
The Resolution Calculus for First-Order Logic

Anders Schlichtkrull

March 17, 2025

Abstract

This theory is a formalization of the resolution calculus for first-
order logic. It is proven sound and complete. The soundness proof
uses the substitution lemma, which shows a correspondence between
substitutions and updates to an environment. The completeness proof
uses semantic trees, i.e. trees whose paths are partial Herbrand in-
terpretations. It employs Herbrand’s theorem in a formulation which
states that an unsatisfiable set of clauses has a finite closed semantic
tree. It also uses the lifting lemma which lifts resolution derivation
steps from the ground world up to the first-order world. The theory is
presented in a paper in the Journal of Automated Reasoning [7] which
extends a paper presented at the International Conference on Interac-
tive Theorem Proving [6]. An earlier version was presented in an MSc
thesis [5]. The formalization mostly follows textbooks by Ben-Ari [1],
Chang and Lee [2], and Leitsch [4]. The theory is part of the IsaFoL
project [3].

Contents
1 Terms and Literals 3

1.1 Ground . 3
1.2 Auxiliary . 4
1.3 Conversions . 4

1.3.1 Conversions - Terms and Herbrand Terms 4
1.3.2 Conversions - Literals and Herbrand Literals 5
1.3.3 Conversions - Atoms and Herbrand Atoms 6

1.4 Enumerations . 7
1.4.1 Enumerating Strings 7
1.4.2 Enumerating Herbrand Atoms 8
1.4.3 Enumerating Ground Atoms 9

2 Trees 9
2.1 Sizes . 9
2.2 Paths . 10
2.3 Branches . 11

1

2.4 Internal Paths . 13
2.5 Deleting Nodes . 15

3 Possibly Infinite Trees 23
3.1 Infinite Paths . 24

4 König’s Lemma 25

5 More Terms and Literals 26

6 Clauses 27

7 Semantics 28
7.1 Semantics of Ground Terms 29

8 Substitutions 29
8.1 The Empty Substitution . 30
8.2 Substitutions and Ground Terms 31
8.3 Composition . 32
8.4 Merging substitutions . 34
8.5 Standardizing apart . 36

9 Unifiers 38
9.1 Most General Unifiers . 40

10 Resolution 40

11 Soundness 41

12 Herbrand Interpretations 45

13 Partial Interpretations 46

14 Semantic Trees 49

15 Herbrand’s Theorem 50

16 Lifting Lemma 55

17 Completeness 57

18 Examples 67

19 The Unification Theorem 73

20 Instance of completeness theorem 78

2

1 Terms and Literals
theory TermsAndLiterals imports Main HOL−Library.Countable-Set begin

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

datatype fterm =
Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym

datatype hterm = HFun fun-sym hterm list — Herbrand terms defined as in
Berghofer’s FOL-Fitting

type-synonym ′t atom = pred-sym ∗ ′t list

datatype ′t literal =
sign: Pos (get-pred: pred-sym) (get-terms: ′t list)
| Neg (get-pred: pred-sym) (get-terms: ′t list)

fun get-atom :: ′t literal ⇒ ′t atom where
get-atom (Pos p ts) = (p, ts)
| get-atom (Neg p ts) = (p, ts)

1.1 Ground
fun groundt :: fterm ⇒ bool where

groundt (Var x) ←→ False
| groundt (Fun f ts) ←→ (∀ t ∈ set ts. groundt t)

abbreviation groundts :: fterm list ⇒ bool where
groundts ts ≡ (∀ t ∈ set ts. groundt t)

abbreviation ground l :: fterm literal ⇒ bool where
ground l l ≡ groundts (get-terms l)

abbreviation ground ls :: fterm literal set ⇒ bool where
ground ls C ≡ (∀ l ∈ C . ground l l)

definition ground-fatoms :: fterm atom set where
ground-fatoms ≡ {a. groundts (snd a)}

lemma ground l-ground-fatom:
assumes ground l l
shows get-atom l ∈ ground-fatoms
using assms unfolding ground-fatoms-def by (induction l) auto

3

1.2 Auxiliary
lemma infinity:

assumes inj: ∀n :: nat. undiago (diago n) = n
assumes all-tree: ∀n :: nat. (diago n) ∈ S
shows ¬finite S

proof −
from inj all-tree have ∀n. n = undiago (diago n) ∧ (diago n) ∈ S by auto
then have ∀n. ∃ ds. n = undiago ds ∧ ds ∈ S by auto
then have undiago ‘ S = (UNIV :: nat set) by auto
then show ¬finite S by (metis finite-imageI infinite-UNIV-nat)

qed

lemma inv-into-f-f :
assumes bij-betw f A B
assumes a∈A
shows (inv-into A f) (f a) = a

using assms bij-betw-inv-into-left by metis

lemma f-inv-into-f :
assumes bij-betw f A B
assumes b∈B
shows f ((inv-into A f) b) = b

using assms bij-betw-inv-into-right by metis

1.3 Conversions
1.3.1 Conversions - Terms and Herbrand Terms
fun fterm-of-hterm :: hterm ⇒ fterm where

fterm-of-hterm (HFun p ts) = Fun p (map fterm-of-hterm ts)

definition fterms-of-hterms :: hterm list ⇒ fterm list where
fterms-of-hterms ts ≡ map fterm-of-hterm ts

fun hterm-of-fterm :: fterm ⇒ hterm where
hterm-of-fterm (Fun p ts) = HFun p (map hterm-of-fterm ts)

definition hterms-of-fterms :: fterm list ⇒ hterm list where
hterms-of-fterms ts ≡ map hterm-of-fterm ts

lemma hterm-of-fterm-fterm-of-hterm[simp]: hterm-of-fterm (fterm-of-hterm t) =
t

by (induction t) (simp add: map-idI)

lemma hterms-of-fterms-fterms-of-hterms[simp]: hterms-of-fterms (fterms-of-hterms
ts) = ts

unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI)

lemma fterm-of-hterm-hterm-of-fterm[simp]:

4

assumes groundt t
shows fterm-of-hterm (hterm-of-fterm t) = t
using assms by (induction t) (auto simp add: map-idI)

lemma fterms-of-hterms-hterms-of-fterms[simp]:
assumes groundts ts
shows fterms-of-hterms (hterms-of-fterms ts) = ts
using assms unfolding fterms-of-hterms-def hterms-of-fterms-def by (simp add:

map-idI)

lemma ground-fterm-of-hterm: groundt (fterm-of-hterm t)
by (induction t) (auto simp add: map-idI)

lemma ground-fterms-of-hterms: groundts (fterms-of-hterms ts)
unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals
fun flit-of-hlit :: hterm literal ⇒ fterm literal where

flit-of-hlit (Pos p ts) = Pos p (fterms-of-hterms ts)
| flit-of-hlit (Neg p ts) = Neg p (fterms-of-hterms ts)

fun hlit-of-flit :: fterm literal ⇒ hterm literal where
hlit-of-flit (Pos p ts) = Pos p (hterms-of-fterms ts)
| hlit-of-flit (Neg p ts) = Neg p (hterms-of-fterms ts)

lemma ground-flit-of-hlit: ground l (flit-of-hlit l)
by (induction l) (simp add: ground-fterms-of-hterms)+

theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit l) = l by (cases l)
auto

theorem flit-of-hlit-hlit-of-flit [simp]:
assumes ground l l
shows flit-of-hlit (hlit-of-flit l) = l
using assms by (cases l) auto

lemma sign-flit-of-hlit: sign (flit-of-hlit l) = sign l by (cases l) auto

lemma hlit-of-flit-bij: bij-betw hlit-of-flit {l. ground l l} UNIV
unfolding bij-betw-def

proof
show inj-on hlit-of-flit {l. ground l l} using inj-on-inverseI flit-of-hlit-hlit-of-flit

by (metis (mono-tags, lifting) mem-Collect-eq)
next

have ∀ l. ∃ l ′. ground l l ′ ∧ l = hlit-of-flit l ′
using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis

then show hlit-of-flit ‘ {l. ground l l} = UNIV by auto
qed

5

lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground l l}
unfolding bij-betw-def inj-on-def

proof
show ∀ x∈UNIV . ∀ y∈UNIV . flit-of-hlit x = flit-of-hlit y −→ x = y

using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
next

have ∀ l. ground l l −→ (l = flit-of-hlit (hlit-of-flit l)) using hlit-of-flit-flit-of-hlit
by auto

then have {l. ground l l} ⊆ flit-of-hlit ‘ UNIV by blast
moreover
have ∀ l. ground l (flit-of-hlit l) using ground-flit-of-hlit by auto
ultimately show flit-of-hlit ‘ UNIV = {l. ground l l} using hlit-of-flit-flit-of-hlit

ground-flit-of-hlit by auto
qed

1.3.3 Conversions - Atoms and Herbrand Atoms
fun fatom-of-hatom :: hterm atom ⇒ fterm atom where

fatom-of-hatom (p, ts) = (p, fterms-of-hterms ts)

fun hatom-of-fatom :: fterm atom ⇒ hterm atom where
hatom-of-fatom (p, ts) = (p, hterms-of-fterms ts)

lemma ground-fatom-of-hatom: groundts (snd (fatom-of-hatom a))
by (induction a) (simp add: ground-fterms-of-hterms)+

theorem hatom-of-fatom-fatom-of-hatom [simp]: hatom-of-fatom (fatom-of-hatom
l) = l

by (cases l) auto

theorem fatom-of-hatom-hatom-of-fatom [simp]:
assumes groundts (snd l)
shows fatom-of-hatom (hatom-of-fatom l) = l
using assms by (cases l) auto

lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV
unfolding bij-betw-def

proof
show inj-on hatom-of-fatom ground-fatoms using inj-on-inverseI fatom-of-hatom-hatom-of-fatom

unfolding ground-fatoms-def
by (metis (mono-tags, lifting) mem-Collect-eq)

next
have ∀ a. ∃ a ′. groundts (snd a ′) ∧ a = hatom-of-fatom a ′

using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
then show hatom-of-fatom ‘ ground-fatoms = UNIV unfolding ground-fatoms-def

by blast
qed

6

lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms
unfolding bij-betw-def inj-on-def

proof
show ∀ x∈UNIV . ∀ y∈UNIV . fatom-of-hatom x = fatom-of-hatom y −→ x = y

using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
next

have ∀ a. groundts (snd a) −→ (a = fatom-of-hatom (hatom-of-fatom a)) using
hatom-of-fatom-fatom-of-hatom by auto
then have ground-fatoms ⊆ fatom-of-hatom ‘ UNIV unfolding ground-fatoms-def

by blast
moreover
have ∀ l. groundts (snd (fatom-of-hatom l)) using ground-fatom-of-hatom by

auto
ultimately show fatom-of-hatom ‘ UNIV = ground-fatoms
using hatom-of-fatom-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def

by auto
qed

1.4 Enumerations
1.4.1 Enumerating Strings
definition nat-of-string:: string ⇒ nat where

nat-of-string ≡ (SOME f . bij f)

definition string-of-nat:: nat ⇒ string where
string-of-nat ≡ inv nat-of-string

lemma nat-of-string-bij: bij nat-of-string
proof −
have countable (UNIV ::string set) by auto
moreover
have infinite (UNIV ::string set) using infinite-UNIV-listI by auto
ultimately
obtain x where bij (x:: string ⇒ nat) using countableE-infinite[of UNIV] by

blast
then show ?thesis unfolding nat-of-string-def using someI by metis

qed

lemma string-of-nat-bij: bij string-of-nat unfolding string-of-nat-def using nat-of-string-bij
bij-betw-inv-into by auto

lemma nat-of-string-string-of-nat[simp]: nat-of-string (string-of-nat n) = n
unfolding string-of-nat-def
using nat-of-string-bij f-inv-into-f [of nat-of-string] by simp

lemma string-of-nat-nat-of-string[simp]: string-of-nat (nat-of-string n) = n
unfolding string-of-nat-def
using nat-of-string-bij inv-into-f-f [of nat-of-string] by simp

7

1.4.2 Enumerating Herbrand Atoms
definition nat-of-hatom:: hterm atom ⇒ nat where

nat-of-hatom ≡ (SOME f . bij f)

definition hatom-of-nat:: nat ⇒ hterm atom where
hatom-of-nat ≡ inv nat-of-hatom

instantiation hterm :: countable begin
instance by countable-datatype
end

lemma infinite-hatoms: infinite (UNIV :: (′t atom) set)
proof −

let ?diago = λn. (string-of-nat n,[])
let ?undiago = λa. nat-of-string (fst a)
have ∀n. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have ∀n. ?diago n ∈ UNIV by auto
ultimately show infinite (UNIV :: (′t atom) set) using infinity[of ?undiago

?diago UNIV] by simp
qed

lemma nat-of-hatom-bij: bij nat-of-hatom
proof −

let ?S = UNIV :: ((′t::countable) atom) set
have countable ?S by auto
moreover
have infinite ?S using infinite-hatoms by auto
ultimately
obtain x where bij (x :: hterm atom ⇒ nat) using countableE-infinite[of ?S]

by blast
then have bij nat-of-hatom unfolding nat-of-hatom-def using someI by metis
then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-of-hatom-def

by simp
qed

lemma hatom-of-nat-bij: bij hatom-of-nat unfolding hatom-of-nat-def using nat-of-hatom-bij
bij-betw-inv-into by auto

lemma nat-of-hatom-hatom-of-nat[simp]: nat-of-hatom (hatom-of-nat n) = n
unfolding hatom-of-nat-def
using nat-of-hatom-bij f-inv-into-f [of nat-of-hatom] by simp

lemma hatom-of-nat-nat-of-hatom[simp]: hatom-of-nat (nat-of-hatom l) = l
unfolding hatom-of-nat-def
using nat-of-hatom-bij inv-into-f-f [of nat-of-hatom - UNIV] by simp

8

1.4.3 Enumerating Ground Atoms
definition fatom-of-nat :: nat ⇒ fterm atom where

fatom-of-nat = (λn. fatom-of-hatom (hatom-of-nat n))

definition nat-of-fatom :: fterm atom ⇒ nat where
nat-of-fatom = (λt. nat-of-hatom (hatom-of-fatom t))

theorem diag-undiag-fatom[simp]:
assumes groundts ts
shows fatom-of-nat (nat-of-fatom (p,ts)) = (p,ts)

using assms unfolding fatom-of-nat-def nat-of-fatom-def by auto

theorem undiag-diag-fatom[simp]: nat-of-fatom (fatom-of-nat n) = n unfolding
fatom-of-nat-def nat-of-fatom-def by auto

lemma fatom-of-nat-bij: bij-betw fatom-of-nat UNIV ground-fatoms
using hatom-of-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-of-nat-bij un-

folding fatom-of-nat-def comp-def by blast

lemma ground-fatom-of-nat: groundts (snd (fatom-of-nat x)) unfolding fatom-of-nat-def
using ground-fatom-of-hatom by auto

lemma nat-of-fatom-bij: bij-betw nat-of-fatom ground-fatoms UNIV
using nat-of-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-of-nat-bij un-

folding nat-of-fatom-def comp-def by blast

end

2 Trees
theory Tree imports Main begin

Sometimes it is nice to think of bools as directions in a binary tree
hide-const (open) Left Right
type-synonym dir = bool
definition Left :: bool where Left = True
definition Right :: bool where Right = False
declare Left-def [simp]
declare Right-def [simp]

datatype tree =
Leaf
| Branching (ltree: tree) (rtree: tree)

2.1 Sizes
fun treesize :: tree ⇒ nat where

treesize Leaf = 0

9

| treesize (Branching l r) = 1 + treesize l + treesize r

lemma treesize-Leaf :
assumes treesize T = 0
shows T = Leaf
using assms by (cases T) auto

lemma treesize-Branching:
assumes treesize T = Suc n
shows ∃ l r . T = Branching l r
using assms by (cases T) auto

2.2 Paths
fun path :: dir list ⇒ tree ⇒ bool where

path [] T ←→ True
| path (d#ds) (Branching T1 T2) ←→ (if d then path ds T1 else path ds T2)
| path - - ←→ False

lemma path-inv-Leaf : path p Leaf ←→ p = []
by (induction p) auto

lemma path-inv-Cons: path (a#ds) T −→ (∃ l r . T=Branching l r)
by (cases T) (auto simp add: path-inv-Leaf)

lemma path-inv-Branching-Left: path (Left#p) (Branching l r) ←→ path p l
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching-Right: path (Right#p) (Branching l r) ←→ path p r
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching:
path p (Branching l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a
−→ path p ′ r))) (is ?L ←→ ?R)
proof

assume ?L then show ?R by (induction p) auto
next

assume r : ?R
then show ?L

proof
assume p = [] then show ?L by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r)

by auto
then show ?L by (cases a) auto

qed

10

qed

lemma path-prefix:
assumes path (ds1@ds2) T
shows path ds1 T

using assms proof (induction ds1 arbitrary: T)
case (Cons a ds1)
then have ∃ l r . T = Branching l r using path-inv-Leaf by (cases T) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a
then have path ((ds1) @ ds2) l using p-lr Cons(2) path-inv-Branching by

auto
then have path ds1 l using Cons(1) by auto
then show path (a # ds1) T using p-lr atrue by auto

next
assume afalse: ¬a
then have path ((ds1) @ ds2) r using p-lr Cons(2) path-inv-Branching by

auto
then have path ds1 r using Cons(1) by auto
then show path (a # ds1) T using p-lr afalse by auto

qed
next

case (Nil) then show ?case by auto
qed

2.3 Branches
fun branch :: dir list ⇒ tree ⇒ bool where

branch [] Leaf ←→ True
| branch (d # ds) (Branching l r) ←→ (if d then branch ds l else branch ds r)
| branch - - ←→ False

lemma has-branch: ∃ b. branch b T
proof (induction T)

case (Leaf)
have branch [] Leaf by auto
then show ?case by blast

next
case (Branching T1 T2)
then obtain b where branch b T1 by auto
then have branch (Left#b) (Branching T1 T2) by auto
then show ?case by blast

qed

lemma branch-inv-Leaf : branch b Leaf ←→ b = []
by (cases b) auto

11

lemma branch-inv-Branching-Left:
branch (Left#b) (Branching l r) ←→ branch b l

by auto

lemma branch-inv-Branching-Right:
branch (Right#b) (Branching l r) ←→ branch b r

by auto

lemma branch-inv-Branching:
branch b (Branching l r) ←→

(∃ a b ′. b=a#b ′∧ (a −→ branch b ′ l) ∧ (¬a −→ branch b ′ r))
by (induction b) auto

lemma branch-inv-Leaf2 :
T = Leaf ←→ (∀ b. branch b T −→ b = [])

proof −
{

assume T=Leaf
then have ∀ b. branch b T −→ b = [] using branch-inv-Leaf by auto

}
moreover
{

assume ∀ b. branch b T −→ b = []
then have ∀ b. branch b T −→ ¬(∃ a b ′. b = a # b ′) by auto
then have ∀ b. branch b T −→ ¬(∃ l r . branch b (Branching l r))

using branch-inv-Branching by auto
then have T=Leaf using has-branch[of T] by (metis branch.elims(2))

}
ultimately show T = Leaf ←→ (∀ b. branch b T −→ b = []) by auto

qed

lemma branch-is-path:
assumesbranch ds T
shows path ds T

using assms proof (induction T arbitrary: ds)
case Leaf
then have ds = [] using branch-inv-Leaf by auto
then show ?case by auto

next
case (Branching T1 T2)
then obtain a b where ds-p: ds = a # b ∧ (a −→ branch b T1) ∧ (¬ a −→

branch b T2) using branch-inv-Branching[of ds] by blast
then have (a −→ path b T1) ∧ (¬a −→ path b T2) using Branching by auto
then show ?case using ds-p by (cases a) auto

qed

lemma Branching-Leaf-Leaf-Tree:
assumes T = Branching T1 T2
shows (∃B. branch (B@[True]) T ∧ branch (B@[False]) T)

12

using assms proof (induction T arbitrary: T1 T2)
case Leaf then show ?case by auto

next
case (Branching T1 ′ T2 ′)
{

assume T1 ′=Leaf ∧ T2 ′=Leaf
then have branch ([] @ [True]) (Branching T1 ′ T2 ′) ∧ branch ([] @ [False])

(Branching T1 ′ T2 ′) by auto
then have ?case by metis

}
moreover
{

fix T11 T12
assume T1 ′ = Branching T11 T12
then obtain B where branch (B @ [True]) T1 ′

∧ branch (B @ [False]) T1 ′ using Branching by blast
then have branch (([True] @ B) @ [True]) (Branching T1 ′ T2 ′)

∧ branch (([True] @ B) @ [False]) (Branching T1 ′ T2 ′) by auto
then have ?case by blast

}
moreover
{

fix T11 T12
assume T2 ′ = Branching T11 T12
then obtain B where branch (B @ [True]) T2 ′

∧ branch (B @ [False]) T2 ′ using Branching by blast
then have branch (([False] @ B) @ [True]) (Branching T1 ′ T2 ′)

∧ branch (([False] @ B) @ [False]) (Branching T1 ′ T2 ′) by auto
then have ?case by blast

}
ultimately show ?case using tree.exhaust by blast

qed

2.4 Internal Paths
fun internal :: dir list ⇒ tree ⇒ bool where

internal [] (Branching l r) ←→ True
| internal (d#ds) (Branching l r) ←→ (if d then internal ds l else internal ds r)
| internal - - ←→ False

lemma internal-inv-Leaf : ¬internal b Leaf using internal.simps by blast

lemma internal-inv-Branching-Left:
internal (Left#b) (Branching l r) ←→ internal b l by auto

lemma internal-inv-Branching-Right:
internal (Right#b) (Branching l r) ←→ internal b r

by auto

13

lemma internal-inv-Branching:
internal p (Branching l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧

(¬a −→ internal p ′ r))) (is ?L ←→ ?R)
proof

assume ?L then show ?R by (metis internal.simps(2) neq-Nil-conv)
next

assume r : ?R
then show ?L

proof
assume p = [] then show ?L by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal

p ′ r) by auto
then show ?L by (cases a) auto

qed
qed

lemma internal-is-path:
assumes internal ds T
shows path ds T

using assms proof (induction T arbitrary: ds)
case Leaf
then have False using internal-inv-Leaf by auto
then show ?case by auto

next
case (Branching T1 T2)
then obtain a b where ds-p: ds=[] ∨ ds = a # b ∧ (a −→ internal b T1) ∧ (¬

a −→ internal b T2) using internal-inv-Branching by blast
then have ds = [] ∨ (a −→ path b T1) ∧ (¬a −→ path b T2) using Branching

by auto
then show ?case using ds-p by (cases a) auto

qed

lemma internal-prefix:
assumes internal (ds1@ds2@[d]) T
shows internal ds1 T

using assms proof (induction ds1 arbitrary: T)
case (Cons a ds1)
then have ∃ l r . T = Branching l r using internal-inv-Leaf by (cases T) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a

then have internal ((ds1) @ ds2 @[d]) l using p-lr Cons(2) internal-inv-Branching
by auto

then have internal ds1 l using Cons(1) by auto
then show internal (a # ds1) T using p-lr atrue by auto

next

14

assume afalse: ∼a
then have internal ((ds1) @ ds2 @[d]) r using p-lr Cons(2) internal-inv-Branching

by auto
then have internal ds1 r using Cons(1) by auto
then show internal (a # ds1) T using p-lr afalse by auto

qed
next

case (Nil)
then have ∃ l r . T = Branching l r using internal-inv-Leaf by (cases T) auto
then show ?case by auto

qed

lemma internal-branch:
assumes branch (ds1@ds2@[d]) T
shows internal ds1 T

using assms proof (induction ds1 arbitrary: T)
case (Cons a ds1)
then have ∃ l r . T = Branching l r using branch-inv-Leaf by (cases T) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a

then have branch (ds1 @ ds2 @ [d]) l using p-lr Cons(2) branch-inv-Branching
by auto

then have internal ds1 l using Cons(1) by auto
then show internal (a # ds1) T using p-lr atrue by auto

next
assume afalse: ∼a

then have branch ((ds1) @ ds2 @[d]) r using p-lr Cons(2) branch-inv-Branching
by auto

then have internal ds1 r using Cons(1) by auto
then show internal (a # ds1) T using p-lr afalse by auto

qed
next

case (Nil)
then have ∃ l r . T = Branching l r using branch-inv-Leaf by (cases T) auto
then show ?case by auto

qed

fun parent :: dir list ⇒ dir list where
parent ds = tl ds

2.5 Deleting Nodes
fun delete :: dir list ⇒ tree ⇒ tree where

delete [] T = Leaf
| delete (True#ds) (Branching T1 T2) = Branching (delete ds T1) T2

15

| delete (False#ds) (Branching T1 T2) = Branching T1 (delete ds T2)
| delete (a#ds) Leaf = Leaf

lemma delete-Leaf : delete T Leaf = Leaf by (cases T) auto

lemma path-delete:
assumes path p (delete ds T)
shows path p T

using assms proof (induction p arbitrary: T ds)
case Nil
then show ?case by simp

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching (T1) (delete ds ′ T2)) using b-p bds ′-p

T1T2-p by auto
then have path p T1 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1) T2) using b-p bds ′-p

T1T2-p by auto
then have path p T2 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1) T2) using b-p bds ′-p

T1T2-p by auto

16

then have path p (delete ds ′ T1) using a-p by auto
then have path p T1 using Cons by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching T1 (delete ds ′ T2)) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T2) using a-p by auto
then have path p T2 using Cons by auto
then have ?case using T1T2-p a-p by auto

}
ultimately show ?case by blast

qed

lemma branch-delete:
assumes branch p (delete ds T)
shows branch p T ∨ p=ds

using assms proof (induction p arbitrary: T ds)
case Nil
then have delete ds T = Leaf by (cases delete ds T) auto
then have ds = [] ∨ T = Leaf using delete.elims by blast
then show ?case by auto

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
branch-is-path by blast

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
have branch (a # p) (delete ds T) using Cons by −
then have branch (a # p) (Branching (T1) (delete ds ′ T2)) using b-p bds ′-p

T1T2-p by auto
then have branch p T1 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

17

assume a-p: ¬a
assume b-p: b
have branch (a # p) (delete ds T) using Cons by −
then have branch (a # p) (Branching (delete ds ′ T1) T2) using b-p bds ′-p

T1T2-p by auto
then have branch p T2 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have branch (a # p) (delete ds T) using Cons by −
then have branch (a # p) (Branching (delete ds ′ T1) T2) using b-p bds ′-p

T1T2-p by auto
then have branch p (delete ds ′ T1) using a-p by auto
then have branch p T1 ∨ p = ds ′ using Cons by metis
then have ?case using T1T2-p a-p using bds ′-p a-p b-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have branch (a # p) (delete ds T) using Cons by −
then have branch (a # p) (Branching T1 (delete ds ′ T2)) using b-p bds ′-p

T1T2-p by auto
then have branch p (delete ds ′ T2) using a-p by auto
then have branch p T2 ∨ p = ds ′ using Cons by metis
then have ?case using T1T2-p a-p using bds ′-p a-p b-p by auto

}
ultimately show ?case by blast

qed

lemma branch-delete-postfix:
assumes path p (delete ds T)
shows ¬(∃ c cs. p = ds @ c#cs)

using assms proof (induction p arbitrary: T ds)
case Nil then show ?case by simp

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto

18

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: b
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1) T2) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T1) using a-p by auto
then have ¬ (∃ c cs. p = ds ′ @ c # cs) using Cons by auto
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have path (a # p) (delete ds T) using Cons by −
then have path (a # p) (Branching T1 (delete ds ′ T2)) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T2) using a-p by auto
then have ¬ (∃ c cs. p = ds ′ @ c # cs) using Cons by auto
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
ultimately show ?case by blast

qed

lemma treezise-delete:
assumes internal p T
shows treesize (delete p T) < treesize T

using assms proof (induction p arbitrary: T)
case (Nil)
then have ∃T1 T2 . T = Branching T1 T2 by (cases T) auto
then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
then show ?case by auto

next
case (Cons a p)
then have ∃T1 T2 . T = Branching T1 T2 using path-inv-Cons internal-is-path

19

by blast
then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
show ?case

proof (cases a)
assume a-p: a

from a-p have delete (a#p) T = (Branching (delete p T1) T2) using T1T2-p
by auto

moreover
from a-p have internal p T1 using T1T2-p Cons by auto
then have treesize (delete p T1) < treesize T1 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto

next
assume a-p: ¬a

from a-p have delete (a#p) T = (Branching T1 (delete p T2)) using T1T2-p
by auto

moreover
from a-p have internal p T2 using T1T2-p Cons by auto
then have treesize (delete p T2) < treesize T2 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto

qed
qed

fun cutoff :: (dir list ⇒ bool) ⇒ dir list ⇒ tree ⇒ tree where
cutoff red ds (Branching T1 T2) =

(if red ds then Leaf else Branching (cutoff red (ds@[Left]) T1) (cutoff red
(ds@[Right]) T2))
| cutoff red ds Leaf = Leaf

Initially you should call cutoff with ds = []. If all branches are red, then
cutoff gives a subtree. If all branches are red, then so are the ones in cutoff.
The internal paths of cutoff are not red.
lemma treesize-cutoff : treesize (cutoff red ds T) ≤ treesize T
proof (induction T arbitrary: ds)

case Leaf then show ?case by auto
next

case (Branching T1 T2)
then have treesize (cutoff red (ds@[Left]) T1) + treesize (cutoff red (ds@[Right])

T2) ≤ treesize T1 + treesize T2 using add-mono by blast
then show ?case by auto

qed

abbreviation anypath :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anypath T P ≡ ∀ p. path p T −→ P p

abbreviation anybranch :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anybranch T P ≡ ∀ p. branch p T −→ P p

20

abbreviation anyinternal :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anyinternal T P ≡ ∀ p. internal p T −→ P p

lemma cutoff-branch ′:
assumes anybranch T (λb. red(ds@b))
shows anybranch (cutoff red ds T) (λb. red(ds@b))

using assms proof (induction T arbitrary: ds)
case (Leaf)
let ?T = cutoff red ds Leaf
{

fix b
assume branch b ?T
then have branch b Leaf by auto
then have red(ds@b) using Leaf by auto

}
then show ?case by simp

next
case (Branching T1 T2)
let ?T = cutoff red ds (Branching T1 T2)
from Branching have ∀ p. branch (Left#p) (Branching T1 T2) −→ red (ds @

(Left#p)) by blast
then have ∀ p. branch p T1 −→ red (ds @ (Left#p)) by auto
then have anybranch T1 (λp. red ((ds @ [Left]) @ p)) by auto
then have aa: anybranch (cutoff red (ds @ [Left]) T1) (λp. red ((ds @ [Left]) @

p))
using Branching by blast

from Branching have ∀ p. branch (Right#p) (Branching T1 T2) −→ red (ds @
(Right#p)) by blast

then have ∀ p. branch p T2 −→ red (ds @ (Right#p)) by auto
then have anybranch T2 (λp. red ((ds @ [Right]) @ p)) by auto
then have bb: anybranch (cutoff red (ds @ [Right]) T2) (λp. red ((ds @ [Right])

@ p))
using Branching by blast

{
fix b
assume b-p: branch b ?T
have red ds ∨ ¬red ds by auto
then have red(ds@b)

proof
assume ds-p: red ds
then have ?T = Leaf by auto
then have b = [] using b-p branch-inv-Leaf by auto
then show red(ds@b) using ds-p by auto

next
assume ds-p: ¬red ds
let ?T1

′ = cutoff red (ds@[Left]) T1

let ?T2
′ = cutoff red (ds@[Right]) T2

21

from ds-p have ?T = Branching ?T1
′ ?T2

′ by auto
from this b-p obtain a b ′ where b = a # b ′ ∧ (a −→ branch b ′ ?T1

′) ∧
(¬a −→ branch b ′ ?T2

′) using branch-inv-Branching[of b ?T1
′ ?T2

′] by auto
then show red(ds@b) using aa bb by (cases a) auto

qed
}
then show ?case by blast

qed

lemma cutoff-branch:
assumes anybranch T (λp. red p)
shows anybranch (cutoff red [] T) (λp. red p)
using assms cutoff-branch ′[of T red []] by auto

lemma cutoff-internal ′:
assumes anybranch T (λb. red(ds@b))
shows anyinternal (cutoff red ds T) (λb. ¬red(ds@b))

using assms proof (induction T arbitrary: ds)
case (Leaf) then show ?case using internal-inv-Leaf by simp

next
case (Branching T1 T2)
let ?T = cutoff red ds (Branching T1 T2)
from Branching have ∀ p. branch (Left#p) (Branching T1 T2) −→ red (ds @

(Left#p)) by blast
then have ∀ p. branch p T1 −→ red (ds @ (Left#p)) by auto
then have anybranch T1 (λp. red ((ds @ [Left]) @ p)) by auto
then have aa: anyinternal (cutoff red (ds @ [Left]) T1) (λp. ¬ red ((ds @ [Left])

@ p)) using Branching by blast

from Branching have ∀ p. branch (Right#p) (Branching T1 T2) −→ red (ds @
(Right#p)) by blast

then have ∀ p. branch p T2 −→ red (ds @ (Right#p)) by auto
then have anybranch T2 (λp. red ((ds @ [Right]) @ p)) by auto
then have bb: anyinternal (cutoff red (ds @ [Right]) T2) (λp. ¬ red ((ds @

[Right]) @ p)) using Branching by blast
{

fix p
assume b-p: internal p ?T
then have ds-p: ¬red ds using internal-inv-Leaf by auto
have p=[] ∨ p 6=[] by auto
then have ¬red(ds@p)

proof
assume p=[] then show ¬red(ds@p) using ds-p by auto

next
let ?T1

′ = cutoff red (ds@[Left]) T1

let ?T2
′ = cutoff red (ds@[Right]) T2

assume p 6=[]
moreover
have ?T = Branching ?T1

′ ?T2
′ using ds-p by auto

22

ultimately
obtain a p ′ where b-p: p = a # p ′ ∧

(a −→ internal p ′ (cutoff red (ds @ [Left]) T1)) ∧
(¬ a −→ internal p ′ (cutoff red (ds @ [Right]) T2))

using b-p internal-inv-Branching[of p ?T1
′ ?T2

′] by auto
then have ¬red(ds @ [a] @ p ′) using aa bb by (cases a) auto
then show ¬red(ds @ p) using b-p by simp

qed
}
then show ?case by blast

qed

lemma cutoff-internal:
assumes anybranch T red
shows anyinternal (cutoff red [] T) (λp. ¬red p)
using assms cutoff-internal ′[of T red []] by auto

lemma cutoff-branch-internal ′:
assumes anybranch T red
shows anyinternal (cutoff red [] T) (λp. ¬red p) ∧ anybranch (cutoff red [] T)

(λp. red p)
using assms cutoff-internal[of T] cutoff-branch[of T] by blast

lemma cutoff-branch-internal:
assumes anybranch T red
shows ∃T ′. anyinternal T ′ (λp. ¬red p) ∧ anybranch T ′ (λp. red p)
using assms cutoff-branch-internal ′ by blast

3 Possibly Infinite Trees

Possibly infinite trees are of type dir list set.
abbreviation wf-tree :: dir list set ⇒ bool where

wf-tree T ≡ (∀ ds d. (ds @ d) ∈ T −→ ds ∈ T)

The subtree in with root r
fun subtree :: dir list set ⇒ dir list ⇒ dir list set where

subtree T r = {ds ∈ T . ∃ ds ′. ds = r @ ds ′}

A subtree of a tree is either in the left branch, the right branch, or is the
tree itself
lemma subtree-pos:

subtree T ds ⊆ subtree T (ds @ [Left]) ∪ subtree T (ds @ [Right]) ∪ {ds}
proof (rule subsetI ; rule Set.UnCI)

let ?subtree = subtree T
fix x
assume asm: x ∈ ?subtree ds
assume x /∈ {ds}

23

then have x 6= ds by simp
then have ∃ e d. x = ds @ [d] @ e using asm list.exhaust by auto
then have (∃ e. x = ds @ [Left] @ e) ∨ (∃ e. x = ds @ [Right] @ e) using

bool.exhaust by auto
then show x ∈ ?subtree (ds @ [Left]) ∪ ?subtree (ds @ [Right]) using asm by

auto
qed

3.1 Infinite Paths
abbreviation wf-infpath :: (nat ⇒ ′a list) ⇒ bool where

wf-infpath f ≡ (f 0 = []) ∧ (∀n. ∃ a. f (Suc n) = (f n) @ [a])

lemma infpath-length:
assumes wf-infpath f
shows length (f n) = n

using assms proof (induction n)
case 0 then show ?case by auto

next
case (Suc n) then show ?case by (metis length-append-singleton)

qed

lemma chain-prefix:
assumes wf-infpath f
assumes n1 ≤ n2

shows ∃ a. (f n1) @ a = (f n2)
using assms proof (induction n2)

case (Suc n2)
then have n1 ≤ n2 ∨ n1 = Suc n2 by auto
then show ?case

proof
assume n1 ≤ n2

then obtain a where a: f n1 @ a = f n2 using Suc by auto
have b: ∃ b. f (Suc n2) = f n2 @ [b] using Suc by auto
from a b have ∃ b. f n1 @ (a @ [b]) = f (Suc n2) by auto
then show ∃ c. f n1 @ c = f (Suc n2) by blast

next
assume n1 = Suc n2

then have f n1 @ [] = f (Suc n2) by auto
then show ∃ a. f n1 @ a = f (Suc n2) by auto

qed
qed auto

If we make a lookup in a list, then looking up in an extension gives us the
same value.
lemma ith-in-extension:

assumes chain: wf-infpath f
assumes smalli: i < length (f n1)
assumes n1n2: n1 ≤ n2

24

shows f n1 ! i = f n2 ! i
proof −

from chain n1n2 have ∃ a. f n1 @ a = f n2 using chain-prefix by blast
then obtain a where a-p: f n1 @ a = f n2 by auto
have (f n1 @ a) ! i = f n1 ! i using smalli by (simp add: nth-append)
then show ?thesis using a-p by auto

qed

4 König’s Lemma
lemma inf-subs:

assumes inf : ¬finite(subtree T ds)
shows ¬finite(subtree T (ds @ [Left])) ∨ ¬finite(subtree T (ds @ [Right]))

proof −
let ?subtree = subtree T
{

assume asms: finite(?subtree(ds @ [Left]))
finite(?subtree(ds @ [Right]))

have ?subtree ds ⊆ ?subtree (ds @ [Left]) ∪ ?subtree (ds @ [Right]) ∪ {ds}
using subtree-pos by auto

then have finite(?subtree (ds)) using asms by (simp add: finite-subset)
}
then show ¬finite(?subtree (ds @ [Left])) ∨ ¬finite(?subtree (ds @ [Right]))

using inf by auto
qed

fun buildchain :: (dir list ⇒ dir list) ⇒ nat ⇒ dir list where
buildchain next 0 = []
| buildchain next (Suc n) = next (buildchain next n)

lemma konig:
assumes inf : ¬finite T
assumes wellformed: wf-tree T
shows ∃ c. wf-infpath c ∧ (∀n. (c n) ∈ T)

proof
let ?subtree = subtree T
let ?nextnode = λds. (if ¬finite (?subtree (ds @ [Left])) then ds @ [Left] else ds

@ [Right])

let ?c = buildchain ?nextnode

have is-chain: wf-infpath ?c by auto

from wellformed have prefix: ∀ ds d. (ds @ d) ∈ T −→ ds ∈ T by blast

{
fix n
have (?c n) ∈ T ∧ ¬finite (?subtree (?c n))

proof (induction n)

25

case 0
have ∃ ds. ds ∈ T using inf by (simp add: not-finite-existsD)
then obtain ds where ds ∈ T by auto
then have ([]@ds) ∈ T by auto
then have [] ∈ T using prefix by blast
then show ?case using inf by auto

next
case (Suc n)
from Suc have next-in: (?c n) ∈ T by auto
from Suc have next-inf : ¬finite (?subtree (?c n)) by auto

from next-inf have next-next-inf :
¬finite (?subtree (?nextnode (?c n)))

using inf-subs by auto
then have ∃ ds. ds ∈ ?subtree (?nextnode (?c n))

by (simp add: not-finite-existsD)
then obtain ds where dss: ds ∈ ?subtree (?nextnode (?c n)) by auto
then have ds ∈ T ∃ suf . ds = (?nextnode (?c n)) @ suf by auto
then obtain suf where ds ∈ T ∧ ds = (?nextnode (?c n)) @ suf by auto
then have (?nextnode (?c n)) ∈ T

using prefix by blast

then have (?c (Suc n)) ∈ T by auto
then show ?case using next-next-inf by auto

qed
}
then show wf-infpath ?c ∧ (∀n. (?c n)∈ T) using is-chain by auto

qed

end

5 More Terms and Literals
theory Resolution imports TermsAndLiterals Tree begin

fun complement :: ′t literal ⇒ ′t literal (‹-c› [300] 300) where
(Pos P ts)c = Neg P ts
| (Neg P ts)c = Pos P ts

lemma cancel-comp1 : (lc)c = l by (cases l) auto

lemma cancel-comp2 :
assumes asm: l1c = l2c
shows l1 = l2

proof −
from asm have (l1c)c = (l2c)c by auto
then have l1 = (l2c)c using cancel-comp1 [of l1] by auto
then show ?thesis using cancel-comp1 [of l2] by auto

qed

26

lemma comp-exi1 : ∃ l ′. l ′ = lc by (cases l) auto

lemma comp-exi2 : ∃ l. l ′ = lc
proof

show l ′ = (l ′c)c using cancel-comp1 [of l ′] by auto
qed

lemma comp-swap: l1c = l2 ←→ l1 = l2c
proof −

have l1c = l2 −→ l1 = l2c using cancel-comp1 [of l1] by auto
moreover
have l1 = l2c −→ l1c = l2 using cancel-comp1 by auto
ultimately
show ?thesis by auto

qed

lemma sign-comp: sign l1 6= sign l2 ∧ get-pred l1 = get-pred l2 ∧ get-terms l1 =
get-terms l2 ←→ l2 = l1c
by (cases l1; cases l2) auto

lemma sign-comp-atom: sign l1 6= sign l2 ∧ get-atom l1 = get-atom l2 ←→ l2 =
l1c
by (cases l1; cases l2) auto

6 Clauses
type-synonym ′t clause = ′t literal set

abbreviation complementls :: ′t literal set ⇒ ′t literal set (‹-C› [300] 300) where

LC ≡ complement ‘ L

lemma cancel-compls1 : (LC)C = L
apply (auto simp add: cancel-comp1)
apply (metis imageI cancel-comp1)
done

lemma cancel-compls2 :
assumes asm: L1

C = L2
C

shows L1 = L2

proof −
from asm have (L1

C)C = (L2
C)C by auto

then show ?thesis using cancel-compls1 [of L1] cancel-compls1 [of L2] by simp
qed

fun varst :: fterm ⇒ var-sym set where
varst (Var x) = {x}
| varst (Fun f ts) = (

⋃
t ∈ set ts. varst t)

27

abbreviation varsts :: fterm list ⇒ var-sym set where
varsts ts ≡ (

⋃
t ∈ set ts. varst t)

definition varsl :: fterm literal ⇒ var-sym set where
varsl l = varsts (get-terms l)

definition varsls :: fterm literal set ⇒ var-sym set where
varsls L ≡

⋃
l∈L. varsl l

lemma ground-varst:
assumes groundt t
shows varst t = {}

using assms by (induction t) auto

lemma groundts-varsts:
assumes groundts ts
shows varsts ts = {}

using assms ground-varst by auto

lemma ground l-varsl:
assumes ground l l
shows varsl l = {}
unfolding varsl-def using assms ground-varst by auto

lemma ground ls-varsls:
assumes ground ls L
shows varsls L = {} unfolding varsls-def using assms ground l-varsl by auto

lemma ground-comp: ground l (lc) ←→ ground l l by (cases l) auto

lemma ground-compls: ground ls (LC) ←→ ground ls L using ground-comp by
auto

7 Semantics
type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u
type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool
type-synonym ′u var-denot = var-sym ⇒ ′u

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
| evalt E F (Fun f ts) = F f (map (evalt E F) ts)

abbreviation evalts :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm list ⇒ ′u list where
evalts E F ts ≡ map (evalt E F) ts

fun eval l :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where

28

eval l E F G (Pos p ts) ←→ G p (evalts E F ts)
| eval l E F G (Neg p ts) ←→ ¬G p (evalts E F ts)

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E . ∃ l ∈ C . eval l E F G l)

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

7.1 Semantics of Ground Terms
lemma ground-var-denott:

assumes groundt t
shows evalt E F t = evalt E ′ F t

using assms proof (induction t)
case (Var x)
then have False by auto
then show ?case by auto

next
case (Fun f ts)
then have ∀ t ∈ set ts. groundt t by auto
then have ∀ t ∈ set ts. evalt E F t = evalt E ′ F t using Fun by auto
then have evalts E F ts = evalts E ′ F ts by auto
then have F f (map (evalt E F) ts) = F f (map (evalt E ′ F) ts) by metis
then show ?case by simp

qed

lemma ground-var-denotts:
assumes groundts ts
shows evalts E F ts = evalts E ′ F ts
using assms ground-var-denott by (metis map-eq-conv)

lemma ground-var-denot:
assumes ground l l
shows eval l E F G l = eval l E ′ F G l

using assms proof (induction l)
case Pos then show ?case using ground-var-denotts by (metis eval l.simps(1)

literal.sel(3))
next

case Neg then show ?case using ground-var-denotts by (metis eval l.simps(2)
literal.sel(4))
qed

8 Substitutions
type-synonym substitution = var-sym ⇒ fterm

fun sub :: fterm ⇒ substitution ⇒ fterm (infixl ‹·t› 55) where

29

(Var x) ·t σ = σ x
| (Fun f ts) ·t σ = Fun f (map (λt. t ·t σ) ts)

abbreviation subs :: fterm list ⇒ substitution ⇒ fterm list (infixl ‹·ts› 55) where
ts ·ts σ ≡ (map (λt. t ·t σ) ts)

fun subl :: fterm literal ⇒ substitution ⇒ fterm literal (infixl ‹·l› 55) where
(Pos p ts) ·l σ = Pos p (ts ·ts σ)
| (Neg p ts) ·l σ = Neg p (ts ·ts σ)

abbreviation subls :: fterm literal set ⇒ substitution ⇒ fterm literal set (infixl
‹·ls› 55) where

L ·ls σ ≡ (λl. l ·l σ) ‘ L

lemma subls-def2 : L ·ls σ = {l ·l σ|l. l ∈ L} by auto

definition instance-of t :: fterm ⇒ fterm ⇒ bool where
instance-of t t1 t2 ←→ (∃σ. t1 = t2 ·t σ)

definition instance-of ts :: fterm list ⇒ fterm list ⇒ bool where
instance-of ts ts1 ts2 ←→ (∃σ. ts1 = ts2 ·ts σ)

definition instance-of l :: fterm literal ⇒ fterm literal ⇒ bool where
instance-of l l1 l2 ←→ (∃σ. l1 = l2 ·l σ)

definition instance-of ls :: fterm clause ⇒ fterm clause ⇒ bool where
instance-of ls C 1 C 2 ←→ (∃σ. C 1 = C 2 ·ls σ)

lemma comp-sub: (lc) ·l σ=(l ·l σ)c
by (cases l) auto

lemma compls-subls: (LC) ·ls σ=(L ·ls σ)C

using comp-sub apply auto
apply (metis image-eqI)
done

lemma subls-union: (L1 ∪ L2) ·ls σ = (L1 ·ls σ) ∪ (L2 ·ls σ) by auto

definition var-renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var-renaming-of C 1 C 2 ←→ instance-of ls C 1 C 2 ∧ instance-of ls C 2 C 1

8.1 The Empty Substitution
abbreviation ε :: substitution where
ε ≡ Var

lemma empty-subt: (t :: fterm) ·t ε = t
by (induction t) (auto simp add: map-idI)

30

lemma empty-subts: ts ·ts ε = ts
using empty-subt by auto

lemma empty-subl: l ·l ε = l
using empty-subts by (cases l) auto

lemma empty-subls: L ·ls ε = L
using empty-subl by auto

lemma instance-of t-self : instance-of t t t
unfolding instance-of t-def
proof

show t = t ·t ε using empty-subt by auto
qed

lemma instance-of ts-self : instance-of ts ts ts
unfolding instance-of ts-def
proof

show ts = ts ·ts ε using empty-subts by auto
qed

lemma instance-of l-self : instance-of l l l
unfolding instance-of l-def
proof

show l = l ·l ε using empty-subl by auto
qed

lemma instance-of ls-self : instance-of ls L L
unfolding instance-of ls-def
proof

show L = L ·ls ε using empty-subls by auto
qed

8.2 Substitutions and Ground Terms
lemma ground-sub:

assumes groundt t
shows t ·t σ = t

using assms by (induction t) (auto simp add: map-idI)

lemma ground-subs:
assumes groundts ts
shows ts ·ts σ = ts

using assms ground-sub by (simp add: map-idI)

lemma ground l-subs:
assumes ground l l
shows l ·l σ = l

31

using assms ground-subs by (cases l) auto

lemma ground ls-subls:
assumes ground: ground ls L
shows L ·ls σ = L

proof −
{

fix l
assume l-L: l ∈ L
then have ground l l using ground by auto
then have l = l ·l σ using ground l-subs by auto
moreover
then have l ·l σ ∈ L ·ls σ using l-L by auto
ultimately
have l ∈ L ·ls σ by auto

}
moreover
{

fix l
assume l-L: l ∈ L ·ls σ
then obtain l ′ where l ′-p: l ′ ∈ L ∧ l ′ ·l σ = l by auto
then have l ′ = l using ground ground l-subs by auto
from l-L l ′-p this have l ∈ L by auto

}
ultimately show ?thesis by auto

qed

8.3 Composition
definition composition :: substitution ⇒ substitution ⇒ substitution (infixl ‹·›
55) where
(σ1 · σ2) x = (σ1 x) ·t σ2

lemma composition-conseq2t: (t ·t σ1) ·t σ2 = t ·t (σ1 · σ2)
proof (induction t)

case (Var x)
have ((Var x) ·t σ1) ·t σ2 = (σ1 x) ·t σ2 by simp
also have ... = (σ1 · σ2) x unfolding composition-def by simp
finally show ?case by auto

next
case (Fun t ts)
then show ?case unfolding composition-def by auto

qed

lemma composition-conseq2ts: (ts ·ts σ1) ·ts σ2 = ts ·ts (σ1 · σ2)
using composition-conseq2t by auto

lemma composition-conseq2l: (l ·l σ1) ·l σ2 = l ·l (σ1 · σ2)
using composition-conseq2t by (cases l) auto

32

lemma composition-conseq2ls: (L ·ls σ1) ·ls σ2 = L ·ls (σ1 · σ2)
using composition-conseq2l apply auto
apply (metis imageI)
done

lemma composition-assoc: σ1 · (σ2 · σ3) = (σ1 · σ2) · σ3

proof
fix x
show (σ1 · (σ2 · σ3)) x = ((σ1 · σ2) · σ3) x

by (simp only: composition-def composition-conseq2t)
qed

lemma empty-comp1 : (σ · ε) = σ
proof

fix x
show (σ · ε) x = σ x unfolding composition-def using empty-subt by auto

qed

lemma empty-comp2 : (ε · σ) = σ
proof

fix x
show (ε · σ) x = σ x unfolding composition-def by simp

qed

lemma instance-of t-trans :
assumes t12: instance-of t t1 t2
assumes t23: instance-of t t2 t3
shows instance-of t t1 t3

proof −
from t12 obtain σ12 where t1 = t2 ·t σ12

unfolding instance-of t-def by auto
moreover
from t23 obtain σ23 where t2 = t3 ·t σ23

unfolding instance-of t-def by auto
ultimately
have t1 = (t3 ·t σ23) ·t σ12 by auto
then have t1 = t3 ·t (σ23 · σ12) using composition-conseq2t by simp
then show ?thesis unfolding instance-of t-def by auto

qed

lemma instance-of ts-trans :
assumes ts12: instance-of ts ts1 ts2
assumes ts23: instance-of ts ts2 ts3
shows instance-of ts ts1 ts3

proof −
from ts12 obtain σ12 where ts1 = ts2 ·ts σ12

unfolding instance-of ts-def by auto

33

moreover
from ts23 obtain σ23 where ts2 = ts3 ·ts σ23

unfolding instance-of ts-def by auto
ultimately
have ts1 = (ts3 ·ts σ23) ·ts σ12 by auto
then have ts1 = ts3 ·ts (σ23 · σ12) using composition-conseq2ts by simp
then show ?thesis unfolding instance-of ts-def by auto

qed

lemma instance-of l-trans :
assumes l12: instance-of l l1 l2
assumes l23: instance-of l l2 l3
shows instance-of l l1 l3

proof −
from l12 obtain σ12 where l1 = l2 ·l σ12

unfolding instance-of l-def by auto
moreover
from l23 obtain σ23 where l2 = l3 ·l σ23

unfolding instance-of l-def by auto
ultimately
have l1 = (l3 ·l σ23) ·l σ12 by auto
then have l1 = l3 ·l (σ23 · σ12) using composition-conseq2l by simp
then show ?thesis unfolding instance-of l-def by auto

qed

lemma instance-of ls-trans :
assumes L12: instance-of ls L1 L2

assumes L23: instance-of ls L2 L3

shows instance-of ls L1 L3

proof −
from L12 obtain σ12 where L1 = L2 ·ls σ12

unfolding instance-of ls-def by auto
moreover
from L23 obtain σ23 where L2 = L3 ·ls σ23

unfolding instance-of ls-def by auto
ultimately
have L1 = (L3 ·ls σ23) ·ls σ12 by auto
then have L1 = L3 ·ls (σ23 · σ12) using composition-conseq2ls by simp
then show ?thesis unfolding instance-of ls-def by auto

qed

8.4 Merging substitutions
lemma project-sub:

assumes inst-C :C ·ls lmbd = C ′

assumes L ′sub: L ′ ⊆ C ′

shows ∃L ⊆ C . L ·ls lmbd = L ′ ∧ (C−L) ·ls lmbd = C ′ − L ′

proof −
let ?L = {l ∈ C . ∃ l ′ ∈ L ′. l ·l lmbd = l ′}

34

have ?L ⊆ C by auto
moreover
have ?L ·ls lmbd = L ′

proof (rule Orderings.order-antisym; rule Set.subsetI)
fix l ′
assume l ′L: l ′ ∈ L ′

from inst-C have {l ·l lmbd|l. l ∈ C} = C ′ unfolding subls-def2 by −
then have ∃ l. l ′ = l ·l lmbd ∧ l ∈ C ∧ l ·l lmbd ∈ L ′ using L ′sub l ′L by

auto
then have l ′ ∈ {l ∈ C . l ·l lmbd ∈ L ′} ·ls lmbd by auto
then show l ′ ∈ {l ∈ C . ∃ l ′∈L ′. l ·l lmbd = l ′} ·ls lmbd by auto

qed auto
moreover
have (C−?L) ·ls lmbd = C ′ − L ′ using inst-C by auto
ultimately show ?thesis

by blast
qed

lemma relevant-vars-subt:
assumes ∀ x ∈ varst t. σ1 x = σ2 x
shows t ·t σ1 = t ·t σ2

using assms proof (induction t)
case (Fun f ts)
have f : ∀ t. t ∈ set ts −→ varst t ⊆ varsts ts by (induction ts) auto
have ∀ t∈set ts. t ·t σ1 = t ·t σ2

proof
fix t
assume tints: t ∈ set ts
then have ∀ x ∈ varst t. σ1 x = σ2 x using f Fun(2) by auto
then show t ·t σ1 = t ·t σ2 using Fun tints by auto

qed
then have ts ·ts σ1 = ts ·ts σ2 by auto
then show ?case by auto

qed auto

lemma relevant-vars-subts:
assumes asm: ∀ x ∈ varsts ts. σ1 x = σ2 x
shows ts ·ts σ1 = ts ·ts σ2

proof −
have f : ∀ t. t ∈ set ts −→ varst t ⊆ varsts ts by (induction ts) auto
have ∀ t∈set ts. t ·t σ1 = t ·t σ2

proof
fix t
assume tints: t ∈ set ts
then have ∀ x ∈ varst t. σ1 x = σ2 x using f asm by auto
then show t ·t σ1 = t ·t σ2 using relevant-vars-subt tints by auto

qed
then show ?thesis by auto

qed

35

lemma relevant-vars-subl:
assumes ∀ x ∈ varsl l. σ1 x = σ2 x
shows l ·l σ1 = l ·l σ2

using assms proof (induction l)
case (Pos p ts)
then show ?case using relevant-vars-subts unfolding varsl-def by auto

next
case (Neg p ts)
then show ?case using relevant-vars-subts unfolding varsl-def by auto

qed

lemma relevant-vars-subls:
assumes asm: ∀ x ∈ varsls L. σ1 x = σ2 x
shows L ·ls σ1 = L ·ls σ2

proof −
have f : ∀ l. l ∈ L −→ varsl l ⊆ varsls L unfolding varsls-def by auto
have ∀ l ∈ L. l ·l σ1 = l ·l σ2

proof
fix l
assume linls: l∈L
then have ∀ x∈varsl l. σ1 x = σ2 x using f asm by auto
then show l ·l σ1 = l ·l σ2 using relevant-vars-subl linls by auto

qed
then show ?thesis by (meson image-cong)

qed

lemma merge-sub:
assumes dist: varsls C ∩ varsls D = {}
assumes CC ′: C ·ls lmbd = C ′

assumes DD ′: D ·ls µ = D ′

shows ∃ η. C ·ls η = C ′ ∧ D ·ls η = D ′

proof −
let ?η = λx. if x ∈ varsls C then lmbd x else µ x
have ∀ x∈varsls C . ?η x = lmbd x by auto
then have C ·ls ?η = C ·ls lmbd using relevant-vars-subls[of C ?η lmbd] by

auto
then have C ·ls ?η = C ′ using CC ′ by auto
moreover
have ∀ x ∈ varsls D. ?η x = µ x using dist by auto
then have D ·ls ?η = D ·ls µ using relevant-vars-subls[of D ?η µ] by auto
then have D ·ls ?η = D ′ using DD ′ by auto
ultimately
show ?thesis by auto

qed

8.5 Standardizing apart
abbreviation std1 :: fterm clause ⇒ fterm clause where

36

std1 C ≡ C ·ls (λx. Var (′′1 ′′ @ x))

abbreviation std2 :: fterm clause ⇒ fterm clause where
std2 C ≡ C ·ls (λx. Var (′′2 ′′ @ x))

lemma std-apart-apart ′′:
assumes x ∈ varst (t ·t (λx::char list. Var (y @ x)))
shows ∃ x ′. x = y@x ′

using assms by (induction t) auto

lemma std-apart-apart ′:
assumes x ∈ varsl (l ·l (λx. Var (y@x)))
shows ∃ x ′. x = y@x ′

using assms unfolding varsl-def using std-apart-apart ′′ by (cases l) auto

lemma std-apart-apart: varsls (std1 C 1) ∩ varsls (std2 C 2) = {}
proof −

{
fix x
assume xin: x ∈ varsls (std1 C 1) ∩ varsls (std2 C 2)
from xin have x ∈ varsls (std1 C 1) by auto
then have ∃ x ′. x= ′′1 ′′ @ x ′

using std-apart-apart ′[of x - ′′1 ′′] unfolding varsls-def by auto
moreover
from xin have x ∈ varsls (std2 C 2) by auto
then have ∃ x ′. x= ′′2 ′′ @x ′

using std-apart-apart ′[of x - ′′2 ′′] unfolding varsls-def by auto
ultimately have False by auto
then have x ∈ {} by auto

}
then show ?thesis by auto

qed

lemma std-apart-instance-of ls1 : instance-of ls C 1 (std1 C 1)
proof −

have empty: (λx. Var (′′1 ′′@x)) · (λx. Var (tl x)) = ε using composition-def
by auto

have C 1 ·ls ε = C 1 using empty-subls by auto
then have C 1 ·ls ((λx. Var (′′1 ′′@x)) · (λx. Var (tl x))) = C 1 using empty by

auto
then have (C 1 ·ls (λx. Var (′′1 ′′@x))) ·ls (λx. Var (tl x)) = C 1 using compo-

sition-conseq2ls by auto
then have C 1 = (std1 C 1) ·ls (λx. Var (tl x)) by auto
then show instance-of ls C 1 (std1 C 1) unfolding instance-of ls-def by auto

qed

lemma std-apart-instance-of ls2 : instance-of ls C2 (std2 C2)
proof −

37

have empty: (λx. Var (′′2 ′′@x)) · (λx. Var (tl x)) = ε using composition-def
by auto

have C2 ·ls ε = C2 using empty-subls by auto
then have C2 ·ls ((λx. Var (′′2 ′′@x)) · (λx. Var (tl x))) = C2 using empty by

auto
then have (C2 ·ls (λx. Var (′′2 ′′@x))) ·ls (λx. Var (tl x)) = C2 using compo-

sition-conseq2ls by auto
then have C2 = (std2 C2) ·ls (λx. Var (tl x)) by auto
then show instance-of ls C2 (std2 C2) unfolding instance-of ls-def by auto

qed

9 Unifiers
definition unifier ts :: substitution ⇒ fterm set ⇒ bool where

unifier ts σ ts ←→ (∃ t ′. ∀ t ∈ ts. t ·t σ = t ′)

definition unifier ls :: substitution ⇒ fterm literal set ⇒ bool where
unifier ls σ L ←→ (∃ l ′. ∀ l ∈ L. l ·l σ = l ′)

lemma unif-sub:
assumes unif : unifier ls σ L
assumes nonempty: L 6= {}
shows ∃ l. subls L σ = {subl l σ}

proof −
from nonempty obtain l where l ∈ L by auto
from unif this have L ·ls σ = {l ·l σ} unfolding unifier ls-def by auto
then show ?thesis by auto

qed

lemma unifiert-def2 :
assumes L-elem: ts 6= {}
shows unifier ts σ ts ←→ (∃ l. (λt. sub t σ) ‘ ts ={l})

proof
assume unif : unifier ts σ ts
from L-elem obtain t where t ∈ ts by auto
then have (λt. sub t σ) ‘ ts = {t ·t σ} using unif unfolding unifier ts-def by

auto
then show ∃ l. (λt. sub t σ) ‘ ts = {l} by auto

next
assume ∃ l. (λt. sub t σ) ‘ ts ={l}
then obtain l where (λt. sub t σ) ‘ ts = {l} by auto
then have ∀ l ′ ∈ ts. l ′ ·t σ = l by auto
then show unifier ts σ ts unfolding unifier ts-def by auto

qed

lemma unifier ls-def2 :
assumes L-elem: L 6= {}
shows unifier ls σ L ←→ (∃ l. L ·ls σ = {l})

38

proof
assume unif : unifier ls σ L
from L-elem obtain l where l ∈ L by auto
then have L ·ls σ = {l ·l σ} using unif unfolding unifier ls-def by auto
then show ∃ l. L ·ls σ = {l} by auto

next
assume ∃ l. L ·ls σ ={l}
then obtain l where L ·ls σ = {l} by auto
then have ∀ l ′ ∈ L. l ′ ·l σ = l by auto
then show unifier ls σ L unfolding unifier ls-def by auto

qed

lemma ground ls-unif-singleton:
assumes ground ls: ground ls L
assumes unif : unifier ls σ ′ L
assumes empt: L 6= {}
shows ∃ l. L = {l}

proof −
from unif empt have ∃ l. L ·ls σ ′ = {l} using unif-sub by auto
then show ?thesis using ground ls-subls ground ls by auto

qed

definition unifiablets :: fterm set ⇒ bool where
unifiablets fs ←→ (∃σ. unifier ts σ fs)

definition unifiablels :: fterm literal set ⇒ bool where
unifiablels L ←→ (∃σ. unifier ls σ L)

lemma unifier-comp[simp]: unifier ls σ (LC) ←→ unifier ls σ L
proof

assume unifier ls σ (LC)
then obtain l ′′ where l ′′-p: ∀ l ∈ LC . l ·l σ = l ′′

unfolding unifier ls-def by auto
obtain l ′ where (l ′)c = l ′′ using comp-exi2 [of l ′′] by auto
from this l ′′-p have l ′-p:∀ l ∈ LC . l ·l σ = (l ′)c by auto
have ∀ l ∈ L. l ·l σ = l ′

proof
fix l
assume l∈L
then have lc ∈ LC by auto
then have (lc) ·l σ = (l ′)c using l ′-p by auto
then have (l ·l σ)c = (l ′)c by (cases l) auto
then show l ·l σ = l ′ using cancel-comp2 by blast

qed
then show unifier ls σ L unfolding unifier ls-def by auto

next
assume unifier ls σ L
then obtain l ′ where l ′-p: ∀ l ∈ L. l ·l σ = l ′ unfolding unifier ls-def by auto
have ∀ l ∈ LC . l ·l σ = (l ′)c

39

proof
fix l
assume l ∈ LC

then have lc ∈ L using cancel-comp1 by (metis image-iff)
then show l ·l σ = (l ′)c using l ′-p comp-sub cancel-comp1 by metis

qed
then show unifier ls σ (LC) unfolding unifier ls-def by auto

qed

lemma unifier-sub1 :
assumes unifier ls σ L
assumes L ′ ⊆ L
shows unifier ls σ L ′

using assms unfolding unifier ls-def by auto

lemma unifier-sub2 :
assumes asm: unifier ls σ (L1 ∪ L2)
shows unifier ls σ L1 ∧ unifier ls σ L2

proof −
have L1 ⊆ (L1 ∪ L2) ∧ L2 ⊆ (L1 ∪ L2) by simp
from this asm show ?thesis using unifier-sub1 by auto

qed

9.1 Most General Unifiers
definition mguts :: substitution ⇒ fterm set ⇒ bool where

mguts σ ts ←→ unifier ts σ ts ∧ (∀ u. unifier ts u ts −→ (∃ i. u = σ · i))

definition mguls :: substitution ⇒ fterm literal set ⇒ bool where
mguls σ L ←→ unifier ls σ L ∧ (∀ u. unifier ls u L −→ (∃ i. u = σ · i))

10 Resolution
definition applicable :: fterm clause ⇒ fterm clause

⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ bool where

applicable C 1 C 2 L1 L2 σ ←→
C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C 1 ∩ varsls C 2 = {}
∧ L1 ⊆ C 1 ∧ L2 ⊆ C 2

∧ mguls σ (L1 ∪ L2
C)

definition mresolution :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

mresolution C 1 C 2 L1 L2 σ = ((C 1 ·ls σ)− (L1 ·ls σ)) ∪ ((C 2 ·ls σ) − (L2 ·ls
σ))

definition resolution :: fterm clause ⇒ fterm clause

40

⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

resolution C 1 C 2 L1 L2 σ = ((C 1 − L1) ∪ (C 2 − L2)) ·ls σ

inductive mresolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
mresolution-rule:

C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒
mresolution-step Cs (Cs ∪ {mresolution C 1 C 2 L1 L2 σ})

| standardize-apart:
C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ mresolution-step Cs (Cs ∪ {C ′})

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:

C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒
resolution-step Cs (Cs ∪ {resolution C 1 C 2 L1 L2 σ})

| standardize-apart:
C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

definition mresolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
mresolution-deriv = rtranclp mresolution-step

definition resolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-deriv = rtranclp resolution-step

11 Soundness
definition evalsub :: ′u var-denot ⇒ ′u fun-denot ⇒ substitution ⇒ ′u var-denot
where

evalsub E F σ = evalt E F ◦ σ

lemma substitutiont: evalt E F (t ·t σ) = evalt (evalsub E F σ) F t
apply (induction t)
unfolding evalsub-def apply auto

apply (metis (mono-tags, lifting) comp-apply map-cong)
done

lemma substitutionts: evalts E F (ts ·ts σ) = evalts (evalsub E F σ) F ts
using substitutiont by auto

lemma substitution: eval l E F G (l ·l σ) ←→ eval l (evalsub E F σ) F G l
apply (induction l)
using substitutionts apply (metis eval l.simps(1) subl.simps(1))

using substitutionts apply (metis eval l.simps(2) subl.simps(2))
done

lemma subst-sound:
assumes asm: evalc F G C
shows evalc F G (C ·ls σ)

unfolding evalc-def proof

41

fix E
from asm have ∀E ′. ∃ l ∈ C . eval l E ′ F G l using evalc-def by blast
then have ∃ l ∈ C . eval l (evalsub E F σ) F G l by auto
then show ∃ l ∈ C ·ls σ. eval l E F G l using substitution by blast

qed

lemma simple-resolution-sound:
assumes C 1sat: evalc F G C 1

assumes C 2sat: evalc F G C 2

assumes l1inc1: l1 ∈ C 1

assumes l2inc2: l2 ∈ C 2

assumes comp: l1c = l2
shows evalc F G ((C 1 − {l1}) ∪ (C 2 − {l2}))

proof −
have ∀E . ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). eval l E F G l

proof
fix E
have eval l E F G l1 ∨ eval l E F G l2 using comp by (cases l1) auto
then show ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). eval l E F G l

proof
assume eval l E F G l1
then have ¬eval l E F G l2 using comp by (cases l1) auto

then have ∃ l2 ′∈ C 2. l2 ′ 6= l2 ∧ eval l E F G l2 ′ using l2inc2 C 2sat
unfolding evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). eval l E F G l by auto
next

assume eval l E F G l2
then have ¬eval l E F G l1 using comp by (cases l1) auto

then have ∃ l1 ′∈ C 1. l1 ′ 6= l1 ∧ eval l E F G l1 ′ using l1inc1 C 1sat
unfolding evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). eval l E F G l by auto
qed

qed
then show ?thesis unfolding evalc-def by simp

qed

lemma mresolution-sound:
assumes sat1: evalc F G C 1

assumes sat2: evalc F G C 2

assumes appl: applicable C 1 C 2 L1 L2 σ
shows evalc F G (mresolution C 1 C 2 L1 L2 σ)

proof −
from sat1 have sat1σ: evalc F G (C 1 ·ls σ) using subst-sound by blast
from sat2 have sat2σ: evalc F G (C 2 ·ls σ) using subst-sound by blast

from appl obtain l1 where l1-p: l1 ∈ L1 unfolding applicable-def by auto

from l1-p appl have l1 ∈ C 1 unfolding applicable-def by auto
then have inc1σ: l1 ·l σ ∈ C 1 ·ls σ by auto

42

from l1-p have unified1: l1 ∈ (L1 ∪ (L2
C)) by auto

from l1-p appl have l1σisl1σ: {l1 ·l σ} = L1 ·ls σ
unfolding mguls-def unifier ls-def applicable-def by auto

from appl obtain l2 where l2-p: l2 ∈ L2 unfolding applicable-def by auto

from l2-p appl have l2 ∈ C 2 unfolding applicable-def by auto
then have inc2σ: l2 ·l σ ∈ C 2 ·ls σ by auto

from l2-p have unified2: l2c ∈ (L1 ∪ (L2
C)) by auto

from unified1 unified2 appl have l1 ·l σ = (l2c) ·l σ
unfolding mguls-def unifier ls-def applicable-def by auto

then have comp: (l1 ·l σ)c = l2 ·l σ using comp-sub comp-swap by auto

from appl have unifier ls σ (L2
C)

using unifier-sub2 unfolding mguls-def applicable-def by blast
then have unifier ls σ L2 by auto
from this l2-p have l2σisl2σ: {l2 ·l σ} = L2 ·ls σ unfolding unifier ls-def by

auto

from sat1σ sat2σ inc1σ inc2σ comp have evalc F G ((C 1 ·ls σ) − {l1 ·l σ} ∪
((C 2 ·ls σ) − {l2 ·l σ})) using simple-resolution-sound[of F G C 1 ·ls σ C 2 ·ls σ
l1 ·l σ l2 ·l σ]

by auto
from this l1σisl1σ l2σisl2σ show ?thesis unfolding mresolution-def by auto

qed

lemma resolution-superset: mresolution C 1 C 2 L1 L2 σ ⊆ resolution C 1 C 2 L1

L2 σ
unfolding mresolution-def resolution-def by auto

lemma superset-sound:
assumes sup: C ⊆ C ′

assumes sat: evalc F G C
shows evalc F G C ′

proof −
have ∀E . ∃ l ∈ C ′. eval l E F G l

proof
fix E
from sat have ∀E . ∃ l ∈ C . eval l E F G l unfolding evalc-def by −
then have ∃ l ∈ C . eval l E F G l by auto
then show ∃ l ∈ C ′. eval l E F G l using sup by auto

qed
then show evalc F G C ′ unfolding evalc-def by auto

qed

43

theorem resolution-sound:
assumes sat1: evalc F G C 1

assumes sat2: evalc F G C 2

assumes appl: applicable C 1 C 2 L1 L2 σ
shows evalc F G (resolution C 1 C 2 L1 L2 σ)

proof −
from sat1 sat2 appl have evalc F G (mresolution C 1 C 2 L1 L2 σ) using mres-

olution-sound by blast
then show ?thesis using superset-sound resolution-superset by metis

qed

lemma mstep-sound:
assumes mresolution-step Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms proof (induction rule: mresolution-step.induct)
case (mresolution-rule C 1 Cs C 2 l1 l2 σ)
then have evalc F G C 1 ∧ evalc F G C 2 unfolding evalcs-def by auto
then have evalc F G (mresolution C 1 C 2 l1 l2 σ)

using mresolution-sound mresolution-rule by auto
then show ?case using mresolution-rule unfolding evalcs-def by auto

next
case (standardize-apart C Cs C ′)
then have evalc F G C unfolding evalcs-def by auto
then have evalc F G C ′ using subst-sound standardize-apart unfolding var-renaming-of-def

instance-of ls-def by metis
then show ?case using standardize-apart unfolding evalcs-def by auto

qed

theorem step-sound:
assumes resolution-step Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms proof (induction rule: resolution-step.induct)
case (resolution-rule C 1 Cs C 2 l1 l2 σ)
then have evalc F G C 1 ∧ evalc F G C 2 unfolding evalcs-def by auto
then have evalc F G (resolution C 1 C 2 l1 l2 σ)

using resolution-sound resolution-rule by auto
then show ?case using resolution-rule unfolding evalcs-def by auto

next
case (standardize-apart C Cs C ′)
then have evalc F G C unfolding evalcs-def by auto
then have evalc F G C ′ using subst-sound standardize-apart unfolding var-renaming-of-def

instance-of ls-def by metis
then show ?case using standardize-apart unfolding evalcs-def by auto

qed

lemma mderivation-sound:
assumes mresolution-deriv Cs Cs ′

44

assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs1 Cs2 Cs3) then show ?case using mstep-sound by
auto
qed

theorem derivation-sound:
assumes resolution-deriv Cs Cs ′

assumes evalcs F G Cs
showsevalcs F G Cs ′

using assms unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs1 Cs2 Cs3) then show ?case using step-sound by
auto
qed

theorem derivation-sound-refute:
assumes deriv: resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

shows ¬evalcs F G Cs
proof −

from deriv have evalcs F G Cs −→ evalcs F G Cs ′ using derivation-sound by
auto

moreover
from deriv have evalcs F G Cs ′ −→ evalc F G {} unfolding evalcs-def by auto
moreover
then have evalc F G {} −→ False unfolding evalc-def by auto
ultimately show ?thesis by auto

qed

12 Herbrand Interpretations

HFun is the Herbrand function denotation in which terms are mapped to
themselves.
term HFun

lemma eval-groundt:
assumes groundt t
shows (evalt E HFun t) = hterm-of-fterm t
using assms by (induction t) auto

lemma eval-groundts:

45

assumes groundts ts
shows (evalts E HFun ts) = hterms-of-fterms ts
unfolding hterms-of-fterms-def using assms eval-groundt by (induction ts) auto

lemma eval l-groundts:
assumes asm: groundts ts
shows eval l E HFun G (Pos P ts) ←→ G P (hterms-of-fterms ts)

proof −
have eval l E HFun G (Pos P ts) = G P (evalts E HFun ts) by auto
also have ... = G P (hterms-of-fterms ts) using asm eval-groundts by simp
finally show ?thesis by auto

qed

13 Partial Interpretations
type-synonym partial-pred-denot = bool list

definition falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→

ground l l
∧ (let i = nat-of-fatom (get-atom l) in

i < length G ∧ G ! i = (¬sign l)
)

A ground clause is falsified if it is actually ground and all its literals are
falsified.
abbreviation falsifiesg :: partial-pred-denot ⇒ fterm clause ⇒ bool where

falsifiesg G C ≡ ground ls C ∧ (∀ l ∈ C . falsifiesl G l)

abbreviation falsifiesc :: partial-pred-denot ⇒ fterm clause ⇒ bool where
falsifiesc G C ≡ (∃C ′. instance-of ls C ′ C ∧ falsifiesg G C ′)

abbreviation falsifiescs :: partial-pred-denot ⇒ fterm clause set ⇒ bool where
falsifiescs G Cs ≡ (∃C ∈ Cs. falsifiesc G C)

abbreviation extend :: (nat ⇒ partial-pred-denot) ⇒ hterm pred-denot where
extend f P ts ≡ (

let n = nat-of-hatom (P, ts) in
f (Suc n) ! n

)

fun sub-of-denot :: hterm var-denot ⇒ substitution where
sub-of-denot E = fterm-of-hterm ◦ E

lemma ground-sub-of-denott: groundt (t ·t (sub-of-denot E))
by (induction t) (auto simp add: ground-fterm-of-hterm)

lemma ground-sub-of-denotts: groundts (ts ·ts sub-of-denot E)

46

using ground-sub-of-denott by simp

lemma ground-sub-of-denotl: ground l (l ·l sub-of-denot E)
proof −

have groundts (subs (get-terms l) (sub-of-denot E))
using ground-sub-of-denotts by auto

then show ?thesis by (cases l) auto
qed

lemma sub-of-denot-equivx: evalt E HFun (sub-of-denot E x) = E x
proof −

have groundt (sub-of-denot E x) using ground-fterm-of-hterm by simp
then
have evalt E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)

using eval-groundt(1) by auto
also have ... = hterm-of-fterm (fterm-of-hterm (E x)) by auto
also have ... = E x by auto
finally show ?thesis by auto

qed

lemma sub-of-denot-equivt:
evalt E HFun (t ·t (sub-of-denot E)) = evalt E HFun t

using sub-of-denot-equivx by (induction t) auto

lemma sub-of-denot-equivts: evalts E HFun (ts ·ts (sub-of-denot E)) = evalts E
HFun ts
using sub-of-denot-equivt by simp

lemma sub-of-denot-equivl: eval l E HFun G (l ·l sub-of-denot E) ←→ eval l E
HFun G l
proof (induction l)

case (Pos p ts)
have eval l E HFun G ((Pos p ts) ·l sub-of-denot E) ←→ G p (evalts E HFun (ts
·ts (sub-of-denot E))) by auto

also have ... ←→ G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... ←→ eval l E HFun G (Pos p ts) by simp
finally
show ?case by blast

next
case (Neg p ts)
have eval l E HFun G ((Neg p ts) ·l sub-of-denot E) ←→ ¬G p (evalts E HFun

(ts ·ts (sub-of-denot E))) by auto
also have ... ←→ ¬G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts]

by metis
also have ... = eval l E HFun G (Neg p ts) by simp
finally
show ?case by blast

47

qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.
lemma sub-of-denot-equiv-ground ′:

eval l E HFun G l = eval l E HFun G (l ·l sub-of-denot E) ∧ ground l (l ·l
sub-of-denot E)

using sub-of-denot-equivl ground-sub-of-denotl by auto

Under an Herbrand interpretation, an environment is similar to a substitu-
tion - also for partial interpretations.
lemma partial-equiv-subst:

assumes falsifiesc G (C ·ls τ)
shows falsifiesc G C

proof −
from assms obtain C ′ where C ′-p: instance-of ls C ′ (C ·ls τ) ∧ falsifiesg G C ′

by auto
then have instance-of ls (C ·ls τ) C unfolding instance-of ls-def by auto
then have instance-of ls C ′ C using C ′-p instance-of ls-trans by auto
then show ?thesis using C ′-p by auto

qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.
lemma sub-of-denot-equiv-ground:
((∃ l ∈ C . eval l E HFun G l) ←→ (∃ l ∈ C ·ls sub-of-denot E . eval l E HFun G

l))
∧ ground ls (C ·ls sub-of-denot E)

using sub-of-denot-equiv-ground ′ by auto

lemma std1-falsifies: falsifiesc G C 1 ←→ falsifiesc G (std1 C 1)
proof

assume asm: falsifiesc G C 1

then obtain Cg where instance-of ls Cg C 1 ∧ falsifiesg G Cg by auto
moreover
then have instance-of ls Cg (std1 C 1) using std-apart-instance-of ls1 instance-of ls-trans

by blast
ultimately
show falsifiesc G (std1 C 1) by auto

next
assume asm: falsifiesc G (std1 C 1)
then have inst: instance-of ls (std1 C 1) C 1 unfolding instance-of ls-def by auto

from asm obtain Cg where instance-of ls Cg (std1 C 1) ∧ falsifiesg G Cg by
auto

moreover
then have instance-of ls Cg C 1 using inst instance-of ls-trans by blast
ultimately

48

show falsifiesc G C 1 by auto
qed

lemma std2-falsifies: falsifiesc G C 2 ←→ falsifiesc G (std2 C 2)
proof

assume asm: falsifiesc G C 2

then obtain Cg where instance-of ls Cg C 2 ∧ falsifiesg G Cg by auto
moreover
then have instance-of ls Cg (std2 C 2) using std-apart-instance-of ls2 instance-of ls-trans

by blast
ultimately
show falsifiesc G (std2 C 2) by auto

next
assume asm: falsifiesc G (std2 C 2)
then have inst: instance-of ls (std2 C 2) C 2 unfolding instance-of ls-def by auto

from asm obtain Cg where instance-of ls Cg (std2 C 2) ∧ falsifiesg G Cg by
auto

moreover
then have instance-of ls Cg C 2 using inst instance-of ls-trans by blast
ultimately
show falsifiesc G C 2 by auto

qed

lemma std1-renames: var-renaming-of C 1 (std1 C 1)
proof −

have instance-of ls C 1 (std1 C 1) using std-apart-instance-of ls1 by auto
moreover have instance-of ls (std1 C 1) C 1 unfolding instance-of ls-def by auto
ultimately show var-renaming-of C 1 (std1 C 1) unfolding var-renaming-of-def

by auto
qed

lemma std2-renames: var-renaming-of C 2 (std2 C 2)
proof −

have instance-of ls C 2 (std2 C 2) using std-apart-instance-of ls2 by auto
moreover have instance-of ls (std2 C 2) C 2 unfolding instance-of ls-def by auto
ultimately show var-renaming-of C 2 (std2 C 2) unfolding var-renaming-of-def

by auto
qed

14 Semantic Trees
abbreviation closed-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒
bool where

closed-branch G T Cs ≡ branch G T ∧ falsifiescs G Cs

abbreviation(input) open-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set
⇒ bool where

open-branch G T Cs ≡ branch G T ∧ ¬falsifiescs G Cs

49

definition closed-tree :: tree ⇒ fterm clause set ⇒ bool where
closed-tree T Cs ←→ anybranch T (λb. closed-branch b T Cs)

∧ anyinternal T (λp. ¬falsifiescs p Cs)

15 Herbrand’s Theorem
lemma maximum:

assumes asm: finite C
shows ∃n :: nat. ∀ l ∈ C . f l ≤ n

proof
from asm show ∀ l∈C . f l ≤ (Max (f ‘ C)) by auto

qed

lemma extend-preserves-model:
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes C-ground: ground ls C
assumes C-sat: ¬falsifiesc (f (Suc n)) C
assumes n-max: ∀ l∈C . nat-of-fatom (get-atom l) ≤ n
shows evalc HFun (extend f) C

proof −
let ?F = HFun
let ?G = extend f
{

fix E
from C-sat have ∀C ′. (¬instance-of ls C ′ C ∨ ¬falsifiesg (f (Suc n)) C ′) by

auto
then have ¬falsifiesg (f (Suc n)) C using instance-of ls-self by auto
then obtain l where l-p: l∈C ∧ ¬falsifiesl (f (Suc n)) l using C-ground by

blast
let ?i = nat-of-fatom (get-atom l)

from l-p have i-n: ?i ≤ n using n-max by auto
then have j-n: ?i < length (f (Suc n)) using f-infpath infpath-length[of f] by

auto

have eval l E HFun (extend f) l
proof (cases l)

case (Pos P ts)
from Pos l-p C-ground have ts-ground: groundts ts by auto

have ¬falsifiesl (f (Suc n)) l using l-p by auto
then have f (Suc n) ! ?i = True
using j-n Pos ts-ground empty-subts[of ts] unfolding falsifiesl-def by auto

moreover have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp

ultimately
have f (Suc ?i) ! ?i = True using Pos by auto

then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-of-fatom-def)

50

then show ?thesis using eval l-groundts[of ts - ?G P] ts-ground Pos by
auto

next
case (Neg P ts)
from Neg l-p C-ground have ts-ground: groundts ts by auto

have ¬falsifiesl (f (Suc n)) l using l-p by auto
then have f (Suc n) ! ?i = False
using j-n Neg ts-ground empty-subts[of ts] unfolding falsifiesl-def by auto

moreover have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp

ultimately
have f (Suc ?i) ! ?i = False using Neg by auto

then have ¬?G P (hterms-of-fterms ts) using Neg by (simp add: nat-of-fatom-def)

then show ?thesis using Neg eval l-groundts[of ts - ?G P] ts-ground by
auto

qed
then have ∃ l ∈ C . eval l E HFun (extend f) l using l-p by auto

}
then have evalc HFun (extend f) C unfolding evalc-def by auto
then show ?thesis using instance-of ls-self by auto

qed

lemma extend-preserves-model2 :
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes C-ground: ground ls C
assumes fin-c: finite C
assumes model-C : ∀n. ¬falsifiesc (f n) C
shows C-false: evalc HFun (extend f) C

proof −
— Since C is finite, C has a largest index of a literal.
obtain n where largest: ∀ l ∈ C . nat-of-fatom (get-atom l) ≤ n using fin-c

maximum[of C λl. nat-of-fatom (get-atom l)] by blast
moreover
then have ¬falsifiesc (f (Suc n)) C using model-C by auto
ultimately show ?thesis using model-C f-infpath C-ground extend-preserves-model[of

f C n] by blast
qed

lemma extend-infpath:
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes model-c: ∀n. ¬falsifiesc (f n) C
assumes fin-c: finite C
shows evalc HFun (extend f) C

unfolding evalc-def proof
fix E
let ?G = extend f

51

let ?σ = sub-of-denot E

from fin-c have fin-cσ: finite (C ·ls sub-of-denot E) by auto
have groundcσ: ground ls (C ·ls sub-of-denot E) using sub-of-denot-equiv-ground

by auto

— Here starts the proof
— We go from syntactic FO world to syntactic ground world:
from model-c have ∀n. ¬falsifiesc (f n) (C ·ls ?σ) using partial-equiv-subst by

blast
— Then from syntactic ground world to semantic ground world:
then have evalc HFun ?G (C ·ls ?σ) using groundcσ f-infpath fin-cσ ex-

tend-preserves-model2 [of f C ·ls ?σ] by blast
— Then from semantic ground world to semantic FO world:
then have ∀E . ∃ l ∈ (C ·ls ?σ). eval l E HFun ?G l unfolding evalc-def by

auto
then have ∃ l ∈ (C ·ls ?σ). eval l E HFun ?G l by auto
then show ∃ l ∈ C . eval l E HFun ?G l using sub-of-denot-equiv-ground[of C E

extend f] by blast
qed

If we have a infpath of partial models, then we have a model.
lemma infpath-model:

assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes model-cs: ∀n. ¬falsifiescs (f n) Cs
assumes fin-cs: finite Cs
assumes fin-c: ∀C ∈ Cs. finite C
shows evalcs HFun (extend f) Cs

proof −
let ?F = HFun

have ∀C ∈ Cs. evalc ?F (extend f) C
proof (rule ballI)

fix C
assume asm: C ∈ Cs
then have ∀n. ¬falsifiesc (f n) C using model-cs by auto
then show evalc ?F (extend f) C using fin-c asm f-infpath extend-infpath[of

f C] by auto
qed

then show evalcs ?F (extend f) Cs unfolding evalcs-def by auto
qed

fun deeptree :: nat ⇒ tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)

lemma branch-length:
assumes branch b (deeptree n)
shows length b = n

52

using assms proof (induction n arbitrary: b)
case 0 then show ?case using branch-inv-Leaf by auto

next
case (Suc n)
then have branch b (Branching (deeptree n) (deeptree n)) by auto
then obtain a b ′ where p: b = a#b ′∧ branch b ′ (deeptree n) using branch-inv-Branching[of

b] by blast
then have length b ′ = n using Suc by auto
then show ?case using p by auto

qed

lemma infinity:
assumes inj: ∀n :: nat. undiago (diago n) = n
assumes all-tree: ∀n :: nat. (diago n) ∈ tree
shows ¬finite tree

proof −
from inj all-tree have ∀n. n = undiago (diago n) ∧ (diago n) ∈ tree by auto
then have ∀n. ∃ ds. n = undiago ds ∧ ds ∈ tree by auto
then have undiago ‘ tree = (UNIV :: nat set) by auto
then have ¬finite treeby (metis finite-imageI infinite-UNIV-nat)
then show ?thesis by auto

qed

lemma longer-falsifiesl:
assumes falsifiesl ds l
shows falsifiesl (ds@d) l

proof −
let ?i = nat-of-fatom (get-atom l)
from assms have i-p: ground l l ∧ ?i < length ds ∧ ds ! ?i = (¬sign l) unfolding

falsifiesl-def by meson
moreover
from i-p have ?i < length (ds@d) by auto
moreover
from i-p have (ds@d) ! ?i = (¬sign l) by (simp add: nth-append)
ultimately
show ?thesis unfolding falsifiesl-def by simp

qed

lemma longer-falsifiesg:
assumes falsifiesg ds C
shows falsifiesg (ds @ d) C

proof −
{

fix l
assume l∈C
then have falsifiesl (ds @ d) l using assms longer-falsifiesl by auto

} then show ?thesis using assms by auto
qed

53

lemma longer-falsifiesc:
assumes falsifiesc ds C
shows falsifiesc (ds @ d) C

proof −
from assms obtain C ′ where instance-of ls C ′ C ∧ falsifiesg ds C ′ by auto
moreover
then have falsifiesg (ds @ d) C ′ using longer-falsifiesg by auto
ultimately show ?thesis by auto

qed

We use this so that we can apply König’s lemma.
lemma longer-falsifies:

assumes falsifiescs ds Cs
shows falsifiescs (ds @ d) Cs

proof −
from assms obtain C where C ∈ Cs ∧ falsifiesc ds C by auto
moreover
then have falsifiesc (ds @ d) C using longer-falsifiesc[of C ds d] by blast
ultimately
show ?thesis by auto

qed

If all finite semantic trees have an open branch, then the set of clauses has
a model.
theorem herbrand ′:

assumes openb: ∀T . ∃G. open-branch G T Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃G. evalcs HFun G Cs

proof −
— Show T infinite:
let ?tree = {G. ¬falsifiescs G Cs}
let ?undiag = length
let ?diag = (λl. SOME b. open-branch b (deeptree l) Cs) :: nat ⇒ partial-pred-denot

from openb have diag-open: ∀ l. open-branch (?diag l) (deeptree l) Cs
using someI-ex[of λb. open-branch b (deeptree -) Cs] by auto

then have ∀n. ?undiag (?diag n) = n using branch-length by auto
moreover
have ∀n. (?diag n) ∈ ?tree using diag-open by auto
ultimately
have ¬finite ?tree using infinity[of - λn. SOME b. open-branch b (- n) Cs] by

simp
— Get infinite path:
moreover
have ∀ ds d. ¬falsifiescs (ds @ d) Cs −→ ¬falsifiescs ds Cs

using longer-falsifies[of Cs] by blast
then have (∀ ds d. ds @ d ∈ ?tree −→ ds ∈ ?tree) by auto
ultimately
have ∃ c. wf-infpath c ∧ (∀n. c n ∈ ?tree) using konig[of ?tree] by blast

54

then have ∃G. wf-infpath G ∧ (∀n. ¬ falsifiescs (G n) Cs) by auto
— Apply above infpath lemma:
then show ∃G. evalcs HFun G Cs using infpath-model finite-cs by auto

qed

lemma shorter-falsifiesl:
assumes falsifiesl (ds@d) l
assumes nat-of-fatom (get-atom l) < length ds
shows falsifiesl ds l

proof −
let ?i = nat-of-fatom (get-atom l)
from assms have i-p: ground l l ∧ ?i < length (ds@d) ∧ (ds@d) ! ?i = (¬sign

l) unfolding falsifiesl-def by meson
moreover
then have ?i < length ds using assms by auto
moreover
then have ds ! ?i = (¬sign l) using i-p nth-append[of ds d ?i] by auto
ultimately show ?thesis using assms unfolding falsifiesl-def by simp

qed

theorem herbrand ′-contra:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀G. ¬evalcs HFun G Cs
shows ∃T . ∀G. branch G T −→ closed-branch G T Cs

proof −
from finite-cs unsat have (∀T . ∃G. open-branch G T Cs) −→ (∃G. evalcs HFun

G Cs) using herbrand ′ by blast
then show ?thesis using unsat by blast

qed

theorem herbrand:
assumes unsat: ∀G. ¬evalcs HFun G Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃T . closed-tree T Cs

proof −
from unsat finite-cs obtain T where anybranch T (λb. closed-branch b T Cs)

using herbrand ′-contra[of Cs] by blast
then have ∃T . anybranch T (λp. falsifiescs p Cs) ∧ anyinternal T (λp. ¬

falsifiescs p Cs)
using cutoff-branch-internal[of T λp. falsifiescs p Cs] by blast

then show ?thesis unfolding closed-tree-def by auto
qed

end

16 Lifting Lemma
theory Completeness imports Resolution begin

55

locale unification =
assumes unification:

∧
σ L. finite L =⇒ unifier ls σ L =⇒ ∃ϑ. mguls ϑ L

begin

A proof of this assumption is available in Unification_Theorem.thy and
used in Completeness_Instance.thy.
lemma lifting:

assumes fin: finite C 1 ∧ finite C 2

assumes apart: varsls C 1 ∩ varsls C 2 = {}
assumes inst: instance-of ls C 1

′ C 1 ∧ instance-of ls C 2
′ C 2

assumes appl: applicable C 1
′ C 2

′ L1
′ L2

′ σ
shows ∃L1 L2 τ . applicable C 1 C 2 L1 L2 τ ∧

instance-of ls (resolution C 1
′ C 2

′ L1
′ L2

′ σ) (resolution C 1 C 2 L1 L2

τ)
proof −

— Obtaining the subsets we resolve upon:
let ?R1

′ = C 1
′ − L1

′ and ?R2
′ = C 2

′ − L2
′

from inst obtain γ µ where C 1 ·ls γ = C 1
′ ∧ C 2 ·ls µ = C 2

′

unfolding instance-of ls-def by auto
then obtain η where η-p: C 1 ·ls η = C 1

′ ∧ C 2 ·ls η = C 2
′

using apart merge-sub by force

from η-p obtain L1 where L1-p: L1 ⊆ C 1 ∧ L1 ·ls η = L1
′ ∧ (C 1 − L1) ·ls η

= ?R1
′

using appl project-sub using applicable-def by metis
let ?R1 = C 1 − L1

from η-p obtain L2 where L2-p: L2 ⊆ C 2 ∧ L2 ·ls η = L2
′ ∧ (C 2 − L2) ·ls η

= ?R2
′

using appl project-sub using applicable-def by metis
let ?R2 = C 2 − L2

— Obtaining substitutions:
from appl have mguls σ (L1

′ ∪ L2
′C) using applicable-def by auto

then have mguls σ ((L1 ·ls η) ∪ (L2 ·ls η)C) using L1-p L2-p by auto
then have mguls σ ((L1 ∪ L2

C) ·ls η) using compls-subls subls-union by auto
then have unifier ls σ ((L1 ∪ L2

C) ·ls η) using mguls-def by auto
then have ησuni: unifier ls (η · σ) (L1 ∪ L2

C)
using unifier ls-def composition-conseq2l by auto

then obtain τ where τ -p: mguls τ (L1 ∪ L2
C)

using unification fin L1-p L2-p by (meson finite-UnI finite-imageI rev-finite-subset)
then obtain ϕ where ϕ-p: τ · ϕ = η · σ using ησuni mguls-def by auto

— Showing that we have the desired resolvent:
let ?C = ((C 1 − L1) ∪ (C 2 − L2)) ·ls τ
have ?C ·ls ϕ = (?R1 ∪ ?R2) ·ls (τ · ϕ)

using subls-union composition-conseq2ls by auto
also have ... = (?R1 ∪ ?R2) ·ls (η · σ) using ϕ-p by auto
also have ... = ((?R1 ·ls η) ∪ (?R2 ·ls η)) ·ls σ

56

using subls-union composition-conseq2ls by auto
also have ... = (?R1

′ ∪ ?R2
′) ·ls σ using η-p L1-p L2-p by auto

finally have ?C ·ls ϕ = ((C 1
′ − L1

′) ∪ (C 2
′ − L2

′)) ·ls σ by auto
then have ins: instance-of ls (resolution C 1

′ C 2
′ L1

′ L2
′ σ) (resolution C 1 C 2

L1 L2 τ)
using resolution-def instance-of ls-def by metis

— Showing that the resolution rule is applicable:
have C 1

′ 6= {} ∧ C 2
′ 6= {} ∧ L1

′ 6= {} ∧ L2
′ 6= {}

using appl applicable-def by auto
then have C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {} using η-p L1-p L2-p by

auto
then have appli: applicable C 1 C 2 L1 L2 τ

using apart L1-p L2-p τ -p applicable-def by auto

from ins appli show ?thesis by auto
qed

17 Completeness
lemma falsifiesg-empty:

assumes falsifiesg [] C
shows C = {}

proof −
have ∀ l ∈ C . False

proof
fix l
assume l∈C
then have falsifiesl [] l using assms by auto
then show False unfolding falsifiesl-def by (cases l) auto

qed
then show ?thesis by auto

qed

lemma falsifiescs-empty:
assumes falsifiesc [] C
shows C = {}

proof −
from assms obtain C ′ where C ′-p: instance-of ls C ′ C ∧ falsifiesg [] C ′ by

auto
then have C ′= {} using falsifiesg-empty by auto
then show C = {} using C ′-p unfolding instance-of ls-def by auto

qed

lemma complements-do-not-falsify ′:
assumes l1C1 ′: l1 ∈ C 1

′

assumes l2C1 ′: l2 ∈ C 1
′

assumes comp: l1 = l2c
assumes falsif : falsifiesg G C 1

′

57

shows False
proof (cases l1)

case (Pos p ts)
let ?i1 = nat-of-fatom (p, ts)

from assms have gr : ground l l1 unfolding falsifiesl-def by auto
then have Neg: l2 = Neg p ts using comp Pos by (cases l2) auto

from falsif have falsifiesl G l1 using l1C1 ′ by auto
then have G ! ?i1 = False using l1C1 ′ Pos unfolding falsifiesl-def by (induction

Pos p ts) auto
moreover
let ?i2 = nat-of-fatom (get-atom l2)
from falsif have falsifiesl G l2 using l2C1 ′ by auto
then have G ! ?i2 = (¬sign l2) unfolding falsifiesl-def by meson
then have G ! ?i1 = (¬sign l2) using Pos Neg comp by simp
then have G ! ?i1 = True using Neg by auto
ultimately show ?thesis by auto

next
case (Neg p ts)
let ?i1 = nat-of-fatom (p,ts)

from assms have gr : ground l l1 unfolding falsifiesl-def by auto
then have Pos: l2 = Pos p ts using comp Neg by (cases l2) auto

from falsif have falsifiesl G l1 using l1C1 ′ by auto
then have G ! ?i1 = True using l1C1 ′ Neg unfolding falsifiesl-def by (metis

get-atom.simps(2) literal.disc(2))
moreover
let ?i2 = nat-of-fatom (get-atom l2)
from falsif have falsifiesl G l2 using l2C1 ′ by auto
then have G ! ?i2 = (¬sign l2) unfolding falsifiesl-def by meson
then have G ! ?i1 = (¬sign l2) using Pos Neg comp by simp
then have G ! ?i1 = False using Pos using literal.disc(1) by blast
ultimately show ?thesis by auto

qed

lemma complements-do-not-falsify:
assumes l1C1 ′: l1 ∈ C 1

′

assumes l2C1 ′: l2 ∈ C 1
′

assumes fals: falsifiesg G C 1
′

shows l1 6= l2c
using assms complements-do-not-falsify ′ by blast

lemma other-falsified:
assumes C1 ′-p: ground ls C 1

′ ∧ falsifiesg (B@[d]) C 1
′

assumes l-p: l ∈ C 1
′ nat-of-fatom (get-atom l) = length B

assumes other : lo ∈ C 1
′ lo 6= l

shows falsifiesl B lo

58

proof −
let ?i = nat-of-fatom (get-atom lo)
have ground-l2: ground l l using l-p C1 ′-p by auto
— They are, of course, also ground:
have ground-lo: ground l lo using C1 ′-p other by auto
from C1 ′-p have falsifiesg (B@[d]) (C 1

′ − {l}) by auto
— And indeed, falsified by B @ [d]:
then have loB2: falsifiesl (B@[d]) lo using other by auto
then have ?i < length (B @ [d]) unfolding falsifiesl-def by meson
— And they have numbers in the range of B @ [d], i.e. less than length B + 1 :
then have nat-of-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom

by (cases lo) auto
moreover
have l-lo: l 6=lo using other by auto
— The are not the complement of l, since then the clause could not be falsified:
have lc-lo: lo 6= lc using C1 ′-p l-p other complements-do-not-falsify[of lo C 1

′ l
(B@[d])] by auto

from l-lo lc-lo have get-atom l 6= get-atom lo using sign-comp-atom by metis
then have nat-of-fatom (get-atom lo) 6= nat-of-fatom (get-atom l)

using nat-of-fatom-bij ground-lo ground-l2 ground l-ground-fatom
unfolding bij-betw-def inj-on-def by metis

— Therefore they have different numbers:
then have nat-of-fatom (get-atom lo) 6= length B using l-p by auto
ultimately
— So their numbers are in the range of B:
have nat-of-fatom (get-atom lo) < length B by auto
— So we did not need the last index of B @ [d] to falsify them, i.e. B suffices:
then show falsifiesl B lo using loB2 shorter-falsifiesl by blast

qed

theorem completeness ′:
assumes closed-tree T Cs
assumes ∀C∈Cs. finite C
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of tree-
size])

fix T :: tree
fix Cs :: fterm clause set
assume ih:

∧
T ′ Cs. treesize T ′ < treesize T =⇒ closed-tree T ′ Cs =⇒

∀C∈Cs. finite C =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈
Cs ′

assume clo: closed-tree T Cs
assume finite-Cs: ∀C∈Cs. finite C
{ — Base case:

assume treesize T = 0
then have T=Leaf using treesize-Leaf by auto

then have closed-branch [] Leaf Cs using branch-inv-Leaf clo unfolding
closed-tree-def by auto

then have falsifiescs [] Cs by auto

59

then have {} ∈ Cs using falsifiescs-empty by auto
then have ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

unfolding resolution-deriv-def by auto
}
moreover
{ — Induction case:

assume treesize T > 0
then have ∃ l r . T=Branching l r by (cases T) auto

— Finding sibling branches and their corresponding clauses:
then obtain B where b-p: internal B T ∧ branch (B@[True]) T ∧ branch

(B@[False]) T
using internal-branch[of - [] - T] Branching-Leaf-Leaf-Tree by fastforce

let ?B1 = B@[True]
let ?B2 = B@[False]

obtain C 1o where C 1o-p: C 1o ∈ Cs ∧ falsifiesc ?B1 C 1o using b-p clo
unfolding closed-tree-def by metis

obtain C 2o where C 2o-p: C 2o ∈ Cs ∧ falsifiesc ?B2 C 2o using b-p clo
unfolding closed-tree-def by metis

— Standardizing the clauses apart:
let ?C 1 = std1 C 1o
let ?C 2 = std2 C 2o
have C 1-p: falsifiesc ?B1 ?C 1 using std1-falsifies C 1o-p by auto
have C 2-p: falsifiesc ?B2 ?C 2 using std2-falsifies C 2o-p by auto

have fin: finite ?C 1 ∧ finite ?C 2 using C 1o-p C 2o-p finite-Cs by auto

— We go down to the ground world.
— Finding the falsifying ground instance C 1

′ of std1 C 1o, and proving properties
about it:

— C 1
′ is falsified by B @ [True]:

from C 1-p obtain C 1
′ where C 1

′-p: ground ls C 1
′ ∧ instance-of ls C 1

′ ?C 1

∧ falsifiesg ?B1 C 1
′ by metis

have ¬falsifiesc B C 1o using C 1o-p b-p clo unfolding closed-tree-def by metis
then have ¬falsifiesc B ?C 1 using std1-falsifies using prod.exhaust-sel by

blast
— C 1

′ is not falsified by B:
then have l-B: ¬falsifiesg B C 1

′ using C 1
′-p by auto

— C 1
′ contains a literal l1 that is falsified by B @ [True], but not B:

from C 1
′-p l-B obtain l1 where l1-p: l1 ∈ C 1

′ ∧ falsifiesl (B@[True]) l1 ∧
¬(falsifiesl B l1) by auto

let ?i = nat-of-fatom (get-atom l1)

— l1 is of course ground:

60

have ground-l1: ground l l1 using C 1
′-p l1-p by auto

from l1-p have ¬(?i < length B ∧ B ! ?i = (¬sign l1)) using ground-l1
unfolding falsifiesl-def by meson

then have ¬(?i < length B ∧ (B@[True]) ! ?i = (¬sign l1)) by (metis
nth-append) — Not falsified by B.

moreover
from l1-p have ?i < length (B @ [True]) ∧ (B @ [True]) ! ?i = (¬sign l1)

unfolding falsifiesl-def by meson
ultimately
have l1-sign-no: ?i = length B ∧ (B @ [True]) ! ?i = (¬sign l1) by auto

— l1 is negative:
from l1-sign-no have l1-sign: sign l1 = False by auto
from l1-sign-no have l1-no: nat-of-fatom (get-atom l1) = length B by auto

— All the other literals in C 1
′ must be falsified by B, since they are falsified by

B @ [True], but not l1.
from C 1

′-p l1-no l1-p have B-C 1
′l1: falsifiesg B (C 1

′ − {l1})
using other-falsified by blast

— We do the same exercise for std2 C 2o, C 2
′, B @ [False], l2:

from C 2-p obtain C 2
′ where C 2

′-p: ground ls C 2
′ ∧ instance-of ls C 2

′ ?C 2 ∧
falsifiesg ?B2 C 2

′ by metis

have ¬falsifiesc B C 2o using C 2o-p b-p clo unfolding closed-tree-def by metis
then have ¬falsifiesc B ?C 2 using std2-falsifies using prod.exhaust-sel by

blast
then have l-B: ¬falsifiesg B C 2

′ using C 2
′-p by auto

— C 2
′ contains a literal l2 that is falsified by B @ [False], but not B:

from C 2
′-p l-B obtain l2 where l2-p: l2 ∈ C 2

′ ∧ falsifiesl (B@[False]) l2 ∧
¬falsifiesl B l2 by auto

let ?i = nat-of-fatom (get-atom l2)

have ground-l2: ground l l2 using C 2
′-p l2-p by auto

from l2-p have ¬(?i < length B ∧ B ! ?i = (¬sign l2)) using ground-l2
unfolding falsifiesl-def by meson

then have ¬(?i < length B ∧ (B@[False]) ! ?i = (¬sign l2)) by (metis
nth-append) — Not falsified by B.

moreover
from l2-p have ?i < length (B @ [False]) ∧ (B @ [False]) ! ?i = (¬sign l2)

unfolding falsifiesl-def by meson
ultimately
have l2-sign-no: ?i = length B ∧ (B @ [False]) ! ?i = (¬sign l2) by auto

— l2 is negative:
from l2-sign-no have l2-sign: sign l2 = True by auto

61

from l2-sign-no have l2-no: nat-of-fatom (get-atom l2) = length B by auto

— All the other literals in C 2
′ must be falsified by B, since they are falsified by

B @ [False], but not l2.
from C 2

′-p l2-no l2-p have B-C 2
′l2: falsifiesg B (C 2

′ − {l2})
using other-falsified by blast

— Proving some properties about C 1
′ and C 2

′, l1 and l2, as well as the resolvent
of C 1

′ and C 2
′:

have l2cisl1: l2c = l1
proof −

from l1-no l2-no ground-l1 ground-l2 have get-atom l1 = get-atom l2
using nat-of-fatom-bij ground l-ground-fatom
unfolding bij-betw-def inj-on-def by metis

then show l2c = l1 using l1-sign l2-sign using sign-comp-atom by metis
qed

have applicable C 1
′ C 2

′ {l1} {l2} Resolution.ε unfolding applicable-def
using l1-p l2-p C 1

′-p ground ls-varsls l2cisl1 empty-comp2 unfolding mguls-def
unifier ls-def by auto

— Lifting to get a resolvent of std1 C 1o and std2 C 2o:
then obtain L1 L2 τ where L1L2τ -p: applicable ?C 1 ?C 2 L1 L2 τ ∧ in-

stance-of ls (resolution C 1
′ C 2

′ {l1} {l2} Resolution.ε) (resolution ?C 1 ?C 2 L1 L2

τ)
using std-apart-apart C 1

′-p C 2
′-p lifting[of ?C 1 ?C 2 C 1

′ C 2
′ {l1} {l2}

Resolution.ε] fin by auto

— Defining the clause to be derived, the new clausal form and the new tree:
— We name the resolvent C.
obtain C where C-p: C = resolution ?C 1 ?C 2 L1 L2 τ by auto
obtain CsNext where CsNext-p: CsNext = Cs ∪ {?C 1, ?C 2, C} by auto
obtain T ′′ where T ′′-p: T ′′ = delete B T by auto

— Here we delete the two branch children B @ [True] and B @ [False] of B.

— Our new clause is falsified by the branch B of our new tree:
have falsifiesg B ((C 1

′ − {l1}) ∪ (C 2
′ − {l2})) using B-C 1

′l1 B-C 2
′l2 by

cases auto
then have falsifiesg B (resolution C 1

′ C 2
′ {l1} {l2} Resolution.ε) unfolding

resolution-def empty-subls by auto
then have falsifies-C : falsifiesc B C using C-p L1L2τ -p by auto

have T ′′-smaller : treesize T ′′ < treesize T using treezise-delete T ′′-p b-p by
auto

have T ′′-bran: anybranch T ′′ (λb. closed-branch b T ′′ CsNext)
proof (rule allI ; rule impI)

fix b
assume br : branch b T ′′

from br have b = B ∨ branch b T using branch-delete T ′′-p by auto

62

then show closed-branch b T ′′ CsNext
proof

assume b=B
then show closed-branch b T ′′ CsNext using falsifies-C br CsNext-p by

auto
next

assume branch b T
then show closed-branch b T ′′ CsNext using clo br T ′′-p CsNext-p

unfolding closed-tree-def by auto
qed

qed
then have T ′′-bran2 : anybranch T ′′ (λb. falsifiescs b CsNext) by auto

— We cut the tree even smaller to ensure only the branches are falsified, i.e. it
is a closed tree:

obtain T ′ where T ′-p: T ′ = cutoff (λG. falsifiescs G CsNext) [] T ′′ by auto
have T ′-smaller : treesize T ′< treesize T using treesize-cutoff [of λG. falsifiescs

G CsNext [] T ′′] T ′′-smaller unfolding T ′-p by auto

from T ′′-bran2 have anybranch T ′ (λb. falsifiescs b CsNext) using cut-
off-branch[of T ′′ λb. falsifiescs b CsNext] T ′-p by auto

then have T ′-bran: anybranch T ′ (λb. closed-branch b T ′ CsNext) by auto
have T ′-intr : anyinternal T ′ (λp. ¬falsifiescs p CsNext) using T ′-p cut-

off-internal[of T ′′ λb. falsifiescs b CsNext] T ′′-bran2 by blast
have T ′-closed: closed-tree T ′ CsNext using T ′-bran T ′-intr unfolding closed-tree-def

by auto
have finite-CsNext: ∀C∈CsNext. finite C unfolding CsNext-p C-p resolu-

tion-def using finite-Cs fin by auto

— By induction hypothesis we get a resolution derivation of {} from our new
clausal form:

from T ′-smaller T ′-closed have ∃Cs ′′. resolution-deriv CsNext Cs ′′ ∧ {} ∈
Cs ′′ using ih[of T ′ CsNext] finite-CsNext by blast

then obtain Cs ′′ where Cs ′′-p: resolution-deriv CsNext Cs ′′ ∧ {} ∈ Cs ′′ by
auto

moreover
{ — Proving that we can actually derive the new clausal form:

have resolution-step Cs (Cs ∪ {?C 1}) using std1-renames standardize-apart
C 1o-p by (metis Un-insert-right)

moreover
have resolution-step (Cs ∪ {?C 1}) (Cs ∪ {?C 1} ∪ {?C 2}) using std2-renames[of

C 2o] standardize-apart[of C 2o - ?C 2] C 2o-p by auto
then have resolution-step (Cs ∪ {?C 1}) (Cs ∪ {?C 1,?C 2}) by (simp add:

insert-commute)
moreover
then have resolution-step (Cs ∪ {?C 1,?C 2}) (Cs ∪ {?C 1,?C 2} ∪ {C})
using L1L2τ -p resolution-rule[of ?C 1 Cs ∪ {?C 1,?C 2} ?C 2 L1 L2 τ] using

C-p by auto
then have resolution-step (Cs ∪ {?C 1,?C 2}) CsNext using CsNext-p by

63

(simp add: Un-commute)
ultimately
have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto

}
— Combining the two derivations, we get the desired derivation from Cs of {}:
ultimately have resolution-deriv Cs Cs ′′ unfolding resolution-deriv-def by

auto
then have ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using Cs ′′-p by auto

}
ultimately show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ by auto

qed

theorem completeness:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

proof −
from unsat have ∀ (G::hterm pred-denot) . ¬evalcs HFun G Cs by auto
then obtain T where closed-tree T Cs using herbrand assms by blast
then show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using completeness ′ assms

by auto
qed

definition E-conv :: (′a ⇒ ′b) ⇒ ′a var-denot ⇒ ′b var-denot where
E-conv b-of-a E ≡ λx. (b-of-a (E x))

definition F-conv :: (′a ⇒ ′b) ⇒ ′a fun-denot ⇒ ′b fun-denot where
F-conv b-of-a F ≡ λf bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: (′a ⇒ ′b) ⇒ ′a pred-denot ⇒ ′b pred-denot where
G-conv b-of-a G ≡ λp bs. (G p (map (inv b-of-a) bs))

lemma evalt-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
showsevalt (E-conv b-of-a E) (F-conv b-of-a F) t = b-of-a (evalt E F t)

proof (induction t)
case (Fun f ts)
then have map (inv b-of-a ◦ evalt (E-conv b-of-a E) (F-conv b-of-a F)) ts =

evalts E F ts
unfolding E-conv-def F-conv-def
using assms bij-is-inj by fastforce

then have b-of-a (F f (map (inv b-of-a ◦ evalt (E-conv b-of-a E) ((F-conv b-of-a
F))) ts)) = b-of-a (F f (evalts E F ts)) by metis

then show ?case using assms unfolding E-conv-def F-conv-def by auto
next

case (Var x)
then show ?case using assms unfolding E-conv-def by auto

qed

64

lemma evalts-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows G-conv b-of-a G p (evalts (E-conv b-of-a E) (F-conv b-of-a F) ts) = G p

(evalts E F ts)
using assms using evalt-bij

proof −
have map (inv b-of-a ◦ evalt (E-conv b-of-a E) (F-conv b-of-a F)) ts = evalts E

F ts
using evalt-bij assms bij-is-inj by fastforce

then show ?thesis
by (metis (no-types) G-conv-def map-map)

qed

lemma eval l-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows eval l (E-conv b-of-a E) (F-conv b-of-a F) (G-conv b-of-a G) l = eval l E

F G l
using assms evalts-bij

proof (cases l)
case (Pos p ts)
then show ?thesis

by (simp add: evalts-bij assms)
next

case (Neg p ts)
then show ?thesis

by (simp add: evalts-bij assms)
qed

lemma evalc-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows evalc (F-conv b-of-a F) (G-conv b-of-a G) C = evalc F G C

proof −
{

fix E :: char list ⇒ ′b
assume bij-b-of-a: bij b-of-a
assume C-sat: ∀E :: char list ⇒ ′a. ∃ l∈C . eval l E F G l
have E-p: E = E-conv b-of-a (E-conv (inv b-of-a) E)

unfolding E-conv-def using bij-b-of-a
using bij-betw-inv-into-right by fastforce

have ∃ l∈C . eval l (E-conv b-of-a (E-conv (inv b-of-a) E)) (F-conv b-of-a F)
(G-conv b-of-a G) l

using eval l-bij bij-b-of-a C-sat by blast
then have ∃ l∈C . eval l E (F-conv b-of-a F) (G-conv b-of-a G) l using E-p by

auto
}
then show ?thesis

by (meson eval l-bij assms evalc-def)
qed

65

lemma evalcs-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows evalcs (F-conv b-of-a F) (G-conv b-of-a G) Cs ←→ evalcs F G Cs

by (meson evalc-bij assms evalcs-def)

lemma countably-inf-bij:
assumes inf-a-uni: infinite (UNIV :: (′a ::countable) set)
assumes inf-b-uni: infinite (UNIV :: (′b ::countable) set)
shows ∃ b-of-a :: ′a ⇒ ′b. bij b-of-a

proof −
let ?S = UNIV :: ((′a::countable)) set
have countable ?S by auto
moreover
have infinite ?S using inf-a-uni by auto
ultimately
obtain nat-of-a where QWER: bij (nat-of-a :: ′a⇒ nat) using countableE-infinite[of

?S] by blast

let ?T = UNIV :: ((′b::countable)) set
have countable ?T by auto
moreover
have infinite ?T using inf-b-uni by auto
ultimately
obtain nat-of-b where TYUI : bij (nat-of-b :: ′b⇒ nat) using countableE-infinite[of

?T] by blast

let ?b-of-a = λa. (inv nat-of-b) (nat-of-a a)

have bij-nat-of-b: ∀n. nat-of-b (inv nat-of-b n) = n
using TYUI bij-betw-inv-into-right by fastforce

have ∀ a. inv nat-of-a (nat-of-a a) = a
by (meson QWER UNIV-I bij-betw-inv-into-left)

then have inj (λa. inv nat-of-b (nat-of-a a))
using bij-nat-of-b injI by (metis (no-types))

moreover
have range (λa. inv nat-of-b (nat-of-a a)) = UNIV

by (metis QWER TYUI bij-def image-image inj-imp-surj-inv)
ultimately
have bij ?b-of-a

unfolding bij-def by auto

then show ?thesis by auto
qed

lemma infinite-hterms: infinite (UNIV :: hterm set)
proof −

let ?diago = λn. HFun (string-of-nat n) []
let ?undiago = λa. nat-of-string (case a of HFun f ts ⇒ f)

66

have ∀n. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have ∀n. ?diago n ∈ UNIV by auto
ultimately show infinite (UNIV :: hterm set) using infinity[of ?undiago ?diago

UNIV] by simp
qed

theorem completeness-countable:
assumes inf-uni: infinite (UNIV :: (′u :: countable) set)
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F :: ′u fun-denot) (G:: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

proof −
have ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
proof (rule; rule)

fix F :: hterm fun-denot
fix G :: hterm pred-denot

obtain u-of-hterm :: hterm ⇒ ′u where p-u-of-hterm: bij u-of-hterm
using countably-inf-bij inf-uni infinite-hterms by auto

let ?F = F-conv u-of-hterm F
let ?G = G-conv u-of-hterm G

have ¬ evalcs ?F ?G Cs using unsat by auto
then show ¬ evalcs F G Cs using evalcs-bij using p-u-of-hterm by auto

qed
then show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using finite-cs completeness

by auto
qed

theorem completeness-nat:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::nat fun-denot) (G::nat pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-countable by blast

end — unification locale

end

18 Examples
theory Examples imports Resolution begin

value Var ′′x ′′

value Fun ′′one ′′ []
value Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]
value Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]

67

value Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]
value Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′equals ′′

[Fun ′′add ′′[Fun ′′mul ′′[Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′[]],Var ′′x ′′]

fun Fnat :: nat fun-denot where
Fnat f [n,m] =

(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x,y] =

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

lemma evalt Enat Fnat (Var ′′x ′′) = 26
by auto

lemma evalt Enat Fnat (Fun ′′one ′′ []) = 1
by auto

lemma evalt Enat Fnat (Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]) = 25
by auto

lemma
evalt Enat Fnat (Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]) =

26
by auto

lemma eval l Enat Fnat Gnat (Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma eval l Enat Fnat Gnat (Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma eval l Enat Fnat Gnat (Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = False
by auto

lemma eval l Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]

68

,Var ′′x ′′]
) = True

by auto

definition PP :: fterm literal where
PP = Pos ′′P ′′ [Fun ′′c ′′ []]

definition PQ :: fterm literal where
PQ = Pos ′′Q ′′ [Fun ′′d ′′ []]

definition NP :: fterm literal where
NP = Neg ′′P ′′ [Fun ′′c ′′ []]

definition NQ :: fterm literal where
NQ = Neg ′′Q ′′ [Fun ′′d ′′ []]

theorem empty-mgu:
assumes unifier ls ε L
shows mguls ε L

using assms unfolding unifier ls-def mguls-def apply auto
apply (rule-tac x=u in exI)
using empty-comp1 empty-comp2 apply auto
done

theorem unifier-single: unifier ls σ {l}
unfolding unifier ls-def by auto

theorem resolution-rule ′:
assumes C 1 ∈ Cs
assumes C 2 ∈ Cs
assumes applicable C 1 C 2 L1 L2 σ
assumes C = {resolution C 1 C 2 L1 L2 σ}
shows resolution-step Cs (Cs ∪ C)
using assms resolution-rule by auto

lemma resolution-example1 :
resolution-deriv {{NP,PQ},{NQ},{PP,PQ}}

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}}
proof −

have resolution-step
{{NP,PQ},{NQ},{PP,PQ}}
({{NP,PQ},{NQ},{PP,PQ}} ∪ {{NP}})

apply (rule resolution-rule ′[of {NP,PQ} - {NQ} {PQ} {NQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu using empty-subls
apply auto

done
then have resolution-step

69

{{NP,PQ},{NQ},{PP,PQ}}
({{NP,PQ},{NQ},{PP,PQ},{NP}})

by (simp add: insert-commute)
moreover
have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP}}
({{NP,PQ},{NQ},{PP,PQ},{NP}} ∪ {{PP}})

apply (rule resolution-rule ′[of {NQ} - {PP,PQ} {NQ} {PQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu empty-subls apply auto

done
then have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP}})

by (simp add: insert-commute)
moreover
have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP}} ∪ {{}})

apply (rule resolution-rule ′[of {NP} - {PP} {NP} {PP} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}})

by (simp add: insert-commute)
ultimately
have resolution-deriv {{NP,PQ},{NQ},{PP,PQ}}

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}}
unfolding resolution-deriv-def by auto

then show ?thesis by auto
qed

definition Pa :: fterm literal where
Pa = Pos ′′a ′′ []

definition Na :: fterm literal where
Na = Neg ′′a ′′ []

definition Pb :: fterm literal where
Pb = Pos ′′b ′′ []

definition Nb :: fterm literal where
Nb = Neg ′′b ′′ []

definition Paa :: fterm literal where

70

Paa = Pos ′′a ′′ [Fun ′′a ′′ []]

definition Naa :: fterm literal where
Naa = Neg ′′a ′′ [Fun ′′a ′′ []]

definition Pax :: fterm literal where
Pax = Pos ′′a ′′ [Var ′′x ′′]

definition Nax :: fterm literal where
Nax = Neg ′′a ′′ [Var ′′x ′′]

definition mguPaaPax :: substitution where
mguPaaPax = (λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x)

lemma mguPaaPax-mgu: mguls mguPaaPax {Paa,Pax}
proof −

let ?σ = λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x
have a: unifier ls (λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x) {Paa,Pax} un-

folding Paa-def Pax-def unifier ls-def by auto
have b: ∀ u. unifier ls u {Paa,Pax} −→ (∃ i. u = ?σ · i)

proof (rule;rule)
fix u
assume unifier ls u {Paa,Pax}
then have uuu: u ′′x ′′ = Fun ′′a ′′ [] unfolding unifier ls-def Paa-def Pax-def

by auto
have ?σ · u = u

proof
fix x
{

assume x= ′′x ′′

moreover
have (?σ · u) ′′x ′′ = Fun ′′a ′′ [] unfolding composition-def by auto
ultimately have (?σ · u) x = u x using uuu by auto

}
moreover
{

assume x 6= ′′x ′′

then have (?σ · u) x = (ε x) ·t u unfolding composition-def by auto
then have (?σ · u) x = u x by auto

}
ultimately show (?σ · u) x = u x by auto

qed
then have ∃ i. ?σ · i = u by auto
then show ∃ i. u = ?σ · i by auto

qed
from a b show ?thesis unfolding mguls-def unfolding mguPaaPax-def by

auto
qed

71

lemma resolution-example2 :
resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}
proof −

have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}} ∪ {{Na,Pb}})

apply (rule resolution-rule ′[of {Pax} - {Na,Pb,Naa} {Pax} {Naa} mguPaaPax
])

using mguPaaPax-mgu unfolding applicable-def varsls-def varsl-def
Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def

resolution-def
apply auto

apply (rule-tac x=Na in image-eqI)
unfolding Na-def apply auto

apply (rule-tac x=Pb in image-eqI)
unfolding Pb-def apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}})

by (simp add: insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}} ∪ {{Na}})

apply (rule resolution-rule ′[of {Nb,Na} - {Na,Pb} {Nb} {Pb} ε])
unfolding applicable-def varsls-def varsl-def

Pb-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}})

by (simp add: insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}} ∪ {{}})

apply (rule resolution-rule ′[of {Na} - {Pa} {Na} {Pa} ε])
unfolding applicable-def varsls-def varsl-def

Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}})

by (simp add: insert-commute)
ultimately

72

have resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}

unfolding resolution-deriv-def by auto
then show ?thesis by auto

qed

lemma resolution-example1-sem: ¬evalcs F G {{NP, PQ}, {NQ}, {PP, PQ}}
using resolution-example1 derivation-sound-refute by auto

lemma resolution-example2-sem: ¬evalcs F G {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
using resolution-example2 derivation-sound-refute by auto

end

19 The Unification Theorem
theory Unification-Theorem imports

First-Order-Terms.Unification Resolution
begin

definition set-to-list :: ′a set ⇒ ′a list where
set-to-list ≡ inv set

lemma set-set-to-list: finite xs =⇒ set (set-to-list xs) = xs
proof (induction rule: finite.induct)

case (emptyI)
have set [] = {} by auto
then show ?case unfolding set-to-list-def inv-into-def by auto

next
case (insertI A a)
then have set (a#set-to-list A) = insert a A by auto
then show ?case unfolding set-to-list-def inv-into-def by (metis (mono-tags,

lifting) UNIV-I someI)
qed

fun iterm-to-fterm :: (fun-sym, var-sym) term ⇒ fterm where
iterm-to-fterm (Term.Var x) = Var x
| iterm-to-fterm (Term.Fun f ts) = Fun f (map iterm-to-fterm ts)

fun fterm-to-iterm :: fterm ⇒ (fun-sym, var-sym) term where
fterm-to-iterm (Var x) = Term.Var x
| fterm-to-iterm (Fun f ts) = Term.Fun f (map fterm-to-iterm ts)

lemma iterm-to-fterm-cancel[simp]: iterm-to-fterm (fterm-to-iterm t) = t
by (induction t) (auto simp add: map-idI)

lemma fterm-to-iterm-cancel[simp]: fterm-to-iterm (iterm-to-fterm t) = t
by (induction t) (auto simp add: map-idI)

73

abbreviation(input) fsub-to-isub :: substitution ⇒ (fun-sym, var-sym) subst where
fsub-to-isub σ ≡ λx. fterm-to-iterm (σ x)

abbreviation(input) isub-to-fsub :: (fun-sym, var-sym) subst ⇒ substitution where
isub-to-fsub σ ≡ λx. iterm-to-fterm (σ x)

lemma iterm-to-fterm-subt: (iterm-to-fterm t1) ·t σ = iterm-to-fterm (t1 · (λx.
fterm-to-iterm (σ x)))

by (induction t1) auto

lemma unifiert-unifiers:
assumes unifier ts σ ts
shows fsub-to-isub σ ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)

proof −
have ∀ t1 ∈ fterm-to-iterm ‘ ts. ∀ t2 ∈ fterm-to-iterm ‘ ts. t1 · (fsub-to-isub σ)

= t2 · (fsub-to-isub σ)
proof (rule ballI ;rule ballI)

fix t1 t2
assume t1-p: t1 ∈ fterm-to-iterm ‘ ts assume t2-p: t2 ∈ fterm-to-iterm ‘ ts
from t1-p t2-p have iterm-to-fterm t1 ∈ ts ∧ iterm-to-fterm t2 ∈ ts by auto
then have (iterm-to-fterm t1) ·t σ = (iterm-to-fterm t2) ·t σ using assms

unfolding unifier ts-def by auto
then have iterm-to-fterm (t1 · fsub-to-isub σ) = iterm-to-fterm (t2 · fsub-to-isub

σ) using iterm-to-fterm-subt by auto
then have fterm-to-iterm (iterm-to-fterm (t1 · fsub-to-isub σ)) = fterm-to-iterm

(iterm-to-fterm (t2 · fsub-to-isub σ)) by auto
then show t1 · fsub-to-isub σ = t2 · fsub-to-isub σ using fterm-to-iterm-cancel

by auto
qed

then have ∀ p∈fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts. fst p · fsub-to-isub σ =
snd p · fsub-to-isub σ by (metis mem-Times-iff)

then show ?thesis unfolding unifiers-def by blast
qed

abbreviation(input) get-mgut :: fterm list ⇒ substitution option where
get-mgut ts ≡ map-option (isub-to-fsub ◦ subst-of) (unify (List.product (map

fterm-to-iterm ts) (map fterm-to-iterm ts)) [])

lemma unify-unification:
assumes σ ∈ unifiers (set E)
shows ∃ϑ. is-imgu ϑ (set E)

proof −
from assms have ∃ cs. unify E [] = Some cs using unify-complete by auto
then show ?thesis using unify-sound by auto

qed

lemma fterm-to-iterm-subst: (fterm-to-iterm t1) · σ =fterm-to-iterm (t1 ·t isub-to-fsub
σ)

by (induction t1) auto

74

lemma unifiers-unifiert:
assumes σ ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)
shows unifier ts (isub-to-fsub σ) ts

proof (cases ts={})
assume ts = {}
then show unifier ts (isub-to-fsub σ) ts unfolding unifier ts-def by auto

next
assume ts 6= {}
then obtain t ′ where t ′-p: t ′ ∈ ts by auto

have ∀ t1∈ts. ∀ t2∈ts. t1 ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ
proof (rule ballI ; rule ballI)

fix t1 t2
assume t1 ∈ ts t2 ∈ ts

then have fterm-to-iterm t1 ∈ fterm-to-iterm ‘ ts fterm-to-iterm t2 ∈
fterm-to-iterm ‘ ts by auto

then have (fterm-to-iterm t1, fterm-to-iterm t2) ∈ (fterm-to-iterm ‘ ts ×
fterm-to-iterm ‘ ts) by auto

then have (fterm-to-iterm t1) · σ = (fterm-to-iterm t2) · σ using assms
unfolding unifiers-def

by (metis (no-types, lifting) assms fst-conv in-unifiersE snd-conv)
then have fterm-to-iterm (t1 ·t isub-to-fsub σ) = fterm-to-iterm (t2 ·t

isub-to-fsub σ) using fterm-to-iterm-subst by auto
then have iterm-to-fterm (fterm-to-iterm (t1 ·t (isub-to-fsub σ))) = iterm-to-fterm

(fterm-to-iterm (t2 ·t isub-to-fsub σ)) by auto
then show t1 ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ by auto

qed
then have ∀ t2∈ts. t ′ ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ using t ′-p by blast

then show unifier ts (isub-to-fsub σ) ts unfolding unifier ts-def by metis
qed

lemma icomp-fcomp: ϑ ◦s i = fsub-to-isub (isub-to-fsub ϑ · isub-to-fsub i)
unfolding composition-def subst-compose-def

proof
fix x
show ϑ x · i = fterm-to-iterm (iterm-to-fterm (ϑ x) ·t (λx. iterm-to-fterm (i x)))

using iterm-to-fterm-subt by auto
qed

lemma is-mgu-mguts:
assumes finite ts
assumes is-imgu ϑ (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)
shows mguts (isub-to-fsub ϑ) ts

proof −
from assms have unifier ts (isub-to-fsub ϑ) ts unfolding is-imgu-def using

unifiers-unifiert by auto

75

moreover have ∀ u. unifier ts u ts −→ (∃ i. u = (isub-to-fsub ϑ) · i)
proof (rule allI ; rule impI)

fix u
assume unifier ts u ts
then have fsub-to-isub u ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘

ts) using unifiert-unifiers by auto
then have ∃ i. fsub-to-isub u = ϑ ◦s i using assms unfolding is-imgu-def

by auto
then obtain i where fsub-to-isub u = ϑ ◦s i by auto

then have fsub-to-isub u = fsub-to-isub (isub-to-fsub ϑ · isub-to-fsub i) using
icomp-fcomp by auto

then have isub-to-fsub (fsub-to-isub u) = isub-to-fsub (fsub-to-isub (isub-to-fsub
ϑ · isub-to-fsub i)) by metis

then have u = isub-to-fsub ϑ · isub-to-fsub i by auto
then show ∃ i. u = isub-to-fsub ϑ · i by metis

qed
ultimately show ?thesis unfolding mguts-def by auto

qed

lemma unification ′:
assumes finite ts
assumes unifier ts σ ts
shows ∃ϑ. mguts ϑ ts

proof −
let ?E = fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts
let ?lE = set-to-list ?E
from assms have fsub-to-isub σ ∈ unifiers ?E using unifiert-unifiers by auto
then have ∃ϑ. is-imgu ϑ ?E
using unify-unification[of fsub-to-isub σ ?lE] assms by (simp add: set-set-to-list)

then obtain ϑ where is-imgu ϑ ?E unfolding set-to-list-def by auto
then have mguts (isub-to-fsub ϑ) ts using assms is-mgu-mguts by auto
then show ?thesis by auto

qed

fun literal-to-term :: fterm literal ⇒ fterm where
literal-to-term (Pos p ts) = Fun ′′Pos ′′ [Fun p ts]
| literal-to-term (Neg p ts) = Fun ′′Neg ′′ [Fun p ts]

fun term-to-literal :: fterm ⇒ fterm literal where
term-to-literal (Fun s [Fun p ts]) = (if s= ′′Pos ′′ then Pos else Neg) p ts

lemma term-to-literal-cancel[simp]: term-to-literal (literal-to-term l) = l
by (cases l) auto

lemma literal-to-term-sub: literal-to-term (l ·l σ) = (literal-to-term l) ·t σ
by (induction l) auto

lemma unifier ls-unifier ts:

76

assumes unifier ls σ L
shows unifier ts σ (literal-to-term ‘ L)

proof −
from assms obtain l ′ where ∀ l∈L. l ·l σ = l ′ unfolding unifier ls-def by auto
then have ∀ l∈L. literal-to-term (l ·l σ) = literal-to-term l ′ by auto
then have ∀ l∈L. (literal-to-term l) ·t σ = literal-to-term l ′ using literal-to-term-sub

by auto
then have ∀ t∈literal-to-term ‘ L. t ·t σ = literal-to-term l ′ by auto
then show ?thesis unfolding unifier ts-def by auto

qed

lemma unifiert-unifier ls:
assumes unifier ts σ (literal-to-term ‘ L)
shows unifier ls σ L

proof −
from assms obtain t ′ where ∀ t∈literal-to-term ‘ L. t ·t σ = t ′ unfolding

unifier ts-def by auto
then have ∀ t∈literal-to-term ‘ L. term-to-literal (t ·t σ) = term-to-literal t ′ by

auto
then have ∀ l∈ L. term-to-literal ((literal-to-term l) ·t σ) = term-to-literal t ′ by

auto
then have ∀ l∈ L. term-to-literal ((literal-to-term (l ·l σ))) = term-to-literal t ′

using literal-to-term-sub by auto
then have ∀ l∈ L. l ·l σ = term-to-literal t ′ by auto
then show ?thesis unfolding unifier ls-def by auto

qed

lemma mguts-mguls:
assumes mguts ϑ (literal-to-term ‘ L)
shows mguls ϑ L

proof −
from assms have unifier ts ϑ (literal-to-term ‘ L) unfolding mguts-def by auto
then have unifier ls ϑ L using unifiert-unifier ls by auto
moreover
{

fix u
assume unifier ls u L
then have unifier ts u (literal-to-term ‘ L) using unifier ls-unifier ts by auto
then have ∃ i. u = ϑ · i using assms unfolding mguts-def by auto

}
ultimately show ?thesis unfolding mguls-def by auto

qed

theorem unification:
assumes fin: finite L
assumes uni: unifier ls σ L
shows ∃ϑ. mguls ϑ L

proof −
from uni have unifier ts σ (literal-to-term ‘ L) using unifier ls-unifier ts by auto

77

then obtain ϑ where mguts ϑ (literal-to-term ‘ L) using fin unification ′ by
blast

then have mguls ϑ L using mguts-mguls by auto
then show ?thesis by auto

qed

end

20 Instance of completeness theorem
theory Completeness-Instance imports Unification-Theorem Completeness be-
gin

interpretation unification using unification by unfold-locales auto

thm lifting

lemma lift:
assumes fin: finite C ∧ finite D
assumes apart: varsls C ∩ varsls D = {}
assumes inst1: instance-of ls C ′ C
assumes inst2: instance-of ls D ′ D
assumes appl: applicable C ′ D ′ L ′ M ′ σ
shows ∃L M τ . applicable C D L M τ ∧

instance-of ls (resolution C ′ D ′ L ′ M ′ σ) (resolution C D L M τ)
using assms lifting by metis

thm completeness

theorem complete:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness by −

thm completeness-countable

theorem complete-countable:
assumes inf-uni: infinite (UNIV :: (′u :: countable) set)
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F :: ′u fun-denot) (G:: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-countable by −

thm completeness-nat

theorem complete-nat:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::nat fun-denot) (G::nat pred-denot) . ¬evalcs F G Cs

78

shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-nat by −

end

References

[1] M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd
edition, 2012.

[2] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Inc., Orlando, FL, USA, 1st edition, 1973.

[3] IsaFoL authors. IsaFoL: Isabelle Formalization of Logic. https://
bitbucket.org/isafol/isafol.

[4] A. Leitsch. The Resolution Calculus. Texts in theoretical computer
science. Springer, 1997.

[5] A. Schlichtkrull. Formalization of resolution calculus in Isabelle. Msc
thesis, Technical University of Denmark, 2015. https://people.compute.
dtu.dk/andschl/Thesis.pdf.

[6] A. Schlichtkrull. Formalization of the resolution calculus for first-order
logic. In ITP 2016, volume 9807 of LNCS. Springer, 2016.

[7] A. Schlichtkrull. Formalization of the resolution calculus for first-order
logic. Journal of Automated Reasoning, 2018.

79

https://bitbucket.org/isafol/isafol
https://bitbucket.org/isafol/isafol
https://people.compute.dtu.dk/andschl/Thesis.pdf
https://people.compute.dtu.dk/andschl/Thesis.pdf

	Terms and Literals
	Ground
	Auxiliary
	Conversions
	Conversions - Terms and Herbrand Terms
	Conversions - Literals and Herbrand Literals
	Conversions - Atoms and Herbrand Atoms

	Enumerations
	Enumerating Strings
	Enumerating Herbrand Atoms
	Enumerating Ground Atoms

	Trees
	Sizes
	Paths
	Branches
	Internal Paths
	Deleting Nodes

	Possibly Infinite Trees
	Infinite Paths

	König's Lemma
	More Terms and Literals
	Clauses
	Semantics
	Semantics of Ground Terms

	Substitutions
	The Empty Substitution
	Substitutions and Ground Terms
	Composition
	Merging substitutions
	Standardizing apart

	Unifiers
	Most General Unifiers

	Resolution
	Soundness
	Herbrand Interpretations
	Partial Interpretations
	Semantic Trees
	Herbrand's Theorem
	Lifting Lemma
	Completeness
	Examples
	The Unification Theorem
	Instance of completeness theorem

