Transitive closure according to Roy-Floyd-Warshall

Makarius Wenzel

September 13, 2023

Abstract

This formulation of the Roy-Floyd-Warshall algorithm for the transitive closure bypasses matrices and arrays, but uses a more direct mathematical model with adjacency functions for immediate predecessors and successors. This can be implemented efficiently in functional programming languages and is particularly adequate for sparse relations.

Contents

1 Transitive closure algorithm
 1

2 Correctness proof 2
2.1 Miscellaneous lemmas 2
2.2 Bounded closure 3
2.3 Main theorem 5
3 Alternative formulation 5

1 Transitive closure algorithm

The Roy-Floyd-Warshall algorithm takes a finite relation as input and produces its transitive closure as output. It iterates over all elements of the field of the relation and maintains a cumulative approximation of the result: step 0 starts with the original relation, and step Suc n connects all paths over the intermediate element n. The final approximation coincides with the full transitive closure.
This algorithm is often named after "Floyd", "Warshall", or "Floyd-Warshall", but the earliest known description is due to B. Roy [1].

Subsequently we use a direct mathematical model of the relation, bypassing matrices and arrays that are usually seen in the literature. This is more efficient for sparse relations: only the adjacency for immediate predecessors and successors needs to be maintained, not the square of all possible
combinations. Moreover we do not have to worry about mutable data structures in a multi-threaded environment. See also the graph implementation in the Isabelle sources \$ISABELLE_HOME/src/Pure/General/graph.ML and \$ISABELLE_HOME/src/Pure/General/graph.scala.

```
type-synonym relation \(=(\) nat \(\times\) nat \()\) set
fun steps \(::\) relation \(\Rightarrow\) nat \(\Rightarrow\) relation
where
    steps rel \(0=\) rel
| steps rel (Suc n) =
    steps rel \(n \cup\{(x, y) .(x, n) \in\) steps rel \(n \wedge(n, y) \in\) steps rel \(n\}\)
```

Implementation view on the relation:
definition preds :: relation \Rightarrow nat \Rightarrow nat set
where preds rel $y=\{x .(x, y) \in$ rel $\}$
definition succs :: relation \Rightarrow nat \Rightarrow nat set
where succs rel $x=\{y .(x, y) \in$ rel $\}$

lemma

```
    steps rel (Suc \(n)=\)
        steps rel \(n \cup\{(x, y)\). \(x \in\) preds (steps rel \(n) n \wedge y \in\) succs (steps rel \(n\) ) \(n\}\)
    by (simp add: preds-def succs-def)
```

The main function requires an upper bound for the iteration, which is left unspecified here (via Hilbert's choice).
definition is-bound $::$ relation \Rightarrow nat \Rightarrow bool
where is-bound rel $n \longleftrightarrow(\forall m \in$ Field rel. $m<n)$
definition transitive-closure rel $=$ steps rel $(S O M E$ n. is-bound rel $n)$

2 Correctness proof

2.1 Miscellaneous lemmas

```
lemma finite-bound:
    assumes finite rel
    shows \existsn. is-bound rel n
    using assms
proof induct
    case empty
    then show ?case by (simp add: is-bound-def)
next
    case (insert p rel)
    then obtain n where n: }\forallm\in\mathrm{ Field rel. m<n
        unfolding is-bound-def by blast
    obtain }xy\mathrm{ where }p=(x,y)\mathrm{ by (cases p)
    then have }\forallm\in\mathrm{ Field (insert p rel). m < max (Suc x) (max (Suc y) n)
```

```
        using n by auto
    then show ?case
        unfolding is-bound-def by blast
qed
lemma steps-Suc: (x,y)\in steps rel (Suc n)\longleftrightarrow
    (x,y)\in steps rel n}\vee(x,n)\in\mathrm{ steps rel n}\wedge(n,y)\in\mathrm{ steps rel n
    by auto
lemma steps-cases:
    assumes (x, y) \in steps rel (Suc n)
    obtains (copy) (x,y)\in steps rel n
        \| ( \text { step) (x,n) € steps rel n and ( } n , y ) \in \text { steps rel n}
    using assms by auto
lemma steps-rel: (x,y)\in rel \Longrightarrow(x,y)\in steps rel n
    by (induct n) auto
```


2.2 Bounded closure

The bounded closure connects all transitive paths over elements below a given bound. For an upper bound of the relation, this coincides with the full transitive closure.

```
inductive-set Clos :: relation \(\Rightarrow\) nat \(\Rightarrow\) relation
    for rel :: relation and \(n::\) nat
where
    base: \((x, y) \in\) Clos rel \(n\) if \((x, y) \in\) rel
\(\mid\) step: \((x, y) \in\) Clos rel \(n\) if \((x, z) \in\) Clos rel \(n\) and \((z, y) \in\) Clos rel \(n\) and \(z<n\)
```

```
theorem Clos-closure:
    assumes is-bound rel \(n\)
    shows \((x, y) \in\) Clos rel \(n \longleftrightarrow(x, y) \in\) rel \(^{+}\)
proof
    show \((x, y) \in\) rel \(^{+}\)if \((x, y) \in\) Clos rel \(n\)
        using that by induct simp-all
    show \((x, y) \in\) Clos rel \(n\) if \((x, y) \in\) rel \(^{+}\)
        using that
    proof (induct rule: trancl-induct)
        case (base y)
        then show ?case by (rule Clos.base)
    next
        case (step y \(z\) )
        from \(\langle(y, z) \in\) rel \(\rangle\) have \(1:(y, z) \in\) Clos rel \(n\) by (rule base)
        from \(\langle(y, z) \in\) rel \(\rangle\) and \(\langle i s\)-bound rel \(n\rangle\) have 2: \(y<n\)
            unfolding is-bound-def Field-def by blast
        from \(\operatorname{step}(3) 12\) show ?case by (rule Clos.step)
    qed
qed
```

```
lemma Clos-Suc:
    assumes (x,y)\inClos rel n
    shows (x,y) \in Clos rel (Suc n)
    using assms by induct (auto intro:Clos.intros)
```

In each step of the algorithm the approximated relation is exactly the bounded closure.

```
theorem steps-Clos-equiv: \((x, y) \in\) steps rel \(n \longleftrightarrow(x, y) \in\) Clos rel \(n\)
proof (induct \(n\) arbitrary: \(x y\) )
    case 0
    show ?case
    proof
        show \((x, y) \in\) Clos rel 0 if \((x, y) \in\) steps rel 0
        proof -
            from that have \((x, y) \in\) rel by simp
            then show ?thesis by (rule Clos.base)
    qed
    show \((x, y) \in\) steps rel 0 if \((x, y) \in C l o s\) rel 0
        using that by cases simp-all
    qed
next
    case (Suc n)
    show ?case
    proof
        show \((x, y) \in\) Clos rel \((\) Suc \(n)\) if \((x, y) \in\) steps rel (Suc \(n)\)
        using that
    proof (cases rule: steps-cases)
        case copy
        with \(\operatorname{Suc}(1)\) have \((x, y) \in\) Clos rel \(n .\).
        then show ?thesis by (rule Clos-Suc)
    next
        case step
        with Suc have \((x, n) \in\) Clos rel \(n\) and \((n, y) \in\) Clos rel \(n\)
            by simp-all
        then have \((x, n) \in\) Clos rel (Suc \(n\) ) and \((n, y) \in\) Clos rel (Suc \(n)\)
            by (simp-all add: Clos-Suc)
        then show ?thesis by (rule Clos.step) simp
    qed
    show \((x, y) \in\) steps rel \((\) Suc \(n)\) if \((x, y) \in\) Clos rel (Suc \(n)\)
        using that
    proof induct
        case (base \(x y\) )
        then show ?case by (simp add: steps-rel)
    next
            case (step \(x z y\) )
            with Suc show ?case
            by (auto simp add: steps-Suc less-Suc-eq intro: Clos.step)
        qed
    qed
```


qed

2.3 Main theorem

The main theorem follows immediately from the key observations above. Note that the assumption of finiteness gives a bound for the iteration, although the details are left unspecified. A concrete implementation could choose the the maximum element +1 , or iterate directly over the data structures for the preds and succs implementation.

```
theorem transitive-closure-correctness:
    assumes finite rel
    shows transitive-closure rel \(=\) rel \(^{+}\)
proof -
    let \(? N=S O M E n\). is-bound rel \(n\)
    have is-bound: is-bound rel ?N
        by (rule someI-ex) (rule finite-bound [OF 〈finite rel〉])
    have \((x, y) \in\) steps rel ? \(N \longleftrightarrow(x, y) \in\) rel \(^{+}\)for \(x y\)
    proof -
        have \((x, y) \in\) steps rel ? \(N \longleftrightarrow(x, y) \in\) Clos rel ? \(N\)
            by (rule steps-Clos-equiv)
        also have \(\ldots \longleftrightarrow(x, y) \in\) rel \(^{+}\)
            using is-bound by (rule Clos-closure)
        finally show ?thesis .
    qed
    then show ?thesis unfolding transitive-closure-def by auto
qed
```


3 Alternative formulation

The core of the algorithm may be expressed more declaratively as follows, using an inductive definition to imitate a logic-program. This is equivalent to the function specification steps from above.

```
inductive Steps :: relation \(\Rightarrow\) nat \(\Rightarrow\) nat \(\times\) nat \(\Rightarrow\) bool
    for rel :: relation
where
    base: Steps rel \(0(x, y)\) if \((x, y) \in\) rel
| copy: Steps rel (Suc \(n)(x, y)\) if Steps rel \(n(x, y)\)
| step: Steps rel (Suc \(n)(x, y)\) if Steps rel \(n(x, n)\) and Steps rel \(n(n, y)\)
lemma steps-equiv: \((x, y) \in\) steps rel \(n \longleftrightarrow\) Steps rel \(n(x, y)\)
proof
    show Steps rel \(n(x, y)\) if \((x, y) \in\) steps rel \(n\)
        using that
    proof (induct \(n\) arbitrary: \(x y\) )
        case 0
        then have \((x, y) \in\) rel by simp
        then show ?case by (rule base)
```

```
next
    case (Suc n)
    from Suc(2) show ?case
    proof (cases rule: steps-cases)
        case copy
        with Suc(1) have Steps rel n (x,y).
        then show ?thesis by (rule Steps.copy)
    next
        case step
        with Suc(1) have Steps rel n (x,n) and Steps rel n ( }n,y
            by simp-all
        then show ?thesis by (rule Steps.step)
    qed
qed
show (x,y)\in steps rel n if Steps rel n (x,y)
    using that by induct simp-all
qed
```


References

[1] B. Roy. Transitivité et connexité. In Extrait des comptes rendus des séances de lAcadémie des Sciences, pages 216-218. Gauthier-Villars, July 1959. http://gallica.bnf.fr/ark:/12148/bpt6k3201c/f222.image.langFR.

