
Geometric Axioms for Minkowski Spacetime

Richard Schmoetten, Jake Palmer, Jacques Fleuriot

March 19, 2025

Abstract

This is a formalisation of Schutz’ system of axioms for Minkowski
spacetime [1], as well as the results in his third chapter (“Temporal
Order on a Path”), with the exception of the second part of Theorem
12. Many results are proven here that cannot be found in Schutz, either
preceding the theorem they are needed for, or in their own thematic
section.

Contents
1 Totally ordered chains 4

2 Locally ordered chains 11

3 MinkowskiPrimitive: I1-I3 14

4 Primitives: Unreachable Subset (from an Event) 16

5 Primitives: Kinematic Triangle 16

6 Primitives: SPRAY 17

7 Primitives: Path (In)dependence 18

8 Primitives: 3-SPRAY 22

9 MinkowskiBetweenness: O1-O5 23

10 Betweenness: Unreachable Subset Via a Path 25

11 Betweenness: Chains 25
11.1 Locally ordered chains with indexing 25

12 Betweenness: Rays and Intervals 31

13 MinkowskiChain: O6 34

1

14 Chains: (Closest) Bounds 34

15 MinkowskiUnreachable: I5-I7 35

16 MinkowskiSymmetry: Symmetry 37

17 MinkowskiContinuity: Continuity 38

18 MinkowskiSpacetime: Dimension (I4) 38

19 Preliminary Results for Primitives 39

20 3.1 Order on a finite chain 40
20.1 Theorem 1 . 40
20.2 Theorem 2 . 41
20.3 Additional lemmas about chains 47

21 Preliminary Results for Kinematic Triangles and Paths/Be-
tweenness 49

22 3.2 First collinearity theorem 52

23 Additional results for Paths and Unreachables 54

24 Results about Paths as Sets 60

25 3.3 Boundedness of the unreachable set 61
25.1 Theorem 4 (boundedness of the unreachable set) 61
25.2 Theorem 5 (first existence theorem) 62

26 3.4 Prolongation 65

27 3.5 Second collinearity theorem 70

28 3.6 Order on a path - Theorems 8 and 9 72
28.1 Theorem 8 (as in Veblen (1911) Theorem 6) 72
28.2 Theorem 9 . 74

29 Interlude - Chains, segments, rays 87
29.1 General results for chains . 87
29.2 Results for segments, rays and (sub)chains 89

30 3.6 Order on a path - Theorems 10 and 11 96
30.1 Theorem 10 (based on Veblen (1904) theorem 10). 96
30.2 Theorem 11 . 118

31 Chains are unique up to reversal 131

2

32 Interlude: betw4 and WLOG 138
32.1 betw4 - strict and non-strict, basic lemmas 138
32.2 WLOG for two general symmetric relations of two elements

on a single path . 140
32.3 WLOG for two intervals . 145

33 Interlude: Intervals, Segments, Connectedness 147

34 3.7 Continuity and the monotonic sequence property 155

35 3.8 Connectedness of the unreachable set 163
35.1 Theorem 13 (Connectedness of the Unreachable Set) 163
35.2 Theorem 14 (Second Existence Theorem) 166

36 Theorem 11 - with path density assumed 176

3

theory TernaryOrdering
imports Util

begin

Definition of chains using an ordering on sets of events based on natural
numbers, plus some proofs.

1 Totally ordered chains

Based on page 110 of Phil Scott’s thesis and the following HOL Light defi-
nition:

let ORDERING = new_definition
‘ORDERING f X <=> (!n. (FINITE X ==> n < CARD X) ==> f n IN X)

/\ (!x. x IN X ==> ?n. (FINITE X ==> n < CARD X)
/\ f n = x)

/\ !n n’ n’’. (FINITE X ==> n’’ < CARD X)
/\ n < n’ /\ n’ < n’’
==> between (f n) (f n’) (f n’’)‘;;

I’ve made it strict for simplicity, and because that’s how Schutz’s ordering
is. It could be made more generic by taking in the function corresponding
to < as a paramater. Main difference to Schutz: he has local order, not total
(cf Theorem 2 and local-ordering).
definition ordering :: (nat ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool
where

ordering f ord X ≡ (∀n. (finite X −→ n < card X) −→ f n ∈ X)
∧ (∀ x∈X . (∃n. (finite X −→ n < card X) ∧ f n = x))
∧ (∀n n ′ n ′′. (finite X −→ n ′′ < card X) ∧ n < n ′ ∧ n ′ < n ′′

−→ ord (f n) (f n ′) (f n ′′))

lemma finite-ordering-intro:
assumes finite X

and ∀n < card X . f n ∈ X
and ∀ x ∈ X . ∃n < card X . f n = x
and ∀n n ′ n ′′. n < n ′ ∧ n ′ < n ′′ ∧ n ′′ < card X −→ ord (f n) (f n ′) (f n ′′)

shows ordering f ord X
unfolding ordering-def by (simp add: assms)

lemma infinite-ordering-intro:
assumes infinite X

and ∀n::nat. f n ∈ X
and ∀ x ∈ X . ∃n::nat. f n = x

4

and ∀n n ′ n ′′. n < n ′ ∧ n ′ < n ′′ −→ ord (f n) (f n ′) (f n ′′)
shows ordering f ord X
unfolding ordering-def by (simp add: assms)

lemma ordering-ord-ijk:
assumes ordering f ord X

and i < j ∧ j < k ∧ (finite X −→ k < card X)
shows ord (f i) (f j) (f k)
by (metis ordering-def assms)

lemma empty-ordering [simp]: ∃ f . ordering f ord {}
by (simp add: ordering-def)

lemma singleton-ordering [simp]: ∃ f . ordering f ord {a}
apply (rule-tac x = λn. a in exI)
by (simp add: ordering-def)

lemma two-ordering [simp]: ∃ f . ordering f ord {a, b}
proof cases

assume a = b
thus ?thesis using singleton-ordering by simp

next
assume a-neq-b: a 6= b
let ?f = λn. if n = 0 then a else b
have ordering1 : (∀n. (finite {a,b} −→ n < card {a,b}) −→ ?f n ∈ {a,b}) by

simp
have local-ordering: (∀ x∈{a,b}. ∃n. (finite {a,b} −→ n < card {a,b}) ∧ ?f n =

x)
using a-neq-b all-not-in-conv card-Suc-eq card-0-eq card-gt-0-iff insert-iff lessI

by auto
have ordering3 : (∀n n ′ n ′′. (finite {a,b} −→ n ′′ < card {a,b}) ∧ n < n ′ ∧ n ′ <

n ′′

−→ ord (?f n) (?f n ′) (?f n ′′)) using a-neq-b by auto
have ordering ?f ord {a, b} using ordering-def ordering1 local-ordering ordering3

by blast
thus ?thesis by auto

qed

lemma card-le2-ordering:
assumes finiteX : finite X

and card-le2 : card X ≤ 2
shows ∃ f . ordering f ord X

proof −
have card012 : card X = 0 ∨ card X = 1 ∨ card X = 2 using card-le2 by auto
have card0 : card X = 0 −→ ?thesis using finiteX by simp
have card1 : card X = 1 −→ ?thesis using card-eq-SucD by fastforce
have card2 : card X = 2 −→ ?thesis by (metis two-ordering card-eq-SucD nu-

meral-2-eq-2)
thus ?thesis using card012 card0 card1 card2 by auto

5

qed

lemma ord-ordered:
assumes abc: ord a b c

and abc-neq: a 6= b ∧ a 6= c ∧ b 6= c
shows ∃ f . ordering f ord {a,b,c}
apply (rule-tac x = λn. if n = 0 then a else if n = 1 then b else c in exI)
apply (unfold ordering-def)
using abc abc-neq by auto

lemma overlap-ordering:
assumes abc: ord a b c

and bcd: ord b c d
and abd: ord a b d
and acd: ord a c d
and abc-neq: a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d

shows ∃ f . ordering f ord {a,b,c,d}
proof −

let ?X = {a,b,c,d}
let ?f = λn. if n = 0 then a else if n = 1 then b else if n = 2 then c else d
have card4 : card ?X = 4 using abc bcd abd abc-neq by simp
have ordering1 : ∀n. (finite ?X −→ n < card ?X) −→ ?f n ∈ ?X by simp
have local-ordering: ∀ x∈?X . ∃n. (finite ?X −→ n < card ?X) ∧ ?f n = x

by (metis card4 One-nat-def Suc-1 Suc-lessI empty-iff insertE numeral-3-eq-3
numeral-eq-iff

numeral-eq-one-iff rel-simps(51) semiring-norm(85) semiring-norm(86)
semiring-norm(87)

semiring-norm(89) zero-neq-numeral)
have ordering3 : (∀n n ′ n ′′. (finite ?X −→ n ′′ < card ?X) ∧ n < n ′ ∧ n ′ < n ′′

−→ ord (?f n) (?f n ′) (?f n ′′))
using card4 abc bcd abd acd card-0-eq card-insert-if finite.emptyI finite-insert

less-antisym
less-one less-trans-Suc not-less-eq not-one-less-zero numeral-2-eq-2 by auto

have ordering ?f ord ?X using ordering1 local-ordering ordering3 ordering-def
by blast

thus ?thesis by auto
qed

lemma overlap-ordering-alt1 :
assumes abc: ord a b c

and bcd: ord b c d
and abc-bcd-abd: ∀ a b c d. ord a b c ∧ ord b c d −→ ord a b d
and abc-bcd-acd: ∀ a b c d. ord a b c ∧ ord b c d −→ ord a c d
and ord-distinct: ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)

shows ∃ f . ordering f ord {a,b,c,d}
by (metis (full-types) assms overlap-ordering)

lemma overlap-ordering-alt2 :
assumes abc: ord a b c

6

and bcd: ord b c d
and abd: ord a b d
and acd: ord a c d
and ord-distinct: ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)

shows ∃ f . ordering f ord {a,b,c,d}
by (metis assms overlap-ordering)

lemma overlap-ordering-alt:
assumes abc: ord a b c

and bcd: ord b c d
and abc-bcd-abd: ∀ a b c d. ord a b c ∧ ord b c d −→ ord a b d
and abc-bcd-acd: ∀ a b c d. ord a b c ∧ ord b c d −→ ord a c d
and abc-neq: a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d

shows ∃ f . ordering f ord {a,b,c,d}
by (meson assms overlap-ordering)

The lemmas below are easy to prove for X = {}, and if I included that case
then I would have to write a conditional definition in place of {0 ..|X | − 1}.
lemma finite-ordering-img: [[X 6= {}; finite X ; ordering f ord X]] =⇒ f ‘ {0 ..card
X − 1} = X

by (force simp add: ordering-def image-def)

lemma inf-ordering-img: [[infinite X ; ordering f ord X]] =⇒ f ‘ {0 ..} = X
by (auto simp add: ordering-def image-def)

lemma inf-ordering-inv-img: [[infinite X ; ordering f ord X]] =⇒ f −‘ X = {0 ..}
by (auto simp add: ordering-def image-def)

lemma inf-ordering-img-inv-img: [[infinite X ; ordering f ord X]] =⇒ f ‘ f −‘ X =
X

using inf-ordering-img by auto

lemma finite-ordering-inj-on: [[finite X ; ordering f ord X]] =⇒ inj-on f {0 ..card X
− 1}

by (metis finite-ordering-img Suc-diff-1 atLeastAtMost-iff card-atLeastAtMost
card-eq-0-iff

diff-0-eq-0 diff-zero eq-card-imp-inj-on gr0I inj-onI le-0-eq)

lemma finite-ordering-bij:
assumes orderingX : ordering f ord X

and finiteX : finite X
and non-empty: X 6= {}

shows bij-betw f {0 ..card X − 1} X
proof −
have f-image: f ‘ {0 ..card X − 1} = X by (metis orderingX finiteX finite-ordering-img

non-empty)
thus ?thesis by (metis inj-on-imp-bij-betw orderingX finiteX finite-ordering-inj-on)

qed

7

lemma inf-ordering-inj ′:
assumes infX : infinite X

and f-ord: ordering f ord X
and ord-distinct: ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)
and f-eq: f m = f n

shows m = n
proof (rule ccontr)

assume m-not-n: m 6= n
have betw-3n: ∀n n ′ n ′′. n < n ′ ∧ n ′ < n ′′ −→ ord (f n) (f n ′) (f n ′′)

using f-ord by (simp add: ordering-def infX)
thus False
proof cases

assume m-less-n: m < n
then obtain k where n < k by auto
then have ord (f m) (f n) (f k) using m-less-n betw-3n by simp
then have f m 6= f n using ord-distinct by simp
thus ?thesis using f-eq by simp

next
assume ¬ m < n
then have n-less-m: n < m using m-not-n by simp
then obtain k where m < k by auto
then have ord (f n) (f m) (f k) using n-less-m betw-3n by simp
then have f n 6= f m using ord-distinct by simp
thus ?thesis using f-eq by simp

qed
qed

lemma inf-ordering-inj:
assumes infinite X

and ordering f ord X
and ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)

shows inj f
using inf-ordering-inj ′ assms by (metis injI)

The finite case is a little more difficult as I can’t just choose some other
natural number to form the third part of the betweenness relation and the
initial simplification isn’t as nice. Note that I cannot prove inj f (over the
whole type that f is defined on, i.e. natural numbers), because I need to
capture the m and n that obey specific requirements for the finite case. In
order to prove inj f, I would have to extend the definition for ordering to
include m and n beyond card X, such that it is still injective. That would
probably not be very useful.
lemma finite-ordering-inj:

assumes finiteX : finite X
and f-ord: ordering f ord X
and ord-distinct: ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)
and m-less-card: m < card X

8

and n-less-card: n < card X
and f-eq: f m = f n

shows m = n
proof (rule ccontr)

assume m-not-n: m 6= n
have surj-f : ∀ x∈X . ∃n<card X . f n = x

using f-ord by (simp add: ordering-def finiteX)
have betw-3n: ∀n n ′ n ′′. n ′′ < card X ∧ n < n ′ ∧ n ′ < n ′′ −→ ord (f n) (f n ′)

(f n ′′)
using f-ord by (simp add: ordering-def)

show False
proof cases

assume card-le2 : card X ≤ 2
have card0 : card X = 0 −→ False using m-less-card by simp
have card1 : card X = 1 −→ False using m-less-card n-less-card m-not-n by

simp
have card2 : card X = 2 −→ False
proof (rule impI)

assume card-is-2 : card X = 2
then have mn01 : m = 0 ∧ n = 1 ∨ n = 0 ∧ m = 1 using m-less-card

n-less-card m-not-n by auto
then have f m 6= f n using card-is-2 surj-f One-nat-def card-eq-SucD insertCI

less-2-cases numeral-2-eq-2 by (metis (no-types, lifting))
thus False using f-eq by simp

qed
show False using card0 card1 card2 card-le2 by simp

next
assume ¬ card X ≤ 2
then have card-ge3 : card X ≥ 3 by simp
thus False
proof cases

assume m-less-n: m < n
then obtain k where k-pos: k < m ∨ (m < k ∧ k < n) ∨ (n < k ∧ k <

card X)
using is-free-nat m-less-n n-less-card card-ge3 by blast

have k1 : k < m −→ord (f k) (f m) (f n) using m-less-n n-less-card betw-3n
by simp

have k2 : m < k ∧ k < n −→ ord (f m) (f k) (f n) using m-less-n n-less-card
betw-3n by simp

have k3 : n < k ∧ k < card X −→ ord (f m) (f n) (f k) using m-less-n betw-3n
by simp

have f m 6= f n using k1 k2 k3 k-pos ord-distinct by auto
thus False using f-eq by simp

next
assume ¬ m < n
then have n-less-m: n < m using m-not-n by simp
then obtain k where k-pos: k < n ∨ (n < k ∧ k < m) ∨ (m < k ∧ k <

card X)
using is-free-nat n-less-m m-less-card card-ge3 by blast

9

have k1 : k < n −→ord (f k) (f n) (f m) using n-less-m m-less-card betw-3n
by simp

have k2 : n < k ∧ k < m −→ ord (f n) (f k) (f m) using n-less-m m-less-card
betw-3n by simp

have k3 : m < k ∧ k < card X −→ ord (f n) (f m) (f k) using n-less-m
betw-3n by simp

have f n 6= f m using k1 k2 k3 k-pos ord-distinct by auto
thus False using f-eq by simp

qed
qed

qed

lemma ordering-inj:
assumes ordering f ord X

and ∀ a b c. (ord a b c −→ a 6= b ∧ a 6= c ∧ b 6= c)
and finite X −→ m < card X
and finite X −→ n < card X
and f m = f n

shows m = n
using inf-ordering-inj ′ finite-ordering-inj assms by blast

lemma ordering-sym:
assumes ord-sym:

∧
a b c. ord a b c =⇒ ord c b a

and finite X
and ordering f ord X

shows ordering (λn. f (card X − 1 − n)) ord X
unfolding ordering-def using assms(2)

apply auto
apply (metis ordering-def assms(3) card-0-eq card-gt-0-iff diff-Suc-less gr-implies-not0)

proof −
fix x
assume finite X
assume x ∈ X
obtain n where finite X −→ n < card X and f n = x

by (metis ordering-def ‹x ∈ X› assms(3))
have f (card X − ((card X − 1 − n) + 1)) = x

by (simp add: Suc-leI ‹f n = x› ‹finite X −→ n < card X› assms(2))
thus ∃n<card X . f (card X − Suc n) = x

by (metis ‹x ∈ X› add.commute assms(2) card-Diff-singleton card-Suc-Diff1
diff-less-Suc plus-1-eq-Suc)
next

fix n n ′ n ′′

assume finite X
assume n ′′ < card X n < n ′ n ′ < n ′′

have ord (f (card X − Suc n ′′)) (f (card X − Suc n ′)) (f (card X − Suc n))
using assms(3) unfolding ordering-def
using ‹n < n ′› ‹n ′ < n ′′› ‹n ′′ < card X› diff-less-mono2 by auto

thus ord (f (card X − Suc n)) (f (card X − Suc n ′)) (f (card X − Suc n ′′))
using ord-sym by blast

10

qed

lemma zero-into-ordering:
assumes ordering f betw X
and X 6= {}
shows (f 0) ∈ X
using ordering-def
by (metis assms card-eq-0-iff gr-implies-not0 linorder-neqE-nat)

2 Locally ordered chains

Definitions for Schutz-like chains, with local order only.
definition local-ordering :: (nat ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool

where local-ordering f ord X
≡ (∀n. (finite X −→ n < card X) −→ f n ∈ X) ∧
(∀ x∈X . ∃n. (finite X −→ n < card X) ∧ f n = x) ∧
(∀n. (finite X −→ Suc (Suc n) < card X) −→ ord (f n) (f (Suc n)) (f (Suc

(Suc n))))

lemma finite-local-ordering-intro:
assumes finite X

and ∀n < card X . f n ∈ X
and ∀ x ∈ X . ∃n < card X . f n = x
and ∀n n ′ n ′′. Suc n = n ′ ∧ Suc n ′ = n ′′ ∧ n ′′ < card X −→ ord (f n) (f n ′)

(f n ′′)
shows local-ordering f ord X
unfolding local-ordering-def by (simp add: assms)

lemma infinite-local-ordering-intro:
assumes infinite X

and ∀n::nat. f n ∈ X
and ∀ x ∈ X . ∃n::nat. f n = x
and ∀n n ′ n ′′. Suc n = n ′ ∧ Suc n ′ = n ′′ −→ ord (f n) (f n ′) (f n ′′)

shows local-ordering f ord X
using assms unfolding local-ordering-def by metis

lemma total-implies-local:
ordering f ord X =⇒ local-ordering f ord X
unfolding ordering-def local-ordering-def
using lessI by presburger

lemma ordering-ord-ijk-loc:
assumes local-ordering f ord X

and finite X −→ Suc (Suc i) < card X
shows ord (f i) (f (Suc i)) (f (Suc (Suc i)))
by (metis local-ordering-def assms)

lemma empty-ordering-loc [simp]:

11

∃ f . local-ordering f ord {}
by (simp add: local-ordering-def)

lemma singleton-ordered-loc [simp]:
local-ordering f ord {f 0}
unfolding local-ordering-def by simp

lemma singleton-ordering-loc [simp]:
∃ f . local-ordering f ord {a}
using singleton-ordered-loc by fast

lemma two-ordered-loc:
assumes a = f 0 and b = f 1
shows local-ordering f ord {a, b}

proof cases
assume a = b
thus ?thesis using assms singleton-ordered-loc by (metis insert-absorb2)

next
assume a-neq-b: a 6= b
hence (∀n. (finite {a,b} −→ n < card {a,b}) −→ f n ∈ {a,b})
using assms by (metis One-nat-def card.infinite card-2-iff fact-0 fact-2 insert-iff

less-2-cases-iff)
moreover have (∀ x∈{a,b}. ∃n. (finite {a,b} −→ n < card {a,b}) ∧ f n = x)

using assms a-neq-b all-not-in-conv card-Suc-eq card-0-eq card-gt-0-iff insert-iff
lessI by auto

moreover have (∀n. (finite {a,b} −→ Suc (Suc n) < card {a,b})
−→ ord (f n) (f (Suc n)) (f (Suc (Suc n))))

using a-neq-b by auto
ultimately have local-ordering f ord {a, b}

using local-ordering-def by blast
thus ?thesis by auto

qed

lemma two-ordering-loc [simp]:
∃ f . local-ordering f ord {a, b}
using total-implies-local two-ordering by fastforce

lemma card-le2-ordering-loc:
assumes finiteX : finite X

and card-le2 : card X ≤ 2
shows ∃ f . local-ordering f ord X
using assms total-implies-local card-le2-ordering by metis

lemma ord-ordered-loc:
assumes abc: ord a b c

and abc-neq: a 6= b ∧ a 6= c ∧ b 6= c
shows ∃ f . local-ordering f ord {a,b,c}
using assms total-implies-local ord-ordered by metis

12

lemma overlap-ordering-loc:
assumes abc: ord a b c

and bcd: ord b c d
and abd: ord a b d
and acd: ord a c d
and abc-neq: a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d

shows ∃ f . local-ordering f ord {a,b,c,d}
using overlap-ordering[OF assms] total-implies-local by blast

lemma ordering-sym-loc:
assumes ord-sym:

∧
a b c. ord a b c =⇒ ord c b a

and finite X
and local-ordering f ord X

shows local-ordering (λn. f (card X − 1 − n)) ord X
unfolding local-ordering-def using assms(2) apply auto
apply (metis local-ordering-def assms(3) card-0-eq card-gt-0-iff diff-Suc-less gr-implies-not0)

proof −
fix x
assume finite X
assume x ∈ X
obtain n where finite X −→ n < card X and f n = x

by (metis local-ordering-def ‹x ∈ X› assms(3))
have f (card X − ((card X − 1 − n) + 1)) = x

by (simp add: Suc-leI ‹f n = x› ‹finite X −→ n < card X› assms(2))
thus ∃n<card X . f (card X − Suc n) = x

by (metis ‹x ∈ X› add.commute assms(2) card-Diff-singleton card-Suc-Diff1
diff-less-Suc plus-1-eq-Suc)
next

fix n
let ?n1 = Suc n
let ?n2 = Suc ?n1
assume finite X
assume Suc (Suc n) < card X
have ord (f (card X − Suc ?n2)) (f (card X − Suc ?n1)) (f (card X − Suc n))

using assms(3) unfolding local-ordering-def
using ‹Suc (Suc n) < card X› by (metis
Suc-diff-Suc Suc-lessD card-eq-0-iff card-gt-0-iff diff-less gr-implies-not0 zero-less-Suc)

thus ord (f (card X − Suc n)) (f (card X − Suc ?n1)) (f (card X − Suc ?n2))
using ord-sym by blast

qed

lemma zero-into-ordering-loc:
assumes local-ordering f betw X
and X 6= {}
shows (f 0) ∈ X
using local-ordering-def by (metis assms card-eq-0-iff gr-implies-not0 linorder-neqE-nat)

end

13

theory Minkowski
imports TernaryOrdering
begin

Primitives and axioms as given in [1, pp. 9-17].

I’ve tried to do little to no proofs in this file, and keep that in other files. So,
this is mostly locale and other definitions, except where it is nice to prove
something about definitional equivalence and the like (plus the intermediate
lemmas that are necessary for doing so).

Minkowski spacetime = (E ,P, [. . .]) except in the notation here I’ve used
[[. . .]] for [. . .] as Isabelle uses [. . .] for lists.
Except where stated otherwise all axioms are exactly as they appear in
Schutz97. It is the independent axiomatic system provided in the main body
of the book. The axioms O1-O6 are the axioms of order, and largely concern
properties of the betweenness relation. I1-I7 are the axioms of incidence.
I1-I3 are similar to axioms found in systems for Euclidean geometry. As
compared to Hilbert’s Foundations (HIn), our incidence axioms (In) are
loosely identifiable as I1 → HI3, HI8; I2 → HI1; I3 → HI2. I4 fixes the
dimension of the space. I5-I7 are what makes our system non-Galilean, and
lead (I think) to Lorentz transforms (together with S?) and the ultimate
speed limit. Axioms S and C and the axioms of symmetry and continuity,
where the latter is what makes the system second order. Symmetry replaces
all of Hilbert’s axioms of congruence, when considered in the context of
I5-I7.

3 MinkowskiPrimitive: I1-I3

Events E , paths P, and sprays. Sprays only need to refer to E and P. Axiom
in-path-event is covered in English by saying "a path is a set of events", but
is necessary to have explicitly as an axiom as the types do not force it to be
the case.

I think part of why Schutz has I1, together with the trickery [[E 6={}]] =⇒
. . . in I4, is that then I4 talks only about dimension, and results such as
no-empty-paths can be proved using only existence of elements and unreach-
able sets. In our case, it’s also a question of ordering the sequence of axiom
introductions: dimension should really go at the end, since it is not needed
for quite a while; but many earlier proofs rely on the set of events being
non-empty. It may be nice to have the existence of paths as a separate ax-
iom too, which currently still relies on the axiom of dimension (Schutz has
no such axiom either).
locale MinkowskiPrimitive =

14

fixes E :: ′a set
and P :: (′a set) set

assumes in-path-event [simp]: [[Q ∈ P; a ∈ Q]] =⇒ a ∈ E

and nonempty-events [simp]: E 6= {}

and events-paths: [[a ∈ E ; b ∈ E ; a 6= b]] =⇒ ∃R∈P. ∃S∈P. a ∈ R ∧ b ∈ S
∧ R ∩ S 6= {}

and eq-paths [intro]: [[P ∈ P; Q ∈ P; a ∈ P; b ∈ P; a ∈ Q; b ∈ Q; a 6= b]]
=⇒ P = Q
begin

This should be ensured by the additional axiom.
lemma path-sub-events:

Q ∈ P =⇒ Q ⊆ E
by (simp add: subsetI)

lemma paths-sub-power :
P ⊆ Pow E

by (simp add: path-sub-events subsetI)

Define path for more terse statements. a 6= b because a and b are being used
to identify the path, and a = b would not do that.
abbreviation path :: ′a set ⇒ ′a ⇒ ′a ⇒ bool where

path ab a b ≡ ab ∈ P ∧ a ∈ ab ∧ b ∈ ab ∧ a 6= b

abbreviation path-ex :: ′a ⇒ ′a ⇒ bool where
path-ex a b ≡ ∃Q. path Q a b

lemma path-permute:
path ab a b = path ab b a
by auto

abbreviation path-of :: ′a ⇒ ′a ⇒ ′a set where
path-of a b ≡ THE ab. path ab a b

lemma path-of-ex: path (path-of a b) a b ←→ path-ex a b
using theI ′ [where P=λx. path x a b] eq-paths by blast

lemma path-unique:
assumes path ab a b and path ab ′ a b

shows ab = ab ′

using eq-paths assms by blast

lemma paths-cross-once:
assumes path-Q: Q ∈ P

and path-R: R ∈ P

15

and Q-neq-R: Q 6= R
and QR-nonempty: Q∩R 6= {}

shows ∃ !a∈E . Q∩R = {a}
proof −

have ab-inQR: ∃ a∈E . a∈Q∩R using QR-nonempty in-path-event path-Q by
auto

then obtain a where a-event: a ∈ E and a-inQR: a ∈ Q∩R by auto
have Q∩R = {a}
proof (rule ccontr)

assume Q∩R 6= {a}
then have ∃ b∈Q∩R. b 6= a using a-inQR by blast
then have Q = R using eq-paths a-inQR path-Q path-R by auto
thus False using Q-neq-R by simp

qed
thus ?thesis using a-event by blast

qed

4 Primitives: Unreachable Subset (from an Event)

The Q ∈ P ∧ b ∈ E constraints are necessary as the types as not expressive
enough to do it on their own. Schutz’s notation is: Q(b, ∅).
definition unreachable-subset :: ′a set ⇒ ′a ⇒ ′a set (‹unreach−on - from -› [100 ,
100]) where

unreach−on Q from b ≡ {x∈Q. Q ∈ P ∧ b ∈ E ∧ b /∈ Q ∧ ¬(path-ex b x)}

5 Primitives: Kinematic Triangle
definition kinematic-triangle :: ′a ⇒ ′a ⇒ ′a ⇒ bool (‹4 - - -› [100 , 100 , 100]
100) where

kinematic-triangle a b c ≡
a ∈ E ∧ b ∈ E ∧ c ∈ E ∧ a 6= b ∧ a 6= c ∧ b 6= c
∧ (∃Q∈P. ∃R∈P. Q 6= R ∧ (∃S∈P. Q 6= S ∧ R 6= S

∧ a ∈ Q ∧ b ∈ Q
∧ a ∈ R ∧ c ∈ R
∧ b ∈ S ∧ c ∈ S))

A fuller, more explicit equivalent of 4, to show that the above definition is
sufficient.
lemma tri-full:
4 a b c = (a ∈ E ∧ b ∈ E ∧ c ∈ E ∧ a 6= b ∧ a 6= c ∧ b 6= c

∧ (∃Q∈P. ∃R∈P. Q 6= R ∧ (∃S∈P. Q 6= S ∧ R 6= S
∧ a ∈ Q ∧ b ∈ Q ∧ c /∈ Q
∧ a ∈ R ∧ c ∈ R ∧ b /∈ R
∧ b ∈ S ∧ c ∈ S ∧ a /∈ S)))

unfolding kinematic-triangle-def by (meson path-unique)

16

6 Primitives: SPRAY

It’s okay to not require x ∈ E because if x /∈ E the SPRAY will be empty
anyway, and if it’s nonempty then x ∈ E is derivable.
definition SPRAY :: ′a ⇒ (′a set) set where

SPRAY x ≡ {R∈P. x ∈ R}

definition spray :: ′a ⇒ ′a set where
spray x ≡ {y. ∃R∈SPRAY x. y ∈ R}

definition is-SPRAY :: (′a set) set ⇒ bool where
is-SPRAY S ≡ ∃ x∈E . S = SPRAY x

definition is-spray :: ′a set ⇒ bool where
is-spray S ≡ ∃ x∈E . S = spray x

Some very simple SPRAY and spray lemmas below.
lemma SPRAY-event:

SPRAY x 6= {} =⇒ x ∈ E
proof (unfold SPRAY-def)

assume nonempty-SPRAY : {R ∈ P. x ∈ R} 6= {}
then have x-in-path-R: ∃R ∈ P. x ∈ R by blast
thus x ∈ E using in-path-event by blast

qed

lemma SPRAY-nonevent:
x /∈ E =⇒ SPRAY x = {}

using SPRAY-event by auto

lemma SPRAY-path:
P ∈ SPRAY x =⇒ P ∈ P

by (simp add: SPRAY-def)

lemma in-SPRAY-path:
P ∈ SPRAY x =⇒ x ∈ P

by (simp add: SPRAY-def)

lemma source-in-SPRAY :
SPRAY x 6= {} =⇒ ∃P ∈ SPRAY x. x ∈ P

using in-SPRAY-path by auto

lemma spray-event:
spray x 6= {} =⇒ x ∈ E

proof (unfold spray-def)
assume {y. ∃R ∈ SPRAY x. y ∈ R} 6= {}
then have ∃ y. ∃R ∈ SPRAY x. y ∈ R by simp
then have SPRAY x 6= {} by blast
thus x ∈ E using SPRAY-event by simp

17

qed

lemma spray-nonevent:
x /∈ E =⇒ spray x = {}

using spray-event by auto

lemma in-spray-event:
y ∈ spray x =⇒ y ∈ E

proof (unfold spray-def)
assume y ∈ {y. ∃R∈SPRAY x. y ∈ R}
then have ∃R∈SPRAY x. y ∈ R by (rule CollectD)
then obtain R where path-R: R ∈ P

and y-inR: y ∈ R using SPRAY-path by auto
thus y ∈ E using in-path-event by simp

qed

lemma source-in-spray:
spray x 6= {} =⇒ x ∈ spray x

proof −
assume nonempty-spray: spray x 6= {}
have spray-eq: spray x = {y. ∃R∈SPRAY x. y ∈ R} using spray-def by simp
then have ex-in-SPRAY-path: ∃ y. ∃R∈SPRAY x. y ∈ R using nonempty-spray

by simp
show x ∈ spray x using ex-in-SPRAY-path spray-eq source-in-SPRAY by auto

qed

7 Primitives: Path (In)dependence

"A subset of three paths of a SPRAY is dependent if there is a path which
does not belong to the SPRAY and which contains one event from each of
the three paths: we also say any one of the three paths is dependent on the
other two. Otherwise the subset is independent." [Schutz97]

The definition of SPRAY constrains x,Q,R, S to be in E and P.
definition dep3-event Q R S x
≡ card {Q,R,S} = 3 ∧ {Q,R,S} ⊆ SPRAY x
∧ (∃T∈P. T /∈ SPRAY x ∧ Q∩T 6={} ∧ R∩T 6={} ∧ S∩T 6={})

definition dep3-spray Q R S SPR ≡ ∃ x. SPRAY x = SPR ∧ dep3-event Q R S x

definition dep3 Q R S ≡ ∃ x. dep3-event Q R S x

Some very simple lemmas related to dep3-event.
lemma dep3-nonspray:

assumes dep3-event Q R S x
shows ∃P∈P. P /∈ SPRAY x

by (metis assms dep3-event-def)

18

lemma dep3-path:
assumes dep3-QRSx: dep3 Q R S
shows Q ∈ P R ∈ P S ∈ P
using assms dep3-event-def dep3-def SPRAY-path insert-subset by auto

lemma dep3-distinct:
assumes dep3-QRSx: dep3 Q R S
shows Q 6= R Q 6= S R 6= S
using assms dep3-def dep3-event-def by (simp-all add: card-3-dist)

lemma dep3-is-event:
dep3-event Q R S x =⇒ x ∈ E

using SPRAY-event dep3-event-def by auto

lemma dep3-event-old:
dep3-event Q R S x ←→ Q 6= R ∧ Q 6= S ∧ R 6= S ∧ Q ∈ SPRAY x ∧ R ∈

SPRAY x ∧ S ∈ SPRAY x
∧ (∃T∈P. T /∈ SPRAY x ∧ (∃ y∈Q. y ∈ T) ∧ (∃ y∈R. y ∈ T)

∧ (∃ y∈S . y ∈ T))
by (rule iffI ; unfold dep3-event-def , (simp add: card-3-dist), blast)

lemma dep3-event-permute [no-atp]:
assumes dep3-event Q R S x

shows dep3-event Q S R x dep3-event R Q S x dep3-event R S Q x
dep3-event S Q R x dep3-event S R Q x

using dep3-event-old assms by auto

lemma dep3-permute [no-atp]:
assumes dep3 Q R S
shows dep3 Q S R dep3 R Q S dep3 R S Q

and dep3 S Q R dep3 S R Q
using dep3-event-permute dep3-def assms by meson+

"We next give recursive definitions of dependence and independence which
will be used to characterize the concept of dimension. A path T is dependent
on the set of n paths (where n ≥ 3)

S = {Qi: i = 1, 2, ..., n;Qi ∈ SPRAYx}

if it is dependent on two paths S1 and S2, where each of these two paths is
dependent on some subset of n− 1 paths from the set S." [Schutz97]
inductive dep-path :: ′a set ⇒ (′a set) set ⇒ bool where

dep-3 : dep3 T A B =⇒ dep-path T {A, B}
| dep-n: [[dep3 T S1 S2 ; dep-path S1 S ′; dep-path S2 S ′′; S ⊆ SPRAY x;

S ′ ⊆ S ; S ′′ ⊆ S ; Suc (card S ′) = card S ; Suc (card S ′′) = card S]] =⇒
dep-path T S

lemma card-Suc-ex:
assumes card A = Suc (card B) B ⊆ A

19

shows ∃ b. A = insert b B ∧ b/∈B
proof −

have finite A using assms(1) card-ge-0-finite card.infinite by fastforce
obtain b where b∈A−B

by (metis Diff-eq-empty-iff all-not-in-conv assms n-not-Suc-n subset-antisym)
show ∃ b. A = insert b B ∧ b/∈B
proof

show A = insert b B ∧ b/∈B
using ‹b∈A−B› ‹finite A› assms

by (metis DiffD1 DiffD2 Diff-insert-absorb Diff-single-insert card-insert-disjoint
card-subset-eq insert-absorb rev-finite-subset)

qed
qed

lemma union-of-subsets-by-singleton:
assumes Suc (card S ′) = card S Suc (card S ′′) = card S

and S ′ 6= S ′′ S ′ ⊆ S S ′′ ⊆ S
shows S ′ ∪ S ′′ = S

proof −
obtain x y where x: insert x S ′ = S x /∈S ′ and y: insert y S ′′ = S y /∈S ′′

using assms(1 ,2 ,4 ,5) by (metis card-Suc-ex)
have x 6=y using x y assms(3) by (metis insert-eq-iff)
thus ?thesis using x(1) y(1) by blast

qed

lemma dep-path-card-2 : dep-path T S =⇒ card S ≥ 2
by (induct rule: dep-path.induct, simp add: dep3-def dep3-event-old, linarith)

"We also say that the set of n+1 paths S∪{T} is a dependent set." [Schutz97]
Starting from this constructive definition, the below gives an analytical one.
definition dep-set :: (′a set) set ⇒ bool where

dep-set S ≡ ∃S ′⊆S . ∃P∈(S−S ′). dep-path P S ′

Notice that the relation between dep-set and dep-path becomes somewhat
meaningless in the case where we apply dep-path to an element of the set.
This is because sets have no duplicate members, and we do not mirror the
idea that scalar multiples of vectors linearly depend on those vectors: paths
in a SPRAY are (in the R4 model) already equivalence classes of vectors
that are scalar multiples of each other.
lemma dep-path-imp-dep-set:

assumes dep-path P S P /∈S
shows dep-set (insert P S)
using assms dep-set-def by auto

lemma dep-path-for-set-members:
assumes P∈S
shows dep-set S = dep-set (insert P S)
by (simp add: assms(1) insert-absorb)

20

lemma dependent-superset:
assumes dep-set A and A⊆B
shows dep-set B
using assms dep-set-def
by (meson Diff-mono dual-order .trans in-mono order-refl)

lemma path-in-dep-set:
assumes dep3 P Q R
shows dep-set {P,Q,R}
using dep-3 assms dep3-def dep-set-def dep3-event-old
by (metis DiffI insert-iff singletonD subset-insertI)

lemma path-in-dep-set2a:
assumes dep3 P Q R
shows dep-path P {P,Q,R}

proof
let ?S ′ = {P,R}
let ?S ′′ = {P,Q}
have all-neq: P 6=Q P 6=R R 6=Q using assms dep3-def dep3-event-old by auto
show dep3 P Q R using assms dep3-event-def by (simp add: dep-3)
show dep-path Q ?S ′ using assms dep3-event-permute(2) dep-3 dep3-def by

meson
show dep-path R ?S ′′ using assms dep3-event-permute(4) dep-3 dep3-def by

meson
show ?S ′ ⊆ {P, Q, R} by simp
show ?S ′′ ⊆ {P, Q, R} by simp
show Suc (card ?S ′) = card {P, Q, R} Suc (card ?S ′′) = card {P, Q, R}

using all-neq card-insert-disjoint by auto
show {P, Q, R} ⊆ SPRAY (SOME x. dep3-event P Q R x)

using assms dep3-def dep3-event-def by (metis some-eq-ex)
qed

definition indep-set :: (′a set) set ⇒ bool where
indep-set S ≡ ¬ dep-set S

lemma no-dep-in-indep: indep-set S =⇒ ¬(∃T ⊆ S . dep-set T)
using indep-set-def dependent-superset by blast

lemma indep-set-alt-intro: ¬(∃T ⊆ S . dep-set T) =⇒ indep-set S
using indep-set-def by blast

lemma indep-set-alt: indep-set S ←→ ¬(∃S ′ ⊆ S . dep-set S ′)
using no-dep-in-indep indep-set-alt-intro by blast

lemma dep-set S ∨ indep-set S
by (simp add: indep-set-def)

21

8 Primitives: 3-SPRAY

"We now make the following definition which enables us to specify the di-
mensions of Minkowski space-time. A SPRAY is a 3-SPRAY if: i) it contains
four independent paths, and ii) all paths of the SPRAY are dependent on
these four paths." [Schutz97]
definition n-SPRAY-basis :: nat ⇒ ′a set set ⇒ ′a ⇒ bool where

n-SPRAY-basis n S x ≡ S⊆SPRAY x ∧ card S = (Suc n) ∧ indep-set S ∧
(∀P∈SPRAY x. dep-path P S)

definition n-SPRAY (‹-−SPRAY -› [100 ,100]) where
n−SPRAY x ≡ ∃S⊆SPRAY x. card S = (Suc n) ∧ indep-set S ∧ (∀P∈SPRAY

x. dep-path P S)

abbreviation three-SPRAY x ≡ 3−SPRAY x

lemma n-SPRAY-intro:
assumes S⊆SPRAY x card S = (Suc n) indep-set S ∀P∈SPRAY x. dep-path P

S
shows n−SPRAY x
using assms n-SPRAY-def by blast

lemma three-SPRAY-alt:
three-SPRAY x = (∃S1 S2 S3 S4 .

S1 6= S2 ∧ S1 6= S3 ∧ S1 6= S4 ∧ S2 6= S3 ∧ S2 6= S4 ∧ S3 6= S4
∧ S1 ∈ SPRAY x ∧ S2 ∈ SPRAY x ∧ S3 ∈ SPRAY x ∧ S4 ∈ SPRAY x
∧ (indep-set {S1 , S2 , S3 , S4})
∧ (∀S∈SPRAY x. dep-path S {S1 ,S2 ,S3 ,S4}))

(is three-SPRAY x ←→ ?three-SPRAY ′ x)
proof

assume three-SPRAY x
then obtain S where ns: S⊆SPRAY x card S = 4 indep-set S ∀P∈SPRAY x.

dep-path P S
using n-SPRAY-def by auto

then obtain S1 S2 S3 S4 where
S = {S1, S2, S3, S4} and
S1 6= S2 ∧ S1 6= S3 ∧ S1 6= S4 ∧ S2 6= S3 ∧ S2 6= S4 ∧ S3 6= S4 and
S1 ∈ SPRAY x ∧ S2 ∈ SPRAY x ∧ S3 ∈ SPRAY x ∧ S4 ∈ SPRAY x
using card-4-eq by (smt (verit) insert-subset ns)

thus ?three-SPRAY ′ x
by (metis ns(3 ,4))

next
assume ?three-SPRAY ′ x
then obtain S1 S2 S3 S4 where ns:

S1 6= S2 ∧ S1 6= S3 ∧ S1 6= S4 ∧ S2 6= S3 ∧ S2 6= S4 ∧ S3 6= S4

S1 ∈ SPRAY x ∧ S2 ∈ SPRAY x ∧ S3 ∈ SPRAY x ∧ S4 ∈ SPRAY x
indep-set {S1, S2, S3, S4}
∀S∈SPRAY x. dep-path S {S1,S2,S3,S4}

22

by metis
show three-SPRAY x

apply (intro n-SPRAY-intro[of {S1, S2, S3, S4}])
by (simp add: ns)+

qed

lemma three-SPRAY-intro:
assumes S1 6= S2 ∧ S1 6= S3 ∧ S1 6= S4 ∧ S2 6= S3 ∧ S2 6= S4 ∧ S3 6= S4

and S1 ∈ SPRAY x ∧ S2 ∈ SPRAY x ∧ S3 ∈ SPRAY x ∧ S4 ∈ SPRAY x
and indep-set {S1 , S2 , S3 , S4}
and ∀S∈SPRAY x. dep-path S {S1 ,S2 ,S3 ,S4}

shows three-SPRAY x
unfolding three-SPRAY-alt by (metis assms)

Lemma is-three-SPRAY says "this set of sets of elements is a set of paths
which is a 3-SPRAY". Lemma three-SPRAY-ge4 just extracts a bit of the
definition.
definition is-three-SPRAY :: (′a set) set ⇒ bool where

is-three-SPRAY S ≡ ∃ x. S = SPRAY x ∧ 3−SPRAY x

lemma three-SPRAY-ge4 :
assumes three-SPRAY x
shows ∃Q1∈P. ∃Q2∈P. ∃Q3∈P. ∃Q4∈P. Q1 6= Q2 ∧ Q1 6= Q3 ∧ Q1 6= Q4
∧ Q2 6= Q3 ∧ Q2 6= Q4 ∧ Q3 6= Q4
using assms three-SPRAY-alt SPRAY-path by meson

end

9 MinkowskiBetweenness: O1-O5

In O4, I have removed the requirement that a 6= d in order to prove negative
betweenness statements as Schutz does. For example, if we have [abc] and
[bca] we want to conclude [aba] and claim "contradiction!", but we can’t as
long as we mandate that a 6= d.
locale MinkowskiBetweenness = MinkowskiPrimitive +

fixes betw :: ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[-;-;-]›)

assumes abc-ex-path: [a;b;c] =⇒ ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q

and abc-sym: [a;b;c] =⇒ [c;b;a]

and abc-ac-neq: [a;b;c] =⇒ a 6= c

and abc-bcd-abd [intro]: [[[a;b;c]; [b;c;d]]] =⇒ [a;b;d]

and some-betw: [[Q ∈ P; a ∈ Q; b ∈ Q; c ∈ Q; a 6= b; a 6= c; b 6= c]]
=⇒ [a;b;c] ∨ [b;c;a] ∨ [c;a;b]

23

begin

The next few lemmas either provide the full axiom from the text derived from
a new simpler statement, or provide some very simple fundamental additions
which make sense to prove immediately before starting, usually related to
set-level things that should be true which fix the type-level ambiguity of ’a.
lemma betw-events:

assumes abc: [a;b;c]
shows a ∈ E ∧ b ∈ E ∧ c ∈ E

proof −
have ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q using abc-ex-path abc by simp
thus ?thesis using in-path-event by auto

qed

This shows the shorter version of O5 is equivalent.
lemma O5-still-O5 [no-atp]:
((Q ∈ P ∧ {a,b,c} ⊆ Q ∧ a ∈ E ∧ b ∈ E ∧ c ∈ E ∧ a 6= b ∧ a 6= c ∧ b 6= c)
−→ [a;b;c] ∨ [b;c;a] ∨ [c;a;b])

=
((Q ∈ P ∧ {a,b,c} ⊆ Q ∧ a ∈ E ∧ b ∈ E ∧ c ∈ E ∧ a 6= b ∧ a 6= c ∧ b 6= c)
−→ [a;b;c] ∨ [b;c;a] ∨ [c;a;b] ∨ [c;b;a] ∨ [a;c;b] ∨ [b;a;c])

by (auto simp add: abc-sym)

lemma some-betw-xor :
[[Q ∈ P; a ∈ Q; b ∈ Q; c ∈ Q; a 6= b; a 6= c; b 6= c]]

=⇒ ([a;b;c] ∧ ¬ [b;c;a] ∧ ¬ [c;a;b])
∨ ([b;c;a] ∧ ¬ [a;b;c] ∧ ¬ [c;a;b])
∨ ([c;a;b] ∧ ¬ [a;b;c] ∧ ¬ [b;c;a])

by (meson abc-ac-neq abc-bcd-abd some-betw)

The lemma abc-abc-neq is the full O3 as stated by Schutz.
lemma abc-abc-neq:

assumes abc: [a;b;c]
shows a 6= b ∧ a 6= c ∧ b 6= c

using abc-sym abc-ac-neq assms abc-bcd-abd by blast

lemma abc-bcd-acd:
assumes abc: [a;b;c]

and bcd: [b;c;d]
shows [a;c;d]

proof −
have cba: [c;b;a] using abc-sym abc by simp
have dcb: [d;c;b] using abc-sym bcd by simp
have [d;c;a] using abc-bcd-abd dcb cba by blast
thus ?thesis using abc-sym by simp

qed

24

lemma abc-only-cba:
assumes [a;b;c]

shows ¬ [b;a;c] ¬ [a;c;b] ¬ [b;c;a] ¬ [c;a;b]
using abc-sym abc-abc-neq abc-bcd-abd assms by blast+

10 Betweenness: Unreachable Subset Via a Path
definition unreachable-subset-via :: ′a set ⇒ ′a ⇒ ′a set ⇒ ′a ⇒ ′a set where
unreachable-subset-via Q Qa R x ≡ {Qy. [x;Qy;Qa] ∧ (∃Rw∈R. Qa ∈ unreach−on

Q from Rw ∧ Qy ∈ unreach−on Q from Rw)}

definition unreachable-subset-via-notation (‹unreach−via - on - from - to -› [100 ,
100 , 100 , 100] 100)

where unreach−via P on Q from a to x ≡ unreachable-subset-via Q a P x

11 Betweenness: Chains
named-theorems chain-defs
named-theorems chain-alts

11.1 Locally ordered chains with indexing

Definitions for Schutz’s chains, with local order only.

A chain can be: (i) a set of two distinct events connected by a path, or ...
definition short-ch :: ′a set ⇒ bool where

short-ch X ≡ card X = 2 ∧ (∃P∈P. X ⊆ P)

lemma short-ch-alt[chain-alts]:
short-ch X = (∃ x∈X . ∃ y∈X . path-ex x y ∧ ¬(∃ z∈X . z 6=x ∧ z 6=y))
short-ch X = (∃ x y. X = {x,y} ∧ path-ex x y)
unfolding short-ch-def
apply (simp add: card-2-iff ′, smt (verit, ccfv-SIG) in-mono subsetI)
by (metis card-2-iff empty-subsetI insert-subset)

lemma short-ch-intros:
[[x∈X ; y∈X ; path-ex x y; ¬(∃ z∈X . z 6=x ∧ z 6=y)]] =⇒ short-ch X
[[X = {x,y}; path-ex x y]] =⇒ short-ch X
by (auto simp: short-ch-alt)

lemma short-ch-path: short-ch {x,y} ←→ path-ex x y
unfolding short-ch-def by force

... a set of at least three events such that any three adjacent events are or-
dered. Notice infinite sets have card 0, because card gives a natural number
always.
definition local-long-ch-by-ord :: (nat ⇒ ′a) ⇒ ′a set ⇒ bool where

25

local-long-ch-by-ord f X ≡ (infinite X ∨ card X ≥ 3) ∧ local-ordering f betw X

lemma local-long-ch-by-ord-alt [chain-alts]:
local-long-ch-by-ord f X =
(∃ x∈X . ∃ y∈X . ∃ z∈X . x 6=y ∧ y 6=z ∧ x 6=z ∧ local-ordering f betw X)

(is - = ?ch f X)
proof

assume asm: local-long-ch-by-ord f X
{

assume card X ≥ 3
then have ∃ x y z. x 6=y ∧ y 6=z ∧ x 6=z ∧ {x,y,z}⊆X

apply (simp add: eval-nat-numeral)
by (auto simp add: card-le-Suc-iff)

} moreover {
assume infinite X
then have ∃ x y z. x 6=y ∧ y 6=z ∧ x 6=z ∧ {x,y,z}⊆X

using inf-3-elms bot.extremum by fastforce
}
ultimately show ?ch f X using asm unfolding local-long-ch-by-ord-def by

auto
next

assume asm: ?ch f X
then obtain x y z where xyz: {x,y,z}⊆X ∧ x 6= y ∧ y 6= z ∧ x 6= z

apply (simp add: eval-nat-numeral) by auto
hence card X ≥ 3 ∨ infinite X

apply (simp add: eval-nat-numeral)
by (smt (z3) xyz card.empty card-insert-if card-subset finite.emptyI finite-insert

insertE
insert-absorb insert-not-empty)

thus local-long-ch-by-ord f X unfolding local-long-ch-by-ord-def using asm by
auto
qed

lemma short-xor-long:
shows short-ch Q =⇒ @ f . local-long-ch-by-ord f Q

and local-long-ch-by-ord f Q =⇒ ¬ short-ch Q
unfolding chain-alts by (metis)+

Any short chain can have an “ordering” defined on it: this isn’t the ternary
ordering betw that is used for triplets of elements, but merely an index-
ing function that fixes the “direction” of the chain, i.e. maps 0 to one
element and 1 to the other. We define this in order to be able to unify
chain definitions with those for long chains. Thus the indexing function f
of short-ch-by-ord f Q has a similar status to the ordering on a long chain
in many regards: e.g. it implies that f(0 . . . |Q| − 1) ⊆ Q.
definition short-ch-by-ord :: (nat⇒ ′a) ⇒ ′a set ⇒ bool

where short-ch-by-ord f Q ≡ Q = {f 0 , f 1} ∧ path-ex (f 0) (f 1)

26

lemma short-ch-equiv [chain-alts]: ∃ f . short-ch-by-ord f Q ←→ short-ch Q
proof −

{ assume asm: short-ch Q
obtain x y where xy: {x,y}⊆Q path-ex x y

using asm short-ch-alt(2) by (auto simp: short-ch-def)
let ?f = λn::nat. if n=0 then x else y
have ∃ f . (∃ x y. Q = {x, y} ∧ f (0 ::nat) = x ∧ f 1 = y ∧ (∃Q. path Q x y))

apply (rule exI [of - ?f]) using asm xy short-ch-alt(2) by auto
} moreover {

fix f assume asm: short-ch-by-ord f Q
have card Q = 2 (∃P∈P. Q ⊆ P)

using asm short-ch-by-ord-def by auto
} ultimately show ?thesis by (metis short-ch-by-ord-def short-ch-def)

qed

lemma short-ch-card:
short-ch-by-ord f Q =⇒ card Q = 2
short-ch Q =⇒ card Q = 2
using short-ch-by-ord-def short-ch-def short-ch-equiv by auto

lemma short-ch-sym:
assumes short-ch-by-ord f Q
shows short-ch-by-ord (λn. if n=0 then f 1 else f 0) Q
using assms unfolding short-ch-by-ord-def by auto

lemma short-ch-ord-in:
assumes short-ch-by-ord f Q
shows f 0 ∈ Q f 1 ∈ Q
using assms unfolding short-ch-by-ord-def by auto

Does this restrict chains to lie on paths? Proven in TemporalOrderingOnPath’s
Interlude!
definition ch-by-ord (‹[- -]›) where
[f X] ≡ short-ch-by-ord f X ∨ local-long-ch-by-ord f X

definition ch :: ′a set ⇒ bool where ch X ≡ ∃ f . [f X]

declare short-ch-def [chain-defs]
and local-long-ch-by-ord-def [chain-defs]
and ch-by-ord-def [chain-defs]
and short-ch-by-ord-def [chain-defs]

We include alternative definitions in the chain-defs set, because we do not
want arbitrary orderings to appear on short chains. Unless an ordering for
a short chain is explicitly written down by the user, we shouldn’t introduce
a short-ch-by-ord when e.g. unfolding.
lemma ch-alt[chain-defs]: ch X ≡ short-ch X ∨ (∃ f . local-long-ch-by-ord f X)

unfolding ch-def ch-by-ord-def using chain-defs short-ch-intros(2)
by (smt (verit) short-ch-equiv)

27

Since f(0) is always in the chain, and plays a special role particularly for
infinite chains (as the ’endpoint’, the non-finite edge) let us fix it straight in
the definition. Notice we require both infinite X and long-ch-by-ord, thus
circumventing infinite Isabelle sets having cardinality 0.
definition infinite-chain :: (nat ⇒ ′a) ⇒ ′a set ⇒ bool where

infinite-chain f Q ≡ infinite Q ∧ [f Q]

declare infinite-chain-def [chain-defs]

lemma infinite-chain-alt[chain-alts]:
infinite-chain f Q ←→ infinite Q ∧ local-ordering f betw Q
unfolding chain-defs by fastforce

definition infinite-chain-with :: (nat ⇒ ′a) ⇒ ′a set ⇒ ′a ⇒ bool (‹[- -|- ..]›)
where

infinite-chain-with f Q x ≡ infinite-chain f Q ∧ f 0 = x

declare infinite-chain-with-def [chain-defs]

lemma infinite-chain f Q ←→ [f Q|f 0 ..]
by (simp add: infinite-chain-with-def)

definition finite-chain :: (nat ⇒ ′a) ⇒ ′a set ⇒ bool where
finite-chain f Q ≡ finite Q ∧ [f Q]

declare finite-chain-def [chain-defs]

lemma finite-chain-alt[chain-alts]: finite-chain f Q ←→ short-ch-by-ord f Q ∨
(finite Q ∧ local-long-ch-by-ord f Q)

unfolding chain-defs by auto

definition finite-chain-with :: (nat ⇒ ′a) ⇒ ′a set ⇒ ′a ⇒ ′a ⇒ bool (‹[- -|- ..
-]›) where
[f Q|x..y] ≡ finite-chain f Q ∧ f 0 = x ∧ f (card Q − 1) = y

declare finite-chain-with-def [chain-defs]

lemma finite-chain f Q ←→ [f Q|f 0 .. f (card Q − 1)]
by (simp add: finite-chain-with-def)

lemma finite-chain-with-alt [chain-alts]:
[f Q|x..z] ←→ (short-ch-by-ord f Q ∨ (card Q ≥ 3 ∧ local-ordering f betw Q))
∧

x = f 0 ∧ z = f (card Q − 1)
unfolding chain-defs
by (metis card.infinite finite.emptyI finite.insertI not-numeral-le-zero)

lemma finite-chain-with-cases:
assumes [f Q|x..z]

28

obtains
(short) x = f 0 z = f (card Q − 1) short-ch-by-ord f Q
| (long) x = f 0 z = f (card Q − 1) card Q ≥ 3 local-long-ch-by-ord f Q
using assms finite-chain-with-alt by (meson local-long-ch-by-ord-def)

definition finite-long-chain-with:: (nat⇒ ′a) ⇒ ′a set ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool
(‹[- -|-..-..-]›)

where [f Q|x..y..z] ≡ [f Q|x..z] ∧ x 6=y ∧ y 6=z ∧ y∈Q

declare finite-long-chain-with-def [chain-defs]

lemma points-in-chain:
assumes [f Q|x..z]
shows x∈Q ∧ z∈Q
apply (cases rule: finite-chain-with-cases[OF assms])
using short-ch-card(1) short-ch-ord-in by (simp add: chain-defs local-ordering-def [of

f betw Q])+

lemma points-in-long-chain:
assumes [f Q|x..y..z]
shows x∈Q and y∈Q and z∈Q
using points-in-chain finite-long-chain-with-def assms by meson+

lemma finite-chain-with-card-less3 :
assumes [f Q|x..z]

and card Q < 3
shows short-ch-by-ord f Q z = f 1

proof −
show 1 : short-ch-by-ord f Q

using finite-chain-with-alt assms by simp
thus z = f 1

using assms(1) by (auto simp: eval-nat-numeral chain-defs)
qed

lemma ch-long-if-card-geq3 :
assumes ch X

and card X ≥ 3
shows ∃ f . local-long-ch-by-ord f X

proof −
show ∃ f . local-long-ch-by-ord f X
proof (rule ccontr)

assume @ f . local-long-ch-by-ord f X
hence short-ch X

using assms(1) unfolding chain-defs by auto
obtain x y z where x∈X ∧ y∈X ∧ z∈X and x 6=y ∧ y 6=z ∧ x 6=z

using assms(2) by (auto simp add: card-le-Suc-iff numeral-3-eq-3)
thus False

using ‹short-ch X› by (metis short-ch-alt(1))

29

qed
qed

lemma ch-short-if-card-less3 :
assumes ch Q

and card Q < 3
and finite Q

shows ∃ f . short-ch-by-ord f Q
using short-ch-equiv finite-chain-with-card-less3
by (metis assms ch-alt diff-is-0-eq ′ less-irrefl-nat local-long-ch-by-ord-def zero-less-diff)

lemma three-in-long-chain:
assumes local-long-ch-by-ord f X
obtains x y z where x∈X and y∈X and z∈X and x 6=y and x 6=z and y 6=z
using assms(1) local-long-ch-by-ord-alt by auto

lemma short-ch-card-2 :
assumes ch-by-ord f X
shows short-ch X ←→ card X = 2
using assms unfolding chain-defs using card-2-iff ′ card-gt-0-iff by fastforce

lemma long-chain-card-geq:
assumes local-long-ch-by-ord f X and fin: finite X
shows card X ≥ 3

proof −
obtain x y z where xyz: x∈X y∈X z∈X and neq: x 6=y x 6=z y 6=z

using three-in-long-chain assms by blast
let ?S = {x,y,z}
have ?S ⊆ X

by (simp add: xyz)
moreover have card ?S ≥ 3

using antisym ‹x 6= y› ‹x 6= z› ‹y 6= z› by auto
ultimately show ?thesis

by (meson neq fin three-subset)
qed

lemma fin-chain-card-geq-2 :
assumes [f X |a..b]
shows card X ≥ 2
using finite-chain-with-def apply (cases short-ch X)
using short-ch-card-2
apply (metis dual-order .eq-iff short-ch-def)
using assms chain-defs not-less by fastforce

30

12 Betweenness: Rays and Intervals

“Given any two distinct events a, b of a path we define the segment (ab) =
{x : [a x b], x ∈ ab}" [Schutz97] Our version is a little different, because it is
defined for any a, b of type ′a. Thus we can have empty set segments, while
Schutz can prove (once he proves path density) that segments are never
empty.
definition segment :: ′a ⇒ ′a ⇒ ′a set

where segment a b ≡ {x:: ′a. ∃ ab. [a;x;b] ∧ x∈ab ∧ path ab a b}

abbreviation is-segment :: ′a set ⇒ bool
where is-segment ab ≡ (∃ a b. ab = segment a b)

definition interval :: ′a ⇒ ′a ⇒ ′a set
where interval a b ≡ insert b (insert a (segment a b))

abbreviation is-interval :: ′a set ⇒ bool
where is-interval ab ≡ (∃ a b. ab = interval a b)

definition prolongation :: ′a ⇒ ′a ⇒ ′a set
where prolongation a b ≡ {x:: ′a. ∃ ab. [a;b;x] ∧ x∈ab ∧ path ab a b}

abbreviation is-prolongation :: ′a set ⇒ bool
where is-prolongation ab ≡ ∃ a b. ab = prolongation a b

I think this is what Schutz actually meant, maybe there is a typo in the text?
Notice that b ∈ ray a b for any a, always. Cf the comment on segment-def.
Thus ∃ ray a b 6= {} is no guarantee that a path ab exists.
definition ray :: ′a ⇒ ′a ⇒ ′a set

where ray a b ≡ insert b (segment a b ∪ prolongation a b)

abbreviation is-ray :: ′a set ⇒ bool
where is-ray R ≡ ∃ a b. R = ray a b

definition is-ray-on :: ′a set ⇒ ′a set ⇒ bool
where is-ray-on R P ≡ P∈P ∧ R⊆P ∧ is-ray R

This is as in Schutz. Notice b is not in the ray through b?
definition ray-Schutz :: ′a ⇒ ′a ⇒ ′a set

where ray-Schutz a b ≡ insert a (segment a b ∪ prolongation a b)

lemma ends-notin-segment: a /∈ segment a b ∧ b /∈ segment a b
using abc-abc-neq segment-def by fastforce

lemma ends-in-int: a ∈ interval a b ∧ b ∈ interval a b
using interval-def by auto

lemma seg-betw: x ∈ segment a b ←→ [a;x;b]

31

using segment-def abc-abc-neq abc-ex-path by fastforce

lemma pro-betw: x ∈ prolongation a b ←→ [a;b;x]
using prolongation-def abc-abc-neq abc-ex-path by fastforce

lemma seg-sym: segment a b = segment b a
using abc-sym segment-def by auto

lemma empty-segment: segment a a = {}
by (simp add: segment-def)

lemma int-sym: interval a b = interval b a
by (simp add: insert-commute interval-def seg-sym)

lemma seg-path:
assumes x ∈ segment a b
obtains ab where path ab a b segment a b ⊆ ab

proof −
obtain ab where path ab a b

using abc-abc-neq abc-ex-path assms seg-betw
by meson

have segment a b ⊆ ab
using ‹path ab a b› abc-ex-path path-unique seg-betw
by fastforce

thus ?thesis
using ‹path ab a b› that by blast

qed

lemma seg-path2 :
assumes segment a b 6= {}
obtains ab where path ab a b segment a b ⊆ ab
using assms seg-path by force

Path density (theorem 17) will extend this by weakening the assumptions
to segment a b 6= {}.
lemma seg-endpoints-on-path:

assumes card (segment a b) ≥ 2 segment a b ⊆ P P∈P
shows path P a b

proof −
have non-empty: segment a b 6= {} using assms(1) numeral-2-eq-2 by auto
then obtain ab where path ab a b segment a b ⊆ ab

using seg-path2 by force
have a 6=b by (simp add: ‹path ab a b›)
obtain x y where x∈segment a b y∈segment a b x 6=y

using assms(1) numeral-2-eq-2
by (metis card.infinite card-le-Suc0-iff-eq not-less-eq-eq not-numeral-le-zero)

have [a;x;b]
using ‹x ∈ segment a b› seg-betw by auto

have [a;y;b]

32

using ‹y ∈ segment a b› seg-betw by auto
have x∈P ∧ y∈P

using ‹x ∈ segment a b› ‹y ∈ segment a b› assms(2) by blast
have x∈ab ∧ y∈ab

using ‹segment a b ⊆ ab› ‹x ∈ segment a b› ‹y ∈ segment a b› by blast
have ab=P

using ‹path ab a b› ‹x ∈ P ∧ y ∈ P› ‹x ∈ ab ∧ y ∈ ab› ‹x 6= y› assms(3)
path-unique by auto

thus ?thesis
using ‹path ab a b› by auto

qed

lemma pro-path:
assumes x ∈ prolongation a b
obtains ab where path ab a b prolongation a b ⊆ ab

proof −
obtain ab where path ab a b

using abc-abc-neq abc-ex-path assms pro-betw
by meson

have prolongation a b ⊆ ab
using ‹path ab a b› abc-ex-path path-unique pro-betw
by fastforce

thus ?thesis
using ‹path ab a b› that by blast

qed

lemma ray-cases:
assumes x ∈ ray a b
shows [a;x;b] ∨ [a;b;x] ∨ x = b

proof −
have x∈segment a b ∨ x∈ prolongation a b ∨ x=b

using assms ray-def by auto
thus [a;x;b] ∨ [a;b;x] ∨ x = b

using pro-betw seg-betw by auto
qed

lemma ray-path:
assumes x ∈ ray a b x 6=b
obtains ab where path ab a b ∧ ray a b ⊆ ab

proof −
let ?r = ray a b
have ?r 6= {b}

using assms by blast
have ∃ ab. path ab a b ∧ ray a b ⊆ ab
proof −

have betw-cases: [a;x;b] ∨ [a;b;x] using ray-cases assms
by blast

then obtain ab where path ab a b
using abc-abc-neq abc-ex-path by blast

33

have ?r ⊆ ab using betw-cases
proof (rule disjE)

assume [a;x;b]
show ?r ⊆ ab
proof

fix x assume x∈?r
show x∈ab

by (metis ‹path ab a b› ‹x ∈ ray a b› abc-ex-path eq-paths ray-cases)
qed

next assume [a;b;x]
show ?r ⊆ ab
proof

fix x assume x∈?r
show x∈ab

by (metis ‹path ab a b› ‹x ∈ ray a b› abc-ex-path eq-paths ray-cases)
qed

qed
thus ?thesis

using ‹path ab a b› by blast
qed
thus ?thesis

using that by blast
qed

end

13 MinkowskiChain: O6

O6 supposedly serves the same purpose as Pasch’s axiom.
locale MinkowskiChain = MinkowskiBetweenness +

assumes O6 : [[{Q,R,S ,T} ⊆ P; card{Q,R,S} = 3 ; a ∈ Q∩R; b ∈ Q∩S ; c ∈
R∩S ; d∈S∩T ; e∈R∩T ; [b;c;d]; [c;e;a]]]

=⇒ ∃ f∈T∩Q. ∃ g X . [g X |a..f ..b]
begin

lemma O6-old: [[Q ∈ P; R ∈ P; S ∈ P; T ∈ P; Q 6= R; Q 6= S ; R 6= S ; a ∈ Q∩R
∧ b ∈ Q∩S ∧ c ∈ R∩S ;

∃ d∈S . [b;c;d] ∧ (∃ e∈R. d ∈ T ∧ e ∈ T ∧ [c;e;a])]]
=⇒ ∃ f∈T∩Q. ∃ g X . [g X |a..f ..b]

using O6 [of Q R S T a b c] by (metis IntI card-3-dist empty-subsetI insert-subset)

14 Chains: (Closest) Bounds
definition is-bound-f :: ′a ⇒ ′a set ⇒ (nat⇒ ′a) ⇒ bool where

is-bound-f Qb Q f ≡
∀ i j ::nat. [f Q|(f 0)..] ∧ (i<j −→ [f i; f j; Qb])

34

definition is-bound where
is-bound Qb Q ≡
∃ f ::(nat⇒ ′a). is-bound-f Qb Q f

Qb has to be on the same path as the chain Q. This is left implicit in the
betweenness condition (as is Qb ∈ E). So this is equivalent to Schutz only if
we also assume his axioms, i.e. the statement of the continuity axiom is no
longer independent of other axioms.
definition all-bounds where

all-bounds Q = {Qb. is-bound Qb Q}

definition bounded where
bounded Q ≡ ∃ Qb. is-bound Qb Q

lemma bounded-imp-inf :
assumes bounded Q
shows infinite Q
using assms bounded-def is-bound-def is-bound-f-def chain-defs by meson

definition closest-bound-f where
closest-bound-f Qb Q f ≡

//Q///is////an//////////infinite///////chain//////////indexed////by//f////////bound////by////Qb

is-bound-f Qb Q f ∧
/////Any///////other////////bound///////must///be//////////further//////from/////the//////start////of////the////////chain//////than/////the/////////closest////////bound

(∀ Qb
′. (is-bound Qb

′ Q ∧ Qb
′ 6= Qb) −→ [f 0 ; Qb; Qb

′])

definition closest-bound where
closest-bound Qb Q ≡
∃ f . is-bound-f Qb Q f
∧ (∀ Qb

′. (is-bound Qb
′ Q ∧ Qb

′ 6= Qb) −→ [f 0 ; Qb; Qb
′])

lemma closest-bound Qb Q = (∃ f . closest-bound-f Qb Q f)
unfolding closest-bound-f-def closest-bound-def by simp

end

15 MinkowskiUnreachable: I5-I7
locale MinkowskiUnreachable = MinkowskiChain +

assumes I5 : [[Q ∈ P; b ∈ E−Q]] =⇒ ∃ x y. {x,y} ⊆ unreach−on Q from b ∧ x
6= y

and I6 : [[Q ∈ P; b ∈ E−Q; {Qx,Qz} ⊆ unreach−on Q from b; Qx 6=Qz]]
=⇒ ∃X f . [f X |Qx..Qz]

∧ (∀ i∈{1 .. card X − 1}. (f i) ∈ unreach−on Q from b
∧ (∀Qy∈E . [f (i−1); Qy; f i] −→ Qy ∈ unreach−on Q from b))

35

and I7 : [[Q ∈ P; b ∈ E−Q; Qx ∈ Q − unreach−on Q from b; Qy ∈ unreach−on
Q from b]]

=⇒ ∃ g X Qn. [g X |Qx..Qy..Qn] ∧ Qn ∈ Q − unreach−on Q from b
begin

lemma two-in-unreach:
[[Q ∈ P; b ∈ E ; b /∈ Q]] =⇒ ∃ x∈unreach−on Q from b. ∃ y∈unreach−on Q from

b. x 6= y
using I5 by fastforce

lemma I6-old:
assumes Q ∈ P b /∈ Q b ∈ E Qx ∈ (unreach−on Q from b) Qz ∈ (unreach−on

Q from b) Qx 6=Qz
shows ∃X . ∃ f . ch-by-ord f X ∧ f 0 = Qx ∧ f (card X − 1) = Qz ∧

(∀ i∈{1 ..card X − 1}. (f i) ∈ unreach−on Q from b ∧ (∀Qy∈E .
[f (i−1); Qy; f i] −→ Qy ∈ unreach−on Q from b)) ∧

(short-ch X −→ Qx∈X ∧ Qz∈X ∧ (∀Qy∈E . [Qx;Qy;Qz] −→ Qy ∈
unreach−on Q from b))
proof −

from assms I6 [of Q b Qx Qz] obtain f X
where fX : [f X |Qx..Qz]

(∀ i∈{1 .. card X − 1}. (f i) ∈ unreach−on Q from b ∧ (∀Qy∈E .
[f (i−1); Qy; f i] −→ Qy ∈ unreach−on Q from b))

using DiffI Un-Diff-cancel by blast
show ?thesis
proof ((rule exI)+, intro conjI , rule-tac[4] ballI , rule-tac[5] impI ; (intro conjI)?)

show 1 : [f X] f 0 = Qx f (card X − 1) = Qz
using fX(1) chain-defs by meson+

{
fix i assume i-asm: i∈{1 ..card X − 1}
show 2 : f i ∈ unreach−on Q from b

using fX(2) i-asm by fastforce
show 3 : ∀Qy∈E . [f (i − 1);Qy;f i] −→ Qy ∈ unreach−on Q from b

using fX(2) i-asm by blast
} {

assume X-asm: short-ch X
show 4 : Qx ∈ X Qz ∈ X

using fX(1) points-in-chain by auto
have {1 ..card X−1} = {1}

using X-asm short-ch-alt(2) by force
thus 5 : ∀Qy∈E . [Qx;Qy;Qz] −→ Qy ∈ unreach−on Q from b

using fX(2) 1 (2 ,3) by auto
}

qed
qed

lemma I7-old:
assumes Q ∈ P b /∈ Q b ∈ E Qx ∈ Q − unreach−on Q from b Qy ∈ unreach−on

Q from b

36

shows ∃ g X Qn. [g X |Qx..Qy..Qn] ∧ Qn ∈ Q − unreach−on Q from b
using I7 assms by auto

lemma card-unreach-geq-2 :
assumes Q∈P b∈E−Q
shows 2 ≤ card (unreach−on Q from b) ∨ (infinite (unreach−on Q from b))
using DiffD1 assms(1) assms(2) card-le-Suc0-iff-eq two-in-unreach by fastforce

In order to more faithfully capture Schutz’ definition of unreachable subsets
via a path, we show that intersections of distinct paths are unique, and
then define a new notation that doesn’t carry the intersection of two paths
around.
lemma unreach-empty-on-same-path:

assumes P∈P Q∈P P=Q
shows ∀ x. unreach−via P on Q from a to x = {}
unfolding unreachable-subset-via-notation-def unreachable-subset-via-def unreach-

able-subset-def
by (simp add: assms(3))

definition unreachable-subset-via-notation-2 (‹unreach−via - on - from -› [100 ,
100 , 100] 100)

where unreach−via P on Q from a ≡ unreachable-subset-via Q a P (THE x.
x∈Q∩P)

lemma unreach-via-for-crossing-paths:
assumes P∈P Q∈P P∩Q = {x}
shows unreach−via P on Q from a to x = unreach−via P on Q from a
unfolding unreachable-subset-via-notation-2-def is-singleton-def unreachable-subset-via-notation-def
using the-equality assms by (metis Int-commute empty-iff insert-iff)

end

16 MinkowskiSymmetry: Symmetry
locale MinkowskiSymmetry = MinkowskiUnreachable +

assumes Symmetry: [[{Q,R,S} ⊆ P; card {Q,R,S} = 3 ;
x ∈ Q∩R∩S ; Qa ∈ Q; Qa 6= x;
unreach−via R on Q from Qa = unreach−via S on Q from Qa]]
=⇒ ∃ϑ:: ′a⇒ ′a. //i)///////there///is///a//////map/////////ϑ:E⇒E

bij-betw (λP. {ϑ y | y. y∈P}) P P ///ii)///////which//////////induces///a///////////bijection
//Θ

∧ (y∈Q −→ ϑ y = y) ////iii)///ϑ////////leaves///Q////////////invariant
∧ (λP. {ϑ y | y. y∈P}) R = S ///iv)////Θ///////maps///R///to///S

begin

lemma Symmetry-old:
assumes Q ∈ P R ∈ P S ∈ P Q 6= R Q 6= S R 6= S

and x ∈ Q∩R∩S Qa ∈ Q Qa 6= x

37

and unreach−via R on Q from Qa to x = unreach−via S on Q from Qa to x
shows ∃ϑ:: ′a⇒ ′a. bij-betw (λP. {ϑ y | y. y∈P}) P P

∧ (y∈Q −→ ϑ y = y)
∧ (λP. {ϑ y | y. y∈P}) R = S

proof −
have QS : Q∩S = {x} and QR: Q∩R = {x}

using assms(1−7) paths-cross-once by (metis Int-iff empty-iff insertE)+
have unreach−via R on Q from Qa = unreach−via R on Q from Qa to x
using unreach-via-for-crossing-paths QR by (simp add: Int-commute assms(1 ,2))
moreover have unreach−via S on Q from Qa = unreach−via S on Q from Qa

to x
using unreach-via-for-crossing-paths QS by (simp add: Int-commute assms(1 ,3))

ultimately show ?thesis
using Symmetry assms by simp

qed

end

17 MinkowskiContinuity: Continuity
locale MinkowskiContinuity = MinkowskiSymmetry +

assumes Continuity: bounded Q =⇒ ∃Qb. closest-bound Qb Q

18 MinkowskiSpacetime: Dimension (I4)
locale MinkowskiSpacetime = MinkowskiContinuity +

assumes ex-3SPRAY [simp]: [[E 6= {}]] =⇒ ∃ x∈E . 3−SPRAY x
begin

There exists an event by nonempty-events, and by ex-3SPRAY there is a
three-SPRAY, which by three-SPRAY-ge4 means that there are at least four
paths.
lemma four-paths:
∃Q1∈P. ∃Q2∈P. ∃Q3∈P. ∃Q4∈P. Q1 6= Q2 ∧ Q1 6= Q3 ∧ Q1 6= Q4 ∧ Q2
6= Q3 ∧ Q2 6= Q4 ∧ Q3 6= Q4
using nonempty-events ex-3SPRAY three-SPRAY-ge4 by blast

end

end

38

theory TemporalOrderOnPath
imports Minkowski HOL−Library.Disjoint-Sets
begin

In Schutz [1, pp. 18-30], this is “Chapter 3: Temporal order on a path”. All
theorems are from Schutz, all lemmas are either parts of the Schutz proofs ex-
tracted, or additional lemmas which needed to be added, with the exception
of the three transitivity lemmas leading to Theorem 9, which are given by
Schutz as well. Much of what we’d like to prove about chains with respect to
injectivity, surjectivity, bijectivity, is proved in TernaryOrdering.thy. Some
more things are proved in interlude sections.

19 Preliminary Results for Primitives

First some proofs that belong in this section but aren’t proved in the book
or are covered but in a different form or off-handed remark.
context MinkowskiPrimitive begin

lemma cross-once-notin:
assumes Q ∈ P

and R ∈ P
and a ∈ Q
and b ∈ Q
and b ∈ R
and a 6= b
and Q 6= R

shows a /∈ R
using assms paths-cross-once eq-paths by meson

lemma paths-cross-at:
assumes path-Q: Q ∈ P and path-R: R ∈ P

and Q-neq-R: Q 6= R
and QR-nonempty: Q ∩ R 6= {}
and x-inQ: x ∈ Q and x-inR: x ∈ R

shows Q ∩ R = {x}
proof (rule equalityI)

show Q ∩ R ⊆ {x}
proof (rule subsetI , rule ccontr)

fix y
assume y-in-QR: y ∈ Q ∩ R

and y-not-in-just-x: y /∈ {x}
then have y-neq-x: y 6= x by simp
then have ¬ (∃ z. Q ∩ R = {z})

by (meson Q-neq-R path-Q path-R x-inQ x-inR y-in-QR cross-once-notin
IntD1 IntD2)

39

thus False using paths-cross-once by (meson QR-nonempty Q-neq-R path-Q
path-R)

qed
show {x} ⊆ Q ∩ R using x-inQ x-inR by simp

qed

lemma events-distinct-paths:
assumes a-event: a ∈ E

and b-event: b ∈ E
and a-neq-b: a 6= b

shows ∃R∈P. ∃S∈P. a ∈ R ∧ b ∈ S ∧ (R 6= S −→ (∃ !c∈E . R ∩ S = {c}))
by (metis events-paths assms paths-cross-once)

end
context MinkowskiBetweenness begin

lemma assumes [a;b;c] shows ∃ f . local-long-ch-by-ord f {a,b,c}
using abc-abc-neq[OF assms] unfolding chain-defs
by (simp add: assms ord-ordered-loc)

lemma between-chain: [a;b;c] =⇒ ch {a,b,c}
proof −

assume [a;b;c]
hence ∃ f . local-ordering f betw {a,b,c}

by (simp add: abc-abc-neq ord-ordered-loc)
hence ∃ f . local-long-ch-by-ord f {a,b,c}

using ‹[a;b;c]› abc-abc-neq local-long-ch-by-ord-def by auto
thus ?thesis

by (simp add: chain-defs)
qed

end

20 3.1 Order on a finite chain
context MinkowskiBetweenness begin

20.1 Theorem 1

See Minkowski.abc-only-cba. Proving it again here to show it can be done
following the prose in Schutz.
theorem theorem1 [no-atp]:

assumes abc: [a;b;c]
shows [c;b;a] ∧ ¬ [b;c;a] ∧ ¬ [c;a;b]

proof −

have part-i: [c;b;a] using abc abc-sym by simp

40

have part-ii: ¬ [b;c;a]
proof (rule notI)

assume [b;c;a]
then have [a;b;a] using abc abc-bcd-abd by blast
thus False using abc-ac-neq by blast

qed

have part-iii: ¬ [c;a;b]
proof (rule notI)

assume [c;a;b]
then have [c;a;c] using abc abc-bcd-abd by blast
thus False using abc-ac-neq by blast

qed
thus ?thesis using part-i part-ii part-iii by auto

qed

20.2 Theorem 2

The lemma abc-bcd-acd, equal to the start of Schutz’s proof, is given in
Minkowski in order to prove some equivalences. We’re splitting up Theorem
2 into two named results:

order-finite-chain there is a betweenness relation for each triple of adjacent events, and

index-injective all events of a chain are distinct.

We will be following Schutz’ proof for both. Distinctness of chain events
is interpreted as injectivity of the indexing function (see index-injective):
we assume that this corresponds to what Schutz means by distinctness of
elements in a sequence.

For the case of two-element chains: the elements are distinct by definition,
and the statement on local-ordering is void (respectively, False =⇒ P for
any P). We exclude this case from our proof of order-finite-chain. Two
helper lemmas are provided, each capturing one of the proofs by induction
in Schutz’ writing.
lemma thm2-ind1 :

assumes chX : local-long-ch-by-ord f X
and finiteX : finite X

shows ∀ j i. ((i::nat) < j ∧ j < card X − 1) −→ [f i; f j; f (j + 1)]
proof (rule allI)+

let ?P = λ i j. [f i; f j; f (j+1)]
fix i j
show (i<j ∧ j<card X −1) −→ ?P i j
proof (induct j)

case 0
show ?case by blast

next

41

case (Suc j)
show ?case
proof (clarify)

assume asm: i<Suc j Suc j<card X −1
have pj: ?P j (Suc j)

using asm(2) chX less-diff-conv local-long-ch-by-ord-def local-ordering-def
by (metis Suc-eq-plus1)

have i<j ∨ i=j using asm(1)
by linarith

thus ?P i (Suc j)
proof

assume i=j
hence Suc i = Suc j ∧ Suc (Suc j) = Suc (Suc j)

by simp
thus ?P i (Suc j)

using pj by auto
next

assume i<j
have j < card X − 1

using asm(2) by linarith
thus ?P i (Suc j)
using ‹i<j› Suc.hyps asm(1) asm(2) chX finiteX Suc-eq-plus1 abc-bcd-acd

pj
by presburger

qed
qed

qed
qed

lemma thm2-ind2 :
assumes chX : local-long-ch-by-ord f X

and finiteX : finite X
shows ∀m l. (0<(l−m) ∧ (l−m) < l ∧ l < card X) −→ [f (l−m−1); f (l−m);

(f l)]
proof (rule allI)+

fix l m
let ?P = λ k l. [f (k−1); f k; f l]
let ?n = card X
let ?k = (l::nat)−m
show 0 < ?k ∧ ?k < l ∧ l < ?n −→ ?P ?k l
proof (induct m)

case 0
show ?case by simp

next
case (Suc m)
show ?case
proof (clarify)

assume asm: 0 < l − Suc m l − Suc m < l l < ?n
have Suc m = 1 ∨ Suc m > 1 by linarith

42

thus [f (l − Suc m − 1); f (l − Suc m); f l] (is ?goal)
proof

assume Suc m = 1
show ?goal
proof −

have l − Suc m < card X
using asm(2) asm(3) less-trans by blast

then show ?thesis
using ‹Suc m = 1 › asm finiteX thm2-ind1 chX
using Suc-eq-plus1 add-diff-inverse-nat diff-Suc-less

gr-implies-not-zero less-one plus-1-eq-Suc
by (smt local-long-ch-by-ord-def ordering-ord-ijk-loc)

qed
next

assume Suc m > 1
show ?goal

apply (rule-tac a=f l and c=f (l − Suc m − 1) in abc-sym)
apply (rule-tac a=f l and c=f (l−Suc m) and d=f (l−Suc m−1) and

b=f (l−m) in abc-bcd-acd)
proof −

have [f (l−m−1); f (l−m); f l]
using Suc.hyps ‹1 < Suc m› asm(1 ,3) by force

thus [f l; f (l − m); f (l − Suc m)]
using abc-sym One-nat-def diff-zero minus-nat.simps(2)
by metis

have Suc(l − Suc m − 1) = l − Suc m Suc(l − Suc m) = l−m
using Suc-pred asm(1) by presburger+

hence [f (l − Suc m − 1); f (l − Suc m); f (l − m)]
using chX unfolding local-long-ch-by-ord-def local-ordering-def
by (metis asm(2 ,3) less-trans-Suc)

thus [f (l − m); f (l − Suc m); f (l − Suc m − 1)]
using abc-sym by blast

qed
qed

qed
qed

qed

lemma thm2-ind2b:
assumes chX : local-long-ch-by-ord f X

and finiteX : finite X
and ordered-nats: 0<k ∧ k<l ∧ l < card X

shows [f (k−1); f k; f l]
using thm2-ind2 finiteX chX ordered-nats
by (metis diff-diff-cancel less-imp-le)

This is Theorem 2 properly speaking, except for the "chain elements are dis-
tinct" part (which is proved as injectivity of the index later). Follows Schutz
fairly well! The statement Schutz proves under (i) is given in Minkowski-

43

Betweenness.abc-bcd-acd instead.
theorem order-finite-chain:

assumes chX : local-long-ch-by-ord f X
and finiteX : finite X
and ordered-nats: 0 ≤ (i::nat) ∧ i < j ∧ j < l ∧ l < card X

shows [f i; f j; f l]
proof −

let ?n = card X − 1
have ord1 : 0≤i ∧ i<j ∧ j<?n

using ordered-nats by linarith
have e2 : [f i; f j; f (j+1)] using thm2-ind1

using Suc-eq-plus1 chX finiteX ord1
by presburger

have e3 : ∀ k. 0<k ∧ k<l −→ [f (k−1); f k; f l]
using thm2-ind2b chX finiteX ordered-nats
by blast

have j<l−1 ∨ j=l−1
using ordered-nats by linarith

thus ?thesis
proof

assume j<l−1
have [f j; f (j+1); f l]

using e3 abc-abc-neq ordered-nats
using ‹j < l − 1 › less-diff-conv by auto

thus ?thesis
using e2 abc-bcd-abd
by blast

next
assume j=l−1
thus ?thesis using e2

using ordered-nats by auto
qed

qed

corollary order-finite-chain2 :
assumes chX : [f X]

and finiteX : finite X
and ordered-nats: 0 ≤ (i::nat) ∧ i < j ∧ j < l ∧ l < card X

shows [f i; f j; f l]
proof −

have card X > 2 using ordered-nats by (simp add: eval-nat-numeral)
thus ?thesis using order-finite-chain chain-defs short-ch-card(1) by (metis assms

nat-neq-iff)
qed

theorem index-injective:
fixes i::nat and j::nat

44

assumes chX : local-long-ch-by-ord f X
and finiteX : finite X
and indices: i<j j<card X

shows f i 6= f j
proof (cases)

assume Suc i < j
then have [f i; f (Suc(i)); f j]

using order-finite-chain chX finiteX indices(2) by blast
then show ?thesis

using abc-abc-neq by blast
next

assume ¬Suc i < j
hence Suc i = j

using Suc-lessI indices(1) by blast
show ?thesis
proof (cases)

assume Suc j = card X
then have 0<i
proof −

have card X ≥ 3
using assms(1) finiteX long-chain-card-geq by blast

thus ?thesis
using ‹Suc i = j› ‹Suc j = card X› by linarith

qed
then have [f 0 ; f i; f j]

using assms order-finite-chain by blast
thus ?thesis

using abc-abc-neq by blast
next

assume ¬Suc j = card X
then have Suc j < card X

using Suc-lessI indices(2) by blast
then have [f i; f j; f (Suc j)]

using chX finiteX indices(1) order-finite-chain by blast
thus ?thesis

using abc-abc-neq by blast
qed

qed

theorem index-injective2 :
fixes i::nat and j::nat
assumes chX : [f X]

and finiteX : finite X
and indices: i<j j<card X

shows f i 6= f j
using assms(1) unfolding ch-by-ord-def

proof (rule disjE)
assume asm: short-ch-by-ord f X
hence card X = 2 using short-ch-card(1) by simp

45

hence j=1 i=0 using indices plus-1-eq-Suc by auto
thus ?thesis using asm unfolding chain-defs by force

next
assume local-long-ch-by-ord f X thus ?thesis using index-injective assms by

presburger
qed

Surjectivity of the index function is easily derived from the definition of
local-ordering, so we obtain bijectivity as an easy corollary to the second
part of Theorem 2.
corollary index-bij-betw:

assumes chX : local-long-ch-by-ord f X
and finiteX : finite X

shows bij-betw f {0 ..<card X} X
proof (unfold bij-betw-def , (rule conjI))

show inj-on f {0 ..<card X}
using index-injective[OF assms] by (metis (mono-tags) atLeastLessThan-iff

inj-onI nat-neq-iff)
{

fix n assume n ∈ {0 ..<card X}
then have f n ∈ X

using assms unfolding chain-defs local-ordering-def by auto
} moreover {

fix x assume x ∈ X
then have ∃n ∈ {0 ..<card X}. f n = x

using assms unfolding chain-defs local-ordering-def
using atLeastLessThan-iff bot-nat-0 .extremum by blast

} ultimately show f ‘ {0 ..<card X} = X by blast
qed

corollary index-bij-betw2 :
assumes chX : [f X]

and finiteX : finite X
shows bij-betw f {0 ..<card X} X
using assms(1) unfolding ch-by-ord-def

proof (rule disjE)
assume local-long-ch-by-ord f X
thus bij-betw f {0 ..<card X} X using index-bij-betw assms by presburger

next
assume asm: short-ch-by-ord f X
show bij-betw f {0 ..<card X} X
proof (unfold bij-betw-def , (rule conjI))

show inj-on f {0 ..<card X}
using index-injective2 [OF assms] by (metis (mono-tags) atLeastLessThan-iff

inj-onI nat-neq-iff)
{

fix n assume asm2 : n ∈ {0 ..<card X}
have f n ∈ X

using asm asm2 short-ch-card(1) apply (simp add: eval-nat-numeral)

46

by (metis One-nat-def less-Suc0 less-antisym short-ch-ord-in)
} moreover {

fix x assume asm2 : x ∈ X
have ∃n ∈ {0 ..<card X}. f n = x
using short-ch-card(1) short-ch-by-ord-def asm asm2 atLeast0-lessThan-Suc

by (auto simp: eval-nat-numeral)[1]
} ultimately show f ‘ {0 ..<card X} = X by blast

qed
qed

20.3 Additional lemmas about chains
lemma first-neq-last:

assumes [f Q|x..z]
shows x 6=z
apply (cases rule: finite-chain-with-cases[OF assms])
using chain-defs apply (metis Suc-1 card-2-iff diff-Suc-1)
using index-injective[of f Q 0 card Q − 1]
by (metis card.infinite diff-is-0-eq diff-less gr0I le-trans less-imp-le-nat

less-numeral-extra(1) numeral-le-one-iff semiring-norm(70))

lemma index-middle-element:
assumes [f X |a..b..c]
shows ∃n. 0<n ∧ n<(card X − 1) ∧ f n = b

proof −
obtain n where n-def : n < card X f n = b

using local-ordering-def assms chain-defs by (metis two-ordered-loc)
have 0<n ∧ n<(card X − 1) ∧ f n = b

using assms chain-defs n-def
by (metis (no-types, lifting) Suc-pred ′ gr-implies-not0 less-SucE not-gr-zero)

thus ?thesis by blast
qed

Another corollary to Theorem 2, without mentioning indices.
corollary fin-ch-betw: [f X |a..b..c] =⇒ [a;b;c]

using order-finite-chain2 index-middle-element
using finite-chain-def finite-chain-with-def finite-long-chain-with-def
by (metis (no-types, lifting) card-gt-0-iff diff-less empty-iff le-eq-less-or-eq less-one)

lemma long-chain-2-imp-3 : [[[f X |a..c]; card X > 2]] =⇒ ∃ b. [f X |a..b..c]
using points-in-chain first-neq-last finite-long-chain-with-def
by (metis card-2-iff ′ numeral-less-iff semiring-norm(75 ,78))

lemma finite-chain2-betw: [[[f X |a..c]; card X > 2]] =⇒ ∃ b. [a;b;c]
using fin-ch-betw long-chain-2-imp-3 by metis

47

lemma finite-long-chain-with-alt [chain-alts]: [f Q|x..y..z]←→ [f Q|x..z] ∧ [x;y;z]
∧ y∈Q
proof

{
assume [f Q|x .. z] ∧ [x;y;z] ∧ y∈Q
thus [f Q|x..y..z]

using abc-abc-neq finite-long-chain-with-def by blast
} {

assume asm: [f Q|x..y..z]
show [f Q|x .. z] ∧ [x;y;z] ∧ y∈Q
using asm fin-ch-betw finite-long-chain-with-def by blast

}
qed

lemma finite-long-chain-with-card: [f Q|x..y..z] =⇒ card Q ≥ 3
unfolding chain-defs numeral-3-eq-3 by fastforce

lemma finite-long-chain-with-alt2 :
assumes finite Q local-long-ch-by-ord f Q f 0 = x f (card Q − 1) = z [x;y;z] ∧

y∈Q
shows [f Q|x..y..z]
using assms finite-chain-alt finite-chain-with-def finite-long-chain-with-alt by

blast

lemma finite-long-chain-with-alt3 :
assumes finite Q local-long-ch-by-ord f Q f 0 = x f (card Q − 1) = z y 6=x ∧

y 6=z ∧ y∈Q
shows [f Q|x..y..z]
using assms finite-chain-alt finite-chain-with-def finite-long-chain-with-def by

auto

lemma chain-sym-obtain:
assumes [f X |a..b..c]
obtains g where [g X |c..b..a] and g=(λn. f (card X − 1 − n))
using ordering-sym-loc[of betw X f] abc-sym assms unfolding chain-defs
using first-neq-last points-in-long-chain(3)
by (metis assms diff-self-eq-0 empty-iff finite-long-chain-with-def insert-iff mi-

nus-nat.diff-0)

lemma chain-sym:
assumes [f X |a..b..c]

shows [λn. f (card X − 1 − n) X |c..b..a]
using chain-sym-obtain [where f=f and a=a and b=b and c=c and X=X]
using assms(1) by blast

48

lemma chain-sym2 :
assumes [f X |a..c]

shows [λn. f (card X − 1 − n) X |c..a]
proof −

{
assume asm: a = f 0 c = f (card X − 1)

and asm-short: short-ch-by-ord f X
hence cardX : card X = 2

using short-ch-card(1) by auto
hence ac: f 0 = a f 1 = c

by (simp add: asm)+
have n=1 ∨ n=0 if n<card X for n

using cardX that by linarith
hence fn-eq: (λn. if n = 0 then f 1 else f 0) = (λn. f (card X − Suc n)) if

n<card X for n
by (metis One-nat-def Zero-not-Suc ac(2) asm(2) not-gr-zero old.nat.inject

zero-less-diff)
have c = f (card X − 1 − 0) and a = f (card X − 1 − (card X − 1))
and short-ch-by-ord (λn. f (card X − 1 − n)) X

apply (simp add: asm)+
using short-ch-sym[OF asm-short] fn-eq ‹f 1 = c› asm(2) short-ch-by-ord-def

by fastforce
}
consider short-ch-by-ord f X |∃ b. [f X |a..b..c]

using assms long-chain-2-imp-3 finite-chain-with-alt by fastforce
thus ?thesis

apply cases
using ‹[[a=f 0 ; c=f (card X−1); short-ch-by-ord f X]] =⇒ short-ch-by-ord (λn.

f (card X −1−n)) X›
assms finite-chain-alt finite-chain-with-def apply auto[1]

using chain-sym finite-long-chain-with-alt by blast
qed

lemma chain-sym-obtain2 :
assumes [f X |a..c]
obtains g where [g X |c..a] and g=(λn. f (card X − 1 − n))
using assms chain-sym2 by auto

end

21 Preliminary Results for Kinematic Triangles
and Paths/Betweenness

Theorem 3 (collinearity) First we prove some lemmas that will be very help-
ful.
context MinkowskiPrimitive begin

49

lemma triangle-permutes [no-atp]:
assumes 4 a b c
shows 4 a c b 4 b a c 4 b c a 4 c a b 4 c b a
using assms by (auto simp add: kinematic-triangle-def)+

lemma triangle-paths [no-atp]:
assumes tri-abc: 4 a b c
shows path-ex a b path-ex a c path-ex b c

using tri-abc by (auto simp add: kinematic-triangle-def)+

lemma triangle-paths-unique:
assumes tri-abc: 4 a b c
shows ∃ !ab. path ab a b
using path-unique tri-abc triangle-paths(1) by auto

The definition of the kinematic triangle says that there exist paths that a
and b pass through, and a and c pass through etc that are not equal. But
we can show there is a unique ab that a and b pass through, and assuming
there is a path abc that a, b, c pass through, it must be unique. Therefore
ab = abc and ac = abc, but ab 6= ac, therefore False. Lemma tri-three-paths
is not in the books but might simplify some path obtaining.
lemma triangle-diff-paths:

assumes tri-abc: 4 a b c
shows ¬ (∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q)

proof (rule notI)
assume not-thesis: ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q

then obtain abc where path-abc: abc ∈ P ∧ a ∈ abc ∧ b ∈ abc ∧ c ∈ abc by
auto

have abc-neq: a 6= b ∧ a 6= c ∧ b 6= c using tri-abc kinematic-triangle-def by
simp

have ∃ ab∈P. ∃ ac∈P. ab 6= ac ∧ a ∈ ab ∧ b ∈ ab ∧ a ∈ ac ∧ c ∈ ac
using tri-abc kinematic-triangle-def by metis

then obtain ab ac where ab-ac-relate: ab ∈ P ∧ ac ∈ P ∧ ab 6= ac ∧ {a,b} ⊆
ab ∧ {a,c} ⊆ ac

by blast
have ∃ !ab∈P. a ∈ ab ∧ b ∈ ab using tri-abc triangle-paths-unique by blast
then have ab-eq-abc: ab = abc using path-abc ab-ac-relate by auto
have ∃ !ac∈P. a ∈ ac ∧ b ∈ ac using tri-abc triangle-paths-unique by blast
then have ac-eq-abc: ac = abc using path-abc ab-ac-relate eq-paths abc-neq by

auto
have ab = ac using ab-eq-abc ac-eq-abc by simp
thus False using ab-ac-relate by simp

qed

lemma tri-three-paths [elim]:

50

assumes tri-abc: 4 a b c
shows ∃ ab bc ca. path ab a b ∧ path bc b c ∧ path ca c a ∧ ab 6= bc ∧ ab 6= ca
∧ bc 6= ca
using tri-abc triangle-diff-paths triangle-paths(2 ,3) triangle-paths-unique
by fastforce

lemma triangle-paths-neq:
assumes tri-abc: 4 a b c

and path-ab: path ab a b
and path-ac: path ac a c

shows ab 6= ac
using assms triangle-diff-paths by blast

end
context MinkowskiBetweenness begin

lemma abc-ex-path-unique:
assumes abc: [a;b;c]
shows ∃ !Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q

proof −
have a-neq-c: a 6= c using abc-ac-neq abc by simp
have ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q using abc-ex-path abc by simp
then obtain P Q where path-P: P ∈ P and abc-inP: a ∈ P ∧ b ∈ P ∧ c ∈ P

and path-Q: Q ∈ P and abc-in-Q: a ∈ Q ∧ b ∈ Q ∧ c ∈ Q by
auto

then have P = Q using a-neq-c eq-paths by blast
thus ?thesis using eq-paths a-neq-c using abc-inP path-P by auto

qed

lemma betw-c-in-path:
assumes abc: [a;b;c]

and path-ab: path ab a b
shows c ∈ ab

using eq-paths abc-ex-path assms by blast

lemma betw-b-in-path:
assumes abc: [a;b;c]

and path-ab: path ac a c
shows b ∈ ac

using assms abc-ex-path-unique path-unique by blast

lemma betw-a-in-path:
assumes abc: [a;b;c]

and path-ab: path bc b c
shows a ∈ bc

using assms abc-ex-path-unique path-unique by blast

lemma triangle-not-betw-abc:

51

assumes tri-abc: 4 a b c
shows ¬ [a;b;c]

using tri-abc abc-ex-path triangle-diff-paths by blast

lemma triangle-not-betw-acb:
assumes tri-abc: 4 a b c
shows ¬ [a;c;b]

by (simp add: tri-abc triangle-not-betw-abc triangle-permutes(1))

lemma triangle-not-betw-bac:
assumes tri-abc: 4 a b c
shows ¬ [b;a;c]

by (simp add: tri-abc triangle-not-betw-abc triangle-permutes(2))

lemma triangle-not-betw-any:
assumes tri-abc: 4 a b c
shows ¬ (∃ d∈{a,b,c}. ∃ e∈{a,b,c}. ∃ f∈{a,b,c}. [d;e;f])
by (metis abc-ex-path abc-abc-neq empty-iff insertE tri-abc triangle-diff-paths)

end

22 3.2 First collinearity theorem
theorem (in MinkowskiChain) collinearity-alt2 :

assumes tri-abc: 4 a b c
and path-de: path de d e

and path-ab: path ab a b
and bcd: [b;c;d]
and cea: [c;e;a]

shows ∃ f∈de∩ab. [a;f ;b]
proof −

have ∃ f∈ab ∩ de. ∃X ord. [ord X |a..f ..b]
proof −

have path-ex a c using tri-abc triangle-paths(2) by auto
then obtain ac where path-ac: path ac a c by auto
have path-ex b c using tri-abc triangle-paths(3) by auto
then obtain bc where path-bc: path bc b c by auto
have ab-neq-ac: ab 6= ac using triangle-paths-neq path-ab path-ac tri-abc by

fastforce
have ab-neq-bc: ab 6= bc using eq-paths ab-neq-ac path-ab path-ac path-bc by

blast
have ac-neq-bc: ac 6= bc using eq-paths ab-neq-bc path-ab path-ac path-bc by

blast
have d-in-bc: d ∈ bc using bcd betw-c-in-path path-bc by blast
have e-in-ac: e ∈ ac using betw-b-in-path cea path-ac by blast
show ?thesis

using O6-old [where Q = ab and R = ac and S = bc and T = de and a
= a and b = b and c = c]

52

ab-neq-ac ab-neq-bc ac-neq-bc path-ab path-bc path-ac path-de bcd cea
d-in-bc e-in-ac

by auto
qed
thus ?thesis using fin-ch-betw by blast

qed

theorem (in MinkowskiChain) collinearity-alt:
assumes tri-abc: 4 a b c

and path-de: path de d e
and bcd: [b;c;d]
and cea: [c;e;a]

shows ∃ ab. path ab a b ∧ (∃ f∈de∩ab. [a;f ;b])
proof −

have ex-path-ab: path-ex a b
using tri-abc triangle-paths-unique by blast

then obtain ab where path-ab: path ab a b
by blast

have ∃ f∈ab ∩ de. ∃X g. [g X |a..f ..b]
proof −

have path-ex a c using tri-abc triangle-paths(2) by auto
then obtain ac where path-ac: path ac a c by auto
have path-ex b c using tri-abc triangle-paths(3) by auto
then obtain bc where path-bc: path bc b c by auto
have ab-neq-ac: ab 6= ac using triangle-paths-neq path-ab path-ac tri-abc by

fastforce
have ab-neq-bc: ab 6= bc using eq-paths ab-neq-ac path-ab path-ac path-bc by

blast
have ac-neq-bc: ac 6= bc using eq-paths ab-neq-bc path-ab path-ac path-bc by

blast
have d-in-bc: d ∈ bc using bcd betw-c-in-path path-bc by blast
have e-in-ac: e ∈ ac using betw-b-in-path cea path-ac by blast
show ?thesis

using O6-old [where Q = ab and R = ac and S = bc and T = de and a
= a and b = b and c = c]

ab-neq-ac ab-neq-bc ac-neq-bc path-ab path-bc path-ac path-de bcd cea
d-in-bc e-in-ac

by auto
qed
thus ?thesis using fin-ch-betw path-ab by fastforce

qed

theorem (in MinkowskiChain) collinearity:
assumes tri-abc: 4 a b c

and path-de: path de d e
and bcd: [b;c;d]
and cea: [c;e;a]

53

shows (∃ f∈de∩(path-of a b). [a;f ;b])
proof −

let ?ab = path-of a b
have path-ab: path ?ab a b

using tri-abc theI ′ [OF triangle-paths-unique] by blast
have ∃ f∈?ab ∩ de. ∃X ord. [ord X |a..f ..b]
proof −

have path-ex a c using tri-abc triangle-paths(2) by auto
then obtain ac where path-ac: path ac a c by auto
have path-ex b c using tri-abc triangle-paths(3) by auto
then obtain bc where path-bc: path bc b c by auto
have ab-neq-ac: ?ab 6= ac using triangle-paths-neq path-ab path-ac tri-abc by

fastforce
have ab-neq-bc: ?ab 6= bc using eq-paths ab-neq-ac path-ab path-ac path-bc by

blast
have ac-neq-bc: ac 6= bc using eq-paths ab-neq-bc path-ab path-ac path-bc by

blast
have d-in-bc: d ∈ bc using bcd betw-c-in-path path-bc by blast
have e-in-ac: e ∈ ac using betw-b-in-path cea path-ac by blast
show ?thesis

using O6-old [where Q = ?ab and R = ac and S = bc and T = de and a
= a and b = b and c = c]

ab-neq-ac ab-neq-bc ac-neq-bc path-ab path-bc path-ac path-de bcd cea
d-in-bc e-in-ac

IntI Int-commute
by (metis (no-types, lifting))

qed
thus ?thesis using fin-ch-betw by blast

qed

23 Additional results for Paths and Unreachables
context MinkowskiPrimitive begin

The degenerate case.
lemma big-bang:

assumes no-paths: P = {}
shows ∃ a. E = {a}

proof −
have ∃ a. a ∈ E using nonempty-events by blast
then obtain a where a-event: a ∈ E by auto
have ¬ (∃ b∈E . b 6= a)
proof (rule notI)

assume ∃ b∈E . b 6= a
then have ∃Q. Q ∈ P using events-paths a-event by auto
thus False using no-paths by simp

qed
then have ∀ b∈E . b = a by simp
thus ?thesis using a-event by auto

54

qed

lemma two-events-then-path:
assumes two-events: ∃ a∈E . ∃ b∈E . a 6= b
shows ∃Q. Q ∈ P

proof −
have (∀ a. E 6= {a}) −→ P 6= {} using big-bang by blast
then have P 6= {} using two-events by blast
thus ?thesis by blast

qed

lemma paths-are-events: ∀Q∈P. ∀ a∈Q. a ∈ E
by simp

lemma same-empty-unreach:
[[Q ∈ P; a ∈ Q]] =⇒ unreach−on Q from a = {}

apply (unfold unreachable-subset-def)
by simp

lemma same-path-reachable:
[[Q ∈ P; a ∈ Q; b ∈ Q]] =⇒ a ∈ Q − unreach−on Q from b

by (simp add: same-empty-unreach)

If we have two paths crossing and a is on the crossing point, and b is on one
of the paths, then a is in the reachable part of the path b is on.
lemma same-path-reachable2 :
[[Q ∈ P; R ∈ P; a ∈ Q; a ∈ R; b ∈ Q]] =⇒ a ∈ R − unreach−on R from b
unfolding unreachable-subset-def by blast

lemma cross-in-reachable:
assumes path-Q: Q ∈ P

and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and b-inR: b ∈ R

shows b ∈ R − unreach−on R from a
unfolding unreachable-subset-def using a-inQ b-inQ b-inR path-Q by auto

lemma reachable-path:
assumes path-Q: Q ∈ P

and b-event: b ∈ E
and a-reachable: a ∈ Q − unreach−on Q from b

shows ∃R∈P. a ∈ R ∧ b ∈ R
proof −

have a-inQ: a ∈ Q using a-reachable by simp
have Q /∈ P ∨ b /∈ E ∨ b ∈ Q ∨ (∃R∈P. b ∈ R ∧ a ∈ R)

using a-reachable unreachable-subset-def by auto
then have b ∈ Q ∨ (∃R∈P. b ∈ R ∧ a ∈ R) using path-Q b-event by simp
thus ?thesis

55

proof (rule disjE)
assume b ∈ Q
thus ?thesis using a-inQ path-Q by auto

next
assume ∃R∈P. b ∈ R ∧ a ∈ R
thus ?thesis using conj-commute by simp

qed
qed

end
context MinkowskiBetweenness begin

lemma ord-path-of :
assumes [a;b;c]
shows a ∈ path-of b c b ∈ path-of a c c ∈ path-of a b

and path-of a b = path-of a c path-of a b = path-of b c
proof −

show a ∈ path-of b c
using betw-a-in-path[of a b c path-of b c] path-of-ex abc-ex-path-unique abc-abc-neq

assms
by (smt (z3) betw-a-in-path the1-equality)

show b ∈ path-of a c
using betw-b-in-path[of a b c path-of a c] path-of-ex abc-ex-path-unique abc-abc-neq

assms
by (smt (z3) betw-b-in-path the1-equality)

show c ∈ path-of a b
using betw-c-in-path[of a b c path-of a b] path-of-ex abc-ex-path-unique abc-abc-neq

assms
by (smt (z3) betw-c-in-path the1-equality)

show path-of a b = path-of a c
by (metis (mono-tags) abc-ac-neq assms betw-b-in-path betw-c-in-path ends-notin-segment

seg-betw)
show path-of a b = path-of b c

by (metis (mono-tags) assms betw-a-in-path betw-c-in-path ends-notin-segment
seg-betw)
qed

Schutz defines chains as subsets of paths. The result below proves that even
though we do not include this fact in our definition, it still holds, at least
for finite chains.

Notice that this whole proof would be unnecessary if including path-belongingness
in the definition, as Schutz does. This would also keep path-belongingness
independent of axiom O1 and O4, thus enabling an independent statement
of axiom O6, which perhaps we now lose. In exchange, our definition is
slightly weaker (for card X ≥ 3 and infinite X).
lemma obtain-index-fin-chain:

assumes [f X] x∈X finite X

56

obtains i where f i = x i<card X
proof −

have ∃ i<card X . f i = x
using assms(1) unfolding ch-by-ord-def

proof (rule disjE)
assume asm: short-ch-by-ord f X
hence card X = 2

using short-ch-card(1) by auto
thus ∃ i<card X . f i = x

using asm assms(2) unfolding chain-defs by force
next

assume asm: local-long-ch-by-ord f X
thus ∃ i<card X . f i = x

using asm assms(2 ,3) unfolding chain-defs local-ordering-def by blast
qed
thus ?thesis using that by blast

qed

lemma obtain-index-inf-chain:
assumes [f X] x∈X infinite X
obtains i where f i = x
using assms unfolding chain-defs local-ordering-def by blast

lemma fin-chain-on-path2 :
assumes [f X] finite X
shows ∃P∈P. X⊆P
using assms(1) unfolding ch-by-ord-def

proof (rule disjE)
assume short-ch-by-ord f X
thus ?thesis

using short-ch-by-ord-def by auto
next

assume asm: local-long-ch-by-ord f X
have [f 0 ;f 1 ;f 2]

using order-finite-chain asm assms(2) local-long-ch-by-ord-def by auto
then obtain P where P∈P {f 0 ,f 1 ,f 2} ⊆ P

by (meson abc-ex-path empty-subsetI insert-subset)
then have path P (f 0) (f 1)

using ‹[f 0 ;f 1 ;f 2]› by (simp add: abc-abc-neq)
{

fix x assume x∈X
then obtain i where i: f i = x i<card X

using obtain-index-fin-chain assms by blast
consider i=0∨i=1 |i>1 by linarith
hence x∈P
proof (cases)

case 1 thus ?thesis
using i(1) ‹{f 0 , f 1 , f 2} ⊆ P› by auto

57

next
case 2
hence [f 0 ;f 1 ;f i]

using assms i(2) order-finite-chain2 by auto
hence {f 0 ,f 1 ,f i}⊆P

using ‹path P (f 0) (f 1)› betw-c-in-path by blast
thus ?thesis by (simp add: i(1))

qed
}
thus ?thesis

using ‹P∈P› by auto
qed

lemma fin-chain-on-path:
assumes [f X] finite X
shows ∃ !P∈P. X⊆P

proof −
obtain P where P: P∈P X⊆P

using fin-chain-on-path2 [OF assms] by auto
obtain a b where ab: a∈X b∈X a 6=b
using assms(1) unfolding chain-defs by (metis assms(2) insertCI three-in-set3)

thus ?thesis using P ab by (meson eq-paths in-mono)
qed

lemma fin-chain-on-path3 :
assumes [f X] finite X a∈X b∈X a 6=b
shows X ⊆ path-of a b

proof −
let ?ab = path-of a b
obtain P where P: P∈P X⊆P using fin-chain-on-path2 [OF assms(1 ,2)] by

auto
have path P a b using P assms(3−5) by auto
then have path ?ab a b using path-of-ex by blast
hence ?ab = P using eq-paths ‹path P a b› by auto
thus X ⊆ path-of a b using P by simp

qed

end
context MinkowskiUnreachable begin

First some basic facts about the primitive notions, which seem to belong
here. I don’t think any/all of these are explicitly proved in Schutz.
lemma no-empty-paths [simp]:

assumes Q∈P
shows Q 6={}

58

proof −
obtain a where a∈E using nonempty-events by blast
have a∈Q ∨ a /∈Q by auto
thus ?thesis
proof

assume a∈Q
thus ?thesis by blast

next
assume a /∈Q
then obtain b where b∈unreach−on Q from a

using two-in-unreach ‹a ∈ E› assms
by blast

thus ?thesis
using unreachable-subset-def by auto

qed
qed

lemma events-ex-path:
assumes ge1-path: P 6= {}
shows ∀ x∈E . ∃Q∈P. x ∈ Q

proof
fix x
assume x-event: x ∈ E
have ∃Q. Q ∈ P using ge1-path using ex-in-conv by blast
then obtain Q where path-Q: Q ∈ P by auto
then have ∃ y. y ∈ Q using no-empty-paths by blast
then obtain y where y-inQ: y ∈ Q by auto
then have y-event: y ∈ E using in-path-event path-Q by simp
have ∃P∈P. x ∈ P
proof cases

assume x = y
thus ?thesis using y-inQ path-Q by auto

next
assume x 6= y
thus ?thesis using events-paths x-event y-event by auto

qed
thus ∃Q∈P. x ∈ Q by simp

qed

lemma unreach-ge2-then-ge2 :
assumes ∃ x∈unreach−on Q from b. ∃ y∈unreach−on Q from b. x 6= y
shows ∃ x∈Q. ∃ y∈Q. x 6= y

using assms unreachable-subset-def by auto

This lemma just proves that the chain obtained to bound the unreachable
set of a path is indeed on that path. Extends I6; requires Theorem 2; used
in Theorem 13. Seems to be assumed in Schutz’ chain notation in I6.
lemma chain-on-path-I6 :

59

assumes path-Q: Q∈P
and event-b: b/∈Q b∈E
and unreach: Qx ∈ unreach−on Q from b Qz ∈ unreach−on Q from b Qx 6=

Qz

and X-def : [f X |Qx..Qz]
(∀ i∈{1 .. card X − 1}. (f i) ∈ unreach−on Q from b ∧ (∀Qy∈E .

[(f (i−1)); Qy; f i] −→ Qy ∈ unreach−on Q from b))
shows X⊆Q

proof −
have 1 : path Q Qx Qz using unreachable-subset-def unreach path-Q by simp
then have 2 : Q = path-of Qx Qz using path-of-ex[of Qx Qz] by (meson eq-paths)
have X⊆path-of Qx Qz

proof (rule fin-chain-on-path3 [of f])
from unreach(3) show Qx 6= Qz by simp
from X-def chain-defs show [f X] finite X by metis+
from assms(7) points-in-chain show Qx ∈ X Qz ∈ X by auto

qed
thus ?thesis using 2 by simp

qed

end

24 Results about Paths as Sets

Note several of the following don’t need MinkowskiPrimitive, they are just
Set lemmas; nevertheless I’m naming them and writing them this way for
clarity.
context MinkowskiPrimitive begin

lemma distinct-paths:
assumes Q ∈ P

and R ∈ P
and d /∈ Q
and d ∈ R

shows R 6= Q
using assms by auto

lemma distinct-paths2 :
assumes Q ∈ P

and R ∈ P
and ∃ d. d /∈ Q ∧ d ∈ R

shows R 6= Q
using assms by auto

lemma external-events-neq:
[[Q ∈ P; a ∈ Q; b ∈ E ; b /∈ Q]] =⇒ a 6= b

by auto

60

lemma notin-cross-events-neq:
[[Q ∈ P; R ∈ P; Q 6= R; a ∈ Q; b ∈ R; a /∈ R∩Q]] =⇒ a 6= b

by blast

lemma nocross-events-neq:
[[Q ∈ P; R ∈ P; a ∈ Q; b ∈ R; R∩Q = {}]] =⇒ a 6= b

by auto

Given a nonempty path Q, and an external point d, we can find another
path R passing through d (by I2 aka events-paths). This path is distinct
from Q, as it passes through a point external to it.
lemma external-path:

assumes path-Q: Q ∈ P
and a-inQ: a ∈ Q
and d-notinQ: d /∈ Q
and d-event: d ∈ E

shows ∃R∈P. d ∈ R
proof −

have a-neq-d: a 6= d using a-inQ d-notinQ by auto
thus ∃R∈P. d ∈ R using events-paths by (meson a-inQ d-event in-path-event

path-Q)
qed

lemma distinct-path:
assumes Q ∈ P

and a ∈ Q
and d /∈ Q
and d ∈ E

shows ∃R∈P. R 6= Q
using assms external-path by metis

lemma external-distinct-path:
assumes Q ∈ P

and a ∈ Q
and d /∈ Q
and d ∈ E

shows ∃R∈P. R 6= Q ∧ d ∈ R
using assms external-path by fastforce

end

25 3.3 Boundedness of the unreachable set
25.1 Theorem 4 (boundedness of the unreachable set)

The same assumptions as I7, different conclusion. This doesn’t just give us
boundedness, it gives us another event outside of the unreachable set, as
long as we have one already. I7 conclusion: ∃ g X Qn. [g X |Qx..Qy..Qn] ∧

61

Qn ∈ Q − unreach−on Q from b
theorem (in MinkowskiUnreachable) unreachable-set-bounded:

assumes path-Q: Q ∈ P
and b-nin-Q: b /∈ Q
and b-event: b ∈ E
and Qx-reachable: Qx ∈ Q − unreach−on Q from b
and Qy-unreachable: Qy ∈ unreach−on Q from b

shows ∃Qz∈Q − unreach−on Q from b. [Qx;Qy;Qz] ∧ Qx 6= Qz
using assms I7-old finite-long-chain-with-def fin-ch-betw
by (metis first-neq-last)

25.2 Theorem 5 (first existence theorem)

The lemma below is used in the contradiction in external-event, which is the
essential part to Theorem 5(i).
lemma (in MinkowskiUnreachable) only-one-path:

assumes path-Q: Q ∈ P
and all-inQ: ∀ a∈E . a ∈ Q
and path-R: R ∈ P

shows R = Q
proof (rule ccontr)

assume ¬ R = Q
then have R-neq-Q: R 6= Q by simp
have E = Q

by (simp add: all-inQ antisym path-Q path-sub-events subsetI)
hence R⊂Q

using R-neq-Q path-R path-sub-events by auto
obtain c where c/∈R c∈Q

using ‹R ⊂ Q› by blast
then obtain a b where path R a b

using ‹E = Q› path-R two-in-unreach unreach-ge2-then-ge2 by blast
have a∈Q b∈Q

using ‹E = Q› ‹path R a b› in-path-event by blast+
thus False using eq-paths

using R-neq-Q ‹path R a b› path-Q by blast
qed

context MinkowskiSpacetime begin

Unfortunately, we cannot assume that a path exists without the axiom of
dimension.
lemma external-event:

assumes path-Q: Q ∈ P
shows ∃ d∈E . d /∈ Q

proof (rule ccontr)
assume ¬ (∃ d∈E . d /∈ Q)
then have all-inQ: ∀ d∈E . d ∈ Q by simp
then have only-one-path: ∀P∈P. P = Q by (simp add: only-one-path path-Q)

62

thus False using ex-3SPRAY three-SPRAY-ge4 four-paths by auto
qed

Now we can prove the first part of the theorem’s conjunction. This follows
pretty much exactly the same pattern as the book, except it relies on more
intermediate lemmas.
theorem ge2-events:

assumes path-Q: Q ∈ P
and a-inQ: a ∈ Q

shows ∃ b∈Q. b 6= a
proof −

have d-notinQ: ∃ d∈E . d /∈ Q using path-Q external-event by blast
then obtain d where d ∈ E and d /∈ Q by auto
thus ?thesis using two-in-unreach [where Q = Q and b = d] path-Q un-

reach-ge2-then-ge2 by metis
qed

Simple corollary which is easier to use when we don’t have one event on a
path yet. Anything which uses this implicitly used no-empty-paths on top
of ge2-events.
lemma ge2-events-lax:

assumes path-Q: Q ∈ P
shows ∃ a∈Q. ∃ b∈Q. a 6= b

proof −
have ∃ a∈E . a ∈ Q using path-Q no-empty-paths by (meson ex-in-conv in-path-event)
thus ?thesis using path-Q ge2-events by blast

qed

lemma ex-crossing-path:
assumes path-Q: Q ∈ P
shows ∃R∈P. R 6= Q ∧ (∃ c. c ∈ R ∧ c ∈ Q)

proof −
obtain a where a-inQ: a ∈ Q using ge2-events-lax path-Q by blast
obtain d where d-event: d ∈ E

and d-notinQ: d /∈ Q using external-event path-Q by auto
then have a 6= d using a-inQ by auto
then have ex-through-d: ∃R∈P. ∃S∈P. a ∈ R ∧ d ∈ S ∧ R ∩ S 6= {}

using events-paths [where a = a and b = d]
path-Q a-inQ in-path-event d-event by simp

then obtain R S where path-R: R ∈ P
and path-S : S ∈ P
and a-inR: a ∈ R
and d-inS : d ∈ S
and R-crosses-S : R ∩ S 6= {} by auto

have S-neq-Q: S 6= Q using d-notinQ d-inS by auto
show ?thesis
proof cases

assume R = Q
then have Q ∩ S 6= {} using R-crosses-S by simp

63

thus ?thesis using S-neq-Q path-S by blast
next

assume R 6= Q
thus ?thesis using a-inQ a-inR path-R by blast

qed
qed

If we have two paths Q and R with a on Q and b at the intersection of
Q and R, then by two-in-unreach (I5) and Theorem 4 (boundedness of the
unreachable set), there is an unreachable set from a on one side of b on R,
and on the other side of that there is an event which is reachable from a by
some path, which is the path we want.
lemma path-past-unreach:

assumes path-Q: Q ∈ P
and path-R: R ∈ P
and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and b-inR: b ∈ R
and Q-neq-R: Q 6= R
and a-neq-b: a 6= b

shows ∃S∈P. S 6= Q ∧ a ∈ S ∧ (∃ c. c ∈ S ∧ c ∈ R)
proof −

obtain d where d-event: d ∈ E
and d-notinR: d /∈ R using external-event path-R by blast

have b-reachable: b ∈ R − unreach−on R from a using cross-in-reachable path-R
a-inQ b-inQ b-inR path-Q by simp

have a-notinR: a /∈ R using cross-once-notin
Q-neq-R a-inQ a-neq-b b-inQ b-inR path-Q path-R by blast

then obtain u where u ∈ unreach−on R from a
using two-in-unreach a-inQ in-path-event path-Q path-R by blast

then obtain c where c-reachable: c ∈ R − unreach−on R from a
and c-neq-b: b 6= c using unreachable-set-bounded

[where Q = R and Qx = b and b = a and Qy =
u]

path-R d-event d-notinR
using a-inQ a-notinR b-reachable in-path-event path-Q by blast

then obtain S where S-facts: S ∈ P ∧ a ∈ S ∧ (c ∈ S ∧ c ∈ R) using
reachable-path

by (metis Diff-iff a-inQ in-path-event path-Q path-R)
then have S 6= Q using Q-neq-R b-inQ b-inR c-neq-b eq-paths path-R by blast
thus ?thesis using S-facts by auto

qed

theorem ex-crossing-at:
assumes path-Q: Q ∈ P

and a-inQ: a ∈ Q
shows ∃ ac∈P. ac 6= Q ∧ (∃ c. c /∈ Q ∧ a ∈ ac ∧ c ∈ ac)

proof −
obtain b where b-inQ: b ∈ Q

64

and a-neq-b: a 6= b using a-inQ ge2-events path-Q by blast
have ∃R∈P. R 6= Q ∧ (∃ e. e ∈ R ∧ e ∈ Q) by (simp add: ex-crossing-path

path-Q)
then obtain R e where path-R: R ∈ P

and R-neq-Q: R 6= Q
and e-inR: e ∈ R
and e-inQ: e ∈ Q by auto

thus ?thesis
proof cases

assume e-eq-a: e = a
then have ∃ c. c ∈ unreach−on R from b using R-neq-Q a-inQ a-neq-b b-inQ

e-inR path-Q path-R
two-in-unreach path-unique in-path-event by metis

thus ?thesis using R-neq-Q e-eq-a e-inR path-Q path-R
eq-paths ge2-events-lax by metis

next
assume e-neq-a: e 6= a

then have ∃S∈P. S 6= Q ∧ a ∈ S ∧ (∃ c. c ∈ S ∧ c ∈ R)
using path-past-unreach

R-neq-Q a-inQ e-inQ e-inR path-Q path-R by auto
thus ?thesis by (metis R-neq-Q e-inR e-neq-a eq-paths path-Q path-R)

qed
qed

lemma ex-crossing-at-alt:
assumes path-Q: Q ∈ P

and a-inQ: a ∈ Q
shows ∃ ac. ∃ c. path ac a c ∧ ac 6= Q ∧ c /∈ Q

using ex-crossing-at assms by fastforce

end

26 3.4 Prolongation
context MinkowskiSpacetime begin

lemma (in MinkowskiPrimitive) unreach-on-path:
a ∈ unreach−on Q from b =⇒ a ∈ Q

using unreachable-subset-def by simp

lemma (in MinkowskiUnreachable) unreach-equiv:
[[Q ∈ P; R ∈ P; a ∈ Q; b ∈ R; a ∈ unreach−on Q from b]] =⇒ b ∈ unreach−on

R from a
unfolding unreachable-subset-def by auto

theorem prolong-betw:

65

assumes path-Q: Q ∈ P
and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and ab-neq: a 6= b

shows ∃ c∈E . [a;b;c]
proof −

obtain e ae where e-event: e ∈ E
and e-notinQ: e /∈ Q
and path-ae: path ae a e

using ex-crossing-at a-inQ path-Q in-path-event by blast
have b /∈ ae using a-inQ ab-neq b-inQ e-notinQ eq-paths path-Q path-ae by blast
then obtain f where f-unreachable: f ∈ unreach−on ae from b

using two-in-unreach b-inQ in-path-event path-Q path-ae by blast
then have b-unreachable: b ∈ unreach−on Q from f using unreach-equiv

by (metis (mono-tags, lifting) CollectD b-inQ path-Q unreachable-subset-def)
have a-reachable: a ∈ Q − unreach−on Q from f

using same-path-reachable2 [where Q = ae and R = Q and a = a and b
= f]

path-ae a-inQ path-Q f-unreachable unreach-on-path by blast
thus ?thesis

using unreachable-set-bounded [where Qy = b and Q = Q and b = f and
Qx = a]

b-unreachable unreachable-subset-def by auto
qed

lemma (in MinkowskiSpacetime) prolong-betw2 :
assumes path-Q: Q ∈ P

and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and ab-neq: a 6= b

shows ∃ c∈Q. [a;b;c]
by (metis assms betw-c-in-path prolong-betw)

lemma (in MinkowskiSpacetime) prolong-betw3 :
assumes path-Q: Q ∈ P

and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and ab-neq: a 6= b

shows ∃ c∈Q. ∃ d∈Q. [a;b;c] ∧ [a;b;d] ∧ c 6=d
by (metis (full-types) abc-abc-neq abc-bcd-abd a-inQ ab-neq b-inQ path-Q pro-

long-betw2)

lemma finite-path-has-ends:
assumes Q ∈ P

and X ⊆ Q
and finite X
and card X ≥ 3

shows ∃ a∈X . ∃ b∈X . a 6= b ∧ (∀ c∈X . a 6= c ∧ b 6= c −→ [a;c;b])
using assms

66

proof (induct card X − 3 arbitrary: X)
case 0
then have card X = 3

by linarith
then obtain a b c where X-eq: X = {a, b, c}

by (metis card-Suc-eq numeral-3-eq-3)
then have abc-neq: a 6= b a 6= c b 6= c

by (metis ‹card X = 3 › empty-iff insert-iff order-refl three-in-set3)+
then consider [a;b;c] | [b;c;a] | [c;a;b]

using some-betw [of Q a b c] 0 .prems(1) 0 .prems(2) X-eq by auto
thus ?case
proof (cases)

assume [a;b;c]
thus ?thesis — All d not equal to a or c is just d = b, so it immediately follows.

using X-eq abc-neq(2) by blast
next

assume [b;c;a]
thus ?thesis

by (simp add: X-eq abc-neq(1))
next

assume [c;a;b]
thus ?thesis

using X-eq abc-neq(3) by blast
qed

next
case IH : (Suc n)
obtain Y x where X-eq: X = insert x Y and x /∈ Y

by (meson IH .prems(4) Set.set-insert three-in-set3)
then have card Y − 3 = n card Y ≥ 3

using IH .hyps(2) IH .prems(3) X-eq ‹x /∈ Y › by auto
then obtain a b where ab-Y : a ∈ Y b ∈ Y a 6= b

and Y-ends: ∀ c∈Y . (a 6= c ∧ b 6= c) −→ [a;c;b]
using IH (1) [of Y] IH .prems(1−3) X-eq by auto

consider [a;x;b] | [x;b;a] | [b;a;x]
using some-betw [of Q a x b] ab-Y IH .prems(1 ,2) X-eq ‹x /∈ Y › by auto

thus ?case
proof (cases)

assume [a;x;b]
thus ?thesis

using Y-ends X-eq ab-Y by auto
next

assume [x;b;a]
{ fix c

assume c ∈ X x 6= c a 6= c
then have [x;c;a]
by (smt IH .prems(2) X-eq Y-ends ‹[x;b;a]› ab-Y (1) abc-abc-neq abc-bcd-abd

abc-only-cba(3) abc-sym ‹Q ∈ P› betw-b-in-path insert-iff some-betw subsetD)
}
thus ?thesis

67

using X-eq ‹[x;b;a]› ab-Y (1) abc-abc-neq insert-iff by force
next

assume [b;a;x]
{ fix c

assume c ∈ X b 6= c x 6= c
then have [b;c;x]
by (smt IH .prems(2) X-eq Y-ends ‹[b;a;x]› ab-Y (1) abc-abc-neq abc-bcd-acd

abc-only-cba(1)
abc-sym ‹Q ∈ P› betw-a-in-path insert-iff some-betw subsetD)

}
thus ?thesis

using X-eq ‹x /∈ Y › ab-Y (2) by fastforce
qed

qed

lemma obtain-fin-path-ends:
assumes path-X : X∈P

and fin-Q: finite Q
and card-Q: card Q ≥ 3
and events-Q: Q⊆X

obtains a b where a 6=b and a∈Q and b∈Q and ∀ c∈Q. (a 6=c ∧ b 6=c) −→
[a;c;b]
proof −

obtain n where n≥0 and card Q = n+3
using card-Q nat-le-iff-add
by auto

then obtain a b where a 6=b and a∈Q and b∈Q and ∀ c∈Q. (a 6=c ∧ b 6=c) −→
[a;c;b]

using finite-path-has-ends assms ‹n≥0 ›
by metis

thus ?thesis
using that by auto

qed

lemma path-card-nil:
assumes Q∈P
shows card Q = 0

proof (rule ccontr)
assume card Q 6= 0
obtain n where n = card Q

by auto
hence n≥1

using ‹card Q 6= 0 › by linarith
then consider (n1) n=1 | (n2) n=2 | (n3) n≥3

by linarith
thus False
proof (cases)

68

case n1
thus ?thesis

using One-nat-def card-Suc-eq ge2-events-lax singletonD assms(1)
by (metis ‹n = card Q›)

next
case n2
then obtain a b where a 6=b and a∈Q and b∈Q

using ge2-events-lax assms(1) by blast
then obtain c where c∈Q and c 6=a and c 6=b

using prolong-betw2 by (metis abc-abc-neq assms(1))
hence card Q 6= 2

by (metis ‹a ∈ Q› ‹a 6= b› ‹b ∈ Q› card-2-iff ′)
thus False

using ‹n = card Q› ‹n = 2 › by blast
next

case n3
have fin-Q: finite Q
proof −

have (0 ::nat) 6= 1
by simp

then show ?thesis
by (meson ‹card Q 6= 0 › card.infinite)

qed
have card-Q: card Q ≥ 3

using ‹n = card Q› n3 by blast
have Q⊆Q by simp
then obtain a b where a∈Q and b∈Q and a 6=b

and acb: ∀ c∈Q. (c 6=a ∧ c 6=b) −→ [a;c;b]
using obtain-fin-path-ends card-Q fin-Q assms(1)
by metis

then obtain x where [a;b;x] and x∈Q
using prolong-betw2 assms(1) by blast

thus False
by (metis acb abc-abc-neq abc-only-cba(2))

qed
qed

theorem infinite-paths:
assumes P∈P
shows infinite P

proof
assume fin-P: finite P
have P 6={}

by (simp add: assms)
hence card P 6= 0

by (simp add: fin-P)
moreover have ¬(card P ≥ 1)

using path-card-nil

69

by (simp add: assms)
ultimately show False

by simp
qed

end

27 3.5 Second collinearity theorem

We start with a useful betweenness lemma.
lemma (in MinkowskiBetweenness) some-betw2 :

assumes path-Q: Q ∈ P
and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and c-inQ: c ∈ Q

shows a = b ∨ a = c ∨ b = c ∨ [a;b;c] ∨ [b;c;a] ∨ [c;a;b]
using a-inQ b-inQ c-inQ path-Q some-betw by blast

lemma (in MinkowskiPrimitive) paths-tri:
assumes path-ab: path ab a b

and path-bc: path bc b c
and path-ca: path ca c a
and a-notin-bc: a /∈ bc

shows 4 a b c
proof −

have abc-events: a ∈ E ∧ b ∈ E ∧ c ∈ E
using path-ab path-bc path-ca in-path-event by auto

have abc-neq: a 6= b ∧ a 6= c ∧ b 6= c
using path-ab path-bc path-ca by auto

have paths-neq: ab 6= bc ∧ ab 6= ca ∧ bc 6= ca
using a-notin-bc cross-once-notin path-ab path-bc path-ca by blast

show ?thesis
unfolding kinematic-triangle-def
using abc-events abc-neq paths-neq path-ab path-bc path-ca
by auto

qed

lemma (in MinkowskiPrimitive) paths-tri2 :
assumes path-ab: path ab a b

and path-bc: path bc b c
and path-ca: path ca c a
and ab-neq-bc: ab 6= bc

shows 4 a b c
by (meson ab-neq-bc cross-once-notin path-ab path-bc path-ca paths-tri)

Schutz states it more like [[tri-abc; bcd; cea]] =⇒ (path de d e −→ ∃ f∈de.
[a;f ;b]∧[d;e;f]). Equivalent up to usage of impI.

70

theorem (in MinkowskiChain) collinearity2 :
assumes tri-abc: 4 a b c

and bcd: [b;c;d]
and cea: [c;e;a]
and path-de: path de d e

shows ∃ f . [a;f ;b] ∧ [d;e;f]
proof −

obtain ab where path-ab: path ab a b using tri-abc triangle-paths-unique by
blast

then obtain f where afb: [a;f ;b]
and f-in-de: f ∈ de using collinearity tri-abc path-de path-ab bcd

cea by blast

obtain af where path-af : path af a f using abc-abc-neq afb betw-b-in-path path-ab
by blast

have [d;e;f]
proof −

have def-in-de: d ∈ de ∧ e ∈ de ∧ f ∈ de using path-de f-in-de by simp
then have five-poss:f = d ∨ f = e ∨ [e;f ;d] ∨ [f ;d;e] ∨ [d;e;f]

using path-de some-betw2 by blast
have f = d ∨ f = e −→ (∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q)

by (metis abc-abc-neq afb bcd betw-a-in-path betw-b-in-path cea path-ab)
then have f-neq-d-e: f 6= d ∧ f 6= e using tri-abc

using triangle-diff-paths by simp
then consider [e;f ;d] | [f ;d;e] | [d;e;f] using five-poss by linarith
thus ?thesis
proof (cases)

assume efd: [e;f ;d]
obtain dc where path-dc: path dc d c using abc-abc-neq abc-ex-path bcd by

blast
obtain ce where path-ce: path ce c e using abc-abc-neq abc-ex-path cea by

blast
have dc 6=ce

using bcd betw-a-in-path betw-c-in-path cea path-ce path-dc tri-abc trian-
gle-diff-paths

by blast
hence 4 d c e

using paths-tri2 path-ce path-dc path-de by blast
then obtain x where x-in-af : x ∈ af

and dxc: [d;x;c]
using collinearity

[where a = d and b = c and c = e and d = a and e = f and de
= af]

cea efd path-dc path-af by blast
then have x-in-dc: x ∈ dc using betw-b-in-path path-dc by blast
then have x = b using eq-paths by (metis path-af path-dc afb bcd tri-abc

x-in-af
betw-a-in-path betw-c-in-path triangle-diff-paths)

then have [d;b;c] using dxc by simp

71

then have False using bcd abc-only-cba [where a = b and b = c and c =
d] by simp

thus ?thesis by simp
next

assume fde: [f ;d;e]
obtain bd where path-bd: path bd b d using abc-abc-neq abc-ex-path bcd by

blast
obtain ea where path-ea: path ea e a using abc-abc-neq abc-ex-path-unique

cea by blast
obtain fe where path-fe: path fe f e using f-in-de f-neq-d-e path-de by blast
have fe 6=ea

using tri-abc afb cea path-ea path-fe
by (metis abc-abc-neq betw-a-in-path betw-c-in-path triangle-paths-neq)

hence 4 e a f
by (metis path-unique path-af path-ea path-fe paths-tri2)

then obtain y where y-in-bd: y ∈ bd
and eya: [e;y;a] thm collinearity

using collinearity
[where a = e and b = a and c = f and d = b and e = d and de

= bd]
afb fde path-bd path-ea by blast

then have y = c by (metis (mono-tags, lifting)
afb bcd cea path-bd tri-abc
abc-ac-neq betw-b-in-path path-unique triangle-paths(2)

triangle-paths-neq)
then have [e;c;a] using eya by simp
then have False using cea abc-only-cba [where a = c and b = e and c =

a] by simp
thus ?thesis by simp

next
assume [d;e;f]
thus ?thesis by assumption

qed
qed
thus ?thesis using afb f-in-de by blast

qed

28 3.6 Order on a path - Theorems 8 and 9
context MinkowskiSpacetime begin

28.1 Theorem 8 (as in Veblen (1911) Theorem 6)

Note a ′b ′c ′ don’t necessarily form a triangle, as there still needs to be paths
between them.
theorem (in MinkowskiChain) tri-betw-no-path:

assumes tri-abc: 4 a b c
and ab ′c: [a; b ′; c]

72

and bc ′a: [b; c ′; a]
and ca ′b: [c; a ′; b]

shows ¬ (∃Q∈P. a ′ ∈ Q ∧ b ′ ∈ Q ∧ c ′ ∈ Q)
proof −

have abc-a ′b ′c ′-neq: a 6= a ′ ∧ a 6= b ′ ∧ a 6= c ′

∧ b 6= a ′ ∧ b 6= b ′ ∧ b 6= c ′

∧ c 6= a ′ ∧ c 6= b ′ ∧ c 6= c ′

using abc-ac-neq
by (metis ab ′c abc-abc-neq bc ′a ca ′b tri-abc triangle-not-betw-abc trian-

gle-permutes(4))

have tri-betw-no-path-single-case: False
if a ′b ′c ′: [a ′; b ′; c ′] and tri-abc: 4 a b c

and ab ′c: [a; b ′; c] and bc ′a: [b; c ′; a] and ca ′b: [c; a ′; b]
for a b c a ′ b ′ c ′

proof −
have abc-a ′b ′c ′-neq: a 6= a ′ ∧ a 6= b ′ ∧ a 6= c ′

∧ b 6= a ′ ∧ b 6= b ′ ∧ b 6= c ′

∧ c 6= a ′ ∧ c 6= b ′ ∧ c 6= c ′

using abc-abc-neq that by (metis triangle-not-betw-abc triangle-permutes(4))
have c ′b ′a ′: [c ′; b ′; a ′] using abc-sym a ′b ′c ′ by simp
have nopath-a ′c ′b: ¬ (∃Q∈P. a ′ ∈ Q ∧ c ′ ∈ Q ∧ b ∈ Q)
proof (rule notI)

assume ∃Q∈P. a ′ ∈ Q ∧ c ′ ∈ Q ∧ b ∈ Q
then obtain Q where path-Q: Q ∈ P

and a ′-inQ: a ′ ∈ Q
and c ′-inQ: c ′ ∈ Q
and b-inQ: b ∈ Q by blast

then have ac-inQ: a ∈ Q ∧ c ∈ Q using eq-paths
by (metis abc-a ′b ′c ′-neq ca ′b bc ′a betw-a-in-path betw-c-in-path)

thus False using b-inQ path-Q tri-abc triangle-diff-paths by blast
qed
then have tri-a ′bc ′: 4 a ′ b c ′

by (smt bc ′a ca ′b a ′b ′c ′ paths-tri abc-ex-path-unique)
obtain ab ′ where path-ab ′: path ab ′ a b ′ using ab ′c abc-a ′b ′c ′-neq abc-ex-path

by blast
obtain a ′b where path-a ′b: path a ′b a ′ b using tri-a ′bc ′ triangle-paths(1) by

blast
then have ∃ x∈a ′b. [a ′; x; b] ∧ [a; b ′; x]

using collinearity2 [where a = a ′ and b = b and c = c ′ and e = b ′ and
d = a and de = ab ′]

bc ′a betw-b-in-path c ′b ′a ′ path-ab ′ tri-a ′bc ′ by blast
then obtain x where x-in-a ′b: x ∈ a ′b

and a ′xb: [a ′; x; b]
and ab ′x: [a; b ′; x] by blast

have c-in-ab ′: c ∈ ab ′ using ab ′c betw-c-in-path path-ab ′ by auto
have c-in-a ′b: c ∈ a ′b using ca ′b betw-a-in-path path-a ′b by auto
have ab ′-a ′b-distinct: ab ′ 6= a ′b

73

using c-in-a ′b path-a ′b path-ab ′ tri-abc triangle-diff-paths by blast
have ab ′ ∩ a ′b = {c}

using paths-cross-at ab ′-a ′b-distinct c-in-a ′b c-in-ab ′ path-a ′b path-ab ′ by
auto

then have x = c using ab ′x path-ab ′ x-in-a ′b betw-c-in-path by auto
then have [a ′; c; b] using a ′xb by auto
thus ?thesis using ca ′b abc-only-cba by blast

qed

show ?thesis
proof (rule notI)

assume path-a ′b ′c ′: ∃Q∈P. a ′ ∈ Q ∧ b ′ ∈ Q ∧ c ′ ∈ Q
consider [a ′; b ′; c ′] | [b ′; c ′; a ′] | [c ′; a ′; b ′] using some-betw

by (smt abc-a ′b ′c ′-neq path-a ′b ′c ′ bc ′a ca ′b ab ′c tri-abc
abc-ex-path cross-once-notin triangle-diff-paths)

thus False
apply (cases)
using tri-betw-no-path-single-case[of a ′ b ′ c ′] ab ′c bc ′a ca ′b tri-abc apply blast

using tri-betw-no-path-single-case ab ′c bc ′a ca ′b tri-abc triangle-permutes
abc-sym by blast+

qed
qed

28.2 Theorem 9

We now begin working on the transitivity lemmas needed to prove Theorem
9. Multiple lemmas below obtain primed variables (e.g. d ′). These are
starred in Schutz (e.g. d∗), but that notation is already reserved in Isabelle.
lemma unreachable-bounded-path-only:

assumes d ′-def : d ′/∈ unreach−on ab from e d ′∈ab d ′6=e
and e-event: e ∈ E
and path-ab: ab ∈ P
and e-notin-S : e /∈ ab

shows ∃ d ′e. path d ′e d ′ e
proof (rule ccontr)

assume ¬(∃ d ′e. path d ′e d ′ e)
hence ¬(∃R∈P. d ′∈R ∧ e∈R ∧ d ′6=e)

by blast
hence ¬(∃R∈P. e∈R ∧ d ′∈R)

using d ′-def (3) by blast
moreover have ab∈P ∧ e∈E ∧ e/∈ab

by (simp add: e-event e-notin-S path-ab)
ultimately have d ′∈ unreach−on ab from e

unfolding unreachable-subset-def using d ′-def (2)
by blast

thus False
using d ′-def (1) by auto

qed

74

lemma unreachable-bounded-path:
assumes S-neq-ab: S 6= ab

and a-inS : a ∈ S
and e-inS : e ∈ S
and e-neq-a: e 6= a
and path-S : S ∈ P
and path-ab: path ab a b
and path-be: path be b e
and no-de: ¬(∃ de. path de d e)
and abd:[a;b;d]

obtains d ′ d ′e where d ′∈ab ∧ path d ′e d ′ e ∧ [b; d; d ′]
proof −

have e-event: e∈E
using e-inS path-S by auto

have e/∈ab
using S-neq-ab a-inS e-inS e-neq-a eq-paths path-S path-ab by auto

have ab∈P ∧ e/∈ab
using S-neq-ab a-inS e-inS e-neq-a eq-paths path-S path-ab
by auto

have b ∈ ab − unreach−on ab from e
using cross-in-reachable path-ab path-be
by blast

have d ∈ unreach−on ab from e
using no-de abd path-ab e-event ‹e/∈ab›

betw-c-in-path unreachable-bounded-path-only
by blast

have ∃ d ′ d ′e. d ′∈ab ∧ path d ′e d ′ e ∧ [b; d; d ′]
proof −

obtain d ′ where [b; d; d ′] d ′∈ab d ′/∈ unreach−on ab from e b 6=d ′ e 6=d ′

using unreachable-set-bounded ‹b ∈ ab − unreach−on ab from e› ‹d ∈ un-
reach−on ab from e› e-event ‹e/∈ab› path-ab

by (metis DiffE)
then obtain d ′e where path d ′e d ′ e

using unreachable-bounded-path-only e-event ‹e/∈ab› path-ab
by blast

thus ?thesis
using ‹[b; d; d ′]› ‹d ′ ∈ ab›
by blast

qed
thus ?thesis

using that by blast
qed

This lemma collects the first three paragraphs of Schutz’ proof of Theorem
9 - Lemma 1. Several case splits need to be considered, but have no further
importance outside of this lemma: thus we parcel them away from the main
proof.
lemma exist-c ′d ′-alt:

assumes abc: [a;b;c]

75

and abd: [a;b;d]
and dbc: [d;b;c]
and c-neq-d: c 6= d
and path-ab: path ab a b
and path-S : S ∈ P
and a-inS : a ∈ S
and e-inS : e ∈ S
and e-neq-a: e 6= a
and S-neq-ab: S 6= ab
and path-be: path be b e

shows ∃ c ′ d ′. ∃ d ′e c ′e. c ′∈ab ∧ d ′∈ab
∧ [a; b; d ′] ∧ [c ′; b; a] ∧ [c ′; b; d ′]
∧ path d ′e d ′ e ∧ path c ′e c ′ e

proof (cases)
assume ∃ de. path de d e
then obtain de where path de d e

by blast
hence [a;b;d] ∧ d∈ab

using abd betw-c-in-path path-ab by blast
thus ?thesis
proof (cases)

assume ∃ ce. path ce c e
then obtain ce where path ce c e by blast
have c ∈ ab

using abc betw-c-in-path path-ab by blast
thus ?thesis
using ‹[a;b;d] ∧ d ∈ ab› ‹∃ ce. path ce c e› ‹c ∈ ab› ‹path de d e› abc abc-sym

dbc
by blast

next
assume ¬(∃ ce. path ce c e)
obtain c ′ c ′e where c ′∈ab ∧ path c ′e c ′ e ∧ [b; c; c ′]

using unreachable-bounded-path [where ab=ab and e=e and b=b and d=c
and a=a and S=S and be=be]

S-neq-ab ‹¬(∃ ce. path ce c e)› a-inS abc e-inS e-neq-a path-S path-ab path-be
by (metis (mono-tags, lifting))
hence [a; b; c ′] ∧ [d; b; c ′]

using abc dbc by blast
hence [c ′; b; a] ∧ [c ′; b; d]

using theorem1 by blast
thus ?thesis

using ‹[a;b;d] ∧ d ∈ ab› ‹c ′ ∈ ab ∧ path c ′e c ′ e ∧ [b; c; c ′]› ‹path de d e›
by blast

qed
next

assume ¬ (∃ de. path de d e)
obtain d ′ d ′e where d ′-in-ab: d ′ ∈ ab

and bdd ′: [b; d; d ′]
and path d ′e d ′ e

76

using unreachable-bounded-path [where ab=ab and e=e and b=b and d=d
and a=a and S=S and be=be]

S-neq-ab ‹@ de. path de d e› a-inS abd e-inS e-neq-a path-S path-ab path-be
by (metis (mono-tags, lifting))

hence [a; b; d ′] using abd by blast
thus ?thesis
proof (cases)

assume ∃ ce. path ce c e
then obtain ce where path ce c e by blast
have c ∈ ab

using abc betw-c-in-path path-ab by blast
thus ?thesis

using ‹[a; b; d ′]› ‹d ′ ∈ ab› ‹path ce c e› ‹c ∈ ab› ‹path d ′e d ′ e› abc abc-sym
dbc

by (meson abc-bcd-acd bdd ′)
next

assume ¬(∃ ce. path ce c e)
obtain c ′ c ′e where c ′∈ab ∧ path c ′e c ′ e ∧ [b; c; c ′]

using unreachable-bounded-path [where ab=ab and e=e and b=b and d=c
and a=a and S=S and be=be]

S-neq-ab ‹¬(∃ ce. path ce c e)› a-inS abc e-inS e-neq-a path-S path-ab path-be
by (metis (mono-tags, lifting))
hence [a; b; c ′] ∧ [d; b; c ′]

using abc dbc by blast
hence [c ′; b; a] ∧ [c ′; b; d]

using theorem1 by blast
thus ?thesis

using ‹[a; b; d ′]› ‹c ′ ∈ ab ∧ path c ′e c ′ e ∧ [b; c; c ′]› ‹path d ′e d ′ e› bdd ′

d ′-in-ab
by blast

qed
qed

lemma exist-c ′d ′:
assumes abc: [a;b;c]

and abd: [a;b;d]
and dbc: [d;b;c]
and path-S : path S a e
and path-be: path be b e
and S-neq-ab: S 6= path-of a b

shows ∃ c ′ d ′. [a; b; d ′] ∧ [c ′; b; a] ∧ [c ′; b; d ′] ∧
path-ex d ′ e ∧ path-ex c ′ e

proof (cases path-ex d e)
let ?ab = path-of a b
have path-ex a b

using abc abc-abc-neq abc-ex-path by blast
hence path-ab: path ?ab a b using path-of-ex by simp
have c 6=d using abc-ac-neq dbc by blast
{

77

case True
then obtain de where path de d e

by blast
hence [a;b;d] ∧ d∈?ab

using abd betw-c-in-path path-ab by blast
thus ?thesis
proof (cases path-ex c e)

case True
then obtain ce where path ce c e by blast
have c ∈ ?ab

using abc betw-c-in-path path-ab by blast
thus ?thesis

using ‹[a;b;d] ∧ d ∈ ?ab› ‹∃ ce. path ce c e› ‹c ∈ ?ab› ‹path de d e› abc
abc-sym dbc

by blast
next

case False
obtain c ′ c ′e where c ′∈?ab ∧ path c ′e c ′ e ∧ [b; c; c ′]

using unreachable-bounded-path [where ab=?ab and e=e and b=b and
d=c and a=a and S=S and be=be]

S-neq-ab ‹¬(∃ ce. path ce c e)› abc path-S path-ab path-be
by (metis (mono-tags, lifting))
hence [a; b; c ′] ∧ [d; b; c ′]

using abc dbc by blast
hence [c ′; b; a] ∧ [c ′; b; d]

using theorem1 by blast
thus ?thesis
using ‹[a;b;d] ∧ d ∈ ?ab› ‹c ′ ∈ ?ab ∧ path c ′e c ′ e ∧ [b; c; c ′]› ‹path de d e›
by blast

qed
} {

case False
obtain d ′ d ′e where d ′-in-ab: d ′ ∈ ?ab

and bdd ′: [b; d; d ′]
and path d ′e d ′ e

using unreachable-bounded-path [where ab=?ab and e=e and b=b and d=d
and a=a and S=S and be=be]

S-neq-ab ‹¬path-ex d e› abd path-S path-ab path-be
by (metis (mono-tags, lifting))

hence [a; b; d ′] using abd by blast
thus ?thesis
proof (cases path-ex c e)

case True
then obtain ce where path ce c e by blast
have c ∈ ?ab

using abc betw-c-in-path path-ab by blast
thus ?thesis

using ‹[a; b; d ′]› ‹d ′ ∈ ?ab› ‹path ce c e› ‹c ∈ ?ab› ‹path d ′e d ′ e› abc
abc-sym dbc

78

by (meson abc-bcd-acd bdd ′)
next

case False
obtain c ′ c ′e where c ′∈?ab ∧ path c ′e c ′ e ∧ [b; c; c ′]

using unreachable-bounded-path [where ab=?ab and e=e and b=b and
d=c and a=a and S=S and be=be]

S-neq-ab ‹¬(path-ex c e)› abc path-S path-ab path-be
by (metis (mono-tags, lifting))
hence [a; b; c ′] ∧ [d; b; c ′]

using abc dbc by blast
hence [c ′; b; a] ∧ [c ′; b; d]

using theorem1 by blast
thus ?thesis

using ‹[a; b; d ′]› ‹c ′ ∈ ?ab ∧ path c ′e c ′ e ∧ [b; c; c ′]› ‹path d ′e d ′ e› bdd ′

d ′-in-ab
by blast

qed
}

qed

lemma exist-f ′-alt:
assumes path-ab: path ab a b

and path-S : S ∈ P
and a-inS : a ∈ S
and e-inS : e ∈ S
and e-neq-a: e 6= a
and f-def : [e; c ′; f] f∈c ′e
and S-neq-ab: S 6= ab
and c ′d ′-def : c ′∈ab ∧ d ′∈ab

∧ [a; b; d ′] ∧ [c ′; b; a] ∧ [c ′; b; d ′]
∧ path d ′e d ′ e ∧ path c ′e c ′ e

shows ∃ f ′. ∃ f ′b. [e; c ′; f ′] ∧ path f ′b f ′ b
proof (cases)

assume ∃ bf . path bf b f
thus ?thesis

using ‹[e; c ′; f]› by blast
next

assume ¬(∃ bf . path bf b f)
hence f ∈ unreach−on c ′e from b
using assms(1−5 ,7−9) abc-abc-neq betw-events eq-paths unreachable-bounded-path-only
by metis

moreover have c ′ ∈ c ′e − unreach−on c ′e from b
using c ′d ′-def cross-in-reachable path-ab by blast

moreover have b∈E ∧ b/∈c ′e
using ‹f ∈ unreach−on c ′e from b› betw-events c ′d ′-def same-empty-unreach

by auto
ultimately obtain f ′ where f ′-def : [c ′; f ; f ′] f ′∈c ′e f ′/∈ unreach−on c ′e from

b c ′6=f ′ b 6=f ′

79

using unreachable-set-bounded c ′d ′-def
by (metis DiffE)

hence [e; c ′; f ′]
using ‹[e; c ′; f]› by blast

moreover obtain f ′b where path f ′b f ′ b
using ‹b ∈ E ∧ b /∈ c ′e› c ′d ′-def f ′-def (2 ,3) unreachable-bounded-path-only
by blast

ultimately show ?thesis by blast
qed

lemma exist-f ′:
assumes path-ab: path ab a b

and path-S : path S a e
and f-def : [e; c ′; f]
and S-neq-ab: S 6= ab
and c ′d ′-def : [a; b; d ′] [c ′; b; a] [c ′; b; d ′]

path d ′e d ′ e path c ′e c ′ e
shows ∃ f ′. [e; c ′; f ′] ∧ path-ex f ′ b

proof (cases)
assume path-ex b f
thus ?thesis

using f-def by blast
next

assume no-path: ¬(path-ex b f)
have path-S-2 : S ∈ P a ∈ S e ∈ S e 6= a

using path-S by auto
have f∈c ′e

using betw-c-in-path f-def c ′d ′-def (5) by blast
have c ′∈ ab d ′∈ ab

using betw-a-in-path betw-c-in-path c ′d ′-def (1 ,2) path-ab by blast+
have f ∈ unreach−on c ′e from b

using no-path assms(1 ,4−9) path-S-2 ‹f∈c ′e› ‹c ′∈ab› ‹d ′∈ab›
abc-abc-neq betw-events eq-paths unreachable-bounded-path-only

by metis
moreover have c ′ ∈ c ′e − unreach−on c ′e from b

using c ′d ′-def cross-in-reachable path-ab ‹c ′ ∈ ab› by blast
moreover have b∈E ∧ b/∈c ′e

using ‹f ∈ unreach−on c ′e from b› betw-events c ′d ′-def same-empty-unreach
by auto

ultimately obtain f ′ where f ′-def : [c ′; f ; f ′] f ′∈c ′e f ′/∈ unreach−on c ′e from
b c ′6=f ′ b 6=f ′

using unreachable-set-bounded c ′d ′-def
by (metis DiffE)

hence [e; c ′; f ′]
using ‹[e; c ′; f]› by blast

moreover obtain f ′b where path f ′b f ′ b
using ‹b ∈ E ∧ b /∈ c ′e› c ′d ′-def f ′-def (2 ,3) unreachable-bounded-path-only
by blast

ultimately show ?thesis by blast

80

qed

lemma abc-abd-bcdbdc:
assumes abc: [a;b;c]

and abd: [a;b;d]
and c-neq-d: c 6= d

shows [b;c;d] ∨ [b;d;c]
proof −

have ¬ [d;b;c]
proof (rule notI)

assume dbc: [d;b;c]
obtain ab where path-ab: path ab a b

using abc-abc-neq abc-ex-path-unique abc by blast
obtain S where path-S : S ∈ P

and S-neq-ab: S 6= ab
and a-inS : a ∈ S

using ex-crossing-at path-ab
by auto

have ∃ e∈S . e 6= a ∧ (∃ be∈P. path be b e)
proof −

have b-notinS : b /∈ S using S-neq-ab a-inS path-S path-ab path-unique by
blast

then obtain x y z where x-in-unreach: x ∈ unreach−on S from b
and y-in-unreach: y ∈ unreach−on S from b
and x-neq-y: x 6= y
and z-in-reach: z ∈ S − unreach−on S from b

using two-in-unreach [where Q = S and b = b]
in-path-event path-S path-ab a-inS cross-in-reachable

by blast
then obtain w where w-in-reach: w ∈ S − unreach−on S from b

and w-neq-z: w 6= z
using unreachable-set-bounded [where Q = S and b = b and Qx = z

and Qy = x]
b-notinS in-path-event path-S path-ab by blast

thus ?thesis by (metis DiffD1 b-notinS in-path-event path-S path-ab reach-
able-path z-in-reach)

qed
then obtain e be where e-inS : e ∈ S

and e-neq-a: e 6= a
and path-be: path be b e

by blast
have path-ae: path S a e

using a-inS e-inS e-neq-a path-S by auto
have S-neq-ab-2 : S 6= path-of a b

using S-neq-ab cross-once-notin path-ab path-of-ex by blast

81

have ∃ c ′ d ′.
c ′∈ab ∧ d ′∈ab
∧ [a; b; d ′] ∧ [c ′; b; a] ∧ [c ′; b; d ′]
∧ path-ex d ′ e ∧ path-ex c ′ e

using exist-c ′d ′ [where a=a and b=b and c=c and d=d and e=e and
be=be and S=S]

using assms(1−2) dbc e-neq-a path-ae path-be S-neq-ab-2
using abc-sym betw-a-in-path path-ab by blast

then obtain c ′ d ′ d ′e c ′e
where c ′d ′-def : c ′∈ab ∧ d ′∈ab

∧ [a; b; d ′] ∧ [c ′; b; a] ∧ [c ′; b; d ′]
∧ path d ′e d ′ e ∧ path c ′e c ′ e

by blast

obtain f where f-def : f∈c ′e [e; c ′; f]
using c ′d ′-def prolong-betw2 by blast

then obtain f ′ f ′b where f ′-def : [e; c ′; f ′] ∧ path f ′b f ′ b
using exist-f ′

[where e=e and c ′=c ′ and b=b and f=f and S=S and ab=ab and d ′=d ′

and a=a and c ′e=c ′e]
using path-ab path-S a-inS e-inS e-neq-a f-def S-neq-ab c ′d ′-def
by blast

obtain ae where path-ae: path ae a e using a-inS e-inS e-neq-a path-S by
blast

have tri-aec: 4 a e c ′

by (smt cross-once-notin S-neq-ab a-inS abc abc-abc-neq abc-ex-path
e-inS e-neq-a path-S path-ab c ′d ′-def paths-tri)

then obtain h where h-in-f ′b: h ∈ f ′b
and ahe: [a;h;e]
and f ′bh: [f ′; b; h]

using collinearity2 [where a = a and b = e and c = c ′ and d = f ′ and
e = b and de = f ′b]

f ′-def c ′d ′-def f ′-def betw-c-in-path by blast
have tri-dec: 4 d ′ e c ′

using cross-once-notin S-neq-ab a-inS abc abc-abc-neq abc-ex-path
e-inS e-neq-a path-S path-ab c ′d ′-def paths-tri by smt

then obtain g where g-in-f ′b: g ∈ f ′b
and d ′ge: [d ′; g; e]
and f ′bg: [f ′; b; g]

using collinearity2 [where a = d ′ and b = e and c = c ′ and d = f ′ and
e = b and de = f ′b]

f ′-def c ′d ′-def betw-c-in-path by blast
have 4 e a d ′ by (smt betw-c-in-path paths-tri2 S-neq-ab a-inS abc-ac-neq

abd e-inS e-neq-a c ′d ′-def path-S path-ab)
thus False

82

using tri-betw-no-path [where a = e and b = a and c = d ′ and b ′ = g and
a ′ = b and c ′ = h]

f ′-def c ′d ′-def h-in-f ′b g-in-f ′b abd d ′ge ahe abc-sym
by blast

qed
thus ?thesis
by (smt abc abc-abc-neq abc-ex-path abc-sym abd c-neq-d cross-once-notin some-betw)

qed

lemma abc-abd-acdadc:
assumes abc: [a;b;c]

and abd: [a;b;d]
and c-neq-d: c 6= d

shows [a;c;d] ∨ [a;d;c]
proof −

have cba: [c;b;a] using abc-sym abc by simp
have dba: [d;b;a] using abc-sym abd by simp
have dcb-over-cba: [d;c;b] ∧ [c;b;a] =⇒ [d;c;a] by auto
have cdb-over-dba: [c;d;b] ∧ [d;b;a] =⇒ [c;d;a] by auto

have bcdbdc: [b;c;d] ∨ [b;d;c] using abc abc-abd-bcdbdc abd c-neq-d by auto
then have dcb-or-cdb: [d;c;b] ∨ [c;d;b] using abc-sym by blast
then have [d;c;a] ∨ [c;d;a] using abc-only-cba dcb-over-cba cdb-over-dba cba dba

by blast
thus ?thesis using abc-sym by auto

qed

lemma abc-acd-bcd:
assumes abc: [a;b;c]

and acd: [a;c;d]
shows [b;c;d]

proof −
have path-abc: ∃Q∈P. a ∈ Q ∧ b ∈ Q ∧ c ∈ Q using abc by (simp add:

abc-ex-path)
have path-acd: ∃Q∈P. a ∈ Q ∧ c ∈ Q ∧ d ∈ Q using acd by (simp add:

abc-ex-path)
then have ∃Q∈P. b ∈ Q ∧ c ∈ Q ∧ d ∈ Q using path-abc abc-abc-neq acd

cross-once-notin by metis
then have bcd3 : [b;c;d] ∨ [b;d;c] ∨ [c;b;d] by (metis abc abc-only-cba(1 ,2) acd

some-betw2)
show ?thesis
proof (rule ccontr)

assume ¬ [b;c;d]
then have [b;d;c] ∨ [c;b;d] using bcd3 by simp
thus False
proof (rule disjE)

83

assume [b;d;c]
then have [c;d;b] using abc-sym by simp
then have [a;c;b] using acd abc-bcd-abd by blast
thus False using abc abc-only-cba by blast

next
assume cbd: [c;b;d]
have cba: [c;b;a] using abc abc-sym by blast
have a-neq-d: a 6= d using abc-ac-neq acd by auto
then have [c;a;d] ∨ [c;d;a] using abc-abd-acdadc cbd cba by simp
thus False using abc-only-cba acd by blast

qed
qed

qed

A few lemmas that don’t seem to be proved by Schutz, but can be proven
now, after Lemma 3. These sometimes avoid us having to construct a chain
explicitly.
lemma abd-bcd-abc:

assumes abd: [a;b;d]
and bcd: [b;c;d]

shows [a;b;c]
proof −

have dcb: [d;c;b] using abc-sym bcd by simp
have dba: [d;b;a] using abc-sym abd by simp
have [c;b;a] using abc-acd-bcd dcb dba by blast
thus ?thesis using abc-sym by simp

qed

lemma abc-acd-abd:
assumes abc: [a;b;c]

and acd: [a;c;d]
shows [a;b;d]

using abc abc-acd-bcd acd by blast

lemma abd-acd-abcacb:
assumes abd: [a;b;d]

and acd: [a;c;d]
and bc: b 6=c

shows [a;b;c] ∨ [a;c;b]
proof −

obtain P where P-def : P∈P a∈P b∈P d∈P
using abd abc-ex-path by blast

hence c∈P
using acd abc-abc-neq betw-b-in-path by blast

have ¬[b;a;c]
using abc-only-cba abd acd by blast

thus ?thesis
by (metis P-def (1−3) ‹c ∈ P› abc-abc-neq abc-sym abd acd bc some-betw)

qed

84

lemma abe-ade-bcd-ace:
assumes abe: [a;b;e]

and ade: [a;d;e]
and bcd: [b;c;d]

shows [a;c;e]
proof −

have abdadb: [a;b;d] ∨ [a;d;b]
using abc-ac-neq abd-acd-abcacb abe ade bcd by auto

thus ?thesis
proof

assume [a;b;d] thus ?thesis
by (meson abc-acd-abd abc-sym ade bcd)

next assume [a;d;b] thus ?thesis
by (meson abc-acd-abd abc-sym abe bcd)

qed
qed

Now we start on Theorem 9. Based on Veblen (1904) Lemma 2 p357.
lemma (in MinkowskiBetweenness) chain3 :

assumes path-Q: Q ∈ P
and a-inQ: a ∈ Q
and b-inQ: b ∈ Q
and c-inQ: c ∈ Q
and abc-neq: a 6= b ∧ a 6= c ∧ b 6= c

shows ch {a,b,c}
proof −

have abc-betw: [a;b;c] ∨ [a;c;b] ∨ [b;a;c]
using assms by (meson in-path-event abc-sym some-betw insert-subset)

have ch1 : [a;b;c] −→ ch {a,b,c}
using abc-abc-neq ch-by-ord-def ch-def ord-ordered-loc between-chain by auto

have ch2 : [a;c;b] −→ ch {a,c,b}
using abc-abc-neq ch-by-ord-def ch-def ord-ordered-loc between-chain by auto

have ch3 : [b;a;c] −→ ch {b,a,c}
using abc-abc-neq ch-by-ord-def ch-def ord-ordered-loc between-chain by auto

show ?thesis
using abc-betw ch1 ch2 ch3 by (metis insert-commute)

qed

lemma overlap-chain: [[[a;b;c]; [b;c;d]]] =⇒ ch {a,b,c,d}
proof −

assume [a;b;c] and [b;c;d]
have ∃ f . local-ordering f betw {a,b,c,d}
proof −

have f1 : [a;b;d]
using ‹[a;b;c]› ‹[b;c;d]› by blast

have [a;c;d]
using ‹[a;b;c]› ‹[b;c;d]› abc-bcd-acd by blast

then show ?thesis

85

using f1 by (metis (no-types) ‹[a;b;c]› ‹[b;c;d]› abc-abc-neq overlap-ordering-loc)
qed
hence ∃ f . local-long-ch-by-ord f {a,b,c,d}

apply (simp add: chain-defs eval-nat-numeral)
using ‹[a;b;c]› abc-abc-neq
by (smt (z3) ‹[b;c;d]› card.empty card-insert-disjoint card-insert-le finite.emptyI

finite.insertI insertE insert-absorb insert-not-empty)
thus ?thesis

by (simp add: chain-defs)
qed

The book introduces Theorem 9 before the above three lemmas but can only
complete the proof once they are proven. This doesn’t exactly say it the
same way as the book, as the book gives the local-ordering (abcd) explicitly
(for arbitrarly named events), but is equivalent.
theorem chain4 :

assumes path-Q: Q ∈ P
and inQ: a ∈ Q b ∈ Q c ∈ Q d ∈ Q
and abcd-neq: a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d

shows ch {a,b,c,d}
proof −

obtain a ′ b ′ c ′ where a ′-pick: a ′ ∈ {a,b,c,d}
and b ′-pick: b ′ ∈ {a,b,c,d}
and c ′-pick: c ′ ∈ {a,b,c,d}
and a ′b ′c ′: [a ′; b ′; c ′]

using some-betw by (metis inQ(1 ,2 ,4) abcd-neq insert-iff path-Q)
then obtain d ′ where d ′-neq: d ′ 6= a ′ ∧ d ′ 6= b ′ ∧ d ′ 6= c ′

and d ′-pick: d ′ ∈ {a,b,c,d}
using insert-iff abcd-neq by metis

have all-picked-on-path: a ′∈Q b ′∈Q c ′∈Q d ′∈Q
using a ′-pick b ′-pick c ′-pick d ′-pick inQ by blast+

consider [d ′; a ′; b ′] | [a ′; d ′; b ′] | [a ′; b ′; d ′]
using some-betw abc-only-cba all-picked-on-path(1 ,2 ,4)
by (metis a ′b ′c ′ d ′-neq path-Q)

then have picked-chain: ch {a ′,b ′,c ′,d ′}
proof (cases)

assume [d ′; a ′; b ′]
thus ?thesis using a ′b ′c ′ overlap-chain by (metis (full-types) insert-commute)

next
assume a ′d ′b ′: [a ′; d ′; b ′]
then have [d ′; b ′; c ′] using abc-acd-bcd a ′b ′c ′ by blast
thus ?thesis using a ′d ′b ′ overlap-chain by (metis (full-types) insert-commute)

next
assume a ′b ′d ′: [a ′; b ′; d ′]
then have two-cases: [b ′; c ′; d ′] ∨ [b ′; d ′; c ′] using abc-abd-bcdbdc a ′b ′c ′ d ′-neq

by blast

have case1 : [b ′; c ′; d ′] =⇒ ?thesis using a ′b ′c ′ overlap-chain by blast
have case2 : [b ′; d ′; c ′] =⇒ ?thesis

86

using abc-only-cba abc-acd-bcd a ′b ′d ′ overlap-chain
by (metis (full-types) insert-commute)

show ?thesis using two-cases case1 case2 by blast
qed
have {a ′,b ′,c ′,d ′} = {a,b,c,d}
proof (rule Set.set-eqI , rule iffI)

fix x
assume x ∈ {a ′,b ′,c ′,d ′}
thus x ∈ {a,b,c,d} using a ′-pick b ′-pick c ′-pick d ′-pick by auto

next
fix x
assume x-pick: x ∈ {a,b,c,d}
have a ′ 6= b ′ ∧ a ′ 6= c ′ ∧ a ′ 6= d ′ ∧ b ′ 6= c ′ ∧ c ′ 6= d ′

using a ′b ′c ′ abc-abc-neq d ′-neq by blast
thus x ∈ {a ′,b ′,c ′,d ′}

using a ′-pick b ′-pick c ′-pick d ′-pick x-pick d ′-neq by auto
qed
thus ?thesis using picked-chain by simp

qed

theorem chain4-alt:
assumes path-Q: Q ∈ P

and abcd-inQ: {a,b,c,d} ⊆ Q
and abcd-distinct: card {a,b,c,d} = 4

shows ch {a,b,c,d}
proof −

have abcd-neq: a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d
using abcd-distinct numeral-3-eq-3

by (smt (z3) card-1-singleton-iff card-2-iff card-3-dist insert-absorb2 insert-commute
numeral-1-eq-Suc-0 numeral-eq-iff semiring-norm(85) semiring-norm(88) verit-eq-simplify(8))

have inQ: a ∈ Q b ∈ Q c ∈ Q d ∈ Q
using abcd-inQ by auto

show ?thesis using chain4 [OF assms(1) inQ] abcd-neq by simp
qed

end

29 Interlude - Chains, segments, rays
context MinkowskiBetweenness begin

29.1 General results for chains
lemma inf-chain-is-long:

assumes [f X |x..]
shows local-long-ch-by-ord f X ∧ f 0 = x ∧ infinite X
using chain-defs by (metis assms infinite-chain-alt)

87

A reassurance that the starting point x is implied.
lemma long-inf-chain-is-semifin:

assumes local-long-ch-by-ord f X ∧ infinite X
shows ∃ x. [f X |x..]
using assms infinite-chain-with-def chain-alts by auto

lemma endpoint-in-semifin:
assumes [f X |x..]
shows x∈X
using zero-into-ordering-loc by (metis assms empty-iff inf-chain-is-long local-long-ch-by-ord-alt)

Yet another corollary to Theorem 2, without indices, for arbitrary events on
the chain.
corollary all-aligned-on-fin-chain:

assumes [f X] finite X
and x: x∈X and y: y∈X and z:z∈X and xy: x 6=y and xz: x 6=z and yz: y 6=z
shows [x;y;z] ∨ [x;z;y] ∨ [y;x;z]

proof −
have card X ≥ 3 using assms(2−5) three-subset[OF xy xz yz] by blast
hence 1 : local-long-ch-by-ord f X
using assms(1 ,3−) chain-defs by (metis short-ch-alt(1) short-ch-card(1) short-ch-card-2)

obtain i j k where ijk: x=f i i<card X y=f j j<card X z=f k k<card X
using obtain-index-fin-chain assms(1−5) by metis

have 2 : [f i;f j;f k] if i<j ∧ j<k k<card X for i j k
using assms order-finite-chain2 that(1 ,2) by auto

consider i<j ∧ j<k|i<k ∧ k<j|j<i ∧ i<k|i>j ∧ j>k|i>k ∧ k>j|j>i ∧ i>k
using xy xz yz ijk(1 ,3 ,5) by (metis linorder-neqE-nat)

thus ?thesis
apply cases using 2 abc-sym ijk by presburger+

qed

lemma (in MinkowskiPrimitive) card2-either-elt1-or-elt2 :
assumes card X = 2 and x∈X and y∈X and x 6=y

and z∈X and z 6=x
shows z=y

by (metis assms card-2-iff ′)

lemma get-fin-long-ch-bounds:
assumes local-long-ch-by-ord f X

and finite X
shows ∃ x∈X . ∃ y∈X . ∃ z∈X . [f X |x..y..z]

proof (rule bexI)+
show 1 :[f X |f 0 ..f 1 ..f (card X − 1)]

using assms unfolding finite-long-chain-with-def using index-injective
by (auto simp: finite-chain-with-alt local-long-ch-by-ord-def local-ordering-def)

show f (card X − 1) ∈ X
using 1 points-in-long-chain(3) by auto

show f 0 ∈ X f 1 ∈ X

88

using 1 points-in-long-chain by auto
qed

lemma get-fin-long-ch-bounds2 :
assumes local-long-ch-by-ord f X

and finite X
obtains x y z nx ny nz

where x∈X y∈X z∈X [f X |x..y..z] f nx = x f ny = y f nz = z
using get-fin-long-ch-bounds assms
by (meson finite-chain-with-def finite-long-chain-with-alt index-middle-element)

lemma long-ch-card-ge3 :
assumes ch-by-ord f X finite X
shows local-long-ch-by-ord f X ←→ card X ≥ 3
using assms ch-by-ord-def local-long-ch-by-ord-def short-ch-card(1) by auto

lemma fin-ch-betw2 :
assumes [f X |a..c] and b∈X
obtains b=a|b=c|[a;b;c]
by (metis assms finite-long-chain-with-alt finite-long-chain-with-def)

lemma chain-bounds-unique:
assumes [f X |a..c] [g X |x..z]
shows (a=x ∧ c=z) ∨ (a=z ∧ c=x)
using assms points-in-chain abc-abc-neq abc-bcd-acd abc-sym
by (metis (full-types) fin-ch-betw2)

end

29.2 Results for segments, rays and (sub)chains
context MinkowskiBetweenness begin

lemma inside-not-bound:
assumes [f X |a..c]

and j<card X
shows j>0 =⇒ f j 6= a j<card X − 1 =⇒ f j 6= c

using index-injective2 assms finite-chain-def finite-chain-with-def apply metis
using index-injective2 assms finite-chain-def finite-chain-with-def by auto

Converse to Theorem 2(i).
lemma (in MinkowskiBetweenness) order-finite-chain-indices:

assumes chX : local-long-ch-by-ord f X finite X
and abc: [a;b;c]
and ijk: f i = a f j = b f k = c i<card X j<card X k<card X

shows i<j ∧ j<k ∨ k<j ∧ j<i
by (metis abc-abc-neq abc-only-cba(1 ,2 ,3) assms bot-nat-0 .extremum linorder-neqE-nat

order-finite-chain)

89

lemma order-finite-chain-indices2 :
assumes [f X |a..c]

and f j = b j<card X
obtains 0<j ∧ j<(card X − 1)|j=(card X − 1) ∧ b=c|j=0 ∧ b=a

proof −
have finX : finite X

using assms(3) card.infinite gr-implies-not0 by blast
have b∈X

using assms unfolding chain-defs local-ordering-def
by (metis One-nat-def card-2-iff insertI1 insert-commute less-2-cases)

have a: f 0 = a and c: f (card X − 1) = c
using assms(1) finite-chain-with-def by auto

have 0<j ∧ j<(card X − 1) ∨ j=(card X − 1) ∧ b=c ∨ j=0 ∧ b=a
proof (cases short-ch-by-ord f X)

case True
hence X={a,c}
using a assms(1) first-neq-last points-in-chain short-ch-by-ord-def by fastforce

then consider b=a|b=c
using ‹b∈X› by fastforce

thus ?thesis
apply cases using assms(2 ,3) a c le-less by fastforce+

next
case False
hence chX : local-long-ch-by-ord f X

using assms(1) unfolding finite-chain-with-alt using chain-defs by meson
consider [a;b;c]|b=a|b=c

using ‹b∈X› assms(1) fin-ch-betw2 by blast
thus ?thesis apply cases

using ‹f 0 = a› chX finX assms(2 ,3) a c order-finite-chain-indices apply
fastforce

using ‹f 0 = a› chX finX assms(2 ,3) index-injective apply blast
using a c assms chX finX index-injective linorder-neqE-nat inside-not-bound(2)

by metis
qed
thus ?thesis using that by blast

qed

lemma index-bij-betw-subset:
assumes chX : [f X |a..b..c] f i = b card X > i
shows bij-betw f {0<..<i} {e∈X . [a;e;b]}

proof (unfold bij-betw-def , intro conjI)
have chX2 : local-long-ch-by-ord f X finite X

using assms unfolding chain-defs apply (metis chX(1)
abc-ac-neq fin-ch-betw points-in-long-chain(1 ,3) short-ch-alt(1) short-ch-path)

using assms unfolding chain-defs by simp

90

from index-bij-betw[OF this] have 1 : bij-betw f {0 ..<card X} X .
have {0<..<i} ⊂ {0 ..<card X}

using assms(1 ,3) unfolding chain-defs by fastforce
show inj-on f {0<..<i}

using 1 assms(3) unfolding bij-betw-def
by (smt (z3) atLeastLessThan-empty-iff2 atLeastLessThan-iff empty-iff greaterThanLessThan-iff

inj-on-def less-or-eq-imp-le)
show f ‘ {0<..<i} = {e ∈ X . [a;e;b]}
proof

show f ‘ {0<..<i} ⊆ {e ∈ X . [a;e;b]}
proof (auto simp add: image-subset-iff conjI)

fix j assume asm: j>0 j<i
hence j < card X using chX(3) less-trans by blast
thus f j ∈ X [a;f j;b]

using chX(1) asm(1) unfolding chain-defs local-ordering-def
apply (metis chX2 (1) chX(1) fin-chain-card-geq-2 short-ch-card-2 short-xor-long(2)
le-antisym set-le-two finite-chain-def finite-chain-with-def finite-long-chain-with-alt)

using chX asm chX2 (1) order-finite-chain unfolding chain-defs local-ordering-def
by force

qed
show {e ∈ X . [a;e;b]} ⊆ f ‘ {0<..<i}
proof (auto)

fix e assume e: e ∈ X [a;e;b]
obtain j where f j = e j<card X

using e chX2 unfolding chain-defs local-ordering-def by blast
show e ∈ f ‘ {0<..<i}
proof

have 0<j∧j<i ∨ i<j∧j<0
using order-finite-chain-indices chX chain-defs

by (smt (z3) ‹f j = e› ‹j < card X› chX2 (1) e(2) gr-implies-not-zero
linorder-neqE-nat)

hence j<i by simp
thus j∈{0<..<i} e = f j

using ‹0 < j ∧ j < i ∨ i < j ∧ j < 0 › greaterThanLessThan-iff
by (blast,(simp add: ‹f j = e›))

qed
qed

qed
qed

lemma bij-betw-extend:
assumes bij-betw f A B

and f a = b a /∈A b/∈B
shows bij-betw f (insert a A) (insert b B)
by (smt (verit, ccfv-SIG) assms(1) assms(2) assms(4) bij-betwI ′ bij-betw-iff-bijections

insert-iff)

91

lemma insert-iff2 :
assumes a∈X shows insert a {x∈X . P x} = {x∈X . P x ∨ x=a}
using insert-iff assms by blast

lemma index-bij-betw-subset2 :
assumes chX : [f X |a..b..c] f i = b card X > i
shows bij-betw f {0 ..i} {e∈X . [a;e;b]∨a=e∨b=e}

proof −
have bij-betw f {0<..<i} {e∈X . [a;e;b]} using index-bij-betw-subset[OF assms]

.
moreover have 0 /∈{0<..<i} i /∈{0<..<i} by simp+
moreover have a /∈{e∈X . [a;e;b]} b/∈{e∈X . [a;e;b]} using abc-abc-neq by auto+
moreover have f 0 = a f i = b using assms unfolding chain-defs by simp+
moreover have (insert b (insert a {e∈X . [a;e;b]})) = {e∈X . [a;e;b]∨a=e∨b=e}
proof −

have 1 : (insert a {e∈X . [a;e;b]}) = {e∈X . [a;e;b]∨a=e}
using insert-iff2 [OF points-in-long-chain(1)[OF chX(1)]] by auto

have b/∈{e∈X . [a;e;b]∨a=e}
using abc-abc-neq chX(1) fin-ch-betw by fastforce

thus (insert b (insert a {e∈X . [a;e;b]})) = {e∈X . [a;e;b]∨a=e∨b=e}
using 1 insert-iff2 points-in-long-chain(2)[OF chX(1)] by auto

qed
moreover have (insert i (insert 0 {0<..<i})) = {0 ..i} using image-Suc-lessThan

by auto
ultimately show ?thesis using bij-betw-extend[of f]

by (metis (no-types, lifting) chX(1) finite-long-chain-with-def insert-iff)
qed

lemma chain-shortening:
assumes [f X |a..b..c]
shows [f {e∈X . [a;e;b] ∨ e=a ∨ e=b} |a..b]

proof (unfold finite-chain-with-def finite-chain-def , (intro conjI))

Different forms of assumptions for compatibility with needed antecedents
later.

show f 0 = a using assms unfolding chain-defs by simp
have chX : local-long-ch-by-ord f X
using assms first-neq-last points-in-long-chain(1 ,3) short-ch-card(1) chain-defs
by (metis card2-either-elt1-or-elt2)

have finX : finite X
by (meson assms chain-defs)

General facts about the shortened set, which we will call Y.
let ?Y = {e∈X . [a;e;b] ∨ e=a ∨ e=b}
show finY : finite ?Y

using assms finite-chain-def finite-chain-with-def finite-long-chain-with-alt by
auto

92

have a 6=b a∈?Y b∈?Y c/∈?Y
using assms finite-long-chain-with-def apply simp
using assms points-in-long-chain(1 ,2) apply auto[1]
using assms points-in-long-chain(2) apply auto[1]
using abc-ac-neq abc-only-cba(2) assms fin-ch-betw by fastforce

from this(1−3) finY have cardY : card ?Y ≥ 2
by (metis (no-types, lifting) card-le-Suc0-iff-eq not-less-eq-eq numeral-2-eq-2)

Obtain index for b (a is at index 0): this index i is card ?Y − 1.
obtain i where i: i<card X f i=b

using assms unfolding chain-defs local-ordering-def using Suc-leI diff-le-self
by force

hence i<card X − 1
using assms unfolding chain-defs

by (metis Suc-lessI diff-Suc-Suc diff-Suc-eq-diff-pred minus-nat.diff-0 zero-less-diff)
have card01 : i+1 = card {0 ..i} by simp
have bb: bij-betw f {0 ..i} ?Y using index-bij-betw-subset2 [OF assms i(2 ,1)]

Collect-cong by smt
hence i-eq: i = card ?Y − 1 using bij-betw-same-card by force
thus f (card ?Y − 1) = b using i(2) by simp

The path P on which X lies. If ?Y has two arguments, P makes it a short
chain.

obtain P where P-def : P∈P X⊆P
∧

Q. Q∈P ∧ X⊆Q =⇒ Q=P
using fin-chain-on-path[of f X] assms unfolding chain-defs by force

have a∈P b∈P using P-def by (meson assms in-mono points-in-long-chain)+

consider (eq-1)i=1 |(gt-1)i>1 using ‹a 6= b› ‹f 0 = a› i(2) less-linear by blast
thus [f ?Y]
proof (cases)

case eq-1
hence {0 ..i}={0 ,1} by auto
hence bij-betw f {0 ,1} ?Y using bb by auto
from bij-betw-imp-surj-on[OF this] show ?thesis

unfolding chain-defs using P-def eq-1 ‹a 6= b› ‹f 0 = a› i(2) by blast
next

case gt-1
have 1 : 3≤card ?Y using gt-1 cardY i-eq by linarith
{

fix n assume n < card ?Y
hence n<card X
using ‹i<card X − 1 › add-diff-inverse-nat i-eq nat-diff-split-asm by linarith

have f n ∈ ?Y
proof (simp, intro conjI)

show f n ∈ X
using ‹n<card X› assms chX chain-defs local-ordering-def by metis

consider 0<n ∧ n<card ?Y − 1 |n=card ?Y − 1 |n=0
using ‹n<card ?Y › nat-less-le zero-less-diff by linarith

thus [a;f n;b] ∨ f n = a ∨ f n = b

93

using i i-eq ‹f 0 = a› chX finX le-numeral-extra(3) order-finite-chain by
fastforce

qed
} moreover {

fix x assume x∈?Y hence x∈X by simp
obtain ix where ix: ix < card X f ix = x

using assms obtain-index-fin-chain chain-defs ‹x∈X› by metis
have ix < card ?Y
proof −

consider [a;x;b]|x=a|x=b using ‹x∈?Y › by auto
hence (ix<i ∨ ix<0) ∨ ix=0 ∨ ix=i

apply cases
apply (metis ‹f 0=a› chX finX i ix less-nat-zero-code neq0-conv or-

der-finite-chain-indices)
using ‹f 0 = a› chX finX ix index-injective apply blast
by (metis chX finX i(2) ix index-injective linorder-neqE-nat)

thus ?thesis using gt-1 i-eq by linarith
qed
hence ∃n. n < card ?Y ∧ f n = x using ix(2) by blast

} moreover {
fix n assume Suc (Suc n) < card ?Y
hence Suc (Suc n) < card X

using i(1) i-eq by linarith
hence [f n; f (Suc n); f (Suc (Suc n))]

using assms unfolding chain-defs local-ordering-def by auto
}
ultimately have 2 : local-ordering f betw ?Y

by (simp add: local-ordering-def finY)
show ?thesis using 1 2 chain-defs by blast

qed
qed

corollary ord-fin-ch-right:
assumes [f X |a..f i..c] j≥i j<card X
shows [f i;f j;c] ∨ j = card X − 1 ∨ j = i

proof −
consider (inter)j>i ∧ j<card X − 1 |(left)j=i|(right)j=card X − 1

using assms(3 ,2) by linarith
thus ?thesis

apply cases
using assms(1) chain-defs order-finite-chain2 apply force
by simp+

qed

lemma f-img-is-subset:
assumes [f X |(f 0) ..] i≥0 j>i Y=f‘{i..j}
shows Y⊆X

proof

94

fix x assume x∈Y
then obtain n where n∈{i..j} f n = x

using assms(4) by blast
hence f n ∈ X
by (metis local-ordering-def assms(1) inf-chain-is-long local-long-ch-by-ord-def)

thus x∈X
using ‹f n = x› by blast

qed

lemma i-le-j-events-neq:
assumes [f X |a..b..c]

and i<j j<card X
shows f i 6= f j
using chain-defs by (meson assms index-injective2)

lemma indices-neq-imp-events-neq:
assumes [f X |a..b..c]

and i 6=j j<card X i<card X
shows f i 6= f j

by (metis assms i-le-j-events-neq less-linear)

end

context MinkowskiSpacetime begin

lemma bound-on-path:
assumes Q∈P [f X |(f 0)..] X⊆Q is-bound-f b X f
shows b∈Q

proof −
obtain a c where a∈X c∈X [a;c;b]

using assms(4)
by (metis local-ordering-def inf-chain-is-long is-bound-f-def local-long-ch-by-ord-def

zero-less-one)
thus ?thesis

using abc-abc-neq assms(1) assms(3) betw-c-in-path by blast
qed

lemma pro-basis-change:
assumes [a;b;c]
shows prolongation a c = prolongation b c (is ?ac=?bc)

proof
show ?ac ⊆ ?bc
proof

fix x assume x∈?ac
hence [a;c;x]

by (simp add: pro-betw)
hence [b;c;x]

using assms abc-acd-bcd by blast

95

thus x∈?bc
using abc-abc-neq pro-betw by blast

qed
show ?bc ⊆ ?ac
proof

fix x assume x∈?bc
hence [b;c;x]

by (simp add: pro-betw)
hence [a;c;x]

using assms abc-bcd-acd by blast
thus x∈?ac

using abc-abc-neq pro-betw by blast
qed

qed

lemma adjoining-segs-exclusive:
assumes [a;b;c]
shows segment a b ∩ segment b c = {}

proof (cases)
assume segment a b = {} thus ?thesis by blast

next
assume segment a b 6= {}
have x∈segment a b −→ x /∈segment b c for x
proof

fix x assume x∈segment a b
hence [a;x;b] by (simp add: seg-betw)
have ¬[a;b;x] by (meson ‹[a;x;b]› abc-only-cba)
have ¬[b;x;c]

using ‹¬ [a;b;x]› abd-bcd-abc assms by blast
thus x /∈segment b c

by (simp add: seg-betw)
qed
thus ?thesis by blast

qed

end

30 3.6 Order on a path - Theorems 10 and 11
context MinkowskiSpacetime begin

30.1 Theorem 10 (based on Veblen (1904) theorem 10).
lemma (in MinkowskiBetweenness) two-event-chain:

assumes finiteX : finite X
and path-Q: Q ∈ P
and events-X : X ⊆ Q
and card-X : card X = 2

shows ch X

96

proof −
obtain a b where X-is: X={a,b}

using card-le-Suc-iff numeral-2-eq-2
by (meson card-2-iff card-X)

have no-c: ¬(∃ c∈{a,b}. c 6=a ∧ c 6=b)
by blast

have a 6=b ∧ a∈Q & b∈Q
using X-is card-X events-X by force

hence short-ch {a,b}
using path-Q no-c by (meson short-ch-intros(2))

thus ?thesis
by (simp add: X-is chain-defs)

qed

lemma (in MinkowskiBetweenness) three-event-chain:
assumes finiteX : finite X

and path-Q: Q ∈ P
and events-X : X ⊆ Q
and card-X : card X = 3

shows ch X
proof −

obtain a b c where X-is: X={a,b,c}
using numeral-3-eq-3 card-X by (metis card-Suc-eq)

then have all-neq: a 6=b ∧ a 6=c ∧ b 6=c
using card-X numeral-2-eq-2 numeral-3-eq-3
by (metis Suc-n-not-le-n insert-absorb2 insert-commute set-le-two)

have in-path: a∈Q ∧ b∈Q ∧ c∈Q
using X-is events-X by blast

hence [a;b;c] ∨ [b;c;a] ∨ [c;a;b]
using some-betw all-neq path-Q by auto

thus ch X
using between-chain X-is all-neq chain3 in-path path-Q by auto

qed

This is case (i) of the induction in Theorem 10.
lemma chain-append-at-left-edge:

assumes long-ch-Y : [f Y |a1..a..an]
and bY : [b; a1; an]

fixes g defines g-def : g ≡ (λj::nat. if j≥1 then f (j−1) else b)
shows [g (insert b Y)|b .. a1 .. an]

proof −
let ?X = insert b Y
have ord-fY : local-ordering f betw Y using long-ch-Y finite-long-chain-with-card

chain-defs
by (meson long-ch-card-ge3)

have b/∈Y
using abc-ac-neq abc-only-cba(1) assms by (metis fin-ch-betw2 finite-long-chain-with-alt)

have bound-indices: f 0 = a1 ∧ f (card Y − 1) = an

using long-ch-Y by (simp add: chain-defs)

97

have fin-Y : card Y ≥ 3
using finite-long-chain-with-def long-ch-Y numeral-2-eq-2 points-in-long-chain

by (metis abc-abc-neq bY card2-either-elt1-or-elt2 fin-chain-card-geq-2 leI le-less-Suc-eq
numeral-3-eq-3)

hence num-ord: 0 ≤ (0 ::nat) ∧ 0<(1 ::nat) ∧ 1 < card Y − 1 ∧ card Y − 1
< card Y

by linarith
hence [a1; f 1 ; an]

using order-finite-chain chain-defs long-ch-Y
by auto

Schutz has a step here that says [ba1a2an] is a chain (using Theorem 9). We
have no easy way (yet) of denoting an ordered 4-element chain, so we skip
this step using a local-ordering lemma from our script for 3.6, which Schutz
doesn’t list.

hence [b; a1; f 1]
using bY abd-bcd-abc by blast

have local-ordering g betw ?X
proof −

{
fix n assume finite ?X −→ n<card ?X
have g n ∈ ?X

apply (cases n≥1)
prefer 2 apply (simp add: g-def)

proof
assume 1≤n g n /∈ Y
hence g n = f (n−1) unfolding g-def by auto
hence g n ∈ Y
proof (cases n = card ?X − 1)

case True
thus ?thesis

using ‹b/∈Y › card.insert diff-Suc-1 long-ch-Y points-in-long-chain
chain-defs

by (metis ‹g n = f (n − 1)›)
next

case False
hence n < card Y

using points-in-long-chain ‹finite ?X −→ n < card ?X› ‹g n = f (n −
1)› ‹g n /∈ Y › ‹b/∈Y › chain-defs

by (metis card.insert finite-insert long-ch-Y not-less-simps(1))
hence n−1 < card Y − 1

using ‹1 ≤ n› diff-less-mono by blast
hence f (n−1)∈Y

using long-ch-Y fin-Y unfolding chain-defs local-ordering-def
by (metis Suc-le-D card-3-dist diff-Suc-1 insert-absorb2 le-antisym

less-SucI numeral-3-eq-3 set-le-three)
thus ?thesis

using ‹g n = f (n − 1)› by presburger
qed

98

hence False using ‹g n /∈ Y › by auto
thus g n = b by simp

qed
} moreover {

fix n assume (finite ?X −→ Suc(Suc n) < card ?X)
hence [g n; g (Suc n); g (Suc(Suc n))]

apply (cases n≥1)
using ‹b/∈Y › ‹[b; a1; f 1]› g-def ordering-ord-ijk-loc[OF ord-fY] fin-Y
apply (metis Suc-diff-le card-insert-disjoint diff-Suc-1 finite-insert le-Suc-eq

not-less-eq)
by (metis One-nat-def Suc-leI ‹[b;a1;f 1]› bound-indices diff-Suc-1 g-def

not-less-less-Suc-eq zero-less-Suc)
} moreover {

fix x assume x∈?X x=b
have (finite ?X −→ 0 < card ?X) ∧ g 0 = x

by (simp add: ‹b/∈Y › ‹x = b› g-def)
} moreover {

fix x assume x∈?X x 6=b
hence ∃n. (finite ?X −→ n < card ?X) ∧ g n = x
proof −

obtain n where f n = x n < card Y
using ‹x∈?X› ‹x 6=b› local-ordering-def insert-iff long-ch-Y chain-defs by

(metis ord-fY)
have (finite ?X −→ n+1 < card ?X) g(n+1) = x

apply (simp add: ‹b/∈Y › ‹n < card Y ›)
by (simp add: ‹f n = x› g-def)

thus ?thesis by auto
qed

}
ultimately show ?thesis

unfolding local-ordering-def
by smt

qed
hence local-long-ch-by-ord g ?X

unfolding local-long-ch-by-ord-def
using fin-Y ‹b/∈Y ›
by (meson card-insert-le finite-insert le-trans)

show ?thesis
proof (intro finite-long-chain-with-alt2)

show local-long-ch-by-ord g ?X using ‹local-long-ch-by-ord g ?X› by simp
show [b;a1;an] ∧ a1 ∈ ?X using bY long-ch-Y points-in-long-chain(1) by auto
show g 0 = b using g-def by simp
show finite ?X

using fin-Y ‹b/∈Y › eval-nat-numeral by (metis card.infinite finite.insertI
not-numeral-le-zero)

show g (card ?X − 1) = an

using g-def ‹b/∈Y › bound-indices eval-nat-numeral
by (metis One-nat-def card.infinite card-insert-disjoint diff-Suc-Suc

diff-is-0-eq ′ less-nat-zero-code minus-nat.diff-0 nat-le-linear num-ord)

99

qed
qed

This is case (iii) of the induction in Theorem 10. Schutz says merely “The
proof for this case is similar to that for Case (i).” Thus I feel free to
use a result on symmetry, rather than going through the pain of Case (i)
(chain-append-at-left-edge) again.
lemma chain-append-at-right-edge:

assumes long-ch-Y : [f Y |a1..a..an]
and Yb: [a1; an; b]

fixes g defines g-def : g ≡ (λj::nat. if j ≤ (card Y − 1) then f j else b)
shows [g (insert b Y)|a1 .. an .. b]

proof −
let ?X = insert b Y
have b/∈Y

using Yb abc-abc-neq abc-only-cba(2) long-ch-Y
by (metis fin-ch-betw2 finite-long-chain-with-def)

have fin-Y : card Y ≥ 3
using finite-long-chain-with-card long-ch-Y by auto

hence fin-X : finite ?X
by (metis card.infinite finite.insertI not-numeral-le-zero)

have a1∈Y ∧ an∈Y ∧ a∈Y
using long-ch-Y points-in-long-chain by meson

have a1 6=a ∧ a 6= an ∧ a1 6=an

using Yb abc-abc-neq finite-long-chain-with-def long-ch-Y by auto
have Suc (card Y) = card ?X

using ‹b/∈Y › fin-X finite-long-chain-with-def long-ch-Y by auto
obtain f2 where f2-def : [f2 Y |an..a..a1] f2=(λn. f (card Y − 1 − n))

using chain-sym long-ch-Y by blast
obtain g2 where g2-def : g2 = (λj::nat. if j≥1 then f2 (j−1) else b)

by simp
have [b; an; a1]

using abc-sym Yb by blast
hence g2-ord-X : [g2 ?X |b .. an .. a1]

using chain-append-at-left-edge [where a1=an and an=a1 and f=f2]
fin-X ‹b/∈Y › f2-def g2-def

by blast
then obtain g1 where g1-def : [g1 ?X |a1..an..b] g1=(λn. g2 (card ?X − 1 −

n))
using chain-sym by blast

have sYX : (card Y) = (card ?X) − 1
using assms(2 ,3) finite-long-chain-with-def long-ch-Y ‹Suc (card Y) = card

?X› by linarith
have g1=g

unfolding g1-def g2-def f2-def g-def
proof

fix n
show (

if 1 ≤ card ?X − 1 − n then

100

f (card Y − 1 − (card ?X − 1 − n − 1))
else b

) = (
if n ≤ card Y − 1 then

f n
else b

) (is ?lhs=?rhs)
proof (cases)

assume n ≤ card ?X − 2
show ?lhs=?rhs

using ‹n ≤ card ?X − 2 › finite-long-chain-with-def long-ch-Y sYX ‹Suc
(card Y) = card ?X›

by (metis (mono-tags, opaque-lifting) Suc-1 Suc-leD diff-Suc-Suc diff-commute
diff-diff-cancel

diff-le-mono2 fin-chain-card-geq-2)
next

assume ¬ n ≤ card ?X − 2
thus ?lhs=?rhs

by (metis ‹Suc (card Y) = card ?X› Suc-1 diff-Suc-1 diff-Suc-eq-diff-pred
diff-diff-cancel

diff-is-0-eq ′ nat-le-linear not-less-eq-eq)
qed

qed
thus ?thesis

using g1-def (1) by blast
qed

lemma S-is-dense:
assumes long-ch-Y : [f Y |a1..a..an]

and S-def : S = {k::nat. [a1; f k; b] ∧ k < card Y }
and k-def : S 6={} k = Max S
and k ′-def : k ′>0 k ′<k

shows k ′ ∈ S
proof −

We will prove this by contradiction. We can obtain the path that Y lies on,
and show b is on it too. Then since f‘S must be on this path, there must
be an ordering involving b, f k and f k ′ that leads to contradiction with the
definition of S and k /∈S. Notice we need no knowledge about b except how
it relates to S.

have [f Y] using long-ch-Y chain-defs by meson
have card Y ≥ 3 using finite-long-chain-with-card long-ch-Y by blast
hence finite Y by (metis card.infinite not-numeral-le-zero)
have k∈S using k-def Max-in S-def by (metis finite-Collect-conjI finite-Collect-less-nat)
hence k<card Y using S-def by auto
have k ′<card Y using S-def k ′-def ‹k∈S› by auto
show k ′ ∈ S
proof (rule ccontr)

101

assume asm: ¬k ′∈S
have 1 : [f 0 ;f k;f k ′]
proof −

have [a1; b; f k ′]
using order-finite-chain2 long-ch-Y ‹k ∈ S› ‹k ′ < card Y › chain-defs
by (smt (z3) abc-acd-abd asm le-numeral-extra(3) assms mem-Collect-eq)

have [a1; f k; b]
using S-def ‹k ∈ S› by blast

have [f k; b; f k ′]
using abc-acd-bcd ‹[a1; b; f k ′]› ‹[a1; f k; b]› by blast

thus ?thesis
using ‹[a1;f k;b]› long-ch-Y unfolding finite-long-chain-with-def finite-chain-with-def

by blast
qed
have 2 : [f 0 ;f k ′;f k]
apply (intro order-finite-chain2 [OF ‹[f Y]› ‹finite Y ›]) by (simp add: ‹k <

card Y › k ′-def)
show False using 1 2 abc-only-cba(2) by blast

qed
qed

lemma smallest-k-ex:
assumes long-ch-Y : [f Y |a1..a..an]

and Y-def : b/∈Y
and Yb: [a1; b; an]

shows ∃ k>0 . [a1; b; f k] ∧ k < card Y ∧ ¬(∃ k ′<k. [a1; b; f k ′])
proof −

have bound-indices: f 0 = a1 ∧ f (card Y − 1) = an

using chain-defs long-ch-Y by auto
have fin-Y : finite Y

using chain-defs long-ch-Y by presburger
have card-Y : card Y ≥ 3

using long-ch-Y points-in-long-chain finite-long-chain-with-card by blast

We consider all indices of chain elements between a1 and b, and find the
maximal one.

let ?S = {k::nat. [a1; f k; b] ∧ k < card Y }
obtain S where S-def : S=?S

by simp
have S⊆{0 ..card Y }

using S-def by auto
hence finite S

using finite-subset by blast

show ?thesis
proof (cases)

assume S={}

102

show ?thesis
proof

show (0 ::nat)<1 ∧ [a1; b; f 1] ∧ 1 < card Y ∧ ¬ (∃ k ′::nat. k ′ < 1 ∧ [a1; b;
f k ′])

proof (intro conjI)
show (0 ::nat)<1 by simp
show 1 < card Y

using Yb abc-ac-neq bound-indices not-le by fastforce
show ¬ (∃ k ′::nat. k ′ < 1 ∧ [a1; b; f k ′])

using abc-abc-neq bound-indices
by blast

show [a1; b; f 1]
proof −

have f 1 ∈ Y
using long-ch-Y chain-defs local-ordering-def by (metis ‹1 < card Y ›

short-ch-ord-in(2))
hence [a1; f 1 ; an]

using bound-indices long-ch-Y chain-defs local-ordering-def card-Y
by (smt (z3) Nat.lessE One-nat-def Suc-le-lessD Suc-lessD diff-Suc-1

diff-Suc-less
fin-ch-betw2 i-le-j-events-neq less-numeral-extra(1) numeral-3-eq-3)

hence [a1; b; f 1] ∨ [a1; f 1 ; b] ∨ [b; a1; f 1]
using abc-ex-path-unique some-betw abc-sym
by (smt Y-def Yb ‹f 1 ∈ Y › abc-abc-neq cross-once-notin)

thus [a1; b; f 1]
proof −

have ∀n. ¬ ([a1; f n; b] ∧ n < card Y)
using S-def ‹S = {}›
by blast

then have [a1; b; f 1] ∨ ¬ [an; f 1 ; b] ∧ ¬ [a1; f 1 ; b]
using bound-indices abc-sym abd-bcd-abc Yb
by (metis (no-types) diff-is-0-eq ′ nat-le-linear nat-less-le)

then show ?thesis
using abc-bcd-abd abc-sym
by (meson ‹[a1; b; f 1] ∨ [a1; f 1 ; b] ∨ [b; a1; f 1]› ‹[a1; f 1 ; an]›)

qed
qed

qed
qed

next assume ¬S={}
obtain k where k = Max S

by simp
hence k ∈ S using Max-in

by (simp add: ‹S 6= {}› ‹finite S›)
have k≥1
proof (rule ccontr)

assume ¬ 1 ≤ k
hence k=0 by simp
have [a1; f k; b]

103

using ‹k∈S› S-def
by blast

thus False
using bound-indices ‹k = 0 › abc-abc-neq
by blast

qed

show ?thesis
proof

let ?k = k+1
show 0<?k ∧ [a1; b; f ?k] ∧ ?k < card Y ∧ ¬ (∃ k ′::nat. k ′ < ?k ∧ [a1; b; f

k ′])
proof (intro conjI)

show (0 ::nat)<?k by simp
show ?k < card Y
by (metis (no-types, lifting) S-def Yb ‹k ∈ S› abc-only-cba(2) add.commute
add-diff-cancel-right ′ bound-indices less-SucE mem-Collect-eq nat-add-left-cancel-less

plus-1-eq-Suc)
show [a1; b; f ?k]
proof −

have f ?k ∈ Y
using ‹k + 1 < card Y › long-ch-Y card-Y unfolding local-ordering-def

chain-defs
by (metis One-nat-def Suc-numeral not-less-eq-eq numeral-3-eq-3 numer-

als(1) semiring-norm(2) set-le-two)
have [a1; f ?k; an] ∨ f ?k = an

using fin-ch-betw2 inside-not-bound(1) long-ch-Y chain-defs
by (metis ‹0 < k + 1 › ‹k + 1 < card Y › ‹f (k + 1) ∈ Y ›)

thus [a1; b; f ?k]
proof (rule disjE)

assume [a1; f ?k; an]
hence f ?k 6= an

by (simp add: abc-abc-neq)
hence [a1; b; f ?k] ∨ [a1; f ?k; b] ∨ [b; a1; f ?k]

using abc-ex-path-unique some-betw abc-sym ‹[a1; f ?k; an]›
‹f ?k ∈ Y › Yb abc-abc-neq assms(3) cross-once-notin

by (smt Y-def)
moreover have ¬ [a1; f ?k; b]
proof

assume [a1; f ?k; b]
hence ?k ∈ S

using S-def ‹[a1; f ?k; b]› ‹k + 1 < card Y › by blast
hence ?k ≤ k

by (simp add: ‹finite S› ‹k = Max S›)
thus False

by linarith
qed
moreover have ¬ [b; a1; f ?k]

using Yb ‹[a1; f ?k; an]› abc-only-cba

104

by blast
ultimately show [a1; b; f ?k]

by blast
next assume f ?k = an

show ?thesis
using Yb ‹f (k + 1) = an› by blast

qed
qed
show ¬(∃ k ′::nat. k ′ < k + 1 ∧ [a1; b; f k ′])
proof

assume ∃ k ′::nat. k ′ < k + 1 ∧ [a1; b; f k ′]
then obtain k ′ where k ′-def : k ′>0 k ′ < k + 1 [a1; b; f k ′]

using abc-ac-neq bound-indices neq0-conv
by blast

hence k ′<k
using S-def ‹k ∈ S› abc-only-cba(2) less-SucE by fastforce

hence k ′∈S
using S-is-dense long-ch-Y S-def ‹¬S={}› ‹k = Max S› ‹k ′>0 ›
by blast

thus False
using S-def abc-only-cba(2) k ′-def (3) by blast

qed
qed

qed
qed

qed

lemma greatest-k-ex:
assumes long-ch-Y : [f Y |a1..a..an]

and Y-def : b/∈Y
and Yb: [a1; b; an]

shows ∃ k. [f k; b; an] ∧ k < card Y − 1 ∧ ¬(∃ k ′<card Y . k ′>k ∧ [f k ′; b; an])
proof −

have bound-indices: f 0 = a1 ∧ f (card Y − 1) = an

using chain-defs long-ch-Y by simp
have fin-Y : finite Y

using chain-defs long-ch-Y by presburger
have card-Y : card Y ≥ 3

using long-ch-Y points-in-long-chain finite-long-chain-with-card by blast
have chY2 : local-long-ch-by-ord f Y

using long-ch-Y chain-defs by (meson card-Y long-ch-card-ge3)

Again we consider all indices of chain elements between a1 and b.
let ?S = {k::nat. [an; f k; b] ∧ k < card Y }
obtain S where S-def : S=?S

by simp
have S⊆{0 ..card Y }

105

using S-def by auto
hence finite S

using finite-subset by blast

show ?thesis
proof (cases)

assume S={}
show ?thesis
proof

let ?n = card Y − 2
show [f ?n; b; an] ∧ ?n < card Y − 1 ∧ ¬(∃ k ′<card Y . k ′>?n ∧ [f k ′; b;

an])
proof (intro conjI)

show ?n < card Y − 1
using Yb abc-ac-neq bound-indices not-le by fastforce

next show ¬(∃ k ′<card Y . k ′>?n ∧ [f k ′; b; an])
using abc-abc-neq bound-indices

by (metis One-nat-def Suc-diff-le Suc-leD Suc-lessI card-Y diff-Suc-1
diff-Suc-Suc

not-less-eq numeral-2-eq-2 numeral-3-eq-3)
next show [f ?n; b; an]

proof −
have [f 0 ;f ?n; f (card Y − 1)]

apply (intro order-finite-chain[of f Y], (simp-all add: chY2 fin-Y))
using card-Y by linarith

hence [a1; f ?n; an]
using long-ch-Y unfolding chain-defs by simp

have f ?n ∈ Y
using long-ch-Y eval-nat-numeral unfolding local-ordering-def chain-defs

by (metis card-1-singleton-iff card-Suc-eq card-gt-0-iff diff-Suc-less
diff-self-eq-0 insert-iff numeral-2-eq-2)

hence [an; b; f ?n] ∨ [an; f ?n; b] ∨ [b; an; f ?n]
using abc-ex-path-unique some-betw abc-sym ‹[a1; f ?n; an]›
by (smt Y-def Yb ‹f ?n ∈ Y › abc-abc-neq cross-once-notin)

thus [f ?n; b; an]
proof −

have ∀n. ¬ ([an; f n; b] ∧ n < card Y)
using S-def ‹S = {}›
by blast

then have [an; b; f ?n] ∨ ¬ [a1; f ?n; b] ∧ ¬ [an; f ?n; b]
using bound-indices abc-sym abd-bcd-abc Yb

by (metis (no-types, lifting) ‹f (card Y − 2) ∈ Y › card-gt-0-iff diff-less
empty-iff fin-Y zero-less-numeral)

then show ?thesis
using abc-bcd-abd abc-sym
by (meson ‹[an; b; f ?n] ∨ [an; f ?n; b] ∨ [b; an; f ?n]› ‹[a1; f ?n; an]›)

qed
qed

qed

106

qed
next assume ¬S={}

obtain k where k = Min S
by simp

hence k ∈ S
by (simp add: ‹S 6= {}› ‹finite S›)

show ?thesis
proof

let ?k = k−1
show [f ?k; b; an] ∧ ?k < card Y − 1 ∧ ¬ (∃ k ′<card Y . ?k < k ′ ∧ [f k ′; b;

an])
proof (intro conjI)

show ?k < card Y − 1
using S-def ‹k ∈ S› less-imp-diff-less card-Y
by (metis (no-types, lifting) One-nat-def diff-is-0-eq ′ diff-less-mono lessI

less-le-trans
mem-Collect-eq nat-le-linear numeral-3-eq-3 zero-less-diff)

show [f ?k; b; an]
proof −

have f ?k ∈ Y
using ‹k − 1 < card Y − 1 › long-ch-Y card-Y eval-nat-numeral unfolding

local-ordering-def chain-defs
by (metis Suc-pred ′ less-Suc-eq less-nat-zero-code not-less-eq not-less-eq-eq

set-le-two)
have [a1; f ?k; an] ∨ f ?k = a1

using bound-indices long-ch-Y ‹k − 1 < card Y − 1 › chain-defs
unfolding finite-long-chain-with-alt

by (metis ‹f (k − 1) ∈ Y › card-Diff1-less card-Diff-singleton-if chY2
index-injective)

thus [f ?k; b; an]
proof (rule disjE)

assume [a1; f ?k; an]
hence f ?k 6= a1

using abc-abc-neq by blast
hence [an; b; f ?k] ∨ [an; f ?k; b] ∨ [b; an; f ?k]

using abc-ex-path-unique some-betw abc-sym ‹[a1; f ?k; an]›
‹f ?k ∈ Y › Yb abc-abc-neq assms(3) cross-once-notin

by (smt Y-def)
moreover have ¬ [an; f ?k; b]
proof

assume [an; f ?k; b]
hence ?k ∈ S

using S-def ‹[an; f ?k; b]› ‹k − 1 < card Y − 1 ›
by simp

hence ?k ≥ k
by (simp add: ‹finite S› ‹k = Min S›)

thus False
using ‹f (k − 1) 6= a1› chain-defs long-ch-Y

107

by auto
qed
moreover have ¬ [b; an; f ?k]

using Yb ‹[a1; f ?k; an]› abc-only-cba(2) abc-bcd-acd
by blast

ultimately show [f ?k; b; an]
using abc-sym by auto

next assume f ?k = a1

show ?thesis
using Yb ‹f (k − 1) = a1› by blast

qed
qed
show ¬(∃ k ′<card Y . k−1 < k ′ ∧ [f k ′; b; an])
proof

assume ∃ k ′<card Y . k−1 < k ′ ∧ [f k ′; b; an]
then obtain k ′ where k ′-def : k ′<card Y −1 k ′ > k − 1 [an; b; f k ′]

using abc-ac-neq bound-indices neq0-conv
by (metis Suc-diff-1 abc-sym gr-implies-not0 less-SucE)

hence k ′>k
using S-def ‹k ∈ S› abc-only-cba(2) less-SucE
by (metis (no-types, lifting) add-diff-inverse-nat less-one mem-Collect-eq

not-less-eq plus-1-eq-Suc)thm S-is-dense
hence k ′∈S

apply (intro S-is-dense[of f Y a1 a an - b Max S])
apply (simp add: long-ch-Y)
apply (smt (verit, ccfv-SIG) S-def ‹k ∈ S› abc-acd-abd abc-only-cba(4)

add-diff-inverse-nat bound-indices chY2 diff-add-zero diff-is-0-eq fin-Y
k ′-def (1 ,3)

less-add-one less-diff-conv2 less-nat-zero-code mem-Collect-eq nat-diff-split
order-finite-chain)

apply (simp add: ‹S 6= {}›, simp, simp)
using k ′-def S-def

by (smt (verit, ccfv-SIG) ‹k ∈ S› abc-acd-abd abc-only-cba(4) add-diff-cancel-right ′

add-diff-inverse-nat bound-indices chY2 fin-Y le-eq-less-or-eq less-nat-zero-code
mem-Collect-eq nat-diff-split nat-neq-iff order-finite-chain zero-less-diff

zero-less-one)
thus False

using S-def abc-only-cba(2) k ′-def (3)
by blast

qed
qed

qed
qed

qed

lemma get-closest-chain-events:
assumes long-ch-Y : [f Y |a0..a..an]

and x-def : x /∈Y [a0; x; an]

108

obtains nb nc b c
where b=f nb c=f nc [b;x;c] b∈Y c∈Y nb = nc − 1 nc<card Y nc>0

¬(∃ k < card Y . [f k; x; an] ∧ k>nb) ¬(∃ k<nc. [a0; x; f k])
proof −

have ∃ nb nc b c. b=f nb ∧ c=f nc ∧ [b;x;c] ∧ b∈Y ∧ c∈Y ∧ nb = nc − 1 ∧
nc<card Y ∧ nc>0
∧ ¬(∃ k < card Y . [f k; x; an] ∧ k>nb) ∧ ¬(∃ k < nc. [a0; x; f k])

proof −
have bound-indices: f 0 = a0 ∧ f (card Y − 1) = an

using chain-defs long-ch-Y by simp
have fin-Y : finite Y

using chain-defs long-ch-Y by presburger
have card-Y : card Y ≥ 3

using long-ch-Y points-in-long-chain finite-long-chain-with-card by blast
have chY2 : local-long-ch-by-ord f Y

using long-ch-Y chain-defs by (meson card-Y long-ch-card-ge3)
obtain P where P-def : P∈P Y⊆P

using fin-chain-on-path long-ch-Y fin-Y chain-defs by meson
hence x∈P

using betw-b-in-path x-def (2) long-ch-Y points-in-long-chain
by (metis abc-abc-neq in-mono)

obtain nc where nc-def : ¬(∃ k. [a0; x; f k] ∧ k<nc) [a0; x; f nc] nc<card Y
nc>0

using smallest-k-ex [where a1=a0 and a=a and an=an and b=x and f=f
and Y=Y]

long-ch-Y x-def
by blast

then obtain c where c-def : c=f nc c∈Y
using chain-defs local-ordering-def by (metis chY2)

have c-goal: c=f nc ∧ c∈Y ∧ nc<card Y ∧ nc>0 ∧ ¬(∃ k < card Y . [a0; x; f
k] ∧ k<nc)

using c-def nc-def (1 ,3 ,4) by blast
obtain nb where nb-def : ¬(∃ k < card Y . [f k; x; an] ∧ k>nb) [f nb; x; an]

nb<card Y−1
using greatest-k-ex [where a1=a0 and a=a and an=an and b=x and f=f

and Y=Y]
long-ch-Y x-def

by blast
hence nb<card Y

by linarith
then obtain b where b-def : b=f nb b∈Y

using nb-def chY2 local-ordering-def by (metis local-long-ch-by-ord-alt)
have [b;x;c]
proof −

have [b; x; an]
using b-def (1) nb-def (2) by blast

have [a0; x; c]
using c-def (1) nc-def (2) by blast

moreover have ∀ a. [a;x;b] ∨ ¬ [a; an; x]

109

using ‹[b; x; an]› abc-bcd-acd
by (metis (full-types) abc-sym)

moreover have ∀ a. [a;x;b] ∨ ¬ [an; a; x]
using ‹[b; x; an]› by (meson abc-acd-bcd abc-sym)

moreover have an = c −→ [b;x;c]
using ‹[b; x; an]› by meson

ultimately show ?thesis
using abc-abd-bcdbdc abc-sym x-def (2)
by meson

qed
have nb<nc

using ‹[b;x;c]› ‹nc<card Y › ‹nb<card Y › ‹c = f nc› ‹b = f nb›
by (smt (z3) abc-abd-bcdbdc abc-ac-neq abc-acd-abd abc-only-cba(4) abc-sym

bot-nat-0 .extremum
bound-indices chY2 fin-Y nat-neq-iff nc-def (2) nc-def (4) order-finite-chain)

have nb = nc − 1
proof (rule ccontr)

assume nb 6= nc − 1
have nb<nc−1

using ‹nb 6= nc − 1 › ‹nb<nc› by linarith
hence [f nb; (f (nc−1)); f nc]

using ‹nb 6= nc − 1 › long-ch-Y nc-def (3) order-finite-chain chain-defs
by auto

have ¬[a0; x; (f (nc−1))]
using nc-def (1 ,4) diff-less less-numeral-extra(1)
by blast

have nc−1 6=0
using ‹nb < nc› ‹nb 6= nc − 1 › by linarith

hence f (nc−1) 6=a0 ∧ a0 6=x
using bound-indices ‹nb < nc − 1 › abc-abc-neq less-imp-diff-less nb-def (1)

nc-def (3) x-def (2)
by blast

have x 6=f (nc−1)
using x-def (1) nc-def (3) chY2 unfolding chain-defs local-ordering-def
by (metis One-nat-def Suc-pred less-Suc-eq nc-def (4) not-less-eq)

hence [a0; f (nc−1); x]
using long-ch-Y nc-def c-def chain-defs

by (metis ‹[f nb;f (nc − 1);f nc]› ‹¬ [a0;x;f (nc − 1)]› abc-ac-neq abc-acd-abd
abc-bcd-acd

abd-acd-abcacb abd-bcd-abc b-def (1) b-def (2) fin-ch-betw2 nb-def (2))
hence [(f (nc−1)); x; an]

using abc-acd-bcd x-def (2) by blast
thus False using nb-def (1)

using ‹nb < nc − 1 › less-imp-diff-less nc-def (3)
by blast

qed
have b-goal: b=f nb ∧ b∈Y ∧ nb=nc−1 ∧ ¬(∃ k < card Y . [f k; x; an] ∧ k>nb)

using b-def nb-def (1) nb-def (3) ‹nb=nc−1 › by blast
thus ?thesis

110

using ‹[b;x;c]› c-goal
using ‹nb < card Y › nc-def (1) by auto

qed
thus ?thesis

using that by auto
qed

This is case (ii) of the induction in Theorem 10.
lemma chain-append-inside:

assumes long-ch-Y : [f Y |a1..a..an]
and Y-def : b/∈Y
and Yb: [a1; b; an]
and k-def : [a1; b; f k] k < card Y ¬(∃ k ′. (0 ::nat)<k ′ ∧ k ′<k ∧ [a1; b; f k ′])

fixes g
defines g-def : g ≡ (λj::nat. if (j≤k−1) then f j else (if (j=k) then b else f

(j−1)))
shows [g insert b Y |a1 .. b .. an]

proof −
let ?X = insert b Y
have fin-X : finite ?X

by (meson chain-defs finite.insertI long-ch-Y)
have bound-indices: f 0 = a1 ∧ f (card Y − 1) = an

using chain-defs long-ch-Y
by auto

have fin-Y : finite Y
using chain-defs long-ch-Y by presburger

have f-def : local-long-ch-by-ord f Y
using chain-defs long-ch-Y by (meson finite-long-chain-with-card long-ch-card-ge3)

have ‹a1 6= an ∧ a1 6= b ∧ b 6= an›
using Yb abc-abc-neq by blast

have k 6= 0
using abc-abc-neq bound-indices k-def
by metis

have b-middle: [f (k−1); b; f k]
proof (cases)

assume k=1 show [f (k−1); b; f k]
using ‹[a1; b; f k]› ‹k = 1 › bound-indices by auto

next assume k 6=1 show [f (k−1); b; f k]
proof −

have a1k: [a1; f (k−1); f k] using bound-indices
using ‹k < card Y › ‹k 6= 0 › ‹k 6= 1 › long-ch-Y fin-Y order-finite-chain
unfolding chain-defs by auto

In fact, the comprehension below gives the order of elements too. Our
notation and Theorem 9 are too weak to say that just now.

have ch-with-b: ch {a1, (f (k−1)), b, (f k)} using chain4
using k-def (1) abc-ex-path-unique between-chain cross-once-notin
by (smt ‹[a1; f (k−1); f k]› abc-abc-neq insert-absorb2)

111

have f (k−1) 6= b ∧ (f k) 6= (f (k−1)) ∧ b 6= (f k)
using abc-abc-neq f-def k-def (2) Y-def

by (metis local-ordering-def ‹[a1; f (k−1); f k]› less-imp-diff-less lo-
cal-long-ch-by-ord-def)

hence some-ord-bk: [f (k−1); b; f k] ∨ [b; f (k−1); f k] ∨ [f (k−1); f k; b]
using fin-chain-on-path ch-with-b some-betw Y-def chain-defs
by (metis a1k abc-acd-bcd abd-acd-abcacb k-def (1))

thus [f (k−1); b; f k]
proof −

have ¬ [a1; f k; b]
by (simp add: ‹[a1; b; f k]› abc-only-cba(2))

thus ?thesis
using some-ord-bk k-def abc-bcd-acd abd-bcd-abc bound-indices
by (metis diff-is-0-eq ′ diff-less less-imp-diff-less less-irrefl-nat not-less

zero-less-diff zero-less-one ‹[a1; b; f k]› a1k)
qed

qed
qed

let ?case1 ∨ ?case2 = k−2 ≥ 0 ∨ k+1 ≤ card Y −1

have b-right: [f (k−2); f (k−1); b] if k ≥ 2
proof −

have k−1 < (k::nat)
using ‹k 6= 0 › diff-less zero-less-one by blast

hence k−2 < k−1
using ‹2 ≤ k› by linarith

have [f (k−2); f (k−1); b]
using abd-bcd-abc b-middle f-def k-def (2) fin-Y ‹k−2 < k−1 › ‹k−1 < k›

thm2-ind2 chain-defs
by (metis Suc-1 Suc-le-lessD diff-Suc-eq-diff-pred that zero-less-diff)

thus [f (k−2); f (k−1); b]
using ‹[f (k − 1); b; f k]› abd-bcd-abc
by blast

qed

have b-left: [b; f k; f (k+1)] if k+1 ≤ card Y −1
proof −

have [f (k−1); f k; f (k+1)]
using ‹k 6= 0 › f-def fin-Y order-finite-chain that
by auto

thus [b; f k; f (k+1)]
using ‹[f (k − 1); b; f k]› abc-acd-bcd
by blast

qed

have local-ordering g betw ?X
proof −

have ∀n. (finite ?X −→ n < card ?X) −→ g n ∈ ?X

112

proof (clarify)
fix n assume finite ?X −→ n < card ?X g n /∈ Y
consider n≤k−1 | n≥k+1 | n=k

by linarith
thus g n = b
proof (cases)

assume n ≤ k − 1
thus g n = b

using f-def k-def (2) Y-def (1) chain-defs local-ordering-def g-def
by (metis ‹g n /∈ Y › ‹k 6= 0 › diff-less le-less less-one less-trans not-le)

next
assume k + 1 ≤ n
show g n = b
proof −

have f n ∈ Y ∨ ¬(n < card Y) for n
using chain-defs by (metis local-ordering-def f-def)

then show g n = b
using ‹finite ?X −→ n < card ?X› fin-Y g-def Y-def ‹g n /∈ Y › ‹k + 1

≤ n›
not-less not-less-simps(1) not-one-le-zero

by fastforce
qed

next
assume n=k
thus g n = b

using Y-def ‹k 6= 0 › g-def
by auto

qed
qed
moreover have ∀ x∈?X . ∃n. (finite ?X −→ n < card ?X) ∧ g n = x
proof

fix x assume x∈?X
show ∃n. (finite ?X −→ n < card ?X) ∧ g n = x
proof (cases)

assume x∈Y
show ?thesis
proof −

obtain ix where f ix = x ix < card Y
using ‹x ∈ Y › f-def fin-Y
unfolding chain-defs local-ordering-def
by auto

have ix≤k−1 ∨ ix≥k
by linarith

thus ?thesis
proof

assume ix≤k−1
hence g ix = x

using ‹f ix = x› g-def by auto
moreover have finite ?X −→ ix < card ?X

113

using Y-def ‹ix < card Y › by auto
ultimately show ?thesis by metis

next assume ix≥k
hence g (ix+1) = x

using ‹f ix = x› g-def by auto
moreover have finite ?X −→ ix+1 < card ?X

using Y-def ‹ix < card Y › by auto
ultimately show ?thesis by metis

qed
qed

next assume x /∈Y
hence x=b

using Y-def ‹x ∈ ?X› by blast
thus ?thesis

using Y-def ‹k 6= 0 › k-def (2) ordered-cancel-comm-monoid-diff-class.le-diff-conv2
g-def

by auto
qed

qed
moreover have ∀n n ′ n ′′. (finite ?X −→ n ′′ < card ?X) ∧ Suc n = n ′ ∧ Suc

n ′ = n ′′

−→ [g n; g (Suc n); g (Suc (Suc n))]
proof (clarify)

fix n n ′ n ′′ assume a: (finite ?X −→ (Suc (Suc n)) < card ?X)

Introduce the two-case splits used later.
have cases-sn: Suc n≤k−1 ∨ Suc n=k if n≤k−1

using ‹k 6= 0 › that by linarith
have cases-ssn: Suc(Suc n)≤k−1 ∨ Suc(Suc n)=k if n≤k−1 Suc n≤k−1

using that(2) by linarith

consider n≤k−1 | n≥k+1 | n=k
by linarith

then show [g n; g (Suc n); g (Suc (Suc n))]
proof (cases)

assume n≤k−1 show ?thesis
using cases-sn

proof (rule disjE)
assume Suc n ≤ k − 1
show ?thesis using cases-ssn
proof (rule disjE)

show n ≤ k − 1 using ‹n ≤ k − 1 › by blast
show ‹Suc n ≤ k − 1 › using ‹Suc n ≤ k − 1 › by blast

next
assume Suc (Suc n) ≤ k − 1
thus ?thesis
using ‹Suc n ≤ k − 1 › ‹k 6= 0 › ‹n ≤ k − 1 › ordering-ord-ijk-loc f-def

g-def k-def (2)
by (metis (no-types, lifting) add-diff-inverse-nat less-Suc-eq-le

114

less-imp-le-nat less-le-trans less-one local-long-ch-by-ord-def plus-1-eq-Suc)
next

assume Suc (Suc n) = k
thus ?thesis

using b-right g-def by force
qed

next
assume Suc n = k
show ?thesis

using b-middle ‹Suc n = k› ‹n ≤ k − 1 › g-def
by auto

next show n ≤ k−1 using ‹n ≤ k − 1 › by blast
qed

next assume n≥k+1 show ?thesis
proof −

have g n = f (n−1)
using ‹k + 1 ≤ n› less-imp-diff-less g-def
by auto

moreover have g (Suc n) = f (n)
using ‹k + 1 ≤ n› g-def by auto

moreover have g (Suc (Suc n)) = f (Suc n)
using ‹k + 1 ≤ n› g-def by auto

moreover have n−1<n ∧ n<Suc n
using ‹k + 1 ≤ n› by auto

moreover have finite Y −→ Suc n < card Y
using Y-def a by auto

ultimately show ?thesis
using f-def unfolding chain-defs local-ordering-def
by (metis ‹k + 1 ≤ n› add-leD2 le-add-diff-inverse plus-1-eq-Suc)

qed
next assume n=k

show ?thesis
using ‹k 6= 0 › ‹n = k› b-left g-def Y-def (1) a assms(3) fin-Y
by auto

qed
qed
ultimately show local-ordering g betw ?X

unfolding local-ordering-def
by presburger

qed
hence local-long-ch-by-ord g ?X

using Y-def f-def local-long-ch-by-ord-def local-long-ch-by-ord-def
by auto

thus [g ?X |a1..b..an]
using fin-X ‹a1 6= an ∧ a1 6= b ∧ b 6= an› bound-indices k-def (2) Y-def g-def

chain-defs
by simp

qed

115

lemma card4-eq:
assumes card X = 4
shows ∃ a b c d. a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d ∧ X = {a,

b, c, d}
proof −

obtain a X ′ where X = insert a X ′ and a /∈ X ′

by (metis Suc-eq-numeral assms card-Suc-eq)
then have card X ′ = 3

by (metis add-2-eq-Suc ′ assms card-eq-0-iff card-insert-if diff-Suc-1 finite-insert
numeral-3-eq-3 numeral-Bit0 plus-nat.add-0 zero-neq-numeral)

then obtain b X ′′ where X ′ = insert b X ′′ and b /∈ X ′′

by (metis card-Suc-eq numeral-3-eq-3)
then have card X ′′ = 2

by (metis Suc-eq-numeral ‹card X ′ = 3 › card.infinite card-insert-if finite-insert
pred-numeral-simps(3) zero-neq-numeral)

then have ∃ c d. c 6= d ∧ X ′′ = {c, d}
by (meson card-2-iff)

thus ?thesis
using ‹X = insert a X ′› ‹X ′ = insert b X ′′› ‹a /∈ X ′› ‹b /∈ X ′′› by blast

qed

theorem path-finsubset-chain:
assumes Q ∈ P

and X ⊆ Q
and card X ≥ 2

shows ch X
proof −

have finite X
using assms(3) not-numeral-le-zero by fastforce

consider card X = 2 | card X = 3 | card X ≥ 4
using ‹card X ≥ 2 › by linarith

thus ?thesis
proof (cases)

assume card X = 2
thus ?thesis

using ‹finite X› assms two-event-chain by blast
next

assume card X = 3
thus ?thesis

using ‹finite X› assms three-event-chain by blast
next

assume card X ≥ 4
thus ?thesis

using assms(1 ,2) ‹finite X›
proof (induct card X − 4 arbitrary: X)

case 0
then have card X = 4

116

by auto
then have ∃ a b c d. a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d ∧ X

= {a, b, c, d}
using card4-eq by fastforce

thus ?case
using 0 .prems(3) assms(1) chain4 by auto

next
case IH : (Suc n)

then obtain Y b where X-eq: X = insert b Y and b /∈ Y
by (metis Diff-iff card-eq-0-iff finite.cases insertI1 insert-Diff-single not-numeral-le-zero)
have card Y ≥ 4 n = card Y − 4

using IH .hyps(2) IH .prems(4) X-eq ‹b /∈ Y › by auto
then have ch Y

using IH (1) [of Y] IH .prems(3 ,4) X-eq assms(1) by auto

then obtain f where f-ords: local-long-ch-by-ord f Y
using ‹4 ≤ card Y › ch-alt short-ch-card(2) by auto

then obtain a1 a an where long-ch-Y : [f Y |a1..a..an]
using ‹4 ≤ card Y › get-fin-long-ch-bounds by fastforce

hence bound-indices: f 0 = a1 ∧ f (card Y − 1) = an

by (simp add: chain-defs)
have a1 6= an ∧ a1 6= b ∧ b 6= an

using ‹b /∈ Y › abc-abc-neq fin-ch-betw long-ch-Y points-in-long-chain by
metis

moreover have a1 ∈ Q ∧ an ∈ Q ∧ b ∈ Q
using IH .prems(3) X-eq long-ch-Y points-in-long-chain by auto

ultimately consider [b; a1; an] | [a1; an; b] | [an; b; a1]
using some-betw [of Q b a1 an] ‹Q ∈ P› by blast

thus ch X
proof (cases)

assume [b; a1; an]
have X-eq ′: X = Y ∪ {b}

using X-eq by auto
let ?g = λj. if j ≥ 1 then f (j − 1) else b
have [?g X |b..a1..an]

using chain-append-at-left-edge IH .prems(4) X-eq ′ ‹[b; a1; an]› ‹b /∈ Y ›
long-ch-Y X-eq

by presburger
thus ch X

using chain-defs by auto
next

assume [a1; an; b]
let ?g = λj. if j ≤ (card X − 2) then f j else b
have [?g X |a1..an..b]

using chain-append-at-right-edge IH .prems(4) X-eq ‹[a1; an; b]› ‹b /∈ Y ›
long-ch-Y

117

by auto
thus ch X using chain-defs by (meson ch-def)

next

assume [an; b; a1]
then have [a1; b; an]

by (simp add: abc-sym)
obtain k where

k-def : [a1; b; f k] k < card Y ¬ (∃ k ′. 0 < k ′ ∧ k ′ < k ∧ [a1; b; f k ′])
using ‹[a1; b; an]› ‹b /∈ Y › long-ch-Y smallest-k-ex by blast

obtain g where g = (λj::nat. if j ≤ k − 1
then f j
else if j = k

then b else f (j − 1))
by simp

hence [g X |a1..b..an]
using chain-append-inside [of f Y a1 a an b k] IH .prems(4) X-eq

‹[a1; b; an]› ‹b /∈ Y › k-def long-ch-Y
by auto

thus ch X
using chain-defs ch-def by auto

qed
qed

qed
qed

lemma path-finsubset-chain2 :
assumes Q ∈ P and X ⊆ Q and card X ≥ 2
obtains f a b where [f X |a..b]

proof −
have finX : finite X

by (metis assms(3) card.infinite rel-simps(28))
have ch-X : ch X

using path-finsubset-chain[OF assms] by blast
obtain f a b where f-def : [f X |a..b] a∈X ∧ b∈X

using assms finX ch-X get-fin-long-ch-bounds chain-defs
by (metis ch-def points-in-chain)

thus ?thesis
using that by auto

qed

30.2 Theorem 11

Notice this case is so simple, it doesn’t even require the path density larger
sets of segments rely on for fixing their cardinality.
lemma segmentation-ex-N2 :

assumes path-P: P∈P
and Q-def : finite (Q:: ′a set) card Q = N Q⊆P N=2

118

and f-def : [f Q|a..b]
and S-def : S = {segment a b}
and P1-def : P1 = prolongation b a
and P2-def : P2 = prolongation a b

shows P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q) ∧
card S = (N−1) ∧ (∀ x∈S . is-segment x) ∧

P1∩P2={} ∧ (∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→
x∩y={})))
proof −

have a∈Q ∧ b∈Q ∧ a 6=b
using chain-defs f-def points-in-chain first-neq-last
by (metis)

hence Q={a,b}
using assms(3 ,5)

by (smt card-2-iff insert-absorb insert-commute insert-iff singleton-insert-inj-eq)
have a∈P ∧ b∈P

using ‹Q={a,b}› assms(4) by auto
have a 6=b using ‹Q={a,b}›

using ‹N = 2 › assms(3) by force
obtain s where s-def : s = segment a b by simp
let ?S = {s}
have P = ((

⋃
{s}) ∪ P1 ∪ P2 ∪ Q) ∧

card {s} = (N−1) ∧ (∀ x∈{s}. is-segment x) ∧
P1∩P2={} ∧ (∀ x∈{s}. (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈{s}. x 6=y −→

x∩y={})))
proof (rule conjI)

{ fix x assume x∈P
have [a;x;b] ∨ [b;a;x] ∨ [a;b;x] ∨ x=a ∨ x=b

using ‹a∈P ∧ b∈P› some-betw path-P ‹a 6=b›
by (meson ‹x ∈ P› abc-sym)

then have x∈s ∨ x∈P1 ∨ x∈P2 ∨ x=a ∨ x=b
using pro-betw seg-betw P1-def P2-def s-def ‹Q = {a, b}›
by auto

hence x ∈ (
⋃
{s}) ∪ P1 ∪ P2 ∪ Q

using ‹Q = {a, b}› by auto
} moreover {

fix x assume x ∈ (
⋃
{s}) ∪ P1 ∪ P2 ∪ Q

hence x∈s ∨ x∈P1 ∨ x∈P2 ∨ x=a ∨ x=b
using ‹Q = {a, b}› by blast

hence [a;x;b] ∨ [b;a;x] ∨ [a;b;x] ∨ x=a ∨ x=b
using s-def P1-def P2-def
unfolding segment-def prolongation-def
by auto

hence x∈P
using ‹a ∈ P ∧ b ∈ P› ‹a 6= b› betw-b-in-path betw-c-in-path path-P
by blast

}
ultimately show union-P: P = ((

⋃
{s}) ∪ P1 ∪ P2 ∪ Q)

by blast

119

show card {s} = (N−1) ∧ (∀ x∈{s}. is-segment x) ∧ P1∩P2={} ∧
(∀ x∈{s}. (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈{s}. x 6=y −→ x∩y={})))

proof (safe)
show card {s} = N − 1

using ‹Q = {a, b}› ‹a 6= b› assms(3) by auto
show is-segment s

using s-def by blast
show

∧
x. x ∈ P1 =⇒ x ∈ P2 =⇒ x ∈ {}

proof −
fix x assume x∈P1 x∈P2
show x∈{}

using P1-def P2-def ‹x ∈ P1 › ‹x ∈ P2 › abc-only-cba pro-betw
by metis

qed
show

∧
x xa. xa ∈ s =⇒ xa ∈ P1 =⇒ xa ∈ {}

proof −
fix x xa assume xa∈s xa∈P1
show xa∈{}

using abc-only-cba seg-betw pro-betw P1-def ‹xa ∈ P1 › ‹xa ∈ s› s-def
by (metis)

qed
show

∧
x xa. xa ∈ s =⇒ xa ∈ P2 =⇒ xa ∈ {}

proof −
fix x xa assume xa∈s xa∈P2
show xa∈{}

using abc-only-cba seg-betw pro-betw
by (metis P2-def ‹xa ∈ P2 › ‹xa ∈ s› s-def)

qed
qed

qed
thus ?thesis

by (simp add: S-def s-def)
qed

lemma int-split-to-segs:
assumes f-def : [f Q|a..b..c]
fixes S defines S-def : S ≡ {segment (f i) (f (i+1)) | i. i<card Q−1}
shows interval a c = (

⋃
S) ∪ Q

proof
let ?N = card Q
have f-def-2 : a∈Q ∧ b∈Q ∧ c∈Q

using f-def points-in-long-chain by blast
hence ?N ≥ 3

using f-def long-ch-card-ge3 chain-defs
by (meson finite-long-chain-with-card)

have bound-indices: f 0 = a ∧ f (card Q − 1) = c
using f-def chain-defs by auto

120

let ?i = ?u = interval a c = (
⋃

S) ∪ Q
show ?i⊆?u
proof

fix p assume p ∈ ?i
show p∈?u
proof (cases)

assume p∈Q thus ?thesis by blast
next assume p/∈Q

hence p 6=a ∧ p 6=c
using f-def f-def-2 by blast

hence [a;p;c]
using seg-betw ‹p ∈ interval a c› interval-def
by auto

then obtain ny nz y z
where yz-def : y=f ny z=f nz [y;p;z] y∈Q z∈Q ny=nz−1 nz<card Q
¬(∃ k < card Q. [f k; p; c] ∧ k>ny) ¬(∃ k<nz. [a; p; f k])

using get-closest-chain-events [where f=f and x=p and Y=Q and an=c
and a0=a and a=b]

f-def ‹p/∈Q›
by metis

have ny<card Q−1
using yz-def (6 ,7) f-def index-middle-element
by fastforce

let ?s = segment (f ny) (f nz)
have p∈?s

using ‹[y;p;z]› abc-abc-neq seg-betw yz-def (1 ,2)
by blast

have nz = ny + 1
using yz-def (6)

by (metis abc-abc-neq add.commute add-diff-inverse-nat less-one yz-def (1 ,2 ,3)
zero-diff)

hence ?s∈S
using S-def ‹ny<card Q−1 › assms(2)
by blast

hence p∈
⋃

S
using ‹p ∈ ?s› by blast

thus ?thesis by blast
qed

qed
show ?u⊆?i
proof

fix p assume p ∈ ?u
hence p∈

⋃
S ∨ p∈Q by blast

thus p∈?i
proof

assume p∈Q
then consider p=a|p=c|[a;p;c]

using f-def by (meson fin-ch-betw2 finite-long-chain-with-alt)
thus ?thesis

121

proof (cases)
assume p=a
thus ?thesis by (simp add: interval-def)

next assume p=c
thus ?thesis by (simp add: interval-def)

next assume [a;p;c]
thus ?thesis using interval-def seg-betw by auto

qed
next assume p∈

⋃
S

then obtain s where p∈s s∈S
by blast

then obtain y where s = segment (f y) (f (y+1)) y<?N−1
using S-def by blast

hence y+1<?N by (simp add: assms(2))
hence fy-in-Q: (f y)∈Q ∧ f (y+1) ∈ Q

using f-def add-lessD1 unfolding chain-defs local-ordering-def
by (metis One-nat-def Suc-eq-plus1 Zero-not-Suc ‹3≤card Q› card-1-singleton-iff

card-gt-0-iff
card-insert-if diff-add-inverse2 diff-is-0-eq ′ less-numeral-extra(1) nu-

meral-3-eq-3 plus-1-eq-Suc)
have [a; f y; c] ∨ y=0

using ‹y <?N − 1 › assms(2) f-def chain-defs order-finite-chain by auto
moreover have [a; f (y+1); c] ∨ y = ?N−2
using ‹y+1 < card Q› assms(2) f-def chain-defs order-finite-chain i-le-j-events-neq

using indices-neq-imp-events-neq fin-ch-betw2 fy-in-Q
by (smt (z3) Nat.add-0-right Nat.add-diff-assoc add-gr-0 card-Diff1-less

card-Diff-singleton-if
diff-diff-left diff-is-0-eq ′ le-numeral-extra(4) less-numeral-extra(1) nat-1-add-1)

ultimately consider y=0 |y=?N−2 |([a; f y; c] ∧ [a; f (y+1); c])
by linarith

hence [a;p;c]
proof (cases)

assume y=0
hence f y = a

by (simp add: bound-indices)
hence [a; p; (f (y+1))]

using ‹p ∈ s› ‹s = segment (f y) (f (y + 1))› seg-betw
by auto

moreover have [a; (f (y+1)); c]
using ‹[a; (f (y+1)); c] ∨ y = ?N − 2 › ‹y = 0 › ‹?N≥3 ›
by linarith

ultimately show [a;p;c]
using abc-acd-abd by blast

next
assume y=?N−2
hence f (y+1) = c

using bound-indices ‹?N≥3 › numeral-2-eq-2 numeral-3-eq-3
by (metis One-nat-def Suc-diff-le add.commute add-leD2 diff-Suc-Suc

plus-1-eq-Suc)

122

hence [f y; p; c]
using ‹p ∈ s› ‹s = segment (f y) (f (y + 1))› seg-betw
by auto

moreover have [a; f y; c]
using ‹[a; f y; c] ∨ y = 0 › ‹y = ?N − 2 › ‹?N≥3 ›
by linarith

ultimately show [a;p;c]
by (meson abc-acd-abd abc-sym)

next
assume [a; f y; c] ∧ [a; (f (y+1)); c]
thus [a;p;c]

using abe-ade-bcd-ace [where a=a and b=f y and d=f (y+1) and e=c
and c=p]

using ‹p ∈ s› ‹s = segment (f y) (f (y+1))› seg-betw
by auto

qed
thus ?thesis

using interval-def seg-betw by auto
qed

qed
qed

lemma path-is-union:
assumes path-P: P∈P

and Q-def : finite (Q:: ′a set) card Q = N Q⊆P N≥3
and f-def : a∈Q ∧ b∈Q ∧ c∈Q [f Q|a..b..c]
and S-def : S = {s. ∃ i<(N−1). s = segment (f i) (f (i+1))}
and P1-def : P1 = prolongation b a
and P2-def : P2 = prolongation b c

shows P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q)
proof −

have in-P: a∈P ∧ b∈P ∧ c∈P
using assms(4) f-def by blast

have bound-indices: f 0 = a ∧ f (card Q − 1) = c
using f-def chain-defs by auto

have points-neq: a 6=b ∧ b 6=c ∧ a 6=c
using f-def chain-defs by (metis first-neq-last)

The proof in two parts: subset inclusion one way, then the other.
{ fix x assume x∈P

have [a;x;c] ∨ [b;a;x] ∨ [b;c;x] ∨ x=a ∨ x=c
using in-P some-betw path-P points-neq ‹x ∈ P› abc-sym
by (metis (full-types) abc-acd-bcd fin-ch-betw f-def (2))

then have (∃ s∈S . x∈s) ∨ x∈P1 ∨ x∈P2 ∨ x∈Q
proof (cases)

assume [a;x;c]
hence only-axc: ¬([b;a;x] ∨ [b;c;x] ∨ x=a ∨ x=c)

123

using abc-only-cba
by (meson abc-bcd-abd abc-sym f-def fin-ch-betw)

have x ∈ interval a c
using ‹[a;x;c]› interval-def seg-betw by auto

hence x∈Q ∨ x∈
⋃

S
using int-split-to-segs S-def assms(2 ,3 ,5) f-def
by blast

thus ?thesis by blast
next assume ¬[a;x;c]

hence [b;a;x] ∨ [b;c;x] ∨ x=a ∨ x=c
using ‹[a;x;c] ∨ [b;a;x] ∨ [b;c;x] ∨ x = a ∨ x = c› by blast

hence x∈P1 ∨ x∈P2 ∨ x∈Q
using P1-def P2-def f-def pro-betw by auto

thus ?thesis by blast
qed
hence x ∈ (

⋃
S) ∪ P1 ∪ P2 ∪ Q by blast

} moreover {
fix x assume x ∈ (

⋃
S) ∪ P1 ∪ P2 ∪ Q

hence (∃ s∈S . x∈s) ∨ x∈P1 ∨ x∈P2 ∨ x∈Q
by blast

hence x∈
⋃

S ∨ [b;a;x] ∨ [b;c;x] ∨ x∈Q
using S-def P1-def P2-def
unfolding segment-def prolongation-def
by auto

hence x∈P
proof (cases)

assume x∈
⋃

S
have S = {segment (f i) (f (i+1)) | i. i<N−1}

using S-def by blast
hence x∈interval a c

using int-split-to-segs [OF f-def (2)] assms ‹x∈
⋃

S›
by (simp add: UnCI)

hence [a;x;c] ∨ x=a ∨ x=c
using interval-def seg-betw by auto

thus ?thesis
proof (rule disjE)

assume x=a ∨ x=c
thus ?thesis

using in-P by blast
next

assume [a;x;c]
thus ?thesis

using betw-b-in-path in-P path-P points-neq by blast
qed

next assume x /∈
⋃

S
hence [b;a;x] ∨ [b;c;x] ∨ x∈Q

using ‹x ∈
⋃

S ∨ [b;a;x] ∨ [b;c;x] ∨ x ∈ Q›
by blast

thus ?thesis

124

using assms(4) betw-c-in-path in-P path-P points-neq
by blast

qed
}
ultimately show P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q)

by blast
qed

lemma inseg-axc:
assumes path-P: P∈P

and Q-def : finite (Q:: ′a set) card Q = N Q⊆P N≥3
and f-def : a∈Q ∧ b∈Q ∧ c∈Q [f Q|a..b..c]
and S-def : S = {s. ∃ i<(N−1). s = segment (f i) (f (i+1))}
and x-def : x∈s s∈S

shows [a;x;c]
proof −

have fQ: local-long-ch-by-ord f Q
using f-def Q-def chain-defs by (metis ch-long-if-card-geq3 path-P short-ch-card(1)

short-xor-long(2))
have inseg-neq-ac: x 6=a ∧ x 6=c if x∈s s∈S for x s
proof

show x 6=a
proof (rule notI)

assume x=a
obtain n where s-def : s = segment (f n) (f (n+1)) n<N−1

using S-def ‹s ∈ S› by blast
hence n<card Q using assms(3) by linarith
hence f n ∈ Q

using fQ unfolding chain-defs local-ordering-def by blast
hence [a; f n; c]

using f-def finite-long-chain-with-def assms(3) order-finite-chain seg-betw
that(1)

using ‹n < N − 1 › ‹s = segment (f n) (f (n + 1))› ‹x = a›
by (metis abc-abc-neq add-lessD1 fin-ch-betw inside-not-bound(2) less-diff-conv)
moreover have [(f (n)); x; (f (n+1))]

using ‹x∈s› seg-betw s-def (1) by simp
ultimately show False

using ‹x=a› abc-only-cba(1) assms(3) fQ chain-defs s-def (2)
by (smt (z3) ‹n < card Q› f-def (2) order-finite-chain-indices2 thm2-ind1)

qed

show x 6=c
proof (rule notI)

assume x=c
obtain n where s-def : s = segment (f n) (f (n+1)) n<N−1

using S-def ‹s ∈ S› by blast
hence n+1<N by simp
have [(f (n)); x; (f (n+1))]

125

using ‹x∈s› seg-betw s-def (1) by simp
have f (n) ∈ Q

using fQ ‹n+1 < N › chain-defs local-ordering-def
by (metis add-lessD1 assms(3))

have f (n+1) ∈ Q
using ‹n+1 < N › fQ chain-defs local-ordering-def
by (metis assms(3))

have f (n+1) 6= c
using ‹x=c› ‹[(f (n)); x; (f (n+1))]› abc-abc-neq
by blast

hence [a; (f (n+1)); c]
using f-def finite-long-chain-with-def assms(3) order-finite-chain seg-betw

that(1)
abc-abc-neq abc-only-cba fin-ch-betw

by (metis ‹[f n; x; f (n + 1)]› ‹f (n + 1) ∈ Q› ‹f n ∈ Q› ‹x = c›)
thus False

using ‹x=c› ‹[(f (n)); x; (f (n+1))]› assms(3) f-def s-def (2)
abc-only-cba(1) finite-long-chain-with-def order-finite-chain

by (metis ‹f n ∈ Q› abc-bcd-acd abc-only-cba(1 ,2) fin-ch-betw)
qed

qed

show [a;x;c]
proof −

have x∈interval a c
using int-split-to-segs [OF f-def (2)] S-def assms(2 ,3 ,5) x-def
by blast

have x 6=a ∧ x 6=c using inseg-neq-ac
using x-def by auto

thus ?thesis
using seg-betw ‹x ∈ interval a c› interval-def
by auto

qed
qed

lemma disjoint-segmentation:
assumes path-P: P∈P

and Q-def : finite (Q:: ′a set) card Q = N Q⊆P N≥3
and f-def : a∈Q ∧ b∈Q ∧ c∈Q [f Q|a..b..c]
and S-def : S = {s. ∃ i<(N−1). s = segment (f i) (f (i+1))}
and P1-def : P1 = prolongation b a
and P2-def : P2 = prolongation b c
shows P1∩P2={} ∧ (∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→

x∩y={})))
proof (rule conjI)

have fQ: local-long-ch-by-ord f Q
using f-def Q-def chain-defs by (metis ch-long-if-card-geq3 path-P short-ch-card(1)

short-xor-long(2))

126

show P1 ∩ P2 = {}
proof (safe)

fix x assume x∈P1 x∈P2
show x∈{}

using abc-only-cba pro-betw P1-def P2-def
by (metis ‹x ∈ P1 › ‹x ∈ P2 › abc-bcd-abd f-def (2) fin-ch-betw)

qed

show ∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→ x∩y={}))
proof (rule ballI)

fix s assume s∈S
show s ∩ P1 = {} ∧ s ∩ P2 = {} ∧ (∀ y∈S . s 6= y −→ s ∩ y = {})
proof (intro conjI ballI impI)

show s∩P1={}
proof (safe)

fix x assume x∈s x∈P1
hence [a;x;c]

using inseg-axc ‹s ∈ S› assms by blast
thus x∈{}
by (metis P1-def ‹x ∈ P1 › abc-bcd-abd abc-only-cba(1) f-def (2) fin-ch-betw

pro-betw)
qed
show s∩P2={}
proof (safe)

fix x assume x∈s x∈P2
hence [a;x;c]

using inseg-axc ‹s ∈ S› assms by blast
thus x∈{}
by (metis P2-def ‹x ∈ P2 › abc-bcd-acd abc-only-cba(2) f-def (2) fin-ch-betw

pro-betw)
qed
fix r assume r∈S s 6=r
show s∩r={}
proof (safe)

fix y assume y ∈ r y ∈ s
obtain n m where rs-def : r = segment (f n) (f (n+1)) s = segment (f m)

(f (m+1))
n 6=m n<N−1 m<N−1

using S-def ‹r ∈ S› ‹s 6= r› ‹s ∈ S› by blast
have y-betw: [f n; y; (f (n+1))] ∧ [f m; y; (f (m+1))]

using seg-betw ‹y∈r› ‹y∈s› rs-def (1 ,2) by simp
have False
proof (cases)

assume n<m
have [f n; f m; (f (m+1))]

using ‹n < m› assms(3) fQ chain-defs order-finite-chain rs-def (5) by
(metis assms(2) thm2-ind1)

have n+1<m
using ‹[f n; f m; f (m + 1)]› ‹n < m› abc-only-cba(2) abd-bcd-abc y-betw

127

by (metis Suc-eq-plus1 Suc-leI le-eq-less-or-eq)
hence [f n; (f (n+1)); f m]

using fQ assms(3) rs-def (5) unfolding chain-defs local-ordering-def
by (metis (full-types) ‹[f n;f m;f (m + 1)]› abc-only-cba(1) abc-sym

abd-bcd-abc assms(2) fQ thm2-ind1 y-betw)
hence [f n; (f (n+1)); y]

using ‹[f n; f m; f (m + 1)]› abc-acd-abd abd-bcd-abc y-betw
by blast

thus ?thesis
using abc-only-cba y-betw by blast

next
assume ¬n<m
hence n>m using nat-neq-iff rs-def (3) by blast
have [f m; f n; (f (n+1))]

using ‹n > m› assms(3) fQ chain-defs rs-def (4) by (metis assms(2)
thm2-ind1)

hence m+1<n
using ‹n > m› abc-only-cba(2) abd-bcd-abc y-betw
by (metis Suc-eq-plus1 Suc-leI le-eq-less-or-eq)

hence [f m; (f (m+1)); f n]
using fQ assms(2 ,3) rs-def (4) unfolding chain-defs local-ordering-def

by (metis (no-types, lifting) ‹[f m;f n;f (n + 1)]› abc-only-cba(1) abc-sym
abd-bcd-abc fQ thm2-ind1 y-betw)

hence [f m; (f (m+1)); y]
using ‹[f m; f n; f (n + 1)]› abc-acd-abd abd-bcd-abc y-betw
by blast

thus ?thesis
using abc-only-cba y-betw by blast

qed
thus y∈{} by blast

qed
qed

qed
qed

lemma segmentation-ex-Nge3 :
assumes path-P: P∈P

and Q-def : finite (Q:: ′a set) card Q = N Q⊆P N≥3
and f-def : a∈Q ∧ b∈Q ∧ c∈Q [f Q|a..b..c]
and S-def : S = {s. ∃ i<(N−1). s = segment (f i) (f (i+1))}
and P1-def : P1 = prolongation b a
and P2-def : P2 = prolongation b c

shows P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q) ∧
(∀ x∈S . is-segment x) ∧

P1∩P2={} ∧ (∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→
x∩y={})))
proof (intro disjoint-segmentation conjI)

show P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q)

128

using path-is-union assms
by blast

show ∀ x∈S . is-segment x
proof

fix s assume s∈S
thus is-segment s using S-def by auto

qed
qed (use assms disjoint-segmentation in auto)

Some unfolding of the definition for a finite chain that happens to be short.
lemma finite-chain-with-card-2 :

assumes f-def : [f Q|a..b]
and card-Q: card Q = 2

shows finite Q f 0 = a f (card Q − 1) = b Q = {f 0 , f 1} ∃Q. path Q (f 0) (f
1)

using assms unfolding chain-defs by auto

Schutz says "As in the proof of the previous theorem [...]" - does he mean
to imply that this should really be proved as induction? I can see that quite
easily, induct on N , and add a segment by either splitting up a segment or
taking a piece out of a prolongation. But I think that might be too much
trouble.
theorem show-segmentation:

assumes path-P: P∈P
and Q-def : Q⊆P
and f-def : [f Q|a..b]

fixes P1 defines P1-def : P1 ≡ prolongation b a
fixes P2 defines P2-def : P2 ≡ prolongation a b
fixes S defines S-def : S ≡ {segment (f i) (f (i+1)) | i. i<card Q−1}
shows P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x)

disjoint (S∪{P1 ,P2}) P1 6=P2 P1 /∈S P2 /∈S
proof −

have card-Q: card Q ≥ 2
using fin-chain-card-geq-2 f-def by blast

have finite Q
by (metis card.infinite card-Q rel-simps(28))

have f-def-2 : a∈Q ∧ b∈Q
using f-def points-in-chain finite-chain-with-def by auto

have a 6=b
using f-def chain-defs by (metis first-neq-last)

{
assume card Q = 2
hence card Q − 1 = Suc 0 by simp
have Q = {f 0 , f 1} ∃Q. path Q (f 0) (f 1) f 0 = a f (card Q − 1) = b

using ‹card Q = 2 › finite-chain-with-card-2 f-def by auto
hence S={segment a b}
unfolding S-def using ‹card Q − 1 = Suc 0 › by (simp add: eval-nat-numeral)
hence P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x) P1∩P2={}

(∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→ x∩y={})))

129

using assms f-def ‹finite Q› segmentation-ex-N2
[where P=P and Q=Q and N=card Q]

by (metis (no-types, lifting) ‹card Q = 2 ›)+
} moreover {

assume card Q 6= 2
hence card Q ≥ 3

using card-Q by auto
then obtain c where c-def : [f Q|a..c..b]

using assms(3 ,5) ‹a 6=b› chain-defs
by (metis f-def three-in-set3)

have pro-equiv: P1 = prolongation c a ∧ P2 = prolongation c b
using pro-basis-change
using P1-def P2-def abc-sym c-def fin-ch-betw by auto

have S-def2 : S = {s. ∃ i<(card Q−1). s = segment (f i) (f (i+1))}
using S-def ‹card Q ≥ 3 › by auto

have P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x) P1∩P2={}
(∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→ x∩y={})))

using f-def-2 assms f-def ‹card Q ≥ 3 › c-def pro-equiv
segmentation-ex-Nge3 [where P=P and Q=Q and N=card Q and S=S

and a=a and b=c and c=b and f=f]
using points-in-long-chain ‹finite Q› S-def2 by metis+

}
ultimately have old-thesis: P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x)

P1∩P2={}
(∀ x∈S . (x∩P1={} ∧ x∩P2={} ∧ (∀ y∈S . x 6=y −→ x∩y={}))) by

meson+
thus disjoint (S∪{P1 ,P2}) P1 6=P2 P1 /∈S P2 /∈S

P = ((
⋃

S) ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x)
unfolding disjoint-def apply (simp add: Int-commute)

apply (metis P2-def Un-iff old-thesis(1 ,3) ‹a 6= b› disjoint-iff f-def-2 path-P
pro-betw prolong-betw2)

apply (metis P1-def Un-iff old-thesis(1 ,4) ‹a 6= b› disjoint-iff f-def-2 path-P
pro-betw prolong-betw3)

apply (metis P2-def Un-iff old-thesis(1 ,4) ‹a 6= b› disjoint-iff f-def-2 path-P
pro-betw prolong-betw)

using old-thesis(1 ,2) by linarith+
qed

theorem segmentation:
assumes path-P: P∈P

and Q-def : card Q≥2 Q⊆P
shows ∃S P1 P2 . P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q) ∧

disjoint (S∪{P1 ,P2}) ∧ P1 6=P2 ∧ P1 /∈S ∧ P2 /∈S ∧
(∀ x∈S . is-segment x) ∧ is-prolongation P1 ∧ is-prolongation P2

proof −
let ?N = card Q

obtain f a b where f-def : [f Q|a..b]

130

using path-finsubset-chain2 [OF path-P Q-def (2 ,1)]
by metis

let ?S = {segment (f i) (f (i+1)) | i. i<card Q−1}
let ?P1 = prolongation b a
let ?P2 = prolongation a b
have from-seg: P = ((

⋃
?S) ∪ ?P1 ∪ ?P2 ∪ Q) (∀ x∈?S . is-segment x)

disjoint (?S∪{?P1 ,?P2}) ?P1 6=?P2 ?P1 /∈?S ?P2 /∈?S
using show-segmentation[OF path-P Q-def (2) ‹[f Q|a..b]›]
by force+

thus ?thesis
by blast

qed

end

31 Chains are unique up to reversal
context MinkowskiSpacetime begin

lemma chain-remove-at-right-edge:
assumes [f X |a..c] f (card X − 2) = p 3 ≤ card X X = insert c Y c/∈Y
shows [f Y |a..p]

proof −
have lch-X : local-long-ch-by-ord f X

using assms(1 ,3) chain-defs short-ch-card-2
by fastforce

have p∈X
by (metis local-ordering-def assms(2) card.empty card-gt-0-iff diff-less lch-X

local-long-ch-by-ord-def not-numeral-le-zero zero-less-numeral)
have bound-ind: f 0 = a ∧ f (card X − 1) = c
using lch-X assms(1 ,3) unfolding finite-chain-with-def finite-long-chain-with-def
by metis

have [a;p;c]
proof −

have card X − 2 < card X − 1
using ‹3 ≤ card X› by auto

moreover have card X − 2 > 0
using ‹3 ≤ card X› by linarith

ultimately show ?thesis
using order-finite-chain[OF lch-X] ‹3 ≤ card X› assms(2) bound-ind

by (metis card.infinite diff-less le-numeral-extra(3) less-numeral-extra(1)
not-gr-zero not-numeral-le-zero)

qed

have [f X |a..p..c]
unfolding finite-long-chain-with-alt by (simp add: assms(1) ‹[a;p;c]› ‹p∈X›)

131

have 1 : x = a if x ∈ Y ¬ [a;x;p] x 6= p for x
proof −

have x∈X
using that(1) assms(4) by simp

hence 01 : x=a ∨ [a;p;x]
by (metis that(2 ,3) ‹[a;p;c]› abd-acd-abcacb assms(1) fin-ch-betw2)

have 02 : x=c if [a;p;x]
proof −

obtain i where i-def : f i = x i<card X
using ‹x∈X› chain-defs by (meson assms(1) obtain-index-fin-chain)

have f 0 = a
by (simp add: bound-ind)

have card X − 2 < i
using order-finite-chain-indices[OF lch-X - that ‹f 0 = a› assms(2) i-def (1)

- - i-def (2)]
by (metis card-eq-0-iff card-gt-0-iff diff-less i-def (2) less-nat-zero-code

zero-less-numeral)
hence i = card X − 1 using i-def (2) by linarith
thus ?thesis using bound-ind i-def (1) by blast

qed
show ?thesis using 01 02 assms(5) that(1) by auto

qed

have Y = {e ∈ X . [a;e;p] ∨ e = a ∨ e = p}
apply (safe, simp-all add: assms(4) 1)
using ‹[a;p;c]› abc-only-cba(2) abc-abc-neq assms(4) by blast+

thus ?thesis using chain-shortening[OF ‹[f X |a..p..c]›] by simp
qed

lemma (in MinkowskiChain) fin-long-ch-imp-fin-ch:
assumes [f X |a..b..c]
shows [f X |a..c]
using assms by (simp add: finite-long-chain-with-alt)

If we ever want to have chains less strongly identified by endpoints, this result
should generalise - a, c, x, z are only used to identify reversal/no-reversal
cases.
lemma chain-unique-induction-ax:

assumes card X ≥ 3
and i < card X
and [f X |a..c]
and [g X |x..z]
and a = x ∨ c = z

shows f i = g i
using assms
proof (induct card X − 3 arbitrary: X a c x z)

132

case Nil: 0
have card X = 3

using Nil.hyps Nil.prems(1) by auto

obtain b where f-ch: [f X |a..b..c]
using chain-defs by (metis Nil.prems(1 ,3) three-in-set3)

obtain y where g-ch: [g X |x..y..z]
using Nil.prems chain-defs by (metis three-in-set3)

have i=1 ∨ i=0 ∨ i=2
using ‹card X = 3 › Nil.prems(2) by linarith

thus ?case
proof (rule disjE)

assume i=1
hence f i = b ∧ g i = y

using index-middle-element f-ch g-ch ‹card X = 3 › numeral-3-eq-3
by (metis One-nat-def add-diff-cancel-left ′ less-SucE not-less-eq plus-1-eq-Suc)

have f i = g i
proof (rule ccontr)

assume f i 6= g i
hence g i 6= b

by (simp add: ‹f i = b ∧ g i = y›)
have g i ∈ X

using ‹f i = b ∧ g i = y› g-ch points-in-long-chain by blast
have X = {a,b,c}

using f-ch unfolding finite-long-chain-with-alt
using ‹card X = 3 › points-in-long-chain[OF f-ch] abc-abc-neq[of a b c]
by (simp add: card-3-eq ′(2))

hence (g i = a ∨ g i = c)
using ‹g i 6= b› ‹g i ∈ X› by blast

hence ¬ [a; g i; c]
using abc-abc-neq by blast

hence g i /∈ X
using ‹f i=b ∧ g i=y› ‹g i=a ∨ g i=c› f-ch g-ch chain-bounds-unique

finite-long-chain-with-def
by blast

thus False
by (simp add: ‹g i ∈ X›)

qed
thus ?thesis

by (simp add: ‹card X = 3 › ‹i = 1 ›)
next

assume i = 0 ∨ i = 2
show ?thesis

using Nil.prems(5) ‹card X = 3 › ‹i = 0 ∨ i = 2 › chain-bounds-unique f-ch
g-ch chain-defs

by (metis diff-Suc-1 numeral-2-eq-2 numeral-3-eq-3)
qed

next

133

case IH : (Suc n)
have lch-fX : local-long-ch-by-ord f X

using chain-defs long-ch-card-ge3 IH (3 ,5)
by fastforce

have lch-gX : local-long-ch-by-ord g X
using IH (3 ,6) chain-defs long-ch-card-ge3
by fastforce

have fin-X : finite X
using IH (4) le-0-eq by fastforce

have ch-by-ord f X
using lch-fX unfolding ch-by-ord-def by blast

have card X ≥ 4
using IH .hyps(2) by linarith

obtain b where f-ch: [f X |a..b..c]
using IH (3 ,5) chain-defs by (metis three-in-set3)

obtain y where g-ch: [g X |x..y..z]
using IH .prems(1 ,4) chain-defs by (metis three-in-set3)

obtain p where p-def : p = f (card X − 2) by simp
have [a;p;c]
proof −

have card X − 2 < card X − 1
using ‹4 ≤ card X› by auto

moreover have card X − 2 > 0
using ‹3 ≤ card X› by linarith

ultimately show ?thesis
using f-ch p-def chain-defs ‹[f X]› order-finite-chain2 by force

qed
hence p 6=c ∧ p 6=a

using abc-abc-neq by blast

obtain Y where Y-def : X = insert c Y c/∈Y
using f-ch points-in-long-chain
by (meson mk-disjoint-insert)

hence fin-Y : finite Y
using f-ch chain-defs by auto

hence n = card Y − 3
using ‹Suc n = card X − 3 › ‹X = insert c Y › ‹c/∈Y › card-insert-if
by auto

hence card-Y : card Y = n + 3
using Y-def (1) Y-def (2) fin-Y IH .hyps(2) by fastforce

have card Y = card X − 1
using Y-def (1 ,2) fin-X by auto

have p∈Y
using ‹X = insert c Y › ‹[a;p;c]› abc-abc-neq lch-fX p-def IH .prems(1 ,3)

Y-def (2)
by (metis chain-remove-at-right-edge points-in-chain)

134

have [f Y |a..p]
using chain-remove-at-right-edge [where f=f and a=a and c=c and X=X

and p=p and Y=Y]
using fin-long-ch-imp-fin-ch [where f=f and a=a and c=c and b=b and

X=X]
using f-ch p-def ‹card X ≥ 3 › Y-def
by blast

hence ch-fY : local-long-ch-by-ord f Y
using card-Y fin-Y chain-defs long-ch-card-ge3
by force

have p-closest: ¬ (∃ q∈X . [p;q;c])
proof

assume (∃ q∈X . [p;q;c])
then obtain q where q∈X [p;q;c] by blast
then obtain j where j < card X f j = q

using lch-fX lch-gX fin-X points-in-chain ‹p 6=c ∧ p 6=a› chain-defs
by (metis local-ordering-def)

have j > card X − 2 ∧ j < card X − 1
proof −
have j > card X − 2 ∧ j < card X − 1 ∨ j > card X − 1 ∧ j < card X − 2

apply (intro order-finite-chain-indices[OF lch-fX ‹finite X› ‹[p;q;c]›])
using p-def ‹f j = q› IH .prems(3) finite-chain-with-def ‹j < card X› by

auto
thus ?thesis by linarith

qed
thus False by linarith

qed

have g (card X − 2) = p
proof (rule ccontr)

assume asm-false: g (card X − 2) 6= p
obtain j where g j = p j < card X − 1 j>0

using ‹X = insert c Y › ‹p∈Y › points-in-chain ‹p 6=c ∧ p 6=a›
by (metis (no-types) chain-bounds-unique f-ch

finite-long-chain-with-def g-ch index-middle-element insert-iff)
hence j < card X − 2

using asm-false le-eq-less-or-eq by fastforce
hence j < card Y − 1

by (simp add: Y-def (1 ,2) fin-Y)
obtain d where d = g (card X − 2) by simp
have [p;d;z]
proof −

have card X − 1 > card X − 2
using ‹j < card X − 1 › by linarith

thus ?thesis
using lch-gX ‹j < card Y − 1 › ‹card Y = card X − 1 › ‹d = g (card X −

2)› ‹g j = p›
order-finite-chain[OF lch-gX] chain-defs local-ordering-def

135

by (smt (z3) IH .prems(3−5) asm-false chain-bounds-unique chain-remove-at-right-edge
p-def

‹
∧

thesis. (
∧

Y . [[X = insert c Y ; c /∈ Y]] =⇒ thesis) =⇒ thesis›)
qed
moreover have d∈X

using lch-gX ‹d = g (card X − 2)› unfolding local-long-ch-by-ord-def lo-
cal-ordering-def

by auto
ultimately show False

using p-closest abc-sym IH .prems(3−5) chain-bounds-unique f-ch g-ch
by blast

qed

hence ch-gY : local-long-ch-by-ord g Y
using IH .prems(1 ,4 ,5) g-ch f-ch ch-fY card-Y chain-remove-at-right-edge fin-Y

chain-defs
by (metis Y-def chain-bounds-unique long-ch-card-ge3)

have f i ∈ Y ∨ f i = c
by (metis local-ordering-def ‹X = insert c Y › ‹i < card X› lch-fX insert-iff

local-long-ch-by-ord-def)
thus f i = g i
proof (rule disjE)

assume f i ∈ Y
hence f i 6= c

using ‹c /∈ Y › by blast
hence i < card Y
using ‹X = insert c Y › ‹c/∈Y › IH (3 ,4) f-ch fin-Y chain-defs not-less-less-Suc-eq

by (metis ‹card Y = card X − 1 › card-insert-disjoint)
hence 3 ≤ card Y

using card-Y le-add2 by presburger
show f i = g i

using IH (1) [of Y]
using ‹n = card Y − 3 › ‹3 ≤ card Y › ‹i < card Y ›
using Y-def card-Y chain-remove-at-right-edge le-add2
by (metis IH .prems(1 ,3 ,4 ,5) chain-bounds-unique)

next
assume f i = c
show ?thesis
using IH .prems(2 ,5) ‹f i = c› chain-bounds-unique f-ch g-ch indices-neq-imp-events-neq

chain-defs
by (metis ‹card Y = card X − 1 › Y-def card-insert-disjoint fin-Y lessI)

qed
qed

I’m really impressed sledgehammer/smt can solve this if I just tell them
"Use symmetry!".
lemma chain-unique-induction-cx:

assumes card X ≥ 3

136

and i < card X
and [f X |a..c]
and [g X |x..z]
and c = x ∨ a = z

shows f i = g (card X − i − 1)
using chain-sym-obtain2 chain-unique-induction-ax assms diff-right-commute by

smt

This lemma has to exclude two-element chains again, because no order exists
within them. Alternatively, the result is trivial: any function that assigns one
element to index 0 and the other to 1 can be replaced with the (unique) other
assignment, without destroying any (trivial, since ternary) local-ordering of
the chain. This could be made generic over the local-ordering similar to
[?f ?X |?a..?b..?c] =⇒ [λn. ?f (card ?X − 1 − n) ?X |?c..?b..?a] relying
on [[

∧
a b c. ?ord a b c =⇒ ?ord c b a; finite ?X ; local-ordering ?f ?ord ?X]]

=⇒ local-ordering (λn. ?f (card ?X − 1 − n)) ?ord ?X.
lemma chain-unique-upto-rev-cases:

assumes ch-f : [f X |a..c]
and ch-g: [g X |x..z]
and card-X : card X ≥ 3
and valid-index: i < card X

shows ((a=x ∨ c=z) −→ (f i = g i)) ((a=z ∨ c=x) −→ (f i = g (card X − i −
1)))
proof −

obtain n where n-def : n = card X − 3
by blast

hence valid-index-2 : i < n + 3
by (simp add: card-X valid-index)

show ((a=x ∨ c=z) −→ (f i = g i))
using card-X ch-f ch-g chain-unique-induction-ax valid-index by blast

show ((a=z ∨ c=x) −→ (f i = g (card X − i − 1)))
using assms(3) ch-f ch-g chain-unique-induction-cx valid-index by blast

qed

lemma chain-unique-upto-rev:
assumes [f X |a..c] [g X |x..z] card X ≥ 3 i < card X
shows f i = g i ∨ f i = g (card X − i − 1) a=x∧c=z ∨ c=x∧a=z

proof −
have (a=x ∨ c=z) ∨ (a=z ∨ c=x)

using chain-bounds-unique by (metis assms(1 ,2))
thus f i = g i ∨ f i = g (card X − i − 1)

using assms(3) ‹i < card X› assms chain-unique-upto-rev-cases by blast
thus (a=x∧c=z) ∨ (c=x∧a=z)

by (meson assms(1−3) chain-bounds-unique)
qed

137

end

32 Interlude: betw4 and WLOG
32.1 betw4 - strict and non-strict, basic lemmas
context MinkowskiBetweenness begin

Define additional notation for non-strict local-ordering - cf Schutz’ mono-
graph [1, p. 27].
abbreviation nonstrict-betw-right :: ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[-;-;-]]›) where

nonstrict-betw-right a b c ≡ [a;b;c] ∨ b = c

abbreviation nonstrict-betw-left :: ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[[-;-;-]›) where
nonstrict-betw-left a b c ≡ [a;b;c] ∨ b = a

abbreviation nonstrict-betw-both :: ′a ⇒ ′a ⇒ ′a ⇒ bool where
nonstrict-betw-both a b c ≡ nonstrict-betw-left a b c ∨ nonstrict-betw-right a b c

abbreviation betw4 :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[-;-;-;-]›) where
betw4 a b c d ≡ [a;b;c] ∧ [b;c;d]

abbreviation nonstrict-betw-right4 :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[-;-;-;-]]›) where
nonstrict-betw-right4 a b c d ≡ betw4 a b c d ∨ c = d

abbreviation nonstrict-betw-left4 :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool (‹[[-;-;-;-]›) where
nonstrict-betw-left4 a b c d ≡ betw4 a b c d ∨ a = b

abbreviation nonstrict-betw-both4 :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ⇒ bool where
nonstrict-betw-both4 a b c d ≡ nonstrict-betw-left4 a b c d ∨ nonstrict-betw-right4

a b c d

lemma betw4-strong:
assumes betw4 a b c d
shows [a;b;d] ∧ [a;c;d]
using abc-bcd-acd assms by blast

lemma betw4-imp-neq:
assumes betw4 a b c d
shows a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d
using abc-only-cba assms by blast

end
context MinkowskiSpacetime begin

lemma betw4-weak:
fixes a b c d :: ′a

138

assumes [a;b;c] ∧ [a;c;d]
∨ [a;b;c] ∧ [b;c;d]
∨ [a;b;d] ∧ [b;c;d]
∨ [a;b;d] ∧ [b;c;d]

shows betw4 a b c d
using abc-acd-bcd abd-bcd-abc assms by blast

lemma betw4-sym:
fixes a:: ′a and b:: ′a and c:: ′a and d:: ′a
shows betw4 a b c d ←→ betw4 d c b a
using abc-sym by blast

lemma abcd-dcba-only:
fixes a:: ′a and b:: ′a and c:: ′a and d:: ′a
assumes [a;b;c;d]
shows ¬[a;b;d;c] ¬[a;c;b;d] ¬[a;c;d;b] ¬[a;d;b;c] ¬[a;d;c;b]

¬[b;a;c;d] ¬[b;a;d;c] ¬[b;c;a;d] ¬[b;c;d;a] ¬[b;d;c;a] ¬[b;d;a;c]
¬[c;a;b;d] ¬[c;a;d;b] ¬[c;b;a;d] ¬[c;b;d;a] ¬[c;d;a;b] ¬[c;d;b;a]
¬[d;a;b;c] ¬[d;a;c;b] ¬[d;b;a;c] ¬[d;b;c;a] ¬[d;c;a;b]

using abc-only-cba assms by blast+

lemma some-betw4a:
fixes a:: ′a and b:: ′a and c:: ′a and d:: ′a and P
assumes P∈P a∈P b∈P c∈P d∈P a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d

and ¬([a;b;c;d] ∨ [a;b;d;c] ∨ [a;c;b;d] ∨ [a;c;d;b] ∨ [a;d;b;c] ∨ [a;d;c;b])
shows [b;a;c;d] ∨ [b;a;d;c] ∨ [b;c;a;d] ∨ [b;d;a;c] ∨ [c;a;b;d] ∨ [c;b;a;d]

by (smt abc-bcd-acd abc-sym abd-bcd-abc assms some-betw-xor)

lemma some-betw4b:
fixes a:: ′a and b:: ′a and c:: ′a and d:: ′a and P
assumes P∈P a∈P b∈P c∈P d∈P a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d

and ¬([b;a;c;d] ∨ [b;a;d;c] ∨ [b;c;a;d] ∨ [b;d;a;c] ∨ [c;a;b;d] ∨ [c;b;a;d])
shows [a;b;c;d] ∨ [a;b;d;c] ∨ [a;c;b;d] ∨ [a;c;d;b] ∨ [a;d;b;c] ∨ [a;d;c;b]

by (smt abc-bcd-acd abc-sym abd-bcd-abc assms some-betw-xor)

lemma abd-acd-abcdacbd:
fixes a:: ′a and b:: ′a and c:: ′a and d:: ′a
assumes abd: [a;b;d] and acd: [a;c;d] and b 6=c
shows [a;b;c;d] ∨ [a;c;b;d]

proof −
obtain P where P∈P a∈P b∈P d∈P

using abc-ex-path abd by blast
have c∈P

using ‹P ∈ P› ‹a ∈ P› ‹d ∈ P› abc-abc-neq acd betw-b-in-path by blast
have ¬[b;d;c]

using abc-sym abcd-dcba-only(5) abd acd by blast
hence [b;c;d] ∨ [c;b;d]

using abc-abc-neq abc-sym abd acd assms(3) some-betw

139

by (metis ‹P ∈ P› ‹b ∈ P› ‹c ∈ P› ‹d ∈ P›)
thus ?thesis

using abd acd betw4-weak by blast
qed

end

32.2 WLOG for two general symmetric relations of two ele-
ments on a single path

context MinkowskiBetweenness begin

This first one is really just trying to get a hang of how to write these things.
If you have a relation that does not care which way round the “endpoints” (if
Q is the interval-relation) go, then anything you want to prove about both
undistinguished endpoints, follows from a proof involving a single endpoint.
lemma wlog-sym-element:

assumes symmetric-rel:
∧

a b I . Q I a b =⇒ Q I b a
and one-endpoint:

∧
a b x I . [[Q I a b; x=a]] =⇒ P x I

shows other-endpoint:
∧

a b x I . [[Q I a b; x=b]] =⇒ P x I
using assms by fastforce

This one gives the most pertinent case split: a proof involving e.g. an element
of an interval must consider the edge case and the inside case.
lemma wlog-element:

assumes symmetric-rel:
∧

a b I . Q I a b =⇒ Q I b a
and one-endpoint:

∧
a b x I . [[Q I a b; x=a]] =⇒ P x I

and neither-endpoint:
∧

a b x I . [[Q I a b; x∈I ; (x 6=a ∧ x 6=b)]] =⇒ P x I
shows any-element:

∧
x I . [[x∈I ; (∃ a b. Q I a b)]] =⇒ P x I

by (metis assms)

Summary of the two above. Use for early case splitting in proofs. Doesn’t
need P to be symmetric - the context in the conclusion is explicitly sym-
metric.
lemma wlog-two-sets-element:

assumes symmetric-Q:
∧

a b I . Q I a b =⇒ Q I b a
and case-split:

∧
a b c d x I J . [[Q I a b; Q J c d]] =⇒

(x=a ∨ x=c −→ P x I J) ∧ (¬(x=a ∨ x=b ∨ x=c ∨ x=d) −→ P x I J)
shows

∧
x I J . [[∃ a b. Q I a b; ∃ a b. Q J a b]] =⇒ P x I J

by (smt case-split symmetric-Q)

Now we start on the actual result of interest. First we assume the events
are all distinct, and we deal with the degenerate possibilities after.
lemma wlog-endpoints-distinct1 :

assumes symmetric-Q:
∧

a b I . Q I a b =⇒ Q I b a
and

∧
I J a b c d. [[Q I a b; Q J c d; [a;b;c;d]]] =⇒ P I J

shows
∧

I J a b c d. [[Q I a b; Q J c d;

140

[b;a;c;d] ∨ [a;b;d;c] ∨ [b;a;d;c] ∨ [d;c;b;a]]] =⇒ P I J
by (meson abc-sym assms(2) symmetric-Q)

lemma wlog-endpoints-distinct2 :
assumes symmetric-Q:

∧
a b I . Q I a b =⇒ Q I b a

and
∧

I J a b c d. [[Q I a b; Q J c d; [a;c;b;d]]] =⇒ P I J
shows

∧
I J a b c d. [[Q I a b; Q J c d;

[b;c;a;d] ∨ [a;d;b;c] ∨ [b;d;a;c] ∨ [d;b;c;a]]] =⇒ P I J
by (meson abc-sym assms(2) symmetric-Q)

lemma wlog-endpoints-distinct3 :
assumes symmetric-Q:

∧
a b I . Q I a b =⇒ Q I b a

and symmetric-P:
∧

I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I
and

∧
I J a b c d. [[Q I a b; Q J c d; [a;c;d;b]]] =⇒ P I J

shows
∧

I J a b c d. [[Q I a b; Q J c d;
[a;d;c;b] ∨ [b;c;d;a] ∨ [b;d;c;a] ∨ [c;a;b;d]]] =⇒ P I J

by (meson assms)

lemma (in MinkowskiSpacetime) wlog-endpoints-distinct4 :
fixes Q:: (′a set) ⇒ ′a ⇒ ′a ⇒ bool

and P:: (′a set) ⇒ (′a set) ⇒ bool
and A:: (′a set)

assumes path-A: A∈P
and symmetric-Q:

∧
a b I . Q I a b =⇒ Q I b a

and Q-implies-path:
∧

a b I . [[I⊆A; Q I a b]] =⇒ b∈A ∧ a∈A
and symmetric-P:

∧
I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I

and
∧

I J a b c d.
[[Q I a b; Q J c d; I⊆A; J⊆A; [a;b;c;d] ∨ [a;c;b;d] ∨ [a;c;d;b]]] =⇒ P I J

shows
∧

I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d]] =⇒ P I J

proof −
fix I J a b c d
assume asm: Q I a b Q J c d I ⊆ A J ⊆ A

a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d
have endpoints-on-path: a∈A b∈A c∈A d∈A

using Q-implies-path asm by blast+
show P I J
proof (cases)

assume [b;a;c;d] ∨ [b;a;d;c] ∨ [b;c;a;d] ∨
[b;d;a;c] ∨ [c;a;b;d] ∨ [c;b;a;d]

then consider [b;a;c;d]|[b;a;d;c]|[b;c;a;d]|
[b;d;a;c]|[c;a;b;d]|[c;b;a;d]

by linarith
thus P I J

apply (cases)
apply (metis(mono-tags) asm(1−4) assms(5) symmetric-Q)+

apply (metis asm(1−4) assms(4 ,5))
by (metis asm(1−4) assms(2 ,4 ,5) symmetric-Q)

next

141

assume ¬([b;a;c;d] ∨ [b;a;d;c] ∨ [b;c;a;d] ∨
[b;d;a;c] ∨ [c;a;b;d] ∨ [c;b;a;d])

hence [a;b;c;d] ∨ [a;b;d;c] ∨ [a;c;b;d] ∨
[a;c;d;b] ∨ [a;d;b;c] ∨ [a;d;c;b]

using some-betw4b [where P=A and a=a and b=b and c=c and d=d]
using endpoints-on-path asm path-A by simp

then consider [a;b;c;d]|[a;b;d;c]|[a;c;b;d]|
[a;c;d;b]|[a;d;b;c]|[a;d;c;b]

by linarith
thus P I J

apply (cases)
by (metis asm(1−4) assms(5) symmetric-Q)+

qed
qed

lemma (in MinkowskiSpacetime) wlog-endpoints-distinct ′:
assumes A ∈ P

and
∧

a b I . Q I a b =⇒ Q I b a
and

∧
a b I . [[I ⊆ A; Q I a b]] =⇒ a ∈ A

and
∧

I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I
and

∧
I J a b c d.

[[Q I a b; Q J c d; I⊆A; J⊆A; betw4 a b c d ∨ betw4 a c b d ∨ betw4 a c
d b]] =⇒ P I J

and Q I a b
and Q J c d
and I ⊆ A
and J ⊆ A
and a 6= b a 6= c a 6= d b 6= c b 6= d c 6= d

shows P I J
proof −

{
let ?R = (λI . (∃ a b. Q I a b))
have

∧
I J . [[?R I ; ?R J ; P I J]] =⇒ P J I

using assms(4) by blast
}
thus ?thesis

using wlog-endpoints-distinct4
[where P=P and Q=Q and A=A and I=I and J=J and a=a and b=b

and c=c and d=d]
by (smt assms(1−3 ,5−))

qed

lemma (in MinkowskiSpacetime) wlog-endpoints-distinct:
assumes path-A: A∈P

and symmetric-Q:
∧

a b I . Q I a b =⇒ Q I b a
and Q-implies-path:

∧
a b I . [[I⊆A; Q I a b]] =⇒ b∈A ∧ a∈A

and symmetric-P:
∧

I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I
and

∧
I J a b c d.

142

[[Q I a b; Q J c d; I⊆A; J⊆A; [a;b;c;d] ∨ [a;c;b;d] ∨ [a;c;d;b]]] =⇒ P I J
shows

∧
I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d]] =⇒ P I J

by (smt (verit, ccfv-SIG) assms some-betw4b)

lemma wlog-endpoints-degenerate1 :
assumes symmetric-Q:

∧
a b I . Q I a b =⇒ Q I b a

and symmetric-P:
∧

I J . [[∃ a b. Q I a b; ∃ a b. Q I a b; P I J]] =⇒ P J I

and two:
∧

I J a b c d. [[Q I a b; Q J c d;
(a=b ∧ b=c ∧ c=d) ∨ (a=b ∧ b 6=c ∧ c=d)]] =⇒ P I J

and one:
∧

I J a b c d. [[Q I a b; Q J c d;
(a=b ∧ b=c ∧ c 6=d) ∨ (a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d)]] =⇒ P I J

and no:
∧

I J a b c d. [[Q I a b; Q J c d;
(a 6=b ∧ b 6=c ∧ c 6=d ∧ a=d) ∨ (a 6=b ∧ b=c ∧ c 6=d ∧ a=d)]] =⇒ P I

J
shows

∧
I J a b c d. [[Q I a b; Q J c d; ¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧

b 6=d)]] =⇒ P I J
by (metis assms)

lemma wlog-endpoints-degenerate2 :
assumes symmetric-Q:

∧
a b I . Q I a b =⇒ Q I b a

and Q-implies-path:
∧

a b I A. [[I⊆A; A∈P; Q I a b]] =⇒ b∈A ∧ a∈A
and symmetric-P:

∧
I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I

and
∧

I J a b c d A. [[Q I a b; Q J c d; I⊆A; J⊆A; A∈P;
[a;b;c] ∧ a=d]] =⇒ P I J

and
∧

I J a b c d A. [[Q I a b; Q J c d; I⊆A; J⊆A; A∈P;
[b;a;c] ∧ a=d]] =⇒ P I J

shows
∧

I J a b c d A. [[Q I a b; Q J c d; I⊆A; J⊆A; A∈P;
a 6=b ∧ b 6=c ∧ c 6=d ∧ a=d]] =⇒ P I J

proof −
have last-case:

∧
I J a b c d A. [[Q I a b; Q J c d; I⊆A; J⊆A; A∈P;

[b;c;a] ∧ a=d]] =⇒ P I J
using assms(1 ,3−5) by (metis abc-sym)

thus
∧

I J a b c d A. [[Q I a b; Q J c d; I⊆A; J⊆A; A∈P;
a 6=b ∧ b 6=c ∧ c 6=d ∧ a=d]] =⇒ P I J

by (smt (z3) abc-sym assms(2 ,4 ,5) some-betw)
qed

lemma wlog-endpoints-degenerate:
assumes path-A: A∈P

and symmetric-Q:
∧

a b I . Q I a b =⇒ Q I b a
and Q-implies-path:

∧
a b I . [[I⊆A; Q I a b]] =⇒ b∈A ∧ a∈A

and symmetric-P:
∧

I J . [[∃ a b. Q I a b; ∃ a b. Q J a b; P I J]] =⇒ P J I
and

∧
I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A]]

143

=⇒ ((a=b ∧ b=c ∧ c=d) −→ P I J) ∧ ((a=b ∧ b 6=c ∧ c=d) −→ P I J)
∧ ((a=b ∧ b=c ∧ c 6=d) −→ P I J) ∧ ((a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d) −→

P I J)
∧ ((a 6=b ∧ b=c ∧ c 6=d ∧ a=d) −→ P I J)
∧ (([a;b;c] ∧ a=d) −→ P I J) ∧ (([b;a;c] ∧ a=d) −→ P I J)

shows
∧

I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)]] =⇒ P I J

proof −

We first extract some of the assumptions of this lemma into the form of
other WLOG lemmas’ assumptions.

have ord1 :
∧

I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
[a;b;c] ∧ a=d]] =⇒ P I J

using assms(5) by auto
have ord2 :

∧
I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;

[b;a;c] ∧ a=d]] =⇒ P I J
using assms(5) by auto

have last-case:
∧

I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
a 6=b ∧ b 6=c ∧ c 6=d ∧ a=d]] =⇒ P I J

using ord1 ord2 wlog-endpoints-degenerate2 symmetric-P symmetric-Q Q-implies-path
path-A

by (metis abc-sym some-betw)
show

∧
I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A;
¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)]] =⇒ P I J

proof −

Fix the sets on the path, and obtain the assumptions of wlog-endpoints-degenerate1.
fix I J
assume asm1 : I⊆A J⊆A
have two:

∧
a b c d. [[Q I a b; Q J c d; a=b ∧ b=c ∧ c=d]] =⇒ P I J∧

a b c d. [[Q I a b; Q J c d; a=b ∧ b 6=c ∧ c=d]] =⇒ P I J
using ‹J ⊆ A› ‹I ⊆ A› path-A assms(5) by blast+

have one:
∧

a b c d. [[Q I a b; Q J c d; a=b ∧ b=c ∧ c 6=d]] =⇒ P I J∧
a b c d. [[Q I a b; Q J c d; a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d]] =⇒ P I J

using ‹I ⊆ A› ‹J ⊆ A› path-A assms(5) by blast+
have no:

∧
a b c d. [[Q I a b; Q J c d; a 6=b ∧ b 6=c ∧ c 6=d ∧ a=d]] =⇒ P I J∧

a b c d. [[Q I a b; Q J c d; a 6=b ∧ b=c ∧ c 6=d ∧ a=d]] =⇒ P I J
using ‹I ⊆ A› ‹J ⊆ A› path-A last-case apply blast
using ‹I ⊆ A› ‹J ⊆ A› path-A assms(5) by auto

Now unwrap the remaining object logic and finish the proof.
fix a b c d
assume asm2 : Q I a b Q J c d ¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)
show P I J

using two [where a=a and b=b and c=c and d=d]
using one [where a=a and b=b and c=c and d=d]
using no [where a=a and b=b and c=c and d=d]
using wlog-endpoints-degenerate1

144

[where I=I and J=J and a=a and b=b and c=c and d=d and P=P
and Q=Q]

using asm1 asm2 symmetric-P last-case assms(5) symmetric-Q
by smt

qed
qed

lemma (in MinkowskiSpacetime) wlog-intro:
assumes path-A: A∈P

and symmetric-Q:
∧

a b I . Q I a b =⇒ Q I b a
and Q-implies-path:

∧
a b I . [[I⊆A; Q I a b]] =⇒ b∈A ∧ a∈A

and symmetric-P:
∧

I J . [[∃ a b. Q I a b; ∃ c d. Q J c d; P I J]] =⇒ P J I
and essential-cases:

∧
I J a b c d. [[Q I a b; Q J c d; I⊆A; J⊆A]]

=⇒ ((a=b ∧ b=c ∧ c=d) −→ P I J)
∧ ((a=b ∧ b 6=c ∧ c=d) −→ P I J)
∧ ((a=b ∧ b=c ∧ c 6=d) −→ P I J)
∧ ((a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d) −→ P I J)
∧ ((a 6=b ∧ b=c ∧ c 6=d ∧ a=d) −→ P I J)
∧ (([a;b;c] ∧ a=d) −→ P I J)
∧ (([b;a;c] ∧ a=d) −→ P I J)
∧ ([a;b;c;d] −→ P I J)
∧ ([a;c;b;d] −→ P I J)
∧ ([a;c;d;b] −→ P I J)

and antecedants: Q I a b Q J c d I⊆A J⊆A
shows P I J

using essential-cases antecedants
and wlog-endpoints-degenerate[OF path-A symmetric-Q Q-implies-path symmet-

ric-P]
and wlog-endpoints-distinct[OF path-A symmetric-Q Q-implies-path symmet-

ric-P]
by (smt (z3) Q-implies-path path-A symmetric-P symmetric-Q some-betw2

some-betw4b abc-only-cba(1))

end

32.3 WLOG for two intervals
context MinkowskiBetweenness begin

This section just specifies the results for a generic relation Q in the previous
section to the interval relation.
lemma wlog-two-interval-element:

assumes
∧

x I J . [[is-interval I ; is-interval J ; P x J I]] =⇒ P x I J
and

∧
a b c d x I J . [[I = interval a b; J = interval c d]] =⇒

(x=a ∨ x=c −→ P x I J) ∧ (¬(x=a ∨ x=b ∨ x=c ∨ x=d) −→ P x I J)
shows

∧
x I J . [[is-interval I ; is-interval J]] =⇒ P x I J

by (metis assms(2) int-sym)

145

lemma (in MinkowskiSpacetime) wlog-interval-endpoints-distinct:
assumes

∧
I J . [[is-interval I ; is-interval J ; P I J]] =⇒ P J I∧

I J a b c d. [[I = interval a b; J = interval c d]]
=⇒ ([a;b;c;d] −→ P I J) ∧ ([a;c;b;d] −→ P I J) ∧ ([a;c;d;b] −→ P I J)

shows
∧

I J Q a b c d. [[I = interval a b; J = interval c d; I⊆Q; J⊆Q; Q∈P;
a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d]] =⇒ P I J

proof −
let ?Q = λ I a b. I = interval a b

fix I J A a b c d
assume asm: ?Q I a b ?Q J c d I⊆A J⊆A A∈P a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧

b 6=d ∧ c 6=d
show P I J
proof (rule wlog-endpoints-distinct)

show
∧

a b I . ?Q I a b =⇒ ?Q I b a
by (simp add: int-sym)

show
∧

a b I . I ⊆ A =⇒ ?Q I a b =⇒ b ∈ A ∧ a ∈ A
by (simp add: ends-in-int subset-iff)

show
∧

I J . is-interval I =⇒ is-interval J =⇒ P I J =⇒ P J I
using assms(1) by blast

show
∧

I J a b c d. [[?Q I a b; ?Q J c d; [a;b;c;d] ∨ [a;c;b;d] ∨ [a;c;d;b]]]
=⇒ P I J

by (meson assms(2))
show I = interval a b J = interval c d I⊆A J⊆A A∈P

a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d
using asm by simp+

qed
qed

lemma wlog-interval-endpoints-degenerate:
assumes symmetry:

∧
I J . [[is-interval I ; is-interval J ; P I J]] =⇒ P J I

and
∧

I J a b c d Q. [[I = interval a b; J = interval c d; I⊆Q; J⊆Q; Q∈P]]
=⇒ ((a=b ∧ b=c ∧ c=d) −→ P I J) ∧ ((a=b ∧ b 6=c ∧ c=d) −→ P I J)
∧ ((a=b ∧ b=c ∧ c 6=d) −→ P I J) ∧ ((a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d) −→

P I J)
∧ ((a 6=b ∧ b=c ∧ c 6=d ∧ a=d) −→ P I J)
∧ (([a;b;c] ∧ a=d) −→ P I J) ∧ (([b;a;c] ∧ a=d) −→ P I J)

shows
∧

I J a b c d Q. [[I = interval a b; J = interval c d; I⊆Q; J⊆Q; Q∈P;
¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)]] =⇒ P I J

proof −
let ?Q = λ I a b. I = interval a b

fix I J a b c d A
assume asm: ?Q I a b ?Q J c d I⊆A J⊆A A∈P ¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧

a 6=c ∧ b 6=d)
show P I J

146

proof (rule wlog-endpoints-degenerate)
show

∧
a b I . ?Q I a b =⇒ ?Q I b a

by (simp add: int-sym)
show

∧
a b I . I ⊆ A =⇒ ?Q I a b =⇒ b ∈ A ∧ a ∈ A

by (simp add: ends-in-int subset-iff)
show

∧
I J . is-interval I =⇒ is-interval J =⇒ P I J =⇒ P J I

using symmetry by blast
show I = interval a b J = interval c d I⊆A J⊆A A∈P
¬ (a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)
using asm by auto+

show
∧

I J a b c d. [[?Q I a b; ?Q J c d; I ⊆ A; J ⊆ A]] =⇒
(a = b ∧ b = c ∧ c = d −→ P I J) ∧
(a = b ∧ b 6= c ∧ c = d −→ P I J) ∧
(a = b ∧ b = c ∧ c 6= d −→ P I J) ∧
(a = b ∧ b 6= c ∧ c 6= d ∧ a 6= d −→ P I J) ∧
(a 6= b ∧ b = c ∧ c 6= d ∧ a = d −→ P I J) ∧
([a;b;c] ∧ a = d −→ P I J) ∧ ([b;a;c] ∧ a = d −→ P I J)

using assms(2) ‹A∈P› by auto
qed

qed

end

33 Interlude: Intervals, Segments, Connectedness
context MinkowskiSpacetime begin

In this secion, we apply the WLOG lemmas from the previous section in
order to reduce the number of cases we need to consider when thinking
about two arbitrary intervals on a path. This is used to prove that the
(countable) intersection of intervals is an interval. These results cannot be
found in Schutz, but he does use them (without justification) in his proof of
Theorem 12 (even for uncountable intersections).
lemma int-of-ints-is-interval-neq:

assumes I1 = interval a b I2 = interval c d I1⊆P I2⊆P P∈P I1∩I2 6= {}
and events-neq: a 6=b a 6=c a 6=d b 6=c b 6=d c 6=d

shows is-interval (I1 ∩ I2)
proof −

have on-path: a∈P ∧ b∈P ∧ c∈P ∧ d∈P
using assms(1−4) interval-def by auto

let ?prop = λ I J . is-interval (I∩J) ∨ (I∩J) = {}

have symmetry: (
∧

I J . is-interval I =⇒ is-interval J =⇒ ?prop I J =⇒ ?prop
J I)

by (simp add: Int-commute)

{

147

fix I J a b c d
assume I = interval a b J = interval c d
have ([a;b;c;d] −→ ?prop I J)

([a;c;b;d] −→ ?prop I J)
([a;c;d;b] −→ ?prop I J)

proof (rule-tac [!] impI)
assume betw4 a b c d
have I∩J = {}
proof (rule ccontr)

assume I∩J 6={}
then obtain x where x∈I∩J

by blast
show False
proof (cases)

assume x 6=a ∧ x 6=b ∧ x 6=c ∧ x 6=d
hence [a;x;b] [c;x;d]

using ‹I=interval a b› ‹x∈I∩J › ‹J=interval c d› ‹x∈I∩J ›
by (simp add: interval-def seg-betw)+

thus False
by (meson ‹betw4 a b c d› abc-only-cba(3) abc-sym abd-bcd-abc)

next
assume ¬(x 6=a ∧ x 6=b ∧ x 6=c ∧ x 6=d)
thus False

using interval-def seg-betw ‹I = interval a b› ‹J = interval c d›
abcd-dcba-only(21)

‹x ∈ I ∩ J › ‹betw4 a b c d› abc-bcd-abd abc-bcd-acd abc-only-cba(1 ,2)
by (metis (full-types) insert-iff Int-iff)

qed
qed
thus ?prop I J by simp

next
assume [a;c;b;d]
then have a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d

using betw4-imp-neq by blast
have I∩J = interval c b
proof (safe)

fix x
assume x ∈ interval c b
{

assume x=b ∨ x=c
hence x∈I

using ‹[a;c;b;d]› ‹I = interval a b› interval-def seg-betw by auto
have x∈J

using ‹x=b ∨ x=c›
using ‹[a;c;b;d]› ‹J = interval c d› interval-def seg-betw by auto

hence x∈I ∧ x∈J using ‹x ∈ I › by blast
} moreover {

assume ¬(x=b ∨ x=c)
hence [c;x;b]

148

using ‹x∈interval c b› unfolding interval-def segment-def by simp
hence [a;x;b]

by (meson ‹[a;c;b;d]› abc-acd-abd abc-sym)
have [c;x;d]

using ‹[a;c;b;d]› ‹[c;x;b]› abc-acd-abd by blast
have x∈I x∈J

using ‹I = interval a b› ‹[a;x;b]› ‹J = interval c d› ‹[c;x;d]›
interval-def seg-betw by auto

}
ultimately show x∈I x∈J by blast+

next
fix x
assume x∈I x∈J
show x ∈ interval c b
proof (cases)

assume not-eq: x 6=a ∧ x 6=b ∧ x 6=c ∧ x 6=d
have [a;x;b] [c;x;d]

using ‹x∈I › ‹I = interval a b› ‹x∈J › ‹J = interval c d›
not-eq unfolding interval-def segment-def by blast+

hence [c;x;b]
by (meson ‹[a;c;b;d]› abc-bcd-acd betw4-weak)

thus ?thesis
unfolding interval-def segment-def using seg-betw segment-def by auto

next
assume not-not-eq: ¬(x 6=a ∧ x 6=b ∧ x 6=c ∧ x 6=d)
{

assume x=a
have ¬[d;a;c]

using ‹[a;c;b;d]› abcd-dcba-only(9) by blast
hence a /∈ interval c d unfolding interval-def segment-def
using abc-sym ‹a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d› by

blast
hence False using ‹x∈J › ‹J = interval c d› ‹x=a› by blast

} moreover {
assume x=d
have ¬[a;d;b] using ‹betw4 a c b d› abc-sym abcd-dcba-only(9) by blast
hence d /∈interval a b unfolding interval-def segment-def

using ‹a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d› by blast
hence False using ‹x∈I › ‹x=d› ‹I = interval a b› by blast

}
ultimately show ?thesis

using interval-def not-not-eq by auto
qed

qed
thus ?prop I J by auto

next
assume [a;c;d;b]
have I∩J = interval c d
proof (safe)

149

fix x
assume x ∈ interval c d
{

assume x 6=c ∧ x 6=d
have x ∈ J

by (simp add: ‹J = interval c d› ‹x ∈ interval c d›)
have [c;x;d]

using ‹x ∈ interval c d› ‹x 6= c ∧ x 6= d› interval-def seg-betw by auto
have [a;x;b]
by (meson ‹betw4 a c d b› ‹[c;x;d]› abc-bcd-abd abc-sym abe-ade-bcd-ace)

have x ∈ I
using ‹I = interval a b› ‹[a;x;b]› interval-def seg-betw by auto

hence x∈I ∧ x∈J by (simp add: ‹x ∈ J ›)
} moreover {

assume ¬ (x 6=c ∧ x 6=d)
hence x∈I ∧ x∈J

by (metis ‹I = interval a b› ‹J = interval c d› ‹[a;c;d;b]› ‹x ∈ interval
c d›

abc-bcd-abd abc-bcd-acd insertI2 interval-def seg-betw)
}
ultimately show x∈I x∈J by blast+

next
fix x
assume x∈I x∈J
show x ∈ interval c d

using ‹J = interval c d› ‹x ∈ J › by auto
qed
thus ?prop I J by auto

qed
}

then show is-interval (I1∩I2)
using wlog-interval-endpoints-distinct
[where P=?prop and I=I1 and J=I2 and Q=P and a=a and b=b and

c=c and d=d]
using symmetry assms by simp

qed

lemma int-of-ints-is-interval-deg:
assumes I = interval a b J = interval c d I∩J 6= {} I⊆P J⊆P P∈P

and events-deg: ¬(a 6=b ∧ b 6=c ∧ c 6=d ∧ a 6=d ∧ a 6=c ∧ b 6=d)
shows is-interval (I ∩ J)

proof −

let ?p = λ I J . (is-interval (I ∩ J) ∨ I∩J = {})

have symmetry:
∧

I J . [[is-interval I ; is-interval J ; ?p I J]] =⇒ ?p J I
by (simp add: inf-commute)

150

have degen-cases:
∧

I J a b c d Q. [[I = interval a b; J = interval c d; I⊆Q;
J⊆Q; Q∈P]]

=⇒ ((a=b ∧ b=c ∧ c=d) −→ ?p I J) ∧ ((a=b ∧ b 6=c ∧ c=d) −→ ?p I
J)

∧ ((a=b ∧ b=c ∧ c 6=d) −→ ?p I J) ∧ ((a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d)
−→ ?p I J)

∧ ((a 6=b ∧ b=c ∧ c 6=d ∧ a=d) −→ ?p I J)
∧ (([a;b;c] ∧ a=d) −→ ?p I J) ∧ (([b;a;c] ∧ a=d) −→ ?p I J)

proof −
fix I J a b c d Q
assume I = interval a b J = interval c d I⊆Q J⊆Q Q∈P
show ((a=b ∧ b=c ∧ c=d) −→ ?p I J) ∧ ((a=b ∧ b 6=c ∧ c=d) −→ ?p I J)

∧ ((a=b ∧ b=c ∧ c 6=d) −→ ?p I J) ∧ ((a=b ∧ b 6=c ∧ c 6=d ∧ a 6=d)
−→ ?p I J)

∧ ((a 6=b ∧ b=c ∧ c 6=d ∧ a=d) −→ ?p I J)
∧ (([a;b;c] ∧ a=d) −→ ?p I J) ∧ (([b;a;c] ∧ a=d) −→ ?p I J)

proof (intro conjI impI)
assume a = b ∧ b = c ∧ c = d thus ?p I J

using ‹I = interval a b› ‹J = interval c d› by auto
next

assume a = b ∧ b 6= c ∧ c = d thus ?p I J
using ‹J = interval c d› empty-segment interval-def by auto

next
assume a = b ∧ b = c ∧ c 6= d thus ?p I J

using ‹I = interval a b› empty-segment interval-def by auto
next

assume a = b ∧ b 6= c ∧ c 6= d ∧ a 6= d thus ?p I J
using ‹I = interval a b› empty-segment interval-def by auto

next
assume a 6= b ∧ b = c ∧ c 6= d ∧ a = d thus ?p I J

using ‹I = interval a b› ‹J = interval c d› int-sym by auto
next

assume [a;b;c] ∧ a = d show ?p I J
proof (cases)

assume I∩J = {} thus ?thesis by simp
next

assume I∩J 6= {}
have I∩J = interval a b
proof (safe)

fix x assume x∈I x∈J
thus x∈interval a b

using ‹I = interval a b› by blast
next

fix x assume x∈interval a b
show x∈I

by (simp add: ‹I = interval a b› ‹x ∈ interval a b›)
have [d;b;c]

using ‹[a;b;c] ∧ a = d› by blast

151

have [a;x;b] ∨ x=a ∨ x=b
using ‹I = interval a b› ‹x ∈ I › interval-def seg-betw by auto

consider [d;x;c]|x=a ∨ x=b
using ‹[a;b;c] ∧ a = d› ‹[a;x;b] ∨ x = a ∨ x = b› abc-acd-abd by blast

thus x∈J
proof (cases)

case 1
then show ?thesis

by (simp add: ‹J = interval c d› abc-abc-neq abc-sym interval-def
seg-betw)

next
case 2
then have x ∈ interval c d

using ‹[a;b;c] ∧ a = d› int-sym interval-def seg-betw
by force

then show ?thesis
using ‹J = interval c d› by blast

qed
qed
thus ?p I J by blast

qed
next

assume [b;a;c] ∧ a = d show ?p I J
proof (cases)

assume I∩J = {} thus ?thesis by simp
next

assume I∩J 6= {}
have I∩J = {a}
proof (safe)

fix x assume x∈I x∈J x /∈{}
have cxd: [c;x;d] ∨ x=c ∨ x=d

using ‹J = interval c d› ‹x ∈ J › interval-def seg-betw by auto
consider [a;x;b]|x=a|x=b

using ‹I = interval a b› ‹x ∈ I › interval-def seg-betw by auto
then show x=a
proof (cases)

assume [a;x;b]
hence [b;x;d;c]

using ‹[b;a;c] ∧ a = d› abc-acd-bcd abc-sym by meson
hence False

using cxd abc-abc-neq by blast
thus ?thesis by simp

next
assume x=b
hence [b;d;c]

using ‹[b;a;c] ∧ a = d› by blast
hence False

using cxd ‹x = b› abc-abc-neq by blast
thus ?thesis

152

by simp
next

assume x=a thus x=a by simp
qed

next
show a∈I

by (simp add: ‹I = interval a b› ends-in-int)
show a∈J

by (simp add: ‹J = interval c d› ‹[b;a;c] ∧ a = d› ends-in-int)
qed
thus ?p I J

by (simp add: empty-segment interval-def)
qed

qed
qed

have ?p I J
using wlog-interval-endpoints-degenerate

[where P=?p and I=I and J=J and a=a and b=b and c=c and d=d
and Q=P]

using degen-cases
using symmetry assms
by smt

thus ?thesis
using assms(3) by blast

qed

lemma int-of-ints-is-interval:
assumes is-interval I is-interval J I⊆P J⊆P P∈P I∩J 6= {}
shows is-interval (I ∩ J)
using int-of-ints-is-interval-neq int-of-ints-is-interval-deg
by (meson assms)

lemma int-of-ints-is-interval2 :
assumes ∀ x∈S . (is-interval x ∧ x⊆P) P∈P

⋂
S 6= {} finite S S 6={}

shows is-interval (
⋂

S)
proof −

obtain n where n = card S
by simp

consider n=0 |n=1 |n≥2
by linarith

thus ?thesis
proof (cases)

assume n=0
then have False

using ‹n = card S› assms(4 ,5) by simp

153

thus ?thesis
by simp

next
assume n=1
then obtain I where S = {I}

using ‹n = card S› card-1-singletonE by auto
then have

⋂
S = I

by simp
moreover have is-interval I

by (simp add: ‹S = {I}› assms(1))
ultimately show ?thesis

by blast
next

assume 2≤n
obtain m where m+2=n

using ‹2 ≤ n› le-add-diff-inverse2 by blast
have ind:

∧
S . [[∀ x∈S . (is-interval x ∧ x⊆P); P∈P;

⋂
S 6= {}; finite S ; S 6={};

m+2=card S]]
=⇒ is-interval (

⋂
S)

proof (induct m)
case 0
then have card S = 2

by auto
then obtain I J where S={I ,J} I 6=J

by (meson card-2-iff)
then have I∈S J∈S

by blast+
then have is-interval I is-interval J I⊆P J⊆P

by (simp add: 0 .prems(1))+
also have I∩J 6= {}

using ‹S={I ,J}› 0 .prems(3) by force
then have is-interval(I∩J)
using assms(2) calculation int-of-ints-is-interval[where I=I and J=J and

P=P]
by fastforce

then show ?case
by (simp add: ‹S = {I , J}›)

next
case (Suc m)
obtain S ′ I where I∈S S = insert I S ′ I /∈S ′

using Suc.prems(4 ,5) by (metis Set.set-insert finite.simps insertI1)
then have is-interval (

⋂
S ′)

proof −
have m+2 = card S ′

using Suc.prems(4 ,6) ‹S = insert I S ′› ‹I /∈S ′› by auto
moreover have ∀ x∈S ′. is-interval x ∧ x ⊆ P

by (simp add: Suc.prems(1) ‹S = insert I S ′›)
moreover have

⋂
S ′ 6= {}

using Suc.prems(3) ‹S = insert I S ′› by auto

154

moreover have finite S ′

using Suc.prems(4) ‹S = insert I S ′› by auto
ultimately show ?thesis

using assms(2) Suc(1) [where S=S ′] by fastforce
qed
then have is-interval ((

⋂
S ′)∩I)

proof (rule int-of-ints-is-interval)
show is-interval I

by (simp add: Suc.prems(1) ‹I ∈ S›)
show

⋂
S ′ ⊆ P

using ‹I /∈ S ′› ‹S = insert I S ′› Suc.prems(1 ,4 ,6) Inter-subset
by (metis Suc-n-not-le-n card.empty card-insert-disjoint finite-insert

le-add2 numeral-2-eq-2 subset-eq subset-insertI)
show I ⊆ P

by (simp add: Suc.prems(1) ‹I ∈ S›)
show P ∈ P

using assms(2) by auto
show

⋂
S ′ ∩ I 6= {}

using Suc.prems(3) ‹S = insert I S ′› by auto
qed
thus ?case

using ‹S = insert I S ′› by (simp add: inf .commute)
qed
then show ?thesis

using ‹m + 2 = n› ‹n = card S› assms by blast
qed

qed

end

34 3.7 Continuity and the monotonic sequence prop-
erty

context MinkowskiSpacetime begin

This section only includes a proof of the first part of Theorem 12, as well as
some results that would be useful in proving part (ii).
theorem two-rays:

assumes path-Q: Q∈P
and event-a: a∈Q

shows ∃R L. (is-ray-on R Q ∧ is-ray-on L Q
∧ Q−{a} ⊆ (R ∪ L) ////////events///of///Q//////excl.///a////////belong////to/////two//////rays
∧ (∀ r∈R. ∀ l∈L. [l;a;r]) /a///is//////betw//////any///′a///of//////one/////ray/////and/////any////′a

//of/////the///////other
∧ (∀ x∈R. ∀ y∈R. ¬ [x;a;y]) ////but//a///is/////not//////betw//////any/////two/////////events////. . .
∧ (∀ x∈L. ∀ y∈L. ¬ [x;a;y])) ///. . .///of/////the///////same/////ray

proof −

155

Schutz here uses Theorem 6, but we don’t need it.
obtain b where b∈E and b∈Q and b 6=a

using event-a ge2-events in-path-event path-Q by blast
let ?L = {x. [x;a;b]}
let ?R = {y. [a;y;b] ∨ [a;b;y]]}
have Q = ?L ∪ {a} ∪ ?R
proof −

have inQ: ∀ x∈Q. [x;a;b] ∨ x=a ∨ [a;x;b] ∨ [a;b;x]]
by (meson ‹b ∈ Q› ‹b 6= a› abc-sym event-a path-Q some-betw)

show ?thesis
proof (safe)

fix x
assume x ∈ Q x 6= a ¬ [x;a;b] ¬ [a;x;b] b 6= x
then show [a;b;x]

using inQ by blast
next

fix x
assume [x;a;b]
then show x ∈ Q

by (simp add: ‹b ∈ Q› abc-abc-neq betw-a-in-path event-a path-Q)
next

show a ∈ Q
by (simp add: event-a)

next
fix x
assume [a;x;b]
then show x ∈ Q

by (simp add: ‹b ∈ Q› abc-abc-neq betw-b-in-path event-a path-Q)
next

fix x
assume [a;b;x]
then show x ∈ Q

by (simp add: ‹b ∈ Q› abc-abc-neq betw-c-in-path event-a path-Q)
next

show b ∈ Q using ‹b ∈ Q› .
qed

qed
have disjointLR: ?L ∩ ?R = {}

using abc-abc-neq abc-only-cba by blast

have wxyz-ord: [x;a;y;b]] ∨ [x;a;b;y]]
∧ (([w;x;a] ∧ [x;a;y]) ∨ ([x;w;a] ∧ [w;a;y]))
∧ (([x;a;y] ∧ [a;y;z]) ∨ ([x;a;z] ∧ [a;z;y]))

if x∈?L w∈?L y∈?R z∈?R w 6=x y 6=z for x w y z
using path-finsubset-chain order-finite-chain
by (smt abc-abd-bcdbdc abc-bcd-abd abc-sym abd-bcd-abc mem-Collect-eq that)

obtain x y where x∈?L y∈?R
by (metis (mono-tags) ‹b ∈ Q› ‹b 6= a› abc-sym event-a mem-Collect-eq path-Q

156

prolong-betw2)
obtain w where w∈?L w 6=x

by (metis ‹b ∈ Q› ‹b 6= a› abc-sym event-a mem-Collect-eq path-Q pro-
long-betw3)

obtain z where z∈?R y 6=z
by (metis (mono-tags) ‹b ∈ Q› ‹b 6= a› event-a mem-Collect-eq path-Q pro-

long-betw3)

have is-ray-on ?R Q ∧
is-ray-on ?L Q ∧
Q − {a} ⊆ ?R ∪ ?L ∧
(∀ r∈?R. ∀ l∈?L. [l;a;r]) ∧
(∀ x∈?R. ∀ y∈?R. ¬ [x;a;y]) ∧
(∀ x∈?L. ∀ y∈?L. ¬ [x;a;y])

proof (intro conjI)
show is-ray-on ?L Q
proof (unfold is-ray-on-def , safe)

show Q ∈ P
by (simp add: path-Q)

next
fix x
assume [x;a;b]
then show x ∈ Q

using ‹b ∈ Q› ‹b 6= a› betw-a-in-path event-a path-Q by blast
next

show is-ray {x. [x;a;b]}
proof −

have [x;a;b]
using ‹x∈?L› by simp

have ?L = ray a x
proof

show ray a x ⊆ ?L
proof

fix e assume e∈ray a x
show e∈?L

using wxyz-ord ray-cases abc-bcd-abd abd-bcd-abc abc-sym
by (metis ‹[x;a;b]› ‹e ∈ ray a x› mem-Collect-eq)

qed
show ?L ⊆ ray a x
proof

fix e assume e∈?L
hence [e;a;b]

by simp
show e∈ray a x
proof (cases)

assume e=x
thus ?thesis

by (simp add: ray-def)
next

157

assume e 6=x
hence [e;x;a] ∨ [x;e;a] using wxyz-ord

by (meson ‹[e;a;b]› ‹[x;a;b]› abc-abd-bcdbdc abc-sym)
thus e∈ray a x

by (metis Un-iff abc-sym insertCI pro-betw ray-def seg-betw)
qed

qed
qed
thus is-ray ?L by auto

qed
qed
show is-ray-on ?R Q
proof (unfold is-ray-on-def , safe)

show Q ∈ P
by (simp add: path-Q)

next
fix x
assume [a;x;b]
then show x ∈ Q

by (simp add: ‹b ∈ Q› abc-abc-neq betw-b-in-path event-a path-Q)
next

fix x
assume [a;b;x]
then show x ∈ Q

by (simp add: ‹b ∈ Q› abc-abc-neq betw-c-in-path event-a path-Q)
next

show b ∈ Q using ‹b ∈ Q› .
next

show is-ray {y. [a;y;b] ∨ [a;b;y]]}
proof −

have [a;y;b] ∨ [a;b;y] ∨ y=b
using ‹y∈?R› by blast

have ?R = ray a y
proof

show ray a y ⊆ ?R
proof

fix e assume e∈ray a y
hence [a;e;y] ∨ [a;y;e] ∨ y=e

using ray-cases by auto
show e∈?R
proof −

{ assume e 6= b
have (e 6= y ∧ e 6= b) ∧ [w;a;y] ∨ [a;e;b] ∨ [a;b;e]]

using ‹[a;y;b] ∨ [a;b;y] ∨ y = b› ‹w ∈ {x. [x;a;b]}› abd-bcd-abc by
blast

hence [a;e;b] ∨ [a;b;e]]
using abc-abd-bcdbdc abc-bcd-abd abd-bcd-abc
by (metis ‹[a;e;y] ∨ [a;y;e]]› ‹w ∈ ?L› mem-Collect-eq)

}

158

thus ?thesis
by blast

qed
qed
show ?R ⊆ ray a y
proof

fix e assume e∈?R
hence aeb-cases: [a;e;b] ∨ [a;b;e] ∨ e=b

by blast
hence aey-cases: [a;e;y] ∨ [a;y;e] ∨ e=y

using abc-abd-bcdbdc abc-bcd-abd abd-bcd-abc
by (metis ‹[a;y;b] ∨ [a;b;y] ∨ y = b› ‹x ∈ {x. [x;a;b]}› mem-Collect-eq)

show e∈ray a y
proof −

{
assume e=b
hence ?thesis
using ‹[a;y;b] ∨ [a;b;y] ∨ y = b› ‹b 6= a› pro-betw ray-def seg-betw by

auto
} moreover {

assume [a;e;b] ∨ [a;b;e]
assume y 6=e
hence [a;e;y] ∨ [a;y;e]

using aey-cases by auto
hence e∈ray a y

unfolding ray-def using abc-abc-neq pro-betw seg-betw by auto
} moreover {

assume [a;e;b] ∨ [a;b;e]
assume y=e
have e∈ray a y

unfolding ray-def by (simp add: ‹y = e›)
}
ultimately show ?thesis

using aeb-cases by blast
qed

qed
qed
thus is-ray ?R by auto

qed
qed

show (∀ r∈?R. ∀ l∈?L. [l;a;r])
using abd-bcd-abc by blast

show ∀ x∈?R. ∀ y∈?R. ¬ [x;a;y]
by (smt abc-ac-neq abc-bcd-abd abd-bcd-abc mem-Collect-eq)

show ∀ x∈?L. ∀ y∈?L. ¬ [x;a;y]
using abc-abc-neq abc-abd-bcdbdc abc-only-cba by blast

show Q−{a} ⊆ ?R ∪ ?L
using ‹Q = {x. [x;a;b]} ∪ {a} ∪ {y. [a;y;b] ∨ [a;b;y]]}› by blast

qed

159

thus ?thesis
by (metis (mono-tags, lifting))

qed

The definition closest-to in prose: Pick any r ∈ R. The closest event c is
such that there is no closer event in L, i.e. all other events of L are further
away from r. Thus in L, c is the element closest to R.
definition closest-to :: (′a set) ⇒ ′a ⇒ (′a set) ⇒ bool

where closest-to L c R ≡ c∈L ∧ (∀ r∈R. ∀ l∈L−{c}. [l;c;r])

lemma int-on-path:
assumes l∈L r∈R Q∈P

and partition: L⊆Q L 6={} R⊆Q R 6={} L∪R=Q
shows interval l r ⊆ Q

proof
fix x assume x∈interval l r
thus x∈Q

unfolding interval-def segment-def
using betw-b-in-path partition(5) ‹Q∈P› seg-betw ‹l ∈ L› ‹r ∈ R›
by blast

qed

lemma ray-of-bounds1 :
assumes Q∈P [f X |(f 0)..] X⊆Q closest-bound c X is-bound-f b X f b 6=c
assumes is-bound-f x X f
shows x=b ∨ x=c ∨ [c;x;b] ∨ [c;b;x]

proof −
have x∈Q
using bound-on-path assms(1 ,3 ,7) unfolding all-bounds-def is-bound-def is-bound-f-def
by auto

{
assume x=b
hence ?thesis by blast

} moreover {
assume x=c
hence ?thesis by blast

} moreover {
assume x 6=b x 6=c
hence ?thesis

by (meson abc-abd-bcdbdc assms(4 ,5 ,6 ,7) closest-bound-def is-bound-def)
}
ultimately show ?thesis by blast

qed

lemma ray-of-bounds2 :
assumes Q∈P [f X |(f 0)..] X⊆Q closest-bound-f c X f is-bound-f b X f b 6=c

160

assumes x=b ∨ x=c ∨ [c;x;b] ∨ [c;b;x]
shows is-bound-f x X f

proof −
have x∈Q

using assms(1 ,3 ,4 ,5 ,6 ,7) betw-b-in-path betw-c-in-path bound-on-path
using closest-bound-f-def is-bound-f-def by metis

{
assume x=b
hence ?thesis

by (simp add: assms(5))
} moreover {

assume x=c
hence ?thesis using assms(4)

by (simp add: closest-bound-f-def)
} moreover {

assume [c;x;b]
hence ?thesis unfolding is-bound-f-def
proof (safe)

fix i j::nat
show [f X |f 0 ..]

by (simp add: assms(2))
assume i<j
hence [f i; f j; b]

using assms(5) is-bound-f-def by blast
hence [f j; b; c] ∨ [f j; c; b]

using ‹i < j› abc-abd-bcdbdc assms(4 ,6) closest-bound-f-def is-bound-f-def
by auto

thus [f i; f j; x]
by (meson ‹[c;x;b]› ‹[f i; f j; b]› abc-bcd-acd abc-sym abd-bcd-abc)

qed
} moreover {

assume [c;b;x]
hence ?thesis unfolding is-bound-f-def
proof (safe)

fix i j::nat
show [f X |f 0 ..]

by (simp add: assms(2))
assume i<j
hence [f i; f j; b]

using assms(5) is-bound-f-def by blast
hence [f j; b; c] ∨ [f j; c; b]

using ‹i < j› abc-abd-bcdbdc assms(4 ,6) closest-bound-f-def is-bound-f-def
by auto

thus [f i; f j; x]
proof −

have (c = b) ∨ [f 0 ; c; b]
using assms(4 ,5) closest-bound-f-def is-bound-def by auto

hence [f j; b; c] −→ [x; f j; f i]
by (metis abc-bcd-acd abc-only-cba(2) assms(5) is-bound-f-def neq0-conv)

161

thus ?thesis
using ‹[c;b;x]› ‹[f i; f j; b]› ‹[f j; b; c] ∨ [f j; c; b]› abc-bcd-acd abc-sym
by blast

qed
qed

}
ultimately show ?thesis using assms(7) by blast

qed

lemma ray-of-bounds3 :
assumes Q∈P [f X |(f 0)..] X⊆Q closest-bound-f c X f is-bound-f b X f b 6=c
shows all-bounds X = insert c (ray c b)

proof
let ?B = all-bounds X
let ?C = insert c (ray c b)
show ?B ⊆ ?C
proof

fix x assume x∈?B
hence is-bound x X

by (simp add: all-bounds-def)
hence x=b ∨ x=c ∨ [c;x;b] ∨ [c;b;x]

using ray-of-bounds1 abc-abd-bcdbdc assms(4 ,5 ,6)
by (meson closest-bound-f-def is-bound-def)

thus x∈?C
using pro-betw ray-def seg-betw by auto

qed
show ?C ⊆ ?B
proof

fix x assume x∈?C
hence x=b ∨ x=c ∨ [c;x;b] ∨ [c;b;x]

using pro-betw ray-def seg-betw by auto
hence is-bound x X

unfolding is-bound-def using ray-of-bounds2 assms
by blast

thus x∈?B
by (simp add: all-bounds-def)

qed
qed

lemma int-in-closed-ray:
assumes path ab a b
shows interval a b ⊂ insert a (ray a b)

proof
let ?i = interval a b
show interval a b 6= insert a (ray a b)
proof −

obtain c where [a;b;c] using prolong-betw2

162

using assms by blast
hence c∈ray a b

using abc-abc-neq pro-betw ray-def by auto
have c/∈interval a b

using ‹[a;b;c]› abc-abc-neq abc-only-cba(2) interval-def seg-betw by auto
thus ?thesis

using ‹c ∈ ray a b› by blast
qed
show interval a b ⊆ insert a (ray a b)

using interval-def ray-def by auto
qed

end

35 3.8 Connectedness of the unreachable set
context MinkowskiSpacetime begin

35.1 Theorem 13 (Connectedness of the Unreachable Set)
theorem unreach-connected:

assumes path-Q: Q∈P
and event-b: b/∈Q b∈E
and unreach: Qx ∈ unreach−on Q from b Qz ∈ unreach−on Q from b
and xyz: [Qx; Qy; Qz]

shows Qy ∈ unreach−on Q from b
proof −

have xz: Qx 6= Qz using abc-ac-neq xyz by blast

First we obtain the chain from [[?Q ∈ P; ?b ∈ E − ?Q; {?Qx, ?Qz} ⊆
unreach−on ?Q from ?b; ?Qx 6= ?Qz]] =⇒ ∃X f . [f X |?Qx .. ?Qz] ∧
(∀ i∈{1 ..card X − 1}. f i ∈ unreach−on ?Q from ?b ∧ (∀Qy∈E . [f (i −
1);Qy;f i] −→ Qy ∈ unreach−on ?Q from ?b)).

have in-Q: Qx∈Q ∧ Qy∈Q ∧ Qz∈Q
using betw-b-in-path path-Q unreach(1 ,2) xz unreach-on-path xyz by blast

hence event-y: Qy∈E
using in-path-event path-Q by blast

legacy: [[?Q ∈ P; ?b /∈ ?Q; ?b ∈ E ; ?Qx ∈ unreach−on ?Q from ?b; ?Qz ∈
unreach−on ?Q from ?b; ?Qx 6= ?Qz]] =⇒ ∃X f . [f X] ∧ f 0 = ?Qx ∧ f
(card X − 1) = ?Qz ∧ (∀ i∈{1 ..card X − 1}. f i ∈ unreach−on ?Q from
?b ∧ (∀Qy∈E . [f (i − 1);Qy;f i] −→ Qy ∈ unreach−on ?Q from ?b)) ∧
(short-ch X −→ ?Qx ∈ X ∧ ?Qz ∈ X ∧ (∀Qy∈E . [?Qx;Qy;?Qz] −→ Qy ∈
unreach−on ?Q from ?b)) instead of [[?Q ∈ P; ?b ∈ E − ?Q; {?Qx, ?Qz}
⊆ unreach−on ?Q from ?b; ?Qx 6= ?Qz]] =⇒ ∃X f . [f X |?Qx .. ?Qz] ∧
(∀ i∈{1 ..card X − 1}. f i ∈ unreach−on ?Q from ?b ∧ (∀Qy∈E . [f (i −
1);Qy;f i] −→ Qy ∈ unreach−on ?Q from ?b))

163

obtain X f where X-def : ch-by-ord f X f 0 = Qx f (card X − 1) = Qz

(∀ i∈{1 .. card X − 1}. (f i) ∈ unreach−on Q from b ∧ (∀Qy∈E . [f (i − 1);
Qy; f i] −→ Qy ∈ unreach−on Q from b))

short-ch X −→ Qx ∈ X ∧ Qz ∈ X ∧ (∀Qy∈E . [Qx; Qy; Qz] −→ Qy ∈
unreach−on Q from b)

using I6-old [OF assms(1−5) xz] by blast
hence fin-X : finite X

using xz not-less by fastforce
obtain N where N=card X N≥2

using X-def (2 ,3) xz by fastforce

Then we have to manually show the bounds, defined via indices only, are in
the obtained chain.

let ?a = f 0
let ?d = f (card X − 1)
{

assume card X = 2
hence short-ch X ?a ∈ X ∧ ?d ∈ X ?a 6= ?d

using X-def ‹card X = 2 › short-ch-card-2 xz by blast+
}
hence [f X |Qx..Qz]

using chain-defs by (metis X-def (1−3) fin-X)

Further on, we split the proof into two cases, namely the split Schutz absorbs
into his non-strict local-ordering. Just below is the statement we use [[?P ∨
?Q; ?P =⇒ ?R; ?Q =⇒ ?R]] =⇒ ?R with.

have y-cases: Qy∈X ∨ Qy /∈X by blast
have y-int: Qy∈interval Qx Qz

using interval-def seg-betw xyz by auto
have X-in-Q: X⊆Q
using chain-on-path-I6 [where Q=Q and X=X] X-def event-b path-Q unreach

xz ‹[f X |Qx .. Qz]› by blast

show ?thesis
proof (cases)

We treat short chains separately. (Legacy: they used to have a separate
clause in [[?Q ∈ P; ?b ∈ E − ?Q; {?Qx, ?Qz} ⊆ unreach−on ?Q from ?b;
?Qx 6= ?Qz]] =⇒ ∃X f . [f X |?Qx .. ?Qz] ∧ (∀ i∈{1 ..card X − 1}. f i ∈
unreach−on ?Q from ?b ∧ (∀Qy∈E . [f (i − 1);Qy;f i] −→ Qy ∈ unreach−on
?Q from ?b)), now [[?Q ∈ P; ?b /∈ ?Q; ?b ∈ E ; ?Qx ∈ unreach−on ?Q from
?b; ?Qz ∈ unreach−on ?Q from ?b; ?Qx 6= ?Qz]] =⇒ ∃X f . [f X] ∧ f 0 =
?Qx ∧ f (card X − 1) = ?Qz ∧ (∀ i∈{1 ..card X − 1}. f i ∈ unreach−on
?Q from ?b ∧ (∀Qy∈E . [f (i − 1);Qy;f i] −→ Qy ∈ unreach−on ?Q from
?b)) ∧ (short-ch X −→ ?Qx ∈ X ∧ ?Qz ∈ X ∧ (∀Qy∈E . [?Qx;Qy;?Qz]
−→ Qy ∈ unreach−on ?Q from ?b)))

assume N=2

164

thus ?thesis
using X-def (1 ,5) xyz ‹N = card X› event-y short-ch-card-2 by auto

next

This is where Schutz obtains the chain from Theorem 11. We instead
use the chain we already have with only a part of Theorem 11, namely
[?f ?Q|?a..?b..?c] =⇒ interval ?a ?c =

⋃
{segment (?f i) (?f (i + 1))

|i. i < card ?Q − 1} ∪ ?Q. ?S is defined like in [[?P ∈ P; 2 ≤ card ?Q;
?Q ⊆ ?P]] =⇒ ∃S P1 P2 . ?P =

⋃
S ∪ P1 ∪ P2 ∪ ?Q ∧ disjoint (S ∪

{P1 , P2}) ∧ P1 6= P2 ∧ P1 /∈ S ∧ P2 /∈ S ∧ (∀ x∈S . is-segment x) ∧
is-prolongation P1 ∧ is-prolongation P2.

assume N 6=2
hence N≥3 using ‹2 ≤ N › by auto
have 2≤card X using ‹2 ≤ N › ‹N = card X› by blast
show ?thesis using y-cases
proof (rule disjE)

assume Qy∈X
then obtain i where i-def : i<card X Qy = f i

using X-def (1) by (metis fin-X obtain-index-fin-chain)
have i 6=0 ∧ i 6=card X − 1

using X-def (2 ,3)
by (metis abc-abc-neq i-def (2) xyz)

hence i∈{1 ..card X −1}
using i-def (1) by fastforce

thus ?thesis using X-def (4) i-def (2) by metis
next

assume Qy /∈X

let ?S = if card X = 2 then {segment ?a ?d} else {segment (f i) (f (i+1)) |
i. i<card X − 1}

have Qy∈
⋃

?S
proof −

obtain c where [f X |Qx..c..Qz]
using X-def (1) ‹N = card X› ‹N 6=2 › ‹[f X |Qx..Qz]› short-ch-card-2
by (metis ‹2 ≤ N › le-neq-implies-less long-chain-2-imp-3)

have interval Qx Qz =
⋃

?S ∪ X
using int-split-to-segs [OF ‹[f X |Qx..c..Qz]›] by auto

thus ?thesis
using ‹Qy /∈X› y-int by blast

qed
then obtain s where s∈?S Qy∈s by blast

have ∃ i. i∈{1 ..(card X)−1} ∧ [(f (i−1)); Qy; f i]
proof −

obtain i ′ where i ′-def : i ′ < N−1 s = segment (f i ′) (f (i ′ + 1))
using ‹Qy∈s› ‹s∈?S› ‹N=card X›
by (smt ‹2 ≤ N › ‹N 6= 2 › le-antisym mem-Collect-eq not-less)

165

show ?thesis
proof (rule exI , rule conjI)

show (i ′+1) ∈ {1 ..card X − 1}
using i ′-def (1)
by (simp add: ‹N = card X›)

show [f ((i ′+1) − 1); Qy; f (i ′+1)]
using i ′-def (2) ‹Qy∈s› seg-betw by simp

qed
qed
then obtain i where i-def : i∈{1 ..(card X)−1} [(f (i−1)); Qy; f i]

by blast

show ?thesis
by (meson X-def (4) i-def event-y)

qed
qed

qed

35.2 Theorem 14 (Second Existence Theorem)
lemma union-of-bounded-sets-is-bounded:

assumes ∀ x∈A. [a;x;b] ∀ x∈B. [c;x;d] A⊆Q B⊆Q Q∈P
card A > 1 ∨ infinite A card B > 1 ∨ infinite B

shows ∃ l∈Q. ∃ u∈Q. ∀ x∈A∪B. [l;x;u]
proof −

let ?P = λ A B. ∃ l∈Q. ∃ u∈Q. ∀ x∈A∪B. [l;x;u]
let ?I = λ A a b. (card A > 1 ∨ infinite A) ∧ (∀ x∈A. [a;x;b])
let ?R = λA. ∃ a b. ?I A a b

have on-path:
∧

a b A. A ⊆ Q =⇒ ?I A a b =⇒ b ∈ Q ∧ a ∈ Q
proof −

fix a b A assume A⊆Q ?I A a b
show b∈Q∧a∈Q
proof (cases)

assume card A ≤ 1 ∧ finite A
thus ?thesis

using ‹?I A a b› by auto
next

assume ¬ (card A ≤ 1 ∧ finite A)
hence asmA: card A > 1 ∨ infinite A

by linarith
then obtain x y where x∈A y∈A x 6=y
proof

assume 1 < card A
∧

x y. [[x ∈ A; y ∈ A; x 6= y]] =⇒ thesis
then show ?thesis

by (metis One-nat-def Suc-le-eq card-le-Suc-iff insert-iff)
next

assume infinite A
∧

x y. [[x ∈ A; y ∈ A; x 6= y]] =⇒ thesis
then show ?thesis

166

using infinite-imp-nonempty by (metis finite-insert finite-subset singletonI
subsetI)

qed
have x∈Q y∈Q

using ‹A ⊆ Q› ‹x ∈ A› ‹y ∈ A› by auto
have [a;x;b] [a;y;b]

by (simp add: ‹(1 < card A ∨ infinite A) ∧ (∀ x∈A. [a;x;b])› ‹x ∈ A› ‹y ∈
A›)+

hence betw4 a x y b ∨ betw4 a y x b
using ‹x 6= y› abd-acd-abcdacbd by blast

hence a∈Q ∧ b∈Q
using ‹Q∈P› ‹x∈Q› ‹x 6=y› ‹x∈Q› ‹y∈Q› betw-a-in-path betw-c-in-path by

blast
thus ?thesis by simp

qed
qed

show ?thesis
proof (cases)

assume a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d
show ?P A B
proof (rule-tac P=?P and A=Q in wlog-endpoints-distinct)

First, some technicalities: the relations P, I,R have the symmetry required.
show

∧
a b I . ?I I a b =⇒ ?I I b a using abc-sym by blast

show
∧

a b A. A ⊆ Q =⇒ ?I A a b =⇒ b ∈ Q ∧ a ∈ Q using on-path
assms(5) by blast

show
∧

I J . ?R I =⇒ ?R J =⇒ ?P I J =⇒ ?P J I by (simp add: Un-commute)

Next, the lemma/case assumptions have to be repeated for Isabelle.
show ?I A a b ?I B c d A⊆Q B⊆Q Q∈P

using assms by simp+
show a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d

using ‹a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d› by simp

Finally, the important bit: proofs for the necessary cases of betweenness.
show ?P I J

if ?I I a b ?I J c d I⊆Q J⊆Q
and [a;b;c;d] ∨ [a;c;b;d] ∨ [a;c;d;b]

for I J a b c d
proof −

consider [a;b;c;d]|[a;c;b;d]|[a;c;d;b]
using ‹[a;b;c;d] ∨ [a;c;b;d] ∨ [a;c;d;b]› by fastforce

thus ?thesis
proof (cases)

assume asm: [a;b;c;d] show ?P I J
proof −

have ∀ x∈ I∪J . [a;x;d]
by (metis Un-iff asm betw4-strong betw4-weak that(1) that(2))

167

moreover have a∈Q d∈Q
using assms(5) on-path that(1−4) by blast+

ultimately show ?thesis by blast
qed

next
assume [a;c;b;d] show ?P I J
proof −

have ∀ x∈ I∪J . [a;x;d]
by (metis Un-iff ‹betw4 a c b d› abc-bcd-abd abc-bcd-acd betw4-weak

that(1 ,2))
moreover have a∈Q d∈Q

using assms(5) on-path that(1−4) by blast+
ultimately show ?thesis by blast

qed
next

assume [a;c;d;b] show ?P I J
proof −

have ∀ x∈ I∪J . [a;x;b]
using ‹betw4 a c d b› abc-bcd-abd abc-bcd-acd abe-ade-bcd-ace
by (meson UnE that(1 ,2))

moreover have a∈Q b∈Q
using assms(5) on-path that(1−4) by blast+

ultimately show ?thesis by blast
qed

qed
qed

qed
next

assume ¬(a 6=b ∧ a 6=c ∧ a 6=d ∧ b 6=c ∧ b 6=d ∧ c 6=d)

show ?P A B
proof (rule-tac P=?P and A=Q in wlog-endpoints-degenerate)

This case follows the same pattern as above: the next five show statements
are effectively bookkeeping.

show
∧

a b I . ?I I a b =⇒ ?I I b a using abc-sym by blast
show

∧
a b A. A ⊆ Q =⇒ ?I A a b =⇒ b ∈ Q ∧ a ∈ Q using on-path ‹Q∈P›

by blast
show

∧
I J . ?R I =⇒ ?R J =⇒ ?P I J =⇒ ?P J I by (simp add: Un-commute)

show ?I A a b ?I B c d A⊆Q B⊆Q Q∈P
using assms by simp+

show ¬ (a 6= b ∧ b 6= c ∧ c 6= d ∧ a 6= d ∧ a 6= c ∧ b 6= d)
using ‹¬ (a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d)› by blast

Again, this is the important bit: proofs for the necessary cases of degeneracy.
show (a = b ∧ b = c ∧ c = d −→ ?P I J) ∧ (a = b ∧ b 6= c ∧ c = d −→

?P I J) ∧

168

(a = b ∧ b = c ∧ c 6= d −→ ?P I J) ∧ (a = b ∧ b 6= c ∧ c 6= d ∧ a 6= d
−→ ?P I J) ∧

(a 6= b ∧ b = c ∧ c 6= d ∧ a = d −→ ?P I J) ∧
([a;b;c] ∧ a = d −→ ?P I J) ∧ ([b;a;c] ∧ a = d −→ ?P I J)

if ?I I a b ?I J c d I ⊆ Q J ⊆ Q
for I J a b c d
proof (intro conjI impI)

assume a = b ∧ b = c ∧ c = d
show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u]

using ‹a = b ∧ b = c ∧ c = d› abc-ac-neq assms(5) ex-crossing-path
that(1 ,2)

by fastforce
next

assume a = b ∧ b 6= c ∧ c = d
show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u]

using ‹a = b ∧ b 6= c ∧ c = d› abc-ac-neq assms(5) ex-crossing-path
that(1 ,2)

by (metis Un-iff)
next

assume a = b ∧ b = c ∧ c 6= d
hence ∀ x∈ I∪J . [c;x;d]

using abc-abc-neq that(1 ,2) by fastforce
moreover have c∈Q d∈Q
using on-path ‹a = b ∧ b = c ∧ c 6= d› that(1 ,3) abc-abc-neq by metis+

ultimately show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u] by blast
next

assume a = b ∧ b 6= c ∧ c 6= d ∧ a 6= d
hence ∀ x∈ I∪J . [c;x;d]

using abc-abc-neq that(1 ,2) by fastforce
moreover have c∈Q d∈Q
using on-path ‹a = b ∧ b 6= c ∧ c 6= d ∧ a 6= d› that(1 ,3) abc-abc-neq by

metis+
ultimately show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u] by blast

next
assume a 6= b ∧ b = c ∧ c 6= d ∧ a = d
hence ∀ x∈ I∪J . [c;x;d]

using abc-sym that(1 ,2) by auto
moreover have c∈Q d∈Q
using on-path ‹a 6= b ∧ b = c ∧ c 6= d ∧ a = d› that(1 ,3) abc-abc-neq by

metis+
ultimately show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u] by blast

next
assume [a;b;c] ∧ a = d
hence ∀ x∈ I∪J . [c;x;d]

by (metis UnE abc-acd-abd abc-sym that(1 ,2))
moreover have c∈Q d∈Q

using on-path that(2 ,4) by blast+
ultimately show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u] by blast

next

169

assume [b;a;c] ∧ a = d
hence ∀ x∈ I∪J . [c;x;b]

using abc-sym abd-bcd-abc betw4-strong that(1 ,2) by (metis Un-iff)
moreover have c∈Q b∈Q

using on-path that by blast+
ultimately show ∃ l∈Q. ∃ u∈Q. ∀ x∈I ∪ J . [l;x;u] by blast

qed
qed

qed
qed

lemma union-of-bounded-sets-is-bounded2 :
assumes ∀ x∈A. [a;x;b] ∀ x∈B. [c;x;d] A⊆Q B⊆Q Q∈P

1<card A ∨ infinite A 1<card B ∨ infinite B
shows ∃ l∈Q−(A∪B). ∃ u∈Q−(A∪B). ∀ x∈A∪B. [l;x;u]

using assms union-of-bounded-sets-is-bounded
[where A=A and a=a and b=b and B=B and c=c and d=d and Q=Q]

by (metis Diff-iff abc-abc-neq)

Schutz proves a mildly stronger version of this theorem than he states.
Namely, he gives an additional condition that has to be fulfilled by the
bounds y, z in the proof (y,z /∈unreach−on Q from ab). This condition is triv-
ial given abc-abc-neq. His stating it in the proof makes me wonder whether
his (strictly speaking) undefined notion of bounded set is somehow weaker
than the version using strict betweenness in his theorem statement and used
here in Isabelle. This would make sense, given the obvious analogy with sets
on the real line.
theorem second-existence-thm-1 :

assumes path-Q: Q∈P
and events: a /∈Q b/∈Q
and reachable: path-ex a q1 path-ex b q2 q1∈Q q2∈Q

shows ∃ y∈Q. ∃ z∈Q. (∀ x∈unreach−on Q from a. [y;x;z]) ∧ (∀ x∈unreach−on
Q from b. [y;x;z])
proof −

Slightly annoying: Schutz implicitly extends bounded to sets, so his state-
ments are neater.

have ∃ q∈Q. q /∈(unreach−on Q from a) ∃ q∈Q. q /∈(unreach−on Q from b)
using cross-in-reachable reachable by blast+

This is a helper statement for obtaining bounds in both directions of both
unreachable sets. Notice this needs Theorem 13 right now, Schutz claims
only Theorem 4. I think this is necessary?

have get-bds: ∃ la∈Q. ∃ ua∈Q. la /∈unreach−on Q from a ∧ ua /∈unreach−on Q
from a ∧ (∀ x∈unreach−on Q from a. [la;x;ua])

if asm: a /∈Q path-ex a q q∈Q

170

for a q
proof −

obtain Qy where Qy∈unreach−on Q from a
using asm(2) ‹a /∈ Q› in-path-event path-Q two-in-unreach by blast

then obtain la where la ∈ Q − unreach−on Q from a
using asm(2 ,3) cross-in-reachable by blast

then obtain ua where ua ∈ Q − unreach−on Q from a [la;Qy;ua] la 6= ua
using unreachable-set-bounded [where Q=Q and b=a and Qx=la and

Qy=Qy]
using ‹Qy ∈ unreach−on Q from a› asm in-path-event path-Q by blast

have la /∈ unreach−on Q from a ∧ ua /∈ unreach−on Q from a ∧ (∀ x∈unreach−on
Q from a. (x 6=la ∧ x 6=ua) −→ [la;x;ua])

proof (intro conjI)
show la /∈ unreach−on Q from a

using ‹la ∈ Q − unreach−on Q from a› by force
next

show ua /∈ unreach−on Q from a
using ‹ua ∈ Q − unreach−on Q from a› by force

next show ∀ x∈unreach−on Q from a. x 6= la ∧ x 6= ua −→ [la;x;ua]
proof (safe)

fix x assume x∈unreach−on Q from a x 6=la x 6=ua
{

assume x=Qy hence [la;x;ua] by (simp add: ‹[la;Qy;ua]›)
} moreover {

assume x 6=Qy
have [Qy;x;la] ∨ [la;Qy;x]
proof −

{ assume [x;la;Qy]
hence la∈unreach−on Q from a

using unreach-connected ‹Qy∈unreach−on Q from a›‹x∈unreach−on
Q from a›‹x 6=Qy› in-path-event path-Q that by blast

hence False
using ‹la ∈ Q − unreach−on Q from a› by blast }

thus [Qy;x;la] ∨ [la;Qy;x]
using some-betw [where Q=Q and a=x and b=la and c=Qy] path-Q

unreach-on-path
using ‹Qy ∈ unreach−on Q from a› ‹la ∈ Q − unreach−on Q from a›

‹x ∈ unreach−on Q from a› ‹x 6= Qy› ‹x 6= la› by force
qed
hence [la;x;ua]
proof

assume [Qy;x;la]
thus ?thesis using ‹[la;Qy;ua]› abc-acd-abd abc-sym by blast

next
assume [la;Qy;x]
hence [la;x;ua] ∨ [la;ua;x]

using ‹[la;Qy;ua]› ‹x 6= ua› abc-abd-acdadc by auto
have ¬[la;ua;x]
using unreach-connected that abc-abc-neq abc-acd-bcd in-path-event path-Q

171

by (metis DiffD2 ‹Qy ∈ unreach−on Q from a› ‹[la;Qy;ua]› ‹ua ∈ Q −
unreach−on Q from a› ‹x ∈ unreach−on Q from a›)

show ?thesis
using ‹[la;x;ua] ∨ [la;ua;x]› ‹¬ [la;ua;x]› by linarith

qed
}
ultimately show [la;x;ua] by blast

qed
qed

thus ?thesis using ‹la ∈ Q − unreach−on Q from a› ‹ua ∈ Q − unreach−on
Q from a› by force

qed

have ∃ y∈Q. ∃ z∈Q. (∀ x∈(unreach−on Q from a)∪(unreach−on Q from b).
[y;x;z])

proof −
obtain la ua where ∀ x∈unreach−on Q from a. [la;x;ua]

using events(1) get-bds reachable(1 ,3) by blast
obtain lb ub where ∀ x∈unreach−on Q from b. [lb;x;ub]

using events(2) get-bds reachable(2 ,4) by blast
have unreach−on Q from a ⊆ Q unreach−on Q from b ⊆ Q

by (simp add: subsetI unreach-on-path)+
moreover have 1 < card (unreach−on Q from a) ∨ infinite (unreach−on Q

from a)
using two-in-unreach events(1) in-path-event path-Q reachable(1)
by (metis One-nat-def card-le-Suc0-iff-eq not-less)

moreover have 1 < card (unreach−on Q from b) ∨ infinite (unreach−on Q
from b)

using two-in-unreach events(2) in-path-event path-Q reachable(2)
by (metis One-nat-def card-le-Suc0-iff-eq not-less)

ultimately show ?thesis
using union-of-bounded-sets-is-bounded [where Q=Q and A=unreach−on Q

from a and B=unreach−on Q from b]
using get-bds assms ‹∀ x∈unreach−on Q from a. [la;x;ua]› ‹∀ x∈unreach−on

Q from b. [lb;x;ub]›
by blast

qed

then obtain y z where y∈Q z∈Q (∀ x∈(unreach−on Q from a)∪(unreach−on
Q from b). [y;x;z])

by blast
show ?thesis
proof (rule bexI)+

show y∈Q by (simp add: ‹y ∈ Q›)
show z∈Q by (simp add: ‹z ∈ Q›)
show (∀ x∈unreach−on Q from a. [z;x;y]) ∧ (∀ x∈unreach−on Q from b. [z;x;y])

by (simp add: ‹∀ x∈unreach−on Q from a ∪ unreach−on Q from b. [y;x;z]›
abc-sym)

qed

172

qed

theorem second-existence-thm-2 :
assumes path-Q: Q∈P

and events: a /∈Q b/∈Q c∈Q d∈Q c 6=d
and reachable: ∃P∈P. ∃ q∈Q. path P a q ∃P∈P. ∃ q∈Q. path P b q

shows ∃ e∈Q. ∃ ae∈P. ∃ be∈P. path ae a e ∧ path be b e ∧ [c;d;e]
proof −
obtain y z where bounds-yz: (∀ x∈unreach−on Q from a. [z;x;y]) ∧ (∀ x∈unreach−on

Q from b. [z;x;y])
and yz-inQ: y∈Q z∈Q

using second-existence-thm-1 [where Q=Q and a=a and b=b]
using path-Q events(1 ,2) reachable by blast

have y /∈(unreach−on Q from a)∪(unreach−on Q from b) z /∈(unreach−on Q from
a)∪(unreach−on Q from b)

by (meson Un-iff ‹(∀ x∈unreach−on Q from a. [z;x;y]) ∧ (∀ x∈unreach−on Q
from b. [z;x;y])› abc-abc-neq)+

let ?P = λe ae be. (e∈Q ∧ path ae a e ∧ path be b e ∧ [c;d;e])

have exist-ay: ∃ ay. path ay a y
if a /∈Q ∃P∈P. ∃ q∈Q. path P a q y /∈(unreach−on Q from a) y∈Q
for a y
using in-path-event path-Q that unreachable-bounded-path-only
by blast

have [c;d;y] ∨ [[y;c;d] ∨ [c;y;d]]
by (meson ‹y ∈ Q› abc-sym events(3−5) path-Q some-betw)

moreover have [c;d;z] ∨ [[z;c;d] ∨ [c;z;d]]
by (meson ‹z ∈ Q› abc-sym events(3−5) path-Q some-betw)

ultimately consider [c;d;y] | [c;d;z] |
(([[y;c;d] ∨ [c;y;d]]) ∧ ([[z;c;d] ∨ [c;z;d]]))

by auto
thus ?thesis
proof (cases)

assume [c;d;y]
have y /∈(unreach−on Q from a) y /∈(unreach−on Q from b)

using ‹y /∈ unreach−on Q from a ∪ unreach−on Q from b› by blast+
then obtain ay yb where path ay a y path yb b y

using ‹y∈Q› exist-ay events(1 ,2) reachable(1 ,2) by blast
have ?P y ay yb

using ‹[c;d;y]› ‹path ay a y› ‹path yb b y› ‹y ∈ Q› by blast
thus ?thesis by blast

next
assume [c;d;z]
have z /∈(unreach−on Q from a) z /∈(unreach−on Q from b)

using ‹z /∈ unreach−on Q from a ∪ unreach−on Q from b› by blast+
then obtain az bz where path az a z path bz b z

using ‹z∈Q› exist-ay events(1 ,2) reachable(1 ,2) by blast

173

have ?P z az bz
using ‹[c;d;z]› ‹path az a z› ‹path bz b z› ‹z ∈ Q› by blast

thus ?thesis by blast
next

assume ([[y;c;d] ∨ [c;y;d]]) ∧ ([[z;c;d] ∨ [c;z;d]])
have ∃ e. [c;d;e]

using prolong-betw
using events(3−5) path-Q by blast

then obtain e where [c;d;e] by auto
have ¬[y;e;z]
proof (rule notI)

Notice Theorem 10 is not needed for this proof, and does not seem to help
sledgehammer. I think this is because it cannot be easily/automatically
reconciled with non-strict notation.

assume [y;e;z]
moreover consider ([[y;c;d] ∧ [[z;c;d]) | ([[y;c;d] ∧ [c;z;d]]) |

([c;y;d]] ∧ [[z;c;d]) | ([c;y;d]] ∧ [c;z;d]])
using ‹([[y;c;d] ∨ [c;y;d]]) ∧ ([[z;c;d] ∨ [c;z;d]])› by linarith

ultimately show False
by (smt ‹[c;d;e]› abc-ac-neq betw4-strong betw4-weak)

qed
have e∈Q

using ‹[c;d;e]› betw-c-in-path events(3−5) path-Q by blast
have e/∈ unreach−on Q from a e/∈ unreach−on Q from b

using bounds-yz ‹¬ [y;e;z]› abc-sym by blast+
hence ex-aebe: ∃ ae be. path ae a e ∧ path be b e

using ‹e ∈ Q› events(1 ,2) in-path-event path-Q reachable(1 ,2) unreach-
able-bounded-path-only

by metis
thus ?thesis

using ‹[c;d;e]› ‹e ∈ Q› by blast
qed

qed

The assumption Q 6=R in Theorem 14(iii) is somewhat implicit in Schutz. If
Q=R, unreach−on Q from a is empty, so the third conjunct of the conclusion
is meaningless.
theorem second-existence-thm-3 :

assumes paths: Q∈P R∈P Q 6=R
and events: x∈Q x∈R a∈R a 6=x b/∈Q
and reachable: ∃P∈P. ∃ q∈Q. path P b q

shows ∃ e∈E . ∃ ae∈P. ∃ be∈P. path ae a e ∧ path be b e ∧ (∀ y∈unreach−on Q
from a. [x;y;e])
proof −

have a /∈Q
using events(1−4) paths eq-paths by blast

hence unreach−on Q from a 6= {}
by (metis events(3) ex-in-conv in-path-event paths(1 ,2) two-in-unreach)

174

then obtain d where d∈ unreach−on Q from a
by blast

have x 6=d
using ‹d ∈ unreach−on Q from a› cross-in-reachable events(1) events(2)

events(3) paths(2) by auto
have d∈Q

using ‹d ∈ unreach−on Q from a› unreach-on-path by blast

have ∃ e∈Q. ∃ ae be. [x;d;e] ∧ path ae a e ∧ path be b e
using second-existence-thm-2 [where c=x and Q=Q and a=a and b=b and

d=d]
using ‹a /∈ Q› ‹d ∈ Q› ‹x 6= d› events(1−3 ,5) paths(1 ,2) reachable by blast

then obtain e ae be where conds: [x;d;e] ∧ path ae a e ∧ path be b e by blast
have ∀ y∈(unreach−on Q from a). [x;y;e]
proof

fix y assume y∈(unreach−on Q from a)
hence y∈Q

using unreach-on-path by blast
show [x;y;e]
proof (rule ccontr)

assume ¬[x;y;e]
then consider y=x | y=e | [y;x;e] | [x;e;y]
by (metis ‹d∈Q› ‹y∈Q› abc-abc-neq abc-sym betw-c-in-path conds events(1)

paths(1) some-betw)
thus False
proof (cases)

assume y=x thus False
using ‹y ∈ unreach−on Q from a› events(2 ,3) paths(1 ,2) same-empty-unreach

unreach-equiv unreach-on-path
by blast

next
assume y=e thus False

by (metis ‹y∈Q› assms(1) conds empty-iff same-empty-unreach un-
reach-equiv ‹y ∈ unreach−on Q from a›)

next
assume [y;x;e]
hence [y;x;d]

using abd-bcd-abc conds by blast
hence x∈(unreach−on Q from a)
using unreach-connected [where Q=Q and Qx=y and Qy=x and Qz=d

and b=a]
using ‹¬[x;y;e]› ‹a /∈Q› ‹d∈unreach−on Q from a› ‹y∈unreach−on Q from

a› conds in-path-event paths(1) by blast
thus False
using empty-iff events(2 ,3) paths(1 ,2) same-empty-unreach unreach-equiv

unreach-on-path
by metis

next

175

assume [x;e;y]
hence [d;e;y]

using abc-acd-bcd conds by blast
hence e∈(unreach−on Q from a)
using unreach-connected [where Q=Q and Qx=y and Qy=e and Qz=d

and b=a]
using ‹a /∈ Q› ‹d ∈ unreach−on Q from a› ‹y ∈ unreach−on Q from a›

abc-abc-neq abc-sym events(3) in-path-event paths(1 ,2)
by blast

thus False
by (metis conds empty-iff paths(1) same-empty-unreach unreach-equiv

unreach-on-path)
qed

qed
qed
thus ?thesis

using conds in-path-event by blast
qed

end

36 Theorem 11 - with path density assumed
locale MinkowskiDense = MinkowskiSpacetime +

assumes path-dense: path ab a b =⇒ ∃ x. [a;x;b]
begin

Path density: if a and b are connected by a path, then the segment be-
tween them is nonempty. Since Schutz insists on the number of segments
in his segmentation (Theorem 11), we prove it here, showcasing where his
missing assumption of path density fits in (it is used three times in num-
ber-of-segments, once in each separate meaningful local-ordering case).
lemma segment-nonempty:

assumes path ab a b
obtains x where x ∈ segment a b
using path-dense by (metis seg-betw assms)

lemma number-of-segments:
assumes path-P: P∈P

and Q-def : Q⊆P
and f-def : [f Q|a..b..c]

shows card {segment (f i) (f (i+1)) | i. i<(card Q−1)} = card Q − 1
proof −

let ?S = {segment (f i) (f (i+1)) | i. i<(card Q−1)}
let ?N = card Q
let ?g = λ i. segment (f i) (f (i+1))

176

have ?N ≥ 3 using chain-defs f-def by (meson finite-long-chain-with-card)
have ?g ‘ {0 ..?N−2} = ?S
proof (safe)

fix i assume i∈{(0 ::nat)..?N−2}
show ∃ ia. segment (f i) (f (i+1)) = segment (f ia) (f (ia+1)) ∧ ia<card Q

− 1
proof

have i<?N−1
using assms ‹i∈{(0 ::nat)..?N−2}› ‹?N≥3 ›

by (metis One-nat-def Suc-diff-Suc atLeastAtMost-iff le-less-trans lessI
less-le-trans

less-trans numeral-2-eq-2 numeral-3-eq-3)
then show segment (f i) (f (i + 1)) = segment (f i) (f (i + 1)) ∧ i<?N−1

by blast
qed

next
fix x i assume i < card Q − 1
let ?s = segment (f i) (f (i + 1))
show ?s ∈ ?g ‘ {0 ..?N − 2}
proof −

have i∈{0 ..?N−2}
using ‹i < card Q − 1 › by force

thus ?thesis by blast
qed

qed
moreover have inj-on ?g {0 ..?N−2}
proof

fix i j assume asm: i∈{0 ..?N−2} j∈{0 ..?N−2} ?g i = ?g j
show i=j
proof (rule ccontr)

assume i 6=j
hence f i 6= f j

using asm(1 ,2) f-def assms(3) indices-neq-imp-events-neq
[where X=Q and f=f and a=a and b=b and c=c and i=i and j=j]

by auto
show False
proof (cases)

assume j=i+1 hence j=Suc i by linarith
have Suc(Suc i) < ?N using asm(1 ,2) eval-nat-numeral ‹j = Suc i› by

auto
hence [f i; f (Suc i); f (Suc (Suc i))]

using assms short-ch-card ‹?N≥3 › chain-defs local-ordering-def
by (metis short-ch-alt(1) three-in-set3)

hence [f i; f j; f (j+1)] by (simp add: ‹j = i + 1 ›)
obtain e where e∈?g j using segment-nonempty abc-ex-path asm(3)

by (metis ‹[f i; f j; f (j+1)]› ‹f i 6= f j› ‹j = i + 1 ›)
hence e∈?g i

using asm(3) by blast
have [f i; f j; e]

177

using abd-bcd-abc ‹[f i; f j; f (j+1)]›
by (meson ‹e ∈ segment (f j) (f (j + 1))› seg-betw)

thus False
using ‹e ∈ segment (f i) (f (i + 1))› ‹j = i + 1 › abc-only-cba(2) seg-betw
by auto

next assume j 6=i+1
have i < card Q ∧ j < card Q ∧ (i+1) < card Q
using add-mono-thms-linordered-field(3) asm(1 ,2) assms ‹?N≥3 › by auto
hence f i ∈ Q ∧ f j ∈ Q ∧ f (i+1) ∈ Q

using f-def unfolding chain-defs local-ordering-def
by (metis One-nat-def Suc-diff-le Suc-eq-plus1 ‹3 ≤ card Q› add-Suc

card-1-singleton-iff
card-gt-0-iff card-insert-if diff-Suc-1 diff-Suc-Suc less-natE less-numeral-extra(1)

nat.discI numeral-3-eq-3)
hence f i ∈ P ∧ f j ∈ P ∧ f (i+1) ∈ P

using path-is-union assms
by (simp add: subset-iff)

then consider [f i; (f (i+1)); f j] | [f i; f j; (f (i+1))] |
[(f (i+1)); f i; f j]

using some-betw path-P f-def indices-neq-imp-events-neq
‹f i 6= f j› ‹i < card Q ∧ j < card Q ∧ i + 1 < card Q› ‹j 6= i + 1 ›

by (metis abc-sym less-add-one less-irrefl-nat)
thus False
proof (cases)

assume [(f (i+1)); f i; f j]
then obtain e where e∈?g i using segment-nonempty

by (metis ‹f i ∈ P ∧ f j ∈ P ∧ f (i + 1) ∈ P› abc-abc-neq path-P)
hence [e; f j; (f (j+1))]

using ‹[(f (i+1)); f i; f j]›
by (smt abc-acd-abd abc-acd-bcd abc-only-cba abc-sym asm(3) seg-betw)

moreover have e∈?g j
using ‹e ∈ ?g i› asm(3) by blast

ultimately show False
by (simp add: abc-only-cba(1) seg-betw)

next
assume [f i; f j; (f (i+1))]
thus False

using abc-abc-neq [where b=f j and a=f i and c=f (i+1)] asm(3)
seg-betw [where x=f j]

using ends-notin-segment by blast
next

assume [f i; (f (i+1)); f j]
then obtain e where e∈?g i using segment-nonempty

by (metis ‹f i ∈ P ∧ f j ∈ P ∧ f (i + 1) ∈ P› abc-abc-neq path-P)
hence [e; f j; (f (j+1))]
proof −

have f (i+1) 6= f j
using ‹[f i; (f (i+1)); f j]› abc-abc-neq by presburger

then show ?thesis

178

using ‹e ∈ segment (f i) (f (i+1))› ‹[f i; (f (i+1)); f j]› asm(3) seg-betw
by (metis (no-types) abc-abc-neq abc-acd-abd abc-acd-bcd abc-sym)

qed
moreover have e∈?g j

using ‹e ∈ ?g i› asm(3) by blast
ultimately show False

by (simp add: abc-only-cba(1) seg-betw)
qed

qed
qed

qed
ultimately have bij-betw ?g {0 ..?N−2} ?S

using inj-on-imp-bij-betw by fastforce
thus ?thesis

using assms(2) bij-betw-same-card numeral-2-eq-2 numeral-3-eq-3 ‹?N≥3 ›
by (metis (no-types, lifting) One-nat-def Suc-diff-Suc card-atLeastAtMost le-less-trans

less-Suc-eq-le minus-nat.diff-0 not-less not-numeral-le-zero)
qed

theorem segmentation-card:
assumes path-P: P∈P

and Q-def : Q⊆P
and f-def : [f Q|a..b]

fixes P1 defines P1-def : P1 ≡ prolongation b a
fixes P2 defines P2-def : P2 ≡ prolongation a b
fixes S defines S-def : S ≡ {segment (f i) (f (i+1)) | i. i<card Q−1}
shows P = ((

⋃
S) ∪ P1 ∪ P2 ∪ Q)

card S = (card Q−1) ∧ (∀ x∈S . is-segment x)

disjoint (S∪{P1 ,P2}) P1 6=P2 P1 /∈S P2 /∈S

proof −
let ?N = card Q
have 2 ≤ card Q

using f-def fin-chain-card-geq-2 by blast
have seg-facts: P = (

⋃
S ∪ P1 ∪ P2 ∪ Q) (∀ x∈S . is-segment x)

disjoint (S∪{P1 ,P2}) P1 6=P2 P1 /∈S P2 /∈S
using show-segmentation [OF path-P Q-def f-def]
using P1-def P2-def S-def by fastforce+

show P =
⋃

S ∪ P1 ∪ P2 ∪ Q by (simp add: seg-facts(1))
show disjoint (S∪{P1 ,P2}) P1 6=P2 P1 /∈S P2 /∈S

using seg-facts(3−6) by blast+
have card S = (?N−1)
proof (cases)

assume ?N=2
hence card S = 1

by (simp add: S-def)

179

thus ?thesis
by (simp add: ‹?N = 2 ›)

next
assume ?N 6=2
hence ?N≥3

using ‹2 ≤ card Q› by linarith
then obtain c where [f Q|a..c..b]

using assms chain-defs short-ch-card-2 ‹2 ≤ card Q› ‹card Q 6= 2 ›
by (metis three-in-set3)

show ?thesis
using number-of-segments [OF assms(1 ,2) ‹[f Q|a..c..b]›]
using S-def ‹card Q 6= 2 › by presburger

qed
thus card S = card Q − 1 ∧ Ball S is-segment

using seg-facts(2) by blast
qed

end

end

References

[1] J. W. Schutz. Independent Axioms for Minkowski Space-Time. CRC
Press, Oct. 1997.

180

	Totally ordered chains
	Locally ordered chains
	MinkowskiPrimitive: I1-I3
	Primitives: Unreachable Subset (from an Event)
	Primitives: Kinematic Triangle
	Primitives: SPRAY
	Primitives: Path (In)dependence
	Primitives: 3-SPRAY
	MinkowskiBetweenness: O1-O5
	Betweenness: Unreachable Subset Via a Path
	Betweenness: Chains
	Locally ordered chains with indexing

	Betweenness: Rays and Intervals
	MinkowskiChain: O6
	Chains: (Closest) Bounds
	MinkowskiUnreachable: I5-I7
	MinkowskiSymmetry: Symmetry
	MinkowskiContinuity: Continuity
	MinkowskiSpacetime: Dimension (I4)
	Preliminary Results for Primitives
	3.1 Order on a finite chain
	Theorem 1
	Theorem 2
	Additional lemmas about chains

	Preliminary Results for Kinematic Triangles and Paths/Betweenness
	3.2 First collinearity theorem
	Additional results for Paths and Unreachables
	Results about Paths as Sets
	3.3 Boundedness of the unreachable set
	Theorem 4 (boundedness of the unreachable set)
	Theorem 5 (first existence theorem)

	3.4 Prolongation
	3.5 Second collinearity theorem
	3.6 Order on a path - Theorems 8 and 9
	Theorem 8 (as in Veblen (1911) Theorem 6)
	Theorem 9

	Interlude - Chains, segments, rays
	General results for chains
	Results for segments, rays and (sub)chains

	3.6 Order on a path - Theorems 10 and 11
	Theorem 10 (based on Veblen (1904) theorem 10).
	Theorem 11

	Chains are unique up to reversal
	Interlude: betw4 and WLOG
	betw4 - strict and non-strict, basic lemmas
	WLOG for two general symmetric relations of two elements on a single path
	WLOG for two intervals

	Interlude: Intervals, Segments, Connectedness
	3.7 Continuity and the monotonic sequence property
	3.8 Connectedness of the unreachable set
	Theorem 13 (Connectedness of the Unreachable Set)
	Theorem 14 (Second Existence Theorem)

	Theorem 11 - with path density assumed

