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Abstract
The Sauer-Shelah Lemma is a fundamental result in extremal set

theory and combinatorics, that guarantees the existence of a set T
of size k which is shattered by a family of sets F , if the cardinality
of the family is greater than some bound dependent on k. A set T
is said to be shattered by a family F if every subset of T can be
obtained as an intersection of T with some set S ∈ F . The Sauer-
Shelah Lemma has found use in diverse fields such as computational
geometry, approximation algorithms and machine learning. In this
entry we formalize the notion of shattering and prove the generalized
and standard versions of the Sauer-Shelah Lemma.
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1 Introduction
The goal of this entry is to formalize the Sauer-Shelah Lemma. The result
was first published by Sauer [2] and Shelah [3] independently from one an-
other. The proof presented in this entry is based on an article by Kalai [1].
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The lemma has a wide range of applications. Vapnik and Červonenkis [4]
reproved and used the lemma in the context of statistical learning theory.
For instance, the VC-dimension of a family of sets is defined as the size of
the largest set the family shatters. In this context, the Sauer-Shelah Lemma
is a result tying the VC-dimension of a family to the number of sets in the
family.

2 Definitions and lemmas about shattering
In this section, we introduce the predicate shatters and the term for the
family of sets that a family shatters shattered-by.
theory Shattering

imports Main
begin

2.1 Intersection of a family of sets with a set
abbreviation IntF :: ′a set set ⇒ ′a set ⇒ ′a set set (infixl ‹∩∗› 60 )

where F ∩∗ S ≡ ((∩) S) ‘ F

lemma idem-IntF :
assumes

⋃
A ⊆ Y

shows A ∩∗ Y = A
proof −

from assms have A ⊆ A ∩∗ Y by blast
thus ?thesis by fastforce

qed

lemma subset-IntF :
assumes A ⊆ B
shows A ∩∗ X ⊆ B ∩∗ X
using assms by (rule image-mono)

lemma Int-IntF : (A ∩∗ Y ) ∩∗ X = A ∩∗ (Y ∩ X)
proof

show A ∩∗ Y ∩∗ X ⊆ A ∩∗ (Y ∩ X)
proof

fix S
assume S ∈ A ∩∗ Y ∩∗ X
then obtain a-y where A-Y0 : a-y ∈ A ∩∗ Y and A-Y1 : a-y ∩ X = S by

blast
from A-Y0 obtain a where A0 : a ∈ A and A1 : a ∩ Y = a-y by blast
from A-Y1 A1 have a ∩ (Y ∩ X) = S by fast
with A0 show S ∈ A ∩∗ (Y ∩ X) by blast

qed
next

show A ∩∗ (Y ∩ X) ⊆ A ∩∗ Y ∩∗ X
proof

2



fix S
assume S ∈ A ∩∗ (Y ∩ X)
then obtain a where A0 : a ∈ A and A1 : a ∩ (Y ∩ X) = S by blast
from A0 have a ∩ Y ∈ A ∩∗ Y by blast
with A1 show S ∈ (A ∩∗ Y ) ∩∗ X by blast

qed
qed

insert distributes over (∩∗)
lemma insert-IntF :

shows insert x ‘ (H ∩∗ S) = (insert x ‘ H ) ∩∗ (insert x S)
proof

show insert x ‘ (H ∩∗ S) ⊆ (insert x ‘ H ) ∩∗ (insert x S)
proof

fix y-x
assume y-x ∈ insert x ‘ (H ∩∗ S)
then obtain y where 0 : y ∈ (H ∩∗ S) and 1 : y-x = y ∪ {x} by blast
from 0 obtain yh where 2 : yh ∈ H and 3 : y = yh ∩ S by blast
from 1 3 have y-x = (yh ∪ {x}) ∩ (S ∪ {x}) by simp
with 2 show y-x ∈ (insert x ‘ H ) ∩∗ (insert x S) by blast

qed
next

show insert x ‘ H ∩∗ (insert x S) ⊆ insert x ‘ (H ∩∗ S)
proof

fix y-x
assume y-x ∈ insert x ‘ H ∩∗ (insert x S)
then obtain yh-x where 0 : yh-x ∈ (λY . Y ∪ {x}) ‘ H and 1 : y-x = yh-x ∩

(S ∪ {x}) by blast
from 0 obtain yh where 2 : yh ∈ H and 3 : yh-x = yh ∪ {x} by blast
from 1 3 have y-x = (yh ∩ S) ∪ {x} by simp
with 2 show y-x ∈ insert x ‘ (H ∩∗ S) by blast

qed
qed

2.2 Definition of shatters, VC-dim and shattered-by
abbreviation shatters :: ′a set set ⇒ ′a set ⇒ bool (infixl ‹shatters› 70 )

where H shatters A ≡ H ∩∗ A = Pow A

definition VC-dim :: ′a set set ⇒ nat
where VC-dim F = Sup {card S | S . F shatters S}

definition shattered-by :: ′a set set ⇒ ′a set set
where shattered-by F ≡ {A. F shatters A}

lemma shattered-by-in-Pow:
shows shattered-by F ⊆ Pow (

⋃
F)

unfolding shattered-by-def by blast

lemma subset-shatters:
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assumes A ⊆ B and A shatters X
shows B shatters X

proof −
from assms(1 ) have A ∩∗ X ⊆ B ∩∗ X by blast
with assms(2 ) have Pow X ⊆ B ∩∗ X by presburger
thus ?thesis by blast

qed

lemma supset-shatters:
assumes Y ⊆ X and A shatters X
shows A shatters Y

proof −
have h:

⋃
(Pow Y ) ⊆ Y by simp

from assms have 0 : Pow Y ⊆ A ∩∗ X by auto
from subset-IntF [OF 0 , of Y ] Int-IntF [of Y X A] idem-IntF [OF h] have Pow

Y ⊆ A ∩∗ (X ∩ Y ) by argo
with Int-absorb2 [OF assms(1 )] Int-commute[of X Y ] have Pow Y ⊆ A ∩∗ Y

by presburger
then show ?thesis by fast

qed

lemma shatters-empty:
assumes F 6= {}
shows F shatters {}

using assms by fastforce

lemma subset-shattered-by:
assumes A ⊆ B
shows shattered-by A ⊆ shattered-by B

unfolding shattered-by-def using subset-shatters[OF assms] by force

lemma finite-shattered-by:
assumes finite (

⋃
F)

shows finite (shattered-by F)
using assms rev-finite-subset[OF - shattered-by-in-Pow, of F ] by fast

The following example shows that requiring finiteness of a family of sets
is not enough, to ensure that shattered-by also stays finite.
lemma ∃F ::nat set set. finite F ∧ infinite (shattered-by F)
proof −

let ?F = {odd −‘ {True}, odd −‘ {False}}
have 0 : finite ?F by simp

let ?f = λn::nat. {n}
let ?N = range ?f
have inj (λn. {n}) by simp
with infinite-iff-countable-subset[of ?N ] have infinite-N : infinite ?N by blast
have F-shatters-any-singleton: ?F shatters {n::nat} for n
proof −

4



have Pow-n: Pow {n} = {{n}, {}} by blast
have 1 : Pow {n} ⊆ ?F ∩∗ {n}
proof (cases odd n)

case True
from True have (odd −‘ {False}) ∩ {n} = {} by blast
hence 0 : {} ∈ ?F ∩∗ {n} by blast
from True have (odd −‘ {True}) ∩ {n} = {n} by blast
hence 1 : {n} ∈ ?F ∩∗ {n} by blast
from 0 1 Pow-n show ?thesis by simp

next
case False
from False have (odd −‘ {True}) ∩ {n} = {} by blast
hence 0 : {} ∈ ?F ∩∗ {n} by blast
from False have (odd −‘ {False}) ∩ {n} = {n} by blast
hence 1 : {n} ∈ ?F ∩∗ {n} by blast
from 0 1 Pow-n show ?thesis by simp

qed
thus ?thesis by fastforce

qed
then have ?N ⊆ shattered-by ?F unfolding shattered-by-def by force
from 0 infinite-super [OF this infinite-N ] show ?thesis by blast

qed

end

3 Lemmas involving the cardinality of sets
In this section, we prove some lemmas that make use of the term card or
provide bounds for it.
theory Card-Lemmas

imports Main
begin

lemma card-Int-copy:
assumes finite X and A ∪ B ⊆ X and ∃ f . inj-on f (A ∩ B) ∧ (A ∪ B) ∩ (f ‘

(A ∩ B)) = {} ∧ f ‘ (A ∩ B) ⊆ X
shows card A + card B ≤ card X

proof −
from rev-finite-subset[OF assms(1 ), of A] rev-finite-subset[OF assms(1 ), of B]

assms(2 )
have finite-A: finite A and finite-B: finite B by blast+
then have finite-A-Un-B: finite (A ∪ B) and finite-A-Int-B: finite (A ∩ B) by

blast+
from assms(3 ) obtain f where f-inj-on: inj-on f (A ∩ B)

and f-disjnt: (A ∪ B) ∩ (f ‘ (A ∩ B)) = {}
and f-imj-in: f ‘ (A ∩ B) ⊆ X by blast

from finite-A-Int-B have finite-f-img: finite (f ‘ (A ∩ B)) by blast
from assms(2 ) f-imj-in have union-in: (A ∪ B) ∪ f ‘ (A ∩ B) ⊆ X by blast
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from card-Un-Int[OF finite-A finite-B] have card A + card B = card (A ∪ B)
+ card (A ∩ B) .

also from card-image[OF f-inj-on] have ... = card (A ∪ B) + card (f ‘ (A ∩
B)) by presburger

also from card-Un-disjoint[OF finite-A-Un-B finite-f-img f-disjnt] have ... =
card ((A ∪ B) ∪ f ‘ (A ∩ B)) by argo

also from card-mono[OF assms(1 ) union-in] have ... ≤ card X by blast
finally show ?thesis .

qed

lemma finite-diff-not-empty:
assumes finite Y and card Y < card X
shows X − Y 6= {}

proof
assume X − Y = {}
hence X ⊆ Y by simp
from card-mono[OF assms(1 ) this] assms(2 ) show False by linarith

qed

lemma obtain-difference-element:
fixes F :: ′a set set
assumes 2 ≤ card F
obtains x where x∈

⋃
F x /∈

⋂
F

proof −
from assms card-le-Suc-iff [of 1 F ] obtain A F ′ where 0 : F = insert A F ′ and

1 : A /∈ F ′ and 2 : 1 ≤ card F ′ by auto
from 2 card-le-Suc-iff [of 0 F ′] obtain B F ′′ where 3 : F ′ = insert B F ′′ by

auto
from 1 3 have A-noteq-B: A 6= B by blast
from 0 3 have A-in-F : A ∈ F and B-in-F : B ∈ F by blast+
from A-noteq-B have (A − B) ∪ (B − A) 6= {} by simp
with A-in-F B-in-F that show thesis by blast

qed

end

4 Lemmas involving the binomial coefficient
In this section, we prove lemmas that use the term for the binomial coefficient
choose.
theory Binomial-Lemmas

imports Main
begin

lemma choose-mono:
assumes x ≤ y
shows x choose n ≤ y choose n
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proof −
have finite {0 ..<y} by blast
with finite-Pow-iff [of {0 ..<y}] have finiteness: finite {K ∈ Pow {0 ..<y}. card

K = n} by simp
from assms have Pow {0 ..<x} ⊆ Pow {0 ..<y} by force
then have {K ∈ Pow {0 ..<x}. card K = n} ⊆ {K ∈ Pow {0 ..<y}. card K =

n} by blast
from card-mono[OF finiteness this] show ?thesis unfolding binomial-def .

qed

lemma choose-row-sum-set:
assumes finite (

⋃
F)

shows card {S . S ⊆
⋃

F ∧ card S ≤ k} = (
∑

i≤k. card (
⋃

F) choose i)
proof (induction k)

case 0
from rev-finite-subset[OF assms] have S ⊆

⋃
F ∧ card S ≤ 0 ←→ S = {} for

S by fastforce
then show ?case by simp

next
case (Suc k)
let ?FS = {S . S ⊆

⋃
F ∧ card S ≤ Suc k}

and ?F-Asm = {S . S ⊆
⋃

F ∧ card S ≤ k}
and ?F-Step = {S . S ⊆

⋃
F ∧ card S = Suc k}

from finite-Pow-iff [of
⋃

F ] assms have finite-Pow-Un-F : finite (Pow (
⋃

F)) ..
have ?F-Asm ⊆ Pow (

⋃
F) and ?F-Step ⊆ Pow (

⋃
F) by fast+

with rev-finite-subset[OF finite-Pow-Un-F ] have finite-F-Asm: finite ?F-Asm
and finite-F-Step: finite ?F-Step by presburger+

have F-Un: ?FS = ?F-Asm ∪ ?F-Step and F-disjoint: ?F-Asm ∩ ?F-Step = {}
by fastforce+

from card-Un-disjoint[OF finite-F-Asm finite-F-Step F-disjoint] F-Un have card
?FS = card ?F-Asm + card ?F-Step by argo

also from Suc have ... = (
∑

i≤k. card (
⋃

F) choose i) + card ?F-Step by argo
also from n-subsets[OF assms, of Suc k] have ... = (

∑
i≤Suc k. card (

⋃
F)

choose i) by force
finally show ?case by blast

qed

end

5 Sauer-Shelah Lemma
theory Sauer-Shelah-Lemma

imports Shattering Card-Lemmas Binomial-Lemmas
begin
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5.1 Generalized Sauer-Shelah Lemma
To prove the Sauer-Shelah Lemma, we will first prove a slightly stronger
fact that every family F shatters at least as many sets as card F. We first
fix an element x ∈

⋃
F and consider the subfamily F0 of sets in the family

not containing it. By induction, F0 shatters at least as many elements of F
as card F0. Next, we consider the subfamily F1 of sets in the family that
contain x. Again, by induction, F1 shatters as many elements of F as its
cardinality. The number of elements of F shattered by F0 and F1 sum up
to at least card F0 + card F1 = card F. When a set S ∈ F is shattered by
only one of the two subfamilies, say F0, it contributes one unit to the set
shattered-by F0 and to shattered-by F. However, when the set is shattered by
both subfamilies, both S and S ∪ {x} are in shattered-by F, so S contributes
two units to shattered-by F0 ∪ shattered-by F1. Therefore, the cardinality
of shattered-by F is at least equal to the cardinality of shattered-by F0 ∪
shattered-by F1, which is at least card F.
lemma sauer-shelah-0 :

fixes F :: ′a set set
shows finite (

⋃
F) =⇒ card F ≤ card (shattered-by F)

proof (induction F rule: measure-induct-rule[of card])
case (less F)
note finite-F = finite-UnionD[OF less(2 )]
note finite-shF = finite-shattered-by[OF less(2 )]
show ?case
proof (cases 2 ≤ card F)

case True
from obtain-difference-element[OF True]
obtain x :: ′a where x-in-Union-F : x ∈

⋃
F

and x-not-in-Int-F : x /∈
⋂

F by blast

Define F0 as the subfamily of F containing sets that don’t contain x.
let ?F0 = {S ∈ F . x /∈ S}
from x-in-Union-F have F0-psubset-F : ?F0 ⊂ F by blast
from F0-psubset-F have F0-in-F : ?F0 ⊆ F by blast
from subset-shattered-by[OF F0-in-F ] have shF0-subset-shF : shattered-by ?F0

⊆ shattered-by F .
from F0-in-F have Un-F0-in-Un-F :

⋃
?F0 ⊆

⋃
F by blast

F0 shatters at least as many sets as card F0 by the induction hypothesis.
note IH-F0 = less(1 )[OF psubset-card-mono[OF finite-F F0-psubset-F ] rev-finite-subset[OF

less(2 ) Un-F0-in-Un-F ]]

Define F1 as the subfamily of F containing sets that contain x.
let ?F1 = {S ∈ F . x ∈ S}
from x-not-in-Int-F have F1-psubset-F : ?F1 ⊂ F by blast
from F1-psubset-F have F1-in-F : ?F1 ⊆ F by blast
from subset-shattered-by[OF F1-in-F ] have shF1-subset-shF : shattered-by ?F1

⊆ shattered-by F .
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from F1-in-F have Un-F1-in-Un-F :
⋃

?F1 ⊆
⋃

F by blast

F1 shatters at least as many sets as card F1 by the induction hypothesis.
note IH-F1 = less(1 )[OF psubset-card-mono[OF finite-F F1-psubset-F ] rev-finite-subset[OF

less(2 ) Un-F1-in-Un-F ]]

from shF0-subset-shF shF1-subset-shF
have shattered-subset: (shattered-by ?F0 ) ∪ (shattered-by ?F1 ) ⊆ shattered-by

F by simp

There is a set with the same cardinality as the intersection of shattered-by
F0 and shattered-by F1 which is disjoint from their union and is also con-
tained in shattered-by F.

have f-copies-the-intersection:
∃ f . inj-on f (shattered-by ?F0 ∩ shattered-by ?F1 ) ∧
(shattered-by ?F0 ∪ shattered-by ?F1 ) ∩ (f ‘ (shattered-by ?F0 ∩ shattered-by

?F1 )) = {} ∧
f ‘ (shattered-by ?F0 ∩ shattered-by ?F1 ) ⊆ shattered-by F

proof
have x-not-in-shattered: ∀S∈(shattered-by ?F0 ) ∪ (shattered-by ?F1 ). x /∈ S

unfolding shattered-by-def by blast

This set is precisely the image of the intersection under insert x.
let ?f = insert x
have 0 : inj-on ?f (shattered-by ?F0 ∩ shattered-by ?F1 )
proof

fix X Y
assume x0 : X ∈ (shattered-by ?F0 ∩ shattered-by ?F1 ) and y0 : Y ∈

(shattered-by ?F0 ∩ shattered-by ?F1 )
and 0 : ?f X = ?f Y

from x-not-in-shattered x0 have X = ?f X − {x} by blast
also from 0 have ... = ?f Y − {x} by argo
also from x-not-in-shattered y0 have ... = Y by blast
finally show X = Y .

qed

The set is disjoint from the union.
have 1 : (shattered-by ?F0 ∪ shattered-by ?F1 ) ∩ ?f ‘ (shattered-by ?F0 ∩

shattered-by ?F1 ) = {}
proof (rule ccontr)

assume (shattered-by ?F0 ∪ shattered-by ?F1 ) ∩ ?f ‘ (shattered-by ?F0 ∩
shattered-by ?F1 ) 6= {}

then obtain S where 10 : S ∈ (shattered-by ?F0 ∪ shattered-by ?F1 )
and 11 : S ∈ ?f ‘ (shattered-by ?F0 ∩ shattered-by ?F1 ) by auto

from 10 x-not-in-shattered have x /∈ S by blast
with 11 show False by blast

qed

This set is also in shattered-by F.
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have 2 : ?f ‘ (shattered-by ?F0 ∩ shattered-by ?F1 ) ⊆ shattered-by F
proof

fix S-x
assume S-x ∈ ?f ‘ (shattered-by ?F0 ∩ shattered-by ?F1 )
then obtain S where 20 : S ∈ shattered-by ?F0

and 21 : S ∈ shattered-by ?F1
and 22 : S-x = ?f S by blast

from x-not-in-shattered 20 have x-not-in-S : x /∈ S by blast

from 22 Pow-insert[of x S ] have Pow S-x = Pow S ∪ ?f ‘ Pow S by fast
also from 20 have ... = (?F0 ∩∗ S) ∪ (?f ‘ Pow S) unfolding shat-

tered-by-def by blast
also from 21 have ... = (?F0 ∩∗ S) ∪ (?f ‘ (?F1 ∩∗ S)) unfolding

shattered-by-def by force
also from insert-IntF [of x S ?F1 ] have ... = (?F0 ∩∗ S) ∪ (?f ‘ ?F1 ∩∗

(?f S)) by argo
also from 22 have ... = (?F0 ∩∗ S) ∪ (?F1 ∩∗ S-x) by blast
also from 22 have ... = (?F0 ∩∗ S-x) ∪ (?F1 ∩∗ S-x) by blast
also from subset-IntF [OF F0-in-F , of S-x] subset-IntF [OF F1-in-F , of S-x]

have ... ⊆ (F ∩∗ S-x) by blast
finally have Pow S-x ⊆ (F ∩∗ S-x) .
thus S-x ∈ shattered-by F unfolding shattered-by-def by blast

qed

from 0 1 2 show inj-on ?f (shattered-by ?F0 ∩ shattered-by ?F1 ) ∧
(shattered-by ?F0 ∪ shattered-by ?F1 ) ∩ (?f ‘ (shattered-by ?F0 ∩ shattered-by

?F1 )) = {} ∧
?f ‘ (shattered-by ?F0 ∩ shattered-by ?F1 ) ⊆ shattered-by F by blast

qed

have F0-union-F1-is-F : ?F0 ∪ ?F1 = F by fastforce
from finite-F have finite-F0 : finite ?F0 and finite-F1 : finite ?F1 by fastforce+
have disjoint-F0-F1 : ?F0 ∩ ?F1 = {} by fastforce

We have the following lower bound on the cardinality of shattered-by F :
from F0-union-F1-is-F card-Un-disjoint[OF finite-F0 finite-F1 disjoint-F0-F1 ]

have card F = card ?F0 + card ?F1 by argo
also from IH-F0
have ... ≤ card (shattered-by ?F0 ) + card ?F1 by linarith
also from IH-F1
have ... ≤ card (shattered-by ?F0 ) + card (shattered-by ?F1 ) by linarith
also from card-Int-copy[OF finite-shF shattered-subset f-copies-the-intersection]
have ... ≤ card (shattered-by F) by argo
finally show ?thesis .

next

If F contains less than 2 sets, the statement follows trivially.
case False
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hence card F = 0 ∨ card F = 1 by force
thus ?thesis
proof

assume card F = 0
thus ?thesis by auto

next
assume asm: card F = 1
hence F-not-empty: F 6= {} by fastforce

from shatters-empty[OF F-not-empty] have {{}} ⊆ shattered-by F unfolding
shattered-by-def by fastforce

from card-mono[OF finite-shF this] asm show ?thesis by fastforce
qed

qed
qed

5.2 Sauer-Shelah Lemma
The generalized version immediately implies the Sauer-Shelah Lemma, be-
cause only (

∑
i≤k. n choose i) of the subsets of an n-item universe have

cardinality less than k + 1. Thus, when (
∑

i≤k. n choose i) < card F, there
are not enough sets to be shattered, so one of the shattered sets must have
cardinality at least k + 1.
corollary sauer-shelah:

fixes F :: ′a set set
assumes finite (

⋃
F) and (

∑
i≤k. card (

⋃
F) choose i) < card F

shows ∃S . (F shatters S ∧ card S = k + 1 )
proof −

let ?K = {S . S ⊆
⋃

F ∧ card S ≤ k}
from finite-Pow-iff [of F ] assms(1 ) have finite-Pow-Un: finite (Pow (

⋃
F)) by

fast

from sauer-shelah-0 [OF assms(1 )] assms(2 ) have (
∑

i≤k. card (
⋃

F) choose
i) < card (shattered-by F) by linarith

with choose-row-sum-set[OF assms(1 ), of k] have card ?K < card (shattered-by
F) by presburger

from finite-diff-not-empty[OF finite-subset[OF - finite-Pow-Un] this]
obtain S where S ∈ shattered-by F − ?K by blast
then have F-shatters-S : F shatters S and S ⊆

⋃
F and ¬(S ⊆

⋃
F ∧ card S

≤ k) unfolding shattered-by-def by blast+
then have card-S-ge-Suc-k: k + 1 ≤ card S by simp
from obtain-subset-with-card-n[OF card-S-ge-Suc-k] obtain S ′ where card S ′ =

k + 1 and S ′ ⊆ S by blast
from this(1 ) supset-shatters[OF this(2 ) F-shatters-S ] show ?thesis by blast

qed
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5.3 Sauer-Shelah Lemma for hypergraphs
If we designate X to be the set of hyperedges and S the set of vertices, we
can also formulate the Sauer-Shelah Lemma in terms of hypergraphs. In
this form, the statement provides a sufficient condition for the existence of
an hyperedge of a given cardinality which is shattered by the set of edges.
corollary sauer-shelah-2 :

fixes X :: ′a set set and S :: ′a set
assumes finite S and X ⊆ Pow S and (

∑
i≤k. card S choose i) < card X

shows ∃Y . (X shatters Y ∧ card Y = k + 1 )
proof −

from assms(2 ) have 0 :
⋃

X ⊆ S by blast
then have (

∑
i≤k. card (

⋃
X) choose i) ≤ (

∑
i≤k. card S choose i)

by (simp add: assms(1 ) card-mono choose-mono sum-mono)
then show ?thesis

using 0 assms finite-subset sauer-shelah by fastforce
qed

5.4 Alternative statement of the Sauer-Shelah Lemma
We can also state the Sauer-Shelah Lemma in terms of the VC-dim. If the
VC-dimension of F is k then F can consist at most of (

∑
i≤k. card (

⋃
F)

choose i) sets which is in O(card (
⋃

F)^k).
corollary sauer-shelah-alt:

assumes finite (
⋃

F) and VC-dim F = k
shows card F ≤ (

∑
i≤k. card (

⋃
F) choose i)

proof (rule ccontr)
assume ¬ card F ≤ (

∑
i≤k. card (

⋃
F) choose i) hence (

∑
i≤k. card (

⋃
F)

choose i) < card F by linarith
then obtain S where F shatters S and card S = k + 1

by (meson assms(1 ) sauer-shelah)
then have §: k + 1 ∈ {card S | S . F shatters S}

by simp metis
have finite {A. F shatters A}

by (metis ‹finite (
⋃

F)› finite-shattered-by shattered-by-def )
then have bdd-above {card A |A. F shatters A}

by simp
then have k + 1 ≤ Sup {card A |A. F shatters A}

by (smt (verit, best) § cSup-upper)
then have k + 1 ≤ VC-dim F

by (simp add: VC-dim-def )
then show False

using assms(2 ) by auto
qed

end
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