
Risk-Free Lending

Matthew Doty

March 17, 2025

Abstract
We construct an abstract ledger supporting the risk-free lending

protocol. The risk-free lending protocol is a system for issuing and
exchanging novel financial products we call risk-free loans. The sys-
tem allows one party to lend money at 0% APY to another party in
exchange for a good or service. On every update of the ledger, ac-
counts have interest distributed to them. Holders of lent assets keep
interest accrued by those assets. After distributing interest, the system
returns a fixed fraction of each loan. These fixed fractions determine
loan periods. Loans for longer periods have a smaller fixed fraction
returned. Loans may be re-lent or used as collateral for other loans.
We give a sufficient criterion to enforce that all accounts will forever
be solvent. We give a protocol for maintaining this invariant when
transferring or lending funds. We also show that this invariant holds
after an update. Even though the system does not track counter-party
obligations, we show that all credited and debited loans cancel, and
the monetary supply grows at a specified interest rate.

Contents
1 Accounts 1

2 Strictly Solvent 3

3 Cash 4

4 Ledgers 4
4.1 Balanced Ledgers . 4
4.2 Transfers . 5
4.3 The Valid Transfers Protocol 6
4.4 Embedding Conventional Cash-Only Ledgers 6

5 Interest 8
5.1 Net Asset Value . 8

5.1.1 The Shortest Period for Credited & Debited Assets in
an Account . 8

1

5.1.2 Net Asset Value Properties 9
5.2 Distributing Interest . 10

6 Update 10
6.1 Update Preserves Ledger Balance 11
6.2 Strictly Solvent is Forever Strictly Solvent 12

7 Bulk Update 13
7.1 Decomposition . 15
7.2 Simple Transfers . 15
7.3 Closed Forms . 16

theory Risk-Free-Lending
imports

Complex-Main
HOL−Cardinals.Cardinals

begin

1 Accounts

We model accounts as functions from nat to real with finite support.

Index 0 corresponds to an account’s cash reserve (see §3 for details).

An index greater than 0 may be regarded as corresponding to a financial
product. Such financial products are similar to notes. Our notes are in-
tended to be as easy to use for exchange as cash. Positive values are debited.
Negative values are credited.

We refer to our new financial products as risk-free loans, because they may
be regarded as 0% APY loans that bear interest for the debtor. They are
risk-free because we prove a safety theorem for them. Our safety theorem
proves no account will “be in the red”, with more credited loans than debited
loans, provided an invariant is maintained. We call this invariant strictly
solvent. See §7 for details on our safety proof.

Each risk-free loan index corresponds to a progressively shorter loan period.
Informally, a loan period is the time it takes for 99% of a loan to be returned
given a rate function %. Rate functions are introduced in §6.

It is unnecessary to track counter-party obligations so we do not. See §4.1
and §4.2 for details.
typedef account = (fin-support 0 UNIV) :: (nat ⇒ real) set
〈proof 〉

The type definition for account automatically generates two functions: Rep-account
and Rep-account. Rep-account is a left inverse of Abs-account. For conve-
nience we introduce the following shorthand notation:

2

notation Rep-account (‹π›)
notation Abs-account (‹ι›)

Accounts form an Abelian group. Summing accounts will be helpful in
expressing how all credited and debited loans can cancel across a ledger.
This is done in §4.1.

It is also helpful to think of an account as a transferable quantity. Trans-
ferring subtracts values under indexes from one account and adds them to
another. Transfers are presented in §4.2.
instantiation account :: ab-group-add
begin

definition 0 = ι (λ - . 0)
definition − α = ι (λ n . − π α n)
definition α1 + α2 = ι (λ n. π α1 n + π α2 n)
definition (α1 :: account) − α2 = α1 + − α2

lemma Rep-account-zero [simp]: π 0 = (λ - . 0)
〈proof 〉

lemma Rep-account-uminus [simp]:
π (− α) = (λ n . − π α n)
〈proof 〉

lemma fin-support-closed-under-addition:
fixes f g :: ′a ⇒ real
assumes f ∈ fin-support 0 A
and g ∈ fin-support 0 A
shows (λ x . f x + g x) ∈ fin-support 0 A
〈proof 〉

lemma Rep-account-plus [simp]:
π (α1 + α2) = (λ n. π α1 n + π α2 n)
〈proof 〉

instance
〈proof 〉

end

2 Strictly Solvent

An account is strictly solvent when, for every loan period, the sum of all the
debited and credited loans for longer periods is positive. This implies that
the net asset value for the account is positive. The net asset value is the
sum of all of the credit and debit in the account. We prove strictly-solvent
α =⇒ 0 ≤ net-asset-value α in §5.1.2.

3

definition strictly-solvent :: account ⇒ bool where
strictly-solvent α ≡ ∀ n . 0 ≤ (

∑
i≤n . π α i)

lemma additive-strictly-solvent:
assumes strictly-solvent α1 and strictly-solvent α2

shows strictly-solvent (α1 + α2)
〈proof 〉

The notion of strictly solvent generalizes to a partial order, making account
an ordered Abelian group.
instantiation account :: ordered-ab-group-add
begin

definition less-eq-account :: account ⇒ account ⇒ bool where
less-eq-account α1 α2 ≡ ∀ n . (

∑
i≤n . π α1 i) ≤ (

∑
i≤n . π α2 i)

definition less-account :: account ⇒ account ⇒ bool where
less-account α1 α2 ≡ (α1 ≤ α2 ∧ ¬ α2 ≤ α1)

instance
〈proof 〉
end

An account is strictly solvent exactly when it is greater than or equal to 0,
according to the partial order just defined.
lemma strictly-solvent-alt-def : strictly-solvent α = (0 ≤ α)
〈proof 〉

3 Cash

The cash reserve in an account is the value under index 0.

Cash is treated with distinction. For instance it grows with interest (see §5).
When we turn to balanced ledgers in §4.1, we will see that cash is the only
quantity that does not cancel out.
definition cash-reserve :: account ⇒ real where

cash-reserve α = π α 0

If α is strictly solvent then it has non-negative cash reserves.
lemma strictly-solvent-non-negative-cash:

assumes strictly-solvent α
shows 0 ≤ cash-reserve α
〈proof 〉

An account consists of just cash when it has no other credit or debit other
than under the first index.
definition just-cash :: real ⇒ account where

4

just-cash c = ι (λ n . if n = 0 then c else 0)

lemma Rep-account-just-cash [simp]:
π (just-cash c) = (λ n . if n = 0 then c else 0)
〈proof 〉

4 Ledgers

We model a ledger as a function from an index type ′a to an account. A
ledger could be thought of as an indexed set of accounts.
type-synonym ′a ledger = ′a ⇒ account

4.1 Balanced Ledgers

We say a ledger is balanced when all of the debited and credited loans cancel,
and all that is left is just cash.

Conceptually, given a balanced ledger we are justified in not tracking counter-
party obligations.
definition (in finite) balanced :: ′a ledger ⇒ real ⇒ bool where

balanced L c ≡ (
∑

a ∈ UNIV . L a) = just-cash c

Provided the total cash is non-negative, a balanced ledger is a special case
of a ledger which is globally strictly solvent.
lemma balanced-strictly-solvent:

assumes 0 ≤ c and balanced L c
shows strictly-solvent (

∑
a ∈ UNIV . L a)

〈proof 〉

lemma (in finite) finite-Rep-account-ledger [simp]:
π (

∑
a ∈ (A :: ′a set). L a) n = (

∑
a ∈ A. π (L a) n)

〈proof 〉

An alternate definition of balanced is that the cash-reserve for each account
sums to c, and all of the other credited and debited assets cancels out.
lemma (in finite) balanced-alt-def :

balanced L c =
((
∑

a ∈ UNIV . cash-reserve (L a)) = c
∧ (∀ n > 0 . (

∑
a ∈ UNIV . π (L a) n) = 0))

(is ?lhs = ?rhs)
〈proof 〉

4.2 Transfers

A transfer amount is the same as an account. It is just a function from nat
to real with finite support.

5

type-synonym transfer-amount = account

When transferring between accounts in a ledger we make use of the Abelian
group operations defined in §1.
definition transfer :: ′a ledger ⇒ transfer-amount ⇒ ′a ⇒ ′a ⇒ ′a ledger where

transfer L τ a b x = (if a = b then L x
else if x = a then L a − τ
else if x = b then L b + τ
else L x)

Transferring from an account to itself is a no-op.
lemma transfer-collapse:

transfer L τ a a = L
〈proof 〉

After a transfer, the sum totals of all credited and debited assets are pre-
served.
lemma (in finite) sum-transfer-equiv:

fixes x y :: ′a
shows (

∑
a ∈ UNIV . L a) = (

∑
a ∈ UNIV . transfer L τ x y a)

(is - = (
∑

a ∈ UNIV . ?L ′ a))
〈proof 〉

Since the sum totals of all credited and debited assets are preserved after
transfer, a ledger is balanced if and only if it is balanced after transfer.
lemma (in finite) balanced-transfer :

balanced L c = balanced (transfer L τ a b) c
〈proof 〉

Similarly, the sum total of a ledger is strictly solvent if and only if it is
strictly solvent after transfer.
lemma (in finite) strictly-solvent-transfer :

fixes x y :: ′a
shows strictly-solvent (

∑
a ∈ UNIV . L a) =

strictly-solvent (
∑

a ∈ UNIV . transfer L τ x y a)
〈proof 〉

4.3 The Valid Transfers Protocol

In this section we give a protocol for safely transferring value from one ac-
count to another.

We enforce that every transfer is valid. Valid transfers are intended to be
intuitive. For instance one cannot transfer negative cash. Nor is it possible
for an account that only has $50 to loan out $5,000,000.

A transfer is valid just in case the transfer-amount is strictly solvent and
the account being credited the transfer will be strictly solvent afterwards.

6

definition valid-transfer :: account ⇒ transfer-amount ⇒ bool where
valid-transfer α τ = (strictly-solvent τ ∧ strictly-solvent (α − τ))

lemma valid-transfer-alt-def : valid-transfer α τ = (0 ≤ τ ∧ τ ≤ α)
〈proof 〉

Only strictly solvent accounts can make valid transfers to begin with.
lemma only-strictly-solvent-accounts-can-transfer :

assumes valid-transfer α τ
shows strictly-solvent α
〈proof 〉

We may now give a key result: accounts remain strictly solvent given a valid
transfer.
theorem strictly-solvent-still-strictly-solvent-after-valid-transfer :

assumes valid-transfer (L a) τ
and strictly-solvent (L b)
shows

strictly-solvent ((transfer L τ a b) a)
strictly-solvent ((transfer L τ a b) b)
〈proof 〉

4.4 Embedding Conventional Cash-Only Ledgers

We show that in a sense the ledgers presented generalize conventional ledgers
which only track cash.

An account consisting of just cash is strictly solvent if and only if it consists
of a non-negative amount of cash.
lemma strictly-solvent-just-cash-equiv:

strictly-solvent (just-cash c) = (0 ≤ c)
〈proof 〉

An empty account corresponds to 0 ; the account with no cash or debit or
credit.
lemma zero-account-alt-def : just-cash 0 = 0
〈proof 〉

Building on just-cash 0 = 0, we have that just-cash is an embedding into an
ordered subgroup. This means that just-cash is an order-preserving group
homomorphism from the reals to the universe of accounts.
lemma just-cash-embed: (a = b) = (just-cash a = just-cash b)
〈proof 〉

lemma partial-nav-just-cash [simp]:
(
∑

i≤n . π (just-cash a) i) = a
〈proof 〉

7

lemma just-cash-order-embed: (a ≤ b) = (just-cash a ≤ just-cash b)
〈proof 〉

lemma just-cash-plus [simp]: just-cash a + just-cash b = just-cash (a + b)
〈proof 〉

lemma just-cash-uminus [simp]: − just-cash a = just-cash (− a)
〈proof 〉

lemma just-cash-subtract [simp]:
just-cash a − just-cash b = just-cash (a − b)
〈proof 〉

Valid transfers as per valid-transfer ?α ?τ = (0 ≤ ?τ ∧ ?τ ≤ ?α) collapse
into inequalities over the real numbers.
lemma just-cash-valid-transfer :

valid-transfer (just-cash c) (just-cash t) = ((0 :: real) ≤ t ∧ t ≤ c)
〈proof 〉

Finally a ledger consisting of accounts with only cash is trivially balanced.
lemma (in finite) just-cash-summation:

fixes A :: ′a set
assumes ∀ a ∈ A. ∃ c . L a = just-cash c
shows ∃ c . (

∑
a ∈ A . L a) = just-cash c

〈proof 〉

lemma (in finite) just-cash-UNIV-is-balanced:
assumes ∀ a . ∃ c . L a = just-cash c
shows ∃ c . balanced L c
〈proof 〉

5 Interest

In this section we discuss how to calculate the interest accrued by an account
for a period. This is done by looking at the sum of all of the credit and debit
in an account. This sum is called the net asset value of an account.

5.1 Net Asset Value

The net asset value of an account is the sum of all of the non-zero entries.
Since accounts have finite support this sum is always well defined.
definition net-asset-value :: account ⇒ real where

net-asset-value α = (
∑

i | π α i 6= 0 . π α i)

8

5.1.1 The Shortest Period for Credited & Debited Assets in an
Account

Higher indexes for an account correspond to shorter loan periods. Since
accounts only have a finite number of entries, it makes sense to talk about
the shortest period an account has an entry for. The net asset value for an
account has a simpler expression in terms of that account’s shortest period.
definition shortest-period :: account ⇒ nat where

shortest-period α =
(if (∀ i. π α i = 0)
then 0
else Max {i . π α i 6= 0})

lemma shortest-period-uminus:
shortest-period (− α) = shortest-period α
〈proof 〉

lemma finite-account-support:
finite {i . π α i 6= 0}
〈proof 〉

lemma shortest-period-plus:
shortest-period (α + β) ≤ max (shortest-period α) (shortest-period β)
(is - ≤ ?MAX)
〈proof 〉

lemma shortest-period-π:
assumes π α i 6= 0
shows π α (shortest-period α) 6= 0
〈proof 〉

lemma shortest-period-bound:
assumes π α i 6= 0
shows i ≤ shortest-period α
〈proof 〉

Using shortest-period we may give an alternate definition for net-asset-value.
lemma net-asset-value-alt-def :

net-asset-value α = (
∑

i ≤ shortest-period α. π α i)
〈proof 〉

lemma greater-than-shortest-period-zero:
assumes shortest-period α < m
shows π α m = 0
〈proof 〉

An account’s net-asset-value does not change when summing beyond its
shortest-period. This is helpful when computing aggregate net asset values
across multiple accounts.

9

lemma net-asset-value-shortest-period-ge:
assumes shortest-period α ≤ n
shows net-asset-value α = (

∑
i ≤ n. π α i)

〈proof 〉

5.1.2 Net Asset Value Properties

In this section we explore how net-asset-value forms an order-preserving
group homomorphism from the universe of accounts to the real numbers.

We first observe that strictly-solvent implies the more conventional notion
of solvent, where an account’s net asset value is non-negative.
lemma strictly-solvent-net-asset-value:

assumes strictly-solvent α
shows 0 ≤ net-asset-value α
〈proof 〉

Next we observe that net-asset-value is a order preserving group homomor-
phism from the universe of accounts to real.
lemma net-asset-value-zero [simp]: net-asset-value 0 = 0
〈proof 〉

lemma net-asset-value-mono:
assumes α ≤ β
shows net-asset-value α ≤ net-asset-value β
〈proof 〉

lemma net-asset-value-uminus: net-asset-value (− α) = − net-asset-value α
〈proof 〉

lemma net-asset-value-plus:
net-asset-value (α + β) = net-asset-value α + net-asset-value β
(is ?lhs = ?Σα + ?Σβ)
〈proof 〉

lemma net-asset-value-minus:
net-asset-value (α − β) = net-asset-value α − net-asset-value β
〈proof 〉

Finally we observe that just-cash is the right inverse of net-asset-value.
lemma net-asset-value-just-cash-left-inverse:

net-asset-value (just-cash c) = c
〈proof 〉

5.2 Distributing Interest

We next show that the total interest accrued for a ledger at distribution
does not change when one account makes a transfer to another.

10

definition (in finite) total-interest :: ′a ledger ⇒ real ⇒ real
where total-interest L i = (

∑
a ∈ UNIV . i ∗ net-asset-value (L a))

lemma (in finite) total-interest-transfer :
total-interest (transfer L τ a b) i = total-interest L i
(is total-interest ?L ′ i = -)
〈proof 〉

6 Update

Periodically the ledger is updated. When this happens interest is distributed
and loans are returned. Each time loans are returned, a fixed fraction of
each loan for each period is returned.

The fixed fraction for returned loans is given by a rate function. We denote
rate functions with %::nat ⇒ real. In principle this function obeys the rules:

• % 0 = 0 – Cash is not returned.

• ∀n. % n < 1 – The fraction of a loan returned never exceeds 1.

• ∀n m. n < m −→ % n < % m – Higher indexes correspond to shorter
loan periods. This in turn corresponds to a higher fraction of loans
returned at update for higher indexes.

In practice, rate functions determine the time it takes for 99% of the loan to
be returned. However, the presentation here abstracts away from time. In
§7.3 we establish a closed form for updating. This permits for a production
implementation to efficiently (albeit lazily) update ever millisecond if so
desired.
definition return-loans :: (nat ⇒ real) ⇒ account ⇒ account where

return-loans % α = ι (λ n . (1 − % n) ∗ π α n)

lemma Rep-account-return-loans [simp]:
π (return-loans % α) = (λ n . (1 − % n) ∗ π α n)
〈proof 〉

As discussed, updating an account involves distributing interest and return-
ing its credited and debited loans.
definition update-account :: (nat ⇒ real) ⇒ real ⇒ account ⇒ account where

update-account % i α = just-cash (i ∗ net-asset-value α) + return-loans % α

definition update-ledger :: (nat ⇒ real) ⇒ real ⇒ ′a ledger ⇒ ′a ledger
where

update-ledger % i L a = update-account % i (L a)

11

6.1 Update Preserves Ledger Balance

A key theorem is that if all credit and debit in a ledger cancel, they will
continue to cancel after update. In this sense the monetary supply grows
with the interest rate, but is otherwise conserved.

A consequence of this theorem is that while counter-party obligations are
not explicitly tracked by the ledger, these obligations are fulfilled as funds
are returned by the protocol.
definition shortest-ledger-period :: ′a ledger ⇒ nat where

shortest-ledger-period L = Max (image shortest-period (range L))

lemma (in finite) shortest-ledger-period-bound:
fixes L :: ′a ledger
shows shortest-period (L a) ≤ shortest-ledger-period L
〈proof 〉

theorem (in finite) update-balanced:
assumes % 0 = 0 and ∀n. % n < 1 and 0 ≤ i
shows balanced L c = balanced (update-ledger % i L) ((1 + i) ∗ c)
(is - = balanced ?L ′ ((1 + i) ∗ c))

〈proof 〉

6.2 Strictly Solvent is Forever Strictly Solvent

The final theorem presented in this section is that if an account is strictly
solvent, it will still be strictly solvent after update.

This theorem is the key to how the system avoids counter party risk. Pro-
vided the system enforces that all accounts are strictly solvent and transfers
are valid (as discussed in §4.2), all accounts will remain strictly solvent for-
ever.

We first prove that return-loans is a group homomorphism.

It is order preserving given certain assumptions.
lemma return-loans-plus:

return-loans % (α + β) = return-loans % α + return-loans % β
〈proof 〉

lemma return-loans-zero [simp]: return-loans % 0 = 0
〈proof 〉

lemma return-loans-uminus: return-loans % (− α) = − return-loans % α
〈proof 〉

lemma return-loans-subtract:
return-loans % (α − β) = return-loans % α − return-loans % β

12

〈proof 〉

As presented in §1, each index corresponds to a progressively shorter loan
period. This is captured by a monotonicity assumption on the rate function
%::nat ⇒ real. In particular, provided ∀n. % n < 1 and ∀n m. n < m −→
% n < % m then we know that all outstanding credit is going away faster
than loans debited for longer periods.

Given the monotonicity assumptions for a rate function %::nat ⇒ real, we
may in turn prove monotonicity for return-loans over (≤)::account ⇒ ac-
count ⇒ bool.
lemma return-loans-mono:

assumes ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows return-loans % α ≤ return-loans % β
〈proof 〉

lemma return-loans-just-cash:
assumes % 0 = 0
shows return-loans % (just-cash c) = just-cash c
〈proof 〉

lemma distribute-interest-plus:
just-cash (i ∗ net-asset-value (α + β)) =

just-cash (i ∗ net-asset-value α) +
just-cash (i ∗ net-asset-value β)

〈proof 〉

We now prove that update-account is an order-preserving group homomor-
phism just as just-cash, net-asset-value, and return-loans are.
lemma update-account-plus:

update-account % i (α + β) =
update-account % i α + update-account % i β

〈proof 〉

lemma update-account-zero [simp]: update-account % i 0 = 0
〈proof 〉

lemma update-account-uminus:
update-account % i (−α) = − update-account % i α
〈proof 〉

lemma update-account-subtract:
update-account % i (α − β) =

update-account % i α − update-account % i β
〈proof 〉

13

lemma update-account-mono:
assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows update-account % i α ≤ update-account % i β
〈proof 〉

It follows from monotonicity and update-account % i 0 = 0 that strictly
solvent accounts remain strictly solvent after update.
lemma update-preserves-strictly-solvent:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and strictly-solvent α
shows strictly-solvent (update-account % i α)
〈proof 〉

7 Bulk Update

In this section we demonstrate there exists a closed form for bulk-updating
an account.
primrec bulk-update-account ::

nat ⇒ (nat ⇒ real) ⇒ real ⇒ account ⇒ account
where
bulk-update-account 0 - - α = α
| bulk-update-account (Suc n) % i α =

update-account % i (bulk-update-account n % i α)

As with update-account, bulk-update-account is an order-preserving group
homomorphism.

We now prove that update-account is an order-preserving group homomor-
phism just as just-cash, net-asset-value, and return-loans are.
lemma bulk-update-account-plus:

bulk-update-account n % i (α + β) =
bulk-update-account n % i α + bulk-update-account n % i β

〈proof 〉

lemma bulk-update-account-zero [simp]: bulk-update-account n % i 0 = 0
〈proof 〉

lemma bulk-update-account-uminus:
bulk-update-account n % i (−α) = − bulk-update-account n % i α
〈proof 〉

14

lemma bulk-update-account-subtract:
bulk-update-account n % i (α − β) =

bulk-update-account n % i α − bulk-update-account n % i β
〈proof 〉

lemma bulk-update-account-mono:
assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows bulk-update-account n % i α ≤ bulk-update-account n % i β
〈proof 〉

In follows from the fact that bulk-update-account is an order-preserving
group homomorphism that the update protocol is safe. Informally this
means that provided we enforce every account is strictly solvent then no
account will ever have negative net asset value (ie, be in the red).
theorem bulk-update-safety:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and strictly-solvent α
shows 0 ≤ net-asset-value (bulk-update-account n % i α)
〈proof 〉

7.1 Decomposition

In order to express bulk-update-account using a closed formulation, we first
demonstrate how to decompose an account into a summation of credited and
debited loans for different periods.
definition loan :: nat ⇒ real ⇒ account (‹δ›)

where
δ n x = ι (λ m . if n = m then x else 0)

lemma loan-just-cash: δ 0 c = just-cash c
〈proof 〉

lemma Rep-account-loan [simp]:
π (δ n x) = (λ m . if n = m then x else 0)
〈proof 〉

lemma loan-zero [simp]: δ n 0 = 0
〈proof 〉

lemma shortest-period-loan:
assumes c 6= 0
shows shortest-period (δ n c) = n
〈proof 〉

15

lemma net-asset-value-loan [simp]: net-asset-value (δ n c) = c
〈proof 〉

lemma return-loans-loan [simp]: return-loans % (δ n c) = δ n ((1 − % n) ∗ c)
〈proof 〉

lemma account-decomposition:
α = (

∑
i ≤ shortest-period α. δ i (π α i))

〈proof 〉

7.2 Simple Transfers

Building on our decomposition, we can understand the necessary and suffi-
cient conditions to transfer a loan of δ n c.

We first give a notion of the reserves for a period n. This characterizes the
available funds for a loan of period n that an account α possesses.
definition reserves-for-period :: account ⇒ nat ⇒ real where

reserves-for-period α n =
fold

min
[(
∑

i≤k . π α i) . k ← [n..<shortest-period α+1]]
(
∑

i≤n . π α i)

lemma nav-reserves-for-period:
assumes shortest-period α ≤ n
shows reserves-for-period α n = net-asset-value α
〈proof 〉

lemma reserves-for-period-exists:
∃m≥n. reserves-for-period α n = (

∑
i≤m . π α i)

∧ (∀ u≥n. (
∑

i≤m . π α i) ≤ (
∑

i≤u . π α i))
〈proof 〉

lemma permissible-loan-converse:
assumes strictly-solvent (α − δ n c)
shows c ≤ reserves-for-period α n
〈proof 〉

lemma permissible-loan:
assumes strictly-solvent α
shows strictly-solvent (α − δ n c) = (c ≤ reserves-for-period α n)
〈proof 〉

7.3 Closed Forms

We first give closed forms for loans δ n c. The simplest closed form is for
just-cash. Here the closed form is just the compound interest accrued from

16

each update.
lemma bulk-update-just-cash-closed-form:

assumes % 0 = 0
shows bulk-update-account n % i (just-cash c) =

just-cash ((1 + i) ^ n ∗ c)
〈proof 〉

lemma bulk-update-loan-closed-form:
assumes % k 6= 1
and % k > 0
and % 0 = 0
and i ≥ 0
shows bulk-update-account n % i (δ k c) =

just-cash (c ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n) / (i + % k))
+ δ k ((1 − % k) ^ n ∗ c)

〈proof 〉

We next give an algebraic closed form. This uses the ordered abelian group
that accounts form.
lemma bulk-update-algebraic-closed-form:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n < m −→ % n < % m
and % 0 = 0
shows bulk-update-account n % i α

= just-cash (
(1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
k = 1 ..shortest-period α.

(π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n)
/ (i + % k))

)
+ (

∑
k = 1 ..shortest-period α. δ k ((1 − % k) ^ n ∗ π α k))

〈proof 〉

We finally give a functional closed form for bulk updating an account. Since
the form is in terms of exponentiation, we may efficiently compute the bulk
update output using exponentiation-by-squaring.
theorem bulk-update-closed-form:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n < m −→ % n < % m
and % 0 = 0
shows bulk-update-account n % i α

= ι (λ k .
if k = 0 then
(1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
j = 1 ..shortest-period α.

(π α j) ∗ i ∗ ((1 + i) ^ n − (1 − % j) ^ n)

17

/ (i + % j))
else
(1 − % k) ^ n ∗ π α k

)
(is - = ι ?ν)
〈proof 〉

end

18

	Accounts
	Strictly Solvent
	Cash
	Ledgers
	Balanced Ledgers
	Transfers
	The Valid Transfers Protocol
	Embedding Conventional Cash-Only Ledgers

	Interest
	Net Asset Value
	The Shortest Period for Credited & Debited Assets in an Account
	Net Asset Value Properties

	Distributing Interest

	Update
	Update Preserves Ledger Balance
	Strictly Solvent is Forever Strictly Solvent

	Bulk Update
	Decomposition
	Simple Transfers
	Closed Forms

