
Relational Characterisations of Paths

Walter Guttmann and Peter Höfner

March 17, 2025

Abstract

Binary relations are one of the standard ways to encode, charac-
terise and reason about graphs. Relation algebras provide equational
axioms for a large fragment of the calculus of binary relations. Al-
though relations are standard tools in many areas of mathematics and
computing, researchers usually fall back to point-wise reasoning when
it comes to arguments about paths in a graph. We present a purely
algebraic way to specify different kinds of paths in Kleene relation
algebras, which are relation algebras equipped with an operation for
reflexive transitive closure. We study the relationship between paths
with a designated root vertex and paths without such a vertex. Since
we stay in first-order logic this development helps with mechanising
proofs. To demonstrate the applicability of the algebraic framework
we verify the correctness of three basic graph algorithms.

Contents
1 (More) Relation Algebra 2

1.1 Relation algebras satisfying the Tarski rule 8
1.2 Relation algebras satisfying the point axiom 14

2 Relational Characterisation of Paths 25
2.1 Consequences without the Tarski rule 26
2.2 Consequences with the Tarski rule 45

3 Relational Characterisation of Rooted Paths 74
3.1 Consequences without the Tarski rule 76
3.2 Consequences with the Tarski rule 84
3.3 Consequences with the Tarski rule and the point axiom . . . 96

4 Correctness of Path Algorithms 102
4.1 Construction of a path . 102
4.2 Topological sorting . 109
4.3 Construction of a tree . 115
4.4 Construction of a non-empty cycle 119

1

Overview
A path in a graph can be defined as a connected subgraph of edges where
each vertex has at most one incoming edge and at most one outgoing edge
[3, 12]. We develop a theory of paths based on this representation and use
it for algorithm verification. All reasoning is done in variants of relation
algebras and Kleene algebras [8, 9, 11].

Section 1 presents fundamental results that hold in relation algebras.
Relation-algebraic characterisations of various kinds of paths are introduced
and compared in Section 2. We extend this to paths with a designated
root in Section 3. Section 4 verifies the correctness of a few basic graph
algorithms.

These Isabelle/HOL theories formally verify results in [2]. See this paper
for further details and related work.

1 (More) Relation Algebra
This theory presents fundamental properties of relation algebras, which are
not present in the AFP entry on relation algebras but could be integrated
there [1]. Many theorems concern vectors and points.
theory More-Relation-Algebra

imports Relation-Algebra.Relation-Algebra-RTC
Relation-Algebra.Relation-Algebra-Functions

begin

unbundle no trancl-syntax

context relation-algebra
begin

notation
converse (‹(-T)› [102] 101)

abbreviation bijective
where bijective x ≡ is-inj x ∧ is-sur x

abbreviation reflexive
where reflexive R ≡ 1 ′ ≤ R

abbreviation symmetric
where symmetric R ≡ R = RT

abbreviation transitive
where transitive R ≡ R;R ≤ R

2

General theorems
lemma x-leq-triple-x:

x ≤ x;xT ;x
proof −

have x = x;1 ′ · 1
by simp

also have ... ≤ (x · 1 ;1 ′T);(1 ′ · xT ;1)
by (rule dedekind)

also have ... = x;(xT ;1 · 1 ′)
by (simp add: inf .commute)

also have ... ≤ x;(xT · 1 ′;1T);(1 · (xT)T ;1 ′)
by (metis comp-assoc dedekind mult-isol)

also have ... ≤ x;xT ;x
by simp

finally show ?thesis .
qed

lemma inj-triple:
assumes is-inj x

shows x = x;xT ;x
by (metis assms order .eq-iff inf-absorb2 is-inj-def mult-1-left mult-subdistr
x-leq-triple-x)

lemma p-fun-triple:
assumes is-p-fun x

shows x = x;xT ;x
by (metis assms comp-assoc order .eq-iff is-p-fun-def mult-isol mult-oner
x-leq-triple-x)

lemma loop-backward-forward:
xT ≤ −(1 ′) + x

by (metis conv-e conv-times inf .cobounded2 test-dom test-domain test-eq-conv
galois-2 inf .commute

sup.commute)

lemma inj-sur-semi-swap:
assumes is-sur z

and is-inj x
shows z ≤ y;x =⇒ x ≤ yT ;z

proof −
assume z ≤ y;x
hence z;xT ≤ y;(x;xT)

by (metis mult-isor mult-assoc)
hence z;xT ≤ y

using ‹is-inj x› unfolding is-inj-def
by (metis mult-isol order .trans mult-1-right)

hence (zT ;z);xT ≤ zT ;y
by (metis mult-isol mult-assoc)

hence xT ≤ zT ;y

3

using ‹is-sur z› unfolding is-sur-def
by (metis mult-isor order .trans mult-1-left)

thus ?thesis
using conv-iso by fastforce

qed

lemma inj-sur-semi-swap-short:
assumes is-sur z

and is-inj x
shows z ≤ yT ;x =⇒ x ≤ y;z

proof −
assume as: z ≤ yT ;x
hence z;xT ≤ yT

using ‹z ≤ yT ;x› ‹is-inj x› unfolding is-inj-def
by (metis assms(2) conv-invol inf .orderI inf-absorb1 inj-p-fun ss-422iii)

hence xT ≤ zT ;yT

using ‹is-sur z› unfolding is-sur-def
by (metis as assms inj-sur-semi-swap conv-contrav conv-invol conv-iso)

thus x ≤ y;z
using conv-iso by fastforce

qed

lemma bij-swap:
assumes bijective z

and bijective x
shows z ≤ yT ;x ←→ x ≤ y;z

by (metis assms inj-sur-semi-swap conv-invol)

The following result is [10, Proposition 4.2.2(iv)].
lemma ss422iv:

assumes is-p-fun y
and x ≤ y
and y;1 ≤ x;1

shows x = y
proof −

have y ≤ (x;1)·y
using assms(3) le-infI maddux-20 order-trans by blast

also have ... ≤ x;xT ;y
by (metis inf-top-left modular-1-var comp-assoc)

also have ... ≤ x;yT ;y
using assms(2) conv-iso mult-double-iso by blast

also have ... ≤ x
using assms(1) comp-assoc is-p-fun-def mult-isol mult-1-right
by fastforce

finally show ?thesis
by (simp add: assms(2) order .antisym)

qed

The following results are variants of [10, Proposition 4.2.3].

4

lemma ss423conv:
assumes bijective x

shows x ; y ≤ z ←→ y ≤ xT ; z
by (metis assms conv-contrav conv-iso inj-p-fun is-map-def ss423 sur-total)

lemma ss423bij:
assumes bijective x

shows y ; xT ≤ z ←→ y ≤ z ; x
by (simp add: assms is-map-def p-fun-inj ss423 total-sur)

lemma inj-distr :
assumes is-inj z

shows (x·y);z = (x;z)·(y;z)
apply (rule order .antisym)
using mult-subdistr-var apply blast

using assms conv-iso inj-p-fun p-fun-distl by fastforce

lemma test-converse:
x · 1 ′ = xT · 1 ′

by (metis conv-e conv-times inf-le2 is-test-def test-eq-conv)

lemma injective-down-closed:
assumes is-inj x

and y ≤ x
shows is-inj y

by (meson assms conv-iso dual-order .trans is-inj-def mult-isol-var)

lemma injective-sup:
assumes is-inj t

and e;tT ≤ 1 ′

and is-inj e
shows is-inj (t + e)

proof −
have 1 : t;eT ≤ 1 ′

using assms(2) conv-contrav conv-e conv-invol conv-iso by fastforce
have (t + e);(t + e)T = t;tT + t;eT + e;tT + e;eT

by (metis conv-add distrib-left distrib-right ′ sup-assoc)
also have ... ≤ 1 ′

using 1 assms by (simp add: is-inj-def le-supI)
finally show ?thesis

unfolding is-inj-def .
qed

Some (more) results about vectors
lemma vector-meet-comp:

assumes is-vector v
and is-vector w

shows v;wT = v·wT

by (metis assms conv-contrav conv-one inf-top-right is-vector-def vector-1)

5

lemma vector-meet-comp ′:
assumes is-vector v

shows v;vT = v·vT

using assms vector-meet-comp by blast

lemma vector-meet-comp-x:
x;1 ;xT = x;1 ·1 ;xT

by (metis comp-assoc inf-top.right-neutral is-vector-def one-idem-mult vector-1)

lemma vector-meet-comp-x ′:
x;1 ;x = x;1 ·1 ;x

by (metis inf-commute inf-top.right-neutral ra-1)

lemma vector-prop1 :
assumes is-vector v

shows −vT ;v = 0
by (metis assms compl-inf-bot inf-top.right-neutral one-compl one-idem-mult
vector-2)

The following results and a number of others in this theory are from [5].
lemma ee:

assumes is-vector v
and e ≤ v;−vT

shows e;e = 0
proof −

have e;v ≤ 0
by (metis assms annir mult-isor vector-prop1 comp-assoc)

thus ?thesis
by (metis assms(2) annil order .antisym bot-least comp-assoc mult-isol)

qed

lemma et:
assumes is-vector v

and e ≤ v;−vT

and t ≤ v;vT

shows e;t = 0
and e;tT = 0

proof −
have e;t ≤ v;−vT ;v;vT

by (metis assms(2−3) mult-isol-var comp-assoc)
thus e;t = 0

by (simp add: assms(1) comp-assoc le-bot vector-prop1)
next

have tT ≤ v;vT

using assms(3) conv-iso by fastforce
hence e;tT ≤ v;−vT ;v;vT

by (metis assms(2) mult-isol-var comp-assoc)
thus e;tT = 0

6

by (simp add: assms(1) comp-assoc le-bot vector-prop1)
qed

Some (more) results about points
definition point

where point x ≡ is-vector x ∧ bijective x

lemma point-swap:
assumes point p

and point q
shows p ≤ x;q ←→ q ≤ xT ;p

by (metis assms conv-invol inj-sur-semi-swap point-def)

Some (more) results about singletons
abbreviation singleton

where singleton x ≡ bijective (x;1) ∧ bijective (xT ;1)

lemma singleton-injective:
assumes singleton x

shows is-inj x
using assms injective-down-closed maddux-20 by blast

lemma injective-inv:
assumes is-vector v

and singleton e
and e ≤ v;−vT

and t ≤ v;vT

and is-inj t
shows is-inj (t + e)

by (metis assms singleton-injective injective-sup bot-least et(2))

lemma singleton-is-point:
assumes singleton p

shows point (p;1)
by (simp add: assms comp-assoc is-vector-def point-def)

lemma singleton-transp:
assumes singleton p

shows singleton (pT)
by (simp add: assms)

lemma point-to-singleton:
assumes singleton p

shows singleton (1 ′·p;pT)
using assms dom-def-aux-var dom-one is-vector-def point-def by fastforce

lemma singleton-singletonT :
assumes singleton p

shows p;pT ≤ 1 ′

7

using assms singleton-injective is-inj-def by blast

Minimality
abbreviation minimum

where minimum x v ≡ v · −(xT ;v)

Regressively finite
abbreviation regressively-finite

where regressively-finite x ≡ ∀ v . is-vector v ∧ v ≤ xT ;v −→ v = 0

lemma regressively-finite-minimum:
regressively-finite R =⇒ is-vector v =⇒ v 6= 0 =⇒ minimum R v 6= 0

using galois-aux2 by blast

lemma regressively-finite-irreflexive:
assumes regressively-finite x

shows x ≤ −1 ′

proof −
have 1 : is-vector ((xT · 1 ′);1)

by (simp add: is-vector-def mult-assoc)
have (xT · 1 ′);1 = (xT · 1 ′);(xT · 1 ′);1

by (simp add: is-test-def test-comp-eq-mult)
with 1 have (xT · 1 ′);1 = 0

by (metis assms comp-assoc mult-subdistr)
thus ?thesis

by (metis conv-e conv-invol conv-times conv-zero galois-aux ss-p18)
qed

end

1.1 Relation algebras satisfying the Tarski rule
class relation-algebra-tarski = relation-algebra +

assumes tarski: x 6= 0 ←→ 1 ;x;1 = 1
begin

Some (more) results about points
lemma point-equations:

assumes is-point p
shows p;1=p

and 1 ;p=1
and pT ;1=1
and 1 ;pT=pT

apply (metis assms is-point-def is-vector-def)
using assms is-point-def is-vector-def tarski vector-comp apply fastforce

apply (metis assms conv-contrav conv-one conv-zero is-point-def is-vector-def
tarski)
by (metis assms conv-contrav conv-one is-point-def is-vector-def)

The following result is [10, Proposition 2.4.5(i)].

8

lemma point-singleton:
assumes is-point p

and is-vector v
and v 6= 0
and v ≤ p

shows v = p
proof −

have 1 ;v = 1
using assms(2 ,3) comp-assoc is-vector-def tarski by fastforce

hence p = 1 ;v · p
by simp

also have ... ≤ (1 · p;vT);(v · 1T ;p)
using dedekind by blast

also have ... ≤ p;vT ;v
by (simp add: mult-subdistl)

also have ... ≤ p;pT ;v
using assms(4) conv-iso mult-double-iso by blast

also have ... ≤ v
by (metis assms(1) is-inj-def is-point-def mult-isor mult-onel)

finally show ?thesis
using assms(4) by simp

qed

lemma point-not-equal-aux:
assumes is-point p

and is-point q
shows p 6=q ←→ p · −q 6= 0

proof
show p 6= q =⇒ p · − q 6= 0
proof (rule contrapos-nn)

assume p · −q = 0
thus p = q
using assms galois-aux2 is-point-def point-singleton by fastforce

qed
next

show p · − q 6= 0 =⇒ p 6= q
using inf-compl-bot by blast

qed

The following result is part of [10, Proposition 2.4.5(ii)].
lemma point-not-equal:

assumes is-point p
and is-point q

shows p 6=q ←→ p≤−q
and p≤−q ←→ p;qT ≤ −1 ′

and p;qT ≤ −1 ′←→ pT ;q ≤ 0
proof −

have p 6= q =⇒ p ≤ − q
by (metis assms point-not-equal-aux is-point-def vector-compl vector-mult

9

point-singleton
inf .orderI inf .cobounded1)

thus p 6=q ←→ p≤−q
by (metis assms(1) galois-aux inf .orderE is-point-def order .refl)

next
show (p ≤ − q) = (p ; qT ≤ − 1 ′)

by (simp add: conv-galois-2)
next

show (p ; qT ≤ − 1 ′) = (pT ; q ≤ 0)
by (metis assms(2) compl-bot-eq conv-galois-2 galois-aux maddux-141

mult-1-right
point-equations(4))

qed

lemma point-is-point:
point x ←→ is-point x

apply (rule iffI)
apply (simp add: is-point-def point-def surj-one tarski)

using is-point-def is-vector-def mult-assoc point-def sur-def-var1 tarski by
fastforce

lemma point-in-vector-or-complement:
assumes point p

and is-vector v
shows p ≤ v ∨ p ≤ −v

proof (cases p ≤ −v)
assume p ≤ −v
thus ?thesis

by simp
next

assume ¬(p ≤ −v)
hence p·v 6= 0

by (simp add: galois-aux)
hence 1 ;(p·v) = 1

using assms comp-assoc is-vector-def point-def tarski vector-mult by fastforce
hence p ≤ p;(p·v)T ;(p·v)

by (metis inf-top.left-neutral modular-2-var)
also have ... ≤ p;pT ;v

by (simp add: mult-isol-var)
also have ... ≤ v

using assms(1) comp-assoc point-def ss423conv by fastforce
finally show ?thesis ..

qed

lemma point-in-vector-or-complement-iff :
assumes point p

and is-vector v
shows p ≤ v ←→ ¬(p ≤ −v)

by (metis assms annir compl-top-eq galois-aux inf .orderE one-compl point-def

10

ss423conv tarski
top-greatest point-in-vector-or-complement)

lemma different-points-consequences:
assumes point p

and point q
and p 6=q

shows pT ;−q=1
and −qT ;p=1
and −(pT ;−q)=0
and −(−qT ;p)=0

proof −
have p ≤ −q

by (metis assms compl-le-swap1 inf .absorb1 inf .absorb2 point-def
point-in-vector-or-complement)

thus 1 : pT ;−q=1
using assms(1) by (metis is-vector-def point-def ss423conv top-le)

thus 2 : −qT ;p=1
using conv-compl conv-one by force

from 1 show −(pT ;−q)=0
by simp

from 2 show −(−qT ;p)=0
by simp

qed

Some (more) results about singletons
lemma singleton-pq:

assumes point p
and point q

shows singleton (p;qT)
using assms comp-assoc point-def point-equations(1 ,3) point-is-point by fastforce

lemma singleton-equal-aux:
assumes singleton p

and singleton q
and q≤p

shows p ≤ q;1
proof −

have pLp: p;1 ;pT ≤1 ′

by (simp add: assms(1) maddux-21 ss423conv)

have p = 1 ;(qT ;q;1) · p
using tarski
by (metis assms(2) annir singleton-injective inf .commute inf-top.right-neutral

inj-triple
mult-assoc surj-one)

also have ... ≤ (1 · p;(qT ;q;1)T);(qT ;q;1 · 1 ;p)
using dedekind by (metis conv-one)

also have ... ≤ p;1 ;qT ;q;qT ;q;1

11

by (simp add: comp-assoc mult-isol)
also have ... ≤ p;1 ;pT ;q;qT ;q;1

using assms(3) by (metis comp-assoc conv-iso mult-double-iso)
also have ... ≤ 1 ′;q;qT ;q;1

using pLp using mult-isor by blast
also have ... ≤ q;1

using assms(2) singleton-singletonT by (simp add: comp-assoc mult-isol)
finally show ?thesis .

qed

lemma singleton-equal:
assumes singleton p

and singleton q
and q≤p

shows q=p
proof −

have p1 : p ≤ q;1
using assms by (rule singleton-equal-aux)

have pT ≤ qT ;1
using assms singleton-equal-aux singleton-transp conv-iso by fastforce

hence p2 : p ≤ 1 ;q
using conv-iso by force

have p ≤ q;1 · 1 ;q
using p1 p2 inf .boundedI by blast

also have ... ≤ (q · 1 ;q;1);(1 · qT ;1 ;q)
using dedekind by (metis comp-assoc conv-one)

also have ... ≤ q;qT ;1 ;q
by (simp add: mult-isor comp-assoc)

also have ... ≤ q;1 ′

by (metis assms(2) conv-contrav conv-invol conv-one is-inj-def mult-assoc
mult-isol

one-idem-mult)
also have ... ≤ q

by simp
finally have p ≤ q .
thus q=p
using assms(3) by simp

qed

lemma singleton-nonsplit:
assumes singleton p

and x≤p
shows x=0 ∨ x=p

proof (cases x=0)
assume x=0
thus ?thesis ..

next
assume 1 : x 6=0

12

have singleton x
proof (safe)

show is-inj (x;1)
using assms injective-down-closed mult-isor by blast

show is-inj (xT ;1)
using assms conv-iso injective-down-closed mult-isol-var by blast

show is-sur (x;1)
using 1 comp-assoc sur-def-var1 tarski by fastforce

thus is-sur (xT ;1)
by (metis conv-contrav conv-one mult.semigroup-axioms sur-def-var1

semigroup.assoc)
qed
thus ?thesis

using assms singleton-equal by blast
qed

lemma singleton-nonzero:
assumes singleton p

shows p 6=0
proof

assume p = 0
hence point 0

using assms singleton-is-point by fastforce
thus False

by (simp add: is-point-def point-is-point)
qed

lemma singleton-sum:
assumes singleton p

shows p ≤ x+y ←→ (p≤x ∨ p≤y)
proof

show p ≤ x + y =⇒ p ≤ x ∨ p ≤ y
proof −

assume as: p ≤ x + y
show p ≤ x ∨ p ≤ y
proof (cases p≤x)

assume p≤x
thus ?thesis ..

next
assume a:¬(p≤x)
hence p·x 6= p

using a inf .orderI by fastforce
hence p ≤ −x

using assms singleton-nonsplit galois-aux inf-le1 by blast
hence p≤y

using as by (metis galois-1 inf .orderE)
thus ?thesis

by simp
qed

13

qed
next

show p ≤ x ∨ p ≤ y =⇒ p ≤ x + y
using sup.coboundedI1 sup.coboundedI2 by blast

qed

lemma singleton-iff :
singleton x ←→ x 6= 0 ∧ xT ;1 ;x + x;1 ;xT ≤ 1 ′

by (smt comp-assoc conv-contrav conv-invol conv-one is-inj-def le-sup-iff
one-idem-mult

sur-def-var1 tarski)

lemma singleton-not-atom-in-relation-algebra-tarski:
assumes p 6=0

and ∀ x . x≤p −→ x=0 ∨ x=p
shows singleton p

nitpick [expect=genuine] oops

end

1.2 Relation algebras satisfying the point axiom
class relation-algebra-point = relation-algebra +

assumes point-axiom: x 6= 0 −→ (∃ y z . point y ∧ point z ∧ y;zT ≤ x)
begin

Some (more) results about points
lemma point-exists:
∃ x . point x

by (metis (full-types) order .eq-iff is-inj-def is-sur-def is-vector-def point-axiom
point-def)

lemma point-below-vector :
assumes is-vector v

and v 6= 0
shows ∃ x . point x ∧ x ≤ v

proof −
from assms(2) obtain y and z where 1 : point y ∧ point z ∧ y;zT ≤ v

using point-axiom by blast
have zT ;1 = (1 ;z)T

using conv-contrav conv-one by simp
hence y;(1 ;z)T ≤ v

using 1 by (metis assms(1) comp-assoc is-vector-def mult-isor)
thus ?thesis

using 1 by (metis conv-one is-vector-def point-def sur-def-var1)
qed

end

14

class relation-algebra-tarski-point = relation-algebra-tarski +
relation-algebra-point
begin

lemma atom-is-singleton:
assumes p 6=0

and ∀ x . x≤p −→ x=0 ∨ x=p
shows singleton p

by (metis assms singleton-nonzero singleton-pq point-axiom)

lemma singleton-iff-atom:
singleton p ←→ p 6=0 ∧ (∀ x . x≤p −→ x=0 ∨ x=p)

using singleton-nonsplit singleton-nonzero atom-is-singleton by blast

lemma maddux-tarski:
assumes x 6=0
shows ∃ y . y 6=0 ∧ y≤x ∧ is-p-fun y

proof −
obtain p q where 1 : point p ∧ point q ∧ p;qT ≤ x

using assms point-axiom by blast
hence 2 : p;qT 6=0

by (simp add: singleton-nonzero singleton-pq)
have is-p-fun (p;qT)

using 1 by (meson singleton-singletonT singleton-pq singleton-transp
is-inj-def p-fun-inj)

thus ?thesis
using 1 2 by force

qed

Intermediate Point Theorem [10, Proposition 2.4.8]
lemma intermediate-point-theorem:

assumes point p
and point r

shows p ≤ x;y;r ←→ (∃ q . point q ∧ p ≤ x;q ∧ q ≤ y;r)
proof

assume 1 : p ≤ x;y;r
let ?v = xT ;p · y;r
have 2 : is-vector ?v

using assms comp-assoc is-vector-def point-def vector-mult by fastforce
have ?v 6= 0

using 1 by (metis assms(1) inf .absorb2 is-point-def maddux-141
point-is-point mult.assoc)

hence ∃ q . point q ∧ q ≤ ?v
using 2 point-below-vector by blast

thus ∃ q . point q ∧ p ≤ x;q ∧ q ≤ y;r
using assms(1) point-swap by auto

next
assume ∃ q . point q ∧ p ≤ x;q ∧ q ≤ y;r
thus p ≤ x;y;r

15

using comp-assoc mult-isol order-trans by fastforce
qed

end

context relation-algebra
begin

lemma unfoldl-inductl-implies-unfoldr :
assumes

∧
x. 1 ′ + x;(rtc x) ≤ rtc x

and
∧

x y z. x+y;z ≤ z =⇒ rtc(y);x ≤ z
shows 1 ′ + rtc(x);x ≤ rtc x

by (metis assms le-sup-iff mult-oner order .trans subdistl-eq sup-absorb2 sup-ge1)

lemma star-transpose-swap:
assumes

∧
x. 1 ′ + x;(rtc x) ≤ rtc x

and
∧

x y z. x+y;z ≤ z =⇒ rtc(y);x ≤ z
shows rtc(xT) = (rtc x)T

apply(simp only: order .eq-iff ; rule conjI)
apply (metis assms conv-add conv-contrav conv-e conv-iso mult-1-right

unfoldl-inductl-implies-unfoldr)
by (metis assms conv-add conv-contrav conv-e conv-invol conv-iso mult-1-right

unfoldl-inductl-implies-unfoldr)

lemma unfoldl-inductl-implies-inductr :
assumes

∧
x. 1 ′ + x;(rtc x) ≤ rtc x

and
∧

x y z. x+y;z ≤ z =⇒ rtc(y);x ≤ z
shows x+z;y ≤ z =⇒ x;rtc(y) ≤ z

by (metis assms conv-add conv-contrav conv-iso star-transpose-swap)

end

context relation-algebra-rtc
begin

abbreviation tc (‹(-+)› [101] 100) where tc x ≡ x;x?

abbreviation is-acyclic
where is-acyclic x ≡ x+ ≤ −1 ′

General theorems
lemma star-denest-10 :

assumes x;y=0
shows (x+y)? = y;y?;x?+x?

using assms bubble-sort sup.commute by auto

lemma star-star-plus:

16

x? + y? = x+ + y?

by (metis (full-types) sup.left-commute star-plus-one star-unfoldl-eq sup.commute)

The following two lemmas are from [6].
lemma cancel-separate:

assumes x ; y ≤ 1 ′

shows x? ; y? ≤ x? + y?

proof −
have x ; y? = x + x ; y ; y?

by (metis comp-assoc conway.dagger-unfoldl-distr distrib-left mult-oner)
also have ... ≤ x + y?

by (metis assms join-isol star-invol star-plus-one star-subdist-var-2
sup.absorb2 sup.assoc)

also have ... ≤ x? + y?

using join-iso by fastforce
finally have x ; (x? + y?) ≤ x? + y?

by (simp add: distrib-left le-supI1)
thus ?thesis

by (simp add: rtc-inductl)
qed

lemma cancel-separate-inj-converse:
assumes is-inj x

shows x? ; xT ? = x? + xT ?

apply (rule order .antisym)
using assms cancel-separate is-inj-def apply blast

by (metis conway.dagger-unfoldl-distr le-supI mult-1-right mult-isol
sup.cobounded1)

lemma cancel-separate-p-fun-converse:
assumes is-p-fun x

shows xT ? ; x? = x? + xT ?

using sup-commute assms cancel-separate-inj-converse p-fun-inj by fastforce

lemma cancel-separate-converse-idempotent:
assumes is-inj x

and is-p-fun x
shows (x? + xT ?);(x? + xT ?) = x? + xT ?

by (metis assms cancel-separate cancel-separate-p-fun-converse
church-rosser-equiv is-inj-def

star-denest-var-6)

lemma triple-star :
assumes is-inj x

and is-p-fun x
shows x?;xT ?;x? = x? + xT ?

by (simp add: assms cancel-separate-inj-converse cancel-separate-p-fun-converse)

lemma inj-xxts:

17

assumes is-inj x
shows x;xT ? ≤ x? + xT ?

by (metis assms cancel-separate-inj-converse distrib-right less-eq-def star-ext)

lemma plus-top:
x+;1 = x;1

by (metis comp-assoc conway.dagger-unfoldr-distr sup-top-left)

lemma top-plus:
1 ;x+ = 1 ;x

by (metis comp-assoc conway.dagger-unfoldr-distr star-denest-var-2 star-ext
star-slide-var

sup-top-left top-unique)

lemma plus-conv:
(x+)T = xT+

by (simp add: star-conv star-slide-var)

lemma inj-implies-step-forwards-backwards:
assumes is-inj x

shows x?;(x+·1 ′);1 ≤ xT ;1
proof −

have (x+·1 ′);1 ≤ (x?·xT);(x·(x?)T);1
by (metis conv-contrav conv-e dedekind mult-1-right mult-isor star-slide-var)

also have ... ≤ (x?·xT);1
by (simp add: comp-assoc mult-isol)

finally have 1 : (x+·1 ′);1 ≤ (x?·xT);1 .

have x;(x?·xT);1 ≤ (x+·x;xT);1
by (metis inf-idem meet-interchange mult-isor)

also have ... ≤ (x+·1 ′);1
using assms is-inj-def meet-isor mult-isor by fastforce

finally have x;(x?·xT);1 ≤ (x?·xT);1
using 1 by fastforce

hence x?;(x+·1 ′);1 ≤ (x?·xT);1
using 1 by (simp add: comp-assoc rtc-inductl)

thus x?;(x+·1 ′);1 ≤ xT ;1
using inf .cobounded2 mult-isor order-trans by blast

qed

Acyclic relations

The following result is from [4].
lemma acyclic-inv:

assumes is-acyclic t
and is-vector v
and e ≤ v;−vT

and t ≤ v;vT

shows is-acyclic (t + e)
proof −

18

have t+;e ≤ t+;v;−vT

by (simp add: assms(3) mult-assoc mult-isol)
also have ... ≤ v;vT ;t?;v;−vT

by (simp add: assms(4) mult-isor)
also have ... ≤ v;−vT

by (metis assms(2) mult-double-iso top-greatest is-vector-def mult-assoc)
also have ... ≤ −1 ′

by (simp add: conv-galois-1)
finally have 1 : t+;e ≤ −1 ′ .
have e ≤ v;−vT

using assms(3) by simp
also have ... ≤ −1 ′

by (simp add: conv-galois-1)
finally have 2 : t+;e + e ≤ −1 ′

using 1 by simp
have 3 : e;t? = e

by (metis assms(2−4) et(1) independence2)
have 4 : e? = 1 ′ + e

using assms(2−3) ee boffa-var bot-least by blast
have (t + e)+ = (t + e);t?;(e;t?)?

by (simp add: comp-assoc)
also have ... = (t + e);t?;(1 ′ + e)

using 3 4 by simp
also have ... = t+;(1 ′ + e) + e;t?;(1 ′ + e)

by simp
also have ... = t+;(1 ′ + e) + e;(1 ′ + e)

using 3 by simp
also have ... = t+;(1 ′ + e) + e

using 4 assms(2−3) ee independence2 by fastforce
also have ... = t+ + t+;e + e

by (simp add: distrib-left)
also have ... ≤ −1 ′

using assms(1) 2 by simp
finally show ?thesis .

qed

lemma acyclic-single-step:
assumes is-acyclic x

shows x ≤ −1 ′

by (metis assms dual-order .trans mult-isol mult-oner star-ref)

lemma acyclic-reachable-points:
assumes is-point p

and is-point q
and p ≤ x;q
and is-acyclic x

shows p 6=q
proof

assume p=q

19

hence p ≤ x;q · q
by (simp add: assms(3) order .eq-iff inf .absorb2)

also have ... = (x · 1 ′);q
using assms(2) inj-distr is-point-def by simp

also have ... ≤ (−1 ′ · 1 ′);q
using acyclic-single-step assms(4) by (metis abel-semigroup.commute

inf .abel-semigroup-axioms
meet-isor mult-isor)

also have ... = 0
by simp

finally have p ≤ 0 .
thus False
using assms(1) bot-unique is-point-def by blast

qed

lemma acyclic-trans:
assumes is-acyclic x

shows x ≤ −(xT+)
proof −
have ∃ c≥x. c ≤ − (x+)T

by (metis assms compl-mono conv-galois-2 conv-iso double-compl mult-onel
star-1l)
thus ?thesis
by (metis dual-order .trans plus-conv)

qed

lemma acyclic-trans ′:
assumes is-acyclic x

shows x? ≤ −(xT+)
proof −
have x? ≤ − (− (− (xT ; − (− 1 ′))) ; (x?)T)
by (metis assms conv-galois-1 conv-galois-2 order-trans star-trans)

then show ?thesis
by (simp add: star-conv)

qed

Regressively finite
lemma regressively-finite-acyclic:

assumes regressively-finite x
shows is-acyclic x

proof −
have 1 : is-vector ((x+ · 1 ′);1)

by (simp add: is-vector-def mult-assoc)
have (x+ · 1 ′);1 = (xT+ · 1 ′);1

by (metis plus-conv test-converse)
also have ... ≤ xT ;(1 ′;xT ? · x);1

by (metis conv-invol modular-1-var mult-isor mult-oner mult-onel)
also have ... ≤ xT ;(1 ′ · x+);xT ?;1

by (metis comp-assoc conv-invol modular-2-var mult-isol mult-isor star-conv)

20

also have ... = xT ;(x+ · 1 ′);1
by (metis comp-assoc conway.dagger-unfoldr-distr inf .commute

sup.cobounded1 top-le)
finally have (x+ · 1 ′);1 = 0

using 1 assms by (simp add: comp-assoc)
thus ?thesis

by (simp add: galois-aux ss-p18)
qed

notation power (infixr ‹↑› 80)

lemma power-suc-below-plus:
x ↑ Suc n ≤ x+

apply (induct n)
using mult-isol star-ref apply fastforce

by (simp add: mult-isol-var order-trans)

end

class relation-algebra-rtc-tarski = relation-algebra-rtc + relation-algebra-tarski
begin

lemma point-loop-not-acyclic:
assumes is-point p

and p ≤ x ↑ Suc n ; p
shows ¬ is-acyclic x

proof −
have p ≤ x+ ; p

by (meson assms dual-order .trans point-def point-is-point ss423bij
power-suc-below-plus)

hence p ; pT ≤ x+

using assms(1) point-def point-is-point ss423bij by blast
thus ?thesis

using assms(1) order .trans point-not-equal(1) point-not-equal(2) by blast
qed

end

class relation-algebra-rtc-point = relation-algebra-rtc + relation-algebra-point

class relation-algebra-rtc-tarski-point = relation-algebra-rtc-tarski +
relation-algebra-rtc-point +

relation-algebra-tarski-point

Finite graphs: the axiom says the algebra has finitely many elements.
This means the relations have a finite base set.
class relation-algebra-rtc-tarski-point-finite = relation-algebra-rtc-tarski-point +
finite
begin

21

For a finite acyclic relation, the powers eventually vanish.
lemma acyclic-power-vanishes:

assumes is-acyclic x
shows ∃n . x ↑ Suc n = 0

proof −
let ?n = card { p . is-point p }
let ?p = x ↑ ?n
have ?p = 0
proof (rule ccontr)

assume ?p 6= 0
from this obtain p q where 1 : point p ∧ point q ∧ p;qT ≤ ?p

using point-axiom by blast
hence 2 : p ≤ ?p;q

using point-def ss423bij by blast
have ∀n≤?n . (∃ f . ∀ i≤n . is-point (f i) ∧ (∀ j≤i . p ≤ x↑(?n−i) ; f i ∧ f i ≤

x↑(i−j) ; f j))
proof

fix n
show n≤?n −→ (∃ f . ∀ i≤n . is-point (f i) ∧ (∀ j≤i . p ≤ x↑(?n−i) ; f i ∧ f

i ≤ x↑(i−j) ; f j))
proof (induct n)

case 0
thus ?case

using 1 2 point-is-point by fastforce
next

case (Suc n)
fix n
assume 3 : n≤?n −→ (∃ f . ∀ i≤n . is-point (f i) ∧ (∀ j≤i . p ≤ x ↑ (?n−i)

; f i ∧ f i ≤ x ↑ (i−j) ; f j))
show Suc n≤?n −→ (∃ f . ∀ i≤Suc n . is-point (f i) ∧ (∀ j≤i . p ≤ x ↑

(?n−i) ; f i ∧ f i ≤ x ↑ (i−j) ; f j))
proof

assume 4 : Suc n≤?n
from this obtain f where 5 : ∀ i≤n . is-point (f i) ∧ (∀ j≤i . p ≤ x ↑

(?n−i) ; f i ∧ f i ≤ x ↑ (i−j) ; f j)
using 3 by auto

have p ≤ x ↑ (?n−n) ; f n
using 5 by blast

also have ... = x ↑ (?n−n−one-class.one) ; x ; f n
using 4 by (metis (no-types) Suc-diff-le diff-Suc-1 diff-Suc-Suc

power-Suc2)
finally obtain r where 6 : point r ∧ p ≤ x ↑ (?n−Suc n) ; r ∧ r ≤ x ; f

n
using 1 5 intermediate-point-theorem point-is-point by fastforce

let ?g = λm . if m = Suc n then r else f m
have ∀ i≤Suc n . is-point (?g i) ∧ (∀ j≤i . p ≤ x ↑ (?n−i) ; ?g i ∧ ?g i

≤ x ↑ (i−j) ; ?g j)
proof

fix i

22

show i≤Suc n −→ is-point (?g i) ∧ (∀ j≤i . p ≤ x ↑ (?n−i) ; ?g i ∧ ?g
i ≤ x ↑ (i−j) ; ?g j)

proof (cases i≤n)
case True
thus ?thesis

using 5 by simp
next

case False
have is-point (?g (Suc n)) ∧ (∀ j≤Suc n . p ≤ x ↑ (?n−Suc n) ; ?g

(Suc n) ∧ ?g (Suc n) ≤ x ↑ (Suc n−j) ; ?g j)
proof

show is-point (?g (Suc n))
using 6 point-is-point by fastforce

next
show ∀ j≤Suc n . p ≤ x ↑ (?n−Suc n) ; ?g (Suc n) ∧ ?g (Suc n) ≤

x ↑ (Suc n−j) ; ?g j
proof

fix j
show j≤Suc n −→ p ≤ x ↑ (?n−Suc n) ; ?g (Suc n) ∧ ?g (Suc n)

≤ x ↑ (Suc n−j) ; ?g j
proof

assume 7 : j≤Suc n
show p ≤ x ↑ (?n−Suc n) ; ?g (Suc n) ∧ ?g (Suc n) ≤ x ↑ (Suc

n−j) ; ?g j
proof

show p ≤ x ↑ (?n−Suc n) ; ?g (Suc n)
using 6 by simp

next
show ?g (Suc n) ≤ x ↑ (Suc n−j) ; ?g j
proof (cases j = Suc n)

case True
thus ?thesis

by simp
next

case False
hence f n ≤ x ↑ (n−j) ; f j

using 5 7 by fastforce
hence x ; f n ≤ x ↑ (Suc n−j) ; f j

using 7 False Suc-diff-le comp-assoc mult-isol by fastforce
thus ?thesis

using 6 False by fastforce
qed

qed
qed

qed
qed
thus ?thesis

by (simp add: False le-Suc-eq)
qed

23

qed
thus ∃ f . ∀ i≤Suc n . is-point (f i) ∧ (∀ j≤i . p ≤ x ↑ (?n−i) ; f i ∧ f i

≤ x ↑ (i−j) ; f j)
by auto

qed
qed

qed
from this obtain f where 8 : ∀ i≤?n . is-point (f i) ∧ (∀ j≤i . p ≤ x ↑

(?n−i) ; f i ∧ f i ≤ x ↑ (i−j) ; f j)
by fastforce

let ?A = { k . k≤?n }
have f ‘ ?A ⊆ { p . is-point p }

using 8 by blast
hence card (f ‘ ?A) ≤ ?n

by (simp add: card-mono)
hence ¬ inj-on f ?A

by (simp add: pigeonhole)
from this obtain i j where 9 : i ≤ ?n ∧ j ≤ ?n ∧ i 6= j ∧ f i = f j

by (metis (no-types, lifting) inj-on-def mem-Collect-eq)
show False

apply (cases i < j)
using 8 9 apply (metis Suc-diff-le Suc-leI assms diff-Suc-Suc

order-less-imp-le
point-loop-not-acyclic)

using 8 9 by (metis assms neqE point-loop-not-acyclic Suc-diff-le Suc-leI
assms diff-Suc-Suc

order-less-imp-le)
qed
thus ?thesis

by (metis annir power .simps(2))
qed

Hence finite acyclic relations are regressively finite.
lemma acyclic-regressively-finite:

assumes is-acyclic x
shows regressively-finite x

proof
have is-acyclic (xT)

using assms acyclic-trans ′ compl-le-swap1 order-trans star-ref by blast
from this obtain n where 1 : xT ↑ Suc n = 0

using acyclic-power-vanishes by fastforce
fix v
show is-vector v ∧ v ≤ xT ;v −→ v = 0
proof

assume 2 : is-vector v ∧ v ≤ xT ;v
have v ≤ xT ↑ Suc n ; v
proof (induct n)

case 0
thus ?case

24

using 2 by simp
next

case (Suc n)
hence xT ; v ≤ xT ↑ Suc (Suc n) ; v

by (simp add: comp-assoc mult-isol)
thus ?case

using 2 dual-order .trans by blast
qed
thus v = 0

using 1 by (simp add: le-bot)
qed

qed

lemma acyclic-is-regressively-finite:
is-acyclic x ←→ regressively-finite x

using acyclic-regressively-finite regressively-finite-acyclic by blast

end

end

2 Relational Characterisation of Paths
This theory provides the relation-algebraic characterisations of paths, as
defined in Sections 3–5 of [2].
theory Paths

imports More-Relation-Algebra

begin

context relation-algebra-tarski
begin

lemma path-concat-aux-0 :
assumes is-vector v

and v 6= 0
and w;vT ≤ x
and v;z ≤ y

shows w;1 ;z ≤ x;y
proof −

from tarski assms(1 ,2) have 1 = 1 ;vT ;v;1
by (metis conv-contrav conv-one eq-refl inf-absorb1 inf-top-left is-vector-def

ra-2)
hence w;1 ;z = w;1 ;vT ;v;1 ;z

by (simp add: mult-isor mult-isol mult-assoc)
also from assms(1) have ... = w;vT ;v;z

by (metis is-vector-def comp-assoc conv-contrav conv-one)

25

also from assms(3) have ... ≤ x;v;z
by (simp add: mult-isor)

also from assms(4) have ... ≤ x;y
by (simp add: mult-isol mult-assoc)

finally show ?thesis .
qed

end

2.1 Consequences without the Tarski rule
context relation-algebra-rtc
begin

Definitions for path classifications
abbreviation connected

where connected x ≡ x;1 ;x ≤ x? + xT ?

abbreviation many-strongly-connected
where many-strongly-connected x ≡ x? = xT ?

abbreviation one-strongly-connected
where one-strongly-connected x ≡ xT ;1 ;xT ≤ x?

definition path
where path x ≡ connected x ∧ is-p-fun x ∧ is-inj x

abbreviation cycle
where cycle x ≡ path x ∧ many-strongly-connected x

abbreviation start-points
where start-points x ≡ x;1 · −(xT ;1)

abbreviation end-points
where end-points x ≡ xT ;1 · −(x;1)

abbreviation no-start-points
where no-start-points x ≡ x;1 ≤ xT ;1

abbreviation no-end-points
where no-end-points x ≡ xT ;1 ≤ x;1

abbreviation no-start-end-points
where no-start-end-points x ≡ x;1 = xT ;1

abbreviation has-start-points
where has-start-points x ≡ 1 = −(1 ;x);x;1

abbreviation has-end-points
where has-end-points x ≡ 1 = 1 ;x;−(x;1)

26

abbreviation has-start-end-points
where has-start-end-points x ≡ 1 = −(1 ;x);x;1 · 1 ;x;−(x;1)

abbreviation backward-terminating
where backward-terminating x ≡ x ≤ −(1 ;x);x;1

abbreviation forward-terminating
where forward-terminating x ≡ x ≤ 1 ;x;−(x;1)

abbreviation terminating
where terminating x ≡ x ≤ −(1 ;x);x;1 · 1 ;x;−(x;1)

abbreviation backward-finite
where backward-finite x ≡ x ≤ xT ? + −(1 ;x);x;1

abbreviation forward-finite
where forward-finite x ≡ x ≤ xT ? + 1 ;x;−(x;1)

abbreviation finite
where finite x ≡ x ≤ xT ? + (−(1 ;x);x;1 · 1 ;x;−(x;1))

abbreviation no-start-points-path
where no-start-points-path x ≡ path x ∧ no-start-points x

abbreviation no-end-points-path
where no-end-points-path x ≡ path x ∧ no-end-points x

abbreviation no-start-end-points-path
where no-start-end-points-path x ≡ path x ∧ no-start-end-points x

abbreviation has-start-points-path
where has-start-points-path x ≡ path x ∧ has-start-points x

abbreviation has-end-points-path
where has-end-points-path x ≡ path x ∧ has-end-points x

abbreviation has-start-end-points-path
where has-start-end-points-path x ≡ path x ∧ has-start-end-points x

abbreviation backward-terminating-path
where backward-terminating-path x ≡ path x ∧ backward-terminating x

abbreviation forward-terminating-path
where forward-terminating-path x ≡ path x ∧ forward-terminating x

abbreviation terminating-path
where terminating-path x ≡ path x ∧ terminating x

27

abbreviation backward-finite-path
where backward-finite-path x ≡ path x ∧ backward-finite x

abbreviation forward-finite-path
where forward-finite-path x ≡ path x ∧ forward-finite x

abbreviation finite-path
where finite-path x ≡ path x ∧ finite x

General properties
lemma reachability-from-z-in-y:

assumes x ≤ y?;z
and x · z = 0

shows x ≤ y+;z
by (metis assms conway.dagger-unfoldl-distr galois-1 galois-aux inf .orderE)

lemma reachable-imp:
assumes point p

and point q
and p?;q ≤ pT ?;p

shows p ≤ p?;q
by (metis assms conway.dagger-unfoldr-distr le-supE point-swap star-conv)

Basic equivalences
lemma no-start-end-points-iff :

no-start-end-points x ←→ no-start-points x ∧ no-end-points x
by fastforce

lemma has-start-end-points-iff :
has-start-end-points x ←→ has-start-points x ∧ has-end-points x

by (metis inf-eq-top-iff)

lemma terminating-iff :
terminating x ←→ backward-terminating x ∧ forward-terminating x

by simp

lemma finite-iff :
finite x ←→ backward-finite x ∧ forward-finite x

by (simp add: sup-inf-distrib1 inf .boundedI)

lemma no-start-end-points-path-iff :
no-start-end-points-path x ←→ no-start-points-path x ∧ no-end-points-path x

by fastforce

lemma has-start-end-points-path-iff :
has-start-end-points-path x ←→ has-start-points-path x ∧ has-end-points-path x

using has-start-end-points-iff by blast

lemma terminating-path-iff :

28

terminating-path x ←→ backward-terminating-path x ∧ forward-terminating-path
x
by fastforce

lemma finite-path-iff :
finite-path x ←→ backward-finite-path x ∧ forward-finite-path x

using finite-iff by fastforce

Closure under converse
lemma connected-conv:

connected x ←→ connected (xT)
by (metis comp-assoc conv-add conv-contrav conv-iso conv-one star-conv)

lemma conv-many-strongly-connected:
many-strongly-connected x ←→ many-strongly-connected (xT)

by fastforce

lemma conv-one-strongly-connected:
one-strongly-connected x ←→ one-strongly-connected (xT)

by (metis comp-assoc conv-contrav conv-iso conv-one star-conv)

lemma conv-path:
path x ←→ path (xT)

using connected-conv inj-p-fun path-def by fastforce

lemma conv-cycle:
cycle x ←→ cycle (xT)

using conv-path by fastforce

lemma conv-no-start-points:
no-start-points x ←→ no-end-points (xT)

by simp

lemma conv-no-start-end-points:
no-start-end-points x ←→ no-start-end-points (xT)

by fastforce

lemma conv-has-start-points:
has-start-points x ←→ has-end-points (xT)

by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one)

lemma conv-has-start-end-points:
has-start-end-points x ←→ has-start-end-points (xT)

by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one inf-eq-top-iff)

lemma conv-backward-terminating:
backward-terminating x ←→ forward-terminating (xT)

by (metis comp-assoc conv-compl conv-contrav conv-iso conv-one)

29

lemma conv-terminating:
terminating x ←→ terminating (xT)
apply (rule iffI)

apply (metis conv-compl conv-contrav conv-one conv-times inf .commute le-iff-inf
mult-assoc)
by (metis conv-compl conv-contrav conv-invol conv-one conv-times inf .commute
le-iff-inf mult-assoc)

lemma conv-backward-finite:
backward-finite x ←→ forward-finite (xT)

by (metis comp-assoc conv-add conv-compl conv-contrav conv-iso conv-one
star-conv)

lemma conv-finite:
finite x ←→ finite (xT)

by (metis finite-iff conv-backward-finite conv-invol)

lemma conv-no-start-points-path:
no-start-points-path x ←→ no-end-points-path (xT)

using conv-path by fastforce

lemma conv-no-start-end-points-path:
no-start-end-points-path x ←→ no-start-end-points-path (xT)

using conv-path by fastforce

lemma conv-has-start-points-path:
has-start-points-path x ←→ has-end-points-path (xT)

using conv-has-start-points conv-path by fastforce

lemma conv-has-start-end-points-path:
has-start-end-points-path x ←→ has-start-end-points-path (xT)

using conv-has-start-end-points conv-path by fastforce

lemma conv-backward-terminating-path:
backward-terminating-path x ←→ forward-terminating-path (xT)

using conv-backward-terminating conv-path by fastforce

lemma conv-terminating-path:
terminating-path x ←→ terminating-path (xT)

using conv-path conv-terminating by fastforce

lemma conv-backward-finite-path:
backward-finite-path x ←→ forward-finite-path (xT)

using conv-backward-finite conv-path by fastforce

lemma conv-finite-path:
finite-path x ←→ finite-path (xT)

using conv-finite conv-path by blast

Equivalences for connected

30

lemma connected-iff2 :
assumes is-inj x

and is-p-fun x
shows connected x ←→ x;1 ;xT ≤ x? + xT ?

proof
assume 1 : connected x
have x;1 ;xT ≤ x;1 ;x;xT

by (metis conv-invol modular-var-3 vector-meet-comp-x ′)
also have ... ≤ (x+ + xT ?);xT

using 1 mult-isor star-star-plus by fastforce
also have ... ≤ x?;x;xT + xT ?

using join-isol star-slide-var by simp
also from assms(1) have ... ≤ x? + xT ?

by (metis is-inj-def comp-assoc join-iso mult-1-right mult-isol)
finally show x;1 ;xT ≤ x? + xT ? .

next
assume 2 : x;1 ;xT ≤ x? + xT ?

have x;1 ;x ≤ x;1 ;xT ;x
by (simp add: modular-var-3 vector-meet-comp-x)

also have ... ≤ (x? + xT+);x
using 2 by (metis mult-isor star-star-plus sup-commute)

also have ... ≤ x? + xT ?;xT ;x
using join-iso star-slide-var by simp

also from assms(2) have ... ≤ x? + xT ?

by (metis comp-assoc is-p-fun-def join-isol mult-1-right mult-isol)
finally show connected x .

qed

lemma connected-iff3 :
assumes is-inj x

and is-p-fun x
shows connected x ←→ xT ;1 ;x ≤ x? + xT ?

by (metis assms connected-conv connected-iff2 inj-p-fun p-fun-inj conv-invol
add-commute)

lemma connected-iff4 :
connected x ←→ xT ;1 ;xT ≤ x? + xT ?

by (metis connected-conv conv-invol add-commute)

lemma connected-iff5 :
connected x ←→ x+;1 ;x+ ≤ x? + xT ?

using comp-assoc plus-top top-plus by fastforce

lemma connected-iff6 :
assumes is-inj x

and is-p-fun x
shows connected x ←→ x+;1 ;(x+)T ≤ x? + xT ?

using assms connected-iff2 comp-assoc plus-conv plus-top top-plus by fastforce

31

lemma connected-iff7 :
assumes is-inj x

and is-p-fun x
shows connected x ←→ (x+)T ;1 ;x+ ≤ x? + xT ?

by (metis assms connected-iff3 conv-contrav conv-invol conv-one top-plus
vector-meet-comp-x)

lemma connected-iff8 :
connected x ←→ (x+)T ;1 ;(x+)T ≤ x? + xT ?

by (metis connected-iff4 comp-assoc conv-contrav conv-invol conv-one plus-conv
star-conv top-plus)

Equivalences and implications for many-strongly-connected
lemma many-strongly-connected-iff-1 :

many-strongly-connected x ←→ xT ≤ x?

apply (rule iffI ,simp)
by (metis conv-invol conv-iso order .eq-iff star-conv star-invol star-iso)

lemma many-strongly-connected-iff-2 :
many-strongly-connected x ←→ xT ≤ x+

proof
assume as: many-strongly-connected x
hence xT ≤ x? · (−(1 ′) + x)

by (metis many-strongly-connected-iff-1 loop-backward-forward inf-greatest)
also have ... ≤ (x? · −(1 ′)) + (x? · x)

by (simp add: inf-sup-distrib1)
also have ... ≤ x+

by (metis as order .eq-iff mult-1-right mult-isol star-ref sup.absorb1 conv-invol
eq-refl galois-1

inf .absorb-iff1 inf .commute star-unfoldl-eq sup-mono
many-strongly-connected-iff-1)

finally show xT ≤ x+ .
next

show xT ≤ x+ =⇒ many-strongly-connected x
using order-trans star-1l many-strongly-connected-iff-1 by blast

qed

lemma many-strongly-connected-iff-3 :
many-strongly-connected x ←→ x ≤ xT ?

by (metis conv-invol many-strongly-connected-iff-1)

lemma many-strongly-connected-iff-4 :
many-strongly-connected x ←→ x ≤ xT+

by (metis conv-invol many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-5 :
many-strongly-connected x ←→ x?;xT ≤ x+

by (metis comp-assoc conv-contrav conway.dagger-unfoldr-distr star-conv
star-denest-var-2

32

star-invol star-trans-eq star-unfoldl-eq sup.boundedE
many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-6 :
many-strongly-connected x ←→ xT ;x? ≤ x+

by (metis dual-order .trans star-1l star-conv star-inductl-star star-invol
star-slide-var

many-strongly-connected-iff-1 many-strongly-connected-iff-5)

lemma many-strongly-connected-iff-7 :
many-strongly-connected x ←→ xT+ = x+

by (metis order .antisym conv-invol star-slide-var star-unfoldl-eq
many-strongly-connected-iff-5)

lemma many-strongly-connected-iff-5-eq:
many-strongly-connected x ←→ x?;xT = x+

by (metis order .refl star-slide-var many-strongly-connected-iff-5
many-strongly-connected-iff-7)

lemma many-strongly-connected-iff-6-eq:
many-strongly-connected x ←→ xT ;x? = x+

using many-strongly-connected-iff-6 many-strongly-connected-iff-7 by force

lemma many-strongly-connected-implies-no-start-end-points:
assumes many-strongly-connected x

shows no-start-end-points x
by (metis assms conway.dagger-unfoldl-distr mult-assoc sup-top-left conv-invol

many-strongly-connected-iff-7)

lemma many-strongly-connected-implies-8 :
assumes many-strongly-connected x

shows x;xT ≤ x+

by (simp add: assms mult-isol)

lemma many-strongly-connected-implies-9 :
assumes many-strongly-connected x

shows xT ;x ≤ x+

by (metis assms eq-refl phl-cons1 star-ext star-slide-var)

lemma many-strongly-connected-implies-10 :
assumes many-strongly-connected x

shows x;xT ;x? ≤ x+

by (simp add: assms comp-assoc mult-isol)

lemma many-strongly-connected-implies-10-eq:
assumes many-strongly-connected x

shows x;xT ;x? = x+

proof (rule order .antisym)
show x;xT ;x? ≤ x+

33

by (simp add: assms comp-assoc mult-isol)
next

have x+ ≤ x;xT ;x;x?

using mult-isor x-leq-triple-x by blast
thus x+ ≤ x;xT ;x?

by (simp add: comp-assoc mult-isol order-trans)
qed

lemma many-strongly-connected-implies-11 :
assumes many-strongly-connected x

shows x?;xT ;x ≤ x+

by (metis assms conv-contrav conv-iso mult-isol star-1l star-slide-var)

lemma many-strongly-connected-implies-11-eq:
assumes many-strongly-connected x

shows x?;xT ;x = x+

by (metis assms comp-assoc conv-invol many-strongly-connected-iff-5-eq
many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-implies-12 :
assumes many-strongly-connected x

shows x?;x;xT ≤ x+

by (metis assms comp-assoc mult-isol star-1l star-slide-var)

lemma many-strongly-connected-implies-12-eq:
assumes many-strongly-connected x

shows x?;x;xT = x+

by (metis assms comp-assoc star-slide-var many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-implies-13 :
assumes many-strongly-connected x

shows xT ;x;x? ≤ x+

by (metis assms star-slide-var many-strongly-connected-implies-11 mult.assoc)

lemma many-strongly-connected-implies-13-eq:
assumes many-strongly-connected x

shows xT ;x;x? = x+

by (metis assms conv-invol many-strongly-connected-iff-7
many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-iff-8 :
assumes is-p-fun x

shows many-strongly-connected x ←→ x;xT ≤ x+

apply (rule iffI)
apply (simp add: mult-isol)

apply (simp add: many-strongly-connected-iff-1)
by (metis comp-assoc conv-invol dual-order .trans mult-isol x-leq-triple-x assms
comp-assoc

dual-order .trans is-p-fun-def order .refl prod-star-closure star-ref)

34

lemma many-strongly-connected-iff-9 :
assumes is-inj x

shows many-strongly-connected x ←→ xT ;x ≤ x+

by (metis assms conv-contrav conv-iso inj-p-fun star-conv star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-8)

lemma many-strongly-connected-iff-10 :
assumes is-p-fun x

shows many-strongly-connected x ←→ x;xT ;x? ≤ x+

apply (rule iffI)
apply (simp add: comp-assoc mult-isol)

by (metis assms mult-isol mult-oner order-trans star-ref
many-strongly-connected-iff-8)

lemma many-strongly-connected-iff-10-eq:
assumes is-p-fun x

shows many-strongly-connected x ←→ x;xT ;x? = x+

using assms many-strongly-connected-iff-10
many-strongly-connected-implies-10-eq by fastforce

lemma many-strongly-connected-iff-11 :
assumes is-inj x

shows many-strongly-connected x ←→ x?;xT ;x ≤ x+

by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun plus-conv star-conv
many-strongly-connected-iff-10 many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-11-eq:
assumes is-inj x

shows many-strongly-connected x ←→ x?;xT ;x = x+

using assms many-strongly-connected-iff-11
many-strongly-connected-implies-11-eq by fastforce

lemma many-strongly-connected-iff-12 :
assumes is-p-fun x

shows many-strongly-connected x ←→ x?;x;xT ≤ x+

by (metis assms dual-order .trans mult-double-iso mult-oner star-ref star-slide-var
many-strongly-connected-iff-8 many-strongly-connected-implies-12)

lemma many-strongly-connected-iff-12-eq:
assumes is-p-fun x

shows many-strongly-connected x ←→ x?;x;xT = x+

using assms many-strongly-connected-iff-12
many-strongly-connected-implies-12-eq by fastforce

lemma many-strongly-connected-iff-13 :
assumes is-inj x

shows many-strongly-connected x ←→ xT ;x;x? ≤ x+

by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun star-conv

35

star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-12)

lemma many-strongly-connected-iff-13-eq:
assumes is-inj x

shows many-strongly-connected x ←→ xT ;x;x? = x+

using assms many-strongly-connected-iff-13
many-strongly-connected-implies-13-eq by fastforce

Equivalences and implications for one-strongly-connected
lemma one-strongly-connected-iff :

one-strongly-connected x ←→ connected x ∧ many-strongly-connected x
apply (rule iffI)

apply (metis top-greatest x-leq-triple-x mult-double-iso top-greatest
dual-order .trans

many-strongly-connected-iff-1 comp-assoc conv-contrav conv-invol
conv-iso le-supI2

star-conv)
by (metis comp-assoc conv-contrav conv-iso conv-one conway.dagger-denest
star-conv star-invol

star-sum-unfold star-trans-eq)

lemma one-strongly-connected-iff-1 :
one-strongly-connected x ←→ xT ;1 ;xT ≤ x+

proof
assume 1 : one-strongly-connected x
have xT ;1 ;xT ≤ xT ;x;xT ;1 ;xT

by (metis conv-invol mult-isor x-leq-triple-x)
also from 1 have ... ≤ xT ;x;x?

by (metis distrib-left mult-assoc sup.absorb-iff1)
also from 1 have ... ≤ x+

using many-strongly-connected-implies-13 one-strongly-connected-iff by blast
finally show xT ;1 ;xT ≤ x+

.
next

assume xT ;1 ;xT ≤ x+

thus one-strongly-connected x
using dual-order .trans star-1l by blast

qed

lemma one-strongly-connected-iff-1-eq:
one-strongly-connected x ←→ xT ;1 ;xT = x+

apply (rule iffI , simp-all)
by (metis comp-assoc conv-contrav conv-invol mult-double-iso plus-conv
star-slide-var top-greatest

top-plus many-strongly-connected-implies-10-eq one-strongly-connected-iff
order .eq-iff

one-strongly-connected-iff-1)

36

lemma one-strongly-connected-iff-2 :
one-strongly-connected x ←→ x;1 ;x ≤ xT ?

by (metis conv-invol eq-refl less-eq-def one-strongly-connected-iff)

lemma one-strongly-connected-iff-3 :
one-strongly-connected x ←→ x;1 ;x ≤ xT+

by (metis comp-assoc conv-contrav conv-invol conv-iso conv-one star-conv
one-strongly-connected-iff-1)

lemma one-strongly-connected-iff-3-eq:
one-strongly-connected x ←→ x;1 ;x = xT+

by (metis conv-invol one-strongly-connected-iff-1-eq one-strongly-connected-iff-2)

lemma one-strongly-connected-iff-4-eq:
one-strongly-connected x ←→ xT ;1 ;x = x+

apply (rule iffI)
apply (metis comp-assoc top-plus many-strongly-connected-iff-7

one-strongly-connected-iff
one-strongly-connected-iff-1-eq)

by (metis comp-assoc conv-contrav conv-invol conv-one plus-conv top-plus
one-strongly-connected-iff-1-eq)

lemma one-strongly-connected-iff-5-eq:
one-strongly-connected x ←→ x;1 ;xT = x+

using comp-assoc conv-contrav conv-invol conv-one plus-conv top-plus
many-strongly-connected-iff-7

one-strongly-connected-iff one-strongly-connected-iff-3-eq by metis

lemma one-strongly-connected-iff-6-aux:
x;x+ ≤ x;1 ;x

by (metis comp-assoc maddux-21 mult-isol top-plus)

lemma one-strongly-connected-implies-6-eq:
assumes one-strongly-connected x

shows x;1 ;x = x;x+

by (metis assms comp-assoc many-strongly-connected-iff-7
many-strongly-connected-implies-10-eq

one-strongly-connected-iff one-strongly-connected-iff-3-eq)

lemma one-strongly-connected-iff-7-aux:
x+ ≤ x;1 ;x

by (metis le-infI maddux-20 maddux-21 plus-top top-plus vector-meet-comp-x ′)

lemma one-strongly-connected-implies-7-eq:
assumes one-strongly-connected x

shows x;1 ;x = x+

using assms many-strongly-connected-iff-7 one-strongly-connected-iff
one-strongly-connected-iff-3-eq
by force

37

lemma one-strongly-connected-implies-8 :
assumes one-strongly-connected x

shows x;1 ;x ≤ x?

using assms one-strongly-connected-iff by fastforce

lemma one-strongly-connected-iff-4 :
assumes is-inj x

shows one-strongly-connected x ←→ xT ;1 ;x ≤ x+

proof
assume one-strongly-connected x
thus xT ;1 ;x ≤ x+

by (simp add: one-strongly-connected-iff-4-eq)
next

assume 1 : xT ;1 ;x ≤ x+

hence xT ;1 ;xT ≤ x?;x;xT

by (metis mult-isor star-slide-var comp-assoc conv-invol modular-var-3
vector-meet-comp-x

order .trans)
also from assms have ... ≤ x?

using comp-assoc is-inj-def mult-isol mult-oner by fastforce
finally show one-strongly-connected x

using dual-order .trans star-1l by fastforce
qed

lemma one-strongly-connected-iff-5 :
assumes is-p-fun x

shows one-strongly-connected x ←→ x;1 ;xT ≤ x+

apply (rule iffI)
using one-strongly-connected-iff-5-eq apply simp

by (metis assms comp-assoc mult-double-iso order .trans star-slide-var top-greatest
top-plus

many-strongly-connected-iff-12 many-strongly-connected-iff-7
one-strongly-connected-iff-3)

lemma one-strongly-connected-iff-6 :
assumes is-p-fun x

and is-inj x
shows one-strongly-connected x ←→ x;1 ;x ≤ x;x+

proof
assume one-strongly-connected x
thus x;1 ;x ≤ x;x+

by (simp add: one-strongly-connected-implies-6-eq)
next

assume 1 : x;1 ;x ≤ x;x+

have xT ;1 ;x ≤ xT ;x;xT ;1 ;x
by (metis conv-invol mult-isor x-leq-triple-x)

also have ... ≤ xT ;x;1 ;x
by (metis comp-assoc mult-double-iso top-greatest)

38

also from 1 have ... ≤ xT ;x;x+

by (simp add: comp-assoc mult-isol)
also from assms(1) have ... ≤ x+

by (metis comp-assoc is-p-fun-def mult-isor mult-onel)
finally show one-strongly-connected x

using assms(2) one-strongly-connected-iff-4 by blast
qed

lemma one-strongly-connected-iff-6-eq:
assumes is-p-fun x

and is-inj x
shows one-strongly-connected x ←→ x;1 ;x = x;x+

apply (rule iffI)
using one-strongly-connected-implies-6-eq apply blast

by (simp add: assms one-strongly-connected-iff-6)

Start points and end points
lemma start-end-implies-terminating:

assumes has-start-points x
and has-end-points x

shows terminating x
using assms by simp

lemma start-points-end-points-conv:
start-points x = end-points (xT)

by simp

lemma start-point-at-most-one:
assumes path x

shows is-inj (start-points x)
proof −

have isvec: is-vector (x;1 · −(xT ;1))
by (simp add: comp-assoc is-vector-def one-compl vector-1)

have x;1 · 1 ;xT ≤ x;1 ;x;xT

by (metis comp-assoc conv-contrav conv-one inf .cobounded2 mult-1-right
mult-isol one-conv ra-2)

also have ... ≤ (x? + xT ?);xT

using ‹path x› by (metis path-def mult-isor)
also have ... = xT + x+;xT + xT+

by (simp add: star-slide-var)
also have ... ≤ xT+ + x+;xT + xT+

by (metis add-iso mult-1-right star-unfoldl-eq subdistl)
also have ... ≤ x?;x;xT + xT+

by (simp add: star-slide-var add-comm)
also have ... ≤ x?;1 ′ + xT+

using ‹path x› by (metis path-def is-inj-def comp-assoc distrib-left join-iso
less-eq-def)

also have ... = 1 ′ + x?;x + xT ;xT ?

39

by simp
also have ... ≤ 1 ′ + 1 ;x + xT ;1

by (metis join-isol mult-isol mult-isor sup.mono top-greatest)
finally have aux: x;1 · 1 ;xT ≤ 1 ′ + 1 ;x + xT ;1 .

from aux have x;1 · 1 ;xT · −(xT ;1) · −(1 ;x) ≤ 1 ′

by (simp add: galois-1 sup-commute)
hence (x;1 · −(xT ;1)) · (x;1 · −(xT ;1))T ≤ 1 ′

by (simp add: conv-compl inf .assoc inf .left-commute)
with isvec have (x;1 · −(xT ;1)) ; (x;1 · −(xT ;1))T ≤ 1 ′

by (metis vector-meet-comp ′)
thus is-inj (start-points x)

by (simp add: conv-compl is-inj-def)
qed

lemma start-point-zero-point:
assumes path x

shows start-points x = 0 ∨ is-point (start-points x)
using assms start-point-at-most-one comp-assoc is-point-def is-vector-def
vector-compl vector-mult
by simp

lemma start-point-iff1 :
assumes path x

shows is-point (start-points x) ←→ ¬(no-start-points x)
using assms start-point-zero-point galois-aux2 is-point-def by blast

lemma end-point-at-most-one:
assumes path x

shows is-inj (end-points x)
by (metis assms conv-path compl-bot-eq conv-invol inj-def-var1 is-point-def
top-greatest

start-point-zero-point)

lemma end-point-zero-point:
assumes path x

shows end-points x = 0 ∨ is-point (end-points x)
using assms conv-path start-point-zero-point by fastforce

lemma end-point-iff1 :
assumes path x

shows is-point (end-points x) ←→ ¬(no-end-points x)
using assms end-point-zero-point galois-aux2 is-point-def by blast

lemma predecessor-point ′:
assumes path x

and point s
and point e
and e;sT ≤ x

40

shows x;s = e
proof (rule order .antisym)

show 1 : e ≤ x ; s
using assms(2 ,4) point-def ss423bij by blast

show x ; s ≤ e
proof −

have eT ; (x ; s) = 1
using 1 by (metis assms(3) order .eq-iff is-vector-def point-def ss423conv

top-greatest)
thus ?thesis

by (metis assms(1−3) comp-assoc conv-contrav conv-invol order .eq-iff
inj-compose is-vector-def

mult-isol path-def point-def ss423conv sur-def-var1 top-greatest)
qed

qed

lemma predecessor-point:
assumes path x

and point s
and point e
and e;sT ≤ x

shows point(x;s)
using predecessor-point ′ assms by blast

lemma points-of-path-iff :
shows (x + xT);1 = xT ;1 + start-points(x)

and (x + xT);1 = x;1 + end-points(x)
using aux9 inf .commute sup.commute by auto

Path concatenation preliminaries
lemma path-concat-aux-1 :

assumes x;1 · y;1 · yT ;1 = 0
and end-points x = start-points y

shows x;1 · y;1 = 0
proof −

have x;1 · y;1 = (x;1 · y;1 · yT ;1) + (x;1 · y;1 · −(yT ;1))
by simp

also from assms(1) have ... = x;1 · y;1 · −(yT ;1)
by (metis aux6-var de-morgan-3 inf .left-commute inf-compl-bot inf-sup-absorb)

also from assms(2) have ... = x;1 · xT ;1 · −(x;1)
by (simp add: inf .assoc)

also have ... = 0
by (simp add: inf .commute inf .assoc)

finally show ?thesis .
qed

lemma path-concat-aux-2 :
assumes x;1 · xT ;1 · yT ;1 = 0

and end-points x = start-points y

41

shows xT ;1 · yT ;1 = 0
proof −

have yT ;1 · xT ;1 · (xT)T ;1 = 0
using assms(1) inf .assoc inf .commute by force

thus ?thesis
by (metis assms(2) conv-invol inf .commute path-concat-aux-1)

qed

lemma path-concat-aux3-1 :
assumes path x

shows x;1 ;xT ≤ x? + xT ?

proof −
have x;1 ;xT ≤ x;1 ;xT ;x;xT

by (metis comp-assoc conv-invol mult-isol x-leq-triple-x)
also have ... ≤ x;1 ;x;xT

by (metis mult-isol mult-isor mult-assoc top-greatest)
also from assms have ... ≤ (x? + xT ?);xT

using path-def comp-assoc mult-isor by blast
also have ... = x?;x;xT + xT ?;xT

by (simp add: star-slide-var star-star-plus)
also have ... ≤ x?;1 ′ + xT ?;xT

by (metis assms path-def is-inj-def join-iso mult-isol mult-assoc)
also have ... ≤ x? + xT ?

using join-isol by simp
finally show ?thesis .

qed

lemma path-concat-aux3-2 :
assumes path x

shows xT ;1 ;x ≤ x? + xT ?

proof −
have xT ;1 ;x ≤ xT ;x;xT ;1 ;x

by (metis comp-assoc conv-invol mult-isor x-leq-triple-x)
also have ... ≤ xT ;x;1 ;x

by (metis mult-isol mult-isor mult-assoc top-greatest)
also from assms have ... ≤ xT ;(x? + xT ?)

by (simp add: comp-assoc mult-isol path-def)
also have ... = xT ;x;x? + xT ;xT ?

by (simp add: comp-assoc distrib-left star-star-plus)
also have ... ≤ 1 ′;x? + xT ;xT ?

by (metis assms path-def is-p-fun-def join-iso mult-isor mult-assoc)
also have ... ≤ x? + xT ?

using join-isol by simp
finally show ?thesis .

qed

lemma path-concat-aux3-3 :
assumes path x

shows xT ;1 ;xT ≤ x? + xT ?

42

proof −
have xT ;1 ;xT ≤ xT ;x;xT ;1 ;xT

by (metis comp-assoc conv-invol mult-isor x-leq-triple-x)
also have ... ≤ xT ;x;1 ;xT

by (metis mult-isol mult-isor mult-assoc top-greatest)
also from assms have ... ≤ xT ;(x? + xT ?)

using path-concat-aux3-1 by (simp add: mult-assoc mult-isol)
also have ... = xT ;x;x? + xT ;xT ?

by (simp add: comp-assoc distrib-left star-star-plus)
also have ... ≤ 1 ′;x? + xT ;xT ?

by (metis assms path-def is-p-fun-def join-iso mult-isor mult-assoc)
also have ... ≤ x? + xT ?

using join-isol by simp
finally show ?thesis .

qed

lemma path-concat-aux-3 :
assumes path x

and y ≤ x+ + xT+

and z ≤ x+ + xT+

shows y;1 ;z ≤ x? + xT ?

proof −
from assms(2 ,3) have y;1 ;z ≤ (x+ + xT+);1 ;(x+ + xT+)

using mult-isol-var mult-isor by blast
also have ... = x+;1 ;x+ + x+;1 ;xT+ + xT+;1 ;x+ + xT+;1 ;xT+

by (simp add: distrib-left sup-commute sup-left-commute)
also have ... = x;x?;1 ;x?;x + x;x?;1 ;xT ?;xT + xT ;xT ?;1 ;x?;x +

xT ;xT ?;1 ;xT ?;xT

by (simp add: comp-assoc star-slide-var)
also have ... ≤ x;1 ;x + x;x?;1 ;xT ?;xT + xT ;xT ?;1 ;x?;x + xT ;xT ?;1 ;xT ?;xT

by (metis comp-assoc mult-double-iso top-greatest join-iso)
also have ... ≤ x;1 ;x + x;1 ;xT + xT ;xT ?;1 ;x?;x + xT ;xT ?;1 ;xT ?;xT

by (metis comp-assoc mult-double-iso top-greatest join-iso join-isol)
also have ... ≤ x;1 ;x + x;1 ;xT + xT ;1 ;x + xT ;xT ?;1 ;xT ?;xT

by (metis comp-assoc mult-double-iso top-greatest join-iso join-isol)
also have ... ≤ x;1 ;x + x;1 ;xT + xT ;1 ;x + xT ;1 ;xT

by (metis comp-assoc mult-double-iso top-greatest join-isol)
also have ... ≤ x? + xT ?

using assms(1) path-def path-concat-aux3-1 path-concat-aux3-2
path-concat-aux3-3 join-iso join-isol

by simp
finally show ?thesis .

qed

lemma path-concat-aux-4 :
x? + xT ? ≤ x? + xT ;1

by (metis star-star-plus add-comm join-isol mult-isol top-greatest)

lemma path-concat-aux-5 :

43

assumes path x
and y ≤ start-points x
and z ≤ x + xT

shows y;1 ;z ≤ x?

proof −
from assms(1) have x;1 ;x ≤ x? + xT ;1

using path-def path-concat-aux-4 dual-order .trans by blast
hence aux1 : x;1 ;x · −(xT ;1) ≤ x?

by (simp add: galois-1 sup-commute)

from assms(1) have x;1 ;xT ≤ x? + xT ;1
using dual-order .trans path-concat-aux3-1 path-concat-aux-4 by blast

hence aux2 : x;1 ;xT · −(xT ;1) ≤ x?

by (simp add: galois-1 sup-commute)

from assms(2 ,3) have y;1 ;z ≤ (x;1 · −(xT ;1));1 ;(x + xT)
by (simp add: mult-isol-var mult-isor)

also have ... = (x;1 · −(xT ;1));1 ;x + (x;1 · −(xT ;1));1 ;xT

using distrib-left by blast
also have ... = (x;1 · −(xT ;1) · 1 ;x) + (x;1 · −(xT ;1));1 ;xT

by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1
vector-compl)

also have ... = (x;1 · −(xT ;1) · 1 ;x) + (x;1 · −(xT ;1) · 1 ;xT)
by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1

vector-compl)
also have ... = (x;1 ;x · −(xT ;1)) + (x;1 ;xT −(xT ;1))

using vector-meet-comp-x vector-meet-comp-x ′ diff-eq inf .assoc inf .commute
by simp

also from aux1 aux2 have ... ≤ x?

by (simp add: diff-eq join-iso)
finally show ?thesis .

qed

lemma path-conditions-disjoint-points-iff :
x;1 · (xT ;1 + y;1) · yT ;1 = 0 ∧ start-points x · end-points y = 0 ←→ x;1 ·

yT ;1 = 0
proof

assume 1 : x ; 1 · yT ; 1 = 0
hence g1 : x ; 1 · (xT ; 1 + y ; 1) · yT ; 1 = 0

by (metis inf .left-commute inf-bot-right inf-commute)
have g2 : start-points x · end-points y = 0

using 1 by (metis compl-inf-bot inf .assoc inf .commute inf .left-idem)
show x;1 · (xT ;1 + y;1) · yT ;1 = 0 ∧ start-points x · end-points y = 0

using g1 and g2 by simp
next

assume a: x;1 · (xT ;1 + y;1) · yT ;1 = 0 ∧ start-points x · end-points y = 0
from a have a1 : x;1 · xT ;1 · yT ;1 = 0

by (simp add: inf .commute inf-sup-distrib1)
from a have a2 : x;1 · y;1 · yT ;1 = 0

44

by (simp add: inf .commute inf-sup-distrib1)
from a have a3 : start-points x · end-points y = 0

by blast

have x;1 · yT ;1 = x;1 · xT ;1 · yT ;1 + x;1 · −(xT ;1) · yT ;1
by (metis aux4 inf-sup-distrib2)

also from a1 have ... = x;1 · −(xT ;1) · yT ;1
using sup-bot-left by blast

also have ... = x;1 · −(xT ;1) · y;1 · yT ;1 + x;1 · −(xT ;1) · −(y;1) · yT ;1
by (metis aux4 inf-sup-distrib2)

also have ... ≤ x;1 · y;1 · yT ;1 + x;1 · −(xT ;1) · −(y;1) · yT ;1
using join-iso meet-iso by simp

also from a2 have ... = start-points x · end-points y
using sup-bot-left inf .commute inf .left-commute by simp

also from a3 have ... = 0
by blast

finally show x;1 · yT ;1 = 0
using le-bot by blast

qed

end

2.2 Consequences with the Tarski rule
context relation-algebra-rtc-tarski
begin

General theorems
lemma reachable-implies-predecessor :

assumes p 6= q
and point p
and point q
and x?;q ≤ xT ?;p

shows x;q 6= 0
proof

assume contra: x;q=0
with assms(4) have q ≤ xT ?;p

by (simp add: independence1)
hence p ≤ x?;q

by (metis assms(2 ,3) point-swap star-conv)
with contra assms(2 ,3) have p=q

by (simp add: independence1 is-point-def point-singleton point-is-point)
with assms(1) show False

by simp
qed

lemma acyclic-imp-one-step-different-points:
assumes is-acyclic x

and point p
and point q

45

and p ≤ x;q
shows p ≤ −q and p 6= q

using acyclic-reachable-points assms point-is-point point-not-equal(1) by auto

Start points and end points
lemma start-point-iff2 :

assumes path x
shows is-point (start-points x) ←→ has-start-points x

proof −
have has-start-points x ←→ 1 ≤ −(1 ;x);x;1

by (simp add: order .eq-iff)
also have ... ←→ 1 ≤ 1 ;xT ;−(xT ;1)

by (metis comp-assoc conv-compl conv-contrav conv-iso conv-one)
also have ... ←→ 1 ≤ 1 ;(x;1 · −(xT ;1))

by (metis (no-types) conv-contrav conv-one inf .commute is-vector-def
one-idem-mult ra-2 vector-1

vector-meet-comp-x)
also have ... ←→ 1 = 1 ;(x;1 · −(xT ;1))

by (simp add: order .eq-iff)
also have ... ←→ x;1 · −(xT ;1) 6= 0

by (metis tarski comp-assoc one-compl ra-1 ss-p18)
also have ... ←→ is-point (start-points x)

using assms is-point-def start-point-zero-point by blast
finally show ?thesis ..

qed

lemma end-point-iff2 :
assumes path x

shows is-point (end-points x) ←→ has-end-points x
by (metis assms conv-invol conv-has-start-points conv-path start-point-iff2)

lemma edge-is-path:
assumes is-point p

and is-point q
shows path (p;qT)

apply (unfold path-def ; intro conjI)
apply (metis assms comp-assoc is-point-def le-supI1 star-ext vector-rectangle

point-equations(3))
apply (metis is-p-fun-def assms comp-assoc conv-contrav conv-invol is-inj-def

is-point-def
vector-2-var vector-meet-comp-x ′ point-equations)

by (metis is-inj-def assms conv-invol conv-times is-point-def p-fun-mult-var
vector-meet-comp)

lemma edge-start:
assumes is-point p

and is-point q
and p 6= q

shows start-points (p;qT) = p

46

using assms by (simp add: comp-assoc point-equations(1 ,3) point-not-equal
inf .absorb1)

lemma edge-end:
assumes is-point p

and is-point q
and p 6= q

shows end-points (p;qT) = q
using assms edge-start by simp

lemma loop-no-start:
assumes is-point p

shows start-points (p;pT) = 0
by simp

lemma loop-no-end:
assumes is-point p

shows end-points (p;pT) = 0
by simp

lemma start-point-no-predecessor :
x;start-points(x) = 0

by (metis inf-top.right-neutral modular-1-aux ′)

lemma end-point-no-successor :
xT ;end-points(x) = 0

by (metis conv-invol start-point-no-predecessor)

lemma start-to-end:
assumes path x

shows start-points(x);end-points(x)T ≤ x?

proof (cases end-points(x) = 0)
assume end-points(x) = 0
thus ?thesis

by simp
next

assume ass: end-points(x) 6= 0
hence nz: x;end-points(x) 6= 0

by (metis comp-res-aux compl-bot-eq inf .left-idem)
have a: x;end-points(x);end-points(x)T ≤ x + xT

by (metis end-point-at-most-one assms(1) is-inj-def comp-assoc mult-isol
mult-oner le-supI1)

have start-points(x);end-points(x)T = start-points(x);1 ;end-points(x)T
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)

also have ... = start-points(x);1 ;x;end-points(x);1 ;end-points(x)T
using nz tarski by (simp add: comp-assoc)

also have ... = start-points(x);1 ;x;end-points(x);end-points(x)T
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)

47

also with a assms(1) have ... ≤ x?

using path-concat-aux-5 comp-assoc eq-refl by simp
finally show ?thesis .

qed

lemma path-acyclic:
assumes has-start-points-path x

shows is-acyclic x
proof −

let ?r = start-points(x)
have pt: point(?r)

using assms point-is-point start-point-iff2 by blast
have x+·1 ′ = (x+)T ·x+·1 ′

by (metis conv-e conv-times inf .assoc inf .left-idem inf-le2
many-strongly-connected-iff-7

mult-oner star-subid)
also have ... ≤ xT ;1 ·x+·1 ′

by (metis conv-contrav inf .commute maddux-20 meet-double-iso plus-top
star-conv star-slide-var)

finally have ?r ;(x+·1 ′) ≤ ?r ;(xT ;1 ·x+·1 ′)
using mult-isol by blast

also have ... = (?r ·1 ;x);(x+·1 ′)
by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one

inf .assoc
is-vector-def one-idem-mult vector-2)

also have ... = ?r ;x;(x+·1 ′)
by (metis comp-assoc inf-top.right-neutral is-vector-def one-compl

one-idem-mult vector-1)
also have ... ≤ (x? + xT ?);(x+·1 ′)

using assms(1) mult-isor
by (meson connected-iff4 dual-order .trans mult-subdistr path-concat-aux3-3)

also have ... = x?;(x+·1 ′) + xT+;(x+·1 ′)
by (metis distrib-right star-star-plus sup.commute)

also have ... ≤ x?;(x+·1 ′) + xT ;1
by (metis join-isol mult-isol plus-top top-greatest)

finally have ?r ;(x+·1 ′);1 ≤ x?;(x+·1 ′);1 + xT ;1
by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult)

hence 1 : ?r ;(x+·1 ′);1 ≤ xT ;1
using assms(1) path-def inj-implies-step-forwards-backwards sup-absorb2 by

simp
have x+·1 ′ ≤ (x+·1 ′);1

by (simp add: maddux-20)
also have ... ≤ ?rT ;?r ;(x+·1 ′);1

using pt comp-assoc point-def ss423conv by fastforce
also have ... ≤ ?rT ;xT ;1

using 1 by (simp add: comp-assoc mult-isol)
also have ... = 0

by (metis start-point-no-predecessor annil conv-contrav conv-zero)
finally show ?thesis

48

using galois-aux le-bot by blast
qed

Equivalences for terminating
lemma backward-terminating-iff1 :

assumes path x
shows backward-terminating x ←→ has-start-points x ∨ x = 0

proof
assume backward-terminating x
hence 1 ;x;1 ≤ 1 ;−(1 ;x);x;1 ;1

by (metis mult-isor mult-isol comp-assoc)
also have ... = −(1 ;x);x;1

by (metis conv-compl conv-contrav conv-invol conv-one mult-assoc one-compl
one-idem-mult)

finally have 1 ;x;1 ≤ −(1 ;x);x;1 .

with tarski show has-start-points x ∨ x = 0
by (metis top-le)

next
show has-start-points x ∨ x = 0 =⇒ backward-terminating x

by fastforce
qed

lemma backward-terminating-iff2-aux:
assumes path x

shows x;1 · 1 ;xT · −(1 ;x) ≤ xT ?

proof −
have x;1 · 1 ;xT ≤ x;1 ;x;xT

by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp-x ′)
also from assms have ... ≤ (x? + xT ?);xT

using path-def mult-isor by blast
also have ... ≤ x?;x;xT + xT ?;xT

by (simp add: star-star-plus star-slide-var add-comm)
also from assms have ... ≤ x?;1 ′ + xT ?;xT

by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
also have ... = x+ + xT ?

by (metis mult-1-right star-slide-var star-star-plus sup.commute)
also have ... ≤ xT ? + 1 ;x

by (metis join-iso mult-isor star-slide-var top-greatest add-comm)
finally have x;1 · 1 ;xT ≤ xT ? + 1 ;x .
thus ?thesis

by (simp add: galois-1 sup.commute)
qed

lemma backward-terminating-iff2 :
assumes path x

shows backward-terminating x ←→ x ≤ xT ?;−(xT ;1)
proof

assume backward-terminating x

49

with assms have has-start-points x ∨ x = 0
by (simp add: backward-terminating-iff1)

thus x ≤ xT ?;−(xT ;1)
proof

assume x = 0
thus ?thesis

by simp
next

assume has-start-points x
hence aux1 : 1 = 1 ;xT ;−(xT ;1)

by (metis comp-assoc conv-compl conv-contrav conv-one)
have x = x · 1

by simp
also have ... ≤ (x;−(1 ;x) · 1 ;xT);−(xT ;1)

by (metis inf .commute aux1 conv-compl conv-contrav conv-invol conv-one
modular-2-var)

also have ... = (x;1 · −(1 ;x) · 1 ;xT);−(xT ;1)
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one

inf .commute inf-top-left
one-compl ra-1)

also from assms have ... ≤ xT ?;−(xT ;1)
using backward-terminating-iff2-aux inf .commute inf .assoc mult-isor by

fastforce
finally show x ≤ xT ?;−(xT ;1) .

qed
next

assume x ≤ xT ?;−(xT ;1)
hencex ≤ xT ?;−(xT ;1) · x

by simp
also have ... = (xT ? · −(1 ;x));1 · x

by (metis one-compl conv-compl conv-contrav conv-invol conv-one inf-top-left
ra-2)

also have ... ≤ (xT ? · −(1 ;x)) ; (1 · (x? · −(1 ;x)T);x)
by (metis (mono-tags) conv-compl conv-invol conv-times modular-1-var

star-conv)
also have ... ≤ −(1 ;x);x?;x

by (simp add: mult-assoc mult-isol-var)
also have ... ≤ −(1 ;x);x;1

by (simp add: mult-assoc mult-isol star-slide-var)
finally show backward-terminating x .

qed

lemma backward-terminating-iff3-aux:
assumes path x

shows xT ;1 · 1 ;xT · −(1 ;x) ≤ xT ?

proof −
have xT ;1 · 1 ;xT ≤ xT ;1 ;x;xT

by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp-x ′)
also from assms have ... ≤ (x? + xT ?);xT

50

using mult-isor path-concat-aux3-2 by blast
also have ... ≤ x?;x;xT + xT ?;xT

by (simp add: star-star-plus star-slide-var add-comm)
also from assms have ... ≤ x?;1 ′ + xT ?;xT

by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
also have ... = x+ + xT ?

by (metis mult-1-right star-slide-var star-star-plus sup.commute)
also have ... ≤ xT ? + 1 ;x

by (metis join-iso mult-isor star-slide-var top-greatest add-comm)
finally have xT ;1 · 1 ;xT ≤ xT ? + 1 ;x .
thus ?thesis

by (simp add: galois-1 sup.commute)
qed

lemma backward-terminating-iff3 :
assumes path x

shows backward-terminating x ←→ xT ≤ xT ?;−(xT ;1)
proof

assume backward-terminating x
with assms have has-start-points x ∨ x = 0

by (simp add: backward-terminating-iff1)
thus xT ≤ xT ?;−(xT ;1)
proof

assume x = 0
thus ?thesis

by simp
next

assume has-start-points x
hence aux1 : 1 = 1 ;xT ;−(xT ;1)

by (metis comp-assoc conv-compl conv-contrav conv-one)
have xT = xT · 1

by simp
also have ... ≤ (xT ;−(1 ;x) · 1 ;xT);−(xT ;1)

by (metis inf .commute aux1 conv-compl conv-contrav conv-invol conv-one
modular-2-var)

also have ... = (xT ;1 · −(1 ;x) · 1 ;xT);−(xT ;1)
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one

inf .commute inf-top-left one-compl ra-1)
also from assms have ... ≤ xT ?;−(xT ;1)

using backward-terminating-iff3-aux inf .commute inf .assoc mult-isor by
fastforce

finally show xT ≤ xT ?;−(xT ;1) .
qed

next
have 1 : −(1 ;x) · x = 0

by (simp add: galois-aux2 inf .commute maddux-21)
assume xT ≤ xT ?;−(xT ;1)
hence x = −(1 ;x);x? · x

by (metis (mono-tags, lifting) conv-compl conv-contrav conv-iso conv-one

51

inf .absorb2 star-conv)
also have ... = (−(1 ;x);x+ + −(1 ;x);1 ′) · x

by (metis distrib-left star-unfoldl-eq sup-commute)
also have ... = −(1 ;x);x+ · x + −(1 ;x) · x

by (simp add: inf-sup-distrib2)
also have ... ≤ −(1 ;x);x+

using 1 by simp
also have ... ≤ −(1 ;x);x;1

by (simp add: mult-assoc mult-isol star-slide-var)
finally show backward-terminating x .

qed

lemma backward-terminating-iff4 :
assumes path x

shows backward-terminating x ←→ x ≤ −(1 ;x);x?

apply (subst backward-terminating-iff3)
apply (rule assms)

by (metis (mono-tags, lifting) conv-compl conv-iso star-conv conv-contrav
conv-one)

lemma forward-terminating-iff1 :
assumes path x

shows forward-terminating x ←→ has-end-points x ∨ x = 0
by (metis comp-assoc eq-refl le-bot one-compl tarski top-greatest)

lemma forward-terminating-iff2 :
assumes path x

shows forward-terminating x ←→ xT ≤ x?;−(x;1)
by (metis assms backward-terminating-iff1 backward-terminating-iff2
end-point-iff2

forward-terminating-iff1 compl-bot-eq conv-compl conv-invol conv-one
conv-path

double-compl start-point-iff2)

lemma forward-terminating-iff3 :
assumes path x

shows forward-terminating x ←→ x ≤ x?;−(x;1)
by (metis assms backward-terminating-iff1 backward-terminating-iff3
end-point-iff2

forward-terminating-iff1 compl-bot-eq conv-compl conv-invol conv-one
conv-path

double-compl start-point-iff2)

lemma forward-terminating-iff4 :
assumes path x

shows forward-terminating x ←→ x ≤ −(1 ;xT);xT ?

using forward-terminating-iff2 conv-contrav conv-iso star-conv assms conv-compl
by force

52

lemma terminating-iff1 :
assumes path x

shows terminating x ←→ has-start-end-points x ∨ x = 0
using assms backward-terminating-iff1 forward-terminating-iff1 by fastforce

lemma terminating-iff2 :
assumes path x

shows terminating x ←→ x ≤ xT ?;−(xT ;1) · −(1 ;xT);xT ?

using assms backward-terminating-iff2 forward-terminating-iff2 conv-compl
conv-iso star-conv
by force

lemma terminating-iff3 :
assumes path x

shows terminating x ←→ x ≤ x?;−(x;1) · −(1 ;x);x?

using assms backward-terminating-iff4 forward-terminating-iff3 by fastforce

lemma backward-terminating-path-irreflexive:
assumes backward-terminating-path x

shows x ≤ −1 ′

proof −
have 1 : x;xT ≤ 1 ′

using assms is-inj-def path-def by blast
have x;(xT · 1 ′) ≤ x;xT · x

by (metis inf .bounded-iff inf .commute mult-1-right mult-subdistl)
also have ... ≤ 1 ′ · x

using 1 meet-iso by blast
also have ... = 1 ′ · xT

by (metis conv-e conv-times inf .cobounded1 is-test-def test-eq-conv)
finally have 2 : xT ;−(xT · 1 ′) ≤ −(xT · 1 ′)

by (metis compl-le-swap1 conv-galois-1 inf .commute)
have xT · 1 ′ ≤ xT ;1

by (simp add: le-infI1 maddux-20)
hence −(xT ;1) ≤ −(xT · 1 ′)

using compl-mono by blast
hence xT ;−(xT · 1 ′) + −(xT ;1) ≤ −(xT · 1 ′)

using 2 by (simp add: le-supI)
hence xT ?;−(xT ;1) ≤ −(xT · 1 ′)

by (simp add: rtc-inductl)
hence xT · 1 ′ · xT ?;−(xT ;1) = 0

by (simp add: compl-le-swap1 galois-aux)
hence xT · 1 ′ = 0

using assms backward-terminating-iff3 inf .order-iff le-infI1 by blast
hence x · 1 ′ = 0

by (simp add: conv-self-conjugate)
thus ?thesis

by (simp add: galois-aux)
qed

53

lemma forward-terminating-path-end-points-1 :
assumes forward-terminating-path x

shows x ≤ x+;end-points x
proof −

have 1 : −(x;1) · x = 0
by (simp add: galois-aux maddux-20)

have x = x?;−(x;1) · x
using assms forward-terminating-iff3 inf .absorb2 by fastforce

also have ... = (x+;−(x;1) + 1 ′;−(x;1)) · x
by (simp add: sup.commute)

also have ... = x+;−(x;1) · x + −(x;1) · x
using inf-sup-distrib2 by fastforce

also have ... = x+;−(x;1) · x
using 1 by simp

also have ... ≤ x+;(−(x;1) · (x+)T ;x)
using modular-1-var by blast

also have ... = x+;(−(x;1) · xT+;x)
using plus-conv by fastforce

also have ... ≤ x+;end-points x
by (metis inf-commute inf-top-right modular-1 ′ mult-subdistl plus-conv

plus-top)
finally show ?thesis .

qed

lemma forward-terminating-path-end-points-2 :
assumes forward-terminating-path x

shows xT ≤ x?;end-points x
proof −

have xT ≤ xT ;x;xT

by (metis conv-invol x-leq-triple-x)
also have ... ≤ xT ;x;1

using mult-isol top-greatest by blast
also have ... ≤ xT ;x+;end-points x;1

by (metis assms forward-terminating-path-end-points-1 comp-assoc mult-isol
mult-isor)

also have ... = xT ;x+;end-points x
by (metis inf-commute mult-assoc one-compl ra-1)

also have ... ≤ x?;end-points x
by (metis assms comp-assoc compl-le-swap1 conv-galois-1 conv-invol

p-fun-compl path-def)
finally show ?thesis .

qed

lemma forward-terminating-path-end-points-3 :
assumes forward-terminating-path x
shows start-points x ≤ x+;end-points x

proof −
have start-points x ≤ x+;end-points x;1

using assms forward-terminating-path-end-points-1 comp-assoc mult-isor

54

inf .coboundedI1
by blast

also have ... = x+;end-points x
by (metis inf-commute mult-assoc one-compl ra-1)

finally show ?thesis .
qed

lemma backward-terminating-path-start-points-1 :
assumes backward-terminating-path x

shows xT ≤ xT+;start-points x
using assms forward-terminating-path-end-points-1
conv-backward-terminating-path by fastforce

lemma backward-terminating-path-start-points-2 :
assumes backward-terminating-path x

shows x ≤ xT ?;start-points x
using assms forward-terminating-path-end-points-2
conv-backward-terminating-path by fastforce

lemma backward-terminating-path-start-points-3 :
assumes backward-terminating-path x

shows end-points x ≤ xT+;start-points x
using assms forward-terminating-path-end-points-3
conv-backward-terminating-path by fastforce

lemma path-aux1a:
assumes forward-terminating-path x

shows x 6= 0 ←→ end-points x 6= 0
using assms end-point-iff2 forward-terminating-iff1 end-point-iff1 galois-aux2 by
force

lemma path-aux1b:
assumes backward-terminating-path y

shows y 6= 0 ←→ start-points y 6= 0
using assms start-point-iff2 backward-terminating-iff1 start-point-iff1 galois-aux2
by force

lemma path-aux1 :
assumes forward-terminating-path x

and backward-terminating-path y
shows x 6= 0 ∨ y 6= 0 ←→ end-points x 6= 0 ∨ start-points y 6= 0

using assms path-aux1a path-aux1b by blast

Equivalences for finite
lemma backward-finite-iff-msc:

backward-finite x ←→ many-strongly-connected x ∨ backward-terminating x

55

proof
assume 1 : backward-finite x
thus many-strongly-connected x ∨ backward-terminating x
proof (cases −(1 ;x);x;1 = 0)

assume −(1 ;x);x;1 = 0
thus many-strongly-connected x ∨ backward-terminating x

using 1 by (metis conv-invol many-strongly-connected-iff-1 sup-bot-right)
next

assume −(1 ;x);x;1 6= 0
hence 1 ;−(1 ;x);x;1 = 1

by (simp add: comp-assoc tarski)
hence −(1 ;x);x;1 = 1

by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one
one-compl)

thus many-strongly-connected x ∨ backward-terminating x
using 1 by simp

qed
next

assume many-strongly-connected x ∨ backward-terminating x
thus backward-finite x

by (metis star-ext sup.coboundedI1 sup.coboundedI2)
qed

lemma forward-finite-iff-msc:
forward-finite x ←→ many-strongly-connected x ∨ forward-terminating x

by (metis backward-finite-iff-msc conv-backward-finite conv-backward-terminating
conv-invol)

lemma finite-iff-msc:
finite x ←→ many-strongly-connected x ∨ terminating x

using backward-finite-iff-msc forward-finite-iff-msc finite-iff by fastforce

Path concatenation
lemma path-concatenation:

assumes forward-terminating-path x
and backward-terminating-path y
and end-points x = start-points y
and x;1 · (xT ;1 + y;1) · yT ;1 = 0

shows path (x+y)
proof (cases y = 0)

assume y = 0
thus ?thesis

using assms(1) by fastforce
next

assume as: y 6= 0
show ?thesis
proof (unfold path-def ; intro conjI)

from assms(4) have a: x;1 · xT ;1 · yT ;1 + x;1 · y;1 · yT ;1= 0
by (simp add: inf-sup-distrib1 inf-sup-distrib2)

56

hence aux1 : x;1 · xT ;1 · yT ;1 = 0
using sup-eq-bot-iff by blast

from a have aux2 : x;1 · y;1 · yT ;1= 0
using sup-eq-bot-iff by blast

show is-inj (x + y)
proof (unfold is-inj-def ; auto simp add: distrib-left)

show x;xT ≤ 1 ′

using assms(1) path-def is-inj-def by blast
show y;yT ≤ 1 ′

using assms(2) path-def is-inj-def by blast
have y;xT = 0

by (metis assms(3) aux1 annir comp-assoc conv-one le-bot modular-var-2
one-idem-mult

path-concat-aux-2 schroeder-2)
thus y;xT ≤ 1 ′

using bot-least le-bot by blast
thus x;yT ≤ 1 ′

using conv-iso by force
qed

show is-p-fun (x + y)
proof (unfold is-p-fun-def ; auto simp add: distrib-left)

show xT ;x ≤ 1 ′

using assms(1) path-def is-p-fun-def by blast
show yT ;y ≤ 1 ′

using assms(2) path-def is-p-fun-def by blast
have yT ;x ≤ yT ;(y;1 · x;1)

by (metis conjugation-prop2 inf .commute inf-top.left-neutral maddux-20
mult-isol order-trans

schroeder-1-var)
also have ... = 0

using assms(3) aux2 annir inf-commute path-concat-aux-1 by fastforce
finally show yT ;x ≤ 1 ′

using bot-least le-bot by blast
thus xT ;y ≤ 1 ′

using conv-iso by force
qed

show connected (x + y)
proof (auto simp add: distrib-left)

have x;1 ;x ≤ x? + xT ?

using assms(1) path-def by simp
also have ... ≤ (x?;y?)? + (xT ?;yT ?)?

using join-iso join-isol star-subdist by simp
finally show x;1 ;x ≤ (x?;y?)? + (xT ?;yT ?)? .
have y;1 ;y ≤ y? + yT ?

using assms(2) path-def by simp
also have ... ≤ (x?;y?)? + (xT ?;yT ?)?

57

by (metis star-denest star-subdist sup.mono sup-commute)
finally show y;1 ;y ≤ (x?;y?)? + (xT ?;yT ?)? .

show y;1 ;x ≤ (x?;y?)? + (xT ?;yT ?)?

proof −
have (y;1);1 ;(1 ;x) ≤ yT ?;xT ?

proof (rule-tac v=start-points y in path-concat-aux-0)
show is-vector (start-points y)

by (metis is-vector-def comp-assoc one-compl one-idem-mult ra-1)
show start-points y 6= 0

using as
by (metis assms(2) conv-compl conv-contrav conv-one inf .orderE

inf-bot-right
inf-top.right-neutral maddux-141)

have (start-points y);1 ;yT ≤ y?

by (rule path-concat-aux-5) (simp-all add: assms(2))
thus y;1 ;(start-points y)T ≤ yT ?

by (metis (mono-tags, lifting) conv-iso comp-assoc conv-contrav
conv-invol conv-one

star-conv)
have end-points x;1 ;x ≤ xT ?

apply (rule path-concat-aux-5)
using assms(1) conv-path by simp-all

thus start-points y;(1 ;x) ≤ xT ?

by (metis assms(3) mult-assoc)
qed
thus ?thesis

by (metis comp-assoc le-supI2 less-eq-def one-idem-mult star-denest
star-subdist-var-1

sup.commute)
qed

show x;1 ;y ≤ (x?;y?)? + (xT ?;yT ?)?

proof −
have (x;1);1 ;(1 ;y) ≤ x?;y?

proof (rule-tac v=start-points y in path-concat-aux-0)
show is-vector (start-points y)

by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
show start-points y 6= 0

using as assms(2 ,4) backward-terminating-iff1 galois-aux2
start-point-iff1 start-point-iff2

by blast
have end-points x;1 ;xT ≤ xT ?

apply (rule path-concat-aux-5)
using assms(1) conv-path by simp-all

hence (end-points x;1 ;xT)T ≤ (xT ?)T

using conv-iso by blast
thus x;1 ;(start-points y)T ≤ x?

by (simp add: assms(3) comp-assoc star-conv)

58

have start-points y;1 ;y ≤ y?

by (rule path-concat-aux-5) (simp-all add: assms(2))
thus start-points y;(1 ;y) ≤ y?

by (simp add: mult-assoc)
qed
thus ?thesis

by (metis comp-assoc dual-order .trans le-supI1 one-idem-mult star-ext)
qed

qed
qed

qed

lemma path-concatenation-with-edge:
assumes x 6=0

and forward-terminating-path x
and is-point q
and q ≤ −(1 ;x)

shows path (x+(end-points x);qT)
proof (rule path-concatenation)

from assms(1 ,2) have 1 : is-point(end-points x)
using end-point-zero-point path-aux1a by blast

show 2 : backward-terminating-path ((end-points x);qT)
apply (intro conjI)
apply (metis edge-is-path 1 assms(3))
by (metis assms(2−4) 1 bot-least comp-assoc compl-le-swap1 conv-galois-2

double-compl
end-point-iff1 le-supE point-equations(1) tarski top-le)

thus end-points x = start-points ((end-points x);qT)
by (metis assms(3) 1 edge-start comp-assoc compl-top-eq double-compl

inf .absorb-iff2 inf .commute
inf-top-right modular-2-aux ′ point-equations(2))

show x;1 · (xT ;1 + ((end-points x);qT);1) · ((end-points x);qT)T ;1 = 0
using 2 by (metis assms(3 ,4) annir compl-le-swap1 compl-top-eq

conv-galois-2 double-compl
inf .absorb-iff2 inf .commute modular-1 ′ modular-2-aux ′

point-equations(2))
show forward-terminating-path x

by (simp add: assms(2))
qed

lemma path-concatenation-cycle-free:
assumes forward-terminating-path x

and backward-terminating-path y
and end-points x = start-points y
and x;1 · yT ;1 = 0

shows path (x+y)
apply (rule path-concatenation,simp-all add: assms)
by (metis assms(4) inf .left-commute inf-bot-right inf-commute)

59

lemma path-concatenation-start-points-approx:
assumes end-points x = start-points y

shows start-points (x+y) ≤ start-points x
proof −

have start-points (x+y) = x;1 · −(xT ;1) · −(yT ;1) + y;1 · −(xT ;1) · −(yT ;1)
by (simp add: inf .assoc inf-sup-distrib2)

also with assms(1) have ... = x;1 · −(xT ;1) · −(yT ;1) + xT ;1 · −(xT ;1) ·
−(x;1)

by (metis inf .assoc inf .left-commute)
also have ... = x;1 · −(xT ;1) · −(yT ;1)

by simp
also have ... ≤ start-points x

using inf-le1 by blast
finally show ?thesis .

qed

lemma path-concatenation-end-points-approx:
assumes end-points x = start-points y

shows end-points (x+y) ≤ end-points y
proof −

have end-points (x+y) = xT ;1 · −(x;1) · −(y;1) + yT ;1 · −(x;1) · −(y;1)
by (simp add: inf .assoc inf-sup-distrib2)

also from assms(1) have ... = y;1 · −(yT ;1) · −(y;1) + yT ;1 · −(x;1) ·
−(y;1)

by simp
also have ... = yT ;1 · −(x;1) · −(y;1)

by (simp add: inf .commute)
also have ... ≤ end-points y

using inf-le1 meet-iso by blast
finally show ?thesis .

qed

lemma path-concatenation-start-points:
assumes end-points x = start-points y

and x;1 · yT ;1 = 0
shows start-points (x+y) = start-points x

proof −
from assms(2) have aux: x;1 · −(yT ;1) = x;1

by (simp add: galois-aux inf .absorb1)

have start-points (x+y) = (x;1 · −(xT ;1) · −(yT ;1)) + (y;1 · −(xT ;1) ·
−(yT ;1))

by (simp add: inf-sup-distrib2 inf .assoc)
also from assms(1) have ... = (x;1 · −(xT ;1) · −(yT ;1)) + (xT ;1 · −(x;1) ·
−(xT ;1))

using inf .assoc inf .commute by simp
also have ... = (x;1 · −(xT ;1) · −(yT ;1))

by (simp add: inf .assoc)
also from aux have ... = x;1 · −(xT ;1)

60

by (metis inf .assoc inf .commute)
finally show ?thesis .

qed

lemma path-concatenation-end-points:
assumes end-points x = start-points y

and x;1 · yT ;1 = 0
shows end-points (x+y) = end-points y

proof −
from assms(2) have aux: yT ;1 · −(x;1) = yT ;1

using galois-aux inf .absorb1 inf-commute by blast

have end-points (x+y) = (xT ;1 + yT ;1) · −(x;1) · −(y;1)
using inf .assoc by simp

also from assms(1) have ... = (y;1 · −(yT ;1) · −(y;1)) + (yT ;1 · −(x;1) ·
−(y;1))

by (simp add: inf-sup-distrib2)
also have ... = yT ;1 · −(x;1) · −(y;1)

by (simp add: inf .assoc)
also from aux have ... = yT ;1 · −(y;1)

by (metis inf .assoc inf .commute)
finally show ?thesis .

qed

lemma path-concatenation-cycle-free-complete:
assumes forward-terminating-path x

and backward-terminating-path y
and end-points x = start-points y
and x;1 · yT ;1 = 0

shows path (x+y) ∧ start-points (x+y) = start-points x ∧ end-points (x+y)
= end-points y
using assms path-concatenation-cycle-free path-concatenation-end-points
path-concatenation-start-points
by blast

Path restriction (path from a given point)
lemma reachable-points-iff :

assumes point p
shows (xT ?;p · x) = (xT ?;p · 1 ′);x

proof (rule order .antisym)
show (xT ?;p · 1 ′);x ≤ xT ?;p · x
proof (rule le-infI)

show (xT ?;p · 1 ′);x ≤ xT ?;p
proof −

have (xT ?;p · 1 ′);x ≤ xT ?;p;1
by (simp add: mult-isol-var)

also have ... ≤ xT ?;p
using assms by (simp add: comp-assoc order .eq-iff point-equations(1)

point-is-point)

61

finally show ?thesis .
qed
show (xT ?;p · 1 ′);x ≤ x

by (metis inf-le2 mult-isor mult-onel)
qed
show xT ?;p · x ≤ (xT ?;p · 1 ′);x
proof −

have (xT ?;p);xT ≤ xT ?;p + −1 ′

by (metis assms comp-assoc is-vector-def mult-isol point-def sup.coboundedI1
top-greatest)

hence aux: (−(xT ?;p) · 1 ′);x ≤ −(xT ?;p)
using compl-mono conv-galois-2 by fastforce

have x = (xT ?;p · 1 ′);x + (−(xT ?;p) · 1 ′);x
by (metis aux4 distrib-right inf-commute mult-1-left)

also with aux have ... ≤ (xT ?;p · 1 ′);x + −(xT ?;p)
using join-isol by blast

finally have x ≤ (xT ?;p · 1 ′);x + −(xT ?;p) .
thus ?thesis

using galois-2 inf .commute by fastforce
qed

qed

lemma path-from-given-point:
assumes path x

and point p
shows path(xT ?;p · x)

and start-points(xT ?;p · x) ≤ p
and end-points(xT ?;p · x) ≤ end-points(x)

proof (unfold path-def ; intro conjI)
show uni: is-p-fun (xT ?;p · x)

by (metis assms(1) inf-commute is-p-fun-def p-fun-mult-var path-def)
show inj: is-inj (xT ?;p · x)

by (metis abel-semigroup.commute assms(1) conv-times
inf .abel-semigroup-axioms inj-p-fun

is-p-fun-def p-fun-mult-var path-def)
show connected (xT ?;p · x)
proof −

let ?t=xT ?;p · 1 ′

let ?u=−(xT ?;p) · 1 ′

have t-plus-u: ?t + ?u = 1 ′

by (simp add: inf .commute)
have t-times-u: ?t ; ?u ≤ 0

by (simp add: inf .left-commute is-test-def test-comp-eq-mult)
have t-conv: ?tT=?t

using inf .cobounded2 is-test-def test-eq-conv by blast
have txu-zero: ?t;x;?u ≤ 0
proof −

have xT ;?t;1 ≤ −?u

62

proof −
have xT ;?t;1 ≤ xT ;xT ?;p

using assms(2)
by (simp add: is-vector-def mult.semigroup-axioms mult-isol-var

mult-subdistr order .refl
point-def semigroup.assoc)

also have ... ≤ −?u
by (simp add: le-supI1 mult-isor)

finally show ?thesis .
qed
thus ?thesis

by (metis compl-bot-eq compl-le-swap1 conv-contrav conv-galois-1 t-conv)
qed
hence txux-zero: ?t;x;?u;x ≤ 0

using annil le-bot by fastforce

have tx-leq: ?t;x? ≤ (?t;x)?
proof −

have ?t;x? = ?t;(?t;x + ?u;x)?
using t-plus-u by (metis distrib-right ′ mult-onel)

also have ... = ?t;(?u;x;(?u;x)?;(?t;x)?+(?t;x)?)
using txux-zero star-denest-10 by (simp add: comp-assoc le-bot)

also have ... = ?t;?u;x;(?u;x)?;(?t;x)?+?t;(?t;x)?
by (simp add: comp-assoc distrib-left)

also have ... ≤ 0 ;x;(?u;x)?;(?t;x)?+?t;(?t;x)?
using le-bot t-times-u by blast

also have ... ≤(?t;x)?
by (metis annil inf .commute inf-bot-right le-supI mult-onel mult-subdistr)

finally show ?thesis .
qed

hence aux: ?t;x?;?t ≤ (?t;x)?
using inf .cobounded2 order .trans prod-star-closure star-ref by blast

with t-conv have aux-trans: ?t;xT ?;?t ≤ (?t;x)T ?

by (metis comp-assoc conv-contrav conv-self-conjugate-var g-iso star-conv)

from aux aux-trans have ?t;(x?+xT ?);?t ≤ (?t;x)? + (?t;x)T ?

by (metis sup-mono distrib-right ′ distrib-left)
with assms(1) path-concat-aux3-1 have ?t;(x;1 ;xT);?t ≤ (?t;x)? + (?t;x)T ?

using dual-order .trans mult-double-iso by blast
with t-conv have (?t;x);1 ;(?t;x)T ≤ (?t;x)? + (?t;x)T ?

using comp-assoc conv-contrav by fastforce
with connected-iff2 show ?thesis

using assms(2) inj reachable-points-iff uni by fastforce
qed

next
show start-points (xT ?;p · x) ≤ p
proof −

63

have 1 : is-vector (xT ?;p)
using assms(2) by (simp add: is-vector-def mult-assoc point-def)

hence (xT ?;p · x);1 ≤ xT ?;p
by (simp add: inf .commute vector-1-comm)

also have ... = xT+;p + p
by (simp add: sup.commute)

finally have 2 : (xT ?;p · x);1 · −(xT+;p) ≤ p
using galois-1 by blast

have (xT ?;p · x)T ;1 = (xT · (xT ?;p)T);1
by (simp add: inf .commute)

also have ... = xT ;(xT ?;p · 1)
using 1 vector-2 by blast

also have ... = xT+;p
by (simp add: comp-assoc)

finally show start-points (xT ?;p · x) ≤ p
using 2 by simp

qed
next

show end-points(xT ?;p · x) ≤ end-points(x)
proof −

have 1 : is-vector (xT ?;p)
using assms(2) by (simp add: is-vector-def mult-assoc point-def)

have (xT ?;p · x)T ;1 = ((xT ?;p)T · xT);1
by (simp add: star-conv)

also have ... = xT ;(xT ?;p · 1)
using 1 vector-2 inf .commute by fastforce

also have ... ≤ xT ?;p
using comp-assoc mult-isor by fastforce

finally have 2 : (xT ?;p · x)T ;1 · −(xT ?;p) = 0
using galois-aux2 by blast

have (xT ?;p · x)T ;1 · −((xT ?;p · x);1) = (xT ?;p · x)T ;1 · (−(xT ?;p) +
−(x;1))

using 1 vector-1 by fastforce
also have ... = (xT ?;p · x)T ;1 · −(xT ?;p) + (xT ?;p · x)T ;1 · −(x;1)

using inf-sup-distrib1 by blast
also have ... = (xT ?;p · x)T ;1 · −(x;1)

using 2 by simp
also have ... ≤ xT ;1 · −(x;1)

using meet-iso mult-subdistr-var by fastforce
finally show ?thesis .

qed
qed

lemma path-from-given-point ′:
assumes has-start-points-path x

and point p
and p ≤ x;1

shows path(xT ?;p · x)
and start-points(xT ?;p · x) = p

64

and end-points(xT ?;p · x) = end-points(x)
proof −

show path(xT ?;p · x)
using assms path-from-given-point(1) by blast

next
show start-points(xT ?;p · x) = p
proof (simp only: order .eq-iff ; rule conjI)

show start-points(xT ?;p · x) ≤ p
using assms path-from-given-point(2) by blast

show p ≤ start-points(xT ?;p · x)
proof −

have 1 : is-vector(xT ?;p)
using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point

by fastforce
hence a: p ≤ (xT ?;p · x);1

by (metis vector-1 assms(3) conway.dagger-unfoldl-distr inf .orderI
inf-greatest

inf-sup-absorb)

have xT+;p · p ≤ (xT+ · 1 ′); p
using assms(2) inj-distr point-def by fastforce

also have ... ≤ (−1 ′T · 1 ′); p
using assms(1) path-acyclic
by (metis conv-contrav conv-e meet-iso mult-isor star-conv star-slide-var

test-converse)
also have ... ≤ 0

by simp
finally have 2 : xT+;p · p ≤ 0 .

have b: p ≤ −((xT ?;p · x)T ;1)
proof −

have (xT ?;p · x)T ;1 = ((xT ?;p)T · xT);1
by (simp add: star-conv)

also have ... = xT ;(xT ?;p · 1)
using 1 vector-2 inf .commute by fastforce

also have ... = xT ;xT ?;p
by (simp add: comp-assoc)

also have ... ≤ −p
using 2 galois-aux le-bot by blast

finally show ?thesis
using compl-le-swap1 by blast

qed
with a show ?thesis

by simp
qed

qed
next

show end-points(xT ?;p · x) = end-points(x)
proof (simp only: order .eq-iff ; rule conjI)

65

show end-points(xT ?;p · x) ≤ end-points(x)
using assms path-from-given-point(3) by blast

show end-points(x) ≤ end-points(xT ?;p · x)
proof −

have 1 : is-vector(xT ?;p)
using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point

by fastforce
have 2 : is-vector(end-points(x))

by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
have a: end-points(x) ≤ (xT ?;p · x)T ;1
proof −

have xT ;1 · 1 ;xT = xT ;1 ;xT

by (simp add: vector-meet-comp-x ′)
also have ... ≤ xT ? + x?

using assms(1) path-concat-aux3-3 sup.commute by fastforce
also have ... = xT ? + x+

by (simp add: star-star-plus sup.commute)
also have ... ≤ xT ? + x;1

using join-isol mult-isol by fastforce
finally have end-points(x) · 1 ;xT ≤ xT ?

by (metis galois-1 inf .assoc inf .commute sup-commute)
hence end-points(x) · pT ≤ xT ?

using assms(3)
by (metis conv-contrav conv-iso conv-one dual-order .trans inf .cobounded1

inf .right-idem
inf-mono)

hence end-points(x) ; pT ≤ xT ?

using assms(2) 2 by (simp add: point-def vector-meet-comp)
hence end-points(x) ≤ xT ?;p

using assms(2) point-def ss423bij by blast
hence xT ;1 ≤ xT ?;p + x;1

by (simp add: galois-1 sup-commute)
hence xT ;1 ≤ xT+;p + p + x;1

by (metis conway.dagger-unfoldl-distr sup-commute)
hence xT ;1 ≤ xT+;p + x;1

by (simp add: assms(3) sup.absorb2 sup.assoc)
hence end-points(x) ≤ xT+;p

by (simp add: galois-1 sup-commute)
also have ... = (xT ?;p · x)T ;1

using 1 inf-commute mult-assoc vector-2 by fastforce
finally show ?thesis .

qed
have xT ;1 · (xT ?;p · x);1 ≤ x;1

by (simp add: le-infI2 mult-isor)
hence b: end-points(x) ≤ −((xT ?;p · x);1)

using galois-1 galois-2 by blast
with a show ?thesis

by simp
qed

66

qed
qed

Cycles
lemma selfloop-is-cycle:

assumes is-point x
shows cycle (x;xT)
by (simp add: assms edge-is-path)

lemma start-point-no-cycle:
assumes has-start-points-path x

shows ¬ cycle x
using assms many-strongly-connected-implies-no-start-end-points
no-start-end-points-iff

start-point-iff1 start-point-iff2 by blast

lemma end-point-no-cycle:
assumes has-end-points-path x

shows ¬ cycle x
using assms end-point-iff2 end-point-iff1
many-strongly-connected-implies-no-start-end-points

no-start-end-points-iff by blast

lemma cycle-no-points:
assumes cycle x

shows start-points x = 0
and end-points x = 0

by (metis assms inf-compl-bot
many-strongly-connected-implies-no-start-end-points)+

Path concatenation to cycle
lemma path-path-equals-cycle-aux:

assumes has-start-end-points-path x
and has-start-end-points-path y
and start-points x = end-points y
and end-points x = start-points y

shows x ≤ (x+y)T ?

proof−
let ?e = end-points(x)
let ?s = start-points(x)
have sp: is-point(?s)

using assms(1) start-point-iff2 has-start-end-points-path-iff by blast
have ep: is-point(?e)

using assms(1) end-point-iff2 has-start-end-points-path-iff by blast

have x ≤ xT ?;?s;1 · 1 ;?eT ;xT ?

by (metis assms(1) backward-terminating-path-start-points-2 end-point-iff2 ep
forward-terminating-iff1 forward-terminating-path-end-points-2

comp-assoc

67

conv-contrav conv-invol conv-iso inf .boundedI point-equations(1)
point-equations(4)

star-conv sp start-point-iff2)
also have ... = xT ?;?s;1 ;?eT ;xT ?

by (metis inf-commute inf-top-right ra-1)
also have ... = xT ?;?s;?eT ;xT ?

by (metis ep comp-assoc point-equations(4))
also have ... ≤ xT ?;yT ?;xT ?

by (metis (mono-tags, lifting) assms(2−4) start-to-end comp-assoc
conv-contrav conv-invol

conv-iso mult-double-iso star-conv)
also have ... = (x?;y?;x?)T

by (simp add: comp-assoc star-conv)
also have ... ≤ ((x+y)?;(x+y)?;(x+y)?)T

by (metis conv-invol conv-iso prod-star-closure star-conv star-denest star-ext
star-iso

star-trans-eq sup-ge1)
also have ... = (x+y)T ?

by (metis star-conv star-trans-eq)
finally show x: x ≤ (x+y)T ? .

qed

lemma path-path-equals-cycle:
assumes has-start-end-points-path x

and has-start-end-points-path y
and start-points x = end-points y
and end-points x = start-points y
and x;1 · (xT ;1 + y;1) · yT ;1 = 0

shows cycle(x + y)
proof (intro conjI)

show path (x + y)
apply (rule path-concatenation)
using assms by(simp-all add:has-start-end-points-iff)

show many-strongly-connected (x + y)
by (metis path-path-equals-cycle-aux assms(1−4) sup.commute le-supI

many-strongly-connected-iff-3)
qed

lemma path-edge-equals-cycle:
assumes has-start-end-points-path x

shows cycle(x + end-points(x);(start-points x)T)
proof (rule path-path-equals-cycle)

let ?s = start-points x
let ?e = end-points x
let ?y = (?e;?sT)

have sp: is-point(?s)
using start-point-iff2 assms has-start-end-points-path-iff by blast

have ep: is-point(?e)

68

using end-point-iff2 assms has-start-end-points-path-iff by blast

show has-start-end-points-path x
using assms by blast

show has-start-end-points-path ?y
using edge-is-path
by (metis assms edge-end edge-start end-point-iff2 end-point-iff1 galois-aux2

has-start-end-points-iff inf .left-idem inf-compl-bot-right start-point-iff2)
show ?s = end-points ?y

by (metis sp ep edge-end annil conv-zero inf .left-idem inf-compl-bot-right)
thus ?e = start-points ?y

by (metis edge-start ep conv-contrav conv-invol sp)
show x;1 · (xT ;1 + ?e;?sT ;1) · (?e;?sT)T ;1 = 0
proof −

have x;1 · (xT ;1 + ?e;?sT ;1) · (?e;?sT)T ;1 = x;1 · (xT ;1 + ?e;1 ;?sT ;1) ·
(?s;?eT);1

using sp comp-assoc point-equations(3) by fastforce
also have ... = x;1 · (xT ;1 + ?e;1) · ?s;1

by (metis sp ep comp-assoc point-equations(1 ,3))
also have ... ≤ 0

by (simp add: sp ep inf .assoc point-equations(1))
finally show ?thesis

using bot-unique by blast
qed

qed

Break cycles
lemma cycle-remove-edge:

assumes cycle x
and point s
and point e
and e;sT ≤ x

shows path(x · −(e;sT))
and start-points (x · −(e;sT)) ≤ s
and end-points (x · −(e;sT)) ≤ e

proof −
show path(x · −(e;sT))
proof (unfold path-def ; intro conjI)

show 1 : is-p-fun(x · −(e;sT))
using assms(1) path-def is-p-fun-def p-fun-mult-var by blast

show 2 : is-inj(x · −(e;sT))
using assms(1) path-def inf .cobounded1 injective-down-closed by blast

show connected (x · −(e;sT))
proof −

have x? = ((x · −(e;sT)) + e;sT)?
by (metis assms(4) aux4-comm inf .absorb2)

also have ... = (x · −(e;sT))? ; (e;sT ; (x · −(e;sT))?)?
by simp

also have ... = (x · −(e;sT))? ; (1 ′ + e;sT ; (x · −(e;sT))?;(e;sT ; (x ·

69

−(e;sT))?)?)
by fastforce

also have ... = (x · −(e;sT))? + (x · −(e;sT))? ; e;sT ; (x · −(e;sT))?;(e;sT ;
(x · −(e;sT))?)?

by (simp add: distrib-left mult-assoc)
also have ... = (x · −(e;sT))? + (x · −(e;sT))? ; e;(sT ; (x ·

−(e;sT))?;e)?;sT ; (x · −(e;sT))?
by (simp add: comp-assoc star-slide)

also have ... ≤ (x · −(e;sT))? + (x · −(e;sT))? ; e;1 ;sT ; (x · −(e;sT))?
using top-greatest join-isol mult-double-iso by (metis mult-assoc)

also have ... = (x · −(e;sT))? + (x · −(e;sT))? ; e;sT ; (x · −(e;sT))?
using assms(3) by (simp add: comp-assoc is-vector-def point-def)

finally have 3 : x? ≤ (x · −(e;sT))? + (x · −(e;sT))? ; e;sT ; (x · −(e;sT))? .

from assms(4) have e;sT ≤ e;eT ;x
using assms(3) comp-assoc mult-isol point-def ss423conv by fastforce

also have ... ≤ e;eT ;(x?)T

using assms(1) many-strongly-connected-iff-3 mult-isol star-conv by
fastforce

also have ... ≤ e;eT ;((x · −(e;sT))? + (x · −(e;sT))? ; e;sT ; (x ·
−(e;sT))?)T

using 3 conv-iso mult-isol by blast
also have ... ≤ e;eT ;((x · −(e;sT))T ? + (x · −(e;sT))T ? ; s;eT ; (x ·

−(e;sT))T ?)
by (simp add: star-conv comp-assoc)

also have ... ≤ e;eT ;(x · −(e;sT))T ? + e;eT ;(x · −(e;sT))T ? ; s;eT ; (x ·
−(e;sT))T ?

by (simp add: comp-assoc distrib-left)
also have ... ≤ e;eT ;(x · −(e;sT))T ? + e;1 ;eT ; (x · −(e;sT))T ?

by (metis comp-assoc join-isol mult-isol mult-isor top-greatest)
also have ... ≤ e;eT ;(x · −(e;sT))T ? + e;eT ;(x · −(e;sT))T ?

using assms(3) by (simp add: point-equations(1) point-is-point)
also have ... = e;eT ;(x · −(e;sT))T ?

by simp
also have ... ≤ 1 ′;(x · −(e;sT))T ?

using assms(3) is-inj-def point-def join-iso mult-isor by blast
finally have 4 : e;sT ≤(x · −(e;sT))T ?

by simp

have (x · −(e;sT));1 ;(x · −(e;sT)) ≤ x;1 ;x
by (simp add: mult-isol-var)

also have ...≤ x?

using assms(1) connected-iff4 one-strongly-connected-iff
one-strongly-connected-implies-8

path-concat-aux3-3 by blast
also have ... ≤ (x · −(e;sT))? + (x · −(e;sT))? ; e;sT ; (x · −(e;sT))?

by (rule 3)
also have ... ≤ (x · −(e;sT))? + (x · −(e;sT))? ; (x · −(e;sT))T ? ; (x ·

−(e;sT))?

70

using 4 by (metis comp-assoc join-isol mult-isol mult-isor)
also have ... ≤ (x · −(e;sT))? + (x · −(e;sT))T ?

using 1 2 triple-star by force
finally show ?thesis .

qed
qed

next
show start-points (x · −(e;sT)) ≤ s
proof −

have 1 : is-vector(−s)
using assms(2) by (simp add: point-def vector-compl)

have (x · −(e;sT));1 · −s ≤ x;1 · −s
using meet-iso mult-subdistr by blast

also have ... ≤ xT ;1 · −s
using assms(1) many-strongly-connected-implies-no-start-end-points meet-iso

no-start-end-points-path-iff by blast
also have ... ≤ (xT · −s);1

using 1 by (simp add: vector-1-comm)
also have ... ≤ (xT · −(s;eT));1

by (metis 1 galois-aux inf .boundedI inf .cobounded1 inf .commute mult-isor
schroeder-2

vector-1-comm)
also have ... = (x · −(e;sT))T ;1

by (simp add: conv-compl)
finally show ?thesis

by (simp add: galois-1 sup-commute)
qed

next
show end-points (x · −(e;sT)) ≤ e
proof −

have 1 : is-vector(−e)
using assms(3) by (simp add: point-def vector-compl)

have (x · −(e;sT))T ;1 · −e ≤ xT ;1 · −e
using meet-iso mult-subdistr by simp

also have ... ≤ x;1 · −e
using assms(1) many-strongly-connected-implies-no-start-end-points meet-iso

no-start-end-points-path-iff by blast
also have ... ≤ (x · −e);1

using 1 by (simp add: vector-1-comm)
also have ... ≤ (x · −(e;sT));1

by (metis 1 galois-aux inf .boundedI inf .cobounded1 inf .commute mult-isor
schroeder-2

vector-1-comm)
finally show ?thesis

by (simp add: galois-1 sup-commute)
qed

qed

lemma cycle-remove-edge ′:

71

assumes cycle x
and point s
and point e
and s 6=e
and e;sT ≤ x

shows path(x · −(e;sT))
and s = start-points (x · −(e;sT))
and e = end-points (x · −(e;sT))

proof −
show path (x · − (e ; sT))

using assms(1 ,2 ,3 ,5) cycle-remove-edge(1) by blast
next

show s = start-points (x · − (e ; sT))
proof (simp only: order .eq-iff ; rule conjI)

show s ≤ start-points (x · − (e ; sT))
proof −

have a: s ≤ (x · − (e ; sT));1
proof −

have 1 : is-vector(−e)
using assms(3) point-def vector-compl by blast

from assms(2−4) have s = s · −e
using comp-assoc edge-end point-equations(1) point-equations(3)

point-is-point by fastforce
also have ... ≤ xT ;e · −e

using assms(3 ,5) conv-iso meet-iso point-def ss423conv by fastforce
also have ... ≤ x;1 · −e

by (metis assms(1) many-strongly-connected-implies-no-start-end-points
meet-iso mult-isol

top-greatest)
also have ... ≤ (x · −e);1

using 1 by (simp add: vector-1-comm)
also have ... ≤ (x · − (e ; sT));1

by (metis assms(3) comp-anti is-vector-def meet-isor mult-isol mult-isor
point-def

top-greatest)
finally show ?thesis .

qed
have b: s ≤ −((x · − (e ; sT))T ;1)
proof −

have 1 : x;s =e
using assms predecessor-point ′ by blast

have s · xT = s;(eT+−(eT)) · xT

using assms(2) point-equations(1) point-is-point by fastforce
also have ... = s;eT · xT

by (metis 1 conv-contrav inf .commute inf-sup-absorb modular-1 ′)
also have ... ≤ eT

by (metis assms(3) inf .coboundedI1 mult-isor point-equations(4)
point-is-point

top-greatest)

72

finally have s · xT ≤ s · eT
by simp

also have ... ≤ s ; eT
using assms(2 ,3) by (simp add: point-def vector-meet-comp)

finally have 2 : s · xT · −(s ; eT) = 0
using galois-aux2 by blast

thus ?thesis
proof −

have s ; eT = eT · s
using assms(2 ,3) inf-commute point-def vector-meet-comp by force

thus ?thesis
using 2
by (metis assms(2 ,3) conv-compl conv-invol conv-one conv-times

galois-aux
inf .assoc point-def point-equations(1) point-is-point schroeder-2
vector-meet-comp)

qed
qed
with a show ?thesis

by simp
qed
show start-points (x · − (e ; sT)) ≤ s

using assms(1 ,2 ,3 ,5) cycle-remove-edge(2) by blast
qed

next
show e = end-points (x · − (e ; sT))
proof (simp only: order .eq-iff ; rule conjI)

show e ≤ end-points (x · − (e ; sT))

proof −
have a: e ≤ (x · − (e ; sT))T ;1
proof −

have 1 : is-vector(−s)
using assms(2) point-def vector-compl by blast

from assms(2−4) have e = e · −s
using comp-assoc edge-end point-equations(1) point-equations(3)

point-is-point by fastforce
also have ... ≤ x;s · −s

using assms(2 ,5) meet-iso point-def ss423bij by fastforce
also have ... ≤ xT ;1 · −s

by (metis assms(1) many-strongly-connected-implies-no-start-end-points
meet-iso mult-isol

top-greatest)
also have ... ≤ (xT · −s);1

using 1 by (simp add: vector-1-comm)
also have ... ≤ (xT · − (s ; eT));1

by (metis assms(2) comp-anti is-vector-def meet-isor mult-isol mult-isor
point-def

top-greatest)

73

finally show ?thesis
by (simp add: conv-compl)

qed
have b: e ≤ −((x · − (e ; sT));1)
proof −

have 1 : xT ;e =s
using assms predecessor-point ′ by (metis conv-contrav conv-invol conv-iso

conv-path)
have e · x = e;(sT+−(sT)) · x

using assms(3) point-equations(1) point-is-point by fastforce
also have ... = e;sT · x

by (metis 1 conv-contrav conv-invol inf .commute inf-sup-absorb
modular-1 ′)

also have ... ≤ sT
by (metis assms(2) inf .coboundedI1 mult-isor point-equations(4)

point-is-point top-greatest)
finally have e · x ≤ e · sT

by simp
also have ... ≤ e ; sT

using assms(2 ,3) by (simp add: point-def vector-meet-comp)
finally have 2 : e · x · −(e ; sT) = 0

using galois-aux2 by blast
thus ?thesis
proof −

have e ; sT = sT · e
using assms(2 ,3) inf-commute point-def vector-meet-comp by force

thus ?thesis
using 2
by (metis assms(2 ,3) conv-one galois-aux inf .assoc point-def

point-equations(1)
point-is-point schroeder-2 vector-meet-comp)

qed
qed
with a show ?thesis

by simp
qed
show end-points (x · − (e ; sT)) ≤ e

using assms(1 ,2 ,3 ,5) cycle-remove-edge(3) by blast
qed

qed

end

end

3 Relational Characterisation of Rooted Paths

74

We characterise paths together with a designated root. This is important as
often algorithms start with a single vertex, and then build up a path, a tree
or another structure. An example is Dijkstra’s shortest path algorithm.
theory Rooted-Paths

imports Paths

begin

context relation-algebra
begin

General theorems
lemma step-has-target:

assumes x;r 6= 0
shows xT ;1 6= 0

using assms inf .commute inf-bot-right schroeder-1 by fastforce

lemma end-point-char :
xT ;p = 0 ←→ p ≤ −(x;1)

using order .antisym bot-least compl-bot-eq conv-galois-1 by fastforce

end

context relation-algebra-tarski
begin

General theorems concerning points
lemma successor-point:

assumes is-inj x
and point r
and x;r 6= 0

shows point (x;r)
using assms
by (simp add: inj-compose is-point-def is-vector-def mult-assoc point-is-point)

lemma no-end-point-char :
assumes point p

shows xT ;p 6= 0 ←→ p ≤ x;1
by (simp add: assms comp-assoc end-point-char is-vector-def
point-in-vector-or-complement-iff)

lemma no-end-point-char-converse:
assumes point p

shows x;p 6= 0 ←→ p ≤ xT ;1
using assms no-end-point-char by force

end

75

3.1 Consequences without the Tarski rule
context relation-algebra-rtc
begin

Definitions for path classifications
definition path-root

where path-root r x ≡ r ;x ≤ x? + xT ? ∧ is-inj x ∧ is-p-fun x ∧ point r

abbreviation connected-root
where connected-root r x ≡ r ;x ≤ x+

definition backward-finite-path-root
where backward-finite-path-root r x ≡ connected-root r x ∧ is-inj x ∧ is-p-fun x
∧ point r

abbreviation backward-terminating-path-root
where backward-terminating-path-root r x ≡ backward-finite-path-root r x ∧ x;r

= 0

abbreviation cycle-root
where cycle-root r x ≡ r ;x ≤ x+ · xT ;1 ∧ is-inj x ∧ is-p-fun x ∧ point r

abbreviation non-empty-cycle-root
where non-empty-cycle-root r x ≡ backward-finite-path-root r x ∧ r ≤ xT ;1

abbreviation finite-path-root-end
where finite-path-root-end r x e ≡ backward-finite-path-root r x ∧ point e ∧ r ≤

x?;e

abbreviation terminating-path-root-end
where terminating-path-root-end r x e ≡ finite-path-root-end r x e ∧ xT ;e = 0

Equivalent formulations of connected-root
lemma connected-root-iff1 :

assumes point r
shows connected-root r x ←→ 1 ;x ≤ rT ;x+

by (metis assms comp-assoc is-vector-def point-def ss423conv)

lemma connected-root-iff2 :
assumes point r

shows connected-root r x ←→ xT ;1 ≤ xT+;r
by (metis assms conv-contrav conv-invol conv-iso conv-one star-conv star-slide-var

connected-root-iff1)

lemma connected-root-aux:
xT+;r ≤ xT ;1

by (simp add: comp-assoc mult-isol)

lemma connected-root-iff3 :

76

assumes point r
shows connected-root r x ←→ xT ;1 = xT+;r

using assms order .antisym connected-root-aux connected-root-iff2 by fastforce

lemma connected-root-iff4 :
assumes point r

shows connected-root r x ←→ 1 ;x = rT ;x+

by (metis assms conv-contrav conv-invol conv-one star-conv star-slide-var
connected-root-iff3)

Consequences of connected-root
lemma has-root-contra:

assumes connected-root r x
and point r
and xT ;r = 0

shows x = 0
using assms comp-assoc independence1 conv-zero ss-p18 connected-root-iff3
by force

lemma has-root:
assumes connected-root r x

and point r
and x 6= 0

shows xT ;r 6= 0
using has-root-contra assms by blast

lemma connected-root-move-root:
assumes connected-root r x

and q ≤ x?;r
shows connected-root q x

by (metis assms comp-assoc mult-isol phl-cons1 star-slide-var star-trans-eq)

lemma root-cycle-converse:
assumes connected-root r x

and point r
and x;r 6= 0

shows xT ;r 6= 0
using assms conv-zero has-root by fastforce

Rooted paths
lemma path-iff-aux-1 :

assumes bijective r
shows r ;x ≤ x? + xT ? ←→ x ≤ rT ;(x? + xT ?)

by (simp add: assms ss423conv)

lemma path-iff-aux-2 :
assumes bijective r
shows r ;x ≤ x? + xT ? ←→ xT ≤ (x? + xT ?);r

proof −

77

have ((x? + xT ?);r)T = rT ;(x? + xT ?)
by (metis conv-add conv-contrav conv-invol star-conv sup.commute)

thus ?thesis
by (metis assms conv-invol conv-iso path-iff-aux-1)

qed

lemma path-iff-backward:
assumes is-inj x

and is-p-fun x
and point r
and r ;x ≤ x? + xT ?

shows connected x
proof −

have xT ;1 ;xT ≤ (x? + xT ?);r ;1 ;xT

using assms(3 ,4) path-iff-aux-2 mult-isor point-def by blast
also have ... = (x? + xT ?);r ;1 ;xT ;x;xT

using assms(1) comp-assoc inj-p-fun p-fun-triple by fastforce
also have ... ≤ (x? + xT ?);r ;x;xT

by (metis assms(3) mult-double-iso top-greatest point-def is-vector-def
comp-assoc)

also have ... ≤ (x? + xT ?);(x? + xT ?);xT

by (metis assms(4) comp-assoc mult-double-iso)
also have ... ≤ (x? + xT ?);(x? + xT ?);(x? + xT ?)

using le-supI2 mult-isol star-ext by blast
also have ... = x? + xT ?

using assms(1 ,2) cancel-separate-converse-idempotent by fastforce
finally show ?thesis

by (metis conv-add conv-contrav conv-invol conv-one mult-assoc star-conv
sup.orderE sup.orderI

sup-commute)
qed

lemma empty-path-root-end:
assumes terminating-path-root-end r x e

shows e = r ←→ x = 0
apply(standard)

using assms has-root backward-finite-path-root-def apply blast
by (metis assms order .antisym conv-e conv-zero independence1 is-inj-def
mult-oner point-swap

backward-finite-path-root-def ss423conv sur-def-var1 x-leq-triple-x)

lemma path-root-acyclic:
assumes path-root r x

and x;r = 0
shows is-acyclic x

proof −
have x+·1 ′ = (x+)T ·x+·1 ′

by (metis conv-e conv-times inf .assoc inf .left-idem inf-le2
many-strongly-connected-iff-7 mult-oner star-subid)

78

also have ... ≤ xT ;1 ·x+·1 ′

by (metis conv-contrav inf .commute maddux-20 meet-double-iso plus-top
star-conv star-slide-var)

finally have r ;(x+·1 ′) ≤ r ;(xT ;1 ·x+·1 ′)
using mult-isol by blast

also have ... = (r ·1 ;x);(x+·1 ′)
by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one

inf .assoc is-vector-def one-idem-mult vector-2)
also have ... = r ;x;(x+·1 ′)

by (metis assms(1) path-root-def point-def inf-top-right vector-1)
also have ... ≤ (x? + xT ?);(x+·1 ′)

using assms(1) mult-isor path-root-def by blast
also have ... = x?;(x+·1 ′) + xT+;(x+·1 ′)

by (metis distrib-right star-star-plus sup.commute)
also have ... ≤ x?;(x+·1 ′) + xT ;1

by (metis join-isol mult-isol plus-top top-greatest)
finally have r ;(x+·1 ′);1 ≤ x?;(x+·1 ′);1 + xT ;1

by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult)
hence 1 : r ;(x+·1 ′);1 ≤ xT ;1

by (metis assms(1) inj-implies-step-forwards-backwards sup-absorb2
path-root-def)

have x+·1 ′ ≤ (x+·1 ′);1
by (simp add: maddux-20)

also have ... ≤ rT ;r ;(x+·1 ′);1
by (metis assms(1) comp-assoc order .refl point-def ss423conv path-root-def)

also have ... ≤ rT ;xT ;1
using 1 by (simp add: comp-assoc mult-isol)

also have ... = 0
using assms(2) annil conv-contrav conv-zero by force

finally show ?thesis
using galois-aux le-bot by blast

qed

Start points and end points
lemma start-points-in-root-aux:

assumes backward-finite-path-root r x
shows x;1 ≤ xT ?;r

proof −
have x;1 ≤ x;xT+;r

by (metis assms inf-top.left-neutral modular-var-2 mult-assoc
connected-root-iff3

backward-finite-path-root-def)
also have ... ≤ 1 ′;xT ?;r

by (metis assms is-inj-def mult-assoc mult-isor backward-finite-path-root-def)
finally show ?thesis

by simp
qed

lemma start-points-in-root:

79

assumes backward-finite-path-root r x
shows start-points x ≤ r

using assms galois-1 sup-commute connected-root-iff3
backward-finite-path-root-def

start-points-in-root-aux by fastforce

lemma start-points-not-zero-contra:
assumes connected-root r x

and point r
and start-points x = 0
and x;r = 0

shows x = 0
proof −

have x;1 ≤ xT ;1
using assms(3) galois-aux by force

also have ... ≤ −r
using assms(4) comp-res compl-bot-eq by blast

finally show ?thesis
using assms(1 ,2) has-root-contra galois-aux schroeder-1 by force

qed

lemma start-points-not-zero:
assumes connected-root r x

and point r
and x 6= 0
and x;r = 0

shows start-points x 6= 0
using assms start-points-not-zero-contra by blast

Backwards terminating and backwards finite
lemma backward-terminating-path-root-aux:

assumes backward-terminating-path-root r x
shows x ≤ xT ?;−(xT ;1)

proof −
have xT ?;r ≤ xT ?;−(xT ;1)

using assms comp-res compl-bot-eq compl-le-swap1 mult-isol by blast
thus ?thesis

using assms dual-order .trans maddux-20 start-points-in-root-aux by blast
qed

lemma backward-finite-path-connected-aux:
assumes backward-finite-path-root r x

shows xT ;r ;xT ≤ x? + xT ?

proof −
have xT ;r ;xT · rT = xT ;r ;(xT · rT)

by (metis conv-invol conv-times vector-1-comm comp-assoc conv-contrav assms
backward-finite-path-root-def point-def)

also have ... ≤ xT ;r ;rT

by (simp add: mult-isol)

80

also have 1 : ... ≤ xT

by (metis assms comp-assoc is-inj-def mult-1-right mult-isol point-def
backward-finite-path-root-def)

also have ... ≤ xT ?

by simp
finally have 2 : xT ;r ;xT · rT ≤ xT ? .
let ?v = x;1 · −r
have ?v ≤ xT+;r

by (simp add: assms galois-1 start-points-in-root-aux)
hence rT ;x · ?v ≤ rT ;x · xT+;r

using meet-isor by blast
also have 3 : ... = xT+;r · 1 ;rT ;x

by (metis assms conv-contrav conv-one inf-commute is-vector-def point-def
backward-finite-path-root-def)

also have ... = (xT+;r · 1);rT ;x
using 3 by (metis comp-assoc inf-commute is-vector-def star-conv vector-1

assms
backward-finite-path-root-def point-def)

also have ... = xT+;r ;rT ;x
by simp

also have ... ≤ xT+;x
using 1 by (metis mult-assoc mult-isol mult-isor star-slide-var)

also have ... = xT ?;xT ;x
by (simp add: star-slide-var)

also have ... ≤ xT ?

by (metis assms backward-finite-path-root-def is-p-fun-def mult-1-right
mult-assoc mult-isol-var

star-1l star-inductl-star)
finally have 4 : xT ;r · ?vT ≤ x?

using conv-iso star-conv by force
have xT ;r ;xT · −rT = (xT ;r · 1);xT · −rT

by simp
also have ... = xT ;r · 1 ;xT · −rT

by (metis inf .commute is-vector-def comp-assoc vector-1 assms
backward-finite-path-root-def

point-def)
also have ... ≤ x?

using 4 by (simp add: conv-compl inf .assoc)
finally have (xT ;r ;xT · −rT) + (xT ;r ;xT · rT) ≤ x? + xT ?

using 2 sup.mono by blast
thus ?thesis

by fastforce
qed

lemma backward-finite-path-connected:
assumes backward-finite-path-root r x

shows connected x
proof −

from assms obtain r where 1 : backward-finite-path-root r x ..

81

have xT ;(x? + xT ?) = xT ;(1 ′ + x+) + xT+

by (simp add: distrib-left)
also have ... = xT ;x+ + xT+

using calculation distrib-left star-star-plus by fastforce
also have ... ≤ 1 ′;x? + xT+

using 1 by (metis add-iso comp-assoc is-p-fun-def mult-isor
backward-finite-path-root-def)

also have ... ≤ x? + xT ?

using join-isol by fastforce
finally have xT ;r ;xT + xT ;(x? + xT ?) ≤ x? + xT ?

using 1 backward-finite-path-connected-aux by simp
hence xT ?;xT ;r ;xT ≤ x? + xT ?

using star-inductl comp-assoc by simp
hence xT ;1 ;xT ≤ x? + xT ?

using 1 backward-finite-path-root-def connected-root-iff3 star-slide-var by
fastforce

thus ?thesis
by (metis (mono-tags, lifting) sup.commute comp-assoc conv-add conv-contrav

conv-invol conv-iso
conv-one star-conv)

qed

lemma backward-finite-path-root-path:
assumes backward-finite-path-root r x

shows path x
using assms path-def backward-finite-path-connected backward-finite-path-root-def
by blast

lemma backward-finite-path-root-path-root:
assumes backward-finite-path-root r x

shows path-root r x
using assms backward-finite-path-root-def le-supI1 star-star-plus path-root-def by
fastforce

lemma zero-backward-terminating-path-root:
assumes point r

shows backward-terminating-path-root r 0
by (simp add: assms is-inj-def is-p-fun-def backward-finite-path-root-def)

lemma backward-finite-path-root-move-root:
assumes backward-finite-path-root r x

and point q
and q ≤ x?;r

shows backward-finite-path-root q x
using assms connected-root-move-root backward-finite-path-root-def by blast

Cycle
lemma non-empty-cycle-root-var-axioms-1 :

non-empty-cycle-root r x ←→ xT ;1 ≤ xT+;r ∧ is-inj x ∧ is-p-fun x ∧ point r ∧

82

r ≤ xT ;1
using connected-root-iff2 backward-finite-path-root-def by blast

lemma non-empty-cycle-root-loop:
assumes non-empty-cycle-root r x

shows r ≤ xT+;r
using assms connected-root-iff3 backward-finite-path-root-def by fastforce

lemma cycle-root-end-empty:
assumes terminating-path-root-end r x e

and many-strongly-connected x
shows x = 0

by (metis assms has-root-contra point-swap backward-finite-path-root-def
backward-finite-path-root-move-root star-conv)

lemma cycle-root-end-empty-var :
assumes terminating-path-root-end r x e

and x 6= 0
shows ¬ many-strongly-connected x

using assms cycle-root-end-empty by blast

Terminating path
lemma terminating-path-root-end-connected:

assumes terminating-path-root-end r x e
shows x;1 ≤ x+;e

proof −
have x;1 ≤ x;xT ;1

by (metis comp-assoc inf-top.left-neutral modular-var-2)
also have ... = x;xT+;r

using assms backward-finite-path-root-def connected-root-iff3 comp-assoc by
fastforce

also have ... ≤ x;xT+;x?;e
by (simp add: assms comp-assoc mult-isol)

also have ... = x;xT ;(x? + xT ?);e
using assms cancel-separate-p-fun-converse comp-assoc

backward-finite-path-root-def by fastforce
also have ... = x;xT ;(x+ + xT ?);e

by (simp add: star-star-plus)
also have ... = x;xT ;x+;e + x;xT+;e

by (simp add: comp-assoc distrib-left)
also have ... = x;xT ;x+;e

by (simp add: assms comp-assoc independence1)
also have ... ≤ x+;e

by (metis assms annil independence1 is-inj-def mult-isor mult-oner
backward-finite-path-root-def)

finally show ?thesis .
qed

lemma terminating-path-root-end-forward-finite:

83

assumes terminating-path-root-end r x e
shows backward-finite-path-root e (xT)

using assms terminating-path-root-end-connected inj-p-fun connected-root-iff2
backward-finite-path-root-def by force

end

3.2 Consequences with the Tarski rule
context relation-algebra-rtc-tarski
begin

Some (more) results about points
lemma point-reachable-converse:

assumes is-vector v
and v 6= 0
and point r
and v ≤ xT+;r

shows r ≤ x+;v
proof −

have vT ;v 6= 0
by (metis assms(2) inf .idem inf-bot-right mult-1-right schroeder-1)

hence 1 ;vT ;v = 1
using assms(1) is-vector-def mult-assoc tarski by force

hence 1 : r = r ;vT ;v
by (metis assms(3) is-vector-def mult-assoc point-def)

have v;rT ≤ xT+

using assms(3 ,4) point-def ss423bij by simp
hence r ;vT ≤ x+

by (metis conv-contrav conv-invol conv-iso star-conv star-slide-var)
thus ?thesis

using 1 by (metis mult-isor)
qed

Roots
lemma root-in-start-points:

assumes connected-root r x
and is-vector r
and x 6= 0
and x;r = 0

shows r ≤ start-points x
proof −

have r = r ;x;1
by (metis assms(2 ,3) comp-assoc is-vector-def tarski)

also have ... ≤ x;1
by (metis assms(1) comp-assoc one-idem-mult phl-seq top-greatest)

finally show ?thesis
using assms(4) comp-res compl-bot-eq compl-le-swap1 inf .boundedI by blast

qed

84

lemma root-equals-start-points:
assumes backward-terminating-path-root r x

and x 6= 0
shows r = start-points x

using assms order .antisym point-def backward-finite-path-root-def
start-points-in-root root-in-start-points
by fastforce

lemma root-equals-end-points:
assumes backward-terminating-path-root r (xT)

and x 6= 0
shows r = end-points x

by (metis assms conv-invol step-has-target ss-p18 root-equals-start-points)

lemma root-in-edge-sources:
assumes connected-root r x

and x 6= 0
and is-vector r

shows r ≤ x;1
proof −

have r ;1 ;x;1 ≤ x+;1
using assms(1 ,3) is-vector-def mult-isor by fastforce

thus ?thesis
by (metis assms(2) comp-assoc conway.dagger-unfoldl-distr dual-order .trans

maddux-20 sup.commute
sup-absorb2 tarski top-greatest)

qed

Rooted Paths
lemma non-empty-path-root-iff-aux:

assumes path-root r x
and x 6= 0

shows r ≤ (x + xT);1
proof −

have (r ;x · 1 ′);1 = (xT ;rT · 1 ′);1
by (metis conv-contrav conv-e conv-times inf .cobounded2 is-test-def

test-eq-conv)
also have ... ≤ xT ;rT ;1

using mult-subdistr by blast
also have ... ≤ xT ;1

by (metis mult-assoc mult-double-iso one-idem-mult top-greatest)
finally have 1 : (r ;x · 1 ′);1 ≤ xT ;1 .
have r ≤ r ;1 ;x;1

using assms(2) comp-assoc maddux-20 tarski by fastforce
also have ... = r ;x;1

using assms(1) path-root-def point-def is-vector-def by simp
also have ... = (r ;x · (x? + xT ?));1

using assms(1) path-root-def by (simp add: inf .absorb-iff1)
also have ... = (r ;x · (x+ + xT+ + 1 ′));1

85

by (metis star-star-plus star-unfoldl-eq sup-commute sup-left-commute)
also have ... ≤ (x+ + xT+ + (r ;x · 1 ′));1

by (metis inf-le2 inf-sup-distrib1 mult-isor order-refl sup-mono)
also have ... ≤ x;1 + xT ;1 + (r ;x · 1 ′);1

by (simp add: plus-top)
also have ... = x;1 + xT ;1

using 1 sup.coboundedI2 sup.order-iff by fastforce
finally show ?thesis

by simp
qed

Backwards terminating and backwards finite
lemma backward-terminating-path-root-2 :

assumes backward-terminating-path-root r x
shows backward-terminating x

using assms backward-terminating-iff2 path-def
backward-terminating-path-root-aux

backward-finite-path-connected backward-finite-path-root-def by blast

lemma backward-terminating-path-root:
assumes backward-terminating-path-root r x

shows backward-terminating-path x
using assms backward-finite-path-root-path backward-terminating-path-root-2 by
fastforce

(Non-empty) Cycle
lemma cycle-iff :

assumes point r
shows x;r 6= 0 ←→ r ≤ xT ;1

by (simp add: assms no-end-point-char-converse)

lemma non-empty-cycle-root-iff :
assumes connected-root r x

and point r
shows x;r 6= 0 ←→ r ≤ xT+;r

using assms connected-root-iff3 cycle-iff by simp

lemma backward-finite-path-root-terminating-or-cycle:
backward-finite-path-root r x ←→ backward-terminating-path-root r x ∨

non-empty-cycle-root r x
using cycle-iff backward-finite-path-root-def by blast

lemma non-empty-cycle-root-msc:
assumes non-empty-cycle-root r x

shows many-strongly-connected x
proof −

let ?p = xT ;r
have 1 : is-point ?p

unfolding is-point-def

86

using conjI assms is-vector-def mult-assoc point-def inj-compose p-fun-inj
cycle-iff backward-finite-path-root-def root-cycle-converse by fastforce

have ?p ≤ xT+;?p
by (metis assms comp-assoc mult-isol star-slide-var non-empty-cycle-root-loop)

hence ?p ≤ x+;?p
using 1 bot-least point-def point-is-point point-reachable-converse by blast

also have ... = x?;(x;xT);r
by (metis comp-assoc star-slide-var)

also have ... ≤ x?;1 ′;r
using assms is-inj-def mult-double-iso backward-finite-path-root-def by blast

finally have 2 : ?p ≤ x?;r
by simp

have xT ;x?;r = ?p + xT ;x+;r
by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)

also have ... ≤ ?p + 1 ′;x?;r
by (metis assms is-p-fun-def join-isol mult-assoc mult-isor

backward-finite-path-root-def)
also have ... = x?;r

using 2 by (simp add: sup-absorb2)
finally have 3 : xT ?;r ≤ x?;r

by (metis star-inductl comp-assoc conway.dagger-unfoldl-distr le-supI
order-prop)

have xT ≤ xT+;r
by (metis assms maddux-20 connected-root-iff3 backward-finite-path-root-def)

also have ... ≤ x?;r
using 3 by (metis assms conway.dagger-unfoldl-distr sup-absorb2

non-empty-cycle-root-loop)
finally have 4 : xT ≤ x?;r .
have xT ≤ xT ;x;xT

by (metis conv-invol x-leq-triple-x)
also have ... ≤ 1 ;x;xT

by (simp add: mult-isor)
also have ... = rT ;x+;xT

using assms connected-root-iff4 backward-finite-path-root-def by fastforce
also have ... ≤ rT ;x?

by (metis assms is-inj-def mult-1-right mult-assoc mult-isol
backward-finite-path-root-def

star-slide-var)
finally have xT ≤ x?;r · rT ;x?

using 4 by simp
also have ... = x?;r · 1 ;rT ;x?

by (metis assms conv-contrav conv-one is-vector-def point-def
backward-finite-path-root-def)

also have ... = (x?;r · 1);rT ;x?

by (metis (no-types, lifting) assms is-vector-def mult-assoc point-def
backward-finite-path-root-def vector-1)

also have ... = x?;r ;rT ;x?

by simp
also have ... ≤ x?;x?

87

by (metis assms is-inj-def mult-1-right mult-assoc mult-isol mult-isor point-def
backward-finite-path-root-def)

also have ... ≤ x?

by simp
finally show ?thesis

by (simp add: many-strongly-connected-iff-1)
qed

lemma non-empty-cycle-root-msc-cycle:
assumes non-empty-cycle-root r x

shows cycle x
using assms backward-finite-path-root-path non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-non-empty:
assumes non-empty-cycle-root r x

shows x 6= 0
using assms cycle-iff annil backward-finite-path-root-def by blast

lemma non-empty-cycle-root-rtc-symmetric:
assumes non-empty-cycle-root r x

shows x?;r = xT ?;r
using assms non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-point-exchange:
assumes non-empty-cycle-root r x

and point p
shows r ≤ x?;p ←→ p ≤ x?;r

by (metis assms(1 ,2) inj-sur-semi-swap point-def non-empty-cycle-root-msc
backward-finite-path-root-def star-conv)

lemma non-empty-cycle-root-rtc-tc:
assumes non-empty-cycle-root r x

shows x?;r = x+;r
proof (rule order .antisym)

have r ≤ x+;r
using assms many-strongly-connected-iff-7 non-empty-cycle-root-loop

non-empty-cycle-root-msc
by simp

thus x?;r ≤ x+;r
using sup-absorb2 by fastforce

next
show x+;r ≤ x?;r

by (simp add: mult-isor)
qed

lemma non-empty-cycle-root-no-start-end-points:
assumes non-empty-cycle-root r x

shows x;1 = xT ;1
using assms many-strongly-connected-implies-no-start-end-points

88

non-empty-cycle-root-msc by blast

lemma non-empty-cycle-root-move-root:
assumes non-empty-cycle-root r x

and point q
and q ≤ x?;r

shows non-empty-cycle-root q x
by (metis assms cycle-iff dual-order .trans backward-finite-path-root-move-root
start-points-in-root

root-equals-start-points non-empty-cycle-root-non-empty)

lemma non-empty-cycle-root-loop-converse:
assumes non-empty-cycle-root r x

shows r ≤ x+;r
using assms less-eq-def non-empty-cycle-root-rtc-tc by fastforce

lemma non-empty-cycle-root-move-root-same-reachable:
assumes non-empty-cycle-root r x

and point q
and q ≤ x?;r

shows x?;r = x?;q
by (metis assms many-strongly-connected-iff-7 connected-root-iff3
connected-root-move-root

backward-finite-path-root-def non-empty-cycle-root-msc
non-empty-cycle-root-rtc-tc)

lemma non-empty-cycle-root-move-root-same-reachable-2 :
assumes non-empty-cycle-root r x

and point q
and q ≤ x?;r

shows x?;r = xT ?;q
using assms non-empty-cycle-root-move-root-same-reachable
non-empty-cycle-root-msc by simp

lemma non-empty-cycle-root-move-root-msc:
assumes non-empty-cycle-root r x

shows xT ?;q = x?;q
using assms non-empty-cycle-root-msc by simp

lemma non-empty-cycle-root-move-root-rtc-tc:
assumes non-empty-cycle-root r x

and point q
and q ≤ x?;r

shows x?;q = x+;q
using assms non-empty-cycle-root-move-root non-empty-cycle-root-rtc-tc by blast

lemma non-empty-cycle-root-move-root-loop-converse:
assumes non-empty-cycle-root r x

and point q

89

and q ≤ x?;r
shows q ≤ xT+;q

using assms non-empty-cycle-root-loop non-empty-cycle-root-move-root by blast

lemma non-empty-cycle-root-move-root-loop:
assumes non-empty-cycle-root r x

and point q
and q ≤ x?;r

shows q ≤ x+;q
using assms non-empty-cycle-root-loop-converse non-empty-cycle-root-move-root
by blast

lemma non-empty-cycle-root-msc-plus:
assumes non-empty-cycle-root r x

shows x+;r = xT+;r
using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-tc-start-points:
assumes non-empty-cycle-root r x

shows x+;r = x;1
by (metis assms connected-root-iff3 backward-finite-path-root-def
non-empty-cycle-root-msc-plus

non-empty-cycle-root-no-start-end-points)

lemma non-empty-cycle-root-rtc-start-points:
assumes non-empty-cycle-root r x

shows x?;r = x;1
by (simp add: assms non-empty-cycle-root-rtc-tc
non-empty-cycle-root-tc-start-points)

lemma non-empty-cycle-root-converse-start-end-points:
assumes non-empty-cycle-root r x

shows xT ≤ x;1 ;x
by (metis assms conv-contrav conv-invol conv-one inf .boundedI maddux-20
maddux-21 vector-meet-comp-x

non-empty-cycle-root-no-start-end-points)

lemma non-empty-cycle-root-start-end-points-plus:
assumes non-empty-cycle-root r x

shows x;1 ;x ≤ x+

using assms order .eq-iff one-strongly-connected-iff
one-strongly-connected-implies-7-eq

backward-finite-path-connected non-empty-cycle-root-msc by blast

lemma non-empty-cycle-root-converse-plus:
assumes non-empty-cycle-root r x

shows xT ≤ x+

using assms many-strongly-connected-iff-2 non-empty-cycle-root-msc by blast

90

lemma non-empty-cycle-root-plus-converse:
assumes non-empty-cycle-root r x

shows x+ = xT+

using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-converse:
assumes non-empty-cycle-root r x

shows non-empty-cycle-root r (xT)
by (metis assms conv-invol inj-p-fun connected-root-iff3
backward-finite-path-root-def

non-empty-cycle-root-msc-plus non-empty-cycle-root-tc-start-points)

lemma non-empty-cycle-root-move-root-forward:
assumes non-empty-cycle-root r x

and point q
and r ≤ x?;q

shows non-empty-cycle-root q x
by (metis assms backward-finite-path-root-move-root
non-empty-cycle-root-no-start-end-points

non-empty-cycle-root-point-exchange non-empty-cycle-root-rtc-start-points)

lemma non-empty-cycle-root-move-root-forward-cycle:
assumes non-empty-cycle-root r x

and point q
and r ≤ x?;q

shows x;q 6= 0 ∧ xT ;q 6= 0
by (metis assms comp-assoc independence1 ss-p18
non-empty-cycle-root-move-root-forward

non-empty-cycle-root-msc-plus non-empty-cycle-root-non-empty
non-empty-cycle-root-tc-start-points)

lemma non-empty-cycle-root-equivalences:
assumes non-empty-cycle-root r x

and point q
shows (r ≤ x?;q ←→ q ≤ x?;r)

and (r ≤ x?;q ←→ x;q 6= 0)
and (r ≤ x?;q ←→ xT ;q 6= 0)
and (r ≤ x?;q ←→ q ≤ x;1)
and (r ≤ x?;q ←→ q ≤ xT ;1)

using assms cycle-iff no-end-point-char non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-point-exchange non-empty-cycle-root-rtc-start-points

by metis+

lemma non-empty-cycle-root-chord:
assumes non-empty-cycle-root r x

and point p
and point q
and r ≤ x?;p
and r ≤ x?;q

91

shows p ≤ x?;q
using assms non-empty-cycle-root-move-root-same-reachable
non-empty-cycle-root-point-exchange
by fastforce

lemma non-empty-cycle-root-var-axioms-2 :
non-empty-cycle-root r x ←→ x;1 ≤ x+;r ∧ is-inj x ∧ is-p-fun x ∧ point r ∧ r
≤ x;1
apply (rule iffI)
apply (metis order .eq-iff backward-finite-path-root-def

non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-tc-start-points)

by (metis conv-invol p-fun-inj connected-root-iff2 connected-root-iff3
non-empty-cycle-root-var-axioms-1 non-empty-cycle-root-msc-plus
non-empty-cycle-root-rtc-start-points non-empty-cycle-root-rtc-tc)

lemma non-empty-cycle-root-var-axioms-3 :
non-empty-cycle-root r x ←→ x;1 ≤ x+;r ∧ is-inj x ∧ is-p-fun x ∧ point r ∧ r
≤ x+;x;1
apply (rule iffI)
apply (metis comp-assoc eq-refl backward-finite-path-root-def star-inductl-var-eq2

non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points

non-empty-cycle-root-tc-start-points)
by (metis annir comp-assoc conv-contrav no-end-point-char
non-empty-cycle-root-var-axioms-2)

lemma non-empty-cycle-root-subset-equals:
assumes non-empty-cycle-root r x

and non-empty-cycle-root r y
and x ≤ y

shows x = y
proof −

have y;xT ?;r = y;xT+;r
using assms(1) comp-assoc non-empty-cycle-root-msc

non-empty-cycle-root-msc-plus
non-empty-cycle-root-rtc-tc by fastforce

also have ... ≤ y;yT ;xT ?;r
using assms(3) comp-assoc conv-iso mult-double-iso by fastforce

also have ... ≤ xT ?;r
using assms(2) backward-finite-path-root-def is-inj-def
by (meson dual-order .trans mult-isor order .refl prod-star-closure star-ref)

finally have r + y;xT ?;r ≤ xT ?;r
by (metis conway.dagger-unfoldl-distr le-supI sup.cobounded1)

hence y?;r ≤ xT ?;r
by (simp add: comp-assoc rtc-inductl)

hence y;1 ≤ x;1
using assms(1 ,2) non-empty-cycle-root-msc

non-empty-cycle-root-rtc-start-points by fastforce

92

thus ?thesis
using assms(2 ,3) backward-finite-path-root-def ss422iv by blast

qed

lemma non-empty-cycle-root-subset-equals-change-root:
assumes non-empty-cycle-root r x

and non-empty-cycle-root q y
and x ≤ y

shows x = y
proof −

have r ≤ y;1
by (metis assms(1 ,3) dual-order .trans mult-isor

non-empty-cycle-root-no-start-end-points)
hence non-empty-cycle-root r y

by (metis assms(1 ,2) connected-root-move-root backward-finite-path-root-def
non-empty-cycle-root-no-start-end-points

non-empty-cycle-root-rtc-start-points)
thus ?thesis

using assms(1 ,3) non-empty-cycle-root-subset-equals by blast
qed

lemma non-empty-cycle-root-equivalences-2 :
assumes non-empty-cycle-root r x

shows (v ≤ x?;r ←→ v ≤ xT ;1)
and (v ≤ x?;r ←→ v ≤ x;1)

using assms non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points
by metis+

lemma cycle-root-non-empty:
assumes x 6= 0

shows cycle-root r x ←→ non-empty-cycle-root r x
proof

assume 1 : cycle-root r x
have r ≤ r ;1 ;x;1

using assms comp-assoc maddux-20 tarski by fastforce
also have ... ≤ (x+ · xT ;1);1

using 1 by (simp add: is-vector-def mult-isor point-def)
also have ... ≤ xT ;1

by (simp add: ra-1)
finally show non-empty-cycle-root r x

using 1 backward-finite-path-root-def inf .boundedE by blast
next

assume non-empty-cycle-root r x
thus cycle-root r x

by (metis backward-finite-path-root-def inf .orderE maddux-20
non-empty-cycle-root-plus-converse

ra-1)
qed

93

Start points and end points
lemma start-points-path-aux:

assumes backward-finite-path-root r x
and start-points x 6= 0

shows x;r = 0
by (metis assms compl-inf-bot inf .commute
non-empty-cycle-root-no-start-end-points

backward-finite-path-root-terminating-or-cycle)

lemma start-points-path:
assumes backward-finite-path-root r x

and start-points x 6= 0
shows backward-terminating-path-root r x

by (simp add: assms start-points-path-aux)

lemma root-in-start-points-2 :
assumes backward-finite-path-root r x

and start-points x 6= 0
shows r ≤ start-points x

by (metis assms conv-zero eq-refl galois-aux2 root-equals-start-points
start-points-path-aux)

lemma root-equals-start-points-2 :
assumes backward-finite-path-root r x

and start-points x 6= 0
shows r = start-points x

by (metis assms inf-bot-left ss-p18 root-equals-start-points start-points-path)

lemma start-points-injective:
assumes backward-finite-path-root r x

shows is-inj (start-points x)
by (metis assms compl-bot-eq inj-def-var1 point-def backward-finite-path-root-def
top-greatest

root-equals-start-points-2)

lemma backward-terminating-path-root-aux-2 :
assumes backward-finite-path-root r x

and start-points x 6= 0 ∨ x = 0
shows x ≤ xT ?;−(xT ;1)

using assms bot-least backward-terminating-path-root-aux start-points-path by
blast

lemma start-points-not-zero-iff :
assumes backward-finite-path-root r x

shows x;r = 0 ∧ x 6= 0 ←→ start-points x 6= 0
by (metis assms conv-zero inf-compl-bot backward-finite-path-root-def
start-points-not-zero-contra

start-points-path-aux)

94

Backwards terminating and backwards finite: Part II
lemma backward-finite-path-root-acyclic-terminating-aux:

assumes backward-finite-path-root r x
and is-acyclic x

shows x;r = 0
proof (cases x = 0)

assume x = 0
thus ?thesis

by simp
next

assume x 6= 0
hence 1 : r ≤ x;1

using assms(1) has-root-contra no-end-point-char backward-finite-path-root-def
by blast

have r ·(xT ;1) = r ·(xT+;r)
using assms(1) connected-root-iff3 backward-finite-path-root-def by fastforce

also have ... ≤ r ·(−1 ′;r)
by (metis assms(2) conv-compl conv-contrav conv-e conv-iso meet-isor

mult-isor star-conv
star-slide-var)

also have ... = 0
by (metis (no-types) assms(1) inj-distr annil inf-compl-bot mult-1-left point-def

backward-finite-path-root-def)
finally have r ≤ start-points x

using 1 galois-aux inf .boundedI le-bot by blast
thus ?thesis

using assms(1) annir le-bot start-points-path by blast
qed

lemma backward-finite-path-root-acyclic-terminating-iff :
assumes backward-finite-path-root r x

shows is-acyclic x ←→ x;r = 0
apply (rule iffI)

apply (simp add: assms backward-finite-path-root-acyclic-terminating-aux)
using assms backward-finite-path-root-path-root path-root-acyclic by blast

lemma backward-finite-path-root-acyclic-terminating:
assumes backward-finite-path-root r x

and is-acyclic x
shows backward-terminating-path-root r x

by (simp add: assms backward-finite-path-root-acyclic-terminating-aux)

lemma non-empty-cycle-root-one-strongly-connected:
assumes non-empty-cycle-root r x

shows one-strongly-connected x
by (metis assms one-strongly-connected-iff order-trans star-1l star-star-plus
sup.absorb2

non-empty-cycle-root-msc non-empty-cycle-root-start-end-points-plus)

95

lemma backward-finite-path-root-nodes-reachable:
assumes backward-finite-path-root r x

and v ≤ x;1 + xT ;1
and is-sur v

shows r ≤ x?;v
proof −

have v ≤ x;1 + xT+;r
using assms connected-root-iff3 backward-finite-path-root-def by fastforce

also have ... ≤ xT ?;r + xT+;r
using assms(1) join-iso start-points-in-root-aux by blast

also have ... = xT ?;r
using mult-isor sup.absorb1 by fastforce

finally show ?thesis
using assms(1 ,3)
by (simp add: inj-sur-semi-swap point-def backward-finite-path-root-def

star-conv
inj-sur-semi-swap-short)

qed

lemma terminating-path-root-end-backward-terminating:
assumes terminating-path-root-end r x e

shows backward-terminating-path-root r x
using assms non-empty-cycle-root-move-root-forward-cycle

backward-finite-path-root-terminating-or-cycle by blast

lemma terminating-path-root-end-converse:
assumes terminating-path-root-end r x e

shows terminating-path-root-end e (xT) r
by (metis assms terminating-path-root-end-backward-terminating
backward-finite-path-root-def

conv-invol terminating-path-root-end-forward-finite point-swap star-conv)

lemma terminating-path-root-end-forward-terminating:
assumes terminating-path-root-end r x e

shows backward-terminating-path-root e (xT)
using assms terminating-path-root-end-converse by blast

end

3.3 Consequences with the Tarski rule and the point axiom
context relation-algebra-rtc-tarski-point
begin

Rooted paths
lemma path-root-iff :
(∃ r . path-root r x) ←→ path x

proof
assume ∃ r . path-root r x
thus path x

96

using path-def path-iff-backward point-def path-root-def by blast
next

assume 1 : path x
show ∃ r . path-root r x
proof (cases x = 0)

assume x = 0
thus ?thesis

by (simp add: is-inj-def is-p-fun-def point-exists path-root-def)
next

assume ¬(x = 0)
hence x;1 6= 0

by (simp add: ss-p18)
from this obtain r where 2 : point r ∧ r ≤ x;1

using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
hence r ;x ≤ x;1 ;x

by (simp add: mult-isor)
also have ... ≤ x? + xT ?

using 1 path-def by blast
finally show ?thesis

using 1 2 path-def path-root-def by blast
qed

qed

lemma non-empty-path-root-iff :
(∃ r . path-root r x ∧ r ≤ (x + xT);1) ←→ path x ∧ x 6= 0

apply (rule iffI)
using non-empty-cycle-root-non-empty path-root-def

zero-backward-terminating-path-root path-root-iff
apply fastforce

using path-root-iff non-empty-path-root-iff-aux by blast

(Non-empty) Cycle
lemma non-empty-cycle-root-iff :
(∃ r . non-empty-cycle-root r x) ←→ cycle x ∧ x 6= 0

proof
assume ∃ r . non-empty-cycle-root r x
thus cycle x ∧ x 6= 0

using non-empty-cycle-root-msc-cycle non-empty-cycle-root-non-empty by
fastforce
next

assume 1 : cycle x ∧ x 6= 0
hence xT ;1 6= 0

using many-strongly-connected-implies-no-start-end-points ss-p18 by blast
from this obtain r where 2 : point r ∧ r ≤ xT ;1

using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
have 3 : xT ;1 ;xT ≤ x?

using 1 one-strongly-connected-iff path-def by blast
have r ;x ≤ xT ;1 ;x

using 2 by (simp add: is-vector-def mult-isor point-def)

97

also have ... ≤ xT ;1 ;x;xT ;x
using comp-assoc mult-isol x-leq-triple-x by fastforce

also have ... ≤ xT ;1 ;xT ;x
by (metis mult-assoc mult-double-iso top-greatest)

also have ... ≤ x?;x
using 3 mult-isor by blast

finally have connected-root r x
by (simp add: star-slide-var)

hence non-empty-cycle-root r x
using 1 2 path-def backward-finite-path-root-def by fastforce

thus ∃ r . non-empty-cycle-root r x ..
qed

lemma non-empty-cycle-subset-equals:
assumes cycle x

and cycle y
and x ≤ y
and x 6= 0

shows x = y
by (metis assms le-bot non-empty-cycle-root-subset-equals-change-root
non-empty-cycle-root-iff)

lemma cycle-root-iff :
(∃ r . cycle-root r x) ←→ cycle x

proof (cases x = 0)
assume x = 0
thus ?thesis

using path-def point-exists by fastforce
next

assume x 6= 0
thus ?thesis

using cycle-root-non-empty non-empty-cycle-root-iff by simp
qed

Backwards terminating and backwards finite
lemma backward-terminating-path-root-iff :
(∃ r . backward-terminating-path-root r x) ←→ backward-terminating-path x

proof
assume ∃ r . backward-terminating-path-root r x
thus backward-terminating-path x

using backward-terminating-path-root by fastforce
next

assume 1 : backward-terminating-path x
show ∃ r . backward-terminating-path-root r x
proof (cases x = 0)

assume x = 0
thus ?thesis

using point-exists zero-backward-terminating-path-root by blast
next

98

let ?r = start-points x
assume x 6= 0
hence 2 : is-point ?r

using 1 start-point-iff2 backward-terminating-iff1 by fastforce
have 3 : x;?r = 0

by (metis inf-top.right-neutral modular-1-aux ′)
have x;1 ;x ≤ x;1 ;x;xT ;x

using comp-assoc mult-isol x-leq-triple-x by fastforce
also have ... ≤ (x? + xT ?);xT ;x

using 1 mult-isor path-def by blast
also have ... = (1 ′ + x+ + xT+);xT ;x

by (metis star-star-plus star-unfoldl-eq sup.commute)
also have ... = xT ;x + x+;xT ;x + xT+;xT ;x

by (metis distrib-right ′ mult-onel)
also have ... = xT ;(x + xT ?;xT ;x) + x+;xT ;x

using comp-assoc distrib-left sup.commute sup.assoc by simp
also have ... ≤ xT ;1 + x+;xT ;x

using join-iso mult-isol by fastforce
also have ... ≤ xT ;1 + x+;1 ′

using 1 by (metis comp-assoc join-isol mult-isol path-def is-p-fun-def)
finally have −(xT ;1) · x;1 ;x ≤ x+

by (simp add: galois-1 inf .commute)
hence ?r ;x ≤ x+

by (metis inf-commute one-compl ra-1)
hence backward-terminating-path-root ?r x

using 1 2 3 by (simp add: point-is-point backward-finite-path-root-def
path-def)

thus ?thesis ..
qed

qed

lemma non-empty-backward-terminating-path-root-iff :
backward-terminating-path-root (start-points x) x ←→

backward-terminating-path x ∧ x 6= 0
apply (rule iffI)

apply (metis backward-finite-path-root-path backward-terminating-path-root-2
conv-zero

inf .cobounded1 non-empty-cycle-root-non-empty)
using backward-terminating-path-root-iff root-equals-start-points by blast

lemma non-empty-backward-terminating-path-root-iff ′:
backward-finite-path-root (start-points x) x ←→ backward-terminating-path x ∧ x
6= 0
using start-point-no-predecessor non-empty-backward-terminating-path-root-iff by
simp

lemma backward-finite-path-root-iff :
(∃ r . backward-finite-path-root r x) ←→ backward-finite-path x

proof

99

assume ∃ r . backward-finite-path-root r x
thus backward-finite-path x

by (meson backward-finite-iff-msc non-empty-cycle-root-msc
backward-finite-path-root-path

backward-finite-path-root-terminating-or-cycle
backward-terminating-path-root)
next

assume backward-finite-path x
thus ∃ r . backward-finite-path-root r x

by (metis backward-finite-iff-msc point-exists non-empty-cycle-root-iff
zero-backward-terminating-path-root backward-terminating-path-root-iff)

qed

lemma non-empty-backward-finite-path-root-iff :
(∃ r . backward-finite-path-root r x ∧ r ≤ x;1) ←→ backward-finite-path x ∧ x 6=

0
apply (rule iffI)
apply (metis backward-finite-path-root-iff annir backward-finite-path-root-def

le-bot
no-end-point-char ss-p18)

using backward-finite-path-root-iff backward-finite-path-root-def point-def
root-in-edge-sources by blast

Terminating
lemma terminating-path-root-end-aux:

assumes terminating-path x
shows ∃ r e . terminating-path-root-end r x e

proof (cases x = 0)
assume x = 0
thus ?thesis

using point-exists zero-backward-terminating-path-root by fastforce
next

assume 1 : ¬(x = 0)
have 2 : backward-terminating-path x

using assms by simp
from this obtain r where 3 : backward-terminating-path-root r x

using backward-terminating-path-root-iff by blast
have backward-terminating-path (xT)

using 2 by (metis assms backward-terminating-iff1
conv-backward-terminating-path conv-invol

conv-zero inf-top.left-neutral)
from this obtain e where 4 : backward-terminating-path-root e (xT)

using backward-terminating-path-root-iff by blast
have r ≤ x;1

using 1 3 root-in-edge-sources backward-finite-path-root-def point-def by
fastforce

also have ... = x+;e
using 4 connected-root-iff3 backward-finite-path-root-def by fastforce

also have ... ≤ x?;e

100

by (simp add: mult-isor)
finally show ?thesis

using 3 4 backward-finite-path-root-def by blast
qed

lemma terminating-path-root-end-iff :
(∃ r e . terminating-path-root-end r x e) ←→ terminating-path x

proof
assume 1 : ∃ r e . terminating-path-root-end r x e
show terminating-path x
proof (cases x = 0)

assume x = 0
thus ?thesis

by (simp add: is-inj-def is-p-fun-def path-def)
next

assume ¬(x = 0)
hence 2 : ¬ many-strongly-connected x

using 1 cycle-root-end-empty by blast
hence 3 : backward-terminating-path x

using 1 backward-terminating-path-root
terminating-path-root-end-backward-terminating by blast

have ∃ e . backward-finite-path-root e (xT)
using 1 terminating-path-root-end-converse by blast

hence backward-terminating-path (xT)
using 1 backward-terminating-path-root terminating-path-root-end-converse

by blast
hence forward-terminating-path x

by (simp add: conv-backward-terminating-path)
thus ?thesis

using 3 by (simp add: inf .boundedI)
qed

next
assume terminating-path x
thus ∃ r e . terminating-path-root-end r x e

using terminating-path-root-end-aux by blast
qed

lemma non-empty-terminating-path-root-end-iff :
terminating-path-root-end (start-points x) x (end-points x) ←→ terminating-path

x ∧ x 6= 0
apply (rule iffI)
apply (metis conv-zero non-empty-backward-terminating-path-root-iff

terminating-path-root-end-iff)
using terminating-path-root-end-iff terminating-path-root-end-forward-terminating

root-equals-end-points terminating-path-root-end-backward-terminating
root-equals-start-points
by blast

lemma non-empty-finite-path-root-end-iff :

101

finite-path-root-end (start-points x) x (end-points x) ←→ terminating-path x ∧ x
6= 0
using non-empty-terminating-path-root-end-iff end-point-no-successor by simp

end

end

4 Correctness of Path Algorithms
To show that our theory of paths integrates with verification tasks, we verify
the correctness of three basic path algorithms. Algorithms at the presented
level are executable and can serve prototyping purposes. Data refinement
can be carried out to move from such algorithms to more efficient programs.
The total-correctness proofs use a library developed in [7].
theory Path-Algorithms

imports HOL−Hoare.Hoare-Logic Rooted-Paths

begin

unbundle no trancl-syntax

class choose-singleton-point-signature =
fixes choose-singleton :: ′a ⇒ ′a
fixes choose-point :: ′a ⇒ ′a

class relation-algebra-rtc-tarski-choose-point =
relation-algebra-rtc-tarski + choose-singleton-point-signature +
assumes choose-singleton-singleton: x 6= 0 =⇒ singleton (choose-singleton x)
assumes choose-singleton-decreasing: choose-singleton x ≤ x
assumes choose-point-point: is-vector x =⇒ x 6= 0 =⇒ point (choose-point x)
assumes choose-point-decreasing: choose-point x ≤ x

begin

no-notation
composition (infixl ‹;› 75) and
times (infixl ‹∗› 70)

notation
composition (infixl ‹∗› 75)

4.1 Construction of a path
Our first example is a basic greedy algorithm that constructs a path from a
vertex x to a different vertex y of a directed acyclic graph D.
abbreviation construct-path-inv q x y D W ≡

102

is-acyclic D ∧ point x ∧ point y ∧ point q ∧
D? ∗ q ≤ DT ? ∗ x ∧ W ≤ D ∧ terminating-path W ∧
(W = 0 ←→ q=y) ∧ (W 6= 0 ←→ q = start-points W ∧ y = end-points W)

abbreviation construct-path-inv-simp q x y D W ≡
is-acyclic D ∧ point x ∧ point y ∧ point q ∧
D? ∗ q ≤ DT ? ∗ x ∧ W ≤ D ∧ terminating-path W ∧
q = start-points W ∧ y = end-points W

lemma construct-path-pre:
assumes is-acyclic D

and point y
and point x
and D? ∗ y ≤ DT ? ∗ x

shows construct-path-inv y x y D 0
apply (intro conjI , simp-all add: assms is-inj-def is-p-fun-def path-def)
using assms(2) cycle-iff by fastforce

The following three lemmas are auxiliary lemmas for construct-path-inv.
They are pulled out of the main proof to have more structure.
lemma path-inv-points:

assumes construct-path-inv q x y D W ∧ q 6= x
shows point q

and point (choose-point (D∗q))
using assms apply blast

by (metis assms choose-point-point comp-assoc is-vector-def point-def
reachable-implies-predecessor)

lemma path-inv-choose-point-decrease:
assumes construct-path-inv q x y D W ∧ q 6= x

shows W 6=0 =⇒ choose-point (D∗q) ≤ −((W + choose-point (D∗q) ∗
qT)T ∗1)
proof −

let ?q = choose-point (D∗q)
let ?W = W + ?q ∗ qT

assume as: W 6=0
hence q∗W ≤ W+

by (metis assms conv-contrav conv-invol conv-iso conv-terminating-path
forward-terminating-path-end-points-1 plus-conv point-def ss423bij
terminating-path-iff)

hence ?q · W T ∗1 ≤ D∗q · W T+∗q
using choose-point-decreasing meet-iso meet-isor inf-mono assms

connected-root-iff2 by simp
also have ... ≤ (D · DT+)∗q

by (metis assms inj-distr point-def conv-contrav conv-invol conv-iso meet-isor
mult-isol-var mult-isor star-conv star-slide-var star-subdist

sup.commute sup.orderE)
also have ... ≤ 0

by (metis acyclic-trans assms conv-zero step-has-target order .eq-iff galois-aux

103

ss-p18)
finally have a: ?q ≤ −(W T ∗1)

using galois-aux le-bot by blast

have point ?q
using assms by(rule path-inv-points(2))

hence ?q ≤ −(q∗?qT ∗1)
by (metis assms acyclic-imp-one-step-different-points(2) point-is-point

choose-point-decreasing edge-end end-point-char end-point-no-successor)
with a show ?thesis

by (simp add: inf .boundedI)
qed

lemma end-points:
assumes construct-path-inv q x y D W ∧ q 6= x

shows choose-point (D∗q) = start-points (W + choose-point (D∗q) ∗ qT)
and y = end-points (W + choose-point (D∗q) ∗ qT)

proof −
let ?q = choose-point (D∗q)
let ?W = W + ?q ∗ qT

show 1 : ?q = start-points ?W
proof (rule order .antisym)

show start-points ?W ≤ ?q
by (metis assms(1) path-inv-points(2)

acyclic-imp-one-step-different-points(2)
choose-point-decreasing edge-end edge-start sup.commute
path-concatenation-start-points-approx point-is-point order .eq-iff

sup-bot-left)
show ?q ≤ start-points ?W
proof −

have a: ?q = ?q∗qT ∗1
by (metis assms(1) comp-assoc point-equations(1) point-is-point aux4

conv-zero
choose-point-decreasing choose-point-point conv-contrav conv-one

point-def
inf .orderE inf-compl-bot inf-compl-bot-right is-vector-def maddux-142
sup-bot-left sur-def-var1)

hence ?q =(q · −q) + (?q · −q · −(?W T ∗1))
by (metis assms path-inv-points(2) path-inv-choose-point-decrease

acyclic-imp-one-step-different-points(1) choose-point-decreasing
inf .orderE

inf-compl-bot sup-inf-absorb edge-start point-is-point sup-bot-left)
also have ... ≤ (W ∗1 · −(?W T ∗1) · −q) + (?q · −q · −(?W T ∗1))

by simp
also have ... = (W ∗1 + ?q) · −(q + ?W T ∗1)

by (metis compl-sup inf-sup-distrib2 meet-assoc sup.commute)
also have ... ≤ ?W ∗1 · −(?W T ∗1)
using a by (metis inf .left-commute distrib-right ′ compl-sup inf .cobounded2)

finally show ?q ≤ start-points ?W .

104

qed
qed
show y = end-points ?W
proof −

have point-nq: point ?q
using assms by(rule path-inv-points(2))

hence yp: y ≤ −?q
using 1 assms
by (metis acyclic-imp-one-step-different-points(2) choose-point-decreasing

cycle-no-points(1)
finite-iff finite-iff-msc forward-finite-iff-msc path-aux1a

path-edge-equals-cycle
point-is-point point-not-equal(1) terminating-iff1)

have y = y + (W ∗1 · −(W T ∗1) · −(W ∗1))
by (simp add: inf .commute)

also have ... = y + (q · −(W ∗1))
using assms by fastforce

also have ... = y + (q · −(W ∗1) · −?q)
by (metis calculation sup-assoc sup-inf-absorb)

also have ... = (y · −?q) + (q · −(W ∗1) · −?q)
using yp by (simp add: inf .absorb1)

also have ... = (W T ∗1 · −(W ∗1) · −?q) + (q · −(W ∗1) · −?q)
using assms by fastforce

also have ... = (W T ∗1 + q) · −(W ∗1) · −?q
by (simp add: inf-sup-distrib2)

also have ... = (W T ∗1 + q) · −(W ∗1 + ?q)
by (simp add: inf .assoc)

also have ... = (W T ∗1 + q∗?qT ∗1) · −(W ∗1 + ?q∗qT ∗1)
using point-nq
by(metis assms(1) comp-assoc conv-contrav conv-one is-vector-def point-def

sur-def-var1)
also have ... = (?W T)∗1 · −(?W ∗1)

by simp
finally show ?thesis .

qed
qed

lemma construct-path-inv:
assumes construct-path-inv q x y D W ∧ q 6= x
shows construct-path-inv (choose-point (D∗q)) x y D (W + choose-point

(D∗q)∗qT)
proof (intro conjI)

let ?q = choose-point (D∗q)
let ?W = W + ?q ∗ qT

show is-acyclic D
using assms by blast

show point-y: point y
using assms by blast

show point x

105

using assms by blast
show ?W ≤ D

using assms choose-point-decreasing le-sup-iff point-def ss423bij inf .boundedE
by blast

show D?∗?q ≤ DT ?∗x
proof −

have D+∗q ≤ DT ?∗x
using assms conv-galois-2 order-trans star-1l by blast

thus ?thesis
by (metis choose-point-decreasing comp-assoc dual-order .trans mult-isol

star-slide-var)
qed
show point-nq: point ?q

using assms by(rule path-inv-points(2))
show pathW : path ?W

proof(cases W=0)
assume W=0
thus ?thesis

using assms edge-is-path point-is-point point-nq by simp
next

assume a: W 6=0
have b: ?q∗qT ≤ 1∗?q∗qT ∗−(?q∗qT ∗1)
proof −

have ?q∗qT ≤1 by simp
thus ?thesis

using assms point-nq
by(metis different-points-consequences(1) point-def sur-def-var1

acyclic-imp-one-step-different-points(2) choose-point-decreasing
comp-assoc

is-vector-def point-def point-equations(3 ,4) point-is-point)
qed
have c: W ≤ −(1∗W)∗W ∗1

using assms terminating-path-iff by blast
have d: (?q∗qT)T ∗1 · −((?q∗qT)∗1) = W ∗1 · −(W T ∗1)

using a
by (metis assms path-inv-points(2) acyclic-reachable-points

choose-point-decreasing
edge-end point-is-point comp-assoc point-def sur-total total-one)

have e: ?q∗qT ∗1 · W T ∗1 = 0
proof −

have ?q∗qT ∗1 · W T ∗1 = ?q · W T ∗1
using assms point-nq
by (metis comp-assoc conv-contrav conv-one is-vector-def point-def

sur-def-var1)
also have ... ≤ −(?W T ∗1) · ?W T ∗1

using assms path-inv-choose-point-decrease
by (smt a conv-contrav conv-iso conv-one inf-mono less-eq-def subdistl-eq)

also have ... ≤ 0
using compl-inf-bot eq-refl by blast

106

finally show ?thesis
using bot-unique by blast

qed
show ?thesis
using b c d e by (metis assms comp-assoc edge-is-path

path-concatenation-cycle-free
point-is-point sup.commute point-nq)

qed
show ?W = 0 ←→ ?q = y

apply (rule iffI)
apply (metis assms conv-zero dist-alt edge-start inf-compl-bot-right

modular-1-aux ′ modular-2-aux ′

point-is-point sup.left-idem sup-bot-left point-nq)
by (smt assms end-points(1) conv-contrav conv-invol cycle-no-points(1)

end-point-iff2 has-start-end-points-iff path-aux1b path-edge-equals-cycle
point-is-point start-point-iff2 sup-bot-left top-greatest pathW)

show ?W 6=0 ←→ ?q = start-points ?W ∧ y = end-points ?W
apply (rule iffI)
using assms end-points apply blast
using assms by force

show terminating ?W
by (smt assms end-points end-point-iff2 has-start-end-points-iff point-is-point

start-point-iff2
terminating-iff1 pathW point-nq)

qed

theorem construct-path-partial: VARS p q W
{ is-acyclic D ∧ point y ∧ point x ∧ D?∗y ≤ DT ?∗x }
W := 0 ;
q := y;
WHILE q 6= x

INV { construct-path-inv q x y D W }
DO p := choose-point (D∗q);

W := W + p∗qT ;
q := p

OD
{ W ≤ D ∧ terminating-path W ∧ (W=0 ←→ x=y) ∧ (W 6=0 ←→ x =

start-points W ∧ y = end-points W) }
apply vcg
using construct-path-pre apply blast
using construct-path-inv apply blast
by fastforce

end

For termination, we additionally need finiteness.
context finite
begin

107

lemma decrease-set:
assumes ∀ x:: ′a . Q x −→ P x

and P w
and ¬ Q w

shows card { x . Q x } < card { x . P x }
by (metis Collect-mono assms card-seteq finite mem-Collect-eq not-le)

end

class relation-algebra-rtc-tarski-choose-point-finite =
relation-algebra-rtc-tarski-choose-point +

relation-algebra-rtc-tarski-point-finite
begin

lemma decrease-variant:
assumes y ≤ z

and w ≤ z
and ¬ w ≤ y

shows card { x . x ≤ y } < card { x . x ≤ z }
by (metis Collect-mono assms card-seteq linorder-not-le dual-order .trans
finite-code mem-Collect-eq)

lemma construct-path-inv-termination:
assumes construct-path-inv q x y D W ∧ q 6= x

shows card { z . z ≤ −(W + choose-point (D∗q)∗qT) } < card { z . z ≤ −W
}
proof −

let ?q = choose-point (D∗q)
let ?W = W + ?q ∗ qT

show ?thesis
proof (rule decrease-variant)

show −?W ≤ −W
by simp

show ?q ∗ qT ≤ −W
by (metis assms galois-aux inf-compl-bot-right maddux-142 mult-isor

order-trans top-greatest)
show ¬ (?q ∗ qT ≤ −?W)

using assms end-points(1)
by (smt acyclic-imp-one-step-different-points(2) choose-point-decreasing

compl-sup inf .absorb1
inf-compl-bot-right sup.commute sup-bot.left-neutral conv-zero

end-points(2))
qed

qed

theorem construct-path-total: VARS p q W
[is-acyclic D ∧ point y ∧ point x ∧ D?∗y ≤ DT ?∗x]
W := 0 ;
q := y;

108

WHILE q 6= x
INV { construct-path-inv q x y D W }
VAR { card { z . z ≤ −W } }
DO p := choose-point (D∗q);

W := W + p∗qT ;
q := p

OD
[W ≤ D ∧ terminating-path W ∧ (W=0 ←→ x=y) ∧ (W 6=0 ←→ x =

start-points W ∧ y = end-points W)]
apply vcg-tc
using construct-path-pre apply blast
apply (rule CollectI , rule conjI)
using construct-path-inv apply blast
using construct-path-inv-termination apply clarsimp
by fastforce

end

4.2 Topological sorting
In our second example we look at topological sorting. Given a directed
acyclic graph, the problem is to construct a linear order of its vertices that
contains x before y for each edge (x, y) of the graph. If the input graph
models dependencies between tasks, the output is a linear schedule of the
tasks that respects all dependencies.
context relation-algebra-rtc-tarski-choose-point
begin

abbreviation topological-sort-inv
where topological-sort-inv q v R W ≡

regressively-finite R ∧ R · v∗vT ≤ W+ ∧ terminating-path W ∧ W ∗1 =
v·−q ∧

(W = 0 ∨ q = end-points W) ∧ point q ∧ R∗v ≤ v ∧ q ≤ v ∧ is-vector v

lemma topological-sort-pre:
assumes regressively-finite R
shows topological-sort-inv (choose-point (minimum R 1)) (choose-point

(minimum R 1)) R 0
proof (intro conjI ,simp-all add:assms)

let ?q = choose-point (− (RT ∗ 1))
show point-q: point ?q

using assms by (metis (full-types) annir choose-point-point galois-aux2
is-inj-def is-sur-def

is-vector-def one-idem-mult point-def ss-p18 inf-top-left
one-compl)

show R · ?q ∗ ?qT ≤ 0
by (metis choose-point-decreasing conv-invol end-point-char order .eq-iff

109

inf-bot-left schroeder-2)
show path 0

by (simp add: is-inj-def is-p-fun-def path-def)
show R∗?q ≤ ?q

by (metis choose-point-decreasing compl-bot-eq conv-galois-1 inf-compl-bot-left2
le-inf-iff)

show is-vector ?q
using point-q point-def by blast

qed

lemma topological-sort-inv:
assumes v 6= 1

and topological-sort-inv q v R W
shows topological-sort-inv (choose-point (minimum R (− v))) (v +

choose-point (minimum R (− v))) R (W + q ∗ choose-point
(minimum R (− v))T)
proof (intro conjI)

let ?p = choose-point (minimum R (−v))
let ?W = W + q∗?pT

let ?v = v + ?p
show point-p: point ?p

using assms
by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc

is-vector-def
vector-compl vector-mult)

hence ep-np: end-points (q∗?pT) = ?p
using assms(2)
by (metis aux4 choose-point-decreasing edge-end le-supI1

point-in-vector-or-complement-iff
point-is-point)

hence sp-q: start-points (q∗?pT) = q
using assms(2) point-p
by (metis (no-types, lifting) conv-contrav conv-invol edge-start point-is-point)

hence ep-sp: W 6= 0 =⇒ end-points W = start-points (q∗?pT)
using assms(2) by force

have W ∗1 · (q∗?pT)T ∗1 = v·−q·?p
using assms(2) point-p is-vector-def mult-assoc point-def point-equations(3)

point-is-point
by auto

hence 1 : W ∗1 · (q∗?pT)T ∗1 = 0
by (metis choose-point-decreasing dual-order .trans galois-aux inf .cobounded2

inf .commute)

show regressively-finite R
using assms(2) by blast

show R · ?v∗?vT ≤ ?W+

proof −
have a: R · v∗vT ≤ ?W+

using assms(2) by (meson mult-isol-var order .trans order-prop star-subdist)

110

have b: R · v∗?pT ≤ ?W+

proof −
have R · v∗?pT ≤ W ∗1∗?pT + q∗?pT

by (metis inf-le2 assms(2) aux4 double-compl inf-absorb2 distrib-right)
also have ... = W ∗?pT + q∗?pT

using point-p by (metis conv-contrav conv-one is-vector-def mult-assoc
point-def)

also have ... ≤ W+∗end-points W ∗?pT + q∗?pT

using assms(2)
by (meson forward-terminating-path-end-points-1 join-iso mult-isor

terminating-path-iff)
also have ... ≤ W+∗q∗?pT + q∗?pT

using assms(2) by (metis annil eq-refl)
also have ... = W ?∗q∗?pT

using conway.dagger-unfoldl-distr mult-assoc sup-commute by fastforce
also have ... ≤ ?W+

by (metis mult-assoc mult-isol-var star-slide-var star-subdist sup-ge2)
finally show ?thesis .

qed
have c: R · ?p∗vT ≤ ?W+

proof −
have v ≤ −?p

using choose-point-decreasing compl-le-swap1 inf-le1 order-trans by blast
hence R∗v ≤ −?p

using assms(2) order .trans by blast
thus ?thesis

by (metis galois-aux inf-le2 schroeder-2)
qed
have d: R · ?p∗?pT ≤ ?W+

proof −
have R · ?p∗?pT ≤ R · 1 ′

using point-p is-inj-def meet-isor point-def by blast
also have ... = 0

using assms(2) regressively-finite-irreflexive galois-aux by blast
finally show ?thesis

using bot-least inf .absorb-iff2 by simp
qed
have R · ?v∗?vT = (R · v∗vT) + (R · v∗?pT) + (R · ?p∗vT) + (R · ?p∗?pT)

by (metis conv-add distrib-left distrib-right inf-sup-distrib1 sup.commute
sup.left-commute)

also have ... ≤ ?W+

using a b c d by (simp add: le-sup-iff)
finally show ?thesis .

qed
show pathW : path ?W
proof (cases W = 0)

assume W = 0
thus ?thesis

using assms(2) point-p edge-is-path point-is-point sup-bot-left by auto

111

next
assume a1 : W 6= 0
have fw-path: forward-terminating-path W

using assms(2) terminating-iff by blast
have bw-path: backward-terminating-path (q∗?pT)

using assms point-p sp-q
by (metis conv-backward-terminating conv-has-start-points conv-path

edge-is-path
forward-terminating-iff1 point-is-point start-point-iff2)

show ?thesis
using fw-path bw-path ep-sp 1 a1 path-concatenation-cycle-free by blast

qed
show terminating ?W
proof (rule start-end-implies-terminating)

show has-start-points ?W
apply (cases W = 0)
using assms(2) sp-q pathW
apply (metis (no-types, lifting) point-is-point start-point-iff2

sup-bot.left-neutral)
using assms(2) ep-sp 1 pathW
by (metis has-start-end-points-iff path-concatenation-start-points

start-point-iff2
terminating-iff1)

show has-end-points ?W
apply (cases W = 0)
using point-p ep-np ep-sp pathW end-point-iff2 point-is-point apply force
using point-p ep-np ep-sp 1 pathW
by (metis end-point-iff2 path-concatenation-end-points point-is-point)

qed
show ?W ∗1 = ?v·−?p
proof −

have ?W ∗1 = v
by (metis assms(2) point-p is-vector-def mult-assoc point-def

point-equations(3)
point-is-point aux4 distrib-right ′ inf-absorb2 sup.commute)

also have ... = v·−?p
by (metis choose-point-decreasing compl-le-swap1 inf .cobounded1 inf .orderE

order-trans)
finally show ?thesis

by (simp add: inf-sup-distrib2)
qed
show ?W = 0 ∨ ?p = end-points ?W

using ep-np ep-sp 1 by (metis path-concatenation-end-points sup-bot-left)
show R∗?v ≤ ?v

using assms(2)
by (meson choose-point-decreasing conv-galois-1 inf .cobounded2 order .trans

sup.coboundedI1
sup-least)

show ?p ≤ ?v

112

by simp
show is-vector ?v

using assms(2) point-p point-def vector-add by blast
qed

lemma topological-sort-post:
assumes ¬ v 6= 1

and topological-sort-inv q v R W
shows R ≤ W+ ∧ terminating-path W ∧ (W + W T)∗1 = −1 ′∗1

proof (intro conjI ,simp-all add:assms)
show R ≤ W+

using assms by force
show backward-terminating W ∧ W ≤ 1 ∗ W ∗ (− v + q)

using assms by force
show v · − q + W T ∗ 1 = − 1 ′ ∗ 1

proof (cases W = 0)
assume W = 0
thus ?thesis

using assms
by (metis compl-bot-eq conv-one conv-zero double-compl inf-top.left-neutral

is-inj-def
le-bot mult-1-right one-idem-mult point-def ss-p18 star-zero

sup.absorb2 top-le)
next

assume a1 : W 6= 0
hence −1 ′ 6= 0

using assms backward-terminating-path-irreflexive le-bot by fastforce
hence 1 = 1∗−1 ′∗1

by (simp add: tarski)
also have ... = −1 ′∗1

by (metis comp-assoc distrib-left mult-1-left sup-top-left distrib-right
sup-compl-top)

finally have a: 1 = −1 ′∗1 .
have W ∗1 + W T ∗1 = 1

using assms a1 by (metis double-compl galois-aux4 inf .absorb-iff2
inf-top.left-neutral)

thus ?thesis
using a by (simp add: assms(2))

qed
qed

theorem topological-sort-partial: VARS p q v W
{ regressively-finite R }
W := 0 ;
q := choose-point (minimum R 1);
v := q;
WHILE v 6= 1

INV { topological-sort-inv q v R W }
DO p := choose-point (minimum R (−v));

113

W := W + q∗pT ;
q := p;
v := v + p

OD
{ R ≤ W+ ∧ terminating-path W ∧ (W + W T)∗1 = −1 ′∗1 }
apply vcg
using topological-sort-pre apply blast
using topological-sort-inv apply blast
using topological-sort-post by blast

end

context relation-algebra-rtc-tarski-choose-point-finite
begin

lemma topological-sort-inv-termination:
assumes v 6= 1

and topological-sort-inv q v R W
shows card {z . z ≤ −(v + choose-point (minimum R (−v)))} < card { z . z

≤ −v }
proof (rule decrease-variant)

let ?p = choose-point (minimum R (−v))
let ?v = v + ?p
show −?v ≤ −v

by simp
show ?p ≤ −v

using choose-point-decreasing inf .boundedE by blast
have point ?p

using assms
by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc

is-vector-def
vector-compl vector-mult)

thus ¬ (?p ≤ −?v)
by (metis annir compl-sup inf .absorb1 inf-compl-bot-right maddux-20

no-end-point-char)
qed

Use precondition is-acyclic instead of regressively-finite. They are equiv-
alent for finite graphs.
theorem topological-sort-total: VARS p q v W
[is-acyclic R]
W := 0 ;
q := choose-point (minimum R 1);
v := q;
WHILE v 6= 1

INV { topological-sort-inv q v R W }
VAR { card { z . z ≤ −v } }

DO p := choose-point (minimum R (−v));
W := W + q∗pT ;

114

q := p;
v := v + p

OD
[R ≤ W+ ∧ terminating-path W ∧ (W + W T)∗1 = −1 ′∗1]

apply vcg-tc
apply (drule acyclic-regressively-finite)
using topological-sort-pre apply blast
apply (rule CollectI , rule conjI)
using topological-sort-inv apply blast
using topological-sort-inv-termination apply auto[1]
using topological-sort-post by blast

end

4.3 Construction of a tree
Our last application is a correctness proof of an algorithm that constructs a
non-empty cycle for a given directed graph. This works in two steps. The
first step is to construct a directed tree from a given root along the edges of
the graph.
context relation-algebra-rtc-tarski-choose-point
begin

abbreviation construct-tree-pre
where construct-tree-pre x y R ≡ y ≤ RT ?∗x ∧ point x

abbreviation construct-tree-inv
where construct-tree-inv v x y D R ≡ construct-tree-pre x y R ∧ is-acyclic D ∧

is-inj D ∧
D ≤ R ∧ D∗x = 0 ∧ v = x + DT ∗1 ∧ x∗vT ≤

D? ∧ D ≤ v∗vT ∧
is-vector v

abbreviation construct-tree-post
where construct-tree-post x y D R ≡ is-acyclic D ∧ is-inj D ∧ D ≤ R ∧ D∗x =

0 ∧ DT ∗1 ≤ DT ?∗x ∧
D?∗y ≤ DT ?∗x

lemma construct-tree-pre:
assumes construct-tree-pre x y R

shows construct-tree-inv x x y 0 R
using assms by (simp add: is-inj-def point-def)

lemma construct-tree-inv-aux:
assumes ¬ y ≤ v

and construct-tree-inv v x y D R
shows singleton (choose-singleton (v∗−vT · R))

proof (rule choose-singleton-singleton, rule notI)
assume v∗−vT · R = 0
hence RT ?∗v ≤ v

115

by (metis galois-aux conv-compl conv-galois-1 conv-galois-2 conv-invol
double-compl

star-inductl-var)
hence y = 0

using assms by (meson mult-isol order-trans sup.cobounded1)
thus False
using assms point-is-point by auto

qed

lemma construct-tree-inv:
assumes ¬ y ≤ v

and construct-tree-inv v x y D R
shows construct-tree-inv (v + choose-singleton (v∗−vT · R)T ∗1) x y (D +

choose-singleton (v∗−vT · R)) R
proof (intro conjI)

let ?e = choose-singleton (v∗−vT · R)
let ?D = D + ?e
let ?v = v + ?eT ∗1
have 1 : ?e ≤ v∗−vT

using choose-singleton-decreasing inf .boundedE by blast
show point x

by (simp add: assms)
show y ≤ RT ?∗x

by (simp add: assms)
show is-acyclic ?D

using 1 assms acyclic-inv by fastforce
show is-inj ?D

using 1 construct-tree-inv-aux assms injective-inv by blast
show ?D ≤ R

apply (rule sup.boundedI)
using assms apply blast
using choose-singleton-decreasing inf .boundedE by blast

show ?D∗x = 0
proof −

have ?D∗x = ?e∗x
by (simp add: assms)

also have ... ≤ ?e∗v
by (simp add: assms mult-isol)

also have ... ≤ v∗−vT ∗v
using 1 mult-isor by blast

also have ... = 0
by (metis assms(2) annir comp-assoc vector-prop1)

finally show ?thesis
using le-bot by blast

qed
show ?v = x + ?DT ∗1

by (simp add: assms sup-assoc)
show x∗?vT ≤ ?D?

proof −

116

have x∗?vT = x∗vT + x∗1∗?e
by (simp add: distrib-left mult-assoc)

also have ... ≤ D? + x∗1∗(?e · v∗−vT)
using 1 by (metis assms(2) inf .absorb1 join-iso)

also have ... = D? + x∗1∗(?e · v · −vT)
by (metis assms(2) comp-assoc conv-compl inf .assoc vector-compl

vector-meet-comp)
also have ... ≤ D? + x∗1∗(?e · v)

using join-isol mult-subdistl by fastforce
also have ... = D? + x∗(1 · vT)∗?e

by (metis assms(2) inf .commute mult-assoc vector-2)
also have ... = D? + x∗vT ∗?e

by simp
also have ... ≤ D? + D?∗?e

using assms join-isol mult-isor by blast
also have ... ≤ ?D?

by (meson le-sup-iff prod-star-closure star-ext star-subdist)
finally show ?thesis .

qed
show ?D ≤ ?v∗?vT

proof (rule sup.boundedI)
show D ≤ ?v∗?vT

using assms
by (meson conv-add distrib-left le-supI1 conv-iso dual-order .trans

mult-isol-var order-prop)
have ?e ≤ v∗(−vT · vT ∗?e)

using 1 inf .absorb-iff2 modular-1 ′ by fastforce
also have ... ≤ v∗1∗?e

by (simp add: comp-assoc le-infI2 mult-isol-var)
also have ... ≤ ?v∗?vT

by (metis conv-contrav conv-invol conv-iso conv-one mult-assoc mult-isol-var
sup.cobounded1

sup-ge2)
finally show ?e ≤ ?v∗?vT

by simp
qed
show is-vector ?v

using assms comp-assoc is-vector-def by fastforce
qed

lemma construct-tree-post:
assumes y ≤ v

and construct-tree-inv v x y D R
shows construct-tree-post x y D R

proof −
have v∗xT ≤ DT ?

by (metis (no-types, lifting) assms(2) conv-contrav conv-invol conv-iso
star-conv)

hence 1 : v ≤ DT ?∗x

117

using assms point-def ss423bij by blast
hence 2 : DT ∗1 ≤ DT ?∗x

using assms le-supE by blast
have D?∗y ≤ DT ?∗x
proof (rule star-inductl, rule sup.boundedI)

show y ≤ DT ?∗x
using 1 assms order .trans by blast

next
have D∗(DT ?∗x) = D∗x + D∗DT+∗x

by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)
also have ... = D∗DT+∗x

using assms by simp
also have ... ≤ 1 ′∗DT ?∗x

by (metis assms(2) is-inj-def mult-assoc mult-isor)
finally show D∗(DT ?∗x) ≤ DT ?∗x

by simp
qed
thus construct-tree-post x y D R

using 2 assms by simp
qed

theorem construct-tree-partial: VARS e v D
{ construct-tree-pre x y R }
D := 0 ;
v := x;
WHILE ¬ y ≤ v

INV { construct-tree-inv v x y D R }
DO e := choose-singleton (v∗−vT · R);

D := D + e;
v := v + eT ∗1

OD
{ construct-tree-post x y D R }

apply vcg
using construct-tree-pre apply blast
using construct-tree-inv apply blast
using construct-tree-post by blast

end

context relation-algebra-rtc-tarski-choose-point-finite
begin

lemma construct-tree-inv-termination:
assumes ¬ y ≤ v

and construct-tree-inv v x y D R
shows card { z . z ≤ −(v + choose-singleton (v∗−vT · R)T ∗1) } < card { z .

z ≤ −v }
proof (rule decrease-variant)

let ?e = choose-singleton (v∗−vT · R)

118

let ?v = v + ?eT ∗1
have 1 : ?e ≤ v∗−vT

using choose-singleton-decreasing inf .boundedE by blast
have 2 : singleton ?e

using construct-tree-inv-aux assms by auto
show −?v ≤ −v

by simp
have ?eT ≤ −v∗vT

using 1 conv-compl conv-iso by force
also have ... ≤ −v∗1

by (simp add: mult-isol)
finally show ?eT ∗1 ≤ −v

using assms by (metis is-vector-def mult-isor one-compl)
thus ¬ (?eT ∗1 ≤ −?v)

using 2 by (metis annir compl-sup inf .absorb1 inf-compl-bot-right surj-one
tarski)
qed

theorem construct-tree-total: VARS e v D
[construct-tree-pre x y R]
D := 0 ;
v := x;
WHILE ¬ y ≤ v

INV { construct-tree-inv v x y D R }
VAR { card { z . z ≤ −v } }
DO e := choose-singleton (v∗−vT · R);

D := D + e;
v := v + eT ∗1

OD
[construct-tree-post x y D R]
apply vcg-tc
using construct-tree-pre apply blast
apply (rule CollectI , rule conjI)
using construct-tree-inv apply blast
using construct-tree-inv-termination apply force
using construct-tree-post by blast

end

4.4 Construction of a non-empty cycle
The second step is to construct a path from the root to a given vertex in
the tree. Adding an edge back to the root gives the cycle.
context relation-algebra-rtc-tarski-choose-point
begin

abbreviation comment
where comment - ≡ SKIP

abbreviation construct-cycle-inv

119

where construct-cycle-inv v x y D R ≡ construct-tree-inv v x y D R ∧ point y ∧
y∗xT ≤ R

lemma construct-cycle-pre:
assumes ¬ is-acyclic R

and y = choose-point ((R+ · 1 ′)∗1)
and x = choose-point (R?∗y · RT ∗y)

shows construct-cycle-inv x x y 0 R
proof(rule conjI , rule-tac [2] conjI)

show point-y: point y
using assms by (simp add: choose-point-point is-vector-def mult-assoc

galois-aux ss-p18)
have R?∗y · RT ∗y 6= 0
proof

have R+ · 1 ′ = (R+)T · 1 ′

by (metis (mono-tags, opaque-lifting) conv-e conv-times inf .cobounded1
inf .commute

many-strongly-connected-iff-6-eq mult-oner star-subid)
also have ... = RT+ · 1 ′

using plus-conv by fastforce
also have ... ≤ (RT ? · R)∗RT

by (metis conv-contrav conv-e conv-invol modular-2-var mult-oner
star-slide-var)

also have ... ≤ (RT ? · R)∗1
by (simp add: mult-isol)

finally have a: (R+ · 1 ′)∗1 ≤ (RT ? · R)∗1
by (metis mult-assoc mult-isor one-idem-mult)

assume R?∗y · RT ∗y = 0
hence (R? · RT)∗y = 0

using point-y inj-distr point-def by blast
hence (R? · RT)T ∗1 ≤ −y

by (simp add: conv-galois-1)
hence y ≤ −((R? · RT)T ∗1)

using compl-le-swap1 by blast
also have ... = −((RT ? · R)∗1)

by (simp add: star-conv)
also have ... ≤ −((R+ · 1 ′)∗1)

using a comp-anti by blast
also have ... ≤ −y

by (simp add: assms galois-aux ss-p18 choose-point-decreasing)
finally have y = 0

using inf .absorb2 by fastforce
thus False

using point-y annir point-equations(2) point-is-point tarski by force
qed
hence point-x: point x

by (metis point-y assms(3) inj-distr is-vector-def mult-assoc point-def
choose-point-point)

hence y ≤ RT ? ∗ x

120

by (metis assms(3) point-y choose-point-decreasing inf-le1 order .trans
point-swap star-conv)

thus tree-inv: construct-tree-inv x x y 0 R
using point-x construct-tree-pre by blast

show y ∗ xT ≤ R
proof −

have x ≤ R?∗y · RT ∗y
using assms(3) choose-point-decreasing by blast

also have ... = (R? · RT)∗y
using point-y inj-distr point-def by fastforce

finally have x∗yT ≤ R? · RT

using point-y point-def ss423bij by blast
also have ... ≤ RT

by simp
finally show ?thesis

using conv-iso by force
qed

qed

lemma construct-cycle-pre2 :
assumes y ≤ v

and construct-cycle-inv v x y D R
shows construct-path-inv y x y D 0 ∧ D ≤ R ∧ D ∗ x = 0 ∧ y ∗ xT ≤ R

proof(intro conjI , simp-all add: assms)
show D? ∗ y ≤ DT ? ∗ x

using assms construct-tree-post by blast
show path 0

by (simp add: is-inj-def is-p-fun-def path-def)
show y 6= 0

using assms(2) is-point-def point-is-point by blast
qed

lemma construct-cycle-post:
assumes ¬ q 6= x

and (construct-path-inv q x y D W ∧ D ≤ R ∧ D ∗ x = 0 ∧ y ∗ xT ≤ R)
shows W + y ∗ xT 6= 0 ∧ W + y ∗ xT ≤ R ∧ cycle (W + y ∗ xT)

proof(intro conjI)
let ?C = W + y∗xT

show ?C 6= 0
by (metis assms acyclic-imp-one-step-different-points(2) no-trivial-inverse

point-def ss423bij
sup-bot.monoid-axioms monoid.left-neutral)

show ?C ≤ R
using assms(2) order-trans sup.boundedI by blast

show path (W + y ∗ xT)
by (metis assms construct-tree-pre edge-is-path less-eq-def

path-edge-equals-cycle
point-is-point terminating-iff1)

show many-strongly-connected (W + y ∗ xT)

121

by (metis assms construct-tree-pre bot-least conv-zero less-eq-def
path-edge-equals-cycle star-conv star-subid terminating-iff1)

qed

theorem construct-cycle-partial: VARS e p q v x y C D W
{ ¬ is-acyclic R }
y := choose-point ((R+ · 1 ′)∗1);
x := choose-point (R?∗y · RT ∗y);
D := 0 ;
v := x;
WHILE ¬ y ≤ v

INV { construct-cycle-inv v x y D R }
DO e := choose-singleton (v∗−vT · R);

D := D + e;
v := v + eT ∗1

OD;
comment { is-acyclic D ∧ point y ∧ point x ∧ D?∗y ≤ DT ?∗x };
W := 0 ;
q := y;
WHILE q 6= x

INV { construct-path-inv q x y D W ∧ D ≤ R ∧ D∗x = 0 ∧ y∗xT ≤ R }
DO p := choose-point (D∗q);

W := W + p∗qT ;
q := p

OD;
comment { W ≤ D ∧ terminating-path W ∧ (W = 0 ←→ q=y) ∧ (W 6= 0
←→ q = start-points W ∧ y = end-points W) };

C := W + y∗xT

{ C 6= 0 ∧ C ≤ R ∧ cycle C }
apply vcg
using construct-cycle-pre apply blast
using construct-tree-inv apply blast
using construct-cycle-pre2 apply blast
using construct-path-inv apply blast
using construct-cycle-post by blast

end

context relation-algebra-rtc-tarski-choose-point-finite
begin

theorem construct-cycle-total: VARS e p q v x y C D W
[¬ is-acyclic R]
y := choose-point ((R+ · 1 ′)∗1);
x := choose-point (R?∗y · RT ∗y);
D := 0 ;
v := x;
WHILE ¬ y ≤ v

INV { construct-cycle-inv v x y D R }

122

VAR { card { z . z ≤ −v } }
DO e := choose-singleton (v∗−vT · R);

D := D + e;
v := v + eT ∗1

OD;
comment { is-acyclic D ∧ point y ∧ point x ∧ D?∗y ≤ DT ?∗x };
W := 0 ;
q := y;
WHILE q 6= x

INV { construct-path-inv q x y D W ∧ D ≤ R ∧ D∗x = 0 ∧ y∗xT ≤ R }
VAR { card { z . z ≤ −W } }
DO p := choose-point (D∗q);

W := W + p∗qT ;
q := p

OD;
comment { W ≤ D ∧ terminating-path W ∧ (W = 0 ←→ q=y) ∧ (W 6= 0
←→ q = start-points W ∧ y = end-points W)};

C := W + y∗xT

[C 6= 0 ∧ C ≤ R ∧ cycle C]
apply vcg-tc
using construct-cycle-pre apply blast
apply (rule CollectI , rule conjI)
using construct-tree-inv apply blast
using construct-tree-inv-termination apply force
using construct-cycle-pre2 apply blast
apply (rule CollectI , rule conjI)
using construct-path-inv apply blast
using construct-path-inv-termination apply clarsimp
using construct-cycle-post by blast

end

end

References
[1] A. Armstrong, S. Foster, G. Struth, and T. Weber. Relation algebra.

Archive of Formal Proofs, 2014.

[2] R. Berghammer, H. Furusawa, W. Guttmann, and P. Höfner. Relational
characterisations of paths. Journal of Logical and Algebraic Methods in
Programming, 117:100590, 2020.

[3] R. Diestel. Graph Theory. Springer, third edition, 2005.

[4] W. Guttmann. Stone-Kleene relation algebras. Archive of Formal
Proofs, 2017.

[5] W. Guttmann. Stone relation algebras. Archive of Formal Proofs, 2017.

123

[6] W. Guttmann. An algebraic framework for minimum spanning tree
problems. Theoretical Comput. Sci., 744:37–55, 2018.

[7] W. Guttmann. Verifying minimum spanning tree algorithms with Stone
relation algebras. Journal of Logical and Algebraic Methods in Program-
ming, 101:132–150, 2018.

[8] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366–390, 1994.

[9] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, Uni-
versity of California, Berkeley, 1984.

[10] G. Schmidt and T. Ströhlein. Relations and Graphs. Springer, 1993.

[11] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941.

[12] G. Tinhofer. Methoden der angewandten Graphentheorie. Springer,
1976.

124

	(More) Relation Algebra
	Relation algebras satisfying the Tarski rule
	Relation algebras satisfying the point axiom

	Relational Characterisation of Paths
	Consequences without the Tarski rule
	Consequences with the Tarski rule

	Relational Characterisation of Rooted Paths
	Consequences without the Tarski rule
	Consequences with the Tarski rule
	Consequences with the Tarski rule and the point axiom

	Correctness of Path Algorithms
	Construction of a path
	Topological sorting
	Construction of a tree
	Construction of a non-empty cycle

