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Abstract

This theory is a formalization of the resolution calculus for first-
order logic. It is proven sound and complete. The soundness proof
uses the substitution lemma, which shows a correspondence between
substitutions and updates to an environment. The completeness proof
uses semantic trees, i.e. trees whose paths are partial Herbrand in-
terpretations. It employs Herbrand’s theorem in a formulation which
states that an unsatisfiable set of clauses has a finite closed semantic
tree. It also uses the lifting lemma which lifts resolution derivation
steps from the ground world up to the first-order world. The theory is
presented in a paper in the Journal of Automated Reasoning [7] which
extends a paper presented at the International Conference on Interac-
tive Theorem Proving [6]. An earlier version was presented in an MSc
thesis [5]. The formalization mostly follows textbooks by Ben-Ari [1],
Chang and Lee [2], and Leitsch [4]. The theory is part of the IsaFoL
project [3].
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1 Terms and Literals
theory TermsAndLiterals imports Main HOL−Library.Countable-Set begin

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

datatype fterm =
Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym

datatype hterm = HFun fun-sym hterm list — Herbrand terms defined as in
Berghofer’s FOL-Fitting

type-synonym ′t atom = pred-sym ∗ ′t list

datatype ′t literal =
sign: Pos (get-pred: pred-sym) (get-terms: ′t list)
| Neg (get-pred: pred-sym) (get-terms: ′t list)

fun get-atom :: ′t literal ⇒ ′t atom where
get-atom (Pos p ts) = (p, ts)
| get-atom (Neg p ts) = (p, ts)

1.1 Ground
fun groundt :: fterm ⇒ bool where

groundt (Var x) ←→ False
| groundt (Fun f ts) ←→ (∀ t ∈ set ts. groundt t)

abbreviation groundts :: fterm list ⇒ bool where
groundts ts ≡ (∀ t ∈ set ts. groundt t)

abbreviation ground l :: fterm literal ⇒ bool where
ground l l ≡ groundts (get-terms l)

abbreviation ground ls :: fterm literal set ⇒ bool where
ground ls C ≡ (∀ l ∈ C . ground l l)

definition ground-fatoms :: fterm atom set where
ground-fatoms ≡ {a. groundts (snd a)}

lemma ground l-ground-fatom:
assumes ground l l
shows get-atom l ∈ ground-fatoms
using assms unfolding ground-fatoms-def by (induction l) auto
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1.2 Auxiliary
lemma infinity:

assumes inj: ∀n :: nat. undiago (diago n) = n
assumes all-tree: ∀n :: nat. (diago n) ∈ S
shows ¬finite S

proof −
from inj all-tree have ∀n. n = undiago (diago n) ∧ (diago n) ∈ S by auto
then have ∀n. ∃ ds. n = undiago ds ∧ ds ∈ S by auto
then have undiago ‘ S = (UNIV :: nat set) by auto
then show ¬finite S by (metis finite-imageI infinite-UNIV-nat)

qed

lemma inv-into-f-f :
assumes bij-betw f A B
assumes a∈A
shows (inv-into A f ) (f a) = a

using assms bij-betw-inv-into-left by metis

lemma f-inv-into-f :
assumes bij-betw f A B
assumes b∈B
shows f ((inv-into A f ) b) = b

using assms bij-betw-inv-into-right by metis

1.3 Conversions
1.3.1 Conversions - Terms and Herbrand Terms
fun fterm-of-hterm :: hterm ⇒ fterm where

fterm-of-hterm (HFun p ts) = Fun p (map fterm-of-hterm ts)

definition fterms-of-hterms :: hterm list ⇒ fterm list where
fterms-of-hterms ts ≡ map fterm-of-hterm ts

fun hterm-of-fterm :: fterm ⇒ hterm where
hterm-of-fterm (Fun p ts) = HFun p (map hterm-of-fterm ts)

definition hterms-of-fterms :: fterm list ⇒ hterm list where
hterms-of-fterms ts ≡ map hterm-of-fterm ts

lemma hterm-of-fterm-fterm-of-hterm[simp]: hterm-of-fterm (fterm-of-hterm t) =
t

by (induction t) (simp add: map-idI )

lemma hterms-of-fterms-fterms-of-hterms[simp]: hterms-of-fterms (fterms-of-hterms
ts) = ts

unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI )

lemma fterm-of-hterm-hterm-of-fterm[simp]:
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assumes groundt t
shows fterm-of-hterm (hterm-of-fterm t) = t
using assms by (induction t) (auto simp add: map-idI )

lemma fterms-of-hterms-hterms-of-fterms[simp]:
assumes groundts ts
shows fterms-of-hterms (hterms-of-fterms ts) = ts
using assms unfolding fterms-of-hterms-def hterms-of-fterms-def by (simp add:

map-idI )

lemma ground-fterm-of-hterm: groundt (fterm-of-hterm t)
by (induction t) (auto simp add: map-idI )

lemma ground-fterms-of-hterms: groundts (fterms-of-hterms ts)
unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals
fun flit-of-hlit :: hterm literal ⇒ fterm literal where

flit-of-hlit (Pos p ts) = Pos p (fterms-of-hterms ts)
| flit-of-hlit (Neg p ts) = Neg p (fterms-of-hterms ts)

fun hlit-of-flit :: fterm literal ⇒ hterm literal where
hlit-of-flit (Pos p ts) = Pos p (hterms-of-fterms ts)
| hlit-of-flit (Neg p ts) = Neg p (hterms-of-fterms ts)

lemma ground-flit-of-hlit: ground l (flit-of-hlit l)
by (induction l) (simp add: ground-fterms-of-hterms)+

theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit l) = l by (cases l)
auto

theorem flit-of-hlit-hlit-of-flit [simp]:
assumes ground l l
shows flit-of-hlit (hlit-of-flit l) = l
using assms by (cases l) auto

lemma sign-flit-of-hlit: sign (flit-of-hlit l) = sign l by (cases l) auto

lemma hlit-of-flit-bij: bij-betw hlit-of-flit {l. ground l l} UNIV
unfolding bij-betw-def

proof
show inj-on hlit-of-flit {l. ground l l} using inj-on-inverseI flit-of-hlit-hlit-of-flit

by (metis (mono-tags, lifting) mem-Collect-eq)
next

have ∀ l. ∃ l ′. ground l l ′ ∧ l = hlit-of-flit l ′
using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis

then show hlit-of-flit ‘ {l. ground l l} = UNIV by auto
qed
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lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground l l}
unfolding bij-betw-def inj-on-def

proof
show ∀ x∈UNIV . ∀ y∈UNIV . flit-of-hlit x = flit-of-hlit y −→ x = y

using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
next

have ∀ l. ground l l −→ (l = flit-of-hlit (hlit-of-flit l)) using hlit-of-flit-flit-of-hlit
by auto

then have {l. ground l l} ⊆ flit-of-hlit ‘ UNIV by blast
moreover
have ∀ l. ground l (flit-of-hlit l) using ground-flit-of-hlit by auto
ultimately show flit-of-hlit ‘ UNIV = {l. ground l l} using hlit-of-flit-flit-of-hlit

ground-flit-of-hlit by auto
qed

1.3.3 Conversions - Atoms and Herbrand Atoms
fun fatom-of-hatom :: hterm atom ⇒ fterm atom where

fatom-of-hatom (p, ts) = (p, fterms-of-hterms ts)

fun hatom-of-fatom :: fterm atom ⇒ hterm atom where
hatom-of-fatom (p, ts) = (p, hterms-of-fterms ts)

lemma ground-fatom-of-hatom: groundts (snd (fatom-of-hatom a))
by (induction a) (simp add: ground-fterms-of-hterms)+

theorem hatom-of-fatom-fatom-of-hatom [simp]: hatom-of-fatom (fatom-of-hatom
l) = l

by (cases l) auto

theorem fatom-of-hatom-hatom-of-fatom [simp]:
assumes groundts (snd l)
shows fatom-of-hatom (hatom-of-fatom l) = l
using assms by (cases l) auto

lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV
unfolding bij-betw-def

proof
show inj-on hatom-of-fatom ground-fatoms using inj-on-inverseI fatom-of-hatom-hatom-of-fatom

unfolding ground-fatoms-def
by (metis (mono-tags, lifting) mem-Collect-eq)

next
have ∀ a. ∃ a ′. groundts (snd a ′) ∧ a = hatom-of-fatom a ′

using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
then show hatom-of-fatom ‘ ground-fatoms = UNIV unfolding ground-fatoms-def

by blast
qed
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lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms
unfolding bij-betw-def inj-on-def

proof
show ∀ x∈UNIV . ∀ y∈UNIV . fatom-of-hatom x = fatom-of-hatom y −→ x = y

using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
next

have ∀ a. groundts (snd a) −→ (a = fatom-of-hatom (hatom-of-fatom a)) using
hatom-of-fatom-fatom-of-hatom by auto
then have ground-fatoms ⊆ fatom-of-hatom ‘ UNIV unfolding ground-fatoms-def

by blast
moreover
have ∀ l. groundts (snd (fatom-of-hatom l)) using ground-fatom-of-hatom by

auto
ultimately show fatom-of-hatom ‘ UNIV = ground-fatoms
using hatom-of-fatom-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def

by auto
qed

1.4 Enumerations
1.4.1 Enumerating Strings
definition nat-of-string:: string ⇒ nat where

nat-of-string ≡ (SOME f . bij f )

definition string-of-nat:: nat ⇒ string where
string-of-nat ≡ inv nat-of-string

lemma nat-of-string-bij: bij nat-of-string
proof −
have countable (UNIV ::string set) by auto
moreover
have infinite (UNIV ::string set) using infinite-UNIV-listI by auto
ultimately
obtain x where bij (x:: string ⇒ nat) using countableE-infinite[of UNIV ] by

blast
then show ?thesis unfolding nat-of-string-def using someI by metis

qed

lemma string-of-nat-bij: bij string-of-nat unfolding string-of-nat-def using nat-of-string-bij
bij-betw-inv-into by auto

lemma nat-of-string-string-of-nat[simp]: nat-of-string (string-of-nat n) = n
unfolding string-of-nat-def
using nat-of-string-bij f-inv-into-f [of nat-of-string] by simp

lemma string-of-nat-nat-of-string[simp]: string-of-nat (nat-of-string n) = n
unfolding string-of-nat-def
using nat-of-string-bij inv-into-f-f [of nat-of-string] by simp
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1.4.2 Enumerating Herbrand Atoms
definition nat-of-hatom:: hterm atom ⇒ nat where

nat-of-hatom ≡ (SOME f . bij f )

definition hatom-of-nat:: nat ⇒ hterm atom where
hatom-of-nat ≡ inv nat-of-hatom

instantiation hterm :: countable begin
instance by countable-datatype
end

lemma infinite-hatoms: infinite (UNIV :: ( ′t atom) set)
proof −

let ?diago = λn. (string-of-nat n,[])
let ?undiago = λa. nat-of-string (fst a)
have ∀n. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have ∀n. ?diago n ∈ UNIV by auto
ultimately show infinite (UNIV :: ( ′t atom) set) using infinity[of ?undiago

?diago UNIV ] by simp
qed

lemma nat-of-hatom-bij: bij nat-of-hatom
proof −

let ?S = UNIV :: (( ′t::countable) atom) set
have countable ?S by auto
moreover
have infinite ?S using infinite-hatoms by auto
ultimately
obtain x where bij (x :: hterm atom ⇒ nat) using countableE-infinite[of ?S ]

by blast
then have bij nat-of-hatom unfolding nat-of-hatom-def using someI by metis
then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-of-hatom-def

by simp
qed

lemma hatom-of-nat-bij: bij hatom-of-nat unfolding hatom-of-nat-def using nat-of-hatom-bij
bij-betw-inv-into by auto

lemma nat-of-hatom-hatom-of-nat[simp]: nat-of-hatom (hatom-of-nat n) = n
unfolding hatom-of-nat-def
using nat-of-hatom-bij f-inv-into-f [of nat-of-hatom] by simp

lemma hatom-of-nat-nat-of-hatom[simp]: hatom-of-nat (nat-of-hatom l) = l
unfolding hatom-of-nat-def
using nat-of-hatom-bij inv-into-f-f [of nat-of-hatom - UNIV ] by simp
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1.4.3 Enumerating Ground Atoms
definition fatom-of-nat :: nat ⇒ fterm atom where

fatom-of-nat = (λn. fatom-of-hatom (hatom-of-nat n))

definition nat-of-fatom :: fterm atom ⇒ nat where
nat-of-fatom = (λt. nat-of-hatom (hatom-of-fatom t))

theorem diag-undiag-fatom[simp]:
assumes groundts ts
shows fatom-of-nat (nat-of-fatom (p,ts)) = (p,ts)

using assms unfolding fatom-of-nat-def nat-of-fatom-def by auto

theorem undiag-diag-fatom[simp]: nat-of-fatom (fatom-of-nat n) = n unfolding
fatom-of-nat-def nat-of-fatom-def by auto

lemma fatom-of-nat-bij: bij-betw fatom-of-nat UNIV ground-fatoms
using hatom-of-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-of-nat-bij un-

folding fatom-of-nat-def comp-def by blast

lemma ground-fatom-of-nat: groundts (snd (fatom-of-nat x)) unfolding fatom-of-nat-def
using ground-fatom-of-hatom by auto

lemma nat-of-fatom-bij: bij-betw nat-of-fatom ground-fatoms UNIV
using nat-of-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-of-nat-bij un-

folding nat-of-fatom-def comp-def by blast

end

2 Trees
theory Tree imports Main begin

Sometimes it is nice to think of bools as directions in a binary tree
hide-const (open) Left Right
type-synonym dir = bool
definition Left :: bool where Left = True
definition Right :: bool where Right = False
declare Left-def [simp]
declare Right-def [simp]

datatype tree =
Leaf
| Branching (ltree: tree) (rtree: tree)

2.1 Sizes
fun treesize :: tree ⇒ nat where

treesize Leaf = 0
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| treesize (Branching l r) = 1 + treesize l + treesize r

lemma treesize-Leaf :
assumes treesize T = 0
shows T = Leaf
using assms by (cases T ) auto

lemma treesize-Branching:
assumes treesize T = Suc n
shows ∃ l r . T = Branching l r
using assms by (cases T ) auto

2.2 Paths
fun path :: dir list ⇒ tree ⇒ bool where

path [] T ←→ True
| path (d#ds) (Branching T1 T2 ) ←→ (if d then path ds T1 else path ds T2 )
| path - - ←→ False

lemma path-inv-Leaf : path p Leaf ←→ p = []
by (induction p) auto

lemma path-inv-Cons: path (a#ds) T −→ (∃ l r . T=Branching l r)
by (cases T ) (auto simp add: path-inv-Leaf )

lemma path-inv-Branching-Left: path (Left#p) (Branching l r) ←→ path p l
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching-Right: path (Right#p) (Branching l r) ←→ path p r
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching:
path p (Branching l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a
−→ path p ′ r))) (is ?L ←→ ?R)
proof

assume ?L then show ?R by (induction p) auto
next

assume r : ?R
then show ?L

proof
assume p = [] then show ?L by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r)

by auto
then show ?L by (cases a) auto

qed
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qed

lemma path-prefix:
assumes path (ds1@ds2 ) T
shows path ds1 T

using assms proof (induction ds1 arbitrary: T )
case (Cons a ds1 )
then have ∃ l r . T = Branching l r using path-inv-Leaf by (cases T ) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a
then have path ((ds1 ) @ ds2 ) l using p-lr Cons(2 ) path-inv-Branching by

auto
then have path ds1 l using Cons(1 ) by auto
then show path (a # ds1 ) T using p-lr atrue by auto

next
assume afalse: ¬a
then have path ((ds1 ) @ ds2 ) r using p-lr Cons(2 ) path-inv-Branching by

auto
then have path ds1 r using Cons(1 ) by auto
then show path (a # ds1 ) T using p-lr afalse by auto

qed
next

case (Nil) then show ?case by auto
qed

2.3 Branches
fun branch :: dir list ⇒ tree ⇒ bool where

branch [] Leaf ←→ True
| branch (d # ds) (Branching l r) ←→ (if d then branch ds l else branch ds r)
| branch - - ←→ False

lemma has-branch: ∃ b. branch b T
proof (induction T )

case (Leaf )
have branch [] Leaf by auto
then show ?case by blast

next
case (Branching T1 T2)
then obtain b where branch b T1 by auto
then have branch (Left#b) (Branching T1 T2) by auto
then show ?case by blast

qed

lemma branch-inv-Leaf : branch b Leaf ←→ b = []
by (cases b) auto
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lemma branch-inv-Branching-Left:
branch (Left#b) (Branching l r) ←→ branch b l

by auto

lemma branch-inv-Branching-Right:
branch (Right#b) (Branching l r) ←→ branch b r

by auto

lemma branch-inv-Branching:
branch b (Branching l r) ←→

(∃ a b ′. b=a#b ′∧ (a −→ branch b ′ l) ∧ (¬a −→ branch b ′ r))
by (induction b) auto

lemma branch-inv-Leaf2 :
T = Leaf ←→ (∀ b. branch b T −→ b = [])

proof −
{

assume T=Leaf
then have ∀ b. branch b T −→ b = [] using branch-inv-Leaf by auto

}
moreover
{

assume ∀ b. branch b T −→ b = []
then have ∀ b. branch b T −→ ¬(∃ a b ′. b = a # b ′) by auto
then have ∀ b. branch b T −→ ¬(∃ l r . branch b (Branching l r))

using branch-inv-Branching by auto
then have T=Leaf using has-branch[of T ] by (metis branch.elims(2 ))

}
ultimately show T = Leaf ←→ (∀ b. branch b T −→ b = []) by auto

qed

lemma branch-is-path:
assumesbranch ds T
shows path ds T

using assms proof (induction T arbitrary: ds)
case Leaf
then have ds = [] using branch-inv-Leaf by auto
then show ?case by auto

next
case (Branching T1 T2)
then obtain a b where ds-p: ds = a # b ∧ (a −→ branch b T1) ∧ (¬ a −→

branch b T2) using branch-inv-Branching[of ds] by blast
then have (a −→ path b T1) ∧ (¬a −→ path b T2) using Branching by auto
then show ?case using ds-p by (cases a) auto

qed

lemma Branching-Leaf-Leaf-Tree:
assumes T = Branching T1 T2
shows (∃B. branch (B@[True]) T ∧ branch (B@[False]) T )
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using assms proof (induction T arbitrary: T1 T2 )
case Leaf then show ?case by auto

next
case (Branching T1 ′ T2 ′)
{

assume T1 ′=Leaf ∧ T2 ′=Leaf
then have branch ([] @ [True]) (Branching T1 ′ T2 ′) ∧ branch ([] @ [False])

(Branching T1 ′ T2 ′) by auto
then have ?case by metis

}
moreover
{

fix T11 T12
assume T1 ′ = Branching T11 T12
then obtain B where branch (B @ [True]) T1 ′

∧ branch (B @ [False]) T1 ′ using Branching by blast
then have branch (([True] @ B) @ [True]) (Branching T1 ′ T2 ′)

∧ branch (([True] @ B) @ [False]) (Branching T1 ′ T2 ′) by auto
then have ?case by blast

}
moreover
{

fix T11 T12
assume T2 ′ = Branching T11 T12
then obtain B where branch (B @ [True]) T2 ′

∧ branch (B @ [False]) T2 ′ using Branching by blast
then have branch (([False] @ B) @ [True]) (Branching T1 ′ T2 ′)

∧ branch (([False] @ B) @ [False]) (Branching T1 ′ T2 ′) by auto
then have ?case by blast

}
ultimately show ?case using tree.exhaust by blast

qed

2.4 Internal Paths
fun internal :: dir list ⇒ tree ⇒ bool where

internal [] (Branching l r) ←→ True
| internal (d#ds) (Branching l r) ←→ (if d then internal ds l else internal ds r)
| internal - - ←→ False

lemma internal-inv-Leaf : ¬internal b Leaf using internal.simps by blast

lemma internal-inv-Branching-Left:
internal (Left#b) (Branching l r) ←→ internal b l by auto

lemma internal-inv-Branching-Right:
internal (Right#b) (Branching l r) ←→ internal b r

by auto
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lemma internal-inv-Branching:
internal p (Branching l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧

(¬a −→ internal p ′ r))) (is ?L ←→ ?R)
proof

assume ?L then show ?R by (metis internal.simps(2 ) neq-Nil-conv)
next

assume r : ?R
then show ?L

proof
assume p = [] then show ?L by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal

p ′ r) by auto
then show ?L by (cases a) auto

qed
qed

lemma internal-is-path:
assumes internal ds T
shows path ds T

using assms proof (induction T arbitrary: ds)
case Leaf
then have False using internal-inv-Leaf by auto
then show ?case by auto

next
case (Branching T1 T2)
then obtain a b where ds-p: ds=[] ∨ ds = a # b ∧ (a −→ internal b T1) ∧ (¬

a −→ internal b T2) using internal-inv-Branching by blast
then have ds = [] ∨ (a −→ path b T1) ∧ (¬a −→ path b T2) using Branching

by auto
then show ?case using ds-p by (cases a) auto

qed

lemma internal-prefix:
assumes internal (ds1@ds2@[d]) T
shows internal ds1 T

using assms proof (induction ds1 arbitrary: T )
case (Cons a ds1 )
then have ∃ l r . T = Branching l r using internal-inv-Leaf by (cases T ) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a

then have internal ((ds1 ) @ ds2 @[d]) l using p-lr Cons(2 ) internal-inv-Branching
by auto

then have internal ds1 l using Cons(1 ) by auto
then show internal (a # ds1 ) T using p-lr atrue by auto

next
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assume afalse: ∼a
then have internal ((ds1 ) @ ds2 @[d]) r using p-lr Cons(2 ) internal-inv-Branching

by auto
then have internal ds1 r using Cons(1 ) by auto
then show internal (a # ds1 ) T using p-lr afalse by auto

qed
next

case (Nil)
then have ∃ l r . T = Branching l r using internal-inv-Leaf by (cases T ) auto
then show ?case by auto

qed

lemma internal-branch:
assumes branch (ds1@ds2@[d]) T
shows internal ds1 T

using assms proof (induction ds1 arbitrary: T )
case (Cons a ds1 )
then have ∃ l r . T = Branching l r using branch-inv-Leaf by (cases T ) auto
then obtain l r where p-lr : T = Branching l r by auto
show ?case

proof (cases a)
assume atrue: a

then have branch (ds1 @ ds2 @ [d]) l using p-lr Cons(2 ) branch-inv-Branching
by auto

then have internal ds1 l using Cons(1 ) by auto
then show internal (a # ds1 ) T using p-lr atrue by auto

next
assume afalse: ∼a

then have branch ((ds1 ) @ ds2 @[d]) r using p-lr Cons(2 ) branch-inv-Branching
by auto

then have internal ds1 r using Cons(1 ) by auto
then show internal (a # ds1 ) T using p-lr afalse by auto

qed
next

case (Nil)
then have ∃ l r . T = Branching l r using branch-inv-Leaf by (cases T ) auto
then show ?case by auto

qed

fun parent :: dir list ⇒ dir list where
parent ds = tl ds

2.5 Deleting Nodes
fun delete :: dir list ⇒ tree ⇒ tree where

delete [] T = Leaf
| delete (True#ds) (Branching T1 T2) = Branching (delete ds T1) T2
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| delete (False#ds) (Branching T1 T2) = Branching T1 (delete ds T2)
| delete (a#ds) Leaf = Leaf

lemma delete-Leaf : delete T Leaf = Leaf by (cases T ) auto

lemma path-delete:
assumes path p (delete ds T )
shows path p T

using assms proof (induction p arbitrary: T ds)
case Nil
then show ?case by simp

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching (T1 ) (delete ds ′ T2 )) using b-p bds ′-p

T1T2-p by auto
then have path p T1 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1 ) T2 ) using b-p bds ′-p

T1T2-p by auto
then have path p T2 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1 ) T2 ) using b-p bds ′-p

T1T2-p by auto
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then have path p (delete ds ′ T1 ) using a-p by auto
then have path p T1 using Cons by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching T1 (delete ds ′ T2 )) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T2 ) using a-p by auto
then have path p T2 using Cons by auto
then have ?case using T1T2-p a-p by auto

}
ultimately show ?case by blast

qed

lemma branch-delete:
assumes branch p (delete ds T )
shows branch p T ∨ p=ds

using assms proof (induction p arbitrary: T ds)
case Nil
then have delete ds T = Leaf by (cases delete ds T ) auto
then have ds = [] ∨ T = Leaf using delete.elims by blast
then show ?case by auto

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
branch-is-path by blast

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
have branch (a # p) (delete ds T ) using Cons by −
then have branch (a # p) (Branching (T1 ) (delete ds ′ T2 )) using b-p bds ′-p

T1T2-p by auto
then have branch p T1 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{
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assume a-p: ¬a
assume b-p: b
have branch (a # p) (delete ds T ) using Cons by −
then have branch (a # p) (Branching (delete ds ′ T1 ) T2 ) using b-p bds ′-p

T1T2-p by auto
then have branch p T2 using a-p by auto
then have ?case using T1T2-p a-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have branch (a # p) (delete ds T ) using Cons by −
then have branch (a # p) (Branching (delete ds ′ T1 ) T2 ) using b-p bds ′-p

T1T2-p by auto
then have branch p (delete ds ′ T1 ) using a-p by auto
then have branch p T1 ∨ p = ds ′ using Cons by metis
then have ?case using T1T2-p a-p using bds ′-p a-p b-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have branch (a # p) (delete ds T ) using Cons by −
then have branch (a # p) (Branching T1 (delete ds ′ T2 )) using b-p bds ′-p

T1T2-p by auto
then have branch p (delete ds ′ T2 ) using a-p by auto
then have branch p T2 ∨ p = ds ′ using Cons by metis
then have ?case using T1T2-p a-p using bds ′-p a-p b-p by auto

}
ultimately show ?case by blast

qed

lemma branch-delete-postfix:
assumes path p (delete ds T )
shows ¬(∃ c cs. p = ds @ c#cs)

using assms proof (induction p arbitrary: T ds)
case Nil then show ?case by simp

next
case (Cons a p)
then obtain b ds ′ where bds ′-p: ds=b#ds ′ by (cases ds) auto

have ∃ dT1 dT2 . delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto

then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have ∃T1 T2 . T=Branching T1 T2
by (cases T ; cases ds) auto
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then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

{
assume a-p: a
assume b-p: ¬b
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: b
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: a
assume b-p: b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching (delete ds ′ T1 ) T2 ) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T1 ) using a-p by auto
then have ¬ (∃ c cs. p = ds ′ @ c # cs) using Cons by auto
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
moreover
{

assume a-p: ¬a
assume b-p: ¬b
have path (a # p) (delete ds T ) using Cons by −
then have path (a # p) (Branching T1 (delete ds ′ T2 )) using b-p bds ′-p

T1T2-p by auto
then have path p (delete ds ′ T2 ) using a-p by auto
then have ¬ (∃ c cs. p = ds ′ @ c # cs) using Cons by auto
then have ?case using T1T2-p a-p b-p bds ′-p by auto

}
ultimately show ?case by blast

qed

lemma treezise-delete:
assumes internal p T
shows treesize (delete p T ) < treesize T

using assms proof (induction p arbitrary: T )
case (Nil)
then have ∃T1 T2 . T = Branching T1 T2 by (cases T ) auto
then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
then show ?case by auto

next
case (Cons a p)
then have ∃T1 T2 . T = Branching T1 T2 using path-inv-Cons internal-is-path
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by blast
then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
show ?case

proof (cases a)
assume a-p: a

from a-p have delete (a#p) T = (Branching (delete p T1 ) T2 ) using T1T2-p
by auto

moreover
from a-p have internal p T1 using T1T2-p Cons by auto
then have treesize (delete p T1 ) < treesize T1 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto

next
assume a-p: ¬a

from a-p have delete (a#p) T = (Branching T1 (delete p T2 )) using T1T2-p
by auto

moreover
from a-p have internal p T2 using T1T2-p Cons by auto
then have treesize (delete p T2 ) < treesize T2 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto

qed
qed

fun cutoff :: (dir list ⇒ bool) ⇒ dir list ⇒ tree ⇒ tree where
cutoff red ds (Branching T1 T2) =

(if red ds then Leaf else Branching (cutoff red (ds@[Left]) T1) (cutoff red
(ds@[Right]) T2))
| cutoff red ds Leaf = Leaf

Initially you should call cutoff with ds = []. If all branches are red, then
cutoff gives a subtree. If all branches are red, then so are the ones in cutoff.
The internal paths of cutoff are not red.
lemma treesize-cutoff : treesize (cutoff red ds T ) ≤ treesize T
proof (induction T arbitrary: ds)

case Leaf then show ?case by auto
next

case (Branching T1 T2 )
then have treesize (cutoff red (ds@[Left]) T1 ) + treesize (cutoff red (ds@[Right])

T2 ) ≤ treesize T1 + treesize T2 using add-mono by blast
then show ?case by auto

qed

abbreviation anypath :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anypath T P ≡ ∀ p. path p T −→ P p

abbreviation anybranch :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anybranch T P ≡ ∀ p. branch p T −→ P p
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abbreviation anyinternal :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anyinternal T P ≡ ∀ p. internal p T −→ P p

lemma cutoff-branch ′:
assumes anybranch T (λb. red(ds@b))
shows anybranch (cutoff red ds T ) (λb. red(ds@b))

using assms proof (induction T arbitrary: ds)
case (Leaf )
let ?T = cutoff red ds Leaf
{

fix b
assume branch b ?T
then have branch b Leaf by auto
then have red(ds@b) using Leaf by auto

}
then show ?case by simp

next
case (Branching T1 T2)
let ?T = cutoff red ds (Branching T1 T2)
from Branching have ∀ p. branch (Left#p) (Branching T1 T2) −→ red (ds @

(Left#p)) by blast
then have ∀ p. branch p T1 −→ red (ds @ (Left#p)) by auto
then have anybranch T1 (λp. red ((ds @ [Left]) @ p)) by auto
then have aa: anybranch (cutoff red (ds @ [Left]) T1) (λp. red ((ds @ [Left]) @

p))
using Branching by blast

from Branching have ∀ p. branch (Right#p) (Branching T1 T2) −→ red (ds @
(Right#p)) by blast

then have ∀ p. branch p T2 −→ red (ds @ (Right#p)) by auto
then have anybranch T2 (λp. red ((ds @ [Right]) @ p)) by auto
then have bb: anybranch (cutoff red (ds @ [Right]) T2) (λp. red ((ds @ [Right])

@ p))
using Branching by blast

{
fix b
assume b-p: branch b ?T
have red ds ∨ ¬red ds by auto
then have red(ds@b)

proof
assume ds-p: red ds
then have ?T = Leaf by auto
then have b = [] using b-p branch-inv-Leaf by auto
then show red(ds@b) using ds-p by auto

next
assume ds-p: ¬red ds
let ?T1

′ = cutoff red (ds@[Left]) T1

let ?T2
′ = cutoff red (ds@[Right]) T2
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from ds-p have ?T = Branching ?T1
′ ?T2

′ by auto
from this b-p obtain a b ′ where b = a # b ′ ∧ (a −→ branch b ′ ?T1

′) ∧
(¬a −→ branch b ′ ?T2

′ ) using branch-inv-Branching[of b ?T1
′ ?T2

′] by auto
then show red(ds@b) using aa bb by (cases a) auto

qed
}
then show ?case by blast

qed

lemma cutoff-branch:
assumes anybranch T (λp. red p)
shows anybranch (cutoff red [] T ) (λp. red p)
using assms cutoff-branch ′[of T red []] by auto

lemma cutoff-internal ′:
assumes anybranch T (λb. red(ds@b))
shows anyinternal (cutoff red ds T ) (λb. ¬red(ds@b))

using assms proof (induction T arbitrary: ds)
case (Leaf ) then show ?case using internal-inv-Leaf by simp

next
case (Branching T1 T2)
let ?T = cutoff red ds (Branching T1 T2)
from Branching have ∀ p. branch (Left#p) (Branching T1 T2) −→ red (ds @

(Left#p)) by blast
then have ∀ p. branch p T1 −→ red (ds @ (Left#p)) by auto
then have anybranch T1 (λp. red ((ds @ [Left]) @ p)) by auto
then have aa: anyinternal (cutoff red (ds @ [Left]) T1) (λp. ¬ red ((ds @ [Left])

@ p)) using Branching by blast

from Branching have ∀ p. branch (Right#p) (Branching T1 T2) −→ red (ds @
(Right#p)) by blast

then have ∀ p. branch p T2 −→ red (ds @ (Right#p)) by auto
then have anybranch T2 (λp. red ((ds @ [Right]) @ p)) by auto
then have bb: anyinternal (cutoff red (ds @ [Right]) T2) (λp. ¬ red ((ds @

[Right]) @ p)) using Branching by blast
{

fix p
assume b-p: internal p ?T
then have ds-p: ¬red ds using internal-inv-Leaf by auto
have p=[] ∨ p 6=[] by auto
then have ¬red(ds@p)

proof
assume p=[] then show ¬red(ds@p) using ds-p by auto

next
let ?T1

′ = cutoff red (ds@[Left]) T1

let ?T2
′ = cutoff red (ds@[Right]) T2

assume p 6=[]
moreover
have ?T = Branching ?T1

′ ?T2
′ using ds-p by auto
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ultimately
obtain a p ′ where b-p: p = a # p ′ ∧

(a −→ internal p ′ (cutoff red (ds @ [Left]) T1)) ∧
(¬ a −→ internal p ′ (cutoff red (ds @ [Right]) T2))

using b-p internal-inv-Branching[of p ?T1
′ ?T2

′] by auto
then have ¬red(ds @ [a] @ p ′) using aa bb by (cases a) auto
then show ¬red(ds @ p) using b-p by simp

qed
}
then show ?case by blast

qed

lemma cutoff-internal:
assumes anybranch T red
shows anyinternal (cutoff red [] T ) (λp. ¬red p)
using assms cutoff-internal ′[of T red []] by auto

lemma cutoff-branch-internal ′:
assumes anybranch T red
shows anyinternal (cutoff red [] T ) (λp. ¬red p) ∧ anybranch (cutoff red [] T )

(λp. red p)
using assms cutoff-internal[of T ] cutoff-branch[of T ] by blast

lemma cutoff-branch-internal:
assumes anybranch T red
shows ∃T ′. anyinternal T ′ (λp. ¬red p) ∧ anybranch T ′ (λp. red p)
using assms cutoff-branch-internal ′ by blast

3 Possibly Infinite Trees

Possibly infinite trees are of type dir list set.
abbreviation wf-tree :: dir list set ⇒ bool where

wf-tree T ≡ (∀ ds d. (ds @ d) ∈ T −→ ds ∈ T )

The subtree in with root r
fun subtree :: dir list set ⇒ dir list ⇒ dir list set where

subtree T r = {ds ∈ T . ∃ ds ′. ds = r @ ds ′}

A subtree of a tree is either in the left branch, the right branch, or is the
tree itself
lemma subtree-pos:

subtree T ds ⊆ subtree T (ds @ [Left]) ∪ subtree T (ds @ [Right]) ∪ {ds}
proof (rule subsetI ; rule Set.UnCI )

let ?subtree = subtree T
fix x
assume asm: x ∈ ?subtree ds
assume x /∈ {ds}
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then have x 6= ds by simp
then have ∃ e d. x = ds @ [d] @ e using asm list.exhaust by auto
then have (∃ e. x = ds @ [Left] @ e) ∨ (∃ e. x = ds @ [Right] @ e) using

bool.exhaust by auto
then show x ∈ ?subtree (ds @ [Left]) ∪ ?subtree (ds @ [Right]) using asm by

auto
qed

3.1 Infinite Paths
abbreviation wf-infpath :: (nat ⇒ ′a list) ⇒ bool where

wf-infpath f ≡ (f 0 = []) ∧ (∀n. ∃ a. f (Suc n) = (f n) @ [a])

lemma infpath-length:
assumes wf-infpath f
shows length (f n) = n

using assms proof (induction n)
case 0 then show ?case by auto

next
case (Suc n) then show ?case by (metis length-append-singleton)

qed

lemma chain-prefix:
assumes wf-infpath f
assumes n1 ≤ n2

shows ∃ a. (f n1) @ a = (f n2)
using assms proof (induction n2)

case (Suc n2)
then have n1 ≤ n2 ∨ n1 = Suc n2 by auto
then show ?case

proof
assume n1 ≤ n2

then obtain a where a: f n1 @ a = f n2 using Suc by auto
have b: ∃ b. f (Suc n2) = f n2 @ [b] using Suc by auto
from a b have ∃ b. f n1 @ (a @ [b]) = f (Suc n2) by auto
then show ∃ c. f n1 @ c = f (Suc n2) by blast

next
assume n1 = Suc n2

then have f n1 @ [] = f (Suc n2) by auto
then show ∃ a. f n1 @ a = f (Suc n2) by auto

qed
qed auto

If we make a lookup in a list, then looking up in an extension gives us the
same value.
lemma ith-in-extension:

assumes chain: wf-infpath f
assumes smalli: i < length (f n1)
assumes n1n2: n1 ≤ n2
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shows f n1 ! i = f n2 ! i
proof −

from chain n1n2 have ∃ a. f n1 @ a = f n2 using chain-prefix by blast
then obtain a where a-p: f n1 @ a = f n2 by auto
have (f n1 @ a) ! i = f n1 ! i using smalli by (simp add: nth-append)
then show ?thesis using a-p by auto

qed

4 König’s Lemma
lemma inf-subs:

assumes inf : ¬finite(subtree T ds)
shows ¬finite(subtree T (ds @ [Left])) ∨ ¬finite(subtree T (ds @ [Right]))

proof −
let ?subtree = subtree T
{

assume asms: finite(?subtree(ds @ [Left]))
finite(?subtree(ds @ [Right]))

have ?subtree ds ⊆ ?subtree (ds @ [Left] ) ∪ ?subtree (ds @ [Right]) ∪ {ds}
using subtree-pos by auto

then have finite(?subtree (ds)) using asms by (simp add: finite-subset)
}
then show ¬finite(?subtree (ds @ [Left])) ∨ ¬finite(?subtree (ds @ [Right]))

using inf by auto
qed

fun buildchain :: (dir list ⇒ dir list) ⇒ nat ⇒ dir list where
buildchain next 0 = []
| buildchain next (Suc n) = next (buildchain next n)

lemma konig:
assumes inf : ¬finite T
assumes wellformed: wf-tree T
shows ∃ c. wf-infpath c ∧ (∀n. (c n) ∈ T )

proof
let ?subtree = subtree T
let ?nextnode = λds. (if ¬finite (?subtree (ds @ [Left])) then ds @ [Left] else ds

@ [Right])

let ?c = buildchain ?nextnode

have is-chain: wf-infpath ?c by auto

from wellformed have prefix: ∀ ds d. (ds @ d) ∈ T −→ ds ∈ T by blast

{
fix n
have (?c n) ∈ T ∧ ¬finite (?subtree (?c n))

proof (induction n)
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case 0
have ∃ ds. ds ∈ T using inf by (simp add: not-finite-existsD)
then obtain ds where ds ∈ T by auto
then have ([]@ds) ∈ T by auto
then have [] ∈ T using prefix by blast
then show ?case using inf by auto

next
case (Suc n)
from Suc have next-in: (?c n) ∈ T by auto
from Suc have next-inf : ¬finite (?subtree (?c n)) by auto

from next-inf have next-next-inf :
¬finite (?subtree (?nextnode (?c n)))

using inf-subs by auto
then have ∃ ds. ds ∈ ?subtree (?nextnode (?c n))

by (simp add: not-finite-existsD)
then obtain ds where dss: ds ∈ ?subtree (?nextnode (?c n)) by auto
then have ds ∈ T ∃ suf . ds = (?nextnode (?c n)) @ suf by auto
then obtain suf where ds ∈ T ∧ ds = (?nextnode (?c n)) @ suf by auto
then have (?nextnode (?c n)) ∈ T

using prefix by blast

then have (?c (Suc n)) ∈ T by auto
then show ?case using next-next-inf by auto

qed
}
then show wf-infpath ?c ∧ (∀n. (?c n)∈ T ) using is-chain by auto

qed

end

5 More Terms and Literals
theory Resolution imports TermsAndLiterals Tree begin

fun complement :: ′t literal ⇒ ′t literal (‹-c› [300 ] 300 ) where
(Pos P ts)c = Neg P ts
| (Neg P ts)c = Pos P ts

lemma cancel-comp1 : (lc)c = l by (cases l) auto

lemma cancel-comp2 :
assumes asm: l1c = l2c
shows l1 = l2

proof −
from asm have (l1c)c = (l2c)c by auto
then have l1 = (l2c)c using cancel-comp1 [of l1] by auto
then show ?thesis using cancel-comp1 [of l2] by auto

qed
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lemma comp-exi1 : ∃ l ′. l ′ = lc by (cases l) auto

lemma comp-exi2 : ∃ l. l ′ = lc
proof

show l ′ = (l ′c)c using cancel-comp1 [of l ′] by auto
qed

lemma comp-swap: l1c = l2 ←→ l1 = l2c
proof −

have l1c = l2 −→ l1 = l2c using cancel-comp1 [of l1] by auto
moreover
have l1 = l2c −→ l1c = l2 using cancel-comp1 by auto
ultimately
show ?thesis by auto

qed

lemma sign-comp: sign l1 6= sign l2 ∧ get-pred l1 = get-pred l2 ∧ get-terms l1 =
get-terms l2 ←→ l2 = l1c
by (cases l1; cases l2) auto

lemma sign-comp-atom: sign l1 6= sign l2 ∧ get-atom l1 = get-atom l2 ←→ l2 =
l1c
by (cases l1; cases l2) auto

6 Clauses
type-synonym ′t clause = ′t literal set

abbreviation complementls :: ′t literal set ⇒ ′t literal set (‹-C› [300 ] 300 ) where

LC ≡ complement ‘ L

lemma cancel-compls1 : (LC)C = L
apply (auto simp add: cancel-comp1 )
apply (metis imageI cancel-comp1 )
done

lemma cancel-compls2 :
assumes asm: L1

C = L2
C

shows L1 = L2

proof −
from asm have (L1

C)C = (L2
C)C by auto

then show ?thesis using cancel-compls1 [of L1] cancel-compls1 [of L2] by simp
qed

fun varst :: fterm ⇒ var-sym set where
varst (Var x) = {x}
| varst (Fun f ts) = (

⋃
t ∈ set ts. varst t)

27



abbreviation varsts :: fterm list ⇒ var-sym set where
varsts ts ≡ (

⋃
t ∈ set ts. varst t)

definition varsl :: fterm literal ⇒ var-sym set where
varsl l = varsts (get-terms l)

definition varsls :: fterm literal set ⇒ var-sym set where
varsls L ≡

⋃
l∈L. varsl l

lemma ground-varst:
assumes groundt t
shows varst t = {}

using assms by (induction t) auto

lemma groundts-varsts:
assumes groundts ts
shows varsts ts = {}

using assms ground-varst by auto

lemma ground l-varsl:
assumes ground l l
shows varsl l = {}
unfolding varsl-def using assms ground-varst by auto

lemma ground ls-varsls:
assumes ground ls L
shows varsls L = {} unfolding varsls-def using assms ground l-varsl by auto

lemma ground-comp: ground l (lc) ←→ ground l l by (cases l) auto

lemma ground-compls: ground ls (LC) ←→ ground ls L using ground-comp by
auto

7 Semantics
type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u
type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool
type-synonym ′u var-denot = var-sym ⇒ ′u

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
| evalt E F (Fun f ts) = F f (map (evalt E F) ts)

abbreviation evalts :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm list ⇒ ′u list where
evalts E F ts ≡ map (evalt E F) ts

fun eval l :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where
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eval l E F G (Pos p ts) ←→ G p (evalts E F ts)
| eval l E F G (Neg p ts) ←→ ¬G p (evalts E F ts)

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E . ∃ l ∈ C . eval l E F G l)

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C )

7.1 Semantics of Ground Terms
lemma ground-var-denott:

assumes groundt t
shows evalt E F t = evalt E ′ F t

using assms proof (induction t)
case (Var x)
then have False by auto
then show ?case by auto

next
case (Fun f ts)
then have ∀ t ∈ set ts. groundt t by auto
then have ∀ t ∈ set ts. evalt E F t = evalt E ′ F t using Fun by auto
then have evalts E F ts = evalts E ′ F ts by auto
then have F f (map (evalt E F) ts) = F f (map (evalt E ′ F) ts) by metis
then show ?case by simp

qed

lemma ground-var-denotts:
assumes groundts ts
shows evalts E F ts = evalts E ′ F ts
using assms ground-var-denott by (metis map-eq-conv)

lemma ground-var-denot:
assumes ground l l
shows eval l E F G l = eval l E ′ F G l

using assms proof (induction l)
case Pos then show ?case using ground-var-denotts by (metis eval l.simps(1 )

literal.sel(3 ))
next

case Neg then show ?case using ground-var-denotts by (metis eval l.simps(2 )
literal.sel(4 ))
qed

8 Substitutions
type-synonym substitution = var-sym ⇒ fterm

fun sub :: fterm ⇒ substitution ⇒ fterm (infixl ‹·t› 55 ) where
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(Var x) ·t σ = σ x
| (Fun f ts) ·t σ = Fun f (map (λt. t ·t σ) ts)

abbreviation subs :: fterm list ⇒ substitution ⇒ fterm list (infixl ‹·ts› 55 ) where
ts ·ts σ ≡ (map (λt. t ·t σ) ts)

fun subl :: fterm literal ⇒ substitution ⇒ fterm literal (infixl ‹·l› 55 ) where
(Pos p ts) ·l σ = Pos p (ts ·ts σ)
| (Neg p ts) ·l σ = Neg p (ts ·ts σ)

abbreviation subls :: fterm literal set ⇒ substitution ⇒ fterm literal set (infixl
‹·ls› 55 ) where

L ·ls σ ≡ (λl. l ·l σ) ‘ L

lemma subls-def2 : L ·ls σ = {l ·l σ|l. l ∈ L} by auto

definition instance-of t :: fterm ⇒ fterm ⇒ bool where
instance-of t t1 t2 ←→ (∃σ. t1 = t2 ·t σ)

definition instance-of ts :: fterm list ⇒ fterm list ⇒ bool where
instance-of ts ts1 ts2 ←→ (∃σ. ts1 = ts2 ·ts σ)

definition instance-of l :: fterm literal ⇒ fterm literal ⇒ bool where
instance-of l l1 l2 ←→ (∃σ. l1 = l2 ·l σ)

definition instance-of ls :: fterm clause ⇒ fterm clause ⇒ bool where
instance-of ls C 1 C 2 ←→ (∃σ. C 1 = C 2 ·ls σ)

lemma comp-sub: (lc) ·l σ=(l ·l σ)c
by (cases l) auto

lemma compls-subls: (LC) ·ls σ=(L ·ls σ)C

using comp-sub apply auto
apply (metis image-eqI )
done

lemma subls-union: (L1 ∪ L2) ·ls σ = (L1 ·ls σ) ∪ (L2 ·ls σ) by auto

definition var-renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var-renaming-of C 1 C 2 ←→ instance-of ls C 1 C 2 ∧ instance-of ls C 2 C 1

8.1 The Empty Substitution
abbreviation ε :: substitution where
ε ≡ Var

lemma empty-subt: (t :: fterm) ·t ε = t
by (induction t) (auto simp add: map-idI )
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lemma empty-subts: ts ·ts ε = ts
using empty-subt by auto

lemma empty-subl: l ·l ε = l
using empty-subts by (cases l) auto

lemma empty-subls: L ·ls ε = L
using empty-subl by auto

lemma instance-of t-self : instance-of t t t
unfolding instance-of t-def
proof

show t = t ·t ε using empty-subt by auto
qed

lemma instance-of ts-self : instance-of ts ts ts
unfolding instance-of ts-def
proof

show ts = ts ·ts ε using empty-subts by auto
qed

lemma instance-of l-self : instance-of l l l
unfolding instance-of l-def
proof

show l = l ·l ε using empty-subl by auto
qed

lemma instance-of ls-self : instance-of ls L L
unfolding instance-of ls-def
proof

show L = L ·ls ε using empty-subls by auto
qed

8.2 Substitutions and Ground Terms
lemma ground-sub:

assumes groundt t
shows t ·t σ = t

using assms by (induction t) (auto simp add: map-idI )

lemma ground-subs:
assumes groundts ts
shows ts ·ts σ = ts

using assms ground-sub by (simp add: map-idI )

lemma ground l-subs:
assumes ground l l
shows l ·l σ = l
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using assms ground-subs by (cases l) auto

lemma ground ls-subls:
assumes ground: ground ls L
shows L ·ls σ = L

proof −
{

fix l
assume l-L: l ∈ L
then have ground l l using ground by auto
then have l = l ·l σ using ground l-subs by auto
moreover
then have l ·l σ ∈ L ·ls σ using l-L by auto
ultimately
have l ∈ L ·ls σ by auto

}
moreover
{

fix l
assume l-L: l ∈ L ·ls σ
then obtain l ′ where l ′-p: l ′ ∈ L ∧ l ′ ·l σ = l by auto
then have l ′ = l using ground ground l-subs by auto
from l-L l ′-p this have l ∈ L by auto

}
ultimately show ?thesis by auto

qed

8.3 Composition
definition composition :: substitution ⇒ substitution ⇒ substitution (infixl ‹·›
55 ) where
(σ1 · σ2) x = (σ1 x) ·t σ2

lemma composition-conseq2t: (t ·t σ1) ·t σ2 = t ·t (σ1 · σ2)
proof (induction t)

case (Var x)
have ((Var x) ·t σ1) ·t σ2 = (σ1 x) ·t σ2 by simp
also have ... = (σ1 · σ2) x unfolding composition-def by simp
finally show ?case by auto

next
case (Fun t ts)
then show ?case unfolding composition-def by auto

qed

lemma composition-conseq2ts: (ts ·ts σ1) ·ts σ2 = ts ·ts (σ1 · σ2)
using composition-conseq2t by auto

lemma composition-conseq2l: (l ·l σ1) ·l σ2 = l ·l (σ1 · σ2)
using composition-conseq2t by (cases l) auto
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lemma composition-conseq2ls: (L ·ls σ1) ·ls σ2 = L ·ls (σ1 · σ2)
using composition-conseq2l apply auto
apply (metis imageI )
done

lemma composition-assoc: σ1 · (σ2 · σ3) = (σ1 · σ2) · σ3

proof
fix x
show (σ1 · (σ2 · σ3)) x = ((σ1 · σ2) · σ3) x

by (simp only: composition-def composition-conseq2t)
qed

lemma empty-comp1 : (σ · ε) = σ
proof

fix x
show (σ · ε) x = σ x unfolding composition-def using empty-subt by auto

qed

lemma empty-comp2 : (ε · σ) = σ
proof

fix x
show (ε · σ) x = σ x unfolding composition-def by simp

qed

lemma instance-of t-trans :
assumes t12: instance-of t t1 t2
assumes t23: instance-of t t2 t3
shows instance-of t t1 t3

proof −
from t12 obtain σ12 where t1 = t2 ·t σ12

unfolding instance-of t-def by auto
moreover
from t23 obtain σ23 where t2 = t3 ·t σ23

unfolding instance-of t-def by auto
ultimately
have t1 = (t3 ·t σ23) ·t σ12 by auto
then have t1 = t3 ·t (σ23 · σ12) using composition-conseq2t by simp
then show ?thesis unfolding instance-of t-def by auto

qed

lemma instance-of ts-trans :
assumes ts12: instance-of ts ts1 ts2
assumes ts23: instance-of ts ts2 ts3
shows instance-of ts ts1 ts3

proof −
from ts12 obtain σ12 where ts1 = ts2 ·ts σ12

unfolding instance-of ts-def by auto
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moreover
from ts23 obtain σ23 where ts2 = ts3 ·ts σ23

unfolding instance-of ts-def by auto
ultimately
have ts1 = (ts3 ·ts σ23) ·ts σ12 by auto
then have ts1 = ts3 ·ts (σ23 · σ12) using composition-conseq2ts by simp
then show ?thesis unfolding instance-of ts-def by auto

qed

lemma instance-of l-trans :
assumes l12: instance-of l l1 l2
assumes l23: instance-of l l2 l3
shows instance-of l l1 l3

proof −
from l12 obtain σ12 where l1 = l2 ·l σ12

unfolding instance-of l-def by auto
moreover
from l23 obtain σ23 where l2 = l3 ·l σ23

unfolding instance-of l-def by auto
ultimately
have l1 = (l3 ·l σ23) ·l σ12 by auto
then have l1 = l3 ·l (σ23 · σ12) using composition-conseq2l by simp
then show ?thesis unfolding instance-of l-def by auto

qed

lemma instance-of ls-trans :
assumes L12: instance-of ls L1 L2

assumes L23: instance-of ls L2 L3

shows instance-of ls L1 L3

proof −
from L12 obtain σ12 where L1 = L2 ·ls σ12

unfolding instance-of ls-def by auto
moreover
from L23 obtain σ23 where L2 = L3 ·ls σ23

unfolding instance-of ls-def by auto
ultimately
have L1 = (L3 ·ls σ23) ·ls σ12 by auto
then have L1 = L3 ·ls (σ23 · σ12) using composition-conseq2ls by simp
then show ?thesis unfolding instance-of ls-def by auto

qed

8.4 Merging substitutions
lemma project-sub:

assumes inst-C :C ·ls lmbd = C ′

assumes L ′sub: L ′ ⊆ C ′

shows ∃L ⊆ C . L ·ls lmbd = L ′ ∧ (C−L) ·ls lmbd = C ′ − L ′

proof −
let ?L = {l ∈ C . ∃ l ′ ∈ L ′. l ·l lmbd = l ′}
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have ?L ⊆ C by auto
moreover
have ?L ·ls lmbd = L ′

proof (rule Orderings.order-antisym; rule Set.subsetI )
fix l ′
assume l ′L: l ′ ∈ L ′

from inst-C have {l ·l lmbd|l. l ∈ C} = C ′ unfolding subls-def2 by −
then have ∃ l. l ′ = l ·l lmbd ∧ l ∈ C ∧ l ·l lmbd ∈ L ′ using L ′sub l ′L by

auto
then have l ′ ∈ {l ∈ C . l ·l lmbd ∈ L ′} ·ls lmbd by auto
then show l ′ ∈ {l ∈ C . ∃ l ′∈L ′. l ·l lmbd = l ′} ·ls lmbd by auto

qed auto
moreover
have (C−?L) ·ls lmbd = C ′ − L ′ using inst-C by auto
ultimately show ?thesis

by blast
qed

lemma relevant-vars-subt:
assumes ∀ x ∈ varst t. σ1 x = σ2 x
shows t ·t σ1 = t ·t σ2

using assms proof (induction t)
case (Fun f ts)
have f : ∀ t. t ∈ set ts −→ varst t ⊆ varsts ts by (induction ts) auto
have ∀ t∈set ts. t ·t σ1 = t ·t σ2

proof
fix t
assume tints: t ∈ set ts
then have ∀ x ∈ varst t. σ1 x = σ2 x using f Fun(2 ) by auto
then show t ·t σ1 = t ·t σ2 using Fun tints by auto

qed
then have ts ·ts σ1 = ts ·ts σ2 by auto
then show ?case by auto

qed auto

lemma relevant-vars-subts:
assumes asm: ∀ x ∈ varsts ts. σ1 x = σ2 x
shows ts ·ts σ1 = ts ·ts σ2

proof −
have f : ∀ t. t ∈ set ts −→ varst t ⊆ varsts ts by (induction ts) auto
have ∀ t∈set ts. t ·t σ1 = t ·t σ2

proof
fix t
assume tints: t ∈ set ts
then have ∀ x ∈ varst t. σ1 x = σ2 x using f asm by auto
then show t ·t σ1 = t ·t σ2 using relevant-vars-subt tints by auto

qed
then show ?thesis by auto

qed
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lemma relevant-vars-subl:
assumes ∀ x ∈ varsl l. σ1 x = σ2 x
shows l ·l σ1 = l ·l σ2

using assms proof (induction l)
case (Pos p ts)
then show ?case using relevant-vars-subts unfolding varsl-def by auto

next
case (Neg p ts)
then show ?case using relevant-vars-subts unfolding varsl-def by auto

qed

lemma relevant-vars-subls:
assumes asm: ∀ x ∈ varsls L. σ1 x = σ2 x
shows L ·ls σ1 = L ·ls σ2

proof −
have f : ∀ l. l ∈ L −→ varsl l ⊆ varsls L unfolding varsls-def by auto
have ∀ l ∈ L. l ·l σ1 = l ·l σ2

proof
fix l
assume linls: l∈L
then have ∀ x∈varsl l. σ1 x = σ2 x using f asm by auto
then show l ·l σ1 = l ·l σ2 using relevant-vars-subl linls by auto

qed
then show ?thesis by (meson image-cong)

qed

lemma merge-sub:
assumes dist: varsls C ∩ varsls D = {}
assumes CC ′: C ·ls lmbd = C ′

assumes DD ′: D ·ls µ = D ′

shows ∃ η. C ·ls η = C ′ ∧ D ·ls η = D ′

proof −
let ?η = λx. if x ∈ varsls C then lmbd x else µ x
have ∀ x∈varsls C . ?η x = lmbd x by auto
then have C ·ls ?η = C ·ls lmbd using relevant-vars-subls[of C ?η lmbd] by

auto
then have C ·ls ?η = C ′ using CC ′ by auto
moreover
have ∀ x ∈ varsls D. ?η x = µ x using dist by auto
then have D ·ls ?η = D ·ls µ using relevant-vars-subls[of D ?η µ] by auto
then have D ·ls ?η = D ′ using DD ′ by auto
ultimately
show ?thesis by auto

qed

8.5 Standardizing apart
abbreviation std1 :: fterm clause ⇒ fterm clause where
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std1 C ≡ C ·ls (λx. Var ( ′′1 ′′ @ x))

abbreviation std2 :: fterm clause ⇒ fterm clause where
std2 C ≡ C ·ls (λx. Var ( ′′2 ′′ @ x))

lemma std-apart-apart ′′:
assumes x ∈ varst (t ·t (λx::char list. Var (y @ x)))
shows ∃ x ′. x = y@x ′

using assms by (induction t) auto

lemma std-apart-apart ′:
assumes x ∈ varsl (l ·l (λx. Var (y@x)))
shows ∃ x ′. x = y@x ′

using assms unfolding varsl-def using std-apart-apart ′′ by (cases l) auto

lemma std-apart-apart: varsls (std1 C 1) ∩ varsls (std2 C 2) = {}
proof −

{
fix x
assume xin: x ∈ varsls (std1 C 1) ∩ varsls (std2 C 2)
from xin have x ∈ varsls (std1 C 1) by auto
then have ∃ x ′. x= ′′1 ′′ @ x ′

using std-apart-apart ′[of x - ′′1 ′′] unfolding varsls-def by auto
moreover
from xin have x ∈ varsls (std2 C 2) by auto
then have ∃ x ′. x= ′′2 ′′ @x ′

using std-apart-apart ′[of x - ′′2 ′′] unfolding varsls-def by auto
ultimately have False by auto
then have x ∈ {} by auto

}
then show ?thesis by auto

qed

lemma std-apart-instance-of ls1 : instance-of ls C 1 (std1 C 1)
proof −

have empty: (λx. Var ( ′′1 ′′@x)) · (λx. Var (tl x)) = ε using composition-def
by auto

have C 1 ·ls ε = C 1 using empty-subls by auto
then have C 1 ·ls ((λx. Var ( ′′1 ′′@x)) · (λx. Var (tl x))) = C 1 using empty by

auto
then have (C 1 ·ls (λx. Var ( ′′1 ′′@x))) ·ls (λx. Var (tl x)) = C 1 using compo-

sition-conseq2ls by auto
then have C 1 = (std1 C 1) ·ls (λx. Var (tl x)) by auto
then show instance-of ls C 1 (std1 C 1) unfolding instance-of ls-def by auto

qed

lemma std-apart-instance-of ls2 : instance-of ls C2 (std2 C2 )
proof −
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have empty: (λx. Var ( ′′2 ′′@x)) · (λx. Var (tl x)) = ε using composition-def
by auto

have C2 ·ls ε = C2 using empty-subls by auto
then have C2 ·ls ((λx. Var ( ′′2 ′′@x)) · (λx. Var (tl x))) = C2 using empty by

auto
then have (C2 ·ls (λx. Var ( ′′2 ′′@x))) ·ls (λx. Var (tl x)) = C2 using compo-

sition-conseq2ls by auto
then have C2 = (std2 C2 ) ·ls (λx. Var (tl x)) by auto
then show instance-of ls C2 (std2 C2 ) unfolding instance-of ls-def by auto

qed

9 Unifiers
definition unifier ts :: substitution ⇒ fterm set ⇒ bool where

unifier ts σ ts ←→ (∃ t ′. ∀ t ∈ ts. t ·t σ = t ′)

definition unifier ls :: substitution ⇒ fterm literal set ⇒ bool where
unifier ls σ L ←→ (∃ l ′. ∀ l ∈ L. l ·l σ = l ′)

lemma unif-sub:
assumes unif : unifier ls σ L
assumes nonempty: L 6= {}
shows ∃ l. subls L σ = {subl l σ}

proof −
from nonempty obtain l where l ∈ L by auto
from unif this have L ·ls σ = {l ·l σ} unfolding unifier ls-def by auto
then show ?thesis by auto

qed

lemma unifiert-def2 :
assumes L-elem: ts 6= {}
shows unifier ts σ ts ←→ (∃ l. (λt. sub t σ) ‘ ts ={l})

proof
assume unif : unifier ts σ ts
from L-elem obtain t where t ∈ ts by auto
then have (λt. sub t σ) ‘ ts = {t ·t σ} using unif unfolding unifier ts-def by

auto
then show ∃ l. (λt. sub t σ) ‘ ts = {l} by auto

next
assume ∃ l. (λt. sub t σ) ‘ ts ={l}
then obtain l where (λt. sub t σ) ‘ ts = {l} by auto
then have ∀ l ′ ∈ ts. l ′ ·t σ = l by auto
then show unifier ts σ ts unfolding unifier ts-def by auto

qed

lemma unifier ls-def2 :
assumes L-elem: L 6= {}
shows unifier ls σ L ←→ (∃ l. L ·ls σ = {l})
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proof
assume unif : unifier ls σ L
from L-elem obtain l where l ∈ L by auto
then have L ·ls σ = {l ·l σ} using unif unfolding unifier ls-def by auto
then show ∃ l. L ·ls σ = {l} by auto

next
assume ∃ l. L ·ls σ ={l}
then obtain l where L ·ls σ = {l} by auto
then have ∀ l ′ ∈ L. l ′ ·l σ = l by auto
then show unifier ls σ L unfolding unifier ls-def by auto

qed

lemma ground ls-unif-singleton:
assumes ground ls: ground ls L
assumes unif : unifier ls σ ′ L
assumes empt: L 6= {}
shows ∃ l. L = {l}

proof −
from unif empt have ∃ l. L ·ls σ ′ = {l} using unif-sub by auto
then show ?thesis using ground ls-subls ground ls by auto

qed

definition unifiablets :: fterm set ⇒ bool where
unifiablets fs ←→ (∃σ. unifier ts σ fs)

definition unifiablels :: fterm literal set ⇒ bool where
unifiablels L ←→ (∃σ. unifier ls σ L)

lemma unifier-comp[simp]: unifier ls σ (LC) ←→ unifier ls σ L
proof

assume unifier ls σ (LC)
then obtain l ′′ where l ′′-p: ∀ l ∈ LC . l ·l σ = l ′′

unfolding unifier ls-def by auto
obtain l ′ where (l ′)c = l ′′ using comp-exi2 [of l ′′] by auto
from this l ′′-p have l ′-p:∀ l ∈ LC . l ·l σ = (l ′)c by auto
have ∀ l ∈ L. l ·l σ = l ′

proof
fix l
assume l∈L
then have lc ∈ LC by auto
then have (lc) ·l σ = (l ′)c using l ′-p by auto
then have (l ·l σ)c = (l ′)c by (cases l) auto
then show l ·l σ = l ′ using cancel-comp2 by blast

qed
then show unifier ls σ L unfolding unifier ls-def by auto

next
assume unifier ls σ L
then obtain l ′ where l ′-p: ∀ l ∈ L. l ·l σ = l ′ unfolding unifier ls-def by auto
have ∀ l ∈ LC . l ·l σ = (l ′)c
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proof
fix l
assume l ∈ LC

then have lc ∈ L using cancel-comp1 by (metis image-iff )
then show l ·l σ = (l ′)c using l ′-p comp-sub cancel-comp1 by metis

qed
then show unifier ls σ (LC) unfolding unifier ls-def by auto

qed

lemma unifier-sub1 :
assumes unifier ls σ L
assumes L ′ ⊆ L
shows unifier ls σ L ′

using assms unfolding unifier ls-def by auto

lemma unifier-sub2 :
assumes asm: unifier ls σ (L1 ∪ L2)
shows unifier ls σ L1 ∧ unifier ls σ L2

proof −
have L1 ⊆ (L1 ∪ L2) ∧ L2 ⊆ (L1 ∪ L2) by simp
from this asm show ?thesis using unifier-sub1 by auto

qed

9.1 Most General Unifiers
definition mguts :: substitution ⇒ fterm set ⇒ bool where

mguts σ ts ←→ unifier ts σ ts ∧ (∀ u. unifier ts u ts −→ (∃ i. u = σ · i))

definition mguls :: substitution ⇒ fterm literal set ⇒ bool where
mguls σ L ←→ unifier ls σ L ∧ (∀ u. unifier ls u L −→ (∃ i. u = σ · i))

10 Resolution
definition applicable :: fterm clause ⇒ fterm clause

⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ bool where

applicable C 1 C 2 L1 L2 σ ←→
C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C 1 ∩ varsls C 2 = {}
∧ L1 ⊆ C 1 ∧ L2 ⊆ C 2

∧ mguls σ (L1 ∪ L2
C)

definition mresolution :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

mresolution C 1 C 2 L1 L2 σ = ((C 1 ·ls σ)− (L1 ·ls σ)) ∪ ((C 2 ·ls σ) − (L2 ·ls
σ))

definition resolution :: fterm clause ⇒ fterm clause
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⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

resolution C 1 C 2 L1 L2 σ = ((C 1 − L1) ∪ (C 2 − L2)) ·ls σ

inductive mresolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
mresolution-rule:

C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒
mresolution-step Cs (Cs ∪ {mresolution C 1 C 2 L1 L2 σ})

| standardize-apart:
C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ mresolution-step Cs (Cs ∪ {C ′})

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:

C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒
resolution-step Cs (Cs ∪ {resolution C 1 C 2 L1 L2 σ})

| standardize-apart:
C ∈ Cs =⇒ var-renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

definition mresolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
mresolution-deriv = rtranclp mresolution-step

definition resolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-deriv = rtranclp resolution-step

11 Soundness
definition evalsub :: ′u var-denot ⇒ ′u fun-denot ⇒ substitution ⇒ ′u var-denot
where

evalsub E F σ = evalt E F ◦ σ

lemma substitutiont: evalt E F (t ·t σ) = evalt (evalsub E F σ) F t
apply (induction t)
unfolding evalsub-def apply auto

apply (metis (mono-tags, lifting) comp-apply map-cong)
done

lemma substitutionts: evalts E F (ts ·ts σ) = evalts (evalsub E F σ) F ts
using substitutiont by auto

lemma substitution: eval l E F G (l ·l σ) ←→ eval l (evalsub E F σ) F G l
apply (induction l)
using substitutionts apply (metis eval l.simps(1 ) subl.simps(1 ))

using substitutionts apply (metis eval l.simps(2 ) subl.simps(2 ))
done

lemma subst-sound:
assumes asm: evalc F G C
shows evalc F G (C ·ls σ)

unfolding evalc-def proof
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fix E
from asm have ∀E ′. ∃ l ∈ C . eval l E ′ F G l using evalc-def by blast
then have ∃ l ∈ C . eval l (evalsub E F σ) F G l by auto
then show ∃ l ∈ C ·ls σ. eval l E F G l using substitution by blast

qed

lemma simple-resolution-sound:
assumes C 1sat: evalc F G C 1

assumes C 2sat: evalc F G C 2

assumes l1inc1: l1 ∈ C 1

assumes l2inc2: l2 ∈ C 2

assumes comp: l1c = l2
shows evalc F G ((C 1 − {l1}) ∪ (C 2 − {l2}))

proof −
have ∀E . ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). eval l E F G l

proof
fix E
have eval l E F G l1 ∨ eval l E F G l2 using comp by (cases l1) auto
then show ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). eval l E F G l

proof
assume eval l E F G l1
then have ¬eval l E F G l2 using comp by (cases l1) auto

then have ∃ l2 ′∈ C 2. l2 ′ 6= l2 ∧ eval l E F G l2 ′ using l2inc2 C 2sat
unfolding evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). eval l E F G l by auto
next

assume eval l E F G l2
then have ¬eval l E F G l1 using comp by (cases l1) auto

then have ∃ l1 ′∈ C 1. l1 ′ 6= l1 ∧ eval l E F G l1 ′ using l1inc1 C 1sat
unfolding evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). eval l E F G l by auto
qed

qed
then show ?thesis unfolding evalc-def by simp

qed

lemma mresolution-sound:
assumes sat1: evalc F G C 1

assumes sat2: evalc F G C 2

assumes appl: applicable C 1 C 2 L1 L2 σ
shows evalc F G (mresolution C 1 C 2 L1 L2 σ)

proof −
from sat1 have sat1σ: evalc F G (C 1 ·ls σ) using subst-sound by blast
from sat2 have sat2σ: evalc F G (C 2 ·ls σ) using subst-sound by blast

from appl obtain l1 where l1-p: l1 ∈ L1 unfolding applicable-def by auto

from l1-p appl have l1 ∈ C 1 unfolding applicable-def by auto
then have inc1σ: l1 ·l σ ∈ C 1 ·ls σ by auto
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from l1-p have unified1: l1 ∈ (L1 ∪ (L2
C)) by auto

from l1-p appl have l1σisl1σ: {l1 ·l σ} = L1 ·ls σ
unfolding mguls-def unifier ls-def applicable-def by auto

from appl obtain l2 where l2-p: l2 ∈ L2 unfolding applicable-def by auto

from l2-p appl have l2 ∈ C 2 unfolding applicable-def by auto
then have inc2σ: l2 ·l σ ∈ C 2 ·ls σ by auto

from l2-p have unified2: l2c ∈ (L1 ∪ (L2
C)) by auto

from unified1 unified2 appl have l1 ·l σ = (l2c) ·l σ
unfolding mguls-def unifier ls-def applicable-def by auto

then have comp: (l1 ·l σ)c = l2 ·l σ using comp-sub comp-swap by auto

from appl have unifier ls σ (L2
C)

using unifier-sub2 unfolding mguls-def applicable-def by blast
then have unifier ls σ L2 by auto
from this l2-p have l2σisl2σ: {l2 ·l σ} = L2 ·ls σ unfolding unifier ls-def by

auto

from sat1σ sat2σ inc1σ inc2σ comp have evalc F G ((C 1 ·ls σ) − {l1 ·l σ} ∪
((C 2 ·ls σ) − {l2 ·l σ})) using simple-resolution-sound[of F G C 1 ·ls σ C 2 ·ls σ
l1 ·l σ l2 ·l σ]

by auto
from this l1σisl1σ l2σisl2σ show ?thesis unfolding mresolution-def by auto

qed

lemma resolution-superset: mresolution C 1 C 2 L1 L2 σ ⊆ resolution C 1 C 2 L1

L2 σ
unfolding mresolution-def resolution-def by auto

lemma superset-sound:
assumes sup: C ⊆ C ′

assumes sat: evalc F G C
shows evalc F G C ′

proof −
have ∀E . ∃ l ∈ C ′. eval l E F G l

proof
fix E
from sat have ∀E . ∃ l ∈ C . eval l E F G l unfolding evalc-def by −
then have ∃ l ∈ C . eval l E F G l by auto
then show ∃ l ∈ C ′. eval l E F G l using sup by auto

qed
then show evalc F G C ′ unfolding evalc-def by auto

qed
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theorem resolution-sound:
assumes sat1: evalc F G C 1

assumes sat2: evalc F G C 2

assumes appl: applicable C 1 C 2 L1 L2 σ
shows evalc F G (resolution C 1 C 2 L1 L2 σ)

proof −
from sat1 sat2 appl have evalc F G (mresolution C 1 C 2 L1 L2 σ) using mres-

olution-sound by blast
then show ?thesis using superset-sound resolution-superset by metis

qed

lemma mstep-sound:
assumes mresolution-step Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms proof (induction rule: mresolution-step.induct)
case (mresolution-rule C 1 Cs C 2 l1 l2 σ)
then have evalc F G C 1 ∧ evalc F G C 2 unfolding evalcs-def by auto
then have evalc F G (mresolution C 1 C 2 l1 l2 σ)

using mresolution-sound mresolution-rule by auto
then show ?case using mresolution-rule unfolding evalcs-def by auto

next
case (standardize-apart C Cs C ′)
then have evalc F G C unfolding evalcs-def by auto
then have evalc F G C ′ using subst-sound standardize-apart unfolding var-renaming-of-def

instance-of ls-def by metis
then show ?case using standardize-apart unfolding evalcs-def by auto

qed

theorem step-sound:
assumes resolution-step Cs Cs ′

assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms proof (induction rule: resolution-step.induct)
case (resolution-rule C 1 Cs C 2 l1 l2 σ)
then have evalc F G C 1 ∧ evalc F G C 2 unfolding evalcs-def by auto
then have evalc F G (resolution C 1 C 2 l1 l2 σ)

using resolution-sound resolution-rule by auto
then show ?case using resolution-rule unfolding evalcs-def by auto

next
case (standardize-apart C Cs C ′)
then have evalc F G C unfolding evalcs-def by auto
then have evalc F G C ′ using subst-sound standardize-apart unfolding var-renaming-of-def

instance-of ls-def by metis
then show ?case using standardize-apart unfolding evalcs-def by auto

qed

lemma mderivation-sound:
assumes mresolution-deriv Cs Cs ′
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assumes evalcs F G Cs
shows evalcs F G Cs ′

using assms unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs1 Cs2 Cs3) then show ?case using mstep-sound by
auto
qed

theorem derivation-sound:
assumes resolution-deriv Cs Cs ′

assumes evalcs F G Cs
showsevalcs F G Cs ′

using assms unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs1 Cs2 Cs3) then show ?case using step-sound by
auto
qed

theorem derivation-sound-refute:
assumes deriv: resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

shows ¬evalcs F G Cs
proof −

from deriv have evalcs F G Cs −→ evalcs F G Cs ′ using derivation-sound by
auto

moreover
from deriv have evalcs F G Cs ′ −→ evalc F G {} unfolding evalcs-def by auto
moreover
then have evalc F G {} −→ False unfolding evalc-def by auto
ultimately show ?thesis by auto

qed

12 Herbrand Interpretations

HFun is the Herbrand function denotation in which terms are mapped to
themselves.
term HFun

lemma eval-groundt:
assumes groundt t
shows (evalt E HFun t) = hterm-of-fterm t
using assms by (induction t) auto

lemma eval-groundts:
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assumes groundts ts
shows (evalts E HFun ts) = hterms-of-fterms ts
unfolding hterms-of-fterms-def using assms eval-groundt by (induction ts) auto

lemma eval l-groundts:
assumes asm: groundts ts
shows eval l E HFun G (Pos P ts) ←→ G P (hterms-of-fterms ts)

proof −
have eval l E HFun G (Pos P ts) = G P (evalts E HFun ts) by auto
also have ... = G P (hterms-of-fterms ts) using asm eval-groundts by simp
finally show ?thesis by auto

qed

13 Partial Interpretations
type-synonym partial-pred-denot = bool list

definition falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→

ground l l
∧ (let i = nat-of-fatom (get-atom l) in

i < length G ∧ G ! i = (¬sign l)
)

A ground clause is falsified if it is actually ground and all its literals are
falsified.
abbreviation falsifiesg :: partial-pred-denot ⇒ fterm clause ⇒ bool where

falsifiesg G C ≡ ground ls C ∧ (∀ l ∈ C . falsifiesl G l)

abbreviation falsifiesc :: partial-pred-denot ⇒ fterm clause ⇒ bool where
falsifiesc G C ≡ (∃C ′. instance-of ls C ′ C ∧ falsifiesg G C ′)

abbreviation falsifiescs :: partial-pred-denot ⇒ fterm clause set ⇒ bool where
falsifiescs G Cs ≡ (∃C ∈ Cs. falsifiesc G C )

abbreviation extend :: (nat ⇒ partial-pred-denot) ⇒ hterm pred-denot where
extend f P ts ≡ (

let n = nat-of-hatom (P, ts) in
f (Suc n) ! n

)

fun sub-of-denot :: hterm var-denot ⇒ substitution where
sub-of-denot E = fterm-of-hterm ◦ E

lemma ground-sub-of-denott: groundt (t ·t (sub-of-denot E))
by (induction t) (auto simp add: ground-fterm-of-hterm)

lemma ground-sub-of-denotts: groundts (ts ·ts sub-of-denot E)
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using ground-sub-of-denott by simp

lemma ground-sub-of-denotl: ground l (l ·l sub-of-denot E)
proof −

have groundts (subs (get-terms l) (sub-of-denot E))
using ground-sub-of-denotts by auto

then show ?thesis by (cases l) auto
qed

lemma sub-of-denot-equivx: evalt E HFun (sub-of-denot E x) = E x
proof −

have groundt (sub-of-denot E x) using ground-fterm-of-hterm by simp
then
have evalt E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)

using eval-groundt(1 ) by auto
also have ... = hterm-of-fterm (fterm-of-hterm (E x)) by auto
also have ... = E x by auto
finally show ?thesis by auto

qed

lemma sub-of-denot-equivt:
evalt E HFun (t ·t (sub-of-denot E)) = evalt E HFun t

using sub-of-denot-equivx by (induction t) auto

lemma sub-of-denot-equivts: evalts E HFun (ts ·ts (sub-of-denot E)) = evalts E
HFun ts
using sub-of-denot-equivt by simp

lemma sub-of-denot-equivl: eval l E HFun G (l ·l sub-of-denot E) ←→ eval l E
HFun G l
proof (induction l)

case (Pos p ts)
have eval l E HFun G ((Pos p ts) ·l sub-of-denot E) ←→ G p (evalts E HFun (ts
·ts (sub-of-denot E))) by auto

also have ... ←→ G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... ←→ eval l E HFun G (Pos p ts) by simp
finally
show ?case by blast

next
case (Neg p ts)
have eval l E HFun G ((Neg p ts) ·l sub-of-denot E) ←→ ¬G p (evalts E HFun

(ts ·ts (sub-of-denot E))) by auto
also have ... ←→ ¬G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts]

by metis
also have ... = eval l E HFun G (Neg p ts) by simp
finally
show ?case by blast
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qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.
lemma sub-of-denot-equiv-ground ′:

eval l E HFun G l = eval l E HFun G (l ·l sub-of-denot E) ∧ ground l (l ·l
sub-of-denot E)

using sub-of-denot-equivl ground-sub-of-denotl by auto

Under an Herbrand interpretation, an environment is similar to a substitu-
tion - also for partial interpretations.
lemma partial-equiv-subst:

assumes falsifiesc G (C ·ls τ)
shows falsifiesc G C

proof −
from assms obtain C ′ where C ′-p: instance-of ls C ′ (C ·ls τ) ∧ falsifiesg G C ′

by auto
then have instance-of ls (C ·ls τ) C unfolding instance-of ls-def by auto
then have instance-of ls C ′ C using C ′-p instance-of ls-trans by auto
then show ?thesis using C ′-p by auto

qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.
lemma sub-of-denot-equiv-ground:
((∃ l ∈ C . eval l E HFun G l) ←→ (∃ l ∈ C ·ls sub-of-denot E . eval l E HFun G

l))
∧ ground ls (C ·ls sub-of-denot E)

using sub-of-denot-equiv-ground ′ by auto

lemma std1-falsifies: falsifiesc G C 1 ←→ falsifiesc G (std1 C 1)
proof

assume asm: falsifiesc G C 1

then obtain Cg where instance-of ls Cg C 1 ∧ falsifiesg G Cg by auto
moreover
then have instance-of ls Cg (std1 C 1) using std-apart-instance-of ls1 instance-of ls-trans

by blast
ultimately
show falsifiesc G (std1 C 1) by auto

next
assume asm: falsifiesc G (std1 C 1)
then have inst: instance-of ls (std1 C 1) C 1 unfolding instance-of ls-def by auto

from asm obtain Cg where instance-of ls Cg (std1 C 1) ∧ falsifiesg G Cg by
auto

moreover
then have instance-of ls Cg C 1 using inst instance-of ls-trans by blast
ultimately
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show falsifiesc G C 1 by auto
qed

lemma std2-falsifies: falsifiesc G C 2 ←→ falsifiesc G (std2 C 2)
proof

assume asm: falsifiesc G C 2

then obtain Cg where instance-of ls Cg C 2 ∧ falsifiesg G Cg by auto
moreover
then have instance-of ls Cg (std2 C 2) using std-apart-instance-of ls2 instance-of ls-trans

by blast
ultimately
show falsifiesc G (std2 C 2) by auto

next
assume asm: falsifiesc G (std2 C 2)
then have inst: instance-of ls (std2 C 2) C 2 unfolding instance-of ls-def by auto

from asm obtain Cg where instance-of ls Cg (std2 C 2) ∧ falsifiesg G Cg by
auto

moreover
then have instance-of ls Cg C 2 using inst instance-of ls-trans by blast
ultimately
show falsifiesc G C 2 by auto

qed

lemma std1-renames: var-renaming-of C 1 (std1 C 1)
proof −

have instance-of ls C 1 (std1 C 1) using std-apart-instance-of ls1 by auto
moreover have instance-of ls (std1 C 1) C 1 unfolding instance-of ls-def by auto
ultimately show var-renaming-of C 1 (std1 C 1) unfolding var-renaming-of-def

by auto
qed

lemma std2-renames: var-renaming-of C 2 (std2 C 2)
proof −

have instance-of ls C 2 (std2 C 2) using std-apart-instance-of ls2 by auto
moreover have instance-of ls (std2 C 2) C 2 unfolding instance-of ls-def by auto
ultimately show var-renaming-of C 2 (std2 C 2) unfolding var-renaming-of-def

by auto
qed

14 Semantic Trees
abbreviation closed-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒
bool where

closed-branch G T Cs ≡ branch G T ∧ falsifiescs G Cs

abbreviation(input) open-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set
⇒ bool where

open-branch G T Cs ≡ branch G T ∧ ¬falsifiescs G Cs

49



definition closed-tree :: tree ⇒ fterm clause set ⇒ bool where
closed-tree T Cs ←→ anybranch T (λb. closed-branch b T Cs)

∧ anyinternal T (λp. ¬falsifiescs p Cs)

15 Herbrand’s Theorem
lemma maximum:

assumes asm: finite C
shows ∃n :: nat. ∀ l ∈ C . f l ≤ n

proof
from asm show ∀ l∈C . f l ≤ (Max (f ‘ C )) by auto

qed

lemma extend-preserves-model:
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes C-ground: ground ls C
assumes C-sat: ¬falsifiesc (f (Suc n)) C
assumes n-max: ∀ l∈C . nat-of-fatom (get-atom l) ≤ n
shows evalc HFun (extend f ) C

proof −
let ?F = HFun
let ?G = extend f
{

fix E
from C-sat have ∀C ′. (¬instance-of ls C ′ C ∨ ¬falsifiesg (f (Suc n)) C ′) by

auto
then have ¬falsifiesg (f (Suc n)) C using instance-of ls-self by auto
then obtain l where l-p: l∈C ∧ ¬falsifiesl (f (Suc n)) l using C-ground by

blast
let ?i = nat-of-fatom (get-atom l)

from l-p have i-n: ?i ≤ n using n-max by auto
then have j-n: ?i < length (f (Suc n)) using f-infpath infpath-length[of f ] by

auto

have eval l E HFun (extend f ) l
proof (cases l)

case (Pos P ts)
from Pos l-p C-ground have ts-ground: groundts ts by auto

have ¬falsifiesl (f (Suc n)) l using l-p by auto
then have f (Suc n) ! ?i = True
using j-n Pos ts-ground empty-subts[of ts] unfolding falsifiesl-def by auto

moreover have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-infpath i-n j-n infpath-length[of f ] ith-in-extension[of f ] by simp

ultimately
have f (Suc ?i) ! ?i = True using Pos by auto

then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-of-fatom-def )
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then show ?thesis using eval l-groundts[of ts - ?G P] ts-ground Pos by
auto

next
case (Neg P ts)
from Neg l-p C-ground have ts-ground: groundts ts by auto

have ¬falsifiesl (f (Suc n)) l using l-p by auto
then have f (Suc n) ! ?i = False
using j-n Neg ts-ground empty-subts[of ts] unfolding falsifiesl-def by auto

moreover have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-infpath i-n j-n infpath-length[of f ] ith-in-extension[of f ] by simp

ultimately
have f (Suc ?i) ! ?i = False using Neg by auto

then have ¬?G P (hterms-of-fterms ts) using Neg by (simp add: nat-of-fatom-def )

then show ?thesis using Neg eval l-groundts[of ts - ?G P] ts-ground by
auto

qed
then have ∃ l ∈ C . eval l E HFun (extend f ) l using l-p by auto

}
then have evalc HFun (extend f ) C unfolding evalc-def by auto
then show ?thesis using instance-of ls-self by auto

qed

lemma extend-preserves-model2 :
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes C-ground: ground ls C
assumes fin-c: finite C
assumes model-C : ∀n. ¬falsifiesc (f n) C
shows C-false: evalc HFun (extend f ) C

proof −
— Since C is finite, C has a largest index of a literal.
obtain n where largest: ∀ l ∈ C . nat-of-fatom (get-atom l) ≤ n using fin-c

maximum[of C λl. nat-of-fatom (get-atom l)] by blast
moreover
then have ¬falsifiesc (f (Suc n)) C using model-C by auto
ultimately show ?thesis using model-C f-infpath C-ground extend-preserves-model[of

f C n ] by blast
qed

lemma extend-infpath:
assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes model-c: ∀n. ¬falsifiesc (f n) C
assumes fin-c: finite C
shows evalc HFun (extend f ) C

unfolding evalc-def proof
fix E
let ?G = extend f
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let ?σ = sub-of-denot E

from fin-c have fin-cσ: finite (C ·ls sub-of-denot E) by auto
have groundcσ: ground ls (C ·ls sub-of-denot E) using sub-of-denot-equiv-ground

by auto

— Here starts the proof
— We go from syntactic FO world to syntactic ground world:
from model-c have ∀n. ¬falsifiesc (f n) (C ·ls ?σ) using partial-equiv-subst by

blast
— Then from syntactic ground world to semantic ground world:
then have evalc HFun ?G (C ·ls ?σ) using groundcσ f-infpath fin-cσ ex-

tend-preserves-model2 [of f C ·ls ?σ] by blast
— Then from semantic ground world to semantic FO world:
then have ∀E . ∃ l ∈ (C ·ls ?σ). eval l E HFun ?G l unfolding evalc-def by

auto
then have ∃ l ∈ (C ·ls ?σ). eval l E HFun ?G l by auto
then show ∃ l ∈ C . eval l E HFun ?G l using sub-of-denot-equiv-ground[of C E

extend f ] by blast
qed

If we have a infpath of partial models, then we have a model.
lemma infpath-model:

assumes f-infpath: wf-infpath (f :: nat ⇒ partial-pred-denot)
assumes model-cs: ∀n. ¬falsifiescs (f n) Cs
assumes fin-cs: finite Cs
assumes fin-c: ∀C ∈ Cs. finite C
shows evalcs HFun (extend f ) Cs

proof −
let ?F = HFun

have ∀C ∈ Cs. evalc ?F (extend f ) C
proof (rule ballI )

fix C
assume asm: C ∈ Cs
then have ∀n. ¬falsifiesc (f n) C using model-cs by auto
then show evalc ?F (extend f ) C using fin-c asm f-infpath extend-infpath[of

f C ] by auto
qed

then show evalcs ?F (extend f ) Cs unfolding evalcs-def by auto
qed

fun deeptree :: nat ⇒ tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)

lemma branch-length:
assumes branch b (deeptree n)
shows length b = n
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using assms proof (induction n arbitrary: b)
case 0 then show ?case using branch-inv-Leaf by auto

next
case (Suc n)
then have branch b (Branching (deeptree n) (deeptree n)) by auto
then obtain a b ′ where p: b = a#b ′∧ branch b ′ (deeptree n) using branch-inv-Branching[of

b] by blast
then have length b ′ = n using Suc by auto
then show ?case using p by auto

qed

lemma infinity:
assumes inj: ∀n :: nat. undiago (diago n) = n
assumes all-tree: ∀n :: nat. (diago n) ∈ tree
shows ¬finite tree

proof −
from inj all-tree have ∀n. n = undiago (diago n) ∧ (diago n) ∈ tree by auto
then have ∀n. ∃ ds. n = undiago ds ∧ ds ∈ tree by auto
then have undiago ‘ tree = (UNIV :: nat set) by auto
then have ¬finite treeby (metis finite-imageI infinite-UNIV-nat)
then show ?thesis by auto

qed

lemma longer-falsifiesl:
assumes falsifiesl ds l
shows falsifiesl (ds@d) l

proof −
let ?i = nat-of-fatom (get-atom l)
from assms have i-p: ground l l ∧ ?i < length ds ∧ ds ! ?i = (¬sign l) unfolding

falsifiesl-def by meson
moreover
from i-p have ?i < length (ds@d) by auto
moreover
from i-p have (ds@d) ! ?i = (¬sign l) by (simp add: nth-append)
ultimately
show ?thesis unfolding falsifiesl-def by simp

qed

lemma longer-falsifiesg:
assumes falsifiesg ds C
shows falsifiesg (ds @ d) C

proof −
{

fix l
assume l∈C
then have falsifiesl (ds @ d) l using assms longer-falsifiesl by auto

} then show ?thesis using assms by auto
qed
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lemma longer-falsifiesc:
assumes falsifiesc ds C
shows falsifiesc (ds @ d) C

proof −
from assms obtain C ′ where instance-of ls C ′ C ∧ falsifiesg ds C ′ by auto
moreover
then have falsifiesg (ds @ d) C ′ using longer-falsifiesg by auto
ultimately show ?thesis by auto

qed

We use this so that we can apply König’s lemma.
lemma longer-falsifies:

assumes falsifiescs ds Cs
shows falsifiescs (ds @ d) Cs

proof −
from assms obtain C where C ∈ Cs ∧ falsifiesc ds C by auto
moreover
then have falsifiesc (ds @ d) C using longer-falsifiesc[of C ds d] by blast
ultimately
show ?thesis by auto

qed

If all finite semantic trees have an open branch, then the set of clauses has
a model.
theorem herbrand ′:

assumes openb: ∀T . ∃G. open-branch G T Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃G. evalcs HFun G Cs

proof −
— Show T infinite:
let ?tree = {G. ¬falsifiescs G Cs}
let ?undiag = length
let ?diag = (λl. SOME b. open-branch b (deeptree l) Cs) :: nat ⇒ partial-pred-denot

from openb have diag-open: ∀ l. open-branch (?diag l) (deeptree l) Cs
using someI-ex[of λb. open-branch b (deeptree -) Cs] by auto

then have ∀n. ?undiag (?diag n) = n using branch-length by auto
moreover
have ∀n. (?diag n) ∈ ?tree using diag-open by auto
ultimately
have ¬finite ?tree using infinity[of - λn. SOME b. open-branch b (- n) Cs] by

simp
— Get infinite path:
moreover
have ∀ ds d. ¬falsifiescs (ds @ d) Cs −→ ¬falsifiescs ds Cs

using longer-falsifies[of Cs] by blast
then have (∀ ds d. ds @ d ∈ ?tree −→ ds ∈ ?tree) by auto
ultimately
have ∃ c. wf-infpath c ∧ (∀n. c n ∈ ?tree) using konig[of ?tree] by blast
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then have ∃G. wf-infpath G ∧ (∀n. ¬ falsifiescs (G n) Cs) by auto
— Apply above infpath lemma:
then show ∃G. evalcs HFun G Cs using infpath-model finite-cs by auto

qed

lemma shorter-falsifiesl:
assumes falsifiesl (ds@d) l
assumes nat-of-fatom (get-atom l) < length ds
shows falsifiesl ds l

proof −
let ?i = nat-of-fatom (get-atom l)
from assms have i-p: ground l l ∧ ?i < length (ds@d) ∧ (ds@d) ! ?i = (¬sign

l) unfolding falsifiesl-def by meson
moreover
then have ?i < length ds using assms by auto
moreover
then have ds ! ?i = (¬sign l) using i-p nth-append[of ds d ?i] by auto
ultimately show ?thesis using assms unfolding falsifiesl-def by simp

qed

theorem herbrand ′-contra:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀G. ¬evalcs HFun G Cs
shows ∃T . ∀G. branch G T −→ closed-branch G T Cs

proof −
from finite-cs unsat have (∀T . ∃G. open-branch G T Cs) −→ (∃G. evalcs HFun

G Cs) using herbrand ′ by blast
then show ?thesis using unsat by blast

qed

theorem herbrand:
assumes unsat: ∀G. ¬evalcs HFun G Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃T . closed-tree T Cs

proof −
from unsat finite-cs obtain T where anybranch T (λb. closed-branch b T Cs)

using herbrand ′-contra[of Cs] by blast
then have ∃T . anybranch T (λp. falsifiescs p Cs) ∧ anyinternal T (λp. ¬

falsifiescs p Cs)
using cutoff-branch-internal[of T λp. falsifiescs p Cs] by blast

then show ?thesis unfolding closed-tree-def by auto
qed

end

16 Lifting Lemma
theory Completeness imports Resolution begin
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locale unification =
assumes unification:

∧
σ L. finite L =⇒ unifier ls σ L =⇒ ∃ϑ. mguls ϑ L

begin

A proof of this assumption is available in Unification_Theorem.thy and
used in Completeness_Instance.thy.
lemma lifting:

assumes fin: finite C 1 ∧ finite C 2

assumes apart: varsls C 1 ∩ varsls C 2 = {}
assumes inst: instance-of ls C 1

′ C 1 ∧ instance-of ls C 2
′ C 2

assumes appl: applicable C 1
′ C 2

′ L1
′ L2

′ σ
shows ∃L1 L2 τ . applicable C 1 C 2 L1 L2 τ ∧

instance-of ls (resolution C 1
′ C 2

′ L1
′ L2

′ σ) (resolution C 1 C 2 L1 L2

τ)
proof −

— Obtaining the subsets we resolve upon:
let ?R1

′ = C 1
′ − L1

′ and ?R2
′ = C 2

′ − L2
′

from inst obtain γ µ where C 1 ·ls γ = C 1
′ ∧ C 2 ·ls µ = C 2

′

unfolding instance-of ls-def by auto
then obtain η where η-p: C 1 ·ls η = C 1

′ ∧ C 2 ·ls η = C 2
′

using apart merge-sub by force

from η-p obtain L1 where L1-p: L1 ⊆ C 1 ∧ L1 ·ls η = L1
′ ∧ (C 1 − L1) ·ls η

= ?R1
′

using appl project-sub using applicable-def by metis
let ?R1 = C 1 − L1

from η-p obtain L2 where L2-p: L2 ⊆ C 2 ∧ L2 ·ls η = L2
′ ∧ (C 2 − L2) ·ls η

= ?R2
′

using appl project-sub using applicable-def by metis
let ?R2 = C 2 − L2

— Obtaining substitutions:
from appl have mguls σ (L1

′ ∪ L2
′C) using applicable-def by auto

then have mguls σ ((L1 ·ls η) ∪ (L2 ·ls η)C) using L1-p L2-p by auto
then have mguls σ ((L1 ∪ L2

C) ·ls η) using compls-subls subls-union by auto
then have unifier ls σ ((L1 ∪ L2

C) ·ls η) using mguls-def by auto
then have ησuni: unifier ls (η · σ) (L1 ∪ L2

C)
using unifier ls-def composition-conseq2l by auto

then obtain τ where τ -p: mguls τ (L1 ∪ L2
C)

using unification fin L1-p L2-p by (meson finite-UnI finite-imageI rev-finite-subset)
then obtain ϕ where ϕ-p: τ · ϕ = η · σ using ησuni mguls-def by auto

— Showing that we have the desired resolvent:
let ?C = ((C 1 − L1) ∪ (C 2 − L2)) ·ls τ
have ?C ·ls ϕ = (?R1 ∪ ?R2 ) ·ls (τ · ϕ)

using subls-union composition-conseq2ls by auto
also have ... = (?R1 ∪ ?R2 ) ·ls (η · σ) using ϕ-p by auto
also have ... = ((?R1 ·ls η) ∪ (?R2 ·ls η)) ·ls σ
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using subls-union composition-conseq2ls by auto
also have ... = (?R1

′ ∪ ?R2
′) ·ls σ using η-p L1-p L2-p by auto

finally have ?C ·ls ϕ = ((C 1
′ − L1

′) ∪ (C 2
′ − L2

′)) ·ls σ by auto
then have ins: instance-of ls (resolution C 1

′ C 2
′ L1

′ L2
′ σ) (resolution C 1 C 2

L1 L2 τ)
using resolution-def instance-of ls-def by metis

— Showing that the resolution rule is applicable:
have C 1

′ 6= {} ∧ C 2
′ 6= {} ∧ L1

′ 6= {} ∧ L2
′ 6= {}

using appl applicable-def by auto
then have C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {} using η-p L1-p L2-p by

auto
then have appli: applicable C 1 C 2 L1 L2 τ

using apart L1-p L2-p τ -p applicable-def by auto

from ins appli show ?thesis by auto
qed

17 Completeness
lemma falsifiesg-empty:

assumes falsifiesg [] C
shows C = {}

proof −
have ∀ l ∈ C . False

proof
fix l
assume l∈C
then have falsifiesl [] l using assms by auto
then show False unfolding falsifiesl-def by (cases l) auto

qed
then show ?thesis by auto

qed

lemma falsifiescs-empty:
assumes falsifiesc [] C
shows C = {}

proof −
from assms obtain C ′ where C ′-p: instance-of ls C ′ C ∧ falsifiesg [] C ′ by

auto
then have C ′= {} using falsifiesg-empty by auto
then show C = {} using C ′-p unfolding instance-of ls-def by auto

qed

lemma complements-do-not-falsify ′:
assumes l1C1 ′: l1 ∈ C 1

′

assumes l2C1 ′: l2 ∈ C 1
′

assumes comp: l1 = l2c
assumes falsif : falsifiesg G C 1

′
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shows False
proof (cases l1)

case (Pos p ts)
let ?i1 = nat-of-fatom (p, ts)

from assms have gr : ground l l1 unfolding falsifiesl-def by auto
then have Neg: l2 = Neg p ts using comp Pos by (cases l2) auto

from falsif have falsifiesl G l1 using l1C1 ′ by auto
then have G ! ?i1 = False using l1C1 ′ Pos unfolding falsifiesl-def by (induction

Pos p ts) auto
moreover
let ?i2 = nat-of-fatom (get-atom l2)
from falsif have falsifiesl G l2 using l2C1 ′ by auto
then have G ! ?i2 = (¬sign l2) unfolding falsifiesl-def by meson
then have G ! ?i1 = (¬sign l2) using Pos Neg comp by simp
then have G ! ?i1 = True using Neg by auto
ultimately show ?thesis by auto

next
case (Neg p ts)
let ?i1 = nat-of-fatom (p,ts)

from assms have gr : ground l l1 unfolding falsifiesl-def by auto
then have Pos: l2 = Pos p ts using comp Neg by (cases l2) auto

from falsif have falsifiesl G l1 using l1C1 ′ by auto
then have G ! ?i1 = True using l1C1 ′ Neg unfolding falsifiesl-def by (metis

get-atom.simps(2 ) literal.disc(2 ))
moreover
let ?i2 = nat-of-fatom (get-atom l2)
from falsif have falsifiesl G l2 using l2C1 ′ by auto
then have G ! ?i2 = (¬sign l2) unfolding falsifiesl-def by meson
then have G ! ?i1 = (¬sign l2) using Pos Neg comp by simp
then have G ! ?i1 = False using Pos using literal.disc(1 ) by blast
ultimately show ?thesis by auto

qed

lemma complements-do-not-falsify:
assumes l1C1 ′: l1 ∈ C 1

′

assumes l2C1 ′: l2 ∈ C 1
′

assumes fals: falsifiesg G C 1
′

shows l1 6= l2c
using assms complements-do-not-falsify ′ by blast

lemma other-falsified:
assumes C1 ′-p: ground ls C 1

′ ∧ falsifiesg (B@[d]) C 1
′

assumes l-p: l ∈ C 1
′ nat-of-fatom (get-atom l) = length B

assumes other : lo ∈ C 1
′ lo 6= l

shows falsifiesl B lo
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proof −
let ?i = nat-of-fatom (get-atom lo)
have ground-l2: ground l l using l-p C1 ′-p by auto
— They are, of course, also ground:
have ground-lo: ground l lo using C1 ′-p other by auto
from C1 ′-p have falsifiesg (B@[d]) (C 1

′ − {l}) by auto
— And indeed, falsified by B @ [d]:
then have loB2: falsifiesl (B@[d]) lo using other by auto
then have ?i < length (B @ [d]) unfolding falsifiesl-def by meson
— And they have numbers in the range of B @ [d], i.e. less than length B + 1 :
then have nat-of-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom

by (cases lo) auto
moreover
have l-lo: l 6=lo using other by auto
— The are not the complement of l, since then the clause could not be falsified:
have lc-lo: lo 6= lc using C1 ′-p l-p other complements-do-not-falsify[of lo C 1

′ l
(B@[d])] by auto

from l-lo lc-lo have get-atom l 6= get-atom lo using sign-comp-atom by metis
then have nat-of-fatom (get-atom lo) 6= nat-of-fatom (get-atom l)

using nat-of-fatom-bij ground-lo ground-l2 ground l-ground-fatom
unfolding bij-betw-def inj-on-def by metis

— Therefore they have different numbers:
then have nat-of-fatom (get-atom lo) 6= length B using l-p by auto
ultimately
— So their numbers are in the range of B:
have nat-of-fatom (get-atom lo) < length B by auto
— So we did not need the last index of B @ [d] to falsify them, i.e. B suffices:
then show falsifiesl B lo using loB2 shorter-falsifiesl by blast

qed

theorem completeness ′:
assumes closed-tree T Cs
assumes ∀C∈Cs. finite C
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of tree-
size])

fix T :: tree
fix Cs :: fterm clause set
assume ih:

∧
T ′ Cs. treesize T ′ < treesize T =⇒ closed-tree T ′ Cs =⇒

∀C∈Cs. finite C =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈
Cs ′

assume clo: closed-tree T Cs
assume finite-Cs: ∀C∈Cs. finite C
{ — Base case:

assume treesize T = 0
then have T=Leaf using treesize-Leaf by auto

then have closed-branch [] Leaf Cs using branch-inv-Leaf clo unfolding
closed-tree-def by auto

then have falsifiescs [] Cs by auto
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then have {} ∈ Cs using falsifiescs-empty by auto
then have ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

unfolding resolution-deriv-def by auto
}
moreover
{ — Induction case:

assume treesize T > 0
then have ∃ l r . T=Branching l r by (cases T ) auto

— Finding sibling branches and their corresponding clauses:
then obtain B where b-p: internal B T ∧ branch (B@[True]) T ∧ branch

(B@[False]) T
using internal-branch[of - [] - T ] Branching-Leaf-Leaf-Tree by fastforce

let ?B1 = B@[True]
let ?B2 = B@[False]

obtain C 1o where C 1o-p: C 1o ∈ Cs ∧ falsifiesc ?B1 C 1o using b-p clo
unfolding closed-tree-def by metis

obtain C 2o where C 2o-p: C 2o ∈ Cs ∧ falsifiesc ?B2 C 2o using b-p clo
unfolding closed-tree-def by metis

— Standardizing the clauses apart:
let ?C 1 = std1 C 1o
let ?C 2 = std2 C 2o
have C 1-p: falsifiesc ?B1 ?C 1 using std1-falsifies C 1o-p by auto
have C 2-p: falsifiesc ?B2 ?C 2 using std2-falsifies C 2o-p by auto

have fin: finite ?C 1 ∧ finite ?C 2 using C 1o-p C 2o-p finite-Cs by auto

— We go down to the ground world.
— Finding the falsifying ground instance C 1

′ of std1 C 1o, and proving properties
about it:

— C 1
′ is falsified by B @ [True]:

from C 1-p obtain C 1
′ where C 1

′-p: ground ls C 1
′ ∧ instance-of ls C 1

′ ?C 1

∧ falsifiesg ?B1 C 1
′ by metis

have ¬falsifiesc B C 1o using C 1o-p b-p clo unfolding closed-tree-def by metis
then have ¬falsifiesc B ?C 1 using std1-falsifies using prod.exhaust-sel by

blast
— C 1

′ is not falsified by B:
then have l-B: ¬falsifiesg B C 1

′ using C 1
′-p by auto

— C 1
′ contains a literal l1 that is falsified by B @ [True], but not B:

from C 1
′-p l-B obtain l1 where l1-p: l1 ∈ C 1

′ ∧ falsifiesl (B@[True]) l1 ∧
¬(falsifiesl B l1) by auto

let ?i = nat-of-fatom (get-atom l1)

— l1 is of course ground:
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have ground-l1: ground l l1 using C 1
′-p l1-p by auto

from l1-p have ¬(?i < length B ∧ B ! ?i = (¬sign l1)) using ground-l1
unfolding falsifiesl-def by meson

then have ¬(?i < length B ∧ (B@[True]) ! ?i = (¬sign l1)) by (metis
nth-append) — Not falsified by B.

moreover
from l1-p have ?i < length (B @ [True]) ∧ (B @ [True]) ! ?i = (¬sign l1)

unfolding falsifiesl-def by meson
ultimately
have l1-sign-no: ?i = length B ∧ (B @ [True]) ! ?i = (¬sign l1) by auto

— l1 is negative:
from l1-sign-no have l1-sign: sign l1 = False by auto
from l1-sign-no have l1-no: nat-of-fatom (get-atom l1) = length B by auto

— All the other literals in C 1
′ must be falsified by B, since they are falsified by

B @ [True], but not l1.
from C 1

′-p l1-no l1-p have B-C 1
′l1: falsifiesg B (C 1

′ − {l1})
using other-falsified by blast

— We do the same exercise for std2 C 2o, C 2
′, B @ [False], l2:

from C 2-p obtain C 2
′ where C 2

′-p: ground ls C 2
′ ∧ instance-of ls C 2

′ ?C 2 ∧
falsifiesg ?B2 C 2

′ by metis

have ¬falsifiesc B C 2o using C 2o-p b-p clo unfolding closed-tree-def by metis
then have ¬falsifiesc B ?C 2 using std2-falsifies using prod.exhaust-sel by

blast
then have l-B: ¬falsifiesg B C 2

′ using C 2
′-p by auto

— C 2
′ contains a literal l2 that is falsified by B @ [False], but not B:

from C 2
′-p l-B obtain l2 where l2-p: l2 ∈ C 2

′ ∧ falsifiesl (B@[False]) l2 ∧
¬falsifiesl B l2 by auto

let ?i = nat-of-fatom (get-atom l2)

have ground-l2: ground l l2 using C 2
′-p l2-p by auto

from l2-p have ¬(?i < length B ∧ B ! ?i = (¬sign l2)) using ground-l2
unfolding falsifiesl-def by meson

then have ¬(?i < length B ∧ (B@[False]) ! ?i = (¬sign l2)) by (metis
nth-append) — Not falsified by B.

moreover
from l2-p have ?i < length (B @ [False]) ∧ (B @ [False]) ! ?i = (¬sign l2)

unfolding falsifiesl-def by meson
ultimately
have l2-sign-no: ?i = length B ∧ (B @ [False]) ! ?i = (¬sign l2) by auto

— l2 is negative:
from l2-sign-no have l2-sign: sign l2 = True by auto
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from l2-sign-no have l2-no: nat-of-fatom (get-atom l2) = length B by auto

— All the other literals in C 2
′ must be falsified by B, since they are falsified by

B @ [False], but not l2.
from C 2

′-p l2-no l2-p have B-C 2
′l2: falsifiesg B (C 2

′ − {l2})
using other-falsified by blast

— Proving some properties about C 1
′ and C 2

′, l1 and l2, as well as the resolvent
of C 1

′ and C 2
′:

have l2cisl1: l2c = l1
proof −

from l1-no l2-no ground-l1 ground-l2 have get-atom l1 = get-atom l2
using nat-of-fatom-bij ground l-ground-fatom
unfolding bij-betw-def inj-on-def by metis

then show l2c = l1 using l1-sign l2-sign using sign-comp-atom by metis
qed

have applicable C 1
′ C 2

′ {l1} {l2} Resolution.ε unfolding applicable-def
using l1-p l2-p C 1

′-p ground ls-varsls l2cisl1 empty-comp2 unfolding mguls-def
unifier ls-def by auto

— Lifting to get a resolvent of std1 C 1o and std2 C 2o:
then obtain L1 L2 τ where L1L2τ -p: applicable ?C 1 ?C 2 L1 L2 τ ∧ in-

stance-of ls (resolution C 1
′ C 2

′ {l1} {l2} Resolution.ε) (resolution ?C 1 ?C 2 L1 L2

τ)
using std-apart-apart C 1

′-p C 2
′-p lifting[of ?C 1 ?C 2 C 1

′ C 2
′ {l1} {l2}

Resolution.ε] fin by auto

— Defining the clause to be derived, the new clausal form and the new tree:
— We name the resolvent C.
obtain C where C-p: C = resolution ?C 1 ?C 2 L1 L2 τ by auto
obtain CsNext where CsNext-p: CsNext = Cs ∪ {?C 1, ?C 2, C} by auto
obtain T ′′ where T ′′-p: T ′′ = delete B T by auto

— Here we delete the two branch children B @ [True] and B @ [False] of B.

— Our new clause is falsified by the branch B of our new tree:
have falsifiesg B ((C 1

′ − {l1}) ∪ (C 2
′ − {l2})) using B-C 1

′l1 B-C 2
′l2 by

cases auto
then have falsifiesg B (resolution C 1

′ C 2
′ {l1} {l2} Resolution.ε) unfolding

resolution-def empty-subls by auto
then have falsifies-C : falsifiesc B C using C-p L1L2τ -p by auto

have T ′′-smaller : treesize T ′′ < treesize T using treezise-delete T ′′-p b-p by
auto

have T ′′-bran: anybranch T ′′ (λb. closed-branch b T ′′ CsNext)
proof (rule allI ; rule impI )

fix b
assume br : branch b T ′′

from br have b = B ∨ branch b T using branch-delete T ′′-p by auto
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then show closed-branch b T ′′ CsNext
proof

assume b=B
then show closed-branch b T ′′ CsNext using falsifies-C br CsNext-p by

auto
next

assume branch b T
then show closed-branch b T ′′ CsNext using clo br T ′′-p CsNext-p

unfolding closed-tree-def by auto
qed

qed
then have T ′′-bran2 : anybranch T ′′ (λb. falsifiescs b CsNext) by auto

— We cut the tree even smaller to ensure only the branches are falsified, i.e. it
is a closed tree:

obtain T ′ where T ′-p: T ′ = cutoff (λG. falsifiescs G CsNext) [] T ′′ by auto
have T ′-smaller : treesize T ′< treesize T using treesize-cutoff [of λG. falsifiescs

G CsNext [] T ′′] T ′′-smaller unfolding T ′-p by auto

from T ′′-bran2 have anybranch T ′ (λb. falsifiescs b CsNext) using cut-
off-branch[of T ′′ λb. falsifiescs b CsNext] T ′-p by auto

then have T ′-bran: anybranch T ′ (λb. closed-branch b T ′ CsNext) by auto
have T ′-intr : anyinternal T ′ (λp. ¬falsifiescs p CsNext) using T ′-p cut-

off-internal[of T ′′ λb. falsifiescs b CsNext] T ′′-bran2 by blast
have T ′-closed: closed-tree T ′ CsNext using T ′-bran T ′-intr unfolding closed-tree-def

by auto
have finite-CsNext: ∀C∈CsNext. finite C unfolding CsNext-p C-p resolu-

tion-def using finite-Cs fin by auto

— By induction hypothesis we get a resolution derivation of {} from our new
clausal form:

from T ′-smaller T ′-closed have ∃Cs ′′. resolution-deriv CsNext Cs ′′ ∧ {} ∈
Cs ′′ using ih[of T ′ CsNext] finite-CsNext by blast

then obtain Cs ′′ where Cs ′′-p: resolution-deriv CsNext Cs ′′ ∧ {} ∈ Cs ′′ by
auto

moreover
{ — Proving that we can actually derive the new clausal form:

have resolution-step Cs (Cs ∪ {?C 1}) using std1-renames standardize-apart
C 1o-p by (metis Un-insert-right)

moreover
have resolution-step (Cs ∪ {?C 1}) (Cs ∪ {?C 1} ∪ {?C 2}) using std2-renames[of

C 2o] standardize-apart[of C 2o - ?C 2] C 2o-p by auto
then have resolution-step (Cs ∪ {?C 1}) (Cs ∪ {?C 1,?C 2}) by (simp add:

insert-commute)
moreover
then have resolution-step (Cs ∪ {?C 1,?C 2}) (Cs ∪ {?C 1,?C 2} ∪ {C})
using L1L2τ -p resolution-rule[of ?C 1 Cs ∪ {?C 1,?C 2} ?C 2 L1 L2 τ ] using

C-p by auto
then have resolution-step (Cs ∪ {?C 1,?C 2}) CsNext using CsNext-p by
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(simp add: Un-commute)
ultimately
have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto

}
— Combining the two derivations, we get the desired derivation from Cs of {}:
ultimately have resolution-deriv Cs Cs ′′ unfolding resolution-deriv-def by

auto
then have ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using Cs ′′-p by auto

}
ultimately show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ by auto

qed

theorem completeness:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

proof −
from unsat have ∀ (G::hterm pred-denot) . ¬evalcs HFun G Cs by auto
then obtain T where closed-tree T Cs using herbrand assms by blast
then show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using completeness ′ assms

by auto
qed

definition E-conv :: ( ′a ⇒ ′b) ⇒ ′a var-denot ⇒ ′b var-denot where
E-conv b-of-a E ≡ λx. (b-of-a (E x))

definition F-conv :: ( ′a ⇒ ′b) ⇒ ′a fun-denot ⇒ ′b fun-denot where
F-conv b-of-a F ≡ λf bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: ( ′a ⇒ ′b) ⇒ ′a pred-denot ⇒ ′b pred-denot where
G-conv b-of-a G ≡ λp bs. (G p (map (inv b-of-a) bs))

lemma evalt-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
showsevalt (E-conv b-of-a E) (F-conv b-of-a F) t = b-of-a (evalt E F t)

proof (induction t)
case (Fun f ts)
then have map (inv b-of-a ◦ evalt (E-conv b-of-a E) (F-conv b-of-a F)) ts =

evalts E F ts
unfolding E-conv-def F-conv-def
using assms bij-is-inj by fastforce

then have b-of-a (F f (map (inv b-of-a ◦ evalt (E-conv b-of-a E) ((F-conv b-of-a
F))) ts)) = b-of-a (F f (evalts E F ts)) by metis

then show ?case using assms unfolding E-conv-def F-conv-def by auto
next

case (Var x)
then show ?case using assms unfolding E-conv-def by auto

qed
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lemma evalts-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows G-conv b-of-a G p (evalts (E-conv b-of-a E) (F-conv b-of-a F) ts) = G p

(evalts E F ts)
using assms using evalt-bij

proof −
have map (inv b-of-a ◦ evalt (E-conv b-of-a E) (F-conv b-of-a F)) ts = evalts E

F ts
using evalt-bij assms bij-is-inj by fastforce

then show ?thesis
by (metis (no-types) G-conv-def map-map)

qed

lemma eval l-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows eval l (E-conv b-of-a E) (F-conv b-of-a F) (G-conv b-of-a G) l = eval l E

F G l
using assms evalts-bij

proof (cases l)
case (Pos p ts)
then show ?thesis

by (simp add: evalts-bij assms)
next

case (Neg p ts)
then show ?thesis

by (simp add: evalts-bij assms)
qed

lemma evalc-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows evalc (F-conv b-of-a F) (G-conv b-of-a G) C = evalc F G C

proof −
{

fix E :: char list ⇒ ′b
assume bij-b-of-a: bij b-of-a
assume C-sat: ∀E :: char list ⇒ ′a. ∃ l∈C . eval l E F G l
have E-p: E = E-conv b-of-a (E-conv (inv b-of-a) E)

unfolding E-conv-def using bij-b-of-a
using bij-betw-inv-into-right by fastforce

have ∃ l∈C . eval l (E-conv b-of-a (E-conv (inv b-of-a) E)) (F-conv b-of-a F)
(G-conv b-of-a G) l

using eval l-bij bij-b-of-a C-sat by blast
then have ∃ l∈C . eval l E (F-conv b-of-a F) (G-conv b-of-a G) l using E-p by

auto
}
then show ?thesis

by (meson eval l-bij assms evalc-def )
qed
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lemma evalcs-bij:
assumes bij (b-of-a:: ′a ⇒ ′b)
shows evalcs (F-conv b-of-a F) (G-conv b-of-a G) Cs ←→ evalcs F G Cs

by (meson evalc-bij assms evalcs-def )

lemma countably-inf-bij:
assumes inf-a-uni: infinite (UNIV :: ( ′a ::countable) set)
assumes inf-b-uni: infinite (UNIV :: ( ′b ::countable) set)
shows ∃ b-of-a :: ′a ⇒ ′b. bij b-of-a

proof −
let ?S = UNIV :: (( ′a::countable)) set
have countable ?S by auto
moreover
have infinite ?S using inf-a-uni by auto
ultimately
obtain nat-of-a where QWER: bij (nat-of-a :: ′a⇒ nat) using countableE-infinite[of

?S ] by blast

let ?T = UNIV :: (( ′b::countable)) set
have countable ?T by auto
moreover
have infinite ?T using inf-b-uni by auto
ultimately
obtain nat-of-b where TYUI : bij (nat-of-b :: ′b⇒ nat) using countableE-infinite[of

?T ] by blast

let ?b-of-a = λa. (inv nat-of-b) (nat-of-a a)

have bij-nat-of-b: ∀n. nat-of-b (inv nat-of-b n) = n
using TYUI bij-betw-inv-into-right by fastforce

have ∀ a. inv nat-of-a (nat-of-a a) = a
by (meson QWER UNIV-I bij-betw-inv-into-left)

then have inj (λa. inv nat-of-b (nat-of-a a))
using bij-nat-of-b injI by (metis (no-types))

moreover
have range (λa. inv nat-of-b (nat-of-a a)) = UNIV

by (metis QWER TYUI bij-def image-image inj-imp-surj-inv)
ultimately
have bij ?b-of-a

unfolding bij-def by auto

then show ?thesis by auto
qed

lemma infinite-hterms: infinite (UNIV :: hterm set)
proof −

let ?diago = λn. HFun (string-of-nat n) []
let ?undiago = λa. nat-of-string (case a of HFun f ts ⇒ f )
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have ∀n. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have ∀n. ?diago n ∈ UNIV by auto
ultimately show infinite (UNIV :: hterm set) using infinity[of ?undiago ?diago

UNIV ] by simp
qed

theorem completeness-countable:
assumes inf-uni: infinite (UNIV :: ( ′u :: countable) set)
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F :: ′u fun-denot) (G:: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

proof −
have ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
proof (rule; rule)

fix F :: hterm fun-denot
fix G :: hterm pred-denot

obtain u-of-hterm :: hterm ⇒ ′u where p-u-of-hterm: bij u-of-hterm
using countably-inf-bij inf-uni infinite-hterms by auto

let ?F = F-conv u-of-hterm F
let ?G = G-conv u-of-hterm G

have ¬ evalcs ?F ?G Cs using unsat by auto
then show ¬ evalcs F G Cs using evalcs-bij using p-u-of-hterm by auto

qed
then show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ using finite-cs completeness

by auto
qed

theorem completeness-nat:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::nat fun-denot) (G::nat pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-countable by blast

end — unification locale

end

18 Examples
theory Examples imports Resolution begin

value Var ′′x ′′

value Fun ′′one ′′ []
value Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]
value Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]
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value Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]
value Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′equals ′′

[Fun ′′add ′′[Fun ′′mul ′′[Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′[]],Var ′′x ′′]

fun Fnat :: nat fun-denot where
Fnat f [n,m] =

(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0 )

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0 )

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x,y] =

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0 )

lemma evalt Enat Fnat (Var ′′x ′′) = 26
by auto

lemma evalt Enat Fnat (Fun ′′one ′′ []) = 1
by auto

lemma evalt Enat Fnat (Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]) = 25
by auto

lemma
evalt Enat Fnat (Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]) =

26
by auto

lemma eval l Enat Fnat Gnat (Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma eval l Enat Fnat Gnat (Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma eval l Enat Fnat Gnat (Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = False
by auto

lemma eval l Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
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,Var ′′x ′′]
) = True

by auto

definition PP :: fterm literal where
PP = Pos ′′P ′′ [Fun ′′c ′′ []]

definition PQ :: fterm literal where
PQ = Pos ′′Q ′′ [Fun ′′d ′′ []]

definition NP :: fterm literal where
NP = Neg ′′P ′′ [Fun ′′c ′′ []]

definition NQ :: fterm literal where
NQ = Neg ′′Q ′′ [Fun ′′d ′′ []]

theorem empty-mgu:
assumes unifier ls ε L
shows mguls ε L

using assms unfolding unifier ls-def mguls-def apply auto
apply (rule-tac x=u in exI )
using empty-comp1 empty-comp2 apply auto
done

theorem unifier-single: unifier ls σ {l}
unfolding unifier ls-def by auto

theorem resolution-rule ′:
assumes C 1 ∈ Cs
assumes C 2 ∈ Cs
assumes applicable C 1 C 2 L1 L2 σ
assumes C = {resolution C 1 C 2 L1 L2 σ}
shows resolution-step Cs (Cs ∪ C )
using assms resolution-rule by auto

lemma resolution-example1 :
resolution-deriv {{NP,PQ},{NQ},{PP,PQ}}

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}}
proof −

have resolution-step
{{NP,PQ},{NQ},{PP,PQ}}
({{NP,PQ},{NQ},{PP,PQ}} ∪ {{NP}})

apply (rule resolution-rule ′[of {NP,PQ} - {NQ} {PQ} {NQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu using empty-subls
apply auto

done
then have resolution-step
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{{NP,PQ},{NQ},{PP,PQ}}
({{NP,PQ},{NQ},{PP,PQ},{NP}})

by (simp add: insert-commute)
moreover
have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP}}
({{NP,PQ},{NQ},{PP,PQ},{NP}} ∪ {{PP}})

apply (rule resolution-rule ′[of {NQ} - {PP,PQ} {NQ} {PQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu empty-subls apply auto

done
then have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP}})

by (simp add: insert-commute)
moreover
have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP}} ∪ {{}})

apply (rule resolution-rule ′[of {NP} - {PP} {NP} {PP} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP}}
({{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}})

by (simp add: insert-commute)
ultimately
have resolution-deriv {{NP,PQ},{NQ},{PP,PQ}}

{{NP,PQ},{NQ},{PP,PQ},{NP},{PP},{}}
unfolding resolution-deriv-def by auto

then show ?thesis by auto
qed

definition Pa :: fterm literal where
Pa = Pos ′′a ′′ []

definition Na :: fterm literal where
Na = Neg ′′a ′′ []

definition Pb :: fterm literal where
Pb = Pos ′′b ′′ []

definition Nb :: fterm literal where
Nb = Neg ′′b ′′ []

definition Paa :: fterm literal where
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Paa = Pos ′′a ′′ [Fun ′′a ′′ []]

definition Naa :: fterm literal where
Naa = Neg ′′a ′′ [Fun ′′a ′′ []]

definition Pax :: fterm literal where
Pax = Pos ′′a ′′ [Var ′′x ′′]

definition Nax :: fterm literal where
Nax = Neg ′′a ′′ [Var ′′x ′′]

definition mguPaaPax :: substitution where
mguPaaPax = (λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x)

lemma mguPaaPax-mgu: mguls mguPaaPax {Paa,Pax}
proof −

let ?σ = λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x
have a: unifier ls (λx. if x = ′′x ′′ then Fun ′′a ′′ [] else Var x) {Paa,Pax} un-

folding Paa-def Pax-def unifier ls-def by auto
have b: ∀ u. unifier ls u {Paa,Pax} −→ (∃ i. u = ?σ · i)

proof (rule;rule)
fix u
assume unifier ls u {Paa,Pax}
then have uuu: u ′′x ′′ = Fun ′′a ′′ [] unfolding unifier ls-def Paa-def Pax-def

by auto
have ?σ · u = u

proof
fix x
{

assume x= ′′x ′′

moreover
have (?σ · u) ′′x ′′ = Fun ′′a ′′ [] unfolding composition-def by auto
ultimately have (?σ · u) x = u x using uuu by auto

}
moreover
{

assume x 6= ′′x ′′

then have (?σ · u) x = (ε x) ·t u unfolding composition-def by auto
then have (?σ · u) x = u x by auto

}
ultimately show (?σ · u) x = u x by auto

qed
then have ∃ i. ?σ · i = u by auto
then show ∃ i. u = ?σ · i by auto

qed
from a b show ?thesis unfolding mguls-def unfolding mguPaaPax-def by

auto
qed
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lemma resolution-example2 :
resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}
proof −

have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}} ∪ {{Na,Pb}})

apply (rule resolution-rule ′[of {Pax} - {Na,Pb,Naa} {Pax} {Naa} mguPaaPax
])

using mguPaaPax-mgu unfolding applicable-def varsls-def varsl-def
Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def

resolution-def
apply auto

apply (rule-tac x=Na in image-eqI )
unfolding Na-def apply auto

apply (rule-tac x=Pb in image-eqI )
unfolding Pb-def apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}})

by (simp add: insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}} ∪ {{Na}})

apply (rule resolution-rule ′[of {Nb,Na} - {Na,Pb} {Nb} {Pb} ε])
unfolding applicable-def varsls-def varsl-def

Pb-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}})

by (simp add: insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}} ∪ {{}})

apply (rule resolution-rule ′[of {Na} - {Pa} {Na} {Pa} ε])
unfolding applicable-def varsls-def varsl-def

Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto

done
then have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}})

by (simp add: insert-commute)
ultimately
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have resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}

unfolding resolution-deriv-def by auto
then show ?thesis by auto

qed

lemma resolution-example1-sem: ¬evalcs F G {{NP, PQ}, {NQ}, {PP, PQ}}
using resolution-example1 derivation-sound-refute by auto

lemma resolution-example2-sem: ¬evalcs F G {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
using resolution-example2 derivation-sound-refute by auto

end

19 The Unification Theorem
theory Unification-Theorem imports

First-Order-Terms.Unification Resolution
begin

definition set-to-list :: ′a set ⇒ ′a list where
set-to-list ≡ inv set

lemma set-set-to-list: finite xs =⇒ set (set-to-list xs) = xs
proof (induction rule: finite.induct)

case (emptyI )
have set [] = {} by auto
then show ?case unfolding set-to-list-def inv-into-def by auto

next
case (insertI A a)
then have set (a#set-to-list A) = insert a A by auto
then show ?case unfolding set-to-list-def inv-into-def by (metis (mono-tags,

lifting) UNIV-I someI )
qed

fun iterm-to-fterm :: (fun-sym, var-sym) term ⇒ fterm where
iterm-to-fterm (Term.Var x) = Var x
| iterm-to-fterm (Term.Fun f ts) = Fun f (map iterm-to-fterm ts)

fun fterm-to-iterm :: fterm ⇒ (fun-sym, var-sym) term where
fterm-to-iterm (Var x) = Term.Var x
| fterm-to-iterm (Fun f ts) = Term.Fun f (map fterm-to-iterm ts)

lemma iterm-to-fterm-cancel[simp]: iterm-to-fterm (fterm-to-iterm t) = t
by (induction t) (auto simp add: map-idI )

lemma fterm-to-iterm-cancel[simp]: fterm-to-iterm (iterm-to-fterm t) = t
by (induction t) (auto simp add: map-idI )
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abbreviation(input) fsub-to-isub :: substitution ⇒ (fun-sym, var-sym) subst where
fsub-to-isub σ ≡ λx. fterm-to-iterm (σ x)

abbreviation(input) isub-to-fsub :: (fun-sym, var-sym) subst ⇒ substitution where
isub-to-fsub σ ≡ λx. iterm-to-fterm (σ x)

lemma iterm-to-fterm-subt: (iterm-to-fterm t1 ) ·t σ = iterm-to-fterm (t1 · (λx.
fterm-to-iterm (σ x)))

by (induction t1 ) auto

lemma unifiert-unifiers:
assumes unifier ts σ ts
shows fsub-to-isub σ ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)

proof −
have ∀ t1 ∈ fterm-to-iterm ‘ ts. ∀ t2 ∈ fterm-to-iterm ‘ ts. t1 · (fsub-to-isub σ)

= t2 · (fsub-to-isub σ)
proof (rule ballI ;rule ballI )

fix t1 t2
assume t1-p: t1 ∈ fterm-to-iterm ‘ ts assume t2-p: t2 ∈ fterm-to-iterm ‘ ts
from t1-p t2-p have iterm-to-fterm t1 ∈ ts ∧ iterm-to-fterm t2 ∈ ts by auto
then have (iterm-to-fterm t1 ) ·t σ = (iterm-to-fterm t2 ) ·t σ using assms

unfolding unifier ts-def by auto
then have iterm-to-fterm (t1 · fsub-to-isub σ) = iterm-to-fterm (t2 · fsub-to-isub

σ) using iterm-to-fterm-subt by auto
then have fterm-to-iterm (iterm-to-fterm (t1 · fsub-to-isub σ)) = fterm-to-iterm

(iterm-to-fterm (t2 · fsub-to-isub σ)) by auto
then show t1 · fsub-to-isub σ = t2 · fsub-to-isub σ using fterm-to-iterm-cancel

by auto
qed

then have ∀ p∈fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts. fst p · fsub-to-isub σ =
snd p · fsub-to-isub σ by (metis mem-Times-iff )

then show ?thesis unfolding unifiers-def by blast
qed

abbreviation(input) get-mgut :: fterm list ⇒ substitution option where
get-mgut ts ≡ map-option (isub-to-fsub ◦ subst-of ) (unify (List.product (map

fterm-to-iterm ts) (map fterm-to-iterm ts)) [])

lemma unify-unification:
assumes σ ∈ unifiers (set E)
shows ∃ϑ. is-imgu ϑ (set E)

proof −
from assms have ∃ cs. unify E [] = Some cs using unify-complete by auto
then show ?thesis using unify-sound by auto

qed

lemma fterm-to-iterm-subst: (fterm-to-iterm t1 ) · σ =fterm-to-iterm (t1 ·t isub-to-fsub
σ)

by (induction t1 ) auto
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lemma unifiers-unifiert:
assumes σ ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)
shows unifier ts (isub-to-fsub σ) ts

proof (cases ts={})
assume ts = {}
then show unifier ts (isub-to-fsub σ) ts unfolding unifier ts-def by auto

next
assume ts 6= {}
then obtain t ′ where t ′-p: t ′ ∈ ts by auto

have ∀ t1∈ts. ∀ t2∈ts. t1 ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ
proof (rule ballI ; rule ballI )

fix t1 t2
assume t1 ∈ ts t2 ∈ ts

then have fterm-to-iterm t1 ∈ fterm-to-iterm ‘ ts fterm-to-iterm t2 ∈
fterm-to-iterm ‘ ts by auto

then have (fterm-to-iterm t1, fterm-to-iterm t2) ∈ (fterm-to-iterm ‘ ts ×
fterm-to-iterm ‘ ts) by auto

then have (fterm-to-iterm t1) · σ = (fterm-to-iterm t2) · σ using assms
unfolding unifiers-def

by (metis (no-types, lifting) assms fst-conv in-unifiersE snd-conv)
then have fterm-to-iterm (t1 ·t isub-to-fsub σ) = fterm-to-iterm (t2 ·t

isub-to-fsub σ) using fterm-to-iterm-subst by auto
then have iterm-to-fterm (fterm-to-iterm (t1 ·t (isub-to-fsub σ))) = iterm-to-fterm

(fterm-to-iterm (t2 ·t isub-to-fsub σ)) by auto
then show t1 ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ by auto

qed
then have ∀ t2∈ts. t ′ ·t isub-to-fsub σ = t2 ·t isub-to-fsub σ using t ′-p by blast

then show unifier ts (isub-to-fsub σ) ts unfolding unifier ts-def by metis
qed

lemma icomp-fcomp: ϑ ◦s i = fsub-to-isub (isub-to-fsub ϑ · isub-to-fsub i)
unfolding composition-def subst-compose-def

proof
fix x
show ϑ x · i = fterm-to-iterm (iterm-to-fterm (ϑ x) ·t (λx. iterm-to-fterm (i x)))

using iterm-to-fterm-subt by auto
qed

lemma is-mgu-mguts:
assumes finite ts
assumes is-imgu ϑ (fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts)
shows mguts (isub-to-fsub ϑ) ts

proof −
from assms have unifier ts (isub-to-fsub ϑ) ts unfolding is-imgu-def using

unifiers-unifiert by auto
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moreover have ∀ u. unifier ts u ts −→ (∃ i. u = (isub-to-fsub ϑ) · i)
proof (rule allI ; rule impI )

fix u
assume unifier ts u ts
then have fsub-to-isub u ∈ unifiers (fterm-to-iterm ‘ ts × fterm-to-iterm ‘

ts) using unifiert-unifiers by auto
then have ∃ i. fsub-to-isub u = ϑ ◦s i using assms unfolding is-imgu-def

by auto
then obtain i where fsub-to-isub u = ϑ ◦s i by auto

then have fsub-to-isub u = fsub-to-isub (isub-to-fsub ϑ · isub-to-fsub i) using
icomp-fcomp by auto

then have isub-to-fsub (fsub-to-isub u) = isub-to-fsub (fsub-to-isub (isub-to-fsub
ϑ · isub-to-fsub i)) by metis

then have u = isub-to-fsub ϑ · isub-to-fsub i by auto
then show ∃ i. u = isub-to-fsub ϑ · i by metis

qed
ultimately show ?thesis unfolding mguts-def by auto

qed

lemma unification ′:
assumes finite ts
assumes unifier ts σ ts
shows ∃ϑ. mguts ϑ ts

proof −
let ?E = fterm-to-iterm ‘ ts × fterm-to-iterm ‘ ts
let ?lE = set-to-list ?E
from assms have fsub-to-isub σ ∈ unifiers ?E using unifiert-unifiers by auto
then have ∃ϑ. is-imgu ϑ ?E
using unify-unification[of fsub-to-isub σ ?lE ] assms by (simp add: set-set-to-list)

then obtain ϑ where is-imgu ϑ ?E unfolding set-to-list-def by auto
then have mguts (isub-to-fsub ϑ) ts using assms is-mgu-mguts by auto
then show ?thesis by auto

qed

fun literal-to-term :: fterm literal ⇒ fterm where
literal-to-term (Pos p ts) = Fun ′′Pos ′′ [Fun p ts]
| literal-to-term (Neg p ts) = Fun ′′Neg ′′ [Fun p ts]

fun term-to-literal :: fterm ⇒ fterm literal where
term-to-literal (Fun s [Fun p ts]) = (if s= ′′Pos ′′ then Pos else Neg) p ts

lemma term-to-literal-cancel[simp]: term-to-literal (literal-to-term l) = l
by (cases l) auto

lemma literal-to-term-sub: literal-to-term (l ·l σ) = (literal-to-term l) ·t σ
by (induction l) auto

lemma unifier ls-unifier ts:
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assumes unifier ls σ L
shows unifier ts σ (literal-to-term ‘ L)

proof −
from assms obtain l ′ where ∀ l∈L. l ·l σ = l ′ unfolding unifier ls-def by auto
then have ∀ l∈L. literal-to-term (l ·l σ) = literal-to-term l ′ by auto
then have ∀ l∈L. (literal-to-term l) ·t σ = literal-to-term l ′ using literal-to-term-sub

by auto
then have ∀ t∈literal-to-term ‘ L. t ·t σ = literal-to-term l ′ by auto
then show ?thesis unfolding unifier ts-def by auto

qed

lemma unifiert-unifier ls:
assumes unifier ts σ (literal-to-term ‘ L)
shows unifier ls σ L

proof −
from assms obtain t ′ where ∀ t∈literal-to-term ‘ L. t ·t σ = t ′ unfolding

unifier ts-def by auto
then have ∀ t∈literal-to-term ‘ L. term-to-literal (t ·t σ) = term-to-literal t ′ by

auto
then have ∀ l∈ L. term-to-literal ((literal-to-term l) ·t σ) = term-to-literal t ′ by

auto
then have ∀ l∈ L. term-to-literal ((literal-to-term (l ·l σ))) = term-to-literal t ′

using literal-to-term-sub by auto
then have ∀ l∈ L. l ·l σ = term-to-literal t ′ by auto
then show ?thesis unfolding unifier ls-def by auto

qed

lemma mguts-mguls:
assumes mguts ϑ (literal-to-term ‘ L)
shows mguls ϑ L

proof −
from assms have unifier ts ϑ (literal-to-term ‘ L) unfolding mguts-def by auto
then have unifier ls ϑ L using unifiert-unifier ls by auto
moreover
{

fix u
assume unifier ls u L
then have unifier ts u (literal-to-term ‘ L) using unifier ls-unifier ts by auto
then have ∃ i. u = ϑ · i using assms unfolding mguts-def by auto

}
ultimately show ?thesis unfolding mguls-def by auto

qed

theorem unification:
assumes fin: finite L
assumes uni: unifier ls σ L
shows ∃ϑ. mguls ϑ L

proof −
from uni have unifier ts σ (literal-to-term ‘ L) using unifier ls-unifier ts by auto
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then obtain ϑ where mguts ϑ (literal-to-term ‘ L) using fin unification ′ by
blast

then have mguls ϑ L using mguts-mguls by auto
then show ?thesis by auto

qed

end

20 Instance of completeness theorem
theory Completeness-Instance imports Unification-Theorem Completeness be-
gin

interpretation unification using unification by unfold-locales auto

thm lifting

lemma lift:
assumes fin: finite C ∧ finite D
assumes apart: varsls C ∩ varsls D = {}
assumes inst1: instance-of ls C ′ C
assumes inst2: instance-of ls D ′ D
assumes appl: applicable C ′ D ′ L ′ M ′ σ
shows ∃L M τ . applicable C D L M τ ∧

instance-of ls (resolution C ′ D ′ L ′ M ′ σ) (resolution C D L M τ)
using assms lifting by metis

thm completeness

theorem complete:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::hterm fun-denot) (G::hterm pred-denot) . ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness by −

thm completeness-countable

theorem complete-countable:
assumes inf-uni: infinite (UNIV :: ( ′u :: countable) set)
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F :: ′u fun-denot) (G:: ′u pred-denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-countable by −

thm completeness-nat

theorem complete-nat:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat: ∀ (F ::nat fun-denot) (G::nat pred-denot) . ¬evalcs F G Cs
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shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

using assms completeness-nat by −

end
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