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Abstract

These theories extend the existent proof of the first sylow theorem

(written by Florian Kammueller and L. C. Paulson) by what is often
called the second, third and fourth sylow theorem. These theorems
state propositions about the number of Sylow p-subgroups of a group
and the fact that they are conjugate to each other. The proofs make
use of an implementation of group actions and their properties.

Contents

1 Group Actions 1
1.1 Preliminaries and Definition . . . . . . . . ... ... ... .. 1
1.2 The orbit relation . . . . . . . . . ... ... ... 3
1.3 Stabilizer and fixed points . . . . . ... ... ... ... ... 3
1.4 The Orbit-Stabilizer Theorem . . . . . . . . ... ... .... 4
1.5 Some Examples for Group Actions . . . . .. ... ... ... 5

2 Conjugation of Subgroups and Cosets 6
2.1 Definitions and Preliminaries . . ... ... .. ... ... .. 6
2.2 Conjugation is a group action . . . . . ... ... ... ... 7
2.3 Properties of the Conjugation Action . . . . . . . . ... ... 8

3 The Secondary Sylow Theorems 9
3.1 Preliminaries . . . . . . . ... ... oo 9
3.2 Extending the Sylow Locale . . . . . . ... ... ... .... 10
3.3 Every p-group is Contained in a conjugate of a p-Sylow-Group 10
3.4 Every p-Group is Contained in a p-Sylow-Group . .. .. .. 10
3.5 p-Sylow-Groups are conjugates of each other. . . . . . . . .. 10
3.6 Counting Sylow-Groups . . . . . . . . .. ... ... ... .. 11

theory GroupAction

imports

HOL— Algebra. Bij



HOL— Algebra.Sylow
begin

1 Group Actions

This is an implemention of group actions based on the group implementation
of HOL-Algebra. An action a group G on a set M is represented by a group
homomorphism between G and the group of bijections on M

1.1 Preliminaries and Definition

First, we need two theorems about singletons and sets of singletons which
unfortunately are not included in the library.

theorem singleton-intersection:
assumes A:card A = 1
assumes B:card B = 1
assumes noteq:A # B
shows AN B = {}

(proof)

theorem card-singleton-set:
assumes cardOneNx € A.(card x = 1)
shows card (|JA) = card A

(proof)

Intersecting Cosets are equal:

lemma (in subgroup) repr-independence2:
assumes group:group G
assumes U:U € rcosetsg H
assumes g:g € U
shows U = H #> ¢
(proof)

locale group-action = group +
fixes p M
assumes grouphom:group-hom G (BijGroup M) ¢

context group-action
begin

lemma is-group-action:group-action G ¢ M proof)

The action of 1 has no effect:

lemma one-is-id:
assumes m € M
shows (¢ 1) m =m



(proof)

lemma action-closed:
assumes m:m € M
assumes ¢g:g € carrier G
shows ¢y gm € M

(proof)

lemma img-in-bij:
assumes ¢ € carrier G
shows (¢ g) € Bij M

(proof)

The action of inv g reverts the action of g

lemma group-inv-rel:
assumes ¢:g € carrier G
assumes mn:m € Mn € M
assumes phi:(p g) n = m
shows (¢ (inv g)) m =n
(proof)

lemma images-are-bij:
assumes g:g € carrier G
shows bij-betw (p g) M M

(proof)

lemma action-mult:
assumes g:g € carrier G
assumes h:h € carrier G
assumes m:m € M

shows (¢ g) ((¢ h) m) = (¢ (9 ® h)) m
(proof)

1.2 The orbit relation

The following describes the relation containing the information whether two
elements of M lie in the same orbit of the action

definition same-orbit-rel

where same-orbit-rel = {p € M x M. 3g € carrier G. (¢ g) (snd p) = (fst p)}
Use the library about equivalence relations to define the set of orbits and
the map assigning to each element of M its orbit

definition orbits
where orbits = M // same-orbit-rel

definition orbit :: 'c = 'c set
where orbit m = same-orbit-rel ““ {m}

Next, we define a more easy-to-use characterization of an orbit.



lemma orbit-char:
assumes m:m € M
shows orbit m = {n. 3g. g € carrier G A (p g) m = n}

(proof)

lemma same-orbit-char:

assumes m € M n € M

shows (m, n) € same-orbit-rel = (3¢ € carrier G. ((¢ g) n = m))
(proof)

Now we show that the relation we’ve defined is, indeed, an equivalence re-
lation:
lemma same-orbit-is-equiv:
shows equiv M same-orbit-rel
(proof)

1.3 Stabilizer and fixed points

The following definition models the stabilizer of a group action:

definition stabilizer :: 'c = -
where stabilizer m = {g € carrier G. (¢ g) m = m}

This shows that the stabilizer of m is a subgroup of G.

lemma stabilizer-is-subgroup:
assumes m:m € M
shows subgroup (stabilizer m) G

(proof)

Next, we define and characterize the fixed points of a group action.

definition fized-points :: 'c set
where fizved-points = {m € M. carrier G C stabilizer m}

lemma fized-point-char:
assumes m € M
shows (m € fized-points) = (V g€carrier G. ¢ g m = m)

(proof)

lemma orbit-contains-rep:
assumes m:m € M
shows m € orbit m

{(proof)

lemma singleton-orbit-eq-fized-point:
assumes m:m € M
shows (card (orbit m) = 1) = (m € fived-points)

(proof)



1.4 The Orbit-Stabilizer Theorem

This section contains some theorems about orbits and their quotient groups.
The first one is the well-known orbit-stabilizer theorem which establishes a
bijection between the the quotient group of the an element’s stabilizer and
its orbit.

theorem orbit-thm:
assumes m:m € M
assumes rep: \U. U € (carrier (G Mod (stabilizer m))) = rep U € U
shows bij-betw (AH. (¢ (inv (rep H)) m)) (carrier (G Mod (stabilizer m))) (orbit
m)

(proof)

In the case of G being finite, the last theorem can be reduced to a statement
about the cardinality of orbit and stabilizer:

corollary orbit-size:
assumes fin:finite (carrier G)
assumes m:m € M
shows order G = card (orbit m) % card (stabilizer m)

(proof)

lemma orbit-not-empty:
assumes fin:finite M
assumes A:A € orbits
shows card A > 0

(proof)

lemma fin-set-imp-fin-orbits:
assumes finM:finite M
shows finite orbits

(proof)

lemma singleton-orbits:
shows | J{N€orbits. card N = 1} = fized-points

(proof)

If G is a p-group acting on a finite set, a given orbit is either a singleton or
p divides its cardinality.

lemma p-dvd-orbit-size:
assumes orderG:order G = p " a
assumes prime:prime p
assumes finM:finite M
assumes Norbit: N € orbits
assumes card N > 1
shows p dvd card N

(proof)



As a result of the last lemma the only orbits that count modulo p are the
fixed points

lemma fized-point-congruence:
assumes order G =p " a
assumes prime p
assumes finM:finite M
shows card M mod p = card fixed-points mod p

(proof)

We can restrict any group action to the action of a subgroup:

lemma subgroup-action:

assumes H:subgroup H G

shows group-action (G(carrier .= H)) ¢ M
(proof)

end

1.5 Some Examples for Group Actions

lemma (in group) right-mult-is-bij:
assumes h:h € carrier G
shows (Ag € carrier G. h ® g) € Bij (carrier G)

(proof)

lemma (in group) right-mult-group-action:
shows group-action G (Ah. Ag € carrier G. h @ g) (carrier G)
(proof )

lemma (in group) rcosets-closed:
assumes HG:subgroup H G
assumes g:g € carrier G
assumes M:M € rcosets H
shows M #> g € rcosets H

(proof)

lemma (in group) inv-mult-on-rcosets-is-bij:
assumes HG:subgroup H G
assumes g:g € carrier G
shows (AU € rcosets H. U #> inv g) € Bij (rcosets H)

(proof)

lemma (in group) inv-mult-on-rcosets-action:
assumes HG:subgroup H G
shows group-action G (Ag. A\U € rcosets H. U #> inv g) (rcosets H)

(proof)

end



theory SubgroupConjugation
imports GroupAction
begin

2 Conjugation of Subgroups and Cosets

This theory examines properties of the conjugation of subgroups of a fixed
group as a group action

2.1 Definitions and Preliminaries

We define the set of all subgroups of G which have a certain cardinality. G
will act on those sets. Afterwards some theorems which are already available
for right cosets are dualized into statements about left cosets.

lemma (in subgroup) subgroup-of-subset:
assumes G:group G
assumes PH:H C K
assumes KG:subgroup K G
shows subgroup H (G(carrier :== KJ))

(proof)

context group
begin

definition subgroups-of-size ::nat = -
where subgroups-of-size p = {H. subgroup H G N\ card H = p}

lemma lcosl: [| h € H; H C carrier G; © € carrier G| ==> @ h € v <# H
{proof)

lemma Icoset-join2:
assumes H:subgroup H G
assumes g:g € H
shows g <# H=H
(proof)

lemma cardeg-reoset:
assumes finite (carrier G)
assumes M C carrier G
assumes g € carrier G
shows card (M #> g) = card M

{(proof)

lemma cardeg-lcoset:
assumes finite (carrier G)
assumes M:M C carrier G



assumes ¢:g € carrier G
shows card (9 <# M) = card M

(proof)

2.2 Conjugation is a group action

We will now prove that conjugation acts on the subgroups of a certain group.
A large part of this proof consists of showing that the conjugation of a
subgroup with a group element is, again, a subgroup.

lemma conjugation-subgroup:

assumes HG:subgroup H G

assumes ¢G:g € carrier G

shows subgroup (g <# (H #> inv g)) G
(proof)

definition conjugation-action::nat = -
where conjugation-action p = (Ag€carrier G. APEsubgroups-of-size p. g <# (P
#> inv g))

lemma conjugation-is-size-invariant:

assumes fin:finite (carrier G)

assumes P:P € subgroups-of-size p

assumes ¢:g € carrier G

shows conjugation-action p g P € subgroups-of-size p
(proof)

lemma conjugation-is-Bij:

assumes fin:finite (carrier G)

assumes g:g € carrier G

shows conjugation-action p g € Bij (subgroups-of-size p)
(proof)

lemma Ir-coset-assoc:

assumes ¢:g € carrier G

assumes h:h € carrier G

assumes P:P C carrier G

shows g <# (P #> h) = (g <# P) #>h
(proof)

theorem acts-on-subsets:
assumes fin:finite (carrier G)
shows group-action G (conjugation-action p) (subgroups-of-size p)

(proof)

2.3 Properties of the Conjugation Action

lemma stabilizer-contains-P:
assumes fin:finite (carrier G)
assumes P:P € subgroups-of-size p



shows P C group-action.stabilizer G (conjugation-action p) P
(proof )

corollary stabilizer-supergrp-P:

assumes fin:finite (carrier G)

assumes P:P € subgroups-of-size p

shows subgroup P (G(carrier := group-action.stabilizer G (conjugation-action
p) P))
(proof)

lemma (in group) P-fized-point-of-P-cony:

assumes fin:finite (carrier G)

assumes P:P € subgroups-of-size p

shows P € group-action.fized-points (G(carrier := P))) (conjugation-action p)
(subgroups-of-size p)
(proof )

lemma conj-wo-inv:
assumes QG:subgroup Q G
assumes PG:subgroup P G
assumes ¢g:g € carrier G
assumes conj:inv g <# (Q #> g) = P
shows Q #> g =g <# P
(proof)

end

end

theory SndSylow
imports Subgroup Conjugation
begin

no-notation Multiset.subset-mset (infix «<#> 50)

3 The Secondary Sylow Theorems

3.1 Preliminaries

lemma singletonl:
assumes A\z. 1€ A =z =y
assumes y € A
shows A = {y}

(proof)

context group
begin



lemma set-mult-inclusion:
assumes H:subgroup H G
assumes Q:P C carrier G
assumes PQ:H <#> P C H
shows P C H

(proof)

lemma card-subgrp-dvd:
assumes subgroup H G
shows card H dvd order G

(proof)

lemma subgroup-finite:
assumes subgroup:subgroup H G
assumes finite:finite (carrier G)
shows finite H

(proof)

end

3.2 Extending the Sylow Locale

This locale extends the originale sylow locale by adding the constraint that
the p must not divide the remainder m, i.e. p® is the maximal size of a
p-subgroup of G.

locale snd-sylow = sylow +
assumes pNotDvdm:— (p dvd m)

context snd-sylow
begin

lemma pa-not-zero: p ~a # 0
(proof)

lemma sylow-greater-zero:
shows card (subgroups-of-size (p ~ a)) > 0
(proof)

lemma is-snd-sylow: snd-sylow G p a m {proof)

3.3 Every p-group is Contained in a conjugate of a p-Sylow-
Group
lemma ex-conj-sylow-group:
assumes H:H € subgroups-of-size (p ~ b)

assumes Psize:P € subgroups-of-size (p ~ a)
obtains g where g € carrier G H C g <# (P #> inv g)

(proof)
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3.4 Every p-Group is Contained in a p-Sylow-Group

theorem sylow-contained-in-sylow-group:
assumes H:H € subgroups-of-size (p ~ b)
obtains S where H C S and S € subgroups-of-size (p ~ a)

(proof)

3.5 p-Sylow-Groups are conjugates of each other

theorem sylow-conjugate:

assumes P:P € subgroups-of-size (p ~ a)

assumes Q:Q € subgroups-of-size (p ~ a)

obtains g where g € carrier G Q = g <# (P #> inv g)
(proof)

corollary sylow-conj-orbit-rel:

assumes P:P € subgroups-of-size (p ~ a)

assumes Q:Q € subgroups-of-size (p ~ a)

shows (P,Q) € group-action.same-orbit-rel G (conjugation-action (p ~ a)) (subgroups-of-size
(p " a)
(proof)

3.6 Counting Sylow-Groups

The number of sylow groups is the orbit size of one of them:

theorem num-eq-card-orbit:

assumes P:P € subgroups-of-size (p ~ a)

shows subgroups-of-size (p ~ a) = group-action.orbit G (conjugation-action (p ~
a)) (subgroups-of-size (p ~ a)) P
(proof)

theorem num-sylow-normalizer:
assumes Psize:P € subgroups-of-size (p ~ a)

shows card (rcosetqu carrier := group-action.stabilizer G (conjugation-action (p ~ a)) P)
P) x p " a = card (group-action.stabilizer G (conjugation-action (p ~ a)) P)

(proof)

theorem (in snd-sylow) num-sylow-dvd-remainder:
shows card (subgroups-of-size (p ~ a)) dvd m
(proof )

We can restrict this locale to refer to a subgroup of order at least p®:

lemma (in snd-sylow) restrict-locale:

assumes subgrp:subgroup P G

assumes card:p ~ a dvd card P

shows snd-sylow (G(carrier := P)) p a ((card P) div (p ~ a))
(proof)

theorem (in snd-sylow) p-sylow-mod-p:
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shows card (subgroups-of-size (p ~ a)) mod p = 1
(proof)

end

end
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