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Abstract

A residuated transition system (RTS) is a transition system that is equipped
with a certain partial binary operation, called residuation, on transitions. Using
the residuation operation, one can express nuances, such as a distinction between
nondeterministic and concurrent choice, as well as partial commutativity relation-
ships between transitions, which are not captured by ordinary transition systems. A
version of residuated transition systems was introduced by the author in [10], where
they were called “concurrent transition systems” in view of the original motivation
for their definition from the study of concurrency. In the first part of the present
article, we give a formal development that generalizes and subsumes the original
presentation. We give an axiomatic definition of residuated transition systems that
assumes only a single partial binary operation as given structure. From the ax-
ioms, we derive notions of “arrow” (transition), “source”, “target”, “identity”, as
well as “composition” and “join” of transitions; thereby recovering structure that in
the previous work was assumed as given. We formalize and generalize the result,
that residuation extends from transitions to transition paths, and we systematically
develop the properties of this extension. A significant generalization made in the
present work is the identification of a general notion of congruence on RTS’s, along
with an associated quotient construction.

In the second part of this article, we use the RTS framework to formalize several
results in the theory of reduction in Church’s A-calculus. Using a de Bruijn index-
based syntax in which terms represent parallel reduction steps, we define residuation
on terms and show that it satisfies the axioms for an RTS. An application of the
results on paths from the first part of the article allows us to prove the classical
Church-Rosser Theorem with little additional effort. We then use residuation to
define the notion of “development” and we prove the Finite Developments Theorem,
that every development is finite, formalizing and adapting to de Bruijn indices a
proof by de Vrijer. We also use residuation to define the notion of a “standard
reduction path”, and we prove the Standardization Theorem: that every reduction
path is congruent to a standard one. As a corollary of the Standardization Theorem,
we obtain the Leftmost Reduction Theorem: that leftmost reduction is a normalizing
strategy.
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Chapter 1

Introduction

A transition system is a graph used to represent the dynamics of a computational process.
It consists simply of nodes, called states, and edges, called transitions. Paths through a
transition system correspond to possible computations. A residuated transition system is
a transition system that is equipped with a partial binary operation, called residuation,
on transitions, subject to certain axioms. Among other things, these axioms imply that if
residuation is defined for transitions ¢ and u, then ¢ and u must be coinitial; that is, they
must have a common source state. If the residuation is defined for coinitial transitions
t and u, then we regard transitions ¢ and u as consistent, otherwise they are in conflict.
The residuation t\u of ¢ along u can be thought of as what remains of transition ¢ after
the portion that it has in common with u has been cancelled.

A version of residuated transition systems was introduced in [10], where I called them
“concurrent transition systems”, because my motivation for the definition was to be able
to have a way of representing information about concurrency and nondeterministic choice.
Indeed, transitions that are in conflict can be thought of as representing a nondetermin-
istic choice between steps that cannot occur in a single computation, whereas consistent
transitions represent steps that can so occur and are therefore in some sense concurrent
with each other. Whereas performing a product construction on ordinary transition sys-
tem results in a transition system that records no information about commutativity of
concurrent steps, with residuated transition systems the residuation operation makes it
possible to represent such information.

In [10], concurrent transition systems were defined in terms of graphs, consisting of
states, transitions, and a pair of functions that assign to each transition a source (or
domain) state and a target (or codomain) state. In addition, the presence of transitions
that are identities for the residuation was assumed. Identity transitions had the same
source and target state, and they could be thought of as representing empty computa-
tional steps. The key axiom for concurrent transition systems is the “cube axiom”, which
is a parallel moves property stating that the same result is achieved when transporting a
transition by residuation along the two paths from the base to the apex of a “commuting
diamond”. Using the residuation operation and the associated cube axiom, it becomes
possible to define notions of “join” and “composition” of transitions. The residuation also



induces a notion of congruence of transitions; namely, transitions ¢ and u are congruent
whenever they are coinitial and both ¢\u and v\t are identities. In [10], the basic defi-
nition of concurrent transition system included an axiom, called “extensionality”, which
states that the congruence relation is trivial (i.e. coincides with equality). An advantage
of the extensionality axiom is that, in its presence, joins and composites of transitions
are uniquely defined when they exist. It was shown in [10] that a concurrent transition
system could always be quotiented by congruence to achieve extensionality.

A focus of the basic theory developed in [10] was to show that the residuation opera-
tion \ on individual transitions extended in a natural way to a residuation operation \*
on paths, so that a concurrent transition system could be completed to one having a com-
posite for each “composable” pair of transitions. The construction involved quotienting
by the congruence on paths obtained by declaring paths T" and U to be congruent if they
are coinitial and both T\*U and U\*T are paths consisting only of identities. Besides
collapsing paths of identities, this congruence reflects permutation relations induced by
the residuation. In particular, if t and u are consistent, then the paths ¢(u\t) and u(t\u)
are congruent.

Imposing the extensionality requirement as part of the basic definition of concurrent
transition systems does not end up being particularly desirable, since natural examples
of situations where there is a residuation on transitions (such as on reductions in the
A-calculus) often do not naturally satisfy the extensionality condition and can only be
made to do so if a quotient construction is applied. Also, the treatment of identity
transitions and quotienting in [10] was not entirely satisfactory. The definition of “strong
congruence” given there was somewhat awkward and basically existed to capture the
specific congruence that was induced on paths by the underlying residuation. It was
clear that a more general quotient construction ought to be possible than the one used
n [10], but it was not clear what the right general definition ought to be.

In the present article we revisit the notion of transition systems equipped with a
residuation operation, with the idea of developing a more general theory that does not
require the assumption of extensionality as part of the basic axioms, and of clarifying the
general notion of congruence that applies to such structures. We use the term “residuated
transition systems” to refer to the more general structures defined here, as the name is
perhaps more suggestive of what the theory is about and it does not seem to limit the
interpretation of the residuation operation only to settings that have something to do
with concurrency.

Rather than starting out by assuming source, target, and identities as basic structure,
here we develop residuated transition systems purely as a theory about a partial binary
operation (residuation) that is subject to certain axioms. The axioms will allow us to
introduce sources, targets, and identities as defined notions, and we will be able to recover
the properties of this additional structure that in [10] were taken as axiomatic. This idea
of defining residuated transition systems purely in terms of a partial binary operation
of residuation is similar to the approach taken in [11], where we formalized categories
purely in terms of a partial binary operation of composition.

This article comprises two parts. In the first part, we give the definition of residuated
transition systems and systematically develop the basic theory. We show how sources,



composites, and identities can be defined in terms of the residuation operation. We
also show how residuation can be used to define the notions of join and composite of
transitions, as well as the simple notion of congruence that relates transitions ¢ and u
whenever both t\u and u\t are identities. We then present a much more general notion of
congruence, based a definition of “coherent normal sub-RTS”, which abstracts the prop-
erties enjoyed by the sub-RTS of identity transitions. After defining this general notion
of congruence, we show that it admits a quotient construction, which yields a quotient
RTS having the extensionality property. After studying congruences and quotients, we
consider paths in an RTS, represented as nonempty lists of transitions whose sources
and targets match up in the expected “domino fashion”. We show that the residuation
operation of an RTS lifts to a residuation on its paths, yielding an “RTS of paths” in
which composites of paths are given by list concatenation. The collection of paths that
consist entirely of identity transitions is then shown to form a coherent normal sub-RTS
of the RTS of paths. The associated congruence on paths can be seen as “permutation
congruence”: the least congruence respecting composition that relates the two-element
lists [t,t\u] and [u,u\t] whenever ¢t and u are consistent, and that relates [t,b] and [t]
whenever b is an identity transition that is a target of . Quotienting by the associated
congruence results in a free “composite completion” of the original RTS. The compos-
ite completion has a composite for each pair of “composable” transitions, and it will in
general exhibit nontrivial equations between composites, as a result of the congruence
induced on paths by the underlying residuation. In summary, the first part of this arti-
cle can be seen as a significant generalization and more satisfactory development of the
results originally presented in [10].

The second part of this article applies the formal framework developed in the first
part to prove various results about reduction in Church’s A-calculus. Although many
of these results have had machine-checked proofs given by other authors (e.g. the basic
formalization of residuation in the A-calculus given by Huet [7]), the presentation here
develops a number of such results in a single formal framework: that of residuated
transition systems. For the presentation of the A-calculus given here we employ (as was
also done in [7]) the device of de Bruijn indices [4], in order to avoid having to treat the
issue of a-convertibility. The terms in our syntax represent reductions in which multiple
redexes are contracted in parallel; this is done to deal with the well-known fact that
contractions of single redexes are not preserved by residuation, in general. We treat only
[B-reduction here; leaving the extension to the fn-calculus for future work. We define
residuation on terms essentially as is done in [7] and we develop a similar series of lemmas
concerning residuation, substitution, and de Bruijn indices, culminating in Lévy’s “Cube
Lemma” [8], which is the key property needed to show that a residuated transition system
is obtained. In this residuated transition system, the identities correspond to the usual
A-terms, and transitions correspond to parallel reductions, represented by A-terms with
“marked redexes”. The source of a transition is obtained by erasing the markings on the
redexes; the target is obtained by contracting all the marked redexes.

Once having obtained an RTS whose transitions represent parallel reductions, we
exploit the general results proved in the first part of this article to extend the residuation
to sequences of reductions. It is then possible to prove the Church-Rosser Theorem



with very little additional effort. After that, we turn our attention to the notion of a
“development”, which is a reduction sequence in which the only redexes contracted are
those that are residuals of redexes in some originally marked set. We give a formal proof
of the Finite Developments Theorem ([9, 6]), which states that all developments are finite.
The proof here follows the one by de Vrijer [5], with the difference that here we are using
de Bruijn indices, whereas de Vrijer used a classical A-calculus syntax. The modifications
of de Vrijer’s proof required for de Bruijn indices were not entirely straightforward to
find. We then proceed to define the notion of “standard reduction path”, which is a
reduction sequence that in some sense contracts redexes in a left-to-right fashion, perhaps
with some jumps. We give a formal proof of the Standardization Theorem ([3]), stated
in the strong form which asserts that every reduction is permutation congruent to a
standard reduction. The proof presented here proceeds by stating and proving correct
the definition of a recursive function that transforms a given path of parallel reductions
into a standard reduction path, using a technique roughly analogous to insertion sort.
Finally, as a corollary of the Standardization Theorem, we prove the Leftmost Reduction
Theorem, which is the well-known result that the leftmost (or normal-order) reduction
strategy is normalizing.



Chapter 2

Residuated Transition Systems

theory ResiduatedTransitionSystem
imports Main HOL— Library. FuncSet
begin

2.1 Basic Definitions and Properties

2.1.1 Partial Magmas

A partial magma consists simply of a partial binary operation. We represent the partiality
by assuming the existence of a unique value null that behaves as a zero for the operation.

locale partial-magma =

fixes OP :: 'a = 'a = 'a

assumes ez-un-null: A'n. V. OPnt=n A OPtn=n
begin

definition null :: 'a
where null = (THE n. Vt. OPnt=n A OPtn = n)

lemma null-eql:
assumes At. OPnt=nAOPtn=n
shows n = null

(proof)

lemma null-is-zero [simpl:
shows OP null t = null and OP t null = null
(proof)

end

2.1.2 Residuation

A residuation is a partial magma subject to three axioms. The first, con-sym-az, states
that the domain of a residuation is symmetric. The second, con-imp-arr-resid, constrains



the results of residuation either to be null, which indicates inconsistency, or something
that is self-consistent, which we will define below to be an “arrow”. The “cube axiom”,
cube-azx, states that if v can be transported by residuation around one side of the “com-
muting square” formed by ¢ and u \ ¢, then it can also be transported around the other
side, formed by v and ¢ \ w, with the same result.

type-synonym ’a resid = 'a = 'a = 'a

locale residuation = partial-magma resid
for resid :: 'a resid (infix <\» 70) +

assumes con-sym-ax: t \ u # null = u \ t # null
and con-imp-arr-resid: t \ u # null = (¢ \ u) \ (¢ \ u) # null
and cube-az: (v \ &)\ (v \t) #null = (v \ )\ (u\t)=(v\ w\ (¢t\ w

begin

The axiom cube-az is equivalent to the following unconditional form. The locale
assumptions use the weaker form to avoid having to treat the case (v \ t) \ (u \ t) =
null specially for every interpretation.

lemma cube:
shows (v \ ¢) \ (u\¢) = (v\u)\ (¢t\ v
(proof)

We regard ¢ and u as consistent if the residuation ¢ \ v is defined. It is convenient
to make this a definition, with associated notation.

definition con (infix <~ 50)
where t ~ u =1t \ u # null

lemma conl [intro]:
assumes t \ u # null
shows ¢t —~ u

(proof)

lemma conE [elim]:
assumes t —~ u

and t \ v # null = T
shows T

(proof)

lemma con-sym:
assumes t —~ u
shows u —~ ¢

(proof)
We call t an arrow if it is self-consistent.

definition arr
where arrt =t ~ t

lemma arrl [intro]:
assumes ¢t —~ ¢

10



shows arr ¢
(proof )

lemma arrE [elim]:
assumes arr t
andt ~t = T
shows T

{proof)

lemma not-arr-null [simp]:
shows — arr null

(proof)

lemma con-implies-arr:
assumes t —~ U
shows arr t and arr u

(proof)

lemma arr-resid [simp]:
assumes { —~ u
shows arr (t \ u)

(proof)

lemma arr-resid-iff-con:
shows arr (t \ u) +—t ~u

(proof)

lemma con-arr-self [simp):
assumes arr f
shows f —~ f

(proof)

lemma not-con-null [simp]:
shows con null t = False and con t null = False

(proof)
The residuation of an arrow along itself is the canonical target of the arrow.

definition trg
where trg t =t \ ¢

lemma resid-arr-self:
shows t \ t = trg t
(proof)

lemma arr-trg-iff-arr:
shows arr (trg t) «+— arrt

(proof)
An identity is an arrow that is its own target.

definition ide

11



where idea =a ~aANa\a=a

lemma idel [introl:
assumes ¢« ~acand a \ a = a
shows ide a

(proof)

lemma ideE [elim):

assumes ide a

and [a ~a;a\a=a) = T
shows T

(proof)

lemma ide-implies-arr [simp]:
assumes ide a
shows arr a

(proof)

lemma not-ide-null [simp):
shows ide null = False

(proof)

end

2.1.3 Residuated Transition System

A residuated transition system consists of a residuation subject to additional axioms
that concern the relationship between identities and residuation. These axioms make it
possible to sensibly associate with each arrow certain nonempty sets of identities called
the sources and targets of the arrow. Axiom ide-trg states that the canonical target trg
t of an arrow ¢ is an identity. Axiom resid-arr-ide states that identities are right units
for residuation, when it is defined. Axiom resid-ide-arr states that the residuation of an
identity along an arrow is again an identity, assuming that the residuation is defined.
Axiom con-imp-coinitial-ax states that if arrows ¢ and u are consistent, then there is an
identity that is consistent with both of them (i.e. they have a common source). Axiom
con-target states that an identity of the form ¢ \ u (which may be regarded as a “target”
of u) is consistent with any other arrow v \ u obtained by residuation along u. We note
that replacing the premise ide (¢ \ w) in this axiom by either arr (¢ \ u) or t ~ u would
result in a strictly stronger statement.

locale rts = residuation +

assumes ide-trg [simp]: arr t = ide (trg t)

and resid-arr-ide: [ide a; t ~ a] = t\ a =1

and resid-ide-arr [simp]: [ide a; a —~ t] = ide (a \ t)

and con-imp-coinitial-ax: t ~ uw = Ja. idea Na ~tNa—~u
and con-target: Jide (t \ u); u ~v] = t\u~v\ u

begin

We define the sources of an arrow ¢ to be the identities that are consistent with ¢

12



definition sources
where sources t = {a. ide a A t ~ a}

We define the targets of an arrow t to be the identities that are consistent with the
canonical target trg t.

definition targets
where targets t = {b. ide b A trg t ~ b}

lemma in-sourcesl [intro, simp):
assumes ide a and ¢t —~ a
shows a € sources t

(proof)

lemma in-sourcesE [elim]:
assumes a € sources t
and [ide a; t ~a] = T
shows T

(proof)

lemma in-targetsl [intro, simp):
assumes ide b and trgt —~ b
shows b € targets t

(proof)

lemma in-targetsE [elim]:
assumes b € targets t

and [ide b; trgt ~ b = T
shows T

(proof)

lemma trg-in-targets:
assumes arr t
shows trg t € targets t

(proof)

lemma source-is-ide:
assumes a € sources t
shows ide a

(proof)

lemma target-is-ide:
assumes a € targets t
shows ide a

(proof)
Consistent arrows have a common source.

lemma con-imp-common-source:
assumes { —~ u
shows sources t N sources u # {}

13



(proof)

Arrows are characterized by the property of having a nonempty set of sources, or
equivalently, by that of having a nonempty set of targets.

lemma arr-iff-has-source:
shows arr t <— sources t # {}

(proof)

lemma arr-iff-has-target:
shows arr t «— targets t # {}

(proof)

The residuation of a source of an arrow along that arrow gives a target of the same
arrow. However, it is not true that every target of an arrow ¢ is of the form u \ ¢ for
some v with ¢ —~ w.

lemma resid-source-in-targets:
assumes a € sources t
shows a \ ¢ € targets t

(proof)
Residuation along an identity reflects identities.

lemma ide-backward-stable:
assumes ide a and ide (t \ a)
shows ide ¢

(proof)

lemma resid-reflects-con:
assumes t ~vand u ~vand t\ v ~u\ v
shows t ~ u

(proof)

lemma con-transitive-on-ide:
assumes ide a and ide b and ide ¢
shows [a —~ b; b ~ ¢] = a ~ ¢

(proof)

lemma sources-are-con:
assumes a € sources t and a’ € sources t
shows a —~ a’

(proof)

lemma sources-con-closed:
assumes a € sources t and ide o’ and a —~ a’
shows a’ € sources t

(proof)

lemma sources-eql:
assumes sources t N sources t' # {}
shows sources t = sources t’

14



(proof)

lemma targets-are-con:
assumes b € targets t and b’ € targets t
shows b —~ b’

(proof)

lemma targets-con-closed:
assumes b € targets t and ide b’ and b —~ b’
shows b’ € targets t

(proof)

lemma targets-eql:
assumes targets t N targets t' # {}
shows targets t = targets t’

(proof)

Arrows are coinitial if they have a common source, and coterminal if they have a
common target.

definition coinitial
where coinitial t u = sources t N sources u # {}

definition coterminal
where coterminal t u = targets t N targets u # {}

lemma coinitiall [intro]:
assumes arr t and sources t = sources u
shows coinitial t

(proof)

lemma coinitialE [elim]:

assumes coinitial t u

and [arr t; arr u; sources t = sources u] = T
shows T

(proof)

lemma con-imp-coinitial:
assumes t —~ u
shows coinitial t u

(proof)

lemma coinitial-iff:
shows coinitial t t' < arr t A arr t' A sources t = sources t’

(proof)

lemma coterminal-iff:
shows coterminal t t' <— arr t A arr t’ A targets t = targets t’

{proof)

15



lemma coterminal-iff-con-trg:
shows coterminal t u <— trg t —~ trg u

(proof)

lemma coterminall [intro]:
assumes arr t and targets t = targets u
shows coterminal t u

{proof)

lemma coterminalE [elim]:

assumes coterminal t u

and [arr t; arr u; targets t = targets u] = T
shows T

{proof)

lemma sources-resid [simp]:
assumes { —~ u
shows sources (t \ u) = targets u

(proof)

lemma targets-resid-sym:

assumes { —~ u

shows targets (t \ u) = targets (u \ t)
(proof)

Arrows t and u are sequential if the set of targets of ¢ equals the set of sources of u.

definition seq
where seq t w = arrt A arr u N targets t = sources u

lemma seql [intro]:
shows [arr t; targets t = sources u] = seq t u
and [arr u; targets t = sources u] = seq t u

{proof)

lemma segE [elim]:

assumes seq t u

and [arr t; arr u; targets t = sources u] = T
shows T

(proof )
Congruence of Transitions

Residuation induces a preorder < on transitions, defined by ¢ < u if and only if ¢ \ u is
an identity.

abbreviation prfr (infix << 50)
where ¢ < u = ide (¢ \ u)

lemma prfzE:
assumes t < u

16



and ide (t \ v) = T
shows T

(proof)

lemma prfr-implies-con:
assumes t < u
shows t —~ u

{proof)

lemma prfz-reflexive:
assumes arr t
shows ¢t < ¢

(proof)

lemma prfz-transitive [trans|:
assumes ¢t S v and u S v
shows t < v

(proof)

lemma source-is-prfx:
assumes a € sources t
shows a < t

(proof)
The equivalence ~ associated with < is substitutive with respect to residuation.

abbreviation cong (infix <~) 50)
where t ~u=t<SuAust

lemma congFE:

assumes ¢ ~ u

and [t ~ wu; ide (t \ w); ide (v \ )] = T
shows T

(proof)

lemma cong-reflexive:
assumes arr t
shows ¢ ~ ¢

(proof)

lemma cong-symmetric:
assumes t ~ u
shows u ~ ¢

{proof)

lemma cong-transitive [trans]:
assumes t ~ v and u ~ v
shows t ~ v

(proof)
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lemma cong-subst-left:
assumes t ~ t'and t ~ u
shows t' ~wand t\ u~t'\ u

{proof)

lemma cong-subst-right:
assumes v ~ u' and t ~ u
shows t ~ v’ and t\ u ~t\ v

{proof)

lemma cong-implies-coinitial:
assumes u ~ u’
shows coinitial u u’

{proof)

lemma cong-implies-coterminal:
assumes u ~ u’
shows coterminal v u’

(proof)

lemma ide-imp-con-iff-cong:
assumes ide t and ide u
shows t ~u<+—t~u

(proof)

lemma sources-are-cong:
assumes a € sources t and a’ € sources t
shows a ~ a’

(proof)

lemma sources-cong-closed:
assumes a € sources t and a ~ a’
shows a’ € sources t

(proof)

lemma targets-are-cong:
assumes b € targets t and b’ € targets t
shows b ~ b’

(proof)

lemma targets-cong-closed:
assumes b € targets t and b ~ b’
shows b’ € targets t

(proof)

lemma targets-char:
shows targets t = {b. arr t At \ t ~ b}

(proof)
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lemma coinitial-ide-are-cong:
assumes ide ¢ and ide o’ and coinitial a o’
shows a ~ a’

{proof)

lemma cong-respects-seq:
assumes seq t v and cong t t' and cong u u’
shows seq t' u’

{proof)

Chosen Sources

In a general RTS, sources are not unique and (in contrast to the case for targets) there
isn’t even any canonical source. However, it is useful to choose an arbitrary source for
each transition. Once we have at least weak extensionality, this will be the unique source
and stronger things can be proved about it.

definition src
where src t = if arr t then SOMFE a. a € sources t else null

lemma src-in-sources:
assumes arrt
shows src t € sources t

(proof)

lemma src-congl:
assumes ide a and a —~ t
shows src t ~ a

{proof)

lemma arr-sre-iff-arr:
shows arr (src t) «— arrt

(proof)

lemma arr-sre-if-arr [simp:
assumes arr ¢
shows arr (src t)

(proof)

lemma sources-charcs:
shows sources t = {a. arrt A src t ~ a}

(proof)

lemma targets-char':
shows targets t = {b. arrt A trg t ~ b}

(proof)

lemma con-imp-cong-src:
assumes t —~ u
shows src t ~ src u
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(proof)

lemma ide-src [simpl:
assumes arr ¢
shows ide (src t)

(proof)

lemma src-resid:

assumes t —~ U

shows src (t \ u) ~ trg u
(proof )

lemma apez-arr-priz’:

assumes prfz t u

shows trg (u \ t) ~ trg u

and trg (t \ u) ~ trg u
(proof)

lemma seqlcgs [intro, simp):

shows [arr t; trg t ~ src u] = seq t u

and [arr u; trg t ~ src u] = seq t u
(proof)

lemma seqEcgs [elim]:

assumes seq t u

and [arr u; arr t; trg t ~ src u] = T
shows T

(proof)

lemma coinitial-iff":
shows coinitial t w <— arr t A arr u A srct ~ src u
(proof)

lemma coterminal-iff ":
shows coterminal t u <— arrt A\ arru A trg t ~ trg u

{proof)

lemma coinitiall’ [intro]:
assumes arr t and src t ~ src u
shows coinitial t u

{proof)

lemma coinitialE' [elim]:

assumes coinitial t u

and [arr t; arr w; src t ~ srcu] = T
shows T

(proof)

lemma coterminall’ [intro]:
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assumes arr t and trg t ~ trg u
shows coterminal t u

(proof)

lemma coterminalE’ [elim]:

assumes coterminal t u

and [arr t; arr u; trg t ~ trg u] = T
shows T

{proof)

lemma src-cong-ide:
assumes ide a
shows src a ~ a

{proof)

lemma trg-ide [simp]:
assumes ide a
shows trg a = a

(proof)

lemma ide-iff-src-cong-self:
assumes arr a
shows ide a +— src a ~ a

(proof)

lemma ide-iff-trg-cong-self:
assumes arr a
shows ide a «+— trg a ~ a

(proof)

lemma src-src-cong-sre:
assumes arr t
shows sre (src t) ~ sret

(proof)

lemma trg-trg-cong-trg:

assumes arr t

shows trg (trg t) ~ trg t
{proof )

lemma src-trg-cong-trg:

assumes arr t

shows src (trg t) ~ trg t
(proof)

lemma trg-src-cong-src:
assumes arr t
shows trg (src t) ~ srct

(proof)
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lemma resid-ide-cong:

assumes ide a and coinitial a t

shows t\ a~tand a \ ¢t ~ trg ¢t
(proof )

lemma con-arr-src [simp]:
assumes arr f
shows f —~ src f and src f —~ f

(proof)

lemma resid-src-arr-cong:
assumes arr f
shows src f \ f ~ trg f

(proof)

lemma resid-arr-src-cong:
assumes arr f
shows f \ src f ~ f

{proof)

end

2.1.4 Weakly Extensional RTS

A weakly extensional RTS is an RTS that satisfies the additional condition that identity
arrows have trivial congruence classes. This axiom has a number of useful consequences,
including that each arrow has a unique source and target.

locale weakly-extensional-rts = rts +
assumes weak-extensionality: [t ~ u; ide t; ide u] = t = u
begin

lemma con-ide-are-eq:
assumes ide ¢ and ide ¢’ and a —~ a’
shows a = a’

(proof)

lemma coinitial-ide-are-eq:
assumes ide ¢ and ide a’ and coinitial a o’
shows a = a’

(proof)

lemma arr-has-un-source:
assumes arr t
shows d!a. a € sources t

(proof)

lemma arr-has-un-target:
assumes arr i

22



shows 31b. b € targets t
{proof )

lemma src-eql:
assumes ide a and a —~ t
shows src t = a

(proof)

lemma sources-charw g:
shows sources t = {a. arrt A srct = a}

(proof)

lemma targets-charw g:
shows targets t = {b. arr t A trg t = b}

(proof)

lemma con-imp-eq-src:
assumes t —~ u
shows src t = src u

{proof)

lemma src-residy g [simp]:

assumes { —~ u

shows src (t \ u) = trg u
(proof)

lemma apez-sym:
shows trg (t \ u) = trg (u \ ?)
(proof)

lemma apez-arr-prirw g:

assumes prfc t u

shows trg (u \ t) = trg u

and trg (t \ u) = trg u
(proof)

lemma seqlw g [intro, simp:

shows [arr t; trg t = src u] = seq t u

and [arr u; trg t = src u] = seq t u
(proof)

lemma seqEw g [elim]:

assumes seq t u

and [arr u; arr t; trg t = src u] = T
shows T

{proof)

lemma coinitial-iff w g:
shows coinitial t w <— arrt A arr u A\ src t = src u
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(proof)

lemma coterminal-iff w g:
shows coterminal t uw <— arrt A arru A trgt = trg u

(proof)

lemma coinitiall w g [intro]:
assumes arr t and src t = src u
shows coinitial t u

(proof)

lemma coinitialEw g [elim]:

assumes coinitial t u

and [arr t; arr u; src t = srcu]) = T
shows T

(proof)

lemma coterminall w g [intro]:
assumes arrt and trg t = trg u
shows coterminal t u

(proof)

lemma coterminalEw g [elim]:
assumes coterminal t u

and [arr t; arr u; trgt = trgu] = T
shows T

(proof)

lemma sre-ide [simp]:
assumes ide a
shows src a = a

(proof)

lemma ide-iff-src-self:
assumes arr a
shows ide a <— src a = a

(proof)

lemma ide-iff-trg-self:
assumes arr a
shows ide a +— trg a = a

(proof)

lemma sre-src [simp]:
shows src (src t) = sre t

{proof)

lemma trg-trg [simp]:
shows trg (trg t) = trg t
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(proof)

lemma sre-trg [simp:
shows src (trg t) = trg t
(proof)

lemma trg-src [simp]:
shows trg (src t) = src t
{proof)

lemma resid-ide:

assumes ide a and coinitial a t

shows t\a=tanda\t=1trgt
(proof )

lemma resid-src-arr [simp]:
assumes arr f
shows src f \ f = trg f

(proof)

lemma resid-arr-src [simp]:

assumes arr f

shows f \ src f = f
(proof)

end

2.1.5 Extensional RTS

An extensional RTS is an RTS in which all arrows have trivial congruence classes; that
is, congruent arrows are equal.

locale extensional-rts = rts +
assumes extensionality: t ~ u =t = u
begin

sublocale weakly-extensional-rts

(proof)

lemma cong-char:
shows t ~ u ¢— arrt ANt =u

(proof)

end

2.1.6 Composites of Transitions

Residuation can be used to define a notion of composite of transitions. Composites are
not unique, but they are unique up to congruence.
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context rts
begin

definition composite-of
where composite-of utv=u S v A v\ u~t

lemma composite-ofI [intro]:
assumes v Svand v\ u ~t
shows composite-of u t v

(proof)

lemma composite-ofE [elim]:
assumes composite-of u t v
and [uSv;v\u~t]l= T
shows T

(proof)

lemma arr-composite-of:
assumes composite-of u t v
shows arr v

(proof)

lemma composite-of-unq-upto-cong:
assumes composite-of u t v and composite-of u t v’
shows v ~ v’

(proof)

lemma composite-of-ide-arr:
assumes ide a
shows composite-of a t t +— t —~ a

(proof)

lemma composite-of-arr-ide:
assumes ide b
shows composite-of t bt «+— t \ t ~ b

{proof)

lemma composite-of-source-arr:
assumes arr t and a € sources t
shows composite-of a t t

{proof)

lemma composite-of-arr-target:
assumes arr t and b € targets t
shows composite-of t b t

{proof)

lemma composite-of-ide-self:
assumes ide a
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shows composite-of a a a
(proof)

lemma con-prfr-composite-of:
assumes composite-of t u w
shows t ~wand w ~v =1t ~v

(proof)

lemma sources-composite-of:
assumes composite-of u t v
shows sources v = sources u

(proof)

lemma targets-composite-of:
assumes composite-of u t v
shows targets v = targets t

{proof)

lemma resid-composite-of:

assumes composite-of t u w and w —~ v
shows v \ t ~w \ ¢

and v\ t ~ u

and v\ w~ (v\t)\ u

and composite-of (t\ v) (v \ (v \ t)) (w\ v)
(proof)

lemma con-composite-of-iff:
assumes composite-of t u v
shows w ~v<+— w\t ~u

{proof)

definition composable
where composable t w = Fv. composite-of t u v

lemma composableD [dest]:
assumes composable t u
shows arr t and arr v and targets t = sources u

(proof)

lemma composable-imp-seq:
assumes composable t u
shows seq t u

(proof)

lemma composable-permute:
shows composable t (u \ t) +— composable u (t \ )

(proof)

lemma diamond-commutes-upto-cong:
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assumes composite-of t (u \ t) v and composite-of u (¢t \ u) v’
shows v ~ v’

(proof)

lemma bounded-imp-con:
assumes composite-of t u v and composite-of t' u’ v
shows con t t'

{proof)

lemma composite-of-cancel-left:
assumes composite-of t u v and composite-of t u’ v
shows u ~ u’

(proof)

end

RTS with Composites

locale rts-with-composites = rts +
assumes has-composites: seq t u => composable t u
begin

lemma composable-iff-seq:
shows composable g f +— seq g f

(proof)

lemma composablel [intro]:
assumes seq g f
shows composable g f

{proof)

lemma composableE [elim]:
assumes composable g f and seq g f = T
shows T

{proof)

lemma obtains-composite-of:
assumes seq g f
obtains i where composite-of g f h

(proof)

end

2.1.7 Joins of Transitions

context rts
begin

Transition v is a join of u and v when v is the diagonal of the square formed by wu,
v, and their residuals. As was the case for composites, joins in an RTS are not unique,
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but they are unique up to congruence.

definition join-of
where join-of t u v = composite-of t (u \ t) v A composite-of u (¢t \ u) v

lemma join-ofI [introl:
assumes composite-of t (u \ t) v and composite-of u (¢t \ u) v
shows join-of t u v

{proof)

lemma join-ofE [elim]:

assumes join-of t u v

and [composite-of t (u \ t) v; composite-of u (t \ u) v] = T
shows T

{proof)

definition joinable
where joinable t v = Jv. join-of t u v

lemma joinable-implies-con:
assumes joinable t u
shows t ~ u

(proof)

lemma joinable-implies-coinitial:
assumes joinable t u
shows coinitial t u

(proof)

lemma joinable-iff-composable:
shows joinable t u «— composable t (u \ t)

(proof)

lemma join-of-un-upto-cong:
assumes join-of t v v and join-of t u v’
shows v ~ v’

(proof)

lemma join-of-symmetric:
assumes join-of t u v
shows join-of u t v

(proof)

lemma join-of-arr-self:
assumes arr t
shows join-of t t t

{proof)

lemma join-of-arr-src:
assumes arr t and a € sources t
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shows join-of a t t and join-of t a t

{proof)

lemma sources-join-of:

assumes join-of t u v

shows sources t = sources v and sources u = sources v
(proof)

lemma targets-join-of:

assumes join-of t u v

shows targets (t \ u) = targets v and targets (u \ t) = targets v
(proof)

lemma join-of-resid:

assumes join-of t v w and con v w

shows join-of (t\ v) (v \ v) (w\ v)
(proof)

lemma con-with-join-of-iff:

assumes join-of t u w

shows u ~vAv\u ~t\uv=— w~—~v
andw ~v=t~vAv\t~u\t

{proof)

lemma join-of-respects-cong-left:
assumes join-of t v v and cong t t’
shows join-of t' u v

(proof)

lemma join-of-respects-cong-right:
assumes join-of t v v and cong u u’
shows join-of t u' v

(proof)

end

RTS with Joins

locale rts-with-joins = rts +
assumes has-joins: t ~ u = joinable t u

2.1.8 Joins and Composites in a Weakly Extensional RTS

context weakly-extensional-rts
begin

lemma src-composite-of:
assumes composite-of u t v
shows src v = src u

(proof )
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lemma trg-composite-of:
assumes composite-of u t v
shows trg v = trg t

(proof)

lemma src-join-of:
assumes join-of t u v
shows src t = src v and src u = src v

(proof)

lemma trg-join-of:

assumes join-of t u v

shows trg (¢t \ u) = trg v and trg (u \ t) = trg v
(proof)

end

2.1.9 Joins and Composites in an Extensional RTS

context extensional-rts
begin

lemma composite-of-unique:
assumes composite-of t u v and composite-of t u v’
shows v = v’

(proof)

lemma divisors-of-ide:
assumes composite-of t u v and ide v
shows ide t and ide u

{proof)

Here we define composition of transitions. Note that we compose transitions in dia-
gram order, rather than in the order used for function composition. This may eventually
lead to confusion, but here (unlike in the case of a category) transitions are typically not
functions, so we don’t have the constraint of having to conform to the order of function
application and composition, and diagram order seems more natural.

definition comp (infixr <> 55)
where t - u = if composable t u then THE v. composite-of t u v else null

lemma comp-is-composite-of:
shows composable t u = composite-of t u (t - u)
and composite-of t uv =t - u ="

{proof)

lemma comp-null [simp):
shows null - t = null and t - null = null

(proof)
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lemma composable-iff-arr-comp:
shows composable t u «— arr (¢ - u)

{proof)

lemma composable-iff-comp-not-null:
shows composable t u «— t - u # null

{proof)

lemma comp-src-arr [simp]:
assumes arr t and src t = a
shows a - t =1

(proof)

lemma comp-arr-trg [simp:
assumes arrt and trgt = b
shows t - b =1

(proof)

lemma comp-ide-self:

assumes ide a

shows a - a = a
(proof)

lemma arr-comp [intro, simp):
assumes composable t u
shows arr (t - u)

(proof)

lemma trg-comp [simp]:

assumes composable t u

shows trg (t - u) = trg u
(proof)

lemma src-comp [simp):
assumes composable t u
shows src (¢t - u) = src t

(proof)

lemma con-comp-iff:
shows w —~ ¢ - v <— composable t u A w\ t ~ u

(proof)

lemma con-compl [intro]:
assumes composable t v and w \ t ~ u
shows w ~t-vand t-u —~w

(proof)

lemma resid-comp:
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assumes ¢ - u —~ W
shows w\ (¢t - u) = (w\ ) \ u
and (¢ u) \ w=(t\ w)(u\ (w) 1)
{proof)

lemma prfr-decomp:

assumes t < u

shows ¢ - (u \ t)
(proof)

U

lemma prfz-comp:
assumes arruand t - v = u
shows ¢t < u

{proof)

lemma comp-eql:
assumes t Svand u = v\ ¢
shows t - u=wv

(proof)

lemma comp-assoc:
assumes composable (t - u) v
shows ¢« (u-v) = (¢t u) v

{proof)

We note the following assymmetry: composable (t - u) v => composable u v is true,
but composable t (u - v) = composable t u is not.

lemma comp-cancel-left:
assumes arr (t - u)and t - u =1 v
shows u = v

(proof)

lemma comp-resid-prfx [simp]:
assumes arr (¢ - u)
shows (¢t - u) \ t =u

(proof)

lemma bounded-imp-cong:
assumes t - u ~ t' - u’
shows t —~ t/

(proof)

lemma join-of-unique:
assumes join-of t v v and join-of t u v’
shows v = v’

(proof )

definition join (infix <L) 52)
where t U u = if joinable t u then THE v. join-of t u v else null
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lemma join-is-join-of:
assumes joinable t u
shows join-of t u (t U u)

(proof)

lemma joinable-iff-arr-join:
shows joinable t uw +— arr (t U u)

{proof)

lemma joinable-iff-join-not-null:
shows joinable t u +— t U u # null
(proof)

lemma join-sym:
shows tUu=wulUt

(proof)

lemma src-join:
assumes joinable t u
shows sre (t U u) = src t

(proof)

lemma trg-join:

assumes joinable t u

shows trg (t U u) = trg (¢ \ u)
(proof)

lemma resid-joing [simp]:

assumes joinable t w and v ~ t U u
shows v \ (t U u) = (v\ u)\ (¢\ u)
and v\ (tUu)=(v\t)\ (u)\1)
and (t Uwu)\ v=(¢t\v)U (u)\v)
(proof)

lemma join-eql:

assumes t Svand v Svand v\ uv=t\vand v\ t=u\t¢
shows t U u = v

{proof )

lemma comp-join:

assumes joinable (t - u) (¢t - u’)
shows composable t (u U u’)
and ¢t (wUu)=t-uwlt-u
(proof)

lemma join-src:
assumes arr t
shows src t Ut =t
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(proof)

lemma join-arr-self:
assumes arr t
shows t LIt =t

(proof)

lemma arr-prfx-join-self:
assumes joinable t u
shows t <t U wu

(proof)

lemma con-prfc:
shows [t ~uwvSu] =t ~v
and [t ~u; v St = v ~u

(proof)

lemma join-prfz:
assumes t < u
shows t Uu=wvand v Ut =u

(proof )

lemma con-with-join-if [intro, simp):

assumes joinable t uand u ~vand v\ u ~t\ u
shows t U u —~ v

and v ~t U u

{proof)

lemma join-assocg:
assumes arr ((t U w) U v) and arr (¢t U (v U v))
shows (t Uu) Uov=1¢tU (ul )

(proof)

lemma join-prfr-monotone:
assumes t Suwand u U v~ tUw
shows t Uv S uw U w

(proof )

lemma join-eql”:
assumes t Svand v Svand v\ u=t\vand v\ t=u\t
shows v = ¢ U u

(proof)

We note that it is not the case that the existence of either of ¢ L (u U v) or (¢ U u) U
v implies that of the other. For example, if (¢ U u) U v # null, then it is not necessarily
the case that u L v # null.

lemma join-expansion:

assumes joinable t u
shows t Uu=1¢t-(u\ ¢) and seq t (u \ t)
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(proof)

lemma join3-expansion:

assumes joinable (t U u) v

shows (t Uu)Uov=(¢t-(u\1?t)  ((v\)\(u)\?1))
{proof )

lemma join-comp:

assumes joinable (t - u) v

shows (t -u)Uov=1t-(v\¢t): (u\(v\1)
(proof)

end

Extensional RTS with Joins

locale extensional-rts-with-joins =
rts-with-joins +
extensional-rts

begin

lemma joinable-iff-con [iff]:
shows joinable t u «— t ~ u

(proof)

lemma joinableE [elim]:
assumes joinable t vand t ~ v = T
shows T

(proof)

lemma sre-joing ; [simp):
assumes { —~ u
shows sre (t U u) = src t

(proof)

lemma trg-joing j:

assumes t —~ u

shows trg (t U u) = trg (¢t \ u)
(proof)

lemma resid-joing; [simp):

assumes t ~uvand v ~t U u

shows v \ (tUu)=(v\t)\ (u\?)

and (t Uwu)\v=_(¢t\v)U (u)\v)
(proof)

lemma join-assoc:
shows t U (v U v) = (t U u) Uw

{proof)
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lemma join-is-lub:
assumes t < vand u S v
shows t U u < v

(proof )

end

Extensional RTS with Composites

If an extensional RTS is assumed to have composites for all composable pairs of transi-
tions, then the “semantic” property of transitions being composable can be replaced by
the “syntactic” property of transitions being sequential. This results in simpler state-
ments of a number of properties.

locale extensional-rts-with-composites =
rts-with-composites +
extensional-rts

begin

lemma seq-implies-arr-comp:
assumes seq t u
shows arr (t - u)

(proof)

lemma arr-compgc [intro, simp):
assumes arr t and trg t = src u
shows arr (t - u)

{proof)

lemma arr-compEgc [elim]:
assumes arr (¢ - u)
and [arr t; arr u; trg t = src u] = T
shows T
(proof )

lemma trg-comppc [simp):

assumes seq t u

shows trg (t - u) = trg u
(proof)

lemma src-compgc [simp:
assumes seq t u
shows src (t - u) = src t

{proof)

lemma con-comp-iff o [simp]:
shows w ~t-u<+— segtuNu—~w\t
and t-u ~w<+— segtu A u—~w\t

{proof)
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lemma comp-assocgc:
shows ¢ - (u-v)=(t-u) v

{proof)

lemma diamond-commutes:
shows ¢ - (u\ t) =u- (¢t \ w)
(proof )

lemma mediating-transition:
assumes - v = u - w

shows v \ (u\ t) =w\ (¢t \ w)
(proof)

lemma induced-arrow:

assumes seqt uand t - u =t'- u

shows (¢/\ t) - (u \ (t'\ ?)) = u

and (¢t \ t) - (u\ (¢'\ ?)) =’

and (¢'\t) v=u=v=u\ (t'\1?)
(proof)

If an extensional RT'S has composites, then it automatically has joins.

/

sublocale extensional-rts-with-joins

(proof )

lemma comp-joingc:

assumes composable t u and joinable u u’
shows composable t (u U u’)

andt- (vUu)=t-uwlUt- u

(proof)

lemma resid-common-prefix:

assumes ¢t - u ~ ¢ - v

shows (¢t - u) \ (t-v) =u\ v
(proof )

end

2.1.10 Confluence

An RTS is confluent if every coinitial pair of transitions is consistent.

locale confluent-rts = rts +
assumes confluence: coinitial t w =—> con t u

2.2 Simulations

Simulations are morphisms of residuated transition systems. They are assumed to pre-
serve consistency and residuation.
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locale simulation =
A:rts A +
B: rts B
for A :: 'a resid (infix \ 4> 70)
and B :: b resid (infix \p» 70)
and F :: 'a = b+
assumes extensionality: = A.arr t = F t = B.null
and preserves-con [simp]: A.con t u => B.con (Ft) (F u)
and preserves-resid [simp]: A.contu = F (t\a u) = Ft\p Fu
begin

notation A.con (infix «—~4> 50)
notation A.prfz  (infix <S4 50)
notation A.cong (infix «~4> 50)

notation B.con (infix <—~p» 50)
notation B.prfr (infix <<Sp» 50)
notation B.cong (infix (~p» 50)

lemma preserves-reflects-arr [iff]:
shows B.arr (F t) «— A.arrt

(proof)

lemma preserves-ide [simp]:
assumes A.ide a
shows B.ide (F a)

(proof)

lemma preserves-sources:
shows F ¢ A.sources t C B.sources (F t)

(proof)

lemma preserves-targets:
shows F ¢ A.targets t C B.targets (F' t)

(proof)

lemma preserves-trg [simp:
assumes A.arr t
shows B.trg (F't) = F (A.trg t)

(proof)

lemma preserves-seq:
shows A.seq t u = B.seq (F t) (F u)

(proof)

lemma preserves-composites:
assumes A.composite-of t u v
shows B.composite-of (F t) (F u) (F v)

(proof)
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lemma preserves-joins:

assumes A.join-of t u v

shows B.join-of (Ft) (F u) (F v)
(proof )

lemma preserves-prfz:
assumes t <4 u
shows F't <gp Fu

(proof)

lemma preserves-cong:
assumes t ~4 u
shows F ¢t ~g Fu

(proof)

end

2.2.1 Identity Simulation

locale identity-simulation =
rts
begin

abbreviation map
where map = At. if arr t then t else null

sublocale simulation resid resid map

(proof)

end

2.2.2 Composite of Simulations

lemma simulation-comp [introl:
assumes simulation A B F and simulation B C G
shows simulation A C (G o F)

(proof)

locale composite-simulation =
F: simulation A B F +
G: simulation B C G

for A :: 'a resid

and B :: b resid

and C :: c resid

and F :: ‘a="b

and G :: 'b = 'c

begin

abbreviation map
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where map = G o F

sublocale simulation A C map

{proof)

lemma is-simulation:
shows simulation A C map

{proof)

end

2.2.3 Simulations into a Weakly Extensional RTS

locale simulation-to-weakly-extensional-rts =
simulation +
B: weakly-extensional-rts B

begin

lemma preserves-src [simp]:
shows a € A.sources t => B.src (Ft) = F a

(proof)

lemma preserves-trg [simp:
shows b € A.targets t = B.trg (Ft) = F b

(proof)

end

2.2.4 Simulations into an Extensional RTS

locale simulation-to-extensional-rts =
simulation +
B: extensional-rts B

begin

notation B.comp (infixr ¢ p» 55)
notation B.join (infixr (Up> 52)

lemma preserves-comp:
assumes A.composite-of t u v
shows Fv=Ft -g Fu

{proof)

lemma preserves-join:
assumes A.join-of t u v
shows Fv=FtUg Fu

{proof)

end
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2.2.5 Simulations between Weakly Extensional RTS’s

locale simulation-between-weakly-extensional-rts =
simulation-to-weakly-extensional-rts +
A: weakly-extensional-rts A

begin

lemma preserves-src [simp]:
shows B.src (F t) = F (A.src t)

(proof)

lemma preserves-trg [simp):

shows B.trg (F't) = F (A.trg t)
{proof)

end

2.2.6 Simulations between Extensional RTS’s

locale simulation-between-extensional-rts =
stmulation-to-extensional-rts +
A: extensional-rts A

begin

sublocale simulation-between-weakly-extensional-rts {proof)

notation A.comp (infixr -4 55)
notation A.join (infixr Uy 52)

lemma preserves-comp:

assumes A.composable t u

shows F (t -4 u) =Ft g Fu
(proof )

lemma preserves-join:

assumes A.joinable t u

shows F (t Uy u) = FtUg Fu
(proof)

end

2.2.7 Transformations

A transformation is a morphism of simulations, analogously to how a natural transfor-
mation is a morphism of functors, except the normal commutativity condition for that
“naturality squares” is replaced by the requirement that the arrows at the apex of such
a square are given by residuation of the arrows at the base. If the codomain RTS is
extensional, then this condition implies the commutativity of the square with respect to
composition, as would be the case for a natural transformation between functors.
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The proper way to define a transformation when the domain and codomain are general
RTS’s is not yet clear to me. However, if the codomain is weakly extensional, then we
have unique sources and targets, so there is no problem. The definition below is limited
to that case. I do not make any attempt here to develop facts about transformations.
My main reason for including this definition here is so that in the subsequent application
to the A-calculus, I can exhibit S-reduction as an example of a transformation.

locale transformation =
A:rts A +
B: weakly-extensional-rts B +
F: simulation A B F +
G: simulation A B G
for A :: 'a resid (infix \ 4> 70)
and B :: 'b resid (infix \p» 70)
and F :: 'a = 'b
and G :: ‘a = "b
and 7 : ‘a = b +
assumes extensionality: ~ A.arr f = 7 f = B.null
and respects-cong-ide: [A.ide a; A.cong a a'] = 7 a =7 o’
and preserves-src: A.ide f = B.src (1 f) = F f
and preserves-trg: A.ide f = B.trg (1 f) = G f
and naturalityl-az: a € A.sources f = 7 a\p Ff=7 (a\a f)
and naturality2-az: a € A.sources f = F f\pT7a=Gf
and naturality3: a € A.sources f = B.join-of (1 a) (F f) (7 f)
begin

notation A.con  (infix <—~4> 50)
notation A.prfr  (infix <S4 50)

notation B.con (infix «—~p» 50)
notation B.prfz  (infix «<<p» 50)

lemma naturality1:
shows 7 (A.src f) \p F f =1 (A.trg f)

(proof)

lemma naturality2:
shows F f\p 7 (A.src f) = G f

(proof)

lemma respects-cong:
assumes A.cong u u’
shows B.cong (1 u) (7 u’)

(proof)

end
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2.3 Normal Sub-RTS’s and Congruence

We now develop a general quotient construction on an RTS. We define a normal sub-RTS
of an RTS to be a collection of transitions 91 having certain “local” closure properties.
A normal sub-RTS induces an equivalence relation =g, which we call semi-congruence,
by defining ¢t ~p u to hold exactly when ¢ \ u and « \ t are both in 9. This relation
generalizes the relation ~ defined for an arbitrary RTS, in the sense that ~ is obtained
when 1 consists of all and only the identity transitions. However, in general the relation
/g is fully substitutive only in the left argument position of residuation; for the right
argument position, a somewhat weaker property is satisfied. We then coarsen =g to
a relation =, by defining ¢ ~ u to hold exactly when ¢ and w can be transported by
residuation along transitions in 91 to a common source, in such a way that the residuals
are related by ~2y. To obtain full substitutivity of &~ with respect to residuation, we need
to impose an additional condition on 9. This condition, which we call coherence, states
that transporting a transition ¢ along parallel transitions » and v in 91 always yields
residuals ¢ \ v and u \ t that are related by ~. We show that, under the assumption
of coherence, the relation = is fully substitutive, and the quotient of the original RTS
by this relation is an extensional RTS which has the 91-connected components of the
original RTS as identities. Although the coherence property has a somewhat ad hoc feel
to it, we show that, in the context of the other conditions assumed for 91, coherence is
in fact equivalent to substitutivity for ~.

2.3.1 Normal Sub-RTS’s

locale normal-sub-rts =

R: rts +

fixes N :: ‘a set

assumes clements-are-arr: t € N = R.arr t

and ide-closed: R.ide a = a € N

and forward-stable: [ u € M; R.coinitial t u] = u \ t €N

and backward-stable: [u € M; t\ueN] =t N

and composite-closed-left: [ u € M; R.seq u t | = Fv. R.composite-of u t v

and composite-closed-right: [ u € M; R.seq t w ] = Jv. R.composite-of t u v
begin

lemma prfz-closed:
assumes v € M and R.prfz t u
shows t € M

(proof)

lemma composite-closed:
assumes t € 9 and v € N and R.composite-of t u v
shows v € M

(proof)

lemma factor-closed:
assumes R.composite-of t u v and v € N
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shows t € 9T and u € N
(proof )

lemma resid-along-elem-preserves-con:
assumes t —~ t’ and R.coinitial t v and u € N
shows t \ u ~ t'\ u

{proof)

end

Normal Sub-RTS’s of an Extensional RTS with Composites

locale normal-in-extensional-rts-with-composites =
R: extensional-rts +
R: rts-with-composites +
normal-sub-rts

begin

lemma factor-closedgc:
assumes t - u € N
shows t € fTand u € N

(proof)

lemma comp-in-normal-iff:
shows t - u € N—teNANueENANRSeqtu

(proof)

end

2.3.2 Semi-Congruence

context normal-sub-rts
begin

We will refer to the elements of O as normal transitions. Generalizing identity
transitions to normal transitions in the definition of congruence, we obtain the notion of
semi-congruence of transitions with respect to a normal sub-RTS.

abbreviation Congy (infix x> 50)
where t o t/ =t \ t/ €N AL\ tEN

lemma Congg-reflexive:
assumes R.arr t
shows ¢t ~g t

(proof)

lemma Congg-symmetric:
assumes t ~q ¢’
shows t/ ~ t

{proof)
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lemma Congg-transitive [trans]:
assumes t ~y t' and t' ~q t"’
shows t ~ t”’/

(proof)

lemma Congg-imp-con:
assumes t ~ t’
shows R.con t t’

(proof)

lemma Congg-imp-coinitial:
assumes t ~ t’
shows R.sources t = R.sources t'

(proof )
Semi-congruence is preserved and reflected by residuation along normal transitions.

lemma Resid-along-normal-preserves-Congg:
assumes t ~y t' and v € DN and R.sources t = R.sources u
shows t \ u =g t'\ u

(proof)

lemma Resid-along-normal-reflects-Congg:
assumes t \ u =~ t'\ vwand u € N
shows t ~¢ t’

{proof )
Semi-congruence is substitutive for the left-hand argument of residuation.

lemma Congg-subst-left:
assumes t ~y t' and t ~ u
shows t’ ~wand t \ u=g t'\ u

{proof)

Semi-congruence is not exactly substitutive for residuation on the right. Instead, the
following weaker property is satisfied. Obtaining exact substitutivity on the right is the
motivation for defining a coarser notion of congruence below.

lemma Congg-subst-right:

assumes u ~g v’ and t ~ u

shows t ~ v’ and (¢ \ u) \ (v’ \ w) =o (¢t \ v)\ (u\ v
(proof)

lemma Congg-subst-Con:
assumes t ~y t' and v ~g u’
shows t ~ u «— t' —~ u’

(proof)

lemma Congg-cancel-left:
assumes R.composite-of t v v and R.composite-of t v’ v/ and v =~y v’
shows u ~y u’
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{proof)

lemma Congg-iff:
shows t ~¢ t’' +—
Buu vv. ueNAu €NAvmgv A
R.composite-of t uw v A R.composite-of t' u’ v’)

{proof)

lemma diamond-commutes-upto-Congg:
assumes t —~ u and R.composite-of t (u \ t) v and R.composite-of u (t \ u) v’
shows v ~g v’

{proof)

2.3.3 Congruence

We use semi-congruence to define a coarser relation as follows.

definition Cong (infix =) 50)
where Congtt'=Juu v e MAuW €NAL\ uryt'\ u

lemma Congl [intro]:
assumes v € Mand v’ € Nand ¢ \ v =g t'\ v
shows Cong t t’

(proof)

lemma CongFE [elim]:

assumes t ~ t’

obtains u u’

where v € Mtand v’ € Nand ¢t \ v~y t'\ v

(proof)

lemma Cong-imp-arr:
assumes t ~ t’
shows R.arr t and R.arr t’

(proof)

lemma Cong-reflexive:
assumes R.arr t
shows t ~ ¢

(proof)

lemma Cong-symmetric:
assumes t ~ t’
shows t' ~ ¢

(proof)
The existence of composites of normal transitions is used in the following.

lemma Cong-transitive [trans]:
assumes t ~ ¢t and t" ~ t’
shows t ~ t’
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{proof)

lemma Cong-closure-props:

shows t ~ v = u~t

and [t ® y; um ] =t~ v

and t =g u =t~ u

and [u € M; R.sources t = R.sources u] = t = ¢\ u

{proof)

lemma Congg-implies-Cong:
assumes t ~q t’
shows t ~ t’

(proof)

lemma in-sources-respects-Cong:
assumes t ~ t' and a € R.sources t and a’ € R.sources t’
shows a ~ a’

{proof)

lemma in-targets-respects-Cong:
assumes t ~ t’ and b € R.targets t and b’ € R.targets t’
shows b ~ b’

{proof)

lemma sources-are-Cong:
assumes a € R.sources t and a’ € R.sources t
shows a ~ a’

(proof)

lemma targets-are-Cong:
assumes b € R.targets t and b’ € R.targets t
shows b ~ b’

(proof)

It is not the case that sources and targets are ~-closed; i.e. t ~ t' = sources t =
sources t' and t ~ t' = targets t = targets t’ do not hold, in general.

lemma Resid-along-normal-preserves-reflects-con:
assumes u € N and R.sources t = R.sources u
shows t \ u ~ t'\ u+— t ~ t'

(proof)

We can alternatively characterize =~ as the least symmetric and transitive relation on
transitions that extends a2y and has the property of being preserved by residuation along
transitions in 1.

inductive Cong’
where At u. Cong’ t u = Cong’ u t
| At uv. [Cong’ t u; Cong’ u v] = Cong’ t v
| At u. t =g u = Cong’ tu
| At w. [R.arr t; u € M; R.sources t = R.sources u] = Cong’ ¢ (t \ u)
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lemma Cong’-if:
shows Ju € M; v’ € Mt \ urp t'\ u] = Cong’ t ¢
(proof)

lemma Cong-char:
shows Cong t t' «<— Cong’ t t’

{proof)

lemma normal-is-Cong-closed:
assumes t € Nand ¢t ~ ¢’
shows ¢t/ € N

(proof)

2.3.4 Congruence Classes

Here we develop some notions relating to the congruence classes of ~.

definition Cong-class («{-]»)
where Cong-class t = {t'. t = t'}

definition is-Cong-class
where is-Cong-class T =3t. t € T AT = {t}

definition Cong-class-rep
where Cong-class-rep T = SOME t. t € T

lemma Cong-class-is-nonempty:
assumes is-Cong-class T
shows T # {}

(proof)

lemma rep-in-Cong-class:
assumes is-Cong-class T
shows Cong-class-rep T € T

(proof)

lemma arr-in-Cong-class:
assumes R.arr t
shows t € {t]}

(proof)

lemma is-Cong-classlI:
assumes R.arrt
shows is-Cong-class {t}

{proof)
lemma is-Cong-classI’ [intro]:

assumes 7 # {}
and At t. [teT;t'eT]=t~1t
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and A\ttt [teT,t/'~t]=1t'e€T
shows is-Cong-class T

{proof)

lemma Cong-class-memb-is-arr:
assumes is-Cong-class T and ¢t € T
shows R.arr t

{proof)

lemma Cong-class-membs-are-Cong:
assumes is-Cong-class T and t € T and t' € T
shows Cong t t’

(proof)

lemma Cong-class-eql:

assumes t ~ t’

shows {t} = {t'}
(proof)

lemma Cong-class-eql”:
assumes is-Cong-class T and is-Cong-class U and T NU # {}
shows T =U

(proof)

lemma is-Cong-classE [elim]:

assumes is-Cong-class T

and [T {E Nttt . teT;t/eT]=t=x=th Nt . teT;t'/=t]=t'eT)]=T
shows T

{proof)

lemma Cong-class-rep [simp):

assumes is-Cong-class T

shows {Cong-class-rep T} =T
{proof )

lemma Cong-class-memb-Cong-rep:

assumes is-Cong-class T and ¢t € T

shows Cong t (Cong-class-rep T)
(proof)

lemma composite-of-normal-arr:
shows [ R.arr t; u € 9M; R.composite-of utt' ] = t' = ¢

(proof)

lemma composite-of-arr-normal:
shows [ arr t; u € 9; R.composite-of t ut’' | = t' =g t

(proof)

end
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2.3.5 Coherent Normal Sub-RTS’s

A coherent normal sub-RTS is one that satisfies a parallel moves property with respect
to arbitrary transitions. The congruence ~ induced by a coherent normal sub-RTS is
fully substitutive with respect to consistency and residuation, and in fact coherence is
equivalent to substitutivity in this context.

locale coherent-normal-sub-rts = normal-sub-rts +
assumes coherent: [ R.arr t; u € 9; u’ € IM; R.sources u = R.sources u;
R.targets u = R.targets u'; R.sources t = R.sources u |
= t\urpt\u

context normal-sub-rts
begin

The above “parallel moves” formulation of coherence is equivalent to the following
formulation, which involves “opposing spans”.

lemma coherent-iff:
shows (Vtu u’ Rarrt A u€ N Au €N A R.sources t = R.sources u A
R.sources u = R.sources u' A R.targets v = R.targets u’
— t\urgt\ u)
—
Vet"vv' ww. veNAVENANWENAW eNA
R.sources v = R.sources w N R.sources v’ = R.sources w’ A
R.targets w = R.targets w' At \ v =g t'\ v’
—t\ wrgt'\ w)

(proof)
end

context coherent-normal-sub-rts
begin

The proof of the substitutivity of ~ with respect to residuation only uses coherence
in the “opposing spans” form.

lemma coherent':

assumes v € NMand v/ € NMand w € Nand w’ € N

and R.sources v = R.sources w and R.sources v/ = R.sources w’
and R.targets w = R.targets w' and ¢ \ v~ ¢’ \ v’

shows t \ w =g t'\ w’

(proof )
The relation ~ is substitutive with respect to both arguments of residuation.

lemma Cong-subst:
assumes t ~ t'and v ~ v’ and t ~ u and R.sources t' = R.sources u’
shows ¢/ ~ v’ and t \ v~ t'\ v

{proof)
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lemma Cong-subst-con:

assumes R.sources t = R.sources w and R.sources t’ = R.sources u’
and t ~ t'and u =~ u’

shows t ~u +— t' ~u’

(proof)

lemma Congg-composite-of-arr-normal:
assumes R.composite-of t u t' and u € N
shows t/ ~ t

(proof)

lemma Cong-composite-of-normal-arr:
assumes R.composite-of u t t' and u € N
shows t' = ¢

(proof)

end

context normal-sub-rts
begin
Coherence is not an arbitrary property: here we show that substitutivity of congruence
in residuation is equivalent to the “opposing spans” form of coherence.
lemma Cong-subst-iff-coherent’:

shows (Vtt'uu' t =t/ ANumu At ~uA R.sources t' = R.sources u’
—t'~uw At umt'\ u)

—
Vtt'vv ww. veENAVENAWENAW €NA
R.sources v = R.sources w N\ R.sources v/ = R.sources w’' A
R.targets w = R.targets w' At \ v =g t'\ v’
— t\ wrg t'\ w)
(proof )

end

2.3.6 Quotient by Coherent Normal Sub-RTS

We now define the quotient of an RTS by a coherent normal sub-RTS and show that it
is an extensional RTS.

locale quotient-by-coherent-normal =
R: rts +
N: coherent-normal-sub-rts

begin

definition Resid (infix «{\[}> 70)

where T {\} U =
if N.is-Cong-class T A N.is-Cong-classU AN (Ftu. t € T ANu €U ANt ~ u)
then N.Cong-class

52



(fst (SOME tu. fst tu € T A snd tu € U A fst tu —~ snd tu) \
snd (SOME tu. fst tu € T A snd tu € U A fst tu —~ snd tu))

else {}

sublocale partial-magma Resid

(proof)

lemma is-partial-magma:
shows partial-magma Resid

(proof)

lemma null-char:
shows null = {}

{proof)

lemma Resid-by-members:
assumes N.is-Cong-class T and N.is-Cong-class Y and t € T and v € Y and t ~ u
shows 7 {\} U = {¢ \ uf}

{proof )

abbreviation Con (infix «{~[» 50)
where T {~} U = T {\} U # {}

lemma Con-char:
shows 7 {~} U +—
N.is-Cong-class T A N.is-Cong-classU AN tu. t €T ANu €U Nt ~ u)

(proof)

lemma Con-sym:
assumes Con T U
shows Con U T

(proof)

lemma is-Cong-class-Resid:
assumes 7 {~} U
shows N.is-Cong-class (T {\} U)

(proof)

lemma Con-witnesses:
assumes 7 {~} U and t € T and u € U
shows 3vw. v ENAwWENALt\ v ~u\w

(proof )

abbreviation Arr

where Arr T = Con T T

lemma Arr-Resid:
assumes Con T U
shows Arr (T {\} U)
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(proof)

lemma Cube:

assumes Con (V {\} 7) U {\} T)
?hOWfS> VAFT) N\ @\ =0 N Q) N T AN Y
PToo,

sublocale residuation Resid

{proof)

lemma is-residuation:
shows residuation Resid

(proof)

lemma arr-char:
shows arr T <— N.is-Cong-class T

(proof)

lemma ide-char:
shows ide U «— arr U NU NN £ {}

(proof )

lemma ide-char"”:
shows ide A +— arr AN A CN
(proof)

lemma con-chargcn:
shows con T U «—
N.is-Cong-class T N N.is-Cong-classUY AN (3tu. t € TANueUNT ~ u)

{proof)

lemma con-imp-coinitial-members-are-con:
assumes con 7 U and t € T and v € U and R.sources t = R.sources u
shows t —~ u

(proof)

sublocale rts Resid

{proof)

lemma is-7ts:
shows rts Resid

(proof)

sublocale extensional-rts Resid

(proof)

theorem is-extensional-rts:
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shows extensional-rts Resid
(proof )

lemma sources-chargcn:
shows sources T = {A. arr T AN A= {a. It a’. t €T A a’ € Rsourcest N a’ =~ a}}

{proof)

lemma targets-chargen:

shows targets T = {B. arr T AB =T {\} T}
(proof)

lemma src-chargeon:
shows sr¢ T = {a. arr T A (3ta’. t € T AN a’ € R.sources t N\ a’ = a)}

{proof)

lemma trg-chargcn:
shows trg T =T {\} T
(proof )

Quotient Map

abbreviation quot
where quot t = {t}}

sublocale quot: simulation-to-extensional-rts resid Resid quot

(proof )

lemma quotient-is-simulation:
shows simulation resid Resid quot

{proof)

lemma ide-quot-normal:
assumes t € N
shows ide (quot t)

{proof)

If a simulation F' from R to an extensional RTS B maps every element of 91 to an
identity, then it has a unique extension along the quotient map.

lemma is-couniversal:

assumes eztensional-rts B

and simulation resid B F

and At. t € M = residuation.ide B (F t)

shows 3 F’. simulation Resid B F' A F' o quot = F

(proof)

definition ext-to-quotient
where ext-to-quotient B F = THE F'. simulation Resid B F' N F' o quot = F

lemma ext-to-quotient-props:
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assumes extensional-rts B

and simulation resid B F

and At. t € M = residuation.ide B (F t)

shows simulation Resid B (ext-to-quotient B F) and ext-to-quotient B F o quot = F

(proof )

end

2.3.7 ldentities form a Coherent Normal Sub-RTS

We now show that the collection of identities of an RTS form a coherent normal sub-
RTS, and that the associated congruence = coincides with ~. Thus, every RTS can be
factored by the relation ~ to obtain an extensional RTS. Although we could have shown
that fact much earlier, we have delayed proving it so that we could simply obtain it as a
special case of our general quotient result without redundant work.

context rits
begin

interpretation normal-sub-rts resid < Collect ide»

{proof)

lemma identities-form-normal-sub-rts:
shows normal-sub-rts resid (Collect ide)

(proof)

interpretation coherent-normal-sub-rts resid < Collect ide»
(proof)

lemma identities-form-coherent-normal-sub-rts:
shows coherent-normal-sub-rts resid (Collect ide)

(proof)

lemma Cong-iff-cong:
shows Cong t u +— t ~ u

(proof)

end

2.4 Paths

A path in an RTS is a nonempty list of arrows such that the set of targets of each arrow
suitably matches the set of sources of its successor. The residuation on the given RTS
extends inductively to a residuation on paths, so that paths also form an RTS. The
append operation on lists yields a composite for each pair of compatible paths.

locale paths-in-rts =
R: rts
begin
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type-synonym 'b arr = 'b list

fun Sres
where Sres [| = {}
| Sres [t] = R.sources t
| Sres (t # T) = R.sources t

fun Trgs
where Trgs [| = {}
| Trgs [t] = R.targets t
| Trgs (t # T) = Trgs T

fun Arr
where Arr || = False
| Arr [t] = R.arrt
| Arr (¢t # T) = (R.arr t AN Arr T A R.targets t C Sres T)

fun Ide
where Ide [| = False
| Ide [t] = R.ide t
| Ide (t # T) = (R.ide t A\ Ide T A R.targets t C Sres T)

lemma Arr-induct:

assumes At. Arr [t] = P [{]
and At U. [Arr (t # U); U#[; PU] = P (t# U)
shows Arr T = P T

(proof )

lemma Ide-induct:

assumes At. R.ide t = P [t

and At T. [R.ide t; R.targetst C Sres T; PT] = P (t # T)
shows Ide T = P T

(proof)

lemma set-Arr-subset-arr:
assumes Arr T
shows set T C Collect R.arr

(proof)

lemma Arr-imp-arr-hd [simp]:
assumes Arr T
shows R.arr (hd T)

(proof)

lemma Arr-imp-arr-last [simp):
assumes Arr T
shows R.arr (last T)

(proof)
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lemma Arr-imp-Arr-tl [simp):
assumes Arr T and tl T # ||
shows Arr (¢ T)

(proof)

lemma set-Ide-subset-ide:
assumes Ide T
shows set T' C Collect R.ide

(proof)

lemma Ide-imp-Ide-hd [simp]:
assumes Ide T
shows R.ide (hd T)

(proof)

lemma Ide-imp-Ide-last [simp]:
assumes Ide T
shows R.ide (last T)

{proof)

lemma Ide-imp-Ide-tl [simp]:
assumes Ide T and tl T # []
shows Ide (¢l T)

{proof)

lemma Ide-implies-Arr:
assumes Ide T
shows Arr T

{proof)

lemma const-ide-is-Ide:
shows [T # [|; R.ide (hd T); set T C {hd T}] = Ide T

(proof)

lemma Ide-char:
shows Ide T <— Arr T N set T C Collect R.ide

(proof)

lemma Idel [introl:
assumes Arr T and set T C Collect R.ide
shows Ide T

(proof)

lemma Arr-has-Src:
shows Arr T = Sres T # {}

(proof)

lemma Arr-has-Trg:
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shows Arr T = Trgs T # {}
(proof)

lemma Srcs-are-ide:
shows Srcs T C Collect R.ide

(proof)

lemma Trgs-are-ide:
shows Trgs T C Collect R.ide

(proof)

lemma Srcs-are-con:
assumes a € Srcs T and a’ € Sres T
shows a —~ a’

(proof)

lemma Srcs-con-closed:
assumes a € Srcs T and R.ide a’ and a —~ a’
shows a’ € Sres T

{proof)

lemma Sres-eql:
assumes Srcs T N Sres T # {}
shows Srcs T = Srcs T

{proof)

lemma Trgs-are-con:
shows [b € Trgs T; b’ € Trgs T] = b ~ b’
(proof )

lemma Trgs-con-closed:
shows [b € Trgs T; R.ide b'; b ~ b] = b € Trgs T
(proof)

lemma Trgs-eql:
assumes Trgs T N Trgs T' # {}
shows Trgs T = Trgs T'

(proof)

lemma Srcs-simpp:
assumes Arr T
shows Srcs T = R.sources (hd T')

(proof)

lemma Trgs-simpp:
shows Arr T = Trgs T = R.targets (last T)
{proof)
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2.4.1 Residuation on Paths

It was more difficult than I thought to get a correct formal definition for residuation on
paths and to prove things from it. Straightforward attempts to write a single recursive
definition ran into problems with being able to prove termination, as well as getting the
cases correct so that the domain of definition was symmetric. Eventually I found the
definition below, which simplifies the termination proof to some extent through the use
of two auxiliary functions, and which has a symmetric form that makes symmetry easier
to prove. However, there was still some difficulty in proving the recursive expansions
with respect to cons and append that I needed.

The following defines residuation of a single transition along a path, yielding a tran-
sition.
fun Residiz (infix <'\*)» 70)
where t 1\* [| = R.null
[t [u] =2\ w
[N\ (w# U) = (t\u) "\ U
Next, we have residuation of a path along a single transition, yielding a path.

fun Residz! (infix <\ 70)
where [| *\! v = ||
| [t] *\' w = (if t ~ u then [t \ u] else [])
(4 T) "\ =
(it~ u AT (u\6) £ ] then (t\ w) # T\ (u 1) else )

Finally, residuation of a path along a path, yielding a path.

function (sequential) Resid (infix *\*» 70)
where [| *\* - =[]

- =

[
| [t] *\* [u] = (if t —~ u then [t \ u] else [])
| [E] "\ (u # U) =
(if t ~u A (t\ u) '\* U# Rnull then [(t \ u) '\* U] else [])
| (¢ # T) "\" [u] =

(if t ~uw AT\ (w\ 1) # [ then (t\ w) # (T *\' (u\ 1)) else [])
[t # T)"\" (u# U) =
(ift ~uA(t\ u) \* U # Rnull A
(T *\P (u\ ) \* (U N\ (¢\ w) # ]
t’llen[]()t \u) NS U # (T (u\ 1) *\" (U A\ (8 w)

Residuation of a path along a single transition is length non-increasing. Actually, it
is length-preserving, except in case the path and the transition are not consistent. We
will show that later, but for now this is what we need to establish termination for (\).

lemma length-Residr1:
shows length (T *\' u) < length T
(proof)
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termination Resid

{proof)

lemma Resid1z-null:
shows R.null '\* T = R.null

(proof)

lemma Residlz-ide:
shows [R.ide a; a '\* T # R.null] = R.ide (a *\* T)
(proof)

abbreviation Con (infix *~* 50)
where T *~* U= T *\* U # ]

lemma Con-sym1I:
shows T *\! u # [| +— w '\* T # R.null

{proof)

lemma Con-sym-ind:
shows length T + length U < n = T *~* U +— U *~* T
(proof)

lemma Con-sym:
shows T"*~* U +— U *~* T

(proof)

lemma Residr1-as-Resid:
shows T *\' u = T *\* [u]
(proof )

lemma Residlz-as-Resid’:

shows t 1\* U = (if [t] *\* U # [] then hd ([t] *\* U) else R.null)

(proof )

The following recursive expansion for consistency of paths is an intermediate result
that is not yet quite in the form we really want.

lemma Con-rec:

shows [t] *~* [u] +— t ~ u

and T#[| = t# T "~ [u =t ~uANT*~"[u)\{
[

T\ [u\t] "~ U\" [t \ 4]
(proof)

This version is a more appealing form of the previously proved fact Residlz-as-Resid’.

lemma Residlz-as-Resid:
assumes [t] *\* U # ||
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shows [t] *\* U = [t '\* U]
(proof)

The following is an intermediate version of a recursive expansion for residuation, to
be improved subsequently.

lemma Resid-rec:

shows [simpl: [t] *~* [u] = [t] "\" [u] = [t \ u]

and [T #[] t# T~ [ul]l = (E# T)"\" [u] = (£ \ w) # (T "\" [u\ #])
and [U # [|; Con[](u U] =[] "\ (w# U)=[t\u] "\" U

and [T # [|; U # [l; Con (t # T) (u# U)] =

< (%# T) "\ (wgt U) = ([¢\ u] "\" U) @ ((T \" [u\ ) "\* (U "\ [\ u]))
proo

For consistent paths, residuation is length-preserving.

lemma length-Resid-ind:
shows [length T + length U < n; T *~* U] = length (T *\* U) = length T
(proof)

lemma length-Resid:

assumes 1 *~* U

shows length (T *\* U) = length T
(proof)

lemma Con-initial-left:
shows t # T *~* U = [t]| *~* U
{proof )

lemma Con-initial-right:
shows T *~* u # U = T *~* [u]

(proof )
lemma Resid-cons-ind:
shows [T # [|; U # [|; length T + length U < n] =
V.t # T*~* U+ [t]*~*UANT*~*U*\*[t]) A
Vu T*~* u# U+— T*~*[u] AT *\* [u] *~* U) A
(Vi t# T "~ U— (L T)"\" U=[t]"\* UQ@T*\" (U"\"[{])) A
(Vu. T*~"u# U— T*\" (u# U)=(T"\" [u]) "\" U)

The following are the final versions of recursive expansion for consistency and resid-
uation on paths. These are what I really wanted the original definitions to look like, but
if this is tried, then Con and Resid end up having to be mutually recursive, expressing
the definitions so that they are single-valued becomes an issue, and proving termination
is more problematic.

lemma Con-cons:

assumes T # [ and U # ||

shows t # T *~* U — [t] *~* U AN T *~* U *\* [{]

and T*~*u# U<+— T *~*[ul AN T *\* [u] *~* U
{proof)
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lemma Con-consl [intro, simp]:

shows [T 2 [; U A5 [~ Us Tomr U\ ] = t# T~ U
ond [7 4 U 77 s TV 1l o~ U= 2w
proo

lemma Resid-cons:
assumes U # ||
shows t # T "~ U= (t# T) "\" U= ([t] "\" U) @ (T *\" (U"\" [t]))
arsz’;A*u# U= T*\* (u# U)=(T*\" [u]) " \* U
proof

The following expansion of residuation with respect to the first argument is stated in
terms of the more primitive cons, rather than list append, but as a result '\* has to be
used.

lemma Resid-cons'”:

assumes T # ||

shows t # T *~* U= (t# T)*\* U= (t'\* U) # (T *\* (U*\*[t])
(proof )

lemma Srcs-Resid-Arr-single:
assumes T *~* [u]
shows Sres (T *\* [u]) = R.targets u

{proof)

lemma Srcs-Resid-single-Arr:
shows [u] *~* T = Sres ([u] *\* T) = Trgs T
(proof)

lemma Trgs-Resid-sym-Arr-single:
shows T *~* [u] = Trgs (T *\* [u]) = Trgs ([u] *\* T)
(proof)

lemma Srcs-Resid [simp]:
shows T *~* U = Srcs (T *\* U) = Trgs U
(proof )

lemma Trgs-Resid-sym [simp]:
shows T *~* U = Trgs (T *\* U) = Trgs (U *\* T)
(proof )

lemma img-Resid-Srcs:
shows Arr T = (Aa. [a] *\* T) ¢ Srcs T C (Ab. [b]) ¢ Trgs T

{proof)

lemma Resid-Arr-Src:
shows [Arr T; a € Sres T] = T *\* [a] = T
{proof)
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lemma Con-single-ide-ind:
shows R.ide a = [a]| *~* T <— Arr T ANa € Sres T

{proof)

lemma Con-single-ide-iff:
assumes R.ide a
shows [a] *~* T «— Arr T ANa € Sres T

{proof)

lemma Con-single-idel [intro]:
assumes R.ide a and Arr T and a € Sres T
shows [a] *~* T and T *~* [a]

{proof)

lemma Resid-single-ide:

assumes R.ide a and [a] *~* T

shows [a] *\* T € (Ab. [b])  Trgs T and [simp]: T *\* [a] = T
(proof)

lemma Resid-Arr-Ide-ind:
shows [Ide A; T *~* Al = T *\* A=T
(proof )

lemma Resid-Ide-Arr-ind:
shows [Ide A; A *~* T] = Ide (A*\* T)
(proof )

lemma Resid-Ide:

assumes lde A and A *~* T

shows T *\* A = T and Ide (A *\* T)
(proof )

lemma Con-Ide-iff:
shows Ide A =— A *~* T <— Arr T N\ Srcs T = Sres A

{proof)

lemma Con-Idel:
assumes Ide A and Arr T and Srcs T = Sres A
shows A *~* Tand T *—~* A

{proof)

lemma Con-Arr-self:
shows Arr T — T *~* T

{proof)

lemma Resid-Arr-self:
shows Arr T = Ide (T *\* T)

{proof)
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lemma Con-imp-eq-Srcs:
assumes 1T *—~* U
shows Srcs T = Srcs U

(proof )

lemma Arr-iff-Con-self:
shows Arr T «— T *~* T

{proof)

lemma Arr-Resid-single:
shows T *~* [u] = Arr (T *\* [u])
(proof)

lemma Con-imp-Arr-Resid:
shows T *~* U = Arr (T *\* U)
(proof )

lemma Cube-ind:

shows [T *~* U; V *~* T, length T + length U + length V < n] =
(VAT T)*\* (U\"T) = (V\" U)"\" (T *\" 1))

(proof )

lemma Cube:
shows T*\* U*~* V*\* U+—= T*\* V*~*U*\*V
(proof )

lemma Con-implies-Arr:
assumes T *~* U
shows Arr T and Arr U

(proof)

sublocale partial-magma Resid

(proof)

lemma is-partial-magma:
shows partial-magma Resid

{proof)

lemma null-char:
shows null = ||

(proof)

sublocale residuation Resid

(proof)
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lemma is-residuation:
shows residuation Resid

(proof)

lemma arr-char:
shows arr T < Arr T

(proof)

lemma arrlp [intro]:
assumes Arr T
shows arr T

(proof)

lemma ide-char:
shows ide T <— Ide T

(proof)

lemma con-char:
shows con T U <— Con T U

{proof)

lemma conlp [intro]:
assumes Con T U
shows con T U

{proof)

sublocale rts Resid

{proof)

theorem is-rts:
shows rts Resid

(proof)

notation cong (infix *~*) 50)
notation prfz (infix *<*» 50)

lemma sources-charp:
shows sources T = {A. Ide A N Arr T A Srcs A = Sres T}

(proof)

lemma sources-cons:
shows Arr (t # T) = sources (t # T) = sources [t]

(proof)

lemma targets-charp:
shows targets T = {B. Ide B A\ Arr T A Srcs B = Trgs T}

(proof)

lemma seg-char”:
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shows seq T U +— Arr T AN Arr U A Trgs T N Sres U # {}
(proof )

lemma seq-char:
shows seq T U +— Arr T N Arr U A Trgs T = Sres U

(proof)

lemma seql p [intro]:
assumes Arr T and Arr U and Trgs T N Sres U # {}
shows seq T U

(proof)

lemma coinitial-char:
shows coinitial T U = Arr T N Arr U A Sres T = Sres U
and Arr T A Arr U A Sres T N Sres U # {} = coinitial T U

(proof )

lemma coinitiall p [intro]:
assumes Arr T and Arr U and Srcs T N Sres U # {}
shows coinitial T U

(proof)

lemma Ide-imp-sources-eq-targets:
assumes Ide T
shows sources T = targets T

(proof)

2.4.2 Inclusion Map
Inclusion of an RTS to the RTS of its paths.

abbreviation incl
where incl = At. if R.arr t then [t] else null

sublocale incl: simulation resid Resid incl
(proof )

lemma incl-is-simulation:
shows simulation resid Resid incl

(proof)

lemma incl-is-injective:
shows inj-on incl (Collect R.arr)

(proof)

lemma reflects-con:
assumes incl t *—~*
shows ¢t —~ u

(proof)

incl u
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end

2.4.3 Composites of Paths
The RTS of paths has composites, given by the append operation on lists.

context paths-in-rts
begin

lemma Srcs-append [simp):
assumes T # ||
shows Srcs (T @Q U) = Sres T

(proof)

lemma Trgs-append [simp]:
shows U # [| = Trgs (T Q U) = Trgs U
(proof)

lemma seq-implies-Trgs-eq-Srcs:
shows [Arr T; Arr U; Trgs T C Sres U] = Trgs T = Sres U
{proof)

lemma Arr-append-iff p:
shows [T #[; U#[] = Arr (TQU) <— Arr T N Arr U A Trgs T C Sres U

{proof)

lemma Arr-conslp [intro, simp:
assumes R.arr t and Arr U and R.targets t C Sres U
shows Arr (t # U)

(proof)

lemma Arr-appendl p [intro, simpl:
assumes Arr T and Arr U and Trgs T C Sres U
shows Arr (T @Q U)

(proof)

lemma Arr-appendEp [elim]:

assumes Arr (T Q U) and T # || and U # ||
and [Arr T; Arr U; Trgs T = Sres U] = thesis
shows thesis

(proof)

lemma Ide-append-iff p:
shows [T # [; U#[]] = Ide (T Q U) — Ide T A Ide U A Trgs T C Sres U

(proof)

lemma Ide-appendl p [intro, simp):
assumes Ide T and Ide U and Trgs T C Srcs U
shows Ide (T @ U)

(proof)
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lemma Resid append—ind:
shows [T #[J; U#[; V #[] =
(VaQT*~*U+— V*~*
(T*~*Va@QU+—>T*~*
(VQT*~*U— (VarT)*\*
(T*~*VaQaU-—T*\*(Varv)
(proof)

lemma Con-append:

assumes T # [Jand U # [ and V # ||

shows TQ U *~* V+—> T*~* VAU*~*V*\*T

and T*~*UQV<+—T*~*UANT*\*U*~*V
(proof)

lemma Con-appendl [intro]:

shows [T *~* V; U*~* V*\* T =TQU *~*V
and [T*~* U; T*\* U~ V]=T*"~*UQV
(proof)

lemma Resid-append [intro, simp]:
shows [T#[; TQ U *~* V] = (T QU)*\* V=(T*\*V)aQ (U*\*(V*\*T))
and [U £ VA T~ UG V] = T\ (U@ V) = (T *\* U) "\* V

(proof )

lemma Resid-append?2 [simp]:

assumes T # [Jand U # [Jand V # [ and W # [|

and TQU*~*VaWw

shows (T @ U) *\* (V @ W) =
oIV VIV W B (VA D) (8 (7 V)
Proo

lemma append-is-composite-of:
assumes seq T U
shows composite-of T U (T @ U)

{proof)

sublocale rts-with-composites Resid
(proof)

theorem is-rts-with-composites:
shows rts-with-composites Resid

(proof)

lemma arr-append [intro, simpl:
assumes seq T U
shows arr (T @ U)

(proof)
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lemma arr-append-imp-seq:
assumes T # [Jand U # || and arr (T @ U)
shows seq T U

(proof)

lemma sources-append [simpl:
assumes seq T U
shows sources (T @Q U) = sources T

(proof)

lemma targets-append [simp]:
assumes seq T U
shows targets (T Q@ U) = targets U

(proof)

lemma cong-respects-seqp:
assumes seq T U and T *~* T'and U *~* U’
shows seq T' U’

{proof)

lemma cong-append [intro]:
assumes seq T U and T *~* T'and U *~* U’
shows T Q U *~* T'@Q U’

{proof)

lemma cong-cons [intro]:
assumes seq [t] U and ¢t ~ t"and U *~* U
shows t # U *~* t' # U’

{proof)

!/

lemma cong-append-idel [intro]:

assumes seq T' U

shows ide T =—= T Q U *~* Uand ide U = T Q U *~* T
and ide T = U*~* T QU and ide U = T *~* T QU

{proof)

lemma cong-cons-idel [intro):

assumes seq [t] U and R.ide t

shows t # U *~* Uand U *~* t # U
{proof)

lemma prfr-decomp:
assumes [t] *<* [u]
shows [t] @ [u \ t] *~* [u]
{proof)

lemma composite-of-single-single:
assumes R.composite-of t u v
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shows composite-of [t] [u] ([t] @ [u])
{proof)

end

2.4.4 Paths in a Weakly Extensional RTS

locale paths-in-weakly-extensional-rts =
R: weakly-extensional-rts +
paths-in-rts

begin

lemma ex-un-Sre:
assumes Arr T
shows Jla. a € Sres T

(proof)

fun Sre
where Src¢ T = R.src (hd T)

lemma Srcs-simppw g:
assumes Arr T
shows Srcs T = {Sre T}

(proof)

lemma ex-un-Trg:
assumes Arr T
shows 3!b. b € Trgs T

(proof)

fun Trg
where Trg [| = R.null
| Trg [t] = R.trg t
| Trg t # T)=Trg T

lemma Trg-simp [simp]:
shows T # [| = Trg T = R.trg (last T)
(proof)

lemma Trgs-simppw g [simp]:

assumes Arr T

shows Trgs T = {Trg T}
(proof)

lemma Sre-resid [simp):

assumes T *~* U

shows Src (T *\* U) = Trg U
(proof)
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lemma Trg-resid-sym:

assumes T *~* U

shows Trg (T *\* U) = Trg (U *\* T)
(proof)

lemma Src-append [simp):
assumes seq T U
shows Src (T Q U) = Src T

{proof)

lemma Trg-append [simp]:
assumes seq T' U
shows Trg (T Q U) = Trg U

{proof)

lemma Arr-append-iff pw g:
assumes T # [| and U # |]
shows Arr (T Q U) «— Arr TANAmr UAN Trg T = Src U

(proof)

lemma Arr-consl pw g [intro, simp):
assumes R.arr t and Arr U and R.trg t = Src U
shows Arr (t # U)

(proof)

lemma Arr-consE [elim]:

assumes Arr (¢t # U)

and [R.arrt; U # [| = Arr U; U # || = R.trg t = Src U] = thesis
shows thesis

{proof)

lemma Arr-appendl pw g [intro, simp):
assumes Arr T and Arr U and Trg T = Src U
shows Arr (T @ U)

(proof)

lemma Arr-appendEpw g [elim]:

assumes Arr (T Q U) and T # || and U # |]
and [Arr T; Arr U; Trg T = Src U] = thesis
shows thesis

{proof)

lemma Ide-append-iff pw g:
assumes T # [| and U # |]
shows Ide (T Q U) <— Ide T N Ide U AN Trg T = Src U

{proof)

lemma Ide-appendl pw g [intro, simp]:
assumes Ide T and Ide U and Trg T = Src U
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shows Ide (T @ U)
(proof)

lemma Ide-appendFE [elim]:

assumes Ide (T Q U) and T # [ and U # ||
and [Ide T; Ide U; Trg T = Src U] = thesis
shows thesis

{proof)

lemma Ide-consl [intro, simp):
assumes R.ide t and Ide U and R.trg t = Src U
shows Ide (t # U)

(proof)

lemma Ide-consE [elim):

assumes Ide (t # U)

and [R.ide t; U # [| = Ide U; U # [] = R.trg t = Src U] = thesis
shows thesis

(proof)

lemma Ide-imp-Src-eq-Trg:
assumes Ide T
shows Sr¢ T'= Trg T

(proof)

end

2.4.5 Paths in a Confluent RTS

Here we show that confluence of an RTS extends to confluence of the RTS of its paths.

locale paths-in-confluent-rts =
paths-in-rts +
R: confluent-rts

begin

lemma confluence-single:
assumes At u. R.coinitial t u =t ~ u
shows [R.arr t; Arr U; R.sources t = Sres U] = [t] *~* U

{proof)

lemma confluence-ind:
shows [Arr T; Arr U; Sres T = Sres U] = T *~* U

(proof)

lemma confluencep:
assumes coinitial T U
shows con T U

(proof)
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sublocale confluent-rts Resid
{proof )

lemma is-confluent-rts:
shows confluent-rts Resid

(proof)

end

2.4.6 Simulations Lift to Paths

In this section we show that a simulation from RTS A to RTS B determines a simulation
from the RTS of paths in A to the RTS of paths in B. In other words, the path-RTS
construction is functorial with respect to simulation.

context simulation
begin

interpretation P 4: paths-in-rts A

(proof)

interpretation Pg: paths-in-rts B
(proof)

lemma map-Resid-single:
shows Pa.con T [u] = map F (Pa.Resid T [u]) = Pp.Resid (map F T) [F u]
{proof )

lemma map-Resid:
shows Pg.con T U = map F (P4.Resid T U) = Pg.Resid (map F T) (map F U)

(proof)

lemma preserves-paths:
shows P4 . Arr T = Pp.Arr (map F T)

(proof)

interpretation Fz: simulation P s.Resid Pg.Resid <AT. if Pa.Arr T then map F T else [
(proof)

lemma [ifts-to-paths:
shows simulation P 4.Resid Pp.Resid (AT. if Pa.Arr T then map F T else [])

(proof)

end

2.4.7 Normal Sub-RTS’s Lift to Paths

Here we show that a normal sub-RTS N of an RTS R lifts to a normal sub-RTS of the
RTS of paths in N, and that it is coherent if N is.

locale paths-in-rts-with-normal =
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R: rts +
N: normal-sub-rts +
paths-in-rts

begin

We define a “normal path” to be a path that consists entirely of normal transitions.
We show that the collection of all normal paths is a normal sub-RTS of the RTS of paths.

definition NPath
where NPath T = (Arr T A set T C N)

lemma Ide-implies-NPath:
assumes Ide T
shows NPath T

(proof)

lemma NPath-implies-Arr:
assumes NPath T
shows Arr T

(proof)

lemma NPath-append:
assumes T # [| and U # ||
shows NPath (T @ U) «— NPath T A NPath U A Trgs T C Srcs U

(proof)

lemma NPath-appendl [intro, simp]:
assumes NPath T and NPath U and Trgs T C Sres U
shows NPath (T @ U)

(proof)

lemma NPath-Resid-single-Arr:
shows [t € M; Arr U; R.sources t = Srcs U] = NPath (Resid [t] U)

(proof)

lemma NPath-Resid-Arr-single:
shows [ NPath T; R.arr u; Srcs T = R.sources u | => NPath (Resid T [u])

{proof)

lemma NPath-Resid [simp):
shows [NPath T; Arr U; Srcs T = Srcs U] = NPath (T *\* U)

{proof)

lemma Backward-stable-single:
shows [NPath U; NPath ([t] *\* U)] = NPath [t]

{proof)

lemma Backward-stable:
shows [NPath U; NPath (T *\* U)] = NPath T

(proof)
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sublocale normal-sub-rts Resid < Collect NPath»
(proof)

theorem normal-extends-to-paths:
shows normal-sub-rts Resid (Collect NPath)

(proof)

lemma Resid-NPath-preserves-reflects-Con:

assumes NPath U and Srcs T = Sres U

shows T *\* U *~* T'*\* U +— T *~* T'
(proof )

notation Congg (infix «=*p> 50)
notation Cong (infix «=*» 50)

lemma Congg-cancel-leftcs:
assumes T Q U r* T Q@ U'and T # [Jand U # [| and U’ # ||
shows U ~*;, U’

(proof)

lemma Sres-respects-Cong:
assumes T ~* T’ and a € Srcs T and a’ € Srcs T’
shows [a] ~* [a/]

(proof )

lemma Trgs-respects-Cong:

assumes T ~* T'and b € Trgs T and b’ € Trgs T’
shows [b] ~* [b]

(proof )

lemma Congg-append-resid-NPath:
assumes NPath (T *\* U)

shows Congy (T @ (U *\* T)) U
{proof)

end

locale paths-in-rts-with-coherent-normal =
R: rts +
N: coherent-normal-sub-rts +
paths-in-rts

begin

sublocale paths-in-rts-with-normal resid N {proof)

notation Congy (infix <=*g» 50)
notation Cong (infix <=*) 50)
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Since composites of normal transitions are assumed to exist, normal paths can be
“folded” by composition down to single transitions.

lemma NPath-folding:

shows NPath U = Ju. u € M A R.sources u = Srcs U A R.targets u = Trgs U A
(V. con [t] U — [t] *\* U =" [t \ u])

(proof)

Coherence for single transitions extends inductively to paths.

lemma Coherent-single:

assumes R.arr t and NPath U and NPath U’

and R.sources t = Srcs U and Srcs U = Srcs U’ and Trgs U = Trgs U’
shows [t] *\* U ~* [t] *\* U’

(proof)

lemma Coherent:
shows [ Arr T; NPath U; NPath U'; Srcs T = Sres U,
Srcs U = Sres U’y Trgs U = Trgs U' ]
— T*\* U%*O T*\* U/
(proof)

sublocale rts-with-composites Resid

(proof)

sublocale coherent-normal-sub-rts Resid < Collect NPath»y

{proof)

theorem coherent-normal-extends-to-paths:
shows coherent-normal-sub-rts Resid (Collect NPath)

(proof)

lemma Congg-append-Arr-NPath:
assumes T # [| and Arr (T @ U) and NPath U
shows Congy (T @ U) T

(proof)

lemma Cong-append-NPath-Arr:
assumes T # [| and Arr (U @Q T) and NPath U
shows U Q T'~* T

(proof)

Permutation Congruence

Here we show that *~* coincides with “permutation congruence”: the least congruence

respecting composition that relates [¢, v \ ¢] and [u, t \ u] whenever ¢ ~ u and that
relates T @ [b] and T whenever b is an identity such that seq T [b].

inductive PCong
where Arr T = PCong T T
| PCong T U = PCong U T
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| [PCong T U; PCong U V] = PCong T V

| [seq T U; PCong T T'; PCong U U] = PCong (T Q@ U) (T'@ U’)
| [seq T [b]; R.ide ] = PCong (T Q [b]) T

| t ~u= PCong [t, u\ t] [u, t\ u]

lemmas PCong.intros(3) [trans

lemma PCong-append-Ide:
shows [seq T B; Ide B] = PCong (T @ B) T

(proof )

lemma PCong-imp-Cong:
shows PCong TU = T *~* U
(proof)

lemma PCong-permute-single:
shows (1)~ U = Plong (4 @ (U "\ 1) (U @ (4 "\ V)
proo,

lemma PCong-permute:
shows T *~* U = PCong (T Q (U *\* T)) (U Q (T *\* U))
(proof)

lemma Cong-imp-PCong:
assumes 1 *~* U
shows PCong T U

{proof)

lemma Cong-iff-PCong:
shows T *~* U +— PCong T U
(proof )

end

2.5 Composite Completion

The RTS of paths in an RTS factors via the coherent normal sub-RTS of identity paths
into an extensional RTS with composites, which can be regarded as a “composite com-
pletion” of the original RTS.

locale composite-completion =

R: rts R
for R :: 'a resid
begin

type-synonym b arr = 'b list set

interpretation N: coherent-normal-sub-rts R «Collect R.ide>

(proof)
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sublocale P: paths-in-rts-with-coherent-normal R «Collect R.ides {proof)
sublocale Q: quotient-by-coherent-normal P.Resid < Collect P.NPathy {proof)

definition resid  (infix «{*\*[}> 70)
where resid = ().Resid

sublocale extensional-rts resid
(proof )

notation con (infix «{*~*}» 50)
notation prfr  (infix {*<*} 50)

notation P.Resid (infix *\*) 70)
notation P.Con (infix <*~*) 50)
notation P.Cong (infix *~*) 50)
notation P.Congy (infix *=*) 50)
notation P.Cong-class (<{-}»)

lemma P-ide-iff-NPath:
shows P.ide T <— P.NPath T
(proof )

lemma Cong-eq-Congy:
shows T *~* T/ +— T *~o* T'

{proof)

lemma Srcs-respects-Cong:
assumes T *~* T’
shows P.Srcs T = P.Srcs T'

{proof)

lemma sources-respects-Cong:
assumes T *~* T’
shows P.sources T = P.sources T’

(proof)

lemma Trgs-respects-Cong:
assumes T *=* T'
shows P.Trgs T = P.Trgs T"'

(proof)

lemma targets-respects-Cong:
assumes T *~* T’
shows P.targets T = P.targets T"'

(proof)

lemma ide-charcc:
shows ide T «— arr TANT. T €T — PIde T)

(proof)
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lemma con-charcc:
shows T {*~*} U +<— arr T A arr U A P.Cong-class-rep T *~* P.Cong-class-rep U

{proof)

lemma con-charcc’:
shows T {*~*t U +— arr TANarrUNNTU.TeTANUecld — T*~*U)

{proof)

lemma resid-char:
shows 7 {*\*"} U =
(if T {*~*} U then {P.Cong-class-rep T *\* P.Cong-class-rep U]} else {})
(proof)

lemma resid-simp:
assumes 7 {*~*f Y and T € T and U € U
shows 7 {*\*} U = {P.Resid T U[

(proof)

lemma src-char':

shows src T = {A. arr T A P.Ide A N\ P.Srcs (P.Cong-class-rep T) = P.Srcs A}
(proof)

lemma src-char:
shows src T = {A. arr T AN PIde ANNT. T €T — P.Sres T = P.Srcs A)}

(proof )

lemma trg-char':
shows trg T = {B. arr T A P.Ide B A P.Trgs (P.Cong-class-rep T) = P.Srcs B}

{proof)

lemma trg-char:
shows trg T = {B. arr T A Pdde BA (YVT. T € T — P.Trgs T = P.Srcs B)}

{proof)

lemma prfz-char:
shows T {*<*fU +— arr TAarrUNNTU. TeTANU€eU — Pprfz T U)

{proof)

lemma quotient-refiects-con:
assumes con (Q.quot t) (Q.quot u)
shows P.con t u

(proof)

lemma is-extensional-rts-with-composites:
shows extensional-rts-with-composites resid

(proof)

sublocale extensional-rts-with-composites resid
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(proof)

notation comp (infixr {*-*[} 55)

2.5.1 Inclusion Map

definition incl
where incl = Q.quot o P.incl

sublocale incl: simulation R resid incl

(proof)

sublocale incl: simulation-to-extensional-rts R resid incl {proof)

lemma incl-is-simulation:
shows simulation R resid incl

(proof)

lemma incl-simp [simp]:
shows incl t = {[{]}
{proof )

lemma incl-reflects-con:
assumes incl t {*~*|} incl u
shows R.con t u

(proof)

lemma cong-iff-eq-incl:
assumes R.arr t and R.arr u
shows incl t = incl uw +— R.cong t u

(proof)

lemma incl-cancel-left:

assumes transformation X R F G T and transformation X R F' G’ T'
and extensional-rts R

and incl o T = incl o T’

shows T = T'

(proof)
The inclusion is surjective on identities.

lemma img-incl-ide:
shows incl ‘ (Collect R.ide) = Collect ide
{proof)

end

2.5.2 Composite Completion of a Weakly Extensional RTS

locale composite-completion-of-weakly-extensional-rts =
R: weakly-extensional-rts R +
composite-completion

81



begin

sublocale P: paths-in-weakly-extensional-rts R (proof)
sublocale incl: simulation-between-weakly-extensional-rts R resid incl (proof)

notation comp (infixr {*-*[} 55)

lemma src-charccow g:
shows src T = (if arr T then incl (P.Src (P.Cong-class-rep T)) else null)

(proof )

lemma trg-charccow g:
shows trg T = (if arr T then incl (P.Trg (P.Cong-class-rep T)) else null)

(proof)

When applied to a weakly extensional RTS, the composite completion construction
does not identify any states that are distinct in the original RTS.

lemma incl-injective-on-ide:

shows inj-on incl (Collect R.ide)

(proof)

When applied to a weakly extensional RTS, the composite completion construction
is a bijection between the states of the original RTS and the states of its completion.

lemma incl-bijective-on-ide:

shows incl € Collect R.ide — Collect ide

and (MAA. P.Src (P.Cong-class-rep A)) € Collect ide — Collect R.ide

and Aa. R.ide a = (AA. P.Src (P.Cong-class-rep A)) (incl a) = a

and AA. ide A = incl (M. P.Src (P.Cong-class-rep A)) A) = A

and bij-betw incl (Collect R.ide) (Collect ide)
and bij-betw (AA. P.Src (P.Cong-class-rep A)) (Collect ide) (Collect R.ide)

{proof)

end

2.5.3 Composite Completion of an Extensional RTS

locale composite-completion-of-extensional-rts =
R: extensional-rts R +
composite-completion

begin

sublocale composite-completion-of-weakly-extensional-rts (proof)
sublocale incl: simulation-between-extensional-rts R resid incl (proof)

end

2.5.4 Freeness of Composite Completion

In this section we show that the composite completion construction is free: any simulation
from RTS A to an extensional RTS with composites B extends uniquely to a simulation
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on the composite completion of A.

type-synonym ‘a comp = 'a = ‘a = a

locale rts-with-chosen-composites =
rts +
fixes comp :: 'a comp (infixr - 55)
assumes comp-extensionality-ax: Nt v :: ‘a. = seq t u =t - u = null
and composite-of-comp-az: Nt u v :: 'a. seq t u => composite-of t u (t - u)
and comp-assoc-ax: Nt u v :: 'a. [seqt u; sequv] = (t-u)-v==1-(u-v)
and resid-comp-right-az: t - v ~w = w \ (t-u) = (w\ t) \ u
and resid-comp-left-ax: (t - u) \ w= (t\ w) - (u\ (w\ 1))
begin

lemma comp-assoccc:
shows t-u-v=_(t u)- v

(proof)

lemma comp-nullcc:
shows ¢ - null = null and null - ¢t = null

(proof)

lemma composable-iff-arr-compcc:
shows composable t v +— arr (¢ - u)

(proof)

lemma composable-iff-comp-not-nullcc:
shows composable t u «— t - u # null

(proof)

lemma con-comp-iff cc:
shows w —~ t - u <— composable t u A w\ t ~ u

(proof)

lemma con-complcc [intro:
assumes composable t v and w \ t ~ u
shows w ~ ¢t -vand ¢t - v ~w

(proof)

sublocale rts-with-composites resid
(proof )

end

context paths-in-weakly-extensional-rts
begin

abbreviation Comp
where Comp T U = if seq T U then T Q U else null
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sublocale rts-with-chosen-composites Resid Comp

{proof)

lemma extends-to-rts-with-chosen-composites:
shows rts-with-chosen-composites Resid Comp

(proof)

end

context extensional-rts-with-composites
begin

lemma extends-to-rts-with-chosen-composites:
shows rts-with-chosen-composites resid comp

(proof)

sublocale rts-with-chosen-composites resid comp
(proof)

end

locale extension-to-paths =
A:rts A +
B: rts-with-chosen-composites B compp +
F: simulation A B F +
paths-in-rts A
for A :: 'a resid (infix <\ 4> 70)
and B :: b resid (infix \p» 70)
and compp :: 'b comp (infixr <-p> 55)
and F :: ‘a = 'b
begin

notation Resid (infix *\ 4™ 70)
notation Residlz (infix <1\ 4% 70)
notation Residrl (infix ¢\ 41> 70)
notation Con (infix *~4*» 70)
notation B.con (infix «—~p> 50)

fun map
where map [| = B.null
| map [t] = Ft

| map (t # T) = (if arr (t # T) then F t -5 map T else B.null)
lemma map-o-incl-eq:
shows map (inclt) = F' t
(proof)

lemma extensionality:
shows = arr T = map T = B.null
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(proof)

lemma preserves-comp:
shows [T 4 [; U#[; Arr (TQ U)] = map (TQ U)=map T -5 map U
(proof )

lemma preserves-arr-ind:
shows [arr T; a € Sres T] = B.arr (map T) A F a € B.sources (map T)

{proof)

lemma preserves-arr:
shows arr T = B.arr (map T)

(proof)

lemma preserves-sources:
assumes arr T and a € Sres T
shows F a € B.sources (map T)

(proof)

lemma preserves-targets:
shows [arr T; b € Trgs T] = F b € B.targets (map T)

{proof)

lemma preserves-Residlz-ind:
shows t 1\4* U # Anull = Ft ~g map U AN F (t '\a* U) = Ft\p map U
(proof)

lemma preserves-Residr1-ind:
shows U *\a' t £ [ = map U ~g Ft A map (U *\a' t) = map U \p Ft
(proof)

lemma preserves-resid-ind:
shows con T U = map T —~p map U A map (T *\a* U) = map T \p map U
(proof )

lemma preserves-con:

assumes con T U

shows map T —~p map U
(proof)

lemma preserves-resid:

assumes con T' U

shows map (T *\a* U) = map T \p map U
(proof)

sublocale simulation Resid B map

(proof)

lemma is-extension:
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shows map o incl = F
(proof)

lemma is-universal:

shows simulation Resid B map and map o incl = F

and AF'. [simulation Resid B F'; F' o incl = F]
=V T.arr T — B.cong (F' T) (map T)

(proof )

end

lemma extension-to-paths-comp:

assumes rts-with-chosen-composites B compp

and rts-with-chosen-composites C compc

and simulation A B F and simulation B C G

and At u. rts.composable Bt u = G (compp t u) = compc (G t) (G u)

shows extension-to-paths.map A C compc (G o F) = G o extension-to-paths.map A B compp
F

(proof)

locale extension-to-composite-completion =
A:rts A +
B: extensional-rts-with-composites B +
simulation A B F

for A :: 'a resid (infix \ 4> 70)

and B :: b resid (infix \p» 70)

and F :: ‘a = b

begin

interpretation N: coherent-normal-sub-rts A «Collect A.ide>

(proof )
sublocale P: paths-in-rts-with-coherent-normal A «Collect A.ide> {proof)
sublocale Q: quotient-by-coherent-normal P.Resid < Collect P.NPathy {proof)
sublocale Ac: composite-completion A (proof)

notation P.Resid (infix *\ 4™ 70)
notation P.Residiz (infix *\ 4% 70)
notation P.Residr! (infix <*\ 4% 70)

notation P.Con (infix *~4*) 70)
notation B.comp (infixr <p> 55)
notation B.con (infix «<—~p» 50)

interpretation F-ext: extension-to-paths A B B.comp F (proof)

definition map
where map = Q.ext-to-quotient B F-ext.map

sublocale simulation Ac.resid B map

(proof)
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lemma is-simulation:
shows simulation Ac.resid B map

{proof)

lemma is-extension:
shows map o Ac.incl = F

{proof)

lemma is-universal:
shows 3!F'. simulation Ac.resid B F' N F' o Ac.incl = F

{proof)

end

context composite-completion
begin

lemma arrows-factor-as-paths:
assumes arr T
shows 3 T. P.arr T N extension-to-paths.map R resid comp incl T =T

{proof)

end

lemma extension-to-composite-completion-comp:

assumes extensional-rts-with-composites B

and extensional-rts-with-composites C

and simulation A B F and simulation B C G

shows extension-to-composite-completion.map A C (G o F) =
G o extension-to-composite-completion.map A B F

(proof)

lemma composite-completion-of-rts:
assumes rts A
shows 3 (A’ :: 'a list set resid) I.
extensional-rts-with-composites A’ A simulation A A’ I A
(VB (J :: 'a = ’c). extensional-rts-with-composites B A simulation A B J
— (3. simulation A" BJ' AN J oI = 1))
(proof)

2.6 Constructions on RTS’s
2.6.1 Products of RTS’s

locale product-rts =
A:rts A +
B: rts B
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for A :: 'a resid (infix \ 4> 70)
and B :: 'b resid (infix \p» 70)
begin

notation A.con  (infix <—~4> 50)
notation A.prfr (infix <S4 50)
notation A.cong (infix (~4> 50)

notation B.con  (infix «—~p» 50)
notation B.prfz  (infix <Sp» 50)
notation B.cong (infix <~p) 50)

type-synonym (‘c, 'd) arr = 'c x 'd

abbreviation (input) Null :: (‘a, 'b) arr
where Null = (A.null, B.null)

definition resid :: (‘a, 'b) arr = (‘a, 'b) arr = (‘a, 'b) arr
where resid t u = (if fst t ~4 fst u A snd t ~p snd u
then (fst t \a fst u, snd t \p snd u)
else Null)

notation resid (infix <\» 70)

sublocale partial-magma resid

(proof)

lemma is-partial-magma:
shows partial-magma resid

{proof)

lemma null-char [simp]:
shows null = Null

(proof)

sublocale residuation resid

(proof )

lemma is-residuation:
shows residuation resid

{proof)

notation con  (infix <~ 50)

lemma arr-char [iff]:
shows arr t «— A.arr (fst t) A B.arr (snd t)

(proof)

lemma ide-char [iff]:
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shows ide t «— A.ide (fst t) A B.ide (snd t)
(proof)

lemma con-char [iff]:
shows t ~ u — fstt ~4 fst u A sndt ~p snd u

(proof)

lemma trg-char:
shows trg t = (if arr t then (A.trg (fst t), B.trg (snd t)) else Null)

(proof)

sublocale rts resid
(proof )

lemma is-rts:
shows rts resid

(proof)

notation prfzr  (infix << 50)
notation cong  (infix <~) 50)

lemma sources-char:
shows sources t = A.sources (fst t) x B.sources (snd t)

(proof)

lemma targets-char:
shows targets t = A.targets (fst t) x B.targets (snd t)

{proof)

lemma prfz-char:
shows t S u+— fstt <a fstu A sndt Sp snd u

(proof)

lemma cong-char:
shows t ~ u < fstt ~y fstu A sndt ~p snd u

{proof)

lemma join-of-char:

shows join-of t u v <— A.join-of (fst t) (fst u) (fst v) A B.join-of (snd t) (snd u) (snd v)
and joinable t u <— A.joinable (fst t) (fst u) A B.joinable (snd t) (snd u)

{proof)

end

locale product-of-weakly-extensional-rts =
A: weakly-extensional-rts A +
B: weakly-extensional-rts B +
product-rts

begin
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sublocale weakly-extensional-rts resid

{proof)

lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid

(proof)

lemma src-char:
shows src t = (if arr t then (A.src (fst t), B.src (snd t)) else null)

{proof)

end

locale product-of-extensional-rts =
A: extensional-rts A +
B: extensional-rts B +
product-of-weakly-extensional-rts
begin

sublocale extensional-rts resid

{proof)

lemma is-extensional-rts:
shows extensional-rts resid

(proof)

end

Product Simulations

locale product-simulation =

Al: rts A1 +

A0: rts A0 +

B1: rts B1 +

BO: rts BO +

Al1zAQ: product-rts A1 A0 +

B1xB0: product-rts B1 B0 +

F1: simulation A1 B1 F1 +

F0: simulation A0 B0 F0
for A1 :: 'al resid (infix \41> 70)
and A0 :: ‘a0 resid (infix \ 4> 70)
and BI :: b1 resid (infix \g1» 70)
and B0 :: 'b0 resid (infix \po>» 70)
and F1 :: 'al = 'b1
and F0 :: 'a0 = 'b0
begin

definition map

90



where map = (Aa. if A1zA0.arr a then (F1 (fst a), FO (snd a))
else (F1 Al.null, FO A0.null))

lemma map-simp [simp]:
assumes A7l.arr al and A0.arr a0
shows map (al, a0) = (F1 al, F0 a0)

(proof)

sublocale simulation A1zA0.resid B1xB0.resid map

(proof )

lemma is-simulation:
shows simulation A1xA0.resid B1xB0.resid map

{proof)

end

Binary Simulations

locale binary-simulation =

Al: rts A1 +

A0: rts A0 +

A: product-rts A1 A0 +

B: rts B +

simulation A.resid B F
for A1 :: 'al resid  (infix <\ 41> 70)
and A0 :: ‘a0 resid  (infix <\ 40> 70)
and B :: 'b resid (infix \p» 70)
and F :: 'al * a0 = b
begin

lemma fixing-ide-gives-simulation-1:
assumes A1.ide al
shows simulation A0 B (A\t0. F (al, t0))

{proof)

lemma fizing-ide-gives-simulation-0:
assumes A0.ide a0
shows simulation A1 B (At1. F (t1, a0))

{proof)

end

2.6.2 Sub-RTS’s

A sub-RTS of an RTS R may be determined by specifying a subset of the transitions
of R that is closed under residuation and in addition includes some common source for
every consistent pair of transitions contained in it.

locale sub-rts =
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R: rts R
for R :: 'a resid (infix (\p> 70)
and Arr :: ‘a = bool +
assumes inclusion: Arr t = R.arr t
and resid-closed: [Arr t; Arr u; R.con t u] = Arr (¢t \g )
and enough-sources: [Arr t; Arr u; R.con t u] =

Ja. Arr a A a € R.sources t A a € R.sources u

begin

notation R.con  (infix <—~p> 50)
notation R.prfr (infix <Sg» 50)
notation R.cong (infix <~p> 50)

definition resid :: ‘a resid (infix <\» 70)
where t \ u = if Arr t A Arr u At ~g u then t \g u else R.null

sublocale partial-magma resid

(proof)

lemma is-partial-magma:
shows partial-magma resid
(proof)

lemma null-char:
shows null = R.null

(proof)

sublocale residuation resid

(proof)

lemma is-residuation:
shows residuation resid

(proof)

notation con  (infix <~ 50)

lemma arr-char:
shows arr t «+— Arrt

(proof)

lemma ide-char:
shows ide t +— Arrt N R.ide t

(proof)

lemma con-char:
shows con t u +— Arrt AN Arr u A\ R.con t u

(proof)

lemma trg-char:
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shows trg = (At. if arr t then R.trg t else null)
{proof )

sublocale rts resid

(proof)

lemma is-rts:
shows rts resid

{proof)

notation prfz (infix «<) 50)
notation cong (infix «~> 50)

lemma sources-subset:
shows sources t C {a. Arrt A a € R.sources t}

(proof)

lemma targets-subset:
shows targets t C {b. Arrt A b € R.targets t}

{proof)

lemma prfr-charsgrrs:
shows prfr t uw «— Arrt N Arr u A R.prfr tu

(proof)

lemma cong-charsprrs:
shows t ~ u<— Arrt N Arru ANt ~g u

(proof)

lemma composite-of-char:
shows composite-of t u v «— Arrt A Arr u A Arr v A R.composite-of t u v

(proof)

lemma join-of-char:
shows join-of t w v <— Arrt A Arr u A Arr v A R.join-of t u v

{proof)

lemma preserves-weakly-extensional-rts:
assumes weakly-extensional-rts R
shows weakly-extensional-rts resid

{proof)

lemma preserves-extensional-rts:
assumes extensional-rts R
shows extensional-rts resid

{proof)

abbreviation incl
where incl t = if arr t then t else null
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sublocale Incl: simulation resid R incl

(proof)

lemma inclusion-is-simulation:
shows simulation resid R incl

(proof)

lemma incl-cancel-left:

assumes transformation X resid F G T and transformation X resid F' G’ T’
and incl o T = incl o T’

shows T = T'

(proof)

lemma incl-reflects-con:
assumes R.con (incl t) (incl u)
shows con t u

(proof)

lemma corestriction-of-simulation:

assumes simulation X R F

and Az. residuation.arr X x = Arr (F x)
shows simulation X resid F and incl o F = F

{proof)

lemma corestriction-of-transformation:

assumes simulation X resid F and simulation X resid G
and transformation X R F G T

and Az. residuation.arr X v = Arr (T z)

shows transformation X resid F G T and inclo T = T

(proof)

end

locale source-replete-sub-rts =
R:rts R
for R :: 'a resid (infix \r 70)
and Arr :: 'a = bool +
assumes inclusion: Arr t = R.arr t
and resid-closed: [Arr t; Arr u; R.con t u] = Arr (¢ \g u)
and source-replete: Arr t = R.sources t C Collect Arr
begin

sublocale sub-rts
(proof )

lemma is-sub-rts:
shows sub-rts R Arr

(proof)
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lemma sources-charsgrrs:
shows sources t = {a. Arr t A a € R.sources t}

{proof)

lemma targets-chargprrs:
shows targets t = {b. Arr t A b € R.targets t}

{proof)

interpretation Pg: paths-in-rts R

(proof)

interpretation P: paths-in-rts resid
(proof)

lemma path-reflection:
shows [Pgr.Arr T; set T C Collect Arr] = P.Arr T

{proof)

end

locale sub-rts-of-weakly-extensional-rts =
R: weakly-extensional-rts R +
sub-rts R Arr

for R :: 'a resid (infix \r 70)

and Arr :: 'a = bool

begin

sublocale weakly-extensional-rts resid

(proof)

lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid

(proof)

lemma sre-char:
shows src = (At. if arr t then R.src t else null)

{proof)

lemma targets-char:
assumes arr t
shows targets t = {R.trg t}

(proof)

end

locale sub-rts-of-extensional-rts =
R: extensional-rts R +
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sub-rts R Arr
for R :: 'a resid (infix \g 70)
and Arr :: 'a = bool
begin

sublocale sub-rts-of-weakly-extensional-rts {proof)

sublocale extensional-rts resid

{proof)

lemma is-extensional-rts:
shows extensional-rts resid

(proof)
end

Here we justify the terminology “normal sub-RTS”, which was introduced earlier, by
showing that a normal sub-RTS really is a sub-RTS.

lemma (in normal-sub-rts) is-sub-rts:
shows source-replete-sub-rts resid (At. t € N)

{proof)

end
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Chapter 3

The Lambda Calculus

In this second part of the article, we apply the residuated transition system framework
developed in the first part to the theory of reductions in Church’s A-calculus. The
underlying idea is to exhibit A-terms as states (identities) of an RTS, with reduction
steps as non-identity transitions. We represent both states and transitions in a unified,
variable-free syntax based on de Bruijn indices. A difficulty one faces in regarding the -
calculus as an RTS is that “elementary reductions”, in which just one redex is contracted,
are not preserved by residuation: an elementary reduction can have zero or more residuals
along another elementary reduction. However, “parallel reductions”, which permit the
contraction of multiple redexes existing in a term to be contracted in a single step, are
preserved by residuation. For this reason, in our syntax each term represents a parallel
reduction of zero or more redexes; a parallel reduction of zero redexes representing an
identity. We have syntactic constructors for variables, A-abstractions, and applications.
An additional constructor represents a (-redex that has been marked for contraction.
This is a slightly different approach than that taken by other authors (e.g. [1] or [7]), in
which it is the application constructor that is marked to indicate a redex to be contracted,
but it seems more natural in the present setting in which a single syntax is used to
represent both terms and reductions.

Once the syntax has been defined, we define the residuation operation and prove
that it satisfies the conditions for a weakly extensional RTS. In this RTS, the source
of a term is obtained by “erasing” the markings on redexes, leaving an identity term.
The target of a term is the contractum of the parallel reduction it represents. As the
definition of residuation involves the use of substitution, a necessary prerequisite is to
develop the theory of substitution using de Bruijn indices. In addition, various properties
concerning the commutation of residuation and substitution have to be proved. This part
of the work has benefited greatly from previous work of Huet [7], in which the theory of
residuation was formalized in the proof assistant Coq. In particular, it was very helpful
to have already available known-correct statements of various lemmas regarding indices,
substitution, and residuation. The development of the theory culminates in the proof of
Lévy’s “Cube Lemma” [8], which is the key axiom in the definition of RTS.

Once reductions in the A-calculus have been cast as transitions of an RTS, we are
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able to take advantage of generic results already proved for RTS’s; in particular, the con-
struction of the RTS of paths, which represent reduction sequences. Very little additional
effort is required at this point to prove the Church-Rosser Theorem. Then, after proving
a series of miscellaneous lemmas about reduction paths, we turn to the study of devel-
opments. A development of a term is a reduction path from that term in which the only
redexes that are contracted are those that are residuals of redexes in the original term.
We prove the Finite Developments Theorem: all developments are finite. The proof given
here follows that given by de Vrijer [5], except that here we make the adaptations nec-
essary for a syntax based on de Bruijn indices, rather than the classical named-variable
syntax used by de Vrijer. Using the Finite Developments Theorem, we define a function
that takes a term and constructs a “complete development” of that term, which is a
development in which no residuals of original redexes remain to be contracted.

We then turn our attention to “standard reduction paths”, which are reduction paths
in which redexes are contracted in a left-to-right order, perhaps with some skips. After
giving a definition of standard reduction paths, we define a function that takes a term
and constructs a complete development that is also standard. Using this function as a
base case, we then define a function that takes an arbitrary parallel reduction path and
transforms it into a standard reduction path that is congruent to the given path. The
algorithm used is roughly analogous to insertion sort. We use this function to prove
strong form of the Standardization Theorem: every reduction path is congruent to a
standard reduction path. As a corollary of the Standardization Theorem, we prove the
Leftmost Reduction Theorem: leftmost reduction is a normalizing reduction strategy.

It should be noted that, in this article, we consider only the AS-calculus. In the
early stages of this work, I made an exploratory attempt to incorporate n-reduction as
well, but after encountering some unanticipated difficulties I decided not to attempt that
extension until the S-only case had been well-developed.

theory LambdaCalculus
imports Main ResiduatedTransitionSystem
begin

3.1 Syntax

locale lambda-calculus
begin
The syntax of terms has constructors Var for variables, Lam for A-abstraction, and
App for application. In addition, there is a constructor Beta which is used to represent a
[B-redex that has been marked for contraction. The idea is that a term Beta ¢ u represents
a marked version of the term App (Lam t) u. Finally, there is a constructor Nil which is
used to represent the null element required for the residuation operation.

datatype (discs-sels) lambda =
Nil

| Var nat

| Lam lambda

| App lambda lambda
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| Beta lambda lambda

The following notation renders Beta t u as a “marked” version of App (Lam t) u, even
though the former is a single constructor, whereas the latter contains two constructors.

notation Ni ()

notation Var (<«-»)

notation Lam (<A[-])

notation App (infixl (0> 55)
notation Beta (<(A[-] ® -)» [55, 56] 55)

The following function computes the set of free variables of a term. Note that since
variables are represented by numeric indices, this is a set of numbers.

fun FV
where FV §f = {}
| FV «i» = {i}
| FVA[] = (An.n— 1) “(FVit—{0})
| FV (tow) = FVtUFVu
| FV Al @ uw) = (An.n — 1) “(FVt—{0}) U FVu

3.1.1 Some Orderings for Induction

We will need to do some simultaneous inductions on pairs and triples of subterms of given
terms. We prove the well-foundedness of the associated relations using the following size
measure.

fun size :: lambda = nat
where size § = 0
| size «-» = 1
| size A[f] = size t + 1
| size (t o u) = size t + size u + 1
| size (A[t] ® u) = (size t + 1) + size u + 1

lemma wf-if-img-lt:

fixes r :: (‘a * 'a) set and f :: 'a = nat
assumes Az y. (z,y) € r = fa < fy
shows wf r

(proof)

inductive subterm
where At. subterm t A[t]
| At u. subterm t (t o u)
| At u. subterm u (t o u)
| At u. subterm t (A[t] ® u)
| At u. subterm u (A[t] ® u)
| At uv. [subterm t u; subterm u v] = subterm t v

lemma subterm-implies-smaller:
shows subterm t u = size t < size u

(proof)
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abbreviation subterm-rel
where subterm-rel = {(t, u). subterm t u}

lemma wf-subterm-rel:
shows wf subterm-rel

(proof)

abbreviation subterm-pair-rel
where subterm-pair-rel = {((t1, t2), ul, u2). subterm t1 ul A subterm t2 u2}

lemma wf-subterm-pair-rel:
shows wf subterm-pair-rel

{proof)

abbreviation subterm-triple-rel

where subterm-triple-rel =
{((t1, t2, t3), ul, u2, ul). subterm t1 ul A subterm t2 u2 A subterm t3 u3}

lemma wf-subterm-triple-rel:
shows wf subterm-triple-rel

(proof)

lemma subterm-lemmas:

shows subterm t A[{]

and subterm t (A[t] o u) A subterm u (A[t] o u)
and subterm t (t o u) A subterm u (t o u)

and subterm t (A[t] ® u) A subterm u (A[t] ® )

(proof)

3.1.2 Arrows and Identities

Here we define some special classes of terms. An “arrow” is a term that contains no
occurrences of Nil. An “identity” is an arrow that contains no occurrences of Beta.
It will be important for the commutation of substitution and residuation later on that
substitution not be used in a way that could create any marked redexes; for example,
we don’t want the substitution of Lam (Var 0) for Var 0 in an application App (Var 0)
(Var 0) to create a new “marked” redex. The use of the separate constructor Beta for
marked redexes automatically avoids this.

fun Arr
where Arr f = Fualse
| Arr «-» = True
| Arr A[t] = Arr t
| Arr (t o u) = (Arrt A\ Arr u)
| Arr (A[t] @ u) = (Arrt A Arr u)

lemma Arr-not-Nil:
assumes Arrt
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shows ¢ # {
{proof )

fun Ide
where Ide f = Fualse
| Ide «-» = True
| Ide A[f] = Ide t
| Ide (t o u) = (Ide t A Ide u)
| Ide (A[t] ® u) = False

lemma Ide-implies-Arr:
shows Ide t = Arr t

(proof)

lemma ArrE [elim]:

assumes Arr ¢

and A\i. t = «i» = T

and Au. t = Afu] = T

and Auv.t=wov= T
and Auv. t =A[u] e v =T
shows T

(proof)

3.1.3 Raising Indices

For substitution, we need to be able to raise the indices of all free variables in a subterm
by a specified amount. To do this recursively, we need to keep track of the depth of
nesting of A’s and only raise the indices of variables that are already greater than or
equal to that depth, as these are the variables that are free in the current context. This
leads to defining a function Raise that has two arguments: the depth threshold d and
the increment n to be added to indices above that threshold.

fun Raise
where Raise - - § = §
| Raise d n «in = (if i > d then «i+n» else «in)
| Raise d n A[t] = A[Raise (Suc d) n 1]
| Raise d n (t o u) = Raise d nt o Raise dn u
| Raise d n (A[t] ® u) = A[Raise (Suc d) n t] ® Raise d n u

Ultimately, the definition of substitution will only directly involve the function that
raises all indices of variables that are free in the outermost context; in a term, so we
introduce an abbreviation for this special case.

abbreviation raise

where raise == Raise 0

lemma size-Raise:
shows Ad. size (Raise d n t) = size t

(proof)
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lemma Raise-not-Nil:
assumes t # {
shows Raise d nt #

{proof)

lemma F'V-Raise:
shows FV (Raise dnt) = (Az. ifz > dthenz + nelsex) ‘FV i

{proof)

lemma Arr-Raise:
shows Arr t «— Arr (Raise d n t)

(proof)

lemma Ide-Raise:
shows Ide t +— Ide (Raise d n t)

(proof)

lemma Raise-0:
shows Raise d 0t =t

{proof)

lemma Raise-Suc:
shows Raise d (Suc n) t = Raise d 1 (Raise d n t)

(proof)

lemma Raise-Var:
shows Raise d n «in = «if i < d then i else i + n»

(proof)

The following development of the properties of raising indices, substitution, and resid-
uation has benefited greatly from the previous work by Huet [7]. In particular, it was
very helpful to have correct statements of various lemmas available, rather than having
to reconstruct them.

lemma Raise-plus:
shows Raise d (m + n) t = Raise (d + m) n (Raise d m t)
(proof)

lemma Raise-plus’:
shows [d’ < d + n; d < d'] = Raise d (m + n) t = Raise d’ m (Raise d n t)
(proof)

lemma Raise-Raise:
shows ¢ < n = Raise i p (Raise n k t) = Raise (p + n) k (Raise i p t)
{proof)

lemma raise-plus:
shows d < n = raise (m + n) t = Raise d m (raise n t)
{proof )

102



lemma raise-Raise:
shows raise p (Raise n k t) = Raise (p + n) k (raise p t)
(proof)

lemma Raise-inj:
shows Raise d nt = Raisednu— t = u

{proof)

3.1.4 Substitution

Following [7], we now define a generalized substitution operation with adjustment of
indices. The ultimate goal is to define the result of contraction of a marked redex Beta
t u to be subst u t. However, to be able to give a proper recursive definition of subst, we
need to introduce a parameter n to keep track of the depth of nesting of Lam’s as we
descend into the the term ¢. So, instead of subst u t simply substituting « for occurrences
of Var 0, Subst n u t will be substituting for occurrences of Var n, and the term u will
have the indices of its free variables raised by n before replacing Var n. In addition, any
variables in ¢ that have indices greater than n will have these indices lowered by one, to
account for the outermost Lam that is being removed by the contraction. We can then
define subst u t to be Subst 0 u t.

fun Subst
where Subst - - f = §
| Subst n v «in = (if n < i then «i—1» else if n = i then raise n v else «in)
| Subst n v A[t] = A[Subst (Suc n) v {]
| Subst n v (to u) = Subst n vto Substnvu
| Subst n v (A[t] ® u) = A[Subst (Suc n) v ] @ Subst n v u

abbreviation subst
where subst = Subst 0

lemma Subst-Nil:
shows Subst n v = f

(proof)

lemma Subst-not-Nil:
assumes v # § and ¢ # §
shows t # f§ = Subst n vt #

(proof)

The following expression summarizes how the set of free variables of a term Subst d
u t, obtained by substituting u into ¢ at depth d, relates to the sets of free variables of
t and u. This expression is not used in the subsequent formal development, but it has
been left here as an aid to understanding.

abbreviation FVS

where FVSdvt= (FVtN{z. z < d}) U

M.z — 1) ‘{z.ze>dANz e FVi} U
M.z +d) ‘{e.de FVt ANz e FVv}
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lemma FV-Subst:
shows FV (Substdvt) =FVSdovt

{proof)

lemma Arr-Subst:
assumes Arr v
shows Arr t = Arr (Subst n v t)

{proof)

lemma vacuous-Subst:
shows [Arr v; i ¢ FV {] = Raise i 1 (Substivt) =1t
(proof )

lemma Ide-Subst-iff:
shows Ide (Subst n v t) «— Ide t A (n € FV t — Ide v)

(proof)

lemma Ide-Subst:
shows [Ide t; Ide v] = Ide (Subst n v t)

(proof)

lemma Raise-Subst:
shows Raise (p + n) k (Subst p v t) = Subst p (Raise n k v) (Raise (Suc (p + n)) k1)
{proof)

lemma Raise-Subst”:

assumes t # f

shows [v # #; k < n] = Raise k p (Subst n v t) = Subst (p + n) v (Raise k p t)
(proof)

lemma Raise-subst:
shows Raise n k (subst v t) = subst (Raise n k v) (Raise (Suc n) k t)

(proof)

lemma raise-Subst:

assumes t #

shows v # §§ = raise p (Subst n v t) = Subst (p + n) v (raise p t)
(proof)

lemma Subst-Raise:
shows [v # #; d < m; m < n + d] = Subst m v (Raise d (Suc n) t) = Raise d n t
{proof )

lemma Subst-raise:
shows [v # #; m < n] = Subst m v (raise (Suc n) t) = raise n ¢

(proof)

lemma Subst-Subst:
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shows [v # f w # ] —
Subst (m + n) w (Subst m v t) = Subst m (Subst n w v) (Subst (Suc (m + n)) wt)

(proof )
The Substitution Lemma, as given by Huet [7].

lemma substitution-lemma:
shows [v # #; w # §] = Subst n v (subst w t) = subst (Subst n v w) (Subst (Suc n) v t)

(proof)

3.2 Lambda-Calculus as an RTS

3.2.1 Residuation

We now define residuation on terms. Residuation is an operation which, when defined
for terms ¢ and u, produces terms ¢t \ uw and u \ t that represent, respectively, what
remains of the reductions of ¢ after performing the reductions in u, and what remains of
the reductions of u after performing the reductions in t.

The definition ensures that, if residuation is defined for two terms, then those terms in
must be arrows that are coinitial (i.e. they are the same after erasing marks on redexes).
The residual ¢ \ w then has marked redexes at positions corresponding to redexes that
were originally marked in ¢ and that were not contracted by any of the reductions of w.

This definition has also benefited from the presentation in [7].

fun resid (infix \» 70)
where «in \ «i'» = (if i = i’ then «i» else §f)

X[\ A[t] = (f t \ t' = § then § else A[t \ ¢])

[ (tou)\ (tou)y=(ift\t'=8Vu\u =4thenf else (t\¢t) o (u)\ u))

| A[]) @ u)\ (A[tTeu)=(ift\t'=8Vu\u =4 then§ else subst (u\ u') (¢t \ )
| A[J ouw)\ (A[tTeu)=(ift\t'=8Vu\ u =4 thenf else subst (u \ u’) (¢ \ ")
Al @ u) \ A[tTouw)=(ift\t' =8V u\ u =14 thenff else A[t \ t'] ® (u\ )

resid - - = {
Terms t and u are consistent if residuation is defined for them.

abbreviation Con (infix <~ 50)
where Con t u = resid t u # 4

lemma ConkE [elim]:
assumes t —~ t’
and Ad. [t = «in; t' = «win; resid t t' = «wir]) = T
and Auu' [t =Au; ' =Alu; u ~u; t\t'=Au\uv]] =T
and Auvu' v. [t =uwowv;t'=u ov;u~u;v~ v
t\t'=(w\uv)o(v\v)] =T
LIt =Au] @ v; t' = Alu’] @ vy u ~ u'; v~ v
t'= subst (v\ v) (u\u)] =T
t = Alu] o v; t' = Beta u' v'; u ~ u’; v ~ v

t\
[
\[[t’*subst( v\ o) (u\u)] =T
\

and Auvu' v
and Auvu' v

t=Au] @ v; t' = Alu] o v; u ~ u’; v~ v

and Auovu' v [t =
t'=Au\uv)e(v\v)] =T

t
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shows T
(proof )

A term can only be consistent with another if both terms are “arrows”.

lemma Con-implies-Arri:
shows t ~ u = Arrt

{proof)

lemma Con-implies-Arr2:
shows t ~ u = Arru

{proof)

lemma ConD:

shows tou ~t'ouw' =t ~t' AN u~u’

and A[v] @ u ~ A[v] @ u' = A[v] ~ A[v] A u —~ u’
and A[v] e u ~t'ou' = A[v] ~t'Au~ v

and tou ~Av] eu' =t ~ AW ] A u~u'

(proof)
Residuation on consistent terms preserves arrows.

lemma Arr-resid:
shows t ~ u = Arr (¢t \ u)

(proof )

3.2.2 Source and Target

Here we give syntactic versions of the source and target of a term. These will later
be shown to agree (on arrows) with the versions derived from the residuation. The
underlying idea here is that a term stands for a reduction sequence in which all marked
redexes (corresponding to instances of the constructor Beta) are contracted in a bottom-
up fashion. A term without any marked redexes stands for an empty reduction sequence;
such terms will be shown to be the identities derived from the residuation. The source of
term is the identity obtained by erasing all markings; that is, by replacing all subterms
of the form Beta t u by App (Lam t) u. The target of a term is the identity that is the
result of contracting all the marked redexes.

fun Src
where Src ff =
| Sre «in = «in
| Sre A[tf] = A[Sre 1]
| Sre (to u) = Srcto Srcu
| Src (A[t] ® u) = A[Src t] o Src u

fun Trg
where Trg «i» = «in
| Trg Alf] = A[Trg {]
| Trg (tow) = Trgto Trgu
| Trg (A[t] ® u) = subst (Trg u) (Trg t)
| Trg - =4
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lemma Ide-Src:
shows Arr t = Ide (Src t)

{proof)

lemma Ide-iff-Src-self:
assumes Arr t
shows Ide t +— Srct =t

{proof)

lemma Arr-Sre [simpl:
assumes Arr ¢
shows Arr (Src t)

{proof)

lemma Con-Src:
shows [size t + size u < n; t ~ u] = Srct ~ Src u

(proof)

lemma Src-eq-iff:

shows Src «in» = Src «i'» +— i =14’

and Src (t o u) = Src (t' o u') +— Srct = Src t' A Src u = Src u’

and Src (A[f] @ u) = Src (A[t'] @ u’) «— Srct = Src t' A Src u = Src u’

and Src (A[f] o u) = Src (A[t] @ u') «— Srct = Src t' A Src u = Src u’
(proof)

lemma Src-Raise:
shows Src (Raise d n t) = Raise d n (Src t)

(proof)

lemma Src-Subst [simp]:
shows [Arr t; Arr u] = Src (Subst d t u) = Subst d (Src t) (Src u)

(proof)

lemma Ide-Trg:
shows Arr t = Ide (Trg t)

(proof)

lemma Ide-iff-Trg-self:
shows Arrt = Idet «— Trgt =1

{proof)

lemma Arr-Trg [simp:
assumes Arr X
shows Arr (Trg X)

{proof)

lemma Sre-Sre [simp]:
assumes Arr ¢
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shows Sre (Src t) = Src t
(proof)

lemma Trg-Sre [simp]:

assumes Arr ¢

shows Trg (Src t) = Src t
{proof )

lemma Trg-Trg [simp]:

assumes Arrt

shows Trg (Trg t) = Trg t
(proof )

lemma Src-Trg [simp]:

assumes Arr t

shows Sre (Trg t) = Trg t
(proof)

Two terms are syntactically coinitial if they are arrows with the same source; that is,
they represent two reductions from the same starting term.

abbreviation Coinitial
where Coinitial t u = Arrt A Arr uw A Src t = Src u

We now show that terms are consistent if and only if they are coinitial.

lemma Coinitial-cases:
assumes Arr ¢ and Arr t’ and Src t = Sre t’
shows (t=# At ' =f) Vv
(Fz. t = wz» ANt/ = wz») V
Suu' t =Xy At'=Au]) Vv
Guvu' v.t=wuwovAt' =u o)V
Guvu v.t=Au ®vAt' =Au]ev)V
Guvu v.t=AuovAt =Au]ev)V
Buvu vt =XAu v At =Au] o)
(proof)

lemma Con-implies-Coinitial-ind:
shows [size t + size u < n; t ~ u] = Coinitial t u

(proof)

lemma Coinitial-implies- Con-ind:
shows [size (Src t) < n; Coinitial t u] = t ~ u

(proof )

lemma Coinitial-iff-Con:
shows Coinitial t u +— t ~ u
(proof )

lemma Coinitial-Raise-Raise:
shows Coinitial t uw = Coinitial (Raise d n t) (Raise d n u)

108



(proof)

lemma Con-sym:
shows t ~ u +— u —~ t

(proof)

lemma Conl [intro, simp]:
assumes Arr t and Arr v and Src t = Src u
shows Con t u

(proof)

lemma Con-Arr-Sre [simp]:
assumes Arr t
shows t —~ Src t and Srct —~ t

(proof)

lemma resid-Arr-self:
shows Arrt = t\t= Tigt

(proof)

The following result is not used in the formal development that follows, but it requires
some proof and might eventually be useful.

lemma finite-branching:

shows Ide a = finite {t. Arrt A Src t = a}

(proof )

3.2.3 Residuation and Substitution

We now develop a series of lemmas that involve the interaction of residuation and sub-
stitution.

lemma Raise-resid:
shows t ~ u = Raise kn (t \ u) = Raise knt\ Raise kn u

{proof)

lemma Con-Raise:
shows t ~ u =— Raise d nt —~ Raise d n u

(proof)

The following is Huet’s Commutation Theorem [7]: “substitution commutes with
residuation”.
lemma resid-Subst:

assumes t —~ t’ and u ~ u’
shows Subst n t u \ Subst n t' u’ = Subst n (t \ t’) (v \ u’)

(proof)

lemma Trg-Subst [simp]:
shows [Arr ¢; Arr u] = Trg (Subst d t u) = Subst d (Trg t) (Trg u)

{proof)
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lemma Sre-resid:
shows t ~ u = Src (t \ uv) = Trg u
{proof)

lemma Coinitial-resid-resid:

assumes t —~ v and u —~ v

shows Coinitial (t \ v) (u \ v)
(proof )

lemma Con-implies-is- Lam-iff-is- Lam:
assumes t —~ u
shows is-Lam t <— is-Lam u

{proof)

lemma Con-implies-Coinitial3:
assumes t \ v ~ u \ v
shows Coinitial v v and Coinitial v t and Coinitial u t

(proof)

We can now prove Lévy’s “Cube Lemma” [8], which is the key axiom for a residuated
transition system.

lemma Cube:
shows v\t ~u\t= (v \ )\ (u\t)=(v\u\(t\w
(proof )

3.2.4 Residuation Determines an RTS

We are now in a position to verify that the residuation operation that we have defined
satisfies the axioms for a residuated transition system, and that various notions which
we have defined syntactically above (e.g. arrow, source, target) agree with the versions
derived abstractly from residuation.

sublocale partial-magma resid

(proof)

lemma null-char [simp]:
shows null =

(proof)

sublocale residuation resid
(proof )
notation resid (infix <\» 70)

lemma resid-is-residuation:
shows residuation resid

{proof)

110



lemma arr-char [iff]:
shows arrt «— Arrt

{proof)

lemma ide-char [iff]:
shows ide t «+— Ide t
(proof)

lemma resid-Arr-Ide:
shows [Ide a; Coinitial t a] = t \ a =t

(proof)

lemma resid-Ide-Arr:
shows [Ide a; Coinitial a t] = Ide (a \ t)
(proof)

lemma resid-Arr-Src [simp]:
assumes Arr ¢
shows t \ Srct =t

(proof)

lemma resid-Src-Arr [simp):
assumes Arr ¢
shows Srct \ t = Trg ¢

(proof)

sublocale rts resid

{proof)

lemma is-rts:
shows rts resid

(proof)

lemma sources-char:
shows sources t = (if Arr t then {Src t} else {})

(proof )

lemma sources-simp [simp):
assumes Arr ¢
shows sources t = {Src t}

(proof)

lemma sources-simps [simp]:

shows sources § = {}

and sources «x» = {«z»}

and arr t = sources A[f] = {A[Src ]}

and [arr t; arr u] = sources (t o u) = {Src t o Src u}

and [arr t; arr u] = sources (A[t] ® u) = {A[Src t] o Src u}
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(proof)

lemma targets-chary:
shows targets t = (if Arr t then {Trg t} else {})

(proof )

lemma targets-simp [simpl:
assumes Arr ¢
shows targets t = {Trg t}

(proof)

lemma targets-simps [simp]:

shows targets § = {}

and targets wz» = {«x»}

and arr t = targets A[{] = {A[Trg {]}

and [arr t; arr u] = targets (t o u) = {Trg t o Trg u}

and [arr t; arr u] = targets (A[f] ® u) = {subst (Trg u) (Trg t)}
(proof)

lemma seq-char:
shows seq t u +— Arrt N Arru A Trg t = Src u

(proof)

lemma seql [intro, simp]:
assumes Arr t and Arr v and Trg t = Src u
shows seq t u

(proof)

lemma segE [elim]:

assumes seq t u

and [Arr t; Arru; Trgt = Srcu] = T
shows T

(proof)

The following classifies the ways that transitions can be sequential. It is useful for
later proofs by case analysis.

lemma seq-cases:

assumes seq t u

shows (is-Var t A is-Var u) V
(is-Lam t A is-Lam u) V
(is-App t A is-App u) V
(is-App t A is-Beta u A is-Lam (un-Appl t)) V
(is-App t A is-Beta u A is-Beta (un-Appl t)) V
is-Beta t

(proof)

sublocale confluent-rts resid

{proof)
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lemma is-confluent-rts:
shows confluent-rts resid

(proof)

lemma con-char [iff]:
shows con t u <— Con t u

(proof)

lemma coinitial-char [iff]:
shows coinitial t u <— Coinitial t u

(proof)

lemma sources-Raise:
assumes Arr t
shows sources (Raise d n t) = {Raise d n (Src t)}

(proof)

lemma targets-Raise:
assumes Arr ¢
shows targets (Raise d n t) = {Raise d n (Trg t)}

(proof)

lemma sources-subst [simp]:
assumes Arr t and Arr u
shows sources (subst t u) = {subst (Src t) (Src u)}

(proof)

lemma targets-subst [simp]:
assumes Arr t and Arr u
shows targets (subst t u) = {subst (Trg t) (Trg u)}

(proof)

notation prfz (infix «<) 50)
notation cong (infix «~) 50)

lemma prfz-char [iff]:
shows t < u «— Ide (¢ \ u)

(proof)

lemma prfr-Var-iff:
shows u < «iy «— u = «iy

(proof)

lemma prfz-Lam-iff:
shows u < Lam t <— is-Lam u A un-Lam u < ¢

{proof)

lemma prfz-App-iff:
shows u < t1 0 t2 +— is-App u A un-Appl v < t1 A un-App2 u < 12
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(proof)

lemma prfz-Beta-iff:
shows u < A[t1] @ t2 «—
(is-App u A un-Appl u S A[t1] A un-App2 u —~ t2 A
(0 € FV (un-Lam (un-Appl u) \ t1) — un-App2 u < t2)) V
(is-Beta u A un-Betal u < t1 A un-Beta2 u ~ t2 A
(0 € FV (un-Betal u \ t1) — un-Beta2 u < t2))

{proof)

lemma cong-Ide-are-eq:
assumes t ~ u and Ide t and Ide u
shows t = u

{proof)

lemma eg-Ide-are-cong:
assumes t = v and Ide t
shows ¢t ~ u

(proof)

sublocale weakly-extensional-rts resid

(proof)

lemma is-weakly-extensional-rts:
shows weakly-extensional-rts resid

(proof)

lemma sre-char [simp):
shows src t = (if Arr t then Src t else )

{proof)

lemma trg-char [simp]:
shows trg t = (if Arr t then Trg t else ff)
{proof )

We “almost” have an extensional RTS. The case that fails is A[t1] @ {2 ~ u = A[t]]
e (2 = wu. This is because tI might ignore its argument, so that subst t2 t1 = subst t2’
t1, with both sides being identities, even if t2 # t2'.

The following gives a concrete example of such a situation.

abbreviation non-extensional-ex!
where non-extensional-exl = A[A[«0»] o A[«0»]] ® (A[«0»] @ A[«0»])

abbreviation non-extensional-ex?
where non-extensional-exz2 = A[A[«0»] o A[«0»]] ® (A[«0»] 0 A[«0»])

lemma non-extensional:
shows A[«1»] e non-extensional-exl ~ A[«1»] ® non-extensional-ex2
and A[«1»] ® non-extensional-exl # X[ «1»] ® non-extensional-ex2

{proof)
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The following gives an example of two terms that are both coinitial and coterminal,
but which are not congruent.

abbreviation cong-nontrivial-exl
where cong-nontrivial-exl1 =
A[«O» o «O»] o A[«0» o «0»] o (A[«0» o «O»] @ X[«0» 0 «0»])

abbreviation cong-nontrivial-ex2
where cong-nontrivial-ex2 =
Al[«0» o «0»] @ X[«0» o «0»] o (A[«0» o «0»] 0 A[«0» 0 «0»])

lemma cong-nontrivial:

shows coinitial cong-nontrivial-exl cong-nontrivial-ex2
and coterminal cong-nontrivial-exl cong-nontrivial-ex2
and - cong cong-nontrivial-exl cong-nontrivial-ex2

(proof)

Every two coinitial transitions have a join, obtained structurally by unioning the sets
of marked redexes.

fun Join (infix <L) 52)
where «z» U «x'» = (if x = 2’ then «x» else §)
| Al U A[L] = A[t U ¢
[ Al o u UA[t] @ u' = A[(t U t)] @ (ulu)
[ @ u UA[tTouw =A[(t U t)] @ (ulUu)
oulthhu =(tUt)o (ul u’
(] @ u UA[t] @ uw' = A[(t U t)] @ (ulu)
=1

1
[
|

lemma Join-sym:
shows t U u=ulUt

(proof)

lemma Src-Join:
shows Coinitial t u = Src (t U u) = Src t

(proof)

lemma resid-Join:
shows Coinitial t u = (t U u) \ u=1\ u

{proof)

lemma prfz-Join:
shows Coinitial t v = u St U u

{proof)

lemma Ide-resid-Join:
shows Coinitial t u = Ide (u \ (t U u))

(proof)

lemma join-of-Join:
assumes Coinitial t u

115



shows join-of t u (t U u)

{proof)

sublocale rts-with-joins resid

(proof)

lemma is-rts-with-joins:
shows rts-with-joins resid

{proof)

3.2.5 Simulations from Syntactic Constructors

Here we show that the syntactic constructors Lam and App, as well as the substitution
operation subst, determine simulations. In addition, we show that Beta determines a
transformation from App o (Lam x Id) to subst.

abbreviation Lam.
where Lame,: t = if arr t then A[{] else §

lemma Lam-is-simulation:
shows simulation resid resid Lameg;

(proof)

interpretation Lam: simulation resid resid Lameg¢

(proof)

interpretation AzA: product-of-weakly-extensional-rts resid resid
(proof)

abbreviation App..¢
where Appe,: t = if AxA.arr t then fst t o snd t else

lemma App-is-binary-simulation:
shows binary-simulation resid resid resid Appeqt

(proof)

interpretation App: binary-simulation resid resid resid Appeyt
(proof)

abbreviation subst.
where subste,: = At. if AzA.arr t then subst (snd t) (fst t) else §

lemma subst-is-binary-simulation:
shows binary-simulation resid resid resid substeqq

{proof)

interpretation subst: binary-simulation resid resid resid subste ¢

(proof)

interpretation Id: identity-simulation resid
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(proof)

interpretation Lam-Id: product-simulation resid resid resid resid Lamegz¢ Id.map

(proof)

interpretation App-o-Lam-Id: composite-simulation AxA.resid AxzA.resid resid Lam-Id.map
Appe;ﬂt
{proof )

abbreviation Beta.
where Betac,: t = if AzA.arr t then A[fst {] @ snd t else §

lemma Beta-is-transformation:
shows transformation AxzA.resid resid App-o-Lam-Id.map subste,; Betaeyy

{proof)

The next two results are used to show that mapping App over lists of transitions
preserves paths.

lemma App-is-simulationl:
assumes ide a
shows simulation resid resid (At. if arr t then t o a else §f)

{proof)

lemma App-is-simulation2:
assumes ide a
shows simulation resid resid (At. if arr t then a o t else §f)

{proof)

3.2.6 Reduction and Conversion

Here we define the usual relations of reduction and conversion. Reduction is the least
transitive relation that relates a to b if there exists an arrow ¢ having a as its source
and b as its target. Conversion is the least transitive relation that relates a to b if there
exists an arrow t in either direction between a and b.

inductive red
where Arr t = red (Srct) (Trg t)
| [red a b; red b c] = red a c

inductive cnv

where Arr t = cnv (Src t) (Trg t)
| Arrt = cnov (Trg t) (Sre t)
| [env a b; cnv b ¢] = cnv a c

lemma cnv-refi:
assumes Ide a
shows cnv a a

(proof)

lemma cnv-sym:
shows cnva b =— cnv b a
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(proof)

lemma red-imp-cnuv:
shows red a b = cnv a b

(proof)

end

We now define a locale that extends the residuation operation defined above to paths,
using general results that have already been shown for paths in an RTS. In particular, we
are taking advantage of the general proof of the Cube Lemma for residuation on paths.

Our immediate goal is to prove the Church-Rosser theorem, so we first prove a lemma
that connects the reduction relation to paths. Later, we will prove many more facts in
this locale, thereby developing a general framework for reasoning about reduction paths
in the A-calculus.

locale reduction-paths =
A: lambda-calculus
begin

sublocale A: rts A.resid

(proof)
sublocale paths-in-weakly-extensional-rts A.resid

{proof)

sublocale paths-in-confluent-rts A.resid

(proof)

notation A.resid (infix <\» 70)

notation A.con  (infix <~ 50)
notation A.prfr (infix «<> 50)
notation A.cong (infix (~) 50)

notation Resid (infix <*\*» 70)
notation Residlz (infix <!\*» 70)
notation Residr! (infix <*\!» 70)
notation con (infix *~*) 50)
notation prfr  (infix <*<*» 50)
notation cong  (infix *~*) 50)

lemma red-iff:
shows Ared a b «— (3T. Arr T ANSr¢e T=a AN Trg T =)

{proof)

end

3.2.7 The Church-Rosser Theorem

context lambda-calculus
begin
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interpretation Az: reduction-paths (proof)

theorem church-rosser:
shows cnva b = dc. redac A red b ¢

(proof )

corollary weak-diamond:
assumes red a b and red a b’
obtains ¢ where red b ¢ and red b’ ¢

(proof )

As a consequence of the Church-Rosser Theorem, the collection of all reduction paths
forms a coherent normal sub-RTS of the RTS of reduction paths, and on identities the
congruence induced by this normal sub-RTS coincides with convertibility. The quotient
of the A-calculus RTS by this congruence is then obviously discrete: the only transitions
are identities.

interpretation Red: normal-sub-rts Ax.Resid «Collect Ax.Arr)

{proof)

interpretation Red: coherent-normal-sub-rts Azx.Resid «Collect Ax.Arr)

{proof)

lemma cnv-iff-Cong:
assumes ide ¢ and ide b
shows ¢nv a b <— Red.Cong [a] [b]

{proof)

interpretation Ag: quotient-by-coherent-normal Ax.Resid <Collect Ax.Arrs

(proof)

lemma quotient-by-cnv-is-discrete:
shows Ag.arr t +— Aq.ide t

(proof)

3.2.8 Normalization

A normal form is an identity that is not the source of any non-identity arrow.

definition NF'
where NF a = Ide a A (Vt. Arrt A Srct = a — Ide t)

lemma (in reduction-paths) path-from-NF-is-Ide:
assumes A.NF a
shows [Arr U; Src U = a] = Ide U

(proof)

lemma NF-reduct-is-trivial:
assumes NF a and red a b
shows a = b
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{proof)

lemma NF-unique:
assumes red t v and red t v’ and NF v and NF v’
shows u = v’

(proof)
A term is normalizable if it is an identity that is reducible to a normal form.

definition normalizable
where normalizable a = Ide a A (3b. red a b A NF b)

end

3.3 Reduction Paths

In this section we develop further facts about reduction paths for the A-calculus.

context reduction-paths
begin

3.3.1 Sources and Targets

lemma Srcs-simpy p:
shows Arr t = Sres t = {A.Src (hd t)}

(proof)

lemma Trgs-simpy p:
shows Arrt = Trgs t = {A.Trg (last t)}
(proof)

lemma sources-single-Sre [simp]:
assumes A.Arrt
shows sources [A.Src t] = sources [t]

(proof)

lemma targets-single-Trg [simp]:
assumes A Arr ¢
shows targets [A.Trg t| = targets [t

(proof)

lemma sources-single-Trg [simp):
assumes A.Arr ¢
shows sources [A.Trg t| = targets [t]

(proof)

lemma targets-single-Sre [simp):
assumes A Arrt
shows targets [A.Src t] = sources [t]

(proof)
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lemma single-Src-hd-in-sources:
assumes Arr T
shows [A.Src (hd T)] € sources T

(proof)

lemma single- Trg-last-in-targets:
assumes Arr T
shows [A.Trg (last T)] € targets T

(proof)

lemma in-sources-iff:
assumes Arr T
shows A € sources T <— A *~* [A.Src (hd T)]

(proof)

lemma in-targets-iff:
assumes Arr T
shows B € targets T <— B *~* [A.Trg (last T)]

{proof)

lemma seg-imp-cong-Trg-last-Src-hd:
assumes seq T U
shows A.Trg (last T) ~ A.Src (hd U)

{proof)

lemma sources-char p:
shows sources T = {A. Arr T N A *~* [A.Src (hd T)]}

(proof)

lemma targets-chary p:
shows targets T = {B. Arr T A B *~* [A.Trg (last T)]}

(proof)

lemma Src-hd-eql:
assumes T *~* U
shows A.Src (hd T) = A.Sre (hd U)

(proof)

lemma Trg-last-eql:
assumes 1 *~* U
shows A.Trg (last T) = A.Trg (last U)

{proof)

lemma Trg-last-Src-hd-eql:
assumes seq T U
shows A.Trg (last T) = A.Src (hd U)

(proof)
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lemma seql p [introl:
assumes Arr T and Arr U and A.Trg (last T) = A.Src (hd U)
shows seq T'U

{proof)

lemma conlpp [intro]:
assumes arr T and arr U and A.Src (hd T) = A.Src (hd U)
shows T *~* U

{proof)

3.3.2 Mapping Constructors over Paths

lemma Arr-map-Lam:
assumes Arr T
shows Arr (map A.Lam T)

{proof)

lemma Arr-map-Appl:
assumes A.Ide b and Arr T
shows Arr (map (A\t. to b) T)

{proof)

lemma Arr-map-App2:
assumes A.lde a and Arr T
shows Arr (map (A.App a) T)

{proof)

interpretation Ay ..,: source-replete-sub-rts A.resid <\t. A.Arr t N\ A.is-Lam >

(proof )

interpretation un-Lam: simulation A ., .resid A.resid
At if Apgm-arr t then Aun-Lam t else §»

{proof)

lemma Arr-map-un-Lam:
assumes Arr T and set T C Collect A.is-Lam
shows Arr (map A.un-Lam T)

{proof)

interpretation A4,,: source-replete-sub-rts A.resid «A\t. A.Arr t N A.is-App >

{proof)

interpretation un-AppI1: simulation Aapp.resid A.resid
At if Aapp.arr t then A.un-Appl t else §»

(proof )

interpretation un-App2: simulation Aapp.resid A.resid
At. if Aapp.arr t then A.un-App2 t else )

{proof)
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lemma Arr-map-un-Appl:
assumes Arr T and set T C Collect A.is-App
shows Arr (map A.un-Appl T)

(proof )

lemma Arr-map-un-App2:
assumes Arr T and set T C Collect A.is-App
shows Arr (map A.un-App2 T)

(proof )

lemma map-App-map-un-Appl:
shows [Arr U; set U C Collect A.is-App; A.Ide b; A.un-App2 ‘ set U C {b}] =
map (At. A.App t b) (map A.un-Appl U) = U
(proof )

lemma map-App-map-un-App2:
shows [Arr U; set U C Collect A.is-App; A.Ide a; A.un-Appl * set U C {a}] =
map (A.App a) (map A.un-App2 U) = U
(proof )

lemma map-Lam-Resid:
assumes coinitial T U
shows map A.Lam (T *\* U) = map A.Lam T *\* map A.Lam U

{proof)

lemma map-App1-Resid:

assumes A.lde z and coinitial T U

shows map (A.App z) (T *\* U) = map (A.App ) T *\* map (A.App z) U
(proof)

lemma map-App2-Resid:
assumes A.Ide x and coinitial T U
shows map (At. to z) (T *\* U) = map (At. toz) T *\* map (A\t. toz) U

{proof)

lemma cong-map-Lam:
shows T *~* U = map A.Lam T *~* map A.Lam U

(proof)

lemma cong-map-App1:
shows [A.Ide z; T *~* U] = map (M. App ) T *~* map (A.App z) U
(proof )

lemma cong-map-App2:
shows [A.Ide z; T *~* U] = map (AX. Xoz) T *~* map (AX. Xoz) U

(proof)
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3.3.3 Decomposition of ‘App Paths’

The following series of results is aimed at showing that a reduction path, all of whose
transitions have App as their top-level constructor, can be factored up to congruence
into a reduction path in which only the “rator” components are reduced, followed by a
reduction path in which only the “rand” components are reduced.

lemma orthogonal-App-single-single:

assumes A Arrt and A Arr u

shows [A.Src t o u] *\* [t o A.Src u] = [A.Trg t o u]
and [t o A.Src u] *\* [A.Src t o u] = [t o A.Trg u]

(proof)

lemma orthogonal-App-single-Arr:

shows [Arr [t]; Arr U] =
map (A.App (A.Src t)) U *\* [t o A.Src (hd U)]
[t o A.Src (hd U)] *\* map (A.App (A.Src t)) U

{proof)

map (A.App (A.Trg t)) U A
[t o A.Trg (last U)]

lemma orthogonal-App-Arr-Arr:
shows [Arr T; Arr U] =
map (A.App (A.Src (hd T))) U *\* map (AX. A.App X (A.Src (hd U))) T =
map (A.App (A.Trg (last T))) U A
map (AX. X o A.Src (hd U)) T *\* map (A.App (A.Src (hd T))) U =
map (AX. X o A.Trg (last U)) T

(proof )

lemma orthogonal-App-cong:

assumes Arr T and Arr U

shows map (AX. X o A.Src (hd U)) T Q map (A.App (A.Trg (last T))) U *~*
map (A.App (A.Src (hd T))) U @ map (AX. X o A.Trg (last U)) T

{proof)

We arrive at the final objective of this section: factorization, up to congruence, of a
path whose transitions all have App as the top-level constructor, into the composite of a
path that reduces only the “rators” and a path that reduces only the “rands”.

lemma map-App-decomp:
shows [Arr U; set U C Collect A.is-App] =
map (AX. X o A.Src (A.un-App2 (hd U))) (map A.un-App1 U) Q
map (AX. A.Trg (A.un-App1 (last U)) o X) (map A.un-App2 U) *~*
U
{proof)

3.3.4 Miscellaneous

lemma Resid-parallel:
assumes cong t t’ and coinitial t u
shows u *\* t = u *\* ¢’

{proof)
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lemma set-Ide-subset-single-hd:
shows Ide T = set T C {hd T}

{proof)

A single parallel reduction with Beta as the top-level operator factors, up to congru-
ence, either as a path in which the top-level redex is contracted first, or as a path in
which the top-level redex is contracted last.

lemma Beta-decomp:

assumes A Arr t and A Arr u

shows [A[A.Src 1] @ A.Src u] @ [A.subst u t] *~* [A[{] ® u]

and [A[{] o u] @ [A[A.Trg ] @ A.Trg u] *~* [A[t] @ u]

(proof )

If a reduction path follows an initial reduction whose top-level constructor is Lam,
then all the terms in the path have Lam as their top-level constructor.

lemma seq-Lam-Arr-implies:

shows [seq [t] U; A.is-Lam t] = set U C Collect A.is-Lam

(proof )

lemma seq-map-un-Lam:
assumes seq [A[{]] U
shows seq [t] (map A.un-Lam U)

{proof)

end

3.4 Developments

A development is a reduction path from a term in which at each step exactly one redex
is contracted, and the only redexes that are contracted are those that are residuals of
redexes present in the original term. That is, no redexes are contracted that were newly
created as a result of the previous reductions. The main theorem about developments
is the Finite Developments Theorem, which states that all developments are finite. A
proof of this theorem was published by Hindley [6], who attributes the result to Schroer
[9]. Other proofs were published subsequently. Here we follow the paper by de Vrijer
[5], which may in some sense be considered the definitive work because de Vrijer’s proof
gives an exact bound on the number of steps in a development. Since de Vrijer used
a classical, named-variable representation of A-terms, for the formalization given in the
present article it was necessary to find the correct way to adapt de Vrijer’s proof to the
de Bruijn index representation of terms. I found this to be a somewhat delicate matter
and to my knowledge it has not been done previously.

context lambda-calculus
begin

We define an elementary reduction defined to be a term with exactly one marked
redex. These correspond to the most basic computational steps.
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fun elementary-reduction
where elementary-reduction §§ «+— False
| elementary-reduction («-») <— False
| elementary-reduction A[t] +— elementary-reduction t
| elementary-reduction (t o u) +—
(elementary-reduction t A Ide u) V (Ide t A elementary-reduction u)
| elementary-reduction (A[l] ® u) «— Ide t A Ide u

It is tempting to imagine that elementary reductions would be atoms with respect to
the preorder <, but this is not necessarily the case. For example, suppose t = A[«1»] ®
(A[«0»] o «0») and u = X[«1»] ® (A[«0»] ® «0»). Then ¢ is an elementary reduction,
u <t (in fact u ~ ¢) but u is not an identity, nor is it elementary.

lemma elementary-reduction-is-arr:
shows elementary-reduction t = arr t

(proof)

lemma elementary-reduction-not-ide:
shows elementary-reduction t =—> — ide t

(proof)

lemma elementary-reduction-Raise-iff:
shows Ad n. elementary-reduction (Raise d n t) <— elementary-reduction t

{proof)

lemma elementary-reduction-Lam-iff:
shows is-Lam t = elementary-reduction t <— elementary-reduction (un-Lam t)

(proof)

lemma elementary-reduction-App-iff:

shows is-App t = elementary-reduction t «—
(elementary-reduction (un-Appl t) A ide (un-App2 t)) V
(ide (un-Appl t) A elementary-reduction (un-App2 t))

(proof)

lemma elementary-reduction-Beta-iff:
shows is-Beta t = elementary-reduction t <— ide (un-Betal t) A ide (un-Beta2 t)

(proof)

lemma cong-elementary-reductions-are-equal:
shows [elementary-reduction t; elementary-reduction u; t ~ u] = t = u

{proof)

An elementary reduction path is a path in which each step is an elementary reduction.
It will be convenient to regard the empty list as an elementary reduction path, even
though it is not actually a path according to our previous definition of that notion.

definition (in reduction-paths) elementary-reduction-path
where elementary-reduction-path T +—
(T =1[ V Arr T A set T C Collect A.elementary-reduction)
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In the formal definition of “development” given below, we represent a set of redexes
simply by a term, in which the occurrences of Beta correspond to the redexes in the
set. To express the idea that an elementary reduction u is a member of the set of
redexes represented by term ¢, it is not adequate to say u < t. To see this, consider the
developments of a term of the form A[tI] @ ¢2. Intuitively, such developments should
consist of a (possibly empty) initial segment containing only transitions of the form #1
o t2, followed by a transition of the form A[ul’] @ u2’, followed by a development of
the residual of the original A[t1] e 2 after what has come so far. The requirement u
< A[t1] @ t2 is not a strong enough constraint on the transitions in the initial segment,
because A[ul] @ u2 < A[t] @ ¢t2 can hold for ¢2 and u2 coinitial, but otherwise without
any particular relationship between their sets of marked redexes. In particular, this can
occur when 42 and t2 occur as subterms that can be deleted by the contraction of an
outer redex. So we need to introduce a notion of containment between terms that is
stronger and more “syntactic” than <. The notion “subsumed by” defined below serves
this purpose. Term u is subsumed by term ¢ if both terms are arrows with exactly the
same form except that ¢ may contain A[t] @ ¢2 (a marked redex) in places where u
contains A[tI] o t2.

fun subs (infix <C) 50)
where «in T «i’'p < i = ¢’

[ A[] T A[t] «— t C ¢’

[touC t'ou +—tCt/'ANul v

[ A[ff cu CA[t @ u' +— tCt/ AN ul
[ A[] @ uC A[t] @ u'+— tCt' ANul u'
| - C - +— False

lemma subs-implies-prifx:
shows t C u =t S u

(proof)

The following is an example showing that two terms can be related by < without
being related by LC.
lemma subs-example:

shows A[«1»] @ (A[«0O»] ® «O»)
and A[«I»] @ (A[«0O»] ® «0») C

(proof)

Al«1»] @ (A[«0»] 0 «O») = True

<
A[«1»] @ (A[«0»] o «0O») = False

lemma subs-Ide:
shows [ide u; Srct = Src u] = u C ¢

(proof)

lemma subs-App:
shows u C t1 o t2 +— is-App u A un-Appl u C t1 A un-App2 u C t2
(proof )

end

context reduction-paths
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begin

We now formally define a development of t to be an elementary reduction path U

that is coinitial with [¢] and is such that each transition w in U is subsumed by the
residual of ¢ along the prefix of U coming before u. Stated another way, each transition

in

U corresponds to the contraction of a single redex that is the residual of a redex

originally marked in ¢.

fun development
where development t [| +— A.Arr ¢
| development t (v # U) +—
A.elementary-reduction u A uw C t A development (t \ u) U

lemma development-imp-Arr:
assumes development t U
shows A Arrt

(proof)

lemma development-Ide:
shows A.Ide t = development t U «+— U =[]

(proof)

lemma development-implies:
shows development t U = elementary-reduction-path U A (U # [| — U *<* [t])

(proof)

The converse of the previous result does not hold, because there could be a stage 7 at

which u; < ¢;, but ¢; deletes the redex contracted in u;, so there is nothing forcing that
redex to have been originally marked in ¢. So U being a development of ¢ is a stronger
property than U just being an elementary reduction path such that U *<* [¢].

U)

lemma development-append:
shows [development t U; development (t *\* U) V] = development t (U @ V)

(proof)

lemma development-map-Lam:
shows development t T = development A[f] (map A.Lam T)

(proof)

lemma development-map-App-1:
shows [development t T; A.Arr u] = development (t o u) (map (Az. z 0 A.Src u) T)

{proof)

lemma development-map-App-2:
shows [A.Arr t; development u U] = development (¢ o u) (map (Az. A.App (A.Src t) z)

{proof)
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3.4.1 Finiteness of Developments

A term t has the finite developments property if there exists a finite value that bounds
the length of all developments of t. The goal of this section is to prove the Finite
Developments Theorem: every term has the finite developments property.

definition FD
where FD t = dn. VU. development t U — length U < n

end

In [6], Hindley proceeds by using structural induction to establish a bound on the
length of a development of a term. The only case that poses any difficulty is the case of a
p-redex, which is A[{] ® u in the notation used here. He notes that there is an easy bound
on the length of a development of a special form in which all the contractions of residuals
of ¢ occur before the contraction of the top-level redex. The development first takes A[{]
e u to A[t'] @ u', then to subst u’ t’, then continues with independent developments
of u’. The number of independent developments of u’ is given by the number of free
occurrences of Var 0 in t’. As there can be only finitely many such ¢/, we can use the
maximum number of free occurrences of Var 0 over all such ¢’ to bound the steps in the
independent developments of u’.

In the general case, the problem is that reductions of residuals of t can increase the
number of free occurrences of Var 0, so we can’t readily count them at any particular
stage. Hindley shows that developments in which there are reductions of residuals of
t that occur after the contraction of the top-level redex are equivalent to reductions of
the special form, by a transformation with a bounded increase in length. This can be
considered as a weak form of standardization for developments.

A later paper by de Vrijer [5] obtains an explicit function for the exact number of steps
in a development of maximal length. His proof is very straightforward and amenable to
formalization, and it is what we follow here. The main issue for us is that de Vrijer uses
a classical representation of A-terms, with variable names and a-equivalence, whereas
here we are using de Bruijn indices. This means that we have to discover the correct
modification of de Vrijer’s definitions to apply to the present situation.

context lambda-calculus
begin

Our first definition is that of the “multiplicity” of a free variable in a term. This is a
count of the maximum number of times a variable could occur free in a term reachable in
a development. The main issue in adjusting to de Bruijn indices is that the same variable
will have different indices depending on the depth at which it occurs in the term. So,
we need to keep track of how the indices of variables change as we move through the
term. Our modified definitions adjust the parameter to the multiplicity function on each
recursive call, to account for the contextual depth (i.e. the number of binders on a path
from the root of the term).

The definition of this function is readily understandable, except perhaps for the Beta
case. The multiplicity mip = (A[{] ® u) has to be at least as large as mip x (A[{] o u), to
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account for developments in which the top-level redex is not contracted. However, if the
top-level redex A[t] @ u is contracted, then the contractum is subst u t, so the multiplicity
has to be at least as large as mitp x (subst u t). This leads to the relation:

mtp  (A[t] @ u) = max (mtp x (A[f] o u)) (mtp x (subst u t))

This is not directly suitable for use in a definition of the function mitp, because proving
the termination is problematic. Instead, we have to guess the correct expression for mtp
z (subst u t) and use that.

Now, each variable x in subst u t other than the variable 0 that is substituted for still
has all the occurrences that it does in A[¢]. In addition, the variable being substituted
for (which has index 0 in the outermost context of t) will in general have multiple free
occurrences in ¢, with a total multiplicity given by mitp 0 t. The substitution operation
replaces each free occurrence by u, which has the effect of multiplying the multiplicity of
a variable z in t by a factor of mip 0 t. These considerations lead to the following:

mitp x (A[t] ® u) = maz (mitp  A[t] + mip z u) (mtp x A[t] + mtp z v x mtp 0 t)
However, we can simplify this to:
mitp z (A[t] ® u) = mtp x A[t] + mitp  u *x maz 1 (mitp 0 t)

and replace the mtp x A[t] by mtp (Suc z) t to simplify the ordering necessary for the
termination proof and allow it to be done automatically.

The final result is perhaps about the first thing one would think to write down, but
there are possible ways to go wrong and it is of course still necessary to discover the proper
form required for the various induction proofs. I followed a long path of rather more
complicated-looking definitions, until I eventually managed to find the proper inductive
forms for all the lemmas and eventually arrive back at this definition.

fun mip :: nat = lambda = nat
where mip z f = 0
| mtp x «z» = (if z = x then 1 else 0)
| mtp © A[f] = mip (Suc z) ¢
| mtp z (tou)=mipzt+ mipru
| mtp x (A[{] ® u) = mip (Suc x) t + mip z u % max I (mip 0 t)

The multiplicity function generalizes the free variable predicate. This is not actually
used, but is included for explanatory purposes.

lemma mtp-gt-0-iff-in-FV:

shows mipzt > 0 «— z € FV 1

{proof)

We now establish a fact about commutation of multiplicity and Raise that will be
needed subsequently.

lemma mtpE-eq-Raise:
shows z < d = mip = (Raise d kt) = mip x ¢

(proof)
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lemma mtp-Raise-ind:
shows [l < d; sizet < s] = mitp (z + d + k) (Raise L kt) = mip (x + d) t
{proof)

lemma mtp-Raise:

assumes [ < d

shows mtp (x + d + k) (Raise [ kt) = mtp (v + d) t
(proof)

lemma mtp-Raise”:
shows mtp | (Raise | (Suc k) t) = 0
(proof)

lemma mitp-raise:
shows mtp (z + Suc d) (raise d t) = mtp (Suc ) t
(proof)

lemma mtp-Subst-cancel:
shows mtp k (Subst (Suc d + k) ut) = mip k t

(proof )

lemma mtpg-Subst-cancel:
shows mtp 0 (Subst (Suc d) ut) = mip 0t

{proof)

We can now (!) prove the desired generalization of de Vrijer’s formula for the commu-
tation of multiplicity and substitution. This is the main lemma whose form is difficult to
find. To get this right, the proper relationships have to exist between the various depth
parameters to Subst and the arguments to mip.

lemma mtp-Subst’:

shows mtp (z + Suc d) (Subst d u t) = mip (z + Suc (Suc d)) t + mtp (Suc ) w * mitp d t

(proof )

The following lemma provides expansions that apply when the parameter to mip is
0, as opposed to the previous lemma, which only applies for parameters greater than 0.

lemma mtp-Subst:

shows mtp k (Subst k u t) = mtp (Suc k) t + mtp k (raise k u) * mip k t
{proof)

lemma mitp0-subst-le:
shows mtp 0 (subst u t) < mitp 1t + mip 0 u * maz 1 (mip 0 t)

{proof)

lemma elementary-reduction-nonincreases-mtp:
shows [elementary-reduction u; u C t] = mip x (resid t u) < mitp x t

{proof)

Next we define the “height” of a term. This counts the number of steps in a devel-
opment of maximal length of the given term.
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fun hgt
where hgt f = 0
| hgt «-» = 0
| hgt A[t] = hgt t
| hgt (t o u) = hgt t + hgt u
| hgt (A[?] ® u) = Suc (hgt t + hgt u * maz 1 (mip 0 t))

lemma hgt-resid-ide:
shows [ide u; u C t] = hgt (resid t u) < hgt ¢

(proof)

lemma hgt-Raise:
shows hgt (Raise | k t) = hgt
{proof)

lemma hgt-Subst:
shows Arr u = hgt (Subst k u t) = hgt t + hgt u * mip k t

{proof)

lemma elementary-reduction-decreases-hgt:
shows [elementary-reduction u; v T t] = hgt (¢t \ u) < hgt ¢

{proof)

end

context reduction-paths
begin

lemma length-devel-le-hgt:
shows development t U = length U < A.hgt t

(proof )
We finally arrive at the main result of this section: the Finite Developments Theorem.

theorem finite-developments:
shows FD t

(proof)
3.4.2 Complete Developments

A complete development is a development in which there are no residuals of originally
marked redexes left to contract.

definition complete-development
where complete-development t U = development t U A (A.Ide t V [t] *<* U)

lemma complete-development-Ide-iff:
shows complete-development t U = A.Ide t +— U = |]

(proof)

lemma complete-development-cons:
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assumes complete-development t (u # U)
shows complete-development (t \ u) U

(proof)

lemma complete-development-cong:
shows [complete-development t U; = A.Ide t] = [t] *~* U

(proof)

lemma complete-developments-cong:
assumes — A.Ide t and complete-development t U and complete-development t V
shows U *~* V

(proof)

lemma Trgs-complete-development:
shows [complete-development t U; = A.Ide t] = Trgs U = {A.Trg t}

(proof)

Now that we know all developments are finite, it is easy to construct a complete
development by an iterative process that at each stage contracts one of the remaining
marked redexes at each stage. It is also possible to construct a complete development by
structural induction without using the finite developments property, but it is more work
to prove the correctness.

fun (in lambda-calculus) bottom-up-redex
where bottom-up-redex § =
| bottom-up-redex «x» = «x»
| bottom-up-redex A[M] = A[bottom-up-redex M|
| bottom-up-redex (M o N) =
(if — Ide M then bottom-up-redex M o Src N else M o bottom-up-redex N)
| bottom-up-redex (A[M] @ N) =
(if — Ide M then X[bottom-up-redex M] o Src N
else if — Ide N then A[M] o bottom-up-redex N
else A\[M] @ N)

lemma (in lambda-calculus) elementary-reduction-bottom-up-redex:
shows [Arr t; = Ide t] = elementary-reduction (bottom-up-redex t)

(proof)

lemma (in lambda-calculus) subs-bottom-up-redex:
shows Arr t = bottom-up-redex t C t

(proof)

function (sequential) bottom-up-development
where bottom-up-development t =
(if = A Arr t v Alde t then ||
else A.bottom-up-redex t # (bottom-up-development (t \ A.bottom-up-redez t)))

(proof)

termination bottom-up-development

(proof)
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lemma complete-development-bottom-up-development-ind:
shows [A.Arr t; length (bottom-up-development t) < n]
= complete-development t (bottom-up-development t)

(proof )

lemma complete-development-bottom-up-development:
assumes A Arr ¢
shows complete-development t (bottom-up-development t)

(proof)

end

3.5 Reduction Strategies

context lambda-calculus
begin
A reduction strategy is a function taking an identity term to an arrow having that
identity as its source.

definition reduction-strategy
where reduction-strategy f +— (Vt. Ide t — Coinitial (f t) t)

The following defines the iterated application of a reduction strategy to an identity
term.
fun reduce

where reduce fa 0 = a
| reduce f a (Suc n) = reduce f (Trg (f a)) n

lemma red-reduce:
assumes reduction-strategy f
shows Ide a = red a (reduce f a n)

{proof)

A reduction strategy is normalizing if iterated application of it to a normalizable
term eventually yields a normal form.

definition normalizing-strategy

where normalizing-strategy f <— (¥ a. normalizable a — (3 n. NF (reduce f a n)))
end
context reduction-paths
begin

The following function constructs the reduction path that results by iterating the
application of a reduction strategy to a term.

fun apply-strategy
where apply-strategy f a 0 = |]
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| apply-strategy f a (Suc n) = fa # apply-strategy f (A.Trg (f a)) n

lemma apply-strateqy-gives-path-ind:
assumes A.reduction-strategy f
shows [A.Ide a; n > 0] = Arr (apply-strategy f a n) A
length (apply-strategy f a n) = n A
Sre (apply-strategy fa n) = a A
Trg (apply-strategy f a n) = A.reduce fa n
(proof )

lemma apply-strategy-gives-path:

assumes A.reduction-strategy f and A.Ide a and n > 0
shows Arr (apply-strategy f a n)

and length (apply-strategy f a n) = n

and Sre (apply-strategy f a n) = a

and Trg (apply-strategy f a n) = A.reduce f a n

(proof)

lemma reduce-eq-Trg-apply-strategy:
assumes A.reduction-strategy S and A.Ide a
shows n > 0 = A.reduce S a n = Trg (apply-strategy S a n)

(proof)

end

3.5.1 Parallel Reduction

context lambda-calculus
begin

Parallel reduction is the strategy that contracts all available redexes at each step.

fun parallel-strategy

where parallel-strategy «in = «in
| parallel-strategy A[t] = X[parallel-strategy 1]
| parallel-strategy (A[f] o u) = X[parallel-strategy t] ® parallel-strategy u
| parallel-strategy (t o w) = parallel-strategy t o parallel-strategy u
| parallel-strategy (A[{] ® u) = A[parallel-strategy {] @ parallel-strategy u
| parallel-strategy § = §

lemma parallel-strategy-is-reduction-strategy:
shows reduction-strategy parallel-strategy

{proof)

lemma parallel-strategy-Src-eq:
shows Arr t = parallel-strategy (Src t) = parallel-strategy t

(proof)

lemma subs-parallel-strategy-Src:
shows Arr t = t C parallel-strategy (Src t)

{proof)
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end

context reduction-paths
begin
Parallel reduction is a universal strategy in the sense that every reduction path is
*<*-below the path generated by the parallel reduction strategy.
lemma parallel-strategy-is-universal:

shows [n > 0; n < length U; Arr U]
= take n U *<* apply-strategy A.parallel-strategy (Src U) n

{proof)

end

context lambda-calculus
begin

Parallel reduction is a normalizing strategy.

lemma parallel-strategy-is-normalizing:
shows normalizing-strategy parallel-strategy

(proof )
An alternative characterization of a normal form is a term on which the parallel
reduction strategy yields an identity.

abbreviation has-redex
where has-redex t = Arr t A — Ide (parallel-strategy t)

lemma NF-iff-has-no-redex:
shows Arrt = NF t «— — has-redezx t

(proof )

lemma (in lambda-calculus) not-NF-elim:
assumes — NF' t and Ide t
obtains u where coinitial t u A — Ide u

(proof)

lemma (in lambda-calculus) NF-Lam-iff:
shows NF A[{] +— NF't

(proof)

lemma (in lambda-calculus) NF-App-iff:
shows NF (t1 o t2) <— — is-Lam t1 A NF t1 A NF t2

{proof)

3.5.2 Head Reduction

Head reduction is the strategy that only contracts a redex at the “head” position, which
is found at the end of the “left spine” of applications, and does nothing if there is no
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such redex.
The following function applies to an arbitrary arrow ¢, and it marks the redex at the
head position, if any, otherwise it yields Src t.

fun head-strategy
where head-strategy «in = «in
| head-strategy A[t] = A[head-strategy 1]
| head-strategy (A[t] o u) = A[Src {] @ Src u
| head-strategy (t o u) = head-strategy t o Src u
| head-strategy (A[t] ® u) = X[Src {] @ Src u
| head-strategy §f =

lemma Arr-head-strategy:
shows Arr t = Arr (head-strategy t)

(proof)

lemma Src-head-strategy:
shows Arr t = Src (head-strategy t) = Src t

(proof)

lemma Con-head-strategy:
shows Arr t = Con t (head-strategy t)

(proof)

lemma head-strategy-Src:
shows Arr t = head-strategy (Src t) = head-strategy t

(proof)

lemma head-strategy-is-elementary:
shows [Arr t; = Ide (head-strategy t)] = elementary-reduction (head-strategy t)

(proof)

lemma head-strategy-is-reduction-strategy:
shows reduction-strategy head-strategy

{proof)

The following function tests whether a term is an elementary reduction of the head
redex.

fun is-head-reduction
where is-head-reduction «-» <— False
| is-head-reduction A[f] <— is-head-reduction t
| is-head-reduction (A[-] o -) «— False
| is-head-reduction (t o u) — is-head-reduction t N\ Ide u
| is-head-reduction (A[t] ® u) +— Ide t A Ide u
| is-head-reduction §§ «— False

lemma is-head-reduction-char:
shows is-head-reduction t «— elementary-reduction t A head-strategy (Src t) =t

(proof)
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lemma is-head-reductionl:
assumes Arr ¢t and elementary-reduction t and head-strategy (Src t) =t
shows is-head-reduction t

(proof)
The following function tests whether a redex in the head position of a term is marked.

fun contains-head-reduction
where contains-head-reduction «-» <— False
| contains-head-reduction A[t] <— contains-head-reduction t
| contains-head-reduction (A[-] o -) «+— False
| contains-head-reduction (t o u) <— contains-head-reduction t N Arr u
| contains-head-reduction (A[t] @ u) «— Arrt A Arr u
| contains-head-reduction § +— False

lemma is-head-reduction-imp-contains-head-reduction:
shows is-head-reduction t =—> contains-head-reduction t

(proof)
An internal reduction is one that does not contract any redex at the head position.

fun is-internal-reduction
where is-internal-reduction «-» <— True
| is-internal-reduction A[t] «— is-internal-reduction t
| is-internal-reduction (A[f] o u) «— Arrt A Arru
| is-internal-reduction (t o u) +— is-internal-reduction t A Arr u
| is-internal-reduction (A[-] @ -) «— False
| is-internal-reduction §§ <— False

lemma is-internal-reduction-iff:
shows is-internal-reduction t +— Arr t A\ = contains-head-reduction t

(proof)

Head reduction steps are either <-prefixes of, or are preserved by, residuation along
arbitrary reductions.

lemma is-head-reduction-resid:
shows [is-head-reduction t; Arr u; Src t = Src u] = t < u V is-head-reduction (t \ )

(proof)
Internal reductions are closed under residuation.

lemma is-internal-reduction-resid:
shows [is-internal-reduction t; is-internal-reduction u; Src t = Src u]
= is-internal-reduction (¢ \ )

{proof)

A head reduction is preserved by residuation along an internal reduction, so a head
reduction can only be canceled by a transition that contains a head reduction.

lemma is-head-reduction-resid”:
shows [is-head-reduction t; is-internal-reduction u; Src t = Src u]
= is-head-reduction (t \ u)

{proof)
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The following function differs from head-strategy in that it only selects an already-
marked redex, whereas head-strategy marks the redex at the head position.

fun head-redex
where head-redex §§ =
| head-redex «x» = «a»
| head-redex A[t] = A[head-redez 1]
| head-redex (A[t] o u) = A[Src t] o Src u
| head-redex (t o u) = head-redex t o Src u
| head-redex (A[t] @ u) = (A[Src {] ® Src u)

lemma elementary-reduction-head-redex:
shows [Arr ¢; = Ide (head-redex t)] = elementary-reduction (head-redez t)

(proof )

lemma subs-head-redex:
shows Arr t = head-redex t C ¢

{proof)

lemma contains-head-reduction-iff:
shows contains-head-reduction t <— Arr t A = Ide (head-redex t)

(proof)

lemma head-redex-is-head-reduction:
shows [Arr t; contains-head-reduction t] = is-head-reduction (head-redex t)

(proof)

lemma Arr-head-redex:
assumes Arrt
shows Arr (head-redex t)

(proof)

lemma Src-head-redex:
assumes Arr t
shows Src (head-redex t) = Sre ¢

(proof)

lemma Con-Arr-head-redex:
assumes Arr t
shows Con t (head-redex t)

(proof)

lemma is-head-reduction-if:
shows [contains-head-reduction u; elementary-reduction u] = is-head-reduction u

{proof)

lemma (in reduction-paths) head-redex-decomp:
assumes A Arr ¢
shows [A.head-redex t] @ [t \ A.head-redex t] *~* [t]

{proof)
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An internal reduction cannot create a new head redex.

lemma internal-reduction-preserves-no-head-redex:
shows [is-internal-reduction u; Ide (head-strategy (Src u))]
= Ide (head-strategy (Trg u))

(proof)

lemma head-reduction-unique:
shows [is-head-reduction t; is-head-reduction u; coinitial t u] = t = u
(proof)

Residuation along internal reductions preserves head reductions.

lemma resid-head-strategy-internal:
shows is-internal-reduction v = head-strategy (Src u) \ v = head-strategy (Trg u)

{proof)

An internal reduction followed by a head reduction can be expressed as a join of the
internal reduction with a head reduction.

lemma resid-head-strategy-Src:

assumes is-internal-reduction t and is-head-reduction u
and seq t u

shows head-strategy (Src t) \ t = u

and composite-of t u (Join (head-strategy (Src t)) t)

{proof)

lemma App- Var-contains-no-head-reduction:
shows — contains-head-reduction («x» o u)

(proof)

lemma hgt-resid-App-head-redex:
assumes Arr (t o u) and — Ide (head-redezx (t o u))
shows hgt ((t o u) \ head-redex (t o u)) < hgt (t o u)

(proof)

3.5.3 Leftmost Reduction

Leftmost (or normal-order) reduction is the strategy that produces an elementary reduc-
tion path by contracting the leftmost redex at each step. It agrees with head reduction
as long as there is a head redex, otherwise it continues on with the next subterm to the
right.

fun leftmost-strategy
where leftmost-strategy «x» = «x»
| leftmost-strategy A[f] = A[leftmost-strategy 1]
| leftmost-strategy (A[t] o u) = A[t] ® u
| leftmost-strategy (t o u) =
(if — Ide (leftmost-strategy t)
then leftmost-strategy t o u
else t o leftmost-strategy u)
| leftmost-strategy (A[t] ® u) = A[t] ® u
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| leftmost-strategy § = 4

definition is-leftmost-reduction
where is-leftmost-reduction t +— elementary-reduction t A leftmost-strategy (Src t) =t

lemma leftmost-strategy-is-reduction-strategy:
shows reduction-strategy leftmost-strategy

{proof)

lemma elementary-reduction-leftmost-strategy:
shows Ide t = elementary-reduction (leftmost-strategy t) V Ide (leftmost-strategy t)

(proof)

lemma (in lambda-calculus) leftmost-strategy-selects-head-reduction:
shows is-head-reduction t = t = leftmost-strategy (Src t)

{proof)

lemma has-redez-iff-not-Ide-leftmost-strategy:
shows Arr t = has-redex t +— — Ide (leftmost-strategy (Src t))

(proof)

lemma leftmost-reduction-preservation:
shows [is-leftmost-reduction t; elementary-reduction u; — is-leftmost-reduction u;
coingtial t u] = is-leftmost-reduction (t \ )

(proof )

end

3.6 Standard Reductions

In this section, we define the notion of a standard reduction, which is an elementary
reduction path that performs reductions from left to right, possibly skipping some redexes
that could be contracted. Once a redex has been skipped, neither that redex nor any
redex to its left will subsequently be contracted. We then define and prove correct
a function that transforms an arbitrary elementary reduction path into a congruent
standard reduction path. Using this function, we prove the Standardization Theorem,
which says that every elementary reduction path is congruent to a standard reduction
path. We then show that a standard reduction path that reaches a normal form is in fact
a leftmost reduction path. From this fact and the Standardization Theorem we prove
the Leftmost Reduction Theorem: leftmost reduction is a normalizing strategy.

The Standardization Theorem was first proved by Curry and Feys [3], with subsequent
proofs given by a number of authors. Formalized proofs have also been given; a recent
one (using Agda) is presented in [2], with references to earlier work. The version of the
theorem that we formalize here is a “strong” version, which asserts the existence of a
standard reduction path congruent to a a given elementary reduction path. At the core
of the proof is a function that directly transforms a given reduction path into a standard
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one, using an algorithm roughly analogous to insertion sort. The Finite Development
Theorem is used in the proof of termination. The proof of correctness is long, due to the
number of cases that have to be considered, but the use of a proof assistant makes this
manageable.

3.6.1 Standard Reduction Paths
‘Standardly Sequential’ Reductions

We first need to define the notion of a “standard reduction”. In contrast to what is
typically done by other authors, we define this notion by direct comparison of adjacent
terms in an elementary reduction path, rather than by using devices such as a numbering
of subterms from left to right.

The following function decides when two terms ¢ and u are elementary reductions
that are “standardly sequential”. This means that ¢ and u are sequential, but in addition
no marked redex in u is the residual of an (unmarked) redex “to the left of” any marked
redex in t. Some care is required to make sure that the recursive definition captures what
we intend. Most of the clauses are readily understandable. One clause that perhaps
could use some explanation is the one for sseq ((A[t{] ® u) o v) w. Referring to the
previously proved fact seq-cases, which classifies the way in which two terms ¢ and u can
be sequential, we see that one case that must be covered is when ¢ has the form A[{] e
v) o w and the top-level constructor of u is Beta. In this case, it is the reduction of ¢
that creates the top-level redex contracted in wu, so it is impossible for u to be a residual
of a redex that already exists in Src t.

context lambda-calculus
begin

fun sseq
where sseq - § = False
| sseq «-» «-» = False
| sseq A[t] A[t] = sseq t t’
| sseq (to u) (' o w') =
((sseq t t' N Ide u A u = u') V
(Idet Nt =t" A ssequu’)V
(elementary-reduction t A Trg t = t' A
(v = Src u’ N elementary-reduction u')))
| sseq (A[f] o u) (A[t] @ u') = False
| sseq (A[t] ® u) 0 v) w =
(Ide t A\ Ide u A Ide v A elementary-reduction w A seq ((A[t] @ u) o v) w)
| sseq (A[t] @ u) v = (Ide t A Ide u A elementary-reduction v A seq (A[f] ® u) v)
| sseq - - = False

lemma sseg-imp-seq:
shows sseq t u = seq t u

{proof)

lemma sseg-imp-elementary-reductionl:
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shows sseq t u = elementary-reduction t

{proof)

lemma sseg-imp-elementary-reduction?:
shows sseq t u = elementary-reduction u

{proof)

lemma sseq-Beta:
shows sseq (A[f] ® u) v +— Ide t A Ide u A elementary-reduction v A seq (A[{] ® u) v

(proof)

lemma sseg-Betal [introl:
assumes Ide t and Ide u and elementary-reduction v and seq (A[{] ® u) v
shows sseq (A[f] ® u) v

(proof)

A head reduction is standardly sequential with any elementary reduction that can be
performed after it.

lemma sseq-head-reductionl:
shows [is-head-reduction t; elementary-reduction u; seq t u] = sseq t u

{proof)

Once a head reduction is skipped in an application, then all terms that follow it in a
standard reduction path are also applications that do not contain head reductions.

lemma sseq-preserves-App-and-no-head-reduction:
shows [sseq t u; is-App t A — contains-head-reduction {]
= is-App u A = contains-head-reduction u

(proof)

end

Standard Reduction Paths

context reduction-paths
begin

A standard reduction path is an elementary reduction path in which successive reduc-
tions are standardly sequential.

fun Std
where Std [| = True
| Std [t] = A.elementary-reduction t
| Std (t # U) = (A.sseq t (hd U) A Std U)

lemma Std-consE [elim]:

assumes Std (¢t # U)

and [A.Arr t; U # [| = A.sseq t (hd U); Std U] = thesis
shows thesis

(proof)
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lemma Std-imp-Arr [simp]:
shows [Std T; T # [|]] = Arr T
{proof)

lemma Std-imp-sseq-last-hd:
shows [Std (T Q U); T #[); U # []] = A.sseq (last T) (hd U)
(proof)

lemma Std-implies-set-subset-elementary-reduction:
shows Std U = set U C Collect A.elementary-reduction

(proof)

lemma Std-map-Lam:
shows Std T = Std (map A.Lam T)

(proof)

lemma Std-map-App1:
shows [A.Ide b; Std T] = Std (map (AX. X o b) T)
{proof )

lemma Std-map-App2:
shows [A.Ide a; Std T = Std (map (Au. a o u) T)
(proof)

lemma Std-map-un-Lam:
shows [Std T; set T C Collect A.is-Lam] = Std (map A.un-Lam T)
(proof )

lemma Std-append-single:
shows [Std T; T # [); A.sseq (last T) u] = Std (T Q [u])
(proof)

lemma Std-append:
shows [Std T; Std U; T =[]V U =[] V A.sseq (last T) (hd U)] = Std (T @ U)
{proof )

Projections of Standard ‘App Paths’

Given a standard reduction path, all of whose transitions have App as their top-level
constructor, we can apply un-Appl or un-App2 to each transition to project the path
onto paths formed from the “rator” and the “rand” of each application. These projected
paths are not standard, since the projection operation will introduce identities, in general.
However, in this section we show that if we remove the identities, then in fact we do obtain
standard reduction paths.

abbreviation notlde
where notlde = \u. — A.Ide u

lemma filter-notlde-Ide:

144



shows Ide U = filter notlde U = ||
{proof )

lemma cong-filter-notlde:
shows [Arr U; = Ide U] = filter notlde U *~* U

{proof)

lemma Std-filter-map-un-App1:
shows [Std U; set U C Collect A.is-App] = Std (filter notlde (map A.un-Appl U))
{proof)

lemma Std-filter-map-un-App2:
shows [Std U; set U C Collect A.is-App] = Std (filter notlde (map A.un-App2 U))
(proof )

If the first step in a standard reduction path contracts a redex that is not at the head
position, then all subsequent terms have App as their top-level operator.

lemma seq-App-Std-implies:

shows [Std (t # U); A.is-App t A = A.contains-head-reduction t]
= set U C Collect A.is-App

{proof )

3.6.2 Standard Developments

The following function takes a term ¢ (representing a parallel reduction) and produces
a standard reduction path that is a complete development of ¢ and is thus congruent to
[t]. The proof of termination makes use of the Finite Development Theorem.

function (sequential) standard-development
where standard-development ff = ||
| standard-development «-» = ||
| standard-development A[t] = map A.Lam (standard-development t)
| standard-development (t o u) =
(if AArrt A A Arr u then
map (Av. v o A.Src u) (standard-development t) @
map (Av. A.Trg t o v) (standard-development u)
else [])
| standard-development (A[t] ® u) =
(if AArrt A A Arr u then
(A[A.Src 1] @ A.Src u) # standard-development (A.subst u t)
else [])

(proof)

abbreviation (in lambda-calculus) stddev-term-rel
where stddev-term-rel = mlex-prod hgt subterm-rel

lemma (in lambda-calculus) subst-lt-Beta:
assumes Arr ¢t and Arr u
shows (subst u t, A[{] ® u) € stddev-term-rel

{proof)
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termination standard-development

{proof)

lemma Ide-iff-standard-development-empty:
shows A.Arr t = A.Ide t +— standard-development t = ||
(proof)

lemma set-standard-development:
shows A.Arr t — set (standard-development t) C Collect A.elementary-reduction

(proof)

lemma cong-standard-development:
shows A.Arr t A = A.Ide t — standard-development t *~* [t]

(proof)

lemma Src-hd-standard-development:
assumes A Arr ¢t and - A.Ide t
shows A.Src (hd (standard-development t)) = A.Src t

{proof)

lemma Trg-last-standard-development:
assumes A Arr ¢t and - A.Ide t
shows A.Trg (last (standard-development t)) = A.Trg t

{proof)

lemma Srcs-standard-development:
shows [A.Arr t; standard-development t # [|]
= Srcs (standard-development t) = {A.Src t}

{proof)

lemma Trgs-standard-development:
shows [A.Arr t; standard-development t # [|]
= Trgs (standard-development t) = {A.Trg t}

(proof)

lemma development-standard-development:
shows A.Arr t — development t (standard-development t)

(proof)

lemma Std-standard-development:
shows Std (standard-development t)

(proof)

3.6.3 Standardization

In this section, we define and prove correct a function that takes an arbitrary reduction
path and produces a standard reduction path congruent to it. The method is roughly
analogous to insertion sort: given a path, recursively standardize the tail and then “insert”
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the head into to the result. A complication is that in general the head may be a parallel
reduction instead of an elementary reduction, and in any case elementary reductions are
not preserved under residuation so we need to be able to handle the parallel reductions
that arise from permuting elementary reductions. In general, this means that parallel
reduction steps have to be decomposed into factors, and then each factor has to be
inserted at its proper position. Another issue is that reductions don’t all happen at
the top level of a term, so we need to be able to descend recursively into terms during
the insertion procedure. The key idea here is: in a standard reduction, once a step has
occurred that is not a head reduction, then all subsequent terms will have App as their
top-level constructor. So, once we have passed a step that is not a head reduction, we
can recursively descend into the subsequent applications and treat the “rator” and the
“rand” parts independently.

The following function performs the core insertion part of the standardization al-
gorithm. It assumes that it is given an arbitrary parallel reduction ¢ and an already-
standard reduction path U, and it inserts ¢ into U, producing a standard reduction path
that is congruent to ¢ # U. A somewhat elaborate case analysis is required to determine
whether t needs to be factored and whether part of it might need to be permuted with
the head of U. The recursion is complicated by the need to make sure that the second
argument U is always a standard reduction path. This is so that it is possible to decide
when the rest of the steps will be applications and it is therefore possible to recurse into
them. This constrains what recursive calls we can make, since we are not able to make
a recursive call in which an identity has been prepended to U. Also, if ¢ # U consists
completely of identities, then its standardization is the empty list [|, which is not a path
and cannot be congruent to ¢ # U. So in order to be able to apply the induction hy-
potheses in the correctness proof, we need to make sure that we don’t make recursive
calls when U itself would consist entirely of identities. Finally, when we descend through
an application, the step ¢ and the path U are projected to their “rator” and “rand”
components, which are treated separately and the results concatenated. However, the
projection operations can introduce identities and therefore do not preserve elementary
reductions. To handle this, we need to filter out identities after projection but before the
recursive call.

Ensuring termination also involves some care: we make recursive calls in which the
length of the second argument is increased, but the “height” of the first argument is
decreased. So we use a lexicographic order that makes the height of the first argument
more significant and the length of the second argument secondary. The base cases either
discard paths that consist entirely of identities, or else they expand a single parallel
reduction t into a standard development.

function (sequential) stdz-insert
where stdz-insert t [| = standard-development t
| stdz-insert «-» U = stdz-insert (hd U) (tl U)
| stdz-insert A[f] U =
(if A.Ide t then
stdz-insert (hd U) (¢l U)

else
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map A.Lam (stdz-insert t (map A.un-Lam U)))
| stdz-insert (A[t] o u) ((A[-] ® -) # U) = stdz-insert (A[t] @ u) U
| stdz-insert (to u) U =
(if A.Ide (t o u) then
stdz-insert (hd U) (tl U)
else if A.seq (t o u) (hd U) then
if A.contains-head-reduction (t o u) then
if A.Ide ((t o u) \ A.head-redex (t o u)) then
A.head-redex (t o u) # stdz-insert (hd U) (¢l U)
else
A.head-redex (t o u) # stdz-insert ((t o u) \ A.head-redex (t o u)) U
else if A.contains-head-reduction (hd U) then
if A.Ide ((t o u) \ A.head-strategy (t o u)) then
stdz-insert (A.head-strategy (¢t o w)) (¢t U)
else
A.head-strategy (t o u) # stdz-insert ((t o u) \ A.head-strategy (t o w)) (¢ U)
else
map (Aa. a o A.Src u)
(stdz-insert t (filter notlde (map A.un-Appl U))) Q
map (Ab. A.Trg (A.un-App! (last U)) o b)
(stdz-insert u (filter notlde (map A.un-App2 U)))
else [])
| stdz-insert (A[t] @ u) U =
(if AArrt N N Arr u then
(A[A.Src 1] @ A.Src u) # stdz-insert (A.subst u t) U
else [])
| stdz-insert - - = ||

{proof)

fun standardize
where standardize [| = []
| standardize U = stdz-insert (hd U) (standardize (tl U))

abbreviation stdzins-rel
where stdzins-rel = mlez-prod (length o snd) (inv-image (mlex-prod A.hgt A.subterm-rel)

fst)

termination stdz-insert

{proof)

lemma stdz-insert-Ide:
shows Ide (t # U) = stdz-insert t U = ||

{proof)

lemma stdz-insert-Ide-Std:
shows [A.Ide u; seq [u] U; Std U] = stdz-insert uw U = stdz-insert (hd U) (¢l U)
(proof )
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Insertion of a term with Beta as its top-level constructor always leaves such a term
at the head of the result. Stated another way, Beta at the top-level must always come
first in a standard reduction path.

lemma stdz-insert-Beta-ind:

shows [A.hgt t + length U < n; A.is-Beta t; seq [t] U]

= A.is-Beta (hd (stdz-insert t U))

(proof)

lemma stdz-insert-Beta:
assumes A.is-Beta t and seq [t] U
shows A.is-Beta (hd (stdz-insert t U))

{proof)

This is the correctness lemma for insertion: Given a term t and standard reduction
path U sequential with it, the result of insertion is a standard reduction path which is
congruent to ¢ # U unless t # U consists entirely of identities.

The proof is very long. Its structure parallels that of the definition of the function
stdz-insert. For really understanding the details, I strongly suggest viewing the proof
in Isabelle/JEdit and using the code folding feature to unfold the proof a little bit at a
time.

lemma stdz-insert-correctness:

shows seq [t] U A Std U —

Std (stdz-insert t U) A (- Ide (t # U) — cong (stdz-insert t U) (t # U))
(is Pt U)
(proof )

The Standardization Theorem

Using the function standardize, we can now prove the Standardization Theorem. There

is still a little bit more work to do, because we have to deal with various cases in which

the reduction path to be standardized is empty or consists entirely of identities.
theorem standardization-theorem:

shows Arr T = Std (standardize T) A (Ide T — standardize T = []) A
(= Ide T — cong (standardize T) T)

(proof)

The Leftmost Reduction Theorem

In this section we prove the Leftmost Reduction Theorem, which states that leftmost
reduction is a normalizing strategy.

We first show that if a standard reduction path reaches a normal form, then the path
must be the one produced by following the leftmost reduction strategy. This is because,
in a standard reduction path, once a leftmost redex is skipped, all subsequent reductions
occur “to the right of it”, hence they are all non-leftmost reductions that do not contract
the skipped redex, which remains in the leftmost position.

The Leftmost Reduction Theorem then follows from the Standardization Theorem.
If a term is normalizable, there is a reduction path from that term to a normal form.
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By the Standardization Theorem we may as well assume that path is standard. But a
standard reduction path to a normal form is the path generated by following the leftmost
reduction strategy, hence leftmost reduction reaches a normal form after a finite number
of steps.

lemma sseq-reflects-leftmost-reduction:
assumes A.sseq t v and A.is-leftmost-reduction u
shows A.is-leftmost-reduction t

{proof)

lemma elementary-reduction-to- NF-is-leftmost:
shows [A.elementary-reduction t; A.NF (Trg [t])] = A.leftmost-strategy (A.Src t) =t
(proof )

lemma Std-path-to- NF-is-leftmost:
shows [Std T; A.NF (Trg T)] = set T C Collect A.is-leftmost-reduction
{proof)

theorem leftmost-reduction-theorem:
shows A.normalizing-strategy A.leftmost-strategy

(proof)

end

end
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