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Abstract

This theory is a formalization of the resolution calculus for first-
order logic. It is proven sound and complete. The soundness proof
uses the substitution lemma, which shows a correspondence between
substitutions and updates to an environment. The completeness proof
uses semantic trees, i.e. trees whose paths are partial Herbrand in-
terpretations. It employs Herbrand’s theorem in a formulation which
states that an unsatisfiable set of clauses has a finite closed semantic
tree. It also uses the lifting lemma which lifts resolution derivation
steps from the ground world up to the first-order world. The theory is
presented in a paper in the Journal of Automated Reasoning [7] which
extends a paper presented at the International Conference on Interac-
tive Theorem Proving [6]. An earlier version was presented in an MSc
thesis [5]. The formalization mostly follows textbooks by Ben-Ari [1],
Chang and Lee [2], and Leitsch [4]. The theory is part of the IsaFoL

project [3].
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1 Terms and Literals

theory TermsAndLiterals imports Main HOL— Library. Countable-Set begin

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

datatype fterm =
Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym

datatype hterm = HFun fun-sym hterm list — Herbrand terms defined as in
Berghofer’s FOL-Fitting

type-synonym 't atom = pred-sym * 't list

datatype 't literal =
sign: Pos (get-pred: pred-sym) (get-terms: 't list)
| Neg (get-pred: pred-sym) (get-terms: 't list)

fun get-atom :: 't literal = "t atom where
get-atom (Pos p ts) = (p, ts)
| get-atom (Neg p ts) = (p, ts)

1.1 Ground

fun ground; :: fterm = bool where
ground; (Var z) «— False
| ground; (Fun fts) «— (Yt € set ts. ground; t)

abbreviation ground;s :: fterm list = bool where
ground;s ts = (Vt € set ts. ground, t)

abbreviation ground; :: fterm literal = bool where
ground; | = groundys (get-terms 1)

abbreviation ground;, :: fterm literal set = bool where
ground;s C = (V1 € C. ground; )

definition ground-fatoms :: fterm atom set where
ground-fatoms = {a. ground;s (snd a)}

lemma ground;-ground-fatom:
assumes ground; [
shows get-atom | € ground-fatoms
using assms unfolding ground-fatoms-def by (induction 1) auto



1.2 Auxiliary

lemma infinity:
assumes inj: Vn :: nat. undiago (diago n) = n
assumes all-tree: ¥V n :: nat. (diago n) € S
shows —finite S
proof —
from inj all-tree have ¥V n. n = undiago (diago n) A (diago n) € S by auto
then have Vn. 3ds. n = undiago ds N\ ds € S by auto
then have undiago ‘S = (UNIV :: nat set) by auto
then show —finite S by (metis finite-imagel infinite-UNIV-nat)
qed

lemma inv-into-f-f:
assumes bij-betw f A B
assumes a€A
shows (inv-into A f) (fa) = a
using assms bij-betw-inv-into-left by metis

lemma f-inv-into-f:
assumes bij-betw f A B
assumes beB
shows [ ((inv-into A f) b) = b
using assms bij-betw-inv-into-right by metis

1.3 Conversions

1.3.1 Conversions - Terms and Herbrand Terms

fun fterm-of-hterm :: hterm = fterm where
fterm-of-hterm (HFun p ts) = Fun p (map fterm-of-hterm ts)

definition fterms-of-hterms :: hterm list = fterm list where
fterms-of-hterms ts = map fterm-of-hterm ts

fun hterm-of-fterm :: fterm = hterm where
hterm-of-fterm (Fun p ts) = HFun p (map hterm-of-fterm ts)

definition hterms-of-fterms :: fterm list = hterm list where
hterms-of-fterms ts = map hterm-of-fterm ts

lemma hterm-of-fterm-fterm-of-hterm|[simpl: hterm-of-fterm (fterm-of-hterm t) =
t
by (induction t) (simp add: map-idI)

lemma hterms-of-fterms-fterms-of-hterms|simp|: hterms-of-fterms (fterms-of-hterms
ts) = ts
unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI)

lemma fterm-of-hterm-hterm-of-fterm[simpl:



assumes ground; t
shows fterm-of-hterm (hterm-of-fterm t) =t
using assms by (induction t) (auto simp add: map-idI)

lemma fterms-of-hterms-hterms-of-fterms[simp):

assumes ground;s ts

shows fterms-of-hterms (hterms-of-fterms ts) = ts

using assms unfolding fterms-of-hterms-def hterms-of-fterms-def by (simp add:
map-idl )

lemma ground-fterm-of-hterm: ground; (fterm-of-hterm t)
by (induction t) (auto simp add: map-idI)

lemma ground-fterms-of-hterms: ground;s (fterms-of-hterms ts)
unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals

fun flit-of-hlit :: hterm literal = fterm literal where
flit-of-hlit (Pos p ts) = Pos p (fterms-of-hterms ts)
| flit-of-hlit (Neg p ts) = Neg p (fterms-of-hterms ts)

fun hlit-of-flit :: fterm literal = hterm literal where
hlit-of-flit (Pos p ts) = Pos p (hterms-of-fterms ts)
| hlit-of-flit (Neg p ts) = Neg p (hterms-of-fterms ts)

lemma ground-flit-of-hlit: ground; (flit-of-hlit 1)
by (induction l) (simp add: ground-fterms-of-hterms)+

theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit 1) = 1 by (cases 1)
auto

theorem flit-of-hlit-hlit-of-flit [simp):
assumes ground; [
shows flit-of-hlit (hlit-of-flit I) = 1
using assms by (cases ) auto

lemma sign-flit-of-hlit: sign (flit-of-hlit 1) = sign | by (cases 1) auto

lemma hlit-of-flit-bij: bij-betw hlit-of-flit {1. ground; I} UNIV
unfolding bij-betw-def
proof
show inj-on hlit-of-flit {I. ground; I} using inj-on-inversel flit-of-hlit-hlit-of-flit
by (metis (mono-tags, lifting) mem-Collect-eq)
next
have V. 31'. ground; I’ A | = hlit-of-flit I’
using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis
then show hlit-of-flit “ {I. ground; I} = UNIV by auto
qed



lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground; 1}

unfolding bij-betw-def inj-on-def
proof

show Vxe UNIV .V ye UNIV. flit-of-hlit © = flit-of-hlit y — =z =y

using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis

next

have V. ground; | — (I = flit-of-hlit (hlit-of-flit 1)) using hlit-of-flit-flit-of-hlit
by auto

then have {l. ground; I} C flit-of-hlit ¢ UNIV by blast

moreover

have V I. ground; (flit-of-hlit 1) using ground-flit-of-hlit by auto

ultimately show flit-of-hlit ¢ UNIV = {l. ground; 1} using hlit-of-flit-flit-of-hlit
ground-flit-of-hlit by auto
qed

1.3.3 Conversions - Atoms and Herbrand Atoms

fun fatom-of-hatom :: hterm atom = fterm atom where
fatom-of-hatom (p, ts) = (p, fterms-of-hterms ts)

fun hatom-of-fatom :: fterm atom = hterm atom where
hatom-of-fatom (p, ts) = (p, hterms-of-fterms ts)

lemma ground-fatom-of-hatom: ground;s (snd (fatom-of-hatom a))
by (induction a) (simp add: ground-fterms-of-hterms)+

theorem hatom-of-fatom-fatom-of-hatom [simp|: hatom-of-fatom (fatom-of-hatom
=1
by (cases 1) auto

theorem fatom-of-hatom-hatom-of-fatom [simp]:
assumes ground;s (snd )
shows fatom-of-hatom (hatom-of-fatom 1) =1
using assms by (cases ) auto

lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV
unfolding bij-betw-def
proof
show inj-on hatom-of-fatom ground-fatoms using inj-on-inversel fatom-of-hatom-hatom-of-fatom
unfolding ground-fatoms-def
by (metis (mono-tags, lifting) mem-Collect-eq)
next
have Va. 3a’. ground;s (snd a’) A a = hatom-of-fatom a’
using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
then show hatom-of-fatom * ground-fatoms = UNIV unfolding ground-fatoms-def
by blast
qged



lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms
unfolding bij-betw-def inj-on-def
proof
show Vze UNIV. VY ye UNIV. fatom-of-hatom x = fatom-of-hatom y — z =y
using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis
next
have V a. ground:s (snd a) — (a = fatom-of-hatom (hatom-of-fatom a)) using
hatom-of-fatom-fatom-of-hatom by auto
then have ground-fatoms C fatom-of-hatom ¢ UNIV unfolding ground-fatoms-def
by blast
moreover
have V. ground;s (snd (fatom-of-hatom 1)) using ground-fatom-of-hatom by
auto
ultimately show fatom-of-hatom ¢ UNIV = ground-fatoms
using hatom-of-fatom-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def
by auto
qed

1.4 Enumerations
1.4.1 Enumerating Strings

definition nat-of-string:: string = nat where
nat-of-string = (SOME f. bij f)

definition string-of-nat:: nat = string where
string-of-nat = inv nat-of-string

lemma nat-of-string-bij: bij nat-of-string

proof —

have countable (UNIV ::string set) by auto

moreover

have infinite (UNIV::string set) using infinite-UNIV-list] by auto
ultimately

obtain z where bij (2:: string = nat) using countableE-infinite[of UNIV] by
blast

then show ?thesis unfolding nat-of-string-def using somel by metis
qed

lemma string-of-nat-bij: bij string-of-nat unfolding string-of-nat-def using nat-of-string-bij
bij-betw-inv-into by auto

lemma nat-of-string-string-of-nat[simp): nat-of-string (string-of-nat n) = n
unfolding string-of-nat-def
using nat-of-string-bij f-inv-into-f[of nat-of-string] by simp

lemma string-of-nat-nat-of-string[simp|: string-of-nat (nat-of-string n) = n
unfolding string-of-nat-def
using nat-of-string-bij inv-into-f-fof nat-of-string] by simp



1.4.2 Enumerating Herbrand Atoms

definition nat-of-hatom:: hterm atom = nat where
nat-of-hatom = (SOME f. bij f)

definition hatom-of-nat:: nat = hterm atom where
hatom-of-nat = inv nat-of-hatom

instantiation hterm :: countable begin
instance by countable-datatype
end

lemma infinite-hatoms: infinite (UNIV :: ('t atom) set)
proof —
let ?diago = An. (string-of-nat n,[])
let ?undiago = Aa. nat-of-string (fst a)
have Vn. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have Vn. ?diago n € UNIV by auto
ultimately show infinite (UNIV :: ('t atom) set) using infinity[of ?undiago
?diago UNIV] by simp
qed

lemma nat-of-hatom-bij: bij nat-of-hatom
proof —
let 2S = UNIV :: (('t::countable) atom) set
have countable ?S by auto
moreover
have infinite 25 using infinite-hatoms by auto
ultimately
obtain z where bij (z :: hterm atom = nat) using countableE-infinite[of 25|
by blast
then have bij nat-of-hatom unfolding nat-of-hatom-def using somel by metis
then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-of-hatom-def
by simp
qed

lemma hatom-of-nat-bij: bij hatom-of-nat unfolding hatom-of-nat-def using nat-of-hatom-bij
bij-betw-inv-into by auto

lemma nat-of-hatom-hatom-of-nat[simp|: nat-of-hatom (hatom-of-nat n) = n
unfolding hatom-of-nat-def
using nat-of-hatom-bij f-inv-into-f|of nat-of-hatom] by simp

lemma hatom-of-nat-nat-of-hatom[simpl: hatom-of-nat (nat-of-hatom 1) = 1
unfolding hatom-of-nat-def
using nat-of-hatom-bij inv-into-f-f|of nat-of-hatom - UNIV] by simp



1.4.3 Enumerating Ground Atoms

definition fatom-of-nat :: nat = fterm atom where
fatom-of-nat = (An. fatom-of-hatom (hatom-of-nat n))

definition nat-of-fatom :: fterm atom = nat where
nat-of-fatom = (At. nat-of-hatom (hatom-of-fatom t))

theorem diag-undiag-fatom[simp):
assumes ground;s ts
shows fatom-of-nat (nat-of-fatom (p,ts)) = (p,ts)
using assms unfolding fatom-of-nat-def nat-of-fatom-def by auto

theorem undiag-diag-fatom[simpl: nat-of-fatom (fatom-of-nat n) = n unfolding
fatom-of-nat-def nat-of-fatom-def by auto

lemma fatom-of-nat-bij: bij-betw fatom-of-nat UNIV ground-fatoms
using hatom-of-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-of-nat-bij un-
folding fatom-of-nat-def comp-def by blast

lemma ground-fatom-of-nat: ground;s (snd (fatom-of-nat z)) unfolding fatom-of-nat-def
using ground-fatom-of-hatom by auto

lemma nat-of-fatom-bij: bij-betw nat-of-fatom ground-fatoms UNIV
using nat-of-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-of-nat-bij un-
folding nat-of-fatom-def comp-def by blast

end

2 Trees

theory Tree imports Main begin

Sometimes it is nice to think of bools as directions in a binary tree

hide-const (open) Left Right
type-synonym dir = bool

definition Left :: bool where Left = True
definition Right :: bool where Right = Fulse
declare Left-def [simp]

declare Right-def [simp)

datatype tree =
Leaf
| Branching (ltree: tree) (rtree: tree)

2.1 Sizes

fun treesize :: tree = nat where
treesize Leaf = 0



| treesize (Branching 1 r) = 1 + treesize | + treesize r

lemma treesize-Leaf:
assumes treesize T = 0
shows T = Leaf
using assms by (cases T) auto

lemma treesize-Branching:
assumes treesize T = Suc n
shows 31 r. T = Branching I r
using assms by (cases T) auto

2.2 Paths

fun path :: dir list = tree = bool where

path [| T <— True
| path (d#tds) (Branching T1 T2) <— (if d then path ds T1 else path ds T2)
| path - - +— False

lemma path-inv-Leaf: path p Leaf +— p = |]
by (induction p) auto

lemma path-inv-Cons: path (a#tds) T — (31 r. T=Branching I r)
by (cases T) (auto simp add: path-inv-Leaf)

lemma path-inv-Branching-Left: path (Left#p) (Branching | r) <— path p [
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching-Right: path (Right#p) (Branching I r) <— path p r
using Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching:
path p (Branching | r) «— (p=[] V (3a p'. p=a#p'A (a — path p' 1) A (—a
— path p’ 1)) (is 2L <— ?R)
proof
assume ?L then show ?R by (induction p) auto
next
assume 7: ?R
then show 7L
proof
assume p = [] then show ?L by auto
next
assume Ja p’. p=a#p'A (a — path p’ ) A (—a — path p’ 1)
then obtain a p’ where p=a#p’'A (a — path p' 1) A (—ma — path p' r)
by auto
then show ?L by (cases a) auto
qed

10



qed

lemma path-prefiz:
assumes path (ds1@Qds2) T
shows path ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using path-inv-Leaf by (cases T) auto
then obtain [ » where p-lr: T = Branching | r by auto
show ?Zcase
proof (cases a)
assume atrue: a
then have path ((ds1) @ ds2) [ using p-lr Cons(2) path-inv-Branching by
auto
then have path ds! | using Cons(1) by auto
then show path (a # ds1) T using p-lr atrue by auto
next
assume afalse: —a
then have path ((ds1) @ ds2) r using p-lr Cons(2) path-inv-Branching by
auto
then have path ds! r using Cons(1) by auto
then show path (a # ds1) T using p-lr afalse by auto
qed
next
case (Nil) then show ?case by auto
qed

2.3 Branches

fun branch :: dir list = tree = bool where

branch [| Leaf +— True
| branch (d # ds) (Branching I r) «— (if d then branch ds [ else branch ds )
| branch - - +— False

lemma has-branch: 3b. branch b T
proof (induction T)
case (Leaf)
have branch [| Leaf by auto
then show ?case by blast
next
case (Branching T1 T3)
then obtain b where branch b T by auto
then have branch (Left#b) (Branching T1 T2) by auto
then show ?case by blast
qed

lemma branch-inv-Leaf: branch b Leaf +— b = ||
by (cases b) auto

11



lemma branch-inv-Branching-Left:
branch (Left#b) (Branching | r) <— branch bl
by auto

lemma branch-inv-Branching- Right:
branch (Right#b) (Branching | r) +— branch b r
by auto

lemma branch-inv-Branching:
branch b (Branching | r) +—
(Fa b’ b=a#b'A (a — branch b’ 1) A (ma — branch b’ r))
by (induction b) auto

lemma branch-inv-Leaf2:
T = Leaf «+— (Vb. branch b T — b = [])
proof —
{
assume T'=Leaf
then have Vb. branch b T — b = || using branch-inv-Leaf by auto

}

moreover
{
assume YV b. branch b T — b = ||
then have Vb. branch b T — —(Fa b’. b = a # b’) by auto
then have Vb. branch b T — —(31 r. branch b (Branching [ 1))
using branch-inv-Branching by auto
then have T=Leaf using has-branch|of T| by (metis branch.elims(2))
}
ultimately show T = Leaf <— (Vb. branch b T — b = []) by auto
qed

lemma branch-is-path:
assumesbranch ds T
shows path ds T
using assms proof (induction T arbitrary: ds)

case Leaf
then have ds = [| using branch-inv-Leaf by auto
then show ?case by auto

next

case (Branching T1 Ts)
then obtain a b where ds-p: ds = a # b A (a — branch b T1) A (= a —
branch b Ts) using branch-inv-Branching|of ds] by blast
then have (a — path b T1) A (ma — path b T3) using Branching by auto
then show ?case using ds-p by (cases a) auto
qed

lemma Branching-Leaf-Leaf-Tree:

assumes 1 = Branching T1 T2
shows (3 B. branch (BQ[True]) T A branch (BQ[False]) T)

12



using assms proof (induction T arbitrary: T1 T2)
case Leaf then show ?case by auto
next
case (Branching T1' T2')
{
assume T1'=Leaf N T2'=Leaf
then have branch ([] @ [True]) (Branching T1' T2') A branch ([] @ [False])
(Branching T1' T2') by auto
then have ?case by metis

}

moreover
{

fix T11 T12

assume T1' = Branching T11 T12

then obtain B where branch (B Q [True]) T1'

A branch (B Q [False]) T1' using Branching by blast
then have branch (([True] @ B) @ [True]) (Branching T1' T2')
A branch (([True] @ B) Q@ [False]) (Branching T1' T2') by auto
then have ?case by blast

}

moreover
{
fix T11 T12
assume T2’ = Branching T11 T12
then obtain B where branch (B @ [True]) T2’
A branch (B Q [False]) T2' using Branching by blast
then have branch (([False] @ B) Q [True]) (Branching T1' T2')
A branch (([False] @ B) @ [Fulse]) (Branching T1' T2') by auto
then have ?case by blast
}
ultimately show ?case using tree.exhaust by blast
qed

2.4 Internal Paths

fun internal :: dir list = tree = bool where

internal [| (Branching l r) «— True
| internal (d#ds) (Branching | r) <— (if d then internal ds [ else internal ds r)
| internal - - «+— False

lemma internal-inv-Leaf: —internal b Leaf using internal.simps by blast

lemma internal-inv-Branching-Left:
internal (Left#£b) (Branching I r) «— internal b | by auto

lemma internal-inv-Branching- Right:

internal (Right#0b) (Branching | r) <— internal b r
by auto

13



lemma internal-inv-Branching:
internal p (Branching I ) <— (p=[] V (3a p". p=a#p'A (a — internal p' I) A
(ma — internal p' r))) (is ?L +— ?R)
proof
assume ?L then show ?R by (metis internal.simps(2) neg-Nil-conv)
next
assume 7: ?R
then show 7L
proof
assume p = [| then show ?L by auto
next
assume Ja p’. p=a#p’'A (a — internal p’ I) A (ma — internal p' r)
then obtain a p’ where p=a#p’A (a — internal p’ 1) A (ma —> internal
p’ r) by auto
then show ?L by (cases a) auto
qed
qed

lemma internal-is-path:

assumes internal ds T

shows path ds T
using assms proof (induction T arbitrary: ds)

case Leaf

then have Fulse using internal-inv-Leaf by auto

then show “case by auto
next

case (Branching T1 T3)

then obtain a b where ds-p: ds=[| V ds = a # b A (a — internal b T1) A (&
a — internal b Ts) using internal-inv-Branching by blast

then have ds =[] V (a — path b T1) A (ma —> path b T5) using Branching
by auto

then show Zcase using ds-p by (cases a) auto
qed

lemma internal-prefiz:
assumes internal (ds1 Qds2Q[d]) T
shows internal ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using internal-inv-Leaf by (cases T') auto
then obtain [ » where p-lr: T = Branching | r by auto
show Zcase
proof (cases a)
assuime atrue: a
then have internal ((ds1) @Q ds2 Q[d]) [ using p-ir Cons(2) internal-inv-Branching
by auto
then have internal dsi | using Cons(1) by auto
then show internal (a # ds1) T using p-ir atrue by auto
next

14



assume afalse: ~a

then have internal ((ds1) @Q ds2 Q[d]) r using p-lr Cons(2) internal-inv-Branching

by auto
then have internal ds! r using Cons(1) by auto
then show internal (a # ds1) T using p-ir afalse by auto
qed
next
case (Nil)
then have 31 r. T = Branching | r using internal-inv-Leaf by (cases T) auto
then show ?case by auto
qed

lemma internal-branch:
assumes branch (ds1@Qds2Q[d]) T
shows internal ds1 T
using assms proof (induction ds1 arbitrary: T)
case (Cons a dsl)
then have 31 r. T = Branching | r using branch-inv-Leaf by (cases T) auto
then obtain [ » where p-lr: T = Branching | r by auto
show Zcase
proof (cases a)
assume atrue: a
then have branch (ds! @ ds2 @ [d]) [ using p-Ir Cons(2) branch-inv-Branching
by auto
then have internal dsi | using Cons(1) by auto
then show internal (a # ds1) T using p-lr atrue by auto
next
assume afalse: ~a
then have branch ((ds1) Q ds2 Q[d]) r using p-lir Cons(2) branch-inv-Branching
by auto
then have internal ds! r using Cons(1) by auto
then show internal (a # ds1) T using p-lr afalse by auto
qed
next
case (Nil)
then have 31 r. T = Branching | r using branch-inv-Leaf by (cases T) auto
then show ?case by auto
qed

fun parent :: dir list = dir list where
parent ds = tl ds

2.5 Deleting Nodes

fun delete :: dir list = tree = tree where
delete [| T = Leaf
| delete (True#tds) (Branching T1 Ts) = Branching (delete ds T1) T
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| delete (False#ds) (Branching T1 Ts) = Branching T1 (delete ds Ts)
| delete (a#ds) Leaf = Leaf

lemma delete-Leaf: delete T Leaf = Leaf by (cases T) auto

lemma path-delete:
assumes path p (delete ds T)
shows path p T
using assms proof (induction p arbitrary: T ds)
case Nil
then show ?Zcase by simp
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons

by auto
then obtain d7'1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 377 T2. T=Branching T1 T2
by (cases T cases ds) auto
then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a

assume b-p: —b

have path (a # p) (delete ds T) using Cons by —

then have path (a # p) (Branching (T1) (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto

then have path p T1 using a-p by auto

then have ?case using T17T2-p a-p by auto

}

moreover
{

assume a-p: —a

assume b-p: b

have path (a # p) (delete ds T) using Cons by —

then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p

T1T2-p by auto
then have path p T2 using a-p by auto
then have ?case using T17T2-p a-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto
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then have path p (delete ds’ T1) using a-p by auto
then have path p T1 using Cons by auto
then have ?case using T1T2-p a-p by auto

}

moreover
{
assume a-p: —a
assume b-p: —b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T2) using a-p by auto
then have path p T2 using Cons by auto
then have ?case using T17T2-p a-p by auto
}
ultimately show ?case by blast
qed

lemma branch-delete:
assumes branch p (delete ds T)
shows branch p T V p=ds
using assms proof (induction p arbitrary: T ds)
case Nil
then have delete ds T = Leaf by (cases delete ds T) auto
then have ds = [| V T = Leaf using delete.elims by blast
then show ?case by auto
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons

branch-is-path by blast
then obtain dT1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 3771 T2. T=Branching T1 T2
by (cases T; cases ds) auto
then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a

assume b-p: —b

have branch (a # p) (delete ds T) using Cons by —

then have branch (a # p) (Branching (T1) (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto

then have branch p T1 using a-p by auto

then have ?case using T17T2-p a-p by auto

}

moreover

{
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assume a-p: —a

assume b-p: b

have branch (a # p) (delete ds T') using Cons by —

then have branch (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto

then have branch p T2 using a-p by auto

then have ?case using T1T2-p a-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have branch (a # p) (delete ds T') using Cons by —
then have branch (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto
then have branch p (delete ds’ T1) using a-p by auto
then have branch p T1 V p = ds’ using Cons by metis
then have ?case using T1T2-p a-p using bds’-p a-p b-p by auto
}
moreover
{
assume a-p: —a
assume b-p: —b
have branch (a # p) (delete ds T') using Cons by —
then have branch (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have branch p (delete ds’ T2) using a-p by auto
then have branch p T2 V p = ds’ using Cons by metis
then have ?case using T1T2-p a-p using bds’-p a-p b-p by auto
}
ultimately show ?case by blast
qed

lemma branch-delete-postfiz:
assumes path p (delete ds T)
shows —(J ¢ ¢cs. p = ds Q c#cs)
using assms proof (induction p arbitrary: T ds)
case Nil then show ?Zcase by simp
next
case (Cons a p)
then obtain b ds’ where bds’-p: ds=b#ds’ by (cases ds) auto

have 3dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto
then obtain d7'1 dT2 where delete ds T = Branching dT1 dT2 by auto

then have 3 T1 T2. T=Branching T1 T2
by (cases T; cases ds) auto
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then obtain 771 T2 where T1T2-p: T=Branching T1 T2 by auto

{

assume a-p: a
assume b-p: —b
then have ?case using T1T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: —a
assume b-p: b
then have ?case using T17T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: a
assume b-p: b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching (delete ds’ T1) T2) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T1) using a-p by auto
then have — (3¢ cs. p = ds’ @Q ¢ # c¢s) using Cons by auto
then have ?case using T1T2-p a-p b-p bds’-p by auto

}

moreover
{
assume a-p: —a
assume b-p: —b
have path (a # p) (delete ds T) using Cons by —
then have path (a # p) (Branching T1 (delete ds’ T2)) using b-p bds’-p
T1T2-p by auto
then have path p (delete ds’ T2) using a-p by auto
then have — (3¢ cs. p = ds’ @Q ¢ # c¢s) using Cons by auto
then have ?case using T1T2-p a-p b-p bds’-p by auto
}
ultimately show ?case by blast
qed

lemma treezise-delete:
assumes internal p T
shows treesize (delete p T) < treesize T
using assms proof (induction p arbitrary: T)
case (Nil)
then have 3 T1 T2. T = Branching T1 T2 by (cases T) auto
then obtain 771 T2 where T1T2-p: T = Branching T1 T2 by auto
then show ?case by auto
next
case (Cons a p)
then have 3 71 T2. T = Branching T1 T2 using path-inv-Cons internal-is-path
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by blast
then obtain 771 T2 where T1T2-p: T = Branching T1 T2 by auto
show ?Zcase
proof (cases a)
assume a-p: a
from a-p have delete (a#tp) T = (Branching (delete p T1) T2) using T1T2-p
by auto
moreover
from a-p have internal p T1 using T1T2-p Cons by auto
then have treesize (delete p T1) < treesize T1 using Cons by auto
ultimately
show ?thesis using T17T2-p by auto
next
assume a-p: —a
from a-p have delete (a#p) T = (Branching T1 (delete p T2)) using T1T2-p
by auto
moreover
from a-p have internal p T2 using T1T2-p Cons by auto
then have treesize (delete p T2) < treesize T2 using Cons by auto
ultimately
show ?thesis using T1T2-p by auto
qed
qed

fun cutoff :: (dir list = bool) = dir list = tree = tree where
cutoff red ds (Branching T1 Ts) =
(if red ds then Leaf else Branching (cutoff red (dsQ[Left]) T1) (cutoff red
(ds@[Right]) T>))
| cutoff red ds Leaf = Leaf

Initially you should call cutoff with ds = []. If all branches are red, then
cutoff gives a subtree. If all branches are red, then so are the ones in cutoff.
The internal paths of cutoff are not red.

lemma treesize-cutoff: treesize (cutoff red ds T) < treesize T
proof (induction T arbitrary: ds)
case Leaf then show ?case by auto
next
case (Branching T1 T2)
then have treesize (cutoff red (dsQ[Left]) T1) + treesize (cutoff red (dsQ[Right])
T2) < treesize T1 + treesize T2 using add-mono by blast
then show ?case by auto
qed

abbreviation anypath :: tree = (dir list = bool) = bool where
anypath T P =V p. path p T — P p

abbreviation anybranch :: tree = (dir list = bool) = bool where
anybranch T P =V p. branch p T — P p
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abbreviation anyinternal :: tree = (dir list = bool) = bool where
anyinternal T P =V p. internal p T — P p

lemma cutoff-branch’:
assumes anybranch T (\b. red(dsQb))
shows anybranch (cutoff red ds T) (Ab. red(dsQb))
using assms proof (induction T arbitrary: ds)
case (Leaf)
let ?T = cutoff red ds Leaf
{
fix b
assume branch b ?T
then have branch b Leaf by auto
then have red(dsQb) using Leaf by auto
}
then show Zcase by simp
next
case (Branching T1 Ts)
let ?T = cutoff red ds (Branching T1 Ts)
from Branching have V p. branch (Left#p) (Branching T1 T2) — red (ds @
(Left#p)) by blast
then have Vp. branch p T1 — red (ds @ (Left#p)) by auto
then have anybranch T1 (Ap. red ((ds @ [Left]) @ p)) by auto
then have aa: anybranch (cutoff red (ds @ [Left]) T1) (Ap. red ((ds @ [Left]) @Q
p))

using Branching by blast

from Branching have V p. branch (Right#p) (Branching T1 T2) — red (ds @
(Right#p)) by blast

then have Vp. branch p Ty — red (ds @ (Right#p)) by auto

then have anybranch Ty (Ap. red ((ds Q [Right]) Q p)) by auto

then have bb: anybranch (cutoff red (ds @ [Right]) T2) (Ap. red ((ds @ [Right])

@ p))

{
fix b

assume b-p: branch b ?T
have red ds V —red ds by auto
then have red(dsQb)
proof
assume ds-p: red ds
then have ?T = Leaf by auto
then have b = [| using b-p branch-inv-Leaf by auto
then show red(ds@b) using ds-p by auto
next
assume ds-p: —red ds
let ?T1' = cutoff red (dsQ[Left]) T:
let ?Ty' = cutoff red (dsQ[Right]) T4

using Branching by blast
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from ds-p have ?T = Branching ?T1’ ?T3’ by auto
from this b-p obtain a b’ where b = a # b’ A (a — branch b’ 2T1') A
(ma — branch b’ 2Ty’ ) using branch-inv-Branching[of b 2Ty’ ?T3'] by auto
then show red(dsQb) using aa bb by (cases a) auto
qed
}
then show ?case by blast
qed

lemma cutoff-branch:
assumes anybranch T (Ap. red p)
shows anybranch (cutoff red [| T) (Ap. red p)
using assms cutoff-branch’[of T red []] by auto

lemma cutoff-internal’:

assumes anybranch T (\b. red(dsQb))

shows anyinternal (cutoff red ds T) (Ab. —red(dsQb))
using assms proof (induction T arbitrary: ds)

case (Leaf) then show ?case using internal-inv-Leaf by simp
next

case (Branching T1 Ts)

let ?T = cutoff red ds (Branching T1 T3)

from Branching have V p. branch (Left#p) (Branching T1 Ta) — red (ds @
(Left#p)) by blast

then have V p. branch p Ty — red (ds Q (Left#p)) by auto

then have anybranch T (Ap. red ((ds @ [Left]) @ p)) by auto

then have aa: anyinternal (cutoff red (ds @ [Left]) T1) (Ap. = red ((ds @ [Left])
@ p)) using Branching by blast

from Branching have V p. branch (Right#p) (Branching T1 T3) — red (ds @
(Right#p)) by blast

then have Vp. branch p To — red (ds @ (Right#p)) by auto

then have anybranch To (Ap. red ((ds @ [Right]) @ p)) by auto

then have bb: anyinternal (cutoff red (ds @ [Right]) T2) (Ap. — red ((ds Q@
[Right]) @ p)) using Branching by blast

fix p
assume b-p: internal p ?T
then have ds-p: —red ds using internal-inv-Leaf by auto
have p=|] V p#|[] by auto
then have —red(dsQp)
proof
assume p=|[| then show —red(dsQp) using ds-p by auto
next
let ?T1' = cutoff red (dsQ[Left]) T,
let ?T5' = cutoff red (dsQ[Right]) T2
assume p#||
moreover
have ?T = Branching ?T1' ?Ts’ using ds-p by auto
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ultimately
obtain a p’ where b-p: p = a # p’ A
(a —> internal p’ (cutoff red (ds Q [Left]) T1)) A
(= @ — internal p’ (cutoff red (ds @Q [Right]) T2))
using b-p internal-inv-Branching[of p ?T1’ ?T2'] by auto
then have —red(ds @ [a] @ p') using aa bb by (cases a) auto
then show —red(ds @ p) using b-p by simp
qed
}
then show ?case by blast
qed

lemma cutoff-internal:
assumes anybranch T red
shows anyinternal (cutoff red [| T) (Ap. —red p)
using assms cutoff-internal’lof T red []] by auto

lemma cutoff-branch-internal’:

assumes anybranch T red

shows anyinternal (cutoff red [| T) (Ap. —red p) N anybranch (cutoff red [| T)
(Ap. red p)

using assms cutoff-internalof T| cutoff-branch[of T| by blast

lemma cutoff-branch-internal:
assumes anybranch T red
shows 3 T'. anyinternal T’ (Ap. —red p) A anybranch T’ (Ap. red p)
using assms cutoff-branch-internal’ by blast

3 Possibly Infinite Trees

Possibly infinite trees are of type dir list set.

abbreviation wf-tree :: dir list set = bool where
wf-tree T = (Vdsd. (ds@Qd) e T — dse T)

The subtree in with root r

fun subtree :: dir list set = dir list = dir list set where
subtree Tr = {ds € T.3ds". ds =r Q ds'}

A subtree of a tree is either in the left branch, the right branch, or is the
tree itself

lemma subtree-pos:

subtree T ds C subtree T (ds @ [Left]) U subtree T (ds @ [Right]) U {ds}
proof (rule subsetl; rule Set.UnCI)

let ?subtree = subtree T

fix z

assume asm: ¢ € Zsubtree ds

assume z ¢ {ds}
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then have z # ds by simp

then have Je d. z = ds Q [d] @ e using asm list.exhaust by auto

then have (Je. © = ds Q [Left] @ ¢) V (Je. z = ds @ [Right] @ ¢) using
bool.exhaust by auto

then show z € Zsubtree (ds Q [Left]) U ?subtree (ds Q [Right]) using asm by
auto
qed

3.1 Infinite Paths

abbreviation wf-infpath :: (nat = ’a list) = bool where
wf-infpath f = (f0 =[]) A (Vn. a. f (Sucn) = (fn) Q [a])

lemma infpath-length:
assumes wf-infpath f
shows length (fn) = n
using assms proof (induction n)
case () then show ?case by auto
next
case (Suc n) then show ?case by (metis length-append-singleton)
qed

lemma chain-prefix:
assumes wf-infpath f
assumes n; < no
shows Ja. (fny) @ a = (f ng)
using assms proof (induction ny)
case (Suc ngy)
then have n; < no V n; = Suc ne by auto
then show ?case
proof
assume n; < ng
then obtain a where a: fn; Q a = f ny using Suc by auto
have b: 3b. f (Suc na) = f ny @ [b] using Suc by auto
from o b have 3b. fny Q (a Q [b]) = f (Suc n2) by auto
then show Jc. fny Q ¢ = f (Suc na) by blast
next
assume n; = Suc ng
then have fn; @ [| = f (Suc na) by auto
then show Ja. fny @ a = f (Suc na2) by auto
qed
qed auto

If we make a lookup in a list, then looking up in an extension gives us the
same value.
lemma ith-in-extension:

assumes chain: wf-infpath f

assumes smalli: i < length (f n1)
assumes ning: Ny < No
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shows fni!i=fny ! i

proof —
from chain nin, have da. fn; @ a = f ny using chain-prefix by blast
then obtain ¢ where a-p: fn1 @Q a = f ny by auto
have (fn; @ a) ! i = fny ! i using smalli by (simp add: nth-append)
then show ?thesis using a-p by auto

qed

4 Konig’s Lemma

lemma inf-subs:
assumes inf: —finite(subtree T ds)
shows —finite(subtree T (ds Q [Left])) V —finite(subtree T (ds @ [Right]))
proof —
let Zsubtree = subtree T
{
assume asms: finite( ?subtree(ds @ [Left]))
finite( Zsubtree(ds @ [Right]))
have Zsubtree ds C ?subtree (ds Q [Left] ) U ?subtree (ds @Q [Right]) U {ds}
using subtree-pos by auto
then have finite( Zsubtree (ds)) using asms by (simp add: finite-subset)

then show —finite(?subtree (ds @ [Left])) V —finite(?subtree (ds @ [Right]))
using inf by auto
qed

fun buildchain :: (dir list = dir list) = nat = dir list where
buildchain next 0 = |]
| buildchain next (Suc n) = next (buildchain next n)

lemma konig:

assumes inf: —finite T

assumes wellformed: wf-tree T

shows Jc. wf-infpath ¢ A (Yn. (cn) € T)
proof

let Zsubtree = subtree T

let ?nextnode = \ds. (if —finite (Zsubtree (ds Q [Left])) then ds @ [Left] else ds
Q@ [Right])

let ?c = buildchain ?nextnode
have is-chain: wf-infpath ?c by auto
from wellformed have prefiz: Vds d. (ds @ d) € T — ds € T by blast

{

fix n
have (%c n) € T A —finite (Zsubtree (?c n))
proof (induction n)
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case (
have 3ds. ds € T using inf by (simp add: not-finite-existsD)
then obtain ds where ds € T by auto
then have ([|@Qds) € T by auto
then have [| € T using prefix by blast
then show ?case using inf by auto
next
case (Suc n)
from Suc have next-in: (?c n) € T by auto
from Suc have next-inf: —finite (?subtree (?c n)) by auto

from next-inf have next-next-inf:

—finite (Zsubtree (?nextnode (%c n)))

using inf-subs by auto

then have Jds. ds € Zsubtree (?nextnode (?c n))

by (simp add: not-finite-existsD)
then obtain ds where dss: ds € ?subtree (?nextnode (?c n)) by auto
then have ds € T Jsuf. ds = (?nextnode (?c n)) Q suf by auto
then obtain suf where ds € T A ds = (?nextnode (?c n)) Q suf by auto
then have (?nexztnode (?c n)) € T

using prefir by blast

then have (?c (Suc n)) € T by auto
then show ?Zcase using next-next-inf by auto
qed

then show wf-infpath ?c A (Vn. (?c n)e T) using is-chain by auto
qed

end

5 More Terms and Literals

theory Resolution imports TermsAndLiterals Tree begin

fun complement :: 't literal = 't literal (<- [300] 300) where
(Pos P ts)¢ = Neg P ts
| (Neg P ts)¢ = Pos P ts

lemma cancel-comp1: (I€)¢ = | by (cases ) auto

lemma cancel-comp?2:
assumes asm: [1¢ = [5€
shows [; = Iy
proof —
from asm have (1;°)¢ = (15°)¢ by auto
then have [; = (12°)° using cancel-compl|[of l1] by auto
then show ?thesis using cancel-compl[of l2] by auto
qed
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lemma comp-exil: A1’ I’ = I° by (cases ) auto

lemma comp-exi2: 31. I’ = ¢
proof

show [’ = (1’°)¢ using cancel-comp1[of '] by auto
qed

lemma comp-swap: 11¢ = ls +— 11 = 15°

proof —
have [,¢ = Iy — 1 = [2° using cancel-comp1[of I1] by auto
moreover
have [ = [,° — [1° = I using cancel-compl by auto
ultimately
show ?thesis by auto

qed

lemma sign-comp: sign ly # sign lo N\ get-pred Iy = get-pred ly N\ get-terms Iy =
get-terms lo < lo = 1€
by (cases l1; cases l3) auto

lemma sign-comp-atom: sign ly # sign lo A get-atom 1y = get-atom lo +— lo =
l,¢
by (cases l1; cases la) auto

6 Clauses

type-synonym 't clause = 't literal set
abbreviation complementls :: 't literal set = 't literal set (<-> [300] 300) where
LC = complement ¢ L

lemma cancel-compls1: (LY)¢ = L
apply (auto simp add: cancel-compl)
apply (metis imagel cancel-compl)
done

lemma cancel-compls2:

assumes asm: [,¢ = Ly,

shows L = Lo
proof —

from asm have (L;9)¢ = (L;%)¢ by auto

then show %thesis using cancel-compls1|of L] cancel-complsi[of Lo by simp
qed

fun vars; :: fterm = var-sym set where

varsy (Var z) = {z}
| varsy (Fun fts) = (Ut € set ts. vars; t)
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abbreviation vars;s :: fterm list = var-sym set where
varsys ts = (Jt € set ts. vars; t)

definition vars; :: fterm literal = var-sym set where
vars; | = varsys (get-terms 1)

definition vars;s :: fterm literal set = var-sym set where
vars;s L = | JI€L. vars;

lemma ground-vars;:
assumes ground; t
shows vars; t = {}
using assms by (induction t) auto

lemma grounds-vars;s:
assumes ground;s ts
shows vars;s ts = {}
using assms ground-vars; by auto

lemma ground;-vars;:
assumes ground; |
shows vars; | = {}
unfolding vars;-def using assms ground-vars; by auto

lemma ground;s-vars;s:
assumes ground;s L
shows vars;; L = {} unfolding vars;s-def using assms ground;-vars; by auto

lemma ground-comp: ground; (1¢) <— ground; | by (cases l) auto

lemma ground-compls: ground;s (L¢) +— ground;, L using ground-comp by
auto

7 Semantics

type-synonym 'u fun-denot = fun-sym = 'u list = 'u
type-synonym 'u pred-denot = pred-sym = 'u list = bool
type-synonym 'u var-denot = var-sym = 'u

fun eval; :: 'u var-denot = 'u fun-denot = fterm = 'u where
evaly EF (Varz) = E x
| evaly E F (Fun fts) = F f (map (evaly E F) ts)

abbreviation eval;s :: 'u var-denot = 'u fun-denot = fterm list = 'u list where
evalys E F ts = map (eval, E F) ts

fun eval; :: v var-denot = 'u fun-denot = 'u pred-denot = fterm literal = bool
where
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evalp EF G (Pos p ts) «— G p (evalys E F ts)
| eval; E F G (Neg p ts) <— —G p (evalys E F ts)

definition eval. :: 'u fun-denot = 'u pred-denot = fterm clause = bool where
eval. F G C +— (VE. 3l € C. eval; EF G 1)

definition eval.s :: "u fun-denot = "u pred-denot = fterm clause set = bool where
eval.s F G Cs +—— (VC € Cs. eval, F G C)

7.1 Semantics of Ground Terms

lemma ground-var-denott:
assumes ground; t
shows eval; E Ft = evaly E' F't
using assms proof (induction t)
case (Var z)
then have Fulse by auto
then show ?Zcase by auto
next
case (Fun f ts)
then have Vit € set ts. ground; t by auto
then have Vit € set ts. eval; F F t = eval, E' F t using Fun by auto
then have eval;; E F ts = eval;s E' F ts by auto
then have F [ (map (eval; E F) ts) = F f (map (evaly E' F) ts) by metis
then show Zcase by simp
qed

lemma ground-var-denotts:
assumes groundis ts
shows eval;s E F ts = eval,s E' F ts
using assms ground-var-denott by (metis map-eq-conv)

lemma ground-var-denot:

assumes ground; |

shows eval] EF G| = eval; E' F G 1
using assms proof (induction I)

case Pos then show ?Zcase using ground-var-denotts by (metis eval;.simps(1)
literal.sel(3))
next

case Neg then show Zcase using ground-var-denotts by (metis eval;.simps(2)
literal.sel(4))
qed

8 Substitutions
type-synonym substitution = var-sym = fterm

fun sub :: fterm = substitution = fterm (infixl «;» 55) where
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(Varz) o =0 x

| (Fun fts) -+ o = Fun f (map (At. t -4 o) ts)

abbreviation subs :: fterm list = substitution = fterm list (infixl ;4> 55) where
ts ts 0 = (map (At. t - o) ts)

fun subl :: fterm literal = substitution = fterm literal (infixl <> 55) where
(Pos p ts) 4 0 = Posp (ls 45 0)
| (Neg p ts) 1 0 = Neg p (ts s 0)

abbreviation subls :: fterm literal set = substitution = fterm literal set (infixl
15> 55) where
Lyso=\.1y0) ‘L

lemma subls-def2: L <15 0 = {l -y o|l. I € L} by auto

definition instance-of, :: fterm = fterm = bool where
instance-ofy t1 to «— (Jo. t1 = tg 4 0)

definition instance-of;s :: fterm list = fterm list = bool where
instance-of 15 ts1 tso <— (0. ts1 = tsg 45 0)

definition instance-of; :: fterm literal = fterm literal = bool where
instance-of 1y Iy «— (o. 11 =1y 4 0)

definition instance-ofs :: fterm clause = fterm clause = bool where
instance-of ;s C1 Cay «— (0. C1 = Cs 5 0)

lemma comp-sub: (1¢) -} o=(1 - 0)°

by (cases 1) auto

lemma compls-subls: (L) -1, o=(L -5 0)¢

using comp-sub apply auto

apply (metis image-eql)

done

lemma subls-union: (Ly U Lg) <15 0 = (L1 15 0) U (L2 15 0) by auto

definition var-renaming-of :: fterm clause = fterm clause = bool where
var-renaming-of Cp Cq <— instance-of;s C1 Ca A instance-of ;s Co Cy

8.1 The Empty Substitution

abbreviation ¢ :: substitution where
e = Var

lemma empty-subt: (¢ :: fterm) v e =t
by (induction t) (auto simp add: map-idI)
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lemma empty-subts: ts 415 € = ts
using empty-subt by auto

lemma empty-subl: | € = [
using empty-subts by (cases ) auto

lemma empty-subls: L 13 € = L
using empty-subl by auto

lemma instance-of:-self: instance-ofs t ¢
unfolding instance-of ;-def
proof

show t = t -; € using empty-subt by auto
qed

lemma instance-of:4-self: instance-of ;s ts ts
unfolding instance-ofs-def
proof

show ts = ts .15 € using empty-subts by auto
qed

lemma instance-of;-self: instance-of; 11
unfolding instance-of ;-def
proof

show | = [ - € using empty-subl by auto
qed

lemma instance-ofs-self: instance-of ;s L L
unfolding instance-ofs-def
proof

show L = L -}, € using empty-subls by auto
qed

8.2 Substitutions and Ground Terms

lemma ground-sub:
assumes ground; t
shows t -, o=t
using assms by (induction t) (auto simp add: map-idl)

lemma ground-subs:
assumes ground;s ts
shows ts ;s 0 = ts
using assms ground-sub by (simp add: map-idl)

lemma ground;-subs:

assumes ground; [
shows [0 =1
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using assms ground-subs by (cases 1) auto

lemma ground;s-subls:
assumes ground: ground;s L
shows L -, 0 = L
proof —
{
fix |
assume [-L: [ € L
then have ground; | using ground by auto
then have [ = [ -, ¢ using ground;-subs by auto
moreover
then have | ; 0 € L ;s 0 using [-L by auto
ultimately
have I € L ;5 0 by auto

}

moreover
{
fix |
assume [-L: € L 5 0
then obtain [’ where I’-p: I’ € L A1’y 0 = | by auto
then have [’ = [ using ground ground;-subs by auto
from [-L [’-p this have | € L by auto
}
ultimately show #¢thesis by auto
qed

8.3 Composition

definition composition :: substitution = substitution = substitution (infixl <>
55) where

(01 . 0'2) Tr = (0'1 l’) t 02

lemma composition-conseq2t: (t -+ 01) + 02 = t - (01 - 02)
proof (induction t)

case (Var z)

have ((Var z) -4 01) «+ 02 = (01 ) -+ 02 by simp

also have ... = (01 - 02) z unfolding composition-def by simp
finally show ?case by auto
next

case (Fun t ts)
then show ?case unfolding composition-def by auto
qed

lemma composition-conseq2ts: (ts +s 01) s 02 = ts +5 (01 - 02)
using composition-conseq2t by auto

lemma composition-conseq2l: (1 -} 01) <y 09 =1+ (01 - 02)
using composition-conseq2t by (cases ) auto
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lemma composition-conseq2ls: (L 15 01) 15 02 = L -5 (01 - 02)
using composition-conseq2l apply auto

apply (metis imagel)

done

lemma composition-assoc: o1 - (02 - 03) = (01 - 02) - 03
proof
fix z
show (01 - (02 - 03)) © = ((01 - 02) - 03) T
by (simp only: composition-def composition-conseq2t)
qed

lemma empty-compl: (o - ¢) = o
proof

fix z

show (o - €) © = o z unfolding composition-def using empty-subt by auto
qed

lemma empty-comp2: (¢ - o) = o
proof

fix z

show (¢ - 0) © = o z unfolding composition-def by simp
qed

lemma instance-of:-trans :
assumes tio: instance-of; t1 to
assumes to3: instance-ofy ty t3
shows instance-of; t1 t3
proof —
from t;5 obtain o015 where t; = t5 4 012
unfolding instance-of:-def by auto
moreover
from ty3 obtain o535 where t5 = t3 -4 093
unfolding instance-of:-def by auto
ultimately
have t; = (t3 '+ 023) '+ 012 by auto
then have t; = t3 -4 (023 - 012) using composition-conseq2t by simp
then show ?thesis unfolding instance-of:-def by auto
qed

lemma instance-of;s-trans :
assumes tsio: instance-ofss ts1 tso
assumes tso3: instance-ofis tso ts3
shows instance-of ;s ts1 ts3
proof —
from ts15 obtain 015 where ts; = ts9 15 019
unfolding instance-ofs-def by auto
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moreover
from tsy3 obtain 093 where tsy = ts3 45 093
unfolding instance-of:s-def by auto
ultimately
have ts; = (ts3 -ts 023) 'ts 012 by auto
then have ts; = ts3 s (023 - 012) using composition-conseq2ts by simp
then show ?thesis unfolding instance-of;s-def by auto
qed

lemma instance-of;-trans :
assumes l1o: instance-of; 1y o
assumes ly3: instance-of; Iy I3
shows instance-of; 11 I3
proof —
from /{5 obtain o1 where [; = Iy - 012
unfolding instance-of;-def by auto
moreover
from [53 obtain o935 where I, = I3 -} 093
unfolding instance-of;-def by auto
ultimately
have Iy = (I3 -; 023) -1 012 by auto
then have [y = I3 - (023 - 012) using composition-conseg2l by simp
then show ?thesis unfolding instance-of;-def by auto
qed

lemma instance-of;s-trans :
assumes Lis: instance-of ;s L1 Lo
assumes Lo3: instance-of;s Lo L3
shows instance-of;s L1 L3
proof —
from ng obtain g12 where L1 = L2 ‘ls 012
unfolding instance-ofs-def by auto
moreover
from L,3 obtain 093 where Ly = L3 -5 093
unfolding instance-ofs-def by auto
ultimately
have L; = (L3 s 023) 1s 012 by auto
then have Ly = L3 -5 (023 - 012) using composition-conseq2ls by simp
then show ?thesis unfolding instance-of;s-def by auto
qed

8.4 Merging substitutions

lemma project-sub:

assumes inst-C:C -5 Imbd = C’

assumes L'sub: L' C C’

shows 3L C C. L ;5 Imbd = L' A (C—L) 15 lmbd = C' — L’
proof —

let 2L={le C.3l'e L1 Imbd =17
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have ?L C C by auto
moreover
have ?L -, Imbd = L’
proof (rule Orderings.order-antisym; rule Set.subsetl)
fix I’
assume ['L: ' € L'
from inst-C have {l -; Imbd|l. | € C} = C' unfolding subls-def2 by —
then have 31. I'=1 -y Imbd ANl € C A1+ lmbd € L' using L'sub I'L by
auto
then have '€ {l € C. [ Imbd € L'} -5 Imbd by auto
then show '€ {l € C.3l'el’. |- Imbd = 1"} -5 Imbd by auto
qed auto
moreover
have (C—?L) -5 Imbd = C' — L’ using inst-C by auto
ultimately show “thesis
by blast
qed

lemma relevant-vars-subt:
assumes VYV € vars; t. 01 £ = 0o T
shows t 101 =1 09
using assms proof (induction t)
case (Fun f ts)
have f: Vi. t € set ts — vars; t C varsis ts by (induction ts) auto
have Vicset ts. t -, 01 =t -4 09
proof
fix ¢
assume tints: t € set ts
then have Vz € vars; t. 01 © = 09 z using f Fun(2) by auto
then show t -, 01 = t -4 02 using Fun tints by auto
qed
then have ts 15 01 = ts 15 02 by auto
then show ?case by auto
qed auto

lemma relevant-vars-subts:
assumes asm: Vx € vars;s ts. 01 T = 09 T
shows ts ;s 01 = ts 45 09
proof —
have f: Vt. t € set ts — vars; t C varss ts by (induction ts) auto
have Vicset ts. t -4 01 =t 4 09
proof
fix t
assume tints: t € set ts
then have Vz € vars, t. 01 x = 09 = using f asm by auto
then show t -, 01 = t -4 02 using relevant-vars-subt tints by auto
qed
then show ?thesis by auto
qed
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lemma relevant-vars-subl:

assumes Vz € vars; l. 01 £ = 09 x

shows [ - 01 =1 09
using assms proof (induction I)

case (Pos p ts)

then show ?case using relevant-vars-subts unfolding vars;-def by auto
next

case (Neg p ts)

then show ?case using relevant-vars-subts unfolding vars;-def by auto
qed

lemma relevant-vars-subls:
assumes asm: Vx € vars;s L. 01 © = 03
shows L -js 01 = L 15 09
proof —
have f: VI. |l € L — wars; | C vars;s L unfolding vars;s-def by auto
haveVie L.l 01 =1+ 09
proof
fix [
assume linls: [€L
then have Vxzcvars; l. 01 x = 02 = using f asm by auto
then show [ -, 01 = [ -} 05 using relevant-vars-subl linls by auto
qed
then show ?thesis by (meson image-cong)
qed

lemma merge-sub:
assumes dist: vars;s C N vars;s D = {}
assumes CC’": C ;5 Imbd = C'
assumes DD D ., u = D’
shows dn. C s n=C'AD 4sn=D"'
proof —
let ?n = A\z. if x € vars;s C then Imbd x else p x
have Vzevars;s C. ?n x = Imbd = by auto
then have C -5 %) = C -5 Imbd using relevant-vars-sublslof C ?n lmbd] by
auto
then have C -, 7n = C’ using CC’ by auto
moreover
have Vz € vars;s D. ?n © = p x using dist by auto
then have D -1 %9 = D -5 pu using relevant-vars-sublsjof D ?n u] by auto
then have D ., ?n = D’ using DD’ by auto
ultimately
show ?thesis by auto
qed

8.5 Standardizing apart

abbreviation std; :: fterm clause = fterm clause where
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stdy C = C 5 (Az. Var (1" @ x))

abbreviation stds :: fterm clause = fterm clause where
stdy C = C 15 (Az. Var (2" Q z))

lemma std-apart-apart’”:
assumes z € vars; (t -4 (Az::char list. Var (y Q x)))
shows Jz’. x = yQx’

using assms by (induction t) auto

lemma std-apart-apart’”:
assumes z € vars; (I - (Az. Var (yQzx)))
shows Jz’. x = yQx’
using assms unfolding vars;-def using std-apart-apart’’ by (cases l) auto

lemma std-apart-apart: vars;s (stdy C1) N wvars;s (stda Ca) = {}
proof —
{
fix z
assume zin: © € vars;s (stdy C1) N wvars;s (stda Ca)
from xzin have = € vars;; (std; C1) by auto
then have 3z’ z="1" @ z’
using std-apart-apart’[of x - "'1'] unfolding vars;s-def by auto
moreover
from zin have z € vars;; (stdy C3) by auto
then have Jz’. z= "2/ Qz’
using std-apart-apart’[of z - ''2"] unfolding vars;s-def by auto
ultimately have Fulse by auto
then have z € {} by auto
}
then show ?thesis by auto
qed

lemma std-apart-instance-ofs1: instance-of ;s C1 (stdy C1)
proof —

have empty: (Az. Var (""1"Qz)) - (Az. Var (tl x)) = € using composition-def
by auto

have C; ;3 € = (1 using empty-subls by auto

then have C; -5 (Az. Var ("1"Qxz)) - (Az. Var (tl z))) = C; using empty by
auto

then have (Cy s (Az. Var ("1"Qx))) 15 (Az. Var (¢l )) = C; using compo-
sition-conseq2ls by auto

then have C = (stdy C1) -1s (Az. Var (8l z)) by auto

then show instance-of;s C1 (std; C1) unfolding instance-ofs-def by auto
qed

lemma std-apart-instance-of52: instance-of ;s C2 (stdy C2)
proof —
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have empty: (Az. Var (""2"Qz)) - (Az. Var (tl x)) = € using composition-def
by auto

have C2 -4 ¢ = C2 using empty-subls by auto

then have C2 ., (Az. Var (""2"Qxz)) - (Az. Var (tl z))) = C2 using empty by
auto

then have (C2 -1, (A\z. Var (""2"'Qx))) 15 (Az. Var (¢l £)) = C2 using compo-
sition-conseq2ls by auto

then have C2 = (stdy C2) -5 (Az. Var (i z)) by auto

then show instance-of ;s C2 (stdy C2) unfolding instance-ofs-def by auto
qed

9 Unifiers

definition unifier;s :: substitution = fterm set = bool where
unifierys o ts +— (It .Vt ets. t v o =1

definition unifier;s :: substitution = fterm literal set = bool where
unifier;s o L +— 3.Vl e L. l-0=1)

lemma unif-sub:
assumes unif: unifier;s o L
assumes nonempty: L # {}
shows 1. subls L o = {subl | o}
proof —
from nonempty obtain [ where [ € L by auto
from unif this have L -5 0 = {l -} o} unfolding unifier;s-def by auto
then show ?thesis by auto
qed

lemma unifiert-def2:

assumes L-elem: ts # {}

shows unifier;s o ts «— (1. (At. sub t o) ‘ts ={I})
proof

assume unif: unifier;s o ts

from L-elem obtain ¢ where ¢ € ts by auto

then have (\t. sub t o) ‘ts = {t -+ o} using unif unfolding unifier;s-def by
auto

then show 3. (At. sub t o) ‘ts = {l} by auto
next

assume 3. (At. sub t o) ‘ ts ={I}

then obtain [ where (A\t. sub t o) ‘ts = {l} by auto

then have VI’ € ts. I’ -, 0 = | by auto

then show unifier;; o ts unfolding unifier;s-def by auto
qed

lemma unifier;s-def2:

assumes L-elem: L # {}
shows unifier;s o L +— (3. L <15 0 = {l})
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proof
assume unif: unifier;s o L
from L-elem obtain [ where | € L by auto
then have L -, 0 = {l -; o} using unif unfolding unifier;s-def by auto
then show 31. L 1, 0 = {l} by auto
next
assume 3[. L -5 0 ={l}
then obtain [ where L - 0 = {l} by auto
then have VI’ € L. I’ -y 0 = | by auto
then show unifier;s o L unfolding unifier;s-def by auto
qed

lemma ground, s-unif-singleton:
assumes ground;s: ground;s L
assumes unif: unifier;s o' L
assumes empt: L # {}
shows 3. L = {l}
proof —
from unif empt have 31. L ;5 o’ = {l} using unif-sub by auto
then show “thesis using ground;s-subls ground;s by auto
qed

definition unifiablets :: fterm set = bool where
unifiablets fs <— (Jo. unifier;s o fs)

definition unifiablels :: fterm literal set = bool where
unifiablels L +— (Jo. unifier;s o L)

lemma unifier-comp|simp|: unifier;s o (LY) < unifier;s o L
proof
assume unifier;, o (L)
then obtain !’ where I"-p: V1€ L¢. |-y 0 = 1"
unfolding unifier;s-def by auto
obtain [’ where (I')¢ = "' using comp-ezi2[of "] by auto
from this I"-p have I'-p:V1 € L€. | -, o = (') by auto
haveVie L.l yo =1
proof
fix [
assume (€L
then have I° € L® by auto
then have (I°) -, 0 = (I')° using I’-p by auto
then have (I - 0)¢ = (I')° by (cases l) auto
then show [ -; 0 = I’ using cancel-comp2 by blast
qed
then show unifier;s o L unfolding unifier;s-def by auto
next
assume unifier;s o L
then obtain [’ where !"-p: VI € L. | -; 0 = I’ unfolding unifier;s-def by auto
have V1€ L¢. [ o = (I')°
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proof
fix [
assume | € L¢
then have [° € L using cancel-compl by (metis image-iff)
then show [ -, o = (I’)¢ using ’-p comp-sub cancel-compl by metis

qed

then show unifier;, o (L¢) unfolding unifier;s-def by auto
qed

lemma unifier-subl:
assumes unifier;s o L
assumes L' C L
shows unifier;s o L’
using assms unfolding unifier;s-def by auto

lemma unifier-sub2:

assumes asm: unifier;s o (Ly U Lg)

shows unifier;s o L1 N unifier;s o Lo
proof —

have L, C (L1 U Lg) A Ly C (L1 U LQ) by simp

from this asm show ?thesis using unifier-subl by auto
qed

9.1 Most General Unifiers

definition mgu;s :: substitution = fterm set = bool where
mgus 0 ts <— unifierys o ts A (Vu. unifierys u ts — (3. w = o - 7))

definition mgu,s :: substitution = fterm literal set = bool where
mgus 0 L «— unifier;s o L A (Y u. unifier;s w L — (3i. w =0 - 1))

10 Resolution

definition applicable ::  fterm clause = fterm clause
= fterm literal set = fterm literal set
= substitution = bool where
applicable C1 Co Ly Ly 0 +—
Crz{NC# AL A AL A}

A vars;s C1 N wvars;s Co = {}

ANL CCy ALy CCy

A mgus o (Ly U Ly©)

definition mresolution ::  fterm clause = fterm clause
= fterm literal set = fterm literal set
= substitution = fterm clause where
mresolution C1 Co Ly Lo 0 = ((C1 15 0)— (L1 15 0)) U ((Ca 15 ) — (Lo s
7))

definition resolution ::  fterm clause = fterm clause
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= fterm literal set = fterm literal set
= substitution = fterm clause where
resolution C1 Co Ly Lo 0 = ((C1 — L1) U (Cq — Lg)) 45 0

inductive mresolution-step :: fterm clause set = fterm clause set = bool where
mresolution-rule:
C, € Cs = (Cy € Us = applicable Cy Cq Ly Ly 0 =
mresolution-step Cs (Cs U {mresolution C1 Co Ly Ly o})
| standardize-apart:
C € Cs = var-renaming-of C C' = mresolution-step Cs (Cs U {C'})

inductive resolution-step :: fterm clause set = fterm clause set = bool where
resolution-rule:
Ci € Os = (Cy € Cs = applicable C1 Cy Ly Ly 0 =
resolution-step Cs (Cs U {resolution C; Cy Ly Ly o})
| standardize-apart:
C € Cs = var-renaming-of C C' = resolution-step Cs (Cs U {C'})

definition mresolution-deriv :: fterm clause set = fterm clause set = bool where
mresolution-deriv = rtranclp mresolution-step

definition resolution-deriv :: fterm clause set = fterm clause set = bool where
resolution-deriv = rtranclp resolution-step

11 Soundness

definition evalsub :: 'u var-denot = 'u fun-denot = substitution = 'u var-denot
where
evalsub E F 0 = evaly, E F o o

lemma substitutiont: evaly E F (t -+ o) = eval; (evalsub E F o) F't
apply (induction t)

unfolding evalsub-def apply auto

apply (metis (mono-tags, lifting) comp-apply map-cong)

done

lemma substitutionts: evalys E F (ts -+s 0) = evalys (evalsub E F o) F ts
using substitutiont by auto

lemma substitution: eval; EF G (I - 0) «— eval; (evalsub E F o) F G 1
apply (induction I)

using substitutionts apply (metis eval;.simps(1) subl.simps(1))

using substitutionts apply (metis eval;.simps(2) subl.simps(2))

done

lemma subst-sound:
assumes asm: eval, F G C
shows eval, F G (C 5 o)
unfolding eval.-def proof
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fix £

from asm have VE'. 31 € C. eval; E' F G | using eval.-def by blast

then have 3] € C. eval; (evalsub E F o) F G | by auto

then show 31 € C 5 0. eval; E F G [ using substitution by blast
qed

lemma simple-resolution-sound:
assumes Cisat: eval. FF G C4
assumes Casat: eval, F G Cy
assumes lyinci: 11 € Cq
assumes lyincy: Iy € Cq
assumes comp: 11°¢ = s
shows eval, FF G ((C1 — {l1}) U (C2 — {l2}))
proof —
have VE. 31 € (((C1 — {l1}) U (C2 — {l2}))). eval, EF G 1
proof
fix £
have eval; EF G 11 V eval; E F G ly using comp by (cases l1) auto
then show 31 € (((C1 — {l1}) U (Ca — {l2}))). eval; EF G 1
proof
assume cval; EF G |4
then have —eval; E F G Il using comp by (cases 1) auto
then have ly'e Cs. Iy) # s A evaly E F G Iy’ using lyincy Casat
unfolding eval.-def by auto
then show 31e(Cy1 — {l1}) U (C2 — {l2}). eval; E F G | by auto
next
assume ceval; E F G I
then have —eval; E F G l; using comp by (cases 1) auto
then have 3l,’'e Cy. I1/ # I3 A evalp E F G Iy’ using lyinc; Cisat
unfolding eval.-def by auto
then show 31e(Cy1 — {lh}) U (C2 — {l2}). eval; E F Gl by auto
ged
qed
then show ?thesis unfolding eval.-def by simp
qed

lemma mresolution-sound:
assumes saty: eval, FF G Cq
assumes sato: eval, F' G Cq
assumes appl: applicable C1 Cy Ly Lo o
shows eval, F G (mresolution Cy Cs Ly Ly o)
proof —
from sat; have satio: eval. F G (Cq -5 o) using subst-sound by blast
from saty have satqo: eval. F G (Co 5 o) using subst-sound by blast

from appl obtain I; where [1-p: [; € L; unfolding applicable-def by auto

from [-p appl have [; € C; unfolding applicable-def by auto
then have incio: Iy -y 0 € Cy .15 0 by auto
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from [1-p have unified;: I, € (L; U (Lx©)) by auto

from l,-p appl have lyoislio: {1 1 0} = L1 s 0
unfolding mgu;s-def unifier;s-def applicable-def by auto

from appl obtain Iy where [y-p: ls € Ly unfolding applicable-def by auto

from ls-p appl have [, € Cs unfolding applicable-def by auto
then have incso: ls o 0 € Cy s 0 by auto

from l-p have unifieds: 1,° € (Ly U (L2©)) by auto

from unified; unifieds appl have Iy -; 0 = (12¢) -y o
unfolding mgu;s-def unifier;s-def applicable-def by auto
then have comp: (I - 0)¢ = ly - o using comp-sub comp-swap by auto

from appl have unifier;s o (Lo°)
using unifier-sub2 unfolding mgu,;s-def applicable-def by blast
then have unifier;s 0 Lo by auto
from this lo-p have lyoislao: {la -} 0} = Ly -5 o unfolding unifier;s-def by
auto

from satio sateo incio inceo comp have eval, FF G ((C1 5 0) — {l1 1 o} U
((Cq 15 o) — {la -1 0})) using simple-resolution-sound[of F G C1 s 0 Cq 15 ©
lipo 1y o]

by auto

from this lyoislio laoisloo show ?thesis unfolding mresolution-def by auto

qed

lemma resolution-superset: mresolution Cy Co L1 Lo o C resolution Cy Co Ly
L2 g
unfolding mresolution-def resolution-def by auto

lemma superset-sound:
assumes sup: C C C'
assumes sat: eval, F' G C
shows eval, FF G C’
proof —
have VE. 3l € C'. eval; EF G 1
proof
fix F
from sat have VE. 31 € C. eval; F F G | unfolding eval.-def by —
then have 31 € C . eval; E F G | by auto
then show 31 € C'. evaly E F G | using sup by auto
qed
then show eval, F G C' unfolding eval.-def by auto
qed
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theorem resolution-sound:
assumes saty: eval, FF G Cq
assumes saty: eval, FF G Cy
assumes appl: applicable Cy Co Ly Lo o
shows eval, F G (resolution C1 Co Ly Lo o)
proof —
from saty sats appl have eval, F G (mresolution C; Co Ly Ly o) using mres-
olution-sound by blast
then show “thesis using superset-sound resolution-superset by metis
qed

lemma mstep-sound:

assumes mresolution-step Cs Cs’

assumes eval.s ' G Cs

shows eval.; F' G Cs’
using assms proof (induction rule: mresolution-step.induct)

case (mresolution-rule Cy Cs Cy 11 Iy o)

then have eval. F G Cy A eval, F G C5 unfolding eval.s-def by auto

then have eval. F G (mresolution C1 Cy 11 ls 0)

using mresolution-sound mresolution-rule by auto

then show ?case using mresolution-rule unfolding eval.,-def by auto
next

case (standardize-apart C Cs C)

then have eval. F' G C unfolding eval.s-def by auto

then have eval, F G C’ using subst-sound standardize-apart unfolding var-renaming-of-def
instance-of s-def by metis

then show ?case using standardize-apart unfolding eval.s-def by auto
qed

theorem step-sound:

assumes resolution-step Cs Cs’

assumes eval.; F' G Cs

shows ceval.; F G Cs’
using assms proof (induction rule: resolution-step.induct)

case (resolution-rule C1 Cs Cq 1y Iz 0)

then have eval. F G Cy A eval, F G Cs unfolding eval.s-def by auto

then have eval. F G (resolution Cy Cs 1y I3 o)

using resolution-sound resolution-rule by auto

then show ?case using resolution-rule unfolding eval.s-def by auto
next

case (standardize-apart C Cs C)

then have eval, F G C unfolding eval.s-def by auto

then have eval. F G C’ using subst-sound standardize-apart unfolding var-renaming-of-def
instance-ofs-def by metis

then show ?case using standardize-apart unfolding eval.s-def by auto
qed

lemma mderivation-sound:
assumes mresolution-deriv Cs Cs’
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assumes eval.s F' G Cs
shows eval., FF G Cs’
using assms unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)
case rtrancl-refl then show ?case by auto
next
case (rtrancl-into-rtrancl Cs; Csy Cs3) then show ?case using mstep-sound by
auto
qed

theorem derivation-sound:

assumes resolution-deriv Cs Cs’

assumes cval.; F' G Cs

showseval.; F' G Cs’
using assms unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)

case rtrancl-refl then show ?case by auto
next

case (rtrancl-into-rtrancl Cs; Cse Cs3) then show ?case using step-sound by
auto
qed

theorem derivation-sound-refute:
assumes deriv: resolution-deriv Cs Cs' A {} € Cs’
shows —eval.s F G Cs
proof —
from deriv have eval.s F G Cs — eval.; F G Cs’ using derivation-sound by
auto
moreover
from deriv have eval.s F G Cs' — eval. F G {} unfolding eval.;-def by auto
moreover
then have eval. F G {} — Fulse unfolding eval.-def by auto
ultimately show ?thesis by auto
qed

12 Herbrand Interpretations

HFun is the Herbrand function denotation in which terms are mapped to
themselves.

term HFun
lemma eval-groundy:
assumes ground; t

shows (eval; E HFun t) = hterm-of-fterm t
using assms by (induction t) auto

lemma eval-grounds:
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assumes ground;s ts
shows (eval;s E HFun ts) = hterms-of-fterms ts
unfolding hterms-of-fterms-def using assms eval-ground; by (induction ts) auto

lemma eval;-grounds:

assumes asm: groundys ts

shows eval; E HFun G (Pos P ts) «— G P (hterms-of-fterms ts)
proof —

have eval; E HFun G (Pos P ts) = G P (eval;s E HFun ts) by auto

also have ... = G P (hterms-of-fterms ts) using asm eval-ground;s by simp
finally show ?thesis by auto
qed

13 Partial Interpretations
type-synonym partial-pred-denot = bool list

definition falsifies; :: partial-pred-denot = fterm literal = bool where
falsifies; G 1 +—
ground; 1
A (let i = nat-of-fatom (get-atom 1) in
i < length G AN G i= (—signl)

)

A ground clause is falsified if it is actually ground and all its literals are
falsified.
abbreviation falsifies, :: partial-pred-denot = fterm clause = bool where

falsifies;, G C = ground;s C N (V1 € C. falsifies; G 1)

abbreviation falsifies. :: partial-pred-denot = fterm clause = bool where
falsifies, G C = (3 C". instance-of;s C' C A falsifies, G C”)

abbreviation falsifies.s :: partial-pred-denot = fterm clause set = bool where
falsifies.s G Cs = (3 C € Cs. falsifies. G C)

abbreviation extend :: (nat = partial-pred-denot) = hterm pred-denot where
extend f P ts = (

let n = nat-of-hatom (P, ts) in
f (Sucn)!n

fun sub-of-denot :: hterm var-denot = substitution where
sub-of-denot E = fterm-of-hterm o E

lemma ground-sub-of-denott: ground; (t -+ (sub-of-denot E))
by (induction t) (auto simp add: ground-fterm-of-hterm)

lemma ground-sub-of-denotts: ground;s (ts -+s sub-of-denot E)
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using ground-sub-of-denott by simp

lemma ground-sub-of-denotl: ground; (I -; sub-of-denot E)
proof —
have ground,;s (subs (get-terms l) (sub-of-denot E))
using ground-sub-of-denotts by auto
then show %thesis by (cases [) auto
qed

lemma sub-of-denot-equivz: eval, E HFun (sub-of-denot E x) = E x
proof —
have ground; (sub-of-denot E x) using ground-fterm-of-hterm by simp
then
have eval; E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)
using eval-ground;(1) by auto

also have ... = hterm-of-fterm (fterm-of-hterm (E z)) by auto
also have ... = F z by auto
finally show ?thesis by auto

qed

lemma sub-of-denot-equivt:
eval; E HFun (t -y (sub-of-denot E)) = eval; E HFun t
using sub-of-denot-equive by (induction t) auto

lemma sub-of-denot-equivts: evalys E HFun (ts -+s (sub-of-denot E)) = evalys E
HFun ts
using sub-of-denot-equivt by simp

lemma sub-of-denot-equivl: eval; E HFun G (I -} sub-of-denot E) <— eval, E
HFun G
proof (induction l)

case (Pos p ts)

have eval; E HFun G ((Pos p ts) -; sub-of-denot E) <— G p (evalys E HFun (s
ts (sub-of-denot E))) by auto

also have ... +— G p (eval;s E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... +— eval; E HFun G (Pos p ts) by simp

finally

show ?case by blast
next

case (Neg p ts)

have eval; E HFun G ((Neg p ts) -} sub-of-denot E) <— —G p (evalys E HFun
(ts -ts (sub-of-denot E))) by auto

also have ... «— =G p (evalys E HFun ts) using sub-of-denot-equivts[of E ts]
by metis

also have ... = eval; E HFun G (Neg p ts) by simp

finally

show ?case by blast
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qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.

lemma sub-of-denot-equiv-ground’:

evaly E HFun G 1 = eval; E HFun G (I - sub-of-denot E) A ground; (I 4
sub-of-denot F)

using sub-of-denot-equivl ground-sub-of-denotl by auto

Under an Herbrand interpretation, an environment is similar to a substitu-
tion - also for partial interpretations.

lemma partial-equiv-subst:
assumes falsifies. G (C 15 T)
shows falsifies. G C
proof —
from assms obtain C' where C'-p: instance-of;s C' (C .15 T) A falsifies, G C’
by auto
then have instance-of;s (C <15 7) C unfolding instance-ofs-def by auto
then have instance-of;s C' C using C’-p instance-of s-trans by auto
then show ?thesis using C’-p by auto
qed

Under an Herbrand interpretation, an environment is equivalent to a sub-
stitution.

lemma sub-of-denot-equiv-ground:
(3l e C. evaly E HFun G 1) <— (31 € C -5 sub-of-denot E. eval; E HFun G
1)
A ground;s (C -5 sub-of-denot E)
using sub-of-denot-equiv-ground’ by auto

lemma std;-falsifies: falsifies. G C1 «— falsifies. G (stdy C1)
proof

assume asm: falsifies. G C4

then obtain Cg where instance-of;; Cg C1 A falsifies, G Cg by auto
moreover

then have instance-of s Cg (std; C1) using std-apart-instance-of s 1 instance-of |s-trans
by blast

ultimately

show falsifies. G (stdy C1) by auto
next

assume asm: falsifies. G (stdqy C1)

then have inst: instance-of s (std; C1) C1 unfolding instance-ofs-def by auto

from asm obtain Cg where instance-of;s Cg (std1 C1) A falsifies, G Cg by
auto

moreover

then have instance-of;s Cg C1 using inst instance-of s-trans by blast

ultimately
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show falsifies. G C1 by auto
qed

lemma stds-falsifies: falsifies. G Co «— falsifies. G (stda C2)
proof

assume asm: falsifies. G Co

then obtain Cg where instance-of;s Cg Co A falsifies, G Cg by auto
moreover

then have instance-of ;s Cyg (stda Cs) using std-apart-instance-of s 2 instance-of s -trans
by blast

ultimately

show falsifies. G (stdy C3) by auto
next

assume asm: falsifies. G (stdy C3)

then have inst: instance-of s (stda C3) Co unfolding instance-ofs-def by auto

from asm obtain Cg where instance-of;s Cg (stda C3) A falsifies, G Cg by
auto
moreover
then have instance-of ;s Cg Csy using inst instance-ofs-trans by blast
ultimately
show falsifies. G Cs by auto
qed

lemma std;-renames: var-renaming-of Cy (std; C1)

proof —
have instance-of;s Cy (stdy C1) using std-apart-instance-of;s1 by auto
moreover have instance-of s (stdy C1) C1 unfolding instance-ofs-def by auto
ultimately show var-renaming-of Cy (stdy C1) unfolding var-renaming-of-def

by auto

qed

lemma stds-renames: var-renaming-of Co (stdy Cs)

proof —
have instance-of ;s Ca (stda C2) using std-apart-instance-of;s2 by auto
moreover have instance-of s (stda C3) Co unfolding instance-of;s-def by auto
ultimately show var-renaming-of Ca (stde Cs) unfolding var-renaming-of-def

by auto

qed

14 Semantic Trees
abbreviation closed-branch :: partial-pred-denot = tree = fterm clause set =

bool where
closed-branch G T Cs = branch G T A falsifies.s G Cs

abbreviation(input) open-branch :: partial-pred-denot = tree = fterm clause set
= bool where
open-branch G T Cs = branch G T A —falsifiescs G Cs
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definition closed-tree :: tree = fterm clause set = bool where
closed-tree T Cs <— anybranch T (Ab. closed-branch b T Cs)
A anyinternal T (Ap. —falsifiescs p Cs)

15 Herbrand’s Theorem

lemma mazimum:

assumes asm: finite C

shows dn s nat. Vie C. fl<n
proof

from asm show VieC. f1 < (Maz (f ¢ C)) by auto
qed

lemma extend-preserves-model:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes C-ground: ground;s C
assumes C-sat: —falsifies. (f (Suc n)) C
assumes n-maz: V1€ C. nat-of-fatom (get-atom 1) < n
shows eval, HFun (extend f) C
proof —
let ?F = HFun
let ?G = extend f
{
fix £
from C-sat have V C’. (—instance-of;s C' C V —falsifies; (f (Suc n)) C’) by
auto
then have —falsifies, (f (Suc n)) C using instance-of-self by auto
then obtain | where [-p: [eC A —falsifies; (f (Suc n)) | using C-ground by
blast
let 2 = nat-of-fatom (get-atom 1)

from [-p have i-n: 2/ < n using n-maz by auto
then have j-n: % < length (f (Suc n)) using f-infpath infpath-length|of f] by
auto

have eval; E HFun (extend f) 1
proof (cases 1)
case (Pos P ts)
from Pos l-p C-ground have ts-ground: ground;s ts by auto

have —falsifies; (f (Suc n)) [ using I-p by auto
then have f (Suc n) ! % = True
using j-n Pos ts-ground empty-subts|of ts] unfolding falsifies;-def by auto
moreover have f (Suc %) ! % = f (Sucn) ! %
using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp
ultimately
have f (Suc %i) ! ?i = True using Pos by auto
then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-of-fatom-def)
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then show ?thesis using eval;-groundss[of ts - ?G P] ts-ground Pos by
auto
next
case (Neg P ts)
from Neg I-p C-ground have ts-ground: ground:s ts by auto

have —falsifies; (f (Suc n)) | using l-p by auto
then have f (Suc n) ! %0 = False
using j-n Neg ts-ground empty-subts[of ts] unfolding falsifies;-def by auto
moreover have f (Suc %) ! 2i = f (Sucn) ! 2
using f-infpath i-n j-n infpath-lengthlof f] ith-in-extension[of f] by simp
ultimately
have f (Suc %) ! ?{ = Fulse using Neg by auto
then have = ?G P (hterms-of-fterms ts) using Neg by (simp add: nat-of-fatom-def)

then show ?thesis using Neg eval;-ground;s[of ts - ¢G P] ts-ground by
auto
qed
then have 31 € C. eval; E HFun (extend f) | using I-p by auto

}

then have eval. HFun (extend f) C unfolding eval.-def by auto

then show ?thesis using instance-of,s-self by auto
qed

lemma extend-preserves-model2:

assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)

assumes C-ground: ground;s C

assumes fin-c: finite C

assumes model-C: ¥V n. —falsifies. (fn) C

shows C-false: eval, HFun (extend f) C
proof —

— Since C is finite, C has a largest index of a literal.

obtain n where largest: VI € C. nat-of-fatom (get-atom 1) < n using fin-c
mazimum[of C Al. nat-of-fatom (get-atom l)] by blast

moreover

then have —falsifies. (f (Suc n)) C using model-C by auto

ultimately show ?thesis using model-C f-infpath C-ground extend-preserves-model[of
f Cn] by blast
qed

lemma extend-infpath:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes model-c: ¥ n. —falsifies. (f n) C
assumes fin-c: finite C
shows eval, HFun (exstend f) C
unfolding eval.-def proof
fix £
let ?G = extend f
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let %0 = sub-of-denot E

from fin-c have fin-co: finite (C' -5 sub-of-denot E) by auto
have groundco: ground;s (C -5 sub-of-denot E) using sub-of-denot-equiv-ground
by auto

— Here starts the proof

— We go from syntactic FO world to syntactic ground world:

from model-c have V n. —falsifies. (fn) (C -5 ?0) using partial-equiv-subst by
blast

— Then from syntactic ground world to semantic ground world:

then have eval, HFun ?G (C -5 ?0) using groundco f-infpath fin-co ex-
tend-preserves-model2[of f C ;s %0] by blast

— Then from semantic ground world to semantic FO world:

then have VE. 31 € (C -5 %0). eval; E HFun ?G | unfolding eval.-def by
auto

then have 31 € (C s %0). eval; E HFun ?G | by auto

then show 3! € C. eval; E HFun ?G | using sub-of-denot-equiv-ground[of C' E
extend f] by blast
qed

If we have a infpath of partial models, then we have a model.

lemma infpath-model:
assumes f-infpath: wf-infpath (f :: nat = partial-pred-denot)
assumes model-cs: ¥ n. —falsifies.s (f n) Cs
assumes fin-cs: finite Cs
assumes fin-c: YV C € Cs. finite C
shows eval.s HFun (extend f) Cs
proof —
let ?F = HFun

have V C € Cs. eval, ?F (exstend f) C
proof (rule balll)
fix C
assume asm: C € Cs
then have V n. —falsifies. (f n) C using model-cs by auto
then show eval. ?F (extend f) C using fin-c asm f-infpath extend-infpath|of
f C] by auto
qged
then show eval.s ?F (extend f) Cs unfolding eval.s-def by auto
qed

fun deeptree :: nat = tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)

lemma branch-length:

assumes branch b (deeptree n)
shows length b = n
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using assms proof (induction n arbitrary: b)
case 0 then show ?case using branch-inv-Leaf by auto
next
case (Suc n)
then have branch b (Branching (deeptree n) (deeptree n)) by auto
then obtain a b’ where p: b = a#b'A branch b’ (deeptree n) using branch-inv-Branching|of
b] by blast
then have length b’ = n using Suc by auto
then show “case using p by auto
qed

lemma infinity:
assumes inj: Vn :: nat. undiago (diago n) = n
assumes all-tree: Vn :: nat. (diago n) € tree
shows —finite tree
proof —
from inj all-tree have ¥ n. n = undiago (diago n) A (diago n) € tree by auto
then have Vn. 3ds. n = undiago ds N ds € tree by auto
then have undiago ‘ tree = (UNIV :: nat set) by auto
then have —finite treeby (metis finite-imagel infinite- UNIV-nat)
then show ?thesis by auto
qed

lemma longer-falsifies;:
assumes falsifies; ds |
shows falsifies; (dsQd) [
proof —
let % = nat-of-fatom (get-atom 1)
from assms have i-p: ground; | A ?i < length ds A ds ! ?i = (—sign [) unfolding
falsifies;-def by meson
moreover
from i-p have % < length (dsQd) by auto
moreover
from i-p have (dsQd) ! ?i = (—sign ) by (simp add: nth-append)
ultimately
show ?thesis unfolding falsifies;-def by simp
qed

lemma longer-falsifies,:
assumes falsifies; ds C
shows falsifies, (ds @ d) C
proof —
{
fix [
assume [€(C
then have falsifies; (ds @ d) [ using assms longer-falsifies; by auto
} then show ?thesis using assms by auto
qed
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lemma longer-falsifies.:
assumes falsifies. ds C
shows falsifies. (ds Q@ d) C

proof —
from assms obtain C’ where instance-of;s C' C A falsifies, ds C' by auto
moreover
then have falsifies; (ds @ d) C' using longer-falsifiesy, by auto
ultimately show #?thesis by auto

qed

We use this so that we can apply Konig’s lemma.

lemma longer-falsifies:
assumes falsifies.s ds Cs
shows falsifies.s (ds @ d) Cs
proof —
from assms obtain C' where C € Cs A falsifies. ds C by auto
moreover
then have falsifies. (ds @ d) C using longer-falsifies.[of C ds d] by blast
ultimately
show ?thesis by auto
qed

If all finite semantic trees have an open branch, then the set of clauses has
a model.

theorem herbrand’:
assumes openb: VT. 3 G. open-branch G T Cs
assumes finite-cs: finite Cs ¥V C€Cs. finite C
shows 3 G. eval.;s HFun G Cs
proof —
— Show T infinite:
let ?tree = {G. —falsifies.s G Cs}
let ?undiag = length
let ?diag = (Al. SOME b. open-branch b (deeptree l) Cs) :: nat = partial-pred-denot

from opend have diag-open: V1. open-branch (?diag 1) (deeptree 1) Cs
using somel-ex[of Ab. open-branch b (deeptree -) Cs] by auto

then have Vn. %undiag (?diag n) = n using branch-length by auto

moreover

have Vn. (?diag n) € ?tree using diag-open by auto

ultimately

have —finite ?tree using infinity[of - An. SOME b. open-branch b (- n) Cs] by

stmp

— Get infinite path:

moreover

have V ds d. —falsifies.s (ds @ d) Cs — —falsifies.s ds Cs
using longer-falsifies|of Cs] by blast

then have (Vds d. ds Q@ d € ?tree — ds € ?tree) by auto

ultimately

have 3 c. wf-infpath ¢ A (Vn. ¢ n € ?tree) using konig|of ?tree] by blast
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then have 3 G. wf-infpath G A (¥ n. = falsifies.s (G n) Cs) by auto

— Apply above infpath lemma:

then show 3 G. eval.s HFun G Cs using infpath-model finite-cs by auto
qed

lemma shorter-falsifies;:

assumes falsifies; (dsQd) [

assumes nat-of-fatom (get-atom 1) < length ds

shows falsifies; ds |
proof —

let % = nat-of-fatom (get-atom )

from assms have i-p: ground; | A ?i < length (dsQd) A (dsQd) ! ?i = (—sign
l) unfolding falsifies;-def by meson

moreover

then have ?i < length ds using assms by auto

moreover

then have ds ! % = (—sign [) using i-p nth-append[of ds d ?i] by auto

ultimately show ?thesis using assms unfolding falsifies;-def by simp
qed

theorem herbrand’-contra:
assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: V G. —eval.s HFun G Cs
shows 3 T. V G. branch G T — closed-branch G T Cs
proof —
from finite-cs unsat have (V T. 3 G. open-branch G T Cs) — (3 G. eval.s HFun
G Cs) using herbrand’ by blast
then show ?thesis using unsat by blast
qed

theorem herbrand:

assumes unsat: V G. —eval.s HFun G Cs

assumes finite-cs: finite Cs ¥V C€Cs. finite C

shows 3 T. closed-tree T Cs
proof —

from unsat finite-cs obtain T where anybranch T (\b. closed-branch b T Cs)
using herbrand’-contra[of Cs] by blast

then have 3 T. anybranch T (Ap. falsifiescs p Cs) A anyinternal T (Ap. —
falsifies.s p Cs)

using cutoff-branch-internal[of T Ap. falsifies.s p Cs| by blast

then show ?thesis unfolding closed-tree-def by auto

qed

end

16 Lifting Lemma

theory Completeness imports Resolution begin
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locale unification =
assumes unification: \o L. finite L = unifier;s 0 L = 39. mgus ¥ L
begin

A proof of this assumption is available in Unification_Theorem.thy and
used in Completeness_Instance.thy.

lemma lifting:

assumes fin: finite C1 A finite Cy

assumes apart: vars;s C1 N vars;s Ca = {}

assumes inst: instance-of ;s C1’ C1 N instance-of ;s Co’' Co

assumes appl: applicable C1' Co’ L' Ly’ o

shows 3 L; Ly 7. applicable C1 Cy Ly Ly T A

instance-of s (resolution C1' Cy’ L1’ Lo’ o) (resolution Cy Co Ly Loy

-

)

proof —
— Obtaining the subsets we resolve upon:
let ?Rll = 01/ - Lll and ?RQ’ = 02/ - LQ/

from inst obtain v y where Cy s v = C1' A Cq s u = Co’
unfolding instance-ofs-def by auto

then obtain  where n-p: C1 s n = C1' AN Cqy s = Cs'
using apart merge-sub by force

from 7-p obtain L; where Li-p: L1 C C1 ALy s =L1"AN(C1 — L) 45 n
= 7Ry’
using appl project-sub using applicable-def by metis
let ?Rl = 01 — Ll
from 7-p obtain Ly where Ly-p: Ly C Co A Lo 15 = Lo’ A (Co — La) 15 7
= 7Ry’
using appl project-sub using applicable-def by metis
let ?RQ = CQ — L2

— Obtaining substitutions:
from appl have mgu;s o (L’ U Ly'®) using applicable-def by auto
then have mgu;, 0 ((Ly 15 n) U (Ly 15 7)¢) using Li-p La-p by auto
then have mgu;, o (L1 U Lx%) 15 n) using compls-subls subls-union by auto
then have unifier;; o ((Ly U L) -5 1) using mgu;s-def by auto
then have nouni: unifier;s (n - o) (L1 U Ly%)
using unifier;s-def composition-conseq2l by auto
then obtain 7 where 7-p: mgu;s 7 (L; U Ly©)
using unification fin L1-p La-p by (meson finite-Unl finite-imagel rev-finite-subset)
then obtain ¢ where p-p: 7 - ¢ = 1 - ¢ using nouni mgu;s-def by auto

— Showing that we have the desired resolvent:
let 2C = ((Cl - Ll) @] (02 - LQ)) ‘s T
have 7C ;s o = (R1 U 2Ry ) s (T - )
using subls-union composition-conseq2ls by auto
also have ... = (?Ry U ?Ry ) -5 (n - o) using ¢-p by auto
also have ... = ((?Ry1 ;s ) U (Ra 15 M) “i1s ©
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using subls-union composition-conseq2ls by auto
also have ... = (Ry' U ?Ry’) <15 o using n-p L1-p La-p by auto
finally have ?C s o = ((C1' — L) U (Co’ — Ly’)) 15 o by auto
then have ins: instance-of ;s (resolution C1' Cy’ L' Ly’ o) (resolution C1 Cs
L1 L2 T)
using resolution-def instance-of s-def by metis

— Showing that the resolution rule is applicable:
have C1" A {} A Co/ A {3 NL £ {} AN L' # {}
using appl applicable-def by auto
then have C1 # {} A Ca # {} A L1 # {} A Ly # {} using n-p L1-p La-p by
auto
then have appli: applicable C1 Coy Ly Lo T
using apart Li-p Lo-p 7-p applicable-def by auto

from ins appli show ?thesis by auto
qed
17 Completeness

lemma falsifies,-empty:
assumes falsifiesy [| C

shows C = {}
proof —
have V[ € C. False
proof
fix [

assume [€C
then have falsifies; [| | using assms by auto
then show Fulse unfolding falsifies;-def by (cases ) auto
qed
then show ?thesis by auto
qed

lemma falsifies.s-empty:
assumes falsifies. || C
shows C = {}
proof —
from assms obtain C’ where C’-p: instance-of;s C' C A falsifiesy [| C' by
auto
then have C'= {} using falsifies,-empty by auto
then show C' = {} using C’-p unfolding instance-ofs-def by auto
qed

lemma complements-do-not-falsify':
assumes [1C1" 1, € Cy’
assumes [, C1" Iy € Cy'
assumes comp: | = [x°
assumes falsif: falsifies, G Cq’

o7



shows Fulse
proof (cases ly)
case (Pos p ts)
let 2i1 = nat-of-fatom (p, ts)

from assms have gr: ground; I, unfolding falsifies;-def by auto
then have Neg: I = Neg p ts using comp Pos by (cases l3) auto

from falsif have falsifies; G l; using [1C1’ by auto
then have G! %i1 = False using [1C1’ Pos unfolding falsifies;-def by (induction
Pos p ts) auto
moreover
let %i2 = nat-of-fatom (get-atom l3)
from falsif have falsifies; G Iy using loC1’ by auto
then have G ! %2 = (—sign l2) unfolding falsifies;-def by meson
then have G ! %i1 = (—sign l3) using Pos Neg comp by simp
then have G ! %1 = True using Neg by auto
ultimately show ?thesis by auto
next
case (Neg p ts)
let 2i1 = nat-of-fatom (p,ts)

from assms have gr: ground; |1 unfolding falsifies;-def by auto
then have Pos: Iy = Pos p ts using comp Neg by (cases ls) auto

from falsif have falsifies; G |1 using [1C1’ by auto
then have G ! 2i1 = True using 11C1' Neg unfolding falsifies;-def by (metis
get-atom.simps(2) literal.disc(2))
moreover
let 7i2 = nat-of-fatom (get-atom ls)
from falsif have falsifies; G ly using I3 C1’ by auto
then have G ! 2i2 = (—sign l3) unfolding falsifies;-def by meson
then have G ! %i1 = (—sign l3) using Pos Neg comp by simp
then have G ! i1 = False using Pos using literal.disc(1) by blast
ultimately show #¢thesis by auto
qed

lemma complements-do-not-falsify:
assumes [1C1" ;1 € C¢’/
assumes [, C1" I € Cy'
assumes fals: falsifies; G Cy’
shows [y # [5°
using assms complements-do-not-falsify’ by blast

lemma other-falsified:
assumes C1'-p: ground;s C1' A falsifiesy (BQ[d]) Cy'
assumes [-p: | € Cy’ nat-of-fatom (get-atom 1) = length B
assumes other: lo € C1' lo # 1
shows falsifies; B lo
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proof —

let % = nat-of-fatom (get-atom lo)

have ground-ly: ground; | using I-p C1’-p by auto

— They are, of course, also ground:

have ground-lo: ground; lo using C1'-p other by auto

from C1'-p have falsifies, (BQ[d]) (C1' — {l}) by auto

— And indeed, falsified by B @ [d]:

then have loBs: falsifies; (BQ[d]) lo using other by auto

then have ?i < length (B @ [d]) unfolding falsifies;-def by meson

— And they have numbers in the range of B @ [d], i.e. less than length B + 1:

then have nat-of-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom
by (cases lo) auto

moreover

have [-lo: [#lo using other by auto

— The are not the complement of I, since then the clause could not be falsified:

have lc-lo: lo # 1° using C1’-p I-p other complements-do-not-falsifylof lo C1' 1
(BQ[d])] by auto

from I-lo lc-lo have get-atom | # get-atom lo using sign-comp-atom by metis

then have nat-of-fatom (get-atom lo) # nat-of-fatom (get-atom )

using nat-of-fatom-bij ground-lo ground-ly ground;-ground-fatom
unfolding bij-betw-def inj-on-def by metis

— Therefore they have different numbers:

then have nat-of-fatom (get-atom lo) # length B using l-p by auto

ultimately

— So their numbers are in the range of B:

have nat-of-fatom (get-atom lo) < length B by auto

— So we did not need the last index of B @ [d] to falsify them, i.e. B suffices:

then show falsifies; B lo using loBs shorter-falsifies; by blast
qed

theorem completeness’:
assumes closed-tree T Cs
assumes YV CeCs. finite C
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of tree-
size])
fix T :: tree
fix Cs :: fterm clause set
assume h: AT’ Cs. treesize T' < treesize T = closed-tree T' Cs =
vV CeCs. finite C = 3 Cs'. resolution-deriv Cs Cs' A {} €
Cs’
assume clo: closed-tree T Cs
assume finite-Cs: ¥V CeCs. finite C
{ — Base case:
assume treesize T = 0
then have T=Leaf using treesize-Leaf by auto
then have closed-branch [| Leaf Cs using branch-inv-Leaf clo unfolding
closed-tree-def by auto
then have falsifies.s [] Cs by auto
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then have {} € Cs using falsifies.s-empty by auto
then have 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
unfolding resolution-deriv-def by auto
}

moreover
{ — Induction case:
assume treesize T' > 0
then have 3! r. T=Branching | r by (cases T) auto

— Finding sibling branches and their corresponding clauses:
then obtain B where b-p: internal B T A branch (BQ[True]) T A branch
(BQ[False]) T
using internal-branch|of - || - T| Branching-Leaf-Leaf-Tree by fastforce
let By = BQ[True]
let By = BQ[Fulse]

obtain Cj0 where Cio0-p: Cio € Cs A falsifies. ?B1 Cyi0 using b-p clo
unfolding closed-tree-def by metis

obtain Cy0 where Cyo0-p: Co0 € Cs A falsifies. 7By Co0 using b-p clo
unfolding closed-tree-def by metis

— Standardizing the clauses apart:

let ?Cl = Stdl 010

let ?CQ = Stdg 020

have Ci-p: falsifies. ?B1 ?C using std;-falsifies C'10-p by auto
have Cs-p: falsifies. ?Bs 7C5y using stds-falsifies Cy0-p by auto

have fin: finite ?Cy N finite 2Cy using C;0-p Cq0-p finite-Cs by auto

— We go down to the ground world.
— Finding the falsifying ground instance C’ of std; C1o, and proving properties
about it:

— (' is falsified by B @ [True):
from C1-p obtain C,’ where C.’-p: ground;; C1’' A instance-of;s C1’ ?C1
A falsifies; ?B1 C1' by metis

have —falsifies. B C'10 using C10-p b-p clo unfolding closed-tree-def by metis
then have —falsifies. B ¢C1 using std;-falsifies using prod.ezhaust-sel by
blast

— (' is not falsified by B:

then have [-B: —falsifies, B C1’ using C,’-p by auto

— (' contains a literal [y that is falsified by B @ [True], but not B:

from C4’-p I-B obtain [; where ly-p: I; € Cy' A falsifies; (BQ[Truel]) I3 A
—(falsifies; B l1) by auto

let ?i = nat-of-fatom (get-atom Iy)

— [ is of course ground:
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have ground-ly: ground; I, using C1’-p l1-p by auto

from [1-p have —(% < length B AN B! % = (—sign l1)) using ground-l
unfolding falsifies;-def by meson
then have (% < length B A (BQ[True]) ! 2 = (—sign l1)) by (metis
nth-append) — Not falsified by B.
moreover
from I1-p have ?i < length (B Q [True]) A (B @ [True]) ! %i = (—sign 1)
unfolding falsifies;-def by meson
ultimately
have [;-sign-no: ?i = length B A (B Q [True]) | %i = (—sign l1) by auto

— [y is negative:
from [;-sign-no have [-sign: sign l; = False by auto
from [y -sign-no have ly-no: nat-of-fatom (get-atom 1) = length B by auto

— All the other literals in €'y’ must be falsified by B, since they are falsified by
B @ [True], but not [;.
from C.’-p li-no li-p have B-C,'ly: falsifies; B (C1' — {l1})
using other-falsified by blast

— We do the same exercise for stdy Cq0, Co’, B @ [False], ly:
from C5-p obtain C5’ where Cy’-p: ground;s Cs’ A instance-of ;s Co’ 2Co N
falsifiesy ?By Cy' by metis

have —falsifies. B Cy0 using Cso-p b-p clo unfolding closed-tree-def by metis
then have —falsifies. B ?Cs using stds-falsifies using prod.ezhaust-sel by
blast
then have [-B: —falsifies, B Cy’ using Cy’-p by auto

— C'9' contains a literal [y that is falsified by B @ [False], but not B:

from Cs’-p [-B obtain l; where lo-p: Iy € Co’ A falsifies; (BQ[False]) 1o A
—falsifies; B Iy by auto

let ?i = nat-of-fatom (get-atom ls)

have ground-lo: ground; Iy using Cy'-p l3-p by auto

from ly-p have —(% < length B AN B! 2 = (—sign l3)) using ground-ls
unfolding falsifies;-def by meson
then have —(? < length B A (BQ[False]) | % = (—sign l2)) by (metis
nth-append) — Not falsified by B.
moreover
from [ly-p have ?i < length (B Q [False]) A (B Q [False]) | 2i = (—sign l3)
unfolding falsifies;-def by meson
ultimately
have ly-sign-no: ?i = length B A (B Q [False]) | 2 = (—sign ls) by auto

— 5 is negative:
from Ily-sign-no have ly-sign: sign lo = True by auto
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from [y-sign-no have ls-no: nat-of-fatom (get-atom ly) = length B by auto

— All the other literals in C5’ must be falsified by B, since they are falsified by
B @ [False], but not 5.

from Cs'-p ly-no la-p have B-Cy'ly: falsifiesy, B (Co' — {l2})
using other-falsified by blast

— Proving some properties about C;’and Cs’, I; and [z, as well as the resolvent
of C1'and Cy"

have lgcisllz lgc = ll
proof —
from [y-no lo-no ground-l; ground-ls have get-atom [y = get-atom [y
using nat-of-fatom-bij ground;-ground-fatom
unfolding bij-betw-def inj-on-def by metis

then show /3¢ = [; using [;-sign l3-sign using sign-comp-atom by metis
qed

have applicable Cy’ Cy' {l1} {ls} Resolution.c unfolding applicable-def

using l1-p la-p C1'-p ground;s-vars;s lacisly empty-comp2 unfolding mgu; s-def
unifier;s-def by auto

— Lifting to get a resolvent of std; C10 and stdy Cso:

then obtain L L, ™ where LiLo7-p: applicable ?C1 ?Cy L1 Ly T A in-
stance-of 15 (resolution C1' Co' {11} {la} Resolution.e) (resolution ¢Cy ?Co L1 Lo
.

)

using std-apart-apart C1’-p Cy'-p lifting[of 7C1 ?Cy C1' Co' {li} {l2}
Resolution.c| fin by auto

— Defining the clause to be derived, the new clausal form and the new tree:
— We name the resolvent C.

obtain C where C-p: C = resolution 7Cy ?Cy Ly Ly T by auto
obtain CsNexzt where CsNext-p: CsNext = Cs U {?2Cy, ?Cy, C} by auto
obtain T where T'-p: T = delete B T by auto

— Here we delete the two branch children B @ [True] and B @ [False] of B.

— Our new clause is falsified by the branch B of our new tree:
have falsiﬁesg B ((01/ — {ll}) U (02/ — {lg})) using B-Cl /ll B-Cgllg by

cases auto

then have falsifies, B (resolution C1' Co' {li} {lo} Resolution.c) unfolding
resolution-def empty-subls by auto

then have falsifies-C': falsifies. B C using C-p Ly Lo7-p by auto

have T'’-smaller: treesize T'' < treesize T using treezise-delete T''-p b-p by
auto

have T'-bran: anybranch T'' (\b. closed-branch b T" CsNeat)
proof (rule alll; rule impl)
fix b

assume br: branch b T
from br have b = B V branch b T using branch-delete T"'-p by auto
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then show closed-branch b T'' CsNext
proof
assume b=D
then show closed-branch b T’ CsNext using falsifies-C br CsNext-p by
auto
next
assume branch b T
then show closed-branch b T'' CsNexzt using clo br T''-p CsNext-p
unfolding closed-tree-def by auto
qged
qed
then have T'-bran2: anybranch T' (Ab. falsifies.s b CsNext) by auto

— We cut the tree even smaller to ensure only the branches are falsified, i.e. it
is a closed tree:

obtain T/ where T'-p: T' = cutoff (AG. falsifies.s G CsNext) [| T"' by auto

have T'-smaller: treesize T' < treesize T using treesize-cutoff[of A\G. falsifies.s
G CsNext [| T") T"-smaller unfolding T’'-p by auto

from T'-bran2 have anybranch T’ (\b. falsifies.s b CsNext) using cut-
off-branchlof T Ab. falsifiescs b CsNext] T'-p by auto
then have T'-bran: anybranch T' (A\b. closed-branch b T' CsNext) by auto
have T’-intr: anyinternal T' (Ap. —falsifiescs p CsNext) using T'-p cut-
off-internal[of T' \b. falsifies.s b CsNexzt] T"-bran2 by blast
have T'-closed: closed-tree T' CsNext using T'-bran T'-intr unfolding closed-tree-def
by auto
have finite-CsNext: ¥V CeCsNext. finite C' unfolding CsNezt-p C-p resolu-
tion-def using finite-Cs fin by auto

— By induction hypothesis we get a resolution derivation of {} from our new
clausal form:
from T'-smaller T’'-closed have 3 Cs''. resolution-deriv CsNext Cs"" N {} €
Cs’ using ih[of T' CsNext] finite-CsNext by blast
then obtain Cs’’ where Cs’’-p: resolution-deriv CsNext Cs"' AN {} € Cs” by
auto
moreover
{ — Proving that we can actually derive the new clausal form:
have resolution-step Cs (Cs U {?C1}) using stdi-renames standardize-apart
C10-p by (metis Un-insert-right)
moreover
have resolution-step (Cs U {?C1}) (Cs U {?2C1} U {?C2}) using stds-renames|of
Cso] standardize-apart[of Ca0 - ?C3] Cao0-p by auto
then have resolution-step (Cs U {?2C1}) (Cs U {?C1,7C3}) by (simp add:
insert-commute)
moreover
then have resolution-step (Cs U {2C1,2C5}) (Cs U {2C1,2C2} U {C})
using L Lo7-p resolution-rule[of ?C1 Cs U {?2C1,7Cs} ?Cy Ly Lo 7 | using
C-p by auto
then have resolution-step (Cs U {?C1,72C2}) CsNext using CsNext-p by
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(simp add: Un-commute)
ultimately
have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto
}
— Combining the two derivations, we get the desired derivation from Cs of {}:
ultimately have resolution-deriv Cs Cs” unfolding resolution-deriv-def by
auto
then have 3 Cs'. resolution-deriv Cs Cs’ A {} € Cs’ using Cs'’-p by auto
}
ultimately show 3 Cs’. resolution-deriv Cs Cs’ A {} € Cs’ by auto
qged

theorem completeness:
assumes finite-cs: finite Cs V CeCs. finite C
assumes unsat: ¥V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
proof —
from unsat have V (G::hterm pred-denot) . —eval.s HFun G Cs by auto
then obtain T where closed-tree T Cs using herbrand assms by blast
then show 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’ using completeness’ assms
by auto
qged

definition E-conv :: (‘a = 'b) = 'a var-denot = 'b var-denot where
E-conv b-of-a E = A\z. (b-of-a (E 1))

definition F-conv :: ('a = 'b) = ’a fun-denot = 'b fun-denot where
F-conv b-of-a F = A\f bs. b-of-a (F f (map (inv b-of-a) bs))

definition G-conv :: (Ya = 'b) = 'a pred-denot = 'b pred-denot where
G-conv b-of-a G = Ap bs. (G p (map (inv b-of-a) bs))

lemma eval;-bij:
assumes bij (b-of-a::'a = 'b)
showseval; (E-conv b-of-a E) (F-conv b-of-a F') t = b-of-a (eval; E F t)
proof (induction t)
case (Fun [ ts)
then have map (inv b-of-a o evaly (E-conv b-of-a E) (F-conv b-of-a F)) ts =
evalys F F ts
unfolding E-conv-def F-conv-def
using assms bij-is-inj by fastforce
then have b-of-a (F f (map (inv b-of-a o evaly (E-conv b-of-a E) ((F-conv b-of-a
F))) ts)) = b-of-a (F f (eval;s E F ts)) by metis
then show ?case using assms unfolding E-conv-def F-conv-def by auto
next
case (Var z)
then show ?case using assms unfolding E-conv-def by auto
qed
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lemma eval;s-bij:
assumes bij (b-of-a::'a = 'b)
shows G-conv b-of-a G p (evalys (E-conv b-of-a E) (F-conv b-of-a F) ts) = G p
(evalys E F ts)
using assms using eval;-bij
proof —
have map (inv b-of-a o evaly (E-conv b-of-a E) (F-conv b-of-a F)) ts = evalys E
Fis
using eval;-bij assms bij-is-inj by fastforce
then show %thesis
by (metis (no-types) G-conv-def map-map)
qed

lemma eval;-bij:
assumes bij (b-of-a::’a = 'b)
shows eval; (E-conv b-of-a E) (F-conv b-of-a F) (G-conv b-of-a G) | = eval; E
FGI
using assms evalys-bij
proof (cases [)
case (Pos p ts)
then show ?thesis
by (simp add: eval;s-bij assms)
next
case (Neg p ts)
then show %thesis
by (simp add: evalis-bij assms)
qed

lemma eval.-bij:
assumes bij (b-of-a::’a = 'b)
shows eval. (F-conv b-of-a F) (G-conv b-of-a G) C = eval. F G C
proof —
{
fix E :: char list = b
assume bij-b-of-a: bij b-of-a
assume C-sat: VE :: char list = 'a. 31eC. eval; EF G 1
have E-p: E = E-conv b-of-a (E-conv (inv b-of-a) E)
unfolding FE-conv-def using bij-b-of-a
using bij-betw-inv-into-right by fastforce
have 31eC. eval; (E-conv b-of-a (E-conv (inv b-of-a) E)) (F-conv b-of-a F)
(G-conv b-of-a G) 1
using eval;-bij bij-b-of-a C-sat by blast
then have 31eC. eval; E (F-conv b-of-a F) (G-conv b-of-a G) | using E-p by
auto
}
then show ?thesis
by (meson eval;-bij assms eval.-def)
qed
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lemma eval.s-bij:
assumes bij (b-of-a::'a = 'b)
shows eval.s (F-conv b-of-a F) (G-conv b-of-a G) Cs «— eval.s F G Cs
by (meson eval.-bij assms eval.s-def)

lemma countably-inf-bij:
assumes inf-a-uni: infinite (UNIV :: ('a ::countable) set)
assumes inf-b-uni: infinite (UNIV :: ('b ::countable) set)
shows 3 b-of-a :: 'a = 'b. bij b-of-a
proof —
let 25 = UNIV :: ((‘a::countable)) set
have countable ?S by auto
moreover
have infinite 2S using inf-a-uni by auto
ultimately
obtain nat-of-a where QWER: bij (nat-of-a :: 'a = nat) using countable E-infinite[of
?S] by blast

let T = UNIV :: (('b::countable)) set

have countable ?T by auto

moreover

have infinite ?T using inf-b-uni by auto

ultimately

obtain nat-of-b where TYUI: bij (nat-of-b :: 'b = nat) using countable E-infinite[of
?T) by blast

let ?b-of-a = Aa. (inv nat-of-b) (nat-of-a a)

have bij-nat-of-b: ¥ n. nat-of-b (inv nat-of-b n) = n
using TYUI bij-betw-inv-into-right by fastforce
have V a. inv nat-of-a (nat-of-a a) = a
by (meson QWER UNIV-I bij-betw-inv-into-left)
then have inj (Aa. inv nat-of-b (nat-of-a a))
using bij-nat-of-b injl by (metis (no-types))
moreover
have range (\a. inv nat-of-b (nat-of-a a)) = UNIV
by (metis QWER TYUI bij-def image-image inj-imp-surj-inv)
ultimately
have bij ?b-of-a
unfolding bij-def by auto

then show ?thesis by auto
qed

lemma infinite-hterms: infinite (UNIV :: hterm set)
proof —
let ?diago = An. HFun (string-of-nat n) []
let Zundiago = Aa. nat-of-string (case a of HFun f ts = f)
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have Vn. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto
moreover
have Vn. ?diago n € UNIV by auto
ultimately show infinite (UNIV :: hterm set) using infinity[of ?undiago ?diago
UNIV] by simp
qed

theorem completeness-countable:
assumes inf-uni: infinite (UNIV :: ('u :: countable) set)
assumes finite-cs: finite Cs ¥V CeCs. finite C'
assumes unsat: ¥V (F::'u fun-denot) (G::'u pred-denot). —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' N {} € Cs’
proof —
have V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
proof (rule; rule)
fix F :: hterm fun-denot
fix G :: hterm pred-denot

obtain u-of-hterm :: hterm = 'u where p-u-of-hterm: bij u-of-hterm
using countably-inf-bij inf-uni infinite-hterms by auto

let ?F = F-conv u-of-hterm F
let ?G = G-conv u-of-hterm G

have — eval.; ?F ?G Cs using unsat by auto
then show — eval.s F G Cs using eval.s-bij using p-u-of-hterm by auto
qed
then show 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’ using finite-cs completeness
by auto
qed

theorem completeness-nat:
assumes finite-cs: finite Cs ¥V C€Cs. finite C
assumes unsat: YV (F::nat fun-denot) (G::nat pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-countable by blast

end — unification locale

end

18 Examples

theory Fxamples imports Resolution begin

value Var "z"

value Fun "one’
value Fun ""mul’” [Var "y" Var "y"

value Fun "add" [Fun "mul” [Var "y", Var "y"|, Fun "one’ [|]
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value Pos "'greater’’ [Var "z", Var "y
value Neg "less’’ [Var "z, Var "y
value Pos "less” [Var "z, Var "y
value Pos "equals’’
[Fun "add"[Fun "mul"[Var "y" Var "y"], Fun "one'[]], Var "z"

fun F, .¢ :: nat fun-denot where
Frat f [nvm} =
(if f = "add" then n + m else
if f = "mul" then n x m else 0)
| Fnat f H =
(if f = "one' then 1 else
if f = "zero" then 0 else 0)
| Frat fus=10

fun G, 4 :: nat pred-denot where
Gnat P [x;y] =
(if p = "less” N z < y then True else
if p = "greater’”’ A x > y then True else
if p = "equals’’ AN x = y then True else False)
| Grat p us = False

fun F, . :: nat var-denot where
Enot v =
(if x = "z then 26 else
if £ ="y" then 5 else 0)

lemma evaly Enqt Frar (Var "z’") = 26
by auto
lemma eval; Enqt Frat (Fun "one’ []) = 1
by auto
lemma eval; Fp ot Froe (Fun "mul” [Var "y" Var "y") = 25
by auto
lemma
evaly Enat Frar (Fun "add” [Fun "mul” [Var "y"Var "y"], Fun "one’ []]) =
26
by auto

lemma eval; Enqt Frat Gnate (Pos "greater’ [Var "'z") Var "y'") = True
by auto

lemma eval; Epqt Frat Gnat (Neg "less” [Var "z, Var "y"]) = True
by auto

lemma eval; Enat Frat Gnar (Pos "less” [Var "z") Var "y']) = False
by auto

lemma cval; E, o Frat Gnat

(Pos "equals"
[Fun "add” [Fun "mul" [Var "y" Var "y"|,Fun "one’ [|]
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,Var "z
) = True
by auto

definition PP : fterm literal where
PP = Pos ""P"" [Fun "¢" []]

definition PQ :: fterm literal where
PQ = Pos "Q" [Fun "d" )]

definition NP :: fterm literal where
NP = Neg ""P" [Fun "¢" []]

definition NQ :: fterm literal where
NQ — Neg //Q// [Fun //d// H]

theorem empty-mgu:
assumes unifier;s € L
shows mgu;s € L
using assms unfolding unifier;s-def mgu;s-def apply auto
apply (rule-tac z=u in ezxl)
using empty-compl empty-comp?2 apply auto
done

theorem unifier-single: unifier;s o {l}
unfolding unifier;s-def by auto

theorem resolution-rule’:
assumes C; € Cs
assumes Cy € Cs
assumes applicable C1 Cy Ly Lo o
assumes C = {resolution Cy Cq L1 Lo o}
shows resolution-step Cs (Cs U C)
using assms resolution-rule by auto

lemma resolution-examplel:
resolution-deriv {{ NP,PQ},{NQ},{PP,PQ}}
[{NP,PQ}.{NQ}{PP.PQ} {NP}.{PP},{}}
proof —
have resolution-step
{{NP,PQ}Y{NQ}{PP .PQ}}
({{NP.PQ}{NQYIPP.PQ}} U {{NP}})
apply (rule resolution-rule’[of {NP,PQ} - {NQ} {PQ} {NQ} ¢])
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu using empty-subls
apply auto
done
then have resolution-step
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[{NP,PQ},{NQ}.{PP,PQ}}
({{NP,PQL{NQ}{PP,PQ},{NP}})
by (simp add: insert-commute)
moreover
have resolution-step
{{NP,PQ}{NQ},{PP,PQ},{NP}}
({{NP,PQ} {NQ}.{PP.PQ}{NP}} U {{PP}})
apply (rule resolution-rule’lof {NQ} - {PP,PQ} {NQ} {PQ} ¢))
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu empty-subls apply auto
done
then have resolution-step
{{NP,PQ}{NQ}{PP,PQ}{NP}}
({{NP.PQ}{NQ}.{PP.PQ}{NP}.{PP}})
by (simp add: insert-commute)
moreover
have resolution-step
{{NP,PQ}{NQ} {PP,PQ}{NP}{PP}}
({{NP.PQLINQ}{PP.PQLANP}.{PP}} U {{}}
apply (rule resolution-rule’[of {NP} - {PP} {NP} {PP} ¢])
unfolding applicable-def vars;s-def wvars;-def
NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
[{NP.PQ}{NQ}.{PP.PQ}.{NP}.{PP})
({{NP,PQ}.{NQ}.{PP,PQ}.{NP}{PP}.{}})
by (simp add: insert-commute)
ultimately
have resolution-deriv {{ NP,PQ},{NQ},{PP,PQ}}
[{NP.PQ}.{NQ}{PP.PQ},{NP}.{PP}.{}}
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed

definition Pa :: fterm literal where
Pa = Pos "a" ||

definition Na :: fterm literal where
Na = Neg "a" ||

definition Pb :: fterm literal where
Pb = Pos ""b" |

definition Nb :: fterm literal where
Nb = Neg "b" ]

definition Paa :: fterm literal where
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Paa = Pos "a"" [Fun "a" []]

definition Naa :: fterm literal where
Naa = Neg "a" [Fun "a" []]

definition Paz :: fterm literal where
Pax = Pos "a" [Var "z"

definition Nazx :: fterm literal where
Naz = Neg "a' [Var "z"]

definition mguPaaPax :: substitution where
mguPaaPar = (Az. if x = "z" then Fun "a" || else Var x)

lemma mguPaaPaz-mgu: mgu;s mguPaaPax {Paa,Pax}

proof —
let %0 = Ax. if & = ""z'" then Fun "a'' || else Var x
have a: unifier;s (Az. if x = "z’ then Fun "o’ [] else Var z) {Paa,Paz} un-

folding Paa-def Pax-def unifier;s-def by auto
have b: V u. unifier;s v {Paa,Paz} — (3i. u = %0 - i)
proof (rule;rule)

fix u
assume unifier;s v {Paa,Paz}
then have wuu: u "'z’ = Fun "o’ [| unfolding unifier;s-def Paa-def Paz-def
by auto
have %0 - v = u
proof
fix z

1.1

assume z=""g

moreover

have (%0 - u) ""z"" = Fun "o’ || unfolding composition-def by auto
ultimately have (%0 - u) = u z using uwuu by auto

}

moreover
{
assume z#£''z"’
then have (%0 - u) z = (¢ z) + v unfolding composition-def by auto
then have (%0 - u) z = u z by auto
}
ultimately show (%0 - u) 2 = u z by auto
qged
then have Ji. %0 - i = u by auto
then show 3i. u = %0 - i by auto
qed
from a b show ?thesis unfolding mgu,;s-def unfolding mguPaaPaz-def by
auto
qed
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lemma resolution-example2:
resolution-deriv {{ Nb,Na},{ Paz},{Pa},{Na,Pb,Naa}}
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb} {Na},{}}
proof —
have resolution-step
{{Nb,Na} ,{Paz},{Pa},{Na,Pb,Naa}}
({{Vb,Na}{ Paz} { Pa} { Na,Pb, Naa}} U {{Na,Pb}})
apply (rule resolution-rule’[of {Paz} - {Na,Pb,Naa} { Paz} {Naa} mguPaaPax
)
using mguPaaPaz-mgu unfolding applicable-def vars;s-def wvars;-def
Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def
resolution-def
apply auto
apply (rule-tac z=Na in image-eql)
unfolding Na-def apply auto
apply (rule-tac z=Pb in image-eql)
unfolding Pb-def apply auto
done
then have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na} {Pazx} {Pa},{Na,Pb,Naa},{ Na,Pb}})
by (simp add: insert-commute)
moreover
have resolution-step
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb}}
({{Nb,Na},{Pazx},{Pa},{Na,Pb,Naa},{ Na,Pb}} U {{Na}})
apply (rule resolution-rule’[of {Nb,Na} - {Na,Pb} {Nb} {Pb} €])
unfolding applicable-def vars;s-def wvars;-def
Pb-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
{{Nb,Na} {Paz},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Vb, Na}{ Pax} { Pa} { Na, Pb, Naa} { Na, Pb} { Na}})
by (simp add: insert-commute)
moreover
have resolution-step
{{Nb,Na} ,{Paz},{Pa},{Na,Pb,Naa},{Na,Pb} {Na}}
({{Nb.Na} { Paz} { Pa} { Na,Pb. Naa} { Na,Pb} {Na}} U {{}})
apply (rule resolution-rule’lof {Na} - {Pa} {Na} {Pa} ¢])
unfolding applicable-def vars;s-def wvars;-def
Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply auto
done
then have resolution-step
{{Nb,Na},{ Pax},{ Pa},{Na,Pb,Naa},{ Na,Pb},{Na}}
({{Nb,Na},{Paz},{Pa},{ Na,Pb,Naa},{ Na,Pb},{Na},{}})
by (simp add: insert-commute)
ultimately
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have resolution-deriv {{ Nb,Na},{ Paz},{Pa},{ Na,Pb,Naa}}
{{Nb,Na} { Paz} { Pa} { Na,Pb, Naa} { Na, Pb} { Na} {}}
unfolding resolution-deriv-def by auto
then show ?thesis by auto
qed

lemma resolution-examplel-sem: —eval.s F G {{NP, PQ}, {NQ}, {PP, PQ}}
using resolution-examplel derivation-sound-refute by auto

lemma resolution-example2-sem: —eval.s F G {{Nb,Na},{ Pax},{Pa},{Na,Pb,Naa}}
using resolution-example2 derivation-sound-refute by auto

end

19 The Unification Theorem

theory Unification-Theorem imports
First-Order-Terms. Unification Resolution
begin

definition set-to-list :: 'a set = 'a list where
set-to-list = inv set

lemma set-set-to-list: finite xs = set (set-to-list ¥s) = ws
proof (induction rule: finite.induct)

case (emptyl)

have set [| = {} by auto

then show ?case unfolding set-to-list-def inv-into-def by auto
next

case (insert] A a)

then have set (a#set-to-list A) = insert a A by auto

then show ?case unfolding set-to-list-def inv-into-def by (metis (mono-tags,
lifting) UNIV-I somel)
qed

fun iterm-to-fterm :: (fun-sym, var-sym) term = fterm where
iterm-to-fterm (Term.Var x) = Var z
| iterm-to-fterm (Term.Fun fts) = Fun f (map iterm-to-fterm ts)

fun fterm-to-iterm :: fterm = (fun-sym, var-sym) term where
fterm-to-iterm (Var x) = Term.Var x

| fterm-to-iterm (Fun f ts) = Term.Fun f (map fterm-to-iterm ts)

lemma iterm-to-fterm-cancel[simpl: iterm-to-fterm (fterm-to-iterm t) =t
by (induction t) (auto simp add: map-idI)

lemma fterm-to-iterm-cancel[simp]: fterm-to-iterm (iterm-to-fterm t) = ¢
by (induction t) (auto simp add: map-idI)
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abbreviation(input) fsub-to-isub :: substitution = (fun-sym, var-sym) subst where
fsub-to-isub o = Az. fterm-to-iterm (o x)

abbreviation(input) isub-to-fsub :: (fun-sym, var-sym) subst = substitution where
isub-to-fsub o = Az. iterm-to-fterm (o x)

lemma iterm-to-fterm-subt: (iterm-to-fterm t1) - o = iterm-to-fterm (t1 - (A\z.
fterm-to-iterm (o x)))
by (induction t1) auto

lemma unifiert-unifiers:
assumes unifier;s o ts
shows fsub-to-isub o € unifiers (fterm-to-iterm ‘ts x fterm-to-iterm ‘ ts)
proof —
have Vi1 € fterm-to-iterm * ts. Vt2 € fterm-to-iterm * ts. t1 - (fsub-to-isub o)
= 12 - (fsub-to-isub o)
proof (rule balll;rule balll)
fix t1 t2
assume t1-p: t1 € fterm-to-iterm ‘ ts assume t2-p: t2 € fterm-to-iterm ‘ ts
from t1-p t2-p have iterm-to-fterm t1 € ts N\ iterm-to-fterm t2 € ts by auto
then have (iterm-to-fterm t1) -+ o = (iterm-to-fterm t2) -4 o using assms
unfolding unifier;s-def by auto
then have iterm-to-fterm (t1 - fsub-to-isub o) = iterm-to-fterm (t2 - fsub-to-isub
o) using iterm-to-fterm-subt by auto
then have fterm-to-iterm (iterm-to-fterm (t1 - fsub-to-isub o)) = fterm-to-iterm
(iterm-to-fterm (t2 - fsub-to-isub o)) by auto
then show t1 - fsub-to-isub o = t2 - fsub-to-isub o using fterm-to-iterm-cancel
by auto
qed
then have V pefterm-to-iterm ‘ ts x fterm-to-iterm *ts. fst p - fsub-to-isub o =
snd p - fsub-to-isub o by (metis mem-Times-iff)
then show ?thesis unfolding unifiers-def by blast
qed

abbreviation(input) get-mgut :: fterm list = substitution option where
get-mgut ts = map-option (isub-to-fsub o subst-of) (unify (List.product (map
fterm-to-iterm ts) (map fterm-to-iterm ts)) [])

lemma unify-unification:
assumes o € unifiers (set E)
shows 3. is-imgu ¥ (set E)

proof —
from assms have Jcs. unify E [| = Some cs using unify-complete by auto
then show ?thesis using unify-sound by auto

qed

lemma fterm-to-iterm-subst: (fterm-to-iterm t1) - o =fterm-to-iterm (t1 -4 isub-to-fsub
o)
by (induction t1) auto
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lemma unifiers-unifiert:

assumes o € unifiers (fterm-to-iterm ‘ ts x fterm-to-iterm ° ts)

shows unifier;s (isub-to-fsub o) ts
proof (cases ts={})

assume ts = {}

then show unifier;s (isub-to-fsub o) ts unfolding unifier;s-def by auto
next

assume ts # {}

then obtain ¢’ where t’-p: t’ € ts by auto

have Vt€ts. VisEts. t1 -4 isub-to-fsub o = tg -4 isub-to-fsub o
proof (rule balll ; rule balll)
fix tl tg
assume t; € ts tg € ts
then have fterm-to-iterm t1 € fterm-to-iterm ° ts fterm-to-iterm ty €
fterm-to-iterm ¢ ts by auto
then have (fterm-to-iterm t1, fterm-to-iterm t3) € (fterm-to-iterm ‘ts X
fterm-to-iterm ‘ ts) by auto
then have (fterm-to-iterm t1) - o = (fterm-to-iterm t3) - o using assms
unfolding unifiers-def
by (metis (no-types, lifting) assms fst-conv in-unifiersE snd-conv)
then have fterm-to-iterm (t1 -4 isub-to-fsub o) = fterm-to-iterm (to -
isub-to-fsub o) using fterm-to-iterm-subst by auto
then have iterm-to-fterm (fterm-to-iterm (t1 - (isub-to-fsub o))) = iterm-to-fterm
(fterm-to-iterm (tg -4 isub-to-fsub o)) by auto
then show ¢ - isub-to-fsub o = to -+ isub-to-fsub o by auto
qed
then have Viyets. t/ -4 isub-to-fsub o = tg -4 isub-to-fsub o using t’-p by blast

then show unifier:s (isub-to-fsub o) ts unfolding unifier;s-def by metis
qed

lemma icomp-fcomp: ¥ oy i = fsub-to-isub (isub-to-fsub ¥ - isub-to-fsub 7)
unfolding composition-def subst-compose-def
proof
fix z
show 9 z - i = fterm-to-iterm (iterm-to-fterm (9 z) -+ (Az. iterm-to-fterm (i z)))
using iterm-to-fterm-subt by auto
qed

lemma is-mgu-mguy:

assumes finite ts

assumes is-imgu ¥ (fterm-to-iterm ‘ ts x fterm-to-iterm ° ts)

shows mgus (isub-to-fsub ) ts
proof —

from assms have unifierys (isub-to-fsub ) ts unfolding is-imgu-def using
unifiers-unifiert by auto
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moreover have Vu. unifierss u ts — (4. u = (isub-to-fsub 9) - 7)
proof (rule alll; rule impl)
fix u
assume unifierss u ts
then have fsub-to-isub u € wunifiers (fterm-to-iterm *ts x fterm-to-iterm
ts) using unifiert-unifiers by auto
then have 3. fsub-to-isub u = ¥ os i using assms unfolding is-imgu-def
by auto
then obtain 7 where fsub-to-isub u = ¥ os 7 by auto
then have fsub-to-isub u = fsub-to-isub (isub-to-fsub ¥ - isub-to-fsub i) using
icomp-fcomp by auto
then have isub-to-fsub (fsub-to-isub u) = isub-to-fsub (fsub-to-isub (isub-to-fsub
9 - isub-to-fsub i)) by metis
then have u = isub-to-fsub ¢ - isub-to-fsub ¢ by auto
then show 3i. u = isub-to-fsub ¥ - i by metis
qed
ultimately show ?thesis unfolding mgu,s-def by auto
qed

¢

lemma unification'”:
assumes finite ts
assumes unifierss o ts
shows 39. mguss U ts
proof —
let ?F = fterm-to-iterm ‘ts x fterm-to-iterm * ts
let ?IE = set-to-list ?E
from assms have fsub-to-isub o € unifiers ?E using unifiert-unifiers by auto
then have 39. is-imgu ¢ ?F
using unify-unification|of fsub-to-isub o ?IE] assms by (simp add: set-set-to-list)
then obtain ¥ where is-imgu ¢ ?F unfolding set-to-list-def by auto
then have mgu;s (isub-to-fsub ) ts using assms is-mgu-mgu;s by auto
then show ?thesis by auto
qed

fun literal-to-term :: fterm literal = fterm where
literal-to-term (Pos p ts) = Fun ""Pos’’ [Fun p ts]
| literal-to-term (Neg p ts) = Fun ""Neg" [Fun p ts]

fun term-to-literal :: fterm = fterm literal where
term-to-literal (Fun s [Fun p ts]) = (if s='"Pos’’ then Pos else Neg) p ts

lemma term-to-literal-cancel[simp): term-to-literal (literal-to-term 1) = 1
by (cases 1) auto

lemma literal-to-term-sub: literal-to-term (I -; o) = (literal-to-term 1) ; o

by (induction ) auto

lemma unifier;s-unifier;s:
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assumes unifier;s o L
shows unifier;s o (literal-to-term ¢ L)
proof —
from assms obtain [’ where VI€L. | -, o = I’ unfolding unifier;,-def by auto
then have VIeL. literal-to-term (1 - o) = literal-to-term 1’ by auto
then have Ve L. (literal-to-term l) -+ o = literal-to-term I’ using literal-to-term-sub
by auto
then have V t€literal-to-term ‘ L. t -, o = literal-to-term 1’ by auto
then show “thesis unfolding unifier;s-def by auto
qed

lemma unifiert-unifier;s:

assumes unifierys o (literal-to-term ¢ L)

shows unifier;s o L
proof —

from assms obtain t’ where V t€literal-to-term ¢ L. t - o = t’ unfolding
unifierss-def by auto

then have V teliteral-to-term ¢ L. term-to-literal (¢ -4 o) = term-to-literal t’ by
auto

then have Vi€ L. term-to-literal ((literal-to-term 1) -4 o) = term-to-literal t' by
auto

then have Vie L. term-to-literal ((literal-to-term (1 -; 0))) = term-to-literal t'
using literal-to-term-sub by auto

then have Vie L. | -} o = term-to-literal t’ by auto

then show ?thesis unfolding unifier;s-def by auto
qed

lemma mgu;s-mgu;s:
assumes mguys ¥ (literal-to-term ¢ L)
shows mgu;s ¥ L
proof —
from assms have unifierys O (literal-to-term ‘ L) unfolding mgu.s-def by auto
then have unifier;s ¥ L using unifiert-unifier;s by auto
moreover
{
fix u
assume unifier;s u L
then have unifier;s u (literal-to-term ‘ L) using unifier;s-unifier;s by auto
then have 4. u = 9 - 7 using assms unfolding mgu;s-def by auto
}
ultimately show #?thesis unfolding mgu;s-def by auto
qed

theorem unification:
assumes fin: finite L
assumes uni: unifier;s o L
shows 34. mgu;s ¥ L
proof —
from uni have unifier;s o (literal-to-term ¢ L) using unifier;s-unifier;s by auto
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I3

then obtain ¢ where mgu;s O (literal-to-term ¢ L) using fin unification’ by
blast

then have mgu;s ¥ L using mgu;s-mgu;s by auto

then show ?thesis by auto

qed

end

20 Instance of completeness theorem

theory Completeness-Instance imports Unification-Theorem Completeness be-
gin

interpretation unification using unification by unfold-locales auto
thm lifting

lemma [ift:

assumes fin: finite C' A finite D

assumes apart: vars;s C N vars;s D = {}

assumes insty: instance-of;s C’ C

assumes insty: instance-of;s D' D

assumes appl: applicable C' D' L' M' o

shows 3L M 7. applicable C D L M T A

instance-of s (resolution C' D' L' M' o) (resolution C D L M )

using assms lifting by metis

thm completeness

theorem complete:
assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: ¥V (F::hterm fun-denot) (G::hterm pred-denot) . —eval.s F G Cs
shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’

using assms completeness by —

thm completeness-countable

theorem complete-countable:
assumes inf-uni: infinite (UNIV :: ("u :: countable) set)
assumes finite-cs: finite Cs ¥V C€Cs. finite C
assumes unsat: V (F::'u fun-denot) (G::'u pred-denot). —eval.s F G Cs
shows 3 Cs'. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-countable by —

thm completeness-nat
theorem complete-nat:

assumes finite-cs: finite Cs ¥V CeCs. finite C
assumes unsat: V¥ (F::nat fun-denot) (G::nat pred-denot) . —eval.s F G Cs
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shows 3 Cs’. resolution-deriv Cs Cs' A {} € Cs’
using assms completeness-nat by —

end
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