)
(proof)

end

end

theory SndSylow
imports SubgroupConjugation
begin

no-notation Multiset.subset-mset \text{ (infix } <\# \text{ 50)}

3 The Secondary Sylow Theorems

3.1 Preliminaries

lemma singletonI:
assumes \(\forall x. x \in A \implies x = y \)
assumes \(g \in A \)
shows \(A = \{ y \} \)
(proof)

context group
begin
lemma set-mult-inclusion:
assumes H:\text{subgroup } H G
assumes Q: P \subseteq \text{carrier } G
assumes PQ: H \text{ <#> } P \subseteq H
shows P \subseteq H
⟨proof⟩

lemma card-subgrp-dvd:
assumes subgroup H G
shows card H \text{ dvd order } G
⟨proof⟩

lemma subgroup-finite:
assumes subgroup: subgroup H G
assumes finite: finite (carrier G)
shows finite H
⟨proof⟩
end

3.2 Extending the Sylow Locale

This locale extends the original sylow locale by adding the constraint that the
p must not divide the remainder m, i.e. \(p^a \) is the maximal size of a
p-subgroup of G.

locale snd-sylow = sylow +
assumes pNotDvdm: \(\neg (p \text{ dvd } m) \)

context snd-sylow
begin

lemma pa-not-zero: \(p^a \neq 0 \)
⟨proof⟩

lemma sylow-greater-zero:
shows card (subgroups-of-size \((p^a) \)) > 0
⟨proof⟩

lemma is-snd-sylow: snd-sylow G p a m ⟨proof⟩

3.3 Every p-group is Contained in a conjugate of a p-Sylow-Group

lemma ex-conj-sylow-group:
assumes H:H \in \text{subgroups-of-size } (p^b)
assumes P:size:P \in \text{subgroups-of-size } (p^a)
obtains g where g \in \text{carrier } G H \subseteq g \text{ <# } (P \text{ #} \text{ inv } g)
⟨proof⟩

10
3.4 Every p-Group is Contained in a p-Sylow-Group

Theorem sylow-contained-in-sylow-group:
- assumes $H: H \in \text{subgroups-of-size } (p \cdot b)$
- obtains S where $H \subseteq S$ and $S \in \text{subgroups-of-size } (p \cdot a)$

Proof

3.5 p-Sylow-Groups are conjugates of each other

Theorem sylow-conjugate:
- assumes $P: P \in \text{subgroups-of-size } (p \cdot a)$
- assumes $Q: Q \in \text{subgroups-of-size } (p \cdot a)$
- obtains g where $g \in \text{carrier } G = g <\# (P \# > \text{inv } g)$

Proof

Corollary sylow-conj-orbit-rel:
- assumes $P: P \in \text{subgroups-of-size } (p \cdot a)$
- assumes $Q: Q \in \text{subgroups-of-size } (p \cdot a)$
- shows $(P, Q) \in \text{group-action.same-orbit-rel } G (\text{conjugation-action } (p \cdot a)) (\text{subgroups-of-size } (p \cdot a))$

Proof

3.6 Counting Sylow-Groups

The number of sylow groups is the orbit size of one of them:

Theorem num-eq-card-orbit:
- assumes $P: P \in \text{subgroups-of-size } (p \cdot a)$
- shows $\text{subgroups-of-size } (p \cdot a) = \text{group-action.orbit } G (\text{conjugation-action } (p \cdot a)) (\text{subgroups-of-size } (p \cdot a)) P$

Proof

Theorem num-sylow-normalizer:
- assumes $P: P \in \text{subgroups-of-size } (p \cdot a)$
- shows $\text{card } (\text{rcosets } G[\text{carrier } := \text{group-action.stabilizer } G (\text{conjugation-action } (p \cdot a)) P]) P \cdot p \cdot a = \text{card } (\text{group-action.stabilizer } G (\text{conjugation-action } (p \cdot a)) P)$

Proof

Theorem (in snd-sylow) num-sylow-dvd-remainder:
- shows $\text{card } (\text{subgroups-of-size } (p \cdot a)) \text{ dvd } m$

Proof

We can restrict this locale to refer to a subgroup of order at least p^a:

Lemma (in snd-sylow) restrict-locale:
- assumes $\text{subgrp } P G$
- assumes $\text{card } p \cdot a \text{ dvd } P$
- shows $\text{snd-sylow } (G[\text{carrier } := P]) p a ((\text{card } P) \text{ div } (p \cdot a))$

Proof

Theorem (in snd-sylow) p-sylow-mod-p:
shows \[\text{card} \left(\text{subgroups-of-size} \ (p^a) \right) \mod p = 1 \]
(proof)

end

end