The Resolution Calculus for First-Order Logic

Anders Schlichtkrull
March 17, 2025

Abstract

This theory is a formalization of the resolution calculus for first-
order logic. It is proven sound and complete. The soundness proof
uses the substitution lemma, which shows a correspondence between
substitutions and updates to an environment. The completeness proof
uses semantic trees, i.e. trees whose paths are partial Herbrand in-
terpretations. It employs Herbrand’s theorem in a formulation which
states that an unsatisfiable set of clauses has a finite closed semantic
tree. It also uses the lifting lemma which lifts resolution derivation
steps from the ground world up to the first-order world. The theory is
presented in a paper in the Journal of Automated Reasoning [7] which
extends a paper presented at the International Conference on Interac-
tive Theorem Proving [6]. An earlier version was presented in an MSc
thesis [5]. The formalization mostly follows textbooks by Ben-Ari [1],
Chang and Lee [2], and Leitsch [4]. The theory is part of the IsaFoL

project [3].

Contents
1 Terms and Literals 3
1.1 Ground 3
1.2 Auxiliary 4
1.3 Conversions e 4
1.3.1 Conversions - Terms and Herbrand Terms 4
1.3.2 Conversions - Literals and Herbrand Literals 5
1.3.3 Conversions - Atoms and Herbrand Atoms. 6
1.4 Enumerations 7
1.4.1 Enumerating Strings 7
1.4.2 Enumerating Herbrand Atoms 8
1.4.3 Enumerating Ground Atoms 9
2 Trees 9
2.1 Sizes e 9
2.2 Paths e 10
23 Branches. 11

2.4 Internal Paths.
2.5 Deleting Nodes

3 Possibly Infinite Trees
3.1 Infinite Paths

4 Konig’s Lemma
5 More Terms and Literals
6 Clauses

7 Semantics
7.1 Semantics of Ground Terms . . .

8 Substitutions
8.1 The Empty Substitution
8.2 Substitutions and Ground Terms
8.3 Composition
8.4 Merging substitutions
8.5 Standardizing apart

9 Unifiers
9.1 Most General Unifiers

10 Resolution

11 Soundness

12 Herbrand Interpretations
13 Partial Interpretations
14 Semantic Trees

15 Herbrand’s Theorem

16 Lifting Lemma

17 Completeness

18 Examples

19 The Unification Theorem

20 Instance of completeness theorem

23
24

25

26

27

28
29

29
30
31
32
34
36

38
40

40

41

45

46

49

50

55

57

67

73

78

1 Terms and Literals

theory TermsAndLiterals imports Main HOL— Library. Countable-Set begin

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

datatype fterm =
Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym

datatype hterm = HFun fun-sym hterm list — Herbrand terms defined as in
Berghofer’s FOL-Fitting

type-synonym 't atom = pred-sym * 't list

datatype 't literal =
sign: Pos (get-pred: pred-sym) (get-terms: 't list)
| Neg (get-pred: pred-sym) (get-terms: 't list)

fun get-atom :: 't literal = "t atom where
get-atom (Pos p ts) = (p, ts)
| get-atom (Neg p ts) = (p, ts)

1.1 Ground

fun ground; :: fterm = bool where
ground; (Var z) «— False
| ground; (Fun fts) «— (Yt € set ts. ground; t)

abbreviation ground;s :: fterm list = bool where
ground;s ts = (Vt € set ts. ground, t)

abbreviation ground; :: fterm literal = bool where
ground; | = groundys (get-terms 1)

abbreviation ground;, :: fterm literal set = bool where
ground;s C = (V1 € C. ground;)

definition ground-fatoms :: fterm atom set where
ground-fatoms = {a. ground;s (snd a)}

lemma ground;-ground-fatom:
assumes ground; [
shows get-atom | € ground-fatoms
using assms unfolding ground-fatoms-def by (induction 1) auto

1.2 Auxiliary

lemma infinity:
assumes inj: Vn :: nat. undiago (diago n) = n
assumes all-tree: ¥V n :: nat. (diago n) € S
shows —finite S
proof —
from inj all-tree have ¥V n. n = undiago (diago n) A (diago n) € S by auto
then have Vn. 3ds. n = undiago ds N\ ds € S by auto
then have undiago ‘S = (UNIV :: nat set) by auto
then show —finite S by (metis finite-imagel infinite-UNIV-nat)
qed

lemma inv-into-f-f:
assumes bij-betw f A B
assumes a€A
shows (inv-into A f) (fa) = a
using assms bij-betw-inv-into-left by metis

lemma f-inv-into-f:
assumes bij-betw f A B
assumes beB
shows [((inv-into A f) b) = b
using assms bij-betw-inv-into-right by metis

1.3 Conversions

1.3.1 Conversions - Terms and Herbrand Terms

fun fterm-of-hterm :: hterm = fterm where
fterm-of-hterm (HFun p ts) = Fun p (map fterm-of-hterm ts)

definition fterms-of-hterms :: hterm list = fterm list where
fterms-of-hterms ts = map fterm-of-hterm ts

fun hterm-of-fterm :: fterm = hterm where
hterm-of-fterm (Fun p ts) = HFun p (map hterm-of-fterm ts)

definition hterms-of-fterms :: fterm list = hterm list where
hterms-of-fterms ts = map hterm-of-fterm ts

lemma hterm-of-fterm-fterm-of-hterm|[simpl: hterm-of-fterm (fterm-of-hterm t) =
t
by (induction t) (simp add: map-idI)

lemma hterms-of-fterms-fterms-of-hterms|simp|: hterms-of-fterms (fterms-of-hterms
ts) = ts
unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI)

lemma fterm-of-hterm-hterm-of-fterm[simpl:

assumes ground; t
shows fterm-of-hterm (hterm-of-fterm t) =t
using assms by (induction t) (auto simp add: map-idI)

lemma fterms-of-hterms-hterms-of-fterms[simp):

assumes ground;s ts

shows fterms-of-hterms (hterms-of-fterms ts) = ts

using assms unfolding fterms-of-hterms-def hterms-of-fterms-def by (simp add:
map-idl)

lemma ground-fterm-of-hterm: ground; (fterm-of-hterm t)
by (induction t) (auto simp add: map-idI)

lemma ground-fterms-of-hterms: ground;s (fterms-of-hterms ts)
unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals

fun flit-of-hlit :: hterm literal = fterm literal where
flit-of-hlit (Pos p ts) = Pos p (fterms-of-hterms ts)
| flit-of-hlit (Neg p ts) = Neg p (fterms-of-hterms ts)

fun hlit-of-flit :: fterm literal = hterm literal where
hlit-of-flit (Pos p ts) = Pos p (hterms-of-fterms ts)
| hlit-of-flit (Neg p ts) = Neg p (hterms-of-fterms ts)

lemma ground-flit-of-hlit: ground; (flit-of-hlit 1)
by (induction l) (simp add: ground-fterms-of-hterms)+

theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit 1) = 1 by (cases 1)
auto

theorem flit-of-hlit-hlit-of-flit [simp):
assumes ground; [
shows flit-of-hlit (hlit-of-flit I) = 1
using assms by (cases) auto

lemma sign-flit-of-hlit: sign (flit-of-hlit 1) = sign | by (cases 1) auto

lemma hlit-of-flit-bij: bij-betw hlit-of-flit {1. ground; I} UNIV
unfolding bij-betw-def
proof
show inj-on hlit-of-flit {I. ground; I} using inj-on-inversel flit-of-hlit-hlit-of-flit
by (metis (mono-tags, lifting) mem-Collect-eq)
next
have V. 31'. ground; I’ A | = hlit-of-flit I’
using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
then show hlit-of-flit “ {I. ground; I} = UNIV by auto
qed

lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground; 1}

unfolding bij-betw-def inj-on-def
proof

show Vxe UNIV .V ye UNIV. flit-of-hlit © = flit-of-hlit y — =z =y

using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis

next

have V. ground; | — (I = flit-of-hlit (hlit-of-flit 1)) using hlit-of-flit-flit-of-hlit
by auto

then have {l. ground; I} C flit-of-hlit ¢ UNIV by blast

moreover

have V I. ground; (flit-of-hlit 1) using ground-flit-of-hlit by auto

ultimately show flit-of-hlit ¢ UNIV = {l. ground; 1} using hlit-of-flit-flit-of-hlit
ground-flit-of-hlit by auto
qed

1.3.3 Conversions - Atoms and Herbrand Atoms

fun fatom-of-hatom :: hterm atom = fterm atom where
fatom-of-hatom (p, ts) = (p, fterms-of-hterms ts)

fun hatom-of-fatom :: fterm atom = hterm atom where
hatom-of-fatom (p, ts) = (p, hterms-of-fterms ts)

lemma ground-fatom-of-hatom: ground;s (snd (fatom-of-hatom a))
by (induction a) (simp add: ground-fterms-of-hterms)+

theorem hatom-of-fatom-fatom-of-hatom [simp|: hatom-of-fatom (fatom-of-hatom
=1
by (cases 1) auto

theorem fatom-of-hatom-hatom-of-fatom [simp]:
assumes ground;s (snd)
shows fatom-of-hatom (hatom-of-fatom 1) =1
using assms by (cases) auto

lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV
unfolding bij-betw-def
proof
show inj-on hatom-of-fatom ground-fatoms using inj-on-inversel fatom-of-hatom-hatom-of-fatom
unfolding ground-fatoms-def
by (metis (mono-tags, lifting) mem-Collect-eq)
next
have Va. 3a’. ground;s (snd a’) A a = hatom-of-fatom a’
using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
then show hatom-of-fatom * ground-fatoms = UNIV unfolding ground-fatoms-def
by blast
qged

lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms
unfolding bij-betw-def inj-on-def
proof
show Vze UNIV. VY ye UNIV. fatom-of-hatom x = fatom-of-hatom y — z =y
using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
next
have V a. ground:s (snd a) — (a = fatom-of-hatom (hatom-of-fatom a)) using
hatom-of-fatom-fatom-of-hatom by auto
then have ground-fatoms C fatom-of-hatom ¢ UNIV unfolding ground-fatoms-def
by blast
moreover
have V. ground;s (snd (fatom-of-hatom 1)) using ground-fatom-of-hatom by
auto
ultimately show fatom-of-hatom ¢ UNIV = ground-fatoms
using hatom-of-fatom-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def
by auto
qed

1.4 Enumerations
1.4.1 Enumerating Strings

definition nat-of-string:: string = nat where
nat-of-string = (SOME f. bij f)

definition string-of-nat:: nat = string where
string-of-nat = inv nat-of-string

lemma nat-of-string-bij: bij nat-of-string

proof —

have countable (UNIV ::string set) by auto

moreover

have infinite (UNIV::string set) using infinite-UNIV-list] by auto
ultimately

obtain z where bij (2:: string = nat) using countableE-infinite[of UNIV] by
blast

then show ?thesis unfolding nat-of-string-def using somel by metis
qed

lemma string-of-nat-bij: bij string-of-nat unfolding string-of-nat-def using nat-of-string-bij
bij-betw-inv-into by auto

lemma nat-of-string-string-of-nat[simp): nat-of-string (string-of-nat n) = n
unfolding string-of-nat-def
using nat-of-string-bij f-inv-into-f[of nat-of-string] by simp

lemma string-of-nat-nat-of-string[simp|: string-of-nat (nat-of-string n) = n
unfolding string-of-nat-def
using nat-of-string-bij inv-into-f-fof nat-of-string] by simp

1.4.2 Enumerating Herbrand Atoms

definition nat-of-hatom:: hterm atom = nat where
nat-of-hatom = (SOME f. bij f)

definition hatom-of-nat:: nat = hterm atom where
hatom-of-nat = inv nat-of-hatom

instantiation hterm :: countable begin
instance by countable-datatype
end

lemma infinite-hatoms: infinite (UNIV :: ('t atom) set)
proof —
let ?diago = An. (string-of-nat n,[])
let ?undiago = Aa. nat-of-string (fst a)
have Vn. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have Vn. ?diago n € UNIV by auto
ultimately show infinite (UNIV :: ('t atom) set) using infinity[of ?undiago
?diago UNIV] by simp
qed

lemma nat-of-hatom-bij: bij nat-of-hatom
proof —
let 2S = UNIV :: (('t::countable) atom) set
have countable ?S by auto
moreover
have infinite 25 using infinite-hatoms by auto
ultimately
obtain z where bij (z :: hterm atom = nat) using countableE-infinite[of 25|
by blast
then have bij nat-of-hatom unfolding nat-of-hatom-def using somel by metis
then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-of-hatom-def
by simp
qed

lemma hatom-of-nat-bij: bij hatom-of-nat unfolding hatom-of-nat-def using nat-of-hatom-bij
bij-betw-inv-into by auto

lemma nat-of-hatom-hatom-of-nat[simp|: nat-of-hatom (hatom-of-nat n) = n
unfolding hatom-of-nat-def
using nat-of-hatom-bij f-inv-into-f|of nat-of-hatom] by simp

lemma hatom-of-nat-nat-of-hatom[simpl: hatom-of-nat (nat-of-hatom 1) = 1
unfolding hatom-of-nat-def
using nat-of-hatom-bij inv-into-f-f|of nat-of-hatom - UNIV] by simp

1.4.3 Enumerating Ground Atoms

definition fatom-of-nat :: nat = fterm atom where
fatom-of-nat = (An. fatom-of-hatom (hatom-of-nat n))

definition nat-of-fatom :: fterm atom = nat where
nat-of-fatom = (At. nat-of-hatom (hatom-of-fatom t))

theorem diag-undiag-fatom[simp):
assumes ground;s ts
shows fatom-of-nat (nat-of-fatom (p,ts)) = (p,ts)
using assms unfolding fatom-of-nat-def nat-of-fatom-def by auto

theorem undiag-diag-fatom[simpl: nat-of-fatom (fatom-of-nat n) = n unfolding
fatom-of-nat-def nat-of-fatom-def by auto

lemma fatom-of-nat-bij: bij-betw fatom-of-nat UNIV ground-fatoms
using hatom-of-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-of-nat-bij un-
folding fatom-of-nat-def comp-def by blast

lemma ground-fatom-of-nat: ground;s (snd (fatom-of-nat z)) unfolding fatom-of-nat-def
using ground-fatom-of-hatom by auto

lemma nat-of-fatom-bij: bij-betw nat-of-fatom ground-fatoms UNIV
using nat-of-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-of-nat-bij un-
folding nat-of-fatom-def comp-def by blast

end

2 Trees

theory Tree imports Main begin

Sometimes it is nice to think of bools as directions in a binary tree

hide-const (open) Left Right
type-synonym dir = bool

definition Left :: bool where Left = True
definition Right :: bool where Right = Fulse
declare Left-def [simp]

declare Right-def [simp)

datatype tree =
Leaf
| Branching (ltree: tree) (rtree: tree)

2.1 Sizes

fun treesize :: tree = nat where
treesize Leaf = 0

| treesize (Branching 1 r) = 1 + treesize | + treesize r

lemma treesize-Leaf:
assumes treesize T = 0
shows T = Leaf
using assms by (cases T) auto

lemma treesize-Branching:
assumes treesize T = Suc n
shows 31 r. T = Branching I r
using assms by (cases T) auto

2.2 Paths

fun path :: dir list = tree = bool where

path [| T <— True
| path (d#tds) (Branching T1 T2) <— (if d then path ds T1 else path ds T2)
| path - - +— False

lemma path-inv-Leaf: path p Leaf +— p = |]
by (induction p) auto

lemma path-inv-Cons: path (a#tds) T — (31 r. T=Branching I r)
by (cases T) (auto simp add: path-inv-Leaf)

lemma path-inv-Branching-Left: path (Left#p) (Branching | r) <— path p [
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching-Right: path (Right#p) (Branching I r) <— path p r
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching:
path p (Branching | r) «— (p=[] V (3a p'. p=a#p'A (a — path p' 1) A (—a
— path p’ 1)) (is 2L <— ?R)
proof
assume ?L then show ?R by (induction p) auto
next
assume 7: ?R
then show 7L
proof
assume p = [] then show ?L by auto
next
assume Ja p’. p=a#p'A (a — path p’) A (—a — path p’ 1)
then obtain a p’ where p=a#p’'A (a — path p' 1) A (—ma — path p' r)
by auto
then show ?L by (cases a) auto
qed

10

qed

lemma path-prefiz:
assumes path (ds1@Qds2) T
shows path ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using path-inv-Leaf by (cases T) auto
then obtain [» where p-lr: T = Branching | r by auto
show ?Zcase
proof (cases a)
assume atrue: a
then have path ((ds1) @ ds2) [using p-lr Cons(2) path-inv-Branching by
auto
then have path ds! | using Cons(1) by auto
then show path (a # ds1) T using p-lr atrue by auto
next
assume afalse: —a
then have path ((ds1) @ ds2) r using p-lr Cons(2) path-inv-Branching by
auto
then have path ds! r using Cons(1) by auto
then show path (a # ds1) T using p-lr afalse by auto
qed
next
case (Nil) then show ?case by auto
qed

2.3 Branches

fun branch :: dir list = tree = bool where

branch [| Leaf +— True
| branch (d # ds) (Branching I r) «— (if d then branch ds [else branch ds)
| branch - - +— False

lemma has-branch: 3b. branch b T
proof (induction T)
case (Leaf)
have branch [| Leaf by auto
then show ?case by blast
next
case (Branching T1 T3)
then obtain b where branch b T by auto
then have branch (Left#b) (Branching T1 T2) by auto
then show ?case by blast
qed

lemma branch-inv-Leaf: branch b Leaf +— b = ||
by (cases b) auto

11

lemma branch-inv-Branching-Left:
branch (Left#b) (Branching | r) <— branch bl
by auto

lemma branch-inv-Branching- Right:
branch (Right#b) (Branching | r) +— branch b r
by auto

lemma branch-inv-Branching:
branch b (Branching | r) +—
(Fa b’ b=a#b'A (a — branch b’ 1) A (ma — branch b’ r))
by (induction b) auto

lemma branch-inv-Leaf2:
T = Leaf «+— (Vb. branch b T — b = [])
proof —
{
assume T'=Leaf
then have Vb. branch b T — b = || using branch-inv-Leaf by auto

}

moreover
{
assume YV b. branch b T — b = ||
then have Vb. branch b T — —(Fa b’. b = a # b’) by auto
then have Vb. branch b T — —(31 r. branch b (Branching [1))
using branch-inv-Branching by auto
then have T=Leaf using has-branch|of T| by (metis branch.elims(2))
}
ultimately show T = Leaf <— (Vb. branch b T — b = []) by auto
qed

lemma branch-is-path:
assumesbranch ds T
shows path ds T
using assms proof (induction T arbitrary: ds)

case Leaf
then have ds = [| using branch-inv-Leaf by auto
then show ?case by auto

next

case (Branching T1 Ts)
then obtain a b where ds-p: ds = a # b A (a — branch b T1) A (= a —
branch b Ts) using branch-inv-Branching|of ds] by blast
then have (a — path b T1) A (ma — path b T3) using Branching by auto
then show ?case using ds-p by (cases a) auto
qed

lemma Branching-Leaf-Leaf-Tree:

assumes 1 = Branching T1 T2
shows (3 B. branch (BQ[True]) T A branch (BQ[False]) T)

12

using assms proof (induction T arbitrary: T1 T2)
case Leaf then show ?case by auto
next
case (Branching T1' T2')
{
assume T1'=Leaf N T2'=Leaf
then have branch ([] @ [True]) (Branching T1' T2') A branch ([] @ [False])
(Branching T1' T2') by auto
then have ?case by metis

}

moreover
{

fix T11 T12

assume T1' = Branching T11 T12

then obtain B where branch (B Q [True]) T1'

A branch (B Q [False]) T1' using Branching by blast
then have branch (([True] @ B) @ [True]) (Branching T1' T2')
A branch (([True] @ B) Q@ [False]) (Branching T1' T2') by auto
then have ?case by blast

}

moreover
{
fix T11 T12
assume T2’ = Branching T11 T12
then obtain B where branch (B @ [True]) T2’
A branch (B Q [False]) T2' using Branching by blast
then have branch (([False] @ B) Q [True]) (Branching T1' T2')
A branch (([False] @ B) @ [Fulse]) (Branching T1' T2') by auto
then have ?case by blast
}
ultimately show ?case using tree.exhaust by blast
qed

2.4 Internal Paths

fun internal :: dir list = tree = bool where

internal [| (Branching l r) «— True
| internal (d#ds) (Branching | r) <— (if d then internal ds [else internal ds r)
| internal - - «+— False

lemma internal-inv-Leaf: —internal b Leaf using internal.simps by blast

lemma internal-inv-Branching-Left:
internal (Left#£b) (Branching I r) «— internal b | by auto

lemma internal-inv-Branching- Right:

internal (Right#0b) (Branching | r) <— internal b r
by auto

13

lemma internal-inv-Branching:
internal p (Branching I) <— (p=[] V (3a p". p=a#p'A (a — internal p' I) A
(ma — internal p' r))) (is ?L +— ?R)
proof
assume ?L then show ?R by (metis internal.simps(2) neg-Nil-conv)
next
assume 7: ?R
then show 7L
proof
assume p = [| then show ?L by auto
next
assume Ja p’. p=a#p’'A (a — internal p’ I) A (ma — internal p' r)
then obtain a p’ where p=a#p’A (a — internal p’ 1) A (ma —> internal
p’ r) by auto
then show ?L by (cases a) auto
qed
qed

lemma internal-is-path:

assumes internal ds T

shows path ds T
using assms proof (induction T arbitrary: ds)

case Leaf

then have Fulse using internal-inv-Leaf by auto

then show “case by auto
next

case (Branching T1 T3)

then obtain a b where ds-p: ds=[| V ds = a # b A (a — internal b T1) A (&
a — internal b Ts) using internal-inv-Branching by blast

then have ds =[] V (a — path b T1) A (ma —> path b T5) using Branching
by auto

then show Zcase using ds-p by (cases a) auto
qed

lemma internal-prefiz:
assumes internal (ds1 Qds2Q[d]) T
shows internal ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using internal-inv-Leaf by (cases T') auto
then obtain [» where p-lr: T = Branching | r by auto
show Zcase
proof (cases a)
assuime atrue: a
then have internal ((ds1) @Q ds2 Q[d]) [using p-ir Cons(2) internal-inv-Branching
by auto
then have internal dsi | using Cons(1) by auto
then show internal (a # ds1) T using p-ir atrue by auto
next

14

assume afalse: ~a

then have internal ((ds1) @Q ds2 Q[d]) r using p-lr Cons(2) internal-inv-Branching

by auto
then have internal ds! r using Cons(1) by auto
then show internal (a # ds1) T using p-ir afalse by auto
qed
next
case (Nil)
then have 31 r. T = Branching | r using internal-inv-Leaf by (cases T) auto
then show ?case by auto
qed

lemma internal-branch:
assumes branch (ds1@Qds2Q[d]) T
shows internal ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using branch-inv-Leaf by (cases T) auto
then obtain [» where p-lr: T = Branching | r by auto
show Zcase
proof (cases a)
assume atrue: a
then have branch (ds! @ ds2 @ [d]) [using p-Ir Cons(2) branch-inv-Branching
by auto
then have internal dsi | using Cons(1) by auto
then show internal (a # ds1) T using p-lr atrue by auto
next
assume afalse: ~a
then have branch ((ds1) Q ds2 Q[d]) r using p-lir Cons(2) branch-inv-Branching
by auto
then have internal ds! r using Cons(1) by auto
then show internal (a # ds1) T using p-lr afalse by auto
qed
next
case (Nil)
then have 31 r. T = Branching | r using branch-inv-Leaf by (cases T) auto
then show ?case by auto
qed

fun parent :: dir list = dir list where
parent ds = tl ds

2.5 Deleting Nodes

fun delete :: dir list = tree = tree where
delete [| T = Leaf
| delete (True#tds) (Branching T1 Ts) = Branching (delete ds T1) T

15

| delete (False#ds) (Branching T1 Ts) = Branching T1 (delete ds Ts)
| delete (a#ds) Leaf = Leaf

lemma delete-Leaf: delete T Leaf = Leaf by (cases T) auto

lemma path-delete:
assumes path p (delete ds T)
shows path p T
using assms proof (induction p arbitrary: T ds)
case Nil
then show ?Zcase by simp
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons

by auto
then obtain d7'1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 377 T2. T=Branching T1 T2
by (cases T cases ds) auto
then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a

assume b-p: —b

have path (a # p) (delete ds T) using Cons by —

then have path (a # p) (Branching (T1) (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto

then have path p T1 using a-p by auto

then have ?case using T17T2-p a-p by auto

}

moreover
{

assume a-p: —a

assume b-p: b

have path (a # p) (delete ds T) using Cons by —

then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p

T1T2-p by auto
then have path p T2 using a-p by auto
then have ?case using T17T2-p a-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto

16

then have path p (delete ds’ T1) using a-p by auto
then have path p T1 using Cons by auto
then have ?case using T1T2-p a-p by auto

}

moreover
{
assume a-p: —a
assume b-p: —b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T2) using a-p by auto
then have path p T2 using Cons by auto
then have ?case using T17T2-p a-p by auto
}
ultimately show ?case by blast
qed

lemma branch-delete:
assumes branch p (delete ds T)
shows branch p T V p=ds
using assms proof (induction p arbitrary: T ds)
case Nil
then have delete ds T = Leaf by (cases delete ds T) auto
then have ds = [| V T = Leaf using delete.elims by blast
then show ?case by auto
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons

branch-is-path by blast
then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 3771 T2. T=Branching T1 T2
by (cases T; cases ds) auto
then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a

assume b-p: —b

have branch (a # p) (delete ds T) using Cons by —

then have branch (a # p) (Branching (T1) (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto

then have branch p T1 using a-p by auto

then have ?case using T17T2-p a-p by auto

}

moreover

{

17

assume a-p: —a

assume b-p: b

have branch (a # p) (delete ds T') using Cons by —

then have branch (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto

then have branch p T2 using a-p by auto

then have ?case using T1T2-p a-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have branch (a # p) (delete ds T') using Cons by —
then have branch (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto
then have branch p (delete ds’ T1) using a-p by auto
then have branch p T1 V p = ds’ using Cons by metis
then have ?case using T1T2-p a-p using bds’-p a-p b-p by auto
}
moreover
{
assume a-p: —a
assume b-p: —b
have branch (a # p) (delete ds T') using Cons by —
then have branch (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have branch p (delete ds’ T2) using a-p by auto
then have branch p T2 V p = ds’ using Cons by metis
then have ?case using T1T2-p a-p using bds’-p a-p b-p by auto
}
ultimately show ?case by blast
qed

lemma branch-delete-postfiz:
assumes path p (delete ds T)
shows —(J ¢ ¢cs. p = ds Q c#cs)
using assms proof (induction p arbitrary: T ds)
case Nil then show ?Zcase by simp
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto
then obtain d7'1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 3 T1 T2. T=Branching T1 T2
by (cases T; cases ds) auto

18

then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a
assume b-p: —b
then have ?case using T1T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: —a
assume b-p: b
then have ?case using T17T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T1) using a-p by auto
then have — (3¢ cs. p = ds’ @Q ¢ # c¢s) using Cons by auto
then have ?case using T1T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: —a
assume b-p: —b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T2) using a-p by auto
then have — (3¢ cs. p = ds’ @Q ¢ # c¢s) using Cons by auto
then have ?case using T1T2-p a-p b-p bds’-p by auto
}
ultimately show ?case by blast
qed

lemma treezise-delete:
assumes internal p T
shows treesize (delete p T) < treesize T
using assms proof (induction p arbitrary: T)
case (Nil)
then have 3 T1 T2. T = Branching T1 T2 by (cases T) auto
then obtain 771 T2 where T1T2-p: T = Branching T1 T2 by auto
then show ?case by auto
next
case (Cons a p)
then have 3 71 T2. T = Branching T1 T2 using path-inv-Cons internal-is-path

19

by blast
then obtain 771 T2 where T1T2-p: T = Branching T1 T2 by auto
show ?Zcase
proof (cases a)
assume a-p: a
from a-p have delete (a#tp) T = (Branching (delete p T1) T2) using T1T2-p
by auto
moreover
from a-p have internal p T1 using T1T2-p Cons by auto
then have treesize (delete p T1) < treesize T1 using Cons by auto
ultimately
show ?thesis using T17T2-p by auto
next
assume a-p: —a
from a-p have delete (a#p) T = (Branching T1 (delete p T2)) using T1T2-p
by auto
moreover
from a-p have internal p T2 using T1T2-p Cons by auto
then have treesize (delete p T2) < treesize T2 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto
qed
qed

fun cutoff :: (dir list = bool) = dir list = tree = tree where
cutoff red ds (Branching T1 Ts) =
(if red ds then Leaf else Branching (cutoff red (dsQ[Left]) T1) (cutoff red
(ds@[Right]) T>))
| cutoff red ds Leaf = Leaf

Initially you should call cutoff with ds = []. If all branches are red, then
cutoff gives a subtree. If all branches are red, then so are the ones in cutoff.
The internal paths of cutoff are not red.

lemma treesize-cutoff: treesize (cutoff red ds T) < treesize T
proof (induction T arbitrary: ds)
case Leaf then show ?case by auto
next
case (Branching T1 T2)
then have treesize (cutoff red (dsQ[Left]) T1) + treesize (cutoff red (dsQ[Right])
T2) < treesize T1 + treesize T2 using add-mono by blast
then show ?case by auto
qed

abbreviation anypath :: tree = (dir list = bool) = bool where
anypath T P =V p. path p T — P p

abbreviation anybranch :: tree = (dir list = bool) = bool where
anybranch T P =V p. branch p T — P p

20

abbreviation anyinternal :: tree = (dir list = bool) = bool where
anyinternal T P =V p. internal p T — P p

lemma cutoff-branch’:
assumes anybranch T (\b. red(dsQb))
shows anybranch (cutoff red ds T) (Ab. red(dsQb))
using assms proof (induction T arbitrary: ds)
case (Leaf)
let ?T = cutoff red ds Leaf
{
fix b
assume branch b ?T
then have branch b Leaf by auto
then have red(dsQb) using Leaf by auto
}
then show Zcase by simp
next
case (Branching T1 Ts)
let ?T = cutoff red ds (Branching T1 Ts)
from Branching have V p. branch (Left#p) (Branching T1 T2) — red (ds @
(Left#p)) by blast
then have Vp. branch p T1 — red (ds @ (Left#p)) by auto
then have anybranch T1 (Ap. red ((ds @ [Left]) @ p)) by auto
then have aa: anybranch (cutoff red (ds @ [Left]) T1) (Ap. red ((ds @ [Left]) @Q
p))

using Branching by blast

from Branching have V p. branch (Right#p) (Branching T1 T2) — red (ds @
(Right#p)) by blast

then have Vp. branch p Ty — red (ds @ (Right#p)) by auto

then have anybranch Ty (Ap. red ((ds Q [Right]) Q p)) by auto

then have bb: anybranch (cutoff red (ds @ [Right]) T2) (Ap. red ((ds @ [Right])

@ p))

{
fix b

assume b-p: branch b ?T
have red ds V —red ds by auto
then have red(dsQb)
proof
assume ds-p: red ds
then have ?T = Leaf by auto
then have b = [| using b-p branch-inv-Leaf by auto
then show red(ds@b) using ds-p by auto
next
assume ds-p: —red ds
let ?T1' = cutoff red (dsQ[Left]) T:
let ?Ty' = cutoff red (dsQ[Right]) T4

using Branching by blast

21

from ds-p have ?T = Branching ?T1’ ?T3’ by auto
from this b-p obtain a b’ where b = a # b’ A (a — branch b’ 2T1') A
(ma — branch b’ 2Ty’) using branch-inv-Branching[of b 2Ty’ ?T3'] by auto
then show red(dsQb) using aa bb by (cases a) auto
qed
}
then show ?case by blast
qed

lemma cutoff-branch:
assumes anybranch T (Ap. red p)
shows anybranch (cutoff red [| T) (Ap. red p)
using assms cutoff-branch’[of T red []] by auto

lemma cutoff-internal’:

assumes anybranch T (\b. red(dsQb))

shows anyinternal (cutoff red ds T) (Ab. —red(dsQb))
using assms proof (induction T arbitrary: ds)

case (Leaf) then show ?case using internal-inv-Leaf by simp
next

case (Branching T1 Ts)

let ?T = cutoff red ds (Branching T1 T3)

from Branching have V p. branch (Left#p) (Branching T1 Ta) — red (ds @
(Left#p)) by blast

then have V p. branch p Ty — red (ds Q (Left#p)) by auto

then have anybranch T (Ap. red ((ds @ [Left]) @ p)) by auto

then have aa: anyinternal (cutoff red (ds @ [Left]) T1) (Ap. = red ((ds @ [Left])
@ p)) using Branching by blast

from Branching have V p. branch (Right#p) (Branching T1 T3) — red (ds @
(Right#p)) by blast

then have Vp. branch p To — red (ds @ (Right#p)) by auto

then have anybranch To (Ap. red ((ds @ [Right]) @ p)) by auto

then have bb: anyinternal (cutoff red (ds @ [Right]) T2) (Ap. — red ((ds Q@
[Right]) @ p)) using Branching by blast

fix p
assume b-p: internal p ?T
then have ds-p: —red ds using internal-inv-Leaf by auto
have p=|] V p#|[] by auto
then have —red(dsQp)
proof
assume p=|[| then show —red(dsQp) using ds-p by auto
next
let ?T1' = cutoff red (dsQ[Left]) T,
let ?T5' = cutoff red (dsQ[Right]) T2
assume p#||
moreover
have ?T = Branching ?T1' ?Ts’ using ds-p by auto

22

ultimately
obtain a p’ where b-p: p = a # p’ A
(a —> internal p’ (cutoff red (ds Q [Left]) T1)) A
(= @ — internal p’ (cutoff red (ds @Q [Right]) T2))
using b-p internal-inv-Branching[of p ?T1’ ?T2'] by auto
then have —red(ds @ [a] @ p') using aa bb by (cases a) auto
then show —red(ds @ p) using b-p by simp
qed
}
then show ?case by blast
qed

lemma cutoff-internal:
assumes anybranch T red
shows anyinternal (cutoff red [| T) (Ap. —red p)
using assms cutoff-internal’lof T red []] by auto

lemma cutoff-branch-internal’:

assumes anybranch T red

shows anyinternal (cutoff red [| T) (Ap. —red p) N anybranch (cutoff red [| T)
(Ap. red p)

using assms cutoff-internalof T| cutoff-branch[of T| by blast

lemma cutoff-branch-internal:
assumes anybranch T red
shows 3 T'. anyinternal T’ (Ap. —red p) A anybranch T’ (Ap. red p)
using assms cutoff-branch-internal’ by blast

3 Possibly Infinite Trees

Possibly infinite trees are of type dir list set.

abbreviation wf-tree :: dir list set = bool where
wf-tree T = (Vdsd. (ds@Qd) e T — dse T)

The subtree in with root r

fun subtree :: dir list set = dir list = dir list set where
subtree Tr = {ds € T.3ds". ds =r Q ds'}

A subtree of a tree is either in the left branch, the right branch, or is the
tree itself

lemma subtree-pos:

subtree T ds C subtree T (ds @ [Left]) U subtree T (ds @ [Right]) U {ds}
proof (rule subsetl; rule Set.UnCI)

let ?subtree = subtree T

fix z

assume asm: ¢ € Zsubtree ds

assume z ¢ {ds}

23

then have z # ds by simp

then have Je d. z = ds Q [d] @ e using asm list.exhaust by auto

then have (Je. © = ds Q [Left] @ ¢) V (Je. z = ds @ [Right] @ ¢) using
bool.exhaust by auto

then show z € Zsubtree (ds Q [Left]) U ?subtree (ds Q [Right]) using asm by
auto
qed

3.1 Infinite Paths

abbreviation wf-infpath :: (nat = ’a list) = bool where
wf-infpath f = (f0 =[]) A (Vn. a. f (Sucn) = (fn) Q [a])

lemma infpath-length:
assumes wf-infpath f
shows length (fn) = n
using assms proof (induction n)
case () then show ?case by auto
next
case (Suc n) then show ?case by (metis length-append-singleton)
qed

lemma chain-prefix:
assumes wf-infpath f
assumes n; < no
shows Ja. (fny) @ a = (f ng)
using assms proof (induction ny)
case (Suc ngy)
then have n; < no V n; = Suc ne by auto
then show ?case
proof
assume n; < ng
then obtain a where a: fn; Q a = f ny using Suc by auto
have b: 3b. f (Suc na) = f ny @ [b] using Suc by auto
from o b have 3b. fny Q (a Q [b]) = f (Suc n2) by auto
then show Jc. fny Q ¢ = f (Suc na) by blast
next
assume n; = Suc ng
then have fn; @ [| = f (Suc na) by auto
then show Ja. fny @ a = f (Suc na2) by auto
qed
qed auto

If we make a lookup in a list, then looking up in an extension gives us the
same value.
lemma ith-in-extension:

assumes chain: wf-infpath f

assumes smalli: i < length (f n1)
assumes ning: Ny < No

24

shows fni!i=fny ! i

proof —
from chain nin, have da. fn; @ a = f ny using chain-prefix by blast
then obtain ¢ where a-p: fn1 @Q a = f ny by auto
have (fn; @ a) ! i = fny ! i using smalli by (simp add: nth-append)
then show ?thesis using a-p by auto

qed

4 Konig’s Lemma

lemma inf-subs:
assumes inf: —finite(subtree T ds)
shows —finite(subtree T (ds Q [Left])) V —finite(subtree T (ds @ [Right]))
proof —
let Zsubtree = subtree T
{
assume asms: finite(?subtree(ds @ [Left]))
finite(Zsubtree(ds @ [Right]))
have Zsubtree ds C ?subtree (ds Q [Left]) U ?subtree (ds @Q [Right]) U {ds}
using subtree-pos by auto
then have finite(Zsubtree (ds)) using asms by (simp add: finite-subset)

then show —finite(?subtree (ds @ [Left])) V —finite(?subtree (ds @ [Right]))
using inf by auto
qed

fun buildchain :: (dir list = dir list) = nat = dir list where
buildchain next 0 = |]
| buildchain next (Suc n) = next (buildchain next n)

lemma konig:

assumes inf: —finite T

assumes wellformed: wf-tree T

shows Jc. wf-infpath ¢ A (Yn. (cn) € T)
proof

let Zsubtree = subtree T

let ?nextnode = \ds. (if —finite (Zsubtree (ds Q [Left])) then ds @ [Left] else ds
Q@ [Right])

let ?c = buildchain ?nextnode
have is-chain: wf-infpath ?c by auto
from wellformed have prefiz: Vds d. (ds @ d) € T — ds € T by blast

{

fix n
have (%c n) € T A —finite (Zsubtree (?c n))
proof (induction n)

25

case (
have 3ds. ds € T using inf by (simp add: not-finite-existsD)
then obtain ds where ds € T by auto
then have ([|@Qds) € T by auto
then have [| € T using prefix by blast
then show ?case using inf by auto
next
case (Suc n)
from Suc have next-in: (?c n) € T by auto
from Suc have next-inf: —finite (?subtree (?c n)) by auto

from next-inf have next-next-inf:

—finite (Zsubtree (?nextnode (%c n)))

using inf-subs by auto

then have Jds. ds € Zsubtree (?nextnode (?c n))

by (simp add: not-finite-existsD)
then obtain ds where dss: ds € ?subtree (?nextnode (?c n)) by auto
then have ds € T Jsuf. ds = (?nextnode (?c n)) Q suf by auto
then obtain suf where ds € T A ds = (?nextnode (?c n)) Q suf by auto
then have (?nexztnode (?c n)) € T

using prefir by blast

then have (?c (Suc n)) € T by auto
then show ?Zcase using next-next-inf by auto
qed

then show wf-infpath ?c A (Vn. (?c n)e T) using is-chain by auto
qed

end

5 More Terms and Literals

theory Resolution imports TermsAndLiterals Tree begin

fun complement :: 't literal = 't literal (<- [300] 300) where
(Pos P ts)¢ = Neg P ts
| (Neg P ts)¢ = Pos P ts

lemma cancel-comp1: (I€)¢ = | by (cases) auto

lemma cancel-comp?2:
assumes asm: [1¢ = [5€
shows [; = Iy
proof —
from asm have (1;°)¢ = (15°)¢ by auto
then have [; = (12°)° using cancel-compl|[of l1] by auto
then show ?thesis using cancel-compl[of l2] by auto
qed

26

lemma comp-exil: A1’ I’ = I° by (cases) auto

lemma comp-exi2: 31. I’ = ¢
proof

show [’ = (1’°)¢ using cancel-comp1[of '] by auto
qed

lemma comp-swap: 11¢ = ls +— 11 = 15°

proof —
have [,¢ = Iy — 1 = [2° using cancel-comp1[of I1] by auto
moreover
have [= [,° — [1° = I using cancel-compl by auto
ultimately
show ?thesis by auto

qed

lemma sign-comp: sign ly # sign lo N\ get-pred Iy = get-pred ly N\ get-terms Iy =
get-terms lo < lo = 1€
by (cases l1; cases l3) auto

lemma sign-comp-atom: sign ly # sign lo A get-atom 1y = get-atom lo +— lo =
l,¢
by (cases l1; cases la) auto

6 Clauses

type-synonym 't clause = 't literal set
abbreviation complementls :: 't literal set = 't literal set (<-> [300] 300) where
LC = complement ¢ L

lemma cancel-compls1: (LY)¢ = L
apply (auto simp add: cancel-compl)
apply (metis imagel cancel-compl)
done

lemma cancel-compls2:

assumes asm: [,¢ = Ly,

shows L = Lo
proof —

from asm have (L;9)¢ = (L;%)¢ by auto

then show %thesis using cancel-compls1|of L] cancel-complsi[of Lo by simp
qed

fun vars; :: fterm = var-sym set where

varsy (Var z) = {z}
| varsy (Fun fts) = (Ut € set ts. vars; t)

27

abbreviation vars;s :: fterm list = var-sym set where
varsys ts = (Jt € set ts. vars; t)

definition vars; :: fterm literal = var-sym set where
vars; | = varsys (get-terms 1)

definition vars;s :: fterm literal set = var-sym set where
vars;s L = | JI€L. vars;

lemma ground-vars;:
assumes ground; t
shows vars; t = {}
using assms by (induction t) auto

lemma grounds-vars;s:
assumes ground;s ts
shows vars;s ts = {}
using assms ground-vars; by auto

lemma ground;-vars;:
assumes ground; |
shows vars; | = {}
unfolding vars;-def using assms ground-vars; by auto

lemma ground;s-vars;s:
assumes ground;s L
shows vars;; L = {} unfolding vars;s-def using assms ground;-vars; by auto

lemma ground-comp: ground; (1¢) <— ground; | by (cases l) auto

lemma ground-compls: ground;s (L¢) +— ground;, L using ground-comp by
auto

7 Semantics

type-synonym 'u fun-denot = fun-sym = 'u list = 'u
type-synonym 'u pred-denot = pred-sym = 'u list = bool
type-synonym 'u var-denot = var-sym = 'u

fun eval; :: 'u var-denot = 'u fun-denot = fterm = 'u where
evaly EF (Varz) = E x
| evaly E F (Fun fts) = F f (map (evaly E F) ts)

abbreviation eval;s :: 'u var-denot = 'u fun-denot = fterm list = 'u list where
evalys E F ts = map (eval, E F) ts

fun eval; :: v var-denot = 'u fun-denot = 'u pred-denot = fterm literal = bool
where

28

evalp EF G (Pos p ts) «— G p (evalys E F ts)
| eval; E F G (Neg p ts) <— —G p (evalys E F ts)

definition eval. :: 'u fun-denot = 'u pred-denot = fterm clause = bool where
eval. F G C +— (VE. 3l € C. eval; EF G 1)

definition eval.s :: "u fun-denot = "u pred-denot = fterm clause set = bool where
eval.s F G Cs +—— (VC € Cs. eval, F G C)

7.1 Semantics of Ground Terms

lemma ground-var-denott:
assumes ground; t
shows eval; E Ft = evaly E' F't
using assms proof (induction t)
case (Var z)
then have Fulse by auto
then show ?Zcase by auto
next
case (Fun f ts)
then have Vit € set ts. ground; t by auto
then have Vit € set ts. eval; F F t = eval, E' F t using Fun by auto
then have eval;; E F ts = eval;s E' F ts by auto
then have F [(map (eval; E F) ts) = F f (map (evaly E' F) ts) by metis
then show Zcase by simp
qed

lemma ground-var-denotts:
assumes groundis ts
shows eval;s E F ts = eval,s E' F ts
using assms ground-var-denott by (metis map-eq-conv)

lemma ground-var-denot:

assumes ground; |

shows eval] EF G| = eval; E' F G 1
using assms proof (induction I)

case Pos then show ?Zcase using ground-var-denotts by (metis eval;.simps(1)
literal.sel(3))
next

case Neg then show Zcase using ground-var-denotts by (metis eval;.simps(2)
literal.sel(4))
qed

8 Substitutions
type-synonym substitution = var-sym = fterm

fun sub :: fterm = substitution = fterm (infixl «;» 55) where

29

(Varz) o =0 x

| (Fun fts) -+ o = Fun f (map (At. t -4 o) ts)

abbreviation subs :: fterm list = substitution = fterm list (infixl ;4> 55) where
ts ts 0 = (map (At. t - o) ts)

fun subl :: fterm literal = substitution = fterm literal (infixl <> 55) where
(Pos p ts) 4 0 = Posp (ls 45 0)
| (Neg p ts) 1 0 = Neg p (ts s 0)

abbreviation subls :: fterm literal set = substitution = fterm literal set (infixl
15> 55) where
Lyso=\.1y0) ‘L

lemma subls-def2: L <15 0 = {l -y o|l. I € L} by auto

definition instance-of, :: fterm = fterm = bool where
instance-ofy t1 to «— (Jo. t1 = tg 4 0)

definition instance-of;s :: fterm list = fterm list = bool where
instance-of 15 ts1 tso <— (0. ts1 = tsg 45 0)

definition instance-of; :: fterm literal = fterm literal = bool where
instance-of 1y Iy «— (o. 11 =1y 4 0)

definition instance-ofs :: fterm clause = fterm clause = bool where
instance-of ;s C1 Cay «— (0. C1 = Cs 5 0)

lemma comp-sub: (1¢) -} o=(1 - 0)°

by (cases 1) auto

lemma compls-subls: (L) -1, o=(L -5 0)¢

using comp-sub apply auto

apply (metis image-eql)

done

lemma subls-union: (Ly U Lg) <15 0 = (L1 15 0) U (L2 15 0) by auto

definition var-renaming-of :: fterm clause = fterm clause = bool where
var-renaming-of Cp Cq <— instance-of;s C1 Ca A instance-of ;s Co Cy

8.1 The Empty Substitution

abbreviation ¢ :: substitution where
e = Var

lemma empty-subt: (¢ :: fterm) v e =t
by (induction t) (auto simp add: map-idI)

30

lemma empty-subts: ts 415 € = ts
using empty-subt by auto

lemma empty-subl: | € = [
using empty-subts by (cases) auto

lemma empty-subls: L 13 € = L
using empty-subl by auto

lemma instance-of:-self: instance-ofs t ¢
unfolding instance-of ;-def
proof

show t = t -; € using empty-subt by auto
qed

lemma instance-of:4-self: instance-of ;s ts ts
unfolding instance-ofs-def
proof

show ts = ts .15 € using empty-subts by auto
qed

lemma instance-of;-self: instance-of; 11
unfolding instance-of ;-def
proof

show | = [- € using empty-subl by auto
qed

lemma instance-ofs-self: instance-of ;s L L
unfolding instance-ofs-def
proof

show L = L -}, € using empty-subls by auto
qed

8.2 Substitutions and Ground Terms

lemma ground-sub:
assumes ground; t
shows t -, o=t
using assms by (induction t) (auto simp add: map-idl)

lemma ground-subs:
assumes ground;s ts
shows ts ;s 0 = ts
using assms ground-sub by (simp add: map-idl)

lemma ground;-subs:

assumes ground; [
shows [0 =1

31

using assms ground-subs by (cases 1) auto

lemma ground;s-subls:
assumes ground: ground;s L
shows L -, 0 = L
proof —
{
fix |
assume [-L: [€ L
then have ground; | using ground by auto
then have [= [-, ¢ using ground;-subs by auto
moreover
then have | ; 0 € L ;s 0 using [-L by auto
ultimately
have I € L ;5 0 by auto

}

moreover
{
fix |
assume [-L: € L 5 0
then obtain [’ where I’-p: I’ € L A1’y 0 = | by auto
then have [’ = [using ground ground;-subs by auto
from [-L [’-p this have | € L by auto
}
ultimately show #¢thesis by auto
qed

8.3 Composition

definition composition :: substitution = substitution = substitution (infixl <>
55) where

(01 . 0'2) Tr = (0'1 l’) t 02

lemma composition-conseq2t: (t -+ 01) + 02 = t - (01 - 02)
proof (induction t)

case (Var z)

have ((Var z) -4 01) «+ 02 = (01) -+ 02 by simp

also have ... = (01 - 02) z unfolding composition-def by simp
finally show ?case by auto
next

case (Fun t ts)
then show ?case unfolding composition-def by auto
qed

lemma composition-conseq2ts: (ts +s 01) s 02 = ts +5 (01 - 02)
using composition-conseq2t by auto

lemma composition-conseq2l: (1 -} 01) <y 09 =1+ (01 - 02)
using composition-conseq2t by (cases) auto

32

lemma composition-conseq2ls: (L 15 01) 15 02 = L -5 (01 - 02)
using composition-conseq2l apply auto

apply (metis imagel)

done

lemma composition-assoc: o1 - (02 - 03) = (01 - 02) - 03
proof
fix z
show (01 - (02 - 03)) © = ((01 - 02) - 03) T
by (simp only: composition-def composition-conseq2t)
qed

lemma empty-compl: (o - ¢) = o
proof

fix z

show (o - €) © = o z unfolding composition-def using empty-subt by auto
qed

lemma empty-comp2: (¢ - o) = o
proof

fix z

show (¢ - 0) © = o z unfolding composition-def by simp
qed

lemma instance-of:-trans :
assumes tio: instance-of; t1 to
assumes to3: instance-ofy ty t3
shows instance-of; t1 t3
proof —
from t;5 obtain o015 where t; = t5 4 012
unfolding instance-of:-def by auto
moreover
from ty3 obtain o535 where t5 = t3 -4 093
unfolding instance-of:-def by auto
ultimately
have t; = (t3 '+ 023) '+ 012 by auto
then have t; = t3 -4 (023 - 012) using composition-conseq2t by simp
then show ?thesis unfolding instance-of:-def by auto
qed

lemma instance-of;s-trans :
assumes tsio: instance-ofss ts1 tso
assumes tso3: instance-ofis tso ts3
shows instance-of ;s ts1 ts3
proof —
from ts15 obtain 015 where ts; = ts9 15 019
unfolding instance-ofs-def by auto

33

moreover
from tsy3 obtain 093 where tsy = ts3 45 093
unfolding instance-of:s-def by auto
ultimately
have ts; = (ts3 -ts 023) 'ts 012 by auto
then have ts; = ts3 s (023 - 012) using composition-conseq2ts by simp
then show ?thesis unfolding instance-of;s-def by auto
qed

lemma instance-of;-trans :
assumes l1o: instance-of; 1y o
assumes ly3: instance-of; Iy I3
shows instance-of; 11 I3
proof —
from /{5 obtain o1 where [; = Iy - 012
unfolding instance-of;-def by auto
moreover
from [53 obtain o935 where I, = I3 -} 093
unfolding instance-of;-def by auto
ultimately
have Iy = (I3 -; 023) -1 012 by auto
then have [y = I3 - (023 - 012) using composition-conseg2l by simp
then show ?thesis unfolding instance-of;-def by auto
qed

lemma instance-of;s-trans :
assumes Lis: instance-of ;s L1 Lo
assumes Lo3: instance-of;s Lo L3
shows instance-of;s L1 L3
proof —
from ng obtain g12 where L1 = L2 ‘ls 012
unfolding instance-ofs-def by auto
moreover
from L,3 obtain 093 where Ly = L3 -5 093
unfolding instance-ofs-def by auto
ultimately
have L; = (L3 s 023) 1s 012 by auto
then have Ly = L3 -5 (023 - 012) using composition-conseq2ls by simp
then show ?thesis unfolding instance-of;s-def by auto
qed

8.4 Merging substitutions

lemma project-sub:

assumes inst-C:C -5 Imbd = C’

assumes L'sub: L' C C’

shows 3L C C. L ;5 Imbd = L' A (C—L) 15 lmbd = C' — L’
proof —

let 2L={le C.3l'e L1 Imbd =17

34

have ?L C C by auto
moreover
have ?L -, Imbd = L’
proof (rule Orderings.order-antisym; rule Set.subsetl)
fix I’
assume ['L: ' € L'
from inst-C have {l -; Imbd|l. | € C} = C' unfolding subls-def2 by —
then have 31. I'=1 -y Imbd ANl € C A1+ lmbd € L' using L'sub I'L by
auto
then have '€ {l € C. [Imbd € L'} -5 Imbd by auto
then show '€ {l € C.3l'el’. |- Imbd = 1"} -5 Imbd by auto
qed auto
moreover
have (C—?L) -5 Imbd = C' — L’ using inst-C by auto
ultimately show “thesis
by blast
qed

lemma relevant-vars-subt:
assumes VYV € vars; t. 01 £ = 0o T
shows t 101 =1 09
using assms proof (induction t)
case (Fun f ts)
have f: Vi. t € set ts — vars; t C varsis ts by (induction ts) auto
have Vicset ts. t -, 01 =t -4 09
proof
fix ¢
assume tints: t € set ts
then have Vz € vars; t. 01 © = 09 z using f Fun(2) by auto
then show t -, 01 = t -4 02 using Fun tints by auto
qed
then have ts 15 01 = ts 15 02 by auto
then show ?case by auto
qed auto

lemma relevant-vars-subts:
assumes asm: Vx € vars;s ts. 01 T = 09 T
shows ts ;s 01 = ts 45 09
proof —
have f: Vt. t € set ts — vars; t C varss ts by (induction ts) auto
have Vicset ts. t -4 01 =t 4 09
proof
fix t
assume tints: t € set ts
then have Vz € vars, t. 01 x = 09 = using f asm by auto
then show t -, 01 = t -4 02 using relevant-vars-subt tints by auto
qed
then show ?thesis by auto
qed

35

lemma relevant-vars-subl:

assumes Vz € vars; l. 01 £ = 09 x

shows [- 01 =1 09
using assms proof (induction I)

case (Pos p ts)

then show ?case using relevant-vars-subts unfolding vars;-def by auto
next

case (Neg p ts)

then show ?case using relevant-vars-subts unfolding vars;-def by auto
qed

lemma relevant-vars-subls:
assumes asm: Vx € vars;s L. 01 © = 03
shows L -js 01 = L 15 09
proof —
have f: VI. |l € L — wars; | C vars;s L unfolding vars;s-def by auto
haveVie L.l 01 =1+ 09
proof
fix [
assume linls: [€L
then have Vxzcvars; l. 01 x = 02 = using f asm by auto
then show [-, 01 = [-} 05 using relevant-vars-subl linls by auto
qed
then show ?thesis by (meson image-cong)
qed

lemma merge-sub:
assumes dist: vars;s C N vars;s D = {}
assumes CC’": C ;5 Imbd = C'
assumes DD D ., u = D’
shows dn. C s n=C'AD 4sn=D"'
proof —
let ?n = A\z. if x € vars;s C then Imbd x else p x
have Vzevars;s C. ?n x = Imbd = by auto
then have C -5 %) = C -5 Imbd using relevant-vars-sublslof C ?n lmbd] by
auto
then have C -, 7n = C’ using CC’ by auto
moreover
have Vz € vars;s D. ?n © = p x using dist by auto
then have D -1 %9 = D -5 pu using relevant-vars-sublsjof D ?n u] by auto
then have D ., ?n = D’ using DD’ by auto
ultimately
show ?thesis by auto
qed

8.5 Standardizing apart

abbreviation std; :: fterm clause = fterm clause where

36

stdy C = C 5 (Az. Var (1" @ x))

abbreviation stds :: fterm clause = fterm clause where
stdy C = C 15 (Az. Var (2" Q z))

lemma std-apart-apart’”:
assumes z € vars; (t -4 (Az::char list. Var (y Q x)))
shows Jz’. x = yQx’

using assms by (induction t) auto

lemma std-apart-apart’”:
assumes z € vars; (I - (Az. Var (yQzx)))
shows Jz’. x = yQx’
using assms unfolding vars;-def using std-apart-apart’’ by (cases l) auto

lemma std-apart-apart: vars;s (stdy C1) N wvars;s (stda Ca) = {}
proof —
{
fix z
assume zin: © € vars;s (stdy C1) N wvars;s (stda Ca)
from xzin have = € vars;; (std; C1) by auto
then have 3z’ z="1" @ z’
using std-apart-apart’[of x - "'1'] unfolding vars;s-def by auto
moreover
from zin have z € vars;; (stdy C3) by auto
then have Jz’. z= "2/ Qz’
using std-apart-apart’[of z - ''2"] unfolding vars;s-def by auto
ultimately have Fulse by auto
then have z € {} by auto
}
then show ?thesis by auto
qed

lemma std-apart-instance-ofs1: instance-of ;s C1 (stdy C1)
proof —

have empty: (Az. Var (""1"Qz)) - (Az. Var (tl x)) = € using composition-def
by auto

have C; ;3 € = (1 using empty-subls by auto

then have C; -5 (Az. Var ("1"Qxz)) - (Az. Var (tl z))) = C; using empty by
auto

then have (Cy s (Az. Var ("1"Qx))) 15 (Az. Var (¢l)) = C; using compo-
sition-conseq2ls by auto

then have C = (stdy C1) -1s (Az. Var (8l z)) by auto

then show instance-of;s C1 (std; C1) unfolding instance-ofs-def by auto
qed

lemma std-apart-instance-of52: instance-of ;s C2 (stdy C2)
proof —

37

have empty: (Az. Var (""2"Qz)) - (Az. Var (tl x)) = € using composition-def
by auto

have C2 -4 ¢ = C2 using empty-subls by auto

then have C2 ., (Az. Var (""2"Qxz)) - (Az. Var (tl z))) = C2 using empty by
auto

then have (C2 -1, (A\z. Var (""2"'Qx))) 15 (Az. Var (¢l £)) = C2 using compo-
sition-conseq2ls by auto

then have C2 = (stdy C2) -5 (Az. Var (i z)) by auto

then show instance-of ;s C2 (stdy C2) unfolding instance-ofs-def by auto
qed

9 Unifiers

definition unifier;s :: substitution = fterm set = bool where
unifierys o ts +— (It .Vt ets. t v o =1

definition unifier;s :: substitution = fterm literal set = bool where
unifier;s o L +— 3.Vl e L. l-0=1)

lemma unif-sub:
assumes unif: unifier;s o L
assumes nonempty: L # {}
shows 1. subls L o = {subl | o}
proof —
from nonempty obtain [where [€ L by auto
from unif this have L -5 0 = {l -} o} unfolding unifier;s-def by auto
then show ?thesis by auto
qed

lemma unifiert-def2:

assumes L-elem: ts # {}

shows unifier;s o ts «— (1. (At. sub t o) ‘ts ={I})
proof

assume unif: unifier;s o ts

from L-elem obtain ¢ where ¢ € ts by auto

then have (\t. sub t o) ‘ts = {t -+ o} using unif unfolding unifier;s-def by
auto

then show 3. (At. sub t o) ‘ts = {l} by auto
next

assume 3. (At. sub t o) ‘ ts ={I}

then obtain [where (A\t. sub t o) ‘ts = {l} by auto

then have VI’ € ts. I’ -, 0 = | by auto

then show unifier;; o ts unfolding unifier;s-def by auto
qed

lemma unifier;s-def2:

assumes L-elem: L # {}
shows unifier;s o L +— (3. L <15 0 = {l})

38

proof
assume unif: unifier;s o L
from L-elem obtain [where | € L by auto
then have L -, 0 = {l -; o} using unif unfolding unifier;s-def by auto
then show 31. L 1, 0 = {l} by auto
next
assume 3[. L -5 0 ={l}
then obtain [where L - 0 = {l} by auto
then have VI’ € L. I’ -y 0 = | by auto
then show unifier;s o L unfolding unifier;s-def by auto
qed

lemma ground, s-unif-singleton:
assumes ground;s: ground;s L
assumes unif: unifier;s o' L
assumes empt: L # {}
shows 3. L = {l}
proof —
from unif empt have 31. L ;5 o’ = {l} using unif-sub by auto
then show “thesis using ground;s-subls ground;s by auto
qed

definition unifiablets :: fterm set = bool where
unifiablets fs <— (Jo. unifier;s o fs)

definition unifiablels :: fterm literal set = bool where
unifiablels L +— (Jo. unifier;s o L)

lemma unifier-comp|simp|: unifier;s o (LY) < unifier;s o L
proof
assume unifier;, o (L)
then obtain !’ where I"-p: V1€ L¢. |-y 0 = 1"
unfolding unifier;s-def by auto
obtain [’ where (I')¢ = "' using comp-ezi2[of "] by auto
from this I"-p have I'-p:V1 € L€. | -, o = (') by auto
haveVie L.l yo =1
proof
fix [
assume (€L
then have I° € L® by auto
then have (I°) -, 0 = (I')° using I’-p by auto
then have (I - 0)¢ = (I')° by (cases l) auto
then show [-; 0 = I’ using cancel-comp2 by blast
qed
then show unifier;s o L unfolding unifier;s-def by auto
next
assume unifier;s o L
then obtain [’ where !"-p: VI € L. | -; 0 = I’ unfolding unifier;s-def by auto
have V1€ L¢. [o = (I')°

39

proof
fix [
assume | € L¢
then have [° € L using cancel-compl by (metis image-iff)
then show [-, o = (I’)¢ using ’-p comp-sub cancel-compl by metis

qed

then show unifier;, o (L¢) unfolding unifier;s-def by auto
qed

lemma unifier-subl:
assumes unifier;s o L
assumes L' C L
shows unifier;s o L’
using assms unfolding unifier;s-def by auto

lemma unifier-sub2:

assumes asm: unifier;s o (Ly U Lg)

shows unifier;s o L1 N unifier;s o Lo
proof —

have L, C (L1 U Lg) A Ly C (L1 U LQ) by simp

from this asm show ?thesis using unifier-subl by auto
qed

9.1 Most General Unifiers

definition mgu;s :: substitution = fterm set = bool where
mgus 0 ts <— unifierys o ts A (Vu. unifierys u ts — (3. w = o - 7))

definition mgu,s :: substitution = fterm literal set = bool where
mgus 0 L «— unifier;s o L A (Y u. unifier;s w L — (3i. w =0 - 1))

10 Resolution

definition applicable :: fterm clause = fterm clause
= fterm literal set = fterm literal set
= substitution = bool where
applicable C1 Co Ly Ly 0 +—
Crz{NC# AL A AL A}

A vars;s C1 N wvars;s Co = {}

ANL CCy ALy CCy

A mgus o (Ly U Ly©)

definition mresolution :: fterm clause = fterm clause
= fterm literal set = fterm literal set
= substitution = fterm clause where
mresolution C1 Co Ly Lo 0 = ((C1 15 0)— (L1 15 0)) U ((Ca 15) — (Lo s
7))

definition resolution :: fterm clause = fterm clause

40

= fterm literal set = fterm literal set
= substitution = fterm clause where
resolution C1 Co Ly Lo 0 = ((C1 — L1) U (Cq — Lg)) 45 0

inductive mresolution-step :: fterm clause set = fterm clause set = bool where
mresolution-rule:
C, € Cs = (Cy € Us = applicable Cy Cq Ly Ly 0 =
mresolution-step Cs (Cs U {mresolution C1 Co Ly Ly o})
| standardize-apart:
C € Cs = var-renaming-of C C' = mresolution-step Cs (Cs U {C'})

inductive resolution-step :: fterm clause set = fterm clause set = bool where
resolution-rule:
Ci € Os = (Cy € Cs = applicable C1 Cy Ly Ly 0 =
resolution-step Cs (Cs U {resolution C; Cy Ly Ly o})
| standardize-apart:
C € Cs = var-renaming-of C C' = resolution-step Cs (Cs U {C'})

definition mresolution-deriv :: fterm clause set = fterm clause set = bool where
mresolution-deriv = rtranclp mresolution-step

definition resolution-deriv :: fterm clause set = fterm clause set = bool where
resolution-deriv = rtranclp resolution-step

11 Soundness

definition evalsub :: 'u var-denot = 'u fun-denot = substitution = 'u var-denot
where
evalsub E F 0 = evaly, E F o o

lemma substitutiont: evaly E F (t -+ o) = eval; (evalsub E F o) F't
apply (induction t)

unfolding evalsub-def apply auto

apply (metis (mono-tags, lifting) comp-apply map-cong)

done

lemma substitutionts: evalys E F (ts -+s 0) = evalys (evalsub E F o) F ts
using substitutiont by auto

lemma substitution: eval; EF G (I - 0) «— eval; (evalsub E F o) F G 1
apply (induction I)

using substitutionts apply (metis eval;.simps(1) subl.simps(1))

using substitutionts apply (metis eval;.simps(2) subl.simps(2))

done

lemma subst-sound:
assumes asm: eval, F G C
shows eval, F G (C 5 o)
unfolding eval.-def proof

41

fix £

from asm have VE'. 31 € C. eval; E' F G | using eval.-def by blast

then have 3] € C. eval; (evalsub E F o) F G | by auto

then show 31 € C 5 0. eval; E F G [using substitution by blast
qed

lemma simple-resolution-sound:
assumes Cisat: eval. FF G C4
assumes Casat: eval, F G Cy
assumes lyinci: 11 € Cq
assumes lyincy: Iy € Cq
assumes comp: 11°¢ = s
shows eval, FF G ((C1 — {l1}) U (C2 — {l2}))
proof —
have VE. 31 € (((C1 — {l1}) U (C2 — {l2}))). eval, EF G 1
proof
fix £
have eval; EF G 11 V eval; E F G ly using comp by (cases l1) auto
then show 31 € (((C1 — {l1}) U (Ca — {l2}))). eval; EF G 1
proof
assume cval; EF G |4
then have —eval; E F G Il using comp by (cases 1) auto
then have ly'e Cs. Iy) # s A evaly E F G Iy’ using lyincy Casat
unfolding eval.-def by auto
then show 31e(Cy1 — {l1}) U (C2 — {l2}). eval; E F G | by auto
next
assume ceval; E F G I
then have —eval; E F G l; using comp by (cases 1) auto
then have 3l,’'e Cy. I1/ # I3 A evalp E F G Iy’ using lyinc; Cisat
unfolding eval.-def by auto
then show 31e(Cy1 — {lh}) U (C2 — {l2}). eval; E F Gl by auto
ged
qed
then show ?thesis unfolding eval.-def by simp
qed

lemma mresolution-sound:
assumes saty: eval, FF G Cq
assumes sato: eval, F' G Cq
assumes appl: applicable C1 Cy Ly Lo o
shows eval, F G (mresolution Cy Cs Ly Ly o)
proof —
from sat; have satio: eval. F G (Cq -5 o) using subst-sound by blast
from saty have satqo: eval. F G (Co 5 o) using subst-sound by blast

from appl obtain I; where [1-p: [; € L; unfolding applicable-def by auto

from [-p appl have [; € C; unfolding applicable-def by auto
then have incio: Iy -y 0 € Cy .15 0 by auto

42

from [1-p have unified;: I, € (L; U (Lx©)) by auto

from l,-p appl have lyoislio: {1 1 0} = L1 s 0
unfolding mgu;s-def unifier;s-def applicable-def by auto

from appl obtain Iy where [y-p: ls € Ly unfolding applicable-def by auto

from ls-p appl have [, € Cs unfolding applicable-def by auto
then have incso: ls o 0 € Cy s 0 by auto

from l-p have unifieds: 1,° € (Ly U (L2©)) by auto

from unified; unifieds appl have Iy -; 0 = (12¢) -y o
unfolding mgu;s-def unifier;s-def applicable-def by auto
then have comp: (I - 0)¢ = ly - o using comp-sub comp-swap by auto

from appl have unifier;s o (Lo°)
using unifier-sub2 unfolding mgu,;s-def applicable-def by blast
then have unifier;s 0 Lo by auto
from this lo-p have lyoislao: {la -} 0} = Ly -5 o unfolding unifier;s-def by
auto

from satio sateo incio inceo comp have eval, FF G ((C1 5 0) — {l1 1 o} U
((Cq 15 o) — {la -1 0})) using simple-resolution-sound[of F G C1 s 0 Cq 15 ©
lipo 1y o]

by auto

from this lyoislio laoisloo show ?thesis unfolding mresolution-def by auto

qed

lemma resolution-superset: mresolution Cy Co L1 Lo o C resolution Cy Co Ly
L2 g
unfolding mresolution-def resolution-def by auto

lemma superset-sound:
assumes sup: C C C'
assumes sat: eval, F' G C
shows eval, FF G C’
proof —
have VE. 3l € C'. eval; EF G 1
proof
fix F
from sat have VE. 31 € C. eval; F F G | unfolding eval.-def by —
then have 31 € C . eval; E F G | by auto
then show 31 € C'. evaly E F G | using sup by auto
qed
then show eval, F G C' unfolding eval.-def by auto
qed

43

theorem resolution-sound:
assumes saty: eval, FF G Cq
assumes saty: eval, FF G Cy
assumes appl: applicable Cy Co Ly Lo o
shows eval, F G (resolution C1 Co Ly Lo o)
proof —
from saty sats appl have eval, F G (mresolution C; Co Ly Ly o) using mres-
olution-sound by blast
then show “thesis using superset-sound resolution-superset by metis
qed

lemma mstep-sound:

assumes mresolution-step Cs Cs’

assumes eval.s ' G Cs

shows eval.; F' G Cs’
using assms proof (induction rule: mresolution-step.induct)

case (mresolution-rule Cy Cs Cy 11 Iy o)

then have eval. F G Cy A eval, F G C5 unfolding eval.s-def by auto

then have eval. F G (mresolution C1 Cy 11 ls 0)

using mresolution-sound mresolution-rule by auto

then show ?case using mresolution-rule unfolding eval.,-def by auto
next

case (standardize-apart C Cs C)

then have eval. F' G C unfolding eval.s-def by auto

then have eval, F G C’ using subst-sound standardize-apart unfolding var-renaming-of-def
instance-of s-def by metis

then show ?case using standardize-apart unfolding eval.s-def by auto
qed

theorem step-sound:

assumes resolution-step Cs Cs’

assumes eval.; F' G Cs

shows ceval.; F G Cs’
using assms proof (induction rule: resolution-step.induct)

case (resolution-rule C1 Cs Cq 1y Iz 0)

then have eval. F G Cy A eval, F G Cs unfolding eval.s-def by auto

then have eval. F G (resolution Cy Cs 1y I3 o)

using resolution-sound resolution-rule by auto

then show ?case using resolution-rule unfolding eval.s-def by auto
next

case (standardize-apart C Cs C)

then have eval, F G C unfolding eval.s-def by auto

then have eval. F G C’ using subst-sound standardize-apart unfolding var-renaming-of-def
instance-ofs-def by metis

then show ?case using standardize-apart unfolding eval.s-def by auto
qed

lemma mderivation-sound:
assumes mresolution-deriv Cs Cs’

44

assumes eval.s F' G Cs
shows eval., FF G Cs’
using assms unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)
case rtrancl-refl then show ?case by auto
next
case (rtrancl-into-rtrancl Cs; Csy Cs3) then show ?case using mstep-sound by
auto
qed

theorem derivation-sound:

assumes resolution-deriv Cs Cs’

assumes cval.; F' G Cs

showseval.; F' G Cs’
using assms unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs; Cse Cs3) then show ?case using step-sound by
auto
qed

theorem derivation-sound-refute:
assumes deriv: resolution-deriv Cs Cs' A {} € Cs’
shows —eval.s F G Cs
proof —
from deriv have eval.s F G Cs — eval.; F G Cs’ using derivation-sound by
auto
moreover
from deriv have eval.s F G Cs' — eval. F G {} unfolding eval.;-def by auto
moreover
then have eval. F G {} — Fulse unfolding eval.-def by auto
ultimately show ?thesis by auto
qed

12 Herbrand Interpretations

HFun is the Herbrand function denotation in which terms are mapped to
themselves.

term HFun
lemma eval-groundy:
assumes ground; t

shows (eval; E HFun t) = hterm-of-fterm t
using assms by (induction t) auto

lemma eval-grounds:

45

assumes ground;s ts
shows (eval;s E HFun ts) = hterms-of-fterms ts
unfolding hterms-of-fterms-def using assms eval-ground; by (induction ts) auto

lemma eval;-grounds:

assumes asm: groundys ts

shows eval; E HFun G (Pos P ts) «— G P (hterms-of-fterms ts)
proof —

have eval; E HFun G (Pos P ts) = G P (eval;s E HFun ts) by auto

also have ... = G P (hterms-of-fterms ts) using asm eval-ground;s by simp
finally show ?thesis by auto
qed

13 Partial Interpretations
type-synonym partial-pred-denot = bool list

definition falsifies; :: partial-pred-denot = fterm literal = bool where
falsifies; G 1 +—
ground; 1
A (let i = nat-of-fatom (get-atom 1) in
i < length G AN G i= (—signl)

)

A ground clause is falsified if it is actually ground and all its literals are
falsified.
abbreviation falsifies, :: partial-pred-denot = fterm clause = bool where

falsifies;, G C = ground;s C N (V1 € C. falsifies; G 1)

abbreviation falsifies. :: partial-pred-denot = fterm clause = bool where
falsifies, G C = (3 C". instance-of;s C' C A falsifies, G C”)

abbreviation falsifies.s :: partial-pred-denot = fterm clause set = bool where
falsifies.s G Cs = (3 C € Cs. falsifies. G C)

abbreviation extend :: (nat = partial-pred-denot) = hterm pred-denot where
extend f P ts = (

let n = nat-of-hatom (P, ts) in
f (Sucn)!n

fun sub-of-denot :: hterm var-denot = substitution where
sub-of-denot E = fterm-of-hterm o E

lemma ground-sub-of-denott: ground; (t -+ (sub-of-denot E))
by (induction t) (auto simp add: ground-fterm-of-hterm)

lemma ground-sub-of-denotts: ground;s (ts -+s sub-of-denot E)

46

using ground-sub-of-denott by simp

lemma ground-sub-of-denotl: ground; (I -; sub-of-denot E)
proof —
have ground,;s (subs (get-terms l) (sub-of-denot E))
using ground-sub-of-denotts by auto
then show %thesis by (cases [) auto
qed

lemma sub-of-denot-equivz: eval, E HFun (sub-of-denot E x) = E x
proof —
have ground; (sub-of-denot E x) using ground-fterm-of-hterm by simp
then
have eval; E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)
using eval-ground;(1) by auto

also have ... = hterm-of-fterm (fterm-of-hterm (E z)) by auto
also have ... = F z by auto
finally show ?thesis by auto

qed

lemma sub-of-denot-equivt:
eval; E HFun (t -y (sub-of-denot E)) = eval; E HFun t
using sub-of-denot-equive by (induction t) auto

lemma sub-of-denot-equivts: evalys E HFun (ts -+s (sub-of-denot E)) = evalys E
HFun ts
using sub-of-denot-equivt by simp

lemma sub-of-denot-equivl: eval; E HFun G (I -} sub-of-denot E) <— eval, E
HFun G
proof (induction l)

case (Pos p ts)

have eval; E HFun G ((Pos p ts) -; sub-of-denot E) <— G p (evalys E HFun (s
ts (sub-of-denot E))) by auto

also have ... +— G p (eval;s E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... +— eval; E HFun G (Pos p ts) by simp

finally

show ?case by blast
next

case (Neg p ts)

have eval; E HFun G ((Neg p ts) -} sub-of-denot E) <— —G p (evalys E HFun
(ts -ts (sub-of-denot E))) by auto

also have ... «— =G p (evalys E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... = eval; E HFun G (Neg p ts) by simp

finally

show ?case by blast

47

qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.

lemma sub-of-denot-equiv-ground’:

evaly E HFun G 1 = eval; E HFun G (I - sub-of-denot E) A ground; (I 4
sub-of-denot F)

using sub-of-denot-equivl ground-sub-of-denotl by auto

Under an Herbrand interpretation, an environment is similar to a substitu-
tion - also for partial interpretations.

lemma partial-equiv-subst:
assumes falsifies. G (C 15 T)
shows falsifies. G C
proof —
from assms obtain C' where C'-p: instance-of;s C' (C .15 T) A falsifies, G C’
by auto
then have instance-of;s (C <15 7) C unfolding instance-ofs-def by auto
then have instance-of;s C' C using C’-p instance-of s-trans by auto
then show ?thesis using C’-p by auto
qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.

lemma sub-of-denot-equiv-ground:
(3l e C. evaly E HFun G 1) <— (31 € C -5 sub-of-denot E. eval; E HFun G
1)
A ground;s (C -5 sub-of-denot E)
using sub-of-denot-equiv-ground’ by auto

lemma std;-falsifies: falsifies. G C1 «— falsifies. G (stdy C1)
proof

assume asm: falsifies. G C4

then obtain Cg where instance-of;; Cg C1 A falsifies, G Cg by auto
moreover

then have instance-of s Cg (std; C1) using std-apart-instance-of s 1 instance-of |s-trans
by blast

ultimately

show falsifies. G (stdy C1) by auto
next

assume asm: falsifies. G (stdqy C1)

then have inst: instance-of s (std; C1) C1 unfolding instance-ofs-def by auto

from asm obtain Cg where instance-of;s Cg (std1 C1) A falsifies, G Cg by
auto

moreover

then have instance-of;s Cg C1 using inst instance-of s-trans by blast

ultimately

48

show falsifies. G C1 by auto
qed

lemma stds-falsifies: falsifies. G Co «— falsifies. G (stda C2)
proof

assume asm: falsifies. G Co

then obtain Cg where instance-of;s Cg Co A falsifies, G Cg by auto
moreover

then have instance-of ;s Cyg (stda Cs) using std-apart-instance-of s 2 instance-of s -trans
by blast

ultimately

show falsifies. G (stdy C3) by auto
next

assume asm: falsifies. G (stdy C3)

then have inst: instance-of s (stda C3) Co unfolding instance-ofs-def by auto

from asm obtain Cg where instance-of;s Cg (stda C3) A falsifies, G Cg by
auto
moreover
then have instance-of ;s Cg Csy using inst instance-ofs-trans by blast
ultimately
show falsifies. G Cs by auto
qed

lemma std;-renames: var-renaming-of Cy (std; C1)

proof —
have instance-of;s Cy (stdy C1) using std-apart-instance-of;s1 by auto
moreover have instance-of s (stdy C1) C1 unfolding instance-ofs-def by auto
ultimately show var-renaming-of Cy (stdy C1) unfolding var-renaming-of-def

by auto

qed

lemma stds-renames: var-renaming-of Co (stdy Cs)

proof —
have instance-of ;s Ca (stda C2) using std-apart-instance-of;s2 by auto
moreover have instance-of s (stda C3) Co unfolding instance-of;s-def by auto
ultimately show var-renaming-of Ca (stde Cs) unfolding var-renaming-of-def

by auto

qed

14 Semantic Trees
abbreviation closed-branch :: partial-pred-denot = tree = fterm clause set =

bool where
closed-branch G T Cs = branch G T A falsifies.s G Cs

abbreviation(input) open-branch :: partial-pred-denot = tree = fterm clause set
= bool where
open-branch G T Cs = branch G T A —falsifiescs G Cs

49

definition closed-tree :: tree = fterm clause set = bool where
closed-tree T Cs <— anybranch T (Ab. closed-branch b T Cs)
A anyinternal T (Ap. —falsifiescs p Cs)

15 Herbrand’s Theorem

lemma mazimum:

assumes asm: finite C

shows dn s nat. Vie C. fl<n
proof

from asm show VieC. f1 < (Maz (f ¢ C)) by auto
qed

lemma extend-preserves-model:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes C-ground: ground;s C
assumes C-sat: —falsifies. (f (Suc n)) C
assumes n-maz: V1€ C. nat-of-fatom (get-atom 1) < n
shows eval, HFun (extend f) C
proof —
let ?F = HFun
let ?G = extend f
{
fix £
from C-sat have V C’. (—instance-of;s C' C V —falsifies; (f (Suc n)) C’) by
auto
then have —falsifies, (f (Suc n)) C using instance-of-self by auto
then obtain | where [-p: [eC A —falsifies; (f (Suc n)) | using C-ground by
blast
let 2 = nat-of-fatom (get-atom 1)

from [-p have i-n: 2/ < n using n-maz by auto
then have j-n: % < length (f (Suc n)) using f-infpath infpath-length|of f] by
auto

have eval; E HFun (extend f) 1
proof (cases 1)
case (Pos P ts)
from Pos l-p C-ground have ts-ground: ground;s ts by auto

have —falsifies; (f (Suc n)) [using I-p by auto
then have f (Suc n) ! % = True
using j-n Pos ts-ground empty-subts|of ts] unfolding falsifies;-def by auto
moreover have f (Suc %) ! % = f (Sucn) ! %
using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp
ultimately
have f (Suc %i) ! ?i = True using Pos by auto
then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-of-fatom-def)

50

then show ?thesis using eval;-groundss[of ts - ?G P] ts-ground Pos by
auto
next
case (Neg P ts)
from Neg I-p C-ground have ts-ground: ground:s ts by auto

have —falsifies; (f (Suc n)) | using l-p by auto
then have f (Suc n) ! %0 = False
using j-n Neg ts-ground empty-subts[of ts] unfolding falsifies;-def by auto
moreover have f (Suc %) ! 2i = f (Sucn) ! 2
using f-infpath i-n j-n infpath-lengthlof f] ith-in-extension[of f] by simp
ultimately
have f (Suc %) ! ?{ = Fulse using Neg by auto
then have = ?G P (hterms-of-fterms ts) using Neg by (simp add: nat-of-fatom-def)

then show ?thesis using Neg eval;-ground;s[of ts - ¢G P] ts-ground by
auto
qed
then have 31 € C. eval; E HFun (extend f) | using I-p by auto

}

then have eval. HFun (extend f) C unfolding eval.-def by auto

then show ?thesis using instance-of,s-self by auto
qed

lemma extend-preserves-model2:

assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)

assumes C-ground: ground;s C

assumes fin-c: finite C

assumes model-C: ¥V n. —falsifies. (fn) C

shows C-false: eval, HFun (extend f) C
proof —

— Since C is finite, C has a largest index of a literal.

obtain n where largest: VI € C. nat-of-fatom (get-atom 1) < n using fin-c
mazimum[of C Al. nat-of-fatom (get-atom l)] by blast

moreover

then have —falsifies. (f (Suc n)) C using model-C by auto

ultimately show ?thesis using model-C f-infpath C-ground extend-preserves-model[of
f Cn] by blast
qed

lemma extend-infpath:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes model-c: ¥ n. —falsifies. (f n) C
assumes fin-c: finite C
shows eval, HFun (exstend f) C
unfolding eval.-def proof
fix £
let ?G = extend f

o1

let %0 = sub-of-denot E

from fin-c have fin-co: finite (C' -5 sub-of-denot E) by auto
have groundco: ground;s (C -5 sub-of-denot E) using sub-of-denot-equiv-ground
by auto

— Here starts the proof

— We go from syntactic FO world to syntactic ground world:

from model-c have V n. —falsifies. (fn) (C -5 ?0) using partial-equiv-subst by
blast

— Then from syntactic ground world to semantic ground world:

then have eval, HFun ?G (C -5 ?0) using groundco f-infpath fin-co ex-
tend-preserves-model2[of f C ;s %0] by blast

— Then from semantic ground world to semantic FO world:

then have VE. 31 € (C -5 %0). eval; E HFun ?G | unfolding eval.-def by
auto

then have 31 € (C s %0). eval; E HFun ?G | by auto

then show 3! € C. eval; E HFun ?G | using sub-of-denot-equiv-ground[of C' E
extend f] by blast
qed

If we have a infpath of partial models, then we have a model.

lemma infpath-model:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes model-cs: ¥ n. —falsifies.s (f n) Cs
assumes fin-cs: finite Cs
assumes fin-c: YV C € Cs. finite C
shows eval.s HFun (extend f) Cs
proof —
let ?F = HFun

have V C € Cs. eval, ?F (exstend f) C
proof (rule balll)
fix C
assume asm: C € Cs
then have V n. —falsifies. (f n) C using model-cs by auto
then show eval. ?F (extend f) C using fin-c asm f-infpath extend-infpath|of
f C] by auto
qged
then show eval.s ?F (extend f) Cs unfolding eval.s-def by auto
qed

fun deeptree :: nat = tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)

lemma branch-length:

assumes branch b (deeptree n)
shows length b = n

52

using assms proof (induction n arbitrary: b)
case 0 then show ?case using branch-inv-Leaf by auto
next
case (Suc n)
then have branch b (Branching (deeptree n) (deeptree n)) by auto
then obtain a b’ where p: b = a#b'A branch b’ (deeptree n) using branch-inv-Branching|of
b] by blast
then have length b’ = n using Suc by auto
then show “case using p by auto
qed

lemma infinity:
assumes inj: Vn :: nat. undiago (diago n) = n
assumes all-tree: Vn :: nat. (diago n) € tree
shows —finite tree
proof —
from inj all-tree have ¥ n. n = undiago (diago n) A (diago n) € tree by auto
then have Vn. 3ds. n = undiago ds N ds € tree by auto
then have undiago ‘ tree = (UNIV :: nat set) by auto
then have —finite treeby (metis finite-imagel infinite- UNIV-nat)
then show ?thesis by auto
qed

lemma longer-falsifies;:
assumes falsifies; ds |
shows falsifies; (dsQd) [
proof —
let % = nat-of-fatom (get-atom 1)
from assms have i-p: ground; | A ?i < length ds A ds ! ?i = (—sign [) unfolding
falsifies;-def by meson
moreover
from i-p have % < length (dsQd) by auto
moreover
from i-p have (dsQd) ! ?i = (—sign) by (simp add: nth-append)
ultimately
show ?thesis unfolding falsifies;-def by simp
qed

lemma longer-falsifies,:
assumes falsifies; ds C
shows falsifies, (ds @ d) C
proof —
{
fix [
assume [€(C
then have falsifies; (ds @ d) [using assms longer-falsifies; by auto
} then show ?thesis using assms by auto
qed

93

lemma longer-falsifies.:
assumes falsifies. ds C
shows falsifies. (ds Q@ d) C

proof —
from assms obtain C’ where instance-of;s C' C A falsifies, ds C' by auto
moreover
then have falsifies; (ds @ d) C' using longer-falsifiesy, by auto
ultimately show #?thesis by auto

qed

We use this so that we can apply Konig’s lemma.

lemma longer-falsifies:
assumes falsifies.s ds Cs
shows falsifies.s (ds @ d) Cs
proof —
from assms obtain C' where C € Cs A falsifies. ds C by auto
moreover
then have falsifies. (ds @ d) C using longer-falsifies.[of C ds d] by blast
ultimately
show ?thesis by auto
qed

If all finite semantic trees have an open branch, then the set of clauses has
a model.

theorem herbrand’:
assumes openb: VT. 3 G. open-branch G T Cs
assumes finite-cs: finite Cs ¥V C€Cs. finite C
shows 3 G. eval.;s HFun G Cs
proof —
— Show T infinite:
let ?tree = {G. —falsifies.s G Cs}
let ?undiag = length
let ?diag = (Al. SOME b. open-branch b (deeptree l) Cs) :: nat = partial-pred-denot

from opend have diag-open: V1. open-branch (?diag 1) (deeptree 1) Cs
using somel-ex[of Ab. open-branch b (deeptree -) Cs] by auto

then have Vn. %undiag (?diag n) = n using branch-length by auto

moreover

have Vn. (?diag n) € ?tree using diag-open by auto

ultimately

have —finite ?tree using infinity[of - An. SOME b. open-branch b (- n) Cs] by

stmp

— Get infinite path:

moreover

have V ds d. —falsifies.s (ds @ d) Cs — —falsifies.s ds Cs
using longer-falsifies|of Cs] by blast

then have (Vds d. ds Q@ d € ?tree — ds € ?tree) by auto

ultimately

have 3 c. wf-infpath ¢ A (Vn. ¢ n € ?tree) using konig|of ?tree] by blast

54

then have 3 G. wf-infpath G A (¥ n. = falsifies.s (G n) Cs) by auto

— Apply above infpath lemma:

then show 3 G. eval.s HFun G Cs using infpath-model finite-cs by auto
qed

lemma shorter-falsifies;:

assumes falsifies; (dsQd) [

assumes nat-of-fatom (get-atom 1) < length ds

shows falsifies; ds |
proof —

let % = nat-of-fatom (get-atom)

from assms have i-p: ground; | A ?i < length (dsQd) A (dsQd) ! ?i = (—sign
l) unfolding falsifies;-def by meson

moreover

then have ?i < length ds using assms by auto

moreover

then have ds ! % = (—sign [) using i-p nth-append[of ds d ?i] by auto

ultimately show ?thesis using assms unfolding falsifies;-def by simp
qed

theorem herbrand’-contra:
assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: V G. —eval.s HFun G Cs
shows 3 T. V G. branch G T — closed-branch G T Cs
proof —
from finite-cs unsat have (V T. 3 G. open-branch G T Cs) — (3 G. eval.s HFun
G Cs) using herbrand’ by blast
then show ?thesis using unsat by blast
qed

theorem herbrand:

assumes unsat: V G. —eval.s HFun G Cs

assumes finite-cs: finite Cs ¥V C€Cs. finite C

shows 3 T. closed-tree T Cs
proof —

from unsat finite-cs obtain T where anybranch T (\b. closed-branch b T Cs)
using herbrand’-contra[of Cs] by blast

then have 3 T. anybranch T (Ap. falsifiescs p Cs) A anyinternal T (Ap. —
falsifies.s p Cs)

using cutoff-branch-internal[of T Ap. falsifies.s p Cs| by blast

then show ?thesis unfolding closed-tree-def by auto

qed

end

16 Lifting Lemma

theory Completeness imports Resolution begin

95

locale unification =
assumes unification: \o L. finite L = unifier;s 0 L = 39. mgus ¥ L
begin

A proof of this assumption is available in Unification_Theorem.thy and
used in Completeness_Instance.thy.

lemma lifting:

assumes fin: finite C1 A finite Cy

assumes apart: vars;s C1 N vars;s Ca = {}

assumes inst: instance-of ;s C1’ C1 N instance-of ;s Co’' Co

assumes appl: applicable C1' Co’ L' Ly’ o

shows 3 L; Ly 7. applicable C1 Cy Ly Ly T A

instance-of s (resolution C1' Cy’ L1’ Lo’ o) (resolution Cy Co Ly Loy

-

)

proof —
— Obtaining the subsets we resolve upon:
let ?Rll = 01/ - Lll and ?RQ’ = 02/ - LQ/

from inst obtain v y where Cy s v = C1' A Cq s u = Co’
unfolding instance-ofs-def by auto

then obtain where n-p: C1 s n = C1' AN Cqy s = Cs'
using apart merge-sub by force

from 7-p obtain L; where Li-p: L1 C C1 ALy s =L1"AN(C1 — L) 45 n
= 7Ry’
using appl project-sub using applicable-def by metis
let ?Rl = 01 — Ll
from 7-p obtain Ly where Ly-p: Ly C Co A Lo 15 = Lo’ A (Co — La) 15 7
= 7Ry’
using appl project-sub using applicable-def by metis
let ?RQ = CQ — L2

— Obtaining substitutions:
from appl have mgu;s o (L’ U Ly'®) using applicable-def by auto
then have mgu;, 0 ((Ly 15 n) U (Ly 15 7)¢) using Li-p La-p by auto
then have mgu;, o (L1 U Lx%) 15 n) using compls-subls subls-union by auto
then have unifier;; o ((Ly U L) -5 1) using mgu;s-def by auto
then have nouni: unifier;s (n - o) (L1 U Ly%)
using unifier;s-def composition-conseq2l by auto
then obtain 7 where 7-p: mgu;s 7 (L; U Ly©)
using unification fin L1-p La-p by (meson finite-Unl finite-imagel rev-finite-subset)
then obtain ¢ where p-p: 7 - ¢ = 1 - ¢ using nouni mgu;s-def by auto

— Showing that we have the desired resolvent:
let 2C = ((Cl - Ll) @] (02 - LQ)) ‘s T
have 7C ;s o = (R1 U 2Ry) s (T -)
using subls-union composition-conseq2ls by auto
also have ... = (?Ry U ?Ry) -5 (n - o) using ¢-p by auto
also have ... = ((?Ry1 ;s) U (Ra 15 M) “i1s ©

o6

using subls-union composition-conseq2ls by auto
also have ... = (Ry' U ?Ry’) <15 o using n-p L1-p La-p by auto
finally have ?C s o = ((C1' — L) U (Co’ — Ly’)) 15 o by auto
then have ins: instance-of ;s (resolution C1' Cy’ L' Ly’ o) (resolution C1 Cs
L1 L2 T)
using resolution-def instance-of s-def by metis

— Showing that the resolution rule is applicable:
have C1" A {} A Co/ A {3 NL £ {} AN L' # {}
using appl applicable-def by auto
then have C1 # {} A Ca # {} A L1 # {} A Ly # {} using n-p L1-p La-p by
auto
then have appli: applicable C1 Coy Ly Lo T
using apart Li-p Lo-p 7-p applicable-def by auto

from ins appli show ?thesis by auto
qed
17 Completeness

lemma falsifies,-empty:
assumes falsifiesy [| C

shows C = {}
proof —
have V[€ C. False
proof
fix [

assume [€C
then have falsifies; [| | using assms by auto
then show Fulse unfolding falsifies;-def by (cases) auto
qed
then show ?thesis by auto
qed

lemma falsifies.s-empty:
assumes falsifies. || C
shows C = {}
proof —
from assms obtain C’ where C’-p: instance-of;s C' C A falsifiesy [| C' by
auto
then have C'= {} using falsifies,-empty by auto
then show C' = {} using C’-p unfolding instance-ofs-def by auto
qed

lemma complements-do-not-falsify':
assumes [1C1" 1, € Cy’
assumes [, C1" Iy € Cy'
assumes comp: | = [x°
assumes falsif: falsifies, G Cq’

o7

shows Fulse
proof (cases ly)
case (Pos p ts)
let 2i1 = nat-of-fatom (p, ts)

from assms have gr: ground; I, unfolding falsifies;-def by auto
then have Neg: I = Neg p ts using comp Pos by (cases l3) auto

from falsif have falsifies; G l; using [1C1’ by auto
then have G! %i1 = False using [1C1’ Pos unfolding falsifies;-def by (induction
Pos p ts) auto
moreover
let %i2 = nat-of-fatom (get-atom l3)
from falsif have falsifies; G Iy using loC1’ by auto
then have G ! %2 = (—sign l2) unfolding falsifies;-def by meson
then have G ! %i1 = (—sign l3) using Pos Neg comp by simp
then have G ! %1 = True using Neg by auto
ultimately show ?thesis by auto
next
case (Neg p ts)
let 2i1 = nat-of-fatom (p,ts)

from assms have gr: ground; |1 unfolding falsifies;-def by auto
then have Pos: Iy = Pos p ts using comp Neg by (cases ls) auto

from falsif have falsifies; G |1 using [1C1’ by auto
then have G ! 2i1 = True using 11C1' Neg unfolding falsifies;-def by (metis
get-atom.simps(2) literal.disc(2))
moreover
let 7i2 = nat-of-fatom (get-atom ls)
from falsif have falsifies; G ly using I3 C1’ by auto
then have G ! 2i2 = (—sign l3) unfolding falsifies;-def by meson
then have G ! %i1 = (—sign l3) using Pos Neg comp by simp
then have G ! i1 = False using Pos using literal.disc(1) by blast
ultimately show #¢thesis by auto
qed

lemma complements-do-not-falsify:
assumes [1C1" ;1 € C¢’/
assumes [, C1" I € Cy'
assumes fals: falsifies; G Cy’
shows [y # [5°
using assms complements-do-not-falsify’ by blast

lemma other-falsified:
assumes C1'-p: ground;s C1' A falsifiesy (BQ[d]) Cy'
assumes [-p: | € Cy’ nat-of-fatom (get-atom 1) = length B
assumes other: lo € C1' lo # 1
shows falsifies; B lo

o8

proof —

let % = nat-of-fatom (get-atom lo)

have ground-ly: ground; | using I-p C1’-p by auto

— They are, of course, also ground:

have ground-lo: ground; lo using C1'-p other by auto

from C1'-p have falsifies, (BQ[d]) (C1' — {l}) by auto

— And indeed, falsified by B @ [d]:

then have loBs: falsifies; (BQ[d]) lo using other by auto

then have ?i < length (B @ [d]) unfolding falsifies;-def by meson

— And they have numbers in the range of B @ [d], i.e. less than length B + 1:

then have nat-of-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom
by (cases lo) auto

moreover

have [-lo: [#lo using other by auto

— The are not the complement of I, since then the clause could not be falsified:

have lc-lo: lo # 1° using C1’-p I-p other complements-do-not-falsifylof lo C1' 1
(BQ[d])] by auto

from I-lo lc-lo have get-atom | # get-atom lo using sign-comp-atom by metis

then have nat-of-fatom (get-atom lo) # nat-of-fatom (get-atom)

using nat-of-fatom-bij ground-lo ground-ly ground;-ground-fatom
unfolding bij-betw-def inj-on-def by metis

— Therefore they have different numbers:

then have nat-of-fatom (get-atom lo) # length B using l-p by auto

ultimately

— So their numbers are in the range of B:

have nat-of-fatom (get-atom lo) < length B by auto

— So we did not need the last index of B @ [d] to falsify them, i.e. B suffices:

then show falsifies; B lo using loBs shorter-falsifies; by blast
qed

theorem completeness’:
assumes closed-tree T Cs
assumes YV CeCs. finite C
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of tree-
size])
fix T :: tree
fix Cs :: fterm clause set
assume h: AT’ Cs. treesize T' < treesize T = closed-tree T' Cs =
vV CeCs. finite C = 3 Cs'. resolution-deriv Cs Cs' A {} €
Cs’
assume clo: closed-tree T Cs
assume finite-Cs: ¥V CeCs. finite C
{ — Base case:
assume treesize T = 0
then have T=Leaf using treesize-Leaf by auto
then have closed-branch [| Leaf Cs using branch-inv-Leaf clo unfolding
closed-tree-def by auto
then have falsifies.s [] Cs by auto

99

then have {} € Cs using falsifies.s-empty by auto
then have 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
unfolding resolution-deriv-def by auto
}

moreover
{ — Induction case:
assume treesize T' > 0
then have 3! r. T=Branching | r by (cases T) auto

— Finding sibling branches and their corresponding clauses:
then obtain B where b-p: internal B T A branch (BQ[True]) T A branch
(BQ[False]) T
using internal-branch|of - || - T| Branching-Leaf-Leaf-Tree by fastforce
let By = BQ[True]
let By = BQ[Fulse]

obtain Cj0 where Cio0-p: Cio € Cs A falsifies. ?B1 Cyi0 using b-p clo
unfolding closed-tree-def by metis

obtain Cy0 where Cyo0-p: Co0 € Cs A falsifies. 7By Co0 using b-p clo
unfolding closed-tree-def by metis

— Standardizing the clauses apart:

let ?Cl = Stdl 010

let ?CQ = Stdg 020

have Ci-p: falsifies. ?B1 ?C using std;-falsifies C'10-p by auto
have Cs-p: falsifies. ?Bs 7C5y using stds-falsifies Cy0-p by auto

have fin: finite ?Cy N finite 2Cy using C;0-p Cq0-p finite-Cs by auto

— We go down to the ground world.
— Finding the falsifying ground instance C’ of std; C1o, and proving properties
about it:

— (' is falsified by B @ [True):
from C1-p obtain C,’ where C.’-p: ground;; C1’' A instance-of;s C1’ ?C1
A falsifies; ?B1 C1' by metis

have —falsifies. B C'10 using C10-p b-p clo unfolding closed-tree-def by metis
then have —falsifies. B ¢C1 using std;-falsifies using prod.ezhaust-sel by
blast

— (' is not falsified by B:

then have [-B: —falsifies, B C1’ using C,’-p by auto

— (' contains a literal [y that is falsified by B @ [True], but not B:

from C4’-p I-B obtain [; where ly-p: I; € Cy' A falsifies; (BQ[Truel]) I3 A
—(falsifies; B l1) by auto

let ?i = nat-of-fatom (get-atom Iy)

— [is of course ground:

60

have ground-ly: ground; I, using C1’-p l1-p by auto

from [1-p have —(% < length B AN B! % = (—sign l1)) using ground-l
unfolding falsifies;-def by meson
then have (% < length B A (BQ[True]) ! 2 = (—sign l1)) by (metis
nth-append) — Not falsified by B.
moreover
from I1-p have ?i < length (B Q [True]) A (B @ [True]) ! %i = (—sign 1)
unfolding falsifies;-def by meson
ultimately
have [;-sign-no: ?i = length B A (B Q [True]) | %i = (—sign l1) by auto

— [y is negative:
from [;-sign-no have [-sign: sign l; = False by auto
from [y -sign-no have ly-no: nat-of-fatom (get-atom 1) = length B by auto

— All the other literals in €'y’ must be falsified by B, since they are falsified by
B @ [True], but not [;.
from C.’-p li-no li-p have B-C,'ly: falsifies; B (C1' — {l1})
using other-falsified by blast

— We do the same exercise for stdy Cq0, Co’, B @ [False], ly:
from C5-p obtain C5’ where Cy’-p: ground;s Cs’ A instance-of ;s Co’ 2Co N
falsifiesy ?By Cy' by metis

have —falsifies. B Cy0 using Cso-p b-p clo unfolding closed-tree-def by metis
then have —falsifies. B ?Cs using stds-falsifies using prod.ezhaust-sel by
blast
then have [-B: —falsifies, B Cy’ using Cy’-p by auto

— C'9' contains a literal [y that is falsified by B @ [False], but not B:

from Cs’-p [-B obtain l; where lo-p: Iy € Co’ A falsifies; (BQ[False]) 1o A
—falsifies; B Iy by auto

let ?i = nat-of-fatom (get-atom ls)

have ground-lo: ground; Iy using Cy'-p l3-p by auto

from ly-p have —(% < length B AN B! 2 = (—sign l3)) using ground-ls
unfolding falsifies;-def by meson
then have —(? < length B A (BQ[False]) | % = (—sign l2)) by (metis
nth-append) — Not falsified by B.
moreover
from [ly-p have ?i < length (B Q [False]) A (B Q [False]) | 2i = (—sign l3)
unfolding falsifies;-def by meson
ultimately
have ly-sign-no: ?i = length B A (B Q [False]) | 2 = (—sign ls) by auto

— 5 is negative:
from Ily-sign-no have ly-sign: sign lo = True by auto

61

from [y-sign-no have ls-no: nat-of-fatom (get-atom ly) = length B by auto

— All the other literals in C5’ must be falsified by B, since they are falsified by
B @ [False], but not 5.

from Cs'-p ly-no la-p have B-Cy'ly: falsifiesy, B (Co' — {l2})
using other-falsified by blast

— Proving some properties about C;’and Cs’, I; and [z, as well as the resolvent
of C1'and Cy"

have lgcisllz lgc = ll
proof —
from [y-no lo-no ground-l; ground-ls have get-atom [y = get-atom [y
using nat-of-fatom-bij ground;-ground-fatom
unfolding bij-betw-def inj-on-def by metis

then show /3¢ = [; using [;-sign l3-sign using sign-comp-atom by metis
qed

have applicable Cy’ Cy' {l1} {ls} Resolution.c unfolding applicable-def

using l1-p la-p C1'-p ground;s-vars;s lacisly empty-comp2 unfolding mgu; s-def
unifier;s-def by auto

— Lifting to get a resolvent of std; C10 and stdy Cso:

then obtain L L, ™ where LiLo7-p: applicable ?C1 ?Cy L1 Ly T A in-
stance-of 15 (resolution C1' Co' {11} {la} Resolution.e) (resolution ¢Cy ?Co L1 Lo
.

)

using std-apart-apart C1’-p Cy'-p lifting[of 7C1 ?Cy C1' Co' {li} {l2}
Resolution.c| fin by auto

— Defining the clause to be derived, the new clausal form and the new tree:
— We name the resolvent C.

obtain C where C-p: C = resolution 7Cy ?Cy Ly Ly T by auto
obtain CsNexzt where CsNext-p: CsNext = Cs U {?2Cy, ?Cy, C} by auto
obtain T where T'-p: T = delete B T by auto

— Here we delete the two branch children B @ [True] and B @ [False] of B.

— Our new clause is falsified by the branch B of our new tree:
have falsiﬁesg B ((01/ — {ll}) U (02/ — {lg})) using B-Cl /ll B-Cgllg by

cases auto

then have falsifies, B (resolution C1' Co' {li} {lo} Resolution.c) unfolding
resolution-def empty-subls by auto

then have falsifies-C': falsifies. B C using C-p Ly Lo7-p by auto

have T'’-smaller: treesize T'' < treesize T using treezise-delete T''-p b-p by
auto

have T'-bran: anybranch T'' (\b. closed-branch b T" CsNeat)
proof (rule alll; rule impl)
fix b

assume br: branch b T
from br have b = B V branch b T using branch-delete T"'-p by auto

62

then show closed-branch b T'' CsNext
proof
assume b=D
then show closed-branch b T’ CsNext using falsifies-C br CsNext-p by
auto
next
assume branch b T
then show closed-branch b T'' CsNexzt using clo br T''-p CsNext-p
unfolding closed-tree-def by auto
qged
qed
then have T'-bran2: anybranch T' (Ab. falsifies.s b CsNext) by auto

— We cut the tree even smaller to ensure only the branches are falsified, i.e. it
is a closed tree:

obtain T/ where T'-p: T' = cutoff (AG. falsifies.s G CsNext) [| T"' by auto

have T'-smaller: treesize T' < treesize T using treesize-cutoff[of A\G. falsifies.s
G CsNext [| T") T"-smaller unfolding T’'-p by auto

from T'-bran2 have anybranch T’ (\b. falsifies.s b CsNext) using cut-
off-branchlof T Ab. falsifiescs b CsNext] T'-p by auto
then have T'-bran: anybranch T' (A\b. closed-branch b T' CsNext) by auto
have T’-intr: anyinternal T' (Ap. —falsifiescs p CsNext) using T'-p cut-
off-internal[of T' \b. falsifies.s b CsNexzt] T"-bran2 by blast
have T'-closed: closed-tree T' CsNext using T'-bran T'-intr unfolding closed-tree-def
by auto
have finite-CsNext: ¥V CeCsNext. finite C' unfolding CsNezt-p C-p resolu-
tion-def using finite-Cs fin by auto

— By induction hypothesis we get a resolution derivation of {} from our new
clausal form:
from T'-smaller T’'-closed have 3 Cs''. resolution-deriv CsNext Cs"" N {} €
Cs’ using ih[of T' CsNext] finite-CsNext by blast
then obtain Cs’’ where Cs’’-p: resolution-deriv CsNext Cs"' AN {} € Cs” by
auto
moreover
{ — Proving that we can actually derive the new clausal form:
have resolution-step Cs (Cs U {?C1}) using stdi-renames standardize-apart
C10-p by (metis Un-insert-right)
moreover
have resolution-step (Cs U {?C1}) (Cs U {?2C1} U {?C2}) using stds-renames|of
Cso] standardize-apart[of Ca0 - ?C3] Cao0-p by auto
then have resolution-step (Cs U {?2C1}) (Cs U {?C1,7C3}) by (simp add:
insert-commute)
moreover
then have resolution-step (Cs U {2C1,2C5}) (Cs U {2C1,2C2} U {C})
using L Lo7-p resolution-rule[of ?C1 Cs U {?2C1,7Cs} ?Cy Ly Lo 7 | using
C-p by auto
then have resolution-step (Cs U {?C1,72C2}) CsNext using CsNext-p by

63

(simp add: Un-commute)
ultimately
have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto
}
— Combining the two derivations, we get the desired derivation from Cs of {}:
ultimately have resolution-deriv Cs Cs” unfolding resolution-deriv-def by
auto
then have 3 Cs'. resolution-deriv Cs Cs’ A {} € Cs’ using Cs'’-p by auto
}
ultimately show 3 Cs’. resolution-deriv Cs Cs’ A {} € Cs’ by auto
qged

theorem completeness:
assumes finite-cs: finite Cs V CeCs. finite C
assumes unsat: ¥V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
proof —
from unsat have V (G::hterm pred-denot) . —eval.s HFun G Cs by auto
then obtain T where closed-tree T Cs using herbrand assms by blast
then show 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’ using completeness’ assms
by auto
qged

definition E-conv :: (‘a = 'b) = 'a var-denot = 'b var-denot where
E-conv b-of-a E = A\z. (b-of-a (E 1))

definition F-conv :: ('a = 'b) = ’a fun-denot = 'b fun-denot where
F-conv b-of-a F = A\f bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: (Ya = 'b) = 'a pred-denot = 'b pred-denot where
G-conv b-of-a G = Ap bs. (G p (map (inv b-of-a) bs))

lemma eval;-bij:
assumes bij (b-of-a::'a = 'b)
showseval; (E-conv b-of-a E) (F-conv b-of-a F') t = b-of-a (eval; E F t)
proof (induction t)
case (Fun [ts)
then have map (inv b-of-a o evaly (E-conv b-of-a E) (F-conv b-of-a F)) ts =
evalys F F ts
unfolding E-conv-def F-conv-def
using assms bij-is-inj by fastforce
then have b-of-a (F f (map (inv b-of-a o evaly (E-conv b-of-a E) ((F-conv b-of-a
F))) ts)) = b-of-a (F f (eval;s E F ts)) by metis
then show ?case using assms unfolding E-conv-def F-conv-def by auto
next
case (Var z)
then show ?case using assms unfolding E-conv-def by auto
qed

64

lemma eval;s-bij:
assumes bij (b-of-a::'a = 'b)
shows G-conv b-of-a G p (evalys (E-conv b-of-a E) (F-conv b-of-a F) ts) = G p
(evalys E F ts)
using assms using eval;-bij
proof —
have map (inv b-of-a o evaly (E-conv b-of-a E) (F-conv b-of-a F)) ts = evalys E
Fis
using eval;-bij assms bij-is-inj by fastforce
then show %thesis
by (metis (no-types) G-conv-def map-map)
qed

lemma eval;-bij:
assumes bij (b-of-a::’a = 'b)
shows eval; (E-conv b-of-a E) (F-conv b-of-a F) (G-conv b-of-a G) | = eval; E
FGI
using assms evalys-bij
proof (cases [)
case (Pos p ts)
then show ?thesis
by (simp add: eval;s-bij assms)
next
case (Neg p ts)
then show %thesis
by (simp add: evalis-bij assms)
qed

lemma eval.-bij:
assumes bij (b-of-a::’a = 'b)
shows eval. (F-conv b-of-a F) (G-conv b-of-a G) C = eval. F G C
proof —
{
fix E :: char list = b
assume bij-b-of-a: bij b-of-a
assume C-sat: VE :: char list = 'a. 31eC. eval; EF G 1
have E-p: E = E-conv b-of-a (E-conv (inv b-of-a) E)
unfolding FE-conv-def using bij-b-of-a
using bij-betw-inv-into-right by fastforce
have 31eC. eval; (E-conv b-of-a (E-conv (inv b-of-a) E)) (F-conv b-of-a F)
(G-conv b-of-a G) 1
using eval;-bij bij-b-of-a C-sat by blast
then have 31eC. eval; E (F-conv b-of-a F) (G-conv b-of-a G) | using E-p by
auto
}
then show ?thesis
by (meson eval;-bij assms eval.-def)
qed

65

lemma eval.s-bij:
assumes bij (b-of-a::'a = 'b)
shows eval.s (F-conv b-of-a F) (G-conv b-of-a G) Cs «— eval.s F G Cs
by (meson eval.-bij assms eval.s-def)

lemma countably-inf-bij:
assumes inf-a-uni: infinite (UNIV :: ('a ::countable) set)
assumes inf-b-uni: infinite (UNIV :: ('b ::countable) set)
shows 3 b-of-a :: 'a = 'b. bij b-of-a
proof —
let 25 = UNIV :: ((‘a::countable)) set
have countable ?S by auto
moreover
have infinite 2S using inf-a-uni by auto
ultimately
obtain nat-of-a where QWER: bij (nat-of-a :: 'a = nat) using countable E-infinite[of
?S] by blast

let T = UNIV :: (('b::countable)) set

have countable ?T by auto

moreover

have infinite ?T using inf-b-uni by auto

ultimately

obtain nat-of-b where TYUI: bij (nat-of-b :: 'b = nat) using countable E-infinite[of
?T) by blast

let ?b-of-a = Aa. (inv nat-of-b) (nat-of-a a)

have bij-nat-of-b: ¥ n. nat-of-b (inv nat-of-b n) = n
using TYUI bij-betw-inv-into-right by fastforce
have V a. inv nat-of-a (nat-of-a a) = a
by (meson QWER UNIV-I bij-betw-inv-into-left)
then have inj (Aa. inv nat-of-b (nat-of-a a))
using bij-nat-of-b injl by (metis (no-types))
moreover
have range (\a. inv nat-of-b (nat-of-a a)) = UNIV
by (metis QWER TYUI bij-def image-image inj-imp-surj-inv)
ultimately
have bij ?b-of-a
unfolding bij-def by auto

then show ?thesis by auto
qed

lemma infinite-hterms: infinite (UNIV :: hterm set)
proof —
let ?diago = An. HFun (string-of-nat n) []
let Zundiago = Aa. nat-of-string (case a of HFun f ts = f)

66

have Vn. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have Vn. ?diago n € UNIV by auto
ultimately show infinite (UNIV :: hterm set) using infinity[of ?undiago ?diago
UNIV] by simp
qed

theorem completeness-countable:
assumes inf-uni: infinite (UNIV :: ('u :: countable) set)
assumes finite-cs: finite Cs ¥V CeCs. finite C'
assumes unsat: ¥V (F::'u fun-denot) (G::'u pred-denot). —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' N {} € Cs’
proof —
have V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
proof (rule; rule)
fix F :: hterm fun-denot
fix G :: hterm pred-denot

obtain u-of-hterm :: hterm = 'u where p-u-of-hterm: bij u-of-hterm
using countably-inf-bij inf-uni infinite-hterms by auto

let ?F = F-conv u-of-hterm F
let ?G = G-conv u-of-hterm G

have — eval.; ?F ?G Cs using unsat by auto
then show — eval.s F G Cs using eval.s-bij using p-u-of-hterm by auto
qed
then show 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’ using finite-cs completeness
by auto
qed

theorem completeness-nat:
assumes finite-cs: finite Cs ¥V C€Cs. finite C
assumes unsat: YV (F::nat fun-denot) (G::nat pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-countable by blast

end — unification locale

end

18 Examples

theory Fxamples imports Resolution begin

value Var "z"

value Fun "one’
value Fun ""mul’” [Var "y" Var "y"

value Fun "add" [Fun "mul” [Var "y", Var "y"|, Fun "one’ [|]

67

value Pos "'greater’’ [Var "z", Var "y
value Neg "less’’ [Var "z, Var "y
value Pos "less” [Var "z, Var "y
value Pos "equals’’
[Fun "add"[Fun "mul"[Var "y" Var "y"], Fun "one'[]], Var "z"

fun F, .¢ :: nat fun-denot where
Frat f [nvm} =
(if f = "add" then n + m else
if f = "mul" then n x m else 0)
| Fnat f H =
(if f = "one' then 1 else
if f = "zero" then 0 else 0)
| Frat fus=10

fun G, 4 :: nat pred-denot where
Gnat P [x;y] =
(if p = "less” N z < y then True else
if p = "greater’”’ A x > y then True else
if p = "equals’’ AN x = y then True else False)
| Grat p us = False

fun F, . :: nat var-denot where
Enot v =
(if x = "z then 26 else
if £ ="y" then 5 else 0)

lemma evaly Enqt Frar (Var "z’") = 26
by auto
lemma eval; Enqt Frat (Fun "one’ []) = 1
by auto
lemma eval; Fp ot Froe (Fun "mul” [Var "y" Var "y") = 25
by auto
lemma
evaly Enat Frar (Fun "add” [Fun "mul” [Var "y"Var "y"], Fun "one’ []]) =
26
by auto

lemma eval; Enqt Frat Gnate (Pos "greater’ [Var "'z") Var "y'") = True
by auto

lemma eval; Epqt Frat Gnat (Neg "less” [Var "z, Var "y"]) = True
by auto

lemma eval; Enat Frat Gnar (Pos "less” [Var "z") Var "y']) = False
by auto

lemma cval; E, o Frat Gnat

(Pos "equals"
[Fun "add” [Fun "mul" [Var "y" Var "y"|,Fun "one’ [|]

68

,Var "z
) = True
by auto

definition PP : fterm literal where
PP = Pos ""P"" [Fun "¢" []]

definition PQ :: fterm literal where
PQ = Pos "Q" [Fun "d")]

definition NP :: fterm literal where
NP = Neg ""P" [Fun "¢" []]

definition NQ :: fterm literal where
NQ — Neg //Q// [Fun //d// H]

theorem empty-mgu:
assumes unifier;s € L
shows mgu;s € L
using assms unfolding unifier;s-def mgu;s-def apply auto
apply (rule-tac z=u in ezxl)
using empty-compl empty-comp?2 apply auto
done

theorem unifier-single: unifier;s o {l}
unfolding unifier;s-def by auto

theorem resolution-rule’:
assumes C; € Cs
assumes Cy € Cs
assumes applicable C1 Cy Ly Lo o
assumes C = {resolution Cy Cq L1 Lo o}
shows resolution-step Cs (Cs U C)
using assms resolution-rule by auto

lemma resolution-examplel:
resolution-deriv {{ NP,PQ},{NQ},{PP,PQ}}
[{NP,PQ}.{NQ}{PP.PQ} {NP}.{PP},{}}
proof —
have resolution-step
{{NP,PQ}Y{NQ}{PP .PQ}}
({{NP.PQ}{NQYIPP.PQ}} U {{NP}})
apply (rule resolution-rule’[of {NP,PQ} - {NQ} {PQ} {NQ} ¢])
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu using empty-subls
apply auto
done
then have resolution-step

69

[{NP,PQ},{NQ}.{PP,PQ}}
({{NP,PQL{NQ}{PP,PQ},{NP}})
by (simp add: insert-commute)
moreover
have resolution-step
{{NP,PQ}{NQ},{PP,PQ},{NP}}
({{NP,PQ} {NQ}.{PP.PQ}{NP}} U {{PP}})
apply (rule resolution-rule’lof {NQ} - {PP,PQ} {NQ} {PQ} ¢))
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu empty-subls apply auto
done
then have resolution-step
{{NP,PQ}{NQ}{PP,PQ}{NP}}
({{NP.PQ}{NQ}.{PP.PQ}{NP}.{PP}})
by (simp add: insert-commute)
moreover
have resolution-step
{{NP,PQ}{NQ} {PP,PQ}{NP}{PP}}
({{NP.PQLINQ}{PP.PQLANP}.{PP}} U {{}}
apply (rule resolution-rule’[of {NP} - {PP} {NP} {PP} ¢])
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
[{NP.PQ}{NQ}.{PP.PQ}.{NP}.{PP})
({{NP,PQ}.{NQ}.{PP,PQ}.{NP}{PP}.{}})
by (simp add: insert-commute)
ultimately
have resolution-deriv {{ NP,PQ},{NQ},{PP,PQ}}
[{NP.PQ}.{NQ}{PP.PQ},{NP}.{PP}.{}}
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed

definition Pa :: fterm literal where
Pa = Pos "a" ||

definition Na :: fterm literal where
Na = Neg "a" ||

definition Pb :: fterm literal where
Pb = Pos ""b" |

definition Nb :: fterm literal where
Nb = Neg "b"]

definition Paa :: fterm literal where

70

Paa = Pos "a"" [Fun "a" []]

definition Naa :: fterm literal where
Naa = Neg "a" [Fun "a" []]

definition Paz :: fterm literal where
Pax = Pos "a" [Var "z"

definition Nazx :: fterm literal where
Naz = Neg "a' [Var "z"]

definition mguPaaPax :: substitution where
mguPaaPar = (Az. if x = "z" then Fun "a" || else Var x)

lemma mguPaaPaz-mgu: mgu;s mguPaaPax {Paa,Pax}

proof —
let %0 = Ax. if & = ""z'" then Fun "a'' || else Var x
have a: unifier;s (Az. if x = "z’ then Fun "o’ [] else Var z) {Paa,Paz} un-

folding Paa-def Pax-def unifier;s-def by auto
have b: V u. unifier;s v {Paa,Paz} — (3i. u = %0 - i)
proof (rule;rule)

fix u
assume unifier;s v {Paa,Paz}
then have wuu: u "'z’ = Fun "o’ [| unfolding unifier;s-def Paa-def Paz-def
by auto
have %0 - v = u
proof
fix z

1.1

assume z=""g

moreover

have (%0 - u) ""z"" = Fun "o’ || unfolding composition-def by auto
ultimately have (%0 - u) = u z using uwuu by auto

}

moreover
{
assume z#£''z"’
then have (%0 - u) z = (¢ z) + v unfolding composition-def by auto
then have (%0 - u) z = u z by auto
}
ultimately show (%0 - u) 2 = u z by auto
qged
then have Ji. %0 - i = u by auto
then show 3i. u = %0 - i by auto
qed
from a b show ?thesis unfolding mgu,;s-def unfolding mguPaaPaz-def by
auto
qed

71

lemma resolution-example2:
resolution-deriv {{ Nb,Na},{ Paz},{Pa},{Na,Pb,Naa}}
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb} {Na},{}}
proof —
have resolution-step
{{Nb,Na} ,{Paz},{Pa},{Na,Pb,Naa}}
({{Vb,Na}{ Paz} { Pa} { Na,Pb, Naa}} U {{Na,Pb}})
apply (rule resolution-rule’[of {Paz} - {Na,Pb,Naa} { Paz} {Naa} mguPaaPax
)
using mguPaaPaz-mgu unfolding applicable-def vars;s-def wvars;-def
Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def
resolution-def
apply auto
apply (rule-tac z=Na in image-eql)
unfolding Na-def apply auto
apply (rule-tac z=Pb in image-eql)
unfolding Pb-def apply auto
done
then have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na} {Pazx} {Pa},{Na,Pb,Naa},{ Na,Pb}})
by (simp add: insert-commute)
moreover
have resolution-step
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb}}
({{Nb,Na},{Pazx},{Pa},{Na,Pb,Naa},{ Na,Pb}} U {{Na}})
apply (rule resolution-rule’[of {Nb,Na} - {Na,Pb} {Nb} {Pb} €])
unfolding applicable-def vars;s-def wvars;-def
Pb-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
{{Nb,Na} {Paz},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Vb, Na}{ Pax} { Pa} { Na, Pb, Naa} { Na, Pb} { Na}})
by (simp add: insert-commute)
moreover
have resolution-step
{{Nb,Na} ,{Paz},{Pa},{Na,Pb,Naa},{Na,Pb} {Na}}
({{Nb.Na} { Paz} { Pa} { Na,Pb. Naa} { Na,Pb} {Na}} U {{}})
apply (rule resolution-rule’lof {Na} - {Pa} {Na} {Pa} ¢])
unfolding applicable-def vars;s-def wvars;-def
Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb},{Na}}
({{Nb,Na},{Paz},{Pa},{ Na,Pb,Naa},{ Na,Pb},{Na},{}})
by (simp add: insert-commute)
ultimately

72

have resolution-deriv {{ Nb,Na},{ Paz},{Pa},{ Na,Pb,Naa}}
{{Nb,Na} { Paz} { Pa} { Na,Pb, Naa} { Na, Pb} { Na} {}}
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed

lemma resolution-examplel-sem: —eval.s F G {{NP, PQ}, {NQ}, {PP, PQ}}
using resolution-examplel derivation-sound-refute by auto

lemma resolution-example2-sem: —eval.s F G {{Nb,Na},{ Pax},{Pa},{Na,Pb,Naa}}
using resolution-example2 derivation-sound-refute by auto

end

19 The Unification Theorem

theory Unification-Theorem imports
First-Order-Terms. Unification Resolution
begin

definition set-to-list :: 'a set = 'a list where
set-to-list = inv set

lemma set-set-to-list: finite xs = set (set-to-list ¥s) = ws
proof (induction rule: finite.induct)

case (emptyl)

have set [| = {} by auto

then show ?case unfolding set-to-list-def inv-into-def by auto
next

case (insert] A a)

then have set (a#set-to-list A) = insert a A by auto

then show ?case unfolding set-to-list-def inv-into-def by (metis (mono-tags,
lifting) UNIV-I somel)
qed

fun iterm-to-fterm :: (fun-sym, var-sym) term = fterm where
iterm-to-fterm (Term.Var x) = Var z
| iterm-to-fterm (Term.Fun fts) = Fun f (map iterm-to-fterm ts)

fun fterm-to-iterm :: fterm = (fun-sym, var-sym) term where
fterm-to-iterm (Var x) = Term.Var x

| fterm-to-iterm (Fun f ts) = Term.Fun f (map fterm-to-iterm ts)

lemma iterm-to-fterm-cancel[simpl: iterm-to-fterm (fterm-to-iterm t) =t
by (induction t) (auto simp add: map-idI)

lemma fterm-to-iterm-cancel[simp]: fterm-to-iterm (iterm-to-fterm t) = ¢
by (induction t) (auto simp add: map-idI)

73

abbreviation(input) fsub-to-isub :: substitution = (fun-sym, var-sym) subst where
fsub-to-isub o = Az. fterm-to-iterm (o x)

abbreviation(input) isub-to-fsub :: (fun-sym, var-sym) subst = substitution where
isub-to-fsub o = Az. iterm-to-fterm (o x)

lemma iterm-to-fterm-subt: (iterm-to-fterm t1) - o = iterm-to-fterm (t1 - (A\z.
fterm-to-iterm (o x)))
by (induction t1) auto

lemma unifiert-unifiers:
assumes unifier;s o ts
shows fsub-to-isub o € unifiers (fterm-to-iterm ‘ts x fterm-to-iterm ‘ ts)
proof —
have Vi1 € fterm-to-iterm * ts. Vt2 € fterm-to-iterm * ts. t1 - (fsub-to-isub o)
= 12 - (fsub-to-isub o)
proof (rule balll;rule balll)
fix t1 t2
assume t1-p: t1 € fterm-to-iterm ‘ ts assume t2-p: t2 € fterm-to-iterm ‘ ts
from t1-p t2-p have iterm-to-fterm t1 € ts N\ iterm-to-fterm t2 € ts by auto
then have (iterm-to-fterm t1) -+ o = (iterm-to-fterm t2) -4 o using assms
unfolding unifier;s-def by auto
then have iterm-to-fterm (t1 - fsub-to-isub o) = iterm-to-fterm (t2 - fsub-to-isub
o) using iterm-to-fterm-subt by auto
then have fterm-to-iterm (iterm-to-fterm (t1 - fsub-to-isub o)) = fterm-to-iterm
(iterm-to-fterm (t2 - fsub-to-isub o)) by auto
then show t1 - fsub-to-isub o = t2 - fsub-to-isub o using fterm-to-iterm-cancel
by auto
qed
then have V pefterm-to-iterm ‘ ts x fterm-to-iterm *ts. fst p - fsub-to-isub o =
snd p - fsub-to-isub o by (metis mem-Times-iff)
then show ?thesis unfolding unifiers-def by blast
qed

abbreviation(input) get-mgut :: fterm list = substitution option where
get-mgut ts = map-option (isub-to-fsub o subst-of) (unify (List.product (map
fterm-to-iterm ts) (map fterm-to-iterm ts)) [])

lemma unify-unification:
assumes o € unifiers (set E)
shows 3. is-imgu ¥ (set E)

proof —
from assms have Jcs. unify E [| = Some cs using unify-complete by auto
then show ?thesis using unify-sound by auto

qed

lemma fterm-to-iterm-subst: (fterm-to-iterm t1) - o =fterm-to-iterm (t1 -4 isub-to-fsub
o)
by (induction t1) auto

74

lemma unifiers-unifiert:

assumes o € unifiers (fterm-to-iterm ‘ ts x fterm-to-iterm ° ts)

shows unifier;s (isub-to-fsub o) ts
proof (cases ts={})

assume ts = {}

then show unifier;s (isub-to-fsub o) ts unfolding unifier;s-def by auto
next

assume ts # {}

then obtain ¢’ where t’-p: t’ € ts by auto

have Vt€ts. VisEts. t1 -4 isub-to-fsub o = tg -4 isub-to-fsub o
proof (rule balll ; rule balll)
fix tl tg
assume t; € ts tg € ts
then have fterm-to-iterm t1 € fterm-to-iterm ° ts fterm-to-iterm ty €
fterm-to-iterm ¢ ts by auto
then have (fterm-to-iterm t1, fterm-to-iterm t3) € (fterm-to-iterm ‘ts X
fterm-to-iterm ‘ ts) by auto
then have (fterm-to-iterm t1) - o = (fterm-to-iterm t3) - o using assms
unfolding unifiers-def
by (metis (no-types, lifting) assms fst-conv in-unifiersE snd-conv)
then have fterm-to-iterm (t1 -4 isub-to-fsub o) = fterm-to-iterm (to -
isub-to-fsub o) using fterm-to-iterm-subst by auto
then have iterm-to-fterm (fterm-to-iterm (t1 - (isub-to-fsub o))) = iterm-to-fterm
(fterm-to-iterm (tg -4 isub-to-fsub o)) by auto
then show ¢ - isub-to-fsub o = to -+ isub-to-fsub o by auto
qed
then have Viyets. t/ -4 isub-to-fsub o = tg -4 isub-to-fsub o using t’-p by blast

then show unifier:s (isub-to-fsub o) ts unfolding unifier;s-def by metis
qed

lemma icomp-fcomp: ¥ oy i = fsub-to-isub (isub-to-fsub ¥ - isub-to-fsub 7)
unfolding composition-def subst-compose-def
proof
fix z
show 9 z - i = fterm-to-iterm (iterm-to-fterm (9 z) -+ (Az. iterm-to-fterm (i z)))
using iterm-to-fterm-subt by auto
qed

lemma is-mgu-mguy:

assumes finite ts

assumes is-imgu ¥ (fterm-to-iterm ‘ ts x fterm-to-iterm ° ts)

shows mgus (isub-to-fsub) ts
proof —

from assms have unifierys (isub-to-fsub) ts unfolding is-imgu-def using
unifiers-unifiert by auto

75

moreover have Vu. unifierss u ts — (4. u = (isub-to-fsub 9) - 7)
proof (rule alll; rule impl)
fix u
assume unifierss u ts
then have fsub-to-isub u € wunifiers (fterm-to-iterm *ts x fterm-to-iterm
ts) using unifiert-unifiers by auto
then have 3. fsub-to-isub u = ¥ os i using assms unfolding is-imgu-def
by auto
then obtain 7 where fsub-to-isub u = ¥ os 7 by auto
then have fsub-to-isub u = fsub-to-isub (isub-to-fsub ¥ - isub-to-fsub i) using
icomp-fcomp by auto
then have isub-to-fsub (fsub-to-isub u) = isub-to-fsub (fsub-to-isub (isub-to-fsub
9 - isub-to-fsub i)) by metis
then have u = isub-to-fsub ¢ - isub-to-fsub ¢ by auto
then show 3i. u = isub-to-fsub ¥ - i by metis
qed
ultimately show ?thesis unfolding mgu,s-def by auto
qed

¢

lemma unification'”:
assumes finite ts
assumes unifierss o ts
shows 39. mguss U ts
proof —
let ?F = fterm-to-iterm ‘ts x fterm-to-iterm * ts
let ?IE = set-to-list ?E
from assms have fsub-to-isub o € unifiers ?E using unifiert-unifiers by auto
then have 39. is-imgu ¢ ?F
using unify-unification|of fsub-to-isub o ?IE] assms by (simp add: set-set-to-list)
then obtain ¥ where is-imgu ¢ ?F unfolding set-to-list-def by auto
then have mgu;s (isub-to-fsub) ts using assms is-mgu-mgu;s by auto
then show ?thesis by auto
qed

fun literal-to-term :: fterm literal = fterm where
literal-to-term (Pos p ts) = Fun ""Pos’’ [Fun p ts]
| literal-to-term (Neg p ts) = Fun ""Neg" [Fun p ts]

fun term-to-literal :: fterm = fterm literal where
term-to-literal (Fun s [Fun p ts]) = (if s='"Pos’’ then Pos else Neg) p ts

lemma term-to-literal-cancel[simp): term-to-literal (literal-to-term 1) = 1
by (cases 1) auto

lemma literal-to-term-sub: literal-to-term (I -; o) = (literal-to-term 1) ; o

by (induction) auto

lemma unifier;s-unifier;s:

76

assumes unifier;s o L
shows unifier;s o (literal-to-term ¢ L)
proof —
from assms obtain [’ where VI€L. | -, o = I’ unfolding unifier;,-def by auto
then have VIeL. literal-to-term (1 - o) = literal-to-term 1’ by auto
then have Ve L. (literal-to-term l) -+ o = literal-to-term I’ using literal-to-term-sub
by auto
then have V t€literal-to-term ‘ L. t -, o = literal-to-term 1’ by auto
then show “thesis unfolding unifier;s-def by auto
qed

lemma unifiert-unifier;s:

assumes unifierys o (literal-to-term ¢ L)

shows unifier;s o L
proof —

from assms obtain t’ where V t€literal-to-term ¢ L. t - o = t’ unfolding
unifierss-def by auto

then have V teliteral-to-term ¢ L. term-to-literal (¢ -4 o) = term-to-literal t’ by
auto

then have Vi€ L. term-to-literal ((literal-to-term 1) -4 o) = term-to-literal t' by
auto

then have Vie L. term-to-literal ((literal-to-term (1 -; 0))) = term-to-literal t'
using literal-to-term-sub by auto

then have Vie L. | -} o = term-to-literal t’ by auto

then show ?thesis unfolding unifier;s-def by auto
qed

lemma mgu;s-mgu;s:
assumes mguys ¥ (literal-to-term ¢ L)
shows mgu;s ¥ L
proof —
from assms have unifierys O (literal-to-term ‘ L) unfolding mgu.s-def by auto
then have unifier;s ¥ L using unifiert-unifier;s by auto
moreover
{
fix u
assume unifier;s u L
then have unifier;s u (literal-to-term ‘ L) using unifier;s-unifier;s by auto
then have 4. u = 9 - 7 using assms unfolding mgu;s-def by auto
}
ultimately show #?thesis unfolding mgu;s-def by auto
qed

theorem unification:
assumes fin: finite L
assumes uni: unifier;s o L
shows 34. mgu;s ¥ L
proof —
from uni have unifier;s o (literal-to-term ¢ L) using unifier;s-unifier;s by auto

77

I3

then obtain ¢ where mgu;s O (literal-to-term ¢ L) using fin unification’ by
blast

then have mgu;s ¥ L using mgu;s-mgu;s by auto

then show ?thesis by auto

qed

end

20 Instance of completeness theorem

theory Completeness-Instance imports Unification-Theorem Completeness be-
gin

interpretation unification using unification by unfold-locales auto
thm lifting

lemma [ift:

assumes fin: finite C' A finite D

assumes apart: vars;s C N vars;s D = {}

assumes insty: instance-of;s C’ C

assumes insty: instance-of;s D' D

assumes appl: applicable C' D' L' M' o

shows 3L M 7. applicable C D L M T A

instance-of s (resolution C' D' L' M' o) (resolution C D L M)

using assms lifting by metis

thm completeness

theorem complete:
assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: ¥V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’

using assms completeness by —

thm completeness-countable

theorem complete-countable:
assumes inf-uni: infinite (UNIV :: ("u :: countable) set)
assumes finite-cs: finite Cs ¥V C€Cs. finite C
assumes unsat: V (F::'u fun-denot) (G::'u pred-denot). —eval.s F G Cs
shows 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-countable by —

thm completeness-nat
theorem complete-nat:

assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: V¥ (F::nat fun-denot) (G::nat pred-denot) . —eval.s F G Cs

78

shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-nat by —

end

References

1]

2]

M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd
edition, 2012.

C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Inc., Orlando, FL, USA, 1st edition, 1973.

IsaFoL. authors. IsaFoL: Isabelle Formalization of Logic. https://
bitbucket.org/isafol /isafol.

A. Leitsch. The Resolution Calculus. Texts in theoretical computer
science. Springer, 1997.

A. Schlichtkrull. Formalization of resolution calculus in Isabelle. Msc
thesis, Technical University of Denmark, 2015. https://people.compute.
dtu.dk/andschl/Thesis.pdf.

A. Schlichtkrull. Formalization of the resolution calculus for first-order
logic. In ITP 2016, volume 9807 of LNCS. Springer, 2016.

A. Schlichtkrull. Formalization of the resolution calculus for first-order
logic. Journal of Automated Reasoning, 2018.

79

https://bitbucket.org/isafol/isafol
https://bitbucket.org/isafol/isafol
https://people.compute.dtu.dk/andschl/Thesis.pdf
https://people.compute.dtu.dk/andschl/Thesis.pdf

	Terms and Literals
	Ground
	Auxiliary
	Conversions
	Conversions - Terms and Herbrand Terms
	Conversions - Literals and Herbrand Literals
	Conversions - Atoms and Herbrand Atoms

	Enumerations
	Enumerating Strings
	Enumerating Herbrand Atoms
	Enumerating Ground Atoms

	Trees
	Sizes
	Paths
	Branches
	Internal Paths
	Deleting Nodes

	Possibly Infinite Trees
	Infinite Paths

	König's Lemma
	More Terms and Literals
	Clauses
	Semantics
	Semantics of Ground Terms

	Substitutions
	The Empty Substitution
	Substitutions and Ground Terms
	Composition
	Merging substitutions
	Standardizing apart

	Unifiers
	Most General Unifiers

	Resolution
	Soundness
	Herbrand Interpretations
	Partial Interpretations
	Semantic Trees
	Herbrand's Theorem
	Lifting Lemma
	Completeness
	Examples
	The Unification Theorem
	Instance of completeness theorem

