
Routing

Julius Michaelis, Cornelius Diekmann

May 26, 2024

Abstract

This entry contains definitions for routing with routing tables/longest
prefix matching.

A routing table entry is modelled as a record of a prefix match,
a metric, an output port, and an optional next hop. A routing table
is a list of entries, sorted by prefix length and metric. Additionally, a
parser and serializer for the output of the ip-route command, a function
to create a relation from output port to corresponding destination IP
space, and a model of a linux style router are included.

Contents
1 Routing Table 2

1.1 Definition . 2
1.2 Single Packet Semantics . 3
1.3 Longest Prefix Match . 3
1.4 Printing . 5

2 Routing table to Relation 6
2.1 Wordintervals for Ports by Routing 6
2.2 Reduction . 7

3 Linux Router 8

4 Parser 11

Sorting a list by two keys
theory Linorder-Helper
imports Main
begin

Sorting is fun...

1

The problem is that Isabelle does not have anything like sortBy, only
sort-key. This means that there is no way to sort something based on two
properties, with one being infinitely more important.

Enter this:
datatype (′a, ′b) linord-helper = LinordHelper ′a ′b

instantiation linord-helper :: (linorder , linorder) linorder
begin

definition linord-helper-less-eq1 a b ≡ (case a of LinordHelper a1 a2 ⇒ case b
of LinordHelper b1 b2 ⇒ a1 < b1 ∨ a1 = b1 ∧ a2 ≤ b2)
definition a ≤ b ←→ linord-helper-less-eq1 a b
definition a < b ←→ (a 6= b ∧ linord-helper-less-eq1 a b)

instance
〈proof 〉
end
lemmas linord-helper-less = less-linord-helper-def linord-helper-less-eq1-def
lemmas linord-helper-le = less-eq-linord-helper-def linord-helper-less-eq1-def

Now, it is possible to use sort-key f, with f constructing a LinordHelper
containing the two desired properties for sorting.
end

1 Routing Table
theory Routing-Table
imports IP-Addresses.Prefix-Match

IP-Addresses.IPv4 IP-Addresses.IPv6
Linorder-Helper
IP-Addresses.Prefix-Match-toString
Pure−ex.Guess

begin

This section makes the necessary definitions to work with a routing table
using longest prefix matching.

1.1 Definition
record(overloaded) ′i routing-action =

output-iface :: string
next-hop :: ′i word option

record(overloaded) ′i routing-rule =
routing-match :: (′i::len) prefix-match
metric :: nat
routing-action :: ′i routing-action

2

This definition is engineered to model routing tables on packet forwarding
devices. It eludes, e.g., the source address hint, which is only relevant for
packets originating from the device itself.
context
begin

definition default-metric = 0

type-synonym ′i prefix-routing = (′i routing-rule) list

abbreviation routing-oiface a ≡ output-iface (routing-action a)
abbreviation routing-prefix r ≡ pfxm-length (routing-match r)

definition valid-prefixes where
valid-prefixes r = foldr conj (map (λrr . valid-prefix (routing-match rr)) r) True

lemma valid-prefixes-split: valid-prefixes (r#rs) =⇒ valid-prefix (routing-match r)
∧ valid-prefixes rs
〈proof 〉

lemma foldr-True-set: foldr (λx. (∧) (f x)) l True = (∀ x ∈ set l. f x)
〈proof 〉

lemma valid-prefixes-alt-def : valid-prefixes r = (∀ e ∈ set r . valid-prefix (routing-match
e))
〈proof 〉

fun has-default-route :: (′i::len) prefix-routing ⇒ bool where
has-default-route (r#rs) = (((pfxm-length (routing-match r)) = 0) ∨ has-default-route
rs) |
has-default-route Nil = False

lemma has-default-route-alt: has-default-route rt ←→ (∃ r ∈ set rt. pfxm-length
(routing-match r) = 0) 〈proof 〉

1.2 Single Packet Semantics
fun routing-table-semantics :: (′i::len) prefix-routing ⇒ ′i word ⇒ ′i routing-action
where
routing-table-semantics [] - = routing-action (undefined:: ′i routing-rule) |
routing-table-semantics (r#rs) p = (if prefix-match-semantics (routing-match r) p
then routing-action r else routing-table-semantics rs p)
lemma routing-table-semantics-ports-from-table: valid-prefixes rtbl =⇒ has-default-route
rtbl =⇒

routing-table-semantics rtbl packet = r =⇒ r ∈ routing-action ‘ set rtbl
〈proof 〉

1.3 Longest Prefix Match

We can abuse LinordHelper to sort.

3

definition routing-rule-sort-key ≡ λr . LinordHelper (0 − (of-nat :: nat ⇒ int)
(pfxm-length (routing-match r))) (metric r)

There is actually a slight design choice here. We can choose to sort based
on (?a ≤ ?b) = (if pfxm-length ?a = pfxm-length ?b then pfxm-prefix ?a
≤ pfxm-prefix ?b else pfxm-length ?b < pfxm-length ?a) (thus including the
address) or only the prefix length (excluding it). Which is taken does not
matter gravely, since the bits of the prefix can’t matter. They’re either
eqal or the rules don’t overlap and the metric decides. (It does matter for
the resulting list though.) Ignoring the prefix and taking only its length is
slightly easier.
definition rr-ctor m l a nh me ≡ (| routing-match = PrefixMatch (ipv4addr-of-dotdecimal
m) l, metric = me, routing-action =(|output-iface = a, next-hop = (map-option
ipv4addr-of-dotdecimal nh)|) |)
value sort-key routing-rule-sort-key [

rr-ctor (0 ,0 ,0 ,1) 3 ′′′′ None 0 ,
rr-ctor (0 ,0 ,0 ,2) 8 [] None 0 ,
rr-ctor (0 ,0 ,0 ,3) 4 [] None 13 ,
rr-ctor (0 ,0 ,0 ,3) 4 [] None 42]

definition is-longest-prefix-routing ≡ sorted ◦ map routing-rule-sort-key

definition correct-routing :: (′i::len) prefix-routing ⇒ bool where
correct-routing r ≡ is-longest-prefix-routing r ∧ valid-prefixes r

Many proofs and functions around routing require at least parts of cor-
rect-routing as an assumption. Obviously, correct-routing is not given for
arbitrary routing tables. Therefore, correct-routing is made to be exe-
cutable and should be checked for any routing table after parsing. Note:
correct-routing used to also require has-default-route, but none of the proofs
require it anymore and it is not given for any routing table.
lemma is-longest-prefix-routing-rule-exclusion:

assumes is-longest-prefix-routing (r1 # rn # rss)
shows is-longest-prefix-routing (r1 # rss)
〈proof 〉

lemma int-of-nat-less: int-of-nat a < int-of-nat b =⇒ a < b 〈proof 〉

lemma is-longest-prefix-routing-sorted-by-length:
assumes is-longest-prefix-routing r

and r = r1 # rs @ r2 # rss
shows (pfxm-length (routing-match r1) ≥ pfxm-length (routing-match r2))
〈proof 〉

definition sort-rtbl :: (′i::len) routing-rule list ⇒ ′i routing-rule list ≡ sort-key
routing-rule-sort-key

4

lemma is-longest-prefix-routing-sort: is-longest-prefix-routing (sort-rtbl r) 〈proof 〉

definition unambiguous-routing rtbl ≡ (∀ rt1 rt2 rr ra. rtbl = rt1 @ rr # rt2
−→ ra ∈ set (rt1 @ rt2) −→ routing-match rr = routing-match ra −→ rout-
ing-rule-sort-key rr 6= routing-rule-sort-key ra)
lemma unambiguous-routing-Cons: unambiguous-routing (r # rtbl) =⇒ unam-
biguous-routing rtbl
〈proof 〉

lemma unambiguous-routing (rr # rtbl) =⇒ is-longest-prefix-routing (rr # rtbl)
=⇒ ra ∈ set rtbl =⇒ routing-match rr = routing-match ra =⇒ routing-rule-sort-key
rr < routing-rule-sort-key ra
〈proof 〉

primrec unambiguous-routing-code where
unambiguous-routing-code [] = True |
unambiguous-routing-code (rr#rtbl) = (list-all (λra. routing-match rr 6= routing-match
ra ∨ routing-rule-sort-key rr 6= routing-rule-sort-key ra) rtbl ∧ unambiguous-routing-code
rtbl)
lemma unambiguous-routing-code[code-unfold]: unambiguous-routing rtbl ←→ un-
ambiguous-routing-code rtbl
〈proof 〉

lemma unambigous-prefix-routing-weak-mono:
assumes lpfx: is-longest-prefix-routing (rr#rtbl)
assumes e:rr ′ ∈ set rtbl
shows routing-rule-sort-key rr ′ ≥ routing-rule-sort-key rr
〈proof 〉
lemma unambigous-prefix-routing-strong-mono:

assumes lpfx: is-longest-prefix-routing (rr#rtbl)
assumes uam: unambiguous-routing (rr#rtbl)
assumes e:rr ′ ∈ set rtbl
assumes ne: routing-match rr ′ = routing-match rr
shows routing-rule-sort-key rr ′ > routing-rule-sort-key rr
〈proof 〉

lemma routing-rule-sort-key (rr-ctor (0 ,0 ,0 ,0) 8 [] None 0) > routing-rule-sort-key
(rr-ctor (0 ,0 ,0 ,0) 24 [] None 0) 〈proof 〉

In case you don’t like that formulation of is-longest-prefix-routing over sort-
ing, this is your lemma.
theorem existential-routing: valid-prefixes rtbl =⇒ is-longest-prefix-routing rtbl
=⇒ has-default-route rtbl =⇒ unambiguous-routing rtbl =⇒
routing-table-semantics rtbl addr = act ←→ (∃ rr ∈ set rtbl. prefix-match-semantics
(routing-match rr) addr ∧ routing-action rr = act ∧
(∀ ra ∈ set rtbl. routing-rule-sort-key ra < routing-rule-sort-key rr −→ ¬pre-

fix-match-semantics (routing-match ra) addr))
〈proof 〉

5

1.4 Printing
definition routing-rule-32-toString (rr ::32 routing-rule) ≡

prefix-match-32-toString (routing-match rr)
@ (case next-hop (routing-action rr) of Some nh ⇒ ′′ via ′′ @ ipv4addr-toString
nh | - ⇒ [])
@ ′′ dev ′′ @ routing-oiface rr
@ ′′ metric ′′ @ string-of-nat (metric rr)

definition routing-rule-128-toString (rr ::128 routing-rule) ≡
prefix-match-128-toString (routing-match rr)

@ (case next-hop (routing-action rr) of Some nh ⇒ ′′ via ′′ @ ipv6addr-toString
nh | - ⇒ [])
@ ′′ dev ′′ @ routing-oiface rr
@ ′′ metric ′′ @ string-of-nat (metric rr)

lemma map routing-rule-32-toString
[rr-ctor (42 ,0 ,0 ,0) 7 ′′eth0 ′′ None 808 ,
rr-ctor (0 ,0 ,0 ,0) 0 ′′eth1 ′′ (Some (222 ,173 ,190 ,239)) 707] =
[′′42 .0 .0 .0/7 dev eth0 metric 808 ′′,
′′0 .0 .0 .0/0 via 222 .173 .190 .239 dev eth1 metric 707 ′′] 〈proof 〉

2 Routing table to Relation

Walking through a routing table splits the (remaining) IP space when travers-
ing a routing table into a pair of sets: the pair contains the IPs concerned
by the current rule and those left alone.
private definition ipset-prefix-match where

ipset-prefix-match pfx rg = (let pfxrg = prefix-to-wordset pfx in (rg ∩ pfxrg, rg −
pfxrg))
private lemma ipset-prefix-match-m[simp]: fst (ipset-prefix-match pfx rg) = rg ∩
(prefix-to-wordset pfx) 〈proof 〉 lemma ipset-prefix-match-nm[simp]: snd (ipset-prefix-match
pfx rg) = rg − (prefix-to-wordset pfx) 〈proof 〉 lemma ipset-prefix-match-distinct:
rpm = ipset-prefix-match pfx rg =⇒
(fst rpm) ∩ (snd rpm) = {} 〈proof 〉 lemma ipset-prefix-match-complete: rpm =

ipset-prefix-match pfx rg =⇒
(fst rpm) ∪ (snd rpm) = rg 〈proof 〉 lemma rpm-m-dup-simp: rg ∩ fst (ipset-prefix-match

(routing-match r) rg) = fst (ipset-prefix-match (routing-match r) rg)
〈proof 〉 definition range-prefix-match :: ′i::len prefix-match ⇒ ′i wordinterval ⇒

′i wordinterval × ′i wordinterval where
range-prefix-match pfx rg ≡ (let pfxrg = prefix-to-wordinterval pfx in
(wordinterval-intersection rg pfxrg, wordinterval-setminus rg pfxrg))

private lemma range-prefix-match-set-eq:
(λ(r1 ,r2). (wordinterval-to-set r1 , wordinterval-to-set r2)) (range-prefix-match

pfx rg) =
ipset-prefix-match pfx (wordinterval-to-set rg)
〈proof 〉 lemma range-prefix-match-sm[simp]: wordinterval-to-set (fst (range-prefix-match

pfx rg)) =

6

fst (ipset-prefix-match pfx (wordinterval-to-set rg))
〈proof 〉 lemma range-prefix-match-snm[simp]: wordinterval-to-set (snd (range-prefix-match

pfx rg)) =
snd (ipset-prefix-match pfx (wordinterval-to-set rg))
〈proof 〉

2.1 Wordintervals for Ports by Routing

This split, although rather trivial, can be used to construct the sets (or
rather: the intervals) of IPs that are actually matched by an entry in a
routing table.
private fun routing-port-ranges :: ′i prefix-routing ⇒ ′i wordinterval ⇒ (string ×
(′i::len) wordinterval) list where
routing-port-ranges [] lo = (if wordinterval-empty lo then [] else [(routing-oiface
(undefined:: ′i routing-rule),lo)]) |
routing-port-ranges (a#as) lo = (
let rpm = range-prefix-match (routing-match a) lo; m = fst rpm; nm = snd rpm

in (
(routing-oiface a,m) # routing-port-ranges as nm))

private lemma routing-port-ranges-subsets:
(a1 , b1) ∈ set (routing-port-ranges tbl s) =⇒ wordinterval-to-set b1 ⊆ wordinter-
val-to-set s
〈proof 〉 lemma routing-port-ranges-sound: e ∈ set (routing-port-ranges tbl s) =⇒

k ∈ wordinterval-to-set (snd e) =⇒ valid-prefixes tbl =⇒
fst e = output-iface (routing-table-semantics tbl k)
〈proof 〉 lemma routing-port-ranges-disjoined:
assumes vpfx: valid-prefixes tbl
and ins: (a1 , b1) ∈ set (routing-port-ranges tbl s) (a2 , b2) ∈ set (routing-port-ranges

tbl s)
and nemp: wordinterval-to-set b1 6= {}

shows b1 6= b2 ←→ wordinterval-to-set b1 ∩ wordinterval-to-set b2 = {}
〈proof 〉 lemma routing-port-rangesI :
valid-prefixes tbl =⇒
output-iface (routing-table-semantics tbl k) = output-port =⇒
k ∈ wordinterval-to-set wi =⇒
(∃ ip-range. (output-port, ip-range) ∈ set (routing-port-ranges tbl wi) ∧ k ∈ wordinter-
val-to-set ip-range)
〈proof 〉

2.2 Reduction

So far, one entry in the list would be generated for each routing table entry.
This next step reduces it to one for each port. The resulting list will represent
a function from port to IP wordinterval. (It can also be understood as a
function from IP (interval) to port (where the intervals don’t overlap).
definition reduce-range-destination l ≡

7

let ps = remdups (map fst l) in
let c = λs. (wordinterval-Union ◦ map snd ◦ filter (((=) s) ◦ fst)) l in
[(p, c p). p ← ps]

definition routing-ipassmt-wi tbl ≡ reduce-range-destination (routing-port-ranges
tbl wordinterval-UNIV)

lemma routing-ipassmt-wi-distinct: distinct (map fst (routing-ipassmt-wi tbl))
〈proof 〉 lemma routing-port-ranges-superseted:

(a1 ,b1) ∈ set (routing-port-ranges tbl wordinterval-UNIV) =⇒
∃ b2 . (a1 ,b2) ∈ set (routing-ipassmt-wi tbl) ∧ wordinterval-to-set b1 ⊆ wordinter-

val-to-set b2
〈proof 〉 lemma routing-ipassmt-wi-subsetted:

(a1 ,b1) ∈ set (routing-ipassmt-wi tbl) =⇒
(a1 ,b2) ∈ set (routing-port-ranges tbl wordinterval-UNIV) =⇒ wordinterval-to-set
b2 ⊆ wordinterval-to-set b1
〈proof 〉

This lemma should hold without the valid-prefixes assumption, but that
would break the semantic argument and make the proof a lot harder.
lemma routing-ipassmt-wi-disjoint:
assumes vpfx: valid-prefixes (tbl::(′i::len) prefix-routing)

and dif : a1 6= a2
and ins: (a1 , b1) ∈ set (routing-ipassmt-wi tbl) (a2 , b2) ∈ set (routing-ipassmt-wi

tbl)
shows wordinterval-to-set b1 ∩ wordinterval-to-set b2 = {}
〈proof 〉

lemma routing-ipassmt-wi-sound:
assumes vpfx: valid-prefixes tbl
and ins: (ea,eb) ∈ set (routing-ipassmt-wi tbl)
and x: k ∈ wordinterval-to-set eb
shows ea = output-iface (routing-table-semantics tbl k)
〈proof 〉

theorem routing-ipassmt-wi:
assumes vpfx: valid-prefixes tbl

shows
output-iface (routing-table-semantics tbl k) = output-port ←→

(∃ ip-range. k ∈ wordinterval-to-set ip-range ∧ (output-port, ip-range) ∈ set
(routing-ipassmt-wi tbl))
〈proof 〉

lemma routing-ipassmt-wi-has-all-interfaces:
assumes in-tbl: r ∈ set tbl
shows ∃ s. (routing-oiface r ,s) ∈ set (routing-ipassmt-wi tbl)
〈proof 〉

8

end

end

3 Linux Router
theory Linux-Router
imports
Routing-Table
Simple-Firewall.SimpleFw-Semantics
Simple-Firewall.Simple-Packet
HOL−Library.Monad-Syntax

begin

definition fromMaybe a m = (case m of Some a ⇒ a | None ⇒ a)

Here, we present a heavily simplified model of a linux router. (i.e., a linux-
based device with net.ipv4.ip_forward) It covers the following steps in
packet processing:

• Packet arrives (destination port is empty, destination mac address is
own address).

• Destination address is extracted and used for a routing table lookup.

• Packet is updated with output interface of routing decision.

• The FORWARD chain of iptables is considered.

• Next hop is extracted from the routing decision, fallback to destination
address if directly attached.

• MAC address of next hop is looked up (using the mac lookup function
mlf)

• L2 destination address of packet is updated.

This is stripped down to model only the most important and widely used
aspects of packet processing. Here are a few examples of what was abstracted
away:

• No local traffic.

• Only the filter table of iptables is considered, raw and nat are not.

• Only one routing table is considered. (Linux can have other tables
than the default one.)

9

• No source MAC modification.

• . . .

record interface =
iface-name :: string
iface-mac :: 48 word

definition iface-packet-check :: interface list ⇒(′i::len, ′b) simple-packet-ext-scheme
⇒ interface option
where iface-packet-check ifs p ≡ find (λi. iface-name i = p-iiface p ∧ iface-mac i
= p-l2dst p) ifs
term simple-fw
definition simple-linux-router ::

′i routing-rule list ⇒ ′i simple-rule list ⇒ ((′i::len) word ⇒ 48 word option) ⇒
interface list ⇒ ′i simple-packet-ext ⇒ ′i simple-packet-ext option where

simple-linux-router rt fw mlf ifl p ≡ do {
- ← iface-packet-check ifl p;
let rd — (routing decision) = routing-table-semantics rt (p-dst p);
let p = p(|p-oiface := output-iface rd|);
let fd — (firewall decision) = simple-fw fw p;
- ← (case fd of Decision FinalAllow ⇒ Some () | Decision FinalDeny ⇒ None);
let nh = fromMaybe (p-dst p) (next-hop rd);
ma ← mlf nh;
Some (p(|p-l2dst := ma|))
}

However, the above model is still too powerful for some use-cases. Especially,
the next hop look-up cannot be done without either a pre-distributed table
of all MAC addresses, or the usual mechanic of sending out an ARP request
and caching the answer. Doing ARP requests in the restricted environment
of, e.g., an OpenFlow ruleset seems impossible. Therefore, we present this
model:
definition simple-linux-router-nol12 ::

′i routing-rule list ⇒ ′i simple-rule list ⇒ (′i, ′a) simple-packet-scheme ⇒
(′i::len, ′a) simple-packet-scheme option where
simple-linux-router-nol12 rt fw p ≡ do {
let rd = routing-table-semantics rt (p-dst p);
let p = p(|p-oiface := output-iface rd|);
let fd = simple-fw fw p;
- ← (case fd of Decision FinalAllow ⇒ Some () | Decision FinalDeny ⇒ None);
Some p
}

The differences to simple-linux-router are illustrated by the lemmata below.
lemma rtr-nomac-e1 :

fixes pi

10

assumes simple-linux-router rt fw mlf ifl pi = Some po
assumes simple-linux-router-nol12 rt fw pi = Some po ′

shows ∃ x. po = po ′(|p-l2dst := x|)
〈proof 〉

lemma rtr-nomac-e2 :
fixes pi

assumes simple-linux-router rt fw mlf ifl pi = Some po
shows ∃ po ′. simple-linux-router-nol12 rt fw pi = Some po ′

〈proof 〉

lemma rtr-nomac-e3 :
fixes pi

assumes simple-linux-router-nol12 rt fw pi = Some po
assumes iface-packet-check ifl pi = Some i — don’t care
assumes mlf (fromMaybe (p-dst pi) (next-hop (routing-table-semantics rt (p-dst

pi)))) = Some i2
shows ∃ po ′. simple-linux-router rt fw mlf ifl pi = Some po ′

〈proof 〉

lemma rtr-nomac-eq:
fixes pi

assumes iface-packet-check ifl pi 6= None
assumes mlf (fromMaybe (p-dst pi) (next-hop (routing-table-semantics rt (p-dst

pi)))) 6= None
shows ∃ x. map-option (λp. p(|p-l2dst := x|)) (simple-linux-router-nol12 rt fw pi)
= simple-linux-router rt fw mlf ifl pi
〈proof 〉

end

4 Parser
theory IpRoute-Parser
imports Routing-Table

IP-Addresses.IP-Address-Parser
keywords parse-ip-route parse-ip-6-route :: thy-decl
begin

This helps to read the output of the ip route command into a 32 rout-
ing-rule list.
definition empty-rr-hlp :: (′a::len) prefix-match ⇒ ′a routing-rule where

empty-rr-hlp pm = routing-rule.make pm default-metric (routing-action.make ′′′′

None)

lemma empty-rr-hlp-alt:
empty-rr-hlp pm = (| routing-match = pm, metric = 0 , routing-action = (|out-

put-iface = [], next-hop = None|)|)
〈proof 〉

11

definition routing-action-next-hop-update :: ′a word ⇒ ′a routing-rule ⇒ (′a::len)
routing-rule

where
routing-action-next-hop-update h pk = pk(| routing-action := (routing-action pk)(|

next-hop := Some h|) |)
lemma routing-action-next-hop-update h pk = routing-action-update (next-hop-update
(λ-. (Some h))) (pk::32 routing-rule)
〈proof 〉

definition routing-action-oiface-update :: string ⇒ ′a routing-rule ⇒ (′a::len) rout-
ing-rule

where
routing-action-oiface-update h pk = routing-action-update (output-iface-update

(λ-. h)) (pk:: ′a routing-rule)
lemma routing-action-oiface-update h pk = pk(| routing-action := (routing-action
pk)(| output-iface := h|) |)
〈proof 〉

definition default-prefix = PrefixMatch 0 0
lemma default-prefix-matchall: prefix-match-semantics default-prefix ip
〈proof 〉

definition sanity-ip-route (r ::(′a::len) prefix-routing) ≡ correct-routing r ∧ unam-
biguous-routing r ∧ list-all ((6=) ′′′′ ◦ routing-oiface) r

The parser ensures that sanity-ip-route holds for any ruleset that is im-
ported.
〈ML〉

parse-ip-route rtbl-parser-test1 = ip−route−ex
lemma sanity-ip-route rtbl-parser-test1 〈proof 〉

lemma rtbl-parser-test1 =
[(|routing-match = PrefixMatch 0xFFFFFF00 32 , metric = 0 , routing-action =

(|output-iface = ′′tun0 ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0xA0D2AA0 28 , metric = 303 , routing-action =

(|output-iface = ′′ewlan ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0xA0D2500 24 , metric = 0 , routing-action =

(|output-iface = ′′tun0 ′′, next-hop = Some 0xFFFFFF00 |)|),
(|routing-match = PrefixMatch 0xA0D2C00 24 , metric = 0 , routing-action =

(|output-iface = ′′tun0 ′′, next-hop = Some 0xFFFFFF00 |)|),
(|routing-match = PrefixMatch 0 0 , metric = 303 , routing-action = (|output-iface

= ′′ewlan ′′, next-hop = Some 0xA0D2AA1 |)|)]
〈proof 〉

parse-ip-6-route rtbl-parser-test2 = ip−6−route−ex
value[code] rtbl-parser-test2

12

lemma sanity-ip-route rtbl-parser-test2 〈proof 〉

end

13

	Routing Table
	Definition
	Single Packet Semantics
	Longest Prefix Match
	Printing

	Routing table to Relation
	Wordintervals for Ports by Routing
	Reduction

	Linux Router
	Parser

