Routing

Julius Michaelis, Cornelius Diekmann

September 13, 2023

Abstract

This entry contains definitions for routing with routing tables/longest prefix matching.

A routing table entry is modelled as a record of a prefix match, a metric, an output port, and an optional next hop. A routing table is a list of entries, sorted by prefix length and metric. Additionally, a parser and serializer for the output of the ip-route command, a function to create a relation from output port to corresponding destination IP space, and a model of a linux style router are included.

Contents

1 Routing Table 2
1.1 Definition 2
1.2 Single Packet Semantics 3
1.3 Longest Prefix Match 4
1.4 Printing 8
2 Routing table to Relation 8
2.1 Wordintervals for Ports by Routing 9
2.2 Reduction 12
3 Linux Router 15
4 Parser 18

Sorting a list by two keys

theory Linorder-Helper
imports Main
begin
Sorting is fun...

The problem is that Isabelle does not have anything like sortBy, only sort-key. This means that there is no way to sort something based on two properties, with one being infinitely more important.

Enter this:

datatype ('a,'b) linord-helper $=$ LinordHelper ' a ' b
instantiation linord-helper :: (linorder, linorder) linorder begin
definition linord-helper-less-eq1 $a b \equiv($ case a of LinordHelper a1 a2 \Rightarrow case b
of LinordHelper b1 b2 $\Rightarrow a 1<b 1 \vee a 1=b 1 \wedge a 2 \leq b 2)$
definition $a \leq b \longleftrightarrow$ linord-helper-less-eq1 $a b$
definition $a<b \longleftrightarrow(a \neq b \wedge$ linord-helper-less-eq1 $a b)$

instance

by standard (auto simp: linord-helper-less-eq1-def less-eq-linord-helper-def less-linord-helper-def split: linord-helper.splits)
end
lemmas linord-helper-less $=$ less-linord-helper-def linord-helper-less-eq1-def
lemmas linord-helper-le $=$ less-eq-linord-helper-def linord-helper-less-eq1-def
Now, it is possible to use sort-key f, with f constructing a LinordHelper containing the two desired properties for sorting.
end

1 Routing Table

```
theory Routing-Table
imports IP-Addresses.Prefix-Match
    IP-Addresses.IPv4 IP-Addresses.IPv6
    Linorder-Helper
    IP-Addresses.Prefix-Match-toString
    Pure-ex.Guess
begin
```

This section makes the necessary definitions to work with a routing table using longest prefix matching.

1.1 Definition

```
record(overloaded) 'i routing-action =
```

 output-iface :: string
 next-hop :: 'i word option
 $\operatorname{record}(\text { overloaded })^{\prime} i$ routing-rule $=$
routing-match :: (' $i::$ len) prefix-match
metric :: nat
routing-action :: 'i routing-action

This definition is engineered to model routing tables on packet forwarding devices. It eludes, e.g., the source address hint, which is only relevant for packets originating from the device itself.

```
context
begin
definition default-metric =0
type-synonym 'i prefix-routing = ('i routing-rule) list
abbreviation routing-oiface a \equivoutput-iface (routing-action a)
abbreviation routing-prefix r \equiv pfxm-length (routing-match r)
definition valid-prefixes where
    valid-prefixes r = foldr conj (map (\lambdarr. valid-prefix (routing-match rr)) r) True
lemma valid-prefixes-split: valid-prefixes (r#rs)\Longrightarrow valid-prefix (routing-match r)
valid-prefixes rs
    using valid-prefixes-def by force
lemma foldr-True-set: foldr (\lambdax. (^) (fx)) l True =(\forallx\in set l. f x )
    by (induction l) simp-all
lemma valid-prefixes-alt-def: valid-prefixes r = (\foralle\in set r.valid-prefix (routing-match
e))
    unfolding valid-prefixes-def
    unfolding foldr-map
    unfolding comp-def
    unfolding foldr-True-set
    ..
```

fun has-default-route :: ('i::len) prefix-routing \Rightarrow bool where
has-default-route $(r \# r s)=((($ pfxm-length $($ routing-match $r))=0) \vee$ has-default-route
rs) |
has-default-route Nil $=$ False
lemma has-default-route-alt: has-default-route $r t \longleftrightarrow(\exists r \in$ set $r t$. pfxm-length (routing-match $r)=0$) by (induction r t) simp-all

1.2 Single Packet Semantics

fun routing-table-semantics :: (' $i:: l e n)$ prefix-routing \Rightarrow ' i word \Rightarrow ' i routing-action where
routing-table-semantics [] - = routing-action (undefined::'i routing-rule)|
routing-table-semantics (r\#rs) $p=$ (if prefix-match-semantics (routing-match r) p then routing-action r else routing-table-semantics rs p)
lemma routing-table-semantics-ports-from-table: valid-prefixes rtbl \Longrightarrow has-default-route $r t b l \Longrightarrow$
routing-table-semantics rtbl packet $=r \Longrightarrow r \in$ routing-action'set rtbl
proof (induction rtbl)
case (Cons r rs)

```
    note v-pfxs = valid-prefixes-split[OF Cons.prems(1)]
    show ?case
    proof(cases pfxm-length (routing-match r)=0)
    case True
    note zero-prefix-match-all[OF conjunct1[OF v-pfxs] True] Cons.prems(3)
    then show ?thesis by simp
next
    case False
    hence has-default-route rs using Cons.prems(2) by simp
    from Cons.IH[OF conjunct2[OF v-pfxs] this] Cons.prems(3) show ?thesis by
force
    qed
qed simp
```


1.3 Longest Prefix Match

We can abuse LinordHelper to sort.
definition routing-rule-sort-key $\equiv \lambda$ r. LinordHelper ($0-(o f-n a t::$ nat \Rightarrow int $)$ (pfxm-length (routing-match r))) (metric r)

There is actually a slight design choice here. We can choose to sort based on $(? a \leq ? b)=($ if pfxm-length ?a $=$ pfxm-length ?b then pfxm-prefix ?a $\leq p f x m$-prefix ?b else pfxm-length ?b $<$ pfxm-length ?a) (thus including the address) or only the prefix length (excluding it). Which is taken does not matter gravely, since the bits of the prefix can't matter. They're either eqal or the rules don't overlap and the metric decides. (It does matter for the resulting list though.) Ignoring the prefix and taking only its length is slightly easier.
definition rr-ctor m la nh me $\equiv 0$ routing-match $=$ PrefixMatch (ipv\{addr-of-dotdecimal
$m) l$, metric $=$ me, routing-action $=\$ output-iface $=a$, next-hop $=($ map-option ipv4addr-of-dotdecimal nh)D D
value sort-key routing-rule-sort-key [
rr-ctor $(0,0,0,1) 3{ }^{\prime \prime \prime \prime}$ None 0 ,
rr-ctor (0,0,0,2) 8 [] None 0,
rr-ctor $(0,0,0,3) 4$ [] None 13,
rr-ctor ($0,0,0,3$) 4 [] None 42]
definition is-longest-prefix-routing \equiv sorted \circ map routing-rule-sort-key
definition correct-routing :: ('i::len) prefix-routing \Rightarrow bool where correct-routing $r \equiv$ is-longest-prefix-routing $r \wedge$ valid-prefixes r

Many proofs and functions around routing require at least parts of cor-rect-routing as an assumption. Obviously, correct-routing is not given for arbitrary routing tables. Therefore, correct-routing is made to be executable and should be checked for any routing table after parsing. Note: correct-routing used to also require has-default-route, but none of the proofs require it anymore and it is not given for any routing table.
lemma is-longest-prefix-routing-rule-exclusion:
assumes is-longest-prefix-routing (r1 \# rn \# rss)
shows is-longest-prefix-routing (r1 \# rss)
using assms by (case-tac rss) (auto simp add: is-longest-prefix-routing-def)
lemma int-of-nat-less: int-of-nat $a<$ int-of-nat $b \Longrightarrow a<b$ by (simp add: int-of-nat-def)
lemma is-longest-prefix-routing-sorted-by-length:
assumes is-longest-prefix-routing r and $r=r 1$ \# rs @ r2 \# rss
shows (pfxm-length (routing-match r1) \geq pfxm-length (routing-match r2))
using assms
proof (induction rs arbitrary: r)
case (Cons rn rs)
let ?ro = r1 \# rs @ r2 \# rss
have is-longest-prefix-routing ?ro using Cons.prems is-longest-prefix-routing-rule-exclusion[of r1 rn rs @ r2 \# rss] by simp
from Cons.IH[OF this] show ?case by simp
next
case Nil thus? case by (auto simp add: is-longest-prefix-routing-def routing-rule-sort-key-def linord-helper-less-eq1-def less-eq-linord-helper-def int-of-nat-def)
qed
definition sort-rtbl :: ('i::len) routing-rule list $\Rightarrow{ }^{\prime} i$ routing-rule list \equiv sort-key routing-rule-sort-key
lemma is-longest-prefix-routing-sort: is-longest-prefix-routing (sort-rtbl r) unfolding sort-rtbl-def is-longest-prefix-routing-def by simp
definition unambiguous-routing $r t b l \equiv(\forall r t 1 r t 2 r r r a . r t b l=r t 1 @ r r \# r t 2$ $\longrightarrow r a \in$ set (rt1 @ rt2) \longrightarrow routing-match rr = routing-match ra \longrightarrow rout-ing-rule-sort-key rr \neq routing-rule-sort-key ra)
lemma unambiguous-routing-Cons: unambiguous-routing (r \# rtbl) \Longrightarrow unam-biguous-routing rtbl
unfolding unambiguous-routing-def by (clarsimp) (metis append-Cons in-set-conv-decomp)
lemma unambiguous-routing (r r $\# r t b l) \Longrightarrow$ is-longest-prefix-routing ($r r \# r t b l$)
$\Longrightarrow r a \in$ set $r t b l \Longrightarrow$ routing-match $r r=$ routing-match $r a \Longrightarrow$ routing-rule-sort-key rr < routing-rule-sort-key ra
unfolding is-longest-prefix-routing-def unambiguous-routing-def by (fastforce)
primrec unambiguous-routing-code where
unambiguous-routing-code [] = True |
unambiguous-routing-code $(r r \# r t b l)=($ list-all (λ ra. routing-match $r r \neq$ routing-match
$r a \vee$ routing-rule-sort-key rr \neq routing-rule-sort-key ra) rtbl \wedge unambiguous-routing-code $r t b l)$
lemma unambiguous-routing-code[code-unfold]: unambiguous-routing rtbl $\longleftrightarrow u n-$
ambiguous-routing-code rtbl
proof (induction rtbl)
case (Cons rr rtbl) show ?case (is ?l \longleftrightarrow ?r) proof
assume l: ?l
with unambiguous-routing-Cons Cons.IH have unambiguous-routing-code rtbl by blast
moreover have list-all (λ ra. routing-match r r \neq routing-match ra \vee rout-ing-rule-sort-key r r \neq routing-rule-sort-key ra) rtbl
using l unfolding unambiguous-routing-def by (fastforce simp add: list-all-iff)
ultimately show ?r by simp
next
assume r : ? r
with Cons.IH have unambiguous-routing rtbl by simp
from r have $*$: list-all (λ ra. routing-match rr \neq routing-match ra \vee rout-ing-rule-sort-key r r \neq routing-rule-sort-key ra) rtbl by simp
have False if rr \# rtbl = rt1 @ rra \# rt2 ra $\in \operatorname{set}(r t 1$ @ rt2) rout-ing-rule-sort-key rra $=$ routing-rule-sort-key ra \wedge routing-match rra $=$ routing-match ra for rt1 rt2 rra ra
proof $($ cases rt1 $=[])$
case True thus ?thesis using that $* \mathbf{b y}$ (fastforce simp add: list-all-iff)
next
case False
with that(1) have rtbl: rtbl = tl rt1 @ rra \# rt2 by (metis list.sel(3) tl-append2)
show ?thesis proof (cases ra $=h d r t 1$)
case False hence ra set (tl rt1 @ rt2) using that by (cases rt1; simp) with «unambiguous-routing rtbl〉 show ?thesis using that(3) rtbl unfolding unambiguous-routing-def by fast

next

case True hence $r r=r a$ using that $\langle r t 1 \neq[]\rangle$ by (cases rt1; simp)
thus ?thesis using that $*$ unfolding rtbl by(fastforce simp add: list-all-iff)
qed
qed
thus ?l unfolding unambiguous-routing-def by blast
qed
qed(simp add: unambiguous-routing-def)
lemma unambigous-prefix-routing-weak-mono:
assumes lpfx: is-longest-prefix-routing (rr\#rtbl)
assumes $e: r r^{\prime} \in$ set $r t b l$
shows routing-rule-sort-key rr${ }^{\prime} \geq$ routing-rule-sort-key rr
using assms by (simp add: is-longest-prefix-routing-def)
lemma unambigous-prefix-routing-strong-mono:
assumes lpfx: is-longest-prefix-routing (rr\#rtbl)
assumes uam: unambiguous-routing (r ($\# r t b l$)
assumes $e: r r^{\prime} \in$ set rtbl
assumes ne: routing-match $r r^{\prime}=$ routing-match $r r$
shows routing-rule-sort-key rr $^{\prime}>$ routing-rule-sort-key rr
proof -
from uam e ne have routing-rule-sort-key r r \neq routing-rule-sort-key rr' ${ }^{\prime} \mathbf{b y}($ fastforce simp add: unambiguous-routing-def)
moreover from unambigous-prefix-routing-weak-mono lpfx e have routing-rule-sort-key $r r \leq$ routing-rule-sort-key rr ${ }^{\prime}$.

ultimately show ?thesis by simp

 qedlemma routing-rule-sort-key (rr-ctor $(0,0,0,0) 8$ [] None 0$)>$ routing-rule-sort-key (rr-ctor (0,0,0,0) 24 [] None 0) by eval

In case you don't like that formulation of is-longest-prefix-routing over sorting, this is your lemma.
theorem existential-routing: valid-prefixes rtbl \Longrightarrow is-longest-prefix-routing rtbl \Longrightarrow has-default-route rtbl \Longrightarrow unambiguous-routing rtbl \Longrightarrow
routing-table-semantics rtbl addr $=$ act $\longleftrightarrow(\exists r r \in$ set rtbl. prefix-match-semantics (routing-match rr) addr \wedge routing-action $r r=$ act \wedge
($\forall r a \in$ set rtbl. routing-rule-sort-key ra $<$ routing-rule-sort-key rr $\longrightarrow \neg$ pre-fix-match-semantics (routing-match ra) addr))
proof (induction rtbl)
case Nil thus?case by simp
next
case (Cons rr rtbl)
show ?case proof(cases prefix-match-semantics (routing-match rr) addr) case False
hence [simp]: routing-table-semantics (rr \#rtbl) addr = routing-table-semantics ($r r$ \# rtbl) addr by simp
show ?thesis proof (cases routing-prefix r r $=0$)
case True
Need special treatment, rtbl won't have a default route, so the IH is not usable.
have valid-prefix (routing-match rr) using Cons.prems valid-prefixes-split by blast
with True False have False using zero-prefix-match-all by blast
thus ?thesis ..
next
case False
with Cons.prems have mprems: valid-prefixes rtbl is-longest-prefix-routing rtbl has-default-route rtbl unambiguous-routing rtbl
by (simp-all add: valid-prefixes-split unambiguous-routing-Cons is-longest-prefix-routing-def)
show ?thesis using Cons.IH[OF mprems] False \neg prefix-match-semantics (routing-match $r r$) addr> by simp
qed
next
case True
from True have [simp]: routing-table-semantics (rr \# rtbl) addr = rout-
ing-action rr by simp
show ?thesis (is ?l \longleftrightarrow ? r) proof
assume ?l
hence $[$ simp $]$: act $=$ routing-action rr $\mathbf{b y}($ simp add: True)
have $*:(\forall r a \in \operatorname{set}(r r \# r t b l)$. routing-rule-sort-key rr \leq routing-rule-sort-key ra)
using «is-longest-prefix-routing (rr \# rtbl) 〉by(clarsimp simp: is-longest-prefix-routing-def)

```
    thus ?r by(fastforce simp add: True)
    next
    assume ?r
    then guess }r\mp@subsup{r}{}{\prime}... note rr' = thi
    have }r\mp@subsup{r}{}{\prime}=rr proof(rule ccontr
        assume C: rr' }=r
        from C have e: rr ' }\in\mathrm{ set rtbl using rr' by simp
        show False proof cases
            assume eq: routing-match rr' = routing-match rr
                            with e have routing-rule-sort-key rr < routing-rule-sort-key rr' using
unambigous-prefix-routing-strong-mono[OF Cons.prems(2,4) - eq] by simp
            with True rr' show False by simp
        next
            assume ne: routing-match rr' }=\mathrm{ routing-match rr
                from rr' Cons.prems have valid-prefix (routing-match rr) valid-prefix
(routing-match rr') prefix-match-semantics (routing-match rr') addr by(auto simp
add: valid-prefixes-alt-def)
            note same-length-prefixes-distinct[OF this(1,2) ne[symmetric] - True
this(3)]
            moreover have routing-prefix rr = routing-prefix rr' (is ?pe) proof -
                            have routing-rule-sort-key rr < routing-rule-sort-key rr' }\longrightarrow\neg\mathrm{ pre-
fix-match-semantics (routing-match rr) addr using rr' by simp
            with unambigous-prefix-routing-weak-mono[OF Cons.prems(2) e] True
have routing-rule-sort-key rr = routing-rule-sort-key rr' by simp
                    thus ?pe by(simp add:routing-rule-sort-key-def int-of-nat-def)
                    qed
                    ultimately show False .
            qed
        qed
        thus ?l using rr' by simp
    qed
    qed
qed
```


1.4 Printing

definition routing-rule-32-toString (rr::32 routing-rule) \equiv prefix-match-32-toString (routing-match rr)
@ (case next-hop (routing-action rr) of Some nh \Rightarrow " via " @ ipvładdr-toString $n h \mid-\Rightarrow[])$
@ "dev" @ routing-oiface rr
@ " metric" @ string-of-nat (metric rr)
definition routing-rule-128-toString (rr::128 routing-rule) \equiv prefix-match-128-toString (routing-match rr)
@ (case next-hop (routing-action rr) of Some nh $\Rightarrow{ }^{\prime \prime}$ via " @ ipv6addr-toString
$n h \mid-\Rightarrow[])$
@ "dev" @ routing-oiface rr
@ " metric" @ string-of-nat (metric rr)
lemma map routing-rule-32-toString
[rr-ctor (42,0,0,0) 7 "eth0" None 808,
rr-ctor $(0,0,0,0) 0{ }^{\prime \prime}$ eth1" (Some (222,173,190,239)) 707] =
["42.0.0.0/7 dev eth0 metric 808",
"0.0.0.0/0 via 222.173.190.239 dev eth1 metric 707'1] by eval

2 Routing table to Relation

Walking through a routing table splits the (remaining) IP space when traversing a routing table into a pair of sets: the pair contains the IPs concerned by the current rule and those left alone.

private definition ipset-prefix-match where

ipset-prefix-match pfx rg $=($ let $p f x r g=$ prefix-to-wordset $p f x$ in $(r g \cap p f x r g, r g-$ pfxrg))
private lemma ipset-prefix-match-m[simp]: fst (ipset-prefix-match pfx rg) $=r g \cap$ (prefix-to-wordset pfx) by (simp only: Let-def ipset-prefix-match-def, simp)
private lemma ipset-prefix-match-nm[simp]: snd (ipset-prefix-match pfx rg) $=r g$

- (prefix-to-wordset pfx) by (simp only: Let-def ipset-prefix-match-def, simp)
private lemma ipset-prefix-match-distinct: $r p m=$ ipset-prefix-match $\mathrm{pfx} \mathrm{rg} \Longrightarrow$
$($ fst rpm $) \cap($ snd rpm $)=\{ \}$ by force
private lemma ipset-prefix-match-complete: $r p m=$ ipset-prefix-match $p f x r g \Longrightarrow$
$(f s t r p m) \cup($ snd rpm $)=r g$ by force
private lemma rpm-m-dup-simp:rg \cap fst (ipset-prefix-match (routing-match r) $r g)=f s t($ ipset-prefix-match (routing-match r) rg)
by simp
private definition range-prefix-match :: ' $i::$ len prefix-match $\Rightarrow{ }^{\prime} i$ wordinterval \Rightarrow ' i wordinterval \times ' i wordinterval where
range-prefix-match $p f x r g \equiv($ let $p f x r g=$ prefix-to-wordinterval $p f x$ in
(wordinterval-intersection rg pfxrg, wordinterval-setminus rg pfxrg))
private lemma range-prefix-match-set-eq:
($\lambda(r 1, r 2)$. (wordinterval-to-set r1, wordinterval-to-set r2)) (range-prefix-match $p f x r g)=$
ipset-prefix-match pfx (wordinterval-to-set rg)
unfolding range-prefix-match-def ipset-prefix-match-def Let-def
using wordinterval-intersection-set-eq wordinterval-setminus-set-eq prefix-to-wordinterval-set-eq
by auto
private lemma range-prefix-match-sm[simp]: wordinterval-to-set (fst (range-prefix-match
$p(x r g))=$
fst (ipset-prefix-match pfx (wordinterval-to-set rg))
by (metis fst-conv ipset-prefix-match-m wordinterval-intersection-set-eq prefix-to-wordinterval-set-eq range-prefix-match-def)
private lemma range-prefix-match-snm[simp]: wordinterval-to-set (snd (range-prefix-match
$p(x r g))=$
snd (ipset-prefix-match pfx (wordinterval-to-set rg))
by (metis snd-conv ipset-prefix-match-nm wordinterval-setminus-set-eq prefix-to-wordinterval-set-eq range-prefix-match-def)

2.1 Wordintervals for Ports by Routing

This split, although rather trivial, can be used to construct the sets (or rather: the intervals) of IPs that are actually matched by an entry in a routing table.
private fun routing-port-ranges :: 'i prefix-routing \Rightarrow ' i wordinterval \Rightarrow (string \times (' $i:: l e n)$ wordinterval) list where
routing-port-ranges [] lo = (if wordinterval-empty lo then [] else [(routing-oiface (undefined::'i routing-rule),lo)])| routing-port-ranges $(a \# a s)$ lo $=($
let rpm $=$ range-prefix-match (routing-match a) $l o ; m=$ fst rpm; nm $=$ snd rpm in (
(routing-oiface $a, m)$ \# routing-port-ranges as $n m$))
private lemma routing-port-ranges-subsets:
$(a 1, b 1) \in$ set (routing-port-ranges tbl $s) \Longrightarrow$ wordinterval-to-set $b 1 \subseteq$ wordinter-val-to-set s
by (induction tbl arbitrary: s; fastforce simp add: Let-def split: if-splits)
private lemma routing-port-ranges-sound: $e \in$ set (routing-port-ranges tbl s) \Longrightarrow $k \in$ wordinterval-to-set (snd e) \Longrightarrow valid-prefixes tbl \Longrightarrow
fst $e=$ output-iface (routing-table-semantics tbl k)
proof (induction tbl arbitrary: s)
case (Cons a as)
note $s=$ Cons.prems(1)[unfolded routing-port-ranges.simps Let-def list.set]
note $v p f x=$ valid-prefixes-split[OF Cons.prems(3)]
show ?case (is ?kees) proof(cases $e=$ (routing-oiface a, fst (range-prefix-match (routing-match a) s)))
case False
hence es: $e \in$ set (routing-port-ranges as (snd (range-prefix-match (routing-match a) s))) using s by blast
note $e q=$ Cons.IH[OF this Cons.prems(2) conjunct2[OF vpfx]]
have \neg prefix-match-semantics (routing-match a) k (is ?nom)
proof -
from routing-port-ranges-subsets[of fst e snd e, unfolded prod.collapse, OF es]
have $*$: wordinterval-to-set (snd e) \subseteq wordinterval-to-set (snd (range-prefix-match (routing-match a) s)) .
show ?nom unfolding prefix-match-semantics-wordset[OF conjunct1[OF vpfx]]
using * Cons.prems(2) unfolding wordinterval-subset-set-eq
by (auto simp add: range-prefix-match-def Let-def)
qed
thus ?kees using eq by simp
next
case True
hence $f e$: fst $e=$ routing-oiface a by simp
from True have $k \in$ wordinterval-to-set (fst (range-prefix-match (routing-match
a) s))
using Cons.prems(2) by (simp)
hence prefix-match-semantics (routing-match a) k
unfolding prefix-match-semantics-wordset[OF conjunct1, OF vpfx]
unfolding range-prefix-match-def Let-def
by simp
thus ?kees by (simp add: fe)
qed
qed (simp split: if-splits)
private lemma routing-port-ranges-disjoined:
assumes vpfx: valid-prefixes tbl
and ins: $(a 1, b 1) \in$ set (routing-port-ranges tbl s) $(a 2, b 2) \in$ set (routing-port-ranges
$t b l s)$
and nemp: wordinterval-to-set $b 1 \neq\{ \}$
shows $b 1 \neq b 2 \longleftrightarrow$ wordinterval-to-set $b 1 \cap$ wordinterval-to-set $b 2=\{ \}$
using assms
proof (induction tbl arbitrary: s)
case (Cons r rs)
have vpfx: valid-prefix (routing-match r) valid-prefixes rs using Cons.prems(1)
using valid-prefixes-split by blast+
\{
fix $a 1$ b1 a2 b2
assume one: b1 = fst (range-prefix-match (routing-match r) s)
assume two: (a2, b2) \in set (routing-port-ranges rs (snd (range-prefix-match
(routing-match r) s)))
have dc: wordinterval-to-set (snd (range-prefix-match (routing-match r) s)) \cap
wordinterval-to-set $($ fst $($ range-prefix-match $($ routing-match $r) s))=\{ \}$ by
force
hence wordinterval-to-set b1 \cap wordinterval-to-set b2 $=\{ \}$
unfolding one using two[THEN routing-port-ranges-subsets] by fast
\} note $*=$ this
show ? case
using $\langle(a 1, b 1) \in \operatorname{set}($ routing-port-ranges $(r \# r s) s)\rangle\langle(a 2, b 2) \in$ set (routing-port-ranges
(r \# rs) s)> nemp
Cons.IH[OF vpfx(2)] *
by (fastforce simp add: Let-def)
qed (simp split: if-splits)
private lemma routing-port-rangesI:
valid-prefixes tbl \Longrightarrow
output-iface (routing-table-semantics tbl k) $=$ output-port \Longrightarrow
$k \in$ wordinterval-to-set wi \Longrightarrow
$(\exists$ ip-range. (output-port, ip-range) $) \in$ set (routing-port-ranges tbl wi) $\wedge k \in$ wordinter-
val-to-set ip-range)
proof (induction tbl arbitrary: wi)
case Nil thus ?case by simp blast
next
case (Cons rrs)
from Cons.prems(1) have vpfx: valid-prefix (routing-match r) and vpfxs: valid-prefixes rs
by (simp-all add: valid-prefixes-split)

```
show ?case
proof(cases prefix-match-semantics (routing-match r)k)
    case True
    thus ?thesis
        using Cons.prems(2) using vpfx «k \in wordinterval-to-set wi`
        by (intro exI[where x = fst (range-prefix-match (routing-match r)wi)])
                (simp add: prefix-match-semantics-wordset Let-def)
    next
    case False
        with }\langlek\in\mathrm{ wordinterval-to-set wi` have ksnd: }k\in\mathrm{ wordinterval-to-set (snd
(range-prefix-match (routing-match r) wi))
        by (simp add: prefix-match-semantics-wordset vpfx)
        have mpr: output-iface (routing-table-semantics rs k) = output-port using
Cons.prems False by simp
    note Cons.IH[OF vpfxs mpr ksnd]
    thus ?thesis by(fastforce simp: Let-def)
qed
qed
```


2.2 Reduction

So far, one entry in the list would be generated for each routing table entry. This next step reduces it to one for each port. The resulting list will represent a function from port to IP wordinterval. (It can also be understood as a function from IP (interval) to port (where the intervals don't overlap).
definition reduce-range-destination $l \equiv$
let $p s=$ remdups $($ map fst l) in
let $c=\lambda s .($ wordinterval-Union \circ map snd \circ filter $(((=) s) \circ f s t)) l$ in
$[(p, c p) . p \leftarrow p s]$
definition routing-ipassmt-wi tbl \equiv reduce-range-destination (routing-port-ranges tbl wordinterval-UNIV)
lemma routing-ipassmt-wi-distinct: distinct (map fst (routing-ipassmt-wi tbl))
unfolding routing-ipassmt-wi-def reduce-range-destination-def
by (simp add: comp-def)
private lemma routing-port-ranges-superseted:
$(a 1, b 1) \in$ set (routing-port-ranges tbl wordinterval-UNIV) \Longrightarrow
$\exists b 2 .(a 1, b 2) \in \operatorname{set}($ routing-ipassmt-wi tbl) \wedge wordinterval-to-set $b 1 \subseteq$ wordinter-val-to-set b2
unfolding routing-ipassmt-wi-def reduce-range-destination-def
by (force simp add: Set.image-iff wordinterval-Union)
private lemma routing-ipassmt-wi-subsetted:
$(a 1, b 1) \in$ set (routing-ipassmt-wi tbl) \Longrightarrow
$(a 1, b 2) \in$ set (routing-port-ranges tbl wordinterval-UNIV) \Longrightarrow wordinterval-to-set

b2 \subseteq wordinterval-to-set b1

unfolding routing-ipassmt-wi-def reduce-range-destination-def
by (fastforce simp add: Set.image-iff wordinterval-Union comp-def)
This lemma should hold without the valid-prefixes assumption, but that would break the semantic argument and make the proof a lot harder.
lemma routing-ipassmt-wi-disjoint:
assumes vpfx: valid-prefixes (tbl::('i::len) prefix-routing)
and dif: $a 1 \neq a 2$
and ins: $(a 1, b 1) \in$ set (routing-ipassmt-wi tbl) $(a 2, b 2) \in$ set (routing-ipassmt-wi $t b l)$
shows wordinterval-to-set b1 \cap wordinterval-to-set b2 $=\{ \}$
proof (rule ccontr)
note iuf $=$ ins[unfolded routing-ipassmt-wi-def reduce-range-destination-def Let-def,
simplified, unfolded Set.image-iff comp-def, simplified]
assume (wordinterval-to-set b1 \cap wordinterval-to-set b2 $\neq\{ \}$)
hence wordinterval-to-set b1 \cap wordinterval-to-set $b 2 \neq\{ \}$ by simp
If the intervals are not disjoint, there exists a witness of that.
then obtain x where $x[$ simp $]: x \in$ wordinterval-to-set $b 1 x \in$ wordinterval-to-set b2 by blast

This witness has to have come from some entry in the result of routing-port-ranges, for both of $b 1$ and $b 2$.
hence $\exists b 1 g$. $x \in$ wordinterval-to-set $b 1 g \wedge$ wordinterval-to-set $b 1 g \subseteq$ wordinter-val-to-set b1 $\wedge(a 1, b 1 g) \in$ set (routing-port-ranges tbl wordinterval-UNIV)
using iuf(1) by(fastforce simp add: wordinterval-Union)
then obtain b1g where b1g: $x \in$ wordinterval-to-set b1g wordinterval-to-set $b 1 g \subseteq$ wordinterval-to-set b1 $(a 1, b 1 g) \in$ set (routing-port-ranges tbl wordinter-val-UNIV) by clarsimp
from x have $\exists b 2 g . x \in$ wordinterval-to-set b2g \wedge wordinterval-to-set b2g \subseteq wordinterval-to-set b2 $\wedge(a 2, b 2 g) \in$ set (routing-port-ranges tbl wordinterval-UNIV)
using iuf(2) by(fastforce simp add: wordinterval-Union)
then obtain $b 2 g$ where $b 2 g: x \in$ wordinterval-to-set $b 2 g$ wordinterval-to-set $b 2 g \subseteq$ wordinterval-to-set b2 (a2, b2g) \in set (routing-port-ranges tbl wordinter-val-UNIV) by clarsimp

Soudness tells us that the both $a 1$ and a2 have to be the result of routing x.
note routing-port-ranges-sound $[$ OF b1g(3), unfolded fst-conv snd-conv, OF b1g(1) $v p f x]$ routing-port-ranges-sound $[$ OF b2g(3), unfolded fst-conv snd-conv, OF b2g(1) $v p f x]$

A contradiction follows from $a 1 \neq a 2$.
with dif show False by simp
qed
lemma routing-ipassmt-wi-sound:

```
    assumes vpfx: valid-prefixes tbl
    and ins: (ea,eb) \in set (routing-ipassmt-wi tbl)
    and x:k\in wordinterval-to-set eb
    shows ea = output-iface (routing-table-semantics tbl k)
proof -
    note iuf = ins[unfolded routing-ipassmt-wi-def reduce-range-destination-def Let-def,
simplified, unfolded Set.image-iff comp-def, simplified]
    from x have \existsb1g. k\in wordinterval-to-set b1g ^ wordinterval-to-set b1g}
wordinterval-to-set eb }\wedge(ea,b1g)\in set (routing-port-ranges tbl wordinterval-UNIV)
    using iuf(1) by(fastforce simp add: wordinterval-Union)
    then obtain b1g where b1g: k \in wordinterval-to-set b1g wordinterval-to-set
b1g\subseteqwordinterval-to-set eb (ea,b1g) \in set (routing-port-ranges tbl wordinter-
val-UNIV) by clarsimp
    note routing-port-ranges-sound[OF b1g(3), unfolded fst-conv snd-conv, OF b1g(1)
vpfx]
    thus ?thesis .
qed
theorem routing-ipassmt-wi:
assumes vpfx: valid-prefixes tbl
    shows
    output-iface (routing-table-semantics tbl k)=output-port }
    (\existsip-range. }k\in\mathrm{ wordinterval-to-set ip-range ^ (output-port, ip-range) }\in\mathrm{ set
(routing-ipassmt-wi tbl))
proof (intro iffI, goal-cases)
    case 2 with vpfx routing-ipassmt-wi-sound show ?case by blast
next
    case 1
    then obtain ip-range where (output-port, ip-range) \in set (routing-port-ranges
tbl wordinterval-UNIV)}\wedgek\in\mathrm{ wordinterval-to-set ip-range
    using routing-port-rangesI[where wi = wordinterval-UNIV,OF vpfx] by auto
    thus ?case
    unfolding routing-ipassmt-wi-def reduce-range-destination-def
    unfolding Let-def comp-def
    by(force simp add: Set.image-iff wordinterval-Union)
qed
```

lemma routing-ipassmt-wi-has-all-interfaces:
assumes in-tbl: $r \in$ set tbl
shows $\exists s$. (routing-oiface $r, s) \in$ set (routing-ipassmt-wi tbl)
proof -
from in-tbl have $\exists s$. (routing-oiface $r, s) \in$ set (routing-port-ranges tbl S) for S
proof(induction tbl arbitrary: S)
case (Cons lls)
show ?case
proof $($ cases $r=l$)
case True thus ?thesis using Cons.prems by(auto simp: Let-def)
next

```
        case False with Cons.prems have r\in set ls by simp
        from Cons.IH[OF this] show ?thesis by(simp add: Let-def) blast
    qed
    qed simp
    thus ?thesis
    unfolding routing-ipassmt-wi-def reduce-range-destination-def
    by(force simp add: Set.image-iff)
qed
end
end
```


3 Linux Router

```
theory Linux-Router
imports
    Routing-Table
    Simple-Firewall.SimpleFw-Semantics
    Simple-Firewall.Simple-Packet
    HOL-Library.Monad-Syntax
begin
```

definition fromMaybe a $m=($ case m of Some $a \Rightarrow a \mid$ None $\Rightarrow a)$

Here, we present a heavily simplified model of a linux router. (i.e., a linuxbased device with net.ipv4.ip_forward) It covers the following steps in packet processing:

- Packet arrives (destination port is empty, destination mac address is own address).
- Destination address is extracted and used for a routing table lookup.
- Packet is updated with output interface of routing decision.
- The FORWARD chain of iptables is considered.
- Next hop is extracted from the routing decision, fallback to destination address if directly attached.
- MAC address of next hop is looked up (using the mac lookup function mlf)
- L2 destination address of packet is updated.

This is stripped down to model only the most important and widely used aspects of packet processing. Here are a few examples of what was abstracted away:

- No local traffic.
- Only the filter table of iptables is considered, raw and nat are not.
- Only one routing table is considered. (Linux can have other tables than the default one.)
- No source MAC modification.
- ...

```
record interface \(=\)
    iface-name :: string
    iface-mac :: 48 word
definition iface-packet-check \(::\) interface list \(\Rightarrow\left({ }^{\prime} i:: l e n, ' b\right)\) simple-packet-ext-scheme
\(\Rightarrow\) interface option
where iface-packet-check ifs \(p \equiv\) find ( \(\lambda\) i. iface-name \(i=p\)-iiface \(p \wedge\) iface-mac \(i\)
\(=p\)-l2dst \(p\) ) ifs
term simple-fw
definition simple-linux-router ::
    'i routing-rule list \(\Rightarrow{ }^{\prime} i\) simple-rule list \(\Rightarrow((' i:: l e n)\) word \(\Rightarrow 48\) word option \() \Rightarrow\)
        interface list \(\Rightarrow{ }^{\prime} i\) simple-packet-ext \(\Rightarrow{ }^{\prime} i\) simple-packet-ext option where
simple-linux-router rt fw mlf ifl \(p \equiv d o\) \{
    \(-\leftarrow\) iface-packet-check ifl p;
    let \(r d-(\) routing decision \()=\) routing-table-semantics rt \((p-d s t p)\);
    let \(p=p(p\)-oiface \(:=\) output-iface \(r d)\);
    let \(f d-(\) firewall decision \()=\) simple-fw fw \(p\);
    \(-\leftarrow\) (case fd of Decision FinalAllow \(\Rightarrow\) Some () | Decision FinalDeny \(\Rightarrow\) None);
    let \(n h=\) fromMaybe \((p-d s t p)\) (next-hop rd);
    \(m a \leftarrow m l f n h ;\)
    Some \((p(p-l 2 d s t:=m a))\)
\}
```

However, the above model is still too powerful for some use-cases. Especially, the next hop look-up cannot be done without either a pre-distributed table of all MAC addresses, or the usual mechanic of sending out an ARP request and caching the answer. Doing ARP requests in the restricted environment of, e.g., an OpenFlow ruleset seems impossible. Therefore, we present this model:
definition simple-linux-router-nol12 ::
'i routing-rule list \Rightarrow ' i simple-rule list $\Rightarrow\left({ }^{\prime} i,{ }^{\prime} a\right)$ simple-packet-scheme \Rightarrow ('i::len, 'a) simple-packet-scheme option where
simple-linux-router-nol12 rt fw $p \equiv d o$ \{
let $r d=$ routing-table-semantics rt (p-dst p);
let $p=p(p$-oiface $:=$ output-iface $r d)$;
let $f d=$ simple-fw fw p;
$-\leftarrow($ case fd of Decision FinalAllow \Rightarrow Some () | Decision FinalDeny \Rightarrow None);

```
Some p
}
```

The differences to simple-linux-router are illustrated by the lemmata below.

```
lemma rtr-nomac-e1:
    fixes \(p i\)
    assumes simple-linux-router rt fw mlf ifl pi \(=\) Some po
    assumes simple-linux-router-nol12 rt fw pi \(=\) Some po'
    shows \(\exists x . p o=p o^{\prime}(p-l 2 d s t:=x)\)
using assms
unfolding simple-linux-router-nol12-def simple-linux-router-def
by (simp add: Let-def split: option.splits state.splits final-decision.splits Option.bind-splits
if-splits) blast+
lemma rtr-nomac-e2:
    fixes \(p i\)
    assumes simple-linux-router rt fw mlf ifl pi=Some po
    shows \(\exists\) po \({ }^{\prime}\). simple-linux-router-nol12 rt fw pi=Some po'
using assms
unfolding simple-linux-router-nol12-def simple-linux-router-def
by(clarsimp simp add: Let-def split: option.splits state.splits final-decision.splits
Option.bind-splits if-splits)
lemma rtr-nomac-e3:
    fixes \(p i\)
    assumes simple-linux-router-nol12 rt fw \(p i=\) Some po
    assumes iface-packet-check ifl pi = Some \(i\) - don't care
    assumes mlf (fromMaybe ( \(p\)-dst pi) (next-hop (routing-table-semantics rt ( \(p\)-dst
\(p i))\) ) \(=\) Some \(i 2\)
    shows \(\exists p o^{\prime}\). simple-linux-router rt fw mlf ifl \(p i=\) Some \(p o^{\prime}\)
using assms
unfolding simple-linux-router-nol12-def simple-linux-router-def
by (clarsimp simp add: Let-def split: option.splits state.splits final-decision.splits
Option.bind-splits if-splits)
lemma rtr-nomac-eq:
    fixes \(p i\)
assumes iface-packet-check ifl pi \(\neq\) None
assumes mlf (fromMaybe ( \(p\)-dst pi) (next-hop (routing-table-semantics rt ( \(p\)-dst
pi)))) \(\neq\) None
    shows \(\exists x\). map-option \((\lambda p . p(p-l 2 d s t:=x D)(\) simple-linux-router-nol12 rt fw pi)
= simple-linux-router rt fw mlf ifl pi
proof (cases simple-linux-router-nol12 rt fw pi; cases simple-linux-router rt fw mlf
if \(p i\) )
fix \(a b\)
assume as: simple-linux-router rt fw mlf ifl pi=Some b simple-linux-router-nol12
rt fw pi = Some a
note rtr-nomac-e1 [OF this]
with as show ?thesis by auto
```

```
next
    fix a assume as: simple-linux-router-nol12 rt fw pi = None simple-linux-router
rt fw mlf ifl pi=Some a
    note rtr-nomac-e2[OF as(2)]
    with as(1) have False by simp
    thus ?thesis..
next
    fix a assume as: simple-linux-router-nol12 rt fw pi=Some a simple-linux-router
rt fw mlf ifl pi = None
    from〈iface-packet-check ifl pi #= None〉 obtain i3 where iface-packet-check ifl
pi=Some i3 by blast
    note rtr-nomac-e3[OF as(1) this] assms(2)
    with as(2) have False by force
    thus ?thesis ..
qed simp
end
```


4 Parser

theory IpRoute-Parser
imports Routing-Table
IP-Addresses.IP-Address-Parser
keywords parse-ip-route parse-ip-6-route :: thy-decl
begin
This helps to read the output of the ip route command into a 32 rout-ing-rule list.
definition empty-rr-hlp :: ('a::len) prefix-match $\Rightarrow{ }^{\prime}$ 'a routing-rule where
empty-rr-hlp pm = routing-rule.make pm default-metric (routing-action.make ${ }^{\prime \prime \prime \prime}$ None)
lemma empty-rr-hlp-alt:
empty-rr-hlp pm $=0$ routing-match $=$ pm, metric $=0$, routing-action $=\$ out-put-iface $=[]$, next-hop $=$ Nonel) $)$
unfolding empty-rr-hlp-def routing-rule.defs default-metric-def routing-action.defs
..
definition routing-action-next-hop-update :: 'a word $\Rightarrow{ }^{\prime}$ 'a routing-rule \Rightarrow ('a::len) routing-rule
where
routing-action-next-hop-update $h p k=p k \mid$ routing-action : $=($ routing-action $p k)(1$ next-hop $:=$ Some h) D
lemma routing-action-next-hop-update h pk $=$ routing-action-update (next-hop-update (λ-. (Some h))) (pk::32 routing-rule)
by (simp add: routing-action-next-hop-update-def)
definition routing-action-oiface-update $::$ string $\Rightarrow{ }^{\prime}$ a routing-rule $\Rightarrow(' a:: l e n)$ rout-ing-rule

where

routing-action-oiface-update $h \quad p k=$ routing-action-update (output-iface-update (λ-. h)) ($p k::$: a routing-rule)
lemma routing-action-oiface-update h pk $=p k 0$ routing-action $:=$ (routing-action $p k)($ output-iface $:=h \mid)$
by (simp add: routing-action-oiface-update-def)
definition default-prefix $=$ PrefixMatch 00
lemma default-prefix-matchall: prefix-match-semantics default-prefix ip unfolding default-prefix-def by (simp add: valid-prefix-00 zero-prefix-match-all)
definition sanity-ip-route (r::('a::len) prefix-routing) \equiv correct-routing $r \wedge$ unam-biguous-routing $r \wedge$ list-all $\left((\neq)^{\prime \prime \prime \prime} \circ\right.$ routing-oiface $) r$

The parser ensures that sanity-ip-route holds for any ruleset that is imported.
ML-file 〈IpRoute-Parser.ML〉
ML <
Outer-Syntax.local-theory @\{command-keyword parse-ip-route $\}$
Load a file generated by ip route and make the routing table definition available as isabelle term
(Parse.binding $--\mid @\{$ keyword $=\}--$ Parse.string \gg register-ip-route 32)
,
ML
Outer-Syntax.local-theory @\{command-keyword parse-ip-6-route $\}$
Load a file generated by ip -6 route and make the routing table definition available as isabelle term
(Parse.binding $--\mid @\{k e y w o r d ~=\}--$ Parse.string \gg register-ip-route 128) ,
parse-ip-route rtbl-parser-test1 $=i p-$ route-ex
lemma sanity-ip-route rtbl-parser-test1 by eval
lemma rtbl-parser-test1 $=$
[0 routing-match $=$ PrefixMatch 0xFFFFFF00 32, metric $=0$, routing-action $=$ (output-iface $=$ 'tun0'", next-hop $=$ None))),
(routing-match $=$ PrefixMatch OxA0D2AA0 28, metric $=303$, routing-action $=$ (output-iface $=$ ' ewlan', next-hop $=$ Nonel)),
|routing-match $=$ PrefixMatch OxA0D2500 24, metric $=0$, routing-action $=$ (output-iface $=$ 'tun0', next-hop $=$ Some 0xFFFFFFF00 D),
(routing-match $=$ PrefixMatch 0xA0D2C00 24, metric $=0$, routing-action $=$ (output-iface $=$ "tun0', next-hop $=$ Some 0xFFFFFF00)),
(routing-match $=$ PrefixMatch 00 , metric $=303$, routing-action $=\$ output-iface $=$ "ewlan", next-hop $=$ Some 0xA0D2AA1DD]
by eval
parse-ip-6-route rtbl-parser-test2 $=i p-6-$ route $-e x$ value[code] rtbl-parser-test2
lemma sanity-ip-route rtbl-parser-test2 by eval
end

