A Complete Proof of the Robbins Conjecture

Matthew Wampler-Doty

March 17, 2025

Abstract

The document gives a formalization of the proof of the Robbins
conjecture, following A. Mann, A Complete Proof of the Robbins Con-
jecture, 2003.

Contents

1 Robbins Conjecture 1

2 Axiom Systems 1
2.1 Common Algebras 2
2.2 Boolean Algebra, 2
2.3 Huntington’s Algebra 2
2.4 Robbins’ Algebra oL 2

3 Equivalence 3
3.1 Boolean Algebra 3
3.2 Huntington Algebra oL 3
3.3 Robbins’ Algebra 9

1 Robbins Conjecture

theory Robbins-Conjecture
imports Main
begin

The document gives a formalization of the proof of the Robbins conjec-
ture, following A. Mann, A Complete Proof of the Robbins Conjecture, 2003,
DOI 10.1.1.6.7838

2 Axiom Systems

The following presents several axiom systems that shall be under study.

The first axiom sets common systems that underly all of the systems we
shall be looking at.

The second system is a reformulation of Boolean algebra. We shall follow
pages 7-8 in S. Koppelberg. General Theory of Boolean Algebras, Volume
1 of Handbook of Boolean Algebras. North Holland, 1989. Note that our
formulation deviates slightly from this, as we only provide one distribution
axiom, as the dual is redundant.

The third system is Huntington’s algebra and the fourth system is Rob-
bins’ algebra.

Apart from the common system, all of these systems are demonstrated
to be equivalent to the library formulation of Boolean algebra, under appro-
priate interpretation.

2.1 Common Algebras

class common-algebra = uminus +
fixes inf : 'a = 'a = ’a (infix]l <> 70)
fixes sup :: 'a = 'a = 'a (infixl <L) 65)
fixes bot :: 'a (L))
fixes top :: 'a (xT»)
assumes sup-assoc: x U (y U z) = (z U y) U 2z
assumes sup-comm: r Uy =y Uz

context common-algebra begin

definition less-eq :: '‘a = 'a = bool (infix (C» 50) where
tCy=(rUy=y)

definition less :: 'a = ’a = bool (infix «Z) 50) where
rCy=(eCyAn-yCu)

definition minus :: ‘a = 'a = 'a (infixl <—> 65) where
minus xy = (x M — y)

definition secret-object! :: 'a (<v>) where
t = (SOME z. True)

end

class ext-common-algebra = common-algebra +

assumes inf-e: x My = —(—z U — y)
assumes top-eq: T =1L — ¢
assumes bot-eq: L = —(t U — 1)

2.2 Boolean Algebra

class boolean-algebra-II =
common-algebra +
assumes inf-comm: z My =y Mz

assumes inf-assoc: M (y M z) = (zMNy) Mz

assumes sup-absorb: z U (z M y) =z

assumes inf-absorb: M (z U y) =z

assumes sup-inf-distribl: c Uy Mz = (z U y) N (z U 2)
assumes sup-compl: x U — z =T

assumes inf-compl: t M —z = L1

2.3 Huntington’s Algebra

class huntington-algebra = ext-common-algebra +
assumes huntington: — (—z U —y) U — (—z U y) ==z

2.4 Robbins’ Algebra

class robbins-algebra = ext-common-algebra +
assumes robbins: — (— (z U y) U — (2 U —y))

X

3 Equivalence

With our axiom systems defined, we turn to providing equivalence results
between them.

We shall begin by illustrating equivalence for our formulation and the
library formulation of Boolean algebra.

3.1 Boolean Algebra

The following provides the canonical definitions for order and relative com-
plementation for Boolean algebras. These are necessary since the Boolean
algebras presented in the Isabelle/HOL library have a lot of structure, while
our formulation is considerably simpler.

Since our formulation of Boolean algebras is considerably simple, it is
easy to show that the library instantiates our axioms.

context boolean-algebra-II begin

lemma boolean-II-is-boolean:
class.boolean-algebra minus uminus (M) (C) (C) (W) L T
apply unfold-locales
apply (metis inf-absorb inf-assoc inf-comm inf-compl
less-def less-eq-def minus-def
sup-absorb sup-assoc sup-comm
sup-compl sup-inf-distrib1
sup-absorb inf-comm)-+
done

end

context boolean-algebra begin

lemma boolean-is-boolean-I1:
class.boolean-algebra-II uminus inf sup bot top
apply unfold-locales
apply (metis sup-assoc sup-commute sup-inf-absorb sup-compl-top
inf-assoc inf-commute inf-sup-absorb inf-compl-bot
sup-inf-distrib1)+
done

end

3.2 Huntington Algebra

We shall illustrate here that all Boolean algebra using our formulation are
Huntington algebras, and illustrate that every Huntington algebra may be
interpreted as a Boolean algebra.

Since the Isabelle/HOL library has good automation, it is convenient to
first show that the library instances Huntington algebras to exploit previous
results, and then use our previously derived correspondence.

context boolean-algebra begin
lemma boolean-is-huntington:
class.huntington-algebra uminus inf sup bot top

apply unfold-locales

apply (metis double-compl inf-sup-distrib1 inf-top-right
compl-inf inf-commute inf-compl-bot
compl-sup sup-commute sup-compl-top
sup-compl-top sup-assoc)+

done

end
context boolean-algebra-II begin

lemma boolean-II-is-huntington:

class.huntington-algebra uminus (M) (W) L T
proof —

interpret boolean:

boolean-algebra minus uminus (M) () (C) (L) L T
by (fact boolean-II-is-boolean)

show ?thesis by (simp add: boolean.boolean-is-huntington)

qged

end
context huntington-algebra begin

lemma huntington-id: + U —z = —z U —(—x)
proof —

from huntington have
zU—z=—(—zU—(—(—2))) U

by simp
also from sup-comm have
- = —(—(=1) U (=) U ~(=(=2) U —((=a))) U
(—(=(=2) U —2) U —(~(~(=2)) U —a))
by simp
also from sup-assoc have
- = —(~(~2) U ~(=z)) U
(—(—(—2) U —(—(=2))) U ~(~(=2) U —2)) U
~(~(~(~2)) U —a)
by simp
also from sup-comm have
= —(~(=2) U ~(—a)) U
(—(—(—2) U —2) U —(=(—2) U —(=(=a)))) U
~(~(~(~2)) U —2)

by simp
also from sup-assoc have
— —(~(=2) U —(~2)) U —(~(=2) U —a) U
(—(=(=2) U ~(=(=2))) U ~(~(=(=2)) U —2))
by simp
also from sup-comm have
= —(—~(=2) U —(=2)) U ~(=(~2) U —a) U
(—(=(=(=)) U ~(=2)) U ~(=(~(=2)) U —2))
by simp
also from huntington have
o=—z U —(-1)
by simp
finally show ?thesis by simp
qed

lemma dbl-neg: — (—z) = x
apply (metis huntington huntington-id sup-comm)
done

lemma towards-sup-compl: x U —z = y U —y
proof —
from huntington have
$U -3 = —(~2 U —(—y) U —(=2 U) U (=(=(~2) U ~(~g)) U —(~(~2)
U —y))
by simp
also from sup-comm have
= —(—(—y) U =) U ~(—y U —2) U (—(—y U —(—2)) U ~(~(—y) U —(~2)))
by simp
also from sup-assoc have
= —(~(=y) U —2) U (~(~y U =) U ~(=y U —~(~2))) U ~(~(~) U — (=)
by simp
also from sup-comm have

= —(yU—(-2)U—(-yU-2)U—(=(-y) U—z) U—(=(-y) U—(-2))
by simp

also from sup-assoc have
=—(yU—(=2) U —(=y U —z) U (=(=(-y) U—z) U—(=(=y) U —(=2)))
by simp

also from sup-comm have
=—(-yu—(=2) U—(=yU—z) U (=(=(=y) U—(=2)) U=(=(-y) U —2))
by simp

also from huntington have

y U —y = ... by simp
finally show ?thesis by simp
qed

lemma sup-compl: x U —z =T
by (simp add: top-eq towards-sup-compl)

lemma towards-inf-compl: x M —z = y M —y
by (metis dbl-neg inf-eq sup-comm sup-compl)

lemma inf-compl: t N —z = L
by (metis dbl-neg sup-comm bot-eq towards-inf-compl inf-eq)

lemma towards-idem: L = 1 U L
by (metis dbl-neg huntington inf-compl inf-eq sup-assoc sup-comm sup-compl)

lemma sup-ident: x U 1L =z
by (metis dbl-neg huntington inf-compl inf-eq sup-assoc
sup-comm sup-compl towards-idem)

lemma inf-ident: z M T =z
by (metis dbl-neg inf-compl inf-eq sup-ident sup-comm sup-compl)

lemma sup-idem: x Uz = x
by (metis dbl-neg huntington inf-compl inf-eq sup-ident sup-comm sup-compl)

lemma inf-idem: Mz =z
by (metis dbl-neg inf-eq sup-idem)

lemma sup-nil: © U T =T
by (metis sup-idem sup-assoc sup-comm sup-compl)

lemma inf-nil: M 1L = 1
by (metis dbl-neg inf-compl inf-eq sup-nil sup-comm sup-compl)

lemma sup-absorb: x Uz My ==z
by (metis huntington inf-eq sup-idem sup-assoc sup-comm)

lemma inf-absorb: z M (z U y) =z
by (metis dbl-neg inf-eq sup-absorb)

lemma partition: x My Uz M —y =z
by (metis dbl-neg huntington inf-eq sup-comm)

lemma demorgansi: —(z M y) = —az U —y
by (metis dbl-neg inf-eq)

lemma demorgans2: —(z U y) = —z M —y
by (metis dbl-neg inf-eq)

lemma inf-comm: x My=y Nz
by (metis inf-eq sup-comm,)

lemma inf-assoc: M (yMz) =2z MNyNz
by (metis dbl-neg inf-eq sup-assoc)

lemma inf-sup-distribl: z M (y U 2) = (x N y) U (z N 2)
proof —
from partition have
zMNyUz)=zN(yUz)NyUznN(yUz)MN-—y..
also from inf-assoc have
=z ((yU2)Ny)UzN(yU2z) N —y by simp
also from inf-comm have
=zN(yN(yUz2) Uz (yUz) N —y by simp
also from inf-absorb have
.=(xNy) Uz (yUz) N —y) by simp
also from partition have
=(znyNzU(zNyn—2)U
(zN(yUz)N—yNz)U(zN(yU2) N —yM —2)) by simp
also from inf-assoc have
=(znynz)U(znNyn—z)U
(zn((yUz)n(=yMz))u(n((yUez)N(-yM—z)))) by simp
also from demorgans2 have
=(znyNzU(zNyn—2)U
(@1 ((y U 2) N (=y N 2) U (e N ((y U 2) N —(y U 2))) by simp
also from inf-compl have
=(znynz)U(znyn—z)U
(2N ((yUz) N (=yMz)) U (z1 L)) by simp
also from inf-nil have
=(znyNzU(zNyn—2)U
(zn ((yu2) N (-yMz)) U L) by simp
also from sup-idem have
=(znynzU(znNynNz)U(zNyn—z)U
(@1 ((y U 2) N (—y N 2) U L) by simp
also from sup-ident have
=(znynzU(znNynNz)U(zNyn—z)U
(z M ((yU2) N (=y N z)) by simp
also from inf-comm have
=((znNynNzU(znNyNz)U(zNyn—2)U

(21 ((=y M 2) 0 (yU2))) by simp
also from sup-comm have
=((znNyNzU(zNyNz)U(zNyn—z)U
(21 ((-y M 2) N (zUy))) by simp
also from inf-assoc have
=((znynNz)U(znN(yNz)U(zNyn—2)U
(z M (=y M (2N (zUy)))) by simp
also from inf-absorb have
=(znynzU(zn(ynz)U(zNyn—2)U(zn(—ynz)
by simp
also from inf-comm have
=((znynNzU(nzNny)U(Enyn—2)U@n(zn-—y)
by simp
also from sup-assoc have
=(nyn)U((znGNy))UEnNyn—=2)U (zn(zMN —y))
by simp
also from sup-comm have
=((znynNz2)U(znNyN—2)U(zN(zNy)) U(zn(zn —y))
by simp
also from sup-assoc have
=(znynzUuUnyn—=2)U({(zN(zNy) U (zn(zMN =y)))
by simp
also from inf-assoc have
=((znNyNzU(zNyN—=—2)U((zNzNy U (zNzN —y)) by simp
also from partition have ... = (z M y) U (z N 2) by simp
finally show ?thesis by simp
qged

lemma sup-inf-distrib1:
zU(yNz)=(zUy N(zU2)
proof —
from dbl-neg have
2 U (y N 2) = —(~(~(=2) U (y N 2))) by simp
also from inf-eq have
.= —(=z N (-y U —2)) by simp
also from inf-sup-distribl have
===z N —y) U (=2 N —2)) by simp
also from demorgans2 have
.= —(—=zMN—y) N —=(—z M —2) by simp
also from demorgansi have
= (=(=2) U =(=y)) N (=(=2) U =(=2)) by simp
also from dbl-neg have
.= (z Uy N (zU 2) by simp
finally show ?thesis by simp
qed

lemma huntington-is-boolean-1I:
class.boolean-algebra-II uminus (M) (U) L T
apply unfold-locales

apply (metis inf-comm inf-assoc sup-absorb
inf-absorb sup-inf-distrib1
sup-compl inf-compl)+

done

lemma huntington-is-boolean:

class.boolean-algebra minus uminus (M) (C) (C) (U) L T
proof —

interpret boolean-11:

boolean-algebra-II wminus (M) (W) L T
by (fact huntington-is-boolean-II)

show ?thesis by (simp add: boolean-II.boolean-II-is-boolean)
qed
end

3.3 Robbins’ Algebra

context boolean-algebra begin
lemma boolean-is-robbins:
class.robbins-algebra uminus inf sup bot top
apply unfold-locales
apply (metis sup-assoc sup-commute compl-inf double-compl sup-compl-top
inf-compl-bot diff-eq sup-bot-right sup-inf-distribl)+
done
end

context boolean-algebra-II begin
lemma boolean-I1-is-robbins:

class.robbins-algebra uminus inf sup bot top
proof —

interpret boolean:

boolean-algebra minus uminus (M) () (C) (L) L T
by (fact boolean-1I-is-boolean)

show ?thesis by (simp add: boolean.boolean-is-robbins)
qed
end

context huntington-algebra begin
lemma huntington-is-robbins:

class.robbins-algebra uminus inf sup bot top
proof —

interpret boolean:

boolean-algebra minus uminus (M) () (C) (U) L T
by (fact huntington-is-boolean)

show ?thesis by (simp add: boolean.boolean-is-robbins)
qed
end

Before diving into the proof that the Robbins algebra is Boolean, we
shall present some shorthand machinery

context common-algebra begin

primrec copyp :: nat = ’‘a = ‘a (infix «®» 80)
where

copyp-0: 0 @ z =2
| copyp-Suc: (Suck) @ v = (k® z) Uz

unbundle no set-product-syntax
primrec copy :: nat = ‘a = 'a (infix (x) 85)
where

0 xz==x
| (Suck) x 2=k @«

lemma one: 1 x z ==z

proof —
have 1 = Suc(0) by arith
hence 1 x x = Suc(0) x = by metis
also have ... = z by simp
finally show ?thesis by simp
qed

lemma two: 2 x z =z Uz
proof —
have 2 = Suc(Suc(0)) by arith
hence 2 x x = Suc(Suc(0)) x z by metis

also have ... =2 U x by simp
finally show ?thesis by simp
qed

lemma three: 3 x z =z Uz Uz
proof —
have 3 = Suc(Suc(Suc(0))) by arith
hence 3 x z = Suc(Suc(Suc(0))) X x by metis

also have ... =z U z U z by simp
finally show ?thesis by simp
qed

lemma four: 4/ xz=zUzUzUx
proof —
have 4 = Suc(Suc(Suc(Suc(0)))) by arith
hence 4 x z = Suc(Suc(Suc(Suc(0)))) x = by metis

also have ... =2z Uz U z U x by simp
finally show ?thesis by simp
qed

10

lemma five: 5 x z=zUzUzUzUx
proof —
have 5 = Suc(Suc(Suc(Suc(Suc(0))))) by arith
hence 5 x & = Suc(Suc(Suc(Suc(Suc(0))))) x = by metis

alsohave ... =z Uz Uz U x Uz by simp
finally show ?thesis by simp
qed

lemma siz: 6 x z=zUzUzUzUzUx
proof —
have 6 = Suc(Suc(Suc(Suc(Suc(Suc(0)))))) by arith
hence 6 x z = Suc(Suc(Suc(Suc(Suc(Suc(0)))))) x z by metis

alsohave ... =z Uz Uz U2 U2z Uz by simp
finally show ?thesis by simp
qed

lemma copyp-distrib: k @ (z U y) = (k® z) U (k ® y)
proof (induct k)

case () show ?case by simp

case Suc thus ?case by (simp, metis sup-assoc sup-comm)
qed

corollary copy-distrib: k x (z U y) = (k x z) U (k X y)
by (induct k, (simp add: sup-assoc sup-comm copyp-distrib)+)

lemma copyp-arith: (k +1+ 1)@ z=(k®z)U (Il ® x)
proof (induct 1)
case 0 have k + 0 + 1 = Suc(k) by arith
thus ?case by simp
case (Suc l) note ind-hyp = this
have k + Suc(l) + 1 = Suc(k + 1 + 1) by arith+
hence (k + Suc(l) + 1)@z =(k+ 1+ 1) ® z U z by (simp add: ind-hyp)
also from ind-hyp have
o=k er)U(l®z) Uz by simp
also note sup-assoc
finally show ?case by simp
qed

lemma copy-arith:
assumes k # (0 and | # 0
shows (kK + 1) x 2 = (k x z) U (I X x)
using assms
proof —
from assms have 3 k’. Suc(k’) = k
and 3 . Suc(l’) = | by arith+
from this obtain k' I’ where A: Suc(k’) = k

11

and B: Suc(l’) = I by fast+
from this have Al1: k x 2 = k' @ x
and Bi1: 1l x z =’ ® = by fastforce+

from A B have k + [= Suc(k’ + I’ + 1) by arith
hence (k + 1) x 2 = (k' + '+ 1) ® z by simp
also from copyp-arith have

.o=k'®zUl’® z by fast
also from A1 B1 have

...=kx z Ul x z by fastforce
finally show ?thesis by simp

qged

end

The theorem asserting all Robbins algebras are Boolean comes in 6 move-
ments.

First: The Winker identity is proved.

Second: Idempotence for a particular object is proved. Note that falsum
is defined in terms of this object.

Third: An identity law for falsum is derived.

Fourth: Idempotence for supremum is derived.

Fifth: The double negation law is proven

Sixth: Robbin’s algebras are proven to be Huntington Algebras.

context robbins-algebra begin

definition secret-object? :: 'a (<o) where
a=—(—(UcU) Uy

definition secret-object3 :: 'a (<8») where
B=tU¢

definition secret-object :: 'a (¢6>) where
5=F U (~(@U—f)U—(aU—B)

definition secret-object5 :: 'a (¢y>) where
y=46U—(0U -9

definition winker-object :: 'a (<0>) where
o=vU~U~

definition fake-bot :: ‘a (<LL1») where
Ll =—(eU -0

lemma robbins2: y = —(—(—z U y) U —(z U y))
by (metis robbins sup-comm)

lemma mann0: —(z U y) = —(—(—(z U y) U —z U y) Uy)
by (metis Tobbins sup-comm sup-assoc)

12

lemma manni: —(—z U y) = —(—(—(—z U y) Uz Uy) Uy
by (metis robbins sup-comm sup-assoc)

lemma mann2: y = —(—(—(—zUy) Uz Uy Uy U—(—zUy))
by (metis manni robbins sup-comm sup-assoc)

lemma mann3: z = —(—(—(—(—zUy)UzsUyUy) U—(—2zUy) Uz)U—(yU
2)
proof —
let 7w =—-(—(—zUy)UzUyUy U—(—zUy)
from robbins[where z=z and y=?w| sup-comm mann2
have » = —(—(y U 2) U —(%w U 2)) by metis
thus ?thesis by (metis sup-comm)
qed

lemma mannj: —(y U z) =
(—((—(—z U Us Uy U y) U—(—zUy) U—(yU2) U2) U2
proof —
from robbins2[where z=—(—(—z U y) Uz Uy U y) U —(—z U y) Uz
and y——(y U 2)
mannd[where z=z and y=y and z=z|
have —(y U z) =
(U —(—(-(-zUyUzUyUy) U —(—zUy UzU—(yU?2)))
by metis
with sup-comm sup-assoc show ?thesis by metis
qged

lemma mannd: v =

~(~(~(~(~(~z U g) Uz Uy Ly U
—(—zUyY)U—(yU2z)U2z)UzUu)U

~(~(y U 2) U W)
using robbins2[where z=—(—(—(—z U
—(—z Uy U—(y
and y=u]

mann4 [where z=z and y=y and z=2]
sup-comm

by metis

yyuzUyuy) U
Uz)U2z) Uz

lemma manné6:
—(—3xzUz)=—(—(—(—3xzUz)U— 3xz) U —(—(— 3xz Uz) U 5xz))
proof —
have 3+2=(5:nat) and 3#(0::nat) and 2#(0::nat) by arith+
with copy-arith have ©: $xz U 2xz = 5xz by metis
let ?%p = —(— 3xz U x)
{fix ¢
from sup-comm have
—(qU 5xz) = —(6xz U q) by metis
also from O mannO[where r=3xz and y=q U 2xz| sup-assoc sup-comm
have

13

o= —(—(—Bxz U (qU 2xz)) U —3xz U (¢U 2xx)) U (¢gU 2xx))
by metis
also from sup-assoc have
= —(—(—((8xz U g) U 2xzx) U — 8xz U (¢ U 2xx)) U (¢ U 2xzx)) by
metis
also from sup-comm have
.= —(—(—((g U 8xz) U 2xz) U — 3xz U (¢ U 2xz)) U (¢ U 2xz)) by
metis
also from sup-assoc have
.= —(—(—(gU (8xz U 2xz)) U — 8xz U (¢ U 2xx)) U (¢ U 2xz)) by
metis
also from © have
o= —(=(=(gU bxx) U —8xz U (¢gU 2xx)) U (¢ U 2xx)) by metis
also from sup-assoc have
o= —(—=(=(gu sxx) U (= 3xz U q) U 2xx) U (¢ U 2xz)) by metis
also from sup-comm have
.= —(—(—(qUsxz) U (¢U— 3xx) U 2xx) U (2xz U q)) by metis
also from sup-assoc have
= —(=(=(gUdxz) U gL — 3xz U 2xzx) U 2xz U q) by metlis
finally have
—(qUbsxz) = —(—(—(¢gUdxz) U gL — 8xz U 2xz) U 2xz U q) by simp
} hence &:
—(pUbsxz)=—(—(—(?pU dxa) U p U — 8xz U 2xz) U 2xz L ?p)
by simp

from mannd[where z=3xz and y=z and z=2xz and u=?p|
sup-assoc threelwhere z=z| fivelwhere r=z| have
0 —
?p =
—(—(—(—=(pUdxz) U ?p U —(z U 2xz) U 2xz) U 2xz U %p) U
—(—(z U 2xz) U ?p)) by metis
also from sup-comm have

—(—(—(=(PpUdxz) U ?p U —(2xz U z) U 2xz) U 2xz U %p) U
—(—(2xz U z) U ?p)) by metis
also from two[where z=z] three[where z=z| have

—(—(=(=(?pUdxz) U p U — 8xz U 2xz) U 2xz U ?p) U
—(—= 3xz U ?p)) by metis

also from & have ... = —(—(?p U 5xz) U —(— 3xz U ?p)) by simp
also from sup-comm have ... = —(—(%p U 5xz) U — (% U — 3xx)) by simp
also from sup-comm have ... = —(—(?p U — 3xz) U —(%p U 5xx)) by simp
finally show ?thesis .

qged

lemma mann7:
— 8xzx = —(—(— 8xz U z) U 5xx)
proof —

let %p = —(— 8%z U x)

let 2 = %p Ll — 3%z

14

let r = —(%p U 5xx)
from robbins2[where z=7%q

and y="2r]
mann6|[where r=x]
have ?r = — (p U — (?q U ?r)) by simp
also from sup-comm have ... = — (— (¢ U 9r) U ?p) by simp
also from sup-comm have ... = — (— (?r U %¢) U %p) by simp
finally have &: 2r = — (— (?r U %q) U ?p) .
from mann3[where z=3xz and y=z and z=— 3 Xz

sup-comm have
—8xzr=—(—(—(pU3xzUxzUz) U % U — 3xz)U ?p) by metis
also from sup-assoc have
= —(—(—(pU BxzUzU2x)U %) U) by metis
also from three[where z=z] five[where z=z] have
= —(—(%r U 29) U ?p) by metis
ﬁnally have — 3xz = —(—(%r U ?¢) U ?p) by metis
with & show ¢thesis by simp
qed

lemma mann§:
—(—3xzUz)U 2xx = —(—(—(— 3xzUz)U— 3xz U 2xz) U — 3xzx)
(is ?lhs = ?rhs)
proof —
let ?7p = —(— 3xz U x)
let 9¢g = %p U 2xz
let r = 3xx
have 3+2=(5::nat) and 3#(0::nat) and 2#(0::nat) by arith+
with copy-arith have Q: 3xz U 2xx = §5xz by metis
from robbins2|where z=?r and y=?¢| and sup-assoc
have ?¢ = —(—(— 3xz U %q) U —(8xz U % U 2xz)) by metis
also from sup-comm have
.= —(—(%qgU — 3xz) U —(?p U 8xz U 2xx)) by metis
also from Q sup-assoc have
o= —(—(%q U — 3xz) U —(%p U 5xx)) by metis
also from mann7[where z=z] have
o= —(—(%9 U — 8xx) U — 3xx) by metis
also from sup-assoc have
= (= (% U (2xz U — 3xx)) U — 8xz) by metis
also from sup-comm have
.= —(—(%p U (= 8xz U 2xx)) U — 3xz) by metis
also from sup-assoc have
. = ?rhs by metis
finally show ?thesis by simp
qed

lemma mann9: © = —(—(— 3xz U z) U — 3xz)
proof —

let %p = —(— 8%z U x)

let 2g = %p U 4xzx

15

have /+1=(5:nat) and 1#(0::nat) and 4#(0::nat) by arith+
with copy-arith one have ©: /xx U z = 5xz by metis
with sup-assoc robbins2[where y=z and z=%q]
have © = —(—(—%¢ U z) U —(% U 5xx)) by metis
with mann7 have z = —(—(—%¢ U z) U — 3xz) by metis
moreover
have 3+1=(4:nat) and 1#(0::nat) and 3#(0::nat) by arith+
with copy-arith one have &: 3xz Ll ¢ = 4 xx by metis
with manni|[where x=3xz and y=z] sup-assoc have
—(=%q U x) = ?p by metis
ultimately show ?thesis by simp
qed

lemma manni0: y = —(—(—(— Sxz U z) U — Ixz U y) U —(z Uy))
using robbins2[where z=—(— 8xz U z) U — 8xz and y=y]
mann9[where =z
sup-comm
by metis

theorem mann: 2xz = —(— 8xz U z) U 2Xxzx
using mannl0[where =z and y=2xz]
mann8|where z=1]
two[where x=z] three[where xz=z] sup-comm
by metis

corollary winkerr: a U 8 = (8
using mann secret-object2-def secret-object3-def two three
by metis

corollary winker: 8 U a = (3
by (metis winkerr sup-comm)

corollary multi-winkerp: B Uk ® a =
by (induct k, (simp add: winker sup-comm sup-assoc)+)

corollary multi-winker: B U k x a = (3
by (induct k, (simp add: multi-winkerp winker sup-comm sup-assoc)+)

lemma less-eg-introp:
—(zU—(yUz)=—-(rUylU —2)=yCzx
by (metis Tobbins sup-assoc less-eq-def
sup-comm|where z=x and y=y])

corollary less-eq-intro:

—(zU—(yU2z2)=—-(zUylU —2)=zUy=2z
by (metis less-eg-introp less-eq-def sup-comm)

16

lemma eg-intro:
—(zU-(yUz)=—-(yUu—-(zU2) =az=y
by (metis robbins sup-assoc sup-comm)

lemma copyp0:
assumes —(z U —y) = z
shows —(z U —(y Uk ® (z U 2))) ==z
using assms
proof (induct k)
case 0 show Zcase
by (simp, metis assms robbins sup-assoc sup-comm)
case Suc note ind-hyp = this
show ?case
by (simp, metis ind-hyp robbins sup-assoc sup-comm,)
qed

lemma copyp1:
assumes —(—(z U —y) U —y) =z
shows —(y Uk ® (z U —(z U —y))) = —y
using assms
proof —
let 2z =—(z U — y)
let %ky =y Uk ® (z U %2)
have —(z U —%ky) = %z by (simp add: copyp0)
hence —(— %y U —(—y U %2)) = 2z by (metis assms sup-comm)
also have —(%z U —?ky) = x by (metis assms copyp0 sup-comm)
hence 72 = —(—y U —(— %y U %2)) by (metis sup-comm,)
finally show ?thesis by (metis eq-intro)
qed

corollary copyp?2:
assumes —(z U y) = —y
shows —(y Uk ® (z U —(z U —y))) = —y
by (metis assms robbins sup-comm copypl)

lemma two-threep:
assumes —(2 X z U y) = —y
and —(3 x z U y) = —y
shows 2 x zUy=8 xzUy
using assms
proof —
from assms two three have
A: —(x Uz UJy)=—yand
B:—(zUzUxUy)=—y by simpt+
with sup-assoc
copyp2[where z=z and y=z U z U y and k=0)]
have —(z U2z Uy Uz U —(z U —y)) = —y by simp
moreover
from sup-comm sup-assoc A B

17

copyp2|[where z=x U z and y=y and k=0]
have —(y Uz Uz U —(z Uz U —y)) = —y by fastforce
with sup-comm sup-assoc
have —(z U2z Uy U —(z U (z U —y))) = —y by metis
ultimately have
—(zUzUyU—(zU(zU—-y)=—(zUzUyUzU —(zU —y)) by simp
with less-eg-intro have x U z U y = z U =z U y U z by metis
with sup-comm sup-assoc two three show ?thesis by metis
qed

lemma two-three:
assumes —(z U y) = —yV —(—(z U —y) U —y) =2
shows yU 2 x (zU —(zU —y)=yU3 x (zU—(zU—y))
(isy U 722 = y U 223)
using assms
proof
assume —(z Ll y) = —y
with copyp2|[where k=Suc(0)]
copyp2[where k=Suc(Suc(0))]
two three
have —(y U 722) = —y and —(y U %23) = —y by simp+
with two-threep sup-comm show ?thesis by metis
next
assume —(—(z U —y) U —y) =z
with copyp! [where k=Suc(0)]
copyp1[where k=Suc(Suc(0))]
two three
have —(y U 222) = —y and —(y U ?23) = —y by simp+
with two-threep sup-comm show ?thesis by metis
qed

lemma sup-idem: o Ll o = p
proof —
from winkerr two
copyp2|where z=a and y=p3 and k=Suc(0)] have
—B=—-(BU2x(aU—(aU—=p))) by simp
also from copy-distrib sup-assoc have
o=—BU2xal?2x (—(aU—=p))) by simp
also from sup-assoc secret-objects-def two
multi-winker[where k=2] have
... = =0 by metis
finally have — 8 = —§ by simp
with secret-object4-def sup-assoc three have
dU —(ald—=0)=pU3 x (—(aU —p5)) by simp
also from copy-distribjwhere k=3]
multi-winker[where k=3]
sup-assoc have
.= U38 x (aU—(aU —p)) by metis
also from winker sup-comm two-three[where z=« and y=p] have

18

.=0U2 x (aU—(alU —p)) by fastforce
also from copy-distribjwhere k=2]
multi-winker[where k=2]
sup-assoc two secret-object/-def have
... = ¢ by metis
finally have ©: 6 U —(a U —¢§) = § by simp
from secret-objects-def winkerr sup-assoc have
a U éd = 4§ by metis
hence § U a = § by (metis sup-comm)
hence —(—(d U —0) U —0) = —=(—(d U (e U —=4)) U =6) by (metis sup-assoc)
also from © have
=== U (alU=9d) U —(6U—(alU=9))) by metis
also from robbins have
... = 6 by metis
finally have —(—(§ U —4) U —0) = § by simp
with two-three[where z=§ and y=/]
secret-object5-def sup-comm
have 8 x y U §d = 2 x v U J by fastforce
with secret-object5-def sup-assoc sup-comm have
3 X yU~y=2 x U~ by fastforce
with two three four five six have
6 X v=38 X v by simp
moreover have 8 + 3 = (6::nat) and 3 # (0::nat) by arith+
moreover note copy-arithjwhere k=3 and /=3 and z=+]
winker-object-def three
ultimately show ?thesis by simp
qged

lemma sup-ident: x Ll 11 =z
proof —
have I: o = —(—p U L1)
by (metis fake-bot-def inf-eq robbins sup-comm sup-idem)

{fixzhave z = —(—(z U —p U L 1) U —(z U 9))
by (metis I robbins sup-assoc) }
note II = this

have III: —p = —(—(o U —p U —p) U o)
by (metis robbins|[where z=—p and y=p U —¢]
I sup-comm fake-bot-def)
hence ¢ = —(—(¢ U —o U —0) U —o)
by (metis robbins[where z=p and y=p U —p U —g]
sup-comm|where z=p and y=—(o LU —p U —p)]
sup-assoc sup-idem)
hence —(p U —p U —p) = L1
by (metis robbinsjwhere z=—(p U —p U —p) and y=o]
IIT sup-comm fake-bot-def)

19

hence —p= —(p U L1)
by (metis III sup-comm)
hence p = —(—(pU LL) U —(p U LL U —p))
by (metis II sup-idem sup-comm sup-assoc)
moreover have p Ll L1 = —(—(pU L1) U —(o U LL U —p))
by (metis robbins[where z=p U 1 | and y=)|
sup-comm|where y=g|
sup-assoc sup-idem)
ultimately have o = o LI L 1 by auto
hencez U 11l =—(—(zU o) U —(zULLU—p))
by (metis robbinsjwhere z=z LI L1 and y=g)
sup-comm|where z=_1_1 and y=g]
sup-assoc)
thus ?thesis by (metis sup-assoc sup-comm. IT)
qed

lemma dbl-neg: — (—z) = x
proof —
{ fix z have L1 = —(—z U —(—1))
by (metis robbins sup-comm sup-ident)
} note I = this

{ fix z have —z = —(—(—2z U —(—(—12))))
by (metis I robbins sup-comm. sup-ident)
} note II = this

{ fix z have —(—(—-z)) = —(=(-z U —(=(=1))))
by (metis I II robbins sup-assoc sup-comm sup-ident)
} note IIT = this

show ?thesis by (metis II III robbins)
qed

theorem robbins-is-huntington:
class.huntington-algebra uminus (M) (W) L T

apply unfold-locales

apply (metis dbl-neg robbins sup-comm)

done

theorem robbins-is-boolean-II:
class.boolean-algebra-1I uminus (M) (W) L T
proof —
interpret huntington:
huntington-algebra uminus (M) (U) L T
by (fact robbins-is-huntington)

20

show ?thesis by (simp add: huntington.huntington-is-boolean-1I)
qed

theorem robbins-is-boolean:

class.boolean-algebra minus uminus (M) (C) (C) (U) L T
proof —

interpret huntington:

huntington-algebra uminus (M) (U) L T
by (fact robbins-is-huntington)

show ?thesis by (simp add: huntington.huntington-is-boolean)

qged

end

no-notation secret-object! (1))
and secret-object?2 (<)
and secret-object3 (<f)
and secret-object] (<0»)
and secret-objects (<y»)
and winker-object (<)
and less-eq (infix () 50)
and less (infix <C» 50)
and inf (infix]l <> 70)
and sup (infixl <L» 65)
and top («T»)
and bot («L»)
and copyp (infix «®> 80)
and copy (infix <x» 85)

notation
Product-Type. Times (infixr <x> 80)

end

21

	Robbins Conjecture
	Axiom Systems
	Common Algebras
	Boolean Algebra
	Huntington's Algebra
	Robbins' Algebra

	Equivalence
	Boolean Algebra
	Huntington Algebra
	Robbins' Algebra

