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Abstract

These theories extend the existent proof of the first sylow theorem
(written by Florian Kammueller and L. C. Paulson) by what is often
called the second, third and fourth sylow theorem. These theorems
state propositions about the number of Sylow p-subgroups of a group
and the fact that they are conjugate to each other. The proofs make
use of an implementation of group actions and their properties.

Contents
1 Group Actions 1

1.1 Preliminaries and Definition . . . . . . . . . . . . . . . . . . . 1
1.2 The orbit relation . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Stabilizer and fixed points . . . . . . . . . . . . . . . . . . . . 6
1.4 The Orbit-Stabilizer Theorem . . . . . . . . . . . . . . . . . . 7
1.5 Some Examples for Group Actions . . . . . . . . . . . . . . . 13

2 Conjugation of Subgroups and Cosets 16
2.1 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . 16
2.2 Conjugation is a group action . . . . . . . . . . . . . . . . . . 17
2.3 Properties of the Conjugation Action . . . . . . . . . . . . . . 23

3 The Secondary Sylow Theorems 24
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Extending the Sylow Locale . . . . . . . . . . . . . . . . . . . 25
3.3 Every p-group is Contained in a conjugate of a p-Sylow-Group 26
3.4 Every p-Group is Contained in a p-Sylow-Group . . . . . . . 27
3.5 p-Sylow-Groups are conjugates of each other . . . . . . . . . . 28
3.6 Counting Sylow-Groups . . . . . . . . . . . . . . . . . . . . . 29

theory GroupAction
imports

HOL−Algebra.Bij

1



HOL−Algebra.Sylow
begin

1 Group Actions

This is an implemention of group actions based on the group implementation
of HOL-Algebra. An action a group G on a set M is represented by a group
homomorphism between G and the group of bijections on M

1.1 Preliminaries and Definition

First, we need two theorems about singletons and sets of singletons which
unfortunately are not included in the library.
theorem singleton-intersection:

assumes A:card A = 1
assumes B:card B = 1
assumes noteq:A 6= B
shows A ∩ B = {}

using assms by(auto simp:card-Suc-eq)

theorem card-singleton-set:
assumes cardOne:∀ x ∈ A.(card x = 1 )
shows card (

⋃
A) = card A

proof −
have card (

⋃
A) = (

∑
x∈A. card x)

proof(rule card-Union-disjoint)
from cardOne show

∧
a. a∈A =⇒ finite a by (auto intro: card-ge-0-finite)

next
show pairwise disjnt A

unfolding pairwise-def disjnt-def
proof(clarify)

fix x y
assume x:x ∈ A and y:y ∈ A and x 6= y
with cardOne have card x = 1 card y = 1 by auto
with ‹x 6= y› show x ∩ y = {} by (metis singleton-intersection)

qed
qed
also from cardOne have ... = card A by simp
finally show ?thesis.

qed

Intersecting Cosets are equal:
lemma (in subgroup) repr-independence2 :

assumes group:group G
assumes U :U ∈ rcosetsG H
assumes g:g ∈ U
shows U = H #> g
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proof −
from U obtain h where h:h ∈ carrier G U = H #> h unfolding RCOSETS-def

by auto
with g have g ∈ H #> h by simp
with group h show U = H #> g by (metis group.repr-independence is-subgroup)

qed

locale group-action = group +
fixes ϕ M
assumes grouphom:group-hom G (BijGroup M ) ϕ

context group-action
begin

lemma is-group-action:group-action G ϕ M ..

The action of 1 has no effect:
lemma one-is-id:

assumes m ∈ M
shows (ϕ 1) m = m

proof −
from grouphom have (ϕ 1) m = 1(BijGroup M ) m by (metis group-hom.hom-one)
also have ... = (λx∈M . x) m unfolding BijGroup-def by (metis monoid.select-convs(2 ))
also from assms have ... = m by simp
finally show ?thesis.

qed

lemma action-closed:
assumes m:m ∈ M
assumes g:g ∈ carrier G
shows ϕ g m ∈ M

using assms grouphom group-hom.hom-closed unfolding BijGroup-def Bij-def bij-betw-def
by fastforce

lemma img-in-bij:
assumes g ∈ carrier G
shows (ϕ g) ∈ Bij M

using assms grouphom unfolding BijGroup-def by (auto dest: group-hom.hom-closed)

The action of inv g reverts the action of g
lemma group-inv-rel:

assumes g:g ∈ carrier G
assumes mn:m ∈ M n ∈ M
assumes phi:(ϕ g) n = m
shows (ϕ (inv g)) m = n

proof −
from g have bij:(ϕ g) ∈ Bij M unfolding BijGroup-def by (metis img-in-bij)
with g grouphom have ϕ (inv g) = restrict (inv-into M (ϕ g)) M by(metis

inv-BijGroup group-hom.hom-inv)
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hence ϕ (inv g) m = (restrict (inv-into M (ϕ g)) M ) m by simp
also from mn have ... = (inv-into M (ϕ g)) m by (metis restrict-def )
also from g phi have ... = (inv-into M (ϕ g)) ((ϕ g) n) by simp
also from ‹ϕ g ∈ Bij M › Bij-def have bij-betw (ϕ g) M M by auto
hence inj-on (ϕ g) M by (metis bij-betw-imp-inj-on)
with g mn have (inv-into M (ϕ g)) ((ϕ g) n) = n by (metis inv-into-f-f )
finally show ϕ (inv g) m = n.

qed

lemma images-are-bij:
assumes g:g ∈ carrier G
shows bij-betw (ϕ g) M M

proof −
from g have bij:(ϕ g) ∈ Bij M unfolding BijGroup-def by (metis img-in-bij)
with Bij-def show bij-betw (ϕ g) M M by auto

qed

lemma action-mult:
assumes g:g ∈ carrier G
assumes h:h ∈ carrier G
assumes m:m ∈ M
shows (ϕ g) ((ϕ h) m) = (ϕ (g ⊗ h)) m

proof −
from g have ϕg:(ϕ g) ∈ Bij M unfolding BijGroup-def by (rule img-in-bij)
from h have ϕh:(ϕ h) ∈ Bij M unfolding BijGroup-def by (rule img-in-bij)
from h have bij-betw (ϕ h) M M by (rule images-are-bij)
hence (ϕ h) ‘ M = M by (metis bij-betw-def )
with m have hm:(ϕ h) m ∈ M by (metis imageI )
from grouphom g h have (ϕ (g ⊗ h)) = ((ϕ g) ⊗(BijGroup M ) (ϕ h)) by (rule

group-hom.hom-mult)
hence ϕ (g ⊗ h) m = ((ϕ g) ⊗(BijGroup M ) (ϕ h)) m by simp
also from ϕg ϕh have ... = (compose M (ϕ g) (ϕ h)) m unfolding BijGroup-def

by simp
also from ϕg ϕh hm have ... = (ϕ g) ((ϕ h) m) by (metis compose-eq m)
finally show (ϕ g) ((ϕ h) m) = (ϕ (g ⊗ h)) m..

qed

1.2 The orbit relation

The following describes the relation containing the information whether two
elements of M lie in the same orbit of the action
definition same-orbit-rel

where same-orbit-rel = {p ∈ M × M . ∃ g ∈ carrier G. (ϕ g) (snd p) = (fst p)}

Use the library about equivalence relations to define the set of orbits and
the map assigning to each element of M its orbit
definition orbits
where orbits = M // same-orbit-rel
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definition orbit :: ′c ⇒ ′c set
where orbit m = same-orbit-rel ‘‘ {m}

Next, we define a more easy-to-use characterization of an orbit.
lemma orbit-char :

assumes m:m ∈ M
shows orbit m = {n. ∃ g. g ∈ carrier G ∧ (ϕ g) m = n}

using assms unfolding orbit-def Image-def same-orbit-rel-def
proof(auto)

fix x g
assume g:g ∈ carrier G and ϕ g x ∈ M x ∈ M
hence ϕ (inv g) (ϕ g x) = x by (metis group-inv-rel)
moreover from g have inv g ∈ carrier G by (rule inv-closed)
ultimately show ∃ h. h ∈ carrier G ∧ ϕ h (ϕ g x) = x by auto

next
fix g
assume g:g ∈ carrier G
with m show ϕ g m ∈ M by (metis action-closed)
with m g have ϕ (inv g) (ϕ g m) = m by (metis group-inv-rel)
moreover from g have inv g ∈ carrier G by (rule inv-closed)
ultimately show ∃ h∈carrier G. ϕ h (ϕ g m) = m by auto

qed

lemma same-orbit-char :
assumes m ∈ M n ∈ M
shows (m, n) ∈ same-orbit-rel = (∃ g ∈ carrier G. ((ϕ g) n = m))

unfolding same-orbit-rel-def using assms by auto

Now we show that the relation we’ve defined is, indeed, an equivalence re-
lation:
lemma same-orbit-is-equiv:

shows equiv M same-orbit-rel
proof(rule equivI )

show refl-on M same-orbit-rel
proof(rule refl-onI )

show same-orbit-rel ⊆ M × M unfolding same-orbit-rel-def by auto
next

fix m
assume m ∈ M
hence (ϕ 1) m = m by(rule one-is-id)
with ‹m ∈ M › show (m, m) ∈ same-orbit-rel unfolding same-orbit-rel-def

by (auto simp:same-orbit-char)
qed

next
show sym same-orbit-rel
proof(rule symI )

fix m n
assume mn:(m, n) ∈ same-orbit-rel
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then obtain g where g:g ∈ carrier G ϕ g n = m unfolding same-orbit-rel-def
by auto

hence invg:inv g ∈ carrier G by (metis inv-closed)
from mn have (m, n) ∈ M × M unfolding same-orbit-rel-def by simp
hence mn2 :m ∈ M n ∈ M by auto
from g mn2 have ϕ (inv g) m = n by (metis group-inv-rel)
with invg mn2 show (n, m) ∈ same-orbit-rel unfolding same-orbit-rel-def by

auto
qed

next
show trans same-orbit-rel
proof(rule transI )

fix x y z
assume xy:(x, y) ∈ same-orbit-rel

then obtain g where g:g ∈ carrier G and grel:(ϕ g) y = x unfolding
same-orbit-rel-def by auto

assume yz:(y, z) ∈ same-orbit-rel
then obtain h where h:h ∈ carrier G and hrel:(ϕ h) z = y unfolding

same-orbit-rel-def by auto
from g h have gh:g ⊗ h ∈ carrier G by simp
from xy yz have x ∈ M z ∈ M unfolding same-orbit-rel-def by auto
with g h have ϕ (g ⊗ h) z = (ϕ g) ((ϕ h) z) by (metis action-mult)
also from hrel grel have ... = x by simp
finally have ϕ (g ⊗ h) z = x.

with gh ‹x ∈ M › ‹z ∈ M › show (x, z) ∈ same-orbit-rel unfolding same-orbit-rel-def
by auto

qed
qed

1.3 Stabilizer and fixed points

The following definition models the stabilizer of a group action:
definition stabilizer :: ′c ⇒ -

where stabilizer m = {g ∈ carrier G. (ϕ g) m = m}

This shows that the stabilizer of m is a subgroup of G.
lemma stabilizer-is-subgroup:

assumes m:m ∈ M
shows subgroup (stabilizer m) G

proof(rule subgroupI )
show stabilizer m ⊆ carrier G unfolding stabilizer-def by auto

next
from m have (ϕ 1) m = m by (rule one-is-id)
hence 1 ∈ stabilizer m unfolding stabilizer-def by simp
thus stabilizer m 6= {} by auto

next
fix g
assume g:g ∈ stabilizer m
hence g ∈ carrier G (ϕ g) m = m unfolding stabilizer-def by simp+
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with m have ginv:(ϕ (inv g)) m = m by (metis group-inv-rel)
from ‹g ∈ carrier G› have inv g ∈ carrier G by (metis inv-closed)
with ginv show (inv g) ∈ stabilizer m unfolding stabilizer-def by simp

next
fix g h
assume g:g ∈ stabilizer m
hence g2 :g ∈ carrier G unfolding stabilizer-def by simp
assume h:h ∈ stabilizer m
hence h2 :h ∈ carrier G unfolding stabilizer-def by simp
with g2 have gh:g ⊗ h ∈ carrier G by (rule m-closed)
from g2 h2 m have ϕ (g ⊗ h) m = (ϕ g) ((ϕ h) m) by (metis action-mult)
also from g h have ... = m unfolding stabilizer-def by simp
finally have ϕ (g ⊗ h) m = m.
with gh show g ⊗ h ∈ stabilizer m unfolding stabilizer-def by simp

qed

Next, we define and characterize the fixed points of a group action.
definition fixed-points :: ′c set

where fixed-points = {m ∈ M . carrier G ⊆ stabilizer m}

lemma fixed-point-char :
assumes m ∈ M
shows (m ∈ fixed-points) = (∀ g∈carrier G. ϕ g m = m)

using assms unfolding fixed-points-def stabilizer-def by force

lemma orbit-contains-rep:
assumes m:m ∈ M
shows m ∈ orbit m

unfolding orbit-def using assms by (metis equiv-class-self same-orbit-is-equiv)

lemma singleton-orbit-eq-fixed-point:
assumes m:m ∈ M
shows (card (orbit m) = 1 ) = (m ∈ fixed-points)

proof
assume card:card (orbit m) = 1
from m have m ∈ orbit m by (rule orbit-contains-rep)
from m show m ∈ fixed-points unfolding fixed-points-def
proof(auto)

fix g
assume gG:g ∈ carrier G
with m have ϕ g m ∈ orbit m by (auto dest:orbit-char)
with ‹m ∈ orbit m› card have ϕ g m = m by (auto simp add: card-Suc-eq)
with gG show g ∈ stabilizer m unfolding stabilizer-def by simp

qed
next

assume m ∈ fixed-points
hence fixed:carrier G ⊆ stabilizer m unfolding fixed-points-def by simp
from m have orbit m = {m}
proof(auto simp add: orbit-contains-rep)
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fix n
assume n ∈ orbit m
with m obtain g where g:g ∈ carrier G ϕ g m = n by (auto dest: orbit-char)
moreover with fixed have ϕ g m = m unfolding stabilizer-def by auto
ultimately show n = m by simp

qed
thus card (orbit m) = 1 by simp

qed

1.4 The Orbit-Stabilizer Theorem

This section contains some theorems about orbits and their quotient groups.
The first one is the well-known orbit-stabilizer theorem which establishes a
bijection between the the quotient group of the an element’s stabilizer and
its orbit.
theorem orbit-thm:

assumes m:m ∈ M
assumes rep:

∧
U . U ∈ (carrier (G Mod (stabilizer m))) =⇒ rep U ∈ U

shows bij-betw (λH . (ϕ (inv (rep H )) m)) (carrier (G Mod (stabilizer m))) (orbit
m)
proof(auto simp add:bij-betw-def )

show inj-on (λH . ϕ (inv (rep H )) m) (carrier (G Mod stabilizer m))
proof(rule inj-onI )

fix U V
assume U :U ∈ carrier (G Mod (stabilizer m))
assume V :V ∈ carrier (G Mod (stabilizer m))
define h where h = rep V
define g where g = rep U
have stabSubset:(stabilizer m) ⊆ carrier G unfolding stabilizer-def by auto

from m have stabSubgroup: subgroup (stabilizer m) G by (metis stabilizer-is-subgroup)
from V rep have hV :h ∈ V unfolding h-def by simp

from V stabSubset have V ⊆ carrier G unfolding FactGroup-def RCOSETS-def
r-coset-def by auto

with hV have hG:h ∈ carrier G by auto
hence hinvG:inv h ∈ carrier G by (metis inv-closed)
from U rep have gU :g ∈ U unfolding g-def by simp

from U stabSubset have U ⊆ carrier G unfolding FactGroup-def RCOSETS-def
r-coset-def by auto

with gU have gG:g ∈ carrier G by auto
hence ginvG:inv g ∈ carrier G by (metis inv-closed)
from gG hinvG have ginvhG: g ⊗ inv h ∈ carrier G by (metis m-closed)
assume reps:ϕ (inv rep U ) m = ϕ (inv rep V ) m
hence gh:ϕ (inv g) m = ϕ (inv h) m unfolding g-def h-def .
from gG hinvG m have ϕ (g ⊗ (inv h)) m = ϕ g (ϕ (inv h) m) by (metis

action-mult)
also from gh ginvG gG m have ... = ϕ (g ⊗ inv g) m by (metis action-mult)
also from m gG have ... = m by (auto simp: one-is-id)
finally have ϕ (g ⊗ inv h) m = m.
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with ginvhG have (g ⊗ inv h) ∈ stabilizer m
unfolding stabilizer-def by simp

hence (stabilizer m) #> (g ⊗ inv h) = (stabilizer m) #> 1
by (metis coset-join2 coset-mult-one m stabSubset stabilizer-is-subgroup sub-

group.mem-carrier)
with hinvG hG gG stabSubset have stabgstabh:(stabilizer m) #> g = (stabilizer

m) #> h
by (metis coset-mult-inv1 group.coset-mult-one is-group)

from stabSubgroup is-group U gU have U = (stabilizer m) #> g
unfolding FactGroup-def by (simp add:subgroup.repr-independence2 )

also from stabgstabh is-group stabSubgroup V hV subgroup.repr-independence2
have ... = V

unfolding FactGroup-def by force
finally show U = V .

qed
next

have stabSubset:stabilizer m ⊆ carrier G unfolding stabilizer-def by auto
fix H
assume H :H ∈ carrier (G Mod stabilizer m)
with rep have rep H ∈ H by simp
moreover with H stabSubset have H ⊆ carrier G unfolding FactGroup-def

RCOSETS-def r-coset-def by auto
ultimately have rep H ∈ carrier G..
hence inv rep H ∈ carrier G by (rule inv-closed)
with m show ϕ (inv rep H ) m ∈ orbit m by (auto dest:orbit-char)

next
fix n
assume n ∈ orbit m
with m obtain g where g:g ∈ carrier G ϕ g m = n by (auto dest:orbit-char)
hence invg:inv g ∈ carrier G by simp
hence stabinvg:((stabilizer m) #> (inv g)) ∈ carrier (G Mod stabilizer m) un-

folding FactGroup-def RCOSETS-def by auto
hence rep ((stabilizer m) #> (inv g)) ∈ (stabilizer m) #> (inv g) by (metis

rep)
then obtain h where h:h ∈ stabilizer m rep ((stabilizer m) #> (inv g)) = h ⊗

(inv g) unfolding r-coset-def by auto
with g have ϕ (inv rep ((stabilizer m) #> (inv g))) m = ϕ (inv (h ⊗ (inv g)))

m by simp
also from h have hG:h ∈ carrier G unfolding stabilizer-def by simp
with g have ϕ (inv (h ⊗ (inv g))) m = ϕ (g ⊗ (inv h)) m by (metis inv-closed

inv-inv inv-mult-group)
also from g hG m have ... = ϕ g (ϕ (inv h) m) by (metis action-mult inv-closed)
also from h m have inv h ∈ stabilizer m by (metis stabilizer-is-subgroup sub-

group.m-inv-closed)
hence ϕ g (ϕ (inv h) m) = ϕ g m unfolding stabilizer-def by simp
also from g have ... = n by simp
finally have n = ϕ (inv rep ((stabilizer m) #> (inv g))) m..
with stabinvg show n ∈ (λH . ϕ (inv rep H ) m) ‘ carrier (G Mod stabilizer m)

by simp
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qed

In the case of G being finite, the last theorem can be reduced to a statement
about the cardinality of orbit and stabilizer:
corollary orbit-size:

assumes fin:finite (carrier G)
assumes m:m ∈ M
shows order G = card (orbit m) ∗ card (stabilizer m)

proof −
define rep where rep = (λU ∈ (carrier (G Mod (stabilizer m))). SOME x. x ∈

U )
have

∧
U . U ∈ (carrier (G Mod (stabilizer m))) =⇒ rep U ∈ U

proof −
fix U
assume U :U ∈ carrier (G Mod stabilizer m)
then obtain g where g ∈ carrier G U = (stabilizer m) #> g unfolding

FactGroup-def RCOSETS-def by auto
with m have (SOME x . x ∈ U ) ∈ U by (metis rcos-self stabilizer-is-subgroup

someI-ex)
with U show rep U ∈ U unfolding rep-def by simp

qed
with m have bij:card (carrier (G Mod (stabilizer m))) = card (orbit m) by

(metis bij-betw-same-card orbit-thm)
from fin m have card (carrier (G Mod (stabilizer m))) ∗ card (stabilizer m) =

order G unfolding FactGroup-def by (simp add: stabilizer-is-subgroup lagrange)
with bij show ?thesis by simp

qed

lemma orbit-not-empty:
assumes fin:finite M
assumes A:A ∈ orbits
shows card A > 0

proof −
from A obtain m where m ∈ M A = orbit m unfolding orbits-def quotient-def

orbit-def by auto
hence m ∈ A by (metis orbit-contains-rep)
hence A 6= {} unfolding orbits-def by auto
moreover from fin A have finite A unfolding orbits-def quotient-def Image-def

same-orbit-rel-def by auto
ultimately show ?thesis by auto

qed

lemma fin-set-imp-fin-orbits:
assumes finM :finite M
shows finite orbits

using assms unfolding orbits-def quotient-def by simp

lemma singleton-orbits:
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shows
⋃
{N∈orbits. card N = 1} = fixed-points

proof
show

⋃
{N ∈ orbits. card N = 1} ⊆ fixed-points

proof
fix x
assume a:x ∈

⋃
{N ∈ orbits. card N = 1}

hence x ∈ M unfolding orbits-def quotient-def Image-def same-orbit-rel-def
by auto

from a obtain N where N :N ∈ orbits card N = 1 x ∈ N by auto
then obtain y where Norbit:N = orbit y y ∈ M unfolding orbits-def quo-

tient-def orbit-def by auto
hence y ∈ N by (metis orbit-contains-rep)
with N have Nsing:N = {x} N = {y} by (auto simp: card-Suc-eq)
hence x = y by simp
with Norbit have Norbit2 :N = orbit x by simp
have {g ∈ carrier G. ϕ g x = x} = carrier G
proof(auto)

fix g
assume g ∈ carrier G
with ‹x ∈ M › have ϕ g x ∈ orbit x by (auto dest:orbit-char)
with Nsing show ϕ g x = x by (metis Norbit2 singleton-iff )

qed
with ‹x ∈ M › show x ∈ fixed-points unfolding fixed-points-def stabilizer-def

by simp
qed

next
show fixed-points ⊆

⋃
{N ∈ orbits. card N = 1}

proof
fix m
assume m:m ∈ fixed-points
hence mM :m ∈ M unfolding fixed-points-def by simp
hence orbit:orbit m ∈ orbits unfolding orbits-def quotient-def orbit-def by

auto
from mM m have card (orbit m) = 1 by (metis singleton-orbit-eq-fixed-point)
with orbit have orbit m ∈ {N ∈ orbits. card N = 1} by simp

with mM show m ∈
⋃
{N ∈ orbits. card N = 1} by (auto dest: orbit-contains-rep)

qed
qed

If G is a p-group acting on a finite set, a given orbit is either a singleton or
p divides its cardinality.
lemma p-dvd-orbit-size:

assumes orderG:order G = p ^ a
assumes prime:prime p
assumes finM :finite M
assumes Norbit:N ∈ orbits
assumes card N > 1
shows p dvd card N

proof −
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from Norbit obtain m where m:m ∈ M N = orbit m unfolding orbits-def
quotient-def orbit-def by auto

from prime have 0 < p ^ a by (simp add: prime-gt-0-nat)
with orderG have finite (carrier G) unfolding order-def by (metis card.infinite

less-nat-zero-code)
with m have order G = card (orbit m) ∗ card (stabilizer m) by (metis orbit-size)
with orderG m have p ^ a = card N ∗ card (stabilizer m) by simp
with ‹card N > 1 › show ?thesis

by (metis dvd-mult2 dvd-mult-cancel1 nat-dvd-not-less nat-mult-1 prime
prime-dvd-power-nat prime-factor-nat prime-nat-iff zero-less-one)

qed

As a result of the last lemma the only orbits that count modulo p are the
fixed points
lemma fixed-point-congruence:

assumes order G = p ^ a
assumes prime p
assumes finM :finite M
shows card M mod p = card fixed-points mod p

proof −
define big-orbits where big-orbits = {N∈orbits. card N > 1}
from finM have orbit-part:orbits = big-orbits ∪ {N∈orbits. card N = 1} un-

folding big-orbits-def by (auto dest:orbit-not-empty)
have orbit-disj:big-orbits ∩ {N∈orbits. card N = 1} = {} unfolding big-orbits-def

by auto
from finM have orbits-fin:finite orbits by (rule fin-set-imp-fin-orbits)
hence fin-parts:finite big-orbits finite {N∈orbits. card N = 1} unfolding big-orbits-def

by simp+
from assms have

∧
N . N ∈ big-orbits =⇒ p dvd card N unfolding big-orbits-def

by (auto simp: p-dvd-orbit-size)
hence orbit-div:

∧
N . N ∈ big-orbits =⇒ card N = (card N div p) ∗ p by (metis

dvd-mult-div-cancel mult.commute)
have card M = card (

⋃
orbits) unfolding orbits-def by (metis Union-quotient

same-orbit-is-equiv)
also have card (

⋃
orbits) = (

∑
N∈orbits. card N ) unfolding orbits-def

proof (rule card-Union-disjoint)
show pairwise disjnt (M // same-orbit-rel)

unfolding pairwise-def disjnt-def by(metis same-orbit-is-equiv quotient-disj)
show

∧
A. A ∈ M // same-orbit-rel =⇒ finite A

using finM same-orbit-rel-def by (auto dest:finite-equiv-class)
qed
also from orbit-part orbit-disj fin-parts have ... = (

∑
N∈big-orbits. card N ) +

(
∑

N∈{N ′∈orbits. card N ′ = 1}. card N ) by (metis (lifting) sum.union-disjoint)
also from assms orbit-div fin-parts have ... = (

∑
N∈big-orbits. (card N div p)

∗ p) + card (
⋃
{N ′∈orbits. card N ′ = 1}) by (auto simp: card-singleton-set)

also have ... = (
∑

N∈big-orbits. card N div p) ∗ p + card fixed-points using
singleton-orbits by (auto simp:sum-distrib-right)

finally have card M = (
∑

N∈big-orbits. card N div p) ∗ p + card fixed-points.
hence card M mod p = ((

∑
N∈big-orbits. card N div p) ∗ p + card fixed-points)
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mod p by simp
also have ... = (card fixed-points) mod p by (metis mod-mult-self3 )
finally show ?thesis.

qed

We can restrict any group action to the action of a subgroup:
lemma subgroup-action:

assumes H :subgroup H G
shows group-action (G(|carrier := H |)) ϕ M

unfolding group-action-def group-action-axioms-def group-hom-def group-hom-axioms-def
hom-def
using assms
proof (auto simp add: is-group subgroup.subgroup-is-group group-BijGroup)

fix x
assume x ∈ H
with H have x ∈ carrier G by (metis subgroup.mem-carrier)
with grouphom show ϕ x ∈ carrier (BijGroup M ) by (metis group-hom.hom-closed)

next
fix x y
assume x:x ∈ H and y:y ∈ H
with H have x ∈ carrier G y ∈ carrier G by (metis subgroup.mem-carrier)+
with grouphom show ϕ (x ⊗ y) = ϕ x ⊗BijGroup M ϕ y by (simp add:

group-hom.hom-mult)
qed

end

1.5 Some Examples for Group Actions
lemma (in group) right-mult-is-bij:

assumes h:h ∈ carrier G
shows (λg ∈ carrier G. h ⊗ g) ∈ Bij (carrier G)

proof(auto simp add:Bij-def bij-betw-def inj-on-def )
fix x y
assume x:x ∈ carrier G and y:y ∈ carrier G and h ⊗ x = h ⊗ y
with h show x = y

by simp
next

fix x
assume x:x ∈ carrier G
with h show h ⊗ x ∈ carrier G by (metis m-closed)
from x h have inv h ⊗ x ∈ carrier G by (metis m-closed inv-closed)
moreover from x h have h ⊗ (inv h ⊗ x) = x by (metis inv-closed r-inv

m-assoc l-one)
ultimately show x ∈ (⊗) h ‘ carrier G by force

qed

lemma (in group) right-mult-group-action:
shows group-action G (λh. λg ∈ carrier G. h ⊗ g) (carrier G)
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unfolding group-action-def group-action-axioms-def group-hom-def group-hom-axioms-def
hom-def
proof(auto simp add:is-group group-BijGroup)

fix h
assume h ∈ carrier G
thus (λg ∈ carrier G. h ⊗ g) ∈ carrier (BijGroup (carrier G)) unfolding

BijGroup-def by (auto simp:right-mult-is-bij)
next

fix x y
assume x:x ∈ carrier G and y:y ∈ carrier G
define multx multy

where multx = (λg∈carrier G. x ⊗ g)
and multy = (λg∈carrier G. y ⊗ g)

with x y have multx ∈ (Bij (carrier G)) multy ∈ (Bij (carrier G)) by (metis
right-mult-is-bij)+

hence multx ⊗BijGroup (carrier G) multy = (λg∈carrier G. multx (multy g))
unfolding BijGroup-def by (auto simp: compose-def )

also have ... = (λg∈carrier G. (x ⊗ y) ⊗ g) unfolding multx-def multy-def
proof(rule restrict-ext)

fix g
assume g:g ∈ carrier G
with x y have x ⊗ y ∈ carrier G y ⊗ g ∈ carrier G by simp+
with x y g show (λg∈carrier G. x ⊗ g) ((λg∈carrier G. y ⊗ g) g) = x ⊗ y ⊗

g by (auto simp:m-assoc)
qed
finally show (λg∈carrier G. (x ⊗ y) ⊗ g) = (λg∈carrier G. x ⊗ g) ⊗BijGroup (carrier G)

(λg∈carrier G. y ⊗ g) unfolding multx-def multy-def by simp
qed

lemma (in group) rcosets-closed:
assumes HG:subgroup H G
assumes g:g ∈ carrier G
assumes M :M ∈ rcosets H
shows M #> g ∈ rcosets H

proof −
from M obtain h where h:h ∈ carrier G M = H #> h unfolding RCOSETS-def

by auto
with g HG have M #> g = H #> (h ⊗ g) by (metis coset-mult-assoc sub-

group.subset)
with HG g h show M #> g ∈ rcosets H by (metis rcosetsI subgroup.m-closed

subgroup.subset subgroup-self )
qed

lemma (in group) inv-mult-on-rcosets-is-bij:
assumes HG:subgroup H G
assumes g:g ∈ carrier G
shows (λU ∈ rcosets H . U #> inv g) ∈ Bij (rcosets H )

proof(auto simp add:Bij-def bij-betw-def inj-on-def )
fix M
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assume M ∈ rcosets H
with HG g show M #> inv g ∈ rcosets H by (metis inv-closed rcosets-closed)

next
fix M
assume M :M ∈ rcosets H
with HG g have M #> g ∈ rcosets H by (rule rcosets-closed)
moreover from M HG g have M #> g #> inv g = M by (metis coset-mult-assoc

coset-mult-inv2 inv-closed is-group subgroup.rcosets-carrier)
ultimately show M ∈ (λU . U #> inv g) ‘ (rcosets H ) by auto

next
fix M N x
assume M :M ∈ rcosets H and N :N ∈ rcosets H and M #> inv g = N #>

inv g
hence (M #> inv g) #> g = (N #> inv g) #> g by simp
with HG M N g have M #> (inv g ⊗ g) = N #> (inv g ⊗ g) by (metis

coset-mult-assoc is-group subgroup.m-inv-closed subgroup.rcosets-carrier subgroup-self )
with HG M N g have a1 :M = N by (metis l-inv coset-mult-one is-group sub-

group.rcosets-carrier)
{

assume x ∈ M
with a1 show x ∈ N by simp

}
{

assume x ∈ N
with a1 show x ∈ M by simp

}
qed

lemma (in group) inv-mult-on-rcosets-action:
assumes HG:subgroup H G
shows group-action G (λg. λU ∈ rcosets H . U #> inv g) (rcosets H )

unfolding group-action-def group-action-axioms-def group-hom-def group-hom-axioms-def
hom-def
proof(auto simp add:is-group group-BijGroup)

fix h
assume h ∈ carrier G
with HG show (λU ∈ rcosets H . U #> inv h) ∈ carrier (BijGroup (rcosets H ))

unfolding BijGroup-def by (auto simp:inv-mult-on-rcosets-is-bij)
next

fix x y
assume x:x ∈ carrier G and y:y ∈ carrier G
define cosx cosy

where cosx = (λU∈rcosets H . U #> inv x)
and cosy = (λU∈rcosets H . U #> inv y)

with x y HG have cosx ∈ (Bij (rcosets H )) cosy ∈ (Bij (rcosets H ))
by (metis inv-mult-on-rcosets-is-bij)+

hence cosx ⊗BijGroup (rcosets H ) cosy = (λU∈rcosets H . cosx (cosy U ))

unfolding BijGroup-def by (auto simp: compose-def )
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also have ... = (λU∈rcosets H . U #> inv (x ⊗ y)) unfolding cosx-def cosy-def
proof(rule restrict-ext)

fix U
assume U :U ∈ rcosets H
with HG y have U #> inv y ∈ rcosets H by (metis inv-closed rcosets-closed)
with x y HG U have (λU∈rcosets H . U #> inv x) ((λU∈rcosets H . U #>

inv y) U ) = U #> inv y #> inv x
by auto

also from x y U HG have ... = U #> inv (x ⊗ y)
by (metis inv-mult-group coset-mult-assoc inv-closed is-group subgroup.rcosets-carrier)
finally show (λU∈rcosets H . U #> inv x) ((λU∈rcosets H . U #> inv y) U )

= U #> inv (x ⊗ y).
qed
finally show (λU∈rcosets H . U #> inv (x ⊗ y)) = (λU∈rcosets H . U #> inv

x) ⊗BijGroup (rcosets H ) (λU∈rcosets H . U #> inv y)
unfolding cosx-def cosy-def by simp

qed

end

theory SubgroupConjugation
imports GroupAction
begin

2 Conjugation of Subgroups and Cosets

This theory examines properties of the conjugation of subgroups of a fixed
group as a group action

2.1 Definitions and Preliminaries

We define the set of all subgroups of G which have a certain cardinality. G
will act on those sets. Afterwards some theorems which are already available
for right cosets are dualized into statements about left cosets.
lemma (in subgroup) subgroup-of-subset:

assumes G:group G
assumes PH :H ⊆ K
assumes KG:subgroup K G
shows subgroup H (G(|carrier := K |))

using assms subgroup-def group.m-inv-consistent m-inv-closed by fastforce

context group
begin

definition subgroups-of-size ::nat ⇒ -
where subgroups-of-size p = {H . subgroup H G ∧ card H = p}
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lemma lcosI : [| h ∈ H ; H ⊆ carrier G; x ∈ carrier G|] ==> x ⊗ h ∈ x <# H
by (auto simp add: l-coset-def )

lemma lcoset-join2 :
assumes H :subgroup H G
assumes g:g ∈ H
shows g <# H = H

proof auto
fix x
assume x:x ∈ g <# H
then obtain h where h:h ∈ H x = g ⊗ h unfolding l-coset-def by auto
with g H show x ∈ H by (metis subgroup.m-closed)

next
fix x
assume x:x ∈ H
with g H have inv g ⊗ x ∈ H by (metis subgroup.m-closed subgroup.m-inv-closed)
with x g H show x ∈ g <# H by (metis is-group subgroup.lcos-module-rev

subgroup.mem-carrier)
qed

lemma cardeq-rcoset:
assumes finite (carrier G)
assumes M ⊆ carrier G
assumes g ∈ carrier G
shows card (M #> g) = card M

proof −
have M #> g ∈ rcosets M by (metis assms(2 ) assms(3 ) rcosetsI )
thus card (M #> g) = card M

using assms(2 ) card-rcosets-equal by auto
qed

lemma cardeq-lcoset:
assumes finite (carrier G)
assumes M :M ⊆ carrier G
assumes g:g ∈ carrier G
shows card (g <# M ) = card M

proof −
have bij-betw (λm. g ⊗ m) M (g <# M )
proof(auto simp add: bij-betw-def )

show inj-on ((⊗) g) M
proof(rule inj-onI )

from g have invg:inv g ∈ carrier G by (rule inv-closed)
fix x y
assume x:x ∈ M and y:y ∈ M
with M have xG:x ∈ carrier G and yG:y ∈ carrier G by auto
assume g ⊗ x = g ⊗ y
hence (inv g) ⊗ (g ⊗ x) = (inv g) ⊗ (g ⊗ y) by simp
with g invg xG yG have (inv g ⊗ g) ⊗ x = (inv g ⊗ g) ⊗ y by (metis
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m-assoc)
with g invg xG yG show x = y by simp

qed
next

fix x
assume x ∈ M
thus g ⊗ x ∈ g <# M unfolding l-coset-def by auto

next
fix x
assume x:x ∈ g <# M
then obtain m where x = g ⊗ m m ∈ M unfolding l-coset-def by auto
thus x ∈ (⊗) g ‘ M by simp

qed
thus card (g <# M ) = card M by (metis bij-betw-same-card)

qed

2.2 Conjugation is a group action

We will now prove that conjugation acts on the subgroups of a certain group.
A large part of this proof consists of showing that the conjugation of a
subgroup with a group element is, again, a subgroup.
lemma conjugation-subgroup:

assumes HG:subgroup H G
assumes gG:g ∈ carrier G
shows subgroup (g <# (H #> inv g)) G

proof
from gG have inv g ∈ carrier G by (rule inv-closed)
with HG have (H #> inv g) ⊆ carrier G by (metis r-coset-subset-G sub-

group.subset)
with gG show g <# (H #> inv g) ⊆ carrier G by (metis l-coset-subset-G)

next
from gG have invgG:inv g ∈ carrier G by (metis inv-closed)
with HG have lcosSubset:(H #> inv g) ⊆ carrier G by (metis r-coset-subset-G

subgroup.subset)
fix x y
assume x:x ∈ g <# (H #> inv g) and y:y ∈ g <# (H #> inv g)
then obtain x ′ y ′ where x ′:x ′ ∈ H #> inv g x = g ⊗ x ′ and y ′:y ′ ∈ H #>

inv g y = g ⊗ y ′ unfolding l-coset-def by auto
then obtain hx hy where hx:hx ∈ H x ′ = hx ⊗ inv g and hy:hy ∈ H y ′ = hy

⊗ inv g unfolding r-coset-def by auto
with x ′ y ′ have x2 :x = g ⊗ (hx ⊗ inv g) and y2 :y = g ⊗ (hy ⊗ inv g) by auto
hence x ⊗ y = (g ⊗ (hx ⊗ inv g)) ⊗ (g ⊗ (hy ⊗ inv g)) by simp
also from hx hy HG have hxG:hx ∈ carrier G and hyG:hy ∈ carrier G by

(metis subgroup.mem-carrier)+
with gG hy x2 invgG have (g ⊗ (hx ⊗ inv g)) ⊗ (g ⊗ (hy ⊗ inv g)) = g ⊗ hx

⊗ (inv g ⊗ g) ⊗ hy ⊗ inv g by (metis m-assoc m-closed)
also from invgG gG have ... = g ⊗ hx ⊗ 1 ⊗ hy ⊗ inv g by simp
also from gG hxG have ... = g ⊗ hx ⊗ hy ⊗ inv g by (metis m-closed r-one)
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also from gG hxG invgG have ... = g ⊗ ((hx ⊗ hy) ⊗ inv g) by (metis gG hxG
hyG invgG m-assoc m-closed)

finally have xy:x ⊗ y = g ⊗ (hx ⊗ hy ⊗ inv g).
from hx hy HG have hx ⊗ hy ∈ H by (metis subgroup.m-closed)
with invgG HG have (hx ⊗ hy) ⊗ inv g ∈ H #> inv g by (metis rcosI sub-

group.subset)
with gG lcosSubset have g ⊗ (hx ⊗ hy ⊗ inv g) ∈ g <# (H #> inv g) by

(metis lcosI )
with xy show x ⊗ y ∈ g <# (H #> inv g) by simp

next
from gG have invgG:inv g ∈ carrier G by (metis inv-closed)
with HG have lcosSubset:(H #> inv g) ⊆ carrier G by (metis r-coset-subset-G

subgroup.subset)
from HG have 1 ∈ H by (rule subgroup.one-closed)
with invgG HG have 1 ⊗ inv g ∈ H #> inv g by (metis rcosI subgroup.subset)
with gG lcosSubset have g ⊗ (1 ⊗ inv g) ∈ g <# (H #> inv g) by (metis

lcosI )
with gG invgG show 1 ∈ g <# (H #> inv g) by simp

next
from gG have invgG:inv g ∈ carrier G by (metis inv-closed)
with HG have lcosSubset:(H #> inv g) ⊆ carrier G by (metis r-coset-subset-G

subgroup.subset)
fix x
assume x ∈ g <# (H #> inv g)
then obtain x ′ where x ′:x ′ ∈ H #> inv g x = g ⊗ x ′ unfolding l-coset-def

by auto
then obtain hx where hx:hx ∈ H x ′ = hx ⊗ inv g unfolding r-coset-def by

auto
with HG have invhx:inv hx ∈ H by (metis subgroup.m-inv-closed)
from x ′ hx have inv x = inv (g ⊗ (hx ⊗ inv g)) by simp
also from x ′ hx HG gG invgG have ... = inv (inv g) ⊗ inv hx ⊗ inv g by (metis

calculation in-mono inv-mult-group lcosSubset subgroup.mem-carrier)
also from gG have ... = g ⊗ inv hx ⊗ inv g by simp
also from gG invgG invhx HG have ... = g ⊗ (inv hx ⊗ inv g) by (metis m-assoc

subgroup.mem-carrier)
finally have invx:inv x = g ⊗ (inv hx ⊗ inv g).
with invhx invgG HG have (inv hx) ⊗ inv g ∈ H #> inv g by (metis rcosI

subgroup.subset)
with gG lcosSubset have g ⊗ (inv hx ⊗ inv g) ∈ g <# (H #> inv g) by (metis

lcosI )
with invx show inv x ∈ g <# (H #> inv g) by simp

qed

definition conjugation-action::nat ⇒ -
where conjugation-action p = (λg∈carrier G. λP∈subgroups-of-size p. g <# (P

#> inv g))

lemma conjugation-is-size-invariant:
assumes fin:finite (carrier G)
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assumes P:P ∈ subgroups-of-size p
assumes g:g ∈ carrier G
shows conjugation-action p g P ∈ subgroups-of-size p

proof −
from g have invg:inv g ∈ carrier G by (metis inv-closed)
from P have PG:subgroup P G and card:card P = p unfolding subgroups-of-size-def

by simp+
hence PsubG:P ⊆ carrier G by (metis subgroup.subset)
hence PinvgsubG:P #> inv g ⊆ carrier G by (metis invg r-coset-subset-G)
have g <# (P #> inv g) ∈ subgroups-of-size p
proof(auto simp add:subgroups-of-size-def )

show subgroup (g <# (P #> inv g)) G by (metis g PG conjugation-subgroup)
next
from card PsubG fin invg have card (P #> inv g) = p by (metis cardeq-rcoset)

with g PinvgsubG fin show card (g <# (P #> inv g)) = p by (metis
cardeq-lcoset)

qed
with P g show ?thesis unfolding conjugation-action-def by simp

qed

lemma conjugation-is-Bij:
assumes fin:finite (carrier G)
assumes g:g ∈ carrier G
shows conjugation-action p g ∈ Bij (subgroups-of-size p)

proof −
from g have invg:inv g ∈ carrier G by (rule inv-closed)
from g have conjugation-action p g ∈ extensional (subgroups-of-size p) unfold-

ing conjugation-action-def by simp
moreover have bij-betw (conjugation-action p g) (subgroups-of-size p) (subgroups-of-size

p)
proof(auto simp add:bij-betw-def )

show inj-on (conjugation-action p g) (subgroups-of-size p)
proof(rule inj-onI )

fix U V
assume U :U ∈ subgroups-of-size p and V :V ∈ subgroups-of-size p
hence subsetG:U ⊆ carrier G V ⊆ carrier G unfolding subgroups-of-size-def

by (metis (lifting) mem-Collect-eq subgroup.subset)+
hence subsetL:U #> inv g ⊆ carrier G V #> inv g ⊆ carrier G by (metis

invg r-coset-subset-G)+
assume conjugation-action p g U = conjugation-action p g V
with g U V have g <# (U #> inv g) = g <# (V #> inv g) unfolding

conjugation-action-def by simp
hence (inv g) <# (g <# (U #> inv g)) = (inv g) <# (g <# (V #> inv

g)) by simp
hence (inv g ⊗ g) <# (U #> inv g) = (inv g ⊗ g) <# (V #> inv g) by

(metis g invg lcos-m-assoc r-coset-subset-G subsetG)
hence 1 <# (U #> inv g) = 1 <# (V #> inv g) by (metis g l-inv)
hence U #> inv g = V #> inv g by (metis subsetL lcos-mult-one)
hence (U #> inv g) #> g = (V #> inv g) #> g by simp
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hence U #> (inv g ⊗ g) = V #> (inv g ⊗ g) by (metis coset-mult-assoc g
inv-closed subsetG)

hence U #> 1 = V #> 1 by (metis g l-inv)
thus U = V by (metis coset-mult-one subsetG)

qed
next

fix P
assume P ∈ subgroups-of-size p
thus conjugation-action p g P ∈ subgroups-of-size p by (metis fin g conjuga-

tion-is-size-invariant)
next

fix P
assume P:P ∈ subgroups-of-size p
with invg have conjugation-action p (inv g) P ∈ subgroups-of-size p by (metis

fin invg conjugation-is-size-invariant)
with invg P have (inv g) <# (P #> (inv (inv g))) ∈ subgroups-of-size p

unfolding conjugation-action-def by simp
hence 1 :(inv g) <# (P #> g) ∈ subgroups-of-size p by (metis g inv-inv)
have g <# (((inv g) <# (P #> g)) #> inv g) = (

⋃
p ∈ P. {g ⊗ (inv g ⊗ (p

⊗ g) ⊗ inv g)}) unfolding r-coset-def l-coset-def by (simp add:m-assoc)
also from P have PG:P ⊆ carrier G unfolding subgroups-of-size-def by (auto

simp add:subgroup.subset)
have ∀ p ∈ P. g ⊗ (inv g ⊗ (p ⊗ g) ⊗ inv g) = p
proof(auto)

fix p
assume p ∈ P
with PG have p:p ∈ carrier G..
with g invg have g ⊗ (inv g ⊗ (p ⊗ g) ⊗ inv g) = (g ⊗ inv g) ⊗ p ⊗ (g ⊗

inv g) by (metis m-assoc m-closed)
also with g invg g p have ... = p by (metis l-one r-inv r-one)
finally show g ⊗ (inv g ⊗ (p ⊗ g) ⊗ inv g) = p.

qed
hence (

⋃
p ∈ P. {g ⊗ (inv g ⊗ (p ⊗ g) ⊗ inv g)}) = P by simp

finally have g <# (((inv g) <# (P #> g)) #> inv g) = P.
with 1 have P ∈ (λP. g <# (P #> inv g)) ‘ subgroups-of-size p by auto
with P g show P ∈ conjugation-action p g ‘ subgroups-of-size p unfolding

conjugation-action-def by simp
qed
ultimately show ?thesis unfolding BijGroup-def Bij-def by simp

qed

lemma lr-coset-assoc:
assumes g:g ∈ carrier G
assumes h:h ∈ carrier G
assumes P:P ⊆ carrier G
shows g <# (P #> h) = (g <# P) #> h

proof(auto)
fix x
assume x ∈ g <# (P #> h)
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then obtain p where p ∈ P and p:x = g ⊗ (p ⊗ h) unfolding l-coset-def
r-coset-def by auto

with P have p ∈ carrier G by auto
with g h p have x = (g ⊗ p) ⊗ h by (metis m-assoc)
with ‹p ∈ P› show x ∈ (g <# P) #> h unfolding l-coset-def r-coset-def by

auto
next

fix x
assume x ∈ (g <# P) #> h
then obtain p where p ∈ P and p:x = (g ⊗ p) ⊗ h unfolding l-coset-def

r-coset-def by auto
with P have p ∈ carrier G by auto
with g h p have x = g ⊗ (p ⊗ h) by (metis m-assoc)
with ‹p ∈ P› show x ∈ g <# (P #> h) unfolding l-coset-def r-coset-def by

auto
qed

theorem acts-on-subsets:
assumes fin:finite (carrier G)
shows group-action G (conjugation-action p) (subgroups-of-size p)

unfolding group-action-def group-action-axioms-def group-hom-def group-hom-axioms-def
hom-def
apply(auto simp add:is-group group-BijGroup)
proof −

fix g
assume g:g ∈ carrier G
with fin show conjugation-action p g ∈ carrier (BijGroup (subgroups-of-size p))
unfolding BijGroup-def by (metis conjugation-is-Bij partial-object.select-convs(1 ))

next
fix x y
assume x:x ∈ carrier G and y:y ∈ carrier G
hence invx:inv x ∈ carrier G and invy:inv y ∈ carrier G by (metis inv-closed)+
from x y have xyG:x ⊗ y ∈ carrier G by (metis m-closed)
define conjx where conjx = conjugation-action p x
define conjy where conjy = conjugation-action p y
from fin x have xBij:conjx ∈ Bij (subgroups-of-size p) unfolding conjx-def by

(metis conjugation-is-Bij)
from fin y have yBij:conjy ∈ Bij (subgroups-of-size p) unfolding conjy-def by

(metis conjugation-is-Bij)
have conjx ⊗BijGroup (subgroups-of-size p) conjy
= (λg∈Bij (subgroups-of-size p). restrict (compose (subgroups-of-size p) g) (Bij

(subgroups-of-size p))) conjx conjy unfolding BijGroup-def by simp
also from xBij yBij have ... = compose (subgroups-of-size p) conjx conjy by

simp
also have ... = (λP∈subgroups-of-size p. conjx (conjy P)) by (metis compose-def )
also have ... = (λP∈subgroups-of-size p. x ⊗ y <# (P #> inv (x ⊗ y)))
proof(rule restrict-ext)

fix P
assume P:P ∈ subgroups-of-size p
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hence PG:P ⊆ carrier G unfolding subgroups-of-size-def by (auto simp:subgroup.subset)
with y have yPG:y <# P ⊆ carrier G by (metis l-coset-subset-G)
from x y have invxyG:inv (x ⊗ y) ∈ carrier G and xyG:x ⊗ y ∈ carrier G

using inv-closed m-closed by auto
from yBij have conjy ‘ subgroups-of-size p = subgroups-of-size p unfolding

Bij-def bij-betw-def by simp
with P have conjyP:conjy P ∈ subgroups-of-size p unfolding Bij-def bij-betw-def

by (metis (full-types) imageI )
with x y P have conjx (conjy P) = x <# ((y <# (P #> inv y)) #> inv x)

unfolding conjy-def conjx-def conjugation-action-def by simp
also from y invy PG have ... = x <# (((y <# P) #> inv y) #> inv x) by

(metis lr-coset-assoc)
also from PG invx invy y have ... = x <# ((y <# P) #> (inv y ⊗ inv x))

by (metis coset-mult-assoc yPG)
also from x y have ... = x <# ((y <# P) #> inv (x ⊗ y)) by (metis

inv-mult-group)
also from invxyG x yPG have ... = (x <# (y <# P)) #> inv (x ⊗ y) by

(metis lr-coset-assoc)
also from x y PG have ... = ((x ⊗ y) <# P) #> inv (x ⊗ y) by (metis

lcos-m-assoc)
also from xyG invxyG PG have ... = (x ⊗ y) <# (P #> inv (x ⊗ y)) by

(metis lr-coset-assoc)
finally show conjx (conjy P) = x ⊗ y <# (P #> inv (x ⊗ y)).

qed
finally have conjx ⊗BijGroup (subgroups-of-size p) conjy = (λP∈subgroups-of-size

p. x ⊗ y <# (P #> inv (x ⊗ y))).
with xyG show conjugation-action p (x ⊗ y)
= conjugation-action p x ⊗BijGroup (subgroups-of-size p) conjugation-action p y
unfolding conjx-def conjy-def conjugation-action-def by simp

qed

2.3 Properties of the Conjugation Action
lemma stabilizer-contains-P:

assumes fin:finite (carrier G)
assumes P:P ∈ subgroups-of-size p
shows P ⊆ group-action.stabilizer G (conjugation-action p) P

proof
from P have PG:subgroup P G unfolding subgroups-of-size-def by simp
from fin interpret conj:group-action G (conjugation-action p) (subgroups-of-size

p) by (rule acts-on-subsets)
fix x
assume x:x ∈ P
with PG have inv x ∈ P by (metis subgroup.m-inv-closed)
from x P have xG:x ∈ carrier G unfolding subgroups-of-size-def subgroup-def

by auto
with P have conjugation-action p x P = x <# (P #> inv x) unfolding con-

jugation-action-def by simp
also from ‹inv x ∈ P› PG have ... = x <# P by (metis coset-join2 sub-
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group.mem-carrier)
also from PG x have ... = P by (rule lcoset-join2 )
finally have conjugation-action p x P = P.
with xG show x ∈ group-action.stabilizer G (conjugation-action p) P unfolding

conj.stabilizer-def by simp
qed

corollary stabilizer-supergrp-P:
assumes fin:finite (carrier G)
assumes P:P ∈ subgroups-of-size p
shows subgroup P (G(|carrier := group-action.stabilizer G (conjugation-action

p) P|))
proof −

from assms have P ⊆ group-action.stabilizer G (conjugation-action p) P by
(rule stabilizer-contains-P)

moreover from P have subgroup P G unfolding subgroups-of-size-def by simp
moreover from P fin have subgroup (group-action.stabilizer G (conjugation-action

p) P) G by (metis acts-on-subsets group-action.stabilizer-is-subgroup)
ultimately show ?thesis by (metis is-group subgroup.subgroup-of-subset)

qed

lemma (in group) P-fixed-point-of-P-conj:
assumes fin:finite (carrier G)
assumes P:P ∈ subgroups-of-size p
shows P ∈ group-action.fixed-points (G(|carrier := P|)) (conjugation-action p)

(subgroups-of-size p)
proof −

from fin interpret conjG: group-action G conjugation-action p subgroups-of-size
p by (rule acts-on-subsets)

from P have subgroup P G unfolding subgroups-of-size-def by simp
with fin interpret conjP: group-action G(|carrier := P|) (conjugation-action p)

(subgroups-of-size p) by (metis acts-on-subsets group-action.subgroup-action)
from fin P have P ⊆ conjG.stabilizer P by (rule stabilizer-contains-P)
hence P ⊆ conjP.stabilizer P using conjG.stabilizer-def conjP.stabilizer-def by

auto
with P show P ∈ conjP.fixed-points unfolding conjP.fixed-points-def by auto

qed

lemma conj-wo-inv:
assumes QG:subgroup Q G
assumes PG:subgroup P G
assumes g:g ∈ carrier G
assumes conj:inv g <# (Q #> g) = P
shows Q #> g = g <# P

proof −
from g have invg:inv g ∈ carrier G by (metis inv-closed)
from conj have g <# (inv g <# (Q #> g)) = g <# P by simp
with QG g invg have (g ⊗ inv g) <# (Q #> g) = g <# P by (metis lcos-m-assoc

r-coset-subset-G subgroup.subset)

24



with g invg have 1 <# (Q #> g) = g <# P by (metis r-inv)
with QG g show Q #> g = g <# P by (metis lcos-mult-one r-coset-subset-G

subgroup.subset)
qed

end

end

theory SndSylow
imports SubgroupConjugation
begin

no-notation Multiset.subset-mset (infix ‹<#› 50 )

3 The Secondary Sylow Theorems
3.1 Preliminaries
lemma singletonI :

assumes
∧

x. x ∈ A =⇒ x = y
assumes y ∈ A
shows A = {y}

using assms by fastforce

context group
begin

lemma set-mult-inclusion:
assumes H :subgroup H G
assumes Q:P ⊆ carrier G
assumes PQ:H <#> P ⊆ H
shows P ⊆ H

proof
fix x
from H have 1 ∈ H by (rule subgroup.one-closed)
moreover assume x:x ∈ P
ultimately have 1 ⊗ x ∈ H <#> P unfolding set-mult-def by auto
with PQ have 1 ⊗ x ∈ H by auto
with H Q x show x ∈ H by (metis in-mono l-one)

qed

lemma card-subgrp-dvd:
assumes subgroup H G
shows card H dvd order G

proof(cases finite (carrier G))
case True
with assms have card (rcosets H ) ∗ card H = order G by (metis lagrange)
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thus ?thesis by (metis dvd-triv-left mult.commute)
next

case False
hence order G = 0 unfolding order-def by (metis card.infinite)
thus ?thesis by (metis dvd-0-right)

qed

lemma subgroup-finite:
assumes subgroup:subgroup H G
assumes finite:finite (carrier G)
shows finite H

by (metis finite finite-subset subgroup subgroup.subset)

end

3.2 Extending the Sylow Locale

This locale extends the originale sylow locale by adding the constraint that
the p must not divide the remainder m, i.e. pa is the maximal size of a
p-subgroup of G.
locale snd-sylow = sylow +

assumes pNotDvdm:¬ (p dvd m)

context snd-sylow
begin

lemma pa-not-zero: p ^ a 6= 0
by (simp add: prime-gt-0-nat prime-p)

lemma sylow-greater-zero:
shows card (subgroups-of-size (p ^ a)) > 0

proof −
obtain P where PG:subgroup P G and cardP:card P = p ^ a by (metis sy-

low-thm)
hence P ∈ subgroups-of-size (p ^ a) unfolding subgroups-of-size-def by auto
hence subgroups-of-size (p ^ a) 6= {} by auto
moreover from finite-G have finite (subgroups-of-size (p ^ a)) unfolding sub-

groups-of-size-def subgroup-def by auto
ultimately show ?thesis by auto

qed

lemma is-snd-sylow: snd-sylow G p a m by (rule snd-sylow-axioms)

3.3 Every p-group is Contained in a conjugate of a p-Sylow-
Group

lemma ex-conj-sylow-group:
assumes H :H ∈ subgroups-of-size (p ^ b)
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assumes Psize:P ∈ subgroups-of-size (p ^ a)
obtains g where g ∈ carrier G H ⊆ g <# (P #> inv g)

proof −
from H have HsubG:subgroup H G unfolding subgroups-of-size-def by auto
hence HG:H ⊆ carrier G unfolding subgroups-of-size-def by (simp add:subgroup.subset)
from Psize have PG:subgroup P G and cardP:card P = p ^ a unfolding sub-

groups-of-size-def by auto
define H ′ where H ′ = G(|carrier := H |)
from HsubG interpret Hgroup: group H ′ unfolding H ′-def by (metis sub-

group-imp-group)
from H have orderH ′:order H ′ = p ^ b unfolding H ′-def subgroups-of-size-def

order-def by simp
define ϕ where ϕ = (λg. λU∈rcosets P. U #> inv g)
with PG interpret Gact: group-action G ϕ rcosets P unfolding ϕ-def by

(metis inv-mult-on-rcosets-action)
from H interpret H ′act: group-action H ′ ϕ rcosets P unfolding H ′-def sub-

groups-of-size-def by (metis (mono-tags) Gact.subgroup-action mem-Collect-eq)
from finite-G PG have finite (rcosets P) unfolding RCOSETS-def r-coset-def

by (metis (lifting) finite.emptyI finite-UN-I finite-insert)
with orderH ′ sylow-axioms cardP have card H ′act.fixed-points mod p = card

(rcosets P) mod p unfolding sylow-def sylow-axioms-def by (metis H ′act.fixed-point-congruence)
moreover from finite-G PG order-G cardP have card (rcosets P) ∗ p ^ a =

p ^ a ∗ m by (metis lagrange)
with prime-p have card (rcosets P) = m by (metis less-nat-zero-code mult-cancel2

mult-is-0 mult.commute order-G zero-less-o-G)
hence card (rcosets P) mod p = m mod p by simp
moreover from pNotDvdm prime-p have ... 6= 0 by (metis dvd-eq-mod-eq-0 )
ultimately have card H ′act.fixed-points 6= 0 by (metis mod-0 )
then obtain N where N :N ∈ H ′act.fixed-points by fastforce
hence Ncoset:N ∈ rcosets P unfolding H ′act.fixed-points-def by simp
then obtain g where g:g ∈ carrier G N = P #> g unfolding RCOSETS-def

by auto
hence invg:inv g ∈ carrier G by (metis inv-closed)
hence invinvg:inv (inv g) ∈ carrier G by (metis inv-closed)
from N have carrier H ′ ⊆ H ′act.stabilizer N unfolding H ′act.fixed-points-def

by simp
hence ∀ h∈H . ϕ h N = N unfolding H ′act.stabilizer-def using H ′-def by auto
with HG Ncoset have a1 :∀ h∈H . N #> inv h ⊆ N unfolding ϕ-def by simp
have N <#> H ⊆ N unfolding set-mult-def r-coset-def
proof(auto)

fix n h
assume n:n ∈ N and h:h ∈ H

with H have inv h ∈ H by (metis (mono-tags) mem-Collect-eq subgroup.m-inv-closed
subgroups-of-size-def )

with n HG PG a1 have n ⊗ inv (inv h) ∈ N unfolding r-coset-def by auto
with HG h show n ⊗ h ∈ N by (metis in-mono inv-inv)

qed
with g have ((P #> g) <#> H ) #> inv g ⊆ (P #> g) #> inv g unfolding

r-coset-def by auto
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with PG g invg have ((P #> g) <#> H ) #> inv g ⊆ P by (metis coset-mult-assoc
coset-mult-one r-inv subgroup.subset)

with g HG PG invg have P <#> (g <# H #> inv g) ⊆ P by (metis
lr-coset-assoc r-coset-subset-G rcos-assoc-lcos setmult-rcos-assoc subgroup.subset)

with PG HG g invg have g <# H #> inv g ⊆ P by (metis l-coset-subset-G
r-coset-subset-G set-mult-inclusion)

with g have (g <# H #> inv g) #> inv (inv g) ⊆ P #> inv (inv g) unfolding
r-coset-def by auto
with HG g invg invinvg have g <# H ⊆ P #> inv (inv g) by (metis coset-mult-assoc

coset-mult-inv2 l-coset-subset-G)
with g have (inv g) <# (g <# H ) ⊆ inv g <# (P #> inv (inv g)) unfolding

l-coset-def by auto
with HG g invg invinvg have H ⊆ inv g <# (P #> inv (inv g)) by (metis

inv-inv lcos-m-assoc lcos-mult-one r-inv)
with invg show thesis by (auto dest:that)

qed

3.4 Every p-Group is Contained in a p-Sylow-Group
theorem sylow-contained-in-sylow-group:

assumes H :H ∈ subgroups-of-size (p ^ b)
obtains S where H ⊆ S and S ∈ subgroups-of-size (p ^ a)

proof −
from H have HG:H ⊆ carrier G unfolding subgroups-of-size-def by (simp

add:subgroup.subset)
obtain P where PG:subgroup P G and cardP:card P = p ^ a by (metis sy-

low-thm)
hence Psize:P ∈ subgroups-of-size (p ^ a) unfolding subgroups-of-size-def by

simp
with H obtain g where g:g ∈ carrier G H ⊆ g <# (P #> inv g) by (metis

ex-conj-sylow-group)
moreover note Psize g
moreover with finite-G have conjugation-action (p ^ a) g P ∈ subgroups-of-size

(p ^ a) by (metis conjugation-is-size-invariant)
ultimately show thesis unfolding conjugation-action-def by (auto dest:that)

qed

3.5 p-Sylow-Groups are conjugates of each other
theorem sylow-conjugate:

assumes P:P ∈ subgroups-of-size (p ^ a)
assumes Q:Q ∈ subgroups-of-size (p ^ a)
obtains g where g ∈ carrier G Q = g <# (P #> inv g)

proof −
from P have card P = p ^ a unfolding subgroups-of-size-def by simp
from Q have Qcard:card Q = p ^ a unfolding subgroups-of-size-def by simp
from Q P obtain g where g:g ∈ carrier G Q ⊆ g <# (P #> inv g) by (rule

ex-conj-sylow-group)
moreover with P finite-G have conjugation-action (p ^ a) g P ∈ subgroups-of-size

(p ^ a) by (metis conjugation-is-size-invariant)
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moreover from g P have conjugation-action (p ^ a) g P = g <# (P #> inv
g) unfolding conjugation-action-def by simp

ultimately have conjSize:g <# (P #> inv g) ∈ subgroups-of-size (p ^ a) un-
folding conjugation-action-def by simp

with Qcard have card:card (g <# (P #> inv g)) = card Q unfolding sub-
groups-of-size-def by simp

from conjSize finite-G have finite (g <# (P #> inv g)) by (metis (mono-tags)
finite-subset mem-Collect-eq subgroup.subset subgroups-of-size-def )

with g card have Q = g <# (P #> inv g) by (metis card-subset-eq)
with g show thesis by (metis that)

qed

corollary sylow-conj-orbit-rel:
assumes P:P ∈ subgroups-of-size (p ^ a)
assumes Q:Q ∈ subgroups-of-size (p ^ a)
shows (P,Q) ∈ group-action.same-orbit-rel G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a))
unfolding group-action.same-orbit-rel-def
proof −

from Q P obtain g where g:g ∈ carrier G P = g <# (Q #> inv g) by (rule
sylow-conjugate)

with Q P have g ′:conjugation-action (p ^ a) g Q = P unfolding conjuga-
tion-action-def by simp
from finite-G interpret conj: group-action G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a)) by (rule acts-on-subsets)
have conj.same-orbit-rel = {X ∈ (subgroups-of-size (p ^ a) × subgroups-of-size

(p ^ a)). ∃ g ∈ carrier G. ((conjugation-action (p ^ a)) g) (snd X) = (fst X)} by
(rule conj.same-orbit-rel-def )

with g g ′ P Q show ?thesis by auto
qed

3.6 Counting Sylow-Groups

The number of sylow groups is the orbit size of one of them:
theorem num-eq-card-orbit:

assumes P:P ∈ subgroups-of-size (p ^ a)
shows subgroups-of-size (p ^ a) = group-action.orbit G (conjugation-action (p ^

a)) (subgroups-of-size (p ^ a)) P
proof(auto)
from finite-G interpret conj: group-action G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a)) by (rule acts-on-subsets)
have group-action.orbit G (conjugation-action (p ^ a)) (subgroups-of-size (p ^ a))

P = group-action.same-orbit-rel G (conjugation-action (p ^ a)) (subgroups-of-size
(p ^ a)) ‘‘ {P} by (rule conj.orbit-def )

fix Q
{

assume Q:Q ∈ subgroups-of-size (p ^ a)
from P Q obtain g where g:g ∈ carrier G Q = g <# (P #> inv g) by (rule

sylow-conjugate)
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with P conj.orbit-char show Q ∈ group-action.orbit G (conjugation-action (p
^ a)) (subgroups-of-size (p ^ a)) P

unfolding conjugation-action-def by auto
} {
assume Q ∈ group-action.orbit G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a)) P
with P conj.orbit-char obtain g where g:g ∈ carrier G Q = conjugation-action

(p ^ a) g P by auto
with finite-G P show Q ∈ subgroups-of-size (p ^ a) by (metis conjuga-

tion-is-size-invariant)
}

qed

theorem num-sylow-normalizer :
assumes Psize:P ∈ subgroups-of-size (p ^ a)
shows card (rcosetsG(|carrier := group-action.stabilizer G (conjugation-action (p ^ a)) P|)

P) ∗ p ^ a = card (group-action.stabilizer G (conjugation-action (p ^ a)) P)
proof −
from finite-G interpret conj: group-action G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a)) by (rule acts-on-subsets)
from Psize have PG:subgroup P G and cardP:card P = p ^ a unfolding sub-

groups-of-size-def by auto
with finite-G have order G = card (conj.orbit P) ∗ card (conj.stabilizer P) by

(metis Psize acts-on-subsets group-action.orbit-size)
with order-G Psize have p ^ a ∗ m = card (subgroups-of-size (p ^ a)) ∗ card

(conj.stabilizer P) by (metis num-eq-card-orbit)
moreover from Psize interpret stabGroup: group G(|carrier := conj.stabilizer

P|) by (metis conj.stabilizer-is-subgroup subgroup-imp-group)
from finite-G Psize have PStab:subgroup P (G(|carrier := conj.stabilizer P|)) by

(rule stabilizer-supergrp-P)
from finite-G Psize have finite (conj.stabilizer P) by (metis card.infinite conj.stabilizer-is-subgroup

less-nat-zero-code subgroup.finite-imp-card-positive)
with finite-G PStab stabGroup.lagrange have card (rcosetsG(|carrier := conj.stabilizer P|)

P) ∗ card P = order (G(|carrier := conj.stabilizer P|)) by force
with cardP show ?thesis unfolding order-def by auto

qed

theorem (in snd-sylow) num-sylow-dvd-remainder :
shows card (subgroups-of-size (p ^ a)) dvd m

proof −
from finite-G interpret conj: group-action G (conjugation-action (p ^ a)) (subgroups-of-size

(p ^ a)) by (rule acts-on-subsets)
obtain P where PG:subgroup P G and cardP:card P = p ^ a by (metis sy-

low-thm)
hence Psize:P ∈ subgroups-of-size (p ^ a) unfolding subgroups-of-size-def by

simp
with finite-G have order G = card (conj.orbit P) ∗ card (conj.stabilizer P) by

(metis Psize acts-on-subsets group-action.orbit-size)
with order-G Psize have orderEq:p ^ a ∗ m = card (subgroups-of-size (p ^ a))
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∗ card (conj.stabilizer P) by (metis num-eq-card-orbit)
define k where k = card (rcosetsG(|carrier := conj.stabilizer P|) P)

with Psize have k ∗ p ^ a = card (conj.stabilizer P) by (metis num-sylow-normalizer)
with orderEq have p ^ a ∗ m = card (subgroups-of-size (p ^ a)) ∗ p ^ a ∗ k by

(auto simp:mult.assoc mult.commute)
hence p ^ a ∗ m = p ^ a ∗ card (subgroups-of-size (p ^ a)) ∗ k by auto
then have m = card (subgroups-of-size (p ^ a)) ∗ k

using pa-not-zero by auto
then show ?thesis ..

qed

We can restrict this locale to refer to a subgroup of order at least pa:
lemma (in snd-sylow) restrict-locale:

assumes subgrp:subgroup P G
assumes card:p ^ a dvd card P
shows snd-sylow (G(|carrier := P|)) p a ((card P) div (p ^ a))

proof −
from subgrp interpret groupP: group G(|carrier := P|) by (metis subgroup-imp-group)
define k where k = (card P) div (p ^ a)
with card have cardP:card P = p ^ a ∗ k by auto
hence orderP:order (G(|carrier := P|)) = p ^ a ∗ k unfolding order-def by

simp
from cardP subgrp order-G have p ^ a ∗ k dvd p ^ a ∗ m by (metis card-subgrp-dvd)
hence k dvd m

by (metis nat-mult-dvd-cancel-disj pa-not-zero)
with pNotDvdm have ndvd:¬ p dvd k

by (blast intro: dvd-trans)
define PcalM where PcalM = {s. s ⊆ carrier (G(|carrier := P|)) ∧ card s = p

^ a}
define PRelM where PRelM = {(N1 , N2 ). N1 ∈ PcalM ∧ N2 ∈ PcalM ∧

(∃ g∈carrier (G(|carrier := P|)). N1 = N2 #>G(|carrier := P|) g)}
from subgrp finite-G have finite-groupP:finite (carrier (G(|carrier := P|))) by

(auto simp:subgroup-finite)
interpret Nsylow: snd-sylow G(|carrier := P|) p a k PcalM PRelM

unfolding snd-sylow-def snd-sylow-axioms-def sylow-def sylow-axioms-def k-def
using groupP.is-group prime-p orderP finite-groupP ndvd PcalM-def PRelM-def

k-def by fastforce+
show ?thesis using k-def by (metis Nsylow.is-snd-sylow)

qed

theorem (in snd-sylow) p-sylow-mod-p:
shows card (subgroups-of-size (p ^ a)) mod p = 1

proof −
obtain P where PG:subgroup P G and cardP:card P = p ^ a by (metis sy-

low-thm)
hence orderP:order (G(|carrier := P|)) = p ^ a unfolding order-def by auto
from PG have PsubG:P ⊆ carrier G by (metis subgroup.subset)
from PG cardP have PSize:P ∈ subgroups-of-size (p ^ a) unfolding sub-

groups-of-size-def by auto
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from PG interpret groupP:group (G(|carrier := P|)) by (rule subgroup-imp-group)
from cardP have PSize2 :P ∈ groupP.subgroups-of-size (p ^ a) using groupP.subgroups-of-size-def

groupP.subgroup-self by auto
from finite-G interpret conjG: group-action G conjugation-action (p ^ a) sub-

groups-of-size (p ^ a) by (rule acts-on-subsets)
from PG interpret conjP: group-action G(|carrier := P|) conjugation-action (p

^ a) subgroups-of-size (p ^ a) by (rule conjG.subgroup-action)
from finite-G have finite (subgroups-of-size (p ^ a)) unfolding subgroups-of-size-def

subgroup-def by auto
with orderP prime-p have card (subgroups-of-size (p ^ a)) mod p = card conjP.fixed-points

mod p by (rule conjP.fixed-point-congruence)
also have ... = 1
proof −

have
∧

Q. Q ∈ conjP.fixed-points =⇒ Q = P
proof −

fix Q
assume Qfixed:Q ∈ conjP.fixed-points
hence Qsize:Q ∈ subgroups-of-size (p ^ a) unfolding conjP.fixed-points-def

by simp
hence cardQ:card Q = p ^ a unfolding subgroups-of-size-def by simp
— The normalizer of Q in G
— Let’s first show some basic propertiers of N
define N where N = conjG.stabilizer Q
define k where k = (card N ) div (p ^ a)

from N-def Qsize have NG:subgroup N G by (metis conjG.stabilizer-is-subgroup)
then interpret groupN : group G(|carrier := N |) by (metis subgroup-imp-group)

from Qsize N-def have QN :subgroup Q (G(|carrier := N |)) using stabi-
lizer-supergrp-P by auto

— The following proposition is used to show that P = Q later
from Qsize have NfixesQ:∀ g∈N . conjugation-action (p ^ a) g Q = Q un-

folding N-def conjG.stabilizer-def by auto
from Qfixed have PfixesQ:∀ g∈P. conjugation-action (p ^ a) g Q = Q

unfolding conjP.fixed-points-def conjP.stabilizer-def by auto
with PsubG have P ⊆ N unfolding N-def conjG.stabilizer-def by auto
with PG N-def Qsize have PN :subgroup P (G(|carrier := N |)) by (metis

conjG.stabilizer-is-subgroup is-group subgroup.subgroup-of-subset)
with cardP have p ^ a dvd order (G(|carrier := N |)) using groupN .card-subgrp-dvd

by force
hence p ^ a dvd card N unfolding order-def by simp
with NG have smaller-sylow:snd-sylow (G(|carrier := N |)) p a k unfolding

k-def by (rule restrict-locale)
— Instantiate the snd-sylow Locale a second time for the normalizer of Q
define NcalM where NcalM = {s. s ⊆ carrier (G(|carrier := N |)) ∧ card s

= p ^ a}
define NRelM where NRelM = {(N1 , N2 ). N1 ∈ NcalM ∧ N2 ∈ NcalM ∧

(∃ g∈carrier (G(|carrier := N |)). N1 = N2 #>G(|carrier := N |) g)}
interpret Nsylow: snd-sylow G(|carrier := N |) p a k NcalM NRelM

unfolding NcalM-def NRelM-def using smaller-sylow .
— P and Q are conjugate in N :
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from cardP PN have PsizeN :P ∈ groupN .subgroups-of-size (p ^ a) unfolding
groupN .subgroups-of-size-def by auto

from cardQ QN have QsizeN :Q ∈ groupN .subgroups-of-size (p ^ a) unfolding
groupN .subgroups-of-size-def by auto

from QsizeN PsizeN obtain g where g:g ∈ carrier (G(|carrier := N |)) P
= g <#G(|carrier := N |) (Q #>G(|carrier := N |) invG(|carrier := N |) g) by (rule
Nsylow.sylow-conjugate)

with NG have P = g <# (Q #> inv g) unfolding r-coset-def l-coset-def
by (auto simp:m-inv-consistent)

with NG g Qsize have conjugation-action (p ^ a) g Q = P unfolding
conjugation-action-def using subgroup.subset by force

with g NfixesQ show Q = P by auto
qed

moreover from finite-G PSize have P ∈ conjP.fixed-points using P-fixed-point-of-P-conj
by auto

ultimately have conjP.fixed-points = {P} by fastforce
hence one:card conjP.fixed-points = 1 by (auto simp: card-Suc-eq)
with prime-p have card conjP.fixed-points < p unfolding prime-nat-iff by

auto
with one show ?thesis using mod-pos-pos-trivial by auto

qed
finally show ?thesis.

qed

end

end
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