Secure information flow and program logics —
[sabelle/HOL sources

Lennart Beringer and Martin Hofmann

March 19, 2025

Abstract

We present interpretations of type systems for secure information
flow in Hoare logic, complementing previous encodings in relational
program logics. We first treat the imperative language IMP, extended
by a simple procedure call mechanism. For this language we consider
base-line non-interference in the style of Volpano et al. [8] and the flow-
sensitive type system by Hunt and Sands [4]. In both cases, we show
how typing derivations may be used to automatically generate proofs
in the program logic that certify the absence of illicit flows. We then
add instructions for object creation and manipulation, and derive ap-
propriate proof rules for base-line non-interference. As a consequence
of our work, standard verification technology may be used for verifying
that a concrete program satisfies the non-interference property.

The present proof development represents an update of the for-
malisation underlying our paper [2] and is intended to resolve any
ambiguities that may be present in the paper.

Contents

1 The language IMP 2
1.1 Syntaxo 3
1.2 Dynamic semantics Lo Lo 3

2 Program logic 5
2.1 Assertions and their semantic validity 5
2.2 Proofsystem 6
2.3 Soundness 7
2.4 Admissible rules 8
2.5 Completenesso 8

3 Base-line noninterference 9
3.1 Basic definitions L 9
3.2 Derivation of the LOW rules 10

3.3 Derivation of the HIGH rules 12

3.4 The type system of Volpano, Smith and Irvine 12
3.5 Contextual closure 16

4 Lattices 18
5 Flow-sensitivity a la Hunt and Sands 18
5.1 General A; R = S-security 19
5.2 Basic definitionso oo oo 19
5.3 Typesystem 20
5.4 Derived proofrules L. 21
5.5 Soundnessresults oo 26

6 Base-line non-interference with objects 28
6.1 Syntax and operational semantics 28
6.2 Program logico 31
6.2.1 Assertions and their semantic validity 31

6.2.2 Proofsystem 32

6.2.3 Soundness 34

6.2.4 Derivedrules 0oL 34

6.2.5 Completeness 34

6.3 Partial bijections o oo oL 35
6.4 Non-interference 36
6.4.1 Indistinguishability relations 36

6.4.2 Definition and characterisation of security 38

6.5 Derivation of proof rules 39
6.5.1 Lowproofrules. 39

6.5.2 High proofrules, 41

6.6 Typesystem 44
6.7 Contextual closure oL 46

theory IMP imports Main begin

1 The language IMP

In this section we define a simple imperative programming language. Syntax
and operational semantics are as in [9], except that we enrich the language
with a single unnamed, parameterless procedure. Both, this section and
the following one merely set the basis for the development described in the
later sections and largely follow the approach to formalize program logics
advocated by Kleymann, Nipkow, and others - see for example [5, 6, 7].

1.1 Syntax

We start from unspecified categories of program variables and values.

typedecl Var
typedecl Val

Arithmetic expressions are inductively built up from variables, values,
and binary operators which are modeled as meta-logical functions over val-
ues. Similarly, boolean expressions are built up from arithmetic expressions
using binary boolean operators which are modeled as functions of the am-
bient logic HOL.

datatype Fapr =
varE Var
| valE Val
| opE Val = Val = Val Expr Expr

datatype BExpr = compB Val = Val = bool Expr Expr

Commands are the usual ones for an imperative language, plus the com-
mand Call which stands for the invocation of a single (unnamed, parame-
terless) procedure.

datatype IMP =
Skip
| Assign Var Exzpr
| Comp IMP IMP
| While BExpr IMP
| Iff BExpr IMP IMP
| Call

The body of this procedure is identified by the following constant.
consts body :: IMP

1.2 Dynamic semantics

States are given by stores - in our case, HOL functions mapping program
variables to values.

type-synonym State = Var = Val

definition update :: State = Var = Val = State
where update s x v = (A y . if =y then v else s y)

The evaluation of expressions is defined inductively, as standard.

primrec evalE:: Expr = State = Val

where

evalE (varE z) s = s x|

evalE (valE v) s = v |

evalE (opE fel e2) s = f (evalE el s) (evalE e2 s)

primrec evalB:: BExpr = State = bool
where
evalB (compB f el e2) s = f (evalE el s) (evalE €2 s)

The operational semantics is a standard big-step relation, with a height
index that facilitates the Kleymann-Nipkow-style [5, 6] soundness proof of
the program logic.

inductive-set Semn :: (State x IMP x nat x State) set where
SemSkip: (s,Skip,1,s) : Semn

| SemAssign:
[t = update s x (evalE e s)] = (s,Assign z e,1,t):Semn

| SemComp:
[(s,c1,n,r):Semn; (r,c2,m,t):Semn; k=(mazx n m)+1]
= (s,Comp c1 ¢2,k,t):Semn

| SemWhileT:
[evalB b s; (s,c,n,r):Semn; (r,While b ¢,m,t):Semn;
k=((maz n m)+1)]
= (s, While b c¢,k,t):Semn
| SemWhileF: [(evalB b s); t=s] = (s, While b ¢,1,t):Semn

| SemTrue:
[evalB b s; (s,cl,n,t):Semn | = (s,Iff b ¢ c2,n+1,t):Semn

| SemFalse:
[- (evalB b s); (s,c2,n,t):Semn] = (s,Iff b c1 c2,n+1,t):Semn

| SemCall: (s,body,n,t):Semn = (s,Call,n+1,t):Semn

abbreviation

SemN :: [State, IMP, nat, State] = bool (¢ -, -—- -))
where

s,¢ = t == (s,¢,n,t) : Semn

Often, the height index does not matter, so we define a notion hiding it.

definition Sem :: [State, IMP, State] = bool («-, - | -» 1000)
where s,c | t = (3 n. s,c =, 1)

Inductive elimination rules for the (indexed) dynamic semantics:

inductive-cases Sem-eval-cases:
s,Skip =, t

s,(Assign z e) —p, t

s,(Comp ¢l c2) —p t

s,(While b ¢) =, t

s,(Iff b c1 c2) =, t

s, Call =, t
(proof)

An induction on ¢ shows that no derivations of height 0 exist.

lemma Sem-no-zero-height-derivs: (s, ¢ —¢ t) ==> False(proof)(proof)

The proof of determinism is by induction on the (indexed) operational
semantics.

lemma SemDeterm: [s, ¢ | t; s, ¢ | 7] = r=t{(proof)
End of theory IMP

end

theory VDM imports IMP begin

2 Program logic

The program logic is a partial correctness logic in (precondition-less) VDM
style. This means that assertions are binary predicates over states and relate
the initial and final states of a terminating execution.

2.1 Assertions and their semantic validity

Assertions are binary predicates over states, i.e. are of type

type-synonym VDMAssn = State = State = bool

Command c satisfies assertion A if all (terminating) operational be-
haviours are covered by the assertion.

definition VDM-valid :: IMP = VDMAssn = bool
(«E-:->[100,100] 100)
where = c: A=V st.(s,cdt) — Asi)

A variation of this property for the height-indexed operational seman-
tics,. ..
definition VDM-validn :: nat = IMP = VDMAssn = bool
(¢ == -1 - [100,100,100] 100)
where =, c: A=V m.m<n——> ¥ st.(s,c—=mt)——>Ast))

... plus the obvious relationships.

lemma VDM-valid-validn: = c¢:A = =, c:A(proof)
lemma VDM-validn-valid: (¥ n . =, ¢:A) = = c:A(proof)
lemma VDM-lowerm: [=, c¢:A; m < n]| = |, c:A{proof)

Proof contexts are simply sets of assertions — each entry represents an
assumption for the unnamed procedure. In particular, a context is valid if
each entry is satisfied by the method call instruction.

definition Ctzt-valid :: VDMAssn set = bool (< |= -» [100] 100)
where = G=(V A. Aec G— (F Call : A))

Again, a relativised sibling ...

definition Ctzt-validn :: nat = (VDMAssn set) = bool
(¢ = - » [100,100] 100)
where =, G=(V m.m<n— (VA A€ G— (E, Cdl: A)))

satisfies the obvious properties.

lemma Ctat-valid-validn: = G = =, G(proof)
lemma Ctat-validn-valid: (¥ n . |, G) = &= G{proof)
lemma Ctat-lowerm: [=, G; m < n]| = = G{proof)

A judgement is valid if the validity of the context implies that of the
commmand-assertion pair.

definition valid :: (VDMAssn set) = IMP = VDMAssn = bool
(¢- = -:->1[100,100,100] 100)
where G Ec: A=(FG— Ec: A

And, again, a relatived notion of judgement validity.

definition validn ::

(VDMAssn set) = nat = IMP = VDMAssn = bool
(¢ - - 1 - [100,100,100,100] 100)

where G =, c: A= (F, G — |, ¢t 4)

lemma validn-valid: (V n . G |E, ¢: A) = G E ¢ : A{proof)
lemma ctzt-consn: | =, G; |, Call:A] = E, ({A} U G){proof)

2.2 Proof system

inductive-set
VDM-proof :: (VDMAssn set x IMP x VDMAssn) set
where

VDMSkip: (G, Skip, X st . t=s) : VDM-proof

| VDMAssign:
(G, Assign x e, A st . t = (update s x (evalE e s))) : VDM-proof

| VDMComp:
[(G, c1, A1) : VDM-proof; (G, c2, A2) : VDM-proof] —
(G, Comp cl c2,Ast.Ar.Alsr N A2rt): VDM-proof

| VDMIF:
[(G, ¢, A):VDM-proof; (G, c2, B): VDM-proof] =
(G, Iff becl c2, A st. (((evalBb s) — A st) A
((= (evalB b s)) — B s t))) : VDM-proof

| VDM While:
[(G, ¢, B):VDM-proof; ¥V s. (- evalB b s) — A s s;
VsrtealBbs— Bsr— Art— Ast] =
(G, Whilebc, A st. A st A~ (evalBbt)): VDM-proof

| VDMCall:
({A} U G, body, A): VDM-proof = (G, Call, A): VDM-proof

| VDMAz: A € G = (G, Call, A): VDM-proof

| VDMConseq:
[(G, ¢, A):VDM-proof; ¥V st. Ast — Bst] =
(G, ¢, B):VDM-proof

abbreviation
VDM-deriv :: [VDMAssn set, IMP, VDMAssn| = bool
(¢- > -: - [100,100,100] 100)
where G > ¢ : A == (G,c,A) € VDM-proof

The while-rule is in fact inter-derivable with the following rule.

lemma Hoare- While:
Gc:(Ass'.Vr.ewalBbs—Isr—Is'r) =
Gr> Whilebe:(Nss' ¥V r.ITsr— (Is'rA-evalBbs'))

(proof)

Here’s the proof in the opposite direction.

lemma VDM While-derivable:

[Gr>c:B;V s.(—evalBbs) — Ass;
Vsrt.evalBbs— Bsr— Art— Ast]

= G (Whilebc): (Ast.AstA- (evalBbt))

(proof)

2.3 Soundness

{proof) (proof)
An auxiliary lemma stating the soundness of the while rule. Its proof is

by induction on n.
lemma Sound While[rule-format]:
Vm. GELc:B) — (Vs. (mevalBbs) — Ass) —
(Vs. evalBbs — (Vr.Bsr — (Vt. Art — Ast))) —
G l=n (While b c) : (Ast. A st A = evalB b t){proof)

Similarly, an auxiliary lemma for procedure invocations. Again, the proof
proceeds by induction on n.
lemma SoundCall[rule-format]:
Vo En {4} U G) — E, body : A] = ., G — |, Call : A{proof)

The heart of the soundness proof is the following lemma which is proven
by induction on the judgement G > ¢ : A.

lemma VDM-Sound-n: G > ¢: A= (¥ n. G =, c:A)(proof)

Combining this result with lemma wvalidn-valid, we obtain soundness in
contexts,. ..

theorem VDM-Sound: G > ¢: A = G = c:A{proof)

...and consequently soundness w.r.t. empty contexts.

lemma VDM-Sound-emptyCtxt:{} > ¢ : A = = ¢ : A(proof)

2.4 Admissible rules

A weakening rule and some cut rules are easily derived.

lemma WFEAK [rule-format]:

Grc: A= (VY H.GCH — Hrw> c:A){proof)(proof)
lemma CutAuz:

[H> c: Ay H=insert P D; G 1> Call :P; G C D] = D > c:A{proof)
lemma Cut:[G > Call : P ; (insert P G) > ¢ : A] = G > ¢ : A{proof)

We call context G verified if all entries are justified by derivations for
the procedure body.

definition verified:: VDMAssn set = bool
where verified G = (V A. A:G — G > body : A)

The property is preserved by sub-contexts
lemma verified-preserved: [verified G; A:G] = verified (G — { A}){proof)(proof){proof)

The Mutrec rule allows us to eliminate verified (finite) contexts. Its proof
proceeds by induction on n.

theorem Mutrec:
[finite G; card G = n; verified G; A : G | = {} > Call:A{proof)

In particular, Mutrec may be used to show that verified finite contexts
are valid.

lemma Ctat-verified-valid: [verified G; finite G] = = G{proof)

2.5 Completeness

Strongest specifications, given precisely by the operational behaviour.

definition SSpec::IMP = VDMAssn
where SSpec c st = s,c |t

Strongest specifications are valid ...
lemma SSpec-valid: = ¢ : (SSpec ¢){proof)

and imply any other valid assertion for the same program (hence their
name).

lemma SSpec-strong: = ¢ :A =V st . SSpec c st — A s t{proof)

By induction on ¢ we show the following.
lemma SSpec-derivable:G 1> Call : SSpec Call = G > ¢ : SSpec c{proof)

The (singleton) strong context contains the strongest specification of the
procedure.

definition StrongG :: VDMAssn set
where StrongG = {SSpec Call}

By construction, the strongest specification of the procedure’s body can
be verified with respect to this context.

lemma StrongG-Body: StrongG > body : SSpec Call{proof)
Thus, the strong context is verified.
lemma StrongG-verified: verified StrongG {proof)

Using this result and the rules Cut and Mutrec, we show that arbitrary
commands satisfy their strongest specification with respect to the empty
context.

lemma SSpec-derivable-empty:{} > ¢ : SSpec c(proof)

From this, we easily obtain (relative) completeness.
theorem VDM-Complete: = ¢ : A = {} > ¢ : A(proof)

Finally, it is easy to show that valid contexts are verified.
lemma Ctat-valid-verified: = G = verified G{proof)

End of theory VDM

end

theory VS imports VDM begin

3 Base-line noninterference

We now show how to interprete the type system of Volpano, Smith and
Irvine (8], as described in Section 3 of our paper [2].

3.1 Basic definitions

Muli-level security being treated in Section 5, we restrict our attention in
the present section to the two-point security lattice.

datatype TP = low | high
A global context assigns a security type to each program variable.

consts CONTEXT :: Var = TP

Next, we define when two states are considered (low) equivalent.

definition twiddle::State = State = bool (¢« - = -» [100,100] 100)
where s ~ ss = (V z. CONTEXT z = low — sz = $$ x)

A command c is secure if the low equivalence of any two initial states
entails the equivalence of the corresponding final states.

definition secure::IMP = bool
where secure ¢ = (V stsstt.s~t— (s,¢ ss) —
(tye I &) — ss ~ ti)

Here is the definition of the assertion transformer that is called Sec in
the paper ...

definition Sec :: ((State x State) = bool) = VDMAssn
where Sec ® st=(V r.s~r — O, r) AV r.D(r,5) — r=t)

...and the proofs of two directions of its characteristic property, Propo-
sition 1.

lemma ProplA:l= ¢ : (Sec ®) = secure c(proof)
lemma ProplB:
secure c = = c: Sec (A (r, t) .3 s. (s, cl r) A s t)proof)
lemma Prop1BB:secure ¢ = 3 ® . |= ¢ : Sec ®(proof)
lemma Propl:
(secure ¢) = (= c: Sec (A (r,t) .3 s. (s, clr)As=t))(proof)

3.2 Derivation of the LOW rules

We now derive the interpretation of the LOW rules of Volpano et al’s paper
according to the constructions given in the paper. (The rules themselves are
given later, since they are not yet needed).

lemma CAST[rule-format]:

G > c: twiddle — G 1> ¢ : Sec (A (s,t) . s = t){proof)
lemma SKIP: G > Skip : Sec (X (s,t) . s = t){proof)
lemma ASSIGN:

(V s ss. s~ ss — evalE e s = evalE e ss) =

G > (Assign x €)

: (Sec (A (s, t) . s = (update t x (evalE e t)))){proof)
lemma COMP:

[G cl:(Sec @); Gr> c2: (Sec V)] =

G > (Comp c1 ¢2) : (Sec (A (s,t) .3 r.d(r, t) A
vV w. (r=~w— Vs, w))))){(proof)
lemma IFF":

[(V sss. s~ ss—> evalB b s = evalB b ss);

G > cl:(Sec ®); G c2: (Sec V)] =
G > (Iff b cl ¢2) : Sec (A (s, t) . (evalB bt — P(s,t)) A
((— evalB b t) — W(s,t))){proof)

We introduce an explicit fixed point construction over the type TT of
the invariants ®.

10

type-synonym TT = (State x State) = bool

We deliberately introduce a new type here since the agreement with
VDMAssn (modulo currying) is purely coincidental. In particular, in the
generalisation for objects in Section 6 the type of invariants will differ from
the type of program logic assertions.
definition FIX:(TT = TT) = TT
where FIX ¢ = (A (s,t). V @. (V ss it . o ® (ss,tt) —> D (ss,tt))

— D (s,1))

definition Monotone::(TT = TT) = bool
where Monotone ¢ = (V @ O . (V st . ®(s,t) — U(s,t)) —
(V st.o® (s,t) — ¢ ¥ (s,1))
(proof)(proof)
For monotone invariant transformers ¢, the construction indeed yields a
fixed point.

lemma Fiz-lemma: Monotone p = ¢ (FIX ¢) = FIX p{proof)

In order to derive the while rule we define the following transfomer.

definition PhiWhileOp::BEzpr = TT = TT = TT
where PhiWhileOp b & =
AT (A(sy t).
(evalBbt — (Ir. @ (r, t) A
NVw. r=w-—T (s, w))) A
(mevalBbt — s=t)))

Since this operator is monotone, ...

lemma PhiWhileOp-Monotone: Monotone (PhiWhileOp b ®)(proof)
we may define its fixed point,

definition PhiWhile:: BExpr = TT = TT
where PhiWhile b ® = FIX (PhiWhileOp b ®)

which we can use to derive the following rule.

lemma WHILE:
[(V st.s=t— evalBbs=evalBbt); G c: (Sec)] =
G > (While b ¢) : (Sec (PhiWhile b ®@))(proof)
The operator that given ® returns the invariant occurring in the conclu-
sion of the rule is itself monotone - this is the property required for the rule
for procedure invocations.

lemma PhiWhileMonotone: Monotone (A ® . PhiWhile b ®)(proof)

We now derive an alternative while rule that employs an inductive for-
mulation of a variant that replaces the fixed point construction. This version
is given in the paper.

First, the inductive definition of the var relation.

11

inductive-set var::(BEzpr x TT x State x State) set

where

varFalse: [evalB b t; s = t] = (b,®,s,t):var

| varTrue:[evalB b t; ®(ryt); V w. r~w — (b,P,s,w): var]
= (b,D,s,t):var

It is easy to prove the equivalence of var and the fixed point:

(proof) (proof) {proof) (proof)
lemma FIXvarFIX: (PhiWhile b) = (A @ . (A (s,¢) . (b,®,s,t):var)){proof)

From this rule and the rule WHILE above, one may derive the while rule
we gave in the paper.

lemma WHILE-IND:
[(V st.s=t— evalBbs=evalBbt); G c: (Sec)] =
G > (While b ¢) : (Sec (X (s,t) . (b,D,s,t):var)){proof)

Not suprisingly, the construction var can be shown to be monotone in
D,

(proof)
lemma var-Monotone: Monotone (A ® . (A (s,t) .(b,®,s,t):var)){proof){proof)

The call rule is formulated for an arbitrary fixed point of a monotone
transformer.

lemma CALL:
[{Sec(FIX @)} U G) > body : Sec(® (FIX ®)); Monotone] =
G > Call : Sec(FIX ®){proof)

3.3 Derivation of the HIGH rules

The HIGH rules are easy.

lemma HIGH-SKIP: G > Skip : twiddle{proof)
lemma HIGH-ASSIGN:

CONTEXT x = high = G > (Assign x e) : twiddle{proof)
lemma HIGH-COMP:

[G cl: twiddle; G > 2 : twiddle]

= G > (Comp cl c2): twiddle(proof)
lemma HIGH-IFF:

[G cl: twiddle; G > ¢2 : twiddle |

= G > (Iff b cl ¢2) : twiddle(proof)
lemma HIGH-WHILE:

[G ¢ :twiddle] = G > (While b ¢) : twiddle(proof)
lemma HIGH-CALL:

({twiddle} U G) > body : twiddle = G > Call : twiddle{proof)

3.4 The type system of Volpano, Smith and Irvine

We now give the type system of Volpano et al. and then prove its embedding
into the system of derived rules. First, type systems for expressions and
boolean expressions.

12

inductive-set VS-expr :: (Expr x TP) set
where
VS-exprVar: CONTEXT ¢ = t = (varE z, t) : VS-expr
| VS-exprVal: (valE v, low) : VS-expr
| VS-exprOp: [(el,t) : VS-expr; (e2,t): VS-expr]
= (opFE f el e2,t) : VS-expr
| VS-exprHigh: (e, high) : VS-expr

inductive-set VS-Bexpr :: (BEzpr x TP) set
where
VS-BexprOp: [(el,t) : VS-expr; (e2,t): VS-expr]
= (compB f el e2,t) : VS-Bexpr
| VS-BexprHigh: (e,high) : VS-Bexpr
Next, the core of the type system, the rules for commands.

inductive-set VS-com :: (TP x IMP) set
where

VS-comSkip: (pc,Skip) : V.S-com

| VS-comAssHigh:
CONTEXT x = high = (pc,Assign x e) : VS-com

| VS-comAssLow:
[CONTEXT z = low; pc = low; (e,low): VS-expr] =
(pc,Assign €) : VS-com

| VS-comComp:
[(pe,cl):VS-com; (pc,c2): VS-com] =
(pe,Comp ¢l c2) : VS-com

| VS-comlIf:
[(b,pc): VS-Bexpr; (pe,cl): VS-com; (pc,c2): VS-com] =
(pe,Iff b ¢l ¢2): VS-com

| VS-comWhile:
[(b,pc): VS-Bexpr; (pc,c): VS-com] = (pe, While b ¢): VS-com
| VS-comSub: (high,c) : VS-com = (low,c): VS-com
We define the interpretation of expression typings. ..

primrec SemFxpr::Expr = TP = bool

where

SemExpr e low = (V s ss. s &= ss — evalE e s = evalE e ss) |
SemExpr e high = True

...and show the soundness of the typing rules.
lemma FEzprSound: (e,tp): VS-expr —> SemFEzxpr e tp(proof)

Likewise for the boolean expressions.

13

primrec SemBEzpr::BEzpr = TP = bool

where

SemBExpr b low = (V s ss. s & ss — evalB b s = evalB b ss) |
SemBFExpr b high = True

lemma BFEzprSound: (e,tp): VS-Bexpr = SemBExpr e tp{proof)

The proof of the main theorem (called Theorem 2 in our paper) proceeds
by induction on (¢,¢) : V.S__com.
theorem VS-com- VDM rule-format):
(t,¢): VS-com = (t=high — G > ¢ : twiddle) A
(t=low — (3 A . G 1> ¢ : Sec A))(proof)

The semantic of typing judgements for commands is now the expected
one: HIGH commands require initial and final state be low equivalent (i.e. the
low variables in the final state can’t depend on the high variables of the initial
state), while LOW commands must respect the above mentioned security
property.
primrec SemCom:: TP = IMP = bool
where
SemCom low ¢ = (¥ ssstit. s~ ss — (s,cd t) —

(ss,c | tt) — ¢ =~ tt) |
SemCom high ¢ = (V st. (s,cdt) — s~ t)

Combining theorem VS-com-VDM with the soundness result of the pro-
gram logic and the definition of validity yields the soundness of Volpano et
al’s type system.

theorem VS-SOUND: (t,c): VS-com = SemCom t c¢{proof)

As a further minor result, we prove that all judgements interpreting the
low rules indeed yield assertions A of the form A = Sec(®(FI1X®)) for some
monotone .

inductive-set Deriv ::(VDMAssn set x IMP x VDMAssn) set
where
D-CAST:

(G, c,twiddle):Deriv = (G, ¢, Sec (A (s,t) . s = t)) : Deriv

| D-SKIP: (G, Skip, Sec (A (s,t) . s = t)) : Deriv

| D-ASSIGN:
(V s ss. s~ ss — evalE e s = evalE e ss) =
(G, Assign x e, Sec (A (s, t) . s = (update t z (evalE e t)))):Deriv

| D-COMP:
[(G, c1, Sec ®):Deriv; (G, c2, Sec V):Deriv] =
(G, Comp cl c2, Sec (A (s,t) .3 r.®(r,) A
vV w.(r=w— U(s, w))))):Deriv

14

| C-IFF:
[(V sss. s~ ss— evalBbs= evalB b ss);
(G, c1, Sec ®):Deriv; (G,c2, Sec W):Deriv] =
(G, Iff b c1 c2, Sec (A (s, t) . (evalB bt — P(s,t)) A
((—= evalB b t) — ¥(s,t)))):Deriv

| D-WHILE:
[(V sss. s~ ss— evalBbs= evalB b ss);
(G, ¢, Sec ®):Deriv] =
(G, While b ¢, Sec (PhiWhile b ®)):Deriv

| D-CALL:
[({Sec(FIX @)} U G, body, Sec(D(FIX ®))):Deriv;
Monotone] =
(G, Call, Sec(FIX ®)):Deriv

| D-HighSKIP:(G, Skip, twiddle): Deriv

| D-HighASSIGN:
CONTEXT z = high = (G,Assign x e, twiddle): Deriv

| D-HighCOMP:
[(G,cl,twiddle): Deriv; (G,c2,twiddle): Deriv] =
(G, Comp cl c2, twiddle): Deriv

| D-HighlFF:
[(G,cl,twiddle): Deriv; (G,c2,twiddle): Deriv] =
(G, Iff b ¢l ¢2, twiddle):Deriv

| D-HighWHILE:
(G, ¢, twiddle):Deriv = (G, While b ¢, twiddle): Deriv

| D-HighCALL:
({twiddle} U G, body, twiddle):Deriv => (G, Call, twiddle): Deriv

(proof)
lemma DerivMono:
(X,c,A):Deriv = 3 ® . A = Sec ((FIX ®)) A Monotone ®{proof)

Also, all rules in the Deriv relation are indeed derivable in the program
logic.

lemma Deriv-derivable: (G,c,A):Deriv = G > c¢: A(proof)

End of theory VS

end

theory ContextVS imports VS begin

15

3.5 Contextual closure

We show that the notion of security is closed w.r.t. low attacking contexts,
i.e. contextual programs into which a secure program can be substituted and
which itself employs only obviously low variables.

Contexts are IMP programs with (multiple) designated holes (repre-
sented by constructor Ctxt_ Here).

datatype CtztProg =
Ctxt-Hole
| Ctat-Skip
| Ctxt-Assign Var Ezpr
| Ctat-Comp CtxtProg CtxtProg
| Ctat-1If BExpr CtxtProg CtztProg
| Ctat-While BExpr CtatProg
| Ctat-Call

We let C', D range over contextual programs. The substitution operation
is defined by structural recursion.

primrec Fill::CtztProg = IMP = IMP

where

Fill Ctzt-Hole ¢ = ¢ |

Fill Ctat-Skip ¢ = Skip |

Fill (Ctxzt-Assign x e) ¢ = Assign z e |

Fill (Ctzt-Comp C1 C2) ¢ = Comp (Fill C1 ¢) (Fill C2 ¢) |
Fill (Ctat-If b C1 02) ¢ = Iff b (Fill C1 ¢) (Fill 02 ¢) |
Fill (Ctut-While b C) ¢ = While b (Fill C ¢) |

Fill Ctat-Call ¢ = Call

Equally obvious are the definitions of the (syntactically) mentioned vari-
ables of arithmetic and boolean expressions.

primrec EVars::Expr = Var set

where

EVars (varE z) = {z} |

EVars (valE v) = {} |

EVars (opE f el e2) = EVars el U EVars e2

lemma low-FEval[rule-format]:

(V z .z € EVars e — CONTEXT z = low) —
(V st.s~t—> evalE e s = evalE e t)(proof)

primrec BVars:: BExpr = Var set

where

BVars (compB f el e2) = EVars el U EVars e2

lemma low-FEvalB[rule-format):
(V 2.2 € BVars b — CONTEXT z = low) —>
(V st.s~t— evalB b s = evalB b t){proof)

The variables possibly read from during the evaluation of ¢ are denoted

16

by Vars c. Note that in the clause for assignments the variable that is
assigned to is not included in the set.

primrec Vars::IMP = Var set

where

Vars Skip = {} |

Vars (Assign x e) = EVars e |

Vars (Comp ¢ d) = Vars ¢ U Vars d |

Vars (While b ¢) = BVars b U Vars ¢ |

Vars (Iff b ¢ d) = BVars b U Vars ¢ U Vars d |
Vars Call = {}

For contexts, we define when a set X of variables is an upper bound for
the variables read from.

primrec CtztVars: Var set = CtaxtProg = bool
where
CtztVars X Ctxt-Hole = True |
CtxtVars X Ctxt-Skip = True |
CtztVars X (Ctat-Assign x e) = (EVars e C X) |
CtztVars X (Ctaxt-Comp C1 C2) = (CtatVars X C1 N CtaztVars X C2) |
CtztVars X (Ctat-If b C1 C2) = (BVars b C X A CtatVars X C1
A CtatVars X C2) |
CtxtVars X (Ctxt-While b C) = (BVars b € X A CtztVars X C) |
CtxtVars X Ctazt-Call = True

(proof)(proof) (proof) (proof)

A constant representing the procedure body with holes.
consts Ctxt-Body:: CtztProg

The following predicate expresses that all variables read from by a com-
mand c are contained in the set X of low variables.

definition LOW::Var set = CtxtProg = bool
where LOW X C = (CtxtVars X C AN (VY z .2 : X — CONTEXT z = low))
(proof)

By induction on the maximal height of the operational judgement (hid-
den in the definition of secure) we can prove that the security of ¢ implies
that of Fill C ¢, provided that the context and the procedure-context sat-
isfy the LOW predicate for some X, and that the "real" body is obtained
by substituting ¢ into the procedure context.
lemma securel-secureFilll:

[secure ¢; LOW X C; LOW X Ctzt-Body; body = Fill Ctxt-Body c]
= secure (Fill C c)(proof)

Consequently, a (low) variable representing the result of the attacking
context does not leak any unwanted information.

consts res:: Var

theorem

17

[secure ¢; LOW X C; LOW X Ctat-Body; s =~ ss; s,(Fill C ¢){t;
ss,(Fill C ¢){tt; body = Fill Ctzt-Body c; CONTEXT res = low]
= t res = tt res(proof)

End of theory ContextVS

end

theory Lattice imports Main begin

4 Lattices

In preparation of the encoding of the type system of Hunt and Sands, we
define some abstract type of lattices, together with the operations 1, C and
L, and some obvious axioms.

typedecl L

axiomatization
bottom :: L and
LEQ :: L = L = bool and
LUB:L=L=1
where
LAT!1: LEQ bottom p and
LAT2: LEQ pl p2 — LEQ p2 p8 — LEQ pl p3 and
LAT3: LEQ p (LUB p q) and
LAT): LUB p ¢q = LUB ¢ p and
LAT5: LUB p (LUB qr) = LUB (LUB p q) r and
LATG6: LEQ x x and
LAT7: p=LUBpp

End of theory Lattice

end

theory HuntSands imports VDM Lattice begin

5 Flow-sensitivity a la Hunt and Sands

! The paper [4] by Hunt and Sands presents a generalisation of the type
system of Volpano et al. to flow-sensitivity. Thus, programs such as [:=
h;l := 5 are not rejected any longer by the type system. Following the
description in Section 4 of our paper [2], we embed Hunt and Sands’ type
system into the program logic given in Section 2.

1 As the Isabelle theory representing this section is dependent only on VDM.thy and
Lattice.thy, name conflicts with notions defined in Section 3 are avoided.

18

5.1 General A; R = S-security

Again, we define the type TT of intermediate formulae ®, and an assertion
operator Sec. The latter is now parametrised not only by the intermediate
formulae but also by the (possibly differing) pre- and post-relations R and S
(both instantiated to =~ in Section 3), and by a specification A that directly
links pre- and post-states.

type-synonym TT = (State x State) = bool

definition RSsecure::(State = State = bool) =
(State = State = bool) = IMP = bool
where RSsecure R S ¢ = (V stsstt. Rst— (s,c | ss) —
(tye |) — S ss tt)

definition ARSsecure:: VDMAssn = (State = State = bool) =
(State = State = bool) = IMP = bool
where ARSsecure AR S ¢ = ((=c: A) N RSsecure R S ¢)

Definition 3 of our paper follows.

definition Sec :: VDMAssn = (State = State = bool) =

(State = State = bool) = TT = VDMAssn
where Sec ARS ®st=(AstA

Mr.Rsr— ®(tr) NN r.®(rs) — Srt))

With these definitions, we can prove Proposition 4 of our paper.

lemma PropjA: = c¢: Sec A RS ® = ARSsecure A R S ¢{proof)
lemma Prop/B : ARSsecure A R S ¢ =
FEc:Sec ARS (A (rt).3 s.(s,cldr)ANRst)proof)

5.2 Basic definitions

Contexts map program variables to lattice elements.
type-synonym CONTEXT = Var = L

definition upd ::CONTEXT = Var = L = CONTEXT
where upd G zp = (A y . if x=y then p else G y)

We also define the predicate E@Q which expresses when two states agree
on all variables whose entry in a given context is below a certain security
level.

definition FQ:: CONTEXT = L = State = State = bool

where EQ Gp=(Ast.V z.LEQ (Gz)p — sz=1tuz)

lemma FQ-LEQ: [EQ G p s t; LEQ pp p] = EQ G pp s t{proof)
The assertion called @ in our paper:

definition @Q::L = CONTEXT = VDMAssn
where Qp H=(Ast.Vz.(-LEQp (Hz)) — tz=s2z)

19

() expresses the preservation of values in a single execution, and corre-
sponds to the first clause of Definition 3.2 in [4]. In accordance with this,
the following definition of security instantiates the A position of A; R = S-
security with), while the context-dependent binary state relations are
plugged in as the R and S components.

definition secure :: L = CONTEXT = IMP = CONTEXT = bool
where secure p G ¢ H = (V q . ARSsecure (Q p H) (EQ G q) (EQ H q) ¢)

Indeed, one may show that this notion of security amounds to the con-
junction of a unary (i.e. one-execution-)property and a binary (i.e. two-
execution-) property, as expressed in Hunt & Sands’ Definition 3.2.

definition securel :: L = CONTEXT = IMP = CONTEXT = bool
where securel p Ge H= (VY st.(s,ct)— Qp Hst)

definition secure? :: L = CONTEXT = IMP = CONTEXT = bool
where secure2 p G ¢ H = ((V stsstt. (s,cdt) — (ss,c | tt) —
EQ Gpsss— EQHptit))

lemma secure EQUIV:
secure p G ¢ H = (¥ q . securel p G ¢ H A secure2 q G ¢ H){proof)

5.3 Type system

The type system of Hunt and Sands — our language formalisation uses a
concrete datatype of expressions, so we add the obvious typing rules for
expressions and prove the expected evaluation lemmas.

inductive-set HS-E:: (CONTEXT x Expr x L) set

where

HS-E-var: (G, varE z, G z) : HS-E

| HS-E-val: (G, valE ¢, bottom) : HS-E

| HS-E-op: [(G, el,p1):HS-E; (G, e2,p2):HS-E; p= LUB pl p2]
= (G,opFE f el e2,p) : HS-E

| HS-E-sup: [(G,e,p):HS-E; LEQ p q] = (G,e,q):HS-E

lemma HS-E-eval[rule-format]:
(G, e, t) € HS-E =
Vrsq EQGqrs— LEQtq— evalE e r = evalE e s{proof)

Likewise for boolean expressions:

inductive-set HS-B:: (CONTEXT x BExpr x L) set

where

HS-B-compB: [(G, el,p1):HS-E; (G, e2,p2):HS-E; p= LUB pl p2]
= (G,compB f el e2,p) : HS-B

| HS-B-sup: [(G,b,p):HS-B; LEQ p q] = (G,b,q):HS-B

lemma HS-B-eval[rule-format]:
(G, b, t) € HS-B =

20

Vrspp.EQGpprs— LEQtpp — evalB br = evalB b s{proof)

The typing rules for commands follow.

inductive-set HS::(L x CONTEXT x IMP x CONTEXT) set
where

HS-Skip: (p,G,Skip,G):HS

| HS-Assign:
(G,et):HS-E = (p,G,Assign x e;upd G = (LUB p t)):HS

| HS-Seq:
l(p,G,ec,K):HS; (p,K,d,H):HS] = (p,G, Comp ¢ d,H):HS

| HS-If:
[(G,b,t):HS-B; (LUB p t,G,c,H):HS; (LUB p t,G,d,H):HS| =
(p,GIff b c d,H):HS

| HS-If-aly:
[(G,b,p):HS-B; (p,G,c,H):HS; (p,G,d,H):HS| =
(p,GIff b c d,H):HS

| HS-While:
[(G,b,t):HS-B; (LUB p t,G,c,H):HS;H=G] =
(p,G,While b ¢,H):HS

| HS-Sub:
[(pp,GG,c,HH):HS; LEQ p pp; V x . LEQ (G z) (GG x);
V z.LEQ (HH z) (Hz)] =
(p,G,c,H):HS

Using HS-Sub, rules If and If-alg are inter-derivable.

lemma [F-derivable-from-If-alg:
[(G,b,t):HS-B; (LUB p t,G,c1,H):HS; (LUB p t,G,c2,H):HS]
= (p,G,Iff b ¢l c2,H):HS

(proof)

lemma [F-alg-derivable-from-If:
[(G,b,p):HS-B; (p,G,cl,H):HS; (p,G,c2,H):HS]
= (p,G,Iff b ¢l c2,H):HS

(proof)

An easy induction on typing derivations shows the following property.

lemma HS-Auzxl:
(p,G,c,H):HS =V z. LEQ (G z) (H z) V LEQ p (H z){proof)

5.4 Derived proof rules

In order to show the derivability of the properties given in Theorem 3.3
of Hunt and Sands’ paper, we give the following derived proof rules. By

21

including the @ property in the A position of Sec, we prove both parts of
theorem in one proof, and can exploit the first property (@) in the proof of
the second.

lemma SKIP:
X > Skip : Sec (Q p H) (EQ G q) (EQ G q)
(A (s,t) . EQ G q s t)(proof)
lemma ASSIGN:
[H=upd Gz (LUB p t);
V sss. EQ Gtsss— evalE e s = evalE e s3]
= X > Assignz e : Sec (Q p H) (EQ G q) (EQ H q)
(A (s,t) .3 r.s=update r x (evalE e r) AN EQ G q r t){proof)
lemma COMP:
[X >cl:Sec(QpK)(EQGq) (EQK q)
X>c2:Sec(QpH)(EQK q) (EQ Hq) ¥,
Vz.LEQ (Gz) (Kz)V LEQp (K z);
V z.LEQ (Kz)(Hx)V LEQp (H)]
= X > Comp cl c2: Sec (Qp H) (EQ G q) (EQ H q)
A(z,y) .3 2.D (2,9 A
~Vw.EQKqzw— U (z, w)))(proof)

We distinguish, for any given ¢, parallel conditionals from diagonal ones.
Speaking operationally (i.e. in terms of two executions), conditionals of the
former kind evaluate the branch condition identically in both executions.
The following rule expresses this condition explicitly, in the first side con-
dition. The formula inside the Sec-operator of the conclusion resembles
the conclusion of the VDM rule for conditionals in that the formula chosen
depends on the outcome of the branch.

lemma [F-PARALLEL:
[V sss.EQGpsss— evalB b s = evalB b ss;
V 2. LEQ (G z) (Hz)V LEQ p (H z);
Jz.LEQp (Hz) N LEQ (H2x) ¢
X cl:Sec(QpH)(EQGq) (EQH q) o
X c2:Sec(QpH)(EQGq) (EQH q) V]
= X Iffbcl c2:Sec (QpH) (EQ G q) (EQ H q)
(A (r, uw) . (evalBbu— @ (r, u)) A
((= evalB b u) — ¥ (r, u))){proof)

An alternative formulation replaces the first side condition with a typing
hypothesis on the branch condition, thus exploiting lemma HS_B_ eval.

lemma [F-PARALLEL-tp:
[(G, b, p) € HS-B; (p, G, ¢1, H) € HS; (p, G, ¢2, H) € HS,
Jz.LEQp (Hz) AN LEQ (Hz) ¢;
X cl:See(QpH)(EQGq) (EQH q) ¥
X > c2:8c(QpH)(EQGq) (EQ Hq) Y]
= X Iffbclc2: Sec (QpH)(EQGq) (EQH q)
(A (r, u) . (evalBbu — @ (7, u)) A
((= evalB b u) — W (r, w))){proof)

22

Diagonal conditionals, in contrast, capture cases where (from the per-
spective of an observer at level ¢) the two executions may evaluate the branch
condition differently. In this case, the formula inside the Sec-operator in the
conclusion cannot depend upon the branch outcome, so the least common
denominator of the two branches must be taken, which is given by the equal-
ity condition w.r.t. the post-context H. A side condition (the first one given
in the rule) ensures that indeed no information leaks during the execution
of either branch, by relating G and H.

lemma [F-DIAGONAL:
[Vz. LEQ (G z) (Hz) V LEQ p (H z);
- (3z. LEQ p (Hz) N LEQ (H z) q);
X cl:See(QpH)(EQGq) (EQ H q) ¥
X > c2:S8c(QpH)(EQGq) (EQ Hq) V]
= X Iffbclc2: Sec (QpH) (EQ G q) (EQ H q)
(A (s,t). EQ H q s t){proof)

Again, the first side condition of the rule may be replaced by a typing
condition, but now this condition is on the commands (instead of the branch
condition) — in fact, a derivation for either branch suffices.

lemma [F-DIAGONAL-tp:
[(p, G, c1, H) € HS V (p, G, ¢2, H) € HS;
- (3z. LEQ p (Hz) N LEQ (H z) q);
X>ecl:Sec(QpH)(EQGq) (EQHq) o
X > c2:Sc(QpH)(EQGq) (EQH q) Y]
= X Iffbcl c2:Sec (QpH) (EQ G q) (EQ H q)
(X (s,8). EQ H q s t){proof)

Obviously, given ¢, any conditional is either parallel or diagonal as the
second side conditions of the diagonal rules and the parallel rules are exclu-
sive.

lemma if-algorithmic:
[3 x.LEQp (Hz)ANLEQ (Hx) g
-~ (32. LEQ p (Hz) N LEQ (H z) q)]
= False{proof)

As in Section 3 we define a fixed point construction, useful for the (par-
allel) while rule.

definition FIX:(TT = TT) = TT
where FIX o = (A (s,t). V @ . (V sstt. o @ (ss, tt) — @ (ss, it))
— D (s, 1))

For monotone invariant transformers, the construction indeed yields a
fixed point.

definition Monotone::(TT = TT) = bool
where Monotone ¢ = (¥ @ U . (V st. ®(s,t) — U(s,t)) —
(V st.o® (s,t) — o ¥ (s,8)))
(proof Y{proof)lemma Fiz-lemma:Monotone ¢ = ¢ (FIX ¢) = FIX o(proof)

23

Next, the definition of a while-operator.

definition PhiWhilePOp::
VDMAssn = BExpr = TT = TT = TT
where PhiWhilePOp A b ® =
AT . (A(r, u). (evalBbu — (Fz. D (2, u) A
NVw. Azw— T (r, w))) A
((— evalB b u) — A ru)))

This operator is monotone in .

lemma PhiWhilePOp-Monotone: Monotone (PhiWhilePOp A b ®){proof)

Therefore, we can define the following fixed point.

definition PhiWhileP::VDMAssn = BExpr = TT = TT
where PhiWhileP A b ® = FIX (PhiWhilePOp A b ®)

As as a function on ¢, this PhiWhileP is itself monotone in ¢:

lemma PhiWhilePMonotone: Monotone (A ® . PhiWhileP A b ®){proof)

Now the rule for parallel while loops, i.e. loops where the branch condi-
tion evaluates identically in both executions.

lemma WHILE-PARALLEL:
[X c:Sec(QpG) (EQGq) (EQG q)
V sss. EQGpsss— evalBbs = evalB b ss; LEQ p q]
= X > Whilebc: Sec (Qp G) (EQ G q) (EQ G q)
(PhiWhileP (EQ G q) b ®){proof)

The side condition regarding the evalution of the branch condsition may
be replaced by a typing hypothesis, thanks to lemma HS-B-eval.

lemma WHILE-PARALLEL-tp:
[X c:Sec(QpG)(EQGq) (EQG q) P
(G, b, p) € HS-B; LEQ p q]
= X > Whilebc: Sec (Qp G) (EQ G q) (EQ G q)
(PhiWhileP (EQ G q) b ®){proof)

One may also give an inductive formulation of FIX:

inductive-set var::(BEzpr x VDMAssn x TT x State x State) set
where
varFalse:
[~ evalB b t; A s t] = (b,A,D,s,t):var
| varTrue:
[evalB b t; ®(r,t); (V w. Arw—
(b,A,®,8,w): var) | = (b,A4,9,s,t):var
(proof) (proof)

The inductive formulation and the fixed point formulation are equivalent.

(proof) (proof Ylemma FIXvarFIX:
PhiWhileP A b= (A ® . (X (s,t) . (b,A,®,s,t):var)){proof)

24

Thus, the above while rule may also be written using the inductive for-
mulation.

lemma WHILE-PARALLEL-IND:
[X c:Sec(QpG)(EQGq) (EQG q) P
V sss. EQ Gpsss— evalBb s = evalB b ss; LEQ p q] =
X > While b c: (Sec (Qp G) (EQ G q) (EQ G q)
(A (s,t) . (b,EQ G q,P,s,t):var)){proof)

Again, we may replace the side condition regarding the branch condition
by a typing hypothesis.

lemma WHILE-PARALLEL-IND-tp:
[X c:Sec(QpG)(EQGq) (EQG q) ¥
(G, b,p) € HS-B; LEQ p q | =
X > (While b c) :
(Sec (@ p G) (EQ G q) (EQ G q) (A (s,t) . (b,EQ G q,®,s,t):var))(proof) (proof)

Of course, the inductive formulation is also monotone:

lemma var-MonotonelnPhi:
Monotone (A @ . (A (s,t) .(b,A, ®,s,t):var)){proof){proof)

In order to derive a diagonal while rule, we directly define an inductive
relation that calculates the transitive closure of relation A, such that all but
the last state evaluate b to True.

inductive-set varD::(BEzpr x VDMAssn x State x State) set
where

varDFalse: [evalB b s; A s t] = (b,4,s,t):varD

| varDTrue: [evalB b s; A s w; (b,A,w,t): varD | = (b,A,s,t):varD

Here is the obvious definition of transitivity for assertions.

definition transitive:: VDMAssn = bool
where transitive P= (Y zyz.Pxzy— Pyz — Pux2z)

The inductive relation satisfies the following property.

lemma varD-transitive[rule-format]:
(b,A,s,t):varD = transitive A — A s t{proof)

On the other hand, the assertion () defined above is transitive,
lemma Q-transitive:transitive (Q g G){proof)

and is hence respected by the inductive closure:
lemma varDQ:(b,Q q G,s,t):varD = Q q G s t{proof)

The diagonal while rule has a conclusion that is independent of ¢.

lemma WHILE-DIAGONAL:

[X > c: Sec (Qp G) (EQ G q) (EQ G q) ®; - LEQ p q]
= X 1> Whilebc: Sec (Qp G) (EQ G q) (EQ G q)

(A (s,t). EQ G q s t){proof)

25

varD is monotone in the assertion position.

lemma varDMonotonelnAssertion|rule-format]:
(b, A, s, t) € varD =
(Vst. Ast — Bst) — (b, B, s, t) € varD(proof){proof)

Finally, the subsumption rule.

lemma SUB:
[LEQ p pp; V. LEQ (G z) (GG z); Yz. LEQ (HH z) (H z);
X > c:Sec (Qpp HH) (EQ GG q) (EQ HH q) ®]
= X D> c:8Sec(QpH)(EQGq) (EQH q) ®(proof)

5.5 Soundness results

(proof)
An induction on the typing rules now proves the main theorem which

was called Theorem 4 in [2].

theorem Theorem/ [rule-format):
(p,G,c,H):HS =
(3 ®. X c:(Sec(QpH)(EQG q) (EQH q) P))(proof)

By the construction of the operator Sec (lemmas Prop4A and Prop4A in
Section 5.1) we obtain the soundness property with respect to the oprational
semantics, i.e. the result stated as Theorem 3.3 in [4].

theorem HuntSands33: (p,G,c,H):HS = secure p G ¢ H{(proof)

Both parts of this theorem may also be shown individually. We factor
both proofs by the program logic.

lemma Seci-deriv: (p,G,c,H):HS = X > ¢ : (Q p H)(proof){proof)
theorem HuntSands33-1:(p,G,c,H):HS = securel p G ¢ H{proof)
lemma Sec2-deriv:

(p,G,c,H):HS =

(3 4. X c:(Sec (QpH) (EQG q) (EQH q) A))(proof){proof)
theorem HuntSands33-2: (p,G,c,H):HS = secure2 q G ¢ H{proof)

Again, the call rule is formulated for an arbitrary fixed point of a mono-
tone transformer.

lemma CALL:
[{B}UX) > body : Sec A RS (p(FIX ¢));
Monotone p; B = Sec A RS (FIX ¢)]

= X > Call : B(proof) (proof)(proof) (proof) (proof) (proof) (proof) (proof) (proof)

As in Section 3, we define a formal derivation system comprising all
derived rules and show that all derivable judgements are of the for Sec(®)
for some monotone P.

inductive-set Deriv:: (VDMAssn set x IMP x VDMAssn) set
where
D-SKIP:

26

Q= (A(st). EQ Ggst)
= (X, Skip, Sec (@ p H) (EQ G q) (EQ G q) Q) : Deriv

| D-ASSIGN:

[H=upd Gz (LUB p t);

V sss. EQ Gtsss— evalE e s = evalE e ss;

Q=(A(s,t) .3 r.s=update rz (evalE er) N EQ G qr1)]
= (X, Assign x e, Sec (Q p H) (EQ G q) (EQ H q) Q) : Deriv
| D-COMP:

[(X, ¢, Sec (QpK) (EQ G q) (EQ K q) ®) : Deriv;

(X, d, Sec (Qp H) (EQK q) (EQ H q) V) : Deriv;

YV z.LEQ (Gz) (Kz)V LEQ p (K z);

V z.LEQ (Kz)(Hx)V LEQp (H x);

Q=A(z,y).F 2.2y AN w. EQKqzw— VU(z,w)))]
= (X, Comp ¢ d, Sec (@ p H) (EQ G q) (EQ H q) Q) : Deriv

| D-IF-PARALLEL:

[V sss. EQ G psss—s evalB b s = evalB b ss;
V z. LEQ (G z) (Hz) vV LEQ p (H z);
Jz.LEQp (Hz) AN LEQ (Hz) ¢
(X, ¢, Sec (Qp H) (EQ G q) (EQ H q) ®) : Deriv;
(X, d, Sec (Q p H) (EQ G q) (EQ H q) W) : Deriv;
Q= (r,u) . (evalB bu — O(r,u)) A
((= evalB b u) — V(r,u)))]
= (X, Iffbcd, Sec (Qp H) (EQ G q) (EQ H q) Q) : Deriv

| D-IF-DIAGONAL:

[Vz. LEQ (Gz) (Hz) vV LEQ p (H z);
- (Jz. LEQ p (Hz) N LEQ (H z) q);
(X, ¢, Sec (Qp H) (EQ G q) (EQ H q) D) : Deriv;
(X, d, Sec (Qp H) (EQ G q) (EQ H q) V) : Deriv;
Q= (A (st). EQ Hqst)]

= (X, Iffbcd, Sec (Qp H) (EQ G q) (EQ H q) Q) : Deriv

| D-WHILE-PARALLEL:

[(X, ¢ Sec (Qp G)(EQ G q) (EQ G q) D):Deriv;
V sss. EQ Gpsss— evalBbs = evalB b ss; LEQ p q;
Q= (A (s1) . (b,EQ G q,9,s,t):var)]

= (X, While b ¢, Sec (Q p G) (EQ G q) (EQ G q) Q):Deriv

| D-WHILE-DIAGONAL:

[(X, ¢, Sec (Q p G) (EQ G q) (EQ G q) ®) : Deriv; = LEQ p g;
Q= (A(st). EQ G qst)

= (X, While b ¢, Sec (Q p G) (EQ G q) (EQ G q) Q) : Deriv
| D-SUB:

[LEQ p pp; V. LEQ (G z) (GG z); Yz. LEQ (HH z) (H z);
(X, ¢, Sec (Q pp HH) (EQ GG q) (EQ HH q) ®) : Deriv]

27

= (X, ¢, Sec (Qp H) (EQ G q) (EQ H q) ®) :Deriv

| D-CALL:
({A} U X,body,A): Deriv = (X,Call,A) : Deriv
(proof)

lemma DerivMono:
(X,¢,B):Deriv =
JARS¢.B= Sec AR S (¢ (FIX ¢)) N Monotone p(proof)

Also, the Deriv is indeed a subsystem of the program logic.
theorem Deriv-derivable: (X,c,A):Deriv = X > ¢ :A(proof)
End of theory HuntSands

end

theory OBJ imports Main begin

6 Base-line non-interference with objects

We now extend the encoding for base-line non-interference to a language
with objects. The development follows the structure of Sections 1 to 3.
Syntax and operational semantics are defined in Section 6.1, the axiomatic
semantics in Section 6.2. The generalised definition of non-interference is
given in 6.4, the derived proof rules in Section 6.5, and a type system in the
style of Volpano et al. in Section 6.6. Finally, Section 6.7 concludes with
results on contextual closure.

6.1 Syntax and operational semantics

First, some operations for association lists

primrec lookup :: (‘a x 'b) list = 'a = 'b option

where

lookup [] | = None |

lookup (h # t) 1 = (if (fst h)=I then Some (snd h) else lookup t l)

definition Dom::('a x 'b) list = 'a set
where Dom L = {l . 3 a . lookup L | = Some a}
(proof) (proof) (proof) (proof) (proof) (proof)

Abstract types of variables, class names, field names, and locations.

typedecl Var
typedecl Class
typedecl Field
typedecl Location

28

References are either null or a location. Values are either integers or
references.

datatype Ref = Nullref | Loc Location

datatype Val = RVal Ref | IVal int

The heap is a finite map from locations to objects. Objects have a
dynamic class and a field map.

type-synonym Object = Class x ((Field x Val) list)
type-synonym Heap = (Location x Object) list

Stores contain values for all variables, and states are pairs of stores and
heaps.

type-synonym Store = Var = Val

definition update :: Store = Var = Val = Store
where update s t v = (A y . if x=y then v else s y)

type-synonym State = Store X Heap

Arithmetic and boolean expressions are as before.

datatype Fapr =
vark Var
| valE Val
| opE Val = Val = Val Expr Expr

datatype BExpr = compB Val = Val = bool Expr Expr

The same applies to their semantics.

primrec evalE::Ezpr = Store = Val

where

evalE (varE z) s = s x|

evalE (valE v) s = v |

evalE (opE fel e2) s = f (evalE el s) (evalE e2 s)

primrec evalB::BExpr = Store = bool
where
evalB (compB f el e2) s = f (evalE el s) (evalE e2 s)

The category of commands is extended by instructions for allocating a
fresh object, obtaining a value from a field and assigning a value to a field.

datatype OBJ =
Skip
| Assign Var Ezpr
| New Var Class
| Get Var Var Field
| Put Var Field Expr
| Comp OBJ OBJ

29

| While BExpr OBJ
| Iff BEzpr OBJ OBJ
| Call

The body of the procedure is identified by the same constant as before.
consts body :: OBJ

The operational semantics is again a standard big-step relation.

inductive-set Semn :: (State x OBJ X nat x State) set
where
SemSkip: s=t = (s,Skip,1, t):Semn

| SemAssign:
[t = (update (fst s) z (evalE e (fst s)), snd s)]
= (s, Assign z e, 1, t):Semn

| SemNew:
[l ¢ Dom (snd s);
t = (update (fst s) xz (RVal (Loc 1)), (L(C,]])) # (snd s))]
= (s, New z C, 1, t):Semn

| SemGet:
[(fst s) y = RVal(Loc 1); lookup (snd s) I = Some(C,Flds);
lookup Flds F' = Some v; t = (update (fst s) z v, snd s)]
= (s, Getz y F, 1, t):Semn

| SemPut:
[(fst s) & = RVal(Loc l); lookup (snd s) | = Some(C,Flds);
t = (fst s, (I,(C,(F,evalE e (fst s)) # Flds)) # (snd s))]
= (s, Putx Fe, 1, t):Semn

| SemComp:
[(s, ¢, m, r):Semn; (r,d, m, t):Semn; k=(mazx n m)+1]
= (s, Comp c d, k, t):Semn

| SemWhileT:
[evalB b (fst s); (s,c, n, r):Semn; (r, While b ¢, m, t):Semn; k=((maz n m)+1)]
= (s, While b ¢, k, t):Semn

| Sem WhileF':
[- (evalB b (fst s)); t=s] = (s, While b ¢, 1, t):Semn

| SemTrue:
[evalB b (fst s); (s,cl, n, t):Semn]
= (s, Iff b ¢l ¢2, nt+1, t):Semn

| SemFalse:

[(evalB b (fst s)); (s,c2, n, t):Semn]
= (s, Iff b ¢l 2, n+1, t):Semn

30

| SemCall: [(s,body,n, t):Semn] = (s,Call,n+1, t):Semn

abbreviation

SemN :: [State, OBJ, nat, State] = bool (< -, - —. -»)
where
s,¢ = t == (s,c,n,t) : Semn

Often, the height index does not matter, so we define a notion hiding it.

definition
Sem :: [State, OBJ, State] = bool (x-, -1 -» 1000)
where s,c | t = (3 n. s,c =, 1)

inductive-cases Sem-eval-cases:
8,Skip —,, t

s,(Assign z e) —p t

s,(New z C) =, ¢

s,(Getxy F) —p t

s,(Putx Fe) =, t

s,(Comp ¢l c2) —p ¢

s,(While b ¢) =, t

s,(Iff b c1 c2) =, t

s, Call =, t

(proof)lemma Sem-no-zero-height-derivs: (s, ¢ —o t) = False(proof)

Determinism does not hold as allocation is nondeterministic.

End of theory OBJ

end

theory VDM-OBJ imports OBJ begin

6.2 Program logic

Apart from the addition of proof rules for the three new instructions, this
section is essentially identical to Section 2.

6.2.1 Assertions and their semantic validity
Assertions are binary state predicates, as before.

type-synonym Assn = State = State = bool

definition VDM-validn :: nat = OBJ = Assn = bool
(¢ == -:-> 50)

where (E, c: A) =V m.m<n— ¥V st.(s,c—=>mt)— Ast))

definition VDM-valid :: OBJ = Assn = bool
kE-:-»50)

31

where (Fc: A) =V st.(s,c 4 t) — Ast)

lemma VDM-valid-validn: = c:A = =, c:A(proof)
lemma VDM-validn-valid: (¥ n . =, ¢:A) = | c:A(proof)
lemma VDM-lowerm: [=, c¢:A; m < n]| = Em c:A{proof)
definition Ctzt-validn :: nat = (Assn set) = bool
(< == - > 50)
where (=, G) =V m. m<n— (V A. Ae G— =, Call : A))

definition Ctrt-valid :: Assn set = bool (< = -» 50)
where (F G) =V A. Ae G — [Call: A)

lemma Ctat-valid-validn: = G = =, G(proof)

lemma Ctxt-validn-valid: (V n . =, G) = = G(proof)

lemma Ctat-lowerm: [=, G; m < n]| = =, G{proof)

definition valid :: (Assn set) = OBJ = Assn = bool
(«-E-:-»50)

where (G |= ¢ : A) = (Ctat-valid G — VDM-valid ¢ A)

definition validn :: (Assn set) = nat = OBJ = Assn = bool

(- = -1 - 50)
where (G =, c: A)=(Fn, G — E, ¢ A)

lemma validn-valid: (¥ n . G =, ¢: A) = G = ¢ : A{proof)
lemma ctzt-consn: | =, G; |, Call:A] = E, {A} U G(proof)

6.2.2 Proof system

inductive-set VDM-proof :: (Assn set x OBJ x Assn) set
where
VDMSkip: (G, Skip, X s t . t=s): VDM-proof

| VDMAssign:
(G, Assign x e,
A st.t= (update (fst s) z (evalE e (fst s)), snd s)): VDM-proof

| VDMNew:
(G, New z C,
Ast.31.1¢ Dom (snds) A
t = (update (fst s) x (RVal (Loc 1)),
(L(C,])) # (snd s))): VDM-proof

| VDMGet:
(G, Getzy F,
Ast.31CFldsv. (fsts) y= RVal(Loc) A
lookup (snd s) I = Some(C,Flds) A
lookup Flds F = Some v A
t = (update (fst s) x v, snd s)): VDM-proof

32

| VDMPut:
(G, Put z F' e,
Ast.31C Flds. (fsts) x = RVal(Loc 1) A
lookup (snd s) I = Some(C,Flds) A
t = (fst s,
(I,(C,(F,evalE e (fst s)) # Flds))
(snd s))): VDM-proof

| VDMComp:
[(G, ¢, A):VDM-proof; (G, d, B): VDM-proof] =
(G, Compcd, Ast.3 r.Asr A Brt):VDM-proof

| VDMI:
[(G, ¢, A):VDM-proof; (G, d, B): VDM-proof] =
(G, Iff b c d,
Ast. (((evalB b (fst s)) — A st) A
((= (evalB b (fst s))) — B s t))): VDM-proof

| VDM While:
[(G,c,B): VDM-proof;
V s. (- evalB b (fst s)) — A s s;
V srt. evalBb (fsts) — Bsr— Art— Ast]
= (G, Whilebc, A st. Ast A - (evalB b (fst t))): VDM-proof

| VDMCall:
({A} U G, body, A):VDM-proof = (G, Call, A):VDM-proof

| VDMAz: A € G = (G, Call, A):VDM-proof

| VDM Conseq:
[(G, ¢,A):VDM-proof;V st. A st — Bst] =
(G, ¢, B):VDM-proof

abbreviation VDM-deriv :: [Assn set, OBJ, Assn] = bool
(- - : - [100,100] 50)
where G > ¢ : A == (G,c,A) € VDM-proof

The while-rule is in fact inter-derivable with the following rule.

lemma Hoare- While:
G>c:(Ast.Yr.evalBb(fsts) —Isr— Itr) =
G> Whilebec: (Ast.Vr.Isr— (ItrA-evalBb (fstt)))

(proof)
Here’s the proof in the opposite direction.
lemma VDM While-derivable:
[G>c:B;¥V s. (- evalBb (fsts)) — A ss;

V srt oevalBb (fsts) — Bsr— Art— Ast]
= G > (Whilebc): (Ast.Ast AN (evalB b (fstt)))

(proof)

33

6.2.3 Soundness
(proof)

The following auxiliary lemma for loops is proven by induction on n.

lemma SoundWhile[rule-format]:
(Vn. G |, ¢t B)

— (Vs. (— evalB b (fst s)) — A s s)

— (Vs. evalB b (fst s)

— (Vr.Bsr — (Vt. Art — A st)))

— G = (Whilebc¢): (Ast. A st A — evalB b (fst t))(proof)
lemma SoundCall[rule-format]:
Vo E, {A} U G) — =y body : A] = =, G — =, Call : A{proof)
lemma VDM-Sound-n: G > ¢: A = (V n. G |&, c:A){proof)
theorem VDM-Sound: G > ¢: A = G |= c:A{proof)

A simple corollary is soundness w.r.t. an empty context.
lemma VDM-Sound-emptyCtat:{} > ¢ : A = = ¢ : A{proof)

6.2.4 Derived rules

lemma WFEAK [rule-format]:

Grc: A= VW H.GCH — Hr c:A){proof)
lemma CutAuz:

(H>c: A) =

(Vv GPD.(H = (insert PD) — G > Call :P — (G C D)

— D > c:A))(proof)

lemma Cut:[G > Call : P ; (insert P G) > ¢ : A] = G 1> ¢ : A{proof)
definition verified:: Assn set = bool
where verified G = (VY A. A:G — G > body : A)

lemma verified-preserved: [verified G; A:G] = verified (G — {A})(proof){proof){proof)
theorem Mutrec:
[finite G; card G = n; verified G; A : G| = {} > Call: A{proof)

6.2.5 Completeness

definition SSpec::OBJ = Assn
where SSpec ¢ s t = (s,c | t)

lemma SSpec-valid: |= ¢ : (SSpec ¢){proof)

lemma SSpec-strong: = ¢ :A =V st . SSpec ¢c st — A s t{proof)
lemma SSpec-derivable: G 1> Call : SSpec Call = G > ¢ : SSpec c¢{proof)
definition StrongG :: Assn set

where StrongG = {SSpec Call}

lemma StrongG-Body: StrongG > body : SSpec Call{proof)

lemma StrongG-verified: verified StrongG{proof)

lemma SSpec-derivable-empty:{} > ¢ : SSpec c(proof)

theorem VDM-Complete: = ¢ : A = {} > ¢ : A(proof){proof){proof)

34

theory PBIJ imports OBJ begin

6.3 Partial bijections

Partial bijections between locations will be used in the next section to define
indistinguishability of objects and heaps. We define such bijections as sets
of pairs which satisfy the obvious condition.

type-synonym PBij = (Location x Location) set

definition Pbij :: PBij set

where Pbij ={ 8.V 1112131. (11,12):8 — (I13,l4): —
(1 =13) = (12 = 14))}

Domain and codomain are defined as expected.

definition Pbij-Dom::PBij = (Location set)
where Pbij-Dom = {l .3 Ul .(,Il):5}

definition Pbij-Rng::PBij = (Location set)
where Pbij-Rng 8 = {ll . 3 1 .(1,I]):8}

We also define the inverse operation, the composition, and a test deciding
when one bijection extends another.

definition Pbij-inverse:: PBij = PBij

where Pbij-inverse 8 = {(,Il) . (I1,1):8}{proof){proof)

definition Pbij-compose:: PBij = PBij = PBij

where Pbij-compose 3 v = {(1,{l) . 3 11 . (I,I1):8 A (11,11):v}{proof){proof)
definition Pbij-extends ::PBij = PBij = bool

where Pbij-extends v = (8 C 7)

These definitions satisfy the following properties.

lemma Pbij-insert:

[8 € Pbij;l ¢ Pbij-Rng f3; Il ¢ Pbij-Dom (]

= insert (ll, I) B € Pbij{proof)
lemma Pbij-injective:

B:Pbij = (Y L1112 . (11,)):8 —> (12,):8 —> 11=12){proof)
lemma Pbij-inverse-DomRng|[rule-format]:

v = Pbij-inverse f =

(Pbij-Dom B = Pbij-Rng v A Pbij-Dom v = Pbij-Rng){proof)
lemma Pbij-inverse-Dom: Pbij-Dom 8 = Pbij-Rng (Pbij-inverse B){proof)
lemma Pbij-inverse-Rng: Pbij-Dom (Pbij-inverse) = Pbij-Rng B(proof)
lemma Pbij-inverse-Pbij: B:Pbij = (Pbij-inverse) : Pbij{proof)
lemma Pbij-inverse-Inverse[rule-format):

v = Pbij-inverse § = (Vv 11l . ((,I1):8) = ((11,1):7)){proof)
lemma Pbij-compose-Dom:

Pbij-Dom (Pbij-compose 8 v) C Pbij-Dom [B{proof)
lemma Pbij-compose-Rng:

Pbij-Rng (Pbij-compose 8 v) C Pbij-Rng ~y{proof)
lemma Pbij-compose-Pbij:

35

[B : Pbij; v : Pbij] = Pbij-compose B ~ : Pbij{proof)
lemma Pbij-extends-inverse:
Pbij-extends v (Pbij-inverse) = Pbij-extends (Pbij-inverse 7y) B(proof)
lemma Pbij-extends-reflexive: Pbij-extends 8 B{proof)
lemma Pbij-extends-transitive:
[Pbij-extends (v; Pbij-extends v §] = Pbij-extends B d{proof){proof)
lemma Pbij-inverse-extends-twice:
Pbij-extends (Pbij-inverse (Pbij-inverse 3)) B{proof)

The identity bijection on a heap associates each element of the heap’s
domain with itself.

definition mkld::Heap = (Location x Location) set
where mkld h = {(11,i2) . I1 =12 A1l : Dom h}

lemma mkld1: (mkld h):Pbij{proof)

lemma mkld2: Pbij-Dom (mkld h) = Dom h{proof)
lemma mkld2b: Pbij-Rng (mkld h) = Dom h{proof)
lemma mkldj: I:Dom h = (1,1):(mkId h){proof)

lemma mkld4b: (1,11):(mkld h) = l:Dom h A | = ll{proof)

End of theory PBIJ

end

theory VS-OBJ imports VDM-OBJ PBIJ begin

6.4 Non-interference

6.4.1 Indistinguishability relations

We have the usual two security types.
datatype TP = low | high

Global contexts assigns security types to program variables and field
names.

consts CONTEXT :: Var = TP
consts GAMMA :: Field = TP

Indistinguishability of values depends on a partial bijection f.

inductive-set twiddleVal::(PBij x Val x Val) set
where
twiddleVal-Null: (8, RVal Nullref, RVal Nullref) : twiddleVal

| twiddleVal-Loc: (11,12) : 8 =
(8, RVal (Loc 1), RVal (Loc 12)) : twiddleVal
| twiddleVal-IVal: i1 = i2 = (8, [Val i1, IVal i2) : twiddleVal

For stores, indistinguishability is as follows.

36

definition twiddleStore:: PBij = Store = Store = bool
where twiddleStore 5 s1 s2 =
(V z. CONTEXT z = low — (B, sl z, s2 x) : twiddleVal)

abbreviation twiddleStore-syntax (- =~- -» [100,100] 50)
where s ~g t == twiddleStore 5 st

On objects, we require the values in low fields to be related, and the sets
of defined low fields to be equal.

definition LowDom::((Field x Val) list) = Field set
where LowDom F = {f .3 v . lookup F f = Some v AN GAMMA f = low}

definition twiddleObj:: PBij = Object = Object = bool
where twiddleObj 5 ol 02 = ((fst o1 = fst 02) A
LowDom (snd o1) = LowDom (snd 02) A
(Y fvw. lookup (snd o) f = Some v —
lookup (snd 02) f = Some w —
GAMMA f = low —
(8, v, w) : twiddleVal))

On heaps, we require locations related by 5 to contain indistinguishable
objects. Domain and codomain of the bijection should be subsets of the
domains of the heaps, of course.
definition twiddleHeap:: PBij = Heap = Heap = bool
where twiddleHeap § h1 h2 = (B8:Pbij A

Pbij-Dom B C Dom h1 A

Pbij-Rng B C Dom h2 A

 Lllvw. (LI):B —
lookup h1 1l = Some v —>
lookup h2 Il = Some w —>
twiddleObj B v w))

We also define a predicate which expresses when a state does not contain
dangling pointers.
definition noLowDPs::State = bool
where noLowDPs S = (case S of (s,h) =
(W zl. CONTEXT z = low — s © = RVal(Loc) — 1:Dom h) A
(Y llcFfl.lookup hll = Some(c,F) — GAMMA f = low —
lookup F' f = Some(RVal(Loc 1)) — l:Dom h)))

The motivation for introducing this notion stems from the intended in-
terpretation of the proof rule for skip, where the initial and final states
should be low equivalent. However, in the presence of dangling pointers,
indistinguishability does not hold as such a dangling pointer is not in the
expected bijection mkld. In contrast, for the notion of indistinguishability
we use (see the following definition), reflexivity indeed holds, as proven in
lemma. twiddle-mkld below. As a small improvement in comparison to our
paper, we now allow dangling pointers in high variables and high fields since
these are harmless.

37

definition twiddle:: PBij = State = State = bool
where twiddle 8 s t = (noLowDPs s A noLowDPs t A
(fst s) =g (fst t) A twiddleHeap B (snd s) (snd t))

abbreviation twiddle-syntaz (<- =- -» [100,100] 50)
where s =3 t == twiddle 8 s t

The following properties are easily proven by unfolding the definitions.

lemma twiddleHeap-isPbij:twiddleHeap 8 h hh = B: Pbij{proof)
lemma isPBij:s =g t = [5:Pbij(proof)
lemma twiddleVal-inverse:

(8, w, v) € twiddleVal = (Pbij-inverse 3, v, w) € twiddleVal(proof)
lemma twiddleStore-inverse: s =g t == t ~(Pbij-inverse) s(proof)
lemma twiddleHeap-inverse:

twiddleHeap § s t = twiddleHeap (Pbij-inverse) t s{proof)
lemma Pbij-inverse-twiddle: [s =g t] = t =(Pbij-inverse) s(proof)
lemma twiddleVal-betaExtend|rule-format]:

(B,v,w):twiddleVal = ¥V ~. Pbij-extends v B — (7y,v,w):twiddleVal{proof)
lemma twiddleObj-betaExtend|rule-format]:

[twiddleObj B o1 02; Pbij-extends v f] = twiddleObj v o1 02{proof)
lemma twiddleVal-compose:

[(B, v, u) € twiddleVal; (v, u, w) € twiddleVal]

= (Pbij-compose f v, v, w) € twiddleVal{proof)
lemma twiddleHeap-compose:

[twiddleHeap B h1 h2; twiddleHeap v h2 h3; 5 € Pbij; v € Pbij]

= twiddleHeap (Pbij-compose B ~) h1 h3{proof)
lemma twiddleStore-compose:

[s =p r; =y t] = s = (Pbij-compose [7) t{proof)
lemma twiddle-compose:

[s =p r; 7 =, t] = s =(Pbij-compose 3) t(proof)
lemma twiddle-mkld: noLowDPs (s,h) = (s,h) =mkld h) (s,h){proof)

We call expressions (semantically) low if the following predicate is sat-
isfied. In particular, this means that if e evaluates in s (respecitvely, t) to
some location [, then [€ Pbij_dom(p) (I € Pbij_cod(S3)) holds.

definition FExpr-low:: Ezpr = bool
where Ezpr-low e = (¥ st 8. s g t — (5, evalE e s, evalE e t):twiddleVal)

A similar notion is defined for boolean expressions, but the fact that
these evaluate to (meta-logical) boolean values allows us to replace indistin-
guishability by equality.

definition BEzpr-low:: BExpr = bool
where BEzpr-low b = (V st .s~gt — evalBbs = evalB b t)
6.4.2 Definition and characterisation of security

Now, the notion of security, as defined in the paper. Banerjee and Nau-
mann’s paper [1] and the Mobius Deliverable 2.3 [3] contain similar notions.

38

definition secure:: OBJ = bool
where secure ¢ = (V ssstit 8.
s=p ss — (s,c b t) — (ss,c | tt) —
(3 v .t =4 tt A Pbij-extends v B3))
(proof) {proof){proof) (proof) (proof)

The type of invariants ® includes a component that holds a partial bi-
jection.

type-synonym TT = (State x State x PBij) = bool

The operator constructing an assertion from an invariant.

definition Sec :: TT = Assn
where Sec & st =
(VW rp.s=gr— O(t,r,p) A
~Vrp.®(rsp)— (3 v.r=,tA Pbij-estends v [3)))

The lemmas proving that the operator ensures security, and that secure
programs satisfy an assertion formed by the operator, are proven in a similar
way as in Section 3.

lemma ProplA:l= ¢ : Sec & = secure c{proof)

lemma ProplB:

secure ¢ => = c: Sec (A (r, t, 8). 3 s. s, cd r A s=g t)proof)
lemma ProplBB:secure c = 3 ® . = ¢ : Sec ®{proof)

lemma Propi:

secure ¢ = (F ¢ Sec (A (r, t,8) .3 s. (s, cd r) A s =g t)){proof)
6.5 Derivation of proof rules

6.5.1 Low proof rules

(proof)
lemma SKIP: G > Skip : Sec (A (s, t, B) . s =g t)(proof)
lemma ASSIGN:
Expr-low e
= G > Assign z e : Sec (A (s, t, B) .
3 r. s = (update (fst r) z (evalE e (fst 1)), snd r)
A r =g t)(proof){proof)
lemma COMP:
[G cl: Sec ®; G > c2: Sec ¥]
= G > (Comp cl c2): Sec (A (s, t, B) .
Ar. 0, t,)N N wry. r=, w— Y(s, w, v))){proof){proof)
lemma [FF:
[BExpr-low b; G t> ¢l : Sec ®; G > ¢2 : Sec ¥]
= G (Iff b el c2) : Sec (X (s,t,8) .
(evalB b (fst t) — D(s,t,8)) A
((= evalB b (fst 1)) — W(s,t,3))){proof)(proof)
lemma NEW:

CONTEXT z = low
= G > (Newz C) : Sec (A (s,t,08) .

39

dlr.l1¢ Dom (sndr) ANr=gtA
s = (update (fst r) x (RVal (Loc 1)),
(1L(C[D)) # (snd r)))(proof)
lemma GET:

[CONTEXT y = low; GAMMA [= low]
= G > Getzyf: Sec (A (st,53).
3 rlCFldswv. (fstr)y = RVal(Loc 1) A
lookup (snd r) | = Some(C,Flds) N
lookup Flds f = Some v AN r =5t A
s = (update (fst r) z v, snd r)){proof)
lemma PUT:
[CONTEXT z = low; GAMMA f = low; FExpr-low €]
= G > Put x fe: Sec (A (s,t,0) .
3 rilC Flds. (fst r) © = RVal(Loc l) A r =g t A
lookup (snd r) I = Some(C,Flds) A
s = (fst r,
(L(C,(f,evalE e (fst r)) # Flds)) # (snd r))){proof)

Again, we define a fixed point operator over invariants.

definition FIX:(TT = TT) = TT
where FIX ¢ = (X (s,t,6).
V& . (V sstty. o @ (ss, ttyy) — D (ss, tt,y)) — D (s, t,0))

definition Monotone::(TT = TT) = bool
where Monotone p =
VoT . (Vstp O(s,t,8) — U(s,t,5) —
(V st B0 @ (st,8) — 0 ¥ (5,0)))
{proof) {proof)

For monotone transformers, the construction indeed yields a fixed point.

lemma Fiz-lemma:Monotone ¢ = ¢ (FIX ¢) = FIX o(proof)

The operator used in the while rule is defined by

definition PhiWhileOp::BExpr = TT = TT = TT
where PhiWhileOp b ® = (A U . (A (s, &, 5).
(evalB b (fst t) —
Gr@(rt,BHANNwy r=w— Vs w 7)) A
(- evalB b (fstt) — s=3 t)))

and is monotone:
lemma PhiWhileOp-Monotone: Monotone (PhiWhileOp b ®)(proof)

Hence, we can define its fixed point:

definition PhiWhile:: BExpr = TT = TT
where PhiWhile b ® = FIX (PhiWhileOp b ®)

The while rule may now be given as follows:

lemma WHILE:
[BExpr-low b; G > ¢ : (Sec ®)]

40

= G > (While b ¢) : (Sec (PhiWhile b ®)){proof)
Operator PhiWhile is itself monotone in ®:
lemma PhiWhileMonotone: Monotone (A ® . PhiWhile b ®){proof)
We now give an alternative formulation using an inductive relation equiv-
alent to FIX. First, the definition of the variant.

inductive-set var::(BEzpr x TT x PBij x State x State) set
where
varFalse: [- evalB b (fst t); s =5 t] = (b,2,8,s,t):var

| varTrue:
[evalB b (fst t); ®(r,t,8); V wy. r =, w — (b,®,y,s,w): var|
= (b,9,0,s,t):var

The equivalence of the invariant with the fixed point construction.

(proof)(proof)
lemma varFIXvar: (PhiWhile b ® (s,t,0)) = ((b,P,8,s,t):var){proof) {proof) {proof)

Using this equivalence we can derive the while rule given in our paper

from WHILE.

lemma WHILE-IND:
[BExpr-low b; G > ¢ : (Sec ®)]
= G > While b c: (Sec (A(s,t,y). (b,2,7,s,t):var)){proof)

We can also show the following property.

(proof)
lemma var-Monotone:

Monotone (A @ . (X (s,t,8) .(b,®,8,s,t):var)){proof) {proof)
The call rule is formulated for an arbitrary fixed point of a monotone

transformer.

lemma CALL:
[({Sec (FIX ¢)} U X) 1> body : Sec (¢ (FIX ¢)); Monotone ¢]
= X > Call : Sec (FIX ¢){proof)

6.5.2 High proof rules
definition HighSec::Assn
where HighSec = (A s t . noLowDPs s — s =¢mkld (snd s)) t)

lemma CAST[rule-format]:
G > ¢ : HighSec = G > ¢ : Sec (A (s, t, B) . s =g t){proof)
lemma SkipHigh: G > Skip: HighSec(proof)

We define a predicate expressing when locations obtained by evaluating
an expression are non-dangling.

definition Ezpr-good::Expr = State = bool

41

where Expr-good e s =
(V 1. evalE e (fst s) = RVal(Loc 1) — 1 : Dom (snd s))

lemma AssignHigh:

[CONTEXT x = high; ¥V s . noLowDPs s — Expr-good e s]

= G 1> Assign z e: HighSec(proof)
lemma NewHigh:

CONTEXT z = high = G > New z C : HighSec(proof)
lemma GetHigh:

[CONTEXT xz = high | = G > Get z y f : HighSec(proof)
lemma PutHigh:

[GAMMA f = high; ¥ s . noLowDPs s — Expr-good e s

= G > Put z [e: HighSec{proof){proof){proof){proof
lemma CompHigh:

[G > c¢: HighSec; G 1> d:HighSec] = G > Comp ¢ d: HighSec{proof)
lemma IfHigh:

[G > ¢ HighSec; G > d:HighSec] = G > Iff b ¢ d: HighSec{proof)
lemma WhileHigh: [G > ¢: HighSec] = G > While b ¢: HighSec{proof)
lemma CallHigh:

({HighSec} U G) 1> body : HighSec = G 1> Call : HighSec{proof)

We combine all rules to an inductive derivation system.

inductive-set Deriv::(Assn set x OBJ x Assn) set
where
D-CAST:

(G, ¢, HighSec):Deriv =

(G, ¢, Sec (A (s, t, B). s =g t)):Deriv

| D-SKIP: (G, Skip, Sec (A (s, t, B) . s =g t)) : Deriv

| D-ASSIGN:
Ezpr-low e =
(G, Assign z e, Sec (A (s, ¢, B) .
3 r. s = (update (fst r) x (evalE e (fst 1)), snd r)
A r =g t)):Deriv

| D-COMP:
[(G, cl, Sec ®):Deriv; (G, c2, Sec V):Deriv] =
(G, Comp cl c2, Sec (A (s, t, B) .
IJr.o(r, ¢t B) A
VYV wry. =y w— U(s, w, vy)))):Deriv

| D-IFF:
[BEzpr-low b; (G, cl, Sec ®):Deriv; (G, c2, Sec V):Deriv] =
(G, Iff b ¢t c2, Sec (A (s,t,0) .

(evalB b (fst t) — ®(s,t,8)) A

((— evalB b (fst t)) — Y(s,t,5)))):Deriv

| D-NEW:

42

CONTEXT z = low =
(G, New z C, Sec (A (s,t,8) .
Jlr.l¢ Dom (sndr) ANr=gtA
s = (update (fst r) (RVal (Loc 1)),
(L(C,)) # (snd 1)))):Derio

| D-GET:
[CONTEXT y = low; GAMMA f = low] =
(G, Get x y f, Sec (A (s,t,0) .
3 r1CFldswv. (fstr)y = RVal(Loc 1) A
lookup (snd r) I = Some(C,Flds) N
lookup Flds f = Some v A r =g t A
s = (update (fst r) x v, snd r))):Deriv

| D-PUT:
[CONTEXT z = low; GAMMA f = low; Expr-low e] =
(G, Put x fe, Sec (A (s,t,0) .
I rlCFh (fstr) = RVal(Locl) AN r =5t A
lookup (snd r) I = Some(C,F) N
h = (I,(C,(f,evalE e (fst r)) # F)) # (snd r) A
s = (fst r, h))):Deriv

| D-WHILE:
[BEzpr-low b; (G, ¢, Sec ®):Deriv]
= (G, While b ¢, Sec (PhiWhile b ®)):Deriv
| D-CALL:
[({Sec (FIX @)} U G, body, Sec (¢ (FIX ¢))):Deriv; Monotone ¢]
= (G, Call, Sec (FIX ¢)):Deriv
| D-SKIP-H: (G, Skip, HighSec):Deriv
| D-ASSIGN-H:
[CONTEXT x = high; ¥V s . noLowDPs s — Ezpr-good e s
= (G, Assign x e, HighSec):Deriv
| D-NEW-H: CONTEXT z = high = (G, New z C, HighSec):Deriv
| D-GET-H: CONTEXT z = high = (G, Get z y f, HighSec):Deriv
| D-PUT-H:
[GAMMA f = high; ¥V s . noLowDPs s — Expr-good e s]
= (G, Put z f e, HighSec):Deriv
| D-COMP-H:
[(G, ¢, HighSec):Deriv; (G, d, HighSec): Deriv]
= (G, Comp c d, HighSec):Deriv

| D-IFF-H:

43

[(G, ¢, HighSec):Deriv; (G, d, HighSec):Deriv]
= (G, Iff b ¢ d, HighSec):Deriv

| D-WHILE-H:
[(G, ¢, HighSec):Deriv] = (G, While b ¢, HighSec): Deriv

| D-CALL-H:
({HighSec} U G, body, HighSec):Deriv => (G, Call, HighSec):Deriv

By construction, all derivations represent legal derivations in the pro-
gram logic. Here’s an explicit lemma to this effect.

lemma Deriv-derivable: (G,c,A):Deriv = G > c¢: A(proof)

6.6 Type system

We now give a type system in the style of Volpano et al. and then prove
its embedding into the system of derived rules. First, type systems for
expressions and boolean expressions. These are similar to the ones in Section
3 but require some side conditions regarding the (semantically modelled)
operators.

definition opEGood::(Val = Val = Val) = bool
where opEGood f = (VY S vov ww'. (8, v, v') € twiddleVal—
(B, w, w') € twiddleVal — (B, fv w, fv' w') € twiddleVal)

definition compBGood::(Val = Val = bool) = bool
where compBGood f = (V S v v’ ww’. (8, v, v') € twiddleVal—
(B, w, w') € twiddleVal — fovw = fv' w’)

inductive-set VS-expr:: (Ezpr x TP) set
where
VS-exprVar: CONTEXT ¢ = t = (varE z, t) : VS-expr
|
VS-exprVal:
[v=RVal Nullref Vv (3 i . v=1Val i)] = (valE v, low) : VS-expr
|
VS-exprOp:
[(el,t) : VS-expr; (e2,t): VS-expr; opEGood f]
= (opFE f el e2,t) : VS-expr
|
VS-exprHigh: (e, high) : VS-expr

inductive-set VS-Bexpr:: (BExpr x TP) set
where
VS-BexprOp:
[(e1,t): VS-expr; (e2,t): VS-expr; compBGood f]
= (compB f el e2,t): VS-Bexpr
|
VS-BexprHigh: (e,high) : VS-Bexpr

44

Next, the core of the type system, the rules for commands. The second
side conditions of rules VS-comAssH and VS-comPutH could be strength-
ened to V s. Epzr__good e s.

inductive-set VS-com:: (TP x OBJ) set
where
VS-comGetL:
[CONTEXT y = low; GAMMA [= low]
= (low, Get x y f): VS-com

| VS-comGetH: CONTEXT xz = high => (high, Get z y f): VS-com

| VS-comPutL:
[CONTEXT z = low; GAMMA f = low; (e, low) : VS-expr]
= (low,Put x f €): VS-com

| VS-comPutH:
[GAMMA f = high; V s . noLowDPs s — Expr-good e s]
= (high,Put z f e): VS-com

| VS-comNewL:
CONTEXT x = low = (low, New z ¢) : VS-com

| VS-comNewH:
CONTEXT z = high = (high, New x C):VS-com

| VS-comAssL:
[CONTEXT z = low; (e,low): VS-expr]
= (low,Assign z ¢) : VS-com

| VS-comAssH:
[CONTEXT z = high; ¥ s . noLowDPs s — Expr-good e §]
= (high,Assign z €) : VS-com

| VS-comSkip: (pe,Skip) : VS-com

| VS-comComp:
[(pe,c): VS-com; (pe,d): VS-com] = (pc,Comp ¢ d) : VS-com

| VS-comlf:
[(b,pc): VS-Bexpr; (pe,c): VS-com; (pe,d): VS-com]
= (pc,Iff b ¢ d): VS-com

| VS-comWhile:
[(b,pc): VS-Bexpr; (pc,c): VS-com] = (pc, While b ¢): V.S-com

| VS-comSub: (high,c) : VS-com = (low,c): VS-com

In order to prove the type system sound, we first define the interpretation
of expression typings. ..

45

primrec SemFxpr::Expr = TP = bool
where

SemEzxpr e low = Expr-low e |
SemExpr e high = True

...and show the soundness of the typing rules.
lemma FEzprSound: (e,tp): VS-expr = SemFEzxpr e tp(proof)
Likewise for the boolean expressions.

primrec SemBFExpr::BExpr = TP = bool
where

SemBEzxpr b low = BExpr-low b |
SemBExpr b high = True

lemma BEzprSound: (e,tp): VS-Bexpr = SemBExpr e tp{proof)

Using these auxiliary lemmas we can prove the embedding of the type
system for commands into the system of derived proof rules, by induction
on the typing rules.

theorem VS-com-Deriv|rule-format):
(t,¢): VS-com = (t=high — (G, ¢, HighSec):Deriv) A
(t=low — (3 ® . (G, ¢, Sec ®):Deriv)){proof)

Combining this result with the derivability of the derived proof system
and the soundness theorem of the program logic yields non-interference of
programs that are low typeable.

theorem VS-SOUND: (low,c): VS-com = secure c(proof)
End of theory VS-OBJ

end

theory ContextOBJ imports VS-OBJ begin

6.7 Contextual closure

We first define contexts with multiple holes.

datatype CtztProg =
Ctxt-Here

| Ctat-Skip

| Ctat-Assign Var Expr

| Ctat-New Var Class

| Ctat-Get Var Var Field

| Ctat-Put Var Field Expr

| Ctat-Comp CtxtProg CtztProg

| Ctat-If BEzpr CtztProg CtatProg

| Ctat-While BExpr CtatProg

| Ctat-Call

46

The definition of a procedure body with holes.
consts Ctat-Body:: CtztProg

Next, the substitution of a command into a context:

primrec Fill::CtxtProg = OBJ = OBJ

where

Fill Ctat-Here J = J |

Fill Ctat-Skip J = Skip |

Fill (Ctxt-Assign x e) J = Assign x e |

Fill (Ctxt-New z ¢) J = New z ¢ |

Fill (Ctzt-Getzy f) J = Getzy f |

Fill (Ctxt-Put x fe) J = Putz fe|

Fill (Ctxt-Comp C D) J = Comp (Fill C J) (Fil D J) |
Fill (Ctet-If b C D) J = Iff b (Fill C J) (Fill D J) |
Fill (Ctat-While b C) J = While b (Fill C J) |

Fill Ctxt-Call J = Call

The variables mentioned by an expression:

primrec EVars::Ezpr = Var set

where

EVars (varE z) = {z} |

EVars (valE v) = {} |

EVars (opE f el e2) = EVars el U EVars e2

primrec BVars::BExpr = Var set
where
BVars (compB f el e2) = EVars el U EVars e2

The variables possibly read from during the evaluation of I are denoted
by Vars I.

primrec Vars::OBJ = Var set
where

Vars Skip = {} |

Vars (Assign x e) = EVars e |

Vars (New z C) = {} |

Vars (Get z y f) = {y} |

Vars (Put x f e) = EVars e |

Vars (Comp I J) = Vars I U Vars J |
Vars (While b I) = BVars b U Vars I |
Vars (Iff b I J) = BVars b U Vars I U Vars J |
Vars Call = {}

(proof)(proof) (proof) (proof)
An abbreviating definition saying when a value is not a constant location.

definition VallsNoLoc ::Val => bool
where VallsNoLoc v = (v = RVal Nullref vV (3 ¢ . v = IVal 7))

Expressions satisfying the following predicate are guaranteed not to re-
turn a state-independent location.

47

primrec Ezpr-noLoc:: Expr = bool
where
Ezpr-noLoc (varE z) = True |
Ezpr-noLoc (valE v) = VallsNoLoc v |
Expr-noLoc (opE f el e2) =
(Exzpr-noLoc el A Expr-noLoc e2 N\ opEGood f)

primrec BEzpr-noLoc:: BExpr = bool
where
BEzpr-noLoc (compB f el e2) =
(Exzpr-noLoc el A Expr-noLoc e2 N\ compBGood f)

By induction on e one may show the following three properties.

lemma Ezxpr-lemmal [rule-format]:
FExpr-noLoc e — EVars e C X —»
(Vz. 2 € X — CONTEXT z = low) — Expr-low e(proof)
lemma FEzpr-lemma2[rule-format]:
noLowDPs (s, h) —
EVars e C X — Ezxpr-noLoc e —
(Vz. 2 € X — CONTEXT z = low) —
s =g t — twiddleHeap B h k —
noLowDPs (Ay. if x = y then evalE e s else s y, h){proof)
lemma FEzpr-lemma3|rule-format]:
noLowDPs (s,h) — EVars e C X — Expr-noLoc e —»
lookup h | = Some (C, Flds) —
(Vz. 2 € X — CONTEXT z = low) —
s ~g t — twiddleHeap B h k —
noLowDPs (s, (I, C, (f, evalE e s) # Flds) # h){proof)

The first of these can be lifted to boolean expressions.

lemma BFEzxpr-lemma:
[BVars b C X;Vz. 2 € X — CONTEXT z = low; BExpr-noLoc b] = BEzxpr-low
b{proof)

For contexts, we define when a set X of variables is an upper bound
for the variables read from. In addition, the noLoc condition is imposed
on expressions occurring in assignments and field modifications in order to
express that if these expressions evaluate to locations then these must stem
from lookup operations in the state.

primrec CixtVars:: Var set = CtztProg = bool
where
CtxtVars X Ctxt-Here = True |
CtaztVars X Ctat-Skip = True |
CtztVars X (Ctat-Assign z e) = (EVars e C X N Expr-noLoc e) |
CtztVars X (Ctaxt-New x ¢) = True |
CtxtVars X (Ctxt-Get x y f) = (y : X AN GAMMA [= low) |
CtztVars X (Ctxt-Put x f e) =

(EVars e C X N CONTEXT z = low N\ Ezpr-noLoc e) |
CtztVars X (Ctaxt-Comp C D) = (CtztVars X C A CtztVars X D) |

48

CtztVars X (Ctzt-If b C D) =

(BVars b € X A CtatVars X C N CtxtVars X D A BEzpr-noLoc b) |
CtaztVars X (Ctat-While b C) =

(BVars b € X A CtatVars X C N\ BEzxpr-noLoc b) |
CtxtVars X Ctzt-Call = True

A context is "obviously" low if all accessed variables are (contained in a
set X whose members are) low.
definition LOW::Var set = CtxtProg = bool
where LOW X C = (CtwtVars X C AN (VY z .2 : X — CONTEXT z = low))
(proof)

Finally, we obtain the following result by induction on an upper bound
on the derivation heights of the two executions of Fill C I.

theorem securel-secureFilll:
[secure I; LOW X C; LOW X Ctxt-Body; body = Fill Ctxt-Body I|
= secure (Fill C I){proof)

For a variable

consts res:: Var

representing the output of the attacking context, the result specialises
to
theorem SecureForAttackingContext:
[secure I; LOW X C; LOW X Ctat-Body; s =3 ss;
s,(Fill C I)t; ss,(Fill C I){tt; body = Fill Ctxt-Body I
CONTEXT res = low]
= 3 . (7,(fst t) res,(fst tt) res):twiddleVal N Pbij-extends v B{proof)

End of theory ContextObj

end

References

[1] A. Banerjee and D. A. Naumann. Stack-based access control and secure
information flow. Journal of Functional Programming, 15(2):131-177,
2005.

[2] L. Beringer and M. Hofmann. Secure information flow and program
logics. In Proceedings of the 20th IEEE Computer Security Foundations
Symposium (CSF 2007), pages 233-248. IEEE Computer Society, 2007.

[3] MoBius. Consortium. Deliverable 2.3: Report on type systems, 2007.
Available online from http://mobius.inria.fr.

[4] S. Hunt and D. Sands. On flow-sensitive security types. In J. G. Morrisett
and S. L. Peyton Jones, editors, Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
2006), pages 79-90. ACM Press, 2006.

49

http://mobius.inria.fr

[5]

T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and
Completeness Proofs. PhD thesis, LFCS, School of Informatics, Sept.
1998. Technical Report ECS-LFCS-98-392.

T. Nipkow. Hoare logics for recursive procedures and unbounded nonde-
terminism. In J. Bradfield, editor, Computer Science Logic (CSL 2002),
volume 2471 of Lecture Notes in Computer Science, pages 103-119.
Springer, 2002.

T. Nipkow. Abstract Hoare logics. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://isa-afp.org/
entries/Abstract-Hoare-Logics.shtml, June 2008. Formal proof devel-
opment.

D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. Journal of Computer Security, 4(3):167-187, 1996.

G. Winskel. The formal semantics of programming languages, an intro-
duction. MIT Press, 1993.

50

http://isa-afp.org/entries/Abstract-Hoare-Logics.shtml
http://isa-afp.org/entries/Abstract-Hoare-Logics.shtml

	The language IMP
	Syntax
	Dynamic semantics

	Program logic
	Assertions and their semantic validity
	Proof system
	Soundness
	Admissible rules
	Completeness

	Base-line noninterference
	Basic definitions
	Derivation of the LOW rules
	Derivation of the HIGH rules
	The type system of Volpano, Smith and Irvine
	Contextual closure

	Lattices
	Flow-sensitivity a la Hunt and Sands
	General A; R S-security
	Basic definitions
	Type system
	Derived proof rules
	Soundness results

	Base-line non-interference with objects
	Syntax and operational semantics
	Program logic
	Assertions and their semantic validity
	Proof system
	Soundness
	Derived rules
	Completeness

	Partial bijections
	Non-interference
	Indistinguishability relations
	Definition and characterisation of security

	Derivation of proof rules
	Low proof rules
	High proof rules

	Type system
	Contextual closure

