
The Impossibility of Strategyproof Rank
Aggregation

Manuel Eberl and Patrick Lederer

January 23, 2026

In Social Choice Theory, a social welfare function (SWF) is a function that
takes a collection of individual preferences on some set of alternatives and
returns an aggregated preference relation.

More formally: Consider finite sets of agents N = {1, . . . , n} and alteran-
tives A = {x1, . . . , xm}. The input of an SWF is an n-tuple of rankings (i.e.
linear orders) of A, and its output is a ranking of A as well.

Various desirable properties on SWFs can be defined:
• Anonymity: The SWF is invariant under permutation of the agents.
• Unanimity: If all voters prefer x over y, then x is preferred over y in

the output ranking as well.
• Majority consistency: If there exists a ranking x1, . . . , xm such that for

every i < j, the alternative xi is preferred over xj by more than half of
the agents, that ranking must be returned.

• Kemeny strategyproofness: Strategic voting is not possible for a single
agent, i.e. no agent can achieve a result more aligned with their own
preferences by lying about them.

This entry contains two impossibility results for SWFs with m alternatives
and n agents:

• There exists no anonymous, unanimous, and Kemeny-strategyproof SWF
for m ≥ 5 and n even or for m = 4 and n a multiple of 4.

• There exists no majority-consistent and Kemeny-strategyproof SWF for
m = 4 and n ≥ 3 or m ≥ 4 and n ∈ {9, 11, 13, 15} ∪ {17, . . .}

For some of the base cases, SAT solving is used by letting specialised
automation prove a large number of clauses, translating to the DIMACS
format, and importing a proof pre-generated by an external SAT solver using
Lammich’s GRAT format.

1

Contents
1 Auxiliary Material 3

1.1 Miscellaneous . 3
1.2 The Majority Relation . 10
1.3 The lexicographic order on lists . 17
1.4 Maximal and minimal elements . 21

2 Social welfare functions 25
2.1 Preference profiles . 25
2.2 Definition and desirable properties of SWFs 29
2.3 Majority consistency . 32
2.4 Concrete classes of SWFs . 33

2.4.1 Dictatorships . 33
2.4.2 Fixed-result SWFs . 33

2.5 Anonymised preference profiles . 34
2.6 Social Welfare Functions with explicit lists of agents and alternatives . . . 47
2.7 Lowering constructions for SWFs . 54

2.7.1 Decreasing the number of alternatives 55
2.7.2 Decreasing the number of agents by a factor 68
2.7.3 Decreasing the number of agents by an even number 76

3 Impossibility results 79
3.1 Infrastructure for SAT import and export 79
3.2 Automation for computing topological sortings 79
3.3 Automation for strategyproofness . 83
3.4 Automation for majority consistency . 84
3.5 For 5 alternatives and 2 agents . 88
3.6 For 4 alternatives and 4 agents . 93

2

1 Auxiliary Material
1.1 Miscellaneous
theory SWF-Impossibility-Library
imports

Randomised-Social-Choice.Preference-Profiles
HOL−Combinatorics.Multiset-Permutations

begin

lemma wfp-on-iff-wfp: wfp-on A R ←→ wfp (λx y. R x y ∧ x ∈ A ∧ y ∈ A)
proof −

have wfp-on A R ←→ wf-on A {(x,y). R x y}
by (simp add: wfp-on-def wf-on-def)

also have . . . = wf {(x,y). R x y ∧ x ∈ A ∧ y ∈ A}
by (subst wf-on-iff-wf) simp-all

also have . . . ←→ wfp (λx y. R x y ∧ x ∈ A ∧ y ∈ A)
by (simp add: wfp-def)

finally show ?thesis .
qed

lemma permutations-of-set-conv-mset:
finite A =⇒ permutations-of-set A = {xs. mset xs = mset-set A}
by (metis permutations-of-multiset-def permutations-of-set-altdef)

lemma Set-filter-insert-if :
Set.filter P (insert x A) = (if P x then insert x (Set.filter P A) else Set.filter P A)
by auto

lemma Set-filter-insert:
P x =⇒ Set.filter P (insert x A) = insert x (Set.filter P A)
¬P x =⇒ Set.filter P (insert x A) = Set.filter P A
by auto

lemma Set-filter-empty [simp]: Set.filter P {} = {}
by auto

lemma filter-mset-empty-conv: filter-mset P A = {#} ←→ (∀ x∈#A. ¬P x)
by (induction A) auto

lemma image-mset-repeat-mset: image-mset f (repeat-mset n A) = repeat-mset n (image-mset
f A)

by (induction A) auto

lemma filter-mset-repeat-mset: filter-mset P (repeat-mset n A) = repeat-mset n (filter-mset P
A)

by (induction n) auto

lemma mset-eq-mset-set-iff :

3

assumes finite A
shows mset xs = mset-set A ←→ xs ∈ permutations-of-set A
using assms unfolding permutations-of-set-def mem-Collect-eq
by (metis mset-set-set permutations-of-multisetI permutations-of-setD(1 ,2) permutations-of-set-altdef)

lemma size-Diff-mset-same-size:
fixes A B :: ′a multiset
assumes size (A − B) = n size A = size B
shows size (B − A) = n

proof −
define E where E = A − B
define C where C = B ∩# A
define D where D = B − A
have B = C + D

unfolding C-def D-def by (simp add: inter-mset-def)
have A − B + B = E + B

by (simp add: E-def)
also have A − B + B = A + D unfolding D-def

by (metis add.commute subset-mset.inf .commute union-diff-inter-eq-sup union-mset-def)
finally have size (A + D) = size (E + B)

by (rule arg-cong)
hence size A + size D = size B + size E

by simp
also have size A = size B

by fact
finally have size D = size E

by simp
thus ?thesis using assms

by (simp add: D-def E-def)
qed

lemma image-mset-diff-if-inj-on:
fixes f :: ′a ⇒ ′b
assumes inj-on f (set-mset (A+B))
shows image-mset f (A − B) = image-mset f A − image-mset f B
using assms

proof (induction B arbitrary: A)
case (add x B A)
show ?case
proof (cases x ∈# A)

case False
hence f x /∈# image-mset f A

using add.prems by auto
have image-mset f (A − add-mset x B) = image-mset f (A − B)

using False by simp
also have . . . = image-mset f A − image-mset f B

by (rule add.IH) (use add.prems in auto)
also have . . . = image-mset f A − image-mset f (add-mset x B)

using ‹f x /∈# image-mset f A› by simp

4

finally show ?thesis .
next

case True
define A ′ where A ′ = A − {#x#}
have A-eq: A = A ′ + {#x#}

using True by (simp add: A ′-def)
have image-mset f (A − add-mset x B) = image-mset f (A ′ − B)

by (simp add: A-eq)
also have . . . = image-mset f A ′ − image-mset f B

by (rule add.IH) (use add.prems in ‹auto simp: A-eq›)
also have . . . = image-mset f A − image-mset f (add-mset x B)

by (simp add: A-eq)
finally show ?thesis .

qed
qed auto

context preorder-on
begin

sublocale dual: preorder-on carrier λx y. le y x
by standard (use not-outside refl in ‹auto intro: trans›)

end

context order-on
begin

sublocale dual: order-on carrier λx y. le y x
by standard (use antisymmetric in auto)

end

context total-preorder-on
begin

sublocale dual: total-preorder-on carrier λx y. le y x
by standard (use total in auto)

end

context linorder-on
begin

5

sublocale dual: linorder-on carrier λx y. le y x
by standard (use total in auto)

end

context finite-linorder-on
begin

sublocale dual: finite-linorder-on carrier λx y. le y x
by standard auto

end

locale linorder-family = preorder-family dom carrier R for dom carrier R +
assumes linorder-in-dom [simp]: i ∈ dom =⇒ linorder-on carrier (R i)

lemma preorder-familyI [intro?]:
fixes dom
assumes dom 6= {}
assumes

∧
i. i ∈ dom =⇒ preorder-on carrier (R i)

assumes
∧

i x y. i /∈ dom =⇒ ¬ R i x y
shows preorder-family dom carrier R
using assms unfolding preorder-family-def by auto

lemma linorder-familyI [intro?]:
fixes dom
assumes dom 6= {}
assumes

∧
i. i ∈ dom =⇒ linorder-on carrier (R i)

assumes
∧

i x y. i /∈ dom =⇒ ¬ R i x y
shows linorder-family dom carrier R

proof −
have preorder-family dom carrier R

by rule (use assms in ‹auto simp: linorder-on-def total-preorder-on-def ›)
thus ?thesis

unfolding linorder-family-def linorder-family-axioms-def
using assms by auto

qed

context order-on
begin

lemma order-on-restrict:
order-on (carrier ∩ A) (restrict-relation A le)

proof −
interpret restrict: preorder-on carrier ∩ A restrict-relation A le

by (rule preorder-on-restrict)

6

show ?thesis
by standard (use antisymmetric in ‹auto simp: restrict-relation-def ›)

qed

lemma order-on-restrict-subset:
A ⊆ carrier =⇒ order-on A (restrict-relation A le)
using order-on-restrict[of A] by (simp add: Int-absorb1)

end

context linorder-on
begin

lemma linorder-on-restrict:
linorder-on (carrier ∩ A) (restrict-relation A le)

proof −
interpret restrict: order-on carrier ∩ A restrict-relation A le

by (rule order-on-restrict)
show ?thesis

by standard (use total in ‹auto simp: restrict-relation-def ›)
qed

lemma linorder-on-restrict-subset:
A ⊆ carrier =⇒ linorder-on A (restrict-relation A le)
using linorder-on-restrict[of A] by (simp add: Int-absorb1)

end

lemma linorder-on-concat:
assumes linorder-on A R linorder-on B S A ∩ B = {}
shows linorder-on (A ∪ B) (λx y. if x ∈ A then R x y ∨ y ∈ B else S x y)

proof −
interpret R: linorder-on A R

by fact
interpret S : linorder-on B S

by fact
show ?thesis
proof (unfold-locales, goal-cases)

case (1 x y)
thus ?case

using R.not-outside S .not-outside by (auto split: if-splits)
next

case (2 x y)
thus ?case

using R.not-outside S .not-outside by (auto split: if-splits)
next

case (3 x)
thus ?case

7

by (auto simp: R.refl S .refl)
next

case (4 x y z)
thus ?case using assms(3) R.not-outside S .not-outside

by (auto split: if-splits intro: R.trans S .trans)
next

case (5 x y)
thus ?case using assms(3) R.not-outside S .not-outside

by (auto split: if-splits intro: R.antisymmetric S .antisymmetric)
next

case (6 x y)
thus ?case using R.total S .total

by auto
qed

qed

lemma linorder-on-prepend:
assumes linorder-on A R z /∈ A
shows linorder-on (insert z A) (λx y. if x = z then y ∈ insert z A else R x y)

proof −
have ∗: linorder-on {z} (λx y. x = z ∧ y = z)

by standard auto
have linorder-on ({z} ∪ A) (λx y. if x ∈ {z} then x = z ∧ y = z ∨ y ∈ A else R x y)

by (rule linorder-on-concat) (use assms ∗ in auto)
also have . . . = (λx y. if x = z then y ∈ insert z A else R x y)

by auto
finally show ?thesis

by simp
qed

lemma finite-linorder-on-exists:
assumes finite A
shows ∃R. linorder-on A R
using assms

proof (induction rule: finite-induct)
case empty
have linorder-on ({} :: ′a set) (λ- -. False)

by standard auto
thus ?case by blast

next
case (insert x A)
from insert.IH obtain R where R: linorder-on A R

by blast
have linorder-on (insert x A) (λy z. if y = x then z ∈ insert x A else R y z)

by (rule linorder-on-prepend) fact+
thus ?case

by blast
qed

8

context order-on
begin

lemma order-on-map:
assumes bij-betw f A carrier
shows order-on A (restrict-relation A (map-relation f le))

proof −
have preorder-on (f −‘ carrier) (map-relation f le)

by (rule preorder-on-map)
hence preorder-on (f −‘ carrier ∩ A) (restrict-relation A (map-relation f le))

by (rule preorder-on.preorder-on-restrict)
also have f −‘ carrier ∩ A = A

using assms by (auto simp: bij-betw-def)
finally interpret f : preorder-on A restrict-relation A (map-relation f le) .

show ?thesis
proof

fix x y
assume restrict-relation A (map-relation f le) x y restrict-relation A (map-relation f le) y x
hence f x = f y x ∈ A y ∈ A using antisymmetric

by (auto simp: restrict-relation-def map-relation-def)
thus x = y

using assms by (auto simp: bij-betw-def inj-on-def)
qed

qed

end

context linorder-on
begin

lemma linorder-on-map:
assumes bij-betw f A carrier
shows linorder-on A (restrict-relation A (map-relation f le))

proof −
interpret order-on A restrict-relation A (map-relation f le)

by (rule order-on-map) fact

have total-preorder-on (f −‘ carrier) (map-relation f le)
by (rule total-preorder-on-map)

hence total-preorder-on (f −‘ carrier ∩ A) (restrict-relation A (map-relation f le))
by (rule total-preorder-on.total-preorder-on-restrict)

also have f −‘ carrier ∩ A = A
using assms by (auto simp: bij-betw-def)

finally interpret f : total-preorder-on A restrict-relation A (map-relation f le) .

9

show ?thesis ..
qed

end

context finite-linorder-on
begin

lemma finite-linorder-on-map:
assumes bij-betw f A carrier
shows finite-linorder-on A (restrict-relation A (map-relation f le))

proof −
interpret linorder-on A restrict-relation A (map-relation f le)

by (rule linorder-on-map) fact
have [simp]: finite A

using finite-carrier bij-betw-finite[OF assms] by simp
show ?thesis

by standard auto
qed

end

1.2 The Majority Relation

Given a family of preorders, the majority relation induced by it is the one where x and
y are related iff x � y holds in at least half of the relations in the family.
Note that the majority relation is in general neither antisymmetric (due to the possibility
of ties) nor transitive (due to Condorcet cycles).
definition majority :: (′a ⇒ ′b relation) ⇒ ′b relation where

majority R x y ←→ (∃ i. R i x x) ∧ (∃ i. R i y y) ∧ card {i. R i x y} ≥ card {i. R i y x}

The same notion can easily be defined for multisets of relations as well.
definition majority-mset :: ′a relation multiset ⇒ ′a relation where

majority-mset Rs x y ←→
(∃R∈#Rs. R x x) ∧ (∃R∈#Rs. R y y) ∧
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

lemma majority-mset-not-outside:
assumes majority-mset Rs x y

∧
R. R ∈# Rs =⇒ preorder-on A R

shows x ∈ A y ∈ A
proof −

from assms(1) obtain R1 R2 where R1 ∈# Rs R2 ∈# Rs R1 x x R2 y y
unfolding majority-mset-def by blast

thus x ∈ A y ∈ A
using assms(2) by (meson preorder-on.not-outside(1))+

qed

10

lemma majority-mset-refl-iff ′: majority-mset Rs x x ←→ (∃R∈#Rs. R x x)
unfolding majority-mset-def by simp

lemma majority-mset-refl-iff :
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#}

shows majority-mset Rs x x ←→ x ∈ A
unfolding majority-mset-refl-iff ′ using assms
by (metis multiset-nonemptyE preorder-on.not-outside(1) preorder-on.refl)

lemma majority-mset-refl:
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#} x ∈ A

shows majority-mset Rs x x
using majority-mset-refl-iff [OF assms(1 ,2)] assms(3) by simp

lemma majority-mset-iff ′:
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#}

shows majority-mset Rs x y ←→
x ∈ A ∧ y ∈ A ∧
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

proof −
obtain R where R: R ∈# Rs

using ‹Rs 6= {#}› by auto
interpret R: preorder-on A R

using assms(1) R by auto
have ∗: R x x ←→ x ∈ A if R ∈# Rs for R x

using assms(1)[OF that] preorder-on.refl preorder-on.not-outside(1) by metis
show ?thesis using R

unfolding majority-mset-def by (auto simp: ∗)
qed

lemma majority-mset-iff :
assumes

∧
R. R ∈# Rs =⇒ preorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows majority-mset Rs x y ←→
size (filter-mset (λR. R x y) Rs) ≥ size (filter-mset (λR. R y x) Rs)

by (subst majority-mset-iff ′[of Rs A]) (use assms in auto)

lemma majority-mset-iff-ge:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows majority-mset Rs x y ←→
2 ∗ size (filter-mset (λR. R x y) Rs) ≥ size Rs

proof (cases x = y)
case True
have [simp]: R y y if R ∈# Rs for R

using assms(1) ‹y ∈ A› by (metis linorder-on-def that total-preorder-on.total)
have majority-mset Rs y y

using assms by (metis linorder-on-def majority-mset-refl order-on-def)
moreover have {#R ∈# Rs. R y y#} = filter-mset (λ-. True) Rs

by (intro filter-mset-cong) auto
ultimately show ?thesis using True

11

by simp
next

case False
have Rs = filter-mset (λR. R x y) Rs + filter-mset (λR. ¬R x y) Rs

by (rule multiset-partition)
also have size . . . = size (filter-mset (λR. R x y) Rs) + size (filter-mset (λR. ¬R x y) Rs)

by (rule size-union)
also have filter-mset (λR. ¬R x y) Rs = filter-mset (λR. R y x) Rs
proof (rule filter-mset-cong)

fix R assume R ∈# Rs
then interpret R: linorder-on A R using assms(1) by auto
show ¬R x y ←→ R y x

using ‹x 6= y› R.antisymmetric R.total assms(3−4) by blast
qed auto
finally have eq: size Rs = size {#R ∈# Rs. R x y#} + size {#R ∈# Rs. R y x#} .
show ?thesis
proof (subst majority-mset-iff [of Rs A])

fix R assume R ∈# Rs
then interpret linorder-on A R using assms(1) by blast
show preorder-on A R ..

qed (use assms eq in auto)
qed

lemma majority-mset-iff-le:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A x 6= y

shows majority-mset Rs x y ←→
2 ∗ size (filter-mset (λR. R y x) Rs) ≤ size Rs

proof −
have Rs = filter-mset (λR. R x y) Rs + filter-mset (λR. ¬R x y) Rs

by (rule multiset-partition)
also have size . . . = size (filter-mset (λR. R x y) Rs) + size (filter-mset (λR. ¬R x y) Rs)

by (rule size-union)
also have filter-mset (λR. ¬R x y) Rs = filter-mset (λR. R y x) Rs
proof (rule filter-mset-cong)

fix R assume R ∈# Rs
then interpret R: linorder-on A R using assms(1) by auto
show ¬R x y ←→ R y x

using ‹x 6= y› R.antisymmetric R.total assms(3−4) by blast
qed auto
finally have eq: size Rs = size {#R ∈# Rs. R x y#} + size {#R ∈# Rs. R y x#} .
show ?thesis
proof (subst majority-mset-iff [of Rs A])

fix R assume R ∈# Rs
then interpret linorder-on A R using assms(1) by blast
show preorder-on A R ..

qed (use assms eq in auto)
qed

lemma strongly-preferred-majority-mset-iff-gt:

12

assumes
∧

R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A
shows x ≺[majority-mset Rs] y ←→ x 6= y ∧

2 ∗ size (filter-mset (λR. R x y) Rs) > size Rs
proof (cases x = y)

case True
show ?thesis using True

by (auto simp: strongly-preferred-def)
next

case False
have Rs = filter-mset (λR. R x y) Rs + filter-mset (λR. ¬R x y) Rs

by (rule multiset-partition)
also have size . . . = size (filter-mset (λR. R x y) Rs) + size (filter-mset (λR. ¬R x y) Rs)

by (rule size-union)
also have filter-mset (λR. ¬R x y) Rs = filter-mset (λR. R y x) Rs
proof (rule filter-mset-cong)

fix R assume R ∈# Rs
then interpret R: linorder-on A R using assms(1) by auto
show ¬R x y ←→ R y x

using ‹x 6= y› R.antisymmetric R.total assms(3−4) by blast
qed auto
finally have eq: size Rs = size {#R ∈# Rs. R x y#} + size {#R ∈# Rs. R y x#} .
show ?thesis unfolding strongly-preferred-def
proof (subst (1 2) majority-mset-iff [of Rs A])

fix R assume R ∈# Rs
then interpret linorder-on A R using assms(1) by blast
show preorder-on A R ..

qed (use assms eq in auto)
qed

lemma strongly-preferred-majority-mset-iff-lt:
assumes

∧
R. R ∈# Rs =⇒ linorder-on A R Rs 6= {#} x ∈ A y ∈ A

shows x ≺[majority-mset Rs] y ←→
2 ∗ size (filter-mset (λR. R y x) Rs) < size Rs

proof (cases x = y)
case True
have [simp]: R y y if R ∈# Rs for R

using assms(1) ‹y ∈ A› by (metis linorder-on-def that total-preorder-on.total)
have {#R ∈# Rs. R y y#} = filter-mset (λ-. True) Rs

by (intro filter-mset-cong) auto
thus ?thesis using True

by (auto simp: strongly-preferred-def)
next

case False
have ∗:

∧
R. R ∈# Rs =⇒ preorder-on A R

using assms(1) by (simp add: linorder-on-def order-on-def)
have x ≺[majority-mset Rs] y ←→ ¬(y �[majority-mset Rs] x)

using False majority-mset-iff [OF ∗ assms(2)] assms(3 ,4)
by (auto simp: strongly-preferred-def)

also have . . . ←→ size Rs > 2 ∗ size {#R ∈# Rs. R y x#}

13

by (subst majority-mset-iff-ge[of Rs A]) (use assms in auto)
finally show ?thesis .

qed

context preorder-family
begin

lemma majority-iff ′:
majority R x y ←→ x ∈ carrier ∧ y ∈ carrier ∧ card {i∈dom. R i x y} ≥ card {i∈dom. R i

y x}
proof −

have ∗: {i. R i x y} = {i∈dom. R i x y} for x y
using not-in-dom by blast

from nonempty-dom obtain i where i ∈ dom
by blast

then interpret Ri: preorder-on carrier R i
by simp

show ?thesis
using Ri.refl unfolding majority-def ∗
by (meson in-dom not-in-dom preorder-on.not-outside(1))

qed

lemma majority-iff :
assumes x ∈ carrier y ∈ carrier
shows majority R x y ←→ card {i∈dom. R i x y} ≥ card {i∈dom. R i y x}
using assms by (simp add: majority-iff ′)

lemma majority-refl [simp]: x ∈ carrier =⇒ majority R x x
by (auto simp: majority-iff)

lemma majority-refl-iff : majority R x x ←→ x ∈ carrier
by (auto simp: majority-iff ′)

lemma majority-total: x ∈ carrier =⇒ y ∈ carrier =⇒ majority R x y ∨ majority R y x
by (auto simp: majority-iff)

lemma strongly-preferred-majority-iff :
assumes x ∈ carrier y ∈ carrier
shows x ≺[majority R] y ←→ card {i∈dom. R i x y} > card {i∈dom. R i y x}
unfolding strongly-preferred-def by (auto simp: majority-iff assms)

lemma majority-not-outside:
assumes majority R x y
shows x ∈ carrier y ∈ carrier
using assms in-dom not-in-dom preorder-on.not-outside unfolding majority-def by meson+

The majority relation chains with the unanimity relation.
lemma majority-Pareto1 :

assumes Pareto R x y majority R y z finite dom

14

shows majority R x z
proof −

have xyz: x ∈ carrier y ∈ carrier z ∈ carrier
using Pareto.not-outside assms majority-not-outside by auto

have card {i ∈ dom. R i z x} ≤ card {i ∈ dom. R i z y}
by (rule card-mono)

(use assms(1 ,3) in-dom in ‹auto simp: Pareto-iff intro: preorder-on.trans[OF in-dom]›)
also have card {i ∈ dom. R i z y} ≤ card {i ∈ dom. R i y z}

using assms(2) xyz by (simp add: majority-iff)
also have . . . ≤ card {i ∈ dom. R i x z}

by (rule card-mono)
(use assms(1 ,3) in-dom in ‹auto simp: Pareto-iff intro: preorder-on.trans[OF in-dom]›)

finally show ?thesis
using assms(2) xyz by (simp add: majority-iff)

qed

lemma majority-Pareto2 :
assumes majority R x y Pareto R y z finite dom
shows majority R x z

proof −
have xyz: x ∈ carrier y ∈ carrier z ∈ carrier

using Pareto.not-outside assms majority-not-outside by auto
have card {i ∈ dom. R i z x} ≤ card {i ∈ dom. R i y x}
by (rule card-mono)

(use assms in-dom in ‹auto simp: Pareto-iff intro: preorder-on.trans[OF in-dom]›)
also have card {i ∈ dom. R i y x} ≤ card {i ∈ dom. R i x y}

using assms(1) xyz by (simp add: majority-iff)
also have . . . ≤ card {i ∈ dom. R i x z}

by (rule card-mono)
(use assms in-dom in ‹auto simp: Pareto-iff intro: preorder-on.trans[OF in-dom]›)

finally show ?thesis
using assms(2) xyz by (simp add: majority-iff)

qed

lemma majority-conv-majority-mset:
assumes finite dom
shows majority R = majority-mset (image-mset R (mset-set dom)) (is ?lhs = ?rhs)

proof (intro ext)
fix x y
show ?lhs x y ←→ ?rhs x y

unfolding majority-iff ′

by (subst majority-mset-iff ′[where A = carrier])
(use in-dom nonempty-dom
in ‹auto simp del: in-dom simp: assms mset-set-empty-iff filter-mset-image-mset›)

qed

end

15

context linorder-family
begin

lemma majority-iff-ge-half :
assumes x ∈ carrier y ∈ carrier finite dom
shows majority R x y ←→ 2 ∗ card {i∈dom. R i x y} ≥ card dom

proof (cases x = y)
case [simp]: True
have {i∈dom. R i x y} = dom

using assms preorder-on.refl[OF in-dom] by auto
with assms show ?thesis

by (simp add: majority-iff)
next

case False
have dom = {i ∈ dom. R i x y} ∪ {i ∈ dom. ¬R i x y}

by auto
also have card . . . = card {i ∈ dom. R i x y} + card {i ∈ dom. ¬R i x y}

by (rule card-Un-disjoint) (use ‹finite dom› in auto)
also have {i ∈ dom. ¬R i x y} = {i ∈ dom. R i y x}
proof (rule set-eqI , unfold mem-Collect-eq, intro conj-cong refl)

fix i assume i: i ∈ dom
interpret Ri: linorder-on carrier R i

using i by simp
show ¬R i x y ←→ R i y x

using Ri.total[of x y] Ri.antisymmetric[of x y] assms ‹x 6= y› by blast
qed
finally show ?thesis

using assms by (auto simp: majority-iff)
qed

lemma majority-iff-le-half :
assumes x ∈ carrier y ∈ carrier x 6= y finite dom
shows majority R x y ←→ 2 ∗ card {i∈dom. R i y x} ≤ card dom

proof −
have dom = {i ∈ dom. R i x y} ∪ {i ∈ dom. ¬R i x y}

by auto
also have card . . . = card {i ∈ dom. R i x y} + card {i ∈ dom. ¬R i x y}

by (rule card-Un-disjoint) (use ‹finite dom› in auto)
also have {i ∈ dom. ¬R i x y} = {i ∈ dom. R i y x}
proof (rule set-eqI , unfold mem-Collect-eq, intro conj-cong refl)

fix i assume i: i ∈ dom
interpret Ri: linorder-on carrier R i

using i by simp
show ¬R i x y ←→ R i y x

using Ri.total[of x y] Ri.antisymmetric[of x y] assms ‹x 6= y› by blast
qed
finally show ?thesis

using assms by (auto simp: majority-iff)
qed

16

For families of odd cardinality, the majority rule is always antisymmetric.
lemma odd-imp-majority-antisymmetric:

assumes odd (card dom) majority R x y majority R y x
shows x = y

proof (rule ccontr)
assume x 6= y
have [simp]: finite dom

using assms(1) card-ge-0-finite odd-pos by blast
have xy: x ∈ carrier y ∈ carrier card {i ∈ dom. R i y x} = card {i ∈ dom. R i x y}

using assms unfolding majority-iff ′ by auto
have dom = {i ∈ dom. R i x y} ∪ {i ∈ dom. ¬R i x y}

by auto
also have card . . . = card {i ∈ dom. R i x y} + card {i ∈ dom. ¬R i x y}

by (rule card-Un-disjoint) auto
also have {i ∈ dom. ¬R i x y} = {i ∈ dom. R i y x}
proof (rule set-eqI , unfold mem-Collect-eq, intro conj-cong refl)

fix i assume i: i ∈ dom
interpret Ri: linorder-on carrier R i

using i by simp
show ¬R i x y ←→ R i y x

using Ri.total[of x y] Ri.antisymmetric[of x y] xy(1 ,2) ‹x 6= y› by blast
qed
also have card . . . = card {i ∈ dom. R i x y}

using xy(3) by simp
finally have even (card dom)

by simp
with ‹odd (card dom)› show False

by simp
qed

end

1.3 The lexicographic order on lists
fun lexprod-list-aux :: ′a relation ⇒ ′a list relation where

lexprod-list-aux R [] ys ←→ True
| lexprod-list-aux R (x # xs) [] ←→ False
| lexprod-list-aux R (x # xs) (y # ys) ←→ x �[R] y ∧ (x ≺[R] y ∨ lexprod-list-aux R xs ys)

lemma lexprod-list-aux-Nil-right-iff [simp]: lexprod-list-aux R xs [] ←→ xs = []
by (cases xs) auto

lemma lexprod-list-aux-refl: (∀ x∈set xs. R x x) =⇒ lexprod-list-aux R xs xs
by (induction xs) auto

definition lexprod-list :: ′a relation ⇒ ′a list relation where
lexprod-list R = restrict-relation {xs. ∀ x∈set xs. R x x} (lexprod-list-aux R)

definition lexprod-length-list :: nat ⇒ ′a relation ⇒ ′a list relation where

17

lexprod-length-list n R = restrict-relation {xs. length xs = n} (lexprod-list R)

context preorder-on
begin

lemma lexprod-list-aux-trans:
assumes lexprod-list-aux le xs ys lexprod-list-aux le ys zs
shows lexprod-list-aux le xs zs
using assms

proof (induction xs arbitrary: ys zs)
case (Cons x xs ys zs)
obtain y ys ′ where [simp]: ys = y # ys ′

using Cons.prems by (cases ys) auto
obtain z zs ′ where [simp]: zs = z # zs ′

using Cons.prems by (cases zs) auto
show ?case

using Cons.prems Cons.IH [of ys ′ zs ′] trans by (auto simp: strongly-preferred-def)
qed auto

lemma preorder-lexprod-list: preorder-on (lists carrier) (lexprod-list le)
proof

show lexprod-list le xs xs if xs ∈ lists carrier for xs
proof −

have lexprod-list-aux le xs xs
using that by (induction xs) (auto intro: refl)

thus ?thesis
using that by (auto simp: lexprod-list-def restrict-relation-def refl)

qed
next

show lexprod-list le xs zs if lexprod-list le xs ys lexprod-list le ys zs for xs ys zs
using lexprod-list-aux-trans[of xs ys zs] that
by (auto simp: lexprod-list-def restrict-relation-def)

next
show xs ∈ lists carrier ys ∈ lists carrier

if lexprod-list le xs ys for xs ys
proof −

have {xs, ys} ⊆ {xs. ∀ x∈set xs. le x x}
using that by (auto simp: lexprod-list-def restrict-relation-def)

also have . . . ⊆ lists carrier
using not-outside by blast

finally show xs ∈ lists carrier ys ∈ lists carrier
by blast+

qed
qed

lemma preorder-lexprod-length-list:
preorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)

18

proof −
interpret lex: preorder-on lists carrier lexprod-list le

by (rule preorder-lexprod-list)
have preorder-on (lists carrier ∩ {xs. length xs = n}) (lexprod-length-list n le)

unfolding lexprod-length-list-def by (rule lex.preorder-on-restrict)
also have lists carrier ∩ {xs. length xs = n} = {xs. set xs ⊆ carrier ∧ length xs = n}

by auto
finally show ?thesis .

qed

end

context total-preorder-on
begin

lemma total-preorder-lexprod-list: total-preorder-on (lists carrier) (lexprod-list le)
proof −

interpret lex: preorder-on lists carrier lexprod-list le
by (rule preorder-lexprod-list)

show ?thesis
proof

show lexprod-list le xs ys ∨ lexprod-list le ys xs
if xs ∈ lists carrier ys ∈ lists carrier for xs ys

proof −
have lexprod-list-aux le xs ys ∨ lexprod-list-aux le ys xs using that total

by (induction le xs ys rule: lexprod-list-aux.induct)
(auto simp: strongly-preferred-def)

thus ?thesis
using that not-outside refl unfolding lexprod-list-def restrict-relation-def
by blast

qed
qed

qed

lemma total-preorder-lexprod-length-list:
total-preorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)

proof −
interpret lex: total-preorder-on lists carrier lexprod-list le

by (rule total-preorder-lexprod-list)
have total-preorder-on (lists carrier ∩ {xs. length xs = n}) (lexprod-length-list n le)

unfolding lexprod-length-list-def by (rule lex.total-preorder-on-restrict)
also have lists carrier ∩ {xs. length xs = n} = {xs. set xs ⊆ carrier ∧ length xs = n}

by auto
finally show ?thesis .

qed

end

19

context order-on
begin

lemma order-lexprod-list: order-on (lists carrier) (lexprod-list le)
proof −

interpret lex: preorder-on lists carrier lexprod-list le
by (rule preorder-lexprod-list)

show ?thesis
proof

show xs = ys if lexprod-list le xs ys lexprod-list le ys xs for xs ys
proof −

have lexprod-list-aux le xs ys lexprod-list-aux le ys xs
set xs ⊆ carrier set ys ⊆ carrier

using that not-outside by (auto simp: lexprod-list-def restrict-relation-def)
thus xs = ys using antisymmetric

by (induction le xs ys rule: lexprod-list-aux.induct)
(auto simp: strongly-preferred-def)

qed
qed

qed

lemma order-lexprod-length-list:
order-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)

proof −
interpret lex: order-on lists carrier lexprod-list le

by (rule order-lexprod-list)
have order-on (lists carrier ∩ {xs. length xs = n}) (lexprod-length-list n le)

unfolding lexprod-length-list-def by (rule lex.order-on-restrict)
also have lists carrier ∩ {xs. length xs = n} = {xs. set xs ⊆ carrier ∧ length xs = n}

by auto
finally show ?thesis .

qed

end

context linorder-on
begin

lemma order-lexprod-list: linorder-on (lists carrier) (lexprod-list le)
proof −

interpret lex: order-on lists carrier lexprod-list le
by (rule order-lexprod-list)

interpret lex: total-preorder-on lists carrier lexprod-list le
by (rule total-preorder-lexprod-list)

show ?thesis ..

20

qed

lemma linorder-lexprod-length-list:
linorder-on {xs. set xs ⊆ carrier ∧ length xs = n} (lexprod-length-list n le)

proof −
interpret lex: linorder-on lists carrier lexprod-list le

by (rule order-lexprod-list)
have linorder-on (lists carrier ∩ {xs. length xs = n}) (lexprod-length-list n le)

unfolding lexprod-length-list-def by (rule lex.linorder-on-restrict)
also have lists carrier ∩ {xs. length xs = n} = {xs. set xs ⊆ carrier ∧ length xs = n}

by auto
finally show ?thesis .

qed

end

1.4 Maximal and minimal elements
definition Min-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a set where

Min-wrt-among R A = {x∈A. R x x ∧ (∀ y∈A. R y x −→ R x y)}

lemma Min-wrt-among-cong:
assumes restrict-relation A R = restrict-relation A R ′

shows Min-wrt-among R A = Min-wrt-among R ′ A
proof −

from assms have R x y ←→ R ′ x y if x ∈ A y ∈ A for x y
using that by (auto simp: restrict-relation-def fun-eq-iff)

thus ?thesis unfolding Min-wrt-among-def by blast
qed

definition Min-wrt :: ′a relation ⇒ ′a set where
Min-wrt R = Min-wrt-among R UNIV

lemma Min-wrt-altdef : Min-wrt R = {x. R x x ∧ (∀ y. R y x −→ R x y)}
unfolding Min-wrt-def Min-wrt-among-def by simp

lemma Min-wrt-among-conv-Max-wrt-among: Min-wrt-among R A = Max-wrt-among (λx y. R
y x) A

by (simp add: Min-wrt-among-def Max-wrt-among-def)

context preorder-on
begin

lemma Min-wrt-among-preorder :
Min-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le y x −→ le x y}
unfolding Min-wrt-among-def using not-outside refl by blast

lemma Min-wrt-preorder :

21

Min-wrt le = {x∈carrier . ∀ y∈carrier . le y x −→ le x y}
unfolding Min-wrt-altdef using not-outside refl by blast

lemma Min-wrt-among-subset:
Min-wrt-among le A ⊆ carrier Min-wrt-among le A ⊆ A
unfolding Min-wrt-among-preorder by auto

lemma Min-wrt-subset:
Min-wrt le ⊆ carrier
unfolding Min-wrt-preorder by auto

lemma Min-wrt-among-nonempty:
assumes B ∩ carrier 6= {} finite (B ∩ carrier)
shows Min-wrt-among le B 6= {}
by (simp add: Min-wrt-among-conv-Max-wrt-among assms(1 ,2) dual.Max-wrt-among-nonempty)

lemma Min-wrt-nonempty:
carrier 6= {} =⇒ finite carrier =⇒ Min-wrt le 6= {}
using Min-wrt-among-nonempty[of UNIV] by (simp add: Min-wrt-def)

lemma Min-wrt-among-map-relation-vimage:
f −‘ Min-wrt-among le A ⊆ Min-wrt-among (map-relation f le) (f −‘ A)
by (auto simp: Min-wrt-among-def map-relation-def)

lemma Min-wrt-map-relation-vimage:
f −‘ Min-wrt le ⊆ Min-wrt (map-relation f le)
by (auto simp: Min-wrt-altdef map-relation-def)

lemma Min-wrt-among-map-relation-bij-subset:
assumes bij (f :: ′a ⇒ ′b)
shows f ‘ Min-wrt-among le A ⊆

Min-wrt-among (map-relation (inv f) le) (f ‘ A)
using assms Min-wrt-among-map-relation-vimage[of inv f A]
by (simp add: bij-imp-bij-inv inv-inv-eq bij-vimage-eq-inv-image)

lemma Min-wrt-among-map-relation-bij:
assumes bij f
shows f ‘ Min-wrt-among le A = Min-wrt-among (map-relation (inv f) le) (f ‘ A)

proof (intro equalityI Min-wrt-among-map-relation-bij-subset assms)
interpret R: preorder-on f ‘ carrier map-relation (inv f) le

using preorder-on-map[of inv f] assms
by (simp add: bij-imp-bij-inv bij-vimage-eq-inv-image inv-inv-eq)

show Min-wrt-among (map-relation (inv f) le) (f ‘ A) ⊆ f ‘ Min-wrt-among le A
unfolding Min-wrt-among-preorder R.Min-wrt-among-preorder
using assms bij-is-inj[OF assms]
by (auto simp: map-relation-def inv-f-f image-Int [symmetric])

qed

lemma Min-wrt-map-relation-bij:

22

bij f =⇒ f ‘ Min-wrt le = Min-wrt (map-relation (inv f) le)
proof −

assume bij: bij f
interpret R: preorder-on f ‘ carrier map-relation (inv f) le

using preorder-on-map[of inv f] bij
by (simp add: bij-imp-bij-inv bij-vimage-eq-inv-image inv-inv-eq)

from bij show ?thesis
unfolding R.Min-wrt-preorder Min-wrt-preorder
by (auto simp: map-relation-def inv-f-f bij-is-inj)

qed

lemma Min-wrt-among-mono:
le y x =⇒ x ∈ Min-wrt-among le A =⇒ y ∈ A =⇒ y ∈ Min-wrt-among le A
using not-outside by (auto simp: Min-wrt-among-preorder intro: trans)

lemma Min-wrt-mono:
le y x =⇒ x ∈ Min-wrt le =⇒ y ∈ Min-wrt le
unfolding Min-wrt-def using Min-wrt-among-mono[of y x UNIV] by blast

end

context total-preorder-on
begin

lemma Min-wrt-among-total-preorder :
Min-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le x y}
unfolding Min-wrt-among-preorder using total by blast

lemma Min-wrt-total-preorder :
Min-wrt le = {x∈carrier . ∀ y∈carrier . le x y}
unfolding Min-wrt-preorder using total by blast

lemma decompose-Min:
assumes A: A ⊆ carrier
defines M ≡ Min-wrt-among le A
shows restrict-relation A le = (λx y. x ∈ M ∧ y ∈ A ∨ (y /∈ M ∧ restrict-relation (A − M)

le x y))
using A by (intro ext) (auto simp: M-def Min-wrt-among-total-preorder

restrict-relation-def Int-absorb1 intro: trans)

end

definition min-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a where
min-wrt-among R A = the-elem (Min-wrt-among R A)

definition min-wrt :: ′a relation ⇒ ′a where

23

min-wrt R = min-wrt-among R UNIV

definition max-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a where
max-wrt-among R A = the-elem (Max-wrt-among R A)

definition max-wrt :: ′a relation ⇒ ′a where
max-wrt R = max-wrt-among R UNIV

context finite-linorder-on
begin

lemma Max-wrt-among-singleton:
assumes A 6= {} A ⊆ carrier
shows is-singleton (Max-wrt-among le A)

proof −
have x = y if x ∈ Max-wrt-among le A y ∈ Max-wrt-among le A for x y

using antisymmetric[of x y] total[of x y] that assms
unfolding Max-wrt-among-def by blast

moreover have Max-wrt-among le A 6= {}
by (rule Max-wrt-among-nonempty) (use assms in auto)

ultimately show ?thesis
unfolding is-singleton-def by blast

qed

lemma max-wrt-among-inside:
assumes A 6= {} A ⊆ carrier
shows max-wrt-among le A ∈ A

proof −
have max-wrt-among le A ∈ Max-wrt-among le A

using Max-wrt-among-singleton[OF assms]
unfolding is-singleton-def max-wrt-among-def by force

also have . . . ⊆ A
by (auto simp: Max-wrt-among-def)

finally show ?thesis .
qed

lemma le-max-wrt-among:
assumes y ∈ A A ⊆ carrier
shows le y (max-wrt-among le A)

proof −
have A 6= {}

using assms by auto
have max-wrt-among le A ∈ Max-wrt-among le A

using Max-wrt-among-singleton[OF ‹A 6= {}› assms(2)]
unfolding is-singleton-def max-wrt-among-def by force

thus ?thesis using ‹y ∈ A›
by (metis assms(2) decompose-Max restrict-relation-def)

qed

24

end

context finite-linorder-on
begin

lemma Min-wrt-among-singleton:
assumes A 6= {} A ⊆ carrier
shows is-singleton (Min-wrt-among le A)
using assms by (metis Min-wrt-among-conv-Max-wrt-among dual.Max-wrt-among-singleton)

lemma min-wrt-among-inside:
assumes A 6= {} A ⊆ carrier
shows min-wrt-among le A ∈ A
using dual.max-wrt-among-inside[OF assms]
by (simp add: max-wrt-among-def min-wrt-among-def Min-wrt-among-conv-Max-wrt-among)

lemma le-min-wrt-among:
assumes y ∈ A A ⊆ carrier
shows le (min-wrt-among le A) y
using dual.le-max-wrt-among[OF assms]
by (simp add: max-wrt-among-def min-wrt-among-def Min-wrt-among-conv-Max-wrt-among)

end

end

2 Social welfare functions
theory Social-Welfare-Functions
imports

Swap-Distance.Swap-Distance
Rankings.Topological-Sortings-Rankings
Randomised-Social-Choice.Preference-Profiles
SWF-Impossibility-Library

begin

2.1 Preference profiles

In the context of social welfare functions, a preference profile consists of a linear ordering
(a ranking) of alternatives for each agent.
locale pref-profile-linorder-wf =

fixes agents :: ′agent set and alts :: ′alt set and R :: (′agent, ′alt) pref-profile
assumes nonempty-agents [simp]: agents 6= {} and nonempty-alts [simp]: alts 6= {}
assumes prefs-wf [simp]: i ∈ agents =⇒ finite-linorder-on alts (R i)
assumes prefs-undefined [simp]: i /∈ agents =⇒ ¬R i x y

begin

25

lemma finite-alts [simp]: finite alts
proof −

from nonempty-agents obtain i where i ∈ agents by blast
then interpret finite-linorder-on alts R i by simp
show ?thesis by (rule finite-carrier)

qed

lemma prefs-wf ′ [simp]:
i ∈ agents =⇒ linorder-on alts (R i)
using prefs-wf [of i] by (simp-all add: finite-linorder-on-def del: prefs-wf)

lemma not-outside:
assumes x �[R i] y
shows i ∈ agents x ∈ alts y ∈ alts

proof −
from assms show i ∈ agents by (cases i ∈ agents) auto
then interpret linorder-on alts R i by simp
from assms show x ∈ alts y ∈ alts by (simp-all add: not-outside)

qed

sublocale linorder-family agents alts R
proof

fix i assume i ∈ agents
thus linorder-on alts (R i)

by simp
qed auto

lemmas prefs-undefined ′ = not-in-dom ′

lemma wf-update:
assumes i ∈ agents linorder-on alts Ri ′
shows pref-profile-linorder-wf agents alts (R(i := Ri ′))

proof −
interpret linorder-on alts Ri ′ by fact
from finite-alts have finite-linorder-on alts Ri ′ by unfold-locales
with assms show ?thesis

by (auto intro!: pref-profile-linorder-wf .intro split: if-splits)
qed

lemma wf-permute-agents:
assumes σ permutes agents
shows pref-profile-linorder-wf agents alts (R ◦ σ)
unfolding o-def using permutes-in-image[OF assms(1)]
by (intro pref-profile-linorder-wf .intro prefs-wf) simp-all

lemma (in −) pref-profile-eqI :
assumes pref-profile-linorder-wf agents alts R1 pref-profile-linorder-wf agents alts R2
assumes

∧
x. x ∈ agents =⇒ R1 x = R2 x

26

shows R1 = R2
proof

interpret R1 : pref-profile-linorder-wf agents alts R1 by fact
interpret R2 : pref-profile-linorder-wf agents alts R2 by fact
fix x show R1 x = R2 x

by (cases x ∈ agents; intro ext) (simp-all add: assms(3))
qed

An obvious fact: if the number of agents is at most 2 and there are no ties then the
majority relation coincides with the unanimity relation.
lemma card-agents-le-2-imp-majority-eq-unanimity:

assumes card agents ≤ 2 and [simp]: finite agents
assumes linorder-on alts (majority R)
shows majority R = Pareto R

proof (intro ext)
fix x y
interpret maj: linorder-on alts majority R by fact
show majority R x y = Pareto R x y
proof (cases x ∈ alts ∧ y ∈ alts)

case xy: True
define d where d = card {i∈agents. R i x y}
have neq: x 6= y if d 6= card agents
proof

assume x = y
hence {i∈agents. R i x y} = agents

using preorder-on.refl[OF in-dom] xy by auto
thus False

using that by (simp add: d-def)
qed

have d = 0 ∨ d = card agents
proof (rule ccontr)

assume ¬(d = 0 ∨ d = card agents)
moreover have d ≤ card agents

unfolding d-def by (rule card-mono) auto
ultimately have d > 0 d < card agents

by simp-all
hence d = 1 card agents = 2

using ‹card agents ≤ 2 › by linarith+
have x 6= y

by (rule neq) (use ‹d < card agents› in auto)
have majority R x y ∧ majority R y x

using ‹d = 1 › ‹card agents = 2 › ‹x 6= y› xy majority-iff-ge-half [of x y]
majority-iff-le-half [of y x]

by (simp add: d-def)
thus False

using maj.antisymmetric xy ‹x 6= y› by blast
qed

27

thus ?thesis
proof

assume d = 0
have majority R x y ←→ 2 ∗ d ≥ card agents

unfolding d-def using xy by (auto simp: majority-iff-ge-half)
with ‹d = 0 › have ¬majority R x y

by simp
moreover from ‹d = 0 › have ∀ i∈agents. ¬R i x y

unfolding d-def by simp
hence ¬Pareto R x y

by (auto simp: Pareto-iff)
ultimately show ?thesis

by simp
next

assume d = card agents
have majority R x y ←→ 2 ∗ d ≥ card agents

unfolding d-def using xy by (subst majority-iff-ge-half) auto
with ‹d = card agents› have majority R x y

by simp
moreover have {i∈agents. R i x y} = agents

by (rule card-subset-eq) (use ‹d = card agents› in ‹simp-all add: d-def ›)
hence Pareto R x y

by (auto simp: Pareto-iff)
ultimately show ?thesis

by simp
qed

qed (use Pareto.not-outside in ‹auto simp: majority-iff ′›)
qed

end

An election, in our terminology, consists of a finite set of agents and a finite non-empty
set of alternatives. It is this context in which we then consider all the set of possible
preference profiles and SWFs.
locale linorder-election =

fixes agents :: ′agent set and alts :: ′alt set
assumes finite-agents [simp, intro]: finite agents
assumes finite-alts [simp, intro]: finite alts
assumes nonempty-agents [simp]: agents 6= {}
assumes nonempty-alts [simp]: alts 6= {}

begin

abbreviation is-pref-profile ≡ pref-profile-linorder-wf agents alts

lemma finite-linorder-on-iff ′ [simp]:
finite-linorder-on alts R ←→ linorder-on alts R
by (simp add: finite-linorder-on-def finite-linorder-on-axioms-def)

lemma finite-pref-profiles [intro]: finite {R. is-pref-profile R}

28

and card-pref-profiles: card {R. is-pref-profile R} = fact (card alts) ^ card agents
proof −

define f :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation
where f = (λR i. if i ∈ agents then R i else (λ- -. False))

define g :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation
where g = (λR. restrict R agents)

have bij: bij-betw f (agents →E {R. linorder-on alts R}) {R. is-pref-profile R}
by (rule bij-betwI [of - - - g])

(auto simp: f-def g-def pref-profile-linorder-wf-def fun-eq-iff)
have finite (agents →E {R. linorder-on alts R})

by (intro finite-PiE finite-linorders-on) auto
thus finite {R. is-pref-profile R}

using bij-betw-finite[OF bij] by simp
show card {R. is-pref-profile R} = fact (card alts) ^ card agents

using bij-betw-same-card[OF bij] by (simp add: card-PiE card-linorders-on)
qed

lemma pref-profile-exists: ∃R. is-pref-profile R
proof −

have card {R. is-pref-profile R} > 0
by (subst card-pref-profiles) auto

thus ?thesis
by (simp add: card-gt-0-iff)

qed

lemma pref-profile-wfI ′ [intro?]:
(
∧

i. i ∈ agents =⇒ linorder-on alts (R i)) =⇒
(
∧

i. i /∈ agents =⇒ R i = (λ- -. False)) =⇒ is-pref-profile R
by (simp add: pref-profile-linorder-wf-def finite-linorder-on-def finite-linorder-on-axioms-def)

lemma is-pref-profile-update [simp,intro]:
assumes is-pref-profile R linorder-on alts Ri ′ i ∈ agents
shows is-pref-profile (R(i := Ri ′))
using assms by (auto intro!: pref-profile-linorder-wf .wf-update)

lemma election [simp,intro]: linorder-election agents alts
by (rule linorder-election-axioms)

end

2.2 Definition and desirable properties of SWFs
locale social-welfare-function = linorder-election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes swf :: (′agent, ′alt) pref-profile ⇒ ′alt relation
assumes swf-wf : is-pref-profile R =⇒ linorder-on alts (swf R)

begin

lemma swf-wf ′:

29

assumes is-pref-profile R
shows finite-linorder-on alts (swf R)

proof −
interpret linorder-on alts swf R

by (rule swf-wf) fact
show ?thesis

by standard auto
qed

end

lemma (in linorder-election) social-welfare-functionI [intro]:
(
∧

R. is-pref-profile R =⇒ linorder-on alts (swf R)) =⇒ social-welfare-function agents alts swf
unfolding social-welfare-function-def social-welfare-function-axioms-def
using linorder-election-axioms
by blast

Anonymity: the identities of the agents do not matter, i.e. the SWF is stable under
renaming of the authors.
locale anonymous-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes anonymous: π permutes agents =⇒ is-pref-profile R =⇒ swf (R ◦ π) = swf R

An obvious fact: if there is only one agent, any SWF is anonymous.
lemma (in social-welfare-function) one-agent-imp-anonymous:

assumes card agents = 1
shows anonymous-swf agents alts swf

proof
fix π R assume π: π permutes agents and R: is-pref-profile R
from π have π = id

by (metis assms card-1-singletonE permutes-sing)
thus swf (R ◦ π) = swf R

by simp
qed

Neutrality: the identities of the alternatives does not matter, i.e. the SWF commutes
with renaming the alternatives.
This is not a particularly interesting property since it clashes with anonymity whenever
tie-breaking is required.
locale neutral-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes neutral: σ permutes alts =⇒ is-pref-profile R =⇒

swf (map-relation σ ◦ R) = map-relation σ (swf R)

Unanimity: any ordering of two alternatives that all agents agree on is also present in
the result ranking.
locale unanimous-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +

30

assumes unanimous: is-pref-profile R =⇒ ∀ i∈agents. x �[R i] y =⇒ x �[swf R] y
begin

lemma unanimous ′:
assumes is-pref-profile R ∀ i∈agents. x �[R i] y
shows x �[swf R] y
using assms
by (metis linorder-on-def order-on.antisymmetric order-on-def

pref-profile-linorder-wf .not-outside(2) pref-profile-linorder-wf .prefs-wf ′

preorder-on.refl strongly-preferred-def swf-wf unanimous)

A more convenient form of unanimity for computation: the SWF must return a ranking
that is a topological sorting of the Pareto dominance relation.
In other words: we define the relation P as the intersection of all the preference relations
of the agents. This relation is a partial order that captures everything the agents agree
on. Due to unanimity, the result returned by the SWF must be a linear ordering that
extends P , i.e. a topological sorting of P .
These topological sortings can be computed relatively easily using the standard algo-
rithm, i.e. repeatedly picking a maximal element nondeterministically and putting it as
the next element of the result ranking.
If the number of possible rankings is relatively small, this is more efficient than listing
all n! possible rankings and then weeding out the ones ruled out by unanimity.
lemma unanimous-topo-sort-Pareto:

assumes R: is-pref-profile R
shows swf R ∈ of-ranking ‘ topo-sorts alts (Pareto(R))

proof −
interpret R: pref-profile-linorder-wf agents alts R

by fact
have Pareto(R) ≤ swf R

using R unfolding le-fun-def R.Pareto-iff le-bool-def by (auto intro: unanimous ′)
moreover have finite-linorder-on alts (swf R)

using R by (rule swf-wf ′)
ultimately have swf R ∈ {R ′. finite-linorder-on alts R ′ ∧ Pareto(R) ≤ R ′}

by simp
also have bij-betw of-ranking (topo-sorts alts (Pareto(R))) {R ′. finite-linorder-on alts R ′ ∧

Pareto(R) ≤ R ′}
by (rule bij-betw-topo-sorts-linorders-on) (use R.Pareto.not-outside in auto)

hence {R ′. finite-linorder-on alts R ′∧ Pareto(R) ≤ R ′} = of-ranking ‘ topo-sorts alts (Pareto(R))
by (simp add: bij-betw-def)

finally show ?thesis .
qed

end

Kemeny strategyproofness: no agent can achieve a better outcome for themselves by
unilaterally submitting a preference ranking different from their true one. Here, “better”
is defined by the swap distance (also known as the Kendall tau distance).

31

locale kemeny-strategyproof-swf = social-welfare-function agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf +
assumes kemeny-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ linorder-on alts R ′ =⇒
swap-dist-relation (R i) (swf R) ≤ swap-dist-relation (R i) (swf (R(i := R ′)))

2.3 Majority consistency
locale majority-consistent-swf = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes majority-consistent:

is-pref-profile R =⇒ linorder-on alts (majority R) =⇒ swf R = majority R

locale majcons-kstratproof-swf =
majority-consistent-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

A unanimous SWF with at most 2 agents is always majority-consistent (since the only
way for a preference relation to have no ties is for it to be unanimous).
lemma (in unanimous-swf)

assumes card agents ≤ 2
shows majority-consistent-swf agents alts swf

proof
fix R assume R: is-pref-profile R
assume maj: linorder-on alts (majority R)
interpret R: pref-profile-linorder-wf agents alts R by fact
interpret maj: linorder-on alts majority R by fact
interpret S : linorder-on alts swf R by (rule swf-wf) fact

have eq: majority R = Pareto R
by (rule R.card-agents-le-2-imp-majority-eq-unanimity) (use assms maj in simp-all)

have Pareto-imp-swf : swf R x y if Pareto R x y for x y
using unanimous ′[of R x y] R that by (auto simp: R.Pareto-iff)

show swf R = majority R
proof (intro ext)

fix x y
show swf R x y = majority R x y
proof (cases x ∈ alts ∧ y ∈ alts)

case True
show swf R x y = majority R x y

using eq unanimous ′[OF R] Pareto-imp-swf maj.total S .antisymmetric True by metis
qed (use S .not-outside maj.not-outside in auto)

qed
qed

For a non-unanimous SWF, Kemeny strategyproofness does not survive the addition of
dummy alternatives. However, a weaker notion does, namely Kemeny strategyproofness

32

where only manipulations to profiles with a linear majority relation are forbidden.
locale majority-consistent-weak-kstratproof-swf =

majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf +
assumes majority-consistent-kemeny-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ linorder-on alts S =⇒
linorder-on alts (majority (R(i := S))) =⇒
swap-dist-relation (R i) (swf R) ≤ swap-dist-relation (R i) (majority (R(i := S)))

2.4 Concrete classes of SWFs
2.4.1 Dictatorships

A dictatorship rule simply returns the ranking of one fixed agent (the dictator). It is
clearly neutral, anonymous, and strategyproof, but neither anonymous (unless n = 1)
nor majority-consistent (unless n ≤ 2).
locale dictatorship-swf = linorder-election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes dictator :: ′agent
assumes dictator-in-agents: dictator ∈ agents

begin

sublocale social-welfare-function agents alts λR. R dictator
proof

fix R assume R: is-pref-profile R
thus linorder-on alts (R dictator)

by (simp add: dictator-in-agents pref-profile-linorder-wf .prefs-wf ′)
qed

sublocale neutral-swf agents alts λR. R dictator
by unfold-locales auto

sublocale unanimous-swf agents alts λR. R dictator
by unfold-locales (use dictator-in-agents in auto)

sublocale kemeny-strategyproof-swf agents alts λR. R dictator
by unfold-locales auto

end

2.4.2 Fixed-result SWFs

Another degenerate case is an SWF that always returns the same ranking, completely
ignoring the preferences of the agents. Such an SWF is clearly anonymous and strate-
gyproof, but not unanimous (except for the degenerate case where m = 1).
locale fixed-swf = linorder-election agents alts

for agents :: ′agent set and alts :: ′alt set +

33

fixes ranking :: ′alt relation
assumes ranking: linorder-on alts ranking

begin

sublocale social-welfare-function agents alts λ-. ranking
by standard (use ranking in auto)

sublocale anonymous-swf agents alts λ-. ranking
by unfold-locales auto

sublocale kemeny-strategyproof-swf agents alts λ-. ranking
by unfold-locales auto

end

end

2.5 Anonymised preference profiles
theory SWF-Anonymous

imports Social-Welfare-Functions
begin

context anonymous-swf
begin

lemma anonymous ′:
assumes R: is-pref-profile R and R ′: is-pref-profile R ′

assumes image-mset R (mset-set agents) = image-mset R ′ (mset-set agents)
shows swf R = swf R ′

proof −
interpret R: pref-profile-linorder-wf agents alts R by fact
interpret R ′: pref-profile-linorder-wf agents alts R ′ by fact
obtain π where π: π permutes agents ∀ x∈agents. R x = R ′ (π x)

by (rule image-mset-eq-implies-permutes[OF - assms(3)]) (use finite-agents in auto)
from π(1) R ′ have swf (R ′ ◦ π) = swf R ′

by (rule anonymous)
also have R ′ ◦ π = R

using R ′.not-outside(1) R.not-outside(1) π(2) permutes-in-image[OF π(1)]
unfolding fun-eq-iff o-def by blast

finally show ?thesis .
qed

For convenience we define a simpler view on SWFs where the input is not a regular
preference profile but an “anonymised” profile. Formally, this is simply the multiset of
the agents’ rankings without any information on the identities of the agents.
definition is-apref-profile :: ′alt relation multiset ⇒ bool where

is-apref-profile Rs ←→ size Rs = card agents ∧ (∀R∈#Rs. linorder-on alts R)

The following is the corresponding version of the SWF that takes an anonymised profile:

34

definition aswf :: ′alt relation multiset ⇒ ′alt relation
where aswf Rs = swf (SOME R. is-pref-profile R ∧ Rs = image-mset R (mset-set agents))

Every valid anonymised profile also has at least one corresponding "non-anonymised"
version.
lemma deanonymised-profile-exists:

assumes is-apref-profile Rs
obtains R where is-pref-profile R Rs = image-mset R (mset-set agents)

proof −
have size-eq: size (mset-set agents) = size Rs

using assms by (simp add: is-apref-profile-def)
obtain agents ′ where agents ′: distinct agents ′ set agents ′ = agents

using finite-distinct-list by blast
obtain Rs ′ where Rs ′: mset Rs ′ = Rs

using ex-mset by blast
have length-Rs ′: length Rs ′ = card agents

using Rs ′ size-eq by auto
have length-agents ′: length agents ′ = card agents

using agents ′(1 ,2) distinct-card by fastforce
have index-less: index agents ′ i < card agents if i ∈ agents for i

using that by (simp add: agents ′(2) length-agents ′)

define R where R = (λi. if i ∈ agents then Rs ′ ! index agents ′ i else (λ- -. False))
show ?thesis
proof (rule that[of R])

show is-pref-profile R
proof

fix i assume i: i ∈ agents
hence R i = Rs ′ ! index agents ′ i

by (auto simp: R-def)
also have . . . ∈ set Rs ′

using index-less[of i] i length-Rs ′ by auto
also have . . . = set-mset Rs

by (simp flip: Rs ′)
finally show linorder-on alts (R i)

using assms by (auto simp: is-apref-profile-def)
qed (auto simp: R-def)

next
have image-mset R (mset-set agents) = image-mset (λi. Rs ′ ! index agents ′ i) (mset-set

agents)
by (intro image-mset-cong) (auto simp: R-def)

also have mset-set agents = mset agents ′

using agents ′ mset-set-set by blast
also have image-mset (λi. Rs ′ ! index agents ′ i) (mset agents ′) =

mset (map (λi. Rs ′ ! index agents ′ i) agents ′)
by simp

also have map (λi. Rs ′ ! index agents ′ i) agents ′ =
map ((λi. Rs ′ ! index agents ′ i) ◦ (λi. agents ′ ! i)) [0 ..<length agents ′]

unfolding map-map [symmetric] by (subst map-nth) simp-all

35

also have . . . = map (λi. Rs ′ ! i) [0 ..<length Rs ′]
using agents ′ by (intro map-cong) (auto simp: index-nth-id length-agents ′ length-Rs ′)

also have . . . = Rs ′

by (rule map-nth)
also have mset agents ′ = mset-set agents

using agents ′ mset-set-set by metis
also have mset Rs ′ = Rs

using Rs ′ by simp
finally show Rs = image-mset R (mset-set agents) ..

qed
qed

The anonymous version of the SWF is well-defined w.r.t. the regular version of the SWF,
i.e. plugging in the anonymised version of a profile gives the same result as plugging the
original profile into the original SWF.
lemma aswf-welldefined:

assumes is-pref-profile R
defines Rs ≡ image-mset R (mset-set agents)
shows aswf Rs = swf R

proof −
interpret R: pref-profile-linorder-wf agents alts R

by fact

define R ′ where R ′ = (SOME R. is-pref-profile R ∧ Rs = image-mset R (mset-set agents))
have ∗: ∃R. is-pref-profile R ∧ Rs = image-mset R (mset-set agents)

using assms by blast
have R ′: is-pref-profile R ′ Rs = image-mset R ′ (mset-set agents)

using someI-ex[OF ∗] unfolding R ′-def by blast+
interpret R ′: pref-profile-linorder-wf agents alts R ′

by fact

have aswf Rs = swf R ′

by (simp add: aswf-def R ′-def)
also have swf R ′ = swf R

by (rule anonymous ′) (use assms R ′ in simp-all)
finally show ?thesis .

qed

The anonymous version of the SWF always returns a valid ranking if the input is a valid
anonymised profile.
lemma aswf-wf :

assumes is-apref-profile Rs
shows linorder-on alts (aswf Rs)
using assms by (metis aswf-welldefined deanonymised-profile-exists swf-wf)

lemma aswf-wf ′:
assumes is-apref-profile Rs
shows finite-linorder-on alts (aswf Rs)

proof −

36

interpret linorder-on alts aswf Rs
by (rule aswf-wf) fact

show ?thesis
by standard auto

qed

For extra notational convenience, we define yet another version of our SWF that directly
takes multisets of lists as inputs rather than multisets of preference relations.
definition aswf ′ :: ′alt list multiset ⇒ ′alt list

where aswf ′ Rs = ranking (aswf (image-mset of-ranking Rs))

definition is-apref-profile ′ :: ′alt list multiset ⇒ bool where
is-apref-profile ′ Rs ←→ size Rs = card agents ∧ (∀R∈#Rs. R ∈ permutations-of-set alts)

lemma is-apref-profile ′-imp-is-apref-profile:
assumes is-apref-profile ′ Rs
shows is-apref-profile (image-mset of-ranking Rs)
unfolding is-apref-profile-def

proof (intro ballI conjI)
fix R assume R ∈# image-mset of-ranking Rs
then obtain xs where xs: xs ∈# Rs R = of-ranking xs

by auto
hence xs ′: xs ∈ permutations-of-set alts

using assms xs(1) by (auto simp: is-apref-profile ′-def)
show linorder-on alts R
unfolding xs(2) by (rule linorder-of-ranking) (use xs ′ in ‹auto simp: permutations-of-set-def ›)

qed (use assms in ‹auto simp: is-apref-profile ′-def ›)

lemma aswf ′-wf :
assumes is-apref-profile ′ Rs
shows aswf ′ Rs ∈ permutations-of-set alts

proof −
interpret linorder-on alts aswf (image-mset of-ranking Rs)

by (rule aswf-wf) (use assms in ‹auto intro: is-apref-profile ′-imp-is-apref-profile›)
interpret finite-linorder-on alts aswf (image-mset of-ranking Rs)

by unfold-locales auto
show ?thesis

unfolding aswf ′-def permutations-of-set-def using distinct-ranking set-ranking by force
qed

end

locale anonymous-unanimous-swf =
anonymous-swf agents alts swf +
unanimous-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

37

lemma unanimous-aswf :
assumes is-apref-profile Rs ∀R∈#Rs. x �[R] y
shows x �[aswf Rs] y
using assms
by (metis aswf-welldefined deanonymised-profile-exists finite-agents

finite-set-mset-mset-set image-eqI multiset.set-map unanimous)

lemma unanimous-aswf ′:
assumes is-apref-profile Rs ∀R∈#Rs. x �[R] y
shows x �[aswf Rs] y
using assms
by (metis aswf-welldefined deanonymised-profile-exists finite-agents

finite-set-mset-mset-set image-eqI multiset.set-map unanimous ′)

lemma is-apref-profile-unanimous-not-outside:
assumes is-apref-profile Rs ∀R∈#Rs. R x y
shows x ∈ alts ∧ y ∈ alts

proof −
from assms have Rs 6= {#}

by (auto simp: is-apref-profile-def)
then obtain R where R: R ∈# Rs

by auto
with assms interpret R: linorder-on alts R

by (auto simp: is-apref-profile-def)
from assms have R x y

using R by auto
with R.not-outside show ?thesis

by blast
qed

lemma unanimous-topo-sorts-Pareto-aswf :
assumes Rs: is-apref-profile Rs
shows aswf Rs ∈ of-ranking ‘ topo-sorts alts (λx y. ∀R∈#Rs. R x y)

proof −
obtain R where R: is-pref-profile R Rs = image-mset R (mset-set agents)

using Rs deanonymised-profile-exists by blast
interpret R: pref-profile-linorder-wf agents alts R

by fact

have aswf Rs = swf R
using R aswf-welldefined by blast

also have swf R ∈ of-ranking ‘ topo-sorts alts (Pareto(R))
by (rule unanimous-topo-sort-Pareto) fact+

also have Pareto(R) = (λx y. ∀R∈#Rs. R x y)
unfolding R(2) by (auto simp: R.Pareto-iff fun-eq-iff)

finally show ?thesis .
qed

38

end

locale anonymous-kemeny-strategyproof-swf =
anonymous-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

lemma kemeny-strategyproof-aswf :
assumes is-apref-profile R1 is-apref-profile R2
assumes size (R1 − R2) = 1
assumes ∃R∈#(R1−R2). swap-dist-relation R S1 > swap-dist-relation R S2
shows aswf R1 6= S1 ∨ aswf R2 6= S2

proof (rule ccontr)
assume ¬(aswf R1 6= S1 ∨ aswf R2 6= S2)
hence S12 : aswf R1 = S1 aswf R2 = S2

by auto

from assms(1) obtain R1 ′ where R1 ′: is-pref-profile R1 ′ R1 = image-mset R1 ′ (mset-set
agents)

using deanonymised-profile-exists by blast
from assms(2) obtain R2 ′ where R2 ′: is-pref-profile R2 ′ R2 = image-mset R2 ′ (mset-set

agents)
using deanonymised-profile-exists by blast

from ‹size (R1 − R2) = 1 › obtain R where R: R1 − R2 = {#R#}
using size-1-singleton-mset[of R1 − R2] by auto

have R ∈# R1
using R by (metis in-diffD multi-member-last)

obtain i where i: i ∈ agents R = R1 ′ i
using R unfolding R1 ′(2) R2 ′(2)
by (metis (no-types, lifting) Multiset.diff-right-commute add-mset-diff-bothsides

diff-single-trivial finite-agents finite-set-mset-mset-set imageE
multi-self-add-other-not-self multiset.set-map zero-diff)

obtain S where S : R2 − R1 = {#S#}
proof −

have size (R2 − R1) = 1
by (rule size-Diff-mset-same-size)

(use assms in ‹auto simp: is-apref-profile-def ›)
thus ?thesis

using that size-1-singleton-mset by blast
qed
have S ∈# R2

using S by (metis in-diffD multi-member-last)

have swap-dist-relation R S1 ≤ swap-dist-relation R S2
proof −

39

have swap-dist-relation (R1 ′ i) (swf R1 ′) ≤ swap-dist-relation (R1 ′ i) (swf (R1 ′(i := S)))
proof (rule kemeny-strategyproof)

from ‹S ∈# R2 › and assms show linorder-on alts S
by (auto simp: is-apref-profile-def)

qed fact+
also have swf R1 ′ = aswf R1

unfolding R1 ′(2) by (rule aswf-welldefined [symmetric]) fact
also have swf (R1 ′(i := S)) = aswf R2
proof −

from ‹S ∈# R2 › and assms have linorder-on alts S
by (auto simp: is-apref-profile-def)

hence is-pref-profile (R1 ′(i := S))
by (intro is-pref-profile-update) (use R1 ′(1) i in auto)

hence aswf (image-mset (R1 ′(i := S)) (mset-set agents)) = swf (R1 ′(i := S))
by (rule aswf-welldefined)

also have mset-set agents = add-mset i (mset-set agents − {#i#})
using i by simp

also have image-mset (R1 ′(i := S)) . . . =
{#S#} + image-mset (R1 ′(i := S)) (mset-set agents − {#i#})

by simp
also have mset-set agents − {#i#} = mset-set (agents − {i})

by (subst mset-set-Diff) (use i in auto)
also have image-mset (R1 ′(i := S)) (mset-set (agents − {i})) =

image-mset R1 ′ (mset-set (agents − {i}))
by (intro image-mset-cong) auto

also have image-mset R1 ′ (mset-set (agents − {i})) = image-mset R1 ′ (mset-set agents
− {#i#})

by (subst mset-set-Diff) (use i in auto)
also have . . . = R1 − {#R#}

by (subst image-mset-Diff) (use i in ‹auto simp: R1 ′(2)›)
also have {#S#} + (R1 − {#R#}) = R2
proof (rule multiset-eqI)

fix T :: ′alt relation
have count (R1 − R2) T = count {#R#} T

by (subst R) auto
moreover have count (R2 − R1) T = count {#S#} T

by (subst S) auto
ultimately show count ({#S#} + (R1 − {#R#})) T = count R2 T

by auto
qed
finally show ?thesis ..

qed
also have aswf R1 = S1

by fact
also have aswf R2 = S2

by fact
also have R1 ′ i = R

using i by simp
finally show ?thesis .

40

qed

moreover have swap-dist-relation R S1 > swap-dist-relation R S2
using ‹∃R∈#(R1−R2). swap-dist-relation R S1 > swap-dist-relation R S2 › unfolding R

by simp
ultimately show False

by linarith
qed

lemma kemeny-strategyproof-aswf-strong:
assumes is-apref-profile R1 is-apref-profile R2
assumes size (R1 − R2) = 1
assumes (∃R∈#R1−R2 . swap-dist-relation R S1 > swap-dist-relation R S2) ∨

(∃R∈#R2−R1 . swap-dist-relation R S2 > swap-dist-relation R S1)
shows aswf R1 6= S1 ∨ aswf R2 6= S2

proof −
have sz: size (R2 − R1) = 1

by (rule size-Diff-mset-same-size)
(use assms in ‹auto simp: is-apref-profile-def ›)

show ?thesis
using kemeny-strategyproof-aswf [OF assms(1−3), of S2 S1]

kemeny-strategyproof-aswf [OF assms(2 ,1) sz, of S1 S2] assms(4)
by blast

qed

lemma kemeny-strategyproof-aswf ′:
assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes size (R1 − R2) = 1
assumes ∃R∈#(R1−R2). swap-dist R S1 > swap-dist R S2
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2

proof (rule ccontr)
assume ¬ (aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2)
hence S12 : aswf ′ R1 = S1 aswf ′ R2 = S2

by blast+
have S12-wf : S1 ∈ permutations-of-set alts S2 ∈ permutations-of-set alts

using S12 aswf ′-wf assms(1 ,2) by blast+
have inj-on of-ranking (permutations-of-set alts)

by (metis inj-on-inverseI permutations-of-setD(2) ranking-of-ranking)
hence inj: inj-on of-ranking (set-mset (R1 + R2))
by (rule inj-on-subset) (use assms(1 ,2) in ‹auto simp: is-apref-profile ′-def is-apref-profile-def ›)

have aswf (image-mset of-ranking R1) 6= of-ranking S1 ∨ aswf (image-mset of-ranking R2)
6= of-ranking S2

proof (rule kemeny-strategyproof-aswf)
have image-mset of-ranking R1 − image-mset of-ranking R2 = image-mset of-ranking (R1

− R2)
using inj by (rule image-mset-diff-if-inj-on [symmetric])

also have size . . . = 1
using assms by simp

41

finally show size (image-mset of-ranking R1 − image-mset of-ranking R2) = 1 .
next

from assms(4) obtain R where R: R ∈# R1 − R2 swap-dist R S1 > swap-dist R S2
by blast

have of-ranking R ∈# image-mset of-ranking (R1 − R2)
using R(1) by simp

also have image-mset of-ranking (R1 − R2) = image-mset of-ranking R1 − image-mset
of-ranking R2

using inj by (rule image-mset-diff-if-inj-on)
finally have R ′: of-ranking R ∈# image-mset of-ranking R1 − image-mset of-ranking R2 .

have R ∈# R1
using R by (meson in-diffD)

hence R ∈ permutations-of-set alts
using R(1) assms(1) by (auto simp: is-apref-profile ′-def)

hence swap-dist-relation (of-ranking R) (of-ranking S1) > swap-dist-relation (of-ranking R)
(of-ranking S2)

using S12-wf R(2) by (simp add: swap-dist-def permutations-of-set-def)
with R ′ show ∃R∈#image-mset of-ranking R1 − image-mset of-ranking R2 .

swap-dist-relation R (of-ranking S2) < swap-dist-relation R (of-ranking S1)
by blast

qed (use assms in ‹auto intro!: is-apref-profile ′-imp-is-apref-profile›)

hence aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
unfolding aswf ′-def
by (metis aswf-wf ′ assms(1 ,2) finite-linorder-on.of-ranking-ranking

is-apref-profile ′-imp-is-apref-profile)
with S12 show False

by blast
qed

lemma kemeny-strategyproof-aswf ′-strong:
assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes size (R1 − R2) = 1
assumes (∃R∈#(R1−R2). swap-dist R S1 > swap-dist R S2) ∨

(∃R∈#(R2−R1). swap-dist R S2 > swap-dist R S1)
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2

proof −
have sz: size (R2 − R1) = 1

by (rule size-Diff-mset-same-size)
(use assms in ‹auto simp: is-apref-profile ′-def ›)

show ?thesis
using kemeny-strategyproof-aswf ′[OF assms(1−3), of S2 S1]

kemeny-strategyproof-aswf ′[OF assms(2 ,1) sz, of S1 S2] assms(4)
by blast

qed

A consequence of strategyproofness: if a profile contains clones (i.e. it contains the same
ranking A multiple times) then simultaneous deviations by the clones may not result in

42

a better outcome w.r.t. A.
This is simply proven using a chain of n successive single-agent deviations, each replacing
one copy of A with another ranking.
lemma kemeny-strategyproof-aswf ′-clones-aux:

assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes R1 − R2 = replicate-mset n A
shows swap-dist A (aswf ′ R1) ≤ swap-dist A (aswf ′ R2)
using assms

proof (induction n arbitrary: R1)
case 0
hence R1 − R2 = {#}

by auto
moreover have size R1 = size R2

using 0 by (auto simp: is-apref-profile ′-def)
ultimately have R1 = R2

by (metis Diff-eq-empty-iff-mset cancel-comm-monoid-add-class.diff-cancel
nonempty-has-size size-Diff-submset subset-mset.add-diff-inverse)

thus ?case using 0 by auto
next

case (Suc n R1)
have A ∈# R1

using Suc.prems(3) by (metis in-diffD in-replicate-mset zero-less-Suc)

define X where X = R2 − R1
have size R1 = size R2

using Suc.prems by (auto simp: is-apref-profile ′-def)
have eq: R1 + X = R2 + replicate-mset (Suc n) A

using Suc.prems(3) unfolding X-def
by (metis add.commute diff-intersect-left-idem diff-subset-eq-self inter-mset-def

subset-mset.diff-add-assoc2 union-diff-inter-eq-sup union-mset-def)

define R0 where R0 = R1 − replicate-mset (Suc n) A
have R1-eq: R1 = R0 + replicate-mset (Suc n) A

using Suc.prems(3) unfolding R0-def by (metis diff-subset-eq-self subset-mset.diff-add)
have R2-eq: R2 = R0 + X

using eq unfolding R1-eq by simp

have size X = Suc n
by (metis ‹size R1 = size R2 › add-diff-cancel-left ′ eq size-replicate-mset size-union)

hence X 6= {#}
by auto

then obtain B where B: B ∈# X
by blast

have B ′: B ∈# R2
using B by (auto dest: in-diffD simp: X-def)

define R1 ′ where R1 ′ = R1 − {#A#} + {#B#}
have R1 ′: is-apref-profile ′ R1 ′

using Suc.prems(1 ,2) B ‹A ∈# R1 › B ′

43

by (auto simp: is-apref-profile ′-def R1 ′-def size-Suc-Diff1 dest: in-diffD)
have A 6= B using B Suc.prems(3)

unfolding X-def by (metis in-diff-count in-replicate-mset not-less-iff-gr-or-eq zero-less-Suc)

have swap-dist A (aswf ′ R1) ≤ swap-dist A (aswf ′ R1 ′)
proof −

have diff-eq: R1 − R1 ′ = {#A#}
using B ‹A ∈# R1 › ‹A 6= B› unfolding R1 ′-def

by (metis Multiset.diff-add add-diff-cancel-left ′ diff-union-swap insert-DiffM2 zero-diff)
show ?thesis

by (cases swap-dist A (aswf ′ R1) ≤ swap-dist A (aswf ′ R1 ′))
(use kemeny-strategyproof-aswf ′[of R1 R1 ′ aswf ′ R1 ′ aswf ′ R1] Suc.prems(1) R1 ′

in ‹simp-all add: diff-eq not-le›)
qed
also have . . . ≤ swap-dist A (aswf ′ R2)
proof (rule Suc.IH)

have R1 ′ − R2 = add-mset B (replicate-mset n A) − X
by (simp add: R1 ′-def R2-eq R1-eq)

also have . . . = replicate-mset n A − X
using ‹A 6= B› ‹B ∈# X›

by (metis add-mset-diff-bothsides in-replicate-mset insert-DiffM minus-add-mset-if-not-in-lhs)
also have A /∈# X

by (metis Suc.prems(3) X-def in-diff-count not-less-iff-gr-or-eq replicate-mset-Suc
union-single-eq-member)

hence replicate-mset n A − X = replicate-mset n A
by (induction n) auto

finally show R1 ′ − R2 = replicate-mset n A .
qed fact+
finally show ?case .

qed

lemma kemeny-strategyproof-aswf ′-clones:
assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes R1 − R2 = replicate-mset n A
assumes swap-dist A S1 > swap-dist A S2
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2
using kemeny-strategyproof-aswf ′-clones-aux[OF assms(1−3)] assms(4) by auto

Another consequence of Kemeny strategyproofness: if an agent gets a non-optimal result
(i.e. the result ranking is not the ranking of the agent), no deviation of the agent can
yield the optimal result either.
lemma kemeny-strategyproof-aswf ′-no-obtain-optimal:

assumes is-apref-profile ′ R is-apref-profile ′ R ′ add-mset S R ′ = add-mset S ′ R
shows aswf ′ R = S ∨ aswf ′ R ′ 6= S

proof (rule ccontr)
assume ¬(aswf ′ R = S ∨ aswf ′ R ′ 6= S)
hence ∗: aswf ′ R 6= S aswf ′ R ′ = S

by auto
have S 6= S ′

44

using ∗ assms(3) by auto

have aswf ′ R 6= aswf ′ R ∨ aswf ′ R ′ 6= S
proof (rule kemeny-strategyproof-aswf ′)

show size (R − R ′) = 1
using assms(3) ‹S 6= S ′› count-add-mset[of S R ′ S] in-diff-count[of S R R ′]

size-Suc-Diff1 [of S R − R ′] by auto
next

have S ∈# R − R ′

using ∗ assms(3) by (metis add-eq-conv-ex count-add-mset in-diff-count lessI)
hence S ∈# R

by (meson in-diffD)
hence S ∈ permutations-of-set alts

using assms(1) by (auto simp: is-apref-profile ′-def)
hence swap-dist S (aswf ′ R) > 0

by (subst swap-dist-pos-iff)
(use ∗ aswf ′-wf [OF assms(1)] in ‹auto simp: permutations-of-set-def ›)

with ‹S ∈# R − R ′› show ∃T∈#R − R ′. swap-dist T S < swap-dist T (aswf ′ R)
by (intro bexI [of - S]) auto

qed fact+
with ∗ show False

by auto
qed

end

The following relation says that the given anonymised set of preferences Rs has a majority
relation that is a linear order, and this linear order is exactly the one described by the
ranking S.
definition majority-rel-mset :: ′a list multiset ⇒ ′a list ⇒ bool where

majority-rel-mset Rs S ←→
majority-mset (image-mset of-ranking Rs) = of-ranking S ∧ distinct S

locale anonymous-majority-consistent-swf =
anonymous-swf agents alts swf +
majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

lemma majority-consistent-aswf :
assumes is-apref-profile Rs linorder-on alts (majority-mset Rs)
shows aswf Rs = majority-mset Rs

proof −
obtain R where R: is-pref-profile R Rs = image-mset R (mset-set agents)

using assms(1) deanonymised-profile-exists by blast
interpret R: pref-profile-linorder-wf agents alts R by fact
have maj-eq: majority R = majority-mset Rs

by (subst R.majority-conv-majority-mset) (use R in simp-all)

45

have aswf Rs = swf R
using R aswf-welldefined by blast

also have . . . = majority R
by (rule majority-consistent) (use assms(2) R(1) maj-eq in simp-all)

also have . . . = majority-mset Rs
by fact

finally show aswf Rs = majority-mset Rs .
qed

lemma majority-consistent-aswf ′:
assumes is-apref-profile ′ Rs majority-rel-mset Rs S
shows aswf ′ Rs = S

proof −
define Rs ′ where Rs ′ = image-mset of-ranking Rs
define S ′ where S ′ = of-ranking S
have is-apref-profile Rs ′

using assms(1) unfolding Rs ′-def by (simp add: is-apref-profile ′-imp-is-apref-profile)
have S ′ = majority-mset Rs ′

using assms(2) unfolding majority-rel-mset-def by (auto simp: Rs ′-def S ′-def)
have distinct S

using assms(2) by (auto simp: majority-rel-mset-def)
have linorder-on alts S ′

proof −
have Rs ′-wf :

∧
R. R ∈# Rs ′ =⇒ preorder-on alts R Rs ′ 6= {#}

using ‹is-apref-profile Rs ′› unfolding is-apref-profile-def
using linorder-on-def order-on-def by fastforce+

have set S = alts
proof (rule set-eqI)

fix x
have x ∈ set S ←→ of-ranking S x x

by (metis of-ranking-imp-in-set(2) of-ranking-refl)
also have . . . ←→ majority-mset Rs ′ x x

using assms(2) by (simp add: majority-rel-mset-def Rs ′-def)
also have . . . ←→ x ∈ alts

by (rule majority-mset-refl-iff) (use Rs ′-wf in auto)
finally show x ∈ set S ←→ x ∈ alts .

qed
thus ?thesis

unfolding S ′-def using ‹distinct S› by (intro linorder-of-ranking)
qed

have aswf ′ Rs = ranking (aswf Rs ′)
by (simp add: aswf ′-def Rs ′-def)

also have aswf Rs ′ = majority-mset Rs ′

by (rule majority-consistent-aswf)
(use ‹is-apref-profile Rs ′› ‹linorder-on alts S ′› ‹S ′ = majority-mset Rs ′› in simp-all)

also have . . . = S ′

by (rule sym) fact

46

also have ranking S ′ = S
using ‹distinct S› by (simp add: S ′-def ranking-of-ranking)

finally show ?thesis .
qed

end

end

2.6 Social Welfare Functions with explicit lists of agents and alternatives
theory SWF-Explicit

imports SWF-Anonymous
begin

locale linorder-election-explicit =
linorder-election agents alts
for agents :: ′agent set and alts :: ′alt set +
fixes agents-list :: ′agent list and alts-list :: ′alt list
assumes agents-list: mset agents-list = mset-set agents
assumes alts-list: mset alts-list = mset-set alts

begin

lemma distinct-alts-list: distinct alts-list
using alts-list by (metis finite-alts mset-eq-mset-set-imp-distinct)

lemma alts-conv-alts-list: alts = set alts-list
using alts-list by (metis finite-alts finite-set-mset-mset-set set-mset-mset)

lemma card-alts [simp]: card alts = length alts-list
using alts-list by (metis size-mset size-mset-set)

lemma distinct-agents-list: distinct agents-list
using agents-list by (metis finite-agents mset-eq-mset-set-imp-distinct)

lemma agents-conv-agents-list: agents = set agents-list
using agents-list by (metis finite-agents finite-set-mset-mset-set set-mset-mset)

lemma card-agents: card agents = length agents-list
using agents-list by (metis size-mset size-mset-set)

lemma mset-eq-alts-list-iff : mset xs = mset alts-list ←→ distinct xs ∧ set xs = alts
by (metis alts-conv-alts-list card-alts card-distinct

mset-set-set set-mset-mset size-mset)

lemma mset-eq-agents-list-iff : mset xs = mset agents-list ←→ distinct xs ∧ set xs = agents
by (metis agents-conv-agents-list card-agents card-distinct

mset-set-set set-mset-mset size-mset)

47

definition prefs-from-rankings
:: ′alt list list ⇒ (′agent ⇒ ′alt relation) where

prefs-from-rankings rs =
(λi. if i ∈ agents then of-ranking (rs ! index agents-list i) else (λ- -. False))

definition prefs-from-rankings-wf :: ′alt list list ⇒ bool where
prefs-from-rankings-wf rs ←→

length rs = card agents ∧ list-all (λr . mset r = mset alts-list) rs

lemma prefs-from-rankings-wf-imp-is-pref-profile [intro]:
assumes prefs-from-rankings-wf rs
shows is-pref-profile (prefs-from-rankings rs)

proof
fix i assume i: i ∈ agents
hence rs ! index agents-list i ∈ set rs

by (intro nth-mem)
(use assms in ‹auto simp: prefs-from-rankings-wf-def card-agents index-less-size-conv

simp flip: agents-conv-agents-list›)
hence distinct (rs ! index agents-list i) ∧ set (rs ! index agents-list i) = alts

using assms unfolding prefs-from-rankings-wf-def list.pred-set mset-eq-alts-list-iff by blast
thus linorder-on alts (prefs-from-rankings rs i)

using assms i by (auto simp: prefs-from-rankings-def intro!: linorder-of-ranking)
qed (use assms in ‹auto simp: prefs-from-rankings-def ›)

lemma prefs-from-rankings-nth:
assumes prefs-from-rankings-wf R1 i < card agents
shows prefs-from-rankings R1 (agents-list ! i) = of-ranking (R1 ! i)
using assms card-agents agents-conv-agents-list distinct-agents-list
unfolding prefs-from-rankings-def by (simp add: index-nth-id)

lemma prefs-from-rankings-outside:
assumes i /∈ agents
shows prefs-from-rankings R1 i = (λ- -. False)
using assms by (auto simp: prefs-from-rankings-def)

lemma prefs-from-rankings-update:
assumes prefs-from-rankings-wf R1 i < card agents mset xs = mset alts-list
shows prefs-from-rankings (R1 [i := xs]) =

(prefs-from-rankings R1)(agents-list ! i := of-ranking xs)
using assms distinct-agents-list card-agents agents-conv-agents-list

index-less-size-conv[of agents-list]
unfolding prefs-from-rankings-def prefs-from-rankings-wf-def
by (auto simp: fun-eq-iff index-nth-id nth-list-update)

lemma prefs-from-rankings-wf-update:
assumes prefs-from-rankings-wf R1 i < card agents mset xs = mset alts-list
shows prefs-from-rankings-wf (R1 [i := xs])
using assms set-update-subset-insert[of R1 i xs] unfolding prefs-from-rankings-wf-def
by (auto simp: list.pred-set set-update-distinct)

48

lemma majority-prefs-from-rankings:
assumes prefs-from-rankings-wf R
shows majority (prefs-from-rankings R) = majority-mset (mset (map of-ranking R))

proof −
interpret R: pref-profile-linorder-wf agents alts prefs-from-rankings R

using assms by blast
have majority (prefs-from-rankings R) =

majority-mset (image-mset (prefs-from-rankings R) (mset-set agents))
by (rule R.majority-conv-majority-mset) auto

also have image-mset (prefs-from-rankings R) (mset-set agents) =
image-mset (of-ranking ◦ (λi. R ! i) ◦ index agents-list) (mset-set agents)

by (intro image-mset-cong)
(use assms in ‹auto simp: prefs-from-rankings-wf-def prefs-from-rankings-def ›)

also have . . . = image-mset of-ranking (image-mset (λi. R ! i) (image-mset (index agents-list)
(mset agents-list)))

by (simp add: image-mset.compositionality o-def agents-list)
also have image-mset (λi. R ! i) (image-mset (index agents-list) (mset agents-list)) =

mset (map (λi. R ! i) (map (index agents-list) agents-list))
unfolding mset-map by simp

also have map (index agents-list) agents-list = [0 ..<length R]
by (subst map-index-self)

(use distinct-agents-list card-agents assms in ‹simp-all add: prefs-from-rankings-wf-def ›)
also have map (λi. R ! i) . . . = R

by (rule map-nth)
finally show ?thesis by simp

qed

lemma majority-prefs-from-rankings-eq-of-ranking:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) ys
shows majority (prefs-from-rankings R) = of-ranking ys

proof −
have of-ranking ys = majority-mset (image-mset of-ranking (mset R))

using assms(2) by (auto simp: majority-rel-mset-def)
also have . . . = majority (prefs-from-rankings R)

by (subst majority-prefs-from-rankings) (use assms in simp-all)
finally show ?thesis ..

qed

lemma majority-rel-mset-imp-mset:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) xs
shows mset xs = mset alts-list

proof −
interpret R: pref-profile-linorder-wf agents alts prefs-from-rankings R

by (rule prefs-from-rankings-wf-imp-is-pref-profile) fact
have majority (prefs-from-rankings R) = of-ranking xs

by (rule majority-prefs-from-rankings-eq-of-ranking) fact+
thus ?thesis

by (metis R.majority-not-outside(2) R.majority-refl assms(2) majority-rel-mset-def

49

mset-eq-alts-list-iff of-ranking-imp-in-set(2) of-ranking-refl
order-antisym-conv subset-iff)

qed

end

locale social-welfare-function-explicit =
social-welfare-function agents alts swf +
linorder-election-explicit agents alts agents-list alts-list
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

definition swf ′ :: ′alt list list ⇒ ′alt list where
swf ′ R = ranking (swf (prefs-from-rankings R))

lemma swf ′-wf : prefs-from-rankings-wf R =⇒ mset (swf ′ R) = mset-set alts
unfolding swf ′-def
using finite-linorder-on.distinct-ranking finite-linorder-on.set-ranking alts-list finite-alts

prefs-from-rankings-wf-imp-is-pref-profile mset-eq-alts-list-iff swf-wf ′ by metis

end

locale majority-consistent-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majority-consistent-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

lemma majority-consistent-swf ′:
assumes prefs-from-rankings-wf R majority-rel-mset (mset R) ys
shows swf ′ R = ys
using assms
by (metis linorder-of-ranking majority-consistent majority-prefs-from-rankings-eq-of-ranking

majority-rel-mset-imp-mset mset-eq-alts-list-iff
prefs-from-rankings-wf-imp-is-pref-profile ranking-of-ranking swf ′-def)

end

locale majcons-kstratproof-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majcons-kstratproof-swf agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list
begin

sublocale majority-consistent-swf-explicit ..

sublocale majority-consistent-weak-kstratproof-swf

50

by unfold-locales
(metis kemeny-strategyproof majority-consistent pref-profile-linorder-wf .wf-update)

lemma distinct-alts-list-aux: distinct alts-list
using alts-list by (metis finite-alts mset-eq-mset-set-imp-distinct)

lemma distinct-agents-list-aux: distinct agents-list
using agents-list by (metis finite-agents mset-eq-mset-set-imp-distinct)

lemma prefs-from-rankings-wf-iff :
prefs-from-rankings-wf xss ←→

length xss = length agents-list ∧ list-all (λys. mset ys = mset alts-list) xss
unfolding prefs-from-rankings-wf-def using card-agents by simp

lemma swf ′-in-all-rankings:
assumes prefs-from-rankings-wf xss permutations-of-set-list alts-list = yss
shows list-ex (λys. swf ′ xss = ys) yss

proof −
have mset (swf ′ xss) = mset-set alts

by (rule swf ′-wf) fact
hence swf ′ xss ∈ permutations-of-set alts

unfolding permutations-of-set-def using alts-list mset-eq-alts-list-iff by force
also have permutations-of-set alts = set yss

by (metis alts-conv-alts-list distinct-alts-list assms(2)
permutations-of-list remdups-id-iff-distinct)

finally show ?thesis
unfolding list-ex-iff by blast

qed

lemma kemeny-strategyproof-swf ′:
assumes prefs-from-rankings-wf R1 i < card agents
assumes mset zs = mset alts-list
assumes xs = R1 ! i R2 = R1 [i := zs]
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs (swf ′ R2)

proof −
define R1 ′ where R1 ′ = prefs-from-rankings R1
define j where j = agents-list ! i
have j: j ∈ agents

unfolding j-def using assms agents-conv-agents-list card-agents by force
have zs: linorder-on alts (of-ranking zs)

using assms by (intro linorder-of-ranking) (auto simp: mset-eq-alts-list-iff)
have xs ∈ set R1

using assms card-agents by (auto simp: prefs-from-rankings-wf-def)
hence xs: mset xs = mset alts-list

using assms by (auto simp: prefs-from-rankings-wf-def list.pred-set)
have R2 : prefs-from-rankings-wf R2

using assms prefs-from-rankings-wf-update by blast

have swap-dist-relation (R1 ′ j) (swf (R1 ′(j := of-ranking zs))) ≥ swap-dist-relation (R1 ′ j)

51

(swf R1 ′)
by (rule kemeny-strategyproof) (use assms j zs in ‹auto simp: R1 ′-def ›)

also have R1 ′ j = of-ranking xs
using assms prefs-from-rankings-nth unfolding R1 ′-def j-def by metis

also have R1 ′(j := of-ranking zs) = prefs-from-rankings R2
using assms unfolding R1 ′-def j-def using prefs-from-rankings-update by metis

also have swf R1 ′ = of-ranking (swf ′ R1)
unfolding swf ′-def R1 ′-def
by (metis assms(1) finite-linorder-on.of-ranking-ranking

prefs-from-rankings-wf-imp-is-pref-profile swf-wf ′)
also have swf (prefs-from-rankings R2) = of-ranking (swf ′ R2)

unfolding swf ′-def
by (metis assms(1 ,2 ,3 ,5) finite-linorder-on.of-ranking-ranking prefs-from-rankings-wf-update

prefs-from-rankings-wf-imp-is-pref-profile swf-wf ′)
also have swap-dist-relation (of-ranking xs) (of-ranking (swf ′ R1)) =

swap-dist xs (swf ′ R1)
using swf ′-wf [of R1] alts-list assms(1) mset-eq-alts-list-iff xs
unfolding swap-dist-def by auto

also have swap-dist-relation (of-ranking xs) (of-ranking (swf ′ R2)) =
swap-dist xs (swf ′ R2)

using xs swf ′-wf [of R2] alts-list R2 mset-eq-alts-list-iff
unfolding swap-dist-def by auto

finally show ?thesis .
qed

lemma kemeny-strategyproof-swf ′-aux:
assumes prefs-from-rankings-wf xss prefs-from-rankings-wf yss
assumes map (index ys) S1 = S1 ′ map (index ys) S2 = S2 ′

assumes inversion-number S1 ′ = d1 inversion-number S2 ′ = d2
assumes d1 > d2 ∧ i < length agents-list ∧ ys = xss ! i ∧ yss = xss[i := zs]
shows swf ′ xss 6= S1 ∨ swf ′ yss 6= S2

proof (rule ccontr)
assume ∗: ¬(swf ′ xss 6= S1 ∨ swf ′ yss 6= S2)
with assms(1 ,2) have S12 : S1 ∈ permutations-of-set alts S2 ∈ permutations-of-set alts

using swf ′-wf by (auto simp: permutations-of-set-conv-mset)
have ys ∈ set xss

using assms card-agents by (auto simp: prefs-from-rankings-wf-def)
hence ys: distinct ys set ys = alts

using assms by (auto simp: prefs-from-rankings-wf-def list.pred-set mset-eq-alts-list-iff)
have d12 : swap-dist ys S1 = d1 ∧ swap-dist ys S2 = d2

using assms(3−6) S12 ys
by (subst (1 2) swap-dist-conv-inversion-number) (simp-all add: permutations-of-set-def)

have zs ∈ set yss
using assms card-agents unfolding prefs-from-rankings-wf-def by (metis set-update-memI)

hence zs: mset zs = mset-set alts
using assms(2) by (auto simp: prefs-from-rankings-wf-def list.pred-set alts-list)

have swap-dist ys (swf ′ xss) ≤ swap-dist ys (swf ′ yss)
by (rule kemeny-strategyproof-swf ′[where i = i]) (use zs assms card-agents alts-list in auto)

52

with ∗ d12 assms show False
by simp

qed

end

locale majcons-weak-kstratproof-swf-explicit =
social-welfare-function-explicit agents alts swf agents-list alts-list +
majority-consistent-weak-kstratproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf agents-list alts-list

begin

sublocale majority-consistent-swf-explicit agents alts swf agents-list alts-list ..

lemma majority-consistent-kemeny-strategyproof-swf ′:
assumes prefs-from-rankings-wf R1 i < card agents mset zs = mset alts-list
assumes xs = R1 ! i majority-rel-mset (mset (R1 [i := zs])) ys
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs ys

proof −
define R2 where R2 = R1 [i := zs]
interpret res: finite-linorder-on alts swf (prefs-from-rankings R1)

by (intro swf-wf ′ prefs-from-rankings-wf-imp-is-pref-profile assms)
have R2-eq: prefs-from-rankings R2 = (prefs-from-rankings R1)(agents-list ! i := of-ranking

zs)
unfolding ‹R2 = -› by (rule prefs-from-rankings-update) (use assms in auto)

have R2-wf : prefs-from-rankings-wf R2
unfolding ‹R2 = -› by (rule prefs-from-rankings-wf-update) (use assms in auto)

interpret R2 : pref-profile-linorder-wf agents alts prefs-from-rankings R2
by (rule prefs-from-rankings-wf-imp-is-pref-profile) fact

interpret res ′: finite-linorder-on alts swf (prefs-from-rankings R2)
by (intro swf-wf ′ prefs-from-rankings-wf-imp-is-pref-profile R2-wf)

have xs ∈ set R1
using assms(1) ‹xs = R1 ! i› ‹i < -›
unfolding prefs-from-rankings-wf-def by auto

hence xs: distinct xs set xs = alts
using assms(1) by (auto simp: prefs-from-rankings-wf-def list.pred-set mset-eq-alts-list-iff)

have swf ′-R1 : mset (swf ′ R1) = mset alts-list
using assms(1) by (simp add: swf ′-wf alts-list)

have swf ′-R2 : mset (swf ′ R2) = mset alts-list
using R2-wf by (simp add: swf ′-wf alts-list)

have ys-eq: majority (prefs-from-rankings R2) = of-ranking ys
by (rule majority-prefs-from-rankings-eq-of-ranking) (use assms R2-wf in ‹auto simp: R2-def ›)

have mset ys = mset alts-list
by (rule majority-rel-mset-imp-mset) (use R2-wf ‹majority-rel-mset - -› in ‹auto simp:

R2-def ›)
have linorder-ys: linorder-on alts (of-ranking ys)

53

by (intro linorder-of-ranking) (use ‹mset ys = -› in ‹auto simp: mset-eq-alts-list-iff ›)

have swap-dist-relation (prefs-from-rankings R1 (agents-list ! i)) (swf (prefs-from-rankings
R1)) ≤

swap-dist-relation (prefs-from-rankings R1 (agents-list ! i)) (majority (prefs-from-rankings
R2))

unfolding R2-eq
proof (rule majority-consistent-kemeny-strategyproof)

show is-pref-profile (prefs-from-rankings R1)
using assms(1) by auto

show agents-list ! i ∈ agents
using ‹i < -› card-agents by (metis agents-list finite-agents finite-set-mset-mset-set

nth-mem-mset)
show linorder-on alts (of-ranking zs)

using ‹mset zs = -› alts-list finite-alts
by (metis finite-set-mset-mset-set linorder-of-ranking mset-eq-mset-set-imp-distinct set-mset-mset)
show linorder-on alts (majority ((prefs-from-rankings R1) (agents-list ! i := of-ranking zs)))

unfolding R2-eq [symmetric] ys-eq by (rule linorder-ys)
qed
also have prefs-from-rankings R1 (agents-list ! i) = of-ranking (R1 ! i)

by (rule prefs-from-rankings-nth) (use assms in auto)
also have R1 ! i = xs

using assms by simp
also have swf (prefs-from-rankings R1) = of-ranking (ranking (swf (prefs-from-rankings R1)))

by (simp add: res.of-ranking-ranking)
also have . . . = of-ranking (swf ′ R1)

by (simp add: swf ′-def prefs-from-rankings-def)
also have swap-dist-relation (of-ranking xs) (of-ranking (swf ′ R1)) = swap-dist xs (swf ′ R1)

unfolding swap-dist-def using xs swf ′-R1 by (auto simp: mset-eq-alts-list-iff)
also have majority (prefs-from-rankings R2) = of-ranking ys

by (rule ys-eq)
also have swap-dist-relation (of-ranking xs) . . . = swap-dist xs ys
unfolding swap-dist-def using xs swf ′-R2 ‹mset ys = -› by (auto simp: mset-eq-alts-list-iff)

finally show ?thesis
using assms by simp

qed

end

end

2.7 Lowering constructions for SWFs
theory SWF-Lowering

imports SWF-Explicit
begin

In this section, we will give constructions that turn an SWF for some number of alter-
natives into an SWF for fewer alternatives and agents.

54

Concretely:
• We can create an SWF for fewer alternatives by simply adding the missing alter-

natives at the very and of all the agents’ rankings in some fixed orders. However,
this only works if the SWF is unanimous, so that the dummy alternatives are
guaranteed to be at the very end of the output ranking.

• If the number of agents is n = kn′ for some k > 0, we can create an SWF for n′

agents by simply cloning every agent in the input profile k times.
These constructions preserve anonymity, unanimity, and Kemeny-strategyproofness.

2.7.1 Decreasing the number of alternatives
locale swf-restrict-alts = social-welfare-function agents alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
fixes dummy-alts alts ′

assumes alts ′-nonempty: alts ′ 6= {} and finite-alts ′: finite alts ′

assumes dummy-alts-alts ′: mset-set alts = mset dummy-alts + mset-set alts ′

begin

lemma alts ′: alts ′ ⊆ alts alts ′ 6= {}
proof −

show alts ′ ⊆ alts using dummy-alts-alts ′

by (metis finite-alts finite-alts ′ mset-subset-eq-add-right msubset-mset-set-iff)
show alts ′ 6= {}

by (rule alts ′-nonempty)
qed

sublocale new: linorder-election agents alts ′

by standard (use alts ′ finite-subset[OF - finite-alts] in auto)

lemma dummy-alts: distinct dummy-alts set dummy-alts = alts − alts ′

proof −
show distinct dummy-alts using dummy-alts-alts ′

by (metis add-diff-cancel-right ′ alts ′(1) finite-Diff
finite-alts mset-eq-mset-set-iff mset-set-Diff permutations-of-setD(2))

show set dummy-alts = alts − alts ′

by (metis add-diff-cancel-right ′ alts ′(1) dummy-alts-alts ′ finite-Diff2 finite-alts finite-alts ′

finite-set-mset-mset-set mset-set-Diff set-mset-mset)
qed

The following lifts a ranking on the smaller set of alternatives to the full set, by adding
the dummy alternatives at the end in the order we fixed.
definition extend-ranking :: ′alt relation ⇒ ′alt relation where

extend-ranking R =
(λx y. R x y ∨ of-ranking dummy-alts x y ∨ x ∈ alts − alts ′ ∧ y ∈ alts ′)

lemma linorder-on-extend-ranking:
assumes linorder-on alts ′ R

55

shows linorder-on alts (extend-ranking R)
proof −

interpret R: linorder-on alts ′ R
by fact

have linorder-on ((alts − alts ′) ∪ alts ′)
(λx y. if x ∈ alts − alts ′ then of-ranking dummy-alts x y ∨ y ∈ alts ′ else R x y)

proof (rule linorder-on-concat)
show linorder-on (alts − alts ′) (of-ranking dummy-alts)

by (rule linorder-of-ranking) (use dummy-alts in auto)
qed (use assms in auto)
also have . . . = extend-ranking R

using R.not-outside of-ranking-imp-in-set[of dummy-alts] dummy-alts
by (auto simp: extend-ranking-def fun-eq-iff)

also have (alts − alts ′) ∪ alts ′ = alts
using alts ′ by auto

finally show ?thesis .
qed

lemma restrict-extend-ranking:
assumes linorder-on alts ′ R
shows restrict-relation alts ′ (extend-ranking R) = R

proof −
interpret R: linorder-on alts ′ R

by fact
show ?thesis

using alts ′ R.not-outside of-ranking-imp-in-set[of dummy-alts] dummy-alts
unfolding restrict-relation-def extend-ranking-def fun-eq-iff by auto

qed

lemma swap-dist-extend-ranking:
assumes linorder-on alts ′ R linorder-on alts ′ S
shows swap-dist-relation (extend-ranking R) (extend-ranking S) = swap-dist-relation R S

proof −
interpret R: linorder-on alts ′ R by fact
have swap-dist-relation-aux (extend-ranking R) (extend-ranking S) = swap-dist-relation-aux R

S
unfolding swap-dist-relation-aux-def extend-ranking-def
using R.not-outside of-ranking-imp-in-set[of dummy-alts] dummy-alts by fast

thus ?thesis
by (simp add: swap-dist-relation-def)

qed

lemma extend-ranking-eq-iff :
assumes

∧
x y. R x y =⇒ x ∈ alts ′ ∧ y ∈ alts ′ ∧x y. S x y =⇒ x ∈ alts ′ ∧ y ∈ alts ′

shows extend-ranking R = extend-ranking S ←→ R = S
using of-ranking-imp-in-set[of dummy-alts] dummy-alts alts ′ assms
unfolding extend-ranking-def fun-eq-iff by blast

We extend a profile to the full set of alternatives by extending each ranking.

56

definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where
extend-profile R i = (λx y. i ∈ agents ∧ extend-ranking (R i) x y)

lemma is-pref-profile-extend [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)

proof
fix i assume i: i ∈ agents
interpret R: pref-profile-linorder-wf agents alts ′ R

by fact
have linorder-on alts (extend-ranking (R i))

using i by (simp add: linorder-on-extend-ranking)
thus linorder-on alts (extend-profile R i)

using i by (simp add: extend-profile-def)
qed (auto simp: extend-profile-def)

lemma count-extend-ranking-multiset:
assumes

∧
R. R ∈# Rs =⇒ linorder-on alts ′ R and xy: x ∈ alts y ∈ alts

shows size {#R∈#Rs. extend-ranking R x y#} =
(if x ∈ alts ′ ∧ y ∈ alts ′ then size {#R∈#Rs. R x y#}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then size Rs else 0)

proof −
have ∗: x ∈ alts ′ ∧ y ∈ alts ′ if R x y R ∈# Rs for R
proof −

interpret linorder-on alts ′ R
using assms(1) that by blast

show ?thesis
using not-outside[OF that(1)] by auto

qed
have ∗∗: x ∈ alts − alts ′ ∧ y ∈ alts − alts ′ if of-ranking dummy-alts x y

using of-ranking-imp-in-set[OF that] dummy-alts by simp

have {#R∈#Rs. extend-ranking R x y#} =
(if x ∈ alts ′ ∧ y ∈ alts ′ then
{#R∈#Rs. R x y#}

else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then Rs else {#})
unfolding extend-ranking-def
using xy alts ′ by (auto intro!: filter-mset-cong simp: filter-mset-empty-conv dest: ∗ ∗∗)

also have size . . . = (if x ∈ alts ′ ∧ y ∈ alts ′ then size {#R∈#Rs. R x y#}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then size Rs else 0)

by simp
finally show ?thesis .

qed

lemma count-extend-profile:
assumes new.is-pref-profile R and xy: x ∈ alts y ∈ alts
shows card {i∈agents. extend-profile R i x y} =

(if x ∈ alts ′ ∧ y ∈ alts ′ then card {i∈agents. R i x y}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then card agents else 0)

57

proof −
interpret R: pref-profile-linorder-wf agents alts ′ R by fact
have card {i∈agents. extend-profile R i x y} =

(card {i∈agents. extend-ranking (R i) x y})
using xy by (simp add: extend-profile-def extend-ranking-def)

also have {i∈agents. extend-ranking (R i) x y} =
(if x ∈ alts ′ ∧ y ∈ alts ′ then
{i∈agents. R i x y}

else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then agents else {})
unfolding extend-ranking-def
using xy alts ′ dummy-alts of-ranking-imp-in-set[of dummy-alts x y] R.not-outside(2 ,3)[of -

x y]
by force

also have card . . . = (if x ∈ alts ′ ∧ y ∈ alts ′ then card {i∈agents. R i x y}
else if x /∈ alts ′ ∧ (y ∈ alts ′ ∨ of-ranking dummy-alts x y) then card agents

else 0)
by simp

finally show ?thesis .
qed

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = extend-ranking (majority R)

proof (intro ext)
fix x y
interpret R: pref-profile-linorder-wf agents alts ′ R by fact
interpret R ′: pref-profile-linorder-wf agents alts extend-profile R

using assms(1) by auto
show majority (extend-profile R) x y = extend-ranking (majority R) x y
proof (cases x ∈ alts ∧ y ∈ alts)

case xy: True
show ?thesis
using xy assms(1) dummy-alts of-ranking-imp-in-set[of dummy-alts x y] R.not-outside(2 ,3)[of

- x y]
of-ranking-imp-in-set[of dummy-alts y x] of-ranking-total[of x dummy-alts y]

by (auto simp: R ′.majority-iff ′ R.majority-iff ′ count-extend-profile card-gt-0-iff extend-ranking-def)
next

case False
thus ?thesis using alts ′ dummy-alts of-ranking-imp-in-set[of dummy-alts x y]

by (auto simp: R ′.majority-iff ′ extend-ranking-def R.majority-iff ′)
qed

qed

lemma majority-mset-extend-profile:
assumes

∧
R. R ∈# Rs =⇒ linorder-on alts ′ R Rs 6= {#}

shows majority-mset (image-mset extend-ranking Rs) = extend-ranking (majority-mset Rs)
proof (intro ext)

fix x y
have linorder : linorder-on alts (extend-ranking R) if R ∈# Rs for R

58

using assms(1)[OF that] by (rule linorder-on-extend-ranking)
have ∗: x ∈ alts ′ ∧ y ∈ alts ′ if majority-mset Rs x y

using assms by (meson linorder-on-def majority-mset-not-outside order-on-def that)
have ∗∗: x ∈ alts − alts ′ ∧ y ∈ alts − alts ′ if of-ranking dummy-alts x y

using of-ranking-imp-in-set[OF that] dummy-alts by simp

show majority-mset (image-mset extend-ranking Rs) x y = extend-ranking (majority-mset Rs)
x y

proof (cases x ∈ alts ∧ y ∈ alts)
case xy: True
have majority-mset (image-mset extend-ranking Rs) x y ←→

2 ∗ size {#R ∈# Rs. extend-ranking R x y#} ≥ size Rs
by (subst majority-mset-iff-ge[of - alts] ∗)
(use linorder ‹Rs 6= {#}› xy in ‹auto simp: linorder-on-def order-on-def filter-mset-image-mset›)

also have . . . = extend-ranking (majority-mset Rs) x y
by (subst count-extend-ranking-multiset)

(use assms xy in ‹auto simp: extend-ranking-def majority-mset-iff-ge[of - alts ′] dest: ∗
∗∗›)

finally show ?thesis .
next

case xy: False
have ¬majority-mset (image-mset extend-ranking Rs) x y

using majority-mset-not-outside[of image-mset extend-ranking Rs x y alts] xy linorder
using linorder-on-def total-preorder-on.axioms(1) by fastforce

moreover have ¬extend-ranking (majority-mset Rs) x y
using xy alts ′ by (auto simp: extend-ranking-def dest: ∗ ∗∗)

ultimately show ?thesis
by simp

qed
qed

We define our new SWF on the full set of alternatives by extending the input profile and
removing the extra alternatives from the output ranking.
definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where

swf-low R = restrict-relation alts ′ (swf (extend-profile R))

sublocale new: social-welfare-function agents alts ′ swf-low
proof

fix R assume new.is-pref-profile R
then interpret swf : linorder-on alts swf (extend-profile R)

using is-pref-profile-extend swf-wf by blast
show linorder-on alts ′ (swf-low R)

unfolding swf-low-def by (rule swf .linorder-on-restrict-subset) (fact alts ′)
qed

Our construction preserves anonymity, unanimity, and Kemeny-strategyproofness.
lemma anonymous-restrict:

assumes anonymous-swf agents alts swf
shows anonymous-swf agents alts ′ swf-low

59

proof
interpret anonymous-swf agents alts swf

by fact
fix π R
assume π: π permutes agents and R: new.is-pref-profile R
have swf-low (R ◦ π) = restrict-relation alts ′ (swf (extend-profile (R ◦ π)))

by (simp add: swf-low-def)
also have extend-profile (R ◦ π) = extend-profile R ◦ π

using permutes-in-image[OF π] by (simp add: extend-profile-def fun-eq-iff)
also have swf . . . = swf (extend-profile R)

by (rule anonymous) (use π R in auto)
also have restrict-relation alts ′ . . . = swf-low R

by (simp add: swf-low-def)
finally show swf-low (R ◦ π) = swf-low R .

qed

lemma unanimous-restrict:
assumes unanimous-swf agents alts swf
shows unanimous-swf agents alts ′ swf-low

proof
interpret unanimous-swf agents alts swf

by fact
fix R x y
assume R: new.is-pref-profile R and xy: ∀ i∈agents. y ≺[R i] x
from R xy have xy ′: x ∈ alts ′ ∧ y ∈ alts ′

by (metis equals0I nonempty-agents pref-profile-linorder-wf .not-outside(2 ,3)
strongly-preferred-def)

have y ≺[swf (extend-profile R)] x
by (rule unanimous)

(use R xy xy ′ of-ranking-imp-in-set[of dummy-alts] dummy-alts
in ‹auto simp: extend-profile-def extend-ranking-def strongly-preferred-def ›)

thus y ≺[swf-low R] x
unfolding swf-low-def using xy ′ by (auto simp: restrict-relation-def strongly-preferred-def)

qed

lemma majority-consistent-restrict:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf agents alts ′ swf-low

proof
fix R assume R: new.is-pref-profile R linorder-on alts ′ (majority R)
interpret majority-consistent-swf agents alts swf by fact
have swf-low R = restrict-relation alts ′ (swf (extend-profile R))

by (simp add: swf-low-def)
also have swf (extend-profile R) = majority (extend-profile R)

by (rule majority-consistent)
(use R in ‹auto simp: majority-extend-profile linorder-on-extend-ranking›)

also have . . . = extend-ranking (majority R)
by (rule majority-extend-profile) fact

60

also have restrict-relation alts ′ (extend-ranking (majority R)) = majority R
by (rule restrict-extend-ranking) fact

finally show swf-low R = majority R .
qed

end

locale unanimous-swf-restrict-alts =
swf-restrict-alts agents alts swf dummy-alts alts ′ +
unanimous-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf dummy-alts alts ′

begin

sublocale new: unanimous-swf agents alts ′ swf-low
by (rule unanimous-restrict) unfold-locales

lemma swf-dummy-alts-least-preferred:
assumes new.is-pref-profile R x ∈ alts ′ y ∈ alts − alts ′

shows x �[swf (extend-profile R)] y
proof (rule unanimous)

interpret R: pref-profile-linorder-wf agents alts ′ R
by fact

show ∀ i∈agents. x �[extend-profile R i] y
using assms(2 ,3) alts ′ R.not-outside(3) of-ranking-imp-in-set[of dummy-alts] dummy-alts
by (auto simp: extend-profile-def extend-ranking-def strongly-preferred-def)

qed (use assms in auto)

lemma swf-strongly-preferred-dummy-alts:
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

assumes x �[of-ranking dummy-alts] y
shows x �[swf (extend-profile R)] y

proof (rule unanimous)
interpret R: pref-profile-linorder-wf agents alts ′

by fact
show ∀ i∈agents. y ≺[extend-profile R i] x

using assms(2−) R.not-outside(3)
by (auto simp: strongly-preferred-def extend-profile-def extend-ranking-def)

qed (use assms(1) in auto)

lemma swf-preferred-dummy-alts-iff :
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

shows x �[of-ranking dummy-alts] y ←→ x �[swf (extend-profile R)] y
proof −

interpret dummy-alts: linorder-on alts − alts ′ of-ranking dummy-alts
by (rule linorder-of-ranking) (use dummy-alts in auto)

interpret res: linorder-on alts swf (extend-profile R)
by (rule swf-wf) (use assms(1) in auto)

61

show ?thesis
using swf-strongly-preferred-dummy-alts[OF assms(1−3)]

swf-strongly-preferred-dummy-alts[OF assms(1 ,3 ,2)]
dummy-alts.total res.total dummy-alts.antisymmetric res.antisymmetric assms(2 ,3)

unfolding strongly-preferred-def by blast
qed

lemma swf-strongly-preferred-dummy-alts-iff :
assumes new.is-pref-profile R x ∈ alts − alts ′ y ∈ alts − alts ′

shows x �[swf (extend-profile R)] y ←→ x �[of-ranking dummy-alts] y
proof −

interpret dummy-alts: linorder-on alts − alts ′ of-ranking dummy-alts
by (rule linorder-of-ranking) (use dummy-alts in auto)

interpret res: linorder-on alts swf (extend-profile R)
by (rule swf-wf) (use assms(1) in auto)

show ?thesis
using swf-strongly-preferred-dummy-alts[OF assms(1−3)]

swf-strongly-preferred-dummy-alts[OF assms(1 ,3 ,2)]
dummy-alts.total res.total dummy-alts.antisymmetric res.antisymmetric assms(2 ,3)

unfolding strongly-preferred-def by blast
qed

lemma extend-ranking-swf-low:
assumes new.is-pref-profile R
shows extend-ranking (swf-low R) = swf (extend-profile R)

proof −
interpret lhs: linorder-on alts extend-ranking (swf-low R)

using assms by (intro linorder-on-extend-ranking new.swf-wf)
interpret rhs: linorder-on alts swf (extend-profile R)

by (rule swf-wf) (use assms in auto)

have extend-ranking (swf-low R) x y ←→ swf (extend-profile R) x y
if x ∈ alts y ∈ alts for x y

proof (cases x ∈ alts ′; cases y ∈ alts ′)
assume x ∈ alts ′ y ∈ alts ′

thus ?thesis using of-ranking-imp-in-set[of dummy-alts x y] dummy-alts
by (auto simp: swf-low-def restrict-relation-def extend-ranking-def)

next
assume x ∈ alts ′ y /∈ alts ′

thus ?thesis
using that of-ranking-imp-in-set[of dummy-alts x y] dummy-alts

swf-dummy-alts-least-preferred[of R x y] assms
by (auto simp: swf-low-def restrict-relation-def extend-ranking-def strongly-preferred-def)

next
assume x /∈ alts ′ y ∈ alts ′

thus ?thesis
using that swf-dummy-alts-least-preferred[of R y x] assms
by (auto simp: swf-low-def restrict-relation-def extend-ranking-def strongly-preferred-def)

next

62

assume x /∈ alts ′ y /∈ alts ′

thus ?thesis using that swf-preferred-dummy-alts-iff [OF assms]
by (auto simp: swf-low-def restrict-relation-def extend-ranking-def)

qed
thus ?thesis

using lhs.not-outside rhs.not-outside unfolding fun-eq-iff by blast
qed

lemma kemeny-strategyproof-restrict:
assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf agents alts ′ swf-low

proof
interpret kemeny-strategyproof-swf agents alts swf

by fact
fix R i S
assume R: new.is-pref-profile R and i: i ∈ agents and S : linorder-on alts ′ S
define R ′ where R ′ = extend-profile R
define S ′ where S ′ = extend-ranking S

interpret R: pref-profile-linorder-wf agents alts ′ R
by fact

interpret Ri: linorder-on alts ′ R i
using i by simp

have swap-dist-relation (R i) (swf-low R) = swap-dist-relation (R ′ i) (swf R ′)
proof −

have swap-dist-relation (R i) (swf-low R) =
swap-dist-relation (extend-ranking (R i)) (extend-ranking (swf-low R))

by (rule swap-dist-extend-ranking [symmetric])
(use R Ri.linorder-on-axioms in ‹auto intro: new.swf-wf ›)

also have extend-ranking (R i) = R ′ i
using i by (simp add: R ′-def extend-profile-def)

also have extend-ranking (swf-low R) = swf R ′

by (subst extend-ranking-swf-low) (use R in ‹simp-all add: R ′-def ›)
finally show swap-dist-relation (R i) (swf-low R) = swap-dist-relation (R ′ i) (swf R ′) .

qed

also have swap-dist-relation (R ′ i) (swf R ′) ≤ swap-dist-relation (R ′ i) (swf (R ′(i := S ′)))
by (rule kemeny-strategyproof)

(use R S i in ‹auto simp: R ′-def S ′-def linorder-on-extend-ranking›)
also have swap-dist-relation (R ′ i) (swf (R ′(i := S ′))) =

swap-dist-relation (R i) (swf-low (R(i := S)))
proof −

have swap-dist-relation (R i) (swf-low (R(i := S))) =
swap-dist-relation (extend-ranking (R i)) (extend-ranking (swf-low (R(i := S))))

by (rule swap-dist-extend-ranking [symmetric])
(use R S Ri.linorder-on-axioms i in ‹auto intro: new.swf-wf ›)

also have extend-ranking (R i) = R ′ i
using i by (simp add: R ′-def extend-profile-def)

63

also have extend-ranking (swf-low (R(i := S))) = swf (extend-profile (R(i := S)))
by (subst extend-ranking-swf-low) (use R S i in auto)

also have extend-profile (R(i := S)) = R ′(i := S ′)
using i unfolding R ′-def S ′-def extend-profile-def by (auto simp: fun-eq-iff)

finally show swap-dist-relation (R ′ i) (swf (R ′(i := S ′))) =
swap-dist-relation (R i) (swf-low (R(i := S))) ..

qed
finally show swap-dist-relation (R i) (swf-low R) ≤ swap-dist-relation (R i) (swf-low (R(i :=

S))) .
qed

end

locale majority-consistent-weak-kstratproof-swf-restrict-alts =
majority-consistent-weak-kstratproof-swf agents alts swf +
swf-restrict-alts agents alts swf dummy-alts alts ′

for agents :: ′agent set and alts :: ′alt set and swf dummy-alts alts ′

begin

sublocale new: majority-consistent-swf agents alts ′ swf-low
by (rule majority-consistent-restrict) unfold-locales

sublocale new: majority-consistent-weak-kstratproof-swf agents alts ′ swf-low
proof

fix R i S
assume R: new.is-pref-profile R and i: i ∈ agents and S : linorder-on alts ′ S
assume maj: linorder-on alts ′ (majority (R(i := S)))
define R ′ where R ′ = extend-profile R
define S ′ where S ′ = extend-ranking S
interpret R: pref-profile-linorder-wf agents alts ′ R by fact
interpret Ri: finite-linorder-on alts ′ R i

using i by simp

have maj ′: linorder-on alts (majority (R ′(i := S ′)))
proof −

have linorder-on alts (extend-ranking (majority (R(i := S))))
by (intro linorder-on-extend-ranking maj)

also have extend-ranking (majority (R(i := S))) = majority (extend-profile (R(i := S)))
by (rule majority-extend-profile [symmetric]) (use R i S in auto)

also have extend-profile (R(i := S)) = R ′(i := S ′)
unfolding R ′-def S ′-def using i by (auto simp: extend-profile-def fun-eq-iff)

finally show linorder-on alts (majority (R ′(i := S ′))) .
qed

have swap-dist-relation (R i) (swf-low R) =
swap-dist-relation (R i) (restrict-relation alts ′ (swf R ′))

by (simp add: swf-low-def R ′-def)
also have . . . = swap-dist-relation (restrict-relation alts ′ (R ′ i)) (restrict-relation alts ′ (swf

64

R ′))
using i Ri.linorder-on-axioms
by (simp add: R ′-def extend-profile-def restrict-extend-ranking)

also have . . . ≤ swap-dist-relation (R ′ i) (swf R ′)
proof (rule swap-dist-relation-restrict)

show linorder-on alts (R ′ i)
by (metis R R ′-def i is-pref-profile-extend pref-profile-linorder-wf .prefs-wf ′)

qed (use R in ‹auto intro!: swf-wf simp: R ′-def ›)
also have . . . ≤ swap-dist-relation (R ′ i) (majority (R ′(i := S ′)))

by (rule majority-consistent-kemeny-strategyproof)
(use R i S maj ′ in ‹auto simp: R ′-def S ′-def linorder-on-extend-ranking›)

also have R ′(i := S ′) = extend-profile (R(i := S))
using i by (auto simp: S ′-def R ′-def extend-profile-def)

also have majority . . . = extend-ranking (majority (R(i := S)))
by (rule majority-extend-profile) (use R i S in auto)

also have R ′ i = extend-ranking (R i)
using i by (auto simp: R ′-def extend-profile-def fun-eq-iff)

also have swap-dist-relation (extend-ranking (R i)) (extend-ranking (majority (R(i := S))))
=

swap-dist-relation (R i) (majority (R(i := S)))
by (rule swap-dist-extend-ranking) (use R i S maj in auto)

finally show swap-dist-relation (R i) (swf-low R) ≤
swap-dist-relation (R i) (majority (R(i := S))) .

qed

end

locale swf-restrict-alts-explicit =
swf-restrict-alts agents alts swf dummy-alts alts ′ +
social-welfare-function-explicit agents alts swf agents-list alts-list
for agents :: ′agent set and alts :: ′alt set
and swf dummy-alts alts ′ agents-list alts-list alts-list ′ +
assumes alts-list-expand: alts-list = alts-list ′ @ dummy-alts

begin

lemma mset-alts-list: mset alts-list = mset alts-list ′ + mset dummy-alts
by (simp add: alts-list-expand)

sublocale new: social-welfare-function-explicit agents alts ′ swf-low agents-list alts-list ′

proof
show mset alts-list ′ = mset-set alts ′

using alts-list dummy-alts-alts ′ mset-alts-list by auto
qed (fact agents-list)

definition extend :: ′alt list ⇒ ′alt list where extend = (λxs. xs @ dummy-alts)

lemma distinct-alts-list ′: distinct alts-list ′

and alts-list ′-not-in-dummy-alts: set alts-list ′ ∩ set dummy-alts = {}

65

using distinct-alts-list unfolding alts-list-expand by auto

lemma wf-extend:
assumes new.prefs-from-rankings-wf R
shows prefs-from-rankings-wf (map extend R)
using assms unfolding new.prefs-from-rankings-wf-def prefs-from-rankings-wf-def extend-def
by (auto simp: list.pred-set mset-alts-list)

lemma of-ranking-extend:
assumes mset xs = mset alts-list ′

shows of-ranking (extend xs) = extend-ranking (of-ranking xs)
unfolding extend-def of-ranking-append extend-ranking-def fun-eq-iff
unfolding alts-conv-alts-list alts-list-expand
using alts-list ′-not-in-dummy-alts new.mset-eq-alts-list-iff [of xs] assms new.alts-conv-alts-list
by auto

lemma swap-dist-extend:
assumes mset xs = mset alts-list ′ mset ys = mset alts-list ′

shows swap-dist (extend xs) (extend ys) = swap-dist xs ys
proof −

have ∗: distinct xs ∧ set xs = alts ′ ∧ distinct ys ∧ set ys = alts ′

using assms by (metis new.mset-eq-alts-list-iff)
show ?thesis unfolding extend-def

by (rule swap-dist-append-right) (use ∗ dummy-alts alts-list ′-not-in-dummy-alts in auto)
qed

lemma prefs-from-rankings-extend:
assumes R: new.prefs-from-rankings-wf R
shows prefs-from-rankings (map extend R) = extend-profile (new.prefs-from-rankings R)
(is ?lhs = ?rhs)

proof
fix i
note R ′ = wf-extend[OF R]
show ?lhs i = ?rhs i
proof (cases i ∈ agents)

case True
then obtain j where j: j < card agents i = agents-list ! j

by (metis agents-conv-agents-list card-agents index-less-size-conv nth-index)
show ?thesis

using j(1) new.prefs-from-rankings-nth[OF R, of j] prefs-from-rankings-nth[OF R ′, of j] R
True

unfolding j(2)
by (simp add: extend-profile-def new.prefs-from-rankings-wf-def of-ranking-extend list.pred-set)

qed (auto simp: extend-profile-def prefs-from-rankings-outside)
qed

lemma majority-rel-mset-extend:
assumes R: new.prefs-from-rankings-wf R and S : mset S = mset alts-list ′

shows majority-rel-mset (mset (map extend R)) (extend S) ←→ majority-rel-mset (mset R) S

66

proof −
have S ′: distinct S ∧ set S = alts ′ using S unfolding extend-def

by (metis new.mset-eq-alts-list-iff)
have majority-rel-mset (mset (map extend R)) (extend S) ←→

(majority-mset (image-mset (of-ranking ◦ extend) (mset R)) = of-ranking (extend S) ∧
distinct (extend S))

by (simp add: majority-rel-mset-def image-mset.compositionality)
also have distinct (extend S) ←→ distinct S

using S ′ alts-list ′-not-in-dummy-alts dummy-alts by (auto simp: extend-def)
also have of-ranking (extend S) = extend-ranking (of-ranking S)

by (rule of-ranking-extend) (use S in simp-all)
also have image-mset (of-ranking ◦ extend) (mset R) =

image-mset (extend-ranking ◦ of-ranking) (mset R) unfolding o-def
by (intro image-mset-cong of-ranking-extend)

(use R in ‹auto simp: new.prefs-from-rankings-wf-def list.pred-set›)
also have . . . = image-mset extend-ranking (image-mset of-ranking (mset R))

by (simp add: image-mset.compositionality o-def)
also have majority-mset . . . = extend-ranking (majority-mset (image-mset of-ranking (mset

R)))
proof −

have [simp]: R 6= []
using R by (auto simp: new.prefs-from-rankings-wf-def)

have linorder-on alts ′ (of-ranking rs) if rs ∈ set R for rs
using that R new.mset-eq-alts-list-iff [of rs]
by (intro linorder-of-ranking) (auto simp: new.prefs-from-rankings-wf-def list.pred-set)

thus ?thesis
by (intro majority-mset-extend-profile) auto

qed
also have extend-ranking (majority-mset (image-mset of-ranking (mset R))) =

extend-ranking (of-ranking S) ←→
majority-mset (image-mset of-ranking (mset R)) = of-ranking S

proof (rule extend-ranking-eq-iff)
have ∗: preorder-on alts ′ (of-ranking rs) if rs ∈ set R for rs
proof −

have distinct rs ∧ set rs = alts ′

using that R new.mset-eq-alts-list-iff [of rs]
by (auto simp: new.prefs-from-rankings-wf-def list.pred-set)

then interpret linorder-on alts ′ of-ranking rs
by (intro linorder-of-ranking) auto

show ?thesis ..
qed
show x ∈ alts ′ ∧ y ∈ alts ′

if majority-mset (image-mset of-ranking (mset R)) x y for x y
using majority-mset-not-outside[OF that, of alts ′] ∗ by auto

next
show x ∈ alts ′ ∧ y ∈ alts ′ if of-ranking S x y for x y

using S ′ of-ranking-imp-in-set[OF that] by auto
qed
also have . . . ∧ distinct S ←→ majority-rel-mset (mset R) S

67

unfolding majority-rel-mset-def ..
finally show ?thesis .

qed

lemma new-swf ′-eq:
assumes R: new.prefs-from-rankings-wf R
shows new.swf ′ R = filter (λx. x ∈ alts ′) (swf ′ (map extend R))

proof −
have mset (swf ′ (map extend R)) = mset-set alts

by (intro swf ′-wf wf-extend R)
hence distinct (swf ′ (map extend R))

using distinct-alts-list mset-eq-imp-distinct-iff alts-list by metis
have new.swf ′ R = ranking (swf-low (new.prefs-from-rankings R))

by (simp add: new.swf ′-def new.swf ′-def new.prefs-from-rankings-def)
also have . . . = ranking (restrict-relation alts ′ (swf (prefs-from-rankings (map extend R))))

using R by (simp add: swf-low-def prefs-from-rankings-extend)
also have swf (prefs-from-rankings (map extend R)) =

of-ranking (ranking (swf (prefs-from-rankings (map extend R))))
by (rule finite-linorder-on.of-ranking-ranking [OF swf-wf ′, symmetric])

(use R in ‹auto intro: wf-extend›)
also have . . . = of-ranking (swf ′ (map extend R))

unfolding swf ′-def by (simp add: new.prefs-from-rankings-def swf ′-def)
also have restrict-relation alts ′ . . . =

of-ranking (filter (λx. x ∈ alts ′) (swf ′ (map extend R)))
unfolding of-ranking-filter Collect-mem-eq ..

also have ranking . . . = filter (λx. x ∈ alts ′) (swf ′ (map extend R))
by (intro ranking-of-ranking distinct-filter)

(use ‹distinct (swf ′ (map extend R))› in auto)
finally show ?thesis .

qed

end

2.7.2 Decreasing the number of agents by a factor

The nicest way to formalise the cloning construction would be using the view where a
profile is a multiset of rankings. However, this requires anonymity. For full generality,
we show that the construction also works in the absence of anonymity.
To this end, we first define the notion of a cloning. Let A ⊆ B. The idea is that B \ A
consists of clones of elements of A, and each element of A is cloned equally often. We
model this via a function called “unclone” which maps each element of A to itself and
every element of A \B to the original element in B that it was cloned from.
locale cloning =

fixes A B unclone
assumes subset: A ⊆ B
assumes finite: finite B
assumes unclone:

∧
x. x ∈ B =⇒ unclone x ∈ A

assumes unclone-ident:
∧

x. x ∈ A =⇒ unclone x = x

68

assumes card-unclone:
x ∈ A =⇒ y ∈ A =⇒ card (unclone −‘ {x} ∩ B) = card (unclone −‘ {y} ∩ B)

begin

definition clones :: ′a ⇒ ′a set
where clones i = unclone −‘ {i} ∩ B

definition factor :: nat
where factor = card B div card A

lemma finite-clones: finite (clones i)
by (rule finite-subset[OF - finite]) (auto simp: clones-def)

lemma clones-outside: i /∈ A =⇒ clones i = {}
unfolding clones-def using unclone by auto

lemma card-clones ′:
assumes i ∈ A
shows card (clones i) ∗ card A = card B

proof −
have B = (

⋃
i∈A. clones i)

using unclone unfolding clones-def by blast
also from subset have card . . . = (

∑
j∈A. card (clones j))

by (subst card-UN-disjoint) (auto simp: clones-def intro: finite-subset[OF - finite])
also have . . . = (

∑
j∈A. card (clones i))

unfolding clones-def by (intro sum.cong card-unclone assms refl)
also have . . . = card A ∗ card (clones i)

by simp
finally show ?thesis by (simp add: mult-ac)

qed

lemma card-clones:
assumes i ∈ A
shows card (clones i) = factor

proof (cases B = {})
case True
thus ?thesis

unfolding clones-def factor-def by simp
next

case False
hence A 6= {}

using unclone by auto
have factor = card (clones i) ∗ card A div card A

unfolding factor-def using card-clones ′[OF assms] by simp
also have . . . = card (clones i)

by (rule nonzero-mult-div-cancel-right)
(use finite-subset[OF subset finite] ‹A 6= {}› in auto)

finally show ?thesis ..
qed

69

lemma image-mset-unclone:
image-mset unclone (mset-set B) = repeat-mset factor (mset-set A)
(is ?lhs = ?rhs)

proof (rule multiset-eqI)
fix i :: ′a
have count (image-mset unclone (mset-set B)) i =

sum (count (mset-set B)) (clones i)
by (subst count-image-mset) (simp-all add: clones-def finite)

also have . . . = sum (λ-. 1) (clones i)
by (rule sum.cong) (auto simp: clones-def finite)

also have . . . = card (clones i)
by simp

also have . . . = (if i ∈ A then factor else 0)
using card-clones by (auto simp: clones-outside)

also have . . . = count (repeat-mset factor (mset-set A)) i
using finite-subset[OF subset finite] by (simp add: count-mset-set ′)

finally show count ?lhs i = count ?rhs i .
qed

lemma factor-pos: B 6= {} =⇒ factor > 0
using card-clones card-clones ′ local.finite unclone by fastforce

end

It is easy to see (but somewhat tedious to show) that a cloning exists whenever |B| is a
multiple of |A|
lemma cloning-exists:

assumes A ⊆ B finite B A 6= {} card A dvd card B
shows ∃ unclone. cloning A B unclone
using assms(2 ,1 ,3 ,4)

proof (induction rule: finite-psubset-induct)
case (psubset B)
show ?case
proof (cases A = B)

case True
have cloning A B id

by standard (use True psubset.hyps in auto)
thus ?thesis

by blast
next

case False
have card B ≥ card A

using False psubset.prems card-mono psubset.hyps by blast
hence card (B − A) = card B − card A

by (subst card-Diff-subset) (use psubset.hyps psubset.prems in auto)
also have . . . ≥ card A

using False psubset.prems psubset.hyps
by (meson antisym-conv1 dvd-imp-le dvd-minus-self psubset-card-mono zero-less-diff)

70

finally obtain X where X : X ⊆ B − A card X = card A
by (meson obtain-subset-with-card-n)

obtain f where f : bij-betw f X A
using X(2) psubset.prems psubset.hyps
by (metis card-gt-0-iff finite-same-card-bij finite-subset)

have ∃ unclone. cloning A (B − X) unclone
proof (rule psubset.IH)

have X 6= {}
using X psubset.hyps psubset.prems by force

thus B − X ⊂ B
using X(1) by blast

have card A dvd card B − card X
using X ‹card B ≥ card A› dvd-minus-self psubset.prems(3) by metis

also have card B − card X = card (B − X)
by (subst card-Diff-subset) (use X finite-subset[OF X(1)] psubset.hyps in auto)

finally show card A dvd card (B − X) .
qed (use X psubset.hyps psubset.prems in auto)
then obtain unclone where cloning A (B − X) unclone ..
interpret cloning A B − X unclone by fact

define unclone ′ where unclone ′ = (λx. if x ∈ X then f x else unclone x)
have cloning A B unclone ′

proof
show A ⊆ B finite B

by fact+
next

show unclone ′ x ∈ A if x ∈ B for x
using unclone f that by (auto simp: unclone ′-def bij-betw-def)

next
show unclone ′ x = x if x ∈ A for x

using that X unclone-ident by (auto simp: unclone ′-def)
next

have ∗: card (unclone ′ −‘ {x} ∩ B) = factor + 1 if x ∈ A for x
proof −

have unclone ′ −‘ {x} ∩ B = (unclone ′ −‘ {x} ∩ (B − X)) ∪ (unclone ′ −‘ {x} ∩ X)
using X by blast

also have card . . . = card (unclone ′ −‘ {x} ∩ (B − X)) + card (unclone ′ −‘ {x} ∩ X)
by (rule card-Un-disjoint) (use X psubset.hyps in ‹auto intro: finite-subset›)

also have unclone ′ −‘ {x} ∩ (B − X) = clones x
by (auto simp: unclone ′-def clones-def)

also have card (clones x) = factor
by (rule card-clones) fact

also have unclone ′ −‘ {x} ∩ X = f −‘ {x} ∩ X
by (auto simp: unclone ′-def)

also have f −‘ {x} ∩ X = {inv-into X f x}
using f bij-betw-inv-into-left[OF f] bij-betw-inv-into-right[OF f] that
by (auto intro!: inv-into-into simp: bij-betw-def inj-on-def)

finally show ?thesis

71

by simp
qed
show card (unclone ′ −‘ {x} ∩ B) = card (unclone ′ −‘ {y} ∩ B) if x ∈ A y ∈ A for x y

using that[THEN ∗] by simp
qed
thus ?thesis

by blast
qed

qed

We are now ready to give the actual construction.
locale swf-split-agents =

social-welfare-function agents alts swf +
clone: cloning agents ′ agents unclone
for agents :: ′agent set and alts :: ′alt set and swf and agents ′ unclone

begin

lemmas agents ′ = clone.subset

lemma nonempty-agents ′: agents ′ 6= {}
using clone.unclone nonempty-agents by blast

sublocale new: linorder-election agents ′ alts
by standard (use finite-subset[OF agents ′] nonempty-agents ′ in auto)

The profiles are extended in the obvious way: the ranking declared by a clone is the same
as the ranking of its original.
definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where

extend-profile R i = (if i ∈ agents then R (unclone i) else (λ- -. False))

lemma is-pref-profile-extend-profile [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)

proof
fix i assume i: i ∈ agents
interpret R: pref-profile-linorder-wf agents ′ alts R

by fact
show linorder-on alts (extend-profile R i)

using i clone.unclone unfolding extend-profile-def by auto
qed (auto simp: extend-profile-def)

lemma count-extend-profile:
card {i∈agents. extend-profile R i x y} = clone.factor ∗ card {i∈agents ′. R i x y}

proof −
have card {i ∈ agents. extend-profile R i x y} =

size (filter-mset (λi. extend-profile R i x y) (mset-set agents))
by simp

also have filter-mset (λi. extend-profile R i x y) (mset-set agents) =
filter-mset (λi. R (unclone i) x y) (mset-set agents)

72

unfolding extend-profile-def by (intro filter-mset-cong) auto
also have size . . . = size (filter-mset (λi. R i x y) (image-mset unclone (mset-set agents)))

by (simp add: filter-mset-image-mset)
also have image-mset unclone (mset-set agents) = repeat-mset clone.factor (mset-set agents ′)

by (simp add: clone.image-mset-unclone)
also have size (filter-mset (λi. R i x y) . . .) =

clone.factor ∗ card {i ∈ agents ′. R i x y}
by (simp add: filter-mset-repeat-mset)

finally show ?thesis .
qed

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = majority R

proof (intro ext)
fix x y :: ′alt
interpret R: pref-profile-linorder-wf agents ′ alts R by fact
interpret R ′: pref-profile-linorder-wf agents alts extend-profile R

using assms by auto
show majority (extend-profile R) x y = majority R x y

using clone.factor-pos by (simp add: R.majority-iff ′ R ′.majority-iff ′ count-extend-profile)
qed

Correspondingly, we define our new SWF by feeding the cloned profiles to the old one.
definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation

where swf-low R = swf (extend-profile R)

sublocale new: social-welfare-function agents ′ alts swf-low
proof

fix R assume R: new.is-pref-profile R
thus linorder-on alts (swf-low R)

unfolding swf-low-def by (intro swf-wf) auto
qed

It is easy to see that cloning commutes with a permutation of the agents, so the resulting
SWF is still anonymous if the original one was.
lemma anonymous-clone:

assumes anonymous-swf agents alts swf
shows anonymous-swf agents ′ alts swf-low

proof
interpret anonymous-swf agents alts swf by fact
fix π R assume π: π permutes agents ′ and R: new.is-pref-profile R
interpret R: pref-profile-linorder-wf agents ′ alts R

by fact
have π ′: π permutes agents

using π agents ′ by (rule permutes-subset)
show swf-low (R ◦ π) = swf-low R

unfolding swf-low-def
proof (rule anonymous ′)

73

have image-mset (extend-profile (R ◦ π)) (mset-set agents) =
image-mset (R ◦ π ◦ unclone) (mset-set agents)

by (intro image-mset-cong) (auto simp: extend-profile-def)
also have . . . = image-mset (R ◦ π) (image-mset unclone (mset-set agents))

by (simp add: multiset.map-comp)
also have . . . = repeat-mset clone.factor (image-mset (R ◦ π) (mset-set agents ′))

by (simp add: clone.image-mset-unclone image-mset-repeat-mset)
also have image-mset (R ◦ π) (mset-set agents ′) = image-mset R (mset-set agents ′)

using π by (simp add: permutes-image-mset flip: multiset.map-comp)
also have repeat-mset clone.factor . . . = image-mset (R ◦ unclone) (mset-set agents)

by (simp add: image-mset-repeat-mset clone.image-mset-unclone flip: multiset.map-comp)
also have . . . = image-mset (extend-profile R) (mset-set agents)

by (rule image-mset-cong) (auto simp: extend-profile-def)
finally show image-mset (extend-profile (R ◦ π)) (mset-set agents) =

image-mset (extend-profile R) (mset-set agents) .
qed (use R R.wf-permute-agents[OF π] in auto)

qed

Unanimity is obviously preserved as well.
lemma unanimous-clone:

assumes unanimous-swf agents alts swf
shows unanimous-swf agents ′ alts swf-low

proof
interpret unanimous-swf agents alts swf

by fact
fix R x y assume R: new.is-pref-profile R and xy: ∀ i∈agents ′. y ≺[R i] x
show y ≺[swf-low R] x

unfolding swf-low-def
proof (rule unanimous)

show ∀ i∈agents. y ≺[extend-profile R i] x
using xy clone.unclone by (auto simp: strongly-preferred-def extend-profile-def)

qed (use R in auto)
qed

Strategyproofness is slightly more involved. A manipulation by a single agent in an
original profile corresponds to a simultaneous manipulation of them and all their clones.
However, it can be shown that the normal notion of Kemeny strategyproofness (where
only one agent is allowed to manipulate) also implies that no set of clones can obtain a
better result by manipulating simultaneously. This works by simply considering a chain
of single-agent manipulations.
This shows that strategyproofness is also preserved.
lemma kemeny-strategyproof-clone:

assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf agents ′ alts swf-low

proof
fix R i S assume R: new.is-pref-profile R and i: i ∈ agents ′ and S : linorder-on alts S
interpret kemeny-strategyproof-swf agents alts swf by fact
interpret R: pref-profile-linorder-wf agents ′ alts R by fact

74

define C where C = unclone −‘ {i} ∩ agents
define R ′ where R ′ = (λX j. if j ∈ X then S else extend-profile R j)

have step: swap-dist-relation (R i) (swf (R ′ X)) ≤ swap-dist-relation (R i) (swf (R ′ (insert x
X)))

if x: insert x X ⊆ C x /∈ X for x X
proof −

have swap-dist-relation (R ′ X x) (swf (R ′ X)) ≤ swap-dist-relation (R ′ X x) (swf ((R ′ X)(x
:= S)))

proof (rule kemeny-strategyproof)
show x ∈ agents

using x by (auto simp: C-def)
next

show is-pref-profile (R ′ X)
proof

fix j assume j ∈ agents
thus linorder-on alts (R ′ X j)

unfolding R ′-def using S R clone.unclone by (auto simp: extend-profile-def)
qed (use x in ‹auto simp: R ′-def C-def extend-profile-def ›)

qed fact+
also have R ′ X x = R i

using x by (auto simp: R ′-def extend-profile-def C-def)
also have (R ′ X)(x := S) = R ′ (insert x X)

using x by (auto simp: R ′-def)
finally show ?thesis .

qed

show swap-dist-relation (R i) (swf-low R) ≤ swap-dist-relation (R i) (swf-low (R(i := S)))
proof −

define X where X = C
have finite C unfolding C-def

by (rule finite-subset[OF - finite-agents]) auto
moreover have x ∈ agents unclone x = i if x ∈ C for x

using that unfolding C-def by blast+
ultimately have swap-dist-relation (R i) (swf-low R) ≤ swap-dist-relation (R i) (swf (R ′

C))
proof (induction rule: finite-induct)

case (insert x X)
have swap-dist-relation (R i) (swf-low R) ≤ swap-dist-relation (R i) (swf (R ′ X))

by (rule insert.IH) (use insert.prems in auto)
also have swap-dist-relation (R i) (swf (R ′ X)) ≤ swap-dist-relation (R i) (swf (R ′ (insert

x X)))
by (rule step) (use insert.hyps insert.prems in ‹auto simp: C-def ›)

finally show ?case .
qed (simp-all add: swf-low-def R ′-def)
also have R ′ C = extend-profile (R(i := S))

unfolding extend-profile-def R ′-def C-def fun-eq-iff by auto
finally show ?thesis

75

by (simp add: swf-low-def)
qed

qed

lemma majority-consistent-clone:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf agents ′ alts swf-low

proof
fix R assume R: new.is-pref-profile R linorder-on alts (majority R)
interpret majority-consistent-swf agents alts swf by fact
interpret R: pref-profile-linorder-wf agents ′ alts R by fact
have swf-low R = swf (extend-profile R)

unfolding swf-low-def ..
also have . . . = majority (extend-profile R)

by (rule majority-consistent) (use R in ‹auto simp: majority-extend-profile›)
also have . . . = majority R

by (rule majority-extend-profile) fact+
finally show swf-low R = majority R .

qed

end

2.7.3 Decreasing the number of agents by an even number

Given an SWF for m alternatives and n agents, we can construct an SWF for m alter-
natives and n− 2k agents by fixing some arbitrary ranking of alternatives and adding k
clones of it to the input profile as well as k reversed clones.
This construction clearly violates anonymity and unanimity. It does however preserve
strategyproofness (by a similar argument as for the cloning, but simpler) and majority
consistency since the majority relation is preserved by our changes to the profile.
locale swf-reduce-agents-even =

social-welfare-function agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf +
fixes agents1 agents2 :: ′agent set and dummy-ord :: ′alt relation
assumes agents12 :

agents1 ∪ agents2 ⊂ agents agents1 ∩ agents2 = {} card agents1 = card agents2
assumes dummy-ord: linorder-on alts dummy-ord

begin

sublocale new: linorder-election agents − agents1 − agents2 alts
by standard (use agents12 in auto)

definition extend-profile :: (′agent ⇒ ′alt relation) ⇒ ′agent ⇒ ′alt relation where
extend-profile R =

(λi. if i ∈ agents1 then dummy-ord else if i ∈ agents2 then λx y. dummy-ord y x else R i)

lemma dummy-ord ′: linorder-on alts (λx y. dummy-ord y x)
proof −

76

interpret linorder-on alts dummy-ord
by (fact dummy-ord)

show ?thesis ..
qed

lemma is-pref-profile-extend-profile [intro]:
assumes new.is-pref-profile R
shows is-pref-profile (extend-profile R)

proof
interpret R: pref-profile-linorder-wf agents − agents1 − agents2 alts R

by fact
show linorder-on alts (extend-profile R i) if i: i ∈ agents for i

using i agents12 dummy-ord dummy-ord ′ R.in-dom by (auto simp: extend-profile-def)
show extend-profile R i = (λ- -. False) if i: i /∈ agents for i

using i R.not-in-dom agents12 by (auto simp: extend-profile-def fun-eq-iff)
qed

lemma count-extend-profile:
assumes new.is-pref-profile R x ∈ alts y ∈ alts
shows card {i ∈ agents. extend-profile R i x y} =

card {i ∈ agents − agents1 − agents2 . R i x y} +
(if x = y then 2 else 1) ∗ card agents1

proof −
have fin: finite agents1 finite agents2

by (rule finite-subset[OF - finite-agents]; use agents12 in blast)+
interpret dummy-ord: linorder-on alts dummy-ord by (fact dummy-ord)
have {i ∈ agents. extend-profile R i x y} =

{i∈agents−agents1−agents2 . extend-profile R i x y} ∪
{i∈agents1 . extend-profile R i x y} ∪ {i∈agents2 . extend-profile R i x y}

using agents12 by blast
also have . . . = {i∈agents−agents1−agents2 . R i x y} ∪

({i∈agents1 . dummy-ord x y} ∪ {i∈agents2 . dummy-ord y x})
using agents12 by (auto simp: extend-profile-def)

also have card . . . = card {i∈agents−agents1−agents2 . R i x y} +
card ({i∈agents1 . dummy-ord x y} ∪ {i∈agents2 . dummy-ord y x})

by (rule card-Un-disjoint) (use agents12 fin in auto)
also have card ({i∈agents1 . dummy-ord x y} ∪ {i∈agents2 . dummy-ord y x}) =

(if dummy-ord x y then card agents1 else 0) +
(if dummy-ord y x then card agents1 else 0)

by (subst card-Un-disjoint) (use agents12 fin in auto)
also have . . . = (if x = y then 2 else 1) ∗ card agents1

using dummy-ord.total[of x y] dummy-ord.antisymmetric[of x y] assms(2 ,3) by auto
finally show ?thesis .

qed

lemma majority-extend-profile:
assumes new.is-pref-profile R
shows majority (extend-profile R) = majority R

proof (intro ext)

77

fix x y :: ′alt
interpret R: pref-profile-linorder-wf agents − agents1 − agents2 alts R by fact
interpret R ′: pref-profile-linorder-wf agents alts extend-profile R

using assms by auto
show majority (extend-profile R) x y = majority R x y
proof (cases x ∈ alts ∧ y ∈ alts ∧ x 6= y)

case xy: True
show ?thesis

using xy assms by (auto simp: R.majority-iff R ′.majority-iff count-extend-profile)
qed (auto simp: R.majority-iff ′ R ′.majority-iff ′)

qed

definition swf-low :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where
swf-low R = swf (extend-profile R)

sublocale new: social-welfare-function agents − agents1 − agents2 alts swf-low
by standard (auto simp: swf-low-def intro: swf-wf)

lemma kemeny-strategyproof-reduce:
assumes kemeny-strategyproof-swf agents alts swf
shows kemeny-strategyproof-swf (agents − agents1 − agents2) alts swf-low

proof
fix R i S
assume R: new.is-pref-profile R
assume i: i ∈ agents − agents1 − agents2
assume S : linorder-on alts S
interpret kemeny-strategyproof-swf agents alts swf by fact
interpret R: pref-profile-linorder-wf agents − agents1 − agents2 alts R by fact

have swap-dist-relation (R i) (swf-low R) =
swap-dist-relation (extend-profile R i) (swf (extend-profile R))

using i agents12 by (simp add: swf-low-def extend-profile-def)
also have . . . ≤ swap-dist-relation (extend-profile R i) (swf ((extend-profile R)(i := S)))

by (rule kemeny-strategyproof) (use i agents12 S R in auto)
also have (extend-profile R)(i := S) = extend-profile (R(i := S))

using i agents12 by (auto simp: extend-profile-def)
also have swap-dist-relation (extend-profile R i) (swf . . .) =

swap-dist-relation (R i) (swf-low (R(i := S)))
using i agents12 by (simp add: swf-low-def extend-profile-def)

finally show swap-dist-relation (R i) (swf-low R) ≤ swap-dist-relation (R i) (swf-low (R(i :=
S))) .
qed

lemma majority-consistent-reduce:
assumes majority-consistent-swf agents alts swf
shows majority-consistent-swf (agents − agents1 − agents2) alts swf-low

proof
fix R assume R: new.is-pref-profile R linorder-on alts (majority R)

78

interpret majority-consistent-swf agents alts swf by fact
interpret R: pref-profile-linorder-wf agents − agents1 − agents2 alts R by fact
have swf-low R = swf (extend-profile R)

unfolding swf-low-def ..
also have . . . = majority (extend-profile R)

by (rule majority-consistent) (use R in ‹auto simp: majority-extend-profile›)
also have . . . = majority R

by (rule majority-extend-profile) fact+
finally show swf-low R = majority R .

qed

end

end

3 Impossibility results
3.1 Infrastructure for SAT import and export
theory SWF-Impossibility-Automation

imports SWF-Lowering SWF-Anonymous PAPP-Impossibility.SAT-Replay
begin

3.2 Automation for computing topological sortings
definition topo-sorts-aux-step :: (′a × ′a set) list ⇒ (′a × ′b set) list ⇒ ′a list list where

topo-sorts-aux-step rel rel ′ =
List.bind (map fst (filter (λ(-,ys). ys = {}) rel ′))
(λx. map ((#) x) (topo-sorts-aux (map (λ(y,ys). (y, Set.filter (λz. z 6= x) ys))
(filter (λ(y,-). y 6= x) rel))))

lemma topo-sorts-aux-step-simps:
topo-sorts-aux-step rel [] = []
topo-sorts-aux-step rel ((x, insert y ys) # rel ′) = topo-sorts-aux-step rel rel ′
topo-sorts-aux-step rel ((x, {}) # rel ′) =

map ((#) x) (topo-sorts-aux (map (λ(y,ys). (y, Set.filter (λz. z 6= x) ys)) (filter (λ(y,-). y
6= x) rel))) @

topo-sorts-aux-step rel rel ′
by (simp-all add: topo-sorts-aux-step-def)

lemma topo-sorts-aux-Cons ′:
fixes x xs defines rel ≡ x # xs
shows topo-sorts-aux rel = topo-sorts-aux-step rel rel
unfolding topo-sorts-aux-step-def assms
by (subst topo-sorts-aux-Cons; unfold map-prod-def id-def) (rule refl)

context
begin

79

qualified fun dom-set :: ′a ⇒ ′a list ⇒ ′a set where
dom-set x [] = {}
| dom-set x (y # ys) = (if x = y then {} else insert y (dom-set x ys))

qualified lemma dom-set-altdef :
assumes distinct r x ∈ set r
shows dom-set x r = {y. y �[of-ranking r] x}
using assms
by (induction r)

(force simp: strongly-preferred-def of-ranking-Cons of-ranking-imp-in-set)+

qualified definition unanimity :: ′a list ⇒ ′a list multiset ⇒ (′a × ′a set) list where
unanimity xs R = map (λx. (x,

⋂
r∈set-mset R. SWF-Impossibility-Automation.dom-set x r))

xs

end

locale anonymous-unanimous-kemenysp-swf =
anonymous-swf agents alts swf +
unanimous-swf agents alts swf +
kemeny-strategyproof-swf agents alts swf
for agents :: ′agent set and alts :: ′alt set and swf

begin

sublocale anonymous-unanimous-swf agents alts swf ..

sublocale anonymous-kemeny-strategyproof-swf agents alts swf ..

end

locale anonymous-unanimous-kemenysp-swf-explicit = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
fixes agent-card :: nat and alts-list :: ′alt list
assumes card-agents: card agents = agent-card
assumes alts-list: mset alts-list = mset-set alts

begin

lemma distinct-alts-list: distinct alts-list
using alts-list by (metis finite-alts mset-eq-mset-set-imp-distinct)

lemma alts-conv-alts-list: alts = set alts-list
using alts-list by (metis finite-alts finite-set-mset-mset-set set-mset-mset)

lemma card-alts [simp]: card alts = length alts-list
using alts-list by (metis size-mset size-mset-set)

80

fun (in −) expand-ranking :: ′a list ⇒ (′a × ′a) list where
expand-ranking [] = []
| expand-ranking (x # xs) = map (λy. (y, x)) xs @ expand-ranking xs

lemma (in −) set-expand-ranking:
distinct xs =⇒ set (expand-ranking xs) = {(x,y). x 6= y ∧ of-ranking xs x y}
by (induction xs) (auto simp: of-ranking-Cons)

definition allowed-results :: ′alt list multiset ⇒ ′alt list set where
allowed-results Rs = set (topo-sorts-aux (SWF-Impossibility-Automation.unanimity alts-list

Rs))

lemmas eval-allowed-results =
allowed-results-def topo-sorts-aux-Cons ′ Set-filter-insert-if SWF-Impossibility-Automation.dom-set.simps
SWF-Impossibility-Automation.unanimity-def disj-ac topo-sorts-aux-Nil topo-sorts-aux-step-simps

lemma aswf ′-in-all-rankings:
assumes is-apref-profile ′ R
defines A ≡ set (topo-sorts-aux (map (λx. (x, {})) alts-list))
shows aswf ′ R ∈ A

proof −
have set (topo-sorts-aux (map (λx. (x, {})) alts-list)) = topo-sorts alts (λx y. False)
proof (subst set-topo-sorts-aux, goal-cases)

case 3
show ?case

by (rule arg-cong2 [of - - - - topo-sorts]) (auto simp: alts-conv-alts-list)
qed (use distinct-alts-list in ‹auto simp: o-def ›)
also have . . . = permutations-of-set alts

by (subst topo-sorts-correct) (auto simp: le-fun-def)
finally have A = permutations-of-set alts

unfolding A-def .
with aswf ′-wf [OF assms(1)] show ?thesis

by simp
qed

lemma aswf ′-in-allowed-results:
assumes is-apref-profile ′ Rs
shows aswf ′ Rs ∈ allowed-results Rs

proof −
have Rs 6= {#}

using assms unfolding is-apref-profile ′-def by force
then obtain R where R: R ∈# Rs

by auto
then interpret R: linorder-on alts of-ranking R
using assms by (auto intro!: linorder-of-ranking simp: is-apref-profile ′-def permutations-of-set-def)

note wf = is-apref-profile ′-imp-is-apref-profile[OF assms]

81

have aswf ′ Rs ∈ ranking ‘ of-ranking ‘ topo-sorts alts (λx y. ∀R∈#image-mset of-ranking Rs.
R x y)

using unanimous-topo-sorts-Pareto-aswf [OF wf] unfolding aswf ′-def by blast
also have . . . = (λxs. xs) ‘ topo-sorts alts (λx y. ∀R∈#image-mset of-ranking Rs. R x y)

unfolding image-image
proof (intro image-cong refl)

fix xs assume xs ∈ topo-sorts alts (λx y. ∀R∈#image-mset of-ranking Rs. R x y)
also have . . . = {xs ∈ permutations-of-set alts. (λx y. ∀R∈#image-mset of-ranking Rs. R

x y) ≤ of-ranking xs}
by (subst topo-sorts-correct) (use is-apref-profile-unanimous-not-outside[OF wf] in auto)

finally show ranking (of-ranking xs) = xs
by (intro ranking-of-ranking) (auto simp: permutations-of-set-def)

qed
also have topo-sorts alts (λx y. ∀R∈#image-mset of-ranking Rs. R x y) =

topo-sorts alts (λx y. ∀R∈#image-mset of-ranking Rs. x 6= y ∧ R x y)
by (rule topo-sorts-cong) auto

also have . . . = topo-sorts (set alts-list) (λx y. ∀R∈#image-mset of-ranking Rs. x 6= y ∧ R
x y)

by (subst alts-conv-alts-list) simp-all
also have . . . = set (topo-sorts-aux (SWF-Impossibility-Automation.unanimity alts-list Rs))
proof (subst set-topo-sorts-aux, goal-cases)

case 1
thus ?case using distinct-alts-list

by (simp add: SWF-Impossibility-Automation.unanimity-def o-def)
next

case (2 x ys)
thus ?case using assms R.not-outside R.antisymmetric R unfolding is-apref-profile ′-def
by (fastforce simp: SWF-Impossibility-Automation.unanimity-def SWF-Impossibility-Automation.dom-set-altdef

permutations-of-set-def alts-conv-alts-list strongly-preferred-def)
next

case 3
show ?case
proof (intro arg-cong2 [of - - - - topo-sorts] ext, goal-cases)

case (2 x y)
have (∀R∈#image-mset of-ranking Rs. x 6= y ∧ R x y) ←→

(∀R∈#Rs. x ∈ alts ∧ y ∈ SWF-Impossibility-Automation.dom-set x R)
unfolding set-image-mset ball-simps

proof (intro ball-cong refl)
fix S assume S : S ∈# Rs
interpret S : linorder-on alts of-ranking S using assms S

by (auto simp: is-apref-profile ′-def permutations-of-set-def intro!: linorder-of-ranking)
have distinct S set S = alts

using S assms by (auto simp: is-apref-profile ′-def permutations-of-set-def)
thus (x 6= y ∧ of-ranking S x y) = (x ∈ alts ∧ y ∈ SWF-Impossibility-Automation.dom-set

x S)
using S .not-outside[of x y] S .antisymmetric[of x y]
by (auto simp: SWF-Impossibility-Automation.dom-set-altdef strongly-preferred-def)

qed
also have . . . ←→ (∃ ys. (x, ys) ∈ set (SWF-Impossibility-Automation.unanimity alts-list

82

Rs) ∧ y ∈ ys)
unfolding SWF-Impossibility-Automation.unanimity-def using R
by (auto simp: image-iff simp flip: alts-conv-alts-list)

finally show ?case .
qed (auto simp: SWF-Impossibility-Automation.unanimity-def)

qed
also have . . . = allowed-results Rs

unfolding allowed-results-def ..
finally show ?thesis by simp

qed

lemma is-apref-profile ′-iff :
is-apref-profile ′ Rs ←→ (size Rs = agent-card ∧ (∀R∈#Rs. mset R = mset alts-list))
unfolding is-apref-profile ′-def card-agents alts-list
by (subst mset-eq-mset-set-iff) simp-all

end

3.3 Automation for strategyproofness
lemma (in anonymous-unanimous-kemenysp-swf-explicit) kemeny-strategyproof-aswf ′-aux:

assumes is-apref-profile ′ R1 is-apref-profile ′ R2
assumes inversion-number S1 ′ = d1 inversion-number S2 ′ = d2
assumes map (index T) S1 = S1 ′ map (index T) S2 = S2 ′

assumes R12 : add-mset T ′ R1 ≡ add-mset T R2
assumes d2 < d1
shows aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2

proof (rule ccontr)
assume ∗: ¬(aswf ′ R1 6= S1 ∨ aswf ′ R2 6= S2)
hence S12 : S1 ∈ permutations-of-set alts S2 ∈ permutations-of-set alts

using assms(1 ,2) aswf ′-wf by blast+
have T 6= T ′

using assms ∗ by fastforce
hence T ∈# R1 using R12

by (metis insert-noteq-member)
have T ′ ∈# R2

using R12 by (metis ‹T 6= T ′› insert-noteq-member)
have R1 − R2 = {#T#}

using R12 ‹T ∈# R1 › ‹T 6= T ′› ‹T ′ ∈# R2 ›
add-diff-cancel-left add-mset-remove-trivial[of T R2]
add-mset-remove-trivial[of T ′ R1 − {#T#}]
diff-union-swap insert-DiffM2 [of T R1] insert-DiffM2 [of T ′ R2] zero-diff

by metis

have T : T ∈ permutations-of-set alts
using assms(1) ‹T ∈# R1 › by (auto simp: is-apref-profile ′-def)

have swap-dist T S1 = d1 swap-dist T S2 = d2
by (subst swap-dist-conv-inversion-number ;

use S12 T assms in ‹simp add: permutations-of-set-def ›; fail)+

83

with assms ∗ show False
using kemeny-strategyproof-aswf ′[of R1 R2 S2 S1] ‹R1 − R2 = {#T#}› by simp

qed

lemma (in anonymous-unanimous-kemenysp-swf-explicit) kemeny-strategyproof-aswf ′-no-obtain-optimal:
assumes is-apref-profile ′ R is-apref-profile ′ R ′ add-mset S R ′ ≡ add-mset S ′ R
shows aswf ′ R = S ∨ aswf ′ R ′ 6= S
using kemeny-strategyproof-aswf ′-no-obtain-optimal[of R R ′ S S ′] assms by simp

3.4 Automation for majority consistency
fun majority-rel-mset-aux :: ′a list multiset ⇒ ′a list ⇒ bool where

majority-rel-mset-aux Rs [] ←→ True
| majority-rel-mset-aux Rs (x # xs) ←→

(∀ y∈set xs. 2 ∗ size (filter-mset (λR. of-ranking R y x) Rs) > size Rs) ∧
majority-rel-mset-aux Rs xs

fun majority-rel-list-aux :: ′a list list ⇒ ′a list ⇒ bool where
majority-rel-list-aux Rs [] ←→ True
| majority-rel-list-aux Rs (x # xs) ←→

list-all (λy. 2 ∗ length (filter (λR. of-ranking R y x) Rs) > length Rs) xs ∧
majority-rel-list-aux Rs xs

lemma majority-rel-mset-aux-mset:
majority-rel-mset-aux (mset Rs) ys ←→ majority-rel-list-aux Rs ys
by (induction ys) (simp-all add: list.pred-set flip: mset-filter)

lemma majority-rel-mset-aux-correct:
assumes

∧
R. R ∈# Rs =⇒ distinct R ∧ set R = A Rs 6= {#} distinct zs set zs ⊆ A

defines Rs ′ ≡ image-mset of-ranking Rs
defines M ≡ majority-mset Rs ′

shows majority-rel-mset-aux Rs zs ←→
(∀ x∈set zs. ∀ y∈set zs. x ≺[M] y ←→ x ≺[of-ranking zs] y)

(is - ←→ ?rhs zs)
using assms(3 ,4)

proof (induction zs)
case (Cons z zs)
define P where P = (λzs x y. x ≺[M] y ←→ x ≺[of-ranking zs] y)
have R: linorder-on A R if R ∈# Rs ′ for R

using assms(1) that linorder-of-ranking unfolding Rs ′-def by fastforce
have R ′: preorder-on A R if R ∈# Rs ′ for R

using R[OF that] linorder-on-def order-on-def by blast
have ∗: P (z # zs) z z

using Cons.prems majority-mset-refl[of Rs ′ A z] R ′ assms(2)
unfolding P-def strongly-preferred-def M-def by (auto simp: of-ranking-Cons)

have less-iff : x ≺[M] y ←→ size Rs ′ < 2 ∗ size {#R ∈# Rs ′. R x y#}
if x ∈ A y ∈ A x 6= y for x y
using strongly-preferred-majority-mset-iff-gt[of Rs ′ A, OF R] that assms(2)
by (simp add: Rs ′-def M-def strongly-preferred-def filter-mset-image-mset not-le)

84

have majority-rel-mset-aux Rs (z # zs) ←→
(∀ y∈set zs. size Rs ′ < 2 ∗ size {#R ∈# Rs ′. R y z#}) ∧
majority-rel-mset-aux Rs zs

by (simp add: Rs ′-def filter-mset-image-mset)
also have (∀ y∈set zs. size Rs ′ < 2 ∗ size {#R ∈# Rs ′. R y z#}) ←→

(∀ y∈set zs. P (z # zs) y z)
by (intro ball-cong refl)

(use less-iff Cons.prems in ‹auto simp: P-def of-ranking-strongly-preferred-Cons-iff ›)
also have majority-rel-mset-aux Rs zs ←→

(∀ x∈set zs. ∀ y∈set zs. x ≺[M] y = x ≺[of-ranking zs] y)
by (rule Cons.IH) (use Cons.prems in auto)

also have . . . ←→ (∀ x∈set zs. ∀ y∈set zs. P zs x y)
unfolding P-def ..

also have . . . ←→ (∀ x∈set zs. ∀ y∈set zs. P (z # zs) x y)
using Cons.prems
by (intro ball-cong refl) (auto simp: P-def of-ranking-strongly-preferred-Cons-iff)

also have (∀ y∈set zs. P (z # zs) y z) ←→ (∀ x∈set zs. P (z # zs) x z) ∧ (∀ x∈set zs. P (z
zs) z x)

proof (intro iffI conjI)
assume ∗: ∀ y∈set zs. P (z # zs) y z
show ∀ y∈set zs. P (z # zs) z y
proof

fix y assume y: y ∈ set zs
have [simp]: y 6= z z 6= y

using Cons.prems y by auto
have P (z # zs) y z

using y ∗ by blast
moreover have y ≺[of-ranking (z # zs)] z

using Cons.prems y of-ranking-imp-in-set[of zs z y]
by (auto simp: strongly-preferred-def of-ranking-Cons)

ultimately have y ≺[M] z
by (auto simp: P-def)

hence ¬z ≺[M] y
by (auto simp: strongly-preferred-def)

moreover have ¬z ≺[of-ranking (z # zs)] y
using Cons.prems y of-ranking-imp-in-set[of zs z y]
by (auto simp: strongly-preferred-def of-ranking-Cons)

ultimately show P (z # zs) z y
by (auto simp: P-def)

qed
qed blast+
also have . . . ∧ (∀ x∈set zs. ∀ y∈set zs. P (z # zs) x y) ←→

(∀ x∈set (z#zs). ∀ y∈set (z#zs). P (z # zs) x y)
unfolding list.set using ∗ by blast

finally show ?case unfolding P-def .
qed simp-all

lemma majority-rel-mset-aux-correct ′:

85

assumes
∧

R. R ∈# Rs =⇒ distinct R ∧ set R = A Rs 6= {#}
assumes set S = A distinct S
assumes majority-rel-mset-aux Rs S
shows majority-rel-mset Rs S

proof −
define Rs ′ where Rs ′ = image-mset of-ranking Rs
define M where M = majority-mset Rs ′

have Rs ′: linorder-on A R if R ∈# Rs ′ for R
using that assms unfolding Rs ′-def by (auto intro: linorder-of-ranking)

have Rs ′′: preorder-on A R if R ∈# Rs ′ for R
using Rs ′[OF that] linorder-on-def order-on-def by blast

have x ∈ A ∧ y ∈ A if M x y for x y
using majority-mset-not-outside[of Rs ′ x y A] that Rs ′′ unfolding M-def by blast

moreover have x ∈ A ∧ y ∈ A if of-ranking S x y for x y
using of-ranking-imp-in-set[OF that] assms by auto

moreover have ∀ x∈A. ∀ y∈A. x ≺[M] y ←→ x ≺[of-ranking S] y
using majority-rel-mset-aux-correct[OF assms(1 ,2 ,4)] assms(3 ,5) unfolding M-def Rs ′-def
by blast

hence ∀ x∈A. ∀ y∈A. x �[M] y ←→ x �[of-ranking S] y
unfolding strongly-preferred-def
by (metis M-def Rs ′′ Rs ′-def assms(2 ,3 ,4) image-mset-is-empty-iff majority-mset-refl nle-le

nth-index of-ranking-altdef)
ultimately have M = of-ranking S

by blast
thus ?thesis

unfolding majority-rel-mset-def using ‹distinct S› by (simp add: M-def Rs ′-def)
qed

context social-welfare-function-explicit
begin

lemma majority-rel-list-aux-imp-majority-rel-mset:
assumes prefs-from-rankings-wf R majority-rel-list-aux R ys mset ys = mset alts-list
shows majority-rel-mset (mset R) ys

proof −
have distinct ys

using ‹mset ys = -› by (metis alts-list finite-alts mset-eq-mset-set-imp-distinct)
have set ys = alts

using ‹mset ys = -› by (metis alts-list finite-alts finite-set-mset-mset-set set-mset-mset)
note ys = ‹distinct ys› ‹set ys = alts›
show ?thesis
proof (rule majority-rel-mset-aux-correct ′[where A = alts])

show mset R 6= {#}
using assms(1) agents-conv-agents-list unfolding prefs-from-rankings-wf-def by force

show distinct S ∧ set S = alts if S ∈# mset R for S
using that assms(1) by (auto simp: prefs-from-rankings-wf-def list.pred-set mset-eq-alts-list-iff)

qed (use ys assms in ‹simp-all add: majority-rel-mset-aux-mset›)

86

qed

lemma majority-prefs-from-rankings-eq-of-ranking-aux:
assumes prefs-from-rankings-wf R majority-rel-list-aux R ys mset ys = mset alts-list
shows majority (prefs-from-rankings R) = of-ranking ys
using majority-rel-list-aux-imp-majority-rel-mset majority-prefs-from-rankings-eq-of-ranking

assms
by metis

end

lemma (in majcons-kstratproof-swf-explicit) majority-consistent-swf ′-aux:
assumes prefs-from-rankings-wf xss mset ys = mset alts-list
assumes majority-rel-list-aux xss ys
shows swf ′ xss = ys

proof (rule majority-consistent-swf ′)
show majority-rel-mset (mset xss) ys
proof (rule majority-rel-mset-aux-correct ′)

show distinct R ∧ set R = alts if R ∈# mset xss for R
using assms(1) that
by (auto simp: prefs-from-rankings-wf-def mset-eq-alts-list-iff list.pred-set)

next
show majority-rel-mset-aux (mset xss) ys

using assms(3) by (subst majority-rel-mset-aux-mset)
next

show mset xss 6= {#}
using assms(1) unfolding prefs-from-rankings-wf-def by auto

next
show set ys = alts

using assms(2) alts-conv-alts-list mset-eq-setD by blast
next

show distinct ys
using assms(2) distinct-alts-list mset-eq-imp-distinct-iff by blast

qed
qed fact+

lemma (in majcons-weak-kstratproof-swf-explicit) majority-consistent-kemeny-strategyproof-swf ′-aux:
assumes prefs-from-rankings-wf R1 i < card agents
assumes mset zs = mset alts-list mset ys = mset alts-list
assumes xs = R1 ! i majority-rel-list-aux (R1 [i := zs]) ys
shows swap-dist xs (swf ′ R1) ≤ swap-dist xs ys
using majority-consistent-kemeny-strategyproof-swf ′ assms
using majority-rel-list-aux-imp-majority-rel-mset prefs-from-rankings-wf-update by presburger

lemma permutations-of-set-aux-list-Nil: permutations-of-set-aux-list acc [] = [acc]
by (subst permutations-of-set-aux-list.simps) simp-all

87

lemma permutations-of-set-aux-list-Cons:
permutations-of-set-aux-list acc (x#xs) =

permutations-of-set-aux-list (x # acc) xs @ List.bind xs
(λxa. permutations-of-set-aux-list (xa # acc) (if xa = x then xs else x # remove1 xa xs))

by (subst permutations-of-set-aux-list.simps) simp-all

ML-file ‹sat-problem.ML›
ML-file ‹swf-util.ML›
ML-file ‹anon-unan-stratproof-impossibility.ML›
ML-file ‹majcons-stratproof-impossibility.ML›

end
theory Anon-Unan-Stratproof-Impossibility

imports SWF-Impossibility-Automation
begin

3.5 For 5 alternatives and 2 agents

We prove the impossibility for m = 5 and n = 2 via the SAT encoding using a fixed
list of 198 profiles. For symmetry breaking, we assume that the profile (abcde, acbed) is
mapped to the ranking abcde. This assumption will be justified later on by picking the
values of a, b, c, d, e accordingly.
external-file sat-data/kemeny-profiles-5-2 .xz
external-file sat-data/kemeny-5-2 .grat.xz

locale anonymous-unanimous-kemenysp-swf-explicit-5-2 =
anonymous-unanimous-kemenysp-swf-explicit agents alts swf 2 [a,b,c,d,e]
for agents :: ′agent set and alts :: ′alt set and swf and a b c d e +
assumes symmetry-breaking: aswf ′ {# [a,b,c,d,e], [a,c,b,e,d] #} = [a,b,c,d,e]

begin

local-setup ‹fn lthy =>
let

val params = {
name = kemeny-5-2,
locale-thm = @{thm anonymous-unanimous-kemenysp-swf-explicit-axioms},
profile-file = SOME path ‹sat-data/kemeny-profiles-5-2 .xz›,
sp-file = NONE ,
grat-file = path ‹sat-data/kemeny-5-2 .grat.xz›,
extra-clauses = @{thms symmetry-breaking}
}
val thm =

Goal.prove-future lthy [] [] prop ‹False›
(fn {context, ...} =>
HEADGOAL (resolve-tac context [Anon-Unan-Stratproof-Impossibility.derive-false context

88

params]))
in

Local-Theory.note ((binding ‹contradiction›, []), [thm]) lthy |> snd
end

›

end

We now get rid of the symmetry-breaking assumption by choosing an appropriate per-
mutation of the five alternatives.
locale anonymous-unanimous-kemenysp-swf-5-2 = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes card-agents: card agents = 2
assumes card-alts: card alts = 5

begin

sublocale anonymous-unanimous-swf agents alts swf ..
sublocale anonymous-kemeny-strategyproof-swf agents alts swf ..

lemma symmetry-breaking-aux1 :
assumes distinct: distinct [a,b,c,d,e] and alts-eq: alts = {a,b,c,d,e}
defines R ≡ {# [a,b,c,d,e], [a,c,b,e,d] #}
assumes R: aswf ′ R = [a,c,b,d,e]
shows aswf ′ {# [a,b,c,e,d], [a,c,b,d,e] #} ∈ {[a,b,c,e,d], [a,c,b,d,e]}

proof −
have alts-eq ′: alts = set [a,b,c,d,e]

by (simp add: alts-eq)
have [simp]: a 6= b a 6= c a 6= d a 6= e b 6= a b 6= c b 6= d b 6= e

c 6= a c 6= b c 6= d c 6= e d 6= a d 6= b d 6= c d 6= e
e 6= a e 6= b e 6= c e 6= d

using distinct by (simp-all add: eq-commute)
interpret anonymous-unanimous-kemenysp-swf-explicit agents alts swf 2 [a,b,c,d,e]

by standard (simp-all add: alts-eq card-agents)

have R-wf : is-apref-profile ′ R
unfolding is-apref-profile ′-def by (auto simp: card-agents permutations-of-set-def alts-eq

R-def)

define R2 where R2 = {# [a,c,b,d,e], [a,c,b,e,d] #}
define R3 where R3 = {# [a,b,c,d,e], [a,c,b,d,e] #}
define R4 where R4 = {# [a,b,c,e,d], [a,c,b,d,e] #}
note R-defs = R-def R2-def R3-def R4-def

have wf : is-apref-profile ′ R is-apref-profile ′ R2 is-apref-profile ′ R3 is-apref-profile ′ R4
by (simp-all add: is-apref-profile ′-iff R-defs add-mset-commute)

have R2 : aswf ′ R2 = [a,c,b,d,e]
proof −

89

have aswf ′ R2 = [a,c,b,d,e] ∨ aswf ′ R2 = [a,c,b,e,d]
using aswf ′-in-allowed-results[OF wf (2)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R2 6= [a,c,b,e,d] ∨ aswf ′ R 6= [a,c,b,d,e]
by (intro kemeny-strategyproof-aswf ′-strong wf)

(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons)
ultimately show ?thesis using R

by blast
qed

have R3 : aswf ′ R3 = [a,c,b,d,e]
proof −

have aswf ′ R3 = [a,b,c,d,e] ∨ aswf ′ R3 = [a,c,b,d,e]
using aswf ′-in-allowed-results[OF wf (3)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R3 6= [a,b,c,d,e] ∨ aswf ′ R 6= [a,c,b,d,e]
by (intro kemeny-strategyproof-aswf ′-strong wf)

(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons)
ultimately show ?thesis using R

by blast
qed

show ?thesis
proof −

have aswf ′ R4 ∈ {[a,b,c,d,e], [a,c,b,e,d], [a,b,c,e,d], [a,c,b,d,e]}
using aswf ′-in-allowed-results[OF wf (4)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R4 6= [a,b,c,d,e] ∨ aswf ′ R3 6= [a,c,b,d,e]
by (intro kemeny-strategyproof-aswf ′-strong wf)

(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons)
moreover have aswf ′ R4 6= [a,c,b,e,d] ∨ aswf ′ R2 6= [a,c,b,d,e]

by (intro kemeny-strategyproof-aswf ′-strong wf)
(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons)

ultimately show ?thesis using R2 R3 unfolding R4-def
by blast

qed
qed

lemma symmetry-breaking-aux2 :
obtains abcde where

distinct abcde alts = set abcde length abcde = 5
case abcde of [a,b,c,d,e] ⇒ aswf ′ {# [a,b,c,d,e], [a,c,b,e,d] #} = [a,b,c,d,e]

proof −
obtain abcde where abcde: distinct abcde set abcde = alts

using finite-distinct-list by blast
have length abcde = 5

using card-alts abcde distinct-card by metis
obtain a b c d e where abcde-expand: abcde = [a,b,c,d,e]

using ‹length abcde = 5 › by (force simp: eval-nat-numeral length-Suc-conv)

90

have [simp]: a 6= b a 6= c a 6= d a 6= e b 6= a b 6= c b 6= d b 6= e
c 6= a c 6= b c 6= d c 6= e d 6= a d 6= b d 6= c d 6= e
e 6= a e 6= b e 6= c e 6= d

using abcde(1) unfolding abcde-expand by (simp-all add: eq-commute)
have alts-eq: alts = {a,b,c,d,e}

unfolding abcde(2) [symmetric] abcde-expand by simp
interpret anonymous-unanimous-kemenysp-swf-explicit agents alts swf 2 [a,b,c,d,e]

by standard (simp-all add: alts-eq card-agents)

define R where R = {# [a,b,c,d,e], [a,c,b,e,d] #}
have R-wf : is-apref-profile ′ R

unfolding R-def is-apref-profile ′-def
by (auto simp: card-agents abcde-expand simp flip: abcde(2) intro!: linorder-of-ranking)

have aswf ′ R ∈ {[a,b,c,d,e], [a,c,b,e,d]} ∨ aswf ′ R ∈ {[a,b,c,e,d], [a,c,b,d,e]}
using aswf ′-in-allowed-results[OF R-wf] unfolding R-def
by (simp add: eval-allowed-results del: Set.filter-eq)

thus ?thesis
proof

assume ∗: aswf ′ R ∈ {[a,b,c,d,e], [a,c,b,e,d]}
show ?thesis

by (rule that[of aswf ′ R])
(use ∗ in ‹unfold R-def , auto simp add: alts-eq insert-commute add-mset-commute›)

next
assume aswf ′ R ∈ {[a,b,c,e,d], [a,c,b,d,e]}
hence aswf ′ R = [a,b,c,e,d] ∨ aswf ′ R = [a,c,b,d,e]

by blast
thus ?thesis
proof

assume ∗: aswf ′ R = [a,c,b,d,e]
have ∗∗: aswf ′ {#[a,b,c,e,d], [a,c,b,d,e]#} ∈ {[a,b,c,e,d], [a,c,b,d,e]}

by (rule symmetry-breaking-aux1 [of a b c d e])
(use ∗ in ‹simp-all add: R-def add-mset-commute alts-eq›)

show ?thesis
by (rule that[of aswf ′ {#[a,b,c,e,d], [a,c,b,d,e]#}])

(use ∗∗ in ‹auto simp: alts-eq add-mset-commute insert-commute›)
next

assume ∗: aswf ′ R = [a,b,c,e,d]
have ∗∗: aswf ′ {#[a,c,b,d,e], [a,b,c,e,d]#} ∈ {[a,c,b,d,e], [a,b,c,e,d]}

by (rule symmetry-breaking-aux1 [of a c b e d])
(use ∗ in ‹simp-all add: R-def add-mset-commute alts-eq insert-commute›)

show ?thesis
by (rule that[of aswf ′ {#[a,b,c,e,d], [a,c,b,d,e]#}])

(use ∗∗ in ‹auto simp: alts-eq add-mset-commute insert-commute›)
qed

qed
qed

91

lemma contradiction: False
proof −

obtain abcde where abcde:
distinct abcde alts = set abcde length abcde = 5
case abcde of [a,b,c,d,e] ⇒ aswf ′ {# [a,b,c,d,e], [a,c,b,e,d] #} = [a,b,c,d,e]

using symmetry-breaking-aux2 .
from ‹length abcde = 5 › obtain a b c d e where abcde-expand: abcde = [a,b,c,d,e]

by (auto simp: length-Suc-conv eval-nat-numeral)
interpret anonymous-unanimous-kemenysp-swf-explicit-5-2 agents alts swf a b c d e
proof

show aswf ′ {#[a, b, c, d, e], [a, c, b, e, d]#} = [a, b, c, d, e]
using abcde unfolding abcde-expand by simp

qed (use abcde(1) in ‹simp-all add: card-agents abcde abcde-expand eq-commute›)
show ?thesis

by (fact contradiction)
qed

end

Finally, we employ the usual construction of padding with dummy alternatives and
cloning voters to extend the impossibility to any setting with m ≥ 5 and n even.
theorem (in anonymous-unanimous-kemenysp-swf) impossibility:

assumes even (card agents) and card alts ≥ 5
shows False

proof −
have card agents > 0

using assms(1) finite-agents nonempty-agents by fastforce
with assms(1) have card agents ≥ 2

by presburger
obtain agents ′ where agents ′: agents ′ ⊆ agents card agents ′ = 2

using ‹card agents ≥ 2 › by (meson obtain-subset-with-card-n)
have [simp]: agents ′ 6= {}

using agents ′ by auto
obtain alts ′ where alts ′: alts ′ ⊆ alts card alts ′ = 5

using ‹card alts ≥ 5 › by (meson obtain-subset-with-card-n)
obtain dummy-alts where alts-list ′: mset dummy-alts = mset-set (alts − alts ′)

using ex-mset by blast
obtain unclone where cloning agents ′ agents unclone

using cloning-exists[of agents ′ agents] agents ′ ‹even (card agents)› finite-agents by auto
interpret cloning agents ′ agents unclone by fact

interpret split: swf-split-agents agents alts swf agents ′ unclone ..
interpret new1 : anonymous-swf agents ′ alts split.swf-low

by (rule split.anonymous-clone) unfold-locales
interpret new1 : unanimous-swf agents ′ alts split.swf-low

by (rule split.unanimous-clone) unfold-locales
interpret new1 : kemeny-strategyproof-swf agents ′ alts split.swf-low

by (rule split.kemeny-strategyproof-clone) unfold-locales

92

interpret restrict: unanimous-swf-restrict-alts agents ′ alts split.swf-low dummy-alts alts ′

proof
show finite alts ′

using alts ′(1) finite-subset by blast
show mset-set alts = mset dummy-alts + mset-set alts ′

by (simp add: ‹finite alts ′› alts ′(1) alts-list ′ mset-set-Diff)
show alts ′ 6= {}

using alts ′(2) by fastforce
qed
interpret new2 : anonymous-swf agents ′ alts ′ restrict.swf-low

by (rule restrict.anonymous-restrict) unfold-locales
interpret new2 : unanimous-swf agents ′ alts ′ restrict.swf-low ..
interpret new2 : kemeny-strategyproof-swf agents ′ alts ′ restrict.swf-low

by (rule restrict.kemeny-strategyproof-restrict) unfold-locales

interpret new2 : anonymous-unanimous-kemenysp-swf-5-2 agents ′ alts ′ restrict.swf-low
by standard fact+

show False
by (fact new2 .contradiction)

qed

3.6 For 4 alternatives and 4 agents

We now similarly show the impossibility for m = n = 4. The main difference now is
that the number of profiles involved is much larger, namely 9900, so the approach of
simply generating all strategyproofness clauses that arise between these profiles is no
longer feasible.
Instead we work with an explicit list of the required 254269 strategyproofness clauses
that was extracted from an unsatisfiable core found with MUSer2.
The symmetry-breaking assumption we use this time is that the profile where two agents
report abcd and the other two report badc is mapped to abcd.
external-file sat-data/kemeny-sp-4-4 .xz
external-file sat-data/kemeny-4-4 .grat.xz

locale anonymous-unanimous-kemenysp-swf-explicit-4-4 =
anonymous-unanimous-kemenysp-swf-explicit agents alts swf 4 [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and a b c d +
assumes symmetry-breaking: aswf ′ {# [a,b,c,d], [a,b,c,d], [b,a,d,c], [b,a,d,c] #} = [a,b,c,d]

begin

local-setup ‹fn lthy =>
let

val params = {
name = kemeny-4-4,
locale-thm = @{thm anonymous-unanimous-kemenysp-swf-explicit-axioms},

93

profile-file = NONE ,
sp-file = SOME path ‹sat-data/kemeny-sp-4-4 .xz›,
grat-file = path ‹sat-data/kemeny-4-4 .grat.xz›,
extra-clauses = @{thms symmetry-breaking}
}
val thm =

Goal.prove-future lthy [] [] prop ‹False›
(fn {context, ...} =>
HEADGOAL (resolve-tac context [Anon-Unan-Stratproof-Impossibility.derive-false context

params]))
in

Local-Theory.note ((binding ‹contradiction›, []), [thm]) lthy |> snd
end

›

end

We again get rid of the symmetry-breaking assumption. The argument is almost exactly
the same one as before, except that we remove the alternative a and all agents get cloned.
Consequently, the arguments involving strategyproofness have to use the stronger notion
of strategyproofness considering simultaneous deviations by clones.
locale anonymous-unanimous-kemenysp-swf-4-4 = anonymous-unanimous-kemenysp-swf agents
alts swf

for agents :: ′agent set and alts :: ′alt set and swf +
assumes card-agents: card agents = 4
assumes card-alts: card alts = 4

begin

sublocale anonymous-unanimous-swf agents alts swf ..

sublocale anonymous-kemeny-strategyproof-swf agents alts swf ..

lemma symmetry-breaking-aux1 :
assumes distinct: distinct [a,b,c,d] and alts-eq: alts = {a,b,c,d}
defines R ≡ repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}
assumes R: aswf ′ R = [b,a,c,d]
shows aswf ′ (repeat-mset 2 {# [a,b,d,c], [b,a,c,d] #}) ∈ {[a,b,d,c], [b,a,c,d]}

proof −
have alts-eq ′: alts = set [a,b,c,d]

by (simp add: alts-eq)
have [simp]: a 6= b a 6= c a 6= d b 6= a b 6= c b 6= d

c 6= a c 6= b c 6= d d 6= a d 6= b d 6= c
using distinct by (simp-all add: eq-commute)

interpret anonymous-unanimous-kemenysp-swf-explicit agents alts swf 4 [a,b,c,d]
by standard (simp-all add: alts-eq card-agents)

have R-wf : is-apref-profile ′ R
unfolding is-apref-profile ′-def by (auto simp: card-agents permutations-of-set-def alts-eq

R-def)

94

define R2 where R2 = repeat-mset 2 {# [b,a,c,d], [b,a,d,c] #}
define R3 where R3 = repeat-mset 2 {# [a,b,c,d], [b,a,c,d] #}
define R4 where R4 = repeat-mset 2 {# [a,b,d,c], [b,a,c,d] #}
note R-defs = R-def R2-def R3-def R4-def

have wf : is-apref-profile ′ R is-apref-profile ′ R2 is-apref-profile ′ R3 is-apref-profile ′ R4
by (simp-all add: is-apref-profile ′-iff R-defs add-mset-commute)

have R2 : aswf ′ R2 = [b,a,c,d]
proof −

have aswf ′ R2 = [b,a,c,d] ∨ aswf ′ R2 = [b,a,d,c]
using aswf ′-in-allowed-results[OF wf (2)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R2 6= [b,a,d,c] ∨ aswf ′ R 6= [b,a,c,d]
by (intro kemeny-strategyproof-aswf ′-clones[where A = [b,a,c,d] and n = 2] wf)
(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons eval-nat-numeral)

ultimately show ?thesis using R
by blast

qed

have R3 : aswf ′ R3 = [b,a,c,d]
proof −

have aswf ′ R3 = [a,b,c,d] ∨ aswf ′ R3 = [b,a,c,d]
using aswf ′-in-allowed-results[OF wf (3)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R3 6= [a,b,c,d] ∨ aswf ′ R 6= [b,a,c,d]
by (intro kemeny-strategyproof-aswf ′-clones[where A = [b,a,c,d] and n = 2] wf)
(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons eval-nat-numeral)

ultimately show ?thesis using R
by blast

qed

show ?thesis
proof −

have aswf ′ R4 ∈ {[a,b,c,d], [b,a,d,c], [a,b,d,c], [b,a,c,d]}
using aswf ′-in-allowed-results[OF wf (4)] unfolding R-defs
by (simp add: eval-allowed-results del: Set.filter-eq)

moreover have aswf ′ R3 6= [b,a,c,d] ∨ aswf ′ R4 6= [a,b,c,d]
by (intro kemeny-strategyproof-aswf ′-clones[where A = [a,b,c,d] and n = 2] wf)
(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons eval-nat-numeral)

moreover have aswf ′ R2 6= [b,a,c,d] ∨ aswf ′ R4 6= [b,a,d,c]
by (intro kemeny-strategyproof-aswf ′-clones[where A = [b,a,d,c] and n = 2] wf)
(simp-all add: R-defs insert-commute swap-dist-code ′ inversion-number-Cons eval-nat-numeral)

ultimately show ?thesis using R2 R3 unfolding R4-def
by blast

qed
qed

95

lemma symmetry-breaking-aux2 :
obtains abcd where

distinct abcd alts = set abcd length abcd =4
case abcd of [a,b,c,d] ⇒ aswf ′ (repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}) = [a,b,c,d]

proof −
obtain abcd where abcd: distinct abcd set abcd = alts

using finite-distinct-list by blast
have length abcd = 4

using card-alts abcd distinct-card by metis
obtain a b c d where abcd-expand: abcd = [a,b,c,d]

using ‹length abcd = 4 › by (force simp: eval-nat-numeral length-Suc-conv)
have [simp]: a 6= b a 6= c a 6= db 6= a b 6= c b 6= d

c 6= a c 6= b c 6= d d 6= a d 6= b d 6= c
using abcd(1) unfolding abcd-expand by (simp-all add: eq-commute)

have alts-eq: alts = {a,b,c,d}
unfolding abcd(2) [symmetric] abcd-expand by simp

interpret anonymous-unanimous-kemenysp-swf-explicit agents alts swf 4 [a,b,c,d]
by standard (simp-all add: alts-eq card-agents)

define R where R = repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}
have R-wf : is-apref-profile ′ R

unfolding R-def is-apref-profile ′-def
by (auto simp: card-agents abcd-expand simp flip: abcd(2) intro!: linorder-of-ranking)

have aswf ′ R ∈ {[a,b,c,d], [b,a,d,c]} ∨ aswf ′ R ∈ {[a,b,d,c], [b,a,c,d]}
using aswf ′-in-allowed-results[OF R-wf] unfolding R-def
by (simp add: eval-allowed-results del: Set.filter-eq)

thus ?thesis
proof

assume ∗: aswf ′ R ∈ {[a,b,c,d], [b,a,d,c]}
show ?thesis

by (rule that[of aswf ′ R])
(use ∗ in ‹unfold R-def , auto simp add: alts-eq insert-commute add-mset-commute

eval-nat-numeral›)
next

assume aswf ′ R ∈ {[a,b,d,c], [b,a,c,d]}
hence aswf ′ R = [a,b,d,c] ∨ aswf ′ R = [b,a,c,d]

by blast
thus ?thesis
proof

assume ∗: aswf ′ R = [b,a,c,d]
have ∗∗: aswf ′ (repeat-mset 2 {#[a,b,d,c], [b,a,c,d]#}) ∈ {[a,b,d,c], [b,a,c,d]}

by (rule symmetry-breaking-aux1 [of a b c d])
(use ∗ in ‹simp-all add: R-def add-mset-commute alts-eq›)

show ?thesis
by (rule that[of aswf ′ (repeat-mset 2 {#[a,b,d,c], [b,a,c,d]#})])

(use ∗∗ in ‹auto simp: alts-eq add-mset-commute insert-commute add.commute›)
next

96

assume ∗: aswf ′ R = [a,b,d,c]
have ∗∗: aswf ′ (repeat-mset 2 {#[b,a,c,d], [a,b,d,c]#}) ∈ {[b,a,c,d], [a,b,d,c]}

by (rule symmetry-breaking-aux1 [of b a d c])
(use ∗ in ‹simp-all add: R-def add-mset-commute alts-eq insert-commute›)

show ?thesis
by (rule that[of aswf ′ (repeat-mset 2 {#[a,b,d,c], [b,a,c,d]#})])

(use ∗∗ in ‹auto simp: alts-eq add-mset-commute insert-commute add.commute›)
qed

qed
qed

lemma contradiction: False
proof −

obtain abcd where abcd:
distinct abcd alts = set abcd length abcd = 4
case abcd of [a,b,c,d] ⇒ aswf ′ (repeat-mset 2 {# [a,b,c,d], [b,a,d,c] #}) = [a,b,c,d]

using symmetry-breaking-aux2 .
from ‹length abcd = 4 › obtain a b c d where abcd-expand: abcd = [a,b,c,d]

by (auto simp: length-Suc-conv eval-nat-numeral)
interpret anonymous-unanimous-kemenysp-swf-explicit-4-4 agents alts swf a b c d
proof

show aswf ′ {#[a, b, c, d], [a, b, c, d], [b, a, d, c], [b, a, d, c]#} = [a, b, c, d]
using abcd unfolding abcd-expand by (simp add: eval-nat-numeral add-mset-commute)

qed (use abcd(1) in ‹simp-all add: card-agents abcd abcd-expand eq-commute›)
show ?thesis

by (fact contradiction)
qed

end

The final result: extending the impossibility to m ≥ 2 and n a multiple of 4.
theorem (in anonymous-unanimous-kemenysp-swf) impossibility ′:

assumes 4 dvd card agents and card alts ≥ 4
shows False

proof −
have card agents ≥ 4

using assms(1) nonempty-agents finite-agents by (meson card-0-eq dvd-imp-le not-gr0)
obtain agents ′ where agents ′: agents ′ ⊆ agents card agents ′ = 4

using ‹card agents ≥ 4 › by (meson obtain-subset-with-card-n)
have [simp]: agents ′ 6= {}

using agents ′ by auto
obtain alts ′ where alts ′: alts ′ ⊆ alts card alts ′ = 4

using ‹card alts ≥ 4 › by (meson obtain-subset-with-card-n)
obtain dummy-alts where alts-list ′: mset dummy-alts = mset-set (alts − alts ′)

using ex-mset by blast
obtain unclone where cloning agents ′ agents unclone

using cloning-exists[of agents ′ agents] agents ′ ‹4 dvd card agents› finite-agents by auto
interpret cloning agents ′ agents unclone by fact

97

interpret split: swf-split-agents agents alts swf agents ′ unclone ..
interpret new1 : anonymous-swf agents ′ alts split.swf-low

by (rule split.anonymous-clone) unfold-locales
interpret new1 : unanimous-swf agents ′ alts split.swf-low

by (rule split.unanimous-clone) unfold-locales
interpret new1 : kemeny-strategyproof-swf agents ′ alts split.swf-low

by (rule split.kemeny-strategyproof-clone) unfold-locales

interpret restrict: unanimous-swf-restrict-alts agents ′ alts split.swf-low dummy-alts alts ′

proof
show finite alts ′

using alts ′(1) finite-subset by blast
show mset-set alts = mset dummy-alts + mset-set alts ′

by (simp add: ‹finite alts ′› alts ′(1) alts-list ′ mset-set-Diff)
show alts ′ 6= {}

using alts ′(2) by fastforce
qed
interpret new2 : anonymous-swf agents ′ alts ′ restrict.swf-low

by (rule restrict.anonymous-restrict) unfold-locales
interpret new2 : unanimous-swf agents ′ alts ′ restrict.swf-low ..
interpret new2 : kemeny-strategyproof-swf agents ′ alts ′ restrict.swf-low

by (rule restrict.kemeny-strategyproof-restrict) unfold-locales

interpret new2 : anonymous-unanimous-kemenysp-swf-4-4 agents ′ alts ′ restrict.swf-low
by standard fact+

show False
by (fact new2 .contradiction)

qed

The following collects thw two impossibility results in one theorem.
theorem anonymous-unanimous-kemenysp-impossibility:

assumes (card alts = 4 ∧ 4 dvd card agents) ∨ (card alts ≥ 5 ∧ even (card agents))
assumes anonymous-swf agents alts swf
assumes unanimous-swf agents alts swf
assumes kemeny-strategyproof-swf agents alts swf
shows False

proof −
interpret anonymous-swf agents alts swf by fact
interpret unanimous-swf agents alts swf by fact
interpret kemeny-strategyproof-swf agents alts swf by fact
interpret anonymous-unanimous-kemenysp-swf agents alts swf ..
show False using assms(1) impossibility impossibility ′ by linarith

qed

end
theory Majcons-Stratproof-Impossibility

imports SWF-Impossibility-Automation
begin

A somewhat technical lemma: If the swap distance of two rankings restricted to some

98

subset A is the same as the swap distance of the full rankings and additionally the
elements of A are all ranked above the elements not in A in one of the rankings, then
the second ranking must also have all elements not in A ranked below those in A and in
the same order.
lemma swap-dist-append-eq-swap-dist-filter-imp-eq:

fixes xs ys zs
defines zs ′ ≡ (filter (λx. x ∈ set xs) zs)
assumes swap-dist (xs @ ys) zs ≤ swap-dist xs zs ′

assumes wf : distinct (xs @ ys) distinct zs set (xs @ ys) = set zs
shows zs = zs ′ @ ys

proof −
have linorder-on (set zs) (of-ranking (xs @ ys))

by (rule linorder-of-ranking) (use assms in auto)
moreover have linorder-on (set zs) (of-ranking zs)

by (rule linorder-of-ranking) (use assms in auto)
ultimately have ∗: of-ranking (xs @ ys) a b = of-ranking zs a b

if a /∈ set xs ∨ b /∈ set xs for a b
proof (rule swap-dist-relation-restrict-eq-imp-eq)

note ‹swap-dist (xs @ ys) zs ≤ swap-dist xs zs ′›
also have swap-dist (xs @ ys) zs = swap-dist-relation (of-ranking (xs @ ys)) (of-ranking zs)

unfolding swap-dist-def using assms by auto
also have swap-dist xs zs ′ = swap-dist-relation (of-ranking xs) (of-ranking zs ′)

unfolding swap-dist-def using assms by auto
also have filter (λx. x ∈ set xs) ys = []

unfolding filter-empty-conv using assms by auto
hence of-ranking xs = of-ranking (filter (λx. x ∈ set xs) (xs @ ys))

by simp
finally show swap-dist-relation (restrict-relation (set xs) (of-ranking (xs @ ys)))

(restrict-relation (set xs) (of-ranking zs)) ≥
swap-dist-relation (of-ranking (xs @ ys)) (of-ranking zs)

unfolding zs ′-def of-ranking-filter by simp
qed (use that in auto)

have of-ranking zs a b = of-ranking (zs ′ @ ys) a b for a b
proof (cases a ∈ set xs ∧ b ∈ set xs)

case True
hence of-ranking zs a b ←→ of-ranking zs ′ a b

by (auto simp: zs ′-def of-ranking-filter restrict-relation-def)
also have . . . ←→ of-ranking (zs ′ @ ys) a b

using wf of-ranking-imp-in-set[of ys a b] True
by (auto simp: of-ranking-append zs ′-def)

finally show ?thesis .
next

case False
hence of-ranking zs a b ←→ of-ranking (xs @ ys) a b

by (intro ∗ [symmetric]) auto
also have . . . ←→ of-ranking (zs ′ @ ys) a b

using wf False of-ranking-imp-in-set[of xs a b] of-ranking-imp-in-set[of zs ′ a b]
by (auto simp: of-ranking-append zs ′-def)

99

finally show ?thesis .
qed
hence of-ranking zs = of-ranking (zs ′ @ ys)

by blast
hence ranking (of-ranking zs) = ranking (of-ranking (zs ′ @ ys))

by (rule arg-cong)
also have ranking (of-ranking zs) = zs

by (rule ranking-of-ranking) (use wf in auto)
also have ranking (of-ranking (zs ′ @ ys)) = zs ′ @ ys

by (rule ranking-of-ranking) (use wf in ‹auto simp: zs ′-def ›)
finally show ?thesis .

qed

We now turn to a setting where we have exactly 9 agents and 4 alternatives and an SWF
that is majority consistent and satisfies our weak form of Kemeny strategyproofness
where the only manipulated profiles that have a linear majority relation are considered.
We will, in particular, consider two specific profiles and show that there is only one
admissible result ranking for them.
When strengthening the strategyproofness assumption to full strategyproofness, these
two results also turn out to be incompatible, yielding a contradiction.
locale majcons-weak-kstratproof-swf-explicit-4-9 =

majcons-weak-kstratproof-swf-explicit agents alts swf agents-list [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf
and agents-list and a b c d +
assumes card-agents-9 [simp]: card agents = 9

begin

lemma distinct-abcd [simp]:
a 6= b a 6= c a 6= d b 6= a b 6= c b 6= d
c 6= a c 6= b c 6= d d 6= a d 6= b d 6= c
using distinct-alts-list by auto

We consider the following profile R. This profile does not have a linear majority relation,
but many manipulations of it do.
definition R :: ′alt list list where

R = [[c,d,b,a],[b,a,d,c],[d,b,a,c],[c,b,a,d],
[a,d,c,b],[c,a,d,b],[d,c,b,a],[d,a,b,c],[a,b,c,d]]

lemma R-wf [simp]: prefs-from-rankings-wf R
by (simp add: prefs-from-rankings-wf-def R-def)

We perform five independent manipulations of R, all of which result in profiles with a
transitive majority relation. This gives us five upper bounds about the swap distance
between f(R) and one other ranking each. It turns out that there is only one ranking
that satisfies all of these constraints, and that ranking is adcb.
Note also that the first four inequalities are all sharp.
lemma swf ′-R: swf ′ R = [a,d,c,b]

100

proof −
note SP = majority-consistent-kemeny-strategyproof-swf ′-aux

have swap-dist [c,d,b,a] (swf ′ R) ≤ swap-dist [c,d,b,a] [a,d,c,b]
by (rule SP[where i = 0 and zs = [c,d,a,b]])

(simp-all add: R-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 1 : swap-dist [c,d,b,a] (swf ′ R) ≤ 4

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [b,a,d,c] (swf ′ R) ≤ swap-dist [b,a,d,c] [a,d,c,b]
by (rule SP[where i = 1 and zs = [a,b,d,c]])

(simp-all add: R-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 2 : swap-dist [b,a,d,c] (swf ′ R) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [d,b,a,c] (swf ′ R) ≤ swap-dist [d,b,a,c] [a,d,c,b]
by (rule SP[where i = 2 and zs = [d,a,b,c]])

(simp-all add: R-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 3 : swap-dist [d,b,a,c] (swf ′ R) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [c,b,a,d] (swf ′ R) ≤ swap-dist [c,b,a,d] [a,d,c,b]
by (rule SP[where i = 3 and zs = [c,a,b,d]])

(simp-all add: R-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 4 : swap-dist [c,b,a,d] (swf ′ R) ≤ 4

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [a,d,c,b] (swf ′ R) ≤ swap-dist [a,d,c,b] [d,b,a,c]
by (rule SP[where i = 4 and zs = [d,a,b,c]])

(simp-all add: R-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 5 : swap-dist [a,d,c,b] (swf ′ R) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

define constraints :: (′alt list × nat) list where
constraints = [([c,d,b,a],4), ([b,a,d,c],3), ([d,b,a,c],3), ([c,b,a,d],4), ([a,d,c,b],3)]

define P where P = (λys. list-all (λ(xs,d). swap-dist xs ys ≤ d) constraints)

have swf ′ R ∈ permutations-of-set alts
using swf ′-wf [of R] mset-eq-alts-list-iff [of swf ′ R] alts-conv-alts-list
by (simp add: permutations-of-set-def)

moreover have P (swf ′ R)
unfolding P-def using 1 2 3 4 5 by (simp add: constraints-def)

ultimately have swf ′ R ∈ Set.filter P (permutations-of-set alts)
by simp

also have permutations-of-set alts = set (permutations-of-set-list [a,b,c,d])
unfolding alts-conv-alts-list by (subst permutations-of-list) simp-all

also have Set.filter P . . . = {[a,d,c,b]}
by (simp add: P-def constraints-def permutations-of-set-list-def insert-commute

permutations-of-set-aux-list-Nil permutations-of-set-aux-list-Cons

101

Set-filter-insert swap-dist-conv-inversion-number inversion-number-Cons
del: Set.filter-eq)

finally show ?thesis
by simp

qed

We now consider a second profile, which differs from R only by a manipulation of the
third agent.
definition S :: ′alt list list where

S = [[c,d,b,a],[b,a,d,c],[d,b,c,a],[c,b,a,d],[a,d,c,b],
[c,a,d,b],[d,c,b,a],[d,a,b,c],[a,b,c,d]]

lemma S-wf [simp]: prefs-from-rankings-wf S
by (simp add: prefs-from-rankings-wf-def S-def)

We similarly show that f(S) = dcba.
lemma swf ′-S : swf ′ S = [d,c,b,a]
proof −

note SP = majority-consistent-kemeny-strategyproof-swf ′-aux

have swap-dist [c,b,a,d] (swf ′ S) ≤ swap-dist [c,b,a,d] [d,c,b,a]
by (rule SP[where i = 3 and zs = [c,b,d,a]])

(simp-all add: S-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 1 : swap-dist [c,b,a,d] (swf ′ S) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [a,d,c,b] (swf ′ S) ≤ swap-dist [a,d,c,b] [d,c,b,a]
by (rule SP[where i = 4 and zs = [d,a,c,b]])

(simp-all add: S-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 2 : swap-dist [a,d,c,b] (swf ′ S) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [c,a,d,b] (swf ′ S) ≤ swap-dist [c,a,d,b] [d,c,b,a]
by (rule SP[where i = 5 and zs = [c,d,a,b]])

(simp-all add: S-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 3 : swap-dist [c,a,d,b] (swf ′ S) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [b,a,d,c] (swf ′ S) ≤ swap-dist [b,a,d,c] [d,c,b,a]
by (rule SP[where i = 1 and zs = [b,d,a,c]])

(simp-all add: S-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 4 : swap-dist [b,a,d,c] (swf ′ S) ≤ 4

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

have swap-dist [d,c,b,a] (swf ′ S) ≤ swap-dist [d,c,b,a] [c,a,d,b]
by (rule SP[where i = 6 and zs = [c,d,a,b]])

(simp-all add: S-def prefs-from-rankings-wf-def of-ranking-Cons)
hence 5 : swap-dist [d,c,b,a] (swf ′ S) ≤ 3

by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

102

define constraints :: (′alt list × nat) list where
constraints = [([c,b,a,d],3), ([a,d,c,b],3), ([c,a,d,b],3), ([b,a,d,c],4), ([d,c,b,a],3)]

define P where P = (λys. list-all (λ(xs,d). swap-dist xs ys ≤ d) constraints)

have swf ′ S ∈ permutations-of-set alts
using swf ′-wf [of S] mset-eq-alts-list-iff [of swf ′ S] alts-conv-alts-list
by (simp add: permutations-of-set-def)

moreover have P (swf ′ S)
unfolding P-def using 1 2 3 4 5 by (simp add: constraints-def)

ultimately have swf ′ S ∈ Set.filter P (permutations-of-set alts)
by simp

also have permutations-of-set alts = set (permutations-of-set-list [a,b,c,d])
unfolding alts-conv-alts-list by (subst permutations-of-list) simp-all

also have Set.filter P . . . = {[d,c,b,a]}
by (simp add: P-def constraints-def permutations-of-set-list-def insert-commute

permutations-of-set-aux-list-Nil permutations-of-set-aux-list-Cons
Set-filter-insert swap-dist-conv-inversion-number inversion-number-Cons

del: Set.filter-eq)
finally show ?thesis

by simp
qed

end

We use the argument outlined in the paper to derive the impossibility for 9 agents and
≥ 4 alternatives. We call the first four alternatives a, b, c, d and treat the remaining ones
as “dummy alternatives” in some fixed order. Agents will always list them as their least
preferred alternatives in exactly that fixed order.
The complication is that, since we do not have unanimity, the ranking returned by the
SWF does not have to respect this order or put them as less preferred than the ‘real’
alternatives. However, we can show that for the profiles we consider, the SWF indeed
has to respect the order.
context majcons-kstratproof-swf-explicit
begin

sublocale majcons-weak-kstratproof-swf-explicit agents alts swf agents-list alts-list ..

lemma contradiction-eq9-ge4-aux:
assumes card agents = 9 card alts ≥ 4
shows False

proof −
define a b c d where

a = alts-list ! 0 and b = alts-list ! 1 and c = alts-list ! 2 and d = alts-list ! 3
define dummy-alts where dummy-alts = drop 4 alts-list

have alts-list-expand: alts-list = a # b # c # d # dummy-alts
by (rule nth-equalityI)

103

(use ‹card alts ≥ 4 ›
in ‹auto simp: a-def b-def c-def d-def dummy-alts-def nth-Cons eval-nat-numeral

split: nat.splits›)
have mset-alts-list [simp]: mset alts-list = {#a,b,c,d#} + mset dummy-alts

by (simp add: alts-list-expand)
have distinct-abcd: distinct [a,b,c,d]
and abcd-not-in-dummy-alts: {a,b,c,d} ∩ set dummy-alts = {}
and distinct dummy-alts
using distinct-alts-list unfolding alts-list-expand by auto

interpret majority-consistent-weak-kstratproof-swf-restrict-alts
agents alts swf dummy-alts {a,b,c,d}

by unfold-locales
(use distinct-abcd in ‹simp-all add: alts-conv-alts-list mset-set-set distinct-alts-list›)

interpret swf-restrict-alts-explicit agents alts swf dummy-alts {a,b,c,d}
agents-list alts-list [a,b,c,d]

by standard (simp-all add: alts-list-expand)
interpret new: majcons-weak-kstratproof-swf-explicit-4-9

agents {a,b,c,d} swf-low agents-list a b c d
by standard (use distinct-abcd ‹card agents = 9 › in ‹simp-all add: agents-list›)

define R S where R = map extend new.R and S = map extend new.S
have R-wf : prefs-from-rankings-wf R and S-wf : prefs-from-rankings-wf S

by (simp-all add: prefs-from-rankings-wf-def R-def new.R-def S-def new.S-def extend-def)

The swap distance inequalities we derived throughs strategyproofness before still hold
after adding the dummy alternatives. We only need one of them for each of R and S.

have swap-dist-swf ′-R: swap-dist (extend [c,d,b,a]) (swf ′ R) ≤ 4
proof −

have swap-dist (extend [c,d,b,a]) (swf ′ R) ≤ swap-dist (extend [c,d,b,a]) (extend [a,d,c,b])
proof (rule majority-consistent-kemeny-strategyproof-swf ′

[OF R-wf , where i = 0 and zs = extend [c,d,a,b]])
have majority-rel-mset (mset (new.R[0 := [c,d,a,b]])) [a,d,c,b]

by (rule new.majority-rel-list-aux-imp-majority-rel-mset)
(use distinct-abcd in ‹simp-all add: new.R-def new.prefs-from-rankings-wf-def

add-mset-commute of-ranking-Cons›)
hence majority-rel-mset (mset (map extend (new.R[0 := [c,d,a,b]]))) (extend [a,d,c,b])
by (subst majority-rel-mset-extend) (simp-all add: new.R-def new.prefs-from-rankings-wf-def)
also have map extend (new.R[0 := [c,d,a,b]]) = R[0 := extend [c,d,a,b]]

by (simp add: R-def new.R-def)
finally show majority-rel-mset (mset (R[0 := extend [c,d,a,b]])) (extend [a,d,c,b]) .

qed (simp-all add: R-def new.R-def extend-def)
also have . . . = swap-dist [c,d,b,a] [a,d,c,b]

by (subst swap-dist-extend) auto
also have . . . = 4

using distinct-abcd
by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

finally show ?thesis .
qed

104

have swap-dist-swf ′-S : swap-dist (extend [c,b,a,d]) (swf ′ S) ≤ 3
proof −

have swap-dist (extend [c,b,a,d]) (swf ′ S) ≤ swap-dist (extend [c,b,a,d]) (extend [d,c,b,a])
proof (rule majority-consistent-kemeny-strategyproof-swf ′

[OF S-wf , where i = 3 and zs = extend [c,b,d,a]])
have majority-rel-mset (mset (new.S [3 := [c,b,d,a]])) [d,c,b,a]

by (rule new.majority-rel-list-aux-imp-majority-rel-mset)
(use distinct-abcd in ‹simp-all add: new.S-def new.prefs-from-rankings-wf-def

add-mset-commute of-ranking-Cons›)
hence majority-rel-mset (mset (map extend (new.S [3 := [c,b,d,a]]))) (extend [d,c,b,a])
by (subst majority-rel-mset-extend) (simp-all add: new.S-def new.prefs-from-rankings-wf-def)
also have map extend (new.S [3 := [c,b,d,a]]) = S [3 := extend [c, b, d, a]]

by (simp add: S-def new.S-def)
finally show majority-rel-mset (mset (S [3 := extend [c, b, d, a]])) (extend [d, c, b, a]) .

qed (simp-all add: S-def new.S-def extend-def)
also have . . . = swap-dist [c,b,a,d] [d,c,b,a]

by (subst swap-dist-extend) auto
also have . . . = 3

using distinct-abcd
by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

finally show ?thesis .
qed

Since we know that R returns the ranking adcb when restricted to four alternatives
and this already has a swap distance of 3 to cbad, that means that all the dummy
alternatives in the ranking returnd for R must be in the desired position since they
would only introduce additinal swap distance, i.e. f(R) =↑ adcb.

have swf ′-R: swf ′ R = extend [a, d, c, b]
proof −

have new.swf ′ new.R = [a, d, c, b]
by (rule new.swf ′-R)

also have new.swf ′ new.R = filter (λx. x ∈ {a,b,c,d}) (swf ′ R)
using new-swf ′-eq[OF new.R-wf] by (simp add: R-def)

finally have restrict-swf ′-R: filter (λx. x ∈ {a, b, c, d}) (swf ′ R) = [a, d, c, b] .

have swf ′ R = filter (λx. x ∈ set [c,d,b,a]) (swf ′ R) @ dummy-alts
proof (rule swap-dist-append-eq-swap-dist-filter-imp-eq)

have mset ([c,d,b,a] @ dummy-alts) = mset alts-list
by simp

with distinct-alts-list show distinct ([c,d,b,a] @ dummy-alts)
using mset-eq-imp-distinct-iff by blast

next
have ∗: mset (swf ′ R) = mset-set alts

by (rule swf ′-wf) (fact R-wf)
from ∗ show distinct (swf ′ R)

by (metis alts-list mset-eq-alts-list-iff)
have mset ([c,d,b,a] @ dummy-alts) = mset alts-list

by simp

105

with ∗ show set ([c,d,b,a] @ dummy-alts) = set (swf ′ R)
by (metis alts-list mset-eq-setD)

next
have filter (λx. x ∈ set [c,d,b,a]) (swf ′ R) = [a,d,c,b]

using restrict-swf ′-R by (simp add: disj-ac)
hence swap-dist [c,d,b,a] (filter (λx. x ∈ set [c,d,b,a]) (swf ′ R)) =

swap-dist [c,d,b,a] [a,d,c,b]
by (rule arg-cong)

also have . . . = 4
using distinct-abcd

by (simp add: swap-dist-conv-inversion-number insert-commute eq-commute inver-
sion-number-Cons)

also have 4 ≥ swap-dist ([c,d,b,a] @ dummy-alts) (swf ′ R)
using swap-dist-swf ′-R by (simp add: extend-def)

finally show swap-dist ([c,d,b,a] @ dummy-alts) (swf ′ R) ≤
swap-dist [c,d,b,a] (filter (λx. x ∈ set [c,d,b,a]) (swf ′ R)) .

qed
also have filter (λx. x ∈ set [c,d,b,a]) (swf ′ R) = [a,d,c,b]

using restrict-swf ′-R by (simp add: disj-ac)
finally show swf ′ R = extend [a, d, c, b] by (simp add: extend-def)

qed

And similarly for S.
have swf ′-S : swf ′ S = extend [d, c, b, a]
proof −

have new.swf ′ new.S = [d, c, b, a]
by (rule new.swf ′-S)

also have new.swf ′ new.S = filter (λx. x ∈ {a,b,c,d}) (swf ′ S)
using new-swf ′-eq[OF new.S-wf] by (simp add: S-def)

finally have restrict-swf ′-S : filter (λx. x ∈ {a, b, c, d}) (swf ′ S) = [d, c, b, a] .

have swf ′ S = filter (λx. x ∈ set [c,b,a,d]) (swf ′ S) @ dummy-alts
proof (rule swap-dist-append-eq-swap-dist-filter-imp-eq)

have mset ([c,b,a,d] @ dummy-alts) = mset alts-list
by simp

with distinct-alts-list show distinct ([c,b,a,d] @ dummy-alts)
using mset-eq-imp-distinct-iff by blast

next
have ∗: mset (swf ′ S) = mset-set alts

by (rule swf ′-wf) (fact S-wf)
from ∗ show distinct (swf ′ S)

by (metis alts-list mset-eq-alts-list-iff)
have mset ([c,b,a,d] @ dummy-alts) = mset alts-list

by simp
with ∗ show set ([c,b,a,d] @ dummy-alts) = set (swf ′ S)

by (metis alts-list mset-eq-setD)
next

have filter (λx. x ∈ set [c,b,a,d]) (swf ′ S) = [d,c,b,a]
using restrict-swf ′-S by (simp add: disj-ac)

106

hence swap-dist [c,b,a,d] (filter (λx. x ∈ set [c,b,a,d]) (swf ′ S)) =
swap-dist [c,b,a,d] [d,c,b,a]

by (rule arg-cong)
also have . . . = 3

using distinct-abcd
by (simp add: swap-dist-conv-inversion-number insert-commute eq-commute inver-

sion-number-Cons)
also have 3 ≥ swap-dist ([c,b,a,d] @ dummy-alts) (swf ′ S)

using swap-dist-swf ′-S by (simp add: extend-def)
finally show swap-dist ([c,b,a,d] @ dummy-alts) (swf ′ S) ≤

swap-dist [c,b,a,d] (filter (λx. x ∈ set [c,b,a,d]) (swf ′ S)) .
qed
also have filter (λx. x ∈ set [c,b,a,d]) (swf ′ S) = [d,c,b,a]

using restrict-swf ′-S by (simp add: disj-ac)
finally show swf ′ S = extend [d, c, b, a]

by (simp add: extend-def)
qed

Finally, strategyproofness tells us that ∆(f(R), ↑ dbac) ≤ ∆(f(S), ↑ dbac). However, we
also know that f(R) =↑ adcb and f(S) =↑ dcba, leading to 3 = ∆(f(R), ↑ dbac) ≤ 2 =
∆(f(S), ↑ dbac).

have swap-dist (extend [d,b,a,c]) (swf ′ R) ≤ swap-dist (extend [d,b,a,c]) (swf ′ S)
by (rule kemeny-strategyproof-swf ′[where i = 2 and zs = extend [d,b,c,a]])

(use R-wf in ‹simp-all add: R-def S-def new.R-def new.S-def extend-def ›)
also have swf ′ R = extend [a,d,c,b]

by fact
also have swap-dist (extend [d,b,a,c]) (extend [a,d,c,b]) = swap-dist [d,b,a,c] [a,d,c,b]

by (rule swap-dist-extend) simp-all
also have . . . = 3

using distinct-abcd
by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

also have swf ′ S = extend [d,c,b,a]
by fact

also have swap-dist (extend [d,b,a,c]) (extend [d,c,b,a]) = swap-dist [d,b,a,c] [d,c,b,a]
by (rule swap-dist-extend) simp-all

also have . . . = 2
using distinct-abcd
by (simp add: swap-dist-conv-inversion-number insert-commute inversion-number-Cons)

finally show False
by simp

qed

Using agent cloning, we can lift the impossibility to any multiple of 9 agents. In partic-
ular, we can derive it for 18 agents.
lemma contradiction-eq18-ge4-aux:

assumes card agents = 18 card alts ≥ 4
shows False

proof −
have card agents ≥ 9

107

using assms by simp
then obtain agents ′ where agents ′: agents ′ ⊆ agents card agents ′ = 9

using obtain-subset-with-card-n by metis
obtain unclone where cloning agents ′ agents unclone

using cloning-exists[of agents ′ agents] agents ′ assms by force
interpret unclone: cloning agents ′ agents unclone by fact
interpret swf-split-agents agents alts swf agents ′ unclone ..

interpret new: majority-consistent-swf agents ′ alts swf-low
by (rule majority-consistent-clone) unfold-locales

interpret new: kemeny-strategyproof-swf agents ′ alts swf-low
by (rule kemeny-strategyproof-clone) unfold-locales

have finite agents ′

by (rule finite-subset[OF - finite-agents]) (use agents ′ in auto)
then obtain agents-list ′

where agents-list ′: mset agents-list ′ = mset-set agents ′

using ex-mset by blast
interpret new: majcons-kstratproof-swf-explicit agents ′ alts swf-low agents-list ′ alts-list

by unfold-locales (use agents-list ′ alts-list in auto)

show False
by (rule new.contradiction-eq9-ge4-aux) (use ‹card agents ′ = 9 › assms in auto)

qed

By adding k agents together with k ‘anti-clones’ of these agents, we can lift the impossi-
bility to 9+2k or 18+2k agents. This covers every n ≥ 9 except for n ∈ {10, 12, 14, 16}.
lemma contradiction-geq9-ge4-aux:

assumes card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..} card alts ≥ 4
shows False

proof −
define k where k = (card agents − (if even (card agents) then 18 else 9)) div 2
from assms have card agents ≥ (if even (card agents) then 18 else 9)

by auto
hence k: card agents = (if even (card agents) then 18 else 9) + 2 ∗ k

unfolding k-def by auto

have k ≤ card agents
using k by auto

then obtain agents1 where agents1 : agents1 ⊆ agents card agents1 = k
using k obtain-subset-with-card-n by metis

have k ≤ card (agents − agents1)
by (subst card-Diff-subset) (use agents1 finite-subset[OF agents1 (1)] k in auto)

then obtain agents2 where agents2 : agents2 ⊆ agents − agents1 card agents2 = k
using k obtain-subset-with-card-n by metis

have [simp]: finite agents1 finite agents2
by (rule finite-subset[of - agents]; use agents1 agents2 in force)+

interpret dummy-ord: linorder-on alts of-ranking alts-list
by (rule linorder-of-ranking) (use alts-conv-alts-list distinct-alts-list in auto)

108

interpret swf-reduce-agents-even agents alts swf agents1 agents2 of-ranking alts-list
proof

have card (agents1 ∪ agents2) < card agents
by (subst card-Un-disjoint) (use agents1 agents2 k in ‹auto split: if-splits›)

moreover have agents1 ∪ agents2 ⊆ agents
using agents1 agents2 by blast

ultimately show agents1 ∪ agents2 ⊂ agents
by blast

qed (use agents1 agents2 in auto)

interpret new: majority-consistent-swf agents − agents1 − agents2 alts swf-low
by (rule majority-consistent-reduce) unfold-locales

interpret new: kemeny-strategyproof-swf agents − agents1 − agents2 alts swf-low
by (rule kemeny-strategyproof-reduce) unfold-locales

have finite (agents − agents1 − agents2)
by (rule finite-subset[OF - finite-agents]) auto

then obtain agents-list ′

where agents-list ′: mset agents-list ′ = mset-set (agents − agents1 − agents2)
using ex-mset by blast

interpret new: majcons-kstratproof-swf-explicit
agents − agents1 − agents2 alts swf-low agents-list ′ alts-list

by unfold-locales (use agents-list ′ alts-list in auto)

have card (agents − agents1 − agents2) ∈ {9 , 18}
using agents1 agents2 k by (simp add: card-Diff-subset split: if-splits)

thus False
using new.contradiction-eq9-ge4-aux new.contradiction-eq18-ge4-aux assms by auto

qed

end

We get rid of the explicit lists of agents and alternatives.
context majcons-kstratproof-swf
begin

lemma contradiction-geq9-ge4 :
assumes card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..} card alts ≥ 4
shows False

proof −
obtain agents-list where mset agents-list = mset-set agents

using ex-mset by blast
obtain alts-list where mset alts-list = mset-set alts

using ex-mset by blast
interpret majcons-kstratproof-swf-explicit agents alts swf agents-list alts-list

by standard fact+
show ?thesis

using contradiction-geq9-ge4-aux assms by simp
qed

109

end

We use an imported SAT proof to show the case of m = 4, n = 3.
external-file sat-data/maj-profiles-4-3 .xz
external-file sat-data/maj-4-3 .grat.xz
external-file sat-data/maj-sp-4-4 .xz
external-file sat-data/maj-4-4 .grat.xz

locale majcons-kstratproof-swf-explicit-4-3 =
majcons-kstratproof-swf-explicit agents alts swf [A1 ,A2 ,A3] [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and A1 A2 A3 and a b c d

begin

local-setup ‹fn lthy =>
let

val params = {
name = maj-4-3,
locale-thm = @{thm majcons-kstratproof-swf-explicit-axioms},
profile-file = SOME path ‹sat-data/maj-profiles-4-3 .xz›,
sp-file = NONE ,
grat-file = path ‹sat-data/maj-4-3 .grat.xz›
}
val thm =

Goal.prove-future lthy [] [] prop ‹False›
(fn {context, ...} =>

HEADGOAL (resolve-tac context [Majcons-Stratproof-Impossibility.derive-false context
params]))

in
Local-Theory.note ((binding ‹contradiction›, []), [thm]) lthy |> snd

end
›

end

locale majcons-kstratproof-swf-explicit-4-4 =
majcons-kstratproof-swf-explicit agents alts swf [A1 ,A2 ,A3 ,A4] [a,b,c,d]
for agents :: ′agent set and alts :: ′alt set and swf and A1 A2 A3 A4 and a b c d

begin

local-setup ‹fn lthy =>
let

val params = {
name = maj-4-4,
locale-thm = @{thm majcons-kstratproof-swf-explicit-axioms},
profile-file = NONE ,
sp-file = SOME path ‹sat-data/maj-sp-4-4 .xz›,
grat-file = path ‹sat-data/maj-4-4 .grat.xz›
}

110

val thm =
Goal.prove-future lthy [] [] prop ‹False›
(fn {context, ...} =>

HEADGOAL (resolve-tac context [Majcons-Stratproof-Impossibility.derive-false context
params]))

in
Local-Theory.note ((binding ‹contradiction›, []), [thm]) lthy |> snd

end
›

end

context majcons-kstratproof-swf-explicit
begin

lemma contradiction-ge3-eq4 :
assumes card agents ≥ 3 card alts = 4
shows False

proof −
from assms have length alts-list = 4

by simp
then obtain a b c d where alts-list-eq: alts-list = [a, b, c, d]

by (auto simp: eval-nat-numeral length-Suc-conv)

define k where k = (card agents − (if even (card agents) then 4 else 3)) div 2
from assms have card agents ≥ (if even (card agents) then 4 else 3)

by auto
hence k: card agents = (if even (card agents) then 4 else 3) + 2 ∗ k

unfolding k-def by auto

have k ≤ card agents
using k by auto

then obtain agents1 where agents1 : agents1 ⊆ agents card agents1 = k
using k obtain-subset-with-card-n by metis

have k ≤ card (agents − agents1)
by (subst card-Diff-subset) (use agents1 finite-subset[OF agents1 (1)] k in auto)

then obtain agents2 where agents2 : agents2 ⊆ agents − agents1 card agents2 = k
using k obtain-subset-with-card-n by metis

have [simp]: finite agents1 finite agents2
by (rule finite-subset[of - agents]; use agents1 agents2 in force)+

interpret dummy-ord: linorder-on alts of-ranking alts-list
by (rule linorder-of-ranking) (use alts-conv-alts-list distinct-alts-list in auto)

interpret swf-reduce-agents-even agents alts swf agents1 agents2 of-ranking alts-list
proof

have card (agents1 ∪ agents2) < card agents
by (subst card-Un-disjoint) (use agents1 agents2 k in ‹auto split: if-splits›)

moreover have agents1 ∪ agents2 ⊆ agents

111

using agents1 agents2 by blast
ultimately show agents1 ∪ agents2 ⊂ agents

by blast
qed (use agents1 agents2 in auto)

interpret new: majority-consistent-swf agents − agents1 − agents2 alts swf-low
by (rule majority-consistent-reduce) unfold-locales

interpret new: kemeny-strategyproof-swf agents − agents1 − agents2 alts swf-low
by (rule kemeny-strategyproof-reduce) unfold-locales

have finite (agents − agents1 − agents2)
by (rule finite-subset[OF - finite-agents]) auto

define agents ′ where agents ′ = agents − agents1 − agents2
then obtain agents-list ′

where agents-list ′: mset agents-list ′ = mset-set agents ′

using ex-mset by blast
interpret new: majcons-kstratproof-swf-explicit

agents − agents1 − agents2 alts swf-low agents-list ′ alts-list
by unfold-locales (use agents-list ′ alts-list in ‹auto simp: agents ′-def ›)

have card agents ′ = 3 ∨ card agents ′ = 4
using agents1 agents2 k by (simp add: card-Diff-subset agents ′-def split: if-splits)

hence length agents-list ′ = 3 ∨ length agents-list ′ = 4
using agents-list ′ by (metis size-mset size-mset-set)

thus False
proof

assume length agents-list ′ = 3
then obtain A1 A2 A3 where agents-list-eq: agents-list ′ = [A1 , A2 , A3]

by (auto simp: eval-nat-numeral length-Suc-conv)
interpret new2 : majcons-kstratproof-swf-explicit-4-3 agents − agents1 − agents2

alts swf-low A1 A2 A3 a b c d
proof

show mset [A1 , A2 , A3] = mset-set (agents − agents1 − agents2)
using agents-list-eq new.agents-list by force

qed (simp-all flip: agents-list alts-list add: agents-list-eq alts-list-eq)
show False

using new2 .contradiction assms(1 ,2) by simp
next

assume length agents-list ′ = 4
then obtain A1 A2 A3 A4 where agents-list-eq: agents-list ′ = [A1 , A2 , A3 , A4]

by (auto simp: eval-nat-numeral length-Suc-conv)
interpret new2 : majcons-kstratproof-swf-explicit-4-4 agents − agents1 − agents2

alts swf-low A1 A2 A3 A4 a b c d
proof

show mset [A1 , A2 , A3 , A4] = mset-set (agents − agents1 − agents2)
using agents-list-eq new.agents-list by force

qed (simp-all flip: agents-list alts-list add: agents-list-eq alts-list-eq)
show False

using new2 .contradiction assms(1 ,2) by simp
qed

112

qed

end

We now have everything to put together the final impossibility theorem.
theorem majcons-kstratproof-impossibility:

assumes (card alts = 4 ∧ card agents ≥ 3) ∨
(card alts ≥ 4 ∧ card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..})

assumes majority-consistent-swf agents alts swf
assumes kemeny-strategyproof-swf agents alts swf
shows False
using assms(1)

proof
assume ∗: card alts ≥ 4 ∧ card agents ∈ {9 , 11 , 13 , 15} ∪ {17 ..}
interpret majority-consistent-swf agents alts swf by fact
interpret kemeny-strategyproof-swf agents alts swf by fact
interpret majcons-kstratproof-swf agents alts swf ..
show False

using contradiction-geq9-ge4 ∗ by simp
next

assume ∗: card alts = 4 ∧ card agents ≥ 3
interpret majority-consistent-swf agents alts swf by fact
interpret kemeny-strategyproof-swf agents alts swf by fact
interpret majcons-kstratproof-swf agents alts swf ..

obtain alts-list where alts-list: mset alts-list = mset-set alts
using ex-mset by blast

obtain agents-list where agents-list: mset agents-list = mset-set agents
using ex-mset by blast

interpret majcons-kstratproof-swf-explicit agents alts swf agents-list alts-list
by unfold-locales (simp-all add: agents-list alts-list)

show False
using ∗ contradiction-ge3-eq4 by auto

qed

end

References

[1] A. Belov and J. Marques-Silva. Muser2: An efficient MUS extractor. J. Satisf.
Boolean Model. Comput., 8(3/4):123–128, 2012.

[2] A. Biere, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba entering the
SAT Competition 2021. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2021 – Solver and Benchmark
Descriptions, volume B-2021-1 of Department of Computer Science Report Series B,
pages 10–13. University of Helsinki, 2021.

[3] P. Lammich. The GRAT tool chain – efficient (UN)SAT certificate checking with

113

formal correctness guarantees. In S. Gaspers and T. Walsh, editors, Theory and Ap-
plications of Satisfiability Testing – SAT 2017, Proceedings, volume 10491 of Lecture
Notes in Computer Science, pages 457–463. Springer, 2017.

[4] N. Wetzler, M. Heule, and W. A. H. Jr. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applica-
tions of Satisfiability Testing – SAT 2014, Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 422–429. Springer, 2014.

114

	Auxiliary Material
	Miscellaneous
	The Majority Relation
	The lexicographic order on lists
	Maximal and minimal elements

	Social welfare functions
	Preference profiles
	Definition and desirable properties of SWFs
	Majority consistency
	Concrete classes of SWFs
	Dictatorships
	Fixed-result SWFs

	Anonymised preference profiles
	Social Welfare Functions with explicit lists of agents and alternatives
	Lowering constructions for SWFs
	Decreasing the number of alternatives
	Decreasing the number of agents by a factor
	Decreasing the number of agents by an even number

	Impossibility results
	Infrastructure for SAT import and export
	Automation for computing topological sortings
	Automation for strategyproofness
	Automation for majority consistency
	For 5 alternatives and 2 agents
	For 4 alternatives and 4 agents

