
Ribbon Proofs for Separation Logic
(Isabelle Formalisation)

John Wickerson

March 17, 2025

Abstract

This document concerns the theory of ribbon proofs: a diagram-
matic proof system, based on separation logic, for verifying program
correctness. We include the syntax, proof rules, and soundness results
for two alternative formalisations of ribbon proofs.

Compared to traditional ‘proof outlines’, ribbon proofs emphasise
the structure of a proof, so are intelligible and pedagogical. Because
they contain less redundancy than proof outlines, and allow each proof
step to be checked locally, they may be more scalable. Where proof
outlines are cumbersome to modify, ribbon proofs can be visually ma-
noeuvred to yield proofs of variant programs.

Contents
1 Introduction 2

2 Finite partial functions 3
2.1 Difference . 3
2.2 Comprehension . 3
2.3 Domain . 4
2.4 Lookup . 4

3 General purpose definitions and lemmas 5
3.1 Projection functions on triples 5

4 Proof chains 6
4.1 Projections . 6
4.2 Chain length . 7
4.3 Extracting triples from chains 7
4.4 Evaluating a predicate on each triple of a chain 8
4.5 A map function for proof chains 8
4.6 Extending a chain on its right-hand side 8

1

5 Assertions, commands, and separation logic proof rules 9
5.1 Assertions . 9
5.2 Commands . 10
5.3 Separation logic proof rules 11

6 Ribbon proof interfaces 12
6.1 Syntax of interfaces . 12
6.2 An iterated horizontal-composition operator 13
6.3 Semantics of interfaces . 14
6.4 Program variables mentioned in an interface. 15

7 Syntax and proof rules for stratified diagrams 15
7.1 Syntax of stratified diagrams 15
7.2 Proof rules for stratified diagrams 16
7.3 Soundness . 17

8 Syntax and proof rules for graphical diagrams 17
8.1 Syntax of graphical diagrams 17
8.2 Well formedness of graphical diagrams 18
8.3 Initial and terminal nodes . 19
8.4 Top and bottom interfaces . 20
8.5 Proof rules for graphical diagrams 20
8.6 Extracting commands from diagrams 21

9 Soundness for graphical diagrams 22
9.1 Proofstate chains . 23
9.2 Interface chains . 28
9.3 Soundness proof . 28

1 Introduction

Ribbon proofs are a diagrammatic approach for proving program correct-
ness, based on separation logic. They are due to Wickerson, Dodds and
Parkinson [4], and are also described in Wickerson’s PhD dissertation [3]. An
early version of the proof system, for proving entailments between quantifier-
free separation logic assertions, was introduced by Bean [1].
Compared to traditional ‘proof outlines’, ribbon proofs emphasise the struc-
ture of a proof, so are intelligible and pedagogical. Because they contain less
redundancy than proof outlines, and allow each proof step to be checked lo-
cally, they may be more scalable. Where proof outlines are cumbersome to
modify, ribbon proofs can be visually manoeuvred to yield proofs of variant
programs.

2

In this document, we formalise a two-dimensional graphical syntax for rib-
bon proofs, provide proof rules, and show that any provable ribbon proof
can be recreated using the ordinary rules of separation logic.
In fact, we provide two different formalisations. Our “stratified” formalisa-
tion sees a ribbon proof as a sequence of rows, with each row containing one
step of the proof. This formalisation is very simple, but it does not reflect the
visual intuition of ribbon proofs, which suggests that some proof steps can
be slid up or down without affecting the validity of the overall proof. Our
“graphical” formalisation sees a ribbon proof as a graph; specifically, as a di-
rected acyclic nested graph. Ribbon proofs formalised in this way are more
manoeuvrable, but proving soundness is trickier, and requires the assump-
tion that separation logic’s Frame rule has no side-condition (an assumption
that can be validated by using, for instance, variables-as-resource [2]).

2 Finite partial functions
theory More-Finite-Map imports

HOL−Library.Finite-Map
begin

lemma fdisjoint-iff : A |∩| B = {||} ←→ (∀ x. x |∈| A −→ x |/∈| B)
〈proof 〉

unbundle lifting-syntax
unbundle fmap.lifting

type-notation fmap (infix ‹⇀f › 9)

2.1 Difference
definition

map-diff :: (′k ⇀ ′v) ⇒ ′k fset ⇒ (′k ⇀ ′v)
where

map-diff f ks = restrict-map f (− fset ks)

lift-definition
fmap-diff :: (′k ⇀f

′v) ⇒ ′k fset ⇒ (′k ⇀f
′v) (infix ‹	› 110)

is map-diff
〈proof 〉

2.2 Comprehension
definition

make-map :: ′k fset ⇒ ′v ⇒ (′k ⇀ ′v)
where

make-map ks v ≡ λk. if k ∈ fset ks then Some v else None

3

lemma make-map-transfer [transfer-rule]: (rel-fset (=) ===> A ===> rel-map
A) make-map make-map
〈proof 〉

lemma dom-make-map:
dom (make-map ks v) = fset ks
〈proof 〉

lift-definition
make-fmap :: ′k fset ⇒ ′v ⇒ (′k ⇀f

′v) (‹[- |=> -]›)
is make-map parametric make-map-transfer
〈proof 〉

lemma make-fmap-empty[simp]: [{||} |=> f] = fmempty
〈proof 〉

2.3 Domain
lemma fmap-add-commute:

assumes fmdom A |∩| fmdom B = {||}
shows A ++f B = B ++f A
〈proof 〉 including fset.lifting
〈proof 〉

lemma make-fmap-union:
[xs |=> v] ++f [ys |=> v] = [xs |∪| ys |=> v]
〈proof 〉

lemma fdom-make-fmap: fmdom [ks |=> v] = ks

〈proof 〉

2.4 Lookup
lift-definition

lookup :: (′k ⇀f
′v) ⇒ ′k ⇒ ′v

is (◦) the 〈proof 〉

lemma lookup-make-fmap:
assumes k ∈ fset ks
shows lookup [ks |=> v] k = v
〈proof 〉

lemma lookup-make-fmap1 :
lookup [{|k|} |=> v] k = v
〈proof 〉

lemma lookup-union1 :
assumes k |∈| fmdom ys
shows lookup (xs ++f ys) k = lookup ys k

4

〈proof 〉 including fset.lifting
〈proof 〉

lemma lookup-union2 :
assumes k |/∈| fmdom ys
shows lookup (xs ++f ys) k = lookup xs k
〈proof 〉 including fset.lifting
〈proof 〉

lemma lookup-union3 :
assumes k |/∈| fmdom xs
shows lookup (xs ++f ys) k = lookup ys k
〈proof 〉 including fset.lifting
〈proof 〉

end

3 General purpose definitions and lemmas
theory JHelper imports

Main
begin

lemma Collect-iff :
a ∈ {x . P x} ≡ P a
〈proof 〉

lemma diff-diff-eq:
assumes C ⊆ B
shows (A − C) − (B − C) = A − B
〈proof 〉

lemma nth-in-set:
[[i < length xs ; xs ! i = x]] =⇒ x ∈ set xs 〈proof 〉

lemma disjI [intro]:
assumes ¬ P =⇒ Q
shows P ∨ Q
〈proof 〉

lemma empty-eq-Plus-conv:
({} = A <+> B) = (A = {} ∧ B = {})
〈proof 〉

3.1 Projection functions on triples
definition fst3 :: ′a × ′b × ′c ⇒ ′a
where fst3 ≡ fst

5

definition snd3 :: ′a × ′b × ′c ⇒ ′b
where snd3 ≡ fst ◦ snd

definition thd3 :: ′a × ′b × ′c ⇒ ′c
where thd3 ≡ snd ◦ snd

lemma fst3-simp:∧
a b c. fst3 (a,b,c) = a

〈proof 〉

lemma snd3-simp:∧
a b c. snd3 (a,b,c) = b

〈proof 〉

lemma thd3-simp:∧
a b c. thd3 (a,b,c) = c

〈proof 〉

lemma tripleI :
fixes T U
assumes fst3 T = fst3 U

and snd3 T = snd3 U
and thd3 T = thd3 U

shows T = U
〈proof 〉

end

4 Proof chains
theory Proofchain imports

JHelper
begin

An (′a, ′c) chain is a sequence of alternating ′a’s and ′c’s, beginning and
ending with an ′a. Usually ′a represents some sort of assertion, and ′c
represents some sort of command. Proof chains are useful for stating the
SMain proof rule, and for conducting the proof of soundness.
datatype (′a, ′c) chain =

cNil ′a (‹{| - |}›)
| cCons ′a ′c (′a, ′c) chain (‹{| - |} · - · -› [0 ,0 ,0] 60)

For example, {| a |} · proof · {| chain |} · might · {| look |} · like · {| this |}.

4.1 Projections

Project first assertion.

6

fun
pre :: (′a, ′c) chain ⇒ ′a

where
pre {| P |} = P
| pre ({| P |} · - · -) = P

Project final assertion.
fun

post :: (′a, ′c) chain ⇒ ′a
where

post {| P |} = P
| post ({| - |} · - · Π) = post Π

Project list of commands.
fun

comlist :: (′a, ′c) chain ⇒ ′c list
where

comlist {| - |} = []
| comlist ({| - |} · x · Π) = x # (comlist Π)

4.2 Chain length
fun

chainlen :: (′a, ′c) chain ⇒ nat
where

chainlen {| - |} = 0
| chainlen ({| - |} · - · Π) = 1 + (chainlen Π)

lemma len-comlist-chainlen:
length (comlist Π) = chainlen Π
〈proof 〉

4.3 Extracting triples from chains

nthtriple Π n extracts the nth triple of Π, counting from 0. The function is
well-defined when n < chainlen Π.
fun

nthtriple :: (′a, ′c) chain ⇒ nat ⇒ (′a ∗ ′c ∗ ′a)
where

nthtriple ({| P |} · x · Π) 0 = (P, x, pre Π)
| nthtriple ({| P |} · x · Π) (Suc n) = nthtriple Π n

The list of middle components of Π’s triples is the list of Π’s commands.
lemma snds-of-triples-form-comlist:

fixes Π i
shows i < chainlen Π =⇒ snd3 (nthtriple Π i) = (comlist Π)!i
〈proof 〉

7

4.4 Evaluating a predicate on each triple of a chain

chain-all ϕ holds of Π iff ϕ holds for each of Π’s individual triples.
fun

chain-all :: ((′a × ′c × ′a) ⇒ bool) ⇒ (′a, ′c) chain ⇒ bool
where

chain-all ϕ {| σ |} = True
| chain-all ϕ ({| σ |} · x · Π) = (ϕ (σ,x,pre Π) ∧ chain-all ϕ Π)

lemma chain-all-mono [mono]:
x ≤ y =⇒ chain-all x ≤ chain-all y
〈proof 〉

lemma chain-all-nthtriple:
(chain-all ϕ Π) = (∀ i < chainlen Π. ϕ (nthtriple Π i))
〈proof 〉

4.5 A map function for proof chains

chainmap f g Π maps f over each of Π’s assertions, and g over each of Π’s
commands.
fun

chainmap :: (′a ⇒ ′b) ⇒ (′c ⇒ ′d) ⇒ (′a, ′c) chain ⇒ (′b, ′d) chain
where

chainmap f g {| P |} = {| f P |}
| chainmap f g ({| P |} · x · Π) = {| f P |} · g x · chainmap f g Π

Mapping over a chain preserves its length.
lemma chainmap-preserves-length:

chainlen (chainmap f g Π) = chainlen Π
〈proof 〉

lemma pre-chainmap:
pre (chainmap f g Π) = f (pre Π)
〈proof 〉

lemma post-chainmap:
post (chainmap f g Π) = f (post Π)
〈proof 〉

lemma nthtriple-chainmap:
assumes i < chainlen Π
shows nthtriple (chainmap f g Π) i
= (λt. (f (fst3 t), g (snd3 t), f (thd3 t))) (nthtriple Π i)

〈proof 〉

4.6 Extending a chain on its right-hand side
fun

8

cSnoc :: (′a, ′c) chain ⇒ ′c ⇒ ′a ⇒ (′a, ′c) chain
where

cSnoc {| σ |} y τ = {| σ |} · y · {| τ |}
| cSnoc ({| σ |} · x · Π) y τ = {| σ |} · x · (cSnoc Π y τ)

lemma len-snoc:
fixes Π x P
shows chainlen (cSnoc Π x P) = 1 + (chainlen Π)
〈proof 〉

lemma pre-snoc:
pre (cSnoc Π x P) = pre Π
〈proof 〉

lemma post-snoc:
post (cSnoc Π x P) = P
〈proof 〉

lemma comlist-snoc:
comlist (cSnoc Π x p) = comlist Π @ [x]
〈proof 〉

end

5 Assertions, commands, and separation logic proof
rules

theory Ribbons-Basic imports
Main

begin

We define a command language, assertions, and the rules of separation logic,
plus some derived rules that are used by our tool. This is the only theory
file that is loaded by the tool. We keep it as small as possible.

5.1 Assertions

The language of assertions includes (at least) an emp constant, a star-
operator, and existentially-quantified logical variables.
typedecl assertion

axiomatization
Emp :: assertion

axiomatization

9

Star :: assertion ⇒ assertion ⇒ assertion (infixr ‹?› 55)
where

star-comm: p ? q = q ? p and
star-assoc: (p ? q) ? r = p ? (q ? r) and
star-emp: p ? Emp = p and
emp-star : Emp ? p = p

lemma star-rot:
q ? p ? r = p ? q ? r
〈proof 〉

axiomatization
Exists :: string ⇒ assertion ⇒ assertion

Extracting the set of program variables mentioned in an assertion.
axiomatization

rd-ass :: assertion ⇒ string set
where rd-emp: rd-ass Emp = {}

and rd-star : rd-ass (p ? q) = rd-ass p ∪ rd-ass q
and rd-exists: rd-ass (Exists x p) = rd-ass p

5.2 Commands

The language of commands comprises (at least) non-deterministic choice,
non-deterministic looping, skip and sequencing.
typedecl command

axiomatization
Choose :: command ⇒ command ⇒ command

axiomatization
Loop :: command ⇒ command

axiomatization
Skip :: command

axiomatization
Seq :: command ⇒ command ⇒ command (infixr ‹;;› 55)

where seq-assoc: c1 ;; (c2 ;; c3) = (c1 ;; c2) ;; c3
and seq-skip: c ;; Skip = c
and skip-seq: Skip ;; c = c

Extracting the set of program variables read by a command.
axiomatization

rd-com :: command ⇒ string set
where rd-com-choose: rd-com (Choose c1 c2) = rd-com c1 ∪ rd-com c2

and rd-com-loop: rd-com (Loop c) = rd-com c
and rd-com-skip: rd-com (Skip) = {}

10

and rd-com-seq: rd-com (c1 ;; c2) = rd-com c1 ∪ rd-com c2

Extracting the set of program variables written by a command.
axiomatization

wr-com :: command ⇒ string set
where wr-com-choose: wr-com (Choose c1 c2) = wr-com c1 ∪ wr-com c2

and wr-com-loop: wr-com (Loop c) = wr-com c
and wr-com-skip: wr-com (Skip) = {}
and wr-com-seq: wr-com (c1 ;; c2) = wr-com c1 ∪ wr-com c2

5.3 Separation logic proof rules

Note that the frame rule has a side-condition concerning program variables.
When proving the soundness of our graphical formalisation of ribbon proofs,
we shall omit this side-condition.
inductive

prov-triple :: assertion × command × assertion ⇒ bool
where

exists: prov-triple (p, c, q) =⇒ prov-triple (Exists x p, c, Exists x q)
| choose: [[prov-triple (p, c1 , q); prov-triple (p, c2 , q)]]
=⇒ prov-triple (p, Choose c1 c2 , q)
| loop: prov-triple (p, c, p) =⇒ prov-triple (p, Loop c, p)
| frame: [[prov-triple (p, c, q); wr-com(c) ∩ rd-ass(r) = {}]]
=⇒ prov-triple (p ? r , c, q ? r)
| skip: prov-triple (p, Skip, p)
| seq: [[prov-triple (p, c1 , q); prov-triple (q, c2 , r)]]
=⇒ prov-triple (p, c1 ;; c2 , r)

Here are some derived proof rules, which are used in our ribbon-checking
tool.
lemma choice-lemma:

assumes prov-triple (p1 , c1 , q1) and prov-triple (p2 , c2 , q2)
and p = p1 and p1 = p2 and q = q1 and q1 = q2

shows prov-triple (p, Choose c1 c2 , q)
〈proof 〉

lemma loop-lemma:
assumes prov-triple (p1 , c, q1) and p = p1 and p1 = q1 and q1 = q
shows prov-triple (p, Loop c, q)
〈proof 〉

lemma seq-lemma:
assumes prov-triple (p1 , c1 , q1) and prov-triple (p2 , c2 , q2)

and q1 = p2
shows prov-triple (p1 , c1 ;; c2 , q2)
〈proof 〉

end

11

6 Ribbon proof interfaces
theory Ribbons-Interfaces imports

Ribbons-Basic
Proofchain
HOL−Library.FSet

begin

Interfaces are the top and bottom boundaries through which diagrams can
be connected into a surrounding context. For instance, when composing two
diagrams vertically, the bottom interface of the upper diagram must match
the top interface of the lower diagram.
We define a datatype of concrete interfaces. We then quotient by the asso-
ciativity, commutativity and unity properties of our horizontal-composition
operator.

6.1 Syntax of interfaces
datatype conc-interface =

Ribbon-conc assertion
| HComp-int-conc conc-interface conc-interface (infix ‹⊗c› 50)
| Emp-int-conc (‹εc›)
| Exists-int-conc string conc-interface

We define an equivalence on interfaces. The first three rules make this an
equivalence relation. The next three make it a congruence. The next two
identify interfaces up to associativity and commutativity of (⊗c) The final
two make εc the left and right unit of (⊗c).
inductive

equiv-int :: conc-interface ⇒ conc-interface ⇒ bool (infix ‹'› 45)
where

refl: P ' P
| sym: P ' Q =⇒ Q ' P
| trans: [[P ' Q; Q ' R]] =⇒ P ' R
| cong-hcomp1 : P ' Q =⇒ P ′ ⊗c P ' P ′ ⊗c Q
| cong-hcomp2 : P ' Q =⇒ P ⊗c P ′ ' Q ⊗c P ′

| cong-exists: P ' Q =⇒ Exists-int-conc x P ' Exists-int-conc x Q
| hcomp-conc-assoc: P ⊗c (Q ⊗c R) ' (P ⊗c Q) ⊗c R
| hcomp-conc-comm: P ⊗c Q ' Q ⊗c P
| hcomp-conc-unit1 : εc ⊗c P ' P
| hcomp-conc-unit2 : P ⊗c εc ' P

lemma equiv-int-cong-hcomp:
[[P ' Q ; P ′ ' Q ′]] =⇒ P ⊗c P ′ ' Q ⊗c Q ′

〈proof 〉

quotient-type interface = conc-interface / equiv-int
〈proof 〉

12

lift-definition
Ribbon :: assertion ⇒ interface

is Ribbon-conc 〈proof 〉

lift-definition
Emp-int :: interface (‹ε›)

is εc 〈proof 〉

lift-definition
Exists-int :: string ⇒ interface ⇒ interface

is Exists-int-conc
〈proof 〉

lift-definition
HComp-int :: interface ⇒ interface ⇒ interface (infix ‹⊗› 50)

is HComp-int-conc 〈proof 〉

lemma hcomp-comm:
(P ⊗ Q) = (Q ⊗ P)
〈proof 〉

lemma hcomp-assoc:
(P ⊗ (Q ⊗ R)) = ((P ⊗ Q) ⊗ R)
〈proof 〉

lemma emp-hcomp:
ε ⊗ P = P
〈proof 〉

lemma hcomp-emp:
P ⊗ ε = P
〈proof 〉

lemma comp-fun-commute-hcomp:
comp-fun-commute (⊗)
〈proof 〉

6.2 An iterated horizontal-composition operator
definition iter-hcomp :: (′a fset) ⇒ (′a ⇒ interface) ⇒ interface
where

iter-hcomp X f ≡ ffold ((⊗) ◦ f) ε X

syntax iter-hcomp-syntax ::
′a ⇒ (′a fset) ⇒ (′a ⇒ interface) ⇒ interface

(‹(
⊗

-|∈|-. -)› [0 ,0 ,10] 10)
syntax-consts iter-hcomp-syntax == iter-hcomp

13

translations
⊗

x|∈|M . e == CONST iter-hcomp M (λx. e)

term
⊗

P|∈|Ps. f P — this is eta-expanded, so prints in expanded form
term

⊗
P|∈|Ps. f — this isn’t eta-expanded, so prints as written

lemma iter-hcomp-cong:
assumes ∀ v ∈ fset vs. ϕ v = ϕ ′ v
shows (

⊗
v|∈|vs. ϕ v) = (

⊗
v|∈|vs. ϕ ′ v)

〈proof 〉

lemma iter-hcomp-empty:
shows (

⊗
x |∈| {||}. p x) = ε

〈proof 〉

lemma iter-hcomp-insert:
assumes v |/∈| ws
shows (

⊗
x |∈| finsert v ws. p x) = (p v ⊗ (

⊗
x |∈| ws. p x))

〈proof 〉

lemma iter-hcomp-union:
assumes vs |∩| ws = {||}
shows (

⊗
x |∈| vs |∪| ws. p x) = ((

⊗
x |∈| vs. p x) ⊗ (

⊗
x |∈| ws. p x))

〈proof 〉

6.3 Semantics of interfaces

The semantics of an interface is an assertion.
fun

conc-asn :: conc-interface ⇒ assertion
where

conc-asn (Ribbon-conc p) = p
| conc-asn (P ⊗c Q) = (conc-asn P) ? (conc-asn Q)
| conc-asn (εc) = Emp
| conc-asn (Exists-int-conc x P) = Exists x (conc-asn P)

lift-definition
asn :: interface ⇒ assertion

is conc-asn
〈proof 〉

lemma asn-simps [simp]:
asn (Ribbon p) = p
asn (P ⊗ Q) = (asn P) ? (asn Q)
asn ε = Emp
asn (Exists-int x P) = Exists x (asn P)
〈proof 〉

14

6.4 Program variables mentioned in an interface.
fun

rd-conc-int :: conc-interface ⇒ string set
where

rd-conc-int (Ribbon-conc p) = rd-ass p
| rd-conc-int (P ⊗c Q) = rd-conc-int P ∪ rd-conc-int Q
| rd-conc-int (εc) = {}
| rd-conc-int (Exists-int-conc x P) = rd-conc-int P

lift-definition
rd-int :: interface ⇒ string set

is rd-conc-int
〈proof 〉

The program variables read by an interface are the same as those read by
its corresponding assertion.
lemma rd-int-is-rd-ass:

rd-ass (asn P) = rd-int P
〈proof 〉

Here is an iterated version of the Hoare logic sequencing rule.
lemma seq-fold:∧

Π. [[length cs = chainlen Π ; p1 = asn (pre Π) ; p2 = asn (post Π) ;∧
i. i < chainlen Π =⇒ prov-triple

(asn (fst3 (nthtriple Π i)), cs ! i, asn (thd3 (nthtriple Π i)))]]
=⇒ prov-triple (p1 , foldr (;;) cs Skip, p2)
〈proof 〉

end

7 Syntax and proof rules for stratified diagrams
theory Ribbons-Stratified imports

Ribbons-Interfaces
Proofchain

begin

We define the syntax of stratified diagrams. We give proof rules for strati-
fied diagrams, and prove them sound with respect to the ordinary rules of
separation logic.

7.1 Syntax of stratified diagrams
datatype sdiagram = SDiagram (cell × interface) list
and cell =

Filler interface
| Basic interface command interface

15

| Exists-sdia string sdiagram
| Choose-sdia interface sdiagram sdiagram interface
| Loop-sdia interface sdiagram interface

datatype-compat sdiagram cell

type-synonym row = cell × interface

Extracting the command from a stratified diagram.
fun

com-sdia :: sdiagram ⇒ command and
com-cell :: cell ⇒ command

where
com-sdia (SDiagram %s) = foldr (;;) (map (com-cell ◦ fst) %s) Skip
| com-cell (Filler P) = Skip
| com-cell (Basic P c Q) = c
| com-cell (Exists-sdia x D) = com-sdia D
| com-cell (Choose-sdia P D E Q) = Choose (com-sdia D) (com-sdia E)
| com-cell (Loop-sdia P D Q) = Loop (com-sdia D)

Extracting the program variables written by a stratified diagram.
fun

wr-sdia :: sdiagram ⇒ string set and
wr-cell :: cell ⇒ string set

where
wr-sdia (SDiagram %s) = (

⋃
r ∈ set %s. wr-cell (fst r))

| wr-cell (Filler P) = {}
| wr-cell (Basic P c Q) = wr-com c
| wr-cell (Exists-sdia x D) = wr-sdia D
| wr-cell (Choose-sdia P D E Q) = wr-sdia D ∪ wr-sdia E
| wr-cell (Loop-sdia P D Q) = wr-sdia D

The program variables written by a stratified diagram correspond to those
written by the commands therein.
lemma wr-sdia-is-wr-com:

fixes %s :: row list
and % :: row
shows (wr-sdia D = wr-com (com-sdia D))
and (wr-cell γ = wr-com (com-cell γ))
and (

⋃
% ∈ set %s. wr-cell (fst %))

= wr-com (foldr (;;) (map (λ(γ,F). com-cell γ) %s) Skip)
and wr-cell (fst %) = wr-com (com-cell (fst %))
〈proof 〉

7.2 Proof rules for stratified diagrams
inductive

prov-sdia :: [sdiagram, interface, interface] ⇒ bool and
prov-row :: [row, interface, interface] ⇒ bool and

16

prov-cell :: [cell, interface, interface] ⇒ bool
where

SRibbon: prov-cell (Filler P) P P
| SBasic: prov-triple (asn P, c, asn Q) =⇒ prov-cell (Basic P c Q) P Q
| SExists: prov-sdia D P Q

=⇒ prov-cell (Exists-sdia x D) (Exists-int x P) (Exists-int x Q)
| SChoice: [[prov-sdia D P Q ; prov-sdia E P Q]]

=⇒ prov-cell (Choose-sdia P D E Q) P Q
| SLoop: prov-sdia D P P =⇒ prov-cell (Loop-sdia P D P) P P
| SRow: [[prov-cell γ P Q ; wr-cell γ ∩ rd-int F = {}]]

=⇒ prov-row (γ, F) (P ⊗ F) (Q ⊗ F)
| SMain: [[chain-all (λ(P,%,Q). prov-row % P Q) Π ; 0 < chainlen Π]]

=⇒ prov-sdia (SDiagram (comlist Π)) (pre Π) (post Π)

7.3 Soundness
lemma soundness-strat-helper :
(prov-sdia D P Q −→ prov-triple (asn P, com-sdia D, asn Q)) ∧
(prov-row % P Q −→ prov-triple (asn P, com-cell (fst %), asn Q)) ∧
(prov-cell γ P Q −→ prov-triple (asn P, com-cell γ, asn Q))

〈proof 〉

corollary soundness-strat:
assumes prov-sdia D P Q
shows prov-triple (asn P, com-sdia D, asn Q)
〈proof 〉

end

8 Syntax and proof rules for graphical diagrams
theory Ribbons-Graphical imports

Ribbons-Interfaces
begin

We introduce a graphical syntax for diagrams, describe how to extract com-
mands and interfaces, and give proof rules for graphical diagrams.

8.1 Syntax of graphical diagrams

Fix a type for node identifiers
typedecl node

Note that this datatype is necessarily an overapproximation of syntactically-
wellformed diagrams, for the reason that we can’t impose the well-formedness
constraints while maintaining admissibility of the datatype declarations. So,
we shall impose well-formedness in a separate definition.

17

datatype assertion-gadget =
Rib assertion
| Exists-dia string diagram
and command-gadget =

Com command
| Choose-dia diagram diagram
| Loop-dia diagram
and diagram = Graph

node fset
node ⇒ assertion-gadget
(node fset × command-gadget × node fset) list

type-synonym labelling = node ⇒ assertion-gadget
type-synonym edge = node fset × command-gadget × node fset

Projecting components from a graph
fun vertices :: diagram ⇒ node fset (‹-^V › [1000] 1000)
where (Graph V Λ E)^V = V

term this (is^V) = (a test)^V

fun labelling :: diagram ⇒ labelling (‹-^Λ› [1000] 1000)
where (Graph V Λ E)^Λ = Λ

fun edges :: diagram ⇒ edge list (‹-^E› [1000] 1000)
where (Graph V Λ E)^E = E

8.2 Well formedness of graphical diagrams
definition acyclicity :: edge list ⇒ bool
where

acyclicity E ≡ acyclic (
⋃

e ∈ set E . fset (fst3 e) × fset (thd3 e))

definition linearity :: edge list ⇒ bool
where

linearity E ≡
distinct E ∧ (∀ e ∈ set E . ∀ f ∈ set E . e 6= f −→
fst3 e |∩| fst3 f = {||} ∧
thd3 e |∩| thd3 f = {||})

lemma linearityD:
assumes linearity E
shows distinct E
and

∧
e f . [[e ∈ set E ; f ∈ set E ; e 6= f]] =⇒

fst3 e |∩| fst3 f = {||} ∧
thd3 e |∩| thd3 f = {||}

〈proof 〉

lemma linearityD2 :
linearity E =⇒ (∀ e f . e ∈ set E ∧ f ∈ set E ∧ e 6= f −→

18

fst3 e |∩| fst3 f = {||} ∧
thd3 e |∩| thd3 f = {||})

〈proof 〉

inductive
wf-ass :: assertion-gadget ⇒ bool and
wf-com :: command-gadget ⇒ bool and
wf-dia :: diagram ⇒ bool

where
wf-rib: wf-ass (Rib p)
| wf-exists: wf-dia G =⇒ wf-ass (Exists-dia x G)
| wf-com: wf-com (Com c)
| wf-choice: [[wf-dia G ; wf-dia H]] =⇒ wf-com (Choose-dia G H)
| wf-loop: wf-dia G =⇒ wf-com (Loop-dia G)
| wf-dia: [[∀ e ∈ set E . wf-com (snd3 e) ; ∀ v ∈ fset V . wf-ass (Λ v) ;

acyclicity E ; linearity E ; ∀ e ∈ set E . fst3 e |∪| thd3 e |⊆| V]] =⇒
wf-dia (Graph V Λ E)

inductive-cases wf-dia-inv ′: wf-dia (Graph V Λ E)

lemma wf-dia-inv:
assumes wf-dia (Graph V Λ E)
shows ∀ v ∈ fset V . wf-ass (Λ v)

and ∀ e ∈ set E . wf-com (snd3 e)
and acyclicity E
and linearity E
and ∀ e ∈ set E . fst3 e |∪| thd3 e |⊆| V

〈proof 〉

8.3 Initial and terminal nodes
definition

initials :: diagram ⇒ node fset
where

initials G = ffilter (λv. (∀ e ∈ set G^E . v |/∈| thd3 e)) G^V

definition
terminals :: diagram ⇒ node fset

where
terminals G = ffilter (λv. (∀ e ∈ set G^E . v |/∈| fst3 e)) G^V

lemma no-edges-imp-all-nodes-initial:
initials (Graph V Λ []) = V
〈proof 〉

lemma no-edges-imp-all-nodes-terminal:
terminals (Graph V Λ []) = V
〈proof 〉

19

lemma initials-in-vertices:
initials G |⊆| G^V

〈proof 〉

lemma terminals-in-vertices:
terminals G |⊆| G^V

〈proof 〉

8.4 Top and bottom interfaces
primrec

top-ass :: assertion-gadget ⇒ interface and
top-dia :: diagram ⇒ interface

where
top-dia (Graph V Λ E) = (

⊗
v |∈| initials (Graph V Λ E). top-ass (Λ v))

| top-ass (Rib p) = Ribbon p
| top-ass (Exists-dia x G) = Exists-int x (top-dia G)

primrec
bot-ass :: assertion-gadget ⇒ interface and
bot-dia :: diagram ⇒ interface

where
bot-dia (Graph V Λ E) = (

⊗
v |∈| terminals (Graph V Λ E). bot-ass (Λ v))

| bot-ass (Rib p) = Ribbon p
| bot-ass (Exists-dia x G) = Exists-int x (bot-dia G)

8.5 Proof rules for graphical diagrams
inductive

prov-dia :: [diagram, interface, interface] ⇒ bool and
prov-com :: [command-gadget, interface, interface] ⇒ bool and
prov-ass :: assertion-gadget ⇒ bool

where
Skip: prov-ass (Rib p)
| Exists: prov-dia G - - =⇒ prov-ass (Exists-dia x G)
| Basic: prov-triple (asn P, c, asn Q) =⇒ prov-com (Com c) P Q
| Choice: [[prov-dia G P Q ; prov-dia H P Q]]

=⇒ prov-com (Choose-dia G H) P Q
| Loop: prov-dia G P P =⇒ prov-com (Loop-dia G) P P
| Main: [[wf-dia G ;

∧
v. v ∈ fset G^V =⇒ prov-ass (G^Λ v);∧

e. e ∈ set G^E =⇒ prov-com (snd3 e)
(
⊗

v |∈| fst3 e. bot-ass (G^Λ v))
(
⊗

v |∈| thd3 e. top-ass (G^Λ v))]]
=⇒ prov-dia G (top-dia G) (bot-dia G)

inductive-cases main-inv: prov-dia (Graph V Λ E) P Q
inductive-cases loop-inv: prov-com (Loop-dia G) P Q
inductive-cases choice-inv: prov-com (Choose-dia G H) P Q
inductive-cases basic-inv: prov-com (Com c) P Q
inductive-cases exists-inv: prov-ass (Exists-dia x G)

20

inductive-cases skip-inv: prov-ass (Rib p)

8.6 Extracting commands from diagrams
type-synonym lin = (node + edge) list

A linear extension (lin) of a diagram is a list of its nodes and edges which
respects the order of those nodes and edges. That is, if an edge e goes from
node v to node w, then v and e and w must have strictly increasing positions
in the list.
definition lins :: diagram ⇒ lin set
where
lins G ≡ {π :: lin.

(distinct π)
∧ (set π = (fset G^V) <+> (set G^E))
∧ (∀ i j v e. i < length π ∧ j < length π ∧ π!i = Inl v ∧ π!j = Inr e
∧ v |∈| fst3 e −→ i<j)
∧ (∀ j k w e. j < length π ∧ k < length π ∧ π!j = Inr e ∧ π!k = Inl w
∧ w |∈| thd3 e −→ j<k) }

lemma linsD:
assumes π ∈ lins G
shows (distinct π)

and (set π = (fset G^V) <+> (set G^E))
and (∀ i j v e. i < length π ∧ j < length π
∧ π!i = Inl v ∧ π!j = Inr e ∧ v |∈| fst3 e −→ i<j)

and (∀ j k w e. j < length π ∧ k < length π
∧ π!j = Inr e ∧ π!k = Inl w ∧ w |∈| thd3 e −→ j<k)

〈proof 〉

The following lemma enables the inductive definition below to be proved
monotonic. It does this by showing how one of the premises of the coms-main
rule can be rewritten in a form that is more verbose but easier to prove
monotonic.
lemma coms-mono-helper :
(∀ i<length π. case-sum (coms-ass ◦ Λ) (coms-com ◦ snd3) (π!i) (cs!i))
=
((∀ i. i<length π ∧ (∃ v. (π!i) = Inl v) −→

coms-ass (Λ (projl (π!i))) (cs!i)) ∧
(∀ i. i<length π ∧ (∃ e. (π!i) = Inr e) −→

coms-com (snd3 (projr (π!i))) (cs!i)))
〈proof 〉

The coms-dia function extracts a set of commands from a diagram. Each
command in coms-dia G is obtained by extracting a command from each of
G’s nodes and edges (using coms-ass or coms-com respectively), then picking
a linear extension π of these nodes and edges (using lins), and composing
the extracted commands in accordance with π.

21

inductive
coms-dia :: [diagram, command] ⇒ bool and
coms-ass :: [assertion-gadget, command] ⇒ bool and
coms-com :: [command-gadget, command] ⇒ bool

where
coms-skip: coms-ass (Rib p) Skip
| coms-exists: coms-dia G c =⇒ coms-ass (Exists-dia x G) c
| coms-basic: coms-com (Com c) c
| coms-choice: [[coms-dia G c; coms-dia H d]] =⇒

coms-com (Choose-dia G H) (Choose c d)
| coms-loop: coms-dia G c =⇒ coms-com (Loop-dia G) (Loop c)
| coms-main: [[π ∈ lins (Graph V Λ E); length cs = length π;
∀ i<length π. case-sum (coms-ass ◦ Λ) (coms-com ◦ snd3) (π!i) (cs!i)]]
=⇒ coms-dia (Graph V Λ E) (foldr (;;) cs Skip)

monos
coms-mono-helper

inductive-cases coms-skip-inv: coms-ass (Rib p) c
inductive-cases coms-exists-inv: coms-ass (Exists-dia x G) c
inductive-cases coms-basic-inv: coms-com (Com c ′) c
inductive-cases coms-choice-inv: coms-com (Choose-dia G H) c
inductive-cases coms-loop-inv: coms-com (Loop-dia G) c
inductive-cases coms-main-inv: coms-dia G c

end

9 Soundness for graphical diagrams
theory Ribbons-Graphical-Soundness imports

Ribbons-Graphical
More-Finite-Map

begin

We prove that the proof rules for graphical ribbon proofs are sound with
respect to the rules of separation logic.
We impose an additional assumption to achieve soundness: that the Frame
rule has no side-condition. This assumption is reasonable because there are
several separation logics that lack such a side-condition, such as “variables-
as-resource”.
We first describe how to extract proofchains from a diagram. This process is
similar to the process of extracting commands from a diagram, which was de-
scribed in Ribbon-Proofs.Ribbons-Graphical. When we extract a proofchain,
we don’t just include the commands, but the assertions in between them.
Our main lemma for proving soundness says that each of these proofchains
corresponds to a valid separation logic proof.

22

9.1 Proofstate chains

When extracting a proofchain from a diagram, we need to keep track of
which nodes we have processed and which ones we haven’t. A proofstate,
defined below, maps a node to “Top” if it hasn’t been processed and “Bot”
if it has.
datatype topbot = Top | Bot

type-synonym proofstate = node ⇀f topbot

A proofstate chain contains all the nodes and edges of a graphical diagram,
interspersed with proofstates that track which nodes have been processed
at each point.
type-synonym ps-chain = (proofstate, node + edge) chain

The next-ps σ function processes one node or one edge in a diagram, given
the current proofstate σ. It processes a node v by replacing the mapping
from v to Top with a mapping from v to Bot. It processes an edge e (whose
source and target nodes are vs and ws respectively) by removing all the
mappings from vs to Bot, and adding mappings from ws to Top.
fun next-ps :: proofstate ⇒ node + edge ⇒ proofstate
where

next-ps σ (Inl v) = σ 	 {|v|} ++f [{|v|} |=> Bot]
| next-ps σ (Inr e) = σ 	 fst3 e ++f [thd3 e |=> Top]

The function mk-ps-chain Π π generates from π, which is a list of nodes
and edges, a proofstate chain, by interspersing the elements of π with the
appropriate proofstates. The first argument Π is the part of the chain that
has already been converted.
definition

mk-ps-chain :: [ps-chain, (node + edge) list] ⇒ ps-chain
where

mk-ps-chain ≡ foldl (λΠ x. cSnoc Π x (next-ps (post Π) x))

lemma mk-ps-chain-preserves-length:
fixes π Π
shows chainlen (mk-ps-chain Π π) = chainlen Π + length π
〈proof 〉

Distributing mk-ps-chain over (#).
lemma mk-ps-chain-cons:

mk-ps-chain Π (x # π) = mk-ps-chain (cSnoc Π x (next-ps (post Π) x)) π
〈proof 〉

Distributing mk-ps-chain over snoc.
lemma mk-ps-chain-snoc:

23

mk-ps-chain Π (π @ [x])
= cSnoc (mk-ps-chain Π π) x (next-ps (post (mk-ps-chain Π π)) x)

〈proof 〉

Distributing mk-ps-chain over cCons.
lemma mk-ps-chain-ccons:

fixes π Π
shows mk-ps-chain ({| σ |} · x · Π) π = {| σ |} · x · mk-ps-chain Π π
〈proof 〉

lemma pre-mk-ps-chain:
fixes Π π
shows pre (mk-ps-chain Π π) = pre Π
〈proof 〉

A chain which is obtained from the list π, has π as its list of commands.
The following lemma states this in a slightly more general form, that allows
for part of the chain to have already been processed.
lemma comlist-mk-ps-chain:

comlist (mk-ps-chain Π π) = comlist Π @ π
〈proof 〉

In order to perform induction over our diagrams, we shall wish to obtain
“smaller” diagrams, by removing nodes or edges. However, the syntax and
well-formedness constraints for diagrams are such that although we can al-
ways remove an edge from a diagram, we cannot (in general) remove a node
– the resultant diagram would not be a well-formed if an edge connected to
that node.
Hence, we consider “partially-processed diagrams” (G, S), which comprise
a diagram G and a set S of nodes. S denotes the subset of G’s initial nodes
that have already been processed, and can be thought of as having been
removed from G.
We now give an updated version of the lins G function. This was originally
defined in Ribbon-Proofs.Ribbons-Graphical. We provide an extra parameter,
S, which denotes the subset of G’s initial nodes that shouldn’t be included
in the linear extensions.
definition lins2 :: [node fset, diagram] ⇒ lin set
where

lins2 S G ≡ {π :: lin .
(distinct π)
∧ (set π = (fset G^V − fset S) <+> set G^E)
∧ (∀ i j v e. i < length π ∧ j < length π
∧ π!i = Inl v ∧ π!j = Inr e ∧ v |∈| fst3 e −→ i<j)
∧ (∀ j k w e. j < length π ∧ k < length π
∧ π!j = Inr e ∧ π!k = Inl w ∧ w |∈| thd3 e −→ j<k) }

24

lemma lins2D:
assumes π ∈ lins2 S G
shows distinct π

and set π = (fset G^V − fset S) <+> set G^E
and

∧
i j v e. [[i < length π ; j < length π ;

π!i = Inl v ; π!j = Inr e ; v |∈| fst3 e]] =⇒ i<j
and

∧
i k w e. [[j < length π ; k < length π ;

π!j = Inr e ; π!k = Inl w ; w |∈| thd3 e]] =⇒ j<k
〈proof 〉

lemma lins2I :
assumes distinct π

and set π = (fset G^V − fset S) <+> set G^E
and

∧
i j v e. [[i < length π ; j < length π ;

π!i = Inl v ; π!j = Inr e ; v |∈| fst3 e]] =⇒ i<j
and

∧
j k w e. [[j < length π ; k < length π ;

π!j = Inr e ; π!k = Inl w ; w |∈| thd3 e]] =⇒ j<k
shows π ∈ lins2 S G
〈proof 〉

When S is empty, the two definitions coincide.
lemma lins-is-lins2-with-empty-S :

lins G = lins2 {||} G
〈proof 〉

The first proofstate for a diagram G is obtained by mapping each of its
initial nodes to Top.
definition

initial-ps :: diagram ⇒ proofstate
where

initial-ps G ≡ [initials G |=> Top]

The first proofstate for the partially-processed diagram G is obtained by
mapping each of its initial nodes to Top, except those in S, which are mapped
to Bot.
definition

initial-ps2 :: [node fset, diagram] ⇒ proofstate
where

initial-ps2 S G ≡ [initials G − S |=> Top] ++f [S |=> Bot]

When S is empty, the above two definitions coincide.
lemma initial-ps-is-initial-ps2-with-empty-S :

initial-ps = initial-ps2 {||}
〈proof 〉

The following function extracts the set of proofstate chains from a diagram.
definition

ps-chains :: diagram ⇒ ps-chain set

25

where
ps-chains G ≡ mk-ps-chain (cNil (initial-ps G)) ‘ lins G

The following function extracts the set of proofstate chains from a partially-
processed diagram. Nodes in S are excluded from the resulting chains.
definition

ps-chains2 :: [node fset, diagram] ⇒ ps-chain set
where

ps-chains2 S G ≡ mk-ps-chain (cNil (initial-ps2 S G)) ‘ lins2 S G

When S is empty, the above two definitions coincide.
lemma ps-chains-is-ps-chains2-with-empty-S :

ps-chains = ps-chains2 {||}
〈proof 〉

We now wish to describe proofstates chain that are well-formed. First, let
us say that f ++f disjoint g is defined, when f and g have disjoint domains,
as f ++f g. Then, a well-formed proofstate chain consists of triples of the
form (σ ++f disjoint [{|v|} |=> Top], Inl v, σ ++f disjoint [{|v|} |=>
Bot]), where v is a node, or of the form (σ ++f disjoint [{|vs|} |=> Bot
], Inr e, σ ++f disjoint [{|ws|} |=> Top]), where e is an edge with source
and target nodes vs and ws respectively.
The definition below describes a well-formed triple; we then lift this to com-
plete chains shortly.
definition

wf-ps-triple :: proofstate × (node + edge) × proofstate ⇒ bool
where

wf-ps-triple T = (case snd3 T of
Inl v ⇒ (∃σ. v |/∈| fmdom σ
∧ fst3 T = [{|v|} |=> Top] ++f σ
∧ thd3 T = [{|v|} |=> Bot] ++f σ)

| Inr e ⇒ (∃σ. (fst3 e |∪| thd3 e) |∩| fmdom σ = {||}
∧ fst3 T = [fst3 e |=> Bot] ++f σ
∧ thd3 T = [thd3 e |=> Top] ++f σ))

lemma wf-ps-triple-nodeI :
assumes ∃σ. v |/∈| fmdom σ ∧
σ1 = [{|v|} |=> Top] ++f σ ∧
σ2 = [{|v|} |=> Bot] ++f σ

shows wf-ps-triple (σ1 , Inl v, σ2)
〈proof 〉

lemma wf-ps-triple-edgeI :
assumes ∃σ. (fst3 e |∪| thd3 e) |∩| fmdom σ = {||}
∧ σ1 = [fst3 e |=> Bot] ++f σ
∧ σ2 = [thd3 e |=> Top] ++f σ

shows wf-ps-triple (σ1 , Inr e, σ2)

26

〈proof 〉

definition
wf-ps-chain :: ps-chain ⇒ bool

where
wf-ps-chain ≡ chain-all wf-ps-triple

lemma next-initial-ps2-vertex:
initial-ps2 ({|v|} |∪| S) G
= initial-ps2 S G 	 {|v|} ++f [{|v|} |=> Bot]
〈proof 〉

lemma next-initial-ps2-edge:
assumes G = Graph V Λ E and G ′ = Graph V ′ Λ E ′ and

V ′ = V − fst3 e and E ′ = removeAll e E and e ∈ set E and
fst3 e |⊆| S and S |⊆| initials G and wf-dia G

shows initial-ps2 (S − fst3 e) G ′ =
initial-ps2 S G 	 fst3 e ++f [thd3 e |=> Top]
〈proof 〉

lemma next-lins2-vertex:
assumes Inl v # π ∈ lins2 S G
assumes v |/∈| S
shows π ∈ lins2 ({|v|} |∪| S) G
〈proof 〉

lemma next-lins2-edge:
assumes Inr e # π ∈ lins2 S (Graph V Λ E)

and vs |⊆| S
and e = (vs,c,ws)

shows π ∈ lins2 (S − vs) (Graph (V − vs) Λ (removeAll e E))
〈proof 〉

We wish to prove that every proofstate chain that can be obtained from a
linear extension of G is well-formed and has as its final proofstate that state
in which every terminal node in G is mapped to Bot.
We first prove this for partially-processed diagrams, for then the result for
ordinary diagrams follows as an easy corollary.
We use induction on the size of the partially-processed diagram. The size
of a partially-processed diagram (G, S) is defined as the number of nodes
in G, plus the number of edges, minus the number of nodes in S.
lemma wf-chains2 :

fixes k
assumes S |⊆| initials G

and wf-dia G
and Π ∈ ps-chains2 S G
and fcard G^V + length G^E = k + fcard S

shows wf-ps-chain Π ∧ (post Π = [terminals G |=> Bot])

27

〈proof 〉

corollary wf-chains:
assumes wf-dia G
assumes Π ∈ ps-chains G
shows wf-ps-chain Π ∧ post Π = [terminals G |=> Bot]
〈proof 〉

9.2 Interface chains
type-synonym int-chain = (interface, assertion-gadget + command-gadget) chain

An interface chain is similar to a proofstate chain. However, where a proof-
state chain talks about nodes and edges, an interface chain talks about the
assertion-gadgets and command-gadgets that label those nodes and edges
in a diagram. And where a proofstate chain talks about proofstates, an
interface chain talks about the interfaces obtained from those proofstates.
The following functions convert a proofstate chain into an interface chain.
definition

ps-to-int :: [diagram, proofstate] ⇒ interface
where

ps-to-int G σ ≡⊗
v |∈| fmdom σ. case-topbot top-ass bot-ass (lookup σ v) (G^Λ v)

definition
ps-chain-to-int-chain :: [diagram, ps-chain] ⇒ int-chain

where
ps-chain-to-int-chain G Π ≡

chainmap (ps-to-int G) ((case-sum (Inl ◦ G^Λ) (Inr ◦ snd3))) Π

lemma ps-chain-to-int-chain-simp:
ps-chain-to-int-chain (Graph V Λ E) Π =

chainmap (ps-to-int (Graph V Λ E)) ((case-sum (Inl ◦ Λ) (Inr ◦ snd3))) Π
〈proof 〉

9.3 Soundness proof

We assume that wr-com always returns {}. This is equivalent to changing
our axiomatization of separation logic such that the frame rule has no side-
condition. One way to obtain a separation logic lacking a side-condition on
its frame rule is to use variables-as- resource.
We proceed by induction on the proof rules for graphical diagrams. We
show that: (1) if a diagram G is provable w.r.t. interfaces P and Q, then
P and Q are the top and bottom interfaces of G, and that the Hoare triple
(asn P, c, asn Q) is provable for each command c that can be extracted
from G; (2) if a command-gadget C is provable w.r.t. interfaces P and Q,
then the Hoare triple (asn P, c, asn Q) is provable for each command c that

28

can be extracted from C ; and (3) if an assertion-gadget A is provable, and
if the top and bottom interfaces of A are P and Q respectively, then the
Hoare triple (asn P, c, asn Q) is provable for each command c that can be
extracted from A.
lemma soundness-graphical-helper :

assumes no-var-interference:
∧

c. wr-com c = {}
shows
(prov-dia G P Q −→
(P = top-dia G ∧ Q = bot-dia G ∧
(∀ c. coms-dia G c −→ prov-triple (asn P, c, asn Q))))

∧ (prov-com C P Q −→
(∀ c. coms-com C c −→ prov-triple (asn P, c, asn Q)))

∧ (prov-ass A −→
(∀ c. coms-ass A c −→ prov-triple (asn (top-ass A), c, asn (bot-ass A))))

〈proof 〉

The soundness theorem states that any diagram provable using the proof
rules for ribbons can be recreated as a valid proof in separation logic.
corollary soundness-graphical:

assumes
∧

c. wr-com c = {}
assumes prov-dia G P Q
shows ∀ c. coms-dia G c −→ prov-triple (asn P, c, asn Q)
〈proof 〉

end

References

[1] J. Bean. Ribbon Proofs - A Proof System for the Logic of Bunched
Implications. PhD thesis, Queen Mary University of London, 2006.

[2] R. Bornat, C. Calcagno, and H. Yang. Variables as resource in sepa-
ration logic. In Proceedings of the 21st Annual Conference on Mathe-
matical Foundations of Programming Semantics (MFPS XXI), volume
155 of Electronic Notes in Theoretical Computer Science, pages 247–276.
Elsevier, 2006.

[3] J. Wickerson. Concurrent Verification for Sequential Programs. PhD
thesis, University of Cambridge, 2013.

[4] J. Wickerson, M. Dodds, and M. J. Parkinson. Ribbon proofs for sep-
aration logic. In M. Felleisen and P. Gardner, editors, Proceedings of
the 22nd European Symposium on Programming (ESOP ’13), 2013. To
appear.

29

	Introduction
	Finite partial functions
	Difference
	Comprehension
	Domain
	Lookup

	General purpose definitions and lemmas
	Projection functions on triples

	Proof chains
	Projections
	Chain length
	Extracting triples from chains
	Evaluating a predicate on each triple of a chain
	A map function for proof chains
	Extending a chain on its right-hand side

	Assertions, commands, and separation logic proof rules
	Assertions
	Commands
	Separation logic proof rules

	Ribbon proof interfaces
	Syntax of interfaces
	An iterated horizontal-composition operator
	Semantics of interfaces
	Program variables mentioned in an interface.

	Syntax and proof rules for stratified diagrams
	Syntax of stratified diagrams
	Proof rules for stratified diagrams
	Soundness

	Syntax and proof rules for graphical diagrams
	Syntax of graphical diagrams
	Well formedness of graphical diagrams
	Initial and terminal nodes
	Top and bottom interfaces
	Proof rules for graphical diagrams
	Extracting commands from diagrams

	Soundness for graphical diagrams
	Proofstate chains
	Interface chains
	Soundness proof

