# Relational Minimum Spanning Tree Algorithms

### Walter Guttmann and Nicolas Robinson-O'Brien

## February 23, 2021

#### Abstract

We verify the correctness of Prim's, Kruskal's and Borůvka's minimum spanning tree algorithms based on algebras for aggregation and minimisation.

## Contents

| 1 | Overview |                                                       | 1   |
|---|----------|-------------------------------------------------------|-----|
|   | 1.1      | Prim's and Kruskal's minimum spanning tree algorithms | 2   |
|   | 1.2      | Borůvka's minimum spanning tree algorithm             | 2   |
| 2 | Kru      | skal's Minimum Spanning Tree Algorithm                | 2   |
| 3 | Pri      | m's Minimum Spanning Tree Algorithm                   | 15  |
| 4 | Bor      | růvka's Minimum Spanning Tree Algorithm               | 26  |
|   | 4.1      | General results                                       | 26  |
|   | 4.2      | An operation to select components                     | 35  |
|   | 4.3      | m-k-Stone-Kleene relation algebras                    | 38  |
|   |          | 4.3.1 Components of forests and big forests           | 41  |
|   |          | 4.3.2 Identifying arcs                                | 49  |
|   |          | 4.3.3 Comparison of edge weights                      | 64  |
|   |          | 4.3.4 Maintenance of algorithm invariants             | 72  |
|   | 4.4      | Formalization and correctness proof                   | 102 |

## 1 Overview

The theories described in this document prove the correctness of Prim's, Kruskal's and Borůvka's minimum spanning tree algorithms. Specifications and algorithms work in Stone-Kleene relation algebras extended by operations for aggregation and minimisation. The algorithms are implemented in a simple imperative language and their proof uses Hoare logic. The correctness proofs are discussed in [3, 5, 6, 8].

## 1.1 Prim's and Kruskal's minimum spanning tree algorithms

A framework based on Stone relation algebras and Kleene algebras and extended by operations for aggregation and minimisation was presented by the first author in [3, 5] and used to formally verify the correctness of Prim's minimum spanning tree algorithm. It was extended in [6] and applied to prove the correctness of Kruskal's minimum spanning tree algorithm.

Two theories, one each for Prim's and Kruskal's algorithms, prove total correctness of these algorithms. As case studies for the algebraic framework, these two theories combined were originally part of another AFP entry [4].

## 1.2 Borůvka's minimum spanning tree algorithm

Otakar Borůvka formalised the minimum spanning tree problem and proposed a solution to it [1]. Borůvka's original paper is written in Czech; translations of varying completeness can be found in [2, 7].

The theory for Borůvka's minimum spanning tree algorithm proves partial correctness of this algorithm. This work is based on the same algebraic framework as the proof of Kruskal's algorithm; in particular it uses many theories from the hierarchy underlying [4].

The theory for Borůvka's algorithm formally verifies results from the second author's Master's thesis [8]. Certain lemmas in this theory are numbered for easy correlation to theorems from the thesis.

## 2 Kruskal's Minimum Spanning Tree Algorithm

In this theory we prove total correctness of Kruskal's minimum spanning tree algorithm. The proof uses the following steps [6]. We first establish that the algorithm terminates and constructs a spanning tree. This is a constructive proof of the existence of a spanning tree; any spanning tree algorithm could be used for this. We then conclude that a minimum spanning tree exists. This is necessary to establish the invariant for the actual correctness proof, which shows that Kruskal's algorithm produces a minimum spanning tree.

theory Kruskal

 $\mathbf{imports}\ HOL-Hoare. Hoare-Logic\ Aggregation-Algebras. Aggregation-Algebras$ 

begin

 ${f context}$  m-kleene-algebra  ${f begin}$ 

**definition** spanning-forest  $f g \equiv forest \ f \land f \leq --g \land components \ g \leq forest-components \ f \land regular \ f$  **definition** minimum-spanning-forest  $f g \equiv spanning-forest \ f \ g \land (\forall u \ . spanning-forest \ u \ g \longrightarrow sum \ (f \sqcap g) \leq sum \ (u \sqcap g))$ 

```
= h \wedge spanning\text{-}forest f (-h \sqcap g)
\textbf{definition} \ \textit{kruskal-invariant} \ f \ g \ h \equiv \textit{kruskal-spanning-invariant} \ f \ g \ h \ \land \ (\exists \ w \ .
minimum-spanning-forest w \ g \land f \le w \sqcup w^T)
     We first show two verification conditions which are used in both correct-
ness proofs.
lemma kruskal-vc-1:
  assumes symmetric q
    shows kruskal-spanning-invariant bot g g
proof (unfold kruskal-spanning-invariant-def, intro conjI)
  show symmetric q
    using assms by simp
\mathbf{next}
  show g = g^T
    using assms by simp
  \mathbf{show}\ g\ \sqcap\ --g=g
    using inf.sup-monoid.add-commute selection-closed-id by simp
next
  show spanning-forest bot (-g \sqcap g)
    using star.circ-transitive-equal spanning-forest-def by simp
qed
lemma kruskal-vc-2:
  assumes kruskal-spanning-invariant f g h
      and h \neq bot
    shows (minarc h \leq -forest-components f \longrightarrow kruskal-spanning-invariant ((f
\sqcap -(top * minarc \ h * f^{T\star})) \ \sqcup \ (f \ \sqcap \ top * minarc \ h * f^{T\star})^T \ \sqcup \ minarc \ h) \ g \ (h \ \sqcap \ h)
-minarc \ h \ \Box \ -minarc \ h^T
                                              \land card \{x : regular \ x \land x \leq --h \land x \leq
-minarc\ h \wedge x \leq -minarc\ h^T \} < card \{ x \cdot regular\ x \wedge x \leq --h \} ) \wedge
          (\neg minarc \ h \leq -forest\text{-}components \ f \longrightarrow kruskal\text{-}spanning\text{-}invariant \ f \ g
(h \sqcap -minarc \ h \sqcap -minarc \ h^T)
                                                 \land card { x . regular x \land x \leq --h \land x \leq
-minarc\ h \wedge x \leq -minarc\ h^T\ \} < card\ \{\ x\ .\ regular\ x \wedge x \leq --h\ \})
proof -
 let ?e = minarc h
 let ?f = (f \sqcap -(top * ?e * f^{T*})) \sqcup (f \sqcap top * ?e * f^{T*})^T \sqcup ?e
 let ?h = h \sqcap -?e \sqcap -?e^T
 let ?F = forest-components f
 let ?n1 = card \{ x \cdot regular \ x \land x \leq --h \}
  let ?n2 = card \{ x \cdot regular \ x \land x \le --h \land x \le -?e \land x \le -?e^T \}
  have 1: regular f \land regular ?e
    by (metis assms(1) kruskal-spanning-invariant-def spanning-forest-def
minarc-regular)
```

**definition** kruskal-spanning-invariant  $f g h \equiv symmetric g \wedge h = h^T \wedge g \sqcap --h$ 

using regular-closed-star regular-conv-closed regular-mult-closed by simp

hence 2: regular ?f  $\land$  regular ?F  $\land$  regular (?e<sup>T</sup>)

have  $3: \neg ?e \leq -?e$ 

```
using assms(2) inf.orderE minarc-bot-iff by fastforce
 have 4: ?n2 < ?n1
   apply (rule psubset-card-mono)
   using finite-regular apply simp
   using 1 3 kruskal-spanning-invariant-def minarc-below by auto
 show (?e \le -?F \longrightarrow kruskal-spanning-invariant ?f \ g \ ?h \land ?n2 < ?n1) \land (\neg ?e)
\leq -?F \longrightarrow kruskal\text{-spanning-invariant } f g ?h \land ?n2 < ?n1)
 proof (rule conjI)
   have 5: injective ?f
     apply (rule kruskal-injective-inv)
     using assms(1) kruskal-spanning-invariant-def spanning-forest-def apply
simp
     apply (simp add: covector-mult-closed)
     apply (simp add: comp-associative comp-isotone star.right-plus-below-circ)
     apply (meson mult-left-isotone order-lesseg-imp star-outer-increasing
top.extremum)
     using assms(1,2) kruskal-spanning-invariant-def kruskal-injective-inv-2
minarc-arc spanning-forest-def apply simp
     using assms(2) arc-injective minarc-arc apply blast
     using assms(1,2) kruskal-spanning-invariant-def kruskal-injective-inv-3
minarc-arc spanning-forest-def by simp
   show ?e \le -?F \longrightarrow kruskal\text{-}spanning\text{-}invariant ?f g ?h <math>\land ?n2 < ?n1
   proof
     assume 6: ?e \le -?F
     have 7: equivalence ?F
       using assms(1) kruskal-spanning-invariant-def
forest-components-equivalence spanning-forest-def by simp
     have ?e^T * top * ?e^T = ?e^T
      \mathbf{using} \ assms(2) \ \mathbf{by} \ (simp \ add: \ arc\text{-}top\text{-}arc \ minarc\text{-}arc)
     hence ?e^T * top * ?e^T \le -?F
       using 6 7 conv-complement conv-isotone by fastforce
     hence 8: ?e * ?F * ?e = bot
       using le-bot triple-schroeder-p by simp
     show kruskal-spanning-invariant ?f g ?h \wedge ?n2 < ?n1
     proof (unfold kruskal-spanning-invariant-def, intro conjI)
      show symmetric q
        using assms(1) kruskal-spanning-invariant-def by simp
     next
      show ?h = ?h^T
        using assms(1) by (simp add: conv-complement conv-dist-inf
inf-commute inf-left-commute kruskal-spanning-invariant-def)
     next
       show g \sqcap --?h = ?h
        using 1 2 by (metis (hide-lams) assms(1) kruskal-spanning-invariant-def
inf-assoc pp-dist-inf)
     next
       show spanning-forest ?f(-?h \sqcap g)
      proof (unfold spanning-forest-def, intro conjI)
        show injective ?f
```

```
using 5 by simp
      next
        show acyclic ?f
         apply (rule kruskal-acyclic-inv)
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def
apply simp
         apply (simp add: covector-mult-closed)
         using 8 assms(1) kruskal-spanning-invariant-def spanning-forest-def
kruskal-acyclic-inv-1 apply simp
         using 8 apply (metis comp-associative mult-left-sub-dist-sup-left
star.circ-loop-fixpoint sup-commute le-bot)
         using 6 by (simp add: p-antitone-iff)
      next
        show ?f \le --(-?h \sqcap g)
         apply (rule kruskal-subgraph-inv)
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def
apply simp
         using assms(1) apply (metis kruskal-spanning-invariant-def
minarc-below order.trans pp-isotone-inf)
         using assms(1) kruskal-spanning-invariant-def apply simp
         using assms(1) kruskal-spanning-invariant-def by simp
      \mathbf{next}
        show components (-?h \sqcap g) \leq forest-components ?f
         apply (rule kruskal-spanning-inv)
         using 5 apply simp
         using 1 regular-closed-star regular-conv-closed regular-mult-closed apply
simp
         using 1 apply simp
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def by
simp
      next
        show regular ?f
         using 2 by simp
      qed
    next
      show ?n2 < ?n1
        using 4 by simp
    qed
   qed
 next
   show \neg ?e \leq -?F \longrightarrow kruskal\text{-spanning-invariant } f g ?h \land ?n2 < ?n1
   proof
    assume \neg ?e \le -?F
    hence 9: ?e \le ?F
      using 2 assms(2) arc-in-partition minarc-arc by fastforce
    show kruskal-spanning-invariant f g ? h \land ? n2 < ? n1
    proof (unfold kruskal-spanning-invariant-def, intro conjI)
      show symmetric q
        using assms(1) kruskal-spanning-invariant-def by simp
```

```
next
      show ?h = ?h^T
        using assms(1) by (simp add: conv-complement conv-dist-inf
inf-commute inf-left-commute kruskal-spanning-invariant-def)
      show g \sqcap --?h = ?h
        using 1 2 by (metis (hide-lams) assms(1) kruskal-spanning-invariant-def
inf-assoc pp-dist-inf)
    next
      show spanning-forest f(-?h \sqcap g)
      proof (unfold spanning-forest-def, intro conjI)
        show injective f
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def by
simp
      next
        show acyclic f
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def by
simp
        have f \leq --(-h \sqcap g)
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def by
simp
        also have \dots \leq --(-?h \sqcap g)
         using comp-inf.mult-right-isotone inf.sup-monoid.add-commute
inf-left-commute p-antitone-inf pp-isotone by presburger
        finally show f \leq --(-?h \sqcap g)
         by simp
      next
        show components (-?h \sqcap g) \leq ?F
         apply (rule kruskal-spanning-inv-1)
         using 9 apply simp
         using 1 apply simp
         using assms(1) kruskal-spanning-invariant-def spanning-forest-def
apply simp
         using assms(1) kruskal-spanning-invariant-def
forest-components-equivalence spanning-forest-def by simp
      next
        show regular f
         using 1 by simp
      qed
    next
      show ?n2 < ?n1
        using 4 by simp
    qed
   qed
 qed
qed
```

The following result shows that Kruskal's algorithm terminates and constructs a spanning tree. We cannot yet show that this is a minimum spanning

#### tree.

 $\mathbf{qed}$ 

```
theorem kruskal-spanning:
  VARS\ e\ f\ h
 [symmetric g]
 f := bot;
 h := g;
  WHILE h \neq bot
   INV \{ kruskal-spanning-invariant f g h \}
   VAR \{ card \{ x . regular x \land x \leq --h \} \}
    DO e := minarc h;
       \mathit{IF}\ e \leq -\mathit{forest-components}\ f\ \mathit{THEN}
        f := (f \sqcap -(top * e * f^{T\star})) \sqcup (f \sqcap top * e * f^{T\star})^T \sqcup e
         SKIP
       FI;
       h := h \sqcap -e \sqcap -e^T
 [spanning-forest f g]
 apply \ vcg\text{-}tc\text{-}simp
 using kruskal-vc-1 apply simp
 using kruskal-vc-2 apply simp
 using kruskal-spanning-invariant-def by auto
    Because we have shown total correctness, we conclude that a spanning
tree exists.
lemma kruskal-exists-spanning:
  symmetric \ g \Longrightarrow \exists f \ . \ spanning-forest \ f \ g
 using tc-extract-function kruskal-spanning by blast
    This implies that a minimum spanning tree exists, which is used in the
subsequent correctness proof.
lemma kruskal-exists-minimal-spanning:
 assumes symmetric g
   shows \exists f . minimum-spanning-forest f g
proof -
 let ?s = \{ f : spanning\text{-}forest f g \}
 have \exists m \in ?s : \forall z \in ?s : sum (m \sqcap g) \leq sum (z \sqcap g)
   apply (rule finite-set-minimal)
   using finite-regular spanning-forest-def apply simp
   using assms kruskal-exists-spanning apply simp
   using sum-linear by simp
  thus ?thesis
   using minimum-spanning-forest-def by simp
```

Kruskal's minimum spanning tree algorithm terminates and is correct. This is the same algorithm that is used in the previous correctness proof, with the same precondition and variant, but with a different invariant and postcondition.

```
theorem kruskal:
  VARS\ e\ f\ h
  [symmetric g]
 f := bot;
  h := q;
  WHILE h \neq bot
   INV \{ kruskal-invariant f g h \}
    VAR \{ card \{ x . regular x \land x \leq --h \} \}
    DO e := minarc h;
       IF\ e \leq -forest\text{-}components\ f\ THEN
         f := (f \sqcap -(top * e * f^{T\star})) \sqcup (f \sqcap top * e * f^{T\star})^T \sqcup e
       ELSE
         SKIP
       FI:
       h := h \sqcap -e \sqcap -e^T
  [\ minimum\text{-}spanning\text{-}forest\ f\ g\ ]
proof vcg-tc-simp
  assume symmetric g
  thus kruskal-invariant bot q q
   using kruskal-vc-1 kruskal-exists-minimal-spanning kruskal-invariant-def by
simp
\mathbf{next}
  \mathbf{fix} f h
 let ?e = minarc h
 \mathbf{let} \ ?f = (f \sqcap -(top * ?e_{-} * f^{T \star})) \sqcup (f \sqcap top * ?e * f^{T \star})^{T} \sqcup ?e
 let ?h = h \sqcap -?e \sqcap -?e^T
  let ?F = forest\text{-}components f
  let ?n1 = card \{ x \cdot regular \ x \land x \le --h \}
 let ?n2 = card \{ x \cdot regular \ x \land x \leq --h \land x \leq -?e \land x \leq -?e^T \}
  assume 1: kruskal-invariant f g h \land h \neq bot
  from 1 obtain w where 2: minimum-spanning-forest w g \land f \leq w \sqcup w^T
   using kruskal-invariant-def by auto
  hence 3: regular f \wedge regular w \wedge regular ?e
   using 1 by (metis kruskal-invariant-def kruskal-spanning-invariant-def
minimum-spanning-forest-def spanning-forest-def minarc-regular)
  show (?e \le -?F \longrightarrow kruskal\text{-}invariant ?f g ?h \land ?n2 < ?n1) \land (\neg ?e \le -?F
\longrightarrow kruskal\text{-}invariant\ f\ g\ ?h\ \land\ ?n2 <\ ?n1)
  proof (rule \ conjI)
   show ?e \le -?F \longrightarrow kruskal\text{-}invariant ?f g ?h \land ?n2 < ?n1
   proof
     assume 4: ?e \le -?F
     have 5: equivalence ?F
       using 1 kruskal-invariant-def kruskal-spanning-invariant-def
forest-components-equivalence spanning-forest-def by simp
     have ?e^T * top * ?e^T = ?e^T
       using 1 by (simp add: arc-top-arc minarc-arc)
     hence ?e^T * top * ?e^T \le -?F
       using 4 5 conv-complement conv-isotone by fastforce
```

```
hence 6: ?e * ?F * ?e = bot
      using le-bot triple-schroeder-p by simp
    show kruskal-invariant ?f g ?h \land ?n2 < ?n1
    proof (unfold kruskal-invariant-def, intro conjI)
      show kruskal-spanning-invariant ?f g ?h
        using 1 4 kruskal-vc-2 kruskal-invariant-def by simp
    next
      show \exists w . minimum-spanning-forest w \ g \land ?f \le w \sqcup w^T
      proof
        let ?p = w \sqcap top * ?e * w^{T*}
        let ?v = (w \sqcap -(top * ?e * w^{T\star})) \sqcup ?p^T
        have 7: regular ?p
         using 3 regular-closed-star regular-conv-closed regular-mult-closed by
simp
        have 8: injective ?v
         apply (rule kruskal-exchange-injective-inv-1)
         using 2 minimum-spanning-forest-def spanning-forest-def apply simp
         apply (simp add: covector-mult-closed)
         apply (simp add: comp-associative comp-isotone
star.right-plus-below-circ)
         using 1 2 kruskal-injective-inv-3 minarc-arc
minimum-spanning-forest-def spanning-forest-def by simp
        have 9: components g \leq forest-components ?v
         apply (rule kruskal-exchange-spanning-inv-1)
         using 8 apply simp
         using 7 apply simp
         using 2 minimum-spanning-forest-def spanning-forest-def by simp
        have 10: spanning-forest ?v g
        proof (unfold spanning-forest-def, intro conjI)
         show injective ?v
           using 8 by simp
        next
         show acyclic ?v
           apply (rule kruskal-exchange-acyclic-inv-1)
           using 2 minimum-spanning-forest-def spanning-forest-def apply simp
           by (simp add: covector-mult-closed)
        next
         show ?v \leq --g
           apply (rule sup-least)
           using 2 inf.coboundedI1 minimum-spanning-forest-def
spanning-forest-def apply simp
           using 1 2 by (metis kruskal-invariant-def
kruskal-spanning-invariant-def conv-complement conv-dist-inf order.trans
inf.absorb2 inf.cobounded1 minimum-spanning-forest-def spanning-forest-def)
        next
         show components g \leq forest-components ?v
           using 9 by simp
        next
         show regular ?v
```

```
using 3 regular-closed-star regular-conv-closed regular-mult-closed by
simp
        qed
        have 11: sum (?v \sqcap g) = sum (w \sqcap g)
        proof -
          have sum (?v \sqcap q) = sum (w \sqcap -(top * ?e * w^{T*}) \sqcap q) + sum (?p^T \sqcap q)
g)
            using 2 by (metis conv-complement conv-top epm-8 inf-import-p
inf-top-right regular-closed-top vector-top-closed minimum-spanning-forest-def
spanning-forest-def sum-disjoint)
          also have ... = sum (w \sqcap -(top * ?e * w^{T*}) \sqcap g) + sum (?p \sqcap g)
           using 1 kruskal-invariant-def kruskal-spanning-invariant-def
sum-symmetric by simp
          also have ... = sum (((w \sqcap -(top * ?e * w<sup>T*</sup>)) \sqcup ?p) \sqcap q)
            using inf-commute inf-left-commute sum-disjoint by simp
          also have ... = sum (w \sqcap q)
            using 3 7 maddux-3-11-pp by simp
          finally show ?thesis
           by simp
        qed
        have 12: ?v \sqcup ?v^T = w \sqcup w^T
        proof -
          have ?v \sqcup ?v^T = (w \sqcap -?p) \sqcup ?p^T \sqcup (w^T \sqcap -?p^T) \sqcup ?p
            using conv-complement conv-dist-inf conv-dist-sup inf-import-p
sup-assoc by simp
          also have ... = w \sqcup w^T
           using 3 7 conv-complement conv-dist-inf inf-import-p maddux-3-11-pp
sup-monoid.add-assoc sup-monoid.add-commute by simp
          finally show ?thesis
           by simp
        qed
        have 13: ?v * ?e^T = bot
          apply (rule kruskal-reroot-edge)
          using 1 apply (simp add: minarc-arc)
          using 2 minimum-spanning-forest-def spanning-forest-def by simp
        have ?v \sqcap ?e < ?v \sqcap top * ?e
          using inf.sup-right-isotone top-left-mult-increasing by simp
        also have \dots \leq ?v * (top * ?e)^T
          using covector-restrict-comp-conv covector-mult-closed vector-top-closed
by simp
        finally have 14: ?v \sqcap ?e = bot
          using 13 by (metis conv-dist-comp mult-assoc le-bot mult-left-zero)
        let ?d = ?v \sqcap top * ?e^T * ?v^{T*} \sqcap ?F * ?e^T * top \sqcap top * ?e * -?F
        let ?w = (?v \sqcap -?d) \sqcup ?e
        have 15: regular ?d
          using 3 regular-closed-star regular-conv-closed regular-mult-closed by
simp
        have 16: ?F \le -?d
          apply (rule kruskal-edge-between-components-1)
```

```
using 5 apply simp
          using 1 conv-dist-comp minarc-arc mult-assoc by simp
        have 17: f \sqcup f^T \leq (?v \sqcap -?d \sqcap -?d^T) \sqcup (?v^T \sqcap -?d \sqcap -?d^T)
         apply (rule kruskal-edge-between-components-2)
          using 16 apply simp
          using 1 kruskal-invariant-def kruskal-spanning-invariant-def
spanning-forest-def apply simp
          using 2 12 by (metis conv-dist-sup conv-involutive conv-isotone le-supI
sup-commute)
        show minimum-spanning-forest ?w g \land ?f \leq ?w \sqcup ?w^T
        proof (intro conjI)
         have 18: ?e^T \leq ?v^*
           apply (rule kruskal-edge-arc-1[where g=g and h=h])
           using minarc-below apply simp
           using 1 apply (metis kruskal-invariant-def
kruskal-spanning-invariant-def inf-le1)
           using 1 kruskal-invariant-def kruskal-spanning-invariant-def apply
simp
           using 9 apply simp
           using 13 by simp
          have 19: arc ?d
           apply (rule kruskal-edge-arc)
           using 5 apply simp
           using 10 spanning-forest-def apply blast
           using 1 apply (simp add: minarc-arc)
           using 3 apply (metis conv-complement pp-dist-star
regular-mult-closed)
           using 2 8 12 apply (simp add: kruskal-forest-components-inf)
           using 10 spanning-forest-def apply simp
           using 13 apply simp
           using 6 apply simp
           using 18 by simp
          show minimum-spanning-forest ?w g
          \mathbf{proof}\ (\mathit{unfold\ minimum-spanning-forest-def},\ \mathit{intro\ conj}I)
           have (?v \sqcap -?d) * ?e^T \leq ?v * ?e^T
             using inf-le1 mult-left-isotone by simp
           hence (?v \sqcap -?d) * ?e^T = bot
             using 13 le-bot by simp
           hence 2\theta: ?e * (?v \sqcap -?d)^T = bot
             using conv-dist-comp conv-involutive conv-bot by force
           have 21: injective ?w
             apply (rule injective-sup)
             using 8 apply (simp add: injective-inf-closed)
             using 20 apply simp
             using 1 arc-injective minarc-arc by blast
           show spanning-forest ?w g
           proof (unfold spanning-forest-def, intro conjI)
             show injective ?w
              using 21 by simp
```

```
next
            {f show} acyclic ?w
              apply (rule kruskal-exchange-acyclic-inv-2)
              using 10 spanning-forest-def apply blast
              using 8 apply simp
              using inf.coboundedI1 apply simp
              using 19 apply simp
              using 1 apply (simp add: minarc-arc)
              using inf.cobounded2 inf.coboundedI1 apply simp
              using 13 by simp
           next
             have ?w \leq ?v \sqcup ?e
              using inf-le1 sup-left-isotone by simp
            also have ... \leq --g \sqcup ?e
              using 10 sup-left-isotone spanning-forest-def by blast
             also have \dots \leq --g \sqcup --h
              by (simp add: le-supI2 minarc-below)
             also have \dots = --g
              using 1 by (metis kruskal-invariant-def
kruskal-spanning-invariant-def pp-isotone-inf sup.orderE)
            finally show ?w \le --g
              \mathbf{by} \ simp
           next
             have 22: ?d \leq (?v \sqcap -?d)^{T\star} * ?e^{T} * top
              apply (rule kruskal-exchange-spanning-inv-2)
              using 8 apply simp
              using 13 apply (metis semiring.mult-not-zero star-absorb
star-simulation-right-equal)
              using 17 apply simp
              by (simp add: inf.coboundedI1)
             have components g \leq forest-components ?v
              using 10 spanning-forest-def by auto
             also have ... \leq forest-components ?w
              apply (rule kruskal-exchange-forest-components-inv)
              using 21 apply simp
              using 15 apply simp
              using 1 apply (simp add: arc-top-arc minarc-arc)
              apply (simp add: inf.coboundedI1)
              using 13 apply simp
              using 8 apply simp
              apply (simp add: le-infI1)
              using 22 by simp
             finally show components g \leq forest-components ?w
              by simp
           next
             show regular ?w
              using 3 7 regular-conv-closed by simp
           qed
         next
```

```
have 23: ?e \sqcap g \neq bot
            using 1 by (metis kruskal-invariant-def kruskal-spanning-invariant-def
comp-inf.semiring.mult-zero-right\ inf.sup-monoid.add-assoc
inf.sup-monoid.add-commute minarc-bot-iff minarc-meet-bot)
            have g \sqcap -h \leq (g \sqcap -h)^*
              using star.circ-increasing by simp
            also have \dots \leq (--(g \sqcap -h))^*
              using pp-increasing star-isotone by blast
            also have \dots \leq ?F
              using 1 kruskal-invariant-def kruskal-spanning-invariant-def
inf.sup-monoid.add-commute spanning-forest-def by simp
            finally have 24: g \sqcap -h \leq ?F
             by simp
            have ?d \leq --g
              using 10 inf.coboundedI1 spanning-forest-def by blast
            hence ?d < --q \sqcap -?F
              using 16 inf.boundedI p-antitone-iff by simp
            also have \dots = --(g \sqcap -?F)
              by simp
            also have \dots \leq --h
              \mathbf{using}\ \textit{24 p-shunting-swap pp-isotone}\ \mathbf{by}\ \textit{fastforce}
            finally have 25: ?d \leq --h
              by simp
            have ?d = bot \longrightarrow top = bot
              using 19 by (metis mult-left-zero mult-right-zero)
            hence ?d \neq bot
              using 1 le-bot by auto
            hence 26: ?d \sqcap h \neq bot
              using 25 by (metis inf.absorb-iff2 inf-commute pseudo-complement)
            have sum \ (?e \sqcap g) = sum \ (?e \sqcap --h \sqcap g)
              by (simp add: inf.absorb1 minarc-below)
            also have ... = sum (?e \sqcap h)
              using 1 by (metis kruskal-invariant-def
kruskal-spanning-invariant-def inf.left-commute inf.sup-monoid.add-commute)
            also have \dots \leq sum \ (?d \sqcap h)
              using 19 26 minarc-min by simp
            also have ... = sum (?d \sqcap (--h \sqcap g))
              using 1 kruskal-invariant-def kruskal-spanning-invariant-def
inf-commute by simp
            also have ... = sum (?d \sqcap g)
              using 25 by (simp add: inf.absorb2 inf-assoc inf-commute)
            finally have 27: sum \ (?e \sqcap g) \leq sum \ (?d \sqcap g)
              by simp
            have ?v \sqcap ?e \sqcap -?d = bot
              using 14 by simp
            hence sum (?w \sqcap g) = sum (?v \sqcap -?d \sqcap g) + sum (?e \sqcap g)
              using sum-disjoint inf-commute inf-assoc by simp
            also have ... \leq sum \ (?v \sqcap -?d \sqcap g) + sum \ (?d \sqcap g)
              using 23 27 sum-plus-right-isotone by simp
```

```
also have ... = sum (((?v \sqcap -?d) \sqcup ?d) \sqcap g)
              using sum-disjoint inf-le2 pseudo-complement by simp
            also have ... = sum((?v \sqcup ?d) \sqcap (-?d \sqcup ?d) \sqcap g)
              by (simp add: sup-inf-distrib2)
            also have ... = sum ((?v \sqcup ?d) \sqcap g)
              using 15 by (metis inf-top-right stone)
            also have ... = sum (?v \sqcap g)
              by (simp add: inf.sup-monoid.add-assoc)
            finally have sum \ (?w \sqcap g) \leq sum \ (?v \sqcap g)
            thus \forall\,u . spanning-forest u\ g \longrightarrow sum\ (?w \sqcap g) \leq sum\ (u \sqcap g)
              using 2 11 minimum-spanning-forest-def by auto
           qed
         next
           have ?f < f \sqcup f^T \sqcup ?e
            using conv-dist-inf inf-le1 sup-left-isotone sup-mono by presburger
           also have ... \leq (?v \sqcap -?d \sqcap -?d^T) \sqcup (?v^T \sqcap -?d \sqcap -?d^T) \sqcup ?e
            using 17 sup-left-isotone by simp
           also have ... \leq (?v \sqcap -?d) \sqcup (?v^T \sqcap -?d \sqcap -?d^T) \sqcup ?e
            using inf.cobounded1 sup-inf-distrib2 by presburger
           also have ... = ?w \sqcup (?v^T \sqcap -?d \sqcap -?d^T)
            by (simp add: sup-assoc sup-commute)
           also have \dots \leq ?w \sqcup (?v^T \sqcap -?d^T)
            using inf.sup-right-isotone inf-assoc sup-right-isotone by simp
           also have ... \leq ?w \sqcup ?w^T
            using conv-complement conv-dist-inf conv-dist-sup sup-right-isotone
by simp
          finally show ?f \leq ?w \sqcup ?w^T
            by simp
         qed
       qed
     next
       show ?n2 < ?n1
         using 1 kruskal-vc-2 kruskal-invariant-def by auto
     qed
   qed
 next
   show \neg ?e \leq -?F \longrightarrow kruskal\text{-}invariant f g ?h \land ?n2 < ?n1
     using 1 kruskal-vc-2 kruskal-invariant-def by auto
  qed
\mathbf{next}
 \mathbf{fix} f
 assume 28: kruskal-invariant f g bot
 hence 29: spanning-forest f g
   using kruskal-invariant-def kruskal-spanning-invariant-def by auto
  from 28 obtain w where 30: minimum-spanning-forest w \ g \land f \leq w \sqcup w^T
   using kruskal-invariant-def by auto
 hence w = w \sqcap --g
   by (simp add: inf.absorb1 minimum-spanning-forest-def spanning-forest-def)
```

```
also have ... \leq w \sqcap components g
   by (metis inf.sup-right-isotone star.circ-increasing)
 also have ... \leq w \sqcap f^{T\star} * f^{\star}
   using 29 spanning-forest-def inf.sup-right-isotone by simp
 also have ... \leq f \sqcup f^T
   apply (rule cancel-separate-6[where z=w and y=w^T])
   using 30 minimum-spanning-forest-def spanning-forest-def apply simp
   using 30 apply (metis conv-dist-inf conv-dist-sup conv-involutive
inf.cobounded2 inf.orderE)
   using 30 apply (simp add: sup-commute)
   using 30 minimum-spanning-forest-def spanning-forest-def apply simp
   using 30 by (metis acyclic-star-below-complement comp-inf.mult-right-isotone
inf-p le-bot minimum-spanning-forest-def spanning-forest-def)
 finally have 31: w \leq f \sqcup f^T
   by simp
 have sum\ (f \sqcap q) = sum\ ((w \sqcup w^T) \sqcap (f \sqcap q))
   using 30 by (metis inf-absorb2 inf.assoc)
 also have ... = sum (w \sqcap (f \sqcap g)) + sum (w^T \sqcap (f \sqcap g))
   using 30 inf.commute acyclic-asymmetric sum-disjoint
minimum-spanning-forest-def spanning-forest-def by simp
 also have ... = sum (w \sqcap (f \sqcap g)) + sum (w \sqcap (f^T \sqcap g^T))
   by (metis conv-dist-inf conv-involutive sum-conv)
 also have ... = sum (f \sqcap (w \sqcap g)) + sum (f^T \sqcap (w \sqcap g))
   using 28 inf.commute inf.assoc kruskal-invariant-def
kruskal-spanning-invariant-def by simp
 also have ... = sum ((f \sqcup f^T) \sqcap (w \sqcap g))
   using 29 acyclic-asymmetric inf.sup-monoid.add-commute sum-disjoint
spanning-forest-def by simp
 also have ... = sum (w \sqcap g)
   using 31 by (metis inf-absorb2 inf.assoc)
 finally show minimum-spanning-forest f g
   using 29 30 minimum-spanning-forest-def by simp
qed
end
end
```

## 3 Prim's Minimum Spanning Tree Algorithm

In this theory we prove total correctness of Prim's minimum spanning tree algorithm. The proof has the same overall structure as the total-correctness proof of Kruskal's algorithm [6]. The partial-correctness proof of Prim's algorithm is discussed in [3, 5].

theory Prim

imports HOL-Hoare. Hoare-Logic Aggregation-Algebras. Aggregation-Algebras

```
begin
{\bf context}\ \textit{m-kleene-algebra}
begin
abbreviation component g r \equiv r^T * (--g)^*
definition spanning-tree t g r \equiv forest t \land t \leq (component \ g \ r)^T * (component \ g
r) \sqcap --g \land component \ g \ r \leq r^T * t^* \land regular \ t
definition minimum-spanning-tree t \ g \ r \equiv spanning-tree \ t \ g \ r \land (\forall \ u \ .
spanning-tree\ u\ g\ r\longrightarrow sum\ (t\ \sqcap\ g)\leq sum\ (u\ \sqcap\ g))
definition prim-precondition g \ r \equiv g = g^T \land injective \ r \land vector \ r \land regular \ r
definition prim-spanning-invariant t \ v \ g \ r \equiv prim-precondition g \ r \wedge v^T = r^T *
t^* \wedge spanning\text{-}tree\ t\ (v * v^T \sqcap g)\ r
definition prim-invariant t \ v \ g \ r \equiv prim-spanning-invariant t \ v \ g \ r \land (\exists \ w \ .
minimum-spanning-tree w \ q \ r \land t < w)
lemma span-tree-split:
 assumes vector r
   shows t \leq (component \ g \ r)^T * (component \ g \ r) \sqcap --g \longleftrightarrow (t \leq (component \ g \ r))
(q,r)^T \wedge t \leq component \ q \ r \wedge t \leq --q)
proof -
 have (component g r)<sup>T</sup> * (component g r) = (component g r)<sup>T</sup> \sqcap component g r
   by (metis assms conv-involutive covector-mult-closed vector-conv-covector
vector-covector)
  thus ?thesis
   by simp
qed
lemma span-tree-component:
 assumes spanning-tree t g r
   shows component g r = component t r
  using assms by (simp add: antisym mult-right-isotone star-isotone
spanning-tree-def)
    We first show three verification conditions which are used in both cor-
rectness proofs.
lemma prim-vc-1:
  assumes prim-precondition g r
   shows prim-spanning-invariant bot r q r
proof (unfold prim-spanning-invariant-def, intro conjI)
  show prim-precondition g r
   using assms by simp
  \mathbf{show} \ r^T = r^T * bot^*
   by (simp add: star-absorb)
next
  let ?ss = r * r^T \sqcap q
  {f show} spanning-tree bot ?ss r
```

**proof** (unfold spanning-tree-def, intro conjI)

```
show injective bot
      \mathbf{by} \ simp
  next
    show acyclic bot
      by simp
  \mathbf{next}
    show bot \leq (component ?ss r)^T * (component ?ss r) \sqcap --?ss
  next
    have component ?ss r \leq component (r * r^T) r
      \mathbf{by}\ (simp\ add:\ mult-right-isotone\ star-isotone)
    also have ... \leq r^T * 1^*
      using assms by (metis inf.eq-iff p-antitone regular-one-closed star-sub-one
prim-precondition-def)
    also have ... = r^T * bot^*
      by (simp add: star.circ-zero star-one)
    finally show component ?ss r < r^T * bot^*
  next
    show regular bot
      by simp
  qed
qed
lemma prim-vc-2:
  {\bf assumes}\ prim\text{-}spanning\text{-}invariant\ t\ v\ g\ r
      and v * -v^T \sqcap g \neq bot
    shows prim-spanning-invariant (t \sqcup minarc\ (v * -v^T \sqcap g))\ (v \sqcup minarc\ (v *
-v^T \sqcap g)^T * top) \ g \ r \wedge card \ \{ \ x \ . \ regular \ x \wedge x \leq component \ g \ r \wedge x \leq -(v \sqcup v) \}
minarc (v * -v^T \sqcap g)^T * top)^T \} < card \{ x \cdot regular \ x \land x \leq component \ g \ r \land x \}
\leq -v^T
proof -
  let ?vcv = v * -v^T \sqcap g
  let ?e = minarc ?vcv
  let ?t = t \sqcup ?e
  let ?v = v \sqcup ?e^T * top
  let ?c = component q r
  let ?q = --q
 let ?n1 = card \{ x \cdot regular \ x \land x \le ?c \land x \le -v^T \}
let ?n2 = card \{ x \cdot regular \ x \land x \le ?c \land x \le -?v^T \}
have 1: regular \ v \land regular \ (v * v^T) \land regular \ (?v * ?v^T) \land regular \ (top * ?e)
    using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive regular-closed-top regular-closed-sup minarc-regular)
  hence 2: t \leq v * v^T \sqcap ?g
    using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
inf-pp-commute inf.boundedE)
  hence \beta: t \leq v * v^T
    \mathbf{by} \ simp
```

```
have 4: t \leq ?g
   using 2 by simp
 have 5: ?e \le v * -v^T \sqcap ?g
   using 1 by (metis minarc-below pp-dist-inf regular-mult-closed
regular-closed-p)
 hence 6: ?e \le v * -v^T
   by simp
 have 7: vector v
   using assms(1) prim-spanning-invariant-def prim-precondition-def by (simp
add: covector-mult-closed vector-conv-covector)
 hence 8: ?e \le v
   using 6 by (metis conv-complement inf.boundedE vector-complement-closed
vector-covector)
 have 9: ?e * t = bot
   using 367 et(1) by blast
 have 10: ?e * t^{\overrightarrow{T}} = \overrightarrow{bot}
   using 367 et(2) by simp
 have 11: arc ?e
   using assms(2) minarc-arc by simp
 have r^T \leq r^T * t^*
   by (metis mult-right-isotone order-refl semiring.mult-not-zero
star.circ-separate-mult-1 star-absorb)
 hence 12: r^T \leq v^T
   using assms(1) by (simp add: prim-spanning-invariant-def)
 have 13: vector r \wedge injective \ r \wedge v^T = r^T * t^*
   using assms(1) prim-spanning-invariant-def prim-precondition-def
minimum-spanning-tree-def spanning-tree-def reachable-restrict by simp
 have q = q^T
   using assms(1) prim-invariant-def prim-spanning-invariant-def
prim-precondition-def by simp
 hence 14: ?g^T = ?g
   using conv-complement by simp
 show prim-spanning-invariant ?t ?v g r \land ?n2 < ?n1
 proof (rule conjI)
   show prim-spanning-invariant ?t ?v g r
   proof (unfold prim-spanning-invariant-def, intro conjI)
     show prim-precondition q r
      \mathbf{using}\ assms(1)\ prim\text{-}spanning\text{-}invariant\text{-}def\ \mathbf{by}\ simp
   next
    show ?v^T = r^T * ?t^*
      using assms(1) 6 7 9 by (simp \ add: reachable-inv)
prim-spanning-invariant-def prim-precondition-def spanning-tree-def)
   next
     let ?G = ?v * ?v^T \sqcap q
     show spanning-tree ?t ?G r
     proof (unfold spanning-tree-def, intro conjI)
      show injective ?t
        using assms(1) 10 11 by (simp add: injective-inv
prim-spanning-invariant-def spanning-tree-def)
```

```
\mathbf{next}
       show acyclic ?t
         using assms(1) 3 6 7 acyclic-inv prim-spanning-invariant-def
spanning-tree-def by simp
       show ?t \leq (component ?G r)^T * (component ?G r) \sqcap --?G
         \mathbf{using}\ 1\ 2\ 5\ 7\ 13\ prim\text{-}subgraph\text{-}inv\ inf\text{-}pp\text{-}commute\ mst\text{-}subgraph\text{-}inv\text{-}2
by auto
     next
       show component (?v * ?v^T \sqcap g) \ r \leq r^T * ?t^*
       proof -
         have 15: r^T * (v * v^T \sqcap ?g)^* \le r^T * t^*
          using assms(1) 1 by (metis prim-spanning-invariant-def
spanning-tree-def inf-pp-commute)
         have component (?v * ?v^T \sqcap g) \ r = r^T * (?v * ?v^T \sqcap ?q)^*
        using 1 by simp also have ... \leq r^T * ?t^*
          using 2 6 7 11 12 13 14 15 by (metis span-inv)
         finally show ?thesis
       qed
     next
       show regular ?t
         using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
regular-closed-sup minarc-regular)
     qed
   qed
 next
   have 16: top * ?e \le ?c
   proof -
     \mathbf{have}\ top *\ ?e = top *\ ?e^T *\ ?e
       using 11 by (metis arc-top-edge mult-assoc)
     also have ... \leq v^T * ?e
       using 7 8 by (metis conv-dist-comp conv-isotone mult-left-isotone
symmetric-top-closed)
     also have \dots \leq v^T * ?g
       using 5 mult-right-isotone by auto
     also have ... = r^T * t^* * ?q
       using 13 by simp
     also have \dots \leq r^T * ?g^* * ?g
       using 4 by (simp add: mult-left-isotone mult-right-isotone star-isotone)
     also have \dots \leq ?c
      by (simp add: comp-associative mult-right-isotone star.right-plus-below-circ)
     finally show ?thesis
       by simp
   qed
   have 17: top * ?e \le -v^T
     using 6 7 by (simp \ add: schroeder-4-p \ vTeT)
   have 18: \neg top * ?e \le -(top * ?e)
```

```
by (metis assms(2) inf.orderE minarc-bot-iff conv-complement-sub-inf inf-p
inf-top.left-neutral p-bot symmetric-top-closed vector-top-closed)
   have 19: -?v^T = -v^T \sqcap -(top * ?e)
     by (simp add: conv-dist-comp conv-dist-sup)
   hence 20: \neg top * ?e < -?v^T
     using 18 by simp
   show ?n2 < ?n1
     apply (rule psubset-card-mono)
     using finite-regular apply simp
     using 1 16 17 19 20 by auto
 qed
qed
lemma prim-vc-3:
 assumes prim-spanning-invariant t v g r
     and v * -v^T \sqcap g = bot
   shows spanning-tree t q r
proof -
 let ?g = --g
 have 1: regular v \wedge regular (v * v^T)
   \mathbf{using}\ assms(1)\ \mathbf{by}\ (metis\ prim\text{-}spanning\text{-}invariant\text{-}def\ spanning\text{-}tree\text{-}def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)
 have 2: v * -v^T \sqcap ?g = bot
 using assms(2) pp\text{-}inf\text{-}bot\text{-}iff pp\text{-}pp\text{-}inf\text{-}bot\text{-}iff} by simp have 3: v^T = r^T * t^\star \wedge vector v
   using assms(1) by (simp add: covector-mult-closed prim-invariant-def
prim-spanning-invariant-def vector-conv-covector prim-precondition-def)
 have 4: t \leq v * v^T \sqcap ?g
   using assms(1) 1 by (metis prim-spanning-invariant-def inf-pp-commute
spanning-tree-def\ inf.boundedE)
 have r^T * (v * v^T \sqcap ?g)^* \le r^T * t^*
   using assms(1) 1 by (metis prim-spanning-invariant-def inf-pp-commute
spanning-tree-def)
 hence 5: component g r = v^T
   using 1 2 3 4 by (metis span-post)
 have regular (v * v^T)
   using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)
 hence 6: t \leq v * v^T \sqcap ?g
   by (metis assms(1) prim-spanning-invariant-def spanning-tree-def
inf-pp-commute inf.boundedE)
 show spanning-tree\ t\ g\ r
   apply (unfold spanning-tree-def, intro conjI)
   using assms(1) prim-spanning-invariant-def spanning-tree-def apply simp
   using assms(1) prim-spanning-invariant-def spanning-tree-def apply simp
   using 5 6 apply simp
   using assms(1) 5 prim-spanning-invariant-def apply simp
```

 $\begin{array}{c} \textbf{using} \ assms(1) \ prim\text{-}spanning\text{-}invariant\text{-}def \ spanning\text{-}tree\text{-}def \ } \textbf{by} \ simp \\ \textbf{qed} \end{array}$ 

The following result shows that Prim's algorithm terminates and constructs a spanning tree. We cannot yet show that this is a minimum spanning tree.

```
theorem prim-spanning:
  V\!ARS\ t\ v\ e
 [ prim-precondition g r ]
  t := bot;
  v := r;
  WHILE v * -v^T \sqcap g \neq bot
   INV \{ prim-spanning-invariant \ t \ v \ g \ r \}
   VAR \{ card \{ x . regular x \land x \leq component g r \sqcap -v^T \} \}
    DO \ e := minarc \ (v * -v^T \sqcap g);
       t := t \sqcup e;
       v := v \sqcup e^T * top
 [ spanning-tree\ t\ g\ r ]
 apply vcg-tc-simp
 apply (simp add: prim-vc-1)
 using prim-vc-2 apply blast
 using prim-vc-3 by auto
```

Because we have shown total correctness, we conclude that a spanning tree exists.

```
lemma prim-exists-spanning:

prim-precondition g r \Longrightarrow \exists t . spanning-tree t g r

using tc-extract-function prim-spanning by blast
```

This implies that a minimum spanning tree exists, which is used in the subsequent correctness proof.

```
lemma prim-exists-minimal-spanning:
   assumes prim-precondition g r
   shows \exists t . minimum-spanning-tree t g r

proof -
   let ?s = \{ t . spanning-tree t g r \}
   have \exists m \in ?s . \forall z \in ?s . sum (m \sqcap g) \leq sum (z \sqcap g)
   apply (rule\ finite-set-minimal)
   using finite-regular spanning-tree-def apply simp
   using ssms\ prim-exists-spanning apply simp
   using sum-linear by simp
   thus ?thesis
   using minimum-spanning-tree-def by simp

qed
```

Prim's minimum spanning tree algorithm terminates and is correct. This is the same algorithm that is used in the previous correctness proof, with

the same precondition and variant, but with a different invariant and postcondition.

```
theorem prim:
  VARS t v e
 [ prim-precondition g \ r \land (\exists w \ . \ minimum-spanning-tree w \ g \ r) ]
  t := bot;
  v := r;
  WHILE v * -v^T \sqcap g \neq bot
   INV \{ prim-invariant \ t \ v \ g \ r \}
   VAR \{ card \{ x . regular x \land x \leq component g r \sqcap -v^T \} \}
    DO \ e := minarc \ (v * -v^T \sqcap g);
       t := t \sqcup e;
       v := v \mathrel{\sqcup} \stackrel{\cdot}{e^T} * top
 [ minimum-spanning-tree\ t\ g\ r ]
proof vcg-tc-simp
 assume prim-precondition g \ r \land (\exists w \ . \ minimum-spanning-tree \ w \ g \ r)
 thus prim-invariant bot r q r
   using prim-invariant-def prim-vc-1 by simp
\mathbf{next}
 \mathbf{fix} \ t \ v
 let ?vcv = v * -v^T \sqcap q
 let ?vv = v * v^T \sqcap g
 let ?e = minarc ?vcv
 let ?t = t \sqcup ?e
 let ?v = v \sqcup ?e^T * top
 let ?c = component g r
 let ?g = --g
 let ?n1 = card \{ x \cdot regular \ x \land x \leq ?c \land x \leq -v^T \}
 let ?n2 = card \{ x \cdot regular \ x \land x \leq ?c \land x \leq -?v^T \}
 assume 1: prim-invariant t \ v \ g \ r \land ?vcv \neq bot
 hence 2: regular v \wedge regular (v * v^T)
   by (metis (no-types, hide-lams) prim-invariant-def
prim-spanning-invariant-def spanning-tree-def prim-precondition-def
regular-conv-closed regular-closed-star regular-mult-closed conv-involutive)
 have \beta: t \leq v * v^T \sqcap ?g
   using 1 2 by (metis (no-types, hide-lams) prim-invariant-def
prim-spanning-invariant-def spanning-tree-def inf-pp-commute inf.boundedE)
 hence 4: t \leq v * v^T
   by simp
 have 5: t \leq ?q
   using 3 by simp
 have 6: ?e \le v * -v^T \sqcap ?q
   using 2 by (metis minarc-below pp-dist-inf regular-mult-closed
regular-closed-p)
 hence 7: ?e \le v * -v^T
   by simp
 have 8: vector v
   using 1 prim-invariant-def prim-spanning-invariant-def prim-precondition-def
```

```
by (simp add: covector-mult-closed vector-conv-covector)
 have 9: arc ?e
   using 1 minarc-arc by simp
  from 1 obtain w where 10: minimum-spanning-tree w g r \land t \leq w
   by (metis prim-invariant-def)
 hence 11: vector r \wedge injective \ r \wedge v^T = r^T * t^* \wedge forest \ w \wedge t \leq w \wedge w \leq ?c^T
* ?c \sqcap ?g \wedge r^T * (?c^T * ?c \sqcap ?g)^* \le r^T * w^*
   using 1 2 prim-invariant-def prim-spanning-invariant-def
prim-precondition-def minimum-spanning-tree-def spanning-tree-def
reachable-restrict by simp
 hence 12: w * v \leq v
   using predecessors-reachable reachable-restrict by auto
 have 13: q = q^T
   using 1 prim-invariant-def prim-spanning-invariant-def prim-precondition-def
by simp
 hence 14: ?g^T = ?g
   using conv-complement by simp
 show prim-invariant ?t ?v g r \land ?n2 < ?n1
 proof (unfold prim-invariant-def, intro conjI)
   show prim-spanning-invariant ?t ?v g r
     using 1 prim-invariant-def prim-vc-2 by blast
  \mathbf{next}
   show \exists w . minimum-spanning-tree w \ g \ r \land ?t \le w
   proof
     let ?f = w \sqcap v * -v^T \sqcap top * ?e * w^{T*}
     let ?p = w \sqcap -v * -v^T \sqcap top * ?e * w^{T*}
     let ?fp = w \sqcap -v^T \sqcap top * ?e * w^{T\star}
     let ?w = (w \sqcap -?fp) \sqcup ?p^T \sqcup ?e
     have 15: regular ?f \land regular ?fp \land regular ?w
      using 2 10 by (metis regular-conv-closed regular-closed-star
regular-mult-closed regular-closed-top regular-closed-inf regular-closed-sup
minarc-regular minimum-spanning-tree-def spanning-tree-def)
     show minimum-spanning-tree ?w g r \land ?t \le ?w
     proof (intro conjI)
      show minimum-spanning-tree ?w g r
      proof (unfold minimum-spanning-tree-def, intro conjI)
        show spanning-tree ?w g r
        proof (unfold spanning-tree-def, intro conjI)
          show injective ?w
            using 7 8 9 11 exchange-injective by blast
        next
          show acyclic ?w
            using 7 8 11 12 exchange-acyclic by blast
        next
          show ?w \leq ?c^T * ?c \sqcap --g
          proof -
            have 16: w \sqcap -?fp < ?c^T * ?c \sqcap --q
              using 10 by (simp add: le-infI1 minimum-spanning-tree-def
spanning-tree-def)
```

```
have ?p^T \leq w^T
      by (simp add: conv-isotone inf.sup-monoid.add-assoc)
     also have ... \leq (?c^T * ?c \sqcap --g)^T
      using 11 conv-order by simp
     also have ... = ?c^T * ?c \sqcap --g
       using 2 14 conv-dist-comp conv-dist-inf by simp
     finally have 17: ?p^T \leq ?c^T * ?c \sqcap --g
     have ?e \le ?c^T * ?c \sqcap ?g
      using 5 6 11 mst-subgraph-inv by auto
     thus ?thesis
       using 16 17 by simp
   qed
 next
   \mathbf{show} \ ?c \le r^T * ?w^*
   proof -
     have ?c < r^T * w^*
      using 10 minimum-spanning-tree-def spanning-tree-def by simp
     also have \dots \leq r^T * ?w^*
       using 4 7 8 10 11 12 15 by (metis mst-reachable-inv)
     finally show ?thesis
   qed
 next
   show regular?w
     using 15 by simp
 qed
next
 have 18: ?f \sqcup ?p = ?fp
   using 2 8 epm-1 by fastforce
 have arc (w \sqcap --v * -v^T \sqcap top * ?e * w^{T\star})
   using 5 6 8 9 11 12 reachable-restrict arc-edge by auto
 hence 19: arc ?f
   using 2 by simp
 hence ?f = bot \longrightarrow top = bot
   by (metis mult-left-zero mult-right-zero)
 hence ?f \neq bot
   using 1 le-bot by auto
 hence ?f \sqcap v * -v^T \sqcap ?g \neq bot
   using 2 11 by (simp add: inf.absorb1 le-infI1)
 hence g \sqcap (?f \sqcap v * -v^T) \neq bot
   \mathbf{using} \ \mathit{inf-commute} \ \mathit{pp-inf-bot-iff} \ \mathbf{by} \ \mathit{simp}
 hence 20: ?f \sqcap ?vcv \neq bot
   by (simp add: inf-assoc inf-commute)
 hence 21: ?f \sqcap g = ?f \sqcap ?vcv
   using 2 by (simp add: inf-assoc inf-commute inf-left-commute)
 have 22: ?e \sqcap q = minarc ?vcv \sqcap ?vcv
   using 7 by (simp add: inf.absorb2 inf.assoc inf.commute)
 hence 23: sum \ (?e \sqcap g) \leq sum \ (?f \sqcap g)
```

```
using 15 19 20 21 by (simp add: minarc-min)
        have ?e \neq bot
          using 20 comp-inf.semiring.mult-not-zero semiring.mult-not-zero by
blast
        hence 24: ?e \sqcap g \neq bot
          using 22 minarc-meet-bot by auto
        have sum (?w \sqcap g) = sum (w \sqcap -?fp \sqcap g) + sum (?p^T \sqcap g) + sum (?e
\sqcap g
          using 7 8 10 by (metis sum-disjoint-3 epm-8 epm-9 epm-10
minimum-spanning-tree-def spanning-tree-def)
        also have ... = sum (((w \sqcap -?fp) \sqcup ?p^T) \sqcap g) + sum (?e \sqcap g)
          using 11 by (metis epm-8 sum-disjoint)
        also have ... \leq sum (((w \sqcap -?fp) \sqcup ?p^T) \sqcap g) + sum (?f \sqcap g)
          using 23 24 by (simp add: sum-plus-right-isotone)
        also have ... = sum (w \sqcap -?fp \sqcap g) + sum (?p^T \sqcap g) + sum (?f \sqcap g)
          using 11 by (metis epm-8 sum-disjoint)
        also have ... = sum (w \sqcap -?fp \sqcap g) + sum (?p \sqcap g) + sum (?f \sqcap g)
          using 13 sum-symmetric by auto
        also have ... = sum (((w \sqcap -?fp) \sqcup ?p \sqcup ?f) \sqcap g)
          using 2 8 by (metis sum-disjoint-3 epm-11 epm-12 epm-13)
        also have ... = sum (w \sqcap g)
          using 2 8 15 18 epm-2 by force
        finally have sum \ (?w \sqcap g) \leq sum \ (w \sqcap g)
        thus \forall u . spanning-tree u \ g \ r \longrightarrow sum \ (?w \sqcap g) \leq sum \ (u \sqcap g)
          using 10 order-lesseq-imp minimum-spanning-tree-def by auto
       qed
     next
       \mathbf{show} \ ?t \le ?w
        using 4 8 10 mst-extends-new-tree by simp
     qed
   qed
 \mathbf{next}
   show ?n2 < ?n1
     using 1 prim-invariant-def prim-vc-2 by auto
 qed
next
  \mathbf{fix} \ t \ v
 let ?g = --g
 assume 25: prim-invariant t v g r \wedge v * -v^T \cap g = bot
 hence 26: regular v
   by (metis prim-invariant-def prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)
 from 25 obtain w where 27: minimum-spanning-tree w g r \land t \leq w
   by (metis prim-invariant-def)
 have spanning-tree t q r
   using 25 prim-invariant-def prim-vc-3 by blast
 hence component g r = v^T
```

```
by (metis 25 prim-invariant-def span-tree-component
prim-spanning-invariant-def spanning-tree-def)
 hence 28: w \leq v * v^T
   using 26 27 by (simp add: minimum-spanning-tree-def spanning-tree-def
inf-pp-commute)
 have vector r \wedge injective \ r \wedge forest \ w
   using 25 27 by (simp add: prim-invariant-def prim-spanning-invariant-def
prim-precondition-def minimum-spanning-tree-def spanning-tree-def)
 hence w = t
   using 25 27 28 prim-invariant-def prim-spanning-invariant-def mst-post by
blast
 thus minimum-spanning-tree t g r
   using 27 by simp
qed
end
end
```

## 4 Borůvka's Minimum Spanning Tree Algorithm

In this theory we prove partial correctness of Borůvka's minimum spanning tree algorithm.

theory Boruvka

### imports

 $Relational \hbox{-} Disjoint \hbox{-} Set \hbox{-} Forests. Disjoint \hbox{-} Set \hbox{-} Forests \\ Kruskal$ 

begin

#### 4.1 General results

The proof is carried out in m-k-Stone-Kleene relation algebras. In this section we give results that hold more generally.

```
{\bf context}\ stone\text{-}kleene\text{-}relation\text{-}algebra\\ {\bf begin}
```

```
\begin{array}{l} \textbf{definition} \ big\text{-}forest \ H \ d \equiv \\ equivalence \ H \\ \land \ d \leq -H \\ \land \ univalent \ (H*d) \\ \land \ H \ \sqcap \ d*d^T \leq 1 \\ \land \ (H*d)^+ \leq -H \end{array}
```

**definition** bf-between-points  $p \neq H$   $d \equiv point p \land point q \land p \leq (H * d)^* * H * d$ 

```
b * top
   Theorem 3
lemma He-eq-He-THe-star:
 assumes arc e
   and equivalence H
 shows H * e = H * e * (top * H * e)^*
proof -
 let ?x = H * e
 have 1: H * e \le H * e * (top * H * e)^*
   using comp-isotone star.circ-reflexive by fastforce
 have H * e * (top * H * e)^* = H * e * (top * e)^*
   by (metis assms(2) preorder-idempotent surjective-var)
 also have ... \leq H * e * (1 \sqcup top * (e * top)^* * e)
   by (metis eq-refl star.circ-mult-1)
 also have ... \le H * e * (1 \sqcup top * top * e)
   by (simp add: star.circ-left-top)
 also have \dots = H * e \sqcup H * e * top * e
   by (simp add: mult.semigroup-axioms semiring.distrib-left semigroup.assoc)
 finally have 2: H * e * (top * H * e)^* \le H * e
   using assms arc-top-arc mult-assoc by auto
 thus ?thesis
   using 1 2 by simp
qed
{f lemma} path-through-components:
 assumes equivalence H
   and arc e
 shows (H * (d \sqcup e))^* = (H * d)^* \sqcup (H * d)^* * H * e * (H * d)^*
proof -
 have H * e * (H * d)^* * H * e \le H * e * top * H * e
   by (simp add: comp-isotone)
 also have \dots = H * e * top * e
   by (metis assms(1) preorder-idempotent surjective-var mult-assoc)
 also have \dots = H * e
   using assms(2) arc-top-arc mult-assoc by auto
 finally have 1: H * e * (H * d)^* * H * e \le H * e
   by simp
 have (H * (d \sqcup e))^* = (H * d \sqcup H * e)^*
   by (simp add: comp-left-dist-sup)
 also have ... = (H * d)^* \sqcup (H * d)^* * H * e * (H * d)^*
   using 1 star-separate-3 by (simp add: mult-assoc)
 finally show ?thesis
   by simp
qed
lemma simplify-f:
 assumes regular p
```

**definition** bf-between-arcs a b H d  $\equiv$  arc a  $\wedge$  arc b  $\wedge$  a<sup>T</sup> \* top  $\leq$  (H \* d)\* \* H \*

```
and regular e
                   shows (f \sqcap -e^T \sqcap -p) \sqcup (f \sqcap -e^T \sqcap p) \sqcup (f \sqcap -e^T \sqcap p)^T \square (f \sqcap -e^T \sqcap p)^T \sqcap (f \sqcap -e^
   (-p)^T \sqcup e^T \sqcup e = f \sqcup f^T \sqcup e \sqcup e^T
 proof -
                   have (f \sqcap - e^T \sqcap - p) \sqcup (f \sqcap - e^T \sqcap p) \sqcup (f \sqcap - e^T \sqcap p)^T \sqcup (f \sqcap - e^T \sqcap - e^T \sqcap p)^T \sqcup (f \sqcap - e^T \sqcap - e^T \sqcap p)^T \sqcup (f \sqcap - e^T \sqcap 
 p)^T \sqcup e^T \sqcup e
                                      = (f \sqcap - e^T \sqcap - p) \sqcup (f \sqcap - e^T \sqcap p) \sqcup (f^T \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap - e \sqcap - e \sqcap p^T) \sqcup (f^T \sqcap -
 p^T) \sqcup e^T \sqcup e
                                        by (simp add: conv-complement conv-dist-inf)
                     also have \dots =
                                                    ((f \sqcup (f \sqcap - e^T \sqcap p)) \sqcap (-e^T \sqcup (f \sqcap - e^T \sqcap p)) \sqcap (-p \sqcup (f \sqcap - e^T \sqcap p)))
                                      \sqcup ((f^T \sqcup (f^T \sqcap -e \sqcap -p^T)) \sqcap (-e \sqcup (f^T \sqcap -e \sqcap -p^T)) \sqcap (p^T \sqcup (f^T \sqcap -p^T)) \sqcap (p^T \sqcup -p^T) (p^T \sqcap -p^T)) \sqcap (p^T \sqcup (f^T \sqcap -p^T)) \sqcap (p^T \sqcup -p^T)
 e \sqcap - p^T)))
                                    \sqcup e^{T} \sqcup e
                                      by (metis sup-inf-distrib2 sup-assoc)
                     also have ... =
                                                          ((f \sqcup f) \sqcap (f \sqcup - e^T) \sqcap (f \sqcup p) \sqcap (-e^T \sqcup f) \sqcap (-e^T \sqcup - e^T) \sqcap (-e^T \sqcup
p) \sqcap (-p \sqcup f) \sqcap (-p \sqcup -e^T) \sqcap (-p \sqcup p))
\sqcup ((f^T \sqcup f^T) \sqcap (f^T \sqcup -e) \sqcap (f^T \sqcup -p^T) \sqcap (-e \sqcup f^T) \sqcap (-e \sqcup -e) \sqcap (-e \sqcup -p^T) \sqcap (p^T \sqcup f^T) \sqcap (p^T \sqcup -e) \sqcap (p^T \sqcup -p^T))
                                      \sqcup e^T \sqcup e
                                        using sup-inf-distrib1 sup-assoc inf-assoc sup-inf-distrib1 by simp
                     also have \dots =
                                                        ((f \sqcup f) \sqcap (f \sqcup -e^T) \sqcap (f \sqcup p) \sqcap (f \sqcup -p) \sqcap (-e^T \sqcup f) \sqcap (-e^T \sqcup -e^T)
 \begin{array}{c} \sqcap \; (-\stackrel{e^T}{e^T} \mathrel{\sqcup} \stackrel{f}{p}) \; \sqcap \; (-\stackrel{e^T}{e^T} \mathrel{\sqcup} -p) \; \sqcap \; (-\stackrel{f}{p} \mathrel{\sqcup} p)) \\ \qquad \sqcup \; ((f^T \mathrel{\sqcup} f^T) \; \sqcap \; (f^T_{-} \mathrel{\sqcup} -e) \; \sqcap \; (f^T_{-} \mathrel{\sqcup} -p^T_{-}) \; \sqcap \; (-\stackrel{e}{e} \mathrel{\sqcup} f^T) \; \sqcap \; (f^T \mathrel{\sqcup} p^T) \; \sqcap \; (-\stackrel{e}{e} \mathrel{\sqcup} f^T_{-}) \; (-\stackrel{e}{e} \mathrel{\sqcup} f^T_{-}) \; \sqcap \; (-\stackrel{e}{e} \mathrel{\sqcup} f^T_{-}) \; \sqcap \; (-\stackrel{e}{e} \mathrel{\sqcup} f^T_{-}) \; (-\stackrel{e}{e} \mathrel{\sqcup
 \sqcup -e \cap (-e \sqcup -p^T) \cap (-e \sqcup p^T) \cap (p^T \sqcup -p^T)
                                    \sqcup e^T \sqcup e
                                      \mathbf{by}\ (smt\ abel\text{-}semigroup.commute\ inf.abel\text{-}semigroup\text{-}axioms\ inf.left\text{-}commute}
   sup.abel-semigroup-axioms)
                     also have ... = (f \sqcap - e^T \sqcap (-p \sqcup p)) \sqcup (f^T \sqcap - e \sqcap (p^T \sqcup -p^T)) \sqcup e^T \sqcup e
                                      by (smt inf.sup-monoid.add-assoc inf.sup-monoid.add-commute inf-sup-absorb
   sup.idem)
                     also have ... = (f \sqcap - e^T) \sqcup (f^T \sqcap - e) \sqcup e^T \sqcup e
                                      by (metis assms(1) conv-complement inf-top-right stone)
                     also have ... = (f \sqcup e^T) \sqcap (-e^T \sqcup e^T) \sqcup (f^T \sqcup e) \sqcap (-e \sqcup e)
                                      by (metis sup.left-commute sup-assoc sup-inf-distrib2)
                     finally show ?thesis
                                      by (metis abel-semigroup.commute assms(2) conv-complement inf-top-right
   stone sup.abel-semigroup-axioms sup-assoc)
 qed
 lemma simplify-forest-components-f:
                     assumes regular p
                                      and regular e
                                    and injective (f \sqcap - e^T \sqcap - p \sqcup (f \sqcap - e^T \sqcap p)^T \sqcup e)
                                      and injective f
                     shows forest-components ((f \sqcap - e^T \sqcap - p) \sqcup (f \sqcap - e^T \sqcap p)^T \sqcup e) = (f \sqcup f^T \sqcap p)^T \sqcup e
 \sqcup e \sqcup e^T)^*
```

```
proof -
           have forest-components ((f\sqcap -e^T\sqcap -p)\sqcup (f\sqcap -e^T\sqcap p)^T\sqcup e)=wcc\ ((f\sqcap -e^T\sqcap -p)\sqcup e)=wcc\ ((f\sqcap -e^T\sqcap -e)\sqcup e)=wcc
 -e^T\sqcap -p)\sqcup (f\sqcap -e^T\sqcap p)^T\sqcup e)
                     by (simp add: assms(3) forest-components-wcc)
           also have ... = ((f \sqcap - e^T \sqcap - p) \sqcup (f \sqcap - e^T \sqcap p)^T \sqcup e \sqcup (f \sqcap - e^T \sqcap - e^T \sqcap p)^T \sqcup e \sqcup (f \sqcap - e^T \sqcap - 
(p)^T \sqcup (f \sqcap - e^T \sqcap p) \sqcup e^T)^*
                          using conv-dist-sup sup-assoc by auto
also have ... = ((f\sqcap - e^T\sqcap - p)\sqcup (f\sqcap - e^T\sqcap p)\sqcup (f\sqcap - e^T\sqcap p)^T\sqcup (f\sqcap - e^T\sqcap - p)^T\square (f
                         using sup-assoc sup-commute by auto
           also have ... = (f \sqcup f^T \sqcup e \sqcup e^T)^*
                         using assms(1, 2, 3, 4) simplify-f by auto
           finally show ?thesis
                         by simp
qed
lemma components-disj-increasing:
           assumes regular p
                         and regular e
                         and injective (f \sqcap - e^T \sqcap - p \sqcup (f \sqcap - e^T \sqcap p)^T \sqcup e)
                         and injective f
             shows forest-components f \leq forest-components (f \sqcap -e^T \sqcap -p \sqcup (f \sqcap -e^T \sqcap -e^T \sqcap -p \sqcup (f \sqcap -e^T \vdash -e^T
\sqcap p)^T \sqcup e
proof -
           have 1: forest-components ((f\sqcap - e^T\sqcap - p)\sqcup (f\sqcap - e^T\sqcap p)^T\sqcup e)=(f\sqcup e)
f^T \sqcup e \sqcup e^T)^*
                          using simplify-forest-components-f assms(1, 2, 3, 4) by blast
             have forest-components f = wcc f
                         by (simp add: assms(4) forest-components-wcc)
           also have ... \leq (f \sqcup f^T \sqcup e^T \sqcup e)^*
                         by (simp add: le-supI2 star-isotone sup-commute)
             finally show ?thesis
                         using 1 sup.left-commute sup-commute by simp
qed
lemma fch-equivalence:
             assumes forest h
             shows equivalence (forest-components h)
           by (simp add: assms forest-components-equivalence)
\mathbf{lemma}\ \mathit{big-forest-path-split-1}\text{:}
             assumes arc a
                         and equivalence H
           shows (H * d)^* * H * a * top = (H * (d \sqcap - a))^* * H * a * top
proof -
             let ?H = H
             let ?x = ?H * (d \sqcap -a)
           let ?y = ?H * a
           let ?a = ?H * a * top
```

```
let ?d = ?H * d
 have 1: ?d^* * ?a \le ?x^* * ?a
 proof -
   have ?x^* * ?y * ?x^* * ?a \le ?x^* * ?a * ?a
    by (smt mult-left-isotone star.circ-right-top top-right-mult-increasing
mult-assoc)
   also have ... = ?x^* * ?a * a * top
    by (metis ex231e mult-assoc)
   also have ... = ?x^* * ?a
    by (simp add: assms(1) mult-assoc)
   finally have 11: ?x^* * ?y * ?x^* * ?a \le ?x^* * ?a
   have ?d^* * ?a = (?H * (d \sqcap a) \sqcup ?H * (d \sqcap -a))^* * ?a
   proof -
    have 12: regular a
      using assms(1) arc-regular by simp
    have ?H * ((d \sqcap a) \sqcup (d \sqcap - a)) = ?H * (d \sqcap top)
      using 12 by (metis inf-top-right maddux-3-11-pp)
    thus ?thesis
      using mult-left-dist-sup by auto
   also have ... \leq (?y \sqcup ?x)^* * ?a
    by (metis comp-inf.coreflexive-idempotent comp-isotone inf.cobounded1
inf.sup-monoid.add-commute semiring.add-mono star-isotone top.extremum)
   also have ... = (?x \sqcup ?y)^* * ?a
    by (simp add: sup-commute mult-assoc)
   also have ... = ?x^* * ?a \sqcup (?x^* * ?y * (?x^* * ?y)^* * ?x^*) * ?a
    by (smt mult-right-dist-sup star.circ-sup-9 star.circ-unfold-sum mult-assoc)
   also have ... \leq ?x^* * ?a \sqcup (?x^* * ?y * (top * ?y)^* * ?x^*) * ?a
   proof -
    have (?x^* * ?y)^* \leq (top * ?y)^*
      by (simp add: mult-left-isotone star-isotone)
    thus ?thesis
      by (metis comp-inf.coreflexive-idempotent comp-inf.transitive-star eq-refl
mult-left-dist-sup top.extremum mult-assoc)
   also have ... = ?x^* * ?a \sqcup (?x^* * ?y * ?x^*) * ?a
    using assms(1, 2) He-eq-He-THe-star arc-regular mult-assoc by auto
   finally have 13: (?H*d)^**?a \leq ?x^**?a \sqcup ?x^**?y * ?x^**?a
    by (simp add: mult-assoc)
   have 14: ?x^* * ?y * ?x^* * ?a \le ?x^* * ?a
    using 11 mult-assoc by auto
   thus ?thesis
    using 13 14 sup.absorb1 by auto
 qed
 have 2: ?d^* * ?a \ge ?x^* * ?a
   by (simp add: comp-isotone star-isotone)
 thus ?thesis
   using 1 2 antisym mult-assoc by simp
```

```
qed
\mathbf{lemma}\ d\mathit{TransHd-le-1}:
 assumes equivalence H
   and univalent (H * d)
 shows d^T * H * d \leq 1
proof -
 have d^T * H^T * H * d < 1
   using assms(2) conv-dist-comp mult-assoc by auto
 thus ?thesis
   using assms(1) mult-assoc by (simp add: preorder-idempotent)
qed
lemma HcompaT-le-compHaT:
 assumes equivalence H
   and injective (a * top)
 shows -H * a * top \le - (H * a * top)
proof -
 have a * top * a^T \leq 1
   by (metis assms(2) conv-dist-comp symmetric-top-closed vector-top-closed
mult-assoc)
 hence a * top * a^T * H \leq H
   using assms(1) comp-isotone order-trans by blast
 hence a * top * top * a^T * H \leq H
   by (simp add: vector-mult-closed)
 hence a * top * (H * a * top)^T \le H
   by (metis assms(1) conv-dist-comp symmetric-top-closed vector-top-closed
mult-assoc)
 thus ?thesis
   using assms(2) comp-injective-below-complement mult-assoc by auto
qed
    Theorem 4
lemma expand-big-forest:
 assumes big-forest H d
 shows (d^T * H)^* * (H * d)^* = (d^T * H)^* \sqcup (H * d)^*
proof -
 have (H*d)^T*H*d \leq 1
   \mathbf{using}\ \mathit{assms}\ \mathit{big-forest-def}\ \mathit{mult-assoc}\ \mathbf{by}\ \mathit{auto}
 hence d^T * H * H * d \le 1
   using assms big-forest-def conv-dist-comp by auto
 thus ?thesis
   by (simp add: cancel-separate-eq comp-associative)
qed
```

**lemma** big-forest-path-bot:

assumes  $arc \ a$  and  $a \le d$ 

```
and big-forest H d
 shows (d \sqcap - a)^T * (H * a * top) \leq bot
proof -
 have 1: d^T * H * d \le 1
   using assms(3) big-forest-def dTransHd-le-1 by blast
 hence d * - 1 * d^T \le - H
   using triple-schroeder-p by force
 hence d * - 1 * d^T \le 1 \sqcup - H
   by (simp add: le-supI2)
 hence d * d^T \sqcup d * - 1 * d^T \le 1 \sqcup - H
   by (metis assms(3) big-forest-def inf-commute regular-one-closed shunting-p
le-supI)
 hence d * 1 * d^T \sqcup d * - 1 * d^T \le 1 \sqcup - H
   by simp
 hence d * (1 \sqcup -1) * d^T < 1 \sqcup -H
   using comp-associative mult-right-dist-sup by (simp add: mult-left-dist-sup)
 hence d * top * d^T \le 1 \sqcup - H
   using regular-complement-top by auto
 hence d * top * a^T \le 1 \sqcup - H
   using assms(2) conv-isotone dual-order.trans mult-right-isotone by blast
 hence d * (a * top)^T \le 1 \sqcup -H
   by (simp add: comp-associative conv-dist-comp)
 hence d \leq (1 \sqcup -H) * (a * top)
   by (simp add: assms(1) shunt-bijective)
 hence d \leq a * top \sqcup -H * a * top
   by (simp add: comp-associative mult-right-dist-sup)
 also have ... \le a * top \sqcup - (H * a * top)
   using assms(1, 3) HcompaT-le-compHaT big-forest-def sup-right-isotone by
auto
 finally have d \leq a * top \sqcup - (H * a * top)
   by simp
 hence d \sqcap --(H*a*top) \leq a*top
   using shunting-var-p by auto
 hence 2:d \sqcap H*a*top \leq a*top
   using inf.sup-right-isotone order.trans pp-increasing by blast
 have 3:d \sqcap H * a * top < top * a
 proof -
   have d \sqcap H * a * top \leq (H * a \sqcap d * top^T) * (top \sqcap (H * a)^T * d)
     by (metis dedekind inf-commute)
   also have ... = d*top \sqcap H*a*a^T*H^T*d
     by (simp add: conv-dist-comp inf-vector-comp mult-assoc)
   also have ... \leq d * top \sqcap H * a * d^T * H^T * d
     using assms(2) mult-right-isotone mult-left-isotone conv-isotone
inf.sup-right-isotone by auto
   also have ... = d * top \sqcap H * a * d^T * H * d
     using assms(3) big-forest-def by auto
   also have ... \leq d * top \sqcap H * a * 1
     using 1 by (metis inf.sup-right-isotone mult-right-isotone mult-assoc)
   also have ... \leq H * a
```

```
by simp
        also have ... \leq top * a
            by (simp add: mult-left-isotone)
        finally have d \sqcap H * a * top \leq top * a
            by simp
        thus ?thesis
            \mathbf{by} \ simp
    qed
    have d \sqcap H * a * top \leq a * top \sqcap top * a
        using 2 3 by simp
    also have \dots = a * top * top * a
        by (metis comp-associative comp-inf.star.circ-decompose-9)
comp-inf.star-star-absorb comp-inf-covector vector-inf-comp vector-top-closed)
    also have \dots = a * top * a
        by (simp add: vector-mult-closed)
    finally have 4:d \sqcap H * a * top < a
        by (simp add: assms(1) arc-top-arc)
    hence d \sqcap -a \leq -(H*a*top)
        using assms(1) arc-regular p-shunting-swap by fastforce
    hence (d \sqcap - a) * top \leq -(H * a * top)
        using mult.semigroup-axioms p-antitone-iff schroeder-4-p semigroup.assoc by
fast force
    thus ?thesis
        by (simp add: schroeder-3-p)
qed
lemma big-forest-path-split-2:
    assumes arc a
        and a \leq d
        and big-forest H d
   shows (H * (d \sqcap - a))^* * H * a * top = (H * ((d \sqcap - a) \sqcup (d \sqcap - a)^T))^* *
H * a * top
proof -
    let ?lhs = (H * (d \sqcap - a))^* * H * a * top
   have 1: d^T * H * d \le 1
        using assms(3) biq-forest-def dTransHd-le-1 by blast
   have 2: H * a * top < ?lhs
        by (metis le-iff-sup star.circ-loop-fixpoint star.circ-transitive-equal
star-involutive sup-commute mult-assoc)
   have (d \sqcap - a)^T * (H * (d \sqcap - a))^* * (H * a * top) = (d \sqcap - a)^T * H * (d \sqcap - a)
(-a) * (H * (d \sqcap - a))^* * (H * a * top)
    proof -
        have (d \sqcap - a)^T * (H * (d \sqcap - a))^* * (H * a * top) = (d \sqcap - a)^T * (1 \sqcup H)
*(d \sqcap - a) * (H * (d \sqcap - a))^*) * (H * a * top)
            by (simp add: star-left-unfold-equal)
        also have ... = (d \sqcap - a)^T * H * a * top \sqcup (d \sqcap - a)^T * H * (d \sqcap - a) *
(H * (d \sqcap - a))^* * (H * a * top)
            by (smt mult-left-dist-sup star.circ-loop-fixpoint star.circ-mult-1 star-slide
sup-commute mult-assoc)
```

```
also have ... = bot \sqcup (d \sqcap - a)^T * H * (d \sqcap - a) * (H * (d \sqcap - a))^* * (H *
a * top
           by (metis assms(1, 2, 3) big-forest-path-bot mult-assoc le-bot)
       thus ?thesis
           by (simp add: calculation)
    qed
    also have ... \leq d^T * H * d * (H * (d \sqcap - a))^* * (H * a * top)
        using conv-isotone inf.cobounded1 mult-isotone by auto
    also have ... \leq 1 * (H * (d \sqcap - a))^* * (H * a * top)
        using 1 by (metis le-iff-sup mult-right-dist-sup)
    finally have 3: (d \sqcap - a)^T * (H * (d \sqcap - a))^* * (H * a * top) \le ?lhs
       using mult-assoc by auto
   hence 4: H * (d \sqcap - a)^T * (H * (d \sqcap - a))^* * (H * a * top) \leq ?lhs
    proof -
       have H * (d \sqcap - a)^T * (H * (d \sqcap - a))^* * (H * a * top) < H * (H * (d \sqcap - a))^*
(a)^* * H * a * top
           using 3 mult-right-isotone mult-assoc by auto
       also have ... = H * H * ((d \sqcap - a) * H)^* * H * a * top
           by (metis assms(3) big-forest-def star-slide mult-assoc preorder-idempotent)
       also have ... = H * ((d \sqcap - a) * H)^* * H * a * top
           using assms(3) big-forest-def preorder-idempotent by fastforce
       finally show ?thesis
           by (metis assms(3) big-forest-def preorder-idempotent star-slide mult-assoc)
   have 5: (H * (d \sqcap - a) \sqcup H * (d \sqcap - a)^T) * (H * (d \sqcap - a))^* * H * a * top
\leq ?lhs
    proof -
       have 51: H * (d \sqcap - a) * (H * (d \sqcap - a))^* * H * a * top < (H * (d \sqcap - a))^*
(a)^* * H * a * top
           using star.left-plus-below-circ mult-left-isotone by simp
       have 52: (H * (d \sqcap - a) \sqcup H * (d \sqcap - a)^T) * (H * (d \sqcap - a))^* * H * a *
top = H * (d \sqcap - a) * (H * (d \sqcap - a))^* * H * a * top \sqcup H * (d \sqcap - a)^T * (H \sqcup A)^T * (H
*(d \sqcap - a))^* * H * a * top
           using mult-right-dist-sup by auto
       hence ... \leq (H * (d \sqcap - a))^* * H * a * top \sqcup H * (d \sqcap - a)^T * (H * (d \sqcap - a)^T)^*
(a)^* * H * a * top
           using star.left-plus-below-circ mult-left-isotone sup-left-isotone by auto
       thus ?thesis
           using 4 51 52 mult-assoc by auto
    qed
    hence (H*(d\sqcap -a)\sqcup H*(d\sqcap -a)^T)^**H*a*top < ?lhs
    proof -
       have (H * (d \sqcap - a) \sqcup H * (d \sqcap - a)^T)^* * (H * (d \sqcap - a))^* * H * a * top
\leq ?lhs
           using 5 star-left-induct-mult-iff mult-assoc by auto
       thus ?thesis
           using star.circ-decompose-11 star-decompose-1 by auto
    hence 6: (H * ((d \sqcap - a) \sqcup (d \sqcap - a)^T))^* * H * a * top < ?lhs
```

```
using mult-left-dist-sup by auto
have 7: (H*(d\sqcap -a))^**H*a*top \leq (H*((d\sqcap -a)\sqcup (d\sqcap -a)^T))^**H*a*top
by (simp\ add:\ mult-left-isotone\ semiring.distrib-left\ star-isotone)
thus ?thesis
using 6 7 by (simp\ add:\ mult-assoc)
qed
```

## 4.2 An operation to select components

We introduce the operation *choose-component*.

- \* Axiom component-in-v expresses that the result of choose-component is contained in the set of vertices, v, we are selecting from, ignoring the weights.
- \* Axiom *component-is-vector* states that the result of *choose-component* is a vector.
- \* Axiom *component-is-regular* states that the result of *choose-component* is regular.
- \* Axiom component-is-connected states that any two vertices from the result of choose-component are connected in e.
- \* Axiom component-single states that the result of choose-component is closed under being connected in e.
- \* Finally, axiom *component-not-bot-when-v-bot-bot* expresses that the operation *choose-component* returns a non-empty component if the input satisfies the given criteria.

```
class choose-component = fixes choose-component :: 'a \Rightarrow 'a \Rightarrow 'a

class choose-component-algebra = choose-component + stone-relation-algebra + assumes component-in-v: choose-component e v \leq --v
assumes component-is-vector: vector (choose-component e v)
assumes component-is-regular: regular (choose-component e v)
assumes component-is-connected: choose-component e v * (choose-component e v)^T \leq e
assumes component-single: choose-component e v = e * choose-component e v
assumes component-not-bot-when-v-bot-bot:
regular e
\land equivalence e
\land vector v
\land regular v
```

```
\wedge e * v = v
   \land v \neq bot \longrightarrow choose\text{-}component \ e \ v \neq bot
    Theorem 1
    Every m-kleene-algebra is an instance of choose-component-algebra when
the choose-component operation is defined as follows:
{f context}\ m-kleene-algebra
begin
definition choose-component-input-condition e \ v \equiv
   regular e
 \land equivalence e
 \land \ vector \ v
 \land regular v
 \wedge e * v = v
definition m-choose-component e \ v \equiv
  if\ choose\-component\-input\-condition\ e\ v\ then
   e * minarc(v) * top
  else
   bot
sublocale m-choose-component-algebra: choose-component-algebra where
choose\text{-}component = m\text{-}choose\text{-}component
proof
 \mathbf{fix} \ e \ v
 show m-choose-component e \ v \le -- \ v
 proof (cases choose-component-input-condition e v)
   case True
   hence m-choose-component e \ v = e * minarc(v) * top
     by (simp add: m-choose-component-def)
   also have ... \le e * --v * top
     by (simp add: comp-isotone minarc-below)
   also have \dots = e * v * top
     using True choose-component-input-condition-def by auto
   also have \dots = v * top
     using True choose-component-input-condition-def by auto
   finally show ?thesis
     using True choose-component-input-condition-def by auto
 next
   case False
   hence m-choose-component e \ v = bot
     using False m-choose-component-def by auto
   thus ?thesis
     \mathbf{by} \ simp
 qed
next
 \mathbf{fix} \ e \ v
 show vector (m-choose-component e v)
```

```
proof (cases choose-component-input-condition e v)
   case True
   thus ?thesis
     by (simp add: mult-assoc m-choose-component-def)
  \mathbf{next}
   case False
   thus ?thesis
     by (simp add: m-choose-component-def)
  qed
next
 \mathbf{fix} \ e \ v
 show regular (m-choose-component e v)
   {\bf using} \ \ choose-component-input-condition-def \ minarc-regular \ regular-closed-star
regular-mult-closed m-choose-component-def by auto
\mathbf{next}
 \mathbf{fix} \ e \ v
 show m-choose-component e \ v * (m\text{-}choose\text{-}component \ e \ v)^T < e
 \mathbf{proof} (cases choose-component-input-condition e\ v)
   assume 1: choose-component-input-condition e v
   hence m-choose-component e \ v * (m\text{-}choose\text{-}component \ e \ v)^T = e * minarc(v)
* top * (e * minarc(v) * top)^T
     by (simp add: m-choose-component-def)
   also have ... = e * minarc(v) * top * top^T * minarc(v)^T * e^T
     by (metis comp-associative conv-dist-comp)
   also have ... = e * minarc(v) * top * top * minarc(v)^T * e
     using 1 choose-component-input-condition-def by auto
   also have ... = e * minarc(v) * top * minarc(v)^T * e
     by (simp add: comp-associative)
   also have \dots \leq e
   proof (cases \ v = bot)
     case True
     thus ?thesis
      by (simp add: True minarc-bot)
   next
     case False
     assume 3: v \neq bot
     hence e * minarc(v) * top * minarc(v)^T \le e * 1
       using 3 minarc-arc arc-expanded comp-associative mult-right-isotone by
fast force
     \mathbf{hence}\ e*\mathit{minarc}(v)*\mathit{top}*\mathit{minarc}(v)^T*e \leq e*1*e
       using mult-left-isotone by auto
     also have \dots = e
      using 1 choose-component-input-condition-def preorder-idempotent by auto
     thus ?thesis
       using calculation by auto
   ged
   thus ?thesis
     by (simp add: calculation)
```

```
next
   {f case} False
   thus ?thesis
     by (simp add: m-choose-component-def)
 ged
next
 \mathbf{fix} \ e \ v
 show m-choose-component e v = e * m-choose-component e v
 \mathbf{proof} (cases choose-component-input-condition e \ v)
   {\bf case}\ {\it True}
   thus ?thesis
     by (metis choose-component-input-condition-def preorder-idempotent
m-choose-component-def mult-assoc)
 next
   case False
   thus ?thesis
     by (simp add: m-choose-component-def)
 qed
next
 \mathbf{fix} \ e \ v
 show regular e \land equivalence \ e \land vector \ v \land regular \ v \land e * v = v \land v \neq bot
\longrightarrow m-choose-component e \ v \neq bot
 \mathbf{proof} (cases choose-component-input-condition e\ v)
   case True
   hence m-choose-component e \ v \ge minarc(v) * top
     \mathbf{by}\ (\textit{metis choose-component-input-condition-def mult-1-left mult-left-isotone}
m-choose-component-def)
   also have ... \geq minarc(v)
     using calculation dual-order.trans top-right-mult-increasing by blast
   thus ?thesis
     using True bot-unique minarc-bot-iff by fastforce
 next
   case False
   thus ?thesis
     using choose-component-input-condition-def by blast
 qed
qed
end
```

# 4.3 m-k-Stone-Kleene relation algebras

m-k-Stone-Kleene relation algebras are an extension of m-Kleene algebras where the choose-component operation has been added.

```
 \begin{array}{l} {\bf class} \ m\text{-}kleene\text{-}algebra\text{-}choose\text{-}component = } \\ m\text{-}kleene\text{-}algebra \\ + \ choose\text{-}component\text{-}algebra \\ {\bf begin} \end{array}
```

```
A selected-edge is a minimum-weight edge whose source is in a component, with respect to h, j and g, and whose target is not in that component.
```

```
abbreviation selected-edge h j g \equiv minarc (choose-component
(forest-components h) j * - choose\text{-component} (forest-components h) j^T \sqcap g)
             A path is any sequence of edges in the forest, f, of the graph, g, backwards
from the target of the selected-edge to a root in f.
abbreviation path f h j g \equiv top * selected-edge h j g * (f <math>\sqcap - selected-edge h j
q^T)^{T\star}
definition boruvka-outer-invariant f g \equiv
           symmetric q
     \land forest f
    \land f \leq --g
     \land regular f
     \wedge (\exists w \ . \ minimum\text{-spanning-forest} \ w \ g \land f \leq w \sqcup w^T)
definition boruvka-inner-invariant j f h g d \equiv
           boruvka-outer-invariant f g
     \land g \neq bot
     \land vector j
     \land regular j
     \land boruvka-outer-invariant h g
     \wedge forest h
     \land forest-components h \leq forest-components f
     \land big-forest (forest-components h) d
     \wedge d * top \leq -j
     \land forest-components h * j = j
     \land \textit{ forest-components } f = (\textit{forest-components } h * (\textit{d} \sqcup \textit{d}^T))^{\star} * \textit{forest-components}
      \wedge \ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
    \land (\forall a \ b \ . \ bf\text{-}between\text{-}arcs \ a \ b \ (forest\text{-}components \ h) \ d \land a \leq
-(forest\text{-}components\ h)\ \sqcap\ --\ g\ \land\ b\leq d
            \longrightarrow sum(b \sqcap g) \leq sum(a \sqcap g)
      \land regular d
{\bf lemma}\ expression \hbox{-} equivalent\hbox{-} without\hbox{-} e\hbox{-} complement:
     assumes selected-edge h j g \leq - forest-components f
     \mathbf{shows}\; f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \sqcap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; (f\; \sqcap \; - \; (\mathit{selected-edge}\; h\; j\; g)^T\; \cap \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \; (\mathit{path}\; f\; h\; j\; g) \; \sqcup \; - \;
(j g)^T \sqcap (path f h j g))^T \sqcup (selected-edge h j g)
                       = f \sqcap - (path \ f \ h \ j \ g) \sqcup (f \sqcap (path \ f \ h \ j \ g))^T \sqcup (selected-edge \ h \ j \ g)
proof -
     let ?p = path f h j g
     let ?e = selected\text{-}edge\ h\ j\ g
     let ?F = forest\text{-}components f
     have 1: ?e \le - ?F
          by (simp add: assms)
     have f^T < ?F
          by (metis conv-dist-comp conv-involutive conv-order conv-star-commute
```

```
forest-components-increasing)
 hence -?F \leq -f^T
   using p-antitone by auto
 hence ?e \le -f^T
   using 1 dual-order.trans by blast
 hence f^T \leq -?e
   by (simp add: p-antitone-iff)
  hence f^{TT} \leq -?e^{T}
   by (metis conv-complement conv-dist-inf inf.orderE inf.orderI)
 hence f \leq -?e^T
   by auto
 hence f = f \sqcap - ?e^T
   using inf.orderE by blast
 hence f \sqcap - ?e^T \sqcap - ?p \sqcup (f \sqcap - ?e^T \sqcap ?p)^T \sqcup ?e = f \sqcap - ?p \sqcup (f \sqcap ?p)^T \sqcup ?e
?e
   by auto
 thus ?thesis by auto
qed
    Theorem 2
    The source of the selected-edge is contained in j, the vector describing
```

those vertices still to be processed in the inner loop of Borůvka's algorithm.

```
lemma et-below-j:
 assumes vector j
   and regular j
   and j \neq bot
 shows selected-edge h j g * top \leq j
proof -
 let ?e = selected\text{-}edge\ h\ j\ g
 let ?c = choose\text{-}component (forest\text{-}components h) j
 have ?e * top \le --(?c * -?c^T \sqcap g) * top
   using comp-isotone minarc-below by blast
 also have ... = (--(?c * -?c^T) \sqcap --g) * top
   \mathbf{by} \ simp
  also have ... = (?c * -?c^T \sqcap --g) * top
   using component-is-regular regular-mult-closed by auto
 also have ... = (?c \sqcap -?c^T \sqcap --q) * top
   by (metis component-is-vector conv-complement vector-complement-closed
vector-covector)
 also have ... \leq ?c * top
   using inf.cobounded1 mult-left-isotone order-trans by blast
 also have ... \leq j * top
   by (metis assms(2) comp-inf.star.circ-sup-2 comp-isotone component-in-v)
 also have \dots = j
   by (simp \ add: \ assms(1))
 finally show ?thesis
   by simp
qed
```

### 4.3.1 Components of forests and big forests

We prove a number of properties about big-forest and forest-components.

```
lemma fc-j-eq-j-inv:
 assumes forest h
   and forest-components h * j = j
 shows forest-components h * (j \sqcap - choose\text{-}component (forest\text{-}components h) j)
= j \sqcap - choose\text{-}component (forest\text{-}components h) j
proof -
 let ?c = choose\text{-}component (forest\text{-}components h) j
 let ?H = forest-components h
 have 1:equivalence ?H
   \mathbf{by}\ (simp\ add:\ assms(1)\ forest-components-equivalence)
 have ?H * (j \sqcap - ?c) = ?H * j \sqcap ?H * - ?c
   using 1 by (metis assms(2) equivalence-comp-dist-inf
inf.sup-monoid.add-commute)
 hence 2: ?H * (j \sqcap - ?c) = j \sqcap ?H * - ?c
   by (simp \ add: \ assms(2))
 have 3: j \sqcap - ?c \le ?H * - ?c
   using 1 by (metis assms(2) dedekind-1 dual-order.trans
equivalence-comp-dist-inf inf.cobounded2)
  have ?H * ?c \leq ?c
   using component-single by auto
 hence ?H^T * ?c \le ?c
   using 1 by simp
 hence ?H * - ?c \le - ?c
   using component-is-regular schroeder-3-p by force
 hence j \sqcap ?H * - ?c \leq j \sqcap - ?c
   using inf.sup-right-isotone by auto
  thus ?thesis
   using 2 3 antisym by simp
\mathbf{qed}
    Theorem 5
    There is a path in the big-forest between edges a and b if and only if
there is either a path in the big-forest from a to b or one from a to c and
one from c to b.
lemma big-forest-path-split-disj:
 assumes equivalence H
   and arc c
   and regular a \wedge regular b \wedge regular c \wedge regular d \wedge regular H
 shows bf-between-arcs a b H (d \sqcup c) \longleftrightarrow bf-between-arcs a b H d \vee
(bf\text{-}between\text{-}arcs\ a\ c\ H\ d\ \land\ bf\text{-}between\text{-}arcs\ c\ b\ H\ d)
proof -
 have 1: bf-between-arcs a b H (d \sqcup c) \longrightarrow bf-between-arcs a b H d \vee
```

 $(bf\text{-}between\text{-}arcs\ a\ c\ H\ d\ \land\ bf\text{-}between\text{-}arcs\ c\ b\ H\ d)$ 

**assume** 11: bf-between-arcs a b H  $(d \sqcup c)$ **hence**  $a^{T} * top < (H * (d \sqcup c))^{*} * H * b * top$ 

proof (rule impI)

```
by (simp add: bf-between-arcs-def)
   also have ... = ((H * d)^* \sqcup (H * d)^* * H * c * (H * d)^*) * H * b * top
    using assms(1, 2) path-through-components by simp
   also have ... = (H * d)^* * H * b * top \sqcup (H * d)^* * H * c * (H * d)^* * H *
    by (simp add: mult-right-dist-sup)
   (* d)^* * H * b * top
    by simp
   have 13: a^T * top \le (H * d)^* * H * b * top \lor a^T * top \le (H * d)^* * H * c *
(H*d)^**H*b*top
   proof (rule point-in-vector-sup)
    show point (a^T * top)
      using 11 bf-between-arcs-def mult-assoc by auto
    show vector ((H*d)^**H*b*top)
      using vector-mult-closed by simp
  \mathbf{next}
    show regular ((H*d)^**H*b*top)
      using assms(3) pp-dist-comp pp-dist-star by auto
    show a^T * top \le (H * d)^* * H * b * top \sqcup (H * d)^* * H * c * (H * d)^* * H
*b*top
      using 12 by simp
  qed
   thus bf-between-arcs a b H d \vee (bf-between-arcs a c H d \wedge bf-between-arcs c b
  proof (cases a^T * top \le (H * d)^* * H * b * top)
    case True
    assume a^T * top \leq (H * d)^* * H * b * top
    hence bf-between-arcs a b H d
      using 11 bf-between-arcs-def by auto
    thus ?thesis
      by simp
   next
    case False
    have 14: a^T * top \le (H * d)^* * H * c * (H * d)^* * H * b * top
      using 13 by (simp add: False)
    hence 15: a^T * top \le (H * d)^* * H * c * top
      by (metis mult-right-isotone order-lesseq-imp top-greatest mult-assoc)
    have c^T * top \le (H * d)^* * H * b * top
    proof (rule ccontr)
      assume \neg c^T * top \leq (H * d)^* * H * b * top
      hence c^T * top \le -((H * d)^* * H * b * top)
       by (meson\ assms(2,\ 3)\ point-in-vector-or-complement\ regular-closed-star
regular-closed-top regular-mult-closed vector-mult-closed vector-top-closed)
      hence c * (H * d)^* * H * b * top \leq bot
       using schroeder-3-p mult-assoc by auto
      thus False
```

```
using 13 False sup.absorb-iff1 mult-assoc by auto
     qed
     hence bf-between-arcs a c H d \wedge bf-between-arcs c b H d
      using 11 15 assms(2) bf-between-arcs-def by auto
     thus ?thesis
      by simp
   qed
 qed
 have 2: bf-between-arcs a b H d \vee (bf-between-arcs a c H d \wedge bf-between-arcs c
b H d) \longrightarrow bf-between-arcs a b H (d \sqcup c)
 proof -
   have 21: bf-between-arcs a b H d \longrightarrow bf-between-arcs a b H (d \sqcup c)
   proof (rule impI)
     assume 22:bf-between-arcs a\ b\ H\ d
     hence a^{T} * top < (H * d)^{*} * H * b * top
       using bf-between-arcs-def by blast
     hence a^T * top \le (H * (d \sqcup c))^* * H * b * top
      by (simp add: mult-left-isotone mult-right-dist-sup mult-right-isotone
order.trans star-isotone star-slide)
     thus bf-between-arcs a b H (d \sqcup c)
       using 22 bf-between-arcs-def by blast
   qed
   have bf-between-arcs a c H d \wedge bf-between-arcs c b H d \longrightarrow bf-between-arcs a
b H (d \sqcup c)
   proof (rule impI)
     assume 23: bf-between-arcs a c H d \wedge bf-between-arcs c b H d
     hence a^T * top \leq (H * d)^* * H * c * top
       using bf-between-arcs-def by blast
     also have ... \leq (H * d)^* * H * c * c^T * c * top
      by (metis ex231c comp-inf.star.circ-sup-2 mult-isotone mult-right-isotone
mult-assoc)
     also have ... < (H * d)^* * H * c * c^T * top
      by (simp add: mult-right-isotone mult-assoc)
     also have ... \leq (H * d)^* * H * c * (H * d)^* * H * b * top
      using 23 mult-right-isotone mult-assoc by (simp add: bf-between-arcs-def)
     also have ... < (H * d)^* * H * b * top \sqcup (H * d)^* * H * c * (H * d)^* * H
* b * top
      by (simp add: bf-between-arcs-def)
     finally have a^T * top \leq (H * (d \sqcup c))^* * H * b * top
       using assms(1, 2) path-through-components mult-right-dist-sup by simp
     thus bf-between-arcs a b H (d \sqcup c)
       using 23 bf-between-arcs-def by blast
   qed
   thus ?thesis
     using 21 by auto
 qed
 thus ?thesis
   using 1 2 by blast
qed
```

```
lemma dT-He-eq-bot:
 assumes vector j
   and regular j
   and d * top \le -j
   and forest-components h * j = j
   and j \neq bot
  shows d^T * forest-components h * selected-edge h \ j \ g \leq bot
proof -
 let ?e = selected\text{-}edge\ h\ j\ g
 let ?H = forest\text{-}components h
 have 1: ?e * top \le j
   using assms(1, 2, 5) et-below-j by auto
 have d^T * ?H * ?e \le (d * top)^T * ?H * (?e * top)
   \mathbf{by}\ (simp\ add:\ comp\mbox{-}isotone\ conv\mbox{-}isotone\ top\mbox{-}right\mbox{-}mult\mbox{-}increasing)
 also have ... \leq (d * top)^T * ?H * j
   using 1 mult-right-isotone by auto
 also have \dots \leq (-j)^T * ?H * j
   by (simp add: assms(3) conv-isotone mult-left-isotone)
 also have ... = (-i)^T * i
   using assms(4) comp-associative by auto
 also have \dots = bot
   by (simp add: assms(1) conv-complement covector-vector-comp)
  finally show ?thesis
   using coreflexive-bot-closed le-bot by blast
qed
lemma big-forest-d-U-e:
 assumes forest f
   and vector j
   and regular j
   and forest h
   and forest-components h \leq forest-components f
   and big-forest (forest-components h) d
   and d * top \leq -j
   and forest-components h * j = j
   and f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
   and selected-edge h \ j \ g \le - forest-components f
   and selected-edge h j g \neq bot
   and j \neq bot
 shows big-forest (forest-components h) (d \sqcup selected\text{-}edge \ h \ j \ g)
proof (unfold big-forest-def, intro conjI)
 let ?H = forest-components h
 let ?F = forest\text{-}components f
 let ?e = selected\text{-}edge\ h\ j\ g
 let ?d' = d \sqcup ?e
 show 01: reflexive ?H
   by (simp add: assms(4) forest-components-equivalence)
 show 02: transitive ?H
```

```
by (simp add: assms(4) forest-components-equivalence)
 show 03: symmetric ?H
  by (simp add: assms(4) forest-components-equivalence)
 have 04: equivalence ?H
  by (simp add: 01 02 03)
 show 1: ?d' \le - ?H
 proof -
  have ?H \le ?F
    by (simp \ add: \ assms(5))
  hence 11: ?e \le - ?H
    using assms(10) order-lesseq-imp p-antitone by blast
  have d \leq -?H
    using assms(6) big-forest-def by auto
  thus ?thesis
    by (simp add: 11)
 qed
 show univalent (?H * ?d')
 proof -
  have (?H * ?d')^T * (?H * ?d') = ?d'^T * ?H^T * ?H * ?d'
    using conv-dist-comp mult-assoc by auto
  also have ... = ?d'^T * ?H * ?H * ?d'
    \mathbf{by}\ (simp\ add:\ conv\text{-}dist\text{-}comp\ conv\text{-}star\text{-}commute)
  also have ... = ?d'^T * ?H * ?d'
    using 01 02 by (metis preorder-idempotent mult-assoc)
  finally have 21: univalent (?H * ?d') \longleftrightarrow ?e^T * ?H * d \sqcup d^T * ?H * ?e \sqcup
?e^T * ?H * ?e \sqcup d^T * ?H * d \leq 1
    using conv-dist-sup semiring.distrib-left semiring.distrib-right by auto
  have 22: ?e^T * ?H * ?e \le 1
  proof -
    have 221: ?e^T * ?H * ?e \le ?e^T * top * ?e
      by (simp add: mult-left-isotone mult-right-isotone)
      using assms(11) minarc-arc minarc-bot-iff by blast
    hence ?e^T * top * ?e \le 1
      using arc-expanded by blast
    thus ?thesis
      using 221 dual-order.trans by blast
  have 24: d^T * ?H * ?e \le 1
  by (metis assms(2, 3, 7, 8, 12) dT-He-eq-bot coreflexive-bot-closed le-bot) hence (d^T * ?H * ?e)^T \leq 1^T
    using conv-isotone by blast
  hence ?e^T * ?H^T * d^{TT} \le 1
    by (simp add: conv-dist-comp mult-assoc)
  hence 25: ?e^T * ?H * d \le 1
    using assms(4) fch-equivalence by auto
  have 8: d^T * ?H * d < 1
    using 04 assms(6) dTransHd-le-1 big-forest-def by blast
  thus ?thesis
```

```
using 21 22 24 25 by simp
 qed
 show coreflexive (?H \sqcap ?d' * ?d'^T)
 proof -
   have coreflexive (?H \sqcap ?d' * ?d'^T) \longleftrightarrow ?H \sqcap (d \sqcup ?e) * (d^T \sqcup ?e^T) \leq 1
     by (simp add: conv-dist-sup)
   also have ... \longleftrightarrow ?H \sqcap (d*d^T \sqcup d*?e^T \sqcup ?e*d^T \sqcup ?e*?e^T) \le 1
     by (metis mult-left-dist-sup mult-right-dist-sup sup.left-commute
sup-commute)
   finally have 1: coreflexive (?H \sqcap ?d' * ?d'^T) \longleftrightarrow ?H \sqcap d * d^T \sqcup ?H \sqcap d *
?e^T \sqcup ?H \sqcap ?e * d^T \sqcup ?H \sqcap ?e * ?e^T \le 1
     by (simp add: inf-sup-distrib1)
   have 31: ?H \sqcap d * d^T \leq 1
     using assms(6) big-forest-def by blast
   have 32: ?H \sqcap ?e * d^T \le 1
   proof -
     have ?e * d^T \le ?e * top * (d * top)^T
       by (simp add: conv-isotone mult-isotone top-right-mult-increasing)
     also have ... \leq ?e * top * - j^T
       \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(7)\ \mathit{conv-complement}\ \mathit{conv-isotone}\ \mathit{mult-right-isotone})
     also have ... \leq j * - j^T
       using assms(2, 3, 12) et-below-j mult-left-isotone by auto
     also have \dots \le - ?H
       using 03 by (metis assms(2, 3, 8) conv-complement conv-dist-comp
equivalence-top-closed mult-left-isotone schroeder-3-p vector-top-closed)
     finally have ?e * d^T \le - ?H
       by simp
     thus ?thesis
      by (metis inf.coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)
   qed
   have 33: ?H \sqcap d * ?e^T \le 1
   proof -
     have 331: injective h
       by (simp \ add: \ assms(4))
     have (?H \sqcap ?e * d^T)^T \leq 1
       using 32 coreflexive-conv-closed by auto
     hence ?H \sqcap (?e * d^T)^T < 1
       using 331 conv-dist-inf forest-components-equivalence by auto
     thus ?thesis
       using conv-dist-comp by auto
   \mathbf{qed}
   have 34: ?H \sqcap ?e * ?e^T \le 1
   proof -
     have 341:arc ?e \land arc (?e^T)
       using assms(11) minarc-arc minarc-bot-iff by auto
     have ?H \sqcap ?e * ?e^T \leq ?e * ?e^T
       by auto
     thus ?thesis
       using 341 arc-injective le-infI2 by blast
```

```
qed
   thus ?thesis
    using 1 31 32 33 34 by simp
 show 4:(?H*(d \sqcup ?e))^{+} < -?H
 proof -
   have ?e \le - ?F
    by (simp \ add: \ assms(10))
   hence ?F \le - ?e
    by (simp add: p-antitone-iff)
   hence ?F^T * ?F \le - ?e
    using assms(1) fch-equivalence by fastforce
   hence ?F^T * ?F * ?F^T < - ?e
    by (metis assms(1) fch-equivalence forest-components-star
star.circ-decompose-9)
   hence 41: ?F * ?e * ?F < - ?F
    using triple-schroeder-p by blast
   hence 42:(?F * ?F)^* * ?F * ?e * (?F * ?F)^* \le - ?F
   proof -
    have 43: ?F * ?F = ?F
      using assms(1) forest-components-equivalence preorder-idempotent by auto
    hence ?F * ?e * ?F = ?F * ?F * ?e * ?F
    also have ... = (?F)^* * ?F * ?e * (?F)^*
      by (simp add: assms(1) forest-components-star)
    also have ... = (?F * ?F)^* * ?F * ?e * (?F * ?F)^*
      using 43 by simp
    finally show ?thesis
      using 41 by simp
   qed
   hence 44: (?H * d)^* * ?H * ?e * (?H * d)^* \le - ?H
  proof -
    have 45: ?H \le ?F
      by (simp\ add:\ assms(5))
    hence 46:?H * ?e \le ?F * ?e
      by (simp add: mult-left-isotone)
    have d \leq f \sqcup f^T
      using assms(9) sup.left-commute sup-commute by auto
    also have \dots \leq ?F
      by (metis forest-components-increasing le-supI2 star.circ-back-loop-fixpoint
star.circ-increasing sup.bounded-iff)
    finally have d \leq ?F
      by simp
    hence ?H * d \le ?F * ?F
      using 45 mult-isotone by auto
    hence 47: (?H * d)^* \le (?F * ?F)^*
      by (simp add: star-isotone)
    hence (?H*d)^**?H*?e*(?H*d)^* \le (?H*d)^**?F*?e*(?H*d)^*
      using 46 by (metis mult-left-isotone mult-right-isotone mult-assoc)
```

```
also have ... \leq (?F * ?F)^* * ?F * ?e * (?F * ?F)^*
      using 47 mult-left-isotone mult-right-isotone by (simp add: comp-isotone)
     also have \dots \le - ?F
      using 42 by simp
     also have \dots < - ?H
      using 45 by (simp add: p-antitone)
     finally show ?thesis
      by simp
   qed
   have (?H * (d \sqcup ?e))^+ = (?H * (d \sqcup ?e))^* * (?H * (d \sqcup ?e))
     using star.circ-plus-same by auto
   also have ... = ((?H * d)^* \sqcup (?H * d)^* * ?H * ?e * (?H * d)^*) * (?H * (d \sqcup d)^*)
?e))
     using assms(4, 11) forest-components-equivalence minarc-arc minarc-bot-iff
path-through-components by auto
   also have ... = (?H * d)^* * (?H * (d \sqcup ?e)) \sqcup (?H * d)^* * ?H * ?e * (?H * d)^*
d)^* * (?H * (d \sqcup ?e))
     using mult-right-dist-sup by auto
   also have ... = (?H * d)^* * (?H * d \sqcup ?H * ?e) \sqcup (?H * d)^* * ?H * ?e *
(?H * d)^* * (?H * d \sqcup ?H * ?e)
     by (simp add: mult-left-dist-sup)
   also have ... = (?H * d)^* * ?H * d \sqcup (?H * d)^* * ?H * ?e \sqcup (?H * d)^* * ?H
*~?e * (?H * d)^{\star} * (?H * d \sqcup ?H * ?e)
     using mult-left-dist-sup mult-assoc by auto
   also have ... = (?H * d)^+ \sqcup (?H * d)^* * ?H * ?e \sqcup (?H * d)^* * ?H * ?e *
(?H * d)^* * (?H * d \sqcup ?H * ?e)
     by (simp add: star.circ-plus-same mult-assoc)
   also have ... = (?H * d)^+ \sqcup (?H * d)^* * ?H * ?e \sqcup (?H * d)^* * ?H * ?e *
(?H*d)^**?H*d \sqcup (?H*d)^**?H*?e*(?H*d)^**?H*?e
     by (simp add: mult.semigroup-axioms semiring.distrib-left
sup.semigroup-axioms semigroup.assoc)
   also have ... \leq (?H * d)^+ \sqcup (?H * d)^* * ?H * ?e \sqcup (?H * d)^* * ?H * ?e *
(?H*d)^**?H*d \sqcup (?H*d)^**?H*?e
   proof -
     have ?e * (?H * d)^* * ?H * ?e \le ?e * top * ?e
      by (metis comp-associative comp-inf.coreflexive-idempotent
comp-inf.coreflexive-transitive comp-isotone top.extremum)
     also have \dots < ?e
      using assms(11) arc-top-arc minarc-arc minarc-bot-iff by auto
     finally have ?e * (?H * d)^* * ?H * ?e \le ?e
      by simp
     hence (?H * d)^* * ?H * ?e * (?H * d)^* * ?H * ?e \le (?H * d)^* * ?H * ?e
      by (simp add: comp-associative comp-isotone)
     thus ?thesis
      using sup-right-isotone by blast
   also have ... = (?H * d)^+ \sqcup (?H * d)^* * ?H * ?e \sqcup (?H * d)^* * ?H * ?e *
(?H*d)^**?H*d
    by (smt eq-iff sup.left-commute sup.orderE sup-commute)
```

```
also have ... = (?H*d)^+ \sqcup (?H*d)^* * ?H * ?e \sqcup (?H*d)^* * ?H * ?e * (?H*d)^+
using star.circ-plus-same mult-assoc by auto
also have ... = (?H*d)^+ \sqcup (?H*d)^* * ?H * ?e * (1 \sqcup (?H*d)^+)
by (simp add: mult-left-dist-sup sup-assoc)
also have ... = (?H*d)^+ \sqcup (?H*d)^* * ?H * ?e * (?H*d)^*
by (simp add: star-left-unfold-equal)
also have ... \leq -?H
using 44 assms(6) big-forest-def by auto
finally show ?thesis
by simp
qed
qed
```

# 4.3.2 Identifying arcs

The expression  $d \sqcap \top e^{\top} H \sqcap (Hd^{\top})^* Ha^{\top} \top$  identifies the edge incoming to the component that the *selected-edge*, e, is outgoing from and which is on the path from edge a to e. Here, we prove this expression is an arc.

```
lemma shows-arc-x:
 assumes big-forest H d
   and bf-between-arcs a e H d
   and H * d * (H * d)^* \le - H
   and \neg a^T * top \leq H * e * top
   and regular a
   and regular e
   and regular H
   and regular d
 shows arc (d \sqcap top * e^T * H \sqcap (H * d^T)^* * H * a^T * top)
proof -
 let ?x = d \sqcap top * e^T * H \sqcap (H * d^T)^* * H * a^T * top
 have 1:regular ?x
   using assms(5, 6, 7, 8) regular-closed-star regular-conv-closed
regular-mult-closed by auto
 have 2: a^T * top * a \leq 1
   using arc-expanded assms(2) bf-between-arcs-def by auto
 have 3: e * top * e^T \leq 1
   using assms(2) bf-between-arcs-def arc-expanded by blast
 have 4: top * ?x * top = top
 proof -
   have a^{T} * top \leq (H * d)^{*} * H * e * top
     using assms(2) bf-between-arcs-def by blast
   also have ... = H * e * top \sqcup (H * d)^* * H * d * H * e * top
    by (metis star.circ-loop-fixpoint star.circ-plus-same sup-commute mult-assoc)
   finally have a^T * top \leq H * e * top \sqcup (H * d)^* * H * d * H * e * top
     by simp
   hence a^{T} * top < H * e * top \lor a^{T} * top < (H * d)^{*} * H * d * H * e * top
     using assms(2, 6, 7) point-in-vector-sup bf-between-arcs-def
regular-mult-closed vector-mult-closed by auto
```

```
hence a^T * top < (H * d)^* * H * d * H * e * top
         using assms(4) by blast
      also have ... = (H * d)^* * H * d * (H * e * top \sqcap H * e * top)
         by (simp add: mult-assoc)
      also have ... = (H * d)^* * H * (d \sqcap (H * e * top)^T) * H * e * top
        by (metis comp-associative covector-inf-comp-3 star.circ-left-top star.circ-top)
      also have ... = (H * d)^* * H * (d \sqcap top^T * e^T * H^T) * H * e * top
         using conv-dist-comp mult-assoc by auto
      also have \dots = (H*d)^**H*(d\sqcap top*e^T*H)*H*e*top
         using assms(1) by (simp add: big-forest-def)
      finally have 2: a^T * top \leq (H * d)^* * H * (d \sqcap top * e^T * H) * H * e * top
      hence e * top < ((H * d)^* * H * (d \sqcap top * e^T * H) * H)^T * a^T * top
      proof -
         have bijective (e * top) \land bijective (a^T * top)
            using assms(2) bf-between-arcs-def by auto
         thus ?thesis
            using 2 by (metis bijective-reverse mult-assoc)
      also have ... = H^T * (d \sqcap top * e^T * H)^T * H^T * (H * d)^{*T} * a^T * top
         by (simp add: conv-dist-comp mult-assoc)
     also have ... = H * (d \sqcap top * e^{T} * H)^{T} * H * (H * d)^{*T} * a^{T} * top
         using assms(1) big-forest-def by auto
      also have ... = H * (d \sqcap top * e^T * H)^T * H * (d^T * H)^* * a^T * top
         using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto
      also have ... = H * (d^T \sqcap H * e * top) * H * (d^T * H)^* * a^T * top
         using assms(1) conv-dist-comp big-forest-def comp-associative conv-dist-inf
by auto
      also have ... = H * (d^T \sqcap H * e * top) * (H * d^T)^* * H * a^T * top
         by (simp add: comp-associative star-slide)
      also have ... = H * (d^T \sqcap H * e * top) * ((H * d^T)^* * H * a^T * top \sqcap (H * top))
(d^T)^* * H * a^T * top)
         using mult-assoc by auto
      also have ... = H * (d^T \sqcap H * e * top \sqcap ((H * d^T)^* * H * a^T * top)^T) * (H)
* d^T)* * H * a^T * top
         by (smt comp-inf-vector covector-comp-inf vector-conv-covector
vector-top-closed mult-assoc)
      also have ... = H * (d^{T'} \sqcap (top * e^{T} * H)^{T} \sqcap ((H * d^{T})^{*} * H * a^{T} * top)^{T})
*(H*d^T)^**H*a^T*top
         using assms(1) big-forest-def conv-dist-comp mult-assoc by auto
      also have ... = H * (d \sqcap top * e^{T} * H \sqcap (H * d^{T})^{*} * H * a^{T} * top)^{T} * (H * d^{T})^{*} * H * a^{T} * top)^{T} * (H * d^{T})^{*} * (H * d^{T})
(d^T)^* * H * a^T * top
         by (simp add: conv-dist-inf)
      finally have \beta: e * top \leq H * ?x^T * (H * d^T)^* * H * a^T * top
         by auto
      have ?x \neq bot
      proof (rule ccontr)
         assume \neg ?x \neq bot
         hence e * top = bot
```

```
using 3 le-bot by auto
     thus False
      using assms(2, 4) bf-between-arcs-def mult-assoc semiring.mult-zero-right
by auto
   ged
   thus ?thesis
     using 1 using tarski by blast
 have 5: ?x * top * ?x^T < 1
 proof -
   have 51: H * (d * H)^* \sqcap d * H * d^T \le 1
   proof -
     have 511: d * (H * d)^* \le - H
      using assms(1, 3) big-forest-def preorder-idempotent schroeder-4-p
triple-schroeder-p by fastforce
     hence (d * H)^* * d \le - H
      using star-slide by auto
     hence H * (d^T * H)^* \leq -d
      by (smt assms(1) big-forest-def conv-dist-comp conv-star-commute
schroeder-4-p star-slide)
     hence H * (d * H)^* \leq -d^T
       using 511 by (metis assms(1) big-forest-def schroeder-5-p star-slide)
     hence H * (d * H)^* \le - (H * d^T)
      by (metis assms(3) p-antitone-iff schroeder-4-p star-slide mult-assoc)
     hence H * (d * H)^* \sqcap H * d^T \leq bot
      by (simp add: bot-unique pseudo-complement)
     hence H * d * (H * (d * H)^* \sqcap H * d^T) \leq 1
      by (simp add: bot-unique)
     hence 512: H * d * H * (d * H)^* \cap H * d * H * d^T \le 1
      using univalent-comp-left-dist-inf assms(1) big-forest-def mult-assoc by
fast force
     hence 513: H * d * H * (d * H)^* \sqcap d * H * d^T < 1
     proof -
      have d * H * d^T \le H * d * H * d^T
        by (metis assms(1) big-forest-def conv-dist-comp conv-involutive
mult-1-right mult-left-isotone)
      thus ?thesis
        using 512 by (smt dual-order.trans p-antitone p-shunting-swap
regular-one-closed)
     have d^T * H * d \leq 1 \sqcup - H
      \mathbf{using}\ assms(1)\ big\text{-}forest\text{-}def\ dTransHd\text{-}le\text{-}1\ le\text{-}supI1\ \mathbf{by}\ blast
     hence (-1 \sqcap H) * d^T * H \leq -d^T
      by (metis assms(1) big-forest-def dTransHd-le-1
inf.sup{-}monoid.add{-}commute\ le{-}infI2\ p{-}antitone{-}iff\ regular{-}one{-}closed
schroeder-4-p mult-assoc)
     hence d * (-1 \sqcap H) * d^T \leq -H
      by (metis assms(1) big-forest-def conv-dist-comp schroeder-3-p
triple-schroeder-p)
```

```
hence H \sqcap d * (-1 \sqcap H) * d^T < 1
      by (metis inf.coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)
     hence H \sqcap d * d^T \sqcup H \sqcap d * (-1 \sqcap H) * d^T \leq 1
       using assms(1) big-forest-def le-supI by blast
     hence H \sqcap (d * 1 * d^T \sqcup d * (-1 \sqcap H) * d^T) < 1
       using comp-inf.semiring.distrib-left by auto
     hence H \sqcap (d * (1 \sqcup (-1 \sqcap H)) * d^T) \leq 1
       by (simp add: mult-left-dist-sup mult-right-dist-sup)
     hence 514: H \sqcap d * H * d^T \leq 1
      by (metis assms(1) big-forest-def comp-inf.semiring.distrib-left inf.le-iff-sup
inf.sup-monoid.add-commute inf-top-right regular-one-closed stone)
     thus ?thesis
     proof -
       have H \cap d * H * d^T \sqcup H * d * H * (d * H)^* \cap d * H * d^T < 1
         using 513 514 by simp
       hence d * H * d^T \sqcap (H \sqcup H * d * H * (d * H)^*) < 1
        by (simp add: comp-inf.semiring.distrib-left inf.sup-monoid.add-commute)
       hence d * H * d^T \sqcap H * (1 \sqcup d * H * (d * H)^*) \le 1
         by (simp add: mult-left-dist-sup mult-assoc)
       thus ?thesis
         by (simp add: inf.sup-monoid.add-commute star-left-unfold-equal)
     \mathbf{qed}
   qed
   have ?x * top * ?x^T = (d \sqcap top * e^T * H \sqcap (H * d^T)^* * H * a^T * top) * top
* (d^T \sqcap H^T * e^{TT} * top^T \sqcap top^T * a^{TT} * H^T * (d^{TT} * H^T)^*)
     by (simp add: conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)
   also have ... = (d \sqcap top * e^T * H \sqcap (H * d^T)^* * H * a^T * top) * top * (d^T)^*
\sqcap H * e * top \sqcap top * a * H * (d * H)^*)
     using assms(1) big-forest-def by auto
   also have ... = (H * d^T)^* * H * a^T * top \sqcap (d \sqcap top * e^T * H) * top * (d^T)^*
\sqcap H * e * top \sqcap top * a * H * (d * H)^{\star})
     by (metis inf-vector-comp vector-export-comp)
   also have ... = (H * d^T)^* * H * a^T * top \sqcap (d \sqcap top * e^T * H) * top * top *
(d^T \sqcap H * e * top \sqcap top * a * H * (d * H)^*)
     by (simp add: vector-mult-closed)
   also have ... = (H * d^T)^* * H * a^T * top \sqcap d * ((top * e^T * H)^T \sqcap top) *
top * (d^T \sqcap H * e * top \sqcap top * a * H * (d * H)^*)
     by (simp add: covector-comp-inf-1 covector-mult-closed)
   also have ... = (H * d^T)^* * H * a^T * top \sqcap d * ((top * e^T * H)^T \sqcap (H * e * H)^T)^T
top)^T) * d^T \sqcap top * a * H * (d * H)^*
     \mathbf{by}\ (smt\ comp	ext{-}associative\ comp	ext{-}inf	ext{.}star	ext{-}star	ext{-}absorb\ comp	ext{-}inf	ext{-}vector
conv-star-commute covector-comp-inf covector-conv-vector fc-top star.circ-top
total-conv-surjective vector-conv-covector vector-inf-comp)
   also have ... = (H * d^T)^* * H * a^T * top \sqcap top * a * H * (d * H)^* \sqcap d *
((top * e^T * H)^T \sqcap (H * e * top)^T) * d^T
     \mathbf{using}\ inf. sup-monoid. add-assoc\ inf. sup-monoid. add-commute\ \mathbf{by}\ auto
   also have ... = (H * d^T)^* * H * a^T * top * top * a * H * (d * H)^* \sqcap d *
((top * e^T * H)^T \sqcap (H * e * top)^T) * d^T
     by (smt comp-inf.star.circ-decompose-9 comp-inf.star-star-absorb
```

```
comp-inf-covector fc-top star.circ-decompose-11 star.circ-top vector-export-comp)
   also have ... = (H * d^T)^* * H * a^T * top * a * H * (d * H)^* \sqcap d * (H * e * d^T)^*
top \sqcap top * e^T * H) * d^T
     using assms(1) big-forest-def conv-dist-comp mult-assoc by auto
   also have ... = (H * d^T)^* * H * a^T * top * a * H * (d * H)^* \sqcap d * H * e *
top * e^T * H * d^T
     by (metis comp-inf-covector inf-top.left-neutral mult-assoc)
   also have ... \leq (H * d^T)^* * (H * d)^* * H \cap d * H * e * top * e^T * H * d^T
     have (H * d^T)^* * H * a^T * top * a * H * (d * H)^* \le (H * d^T)^* * H * 1 *
H*(d*H)^*
      using 2 by (metis comp-associative comp-isotone mult-left-isotone
mult-semi-associative star.circ-transitive-equal)
     also have ... = (H * d^T)^* * H * (d * H)^*
      using assms(1) big-forest-def mult.semigroup-axioms preorder-idempotent
semigroup.assoc by fastforce
     also have ... = (H * d^T)^* * (H * d)^* * H
      by (metis star-slide mult-assoc)
     finally show ?thesis
       using inf.sup-left-isotone by auto
   also have ... \leq (H*d^T)^**(H*d)^**H \sqcap d*H*d^T
     have d * H * e * top * e^T * H * d^T \le d * H * 1 * H * d^T
       using 3 by (metis comp-isotone idempotent-one-closed mult-left-isotone
mult-sub-right-one mult-assoc)
     also have \dots \leq d * H * d^T
      \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(1)\ \mathit{big-forest-def}\ \mathit{mult-left-isotone}\ \mathit{mult-one-associative}
mult-semi-associative preorder-idempotent)
     finally show ?thesis
       using inf.sup-right-isotone by auto
   also have ... = H * (d^T * H)^* * (H * d)^* * H \sqcap d * H * d^T
     by (metis assms(1) big-forest-def comp-associative preorder-idempotent
star-slide)
   also have ... = H * ((d^T * H)^* \sqcup (H * d)^*) * H \sqcap d * H * d^T
     by (simp add: assms(1) expand-big-forest mult.semigroup-axioms
semigroup.assoc)
   also have ... = (H * (d^T * H)^* * H \sqcup H * (H * d)^* * H) \sqcap d * H * d^T
     by (simp add: mult-left-dist-sup mult-right-dist-sup)
   also have ... = (H * d^T)^* * H \sqcap d * H * d^T \sqcup H * (d * H)^* \sqcap d * H * d^T
     \mathbf{by}\ (smt\ assms(1)\ big\text{-}forest\text{-}def\ inf\text{-}sup\text{-}distrib2\ mult.semigroup\text{-}axioms
preorder-idempotent star-slide semigroup.assoc)
   also have ... \leq (H * d^T)^* * H \sqcap d * H * d^T \sqcup 1
     using 51 comp-inf.semiring.add-left-mono by blast
   finally have ?x * top * ?x^T \le 1
     using 51 by (smt assms(1) big-forest-def conv-dist-comp conv-dist-inf
conv-dist-sup conv-involutive conv-star-commute equivalence-one-closed
mult.semigroup-axioms sup.absorb2 semigroup.assoc conv-isotone conv-order)
```

```
thus ?thesis
             by simp
     qed
     have 6: ?x^T * top * ?x \le 1
     proof -
        have ?x^{T} * top * ?x = (d^{T} \sqcap H^{T} * e^{TT} * top^{T} \sqcap top^{T} * a^{TT} * H^{T} * (d^{TT} * e^{TT} * top^{T} + top^{T} * top^{T}
(H^T)^* * top * (d \sqcap top * e^T * H \sqcap (H * d^T)^* * H * a^T * top)
             by (simp add: conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)
        also have ... = (d^T \sqcap H * e * top \sqcap top * a * H * (d * H)^*) * top * (d \sqcap top)
* e^T * H \sqcap (H * d^T)^* * H * a^T * top)
             using assms(1) big-forest-def by auto
        also have ... = H * e * top \sqcap (d^T \sqcap top * a * H * (d * H)^*) * top * (d \sqcap top)
* e^T * H \sqcap (H * d^T)^* * H * a^T * top)
             \mathbf{by}\ (smt\ comp\text{-}associative\ inf.sup\text{-}monoid.add\text{-}assoc
inf.sup-monoid.add-commute star.circ-left-top star.circ-top vector-inf-comp)
        also have ... = H * e * top \sqcap d^{T} * ((top * a * H * (d * H)^{*})^{T} \sqcap top) * (d \sqcap H)^{T}
top * e^T * H \sqcap (H * d^T)^* * H * a^T * top)
             by (simp add: covector-comp-inf-1 covector-mult-closed)
        also have ... = H * e * top \sqcap d^T * (d * H)^{\star T} * H * a^T * top * (d \sqcap top * e^T)
*H \sqcap (H*d^T)^**H*a^T*top)
             using assms(1) big-forest-def comp-associative conv-dist-comp by auto
         also have ... = H * e * top \sqcap d^T * (d * H)^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * a^T * top * (d \sqcap (H * H)^{*T})^{*T} * H * (d * H)^{*T} * H * (d *
(d^T)^* * H * a^T * top) \sqcap top * e^T * H
             \mathbf{by}\ (smt\ comp\text{-}associative\ comp\text{-}inf\text{-}covector\ inf.sup\text{-}monoid.add\text{-}assoc}
inf.sup-monoid.add-commute)
        also have ... = H * e * top \sqcap d^T * (d * H)^{\star T} * H * a^T * (top \sqcap ((H * d^T)^{\star})^{\star})
*H*a^T*top)^T) *d \cap top*e^T*H
             by (metis comp-associative comp-inf-vector vector-conv-covector
vector-top-closed)
        also have ... = H * e * top \sqcap (H * e * top)^T \sqcap d^T * (d * H)^{\star T} * H * a^T *
((H * d^T)^* * H * a^T * top)^T * d
             by (smt assms(1) big-forest-def conv-dist-comp inf.left-commute
inf.sup-monoid.add-commute symmetric-top-closed mult-assoc inf-top.left-neutral)
         also have ... = H * e * top * (H * e * top)^T \sqcap d^T * (d * H)^{*T} * H * a^T *
((H * d^T)^* * H * a^T * top)^T * d
             using vector-covector vector-mult-closed by auto
        also have \dots = H * e * top * top^T * e^T * H^T \sqcap d^T * (d * H)^{*T} * H * a^T *
top^{T} * a^{TT} * H^{T} * (H * d^{T})^{\star T} * d^{T}
              by (smt conv-dist-comp mult.semigroup-axioms symmetric-top-closed
semigroup.assoc)
        also have ... = H*e*top*top*e^T*H\sqcap d^T*(H*d^T)^**H*a^T*top
* a * H * (d * H)^* * d
             using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto
        also have ... = H * e * top * e^{T} * H \sqcap d^{T} * (H * d^{T})^{*} * H * a^{T} * top * a *
H * (d * H)^* * d
             using vector-top-closed mult-assoc by auto
        also have ... \leq H \sqcap d^{T} * (H * d^{T})^{*} * H * (d * H)^{*} * d
        proof -
             have H * e * top * e^{T} * H < H * 1 * H
```

```
using 3 by (metis comp-associative mult-left-isotone mult-right-isotone)
          also have \dots = H
              using assms(1) big-forest-def preorder-idempotent by auto
          finally have 611: H * e * top * e^T * H \leq H
              by simp
          have d^T * (H * d^T)^* * H * a^T * top * a * H * (d * H)^* * d \le d^T * (H * d^T)^* * d \le d^T * (H * 
(d^T)^* * H * 1 * H * (d * H)^* * d
              using 2 by (metis comp-associative mult-left-isotone mult-right-isotone)
          also have ... = d^T * (H * d^T)^* * H * (d * H)^* * d
              using assms(1) big-forest-def mult.semigroup-axioms preorder-idempotent
semigroup.assoc by fastforce
         finally have d^T * (H * d^T)^* * H * a^T * top * a * H * (d * H)^* * d \leq d^T *
(H * d^T)^* * H * (d * H)^* * d
             by simp
          thus ?thesis
              using 611 comp-inf.comp-isotone by blast
       also have ... = H \sqcap (d^T * H)^* * d^T * H * d * (H * d)^*
          \mathbf{using}\ star\text{-}slide\ mult\text{-}assoc\ \mathbf{by}\ auto
       also have ... \leq H \sqcap (d^T * H)^* * (H * d)^*
          have (d^T * H)^* * d^T * H * d * (H * d)^* \le (d^T * H)^* * 1 * (H * d)^*
              by (smt assms(1) big-forest-def conv-dist-comp mult-left-isotone
mult-right-isotone preorder-idempotent mult-assoc)
          also have ... = (d^T * H)^* * (H * d)^*
              by simp
          finally show ?thesis
              using inf.sup-right-isotone by blast
       also have ... = H \cap ((d^T * H)^* \sqcup (H * d)^*)
          by (simp add: assms(1) expand-big-forest)
       also have ... = H \sqcap (d^T * H)^* \sqcup H \sqcap (H * d)^*
          by (simp add: comp-inf.semiring.distrib-left)
       also have ... = 1 \sqcup H \sqcap (d^T * H)^+ \sqcup H \sqcap (H * d)^+
       proof -
          have 612: H \sqcap (H * d)^* = 1 \sqcup H \sqcap (H * d)^+
              using assms(1) biq-forest-def reflexive-inf-star by blast
          have H \sqcap (d^T * H)^* = 1 \sqcup H \sqcap (d^T * H)^+
               using assms(1) big-forest-def reflexive-inf-star by auto
          thus ?thesis
              using 612 sup-assoc sup-commute by auto
       qed
       also have \dots \leq 1
      proof -
          have 613: H \sqcap (H * d)^+ \leq 1
             by (metis assms(3) inf.coboundedI1 p-antitone-iff p-shunting-swap
regular-one-closed)
          hence H \sqcap (d^T * H)^+ \leq 1
              by (metis assms(1) big-forest-def conv-dist-comp conv-dist-inf
```

```
conv-plus-commute coreflexive-symmetric)
                    thus ?thesis
                          by (simp add: 613)
             finally show ?thesis
                    by simp
       qed
       have 7:bijective (?x * top)
              using 4 5 6 arc-expanded by blast
       have bijective (?x^T * top)
              using 4 5 6 arc-expanded by blast
       thus ?thesis
             using 7 by simp
qed
                To maintain that f can be extended to a minimum spanning forest we
identify an edge, i = v \sqcap \overline{F}e^{\top} \sqcap \top e^{\top}F, that may be exchanged with the
selected-edge, e. Here, we show that i is an arc.
{f lemma}\ boruvka-edge-arc:
       assumes equivalence F
             and forest v
             and arc e
             and regular F
            and F \leq forest\text{-}components \ (F \sqcap v)
             and regular v
             and v * e^T = bot
            and e * F * e = bot
             and e^T \leq v^*
             and e \neq bot
       shows arc\ (v \sqcap -F * e * top \sqcap top * e^T * F)
       let ?i = v \sqcap -F * e * top \sqcap top * e^T * F
       have 1: ?i^T * top * ?i \leq 1
      proof -
            \mathbf{have} \ ?i^T*top*?i = (v^T \sqcap top*e^T*-F \sqcap F*e*top)*top*(v \sqcap -F*top)*top*(v \sqcap F*top)*top*(v \sqcap F*top)*top*(v
e * top \sqcap top * e^T * F
                    using assms(1) conv-complement conv-dist-comp conv-dist-inf
mult.semigroup-axioms semigroup.assoc by fastforce
             also have ... = F * e * top \sqcap (v^T \sqcap top * e^T * -F) * top * (v \sqcap -F * e *
top) \sqcap top * e^T * F
                    by (smt covector-comp-inf covector-mult-closed inf-vector-comp
vector-export-comp vector-top-closed)
             also have ... = F * e * top \sqcap (v^T \sqcap top * e^T * -F) * top * top * (v \sqcap -F *
e * top) \sqcap top * e^T * F
                   by (simp add: comp-associative)
            also have ... = F*e*top\sqcap v^{T'}*(top\sqcap (top*e^{T}*-F)^{T})*top*(v\sqcap -F)^{T'}
* e * top) \sqcap top * e^T * F
                    using comp-associative comp-inf-vector-1 by auto
             also have ... = F * e * top \sqcap v^T * (top \sqcap (top * e^T * -F)^T) * (top \sqcap (-F * e^T *
```

```
(e * top)^T * v \sqcap top * e^T * F
     by (smt comp-inf-vector conv-dist-comp mult.semigroup-axioms
symmetric-top-closed semigroup.assoc)
   also have ... = F * e * top \sqcap v^T * (top * e^T * -F)^T * (-F * e * top)^T * v \sqcap
top * e^T * F
     by simp
   also have ... = F*e*top \sqcap v^T*-F^T*e^{TT}*top^T*top^T*e^T*-F^T*v
\sqcap top * e^T * F
     by (metis comp-associative conv-complement conv-dist-comp)
   also have ... = F * e * top \sqcap v^T * - F * e * top * top * e^T * - F * v \sqcap top *
e^T * F
     by (simp\ add:\ assms(1))
   also have \dots = F*e*top \sqcap v^T*-F*e*top \sqcap top*e^T*-F*v \sqcap top*
     by (metis comp-associative comp-inf-covector inf.sup-monoid.add-assoc
inf-top.left-neutral vector-top-closed)
   also have ... = (F \sqcap v^T * -F) * e * top \sqcap top * e^T * -F * v \sqcap top * e^T * F
     using assms(3) injective-comp-right-dist-inf mult-assoc by auto
   also have ... = (F \sqcap v^T * -F) * e * top \sqcap top * e^T * (F \sqcap -F * v)
     using assms(3) conv-dist-comp inf.sup-monoid.add-assoc
inf.sup-monoid.add-commute\ mult.semigroup-axioms\ univalent-comp-left-dist-inf
semigroup.assoc by fastforce
   also have ... = (F \sqcap v^T * -F) * e * top * top * e^T * (F \sqcap -F * v)
     by (metis comp-associative comp-inf-covector inf-top.left-neutral
vector-top-closed)
   also have ... = (F \sqcap v^T * -F) * e * top * e^T * (F \sqcap -F * v)
     by (simp add: comp-associative)
   also have ... \langle (F \sqcap v^T * -F) * (F \sqcap -F * v) \rangle
     by (smt assms(3) conv-dist-comp mult-left-isotone shunt-bijective
symmetric-top-closed top-right-mult-increasing mult-assoc)
   also have ... \leq (F \sqcap v^T * -F) * (F \sqcap -F * v) \sqcap F
     by (metis assms(1) inf.absorb1 inf.cobounded1 mult-isotone
preorder-idempotent)
   also have ... \leq (F \sqcap v^T * -F) * (F \sqcap -F * v) \sqcap (F \sqcap v)^{T\star} * (F \sqcap v)^{\star}
     using assms(5) comp-inf.mult-right-isotone by auto
   also have ... \leq (-F\sqcap v^T)*-F*-F*(-F\sqcap v)\sqcap (F\sqcap v)^{T\star}*(F\sqcap v)^{\star}
   proof -
     have F \sqcap v^T * -F < (v^T \sqcap F * -F^T) * -F
       by (metis conv-complement dedekind-2 inf-commute)
     also have ... = (v^T \sqcap -F^T) * -F
       using assms(1) equivalence-comp-left-complement by simp
     finally have F \sqcap v^T * -F \leq F \sqcap (v^T \sqcap -F) * -F
       using assms(1) by auto
     hence 11: F \sqcap v^T * -F = F \sqcap (-F \sqcap v^T) * -F
       \mathbf{by}\ (\mathit{metis}\ inf. antisym\text{-}conv\ inf. sup\text{-}monoid. add\text{-}commute
comp\mbox{-}left\mbox{-}subdist\mbox{-}inf\mbox{-}inf\mbox{-}boundedE\mbox{-}inf\mbox{-}sup\mbox{-}right\mbox{-}isotone)
     hence F^T \sqcap -F^T * v^{TT} = F^T \sqcap -F^T * (-F^T \sqcap v^{TT})
       by (metis (full-types) assms(1) conv-complement conv-dist-comp
conv-dist-inf)
```

```
hence 12: F \sqcap -F * v = F \sqcap -F * (-F \sqcap v)
                 using assms(1) by (simp add: abel-semigroup.commute
inf.abel-semigroup-axioms)
            have (F \sqcap v^T * -F) * (F \sqcap -F * v) = (F \sqcap (-F \sqcap v^T) * -F) * (F \sqcap -F)
*(-F \sqcap v)
                 using 11 12 by auto
             also have \dots \leq (-F \sqcap v^T) * -F * -F * (-F \sqcap v)
                 by (metis comp-associative comp-isotone inf.cobounded2)
             finally show ?thesis
                 using comp-inf.mult-left-isotone by blast
        qed
        also have ... = ((-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v)^T * (F \sqcap v)^{T\star}
*(F \sqcap v)^{*}) \sqcup ((-F \sqcap v^{T}) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v)^{*})
             by (metis comp-associative inf-sup-distrib1 star.circ-loop-fixpoint)
        also have ... = ((-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v^T) * (F \sqcap v)^{T\star}
*(F \sqcap v)^{*}) \sqcup ((-F \sqcap v^{T}) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v)^{*})
             using assms(1) conv-dist-inf by auto
        also have ... = bot \sqcup ((-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v)^*)
        proof -
            have (-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v^T) * (F \sqcap v)^{T\star} * (F \sqcap v)^{T\star
v)^* \leq bot
                 using assms(1, 2) forests-bot-2 by (simp add: comp-associative)
             thus ?thesis
                 using le-bot by blast
       also have ... = (-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (1 \sqcup (F \sqcap v)^* * (F \sqcap v))
             by (simp add: star.circ-plus-same star-left-unfold-equal)
        also have ... = ((-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap 1) \sqcup ((-F \sqcap v^T) * -F
* -F * (-F \sqcap v) \sqcap (F \sqcap v)^{\star} * (F \sqcap v))
            by (simp add: comp-inf.semiring.distrib-left)
       also have ... \leq 1 \sqcup ((-F \sqcap v^T) * -F * -F * (-F \sqcap v) \sqcap (F \sqcap v)^* * (F \sqcap v))
             using sup-left-isotone by auto
        also have ... \leq 1 \sqcup bot
             using assms(1, 2) forests-bot-3 comp-inf.semiring.add-left-mono by simp
        finally show ?thesis
             by simp
    qed
    have 2: ?i * top * ?i^T < 1
    proof -
        have ?i * top * ?i^T = (v \sqcap -F * e * top \sqcap top * e^T * F) * top * (v^T \sqcap (-F))
* e * top)^T \sqcap (top * e^T * F)^T)
             by (simp add: conv-dist-inf)
        also have ... = (v \sqcap -F * e * top \sqcap top * e^T * F) * top * (v^T \sqcap top^T * e^T *
-F^T \sqcap F^T * e^{TT} * top^T
             by (simp add: conv-complement conv-dist-comp mult-assoc)
        also have ... = (v \sqcap -F * e * top \sqcap top * e^T * F) * top * (v^T \sqcap top * e^T *
-F \sqcap F * e * top
            by (simp \ add: \ assms(1))
        also have ... = -F * e * top \sqcap (v \sqcap top * e^T * F) * top * (v^T \sqcap top * e^T *
```

```
-F \sqcap F * e * top
               by (smt inf.left-commute inf.sup-monoid.add-assoc vector-export-comp)
          also have ... = -F * e * top \sqcap (v \sqcap top * e^T * F) * top * (v^T \sqcap F * e * top)
\sqcap \ top * e^T * -F
               by (smt comp-inf-covector inf.sup-monoid.add-assoc
inf.sup-monoid.add-commute mult-assoc)
          also have ... = -F * e * top \sqcap (v \sqcap top * e^T * F) * top * top * (v^T \sqcap F * e
* top) \sqcap top * e^T * -F
               by (simp add: mult-assoc)
         also have \dots = -F * e * top \sqcap v * ((top * e^T * F)^T \sqcap top) * top * (v^T \sqcap F * top) * (v^T \sqcap F * top)
e * top) \sqcap top * e^T * -F
               by (simp add: comp-inf-vector-1 mult.semigroup-axioms semigroup.assoc)
          also have ... = -F * e * top \sqcap v * ((top * e^T * F)^T \sqcap top) * (top \sqcap (F * e * P)^T \sqcap top) * (top \sqcap (F * P)^T \mid Top) * (
top)^T) * v^T \sqcap top * e^T * -F
               by (smt comp-inf-vector covector-comp-inf vector-conv-covector
vector-mult-closed vector-top-closed)
          also have ... = -F * e * top \sqcap v * (top * e^T * F)^T * (F * e * top)^T * v^T \sqcap
top * e^T * -F
              by simp
          also have ... = -F * e * top \sqcap v * F^T * e^{TT} * top^T * top^T * e^T * F^T * v^T
\sqcap top * e^T * -F
               by (metis comp-associative conv-dist-comp)
          also have ... = -F * e * top \sqcap v * F * e * top * top * e^T * F * v^T \sqcap top *
e^T * -F
               using assms(1) by auto
          also have ... = -F * e * top \sqcap v * F * e * top \sqcap top * e^T * F * v^T \sqcap top *
e^T * -F
               by (smt comp-associative comp-inf-covector inf.sup-monoid.add-assoc
inf-top.left-neutral vector-top-closed)
         also have ... = (-F \sqcap v * F) * e * top \sqcap top * e^T * F * v^T \sqcap top * e^T * -F
               using injective-comp-right-dist-inf assms(3) mult.semigroup-axioms
semigroup.assoc by fastforce
         also have ... = (-F \sqcap v * F) * e * top \sqcap top * e^T * (F * v^T \sqcap -F)
               using injective-comp-right-dist-inf assms(3) conv-dist-comp
inf.sup-monoid.add-assoc\ mult.semigroup-axioms\ univalent-comp-left-dist-inf
semigroup.assoc by fastforce
          also have ... = (-F \sqcap v * F) * e * top * top * e^T * (F * v^T \sqcap -F)
               by (metis inf-top-right vector-export-comp vector-top-closed)
          also have ... = (-F \sqcap v * F) * e * top * e^T * (F * v^T \sqcap -F)
               by (simp add: comp-associative)
         also have ... \leq (-F \sqcap v * F) * (F * v^T \sqcap -F)
               by (smt assms(3) conv-dist-comp mult.semigroup-axioms mult-left-isotone
shunt-bijective symmetric-top-closed top-right-mult-increasing semigroup.assoc)
          also have ... = (-F \sqcap v * F) * ((v * F)^T \sqcap -F)
               by (simp add: assms(1) conv-dist-comp)
          also have ... = (-F \sqcap v * F) * (-F \sqcap v * F)^T
               using assms(1) conv-complement conv-dist-inf by (simp add:
inf.sup-monoid.add-commute)
          also have \dots \leq (-F\sqcap v)^{\star}*(F\sqcap v)^{\star}*(F\sqcap v)^{T\star}*(-F\sqcap v)^{T}
```

```
proof -
     let ?Fv = F \sqcap v
     have -F \sqcap v * F \leq -F \sqcap v * (F \sqcap v)^{T \star} * (F \sqcap v)^{\star}
       using assms(5) inf.sup-right-isotone mult-right-isotone comp-associative
by auto
     also have \dots \leq -F \sqcap v * (F \sqcap v)^*
     proof -
       have v * v^T \leq 1
         \mathbf{by} \ (simp \ add: \ assms(2))
       hence v * v^T * F \leq F
         using assms(1) dual-order.trans mult-left-isotone by blast
       hence v * v^T * F^{T\star} * F^{\star} \leq F
         by (metis assms(1) mult-1-right preorder-idempotent
star.circ-sup-one-right-unfold star.circ-transitive-equal star-one
star-simulation-right-equal\ mult-assoc)
       hence v * (F \sqcap v)^T * F^{T\star} * F^{\star} < F
         by (meson conv-isotone dual-order.trans inf.cobounded2
inf.sup-monoid.add-commute\ mult-left-isotone\ mult-right-isotone)
       hence v * (F \sqcap v)^T * (F \sqcap v)^{T\star} * (F \sqcap v)^{\star} \leq F
         by (meson conv-isotone dual-order.trans inf.cobounded2
inf.sup-monoid.add-commute mult-left-isotone mult-right-isotone comp-isotone
conv-dist-inf inf.cobounded1 star-isotone)
       hence -F \sqcap v * (F \sqcap v)^T * (F \sqcap v)^{T\star} * (F \sqcap v)^{\star} \leq bot
         using eq-iff p-antitone pseudo-complement by auto
       hence (-F \sqcap v * (F \sqcap v)^T * (F \sqcap v)^{T*} * (F \sqcap v)^*) \sqcup v * (v \sqcap F)^* \leq v *
(v \sqcap F)^*
         using bot-least le-bot by fastforce
       hence (-F \sqcup v * (v \sqcap F)^*) \sqcap (v * (F \sqcap v)^T * (F \sqcap v)^{T*} * (F \sqcap v)^* \sqcup v *
(v \sqcap F)^*) \le v * (v \sqcap F)^*
         by (simp add: sup-inf-distrib2)
       hence (-F \sqcup v * (v \sqcap F)^*) \sqcap v * ((F \sqcap v)^T * (F \sqcap v)^{T*} \sqcup 1) * (v \sqcap F)^*
< v * (v \sqcap F)^*
         \mathbf{by}\ (simp\ add:\ inf.sup-monoid.add-commute\ mult.semigroup-axioms
mult-left-dist-sup mult-right-dist-sup semigroup.assoc)
       hence (-F \sqcup v * (v \sqcap F)^*) \sqcap v * (F \sqcap v)^{T^*} * (v \sqcap F)^* \leq v * (v \sqcap F)^*
         by (simp add: star-left-unfold-equal sup-commute)
       hence -F \sqcap v * (F \sqcap v)^{T\star} * (v \sqcap F)^{\star} < v * (v \sqcap F)^{\star}
         using comp-inf.mult-right-sub-dist-sup-left inf.order-lesseg-imp by blast
       \mathbf{thus}~? the sis
         by (simp add: inf.sup-monoid.add-commute)
     qed
     also have ... \leq (v \sqcap -F * (F \sqcap v)^{T\star}) * (F \sqcap v)^{\star}
       by (metis dedekind-2 conv-star-commute inf.sup-monoid.add-commute)
     also have ... \leq (v \sqcap -F * F^{T*}) * (F \sqcap v)^*
       {\bf using} \ conv-isotone \ inf. sup-right-isotone \ mult-left-isotone \ mult-right-isotone
star-isotone by auto
     also have ... = (v \sqcap -F * F) * (F \sqcap v)^*
       by (metis assms(1) equivalence-comp-right-complement mult-left-one
star-one star-simulation-right-equal)
```

```
also have ... = (-F \sqcap v) * (F \sqcap v)^*
        using assms(1) equivalence-comp-right-complement
inf.sup-monoid.add-commute by auto
      finally have -F \sqcap v * F \leq (-F \sqcap v) * (F \sqcap v)^*
     hence (-F \sqcap v * F) * (-F \sqcap v * F)^T \le (-F \sqcap v) * (F \sqcap v)^* * ((-F \sqcap v))^*
* (F \sqcap v)^{\star})^T
        by (simp add: comp-isotone conv-isotone)
      also have ... = (-F \sqcap v) * (F \sqcap v)^* * (F \sqcap v)^{T*} * (-F \sqcap v)^T
        \mathbf{by}\ (simp\ add:\ comp\text{-}associative\ conv\text{-}dist\text{-}comp\ conv\text{-}star\text{-}commute)
      finally show ?thesis
        by simp
    qed
    also have ... \leq (-F \sqcap v) * ((F \sqcap v^*) \sqcup (F \sqcap v^{T*})) * (-F \sqcap v)^T
      have (F \sqcap v)^* * (F \sqcap v)^{T*} < F^* * F^{T*}
        using fc-isotone by auto
      also have ... \leq F * F
        by (metis assms(1) preorder-idempotent star.circ-sup-one-left-unfold
star.circ-transitive-equal star-right-induct-mult)
      finally have 21: (F \sqcap v)^* * (F \sqcap v)^{T*} \leq F
        using assms(1) dual-order.trans by blast
      have (F \sqcap v)^{\star} * (F \sqcap v)^{T \star} \leq v^{\star} * v^{T \star}
        by (simp add: fc-isotone)
      hence (F \sqcap v)^{\star} * (F \sqcap v)^{T\star} \leq F \sqcap v^{\star} * v^{T\star}
        using 21 by simp
      also have \dots = F \sqcap (v^* \sqcup v^{T*})
        by (simp add: assms(2) cancel-separate-eq)
      finally show ?thesis
       by (metis assms(4, 6) comp-associative comp-inf.semiring.distrib-left
comp-isotone inf-pp-semi-commute mult-left-isotone regular-closed-inf)
   also have ... \leq (-F\sqcap v)*(F\sqcap v^{T\star})*(-F\sqcap v)^T\sqcup(-F\sqcap v)*(F\sqcap v^{\star})*
(-F \sqcap v)^T
     by (simp add: mult-left-dist-sup mult-right-dist-sup)
    also have ... \leq (-F \sqcap v) * (-F \sqcap v)^T \sqcup (-F \sqcap v) * (-F \sqcap v)^T
    proof -
      have (-F \sqcap v) * (F \sqcap v^{T*}) \le (-F \sqcap v) * ((F \sqcap v)^{T*} * (F \sqcap v)^* \sqcap v^{T*})
        by (simp add: assms(5) inf.coboundedI1 mult-right-isotone)
      also have ... = (-F \sqcap v) * ((F \sqcap v)^T * (F \sqcap v)^{T*} * (F \sqcap v)^* \sqcap v^{T*}) \sqcup
(-F \sqcap v) * ((F \sqcap v)^* \sqcap v^{T*})
       \mathbf{by}\ (\mathit{metis}\ \mathit{comp-associative}\ \mathit{comp-inf}. \mathit{mult-right-dist-sup}\ \mathit{mult-left-dist-sup}
star.circ-loop-fixpoint)
      also have ... \leq (-F \sqcap v) * (F \sqcap v)^T * top \sqcup (-F \sqcap v) * ((F \sqcap v)^* \sqcap v^{T*})
       by (simp add: comp-associative comp-isotone inf.coboundedI2
inf.sup-monoid.add-commute le-supI1)
      also have ... \leq (-F \sqcap v) * (F \sqcap v)^T * top \sqcup (-F \sqcap v) * (v^* \sqcap v^{T*})
        by (smt comp-inf.mult-right-isotone comp-inf.semiring.add-mono eq-iff
inf.cobounded2 inf.sup-monoid.add-commute mult-right-isotone star-isotone)
```

```
also have ... \leq bot \sqcup (-F \sqcap v) * (v^* \sqcap v^{T*})
       by (metis assms(1, 2) forests-bot-1 comp-associative
comp\text{-}inf.semiring.add\text{-}right\text{-}mono\ mult\text{-}semi\text{-}associative\ vector\text{-}bot\text{-}closed)
     also have \dots \leq -F \sqcap v
       by (simp add: assms(2) acyclic-star-inf-conv)
     finally have 22: (-F \sqcap v) * (F \sqcap v^{T*}) \leq -F \sqcap v
       by simp
     have ((-F \sqcap v) * (F \sqcap v^{T*}))^T = (F \sqcap v^*) * (-F \sqcap v)^T
       by (simp add: assms(1) conv-dist-inf conv-star-commute conv-dist-comp)
     hence (F \sqcap v^*) * (-F \sqcap v)^T \leq (-F \sqcap v)^T
       using 22 conv-isotone by fastforce
     thus ?thesis
       using 22 by (metis assms(4, 6) comp-associative
comp\text{-}inf.pp\text{-}comp\text{-}semi\text{-}commute\ comp\text{-}inf.semiring.add\text{-}mono\ comp\text{-}isotone
inf-pp-commute mult-left-isotone)
   also have ... = (-F \sqcap v) * (-F \sqcap v)^T
     by simp
   also have \dots \leq v * v^T
     \mathbf{by}\ (simp\ add:\ comp\text{-}isotone\ conv\text{-}isotone)
   also have \dots \leq 1
     by (simp \ add: \ assms(2))
   thus ?thesis
     using calculation dual-order.trans by blast
 \mathbf{qed}
 have 3: top * ?i * top = top
 proof -
   have 31: regular (e^T * -F * v * F * e)
     using assms(3, 4, 6) arc-regular regular-mult-closed by auto
   have 32: bijective ((top * e^T)^T)
     using assms(3) by (simp \ add: conv-dist-comp)
   have top * ?i * top = top * (v \sqcap -F * e * top) * ((top * e^T * F)^T \sqcap top)
     by (simp add: comp-associative comp-inf-vector-1)
   also have ... = (top \sqcap (-F * e * top)^T) * v * ((top * e^T * F)^T \sqcap top)
     using comp-inf-vector conv-dist-comp by auto
   also have ... = (-F * e * top)^T * v * (top * e^T * F)^T
     bv simp
   also have \dots = top^T * e^T * -F^T * v * F^T * e^{TT} * top^T
     by (simp add: comp-associative conv-complement conv-dist-comp)
   finally have 33: top * ?i * top = top * e^T * -F * v * F * e * top
     \mathbf{by}\ (simp\ add\colon assms(1))
   have top * ?i * top \neq bot
   proof (rule ccontr)
     assume \neg top * (v \sqcap - F * e * top \sqcap top * e^T * F) * top \neq bot
hence top * e^T * -F * v * F * e * top = bot
       using 33 by auto
     hence e^T * -F * v * F * e = bot
       using 31 tarski comp-associative le-bot by fastforce
     hence top * (-F * v * F * e)^T \le -(e^T)
```

```
by (metis comp-associative conv-complement-sub-leq conv-involutive p-bot
schroeder-5-p)
     hence top * e^T * F^T * v^T * -F^T \le -(e^T)
      by (simp add: comp-associative conv-complement conv-dist-comp)
     hence v * F * e * top * e^T < F
      \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(\mathit{1},\ \mathit{4})\ \mathit{comp\text{-}associative}\ \mathit{conv\text{-}dist\text{-}comp}\ \mathit{schroeder\text{-}3\text{-}p}
symmetric-top-closed)
     hence v * F * e * top * top * e^T \le F
      by (simp add: comp-associative)
     hence v * F * e * top \le F * (top * e^T)^T
       using 32 by (metis shunt-bijective comp-associative conv-involutive)
     hence v * F * e * top \leq F * e * top
      using comp-associative conv-dist-comp by auto
     hence v^* * F * e * top \leq F * e * top
       using comp-associative star-left-induct-mult-iff by auto
     hence e^T * F * e * top < F * e * top
      by (meson assms(9) mult-left-isotone order-trans)
     hence e^T * F * e * top * (e * top)^T \le F
      using 32 shunt-bijective assms(3) mult-assoc by auto
     hence 34: e^{T} * F * e * top * top * e^{T} \leq F
      by (metis conv-dist-comp mult.semigroup-axioms symmetric-top-closed
semigroup.assoc)
     hence e^T \leq F
     proof -
      have e^T \leq e^T * e * e^T
        by (metis conv-involutive ex231c)
      also have \dots \leq e^T * F * e * e^T
        using assms(1) comp-associative mult-left-isotone mult-right-isotone by
fast force
      also have ... \le e^T * F * e * top * top * e^T
        by (simp add: mult-left-isotone top-right-mult-increasing
vector-mult-closed)
      finally show ?thesis
        using 34 by simp
     qed
     hence 35: e < F
      using assms(1) conv-order by fastforce
     have top * (F * e)^T \le -e
       using assms(8) comp-associative schroeder-4-p by auto
     hence top * e^{\hat{T}} * F \leq -e
      by (simp add: assms(1) comp-associative conv-dist-comp)
     hence (top * e^T)^T * e \leq -F
      using schroeder-3-p by auto
     hence e * top * e \le - F
      by (simp add: conv-dist-comp)
     hence e \leq -F
      by (simp add: assms(3) arc-top-arc)
     hence e \leq F \sqcap - F
      using 35 inf.boundedI by blast
```

```
hence e = bot
using bot-unique by auto
thus False
using assms(10) by auto
qed
thus ?thesis
by (metis\ assms(3,\ 4,\ 6)\ arc-regular regular-closed-inf regular-closed-top regular-conv-closed regular-mult-closed semiring.mult-not-zero tarski)
qed
have bijective\ (?i*top) \land bijective\ (?i^T*top)
using 1\ 2\ 3\ arc-expanded by blast
thus ?thesis
by blast
```

# 4.3.3 Comparison of edge weights

In this section we compare the weight of the *selected-edge* with other edges of interest. Theorems 8, 9, 10 and 11 are supporting lemmas. For example, Theorem 8 is used to show that the *selected-edge* has its source inside and its target outside the component it is chosen for.

#### Theorem 8

```
lemma\ e-leq-c-c-complement-transpose-general:
 assumes e = minarc (c * -(c)^T \sqcap g)
   and regular c
  \mathbf{shows}\ e \le c * -(c)^T
proof -
  have e \leq -- (c * - c^T \sqcap g)
    using assms(1) minarc-below order-trans by blast
  also have ... \leq -- (c * - c^T)
   \mathbf{using} \ \mathit{order-lesseq-imp} \ \mathit{pp-isotone-inf} \ \mathbf{by} \ \mathit{blast}
 also have ... = c * - c^T
   using assms(2) regular-mult-closed by auto
 finally show ?thesis
   by simp
\mathbf{qed}
    Theorem 9
lemma x-leq-c-transpose-qeneral:
  assumes forest h
   and vector c
   \textbf{and} \ \ x^T \ * \ top \leq \textit{forest-components}(h) \ * \ e \ * \ top
   and e \leq c * -c^{T}
   and c = forest-components(h) * c
 shows x \leq c^T
proof -
  let ?H = forest\text{-}components h
  have x \leq top * x
```

```
using top-left-mult-increasing by blast
  also have ... \leq (?H * e * top)^T
   using assms(3) conv-dist-comp conv-order by force
  also have ... = top * e^T * ?H
   using assms(1) comp-associative conv-dist-comp forest-components-equivalence
by auto
 also have \dots \leq top * (c * - c^T)^T * ?H
   by (simp add: assms(4) conv-isotone mult-left-isotone mult-right-isotone)
 also have ... = top * (-c * c^T) * ?H
   by (simp add: conv-complement conv-dist-comp)
 also have ... \leq top * c^T * ?H
   by (metis mult-left-isotone top.extremum mult-assoc)
 also have \dots = c^T * ?H
   using assms(1, 2) component-is-vector vector-conv-covector by auto
 also have \dots = c^T
   by (metis assms(1, 5) fch-equivalence conv-dist-comp)
 finally show ?thesis
   by simp
qed
    Theorem 10
\mathbf{lemma}\ x-leq-c-complement-general:
  assumes vector c
   \begin{array}{l} \mathbf{and} \ \ c * \ c^T \leq \textit{forest-components} \ h \\ \mathbf{and} \ \ x \leq c^T \end{array}
   and x \leq -forest-components h
 shows x \leq -c
proof -
 let ?H = forest-components h
 have x \leq -?H \sqcap c^T
   using assms(3, 4) by auto
 also have \dots \le -c
 proof -
   have c \sqcap c^T \leq ?H
     using assms(1, 2) vector-covector by auto
   hence -?H \sqcap c \sqcap c^T < bot
     using inf.sup-monoid.add-assoc p-antitone pseudo-complement by fastforce
   thus ?thesis
     using le-bot p-shunting-swap pseudo-complement by blast
 qed
 finally show ?thesis
   by simp
qed
    Theorem 11
\mathbf{lemma}\ sum\text{-}e\text{-}below\text{-}sum\text{-}x\text{-}when\text{-}outgoing\text{-}same\text{-}component\text{-}general\text{:}}
  assumes e = minarc (c * -(c)^T \sqcap g)
   and regular c
   and forest h
```

```
and vector c
   and x^T * top \leq (forest\text{-}components \ h) * e * top
   and c = (forest\text{-}components \ h) * c
   and c * c^T \leq forest\text{-}components h
   and x \leq - forest-components h \sqcap -- g
   and symmetric q
   and arc x
   and c \neq bot
 shows sum (e \sqcap g) \leq sum (x \sqcap g)
proof -
 let ?H = forest\text{-}components h
 have 1:e \le c * - c^T
   using assms(1, 2) e-leq-c-c-complement-transpose-general by auto
 have 2: x \leq c^T
   using 1 assms(3, 4, 5, 6) x-leq-c-transpose-general by auto
 hence x < -c
   using assms(4, 7, 8) x-leq-c-complement-general inf.boundedE by blast
 hence x \leq -c \sqcap c^T
   using 2 by simp
 hence x \le -c * c^T
   using assms(4) by (simp\ add:\ vector-complement-closed\ vector-covector)
 hence x^T \leq c^{TT} * - c^T
   by (metis conv-complement conv-dist-comp conv-isotone)
 hence \beta: x^T \le c * - c^T
   by simp
 hence x \leq --g
   using assms(8) by auto
 hence x^T \leq --g
   using assms(9) conv-complement conv-isotone by fastforce
 hence x^T \sqcap c * - c^T \sqcap -- g \neq bot
   using 3 by (metis assms(10, 11) comp-inf.semiring.mult-not-zero
conv-dist-comp
        conv-involutive inf.orderE mult-right-zero top.extremum)
 hence x^T \sqcap c * - c^T \sqcap g \neq bot
   using inf.sup-monoid.add-commute pp-inf-bot-iff by auto
 hence sum\ (minarc\ (c*-c^T\sqcap g)\sqcap (c*-c^T\sqcap g))\leq sum\ (x^T\sqcap c*-c^T\sqcap g)
g)
   using assms(10) minarc-min inf.sup-monoid.add-assoc by auto
 hence sum (e \sqcap c * - c^T \sqcap g) \leq sum (x^T \sqcap c * - c^T \sqcap g)
   using assms(1) inf.sup-monoid.add-assoc by auto
 hence sum (e \sqcap g) \leq sum (x^T \sqcap g)
   using 1 3 by (metis inf.orderE)
 hence sum\ (e \sqcap g) \leq sum\ (x \sqcap g)
   using assms(9) sum-symmetric by auto
 thus ?thesis
   by simp
qed
```

 ${\bf lemma}\ sum-e-below-sum-x-when-outgoing-same-component:$ 

```
assumes symmetric g
   and vector j
   and forest h
   and x \leq - forest-components h \sqcap -- g
   and x^T * top \leq forest-components h * selected-edge h j g * top
   and j \neq bot
   and arc x
 shows sum (selected-edge h \ j \ g \ \sqcap \ g) \leq sum \ (x \ \sqcap \ g)
proof -
 let ?e = selected\text{-}edge\ h\ j\ g
 let ?c = choose\text{-}component (forest\text{-}components h) j
 let ?H = forest-components h
 show ?thesis
 proof (rule sum-e-below-sum-x-when-outgoing-same-component-general)
   show ?e = minarc (?c * - ?c^T \sqcap q)
     by simp
 \mathbf{next}
   show regular ?c
     using component-is-regular by auto
 next
   show forest h
     by (simp \ add: \ assms(3))
 next
   show vector ?c
     \mathbf{by}\ (\mathit{simp}\ \mathit{add:}\ \mathit{assms}(2,\ 6)\ \mathit{component-is-vector})
   show x^T * top \le ?H * ?e * top
     by (simp\ add:\ assms(5))
 next
   show ?c = ?H * ?c
     using component-single by auto
 \mathbf{next}
   show ?c * ?c^T \le ?H
     by (simp add: component-is-connected)
   \mathbf{show}\ x \leq -?H \sqcap -- \ g
     using assms(4) by auto
 next
   show symmetric g
     by (simp \ add: \ assms(1))
 next
   show arc x
     by (simp \ add: \ assms(7))
 \mathbf{next}
   show ?c \neq bot
     \mathbf{using}\ assms(2,\ 5\ ,\ 6,\ 7)\ in \textit{f-bot-left le-bot minarc-bot mult-left-zero}
mult-right-zero by fastforce
 qed
```

#### qed

If there is a path in the big-forest from an edge between components, a, to the selected-edge, e, then the weight of e is no greater than the weight of a. This is because either,

- \* the edges a and e are adjacent the same component so that we can use sum-e-below-sum-x-when-outgoing-same-component, or
- \* there is at least one edge between a and e, namely x, the edge incoming to the component that e is outgoing from. The path from a to e is split on x using big-forest-path-split-disj. We show that the weight of e is no greater than the weight of x by making use of lemma sum-e-below-sum-x-when-outgoing-same-component. We define x in a way that we can show that the weight of x is no greater than the weight of x using the invariant. Then, it follows that the weight of x is no greater than the weight of x owing to transitivity.

```
lemma a-to-e-in-bigforest:
  assumes symmetric q
   and f \leq --g
   and vector j
   and forest h
   and big-forest (forest-components h) d
   and f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
   and (\forall a \ b \ . \ bf-between-arcs a \ b \ (forest-components h) \ d \land a \le
-(forest\text{-}components\ h)\ \sqcap --\ g\ \land\ b\leq d\ \longrightarrow\ sum(b\ \sqcap\ g)\leq sum(a\ \sqcap\ g))
   and regular d
   and j \neq bot
   and b = selected\text{-}edge \ h \ j \ g
   and arc a
   and bf-between-arcs a b (forest-components h) (d \sqcup selected-edge \ h \ j \ g)
   and a \leq - forest-components h \sqcap -- g
   and regular h
  shows sum (b \sqcap g) \leq sum (a \sqcap g)
proof -
  let ?p = path f h j g
  let ?e = selected - edge \ h \ j \ g
  let ?F = forest-components f
  let ?H = forest\text{-}components h
  have sum\ (b\sqcap g)\leq sum\ (a\sqcap g)
  proof (cases a^T * top \leq ?H * ?e * top)
   case True
   show a^T * top \leq ?H * ?e * top \Longrightarrow sum (b \sqcap g) \leq sum (a \sqcap g)
   proof-
     have sum \ (?e \sqcap g) \leq sum \ (a \sqcap g)
     proof (rule sum-e-below-sum-x-when-outgoing-same-component)
       show symmetric g
         using assms(1) by auto
```

```
show vector j
        using assms(3) by blast
      show forest h
        by (simp \ add: \ assms(4))
     next
      show a \leq -?H \sqcap -- g
        using assms(13) by auto
      show a^T * top \le ?H * ?e * top
        using True by auto
     \mathbf{next}
      show j \neq bot
        by (simp \ add: \ assms(9))
      show arc a
        by (simp\ add:\ assms(11))
     thus ?thesis
       using assms(10) by auto
   qed
 next
   {f case} False
   \mathbf{show} \neg a^T * top \leq ?H * ?e * top \Longrightarrow sum (b \sqcap g) \leq sum (a \sqcap g)
   proof -
     let ?d' = d \sqcup ?e
     let ?x = d \sqcap top * ?e^T * ?H \sqcap (?H * d^T)^* * ?H * a^T * top
     have 61: arc (?x)
     proof (rule shows-arc-x)
      show big-forest ?H d
        by (simp \ add: \ assms(5))
     next
      show bf-between-arcs a ?e ?H d
      proof -
        have 611: bf-between-arcs a \ b \ ?H \ (d \sqcup b)
          using assms(10, 12) by auto
        have 616: regular h
          using assms(14) by auto
        have regular a
          using 611 bf-between-arcs-def arc-regular by fastforce
        thus ?thesis
          using 616 by (smt big-forest-path-split-disj assms(4, 8, 10, 12)
bf-between-arcs-def fch-equivalence minarc-regular regular-closed-star
regular-conv-closed regular-mult-closed)
      qed
     next
      show (?H * d)^+ \le - ?H
        using assms(5) big-forest-def by blast
```

 $\mathbf{next}$ 

```
\mathbf{show} \neg \ a^T * top \leq ?H * ?e * top
        by (simp add: False)
      show regular a
        using assms(12) bf-between-arcs-def arc-regular by auto
     next
      show regular ?e
        using minarc-regular by auto
     next
      show regular ?H
        using assms(14) pp-dist-star regular-conv-closed regular-mult-closed by
auto
    next
      show regular d
        using assms(8) by auto
     have 62: bijective (a^T * top)
      by (simp \ add: \ assms(11))
     have 63: bijective (?x * top)
      using 61 by simp
     have 64: ?x \le (?H * d^T)^* * ?H * a^T * top
      by simp
     hence ?x * top \le (?H * d^T)^* * ?H * a^T * top
      using mult-left-isotone inf-vector-comp by auto
     hence a^T * top \leq ((?H * d^T)^* * ?H)^T * ?x * top
      using 62 63 64 by (smt bijective-reverse mult-assoc)
     also have ... = ?H * (d * ?H)^* * ?x * top
      using conv-dist-comp conv-star-commute by auto
     also have ... = (?H * d)^* * ?H * ?x * top
      by (simp add: star-slide)
     finally have a^T * top \leq (?H * d)^* * ?H * ?x * top
      by simp
     hence 65: bf-between-arcs a ?x ?H d
      using 61 assms(12) bf-between-arcs-def by blast
     have 66: ?x < d
      by (simp add: inf.sup-monoid.add-assoc)
     hence x-below-a: sum (?x \sqcap g) \leq sum (a \sqcap g)
      using 65 bf-between-arcs-def assms(7, 13) by blast
     have sum \ (?e \sqcap g) \leq sum \ (?x \sqcap g)
     \mathbf{proof}\ (\mathit{rule}\ \mathit{sum-e-below-sum-x-when-outgoing-same-component})
      show symmetric g
        using assms(1) by auto
     next
      show vector j
        using assms(3) by blast
      show forest h
        by (simp \ add: \ assms(4))
```

```
\mathbf{next}
      show ?x \le - ?H \sqcap -- g
      proof -
        have 67: ?x \le - ?H
          using 66 assms(5) big-forest-def order-lesseq-imp by blast
        have ?x \leq d
          by (simp add: conv-isotone inf.sup-monoid.add-assoc)
        also have \dots \leq f \sqcup f^T
        proof -
          have h \sqcup h^T \sqcup d \sqcup d^T = f \sqcup f^T
            by (simp \ add: \ assms(6))
          thus ?thesis
            by (metis (no-types) le-supE sup.absorb-iff2 sup.idem)
        qed
        also have \dots \leq --g
          using assms(1, 2) conv-complement conv-isotone by fastforce
        finally have ?x \le --g
          by simp
        thus ?thesis
          by (simp add: 67)
      \mathbf{qed}
     next
      \mathbf{show} \ ?x^T * top \le ?H * ?e * top
      proof -
        have ?x \le top * ?e^T * ?H
          using inf.coboundedI1 by auto
        hence ?x^T \leq ?H * ?e * top
          using conv-dist-comp conv-dist-inf conv-star-commute inf.orderI
inf. sup-monoid. add-assoc\ inf. sup-monoid. add-commute\ mult-assoc\ \mathbf{by}\ auto
        hence ?x^T * top \le ?H * ?e * top * top
          by (simp add: mult-left-isotone)
        thus ?thesis
          by (simp add: mult-assoc)
      qed
     \mathbf{next}
      show j \neq bot
        by (simp \ add: \ assms(9))
      show arc (?x)
        using 61 by blast
     qed
     hence sum \ (?e \sqcap g) \leq sum \ (a \sqcap g)
      using x-below-a order.trans by blast
     thus ?thesis
      by (simp\ add:\ assms(10))
   qed
 qed
  thus ?thesis
   by simp
```

### 4.3.4 Maintenance of algorithm invariants

In this section, most of the work is done to maintain the invariants of the inner and outer loops of the algorithm. In particular, we use exists-a-w to maintain that f can be extended to a minimum spanning forest.

```
lemma boruvka-exchange-spanning-inv:
  assumes forest v
   and v^{\star} * e^{T} = e^{T}
   and i \leq v \sqcap top * e^T * w^{T\star}
   and arc i
   and arc e
   and v \leq --g
   and w \leq --g
   and e \leq --g
 and components g \le forest-components v
shows i \le (v \sqcap -i)^{T\star} * e^T * top
proof -
  have 1: (v \sqcap -i \sqcap -i^T) * (v^T \sqcap -i \sqcap -i^T) \le 1
   using assms(1) comp-isotone order.trans inf.cobounded1 by blast
  have 2: bijective (i * top) \wedge bijective (e^T * top)
   using assms(4, 5) mult-assoc by auto
  have i \leq v * (top * e^T * w^{T\star})^T
   using assms(3) covector-mult-closed covector-restrict-comp-conv
order-lesseq-imp vector-top-closed by blast
 also have ... \leq v * w^{T \star T} * e^{TT} * top^T
   by (simp add: comp-associative conv-dist-comp)
 also have \dots \leq v * w^* * e * top
   by (simp add: conv-star-commute)
  also have ... = v * w^* * e * e^T * e * top
   using assms(5) arc-eq-1 by (simp add: comp-associative)
  also have \dots \leq v * w^* * e * e^T * top
   \mathbf{by}\ (simp\ add:\ comp\text{-}associative\ mult\text{-}right\text{-}isotone)
  also have ... \leq (--g) * (--g)^* * (--g) * e^T * top
   using assms(6, 7, 8) by (simp \ add: \ comp\text{-}isotone \ star\text{-}isotone)
  also have ... \leq (--g)^* * e^T * top
   by (metis comp-isotone mult-left-isotone star.circ-increasing
star.circ-transitive-equal)
 also have \dots \leq v^{T\star} * v^{\star} * e^{T} * top
   by (simp add: assms(9) mult-left-isotone)
  also have ... \leq v^{T\star} * e^{T} * top
   \mathbf{by}\ (simp\ add:\ assms(2)\ comp\text{-}associative)
  finally have i \leq v^{T\star} * e^T * top
   by simp
 hence i * top \le v^{T*} * e^T * top
   by (metis comp-associative mult-left-isotone vector-top-closed)
 hence e^T * top < v^{T \star T} * i * top
   using 2 by (metis bijective-reverse mult-assoc)
```

```
also have ... = v^* * i * top
   by (simp add: conv-star-commute)
  also have ... \leq (v \sqcap -i \sqcap -i^T)^* * i * top
  proof -
   have \beta: i * top < (v \sqcap -i \sqcap -i^T)^* * i * top
     using star.circ-loop-fixpoint sup-right-divisibility mult-assoc by auto
   have (v \sqcap i) * (v \sqcap -i \sqcap -i^T)^* * i * top \leq i * top * i * top
     by (metis comp-isotone inf.cobounded1 inf.sup-monoid.add-commute
mult-left-isotone top.extremum)
   also have ... \leq i * top
     by simp
   finally have 4: (v \sqcap i) * (v \sqcap -i \sqcap -i^T)^* * i * top \leq (v \sqcap -i \sqcap -i^T)^* * i *
top
     using 3 dual-order.trans by blast
   have 5: (v \sqcap -i \sqcap -i^T) * (v \sqcap -i \sqcap -i^T)^* * i * top < (v \sqcap -i \sqcap -i^T)^* * i *
top
     by (metis mult-left-isotone star.circ-increasing star.left-plus-circ)
   have v^+ \leq -1
     by (simp \ add: \ assms(1))
   hence v * v \leq -1
     by (metis mult-left-isotone order-trans star.circ-increasing
star.circ-plus-same)
   hence v * 1 \leq -v^T
     \mathbf{by}\ (simp\ add:\ schroeder\text{-}5\text{-}p)
   hence v \leq -v^T
     by simp
   hence v \sqcap v^T \leq bot
     by (simp add: bot-unique pseudo-complement)
   hence 7: v \sqcap i^T \leq bot
     \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(3)\ \mathit{comp-inf.mult-right-isotone}\ \mathit{conv-dist-inf}\ \mathit{inf.bounded}E
inf.le-iff-sup le-bot)
   hence (v \sqcap i^T) * (v \sqcap -i \sqcap -i^T)^* * i * top \leq bot
     using le-bot semiring.mult-zero-left by fastforce
   hence 6: (v \sqcap i^T) * (v \sqcap -i \sqcap -i^T)^* * i * top \leq (v \sqcap -i \sqcap -i^T)^* * i * top
     using bot-least le-bot by blast
   have 8: v = (v \sqcap i) \sqcup (v \sqcap i^T) \sqcup (v \sqcap -i \sqcap -i^T)
   proof -
     have 81: regular i
       by (simp add: assms(4) arc-regular)
     have (v \sqcap i^T) \sqcup (v \sqcap -i \sqcap -i^T) = (v \sqcap -i)
       using 7 by (metis comp-inf.coreflexive-comp-inf-complement inf-import-p
inf-p le-bot maddux-3-11-pp top.extremum)
     hence (v \sqcap i) \sqcup (v \sqcap i^T) \sqcup (v \sqcap -i \sqcap -i^T) = (v \sqcap i) \sqcup (v \sqcap -i)
       by (simp add: sup.semigroup-axioms semigroup.assoc)
     also have \dots = v
       using 81 by (metis maddux-3-11-pp)
     finally show ?thesis
       by simp
   qed
```

```
have (v \sqcap i) * (v \sqcap -i \sqcap -i^T)^* * i * top \sqcup (v \sqcap i^T) * (v \sqcap -i \sqcap -i^T)^* * i *
top \sqcup (v \sqcap -i \sqcap -i^T) * (v \sqcap -i \sqcap -i^T)^* * i * top \leq (v \sqcap -i \sqcap -i^T)^* * i * top
      using 4 5 6 by simp
   \mathbf{hence}\ ((v\sqcap i)\sqcup (v\sqcap i^T)\sqcup (v\sqcap -i\sqcap -i^T))*(v\sqcap -i\sqcap -i^T)^{\star}*i*top<
(v \sqcap -i \sqcap -i^T)^* * i * top
      by (simp add: mult-right-dist-sup)
   hence v * (v \sqcap -i \sqcap -i^T)^* * i * top \leq (v \sqcap -i \sqcap -i^T)^* * i * top
      using 8 by auto
   hence i * top \sqcup v * (v \sqcap -i \sqcap -i^T)^* * i * top \leq (v \sqcap -i \sqcap -i^T)^* * i * top
      using 3 by auto
   hence 9:v^{\star}*(v\sqcap -i\sqcap -i^{T})^{\star}*i*top \leq (v\sqcap -i\sqcap -i^{T})^{\star}*i*top
      by (simp add: star-left-induct-mult mult-assoc)
   have v^* * i * top \le v^* * (v \sqcap -i \sqcap -i^T)^* * i * top
      using 3 mult-right-isotone mult-assoc by auto
   thus ?thesis
      using 9 order.trans by blast
  qed
  finally have e^T * top \le (v \sqcap -i \sqcap -i^T)^* * i * top
   by simp
  hence i * top \leq (v \sqcap -i \sqcap -i^T)^{\star T} * e^T * top
    using 2 by (metis bijective-reverse mult-assoc)
  also have ... = (v^T \sqcap -i \sqcap -i^T)^* * e^T * top
   using comp-inf.inf-vector-comp conv-complement conv-dist-inf
conv-star-commute inf.sup-monoid.add-commute by auto
  also have ... \leq ((v \sqcap -i \sqcap -i^T) \sqcup (v^T \sqcap -i \sqcap -i^T))^* * e^T * top
   by (simp add: mult-left-isotone star-isotone)
  finally have i \leq ((v^T \sqcap -i \sqcap -i^T) \sqcup (v \sqcap -i \sqcap -i^T))^* * e^T * top
   {\bf using} \ dual\text{-}order.trans \ top\text{-}right\text{-}mult\text{-}increasing \ sup\text{-}commute \ {\bf by} \ auto
  also have ... = (v^T \sqcap -i \sqcap -i^T)^* * (v \sqcap -i \sqcap -i^T)^* * e^T * top
   using 1 cancel-separate-1 by (simp add: sup-commute)
  also have ... \leq (v^T \sqcap -i \sqcap -i^T)^* * v^* * e^T * top
   by (simp add: inf-assoc mult-left-isotone mult-right-isotone star-isotone)
  also have ... = (v^T \sqcap -i \sqcap -i^T)^* * e^T * top
   using assms(2) mult-assoc by simp
  also have ... \leq (v^T \sqcap -i^T)^* * e^T * top
   by (metis mult-left-isotone star-isotone inf.cobounded2 inf.left-commute
inf.sup-monoid.add-commute)
  also have ... = (v \sqcap -i)^{T\star} * e^T * tov
    using conv-complement conv-dist-inf by auto
  finally show ?thesis
   by simp
qed
lemma exists-a-w:
  assumes symmetric g
   and forest f
   and f \leq --g
   and regular f
   and (\exists w \ . \ minimum\text{-spanning-forest} \ w \ g \land f \leq w \sqcup w^T)
```

```
and vector j
   and regular j
   and forest h
   and forest-components h \leq forest-components f
   and big-forest (forest-components h) d
   and d * top \le -j
   and forest-components h * j = j
   and forest-components f = (forest-components \ h * (d \sqcup d^T))^* *
forest-components h
   and f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
   and (\forall \ a \ b \ . \ bf\text{-}between\text{-}arcs \ a \ b \ (forest\text{-}components \ h) \ d \ \land \ a \le
-(forest\text{-}components\ h)\ \sqcap --\ g\ \land\ b\leq d\longrightarrow sum(b\ \sqcap\ g)\leq sum(a\ \sqcap\ g))
   and regular d
   and selected-edge h \ j \ g \le - forest-components f
   and selected-edge h j q \neq bot
   and j \neq bot
   and regular h
   and h \leq --g
  shows \exists w. minimum-spanning-forest w \ g \land 
   f \sqcap - (selected\text{-}edge\ h\ j\ g)^T \sqcap - (path\ f\ h\ j\ g) \sqcup (f \sqcap - (selected\text{-}edge\ h\ j\ g)^T
\sqcap (path \ f \ h \ j \ g))^T \sqcup (selected\text{-}edge \ h \ j \ g) \leq w \sqcup w^T
proof -
  let ?p = path f h j g
  let ?e = selected\text{-}edge\ h\ j\ g
 let ?f = (f \sqcap -?e^T \sqcap -?p) \sqcup (f \sqcap -?e^T \sqcap ?p)^T \sqcup ?e
  let ?F = forest\text{-}components f
 let ?H = forest-components h
  let ?ec = choose\text{-}component (forest\text{-}components h) j * - choose\text{-}component
(forest-components h) j^T \sqcap g
 from assms(4) obtain w where 2: minimum-spanning-forest w \ g \land f \le w \sqcup w^T
   using assms(5) by blast
  hence 3: regular w \wedge regular f \wedge regular?e
   by (metis assms(4) minarc-regular minimum-spanning-forest-def
spanning-forest-def)
  have 5: equivalence ?F
   using assms(2) forest-components-equivalence by auto
 have ?e^T * top * ?e^T = ?e^T
   \mathbf{by}\ (\mathit{metis}\ \mathit{arc\text{-}conv\text{-}closed}\ \mathit{arc\text{-}top\text{-}arc}\ \mathit{coreflexive\text{-}bot\text{-}closed}
coreflexive-symmetric minarc-arc minarc-bot-iff semiring.mult-not-zero)
  hence ?e^T * top * ?e^T \le -?F
    using 5 assms(17) conv-complement conv-isotone by fastforce
  hence 6: ?e * ?F * ?e = bot
   using assms(2) le-bot triple-schroeder-p by simp
  let ?q = w \sqcap top * ?e * w^{T*}
  let ?v = (w \sqcap -(top * ?e * w^{T\star})) \sqcup ?q^{T}
  have 7: regular ?q
   using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto
  have 8: injective ?v
  proof (rule kruskal-exchange-injective-inv-1)
```

```
show injective w
     using 2 minimum-spanning-forest-def spanning-forest-def by blast
   show covector (top * ?e * w^{T\star})
     by (simp add: covector-mult-closed)
   show top * ?e * w^{T\star} * w^T \le top * ?e * w^{T\star}
     by (simp add: mult-right-isotone star.right-plus-below-circ mult-assoc)
  next
   show coreflexive ((top * ?e * w^{T\star})^T * (top * ?e * w^{T\star}) \sqcap w^T * w)
     using 2 by (metis comp-inf.semiring.mult-not-zero forest-bot
kruskal-injective-inv-3 minarc-arc minarc-bot-iff minimum-spanning-forest-def
semiring.mult-not-zero spanning-forest-def)
  qed
 have 9: components g \leq forest-components ?v
 proof (rule kruskal-exchange-spanning-inv-1)
   \mathbf{show} \ \textit{injective} \ (w \ \sqcap \ - \ (top \ *?e \ * \ w^{T \, \star}) \ \sqcup \ (w \ \sqcap \ top \ * \ ?e \ * \ w^{T \, \star})^T)
     using 8 by simp
   show regular (w \sqcap top * ?e * w^{T\star})
     using 7 by simp
  \mathbf{next}
   show components g \leq forest-components w
     using 2 minimum-spanning-forest-def spanning-forest-def by blast
 \mathbf{qed}
 have 10: spanning-forest ?v g
  proof (unfold spanning-forest-def, intro conjI)
   show injective ?v
     using 8 by auto
 next
   show acyclic ?v
   proof (rule kruskal-exchange-acyclic-inv-1)
     show pd-kleene-allegory-class.acyclic w
       using 2 minimum-spanning-forest-def spanning-forest-def by blast
   \mathbf{next}
     show covector (top * ?e * w^{T\star})
       by (simp add: covector-mult-closed)
   qed
  next
   show ?v \leq --q
   proof (rule sup-least)
     show w \sqcap - (top * ?e * w^{T*}) \le - - g
      using 7 inf.coboundedI1 minimum-spanning-forest-def spanning-forest-def 2
by blast
   next
     show (w \sqcap top * ?e * w^{T\star})^T \leq --g
      using 2 by (metis assms(1) conv-complement conv-isotone inf.coboundedI1
minimum-spanning-forest-def spanning-forest-def)
   qed
```

```
next
   show components g \leq forest-components ?v
     using 9 by simp
  next
   show regular ?v
     using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto
  qed
 have 11: sum (?v \sqcap g) = sum (w \sqcap g)
 proof -
   have sum\ (?v \sqcap g) = sum\ (w \sqcap -(top * ?e * w^{T*}) \sqcap g) + sum\ (?q^T \sqcap g)
     using 2 by (smt conv-complement conv-top epm-8 inf-import-p inf-top-right
regular-closed-top vector-top-closed minimum-spanning-forest-def
spanning-forest-def sum-disjoint)
   also have ... = sum (w \sqcap -(top * ?e * w^{T*}) \sqcap g) + sum (?q \sqcap g)
     by (simp add: assms(1) sum-symmetric)
   also have ... = sum (((w \sqcap -(top * ?e * w^{T*})) \sqcup ?q) \sqcap q)
     using inf-commute inf-left-commute sum-disjoint by simp
   also have ... = sum (w \sqcap g)
     using 3 7 8 maddux-3-11-pp by auto
   finally show ?thesis
     by simp
 \mathbf{qed}
 have 12: ?v \sqcup ?v^T = w \sqcup w^T
 proof -
   have ?v \sqcup ?v^T = (w \sqcap -?q) \sqcup ?q^T \sqcup (w^T \sqcap -?q^T) \sqcup ?q
     using conv-complement conv-dist-inf conv-dist-sup inf-import-p sup-assoc by
simp
   also have ... = w \sqcup w^T
     using 3 7 conv-complement conv-dist-inf inf-import-p maddux-3-11-pp
sup-monoid.add-assoc sup-monoid.add-commute by auto
   finally show ?thesis
     by simp
 qed
 have 13: ?v * ?e^T = bot
 proof (rule kruskal-reroot-edge)
   show injective (?e^T * top)
     using assms(18) minarc-arc minarc-bot-iff by blast
   show pd-kleene-allegory-class.acyclic w
     \mathbf{using} \ \textit{2} \ minimum-spanning-forest-def} \ \mathbf{by} \ simp
 qed
 have ?v \sqcap ?e \leq ?v \sqcap top * ?e
   using inf.sup-right-isotone top-left-mult-increasing by simp
 also have ... \leq ?v * (top * ?e)^T
   using covector-restrict-comp-conv covector-mult-closed vector-top-closed by
simp
  finally have 14: ?v \sqcap ?e = bot
   using 13 by (metis conv-dist-comp mult-assoc le-bot mult-left-zero)
 let ?i = ?v \sqcap (-?F) * ?e * top \sqcap top * ?e^T * ?F
```

```
let ?w = (?v \sqcap -?i) \sqcup ?e
  have 15: regular ?i
   using 3 regular-closed-star regular-conv-closed regular-mult-closed by simp
  have 16: ?F \le -?i
  proof -
   have 161: bijective (?e * top)
     using assms(18) minarc-arc minarc-bot-iff by auto
   have ?i \le - ?F * ?e * top
     using inf.cobounded2 inf.coboundedI1 by blast
   also have ... = - (?F * ?e * top)
     using 161 comp-bijective-complement by (simp add: mult-assoc)
   finally have ?i \le - (?F * ?e * top)
     by blast
   hence 162: ?i \sqcap ?F \le - (?F * ?e * top)
     using inf.coboundedI1 by blast
   have ?i \sqcap ?F \leq ?F \sqcap (top * ?e^T * ?F)
     by (meson inf-le1 inf-le2 le-infI order-trans)
   also have ... \leq ?F * (top * ?e^T * ?F)^T
     \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{covector\text{-}mult\text{-}}\mathit{closed}\ \mathit{covector\text{-}restrict\text{-}}\mathit{comp\text{-}}\mathit{conv})
   also have \dots = ?F * ?F^T * ?e^{TT} * top^T
     by (simp add: conv-dist-comp mult-assoc)
   also have \dots = ?F * ?F * ?e * top
     by (simp add: conv-dist-comp conv-star-commute)
   also have \dots = ?F * ?e * top
     by (simp add: 5 preorder-idempotent)
   finally have ?i \sqcap ?F \leq ?F * ?e * top
   hence ?i \sqcap ?F < ?F * ?e * top \sqcap - (?F * ?e * top)
     using 162 inf.bounded-iff by blast
   also have \dots = bot
     by simp
   finally show ?thesis
     using le-bot p-antitone-iff pseudo-complement by blast
  have 17: ?i \leq top * ?e^T * (?F \sqcap ?v \sqcap -?i)^{T*}
  proof -
   have ?i < ?v \sqcap - ?F * ?e * top \sqcap top * ?e^T * (?F \sqcap ?v)^{T*} * (?F \sqcap ?v)^*
     using 2 8 12 by (smt inf.sup-right-isotone kruskal-forest-components-inf
mult-right-isotone mult-assoc)
   also have ... = ?v \sqcap - ?F * ?e * top \sqcap top * ?e^T * (?F \sqcap ?v)^{T*} * (1 \sqcup (?F))^{T*}
\sqcap ?v)^* * (?F \sqcap ?v))
     using star-left-unfold-equal star.circ-right-unfold-1 by auto
   also have ... = ?v \sqcap - ?F * ?e * top \sqcap (top * ?e^T * (?F \sqcap ?v)^{T*} \sqcup top *
?e^T * (?F \sqcap ?v)^{T\star} * (?F \sqcap ?v)^{\star} * (?F \sqcap ?v))
     by (simp add: mult-left-dist-sup mult-assoc)
   also have ... = (?v \sqcap - ?F * ?e * top \sqcap top * ?e^T * (?F \sqcap ?v)^{T*}) \sqcup (?v \sqcap -
?F * ?e * top \sqcap top * ?e^T * (?F \sqcap ?v)^{T*} * (?F \sqcap ?v)^* * (?F \sqcap ?v))
     \mathbf{using}\ comp\text{-}inf.semiring.distrib\text{-}left\ \mathbf{by}\ blast
   also have ... \leq top * ?e^{T} * (?F \sqcap ?v)^{T*} \sqcup (?v \sqcap - ?F * ?e * top \sqcap top *
```

```
?e^T * (?F \sqcap ?v)^{T*} * (?F \sqcap ?v)^* * (?F \sqcap ?v))
     using comp-inf.semiring.add-right-mono inf-le2 by blast
   also have ... \leq top * ?e^{T} * (?F \sqcap ?v)^{T*} \sqcup (?v \sqcap - ?F * ?e * top \sqcap top *
?e^T * (?F^T \sqcap ?v^T)^* * (?F \sqcap ?v)^* * (?F \sqcap ?v))
     by (simp add: conv-dist-inf)
   ?e^T * ?F^{T\star} * ?F^{\star} * (?F \sqcap ?v))
     have top * ?e^T * (?F^T \sqcap ?v^T)^* * (?F \sqcap ?v)^* * (?F \sqcap ?v) \leq top * ?e^T *
?F^{T\star} * ?F^{\star} * (?F \sqcap ?v)
       using star-isotone by (simp add: comp-isotone)
     hence ?v \sqcap - ?F * ?e * top \sqcap top * ?e^T * (?F^T \sqcap ?v^T)^* * (?F \sqcap ?v)^* *
(?F \sqcap ?v) \leq ?v \sqcap - ?F * ?e * top \sqcap top * ?e^T * ?F^T * ?F^* * (?F \sqcap ?v)
      using inf.sup-right-isotone by blast
     thus ?thesis
       using sup-right-isotone by blast
   also have ... = top * ?e^T * (?F \sqcap ?v)^{T*} \sqcup (?v \sqcap - ?F * ?e * top \sqcap top *
?e^T * ?F^* * ?F^* * (?F \sqcap ?v))
     using 5 by auto
   also have ... = top * ?e^T * (?F \sqcap ?v)^{T*} \sqcup (?v \sqcap - ?F * ?e * top \sqcap top *
?e^T * ?F * ?F * (?F \sqcap ?v))
     by (simp \ add: \ assms(2) \ forest-components-star)
   also have ... = top * ?e^{T} * (?F \sqcap ?v)^{T*} \sqcup (?v \sqcap - ?F * ?e * top \sqcap top *
?e^T * ?F * (?F \sqcap ?v))
     using 5 mult.semigroup-axioms preorder-idempotent semigroup.assoc by
fastforce
   also have ... = top * ?e^T * (?F \sqcap ?v)^{T*}
   proof -
     have ?e * top * ?e^T \le 1
       using assms(18) arc-expanded minarc-arc minarc-bot-iff by auto
     hence ?F * ?e * top * ?e^T \le ?F * 1
       by (metis comp-associative comp-isotone mult-semi-associative
star.circ-transitive-equal)
     hence ?v * ?v^T * ?F * ?e * top * ?e^T \le 1 * ?F * 1
       using 8 by (smt comp-isotone mult-assoc)
     hence 171: ?v * ?v^T * ?F * ?e * top * ?e^T < ?F
     hence ?v * (?F \sqcap ?v)^T * ?F * ?e * top * ?e^T < ?F
      have ?v * (?F \sqcap ?v)^T * ?F * ?e * top * ?e^T \le ?v * ?v^T * ?F * ?e * top *
?e^{T}
        by (simp add: conv-dist-inf mult-left-isotone mult-right-isotone)
       thus ?thesis
        using 171 order-trans by blast
     hence 172: -?F * ((?F \sqcap ?v)^T * ?F * ?e * top * ?e^T)^T < -?v
       by (smt schroeder-4-p comp-associative order-lesseg-imp pp-increasing)
     have -?F * ((?F \sqcap ?v)^T * ?F * ?e * top * ?e^T)^T = -?F * ?e^{TT} * top^T *
```

```
?e^T * ?F^T * (?F \sqcap ?v)^{TT}
       by (simp add: comp-associative conv-dist-comp)
     also have ... = -?F * ?e * top * ?e^T * ?F * (?F \sqcap ?v)
       using 5 by auto
     also have ... = -?F * ?e * top * top * ?e^T * ?F * (?F \sqcap ?v)
       using comp-associative by auto
     also have ... = -?F * ?e * top \sqcap top * ?e^T * ?F * (?F \sqcap ?v)
       by (smt comp-associative comp-inf.star.circ-decompose-9
comp-inf.star-star-absorb comp-inf-covector inf-vector-comp vector-top-closed)
     finally have -?F * ((?F \sqcap ?v)^T * ?F * ?e * top * ?e^T)^T = -?F * ?e * top
\sqcap top * ?e^T * ?F * (?F \sqcap ?v)
      by simp
     hence -?F * ?e * top \sqcap top * ?e^T * ?F * (?F \sqcap ?v) < -?v
       using 172 by auto
     hence ?v \sqcap -?F * ?e * top \sqcap top * ?e^T * ?F * (?F \sqcap ?v) < bot
       by (smt bot-unique inf.sup-monoid.add-commute p-shunting-swap
pseudo-complement)
     thus ?thesis
       using le-bot sup-monoid.add-0-right by blast
   also have ... = top * ?e^T * (?F \sqcap ?v \sqcap -?i)^{T\star}
     using 16 by (smt comp-inf.coreflexive-comp-inf-complement inf-top-right
p-bot pseudo-complement top.extremum)
   finally show ?thesis
     by blast
 qed
 have 18: ?i < top * ?e^T * ?w^{T\star}
 proof -
   have ?i \le top * ?e^T * (?F \sqcap ?v \sqcap -?i)^{T*}
     using 17 by simp
   also have \dots \leq top * ?e^T * (?v \sqcap -?i)^{T*}
     using mult-right-isotone conv-isotone star-isotone inf.cobounded2
inf.sup-monoid.add-assoc by (simp add: inf.sup-monoid.add-assoc eq-iff
inf.sup-monoid.add-commute)
   also have ... \leq top * ?e^T * ((?v \sqcap -?i) \sqcup ?e)^{T*}
     using mult-right-isotone conv-isotone star-isotone sup-qe1 by simp
   finally show ?thesis
     by blast
  qed
  have 19: ?i < top * ?e^T * ?v^{T*}
 proof -
   have ?i \le top * ?e^T * (?F \sqcap ?v \sqcap -?i)^{T\star}
     using 17 by simp
   also have \dots \leq top * ?e^T * (?v \sqcap -?i)^{T\star}
     \mathbf{using} \ \mathit{mult-right-isotone} \ \mathit{conv-isotone} \ \mathit{star-isotone} \ \mathit{inf.cobounded2}
inf.sup-monoid.add-assoc by (simp add: inf.sup-monoid.add-assoc eq-iff
inf.sup-monoid.add-commute)
   also have \dots \leq top * ?e^{T} * (?v)^{T*}
     using mult-right-isotone conv-isotone star-isotone by auto
```

```
finally show ?thesis
                \mathbf{by} blast
     qed
     have 20: f \sqcup f^T \leq (?v \sqcap -?i \sqcap -?i^T) \sqcup (?v^T \sqcap -?i \sqcap -?i^T)
     proof (rule kruskal-edge-between-components-2)
          show ?F < - ?i
                using 16 by simp
     next
          show injective f
                by (simp \ add: \ assms(2))
     next
          show f \sqcup f^T \leq w \sqcap - (top * ?e * w^{T\star}) \sqcup (w \sqcap top * ?e * w^{T\star})^T \sqcup (w \sqcap - w)^T \sqcup (w \sqcap top * ?e * w)^T \sqcup (w \sqcap top * w)^T \sqcup (w 
(top * ?e * w^{T\star}) \sqcup (w \sqcap top * ?e * w^{T\star})^T)^T
               using 2 12 by (metis conv-dist-sup conv-involutive conv-isotone le-supI
sup\text{-}commute)
     qed
     have minimum-spanning-forest ?w q \land ?f < ?w \sqcup ?w^T
     proof (intro conjI)
          have 211: ?e^T \leq ?v^*
          proof (rule kruskal-edge-arc-1[where g=g and h=?ec])
               show ?e \le -- ?ec
                     using minarc-below by blast
          next
               show ?ec \leq g
                     using assms(4) inf.cobounded2 by (simp add: boruvka-inner-invariant-def
boruvka-outer-invariant-def conv-dist-inf)
          next
               show symmetric q
                     by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def)
               show components g \leq forest-components (w \sqcap - (top * ?e * w^{T*}) \sqcup (w \sqcap e^{T*}))
top * ?e * w^{T\star})^T
                     using 9 by simp
                show (w \sqcap - (top * ?e * w^{T*}) \sqcup (w \sqcap top * ?e * w^{T*})^T) * ?e^T = bot
                     using 13 by blast
          qed
          have 212: arc ?i
          proof (rule boruvka-edge-arc)
               show equivalence ?F
                     by (simp add: 5)
          next
                show forest ?v
                     using 10 spanning-forest-def by blast
          next
                show arc ?e
                     using assms(18) minarc-arc minarc-bot-iff by blast
          next
```

```
show regular ?F
       \mathbf{using} \ \textit{3} \ \textit{regular-closed-star} \ \textit{regular-conv-closed} \ \textit{regular-mult-closed} \ \mathbf{by} \ \textit{auto}
      show ?F \leq forest\text{-}components (?F \sqcap ?v)
       by (simp add: 12 2 8 kruskal-forest-components-inf)
     show regular ?v
       using 10 spanning-forest-def by blast
     \mathbf{show} \ ?v * ?e^T = bot
       using 13 by auto
     show ?e * ?F * ?e = bot
       by (simp add: 6)
   \mathbf{next}
      show ?e^T < ?v^*
       using 211 by auto
   next
      show ?e \neq bot
       by (simp \ add: \ assms(18))
   \mathbf{qed}
   show minimum-spanning-forest ?w g
    \begin{array}{l} \textbf{proof} \; (\textit{unfold minimum-spanning-forest-def}, \; \textit{intro conjI}) \\ \textbf{have} \; (?v \; \sqcap -?i) \; * \; ?e^T \leq ?v \; * \; ?e^T \\ \end{array} 
        using inf-le1 mult-left-isotone by simp
      hence (?v \sqcap -?i) * ?e^T = bot
       using 13 le-bot by simp
      hence 221: ?e * (?v \sqcap -?i)^T = bot
       using conv-dist-comp conv-involutive conv-bot by force
      have 222: injective ?w
      proof (rule injective-sup)
       show injective (?v \sqcap -?i)
         using 8 by (simp add: injective-inf-closed)
       show coreflexive (?e * (?v \sqcap -?i)^T)
         using 221 by simp
      next
       show injective ?e
         by (metis arc-injective minarc-arc coreflexive-bot-closed
coreflexive-injective minarc-bot-iff)
      qed
      show spanning-forest ?w g
      proof (unfold spanning-forest-def, intro conjI)
       {f show} injective ?w
         using 222 by simp
      next
       show acyclic ?w
       proof (rule kruskal-exchange-acyclic-inv-2)
```

```
show acyclic ?v
          using 10 spanning-forest-def by blast
       \mathbf{next}
        show injective ?v
          using 8 by simp
      \mathbf{next}
        show ?i \leq ?v
          using inf.coboundedI1 by simp
        show bijective (?i^T * top)
          using 212 by simp
        show bijective (?e * top)
          using 14 212 by (smt assms(4) comp-inf.idempotent-bot-closed
conv\text{-}complement\ minarc\text{-}arc\ minarc\text{-}bot\text{-}iff\ p\text{-}bot\ regular\text{-}closed\text{-}bot
semiring.mult-not-zero symmetric-top-closed)
       next
        show ?i \le top * ?e^T *?v^{T*}
          using 19 by simp
        \mathbf{show} \ ?v * ?e^T * top = bot
          using 13 by simp
       qed
     next
       have ?w \le ?v \sqcup ?e
        using inf-le1 sup-left-isotone by simp
       also have \dots \leq --g \sqcup ?e
        using 10 sup-left-isotone spanning-forest-def by blast
       also have ... \leq --g \sqcup --h
       proof -
        have 1: --g \leq --g \sqcup --h
          by simp
        have 2: ?e \leq --g \sqcup --h
          by (metis inf.coboundedI1 inf.sup-monoid.add-commute minarc-below
order.trans p-dist-inf p-dist-sup sup.cobounded1)
        thus ?thesis
          using 1 2 by simp
       qed
       also have \dots \leq --g
          using assms(20, 21) by auto
       finally show ?w \le --g
        by simp
     next
      have 223: ?i \le (?v \sqcap -?i)^{T*} * ?e^{T} * top
       proof (rule boruvka-exchange-spanning-inv)
        show forest ?v
          using 10 spanning-forest-def by blast
        show ?v^* * ?e^T = ?e^T
```

```
using 13 by (smt conv-complement conv-dist-comp conv-involutive
conv-star-commute dense-pp fc-top regular-closed-top star-absorb)
        show ?i \leq ?v \sqcap top * ?e^T * ?w^{T\star}
          using 18 inf.sup-monoid.add-assoc by auto
      \mathbf{next}
        show arc ?i
          using 212 by blast
      next
        show arc ?e
          using assms(18) minarc-arc minarc-bot-iff by auto
        show ?v \leq --g
          using 10 spanning-forest-def by blast
        show ?w < --q
        proof -
          have 2231: ?e \le --g
           by (metis inf.boundedE minarc-below pp-dist-inf)
          have ?w \leq ?v \sqcup ?e
           using inf-le1 sup-left-isotone by simp
          also have \dots \leq --g
           using 2231 10 spanning-forest-def sup-least by blast
          finally show ?thesis
           \mathbf{by} blast
        qed
      next
        show ?e \leq --q
         by (metis inf.boundedE minarc-below pp-dist-inf)
      next
        show components g \leq forest-components ?v
          by (simp \ add: 9)
      qed
      have components g \leq forest-components ?v
        using 10 spanning-forest-def by auto
      also have \dots \leq forest-components ?w
      proof (rule kruskal-exchange-forest-components-inv)
        show injective ((?v \sqcap -?i) \sqcup ?e)
          using 222 by simp
      next
        show regular ?i
         using 15 by simp
      next
        show ?e * top * ?e = ?e
         by (metis arc-top-arc minarc-arc minarc-bot-iff semiring.mult-not-zero)
        \mathbf{show} \ ?i \le top * ?e^T * ?v^{T\star}
         using 19 by blast
```

```
show ?v * ?e^T * top = bot
            using 13 by simp
          show injective ?v
            using 8 by simp
        \mathbf{next}
          show ?i \leq ?v
            by (simp add: le-infI1)
          show ?i \leq (?v \sqcap -?i)^{T\star} * ?e^{T} * top
            using 223 by blast
        qed
        finally show components g \leq forest-components ?w
      next
        \mathbf{show} \ \mathit{regular} \ ?w
          using 3 7 regular-conv-closed by simp
      qed
    next
      have 224: ?e \sqcap g \neq bot
       using assms(18) inf.left-commute inf-bot-right minarc-meet-bot by fastforce
      have 225: sum \ (?e \sqcap g) \leq sum \ (?i \sqcap g)
      proof (rule a-to-e-in-bigforest)
        show symmetric g
          \mathbf{using}\ assms(1)\ boruvka\text{-}inner\text{-}invariant\text{-}def\ boruvka\text{-}outer\text{-}invariant\text{-}def
by auto
      next
        show j \neq bot
          by (simp \ add: \ assms(19))
        show f \leq --g
          by (simp \ add: \ assms(3))
        show vector j
          using assms(6) boruvka-inner-invariant-def by blast
      next
        show forest h
          by (simp \ add: \ assms(8))
        show big-forest (forest-components h) d
          by (simp \ add: \ assms(10))
        \mathbf{show}\ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
          by (simp \ add: \ assms(14))
        \mathbf{show} \ \forall \ a \ b. \ \textit{bf-between-arcs} \ a \ b \ (\textit{?H}) \ d \ \land \ a \leq - \ \textit{?H} \ \sqcap - - \ g \ \land \ b \leq d \longrightarrow
sum\ (b\sqcap g)\leq sum\ (a\sqcap g)
          by (simp \ add: \ assms(15))
```

```
\mathbf{next}
              show regular d
                  using assms(16) by auto
              show ?e = ?e
                  by simp
           \mathbf{next}
              show arc ?i
                  using 212 by blast
              show bf-between-arcs ?i ?e ?H (d \sqcup ?e)
              proof -
                  have d^T * ?H * ?e = bot
                     using assms(6, 7, 11, 12, 19) dT-He-eq-bot le-bot by blast
                  hence 251: d^T * ?H * ?e < (?H * d)^* * ?H * ?e
                  hence d^T * ?H * ?H * ?e < (?H * d)^* * ?H * ?e
                     by (metis assms(8) forest-components-star star.circ-decompose-9
mult-assoc)
                  hence d^T * (?H * d)^* * ?H * ?e \le (?H * d)^* * ?H * ?e
                  proof -
                     have d^T * ?H * d \leq 1
                         using assms(10) big-forest-def dTransHd-le-1 by blast
                      hence d^T * ?H * d * (?H * d)^* * ?H * ?e \le (?H * d)^* * ?H * ?e
                         by (metis mult-left-isotone star.circ-circ-mult star-involutive star-one)
                      hence d^T * ?H * ?e \sqcup d^T * ?H * d * (?H * d)^* * ?H * ?e \le (?H * d)^* *
d)^* * ?H * ?e
                         using 251 by simp
                    hence d^T * (1 \sqcup ?H * d * (?H * d)^*) * ?H * ?e \le (?H * d)^* * ?H * ?e
                         by (simp add: comp-associative comp-left-dist-sup
semiring.distrib-right)
                     thus ?thesis
                         by (simp add: star-left-unfold-equal)
                  hence ?H * d^T * (?H * d)^* * ?H * ?e \le ?H * (?H * d)^* * ?H * ?e
                      by (simp add: mult-right-isotone mult-assoc)
                  hence ?H * d^T * (?H * d)^* * ?H * ?e < ?H * ?H * (d * ?H)^* * ?e
                      by (smt star-slide mult-assoc)
                  hence ?H * d^T * (?H * d)^* * ?H * ?e \le ?H * (d * ?H)^* * ?e
                      by (metis assms(8) forest-components-star star.circ-decompose-9)
                  hence ?H * d^T * (?H * d)^* * ?H * ?e \le (?H * d)^* * ?H * ?e
                      using star-slide by auto
                  hence ?H * d * (?H * d)^* * ?H * ?e \sqcup ?H * d^T * (?H * d)^* * ?H * ?e
\leq (?H*d)^**?H*?e
                     \mathbf{by}\ (\mathit{smt}\ \mathit{le-supI}\ \mathit{star}.\mathit{circ-loop-fixpoint}\ \mathit{sup.cobounded2}\ \mathit{sup-commute}
mult-assoc)
                  hence (?H * (d \sqcup d^T)) * (?H * d)^* * ?H * ?e < (?H * d)^* * ?H * ?e
                     by (simp add: semiring.distrib-left semiring.distrib-right)
                  hence (?H * (d \sqcup d^T))^* * (?H * d)^* * ?H * ?e \le (?H * d)^* * ?H * ?e
```

```
by (simp add: star-left-induct-mult mult-assoc)
        hence 252: (?H * (d \sqcup d^T))^* * ?H * ?e \le (?H * d)^* * ?H * ?e
          \mathbf{by}\ (smt\ mult-left-dist-sup\ star.circ-transitive-equal\ star-slide\ star-sup-1
mult-assoc)
        have ?i \leq top * ?e^T * ?F
          by auto
        hence ?i^T \leq ?F^T * ?e^{TT} * top^T
          by (simp add: conv-dist-comp conv-dist-inf mult-assoc)
        hence ?i^T * top \le ?F^T * ?e^{TT} * top^T * top
          using comp-isotone by blast
        also have ... = ?F^T * ?e^{TT} * top^T
          by (simp add: vector-mult-closed)
        also have ... = ?F * ?e^{TT} * top^{T}
          by (simp add: conv-dist-comp conv-star-commute)
        also have \dots = ?F * ?e * top
          by simp
        also have ... = (?H * (d \sqcup d^T))^* * ?H * ?e * top
          by (simp\ add:\ assms(13))
        also have ... \leq (?H * d)^* * ?H * ?e * top
          by (simp add: 252 comp-isotone)
        also have ... \leq (?H * (d \sqcup ?e))^* * ?H * ?e * top
          by (simp add: comp-isotone star-isotone)
        finally have ?i^T * top \le (?H * (d \sqcup ?e))^* * ?H * ?e * top
          by blast
        thus ?thesis
          using 212 assms(18) bf-between-arcs-def minarc-arc minarc-bot-iff by
blast
      qed
     \mathbf{next}
      show ?i \leq - ?H \sqcap -- g
      proof -
        have 241: ?i < -?H
          using 16 assms(9) inf.order-lesseq-imp p-antitone-iff by blast
        have ?i \leq --g
          using 10 inf.coboundedI1 spanning-forest-def by blast
        thus ?thesis
          using 241 inf-greatest by blast
      qed
     next
      show regular h
        using assms(20) by auto
     qed
     have ?v \sqcap ?e \sqcap -?i = bot
      using 14 by simp
     hence sum \ (?v \sqcap g) = sum \ (?v \sqcap -?i \sqcap g) + sum \ (?e \sqcap g)
      using sum-disjoint inf-commute inf-assoc by simp
     also have ... \leq sum (?v \sqcap -?i \sqcap g) + sum (?i \sqcap g)
      using 224 225 sum-plus-right-isotone by simp
     also have ... = sum (((?v \sqcap -?i) \sqcup ?i) \sqcap g)
```

```
using sum-disjoint inf-le2 pseudo-complement by simp
           also have ... = sum ((?v \sqcup ?i) \sqcap (-?i \sqcup ?i) \sqcap g)
              by (simp add: sup-inf-distrib2)
           also have ... = sum ((?v \sqcup ?i) \sqcap g)
               using 15 by (metis inf-top-right stone)
           also have \dots = sum \ (?v \sqcap g)
               by (simp add: inf.sup-monoid.add-assoc)
           finally have sum (?w \sqcap g) \leq sum (?v \sqcap g)
               by simp
           thus \forall u . spanning-forest u \ g \longrightarrow sum \ (?w \sqcap g) \leq sum \ (u \sqcap g)
               using 2 11 minimum-spanning-forest-def by auto
       qed
    next
       have ?f \leq f \sqcup f^T \sqcup ?e
           by (smt conv-dist-inf inf-le1 sup-left-isotone sup-mono inf.order-lesseq-imp)
       also have ... <(?v \sqcap -?i \sqcap -?i^T) \sqcup (?v^T \sqcap -?i \sqcap -?i^T) \sqcup ?e
           using 20 sup-left-isotone by simp
       also have ... \leq (?v \sqcap -?i) \sqcup (?v^T \sqcap -?i \sqcap -?i^T) \sqcup ?e
           by (metis inf.cobounded1 sup-inf-distrib2)
       also have ... = ?w \sqcup (?v^T \sqcap -?i \sqcap -?i^T)
           \mathbf{by}\ (simp\ add:\ sup\text{-}assoc\ sup\text{-}commute)
       also have ... \leq ?w \sqcup (?v^T \sqcap -?i^T)
           using inf.sup-right-isotone inf-assoc sup-right-isotone by simp
       also have ... \leq ?w \sqcup ?w^T
           using conv-complement conv-dist-inf conv-dist-sup sup-right-isotone by simp
       finally show ?f \leq ?w \sqcup ?w^T
           by simp
    ged
   thus ?thesis by auto
qed
lemma boruvka-outer-invariant-when-e-not-bot:
   assumes boruvka-inner-invariant j f h g d
       and j \neq bot
       and selected-edge h \ j \ g \leq - forest-components f
       and selected-edge h \ j \ g \neq bot
    shows boruvka-outer-invariant (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (f \sqcap - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected\text{-edge } h \ j \ g \sqcup (g \sqcup - selected))
\sqcap - selected-edge h j g^T \sqcap path f h j g)^T \sqcup selected-edge h j g) g
proof -
    let ?c = choose\text{-}component (forest\text{-}components h) j
    let ?p = path f h j g
   let ?F = forest\text{-}components f
   let ?H = forest-components h
   let ?e = selected\text{-}edge\ h\ j\ g
   let ?f' = f \sqcap -?e^T \sqcap -?p \sqcup (f \sqcap -?e^T \sqcap ?p)^T \sqcup ?e
   let ?d' = d \sqcup ?e
    let ?j' = j \sqcap -?c
    show boruvka-outer-invariant ?f' g
    proof (unfold boruvka-outer-invariant-def, intro conjI)
```

```
show symmetric q
    by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)
  next
   show injective ?f'
   proof (rule kruskal-injective-inv)
     show injective (f \sqcap - ?e^T)
       by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def injective-inf-closed)
     show covector (?p)
       using covector-mult-closed by simp
     show ?p * (f \sqcap - ?e^T)^T \le ?p
       by (simp add: mult-right-isotone star.left-plus-below-circ star-plus
mult-assoc)
     show ?e \le ?p
      by (meson mult-left-isotone order.trans star-outer-increasing top.extremum)
     show ?p * (f \sqcap - ?e^T)^T < - ?e
     proof -
       have ?p * (f \sqcap - ?e^T)^T \le ?p * f^T
         by (simp add: conv-dist-inf mult-right-isotone)
       also have ... \leq top * ?e * (f)^{T*} * f^{T}
         using conv-dist-inf star-isotone comp-isotone by simp
       also have \dots \le - ?e
        \mathbf{using}\ assms(1,\ 4)\ boruvka-inner-invariant-def\ boruvka-outer-invariant-def
kruskal-injective-inv-2 minarc-arc minarc-bot-iff by auto
       finally show ?thesis.
     \mathbf{qed}
     show injective (?e)
       by (metis arc-injective coreflexive-bot-closed minarc-arc minarc-bot-iff
semiring.mult-not-zero)
     show coreflexive (?p^T * ?p \sqcap (f \sqcap - ?e^T)^T * (f \sqcap - ?e^T))
     proof -
       have (?p^T*?p\sqcap (f\sqcap -?e^T)^T*(f\sqcap -?e^T)) \leq ?p^T*?p\sqcap f^T*f
         \mathbf{using}\ conv\text{-}dist\text{-}inf\ inf. sup\text{-}right\text{-}isotone\ mult\text{-}isotone\ \mathbf{by}\ simp
       also have ... \leq (top * ?e * f^{T\star})^T * (top * ?e * f^{T\star}) \sqcap f^T * f
         \mathbf{by}\ (metis\ comp	ext{-}associative\ comp	ext{-}inf.coreflexive-transitive}
comp-inf.mult-right-isotone comp-isotone conv-isotone inf.cobounded1 inf.idem
inf.sup-monoid.add-commute star-isotone top.extremum)
       also have \dots < 1
        using assms(1, 4) boruvka-inner-invariant-def boruvka-outer-invariant-def
kruskal-injective-inv-3 minarc-arc minarc-bot-iff by auto
       finally show ?thesis
         by simp
     qed
   qed
  next
   show acyclic ?f'
   proof (rule kruskal-acyclic-inv)
     show acyclic (f \sqcap - ?e^T)
     proof -
```

```
have f-intersect-below: (f \sqcap - ?e^T) < f by simp
       have acyclic f
          \mathbf{by}\ (meson\ assms(1)\ boruvka-inner-invariant-def
boruvka-outer-invariant-def)
       thus ?thesis
         using comp-isotone dual-order.trans star-isotone f-intersect-below by blast
      qed
   next
     show covector ?p
       \mathbf{by}\ (\textit{metis comp-associative vector-top-closed})
      show (f \sqcap - ?e^T \sqcap ?p)^T * (f \sqcap - ?e^T)^* * ?e = bot
       have ?e \le -(f^{T\star} * f^{\star})
          by (simp \ add: assms(3))
       hence ?e * top * ?e \le - (f^{T*} * f^*)
       by (metis arc-top-arc minarc-arc minarc-bot-iff semiring.mult-not-zero) hence ?e^T * top * ?e^T \le - (f^{T\star} * f^{\star})^T
          by (metis comp-associative conv-complement conv-dist-comp conv-isotone
symmetric-top-closed)
       hence ?e^T * top * ?e^T \le - (f^{T\star} * f^{\star})
          \mathbf{by}\ (simp\ add:\ conv\text{-}dist\text{-}comp\ conv\text{-}star\text{-}commute)
       hence ?e * (f^{T*} * f*) * ?e \le bot
          using triple-schroeder-p by auto
       hence 1: ?e * f^{T*} * f* * ?e \le bot
          using mult-assoc by auto
       have 2: (f \sqcap - ?e^T)^{\check{T}\star} \leq f^{T\star}
       by (simp add: conv-dist-inf star-isotone) have (f \sqcap -?e^T \sqcap ?p)^T * (f \sqcap -?e^T)^* * ?e \le (f \sqcap ?p)^T * (f \sqcap -?e^T)^*
* ?e
          by (simp add: comp-isotone conv-dist-inf inf.orderI
inf.sup-monoid.add-assoc)
       also have \dots \leq (f \sqcap ?p)^T * f^* * ?e
          by (simp add: comp-isotone star-isotone)
       also have ... \leq (f \sqcap top * ?e * (f)^{T\star})^T * f^{\star} * ?e
          using 2 by (metis comp-inf.comp-isotone comp-inf.coreflexive-transitive
comp-isotone conv-isotone inf.idem top.extremum)
       also have ... = (f^T \sqcap (top * ?e * f^{T*})^T) * f^* * ?e
          by (simp add: conv-dist-inf)
       also have ... \leq top * (f^T \sqcap (top * ?e * f^T *)^T) * f^* * ?e
          using top-left-mult-increasing mult-assoc by auto
       also have ... = (top \sqcap top * ?e * f^{T*}) * f^{T} * f^{*} * ?e
          by (smt covector-comp-inf-1 covector-mult-closed eq-iff
inf.sup-monoid.add-commute vector-top-closed)
       also have ... = top * ?e * f^{T*} * f^{T} * f^{*} * ?e
          by simp
       also have ... \leq top * ?e * f^{T*} * f^* * ?e
          \mathbf{by}\ (smt\ conv\text{-}dist\text{-}comp\ conv\text{-}isotone\ conv\text{-}star\text{-}commute\ mult\text{-}left\text{-}isotone
mult-right-isotone\ star.left-plus-below-circ\ mult-assoc)
```

```
also have ... \leq bot
        using 1 covector-bot-closed le-bot mult-assoc by fastforce
      finally show ?thesis
        using le-bot by auto
     qed
   next
     show ?e * (f \sqcap - ?e^T)^* * ?e = bot
     proof -
      have 1: ?e \le - ?F
        by (simp\ add:\ assms(3))
      have 2: injective f
        by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def)
      have 3: equivalence ?F
        using 2 forest-components-equivalence by simp
      hence 4: ?e^T = ?e^T * top * ?e^T
        \mathbf{by}\ (smt\ arc\text{-}conv\text{-}closed\ arc\text{-}top\text{-}arc\ covector\text{-}complement\text{-}closed
covector-conv-vector ex231e minarc-arc minarc-bot-iff pp-surjective
regular-closed-top vector-mult-closed vector-top-closed)
      also have ... \leq - ?F using 1 3 conv-isotone conv-complement calculation
by fastforce
      finally have 5: ?e * ?F * ?e = bot
        using 4 by (smt triple-schroeder-p le-bot pp-total regular-closed-top
vector-top-closed)
      have (f \sqcap - ?e^T)^* \leq f^*
        by (simp add: star-isotone)
      hence ?e * (f \sqcap - ?e^T)^* * ?e \le ?e * f^* * ?e
        using mult-left-isotone mult-right-isotone by blast
      also have \dots \leq ?e * ?F * ?e
        by (metis conv-star-commute forest-components-increasing
mult-left-isotone mult-right-isotone star-involutive)
      also have 6: ... = bot
        using 5 by simp
      finally show ?thesis using 6 le-bot by blast
     qed
   next
     show forest-components (f \sqcap -?e^T) \leq -?e
     proof -
      have 1: ?e \le - ?F
        by (simp \ add: \ assms(3))
      have f \sqcap - ?e^T \le f
        by simp
      hence forest-components (f \sqcap - ?e^T) \leq ?F
        using forest-components-isotone by blast
      thus ?thesis
        using 1 order-lesseq-imp p-antitone-iff by blast
     qed
   qed
 next
```

```
show ?f' \leq --g
   proof -
     have 1: (f \sqcap - ?e^T \sqcap - ?p) \le --g
      by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def inf.coboundedI1)
     have 2: (f \sqcap - ?e^T \sqcap ?p)^T \leq --g
     proof -
       have (f \sqcap - ?e^T \sqcap ?p)^T \leq f^T
        by (simp add: conv-isotone inf.sup-monoid.add-assoc)
       also have \dots \leq --g
        \mathbf{by}\ (\mathit{metis}\ \mathit{assms}(\mathit{1})\ \mathit{boruvka-inner-invariant-def}
boruvka-outer-invariant-def conv-complement conv-isotone)
      finally show ?thesis
        \mathbf{by} \ simp
     qed
     have 3: ?e < --q
      by (metis inf.boundedE minarc-below pp-dist-inf)
     show ?thesis using 1 2 3
       by simp
   qed
 next
   show regular ?f'
     using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto
   show \exists w. minimum-spanning-forest w \ g \land ?f' \le w \sqcup w^T
   proof (rule exists-a-w)
     show symmetric q
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   next
     show forest f
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   \mathbf{next}
     show f < --q
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   next
     show regular f
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   next
     show (\exists w \ . \ minimum\text{-spanning-forest} \ w \ g \land f \leq w \sqcup w^T)
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   next
     show vector j
       using assms(1) boruvka-inner-invariant-def by blast
```

```
next
     show regular j
       using assms(1) boruvka-inner-invariant-def by blast
     show forest h
       using assms(1) boruvka-inner-invariant-def by blast
     show forest-components h \leq forest-components f
       using assms(1) boruvka-inner-invariant-def by blast
     show big-forest (forest-components h) d
       using assms(1) boruvka-inner-invariant-def by blast
   next
     show d * top \le -j
       using assms(1) boruvka-inner-invariant-def by blast
     show forest-components h * j = j
       using assms(1) boruvka-inner-invariant-def by blast
     show forest-components f = (forest\text{-}components\ h*(d \sqcup d^T))^**
forest-components h
       using assms(1) boruvka-inner-invariant-def by blast
     \mathbf{show}\ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
       using assms(1) boruvka-inner-invariant-def by blast
   next
     show (\forall a \ b \ . \ bf\ between\ -arcs \ a \ b \ (forest\ -components \ h) \ d \land a \le
-(forest\text{-}components\ h)\ \sqcap --\ g \land b \leq d \longrightarrow sum(b\ \sqcap\ g) \leq sum(a\ \sqcap\ g))
       using assms(1) boruvka-inner-invariant-def by blast
   \mathbf{next}
     show regular d
       using assms(1) boruvka-inner-invariant-def by blast
     show selected-edge h \ j \ g \leq - forest-components f
      by (simp \ add: \ assms(3))
     show selected-edge h j g \neq bot
       by (simp \ add: \ assms(4))
   next
     show j \neq bot
       by (simp \ add: \ assms(2))
   next
     show regular h
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
   next
     show h \leq --g
       using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto
```

```
qed
 qed
qed
lemma second-inner-invariant-when-e-not-bot:
  assumes boruvka-inner-invariant j f h g d
   and j \neq bot
   and selected\text{-}edge\ h\ j\ g \leq -\ forest\text{-}components\ f
   and selected-edge h j g \neq bot
 {f shows}\ boruvka\mbox{-}inner\mbox{-}invariant
        (j \sqcap - choose\text{-}component (forest\text{-}components h) j)
        (f \sqcap - selected\text{-}edge \ h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup
         (f \sqcap - selected\text{-}edge \ h \ j \ g^T \sqcap path \ f \ h \ j \ g)^T \sqcup
         selected-edge h j g)
        h \ g \ (d \sqcup selected\text{-}edge \ h \ j \ g)
proof -
 let ?c = choose\text{-}component (forest\text{-}components h) j
 let ?p = path f h j g
 let ?F = forest-components f
 let ?H = forest-components h
 let ?e = selected\text{-}edge \ h \ j \ g
 let ?f' = f \sqcap -?e^T \sqcap -?p \sqcup (f \sqcap -?e^T \sqcap ?p)^T \sqcup ?e
 let ?d' = d \sqcup ?e
 let ?j' = j \sqcap -?c
 show boruvka-inner-invariant ?j' ?f' h g ?d'
  proof (unfold boruvka-inner-invariant-def, intro conjI)
   have 1: boruvka-outer-invariant ?f' q
     using assms(1, 2, 3, 4) boruvka-outer-invariant-when-e-not-bot by blast
   show boruvka-outer-invariant ?f' g
     using assms(1, 2, 3, 4) boruvka-outer-invariant-when-e-not-bot by blast
   show g \neq bot
     using assms(1) boruvka-inner-invariant-def by force
   show vector ?j'
     using assms(1, 2) boruvka-inner-invariant-def component-is-vector
vector-complement-closed vector-inf-closed by simp
   show regular ?i'
     using assms(1) boruvka-inner-invariant-def by auto
   show boruvka-outer-invariant h q
     by (meson \ assms(1) \ boruvka-inner-invariant-def)
   show injective h
     by (meson assms(1) boruvka-inner-invariant-def)
   show pd-kleene-allegory-class.acyclic h
     by (meson \ assms(1) \ boruvka-inner-invariant-def)
   show ?H \leq forest\text{-}components ?f'
   proof -
     have 2: ?F \leq forest\text{-}components ?f'
     proof (rule components-disj-increasing)
       show regular ?p
         using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
```

```
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by
auto[1]
     next
      show regular ?e
        \mathbf{using}\ assms(1)\ boruvka-inner-invariant-def\ boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by
auto[1]
      show injective ?f'
        using 1 boruvka-outer-invariant-def by blast
     \mathbf{next}
      show injective f
        using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
\mathbf{by} blast
     qed
      using assms(1) boruvka-inner-invariant-def dual-order.trans by blast
   qed
   show big-forest ?H ?d'
     using assms(1, 2, 3, 4) big-forest-d-U-e boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
 next
   show ?d' * top \leq -?j'
   proof -
     have 31: ?d' * top = d * top \sqcup ?e * top
      by (simp add: mult-right-dist-sup)
     have 32: d * top \leq -?j'
      by (meson assms(1) boruvka-inner-invariant-def inf.coboundedI1
p-antitone-iff)
    have regular (?c * - ?c^T)
      using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
component-is-regular regular-conv-closed regular-mult-closed by auto
     hence minarc(?c* - ?c^T \sqcap g) = minarc(?c \sqcap - ?c^T \sqcap g)
      by (metis component-is-vector covector-comp-inf inf-top.left-neutral
vector-conv-compl)
     also have ... \leq -- (?c \sqcap - ?c^T \sqcap q)
      using minarc-below by blast
     also have \dots \leq -- ?c
      by (simp add: inf.sup-monoid.add-assoc)
     also have \dots = ?c
      using component-is-regular by auto
     finally have ?e \le ?c
      by simp
     hence ?e * top \le ?c
      by (metis component-is-vector mult-left-isotone)
     also have \dots \leq -j \sqcup ?c
      by simp
     also have \dots = -(j \sqcap - ?c)
      using component-is-regular by auto
```

```
finally have 33: ?e * top \le -(j \sqcap - ?c)
       by simp
     show ?thesis
       using 31 32 33 by auto
   ged
  next
   show ?H * ?j' = ?j'
     using fc-j-eq-j-inv assms(1) boruvka-inner-invariant-def by blast
  next
   show forest-components ?f' = (?H * (?d' \sqcup ?d'^T))^* * ?H
   proof -
     have forest-components ?f' = (f \sqcup f^T \sqcup ?e \sqcup ?e^T)^*
     proof (rule simplify-forest-components-f)
       show regular ?p
         using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto
     next
       show regular ?e
         using minarc-regular by auto
     next
       show injective ?f'
         using assms(1, 2, 3, 4) boruvka-outer-invariant-def
boruvka-outer-invariant-when-e-not-bot by blast
     next
       show injective f
         using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
by blast
     also have ... = (h \sqcup h^T \sqcup d \sqcup d^T \sqcup ?e \sqcup ?e^T)^*
       using assms(1) boruvka-inner-invariant-def by simp
     also have ... = (h \sqcup h^T \sqcup ?d' \sqcup ?d'^T)^*
       \mathbf{by}\ (smt\ conv\text{-}dist\text{-}sup\ sup\text{-}monoid.add\text{-}assoc\ sup\text{-}monoid.add\text{-}commute)
     also have ... = ((h \sqcup h^T)^* * (?d' \sqcup ?d'^T))^* * (h \sqcup h^T)^*
       by (metis star.circ-sup-9 sup-assoc)
     finally show ?thesis
       using assms(1) boruvka-inner-invariant-def forest-components-wcc by simp
   qed
  next
   show ?f' \sqcup ?f'^T = h \sqcup h^T \sqcup ?d' \sqcup ?d'^T
have ?f' \sqcup ?f'^T = f \sqcap - ?e^T \sqcap - ?p \sqcup (f \sqcap - ?e^T \sqcap ?p)^T \sqcup ?e \sqcup (f \sqcap - ?e^T \sqcap - ?p)^T \sqcup (f \sqcap - ?e^T \sqcap ?p) \sqcup ?e^T
       by (simp add: conv-dist-sup sup-monoid.add-assoc)
     also have ... = (f \sqcap - ?e^T \sqcap - ?p) \sqcup (f \sqcap - ?e^T \sqcap ?p) \sqcup (f \sqcap - ?e^T \sqcap ?p)
(p)^T \sqcup (f \sqcap - ?e^T \sqcap - ?p)^T \sqcup ?e^T \sqcup ?e
       by (simp add: sup.left-commute sup-commute)
     also have ... = f \sqcup f^T \sqcup ?e \sqcup ?e^T
     proof (rule simplify-f)
       show regular ?p
```

```
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto
     \mathbf{next}
       show regular ?e
        using minarc-regular by blast
     also have ... = h \sqcup h^T \sqcup d \sqcup d^T \sqcup ?e \sqcup ?e^T
       using assms(1) boruvka-inner-invariant-def by auto
     finally show ?thesis
       by (smt conv-dist-sup sup.left-commute sup-commute)
   qed
 next
   show \forall a \ b. bf-between-arcs a \ b \ ?H \ ?d' \land a \le - \ ?H \ \sqcap -- \ g \land b \le \ ?d' \longrightarrow
sum\ (b\sqcap g)\leq sum\ (a\sqcap g)
   proof (intro allI, rule impI, unfold bf-between-arcs-def)
     assume 1: (arc \ a \land arc \ b \land a^T * top < (?H * ?d')^* * ?H * b * top) \land a <
-?H\sqcap --g \wedge b \leq ?d'
     thus sum\ (b \sqcap g) \leq sum\ (a \sqcap g)
     proof (cases b = ?e)
       {f case}\ b-equals-e: True
       thus ?thesis
       proof (cases \ a = ?e)
        case True
        thus ?thesis
          using b-equals-e by auto
       next
        case a-ne-e: False
        have sum (b \sqcap g) \leq sum (a \sqcap g)
        proof (rule a-to-e-in-bigforest)
          show symmetric g
            using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
        next
          show j \neq bot
            by (simp \ add: \ assms(2))
        \mathbf{next}
          show f < --q
            using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
        next
          show vector j
            using assms(1) boruvka-inner-invariant-def by blast
        \mathbf{next}
          show forest h
            using assms(1) boruvka-inner-invariant-def by blast
          show big-forest (forest-components h) d
            using assms(1) boruvka-inner-invariant-def by blast
```

```
\mathbf{show}\ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
            using assms(1) boruvka-inner-invariant-def by blast
           show \forall a \ b. \ bf-between-arcs a \ b \ (?H) \ d \land a \le - ?H \ \sqcap -- \ q \land b \le d
\longrightarrow sum \ (b \sqcap g) \leq sum \ (a \sqcap g)
            using assms(1) boruvka-inner-invariant-def by blast
           show regular d
            using assms(1) boruvka-inner-invariant-def by blast
        \mathbf{next}
          show b = ?e
            using b-equals-e by simp
         next
           show arc a
            using 1 by simp
          show bf-between-arcs a b ?H ?d'
            using 1 bf-between-arcs-def by simp
          show a \leq -?H \sqcap -- g
            using 1 by simp
          show regular h
            using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
         qed
         thus ?thesis
          \mathbf{by} \ simp
       qed
     next
       case b-not-equal-e: False
       hence b-below-d: b \leq d
         using 1 by (metis assms(4) different-arc-in-sup-arc minarc-arc
minarc-bot-iff)
       thus ?thesis
       proof (cases ?e \le d)
         case True
         hence bf-between-arcs a b ?H d \land b \leq d
           using 1 bf-between-arcs-def sup.absorb1 by auto
         thus ?thesis
           using 1 assms(1) boruvka-inner-invariant-def by blast
         case e-not-less-than-d: False
         have 71:equivalence ?H
           using assms(1) fch-equivalence boruvka-inner-invariant-def by auto
         hence 72: bf-between-arcs a b ?H ?d' \longleftrightarrow bf-between-arcs a b ?H d \lor
(bf\text{-}between\text{-}arcs\ a\ ?e\ ?H\ d\ \land\ bf\text{-}between\text{-}arcs\ ?e\ b\ ?H\ d)
         proof (rule big-forest-path-split-disj)
```

```
show arc ?e
           using assms(4) minarc-arc minarc-bot-iff by blast
        next
          show regular a \wedge regular b \wedge regular ?e \wedge regular d \wedge regular ?H
           using assms(1) 1 boruvka-inner-invariant-def
boruvka-outer-invariant-def arc-regular minarc-regular regular-closed-star
regular-conv-closed regular-mult-closed by auto
        qed
        thus ?thesis
        proof (cases bf-between-arcs a b ?H d)
          case True
         have bf-between-arcs a b ?H d \land b \leq d
           using 1 by (metis assms(4) True b-not-equal-e minarc-arc
minarc-bot-iff different-arc-in-sup-arc)
         thus ?thesis
           using 1 assms(1) b-below-d boruvka-inner-invariant-def by auto
        next
         case False
          have 73:bf-between-arcs a ?e ?H d \land bf-between-arcs ?e b ?H d
           using 1 72 False bf-between-arcs-def by blast
          have 74: ?e \le --g
           by (metis inf.boundedE minarc-below pp-dist-inf)
          have ?e \le - ?H
           by (meson assms(1, 3) boruvka-inner-invariant-def dual-order.trans
p-antitone-iff)
         hence ?e \le - ?H \sqcap --g
           using 74 by simp
          hence 75: sum\ (b \sqcap g) \leq sum\ (?e \sqcap g)
           using assms(1) b-below-d 73 boruvka-inner-invariant-def by blast
         have 76: bf-between-arcs a ?e ?H ?d'
           using 73 by (meson big-forest-path-split-disj assms(1)
bf-between-arcs-def boruvka-inner-invariant-def boruvka-outer-invariant-def
fch-equivalence arc-regular regular-closed-star regular-conv-closed
regular-mult-closed)
         have 77: sum (?e \sqcap g) \leq sum (a \sqcap g)
         proof (rule a-to-e-in-bigforest)
           show symmetric g
             using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
          next
           show j \neq bot
             by (simp \ add: \ assms(2))
           show f \leq --q
             using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
          next
           show vector i
             using assms(1) boruvka-inner-invariant-def by blast
```

```
\mathbf{next}
             {f show}\ forest\ h
               using assms(1) boruvka-inner-invariant-def by blast
             show big-forest (forest-components h) d
               using assms(1) boruvka-inner-invariant-def by blast
           \mathbf{next}
             \mathbf{show}\ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
               using assms(1) boruvka-inner-invariant-def by blast
             show \forall a \ b. \ bf-between-arcs a \ b \ (?H) \ d \land a \le - ?H \ \sqcap -- g \land b \le d
\longrightarrow sum \ (b \sqcap g) \leq sum \ (a \sqcap g)
               using assms(1) boruvka-inner-invariant-def by blast
           \mathbf{next}
             show regular d
               using assms(1) boruvka-inner-invariant-def by blast
             \mathbf{show} \ ?e = \ ?e
               by simp
           next
             show arc a
               using 1 by simp
             show bf-between-arcs a ?e ?H ?d'
               by (simp add: 76)
           next
             show a \leq -?H \sqcap --g
               using 1 by simp
           \mathbf{next}
             show regular h
               using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto
           qed
           thus ?thesis
             using 75 order.trans by blast
         qed
       qed
     qed
   qed
  next
   show regular ?d'
     using assms(1) boruvka-inner-invariant-def minarc-regular by auto
 qed
qed
\mathbf{lemma}\ second\text{-}inner\text{-}invariant\text{-}when\text{-}e\text{-}bot:
  assumes selected-edge h j g = bot
   and selected\text{-}edge\ h\ j\ g \leq -\ forest\text{-}components\ f
   {\bf and}\ boruvka\text{-}inner\text{-}invariant\ j\ f\ h\ g\ d
```

```
shows boruvka-inner-invariant
    (j \sqcap - choose\text{-}component (forest\text{-}components h) j)
    (f \sqcap - selected\text{-}edge \ h \ j \ g^T \sqcap - path \ f \ h \ j \ g \sqcup
     (f \sqcap - selected\text{-}edge\ h\ j\ g^T \sqcap path\ f\ h\ j\ g)^T \sqcup
     selected-edge \ h \ j \ q)
    h \ g \ (d \sqcup selected\text{-}edge \ h \ j \ g)
proof -
 let ?c = choose\text{-}component (forest\text{-}components h) j
 let ?p = path f h j g
 let ?F = forest\text{-}components f
 let ?H = forest\text{-}components h
 let ?e = selected - edge \ h \ j \ g
 let ?f' = f \sqcap -?e^T \sqcap -?p \sqcup (f \sqcap -?e^T \sqcap ?p)^T \sqcup ?e
 let ?d' = d \sqcup ?e
 let ?j' = j \sqcap -?c
 show boruvka-inner-invariant ?j' ?f' h q ?d'
 proof (unfold boruvka-inner-invariant-def, intro conjI)
 next
   show boruvka-outer-invariant ?f' g
     using assms(1, 3) boruvka-inner-invariant-def by auto
  next
   show g \neq bot
     using assms(3) boruvka-inner-invariant-def by blast
 next
   show vector ?j'
     by (metis assms(3) boruvka-inner-invariant-def component-is-vector
vector-complement-closed vector-inf-closed)
  next
   show regular ?j'
     using assms(3) boruvka-inner-invariant-def by auto
   show boruvka-outer-invariant h q
     using assms(3) boruvka-inner-invariant-def by blast
   show injective h
     using assms(3) boruvka-inner-invariant-def by blast
 next
   {f show} pd-kleene-allegory-class.acyclic h
     using assms(3) boruvka-inner-invariant-def by blast
   show ?H \le forest-components ?f'
     using assms(1, 3) boruvka-inner-invariant-def by auto
   show big-forest ?H ?d'
     using assms(1, 3) boruvka-inner-invariant-def by auto
   show ?d' * top < -?j'
     by (metis assms(1, 3) boruvka-inner-invariant-def order.trans p-antitone-inf
sup-monoid.add-0-right)
```

```
next show ?H * ?j' = ?j' using assms(3) fc-j-eq-j-inv boruvka-inner-invariant-def by blast next show forest-components ?f' = (?H * (?d' \sqcup ?d'^T))^* * ?H using assms(1, 3) boruvka-inner-invariant-def by auto next show ?f' \sqcup ?f'^T = h \sqcup h^T \sqcup ?d' \sqcup ?d'^T using assms(1, 3) boruvka-inner-invariant-def by auto next show \forall a \ b. bf-between-arcs \ a \ b ?H ?d' \land a \le -?H \sqcap --g \land b \le ?d' \longrightarrow sum(b \sqcap g) \le sum(a \sqcap g) using assms(1, 3) boruvka-inner-invariant-def by auto next show regular ?d' using assms(1, 3) boruvka-inner-invariant-def by auto qed qed
```

## 4.4 Formalization and correctness proof

The following result shows that Borůvka's algorithm constructs a minimum spanning forest. We have the same postcondition as the proof of Kruskal's minimum spanning tree algorithm. We show only partial correctness.

## ${\bf theorem}\ boruvka\text{-}mst:$

```
VARS f j h c e d
\{ symmetric g \}
f := bot;
WHILE - (forest-components f) \sqcap g \neq bot
  INV \{ boruvka-outer-invariant f g \}
  DO
   j := top;
   h := f;
   d := bot;
    WHILE j \neq bot
     INV \{ boruvka-inner-invariant j f h g d \}
       c := choose\text{-}component (forest\text{-}components h) j;
       e := minarc(c * -c^T \sqcap q);
       IF \ e \leq -(forest\text{-}components \ f) \ THEN
         f := f \sqcap -e^T;
         f := (f \sqcap -(top * e * f^{T\star})) \sqcup (f \sqcap top * e * f^{T\star})^T \sqcup e;
         d := d \sqcup e
       ELSE
         SKIP
       FI;
       j:=j\;\sqcap\;-c
     OD
  OD
```

```
\{ minimum-spanning-forest f g \}
proof vcg-simp
 {\bf assume}\ 1:\ symmetric\ g
 show boruvka-outer-invariant bot g
   using 1 boruvka-outer-invariant-def kruskal-exists-minimal-spanning by auto
\mathbf{next}
  \mathbf{fix} f
 let ?F = forest-components f
 assume 1: boruvka-outer-invariant f g \land - ?F \sqcap g \neq bot
 have 2: equivalence ?F
   using 1 boruvka-outer-invariant-def forest-components-equivalence by auto
 show boruvka-inner-invariant top f f g bot
 \mathbf{proof}\ (\mathit{unfold\ boruvka-inner-invariant-def},\ \mathit{intro\ conj}I)
   show boruvka-outer-invariant f g
     by (simp add: 1)
 next
   show g \neq bot
     using 1 by auto
   show surjective top
     by simp
 \mathbf{next}
   show regular top
     \mathbf{by} \ simp
 next
   show boruvka-outer-invariant f g
     using 1 by auto
 next
   show injective f
     using 1 boruvka-outer-invariant-def by blast
   show pd-kleene-allegory-class.acyclic f
     using 1 boruvka-outer-invariant-def by blast
   show ?F \le ?F
     by simp
 \mathbf{next}
   \mathbf{show}\ \mathit{big-forest\ ?F\ bot}
     by (simp add: 2 big-forest-def)
  next
   show bot * top \le - top
     by simp
 next
   show times-top-class.total (?F)
     by (simp add: star.circ-right-top mult-assoc)
   show ?F = (?F * (bot \sqcup bot^T))^* * ?F
     by (metis mult-right-zero semiring.mult-zero-left star.circ-loop-fixpoint
sup\text{-}commute\ sup\text{-}monoid.add\text{-}0\text{-}right\ symmetric\text{-}bot\text{-}closed)
```

```
\mathbf{show}\ f \mathrel{\sqcup} f^T = f \mathrel{\sqcup} f^T \mathrel{\sqcup} bot \mathrel{\sqcup} bot^T
     \mathbf{by} \ simp
  next
   show \forall a b. bf-between-arcs a b ?F bot \land a \leq - ?F \sqcap -- g \land b \leq bot \longrightarrow
sum\ (b\sqcap g)\leq sum\ (a\sqcap g)
     by (metis (full-types) bf-between-arcs-def bot-unique mult-left-zero
mult-right-zero top.extremum)
  next
   show regular bot
     by auto
 qed
next
  \mathbf{fix} \ f \ j \ h \ d
 let ?c = choose\text{-}component (forest\text{-}components h) j
 let ?p = path f h j q
 let ?F = forest-components f
 let ?H = forest\text{-}components h
  let ?e = selected\text{-}edge\ h\ j\ g
 let ?f' = f \sqcap -?e^T \sqcap -?p \sqcup (f \sqcap -?e^T \sqcap ?p)^T \sqcup ?e
  let ?d' = d \sqcup ?e
 let ?j' = j \sqcap -?c
  assume 1: boruvka-inner-invariant j f h g d \land j \neq bot
  show (?e \le -?F \longrightarrow boruvka-inner-invariant ?j' ?f' h g ?d') \land (\neg ?e \le -?F
\longrightarrow boruvka-inner-invariant ?j' f h g d)
  proof (intro conjI)
   show ?e \le -?F \longrightarrow boruvka-inner-invariant ?j' ?f' h g ?d'
   proof (cases ?e = bot)
     case True
     thus ?thesis
       using 1 second-inner-invariant-when-e-bot by simp
     case False
     thus ?thesis
       using 1 second-inner-invariant-when-e-not-bot by simp
   qed
  next
   show \neg ?e \le -?F \longrightarrow boruvka-inner-invariant ?j' f h g d
   proof (rule impI, unfold boruvka-inner-invariant-def, intro conjI)
     show boruvka-outer-invariant f g
       using 1 boruvka-inner-invariant-def by blast
   next
     show q \neq bot
       using 1 boruvka-inner-invariant-def by blast
     show vector ?j'
       using 1 boruvka-inner-invariant-def component-is-vector
vector-complement-closed vector-inf-closed by auto
   next
```

```
show regular ?i'
       using 1 boruvka-inner-invariant-def by auto
     show boruvka-outer-invariant h g
       using 1 boruvka-inner-invariant-def by auto
     show injective h
       using 1 boruvka-inner-invariant-def by blast
   next
     {f show} pd-kleene-allegory-class.acyclic h
       using 1 boruvka-inner-invariant-def by blast
     show ?H < ?F
       using 1 boruvka-inner-invariant-def by blast
     show big-forest ?H d
       using 1 boruvka-inner-invariant-def by blast
   \mathbf{next}
     show d * top \leq -?j'
       using 1 by (meson boruvka-inner-invariant-def dual-order.trans
p-antitone-inf)
   next
     show ?H * ?j' = ?j'
       using 1 fc-j-eq-j-inv boruvka-inner-invariant-def by blast
     show ?F = (?H * (d \sqcup d^T))^* * ?H
       using 1 boruvka-inner-invariant-def by blast
     \mathbf{show}\ f \sqcup f^T = h \sqcup h^T \sqcup d \sqcup d^T
       using 1 boruvka-inner-invariant-def by blast
     show \neg ?e \leq -?F \Longrightarrow \forall a \ b. \ bf-between-arcs a \ b ?H \ d \land a \leq -?H \ \sqcap --g \land a \land b ?H
b \leq d \longrightarrow sum(b \sqcap g) \leq sum(a \sqcap g)
       using 1 boruvka-inner-invariant-def by blast
   \mathbf{next}
     \mathbf{show} \neg ?e < -?F \Longrightarrow regular d
       using 1 boruvka-inner-invariant-def by blast
   qed
 qed
next
 \mathbf{fix} f h d
 assume boruvka-inner-invariant bot f h g d
 thus boruvka-outer-invariant f g
   by (meson boruvka-inner-invariant-def)
\mathbf{next}
 \mathbf{fix} f
 assume 1: boruvka-outer-invariant f g \land - forest-components f \sqcap g = bot
 hence 2:spanning-forest\ f\ g
 proof (unfold spanning-forest-def, intro conjI)
```

```
show injective f
     using 1 boruvka-outer-invariant-def by blast
 next
   show acyclic f
     using 1 boruvka-outer-invariant-def by blast
 \mathbf{next}
   \mathbf{show}\ f \leq --g
     using 1 boruvka-outer-invariant-def by blast
 next
   show components g \leq forest-components f
   proof -
     let ?F = forest-components f
     have -?F \sqcap g \leq bot
      by (simp add: 1)
     hence --g \leq bot \sqcup --?F
      using 1 shunting-p p-antitone pseudo-complement by auto
     hence --g \leq ?F
      using 1 boruvka-outer-invariant-def pp-dist-comp pp-dist-star
regular-conv-closed by auto
     hence (--g)^* \leq ?F^*
      by (simp add: star-isotone)
     thus ?thesis
       using 1 boruvka-outer-invariant-def forest-components-star by auto
   qed
 next
   show regular f
     using 1 boruvka-outer-invariant-def by auto
 ged
 from 1 obtain w where 3: minimum-spanning-forest w \ g \land f \le w \sqcup w^T
   using boruvka-outer-invariant-def by blast
 hence w = w \sqcap --g
   by (simp add: inf.absorb1 minimum-spanning-forest-def spanning-forest-def)
 also have ... \leq w \sqcap components g
   by (metis inf.sup-right-isotone star.circ-increasing)
 also have ... \leq w \sqcap f^{T\star} * f^{\star}
   using 2 spanning-forest-def inf.sup-right-isotone by simp
 also have \dots \leq f \sqcup f^T
 proof (rule cancel-separate-\theta[where z=w and y=w^T])
   show injective w
     using 3 minimum-spanning-forest-def spanning-forest-def by simp
 next
   show f^T \leq w^T \sqcup w
     using 3 by (metis conv-dist-inf conv-dist-sup conv-involutive inf.cobounded2
inf.orderE)
 next
   \mathbf{show}\; f \leq \, w^T \, \sqcup \, w
     using 3 by (simp add: sup-commute)
 next
   show injective w
```

```
using 3 minimum-spanning-forest-def spanning-forest-def by simp
 next
   \mathbf{show}\ w \sqcap w^{T\star} = \mathit{bot}
     using 3 by (metis acyclic-star-below-complement comp-inf.mult-right-isotone
inf-p le-bot minimum-spanning-forest-def spanning-forest-def)
 finally have 4: w \leq f \sqcup f^T
   by simp
  have sum\ (f \sqcap g) = sum\ ((w \sqcup w^T) \sqcap (f \sqcap g))
   using 3 by (metis inf-absorb2 inf.assoc)
 also have ... = sum (w \sqcap (f \sqcap g)) + sum (w^T \sqcap (f \sqcap g))
   using 3 inf.commute acyclic-asymmetric sum-disjoint
minimum-spanning-forest-def spanning-forest-def by simp
 also have ... = sum (w \sqcap (f \sqcap g)) + sum (w \sqcap (f^T \sqcap g^T))
   by (metis conv-dist-inf conv-involutive sum-conv)
 also have ... = sum (f \sqcap (w \sqcap q)) + sum (f^T \sqcap (w \sqcap q))
 proof -
   have 51:f^T \sqcap (w \sqcap g) = f^T \sqcap (w \sqcap g^T)
     using 1 boruvka-outer-invariant-def by auto
   have 52:f \sqcap (w \sqcap g) = w \sqcap (f \sqcap g)
     by (simp add: inf.left-commute)
   thus ?thesis
     using 51 52 abel-semigroup.left-commute inf.abel-semigroup-axioms by
fast force
  qed
 also have ... = sum ((f \sqcup f^T) \sqcap (w \sqcap g))
   using 2 acyclic-asymmetric inf.sup-monoid.add-commute sum-disjoint
spanning-forest-def by simp
 also have ... = sum (w \sqcap g)
   using 4 by (metis inf-absorb2 inf.assoc)
 finally show minimum-spanning-forest f g
   using 2 3 minimum-spanning-forest-def by simp
qed
end
end
```

## References

- [1] O. Borůvka. O jistém problému minimálním. Práce moravské přírodovědecké společnosti, 3(3):37–58, 1926.
- [2] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. *Annals of the History of Computing*, 7(1):43–57, 1985.
- [3] W. Guttmann. Relation-algebraic verification of Prim's minimum spanning tree algorithm. In A. Sampaio and F. Wang, editors, *Theoretical*

- Aspects of Computing ICTAC 2016, volume 9965 of Lecture Notes in Computer Science, pages 51–68. Springer, 2016.
- [4] W. Guttmann. Aggregation algebras. Archive of Formal Proofs, 2018.
- [5] W. Guttmann. An algebraic framework for minimum spanning tree problems. *Theoretical Computer Science*, 744:37–55, 2018.
- [6] W. Guttmann. Verifying minimum spanning tree algorithms with Stone relation algebras. Journal of Logical and Algebraic Methods in Programming, 101:132–150, 2018.
- [7] J. Nešetřil, E. Milková, and H. Nešetřilová. Otakar Borůvka on minimum spanning tree problem Translation of both the 1926 papers, comments, history. *Discrete Mathematics*, 233(1–3):3–36, 2001.
- [8] N. Robinson-O'Brien. A formal correctness proof of Borůvka's minimum spanning tree algorithm. Master's thesis, University of Canterbury, 2020. https://doi.org/10.26021/10196.