Relational Characterisations of Paths

Walter Guttmann and Peter Höfner

July 28, 2020

Abstract

Binary relations are one of the standard ways to encode, characterise and reason about graphs. Relation algebras provide equational axioms for a large fragment of the calculus of binary relations. Although relations are standard tools in many areas of mathematics and computing, researchers usually fall back to point-wise reasoning when it comes to arguments about paths in a graph. We present a purely algebraic way to specify different kinds of paths in Kleene relation algebras, which are relation algebras equipped with an operation for reflexive transitive closure. We study the relationship between paths with a designated root vertex and paths without such a vertex. Since we stay in first-order logic this development helps with mechanising proofs. To demonstrate the applicability of the algebraic framework we verify the correctness of three basic graph algorithms.

Contents

1 (More) Relation Algebra 2
 1.1 Relation algebras satisfying the Tarski rule 8
 1.2 Relation algebras satisfying the point axiom 14

2 Relational Characterisation of Paths 25
 2.1 Consequences without the Tarski rule 26
 2.2 Consequences with the Tarski rule 45

3 Relational Characterisation of Rooted Paths 75
 3.1 Consequences without the Tarski rule 76
 3.2 Consequences with the Tarski rule 84
 3.3 Consequences with the Tarski rule and the point axiom . . . 96

4 Correctness of Path Algorithms 102
 4.1 Construction of a path . 102
 4.2 Topological sorting . 109
 4.3 Construction of a tree . 115
 4.4 Construction of a non-empty cycle 119
Overview

A path in a graph can be defined as a connected subgraph of edges where each vertex has at most one incoming edge and at most one outgoing edge [3, 12]. We develop a theory of paths based on this representation and use it for algorithm verification. All reasoning is done in variants of relation algebras and Kleene algebras [8, 9, 11].

Section 1 presents fundamental results that hold in relation algebras. Relation-algebraic characterisations of various kinds of paths are introduced and compared in Section 2. We extend this to paths with a designated root in Section 3. Section 4 verifies the correctness of a few basic graph algorithms.

These Isabelle/HOL theories formally verify results in [2]. See this paper for further details and related work.

1 (More) Relation Algebra

This theory presents fundamental properties of relation algebras, which are not present in the AFP entry on relation algebras but could be integrated there [1]. Many theorems concern vectors and points.

theory More-Relation-Algebra

imports Relation-Algebra Relation-Algebra-RTC Relation-Algebra-Functions

begin

no-notation trancl ((\rightarrow) [1000] 999)

context relation-algebra begin

notation converse ((\rightarrow^T) [102] 101)

abbreviation bijective where bijective x ≡ is-inj x ∧ is-sur x

abbreviation reflexive where reflexive R ≡ 1' ≤ R

abbreviation symmetric where symmetric R ≡ R = R^T

abbreviation transitive
where transitive $R \equiv R; R \leq R$

General theorems

lemma x-eq-triple-x:
$x \leq x;x^T;x$

proof –
have $x = x;1' \cdot 1$
 by simp
also have $\ldots \leq (x \cdot 1;1^T;(1' \cdot x^T;1)$
 by (rule dedekind)
also have $\ldots = x;(x^T;1 \cdot 1')$
 by (simp add: inf.commute)
also have $\ldots \leq x;(x^T \cdot 1';1^T);(1 \cdot (x^T)^T;1')$
 by (metis comp-assoc dedekind mult-isol)
also have $\ldots \leq x;x^T;x$
 by simp
finally show ?thesis.

qed

lemma inj-triple:
assumes is-inj x
shows $x = x;x^T;x$
by (metis assms eq-iff inf-absorb2 is-inj-def mult-1-left mult-subdistr x-eq-triple-x)

lemma p-fun-triple:
assumes is-p-fun x
shows $x = x;x^T;x$
by (metis assms comp-assoc eq-iff is-p-fun-def mult-isol mult-oner x-eq-triple-x)

lemma loop-backward-forward:
$x^T \leq -(1^T) + x$
by (metis conv-e conv-times inf.cobounded2 test-dom test-domain test-eq-conv galois-2 inf.commute sup.commute)

lemma inj-sur-semi-swap:
assumes is-sur z
 and is-inj x
shows $z \leq y;x \implies x \leq y^T;z$

proof –
assume $z \leq y;x$
hence $z;x^T \leq y;(x;x^T)$
 by (metis mult-isor mult-assoc)
hence $z;x^T \leq y$
 using (is-inj x) unfolding is-inj-def
 by (metis mult-isol order.trans mult-1-right)
hence $(z^T;z);x^T \leq z^T;y$
 by (metis mult-isol mult-assoc)
hence $x^T \leq z^T;y$
using (is-sur z) unfolding is-sur-def
by (metis mult-isor order.trans mult-1-left)
thus ?thesis
 using conv-iso by fastforce
qed

lemma inj-sur-semi-swap-short:
 assumes is-sur z
 and is-inj x
 shows z ≤ y T T;x ⇒ x ≤ y; z
proof –
 assume as: z ≤ y T x
 hence z;x T y T
 using (z ≤ y T x) (is-inj x) unfolding is-inj-def
 by (metis assms(2) conv-invol inf.orderI inf-absorbI inj-p-fun ss-422iii)
 hence x T ≤ z T;y T
 using (is-sur z) unfolding is-sur-def
 by (metis as assms inj-sur-semi-swap conv-contrav conv-invol conv-iso)
 thus x ≤ y; z
 using conv-iso by fastforce
qed

lemma bij-swap:
 assumes bijective z
 and bijective x
 shows z ≤ y T x ←→ x ≤ y; z
by (metis assms inj-sur-semi-swap conv-invol)

The following result is [10, Proposition 4.2.2(iv)].

lemma ss422iv:
 assumes is-p-fun y
 and x ≤ y
 and y;1 ≤ x;1
 shows x = y
proof –
 have y ≤ (x;1);y
 using assms(3) le-inf1 maddux-20 order-trans by blast
 also have ... ≤ x;x T ;y
 by (metis inf-top-left modular-1-var comp-assoc)
 also have ... ≤ x;y T ;y
 using assms(2) conv-iso mult-double-iso by blast
 also have ... ≤ x
 using assms(1) comp-assoc is-p-fun-def mult-isol mult-1-right
 by fastforce
 finally show ?thesis
 by (simp add: assms(2) antisym)
qed

The following results are variants of [10, Proposition 4.2.3].
lemma ss423conv:
 assumes bijective x
 shows \(x \cdot y \leq z \leftrightarrow y \leq x^T \cdot z \)
 by (metis assms conv-contrav conv-iso inj-p-fun is-map-def ss423 sur-total)

lemma ss423bij:
 assumes bijective x
 shows \(y \cdot x^T \leq z \leftrightarrow y \leq z \cdot x \)
 by (simp add: assms is-map-def p-fun-inj ss423 total-sur)

lemma inj-distr:
 assumes is-inj z
 shows \((x \cdot y) \cdot z = (x \cdot z) \cdot (y \cdot z) \)
 apply (rule antisym)
 using mult-subdistr-var apply blast
 using assms conv-iso inj-p-fun p-fun-distl by fastforce

lemma test-converse:
 \(x \cdot 1' = x^T \cdot 1' \)
 by (metis conv-e conv-times inf-le2 is-test-def test-eq-conv)

lemma injective-down-closed:
 assumes is-inj x and \(y \leq x \)
 shows is-inj y
 by (meson assms conv-iso dual-order.trans is-inj-def mult-isol-var)

lemma injective-sup:
 assumes is-inj t and \(c; t^T \leq 1' \)
 and is-inj e
 shows is-inj \((t + e) \)
proof –
 have \(1; t^T \leq 1' \)
 using assms(2) conv-contrav conv-e conv-invol conv-iso by fastforce
 have \((t + e);(t + e)^T = t; t^T + t; e^T + e; t^T + e; e^T \)
 by (metis conv-add distrib-left distrib-right sup-assoc)
 also have \(... \leq 1' \)
 using 1 assms by (simp add: is-inj-def le-sup1)
 finally show \(\)thesis
 unfolding is-inj-def .
qed

Some (more) results about vectors

lemma vector-meet-comp:
 assumes is-vector v and is-vector w
 shows \(v \cdot w^T = v \cdot w^T \)
 by (metis assms conv-contrav conv-one inf-top-right is-vector-def vector-1)
lemma vector-meet-comp':
assumes is-vector v
shows $v;v^T = v\cdot v^T$
using assms vector-meet-comp by blast

lemma vector-meet-comp-x:
$x;1;x^T = x;1\cdot x^T$
by (metis comp-assoc inf-top.right-neutral is-vector-def one-idem-mult vector-1)

lemma vector-meet-comp-x':
$x;1;x = x;1\cdot x$
by (metis inf-commute inf-top.right-neutral ra-1)

lemma vector-prop1:
assumes is-vector v
shows $-v^T;v = 0$
by (metis assms compl-inf-bot inf-top.right-neutral one-compl one-idem-mult vector-2)

The following results and a number of others in this theory are from [5].

lemma ee:
assumes is-vector v
and $e \leq v;-v^T$
shows $e;e = 0$
proof
 have $e;v \leq 0$
 by (metis assms annir mult-isor vector-prop1 comp-assoc)
 thus $?thesis$
 by (metis assms (2) annil antisym bot-least comp-assoc mult-isol)
qed

lemma et:
assumes is-vector v
and $e \leq v;-v^T$
and $t \leq v;v^T$
shows $e;t = 0$
and $e;t^T = 0$
proof
 have $e;t \leq v;-v^T;v;v^T$
 by (metis assms(2-3) mult-isol-var comp-assoc)
 thus $e;t = 0$
 by (simp add: assms(1) comp-assoc le-bot vector-prop1)
next
 have $t^T \leq v;v^T$
 using assms(3) conv-iso by fastforce
 hence $e;t^T \leq v;-v^T;v;v^T$
 by (metis assms(2) mult-isol-var comp-assoc)
 thus $e;t^T = 0$
Some (more) results about points

definition point

where $\text{point } x \equiv \text{is-vector } x \land \text{bijective } x$

lemma point-swap:

assumes $\text{point } p$

and $\text{point } q$

shows $p \leq x; q \leftrightarrow q \leq x^T; p$

by (metis assms conv-invol inj-sur-semi-swap point-def)

Some (more) results about singletons

abbreviation singleton

where $\text{singleton } x \equiv \text{bijective } (x; 1) \land \text{bijective } (x^T; 1)$

lemma singleton-injective:

assumes $\text{singleton } x$

shows $\text{is-inj } x$

using $\text{assms inj-sur-down-closed maddux-20 by blast}$

lemma injective-inv:

assumes $\text{is-vector } v$

and $\text{singleton } e$

and $e \leq v; -v^T$

and $t \leq v; v^T$

and $\text{is-inj } t$

shows $\text{is-inj } (t + c)$

by (metis assms singleton-injective injective-sup bot-least et (2))

lemma singleton-is-point:

assumes $\text{singleton } p$

shows $\text{point } (p; 1)$

by (simp add: assms comp-assoc is-vector-def point-def)

lemma singleton-transp:

assumes $\text{singleton } p$

shows $\text{singleton } (p^T)$

by (simp add: assms)

lemma point-to-singleton:

assumes $\text{singleton } p$

shows $\text{singleton } (1^T; p; p^T)$

using $\text{assms dom-def-aux-var dom-one is-vector-def point-def by fastforce}$

lemma singleton-singletonT:

assumes $\text{singleton } p$

shows $p \leq 1'$
using assms singleton-injective is-inj-def by blast

Minimality

abbreviation minimum
where minimum x v ≡ v · -(x^T;v)

Regressively finite

abbreviation regressively-finite
where regressively-finite x ≡ ∀ v . is-vector v ∧ v ≤ x^T;v −→ v = 0

lemma regressively-finite-minimum:
 regressively-finite R −→ is-vector v −→ v ≠ 0 −→ minimum R v ≠ 0
using galois-aux2 by blast

lemma regressively-finite-irreflexive:
 assumes regressively-finite x
 shows x ≤ −1′
proof −
 have 1: is-vector ((x^T · 1′);1)
 by (simp add: is-vector-def mult-assoc)
 have (x^T · 1′);1 = (x^T · 1′);(x^T · 1′);1
 by (simp add: is-test-def test-comp-eq-mult)
 with 1 have (x^T · 1′);1 = 0
 by (metis assms comp-assoc mult-subdistr)
 thus ?thesis
 by (metis conv-e conv-invol conv-times conv-zero galois-aux ss-p18)
qed

end

1.1 Relation algebras satisfying the Tarski rule

class relation-algebra-tarski = relation-algebra +
 assumes tarski: x ≠ 0 −→ 1;x;1 = 1
begin

 Some (more) results about points

lemma point-equations:
 assumes is-point p
 shows p;1 = p
 and 1;p = 1
 and p^T;1 = 1
 and 1;p^T = p^T
 apply (metis assms is-point-def is-vector-def)
using assms is-point-def is-vector-def tarski vector-comp apply fastforce
apply (metis assms conv-contrav conv-one conv-zero is-point-def is-vector-def tarski)
by (metis assms conv-contrav conv-one is-point-def is-vector-def)

 The following result is [10, Proposition 2.4.5(i)].
lemma point-singleton:
 assumes is-point p
 and is-vector v
 and v \neq 0
 and v \leq p
 shows v = p
proof
 have 1;v = 1
 using assms(2,3) comp-assoc is-vector-def tarski by fastforce
hence p = 1;v \cdot p
 by simp
also have ... \leq (1 \cdot p;v\text{\textsf{T}});(v \cdot 1\text{\textsf{T}};p)
 using dedekind by blast
also have ... \leq p;v\text{\textsf{T}};v
 by (simp add: mult-subdistl)
also have ... \leq p;p\text{\textsf{T}};v
 using assms(4) conv-iso mult-double-iso by blast
also have ... \leq v
 by (metis assms(1) is-inj-def is-point-def mult-isor mult-onel)
finally show \?thesis
 using assms(4) by simp
qed

lemma point-not-equal-aux:
 assumes is-point p
 and is-point q
 shows p \neq q \iff p \cdot - q \neq 0
proof
 show p \neq q \implies p \cdot - q \neq 0
 proof (rule contrapos-nn)
 assume p \cdot - q = 0
 thus p = q
 using assms galois-aux2 is-point-def point-singleton by fastforce
 qed
next
 show p \cdot - q \neq 0 \implies p \neq q
 using inf-compl-bot by blast
qed

The following result is part of \[10, \text{Proposition 2.4.5(ii)}\].

lemma point-not-equal:
 assumes is-point p
 and is-point q
 shows p \neq q \iff p \leq - q
 and p \leq - q \iff p;q\text{\textsf{T}} \leq -1\text{\textsf{T}}
 and p;q\text{\textsf{T}} \leq -1\text{\textsf{T}} \iff p\text{\textsf{T}};q \leq 0
proof
 have p \neq q \implies p \leq - q
 by (metis assms point-not-equal-aux is-point-def vector-compl vector-mult
point-singleton

\[\text{inf.orderI \ inf.cobounded1} \]

thus \(p \neq q \iff p \leq -q \)

by (metis assms(1) galois-aux inf.orderE is-point-def order.refl)

next

show \((p \leq -q) = (p ; q^T \leq -1') \)

by (simp add: conv-galois-2)

next

show \((p ; q^T \leq -1') = (p^T ; q \leq 0) \)

by (metis assms(2) compl-bot-eq conv-galois-2 galois-aux maddux-141
mult-1-right
point-equations(4))

qed

lemma point-is-point:

point \(x \leftarrow\) is-point \(x \)

apply (rule iffI)

apply (simp add: is-point-def point-def surj-one tarski)

using is-point-def is-vector-def mult-assoc point-def sur-def-var1 tarski by fastforce

lemma point-in-vector-or-complement:

assumes point \(p \)

and is-vector \(v \)

shows \(p \leq v \lor p \leq -v \)

proof (cases \(p \leq -v \))

assume \(p \leq -v \)

thus \(\)thesis

by simp

next

assume \(\neg(p \leq -v) \)

hence \(p \cdot v \neq 0 \)

by (simp add: galois-aux)

hence 1:(p•v) = 1

using assms comp-assoc is-vector-def point-def tarSKI vector-mult by fastforce

hence \(p \leq p ; (p \cdot v)^T ; (p \cdot v) \)

by (metis inf-top.left-neutral modular-2-var
also have \(\ldots \leq p \cdot p^T \cdot v \)

by (simp add: mult-isol-var)

also have \(\ldots \leq v \)

using assms(1) comp-assoc point-def ss423conv by fastforce

finally show \(\)thesis ..

qed

lemma point-in-vector-or-complement-iff:

assumes point \(p \)

and is-vector \(v \)

shows \(p \leq v \iff \neg(p \leq -v) \)

by (metis assms annir compl-top-eq galois-aux inf.orderE one-compl point-def
lemma different-points-consequences:
 assumes point p
 and point q
 and p ≠ q
 shows \(p^T ; -q = 1 \)
 and \(-q^T ; p = 1 \)
 and \(-(p^T ; -q) = 0 \)
 and \(-(q^T ; p) = 0 \)
 proof
 have \(p \leq -q \)
 by (metis assms compl-le-swap1 inf_absorb1 inf_absorb2 point-def top-greatest point-in-vector-or-complement)
 thus 1: \(p^T ; -q = 1 \)
 using assms(1) by (metis is-vector-def point-def ss423conv top-le)
 thus 2: \(-q^T ; p = 1 \)
 using conv-compl cone-one by force
 from 1 show \(-(p^T ; -q) = 0 \)
 by simp
 from 2 show \(-(q^T ; p) = 0 \)
 by simp
 qed

Some (more) results about singletons

lemma singleton-pq:
 assumes point p
 and point q
 shows \(\text{singleton} (p ; q^T) \)
 using assms comp-assoc point-def point-equations(1,3) point-is-point by fastforce

lemma singleton-equal-aux:
 assumes singleton p
 and singleton q
 and \(q \leq p \)
 shows \(p \leq q ; 1 \)
 proof
 have \(p \leq q \)
 by (simp add: assms(1) maddux-21 ss423conv)
 have \(p = 1 ; (q^T ; q ; 1) \cdot p \)
 using tarski
 by (metis assms(2) annir singleton-injective inf.commute inf-top.right-neutral inj-triple
 mult-assoc surj-one)
 also have \(\ldots \leq (1 \cdot p ; (q^T ; q ; 1)^T) ; (q^T ; q ; 1 \cdot 1 ; p) \)
 using dedekind by (metis conv-one)
 also have \(\ldots \leq p ; 1 ; q^T ; q ; q^T ; q ; 1 \)
by (simp add: comp-assoc mult-isol)
also have \(\ldots \leq p; 1 \cdot p^T; q; q^T; q; 1 \)
 using assms(3) by (metis comp-assoc conv-iso mult-double-iso)
also have \(\ldots \leq 1^T; q; q^T; q; 1 \)
 using \(p \cdot p \) using mult-isor by blast
also have \(\ldots \leq q; 1 \)
 using assms(2) singleton-singletonT by (simp add: comp-assoc mult-isol)
finally show \(?thesis \).
qed

lemma singleton-equal:
assumes singleton p
 and singleton q
 and q \leq p
shows q = p
proof
 have \(p_1: p \leq q; 1 \)
 using assms by (rule singleton-equal-aux)
 have \(p^T \leq q^T; 1 \)
 using assms singleton-equal-aux singleton-transp conv-iso by fastforce
 hence \(p_2: p \leq 1 \cdot q \)
 using conv-iso by force
 have \(p \leq q; 1 \cdot 1; q \)
 using \(p_1 \cdot p_2 \) inf.boundedI by blast
 also have \(\ldots \leq (q \cdot 1; q; 1); (1 \cdot q^T; 1; q) \)
 using dedekind by (metis comp-assoc conv-one)
 also have \(\ldots \leq q; q^T; 1; q \)
 by (simp add: mult-isor comp-assoc)
 also have \(\ldots \leq q; 1 \)
 by (metis assms(2) conv-contrav conv-invol conv-one is-inj-def mult-assoc
 mult-isol
 one-idem-mult)
 also have \(\ldots \leq q \)
 by simp
 finally have \(p \leq q \).
 thus q = p.
 using assms(3) by simp
qed

lemma singleton-nonsplit:
assumes singleton p
 and \(x \leq p \)
shows \(x = 0 \lor x = p \)
proof (cases \(x = 0 \))
 assume \(x = 0 \)
 thus \(?thesis \).
next
 assume \(1: x \neq 0 \)
have \textit{singleton} \(x \)

\textbf{proof} (safe)

\begin{itemize}
 \item show \(\text{is-inj} \ (x;1) \)
 \hspace{0.5cm} \textbf{using} \ \textit{assms} \ \textit{injective-down-closed} \ \textit{mult-isor} \ \textbf{by} \ \textit{blast}
 \item show \(\text{is-inj} \ (x^T;1) \)
 \hspace{0.5cm} \textbf{using} \ \textit{assms} \ \textit{conv-iso} \ \textit{injective-down-closed} \ \textit{mult-isol-var} \ \textbf{by} \ \textit{blast}
 \item show \(\text{is-sur} \ (x;1) \)
 \hspace{0.5cm} \textbf{using} \ \textit{1 comp-assoc} \ \textit{sur-def-var1} \ \textit{tarski} \ \textbf{by} \ \textit{fastforce}
 \hspace{0.5cm} \textbf{thus} \ \textit{is-sur} \ (x^T;1)
 \hspace{0.5cm} \textbf{by} \ (\textit{metis} \ \textit{conv-contrav} \ \textit{conv-one} \ \textit{mult-semigroup-axioms} \ \textit{sur-def-var1} \ \textit{semigroup.assoc})
\end{itemize}

\textbf{qed}

\textbf{thus} \ ?\textit{thesis}

\textbf{using} \ \textit{assms} \ \textit{singleton-equal} \ \textbf{by} \ \textit{blast}

\textbf{qed}

\textbf{lemma} \ \textit{singleton-nonzero}:

\textbf{assumes} \ \textit{singleton} \ \textit{p}

\textbf{shows} \ \(p \neq 0 \)

\textbf{proof}

\begin{itemize}
 \item \textbf{assume} \ \(p = 0 \)
 \item \textbf{hence} \ \textit{point} \ 0
 \hspace{0.5cm} \textbf{using} \ \textit{assms} \ \textit{singleton-is-point} \ \textbf{by} \ \textit{fastforce}
 \item \textbf{thus} \ \textit{False}
 \hspace{0.5cm} \textbf{by} \ (\textit{simp add:} \ \textit{is-point-def} \ \textit{point-is-point})
\end{itemize}

\textbf{qed}

\textbf{lemma} \ \textit{singleton-sum}:

\textbf{assumes} \ \textit{singleton} \ \textit{p}

\textbf{shows} \ \(p \leq x + y \leftrightarrow (p \leq x \lor p \leq y) \)

\textbf{proof}

\begin{itemize}
 \item \textbf{show} \ \(p \leq x + y \Rightarrow p \leq x \lor p \leq y \)
 \item \textbf{proof} =
 \hspace{0.5cm} \textbf{assume} \ \textit{as}: \ \(p \leq x + y \)
 \hspace{0.5cm} \textbf{show} \ \(p \leq x \lor p \leq y \)
 \hspace{0.5cm} \textbf{proof} \ (\textit{cases} \ \(p \leq x \))
 \hspace{1cm} \textbf{assume} \ \(p \leq x \)
 \hspace{1.5cm} \textbf{thus} \ \ ?\textit{thesis} ..
 \hspace{0.5cm} \textbf{next}
 \hspace{1cm} \textbf{assume} \ \textit{a} : \neg (p \leq x)
 \hspace{1.5cm} \textbf{hence} \ \(p \cdot x \neq p \)
 \hspace{2cm} \textbf{using} \ \textit{a inf.order1} \ \textbf{by} \ \textit{fastforce}
 \hspace{1.5cm} \textbf{hence} \ \(p \leq -x \)
 \hspace{2cm} \textbf{using} \ \textit{assms} \ \textit{singleton-nonsplit galois-aux inf-le1} \ \textbf{by} \ \textit{blast}
 \hspace{1.5cm} \textbf{hence} \ \(p \leq y \)
 \hspace{2cm} \textbf{using} \ \textit{as by} \ (\textit{metis} \ \textit{galois-1 inf.orderE})
 \hspace{1.5cm} \textbf{thus} \ \ ?\textit{thesis}
 \hspace{2cm} \textbf{by} \ \textit{simp}
\end{itemize}

\textbf{qed}
qed
next
 show \(p \leq x \lor p \leq y \implies p \leq x + y \)
 using sup.coboundedI1 sup.coboundedI2 by blast
qed

lemma singleton-iff:
 \(\text{singleton } x \iff x \neq 0 \land x^T;1;x + x;1;x^T \leq 1' \)
by (smt comp-assoc conv-contrav conv-invol conv-one is-inj-def le-sup-iff
one-idem-mult
 sur-def-var1 tarski)

lemma singleton-not-atom-in-relation-algebra-tarski:
 assumes \(p \neq 0 \)
 and \(\forall x . x \leq p \longrightarrow x = 0 \lor x = p \)
 shows \(\text{singleton } p \)
nitpick [expect=genuine] oops
end

1.2 Relation algebras satisfying the point axiom

class relation-algebra-point = relation-algebra +
 assumes point-axiom: \(x \neq 0 \longrightarrow (\exists y z . \text{point } y \land \text{point } z \land y; z^T \leq x) \)
begin

 Some (more) results about points

lemma point-exists:
 \(\exists x . \text{point } x \)
by (metis (full-types) eq-iff is-inj-def is-sur-def is-vector-def point-axiom
point-def)

lemma point-below-vector:
 assumes \(\text{is-vector } v \)
 and \(v \neq 0 \)
 shows \(\exists x . \text{point } x \land x \leq v \)
proof -
 from assms(2) obtain y and z where I: \(\text{point } y \land \text{point } z \land y; z^T \leq v \)
 using point-axiom by blast
 have \(z^T;1 = (1;z)^T \)
 using conv-contrav conv-one by simp
 hence \(y;(1;z)^T \leq v \)
 using I by (metis assms(1) comp-assoc is-vector-def mult-isor)
 thus \?thesis
 using I by (metis conv-one is-vector-def point-def sur-def-var1)
qed

end
class relation-algebra-tarski-point = relation-algebra-tarski + relation-algebra-point

begin

lemma atom-is-singleton:
 assumes p≠0
 and ∀ x. x≤p → x=0 ∨ x=p
 shows singleton p
by (metis assms singleton-nonzero singleton-pq point-axiom)

lemma singleton-iff-atom:
 singleton p ←→ p≠0 ∧ (∀ x. x≤p → x=0 ∨ x=p)
using singleton-nonsplit singleton-nonzero atom-is-singleton by blast

lemma maddux-tarski:
 assumes x≠0
 shows ∃ y. y≠0 ∧ y≤x ∧ is-p-fun y
proof –
 obtain p q where 1: point p ∧ point q ∧ p;q^T ≤ x
 using assms point-axiom by blast
 hence 2: p;q^T ≠ 0
 by (simp add: singleton-nonzero singleton-pq)
 have is-p-fun (p;q^T)
 using 1 by (meson singleton-singletonT singleton-pq singleton-transp
 is-inj-def p-fun-inj)
 thus ?thesis
 using 1 2 by force
qed

Intermediate Point Theorem [10, Proposition 2.4.8]

lemma intermediate-point-theorem:
 assumes point p
 and point r
 shows p ≤ x;y;r ←→ (∃ q. point q ∧ p ≤ x;q ∧ q ≤ y;r)
proof
 assume 1: p ≤ x;y;r
 let ?v = x^T;p · y;r
 have 2: is-vector ?v
 using assms comp-assoc is-vector-def point-def vector-mult by fastforce
 have ?v ≠ 0
 using 1 by (metis assms(1) inf.absorb2 is-point-def maddux-141
 point-is-point mult.assoc)
 hence ∃ q . point q ∧ q ≤ ?v
 using 2 point-below-vector by blast
 thus ∃ q . point q ∧ p ≤ x;q ∧ q ≤ y;r
 using assms(1) point-swap by auto
next
 assume ∃ q . point q ∧ p ≤ x;q ∧ q ≤ y;r
 thus p ≤ x;y;r

15
using comp-assoc mult-isol order-trans by fastforce

qed

end

context relation-algebra

begin

lemma unfoldl-inductl-implies-unfoldr:
assumes \(\forall x. 1' + x; (\text{rtc } x) \leq \text{rtc } x \)
and \(\forall x y z. x + y; z \leq z \Rightarrow \text{rtc}(y); x \leq z \)
shows \(1' + \text{rtc}(x); x \leq \text{rtc } x \)
by (metis assms le-sup-iff mult-oner order.trans subdistl-eq sup-absorb2 sup-ge1)

lemma star-transpose-swap:
assumes \(\forall x. 1' + x; (\text{rtc } x) \leq \text{rtc } x \)
and \(\forall x y z. x + y; z \leq z \Rightarrow \text{rtc}(y); x \leq z \)
shows \(\text{rtc}(\text{rtc}(x)); x \leq \text{rtc } x \)
apply (simp only: eq-iff; rule conjI)
apply (metis assms conv-add conv-contrav conv-e conv-iso mult-1-right
unfoldl-inductl-implies-unfoldr)
by (metis assms conv-add conv-contrav conv-e conv-inv conv-iso mult-1-right
unfoldl-inductl-implies-unfoldr)

lemma unfoldl-inductl-implies-inductr:
assumes \(\forall x. 1' + x; (\text{rtc } x) \leq \text{rtc } x \)
and \(\forall x y z. x + y; z \leq z \Rightarrow \text{rtc}(y); x \leq z \)
shows \(x + z; y \leq z \Rightarrow x; \text{rtc}(y) \leq z \)
by (metis assms conv-add conv-contrav conv-e conv-inv conv-iso mult-1-right
unfoldl-inductl-implies-unfoldr)

end

context relation-algebra-rtc

begin

abbreviation \(\text{tc } ((\cdot^+)[101] 100) \) where \(\text{tc } x \equiv x; x^* \)

abbreviation is-acyclic
where \(\text{is-acyclic } x \equiv x^+ \leq -1' \)

General theorems

lemma star-denest-10:
assumes \(x;y = 0 \)
shows \((x+y)^* = y; y^*; x^* + x^* \)
using assms bubble-sort sup.commute by auto

lemma star-star-plus:
\[x^* + y^* = x^+ + y^* \]

by (metis (full-types) sup.left-commute star-plus-one star-unfoldl-eq sup.commute)

The following two lemmas are from [6].

Lemma cancel-separate:

assumes \(x : y \leq 1' \)

shows \(x^* ; y^* \leq x^* + y^* \)

Proof:

- have \(x ; y^* = x + x ; y ; y^* \)

 by (metis comp-assoc conway.dagger-unfoldl-distr distrib-left mult-oner)

also have \(... \leq x + y^* \)

by (metis assms join-isol star-invol star-plus-one star-subdist-var-2 sup.absorb2 sup.assoc)

also have \(... \leq x^* + y^* \)

using join-isol by fastforce

finally have \(x ; (x^* + y^*) \leq x^* + y^* \)

by (simp add: distrib-left le-supI1)

thus \(?thesis \)

by (simp add: rtc-inductl)

qed

Lemma cancel-separate-inj-converse:

assumes \(is-inj x \)

shows \(x^* \cdot x^{T*} = x^* + x^{T*} \)

Apply (rule antisym)

using assms cancel-separate is-inj-def apply blast

by (metis conway.dagger-unfoldl-distr le-supI mult-1-right mult-isol sup.cobounded1)

Lemma cancel-separate-p-fun-converse:

assumes \(is-p-fun x \)

shows \(x^{T*} \cdot x^* = x^* + x^{T*} \)

using sup-commute assms cancel-separate-inj-converse p-fun-inj by fastforce

Lemma cancel-separate-converse-idempotent:

assumes \(is-inj x \)

and \(is-p-fun x \)

shows \((x^* + x^{T*});(x^* + x^{T*}) = x^* + x^{T*} \)

by (metis assms cancel-separate cancel-separate-p-fun-converse church-rosser-equv is-inj-def star-denest-var-6)

Lemma triple-star:

assumes \(is-inj x \)

and \(is-p-fun x \)

shows \(x^* ; x^{T*} ; x^* = x^* + x^{T*} \)

by (simp add: assms cancel-separate-inj-converse cancel-separate-p-fun-converse)
lemma inj-xts:
 assumes is-inj x
 shows $x; x^{T*} \leq x^* + x^{T*}$
by (metis assms cancel-separate-inj-converse distrib-right less-eq-def star-ext)

lemma plus-top:
 $x^+; 1 = x; 1$
by (metis comp-assoc conway dagger-unfoldr-distr sup-top-left)

lemma top-plus:
 $1; x^+ = 1; x$
by (metis comp-assoc conway dagger-unfoldr-distr star-denest-var-2 star-ext star-slide-var sup-top-left top-unique)

lemma plus-conv:
 $(x^+)^T = x^{T+}$
by (simp add: star-conv star-slide-var)

lemma inj-implies-step-forwards-backwards:
 assumes is-inj x
 shows $x^*;(x^+;1); 1 \leq x^{T}; 1$
proof –
 have $(x^+;1); 1 \leq (x^*;x^T); (x^*;x^{T}); 1$
 by (metis conv-contrav conv-e dedekind mult-1-right mult-isor star-slide-var)
 also have $... \leq (x^*;x^T); 1$
 by (simp add: mult-isor)
 finally have $1; (x^+;1); 1 \leq (x^*;x^T); 1$.
 have $x;(x^*;x^T); 1 \leq (x^+;x;x^T); 1$
 by (metis inf-idem meet-interchange mult-isor)
 also have $... \leq (x^+;1); 1$
 using assms is-inj-def meet-isor mult-isor by fastforce
 finally have $x;(x^*;x^T); 1 \leq (x^*;x^T); 1$
 using 1 by fastforce
 hence $x^*;(x^+;1); 1 \leq (x^*;x^T); 1$
 using 1 by (simp add: rtc-inductl)
 thus $x^*;(x^+;1); 1 \leq x^T; 1$
 using inf.cobounded2 mult-isor order-trans by blast
qed

Acyclic relations

The following result is from [4].

lemma acyclic-inv:
 assumes is-acyclic t
 and is-vector v
 and $e \leq v; -v^T$
 and $t \leq v; v^T$
 shows is-acyclic $(t + e)$
proof
 have \(t^+;e \leq t^+;v;−v^T \)
 by (simp add: assms(3) mult-assoc mult-isol)
 also have \(... \leq v;v^T; t^*;v;−v^T \)
 by (simp add: assms(4) mult-isor)
 also have \(... \leq v;−v^T \)
 by (metis assms(2) mult-double-iso top-greatest is-vector-def mult-assoc)
 also have \(... \leq v;−v^T \)
 by (simp add: assms)
 finally have \(\ldots \leq v;−v^T \)
 by (simp add: conv-galois-1)
 finally have \(1: t^+;e \leq −1' \)
 by (simp add: assms)
 have \(e \leq −v^T \)
 by (simp add: assms)
 also have \(... \leq v;−v^T \)
 by (simp add: assms)
 finally have \(2: t^+;e + e \leq −1' \)
 using 1 by simp
 have \(3: e;t^* = e \)
 by (metis assms independence2)
 have \(4: e^* = 1' + e \)
 using assms independence2
 also have \(... = (t + e);t^*;(1' + e) \)
 by simp
 also have \(... = t^+;(1' + e) + e; t^*;(1' + e) \)
 by simp
 also have \(... = t^+;(1' + e) + e; t^*;(1' + e) \)
 by simp
 also have \(... = t^+;(1' + e) + e; t^* + t^*;e + e \)
 by simp
 also have \(... \leq −1' \)
 using assms(1) 2 by simp
 finally show \(?thesis \).
qed

lemma acyclic-single-step:
 assumes is-acyclic x
 shows \(x \leq −1' \)
 by (metis assms dual-order.trans mult-isol mult-oner star-ref)

lemma acyclic-reachable-points:
 assumes is-point p
 and is-point q
 and \(p \leq x;q \)
 and is-acyclic x
 shows \(p \neq q \)
proof
assume $p = q$
hence $p \leq x; q \cdot q$
 by (simp add: assms(3) eq-iff inf.absorb2)
also have ... $= (x \cdot 1'); q$
 using assms(2) inj-distr is-point-def by simp
also have ... $\leq (-1' \cdot 1'); q$
 using acyclic-single-step assms(4) by (metis abel-semigroup.commute
 inf.abel-semigroup-axioms
 meet-isor mult-isor)
also have ... $= 0$
 by simp
finally have $p \leq 0$.
thus False
 using assms(1) bot-unique is-point-def by blast
qed

lemma acyclic-trans:
assumes is-acyclic x
 shows $x \leq -(x^T)$
proof –
 have $\exists c \geq x. c \leq -(x^+)^T$
 by (metis assms compl-mono conv-galois-2 conv-iso double-compl mult-onel
 star-1l)
 thus ?thesis
 by (metis dual-order.trans plus-conv)
qed

lemma acyclic-trans':
assumes is-acyclic x
 shows $x^* \leq -(x^{T^*})$
proof –
 have $x^* \leq - (-(x^T ; - (1''))) ; (x^+)^T$
 by (metis assms conv-galois-1 conv-galois-2 order-trans star-trans)
 then show ?thesis
 by (simp add: star-conv)
qed

Regressively finite

lemma regressively-finite-acyclic:
assumes regressively-finite x
 shows is-acyclic x
proof –
 have 1: is-vector $((x^+ \cdot 1'); 1)$
 by (simp add: is-vector-def mult-assoc)
 have $(x^+ \cdot 1'); 1 = (x^{T^+} \cdot 1'); 1$
 by (metis plus-conv test-converse)
 also have ... $\leq x^T; (1'; x^{T^*} \cdot x); 1$
 by (metis conv-invol modular-1-var mult-isor mult-oner mult-onel)
 also have ... $\leq x^T; (1' \cdot x^+); x^{T^*}; 1$
by (metis comp-assoc conv-invol modular-2-var mult-isol mult-isor star-conv)
also have \ldots = \tau^{T \cdot (\tau^{+} \cdot 1^{'})}\cdot1
by (metis comp-assoc conway.dagger-unfoldr-distr inf.commute
sup.colbounded1 top-le)
finally have \((\tau^{+} \cdot 1^{'})\cdot1 = 0 \)
using 1 assms by (simp add: comp-assoc)
thus \(\neg \text{thesis} \)
by (simp add: galois-aux ss-p18)
qed

notation power (infixr \(\uparrow \))

lemma power-suc-below-plus:
\(x \uparrow \text{Suc } n \leq x^{+} \)
apply (induct n)
using mult-isol star-ref apply fastforce
by (simp add: mult-isol-var order-trans)
end

class relation-algebra-rtc-tarski = relation-algebra-rtc + relation-algebra-tarski
begin

lemma point-loop-not-acyclic:
assumes is-point p
and \(p \leq x \uparrow \text{Suc } n ; p \)
shows \(\neg \text{is-acyclic } x \)
proof –
have \(p \leq x^{+} ; p \)
by (meson assms dual-order.trans point-def point-is-point ss\$23bij
power-suc-below-plus)
hence \(p ; p^{T} \leq x^{+} \)
using assms(1) point-def point-is-point ss\$23bij by blast
thus \(\neg \text{thesis} \)
using assms(1) order.trans point-not-equal(1) point-not-equal(2) by blast
qed

end

class relation-algebra-rtc-tarski-point = relation-algebra-rtc-tarski + relation-algebra-tarski-point

Finite graphs: the axiom says the algebra has finitely many elements.
This means the relations have a finite base set.

class relation-algebra-rtc-tarski-point-finite = relation-algebra-rtc-tarski-point + finite
For a finite acyclic relation, the powers eventually vanish.

Lemma acyclic-power-vanishes:

Assumes is-acyclic x

Shows $\exists n . \ x \uparrow \text{Suc} \ n = 0$

Proof

- **let** $\exists n . \ p . \ \text{is-point} \ p$
- **let** $\exists n . \ p = x \uparrow \exists n$
- **have** $\exists p = 0$

Proof (rule ccontr)

assume $\exists p \neq 0$

from this obtain $p q$ **where 1:** point $p \land \text{point} \ q \land p; q^T \leq \exists p$

using point-axiom **by blast**

hence $\exists p; q$

using point-def ss423bij **by blast**

have $\forall n \leq \exists n \cdot (\exists f . \ \forall i \leq n \cdot \text{is-point} \ (f i) \land (\forall j \leq i . \ p \leq x \uparrow (\exists n-i) ; f i \land f i \leq x \uparrow (i-j) ; f j))$

Proof (induct n)

- **case** 0
- **thus** $\exists n$

using 1 2 point-is-point **by fastforce**

next

- **case** (Suc n)

fix n

assume 3: $n \leq \exists n \rightarrow (\exists f . \ \forall i \leq n \cdot \text{is-point} \ (f i) \land (\forall j \leq i . \ p \leq x \uparrow (f i \land f i \leq x \uparrow (i-j) ; f j))$

show Suc $n \leq \exists n \rightarrow (\exists f . \ \forall i \leq \text{Suc} \ n \cdot \text{is-point} \ (f i) \land (\forall j \leq i . \ p \leq x \uparrow (\exists n-i) ; f i \land f i \leq x \uparrow (i-j) ; f j))$

Proof (induct n)

- **case** 0
- **assume** 4: $\exists n \leq \exists n$

from this obtain f **where 5:** $\forall i \leq n \cdot \text{is-point} \ (f i) \land (\forall j \leq i . \ p \leq x \uparrow (f i \land f i \leq x \uparrow (i-j) ; f j))$

using 3 by auto

have $p \leq x \uparrow (\exists n-n) ; f n$

using 5 by blast

also have $\exists p = 0$

using 4 by (metis (no-types) Suc-diff-le Suc-diff-1 diff-Suc Suc power-Suc2)

finally obtain r **where 6:** point $r \land p \leq x \uparrow (\exists n-Suc \ n) ; r \land r \leq x ; f n$

using 1 5 intermediate-point-theorem point-is-point **by fastforce**

let $\exists g = \lambda m \cdot \ \text{if} \ m = \text{Suc} \ n \ \text{then} \ r \ \text{else} \ f m$

have $\forall i \leq \text{Suc} \ n \cdot \text{is-point} \ (\exists g i) \land (\forall j \leq i . \ p \leq x \uparrow (\exists n-i) ; \exists g i \land \exists g i \leq x \uparrow (i-j) ; \exists g j)$
proof
 fix i
 show \(i \leq \text{Suc } n \rightarrow \text{is-point } (\forall g \ i) \land (\forall j \leq i . \ p \leq x \uparrow (n-j); \ ?g \ i \land \ ?g \ i \leq x \uparrow (i-j); \ ?g \ j) \)
 proof (cases \(i \leq n \))
 case True
 thus \(\vdash \) thesis
 using 5 by simp
 next
 case False
 have \(\text{is-point } (\forall g (\text{Suc } n)) \land (\forall j \leq \text{Suc } n . \ p \leq x \uparrow (n-Suc \ n); \ ?g (\text{Suc } n) \land \ ?g (\text{Suc } n) \leq x \uparrow (\text{Suc } n-j); \ ?g \ j) \)
 proof
 show \(\vdash \text{is-point } (\forall g (\text{Suc } n)) \)
 using 6 point-is-point by fastforce
 next
 show \(\forall j \leq \text{Suc } n . \ p \leq x \uparrow (n-Suc \ n); \ ?g (\text{Suc } n) \land \ ?g (\text{Suc } n) \leq x \uparrow (\text{Suc } n-j); \ ?g \ j \)
 proof
 fix j
 show \(j \leq \text{Suc } n \rightarrow p \leq x \uparrow (n-Suc \ n); \ ?g (\text{Suc } n) \land \ ?g (\text{Suc } n) \leq x \uparrow (\text{Suc } n-j); \ ?g \ j \)
 proof
 assume 7: \(j \leq \text{Suc } n \)
 show \(\vdash p \leq x \uparrow (n-Suc \ n); \ ?g (\text{Suc } n) \land \ ?g (\text{Suc } n) \leq x \uparrow (\text{Suc } n-j); \ ?g \ j \)
 proof
 show \(\vdash p \leq x \uparrow (n-Suc \ n); \ ?g (\text{Suc } n) \)
 using 6 by simp
 next
 show \(\vdash ?g (\text{Suc } n) \leq x \uparrow (\text{Suc } n-j); \ ?g \ j \)
 proof (cases \(j = \text{Suc } n \))
 case True
 thus \(\vdash \) thesis
 by simp
 next
 case False
 hence \(f n \leq x \uparrow (n-j); \ f j \)
 using 5 7 by fastforce
 hence \(\vdash x ; f n \leq x \uparrow (\text{Suc } n-j); \ f j \)
 using 7 False Suc-diff-le comp-assoc mult-isol by fastforce
 thus \(\vdash \) thesis
 using 6 False by fastforce
 qed
 qed
 qed
 qed
 qed
 thus \(\vdash \) thesis
 qed
by (simp add: False le-Suc-eq)
qed
qed
qed
thus \exists f \cdot \forall i \leq \text{Suc } n \cdot \text{is-point } (f \ i) \land (\forall j \leq i \cdot p \leq x \uparrow (?n-i) ; f \ i \land f \ j)
\leq x \uparrow (i-j) ; f \ j)
by auto
qed
qed
qed
from this obtain f where 8: \forall i \leq ?n \cdot \text{is-point } (f \ i) \land (\forall j \leq i \cdot p \leq x \uparrow (?n-i) ; f \ i \land f \ i \leq x \uparrow (i-j) ; f \ j)
by fastforce
let ?A = \{ k : k \leq ?n \}
have f ' ?A \subseteq \{ p . \text{is-point } p \}
using 8 by blast
hence card (f ' ?A) \leq ?n
by (simp add: card-mono)

hence \neg inj-on f ?A
by (simp add: pigeonhole)

from this obtain i j where 9: i \leq ?n \land j \leq ?n \land i \neq j \land f \ i = f \ j
by (metis (no-types, lifting) inj-on-def mem-Collect-eq)
show False
apply (cases i < j)
using 8 9 apply (metis Suc-diff-le Suc-leI assms diff-Suc-Suc
order-less-imp-le
point-loop-not-acyclic)
using 8 9 by (metis assms neqE point-loop-not-acyclic Suc-diff-le Suc-leI assms diff-Suc-Suc
order-less-imp-le)
qed
thus \?thesis
by (metis annir power.simps(2))

Hence finite acyclic relations are regressively finite.

lemma acyclic-regressively-finite:
assumes is-acyclic x
shows regressively-finite x

proof
have is-acyclic (x^T)
using assms acyclic-trans' compl-le-swap1 order-trans star-ref by blast
from this obtain n where 1: x^T \uparrow \text{Suc } n = 0
using acyclic-power-vanishes by fastforce
fix v
show is-vector v \land v \leq x^T ; v \longrightarrow v = 0
proof
assume 2: is-vector v \land v \leq x^T ; v
have v \leq x^T \uparrow \text{Suc } n ; v
proof (induct n)
case 0
thus ?case
 using 2 by simp
next
case (Suc n)
hence \(x^T ; v \leq x^T \uparrow \text{Suc} (Suc \ n) ; v \)
 by (simp add: comp-assoc mult-isol)
thus ?case
 using 2 dual-order.trans by blast
qed
thus \(v = 0 \)
 using 1 by (simp add: le-bot)
qed
qed

lemma acyclic-is-regressively-finite:
 is-acyclic \(x \) \iff \text{regressively-finite} \(x \)
using acyclic-regressively-finite regressively-finite-acyclic by blast

end

end

2 Relational Characterisation of Paths

This theory provides the relation-algebraic characterisations of paths, as
defined in Sections 3–5 of [2].

theory Paths

imports More-Relation-Algebra

begin

context relation-algebra-tarski
begin

lemma path-concat-aux-0:
 assumes is-vector \(v \)
 and \(v \neq 0 \)
 and \(w;v^T \leq x \)
 and \(v;z \leq y \)
 shows \(w;1;z \leq x;y \)
proof –
 from tarski assms(1,2) have \(I = I;v^T;v;1 \)
 by (metis conv-contrav conv-one eq-refl inf-absorb1 inf-top-left is-vector-def ra-2)
 hence \(w;1;z = w;1;v^T;v;1;z \)
 by (simp add: mult-isor mult-isol mult-assoc)
also from \textit{assms}(1) have \ldots w;v^T;v;z
by \textit{(metis is-vector-def comp-assoc conv-contrav conv-one)}
also from \textit{assms}(3) have \ldots \leq x;v;z
by \textit{(simp add: mult-isor)}
also from \textit{assms}(4) have \ldots \leq x;y
by \textit{(simp add: mult-isol mult-assoc)}
finally show \textit{thesis} .
qed

end

2.1 Consequences without the Tarski rule

context relation-algebra-rtc
begin

Definitions for path classifications

abbreviation \textit{connected} where \textit{connected} x \equiv x;1;x \leq x^* + x^T^*

abbreviation \textit{many-strongly-connected} where \textit{many-strongly-connected} x \equiv x^* = x^T^*

abbreviation \textit{one-strongly-connected} where \textit{one-strongly-connected} x \equiv x^T;1;x^T \leq x^*

definition \textit{path} where \textit{path} x \equiv \textit{connected} x \land \textit{is-p-fun} x \land \textit{is-inj} x

abbreviation \textit{cycle} where \textit{cycle} x \equiv \textit{path} x \land \textit{many-strongly-connected} x

abbreviation \textit{start-points} where \textit{start-points} x \equiv x;1 \cdot -(x^T;1)

abbreviation \textit{end-points} where \textit{end-points} x \equiv x^T;1 \cdot -(x;1)

abbreviation \textit{no-start-points} where \textit{no-start-points} x \equiv x;1 \leq x^T;1

abbreviation \textit{no-end-points} where \textit{no-end-points} x \equiv x^T;1 \leq x;1

abbreviation \textit{no-start-end-points} where \textit{no-start-end-points} x \equiv x;1 = x^T;1

abbreviation \textit{has-start-points} where \textit{has-start-points} x \equiv 1 = -(1;x);x;1
abbreviation has-end-points
 where has-end-points \(x \equiv 1 = 1;x;-(x;1) \)

abbreviation has-start-end-points
 where has-start-end-points \(x \equiv 1 = -(1;x);x;1 \cdot 1;x;-(x;1) \)

abbreviation backward-terminating
 where backward-terminating \(x \equiv x \leq -(1;x);x;1 \)

abbreviation forward-terminating
 where forward-terminating \(x \equiv x \leq 1;x;-(x;1) \)

abbreviation terminating
 where terminating \(x \equiv x \leq -(1;x);x;1 \cdot 1;x;-(x;1) \)

abbreviation backward-finite
 where backward-finite \(x \equiv x \leq x^T* + -(1;x);x;1 \)

abbreviation forward-finite
 where forward-finite \(x \equiv x \leq x^T* + 1;x;-(x;1) \)

abbreviation finite
 where finite \(x \equiv x \leq x^T* + (-1;x);x;1 \cdot 1;x;-(x;1)) \)

abbreviation no-start-points-path
 where no-start-points-path \(x \equiv \text{path } x \land \text{no-start-points } x \)

abbreviation no-end-points-path
 where no-end-points-path \(x \equiv \text{path } x \land \text{no-end-points } x \)

abbreviation no-start-end-points-path
 where no-start-end-points-path \(x \equiv \text{path } x \land \text{no-start-end-points } x \)

abbreviation has-start-points-path
 where has-start-points-path \(x \equiv \text{path } x \land \text{has-start-points } x \)

abbreviation has-end-points-path
 where has-end-points-path \(x \equiv \text{path } x \land \text{has-end-points } x \)

abbreviation has-start-end-points-path
 where has-start-end-points-path \(x \equiv \text{path } x \land \text{has-start-end-points } x \)

abbreviation backward-terminating-path
 where backward-terminating-path \(x \equiv \text{path } x \land \text{backward-terminating } x \)

abbreviation forward-terminating-path
 where forward-terminating-path \(x \equiv \text{path } x \land \text{forward-terminating } x \)

abbreviation terminating-path

27
where \(\text{terminating-path } x \equiv \text{path } x \land \text{terminating } x \)

abbreviation \(\text{backward-finite-path} \)
where \(\text{backward-finite-path } x \equiv \text{path } x \land \text{backward-finite } x \)

abbreviation \(\text{forward-finite-path} \)
where \(\text{forward-finite-path } x \equiv \text{path } x \land \text{forward-finite } x \)

abbreviation \(\text{finite-path} \)
where \(\text{finite-path } x \equiv \text{path } x \land \text{finite } x \)

General properties

lemma \(\text{reachability-from-z-in-y}: \)
assumes \(x \leq y^{*}; z \)
an \(x \cdot z = 0 \)
shows \(x \leq y^{*}; z \)
by (metis assms conway.dagger-unfoldl-distr galois-1 galois-aux inf.orderE)

lemma \(\text{reachable-imp}: \)
assumes \(\text{point } p \) and \(\text{point } q \)
an \(p^{*}; q \leq p^{T^{*}}; p \)
shows \(p \leq p^{*}; q \)
by (metis assms conway.dagger-unfoldr-distr le-supE point-swap star-conv)

Basic equivalences

lemma \(\text{no-start-end-points-iff}: \)
\(\text{no-start-end-points } x \leftrightarrow \text{no-start-points } x \land \text{no-end-points } x \)
by fastforce

lemma \(\text{has-start-end-points-iff}: \)
\(\text{has-start-end-points } x \leftrightarrow \text{has-start-points } x \land \text{has-end-points } x \)
by (metis inf-eq-top-iff)

lemma \(\text{terminating-iff}: \)
\(\text{terminating } x \leftrightarrow \text{backward-terminating } x \land \text{forward-terminating } x \)
by simp

lemma \(\text{finite-iff}: \)
\(\text{finite } x \leftrightarrow \text{backward-finite } x \land \text{forward-finite } x \)
by (simp add: sup-inf-distrib1 inf.boundedI)

lemma \(\text{no-start-end-points-path-iff}: \)
\(\text{no-start-end-points-path } x \leftrightarrow \text{no-start-points-path } x \land \text{no-end-points-path } x \)
by fastforce

lemma \(\text{has-start-end-points-path-iff}: \)
\(\text{has-start-end-points-path } x \leftrightarrow \text{has-start-points-path } x \land \text{has-end-points-path } x \)
using has-start-end-points-iff by blast
lemma terminating-path-iff:
 terminating-path x ←→ backward-terminating-path x ∧ forward-terminating-path x
by fastforce

lemma finite-path-iff:
 finite-path x ←→ backward-finite-path x ∧ forward-finite-path x
using finite-iff by fastforce

Closure under converse

lemma connected-conv:
 connected x ←→ connected (x^T)
by (metis comp-assoc conv-add conv-contrav conv-iso conv-one star-conv)

lemma conv-many-strongly-connected:
 many-strongly-connected x ←→ many-strongly-connected (x^T)
by fastforce

lemma conv-one-strongly-connected:
 one-strongly-connected x ←→ one-strongly-connected (x^T)
by (metis comp-assoc conv-contrav conv-iso conv-one star-conv)

lemma conv-path:
 path x ←→ path (x^T)
using connected-conv inj-p-fun path-def by fastforce

lemma conv-cycle:
 cycle x ←→ cycle (x^T)
using conv-path by fastforce

lemma conv-no-start-points:
 no-start-points x ←→ no-end-points (x^T)
by simp

lemma conv-no-start-end-points:
 no-start-end-points x ←→ no-start-end-points (x^T)
by fastforce

lemma conv-has-start-points:
 has-start-points x ←→ has-end-points (x^T)
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one)

lemma conv-has-start-end-points:
 has-start-end-points x ←→ has-start-end-points (x^T)
by (metis comp-assoc conv-compl conv-contrav conv-invol conv-one inf-eq-top-iff)

lemma conv-backward-terminating:
 backward-terminating x ←→ forward-terminating (x^T)
by (metis comp-assoc conv-compl conv-contrav conv-iso conv-one)

lemma conv-terminating:
 terminating \(x \) \(\iff \) terminating \((x^T) \)
 apply (rule iffI)
 apply (metis conv-compl conv-contrav conv-one conv-times inf.commute le-iff-inf mult-assoc)
 by (metis conv-compl conv-contrav conv-invol conv-one conv-times inf.commute le-iff-inf mult-assoc)

lemma conv-backward-finite:
 backward-finite \(x \) \(\iff \) forward-finite \((x^T) \)
 by (metis comp-assoc conv-add conv-compl conv-contrav conv-iso conv-one star-conv)

lemma conv-finite:
 finite \(x \) \(\iff \) finite \((x^T) \)
 by (metis finite iff conv-backward-finite conv-invol)

lemma conv-no-start-points-path:
 no-start-points-path \(x \) \(\iff \) no-end-points-path \((x^T) \)
 using conv-path by fastforce

lemma conv-no-start-end-points-path:
 no-start-end-points-path \(x \) \(\iff \) no-end-points-path \((x^T) \)
 using conv-path by fastforce

lemma conv-has-start-points-path:
 has-start-points-path \(x \) \(\iff \) has-end-points-path \((x^T) \)
 using conv-has-start-points conv-path by fastforce

lemma conv-has-start-end-points-path:
 has-start-end-points-path \(x \) \(\iff \) has-start-end-points-path \((x^T) \)
 using conv-has-start-end-points conv-path by fastforce

lemma conv-backward-terminating-path:
 backward-terminating-path \(x \) \(\iff \) forward-terminating-path \((x^T) \)
 using conv-backward-terminating conv-path by fastforce

lemma conv-terminating-path:
 terminating-path \(x \) \(\iff \) terminating-path \((x^T) \)
 using conv-path conv-terminating by fastforce

lemma conv-backward-finite-path:
 backward-finite-path \(x \) \(\iff \) forward-finite-path \((x^T) \)
 using conv-backward-finite conv-path by fastforce

lemma conv-finite-path:
 finite-path \(x \) \(\iff \) finite-path \((x^T) \)
using conv-finite conv-path by blast

Equivalences for connected

lemma connected-iff2:
assumes is-inj x
and is-p-fun x
shows connected x ↔ x:1;xT ≤ x* + xT*

proof
assume 1: connected x
have x:1;xT ≤ x:1;xT
 by (metis conv-invol modular-var-3 vector-meet-comp-x')
also have ... ≤ (x* + xT*):xT
 using 1 mult-isor star-star-plus by fastforce
also have ... ≤ x*:xT + xT*
 using join-isol star-slide-var by simp
also from assms(1) have ... ≤ x* + xT*
 by (metis is-inj-def comp-assoc join-isol mult-1-right mult-isol)
finally show x:1;xT ≤ x* + xT*.

next
assume 2: x:1;xT ≤ x* + xT*
have x:1;x ≤ x:1;xT
 by (simp add: modular-var-3 vector-meet-comp-x)
also have ... ≤ (x* + xT*):x
 using 2 by (metis mult-isor star-star-plus sup-commute)
also have ... ≤ x*:xT + xT*
 using join-isol star-slide-var by simp
also from assms(2) have ... ≤ x* + xT*
 by (metis comp-assoc is-p-fun-def join-isol mult-1-right mult-isol)
finally show connected x.

qed

lemma connected-iff3:
assumes is-inj x
and is-p-fun x
shows connected x ↔ xT:1;x ≤ x* + xT*
by (metis assms connected-conv connected-iff2 inj-p-fun p-fun-inj conv-invol add-commute)

lemma connected-iff4:
connected x ↔ xT:1;xT ≤ x* + xT*
by (metis connected-cone conv-invol add-commute)

lemma connected-iff5:
connected x ↔ x*:1;x* ≤ x* + xT*
using comp-assoc plus-top top-plus by fastforce

lemma connected-iff6:
assumes is-inj x
and is-p-fun x
shows connected $x \leftrightarrow x^+:1;(x^+)^T \leq x^* + x^{T*}$

using assms connected-iff2 comp-assoc plus-cone plus-top top-plus by fastforce

lemma connected-iff7:
 assumes is-inj x
 and is-p-fun x
 shows connected $x \leftrightarrow (x^+)^T;1;x^+ \leq x^* + x^{T*}$
 by (metis assms connected-iff3 conv-contrav conv-invol conv-one top-plus vector-meet-comp-x)

lemma connected-iff8:
 connected $x \leftrightarrow (x^+)^T;1;(x^+)^T \leq x^* + x^{T*}$
 by (metis connected-iff4 comp-assoc conv-contrav conv-invol conv-one plus-cone star-conv top-plus)

Equivalences and implications for many-strongly-connected

lemma many-strongly-connected-iff-1:
 many-strongly-connected $x \leftrightarrow x^T \leq x^*$
 apply (rule iffI, simp)
 by (metis conv-invol conv-iso eq-iff star-conv star-invol star-iso)

lemma many-strongly-connected-iff-2:
 many-strongly-connected $x \leftrightarrow x^T \leq x^+$
 proof
 assume as: many-strongly-connected x
 hence $x^T \leq x^* \cdot (-1^t + x)$
 by (metis many-strongly-connected-iff-1 loop-backward-forward inf-greatest)
 also have ... $\leq (x^* \cdot (-1^t)) + (x^* \cdot x)$
 by (simp add: inf-sup-distrib1)
 also have ... $\leq x^+$
 by (metis as eq-iff mult-1-right mult-isol star-ref sup.absorb1 conv-inv eq-refl galois-1)
 finally show $x^T \leq x^+$.
 next
 show $x^T \leq x^+ \Rightarrow$ many-strongly-connected x
 using order-trans star-ll many-strongly-connected-iff-1 by blast
 qed

lemma many-strongly-connected-iff-3:
 many-strongly-connected $x \leftrightarrow x \leq x^{T*}$
 by (metis conv-invol many-strongly-connected-iff-1)

lemma many-strongly-connected-iff-4:
 many-strongly-connected $x \leftrightarrow x \leq x^{T+}$
 by (metis conv-invol many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-5:
many-strongly-connected $x \leftrightarrow x^*; x^T \leq x^+$
by (metis comp-assoc conv-contrav conway.dagger-unfoldr-distr star-conv
star-denest-var-2
star-invol star-trans-eq star-unfoldl-eq sup.boundedE
many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-6:
many-strongly-connected $x \leftrightarrow x^T; x^* \leq x^+$
by (metis dual-order.trans star-Il star-conv star-inductl-star star-invol
star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-5)

lemma many-strongly-connected-iff-7:
many-strongly-connected $x \leftrightarrow x^T; x^* = x^+$
by (metis order.refl star-slide-var
many-strongly-connected-iff-5
many-strongly-connected-iff-7)

lemma many-strongly-connected-iff-6-eq:
many-strongly-connected $x \leftrightarrow x^T; x^* = x^+$
using many-strongly-connected-iff-6 many-strongly-connected-iff-7 by force

lemma many-strongly-connected-implies-no-start-end-points:
assumes many-strongly-connected x
shows no-start-end-points x
by (metis assms conway.dagger-unfoldl-distr mult-assoc sup-top-left conv-invol
many-strongly-connected-iff-7)

lemma many-strongly-connected-implies-8:
assumes many-strongly-connected x
shows $x; x^T \leq x^+$
by (simp add: assms mult-isol)

lemma many-strongly-connected-implies-9:
assumes many-strongly-connected x
shows $x^T; x \leq x^+$
by (metis assms eq-refl phl-cons1 star-ext star-slide-var)

lemma many-strongly-connected-implies-10:
assumes many-strongly-connected x
shows $x; x^T; x^* \leq x^+$
by (simp add: assms comp-assoc mult-isol)

lemma many-strongly-connected-implies-10-eq:
assumes many-strongly-connected x
shows $x;x^T;x^* = x^+$

proof (rule antisym)
show $x;x^T;x^* \leq x^+$
 by (simp add: assms comp-assoc mult-isol)

next
have $x^+ \leq x;x^T;x^*$
 using mult-isor x-leq-triple-x by blast
thus $x^+ \leq x;x^T;x^*$
 by (simp add: comp-assoc mult-isol order-trans)

qed

lemma many-strongly-connected-implies-11:
assumes many-strongly-connected x
shows $x^*;x^T;x \leq x^+$
by (metis assms conv-contrav conv-iso mult-isol star-1l star-slide-var)

lemma many-strongly-connected-implies-11-eq:
assumes many-strongly-connected x
shows $x^*;x^T;x = x^+$
by (metis assms comp-assoc conv-invol many-strongly-connected-iff-5-eq
 many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-implies-12:
assumes many-strongly-connected x
shows $x^*;x;x^T \leq x^+$
by (metis assms comp-assoc mult-isol star-1l star-slide-var)

lemma many-strongly-connected-implies-12-eq:
assumes many-strongly-connected x
shows $x^*;x;x^T = x^+$
by (metis assms comp-assoc star-slide-var many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-implies-13:
assumes many-strongly-connected x
shows $x;x^*;x^T \leq x^+$
by (metis assms star-slide-var many-strongly-connected-implies-11 mult.assoc)

lemma many-strongly-connected-implies-13-eq:
assumes many-strongly-connected x
shows $x;x^*;x^T = x^+$
by (metis assms conv-invol many-strongly-connected-iff-7
 many-strongly-connected-implies-10-eq)

lemma many-strongly-connected-iff-8:
assumes is-p-fun x
shows many-strongly-connected $x \iff x;x^T \leq x^+$
apply (rule iffI)
apply (simp add: mult-isol)
apply (simp add: many-strongly-connected-iff-1)
by (metis comp-assoc conv-invov dual-order.trans mult-isol x-leq-triple-x assms comp-assoc
dual-order.trans is-p-fun-def order.refl prod-star-closure star-ref)

lemma many-strongly-connected-iff-9:
 assumes is-inj x
 shows many-strongly-connected x ┐ x\T;x ≤ x⁺
 by (metis assms conv-contrav conv-iso inj-p-fun star-conv star-slide-var
 many-strongly-connected-iff-1 many-strongly-connected-iff-8)

lemma many-strongly-connected-iff-10:
 assumes is-p-fun x
 shows many-strongly-connected x ┐ x;x\T;x⁺ ≤ x⁺
 apply (rule iffI)
 apply (simp add: comp-assoc mult-isol)
 by (metis assms mult-isol mult-oner order-trans star-ref
 many-strongly-connected-iff-8)

lemma many-strongly-connected-iff-10-eq:
 assumes is-p-fun x
 shows many-strongly-connected x ┐ x=x⁺
 using assms many-strongly-connected-iff-10
 many-strongly-connected-implies-10-eq by fastforce

lemma many-strongly-connected-iff-11:
 assumes is-inj x
 shows many-strongly-connected x ┐ x⁺;x\T;x ≤ x⁺
 by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun plus-conv star-conv
 many-strongly-connected-iff-10 many-strongly-connected-iff-2)

lemma many-strongly-connected-iff-11-eq:
 assumes is-inj x
 shows many-strongly-connected x ┐ x⁺;x=x⁺
 using assms many-strongly-connected-iff-11
 many-strongly-connected-implies-11-eq by fastforce

lemma many-strongly-connected-iff-12:
 assumes is-p-fun x
 shows many-strongly-connected x ┐ x⁺;x\T; x ≤ x⁺
 by (metis assms dual-order.trans mult-double-iso mult-oner order-refl star-slide-var
 many-strongly-connected-iff-8 many-strongly-connected-implies-12)

lemma many-strongly-connected-iff-12-eq:
 assumes is-p-fun x
 shows many-strongly-connected x ┐ x⁺;x\T; x = x⁺
 using assms many-strongly-connected-iff-12
 many-strongly-connected-implies-12-eq by fastforce

lemma many-strongly-connected-iff-13:
assumes is-inj x
does many-strongly-connected x ←→ x; x^* ≤ x+
by (metis assms comp-assoc conv-contrav conv-iso inj-p-fun star-conv
star-slide-var
many-strongly-connected-iff-1 many-strongly-connected-iff-12)

lemma many-strongly-connected-iff-13-eq:
assumes is-inj x
does many-strongly-connected x ←→ x; x; x^* = x+
using assms many-strongly-connected-iff-13
many-strongly-connected-implies-13-eq by fastforce

Equivalences and implications for one-strongly-connected

lemma one-strongly-connected-iff:
one-strongly-connected x ←→ connected x ∧ many-strongly-connected x
apply (rule iffI)
apply (metis top-greatest x-leq-triple-x mult-double-iso top-greatest
dual-order.trans
many-strongly-connected-iff-1 comp-assoc conv-contrav conv-invol
cov-iso le-sup12
star-conv)
by (metis comp-assoc conv-contrav conv-one conway.dagger-denest
star-conv star-invol
star-sum-unfold star-trans-eq)

lemma one-strongly-connected-iff-1:
one-strongly-connected x ←→ x; 1; x^T ≤ x+
proof
assume 1: one-strongly-connected x
have x; 1; x^T ≤ x; x^T; 1; x^T
by (metis conv-invol mult-isor x-leq-triple-x)
also from 1 have ... ≤ x^T; x; x^*
by (metis distrib-left mult-assoc sup.absorb-iff1)
also from 1 have ... ≤ x+
using many-strongly-connected-implies-13 one-strongly-connected-iff by blast
finally show x; 1; x^T ≤ x+
qed

next
assume x; 1; x^T ≤ x+
thus one-strongly-connected x
using dual-order.trans star-1l by blast

qed

lemma one-strongly-connected-iff-1-eq:
one-strongly-connected x ←→ x; 1; x^T = x+
apply (rule iffI, simp-all)
by (metis comp-assoc conv-contrav conv-invol mult-double-iso plus-conv
star-slide-var top-greatest
top-plus many-strongly-connected-implies-10-eq one-strongly-connected-iff

36
eq-iiff
 one-strongly-connected-iiff-1)

lemma one-strongly-connected-iiff-2:
 one-strongly-connected $x \leftrightarrow x;1;x \leq x^{T^*}$
by (metis conv-inv conv-refl less-eq-def one-strongly-connected-iiff)

lemma one-strongly-connected-iiff-3:
 one-strongly-connected $x \leftrightarrow x;1;x \leq x^+$
by (metis comp-assoc conv-contrav conv-inv conv-iso conv-one star-conv
 one-strongly-connected-iiff-1)

lemma one-strongly-connected-iiff-3-eq:
 one-strongly-connected $x \leftrightarrow x;1;x = x^+$
by (metis conv-inv one-strongly-connected-iiff-1-eq one-strongly-connected-iiff-2)

lemma one-strongly-connected-iiff-4-eq:
 one-strongly-connected $x \leftrightarrow x^T;1;x = x^+$
apply (rule iffI)
apply (metis comp-assoc top-plus many-strongly-connected-iiff-7
 one-strongly-connected-iiff
 one-strongly-connected-iiff-1-eq)
by (metis comp-assoc conv-contrav conv-inv conv-one plus-conv top-plus
 one-strongly-connected-iiff-1-eq)

lemma one-strongly-connected-iiff-5-eq:
 one-strongly-connected $x \leftrightarrow x;1;x^T = x^+$
using comp-assoc conv-contrav conv-inv conv-one plus-conv top-plus
 many-strongly-connected-iiff-7
by (metis one-strongly-connected-iiff one-strongly-connected-iiff-3-eq)

lemma one-strongly-connected-iiff-6-aux:
 $x;x^+ \leq x;1;x$
by (metis comp-assoc maddux-21 mult-isol top-plus)

lemma one-strongly-connected-implies-6-eq:
 assumes one-strongly-connected x
 shows $x;1;x = x;x^+$
by (metis assms comp-assoc many-strongly-connected-iiff-7
 many-strongly-connected-implies-10-eq
 one-strongly-connected-iiff one-strongly-connected-iiff-3-eq)

lemma one-strongly-connected-implies-7-aux:
 $x^+ \leq x;1;x$
by (metis le-infI maddux-20 maddux-21 plus-top top-plus vector-meet-comp-x^+)

lemma one-strongly-connected-implies-7-eq:
 assumes one-strongly-connected x
 shows $x;1;x = x^+$
using assms many-strongly-connected-iff-7 one-strongly-connected-iff
one-strongly-connected-iff-3-eq
by force

lemma one-strongly-connected-implies-8:
 assumes one-strongly-connected x
 shows x;1;x ≤ x⁺
using assms one-strongly-connected-iff by fastforce

lemma one-strongly-connected-iff-4:
 assumes is-inj x
 shows one-strongly-connected x ←→ xᵀ;1;x ≤ x⁺
proof
 assume one-strongly-connected x
 thus xᵀ;1;x ≤ x⁺
 by (simp add: one-strongly-connected-iff-4-eq)
next
 assume 1: xᵀ;1;x ≤ x⁺
 hence xᵀ;1;x ≤ x⁺;x;xᵀ
 by (metis mult-isor star-slide-var comp-assoc conv-invol modular-var-3
 vector-meet-comp-x
 order.trans)
 also from assms have ... ≤ x⁺
 using comp-assoc is-inj-def mult-isol mult-oner by fastforce
finally show one-strongly-connected x
 using dual-order.trans star-1l by fastforce
 qed

lemma one-strongly-connected-iff-5:
 assumes is-p-fun x
 shows one-strongly-connected x ←→ x;1;x ≤ x⁺
apply (rule iffI)
using one-strongly-connected-iff-5-eq apply simp
by (metis assms comp-assoc mult-double-iso order.trans star-slide-var top-greatest
 top-plus
 many-strongly-connected-iff-12 many-strongly-connected-iff-7
 one-strongly-connected-iff-3)

lemma one-strongly-connected-iff-6:
 assumes is-p-fun x
 and is-inj x
 shows one-strongly-connected x ←→ x;1;x ≤ x;x⁺
proof
 assume one-strongly-connected x
 thus x;1;x ≤ x;x⁺
 by (simp add: one-strongly-connected-implies-6-eq)
next
 assume 1: x;1;x ≤ x;x⁺
 have xᵀ;1;x ≤ xᵀ;x;xᵀ;1;x
by (metis conv-invol mult-isor x-leq-triple-x)
also have ... ≤ x^T;x;1;x
 by (metis comp-assoc mult-double-iso top-greatest)
also from 1 have ... ≤ x^T;x;x^+
 by (simp add: comp-assoc mult-isol)
also from assms(1) have ... ≤ x^+
 by (metis comp-assoc is-p-fun-def mult-isor mult-onel)
finally show one-strongly-connected x
 using assms(2) one-strongly-connected-iff-4 by blast
qed

lemma one-strongly-connected-iff-6-eq:
 assumes is-p-fun x
 and is-inj x
 shows one-strongly-connected x ←→ x;1;x = x;1;x^+
 apply (rule iffI)
 using one-strongly-connected-implies-6-eq apply blast
by (simp add: assms one-strongly-connected-iff-6)

Start points and end points

lemma start-end-implies-terminating:
 assumes has-start-points x
 and has-end-points x
 shows terminating x
using assms by simp

lemma start-points-end-points-conv:
 start-points x = end-points (x^T)
by simp

lemma start-point-at-most-one:
 assumes path x
 shows is-inj (start-points x)
proof –
have isvec: is-vector (x;1 · −(x^T;1))
 by (simp add: comp-assoc is-vector-def one-compl vector-1)

have x;1 · 1;x^T ≤ x;1;x;x^T
 by (metis comp-assoc conv-contrav conv-one inf.cobounded2 mult-1-right
 mult-isol one-cone m-2)
also have ... ≤ (x^* + x^{T*});x^T
 using (path x) by (metis path-def mult-isor)
also have ... = x^T + x^*;x^T + x^{T+}
 by (simp add: star-slide-var)
also have ... ≤ x^{T+} + x^*;x^T + x^{T+}
 by (metis add-iso mult-1-right star-unfoldl-eq substl)
also have ... ≤ x^*;x;x^T + x^{T+}
 by (simp add: star-slide-var add-comm)
also have ... ≤ x^*;1';x^{T+}

using (\path x) by (metis path-def is-inj-def comp-assoc distrib-left join-iso less-eq-def)
also have ... = 1' + x^*;x + x^T;x^*
 by simp
also have ... ≤ 1' + 1;x + x^T;1
 by (metis join-isol mult-isol mult-isor sup.mono top-greatest)
finally have aux: x;1 · 1;x^T ≤ 1' + 1;x + x^T;1 .

from aux have x;1 · 1;x^T · (x^T;1) · -(1;x) ≤ 1'
 by (simp add: galois-1 sup-commute)
hence (x;1 · -(x^T;1)) · (x;1 · -(x^T;1))^T ≤ 1'
 by (simp add: conv-compl inf.assoc inf.left-commute)
with isvec have (x;1 · -(x^T;1)) · (x;1 · -(x^T;1))^T ≤ 1'
 by (metis vector-meet-comp')
thus is-inj (start-points x)
 by (simp add: conv-compl is-inj-def)
qed

lemma start-point-zero-point:
 assumes path x
 shows start-points x = 0 ∨ is-point (start-points x)
using assms start-point-at-most-one comp-assoc is-point-def is-vector-def
vector-compl vector-mult
by simp

lemma start-point-iff1:
 assumes path x
 shows is-point (start-points x) ←→ ¬(no-start-points x)
using assms start-point-zero-point galois-aux2 is-point-def by blast

lemma end-point-at-most-one:
 assumes path x
 shows is-inj (end-points x)
by (metis assms conv-path compl-bot-eq conv-invol inj-def-var1 is-point-def top-greatest
 start-point-zero-point)

lemma end-point-zero-point:
 assumes path x
 shows end-points x = 0 ∨ is-point (end-points x)
using assms conv-path start-point-zero-point by fastforce

lemma end-point-iff1:
 assumes path x
 shows is-point (end-points x) ←→ ¬(no-end-points x)
using assms end-point-zero-point galois-aux2 is-point-def by blast

lemma predecessor-point':
 assumes path x
and point s
and point e
and e;s^T \leq x
shows x;s = e

proof (rule antisym)
show 1: e \leq x ; s
 using assms(2,4) point-def ss423bij by blast
show x ; s \leq e
proof -
 have e^T ; (x ; s) = 1
 using 1 by (metis assms(3) eq-iff is-vector-def point-def ss423conv
 top-greatest)
 thus \thesis by (metis assms(1-3) comp-assoc conv-contrav conv-invol eq-iff inj-compose
 is-vector-def
 mult-isol path-def point-def ss423conv sur-def-var1 top-greatest)
qed

lemma predecessor-point:
 assumes path x
 and point s
 and point e
 and e;s^T \leq x
 shows point (x;s)
using predecessor-point' assms by blast

lemma points-of-path-iff:
 shows (x + x^T);1 = x^T;1 + start-points(x)
 and (x + x^T);1 = x;1 + end-points(x)
using aux9 inf.commute sup.commute by auto

Path concatenation preliminaries

lemma path-concat-aux-1:
 assumes x;1 \cdot y;1 \cdot y^T;1 = 0
 and end-points x = start-points y
 shows x;1 \cdot y;1 = 0
proof -
 have x;1 \cdot y;1 = (x;1 \cdot y;1 \cdot y^T;1) + (x;1 \cdot y;1 \cdot -(y^T;1))
 by simp
 also have ... = x;1 \cdot y;1 \cdot -(y^T;1)
 by (metis aux6-var de-morgan-3 inf.left-commute inf-compl-bot inf-sup-absorb)
 also have ... = x;1 \cdot x^T;1 \cdot -(x;1)
 by (simp add: inf.assoc)
 also have ... = 0
 by (simp add: inf.commute inf.assoc)
 finally show \thesis .
qed
lemma path-concat-aux-2:
assumes $x:1 \cdot x^T;1 \cdot y^T;1 = 0$
and end-points $x = \text{start-points } y$
shows $x^T;1 \cdot y^T;1 = 0$
proof
have $y^T;1 \cdot x^T;1 \cdot (x^T)^T;1 = 0$
 using assms(1) inf.assoc inf.commute by force
thus $?thesis$
by (metis assms(2) conv-invol inf.commute path-concat-aux-1)
qed

lemma path-concat-aux3-1:
assumes path x
shows $x^T;1 \cdot x \leq x^* + x^{T*}$
proof
have $x^T;1 \leq x^T;x^T$ by (metis comp-assoc conv-invol mult-isor x-leq-triple-x)
also have $\ldots \leq x^T;x^T$
 using path-def comp-assoc mult-isor by blast
also have $\ldots = x^T;x^T + x^{T*};x^T$
 by (simp add: star-slide-var star-star-plus)
also have $\ldots \leq x^*;1^* + x^{T*};x^T$
 by (metis assms path-def is-inj-def join-iso mult-isor mult-assoc)
also have $\ldots \leq x^* + x^{T*}$
 using join-iso by simp
finally show $?thesis$
qed

lemma path-concat-aux3-2:
assumes path x
shows $x^T;1 \cdot x \leq x^* + x^{T*}$
proof
have $x^T;1 \cdot x \leq x^T;x^T;1 \cdot x$
 by (metis comp-assoc conv-invol mult-isor x-leq-triple-x)
also have $\ldots \leq x^T;1 \cdot x$
 by (metis mult-isor mult-assoc top-greatest)
also from assms have $\ldots \leq (x^* + x^{T*});x^T$
 by (simp add: comp-assoc mult-isol path-def)
also have $\ldots = x^T;x^T + x^{T*};x^T$
 by (simp add: star-slide-var star-star-plus)
also have $\ldots \leq x^*;1^* + x^{T*};x^T$
 by (metis assms path-def is-p-fun-def join-iso mult-isor mult-assoc)
also have $\ldots \leq x^* + x^{T*}$
 using join-iso by simp
finally show $?thesis$
qed
lemma path-concat-aux3-3:
assumes path x
shows \(x^T;1;x^T \leq x^* + x^{T*} \)
proof –
 have \(x^T;1;x^T \leq x^T;x;x^T;1;x^T \)
 by (metis comp-assoc cone-invol mult-isor x-leg-triple-x)
 also have \(\ldots \leq x^T;x;1;x^T \)
 by (metis mult-isol mult-isor mult-assoc top-greatest)
 also from assms have \(\ldots \leq x^T;\langle x^* + x^{T*} \rangle \)
 using path-concat-aux3-1 by (simp add: mult-assoc mult-isol)
 also have \(\ldots = x^T;x;x^* + x^T;x^{T*} \)
 by (simp add: comp-assoc distrib-left star-star-plus)
 also have \(\ldots \leq \langle x^* + x^{T*} \rangle \)
 by (metis assms path-def is-p-fun-def join-isol mult-isor mult-assoc)
 also have \(\ldots \leq x^* + x^{T*} \)
 using join-isol by simp
finally show \(?thesis\).
qed

lemma path-concat-aux3:
assumes path x
 and \(y \leq x^* + x^{T*} \)
 and \(z \leq x^* + x^{T*} \)
shows \(y;1;z \leq x^* + x^{T*} \)
proof –
 from assms(2,3) have \(y;1;z \leq (x^* + x^{T*});1;\langle x^* + x^{T*} \rangle \)
 using mult-isol-var mult-isol by blast
 also have \(\ldots = x^T;1;x^* + x^*;1;x^T + x^T;1;x^* + x^{T*};1;x^{T*} \)
 by (simp add: distrib-left sup-commute sup-left-commute)
 also have \(\ldots = x;x^*;1;x^* + x^*;1;x^T^* + x^T^*;1;x^* + x^{T*};1;x^{T*} \)
 by (simp add: comp-assoc star-slide-var)
 also have \(\ldots \leq x;1;x + x;x^*;1;x^{T*};1;x^T + x^T;x^{T*};1;x^* + x^T;x^{T*};1;x^{T*};1;x^T \)
 by (metis comp-assoc mult-double-iso top-greatest join-iso)
 also have \(\ldots \leq x;1;x + x;1;x^T + x^T;x^T^*;1;x^*;x + x^T;x^{T*};1;x^{T*};x^T \)
 by (metis comp-assoc mult-double-iso top-greatest join-iso join-iso)
 also have \(\ldots \leq x;1;x + x;1;x^T + x^T;1;x^* + x^{T*};1;x^*;x^T \)
 by (metis comp-assoc mult-double-iso top-greatest join-iso join-iso)
 also have \(\ldots \leq x;1;x + x;1;x^T + x^T;1;x^* + x^{T*};1;x^*;x^T \)
 by (metis comp-assoc mult-double-iso top-greatest join-iso)
also have \(\ldots \leq x^* + x^{T*} \)
 using assms(1) path-def path-concat-aux3 path-concat-aux3-2
path-concat-aux3-3 join-iso join-isol
 by simp
finally show \(?thesis\).
qed

lemma path-concat-aux4:
\(x^* + x^{T*} \leq x^* + x^T;1 \)
by (metis star-star-plus add-comm join-iso mult-isol top-greatest)

lemma path-concat-aux-5:
 assumes path x
 and y ≤ start-points x
 and z ≤ x + x^T
 shows y;1;z ≤ x^*
proof
 from assms(1) have x;1;x ≤ x^* + x^T;1
 using path-def path-concat-aux-4 dual-order.trans by blast
 hence aux1: x;1;x · -(x^T;1) ≤ x^*
 by (simp add: galois-l sup-commute)

 from assms(1) have x;1;x^T ≤ x^* + x^T;1
 using dual-order.trans path-concat-aux3-1 path-concat-aux-4 by blast
 hence aux2: x;1;x^T · -(x^T;1) ≤ x^*
 by (simp add: galois-l sup-commute)

 from assms(2,3) have y;1;z ≤ (x;1 · -(x^T;1));1·(x + x^T)
 by (simp add: mult-isol-var mult-isor)
 also have ... = (x;1 · -(x^T;1));1·x + (x;1 · -(x^T;1));1·x^T
 using distr-left by blast
 also have ... = (x;1 · -(x^T;1) · 1;x) + (x;1 · -(x^T;1));1·x^T
 by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1 vector-compl)
 also have ... = (x;1 · -(x^T;1) · 1;x) + (x;1 · -(x^T;1) · 1;x^T)
 by (metis comp-assoc inf-top-right is-vector-def one-idem-mult vector-1 vector-compl)
 also have ... = (x;1;x · -(x^T;1)) + (x;1;x^T · -(x^T;1))
 using vector-meet-comp-x vector-meet-comp-x' diff-eq inf.assoc inf.commute
 by simp
 also from aux1 aux2 have ... ≤ x^*
 by (simp add: diff-eq join-iso)
 finally show ?thesis .
qed

lemma path-conditions-disjoint-points-iff:
 x;1 · (x^T;1 + y;1) · y^T;1 = 0 ∧ start-points x · end-points y = 0 ⟷ x;1 · y^T;1 = 0
proof
 assume 1: x : 1 · y^T : 1 = 0
 hence g1: x : 1 · (x^T : 1 + y : 1) · y^T : 1 = 0
 by (metis inf.left-commute inf-bot-right inf-commute)
 have g2: start-points x · end-points y = 0
 using 1 by (metis compl-inf-bot inf.assoc inf.commute inf.left-idem)
 show x;1 · (x^T;1 + y;1) · y^T;1 = 0 ∧ start-points x · end-points y = 0
 using g1 and g2 by simp
next
 assume a: x;1 · (x^T;1 + y;1) · y^T;1 = 0 ∧ start-points x · end-points y = 0

from a have a1: \(x;1 \cdot x^T;1 \cdot y^T;1 = 0 \)
 by (simp add: inf.commute inf-sup-distrib1)
from a have a2: \(x;1 \cdot y;1 \cdot y^T;1 = 0 \)
 by (simp add: inf.commute inf-sup-distrib1)
from a have a3: start-points \(x \cdot \) end-points \(y = 0 \)
 by blast

have \(x;1 \cdot y^T;1 = x;1 \cdot x^T;1 \cdot y^T;1 + x;1 \cdot -(x^T;1) \cdot y^T;1 \)
 by (simts aux4 inf-sup-distrib2)
also from a1 have \(\ldots = x;1 \cdot -(x^T;1) \cdot y^T;1 \)
 using sup-bot-left by blast
also have \(\ldots = x;1 \cdot y;1 \cdot y^T;1 + x;1 \cdot -(x^T;1) \cdot -(y;1) \cdot y^T;1 \)
 by (metis aux4 inf-sup-distrib2)
also have \(\ldots \leq x;1 \cdot y;1 \cdot y^T;1 + x;1 \cdot -(x^T;1) \cdot -(y;1) \cdot y^T;1 \)
 using join-iso meet-iso by simp
also from a2 have \(\ldots = \) start-points \(x \cdot \) end-points \(y \)
 using sup-bot-left inf.commute inf.left-commute by simp
also from a3 have \(\ldots = 0 \)
 by blast
finally show \(x;1 \cdot y^T;1 = 0 \)
 using le-bot by blast
qed

end

2.2 Consequences with the Tarski rule

context relation-algebra-rtc-tarski
begin

General theorems

lemma reachable-implies-predecessor:
 assumes \(p \neq q \)
 and point \(p \)
 and point \(q \)
 and \(x^*;q \leq x^*;p \)
 shows \(x;q \neq 0 \)
proof
 assume contra: \(x;q=0 \)
 with assms(4) have \(q \leq x^*;p \)
 by (simp add: independence1)
 hence \(p \leq x^*;q \)
 by (metis assms(2,3) point-swap star-conv)
 with contra assms(2,3) have \(p=q \)
 by (simp add: independence1 is-point-def point-singleton point-is-point)
 with assms(1) show False
 by simp
qed

lemma acyclic-imp-one-step-different-points:
assumes \(is-acyclic \ x \)
 and \(point \ p \)
 and \(point \ q \)
 and \(p \leq x; q \)
shows \(p \leq -q \) and \(p \neq q \)
using \(acyclic-reaching-points \) assms point-is-point point-not-equal(1) by auto

Start points and end points

lemma start-point-iff2:
 assumes \(path \ x \)
 shows \(is-point \ (start-points \ x) \iff has-start-points \ x \)
proof
 have \(has-start-points \ x \iff 1 \leq -(1;x);1 \)
 by \(simp \ add: \ eq-iff \)
 also have \(... \iff 1 \leq x;(-x;1) \)
 by \(\text{metis comp-assoc conv-compl conv-iso conv-one} \)
 also have \(... \iff 1 \leq (x;1)-(-x;1) \)
 by \(\text{metis (no-types) conv-contrav conv-one inf.commute is-vector-def one-idem-mult ra-2 vector-1} \)
 \text{vector-meet-comp-x}
 also have \(... \iff 1 = 1/(x;1%-(-x;1)) \)
 by \(simp \ add: \ eq-iff \)
 also have \(... \iff x;1%-(-x;1) \neq 0 \)
 by \(\text{metis tarski comp-assoc one-compl ra-1 ss-p18} \)
 also have \(... \iff is-point \ (start-points \ x) \)
 using assms is-point-def start-point-zero-point by blast
finally show \(\text{thesis} \).
qed

lemma end-point-iff2:
 assumes \(path \ x \)
 shows \(is-point \ (end-points \ x) \iff has-end-points \ x \)
by \(\text{metis assms conv-invol conv-has-start-points conv-path start-point-iff2} \)

lemma edge-is-path:
 assumes \(is-point \ p \)
 and \(is-point \ q \)
 shows \(path \ (p;q^T) \)
apply \(\text{(unfold path-def; intro conjI)} \)
apply \(\text{(metis assms comp-assoc is-point-def le-supII star-ext vector-rectangle point-equations(3))} \)
apply \(\text{(metis is-p-fun-def assms comp-assoc conv-contrav conv-invol is-inj-def is-point-def} \)
 vector-2-var vector-meet-comp-x point-equations) \)
by \(\text{(metis is-inj-def assms conv-invol conv-times is-point-def p-fun-mult-var} \)
 vector-meet-comp) \)

lemma edge-start:
 assumes \(is-point \ p \)
and is-point q
and \(p \neq q \)
shows start-points \((p; q^T) = p \)
using assms by (simp add: comp-assoc point-equations(1,3) point-not-equal inf.absorb1)

lemma edge-end:
assumes is-point p
and is-point q
and \(p \neq q \)
shows end-points \((p; q^T) = q \)
using assms edge-start by simp

lemma loop-no-start:
assumes is-point p
shows start-points \((p; p^T) = 0 \)
by simp

lemma loop-no-end:
assumes is-point p
shows end-points \((p; p^T) = 0 \)
by simp

lemma start-point-no-predecessor:
x; start-points(x) = 0
by (metis inf-top.right-neutral modular-1-aux

lemma end-point-no-successor:
x^T; end-points(x) = 0
by (metis conv-invol start-point-no-predecessor

lemma start-to-end:
assumes path x
shows start-points(x); end-points(x)^T \leq x^*
proof (cases end-points(x) = 0)
assume end-points(x) = 0
thus \(?thesis
by simp

next
assume ass: end-points(x) \neq 0
hence nz: x; end-points(x) \neq 0
by (metis comp-res-aux compl-bot-eq inf.le.left-idem
have a: x; end-points(x); end-points(x)^T \leq x + x^T
by (metis end-point-at-most-one assms(1) is-inj-def comp-assoc mult-isol mult-oner le-sup1)

have start-points(x); end-points(x)^T = start-points(x);1; end-points(x)^T
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)
also have ... = start-points(x);1; x; end-points(x);1; end-points(x)^T
using nz tarski by (simp add: comp-assoc)
also have ... = start-points(x);1;x:end-points(x);end-points(x)^T
using ass by (simp add: comp-assoc is-vector-def one-compl vector-1)
also with a assms have ... ≤ x'
using path-concat-aux-5 comp-assoc eq-refl by simp
finally show ?thesis .
qed

lemma path-acyclic:
 assumes has-start-points-path x
 shows is-acyclic x
proof -
 let ?r = start-points(x)
 have pt: point(?r)
 using assms point-is-point start-point-iff2 by blast
 have x·1' = (x^T·x) + x·1'
 by (metis conv-e conv-times inf_assoc inf_left_idem inf_le2
 many-strongly-connected-iff-7
 mult-oner star-subid)
 also have ... ≤ x^T;1·x·1'
 by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one
 inf_assoc
 is-vector-def one-idem-mult vector-2)
 also have ... = (?r·x);(x·1')
 by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one
 inf_assoc
 is-vector-def one-idem-mult vector-1)
 also have ... ≤ (x^* + x^T^*);(x·1')
 using assms(1) mult-isol
 by (meson connected_iff4 dual-order.trans mult-subdistr path-concat-aux3-3)
 also have ... = x^*;(x·1') + x^T^*;(x·1')
 by (metis distrib-right star-star-plus sup_commute)
 also have ... ≤ x^*;(x·1') + x^T^*!
 by (metis join-isol mult-isol plus-top top-greatest)
 finally have ?r:(x·1');1 ≤ x^*;(x·1');1 + x^T^*!
 by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult)
 hence 1: ?r:(x·1');1 ≤ x^T^*;1
 using assms(1) path-def inj-implies-step-forwards-backwards sup-absorb2 by simp
 have x·1' ≤ (?r·x);1
 by (simp add: maddux-20)
 also have ... ≤ ?r^T;r:(x·1');1
 using pt comp-assoc point-def ss423cone by fastforce
 also have ... ≤ ?r^T;x^T;1
 using 1 by (simp add: comp-assoc mult-isol)
also have ... = 0
by (metis start-point-no-predecessor annil conv-contrav conv-zero)
finally show ?thesis
 using galois-aux le-bot by blast
qed

Equivalences for terminating

lemma backward-terminating-iff1:
 assumes path x
 shows backward-terminating x ⇐⇒ has-start-points x ∨ x = 0
proof
 assume backward-terminating x
 hence 1;x:1 ≤ 1;−(1;x):x:1;1
 by (metis mult-isor mult-isol comp-assoc)
 also have ... = −(1;x):x;1
 by (metis conv-compl conv-contrav conv-invol conv-one mult-assoc one-compl one-idem-mult)
 finally have 1;x;1 ≤ −(1;x):x;1.

 with tarski show has-start-points x ∨ x = 0
 by (metis top-le)
next
 show has-start-points x ∨ x = 0 ⇒ backward-terminating x
 by fastforce
qed

lemma backward-terminating-iff2-aux:
 assumes path x
 shows x;1 · 1;xT · −(1;x) ≤ xT•
proof
 have x;1 · 1;xT · −(1;x) ≤ xT•
 by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp-x′)
 also from assms have ... ≤ (x* + xT*)(xT)
 using path-def mult-isor by blast
 also have ... ≤ x*;x;xT + xT•;xT
 by (simp add: star-star-plus star-slide-var add-comm)
 also from assms have ... ≤ x*;1′ + xT•;xT
 by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
 also have ... = x* + xT
 by (metis mult-1-right star-slide-var star-star-plus sup.commute)
 also have ... ≤ xT• + 1;x
 by (metis join-iso mult-isor star-slide-var top-greatest add-comm)
 finally have x;1 · 1;xT ≤ xT• + 1;x.
 thus ?thesis
 by (simp add: galois-1 sup.commute)
qed

lemma backward-terminating-iff2:
 assumes path x

49
shows backward-terminating $x \leftrightarrow x \leq x^T*;-(x^T;1)$

proof
assume backward-terminating x
with assms have has-start-points $x \lor x = 0$
 by (simp add: backward-terminating-iff1)
thus $x \leq x^T*;-(x^T;1)$
proof
assume $x = 0$
thus ?thesis by simp
next
assume has-start-points x
 hence aux1: $1 = 1;x^T;-(x^T;1)$
 by (metis comp-assoc conv-compl conv-contrav conv-one)
 have $x = x \cdot 1$
 by simp
 also have ... $\leq (x;-(1;x) \cdot 1;x^T;-(x^T;1))$
 by (metis inf.commute aux1 conv-compl conv-contrav conv-inv conv-one modular-2-var)
 also have ... $= (x;1 \cdot -(1;x) \cdot 1;x^T;-(x^T;1))$
 by (metis comp-assoc conv-compl conv-contrav conv-inv conv-one inf.commute inf-top-left one-compl ra-1)
 also from assms have ... $\leq x^T*;-(x^T;1)$
 using backward-terminating-iff2-aux inf.commute inf.assoc mult-isor by fastforce
 finally show $x \leq x^T*;-(x^T;1)$.
qed
next
assume $x \leq x^T*;-(x^T;1)$
 hence $x \leq x^T*;-(x^T;1) \cdot x$
 by simp
 also have ... $= (x^T* \cdot -(1;x));1 \cdot x$
 by (metis one-compl comp-assoc conv-compl conv-contrav conv-inv conv-one inf-top-left ra-2)
 also have ... $\leq (x^T* \cdot -(1;x));(1 \cdot (x^* \cdot -(1;x)^T);x)$
 by (metis mono-tags comp-assoc conv-compl conv-inv conv-times modular-1-var star-conv)
 also have ... $\leq -(1;x);x^*;x$
 by (simp add: mult-assoc mult-isol-var)
 also have ... $\leq -(1;x);x;1$
 by (simp add: mult-assoc mult-isol star-slide)
 finally show backward-terminating x.
qed

lemma backward-terminating-iff3-aux:
 assumes path x
 shows $x^T;1 \cdot 1;x^T \cdot -(1;x) \leq x^T*$
proof –
have $x^T;1 \cdot 1;x^T \leq x^T;1;x^T$
by (metis conv-invol modular-var-3 vector-meet-comp-x vector-meet-comp-x')
also from assms have ... $\leq (x^* + x^{T*});x^T$
using mult-isor path-concat-aux3-2 by blast
also have ... $\leq x^*;x;x^T + x^{T*};x^T$
by (simp add: star-star-plus star-slide-var add-comm)
also from assms have ... $\leq x^*;1^* + x^{T*};x^T$
by (metis path-def is-inj-def join-iso mult-assoc mult-isol)
also have ... $= x^* + x^{T*}$
by (metis mult-1-right star-slide-var star-star-plus sup.commute)
finally have ... $\leq x^*;1^* + x^{T*}$
by (simp add: galois-1 sup.commute)
thus \textbf{?thesis}
by (simp add: galois-aux2 inf.commute maddux-21)

\textbf{lemma} \textbf{backward-terminating-iff3}:
\textbf{assumes} \textbf{path} \textbf{x}
\textbf{shows} backward-terminating \textbf{x} $\iff x^T \leq x^T;-(x^T;1)$
\textbf{proof}
\textbf{assume} backward-terminating \textbf{x} with assms have has-start-points \textbf{x} $\lor \textbf{x} = 0$
by (simp add: backward-terminating-iff1)
thus $x^T \leq x^T;-(x^T;1)$
\textbf{proof}
\textbf{assume} \textbf{x} = 0
thus \textbf{?thesis}
by simp
next
\textbf{assume} has-start-points \textbf{x}
\textbf{hence} aux1: $1 = x^T;-(x^T;1)$
by (metis comp-assoc conv-compl conv-contrav conv-one)
\textbf{have} $x^T = x^T \cdot 1$
by simp
\textbf{also have} ... $\leq (x^T;-(1;x) \cdot 1;x^T);-(x^T;1)$
by (metis conv.commute aux1 conv-compl conv-contrav conv-inv conv-one modular-2-var)
\textbf{also have} ... $= (x^T;1 \cdot -(1;x) \cdot 1;x^T);-(x^T;1)$
by (metis comp-assoc conv-compl conv-contrav conv-inv conv-one conv-top-left one-compl ra-1)
\textbf{also from} assms have ... $\leq x^T;-(x^T;1)$
\textbf{using} backward-terminating-iff3-aux inf.commute inf.assoc mult-isor by fastforce
\textbf{finally show} $x^T \leq x^T;-(x^T;1)$.
\textbf{qed}
next
\textbf{have} $1;-(1;x) \cdot x = 0$
by (simp add: galois-aux2 inf.commute maddux-21)
assume \(x^T \leq x^T \ast - (x^T;1) \)

hence \(x = -(1;x)x^* \ast x \)

by (metis (mono-tags, lifting) conv-compl conv-contrav conv-iso conv-one inf.absorb2 star-conv)

also have \(... = -(1;x)x^+ + -(1;x);1 \ast x \)
by (metis distrib-left star-unfoldl-eq sup-commute)

also have \(... = -(1;x)x^+ \ast x + -(1;x) \ast x \)
by (simp add: inf-sup-distrib)

also have \(... \leq -(1;x)x^+ \)
using 1 by simp

also have \(... \leq -(1;x);x;1 \)
by (simp add: mult-assoc mult-isol star-slide-var)

finally show backward-terminating \(x \).

qed

lemma backward-terminating-iff1:
assumes path \(x \)
shows backward-terminating \(x \iff x \leq -(1;x)x^* \)
apply (subst backward-terminating-iff3)
apply (rule assms)
by (metis (mono-tags, lifting) conv-compl conv-iso star-conv conv-contrav conv-one)

lemma forward-terminating-iff1:
assumes path \(x \)
shows forward-terminating \(x \iff \) has-end-points \(x \lor x = 0 \)
by (metis comp-assoc eq-refl le-bot one-compl tarski top-greatest)

lemma forward-terminating-iff2:
assumes path \(x \)
shows forward-terminating \(x \iff x^T \leq x^* \ast -(x;1) \)
by (metis assms backward-terminating-iff1 backward-terminating-iff2 end-point-iff2 forward-terminating-iff1 compl-bot-eq conv-compl conv-inv conv-one conv-path
double-compl start-point-iff2)

lemma forward-terminating-iff3:
assumes path \(x \)
shows forward-terminating \(x \iff x \leq x^* \ast -(x;1) \)
by (metis assms backward-terminating-iff1 backward-terminating-iff3 end-point-iff2 forward-terminating-iff1 compl-bot-eq conv-compl conv-inv conv-one conv-path
double-compl start-point-iff2)

lemma forward-terminating-iff4:
assumes path \(x \)
shows forward-terminating \(x \iff -(1;x^T)x^* \)

52
using forward-terminating-iff2 conv-contrav conv-iso star-cone assms conv-compl
by force

lemma terminating-iff1:
 assumes path x
 shows terminating x ←→ has-start-end-points x ∨ x = 0
using assms backward-terminating-iff1 forward-terminating-iff1 by fastforce

lemma terminating-iff2:
 assumes path x
 shows terminating x ←→ x ≤ xT∗; (xT;1) · -(1;xT);xT∗
using assms backward-terminating-iff2 forward-terminating-iff2 conv-compl
conv-iso star-conv
by force

lemma terminating-iff3:
 assumes path x
 shows terminating x ←→ x ≤ x∗; -(x;1) · -(1;x);x∗
using assms backward-terminating-iff4 forward-terminating-iff3 by fastforce

lemma backward-terminating-path-irreflexive:
 assumes backward-terminating-path x
 shows x ≤ -1′
proof
 have 1: x;xT ≤ 1′
 using assms is-inj-def path-def by blast
 have x;(xT · 1′) ≤ x;xT · x
 by (metis inf.bounded-iff inf.commute mult-1-right mult-subdistl)
 also have ... ≤ 1′ · x
 using 1 meet-iso by blast
 also have ...
 finally have 2: xT · 1′ ≤ xT;1
 by (simp add: le-infI1 maddux-20)
 hence -(xT;1) ≤ -(xT · 1′)
 using compl-mono by blast
 hence xT;-(xT · 1′) + -(xT;1) ≤ -(xT · 1′)
 using 2 by (simp add: le-supI)
 hence xT∗;-(xT;1) ≤ -(xT · 1′)
 by (simp add: rtc-inductl)
 hence xT · 1′ ∗ xT;-(xT;1) = 0
 by (simp add: compl-le-swap1 galois-aux)
 hence xT · 1′ = 0
 using assms backward-terminating-iff3 inf.order-iff le-infI1 by blast
hence x · 1′ = 0
 by (simp add: conv-self-conjugate)
thus ?thesis
by (simp add: galois-aux)

qed

lemma forward-terminating-path-end-points-1:
 assumes forward-terminating-path x
 shows \(x \leq x^+; end-points x \)

proof –
 have 1: \(-(x;1) \cdot x = 0 \)
 by (simp add: galois-aux maddax-20)
 have \(x = x^+; -(x;1) \cdot x \)
 using assms forward-terminating-iff3 inf.absorb2 by fastforce
 also have \(\ldots = (x^+;-(x;1) + 1^+;-(x;1)) \cdot x \)
 by (simp add: sup.commute)
 also have \(\ldots = x^+; -(x;1) \cdot x + -(x;1) \cdot x \)
 using inf-sup-distrib2 by fastforce
 also have \(\ldots = x^+; -(x;1) \cdot x \)
 using 1 by simp
 also have \(\ldots \leq x^+; -(x;1) \cdot (x^+)^T; x \)
 using modular-1-var by blast
 also have \(\ldots = x^+; -(x;1) \cdot x^T; x \)
 using plus-conv by fastforce
 also have \(\ldots \leq x^+; end-points x \)
 by (metis inf-commute inf-top-right modular-1' mult-subdistl plus-conv plus-top)
 finally show \(\ldots \leq x^+; end-points x \)
 by (simp add: galois-aux maddax-20)

qed

lemma forward-terminating-path-end-points-2:
 assumes forward-terminating-path x
 shows \(x^T \leq x^+; end-points x \)

proof –
 have \(x^T \leq x^T; x^T \)
 by (metis conv-invol x-leq-triple-x)
 also have \(\ldots \leq x^T; x; 1 \)
 using mult-isol top-greatest by blast
 also have \(\ldots \leq x^T; x^+; end-points x; 1 \)
 by (metis assms forward-terminating-path-end-points-1 comp-assoc mult-isol mult-isor)
 also have \(\ldots = x^T; x^+; end-points x \)
 by (metis inf-commute mult-assoc one-compl ra-1)
 also have \(\ldots \leq x^+; end-points x \)
 by (metis conv-galois-1 conv-invol p-fun-compl path-def)
 finally show \(\ldots \leq x^+; end-points x \)
 by (simp add: galois-aux maddax-20)

qed

lemma forward-terminating-path-end-points-3:
 assumes forward-terminating-path x
 shows \(start-points x \leq x^+; end-points x \)
proof
 have start-points $x \leq x^+$;end-points $x;1$
 using asms forward-terminating-path-end-points-1 comp-assoc mult-isor
 inf.coboundedII
 by blast
 also have ... = x^+;end-points x
 by (metis inf-commute mult-assoc one-compl ra-1)
 finally show ?thesis .
qed

lemma backward-terminating-path-start-points-1:
 assumes backward-terminating-path x
 shows $x^T \leq x^{T*};start-points x$
 using asms forward-terminating-path-end-points-1 conv-backward-terminating-path by fastforce

lemma backward-terminating-path-start-points-2:
 assumes backward-terminating-path x
 shows $x \leq x^{T*};start-points x$
 using asms forward-terminating-path-end-points-2 conv-backward-terminating-path by fastforce

lemma backward-terminating-path-start-points-3:
 assumes backward-terminating-path x
 shows end-points $x \leq x^{T*};start-points x$
 using asms forward-terminating-path-end-points-3 conv-backward-terminating-path by fastforce

lemma path-aux1a:
 assumes forward-terminating-path x
 shows $x \neq 0 \iff end-points x \neq 0$
 using asms end-point-iff2 forward-terminating-iff1 end-point-iff1 galois-aux2 by force

lemma path-aux1b:
 assumes backward-terminating-path y
 shows $y \neq 0 \iff start-points y \neq 0$
 using asms start-point-iff2 backward-terminating-iff1 start-point-iff1 galois-aux2 by force

lemma path-aux1:
 assumes forward-terminating-path x
 and backward-terminating-path y
 shows $x \neq 0 \lor y \neq 0 \iff end-points x \neq 0 \lor start-points y \neq 0$
 using asms path-aux1a path-aux1b by blast

 Equivalences for finite
lemma backward-finite-iff-msc:
backward-finite x ←→ many-strongly-connected x ∨ backward-terminating x

proof
 assume 1: backward-finite x
 thus many-strongly-connected x ∨ backward-terminating x
 proof (cases -(1;x);x;1 = 0)
 assume -(1;x);x;1 = 0
 thus many-strongly-connected x ∨ backward-terminating x
 using 1 by (metis conv-inv many-strongly-connected-iff-1 sup-bot-right)
 next
 assume -(1;x);x;1 ≠ 0
 hence 1;-1;1 = 1
 by (simp add: comp-assoc tarski)
 hence -(1;x);x;1 = 1
 by (metis comp-assoc conv-compl conv-contrav conv-inv conv-one one-compl)
 thus many-strongly-connected x ∨ backward-terminating x
 using 1 by simp
 qed
next
 assume many-strongly-connected x ∨ backward-terminating x
 thus backward-finite x
 by (metis star-ext sup.coboundedI1 sup.coboundedI2)
 qed

lemma forward-finite-iff-msc:
forward-finite x ←→ many-strongly-connected x ∨ forward-terminating x
by (metis backward-finite-iff-msc conv-backward-finite conv-backward-terminating conv-inv)

lemma finite-iff-msc:
finitre x ←→ many-strongly-connected x ∨ terminating x
using backward-finite-iff-msc forward-finite-iff-msc finite-iff by fastforce

Path concatenation

lemma path-concatenation:
assumes forward-terminating-path x
 and backward-terminating-path y
 and end-points x = start-points y
 and x;1 · (xT;1 + y;1) · yT;1 = 0
shows path (x+y)
proof (cases y = 0)
 assume y = 0
 thus thesis
 using assms(1) by fastforce
next
 assume as: y ≠ 0
 show thesis
 proof (unfold path-def; intro conjI)
from assms(1) have \(a : x;1 \cdot x^T;1 \cdot y^T;1 + x;1 \cdot y;1 \cdot y^T;1 = 0 \)
 by (simp add: inf-sup-distrib1 inf-sup-distrib2)

hence aux1 : \(x;1 \cdot x^T;1 \cdot y^T;1 = 0 \)
 using sup-eq-bot-iff by blast

from a have aux2 : \(x;1 \cdot y;1 \cdot y^T;1 = 0 \)
 using sup-eq-bot-iff by blast

show is-inj \((x + y)\)
proof (unfold is-inj-def; auto simp add: distrib-left)
 show \(x;x^T \leq 1' \)
 using assms(1) path-def is-inj-def by blast
 show \(y;y^T \leq 1' \)
 using assms(2) path-def is-inj-def by blast
 have \(y;x^T = 0 \)
 by (metis assms(3) aux1 annir comp-assoc conv-one le-bot modular-var-2
one-idem-mult
path-concat-aux-2 Schroeder-2)
 thus \(y;y^T \leq 1' \)
 using bot-least le-bot by blast
 thus \(x;y^T \leq 1' \)
 using conv-iso by force

qed

show is-p-fun \((x + y)\)
proof (unfold is-p-fun-def; auto simp add: distrib-left)
 show \(x^T;x \leq 1' \)
 using assms(1) path-def is-p-fun-def by blast
 show \(y^T;y \leq 1' \)
 using assms(2) path-def is-p-fun-def by blast
 have \(y^T;x \leq y^T;(y;1 \cdot x;1) \)
 by (metis conjunction-prop2 inf.commute inf.top.left-neutral maddux-20
mult-isol order-trans
Schroeder-1-var)
 thus \(x^T;x \leq 1' \)
 using bot-least le-bot by blast
 thus \(y^T;y \leq 1' \)
 using conv-iso by force

qed

show connected \((x + y)\)
proof (auto simp add: distrib-left)
 have \(x;1 \cdot x \leq x^* + x^T^* \)
 using assms(1) path-def by simp
 also have \(\leq (x^*;y^*)^* + (x^T^*;y^T^*)^* \)
 using join-iso join-isol star-subdist by simp
 finally show \(x;1 \cdot x \leq (x^*;y^*)^* + (x^T^*;y^T^*)^* \).
 have \(y;1 \cdot y \leq y^* + y^T^* \)

57
using assms(2) path-def by simp
also have ... ≤ (x*:y*)* + (x*T*:y*T*)*
 by (metis star-denest star-subdist sup.mono sup-commute)
finally show y;1;y ≤ (x*:y*)* + (x*T*:y*T*)* .

show y;1;x ≤ (x*:y*)* + (x*T*:y*T*)*
proof –
 have (y;1);1;(1;x) ≤ y*T*:x*T*
proof (rule-tac v=start-points y in path-concat-aux-0)
 show is-vector (start-points y)
 by (metis is-vector-def comp-assoc one-compl one-idem-mult ra-1)
 show start-points y ≠ 0
 using as
 by (metis assms(2) conv-compl conv-contrav conv-one inf.orderE inf-bot-right
inf-top.right-neutral maddux-141)
 have (start-points y);1;yT ≤ y*
 by (rule path-concat-aux-5) (simp-all add: assms(2))
 thus y;1;(start-points y)T ≤ yT*
 by (metis (mono-tags, lifting) conv-iso comp-assoc conv-contrav conv-invoc conv-one
star-conv)
 have end-points x;1;x ≤ xT*
 apply (rule path-concat-aux-5)
 using assms(1) conv-path by simp-all
 thus start-points y;1;x ≤ xT*
 by (metis assms(3) mult-assoc)
qed
thus ?thesis
 by (metis comp-assoc le-supI2 less-eq-def one-idem-mult star-denest star-subdist-var-1
sup.commute)
qed

show x;1;y ≤ (x*:y*)* + (x*T*:y*T*)*
proof –
 have (x;1);1;(1;y) ≤ x*:y*
proof (rule-tac v=start-points y in path-concat-aux-0)
 show is-vector (start-points y)
 by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
 show start-points y ≠ 0
 using as assms(2,4) backward-terminating-iff1 galois-aux2
start-point-iff1 start-point-iff2
 by blast
 have end-points x;1;xT ≤ xT*
 apply (rule path-concat-aux-5)
 using assms(1) conv-path by simp-all
 hence (end-points x;1;xT)T ≤ (x*T)T
 using cone-iso by blast
thus $x:1:(\text{start-points } y)^T \leq x^*$
 by (simp add: assms(3) comp-assoc star-conv)
have $\text{start-points } y;1;y \leq y^*$
 by (rule path-concat-aux-5) (simp-all add: assms(2))
thus $\text{start-points } y;(1;y) \leq y^*$
 by (simp add: mult-assoc)
qed
thus $?\text{thesis}$
 by (metis comp-assoc dual-order.trans le-supI1 one-idem-mult star-ext)
qed
qed
qed

lemma path-concatenation-with-edge:
 assumes $x\neq0$
 and forward-terminating-path x
 and $\text{is-point } q$
 and $q \leq -(1;x)$
 shows $\text{path } (x+(\text{end-points } x);q^T)$
proof (rule path-concatenation)
from assms(1,2) have 1: $\text{is-point}(\text{end-points } x)$
 using end-point-zero-point path-aux1a by blast
show 2: backward-terminating-path $((\text{end-points } x);q^T)$
 apply (intro conjI)
 apply (metis edge-is-path 1 assms(3))
 by (metis assms(2−4) 1 bot-least comp-assoc compl-le-swap1 conv-galois-2 double-compl
 end-point-iff1 le-supE point-equations(1) tarski top-le)
thus $\text{end-points } x = \text{start-points } ((\text{end-points } x);q^T)$
 by (metis assms(3) 1 edge-start comp-assoc compl-top-eq double-compl
 inf.absorb_iff2 inf.commute
 inf-top-right modular-2-aux' point-equations(2))
show $x:1 \cdot (x^T;1+((\text{end-points } x);q^T);1) \cdot ((\text{end-points } x);q^T)^T;1 = 0$
 using 2 by (metis assms(3,4) annir compl-le-swap1 compl-top-eq
 conv-galois-2 double-compl
 inf.absorb_iff2 inf.commute modular-1' modular-2-aux'
 point-equations(2))
show forward-terminating-path x
 by (simp add: assms(2))
qed

lemma path-concatenation-cycle-free:
 assumes forward-terminating-path x
 and backward-terminating-path y
 and $\text{end-points } x = \text{start-points } y$
 and $x:1 \cdot y^T;1 = 0$
 shows $\text{path } (x+y)$
apply (rule path-concatenation,simp-all add: assms)
by (metis assms(4) inf.left-commute inf-bot-right inf-commute)

lemma path-concatenation-start-points-approx:
 assumes end-points x = start-points y
 shows start-points (x+y) ≤ start-points x
proof –
 have start-points (x+y) = x;1 · -(x;T;1) · -(y;T;1) + y;1 · -(x;T;1) · -(y;T;1)
 by (simp add: inf.assoc inf-sup-distrib2)
 also with assms(1) have ... = x;1 · -(x;T;1) · -(y;T;1) + x;T;1 · -(x;T;1) · -(x;T;1)
 by (metis assms inf.assoc inf.left-commute)
 also have ... ≤ start-points x
 using inf-le1 by blast
 finally show ?thesis .
qed

lemma path-concatenation-end-points-approx:
 assumes end-points x = start-points y
 shows end-points (x+y) ≤ end-points y
proof –
 have end-points (x+y) = x;T;1 · -(x;1) · -(y;1) + y;1 · -(x;1) · -(y;1)
 by (simp add: inf.assoc inf-sup-distrib2)
 also from assms(1) have ... = y;1 · -(y;T;1) · -(y;1) + y;T;1 · -(x;1) · -(y;1)
 by simp
 also have ... ≤ end-points y
 using inf-le1 meet-iso by blast
 finally show ?thesis .
qed

lemma path-concatenation-start-points:
 assumes end-points x = start-points y
 and x;1 · y;T;1 = 0
 shows start-points (x+y) = start-points x
proof –
 from assms(2) have aux: x;1 · -(y;T;1) = x;1
 by (simp add: galois-aux inf.absorb1)
 have start-points (x+y) = (x;1 · -(x;T;1) · -(y;T;1)) + (y;1 · -(x;T;1) · -(y;T;1))
 by (simp add: inf-sup-distrib2 inf.assoc)
 also from assms(1) have ... = (x;1 · -(x;T;1) · -(y;T;1)) + (x;T;1 · -(x;1) · -(y;T;1))
 by simp
 also have ... = (x;1 · -(x;T;1) · -(y;T;1))
 finally show ?thesis .
qed
by \((\text{simp add: inf.assoc})\)
also from aux have \(\ldots = x;1 \cdot -(x^T;1)\)
by \((\text{metis inf.assoc inf.commute})\)
finally show \(?thesis\).
qed

lemma path-concatenation-end-points:
assumes end-points \(x = \text{start-points} y\)
and \(x;1 \cdot y^T;1 = 0\)
shows end-points \((x+y) = \text{end-points} y\)
proof
from assms(2) have aux: \(y^T;1 \cdot -(x;1) = y^T;1\)
using galois-aux inf.absorb1 inf-commute by blast
have end-points \((x+y) = (x^T;1 + y^T;1) \cdot -(x;1) \cdot -(y;1)\)
using inf.assoc by simp
also from assms(1) have \(\ldots = (y;1 \cdot -(y^T;1) \cdot -(y;1)) + (y^T;1 \cdot -(x;1) \cdot -(y;1))\)
by \((\text{simp add: inf-sup-distrib2})\)
also have \(\ldots = y^T;1 \cdot -(y;1)\)
by \((\text{simp add: inf.assoc})\)
also from aux have \(\ldots = y^T;1 \cdot -(y;1)\)
by \((\text{metis inf.assoc inf.commute})\)
finally show \(?thesis\).
qed

lemma path-concatenation-cycle-free-complete:
assumes forward-terminating-path \(x\)
and backward-terminating-path \(y\)
and end-points \(x = \text{start-points} y\)
and \(x;1 \cdot y^T;1 = 0\)
shows path \((x+y) \neq \text{start-points} \ (x+y) = \text{start-points} x \land \text{end-points} (x+y) = \text{end-points} y\)
using assms path-concatenation-cycle-free path-concatenation-end-points path-concatenation-start-points
by blast

Path restriction (path from a given point)

lemma reachable-points-iff:
assumes point \(p\)
shows \((x^T;\ p \cdot x) = (x^T;\ p \cdot 1')_x\)
proof (rule antisym)
show \((x^T;\ p \cdot 1')_x \leq x^T;\ p \cdot x\)
proof (rule le-infI)
show \((x^T;\ p \cdot 1')_x \leq x^T;\ p\)
proof
have \((x^T;\ p \cdot 1')_x \leq x^T;\ p;1\)
by \((\text{simp add: mult-isol-var})\)
also have \(\ldots \leq x^T;\ p\)

61
using assms by (simp add: comp-assoc eq-iff point-equations(1) point-is-point)

finally show ?thesis .

qed

show \((x^T; p \cdot 1'); x \leq x\)

by (metis inf-le2 mult-isor mult-onel)

qed

show \(x^T; p \cdot x \leq (x^T; p \cdot 1'); x\)

proof –

have \((x^T; p); x \leq x^T; p + -1'\)

by (metis assms comp-assoc is-vector-def mult-isol point-def sup.coboundedI1 top-greatest)

hence aux: \((- (x^T; p) \cdot 1'); x \leq -(x^T; p)\)

using compl-mono conv-galois-2 by fastforce

have \(x = (x^T; p \cdot 1'); x + (-(x^T; p) \cdot 1'); x\)

by (metis aux4 distrib-right inf-commute mult-1-left)

also with aux have \(\ldots \leq (x^T; p \cdot 1'); x + -(x^T; p)\)

using join-isol by blast

finally have \(x \leq (x^T; p \cdot 1'); x + -(x^T; p)\).

thus \(?thesis\)

using galois-2 inf.commute by fastforce

qed

qed

lemma path-from-given-point:

assumes path \(x\)

and point \(p\)

shows path\((x^T; p \cdot x)\)

and start-points\((x^T; p \cdot x) \leq p\)

and end-points\((x^T; p \cdot x) \leq \text{end-points}(x)\)

proof (unfold path-def; intro conjI)

show uni: is-p-fun \((x^T; p \cdot x)\)

by (metis assms(1) inf-commute is-p-fun-def p-fun-mult-var path-def)

show inj: is-inj \((x^T; p \cdot x)\)

by (metis abel-semigroup.commute assms(1) conv-times inf.abel-semigroup-axioms inj-p-fun)

is-p-fun-def p-fun-mult-var path-def)

show connected \((x^T; p \cdot x)\)

proof –

let \(?t=x^T; p \cdot 1'\)

let \(?u=-(x^T; p) \cdot 1'\)

have t-plus-u: \(?t + ?u = 1'\)

by (simp add: inf.commute)

have t-times-u: \(?t ; ?u \leq 0\)

by (simp add: inf.left-commute is-test-def test-comp-eq-mult)

have t-conv: \(?t^T = ?t\)

using inf.cobounded2 is-test-def test-eq-cone by blast

have tux-zero: \(?t; x; ?u \leq 0\)

62
proof
have $x^T; ?t; 1 \leq -?u$
proof
have $x^T; ?t; 1 \leq x^T; x^T; ?p$
using assms(2)
by (simp add: is-vector-def mult.semidgroup-axioms mult.isol-var
mult-subdistr order.refl
point-def semigroup.assoc)
also have ... $\leq -?u$
by (simp add: le-supI1 mult-isor)
finally show ?thesis .
qed
thus ?thesis
by (metis compl-bot-eq compl-le-swap1 conv-contrav conv-galois-1 t-conv)
qed
hence txux-zero: $?t; ?u; x \leq 0$
using annil le-bot by fastforce
have tx-leq: $?t; x^* \leq (?t; x)^*$
proof
have $?t; x^* = ?t; (?t; x + ?u; x)^*$
using t-plus-u by (metis distrib-right' mult.onel)
also have ... $= (?t; ?u; x; (?u; x)^*; (?t; x)^* + (?t; x)^*)$
using txux-zero star-denest-10 by (simp add: comp-assoc le-bot)
also have ... $\leq 0; x; (?u; x)^*; (?t; x)^* + ?t; (?t; x)^*$
by (simp add: comp-assoc distrib-left)
also have ... $\leq (?t; x)^*$
by (metis annil inf.commute inf-bot-right le-supI1 mult.onel mult-subdistr)
also have ... $\leq (?t; x)^*$
by (metis annil inf.commute inf-bot-right le-supI1 mult.onel mult-subdistr)
finally show ?thesis .
qed
hence aux: $?t; x^*; ?t \leq (?t; x)^*$
using inf.cobounded2 order.trans prod-star-closure star-ref by blast
with t-conv have aux-trans: $?t; x^*; ?t \leq (?t; x)^T$
by (metis comp-assoc conv-contrav conv-self-conjugate-var g-iso star-conv)
from aux aux-trans have $?t; (x^* + x^T); ?t \leq (?t; x)^* + (?t; x)^T$
by (metis sup-mono distrib-right' distrib-left)
with assms(1) path-concat-aux3-1 have $?t; (x; 1; x^T); ?t \leq (?t; x)^* + (?t; x)^T$
using dual-order.trans mult-double-iso by blast
with t-conv have $(?t; x); 1; (?t; x)^T \leq (?t; x)^* + (?t; x)^T$
using comp-assoc conv-contrav by fastforce
with connected-iff2 show ?thesis
using assms(2) inj reachable-points-iff uni by fastforce
qed
next

63
show \(\text{start-points} \ (x^T \cdot p \cdot x) \leq p\)

proof –

have 1: is-vector \((x^T \cdot p)\)
 using assms(2) by (simp add: is-vector-def mult-assoc point-def)
 hence \((x^T \cdot p \cdot x) \cdot 1 \leq x^T \cdot p\)
 by (simp add: inf.commute vector-1-comm)
 also have \(\ldots = x^T \cdot p + p\)
 by (simp add: sup.commute)
 finally have \(\ldots \leq p\)
 using galois-1 by blast

have \((x^T \cdot p \cdot x)^T \cdot 1 = (x^T \cdot (x^T \cdot p)^T) \cdot 1\)
 by (simp add: inf.commute)
 also have \(\ldots = x^T \cdot (x^T \cdot p \cdot 1)\)
 using 1 vector-2 by blast
 also have \(\ldots = x^T + p\)
 by (simp add: comp-assoc)
 finally have \(\ldots \leq x^T \cdot p\)
 using 2 by simp

next

show \(\text{end-points}(x^T \cdot p \cdot x) \leq \text{end-points}(x)\)

proof –

have 1: is-vector \((x^T \cdot p)\)
 using assms(2) by (simp add: is-vector-def mult-assoc point-def)
 have \((x^T \cdot p \cdot x)^T \cdot 1 = ((x^T \cdot p)^T \cdot x^T) \cdot 1\)
 by (simp add: star-conv)
 also have \(\ldots \leq x^T \cdot p\)
 using comp-assoc mult-isor by fastforce
 finally have \(\ldots \leq x^T \cdot p\)
 using galois-aux2 by blast

have \((x^T \cdot p \cdot x)^T \cdot 1 \cdot -((x^T \cdot p \cdot x); 1) = (x^T \cdot p \cdot x)^T \cdot 1 \cdot -(x^T \cdot p + -(x; 1))\)
 using 1 vector-1 by fastforce
 also have \(\ldots = (x^T \cdot p \cdot x)^T \cdot 1 \cdot -(x^T \cdot p) + (x^T \cdot p \cdot x)^T \cdot 1 \cdot -(x; 1)\)
 using inf-sup-distrib1 by blast
 also have \(\ldots = (x^T \cdot p \cdot x)^T \cdot 1 \cdot -(x; 1)\)
 using 2 by simp
 also have \(\ldots \leq x^T \cdot 1 \cdot -(x; 1)\)
 using meet-iso mult-subdist-var by fastforce
 finally show \(?thesis\).

qed
shows path\((x^T;p \cdot x)\)
and start-points\((x^T;p \cdot x) = p\)
and end-points\((x^T;p \cdot x) = \text{end-points}(x)\)
proof –
 show \(\text{path}(x^T;p \cdot x)\)
 using assms path-from-given-point(1) by blast
next
 show start-points\((x^T;p \cdot x) = p\)
 proof (simp only: eq-iff; rule conjI)
 show start-points\((x^T;p \cdot x) \leq p\)
 using assms path-from-given-point(2) by blast
 show \(p \leq \text{start-points}(x^T;p \cdot x)\)
 proof –
 have \(1\): is-vector\((x^T;p)\)
 using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point
 by fastforce
 hence \(a\): \(p \leq (x^T;p \cdot x);1\)
 by (metis vector-1 assms(3) conway.dagger-unfoldl-distr inf.orderI
 inf-greatest
 inf-sup-absorb)
 have \(x^T;p \cdot p \leq (x^T+;1');p\)
 using assms(2) inj-distr point-def by fastforce
 also have \(\ldots \leq (-1';1');p\)
 using assms(1) path-acyclic
 by (metis conw-contrav conv-e meet-iso mult-isor star-conv star-slide-var
 test-converse)
 also have \(\ldots \leq 0\)
 by simp
 finally have \(2\): \(x^T;p \cdot p \leq 0\).
 have \(b\): \(p \leq -(x^T;p \cdot x)^T;1\)
 proof –
 have \((x^T;p \cdot x)^T;1 = ((x^T;p)T \cdot x^T);1\)
 by (simp add: star-conv)
 also have \(\ldots = x^T;(x^T;p \cdot 1)\)
 using 1 vector-2 inf.commute by fastforce
 also have \(\ldots = x^T;x^T;p\)
 by (simp add: comp-assoc)
 also have \(\ldots \leq -p\)
 using 2 galois-aux le-bot by blast
 finally show \(?thesis\)
 using compl-le-swap1 by blast
 qed
 with \(a\) show \(?thesis\)
 by simp
 qed
 qed
next
show end-points(x^T; p \cdot x) = end-points(x)
proof (simp only: eq_iff; rule conjI)
 show end-points(x^T; p \cdot x) \leq end-points(x)
 using assms path-from-given-point(3) by blast
 show end-points(x) \leq end-points(x^T; p \cdot x)
 proof
 have 1: is-vector(x^T;p)
 using assms(2) comp-assoc is-vector-def point-equations(1) point-is-point
 by fastforce
 have 2: is-vector(end-points(x))
 by (simp add: comp-assoc is-vector-def one-compl vector-1-comm)
 have a: end-points(x) \leq (x^T; p \cdot x)^T; 1
 proof
 have x^T; 1 \cdot 1; x^T = x^T; 1; x^T
 by (simp add: vector-meet-comp-x')
 also have \ldots \leq x^{T^*} + x^*
 using assms(1) path-concat-axx3-3 sup.commute by fastforce
 also have \ldots = x^{T^*} + x^+
 by (simp add: star-star-plus sup.commute)
 also have \ldots \leq x^{T^*} + x; 1
 using join-isol mult-isol by fastforce
 finally have end-points(x) \cdot 1; x^T \leq x^{T^*}
 by (metis galois-1 inf.assoc inf.commute sup-commute)
 hence end-points(x) \cdot p^T \leq x^{T^*}
 using assms(3)
 by (metis com-contriv conj elim conv-iso conv-one dual-order.trans inf.cobounded1 inf.right-idem inf-mono)
 hence end-points(x) ; p^T \leq x^{T^*}
 using assms(2) 2 by (simp add: point-def vector-meet-comp)
 hence end-points(x) \leq x^{T^*}; p
 using assms(2) point-def ss423bij by blast
 hence x^T; 1 \leq x^{T^*}; p + x; 1
 by (simp add: galois-1 sup-commute)
 hence x^T; 1 \leq x^{T^*}; p + p + x; 1
 by (metis conway.dagger-unfoldl-distr sup-commute)
 hence x^T; 1 \leq x^{T^*}; p + x; 1
 by (simp add: assms(3) sup.absorb2 sup.assoc)
 hence end-points(x) \leq x^{T^*}; p
 by (simp add: galois-1 sup-commute)
 also have \ldots = (x^{T^*}; p \cdot x); 1
 using 1 inf-commute mult-assoc vector-2 by fastforce
 finally show ?thesis.
 qed
 qed
 have x^T; 1 \cdot (x^{T^*}; p \cdot x); 1 \leq x; 1
 by (simp add: le-infl2 mult-isor)
 hence b: end-points(x) \leq -((x^{T^*}; p \cdot x); 1)
 using galois-1 galois-2 by blast
 with a show ?thesis
finally show ?thesis.
qed
by simp
qed
qed
qed

Cycles

lemma selfloop-is-cycle:
assumes is-point x
shows cycle (x;x^T)
by (simp add: assms edge-is-path)

lemma start-point-no-cycle:
assumes has-start-points-path x
shows ¬ cycle x
using assms many-strongly-connected-implies-no-start-end-points
 no-start-end-points-iff
 start-point-iff1 start-point-iff2 by blast

lemma end-point-no-cycle:
assumes has-end-points-path x
shows ¬ cycle x
using assms end-point-iff2 end-point-iff1
 many-strongly-connected-implies-no-start-end-points
 no-start-end-points-iff by blast

lemma cycle-no-points:
assumes cycle x
shows start-points x = 0
 and end-points x = 0
by (metis assms inf-compl-bot
 many-strongly-connected-implies-no-start-end-points)

Path concatenation to cycle

lemma path-path-equals-cycle-aux:
assumes has-start-end-points-path x
 and has-start-end-points-path y
 and start-points x = end-points y
 and end-points x = start-points y
shows x ≤ (x+y)^T

proof -
 let ?e = end-points(x)
 let ?s = start-points(x)
 have sp: is-point(?s)
 using assms(1) start-point-iff2 has-start-end-points-path-iff by blast
 have ep: is-point(?e)
 using assms(1) end-point-iff2 has-start-end-points-path-iff by blast
 have x ≤ x^T:?e;1 · 1:?s;1 · 1
 by (metis assms(1) backward-terminating-path-start-points-2 end-point-iff2 ep

forward-terminating-iff1 forward-terminating-path-end-points-2

comp-assoc
conv-contrav conv-invol conv-iso inf.boundedI point-equations(1)
point-equations(4)

star-conv sp start-point-iff2
also have ... = \(x^T; e^T; x^T\)
by (metis inf-commute inf-top-right ra-1)
also have ... = \(x^T; e^T; x^T\)
by (metis cp comp-assoc point-equations(4))
also have ... \(\leq x^T; y^T; x^T\)
by (metis (mono-tags, lifting) assms(2-4) start-to-end comp-assoc
conv-contrav conv-invol
conv-iso mult-double-iso star-conv)
also have ... = \((x+y)^*; (x+y)^*; (x+y)^*\)^T
by (metis conv-invol conv-iso prod-star-closure star-conv star-denest star-ext star-iso
star-trans-eq sup-ge1)
also have ... = \((x+y)^T\)
by (metis star-conv star-trans-eq)
finally show \(x; x \leq (x+y)^T\).
qed

lemma path-path-equals-cycle:
assumes has-start-end-points-path \(x\)
and has-start-end-points-path \(y\)
and start-points \(x\) = end-points \(y\)
and end-points \(x\) = start-points \(y\)
and \(x; 1 \cdot (x^T; 1 + y; 1) \cdot y^T; 1 = 0\)
shows cycle\((x + y)\)
proof (intro conjI)
show path \((x + y)\)
apply (rule path-concatenation)
using assms by (simp-all add: has-start-end-points-iff)
show many-strongly-connected \((x + y)\)
by (metis path-path-equals-cycle-aux assms(1-4) sup.commute le-supI
many-strongly-connected-iff-3)
qed

lemma path-edge-equals-cycle:
assumes has-start-end-points-path \(x\)
shows cycle\((x + end-points(x);(start-points x)^T)\)
proof (rule path-path-equals-cycle)
let \(?s = start-points x\)
let \(?e = end-points x\)
let \(?y = (?e; ?s)^T\)

have sp: is-point(?s)

68
using start-point-iff2 assms has-start-end-points-path-iff by blast
have ep: is-point(?e)
 using end-point-iff2 assms has-start-end-points-path-iff by blast

show has-start-end-points-path x
 using assms by blast
show has-start-end-points-path ?y
 using edge-is-path
 by (metis assms edge-end edge-start end-point-iff2 end-point-iff1 galois-aux2
 has-start-end-points-iff inf.left-idem inf-compl-bot-right start-point-iff2)

show ?s = end-points ?y
 by (metis sp ep edge-end annil conv-zero inf.left-idem inf-compl-bot-right)

show x;1 · (x T;1 + ?e;?s T;1) · (?e;?s T;1);1 = 0
proof
 have x;1 · (x T;1 + ?e;?s T;1) · (?e;?s T;1);1 = x;1 · (x T;1 + ?e;?s T;1) · (?e;?s T;1);1
 using sp comp-assoc point-equations(3) by fastforce
 also have ... = x;1 · (x T;1 + ?e;1) · ?s;1
 by (metis sp ep comp-assoc point-equations(1,3))
 also have ... ≤ 0
 by (simp add: sp ep inf.assoc point-equations(1))
 finally show ?thesis
 using bot-unique by blast
qed

lemma cycle-remove-edge:
assumes cycle x
 and point s
 and point e
 and e;?s T ≤ x
shows path(x · -(e;?s T))
 and start-points (x · -(e;?s T)) ≤ s
 and end-points (x · -(e;?s T)) ≤ e
proof
 show path(x · -(e;?s T))
 proof (unfold path-def; intro conjI)
 show 1: is-p-fun(x · -(e;?s T))
 using assms(1) path-def is-p-fun-def p-fun-mult-var by blast
 show 2: is-inj(x · -(e;?s T))
 using assms(1) path-def inf.cobounded1 injective-down-closed by blast
 show connected (x · -(e;?s T))
 proof
 have x* = ((x · -(e;?s T)) + e;?s T)*
 by (metis assms(4) aux4-comm inf.absorb2)
 also have ... = (x · -(e;?s T))* · (e;?s T · (x · -(e;?s T))*)*
 qed
by simp
also have \(\ldots = (x \cdot -(e; s^T))^* \cdot (1' + e; s^T \cdot (x \cdot -(e; s^T))^* ; (e; s^T ; (x \cdot -(e; s^T))^*^*) \)

by fastforce
also have \(\ldots = (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* ; (e; s^T ; (x \cdot -(e; s^T))^*)^* \)

by (simp add: distrib-left mult-assoc)
also have \(\ldots = (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* ; (e; s^T ; (x \cdot -(e; s^T))^*)^* \)

by (simp add: star-slide)
also have \(\ldots \leq (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* \)

using top-greatest join-isol mult-double-iso by (metis mult-assoc)
also have \(\ldots = (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* \)

using assms(3) by (simp add: comp-assoc is-vector-def point-def)
finally have \(3': x^* \leq (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* \)

from assms(4) have \(e; s^T \leq e; e^T \cdot x \)
using assms(3) comp-assoc mult-isol point-def ss423conv by fastforce
also have \(\ldots \leq e; e^T ; (x^*)^T \)

using assms(1) many-strongly-connected-iff 3 mult-isol star-conv by fastforce
also have \(\ldots \leq e; e^T ; ((x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^*)^T \)

using 3 conv-isol mult-isol by blast
also have \(\ldots \leq e; e^T ; ((x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^*)^T \cdot s; e^T ; (x \cdot -(e; s^T))^*) \)

by (simp add: star-comp conv-assoc)
also have \(\ldots \leq e; e^T ; ((x \cdot -(e; s^T))^* + e; e^T ; (x \cdot -(e; s^T))^*)^T \cdot s; e^T ; (x \cdot -(e; s^T))^*) \)

by (simp add: comp-assoc distrib-left)
also have \(\ldots \leq e; e^T ; ((x \cdot -(e; s^T))^* + e; e^T ; (x \cdot -(e; s^T))^*)^T \cdot s; e^T ; (x \cdot -(e; s^T))^*) \)

by (metis comp-assoc join-isol mult-isol top-greatest)
also have \(\ldots \leq e; e^T ; ((x \cdot -(e; s^T))^* + e; e^T ; (x \cdot -(e; s^T))^*)^T \cdot s; e^T ; (x \cdot -(e; s^T))^*) \)

using assms(3) by (simp add: point-equations(1) point-is-point)
also have \(\ldots = e; e^T ; ((x \cdot -(e; s^T))^* + e; e^T ; (x \cdot -(e; s^T))^*)^T \)

by simp
also have \(\ldots \leq 1' ; (x \cdot -(e; s^T))^T \)
using assms(3) is-inj-def point-def join-isol mult-isol by blast
finally have \(4: e; s^T \leq (x \cdot -(e; s^T))^T \)

by simp

have \((x \cdot -(e; s^T))^T ; 1 ; (x \cdot -(e; s^T))^T \leq x ; 1 ; x \)
by (simp add: mult-isol-var)
also have \(\ldots \leq x^* \)
using assms(1) connected-iff4 one-strongly-connected-iff
one-strongly-connected-implies-8
path-concat-aux3-3 by blast
also have \(\ldots \leq (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* ; e; s^T ; (x \cdot -(e; s^T))^* \)
by (rule 3)
also have ... \(\leq (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* \cdot (x \cdot -(e; s^T))^* \cdot (x \cdot -(e; s^T))^* \)
using 4 by (metis comp-assoc join-isol mult-isol mult-isol)
also have ... \(\leq (x \cdot -(e; s^T))^* + (x \cdot -(e; s^T))^* \)
using 1 2 triple-star by force
finally show \(\text{thesis} \).
qed

next
show start-points \((x \cdot -(e; s^T)) \leq s\)

proof –
have 1: \(\text{is-vector}(-s)\)
using assms(2) by (simp add: point-def vector-compl)
have \((x \cdot -(e; s^T)); 1 \cdot -s \leq x; 1 \cdot -s\)
using meet-iso mult-subdistr by blast
also have ... \(\leq x^T; 1 \cdot -s\)
using assms(1) many-strongly-connected-implies-no-start-end-points meet-iso no-start-end-points-path-iff by blast
also have ... \((x^T \cdot -s); 1\)
using 1 by (simp add: vector-1-comm)
also have ... \((x \cdot -(s; e^T)); 1\)
by (metis 1 galois-aux inf.boundedI inf.coboundedI inf.commute mult-isol schroeder-2 vector-1-comm)
also have ... \(= (x \cdot -(e; s^T))^T; 1\)
by (simp add: conv-compl)
finally show \(\text{thesis}\)
by (simp add: galois-1 sup-commute)
qed

next
show end-points \((x \cdot -(e; s^T)) \leq e\)

proof –
have 1: \(\text{is-vector}(-e)\)
using assms(3) by (simp add: point-def vector-compl)
have \((x \cdot -(e; s^T))^T; 1 \cdot -e \leq x^T; 1 \cdot -e\)
using meet-iso mult-subdistr by simp
also have ... \((x^T \cdot -(s; e^T)); 1\)
by (metis 1 galois-aux inf.boundedI inf.coboundedI inf.commute mult-isol schroeder-2 vector-1-comm)
also have ... \((x \cdot -(e; s^T)); 1\)
using 1 by (simp add: vector-1-comm)
also have ... \((x \cdot -(e; s^T)); 1\)
by (metis 1 galois-aux inf.boundedI inf.coboundedI inf.commute mult-isol schroeder-2 vector-1-comm)
finally show \(\text{thesis}\)
by (simp add: galois-1 sup-commute)
qed
Lemma cycle-remove-edge':

Assumes cycle x
and point s
and point e
and s ≠ e
and es ≤ x

Shows path(x · -(e; sT))
and s = start-points (x · -(e; sT))
and e = end-points (x · -(e; sT))

Proof -

Show path (x · -(e; sT))
using assms(1, 2, 3, 5) cycle-remove-edge(1) by blast

Next

Show s = start-points (x · -(e; sT))

Proof (simp only: eq-iff; rule conjI)

Show s ≤ start-points (x · -(e; sT))

Proof -

Have a: s ≤ (x · -(e; sT)); 1

Proof -

Have 1: is-vector(−e)
using assms(2) point-def vector-compl by blast
from assms(2-4) have s = s · -e
using comp-assoc edge-end point-equations(1) point-equations(3)
point-is-point by fastforce
also have ... ≤ xT; e · -e
using assms(3, 5) conv-iso meet-iso point-def ss423conv by fastforce
also have ... ≤ x; 1 · -e
by (metis assms(1) many-strongly-connected-implies-no-start-end-points
meet-iso mult-isol
point-def

Top-greatest)
also have ... ≤ (x · -e); 1
using 1 by (simp add: vector-1-comm)
also have ... ≤ (x · -(e; sT)); 1
by (metis assms(3) comp-anti is-vector-def meet-iso mult-isol mult-isol
point-def
top-greatest)

Finally show ?thesis .

Qed

Have b: s ≤ −((x · -(e; sT))); 1

Proof -

Have 1: x; s = e
using assms predecessor-point' by blast
have s · xT = s(eT + -(eT)) · xT
using assms(2) point-equations(1) point-is-point by fastforce
also have ... = s; eT · xT
by (metis 1 conv-contrav inf.commute inf-sup-absorb modular-1')
also have ... ≤ eT
by (metis assms(3) inf.cobounded1I mult-isor point-equations(4))
point-is-point
 (top-greatest)
finally have \(s \cdot x^T \leq s \cdot e^T \)
 by simp
also have \(\ldots \leq s ; e^T \)
 using assms(2,3) by (simp add: point-def vector-meet-comp)
finally have \(2 : s \cdot x^T \cdot -\{s ; e^T\} = 0 \)
 using galois-aux2 by blast
thus \?thesis
proof
 have \(s ; e^T = e^T \cdot s \)
 using assms(2,3) inf-commute point-def vector-meet-comp by force
 thus \?thesis
 using 2
 by (metis assms(2,3) conv-compl conv-invol conv-one conv-times)
galois-aux
 inf.assoc point-def point-equations(1) point-is-point schroeder-2
 vector-meet-comp
qed
qed
with a show \?thesis
 by simp
qed
show start-points \((x \cdot - (e ; s^T)) \leq s \)
 using assms(1,2,3,5) cycle-remove-edge(2) by blast
qed
next
show \(e = end-points (x \cdot - (e ; s^T)) \)
proof (simp only: eq-iff; rule conjI)
 show \(e \leq end-points (x \cdot - (e ; s^T)) \)
proof
 have a: \(e \leq (x \cdot - (e ; s^T))^T ; 1 \)
 proof
 have 1: is-vector\(-s\)
 using assms(2) point-def vector-compl by blast
 from assms(2-4) have \(e = e \cdot -s \)
 using comp-assoc edge-end point-equations(1) point-equations(3)
 proof
 also have \(\ldots \leq x ; s \cdot -s \)
 using assms(2,5) meet-iso point-def ss423bij by fastforce
 also have \(\ldots \leq x^T ; 1 \cdot -s \)
 by (metis assms(1) many-strongly-connected-implies-no-start-end-points)
 proof
 (top-greatest)
 also have \(\ldots \leq (x^T \cdot -s) ; 1 \)
 using 1 by (simp add: vector-1-comm)
 also have \(\ldots \leq (x^T \cdot -\{s ; e^T\}) ; 1 \)
by (metis assms(2) comp-anti is-vector-def meet-isor mult-isol mult-isor
point-def
top-greatest)
finally show ?thesis
by (simp add: conv-compl)
qed
have b: e ≤ -((x · - (e ; s^T)); 1)
proof -
 have 1: x^T; e = s
 using assms predecessor-point' by (metis conv-contrav conv-invol
conv-iso conv-path)
 have e · x = e; (s^T + -(s^T)) · x
 using assms(3) point-equations(1) point-is-point by fastforce
 also have ... = e; s^T · x
 by (metis 1 conv-contrav conv-invol inf.commute inf-sup-absorb
modular-1')
 also have ... ≤ s^T
 by (metis assms(2) inf.coboundedI1 mult-isor point-equations(4)
point-is-point top-greatest)
finally have e · x ≤ e · s^T
 by simp
 also have ... ≤ e ; s^T
 using assms(2,3) by (simp add: point-def vector-meet-comp)
finally have 2: e · x · -(e ; s^T) = 0
 using galois-aux2 by blast
thus ?thesis
proof -
 have e ; s^T = s^T · e
 using assms(2,3) inf-commute point-def vector-meet-comp by force
 thus ?thesis
 using 2
 by (metis assms(2,3) conv-one galois-aux inf.assoc point-def
point-equations(1)
point-is-point schroeder-2 vector-meet-comp)
qed
qed
with a show ?thesis
by simp
show end-points (x · - (e ; s^T)) ≤ e
 using assms(1,2,3,5) cycle-remove-edge(3) by blast
qed
qed
end
end
3 Relational Characterisation of Rooted Paths

We characterise paths together with a designated root. This is important as often algorithms start with a single vertex, and then build up a path, a tree or another structure. An example is Dijkstra’s shortest path algorithm.

theory Rooted-Paths

imports Paths

begin

context relation-algebra
begin

 General theorems

lemma step-has-target:
 assumes \(x; r \neq 0 \)
 shows \(x^{T}; 1 \neq 0 \)
using assms inf.commute inf-right schroeder-1 by fastforce

lemma end-point-char:
 \(x^{T}; p = 0 \iff p \leq -(x; 1) \)
using antisym bot-least compl-bot-eq conv-galois-1 by fastforce

end

context relation-algebra-tarski
begin

 General theorems concerning points

lemma successor-point:
 assumes is-inj \(x \)
 and point \(r \)
 and \(x; r \neq 0 \)
 shows point \((x; r) \)
using assms
by (simp add: inj-compose is-point-def is-vector-def mult-assoc point-is-point)

lemma no-end-point-char:
 assumes point \(p \)
 shows \(x^{T}; p \neq 0 \iff p \leq x; 1 \)
by (simp add: assms comp-assoc end-point-char is-vector-def point-in-vector-or-complement-iff)

lemma no-end-point-char-converse:
 assumes point \(p \)
 shows \(x; p \neq 0 \iff p \leq x^{T}; 1 \)
using assms no-end-point-char by force
3.1 Consequences without the Tarski rule

context relation-algebra-rtc
begin

Definitions for path classifications

definition path-root
 where path-root r x \equiv r;x \leq x^* + x^{T^*} \land \text{is-inj } x \land \text{is-p-fun } x \land \text{point } r

abbreviation connected-root
 where connected-root r x \equiv r;x \leq x^+

definition backward-finite-path-root
 where backward-finite-path-root r x \equiv \text{connected-root } r x \land \text{is-inj } x \land \text{is-p-fun } x \land \text{point } r

abbreviation backward-terminating-path-root
 where backward-terminating-path-root r x \equiv \text{backward-finite-path-root } r x \land x;r = 0

abbreviation cycle-root
 where cycle-root r x \equiv r;x \leq x^+ \cdot x^T;1 \land \text{is-inj } x \land \text{is-p-fun } x \land \text{point } r

abbreviation non-empty-cycle-root
 where non-empty-cycle-root r x \equiv \text{backward-finite-path-root } r x \land r \leq x^T;1

abbreviation finite-path-root-end
 where finite-path-root-end r x e \equiv \text{backward-finite-path-root } r x \land \text{point } e \land r \leq x^+;e

abbreviation terminating-path-root-end
 where terminating-path-root-end r x e \equiv \text{finite-path-root-end } r x e \land x^T;e = 0

Equivalent formulations of connected-root

lemma connected-root-iff1:
 assumes point r
 shows connected-root r x \iff 1;x \leq r^T;x^+
 by (metis assms comp-assoc is-vector-def point-def ss423conv)

lemma connected-root-iff2:
 assumes point r
 shows connected-root r x \iff x^T;1 \leq x^{T^+};r
 by (metis assms comp-contrav conv-contrav conv-invol conv-iso conv-one star-conv star-slide-var connected-root-iff1)

lemma connected-root-aux:
 x^{T^+};r \leq x^T;1
 by (simp add: comp-assoc mult-isol)
lemma connected-root-iff3:
 assumes point r
 shows connected-root r x \iff x^T;1 = x^{T*};r
using assms antisym connected-root-aux connected-root-iff2 by fastforce

lemma connected-root-iff4:
 assumes point r
 shows connected-root r x \iff 1;x = r^{T};x^+
by (metis assms conv-contrav conv-invol conv-one star-conv star-slide-var connected-root-iff3)

Consequences of connected-root

lemma has-root-contra:
 assumes connected-root r x
 and point r
 and x^T;r = 0
 shows x = 0
using assms comp-assoc independence1 conv-zero ss-p18 connected-root-iff3
by force

lemma has-root:
 assumes connected-root r x
 and point r
 and x \neq 0
 shows x;r \neq 0
using has-root-contra assms by blast

lemma connected-root-move-root:
 assumes connected-root r x
 and q \leq x^*;r
 shows connected-root q x
by (metis assms comp-assoc mult-isol phl-cons1 star-slide-var star-trans-eq)

lemma root-cycle-converse:
 assumes connected-root r x
 and point r
 and x;r \neq 0
 shows x^T;r \neq 0
using assms conv-zero has-root by fastforce

Rooted paths

lemma path-iff-aux-1:
 assumes bijective r
 shows r;x \leq x^* + x^{T*} \iff x \leq r^T;(x^* + x^{T*})
by (simp add: assms ss23conv)

lemma path-iff-aux-2:
 assumes bijective r
shows $r; x \leq x^* + x^{T*} \iff x^T \leq (x^* + x^{T*}); r$

proof –
have $((x^* + x^{T*});r)^T = r^T; (x^* + x^{T*})$
 by (metis conv-add conv-contrav conv-invol star-conv sup.commute)
thus ?thesis
by (metis assms conv-invol conv-iso path-iff-aux-1)
qed

lemma path-iff-backward:
assumes is-inj x
 and is-p-fun x
 and point r
 and $r; x \leq x^* + x^{T*}$
shows connected x
proof –
have $x^T; 1; x \leq (x^* + x^{T*}); r; 1; x^T$
 using assms(3,4) path-iff-aux-2 mult-isor point-def by blast
also have ... = $(x^* + x^{T*}); r; 1; x^T; x; x^T$
 using assms(1) comp-assoc inj-p-fun p-fun-triple by fastforce
also have ... $\leq (x^* + x^{T*}); r; x; x^T$
 by (metis assms(3) mult-double-iso top-greatest point-def is-vector-def comp-assoc)
also have ... $\leq (x^* + x^{T*}); (x^* + x^{T*}); x^T$
 by (metis assms(4) comp-assoc mult-double-iso)
also have ... $\leq (x^* + x^{T*}); (x^* + x^{T*}); (x^* + x^{T*})$
 using le-supI2 mult-isol star-ext by blast
also have ... = $x^* + x^{T*}$
 using assms(1,2) cancel-separate-converse-idempotent by fastforce
finally show ?thesis
 by (metis conv-add conv-contrav conv-invol conv-one mult-assoc star-conv sup.orderE sup.orderI
 sup-commute)
qed

lemma empty-path-root-end:
assumes terminating-path-root-end $r; x; e$
shows $e = r \iff x = 0$
apply (standard)
using assms has-root backward-finite-path-root-def apply blast
by (metis assms antisym conv-e conv-zero independence1 is-inj-def mult-oner point-swap
 backward-finite-path-root-def ss423conv sur-def-var1 x-leq-triple-x)

lemma path-root-acyclic:
assumes path-root $r; x$
 and $x; r = 0$
 and $x; x$ is-acyclic x
proof –
have $x^+; 1' = (x^+)^T; x^+; 1'$
by (metis conv-e conv-times inf.assoc inf.left-idem inf-le2
many-strongly-connected-iff-7 mult-oner star-subid)
also have \(\ldots \leq x^T;1 \cdot x^+;1' \)
by (metis conv-contrav inf.commute maddux-20 meet-double-iso plus-top
star-conv star-slide-var)
finally have \(r;(x^+;1') \leq r;(x^T;1 \cdot x^+;1') \)
using mult-isol by blast
also have \(\ldots = (r;1);(x^+;1') \)
by (metis (no-types, lifting) comp-assoc conv-contrav conv-invol conv-one
inf.assoc is-vector-def one-idem-mult vector-2)
also have \(\ldots \leq r;x;(x^+;1') \)
by (metis assms inf.top-right vector-1)
also have \(\ldots \leq (x^* + x^T*);(x^+;1') \)
using assms(1) mult-isol path-root-def by blast
also have \(\ldots = x^*;(x^+;1') + x^T*;(x^+;1') \)
by (metis distrib-right star-star-plus sup.commute)
also have \(\ldots \leq x^*;(x^+;1') + x^T;1 \)
by (metis join-isol mult-isol plus-top top-greatest)
finally have \(r;(x^+;1');1 \leq x^*;(x^+;1');1 + x^T;1 \)
by (metis distrib-right inf-absorb2 mult-assoc mult-subdistr one-idem-mult
path-root-def)
hence \(1; r;(x^+;1');1 \leq x^T;1 \)
by (metis assms(1) inj-implies-step-forwards-backwards sup-absorb2
path-root-def)
also have \(x^+;1' \leq (x^* + x^T*);(x^+;1') \)
by (simp add: maddux-20)
also have \(\ldots \leq r^T;r;(x^+;1');1 \)
by (metis assms(1) comp-assoc order.refl_def point-def ss423conv path-root-def)
also have \(\ldots \leq r^T;x^*;1 \)
using 1 by (simp add: comp-assoc mult-isol)
also have \(\ldots = 0 \)
using assms(2) annil conv-contrav conv-zero by force
finally show \(\exists \text{thesis} \)
using galois-aux le-bot by blast
qed

Start points and end points

lemma start-points-in-root-aux:
assumes backward-finite-path-root r x
shows \(x;1 \leq x^T^*;r \)
proof –
have \(x;1 \leq x;x^T^*;r \)
by (metis assms inf.top-left-neutral modular-var-2 mult-assoc
connected-root-iff3 backward-finite-path-root-def)
also have \(\ldots \leq 1; x^T^*;r \)
by (metis assms is-inj-def mult-assoc mult-isor backward-finite-path-root-def)
finally show \(\exists \text{thesis} \)
by simp
qed
lemma start-points-in-root:
 assumes backward-finite-path-root r x
 shows start-points x ≤ r
using assms galois-1 sup-commute connected-root-iff3
backward-finite-path-root-def
start-points-in-root-aux by fastforce

lemma start-points-not-zero-contra:
 assumes connected-root r x
 and point r
 and start-points x = 0
 and x;r = 0
 shows x = 0
proof −
 have x;1 ≤ xT;1
 using assms(3) galois-aux by force
 also have ... ≤ −r
 using assms(4) compl-res compl-bot-eq by blast
finally show ?thesis
 using assms(1,2) has-root-contra galois-aux Schroeder-1 by force
qed

lemma start-points-not-zero:
 assumes connected-root r x
 and point r
 and x ≠ 0
 and x;r = 0
 shows start-points x ≠ 0
using assms start-points-not-zero-contra by blast

Backwards terminating and backwards finite

lemma backward-terminating-path-root-aux:
 assumes backward-terminating-path-root r x
 shows x ≤ xT*;−(xT;1)
proof −
 have xT*;r ≤ xT*;−(xT;1)
 using assms compl-comp-bot-eq compl-le-swap1 mult-isol by blast
 thus ?thesis
 using assms dual-order trans maddux-20 start-points-in-root-aux by blast
qed

lemma backward-finite-path-connected-aux:
 assumes backward-finite-path-root r x
 shows xT;r;xT ≤ x* + xT*
proof −
 have xT;r;xT · rT = xT;r;(xT · rT)
 by (metis conv-invol conv-times vector-1-comm comp-assoc conv-contrav assms
 backward-finite-path-root-def point-def)
also have $\cdots \leq x^T; r; r^T$
 by (simp add: mult-isol)
also have $1: \cdots \leq x^T$
 by (metis assms comp-assoc is-inj-def mult-1-right mult-isol point-def
 backward-finite-path-root-def)
also have $\cdots \leq x^T^*$
 by simp
finally have $2: x^T; r; x^T \cdot r^T \leq x^T^*$.
let $z = x; 1 \cdot -r$
have $z \leq x^T + r$
 by (simp add: assms galois-1 start-points-in-root-aux)
hence $r^T \cdot z \leq r^T \cdot x \cdot x^T + r$
 using meet-isor by blast
also have $3: \cdots = (x^T + r \cdot 1); r^T; x$
 using 3 by (metis comp-assoc inf-commute is-vector-def star-conv vector-1 assms
 backward-finite-path-root-def)
also have $\cdots = (x^T + r \cdot 1); r^T; x$
 by simp
also have $\cdots \leq x^T^*$
 by (metis assms backward-finite-path-root-def is-p-fun-def mult-1-right
 mult-assoc mult-isol-var star-1l star-inductl-star)
finally have $4: x^T; r \cdot ?v^T \leq x^*$
 using conv-iso star-conv by force
have $x^T; r; x^T \cdot -r^T = (x^T; r \cdot 1); x^T \cdot -r^T$
 by simp
also have $\cdots = x^T; r \cdot 1; x^T \cdot -r^T$
 by (metis inf-commute is-vector-def comp-assoc vector-1 assms
 backward-finite-path-root-def)
also have $\cdots \leq x^*$
 using 4 by (simp add: conv-compl inf.assoc
finally have $(x^T; r; x^T \cdot -r^T) + (x^T; r; x^T \cdot r^T) \leq x^* + x^T^*$
 using 2 sup_mono by blast
thus \cdots
 by fastforce
qed

lemma backward-finite-path-connected:
assumes backward-finite-path-root r x
shows connected $x
proof

from assms obtain \(r \) where \(\mathit{backward\text{-}finite\text{-}path\text{-}root} \ r \ x \) ..

have \(x^T;(x^* + x^{*+}) = x^T;(1' + x^+) + x^{T+} \)
 by (simp add: distrib-left)
also have \(... = x^T;x^+ + x^{T+} \)
 using calculation distrib-left star-star-plus by fastforce
also have \(... \leq 1';x^+ + x^{T+} \)
 using 1 by (metis add-isor comp-assoc is-p-fun-def mult-isor
backward-finite-path-root-def)
also have \(... \leq x^* + x^{T*} \)
 using join-isol by fastforce
finally have \(x^T;r;x^T + x^{T};(x^* + x^{T*}) \leq x^* + x^{T*} \)
 using 1 backward-finite-path-connected-aux by simp
hence \(x^{T*};x^T;r;x^T \leq x^* + x^{T*} \)
 using star-inductl comp-assoc by simp
hence \(x^T;1;x^T \leq x^* + x^{T*} \)
 using 1 backward-finite-path-root-def connected-root-iff3 star-slide-var by
fastforce
thus \(?thesis\)
 by (metis (mono-tags, lifting) sup.commute comp-assoc conv-add conv-contrav
conv-invol conv-iso
 conv-one star-conv)
qed

lemma backward-finite-path-root-path:
 assumes \(\mathit{backward\text{-}finite\text{-}path\text{-}root} \ r \ x \)
 shows \(\mathit{path} \ x \)
 using assms path-def backward-finite-path-connected backward-finite-path-root-def
 by blast

lemma backward-finite-path-root-path-root:
 assumes \(\mathit{backward\text{-}finite\text{-}path\text{-}root} \ r \ x \)
 shows \(\mathit{path\text{-}root} \ r \ x \)
 using assms backward-finite-path-root-def le-supI1 star-star-plus path-root-def by
fastforce

lemma zero-backward-terminating-path-root:
 assumes \(\mathit{point} \ r \)
 shows \(\mathit{backward\text{-}terminating\text{-}path\text{-}root} \ r \ 0 \)
 by (simp add: assms is-inj-def is-p-fun-def backward-finite-path-root-def)

lemma backward-finite-path-root-move-root:
 assumes \(\mathit{backward\text{-}finite\text{-}path\text{-}root} \ r \ x \)
 and \(\mathit{point} \ q \)
 and \(q \leq x^*:r \)
 shows \(\mathit{backward\text{-}finite\text{-}path\text{-}root} \ q \ x \)
 using assms connected-root-move-root backward-finite-path-root-def by blast

Cycle
lemma non-empty-cycle-root-var-axioms-1:
non-empty-cycle-root \(r \ x \leftarrow x^T; r \leq x^T; x \rightleftharpoons \) using connected-root-iff2 backward-finite-path-root-def by blast

lemma non-empty-cycle-root-loop:
assumes non-empty-cycle-root \(r \ x \)
shows \(r \leq x^T; x \rightleftharpoons \) using assms connected-root-iff3 backward-finite-path-root-def by fastforce

lemma cycle-root-end-empty:
assumes terminating-path-root-end \(r \ x \) and many-strongly-connected \(x \)
shows \(x = 0 \) by (metis assms has-root-contra point-swap backward-finite-path-root-def backward-finite-path-root-move-root star-conv)

lemma cycle-root-end-empty-var:
assumes terminating-path-root-end \(r \ x \) and \(x \neq 0 \)
shows \(\neg \) many-strongly-connected \(x \) using assms cycle-root-end-empty by blast

Terminating path

lemma terminating-path-root-end-connected:
assumes terminating-path-root-end \(r \ x \) e
shows \(x; 1 \leq x^T; e \)
proof -
 have \(x; 1 \leq x;x^T; 1 \)
 by (metis comp-assoc inf-top.left-neutral modular-var-2)
 also have \(\ldots = x;x^T; r \)
 using assms backward-finite-path-root-def connected-root-iff3 comp-assoc by fastforce
 also have \(\ldots \leq x;x^T; x^*; e \)
 by (simp add: assms comp-assoc mult-isol)
 also have \(\ldots = x;x^T; x^* + x^T; e \)
 using assms cancel-separate-p-fun-converse comp-assoc backward-finite-path-root-def by fastforce
 also have \(\ldots = x;x^T; (x^* + x^T); e \)
 by (simp add: star-star-plus)
 also have \(\ldots = x;x^T; x^*; e \)
 by (simp add: assms comp-assoc independence1)
 also have \(\ldots \leq x^*; e \)
 by (metis assms annil independence1 is-inj-def mult-isor mult-oner backward-finite-path-root-def)
 finally show \(?thesis \).
qed
lemma terminating-path-root-end-forward-finite:
 assumes terminating-path-root-end $r \ x \ e$
 shows backward-finite-path-root $e \ (x^T)$
using assms terminating-path-root-end-connected inj-p-fun connected-root-iff2
 backward-finite-path-root-def by force
end

3.2 Consequences with the Tarski rule

context relation-algebra-rtc-tarski
begin

 Some (more) results about points

lemma point-reachable-converse:
 assumes is-vector v
 and $v \neq 0$
 and point r
 and $v \leq x^T+r$
 shows $r \leq x^+;v$
proof
 have $v^T;v \neq 0$
 by (metis assms(2) inf.idem inf-bot-right mult-1-right Schroeder-1)
 hence $1;v^T;v = 1$
 by (metis assms(1) is-vector-def mult-assoc tarski)
 hence $r = r;v^T;v$
 by (metis assms(3) is-vector-def mult-assoc point-def)
 have $v;r^T \leq x^T+$
 using assms(3,4) point-def ss423bij by simp
 hence $r;r^T \leq x^+$
 by (metis conv-contrav conv-inv conv-inv conv-inv conv-inv star-conv star-slide-var)
 thus ?thesis
 using 1 by (metis mult-isor)
qed

Roots

lemma root-in-start-points:
 assumes connected-root $r \ x$
 and is-vector r
 and $x \neq 0$
 and $x;r = 0$
 shows $r \leq start-points x$
proof
 have $r = r;x;1$
 by (metis assms(2,3) comp-assoc is-vector-def tarski)
 also have ... $\leq x;1$
 by (metis assms(1) comp-assoc one-idem-mult phl-seq top-greatest)
 finally show ?thesis
 using assms(4) comp-res compl-bot-eq compl-le-swap1 inf.boundedI by blast
lemma root-equals-start-points:
 assumes backward-terminating-path-root r x
 and x ≠ 0
 shows r = start-points x
using assms antisym point-def backward-finite-path-root-def start-points-in-root root-in-start-points
by fastforce

lemma root-equals-end-points:
 assumes backward-terminating-path-root r (x T)
 and x ≠ 0
 shows r = end-points x
by (metis assms conv-invol step-has-target ss-p18 root-equals-start-points)

lemma root-in-edge-sources:
 assumes connected-root r x
 and x ≠ 0
 and is-vector r
 shows r ≤ x;1
proof –
 have (r;1;x;1) = (x T;r T · 1')
 using assms(1,3) is-vector-def mult-isor by fastforce
 thus ?thesis
 by (metis assms(2) comp-assoc conway.dagger-unfoldl-distr dual-order.trans maddux-20 sup.commute sup-absorb2 tarski top-greatest)
qed

Rooted Paths

lemma non-empty-path-root-iff-aux:
 assumes path-root r x
 and x ≠ 0
 shows r ≤ (x + x T);1
proof –
 have (r;x · 1');1 = (x T;r T · 1');1
 using mult-subdistr by blast
 also have ... ≤ x T;1
 by (metis mult-assoc mult-double-iso one-idem-mult top-greatest)
 finally have 1:(r;x · 1');1 ≤ x T;1 .
 have r ≤ r;1;x;1
 using assms(2) comp-assoc maddux-20 tarski by fastforce
 also have ... = r;x;1
 using assms(1) path-root-def point-def is-vector-def by simp
 also have ... = (r;x · (x * + x T *));1
using assms(1) path-root-def by (simp add: inf.absorb-iff1)
also have ... = (r;x · (x⁺ + xᵀ⁺ + 1'));1
 by (metis star-star-plus star-unfoldl-eq sup-commute sup-left-commute)
also have ... ≤ (x⁺ + xᵀ⁺ + (r;x · 1'));1
 by (metis inf.le2 inf-sup-distrib1 mult-isor order-refl sup-mono)
also have ... ≤ x;1 + xᵀ;1 + (r;x · 1');1
 by (simp add: plus-top)
also have ... = x;1 + xᵀ;1
 using 1 sup.coboundedl1 sup.order-iff by fastforce
finally show ?thesis
 by simp
qed

Backwards terminating and backwards finite

lemma backward-terminating-path-root-2:
 assumes backward-terminating-path-root r x
 shows backward-terminating x
using assms backward-terminating-iff2 path-def
backward-terminating-path-root-aux
 backward-finite-path-connected backward-finite-path-root-def by blast

lemma backward-terminating-path-root:
 assumes backward-terminating-path-root r x
 shows backward-terminating-path x
using assms backward-finite-path-root-path backward-terminating-path-root-2 by fastforce

(Non-empty) Cycle

lemma cycle-iff:
 assumes point r
 shows x;r ≠ 0 ⟷ r ≤ xᵀ;1
by (simp add: assms no-end-point-char-converse)

lemma non-empty-cycle-root-iff:
 assumes connected-root r x
 and point r
 shows x;r ≠ 0 ⟷ r ≤ xᵀ⁺;r
using assms connected-root-iff3 cycle-iff by simp

lemma backward-finite-path-root-terminating-or-cycle:
 backward-finite-path-root r x ⟷ backward-terminating-path-root r x ∨ non-empty-cycle-root r x
using cycle-iff backward-finite-path-root-def by blast

lemma non-empty-cycle-root-msc:
 assumes non-empty-cycle-root r x
 shows many-strongly-connected x
proof
 let ?p = xᵀ;r
have 1: is-point \(?p \)

unfolding is-point-def

using conjI assms is-vector-def mult-assoc point-def inj-compose p-fun-inj cycle-iff backward-finite-path-root-def root-cycle-converse by fastforce

have \(?p \leq x^T + ?p \)

by (metis assms comp-assoc mult-isol star-slide-var non-empty-cycle-root-loop)

hence \(?p \leq x^+; ?p \)

using 1 bot-least point-def point-is-point point-reachable-converse by blast

also have \(... = x^\ast;(x;x^T);^r \)

by (metis comp-assoc star-slide-var)

also have \(... \leq ?p + 1'; x^+; ?p \)

by (metis assms is-inj-def mult-double-iso backward-finite-path-root-def)

by blast

finally have 2: \(?p \leq x^\ast; ?p \)

by simp

have \(x^T;x^\ast; ?p = ?p + x^T;x^+; ?p \)

by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)

also have \(... \leq ?p + 1'; x^+; ?p \)

by (metis assms is-p-fun-def join-isol mult-assoc backward-finite-path-root-def)

by blast

also have \(... = x^\ast; 1'; ?p \)

using 2 by (simp add: sup-absorb2)

finally have 3: \(x^T;x^\ast; r \leq x^+; r \)

by (metis star-inductl comp-assoc conway.dagger-unfoldl-distr le-supI order-prop)

have \(x^T \leq x^T + r \)

by (metis assms maddux-20 connected-root-iff3 backward-finite-path-root-def)

also have \(... \leq x^+; r \)

using 3 by (metis assms conway.dagger-unfoldl-distr sup-absorb2 non-empty-cycle-root-loop)

finally have 4: \(x^T \leq x^\ast; r \).

have \(x^T \leq x^T;x^T \)

by (metis conv-invol x-leq-triple-x)

also have \(... \leq 1;x^T \)

by (simp add: mult-isor)

also have \(... = r^T;x^T \)

using assms connected-root-iff4 backward-finite-path-root-def by fastforce

also have \(... \leq r^T;x^* \)

by (metis assms is-inj-def mult-1-right mult-assoc mult-isol backward-finite-path-root-def)

by simp

also have \(... = x^\ast; r \cdot r^T;x^* \)

by (metis assms conv-contrav conv-one is-vector-def point-def)

also have \(... = (x^\ast;r \cdot 1); r^T;x^* \)

by (metis (no-types, lifting) assms is-vector-def mult-assoc point-def)

also have \(... = x^\ast;r; r^T;x^* \)

by (metis assms is-p-fun-def join-isol mult-assoc backward-finite-path-root-def vector-1)
by simp
also have \(\cdots \leq x^*;x^* \)
 by (metis assms is-inj-def mult-1-right mult-assoc mult-isol mult-isor point-def
 backward-finite-path-root-def)
also have \(\cdots \leq x^* \)
 by simp
finally show \(?thesis
 by (simp add: many-strongly-connected-iff-1)
qed

lemma non-empty-cycle-root-msc-cycle:
 assumes non-empty-cycle-root \(r \ x \)
 shows cycle \(x \)
using assms backward-finite-path-root-path non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-non-empty:
 assumes non-empty-cycle-root \(r \ x \)
 shows \(x \neq 0 \)
using assms cycle-iff annil backward-finite-path-root-def by blast

lemma non-empty-cycle-root-rtc-symmetric:
 assumes non-empty-cycle-root \(r \ x \)
 shows \(x^*;r = x^*;r \)
using assms non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-point-exchange:
 assumes non-empty-cycle-root \(r \ x \)
 and point \(p \)
 shows \(r \leq x^*;p \iff p \leq x^*;r \)
by (metis assms(1,2) inj-sur-semi-swap point-def non-empty-cycle-root-msc
 backward-finite-path-root-def star-conv)

lemma non-empty-cycle-root-rtc-tc:
 assumes non-empty-cycle-root \(r \ x \)
 shows \(x^*;r = x^*;r \)
proof (rule antisym)
 have \(r \leq x^*;r \)
 using assms many-strongly-connected-iff-7 non-empty-cycle-root-loop
non-empty-cycle-root-msc
 by simp
 thus \(x^*;r \leq x^*;r \)
 using sup-absorb2 by fastforce
next
 show \(x^*;r \leq x^*;r \)
 by (simp add: mult-isor)
qed

lemma non-empty-cycle-root-no-start-end-points:
 assumes non-empty-cycle-root \(r \ x \)

\[x;1 = x^T;1 \]

using [assms many-strongly-connected-implies-no-start-end-points non-empty-cycle-root-msc by blast]

lemma non-empty-cycle-root-move-root:
- **assumes** [non-empty-cycle-root r x]
- and [point q]
- and [q ≤ x^r;r]
- **shows** [non-empty-cycle-root q x]

lemma non-empty-cycle-root-loop-converse:
- **assumes** [non-empty-cycle-root r x]
- **shows** [r ≤ x^r;r]
 - **using** [assms less-eq-def non-empty-cycle-root-rtc tc by fastforce]

lemma non-empty-cycle-root-move-root-same-reachable:
- **assumes** [non-empty-cycle-root r x]
- and [point q]
- and [q ≤ x^r;r]
- **shows** [x^r;r = x^r;q]
 - **by** (metis [assms many-strongly-connected-iff-7 connected-root-iff connected-root-move-root backward-finite-path-root-def non-empty-cycle-root-msc non-empty-cycle-root-rtc tc])

lemma non-empty-cycle-root-move-root-same-reachable-2:
- **assumes** [non-empty-cycle-root r x]
- and [point q]
- and [q ≤ x^r;r]
- **shows** [x^r;r = x^r;q]
 - **using** [assms non-empty-cycle-root-move-root-same-reachable non-empty-cycle-root-msc by simp]

lemma non-empty-cycle-root-move-root-msc:
- **assumes** [non-empty-cycle-root r x]
- **shows** [x^r;q = x^r;q]
 - **using** [assms non-empty-cycle-root-msc by simp]

lemma non-empty-cycle-root-move-root-rtc tc:
- **assumes** [non-empty-cycle-root r x]
- and [point q]
- and [q ≤ x^r;r]
- **shows** [x^r;q = x^r;q]
 - **using** [assms non-empty-cycle-root-move-root non-empty-cycle-root-rtc tc by blast]

lemma non-empty-cycle-root-move-root-loop-converse:
assumes non-empty-cycle-root r x
 and point q
 and q ≤ x ⋆ r
shows q ≤ x \top + q
using assms non-empty-cycle-root-loop non-empty-cycle-root-move-root by blast

lemma non-empty-cycle-root-move-root-loop:
assumes non-empty-cycle-root r x
 and point q
 and q ≤ x ⋆ r
shows q ≤ x \top + q
using assms non-empty-cycle-root-loop-converse non-empty-cycle-root-move-root
by blast

lemma non-empty-cycle-root-msc-plus:
assumes non-empty-cycle-root r x
shows x \top + r = x \top + r
using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc
by fastforce

lemma non-empty-cycle-root-tc-start-points:
assumes non-empty-cycle-root r x
shows x \top + r = x \top + 1
by (metis assms connected-root-iff3 backward-finite-path-root-def
 non-empty-cycle-root-msc-plus
 non-empty-cycle-root-no-start-end-points)

lemma non-empty-cycle-root-rtc-start-points:
assumes non-empty-cycle-root r x
shows x \top + r = x \top + 1
by (simp add: assms non-empty-cycle-root-rtc tc
 non-empty-cycle-root-rtc-tc-start-points)

lemma non-empty-cycle-root-converse-start-end-points:
assumes non-empty-cycle-root r x
shows x \top ≤ x \top + 1
by (metis assms conv-contrav conv-invone conv-one invone inf.boundedI maddux-20
 maddux-21 vector-meet-comp-x
 non-empty-cycle-root-no-start-end-points)

lemma non-empty-cycle-root-start-end-points-plus:
assumes non-empty-cycle-root r x
shows x \top ; x ≤ x \top
using assms eq-iff one-strongly-connected-iff one-strongly-connected-implies-7-eq
 backward-finite-path-connected non-empty-cycle-root-msc
by blast

lemma non-empty-cycle-root-converse-plus:
assumes non-empty-cycle-root r x
shows x \top ≤ x \top
using assms many-strongly-connected-iff-2 non-empty-cycle-root-msc
by blast

90
lemma non-empty-cycle-root-plus-converse:
assumes non-empty-cycle-root r x
shows $x^+ = x^{T^+}$
using assms many-strongly-connected-iff-7 non-empty-cycle-root-msc by fastforce

lemma non-empty-cycle-root-converse:
assumes non-empty-cycle-root r x
shows non-empty-cycle-root r (x^T)
by (metis assms conv-invol inj-p-fun connected-root-iff3 backward-finite-path-root-def non-empty-cycle-root-msc-plus non-empty-cycle-root-tc-start-points)

lemma non-empty-cycle-root-move-root-forward:
assumes non-empty-cycle-root r x
and point q
and $r \leq x^*; q$
shows non-empty-cycle-root q x

lemma non-empty-cycle-root-move-root-forward-cycle:
assumes non-empty-cycle-root r x
and point q
and $r \leq x^*; q$
shows $x; q \neq 0 \land x^T; q \neq 0$

lemma non-empty-cycle-root-equivalences:
assumes non-empty-cycle-root r x
and point q
shows $(r \leq x^*; q \iff q \leq x^*; r)$
and $(r \leq x^*; q \iff x; q \neq 0)$
and $(r \leq x^*; q \iff x^T; q \neq 0)$
and $(r \leq x^*; q \iff q \leq x; 1)$
and $(r \leq x^*; q \iff q \leq x^T; 1)$
using assms cycle-iff no-end-point-char non-empty-cycle-root-no-start-end-points non-empty-cycle-root-point-exchange non-empty-cycle-root-rtc-start-points
by metis+

lemma non-empty-cycle-root-chord:
assumes non-empty-cycle-root r x
and point p
and point q
and $r \leq x^*; p$
and \(r \leq x^*:q \)
shows \(p \leq x^*:q \)
using assms non-empty-cycle-root-move-root-same-reachable
non-empty-cycle-root-point-exchange
by fastforce

lemma non-empty-cycle-root-var-axioms-2:
non-empty-cycle-root \(r \ x \mapsto x;1 \leq x^+:r \land \text{is-inj} \ x \land \text{is-p-fun} \ x \land \text{point} \ r \land r \leq x;1 \)
apply (rule iffI)
apply (metis eq-iff backward-finite-path-root-def
non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-msc-plus
non-empty-cycle-root-rtc-start-points
non-empty-cycle-root-rtc-tc)

lemma non-empty-cycle-root-var-axioms-3:
non-empty-cycle-root \(r \ x \mapsto x;1 \leq x^+:r \land \text{is-inj} \ x \land \text{is-p-fun} \ x \land \text{point} \ r \land r \leq x^*:x;1 \)
apply (rule iffI)
apply (metis comp-assoc eq-refl backward-finite-path-root-def star-inductl-var-eq2
non-empty-cycle-root-rtc-start-points
non-empty-cycle-root-tc-start-points)
by (metis annir comp-assoc conv-contrav no-end-point-char
non-empty-cycle-root-var-axioms-2)

lemma non-empty-cycle-root-subset-equals:
assumes non-empty-cycle-root \(r \ x \)
and non-empty-cycle-root \(r \ y \)
and \(x \leq y \)
says \(x = y \)
proof
have \(y;\ x^T*r = y;\ x^{T+}*r \)
using assms(1) comp-assoc non-empty-cycle-root-msc
non-empty-cycle-root-msc-plus
non-empty-cycle-root-rtc-tc by fastforce
also have ... \(y;\ x^{T+}*r \)
using assms(3) comp-assoc conv-iso mult-double-iso by fastforce
also have ... \(x^T*r \)
using assms(2) backward-finite-path-root-def is-inj-def
by (meson dual-order.trans mult-isor order.refl prod-star-closure star-ref)
finally have \(r + y;\ x^{T+}*r \leq x^{T+}*r \)
by (metis conway.dagger-unfoldl-distr le-supI sup1 sup1.cobounded1)
hence \(y;\ r \leq x^{T+}*r \)
by (simp add: comp-assoc rtc-inductl)
hence \(y;1 \leq x;1 \)
using assms(1,2) non-empty-cycle-root-msc

92
non-empty-cycle-root-rtc-start-points by fastforce
thus ?thesis using assms(2,3) backward-finite-path-root-def ss422iv by blast
qed

lemma non-empty-cycle-root-subset-equals-change-root:
 assumes non-empty-cycle-root r x
 and non-empty-cycle-root q y
 and \(x \leq y \)
 shows \(x = y \)
proof
 have \(r \leq y \) by (metis assms(1,3)
dual-order trans mult-isor
non-empty-cycle-root-no-start-end-points)
 hence non-empty-cycle-root r y by (metis assms(1,2)
connected-root-move-root backward-finite-path-root-def
non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points)
 thus ?thesis using assms(1,3) non-empty-cycle-root-subset-equals by blast
qed

lemma non-empty-cycle-root-equivalences-2:
 assumes non-empty-cycle-root r x
 shows \((v \leq x^*; r \leftrightarrow v \leq x^T; 1) \)
 and \((v \leq x^*; r \leftrightarrow v \leq x; 1) \)
using assms non-empty-cycle-root-no-start-end-points
non-empty-cycle-root-rtc-start-points
by metis+

lemma cycle-root-non-empty:
 assumes \(x \neq 0 \)
 shows cycle-root r x \(\leftrightarrow \) non-empty-cycle-root r x
proof
 assume 1: cycle-root r x
 have \(r \leq r; 1;x;1 \)
 using assms comp-assoc maddux-20 tarski by fastforce
 also have \(\ldots \leq (x^+ \cdot x^T; 1); 1 \)
 using 1 by (simp add: is-vector-def mult-isor point-def)
 also have \(\ldots \leq x^T; 1 \)
 by (simp add: ra-1)
 finally show non-empty-cycle-root r x
 using 1 backward-finite-path-root-def inf.boundedE by blast
next
 assume non-empty-cycle-root r x
 thus cycle-root r x
 by (metis backward-finite-path-root-def inf.orderE maddux-20
non-empty-cycle-root-plus-converse
ra-1)
Start points and end points

lemma start-points-path-aux:
 assumes backward-finite-path-root r x
 and start-points x ≠ 0
 shows x;r = 0
by (metis assms compl-inf-bot inf.commute non-empty-cycle-root-no-start-end-points backward-finite-path-root-terminating-or-cycle)

lemma start-points-path:
 assumes backward-finite-path-root r x
 and start-points x ≠ 0
 shows backward-terminating-path-root r x
by (simp add: assms start-points-path-aux)

lemma root-in-start-points-2:
 assumes backward-finite-path-root r x
 and start-points x ≠ 0
 shows r ≤ start-points x
by (metis assms conv-zero eq-refl galois-aux2 root-equals-start-points start-points-path-aux)

lemma root-equals-start-points-2:
 assumes backward-finite-path-root r x
 and start-points x ≠ 0
 shows r = start-points x
by (metis assms inf-bot-left ss-p18 root-equals-start-points start-points-path)

lemma start-points-injective:
 assumes backward-finite-path-root r x
 shows is-inj (start-points x)
by (metis assms compl-bot-eq inj-def-var1 point-def backward-finite-path-root-def top-greatest root-equals-start-points-2)

lemma backward-terminating-path-root-aux-2:
 assumes backward-finite-path-root r x
 and start-points x ≠ 0 ∨ x = 0
 shows x ≤ x*T;_(x*T;1)
using assms bot-least backward-terminating-path-root-aux start-points-path by blast

lemma start-points-not-zero-iff:
 assumes backward-finite-path-root r x
 shows x;r = 0 ∧ x ≠ 0 ↔ start-points x ≠ 0
by (metis assms conv-zero inf-compl-bot backward-finite-path-root-def start-points-not-zero-contra)
lemma backward-finite-path-root-acyclic-terminating-aux:
 assumes backward-finite-path-root r x
 and is-acyclic x
 shows \(x; r = 0 \)
proof (cases x = 0)
 assume x = 0
 thus \(\ ?thesis \) by simp
next
 assume x \neq 0
 hence \(1; r \leq x; 1 \)
 using assms(1) has-root-contra no-end-point-char backward-finite-path-root-def by blast
 have \(r \cdot (x^T; 1) = r \cdot (x^T+; x) \)
 using assms(1) connected-root-iff3 backward-finite-path-root-def by fastforce
 also have \(\ldots \leq r \cdot (-1; r) \)
 by (metis assms(2) conv-compl conv-contrav conv-e conv-iso meet-isor mult-isor star-conv star-slide-var)
 finally have \(r \leq \text{start-points } x \)
 using 1 galois-aux inf.boundedI le-bot by blast
 thus \(\ ?thesis \)
 using assms(1) annir le-bot start-points-path by blast
qed

lemma backward-finite-path-root-acyclic-terminating-iff:
 assumes backward-finite-path-root r x
 shows is-acyclic x \iff x; r = 0
apply (rule iffI)
apply (simp add: assms backward-finite-path-root-acyclic-terminating-aux)
using assms backward-finite-path-root-path-root-path-root-acyclic by blast

lemma backward-finite-path-root-acyclic-terminating:
 assumes backward-finite-path-root r x
 and is-acyclic x
 shows backward-terminating-path-root r x
by (simp add: assms backward-finite-path-root-acyclic-terminating-aux)

lemma non-empty-cycle-root-one-strongly-connected:
 assumes non-empty-cycle-root r x
 shows one-strongly-connected x
by (metis assms one-strongly-connected-iff order-trans star-1l star-star-plus)
lemma backward-finite-path-root-nodes-reachable:

assumes backward-finite-path-root r x

and v ≤ x;1 + x\(^T\);1

and is-sur v

shows r ≤ x\(^T\);v

proof –

have v ≤ x;1 + x\(^T\)+;r

using assms connected-root-iff3 backward-finite-path-root-def by fastforce

also have \(... ≤ x\(^T\):r + x\(^T\)+;r \)

using assms(1) join-iso start-points-in-root-aux by blast

also have \(... = x\(^T\):r \)

using mult-isor sup.absorb1 by fastforce

finally show ?thesis

using assms(1,3)

qed

lemma terminating-path-root-end-backward-terminating:

assumes terminating-path-root-end r x e

shows backward-terminating-path-root r x

using assms non-empty-cycle-root-move-root-forward-cycle backward-finite-path-root-terminating-or-cycle by blast

lemma terminating-path-root-end-converse:

assumes terminating-path-root-end r x e

shows terminating-path-root-end e (x\(^T\)) r

by (metis assms terminating-path-root-end-backward-terminating backward-finite-path-root-def conv-invol terminating-path-root-end-forward-finite point-swap star-conv)

lemma terminating-path-root-end-forward-terminating:

assumes terminating-path-root-end r x e

shows backward-terminating-path-root e (x\(^T\))

using assms terminating-path-root-end-converse by blast

end

3.3 Consequences with the Tarski rule and the point axiom

context relation-algebra-rtc-tarski-point

begin

Rooted paths

lemma path-root-iff:

\((\exists r . \text{path-root } r \ x) \longleftrightarrow \text{path } x\)

96
proof
 assume \(\exists r. \) path-root \(r \) \(x \)
 thus path \(x \)
 using path-def path-iff-backward point-def path-root-def by blast
next
 assume 1: path \(x \)
 show \(\exists r. \) path-root \(r \) \(x \)
 proof (cases \(x = 0 \))
 assume \(x = 0 \)
 thus \(?thesis \)
 by (simp add: is-inj-def is-p-fun-def point-exists path-root-def)
 next
 assume \(\neg (x = 0) \)
 hence \(x;1 \neq 0 \)
 by (simp add: ss-p18)
 from this obtain \(r \) where 2: point \(r \) \& \(r \leq x;1 \)
 using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
 hence \(r;x \leq x;1;x \)
 by (simp add: mult-isor)
 also have \(... \leq x^* + x^T * \)
 using 1 path-def by blast
 finally show \(?thesis \)
 using 1 2 path-def path-root-def by blast
qed

lemma non-empty-path-root-iff:
 \((\exists r. \) path-root \(r \) \(x \) \& \(r \leq (x + x^T);1) \rightleftharpoons \) path \(x \) \& \(x \neq 0 \)
apply (rule iffI)
 using non-empty-cycle-root-non-empty path-root-def
 zero-backward-terminating-path-root path-root-iff
 apply fastforce
 using path-root-iff non-empty-path-root-iff-aux by blast

(Non-empty) Cycle

lemma non-empty-cycle-root-iff:
 \((\exists r. \) non-empty-cycle-root \(r \) \(x \) \rightleftharpoons \) cycle \(x \) \& \(x \neq 0 \)
proof
 assume \(\exists r. \) non-empty-cycle-root \(r \) \(x \)
 thus cycle \(x \) \& \(x \neq 0 \)
 using non-empty-cycle-root-msc-cycle non-empty-cycle-root-non-empty by fastforce
next
 assume 1: cycle \(x \) \& \(x \neq 0 \)
 hence \(x^T;1 \neq 0 \)
 using many-strongly-connected-implies-no-start-end-points ss-p18 by blast
 from this obtain \(r \) where 2: point \(r \) \& \(r \leq x^T;1 \)
 using comp-assoc is-vector-def one-idem-mult point-below-vector by fastforce
 have 3: \(x^T;1;x^T \leq x^* \)
using 1 one-strongly-connected-iff path-def by blast
have $r;x \leq x^T;1;x$
 using 2 by (simp add: is-vector-def mult-isor point-def)
also have $... \leq x^T;1;x^T;x$
 using comp-assoc mult-isol x-leq-triple-x by fastforce
also have $... \leq x^T;1;x^T;x$
 by (metis mult-assoc mult-double-iso top-greatest)
also have $... \leq x^T;x$
 using 3 mult-isor by blast
finally have connected-root $r;x$
 by (simp add: star-slide-var)
hence non-empty-cycle-root $r;x$
 using 1 2 path-def backward-finite-path-root-def by fastforce
thus $\exists r . \text{non-empty-cycle-root } r;x$..
qed

lemma non-empty-cycle-subset-equals:
assumes cycle x
 and cycle y
 and $x \leq y$
 and $x \neq 0$
shows $x = y$
by (metis assms le-bot non-empty-cycle-root-subset-equals-change-root
 non-empty-cycle-root-iff)

lemma cycle-root-iff:
$(\exists r . \text{cycle-root } r;x) \iff \text{cycle } x$
proof (cases $x = 0$)
assume $x = 0$
thus $?\text{thesis}$
 using path-def point-exists by fastforce
next
assume $x \neq 0$
thus $?\text{thesis}$
 using cycle-root-non-empty non-empty-cycle-root-iff by simp
qed

Backwards terminating and backwards finite

lemma backward-terminating-path-root-iff:
$(\exists r . \text{backward-terminating-path-root } r;x) \iff \text{backward-terminating-path } x$
proof
assume $\exists r . \text{backward-terminating-path-root } r;x$
thus backward-terminating-path x
 using backward-terminating-path-root by fastforce
next
assume $1 : \text{backward-terminating-path } x$
show $\exists r . \text{backward-terminating-path-root } r;x$
proof (cases $x = 0$)
assume $x = 0$
98
thus \(\exists \)thesis
using point-exists zero-backward-terminating-path-root by blast
next
let \(?r = \text{start-points } x \)
assume \(x \neq 0 \)
hence 2: is-point \(?r \)
using 1 start-point-iff2 backward-terminating-iff1 by fastforce
have 3: \(x; ?r = 0 \)
by (metis inf-top.right-neutral modular-1-aux')
also have \(... \leq (x^*; x^T); x \)
using 1 multi-isor path-def by blast
also have \(... = (1' + x^*; x^T); x \)
by (metis star-star-plus star-unfoldl-eq sup.commute)
also have \(x; 1; x \leq x; 1; x \)
using 1 multi-isol x-leq-triple-x by fastforce
also have \(... = (1' + x^*; x^T); x \)
by (metis distrib-right' mult-onel)
also have \(... = x^T; (x + x^T; x) + x^*; x^T; x \)
using 1 multi-isor distrib-left sup.commute sup.assoc by simp
also have \(... \leq x^T; 1 + x^*; x^T; x \)
using join-isol multi-isol by fastforce
also have \(... \leq x^T; 1 + x^*; 1' \)
using 1 by (metis comp-assoc join-isol multi-path-def is-p-fun-def)
finally have \(-(x^T; 1) \cdot x; 1; x \leq x^* \)
by (simp add: galois-1 inf.commute)
hence \(?r; x \leq x^* \)
by (metis inf-commute one-compl ra-1)
hence backward-terminating-path-root \(?r; x \)
using 1 2 3 by (simp add: point-is-point backward-finite-path-root-def path-def)
thus \(\exists \)thesis ..
qed

lemma non-empty-backward-terminating-path-root-iff :
backward-terminating-path-root (start-points \(x \)) \(x \leftarrow \)infinite-backward-terminating-path-root \(x \land x \neq 0 \)
apply (rule iffI)
apply (metis backward-finite-path-root-path backward-terminating-path-root-2 conv-zero inf.cobounded1 non-empty-cycle-root-non-empty)
using backward-terminating-path-root-iff root-equals-start-points by blast

lemma non-empty-backward-terminating-path-root-iff' :
backward-finite-path-root (start-points \(x \)) \(x \leftarrow \)backward-terminating-path \(x \land x \neq 0 \)
using start-point-no-predecessor non-empty-backward-terminating-path-root-iff by simp
lemma backward-finite-path-root-iff:
(\exists \, r . \, \text{backward-finite-path-root} \, r \, x) \iff \text{backward-finite-path} \, x

proof
assume \exists \, r . \, \text{backward-finite-path-root} \, r \, x
thus \text{backward-finite-path} \, x
by (meson backward-finite-iff-msc non-empty-cycle-root-msc
backward-finite-path-root-path
backward-finite-path-root-terminating-or-cycle
backward-terminating-path-root)
next
assume \text{backward-finite-path} \, x
thus \exists \, r . \, \text{backward-finite-path-root} \, r \, x
by (metis backward-finite-iff-msc point-exists non-empty-cycle-root-iff
zero-backward-terminating-path-root backward-terminating-path-root-iff)
qed

lemma non-empty-backward-finite-path-root-iff:
(\exists \, r . \, \text{backward-finite-path-root} \, r \, x \land r \leq \, x; 1) \iff \text{backward-finite-path} \, x \land x \neq 0
apply (rule iffI)
apply (metis backward-finite-path-root-iff annir backward-finite-path-root-def
le-bot
no-end-point-char ss-p18)
using backward-finite-path-root-iff backward-finite-path-root-def point-def
root-in-edge-sources by blast

Terminating

lemma terminating-path-root-end-aux:
assumes \text{terminating-path} \, x
shows \exists \, r \, e . \, \text{terminating-path-root-end} \, r \, x \, e
proof (cases \, x = 0)
assume \, x = 0
thus \, ?thesis
using point-exists zero-backward-terminating-path-root by fastforce
next
assume \, \neg (x = 0)
have \, 2: \, \text{backward-terminating-path} \, x
using assms by simp
from this obtain \, r \, where \, 3: \, \text{backward-terminating-path-root} \, r \, x
using backward-terminating-path-root-iff by blast
have \, \text{backward-terminating-path} \, (x^T)
using \, 2 \, by \, (metis assms backward-terminating-iff1
conv-backward-terminating-path conv-invol
conv-zero inf-top.left-neutral)
from this obtain \, e \, where \, 4: \, \text{backward-terminating-path-root} \, e \, (x^T)
using \, \text{backward-terminating-path-root-iff} \, by \, blast
have \, r \leq x; 1
using 1 3 root-in-edge-sources backward-finite-path-root-def point-def by fastforce
also have \(\ldots = x^+;e \)
using 4 connected-root-iff\(3\) backward-finite-path-root-def by fastforce
also have \(\ldots \leq x^*;e \)
by (simp add: mult-isor)
finally show \(?thesis\)
using 3 \(4\) backward-finite-path-root-def by blast
qed

lemma terminating-path-root-end-iff:
\((\exists r e . \text{terminating-path-root-end } r x e) \iff \text{terminating-path } x\)
proof
assume 1: \(\exists r e . \text{terminating-path-root-end } r x e\)
show \text{terminating-path } x
proof (cases \(x = 0\))
 assume \(x = 0\)
 thus \(?thesis\)
 by (simp add: is-inj-def is-p-fun-def path-def)
next
 assume \(\neg (x = 0)\)
 hence 2: \(\neg \text{many-strongly-connected } x\)
 using 1 cycle-root-end-empty by blast
 hence 3: \(\text{backward-terminating-path } x\)
 using 1 backward-terminating-path-root
terminating-path-root-end-backward-terminating by blast
 have \(\exists e . \text{backward-finite-path-root } e (x^T)\)
 using 1 terminating-path-root-end-converse by blast
 hence backward-terminating-path \((x^T)\)
 using 1 backward-terminating-path-root terminating-path-root-end-converse
by blast
 hence forward-terminating-path \(x\)
 by (simp add: conv-backward-terminating-path)
 thus \(?thesis\)
 using 3 by (simp add: inf.boundedI)
qed
next
assume terminating-path \(x\)
thus \(\exists r e . \text{terminating-path-root-end } r x e\)
using terminating-path-root-end-aux by blast
qed

lemma non-empty-terminating-path-root-end-iff:
\text{terminating-path-root-end } (\text{start-points } x) x (\text{end-points } x) \iff \text{terminating-path } x \land x \neq 0
apply (rule iffI)
apply (metis conv-zero non-empty-backward-terminating-path-root-iff terminating-path-root-end-iff)
using terminating-path-root-end-iff terminating-path-root-end-forward-terminating
root-equals-end-points terminating-path-root-end-backward-terminating
root-equals-start-points

101
4 Correctness of Path Algorithms

To show that our theory of paths integrates with verification tasks, we verify the correctness of three basic path algorithms. Algorithms at the presented level are executable and can serve prototyping purposes. Data refinement can be carried out to move from such algorithms to more efficient programs. The total-correctness proofs use a library developed in [7].

theory Path-Algorithms

imports Aggregation-Algebras, Hoare-Logic Rooted-Paths

begin

no-notation
trancl ((-+ [1000] 999))

class choose-singleton-point-signature =
 fixes choose-singleton :: ‘a ⇒ ‘a
 fixes choose-point :: ‘a ⇒ ‘a

class relation-algebra-rtc-tarski-choose-point =
 relation-algebra-rtc-tarski + choose-singleton-point-signature +
 assumes choose-singleton-singleton: x ≠ 0 ⇒ singleton (choose-singleton x)
 assumes choose-singleton-decreasing: choose-singleton x ≤ x
 assumes choose-point-point: is-vector x ⇒ x ≠ 0 ⇒ point (choose-point x)
 assumes choose-point-decreasing: choose-point x ≤ x

begin

no-notation
composition (infixl : 75) and
 times (infixl * 70)

notation
composition (infixl * 75)

4.1 Construction of a path
Our first example is a basic greedy algorithm that constructs a path from a
vertex x to a different vertex y of a directed acyclic graph D.

abbreviation construct-path-inv $q \ x \ y \ D \ W \equiv$

\[
\text{is-acyclic } D \land \text{point } x \land \text{point } y \land \text{point } q \land \\
D^* \cdot q \leq D^{T^*} \cdot x \land W \leq D \land \text{terminating-path } W \land \\
(W = 0 \leftrightarrow q = y) \land (W \neq 0 \leftrightarrow q = \text{start-points } W \land y = \text{end-points } W)
\]

abbreviation construct-path-inv-simp $q \ x \ y \ D \ W \equiv$

\[
\text{is-acyclic } D \land \text{point } x \land \text{point } y \land \text{point } q \land \\
D^* \cdot q \leq D^{T^*} \cdot x \land W \leq D \land \text{terminating-path } W \land \\
q = \text{start-points } W \land y = \text{end-points } W
\]

lemma construct-path-inv-pre:

assumes is-acyclic D and point y and point x and $D \cdot x \leq D^T \cdot x$

shows construct-path-inv $y \ x \ y \ D \ 0$

apply (intro conjI, simp-all add: assms is-inj-def is-p-fun-def path-def)
using assms (2) cycle-iff by fastforce

The following three lemmas are auxiliary lemmas for construct-path-inv.
They are pulled out of the main proof to have more structure.

lemma path-inv-points:

assumes construct-path-inv $q \ x \ y \ D \ W \land q \neq x$

shows point q

and point (choose-point $(D \cdot q)$)

using assms apply blast
by (metis assms choose-point-point comp-assoc is-vector-def point-def
reachable-implies-predecessor)

lemma path-inv-choose-point-decrease:

assumes construct-path-inv $q \ x \ y \ D \ W \land q \neq x$

shows $W \neq 0 \implies \text{choose-point } (D \cdot q) \leq -((W + \text{choose-point } (D \cdot q) \cdot q^T)^T \cdot 1)$

proof

let $\hat{q} = \text{choose-point } (D \cdot q)$

let $\hat{W} = W + \hat{q} \cdot q^T$

assume as: $W \neq 0$

hence $q \cdot W \leq W^+$

by (metis assms cone-contrav conv-inv conv-iso conv-terminating-path
forward-terminating-path-end-points-1 plus-conv point-def ss423bij
terminating-path-iff)

hence $\hat{q} \cdot W^+ \cdot 1 \leq D \cdot q \cdot W^{T^*} \cdot q$

using choose-point-decreasing meet-iso meet-isor inf-mono assms
connected-root-iff by simp
also have $\ldots \leq (D \cdot D^+) \cdot q$

by (metis assms inj-distr point-def conv-contrav conv-inv conv-iso conv-terminating-path
multi-isol-var multi-isor star-cone star-slide-var star-subdist

\[103\]
also have \(\sup \leq 0 \)
by (metis acyclic-trans assms conv-zero step-has-target eq-iff galois-aux ss-p18)
finally have \(a: \forall q \leq -(W^T + 1) \)
using galois-aux le-bot by blast

have point \(?q \)
using assms by (rule path-inv-points(2))
hence \(?q \leq -(q*?q^T + 1) \)
by (metis assms acyclic-imp-one-step-different-points(2) point-is-point
choose-point-decreasing edge-end edge-start sup-commute orderE)

with a show \(?\text{thesis} \)
by (simp add: inf.boundedI)
qed

lemma end-points:
assumes construct-path-inv q x y D W \(\land \) \(q \neq x \)
shows choose-point \((D+q) = \text{start-points} \ (W + \text{choose-point} (D+q) * q^T) \)
and \(y = \text{end-points} \ (W + \text{choose-point} (D+q) * q^T) \)

proof –
let \(?q = \text{choose-point} (D+q) \)
let \(?W = W + ?q * q^T \)
show 1: \(?q = \text{start-points} ?W \)
proof (rule antisym)
show \(\text{start-points} ?W \leq ?q \)
by (metis assms path-inv-points(2)
acyclic-imp-one-step-different-points(2)
choose-point-decreasing edge-end sup-commute
path-concatenation-start-points-approx point-is-point eq-iff sup-bot-left)

show \(?q \leq \text{start-points} ?W \)
proof –
have a: \(?q = ?q * q^T + 1 \)
by (metis assms(1) comp-assoc point-equations(1) point-is-point aux4
conv-zero
choose-point-decreasing choose-point-point conv-contrav conv-one
point-def
inf.orderE inf-compl-bot inf-compl-bot-right is-vector-def maddux-142
sup-bot-left sur-def-var1)
hence \(?q = (q - q) + (?W^T + 1) \)
by (metis assms path-inv-points(2) path-inv-choose-point-decrease
acyclic-imp-one-step-different-points(1) choose-point-decreasing
inf.orderE
inf-compl-bot sup-inf-absorb edge-start point-is-point sup-bot-left)
also have \(... \leq (W + ?q - q) + (?q - q - (W^T * 1)) \)
by simp
also have \(... = (W + ?q) - q + (W^T * 1) \)
by (metis compl-sup inf-sup-distrib2 meet-assoc sup.commute)
also have \(... \leq ?W^T + (W * 1) \)
using a by (metis inf.left-commute distrib-right' compl-sup

104
in.\textunderscore\text{cobounded2})

finally show \(?q \leq \text{start-points} \ ?W\).

qed

ded

ded

show \(y = \text{end-points} \ ?W\)

proof -

have point-nq: point \(?q\)

using assms by \(\text{(rule path-inv-points(2))}\)

hence \(yp: y \leq -\ ?q\)

using \(I\) assms

by \(\text{(metis acyclic-imp-one-step-different-points(2) choose-point-decreasing cycle-no-points(1))}\)

have \(yp\): \(y \leq -\ ?q\)

by \(\text{(simp add: inf.\textunderscore\text{commute})}\)

also have ...

using \(yp\) by \(\text{fastforce}\)

also have ...

by \(\text{(simp add: inf-sup-distrib2)}\)

also have ...

using \(yp\) by \(\text{fastforce}\)

also have ...

using \(yp\) by \(\text{fastforce}\)
using assms by blast
show point x
using assms by blast
show \(W \leq D \)
using assms choose-point-decreasing le-sup-iff point-def ss423bij inf boundedE
by blast
show \(D^s \cdot q \leq D^{T^s} \cdot x \)
proof
have \(D^s \cdot q \leq D^{T^s} \cdot x \)
using assms conv-galois-2 order-trans star-1l by blast
thus \(?thesis \)
by (metis choose-point-decreasing comp-assoc dual-order.trans mult-isol star-slide-var)
qed
show point-nq: point \(?q \)
using assms by (rule path-inv-points(2))
show path W: path \(?W \)
proof (cases \(W = 0 \))
assume \(W = 0 \)
thus \(?thesis \)
using assms edge-is-path point-is-point point-nq by simp
next
assume \(a: W \neq 0 \)
have b: \(?q \cdot q^T \leq 1 \cdot ?q \cdot q^T - (?q \cdot q^T) \cdot 1 \)
proof
have \(?q \cdot q^T \leq 1 \) by simp
thus \(?thesis \)
using assms point-nq
by (metis different-points-consequences(1) point-def sur-def-var1 acyclic-imp-one-step-different-points(2) choose-point-decreasing comp-assoc is-vector-def point-def point-equations(3,4) point-is-point)
qed
have c: \(W \leq -(1 \cdot W) \cdot W^* \cdot 1 \)
using assms terminating-path-iff by blast
have d: \((?q \cdot q^T) \cdot 1 \cdot -((?q \cdot q^T) \cdot 1) = W \cdot 1 \cdot -W \cdot 1 \)
using a
by (metis assms path-inv-points(2) acyclic-reachable-points choose-point-decreasing edge-end point-is-point comp-assoc point-def sur-total total-one)
have e: \(?q \cdot q^T \cdot 1 \cdot W \cdot 1 = 0 \)
proof
have \(?q \cdot q^T \cdot 1 \cdot W \cdot 1 = ?q \cdot W \cdot 1 \)
using assms point-nq
by (metis comp-assoc conv-contrav conv-one is-vector-def point-def sur-def-var1)
also have \(... \leq -(?W \cdot 1) \cdot ?W \cdot 1 \)
using assms path-inv-choose-point-decrease
by (smt a conv-contrav conv-iso conv-one inf-mono less-eq-def subdistl-eq)
also have \(\ldots \leq 0 \)

using compl-inf-bot eq-refl by blast

finally show \(?thesis\)

using bot-unique by blast

qed

show \(?thesis\)

using \(b\ c\ d\ e\) by (metis assms comp-assoc edge-is-path
path-concatenation-cycle-free
point-is-point sup
commute point-nq)

qed

show \(?W = 0 \leftrightarrow \ ?q = y\)

apply (rule iffI)

apply (metis assms conv-zero dist-alt edge-start inf-compl-bot-right
modular-1-aux' modular-2-aux'
point-is-point sup.left-idem sup-bot-left point-nq)

by (smt assms end-points(\(1\) conv-contrav conv-invol cycle-no-points(\(1\)
end-point-iff2 has-start-end-points-iff path- aux1b path-edge-equals-cycle
point-is-point start-point-iff2 sup-bot-left top-greatest pathW)

show \(?W \neq 0 \leftrightarrow \ ?q = \text{start-points} \ ?W \land y = \text{end-points} \ ?W\)

apply (rule iffI)

using assms end-points apply blast

using assms by force

show terminating \(?W\)

by (smt assms end-points end-point-iff2 has-start-end-points-iff point-is-point
start-point-iff2
terminating-iff1 pathW point-nq)

qed

theorem construct-path-partial: VARS \(p\ q\ W\)

\{ is-acyclic \(D\) \land point \(y\) \land point \(x\) \land \(D^{*}y \leq D^{*}x\) \}

\(W := 0\); \(q := y\);

WHILE \(q \neq x\)

INV \{ construct-path-inv \(q\ x\ y\ D\ W\) \}

DO \(p := \text{choose-point} \ (D^{*}q)\);

\(W := W + p^{*}q^{T}\);

\(q := p\);

OD

\{ \(W \leq D \land \text{terminating-path} \ W \land (W = 0 \leftrightarrow x = y) \land (W \neq 0 \leftrightarrow x = \text{start-points} \ W \land y = \text{end-points} \ W)\) \}

apply vcg

using construct-path-pre apply blast

using construct-path-inv apply blast

by fastforce

end

For termination, we additionally need finiteness.

context finite
begin

lemma decrease-set:
 assumes \(\forall x : \text{'}a . \ Q x \longrightarrow P x \)
 and \(P w \)
 and \(\neg Q w \)
 shows \(\text{card}\{ x . \ Q x \} < \text{card}\{ x . \ P x \} \)
by (metis Collect-mono assms card-seteq finite mem-Collect-eq not-le)
end

class relation-algebra-rtc-tarski-choose-point-finite =
 relation-algebra-rtc-tarski-choose-point +
 relation-algebra-rtc-tarski-point-finite
begin

lemma decrease-variant:
 assumes \(y \leq z \)
 and \(w \leq z \)
 and \(\neg w \leq y \)
 shows \(\text{card}\{ x . \ x \leq y \} < \text{card}\{ x . \ x \leq z \} \)
by (metis Collect-mono assms card-seteq linorder-not-le dual-order trans finite-code mem-Collect-eq)

lemma construct-path-inv-termination:
 assumes \(\text{construct-path-inv } q \ x \ y \ D \ W \)
 and \(q \neq x \)
 shows \(\text{card}\{ z . \ z \leq -(W + \text{choose-point } (D*q)*q^T) \} < \text{card}\{ z . \ z \leq -W \} \)
proof
 let \(?q = \text{choose-point } (D*q) \)
 let \(?W = W + ?q * q^T \)
 show ?thesis
 proof (rule decrease-variant)
 show \(-?W \leq -W \)
 by simp
 show \(?q * q^T \leq -W \)
 by (metis assms galois-aux inf-compl-bot-right maddux-142 mult-isor order-trans top-greatest)
 show \(\neg (\neg q * q^T \leq -?W) \)
 using assms end-points(1)
 by (smt acyclic-imp-one-step-different-points(2) choose-point-decreasing compl-sup inf.absorb1 inf-compl-bot-right sup.commute sup-bot.left-neutral conv-zero end-points(2))
 qed
 qed

theorem construct-path-total: VARS p q W
 \[\text{is-acyclic } D \land \text{point } y \land \text{point } x \land D^*y \leq D^T*x \]
\(W := 0; \)
\(q := y; \)
\[\text{WHILE } q \neq x \]
\[\text{INV } \{ \text{construct-path-inv } q \ x \ y \ D \ W \} \]
\[\text{VAR } \{ \text{card } \{ z \mid z \leq -W \} \} \]
\[\text{DO } p := \text{choose-point } (D * q); \]
\[W := W + p * q^T; \]
\[q := p \]
\[\text{OD} \]
\[\text{[} W \leq D \land \text{terminating-path } W \land (W = 0 \iff x= y) \land (W \neq 0 \iff x = \text{start-points } W \land y = \text{end-points } W) \] \]
\[\text{apply } \text{vcg-tc} \]
\[\text{using } \text{construct-path-pre } \text{apply } \text{blast} \]
\[\text{apply } (\text{rule Collect1, rule conj1}) \]
\[\text{using } \text{construct-path-inv } \text{apply } \text{blast} \]
\[\text{using } \text{construct-path-inv-termination } \text{apply } \text{clarsimp} \]
\[\text{by } \text{fastforce} \]

4.2 Topological sorting

In our second example we look at topological sorting. Given a directed acyclic graph, the problem is to construct a linear order of its vertices that contains \(x \) before \(y \) for each edge \((x, y)\) of the graph. If the input graph models dependencies between tasks, the output is a linear schedule of the tasks that respects all dependencies.

context \(\text{relation-algebra rtc tarski choose-point} \)
begin

topological-sort-inv

where \(\text{topological-sort-inv } q \ v \ R \ W \equiv \)
\[\text{regressively-finite } R \land R \cdot v * v^T \leq W^+ \land \text{terminating-path } W \land W * 1 = v \cdot q \land \]
\[(W = 0 \lor q = \text{end-points } W) \land \text{point } q \land R * v \leq v \land q \leq v \land \text{is-vector } v \]

lemma \(\text{topological-sort-pre}; \)
\[\text{assumes } \text{regressively-finite } R \]
\[\text{shows } \text{topological-sort-inv } (\text{choose-point } (\text{minimum } R \ 1)) \ (\text{choose-point } (\text{minimum } R \ 1)) \ R \ 0 \]
\[\text{proof } (\text{intro conj1, simp-all add:assms}) \]
\[\text{let } ?q = \text{choose-point } (- (R^T * 1)) \]
\[\text{show point-q; point ?q} \]
\[\text{using assms by } (\text{metis (full-types) annir choose-point-point galois-aux2 is-inj-def is-sur-def}) \]
\[\text{is-vector-def one-idem-mult point-def ss-p18 inf-top-left one-compl}) \]

end

109
show $R \cdot ?q \cdot ?q^T \leq 0$
 by (metis choose-point-decreasing conv-invol end-point-char eq-iff inf-bot-left
 Schroeder-2)

show path 0
 by (simp add: is-inj-def is-p-def-def path-def)

show $R \cdot ?q \leq ?q$
 by (metis choose-point-decreasing compl-bot-eq conv-galois-1 inf-compl-bot-left2
 le-inf-iff)

show is-vector ?q
 using point-q point-def by blast
qed

lemma topological-sort-inv:
 assumes $v \neq 1$
 and topological-sort-inv $q \cdot v \cdot R \cdot W$
 shows topological-sort-inv (choose-point (minimum $R \cdot (-v)$)) ($v +$
 choose-point (minimum $R \cdot (-v)$)) $R \cdot (W + q \cdot$ choose-point
 (minimum $R \cdot (-v)$))

proof (intro conjI)
 let $?p = \text{choose-point} (\text{minimum} R \cdot (-v))$
 let $?W = W + q \cdot ?p^T$
 let $?v = v + ?p$

show point-p: point $?p$
 using assms
 by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc
 is-vector-def
 vector-compl vector-mult)

hence ep-np: end-points ($q \cdot ?p^T$) = $?p$
 using assms(2)

by (metis aux4 choose-point-decreasing edge-end le-supI1
 point-in-vector-or-complement-iff
 point-is-point)

hence sp-q: start-points ($q \cdot ?p^T$) = q
 using assms(2) point-p
 by (metis (no-types, lifting) conv-contrav conv-invol edge-start point-is-point)

hence ep-sp: $W \neq 0 \implies \text{end-points } W = \text{start-points } (q \cdot ?p^T)$
 using assms(2)

have $W^*1 \cdot (q \cdot ?p^T)^T \cdot 1 = v - q \cdot ?p$
 using assms(2) point-p is-vector-def mult-assoc point-def point-equations(3)
 point-is-point
 by auto

hence $1: W^*1 \cdot (q \cdot ?p^T)^T \cdot 1 = 0$
 by (metis choose-point-decreasing dual-order.trans galois-aux inf.cobounded2
 inf.commute)

show regressively-finite R
 using assms(2)
 by blast

show $R \cdot ?v^*?v^T \leq ?W^+$
 proof –
have a: $R \cdot v^* v^T \leq ?W^+$
 using assms(2) by (meson mult-isol-var order.trans order-prop star-subdist)
have b: $R \cdot v^* p^T \leq ?W^+$
proof -
 have $R \cdot v^* p^T \leq W^* 1^* p^T + q^* p^T$
 by (metis inf-le2 assms(2) aux4 double-compl inf-absorb2 distrib-right)
 also have ... = $W^* p^T + q^* p^T$
 using point-p by (metis conv-contrav conv-one is-vector-def mult-assoc
point-def)
 also have ... \leq $W^* end-points W^* p^T + q^* p^T$
 using assms(2)
 by (meson forward-terminating-path-end-points-1 join-iso mult-isor
terminating-path-iff)
 also have ... \leq $W^* q^* p^T + q^* p^T$
 using assms(2)
 by (metis annil eq-refl)
 hence $R \cdot v^T \leq - p$
 using assms(2) order.trans by blast
 thus $?thesis$
 by (metis galois-aux inf-le2 schroeder-2)
qed
have c: $R \cdot v^* v^T \leq ?W^+$
proof -
 have $v \leq - p$
 using choose-point-decreasing compl-le-swap1 inf-le1 order-trans by blast
 hence $R \cdot v \leq - p$
 using assms(2) order.trans by blast
 thus $?thesis$
 by (metis galois-aux inf-le2 schroeder-2)
qed
have d: $R \cdot v^* v^T \leq ?W^+$
proof -
 have $R \cdot v^* v^T \leq R \cdot 1$
 using point-p is-inj-def meet-isor point-def by blast
 also have ... = 0
 using assms(2) regressively-finite-irreflexive galois-aux by blast
 finally show $?thesis$
 using bot-least inf.absorb-iff2 by simp
qed
have $R \cdot v^* v^T = (R \cdot v^* v^T) + (R \cdot v^* p^T) + (R \cdot ?p^T) + (R \cdot ?p^T)$
 by (metis conv-add distrib-left distrib-right inf-sup-distrib1 sup.commute
sup.left-commute)
 also have ... \leq $?W^+$
 using a b c d by (simp add: le-sup-iff)
 finally show $?thesis$
 qed
show pathW: path ?W
proof (cases $W = 0$)
 assume $W = 0$
111
thus \(\varphi\) using \(\text{assms}(2)\) point-p edge-is-path point-is-point sup-bot-left by auto

next

assume \(a1\) \(W \neq 0\)

have \(fw\)-path: forward-terminating-path \(W\) using \(\text{assms}(2)\) terminating-iff by blast

have \(bw\)-path: backward-terminating-path \((q \ast ?p T)\)

using \(\text{assms}\) point-p sp-q

by (metis conv-backward-terminating conv-has-start-points conv-path edge-is-path
 forward-terminating-iff1 point-is-point start-point-iff2)

show \(\varphi\) using \(fw\)-path \(bw\)-path \(ep\)-sp \(1\) \(a1\) path-concatenation-cycle-free by blast qed

show \(\text{terminating}\ \ ?W\)

proof (rule start-end-implies-terminating)

show has-start-points \(\ ?W\)

apply (cases \(W = 0\))

using \(\text{assms}(2)\) sp-q pathW

apply (metis (no-types, lifting) point-is-point start-point-iff2 sup-bot.left-neutral)

using \(\text{assms}(2)\) ep-sp \(1\) pathW

by (metis has-start-end-points-iff path-concatenation-start-points start-point-iff2 terminating-iff1)

show has-end-points \(\ ?W\)

apply (cases \(W = 0\))

using point-p cp-np ep-sp pathW end-point-iff2 point-is-point apply force

using point-p cp-np ep-sp \(1\) pathW

by (metis end-point-iff2 path-concatenation-end-points point-is-point)

qed

show \(?W \ast 1 = ?v \ast -?p\)

proof

have \(?W \ast 1 = v\)

by (metis \(\text{assms}(2)\) point-p is-vector-def mult-assoc point-def point-equations(3)
 point-is-point aux4 distrib-right’ inf-absorb2 sup.commute)

also have \(\ldots = v \ast -?p\)

by (metis \(\text{choose-point-decreasing}\) compl-le-swapp1 inf.cobounded1 inf.orderE order-trans)

finally show \(\varphi\)

by (simp add: inf-sup-distrib2)

qed

show \(?W = 0 \lor ?p = \text{end-points}\ ?W\)

using cp-np ep-sp \(1\) by (metis path-concatenation-end-points sup-bot-left)

show \(R \ast ?v \leq ?v\)

using \(\text{assms}(2)\)

by (meson \(\text{choose-point-decreasing}\) conv-galois-I inf.cobounded2 order.trans sup.cobounded11)
show \(p \leq v \)
 by simp
show is-vector \(v \)
 using assms(2) point-p point-def vector-add by blast
qed

lemma topological-sort-post:
 assumes \(\neg v \neq 1 \)
 and topological-sort-inv q v R W
 shows \(R \leq W^+ \land \text{terminating-path } W \land (W + W^T) \cdot 1 = -1^\prime \cdot 1 \)
proof (intro conjI, simp-all add: assms)
 show \(R \leq W^+ \)
 using assms by force
 show backward-terminating \(W \land W \leq 1 \cdot W \ast (-v + q) \)
 using assms by force
 show \(v \cdot -q + W^T \cdot 1 = -1^\prime \cdot 1 \)
 proof (cases \(W = 0 \))
 assume \(W = 0 \)
 thus \(?\text{thesis} \)
 using assms by (metis compl-bot-eq conv-one conv-zero double-compl inf-top.left-neutral
 is-inj-def le-bot mult-1-right one-idem-mult point-def ss-p18 star-zero
 sup.absorb2 top-le)
 next
 assume a1: \(W \neq 0 \)
 hence \(-1^\prime \neq 0 \)
 using assms backward-terminating-path-irreflexive le-bot by fastforce
 hence \(1 = 1 \ast -1^\prime \ast 1 \)
 by (simp add: tarski)
 also have \(... = -1^\prime \ast 1 \)
 by (metis comp-assoc distrib-left mult-1-left sup-top-left distrib-right
 sup-compl-top)
 finally have a: \(1 = -1^\prime \ast 1 \).
 have \(W \ast 1 + W^T \ast 1 = 1 \)
 using assms a1 by (metis double-compl galois-aux4 inf.absorb-iff2
 inf-top.left-neutral)
 thus \(?\text{thesis} \)
 using a by (simp add: assms(2))
 qed
qed

theorem topological-sort-partial: VARS p q v W
 { regessively-finite R }
 \(W := 0; \)
q := choose-point (minimum R 1);
v := q;
WHILE v \neq 1
INV \{ topological-sort-inv \(q \) \(v \) \(R \) \(W \) \}

DO \(p := \) choose-point (minimum \(R \) \(-v\));
 \(W := W + q*p^T; \)
 \(q := p; \)
 \(v := v + p \)
OD
{ \(R \leq W^+ \land \) terminating-path \(W \) \(\land (W + W^T)*1 = -1'*1 \) }
apply vcg
using topological-sort-pre apply blast
using topological-sort-inv apply blast
using topological-sort-post by blast

end

context relation-algebra-rtc-tarski-choose-point-finite

begin

lemma topological-sort-inv-termination:
assumes \(v \neq 1 \)
 and topological-sort-inv \(q \) \(v \) \(R \) \(W \)
shows card \(\{ z \, . \, z \leq -(v + \) choose-point (minimum \(R \) \(-v\))\} \) \(<\) card \(\{ z \, . \, z \leq -v \} \)
proof (rule decrease-variant)
let \(?p = choose-point (minimum \(R \) \(-v\))\)
let \(?v = v + ?p\)
show \(-?v \leq -v\)
 by simp
show \(?p \leq -v\)
 using choose-point-decreasing inf.boundedE by blast
have point \(?p\)
 using assms
 by (metis choose-point-point compl-bot-eq double-compl galois-aux2 comp-assoc
 is-vector-def
 vector-compl vector-mult)
thus \(\neg (\?p \leq -?v)\)
 by (metis annir compl-sup inf.absorb1 inf-compl-bot-right maddux-20
 no-end-point-char)
qed

Use precondition is-acyclic instead of regessively-finite. They are equivalent for finite graphs.

theorem topological-sort-total: VARS \(p \) \(q \) \(v \) \(W \)
[is-acyclic \(R \)]
\(W := \emptyset; \)
\(q := \) choose-point (minimum \(R \) \(1 \));
\(v := q; \)
WHILE \(v \neq 1 \)
INV \{ topological-sort-inv \(q \) \(v \) \(R \) \(W \) \}
VAR \{ card \(\{ z \, . \, z \leq -v \} \) \}
\[DO \ p := \text{choose-point}\ (\text{minimum}\ R (-v)); \]
\[W := W + q* p^T; \]
\[q := p; \]
\[v := v + p \]
\[OD \]
\[
\begin{array}{c}
\quad R \leq W^+ \land \text{terminating-path}\ W \land (W + W^T)*1 = -1'*1 \\
\end{array}
\]
apply vec-tc
apply (drule acyclic-regressively-finite)
using topological-sort-pre apply blast
apply (rule CollectI, rule conjI)
using topological-sort-inv apply blast
using topological-sort-inv-termination apply auto[1]
using topological-sort-post by blast
end

4.3 Construction of a tree

Our last application is a correctness proof of an algorithm that constructs a non-empty cycle for a given directed graph. This works in two steps. The first step is to construct a directed tree from a given root along the edges of the graph.

context relation-algebra-rtc-tarski-choose-point
begin

abbreviation construct-tree-pre
where construct-tree-pre x y R \equiv y \leq R^T*x \land \text{point} x

abbreviation construct-tree-inv
where construct-tree-inv v x y D R \equiv construct-tree-pre x y R \land \text{is-acyclic} D \land \text{is-inj} D \land D* \land D \leq v*v^T \land \text{is-vector} v

abbreviation construct-tree-post
where construct-tree-post x y D R \equiv \text{is-acyclic} D \land \text{is-inj} D \land D \leq R \land D*x = 0 \land v = x + D^T*1 \land x*v^T \leq D*^y \leq D^T*x

lemma construct-tree-pre:
assumes construct-tree-pre x y R
shows construct-tree-inv x x y 0 R
using assms by (simp add: is-inj-def point-def)

lemma construct-tree-inv-aux:
assumes \neg y \leq v
and construct-tree-inv v x y D R
shows singleton (\text{choose-singleton} (v*-v^T \cdot R))
proof (rule choose-singleton-singleton, rule notI)
assume v* - v^T \cdot R = 0
hence \(R^{T \times v} \leq v \)

by (metis galois-aux conv-compl conv-galois-1 conv-galois-2 conv-invol double-compl
 star-inductl-var)

hence \(y = 0 \)

using assms by (meson mult-isol order-trans sup bounded1)

thus False

using assms point-is-point by auto

qed

lemma construct-tree-inv:

assumes \(\neg y \leq v \)

and construct-tree-inv \(v x y D R \)

shows construct-tree-inv \((v + \text{choose-singleton } (v^* - v^T \cdot R)T \ast 1)) x y (D + \text{choose-singleton } (v^* - v^T \cdot R)) R \)

proof (intro conjI)

let \(?e = \text{choose-singleton } (v^* - v^T \cdot R)\)

let \(?D = D + ?e\)

let \(?v = v + ?e T \ast 1\)

have \(1: ?e \leq v^* - v^T\)

using choose-singleton-decreasing inf boundedE by blast

show point \(x \)

by (simp add: assms)

show \(y \leq R^{T \times x} \)

by (simp add: assms)

show is-acyclic \(?D\)

using 1 assms acyclic-inv by fastforce

show is-inj \(?D\)

using 1 construct-tree-inv-aux assms injective-inv by blast

show \(?D \leq R\)

apply (rule sup.boundedI)

using assms apply blast

using choose-singleton-decreasing inf boundedE by blast

show \(?D \ast x = 0\)

proof –

have \(?D \ast x = ?e \ast x\)

by (simp add: assms)

also have \(\ldots \leq ?e \ast v\)

by (simp add: assms mult-isol)

also have \(\ldots \leq v^* - v^T \ast v\)

using 1 mult-isol by blast

also have \(\ldots = 0\)

by (metis assms(2) annir comp-assoc vector-prop1)

finally show ?thesis

using le-bot by blast

qed

show \(?v = x + ?D \ast 1\)

by (simp add: assms sup-assoc)

show \(x \ast ?v^T \leq ?D^*\)

\[116\]
proof
 have \(x \cdot v^T = x \cdot v^T + x \cdot 1 \cdot ?e \)
 by (simp add: distrib-left mult-assoc)
 also have \(\ldots \leq D^* + x \cdot 1 \cdot (?e \cdot v - v^T) \)
 using I by (metis assms(2) inf.absorb1 join-iso)
 also have \(\ldots = D^* + x \cdot 1 \cdot (?e \cdot v - v^T) \)
 by (metis assms(2) comp-assoc cone-compl inf.assoc vector-compl vector-meet-comp)
 also have \(\ldots \leq D^* + x \cdot 1 \cdot (?e \cdot v - v^T) \)
 by (metis assms(2) inf.absorb1 join-iso)
 also have \(\ldots = D^* + x \cdot v^T \cdot ?e \)
 by simp
 also have \(\ldots \leq D^* + D^* \cdot ?e \)
 using assms join-isol mult-isol-var by blast
 also have \(\ldots \leq ?D^* \)
 by (meson le-sup-iff prod-star-closure star-ext star-subdist)
 finally show \(?thesis\).
qed

show \(?D \leq \nu * ?v^T\)
proof (rule sup.boundedI)
 show \(D \leq \nu * ?v^T\)
 using assms
 by (meson conv-add distrib-left le-sup11 conv-iso dual-order.trans mult-isol-var order-prop)
 have \(?e \leq v^*(-v^T \cdot v^T \cdot ?e)\)
 using I inf.absorb-if2 modular-1' by fastforce
 also have \(\ldots \leq v^*1 \cdot ?e\)
 by (simp add: comp-assoc le-infl2 mult-isol-var)
 also have \(\ldots \leq ?v^* ?v^T\)
 by (metis conv-contrav conv-invol conv-iso conv-one mult-assoc mult-isol-var sup.cobounded1 sup-ge2)
 finally show \(?e \leq \nu * ?v^T\)
 by simp
qed

show is-vector \(?v\)
 using assms comp-assoc is-vector-def by fastforce
qed

lemma construct-tree-post:
 assumes \(y \leq v\)
 and construct-tree-inv \(v \ x \ y \ D \ R\)
 shows construct-tree-post \(x \ y \ D \ R\)
proof
 have \(v^* x^T \leq D^* \)
 by (metis (no-types, lifting) assms(2) conv-contrav conv-invol conv-iso star-conv)
hence 1: \(v \leq D^{T*}x \)
using assms point-def ss423bij by blast

hence 2: \(D^{T*I} \leq D^{T*}x \)
using assms le-supE by blast

have \(D^{*}y \leq D^{T*}x \)
proof (rule star-inductl, rule sup.boundedI)
 show \(y \leq D^{T*}x \)
 using 1 assms order.trans by blast

next
have \(D^{*(D^{T*}x)} = D^{*}x + D^{*}D^{T+}x \)
 by (metis conway.dagger-unfoldl-distr distrib-left mult-assoc)
also have \(\ldots = D^{*}D^{T+}x \)
 using assms by simp
also have \(\ldots \leq T^{*}D^{T*}x \)
 by (metis assms(2) is-inj-def mult-assoc mult-isor)
finally show \(D^{*}(D^{T*}x) \leq D^{T*}x \)
 by simp
qed

thus construct-tree-post \(x \ y \ D \ R \)
using 2 assms by simp
qed

theorem construct-tree-partial: VARS \(e \ v \ D \)
{ construct-tree-pre \(x \ y \ R \) }

\(D := 0; \)
\(v := x; \)
WHILE \(\neg y \leq v \)
INV { construct-tree-inv \(v \ x \ y \ D \ R \) }
DO \(e := \text{choose-singleton} \ (v*^-v^{T} \cdot R); \)
\(D := D + e; \)
\(v := v + e^{T}*1 \)
OD
{ construct-tree-post \(x \ y \ D \ R \) }
apply vcg
using construct-tree-pre apply blast
using construct-tree-inv apply blast
using construct-tree-post by blast

end

context relation-algebra-rtc-tarski-choose-point-finite
begin

lemma construct-tree-inv-termination:
assumes \(\neg y \leq v \)
and construct-tree-inv \(v \ x \ y \ D \ R \)
sows \(\text{card} \ \{ z . \ z \leq -(v + \text{choose-singleton} \ (v*^-v^{T} \cdot R)^{T}*1) \} < \text{card} \ \{ z . \ z \leq -v \} \)
proof (rule decrease-variant)
let \(?e = \text{choose-singleton} \ (v* - v^T \cdot R)\)
let \(?v = v + e^T \cdot 1\)

have 1: \(?e \leq v* - v^T\)
 using \(\text{choose-singleton-decreasing inf. boundedE}\) by blast
have 2: singleton \(?e\)
 using \(\text{construct-tree-inv-aux}\) assms by simp
show \(\neg v \leq -v\)
 by simp

have \(?e^T \leq -v + v^T\)
 using 1 conv-compl conv-iso by force
also have \(\ldots \leq -v^T\cdot 1\)
 by (simp add: mult-isol)
finally show \(?e^T \cdot 1 \leq -v\)
 using assms by (metis is-vector-def mult-isor one-compl)
thus \(?e^T \cdot 1 \leq -?v\)
 using 2 by (metis annir compl-sup inf.absorb1 inf-compl-bot-right surj-one tarski)

qed

theorem construct-tree-total: VARS e v D
[construct-tree-pre x y R]
\(D := 0\);
\(v := x\);
\(\text{WHILE } \neg y \leq v\)
 INV \{ \text{construct-tree-inv} v x y D R \}
 VAR \{ \text{card} \{ z \cdot z \leq -v \} \}
 DO e := \text{choose-singleton} \ (v* - v^T \cdot R);
 D := D + e;
 v := v + e^T \cdot 1
 OD
[construct-tree-post x y D R]
apply vcg-tc
using construct-tree-pre apply blast
apply (rule CollectI, rule conjI)
using construct-tree-inv apply blast
using construct-tree-inv-termination apply force
using construct-tree-post by blast
end

4.4 Construction of a non-empty cycle

The second step is to construct a path from the root to a given vertex in the tree. Adding an edge back to the root gives the cycle.

context relation-algebra-rtc-tarski-choose-point
begin

abbreviation comment
 where comment \(- \equiv \text{SKIP}\)
abbreviation construct-cycle-inv
 where construct-cycle-inv v x y D R ≡ construct-tree-inv v x y D R ∧ point y ∧ y∗x^T ≤ R.

lemma construct-cycle-pre:
 assumes ¬ is-acyclic R
 and y = choose-point ((R^+ · 1^′)*1)
 and x = choose-point (R^*y · R^T*y)
 shows construct-cycle-inv x x y 0 R
proof (rule conjI, rule-tac [2] conjI)
 show point-y: point y
 using assms by (simp add: choose-point-point is-vector-def mult-assoc galois-aux ss-p18)
 have R^*y · R^T*y ≠ 0
 proof
 have R^+ · 1^′ = (R^+)^T · 1^′
 by (metis (mono-tags, hide-lams) conv-e conv-times inf.cobounded1 inf.commute
 many-strongly-connected-iff-6-eq mult-oner star-subid)
 also have ... = R^T^+ · 1^′
 using plus-conv by fastforce
 also have ... ≤ (R^T^* · R)*R^T
 by (metis conv-contrav conv-e conv-ineq modular-2-var mult-oner star-slide-var)
 also have ... ≤ (R^T^* · R)*1
 by (simp add: mult-isol)
 finally have a: (R^+ · 1^′)*1 ≤ (R^T^* · R)*1
 by (metis mult-assoc mult-isor one-idem-mult)
 assume R^*y · R^T*y = 0
 hence (R^* · R^T)^T*y = 0
 using point-y inj-distr point-def by blast
 hence (R^* · R^T)^T*y ≤ −y
 by (simp add: conv-galois-1)
 hence y ≤ −((R^* · R^T)^T*y)
 using compl-le-swap1 by blast
 also have ... = −((R^T^* · R)*1)
 by (simp add: star-conv)
 also have ... ≤ −((R^+ · 1^′)*1)
 using a comp-anti by blast
 also have ... ≤ −y
 by (simp add: assms galois-aux ss-p18 choose-point-decreasing)
 finally have y = 0
 using inf.absorb2 by fastforce
 thus False
 using point-y annir point-equations(2) point-is-point tarski by force
 qed
 hence point-x: point x
 by (metis point-y assms(3) inj-distr is-vector-def mult-assoc point-def choose-point-point)
hence \(y \leq R^T \cdot x \)
by (metis assms(3) point-y choose-point-decreasing inf-le1 order.trans
point-swap star-conv)

thus tree-inv: construct-tree-inv \(x \ x \ y \ 0 \ R \)
using point-x construct-tree-pre by blast
show \(y \star x^T \leq R \)
proof
have \(x \leq R^* y \cdot R^T y \)
using assms(3) choose-point-decreasing by blast
also have \(\ldots = (R^* \cdot R^T) y \)
using point-y inj-distr point-def by fastforce
finally have \(x^* y^T \leq R^* \cdot R^T \)
using point-y point-def ss423bij by blast
also have \(\ldots \leq R^T \)
by simp
finally show \(\text{thesis} \)
using conv-iso by force
qed

lemma construct-cycle-pre2:
assumes \(y \leq v \)
and construct-cycle-inv \(v \ x \ y \ D \ R \)
shows construct-path-inv \(y \ x \ y \ D \ 0 \ \wedge \ D \leq R \ \wedge \ D \star x = 0 \ \wedge \ y \star x^T \leq R \)
proof(intro conjI, simp-all add: assms)
show \(D^* \cdot y \leq D^T \star x \)
using assms construct-tree-post by blast
show path 0
by (simp add: is-inj-def is-p-fun-def path-def)
show \(y \neq 0 \)
using assms(2) is-point-def point-is-point by blast
qed

lemma construct-cycle-post:
assumes \(\neg q \neq x \)
and (construct-path-inv \(q \ x \ y \ D \ W \ \wedge \ D \leq R \ \wedge \ D \star x = 0 \ \wedge \ y \star x^T \leq R \))
shows \(W + y \star x^T \neq 0 \ \wedge \ W + y \star x^T \leq R \ \wedge \ cycle \ (W + y \star x^T) \)
proof(intro conjI)
let \(?C = W + y \star x^T \)
show \(?C \neq 0 \)
by (metis assms acyclic-imp-one-step-different-points(2) no-trivial-inverse
point-def ss423bij
sup-bot.monoid-axioms monoid.left-neutral)
show \(?C \leq R \)
using assms(2) order-trans sup.boundedI by blast
show \(W + y \star x^T \)
by (metis assms construct-tree-pre edge-is-path less-eq-def
path-edge-equals-cycle
point-is-point terminating-iff1)

121
show many-strongly-connected \((W + y \ast x^T)\)
by (metis assms construct-tree-pre bot-least conv-zero less-eq-def
path-edge-equals-cycle star-conv star-subid terminating-iff1)
qed

theorem construct-cycle-partial: VARS e p q v x y C D W
{¬ is-acyclic R }
y := choose-point ((R^+ \cdot 1^\ast) \ast 1);
x := choose-point (R^* y \cdot R^T y);
D := 0;
v := x;
WHILE ¬ y \leq v
INV { construct-cycle-inv v x y D R }
DO e := choose-singleton (v \ast -v^T \cdot R);
D := D + e;
v := v + e^T \ast 1
OD;
comment { is-acyclic D \land point y \land point x \land D^* y \leq D^T^* x };
W := 0;
q := y;
WHILE q \neq x
INV { construct-path-inv q x y D W \land D \leq R \land D x = 0 \land y x^T \leq R }
DO p := choose-point (D \ast q);
W := W + p \ast q^T;
q := p
OD;
comment { W \leq D \land terminating-path W \land (W = 0 \iff q = y) \land (W \neq 0
\iff q = start-points W \land y = end-points W) };
C := W + y x^T
{ C \neq 0 \land C \leq R \land cycle C }
apply vcg
using construct-cycle-pre apply blast
using construct-tree-inv apply blast
using construct-cycle-pre2 apply blast
using construct-path-inv apply blast
using construct-cycle-post by blast
end

context relation-algebra-rtc-tarski-choose-point-finite
begin

theorem construct-cycle-total: VARS e p q v x y C D W
{¬ is-acyclic R }
y := choose-point ((R^+ \cdot 1^\ast) \ast 1);
x := choose-point (R^* y \cdot R^T y);
D := 0;
v := x;
WHILE ¬ y \leq v
INV \{ construct-cycle-inv v x y D R \}
VAR \{ card \{ z . z \leq -v \} \}
DO e := choose-singleton (v* - v^T . R);
 D := D + e;
 v := v + e^T * 1
OD;
comment \{ is-acyclic D \land point y \land point x \land D*y \leq D^T*x \};
W := 0;
q := y;
WHILE q \neq x
 INV \{ construct-path-inv q x y D W \land D \leq R \land D*x = 0 \land y*x^T \leq R \}
 VAR \{ card \{ z . z \leq -W \} \}
 DO p := choose-point (D*q);
 W := W + p*q^T;
 q := p
 OD;
comment \{ W \leq D \land terminating-path W \land (W = 0 \iff q=y) \land (W \neq 0 \iff q = start-points W \land y = end-points W) \};
C := W + y*x^T
[C \neq 0 \land C \leq R \land cycle C]
apply vcg-te
using construct-cycle-pre apply blast
apply (rule CollectI, rule conjI)
using construct-tree-inv apply blast
using construct-tree-inv-termination apply force
using construct-cycle-pre2 apply blast
apply (rule CollectI, rule conjI)
using construct-path-inv apply blast
using construct-path-inv-termination apply clarsimp
using construct-cycle-post by blast

end
end

References

