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Abstract

This is a formalisation of Schutz’ system of axioms for Minkowski
spacetime [1], as well as the results in his third chapter (“Temporal
Order on a Path”), with the exception of the second part of Theorem
12. Many results are proven here that cannot be found in Schutz, either
preceding the theorem they are needed for, or in their own thematic
section.
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theory TernaryOrdering
imports Util

begin

Definition of chains using an ordering on sets of events based on natural
numbers, plus some proofs.

1 Totally ordered chains

Based on page 110 of Phil Scott’s thesis and the following HOL Light defi-
nition:

let ORDERING = new_definition
‘ORDERING f X <=> (!n. (FINITE X ==> n < CARD X) ==> f n IN X)
/\ (!x. x IN X ==> ?n. (FINITE X ==> n < CARD X)
/\ fn=x)
/\ 'mn’ n’’. (FINITE X ==> n’’ < CARD X)
/A\n<n> /\n <n”
==> between (f n) (f n’) (f n’’)‘;;

I’'ve made it strict for simplicity, and because that’s how Schutz’s ordering
is. It could be made more generic by taking in the function corresponding
to < as a paramater. Main difference to Schutz: he has local order, not total
(cf Theorem 2 and local-ordering).

definition ordering :: (nat = ‘a) = (‘a = 'a = 'a = bool) = 'a set = bool
where
ordering f ord X = (Vn. (finite X — n < card X) — fn € X)
A VzeX. (3n. (finite X — n < card X) A fn = x))
ANNnn'n" (finite X — n” <card X) An<n'An" <n”

— ord (fn) (fn') (fn'))

lemma finite-ordering-intro:
assumes finite X
and Vn < card X. fne X
andVz e X.dn< card X. fn=1x
andVnn'n”. n<n' An' <n”An"<card X — ord (fn) (fn)) (fn”)
shows ordering f ord X

{proof)

lemma infinite-ordering-intro:
assumes infinite X
and Vn:nat. fne X
and Vz € X. Inunat. fn=1z



and Vnn'n”. n<n' An'<n” — ord (fn) (fn') (fn")
shows ordering f ord X

{proof)

lemma ordering-ord-ijk:
assumes ordering f ord X
and i < j A j < kA (finite X — k < card X)
shows ord (1) () (f k)
(proof )

lemma empty-ordering [simpl: 3f. ordering f ord {}
(proof )

lemma singleton-ordering [simp]: 3 f. ordering f ord {a}

(proof)

lemma two-ordering [simp]: f. ordering f ord {a, b}

(proof)

lemma card-le2-ordering:
assumes finiteX: finite X
and card-le2: card X < 2
shows 3 f. ordering f ord X

(proof)

lemma ord-ordered:
assumes abc: ord a b ¢
and abc-neg: a #bANa#cANb#c
shows 3 f. ordering f ord {a,b,c}
(proof )

lemma overlap-ordering:
assumes abc: ord a b ¢
and bced: ord b ¢ d
and abd: ord a b d
and acd: ord a ¢ d
and abc-neqg: a FbNa#cANa#dNbFcANbF*dNcH#d
shows 3 f. ordering f ord {a,b,c,d}
(proof)

lemma overlap-ordering-alt1:

assumes abc: ord a b ¢
and bed: ord b ¢ d
and abc-bed-abd: ¥ abcd. ordabceANordbecd— ordabd
and abc-bed-acd: ¥ abcd. ordabcecANordbecd— ordacd
and ord-distinct: Va b c. (ordabc — a#bANa#cANb#c)

shows 3f. ordering f ord {a,b,c,d}

(proof )



lemma overlap-ordering-alt2:
assumes abc: ord a b ¢
and bcd: ord b ¢ d
and abd: ord a b d
and acd: ord a ¢ d
and ord-distinct: Va b c. (ordabec— a#bANa#cNb#c)
shows 3 f. ordering f ord {a,b,c,d}
(proof)

lemma overlap-ordering-alt:

assumes abc: ord a b ¢
and bed: ord b ¢ d
and abc-bed-abd: ¥ a bcd. ordabcecNordbecd— ordabd
and abc-bed-acd: ¥ abcd. ordabcec N ordbcd— ordacd
and abc-neqg: a FbNa#cANa#xdNbFcANbF*dAdNcH#d

shows 3f. ordering f ord {a,b,c,d}

(proof)

The lemmas below are easy to prove for X = {}, and if I included that case
then I would have to write a conditional definition in place of {0..|X| — 1}.
lemma finite-ordering-img: [X # {}; finite X; ordering f ord X] = f “{0..card
X—1}=X

(proof)

lemma inf-ordering-img: [infinite X; ordering f ord X] = f ‘{0..} = X
(proof )

lemma inf-ordering-inv-img: [infinite X; ordering f ord X] = f —* X = {0..}
{proof )

lemma inf-ordering-img-inv-img: [infinite X; ordering ford X] = f“f —* X =
X
(proof)

lemma finite-ordering-inj-on: [finite X; ordering f ord X]| = inj-on f {0..card X
— ]}

(proof )

lemma finite-ordering-bij:
assumes orderingX: ordering f ord X
and finiteX: finite X
and non-empty: X # {}
shows bij-betw f {0..card X — 1} X
(proof)

lemma inf-ordering-inj":
assumes infX: infinite X
and f-ord: ordering f ord X
and ord-distinct: Va b c. (ordabc— a#bANa#cNb#c)



and f-eq¢: fm=fn
shows m = n
(proof)

lemma inf-ordering-inj:
assumes infinite X
and ordering f ord X
andVabe (ordabec—a#bANa#cANb#c)
shows inj f
(proof )

The finite case is a little more difficult as I can’t just choose some other
natural number to form the third part of the betweenness relation and the
initial simplification isn’t as nice. Note that I cannot prove inj f (over the
whole type that f is defined on, i.e. natural numbers), because I need to
capture the m and n that obey specific requirements for the finite case. In
order to prove inj f, I would have to extend the definition for ordering to
include m and n beyond card X, such that it is still injective. That would
probably not be very useful.

lemma finite-ordering-inj:
assumes finiteX: finite X
and f-ord: ordering f ord X
and ord-distinct: Va bc. (ordabec— a#bANa#cNb#c)
and m-less-card: m < card X
and n-less-card: n < card X
and f-e¢: fm=fn
shows m = n
(proof)

lemma ordering-ing:

assumes ordering f ord X
andVabe (ordabc—a£bANa#cNb#c)
and finite X — m < card X
and finite X — n < card X
and fm=fn

shows m = n

(proof )

lemma ordering-sym:
assumes ord-sym: Na b c. ordabc = ordcba
and finite X
and ordering f ord X
shows ordering (An. f (card X — 1 — n)) ord X

(proof)

lemma zero-into-ordering:
assumes ordering f betw X

and X # {}



shows (f0) € X
{proof)

2 Locally ordered chains

Definitions for Schutz-like chains, with local order only.

definition local-ordering :: (nat = 'a) = (‘a = 'a = 'a = bool) = 'a set = bool
where local-ordering f ord X
= (Vn. (finite X — n < card X) — fne X) A
(VzeX. In. (finite X — n < card X) A fn=1x) A
(Vn. (finite X — Suc (Suc n) < card X) — ord (f n) (f (Suc n)) (f (Suc

(Suc n))))

lemma finite-local-ordering-intro:
assumes finite X
and Vn < card X. fne X
andVz e X.dn< card X. fn=1x
and Vnn'n”. Sucn=n"ASucn’"=n"ANn" < card X — ord (fn) (fn’)
(fn")

shows local-ordering f ord X
(proof )

lemma infinite-local-ordering-intro:
assumes infinite X
and Vn:nat. fne X
and Vz € X. dnunat. fn=1z
and Vo n'n'. Sucen=n"A Sucn’=n""— ord (fn) (fn') (fn")
shows local-ordering f ord X

(proof)

lemma total-implies-local:
ordering f ord X = local-ordering f ord X

(proof)

lemma ordering-ord-ijk-loc:
assumes local-ordering f ord X
and finite X — Suc (Suc i) < card X
shows ord (f i) (f (Suc 7)) (f (Suc (Suc i)))

(proof)

lemma empty-ordering-loc [simp:
3f. local-ordering f ord {}
(proof )

lemma singleton-ordered-loc [simp]:
local-ordering f ord {f 0}

{proof)



lemma singleton-ordering-loc [simp]:
3f. local-ordering f ord {a}
{proof )

lemma two-ordered-loc:
assumes ¢ = f 0 and b = f 1
shows local-ordering f ord {a, b}

(proof)

lemma two-ordering-loc [simp]:
3f. local-ordering f ord {a, b}
{proof )

lemma card-le2-ordering-loc:
assumes finiteX: finite X
and card-le2: card X < 2
shows 3 f. local-ordering f ord X

{proof)

lemma ord-ordered-loc:
assumes abc: ord a b ¢
and abc-neq: a ZbANa#cNb#c
shows 3 f. local-ordering f ord {a,b,c}
(proof)

lemma overlap-ordering-loc:
assumes abc: ord a b ¢
and bed: ord b ¢ d
and abd: ord a b d
and acd: ord a ¢ d
and abc-neqg: a FbNa#cANa#xdNbFEcANbF*dNcH#d
shows 3f. local-ordering f ord {a,b,c,d}
(proof)

lemma ordering-sym-loc:
assumes ord-sym: Na b c. ordabc = ordcba
and finite X
and local-ordering f ord X
shows local-ordering (An. f (card X — 1 — n)) ord X

{proof)

lemma zero-into-ordering-loc:
assumes local-ordering f betw X
and X # {}
shows (f0) € X

(proof)

end



theory Minkowski
imports TernaryOrdering
begin

Primitives and axioms as given in [1, pp. 9-17].

I’'ve tried to do little to no proofs in this file, and keep that in other files. So,
this is mostly locale and other definitions, except where it is nice to prove
something about definitional equivalence and the like (plus the intermediate
lemmas that are necessary for doing so).

Minkowski spacetime = (€, P,[...]) except in the notation here I've used
[...]] for [...] as Isabelle uses [...] for lists.

Except where stated otherwise all axioms are exactly as they appear in
Schutz97. It is the independent axiomatic system provided in the main body
of the book. The axioms O1-O6 are the axioms of order, and largely concern
properties of the betweenness relation. I1-17 are the axioms of incidence.
I1-13 are similar to axioms found in systems for Euclidean geometry. As
compared to Hilbert’s Foundations (HIn), our incidence axioms (In) are
loosely identifiable as 11 — HI3, HI8; 12 — HI1; I3 — HI2. 14 fixes the
dimension of the space. 15-17 are what makes our system non-Galilean, and
lead (I think) to Lorentz transforms (together with S?) and the ultimate
speed limit. Axioms S and C and the axioms of symmetry and continuity,
where the latter is what makes the system second order. Symmetry replaces
all of Hilbert’s axioms of congruence, when considered in the context of
I5-17.

3 MinkowskiPrimitive: 11-13

Events £, paths P, and sprays. Sprays only need to refer to £ and P. Axiom
in-path-event is covered in English by saying "a path is a set of events", but
is necessary to have explicitly as an axiom as the types do not force it to be
the case.

I think part of why Schutz has I1, together with the trickery [ E£{} | =

. in I4, is that then I4 talks only about dimension, and results such as
no-empty-paths can be proved using only existence of elements and unreach-
able sets. In our case, it’s also a question of ordering the sequence of axiom
introductions: dimension should really go at the end, since it is not needed
for quite a while; but many earlier proofs rely on the set of events being
non-empty. It may be nice to have the existence of paths as a separate ax-
iom too, which currently still relies on the axiom of dimension (Schutz has
no such axiom either).

locale MinkowskiPrimitive =
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fixes € :: 'a set
and P :: (‘a set) set
assumes in-path-event [simp]: [Q € P;a € Q] = a € &

and nonempty-events [simp]: € # {}

and events-paths: [a € E; b € E; a # b)) = FReEP.ISeP.a € RAbDE S
ANRNS#{}

and eg-paths [intro]: [P € P; Q € P;a€ P;be P;a€ Q; b€ Q; a# ]
= P=Q
begin

This should be ensured by the additional axiom.

lemma path-sub-events:
QeP=QC¢
(proof)

lemma paths-sub-power:
P C Pow &

(proof)

Define path for more terse statements. a # b because a and b are being used
to identify the path, and a = b would not do that.

abbreviation path :: ‘a set = 'a = 'a = bool where
pathabab=abeP ANacabANbecabNha#b

abbreviation path-ex :: 'a = 'a = bool where
path-ex a b = 3 Q. path Q a b

lemma path-permute:
path ab a b = path ab b a

(proof)

abbreviation path-of :: 'a = 'a = 'a set where
path-of a b = THE ab. path ab a b

lemma path-of-ex: path (path-of a b) a b +— path-ex a b
(proof )

lemma path-unique:
assumes path ab a b and path ab’ a b
shows ab = ab’

(proof)
lemma paths-cross-once:

assumes path-Q: Q € P
and path-R: R € P

11



and Q-ne¢-R: Q # R
and QR-nonempty: QNR # {}
shows 3lacf. QNR = {a}
(proof)

4 Primitives: Unreachable Subset (from an Event)

The @Q € P A b € £ constraints are necessary as the types as not expressive
enough to do it on their own. Schutz’s notation is: Q(b, ).

definition unreachable-subset :: 'a set = 'a = 'a set (<unreach—on - from -» [100,
100]) where
unreach—on @ from b = {z€Q. Q € PAbe ENbE Q N —(path-ex b x)}

5 Primitives: Kinematic Triangle

definition kinematic-triangle :: 'a = 'a = 'a = bool (XA - - - [100, 100, 100]
100) where
kinematic-triangle a b ¢ =
acENbeEENceEENAaEDNaF cNDFc
AN(3QeP.FREP. Q # RN (3SeP.Q#SAR#S
ANa€ QANbeQ
ANa€ RANceER
AbeSAceDd))

A fuller, more explicit equivalent of A, to show that the above definition is
sufficient.

lemma tri-full:
Nabc=(aeENbeEENCcEENaAaFEDNaF cNbDF#c
A(3QeP.IREP. Q # RA(ISEP. Q#SANR#S

Na€EQAbEQNCE Q
ANa€RANceERANDER
ANbeSANceSANagDd)))

(proof)

6 Primitives: SPRAY

It’s okay to not require z € £ because if ¢ £ the SPRAY will be empty
anyway, and if it’s nonempty then x € £ is derivable.

definition SPRAY :: 'a = (‘a set) set where
SPRAY z = {ReP. z € R}

definition spray :: ‘a = 'a set where
spray x = {y. IRESPRAY z. y € R}

12



definition is-SPRAY :: ('a set) set = bool where
is-SPRAY S = Jze€€. S = SPRAY «

definition is-spray :: ‘a set = bool where
is-spray S = Fz€€. S = spray «

Some very simple SPRAY and spray lemmas below.

lemma SPRAY-event:
SPRAY z #{} = z € &
(proof)

lemma SPRAY-nonevent:
z ¢ &€ = SPRAY z = {}
(proof)

lemma SPRAY-path:
P e SPRAYx — PP

(proof)

lemma in-SPRAY-path:
P e SPRAYx =z € P

(proof)

lemma source-in-SPRAY:
SPRAY z # {} = 3P € SPRAYz.z € P
(proof)

lemma spray-event:
spray v # {} =z € &
(proof)

lemma spray-nonevent:
z ¢ & = spray z = {}
(proof)

lemma in-spray-event:
y € sprayx = y € £
(proof)

lemma source-in-spray:

spray ¢ # {} = x € spray z
(proof)

7 Primitives: Path (In)dependence

"A subset of three paths of a SPRAY is dependent if there is a path which
does not belong to the SPRAY and which contains one event from each of
the three paths: we also say any one of the three paths is dependent on the

13



other two. Otherwise the subset is independent." [Schutz97]

The definition of SPRAY constrains x, @, R, S to be in £ and P.

definition dep3-event Q R S x
= card {Q,R,S} = 3 A {Q,R,S} C SPRAY z
AN 3BTeP. T ¢ SPRAY z N QNT#{} N RNT#{} N SNT#{})

definition dep3-spray Q R S SPR = 3x. SPRAY x = SPR A dep3-event Q R S x

definition dep3 Q R S = Jz. dep3-event Q R S x

Some very simple lemmas related to dep3-event.

lemma dep3-nonspray:
assumes dep3-event Q R S x
shows 3 PeP. P ¢ SPRAY z

{proof)

lemma dep3-path:
assumes dep3-QRSz: dep3 Q R S
shows Qe PReP SeP

{proof)

lemma dep3-distinct:
assumes dep3-QRSz: dep3 Q R S
shows Q # R Q#SR#S
(proof )

lemma dep3-is-event:
dep3-event Q R Sz —= z € &

(proof)

lemma dep3-event-old:
dep3-event Q RSz +— Q# RN Q#SANR#*SNQE€E SPRAYz AN R €
SPRAY ©z N S € SPRAY z
AN(3TeP. T ¢ SPRAY x A (3yeQ.y€ T) AN (ByeR. ye T)
A (FyeS. yeT))
(proof )

lemma dep3-event-permute [no-atp):
assumes dep3-event Q R S x
shows dep8-event Q S R © dep3-event R Q S = dep3-event R S Q) x
dep3-event S Q R x dep3-event S R Q x

(proof)

lemma dep3-permute [no-atp:
assumes dep3 Q R S
shows dep3 Q@ S R dep8 R QQ S dep3 R S ()
and dep3 S Q R dep3 S R Q
(proof)
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"We next give recursive definitions of dependence and independence which
will be used to characterize the concept of dimension. A path 7' is dependent
on the set of n paths (where n > 3)

S =1{Q;:i=1,2,..,n;Q; € SPRAYz}

if it is dependent on two paths S7 and Sy, where each of these two paths is
dependent on some subset of n — 1 paths from the set S." [Schutz97]

inductive dep-path :: 'a set = ('a set) set = bool where
dep-3: dep3 T A B = dep-path T {A, B}
| dep-n: [dep8 T S1 S2; dep-path S1 S’ dep-path S2 S'; S C SPRAY uz;
S’ CS; 8" CS; Suc (card S’) = card S; Suc (card S"') = card §] =
dep-path T S

lemma card-Suc-ex:
assumes card A = Suc (card B) B C A
shows 3b. A = insert b B A b¢B

(proof)

lemma union-of-subsets-by-singleton:
assumes Suc (card S') = card S Suc (card S") = card S
and §'# 8" S'CSS"CS
shows S'U S =S
(proof)

lemma dep-path-card-2: dep-path T S = card S > 2
(proof)

"We also say that the set of n+1 paths SU{T} is a dependent set." [Schutz97]
Starting from this constructive definition, the below gives an analytical one.

definition dep-set :: (‘a set) set = bool where
dep-set S = 35'CS. 3Pe(S5—S"). dep-path P S’

Notice that the relation between dep-set and dep-path becomes somewhat
meaningless in the case where we apply dep-path to an element of the set.
This is because sets have no duplicate members, and we do not mirror the
idea that scalar multiples of vectors linearly depend on those vectors: paths
in a SPRAY are (in the R* model) already equivalence classes of vectors
that are scalar multiples of each other.
lemma dep-path-imp-dep-set:

assumes dep-path P S P¢S

shows dep-set (insert P S)

(proof)
lemma dep-path-for-set-members:

assumes PeS
shows dep-set S = dep-set (insert P S)

15



{proof)

lemma dependent-superset:
assumes dep-set A and ACB
shows dep-set B

{proof)

lemma path-in-dep-set:
assumes dep3 P Q R
shows dep-set {P,Q,R}

(proof)

lemma path-in-dep-set2a:
assumes dep3 P Q R
shows dep-path P {P,Q,R}

(proof)

definition indep-set :: (‘a set) set = bool where
indep-set S = — dep-set S

lemma no-dep-in-indep: indep-set S = —~(3T C S. dep-set T)
(proof)

lemma indep-set-alt-intro: =(3T C S. dep-set T) = indep-set S
(proof )

lemma indep-set-alt: indep-set S +— (35’ C S. dep-set S’)
(proof)

lemma dep-set S V indep-set S
(proof )

8 Primitives: 3-SPRAY

"We now make the following definition which enables us to specify the di-
mensions of Minkowski space-time. A SPRAY is a 3-SPRAY if: i) it contains
four independent paths, and ii) all paths of the SPRAY are dependent on
these four paths." [Schutz97]

definition n-SPRAY-basis :: nat = 'a set set = 'a = bool where
n-SPRAY-basis n S x = SCSPRAY x A card S = (Suc n) A indep-set S A
(VPESPRAY x. dep-path P S)

definition n-SPRAY (<-—SPRAY -) [100,100]) where
n—SPRAY z = 3SCSPRAY z. card S = (Suc n) A indep-set S A (VY PESPRAY
x. dep-path P S)

abbreviation three-SPRAY z = 3—SPRAY z

16



lemma n-SPRAY-intro:

assumes SCSPRAY z card S = (Suc n) indep-set S ¥V PESPRAY z. dep-path P
S

shows n—SPRAY z

(proof)

lemma three-SPRAY-alt:
three-SPRAY x = (351 52 53 54.
S1 # S2ANS1#S3ANS81#S84NS2#%83N82+#8)N83+#8
A S1 € SPRAY z N §2 € SPRAY x A S8 € SPRAY z A S} € SPRAY z
A (indep-set {S1, S2, S3, S4})
A (VSeSPRAY x. dep-path S {S51,52,53,54}))
(is three-SPRAY z <— ?three-SPRAY ' 1)

(proof)

lemma three-SPRAY-intro:
assumes SI1 # S2 AN S1 # S3 AN S1 # 54 NS2 # S8 NS2# 54 NS #S54
and S1 € SPRAY z A §2 € SPRAY z AN S8 € SPRAY z N S} € SPRAY
and indep-set {S1, S2, S3, S/}
and V SeSPRAY x. dep-path S {S1,52,53,54}
shows three-SPRAY x

{proof)

Lemma is-three-SPRAY says "this set of sets of elements is a set of paths
which is a 3-SPRAY". Lemma three-SPRAY-gej just extracts a bit of the
definition.

definition is-three-SPRAY :: (‘a set) set = bool where
is-three-SPRAY S =3 z. § = SPRAY x N 8—SPRAY ¢

lemma three-SPRAY-gej:

assumes three-SPRAY x

shows 3 Q1€P. FQ2€P. FQ3€P. AQ4EP. Q1 # Q2 N Q1 # Q3 N Q1 # @/
NQ2FQ3INQ2F# Q4 NQS#F QY
(proof)

end

9 MinkowskiBetweenness: O1-0O5

In O4, I have removed the requirement that a # d in order to prove negative
betweenness statements as Schutz does. For example, if we have [abc] and
[bca] we want to conclude [aba] and claim "contradiction!", but we can’t as
long as we mandate that a # d.

locale MinkowskiBetweenness = MinkowskiPrimitive +
fixes betw :: ‘a = 'a = 'a = bool («[-;--])

assumes abc-ex-path: [a;b;c] = FQEP. a € QAbDE QAN ceEQ
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and abe-sym: [a;b;c] = [c;b;a]
and abc-ac-neq: [a;b;c] = a # ¢
and abe-bed-abd [introl: [[a;b;c]; [b;¢;d]] = [a;b;d]

and some-betw: [Q € P;a € Q; b€ Q;¢c€ @Q; a# b;a#c¢; b+ (]
= [a;b;c] V [b;c;a)l V [c;a;0)
begin

The next few lemmas either provide the full axiom from the text derived from
a new simpler statement, or provide some very simple fundamental additions
which make sense to prove immediately before starting, usually related to
set-level things that should be true which fix the type-level ambiguity of ’a.

lemma betw-events:
assumes abe: [a;b;c]
showsa e EAbDEENCEE
(proof)

This shows the shorter version of O5 is equivalent.

lemma 05-still-O5 [no-atp):
(QeP A{abec} CQNaceEANDEENCEENAGEDNaFE cNDF# )
— [asbic] V [bicia] V [c;a;0])
(QePA{abec} CQNacENDEENCEENAGEDNaFE cNDF#C)
— [asbse] V [bicia] V [c;a5b] V [e;bia] Vo [a;eib] Vo [biasc])
(proof)

lemma some-betw-zor:
[QePiac @Qbe @Qce@Qa#bascb#
= ([a;b;c] A = [bsesa] A = [e5a;0])
V ([b;c;a]l A = [asbse] A = [e5a;0])
V ([ea:b] A = [asbse] A = [biesal)
(proof )

The lemma abc-abe-neq is the full O3 as stated by Schutz.

lemma abc-abc-neq:

assumes abe: [a;b;c]

shows a #bANa#cANb#c
(proof )

lemma abc-bed-acd:
assumes abe: [a;b;c]
and bed: [b;c;d]
shows [a;¢;d]

(proof)
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lemma abc-only-cba:
assumes [a;b;c]
shows — [b;a;c] = [a;c;b] = [b;c;a] — [e;a;b]

(proof)

10 Betweenness: Unreachable Subset Via a Path

definition unreachable-subset-via :: 'a set = 'a = 'a set = 'a = 'a set where
unreachable-subset-via Q Qa R x = {Qy. [z;Qy;Qa] A (3 RweR. Qa € unreach—on
Q from Rw A\ Qy € unreach—on Q from Rw)}

definition unreachable-subset-via-notation (<unreach—uvia - on - from - to -» [100,
100, 100, 100] 100)
where unreach—via P on Q from a to x = unreachable-subset-via Q a P x

11 Betweenness: Chains

named-theorems chain-defs
named-theorems chain-alts

11.1 Locally ordered chains with indexing
Definitions for Schutz’s chains, with local order only.

A chain can be: (i) a set of two distinct events connected by a path, or ...

definition short-ch :: 'a set = bool where
short-ch X = card X = 2 A (3PeP. X C P)

lemma short-ch-alt[chain-alts]:
short-ch X = (Jz€X. JyeX. path-ex z y N ~(F2€X. z#£x N 274Yy))
short-ch X = 3z y. X = {z,y} A path-ez z y)
(proof )

lemma short-ch-intros:
[zeX; yeX; path-ex z y; =(Fz€X. 2£x A 22£y)] = short-ch X
[X = {=,y}; path-ex x y] = short-ch X
(proof )

lemma short-ch-path: short-ch {z,y} +— path-ex z y
(proof )

. a set of at least three events such that any three adjacent events are or-
dered. Notice infinite sets have card 0, because card gives a natural number
always.

definition local-long-ch-by-ord :: (nat = 'a) = 'a set = bool where
local-long-ch-by-ord f X = (infinite X V card X > 3) A local-ordering f betw X
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lemma local-long-ch-by-ord-alt [chain-alts):
local-long-ch-by-ord f X =
(JzeX. FyeX. FzeX. x#y A y#z A x#z A local-ordering f betw X)
(is - = %ch f X)
(proof)

lemma short-zor-long:
shows short-ch Q = B f. local-long-ch-by-ord f Q
and local-long-ch-by-ord f QQ = — short-ch Q

(proof)

Any short chain can have an “ordering” defined on it: this isn’t the ternary
ordering betw that is used for triplets of elements, but merely an index-
ing function that fixes the “direction” of the chain, i.e. maps 0 to one
element and 1 to the other. We define this in order to be able to unify
chain definitions with those for long chains. Thus the indexing function f
of short-ch-by-ord f @ has a similar status to the ordering on a long chain
in many regards: e.g. it implies that f(0...|Q| —1) C Q.

definition short-ch-by-ord :: (nat="a) = 'a set = bool

where short-ch-by-ord f Q = Q = {f 0, f 1} A path-ex (f 0) (f 1)

lemma short-ch-equiv [chain-alts]: 3 f. short-ch-by-ord f Q <— short-ch Q
(proof)

lemma short-ch-card:
short-ch-by-ord f Q = card Q = 2
short-ch ) = card Q = 2
(proof)

lemma short-ch-sym:
assumes short-ch-by-ord f Q
shows short-ch-by-ord (An. if n=0 then f 1 else f 0) Q

{proof)

lemma short-ch-ord-in:
assumes short-ch-by-ord f Q
shows fO0 € Qf1 €@
(proof )

Does this restrict chains to lie on paths? Proven in TemporalOrderingOnPath’s
Interlude!

definition ch-by-ord (<[-~~-]>) where
[f~X] = short-ch-by-ord f X V local-long-ch-by-ord f X

definition ch :: 'a set = bool where ch X = 3f. [f~X]

declare short-ch-def [chain-defs]
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and local-long-ch-by-ord-def [chain-defs]
and ch-by-ord-def [chain-defs]
and short-ch-by-ord-def [chain-defs]

We include alternative definitions in the chain-defs set, because we do not
want arbitrary orderings to appear on short chains. Unless an ordering for
a short chain is explicitly written down by the user, we shouldn’t introduce
a short-ch-by-ord when e.g. unfolding.

lemma ch-alt[chain-defs]: ch X = short-ch X Vv (3 f. local-long-ch-by-ord f X)
(proof)

Since f(0) is always in the chain, and plays a special role particularly for

infinite chains (as the ’endpoint’, the non-finite edge) let us fix it straight in

the definition. Notice we require both infinite X and long-ch-by-ord, thus
circumventing infinite Isabelle sets having cardinality 0.

definition infinite-chain :: (nat = ’a) = 'a set = bool where
infinite-chain f Q = infinite Q A [f~Q)

declare infinite-chain-def [chain-defs

lemma infinite-chain-alt[chain-alts):
infinite-chain f Q <— infinite Q A local-ordering f betw @
(proof )

definition infinite-chain-with :: (nat = 'a) = 'a set = 'a = bool («[-~~-|- ..]>)
where
infinite-chain-with f Q © = infinite-chain f Q A f0 =z

declare infinite-chain-with-def [chain-defs)

lemma infinite-chain f Q <— [f~Q|f 0.]
(proof )

definition finite-chain :: (nat = ‘a) = ’a set = bool where

finite-chain f Q = finite Q A [f~Q)
declare finite-chain-def [chain-defs]

lemma finite-chain-alt[chain-alts]: finite-chain f Q +— short-ch-by-ord f Q V
(finite @ A local-long-ch-by-ord f Q)

(proof )
definition finite-chain-with :: (nat = 'a) = 'a set = 'a = 'a = bool ([-~>-|- ..
-)>) where

[f~Q|z..y] = finite-chain f QAN fO =x N[ (card @ — 1) =y

declare finite-chain-with-def [chain-defs]
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lemma finite-chain f Q <— [f~Q|f 0 .. f (card Q@ — 1)]
{proof)

lemma finite-chain-with-alt [chain-alts]:
[f~Q|z..2] +— (short-ch-by-ord f Q V (card Q > 8 A local-ordering f betw Q))
A
z=fO0Nz=Ff(card Q@ — 1)
{proof)

lemma finite-chain-with-cases:
assumes [f~Q|z..2]
obtains
(short) x = f0 z = f (card @ — 1) short-ch-by-ord f Q
| (long) x = f0z=f (card Q — 1) card Q > 3 local-long-ch-by-ord f Q
(proof )

definition finite-long-chain-with:: (nat="'a) = 'a set = 'a = 'a = 'a = bool
(¢[-~o-]-m D)
where [f~Q|z..y..2] = [f~Q|z..2] A £y A y#z N y€Q

declare finite-long-chain-with-def [chain-defs]

lemma points-in-chain:
assumes [f~Q|z..2]
shows z€Q N z€Q

{proof)

lemma points-in-long-chain:
assumes [f~Q|z..y..7]
shows z€(@ and ye@ and z€(Q
(proof )

lemma finite-chain-with-card-less3:
assumes [f~Q|z..2]
and card Q < 3
shows short-ch-by-ord f Q z = f 1
(proof)

lemma ch-long-if-card-geq3:
assumes ch X
and card X > 3§
shows 3 f. local-long-ch-by-ord f X
(proof)

lemma ch-short-if-card-less3:
assumes ch Q
and card Q < 8
and finite @
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shows 3 f. short-ch-by-ord f @
{proof )

lemma three-in-long-chain:
assumes local-long-ch-by-ord f X
obtains z y z where z€X and y€X and 2€X and z#y and z#z and y#z

{proof)

lemma short-ch-card-2:
assumes ch-by-ord f X
shows short-ch X <— card X = 2

{proof)

lemma long-chain-card-geq:
assumes local-long-ch-by-ord f X and fin: finite X
shows card X > 3

(proof)

lemma fin-chain-card-geq-2:
assumes [f~X|a..b]
shows card X > 2

(proof)

12 Betweenness: Rays and Intervals

“Given any two distinct events a,b of a path we define the segment (ab) =
{z :[a z b], z € ab}" [Schutz97] Our version is a little different, because it is
defined for any a, b of type ‘a. Thus we can have empty set segments, while
Schutz can prove (once he proves path density) that segments are never
empty.
definition segment :: 'a = 'a = 'a set

where segment a b = {z::’a. Fab. [a;x;b] A zEab A path ab a b}

abbreviation is-segment :: 'a set = bool
where is-segment ab = (Fa b. ab = segment a b)

definition interval :: 'a = 'a = 'a set
where interval a b = insert b (insert a (segment a b))

abbreviation is-interval :: 'a set = bool
where is-interval ab = (Fa b. ab = interval a b)

definition prolongation :: 'a = 'a = 'a set
where prolongation a b = {z::'a. Fab. [a;b;x] A x€ab A path ab a b}
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abbreviation is-prolongation :: 'a set = bool
where is-prolongation ab = 3a b. ab = prolongation a b

I think this is what Schutz actually meant, maybe there is a typo in the text?
Notice that b € ray a b for any a, always. Cf the comment on segment-def.
Thus Jray a b # {} is no guarantee that a path ab exists.

definition ray :: 'a = 'a = 'a set
where ray a b = insert b (segment a b U prolongation a b)

abbreviation is-ray :: 'a set = bool
where is-ray R = da b. R=rayab

definition is-ray-on :: 'a set = 'a set = bool
where is-ray-on R P = PEP A RCP A is-ray R

This is as in Schutz. Notice b is not in the ray through b?

definition ray-Schutz :: 'a = 'a = 'a set
where ray-Schutz a b = insert a (segment a b U prolongation a b)

lemma ends-notin-segment: a ¢ segment a b A\ b & segment a b
(proof)

lemma ends-in-int: a € interval a b A b € interval a b

{proof)

lemma seg-betw: z € segment a b +— [a;z;b]
(proof)

lemma pro-betw: z € prolongation a b <— [a;b;z]
(proof)

lemma seg-sym: segment a b = segment b a
(proof )

lemma empty-segment: segment a a = {}
{proof)

lemma int-sym: interval a b = interval b a
(proof )

lemma seg-path:
assumes z € segment a b
obtains ab where path ab a b segment a b C ab

(proof)

lemma seg-path2:
assumes segment a b # {}
obtains ab where path ab a b segment a b C ab
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{proof)

Path density (theorem 17) will extend this by weakening the assumptions
to segment a b # {}.

lemma seg-endpoints-on-path:
assumes card (segment a b) > 2 segment a b C P PEP
shows path P a b

(proof)

lemma pro-path:
assumes x € prolongation a b
obtains ab where path ab a b prolongation a b C ab

(proof)

lemma ray-cases:

assumes z € ray a b

shows [a;z;b] V [a;b;2] V 2 = b
(proof)

lemma ray-path:
assumes = € ray a b t#£b
obtains ab where path ab a b A ray a b C ab

(proof)

end

13 MinkowskiChain: O6

O6 supposedly serves the same purpose as Pasch’s axiom.

locale MinkowskiChain = MinkowskiBetweenness +
assumes 06: [{Q,R,S,T} C P; card{Q,R,S} = 3; a € QNR; b € QNS; ¢ €
RNS; deSNT; eeRNT; [bic;d]; [c;e;al]
= 3feTNQ. 39 X. [g~~X]a..f..b]
begin

lemma O6-0ld: [Q e P, ReP; SeP; TEP; Q#R; Q#S;R#S;a€ QNR
Abe QNS A c e RNS;
3deS. [bie;d] A (3e€eR. d € T ANe € T A [c¢eal)]
= 3feTNQ. 39 X. [g~~X]a..f..b]
(proof)

14 Chains: (Closest) Bounds

definition is-bound-f :: 'a = 'a set = (nat="'a) = bool where
is-bound-f Qp Q f =
Vijznat. [f~QI(f 0).] A (i<j — [f 4 f4; Qb))
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definition is-bound where
is-bound Q, Q =
Af:(nat="a). is-bound-f Qp Q f

QQp has to be on the same path as the chain (). This is left implicit in the
betweenness condition (as is Qp € £). So this is equivalent to Schutz only if
we also assume his axioms, i.e. the statement of the continuity axiom is no
longer independent of other axioms.

definition all-bounds where
all-bounds Q = {Qyp. is-bound Q, Q}

definition bounded where
bounded @ = 3 Q. is-bound Qp Q

lemma bounded-imp-inf:
assumes bounded @)
shows infinite @

{proof)

definition closest-bound-f where
closest-bound-f Qp Q f =
Q//K/Ag///ﬁgﬁ;%g/ﬂgz;ﬁ/fﬂw%WW/MMZIW/}W/Q/
1s-bound-f Qy A\
NGB BTV IR W BN 1Dy 6 S o T o iy 10k s ooy oo
(V Qp'. (is-bound Qp' Q N Qv' # Qp) — [f 0; Qv; Qb))

definition closest-bound where
closest-bound Qp Q =

3f. is-bound-f Qp Q f
AN (Y Q. (is-bound Qy' Q@ N Qv # Qn) — [f 05 Qu; Qb'])

lemma closest-bound Q, Q = (3f. closest-bound-f Qy @ f)
(proof )

end

15 MinkowskiUnreachable: 15-17

locale MinkowskiUnreachable = MinkowskiChain +
assumes [5: [Q € P; b € £—Q] = Fz y. {z,y} C unreach—on Q from b A
#Y
and 16: [Q € P; b € £E—Q; {Qz,Qz} C unreach—on Q from b; Qr#Qz]
— IX . [f~X|Qr..Q]
A (Vie{l .. card X — 1}. (f4) € unreach—on @Q from b
A (VY Quee. [f(i—1); Qu; fi] — Qy € unreach—on Q from b))
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and I7: [Q € P; b€ £—Q; Qz € Q — unreach—on Q from b; Qy € unreach—on
Q from 0]
= Jg X Qn. [g~~X|Qz..Qy..Qn] A Qn € Q — unreach—on Q from b
begin

lemma two-in-unreach:

[QeP;be & bd Q) = Fzcunreach—on Q from b. Jycunreach—on Q from
b.x #y

{proof)

lemma 16-old:
assumes Q € Pb¢ Qbe & Qr € (unreach—on Q from b) Qz € (unreach—on

Q from b) Qu# Qs
shows 3 X. 3f. ch-by-ord fX N fO =Qz A f (card X — 1) = Qz A
(Vie{l..card X — 1}. (f i) € unreach—on Q from b A (VY Qye€.
[f(i—1); Qu; fi] — Qy € unreach—on Q from b)) A
(short-ch X — QzeX A QzeX A (V Quel. [Qr;Qu;Qz] — Qy €
unreach—on @ from b))
(proof)

lemma [17-old:

assumes Q € P b¢ Qbe & Qr e Q — unreach—on Q from b Qy € unreach—on
Q from b

shows 3¢ X Qn. [g~X|Qz..Qy..Qn] A Qn € Q — unreach—on Q from b

{proof)

lemma card-unreach-geq-2:
assumes QP bef—-Q
shows 2 < card (unreach—on @Q from b) V (infinite (unreach—on @Q from b))

{proof)

In order to more faithfully capture Schutz’ definition of unreachable subsets
via a path, we show that intersections of distinct paths are unique, and
then define a new notation that doesn’t carry the intersection of two paths
around.

lemma unreach-empty-on-same-path:
assumes PeP QP P=Q
shows V z. unreach—via P on Q from a to z = {}

(proof)

definition unreachable-subset-via-notation-2 (<unreach—wvia - on - from -» [100,
100, 100] 100)

where unreach—via P on @ from a = unreachable-subset-via @ a P (THE z.
zEQNP)

lemma unreach-via-for-crossing-paths:
assumes PeP QP PNQ = {z}
shows unreach—via P on Q from a to x = unreach—via P on Q from a

(proof)
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end

16 MinkowskiSymmetry: Symmetry

locale MinkowskiSymmetry = MinkowskiUnreachable +
assumes Symmetry: [{Q,R,S} C P; card {Q,R,S} = 3;
z € QNRNS; Qa € Q5 Qa # ;

unreach—via R on Q from Q, = unreach—via S on Q from Q]

— 30:"a="a. il s i Zaas
o bij-betw AP {0 y | y. yeP}) PP JY10A iniisosss i ieahiony
ANyeQ — Py =y) HYIoss R ishy
. ANAP Ay |y yeP}) R =38 VY s B
egin

lemma Symmetry-old:
assumes Q e PRePSePQQ#RQ#SR#S
and z € QNRNS Q, € Q Q. # =
and unreach—via R on Q from Q, to © = unreach—uvia S on Q from Q, to x
shows 3v::'a="a. bij-betw (AP. {¢ y | y. yeP}) PP
AN(yeQ — Jdy=1y)
ANAP.{9y|y yeP}) R=1S
(proof)

end

17 MinkowskiContinuity: Continuity

locale MinkowskiContinuity = MinkowskiSymmetry +
assumes Continuity: bounded Q = 3 Q. closest-bound Qp Q

18 MinkowskiSpacetime: Dimension (14)

locale MinkowskiSpacetime = MinkowskiContinuity +

assumes ez-3SPRAY [simp]: [€ # {}] = Jz€€. 3—SPRAY z
begin

There exists an event by nonempty-events, and by ex-83SPRAY there is a
three-SPRAY, which by three-SPRAY-gej means that there are at least four
paths.

lemma four-paths:

JQRIEP. 3Q2€P. FQ3€P. FQ4EP. Q1 # Q2 N Q1 # Q3 N QI # Q4 N Q2
FQ3NQ2F Q4 NQ3# Q4
(proof)
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end

end
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theory TemporalOrderOnPath
imports Minkowski HOL— Library.Disjoint-Sets
begin

In Schutz [1, pp. 18-30], this is “Chapter 3: Temporal order on a path”. All
theorems are from Schutz, all lemmas are either parts of the Schutz proofs ex-
tracted, or additional lemmas which needed to be added, with the exception
of the three transitivity lemmas leading to Theorem 9, which are given by
Schutz as well. Much of what we’d like to prove about chains with respect to
injectivity, surjectivity, bijectivity, is proved in TernaryOrdering.thy. Some
more things are proved in interlude sections.

19 Preliminary Results for Primitives

First some proofs that belong in this section but aren’t proved in the book
or are covered but in a different form or off-handed remark.

context MinkowskiPrimitive begin

lemma cross-once-notin:
assumes @ € P
and R € P
and a € Q
and b € @
and b € R
and a # b
and Q # R
shows a ¢ R

(proof)

lemma paths-cross-at:
assumes path-Q: @ € P and path-R: R € P
and @Q-neg-R: Q # R
and QR-nonempty: @ N R # {}
and z-in@: € @ and z-inR: ¢ € R
shows @ N R = {z}
(proof)

lemma events-distinct-paths:
assumes a-event: a € £
and b-event: b € £
and a-neq-b: a # b
shows 3ReP.ISeP.a e RAbe SA(R#S — (3lec€. RN S ={c}))
(proof)

end
context MinkowskiBetweenness begin
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lemma assumes [a;b;c] shows 3 f. local-long-ch-by-ord f {a,b,c}
(proof )

lemma between-chain: [a;b;¢) = ch {a,b,c}

(proof)

end

20 3.1 Order on a finite chain

context MinkowskiBetweenness begin

20.1 Theorem 1

See Minkowski.abc-only-cba. Proving it again here to show it can be done
following the prose in Schutz.

theorem theorem1 [no-atpl:
assumes abe: [a;b;c]
shows [c;b;a] A = [bye;a] A = [c;a;b]
(proof)

20.2 Theorem 2

The lemma abc-bed-acd, equal to the start of Schutz’s proof, is given in
Minkowsk: in order to prove some equivalences. We’re splitting up Theorem
2 into two named results:

order-finite-chain there is a betweenness relation for each triple of adjacent events, and

index-injective all events of a chain are distinct.

We will be following Schutz’ proof for both. Distinctness of chain events
is interpreted as injectivity of the indexing function (see indez-injective):
we assume that this corresponds to what Schutz means by distinctness of
elements in a sequence.

For the case of two-element chains: the elements are distinct by definition,
and the statement on local-ordering is void (respectively, False = P for
any P). We exclude this case from our proof of order-finite-chain. Two
helper lemmas are provided, each capturing one of the proofs by induction
in Schutz’ writing.
lemma thm2-ind1:
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
shows Vji. ((iznat) <jANj<card X — 1) — [fi; f5;f G+ 1)

31



(proof)

lemma thm2-ind2:
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
shows Vm . (0<(lI—-m) A (I-m) <INl < card X) — [f (I-m—1); f (I-m);
(f )]
(proof)

lemma thm2-ind2b:
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
and ordered-nats: 0<k AN k<l ANl < card X
shows [f (k—1); f k; 1
(proof )

This is Theorem 2 properly speaking, except for the "chain elements are dis-
tinct" part (which is proved as injectivity of the index later). Follows Schutz
fairly welll The statement Schutz proves under (i) is given in Minkowski-
Betweenness.abc-bed-acd instead.

theorem order-finite-chain:
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
and ordered-nats: 0 < (iznat) Ni < jAJ<IANI<card X
shows [f i; f j; f1]
(proof)

corollary order-finite-chain2:
assumes chX: [f~X]
and finiteX: finite X
and ordered-nats: 0 < (iznal) Ni < jAJ<IANI<card X
shows [f & f j; f]
(proof)

theorem indez-injective:
fixes i::nat and j::nat
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
and indices: i<j j<card X
shows fi # fj
(proof)

theorem index-injective2:
fixes i::nat and j::nat
assumes chX: [f~X]
and finiteX: finite X
and indices: i<j j<card X
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shows fi # fj
{proof )

Surjectivity of the index function is easily derived from the definition of
local-ordering, so we obtain bijectivity as an easy corollary to the second
part of Theorem 2.

corollary index-bij-betw:
assumes chX: local-long-ch-by-ord f X
and finiteX: finite X
shows bij-betw f {0..<card X} X
{proof )

corollary indez-bij-betw2:
assumes chX: [f~X]
and finiteX: finite X
shows bij-betw f {0..<card X} X
(proof )

20.3 Additional lemmas about chains

lemma first-neq-last:
assumes [f~Q|z..2]
shows z#£2

(proof)

lemma indez-middle-element:
assumes [f~X|a..b..c]
shows 3n. 0<n A n<(card X — 1) AN fn=1>

(proof)

Another corollary to Theorem 2, without mentioning indices.

corollary fin-ch-betw: [f~~X|a..b..c] = [a;b;(]
{proof)

lemma long-chain-2-imp-3: [[f~X|a..c]; card X > 2] = 3 b. [f~X]a..b..(]
{proof)

lemma finite-chain2-betw: [[f~X|a..c]; card X > 2] = 3 b. [a;b;c]
{proof)

lemma finite-long-chain-with-alt [chain-alts]: [f~ Q|x..y..2] +— [f~Q|z..2] A [z;y;2]
A yeQ
(proof )

lemma finite-long-chain-with-card: [f~ Q|z..y..z] = card @ > 8
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{proof)

lemma finite-long-chain-with-alt2:
assumes finite Q) local-long-ch-by-ord f Q f0 = x f (card Q — 1) = z [x;y;2] A

ye@
shows [f~Q|z..y..7]

{proof)

lemma finite-long-chain-with-alt3:
assumes finite @ local-long-ch-by-ord f Q f 0 = z f (card Q — 1) = z y£x A

y#z A yeq
shows [f~Q|z..y..7]

(proof)

lemma chain-sym-obtain:
assumes [f~X|a..b..c]
obtains g where [g~X|c..b..a] and g=(An. f (card X — 1 — n))

(proof)

lemma chain-sym:
assumes [f~X|a..b..c]
shows [An. f (card X — 1 — n)~Xlc..b..qd]

(proof)

lemma chain-sym?2:
assumes [f~X]|a..c]
shows [An. f (card X — 1 — n)~X|c..q
(proof)

lemma chain-sym-obtain2:
assumes [f~X]|a..c]
obtains g where [g~X|c..a] and g=(An. f (card X — 1 — n))
{proof)

end

21 Preliminary Results for Kinematic Triangles
and Paths/Betweenness

Theorem 3 (collinearity) First we prove some lemmas that will be very help-
ful.

context MinkowskiPrimitive begin
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lemma triangle-permutes [no-atpl:
assumes A a b ¢
shows AacbAbacAbcalNcabAcba

{proof)

lemma triangle-paths [no-atp):
assumes tri-abc: AN\ a b ¢
shows path-ex a b path-ex a ¢ path-ex b ¢

(proof)

lemma triangle-paths-unique:
assumes tri-abc: A\ a b ¢
shows 3!ab. path ab a b

(proof)

The definition of the kinematic triangle says that there exist paths that a
and b pass through, and a and ¢ pass through etc that are not equal. But
we can show there is a unique ab that a and b pass through, and assuming
there is a path abc that a, b, ¢ pass through, it must be unique. Therefore
ab = abc and ac = abe, but ab # ac, therefore False. Lemma tri-three-paths
is not in the books but might simplify some path obtaining.
lemma triangle-diff-paths:

assumes tri-abc: A a b ¢

shows = (3QeP.a € QAbDE QA ceE Q)
(proof)

lemma tri-three-paths [elim]:

assumes tri-abc: AN a b ¢

shows Jab bec ca. path ab a b A path bc b ¢ A path ca ¢ a A ab # be N\ ab # ca
A be # ca

(proof)

lemma triangle-paths-neq:
assumes tri-abc: A a b ¢
and path-ab: path ab a b
and path-ac: path ac a ¢
shows ab # ac

(proof)

end
context MinkowskiBetweenness begin

lemma abc-ez-path-unique:
assumes abe: [a;b;c]

shows 3!1QeP.ac QAbE QANcEQ
(proof)

lemma betw-c-in-path:
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assumes abe: [a;b;c]
and path-ab: path ab a b
shows ¢ € ab

(proof)

lemma betw-b-in-path:
assumes abe: [a;b;c]
and path-ab: path ac a c
shows b € ac

(proof)

lemma betw-a-in-path:
assumes abe: [a;b;c]
and path-ab: path bc b ¢
shows a € be

(proof)

lemma triangle-not-betw-abc:
assumes tri-abc: AN a b ¢
shows - [a;b;c]

(proof)

lemma triangle-not-betw-ach:
assumes tri-abc: AN a b ¢
shows - [a;c;b]

(proof)

lemma triangle-not-betw-bac:
assumes tri-abc: A a b ¢
shows - [b;a;c]

(proof)

lemma triangle-not-betw-any:
assumes tri-abc: A a b ¢
shows — (3de{a,b,c}. Fec{a,b,c}. Ife{a,b,c}. [d;e;f])
(proof )

end

22 3.2 First collinearity theorem

theorem (in MinkowskiChain) collinearity-alt2:
assumes tri-abc: A a b c
and path-de: path de d e

and path-ab: path ab a b
and bed: [b;c;d]

and cea: [c;e;al
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shows 3 fedenab. [a;f;b]
(proof)

theorem (in MinkowskiChain) collinearity-alt:
assumes tri-abc: A a b c
and path-de: path de d e
and bed: [b;c;d]
and cea: [c;e;a]
shows Jab. path ab a b A (3 fedenab. [a;f;b])
(proof )

theorem (in MinkowskiChain) collinearity:
assumes tri-abc: A a b c
and path-de: path de d e
and bed: [b;c;d]
and cea: [c;e;al
shows (3 feden(path-of a b). [a;f;b])
(proof)

23 Additional results for Paths and Unreachables

context MinkowskiPrimitive begin

The degenerate case.

lemma big-bang:
assumes no-paths: P = {}
shows Ja. £ = {a}

(proof)

lemma two-events-then-path:
assumes two-events: Ja€f. FbEE. a # b
shows 3Q. Q € P

(proof)

lemma paths-are-events: ¥V QEP. VacQ. a € £
(proof )

lemma same-empty-unreach:
[Q € P; a € Q) = unreach—on Q from a = {}
(proof)

lemma same-path-reachable:
[QeP;ae @ be Q] = a € Q — unreach—on Q from b
(proof)

If we have two paths crossing and a is on the crossing point, and b is on one
of the paths, then a is in the reachable part of the path b is on.
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lemma same-path-reachable2:
[QeP;,ReP;a€ Q;acR;be Q) = a€ R — unreach—on R from b
(proof )

lemma cross-in-reachable:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-inQ: b € Q
and b-inR: b € R
shows b € R — unreach—on R from a

(proof)

lemma reachable-path:
assumes path-Q: Q € P
and b-event: b € £
and a-reachable: a € Q) — unreach—on @ from b

shows IReP.a€c RAbE R
(proof)

end
context MinkowskiBetweenness begin

lemma ord-path-of:
assumes [a;b;c]
shows a € path-of b ¢ b € path-of a ¢ ¢ € path-of a b
and path-of a b = path-of a ¢ path-of a b = path-of b ¢
(proof)

Schutz defines chains as subsets of paths. The result below proves that even
though we do not include this fact in our definition, it still holds, at least
for finite chains.

Notice that this whole proof would be unnecessary if including path-belongingness
in the definition, as Schutz does. This would also keep path-belongingness
independent of axiom O1 and O4, thus enabling an independent statement

of axiom O6, which perhaps we now lose. In exchange, our definition is
slightly weaker (for card X > & and infinite X).

lemma obtain-index-fin-chain:
assumes [f~X] z€X finite X
obtains ¢ where fi = z i<card X

(proof)

lemma obtain-index-inf-chain:
assumes [f~X] z€X infinite X
obtains i where fi = x
(proof)
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lemma fin-chain-on-path2:
assumes [f~X] finite X
shows 4 PeP. XCP

(proof)

lemma fin-chain-on-path:
assumes [f~X] finite X
shows J!PeP. XCP

(proof)

lemma fin-chain-on-path3:
assumes [f~X] finite X a€X beX a#b
shows X C path-of a b

(proof)

end
context MinkowskiUnreachable begin

First some basic facts about the primitive notions, which seem to belong
here. I don’t think any/all of these are explicitly proved in Schutz.
lemma no-empty-paths [simp]:

assumes QcP

shows Q#{}

(proof)

lemma events-ex-path:
assumes gel-path: P # {}
shows Vzef. AQeP. z € @

(proof)

lemma unreach-ge2-then-ge2:
assumes Jzcunreach—on Q from b. Iycunreach—on Q from b. © # y
shows Jz€@. JycQ. =z £ y

(proof)

This lemma just proves that the chain obtained to bound the unreachable
set of a path is indeed on that path. Extends I6; requires Theorem 2; used
in Theorem 13. Seems to be assumed in Schutz’ chain notation in I6.

lemma chain-on-path-16:
assumes path-Q: QP
and event-b: b¢Q be€
and unreach: @, € unreach—on Q from b Q. € unreach—on @ from b Q, #

Q-
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and X-def: [f~X|Q..-Q.]
(Vie{1l .. card X — 1}. (f ) € unreach—on Q from b N (V¥ Qyu€€.

[(f(i=1)); Qy; fi] — Qy € unreach—on Q from b))
shows XCQ

(proof)

end

24 Results about Paths as Sets

Note several of the following don’t need MinkowskiPrimitive, they are just
Set lemmas; nevertheless I'm naming them and writing them this way for
clarity.

context MinkowskiPrimitive begin

lemma distinct-paths:
assumes Q € P
and R € P
and d ¢ Q
and d € R
shows R # @

(proof)

lemma distinct-paths2:
assumes @ € P
and R € P
and 3d. d ¢ QANd€ER
shows R # @

{(proof)

lemma external-events-neq:
[QeP;ac@;belbd Q] = a#b
(proof)

lemma notin-cross-events-neq:
[QeP, ReP; Q#R,a€ Q;b€E R, a¢ RNQ) = a # b

(proof)

lemma ’I’LOCT’OSS-@’U@’ﬂtS-’ﬂqu
[QeP;RePiac Qbe R RNQ={}] = a#b

(proof)

Given a nonempty path @), and an external point d, we can find another

path R passing through d (by 12 aka events-paths). This path is distinct
from @, as it passes through a point external to it.

lemma external-path:
assumes path-Q: Q € P
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and a-inQ: a € Q

and d-notin@: d ¢ Q

and d-event: d € £
shows 3 ReP. d € R

(proof)

lemma distinct-path:
assumes Q € P
and ¢ € @
and d ¢ Q
and d € £
shows I ReEP. R # Q

(proof)

lemma external-distinct-path:
assumes @ € P
and ¢ € @
and d ¢ Q
and d € £
shows JREP. R# QAN d € R

(proof)

end

25 3.3 Boundedness of the unreachable set

25.1 Theorem 4 (boundedness of the unreachable set)

The same assumptions as 17, different conclusion. This doesn’t just give us
boundedness, it gives us another event outside of the unreachable set, as
long as we have one already. 17 conclusion: 3¢9 X Qn. [g~X|Qz..Qy..Qn] A
Qn € QQ — unreach—on @ from b

theorem (in MinkowskiUnreachable) unreachable-set-bounded:

assumes path-Q: Q € P

and b-nin-Q: b ¢ Q

and b-event: b € £

and Qz-reachable: Qr € @ — unreach—on @Q from b

and Qy-unreachable: Qy € unreach—on Q from b
shows 3 Qz€Q — unreach—on Q from b. [Qz;Qy;Qz] N Qr # Qz
(proof )

25.2 Theorem 5 (first existence theorem)

The lemma below is used in the contradiction in external-event, which is the
essential part to Theorem 5(i).

lemma (in MinkowskiUnreachable) only-one-path:
assumes path-Q: Q € P
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and all-inQ: Va€l. a € Q
and path-R: R € P
shows R = @)

(proof)

context MinkowskiSpacetime begin

Unfortunately, we cannot assume that a path exists without the axiom of
dimension.

lemma external-event:
assumes path-Q: Q € P
shows 3def. d ¢ Q

(proof)

Now we can prove the first part of the theorem’s conjunction. This follows
pretty much exactly the same pattern as the book, except it relies on more
intermediate lemmas.

theorem ge2-events:
assumes path-Q: Q € P
and a-inQ: a € Q
shows 3b€Q). b # a
(proof)

Simple corollary which is easier to use when we don’t have one event on a
path yet. Anything which uses this implicitly used no-empty-paths on top
of ge2-events.

lemma ge2-events-laz:
assumes path-Q: Q € P
shows Jac@. 3b€Q. a # b

(proof)

lemma ex-crossing-path:
assumes path-Q: Q € P
shows 3REP. R# Q A (3c. c€E RN c€ Q)

(proof)

If we have two paths Q and R with a¢ on ) and b at the intersection of
Q@ and R, then by two-in-unreach (I5) and Theorem 4 (boundedness of the
unreachable set), there is an unreachable set from a on one side of b on R,
and on the other side of that there is an event which is reachable from a by
some path, which is the path we want.

lemma path-past-unreach:
assumes path-Q: Q € P
and path-R: R € P
and a-inQ: a € Q
and b-inQ: b € Q
and b-inR: b € R
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and Q-ne¢-R: Q # R
and a-neq-b: a # b
shows 35eP. S# QANae€ SA(Fc.ce SAceER)
(proof)

theorem ex-crossing-at:
assumes path-Q: Q € P
and a-inQ: a € Q
shows JaceP. ac # QAN (ec.c ¢ QA a € ac A c € ac)
(proof)

lemma ex-crossing-at-alt:
assumes path-Q: Q € P
and a-inQ: a € Q
shows Jac. Jc. pathacacNac# QAN cé¢ Q
(proof)

end

26 3.4 Prolongation

context MinkowskiSpacetime begin

lemma (in MinkowskiPrimitive) unreach-on-path:
a € unreach—on @ from b = a € Q

(proof)

lemma (in MinkowskiUnreachable) unreach-equiv:

[Q€P; ReP;ac Q;be R; ac€ unreach—on Q from b] = b € unreach—on
R from a

(proof )

theorem prolong-betw:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-in@: b € Q
and ab-neq: a £ b
shows 3 cef. [a;b;c]
(proof)

lemma (in MinkowskiSpacetime) prolong-betw2:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-in@Q: b € Q
and ab-neq: a # b
shows 3 ce Q. [a;b;c]
(proof)
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lemma (in MinkowskiSpacetime) prolong-betw3:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-in@Q: b € Q
and ab-neq: a # b
shows JceQ. 3deQ. [a;b;c] A [a;b;d] A c£d
(proof)

lemma finite-path-has-ends:
assumes ) € P
and X C @
and finite X
and card X > 3
shows JacX. 3beX. a # b A (VeeX. a# ¢ AN b# c— [a;ch])

(proof)

lemma obtain-fin-path-ends:
assumes path-X: XeP
and fin-Q: finite Q
and card-Q: card Q > 3
and events-Q: QCX
obtains a b where a#b and a€@ and b€Q and VceQ. (a#c A b#c) —
[a;c;0]
(proof)

lemma path-card-nil:
assumes QcP
shows card Q@ = 0

{(proof)

theorem infinite-paths:
assumes PeP
shows infinite P

(proof)
end

27 3.5 Second collinearity theorem

We start with a useful betweenness lemma.

lemma (in MinkowskiBetweenness) some-betw2:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-inQ: b € Q
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and c-inQ: c € Q
shows a =bVa=cVb=cV [abc] V [bcal V [c;a;b]
{proof)

lemma (in MinkowskiPrimitive) paths-tri:
assumes path-ab: path ab a b
and path-bc: path bec b ¢
and path-ca: path ca ¢ a
and a-notin-bc: a ¢ be
shows A a b ¢

(proof)

lemma (in MinkowskiPrimitive) paths-tri2:
assumes path-ab: path ab a b
and path-be: path be b ¢
and path-ca: path ca c a
and ab-neq-bc: ab # be
shows A a b ¢

(proof)

Schutz states it more like [tri-abc; bed; cea] = (path de d e — I fede.
[a;f;b]A]d;e;f]). Equivalent up to usage of impl.
theorem (in MinkowskiChain) collinearity2:
assumes tri-abe: A a b c
and bed: [b;c;d]
and cea: [c;e;a]
and path-de: path de d e
shows 3f. [a;f;b] A [d;e;f]
(proof )

28 3.6 Order on a path - Theorems 8 and 9

context MinkowskiSpacetime begin

28.1 Theorem 8 (as in Veblen (1911) Theorem 6)

Note a’b’c’ don’t necessarily form a triangle, as there still needs to be paths
between them.

theorem (in MinkowskiChain) tri-betw-no-path:
assumes tri-abc: A a b c
and ab’c: [a; b ¢]
and bc’a: [b; ¢’y d]
and ca’b: [c; a'; b
shows = (3QeP. a’ € QA V € QN c' € Q)
(proof)
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28.2 Theorem 9

We now begin working on the transitivity lemmas needed to prove Theorem
9. Multiple lemmas below obtain primed variables (e.g. d’). These are
starred in Schutz (e.g. dx), but that notation is already reserved in Isabelle.

lemma unreachable-bounded-path-only:
assumes d’-def: d'¢ unreach—on ab from e d’€ab d'#£e
and e-event: e € £
and path-ab: ab € P
and e-notin-S: e ¢ ab
shows Jd’e. path d'e d’ e
(proof)

lemma unreachable-bounded-path:
assumes S-neg-ab: S # ab

and a-inS: a € S

and e-inS: e € §

and e-neg-a: e # a

and path-S: S € P

and path-ab: path ab a b

and path-be: path be b e

and no-de: ~(3 de. path de d e)

and abd:[a;b;d)

obtains d’ d’e where d’€ab A path d'e d' e A [b; d; d]

{proof)

This lemma collects the first three paragraphs of Schutz’ proof of Theorem
9 - Lemma 1. Several case splits need to be considered, but have no further
importance outside of this lemma: thus we parcel them away from the main
proof.

lemma exist-c’d’-alt:
assumes abe: [a;b;c]
and abd: [a;b;d]
and dbc: [d;b;c]
and c-neg-d: ¢ # d
and path-ab: path ab a b
and path-S: S € P
and a-inS: a € S
and e-inS: e € §
and e-neg-a: e # a
and S-neg-ab: S # ab
and path-be: path be b e
shows J¢’ d’. Id’e c'e. ¢'€ab A d'€ab
A la; by d] A e’y b; a] A [c'; b; d]
A path d'e d’ e N path c’e ¢’ e
(proof)

lemma exist-c'd"”:
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assumes abe: [a;b;c]

and abd: [a;b;d]

and dbe: [d;b;c]

and path-S: path S a e

and path-be: path be b e

and S-neg-ab: S # path-of a b

shows ¢’ d’. [a; b; d'] A [c'; by a] A [¢/; by d] A
path-ex d' e A path-ex ¢’ e
(proof)

lemma exist-f’-alt:
assumes path-ab: path ab a b
and path-S: S € P
and a-inS: a € S
and e-inS: e € §
and e-neg-a: e # a
and f-def: [e; ¢’; f] fec’e
and S-neg-ab: S # ab
and c'd’-def: c’€ab N d'€ab
A la; by d] A [ces b a] A [cs by d]
A path d'e d' e A path c'e ¢’ e
shows 3 f’. 3f'b. [e; ¢’s f] A path f'b f' b
(proof)

lemma exist-f:
assumes path-ab: path ab a b
and path-S: path S a e
and f-def: [e; ¢’; f]
and S-neg-ab: S # ab
and c'd’-def: [a; b; d'] [¢'; b; a] [¢'; b; d]
path d’e d’ e path c’e ¢’ e
shows 3f". [e; ¢; f'] A path-ex f' b
(proof)

lemma abc-abd-bedbdc:
assumes abe: [a;b;c]
and abd: [a;b;d]
and c-neg-d: ¢ # d
shows [b;c;d] V [b;d;c]
(proof)

lemma abc-abd-acdadc:
assumes abe: [a;b;c]
and abd: [a;b;d]
and c-neg-d: ¢ # d
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shows [a;c;d] V [a;d;c]
(proof)

lemma abc-acd-bed:
assumes abe: [a;b;c]
and acd: [a;¢;d]
shows [b;c;d]
(proof)

A few lemmas that don’t seem to be proved by Schutz, but can be proven
now, after Lemma 3. These sometimes avoid us having to construct a chain
explicitly.

lemma abd-bcd-abc:
assumes abd: [a;b;d]
and bed: [b;c;d]
shows [a;b;c]
(proof)

lemma abc-acd-abd:
assumes abe: [a;b;c]
and acd: [a;¢;d]
shows [a;b;d|
(proof)

lemma abd-acd-abcach:
assumes abd: [a;b;d]
and acd: [a;¢;d]

and bc: b#c
shows [a;b;c] V [a;c;b]
(proof)

lemma abe-ade-bed-ace:
assumes abe: [a;b;e]
and ade: [a;d;e]

and bed: [b;c;d]
shows [a;c;€]
(proof)

Now we start on Theorem 9. Based on Veblen (1904) Lemma 2 p357.

lemma (in MinkowskiBetweenness) chain3:
assumes path-Q: Q € P
and a-inQ: a € Q
and b-inQ: b € Q
and c-in@: c € Q
and abc-neq: a ZbANa#cNb#c
shows ch {a,b,c}
(proof)
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lemma overlap-chain: [[a;b;c]; [b;¢;d]] = ch {a,b,c,d}
(proof)

The book introduces Theorem 9 before the above three lemmas but can only
complete the proof once they are proven. This doesn’t exactly say it the
same way as the book, as the book gives the local-ordering (abcd) explicitly
(for arbitrarly named events), but is equivalent.

theorem chaing:
assumes path-Q: Q € P
and inQ:a € Qbe Qce QdeqQ
and abed-neqg: a FbNa#cNa#FdNbFcAbF*dNcH#d
shows ch {a,b,c,d}
(proof)

theorem chainj-alt:
assumes path-Q: Q € P
and abed-in@Q: {a,b,c,d} C Q
and abed-distinct: card {a,b,c,d} = 4
shows ch {a,b,c,d}
(proof)

end

29 Interlude - Chains, segments, rays

context MinkowskiBetweenness begin

29.1 General results for chains

lemma inf-chain-is-long:
assumes [f~X]|z..]
shows local-long-ch-by-ord f X A f 0 = = A infinite X
(proof)

A reassurance that the starting point x is implied.

lemma long-inf-chain-is-semifin:
assumes local-long-ch-by-ord f X A infinite X
shows 3 z. [f~X]|z.]

{proof)

lemma endpoint-in-semifin:
assumes [f~X|z..]
shows ze€ X

{proof)

Yet another corollary to Theorem 2, without indices, for arbitrary events on
the chain.
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corollary all-aligned-on-fin-chain:
assumes [f~X] finite X
and z: z€X and y: y€X and z:2€X and xy: z#y and zz: 2#2z and yz: y#z
shows [z;y;2] V [%;2;9] V [y;%;2]

(proof)

lemma (in MinkowskiPrimitive) card2-either-elt1-or-elt2:
assumes card X = 2 and z€X and y€X and z#y
and z€X and z#z
shows z=y

(proof)

lemma get-fin-long-ch-bounds:
assumes local-long-ch-by-ord f X
and finite X
shows JzeX. JyeX. FzeX. [fwX]|z..y..7]

(proof)

lemma get-fin-long-ch-bounds2:
assumes local-long-ch-by-ord f X
and finite X
obtains z y z n, ny n,
where zeX yeX zeX [fwX|z.y.2] fng =z fny,=yfn. =z
(proof )

lemma long-ch-card-ge3:
assumes ch-by-ord f X finite X
shows local-long-ch-by-ord f X +— card X > 3

{proof)

lemma fin-ch-betw2:
assumes [f~X|a..c] and beX
obtains b=a|b=c|[a;b;(]
{proof)

lemma chain-bounds-unique:
assumes [f~X]a..c|] [g~X|z..7]
shows (a=z A ¢=2) V (a=z A c=x)
(proof)

end

29.2 Results for segments, rays and (sub)chains

context MinkowskiBetweenness begin

lemma inside-not-bound:
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assumes [f~X]|a..c]
and j<card X
shows j>0 = fj# aj<card X — 1 = fj # ¢
(proof )

Converse to Theorem 2(i).

lemma (in MinkowskiBetweenness) order-finite-chain-indices:
assumes chX: local-long-ch-by-ord f X finite X
and abe: [a;b;c]
and gk: fi=afj=0bfk = ci<card X j<card X k<card X
shows i<j A j<k V k<j A j<i
(proof )

lemma order-finite-chain-indices2:
assumes [f~X|a..c]
and fj = bj<card X
obtains 0<j A j<(card X — 1)|j=(card X — 1) A b=c|j=0 A b=a
(proof)

lemma indez-bij-betw-subset:
assumes chX: [f~Xla..b..c] fi = b card X > i
shows bij-betw f {0<..<i} {e€X. [a;e;b]}
(proof)

lemma bij-betw-extend:
assumes bij-betw f A B
and fa = b a¢A b¢B
shows bij-betw f (insert a A) (insert b B)
(proof)

lemma insert-iff2:
assumes a€X shows insert a {z€X. Pz} = {z€X. Pz V z=a}
{proof)

lemma index-bij-betw-subset2:
assumes chX: [f~X|a..b..c] fi=bcard X > i
shows bij-betw f {0..i} {e€X. [a;e;b]Va=eVb=e}
(proof)

lemma chain-shortening:

assumes [f~X]|a..b..c]

shows [f ~ {e€X. [a;e;0] V e=a V e=b} |a..D]
(proof)
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corollary ord-fin-ch-right:
assumes [f~X|a..fi..c] j>i j<card X
shows [fi;fjic)Vi=card X — 1V j=i
(proof)

lemma f-img-is-subset:
assumes [f~X|(f 0) ..] i>0j>i Y=fi..j}
shows YCX

(proof)

lemma i-le-j-events-neq:
assumes [f~X|a..b..c]
and i<j j<card X

shows fi #£ fj
{proof )

lemma indices-neg-imp-events-neq:
assumes [f~X|a..b..c]
and i#j j<card X i<card X

shows fi # fj
(proof)

end
context MinkowskiSpacetime begin

lemma bound-on-path:
assumes Q€P [f~X|(f 0)..] XCQ is-bound-f b X f
shows be(Q

(proof)

lemma pro-basis-change:
assumes [a;b;c]
shows prolongation a ¢ = prolongation b ¢ (is ?ac=%bc)

(proof)

lemma adjoining-segs-exclusive:
assumes [a;b;c]
shows segment a b N segment b ¢ = {}

(proof)

end

30 3.6 Order on a path - Theorems 10 and 11

context MinkowskiSpacetime begin
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30.1 Theorem 10 (based on Veblen (1904) theorem 10).

lemma (in MinkowskiBetweenness) two-event-chain:
assumes finiteX: finite X
and path-Q: Q € P
and events-X: X C @
and card-X: card X = 2
shows ch X

(proof)

lemma (in MinkowskiBetweenness) three-event-chain:
assumes finiteX: finite X
and path-Q: Q € P
and events-X: X C @
and card-X: card X = 3
shows ch X

(proof)

This is case (i) of the induction in Theorem 10.

lemma chain-append-at-left-edge:
assumes long-ch-Y: [f~Y|a;..a..a,]
and bY: [b; a1; ay)
fixes g defines g-def: g = (Aj::nat. if j>1 then f (j—1) else b)
shows [g~(insert b Y)|b .. a1 .. ay]

(proof)

This is case (iii) of the induction in Theorem 10. Schutz says merely “The
proof for this case is similar to that for Case (i).” Thus I feel free to
use a result on symmetry, rather than going through the pain of Case (i)
(chain-append-at-left-edge) again.

lemma chain-append-at-right-edge:
assumes long-ch-Y: [f~Y]|ay..a..a,]
and Yb: [a1; ap; b
fixes g defines g-def: g = (Ajiinat. if j < (card Y — 1) then f j else b)
shows [g~(insert b Y)|a; .. ay .. D]

(proof)

lemma S-is-dense:
assumes long-ch-Y: [f~Y]|a1..a..a,]
and S-def: S = {k:nat. [a1; fk; D] Ak < card Y}
and k-def: S#A{} k = Maz S
and k'-def: k'>0 k'<k
shows k' € S
(proof)

lemma smallest-k-ex:
assumes long-ch-Y: [f~Y]a1..a..a,)]
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and Y-def: b¢Y
and Yb: [a1; b; ay)]
shows 3k>0. [a1; b; fk] Ak < card Y A =(Fk'<k. [a1; b; fE)
(proof)

lemma greatest-k-ex:
assumes long-ch-Y: [f~Y|a;..a..a,]
and Y-def: b¢Y
and Yb: [a1; b; ap]
shows 3k. [fk; by ap] Nk < card Y — 1 N =(Fk'<card Y. k"> A [f k', b; a,))
(proof)

lemma get-closest-chain-events:
assumes long-ch-Y: [f~Y]ag..a..ay]
and z-def: z¢Y [ao; z; ay)
obtains n, n. b ¢
where b=f n, c=f n. [b;x;c] b€Y c€Y np = ne — 1 ne<card Y n.>0
-3k < card Y. [f k; z; an]) A k>np) (3 k<ne. [ao; z; fK])
(proof)

This is case (ii) of the induction in Theorem 10.

lemma chain-append-inside:
assumes long-ch-Y: [f~Y]a1..a..a,]
and Y-def: b¢Y
and Yb: [a1; b; ay]
and k-def: [a1; b; fk] k < card Y =(F k. (0::nat)<k’ A k'<k A [a1; b; fE])
fixes g
defines g-def: g = (Ajunat. if (j<k—1) then f j else (if (j=k) then b else f
(G-1)))
shows [g~insert b Y|ay .. b .. ap]

(proof)

lemma card4-eq:

assumes card X = 4

showsJabcd atbANa#tcAhaFdANb#cANb#AdANcEdNX={a,
b, ¢, d}

(proof)

theorem path-finsubset-chain:
assumes @ € P
and X C @
and card X > 2
shows ch X

(proof)
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lemma path-finsubset-chain2:
assumes (Q € Pand X C Q and card X > 2
obtains f a b where [f~X]a..D]

(proof)

30.2 Theorem 11

Notice this case is so simple, it doesn’t even require the path density larger
sets of segments rely on for fixing their cardinality.

lemma segmentation-ex-N2:
assumes path-P: PeP
and Q-def: finite (Q::'a set) card @ = N QCP N=2
and f-def: [f~Q|a..b]
and S-def: S = {segment a b}
and P1-def: P1 = prolongation b a
and P2-def: P2 = prolongation a b
shows P = ((US) U P1 UP2U Q) A
card S = (N—1) N (Yz€S. is-segment x) A
PInP2={} A (VzeS. (znP1={} N zNP2={} AN (Vy€ES. z#y —
2ny={})
(proof)

lemma int-split-to-segs:
assumes f-def: [f~Q)|a..b..c]
fixes S defines S-def: S = {segment (f ) (f(i+1)) | i. i<card Q—1}
shows interval a ¢ = (JS) U @

(proof)

lemma path-is-union:
assumes path-P: PP

and Q-def: finite (Q::'a set) card @ = N QCP N>3
and f-def: ac@ N be@Q N c€Q [f~Q|a..b..c]
and S-def: S = {s. Ji<(N—1). s = segment (f7) (f (i+1))}
and PI-def: P1 = prolongation b a
and P2-def: P2 = prolongation b ¢

shows P = ((IJS) U P1 U P2U Q)

(proof)

lemma inseg-azxc:
assumes path-P: PP
and Q-def: finite (Q::'a set) card @ = N QCP N>3
and f-def: ac@ N be@Q N c€Q [f~Q|a..b..c]
and S-def: S = {s. Ji<(N—1). s = segment (fi) (f (i+1))}

95



and z-def: z€s s€S
shows [a;z;¢]
(proof )

lemma disjoint-segmentation:
assumes path-P: PeP
and Q-def: finite (Q::'a set) card @ = N QCP N>3
and f-def: a€Q AN bEQ A c€Q [f~Qla..b..c]
and S-def: S = {s. Ji<(N—1). s = segment (fi) (f (i+1))}
and PI-def: P1 = prolongation b a
and P2-def: P2 = prolongation b c
shows PI1NP2={} A (VzeS. (zNPI1={} N zNP2={} N (Vy€ES. z#y —
zNy={})))
(proof)

lemma segmentation-ex-Nge3:
assumes path-P: PEP

and Q-def: finite (Q::'a set) card @ = N QCP N>3

and f-def: a€Q A b€Q N c€Q [f~Qla..b..c]

and S-def: S = {s. Ji<(N—1). s = segment (f7) (f (i+1))}

and Pi-def: P1 = prolongation b a

and P2-def: P2 = prolongation b ¢

shows P = ((US)U P1 UP2U Q) A
(VzeS. is-segment z) A
PinP2={} N (VzeS. (zNPI1={} AN znNP2={} A (VyeS. =y —

wy=(}))
(proof)

Some unfolding of the definition for a finite chain that happens to be short.
lemma finite-chain-with-card-2:
assumes f-def: [f~Q)|a..b]
and card-Q: card @ = 2
shows finite Q f0 =af (card Q — 1) =bQ={f0,f1}3Q. path Q (f0) (f
1)

(proof)

Schutz says "As in the proof of the previous theorem [...]" - does he mean
to imply that this should really be proved as induction? I can see that quite
easily, induct on N, and add a segment by either splitting up a segment or
taking a piece out of a prolongation. But I think that might be too much
trouble.

theorem show-segmentation:

assumes path-P: PeP
and Q-def: QCP

and f-def: [f~Q|a..b]
fixes P1 defines PI-def: P1 = prolongation b a
fixes P2 defines P2-def: P2 = prolongation a b
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fixes S defines S-def: S = {segment (fi) (f (i+1)) | i. i<card Q—1}
shows P = ((lUS) U P1 U P2 U Q) (Vz€eS. is-segment x)
disjoint (SU{P1,P2}) P1#£P2 P1¢S P2¢S
(proof)

theorem segmentation:
assumes path-P: PEP
and Q-def: card Q>2 QCP
shows 35 P1 P2. P = ((US)UPIUP2U Q) A
disjoint (SU{P1,P2}) N P1#P2 N P1¢S N P2¢S A
(VzeS. is-segment x) A is-prolongation P1 A is-prolongation P2
(proof)

end

31 Chains are unique up to reversal

context MinkowskiSpacetime begin

lemma chain-remove-at-right-edge:
assumes [f~Xla..c] f (card X — 2) =p 3 < card X X = insert ¢ Y c¢Y
shows [f~Y|a..p]

(proof)

lemma (in MinkowskiChain) fin-long-ch-imp-fin-ch:
assumes [f~X|a..b..c]
shows [f~X]a..c]

{proof)

If we ever want to have chains less strongly identified by endpoints, this result
should generalise - a,c,z,z are only used to identify reversal/no-reversal
cases.

lemma chain-unique-induction-ax:
assumes card X > 3
and 7 < card X
and [f~X|a..]
and [g~X|z..7]
anda=zVc=z
shows fi =g
(proof)

I'm really impressed sledgehammer/smt can solve this if T just tell them
"Use symmetry!".

lemma chain-unique-induction-cx:
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assumes card X > 3
and i < card X
and [f~X|a..]
and [g~X|z..2]
and c=2zVa=z
shows fi =g (card X — i — 1)
(proof)

This lemma has to exclude two-element chains again, because no order exists
within them. Alternatively, the result is trivial: any function that assigns one
element to index 0 and the other to 1 can be replaced with the (unique) other
assignment, without destroying any (trivial, since ternary) local-ordering of
the chain. This could be made generic over the local-ordering similar to
[2f~?X|%a..2b..2c] = [An. ?f (card ?X — 1 — n)~?X|%c..?b.. %a] relying
on [Aa b ec. ?ord a b c = ?ord c b a; finite ?X; local-ordering ?f Zord ?X]
= local-ordering (An. ?f (card ¢X — 1 — n)) Zord ?X.

lemma chain-unique-upto-rev-cases:
assumes ch-f: [f~X]a..c]
and ch-g: [g~~X|z..2]
and card-X: card X > 3
and valid-index: i < card X
shows ((a=z V ¢=2) — (fi=g1)) ((a=2V c=z) — (fi =g (card X — i —
1))
(proof)

lemma chain-unique-upto-rev:
assumes [f~X|a..c] [g~X|x..2] card X > 34 < card X
shows fi=giV fi=g (card X — i — 1) a=zAc=z V c=zNa=z

(proof)

end

32 Interlude: betw4 and WLOG

32.1 betw4 - strict and non-strict, basic lemmas

context MinkowskiBetweenness begin

Define additional notation for non-strict local-ordering - cf Schutz’ mono-
graph [1, p. 27].

abbreviation nonstrict-betw-right :: 'a = 'a = 'a = bool ({[-;~;-]») where
nonstrict-betw-right a b ¢ = [a;b;c] V b = ¢

abbreviation nonstrict-betw-left :: 'a = 'a = ‘a = bool (<[-;-;-]>) where
nonstrict-betw-left a b ¢ = [a;b;c] V b = a

abbreviation nonstrict-betw-both :: 'a = 'a = 'a = bool where
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nonstrict-betw-both a b ¢ = nonstrict-betw-left a b ¢ V nonstrict-betw-right a b c

abbreviation betwf :: 'a = 'a = 'a = 'a = bool («[-;-;-;-]») where
betwf a b ¢ d = [a;b;c] A [b;e;d]

abbreviation nonstrict-betw-right4 :: 'a = 'a = 'a = 'a = bool (<[-;-;-;-]») where
nonstrict-betw-right4 a b ¢ d = betwj a b cdV ¢ = d

abbreviation nonstrict-betw-left] :: 'a = 'a = 'a = 'a = bool ({[-;-;-;-]>) where
nonstrict-betw-left4 a b ¢ d = betwj abcdV a=b>

abbreviation nonstrict-betw-both4 :: 'a = 'a = 'a = 'a = bool where
nonstrict-betw-both4 a b ¢ d = nonstrict-betw-left4 a b ¢ d V nonstrict-betw-right/
abced

lemma betw/-strong:
assumes betw4 a b c d
shows [a;b;d] A [a;c;d]
(proof)

lemma betw4-imp-neq:
assumes betw4 a b c d
shows a#b A ac A a#d N b#c A b#d N c#d
(proof )

end
context MinkowskiSpacetime begin

lemma betw/-weak:
fixesabcd:'a
assumes [a;b;c] A [a;¢;d]
V [asbic] A [b;e;d]
V [a;b;d] A [b;c;d]
V [a;b;d] A [b;e;d]
shows betw/ a b ¢ d
(proof )

lemma betw4-sym:
fixes a::’a and b::’a and c::’a and d::'a
shows betwj a b ¢ d «— betw] d c b a
(proof)

lemma abed-dcba-only:
fixes a::’a and b::’a and c::’a and d::'a
assumes [a;b;c;d]
shows —[a;b;d;c] —[a;c;b;d]) —[a;c;d;b] —[a;d;b;e] —[a;d;c;b]
—[b;a;c;d] —[bsasd;c] —[bic;a;d] —[bse;dia] —[b;d;c;a] —[bidsa;c]
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“[easbid] S[e;a;d50) H[ebiazd] —[e;bidia] —[e;dia;b] —[e;d;bial
—[d;a;b;c] —[d;a;c;b] —[d;b;a;c] —[d;b;c;a] —[d;c;a;b)
{proof)

lemma some-betwia:
fixes a::’a and b::’a and c::’a and d::’a and P
assumes PeP acP beP ceP deP a#b N ac A aF#d A b#c A b#d N c#d
and —([a;b;¢;d] V [asbidic] V [ase;bid] Vo [ase;d;d] Voasdibic] Vo [asdse;d])
shows [b;a;c;d] V [b;a;d;c] V [bic;a;d] V [bid;a;e] V [c;a;b;d] V [e;b;a;d]
(proof )

lemma some-betw/b:
fixes a::’a and b::’a and c::’a and d::’a and P
assumes PeP acP beP ceP deP a#b N aF#c N aF#d N b#c N b#d N c#d
and —([b;a;c;d] V [bsa;dsc] V [bic;a3d] Vo [bsdsasce] Vo[casbid] Vo[e;bsa;d])
shows [a;b;c;d] V [a;b;d;c] V [a;e;0;d] V [ase;d;b] V [a;d;bse] V [a;d;e;b]
(proof)

lemma abd-acd-abcdachd:
fixes a::’a and b::’a and c::’a and d::'a
assumes abd: [a;b;d] and acd: [a;c;d] and b#£c
shows [a;b;c;d] V [a;¢;b;d)

(proof)

end

32.2 WLOG for two general symmetric relations of two ele-
ments on a single path

context MinkowskiBetweenness begin

This first one is really just trying to get a hang of how to write these things.
If you have a relation that does not care which way round the “endpoints” (if
Q is the interval-relation) go, then anything you want to prove about both
undistinguished endpoints, follows from a proof involving a single endpoint.

lemma wlog-sym-element:
assumes symmetric-rel: Nabl. Qlab = QIba
and one-endpoint: Na bz 1. [Q Iab; x=a] = Pzl
shows other-endpoint: Na bz I. [Q I ab; 1=b] = Pux I
(proof)

This one gives the most pertinent case split: a proof involving e.g. an element
of an interval must consider the edge case and the inside case.

lemma wlog-element:
assumes symmetric-rel: Nabl. Qlab=— Q1Iba
and one-endpoint: Na bz I. [QIab; z=a] = Pz I
and neither-endpoint: Na b x I. [Q I a b; z€1; (z#a N 2#£b)] = Pz I
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shows any-element: Nz I. [x€l; (3ab. QIab)] = Pual
{proof)

Summary of the two above. Use for early case splitting in proofs. Doesn’t
need P to be symmetric - the context in the conclusion is explicitly sym-
metric.

lemma wlog-two-sets-element:
assumes symmetric-Q: Aa b 1. QIlab = QIba
and case-split: NabcdzIJ. [QTab; QJcd] =
(z=aVa=c— Pz IJ)A (~(z=aV az=bV x=cV z=d) — Pz IJ)
shows Az IJ.[Jab. Qlab;Jadb QJab]= PzlJ
(proof)

Now we start on the actual result of interest. First we assume the events
are all distinct, and we deal with the degenerate possibilities after.

lemma wlog-endpoints-distinct1:
assumes symmetric-Q: AabI. Qlab= QIba
and AIJabed [QIab; QJcd;[abie;d]] = PIJ
shows ATJabed [QIab; QJcd;
[b;a;¢;d] V [asb;d;c] V [basdic] V [dse;bia]l] = P1J
(proof)

lemma wlog-endpoints-distinct2:
assumes symmetric-Q: AabI. QIlab = QIba
and AIJabced [QIab, QJcd; [aebd] = PIJ
shows ATJabed [QIab; QJcd;
[b;c;a;d] V [a;d;b;e] V [b;d;aic] V [dibe;a]] = P1J
(proof)

lemma wlog-endpoints-distinct3:
assumes symmetric-Q: Nabl. QTlab=— QIba
and symmetric-P: NI J. [3ab. QTab;3ab. QJab;PIJ]= PJI
and AIJabed [QIab; QJcd;[acdd] = PIJ
shows ATJabed [QIab; QJcd;
[a;d;c;b] V [besdsa) Vo [bsd;c;a) Vo [esa;b;d]] = P1J
(proof)

lemma (in MinkowskiSpacetime) wlog-endpoints-distincty:

fixes Q:: ('a set) = 'a = 'a = bool
and P:: (‘a set) = (‘a set) = bool
and A:: ('a set)

assumes path-A: AeP
and symmetric-Q: Nabl. QIlab=—= QIba
and Q-implies-path: Na b I. [ICA; QI ab] = b€A N a€A
and symmetric-P: NI J. [3ab. QTab;3Jab. QJab;PIJ]= PJI
and AIJabcd.
[QIab;QJcd; ICA; JCA; [a;b;e;d] V [a;e;0;d] V [a;e;d;b)]] = P IJ
shows ATJabed [QIab; QJcd; ICA; JCA;
a#£b A a#c N a#d N b#Ec AN bEd N c£d] = PI1J
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(proof)

lemma (in MinkowskiSpacetime) wlog-endpoints-distinct’:
assumes A € P

and A\abl. Qlab= QIlba

and Aa b [.[IC A QIab) = ac A

and AIJ. [3ab QIab;3ab. QJab;PIJ]= PJI

and AT Jabcd.

[QIab; QJcd; ICA; JCA; betwj abcdV betws a cbdV betw] a c

db) = PIJ

and Q lab

and Q Jcd

and ] C A

and J C A

anda#ba#ca#db*cb#dc#d
shows P1J
(proof)

lemma (in MinkowskiSpacetime) wlog-endpoints-distinct:
assumes path-A: AeP
and symmetric-Q: Nabl. QIlab= QIba
and Q-implies-path: Na b 1. [ICA; Q I ab] = beA A a€A
and symmetric-P: NI J. [3ab. QTab;3ab. QJab;PIJ]= PJI
and AIJabcd.
[QIab; QJcd; ICA; JCA; [a;b;e;d] V [a;e;0;d] V [a;e;d;b]] = P TJ
shows ATJabed [QIab; QJcd; ICA; JCA;
a#£b N atc AN atd N bEc AN bEd N cAd]| = P1J
(proof)

lemma wlog-endpoints-degeneratel :
assumes symmetric-Q: Nabl. QTab=— QIba
and symmetric-P: NI J.[3ab. QTab;3ab. Qlab; PIJ]= PJI

and two: ATJabed [QIab; QJcd;
(a=b A b=c A c=d) V (a=b A bZc N c=d)] = PIJ

and one: AIJabed [QIab; QJcd,;
(a=b A b=c A c#d) V (a=b A b#c N cAd N a#d)] = PIJ

and no: AIJabcd. [QIab; QJcd;
(a#b A b#c A c#d A a=d) V (a#b A b=c A ¢#d N a=d)] = P11
J
shows ATJabed [QIab; QJcd; —(atb A bkc A c£d A a£d N atc A
b£d)] = P1J
(proof )

lemma wlog-endpoints-degenerate?2:
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assumes symmetric-Q: Nabl. QTab=— QIba
and Q-implies-path: Na b I A. [ICA; AeP; QI ab] = beA N acA
and symmetric-P: AIJ. [3ab. QIab;3ab QJab; PIJ|= PJI
and A\IJabcdA [QTab; QJcd; ICA JCA; AeP;
[a;b;c] A a=d] = P1J
and AIJabcdA [QIab; QJcd; ICA JCA; AP,
[b;a;c] A a=d] = P1J
shows ATJabcedA [QIab; QJcd; ICA; JCA; AeP;
a#£b A b#c A c£d N a=d] = PIJ
(proof )

lemma wlog-endpoints-degenerate:
assumes path-A: AeP
and symmetric-Q: NabI. QIlab = QIba
and Q-implies-path: Na b I. [ICA; Q Iab] = b€A N acA
and symmetric-P: NI J. [3ab. QTab;3ab. QJab;PIJ]= PJI
and AIJabed [QIab; QJcd; ICA; JCA]
= ((a=b A b=c A c=d) — PIJ)A ((a=bAb#c A c=d) — PIJ)
A ((a=b A b=c A c£d) — PIJ) A ((a=b A b#c A c£d N a#d) —
PIJ)
A ((a#£b A b=c A ¢£d N a=d) — P 1 J)
A (([asb;e] A a=d) — P IJ) A (([b;a;¢] A a=d) — P 1J)
shows AIJabcd [QIab; QJcd; ICA; JCA,;
—(a#£b A b#c A c#£d N a£d N aFe N b#£d)] = PIJ
{proof )

lemma (in MinkowskiSpacetime) wlog-intro:
assumes path-A: AeP
and symmetric-Q: NabI. QIlab= QIba
and Q-implies-path: Na b I. [ICA; QI ab] = b€A N acA
and symmetric-P: NI J. [3ab. QIab;3cd. QJcd; PIJ]= PJI
and essential-cases: NI Jabcd. [QTab; QJcd; ICA; JCA]
= ((a=b A b=c A c=d) — P 1)
A ((a=b A b#e N e=d) — P1J)
A ((a=b A b=c A c£d) — P11J)
A ((a=b A b#c A ¢c£d AN atd) — P 1 J)
A ((ab A b=c A cd A a=d) —s P 1J)
A (([asb;c] A a=d) — P 1J)
A (([b;a;¢] A a=d) — P IJ)
A ([a;b;e;d) — P 1)
A ([a;e;b;d] — P 1)
A ([ase;d;b) — P 1)
and antecedants: Q ITa b Q JcdICA JCA
shows P 1J

(proof)
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end

32.3 WLOG for two intervals

context MinkowskiBetweenness begin

This section just specifies the results for a generic relation @) in the previous
section to the interval relation.

lemma wlog-two-interval-element:
assumes Az [ J. [is-interval I; is-interval J; Pz JI| = Pz 1J
and Aa bcdazIJ. [I=interval a b; J = interval ¢ d] =
(z=aVa=c— Pz IJ)A (~(z=aVa=bV ar=cVr=d) — PzlJ)
shows Az I J. [is-interval I; is-interval J| = P a1 J
(proof )

lemma (in MinkowskiSpacetime) wlog-interval-endpoints-distinct:
assumes A J. [is-interval I; is-interval J; PIJ] = P J I
NI Jabcd [I=interval a b; J = interval ¢ d]
= ([a;b;¢c;d] — P IJ) A ([a;e;0;d]) — P T J) A ([a;e;d;0) — P TJ)
shows AT J Q a b cd. [I = interval a b; J = interval ¢ d; ICQ; JCQ; QEP;
a#£b A atc N a#d N b#c AN bAEd N c£d] = PI1J
(proof)

lemma wlog-interval-endpoints-degenerate:
assumes symmetry: NI J. [is-interval I; is-interval J; P I J| = P J I
and AIJabcdQ. [I=interval a b; J = interval ¢ d; ICQ; JCQ; QEP]
= ((a=b A b=cAc=d) — PIJ)A ((a=bAbkcAc=d) — PIJ)
A ((a=b A b=c A c£d) — PIJ) A ((a=b A b#c A c#d N a#d) —
PIJ)
A ((a#£b A b=c A c#d N a=d) — P I1J)
A (([asbse] A a=d) — P I J) A (([ba;c] A a=d) — P IJ)
shows AT Jabcd Q. [I = interval a b; J = interval ¢ d; ICQ; JCQ; QEP;
—(a#b A b#c A c#£d N aF£d N aFte N b#d)] = PIJ
(proof)

end

33 Interlude: Intervals, Segments, Connectedness
context MinkowskiSpacetime begin

In this secion, we apply the WLOG lemmas from the previous section in
order to reduce the number of cases we need to consider when thinking
about two arbitrary intervals on a path. This is used to prove that the
(countable) intersection of intervals is an interval. These results cannot be
found in Schutz, but he does use them (without justification) in his proof of
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Theorem 12 (even for uncountable intersections).

lemma int-of-ints-is-interval-neq:
assumes I! = interval a b I2 = interval ¢ d I1CP I2CP PeP I1NI2 # {}
and events-neq: a#£b a#c a#d b#c b#d c£d
shows is-interval (I1 N 12)

(proof)

lemma int-of-ints-is-interval-deg:
assumes [ = interval a b J = interval ¢ d INJ # {} ICP JCP PeP
and events-deg: —(a#£b A b%c N c£d N a#£d N aFc N b#d)
shows is-interval (I N J)

(proof)

lemma int-of-ints-is-interval:
assumes is-interval I is-interval J ICP JCP PeP INJ # {}
shows is-interval (I N J)

{proof)

lemma int-of-ints-is-interval2:
assumes YV z€S. (is-interval x A tCP) PEP (S # {} finite S S#{}
shows is-interval ((S)

(proof)
end

34 3.7 Continuity and the monotonic sequence prop-
erty

context MinkowskiSpacetime begin

This section only includes a proof of the first part of Theorem 12, as well as
some results that would be useful in proving part (ii).

theorem two-rays:
assumes path-Q: QP
and event-a: a€ Q)
shows 3R L. (is-ray-on R Q A is-ray-on L Q

A Q—{a} C (RU L) S M 8 M8 0
N (YTER VIEL. [asr]) g B

ARG B
N (YzeR. VyeR. = [wasyl)  Bulys/is ms o sy /ia) coants 17/

I N I

proo

The definition closest-to in prose: Pick any r € R. The closest event c is
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such that there is no closer event in L, i.e. all other events of L are further
away from r. Thus in L, ¢ is the element closest to R.

definition closest-to :: (‘a set) = 'a = ('a set) = bool
where closest-to L ¢ R = ceL AN (VreR. ViIeL—{c}. [l;¢;r])

lemma int-on-path:
assumes €L reR QeP
and partition: LCQ L#{} RCQ R#{} LUR=Q
shows interval | r C @
(proof)

lemma ray-of-bounds1:
assumes QP [f~X|(f 0).] XCQ closest-bound ¢ X is-bound-f b X f b#c
assumes is-bound-f z X f
shows z=b V z=c V [c;x;b] V [c;b;7]

{(proof)

lemma ray-of-bounds?2:
assumes Q€P [f~X|(f 0)..] XCQ closest-bound-f ¢ X [ is-bound-f b X f b#c
assumes z=>b V z=c V [¢;x;b] V [¢;b;1]
shows is-bound-f x X f

(proof)

lemma ray-of-bounds3:
assumes Q€P [f~X|(f 0)..] XCQ closest-bound-f ¢ X f is-bound-f b X f b#c
shows all-bounds X = insert ¢ (ray ¢ b)

(proof)

lemma int-in-closed-ray:
assumes path ab a b
shows interval a b C insert a (ray a b)

(proof)
end

35 3.8 Connectedness of the unreachable set

context MinkowskiSpacetime begin

35.1 Theorem 13 (Connectedness of the Unreachable Set)

theorem wunreach-connected:
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assumes path-Q: QP
and event-b: b¢Q be€
and unreach: Q. € unreach—on @ from b Q. € unreach—on @Q from b

and zyz: [Q:m Qy§ Qz]
shows @, € unreach—on Q from b

(proof)

35.2 Theorem 14 (Second Existence Theorem)

lemma union-of-bounded-sets-is-bounded:
assumes V€A, [a;2;0] VzeB. [c;2;d] ACQ BCQ QP
card A > 1 V infinite A card B > 1 V infinite B
shows 31€@. JueQ. Yz AUB. [l;z;u]

(proof)

lemma union-of-bounded-sets-is-bounded?2:
assumes Vz€A. [a;x;b] VzE€B. [¢;2;d] ACQ BCQ QP
1<card AV infinite A 1<card B V infinite B
shows 3l€ Q—(AUB). 3ue Q—(AUB). Yz€ AUB. [l;z;u]
(proof)

Schutz proves a mildly stronger version of this theorem than he states.
Namely, he gives an additional condition that has to be fulfilled by the
bounds y, z in the proof (y,z¢unreach—on @ from ab). This condition is triv-
ial given abc-abc-neq. His stating it in the proof makes me wonder whether
his (strictly speaking) undefined notion of bounded set is somehow weaker
than the version using strict betweenness in his theorem statement and used
here in Isabelle. This would make sense, given the obvious analogy with sets
on the real line.

theorem second-existence-thm-1:

assumes path-Q: QP
and events: a¢ Q b¢Q

and reachable: path-ex a g1 path-ex b q2 q1€Q ¢2€Q
shows JyeQ. 3z€Q. (Vz€unreach—on Q from a. [y;z;2]) A (Y zEunreach—on

Q from b. [y;;2])
(proof)

theorem second-existence-thm-2:
assumes path-Q: QP
and events: a¢Q b¢Q ceQ deQ c#d
and reachable: 3 PEP. 3q€Q. path P a ¢ 3PEP. Aq€Q. path P b q
shows JecQ. JaecP. Fbe€P. path ae a e A path be b e N\ [c;d;e]

(proof)

The assumption @Q#R in Theorem 14(iii) is somewhat implicit in Schutz. If
Q=R, unreach—on @ from a is empty, so the third conjunct of the conclusion
is meaningless.
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theorem second-eristence-thm-3:
assumes paths: QEP REP Q#R
and events: z€Q T€R a€R a#x b¢Q
and reachable: 3 PeP. 3 q€Q. path P b q
shows Jecf. FaecP. Fbe€P. path ae a e N path be b e A (V¥ yEunreach—on Q
from a. [z;y;e])
(proof)

end

36 Theorem 11 - with path density assumed

locale MinkowskiDense = MinkowskiSpacetime +
assumes path-dense: path ab a b = Jx. [a;x;b]
begin

Path density: if a and b are connected by a path, then the segment be-
tween them is nonempty. Since Schutz insists on the number of segments
in his segmentation (Theorem 11), we prove it here, showcasing where his
missing assumption of path density fits in (it is used three times in num-
ber-of-segments, once in each separate meaningful local-ordering case).

lemma segment-nonempty:
assumes path ab a b
obtains r where x € segment a b

(proof)

lemma number-of-segments:
assumes path-P: PEP
and Q-def: QCP
and f-def: [f~Q|a..b..c]
shows card {segment (f i) (f (i+1)) | i. i<(card @—1)} = card Q — 1
(proof)

theorem segmentation-card:
assumes path-P: PP
and Q-def: QCP
and f-def: [f~Q|a..b]
fixes P1 defines PI-def: P1 = prolongation b a
fixes P2 defines P2-def: P2 = prolongation a b
fixes S defines S-def: S = {segment (f i) (f (i+1)) | i. i<card Q—1}
shows P = ((IJS) U P1 U P2U Q)

card S = (card Q—1) N (Vz€S. is-segment x)

disjoint (SU{P1,P2}) P1#P2 P1¢S P2¢S
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(proof)

end

end
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