
Risk-Free Lending

Matthew Doty

March 17, 2025

Abstract
We construct an abstract ledger supporting the risk-free lending

protocol. The risk-free lending protocol is a system for issuing and
exchanging novel financial products we call risk-free loans. The sys-
tem allows one party to lend money at 0% APY to another party in
exchange for a good or service. On every update of the ledger, ac-
counts have interest distributed to them. Holders of lent assets keep
interest accrued by those assets. After distributing interest, the system
returns a fixed fraction of each loan. These fixed fractions determine
loan periods. Loans for longer periods have a smaller fixed fraction
returned. Loans may be re-lent or used as collateral for other loans.
We give a sufficient criterion to enforce that all accounts will forever
be solvent. We give a protocol for maintaining this invariant when
transferring or lending funds. We also show that this invariant holds
after an update. Even though the system does not track counter-party
obligations, we show that all credited and debited loans cancel, and
the monetary supply grows at a specified interest rate.

Contents
1 Accounts 1

2 Strictly Solvent 4

3 Cash 6

4 Ledgers 7
4.1 Balanced Ledgers . 8
4.2 Transfers . 9
4.3 The Valid Transfers Protocol 11
4.4 Embedding Conventional Cash-Only Ledgers 12

5 Interest 14
5.1 Net Asset Value . 14

5.1.1 The Shortest Period for Credited & Debited Assets in
an Account . 15

1

5.1.2 Net Asset Value Properties 19
5.2 Distributing Interest . 21

6 Update 22
6.1 Update Preserves Ledger Balance 23
6.2 Strictly Solvent is Forever Strictly Solvent 28

7 Bulk Update 32
7.1 Decomposition . 34
7.2 Simple Transfers . 36
7.3 Closed Forms . 43

theory Risk-Free-Lending
imports

Complex-Main
HOL−Cardinals.Cardinals

begin

1 Accounts

We model accounts as functions from nat to real with finite support.

Index 0 corresponds to an account’s cash reserve (see §3 for details).

An index greater than 0 may be regarded as corresponding to a financial
product. Such financial products are similar to notes. Our notes are in-
tended to be as easy to use for exchange as cash. Positive values are debited.
Negative values are credited.

We refer to our new financial products as risk-free loans, because they may
be regarded as 0% APY loans that bear interest for the debtor. They are
risk-free because we prove a safety theorem for them. Our safety theorem
proves no account will “be in the red”, with more credited loans than debited
loans, provided an invariant is maintained. We call this invariant strictly
solvent. See §7 for details on our safety proof.

Each risk-free loan index corresponds to a progressively shorter loan period.
Informally, a loan period is the time it takes for 99% of a loan to be returned
given a rate function %. Rate functions are introduced in §6.

It is unnecessary to track counter-party obligations so we do not. See §4.1
and §4.2 for details.
typedef account = (fin-support 0 UNIV) :: (nat ⇒ real) set
proof −

have (λ - . 0) ∈ fin-support 0 UNIV
unfolding fin-support-def support-def
by simp

thus ∃ x :: nat ⇒ real. x ∈ fin-support 0 UNIV by fastforce

2

qed

The type definition for account automatically generates two functions: Rep-account
and Rep-account. Rep-account is a left inverse of Abs-account. For conve-
nience we introduce the following shorthand notation:
notation Rep-account (‹π›)
notation Abs-account (‹ι›)

Accounts form an Abelian group. Summing accounts will be helpful in
expressing how all credited and debited loans can cancel across a ledger.
This is done in §4.1.

It is also helpful to think of an account as a transferable quantity. Trans-
ferring subtracts values under indexes from one account and adds them to
another. Transfers are presented in §4.2.
instantiation account :: ab-group-add
begin

definition 0 = ι (λ - . 0)
definition − α = ι (λ n . − π α n)
definition α1 + α2 = ι (λ n. π α1 n + π α2 n)
definition (α1 :: account) − α2 = α1 + − α2

lemma Rep-account-zero [simp]: π 0 = (λ - . 0)
proof −

have (λ - . 0) ∈ fin-support 0 UNIV
unfolding fin-support-def support-def
by simp

thus ?thesis
unfolding zero-account-def
using Abs-account-inverse by blast

qed

lemma Rep-account-uminus [simp]:
π (− α) = (λ n . − π α n)

proof −
have π α ∈ fin-support 0 UNIV

using Rep-account by blast
hence (λx. − π α x) ∈ fin-support 0 UNIV

unfolding fin-support-def support-def
by force

thus ?thesis
unfolding uminus-account-def
using Abs-account-inverse by blast

qed

lemma fin-support-closed-under-addition:
fixes f g :: ′a ⇒ real

3

assumes f ∈ fin-support 0 A
and g ∈ fin-support 0 A
shows (λ x . f x + g x) ∈ fin-support 0 A
using assms
unfolding fin-support-def support-def
by (metis (mono-tags) mem-Collect-eq sum.finite-Collect-op)

lemma Rep-account-plus [simp]:
π (α1 + α2) = (λ n. π α1 n + π α2 n)
unfolding plus-account-def
by (metis (full-types)

Abs-account-cases
Abs-account-inverse
fin-support-closed-under-addition)

instance
proof(standard)

fix a b c :: account
have ∀n. π (a + b) n + π c n = π a n + π (b + c) n

using Rep-account-plus plus-account-def
by auto

thus a + b + c = a + (b + c)
unfolding plus-account-def
by force

next
fix a b :: account
show a + b = b + a

unfolding plus-account-def
by (simp add: add.commute)

next
fix a :: account
show 0 + a = a

unfolding plus-account-def Rep-account-zero
by (simp add: Rep-account-inverse)

next
fix a :: account
show − a + a = 0

unfolding plus-account-def zero-account-def Rep-account-uminus
by (simp add: Abs-account-inverse)

next
fix a b :: account
show a − b = a + − b

using minus-account-def by blast
qed

end

4

2 Strictly Solvent

An account is strictly solvent when, for every loan period, the sum of all the
debited and credited loans for longer periods is positive. This implies that
the net asset value for the account is positive. The net asset value is the
sum of all of the credit and debit in the account. We prove strictly-solvent
α =⇒ 0 ≤ net-asset-value α in §5.1.2.
definition strictly-solvent :: account ⇒ bool where

strictly-solvent α ≡ ∀ n . 0 ≤ (
∑

i≤n . π α i)

lemma additive-strictly-solvent:
assumes strictly-solvent α1 and strictly-solvent α2

shows strictly-solvent (α1 + α2)
using assms Rep-account-plus
unfolding strictly-solvent-def plus-account-def
by (simp add: Abs-account-inverse sum.distrib)

The notion of strictly solvent generalizes to a partial order, making account
an ordered Abelian group.
instantiation account :: ordered-ab-group-add
begin

definition less-eq-account :: account ⇒ account ⇒ bool where
less-eq-account α1 α2 ≡ ∀ n . (

∑
i≤n . π α1 i) ≤ (

∑
i≤n . π α2 i)

definition less-account :: account ⇒ account ⇒ bool where
less-account α1 α2 ≡ (α1 ≤ α2 ∧ ¬ α2 ≤ α1)

instance
proof(standard)

fix x y :: account
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)

unfolding less-account-def ..
next

fix x :: account
show x ≤ x

unfolding less-eq-account-def by auto
next

fix x y z :: account
assume x ≤ y and y ≤ z
thus x ≤ z

unfolding less-eq-account-def
by (meson order-trans)

next
fix x y :: account
assume x ≤ y and y ≤ x
hence ?: ∀ n . (

∑
i≤n . π x i) = (

∑
i≤n . π y i)

unfolding less-eq-account-def

5

using dual-order .antisym by blast
{

fix n
have π x n = π y n
proof (cases n = 0)

case True
then show ?thesis using ?

by (metis
atMost-0
empty-iff
finite.intros(1)
group-cancel.rule0
sum.empty sum.insert)

next
case False
from this obtain m where

n = m + 1
by (metis Nat.add-0-right Suc-eq-plus1 add-eq-if)

have (
∑

i≤n . π x i) = (
∑

i≤n . π y i)
using ? by auto

hence
(
∑

i≤m . π x i) + π x n =
(
∑

i≤m . π y i) + π y n
using ‹n = m + 1 ›
by simp

moreover have (
∑

i≤m . π x i) = (
∑

i≤m . π y i)
using ? by auto

ultimately show ?thesis by linarith
qed

}
hence π x = π y by auto
thus x = y

by (metis Rep-account-inverse)
next

fix x y z :: account
assume x ≤ y
{

fix n :: nat
have
(
∑

i≤n . π (z + x) i) =
(
∑

i≤n . π z i) + (
∑

i≤n . π x i)
and
(
∑

i≤n . π (z + y) i) =
(
∑

i≤n . π z i) + (
∑

i≤n . π y i)
unfolding Rep-account-plus
by (simp add: sum.distrib)+

moreover have (
∑

i≤n . π x i) ≤ (
∑

i≤n . π y i)
using ‹x ≤ y›
unfolding less-eq-account-def by blast

6

ultimately have
(
∑

i≤n . π (z + x) i) ≤ (
∑

i≤n . π (z + y) i)
by linarith

}
thus z + x ≤ z + y

unfolding
less-eq-account-def by auto

qed
end

An account is strictly solvent exactly when it is greater than or equal to 0,
according to the partial order just defined.
lemma strictly-solvent-alt-def : strictly-solvent α = (0 ≤ α)

unfolding
strictly-solvent-def
less-eq-account-def

using zero-account-def
by force

3 Cash

The cash reserve in an account is the value under index 0.

Cash is treated with distinction. For instance it grows with interest (see §5).
When we turn to balanced ledgers in §4.1, we will see that cash is the only
quantity that does not cancel out.
definition cash-reserve :: account ⇒ real where

cash-reserve α = π α 0

If α is strictly solvent then it has non-negative cash reserves.
lemma strictly-solvent-non-negative-cash:

assumes strictly-solvent α
shows 0 ≤ cash-reserve α
using assms
unfolding strictly-solvent-def cash-reserve-def
by (metis

atMost-0
empty-iff
finite.emptyI
group-cancel.rule0
sum.empty
sum.insert)

An account consists of just cash when it has no other credit or debit other
than under the first index.
definition just-cash :: real ⇒ account where

just-cash c = ι (λ n . if n = 0 then c else 0)

7

lemma Rep-account-just-cash [simp]:
π (just-cash c) = (λ n . if n = 0 then c else 0)

proof(cases c = 0)
case True
hence just-cash c = 0

unfolding just-cash-def zero-account-def
by force

then show ?thesis
using Rep-account-zero True by force

next
case False
hence finite (support 0 UNIV (λ n :: nat . if n = 0 then c else 0))

unfolding support-def
by auto

hence (λ n :: nat . if n = 0 then c else 0) ∈ fin-support 0 UNIV
unfolding fin-support-def
by blast

then show ?thesis
unfolding just-cash-def
using Abs-account-inverse by auto

qed

4 Ledgers

We model a ledger as a function from an index type ′a to an account. A
ledger could be thought of as an indexed set of accounts.
type-synonym ′a ledger = ′a ⇒ account

4.1 Balanced Ledgers

We say a ledger is balanced when all of the debited and credited loans cancel,
and all that is left is just cash.

Conceptually, given a balanced ledger we are justified in not tracking counter-
party obligations.
definition (in finite) balanced :: ′a ledger ⇒ real ⇒ bool where

balanced L c ≡ (
∑

a ∈ UNIV . L a) = just-cash c

Provided the total cash is non-negative, a balanced ledger is a special case
of a ledger which is globally strictly solvent.
lemma balanced-strictly-solvent:

assumes 0 ≤ c and balanced L c
shows strictly-solvent (

∑
a ∈ UNIV . L a)

using assms
unfolding balanced-def strictly-solvent-def
by simp

8

lemma (in finite) finite-Rep-account-ledger [simp]:
π (

∑
a ∈ (A :: ′a set). L a) n = (

∑
a ∈ A. π (L a) n)

using finite
by (induct A rule: finite-induct, auto)

An alternate definition of balanced is that the cash-reserve for each account
sums to c, and all of the other credited and debited assets cancels out.
lemma (in finite) balanced-alt-def :

balanced L c =
((
∑

a ∈ UNIV . cash-reserve (L a)) = c
∧ (∀ n > 0 . (

∑
a ∈ UNIV . π (L a) n) = 0))

(is ?lhs = ?rhs)
proof (rule iffI)

assume ?lhs
hence (

∑
a ∈ UNIV . cash-reserve (L a)) = c

unfolding balanced-def cash-reserve-def
by (metis Rep-account-just-cash finite-Rep-account-ledger)

moreover
{

fix n :: nat
assume n > 0
with ‹?lhs› have (

∑
a ∈ UNIV . π (L a) n) = 0

unfolding balanced-def
by (metis

Rep-account-just-cash
less-nat-zero-code
finite-Rep-account-ledger)

}
ultimately show ?rhs by auto

next
assume ?rhs
have cash-reserve (just-cash c) = c

unfolding cash-reserve-def
using Rep-account-just-cash
by presburger

also have ... = (
∑

a∈UNIV . cash-reserve (L a)) using ‹?rhs› by auto
finally have

cash-reserve (
∑

a ∈ UNIV . L a) = cash-reserve (just-cash c)
unfolding cash-reserve-def
by auto

moreover
{

fix n :: nat
assume n > 0
hence π (

∑
a ∈ UNIV . L a) n = 0 using ‹?rhs› by auto

hence π (
∑

a ∈ UNIV . L a) n = π (just-cash c) n
unfolding Rep-account-just-cash using ‹n > 0 › by auto

}

9

ultimately have
∀ n . π (

∑
a ∈ UNIV . L a) n = π (just-cash c) n

unfolding cash-reserve-def
by (metis gr-zeroI)

hence π (
∑

a ∈ UNIV . L a) = π (just-cash c)
by auto

thus ?lhs
unfolding balanced-def
using Rep-account-inject
by blast

qed

4.2 Transfers

A transfer amount is the same as an account. It is just a function from nat
to real with finite support.
type-synonym transfer-amount = account

When transferring between accounts in a ledger we make use of the Abelian
group operations defined in §1.
definition transfer :: ′a ledger ⇒ transfer-amount ⇒ ′a ⇒ ′a ⇒ ′a ledger where

transfer L τ a b x = (if a = b then L x
else if x = a then L a − τ
else if x = b then L b + τ
else L x)

Transferring from an account to itself is a no-op.
lemma transfer-collapse:

transfer L τ a a = L
unfolding transfer-def by auto

After a transfer, the sum totals of all credited and debited assets are pre-
served.
lemma (in finite) sum-transfer-equiv:

fixes x y :: ′a
shows (

∑
a ∈ UNIV . L a) = (

∑
a ∈ UNIV . transfer L τ x y a)

(is - = (
∑

a ∈ UNIV . ?L ′ a))
proof (cases x = y)

case True
show ?thesis

unfolding ‹x = y› transfer-collapse ..
next

case False
let ?sum-L = (

∑
a ∈ UNIV − {x,y}. L a)

let ?sum-L ′ = (
∑

a ∈ UNIV − {x,y}. ?L ′ a)
have ∀ a ∈ UNIV − {x,y}. ?L ′ a = L a

by (simp add: transfer-def)
hence ?sum-L ′ = ?sum-L

10

by (meson sum.cong)
have {x,y} ⊆ UNIV by auto
have (

∑
a ∈ UNIV . ?L ′ a) = ?sum-L ′ + (

∑
a ∈ {x,y}. ?L ′ a)

using finite-UNIV sum.subset-diff [OF ‹{x,y} ⊆ UNIV ›]
by fastforce

also have ... = ?sum-L ′ + ?L ′ x + ?L ′ y
using

‹x 6= y›
finite
Diff-empty
Diff-insert-absorb
Diff-subset
group-cancel.add1
insert-absorb
sum.subset-diff

by (simp add: insert-Diff-if)
also have ... = ?sum-L ′ + L x − τ + L y + τ

unfolding transfer-def
using ‹x 6= y›
by auto

also have ... = ?sum-L ′ + L x + L y
by simp

also have ... = ?sum-L + L x + L y
unfolding ‹?sum-L ′ = ?sum-L› ..

also have ... = ?sum-L + (
∑

a ∈ {x,y}. L a)
using

‹x 6= y›
finite
Diff-empty
Diff-insert-absorb
Diff-subset
group-cancel.add1
insert-absorb
sum.subset-diff

by (simp add: insert-Diff-if)
ultimately show ?thesis

by (metis local.finite sum.subset-diff top-greatest)
qed

Since the sum totals of all credited and debited assets are preserved after
transfer, a ledger is balanced if and only if it is balanced after transfer.
lemma (in finite) balanced-transfer :

balanced L c = balanced (transfer L τ a b) c
unfolding balanced-def
using sum-transfer-equiv
by force

Similarly, the sum total of a ledger is strictly solvent if and only if it is
strictly solvent after transfer.

11

lemma (in finite) strictly-solvent-transfer :
fixes x y :: ′a
shows strictly-solvent (

∑
a ∈ UNIV . L a) =

strictly-solvent (
∑

a ∈ UNIV . transfer L τ x y a)
using sum-transfer-equiv
by presburger

4.3 The Valid Transfers Protocol

In this section we give a protocol for safely transferring value from one ac-
count to another.

We enforce that every transfer is valid. Valid transfers are intended to be
intuitive. For instance one cannot transfer negative cash. Nor is it possible
for an account that only has $50 to loan out $5,000,000.

A transfer is valid just in case the transfer-amount is strictly solvent and
the account being credited the transfer will be strictly solvent afterwards.
definition valid-transfer :: account ⇒ transfer-amount ⇒ bool where

valid-transfer α τ = (strictly-solvent τ ∧ strictly-solvent (α − τ))

lemma valid-transfer-alt-def : valid-transfer α τ = (0 ≤ τ ∧ τ ≤ α)
unfolding valid-transfer-def strictly-solvent-alt-def
by simp

Only strictly solvent accounts can make valid transfers to begin with.
lemma only-strictly-solvent-accounts-can-transfer :

assumes valid-transfer α τ
shows strictly-solvent α
using assms
unfolding strictly-solvent-alt-def valid-transfer-alt-def
by auto

We may now give a key result: accounts remain strictly solvent given a valid
transfer.
theorem strictly-solvent-still-strictly-solvent-after-valid-transfer :

assumes valid-transfer (L a) τ
and strictly-solvent (L b)
shows

strictly-solvent ((transfer L τ a b) a)
strictly-solvent ((transfer L τ a b) b)

using assms
unfolding

strictly-solvent-alt-def
valid-transfer-alt-def
transfer-def

by (cases a = b, auto)

12

4.4 Embedding Conventional Cash-Only Ledgers

We show that in a sense the ledgers presented generalize conventional ledgers
which only track cash.

An account consisting of just cash is strictly solvent if and only if it consists
of a non-negative amount of cash.
lemma strictly-solvent-just-cash-equiv:

strictly-solvent (just-cash c) = (0 ≤ c)
unfolding strictly-solvent-def
using Rep-account-just-cash just-cash-def by force

An empty account corresponds to 0 ; the account with no cash or debit or
credit.
lemma zero-account-alt-def : just-cash 0 = 0

unfolding zero-account-def just-cash-def
by simp

Building on just-cash 0 = 0, we have that just-cash is an embedding into an
ordered subgroup. This means that just-cash is an order-preserving group
homomorphism from the reals to the universe of accounts.
lemma just-cash-embed: (a = b) = (just-cash a = just-cash b)
proof (rule iffI)

assume a = b
thus just-cash a = just-cash b

by force
next

assume just-cash a = just-cash b
hence cash-reserve (just-cash a) = cash-reserve (just-cash b)

by presburger
thus a = b

unfolding Rep-account-just-cash cash-reserve-def
by auto

qed

lemma partial-nav-just-cash [simp]:
(
∑

i≤n . π (just-cash a) i) = a
unfolding Rep-account-just-cash
by (induct n, auto)

lemma just-cash-order-embed: (a ≤ b) = (just-cash a ≤ just-cash b)
unfolding less-eq-account-def
by simp

lemma just-cash-plus [simp]: just-cash a + just-cash b = just-cash (a + b)
proof −

{
fix x

13

have π (just-cash a + just-cash b) x = π (just-cash (a + b)) x
proof (cases x = 0)

case True
then show ?thesis

using Rep-account-just-cash just-cash-def by force
next

case False
then show ?thesis by simp

qed
}
hence π (just-cash a + just-cash b) = π (just-cash (a + b))

by auto
thus ?thesis

by (metis Rep-account-inverse)
qed

lemma just-cash-uminus [simp]: − just-cash a = just-cash (− a)
proof −

{
fix x
have π (− just-cash a) x = π (just-cash (− a)) x
proof (cases x = 0)

case True
then show ?thesis

using Rep-account-just-cash just-cash-def by force
next

case False
then show ?thesis by simp

qed
}
hence π (− just-cash a) = π (just-cash (− a))

by auto
thus ?thesis

by (metis Rep-account-inverse)
qed

lemma just-cash-subtract [simp]:
just-cash a − just-cash b = just-cash (a − b)
by (simp add: minus-account-def)

Valid transfers as per valid-transfer ?α ?τ = (0 ≤ ?τ ∧ ?τ ≤ ?α) collapse
into inequalities over the real numbers.
lemma just-cash-valid-transfer :

valid-transfer (just-cash c) (just-cash t) = ((0 :: real) ≤ t ∧ t ≤ c)
unfolding valid-transfer-alt-def
by (simp add: less-eq-account-def)

Finally a ledger consisting of accounts with only cash is trivially balanced.
lemma (in finite) just-cash-summation:

14

fixes A :: ′a set
assumes ∀ a ∈ A. ∃ c . L a = just-cash c
shows ∃ c . (

∑
a ∈ A . L a) = just-cash c

using finite assms
by (induct A rule: finite-induct, auto, metis zero-account-alt-def)

lemma (in finite) just-cash-UNIV-is-balanced:
assumes ∀ a . ∃ c . L a = just-cash c
shows ∃ c . balanced L c

unfolding balanced-def
using

assms
just-cash-summation [where A=UNIV]

by simp

5 Interest

In this section we discuss how to calculate the interest accrued by an account
for a period. This is done by looking at the sum of all of the credit and debit
in an account. This sum is called the net asset value of an account.

5.1 Net Asset Value

The net asset value of an account is the sum of all of the non-zero entries.
Since accounts have finite support this sum is always well defined.
definition net-asset-value :: account ⇒ real where

net-asset-value α = (
∑

i | π α i 6= 0 . π α i)

5.1.1 The Shortest Period for Credited & Debited Assets in an
Account

Higher indexes for an account correspond to shorter loan periods. Since
accounts only have a finite number of entries, it makes sense to talk about
the shortest period an account has an entry for. The net asset value for an
account has a simpler expression in terms of that account’s shortest period.
definition shortest-period :: account ⇒ nat where

shortest-period α =
(if (∀ i. π α i = 0)
then 0
else Max {i . π α i 6= 0})

lemma shortest-period-uminus:
shortest-period (− α) = shortest-period α
unfolding shortest-period-def
using Rep-account-uminus uminus-account-def
by force

15

lemma finite-account-support:
finite {i . π α i 6= 0}

proof −
have π α ∈ fin-support 0 UNIV

by (simp add: Rep-account)
thus ?thesis

unfolding fin-support-def support-def
by fastforce

qed

lemma shortest-period-plus:
shortest-period (α + β) ≤ max (shortest-period α) (shortest-period β)
(is - ≤ ?MAX)

proof (cases ∀ i . π (α + β) i = 0)
case True
then show ?thesis unfolding shortest-period-def by auto

next
case False
have shortest-period α ≤ ?MAX and shortest-period β ≤ ?MAX

by auto
moreover
have ∀ i > shortest-period α . π α i = 0
and ∀ i > shortest-period β . π β i = 0

unfolding shortest-period-def
using finite-account-support Max.coboundedI leD Collect-cong
by auto

ultimately
have ∀ i > ?MAX . π α i = 0
and ∀ i > ?MAX . π β i = 0

by simp+
hence ∀ i > ?MAX . π (α + β) i = 0

by simp
hence ∀ i . π (α + β) i 6= 0 −→ i ≤ ?MAX

by (meson not-le)
thus ?thesis

unfolding shortest-period-def
using

finite-account-support [where α = α + β]
False

by simp
qed

lemma shortest-period-π:
assumes π α i 6= 0
shows π α (shortest-period α) 6= 0

proof −
let ?support = {i . π α i 6= 0}
have A: finite ?support

16

using finite-account-support by blast
have B: ?support 6= {} using assms by auto
have shortest-period α = Max ?support

using assms
unfolding shortest-period-def
by auto

have shortest-period α ∈ ?support
unfolding ‹shortest-period α = Max ?support›
using Max-in [OF A B] by auto

thus ?thesis
by auto

qed

lemma shortest-period-bound:
assumes π α i 6= 0
shows i ≤ shortest-period α

proof −
let ?support = {i . π α i 6= 0}
have shortest-period α = Max ?support

using assms
unfolding shortest-period-def
by auto

have shortest-period α ∈ ?support
using assms shortest-period-π by force

thus ?thesis
unfolding ‹shortest-period α = Max ?support›
by (simp add: assms finite-account-support)

qed

Using shortest-period we may give an alternate definition for net-asset-value.
lemma net-asset-value-alt-def :

net-asset-value α = (
∑

i ≤ shortest-period α. π α i)
proof −

let ?support = {i . π α i 6= 0}
{

fix k
have (

∑
i | i ≤ k ∧ π α i 6= 0 . π α i) = (

∑
i ≤ k. π α i)

proof (induct k)
case 0
thus ?case
proof (cases π α 0 = 0)

case True
then show ?thesis

by fastforce
next

case False
{

fix i
have (i ≤ 0 ∧ π α i 6= 0) = (i ≤ 0)

17

using False
by blast

}
hence (

∑
i | i ≤ 0 ∧ π α i 6= 0 . π α i) =

(
∑

i | i ≤ 0 . π α i)
by presburger

also have ... = (
∑

i ≤ 0 . π α i)
by simp

ultimately show ?thesis
by simp

qed
next

case (Suc k)
then show ?case
proof (cases π α (Suc k) = 0)

case True
{

fix i
have (i ≤ Suc k ∧ π α i 6= 0) =

(i ≤ k ∧ π α i 6= 0)
using True le-Suc-eq by blast

}
hence (

∑
i | i ≤ Suc k ∧ π α i 6= 0 . π α i) =

(
∑

i | i ≤ k ∧ π α i 6= 0 . π α i)
by presburger

also have ... = (
∑

i ≤ k. π α i)
using Suc by blast

ultimately show ?thesis using True
by simp

next
let ?A = {i . i ≤ Suc k ∧ π α i 6= 0}
let ?A ′ = {i . i ≤ k ∧ π α i 6= 0}
case False
hence ?A = {i . (i ≤ k ∧ π α i 6= 0) ∨ i = Suc k}

by auto
hence ?A = ?A ′ ∪ {i . i = Suc k}

by (simp add: Collect-disj-eq)
hence ?: ?A = ?A ′ ∪ {Suc k}

by simp
hence ♥: finite (?A ′ ∪ {Suc k})

using finite-nat-set-iff-bounded-le
by blast

hence
(
∑

i | i ≤ Suc k ∧ π α i 6= 0 . π α i) =
(
∑

i ∈ ?A ′ ∪ {Suc k}. π α i)
unfolding ?
by auto

also have ... = (
∑

i ∈ ?A ′. π α i) + (
∑

i ∈ {Suc k}. π α i)
using ♥

18

by force
also have ... = (

∑
i ∈ ?A ′. π α i) + π α (Suc k)

by simp
ultimately show ?thesis

by (simp add: Suc)
qed

qed
}
hence †:
(
∑

i | i ≤ shortest-period α ∧ π α i 6= 0 . π α i) =
(
∑

i ≤ shortest-period α. π α i)
by auto

{
fix i
have (i ≤ shortest-period α ∧ π α i 6= 0) = (π α i 6= 0)

using shortest-period-bound by blast
}
note · = this
show ?thesis

using †
unfolding · net-asset-value-def
by blast

qed

lemma greater-than-shortest-period-zero:
assumes shortest-period α < m
shows π α m = 0

proof −
let ?support = {i . π α i 6= 0}
have ∀ i ∈ ?support . i ≤ shortest-period α

by (simp add: finite-account-support shortest-period-def)
then show ?thesis

using assms
by (meson CollectI leD)

qed

An account’s net-asset-value does not change when summing beyond its
shortest-period. This is helpful when computing aggregate net asset values
across multiple accounts.
lemma net-asset-value-shortest-period-ge:

assumes shortest-period α ≤ n
shows net-asset-value α = (

∑
i ≤ n. π α i)

proof (cases shortest-period α = n)
case True
then show ?thesis

unfolding net-asset-value-alt-def by auto
next

case False
hence shortest-period α < n using assms by auto

19

hence (
∑

i=shortest-period α + 1 .. n. π α i) = 0
(is ?Σextra = 0)
using greater-than-shortest-period-zero
by auto

moreover have (
∑

i ≤ n. π α i) =
(
∑

i ≤ shortest-period α. π α i) + ?Σextra
(is ?lhs = ?Σshortest-period + -)
by (metis

‹shortest-period α < n›
Suc-eq-plus1
less-imp-add-positive
sum-up-index-split)

ultimately have ?lhs = ?Σshortest-period
by linarith

then show ?thesis
unfolding net-asset-value-alt-def by auto

qed

5.1.2 Net Asset Value Properties

In this section we explore how net-asset-value forms an order-preserving
group homomorphism from the universe of accounts to the real numbers.

We first observe that strictly-solvent implies the more conventional notion
of solvent, where an account’s net asset value is non-negative.
lemma strictly-solvent-net-asset-value:

assumes strictly-solvent α
shows 0 ≤ net-asset-value α
using assms strictly-solvent-def net-asset-value-alt-def by auto

Next we observe that net-asset-value is a order preserving group homomor-
phism from the universe of accounts to real.
lemma net-asset-value-zero [simp]: net-asset-value 0 = 0

unfolding net-asset-value-alt-def
using zero-account-def by force

lemma net-asset-value-mono:
assumes α ≤ β
shows net-asset-value α ≤ net-asset-value β

proof −
let ?r = max (shortest-period α) (shortest-period β)
have shortest-period α ≤ ?r and shortest-period β ≤ ?r by auto
hence net-asset-value α = (

∑
i ≤ ?r . π α i)

and net-asset-value β = (
∑

i ≤ ?r . π β i)
using net-asset-value-shortest-period-ge by presburger+

thus ?thesis using assms unfolding less-eq-account-def by auto
qed

20

lemma net-asset-value-uminus: net-asset-value (− α) = − net-asset-value α
unfolding

net-asset-value-alt-def
shortest-period-uminus
Rep-account-uminus

by (simp add: sum-negf)

lemma net-asset-value-plus:
net-asset-value (α + β) = net-asset-value α + net-asset-value β
(is ?lhs = ?Σα + ?Σβ)

proof −
let ?r = max (shortest-period α) (shortest-period β)
have A: shortest-period (α + β) ≤ ?r

and B: shortest-period α ≤ ?r
and C : shortest-period β ≤ ?r
using shortest-period-plus by presburger+

have ?lhs = (
∑

i ≤ ?r . π (α + β) i)
using net-asset-value-shortest-period-ge [OF A] .

also have . . . = (
∑

i ≤ ?r . π α i + π β i)
using Rep-account-plus by presburger

ultimately show ?thesis
using

net-asset-value-shortest-period-ge [OF B]
net-asset-value-shortest-period-ge [OF C]

by (simp add: sum.distrib)
qed

lemma net-asset-value-minus:
net-asset-value (α − β) = net-asset-value α − net-asset-value β
using additive.diff additive.intro net-asset-value-plus by blast

Finally we observe that just-cash is the right inverse of net-asset-value.
lemma net-asset-value-just-cash-left-inverse:

net-asset-value (just-cash c) = c
using net-asset-value-alt-def partial-nav-just-cash by presburger

5.2 Distributing Interest

We next show that the total interest accrued for a ledger at distribution
does not change when one account makes a transfer to another.
definition (in finite) total-interest :: ′a ledger ⇒ real ⇒ real

where total-interest L i = (
∑

a ∈ UNIV . i ∗ net-asset-value (L a))

lemma (in finite) total-interest-transfer :
total-interest (transfer L τ a b) i = total-interest L i
(is total-interest ?L ′ i = -)

proof (cases a = b)
case True

21

show ?thesis
unfolding ‹a = b› transfer-collapse ..

next
case False
have total-interest ?L ′ i = (

∑
a ∈ UNIV . i ∗ net-asset-value (?L ′ a))

unfolding total-interest-def ..
also have . . . = (

∑
a ∈ UNIV − {a, b} ∪ {a,b}. i ∗ net-asset-value (?L ′ a))

by (metis Un-Diff-cancel2 Un-UNIV-left)
also have . . . = (

∑
a ∈ UNIV − {a, b}. i ∗ net-asset-value (?L ′ a)) +

i ∗ net-asset-value (?L ′ a) + i ∗ net-asset-value (?L ′ b)
(is - = ?Σ + - + -)
using ‹a 6= b›
by simp

also have . . . = ?Σ +
i ∗ net-asset-value (L a − τ) +
i ∗ net-asset-value (L b + τ)

unfolding transfer-def
using ‹a 6= b›
by auto

also have . . . = ?Σ +
i ∗ net-asset-value (L a) +
i ∗ net-asset-value (− τ) +
i ∗ net-asset-value (L b) +
i ∗ net-asset-value τ

unfolding minus-account-def net-asset-value-plus
by (simp add: distrib-left)

also have . . . = ?Σ +
i ∗ net-asset-value (L a) +
i ∗ net-asset-value (L b)

unfolding net-asset-value-uminus
by linarith

also have . . . = (
∑

a ∈ UNIV − {a, b}. i ∗ net-asset-value (L a)) +
i ∗ net-asset-value (L a) +
i ∗ net-asset-value (L b)

unfolding transfer-def
using ‹a 6= b›
by force

also have . . . = (
∑

a ∈ UNIV − {a, b} ∪ {a,b}. i ∗ net-asset-value (L a))
using ‹a 6= b› by force

ultimately show ?thesis
unfolding total-interest-def
by (metis Diff-partition Un-commute top-greatest)

qed

6 Update

Periodically the ledger is updated. When this happens interest is distributed
and loans are returned. Each time loans are returned, a fixed fraction of

22

each loan for each period is returned.

The fixed fraction for returned loans is given by a rate function. We denote
rate functions with %::nat ⇒ real. In principle this function obeys the rules:

• % 0 = 0 – Cash is not returned.

• ∀n. % n < 1 – The fraction of a loan returned never exceeds 1.

• ∀n m. n < m −→ % n < % m – Higher indexes correspond to shorter
loan periods. This in turn corresponds to a higher fraction of loans
returned at update for higher indexes.

In practice, rate functions determine the time it takes for 99% of the loan to
be returned. However, the presentation here abstracts away from time. In
§7.3 we establish a closed form for updating. This permits for a production
implementation to efficiently (albeit lazily) update ever millisecond if so
desired.
definition return-loans :: (nat ⇒ real) ⇒ account ⇒ account where

return-loans % α = ι (λ n . (1 − % n) ∗ π α n)

lemma Rep-account-return-loans [simp]:
π (return-loans % α) = (λ n . (1 − % n) ∗ π α n)

proof −
have (support 0 UNIV (λ n . (1 − % n) ∗ π α n)) ⊆

(support 0 UNIV (π α))
unfolding support-def
by (simp add: Collect-mono)

moreover have finite (support 0 UNIV (π α))
using Rep-account
unfolding fin-support-def by auto

ultimately have finite (support 0 UNIV (λ n . (1 − % n) ∗ π α n))
using infinite-super by blast

hence (λ n . (1 − % n) ∗ π α n) ∈ fin-support 0 UNIV
unfolding fin-support-def by auto

thus ?thesis
using

Rep-account
Abs-account-inject
Rep-account-inverse
return-loans-def

by auto
qed

As discussed, updating an account involves distributing interest and return-
ing its credited and debited loans.
definition update-account :: (nat ⇒ real) ⇒ real ⇒ account ⇒ account where

23

update-account % i α = just-cash (i ∗ net-asset-value α) + return-loans % α

definition update-ledger :: (nat ⇒ real) ⇒ real ⇒ ′a ledger ⇒ ′a ledger
where

update-ledger % i L a = update-account % i (L a)

6.1 Update Preserves Ledger Balance

A key theorem is that if all credit and debit in a ledger cancel, they will
continue to cancel after update. In this sense the monetary supply grows
with the interest rate, but is otherwise conserved.

A consequence of this theorem is that while counter-party obligations are
not explicitly tracked by the ledger, these obligations are fulfilled as funds
are returned by the protocol.
definition shortest-ledger-period :: ′a ledger ⇒ nat where

shortest-ledger-period L = Max (image shortest-period (range L))

lemma (in finite) shortest-ledger-period-bound:
fixes L :: ′a ledger
shows shortest-period (L a) ≤ shortest-ledger-period L

proof −
{

fix α :: account
fix S :: account set
assume finite S and α ∈ S
hence shortest-period α ≤ Max (shortest-period ‘ S)
proof (induct S rule: finite-induct)

case empty
then show ?case by auto
next
case (insert β S)
then show ?case
proof (cases α = β)

case True
then show ?thesis

by (simp add: insert.hyps(1))
next

case False
hence α ∈ S

using insert.prems by fastforce
then show ?thesis

by (meson
Max-ge
finite-imageI
finite-insert
imageI
insert.hyps(1)
insert.prems)

24

qed
qed

}
moreover
have finite (range L)

by force
ultimately show ?thesis

by (simp add: shortest-ledger-period-def)
qed

theorem (in finite) update-balanced:
assumes % 0 = 0 and ∀n. % n < 1 and 0 ≤ i
shows balanced L c = balanced (update-ledger % i L) ((1 + i) ∗ c)
(is - = balanced ?L ′ ((1 + i) ∗ c))

proof
assume balanced L c
have ∀n>0 . (

∑
a∈UNIV . π (?L ′ a) n) = 0

proof (rule allI , rule impI)
fix n :: nat
assume n > 0
{

fix a
let ?α ′ = λn. (1 − % n) ∗ π (L a) n
have π (?L ′ a) n = ?α ′ n

unfolding
update-ledger-def
update-account-def
Rep-account-plus
Rep-account-just-cash
Rep-account-return-loans

using plus-account-def ‹n > 0 ›
by simp

}
hence (

∑
a∈UNIV . π (?L ′ a) n) =

(1 − % n) ∗ (
∑

a∈UNIV . π (L a) n)
using finite-UNIV
by (metis (mono-tags, lifting) sum.cong sum-distrib-left)

thus (
∑

a∈UNIV . π (?L ′ a) n) = 0
using ‹0 < n› ‹balanced L c› local.balanced-alt-def by force

qed
moreover
{

fix S :: ′a set
let ?ω = shortest-ledger-period L
assume (

∑
a∈S . cash-reserve (L a)) = c

and ∀n>0 . (
∑

a∈S . π (L a) n) = 0
have (

∑
a∈S . cash-reserve (?L ′ a)) =

(
∑

a∈S . i ∗ (
∑

n ≤ ?ω. π (L a) n) +
cash-reserve (L a))

25

using finite
proof (induct S arbitrary: c rule: finite-induct)

case empty
then show ?case

by auto
next

case (insert x S)
have (

∑
a∈insert x S . cash-reserve (?L ′ a)) =

(
∑

a∈insert x S . i ∗ (
∑

n ≤ ?ω. π (L a) n) +
cash-reserve (L a))

unfolding update-ledger-def update-account-def cash-reserve-def
by (simp add: ‹% 0 = 0 ›,

metis (no-types)
shortest-ledger-period-bound
net-asset-value-shortest-period-ge)

thus ?case .
qed
also have ... = (

∑
a∈S . i ∗ (

∑
n = 1 .. ?ω. π (L a) n) +

i ∗ cash-reserve (L a) + cash-reserve (L a))
unfolding cash-reserve-def
by (simp add:

add.commute
distrib-left
sum.atMost-shift
sum-bounds-lt-plus1)

also have ... = (
∑

a∈S . i ∗ (
∑

n = 1 .. ?ω. π (L a) n) +
(1 + i) ∗ cash-reserve (L a))

using finite
by (induct S rule: finite-induct, auto, simp add: distrib-right)

also have ... = i ∗ (
∑

a∈S . (
∑

n = 1 .. ?ω. π (L a) n)) +
(1 + i) ∗ (

∑
a∈S . cash-reserve (L a))

by (simp add: sum.distrib sum-distrib-left)
also have ... = i ∗ (

∑
n = 1 .. ?ω. (

∑
a∈S . π (L a) n)) +

(1 + i) ∗ c
using ‹(

∑
a∈S . cash-reserve (L a)) = c› sum.swap by force

finally have (
∑

a∈S . cash-reserve (?L ′ a)) = c ∗ (1 + i)
using ‹∀n>0 . (

∑
a∈S . π (L a) n) = 0 ›

by simp
}
hence (

∑
a∈UNIV . cash-reserve (?L ′ a)) = c ∗ (1 + i)

using ‹balanced L c›
unfolding balanced-alt-def
by fastforce

ultimately show balanced ?L ′ ((1 + i) ∗ c)
unfolding balanced-alt-def
by auto

next
assume balanced ?L ′ ((1 + i) ∗ c)
have ?: ∀n>0 . (

∑
a∈UNIV . π (L a) n) = 0

26

proof (rule allI , rule impI)
fix n :: nat
assume n > 0
hence 0 = (

∑
a∈UNIV . π (?L ′ a) n)

using ‹balanced ?L ′ ((1 + i) ∗ c)›
unfolding balanced-alt-def
by auto

also have . . . = (
∑

a∈UNIV . (1 − % n) ∗ π (L a) n)
unfolding

update-ledger-def
update-account-def
Rep-account-return-loans
Rep-account-just-cash

using ‹n > 0 ›
by auto

also have . . . = (1 − % n) ∗ (
∑

a∈UNIV . π (L a) n)
by (simp add: sum-distrib-left)

finally show (
∑

a∈UNIV . π (L a) n) = 0
by (metis

‹∀ r . % r < 1 ›
diff-gt-0-iff-gt
less-numeral-extra(3)
mult-eq-0-iff)

qed
moreover
{

fix S :: ′a set
let ?ω = shortest-ledger-period L
assume (

∑
a∈S . cash-reserve (?L ′ a)) = (1 + i) ∗ c

and ∀n>0 . (
∑

a∈S . π (L a) n) = 0
hence (1 + i) ∗ c = (

∑
a∈S . cash-reserve (?L ′ a))

by auto
also have . . . = (

∑
a∈S . i ∗ (

∑
n ≤ ?ω. π (L a) n) +

cash-reserve (L a))
using finite
proof (induct S rule: finite-induct)

case empty
then show ?case

by auto
next

case (insert x S)
have (

∑
a∈insert x S . cash-reserve (?L ′ a)) =

(
∑

a∈insert x S .
i ∗ (

∑
n ≤ ?ω. π (L a) n) + cash-reserve (L a))

unfolding update-ledger-def update-account-def cash-reserve-def
by (simp add: ‹% 0 = 0 ›,

metis (no-types)
shortest-ledger-period-bound
net-asset-value-shortest-period-ge)

27

thus ?case .
qed
also have . . . = (

∑
a∈S . i ∗ (

∑
n = 1 .. ?ω. π (L a) n) +

i ∗ cash-reserve (L a) + cash-reserve (L a))
unfolding cash-reserve-def
by (simp add:

add.commute
distrib-left
sum.atMost-shift
sum-bounds-lt-plus1)

also have . . . = (
∑

a∈S . i ∗ (
∑

n = 1 .. ?ω. π (L a) n) +
(1 + i) ∗ cash-reserve (L a))

using finite
by (induct S rule: finite-induct, auto, simp add: distrib-right)

also have . . . = i ∗ (
∑

a∈S . (
∑

n = 1 .. ?ω. π (L a) n)) +
(1 + i) ∗ (

∑
a∈S . cash-reserve (L a))

by (simp add: sum.distrib sum-distrib-left)
also have . . . = i ∗ (

∑
n = 1 .. ?ω. (

∑
a∈S . π (L a) n)) +

(1 + i) ∗ (
∑

a∈S . cash-reserve (L a))
using sum.swap by force

also have . . . = (1 + i) ∗ (
∑

a∈S . cash-reserve (L a))
using ‹∀n>0 . (

∑
a∈S . π (L a) n) = 0 ›

by simp
finally have c = (

∑
a∈S . cash-reserve (L a))

using ‹0 ≤ i›
by force

}
hence (

∑
a∈UNIV . cash-reserve (L a)) = c

unfolding cash-reserve-def
by (metis

Rep-account-just-cash
‹balanced ?L ′ ((1 + i) ∗ c)›
?
balanced-def
finite-Rep-account-ledger)

ultimately show balanced L c
unfolding balanced-alt-def
by auto

qed

6.2 Strictly Solvent is Forever Strictly Solvent

The final theorem presented in this section is that if an account is strictly
solvent, it will still be strictly solvent after update.

This theorem is the key to how the system avoids counter party risk. Pro-
vided the system enforces that all accounts are strictly solvent and transfers
are valid (as discussed in §4.2), all accounts will remain strictly solvent for-
ever.

28

We first prove that return-loans is a group homomorphism.

It is order preserving given certain assumptions.
lemma return-loans-plus:

return-loans % (α + β) = return-loans % α + return-loans % β
proof −

let ?α = π α
let ?β = π β
let ?%αβ = λn. (1 − % n) ∗ (?α n + ?β n)
let ?%α = λn. (1 − % n) ∗ ?α n
let ?%β = λn. (1 − % n) ∗ ?β n
have support 0 UNIV ?%α ⊆ support 0 UNIV ?α

support 0 UNIV ?%β ⊆ support 0 UNIV ?β
support 0 UNIV ?%αβ ⊆ support 0 UNIV ?α ∪ support 0 UNIV ?β

unfolding support-def
by auto

moreover have
?α ∈ fin-support 0 UNIV
?β ∈ fin-support 0 UNIV
using Rep-account by force+

ultimately have ?:
?%α ∈ fin-support 0 UNIV
?%β ∈ fin-support 0 UNIV
?%αβ ∈ fin-support 0 UNIV
unfolding fin-support-def
using finite-subset by auto+

{
fix n
have π (return-loans % (α + β)) n =

π (return-loans % α + return-loans % β) n
unfolding return-loans-def Rep-account-plus
using ? Abs-account-inverse distrib-left by auto

}
hence π (return-loans % (α + β)) =

π (return-loans % α + return-loans % β)
by auto

thus ?thesis
by (metis Rep-account-inverse)

qed

lemma return-loans-zero [simp]: return-loans % 0 = 0
proof −

have (λn. (1 − % n) ∗ 0) = (λ-. 0)
by force

hence ι (λn. (1 − % n) ∗ 0) = 0
unfolding zero-account-def
by presburger

thus ?thesis
unfolding return-loans-def Rep-account-zero .

29

qed

lemma return-loans-uminus: return-loans % (− α) = − return-loans % α
by (metis

add.left-cancel
diff-self
minus-account-def
return-loans-plus
return-loans-zero)

lemma return-loans-subtract:
return-loans % (α − β) = return-loans % α − return-loans % β
by (simp add: additive.diff additive-def return-loans-plus)

As presented in §1, each index corresponds to a progressively shorter loan
period. This is captured by a monotonicity assumption on the rate function
%::nat ⇒ real. In particular, provided ∀n. % n < 1 and ∀n m. n < m −→
% n < % m then we know that all outstanding credit is going away faster
than loans debited for longer periods.

Given the monotonicity assumptions for a rate function %::nat ⇒ real, we
may in turn prove monotonicity for return-loans over (≤)::account ⇒ ac-
count ⇒ bool.
lemma return-loans-mono:

assumes ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows return-loans % α ≤ return-loans % β

proof −
{

fix α :: account
assume 0 ≤ α
{

fix n :: nat
let ?α = π α
let ?%α = λn. (1 − % n) ∗ ?α n
have ∀ n . 0 ≤ (

∑
i≤n . ?α i)

using ‹0 ≤ α›
unfolding less-eq-account-def Rep-account-zero
by simp

hence 0 ≤ (
∑

i≤n . ?α i) by auto
moreover have (1 − % n) ∗ (

∑
i≤n . ?α i) ≤ (

∑
i≤n . ?%α i)

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
have 0 ≤ (1 − % (Suc n))

by (simp add: ‹∀ n . % n < 1 › less-eq-real-def)

30

moreover have (1 − % (Suc n)) ≤ (1 − % n)
using ‹∀ n m . n ≤ m −→ % n ≤ % m›
by simp

ultimately have
(1 − % (Suc n)) ∗ (

∑
i≤n . ?α i) ≤ (1 − % n) ∗ (

∑
i≤n . ?α i)

using ‹∀ n . 0 ≤ (
∑

i≤n . ?α i)›
by (meson le-less mult-mono ′)

hence
(1 − % (Suc n)) ∗ (

∑
i≤ Suc n . ?α i) ≤

(1 − % n) ∗ (
∑

i≤n . ?α i) + (1 − % (Suc n)) ∗ (?α (Suc n))
(is - ≤ ?X)
by (simp add: distrib-left)

moreover have
?X ≤ (

∑
i≤ Suc n . ?%α i)

using Suc.hyps by fastforce
ultimately show ?case by auto

qed
moreover have 0 < 1 − % n

by (simp add: ‹∀ n . % n < 1 ›)
ultimately have 0 ≤ (

∑
i≤n . ?%α i)

using dual-order .trans by fastforce
}
hence strictly-solvent (return-loans % α)

unfolding strictly-solvent-def Rep-account-return-loans
by auto

}
hence 0 ≤ return-loans % (β − α)

using ‹α ≤ β›
by (simp add: strictly-solvent-alt-def)

thus ?thesis
by (metis

add-diff-cancel-left ′

diff-ge-0-iff-ge
minus-account-def
return-loans-plus)

qed

lemma return-loans-just-cash:
assumes % 0 = 0
shows return-loans % (just-cash c) = just-cash c

proof −
have (λn. (1 − % n) ∗ π (ι (λn. if n = 0 then c else 0)) n)

= (λn. if n = 0 then (1 − % n) ∗ c else 0)
using Rep-account-just-cash just-cash-def by force

also have . . . = (λn. if n = 0 then c else 0)
using ‹% 0 = 0 ›
by force

finally show ?thesis
unfolding return-loans-def just-cash-def

31

by presburger
qed

lemma distribute-interest-plus:
just-cash (i ∗ net-asset-value (α + β)) =

just-cash (i ∗ net-asset-value α) +
just-cash (i ∗ net-asset-value β)

unfolding just-cash-def net-asset-value-plus
by (metis

distrib-left
just-cash-plus
just-cash-def)

We now prove that update-account is an order-preserving group homomor-
phism just as just-cash, net-asset-value, and return-loans are.
lemma update-account-plus:

update-account % i (α + β) =
update-account % i α + update-account % i β

unfolding
update-account-def
return-loans-plus
distribute-interest-plus

by simp

lemma update-account-zero [simp]: update-account % i 0 = 0
by (metis add-cancel-right-left update-account-plus)

lemma update-account-uminus:
update-account % i (−α) = − update-account % i α
unfolding update-account-def
by (simp add: net-asset-value-uminus return-loans-uminus)

lemma update-account-subtract:
update-account % i (α − β) =

update-account % i α − update-account % i β
by (simp add: additive.diff additive.intro update-account-plus)

lemma update-account-mono:
assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows update-account % i α ≤ update-account % i β

proof −
have net-asset-value α ≤ net-asset-value β

using ‹α ≤ β› net-asset-value-mono by presburger
hence i ∗ net-asset-value α ≤ i ∗ net-asset-value β

by (simp add: ‹0 ≤ i› mult-left-mono)
hence just-cash (i ∗ net-asset-value α) ≤

32

just-cash (i ∗ net-asset-value β)
by (simp add: just-cash-order-embed)

moreover
have return-loans % α ≤ return-loans % β

using assms return-loans-mono by presburger
ultimately show ?thesis unfolding update-account-def

by (simp add: add-mono)
qed

It follows from monotonicity and update-account % i 0 = 0 that strictly
solvent accounts remain strictly solvent after update.
lemma update-preserves-strictly-solvent:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and strictly-solvent α
shows strictly-solvent (update-account % i α)
using assms
unfolding strictly-solvent-alt-def
by (metis update-account-mono update-account-zero)

7 Bulk Update

In this section we demonstrate there exists a closed form for bulk-updating
an account.
primrec bulk-update-account ::

nat ⇒ (nat ⇒ real) ⇒ real ⇒ account ⇒ account
where
bulk-update-account 0 - - α = α
| bulk-update-account (Suc n) % i α =

update-account % i (bulk-update-account n % i α)

As with update-account, bulk-update-account is an order-preserving group
homomorphism.

We now prove that update-account is an order-preserving group homomor-
phism just as just-cash, net-asset-value, and return-loans are.
lemma bulk-update-account-plus:

bulk-update-account n % i (α + β) =
bulk-update-account n % i α + bulk-update-account n % i β

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
then show ?case

using bulk-update-account.simps(2) update-account-plus by presburger

33

qed

lemma bulk-update-account-zero [simp]: bulk-update-account n % i 0 = 0
by (metis add-cancel-right-left bulk-update-account-plus)

lemma bulk-update-account-uminus:
bulk-update-account n % i (−α) = − bulk-update-account n % i α
by (metis add-eq-0-iff bulk-update-account-plus bulk-update-account-zero)

lemma bulk-update-account-subtract:
bulk-update-account n % i (α − β) =

bulk-update-account n % i α − bulk-update-account n % i β
by (simp add: additive.diff additive-def bulk-update-account-plus)

lemma bulk-update-account-mono:
assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and α ≤ β
shows bulk-update-account n % i α ≤ bulk-update-account n % i β
using assms

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
then show ?case

using bulk-update-account.simps(2) update-account-mono by presburger
qed

In follows from the fact that bulk-update-account is an order-preserving
group homomorphism that the update protocol is safe. Informally this
means that provided we enforce every account is strictly solvent then no
account will ever have negative net asset value (ie, be in the red).
theorem bulk-update-safety:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n ≤ m −→ % n ≤ % m
and strictly-solvent α
shows 0 ≤ net-asset-value (bulk-update-account n % i α)
using assms
by (metis

bulk-update-account-mono
bulk-update-account-zero
strictly-solvent-alt-def
strictly-solvent-net-asset-value)

34

7.1 Decomposition

In order to express bulk-update-account using a closed formulation, we first
demonstrate how to decompose an account into a summation of credited and
debited loans for different periods.
definition loan :: nat ⇒ real ⇒ account (‹δ›)

where
δ n x = ι (λ m . if n = m then x else 0)

lemma loan-just-cash: δ 0 c = just-cash c
unfolding just-cash-def loan-def
by force

lemma Rep-account-loan [simp]:
π (δ n x) = (λ m . if n = m then x else 0)

proof −
have (λ m . if n = m then x else 0) ∈ fin-support 0 UNIV

unfolding fin-support-def support-def
by force

thus ?thesis
unfolding loan-def
using Abs-account-inverse by blast

qed

lemma loan-zero [simp]: δ n 0 = 0
unfolding loan-def
using zero-account-def by fastforce

lemma shortest-period-loan:
assumes c 6= 0
shows shortest-period (δ n c) = n
using assms
unfolding shortest-period-def Rep-account-loan
by simp

lemma net-asset-value-loan [simp]: net-asset-value (δ n c) = c
proof (cases c = 0)

case True
then show ?thesis by simp

next
case False
hence shortest-period (δ n c) = n using shortest-period-loan by blast
then show ?thesis unfolding net-asset-value-alt-def by simp

qed

lemma return-loans-loan [simp]: return-loans % (δ n c) = δ n ((1 − % n) ∗ c)
proof −

have return-loans % (δ n c) =
ι (λna. (if n = na then (1 − % n) ∗ c else 0))

35

unfolding return-loans-def
by (metis Rep-account-loan mult.commute mult-zero-left)

thus ?thesis
by (simp add: loan-def)

qed

lemma account-decomposition:
α = (

∑
i ≤ shortest-period α. δ i (π α i))

proof −
let ?p = shortest-period α
let ?πα = π α
let ?Σδ =

∑
i ≤ ?p. δ i (?πα i)

{
fix n m :: nat
fix f :: nat ⇒ real
assume n > m
hence π (

∑
i ≤ m. δ i (f i)) n = 0

by (induct m, simp+)
}
note · = this
{

fix n :: nat
have π ?Σδ n = ?πα n
proof (cases n ≤ ?p)

case True
{

fix n m :: nat
fix f :: nat ⇒ real
assume n ≤ m
hence π (

∑
i ≤ m. δ i (f i)) n = f n

proof (induct m)
case 0
then show ?case by simp

next
case (Suc m)
then show ?case
proof (cases n = Suc m)

case True
then show ?thesis using · by auto

next
case False
hence n ≤ m

using Suc.prems le-Suc-eq by blast
then show ?thesis

by (simp add: Suc.hyps)
qed

qed
}
then show ?thesis using True by auto

36

next
case False
have ?πα n = 0

unfolding shortest-period-def
using False shortest-period-bound by blast

thus ?thesis using False · by auto
qed

}
thus ?thesis

by (metis Rep-account-inject ext)
qed

7.2 Simple Transfers

Building on our decomposition, we can understand the necessary and suffi-
cient conditions to transfer a loan of δ n c.

We first give a notion of the reserves for a period n. This characterizes the
available funds for a loan of period n that an account α possesses.
definition reserves-for-period :: account ⇒ nat ⇒ real where

reserves-for-period α n =
fold

min
[(
∑

i≤k . π α i) . k ← [n..<shortest-period α+1]]
(
∑

i≤n . π α i)

lemma nav-reserves-for-period:
assumes shortest-period α ≤ n
shows reserves-for-period α n = net-asset-value α

proof cases
assume shortest-period α = n
hence [n..<shortest-period α+1] = [n]

by simp
hence [(

∑
i≤k . π α i) . k ← [n..<shortest-period α+1]] =

[(
∑

i≤n . π α i)]
by simp

then show ?thesis
unfolding reserves-for-period-def
by (simp add: ‹shortest-period α = n› net-asset-value-alt-def)

next
assume shortest-period α 6= n
hence shortest-period α < n

using assms order-le-imp-less-or-eq by blast
hence [(

∑
i≤k . π α k) . k ← [n..<shortest-period α+1]] = []

by force
hence reserves-for-period α n = (

∑
i≤n . π α i)

unfolding reserves-for-period-def by auto
then show ?thesis

using assms net-asset-value-shortest-period-ge by presburger

37

qed

lemma reserves-for-period-exists:
∃m≥n. reserves-for-period α n = (

∑
i≤m . π α i)

∧ (∀ u≥n. (
∑

i≤m . π α i) ≤ (
∑

i≤u . π α i))
proof −

{
fix j
have ∃m≥n. (

∑
i≤m . π α i) =

fold
min
[(
∑

i≤k . π α i) . k ← [n..<j]]
(
∑

i≤n . π α i)
∧ (∀ u≥n. u < j −→ (

∑
i≤m . π α i) ≤ (

∑
i≤u . π α i))

proof (induct j)
case 0
then show ?case by auto

next
case (Suc j)
then show ?case
proof cases

assume j ≤ n
thus ?thesis

by (simp, metis dual-order .refl le-less-Suc-eq)
next

assume ¬(j ≤ n)
hence n < j by auto
obtain m where

m ≥ n
∀ u≥n. u < j −→ (

∑
i≤m . π α i) ≤ (

∑
i≤u . π α i)

(
∑

i≤m . π α i) =
fold

min
[(
∑

i≤k . π α i) . k ← [n..<j]]
(
∑

i≤n . π α i)
using Suc by blast

note ♥ = this
hence †: min (

∑
i≤m . π α i) (

∑
i≤j . π α i) =

fold
min
[(
∑

i≤k . π α i) . k ← [n..<Suc j]]
(
∑

i≤n . π α i)
(is - = ?fold)
using ‹n < j› by simp

show ?thesis
proof cases

assume (
∑

i≤m . π α i) < (
∑

i≤j . π α i)
hence
∀ u≥n. u < Suc j −→ (

∑
i≤m . π α i) ≤ (

∑
i≤u . π α i)

38

by (metis
♥(2)
dual-order .order-iff-strict
less-Suc-eq)

thus ?thesis
using † ‹m ≥ n› by auto

next
assume ?: ¬ ((

∑
i≤m . π α i) < (

∑
i≤j . π α i))

hence
∀ u≥n. u < j −→ (

∑
i≤j . π α i) ≤ (

∑
i≤u . π α i)

using ♥(2)
by auto

hence
∀ u≥n. u < Suc j −→ (

∑
i≤j . π α i) ≤ (

∑
i≤u . π α i)

by (simp add: less-Suc-eq)
also have ?fold = (

∑
i≤j . π α i)

using † ? by linarith
ultimately show ?thesis

by (metis ‹n < j› less-or-eq-imp-le)
qed

qed
qed

}
from this obtain m where

m ≥ n
(
∑

i≤m . π α i) = reserves-for-period α n
∀ u≥n. u < shortest-period α + 1

−→ (
∑

i≤m . π α i) ≤ (
∑

i≤u . π α i)
unfolding reserves-for-period-def
by blast

note ♦ = this
hence (

∑
i≤m . π α i) ≤ (

∑
i≤shortest-period α . π α i)

by (metis
less-add-one
nav-reserves-for-period
net-asset-value-alt-def
nle-le)

hence ∀ u≥shortest-period α. (
∑

i≤m . π α i) ≤ (
∑

i≤u . π α i)
by (metis

net-asset-value-alt-def
net-asset-value-shortest-period-ge)

hence ∀ u≥n. (
∑

i≤m . π α i) ≤ (
∑

i≤u . π α i)
by (metis ♦(3) Suc-eq-plus1 less-Suc-eq linorder-not-le)

thus ?thesis
using ♦(1) ♦(2)
by metis

qed

lemma permissible-loan-converse:

39

assumes strictly-solvent (α − δ n c)
shows c ≤ reserves-for-period α n

proof −
obtain m where

n ≤ m
reserves-for-period α n = (

∑
i≤m . π α i)

using reserves-for-period-exists by blast
have (

∑
i≤m . π (α − δ n c) i) = (

∑
i≤m . π α i) − c

using ‹n ≤ m›
proof (induct m)

case 0
hence n = 0 by auto
have π (α − δ n c + δ n c) 0 = π (α − δ n c) 0 + π (δ n c) 0

using Rep-account-plus by presburger
thus ?case

unfolding ‹n = 0 ›
by simp

next
case (Suc m)
then show ?case
proof cases

assume n = Suc m
hence m < n by auto
hence (

∑
i≤m . π (α − δ n c) i) = (

∑
i≤m . π α i)

proof(induct m)
case 0
then show ?case

by (metis
(no-types, opaque-lifting)
Rep-account-loan
Rep-account-plus
atMost-0 bot-nat-0 .not-eq-extremum
diff-0-right
diff-add-cancel
empty-iff
finite.intros(1)
sum.empty
sum.insert)

next
case (Suc m)
hence m < n and n 6= Suc m

using Suc-lessD by blast+
moreover have
π (α − δ n c + δ n c) (Suc m) =

π (α − δ n c) (Suc m) + π (δ n c) (Suc m)
using Rep-account-plus by presburger

ultimately show ?case by (simp add: Suc.hyps)
qed
moreover

40

have π (α − δ (Suc m) c + δ (Suc m) c) (Suc m) =
π (α − δ (Suc m) c) (Suc m) + π (δ (Suc m) c) (Suc m)

by (meson Rep-account-plus)
ultimately show ?thesis

unfolding ‹n = Suc m›
by simp

next
assume n 6= Suc m
hence n ≤ m

using Suc.prems le-SucE by blast
have π (α − δ n c + δ n c) (Suc m) =

π (α − δ n c) (Suc m) + π (δ n c) (Suc m)
by (meson Rep-account-plus)

moreover have 0 = (if n = Suc m then c else 0)
using ‹n 6= Suc m› by presburger

ultimately show ?thesis
by (simp add: Suc.hyps ‹n ≤ m›)

qed
qed
hence 0 ≤ (

∑
i≤m . π α i) − c

by (metis assms strictly-solvent-def)
thus ?thesis

by (simp add: ‹reserves-for-period α n = sum (π α) {..m}›)
qed

lemma permissible-loan:
assumes strictly-solvent α
shows strictly-solvent (α − δ n c) = (c ≤ reserves-for-period α n)

proof
assume strictly-solvent (α − δ n c)
thus c ≤ reserves-for-period α n

using permissible-loan-converse by blast
next

assume c ≤ reserves-for-period α n
{

fix j
have 0 ≤ (

∑
i≤j . π (α − δ n c) i)

proof cases
assume j < n
hence (

∑
i≤j . π (α − δ n c) i) = (

∑
i≤j . π α i)

proof (induct j)
case 0
then show ?case

by (simp,
metis

Rep-account-loan
Rep-account-plus
‹j < n›
add.commute

41

add-0
diff-add-cancel
gr-implies-not-zero)

next
case (Suc j)
moreover have π (α − δ n c + δ n c) (Suc j) =

π (α − δ n c) (Suc j) + π (δ n c) (Suc j)
using Rep-account-plus by presburger

ultimately show ?case by simp
qed
thus ?thesis

by (metis assms strictly-solvent-def)
next

assume ¬ (j < n)
hence n ≤ j by auto
obtain m where

reserves-for-period α n = (
∑

i≤m . π α i)
∀ u≥n. (

∑
i≤m . π α i) ≤ (

∑
i≤u . π α i)

using reserves-for-period-exists by blast
hence ∀ u≥n. c ≤ (

∑
i≤u . π α i)

using ‹c ≤ reserves-for-period α n›
by auto

hence c ≤ (
∑

i≤j . π α i)
using ‹n ≤ j› by presburger

hence 0 ≤ (
∑

i≤j . π α i) − c
by force

moreover have (
∑

i≤j . π α i) − c = (
∑

i≤j . π (α − δ n c) i)
using ‹n ≤ j›

proof (induct j)
case 0
hence n = 0 by auto
have π (α − δ 0 c + δ 0 c) 0 = π (α − δ 0 c) 0 + π (δ 0 c) 0

using Rep-account-plus by presburger
thus ?case unfolding ‹n = 0 › by simp

next
case (Suc j)
then show ?case
proof cases

assume n = Suc j
hence j < n

by blast
hence (

∑
i≤j . π (α − δ n c) i) = (

∑
i≤j . π α i)

proof (induct j)
case 0
then show ?case

by (simp,
metis

Rep-account-loan
Rep-account-plus

42

‹j < n›
add.commute
add-0
diff-add-cancel
gr-implies-not-zero)

next
case (Suc j)
moreover have π (α − δ n c + δ n c) (Suc j) =

π (α − δ n c) (Suc j) + π (δ n c) (Suc j)
using Rep-account-plus by presburger

ultimately show ?case by simp
qed
moreover have
π (α − δ (Suc j) c + δ (Suc j) c) (Suc j) =

π (α − δ (Suc j) c) (Suc j) + π (δ (Suc j) c) (Suc j)
using Rep-account-plus by presburger

ultimately show ?thesis
unfolding ‹n = Suc j›
by simp

next
assume n 6= Suc j
hence n ≤ j

using Suc.prems le-SucE by blast
hence (

∑
i≤j . π α i) − c = (

∑
i≤j . π (α − δ n c) i)

using Suc.hyps by blast
moreover have π (α − δ n c + δ n c) (Suc j) =

π (α − δ n c) (Suc j) + π (δ n c) (Suc j)
using Rep-account-plus by presburger

ultimately show ?thesis
by (simp add: ‹n 6= Suc j›)

qed
qed
ultimately show ?thesis by auto

qed
}
thus strictly-solvent (α − δ n c)

unfolding strictly-solvent-def
by auto

qed

7.3 Closed Forms

We first give closed forms for loans δ n c. The simplest closed form is for
just-cash. Here the closed form is just the compound interest accrued from
each update.
lemma bulk-update-just-cash-closed-form:

assumes % 0 = 0
shows bulk-update-account n % i (just-cash c) =

just-cash ((1 + i) ^ n ∗ c)

43

proof (induct n)
case 0
then show ?case by simp

next
case (Suc n)
have return-loans % (just-cash ((1 + i) ^ n ∗ c)) =

just-cash ((1 + i) ^ n ∗ c)
using assms return-loans-just-cash by blast

thus ?case
using Suc net-asset-value-just-cash-left-inverse
by (simp add: update-account-def ,

metis
add.commute
mult.commute
mult.left-commute
mult-1
ring-class.ring-distribs(2))

qed

lemma bulk-update-loan-closed-form:
assumes % k 6= 1
and % k > 0
and % 0 = 0
and i ≥ 0
shows bulk-update-account n % i (δ k c) =

just-cash (c ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n) / (i + % k))
+ δ k ((1 − % k) ^ n ∗ c)

proof (induct n)
case 0
then show ?case

by (simp add: zero-account-alt-def)
next

case (Suc n)
have i + % k > 0

using assms(2) assms(4) by force
hence (i + % k) / (i + % k) = 1

by force
hence bulk-update-account (Suc n) % i (δ k c) =

just-cash
((c ∗ i) / (i + % k) ∗ (1 + i) ∗ ((1 + i) ^ n − (1 − % k) ^ n) +
c ∗ i ∗ (1 − % k) ^ n ∗ ((i + % k) / (i + % k)))

+ δ k ((1 − % k) ^ (n + 1) ∗ c)
using Suc
by (simp add:

return-loans-plus
‹% 0 = 0 ›
return-loans-just-cash
update-account-def
net-asset-value-plus

44

net-asset-value-just-cash-left-inverse
add.commute
add.left-commute
distrib-left
mult.assoc
add-divide-distrib
distrib-right
mult.commute
mult.left-commute)

also have
. . . =

just-cash
((c ∗ i) / (i + % k) ∗ (1 + i) ∗ ((1 + i) ^ n − (1 − % k) ^ n) +
(c ∗ i) / (i + % k) ∗ (1 − % k) ^ n ∗ (i + % k))

+ δ k ((1 − % k) ^ (n + 1) ∗ c)
by (metis (no-types, lifting) times-divide-eq-left times-divide-eq-right)

also have
. . . =

just-cash
((c ∗ i) / (i + % k) ∗ (

(1 + i) ∗ ((1 + i) ^ n − (1 − % k) ^ n)
+ (1 − % k) ^ n ∗ (i + % k)))

+ δ k ((1 − % k) ^ (n + 1) ∗ c)
by (metis (no-types, lifting) mult.assoc ring-class.ring-distribs(1))

also have
. . . =

just-cash
((c ∗ i) / (i + % k) ∗ ((1 + i) ^ (n + 1) − (1 − % k) ^ (n + 1)))

+ δ k ((1 − % k) ^ (n + 1) ∗ c)
by (simp add: mult.commute mult-diff-mult)

ultimately show ?case by simp
qed

We next give an algebraic closed form. This uses the ordered abelian group
that accounts form.
lemma bulk-update-algebraic-closed-form:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n < m −→ % n < % m
and % 0 = 0
shows bulk-update-account n % i α

= just-cash (
(1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
k = 1 ..shortest-period α.

(π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n)
/ (i + % k))

)
+ (

∑
k = 1 ..shortest-period α. δ k ((1 − % k) ^ n ∗ π α k))

proof −

45

{
fix m
have ∀ k ∈ {1 ..m}. % k 6= 1 ∧ % k > 0

by (metis
assms(2)
assms(3)
assms(4)
atLeastAtMost-iff
dual-order .refl
less-numeral-extra(1)
linorder-not-less
not-gr-zero)

hence ?: ∀ k ∈ {1 ..m}.
bulk-update-account n % i (δ k (π α k))

= just-cash ((π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n)
/ (i + % k))

+ δ k ((1 − % k) ^ n ∗ (π α k))
using assms(1) assms(4) bulk-update-loan-closed-form by blast

have bulk-update-account n % i (
∑

k ≤ m. δ k (π α k))
= (

∑
k ≤ m. bulk-update-account n % i (δ k (π α k)))

by (induct m, simp, simp add: bulk-update-account-plus)
also have
. . . = bulk-update-account n % i (δ 0 (π α 0))

+ (
∑

k = 1 ..m. bulk-update-account n % i (δ k (π α k)))
by (simp add: atMost-atLeast0 sum.atLeast-Suc-atMost)

also have
. . . = just-cash ((1 + i) ^ n ∗ cash-reserve α)

+ (
∑

k = 1 ..m. bulk-update-account n % i (δ k (π α k)))
using

‹% 0 = 0 ›
bulk-update-just-cash-closed-form
loan-just-cash
cash-reserve-def

by presburger
also have
. . . = just-cash ((1 + i) ^ n ∗ cash-reserve α)

+ (
∑

k = 1 ..m.
just-cash ((π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n)

/ (i + % k))
+ δ k ((1 − % k) ^ n ∗ (π α k)))

using ? by auto
also have
. . . = just-cash ((1 + i) ^ n ∗ cash-reserve α)

+ (
∑

k = 1 ..m.
just-cash ((π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n)

/ (i + % k)))
+ (

∑
k = 1 ..m. δ k ((1 − % k) ^ n ∗ (π α k)))

by (induct m, auto)
also have

46

. . . = just-cash ((1 + i) ^ n ∗ cash-reserve α)
+ just-cash

(
∑

k = 1 ..m.
(π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n) / (i + % k))

+ (
∑

k = 1 ..m. δ k ((1 − % k) ^ n ∗ (π α k)))
by (induct m, auto, metis (no-types, lifting) add.assoc just-cash-plus)

ultimately have
bulk-update-account n % i (

∑
k ≤ m. δ k (π α k)) =

just-cash (
(1 + i) ^ n ∗ cash-reserve α

+ (
∑

k = 1 ..m.
(π α k) ∗ i ∗ ((1 + i) ^ n − (1 − % k) ^ n) / (i + % k)))

+ (
∑

k = 1 ..m. δ k ((1 − % k) ^ n ∗ (π α k)))
by simp

}
note · = this
have

bulk-update-account n % i α
= bulk-update-account n % i (

∑
k ≤ shortest-period α. δ k (π α k))

using account-decomposition by presburger
thus ?thesis unfolding · .

qed

We finally give a functional closed form for bulk updating an account. Since
the form is in terms of exponentiation, we may efficiently compute the bulk
update output using exponentiation-by-squaring.
theorem bulk-update-closed-form:

assumes 0 ≤ i
and ∀ n . % n < 1
and ∀ n m . n < m −→ % n < % m
and % 0 = 0
shows bulk-update-account n % i α

= ι (λ k .
if k = 0 then
(1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
j = 1 ..shortest-period α.

(π α j) ∗ i ∗ ((1 + i) ^ n − (1 − % j) ^ n)
/ (i + % j))

else
(1 − % k) ^ n ∗ π α k

)
(is - = ι ?ν)

proof −
obtain ν where X : ν = ?ν by blast
moreover obtain ν ′ where Y :
ν ′ = π (just-cash (

(1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
j = 1 ..shortest-period α.

(π α j) ∗ i ∗ ((1 + i) ^ n − (1 − % j) ^ n)

47

/ (i + % j))
)
+ (

∑
j = 1 ..shortest-period α. δ j ((1 − % j) ^ n ∗ π α j)))

by blast
moreover
{

fix k
have ∀ k > shortest-period α . ν k = ν ′ k
proof (rule allI , rule impI)

fix k
assume shortest-period α < k
hence ν k = 0

unfolding X
by (simp add: greater-than-shortest-period-zero)

moreover have ν ′ k = 0
proof −

have ∀ c. π (just-cash c) k = 0
using

Rep-account-just-cash
‹shortest-period α < k›
just-cash-def

by auto
moreover
have ∀ m < k. π (

∑
j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j)) k = 0

proof (rule allI , rule impI)
fix m
assume m < k
let ?πΣδ = π (

∑
j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j))

have ?πΣδ k = (
∑

j = 1 ..m. π (δ j ((1 − % j) ^ n ∗ π α j)) k)
by (induct m, auto)

also have . . . = (
∑

j = 1 ..m. 0)
using ‹m < k›
by (induct m, simp+)

finally show ?πΣδ k = 0
by force

qed
ultimately show ?thesis unfolding Y

using ‹shortest-period α < k› by force
qed
ultimately show ν k = ν ′ k by auto

qed
moreover have ∀ k . 0 < k −→ k ≤ shortest-period α −→ ν k = ν ′ k
proof (rule allI , (rule impI)+)

fix k
assume 0 < k
and k ≤ shortest-period α
have ν k = (1 − % k) ^ n ∗ π α k

unfolding X
using ‹0 < k› by fastforce

48

moreover have ν ′ k = (1 − % k) ^ n ∗ π α k
proof −

have ∀ c. π (just-cash c) k = 0
using ‹0 < k› by auto

moreover
{

fix m
assume k ≤ m
have π (

∑
j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j)) k

= (
∑

j = 1 ..m. π (δ j ((1 − % j) ^ n ∗ π α j)) k)
by (induct m, auto)

also
have . . . = (1 − % k) ^ n ∗ π α k

using ‹0 < k› ‹k ≤ m›
proof (induct m)

case 0
then show ?case by simp

next
case (Suc m)
then show ?case
proof (cases k = Suc m)

case True
hence k > m by auto
hence (

∑
j = 1 ..m. π (δ j ((1 − % j) ^ n ∗ π α j)) k) = 0

by (induct m, auto)
then show ?thesis

using ‹k > m› ‹k = Suc m›
by simp

next
case False
hence (

∑
j = 1 ..m. π (δ j ((1 − % j) ^ n ∗ π α j)) k)

= (1 − % k) ^ n ∗ π α k
using Suc.hyps Suc.prems(1) Suc.prems(2) le-Suc-eq by blast

moreover have k ≤ m
using False Suc.prems(2) le-Suc-eq by blast

ultimately show ?thesis using ‹0 < k› by simp
qed

qed
finally have
π (

∑
j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j)) k

= (1 − % k) ^ n ∗ π α k .
}
hence
∀ m ≥ k.

π (
∑

j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j)) k
= (1 − % k) ^ n ∗ π α k by auto

ultimately show ?thesis
unfolding Y
using ‹k ≤ shortest-period α›

49

by force
qed
ultimately show ν k = ν ′ k

by fastforce
qed
moreover have ν 0 = ν ′ 0
proof −

have ν 0 = (1 + i) ^ n ∗ (cash-reserve α)
+ (

∑
j = 1 ..shortest-period α.

(π α j) ∗ i ∗ ((1 + i) ^ n − (1 − % j) ^ n)
/ (i + % j))

using X by presburger
moreover
have ν ′ 0 = (1 + i) ^ n ∗ (cash-reserve α)

+ (
∑

j = 1 ..shortest-period α.
(π α j) ∗ i ∗ ((1 + i) ^ n − (1 − % j) ^ n)

/ (i + % j))
proof −

{
fix m
have π (

∑
j = 1 ..m. δ j ((1 − % j) ^ n ∗ π α j)) 0 = 0

by (induct m, simp+)
}
thus ?thesis unfolding Y

by simp
qed
ultimately show ?thesis by auto

qed
ultimately have ν k = ν ′ k

by (metis linorder-not-less not-gr0)
}
hence ι ν = ι ν ′

by presburger
ultimately show ?thesis

using
Rep-account-inverse
assms
bulk-update-algebraic-closed-form

by presburger
qed

end

50

	Accounts
	Strictly Solvent
	Cash
	Ledgers
	Balanced Ledgers
	Transfers
	The Valid Transfers Protocol
	Embedding Conventional Cash-Only Ledgers

	Interest
	Net Asset Value
	The Shortest Period for Credited & Debited Assets in an Account
	Net Asset Value Properties

	Distributing Interest

	Update
	Update Preserves Ledger Balance
	Strictly Solvent is Forever Strictly Solvent

	Bulk Update
	Decomposition
	Simple Transfers
	Closed Forms

