SAT Solver verification

By Filip Mari¢
March 19, 2025

Abstract

This document contains formall correctness proofs of modern SAT
solvers. Two different approaches are used — state-transition systems
and shallow embedding into HOL.

Formalization based on state-transition systems follows [1, 3]. Sev-
eral different SAT solver descriptions are given and their partial cor-
rectness and termination is proved. These include:

1. a solver based on classical DPLL procedure (based on backtrack-
search with unit propagation),

2. a very general solver with backjumping and learning (similiar to
the description given in [3]), and

3. a solver with a specific conflict analysis algorithm (similiar to the
description given in [1]).

Formalization based on shallow embedding into HOL defines a SAT
solver as a set or recursive HOL functions. Solver supports most
state-of-the art techniques including the two-watch literal propagation
scheme.

Within the SAT solver correctness proofs, a large number of lemmas
about propositional logic and CNF formulae are proved. This theory
is self-contained and could be used for further exploring of properties
of CNF based SAT algorithms.

Contents

1 MoreList 3
1.1 last and butlast - last element of list and elements before it 3
1.2 removeAll - element removal 4
1.3 wuniq - no duplicate elements. 5
1.4 firstPos - first position of an element 7
1.5 precedes - ordering relation induced by firstPos 10
1.6 isPrefiz - prefixes of list. 18
1.7 list-diff - the set difference operation on two lists. 20
1.8 remdups - removing duplicates 22
1.9 Levi'slemma 29
1.10 Single element lists 30

2 CNF

2.1

2.2

Syntax
2.1.1 Basicdatatypes.
2.1.2 Membership.
2.1.3 Variables,
2.1.4 Opposite literals,
2.1.5 Tautological clauses
Semantics
2.2.1 Valuations.,
2.2.2 True/False literals
2.2.3 True/False clauses
2.2.4 True/False formulae
2.2.5 Valuation viewed as a formula
2.2.6 Consistency of valuations
2.2.7 Totality of valuations
2.2.8 Models and satisfiability
2.2.9 Tautological clauses
2.2.10 Entailment 0.
2.2.11 Equivalency
2.2.12 Remove false and duplicate literals of a clause . .
2.2.13 Resolution.
2214 Unit clauses L.
2.2.15 Reason clauses
2.2.16 Last asserted literal of a list

3 Trail datatype definition and its properties

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Trail elements
Marked trail elements
Prefix before/upto a trail element
Marked elements upto a given trail element
Last marked element in a trail
Level of a trail element
Current trail level
Prefix to a given trail level
Number of literals of every trail level

3.10 Prefix before last marked element

4 Verification of DPLL based SAT solvers.

4.1
4.2

4.3
4.4

Literal Trail,
Invariants L oo
4.2.1 Auxiliary lemmas
4.2.2 Transition rules preserve invariants
Different characterizations of backjumping
Termination Lo oL
4.4.1 Trailordering
4.4.2 Conflict clause ordering
4.4.3 ConflictFlag ordering
4.4.4 Formulae ordering
4.4.5 Properties of well-founded relations.

30
30
30
31
31
35
38
38
38
39
41
43
46
47
50
53
55
60
72
76
81
84
86
89

94
94
97
99
102
103
104
109
110
121
127

5 BasicDPLL 199

5.1 Specification. o o 200
5.2 Invariants Lo 204
5.3 Soundness 209
5.4 Termination 211
5.5 Completeness 219
6 Transition system of Nieuwenhuis, Oliveras and Tinelli.224
6.1 Specification. oL 224
6.2 Invariants Lo oo 229
6.3 Soundness 237
6.4 Termination L oL 239
6.5 Completeness 252
7 Transition system of Krsti¢ and Goel. 259
7.1 Specification. oL o o 259
7.2 Invariants 268
7.3 Soundness 282
7.4 Termination Lo oL 283
7.5 Completeness 303
8 Functional implementation of a SAT solver with Two
Watch literal propagation. 309
8.1 Specification. L L o 309
8.2 Total correctness theorem 730

1 MorelList

theory MoreList
imports Main HOL— Library. Multiset
begin

Theory contains some additional lemmas and functions for the
List datatype. Warning: some of these notions are obsolete be-
cause they already exist in List.thy in similiar form.

1.1 last and butlast - last element of list and elements
before it

lemma listEqualsButlastAppendLast:
assumes list # ||
shows list = (butlast list) Q [last list]
using assms
by (induct list) auto

lemma lastListInList [simp]:
assumes list # ||
shows last list € set list
using assms

by (induct list) auto

lemma butlastIsSubset:
shows set (butlast list) C set list
by (induct list) (auto split: if-split-asm)

lemma setListlsSetButlastAndLast:
shows set list C set (butlast list) U {last list}
by (induct list) auto

lemma butlastAppend:

shows butlast (list1 Q list2) = (if list2 = [| then butlast list1 else
(list1 @ butlast list2))
by (induct list1) auto

1.2 removeAll - element removal

lemma removeAll-multiset:
assumes distinct a x € set a
shows mset a = {#a#} + mset (removeAll x a)
using assms
proof (induct a)
case (Cons y a')
thus ?Zcase
proof (cases © = y)
case True
with <distinct (y # o) <z € set (y # a')»
have - 1z € set o’
by auto
hence removeAll z o’ = a’
by (rule removeAll-id)
with <z = > show ?Zthesis
by (simp add: union-commute)
next
case Fulse
with «z € set (y # a')
have z € set a’
by simp
with «distinct (y # a')
have z # y distinct a’
by auto
hence mset a’ = {#a#} + mset (removeAll x a)
using <z € set a’s
using Cons(1)
by simp
thus ?thesis
using «x # y»
by (simp add: union-assoc)
qed

qed simp

lemma removeAll-map:

assumesV zy. z £y — fx # fy

shows removeAll (f x) (map f a) = map f (removeAll z a)
using assms
by (induct a arbitrary: x) auto

1.3 wuniq - no duplicate elements.

uniq list holds iff there are no repeated elements in a list. Obso-
lete: same as distinct in List.thy.

primrec uniq :: 'a list => bool
where

uniq [| = True |

uniq (h#t) = (h ¢ set t A uniq t)

lemma uniqDistinct:
uniq | = distinct [
by (induct) auto

lemma unigAppend:
assumes uniq (11 Q [2)
shows uniq I1 uniq 12

using assms

by (induct I1) auto

lemma unigAppendlIff:

unig (11 @Q 12) = (uniq I A uniql2 A setll N setl2 = {}) (is ?lhs
= 9rhs)
by (induct I1) auto

lemma unigAppendElement:
assumes uniq [
shows e ¢ set | = uniq (I Q [e])
using assms
by (induct) (auto split: if-split-asm)

lemma uniqgImpliesNotLastMemButlast:
assumes uniq [
shows last | ¢ set (butlast [)
proof (cases I = [])
case True
thus ?thesis
using assms
by simp
next
case Fulse
hence | = butlast | Q [last []

by (rule listEqualsButlastAppendLast)

moreover

with <uniq

have uniq (butlast 1)
using unigAppend|of butlast [[last I]]
by simp

ultimately

show ?thesis
using assms
using unigAppendElement|of butlast | last I]
by simp

qed

lemma uniqButlastNotUniqListImpliesLastMemButlast:
assumes uniq (butlast 1) = uniq |
shows last | € set (butlast [)
proof (cases I = [])
case True
thus ?Zthesis
using assms
by auto
next
case Fulse
hence | = butlast | Q [(last [)]
by (rule listEqualsButlastAppendLast)
thus ?thesis
using assms
using unigAppendElement|of butlast [last []
by auto
qed

lemma unigRemdups:
shows uniq (remdups x)
by (induct z) auto

lemma unigHeadTailSet:

assumes uniq [

shows set (tl 1) = (set 1) — {hd I}
using assms
by (induct) auto

lemma unigLengthEqCardSet:
assumes uniq [

shows length | = card (set I)
using assms

by (induct) auto

lemma lengthGtOne TwoDistinctElements:
assumes

uniq [length 1 > 11 #]

shows

3 al a2. al € setl N a2 € setl A al # a2
proof—

let 2a1 =110

let 202 =111
have ?al € set |
using nth-mem|of 0]
using assms
by simp
moreover
have %42 € set [
using nth-mem/[of 1]
using assms
by simp
moreover
have %a1 # ?a2
using nth-eq-iff-indez-eqlof | 0 1]
using assms
by (auto simp add: unigDistinct)
ultimately
show ?thesis
by auto
qed

1.4 firstPos - first position of an element

firstPos returns the zero-based index of the first occurrence of
an element int a list, or the length of the list if the element does
not occur.

primrec firstPos :: 'a => 'a list => nat

where

firstPos a [| = 0 |
firstPos a (h # t) = (if a = h then 0 else 1 + (firstPos a t))

lemma firstPosEqualZero:
shows (firstPos a (m # M') = 0)
by (induct M') auto

(a = m)

lemma firstPosLeLength:
assumes a € set [
shows firstPos a | < length [
using assms
by (induct) auto

lemma firstPosAppend:

assumes a € set [

shows firstPos a | = firstPos a (1 @ 1)
using assms

by (induct) auto

lemma firstPosAppendNonMemberFirstMemberSecond:
assumes a ¢ set [1 and a € set (2
shows firstPos a (11 @ [2) = length lI + firstPos a 12
using assms
by (induct I1) auto

lemma firstPosDomainForElements:

shows (0 < firstPos a |l A firstPos a | < length 1) = (a € set 1) (is
?lhs = ?rhs)

by (induct 1) auto

lemma firstPosEqual:
assumes a € set [and b € set |
shows (firstPos a | = firstPos b 1) = (a = b) (is ?lhs = ?rhs)
proof—
{
assume ?lhs
hence ?rhs
using assms
proof (induct [)
case (Cons m l’)
{
assume a = m
have b = m
proof—
from <a = m»
have firstPos a (m # 1) = 0
by simp
with Cons
have firstPos b (m # 1) = 0
by simp
with b € set (m # ')
have firstPos b (m # 1) = 0
by simp
thus “thesis
using firstPosEqualZero[of b m 1]
by simp
qed
with <a = m»
have ?case
by simp
}

note * = this

moreover
assume b = m
have a = m

proof—
from b = m»
have firstPos b (m # 1) = 0
by simp
with Cons
have firstPos a (m # 1) = 0
by simp
with «a € set (m # ')
have firstPos a (m # 1) = 0
by simp
thus ?thesis
using firstPosEqualZero[of a m 1]
by simp
qed
with <b = m»
have ?case
by simp
}

note *x = this
moreover
{
assume @Q: a # mb# m
from Q <a € set (m # ')
have a € set I’
by simp
from Q <b € set (m # ')
have b € set I’
by simp
from <a € set !y <b € setl’» Cons
have firstPos a I’ = firstPos b I’
by (simp split: if-split-asm)
with Cons
have ?case
by (simp split: if-split-asm)
}

note *xx = this
moreover
{
havea=mVb=mVa#mAb#m
by auto
}

ultimately
show ?thesis
proof (cases a = m)
case True
thus ?thesis
by (rule x)
next
case Fulse

thus ?thesis
proof (cases b = m)
case True
thus ?thesis
by (rule *x)
next
case Fulse
with <a # m) show ?thesis
by (rule #xx)
qged
qed
qed simp
} thus “thesis
by auto
qed

lemma firstPosLast:

assumes | # [| uniq |

shows (firstPos x| = length l — 1) = (z = last I)
using assms
by (induct) auto

1.5 precedes - ordering relation induced by firstPos

definition precedes :: 'a => 'a => 'a list => bool
where
precedes a bl == (a € set I ANb € setl N firstPos al <= firstPos b

)

lemma noFElementsPrecedesFirstElement:
assumes a # b
shows — precedes a b (b # list)
proof—
{
assume precedes a b (b # list)
hence a € set (b # list) firstPos a (b # list) <= 0
unfolding precedes-def
by (auto split: if-split-asm)
hence firstPos a (b # list) = 0
by auto
with <a # b
have Fulse
using firstPosEqualZero[of a b list]
by simp

thus ?2thesis

by auto
qed

10

lemma lastPrecedesNoFElement:
assumes uniq [
shows —(3 a. a # last | A precedes (last 1) a i)
proof—
{
assume — ?thesis
then obtain a
where precedes (last 1) a l a # last |
by auto
hence a € set | last | € set | firstPos (last 1) | < firstPos a l
unfolding precedes-def
by auto
hence length | — 1 < firstPos a |
using firstPosLast[of | last]
using <uniq
by force
hence firstPos a | = length | — 1
using firstPosDomainForElements|of a ||
using <a € set D
by auto
hence a = last [
using firstPosLast[of | last]
using <a € set Iy <last | € set Iy
using <uniq
using firstPosEqual[of a I last I]
by force
with <a # last Iy
have Fulse

by simp
}

thus ?thesis
by auto
qed

lemma precedesAppend:
assumes precedes a b [
shows precedes a b (I Q 1)
proof—
from <precedes a b >
have a € set I b € set [firstPos a l < firstPos bl
unfolding precedes-def
by (auto split: if-split-asm)
thus ?thesis
using firstPosAppend|of a 1 ']
using firstPosAppend[of b 1 1]
unfolding precedes-def
by simp
qed

11

lemma precedesMemberHeadMemberTail:
assumes a € set I{ and b ¢ set 1 and b € set 2
shows precedes a b (11 Q [2)
proof—
from <a € set 11>
have firstPos a l1 < length 11
using firstPosLeLength [of a 1]
by simp
moreover
from «<a € set 11>
have firstPos a (11 @ [2) = firstPos a 1
using firstPosAppend|of a 11 12]
by simp
moreover
from b ¢ set 1) <b € set 12
have firstPos b (11 @ [2) = length Il + firstPos b 12
by (rule firstPosAppendNonMemberFirstMemberSecond)
moreover
have firstPos b 12 > 0
by auto
ultimately
show ?thesis
unfolding precedes-def
using <a € set l1y <b € set 12)
by simp
qged

lemma precedesReflexivity:
assumes a € set [
shows precedes a a [

using assms

unfolding precedes-def

by simp

lemma precedes Transitivity:
assumes
precedes a b | and precedes b ¢ [
shows
precedes a ¢ |

using assms

unfolding precedes-def

by auto

lemma precedesAntisymmetry:
assumes
a € setland b € set | and
precedes a b | and precedes b a |
shows

12

a=5
proof—
from assms
have firstPos a | = firstPos b 1
unfolding precedes-def
by auto
thus ?thesis
using firstPosEqualof a 1 b]
using assms
by simp
qed

lemma precedesTotalOrder:
assumes a € set l and b € set |
shows a=b V precedes a bl V precedes b a |
using assms
unfolding precedes-def
by auto

lemma precedesMap:
assumes precedes a b listand V zy. x #y — fx # fy
shows precedes (f a) (f b) (map f list)
using assms
proof (induct list)
case (Cons [list’)
{
assume a = [
have ?case
proof—
from <a = D
have firstPos (f a) (map f (I # list") = 0
using firstPosEqualZero[of f a f 1 map f list’]
by simp
moreover
from «precedes a b (I # list’)
have b € set (I # list’)
unfolding precedes-def
by simp
hence f b € set (map f (I # list’))
by auto
moreover
hence firstPos (f b) (map f (I # list')) > 0
by auto
ultimately
show ?thesis
using <a = Iy <f b € set (map f (I # list"))
unfolding precedes-def
by simp
qed

13

}

moreover
{
assume b = |
with «precedes a b (I # list’)
have a = [
using noFElementsPrecedesFirstElement|of a 1 list')
by auto
from <a =D <b=1D
have ?case
unfolding precedes-def
by simp
}
moreover
{
assume a # [b # |
with Vzy. z#y— fa#fyp
have fa # flfb# fl
by auto
from «precedes a b (I # list’)
have b € set(l # list’) a € set(l # list’) firstPos a (I # list’) <
firstPos b (1 # list”)
unfolding precedes-def
by auto
with <a # D b # D
have a € set list’ b € set list’ firstPos a list’ < firstPos b list’
by auto
hence precedes a b list’
unfolding precedes-def
by simp
with Cons
have precedes (f a) (f b) (map f list’)
by simp
with <fa # fb «fb# fD
have ?case
unfolding precedes-def
by auto
}
ultimately
show ?case
by auto
next
case Nil
thus ?case
unfolding precedes-def
by simp
qed

lemma precedesFilter:

14

assumes precedes a b list and fa and f b
shows precedes a b (filter f list)
using assms
proof (induct list)
case (Cons [list’)
show ?Zcase
proof—
from «precedes a b (I # list’)
have a € set(l # list") b € set(l # list") firstPos a (I # list’) <
firstPos b (1 # list’)
unfolding precedes-def
by auto
from <f a) <a € set(l # list’)
have a € set(filter f (I # list"))
by auto
moreover
from «f by <b € set(l # list’)
have b € set(filter f (I # list"))
by auto
moreover
have firstPos a (filter f (I # list")) < firstPos b (filter f (I # list"))
proof—
{
assume a = [
with «f @
have firstPos a (filter f (I # list’)) = 0
by auto
with «b € set (filter f (I # list"))»
have ?thesis
by auto
}

moreover
{
assume b = |
with «precedes a b (I # list’)
have a = b
using noFElementsPrecedesFirstElement[of a b list’]
by auto
hence ?thesis
by (simp add: precedesReflexivity)
}

moreover
{
assume a # [b # |
with <precedes a b (I # list)
have firstPos a list’ < firstPos b list’
unfolding precedes-def
by auto
moreover

15

from <a # D <a € set (I # list’)
have a € set list’
by simp
moreover
from «b # I <b € set (I # list’)
have b € set list’
by simp
ultimately
have precedes a b list’
unfolding precedes-def
by simp
with <f a> <f by Cons(1)
have precedes a b (filter f list’)
by simp
with <a # Iy <b # D
have ?thesis
unfolding precedes-def
by auto
}
ultimately
show ?thesis
by blast
qed
ultimately
show ?thesis
unfolding precedes-def
by simp
qed
qed simp

definition
precedesOrder list == {(a, b). precedes a b list A\ a # b}

lemma transPrecedesOrder:
trans (precedesOrder list)
proof—
{
fix zyz
assume precedes x y list x # y precedes y z list y # 2
hence precedes x z list x # 2
using precedes Transitivity|of © y list 2]
using firstPosEqual[of y list Z]
unfolding precedes-def
by auto
}
thus ?thesis
unfolding trans-def
unfolding precedesOrder-def
by blast

16

qed

lemma wellFoundedPrecedesOrder:
shows wf (precedesOrder list)
unfolding wf-eq-minimal
proof—
show V Q a. a:Q — (3 aMin € Q.V a’. (a’, aMin) € precedesOrder
list — a’ ¢ Q)
proof—
{
fix a :: 'a and Q::'a set
assume a €
let %list@ = filter (A z. z € Q) list
have 3 aMin € Q. V a’. (a’, aMin) € precedesOrder list — a’
¢ Q
proof (cases ?listQ = [])
case True
let 2aMin = a
have V a’. (a', 2aMin) € precedesOrder list — a’ ¢ Q
proof—
{
fix o’
assume (a’, 2aMin) € precedesOrder list
hence a € set list
unfolding precedesOrder-def
unfolding precedes-def
by simp
with <a € @
have a € set ?listQ
by (induct list) auto
with «?list@ = []»
have Fulse
by simp
hence a’ ¢ Q
by simp
}
thus ?thesis
by simp
qed
with <a € @ obtain aMin where aMin € QY a’. (a’, aMin)
€ precedesOrder list — o’ ¢ Q
by auto
thus ?thesis
by auto
next
case Fulse
let 2aMin = hd ?listQ
from Fulse

17

have ?aMin € @
by (induct list) auto
have V a’. (a’, 2aMin) € precedesOrder list — o’ ¢ Q
proof
fix a’
{
assume (a’, ?aMin) € precedesOrder list
hence a’ € set list precedes a’ 2aMin list o’ # 2aMin
unfolding precedesOrder-def
unfolding precedes-def
by auto
have o' ¢ Q
proof—
{
assume a’ € Q
with «?aMin € Q> <precedes a’ ?aMin list>
have precedes a’ ?aMin ?listQ
using precedesFilter[of a’ aMin list A z. © € Q)]
by blast
from <a’ # 2aMiny
have — precedes a' (hd ?listQ) (hd ?listQ # tl ?listQ)
by (rule noElementsPrecedesFirstElement)
with False <precedes a’ ?aMin ?listQ)>
have Fulse
by auto

thus ?thesis
by auto
qed
} thus (a’, 2aMin) € precedesOrder list — o' ¢ Q

by simp
qed
with <2aMin € ()
show ?thesis

qed

}

thus ?thesis
by simp
qed
qed

1.6 isPrefix - prefixes of list.
Check if a list is a prefix of another list. Obsolete: similiar notion
is defined in List_prefixes.thy.

definition
isPrefix :: 'a list => 'a list => bool
where isPreficpt = (3 s. p Q@ s = 1)

18

lemma prefizlsSubset:
assumes isPrefix p [
shows set p C set |
using assms
unfolding isPrefiz-def
by auto

lemma unigListImpliesUniqPrefiz:
assumes isPrefiz p | and uniq [
shows uniq p
proof—
from <isPrefix p > obtain s
where p @ s = |
unfolding isPrefiz-def
by auto
with <uniq
show ?thesis
using unigAppend|of p s|
by simp
qged

lemma firstPosPreficElement:
assumes isPrefiz p | and a € set p
shows firstPos a p = firstPos a |
proof—
from <isPrefiz p > obtain s
where p @ s = [
unfolding isPrefiz-def
by auto
with <a € set p»
show ?thesis
using firstPosAppend|of a p s]
by simp
qed

lemma laterInPrefizRetainsPrecedes:
assumes
isPrefiz p | and precedes a bl and b € set p
shows
precedes a b p
proof—
from <isPrefiz p > obtain s
where p @ s = [
unfolding isPrefiz-def
by auto
from <precedes a b
have a € set 1 b € set [firstPos a |l < firstPos bl
unfolding precedes-def

19

by (auto split: if-split-asm)

from <p @ s =D <b € set p»

have firstPos b | = firstPos b p
using firstPosAppend [of b p $]
by simp

show ?thesis
proof (cases a € set p)
case True
from <p @ s = 1) <a € set p»
have firstPos a | = firstPos a p
using firstPosAppend [of a p s]
by simp

from <firstPos a | = firstPos a p> <firstPos b | = firstPos b p»
<firstPos a | < firstPos b >

<a € set py <b € set p

show ?thesis
unfolding precedes-def
by simp

next

case Fulse

from <a ¢ set p» <a € set Iy <p @ s =Dy

have a € set s
by auto

with <a ¢ set p» «p @ s =D

have firstPos a | = length p + firstPos a s
using firstPosAppendNonMemberFirstMemberSecond[of a p s
by simp

moreover

from <b € set p»

have firstPos b p < length p
by (rule firstPosLeLength)

ultimately

show ?thesis
using «<firstPos b | = firstPos b p> <firstPos a | < firstPos b I»
by simp

qed
qed

1.7 list-diff - the set difference operation on two
lists.

primrec list-diff :: 'a list = 'a list = 'a list

where

list-diff v [| = z |

list-diff © (y#ys) = list-diff (removeAll y x) ys

20

lemma [simp]:
shows list-diff [| v =[]
by (induct y) auto

lemma [simp]:

shows list-diff (z # xs) y = (if © € set y then list-diff zs y else x #

list-diff zs y)
proof (induct y arbitrary: xs)
case (Cons y ys)
thus ?case
proof (cases T = y)
case True
thus %thesis
by simp
next
case Fulse
thus ?thesis
proof (cases © € set ys)
case True
thus %thesis
using Cons
by simp
next
case Fulse
thus %thesis
using Cons
by simp
qed
qed
qed simp

lemma listDiffIff:
shows (z € set a A © ¢ set b) = (z € set (list-diff a b))
by (induct a) auto

lemma listDiffDouble RemoveAll:
assumes r € set a
shows list-diff b a = list-diff b (x # a)
using assms
by (induct b) auto

lemma removeAllListDiff [simp]:
shows removeAll z (list-diff a b) = list-diff (removeAll z a) b
by (induct a) auto

lemma listDiffRemove AllNonMember:
assumes z ¢ set a
shows list-diff a b = list-diff a (removeAll x b)

using assms

21

proof (induct b arbitrary: a)
case (Cons y b')
from <z ¢ set a»
have z ¢ set (removeAll y a)
by auto
thus “case
proof (cases z = y)
case Fulse
thus ?thesis
using Cons(2)
using Cons(1)[of removeAll y a]
using <z ¢ set (removeAll y a)»
by auto
next
case True
thus “thesis
using Cons(1)[of removeAll y a]
using <z ¢ set a)
using <z ¢ set (removeAll y a)»
by auto
qed
qed simp

lemma listDiffMap:

assumesV zy. z £y — fx # fy

shows map f (list-diff a b) = list-diff (map f a) (map fb)
using assms
by (induct b arbitrary: a) (auto simp add: removeAll-map)

1.8 remdups - removing duplicates

lemma remdupsRemoveAllCommute]simp]:
shows remdups (removeAll a list) = removeAll a (remdups list)
by (induct list) auto

lemma remdupsAppend:
shows remdups (a @ b) = remdups (list-diff a b) @ remdups b
proof (induct a)
case (Cons z a’)
thus Zcase
using listDiffIff [of = a’ b]
by auto
qed simp

lemma remdupsAppendSet:
shows set (remdups (a @ b)) = set (remdups a @ remdups (list-diff

b a))

proof (induct a)
case Nil

22

thus ?case
by auto
next
case (Cons z a’)
thus ?case
proof (cases z € set a’)
case True
thus ?thesis
using Cons
using listDiff DoubleRemoveAlllof x o’ b]
by simp
next
case Fulse
thus “thesis
proof (cases © € set b)
case True
show ?thesis

proof—
have set (remdups (z # a’) @ remdups (list-diff b (x # o)) =

set (z # remdups o’ @Q remdups (list-diff b (x # a’)))
using <z ¢ set a”
by auto
also have ... = set (z # remdups o’ Q remdups (list-diff
(removeAll z b) a'))
by auto
also have ... = set (z # remdups a’ Q remdups (removeAll
(list-diff b a”)))
by simp
also have ... = set (remdups a’ Q@ z # remdups (removeAll
(list-diff b a")))
by simp
also have ... = set (remdups a’ Q x # removeAll x (remdups
(list-diff b a')))
by (simp only: remdupsRemoveAllCommute)
also have ... = set (remdups a’) U set (x # removeAll x
(remdups (list-diff b a")))
by simp
also have ... = set (remdups a’) U {z} U set (removeAll =
(remdups (list-diff b a")))
by auto
also have ... = set (remdups a”) U set (remdups (list-diff b a”))
proof—
from <z ¢ set a’y «x € set b
have z € set (list-diff b a”)
using listDiffIff[of z b a’]
by simp
hence z € set (remdups (list-diff b a’))
by auto

23

thus ?thesis
by auto
qed
also have ... = set (remdups (a’ @ b))
using Cons(1)
by simp
also have ... = set (remdups ((z # a’) Q b))
using <z € set b
by simp
finally show ?thesis
by simp
qed
next
case Fulse
thus ?thesis
proof—
have set (remdups (x # a’) @ remdups (list-diff b (z # a'))) =

set (z # (remdups a’) Q remdups (list-diff b (z # a)))
using «z ¢ set a”)
by auto
also have ... = set (z # remdups a’ @ remdups (list-diff
(removeAll z b) a’))

by auto

also have ... = set (z # remdups a’ Q remdups (list-diff b a’))
using «x ¢ set b
by auto

also have ... = {z} U set (remdups (a’ Q b))
using Cons(1)
by simp

also have ... = set (remdups ((z # a’) @ b))
by auto

finally show ?thesis
by simp

qed
qed
qed
qed

lemma remdupsAppendMultiSet:

shows mset (remdups (a @ b)) = mset (remdups a @ remdups
(list-diff b a))
proof (induct a)

case Nil

thus Zcase

by auto

next

case (Cons z a’)

thus ?Zcase

24

proof (cases z € set a’)
case True
thus ?thesis
using Cons
using listDiff DoubleRemoveAlllof x o’ b]
by simp
next
case Fulse
thus ?thesis
proof (cases z € set b)
case True
show ?thesis
proof—
have mset (remdups (x # a’) Q remdups (list-diff b (z # a)))

mset (z # remdups o’ @ remdups (list-diff b (x # a’)))
proof—
have remdups (z # a’) = = # remdups a’
using <z ¢ set a”)
by auto
thus ?thesis
by simp
qed
also have ... = mset (z # remdups o’ @ remdups (list-diff
(removeAll z b) a'))
by auto
also have ... = mset (z # remdups o’ @Q remdups (removeAll
z (list-diff b a’)))
by simp
also have ... = mset (remdups a’ @ z # remdups (removeAll
z (list-diff b a”)))
by (simp add: union-assoc)
also have ... = mset (remdups o’ Q x # removeAll x (remdups
(list-diff b a')))
by (simp only: remdupsRemoveAllCommute)

also have ... = mset (remdups a) + mset (z # removeAll
(remdups (list-diff b a")))
by simp
also have ... = mset (remdups a’) + {#z#} + mset (removeAll
z (remdups (list-diff b a’)))
by simp
also have ... = mset (remdups a’) + mset (remdups (list-diff
b a’))
proof—

from «z ¢ set a’y <z € set b
have z € set (list-diff b a”)
using listDiffIff[of z b o]
by simp
hence z € set (remdups (list-diff b a’))

25

by auto
thus ?thesis
using removeAll-multiset|of remdups (list-diff b a’) z]
by (simp add: union-assoc)
qed
also have ... = mset (remdups (a’ Q b))
using Cons(1)
by simp
also have ... = mset (remdups ((x # a’) Q b))
using <z € set b
by simp
finally show ?thesis
by simp
qed
next
case Fulse
thus ?thesis
proof—
have mset (remdups (x # a’) Q remdups (list-diff b (z # a)))

mset (z # remdups o’ Q remdups (list-diff b (z # a")))
proof—
have remdups (x # a') = z # remdups a’
using <z ¢ set a”)
by auto
thus 2thesis
by simp
qed
also have ... = mset (z # remdups o’ @ remdups (list-diff
(removeAll z b) a’))
by auto
also have ... = mset (z # remdups o’ @ remdups (list-diff b
@)
using <z ¢ set b
using removeAll-id[of x b
by simp
also have ... = {#z#} + mset (remdups (¢’ Q b))
using Cons(1)
by (simp add: union-commute)
also have ... = mset (remdups ((z # a’) Q b))
using <z ¢ set a’y «x ¢ set by
by (auto simp add: union-commute)
finally show ?thesis
by simp
qed
qed
qed
qed

26

lemma remdupsListDiff:
remdups (list-diff a b) = list-diff (remdups a) (remdups b)
proof (induct a)
case Nil
thus ?case
by simp
next
case (Cons z o)
thus Zcase
using listDiffIff [of a’ b]
by auto
qed

definition
multiset-le a b r == a = bV (a, b) € mult r

lemma multisetEmptyLel:
multiset-le {#} a r
unfolding multiset-le-def
using one-step-implies-mult[of a {#} r {#}]
by auto

lemma multisetUnionLessMono2:
shows
trans 1 = (b1, b2) € mult r = (a + b1, a + b2) € mult r
unfolding mult-def
apply (erule trancl-induct)
apply (blast intro: multl-union transI)
apply (blast intro: mult1-union transl trancl-trans)
done

lemma multiset UnionLessMonol:

shows
trans 1 = (al, a2) € mult r = (al + b, a2 + b) € mult r
by (metis multisetUnionLessMono2 union-commute)

lemma multiset UnionLeMono?2:
assumes

trans r

multiset-le b1 b2 r
shows

27

multiset-le (a + b1) (a + b2) r
using assms
unfolding multiset-le-def
using multiset UnionLessMono2[of r b1 b2 a]
by auto

lemma multisetUnionLeMonol:
assumes
trans r
multiset-le al a2 r
shows
multiset-le (a1 + b) (a2 + b) r
using assms
unfolding multiset-le-def
using multiset UnionLessMonol [of r al a2 b
by auto

lemma multisetLe Trans:
assumes
trans r
multiset-le Ty r
multiset-le y z r
shows
multiset-le © z r
using assms
unfolding multiset-le-def
unfolding mult-def
by (blast intro: trancl-trans)

lemma multisetUnionLeMono:
assumes

trans r

multiset-le al a2 r

multiset-le b1 b2 r
shows

multiset-le (a1 + b1) (a2 + b2) r
using assms
using multiset UnionLeMonol [of r al a2 b1]
using multisetUnionLeMono2[of r b1 b2 a2]
using multisetLe Trans[of r al + b1 a2 + bl a2 + b2]
by simp

lemma multisetLeListDiff:
assumes
trans r
shows
multiset-le (mset (list-diff a b)) (mset a) r
proof (induct a)

28

case Nil
thus ?case
unfolding multiset-le-def
by simp
next
case (Cons z a')
thus ?case
using assms
using multisetEmptyLel [of {#x#}]
using multisetUnionLeMono|of r mset (list-diff o’ b) mset o’ {#}
{#a#}]
using multisetUnionLeMonol [of v mset (list-diff o’ b) mset a’
()]
by auto
qed

1.9 Levi’s lemma

Obsolete: these two lemmas are already proved as append-eq-append-conv2
and append-eq-Cons-conv.

lemma FullLevi:
shows (z Q y = 2z @ w) =

(t=zANy=wV
FtzQt=2AtQy=w)V
FtaezQt=2zANtQuw=y)) (is ?lhs = ?rhs)
proof

assume ?rhs
thus ?lhs
by auto
next
assume ?lhs
thus ?rhs
proof (induct x arbitrary: z)
case (Cons a ')
show ?case
proof (cases z = [])
case True
with (e # 2z) Qy=2Q w
obtain t where z: Q t =a # 2’ t Q y = w
by auto
thus ?thesis
by auto
next
case Fulse
then obtain b and 2’ where z = b # 2/
by (auto simp add: neq-Nil-conv)
with<«(a #2)Qy=2Q w
have 2’ Qy=2"Quwa=1»%
by auto

29

with Cons(1)[of 2/
have 2’ =2’ ANy=wV (3t. 27 Qt=z'ANtQy=w)V (It
T Qt=2"ANtQw=y)
by simp
with <a = by <z = b # 2z
show ?thesis
by auto
qed
qed simp
qged

lemma SimpleLevi:
shows (p @ s = a # list) =
(p=[JANs=a#listV
Ftp=a#tNtQs=lst))
by (induct p) auto

1.10 Single element lists

lemma lengthOneCharacterisation:
shows (length | = 1) = (I = [hd [])
by (induct) auto

lemma lengthOnelmpliesOnlyElement:
assumes length | = 1 and a : set |
shows V a’. a’:setl — a’' = a
proof (cases)
case (Cons literal’ clause’)
with assms
show ?thesis
by auto
qed simp

end

2 CNF

theory CNF
imports MoreList
begin

Theory describing formulae in Conjunctive Normal Form.

2.1 Syntax
2.1.1 Basic datatypes

type-synonym Variable = nat

30

datatype Literal = Pos Variable | Neg Variable
type-synonym Clause = Literal list
type-synonym Formula = Clause list

Notice that instead of set or multisets, lists are used in definitions
of clauses and formulae. This is done because SAT solver imple-
mentation usually use list-like data structures for representing
these datatypes.

2.1.2 Membership

Check if the literal is member of a clause, clause is a member of
a formula or the literal is a member of a formula

consts member :: 'a = 'b = bool (infixl <ely 55)

overloading literalElClause = member :: Literal = Clause = bool
begin

definition [simp]: ((literal:: Literal) el (clause::Clause)) == literal
€ set clause
end

overloading clauseElFormula = member :: Clause = Formula = bool
begin

definition [simp]: ((clause:: Clause) el (formula:: Formula)) == clause
€ set formula
end

overloading el-literal = (el) :: Literal = Formula = bool
begin

primrec el-literal where

(literal:: Literal) el ([]::Formula) = False |

((literal:: Literal) el ((clause # formula):: Formula)) = ((literal el clause)
V (literal el formula))

end
lemma literalElFormulaCharacterization:
fixes literal :: Literal and formula :: Formula
shows (literal el formula) = (3 (clause::Clause). clause el formula

A literal el clause)
by (induct formula) auto

2.1.3 Variables

The variable of a given literal

primrec

31

var :: Literal = Variable
where

var (Pos v) = v
| var (Neg v) = v

Set of variables of a given clause, formula or valuation

primrec
varsClause :: (Literal list) = (Variable set)
where

varsClause [| = {}

| varsClause (literal # list) = {var literal} U (varsClause list)

primrec
varsFormula :: Formula = (Variable set)
where

varsFormula [] = {}

| varsFormula (clause # formula) = (varsClause clause) U (varsFormula
formula)

consts vars :: 'a = Variable set

overloading vars-clause = vars :: Clause = Variable set
begin

definition [simp]: vars (clause:: Clause) == varsClause clause
end

overloading vars-formula = vars :: Formula = Variable set
begin

definition [simp]: vars (formula:: Formula) == varsFormula formula
end

overloading vars-set = wvars :: Literal set = Variable set
begin

definition [simp]: vars (s::Literal set) == {vbl. 3 . 1 € s A varl =
vbl}

end

lemma clauseContainsltsLiterals Variable:
fixes literal :: Literal and clause :: Clause
assumes literal el clause
shows var literal € vars clause

using assms

by (induct clause) auto

lemma formulaContainsltsLiterals Variable:
fixes literal :: Literal and formula:: Formula
assumes literal el formula
shows var literal € vars formula

using assms

32

proof (induct formula)
case Nil
thus “case
by simp
next
case (Cons clause formula)
thus Zcase
proof (cases literal el clause)
case True
with clauseContainsltsLiterals Variable
have var literal € vars clause
by simp
thus ?thesis
by simp
next
case Fulse
with Cons
show ?thesis
by simp
qed
qged

lemma formulaContainsltsClausesVariables:
fixes clause :: Clause and formula :: Formula
assumes clause el formula
shows vars clause C vars formula

using assms

by (induct formula) auto

lemma varsAppendFormulae:

fixes formulal :: Formula and formula2 :: Formula

shows vars (formulal @ formula2) = vars formulal U vars formula2
by (induct formulal) auto

lemma varsAppendClauses:

fixes clausel :: Clause and clause? :: Clause

shows vars (clausel Q clause2) = vars clausel U vars clause2
by (induct clausel) auto

lemma varsRemoveLiteral:

fixes literal :: Literal and clause :: Clause

shows vars (removeAll literal clause) C vars clause
by (induct clause) auto

lemma varsRemoveLiteralSuperset:

fixes literal :: Literal and clause :: Clause

shows vars clause — {var literal} C wvars (removeAll literal clause)
by (induct clause) auto

33

lemma varsRemoveAllClause:

fixes clause :: Clause and formula :: Formula

shows wvars (removeAll clause formula) C vars formula
by (induct formula) auto

lemma varsRemoveAllClauseSuperset:

fixes clause :: Clause and formula :: Formula

shows vars formula — vars clause C vars (removeAll clause formula)
by (induct formula) auto

lemma varinClauseVars:

fixes variable :: Variable and clause :: Clause

shows wvariable € vars clause = (3 literal. literal el clause N var
literal = variable)
by (induct clause) auto

lemma varInFormula Vars:
fixes variable :: Variable and formula :: Formula
shows wvariable € vars formula = (3 literal. literal el formula N var
literal = variable) (is ?lhs formula = ?rhs formula)
proof (induct formula)
case Nil
show ?case
by simp
next
case (Cons clause formula)
show ?case
proof
assume P: ?lhs (clause # formula)
thus ?rhs (clause # formula)
proof (cases variable € vars clause)
case True
with varInClauseVars
have 3 literal. literal el clause N var literal = variable
by simp
thus ?thesis
by auto
next
case Fulse
with P
have variable € vars formula
by simp
with Cons
show ?thesis
by auto
qed
next
assume ?rhs (clause # formula)
then obtain [

34

where [El: [el clause # formula and varL:var | = variable
by auto
from [El formulaContainsltsLiterals Variable [of | clause # formula]

have var [€ vars (clause # formula)
by auto
with varL
show ?lhs (clause # formula)
by simp
qed
qed

lemma varsSubsetFormula:
fixes F :: Formula and F' :: Formula
assumes V c:Clause. c el F — c el F'
shows vars F C vars F’
using assms
proof (induct F)
case Nil
thus “case
by simp
next
case (Cons ¢’ F"')
thus “case
using formulaContainsltsClauses Variables[of ¢’ F|
by simp

qed
lemma varsClauseVarsSet:
fixes
clause :: Clause
shows

vars clause = vars (set clause)
by (induct clause) auto

2.1.4 Opposite literals

primrec
opposite :: Literal = Literal
where
opposite (Pos v) = (Neg v)
| opposite (Neg v) = (Pos v)
lemma oppositeldempotency [simpl:
fixes literal:: Literal
shows opposite (opposite literal) = literal

by (induct literal) auto

lemma oppositeSymmetry [simp]:

35

fixes literall::Literal and literal2:: Literal
shows (opposite literall = literal2) = (opposite literal2 = literall)
by auto

lemma oppositeUniqueness [simp]:
fixes literall ::Literal and literal2:: Literal
shows (opposite literall = opposite literal2) = (literall = literal2)
proof
assume opposite literall = opposite literal2
hence opposite (opposite literall) = opposite (opposite literal2)
by simp
thus literall = literal2
by simp
qed simp

lemma oppositelsDifferentFromLiteral [simp):
fixes literal:: Literal
shows opposite literal # literal

by (induct literal) auto

lemma oppositeLiteralsHaveSameVariable [simp]:
fixes literal:: Literal
shows var (opposite literal) = var literal

by (induct literal) auto

lemma literals WithSameVariableAre EqualOrOpposite:
fixes literall::Literal and literal2:: Literal
shows (var literall = var literal2) = (literall = literal2 V opposite
literall = literal2) (is ?lhs = %rhs)
proof
assume ?lhs
show ?rhs
proof (cases literall)
case Pos
note Posl = this
show ?thesis
proof (cases literal2)
case Pos
with «?lhsy Posl show ?thesis
by simp
next
case Neg
with <?lhsy Posl show ?thesis
by simp
qed
next
case Neg
note Negl = this
show ?thesis

36

proof (cases literal2)
case Pos
with «?lhsy Negl show f?thesis
by simp
next
case Neg
with «?lhsy Negl show ?thesis
by simp
qed
qed
next
assume ?rhs
thus ?lhs
by auto
qed

The list of literals obtained by negating all literals of a literal
list (clause, valuation). Notice that this is not a negation of a
clause, because the negation of a clause is a conjunction and not
a disjunction.

definition

oppositeLiteralList :: Literal list = Literal list
where

oppositeLiteralList clause == map opposite clause

lemma literalElListIffOppositeLiteral ElIOpposite Literal List:
fixes literal :: Literal and literalList :: Literal list
shows literal el literalList = (opposite literal) el (oppositeLiteralList
literalList)
unfolding oppositeLiteralList-def
proof (induct literalList)
case Nil
thus ?case
by simp
next
case (Cons [literalLlist")
show ?case
proof (cases | = literal)
case True
thus ?thesis
by simp
next
case Fulse
thus “thesis
by auto
qed
qed

lemma oppositeLiteralListIdempotency [simp:

37

fixes literalList :: Literal list

shows oppositeLiteralList (oppositeLiteralList literalList) = literal-
List
unfolding oppositeLiteralList-def
by (induct literalList) auto

lemma oppositeLiteralList Remowe:
fixes literal :: Literal and literalList :: Literal list
shows oppositeLiteralList (removeAll literal literalList) = removeAll
(opposite literal) (oppositeLiteralList literalList)
unfolding oppositeLiteralList-def
by (induct literalList) auto

lemma oppositeLiteralListNonempty:

fixes literalList :: Literal list

shows (literalList # []) = ((oppositeLiteralList literalList) # [])
unfolding oppositeLiteralList-def
by (induct literalList) auto

lemma varsOppositeLiteralList:

shows wvars (oppositeLiteralList clause) = vars clause
unfolding oppositeLiteralList-def

by (induct clause) auto

2.1.5 Tautological clauses

Check if the clause contains both a literal and its opposite

primrec
clauseTautology :: Clause = bool
where
clauseTautology [] = False
| clauseTautology (literal # clause) = (opposite literal el clause V
clause Tautology clause)

lemma clauseTautologyCharacterization:

fixes clause :: Clause

shows clauseTautology clause = (3 literal. literal el clause N (opposite
literal) el clause)
by (induct clause) auto

2.2 Semantics

2.2.1 Valuations

type-synonym Valuation = Literal list
lemma valuationContainsltsLiterals Variable:

fixes literal :: Literal and valuation :: Valuation
assumes [iteral el valuation

38

shows var literal € vars valuation
using assms
by (induct valuation) auto

lemma varsSubset Valuation:
fixes valuation! :: Valuation and valuation?2 :: Valuation
assumes set valuationl C set valuation?2
shows wvars valuationl C wvars valuation?
using assms
proof (induct valuationl)
case Nil
show “case
by simp
next
case (Cons literal valuation)
note caseCons = this
hence literal el valuation?2
by auto
with valuationContainsltsLiterals Variable [of literal valuation2]
have var literal € vars valuation?2 .
with caseCons
show ?case
by simp
qed

lemma varsAppendValuation:
fixes valuationl :: Valuation and valuation?2 :: Valuation
shows wars (valuation! Q wvaluation2) = wvars valuationl U wvars
valuation?2
by (induct valuationl) auto
lemma varsPrefixValuation:
fixes valuationl :: Valuation and valuation?2 :: Valuation
assumes isPrefiz valuationl valuation?2
shows vars valuationl C wvars valuation2
proof—
from assms
have set valuationl C set valuation2
by (auto simp add:isPrefiz-def)
thus ?thesis
by (rule varsSubsetValuation)
qed

2.2.2 True/False literals

Check if the literal is contained in the given valuation

definition literalTrue it Literal = Valuation = bool

where

literal True-def [simp]: literalTrue literal valuation == literal el valua-
tion

39

Check if the opposite literal is contained in the given valuation

definition literalFalse :: Literal = Valuation = bool
where
literalFalse-def [simp): literalFalse literal valuation == opposite literal

el valuation

lemma variableDefinedImpliesLiteralDefined:
fixes literal :: Literal and valuation :: Valuation
shows var literal € vars valuation = (literalTrue literal valuation V
literalFalse literal valuation)
(is (?lhs valuation) = (?rhs valuation))
proof
assume ?rhs valuation
thus ?lhs valuation
proof
assume literalTrue literal valuation
hence literal el valuation
by simp
thus “thesis
using valuationContainsltsLiterals Variable|of literal valuation]
by simp
next
assume literalFalse literal valuation
hence opposite literal el valuation
by simp
thus ?thesis
using valuationContainsltsLiterals Variable[of opposite literal val-
uation]
by simp
qed
next
assume ?lhs valuation
thus ?rhs valuation
proof (induct valuation)
case Nil
thus ?case
by simp
next
case (Cons literal” valuation’)
note th=this
show ?case
proof (cases var literal € vars valuation’)
case True
with ih
show ?rhs (literal’ # valuation’)
by auto
next
case Fulse

40

with ih

have var literal’ = var literal
by simp

hence literal’ = literal V opposite literal’ = literal
by (simp add:literals WithSameVariable Are EqualOrOpposite)

thus ?rhs (literal’ # valuation’)
by auto

qed
qed
qged

2.2.3 True/False clauses

Check if there is a literal from the clause which is true in the
given valuation

primrec
clauseTrue it Clause = Valuation = bool
where
clauseTrue [] valuation = False
| clauseTrue (literal # clause) valuation = (literalTrue literal valuation
V clauseTrue clause valuation)

Check if all the literals from the clause are false in the given
valuation

primrec
clauseFualse :: Clause = Valuation = bool
where
clauseFalse || valuation = True
| clauseFualse (literal # clause) valuation = (literalFalse literal valua-
tion A clauseFualse clause valuation)

lemma clause TruelffContains TrueLiteral:

fixes clause :: Clause and valuation :: Valuation

shows clauseTrue clause valuation = (3 literal. literal el clause N
literal True literal valuation)
by (induct clause) auto

lemma clauseFalselffAllLiteralsAreFalse:

fixes clause :: Clause and valuation :: Valuation

shows clauseFalse clause valuation = (¥ literal. literal el clause —
literalFalse literal valuation)
by (induct clause) auto

lemma clauseFalseRemouve:

assumes clauseFualse clause valuation

shows clauseFalse (removeAll literal clause) valuation
proof—

41

{

fix [::Literal

assume [el removeAll literal clause

hence [el clause

by simp

with <clauseFualse clause valuation)
have literalFalse | valuation

by (simp add:clauseFalselffAllLiteralsAreFalse)
}

thus ?thesis
by (simp add:clauseFalselffAllLiteralsAreFalse)
qed

lemma clauseFalseAppendValuation:
fixes clause :: Clause and valuation :: Valuation and valuation’ :
Valuation
assumes clauseFalse clause valuation
shows clauseFalse clause (valuation @ valuation’)
using assms
by (induct clause) auto

lemma clause TrueAppend Valuation:
fixes clause :: Clause and valuation :: Valuation and wvaluation’ :
Valuation
assumes clauseTrue clause valuation
shows clauseTrue clause (valuation Q valuation’)
using assms
by (induct clause) auto

lemma emptyClauselsFalse:
fixes valuation :: Valuation
shows clauseFalse [| valuation
by auto

lemma empty ValuationFalsifiesOnlyEmptyClause:
fixes clause :: Clause
assumes clause # ||
shows — clauseFalse clause [|

using assms

by (induct clause) auto

lemma valuationContainsltsFalseClausesVariables:
fixes clause::Clause and valuation:: Valuation
assumes clauseFalse clause valuation
shows vars clause C vars valuation

proof
fix v:: Variable
assume v € vars clause

42

hence 3 [. var Il = v A [el clause
by (induct clause) auto
then obtain [
where var [= v [el clause
by auto
from <[el clause) <clauseFualse clause valuation)
have literalFualse | valuation
by (simp add: clauseFalselffAllLiteralsAreFalse)
with var | = v
show v € vars valuation
using valuationContainsltsLiterals Variable[of opposite]
by simp
qed

2.2.4 True/False formulae

Check if all the clauses from the formula are false in the given
valuation

primrec
formulaTrue :: Formula = Valuation = bool
where
formulaTrue [] valuation = True
| formulaTrue (clause # formula) valuation = (clauseTrue clause val-
uation A formulaTrue formula valuation)

Check if there is a clause from the formula which is false in the
given valuation

primrec
formulaFalse :: Formula = Valuation = bool
where
formulaFalse || valuation = False
| formulaFalse (clause # formula) valuation = (clauseFalse clause val-
uation V formulaFalse formula valuation)

lemma formulaTruelffAllClausesAreTrue:

fixes formula :: Formula and valuation :: Valuation

shows formulaTrue formula valuation = (V clause. clause el formula
— clauseTrue clause valuation)
by (induct formula) auto

lemma formulaFalselffContainsFalseClause:

fixes formula :: Formula and valuation :: Valuation

shows formulaFalse formula valuation = (3 clause. clause el formula
A clauseFalse clause valuation)
by (induct formula) auto

lemma formula TrueAssociativity:

43

fixes f1 :: Formula and f2 :: Formula and f3 :: Formula and valu-
ation :: Valuation

shows formulaTrue ((f1 @Q f2) @ f3) wvaluation = formulaTrue (f1
Q@ (f2 @ f3)) valuation
by (auto simp add:formulaTruelffAllClausesAre True)

lemma formulaTrueCommutativity:
fixes f1 :: Formula and f2 :: Formula and valuation :: Valuation
shows formulaTrue (fI @ f2) valuation = formulaTrue (f2 Q f1)
valuation
by (auto simp add:formulaTruelffAllClausesAre True)

lemma formulaTrueSubset:
fixes formula :: Formula and formula’ :: Formula and valuation ::
Valuation
assumes
formulaTrue: formulaTrue formula valuation and
subset: ¥ (clause::Clause). clause el formula’” — clause el formula
shows formulaTrue formula’ valuation
proof —
{
fix clause :: Clause
assume clause el formula’
with formulaTrue subset
have clauseTrue clause valuation
by (simp add:formula TruelffAllClausesAre True)
}

thus ?thesis
by (simp add:formula TruelffAllClausesAre True)
qed

lemma formulaTrueAppend:

fixes formulal :: Formula and formula2 :: Formula and valuation
: Valuation

shows formulaTrue (formulal @ formula2) valuation = (formulaTrue
formulal valuation A formulaTrue formula2 valuation)
by (induct formulal) auto

lemma formulaTrueRemoveAll:
fixes formula :: Formula and clause :: Clause and valuation :: Val-
uation
assumes formulaTrue formula valuation
shows formulaTrue (removeAll clause formula) valuation
using assms
by (induct formula) auto

lemma formulaFalse Append:

fixes formula :: Formula and formula’ :: Formula and valuation ::
Valuation

44

assumes formulaFalse formula valuation

shows formulaFalse (formula @Q formula’) valuation
using assms
by (induct formula) auto

lemma formulaTrueAppendValuation:
fixes formula :: Formula and valuation :: Valuation and valuation’
: Valuation
assumes formulaTrue formula valuation
shows formulaTrue formula (valuation @ valuation’)
using assms
by (induct formula) (auto simp add:clause True Append Valuation)

lemma formulaFalse Append Valuation:
fixes formula :: Formula and valuation :: Valuation and valuation’
:: Valuation
assumes formulaFalse formula valuation
shows formulaFalse formula (valuation @ valuation’)
using assms
by (induct formula) (auto simp add:clauseFalseAppend Valuation)

lemma trueFormula WithSingleLiteralClause:
fixes formula :: Formula and literal :: Literal and valuation :: Val-
uation
assumes formulaTrue (removeAll [literal] formula) (valuation Q
[literal])
shows formulaTrue formula (valuation Q [literal])
proof —
{
fix clause :: Clause
assume clause el formula
with assms
have clauseTrue clause (valuation @ [literal])
proof (cases clause = [literal])
case True
thus ?thesis
by simp
next
case Fulse
with <clause el formula>
have clause el (removeAll [literal] formula)
by simp
with «formulaTrue (removeAll [literal] formula) (valuation Q
[literal])»
show ?thesis
by (simp add: formulaTruelffAllClausesAre True)
qed

thus ?2thesis

45

by (simp add: formulaTruelffAllClausesAre True)
qed

2.2.5 Valuation viewed as a formula

Converts a valuation (the list of literals) into formula (list of
single member lists of literals)

primrec
val2form :: Valuation = Formula
where
val2form || =]
| val2form (literal # wvaluation) = [literal] # val2form valuation

lemma val2FormkEl:

fixes literal :: Literal and valuation :: Valuation

shows literal el valuation = [literal] el val2form valuation
by (induct valuation) auto

lemma val2FormAreSingleLiteralClauses:

fixes clause :: Clause and valuation :: Valuation

shows clause el val2form valuation — (3 literal. clause = [literal)
A literal el valuation)
by (induct valuation) auto

lemma val2formOfSingleLiteral Valuation:
assumes length v = 1

shows wval2form v = [[hd v]]

using assms

by (induct v) auto

lemma val2FormRemoveAll:

fixes literal :: Literal and valuation :: Valuation

shows removeAll [literal] (val2form valuation) = val2form (removeAll
literal valuation)
by (induct valuation) auto

lemma val2formAppend:

fixes valuation! :: Valuation and valuation? :: Valuation

shows val2form (valuationl @ waluation2) = (val2form valuationl
Q@ val2form valuation?2)
by (induct valuationl) auto

lemma val2formFormula True:

fixes valuationl :: Valuation and valuation?2 :: Valuation

shows formulaTrue (val2form valuationl) valuation2 = (¥ (literal
:o Literal). literal el valuationl — literal el valuation?)
by (induct valuationl) auto

46

2.2.6 Consistency of valuations

Valuation is inconsistent if it contains both a literal and its op-
posite.

primrec
inconsistent :: Valuation = bool
where

inconsistent [| = False

| inconsistent (literal # valuation) = (opposite literal el valuation V
inconsistent valuation)
definition [simp]: consistent valuation == — inconsistent valuation

lemma inconsistentCharacterization:

fixes valuation :: Valuation

shows inconsistent valuation = (3 literal. literalTrue literal valuation
A literalFalse literal valuation)
by (induct valuation) auto

lemma clauseTrueAndClauseFalseImpliesInconsistent:
fixes clause :: Clause and valuation :: Valuation
assumes clauseTrue clause valuation and clauseFualse clause valua-
tion
shows inconsistent valuation
proof —
from «<clauseTrue clause valuation) obtain literal :: Literal
where literal el clause and literalTrue literal valuation
by (auto simp add: clause TruelffContains TrueLiteral)
with <clauseFualse clause valuation)
have literalFulse literal valuation
by (auto simp add: clauseFalselffAllLiteralsAreFalse)
from <literalTrue literal valuationy <literalFalse literal valuation)
show ?thesis
by (auto simp add: inconsistentCharacterization)
qed

lemma formula TrueAndFormulaFalseImpliesInconsistent:
fixes formula :: Formula and valuation :: Valuation
assumes formulaTrue formula valuation and formulaFalse formula
valuation
shows inconsistent valuation
proof —
from <formulaFalse formula valuation)> obtain clause :: Clause
where clause el formula and clauseFualse clause valuation
by (auto simp add: formulaFalselffContainsFalseClause)
with <formulaTrue formula valuation)
have clauseTrue clause valuation
by (auto simp add: formulaTruelffAllClausesAre True)
from <clauseTrue clause valuation> <clauseFalse clause valuation»
show ?thesis

47

by (auto simp add: clauseTrueAndClauseFalseImpliesInconsistent)
qed

lemma inconsistentAppend:
fixes wvaluation! :: Valuation and valuation? :: Valuation
assumes inconsistent (valuationl Q valuation?2)
shows inconsistent valuationl V inconsistent valuation2 Vv (3 literal.
literalTrue literal valuationl A literalFalse literal valuation?2)
using assms
proof (cases inconsistent valuationl)
case True
thus %thesis
by simp
next
case Fulse
thus ?thesis
proof (cases inconsistent valuation2)
case True
thus ?thesis
by simp
next
case Fulse
from <inconsistent (valuation! Q@ wvaluation2)> obtain literal ::
Literal
where literalTrue literal (valuationl @ valuation2) and literal-
False literal (valuationl @ valuation2)
by (auto simp add:inconsistentCharacterization)
hence (3 literal. literalTrue literal valuationl A literalFalse literal
valuation?2)
proof (cases literalTrue literal valuationl)
case True
with <= inconsistent valuationl»
have — literalFalse literal valuationl
by (auto simp add:inconsistentCharacterization)
with <literalFalse literal (valuationl @Q valuation2)
have literalFalse literal valuation?
by auto
with True
show ?thesis
by auto
next
case Fulse
with <literalTrue literal (valuationl @Q valuation2)
have literalTrue literal valuation2
by auto
with - inconsistent valuation2»
have — literalFalse literal valuation?2
by (auto simp add:inconsistentCharacterization)
with <literalFalse literal (valuationl @ valuation2)

48

have literalFalse literal valuationl
by auto
with <(literalTrue literal valuation2>
show ?thesis
by auto
qed
thus ?thesis
by simp
qed
qged

lemma consistentAppendElement:
assumes consistent v and — literalFalse [v
shows consistent (v Q [I])
proof—
{
assume — ?thesis
with <consistent v»
have (opposite 1) el v
using inconsistentAppend|of v []]
by auto
with <= literalFalse [v»
have Fulse

by simp
}

thus ?thesis
by auto
qed

lemma inconsistentRemoveAll:
fixes literal :: Literal and valuation :: Valuation
assumes inconsistent (removeAll literal valuation)
shows inconsistent valuation
using assms
proof —
from <inconsistent (removeAll literal valuation)) obtain literal’ :
Literal
where ' True: literalTrue literal’ (removeAll literal valuation) and
l'False: literalFalse literal’ (removeAll literal valuation)
by (auto simp add:inconsistentCharacterization)
from ['True
have literalTrue literal’ valuation
by simp
moreover
from ['False
have literalFalse literal’ valuation
by simp
ultimately
show ?thesis

49

by (auto simp add:inconsistentCharacterization)
qed

lemma inconsistentPrefiz:
assumes isPrefix valuationl valuation2 and inconsistent valuation!
shows inconsistent valuation2

using assms

by (auto simp add:inconsistentCharacterization isPrefiz-def)

lemma consistentPrefix:
assumes isPrefiz valuationl valuation?2 and consistent valuation?2
shows consistent valuationl

using assms

by (auto simp add:inconsistentCharacterization isPrefiz-def)

2.2.7 Totality of valuations

Checks if the valuation contains all the variables from the given
set of variables

definition total where
[simp]: total valuation variables == variables C wvars valuation

lemma totalSubset:
fixes A :: Variable set and B :: Variable set and valuation :: Valu-
ation
assumes A C B and total valuation B
shows total valuation A
using assms
by auto

lemma totalFormulalmpliesTotalClause:
fixes clause :: Clause and formula :: Formula and valuation :: Val-
uation
assumes clauseFl: clause el formula and totalFormula: total valua-
tion (vars formula)
shows totalClause: total valuation (vars clause)
proof —
from clauseEl
have vars clause C vars formula
using formulaContainsltsClausesVariables [of clause formula)
by simp
with totalFormula
show ?thesis
by (simp add: totalSubset)
qged

lemma totalValuationForClauseDefinesAllltsLiterals:

fixes clause :: Clause and valuation :: Valuation and literal :: Literal
assumes

50

totalClause: total valuation (vars clause) and
literalBl: literal el clause
shows trueOrFalse: literalTrue literal valuation V literalFalse literal
valuation
proof —
from literalEl
have var literal € vars clause
using clauseContainsltsLiterals Variable
by auto
with totalClause
have var literal € vars valuation
by auto
thus ?thesis
using wvariableDefinedImpliesLiteralDefined [of literal valuation)
by simp
qed

lemma totalValuationForClauseDefineslts Value:
fixes clause :: Clause and valuation :: Valuation
assumes totalClause: total valuation (vars clause)
shows clauseTrue clause valuation V clauseFalse clause valuation
proof (cases clauseFualse clause valuation)
case True
thus ?Zthesis
by (rule disjI2)
next
case Fulse
hence = (V [. [el clause — literalFalse | valuation)
by (auto simp add:clauseFalselffAllLiteralsAreFalse)
then obtain [:: Literal
where [el clause and — literalFalse | valuation
by auto
with totalClause
have literalTrue [valuation V literalFalse | valuation
using totalValuationForClauseDefinesAllltsLiterals [of valuation
clause 1]
by auto
with <= literalFalse | valuation»
have literalTrue [valuation
by simp
with <l el clause)
have (clauseTrue clause valuation)
by (auto simp add:clause TruelffContains TrueLiteral)
thus ?thesis
by (rule disjl1)
qed

lemma total ValuationForFormulaDefinesAllltsLiterals:
fixes formula:: Formula and valuation:: Valuation

o1

assumes totalFormula: total valuation (vars formula) and
literal ElFormula: literal el formula
shows literalTrue literal valuation V literalFalse literal valuation
proof —
from literalElFormula
have var literal € vars formula
by (rule formulaContainsltsLiterals Variable)
with totalFormula
have var literal € vars valuation
by auto
thus ?thesis using variableDefinedImpliesLiteralDefined [of literal
valuation]
by simp
qed

lemma totalValuationForFormulaDefinesAllltsClauses:
fixes formula :: Formula and valuation :: Valuation and clause :
Clause
assumes totalFormula: total valuation (vars formula) and
clauseElFormula: clause el formula
shows clauseTrue clause valuation V clauseFalse clause valuation
proof —
from clauseElFormula totalFormula
have total valuation (vars clause)
by (rule totalFormulaImplies TotalClause)
thus ?thesis
by (rule totalValuationForClauseDefineslts Value)
qed

lemma totalValuationForFormulaDefineslts Value:
assumes totalFormula: total valuation (vars formula)
shows formulaTrue formula valuation V formulaFalse formula valu-
ation
proof (cases formulaTrue formula valuation)
case True
thus ?thesis
by simp
next
case Fulse
then obtain clause :: Clause
where clauseElFormula: clause el formula and notClauseTrue: —
clauseTrue clause valuation
by (auto simp add: formulaTruelffAllClausesAre True)
from clauseFElFormula totalFormula
have total valuation (vars clause)
using totalFormulaImplies TotalClause [of clause formula valuation]
by simp
with notClauseTrue
have clauseFulse clause valuation

52

using totalValuationForClauseDefineslts Value [of valuation clause]
by simp
with clauseElFormula
show ?thesis
by (auto simp add:formulaFalselffContainsFalseClause)
qed

lemma totalRemoveAllSingleLiteralClause:
fixes literal :: Literal and valuation :: Valuation and formula ::
Formula
assumes varLiteral: var literal € vars valuation and totalRemoveAll:
total valuation (vars (removeAll [literal] formula))
shows total valuation (vars formula)
proof —
have vars formula — vars [literal] C vars (removeAll [literal] for-
mula)
by (rule varsRemoveAllClauseSuperset)
with assms
show ?thesis
by auto
qged

2.2.8 Models and satisfiability

Model of a formula is a consistent valuation under which for-
mula/clause is true

consts model :: Valuation = 'a = bool

overloading modelFormula = model :: Valuation = Formula = bool
begin
definition [simp]: model valuation (formula::Formula) ==
consistent valuation A (formulaTrue formula valuation)
end

overloading modelClause = model :: Valuation = Clause = bool
begin
definition [simp]: model valuation (clause:: Clause) ==
consistent valuation A (clauseTrue clause valuation)
end

Checks if a formula has a model

definition satisfiable :: Formula = bool
where
satisfiable formula == 3 wvaluation. model valuation formula

lemma formula WithEmptyClausels Unsatisfiable:
fixes formula :: Formula
assumes ([]::Clause) el formula
shows — satisfiable formula

93

using assms
by (auto simp add: satisfiable-def formulaTruel(fAllClausesAre True)

lemma satisfiableSubset:
fixes formula0 :: Formula and formula :: Formula
assumes subset: V (clause::Clause). clause el formula0 — clause
el formula
shows satisfiable formula — satisfiable formula0
proof
assume satisfiable formula
show satisfiable formula0
proof —
from <satisfiable formula> obtain valuation :: Valuation
where model valuation formula
by (auto simp add: satisfiable-def)
{
fix clause :: Clause
assume clause el formula0
with subset
have clause el formula
by simp
with <model valuation formula»
have clauseTrue clause valuation
by (simp add: formulaTruelffAllClausesAre True)
} hence formulaTrue formula0 valuation
by (simp add: formulaTruelffAllClausesAre True)
with <model valuation formula>
have model valuation formula0
by simp
thus ?thesis
by (auto simp add: satisfiable-def)
qed
qed

lemma satisfiableAppend:
fixes formulal :: Formula and formula2 :: Formula
assumes satisfiable (formulal Q formula2)
shows satisfiable formulal satisfiable formula2
using assms
unfolding satisfiable-def
by (auto simp add:formulaTrueAppend)

lemma modelExpand:
fixes formula :: Formula and literal :: Literal and valuation :: Val-
uation
assumes model valuation formula and var literal ¢ vars valuation
shows model (valuation Q@ [literal]) formula
proof —
from <model valuation formula>

54

have formulaTrue formula (valuation @ [literal])
by (simp add:formula TrueAppend Valuation)
moreover
from <model valuation formula>
have consistent valuation
by simp
with <war literal ¢ vars valuation»
have consistent (valuation Q [literal))
proof (cases inconsistent (valuation Q [literal)))
case True
hence inconsistent valuation V inconsistent [literal] V (3 1. liter-
alTrue | valuation A literalFalse [[literal])
by (rule inconsistentAppend)
with <consistent valuation»
have 3 [. literalTrue [valuation A literalFalse 1 [literal)
by auto
hence literalFalse literal valuation
by auto
hence var (opposite literal) € (vars valuation)
using valuationContainsltsLiterals Variable [of opposite literal
valuation]
by simp
with <var literal ¢ vars valuation»
have Fulse
by simp
thus ?thesis ..
qed simp
ultimately
show ?thesis
by auto
qed

2.2.9 Tautological clauses

lemma tautologyNotFulse:
fixes clause :: Clause and valuation :: Valuation
assumes clauseTautology clause consistent valuation
shows — clauseFalse clause valuation

using assms
clause TautologyCharacterization|of clause]
clauseFalselffAllLiteralsAreFalse|of clause valuation)
inconsistentCharacterization

by auto

lemma tautologylnTotal Valuation:
assumes

clauseTautology clause

vars clause C vars valuation

95

shows
clauseTrue clause valuation
proof—
from <clauseTautology clauses
obtain literal
where literal el clause opposite literal el clause
by (auto simp add: clauseTautologyCharacterization)
hence var literal € vars clause
using clauseContainsltsLiterals Variable|of literal clause)
using clauseContainsltsLiterals Variable[of opposite literal clause]
by simp
hence var literal € vars valuation
using <wvars clause C vars valuation)
by auto
hence literalTrue literal valuation V literalFalse literal valuation
using varInClauseVars|of var literal valuation]
using varInClauseVars|of var (opposite literal) valuation]
using literals WithSameVariable Are EqualOrOpposite
by auto
thus ?thesis
using <literal el clauser <opposite literal el clause>
by (auto simp add: clause TruelffContains TrueLiteral)
qed

lemma modelAppendTautology:
assumes
model valuation F clauseTautology c
vars valuation O wvars F U vars ¢
shows
model valuation (F Q [c])
using assms
using tautologyInTotalValuation[of ¢ valuation]
by (auto simp add: formulaTrueAppend)

lemma satisfiableAppendTautology:
assumes
satisfiable F' clause Tautology c
shows
satisfiable (F @ [c])
proof—
from <clauseTautology ¢
obtain [
where [el ¢ opposite | el ¢
by (auto simp add: clauseTautologyCharacterization)
from <satisfiable F»
obtain valuation
where consistent valuation formulaTrue F valuation
unfolding satisfiable-def
by auto

o6

show ?thesis
proof (cases var | € vars valuation)
case True
hence literalTrue | valuation V literalFalse | valuation
using varInClauseVars|of var 1 valuation]
by (auto simp add: literals WithSameVariable Are EqualOrOpposite)
hence clauseTrue c valuation
using <[el ¢» <opposite [el ¢»
by (auto simp add: clause TruelffContains TrueLiteral)
thus ?thesis
using <consistent valuation) <formulaTrue F valuation»
unfolding satisfiable-def
by (auto simp add: formulaTruel(fAllClausesAre True)
next
case Fulse
let %valuation’ = valuation Q [I]
have model ?valuation’ F
using <var | ¢ vars valuation»
using <formulaTrue F valuation) <consistent valuation»
using modelEzpand|of valuation F]
by simp
moreover
have formulaTrue [c] ?valuation’
using </ el ¢
using clause TruelffContains TrueLiteral[of ¢ ?valuation’]
using formulaTruelffAllClausesAre Truelof [c] ?valuation’]
by auto
ultimately
show ?thesis
unfolding satisfiable-def
by (auto simp add: formulaTrueAppend)
qed
qed

lemma modelAppendTautological Formula:
fixes

F :: Formula and F’ :: Formula
assumes

model valuation F'Y c. ¢ el F' — clauseTautology c

vars valuation DO vars F U vars F'
shows

model valuation (F Q F)
using assms
proof (induct F')

case Nil

thus ?case

by simp

next

case (Cons ¢ F'')

o7

hence model valuation (F @ F'')
by simp

h