
Transitive closure according to Roy-Floyd-Warshall

Makarius Wenzel

September 13, 2023

Abstract

This formulation of the Roy-Floyd-Warshall algorithm for the tran-
sitive closure bypasses matrices and arrays, but uses a more direct
mathematical model with adjacency functions for immediate predeces-
sors and successors. This can be implemented efficiently in functional
programming languages and is particularly adequate for sparse rela-
tions.

Contents
1 Transitive closure algorithm 1

2 Correctness proof 2
2.1 Miscellaneous lemmas . 2
2.2 Bounded closure . 3
2.3 Main theorem . 5

3 Alternative formulation 5

1 Transitive closure algorithm

The Roy-Floyd-Warshall algorithm takes a finite relation as input and pro-
duces its transitive closure as output. It iterates over all elements of the field
of the relation and maintains a cumulative approximation of the result: step
0 starts with the original relation, and step Suc n connects all paths over
the intermediate element n. The final approximation coincides with the full
transitive closure.
This algorithm is often named after “Floyd”, “Warshall”, or “Floyd-Warshall”,
but the earliest known description is due to B. Roy [1].

Subsequently we use a direct mathematical model of the relation, bypassing
matrices and arrays that are usually seen in the literature. This is more
efficient for sparse relations: only the adjacency for immediate predeces-
sors and successors needs to be maintained, not the square of all possible

1

combinations. Moreover we do not have to worry about mutable data struc-
tures in a multi-threaded environment. See also the graph implementation
in the Isabelle sources $ISABELLE_HOME/src/Pure/General/graph.ML and
$ISABELLE_HOME/src/Pure/General/graph.scala.
type-synonym relation = (nat × nat) set

fun steps :: relation ⇒ nat ⇒ relation
where

steps rel 0 = rel
| steps rel (Suc n) =

steps rel n ∪ {(x, y). (x, n) ∈ steps rel n ∧ (n, y) ∈ steps rel n}

Implementation view on the relation:
definition preds :: relation ⇒ nat ⇒ nat set

where preds rel y = {x. (x, y) ∈ rel}

definition succs :: relation ⇒ nat ⇒ nat set
where succs rel x = {y. (x, y) ∈ rel}

lemma
steps rel (Suc n) =

steps rel n ∪ {(x, y). x ∈ preds (steps rel n) n ∧ y ∈ succs (steps rel n) n}
by (simp add: preds-def succs-def)

The main function requires an upper bound for the iteration, which is left
unspecified here (via Hilbert’s choice).
definition is-bound :: relation ⇒ nat ⇒ bool

where is-bound rel n ←→ (∀m ∈ Field rel. m < n)

definition transitive-closure rel = steps rel (SOME n. is-bound rel n)

2 Correctness proof
2.1 Miscellaneous lemmas
lemma finite-bound:

assumes finite rel
shows ∃n. is-bound rel n
using assms

proof induct
case empty
then show ?case by (simp add: is-bound-def)

next
case (insert p rel)
then obtain n where n: ∀m ∈ Field rel. m < n

unfolding is-bound-def by blast
obtain x y where p = (x, y) by (cases p)
then have ∀m ∈ Field (insert p rel). m < max (Suc x) (max (Suc y) n)

2

using n by auto
then show ?case

unfolding is-bound-def by blast
qed

lemma steps-Suc: (x, y) ∈ steps rel (Suc n) ←→
(x, y) ∈ steps rel n ∨ (x, n) ∈ steps rel n ∧ (n, y) ∈ steps rel n
by auto

lemma steps-cases:
assumes (x, y) ∈ steps rel (Suc n)
obtains (copy) (x, y) ∈ steps rel n
| (step) (x, n) ∈ steps rel n and (n, y) ∈ steps rel n

using assms by auto

lemma steps-rel: (x, y) ∈ rel =⇒ (x, y) ∈ steps rel n
by (induct n) auto

2.2 Bounded closure

The bounded closure connects all transitive paths over elements below a
given bound. For an upper bound of the relation, this coincides with the
full transitive closure.
inductive-set Clos :: relation ⇒ nat ⇒ relation

for rel :: relation and n :: nat
where

base: (x, y) ∈ Clos rel n if (x, y) ∈ rel
| step: (x, y) ∈ Clos rel n if (x, z) ∈ Clos rel n and (z, y) ∈ Clos rel n and z < n

theorem Clos-closure:
assumes is-bound rel n
shows (x, y) ∈ Clos rel n ←→ (x, y) ∈ rel+

proof
show (x, y) ∈ rel+ if (x, y) ∈ Clos rel n

using that by induct simp-all
show (x, y) ∈ Clos rel n if (x, y) ∈ rel+

using that
proof (induct rule: trancl-induct)

case (base y)
then show ?case by (rule Clos.base)

next
case (step y z)
from ‹(y, z) ∈ rel› have 1: (y, z) ∈ Clos rel n by (rule base)
from ‹(y, z) ∈ rel› and ‹is-bound rel n› have 2: y < n

unfolding is-bound-def Field-def by blast
from step(3) 1 2 show ?case by (rule Clos.step)

qed
qed

3

lemma Clos-Suc:
assumes (x, y) ∈ Clos rel n
shows (x, y) ∈ Clos rel (Suc n)
using assms by induct (auto intro: Clos.intros)

In each step of the algorithm the approximated relation is exactly the
bounded closure.
theorem steps-Clos-equiv: (x, y) ∈ steps rel n ←→ (x, y) ∈ Clos rel n
proof (induct n arbitrary: x y)

case 0
show ?case
proof

show (x, y) ∈ Clos rel 0 if (x, y) ∈ steps rel 0
proof −

from that have (x, y) ∈ rel by simp
then show ?thesis by (rule Clos.base)

qed
show (x, y) ∈ steps rel 0 if (x, y) ∈ Clos rel 0

using that by cases simp-all
qed

next
case (Suc n)
show ?case
proof

show (x, y) ∈ Clos rel (Suc n) if (x, y) ∈ steps rel (Suc n)
using that

proof (cases rule: steps-cases)
case copy
with Suc(1) have (x, y) ∈ Clos rel n ..
then show ?thesis by (rule Clos-Suc)

next
case step
with Suc have (x, n) ∈ Clos rel n and (n, y) ∈ Clos rel n

by simp-all
then have (x, n) ∈ Clos rel (Suc n) and (n, y) ∈ Clos rel (Suc n)

by (simp-all add: Clos-Suc)
then show ?thesis by (rule Clos.step) simp

qed
show (x, y) ∈ steps rel (Suc n) if (x, y) ∈ Clos rel (Suc n)

using that
proof induct

case (base x y)
then show ?case by (simp add: steps-rel)

next
case (step x z y)
with Suc show ?case

by (auto simp add: steps-Suc less-Suc-eq intro: Clos.step)
qed

qed

4

qed

2.3 Main theorem

The main theorem follows immediately from the key observations above.
Note that the assumption of finiteness gives a bound for the iteration, al-
though the details are left unspecified. A concrete implementation could
choose the the maximum element + 1, or iterate directly over the data
structures for the preds and succs implementation.
theorem transitive-closure-correctness:

assumes finite rel
shows transitive-closure rel = rel+

proof −
let ?N = SOME n. is-bound rel n
have is-bound: is-bound rel ?N

by (rule someI-ex) (rule finite-bound [OF ‹finite rel›])
have (x, y) ∈ steps rel ?N ←→ (x, y) ∈ rel+ for x y
proof −

have (x, y) ∈ steps rel ?N ←→ (x, y) ∈ Clos rel ?N
by (rule steps-Clos-equiv)

also have . . . ←→ (x, y) ∈ rel+
using is-bound by (rule Clos-closure)

finally show ?thesis .
qed
then show ?thesis unfolding transitive-closure-def by auto

qed

3 Alternative formulation

The core of the algorithm may be expressed more declaratively as follows,
using an inductive definition to imitate a logic-program. This is equivalent
to the function specification steps from above.
inductive Steps :: relation ⇒ nat ⇒ nat × nat ⇒ bool

for rel :: relation
where

base: Steps rel 0 (x, y) if (x, y) ∈ rel
| copy: Steps rel (Suc n) (x, y) if Steps rel n (x, y)
| step: Steps rel (Suc n) (x, y) if Steps rel n (x, n) and Steps rel n (n, y)

lemma steps-equiv: (x, y) ∈ steps rel n ←→ Steps rel n (x, y)
proof

show Steps rel n (x, y) if (x, y) ∈ steps rel n
using that

proof (induct n arbitrary: x y)
case 0
then have (x, y) ∈ rel by simp
then show ?case by (rule base)

5

next
case (Suc n)
from Suc(2) show ?case
proof (cases rule: steps-cases)

case copy
with Suc(1) have Steps rel n (x, y) .
then show ?thesis by (rule Steps.copy)

next
case step
with Suc(1) have Steps rel n (x, n) and Steps rel n (n, y)

by simp-all
then show ?thesis by (rule Steps.step)

qed
qed
show (x, y) ∈ steps rel n if Steps rel n (x, y)

using that by induct simp-all
qed

References

[1] B. Roy. Transitivité et connexité. In Extrait des comptes rendus des
séances de lAcadémie des Sciences, pages 216–218. Gauthier-Villars, July
1959. http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR.

6

http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR

	Transitive closure algorithm
	Correctness proof
	Miscellaneous lemmas
	Bounded closure
	Main theorem

	Alternative formulation

