
Correctness of a Set-based Algorithm for
Computing Strongly Connected Components of a

Graph

Stephan Merz and Vincent Trélat

March 19, 2025

Abstract

We prove the correctness of a sequential algorithm for computing
maximal strongly connected components (SCCs) of a graph due to
Vincent Bloemen.

Contents
1 Overview 2

2 Auxiliary lemmas about lists 3

3 Finite directed graphs 5

4 Strongly connected components 7

5 Algorithm for computing strongly connected components 7

6 Definition of the predicates used in the correctness proof 9
6.1 Main invariant . 9
6.2 Consequences of the invariant 11
6.3 Pre- and post-conditions of function dfs 12
6.4 Pre- and post-conditions of function dfss 14

7 Proof of partial correctness 15
7.1 Lemmas about function unite 15
7.2 Lemmas establishing the pre-conditions 16
7.3 Lemmas establishing the post-conditions 17

8 Proof of termination and total correctness 18

1

1 Overview

Computing the maximal strongly connected components (SCCs) of a finite
directed graph is a celebrated problem in the theory of graph algorithms.
Although Tarjan’s algorithm [5] is perhaps the best-known solution, there
are many others. In his PhD thesis, Bloemen [1] presents an algorithm that
is itself based on earlier algorithms by Munro [4] and Dijkstra [2]. Just like
these algorithms, Bloemen’s solution is based on enumerating SCCs in a
depth-first traversal of the graph. Gabow’s algorithm that has already been
formalized in Isabelle [3] also falls into this category of solutions. Neverthe-
less, Bloemen goes on to present a parallel variant of the algorithm suitable
for execution on multi-core processors, based on clever data structures that
minimize locking.
In the following, we encode the sequential version of the algorithm in the
proof assistant Isabelle/HOL, and prove its correctness. Bloemen’s thesis
briefly and informally explains why the algorithm is correct. Our proof
expands on these arguments, making them completely formal. The encoding
is based on a direct representation of the algorithm as a pair of mutually
recursive functions; we are not aiming at extracting executable code.
theory SCC-Bloemen-Sequential
imports Main
begin

The record below represents the variables of the algorithm. Most variables
correspond to those used in Bloemen’s presentation. Thus, the variable S
associates to every node the set of nodes that have already been determined
to be part of the same SCC. A core invariant of the algorithm will be that
this mapping represents equivalence classes of nodes: for all nodes v and w,
we maintain the relationship
v ∈ S w ←→ S v = S w.

In an actual implementation of this algorithm, this variable could conve-
niently be represented by a union-find structure. Variable stack holds the
list of roots of these (not yet maximal) SCCs, in depth-first order, visited
and explored represent the nodes that have already been seen, respectively
that have been completely explored, by the algorithm, and sccs is the set of
maximal SCCs that the algorithm has found so far.
Additionally, the record holds some auxiliary variables that are used in the
proof of correctness. In particular, root denotes the node on which the
algorithm was called, cstack represents the call stack of the recursion of
function dfs, and vsuccs stores the successors of each node that have already
been visited by the function dfss that loops over all successors of a given
node.
record ′v env =

2

root :: ′v
S :: ′v ⇒ ′v set
explored :: ′v set
visited :: ′v set
vsuccs :: ′v ⇒ ′v set
sccs :: ′v set set
stack :: ′v list
cstack :: ′v list

The algorithm is initially called with an environment that initializes the root
node and trivializes all other components.
definition init-env where

init-env v = (|
root = v,
S = (λu. {u}),
explored = {},
visited = {},
vsuccs = (λu. {}),
sccs = {},
stack = [],
cstack = []
|)

— Make the simplifier expand let-constructions automatically.
declare Let-def [simp]

2 Auxiliary lemmas about lists

We use the precedence order on the elements that appear in a list. In
particular, stacks are represented as lists, and a node x precedes another
node y on the stack if x was pushed on the stack later than y.
definition precedes (‹- � - in -› [100 ,100 ,100] 39) where

x � y in xs ≡ ∃ l r . xs = l @ (x # r) ∧ y ∈ set (x # r)

lemma precedes-mem:
assumes x � y in xs
shows x ∈ set xs y ∈ set xs
〈proof 〉

lemma head-precedes:
assumes y ∈ set (x # xs)
shows x � y in (x # xs)
〈proof 〉

lemma precedes-in-tail:
assumes x 6= z
shows x � y in (z # zs) ←→ x � y in zs

3

〈proof 〉

lemma tail-not-precedes:
assumes y � x in (x # xs) x /∈ set xs
shows x = y
〈proof 〉

lemma split-list-precedes:
assumes y ∈ set (ys @ [x])
shows y � x in (ys @ x # xs)
〈proof 〉

lemma precedes-refl [simp]: (x � x in xs) = (x ∈ set xs)
〈proof 〉

lemma precedes-append-left:
assumes x � y in xs
shows x � y in (ys @ xs)
〈proof 〉

lemma precedes-append-left-iff :
assumes x /∈ set ys
shows x � y in (ys @ xs) ←→ x � y in xs (is ?lhs = ?rhs)
〈proof 〉

lemma precedes-append-right:
assumes x � y in xs
shows x � y in (xs @ ys)
〈proof 〉

lemma precedes-append-right-iff :
assumes y /∈ set ys
shows x � y in (xs @ ys) ←→ x � y in xs (is ?lhs = ?rhs)
〈proof 〉

Precedence determines an order on the elements of a list, provided elements
have unique occurrences. However, consider a list such as [2 ,3 ,1 ,2]: then 1
precedes 2 and 2 precedes 3, but 1 does not precede 3.
lemma precedes-trans:

assumes x � y in xs and y � z in xs and distinct xs
shows x � z in xs
〈proof 〉

lemma precedes-antisym:
assumes x � y in xs and y � x in xs and distinct xs
shows x = y
〈proof 〉

4

3 Finite directed graphs

We represent a graph as an Isabelle locale that identifies a finite set of ver-
tices (of some base type ′v) and associates to each vertex its set of successor
vertices.
locale graph =

fixes vertices :: ′v set
and successors :: ′v ⇒ ′v set

assumes vfin: finite vertices
and sclosed: ∀ x ∈ vertices. successors x ⊆ vertices

context graph
begin

abbreviation edge where
edge x y ≡ y ∈ successors x

We inductively define reachability of nodes in the graph.
inductive reachable where

reachable-refl[iff]: reachable x x
| reachable-succ[elim]: [[edge x y; reachable y z]] =⇒ reachable x z

lemma reachable-edge: edge x y =⇒ reachable x y
〈proof 〉

lemma succ-reachable:
assumes reachable x y and edge y z
shows reachable x z
〈proof 〉

lemma reachable-trans:
assumes y: reachable x y and z: reachable y z
shows reachable x z
〈proof 〉

In order to derive a “reverse” induction rule for reachable, we define an
alternative reachability predicate and prove that the two coincide.
inductive reachable-end where

re-refl[iff]: reachable-end x x
| re-succ: [[reachable-end x y; edge y z]] =⇒ reachable-end x z

lemma succ-re:
assumes y: edge x y and z: reachable-end y z
shows reachable-end x z
〈proof 〉

lemma reachable-re:
assumes reachable x y

5

shows reachable-end x y
〈proof 〉

lemma re-reachable:
assumes reachable-end x y
shows reachable x y
〈proof 〉

lemma reachable-end-induct:
assumes r : reachable x y

and base:
∧

x. P x x
and step:

∧
x y z. [[P x y; edge y z]] =⇒ P x z

shows P x y
〈proof 〉

We also need the following variant of reachability avoiding certain edges.
More precisely, y is reachable from x avoiding a set E of edges if there exists
a path such that no edge from E appears along the path.
inductive reachable-avoiding where

ra-refl[iff]: reachable-avoiding x x E
| ra-succ[elim]: [[reachable-avoiding x y E ; edge y z; (y,z) /∈ E]] =⇒ reachable-avoiding
x z E

lemma edge-ra:
assumes edge x y and (x,y) /∈ E
shows reachable-avoiding x y E
〈proof 〉

lemma ra-trans:
assumes 1 : reachable-avoiding x y E and 2 : reachable-avoiding y z E
shows reachable-avoiding x z E
〈proof 〉

lemma ra-cases:
assumes reachable-avoiding x y E
shows x=y ∨ (∃ z. z ∈ successors x ∧ (x,z) /∈ E ∧ reachable-avoiding z y E)
〈proof 〉

lemma ra-mono:
assumes reachable-avoiding x y E and E ′ ⊆ E
shows reachable-avoiding x y E ′

〈proof 〉

lemma ra-add-edge:
assumes reachable-avoiding x y E
shows reachable-avoiding x y (E ∪ {(v,w)})

∨ (reachable-avoiding x v (E ∪ {(v,w)}) ∧ reachable-avoiding w y (E ∪
{(v,w)}))
〈proof 〉

6

Reachability avoiding some edges obviously implies reachability. Conversely,
reachability implies reachability avoiding the empty set.
lemma ra-reachable:

reachable-avoiding x y E =⇒ reachable x y
〈proof 〉

lemma ra-empty:
reachable-avoiding x y {} = reachable x y
〈proof 〉

4 Strongly connected components

A strongly connected component is a set S of nodes such that any two nodes
in S are reachable from each other. This concept is represented by the pred-
icate is-subscc below. We are ultimately interested in non-empty, maximal
strongly connected components, represented by the predicate is-scc.
definition is-subscc where

is-subscc S ≡ ∀ x ∈ S . ∀ y ∈ S . reachable x y

definition is-scc where
is-scc S ≡ S 6= {} ∧ is-subscc S ∧ (∀S ′. S ⊆ S ′ ∧ is-subscc S ′ −→ S ′ = S)

lemma subscc-add:
assumes is-subscc S and x ∈ S

and reachable x y and reachable y x
shows is-subscc (insert y S)
〈proof 〉

lemma sccE :
— Two nodes that are reachable from each other are in the same SCC.
assumes is-scc S and x ∈ S

and reachable x y and reachable y x
shows y ∈ S
〈proof 〉

lemma scc-partition:
— Two SCCs that contain a common element are identical.
assumes is-scc S and is-scc S ′ and x ∈ S ∩ S ′

shows S = S ′

〈proof 〉

5 Algorithm for computing strongly connected com-
ponents

We now introduce our representation of Bloemen’s algorithm in Isabelle/HOL.
The auxiliary function unite corresponds to the inner while loop in Bloemen’s

7

pseudo-code [1, p.32]. It is applied to two nodes v and w (and the environ-
ment e holding the current values of the program variables) when a loop is
found, i.e. when w is a successor of v in the graph that has already been
visited in the depth-first search. In that case, the root of the SCC of node
w determined so far must appear below the root of v’s SCC in the stack
maintained by the algorithm. The effect of the function is to merge the
SCCs of all nodes on the top of the stack above (and including) w. Node
w’s root will be the root of the merged SCC.
definition unite :: ′v ⇒ ′v ⇒ ′v env ⇒ ′v env where

unite v w e ≡
let pfx = takeWhile (λx. w /∈ S e x) (stack e);

sfx = dropWhile (λx. w /∈ S e x) (stack e);
cc =

⋃
{ S e x | x . x ∈ set pfx ∪ {hd sfx} }

in e(|S := λx. if x ∈ cc then cc else S e x,
stack := sfx|)

We now represent the algorithm as two mutually recursive functions dfs and
dfss in Isabelle/HOL. The function dfs corresponds to Bloemen’s function
SetBased, whereas dfss corresponds to the forall loop over the successors of
the node on which dfs was called. Instead of using global program variables
in imperative style, our functions explicitly pass environments that hold the
current values of these variables.
A technical complication in the development of the algorithm in Isabelle is
the fact that the functions need not terminate when their pre-conditions
(introduced below) are violated, for example when dfs is called for a node
that was already visited previously. We therefore cannot prove termination
at this point, but will later show that the explicitly given pre-conditions
ensure termination.
function (domintros) dfs :: ′v ⇒ ′v env ⇒ ′v env
and dfss :: ′v ⇒ ′v env ⇒ ′v env where

dfs v e =
(let e1 = e(|visited := visited e ∪ {v},

stack := (v # stack e),
cstack := (v # cstack e)|);

e ′ = dfss v e1
in if v = hd(stack e ′)

then e ′(|sccs := sccs e ′ ∪ {S e ′ v},
explored := explored e ′ ∪ (S e ′ v),
stack := tl(stack e ′),
cstack := tl(cstack e ′)|)

else e ′(|cstack := tl(cstack e ′)|))
| dfss v e =

(let vs = successors v − vsuccs e v
in if vs = {} then e

else let w = SOME x. x ∈ vs;
e ′ = (if w ∈ explored e then e

8

else if w /∈ visited e
then dfs w e
else unite v w e);

e ′′ = (e ′(|vsuccs :=
(λx. if x=v then vsuccs e ′ v ∪ {w}

else vsuccs e ′ x)|))
in dfss v e ′′)

〈proof 〉

6 Definition of the predicates used in the correct-
ness proof

Environments are partially ordered according to the following definition.
definition sub-env where

sub-env e e ′ ≡
root e ′ = root e
∧ visited e ⊆ visited e ′

∧ explored e ⊆ explored e ′

∧ (∀ v. vsuccs e v ⊆ vsuccs e ′ v)
∧ (∀ v. S e v ⊆ S e ′ v)
∧ (

⋃
{S e v | v . v ∈ set (stack e)})

⊆ (
⋃
{S e ′ v | v . v ∈ set (stack e ′)})

lemma sub-env-trans:
assumes sub-env e e ′ and sub-env e ′ e ′′

shows sub-env e e ′′

〈proof 〉

The set unvisited e u contains all edges (a,b) such that node a is in the
same SCC as node u and the edge has not yet been followed, in the sense
represented by variable vsuccs.
definition unvisited where

unvisited e u ≡
{(a,b) | a b. a ∈ S e u ∧ b ∈ successors a − vsuccs e a}

6.1 Main invariant

The following definition characterizes well-formed environments. This pred-
icate will be shown to hold throughout the execution of the algorithm. In
words, it asserts the following facts:

• Only nodes reachable from the root (for which the algorithm was orig-
inally called) are visited.

• The two stacks stack and cstack do not contain duplicate nodes, and
stack contains a subset of the nodes on cstack, in the same order.

9

• Any node higher on the stack (i.e., that was pushed later) is reachable
from nodes lower in the stack. This property also holds for nodes on
the call stack, but this is not needed for the correctness proof.

• Every explored node, and every node on the call stack, has been visited.

• Nodes reachable from fully explored nodes have themselves been fully
explored.

• The set vsuccs e n, for any node n, is a subset of n’s successors, and
all these nodes are in visited. The set is empty if n /∈ visited, and it
contains all successors if n has been fully explored or if n has been
visited, but is no longer on the call stack.

• The sets S e n represent an equivalence relation. The equivalence
classes of nodes that have not yet been visited are singletons. Also,
equivalence classes for two distinct nodes on the stack are disjoint
because the stack only stores roots of SCCs, and the union of the
equivalence classes for these root nodes corresponds to the set of live
nodes, i.e. those nodes that have already been visited but not yet fully
explored.

• More precisely, an equivalence class is represented on the stack by the
oldest node in the sense of the call order: any node in the class that is
still on the call stack precedes the representative on the call stack and
was therefore pushed later.

• Equivalence classes represent the maximal available information about
strong connectedness: nodes represented by some node n on the stack
can reach some node m that is lower in the stack only by taking an edge
from some node in n’s equivalence class that has not yet been followed.
(Remember that m can reach n by one of the previous conjuncts.)

• Equivalence classes represent partial SCCs in the sense of the predi-
cate is-subscc. Variable sccs holds maximal SCCs in the sense of the
predicate is-scc, and their union corresponds to the set of explored
nodes.

definition wf-env where
wf-env e ≡
(∀n ∈ visited e. reachable (root e) n)
∧ distinct (stack e)
∧ distinct (cstack e)
∧ (∀n m. n � m in stack e −→ n � m in cstack e)
∧ (∀n m. n � m in stack e −→ reachable m n)
∧ explored e ⊆ visited e
∧ set (cstack e) ⊆ visited e

10

∧ (∀n ∈ explored e. ∀m. reachable n m −→ m ∈ explored e)
∧ (∀n. vsuccs e n ⊆ successors n ∩ visited e)
∧ (∀n. n /∈ visited e −→ vsuccs e n = {})
∧ (∀n ∈ explored e. vsuccs e n = successors n)
∧ (∀n ∈ visited e − set (cstack e). vsuccs e n = successors n)
∧ (∀n m. m ∈ S e n ←→ (S e n = S e m))
∧ (∀n. n /∈ visited e −→ S e n = {n})
∧ (∀n ∈ set (stack e). ∀m ∈ set (stack e). n 6= m −→ S e n ∩ S e m = {})
∧

⋃
{S e n | n. n ∈ set (stack e)} = visited e − explored e

∧ (∀n ∈ set (stack e). ∀m ∈ S e n. m ∈ set (cstack e) −→ m � n in cstack e)
∧ (∀n m. n � m in stack e ∧ n 6= m −→

(∀ u ∈ S e n. ¬ reachable-avoiding u m (unvisited e n)))
∧ (∀n. is-subscc (S e n))
∧ (∀S ∈ sccs e. is-scc S)
∧

⋃
(sccs e) = explored e

6.2 Consequences of the invariant

Since every node on the call stack is an element of visited and every node
on the stack also appears on cstack, all these nodes are also in visited.
lemma stack-visited:

assumes wf-env e n ∈ set (stack e)
shows n ∈ visited e
〈proof 〉

Classes represented on the stack consist of visited nodes that have not yet
been fully explored.
lemma stack-class:

assumes wf-env e n ∈ set (stack e) m ∈ S e n
shows m ∈ visited e − explored e
〈proof 〉

Conversely, every such node belongs to some class represented on the stack.
lemma visited-unexplored:

assumes wf-env e m ∈ visited e m /∈ explored e
obtains n where n ∈ set (stack e) m ∈ S e n
〈proof 〉

Every node belongs to its own equivalence class.
lemma S-reflexive:

assumes wf-env e
shows n ∈ S e n
〈proof 〉

No node on the stack has been fully explored.
lemma stack-unexplored:

assumes 1 : wf-env e

11

and 2 : n ∈ set (stack e)
and 3 : n ∈ explored e

shows P
〈proof 〉

If w is reachable from visited node v, but no unvisited successor of a node
reachable from v can reach w, then w must be visited.
lemma reachable-visited:

assumes e: wf-env e
and v: v ∈ visited e
and w: reachable v w
and s: ∀n ∈ visited e. ∀m ∈ successors n − vsuccs e n.

reachable v n −→ ¬ reachable m w
shows w ∈ visited e
〈proof 〉

Edges towards explored nodes do not contribute to reachability of unex-
plored nodes avoiding some set of edges.
lemma avoiding-explored:

assumes e: wf-env e
and xy: reachable-avoiding x y E
and y: y /∈ explored e
and w: w ∈ explored e

shows reachable-avoiding x y (E ∪ {(v,w)})
〈proof 〉

6.3 Pre- and post-conditions of function dfs

Function dfs should be called for a well-formed environment and a node v
that has not yet been visited and that is reachable from the root node, as
well as from all nodes in the stack. No outgoing edges from node v have yet
been followed.
definition pre-dfs where

pre-dfs v e ≡
wf-env e
∧ v /∈ visited e
∧ reachable (root e) v
∧ vsuccs e v = {}
∧ (∀n ∈ set (stack e). reachable n v)

Function dfs maintains the invariant wf-env and returns an environment e ′

that extends the input environment e. Node v has been visited and all its
outgoing edges have been followed. Because the algorithm works in depth-
first fashion, no new outgoing edges of nodes that had already been visited
in the input environment have been followed, and the stack of e ′ is a suffix
of the one of e such that v is still reachable from all nodes on the stack. The
stack may have been shortened because SCCs represented at the top of the

12

stack may have been merged. The call stack is reestablished as it was in e.
There are two possible outcomes of the algorithm:

• Either v has been fully explored, in which case the stacks of e and e ′

are the same, and the equivalence classes of all nodes represented on
the stack are unchanged. This corresponds to the case where v is the
root node of its (maximal) SCC.

• Alternatively, the stack of e ′ must be non-empty and v must be rep-
resented by the node at the top of the stack. The SCCs of the nodes
lower on the stack are unchanged. This corresponds to the case where
v is not the root node of its SCC, but some SCCs at the top of the
stack may have been merged.

definition post-dfs where
post-dfs v e e ′ ≡

wf-env e ′

∧ v ∈ visited e ′

∧ sub-env e e ′

∧ vsuccs e ′ v = successors v
∧ (∀w ∈ visited e. vsuccs e ′ w = vsuccs e w)
∧ (∀n ∈ set (stack e ′). reachable n v)
∧ (∃ns. stack e = ns @ (stack e ′))
∧ ((v ∈ explored e ′ ∧ stack e ′ = stack e

∧ (∀n ∈ set (stack e ′). S e ′ n = S e n))
∨ (stack e ′ 6= [] ∧ v ∈ S e ′ (hd (stack e ′))
∧ (∀n ∈ set (tl (stack e ′)). S e ′ n = S e n)))

∧ cstack e ′ = cstack e

The initial environment is easily seen to satisfy dfs’s pre-condition.
lemma init-env-pre-dfs: pre-dfs v (init-env v)
〈proof 〉

Any node represented by the top stack element of the input environment is
still represented by the top element of the output stack.
lemma dfs-S-hd-stack:

assumes wf : wf-env e
and post: post-dfs v e e ′

and n: stack e 6= [] n ∈ S e (hd (stack e))
shows stack e ′ 6= [] n ∈ S e ′ (hd (stack e ′))

〈proof 〉

Function dfs leaves the SCCs represented by elements in the (new) tail of
the stack unchanged.
lemma dfs-S-tl-stack:

assumes post: post-dfs v e e ′

and nempty: stack e 6= []
shows stack e ′ 6= [] ∀n ∈ set (tl (stack e ′)). S e ′ n = S e n
〈proof 〉

13

6.4 Pre- and post-conditions of function dfss

The pre- and post-conditions of function dfss correspond to the invariant
of the loop over all outgoing edges from node v. The environment must be
well-formed, node v must be visited and represented by the top element of
the (non-empty) stack. Node v must be reachable from all nodes on the
stack, and it must be the top node on the call stack. All outgoing edges
of node v that have already been followed must either lead to completely
explored nodes (that are no longer represented on the stack) or to nodes
that are part of the same SCC as v.
definition pre-dfss where

pre-dfss v e ≡
wf-env e
∧ v ∈ visited e
∧ (stack e 6= [])
∧ (v ∈ S e (hd (stack e)))
∧ (∀w ∈ vsuccs e v. w ∈ explored e ∪ S e (hd (stack e)))
∧ (∀n ∈ set (stack e). reachable n v)
∧ (∃ns. cstack e = v # ns)

The post-condition establishes that all outgoing edges of node v have been
followed. As for function dfs, no new outgoing edges of previously visited
nodes have been followed. Also as before, the new stack is a suffix of the old
one, and the call stack is restored. In case node v is still on the stack (and
therefore is the root node of its SCC), no node that is lower on the stack
can be reachable from v. This condition guarantees the maximality of the
computed SCCs.
definition post-dfss where

post-dfss v e e ′ ≡
wf-env e ′

∧ vsuccs e ′ v = successors v
∧ (∀w ∈ visited e − {v}. vsuccs e ′ w = vsuccs e w)
∧ sub-env e e ′

∧ (∀w ∈ successors v. w ∈ explored e ′ ∪ S e ′ (hd (stack e ′)))
∧ (∀n ∈ set (stack e ′). reachable n v)
∧ (stack e ′ 6= [])
∧ (∃ns. stack e = ns @ (stack e ′))
∧ v ∈ S e ′ (hd (stack e ′))
∧ (∀n ∈ set (tl (stack e ′)). S e ′ n = S e n)
∧ (hd (stack e ′) = v −→ (∀n ∈ set (tl (stack e ′)). ¬ reachable v n))
∧ cstack e ′ = cstack e

14

7 Proof of partial correctness
7.1 Lemmas about function unite

We start by establishing a few lemmas about function unite in the context
where it is called.
lemma unite-stack:

fixes e v w
defines e ′ ≡ unite v w e
assumes wf : wf-env e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
obtains pfx where stack e = pfx @ (stack e ′)

stack e ′ 6= []
let cc =

⋃
{S e n |n. n ∈ set pfx ∪ {hd (stack e ′)}}

in S e ′ = (λx. if x ∈ cc then cc else S e x)
w ∈ S e ′ (hd (stack e ′))

〈proof 〉

Function unite leaves intact the equivalence classes represented by the tail
of the new stack.
lemma unite-S-tl:

fixes e v w
defines e ′ ≡ unite v w e
assumes wf : wf-env e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
and n: n ∈ set (tl (stack e ′))

shows S e ′ n = S e n
〈proof 〉

The stack of the result of unite represents the same vertices as the input
stack, potentially in fewer equivalence classes.
lemma unite-S-equal:

fixes e v w
defines e ′ ≡ unite v w e
assumes wf : wf-env e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
shows (

⋃
{S e ′ n | n. n ∈ set (stack e ′)}) = (

⋃
{S e n | n. n ∈ set (stack e)})

〈proof 〉

The head of the stack represents a (not necessarily maximal) SCC.
lemma unite-subscc:

fixes e v w
defines e ′ ≡ unite v w e
assumes pre: pre-dfss v e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
shows is-subscc (S e ′ (hd (stack e ′)))

〈proof 〉

The environment returned by function unite extends the input environment.

15

lemma unite-sub-env:
fixes e v w
defines e ′ ≡ unite v w e
assumes pre: pre-dfss v e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
shows sub-env e e ′

〈proof 〉

The environment returned by function unite is well-formed.
lemma unite-wf-env:

fixes e v w
defines e ′ ≡ unite v w e
assumes pre: pre-dfss v e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
shows wf-env e ′

〈proof 〉

7.2 Lemmas establishing the pre-conditions

The precondition of function dfs ensures the precondition of dfss at the call
of that function.
lemma pre-dfs-pre-dfss:

assumes pre-dfs v e
shows pre-dfss v (e(|visited := visited e ∪ {v},

stack := v # stack e,
cstack := v # cstack e|))

(is pre-dfss v ?e ′)
〈proof 〉

Similarly, we now show that the pre-conditions of the different function calls
in the body of function dfss are satisfied. First, it is very easy to see that
the pre-condition of dfs holds at the call of that function.
lemma pre-dfss-pre-dfs:

assumes pre-dfss v e and w /∈ visited e and w ∈ successors v
shows pre-dfs w e
〈proof 〉

The pre-condition of dfss holds when the successor considered in the current
iteration has already been explored.
lemma pre-dfss-explored-pre-dfss:

fixes e v w
defines e ′′ ≡ e(|vsuccs := (λx. if x=v then vsuccs e v ∪ {w} else vsuccs e x)|)
assumes 1 : pre-dfss v e and 2 : w ∈ successors v and 3 : w ∈ explored e
shows pre-dfss v e ′′

〈proof 〉

The call to dfs establishes the pre-condition for the recursive call to dfss in
the body of dfss.

16

lemma pre-dfss-post-dfs-pre-dfss:
fixes e v w
defines e ′ ≡ dfs w e
defines e ′′ ≡ e ′(|vsuccs := (λx. if x=v then vsuccs e ′ v ∪ {w} else vsuccs e ′ x)|)
assumes pre: pre-dfss v e

and w: w ∈ successors v w /∈ visited e
and post: post-dfs w e e ′

shows pre-dfss v e ′′

〈proof 〉

Finally, the pre-condition for the recursive call to dfss at the end of the body
of function dfss also holds if unite was applied.
lemma pre-dfss-unite-pre-dfss:

fixes e v w
defines e ′ ≡ unite v w e
defines e ′′ ≡ e ′(|vsuccs := (λx. if x=v then vsuccs e ′ v ∪ {w} else vsuccs e ′ x)|)
assumes pre: pre-dfss v e

and w: w ∈ successors v w /∈ vsuccs e v w ∈ visited e w /∈ explored e
shows pre-dfss v e ′′

〈proof 〉

7.3 Lemmas establishing the post-conditions

Assuming the pre-condition of function dfs and the post-condition of the call
to dfss in the body of that function, the post-condition of dfs is established.
lemma pre-dfs-implies-post-dfs:

fixes v e
defines e1 ≡ e(|visited := visited e ∪ {v},

stack := (v # stack e),
cstack:=(v # cstack e)|)

defines e ′ ≡ dfss v e1
defines e ′′ ≡ e ′(| cstack := tl(cstack e ′)|)
assumes 1 : pre-dfs v e

and 2 : dfs-dfss-dom (Inl(v, e))
and 3 : post-dfss v e1 e ′

shows post-dfs v e (dfs v e)
〈proof 〉

The following lemma is central for proving partial correctness: assuming ter-
mination (represented by the predicate dfs-dfss-dom) and the pre-condition
of the functions, both dfs and dfss establish their post-conditions. The first
part of the theorem follows directly from the preceding lemma and the com-
putational induction rule generated by Isabelle, the second part is proved
directly, distinguishing the different cases in the definition of function dfss.
lemma pre-post:

shows
[[dfs-dfss-dom (Inl(v,e)); pre-dfs v e]] =⇒ post-dfs v e (dfs v e)

17

[[dfs-dfss-dom (Inr(v,e)); pre-dfss v e]] =⇒ post-dfss v e (dfss v e)
〈proof 〉

We can now show partial correctness of the algorithm: applied to some node
v and the empty environment, it computes the set of strongly connected
components in the subgraph reachable from node v. In particular, if v is a
root of the graph, the algorithm computes the set of SCCs of the graph.
theorem partial-correctness:

fixes v
defines e ≡ dfs v (init-env v)
assumes dfs-dfss-dom (Inl (v, init-env v))
shows sccs e = {S . is-scc S ∧ (∀n∈S . reachable v n)}
(is - = ?rhs)

〈proof 〉

8 Proof of termination and total correctness

We define a binary relation on the arguments of functions dfs and dfss, and
prove that this relation is well-founded and that all calls within the function
bodies respect the relation, assuming that the pre-conditions of the initial
function call are satisfied. By well-founded induction, we conclude that the
pre-conditions of the functions are sufficient to ensure termination.
Following the internal representation of the two mutually recursive functions
in Isabelle as a single function on the disjoint sum of the types of arguments,
our relation is defined as a set of argument pairs injected into the sum type.
The left injection Inl takes arguments of function dfs, the right injection Inr
takes arguments of function dfss.1 The conditions on the arguments in the
definition of the relation overapproximate the arguments in the actual calls.
definition dfs-dfss-term::((′v × ′v env + ′v × ′v env) × (′v × ′v env + ′v × ′v
env)) set where

dfs-dfss-term ≡
{ (Inr(v, e1), Inl(v, e)) | v e e1 .

v ∈ vertices − visited e ∧ visited e1 = visited e ∪ {v} }
∪ { (Inl(w, e), Inr(v, e)) | v w e. v ∈ vertices}
∪ { (Inr(v, e ′′), Inr(v, e)) | v e e ′′.

v ∈ vertices ∧ sub-env e e ′′

∧ (∃w ∈ vertices. w /∈ vsuccs e v ∧ w ∈ vsuccs e ′′ v)}

Informally, termination is ensured because at each call, either a new vertex
is visited (hence the complement of the set of visited nodes w.r.t. the finite
set of vertices decreases) or a new successor is added to the set vsuccs e v
of some vertex v.

1Note that the types of the arguments of dfs and dfss are actually identical. We
nevertheless use the sum type in order to remember the function that was called.

18

In order to make this argument formal, we inject the argument tuples that
appear in our relation into tuples consisting of the sets mentioned in the
informal argument. However, there is one added complication because the
call of dfs from dfss does not immediately add the vertex to the set of visited
nodes (this happens only at the beginning of function dfs). We therefore
add a third component of 0 or 1 to these tuples, reflecting the fact that there
can only be one call of dfs from dfss for a given vertex v.
fun dfs-dfss-to-tuple where

dfs-dfss-to-tuple (Inl(v:: ′v, e:: ′v env)) =
(vertices − visited e, vertices × vertices − {(u,u ′) | u u ′. u ′ ∈ vsuccs e u}, 0)

| dfs-dfss-to-tuple (Inr(v:: ′v, e:: ′v env)) =
(vertices − visited e, vertices × vertices − {(u,u ′) | u u ′. u ′ ∈ vsuccs e u}, 1 ::nat)

The triples defined in this way can be ordered lexicographically (with the
first two components ordered as finite subsets and the third one following
the predecessor relation on natural numbers). We prove that the injection
of the above relation into sets of triples respects the lexicographic ordering
and conclude that our relation is well-founded.
lemma wf-term: wf dfs-dfss-term
〈proof 〉

The following theorem establishes sufficient conditions that ensure termina-
tion of the two functions dfs and dfss. The proof proceeds by well-founded
induction using the relation dfs-dfss-term. Isabelle represents the termina-
tion domains of the functions by the predicate dfs-dfss-dom and generates
a theorem dfs-dfss.domintros for proving membership of arguments in the
termination domains. The actual formulation is a litte technical because
the mutual induction must again be encoded in a single induction argument
over the sum type representing the arguments of both functions.
theorem dfs-dfss-termination:
[[v ∈ vertices ; pre-dfs v e]] =⇒ dfs-dfss-dom(Inl(v, e))
[[v ∈ vertices ; pre-dfss v e]] =⇒ dfs-dfss-dom(Inr(v, e))
〈proof 〉

Putting everything together, we prove the total correctness of the algorithm
when applied to some (root) vertex.
theorem correctness:

assumes v ∈ vertices
shows sccs (dfs v (init-env v)) = {S . is-scc S ∧ (∀n∈S . reachable v n)}
〈proof 〉

end
end

19

References

[1] V. Bloemen. Strong Connectivity and Shortest Paths for Checking Mod-
els. PhD thesis, University of Twente, Enschede, The Netherlands, 2019.

[2] E. W. Dijkstra. Finding the maximum strong components in a directed
graph. In Selected Writings in Computing: A Personal Perspective, Texts
and Monographs in Computer Science, pages 22–30. Springer, 1982.

[3] P. Lammich. Verified efficient implementation of gabow’s strongly con-
nected components algorithm. Archive of Formal Proofs, May 2014.
https://isa-afp.org/entries/Gabow_SCC.html, Formal proof develop-
ment.

[4] J. Munro. Efficient determination of the transitive closure of a directed
graph. Information Processing Letters, 1(2):56–58, 1971.

[5] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal
on Computing, 1972.

20

https://isa-afp.org/entries/Gabow_SCC.html

	Overview
	Auxiliary lemmas about lists
	Finite directed graphs
	Strongly connected components
	Algorithm for computing strongly connected components
	Definition of the predicates used in the correctness proof
	Main invariant
	Consequences of the invariant
	Pre- and post-conditions of function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dfs
	Pre- and post-conditions of function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dfss

	Proof of partial correctness
	Lemmas about function 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 unite
	Lemmas establishing the pre-conditions
	Lemmas establishing the post-conditions

	Proof of termination and total correctness

