The Resolution Calculus for First-Order Logic

Anders Schlichtkrull

March 17, 2025

Abstract

This theory is a formalization of the resolution calculus for firstorder logic. It is proven sound and complete. The soundness proof uses the substitution lemma, which shows a correspondence between substitutions and updates to an environment. The completeness proof uses semantic trees, i.e. trees whose paths are partial Herbrand interpretations. It employs Herbrand's theorem in a formulation which states that an unsatisfiable set of clauses has a finite closed semantic tree. It also uses the lifting lemma which lifts resolution derivation steps from the ground world up to the first-order world. The theory is presented in a paper in the Journal of Automated Reasoning [7] which extends a paper presented at the International Conference on Interactive Theorem Proving [6]. An earlier version was presented in an MSc thesis [5]. The formalization mostly follows textbooks by Ben-Ari [1], Chang and Lee [2], and Leitsch [4]. The theory is part of the IsaFoL project [3].

Contents

1	Ter	ms and Literals	3
	1.1	Ground	3
	1.2	Auxiliary	4
	1.3	Conversions	4
		1.3.1 Conversions - Terms and Herbrand Terms	4
		1.3.2 Conversions - Literals and Herbrand Literals	5
		1.3.3 Conversions - Atoms and Herbrand Atoms	6
	1.4	Enumerations	7
		1.4.1 Enumerating Strings	7
		1.4.2 Enumerating Herbrand Atoms	8
		1.4.3 Enumerating Ground Atoms	9
2	Tree	es	9
	2.1	Sizes	9
	2.2	Paths	10
	2.3	Branches	11

	$2.4 \\ 2.5$	Internal Paths Deleting Nodes Internal Paths Internal Paths Internal Paths Internal P	$\frac{13}{15}$		
3	Poss 3.1	sibly Infinite Trees Infinite Paths	23 24		
4	Kön	ig's Lemma	25		
5	Mor	re Terms and Literals	26		
6	Clau	uses	27		
7	Sem 7.1	antics Semantics of Ground Terms	28 29		
8	Sub 8.1 8.2 8.3 8.4 8.5	stitutions The Empty Substitution Substitutions and Ground Terms Composition Merging substitutions Standardizing apart	 29 30 31 32 34 36 		
9	Uni 9.1	fiers Most General Unifiers	38 40		
10 Resolution 40					
11	11 Soundness				
12	12 Herbrand Interpretations				
13	Part	tial Interpretations	46		
14	14 Semantic Trees				
15	15 Herbrand's Theorem				
16	16 Lifting Lemma				
17	17 Completeness				
18	18 Examples				
19	19 The Unification Theorem				
20	20 Instance of completeness theorem				

1 Terms and Literals

theory TermsAndLiterals imports Main HOL-Library.Countable-Set begin

type-synonym var-sym = string **type-synonym** fun-sym = string **type-synonym** pred-sym = string

datatype fterm =
 Fun fun-sym (get-sub-terms: fterm list)
| Var var-sym

datatype hterm = HFun fun-sym hterm list — Herbrand terms defined as in Berghofer's FOL-Fitting

type-synonym 't atom = pred-sym * 't list

datatype 't literal =
 sign: Pos (get-pred: pred-sym) (get-terms: 't list)
| Neg (get-pred: pred-sym) (get-terms: 't list)

fun get-atom :: 't literal \Rightarrow 't atom where get-atom (Pos p ts) = (p, ts) | get-atom (Neg p ts) = (p, ts)

1.1 Ground

fun ground_t :: fterm \Rightarrow bool where ground_t (Var x) \longleftrightarrow False | ground_t (Fun f ts) \longleftrightarrow (\forall t \in set ts. ground_t t)

abbreviation $ground_{ts}$:: $fterm \ list \Rightarrow bool$ where $ground_{ts} \ ts \equiv (\forall t \in set \ ts. \ ground_t \ t)$

abbreviation $ground_l :: fterm literal \Rightarrow bool where <math>ground_l \ l \equiv ground_{ts} \ (get\text{-}terms \ l)$

abbreviation ground_{ls} :: fterm literal set \Rightarrow bool where ground_{ls} $C \equiv (\forall l \in C. ground_l \ l)$

definition ground-fatoms :: fterm atom set where ground-fatoms $\equiv \{a. \text{ ground}_{ts} (\text{snd } a)\}$

lemma $ground_l$ -ground-fatom: **assumes** $ground_l$ l **shows** get-atom $l \in ground$ -fatoms **using** assms **unfolding** ground-fatoms-def **by** (induction l) auto

1.2 Auxiliary

```
lemma infinity:

assumes inj: \forall n :: nat. undiago (diago n) = n

assumes all-tree: \forall n :: nat. (diago n) \in S

shows \negfinite S

proof –

from inj all-tree have \forall n. n = undiago (diago n) \land (diago n) \in S by auto

then have \forall n. \exists ds. n = undiago ds \land ds \in S by auto

then have undiago 'S = (UNIV :: nat set) by auto

then show \negfinite S by (metis finite-imageI infinite-UNIV-nat)

qed

lemma inv-into-f-f:
```

assumes bij-betw f A Bassumes $a \in A$ shows (inv-into A f) (f a) = ausing assms bij-betw-inv-into-left by metis

lemma f-inv-into-f: **assumes** bij-betw f A B **assumes** $b \in B$ **shows** f ((inv-into A f) b) = b **using** assms bij-betw-inv-into-right by metis

1.3 Conversions

1.3.1 Conversions - Terms and Herbrand Terms

fun fterm-of-hterm :: hterm \Rightarrow fterm **where** fterm-of-hterm (HFun p ts) = Fun p (map fterm-of-hterm ts)

- **definition** *fterms-of-hterms* :: *hterm list* \Rightarrow *fterm list* **where** *fterms-of-hterms ts* \equiv *map fterm-of-hterm ts*
- **fun** hterm-of-fterm :: fterm \Rightarrow hterm **where** hterm-of-fterm (Fun p ts) = HFun p (map hterm-of-fterm ts)

definition *hterms-of-fterms* :: *fterm list* \Rightarrow *hterm list* **where** *hterms-of-fterms ts* \equiv *map hterm-of-fterm ts*

lemma hterm-of-fterm-fterm-of-hterm[simp]: hterm-of-fterm (fterm-of-hterm t) = t

by (induction t) (simp add: map-idI)

lemma hterms-of-fterms-fterms-of-hterms[simp]: hterms-of-fterms (fterms-of-hterms ts) = ts

unfolding hterms-of-fterms-def fterms-of-hterms-def by (simp add: map-idI)

lemma *fterm-of-hterm-hterm-of-fterm*[*simp*]:

assumes $ground_t t$ shows fterm-of-hterm (hterm-of-fterm t) = tusing assms by (induction t) (auto simp add: map-idI)

lemma fterms-of-hterms-hterms-of-fterms[simp]: **assumes** ground_{ts} ts **shows** fterms-of-hterms (hterms-of-fterms ts) = ts **using** assms **unfolding** fterms-of-hterms-def hterms-of-fterms-def by (simp add: map-idI)

lemma ground-fterm-of-hterm: ground_t (fterm-of-hterm t) **by** (induction t) (auto simp add: map-idI)

lemma ground-fterms-of-hterms: $ground_{ts}$ (fterms-of-hterms ts) unfolding fterms-of-hterms-def using ground-fterm-of-hterm by auto

1.3.2 Conversions - Literals and Herbrand Literals

fun flit-of-hlit :: hterm literal \Rightarrow fterm literal **where** flit-of-hlit (Pos p ts) = Pos p (fterms-of-hterms ts) | flit-of-hlit (Neg p ts) = Neg p (fterms-of-hterms ts)

fun $hlit-of-flit :: fterm literal <math>\Rightarrow$ hterm literal where $<math>hlit-of-flit (Pos \ p \ ts) = Pos \ p \ (hterms-of-fterms \ ts)$ | $hlit-of-flit (Neg \ p \ ts) = Neg \ p \ (hterms-of-fterms \ ts)$

lemma ground-flit-of-hlit: ground_l (flit-of-hlit l) **by** (induction l) (simp add: ground-fterms-of-hterms)+

theorem hlit-of-flit-flit-of-hlit [simp]: hlit-of-flit (flit-of-hlit l) = l by (cases l) auto

theorem flit-of-hlit-hlit-of-flit [simp]: assumes $ground_l \ l$ shows flit-of-hlit (hlit-of-flit l) = l using assms by (cases l) auto

lemma sign-flit-of-hlit: sign (flit-of-hlit l) = sign l by (cases l) auto

```
lemma hlit-of-flit-bij: bij-betw hlit-of-flit {l. ground<sub>l</sub> l} UNIV

unfolding bij-betw-def

proof

show inj-on hlit-of-flit {l. ground<sub>l</sub> l} using inj-on-inverseI flit-of-hlit-hlit-of-flit

by (metis (mono-tags, lifting) mem-Collect-eq)

next

have \forall l. \exists l'. ground_l \ l' \land l = hlit-of-flit \ l'

using ground-flit-of-hlit hlit-of-flit-flit-of-hlit by metis

then show hlit-of-flit ' {l. ground<sub>l</sub> l} = UNIV by auto

ged
```

lemma flit-of-hlit-bij: bij-betw flit-of-hlit UNIV {l. ground_l l} **unfolding** bij-betw-def inj-on-def **proof show** $\forall x \in UNIV$. $\forall y \in UNIV$. flit-of-hlit x =flit-of-hlit $y \longrightarrow x = y$ **using** ground-flit-of-hlit hlit-of-flit-flit-of-hlit **by** metis **next have** $\forall l. \text{ ground}_l \ l \longrightarrow (l =$ flit-of-hlit (hlit-of-flit l)) **using** hlit-of-flit-flit-of-hlit **by** auto **then have** {l. ground_l l} \subseteq flit-of-hlit ' UNIV **by** blast **moreover have** $\forall l. \text{ ground}_l$ (flit-of-hlit l) **using** ground-flit-of-hlit **by** auto **ultimately show** flit-of-hlit ' UNIV = {l. ground_l l} **using** hlit-of-flit-flit-of-hlit ground-flit-of-hlit **by** auto **qed**

1.3.3 Conversions - Atoms and Herbrand Atoms

fun fatom-of-hatom :: hterm atom \Rightarrow fterm atom where fatom-of-hatom (p, ts) = (p, fterms-of-hterms ts)

fun hatom-of-fatom :: fterm atom \Rightarrow hterm atom where hatom-of-fatom (p, ts) = (p, hterms-of-fterms ts)

lemma ground-fatom-of-hatom: ground_{ts} (snd (fatom-of-hatom a)) by (induction a) (simp add: ground-fterms-of-hterms)+

theorem hatom-of-fatom-fatom-of-hatom [simp]: hatom-of-fatom (fatom-of-hatom l) = l

by (cases l) auto

```
theorem fatom-of-hatom-hatom-of-fatom [simp]:
assumes ground_{ts} (snd l)
shows fatom-of-hatom (hatom-of-fatom l) = l
using assms by (cases l) auto
```

lemma hatom-of-fatom-bij: bij-betw hatom-of-fatom ground-fatoms UNIV unfolding bij-betw-def proof

```
show inj-on hatom-of-fatom ground-fatoms using inj-on-inverseI fatom-of-hatom-hatom-of-fatom unfolding ground-fatoms-def
```

by (*metis* (*mono-tags*, *lifting*) *mem-Collect-eq*)

 \mathbf{next}

have $\forall a. \exists a'. ground_{ts} (snd a') \land a = hatom-of-fatom a'$

using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis

then show hatom-of-fatom ' ground-fatoms = UNIV unfolding ground-fatoms-def by blast

qed

lemma fatom-of-hatom-bij: bij-betw fatom-of-hatom UNIV ground-fatoms unfolding bij-betw-def inj-on-def

\mathbf{proof}

show $\forall x \in UNIV$. $\forall y \in UNIV$. fatom-of-hatom $x = fatom-of-hatom \ y \longrightarrow x = y$ using ground-fatom-of-hatom hatom-of-fatom-fatom-of-hatom by metis

 \mathbf{next}

have $\forall a. ground_{ts} (snd a) \longrightarrow (a = fatom-of-hatom (hatom-of-fatom a))$ using hatom-of-fatom-of-hatom by auto

then have ground-fatoms \subseteq fatom-of-hatom 'UNIV unfolding ground-fatoms-def by blast

moreover

have $\forall l. ground_{ts} (snd (fatom-of-hatom l))$ using ground-fatom-of-hatom by auto

ultimately show *fatom-of-hatom* ' UNIV = ground-fatoms

using hatom-of-fatom-of-hatom ground-fatom-of-hatom unfolding ground-fatoms-def by auto

 \mathbf{qed}

1.4 Enumerations

1.4.1 Enumerating Strings

definition *nat-of-string*:: *string* \Rightarrow *nat* **where** *nat-of-string* \equiv (*SOME f*. *bij f*)

definition string-of-nat:: $nat \Rightarrow string$ where $string-of-nat \equiv inv \ nat-of-string$

lemma nat-of-string-bij: bij nat-of-string **proof** – **have** countable (UNIV::string set) **by** auto **moreover have** infinite (UNIV::string set) **using** infinite-UNIV-listI **by** auto **ultimately obtain** x **where** bij (x:: string \Rightarrow nat) **using** countableE-infinite[of UNIV] **by** blast **then show** ?thesis **unfolding** nat-of-string-def **using** someI **by** metis **qed**

lemma string-of-nat-bij: bij string-of-nat **unfolding** string-of-nat-def **using** nat-of-string-bij bij-betw-inv-into **by** auto

lemma nat-of-string-string-of-nat[simp]: nat-of-string (string-of-nat n) = n
unfolding string-of-nat-def
using nat-of-string-bij f-inv-into-f[of nat-of-string] by simp

lemma string-of-nat-nat-of-string[simp]: string-of-nat (nat-of-string n) = nunfolding string-of-nat-def using nat-of-string-bij inv-into-f-f[of nat-of-string] by simp

1.4.2 Enumerating Herbrand Atoms

definition *nat-of-hatom:: hterm atom* \Rightarrow *nat* **where** *nat-of-hatom* \equiv (SOME f. bij f)

definition hatom-of-nat:: nat \Rightarrow hterm atom where hatom-of-nat \equiv inv nat-of-hatom

instantiation hterm :: countable begin instance by countable-datatype end

lemma infinite-hatoms: infinite (UNIV :: ('t atom) set) **proof** – **let** ?diago = λn . (string-of-nat n,[]) **let** ?undiago = λa . nat-of-string (fst a) **have** $\forall n$. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto **moreover have** $\forall n$. ?diago n \in UNIV by auto **ultimately show** infinite (UNIV :: ('t atom) set) using infinity[of ?undiago ?diago UNIV] by simp **qed**

```
lemma nat-of-hatom-bij: bij nat-of-hatom

proof –

let ?S = UNIV :: (('t::countable) atom) set

have countable ?S by auto

moreover

have infinite ?S using infinite-hatoms by auto

ultimately

obtain x where bij (x :: hterm atom <math>\Rightarrow nat) using countableE-infinite[of ?S]

by blast

then have bij nat-of-hatom unfolding nat-of-hatom-def using someI by metis

then show ?thesis unfolding bij-betw-def inj-on-def unfolding nat-of-hatom-def

by simp

qed
```

lemma hatom-of-nat-bij: bij hatom-of-nat **unfolding** hatom-of-nat-def **using** nat-of-hatom-bij bij-betw-inv-into **by** auto

```
lemma nat-of-hatom-hatom-of-nat[simp]: nat-of-hatom (hatom-of-nat n) = n
unfolding hatom-of-nat-def
using nat-of-hatom-bij f-inv-into-f[of nat-of-hatom] by simp
```

```
lemma hatom-of-nat-of-hatom[simp]: hatom-of-nat (nat-of-hatom l) = l
unfolding hatom-of-nat-def
using nat-of-hatom-bij inv-into-f-f[of nat-of-hatom - UNIV] by simp
```

1.4.3 Enumerating Ground Atoms

definition fatom-of-nat :: nat \Rightarrow fterm atom where fatom-of-nat = (λn . fatom-of-hatom (hatom-of-nat n))

definition *nat-of-fatom* :: *fterm atom* \Rightarrow *nat* **where** *nat-of-fatom* = (λt . *nat-of-hatom* (*hatom-of-fatom* t))

theorem diag-undiag-fatom[simp]: **assumes** ground_{ts} ts **shows** fatom-of-nat (nat-of-fatom (p,ts)) = (p,ts) **using** assms **unfolding** fatom-of-nat-def nat-of-fatom-def by auto

theorem undiag-diag-fatom[simp]: nat-of-fatom (fatom-of-nat n) = n **unfolding** fatom-of-nat-def nat-of-fatom-def by auto

lemma fatom-of-nat-bij: bij-betw fatom-of-nat UNIV ground-fatoms using hatom-of-nat-bij bij-betw-trans fatom-of-hatom-bij hatom-of-nat-bij unfolding fatom-of-nat-def comp-def by blast

lemma ground-fatom-of-nat: ground_{ts} (snd (fatom-of-nat x)) **unfolding** fatom-of-nat-def **using** ground-fatom-of-hatom **by** auto

lemma nat-of-fatom-bij: bij-betw nat-of-fatom ground-fatoms UNIV using nat-of-hatom-bij bij-betw-trans hatom-of-fatom-bij hatom-of-nat-bij unfolding nat-of-fatom-def comp-def by blast

end

2 Trees

theory Tree imports Main begin

Sometimes it is nice to think of *bools* as directions in a binary tree

hide-const (open) Left Right type-synonym dir = bool definition Left :: bool where Left = True definition Right :: bool where Right = False declare Left-def [simp] declare Right-def [simp]

datatype tree = Leaf | Branching (ltree: tree) (rtree: tree)

2.1 Sizes

fun treesize :: tree \Rightarrow nat where treesize Leaf = 0 | treesize (Branching l r) = 1 + treesize l + treesize r

lemma treesize-Leaf: **assumes** treesize T = 0 **shows** T = Leaf**using** assms by (cases T) auto

lemma treesize-Branching: **assumes** treesize $T = Suc \ n$ **shows** $\exists l r. T = Branching l r$ **using** assms by (cases T) auto

2.2 Paths

fun path :: dir list \Rightarrow tree \Rightarrow bool **where** path [] $T \longleftrightarrow True$ | path (d#ds) (Branching T1 T2) \longleftrightarrow (if d then path ds T1 else path ds T2) | path - - \longleftrightarrow False

lemma path-inv-Leaf: path p Leaf $\leftrightarrow p = []$ by (induction p) auto

lemma path-inv-Cons: path (a # ds) $T \longrightarrow (\exists l r. T = Branching l r)$ by (cases T) (auto simp add: path-inv-Leaf)

lemma path-inv-Branching-Left: path (Left#p) (Branching l r) \longleftrightarrow path p lusing Left-def Right-def path.cases by (induction p) auto

lemma path-inv-Branching-Right: path (Right#p) (Branching l r) \leftrightarrow path p rusing Left-def Right-def path.cases by (induction p) auto

lemma *path-inv-Branching*:

 $\begin{array}{l} path \ p \ (Branching \ l \ r) \longleftrightarrow (p=[] \lor (\exists \ a \ p'. \ p=a\#p' \land (a \longrightarrow path \ p' \ l) \land (\neg a \longrightarrow path \ p' \ l)) (is \ ?L \longleftrightarrow \ ?R) \\ proof \\ assume \ ?L \ then \ show \ ?R \ by \ (induction \ p) \ auto \\ next \\ assume \ r: \ ?R \\ then \ show \ ?L \\ proof \\ assume \ p = [] \ then \ show \ ?L \ by \ auto \\ next \\ assume \ \exists \ a \ p'. \ p=a\#p' \land (a \longrightarrow path \ p' \ l) \land (\neg a \longrightarrow path \ p' \ r) \\ then \ obtain \ a \ p' \ where \ p=a\#p' \land (a \longrightarrow path \ p' \ l) \land (\neg a \longrightarrow path \ p' \ r) \\ by \ auto \\ then \ show \ ?L \ by \ (cases \ a) \ auto \\ qed \end{array}$

\mathbf{qed}

```
lemma path-prefix:
 assumes path (ds1@ds2) T
 shows path ds1 T
using assms proof (induction ds1 arbitrary: T)
 case (Cons a ds1)
 then have \exists l r. T = Branching l r using path-inv-Leaf by (cases T) auto
 then obtain l r where p-lr: T = Branching l r by auto
 show ?case
   proof (cases a)
    assume atrue: a
    then have path ((ds1) @ ds2) l using p-lr Cons(2) path-inv-Branching by
auto
    then have path ds1 \ l \ using \ Cons(1) by auto
    then show path (a \# ds1) T using p-lr atrue by auto
   next
    assume a false: \neg a
    then have path ((ds1) \otimes ds2) r using p-lr Cons(2) path-inv-Branching by
auto
    then have path ds1 \ r \ using \ Cons(1) by auto
    then show path (a \# ds1) T using p-lr afalse by auto
   qed
\mathbf{next}
 case (Nil) then show ?case by auto
qed
```

2.3 Branches

fun branch :: dir list \Rightarrow tree \Rightarrow bool where branch [] Leaf \leftrightarrow True | branch (d # ds) (Branching l r) \leftrightarrow (if d then branch ds l else branch ds r) | branch - - \leftrightarrow False

```
lemma has-branch: \exists b. branch b T

proof (induction T)

case (Leaf)

have branch [] Leaf by auto

then show ?case by blast

next

case (Branching T_1 T_2)

then obtain b where branch b T_1 by auto

then have branch (Left#b) (Branching T_1 T_2) by auto

then show ?case by blast

qed
```

```
lemma branch-inv-Leaf: branch b Leaf \longleftrightarrow b = [] by (cases b) auto
```

lemma branch-inv-Branching-Left: $branch \ (Left \# b) \ (Branching \ l \ r) \longleftrightarrow branch \ b \ l$ by auto **lemma** branch-inv-Branching-Right: branch (Right#b) (Branching l r) \leftrightarrow branch b rby *auto* **lemma** branch-inv-Branching: $branch \ b \ (Branching \ l \ r) \longleftrightarrow$ $(\exists a \ b'. \ b=a\#b'\land (a \longrightarrow branch \ b' \ l) \land (\neg a \longrightarrow branch \ b' \ r))$ **by** (*induction b*) *auto* **lemma** branch-inv-Leaf2: $T = Leaf \longleftrightarrow (\forall b. branch \ b \ T \longrightarrow b = [])$ proof ł assume T = Leafthen have $\forall b. branch \ b \ T \longrightarrow b = []$ using branch-inv-Leaf by auto } moreover { **assume** $\forall b. branch b T \longrightarrow b = []$ then have $\forall b. branch \ b \ T \longrightarrow \neg(\exists \ a \ b'. \ b = a \ \# \ b')$ by auto **then have** $\forall b$. branch b $T \longrightarrow \neg(\exists l r. branch b (Branching l r))$ using branch-inv-Branching by auto then have T=Leaf using has-branch[of T] by (metis branch.elims(2)) } ultimately show $T = Leaf \longleftrightarrow (\forall b. branch \ b \ T \longrightarrow b = [])$ by auto qed lemma branch-is-path: assumes branch ds Tshows path ds Tusing assms proof (induction T arbitrary: ds) case Leaf then have ds = [] using branch-inv-Leaf by auto then show ?case by auto \mathbf{next} case (Branching T_1 T_2) then obtain a b where ds-p: $ds = a \# b \land (a \longrightarrow branch \ b \ T_1) \land (\neg \ a \longrightarrow branch \ b \ T_1)$ branch b T_2) using branch-inv-Branching[of ds] by blast then have $(a \longrightarrow path \ b \ T_1) \land (\neg a \longrightarrow path \ b \ T_2)$ using Branching by auto then show ?case using ds-p by (cases a) auto qed **lemma** Branching-Leaf-Leaf-Tree: assumes T = Branching T1 T2shows $(\exists B. branch (B@[True]) T \land branch (B@[False]) T)$

```
using assms proof (induction T arbitrary: T1 T2)
 case Leaf then show ?case by auto
\mathbf{next}
 case (Branching T1' T2')
 {
   assume T1' = Leaf \land T2' = Leaf
   then have branch ([] @ [True]) (Branching T1' T2') \land branch ([] @ [False])
(Branching T1' T2') by auto
   then have ?case by metis
 }
 moreover
 {
   fix T11 T12
   assume T1' = Branching T11 T12
   then obtain B where branch (B @ [True]) T1'
                 \wedge branch (B @ [False]) T1' using Branching by blast
   then have branch (([True] @ B) @ [True]) (Branching T1' T2')
          \wedge branch (([True] @ B) @ [False]) (Branching T1' T2') by auto
   then have ?case by blast
 }
 moreover
 ł
   fix T11 T12
   assume T2' = Branching T11 T12
   then obtain B where branch (B @ [True]) T2'
                 \wedge branch (B @ [False]) T2' using Branching by blast
   then have branch (([False] @ B) @ [True]) (Branching T1' T2')
          \wedge branch (([False] @ B) @ [False]) (Branching T1' T2') by auto
   then have ?case by blast
 }
 ultimately show ?case using tree.exhaust by blast
qed
```

2.4 Internal Paths

fun internal :: dir list \Rightarrow tree \Rightarrow bool **where** internal [] (Branching l r) \longleftrightarrow True | internal (d#ds) (Branching l r) \longleftrightarrow (if d then internal ds l else internal ds r) | internal - - \longleftrightarrow False

 $\mathbf{lemma} \ internal-inv-Leaf: \ \neg internal \ b \ Leaf \ \mathbf{using} \ internal.simps \ \mathbf{by} \ blast$

lemma internal-inv-Branching-Left: internal (Left#b) (Branching l r) \longleftrightarrow internal b l by auto

lemma internal-inv-Branching-Right: internal (Right#b) (Branching l r) \longleftrightarrow internal b rby auto **lemma** *internal-inv-Branching*: $(\neg a \longrightarrow internal \ p' \ r)))$ (is $?L \leftrightarrow ?R)$ proof assume ?L then show ?R by (metis internal.simps(2) neq-Nil-conv) \mathbf{next} assume r: ?Rthen show ?Lproof assume p = [] then show ?L by auto next assume $\exists a p'. p = a \# p' \land (a \longrightarrow internal p' l) \land (\neg a \longrightarrow internal p' r)$ then obtain a p' where $p=a\#p' \land (a \longrightarrow internal p' l) \land (\neg a \longrightarrow internal$ p' r) by auto then show ?L by (cases a) auto qed qed **lemma** *internal-is-path*: assumes internal ds Tshows path ds Tusing assms proof (induction T arbitrary: ds) case Leaf then have False using internal-inv-Leaf by auto then show ?case by auto \mathbf{next} case (Branching T_1 , T_2) then obtain a b where $ds-p: ds=[] \lor ds = a \# b \land (a \longrightarrow internal b T_1) \land (\neg$ $a \longrightarrow internal \ b \ T_2$) using internal-inv-Branching by blast then have $ds = [] \lor (a \longrightarrow path \ b \ T_1) \land (\neg a \longrightarrow path \ b \ T_2)$ using Branching by *auto* then show ?case using ds-p by (cases a) auto qed **lemma** *internal-prefix*: assumes internal (ds1@ds2@[d]) T **shows** internal ds1 T using assms proof (induction ds1 arbitrary: T) case (Cons a ds1) then have $\exists l r$. T = Branching l r using internal-inv-Leaf by (cases T) auto then obtain l r where p-lr: T = Branching l r by auto show ?case **proof** (cases a) assume atrue: a then have internal ((ds1) @ ds2 @ [d]) l using p-lr Cons(2) internal-inv-Branching by auto then have internal $ds1 \ l \ using \ Cons(1) \ by \ auto$ then show internal (a # ds1) T using p-lr atrue by auto next

```
assume afalse: \sim a
   then have internal ((ds1) @ ds2 @[d]) r using p-lr Cons(2) internal-inv-Branching
by auto
    then have internal ds1 \ r \ using \ Cons(1) by auto
    then show internal (a \# ds1) T using p-lr afalse by auto
   qed
\mathbf{next}
 case (Nil)
 then have \exists l r. T = Branching l r using internal-inv-Leaf by (cases T) auto
 then show ?case by auto
qed
lemma internal-branch:
 assumes branch (ds1@ds2@[d]) T
 shows internal ds1 T
using assms proof (induction ds1 arbitrary: T)
 case (Cons a ds1)
```

```
then have \exists l r. T = Branching l r using branch-inv-Leaf by (cases T) auto
 then obtain l r where p-lr: T = Branching l r by auto
 show ?case
   proof (cases a)
     assume atrue: a
   then have branch (ds1 @ ds2 @ [d]) l using p-lr Cons(2) branch-inv-Branching
by auto
     then have internal ds1 \ l \ using \ Cons(1) by auto
     then show internal (a \# ds1) T using p-lr atrue by auto
   \mathbf{next}
    assume a false: \sim a
   then have branch ((ds1) @ ds2 @ [d]) r using p-lr Cons(2) branch-inv-Branching
by auto
     then have internal ds1 \ r \ using \ Cons(1) by auto
     then show internal (a \# ds1) T using p-lr afalse by auto
   qed
\mathbf{next}
 case (Nil)
 then have \exists l r. T = Branching l r using branch-inv-Leaf by (cases T) auto
 then show ?case by auto
```

```
qed
```

fun parent :: dir list \Rightarrow dir list **where** parent ds = tl ds

2.5 Deleting Nodes

fun delete :: dir list \Rightarrow tree \Rightarrow tree **where** delete [] T = Leaf| delete (True#ds) (Branching $T_1 T_2$) = Branching (delete ds T_1) T_2

delete (False #ds) (Branching T_1 T_2) = Branching T_1 (delete ds T_2) | delete (a # ds) Leaf = Leaf**lemma** delete-Leaf: delete T Leaf = Leaf by (cases T) auto **lemma** *path-delete*: assumes path p (delete ds T) shows path p Tusing assms proof (induction p arbitrary: T ds) case Nil then show ?case by simp \mathbf{next} **case** (Cons a p) then obtain b ds' where bds'-p: ds=b#ds' by (cases ds) auto have $\exists dT1 \ dT2$. delete ds $T = Branching \ dT1 \ dT2$ using Cons path-inv-Cons by auto then obtain $dT1 \ dT2$ where delete $ds \ T = Branching \ dT1 \ dT2$ by auto then have $\exists T1 T2$. T=Branching T1 T2by (cases T; cases ds) auto then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto { assume a-p: aassume $b-p: \neg b$ have path (a # p) (delete ds T) using Cons by then have path (a # p) (Branching (T1) (delete ds' T2)) using b-p bds'-p T1T2-p by auto then have path p T1 using a-p by auto then have ?case using T1T2-p a-p by auto } moreover { assume $a - p: \neg a$ assume b-p: bhave path (a # p) (delete ds T) using Cons by then have path (a # p) (Branching (delete ds' T1) T2) using b-p bds'-p T1T2-p by auto then have path p T2 using a-p by auto then have ?case using T1T2-p a-p by auto } moreover { assume a-p: aassume b-p: bhave path (a # p) (delete ds T) using Cons by then have path (a # p) (Branching (delete ds' T1) T2) using b-p bds'-p T1T2-p by auto

```
then have path p (delete ds' T1) using a-p by auto
   then have path p T1 using Cons by auto
   then have ?case using T1T2-p a-p by auto
 }
 moreover
 {
   assume a - p: \neg a
   assume b - p: \neg b
   have path (a \# p) (delete ds T) using Cons by -
   then have path (a \# p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
   then have path p (delete ds' T2) using a-p by auto
   then have path p T2 using Cons by auto
   then have ?case using T1T2-p a-p by auto
 }
 ultimately show ?case by blast
qed
lemma branch-delete:
 assumes branch p (delete ds T)
 shows branch p \ T \lor p = ds
using assms proof (induction p arbitrary: T ds)
 case Nil
 then have delete ds T = Leaf by (cases delete ds T) auto
 then have ds = [] \lor T = Leaf using delete.elims by blast
 then show ?case by auto
\mathbf{next}
 case (Cons a p)
 then obtain b ds' where bds'-p: ds=b#ds' by (cases ds) auto
 have \exists dT1 \ dT2. delete ds T = Branching \ dT1 \ dT2 using Cons path-inv-Cons
branch-is-path by blast
 then obtain dT1 \ dT2 where delete ds \ T = Branching \ dT1 \ dT2 by auto
 then have \exists T1 T2. T=Branching T1 T2
      by (cases T; cases ds) auto
 then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto
 {
   assume a-p: a
  assume b-p: \neg b
   have branch (a \# p) (delete ds T) using Cons by -
   then have branch (a \# p) (Branching (T1) (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
   then have branch p T1 using a-p by auto
   then have ?case using T1T2-p a-p by auto
 }
 moreover
 ł
```

```
assume a - p: \neg a
   assume b-p: b
   have branch (a \# p) (delete ds T) using Cons by -
   then have branch (a \# p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
   then have branch p T2 using a-p by auto
   then have ?case using T1T2-p a-p by auto
 }
 moreover
 {
   assume a-p: a
   assume b-p: b
  have branch (a \# p) (delete ds T) using Cons by -
   then have branch (a \# p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
   then have branch p (delete ds' T1) using a-p by auto
   then have branch p T1 \lor p = ds' using Cons by metis
   then have ?case using T1T2-p a-p using bds'-p a-p b-p by auto
 }
 moreover
 {
   assume a - p: \neg a
   assume b - p: \neg b
   have branch (a \# p) (delete ds T) using Cons by -
   then have branch (a \# p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
   then have branch p (delete ds' T2) using a-p by auto
   then have branch p T2 \lor p = ds' using Cons by metis
   then have ?case using T1T2-p a-p using bds'-p a-p b-p by auto
 }
 ultimately show ?case by blast
qed
lemma branch-delete-postfix:
 assumes path p (delete ds T)
 shows \neg(\exists c \ cs. \ p = ds \ @ \ c\#cs)
using assms proof (induction p arbitrary: T ds)
 case Nil then show ?case by simp
next
 case (Cons a p)
 then obtain b ds' where bds'-p: ds=b\#ds' by (cases ds) auto
 have \exists dT1 dT2. delete ds T = Branching dT1 dT2 using Cons path-inv-Cons
by auto
 then obtain dT1 \ dT2 where delete ds \ T = Branching \ dT1 \ dT2 by auto
 then have \exists T1 T2. T=Branching T1 T2
      by (cases T; cases ds) auto
```

then obtain T1 T2 where T1T2-p: T=Branching T1 T2 by auto

```
{
   assume a-p: a
   assume b - p: \neg b
   then have ?case using T1T2-p a-p b-p bds'-p by auto
 }
 moreover
 {
   assume a - p: \neg a
   assume b-p: b
   then have ?case using T1T2-p a-p b-p bds'-p by auto
 }
 moreover
 ł
   assume a-p: a
   assume b-p: b
   have path (a \# p) (delete ds T) using Cons by -
    then have path (a \# p) (Branching (delete ds' T1) T2) using b-p bds'-p
T1T2-p by auto
   then have path p (delete ds' T1) using a-p by auto
   then have \neg (\exists c \ cs. \ p = ds' @ c \# cs) using Cons by auto
   then have ?case using T1T2-p a-p b-p bds'-p by auto
 }
 moreover
 {
   assume a - p: \neg a
   assume b - p: \neg b
   have path (a \# p) (delete ds T) using Cons by -
    then have path (a \# p) (Branching T1 (delete ds' T2)) using b-p bds'-p
T1T2-p by auto
   then have path p (delete ds' T2) using a-p by auto
   then have \neg (\exists c \ cs. \ p = ds' @ c \# cs) using Cons by auto
   then have ?case using T1T2-p a-p b-p bds'-p by auto
 }
 ultimately show ?case by blast
qed
lemma treezise-delete:
 assumes internal p T
 shows treesize (delete p T) < treesize T
using assms proof (induction p arbitrary: T)
 case (Nil)
 then have \exists T1 T2. T = Branching T1 T2 by (cases T) auto
 then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
 then show ?case by auto
\mathbf{next}
 case (Cons a p)
 then have \exists T1 T2. T = Branching T1 T2 using path-inv-Cons internal-is-path
```

```
by blast
 then obtain T1 T2 where T1T2-p: T = Branching T1 T2 by auto
 \mathbf{show}~? case
   proof (cases a)
    assume a-p: a
   from a-p have delete (a \# p) T = (Branching (delete p T1) T2) using T1T2-p
by auto
    moreover
    from a-p have internal p T1 using T1T2-p Cons by auto
    then have treesize (delete p T1) < treesize T1 using Cons by auto
    ultimately
    show ?thesis using T1T2-p by auto
   \mathbf{next}
    assume a - p: \neg a
   from a-p have delete (a \# p) T = (Branching T1 (delete p T2)) using T1T2-p
by auto
    moreover
    from a-p have internal p T2 using T1T2-p Cons by auto
    then have treesize (delete p T2) < treesize T2 using Cons by auto
    ultimately
    show ?thesis using T1T2-p by auto
   qed
qed
```

fun cutoff :: (dir list \Rightarrow bool) \Rightarrow dir list \Rightarrow tree \Rightarrow tree where cutoff red ds (Branching $T_1 \ T_2$) = (if red ds then Leaf else Branching (cutoff red (ds@[Left]) T_1) (cutoff red (ds@[Right]) T_2)) | cutoff red ds Leaf = Leaf

Initially you should call *cutoff* with ds = []. If all branches are red, then *cutoff* gives a subtree. If all branches are red, then so are the ones in *cutoff*. The internal paths of *cutoff* are not red.

```
lemma treesize-cutoff: treesize (cutoff red ds T) \leq treesize T

proof (induction T arbitrary: ds)

case Leaf then show ?case by auto

next

case (Branching T1 T2)

then have treesize (cutoff red (ds@[Left]) T1) + treesize (cutoff red (ds@[Right]))

T2) \leq treesize T1 + treesize T2 using add-mono by blast

then show ?case by auto

qed
```

abbreviation any path :: tree \Rightarrow (dir list \Rightarrow bool) \Rightarrow bool where any path $T P \equiv \forall p. path p T \longrightarrow P p$

abbreviation anybranch :: tree \Rightarrow (dir list \Rightarrow bool) \Rightarrow bool where anybranch $T P \equiv \forall p$. branch $p T \longrightarrow P p$ **abbreviation** any internal :: tree \Rightarrow (dir list \Rightarrow bool) \Rightarrow bool where any internal $T P \equiv \forall p$. internal $p T \longrightarrow P p$ **lemma** cutoff-branch': **assumes** anybranch T ($\lambda b. red(ds@b)$) **shows** anybranch (cutoff red ds T) ($\lambda b. red(ds@b)$) using assms proof (induction T arbitrary: ds) case (Leaf) let ?T = cutoff red ds Leaf{ fix bassume branch b ?Tthen have branch b Leaf by auto then have red(ds@b) using Leaf by auto } then show ?case by simp next case (Branching T_1 T_2) let $?T = cutoff red ds (Branching T_1 T_2)$ **from** Branching have $\forall p$. branch (Left # p) (Branching $T_1 \ T_2$) \longrightarrow red (ds @ (Left # p)) by blast **then have** $\forall p$. branch $p \ T_1 \longrightarrow red \ (ds @ (Left \# p))$ by auto then have anybranch T_1 ($\lambda p. red$ ((ds @ [Left]) @ p)) by auto then have aa: anybranch (cutoff red (ds @ [Left]) T_1) ($\lambda p. red$ ((ds @ [Left]) @ p))using Branching by blast **from** Branching have $\forall p$. branch (Right # p) (Branching $T_1 \ T_2$) \longrightarrow red (ds @ (Right # p)) by blast **then have** $\forall p$. branch $p T_2 \longrightarrow red (ds @ (Right \# p))$ by auto then have anybranch T_2 ($\lambda p. red$ ((ds @ [Right]) @ p)) by auto then have bb: anybranch (cutoff red (ds @ [Right]) T_2) ($\lambda p. red$ ((ds @ [Right])) @ *p*)) using Branching by blast { fix b assume b-p: branch b ?Thave red $ds \vee \neg red ds$ by auto then have red(ds@b)proof assume ds-p: red dsthen have ?T = Leaf by *auto* then have b = [] using b-p branch-inv-Leaf by auto then show red(ds@b) using ds-p by auto next assume ds-p: $\neg red ds$ let $?T_1' = cutoff red (ds@[Left]) T_1$ let $?T_2' = cutoff red (ds@[Right]) T_2$

from ds-p have $?T = Branching ?T_1' ?T_2'$ by autofrom this b-p obtain a b' where $b = a \# b' \land (a \longrightarrow branch b' ?T_1') \land$ $(\neg a \longrightarrow branch \ b' \ ?T_2')$ using branch-inv-Branching[of b $\ ?T_1' \ ?T_2']$ by auto then show red(ds@b) using as bb by (cases a) auto qed } then show ?case by blast qed **lemma** cutoff-branch: **assumes** anybranch T (λp . red p) **shows** anybranch (cutoff red [] T) (λp . red p) using assms cutoff-branch'[of T red []] by auto lemma cutoff-internal': **assumes** anybranch T (λb . red(ds@b)) **shows** any internal (cutoff red ds T) (λb . $\neg red(ds@b)$) using assms proof (induction T arbitrary: ds) case (Leaf) then show ?case using internal-inv-Leaf by simp \mathbf{next} case (Branching T_1 T_2) let $?T = cutoff red ds (Branching T_1 T_2)$ **from** Branching have $\forall p$. branch (Left#p) (Branching $T_1 T_2$) \longrightarrow red (ds @ (Left # p)) by blast **then have** $\forall p$. branch $p \ T_1 \longrightarrow red \ (ds @ (Left \# p))$ by auto then have anybranch T_1 ($\lambda p. red$ ((ds @ [Left]) @ p)) by auto then have aa: any internal (cutoff red (ds @ [Left]) T_1) (λp . \neg red ((ds @ [Left]) $(\bigcirc p)$) using Branching by blast **from** Branching have $\forall p$. branch (Right#p) (Branching $T_1 \ T_2$) \longrightarrow red (ds @ (Right # p)) by blast **then have** $\forall p$. branch $p T_2 \longrightarrow red (ds @ (Right \# p))$ by auto then have anybranch T_2 (λp . red ((ds @ [Right]) @ p)) by auto **then have** bb: any internal (cutoff red (ds @ [Right]) T_2) (λp . \neg red ((ds @ [Right] (@ p)) using Branching by blast { $\mathbf{fix} \ p$ assume b-p: internal p ?Tthen have ds-p: $\neg red ds$ using internal-inv-Leaf by auto have $p=[] \lor p \neq []$ by auto then have $\neg red(ds@p)$ proof assume p = [] then show $\neg red(ds@p)$ using ds - p by auto \mathbf{next} let $?T_1' = cutoff red (ds@[Left]) T_1$ let $?T_2' = cutoff red (ds@[Right]) T_2$ assume $p \neq []$ moreover have $?T = Branching ?T_1' ?T_2'$ using ds-p by auto

```
ultimately
       obtain a p' where b-p: p = a \# p' \land
            (a \longrightarrow internal \ p' \ (cutoff \ red \ (ds \ @ \ [Left]) \ T_1)) \ \land
            (\neg a \longrightarrow internal \ p' \ (cutoff \ red \ (ds @ [Right]) \ T_2))
         using b-p internal-inv-Branching[of p ?T_1' ?T_2'] by auto
       then have \neg red(ds @ [a] @ p') using as bb by (cases a) auto
       then show \neg red(ds @ p) using b-p by simp
     qed
  }
 then show ?case by blast
qed
lemma cutoff-internal:
 assumes anybranch T red
 shows any internal (cutoff red [] T) (\lambda p. \neg red p)
 using assms cutoff-internal'[of T red []] by auto
lemma cutoff-branch-internal':
 assumes anybranch T red
  shows any internal (cutoff red [] T) (\lambda p. \neg red p) \land any branch (cutoff red [] T)
(\lambda p. red p)
 using assms cutoff-internal [of T] cutoff-branch [of T] by blast
lemma cutoff-branch-internal:
```

```
assumes anybranch T red
shows \exists T'. anyinternal T'(\lambda p. \neg red p) \land anybranch T'(\lambda p. red p)
using assms cutoff-branch-internal' by blast
```

3 Possibly Infinite Trees

Possibly infinite trees are of type *dir list set*.

abbreviation wf-tree :: dir list set \Rightarrow bool where wf-tree $T \equiv (\forall ds \ d. \ (ds \ @ \ d) \in T \longrightarrow ds \in T)$

The subtree in with root **r**

fun subtree :: dir list set \Rightarrow dir list \Rightarrow dir list set where subtree $T r = \{ ds \in T. \exists ds'. ds = r @ ds' \}$

A subtree of a tree is either in the left branch, the right branch, or is the tree itself

lemma subtree-pos: subtree $T \ ds \subseteq subtree \ T \ (ds @ [Left]) \cup subtree \ T \ (ds @ [Right]) \cup \{ds\}$ **proof** (rule subsetI; rule Set.UnCI) **let** ?subtree = subtree \ T **fix** x **assume** asm: $x \in$?subtree \ ds **assume** $x \notin \{ds\}$ then have $x \neq ds$ by simp then have $\exists e \ d. \ x = ds \ @ \ [d] \ @ \ e \ using asm list.exhaust by auto$ $then have <math>(\exists e. \ x = ds \ @ \ [Left] \ @ \ e) \lor (\exists e. \ x = ds \ @ \ [Right] \ @ \ e)$ using bool.exhaust by auto then show $x \in ?subtree \ (ds \ @ \ [Left]) \cup ?subtree \ (ds \ @ \ [Right])$ using asm by auto qed

3.1 Infinite Paths

abbreviation wf-infpath :: $(nat \Rightarrow 'a \ list) \Rightarrow bool$ where wf-infpath $f \equiv (f \ 0 = []) \land (\forall n. \exists a. f (Suc \ n) = (f \ n) @ [a])$ **lemma** *infpath-length*: assumes wf-infpath f shows length (f n) = nusing assms proof (induction n) case θ then show ?case by auto next **case** (Suc n) **then show** ?case **by** (metis length-append-singleton) qed **lemma** chain-prefix: assumes wf-infpath fassumes $n_1 \leq n_2$ **shows** $\exists a. (f n_1) @ a = (f n_2)$ using assms proof (induction n_2) case (Suc n_2) then have $n_1 \leq n_2 \vee n_1 = Suc n_2$ by auto then show ?case proof assume $n_1 \leq n_2$ then obtain a where $a: f n_1 @ a = f n_2$ using Suc by auto have $b: \exists b. f (Suc n_2) = f n_2 @ [b]$ using Suc by auto from $a \ b$ have $\exists b. f \ n_1 @ (a @ [b]) = f (Suc \ n_2)$ by auto then show $\exists c. f n_1 @ c = f (Suc n_2)$ by blast \mathbf{next} assume $n_1 = Suc n_2$ then have $f n_1 @ [] = f (Suc n_2)$ by *auto* then show $\exists a. f n_1 @ a = f (Suc n_2)$ by *auto* qed qed auto

If we make a lookup in a list, then looking up in an extension gives us the same value.

lemma *ith-in-extension*: **assumes** *chain*: *wf-infpath* f **assumes** *smalli*: i < length $(f n_1)$ **assumes** n_1n_2 : $n_1 \leq n_2$ shows $f n_1 ! i = f n_2 ! i$ proof – from chain $n_1 n_2$ have $\exists a. f n_1 @ a = f n_2$ using chain-prefix by blast then obtain a where a - p: $f n_1 @ a = f n_2$ by auto have $(f n_1 @ a) ! i = f n_1 ! i$ using smalli by (simp add: nth-append) then show ?thesis using a - p by auto qed

4 König's Lemma

```
fun buildchain :: (dir list \Rightarrow dir list) \Rightarrow nat \Rightarrow dir list where
buildchain next 0 = []
| buildchain next (Suc n) = next (buildchain next n)
```

```
lemma konig:

assumes inf: \neg finite T

assumes wellformed: wf-tree T

shows \exists c. wf-infpath c \land (\forall n. (c n) \in T)

proof

let ?subtree = subtree T

let ?nextnode = \lambda ds. (if \neg finite (?subtree (ds @ [Left])) then ds @ [Left] else ds

@ [Right])
```

let ?c = buildchain ?nextnode

have is-chain: wf-infpath ?c by auto

from wellformed have prefix: $\forall ds d. (ds @ d) \in T \longrightarrow ds \in T$ by blast

```
{
fix n
have (?c \ n) \in T \land \neg finite (?subtree (?c \ n))
proof (induction \ n)
```

```
case \theta
    have \exists ds. ds \in T using inf by (simp add: not-finite-existsD)
    then obtain ds where ds \in T by auto
    then have ([]@ds) \in T by auto
    then have [] \in T using prefix by blast
    then show ?case using inf by auto
   next
    case (Suc n)
    from Suc have next-in: (?c \ n) \in T by auto
    from Suc have next-inf: \negfinite (?subtree (?c n)) by auto
    from next-inf have next-next-inf:
       \negfinite (?subtree (?nextnode (?c n)))
         using inf-subs by auto
    then have \exists ds. ds \in ?subtree (?nextnode (?c n))
      by (simp add: not-finite-existsD)
    then obtain ds where dss: ds \in ?subtree (?nextnode (?c n)) by auto
    then have ds \in T \exists suf. ds = (?nextnode (?c n)) @ suf by auto
    then obtain suf where ds \in T \land ds = (?nextnode (?c n)) @ suf by auto
    then have (?nextnode (?c n)) \in T
      using prefix by blast
    then have (?c (Suc n)) \in T by auto
    then show ?case using next-next-inf by auto
   \mathbf{qed}
then show wf-infpath ?c \land (\forall n. (?c n) \in T) using is-chain by auto
```

 \mathbf{end}

qed

}

5 More Terms and Literals

theory Resolution imports TermsAndLiterals Tree begin

fun complement :: 't literal \Rightarrow 't literal (<-c> [300] 300) where $(Pos \ P \ ts)^c = Neg \ P \ ts$ $|(Neg P ts)^c = Pos P ts$

lemma cancel-comp1: $(l^c)^c = l$ by (cases l) auto

```
lemma cancel-comp2:
 assumes asm: l_1{}^c = l_2{}^c
 shows l_1 = l_2
proof –
 from asm have (l_1^c)^c = (l_2^c)^c by auto
 then have l_1 = (l_2{}^c)^c using cancel-comp1 [of l_1] by auto
 then show ?thesis using cancel-comp1 [of l_2] by auto
qed
```

lemma comp-exi1: $\exists l'. l' = l^c$ by (cases l) auto

lemma comp-exi2: $\exists l. l' = l^c$ proof show $l' = (l'^c)^c$ using cancel-comp1[of l'] by auto qed lemma comp-swap: $l_1^c = l_2 \leftrightarrow l_1 = l_2^c$ proof – have $l_1^c = l_2 \rightarrow l_1 = l_2^c$ using cancel-comp1[of l_1] by auto moreover have $l_1 = l_2^c \rightarrow l_1^c = l_2$ using cancel-comp1 by auto ultimately show ?thesis by auto qed

lemma sign-comp: sign $l_1 \neq$ sign $l_2 \wedge$ get-pred $l_1 =$ get-pred $l_2 \wedge$ get-terms $l_1 =$ get-terms $l_2 \leftrightarrow l_2 = l_1^c$ by (cases l_1 ; cases l_2) auto

lemma sign-comp-atom: sign $l_1 \neq$ sign $l_2 \wedge$ get-atom $l_1 =$ get-atom $l_2 \leftrightarrow l_2 = l_1^c$ by (cases l_1 ; cases l_2) auto

6 Clauses

type-synonym 't clause = 't literal set

abbreviation complementls :: 't literal set \Rightarrow 't literal set ($\langle -C \rangle$ [300] 300) where

 $L^C \equiv complement$ ' L

lemma cancel-compls1: $(L^C)^C = L$ **apply** (auto simp add: cancel-comp1) **apply** (metis imageI cancel-comp1) **done**

```
lemma cancel-compls2:

assumes asm: L_1^C = L_2^C

shows L_1 = L_2

proof –

from asm have (L_1^C)^C = (L_2^C)^C by auto

then show ?thesis using cancel-compls1[of L_1] cancel-compls1[of L_2] by simp

qed
```

fun $vars_t$:: $fterm \Rightarrow var-sym \ set$ where $vars_t \ (Var \ x) = \{x\}$ $| \ vars_t \ (Fun \ f \ ts) = (\bigcup t \in set \ ts. \ vars_t \ t)$ **abbreviation** $vars_{ts}$:: fterm list \Rightarrow var-sym set where $vars_{ts}$ ts $\equiv (\bigcup t \in set ts. vars_t t)$

```
definition vars_l :: fterm \ literal \Rightarrow var-sym \ set where vars_l \ l = vars_{ts} \ (get-terms \ l)
```

definition $vars_{ls} :: fterm literal set \Rightarrow var-sym set where <math>vars_{ls} \ L \equiv \bigcup l \in L. \ vars_l \ l$

lemma ground-vars_t: **assumes** ground_t t **shows** vars_t t = {} **using** assms **by** (induction t) auto

lemma ground_{ts}-vars_{ts}: **assumes** ground_{ts} ts **shows** vars_{ts} ts = {} **using** assms ground-vars_t by auto

lemma $ground_l$ - $vars_l$: **assumes** $ground_l$ l **shows** $vars_l$ $l = \{\}$ **unfolding** $vars_l$ -def **using** assms ground- $vars_t$ **by** auto

lemma $ground_{ls}$ - $vars_{ls}$: assumes $ground_{ls} L$ shows $vars_{ls} L = \{\}$ unfolding $vars_{ls}$ -def using $assms ground_l$ - $vars_l$ by auto

lemma ground-comp: ground_l $(l^c) \longleftrightarrow$ ground_l l by (cases l) auto

lemma ground-compls: ground_{ls} $(L^C) \longleftrightarrow$ ground_{ls} L using ground-comp by auto

7 Semantics

type-synonym 'u fun-denot = fun-sym \Rightarrow 'u list \Rightarrow 'u **type-synonym** 'u pred-denot = pred-sym \Rightarrow 'u list \Rightarrow bool **type-synonym** 'u var-denot = var-sym \Rightarrow 'u

fun $eval_t$:: 'u var-denot \Rightarrow 'u fun-denot \Rightarrow fterm \Rightarrow 'u where $eval_t \ E \ F \ (Var \ x) = E \ x$ | $eval_t \ E \ F \ (Fun \ f \ ts) = F \ f \ (map \ (eval_t \ E \ F) \ ts)$

abbreviation $eval_{ts} :: 'u \ var-denot \Rightarrow 'u \ fun-denot \Rightarrow fterm \ list \Rightarrow 'u \ list where$ $<math>eval_{ts} \ E \ F \ ts \equiv map \ (eval_t \ E \ F) \ ts$

fun $eval_l :: 'u \ var-denot \Rightarrow 'u \ fun-denot \Rightarrow 'u \ pred-denot \Rightarrow fterm \ literal \Rightarrow bool where$

 $\begin{array}{cccc} eval_l \ E \ F \ G \ (Pos \ p \ ts) &\longleftrightarrow \ G \ p \ (eval_{ts} \ E \ F \ ts) \\ | \ eval_l \ E \ F \ G \ (Neg \ p \ ts) &\longleftrightarrow \ \neg G \ p \ (eval_{ts} \ E \ F \ ts) \end{array}$

definition $eval_c :: 'u \ fun-denot \Rightarrow 'u \ pred-denot \Rightarrow fterm \ clause \Rightarrow bool \ where$ $<math>eval_c \ F \ G \ C \longleftrightarrow (\forall E. \exists l \in C. \ eval_l \ E \ F \ G \ l)$

definition $eval_{cs} :: 'u \ fundenot \Rightarrow 'u \ pred-denot \Rightarrow fterm \ clause \ set \Rightarrow bool \ where eval_{cs} \ F \ G \ Cs \longleftrightarrow (\forall \ C \in \ Cs. \ eval_c \ F \ G \ C)$

7.1 Semantics of Ground Terms

lemma ground-var-denott: **assumes** ground_t t **shows** $eval_t E F t = eval_t E' F t$ **using** assms **proof** (induction t) **case** (Var x) **then have** False **by** auto **then show** ?case **by** auto **then show** ?case **by** auto **next case** (Fun f ts) **then have** $\forall t \in set ts. ground_t t$ **by** auto **then have** $\forall t \in set ts. eval_t E F t = eval_t E' F t$ **using** Fun **by** auto **then have** $\forall t \in set ts. eval_t E F t = eval_t E' F t$ **using** Fun **by** auto **then have** $eval_{ts} E F ts = eval_{ts} E' F ts$ **by** auto **then have** F f (map ($eval_t E F$) ts) = F f (map ($eval_t E' F$) ts) **by** metis **then show** ?case **by** simp **qed**

lemma ground-var-denotts: **assumes** ground_{ts} ts **shows** $eval_{ts} E F ts = eval_{ts} E' F ts$ **using** assms ground-var-denott **by** (metis map-eq-conv)

lemma ground-var-denot:
 assumes ground_l l
 shows eval_l E F G l = eval_l E' F G l
 using assms proof (induction l)
 case Pos then show ?case using ground-var-denotts by (metis eval_l.simps(1)
 literal.sel(3))
 next
 case Neg then show ?case using ground-var-denotts by (metis eval_l.simps(2)
 literal.sel(4))
 qed

8 Substitutions

type-synonym substitution = var-sym \Rightarrow fterm

fun sub :: fterm \Rightarrow substitution \Rightarrow fterm (infixl $\langle \cdot_t \rangle$ 55) where

 $(Var x) \cdot_t \sigma = \sigma x$ $| (Fun f ts) \cdot_t \sigma = Fun f (map (\lambda t. t \cdot_t \sigma) ts)$

abbreviation subs :: fterm list \Rightarrow substitution \Rightarrow fterm list (infixl $\langle \cdot_{ts} \rangle$ 55) where ts $\cdot_{ts} \sigma \equiv (map \ (\lambda t. \ t \ \cdot_t \ \sigma) \ ts)$

fun subl :: fterm literal \Rightarrow substitution \Rightarrow fterm literal (infixl $\langle \cdot_l \rangle$ 55) where (Pos p ts) $\cdot_l \sigma = Pos p (ts \cdot_{ts} \sigma)$ | (Neg p ts) $\cdot_l \sigma = Neg p (ts \cdot_{ts} \sigma)$

abbreviation suble :: fterm literal set \Rightarrow substitution \Rightarrow fterm literal set (infix) (\cdot_{ls}) 55) where $L \cdot_{ls} \sigma \equiv (\lambda l. \ l \cdot_l \sigma)$ ' L

lemma subls-def2: $L \cdot_{ls} \sigma = \{l \cdot_l \sigma | l. l \in L\}$ by auto

- **definition** instance-of_t :: fterm \Rightarrow fterm \Rightarrow bool where instance-of_t $t_1 \ t_2 \longleftrightarrow (\exists \sigma. \ t_1 = t_2 \ \cdot_t \ \sigma)$
- **definition** instance-of_{ts} :: fterm list \Rightarrow fterm list \Rightarrow bool where instance-of_{ts} ts₁ ts₂ \longleftrightarrow ($\exists \sigma$. ts₁ = ts₂ \cdot _{ts} σ)
- **definition** instance-of_l :: fterm literal \Rightarrow fterm literal \Rightarrow bool where instance-of_l $l_1 \ l_2 \longleftrightarrow (\exists \sigma. \ l_1 = l_2 \ \cdot_l \ \sigma)$

definition instance-of_{ls} :: fterm clause \Rightarrow fterm clause \Rightarrow bool where instance-of_{ls} C_1 $C_2 \longleftrightarrow (\exists \sigma. C_1 = C_2 \cdot_{ls} \sigma)$

lemma comp-sub: $(l^c) \cdot_l \sigma = (l \cdot_l \sigma)^c$ by (cases l) auto

lemma compls-subls: $(L^C) \cdot_{ls} \sigma = (L \cdot_{ls} \sigma)^C$ using comp-sub apply auto apply (metis image-eqI) done

lemma subls-union: $(L_1 \cup L_2) \cdot_{ls} \sigma = (L_1 \cdot_{ls} \sigma) \cup (L_2 \cdot_{ls} \sigma)$ by auto

definition var-renaming-of :: fterm clause \Rightarrow fterm clause \Rightarrow bool where var-renaming-of $C_1 \ C_2 \longleftrightarrow$ instance-of_{ls} $C_1 \ C_2 \land$ instance-of_{ls} $C_2 \ C_1$

8.1 The Empty Substitution

abbreviation ε :: substitution where $\varepsilon \equiv Var$

lemma empty-subt: $(t :: fterm) \cdot_t \varepsilon = t$ by (induction t) (auto simp add: map-idI)

```
lemma empty-subts: ts \cdot_{ts} \varepsilon = ts
using empty-subt by auto
lemma empty-subl: l \cdot_l \varepsilon = l
using empty-subts by (cases l) auto
lemma empty-subls: L \cdot_{ls} \varepsilon = L
using empty-subl by auto
lemma instance-of _t-self: instance-of _t t t
unfolding instance-of _t-def
proof
 show t = t \cdot_t \varepsilon using empty-subt by auto
qed
lemma instance-of<sub>ts</sub>-self: instance-of<sub>ts</sub> ts ts
unfolding instance-of_{ts}-def
proof
 show ts = ts \cdot_{ts} \varepsilon using empty-subts by auto
qed
lemma instance-of<sub>l</sub>-self: instance-of<sub>l</sub> l l
unfolding instance-of _l-def
proof
 show l = l \cdot_l \varepsilon using empty-subl by auto
qed
lemma instance-of<sub>ls</sub>-self: instance-of<sub>ls</sub> L L
unfolding instance-of<sub>ls</sub>-def
proof
 show L = L \cdot_{ls} \varepsilon using empty-subls by auto
```

\mathbf{qed}

8.2 Substitutions and Ground Terms

lemma ground-sub: **assumes** ground_t t **shows** $t \cdot_t \sigma = t$ **using** assms **by** (induction t) (auto simp add: map-idI)

lemma ground-subs: **assumes** ground_{ts} ts **shows** ts $\cdot_{ts} \sigma = ts$ **using** assms ground-sub **by** (simp add: map-idI)

lemma $ground_l$ -subs: assumes $ground_l$ lshows $l \cdot_l \sigma = l$ using assms ground-subs by (cases l) auto

```
lemma ground_{ls}-subls:
 assumes ground: ground<sub>ls</sub> L
  shows L \cdot_{ls} \sigma = L
proof -
  {
   fix l
   assume l-L: l \in L
   then have ground_l \ l \ using \ ground \ by \ auto
   then have l = l \cdot_l \sigma using ground<sub>l</sub>-subs by auto
   moreover
   then have l \cdot_l \sigma \in L \cdot_{ls} \sigma using l-L by auto
   ultimately
   have l \in L \cdot_{ls} \sigma by auto
  }
  moreover
  ł
   fix l
   assume l-L: l \in L \cdot_{ls} \sigma
   then obtain l' where l'-p: l' \in L \land l' \cdot_l \sigma = l by auto
   then have l' = l using ground ground<sub>l</sub>-subs by auto
   from l-L l'-p this have l \in L by auto
  }
  ultimately show ?thesis by auto
qed
```

8.3 Composition

definition composition :: substitution \Rightarrow substitution \Rightarrow substitution (infix) (... 55) where $(\sigma_1 \cdot \sigma_2) x = (\sigma_1 x) \cdot_t \sigma_2$ lemma composition-conseq2t: $(t \cdot_t \sigma_1) \cdot_t \sigma_2 = t \cdot_t (\sigma_1 \cdot \sigma_2)$ proof (induction t) case (Var x) have ((Var x) $\cdot_t \sigma_1$) $\cdot_t \sigma_2 = (\sigma_1 x) \cdot_t \sigma_2$ by simp also have ... = $(\sigma_1 \cdot \sigma_2) x$ unfolding composition-def by simp finally show ?case by auto next case (Fun t ts) then show ?case unfolding composition-def by auto qed lemma composition-conseq2ts: $(ts \cdot_{ts} \sigma_1) \cdot_{ts} \sigma_2 = ts \cdot_{ts} (\sigma_1 \cdot \sigma_2)$ using composition-conseq2t by auto

```
lemma composition-conseq2l: (l \cdot_l \sigma_1) \cdot_l \sigma_2 = l \cdot_l (\sigma_1 \cdot \sigma_2)
using composition-conseq2t by (cases l) auto
```

```
lemma composition-conseq2ls: (L \cdot_{ls} \sigma_1) \cdot_{ls} \sigma_2 = L \cdot_{ls} (\sigma_1 \cdot \sigma_2)
using composition-conseq2l apply auto
apply (metis imageI)
done
lemma composition-assoc: \sigma_1 \cdot (\sigma_2 \cdot \sigma_3) = (\sigma_1 \cdot \sigma_2) \cdot \sigma_3
proof
  fix x
  show (\sigma_1 \cdot (\sigma_2 \cdot \sigma_3)) x = ((\sigma_1 \cdot \sigma_2) \cdot \sigma_3) x
    by (simp only: composition-def composition-conseq2t)
qed
lemma empty-comp1: (\sigma \cdot \varepsilon) = \sigma
proof
  fix x
 show (\sigma \cdot \varepsilon) x = \sigma x unfolding composition-def using empty-subt by auto
qed
lemma empty-comp2: (\varepsilon \cdot \sigma) = \sigma
proof
  fix x
  show (\varepsilon \cdot \sigma) x = \sigma x unfolding composition-def by simp
qed
lemma instance-of t-trans :
  assumes t_{12}: instance-of t_1 t_2
  assumes t_{23}: instance-of t_{23} t_{33}
  shows instance-of t t_1 t_3
proof –
  from t_{12} obtain \sigma_{12} where t_1 = t_2 \cdot_t \sigma_{12}
    unfolding instance-of _t-def by auto
  moreover
  from t_{23} obtain \sigma_{23} where t_2 = t_3 \cdot_t \sigma_{23}
    unfolding instance-of<sub>t</sub>-def by auto
  ultimately
  have t_1 = (t_3 \cdot_t \sigma_{23}) \cdot_t \sigma_{12} by auto
  then have t_1 = t_3 \cdot_t (\sigma_{23} \cdot \sigma_{12}) using composition-conseq2t by simp
  then show ?thesis unfolding instance-of _t-def by auto
\mathbf{qed}
lemma instance-of _{ts}-trans :
  assumes ts_{12}: instance-of<sub>ts</sub> ts_1 ts_2
  assumes ts_{23}: instance-of<sub>ts</sub> ts_2 ts_3
  shows instance-of t_s ts_1 ts_3
proof -
  from ts_{12} obtain \sigma_{12} where ts_1 = ts_2 \cdot ts \sigma_{12}
    unfolding instance-of _{ts}-def by auto
```

moreover from ts_{23} obtain σ_{23} where $ts_2 = ts_3 \cdot ts \sigma_{23}$ unfolding instance-of $_{ts}$ -def by auto ultimately have $ts_1 = (ts_3 \cdot_{ts} \sigma_{23}) \cdot_{ts} \sigma_{12}$ by *auto* then have $ts_1 = ts_3 \cdot ts (\sigma_{23} \cdot \sigma_{12})$ using composition-conseq2ts by simp then show ?thesis unfolding instance-of $_{ts}$ -def by auto qed **lemma** instance-of_l-trans : assumes l_{12} : instance-of_l l_1 l_2 assumes l_{23} : instance-of_l l_2 l_3 shows instance-of $l_1 l_1 l_3$ proof from l_{12} obtain σ_{12} where $l_1 = l_2 \cdot \sigma_{12}$ unfolding instance-of_l-def by auto moreover from l_{23} obtain σ_{23} where $l_2 = l_3 \cdot \sigma_{23}$ unfolding instance-of_l-def by auto ultimately have $l_1 = (l_3 \cdot_l \sigma_{23}) \cdot_l \sigma_{12}$ by *auto* then have $l_1 = l_3 \cdot l (\sigma_{23} \cdot \sigma_{12})$ using composition-conseq2l by simp then show ?thesis unfolding instance-of_l-def by auto qed **lemma** instance-of $_{ls}$ -trans : assumes L_{12} : instance-of_{ls} L_1 L_2 assumes L_{23} : instance-of_{ls} L_2 L_3 shows instance-of $_{ls} L_1 L_3$ proof – from L_{12} obtain σ_{12} where $L_1 = L_2 \cdot_{ls} \sigma_{12}$ unfolding instance-of l_s -def by auto moreover from L_{23} obtain σ_{23} where $L_2 = L_3 \cdot_{ls} \sigma_{23}$ unfolding instance-of_{ls}-def by auto ultimately have $L_1 = (L_3 \cdot_{ls} \sigma_{23}) \cdot_{ls} \sigma_{12}$ by *auto* then have $L_1 = L_3 \cdot_{ls} (\sigma_{23} \cdot \sigma_{12})$ using composition-conseq2ls by simp then show ?thesis unfolding instance-of l_s -def by auto qed

8.4 Merging substitutions

lemma project-sub: **assumes** inst-C: $C \cdot_{ls} lmbd = C'$ **assumes** $L'sub: L' \subseteq C'$ **shows** $\exists L \subseteq C$. $L \cdot_{ls} lmbd = L' \land (C-L) \cdot_{ls} lmbd = C' - L'$ **proof let** $?L = \{l \in C. \exists l' \in L'. l \cdot_l lmbd = l'\}$

have $?L \subseteq C$ by *auto* moreover have $?L \cdot_{ls} lmbd = L'$ **proof** (rule Orderings.order-antisym; rule Set.subsetI) fix l'assume $l'L: l' \in L'$ from *inst-C* have $\{l \cdot l \ lmbd | l. \ l \in C\} = C'$ unfolding *subls-def2* by then have $\exists l. l' = l \cdot l \ lmbd \land l \in C \land l \cdot l \ lmbd \in L'$ using L'sub l'L by autothen have $l' \in \{l \in C, l \cdot_l \ lmbd \in L'\} \cdot_{ls} \ lmbd$ by auto then show $l' \in \{l \in C, \exists l' \in L', l \cdot_l \ lmbd = l'\} \cdot_{ls} \ lmbd$ by auto qed auto moreover have $(C - ?L) \cdot_{ls} lmbd = C' - L'$ using inst-C by auto ultimately show *?thesis* by blast qed **lemma** relevant-vars-subt: **assumes** $\forall x \in vars_t t. \sigma_1 x = \sigma_2 x$ shows $t \cdot_t \sigma_1 = t \cdot_t \sigma_2$ using assms proof (induction t) **case** (Fun f ts) have $f: \forall t. t \in set ts \longrightarrow vars_t t \subseteq vars_{ts} ts$ by (induction ts) auto have $\forall t \in set ts. t \cdot_t \sigma_1 = t \cdot_t \sigma_2$ proof fix t**assume** *tints*: $t \in set$ *ts* then have $\forall x \in vars_t t. \sigma_1 x = \sigma_2 x$ using f Fun(2) by *auto* then show $t \cdot_t \sigma_1 = t \cdot_t \sigma_2$ using Fun tints by auto qed then have $ts \cdot_{ts} \sigma_1 = ts \cdot_{ts} \sigma_2$ by *auto* then show ?case by auto qed auto lemma relevant-vars-subts: **assumes** asm: $\forall x \in vars_{ts}$ ts. $\sigma_1 x = \sigma_2 x$ shows $ts \cdot_{ts} \sigma_1 = ts \cdot_{ts} \sigma_2$ proof have $f: \forall t. t \in set ts \longrightarrow vars_t t \subseteq vars_{ts} ts$ by (induction ts) auto have $\forall t \in set ts. t \cdot_t \sigma_1 = t \cdot_t \sigma_2$ proof fix t**assume** tints: $t \in set ts$ then have $\forall x \in vars_t t. \sigma_1 x = \sigma_2 x$ using f asm by autothen show $t \cdot_t \sigma_1 = t \cdot_t \sigma_2$ using relevant-vars-subt tints by auto ged then show ?thesis by auto qed

lemma relevant-vars-subl: assumes $\forall x \in vars_l \ l. \ \sigma_1 \ x = \sigma_2 \ x$ shows $l \cdot_l \sigma_1 = l \cdot_l \sigma_2$ using assms proof (induction l) **case** (*Pos* p ts) then show ?case using relevant-vars-subts unfolding $vars_l$ -def by auto \mathbf{next} case (Neg p ts) then show ?case using relevant-vars-subts unfolding $vars_l$ -def by auto qed lemma relevant-vars-subls: assumes asm: $\forall x \in vars_{ls} L. \sigma_1 x = \sigma_2 x$ shows $L \cdot_{ls} \sigma_1 = L \cdot_{ls} \sigma_2$ proof have $f: \forall l. \ l \in L \longrightarrow vars_l \ l \subseteq vars_{ls} \ L$ unfolding $vars_{ls}$ -def by auto have $\forall l \in L$. $l \cdot_l \sigma_1 = l \cdot_l \sigma_2$ proof fix lassume *linls*: $l \in L$ then have $\forall x \in vars_l \ l. \ \sigma_1 \ x = \sigma_2 \ x$ using $f \ asm$ by autothen show $l \cdot_l \sigma_1 = l \cdot_l \sigma_2$ using relevant-vars-subl links by auto qed then show ?thesis by (meson image-cong) qed lemma merge-sub: assumes dist: vars_{ls} $C \cap vars_{ls} D = \{\}$ assumes $CC': C \cdot_{ls} lmbd = C$ assumes $DD': D \cdot_{ls} \mu = D'$ shows $\exists \eta$. $C \cdot_{ls} \eta = C' \wedge D \cdot_{ls} \eta = D'$ proof let $?\eta = \lambda x$. if $x \in vars_{ls} C$ then $lmbd x else \mu x$ have $\forall x \in vars_{ls} C$. $?\eta x = lmbd x$ by auto then have $C \cdot_{ls} ?\eta = C \cdot_{ls} lmbd$ using relevant-vars-subls[of C ?n lmbd] by autothen have $C \cdot_{ls} ?\eta = C'$ using CC' by *auto* moreover have $\forall x \in vars_{ls} D$. $?\eta x = \mu x$ using dist by auto then have $D \cdot_{ls} ?\eta = D \cdot_{ls} \mu$ using relevant-vars-subls[of $D ?\eta \mu$] by auto then have $D \cdot_{ls} ?\eta = D'$ using DD' by *auto* ultimately show ?thesis by auto qed

8.5 Standardizing apart

abbreviation $std_1 :: fterm \ clause \Rightarrow fterm \ clause$ where
$std_1 \ C \equiv C \cdot_{ls} (\lambda x. \ Var (''1'' @ x))$

```
abbreviation std_2 :: fterm \ clause \Rightarrow fterm \ clause where
  std_2 \ C \equiv C \cdot_{ls} (\lambda x. \ Var (''2'' @ x))
lemma std-apart-apart'':
  assumes x \in vars_t (t \cdot_t (\lambda x::char \ list. \ Var \ (y @ x)))
  shows \exists x'. x = y@x'
using assms by (induction t) auto
lemma std-apart-apart':
  assumes x \in vars_l (l \cdot_l (\lambda x. Var (y@x)))
 shows \exists x'. x = y@x'
using assms unfolding vars_l-def using std-apart-apart'' by (cases l) auto
lemma std-apart-apart: vars<sub>ls</sub> (std<sub>1</sub> C_1) \cap vars<sub>ls</sub> (std<sub>2</sub> C_2) = {}
proof -
  ł
    fix x
    assume xin: x \in vars_{ls} (std_1 \ C_1) \cap vars_{ls} (std_2 \ C_2)
    from xin have x \in vars_{ls} (std_1 \ C_1) by auto
   then have \exists x' \cdot x = "1" @ x'
      using std-apart-apart' of x - "1" unfolding vars<sub>ls</sub>-def by auto
    moreover
    from xin have x \in vars_{ls} (std_2 \ C_2) by auto
   then have \exists x' \cdot x = '' 2'' @x'
      using std-apart-apart' of x - "2" unfolding vars<sub>ls</sub>-def by auto
    ultimately have False by auto
    then have x \in \{\} by auto
  }
  then show ?thesis by auto
qed
lemma std-apart-instance-of<sub>ls</sub> 1: instance-of<sub>ls</sub> C_1 (std<sub>1</sub> C_1)
proof -
  have empty: (\lambda x. Var (''1''@x)) \cdot (\lambda x. Var (tl x)) = \varepsilon using composition-def
by auto
 have C_1 \cdot_{ls} \varepsilon = C_1 using empty-subls by auto
 then have C_1 \cdot_{ls} ((\lambda x. Var(''1''@x)) \cdot (\lambda x. Var(tl x))) = C_1 using empty by
auto
  then have (C_1 \cdot l_s (\lambda x. Var (''1''@x))) \cdot l_s (\lambda x. Var (tl x)) = C_1 using compo-
sition-conseq2ls by auto
  then have C_1 = (std_1 \ C_1) \cdot_{ls} (\lambda x. \ Var \ (tl \ x)) by auto
  then show instance-of<sub>ls</sub> C_1 (std<sub>1</sub> C_1) unfolding instance-of<sub>ls</sub>-def by auto
qed
lemma std-apart-instance-of<sub>ls</sub> 2: instance-of<sub>ls</sub> C2 (std<sub>2</sub> C2)
```

proof –

have empty: $(\lambda x. Var (''2''@x)) \cdot (\lambda x. Var (tl x)) = \varepsilon$ using composition-def by auto

have $C2 \cdot_{ls} \varepsilon = C2$ using empty-suble by auto

then have $C2 \cdot_{ls} ((\lambda x. Var("2"@x)) \cdot (\lambda x. Var(tl x))) = C2$ using empty by auto

then have $(C2 \cdot_{ls} (\lambda x. Var("2"@x))) \cdot_{ls} (\lambda x. Var(tl x)) = C2$ using composition-conseq2ls by auto

then have $C2 = (std_2 \ C2) \cdot_{ls} (\lambda x. \ Var \ (tl \ x))$ by auto

then show instance-of_{ls} C2 (std₂ C2) unfolding instance-of_{ls}-def by auto qed

9 Unifiers

definition $unifier_{ts} :: substitution \Rightarrow fterm set \Rightarrow bool$ where unifier_{ts} σ ts \longleftrightarrow (\exists t'. \forall t \in ts. t $\cdot_t \sigma = t'$) **definition** $unifier_{ls} :: substitution \Rightarrow fterm literal set \Rightarrow bool where$ unifier_{ls} $\sigma \ L \longleftrightarrow (\exists l'. \forall l \in L. \ l \cdot_l \sigma = l')$ **lemma** *unif-sub*: assumes unif: unifier_{ls} σ L assumes nonempty: $L \neq \{\}$ shows $\exists l. suble L \sigma = \{subl \ l \ \sigma\}$ proof – from nonempty obtain l where $l \in L$ by auto from unif this have $L_{ls} \sigma = \{l \cdot \sigma\}$ unfolding unifier_{ls}-def by auto then show ?thesis by auto qed **lemma** *unifiert-def2*: assumes *L*-elem: $ts \neq \{\}$ **shows** unifier_{ts} σ ts $\leftrightarrow (\exists l. (\lambda t. sub t \sigma) ` ts = \{l\})$ proof assume unif: unifier_{ts} σ ts from L-elem obtain t where $t \in ts$ by auto then have $(\lambda t. sub \ t \ \sigma)$ ' $ts = \{t \cdot_t \sigma\}$ using unif unfolding unifier ts-def by autothen show $\exists l. (\lambda t. sub t \sigma)$ ' $ts = \{l\}$ by *auto* next assume $\exists l. (\lambda t. sub t \sigma)$ ' $ts = \{l\}$ then obtain l where $(\lambda t. sub \ t \ \sigma)$ ' $ts = \{l\}$ by auto then have $\forall l' \in ts. \ l' \cdot_t \sigma = l$ by *auto* then show $unifier_{ts} \sigma$ is unfolding $unifier_{ts}$ -def by auto qed lemma unifier_{ls}-def2: assumes *L*-elem: $L \neq \{\}$

shows unifier_{ls} $\sigma \ L \longleftrightarrow (\exists l. \ L \cdot_{ls} \sigma = \{l\})$

proof

assume unif: unifier_{ls} σ L from L-elem obtain l where $l \in L$ by auto then have $L_{ls} \sigma = \{l \cdot \sigma\}$ using unif unfolding unifierly def by auto then show $\exists l. L \cdot_{ls} \sigma = \{l\}$ by *auto* \mathbf{next} assume $\exists l. L \cdot_{ls} \sigma = \{l\}$ then obtain *l* where $L \cdot_{ls} \sigma = \{l\}$ by *auto* then have $\forall l' \in L$. $l' \cdot_l \sigma = l$ by *auto* then show $unifier_{ls} \sigma L$ unfolding $unifier_{ls}$ -def by auto qed **lemma** $ground_{ls}$ -unif-singleton: assumes $ground_{ls}$: $ground_{ls} L$ assumes unif: unifier_{ls} $\sigma' L$ assumes *empt*: $L \neq \{\}$ shows $\exists l. L = \{l\}$ proof from unif empt have $\exists l. L \cdot_{ls} \sigma' = \{l\}$ using unif-sub by auto then show ?thesis using $ground_{ls}$ -suble $ground_{ls}$ by auto \mathbf{qed} definition unifiablets :: fterm set \Rightarrow bool where unifiablets $fs \longleftrightarrow (\exists \sigma. unifier_{ts} \sigma fs)$ definition unifiablels :: fterm literal set \Rightarrow bool where unifiable s $L \longleftrightarrow (\exists \sigma. unifier_{ls} \sigma L)$ **lemma** unifier-comp[simp]: unifier_{ls} σ (L^C) \longleftrightarrow unifier_{ls} σ L proof assume $unifier_{ls} \sigma (L^C)$ then obtain l'' where l''-p: $\forall l \in L^C$. $l \cdot_l \sigma = l''$ unfolding $unifier_{ls}$ -def by auto obtain l' where $(l')^c = l''$ using comp-exi2[of l''] by auto from this l''-p have l'-p: $\forall l \in L^C$. $l \cdot_l \sigma = (l')^c$ by auto have $\forall l \in L$. $l \cdot \sigma = l'$ proof fix l assume $l \in L$ then have $l^c \in L^C$ by *auto* then have $(l^c) \cdot_l \sigma = (l')^c$ using l'-p by auto then have $(l \cdot_l \sigma)^c = (l')^c$ by (cases l) auto then show $l \cdot_l \sigma = l'$ using cancel-comp2 by blast qed then show $unifier_{ls} \sigma L$ unfolding $unifier_{ls}$ -def by auto \mathbf{next} assume $unifier_{ls} \sigma L$ then obtain l' where l'-p: $\forall l \in L$. $l \cdot_l \sigma = l'$ unfolding unifier_{ls}-def by auto have $\forall l \in L^C$. $l \cdot_l \sigma = (l')^c$

proof fix lassume $l \in L^C$ then have $l^c \in L$ using cancel-comp1 by (metis image-iff) then show $l \cdot \sigma = (l')^c$ using l'-p comp-sub cancel-comp1 by metis ged then show $unifier_{ls} \sigma (L^C)$ unfolding $unifier_{ls}$ -def by auto qed **lemma** *unifier-sub1*: assumes $unifier_{ls} \sigma L$ assumes $L' \subseteq L$ shows unifier_{ls} σ L' using assms unfolding $unifier_{ls}$ -def by auto lemma unifier-sub2: assumes asm: unifier_{ls} σ ($L_1 \cup L_2$) shows $unifier_{ls} \sigma L_1 \wedge unifier_{ls} \sigma L_2$ proof – have $L_1 \subseteq (L_1 \cup L_2) \land L_2 \subseteq (L_1 \cup L_2)$ by simp

from this asm show ?thesis using unifier-sub1 by auto qed

9.1 Most General Unifiers

definition $mgu_{ts} :: substitution \Rightarrow fterm set \Rightarrow bool where$ $<math>mgu_{ts} \sigma ts \longleftrightarrow unifier_{ts} \sigma ts \land (\forall u. unifier_{ts} u ts \longrightarrow (\exists i. u = \sigma \cdot i))$

definition $mgu_{ls} :: substitution \Rightarrow fterm literal set \Rightarrow bool where$ $<math>mgu_{ls} \sigma L \longleftrightarrow unifier_{ls} \sigma L \land (\forall u. unifier_{ls} u L \longrightarrow (\exists i. u = \sigma \cdot i))$

10 Resolution

 $\begin{array}{rl} \textbf{definition applicable ::} & \textit{fterm clause} \Rightarrow \textit{fterm clause} \\ \Rightarrow \textit{fterm literal set} \Rightarrow \textit{fterm literal set} \\ \Rightarrow \textit{substitution} \Rightarrow \textit{bool where} \\ applicable \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma \longleftrightarrow \\ C_1 \neq \{\} \land C_2 \neq \{\} \land L_1 \neq \{\} \land L_2 \neq \{\} \\ \land \textit{vars}_{ls} \ C_1 \cap \textit{vars}_{ls} \ C_2 = \{\} \\ \land L_1 \subseteq C_1 \land L_2 \subseteq C_2 \\ \land \textit{mgu}_{ls} \ \sigma \ (L_1 \cup L_2^C) \end{array}$

 $\begin{array}{lll} \textbf{definition} \ mresolution :: & fterm \ clause \Rightarrow fterm \ clause \\ \Rightarrow \ fterm \ literal \ set \Rightarrow fterm \ literal \ set \\ \Rightarrow \ substitution \Rightarrow \ fterm \ clause \ \textbf{where} \\ mresolution \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma = ((C_1 \ \cdot_{ls} \ \sigma) - (L_1 \ \cdot_{ls} \ \sigma)) \cup ((C_2 \ \cdot_{ls} \ \sigma) - (L_2 \ \cdot_{ls} \ \sigma)) \\ \sigma)) \end{array}$

definition resolution :: fterm clause \Rightarrow fterm clause

 \Rightarrow fterm literal set \Rightarrow fterm literal set

 \Rightarrow substitution \Rightarrow fterm clause where

resolution C_1 C_2 L_1 L_2 $\sigma = ((C_1 - L_1) \cup (C_2 - L_2)) \cdot_{ls} \sigma$

inductive mresolution-step :: fterm clause set \Rightarrow fterm clause set \Rightarrow bool where mresolution-rule:

 $C_1 \in Cs \Longrightarrow C_2 \in Cs \Longrightarrow applicable \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma \Longrightarrow$ mresolution-step Cs (Cs \cup {mresolution C_1 C_2 L_1 L_2 σ }) | standardize-apart: $C \in Cs \Longrightarrow$ var-renaming-of C C' \Longrightarrow mresolution-step Cs (Cs \cup {C'})

inductive resolution-step :: fterm clause set \Rightarrow fterm clause set \Rightarrow bool where resolution-rule: $C_1 \in Cs \Longrightarrow C_2 \in Cs \Longrightarrow applicable \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma \Longrightarrow$ resolution-step $Cs \ (Cs \cup \{resolution \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma\})$ | standardize-apart:

 $C \in Cs \Longrightarrow$ var-renaming-of $C C' \Longrightarrow$ resolution-step $Cs (Cs \cup \{C'\})$

definition mresolution-deriv :: fterm clause set \Rightarrow fterm clause set \Rightarrow bool where mresolution-deriv = rtranclp mresolution-step

definition resolution-deriv :: fterm clause set \Rightarrow fterm clause set \Rightarrow bool where resolution-deriv = rtranclp resolution-step

11 Soundness

definition evaluab :: 'u var-denot \Rightarrow 'u fun-denot \Rightarrow substitution \Rightarrow 'u var-denot where

 $evalsub \ E \ F \ \sigma = eval_t \ E \ F \ \circ \ \sigma$

lemma substitutiont: eval_t $E F (t \cdot_t \sigma) = eval_t$ (evalsub $E F \sigma$) F tapply (induction t) unfolding evalsub-def apply auto apply (metis (mono-tags, lifting) comp-apply map-cong) done

lemma substitutionts: $eval_{ts} E F (ts \cdot_{ts} \sigma) = eval_{ts} (evalsub E F \sigma) F ts$ using substitutiont by auto

lemma substitution: $eval_l \ E \ F \ G \ (l \cdot_l \ \sigma) \longleftrightarrow eval_l \ (evalsub \ E \ F \ \sigma) \ F \ G \ l$ apply (induction l) using substitutionts apply (metis $eval_l.simps(1) \ subl.simps(1)$) using substitutionts apply (metis $eval_l.simps(2) \ subl.simps(2)$) done

lemma subst-sound: assumes $asm: eval_c \ F \ G \ C$ shows $eval_c \ F \ G \ (C \ \cdot_{ls} \ \sigma)$ unfolding $eval_c \ -def$ proof

from asm have $\forall E' : \exists l \in C$. $eval_l E' F G l$ using $eval_c$ -def by blast then have $\exists l \in C$. eval_l (evaluate $E F \sigma$) F G l by auto then show $\exists l \in C :_{ls} \sigma$. eval_l E F G l using substitution by blast qed **lemma** *simple-resolution-sound*: assumes $C_1 sat$: $eval_c \ F \ G \ C_1$ assumes $C_2 sat$: $eval_c \ F \ G \ C_2$ assumes $l_1 inc_1$: $l_1 \in C_1$ assumes $l_2 inc_2$: $l_2 \in C_2$ assumes comp: $l_1^c = l_2$ shows $eval_c \ F \ G \ ((C_1 - \{l_1\}) \cup (C_2 - \{l_2\}))$ proof have $\forall E. \exists l \in (((C_1 - \{l_1\}) \cup (C_2 - \{l_2\}))). eval_l E F G l$ proof fix Ehave $eval_l \ E \ F \ G \ l_1 \lor eval_l \ E \ F \ G \ l_2$ using comp by (cases l_1) auto then show $\exists l \in (((C_1 - \{l_1\}) \cup (C_2 - \{l_2\})))$. eval_l E F G l proof assume $eval_l \ E \ F \ G \ l_1$ then have $\neg eval_l \ E \ F \ G \ l_2$ using comp by (cases l_1) auto then have $\exists l_2' \in C_2$. $l_2' \neq l_2 \land eval_l \ E \ F \ G \ l_2'$ using $l_2inc_2 \ C_2sat$ unfolding $eval_c$ -def by auto then show $\exists l \in (C_1 - \{l_1\}) \cup (C_2 - \{l_2\})$. eval_l E F G l by auto \mathbf{next} assume $eval_l \ E \ F \ G \ l_2$ then have $\neg eval_l \ E \ F \ G \ l_1$ using comp by (cases l_1) auto then have $\exists l_1' \in C_1$. $l_1' \neq l_1 \land eval_l \in F \in C_1'$ using $l_1inc_1 C_1sat$ unfolding $eval_c$ -def by auto then show $\exists l \in (C_1 - \{l_1\}) \cup (C_2 - \{l_2\})$. eval_l E F G l by auto qed \mathbf{qed} then show ?thesis unfolding eval_c-def by simp qed **lemma** *mresolution-sound*: **assumes** sat_1 : $eval_c \ F \ G \ C_1$ assumes sat_2 : $eval_c \ F \ G \ C_2$ assumes appl: applicable C_1 C_2 L_1 L_2 σ shows $eval_c \ F \ G \ (mresolution \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma)$ proof – from sat_1 have $sat_1\sigma$: $eval_c \ F \ G \ (C_1 \cdot l_s \sigma)$ using subst-sound by blast from sat_2 have $sat_2\sigma$: $eval_c \ F \ G \ (C_2 \ \cdot_{ls} \ \sigma)$ using subst-sound by blast from appl obtain l_1 where l_1 -p: $l_1 \in L_1$ unfolding applicable-def by auto from l_1 -p appl have $l_1 \in C_1$ unfolding applicable-def by auto

then have $inc_1\sigma$: $l_1 \cdot \sigma \in C_1 \cdot s \sigma$ by auto

fix E

from l_1 -p have unified₁: $l_1 \in (L_1 \cup (L_2^C))$ by auto

from l_1 -p appl have $l_1\sigma isl_1\sigma$: $\{l_1 \cdot_l \sigma\} = L_1 \cdot_{l_s} \sigma$ unfolding mgu_{l_s} -def unifier_ l_s -def applicable-def by auto

from appl obtain l_2 where l_2 -p: $l_2 \in L_2$ unfolding applicable-def by auto

from l_2 -p appl have $l_2 \in C_2$ unfolding applicable-def by auto then have $inc_2\sigma$: $l_2 \cdot_l \sigma \in C_2 \cdot_{ls} \sigma$ by auto

from l_2 -p have $unified_2$: $l_2^c \in (L_1 \cup (L_2^c))$ by *auto*

from $unified_1 unified_2 appl have l_1 \cdot_l \sigma = (l_2^c) \cdot_l \sigma$ unfolding mgu_{ls} -def $unifier_{ls}$ -def applicable-def by autothen have $comp: (l_1 \cdot_l \sigma)^c = l_2 \cdot_l \sigma$ using comp-sub comp-swap by auto

from appl have unifier_{ls} σ (L_2^C)

using unifier-sub2 unfolding mgu_{ls} -def applicable-def by blast

then have $unifier_{ls} \sigma L_2$ by auto

from this l_2 -p have $l_2\sigma isl_2\sigma$: $\{l_2 \cdot_l \sigma\} = L_2 \cdot_{ls} \sigma$ unfolding unifier_{ls}-def by auto

from $sat_1\sigma \ sat_2\sigma \ inc_1\sigma \ inc_2\sigma \ comp$ have $eval_c \ F \ G \ ((C_1 \ \cdot_{ls} \ \sigma) - \{l_1 \ \cdot_l \ \sigma\} \cup ((C_2 \ \cdot_{ls} \ \sigma) - \{l_2 \ \cdot_l \ \sigma\}))$ using simple-resolution-sound[of $F \ G \ C_1 \ \cdot_{ls} \ \sigma \ C_2 \ \cdot_{ls} \ \sigma$ $l_1 \ \cdot_l \ \sigma \ l_2 \ \cdot_l \ \sigma]$

 $\mathbf{by} \ auto$

from this $l_1\sigma isl_1\sigma \ l_2\sigma isl_2\sigma$ show ?thesis unfolding mresolution-def by auto qed

lemma resolution-superset: m resolution C_1 C_2 L_1 L_2 $\sigma\subseteq$ resolution C_1 C_2 L_1 L_2 σ

unfolding mresolution-def resolution-def by auto

theorem resolution-sound: assumes sat_1 : $eval_c \ F \ G \ C_1$ assumes sat_2 : $eval_c \ F \ G \ C_2$ assumes appl: applicable C_1 C_2 L_1 L_2 σ **shows** eval_c F G (resolution C_1 C_2 L_1 L_2 σ) proof – from $sat_1 \ sat_2 \ appl$ have $eval_c \ F \ G \ (mresolution \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma)$ using mresolution-sound by blast then show ?thesis using superset-sound resolution-superset by metis qed **lemma** *mstep-sound*: assumes mresolution-step Cs Cs' assumes $eval_{cs}$ F G Cs shows $eval_{cs}$ F G Cs' **using** assms **proof** (induction rule: mresolution-step.induct) **case** (mresolution-rule C_1 Cs C_2 l_1 l_2 σ) then have $eval_c \ F \ G \ C_1 \land eval_c \ F \ G \ C_2$ unfolding $eval_{cs}$ -def by auto then have $eval_c \ F \ G \ (mresolution \ C_1 \ C_2 \ l_1 \ l_2 \ \sigma)$ using mresolution-sound mresolution-rule by auto then show ?case using mresolution-rule unfolding eval_{cs}-def by auto \mathbf{next} **case** (standardize-apart C Cs C') then have $eval_c \ F \ G \ C$ unfolding $eval_{cs}$ -def by auto then have eval_c F G C' using subst-sound standardize-apart unfolding var-renaming-of-def instance-of l_s -def by metis then show ?case using standardize-apart unfolding eval_{cs}-def by auto qed theorem *step-sound*: assumes resolution-step Cs Cs' assumes $eval_{cs}$ F G Cs shows $eval_{cs}$ F G Cs' using assms proof (induction rule: resolution-step.induct) **case** (resolution-rule C_1 Cs C_2 l_1 l_2 σ) then have $eval_c \ F \ G \ C_1 \land eval_c \ F \ G \ C_2$ unfolding $eval_{cs}$ -def by auto then have $eval_c F G$ (resolution $C_1 C_2 l_1 l_2 \sigma$) using resolution-sound resolution-rule by auto then show ?case using resolution-rule unfolding eval_{cs}-def by auto next case (standardize-apart C Cs C') then have $eval_c \ F \ G \ C$ unfolding $eval_{cs}$ -def by auto then have evalc F G C' using subst-sound standardize-apart unfolding var-renaming-of-def instance-of l_s -def by metis then show ?case using standardize-apart unfolding evalcs-def by auto qed

lemma mderivation-sound: assumes mresolution-deriv Cs Cs'

```
assumes eval_{cs} F G Cs
 shows eval_{cs} F G Cs'
using assms unfolding mresolution-deriv-def
proof (induction rule: rtranclp.induct)
 case rtrancl-refl then show ?case by auto
next
 case (rtrancl-into-rtrancl Cs_1 Cs_2 Cs_3) then show ?case using mstep-sound by
auto
qed
theorem derivation-sound:
 assumes resolution-deriv Cs Cs'
 assumes eval_{cs} F G Cs
 shows eval_{cs} F G Cs'
using assms unfolding resolution-deriv-def
proof (induction rule: rtranclp.induct)
 case rtrancl-refl then show ?case by auto
next
 case (rtrancl-into-rtrancl Cs_1 Cs_2 Cs_3) then show ?case using step-sound by
auto
qed
theorem derivation-sound-refute:
 assumes deriv: resolution-deriv Cs Cs' \wedge \{\} \in Cs'
 shows \neg eval_{cs} F G Cs
proof -
 from deriv have eval_{cs} \ F \ G \ Cs \longrightarrow eval_{cs} \ F \ G \ Cs' using derivation-sound by
auto
 moreover
 from deriv have eval_{cs} F G Cs' \longrightarrow eval_c F G \{\} unfolding eval_{cs}-def by auto
 moreover
 then have eval_c \ F \ G \ \} \longrightarrow False unfolding eval_c-def by auto
 ultimately show ?thesis by auto
qed
```

12 Herbrand Interpretations

HFun is the Herbrand function denotation in which terms are mapped to themselves.

```
term HFun
```

```
lemma eval-ground_t:

assumes ground_t t

shows (eval_t E HFun t) = hterm-of-fterm t

using assms by (induction t) auto
```

lemma eval-ground_{ts}:

assumes $ground_{ts}$ ts shows $(eval_{ts} \ E \ HFun \ ts) = hterms-of-fterms \ ts$ unfolding hterms-of-fterms-def using $assms \ eval-ground_t$ by $(induction \ ts) \ auto$

lemma $eval_l$ -ground_{ts}: **assumes** asm: ground_{ts} ts **shows** $eval_l \ E \ HFun \ G \ (Pos \ P \ ts) \longleftrightarrow G \ P \ (hterms-of-fterms \ ts)$ **proof have** $eval_l \ E \ HFun \ G \ (Pos \ P \ ts) = G \ P \ (eval_{ts} \ E \ HFun \ ts)$ **by** auto **also have** $... = G \ P \ (hterms-of-fterms \ ts)$ **using** $asm \ eval-ground_{ts}$ **by** simpfinally show ?thesis **by** auto**qed**

13 Partial Interpretations

 $type-synonym \ partial-pred-denot = bool \ list$

 $\begin{array}{l} \textbf{definition } falsifies_l :: partial-pred-denot \Rightarrow fterm \ literal \Rightarrow bool \ \textbf{where} \\ falsifies_l \ G \ l \longleftrightarrow \\ ground_l \ l \\ \land \ (let \ i = \ nat-of-fatom \ (get-atom \ l) \ in \\ i < length \ G \land G \ l \ i = (\neg sign \ l) \\) \end{array}$

A ground clause is falsified if it is actually ground and all its literals are falsified.

abbreviation $falsifies_g :: partial-pred-denot \Rightarrow fterm clause \Rightarrow bool where <math>falsifies_g \ G \ C \equiv ground_{ls} \ C \land (\forall l \in C. \ falsifies_l \ G \ l)$

abbreviation $falsifies_c :: partial-pred-denot \Rightarrow fterm clause \Rightarrow bool where <math>falsifies_c \ G \ C \equiv (\exists C'. instance-of_{ls} \ C' \ C \land falsifies_q \ G \ C')$

abbreviation $falsifies_{cs} :: partial-pred-denot \Rightarrow fterm clause set \Rightarrow bool where <math>falsifies_{cs} \ G \ Cs \equiv (\exists \ C \in \ Cs. \ falsifies_c \ G \ C)$

abbreviation extend :: $(nat \Rightarrow partial-pred-denot) \Rightarrow hterm pred-denot where$ $extend f P ts <math>\equiv$ (let n = nat-of-hatom (P, ts) in f (Suc n) ! n

fun sub-of-denot :: hterm var-denot \Rightarrow substitution where sub-of-denot E = fterm-of-hterm $\circ E$

lemma ground-sub-of-denott: ground_t ($t \cdot t$ (sub-of-denot E)) **by** (induction t) (auto simp add: ground-fterm-of-hterm)

lemma ground-sub-of-denotts: ground_{ts} (ts \cdot_{ts} sub-of-denot E)

using ground-sub-of-denott by simp

```
lemma ground-sub-of-denotl: ground<sub>l</sub> (l \cdot_l sub-of-denot E)
proof –
 have ground_{ts} (subs (get-terms l) (sub-of-denot E))
   using ground-sub-of-denotts by auto
  then show ?thesis by (cases l) auto
qed
lemma sub-of-denot-equiv:: eval_t E HFun (sub-of-denot E x) = E x
proof -
 have ground<sub>t</sub> (sub-of-denot E x) using ground-fterm-of-hterm by simp
  then
 have eval_t E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)
   using eval-ground<sub>t</sub>(1) by auto
  also have \dots = hterm-of-fterm (fterm-of-hterm (E x)) by auto
 also have \dots = E x by auto
  finally show ?thesis by auto
qed
lemma sub-of-denot-equivt:
    eval_t \ E \ HFun \ (t \ \cdot_t \ (sub-of-denot \ E)) = eval_t \ E \ HFun \ t
using sub-of-denot-equive by (induction t) auto
lemma sub-of-denot-equivts: eval_{ts} E HFun (ts \cdot_{ts} (sub-of-denot E)) = eval_{ts} E
HFun ts
using sub-of-denot-equivt by simp
lemma sub-of-denot-equivl: eval<sub>l</sub> E HFun G (l \cdot_l \text{ sub-of-denot } E) \longleftrightarrow eval<sub>l</sub> E
HFun G l
proof (induction l)
  case (Pos p ts)
 have eval_l \ E \ HFun \ G \ ((Pos \ p \ ts) \cdot_l \ sub-of-denot \ E) \longleftrightarrow G \ p \ (eval_{ts} \ E \ HFun \ (ts))
\cdot_{ts} (sub-of-denot E))) by auto
  also have \ldots \longleftrightarrow G p (eval<sub>ts</sub> E HFun ts) using sub-of-denot-equivts[of E ts]
by metis
  also have \dots \longleftrightarrow eval_l E HFun G (Pos p ts) by simp
  finally
  show ?case by blast
\mathbf{next}
 case (Neg p ts)
 have eval_l \ E \ HFun \ G \ ((Neg \ p \ ts) \cdot sub-of-denot \ E) \longleftrightarrow \neg G \ p \ (eval_{ts} \ E \ HFun
(ts \cdot_{ts} (sub-of-denot E))) by auto
 also have \dots \leftrightarrow \neg G p (eval<sub>ts</sub> E HFun ts) using sub-of-denot-equivts[of E ts]
by metis
 also have \dots = eval_l E HFun G (Neg p ts) by simp
  finally
 show ?case by blast
```

Under an Herbrand interpretation, an environment is equivalent to a substitution.

lemma *sub-of-denot-equiv-ground'*:

 $eval_l \ E \ HFun \ G \ l = eval_l \ E \ HFun \ G \ (l \ \cdot_l \ sub-of-denot \ E) \land ground_l \ (l \ \cdot_l \ sub-of-denot \ E)$

using sub-of-denot-equivl ground-sub-of-denotl by auto

Under an Herbrand interpretation, an environment is similar to a substitution - also for partial interpretations.

```
lemma partial-equiv-subst:

assumes falsifies<sub>c</sub> G (C \cdot_{ls} \tau)

shows falsifies<sub>c</sub> G C

proof –

from assms obtain C' where C'-p: instance-of<sub>ls</sub> C' (C \cdot_{ls} \tau) \wedge falsifies<sub>g</sub> G C'

by auto

then have instance-of<sub>ls</sub> (C \cdot_{ls} \tau) C unfolding instance-of<sub>ls</sub>-def by auto

then have instance-of<sub>ls</sub> C' C using C'-p instance-of<sub>ls</sub>-trans by auto

then show ?thesis using C'-p by auto

qed
```

Under an Herbrand interpretation, an environment is equivalent to a substitution.

```
lemma sub-of-denot-equiv-ground:
  ((\exists l \in C. eval_l \ E \ HFun \ G \ l) \longleftrightarrow (\exists l \in C \ \cdot_{ls} \ sub-of-denot \ E. \ eval_l \ E \ HFun \ G
l))
            \land ground<sub>ls</sub> (C \cdot_{ls} sub-of-denot E)
  using sub-of-denot-equiv-ground' by auto
lemma std<sub>1</sub>-falsifies: falsifies<sub>c</sub> G C_1 \leftrightarrow falsifies<sub>c</sub> G (std<sub>1</sub> C_1)
proof
  assume asm: falsifies_c \ G \ C_1
  then obtain Cg where instance-of<sub>ls</sub> Cg C_1 \land falsifies<sub>q</sub> G Cg by auto
  moreover
 then have instance - of_{ls} Cg (std_1 C_1) using std-apart-instance - of_{ls} 1 instance - of_{ls}-trans
by blast
  ultimately
  show falsifies<sub>c</sub> G (std<sub>1</sub> C_1) by auto
next
  assume asm: falsifies_c \ G \ (std_1 \ C_1)
 then have inst: instance-of<sub>ls</sub> (std<sub>1</sub> C_1) C_1 unfolding instance-of<sub>ls</sub>-def by auto
  from asm obtain Cg where instance-of<sub>ls</sub> Cg (std<sub>1</sub> C_1) \land falsifies<sub>q</sub> G Cg by
auto
  moreover
  then have instance-of<sub>ls</sub> Cg C_1 using inst instance-of<sub>ls</sub>-trans by blast
  ultimately
```

\mathbf{qed}

show falsifies_c $G C_1$ by auto qed **lemma** std₂-falsifies: falsifies_c $G \ C_2 \longleftrightarrow$ falsifies_c $G \ (std_2 \ C_2)$ proof assume asm: $falsifies_c \ G \ C_2$ then obtain Cg where instance-of_{1s} $Cg C_2 \wedge falsifies_q G Cg$ by auto moreover then have $instance - of_{ls} Cg (std_2 C_2)$ using std-apart-instance $- of_{ls} 2$ instance $- of_{ls}$ -trans by blast ultimately show falsifies_c G (std₂ C_2) by auto next assume asm: falsifies_c G (std₂ C_2) then have inst: instance-of_{ls} (std₂ C_2) C_2 unfolding instance-of_{ls}-def by auto from asm obtain Cg where instance-of_{ls} Cg (std₂ C₂) \land falsifies_q G Cg by auto moreover then have instance-of_{ls} $Cg C_2$ using inst instance-of_{ls}-trans by blast ultimately show $falsifies_c \ G \ C_2$ by autoqed **lemma** std_1 -renames: var-renaming-of C_1 (std_1 C_1) proof have instance-of_{ls} C_1 (std₁ C_1) using std-apart-instance-of_{ls} 1 by auto moreover have instance-of l_s (std₁ C₁) C₁ unfolding instance-of l_s -def by auto ultimately show var-renaming-of C_1 (std₁ C_1) unfolding var-renaming-of-def by *auto* qed **lemma** std_2 -renames: var-renaming-of C_2 (std_2 C_2) proof – have instance-of_{ls} C_2 (std₂ C_2) using std-apart-instance-of_{ls} 2 by auto

moreover have $instance-of_{ls} (std_2 \ C_2) \ C_2$ unfolding $instance-of_{ls}-def$ by auto ultimately show var-renaming-of $C_2 (std_2 \ C_2)$ unfolding var-renaming-of-def by auto qed

14 Semantic Trees

abbreviation closed-branch :: partial-pred-denot \Rightarrow tree \Rightarrow fterm clause set \Rightarrow bool where closed-branch G T Cs \equiv branch G T \land falsifies_{cs} G Cs

abbreviation(*input*) *open-branch* :: *partial-pred-denot* \Rightarrow *tree* \Rightarrow *fterm clause set* \Rightarrow *bool* **where**

open-branch G T Cs \equiv branch G T $\land \neg$ falsifies_{cs} G Cs

definition closed-tree :: tree \Rightarrow fterm clause set \Rightarrow bool where closed-tree T Cs \leftrightarrow anybranch T (λb . closed-branch b T Cs) \wedge anyinternal T (λp . $\neg falsifies_{cs} p$ Cs)

15 Herbrand's Theorem

```
lemma maximum:
 assumes asm: finite C
 shows \exists n :: nat. \forall l \in C. f l \leq n
proof
  from asm show \forall l \in C. f l \leq (Max (f ` C)) by auto
\mathbf{qed}
lemma extend-preserves-model:
  assumes f-infpath: wf-infpath (f :: nat \Rightarrow partial-pred-denot)
 assumes C-ground: ground<sub>ls</sub> C
 assumes C-sat: \neg falsifies_c (f (Suc n)) C
 assumes n-max: \forall l \in C. nat-of-fatom (get-atom l) \leq n
 shows eval_c HFun (extend f) C
proof –
 let ?F = HFun
 let ?G = extend f
  ł
   fix E
   from C-sat have \forall C'. (\neginstance-of_{ls} C' C \lor \negfalsifies<sub>a</sub> (f (Suc n)) C') by
auto
   then have \neg falsifies_g (f (Suc n)) C using instance-of<sub>ls</sub>-self by auto
   then obtain l where l-p: l \in C \land \neg falsifies_l (f (Suc n)) l using C-ground by
blast
   let ?i = nat-of-fatom (get-atom l)
   from l-p have i-n: ?i \leq n using n-max by auto
   then have j-n: ?i < length (f (Suc n)) using f-infpath infpath-length[of f] by
auto
   have eval_l \ E \ HFun \ (extend \ f) \ l
     proof (cases l)
       case (Pos P ts)
       from Pos l-p C-ground have ts-ground: ground<sub>ts</sub> ts by auto
      have \neg falsifies_l (f (Suc n)) l using l-p by auto
       then have f (Suc n) ! ?i = True
       using j-n Pos ts-ground empty-subts[of ts] unfolding falsifies<sub>l</sub>-def by auto
       moreover have f(Suc ?i) ! ?i = f(Suc n) ! ?i
        using f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp
       ultimately
       have f(Suc ?i) ! ?i = True using Pos by auto
     then have ?G P (hterms-of-fterms ts) using Pos by (simp add: nat-of-fatom-def)
```

then show ?thesis using $eval_l$ -ground ts[of ts - ?G P] ts-ground Pos by autonext case (Neg P ts) from Neg l-p C-ground have ts-ground: ground_{ts} ts by auto have $\neg falsifies_l (f (Suc n)) l$ using *l-p* by *auto* then have f (Suc n) ! ?i = Falseusing *j*-n Neg ts-ground empty-subts[of ts] unfolding falsifies_l-def by auto moreover have f(Suc ?i) ! ?i = f(Suc n) ! ?i**using** f-infpath i-n j-n infpath-length[of f] ith-in-extension[of f] by simp ultimately have f (Suc ?i) ! ?i = False using Neg by auto then have \neg ? GP (hterms-of-fterms ts) using Neg by (simp add: nat-of-fatom-def) then show ?thesis using Neg $eval_l$ -ground_{ts} [of ts - ?G P] ts-ground by autoqed then have $\exists l \in C$. $eval_l \in HFun (extend f) \ l using l-p by auto$ then have $eval_c$ HFun (extend f) C unfolding $eval_c$ -def by auto then show ?thesis using instance-of l_s -self by auto qed **lemma** *extend-preserves-model2*: **assumes** f-infpath: wf-infpath $(f :: nat \Rightarrow partial-pred-denot)$ assumes C-ground: ground_{ls} C assumes fin-c: finite C assumes model-C: $\forall n. \neg falsifies_c (f n) C$ shows C-false: $eval_c$ HFun (extend f) C proof -Since C is finite, C has a largest index of a literal. **obtain** n where largest: $\forall l \in C$. nat-of-fatom (get-atom l) $\leq n$ using fin-c maximum[of C λl . nat-of-fatom (get-atom l)] by blast moreover then have $\neg falsifies_c$ (f (Suc n)) C using model-C by auto ultimately show ?thesis using model-Cf-infpath C-ground extend-preserves-model[of f C n] by blast qed **lemma** extend-infpath: assumes f-infpath: wf-infpath (f :: nat \Rightarrow partial-pred-denot) assumes model-c: $\forall n. \neg falsifies_c (f n) C$ assumes fin-c: finite Cshows $eval_c$ HFun (extend f) C unfolding *eval*_c-*def* proof fix E

let ?G = extend f

let $?\sigma = sub-of-denot E$

from fin-c have fin-c σ : finite $(C \cdot_{ls} \text{ sub-of-denot } E)$ by auto have groundc σ : ground_{ls} $(C \cdot_{ls} \text{ sub-of-denot } E)$ using sub-of-denot-equiv-ground by auto

— Here starts the proof

— We go from syntactic FO world to syntactic ground world:

from model-c have $\forall n. \neg falsifies_c (f n) (C \cdot_{ls} ?\sigma)$ using partial-equiv-subst by blast

— Then from syntactic ground world to semantic ground world:

then have $eval_c$ *HFun* ?*G* (*C* \cdot_{ls} ? σ) using ground $c\sigma$ *f*-infpath fin- $c\sigma$ extend-preserves-model2[of f C \cdot_{ls} ? σ] by blast

— Then from semantic ground world to semantic FO world:

then have $\forall E. \exists l \in (C : l_s ? \sigma)$. eval_l E HFun ?G l unfolding eval_c-def by auto

then have $\exists l \in (C \cdot_{ls} ?\sigma)$. eval_l E HFun ?G l by auto

then show $\exists l \in C$. eval_l E HFun ?G l using sub-of-denot-equiv-ground[of C E extend f] by blast

qed

If we have a infpath of partial models, then we have a model.

```
lemma infpath-model:
 assumes f-infpath: wf-infpath (f :: nat \Rightarrow partial-pred-denot)
 assumes model-cs: \forall n. \neg falsifies_{cs} (f n) Cs
 assumes fin-cs: finite Cs
 assumes fin-c: \forall C \in Cs. finite C
 shows eval_{cs} HFun (extend f) Cs
proof –
 let ?F = HFun
 have \forall C \in Cs. eval_c ?F (extend f) C
   proof (rule ballI)
     fix C
     assume asm: C \in Cs
     then have \forall n. \neg falsifies_c (f n) C using model-cs by auto
    then show eval_c ?F (extend f) C using fin-c asm f-infpath extend-infpath[of
f C] by auto
   qed
 then show eval_{cs} ?F (extend f) Cs unfolding eval_{cs}-def by auto
qed
fun deeptree :: nat \Rightarrow tree where
 deeptree 0 = Leaf
| deeptree (Suc n) = Branching (deeptree n) (deeptree n)
lemma branch-length:
 assumes branch b (deeptree n)
 shows length b = n
```

```
using assms proof (induction n arbitrary: b)
 case 0 then show ?case using branch-inv-Leaf by auto
\mathbf{next}
 case (Suc n)
 then have branch b (Branching (deeptree n) (deeptree n)) by auto
 then obtain a b' where p: b = a \# b' \land branch b' (deeptree n) using branch-inv-Branching[of
b] by blast
 then have length b' = n using Suc by auto
  then show ?case using p by auto
qed
lemma infinity:
 assumes inj: \forall n :: nat. undiago (diago n) = n
 assumes all-tree: \forall n :: nat. (diago n) \in tree
 shows \negfinite tree
proof -
 from inj all-tree have \forall n. n = undiago (diago n) \land (diago n) \in tree by auto
 then have \forall n. \exists ds. n = undiago ds \land ds \in tree by auto
 then have undiago ' tree = (UNIV :: nat set) by auto
 then have \neg finite treeby (metis finite-imageI infinite-UNIV-nat)
  then show ?thesis by auto
qed
lemma longer-falsifies<sub>l</sub>:
 assumes falsifies_l ds l
 shows falsifies (ds@d) l
proof -
 let ?i = nat-of-fatom (get-atom l)
 from assms have i-p: ground<sub>l</sub> l \land ?i < length ds \land ds ! ?i = (\neg sign l) unfolding
falsifies_l-def by meson
 moreover
 from i-p have ?i < length (ds@d) by auto
 moreover
 from i-p have (ds@d) ! ?i = (\neg sign \ l) by (simp \ add: nth-append)
 ultimately
 show ?thesis unfolding falsifies<sub>1</sub>-def by simp
\mathbf{qed}
lemma longer-falsifies<sub>a</sub>:
 assumes falsifies_q ds C
 shows falsifies<sub>q</sub> (ds @ d) C
proof -
 {
   fix l
   assume l \in C
   then have falsifies_l (ds @ d) l using assms longer-falsifies<sub>l</sub> by auto
  } then show ?thesis using assms by auto
\mathbf{qed}
```

```
lemma longer-falsifies<sub>c</sub>:

assumes falsifies<sub>c</sub> ds C

shows falsifies<sub>c</sub> (ds @ d) C

proof –

from assms obtain C' where instance-of<sub>ls</sub> C' C \wedge falsifies<sub>g</sub> ds C' by auto

moreover

then have falsifies<sub>g</sub> (ds @ d) C' using longer-falsifies<sub>g</sub> by auto

ultimately show ?thesis by auto

qed
```

We use this so that we can apply König's lemma.

```
lemma longer-falsifies:

assumes falsifies<sub>cs</sub> ds Cs

shows falsifies<sub>cs</sub> (ds @ d) Cs

proof –

from assms obtain C where C \in Cs \land falsifies_c ds C by auto

moreover

then have falsifies<sub>c</sub> (ds @ d) C using longer-falsifies<sub>c</sub>[of C ds d] by blast

ultimately

show ?thesis by auto

qed
```

If all finite semantic trees have an open branch, then the set of clauses has a model.

```
theorem herbrand':
 assumes openb: \forall T. \exists G. open-branch G T Cs
 assumes finite-cs: finite Cs \forall C \in Cs. finite C
 shows \exists G. eval_{cs} HFun G Cs
proof -
   – Show T infinite:
 let ?tree = \{G. \neg falsifies_{cs} G Cs\}
 let ?undiag = length
 let ?diag = (\lambda l. SOME b. open-branch b (deeptree l) Cs) :: nat \Rightarrow partial-pred-denot
  from openb have diag-open: \forall l. open-branch (?diag l) (deeptree l) Cs
   using some I-ex[of \lambda b. open-branch b (deeptree -) Cs] by auto
  then have \forall n. ?undiag (?diag n) = n using branch-length by auto
  moreover
 have \forall n. (?diag n) \in ?tree using diag-open by auto
  ultimately
  have \neg finite?tree using infinity[of - \lambda n. SOME b. open-branch b (- n) Cs] by
simp
  — Get infinite path:
 moreover
 have \forall ds d. \neg falsifies_{cs} (ds @ d) Cs \longrightarrow \neg falsifies_{cs} ds Cs
   using longer-falsifies of Cs by blast
 then have (\forall ds d. ds @ d \in ?tree \longrightarrow ds \in ?tree) by auto
 ultimately
 have \exists c. wf-infpath c \land (\forall n. c n \in ?tree) using konig[of ?tree] by blast
```

then have $\exists G. wf$ -infpath $G \land (\forall n. \neg falsifies_{cs} (G n) Cs)$ by auto — Apply above infpath lemma: then show $\exists G. eval_{cs}$ HFun G Cs using infpath-model finite-cs by auto qed **lemma** *shorter-falsifies*_l: assumes falsifies (ds@d) l assumes nat-of-fatom (get-atom l) < length ds shows falsifies l ds lproof – let ?i = nat-of-fatom (get-atom l)from assms have *i*-*p*: ground_l $l \land ?i < length (ds@d) \land (ds@d) ! ?i = (\neg sign$ l) unfolding falsifies_l-def by meson moreover then have ?i < length ds using assms by auto moreover then have $ds ! ?i = (\neg sign \ l)$ using *i*-*p* nth-append[of ds d ?i] by auto ultimately show ?thesis using assms unfolding falsifies_l-def by simp qed **theorem** *herbrand'-contra*: assumes finite-cs: finite $Cs \forall C \in Cs$. finite C assumes unsat: $\forall G. \neg eval_{cs} HFun G Cs$ **shows** $\exists T. \forall G. branch G T \longrightarrow closed-branch G T Cs$ proof **from** finite-cs unsat **have** $(\forall T. \exists G. open-branch G T Cs) \longrightarrow (\exists G. eval_{cs} HFun$ G Cs) using herbrand' by blast then show ?thesis using unsat by blast qed theorem *herbrand*: assumes unsat: $\forall G. \neg eval_{cs}$ HFun G Cs **assumes** finite-cs: finite $Cs \forall C \in Cs$. finite C **shows** \exists *T*. *closed-tree T Cs* proof **from** unsat finite-cs **obtain** T where anybranch T (λb . closed-branch b T Cs) using herbrand'-contra[of Cs] by blast then have $\exists T$. anybranch T (λp . falsifies_{cs} p Cs) \wedge any internal T (λp . \neg $falsifies_{cs} p Cs$) using cutoff-branch-internal [of $T \lambda p$. falsifies_{cs} p Cs] by blast then show ?thesis unfolding closed-tree-def by auto qed

```
end
```

16 Lifting Lemma

theory Completeness imports Resolution begin

locale unification = assumes unification: $\bigwedge \sigma L$. finite $L \Longrightarrow$ unifier_{ls} $\sigma L \Longrightarrow \exists \vartheta$. $mgu_{ls} \vartheta L$ begin

A proof of this assumption is available in Unification_Theorem.thy and used in Completeness_Instance.thy.

lemma *lifting*: **assumes** fin: finite $C_1 \wedge finite C_2$ assumes apart: $vars_{ls} C_1 \cap vars_{ls} C_2 = \{\}$ **assumes** inst: instance-of_{ls} $C_1' C_1 \wedge instance-of_{ls} C_2' C_2$ assumes appl: applicable $C_1' C_2' L_1' L_2' \sigma$ shows $\exists L_1 \ L_2 \ \tau$. applicable $C_1 \ C_2 \ L_1 \ L_2 \ \tau \land$ instance-of_{ls} (resolution $C_1' C_2' L_1' L_2' \sigma$) (resolution $C_1 C_2 L_1 L_2$ τ) proof -— Obtaining the subsets we resolve upon: let $?R_1' = C_1' - L_1'$ and $?R_2' = C_2' - L_2'$ from inst obtain $\gamma \mu$ where $C_1 \cdot_{ls} \gamma = C_1' \wedge C_2 \cdot_{ls} \mu = C_2'$ unfolding instance-of l_s -def by auto then obtain η where η -p: $C_1 \cdot_{ls} \eta = C_1' \wedge C_2 \cdot_{ls} \eta = C_2'$ using apart merge-sub by force from η -p obtain L_1 where L_1 -p: $L_1 \subseteq C_1 \wedge L_1 \cdot_{ls} \eta = L_1' \wedge (C_1 - L_1) \cdot_{ls} \eta$ $= ?R_1'$ using appl project-sub using applicable-def by metis let $?R_1 = C_1 - L_1$ from η -p obtain L_2 where L_2 -p: $L_2 \subseteq C_2 \wedge L_2 \cdot_{ls} \eta = L_2' \wedge (C_2 - L_2) \cdot_{ls} \eta$ $= ?R_2'$ using appl project-sub using applicable-def by metis let $?R_2 = C_2 - L_2$ — Obtaining substitutions: from appl have $mgu_{ls} \sigma (L_1' \cup L_2'^C)$ using applicable-def by auto then have $mgu_{ls} \sigma ((L_1 \cdot l_s \eta) \cup (L_2 \cdot l_s \eta)^C)$ using L_1 -p L_2 -p by auto then have $mgu_{ls} \sigma ((L_1 \cup L_2^C) \cdot_{ls} \eta)$ using compls-suble suble-union by auto then have $unifier_{ls} \sigma ((L_1 \cup L_2^C) \cdot_{ls} \eta)$ using mgu_{ls} -def by auto then have $\eta \sigma uni$: $unifier_{ls} (\eta \cdot \sigma) (L_1 \cup L_2^C)$ using $unifier_{ls}$ -def composition-conseq2l by auto then obtain τ where τ -p: $mgu_{ls} \tau (L_1 \cup L_2^C)$ using unification fin L_1 -p L_2 -p by (meson finite-UnI finite-imageI rev-finite-subset)

then obtain φ where φ -p: $\tau \cdot \varphi = \eta \cdot \sigma$ using $\eta \sigma uni \ mgu_{ls}$ -def by auto

[—] Showing that we have the desired resolvent: let $?C = ((C_1 - L_1) \cup (C_2 - L_2)) \cdot_{ls} \tau$ have $?C \cdot_{ls} \varphi = (?R_1 \cup ?R_2) \cdot_{ls} (\tau \cdot \varphi)$ using subls-union composition-conseq2ls by auto also have ... = $(?R_1 \cup ?R_2) \cdot_{ls} (\eta \cdot \sigma)$ using φ -p by auto also have ... = $((?R_1 \cdot_{ls} \eta) \cup (?R_2 \cdot_{ls} \eta)) \cdot_{ls} \sigma$

using subls-union composition-conseq2ls by auto

also have ... = $(?R_1' \cup ?R_2') \cdot_{ls} \sigma$ using η -p L_1 -p L_2 -p by auto finally have $?C \cdot_{ls} \varphi = ((C_1' - L_1') \cup (C_2' - L_2')) \cdot_{ls} \sigma$ by auto then have ins: instance-of_{ls} (resolution $C_1' C_2' L_1' L_2' \sigma$) (resolution $C_1 C_2$ $L_1 L_2 \tau$)

using resolution-def instance-of $_{ls}$ -def by metis

— Showing that the resolution rule is applicable: have $C_1' \neq \{\} \land C_2' \neq \{\} \land L_1' \neq \{\} \land L_2' \neq \{\}$ using appl applicable-def by auto then have $C_1 \neq \{\} \land C_2 \neq \{\} \land L_1 \neq \{\} \land L_2 \neq \{\}$ using η -p L_1 -p L_2 -p by auto then have appli: applicable $C_1 \ C_2 \ L_1 \ L_2 \ \tau$ using apart L_1 -p L_2 -p τ -p applicable-def by auto

from ins appli show ?thesis by auto qed

17 Completeness

```
lemma falsifies<sub>a</sub>-empty:
 assumes falsifies_g [] C
 shows C = \{\}
proof -
 have \forall l \in C. False
   proof
     fix l
     assume l \in C
     then have falsifies_l \parallel l using assms by auto
     then show False unfolding falsifies<sub>l</sub>-def by (cases l) auto
   \mathbf{qed}
 then show ?thesis by auto
qed
lemma falsifies<sub>cs</sub>-empty:
 assumes falsifies_c [] C
 shows C = \{\}
proof -
  from assms obtain C' where C'-p: instance-of<sub>ls</sub> C' C \wedge falsifies<sub>q</sub> [] C' by
auto
 then have C' = \{\} using falsifies<sub>g</sub>-empty by auto
 then show C = \{\} using C'-p unfolding instance-of<sub>ls</sub>-def by auto
qed
lemma complements-do-not-falsify':
 assumes l1C1': l_1 \in C_1'
 assumes l_2 C1': l_2 \in C_1'
 assumes comp: l_1 = l_2^c
 assumes falsif: falsifies<sub>g</sub> G C_1'
```

```
shows False
proof (cases l_1)
  case (Pos p ts)
 let ?i1 = nat-of-fatom (p, ts)
  from assms have gr: ground_l \ l_1 unfolding falsifies_l-def by auto
  then have Neg: l_2 = Neg \ p \ ts using comp Pos by (cases l_2) auto
 from falsif have falsifies l G l_1 using l1C1' by auto
 then have G ! ?i1 = False using l1C1' Pos unfolding falsifies_l-def by (induction
Pos \ p \ ts) auto
 moreover
 let ?i2 = nat-of-fatom (get-atom l_2)
 from falsif have falsifies l G l_2 using l_2 C1' by auto
 then have G ! ?i2 = (\neg sign \ l_2) unfolding falsifies<sub>l</sub>-def by meson
  then have G ! ?i1 = (\neg sign l_2) using Pos Neq comp by simp
  then have G ! ?i1 = True using Neg by auto
  ultimately show ?thesis by auto
next
  case (Neg p ts)
 let ?i1 = nat \text{-} of \text{-} fatom (p,ts)
  from assms have gr: ground<sub>l</sub> l_1 unfolding falsifies<sub>l</sub>-def by auto
  then have Pos: l_2 = Pos \ p \ ts \ using \ comp \ Neg \ by \ (cases \ l_2) \ auto
 from falsif have falsifies l G l_1 using l1C1' by auto
  then have G ! ?i1 = True using l1C1' Neq unfolding falsifies<sub>l</sub>-def by (metis
get-atom.simps(2) literal.disc(2))
 moreover
 let ?i2 = nat-of-fatom (get-atom l_2)
 from falsif have falsifies l G l_2 using l_2 C1' by auto
 then have G ! ?i2 = (\neg sign \ l_2) unfolding falsifies_l-def by meson
 then have G ! ?i1 = (\neg sign \ l_2) using Pos Neg comp by simp
 then have G ! ?i1 = False using Pos using literal.disc(1) by blast
  ultimately show ?thesis by auto
qed
lemma complements-do-not-falsify:
 assumes l1C1': l_1 \in C_1'
 assumes l_2 C1': l_2 \in C_1'
 assumes fals: falsifies<sub>g</sub> G C_1'
 shows l_1 \neq l_2^c
using assms complements-do-not-falsify' by blast
lemma other-falsified:
 assumes C1'-p: ground<sub>ls</sub> C_1' \wedge falsifies_q (B@[d]) C_1'
 assumes l-p: l \in C_1' nat-of-fatom (get-atom l) = length B
 assumes other: lo \in C_1' lo \neq l
 shows falsifies B lo
```

proof –

let ?i = nat - of - fatom (get - atom lo)have ground- l_2 : ground_l l using l-p C1'-p by auto - They are, of course, also ground: have ground-lo: ground_l lo using C1'-p other by auto from C1'-p have falsifies_q $(B@[d]) (C_1' - \{l\})$ by auto — And indeed, falsified by B @ [d]: then have loB_2 : falsifies (B@[d]) lo using other by auto then have ?i < length (B @ [d]) unfolding $falsifies_l$ -def by meson — And they have numbers in the range of B @ [d], i.e. less than length B + 1: then have nat-of-fatom (get-atom lo) < length B + 1 using undiag-diag-fatom **by** (cases lo) auto moreover have *l*-lo: $l \neq lo$ using other by auto - The are not the complement of l_i , since then the clause could not be falsified: have lc-lo: $lo \neq l^c$ using C1'-p l-p other complements-do-not-falsify[of lo C₁' l (B@[d])] by auto from *l-lo lc-lo* have get-atom $l \neq$ get-atom lo using sign-comp-atom by metis then have nat-of-fatom (get-atom lo) \neq nat-of-fatom (get-atom l) using nat-of-fatom-bij ground-lo ground-l₂ ground_l-ground-fatom unfolding *bij-betw-def inj-on-def* by *metis* — Therefore they have different numbers: then have nat-of-fatom (get-atom lo) \neq length B using l-p by auto ultimately — So their numbers are in the range of B: have nat-of-fatom (get-atom lo) < length B by auto — So we did not need the last index of B @ [d] to falsify them, i.e. B suffices: then show falsifies B lo using loB_2 shorter-falsifies by blast qed theorem completeness': assumes closed-tree T Csassumes $\forall C \in Cs.$ finite C shows $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ using assms proof (induction T arbitrary: Cs rule: measure-induct-rule[of treesize]) fix T :: treefix Cs :: fterm clause set assume ih: $\bigwedge T'$ Cs. treesize T' < treesize $T \Longrightarrow$ closed-tree T' Cs \Longrightarrow $\forall C \in Cs. \text{ finite } C \Longrightarrow \exists Cs'. \text{ resolution-deriv } Cs Cs' \land \{\} \in$ Cs'assume clo: closed-tree T Csassume finite-Cs: $\forall C \in Cs$. finite C { — Base case: assume treesize T = 0then have T=Leaf using treesize-Leaf by auto then have closed-branch [] Leaf Cs using branch-inv-Leaf clo unfolding closed-tree-def by auto

then have $falsifies_{cs}$ [] Cs by auto

then have $\{\} \in Cs$ using $falsifies_{cs}$ -empty by auto then have $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ unfolding resolution-deriv-def by auto } moreover $\{$ —Induction case: assume treesize T > 0then have $\exists l r. T = Branching l r$ by (cases T) auto

— Finding sibling branches and their corresponding clauses: **then obtain** B where b-p: internal B $T \wedge branch$ (B@[True]) $T \wedge branch$ (B@[False]) T

using internal-branch[of - [] - T] Branching-Leaf-Leaf-Tree by fastforce let $?B_1 = B@[True]$ let $?B_2 = B@[False]$

obtain C_1o where C_1o -p: $C_1o \in Cs \land falsifies_c ?B_1 C_1o$ using b-p clo unfolding closed-tree-def by metis

obtain C_2o where C_2o -p: $C_2o \in Cs \land falsifies_c ?B_2 C_2o$ using b-p clo unfolding closed-tree-def by metis

— Standardizing the clauses apart: let $?C_1 = std_1 \ C_1 o$ let $?C_2 = std_2 \ C_2 o$ have C_1 -p: falsifies_c $?B_1 \ ?C_1$ using std_1 -falsifies $C_1 o$ -p by auto have C_2 -p: falsifies_c $?B_2 \ ?C_2$ using std_2 -falsifies $C_2 o$ -p by auto

have fin: finite $?C_1 \land$ finite $?C_2$ using C_1o -p C_2o -p finite-Cs by auto

— We go down to the ground world.

— Finding the falsifying ground instance C_1' of $std_1 C_1 o$, and proving properties about it:

 $-C_1'$ is falsified by B @ [True]:

from C_1 -p **obtain** C_1 ' where C_1 '-p: ground_{ls} C_1 ' \wedge instance-of_{ls} C_1 ' ? C_1 \wedge falsifies_g ? B_1 C_1 ' by metis

have $\neg falsifies_c \ B \ C_1 o \text{ using } C_1 o \text{-} p \ b \text{-} p \ clo \text{ unfolding } closed-tree-def \text{ by } metis$ then have $\neg falsifies_c \ B \ ?C_1 \text{ using } std_1\text{-} falsifies \text{ using } prod.exhaust-sel \text{ by } blast$

 $-C_1'$ is not falsified by *B*:

then have *l-B*: $\neg falsifies_g B C_1'$ using C_1' -*p* by *auto*

- C_1' contains a literal l_1 that is falsified by B @ [True], but not B: from C_1' -p l-B obtain l_1 where l_1 -p: $l_1 \in C_1' \land falsifies_l (B@[True]) l_1 \land$ $\neg(falsifies_l \ B \ l_1)$ by auto let $?i = nat-of-fatom (get-atom \ l_1)$

 $-l_1$ is of course ground:

have ground- l_1 : ground_l l_1 using C_1' -p l_1 -p by auto

from l_1 -p have \neg (?i < length $B \land B$! ?i = $(\neg sign \ l_1)$) using ground- l_1 unfolding falsifies_l-def by meson

then have $\neg(?i < length B \land (B@[True]) ! ?i = (\neg sign l_1))$ by (metis nth-append) — Not falsified by B.

moreover

from l_1 -p have ?i < length (B @ [True]) \land (B @ [True]) ! ?i = (\neg sign l_1) unfolding falsifies_l-def by meson

ultimately

have l_1 -sign-no: $?i = length B \land (B @ [True]) ! ?i = (\neg sign l_1)$ by auto

 $-l_1$ is negative:

from l_1 -sign-no have l_1 -sign: sign $l_1 = False$ by auto from l_1 -sign-no have l_1 -no: nat-of-fatom (get-atom l_1) = length B by auto

— All the other literals in C_1 ' must be falsified by B, since they are falsified by B @ [True], but not l_1 .

from C_1' - $p l_1$ -no l_1 -p have B- $C_1'l_1$: falsifies_g $B (C_1' - \{l_1\})$ using other-falsified by blast

— We do the same exercise for $std_2 \ C_2o, \ C_2', B @ [False], \ l_2:$ from C_2 -p obtain C_2' where C_2' -p: $ground_{ls} \ C_2' \land instance-of_{ls} \ C_2' \ ?C_2 \land falsifies_g \ ?B_2 \ C_2'$ by metis

have $\neg falsifies_c \ B \ C_2 o \text{ using } C_2 o \text{-} p \ b \text{-} p \ clo \text{ unfolding } closed-tree-def \text{ by } metis$ then have $\neg falsifies_c \ B \ ?C_2 \text{ using } std_2\text{-} falsifies \text{ using } prod.exhaust-sel \text{ by } blast$

then have *l-B*: $\neg falsifies_q B C_2'$ using C_2' -*p* by *auto*

— C_2' contains a literal l_2 that is falsified by B @ [False], but not B: from C_2' -p l-B obtain l_2 where l_2 -p: $l_2 \in C_2' \land falsifies_l (B@[False]) l_2 \land \neg falsifies_l B l_2$ by auto

let ?i = nat-of-fatom (get-atom l_2)

have ground- l_2 : ground_l l_2 using C_2' -p l_2 -p by auto

from l_2 -p have \neg (?i < length $B \land B$! ?i = $(\neg sign \ l_2)$) using ground- l_2 unfolding falsifies_l-def by meson

then have $\neg(?i < length B \land (B@[False]) ! ?i = (\neg sign l_2))$ by (metis nth-append) — Not falsified by B.

moreover

from l_2 -p have ?i < length (B @ [False]) \land (B @ [False]) ! ?i = (\neg sign l_2) unfolding falsifies_l-def by meson

ultimately

have l_2 -sign-no: $?i = length B \land (B @ [False]) ! ?i = (\neg sign l_2)$ by auto

 $-l_2$ is negative:

from l_2 -sign-no have l_2 -sign: sign $l_2 = True$ by auto

from l_2 -sign-no have l_2 -no: nat-of-fatom (get-atom l_2) = length B by auto

— All the other literals in C_2' must be falsified by B, since they are falsified by B @ [False], but not l_2 .

from C_2' - $p l_2$ -no l_2 -p have B- $C_2'l_2$: falsifies_g $B (C_2' - \{l_2\})$ using other-falsified by blast

— Proving some properties about C_1' and C_2' , l_1 and l_2 , as well as the resolvent of C_1' and C_2' :

have $l_2 cisl_1$: $l_2^c = l_1$ proof –

from l_1 -no l_2 -no ground- l_1 ground- l_2 have get-atom $l_1 =$ get-atom l_2 using nat-of-fatom-bij ground_1-ground-fatom unfolding bij-betw-def inj-on-def by metis

then show $l_2^c = l_1$ using l_1 -sign l_2 -sign using sign-comp-atom by metis qed

have applicable $C_1' C_2' \{l_1\} \{l_2\}$ Resolution. ε unfolding applicable-def using l_1 - $p \ l_2$ - $p \ C_1'$ - $p \ ground_{ls}$ -vars_{ls} $l_2 cisl_1 \ empty$ -comp2 unfolding mgu_{ls} -def unifier_{ls}-def by auto

— Lifting to get a resolvent of $std_1 C_1 o$ and $std_2 C_2 o$:

then obtain $L_1 \ L_2 \ \tau$ where $L_1 L_2 \tau$ -p: applicable $?C_1 \ ?C_2 \ L_1 \ L_2 \ \tau \land in$ stance-of_{ls} (resolution $C_1' \ C_2' \ \{l_1\} \ \{l_2\}$ Resolution. ε) (resolution $?C_1 \ ?C_2 \ L_1 \ L_2 \ \tau$)

using std-apart-apart C_1' -p C_2' -p lifting[of ? C_1 ? C_2 C_1' C_2' { l_1 } { l_2 } Resolution. ε] fin by auto

— Defining the clause to be derived, the new clausal form and the new tree: — We name the resolvent C.

obtain C where C-p: $C = resolution ?C_1 ?C_2 L_1 L_2 \tau$ by auto

obtain CsNext where CsNext-p: CsNext = $Cs \cup \{?C_1, ?C_2, C\}$ by auto obtain T'' where T''-p: $T'' = delete \ B \ T$ by auto

— Here we delete the two branch children B @ [True] and B @ [False] of B.

— Our new clause is falsified by the branch B of our new tree:

have falsifies_g B $((C_1' - \{l_1\}) \cup (C_2' - \{l_2\}))$ using B-C₁'l₁ B-C₂'l₂ by cases auto

then have $falsifies_g B$ (resolution $C_1' C_2' \{l_1\} \{l_2\}$ Resolution. ε) unfolding resolution-def empty-subles by auto

then have falsifies-C: falsifies_c B C using C-p $L_1L_2\tau$ -p by auto

have T''-smaller: treesize T'' < treesize T using treezise-delete T''-p b-p by auto

have T''-bran: anybranch T'' (λb . closed-branch b T'' CsNext)

proof (rule allI; rule impI)

fix b

assume br: branch b $T^{\prime\prime}$

from br have $b = B \lor branch \ b \ T$ using branch-delete T"-p by auto

```
then show closed-branch b T'' CsNext
proof
assume b=B
then show closed-branch b T'' CsNext using falsifies-C br CsNext-p by
auto
next
assume branch b T
then show closed-branch b T'' CsNext using clo br T''-p CsNext-p
unfolding closed-tree-def by auto
qed
```

qed

then have T"-bran2: anybranch T" (λb . falsifies_{cs} b CsNext) by auto

— We cut the tree even smaller to ensure only the branches are falsified, i.e. it is a closed tree:

obtain T' where T'-p: T' = cutoff (λG . falsifies_{cs} G CsNext) [] T'' by auto have T'-smaller: treesize T' < treesize T using treesize-cutoff [of λG . falsifies_{cs} G CsNext [] T'] T''-smaller unfolding T'-p by auto

from T''-bran2 have anybranch T' (λb . falsifies_{cs} b CsNext) using cutoff-branch[of $T'' \lambda b$. falsifies_{cs} b CsNext] T'-p by auto

then have T'-bran: anybranch T' (λb . closed-branch b T' CsNext) by auto

have T'-intr: any internal T' (λp . $\neg falsifies_{cs} p$ CsNext) using T'-p cutoff-internal[of T'' λb . falsifies_{cs} b CsNext] T''-bran2 by blast

have T'-closed: closed-tree T' CsNext using T'-bran T'-intr unfolding closed-tree-def by auto

have finite-CsNext: $\forall C \in CsNext$. finite C unfolding CsNext-p C-p resolution-def using finite-Cs fin by auto

— By induction hypothesis we get a resolution derivation of {} from our new clausal form:

from T'-smaller T'-closed have $\exists Cs''$. resolution-deriv CsNext $Cs'' \land \{\} \in Cs''$ using ih[of T' CsNext] finite-CsNext by blast

then obtain Cs'' where Cs''-p: resolution-deriv $CsNext Cs'' \land \{\} \in Cs''$ by auto

moreover

{ — Proving that we can actually derive the new clausal form:

have resolution-step Cs ($Cs \cup \{?C_1\}$) using std_1 -renames standardize-apart C_1o -p by (metis Un-insert-right)

moreover

have resolution-step $(Cs \cup \{?C_1\})$ $(Cs \cup \{?C_1\} \cup \{?C_2\})$ using std_2 -renames[of C_2o] standardize-apart[of $C_2o - ?C_2$] C_2o -p by auto

then have resolution-step $(Cs \cup \{?C_1\})$ $(Cs \cup \{?C_1,?C_2\})$ by (simp add: insert-commute)

moreover

then have resolution-step $(Cs \cup \{?C_1, ?C_2\})$ $(Cs \cup \{?C_1, ?C_2\} \cup \{C\})$

using $L_1L_2\tau$ -p resolution-rule[of ?C₁ Cs \cup {?C₁,?C₂} ?C₂ L₁ L₂ τ] using C-p by auto

then have resolution-step $(Cs \cup \{?C_1,?C_2\})$ CsNext using CsNext-p by

(simp add: Un-commute) ultimately have resolution-deriv Cs CsNext unfolding resolution-deriv-def by auto } Combining the two derivations, we get the desired derivation from Cs of $\{\}$: ultimately have resolution-deriv Cs Cs" unfolding resolution-deriv-def by auto then have $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ using Cs''-p by auto ł ultimately show $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ by auto qed theorem completeness: **assumes** finite-cs: finite $Cs \forall C \in Cs$. finite C assumes unsat: \forall (F::hterm fun-denot) (G::hterm pred-denot). \neg eval_{cs} F G Cs shows $\exists Cs'$. resolution-deriv Cs $Cs' \land \{\} \in Cs'$ proof **from** unsat have $\forall (G::hterm \ pred-denot)$. $\neg eval_{cs}$ HFun G Cs by auto then obtain T where closed-tree T Cs using herbrand assms by blast then show $\exists Cs'$. resolution-deriv Cs $Cs' \land \{\} \in Cs'$ using completeness' assms by auto qed definition *E-conv* :: $('a \Rightarrow 'b) \Rightarrow 'a \text{ var-denot} \Rightarrow 'b \text{ var-denot}$ where *E-conv* b-of-a $E \equiv \lambda x$. (b-of-a (E x)) definition *F*-conv :: $('a \Rightarrow 'b) \Rightarrow 'a \text{ fun-denot} \Rightarrow 'b \text{ fun-denot}$ where *F-conv* b-of-a $F \equiv \lambda f$ bs. b-of-a (F f (map (inv b-of-a) bs)) definition G-conv :: $('a \Rightarrow 'b) \Rightarrow 'a \text{ pred-denot} \Rightarrow 'b \text{ pred-denot}$ where *G-conv* b-of-a $G \equiv \lambda p$ bs. (G p (map (inv b-of-a) bs)) lemma $eval_t$ -bij: assumes *bij* $(b \text{-} of \text{-} a :: 'a \Rightarrow 'b)$ shows $eval_t$ (E-conv b-of-a E) (F-conv b-of-a F) t = b-of-a ($eval_t E F t$) **proof** (*induction* t) case (Fun f ts) then have map (inv b-of-a \circ eval_t (E-conv b-of-a E) (F-conv b-of-a F)) ts = $eval_{ts} E F ts$ unfolding E-conv-def F-conv-def using assms bij-is-inj by fastforce then have b-of-a (F f (map (inv b-of-a \circ eval_t (E-conv b-of-a E) ((F-conv b-of-a))) F(t) (ts) then show ?case using assms unfolding E-conv-def F-conv-def by auto \mathbf{next} **case** (Var x) then show ?case using assms unfolding E-conv-def by auto qed

lemma eval_{ts}-bij: assumes *bij* (b-*of*-a::' $a \Rightarrow$ 'b) shows G-conv b-of-a G p (eval_{ts} (E-conv b-of-a E) (F-conv b-of-a F) ts) = G p $(eval_{ts} E F ts)$ using assms using $eval_t$ -bij proof have map (inv b-of-a \circ eval_t (E-conv b-of-a E) (F-conv b-of-a F)) ts = eval_{ts} E F tsusing $eval_t$ -bij assms bij-is-inj by fastforce then show ?thesis **by** (*metis* (*no-types*) *G-conv-def map-map*) qed lemma eval_l-bij: assumes *bij* $(b \text{-} of \text{-} a :: 'a \Rightarrow 'b)$ shows $eval_l$ (E-conv b-of-a E) (F-conv b-of-a F) (G-conv b-of-a G) $l = eval_l E$ F G lusing assms $eval_{ts}$ -bij **proof** (cases l) case (Pos p ts) then show ?thesis by (simp add: $eval_{ts}$ -bij assms) \mathbf{next} case (Neg p ts) then show ?thesis by (simp add: $eval_{ts}$ -bij assms) qed lemma eval_c-bij: assumes *bij* $(b \text{-} of \text{-} a :: 'a \Rightarrow 'b)$ shows $eval_c$ (F-conv b-of-a F) (G-conv b-of-a G) $C = eval_c$ F G C proof – ł **fix** $E :: char list \Rightarrow 'b$ assume bij-b-of-a: bij b-of-a **assume** C-sat: $\forall E :: char \ list \Rightarrow 'a. \exists l \in C. \ eval_l \ E \ F \ G \ l$ have E-p: E = E-conv b-of-a (E-conv (inv b-of-a) E) unfolding E-conv-def using bij-b-of-a using *bij-betw-inv-into-right* by *fastforce* have $\exists l \in C$. eval_l (E-conv b-of-a (E-conv (inv b-of-a) E)) (F-conv b-of-a F) (G-conv b-of-a G) lusing eval_l-bij bij-b-of-a C-sat by blast then have $\exists l \in C$. $eval_l \in (F$ -conv b-of-a F) (G-conv b-of-a G) l using E-p by auto} then show ?thesis by (meson $eval_l$ -bij assms $eval_c$ -def) qed

lemma $eval_{cs}$ -bij: **assumes** bij (b-of-a::' $a \Rightarrow$ 'b) **shows** $eval_{cs}$ (F-conv b-of-a F) (G-conv b-of-a G) $Cs \leftrightarrow eval_{cs}$ F G Cs**by** (meson $eval_{c}$ -bij assms $eval_{cs}$ -def)

lemma countably-inf-bij: assumes inf-a-uni: infinite (UNIV ::: ('a :::countable) set) assumes inf-b-uni: infinite (UNIV ::: ('b :::countable) set) shows $\exists b$ -of-a :: 'a \Rightarrow 'b. bij b-of-a proof let ?S = UNIV :: (('a::countable)) set have countable ?S by auto moreover have infinite ?S using inf-a-uni by auto ultimately obtain nat-of-a where QWER: bij (nat-of-a ::: 'a \Rightarrow nat) using countableE-infinite[of ?S] by blast

```
let ?T = UNIV :: (('b::countable)) set
have countable ?T by auto
moreover
have infinite ?T using inf-b-uni by auto
ultimately
obtain nat-of-b where TYUI: bij (nat-of-b :: 'b \Rightarrow nat) using countableE-infinite[of
?T] by blast
```

let ?b-of- $a = \lambda a$. (inv nat-of-b) (nat-of-a a)

have bij-nat-of-b: $\forall n$. nat-of-b (inv nat-of-b n) = nusing TYUI bij-betw-inv-into-right by fastforce have $\forall a$. inv nat-of-a (nat-of-a a) = aby (meson QWER UNIV-I bij-betw-inv-into-left) then have inj (λa . inv nat-of-b (nat-of-a a)) using bij-nat-of-b injI by (metis (no-types)) moreover have range (λa . inv nat-of-b (nat-of-a a)) = UNIV by (metis QWER TYUI bij-def image-image inj-imp-surj-inv) ultimately have bij ?b-of-aunfolding bij-def by auto

then show ?thesis by auto qed

lemma infinite-hterms: infinite (UNIV :: hterm set) **proof** – **let** ?diago = λn . HFun (string-of-nat n) [] **let** ?undiago = λa . nat-of-string (case a of HFun f ts \Rightarrow f) have $\forall n$. ?undiago (?diago n) = n using nat-of-string-string-of-nat by auto moreover have $\forall n$. ?diago $n \in UNIV$ by auto ultimately show infinite (UNIV :: hterm set) using infinity[of ?undiago ?diago UNIV] by simp qed

theorem completeness-countable: assumes inf-uni: infinite (UNIV :: ('u :: countable) set) assumes finite-cs: finite $Cs \forall C \in Cs$. finite Cassumes unsat: $\forall (F::'u \text{ fun-denot}) (G::'u \text{ pred-denot}). \neg eval_{cs} F G Cs$ shows $\exists Cs'.$ resolution-deriv $Cs Cs' \land \{\} \in Cs'$ proof – have $\forall (F::hterm \text{ fun-denot}) (G::hterm \text{ pred-denot}) . \neg eval_{cs} F G Cs$ proof (rule; rule) fix F :: hterm fun-denotfix G :: hterm pred-denotobtain u-of-hterm :: hterm $\Rightarrow 'u$ where p-u-of-hterm: bij u-of-hterm using countably-inf-bij inf-uni infinite-hterms by auto let ?F = F-conv u-of-hterm Flet ?G = G-conv u-of-hterm G

have $\neg eval_{cs}$?F ?G Cs using unsat by auto then show $\neg eval_{cs}$ F G Cs using $eval_{cs}$ -bij using p-u-of-hterm by auto qed then show $\exists Cs'$. resolution-deriv Cs Cs' \land {} \in Cs' using finite-cs completeness by auto qed

theorem completeness-nat: **assumes** finite-cs: finite $Cs \forall C \in Cs$. finite C **assumes** unsat: $\forall (F::nat fun-denot) (G::nat pred-denot) . <math>\neg eval_{cs} F G Cs$ **shows** $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ **using** assms completeness-countable by blast

end — unification locale

 \mathbf{end}

18 Examples

theory Examples imports Resolution begin

```
value Var "x"
value Fun "one" []
value Fun "mul" [Var "y", Var "y"]
value Fun "add" [Fun "mul" [Var "y", Var "y"], Fun "one" []]
```

value Pos ''greater'' [Var ''x'', Var ''y']
value Neg ''less'' [Var ''x'', Var ''y']
value Pos ''less'' [Var ''x'', Var ''y']
value Pos ''equals''
 [Fun ''add''[Fun ''mul''[Var ''y'', Var ''y''], Fun ''one''[]], Var ''x'']

 $\begin{array}{l} \mathbf{fun} \ F_{nat} :: nat \ fun-denot \ \mathbf{where} \\ F_{nat} \ f \ [n,m] = \\ (if \ f = ''add'' \ then \ n + m \ else \\ if \ f = ''mul'' \ then \ n * m \ else \ 0) \\ \mid F_{nat} \ f \ [] = \\ (if \ f = ''one'' \ then \ 1 \ else \\ if \ f = ''zero'' \ then \ 0 \ else \ 0) \\ \mid F_{nat} \ f \ us = 0 \end{array}$

fun E_{nat} :: nat var-denot where $E_{nat} x =$ (if x = ''x'' then 26 else if x = ''y'' then 5 else 0)

lemma eval_t E_{nat} F_{nat} (Var "x") = 26 by auto **lemma** eval_t E_{nat} F_{nat} (Fun "one" []) = 1 by auto **lemma** eval_t E_{nat} F_{nat} (Fun "mul" [Var "y", Var "y"]) = 25 by auto **lemma** eval_t E_{nat} F_{nat} (Fun "add" [Fun "mul" [Var "y", Var "y"], Fun "one" []]) = 26 by auto **lemma** eval_t E_{nat} F_{nat} (Fun G_{nat} (Pos "greater" [Var "x", Var "y"]) = True by auto

lemma eval_l E_{nat} F_{nat} G_{nat} (Neg "less" [Var "x", Var "y"]) = True by auto

lemma eval_l E_{nat} F_{nat} G_{nat} (Pos "less" [Var "x", Var "y"]) = False **by** auto

 $\begin{array}{c} \textbf{lemma} \ eval_l \ E_{nat} \ F_{nat} \ G_{nat} \\ (Pos \ ''equals'' \\ [Fun \ ''add'' \ [Fun \ ''mul'' \ [Var \ ''y'', Var \ ''y''], Fun \ ''one'' \ []] \end{array}$

$$, Var "x"]$$

 $) = True$
by *auto*

definition PP :: fterm literal where<math>PP = Pos "P" [Fun "c" []]

- definition PQ :: fterm literal where PQ = Pos "Q" [Fun "d" []]
- definition NP :: fterm literal where NP = Neg "P" [Fun "c" []]

```
definition NQ :: fterm literal where

NQ = Neg "Q" [Fun "d" []]
```

```
theorem empty-mgu:

assumes unifier_{ls} \in L

shows mgu_{ls} \in L

using assms unfolding unifier_{ls}-def mgu_{ls}-def apply auto

apply (rule-tac x=u in exI)

using empty-comp1 empty-comp2 apply auto

done
```

```
theorem unifier-single: unifier<sub>ls</sub> \sigma {l}
unfolding unifier<sub>ls</sub>-def by auto
```

```
theorem resolution-rule':

assumes C_1 \in Cs

assumes applicable \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma

assumes C = \{resolution \ C_1 \ C_2 \ L_1 \ L_2 \ \sigma\}

shows resolution-step Cs \ (Cs \cup C)

using assms resolution-rule by auto
```

 $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}\}\}$ $(\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}\})$ **by** (*simp add: insert-commute*) moreover have resolution-step $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}\}\}$ $(\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}\}) \cup \{\{PP\}\})$ **apply** (rule resolution-rule' [of $\{NQ\} - \{PP, PQ\} \{NQ\} \{PQ\} \varepsilon$]) unfolding applicable-def vars_{ls}-def vars_l-def NQ-def NP-def PQ-def PP-def resolution-def using unifier-single empty-mgu empty-suble apply auto done then have resolution-step $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}\}\}$ $(\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}\})$ **by** (*simp add: insert-commute*) moreover have resolution-step $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}\}\}$ $(\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}\} \cup \{\{\}\})$ **apply** (rule resolution-rule' [of $\{NP\} - \{PP\} \{NP\} \{PP\} \}$ **unfolding** *applicable-def* vars_{ls}-def vars_l-def NQ-def NP-def PQ-def PP-def resolution-def using unifier-single empty-mgu apply auto done then have resolution-step $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}\}\}$ $(\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}, \{\}\})$ **by** (*simp add: insert-commute*) ultimately have resolution-deriv $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}\}$ $\{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}, \{NP\}, \{PP\}, \{\}\}\}$ unfolding resolution-deriv-def by auto then show ?thesis by auto qed definition Pa :: fterm literal where Pa = Pos "a"definition Na :: fterm literal where Na = Neg "a"definition *Pb* :: *fterm literal* where Pb = Pos "b"

definition Nb :: fterm literal where <math>Nb = Neg "b" []

definition Paa :: fterm literal where

Paa = Pos "a" [Fun "a" []]

definition Naa :: fterm literal where Naa = Neg "a" [Fun "a" []]definition Pax :: fterm literal where Pax = Pos "a" [Var "x"]definition Nax :: fterm literal where Nax = Neg "a" [Var "x"]definition mguPaaPax :: substitution where $mguPaaPax = (\lambda x. if x = ''x'' then Fun ''a'' [] else Var x)$ **lemma** mguPaaPax-mgu: mgu_{ls} mguPaaPax {Paa, Pax} proof let $?\sigma = \lambda x$. if x = ''x'' then Fun ''a'' [] else Var x have a: $unifier_{ls}$ (λx . if x = ''x'' then Fun ''a'' [] else Var x) {Paa, Pax} unfolding Paa-def Pax-def unifier_{ls}-def by auto have $b: \forall u. unifier_{ls} u \{Paa, Pax\} \longrightarrow (\exists i. u = ?\sigma \cdot i)$ proof (rule;rule) fix uassume $unifier_{ls} u \{Paa, Pax\}$ then have uuu: u''x'' = Fun''a'' [] unfolding $unifier_{ls}$ -def Paa-def Pax-def by auto have $?\sigma \cdot u = u$ proof fix x{ assume x = ''x''moreover have $(?\sigma \cdot u) ''x'' = Fun ''a''$ [] unfolding composition-def by auto ultimately have $(?\sigma \cdot u) x = u x$ using uuu by auto } moreover { assume $x \neq '' x''$ then have $(?\sigma \cdot u) x = (\varepsilon x) \cdot u$ unfolding composition-def by auto then have $(?\sigma \cdot u) x = u x$ by *auto* } ultimately show $(?\sigma \cdot u) x = u x$ by *auto* qed then have $\exists i$. $?\sigma \cdot i = u$ by *auto* then show $\exists i. u = ?\sigma \cdot i$ by *auto* qed from a b show ?thesis unfolding mgu_{ls} -def unfolding mguPaaPax-def by autoqed

lemma resolution-example2: resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}} $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}, \{\}\}$ proof have resolution-step $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}\} \cup \{\{Na, Pb\}\})$ apply (rule resolution-rule' of {Pax} - {Na, Pb, Naa} {Pax} {Naa} mguPaaPax]) using mguPaaPax-mgu unfolding applicable-def vars_{ls}-def vars_l-def Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def resolution-def apply auto apply (rule-tac x=Na in image-eqI) unfolding Na-def apply auto apply (rule-tac x=Pb in image-eqI) unfolding *Pb-def* apply *auto* done then have resolution-step $\{\{Nb,Na\},\{Pax\},\{Pa\},\{Na,Pb,Naa\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}\})$ **by** (*simp add: insert-commute*) moreover have resolution-step $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}\} \cup \{\{Na\}\})$ **apply** (rule resolution-rule' of $\{Nb, Na\} - \{Na, Pb\} \{Nb\} \{Pb\} \varepsilon$) **unfolding** applicable-def vars_{ls}-def vars_l-def Pb-def Nb-def Na-def PP-def resolution-def using unifier-single empty-mgu apply auto done then have resolution-step $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}\})$ **by** (*simp add: insert-commute*) moreover have resolution-step $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}\} \cup \{\{\}\})$ **apply** (rule resolution-rule' [of $\{Na\} - \{Pa\} \{Na\} \{Pa\} \epsilon$]) unfolding applicable-def vars_{ls}-def vars_l-def Pa-def Nb-def Na-def PP-def resolution-def using unifier-single empty-mgu apply auto done then have resolution-step $\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}\}$ $(\{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}, \{\}\})$ **by** (*simp add: insert-commute*) ultimately
```
have resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
        \{\{Nb, Na\}, \{Pax\}, \{Pa\}, \{Na, Pb, Naa\}, \{Na, Pb\}, \{Na\}, \{\}\}
   unfolding resolution-deriv-def by auto
 then show ?thesis by auto
qed
```

- **lemma** resolution-example1-sem: $\neg eval_{cs} F G \{\{NP, PQ\}, \{NQ\}, \{PP, PQ\}\}$ using resolution-example1 derivation-sound-refute by auto
- **lemma** resolution-example2-sem: $\neg eval_{cs} F G \{\{Nb, Na\}, \{Pas\}, \{Pa\}, \{Na, Pb, Naa\}\}$ using resolution-example2 derivation-sound-refute by auto

end

19 The Unification Theorem

theory Unification-Theorem imports First-Order-Terms. Unification Resolution begin

definition set-to-list :: 'a set \Rightarrow 'a list where $set-to-list \equiv inv \ set$ **lemma** set-set-to-list: finite $xs \implies set (set-to-list xs) = xs$ **proof** (*induction rule: finite.induct*) case (emptyI)have set $[] = \{\}$ by auto then show ?case unfolding set-to-list-def inv-into-def by auto \mathbf{next} **case** (*insertI* A a) then have set (a # set to - list A) = insert a A by auto then show ?case unfolding set-to-list-def inv-into-def by (metis (mono-tags, *lifting*) UNIV-I someI) d

fun *iterm-to-fterm* :: (*fun-sym*, *var-sym*) *term* \Rightarrow *fterm* **where** iterm-to-fterm (Term. Var x) = Var x | iterm-to-fterm (Term.Fun f ts) = Fun f (map iterm-to-fterm ts)

fun fterm-to-iterm :: fterm \Rightarrow (fun-sym, var-sym) term **where** fterm-to-iterm (Var x) = Term. Var x | fterm-to-iterm (Fun f ts) = Term.Fun f (map fterm-to-iterm ts)

lemma iterm-to-fterm-cancel[simp]: iterm-to-fterm (fterm-to-iterm t) = tby (induction t) (auto simp add: map-idI)

lemma fterm-to-iterm-cancel[simp]: fterm-to-iterm (iterm-to-fterm t) = tby (induction t) (auto simp add: map-idI)

- **abbreviation**(*input*) *fsub-to-isub* :: *substitution* \Rightarrow (*fun-sym*, *var-sym*) *subst* where *fsub-to-isub* $\sigma \equiv \lambda x$. *fterm-to-iterm* (σx)
- **abbreviation**(*input*) *isub-to-fsub* :: (*fun-sym*, *var-sym*) *subst* \Rightarrow *substitution* **where** *isub-to-fsub* $\sigma \equiv \lambda x$. *iterm-to-fterm* (σx)

lemma iterm-to-fterm-subt: (iterm-to-fterm t1) $\cdot_t \sigma$ = iterm-to-fterm (t1 $\cdot (\lambda x. fterm-to-iterm (\sigma x)))$ **by** (induction t1) auto

lemma unifiert-unifiers: assumes unifier_{ts} σ ts shows fsub-to-isub $\sigma \in$ unifiers (fterm-to-iterm 'ts × fterm-to-iterm 'ts) proof – hour $\forall t1 \in$ fterm to iterm (to $\forall t2 \in$ fterm to iterm (to t1 (for to in))

have $\forall t1 \in fterm-to-iterm$ 'ts. $\forall t2 \in fterm-to-iterm$ 'ts. $t1 \cdot (fsub-to-isub \sigma) = t2 \cdot (fsub-to-isub \sigma)$

proof (rule ballI;rule ballI)
fix t1 t2

assume t1-p: $t1 \in fterm-to-iterm$ 'ts assume t2-p: $t2 \in fterm-to-iterm$ 'ts from t1-p t2-p have iterm-to-fterm $t1 \in ts \land iterm-to-fterm$ $t2 \in ts$ by auto then have (iterm-to-fterm t1) $\cdot_t \sigma = (iterm-to-fterm t2) \cdot_t \sigma$ using assms

unfolding $unifier_{ts}$ -def by autothen have iterm-to-fterm $(t1 \cdot fsub$ -to-isub $\sigma) = iterm$ -to-fterm $(t2 \cdot fsub$ -to-isub $\sigma)$ using iterm-to-fterm-subt by auto

then have fterm-to-iterm (iterm-to-fterm $(t1 \cdot fsub$ -to-isub $\sigma)$) = fterm-to-iterm (iterm-to-fterm $(t2 \cdot fsub$ -to-isub $\sigma)$) by auto

then show $t1 \cdot fsub$ -to-isub $\sigma = t2 \cdot fsub$ -to-isub σ using fterm-to-iterm-cancel by auto

qed

then have $\forall p \in fterm$ -to-iterm 'ts \times fterm-to-iterm 'ts. fst $p \cdot fsub$ -to-isub $\sigma = snd \ p \cdot fsub$ -to-isub σ by (metis mem-Times-iff)

then show ?thesis unfolding unifiers-def by blast qed

 $abbreviation(input) get-mgut :: fterm list \Rightarrow substitution option where$

get-mgut ts \equiv map-option (isub-to-fsub \circ subst-of) (unify (List.product (map fterm-to-iterm ts) (map fterm-to-iterm ts)) [])

lemma *unify-unification*:

assumes $\sigma \in unifiers (set E)$ shows $\exists \vartheta$. is-imgu $\vartheta (set E)$

proof –

from assms have $\exists cs. unify E [] = Some cs using unify-complete by auto$ then show ?thesis using unify-sound by autoqed

lemma fterm-to-iterm-subst: (fterm-to-iterm t1) $\cdot \sigma$ =fterm-to-iterm (t1 \cdot_t isub-to-fsub σ)

by (induction t1) auto

lemma unifiers-unifiert: assumes $\sigma \in unifiers$ (fterm-to-iterm 'ts \times fterm-to-iterm 'ts) shows unifier_{ts} (isub-to-fsub σ) ts **proof** (cases $ts = \{\}$) assume $ts = \{\}$ then show $unifier_{ts}$ (isub-to-fsub σ) ts unfolding $unifier_{ts}$ -def by auto \mathbf{next} assume $ts \neq \{\}$ then obtain t' where t'-p: $t' \in ts$ by *auto* have $\forall t_1 \in ts. \ \forall t_2 \in ts. \ t_1 \cdot t \ isub-to-fsub \ \sigma = t_2 \cdot t \ isub-to-fsub \ \sigma$ proof (rule ballI ; rule ballI) fix t_1 t_2 assume $t_1 \in ts \ t_2 \in ts$ then have fterm-to-iterm $t_1 \in$ fterm-to-iterm ' ts fterm-to-iterm $t_2 \in$ fterm-to-iterm ' ts by auto then have (fterm-to-iterm t_1 , fterm-to-iterm t_2) \in (fterm-to-iterm 'ts \times fterm-to-iterm 'ts) by auto then have (fterm-to-iterm t_1) $\cdot \sigma = (fterm-to-iterm t_2) \cdot \sigma$ using assms unfolding unifiers-def by (metis (no-types, lifting) assms fst-conv in-unifiersE snd-conv) then have fterm-to-iterm $(t_1 \cdot t_i \text{ isub-to-fsub } \sigma) = \text{fterm-to-iterm } (t_2 \cdot t_i)$ isub-to-fsub σ) using fterm-to-iterm-subst by auto then have iterm-to-fterm (fterm-to-iterm $(t_1 \cdot t_1 (isub-to-fsub \sigma))) = iterm-to-fterm$ (fterm-to-iterm $(t_2 \cdot t \text{ isub-to-fsub } \sigma)$) by auto then show $t_1 \cdot_t isub-to-fsub \ \sigma = t_2 \cdot_t isub-to-fsub \ \sigma$ by auto ged then have $\forall t_2 \in ts. t' \cdot_t isub-to-fsub \sigma = t_2 \cdot_t isub-to-fsub \sigma$ using t'-p by blast then show $unifier_{ts}$ (isub-to-fsub σ) ts unfolding $unifier_{ts}$ -def by metis qed **lemma** icomp-fcomp: $\vartheta \circ_s i = fsub$ -to-isub (isub-to-fsub $\vartheta \cdot isub$ -to-fsub i) unfolding composition-def subst-compose-def proof fix x**show** $\vartheta x \cdot i = fterm-to-iterm (iterm-to-fterm (\vartheta x) \cdot (\lambda x. iterm-to-fterm (i x)))$ using iterm-to-fterm-subt by auto qed lemma *is-mqu-mqu_{ts}*: assumes finite ts assumes is-imgu ϑ (fterm-to-iterm 'ts \times fterm-to-iterm 'ts) shows mgu_{ts} (isub-to-fsub ϑ) ts

proof -

from assms have $unifier_{ts}$ (isub-to-fsub ϑ) ts unfolding is-imgu-def using unifiers-unifiert by auto

moreover have $\forall u. unifier_{ts} u ts \longrightarrow (\exists i. u = (isub-to-fsub \vartheta) \cdot i)$ **proof** (*rule allI*; *rule impI*) fix uassume $unifier_{ts}$ u ts then have fsub-to-isub $u \in unifiers$ (fterm-to-iterm 'ts \times fterm-to-iterm ' ts) using unifiert-unifiers by auto then have $\exists i. fsub-to-isub \ u = \vartheta \circ_s i$ using assms unfolding is-imgu-def by *auto* then obtain *i* where *fsub-to-isub* $u = \vartheta \circ_s i$ by *auto* then have fsub-to-isub u = fsub-to-isub (isub-to-fsub $\vartheta \cdot isub$ -to-fsub i) using *icomp-fcomp* by *auto* then have isub-to-fsub (fsub-to-isub u) = isub-to-fsub (fsub-to-isub (isub-to-fsub $\vartheta \cdot isub$ -to-fsub i)) by metis then have $u = isub-to-fsub \ \vartheta \cdot isub-to-fsub \ i$ by auto then show $\exists i. u = isub-to-fsub \ \vartheta \cdot i$ by metis aed ultimately show ?thesis unfolding mqu_{ts} -def by auto qed lemma unification': assumes finite ts assumes $unifier_{ts} \sigma ts$ shows $\exists \vartheta$. $mgu_{ts} \vartheta ts$ proof let ?E = fterm-to-iterm 'ts \times fterm-to-iterm 'ts let ?lE = set-to-list ?Efrom assms have fsub-to-isub $\sigma \in$ unifiers ?E using unifiert-unifiers by auto then have $\exists \vartheta$. is-imqu $\vartheta ?E$ using unify-unification of fsub-to-isub σ ?*lE* assms by (simp add: set-set-to-list) then obtain ϑ where is-imgu ϑ ? E unfolding set-to-list-def by auto then have mgu_{ts} (isub-to-fsub ϑ) ts using assms is-mgu-mgu_{ts} by auto then show ?thesis by auto qed

fun literal-to-term :: fterm literal \Rightarrow fterm **where** literal-to-term (Pos p ts) = Fun "Pos" [Fun p ts] | literal-to-term (Neg p ts) = Fun "Neg" [Fun p ts]

fun term-to-literal :: fterm \Rightarrow fterm literal **where** term-to-literal (Fun s [Fun p ts]) = (if s="Pos" then Pos else Neg) p ts

lemma term-to-literal-cancel[simp]: term-to-literal (literal-to-term l) = l by (cases l) auto

lemma literal-to-term-sub: literal-to-term $(l \cdot_l \sigma) = (literal-to-term \ l) \cdot_t \sigma$ by (induction l) auto

lemma $unifier_{ls}$ - $unifier_{ts}$:

```
assumes unifier_{ls} \sigma L
  shows unifier_{ts} \sigma (literal-to-term ' L)
proof -
  from assms obtain l' where \forall l \in L. l \cdot l \sigma = l' unfolding unifierly def by auto
  then have \forall l \in L. literal-to-term (l \cdot_l \sigma) = literal-to-term l' by auto
 then have \forall l \in L. (literal-to-term l) \cdot_t \sigma = literal-to-term l' using literal-to-term-sub
by auto
  then have \forall t \in literal-to-term 'L. t \cdot_t \sigma = literal-to-term l' by auto
  then show ?thesis unfolding unifierts-def by auto
\mathbf{qed}
lemma unifiert-unifier<sub>ls</sub>:
  assumes unifier_{ts} \sigma (literal-to-term ' L)
 shows unifier_{ls} \sigma L
proof -
  from assms obtain t' where \forall t \in literal-to-term 'L. t \cdot_t \sigma = t' unfolding
unifier_{ts}-def by auto
 then have \forall t \in literal-to-term 'L. term-to-literal (t \cdot_t \sigma) = term-to-literal t' by
auto
 then have \forall l \in L. term-to-literal ((literal-to-term l) \cdot_t \sigma) = term-to-literal t' by
auto
  then have \forall l \in L. term-to-literal ((literal-to-term (l \cdot_l \sigma))) = term-to-literal t'
using literal-to-term-sub by auto
  then have \forall l \in L. l \cdot_l \sigma = term-to-literal t' by auto
  then show ?thesis unfolding unifier_{ls}-def by auto
qed
lemma mgu_{ts}-mgu_{ls}:
  assumes mgu_{ts} \vartheta (literal-to-term ' L)
 shows mgu_{ls} \ \vartheta \ L
proof –
 from assms have unifier_{ts} \vartheta (literal-to-term 'L) unfolding mgu_{ts}-def by auto
  then have unifier_{ls} \ \vartheta \ L using unifier_{ls}  by auto
  moreover
  {
   fix u
   assume unifier_{ls} \ u \ L
   then have unifier_{ts} u (literal-to-term 'L) using unifier_{ls}-unifier<sub>ts</sub> by auto
   then have \exists i. u = \vartheta \cdot i using assms unfolding mgu_{ts}-def by auto
  }
  ultimately show ?thesis unfolding mgu_{ls}-def by auto
qed
theorem unification:
  assumes fin: finite L
 assumes uni: unifier<sub>ls</sub> \sigma L
  shows \exists \vartheta. mgu_{ls} \vartheta L
proof -
 from uni have unifier_{ts} \sigma (literal-to-term 'L) using unifier_{ls}-unifier<sub>ts</sub> by auto
```

```
then obtain \vartheta where mgu_{ts} \vartheta (literal-to-term 'L) using fin unification' by
blast
then have mgu_{ls} \vartheta L using mgu_{ts}-mgu_{ls} by auto
then show ?thesis by auto
ged
```

end

20 Instance of completeness theorem

theory Completeness-Instance imports Unification-Theorem Completeness begin

interpretation unification using unification by unfold-locales auto

```
thm lifting
```

 $\begin{array}{l} \textbf{lemma lift:} \\ \textbf{assumes fin: finite } C \land finite D \\ \textbf{assumes apart: } vars_{ls} \ C \cap vars_{ls} \ D = \{\} \\ \textbf{assumes inst_1: instance-of_{ls} \ C' \ C} \\ \textbf{assumes inst_2: instance-of_{ls} \ D' \ D} \\ \textbf{assumes appl: applicable } C' \ D' \ L' \ M' \ \sigma \\ \textbf{shows } \exists L \ M \ \tau. \ applicable \ C \ D \ L \ M \ \tau \ \land \\ instance-of_{ls} \ (resolution \ C' \ D' \ L' \ M' \ \sigma) \ (resolution \ C \ D \ L \ M \ \tau) \\ \textbf{using assms lifting by metis} \end{array}$

 $\mathbf{thm} \ completeness$

```
theorem complete:

assumes finite-cs: finite Cs \forall C \in Cs. finite C

assumes unsat: \forall (F::hterm fun-denot) (G::hterm pred-denot) . <math>\neg eval_{cs} F G Cs

shows \exists Cs'. resolution-deriv Cs Cs' \land \{\} \in Cs'

using assms completeness by -
```

thm completeness-countable

theorem complete-countable: **assumes** inf-uni: infinite (UNIV ::: ('u :: countable) set) **assumes** finite-cs: finite $Cs \forall C \in Cs$. finite C **assumes** unsat: $\forall (F::'u \text{ fun-denot}) (G::'u \text{ pred-denot}). \neg eval_{cs} F G Cs$ **shows** $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ **using** assms completeness-countable by -

 $\mathbf{thm}\ completeness-nat$

```
theorem complete-nat:

assumes finite-cs: finite Cs \forall C \in Cs. finite C

assumes unsat: \forall (F::nat fun-denot) (G::nat pred-denot) . <math>\neg eval_{cs} F G Cs
```

shows $\exists Cs'$. resolution-deriv $Cs Cs' \land \{\} \in Cs'$ using assms completeness-nat by -

end

References

- M. Ben-Ari. Mathematical Logic for Computer Science. Springer, 3rd edition, 2012.
- [2] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, Inc., Orlando, FL, USA, 1st edition, 1973.
- [3] IsaFoL authors. IsaFoL: Isabelle Formalization of Logic. https:// bitbucket.org/isafol/isafol.
- [4] A. Leitsch. The Resolution Calculus. Texts in theoretical computer science. Springer, 1997.
- [5] A. Schlichtkrull. Formalization of resolution calculus in Isabelle. Msc thesis, Technical University of Denmark, 2015. https://people.compute. dtu.dk/andschl/Thesis.pdf.
- [6] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. In *ITP 2016*, volume 9807 of *LNCS*. Springer, 2016.
- [7] A. Schlichtkrull. Formalization of the resolution calculus for first-order logic. Journal of Automated Reasoning, 2018.