
Relational Minimum Spanning Tree Algorithms

Walter Guttmann and Nicolas Robinson-O’Brien

February 23, 2021

Abstract

We verify the correctness of Prim’s, Kruskal’s and Borůvka’s min-
imum spanning tree algorithms based on algebras for aggregation and
minimisation.

Contents
1 Overview 1

1.1 Prim’s and Kruskal’s minimum spanning tree algorithms . . . 2
1.2 Borůvka’s minimum spanning tree algorithm 2

2 Kruskal’s Minimum Spanning Tree Algorithm 2

3 Prim’s Minimum Spanning Tree Algorithm 15

4 Borůvka’s Minimum Spanning Tree Algorithm 26
4.1 General results . 26
4.2 An operation to select components 35
4.3 m-k-Stone-Kleene relation algebras 38

4.3.1 Components of forests and big forests 41
4.3.2 Identifying arcs . 49
4.3.3 Comparison of edge weights 64
4.3.4 Maintenance of algorithm invariants 72

4.4 Formalization and correctness proof 102

1 Overview
The theories described in this document prove the correctness of Prim’s,
Kruskal’s and Borůvka’s minimum spanning tree algorithms. Specifications
and algorithms work in Stone-Kleene relation algebras extended by opera-
tions for aggregation and minimisation. The algorithms are implemented in
a simple imperative language and their proof uses Hoare logic. The correct-
ness proofs are discussed in [3, 5, 6, 8].

1

1.1 Prim’s and Kruskal’s minimum spanning tree algorithms

A framework based on Stone relation algebras and Kleene algebras and
extended by operations for aggregation and minimisation was presented by
the first author in [3, 5] and used to formally verify the correctness of Prim’s
minimum spanning tree algorithm. It was extended in [6] and applied to
prove the correctness of Kruskal’s minimum spanning tree algorithm.

Two theories, one each for Prim’s and Kruskal’s algorithms, prove total
correctness of these algorithms. As case studies for the algebraic framework,
these two theories combined were originally part of another AFP entry [4].

1.2 Borůvka’s minimum spanning tree algorithm

Otakar Borůvka formalised the minimum spanning tree problem and pro-
posed a solution to it [1]. Borůvka’s original paper is written in Czech;
translations of varying completeness can be found in [2, 7].

The theory for Borůvka’s minimum spanning tree algorithm proves par-
tial correctness of this algorithm. This work is based on the same algebraic
framework as the proof of Kruskal’s algorithm; in particular it uses many
theories from the hierarchy underlying [4].

The theory for Borůvka’s algorithm formally verifies results from the
second author’s Master’s thesis [8]. Certain lemmas in this theory are num-
bered for easy correlation to theorems from the thesis.

2 Kruskal’s Minimum Spanning Tree Algorithm
In this theory we prove total correctness of Kruskal’s minimum spanning tree
algorithm. The proof uses the following steps [6]. We first establish that the
algorithm terminates and constructs a spanning tree. This is a constructive
proof of the existence of a spanning tree; any spanning tree algorithm could
be used for this. We then conclude that a minimum spanning tree exists.
This is necessary to establish the invariant for the actual correctness proof,
which shows that Kruskal’s algorithm produces a minimum spanning tree.
theory Kruskal

imports HOL−Hoare.Hoare-Logic Aggregation-Algebras.Aggregation-Algebras

begin

context m-kleene-algebra
begin

definition spanning-forest f g ≡ forest f ∧ f ≤ −−g ∧ components g ≤
forest-components f ∧ regular f
definition minimum-spanning-forest f g ≡ spanning-forest f g ∧ (∀ u .
spanning-forest u g −→ sum (f u g) ≤ sum (u u g))

2

definition kruskal-spanning-invariant f g h ≡ symmetric g ∧ h = hT ∧ g u −−h
= h ∧ spanning-forest f (−h u g)
definition kruskal-invariant f g h ≡ kruskal-spanning-invariant f g h ∧ (∃w .
minimum-spanning-forest w g ∧ f ≤ w t wT)

We first show two verification conditions which are used in both correct-
ness proofs.
lemma kruskal-vc-1:

assumes symmetric g
shows kruskal-spanning-invariant bot g g

proof (unfold kruskal-spanning-invariant-def , intro conjI)
show symmetric g

using assms by simp
next

show g = gT
using assms by simp

next
show g u −−g = g

using inf .sup-monoid.add-commute selection-closed-id by simp
next

show spanning-forest bot (−g u g)
using star .circ-transitive-equal spanning-forest-def by simp

qed

lemma kruskal-vc-2:
assumes kruskal-spanning-invariant f g h

and h 6= bot
shows (minarc h ≤ −forest-components f −→ kruskal-spanning-invariant ((f

u −(top ∗ minarc h ∗ f T ?)) t (f u top ∗ minarc h ∗ f T ?)T t minarc h) g (h u
−minarc h u −minarc hT)

∧ card { x . regular x ∧ x ≤ −−h ∧ x ≤
−minarc h ∧ x ≤ −minarc hT } < card { x . regular x ∧ x ≤ −−h }) ∧

(¬ minarc h ≤ −forest-components f −→ kruskal-spanning-invariant f g
(h u −minarc h u −minarc hT)

∧ card { x . regular x ∧ x ≤ −−h ∧ x ≤
−minarc h ∧ x ≤ −minarc hT } < card { x . regular x ∧ x ≤ −−h })
proof −

let ?e = minarc h
let ?f = (f u −(top ∗ ?e ∗ f T ?)) t (f u top ∗ ?e ∗ f T ?)T t ?e
let ?h = h u −?e u −?eT
let ?F = forest-components f
let ?n1 = card { x . regular x ∧ x ≤ −−h }
let ?n2 = card { x . regular x ∧ x ≤ −−h ∧ x ≤ −?e ∧ x ≤ −?eT }
have 1: regular f ∧ regular ?e

by (metis assms(1) kruskal-spanning-invariant-def spanning-forest-def
minarc-regular)

hence 2: regular ?f ∧ regular ?F ∧ regular (?eT)
using regular-closed-star regular-conv-closed regular-mult-closed by simp

have 3: ¬ ?e ≤ −?e

3

using assms(2) inf .orderE minarc-bot-iff by fastforce
have 4: ?n2 < ?n1

apply (rule psubset-card-mono)
using finite-regular apply simp
using 1 3 kruskal-spanning-invariant-def minarc-below by auto

show (?e ≤ −?F −→ kruskal-spanning-invariant ?f g ?h ∧ ?n2 < ?n1) ∧ (¬ ?e
≤ −?F −→ kruskal-spanning-invariant f g ?h ∧ ?n2 < ?n1)

proof (rule conjI)
have 5: injective ?f

apply (rule kruskal-injective-inv)
using assms(1) kruskal-spanning-invariant-def spanning-forest-def apply

simp
apply (simp add: covector-mult-closed)
apply (simp add: comp-associative comp-isotone star .right-plus-below-circ)
apply (meson mult-left-isotone order-lesseq-imp star-outer-increasing

top.extremum)
using assms(1,2) kruskal-spanning-invariant-def kruskal-injective-inv-2

minarc-arc spanning-forest-def apply simp
using assms(2) arc-injective minarc-arc apply blast
using assms(1,2) kruskal-spanning-invariant-def kruskal-injective-inv-3

minarc-arc spanning-forest-def by simp
show ?e ≤ −?F −→ kruskal-spanning-invariant ?f g ?h ∧ ?n2 < ?n1
proof

assume 6: ?e ≤ −?F
have 7 : equivalence ?F

using assms(1) kruskal-spanning-invariant-def
forest-components-equivalence spanning-forest-def by simp

have ?eT ∗ top ∗ ?eT = ?eT
using assms(2) by (simp add: arc-top-arc minarc-arc)

hence ?eT ∗ top ∗ ?eT ≤ −?F
using 6 7 conv-complement conv-isotone by fastforce

hence 8: ?e ∗ ?F ∗ ?e = bot
using le-bot triple-schroeder-p by simp

show kruskal-spanning-invariant ?f g ?h ∧ ?n2 < ?n1
proof (unfold kruskal-spanning-invariant-def , intro conjI)

show symmetric g
using assms(1) kruskal-spanning-invariant-def by simp

next
show ?h = ?hT

using assms(1) by (simp add: conv-complement conv-dist-inf
inf-commute inf-left-commute kruskal-spanning-invariant-def)

next
show g u −−?h = ?h

using 1 2 by (metis (hide-lams) assms(1) kruskal-spanning-invariant-def
inf-assoc pp-dist-inf)

next
show spanning-forest ?f (−?h u g)
proof (unfold spanning-forest-def , intro conjI)

show injective ?f

4

using 5 by simp
next

show acyclic ?f
apply (rule kruskal-acyclic-inv)
using assms(1) kruskal-spanning-invariant-def spanning-forest-def

apply simp
apply (simp add: covector-mult-closed)
using 8 assms(1) kruskal-spanning-invariant-def spanning-forest-def

kruskal-acyclic-inv-1 apply simp
using 8 apply (metis comp-associative mult-left-sub-dist-sup-left

star .circ-loop-fixpoint sup-commute le-bot)
using 6 by (simp add: p-antitone-iff)

next
show ?f ≤ −−(−?h u g)

apply (rule kruskal-subgraph-inv)
using assms(1) kruskal-spanning-invariant-def spanning-forest-def

apply simp
using assms(1) apply (metis kruskal-spanning-invariant-def

minarc-below order .trans pp-isotone-inf)
using assms(1) kruskal-spanning-invariant-def apply simp
using assms(1) kruskal-spanning-invariant-def by simp

next
show components (−?h u g) ≤ forest-components ?f

apply (rule kruskal-spanning-inv)
using 5 apply simp
using 1 regular-closed-star regular-conv-closed regular-mult-closed apply

simp
using 1 apply simp
using assms(1) kruskal-spanning-invariant-def spanning-forest-def by

simp
next

show regular ?f
using 2 by simp

qed
next

show ?n2 < ?n1
using 4 by simp

qed
qed

next
show ¬ ?e ≤ −?F −→ kruskal-spanning-invariant f g ?h ∧ ?n2 < ?n1
proof

assume ¬ ?e ≤ −?F
hence 9: ?e ≤ ?F

using 2 assms(2) arc-in-partition minarc-arc by fastforce
show kruskal-spanning-invariant f g ?h ∧ ?n2 < ?n1
proof (unfold kruskal-spanning-invariant-def , intro conjI)

show symmetric g
using assms(1) kruskal-spanning-invariant-def by simp

5

next
show ?h = ?hT

using assms(1) by (simp add: conv-complement conv-dist-inf
inf-commute inf-left-commute kruskal-spanning-invariant-def)

next
show g u −−?h = ?h

using 1 2 by (metis (hide-lams) assms(1) kruskal-spanning-invariant-def
inf-assoc pp-dist-inf)

next
show spanning-forest f (−?h u g)
proof (unfold spanning-forest-def , intro conjI)

show injective f
using assms(1) kruskal-spanning-invariant-def spanning-forest-def by

simp
next

show acyclic f
using assms(1) kruskal-spanning-invariant-def spanning-forest-def by

simp
next

have f ≤ −−(−h u g)
using assms(1) kruskal-spanning-invariant-def spanning-forest-def by

simp
also have ... ≤ −−(−?h u g)

using comp-inf .mult-right-isotone inf .sup-monoid.add-commute
inf-left-commute p-antitone-inf pp-isotone by presburger

finally show f ≤ −−(−?h u g)
by simp

next
show components (−?h u g) ≤ ?F

apply (rule kruskal-spanning-inv-1)
using 9 apply simp
using 1 apply simp
using assms(1) kruskal-spanning-invariant-def spanning-forest-def

apply simp
using assms(1) kruskal-spanning-invariant-def

forest-components-equivalence spanning-forest-def by simp
next

show regular f
using 1 by simp

qed
next

show ?n2 < ?n1
using 4 by simp

qed
qed

qed
qed

The following result shows that Kruskal’s algorithm terminates and con-
structs a spanning tree. We cannot yet show that this is a minimum spanning

6

tree.
theorem kruskal-spanning:

VARS e f h
[symmetric g]
f := bot;
h := g;
WHILE h 6= bot

INV { kruskal-spanning-invariant f g h }
VAR { card { x . regular x ∧ x ≤ −−h } }
DO e := minarc h;

IF e ≤ −forest-components f THEN
f := (f u −(top ∗ e ∗ f T ?)) t (f u top ∗ e ∗ f T ?)T t e

ELSE
SKIP

FI ;
h := h u −e u −eT

OD
[spanning-forest f g]
apply vcg-tc-simp
using kruskal-vc-1 apply simp
using kruskal-vc-2 apply simp
using kruskal-spanning-invariant-def by auto

Because we have shown total correctness, we conclude that a spanning
tree exists.
lemma kruskal-exists-spanning:

symmetric g =⇒ ∃ f . spanning-forest f g
using tc-extract-function kruskal-spanning by blast

This implies that a minimum spanning tree exists, which is used in the
subsequent correctness proof.
lemma kruskal-exists-minimal-spanning:

assumes symmetric g
shows ∃ f . minimum-spanning-forest f g

proof −
let ?s = { f . spanning-forest f g }
have ∃m∈?s . ∀ z∈?s . sum (m u g) ≤ sum (z u g)

apply (rule finite-set-minimal)
using finite-regular spanning-forest-def apply simp
using assms kruskal-exists-spanning apply simp
using sum-linear by simp

thus ?thesis
using minimum-spanning-forest-def by simp

qed

Kruskal’s minimum spanning tree algorithm terminates and is correct.
This is the same algorithm that is used in the previous correctness proof,
with the same precondition and variant, but with a different invariant and
postcondition.

7

theorem kruskal:
VARS e f h
[symmetric g]
f := bot;
h := g;
WHILE h 6= bot

INV { kruskal-invariant f g h }
VAR { card { x . regular x ∧ x ≤ −−h } }
DO e := minarc h;

IF e ≤ −forest-components f THEN
f := (f u −(top ∗ e ∗ f T ?)) t (f u top ∗ e ∗ f T ?)T t e

ELSE
SKIP

FI ;
h := h u −e u −eT

OD
[minimum-spanning-forest f g]

proof vcg-tc-simp
assume symmetric g
thus kruskal-invariant bot g g

using kruskal-vc-1 kruskal-exists-minimal-spanning kruskal-invariant-def by
simp
next

fix f h
let ?e = minarc h
let ?f = (f u −(top ∗ ?e ∗ f T ?)) t (f u top ∗ ?e ∗ f T ?)T t ?e
let ?h = h u −?e u −?eT
let ?F = forest-components f
let ?n1 = card { x . regular x ∧ x ≤ −−h }
let ?n2 = card { x . regular x ∧ x ≤ −−h ∧ x ≤ −?e ∧ x ≤ −?eT }
assume 1: kruskal-invariant f g h ∧ h 6= bot
from 1 obtain w where 2: minimum-spanning-forest w g ∧ f ≤ w t wT

using kruskal-invariant-def by auto
hence 3: regular f ∧ regular w ∧ regular ?e

using 1 by (metis kruskal-invariant-def kruskal-spanning-invariant-def
minimum-spanning-forest-def spanning-forest-def minarc-regular)

show (?e ≤ −?F −→ kruskal-invariant ?f g ?h ∧ ?n2 < ?n1) ∧ (¬ ?e ≤ −?F
−→ kruskal-invariant f g ?h ∧ ?n2 < ?n1)

proof (rule conjI)
show ?e ≤ −?F −→ kruskal-invariant ?f g ?h ∧ ?n2 < ?n1
proof

assume 4: ?e ≤ −?F
have 5: equivalence ?F

using 1 kruskal-invariant-def kruskal-spanning-invariant-def
forest-components-equivalence spanning-forest-def by simp

have ?eT ∗ top ∗ ?eT = ?eT
using 1 by (simp add: arc-top-arc minarc-arc)

hence ?eT ∗ top ∗ ?eT ≤ −?F
using 4 5 conv-complement conv-isotone by fastforce

8

hence 6: ?e ∗ ?F ∗ ?e = bot
using le-bot triple-schroeder-p by simp

show kruskal-invariant ?f g ?h ∧ ?n2 < ?n1
proof (unfold kruskal-invariant-def , intro conjI)

show kruskal-spanning-invariant ?f g ?h
using 1 4 kruskal-vc-2 kruskal-invariant-def by simp

next
show ∃w . minimum-spanning-forest w g ∧ ?f ≤ w t wT

proof
let ?p = w u top ∗ ?e ∗ wT ?

let ?v = (w u −(top ∗ ?e ∗ wT ?)) t ?pT

have 7 : regular ?p
using 3 regular-closed-star regular-conv-closed regular-mult-closed by

simp
have 8: injective ?v

apply (rule kruskal-exchange-injective-inv-1)
using 2 minimum-spanning-forest-def spanning-forest-def apply simp
apply (simp add: covector-mult-closed)
apply (simp add: comp-associative comp-isotone

star .right-plus-below-circ)
using 1 2 kruskal-injective-inv-3 minarc-arc

minimum-spanning-forest-def spanning-forest-def by simp
have 9: components g ≤ forest-components ?v

apply (rule kruskal-exchange-spanning-inv-1)
using 8 apply simp
using 7 apply simp
using 2 minimum-spanning-forest-def spanning-forest-def by simp

have 10: spanning-forest ?v g
proof (unfold spanning-forest-def , intro conjI)

show injective ?v
using 8 by simp

next
show acyclic ?v

apply (rule kruskal-exchange-acyclic-inv-1)
using 2 minimum-spanning-forest-def spanning-forest-def apply simp
by (simp add: covector-mult-closed)

next
show ?v ≤ −−g

apply (rule sup-least)
using 2 inf .coboundedI1 minimum-spanning-forest-def

spanning-forest-def apply simp
using 1 2 by (metis kruskal-invariant-def

kruskal-spanning-invariant-def conv-complement conv-dist-inf order .trans
inf .absorb2 inf .cobounded1 minimum-spanning-forest-def spanning-forest-def)

next
show components g ≤ forest-components ?v

using 9 by simp
next

show regular ?v

9

using 3 regular-closed-star regular-conv-closed regular-mult-closed by
simp

qed
have 11: sum (?v u g) = sum (w u g)
proof −

have sum (?v u g) = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?pT u
g)

using 2 by (metis conv-complement conv-top epm-8 inf-import-p
inf-top-right regular-closed-top vector-top-closed minimum-spanning-forest-def
spanning-forest-def sum-disjoint)

also have ... = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?p u g)
using 1 kruskal-invariant-def kruskal-spanning-invariant-def

sum-symmetric by simp
also have ... = sum (((w u −(top ∗ ?e ∗ wT ?)) t ?p) u g)

using inf-commute inf-left-commute sum-disjoint by simp
also have ... = sum (w u g)

using 3 7 maddux-3-11-pp by simp
finally show ?thesis

by simp
qed
have 12: ?v t ?vT = w t wT

proof −
have ?v t ?vT = (w u −?p) t ?pT t (wT u −?pT) t ?p

using conv-complement conv-dist-inf conv-dist-sup inf-import-p
sup-assoc by simp

also have ... = w t wT

using 3 7 conv-complement conv-dist-inf inf-import-p maddux-3-11-pp
sup-monoid.add-assoc sup-monoid.add-commute by simp

finally show ?thesis
by simp

qed
have 13: ?v ∗ ?eT = bot

apply (rule kruskal-reroot-edge)
using 1 apply (simp add: minarc-arc)
using 2 minimum-spanning-forest-def spanning-forest-def by simp

have ?v u ?e ≤ ?v u top ∗ ?e
using inf .sup-right-isotone top-left-mult-increasing by simp

also have ... ≤ ?v ∗ (top ∗ ?e)T
using covector-restrict-comp-conv covector-mult-closed vector-top-closed

by simp
finally have 14: ?v u ?e = bot

using 13 by (metis conv-dist-comp mult-assoc le-bot mult-left-zero)
let ?d = ?v u top ∗ ?eT ∗ ?vT ? u ?F ∗ ?eT ∗ top u top ∗ ?e ∗ −?F
let ?w = (?v u −?d) t ?e
have 15: regular ?d

using 3 regular-closed-star regular-conv-closed regular-mult-closed by
simp

have 16: ?F ≤ −?d
apply (rule kruskal-edge-between-components-1)

10

using 5 apply simp
using 1 conv-dist-comp minarc-arc mult-assoc by simp

have 17 : f t f T ≤ (?v u −?d u −?dT) t (?vT u −?d u −?dT)
apply (rule kruskal-edge-between-components-2)
using 16 apply simp
using 1 kruskal-invariant-def kruskal-spanning-invariant-def

spanning-forest-def apply simp
using 2 12 by (metis conv-dist-sup conv-involutive conv-isotone le-supI

sup-commute)
show minimum-spanning-forest ?w g ∧ ?f ≤ ?w t ?wT

proof (intro conjI)
have 18: ?eT ≤ ?v?

apply (rule kruskal-edge-arc-1[where g=g and h=h])
using minarc-below apply simp
using 1 apply (metis kruskal-invariant-def

kruskal-spanning-invariant-def inf-le1)
using 1 kruskal-invariant-def kruskal-spanning-invariant-def apply

simp
using 9 apply simp
using 13 by simp

have 19: arc ?d
apply (rule kruskal-edge-arc)
using 5 apply simp
using 10 spanning-forest-def apply blast
using 1 apply (simp add: minarc-arc)
using 3 apply (metis conv-complement pp-dist-star

regular-mult-closed)
using 2 8 12 apply (simp add: kruskal-forest-components-inf)
using 10 spanning-forest-def apply simp
using 13 apply simp
using 6 apply simp
using 18 by simp

show minimum-spanning-forest ?w g
proof (unfold minimum-spanning-forest-def , intro conjI)

have (?v u −?d) ∗ ?eT ≤ ?v ∗ ?eT
using inf-le1 mult-left-isotone by simp

hence (?v u −?d) ∗ ?eT = bot
using 13 le-bot by simp

hence 20: ?e ∗ (?v u −?d)T = bot
using conv-dist-comp conv-involutive conv-bot by force

have 21: injective ?w
apply (rule injective-sup)
using 8 apply (simp add: injective-inf-closed)
using 20 apply simp
using 1 arc-injective minarc-arc by blast

show spanning-forest ?w g
proof (unfold spanning-forest-def , intro conjI)

show injective ?w
using 21 by simp

11

next
show acyclic ?w

apply (rule kruskal-exchange-acyclic-inv-2)
using 10 spanning-forest-def apply blast
using 8 apply simp
using inf .coboundedI1 apply simp
using 19 apply simp
using 1 apply (simp add: minarc-arc)
using inf .cobounded2 inf .coboundedI1 apply simp
using 13 by simp

next
have ?w ≤ ?v t ?e

using inf-le1 sup-left-isotone by simp
also have ... ≤ −−g t ?e

using 10 sup-left-isotone spanning-forest-def by blast
also have ... ≤ −−g t −−h

by (simp add: le-supI2 minarc-below)
also have ... = −−g

using 1 by (metis kruskal-invariant-def
kruskal-spanning-invariant-def pp-isotone-inf sup.orderE)

finally show ?w ≤ −−g
by simp

next
have 22: ?d ≤ (?v u −?d)T ? ∗ ?eT ∗ top

apply (rule kruskal-exchange-spanning-inv-2)
using 8 apply simp
using 13 apply (metis semiring.mult-not-zero star-absorb

star-simulation-right-equal)
using 17 apply simp
by (simp add: inf .coboundedI1)

have components g ≤ forest-components ?v
using 10 spanning-forest-def by auto

also have ... ≤ forest-components ?w
apply (rule kruskal-exchange-forest-components-inv)
using 21 apply simp
using 15 apply simp
using 1 apply (simp add: arc-top-arc minarc-arc)
apply (simp add: inf .coboundedI1)
using 13 apply simp
using 8 apply simp
apply (simp add: le-infI1)
using 22 by simp

finally show components g ≤ forest-components ?w
by simp

next
show regular ?w

using 3 7 regular-conv-closed by simp
qed

next

12

have 23: ?e u g 6= bot
using 1 by (metis kruskal-invariant-def kruskal-spanning-invariant-def

comp-inf .semiring.mult-zero-right inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute minarc-bot-iff minarc-meet-bot)

have g u −h ≤ (g u −h)?
using star .circ-increasing by simp

also have ... ≤ (−−(g u −h))?
using pp-increasing star-isotone by blast

also have ... ≤ ?F
using 1 kruskal-invariant-def kruskal-spanning-invariant-def

inf .sup-monoid.add-commute spanning-forest-def by simp
finally have 24: g u −h ≤ ?F

by simp
have ?d ≤ −−g

using 10 inf .coboundedI1 spanning-forest-def by blast
hence ?d ≤ −−g u −?F

using 16 inf .boundedI p-antitone-iff by simp
also have ... = −−(g u −?F)

by simp
also have ... ≤ −−h

using 24 p-shunting-swap pp-isotone by fastforce
finally have 25: ?d ≤ −−h

by simp
have ?d = bot −→ top = bot

using 19 by (metis mult-left-zero mult-right-zero)
hence ?d 6= bot

using 1 le-bot by auto
hence 26: ?d u h 6= bot

using 25 by (metis inf .absorb-iff2 inf-commute pseudo-complement)
have sum (?e u g) = sum (?e u −−h u g)

by (simp add: inf .absorb1 minarc-below)
also have ... = sum (?e u h)

using 1 by (metis kruskal-invariant-def
kruskal-spanning-invariant-def inf .left-commute inf .sup-monoid.add-commute)

also have ... ≤ sum (?d u h)
using 19 26 minarc-min by simp

also have ... = sum (?d u (−−h u g))
using 1 kruskal-invariant-def kruskal-spanning-invariant-def

inf-commute by simp
also have ... = sum (?d u g)

using 25 by (simp add: inf .absorb2 inf-assoc inf-commute)
finally have 27 : sum (?e u g) ≤ sum (?d u g)

by simp
have ?v u ?e u −?d = bot

using 14 by simp
hence sum (?w u g) = sum (?v u −?d u g) + sum (?e u g)

using sum-disjoint inf-commute inf-assoc by simp
also have ... ≤ sum (?v u −?d u g) + sum (?d u g)

using 23 27 sum-plus-right-isotone by simp

13

also have ... = sum (((?v u −?d) t ?d) u g)
using sum-disjoint inf-le2 pseudo-complement by simp

also have ... = sum ((?v t ?d) u (−?d t ?d) u g)
by (simp add: sup-inf-distrib2)

also have ... = sum ((?v t ?d) u g)
using 15 by (metis inf-top-right stone)

also have ... = sum (?v u g)
by (simp add: inf .sup-monoid.add-assoc)

finally have sum (?w u g) ≤ sum (?v u g)
by simp

thus ∀ u . spanning-forest u g −→ sum (?w u g) ≤ sum (u u g)
using 2 11 minimum-spanning-forest-def by auto

qed
next

have ?f ≤ f t f T t ?e
using conv-dist-inf inf-le1 sup-left-isotone sup-mono by presburger

also have ... ≤ (?v u −?d u −?dT) t (?vT u −?d u −?dT) t ?e
using 17 sup-left-isotone by simp

also have ... ≤ (?v u −?d) t (?vT u −?d u −?dT) t ?e
using inf .cobounded1 sup-inf-distrib2 by presburger

also have ... = ?w t (?vT u −?d u −?dT)
by (simp add: sup-assoc sup-commute)

also have ... ≤ ?w t (?vT u −?dT)
using inf .sup-right-isotone inf-assoc sup-right-isotone by simp

also have ... ≤ ?w t ?wT

using conv-complement conv-dist-inf conv-dist-sup sup-right-isotone
by simp

finally show ?f ≤ ?w t ?wT

by simp
qed

qed
next

show ?n2 < ?n1
using 1 kruskal-vc-2 kruskal-invariant-def by auto

qed
qed

next
show ¬ ?e ≤ −?F −→ kruskal-invariant f g ?h ∧ ?n2 < ?n1

using 1 kruskal-vc-2 kruskal-invariant-def by auto
qed

next
fix f
assume 28: kruskal-invariant f g bot
hence 29: spanning-forest f g

using kruskal-invariant-def kruskal-spanning-invariant-def by auto
from 28 obtain w where 30: minimum-spanning-forest w g ∧ f ≤ w t wT

using kruskal-invariant-def by auto
hence w = w u −−g

by (simp add: inf .absorb1 minimum-spanning-forest-def spanning-forest-def)

14

also have ... ≤ w u components g
by (metis inf .sup-right-isotone star .circ-increasing)

also have ... ≤ w u f T ? ∗ f ?
using 29 spanning-forest-def inf .sup-right-isotone by simp

also have ... ≤ f t f T
apply (rule cancel-separate-6[where z=w and y=wT])
using 30 minimum-spanning-forest-def spanning-forest-def apply simp
using 30 apply (metis conv-dist-inf conv-dist-sup conv-involutive

inf .cobounded2 inf .orderE)
using 30 apply (simp add: sup-commute)
using 30 minimum-spanning-forest-def spanning-forest-def apply simp
using 30 by (metis acyclic-star-below-complement comp-inf .mult-right-isotone

inf-p le-bot minimum-spanning-forest-def spanning-forest-def)
finally have 31: w ≤ f t f T

by simp
have sum (f u g) = sum ((w t wT) u (f u g))

using 30 by (metis inf-absorb2 inf .assoc)
also have ... = sum (w u (f u g)) + sum (wT u (f u g))

using 30 inf .commute acyclic-asymmetric sum-disjoint
minimum-spanning-forest-def spanning-forest-def by simp

also have ... = sum (w u (f u g)) + sum (w u (f T u gT))
by (metis conv-dist-inf conv-involutive sum-conv)

also have ... = sum (f u (w u g)) + sum (f T u (w u g))
using 28 inf .commute inf .assoc kruskal-invariant-def

kruskal-spanning-invariant-def by simp
also have ... = sum ((f t f T) u (w u g))

using 29 acyclic-asymmetric inf .sup-monoid.add-commute sum-disjoint
spanning-forest-def by simp

also have ... = sum (w u g)
using 31 by (metis inf-absorb2 inf .assoc)

finally show minimum-spanning-forest f g
using 29 30 minimum-spanning-forest-def by simp

qed

end

end

3 Prim’s Minimum Spanning Tree Algorithm
In this theory we prove total correctness of Prim’s minimum spanning tree
algorithm. The proof has the same overall structure as the total-correctness
proof of Kruskal’s algorithm [6]. The partial-correctness proof of Prim’s
algorithm is discussed in [3, 5].
theory Prim

imports HOL−Hoare.Hoare-Logic Aggregation-Algebras.Aggregation-Algebras

15

begin

context m-kleene-algebra
begin

abbreviation component g r ≡ rT ∗ (−−g)?
definition spanning-tree t g r ≡ forest t ∧ t ≤ (component g r)T ∗ (component g
r) u −−g ∧ component g r ≤ rT ∗ t? ∧ regular t
definition minimum-spanning-tree t g r ≡ spanning-tree t g r ∧ (∀ u .
spanning-tree u g r −→ sum (t u g) ≤ sum (u u g))
definition prim-precondition g r ≡ g = gT ∧ injective r ∧ vector r ∧ regular r
definition prim-spanning-invariant t v g r ≡ prim-precondition g r ∧ vT = rT ∗
t? ∧ spanning-tree t (v ∗ vT u g) r
definition prim-invariant t v g r ≡ prim-spanning-invariant t v g r ∧ (∃w .
minimum-spanning-tree w g r ∧ t ≤ w)

lemma span-tree-split:
assumes vector r

shows t ≤ (component g r)T ∗ (component g r) u −−g ←→ (t ≤ (component
g r)T ∧ t ≤ component g r ∧ t ≤ −−g)
proof −

have (component g r)T ∗ (component g r) = (component g r)T u component g r
by (metis assms conv-involutive covector-mult-closed vector-conv-covector

vector-covector)
thus ?thesis

by simp
qed

lemma span-tree-component:
assumes spanning-tree t g r

shows component g r = component t r
using assms by (simp add: antisym mult-right-isotone star-isotone

spanning-tree-def)

We first show three verification conditions which are used in both cor-
rectness proofs.
lemma prim-vc-1:

assumes prim-precondition g r
shows prim-spanning-invariant bot r g r

proof (unfold prim-spanning-invariant-def , intro conjI)
show prim-precondition g r

using assms by simp
next

show rT = rT ∗ bot?
by (simp add: star-absorb)

next
let ?ss = r ∗ rT u g
show spanning-tree bot ?ss r
proof (unfold spanning-tree-def , intro conjI)

16

show injective bot
by simp

next
show acyclic bot

by simp
next

show bot ≤ (component ?ss r)T ∗ (component ?ss r) u −−?ss
by simp

next
have component ?ss r ≤ component (r ∗ rT) r

by (simp add: mult-right-isotone star-isotone)
also have ... ≤ rT ∗ 1?

using assms by (metis inf .eq-iff p-antitone regular-one-closed star-sub-one
prim-precondition-def)

also have ... = rT ∗ bot?
by (simp add: star .circ-zero star-one)

finally show component ?ss r ≤ rT ∗ bot?
.

next
show regular bot

by simp
qed

qed

lemma prim-vc-2:
assumes prim-spanning-invariant t v g r

and v ∗ −vT u g 6= bot
shows prim-spanning-invariant (t t minarc (v ∗ −vT u g)) (v t minarc (v ∗

−vT u g)T ∗ top) g r ∧ card { x . regular x ∧ x ≤ component g r ∧ x ≤ −(v t
minarc (v ∗ −vT u g)T ∗ top)T } < card { x . regular x ∧ x ≤ component g r ∧ x
≤ −vT }
proof −

let ?vcv = v ∗ −vT u g
let ?e = minarc ?vcv
let ?t = t t ?e
let ?v = v t ?eT ∗ top
let ?c = component g r
let ?g = −−g
let ?n1 = card { x . regular x ∧ x ≤ ?c ∧ x ≤ −vT }
let ?n2 = card { x . regular x ∧ x ≤ ?c ∧ x ≤ −?vT }
have 1: regular v ∧ regular (v ∗ vT) ∧ regular (?v ∗ ?vT) ∧ regular (top ∗ ?e)

using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive regular-closed-top regular-closed-sup minarc-regular)

hence 2: t ≤ v ∗ vT u ?g
using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def

inf-pp-commute inf .boundedE)
hence 3: t ≤ v ∗ vT

by simp

17

have 4: t ≤ ?g
using 2 by simp

have 5: ?e ≤ v ∗ −vT u ?g
using 1 by (metis minarc-below pp-dist-inf regular-mult-closed

regular-closed-p)
hence 6: ?e ≤ v ∗ −vT

by simp
have 7 : vector v

using assms(1) prim-spanning-invariant-def prim-precondition-def by (simp
add: covector-mult-closed vector-conv-covector)

hence 8: ?e ≤ v
using 6 by (metis conv-complement inf .boundedE vector-complement-closed

vector-covector)
have 9: ?e ∗ t = bot

using 3 6 7 et(1) by blast
have 10: ?e ∗ tT = bot

using 3 6 7 et(2) by simp
have 11: arc ?e

using assms(2) minarc-arc by simp
have rT ≤ rT ∗ t?

by (metis mult-right-isotone order-refl semiring.mult-not-zero
star .circ-separate-mult-1 star-absorb)

hence 12: rT ≤ vT

using assms(1) by (simp add: prim-spanning-invariant-def)
have 13: vector r ∧ injective r ∧ vT = rT ∗ t?

using assms(1) prim-spanning-invariant-def prim-precondition-def
minimum-spanning-tree-def spanning-tree-def reachable-restrict by simp

have g = gT
using assms(1) prim-invariant-def prim-spanning-invariant-def

prim-precondition-def by simp
hence 14: ?gT = ?g

using conv-complement by simp
show prim-spanning-invariant ?t ?v g r ∧ ?n2 < ?n1
proof (rule conjI)

show prim-spanning-invariant ?t ?v g r
proof (unfold prim-spanning-invariant-def , intro conjI)

show prim-precondition g r
using assms(1) prim-spanning-invariant-def by simp

next
show ?vT = rT ∗ ?t?

using assms(1) 6 7 9 by (simp add: reachable-inv
prim-spanning-invariant-def prim-precondition-def spanning-tree-def)

next
let ?G = ?v ∗ ?vT u g
show spanning-tree ?t ?G r
proof (unfold spanning-tree-def , intro conjI)

show injective ?t
using assms(1) 10 11 by (simp add: injective-inv

prim-spanning-invariant-def spanning-tree-def)

18

next
show acyclic ?t

using assms(1) 3 6 7 acyclic-inv prim-spanning-invariant-def
spanning-tree-def by simp

next
show ?t ≤ (component ?G r)T ∗ (component ?G r) u −−?G

using 1 2 5 7 13 prim-subgraph-inv inf-pp-commute mst-subgraph-inv-2
by auto

next
show component (?v ∗ ?vT u g) r ≤ rT ∗ ?t?
proof −

have 15: rT ∗ (v ∗ vT u ?g)? ≤ rT ∗ t?
using assms(1) 1 by (metis prim-spanning-invariant-def

spanning-tree-def inf-pp-commute)
have component (?v ∗ ?vT u g) r = rT ∗ (?v ∗ ?vT u ?g)?

using 1 by simp
also have ... ≤ rT ∗ ?t?

using 2 6 7 11 12 13 14 15 by (metis span-inv)
finally show ?thesis

.
qed

next
show regular ?t

using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
regular-closed-sup minarc-regular)

qed
qed

next
have 16: top ∗ ?e ≤ ?c
proof −

have top ∗ ?e = top ∗ ?eT ∗ ?e
using 11 by (metis arc-top-edge mult-assoc)

also have ... ≤ vT ∗ ?e
using 7 8 by (metis conv-dist-comp conv-isotone mult-left-isotone

symmetric-top-closed)
also have ... ≤ vT ∗ ?g

using 5 mult-right-isotone by auto
also have ... = rT ∗ t? ∗ ?g

using 13 by simp
also have ... ≤ rT ∗ ?g? ∗ ?g

using 4 by (simp add: mult-left-isotone mult-right-isotone star-isotone)
also have ... ≤ ?c
by (simp add: comp-associative mult-right-isotone star .right-plus-below-circ)

finally show ?thesis
by simp

qed
have 17 : top ∗ ?e ≤ −vT

using 6 7 by (simp add: schroeder-4-p vTeT)
have 18: ¬ top ∗ ?e ≤ −(top ∗ ?e)

19

by (metis assms(2) inf .orderE minarc-bot-iff conv-complement-sub-inf inf-p
inf-top.left-neutral p-bot symmetric-top-closed vector-top-closed)

have 19: −?vT = −vT u −(top ∗ ?e)
by (simp add: conv-dist-comp conv-dist-sup)

hence 20: ¬ top ∗ ?e ≤ −?vT

using 18 by simp
show ?n2 < ?n1

apply (rule psubset-card-mono)
using finite-regular apply simp
using 1 16 17 19 20 by auto

qed
qed

lemma prim-vc-3:
assumes prim-spanning-invariant t v g r

and v ∗ −vT u g = bot
shows spanning-tree t g r

proof −
let ?g = −−g
have 1: regular v ∧ regular (v ∗ vT)

using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)

have 2: v ∗ −vT u ?g = bot
using assms(2) pp-inf-bot-iff pp-pp-inf-bot-iff by simp

have 3: vT = rT ∗ t? ∧ vector v
using assms(1) by (simp add: covector-mult-closed prim-invariant-def

prim-spanning-invariant-def vector-conv-covector prim-precondition-def)
have 4: t ≤ v ∗ vT u ?g

using assms(1) 1 by (metis prim-spanning-invariant-def inf-pp-commute
spanning-tree-def inf .boundedE)

have rT ∗ (v ∗ vT u ?g)? ≤ rT ∗ t?
using assms(1) 1 by (metis prim-spanning-invariant-def inf-pp-commute

spanning-tree-def)
hence 5: component g r = vT

using 1 2 3 4 by (metis span-post)
have regular (v ∗ vT)

using assms(1) by (metis prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)

hence 6: t ≤ v ∗ vT u ?g
by (metis assms(1) prim-spanning-invariant-def spanning-tree-def

inf-pp-commute inf .boundedE)
show spanning-tree t g r

apply (unfold spanning-tree-def , intro conjI)
using assms(1) prim-spanning-invariant-def spanning-tree-def apply simp
using assms(1) prim-spanning-invariant-def spanning-tree-def apply simp
using 5 6 apply simp
using assms(1) 5 prim-spanning-invariant-def apply simp

20

using assms(1) prim-spanning-invariant-def spanning-tree-def by simp
qed

The following result shows that Prim’s algorithm terminates and con-
structs a spanning tree. We cannot yet show that this is a minimum spanning
tree.
theorem prim-spanning:

VARS t v e
[prim-precondition g r]
t := bot;
v := r ;
WHILE v ∗ −vT u g 6= bot

INV { prim-spanning-invariant t v g r }
VAR { card { x . regular x ∧ x ≤ component g r u −vT } }
DO e := minarc (v ∗ −vT u g);

t := t t e;
v := v t eT ∗ top

OD
[spanning-tree t g r]
apply vcg-tc-simp
apply (simp add: prim-vc-1)
using prim-vc-2 apply blast
using prim-vc-3 by auto

Because we have shown total correctness, we conclude that a spanning
tree exists.
lemma prim-exists-spanning:

prim-precondition g r =⇒ ∃ t . spanning-tree t g r
using tc-extract-function prim-spanning by blast

This implies that a minimum spanning tree exists, which is used in the
subsequent correctness proof.
lemma prim-exists-minimal-spanning:

assumes prim-precondition g r
shows ∃ t . minimum-spanning-tree t g r

proof −
let ?s = { t . spanning-tree t g r }
have ∃m∈?s . ∀ z∈?s . sum (m u g) ≤ sum (z u g)

apply (rule finite-set-minimal)
using finite-regular spanning-tree-def apply simp
using assms prim-exists-spanning apply simp
using sum-linear by simp

thus ?thesis
using minimum-spanning-tree-def by simp

qed

Prim’s minimum spanning tree algorithm terminates and is correct. This
is the same algorithm that is used in the previous correctness proof, with

21

the same precondition and variant, but with a different invariant and post-
condition.
theorem prim:

VARS t v e
[prim-precondition g r ∧ (∃w . minimum-spanning-tree w g r)]
t := bot;
v := r ;
WHILE v ∗ −vT u g 6= bot

INV { prim-invariant t v g r }
VAR { card { x . regular x ∧ x ≤ component g r u −vT } }
DO e := minarc (v ∗ −vT u g);

t := t t e;
v := v t eT ∗ top

OD
[minimum-spanning-tree t g r]

proof vcg-tc-simp
assume prim-precondition g r ∧ (∃w . minimum-spanning-tree w g r)
thus prim-invariant bot r g r

using prim-invariant-def prim-vc-1 by simp
next

fix t v
let ?vcv = v ∗ −vT u g
let ?vv = v ∗ vT u g
let ?e = minarc ?vcv
let ?t = t t ?e
let ?v = v t ?eT ∗ top
let ?c = component g r
let ?g = −−g
let ?n1 = card { x . regular x ∧ x ≤ ?c ∧ x ≤ −vT }
let ?n2 = card { x . regular x ∧ x ≤ ?c ∧ x ≤ −?vT }
assume 1: prim-invariant t v g r ∧ ?vcv 6= bot
hence 2: regular v ∧ regular (v ∗ vT)

by (metis (no-types, hide-lams) prim-invariant-def
prim-spanning-invariant-def spanning-tree-def prim-precondition-def
regular-conv-closed regular-closed-star regular-mult-closed conv-involutive)

have 3: t ≤ v ∗ vT u ?g
using 1 2 by (metis (no-types, hide-lams) prim-invariant-def

prim-spanning-invariant-def spanning-tree-def inf-pp-commute inf .boundedE)
hence 4: t ≤ v ∗ vT

by simp
have 5: t ≤ ?g

using 3 by simp
have 6: ?e ≤ v ∗ −vT u ?g

using 2 by (metis minarc-below pp-dist-inf regular-mult-closed
regular-closed-p)

hence 7 : ?e ≤ v ∗ −vT

by simp
have 8: vector v

using 1 prim-invariant-def prim-spanning-invariant-def prim-precondition-def

22

by (simp add: covector-mult-closed vector-conv-covector)
have 9: arc ?e

using 1 minarc-arc by simp
from 1 obtain w where 10: minimum-spanning-tree w g r ∧ t ≤ w

by (metis prim-invariant-def)
hence 11: vector r ∧ injective r ∧ vT = rT ∗ t? ∧ forest w ∧ t ≤ w ∧ w ≤ ?cT
∗ ?c u ?g ∧ rT ∗ (?cT ∗ ?c u ?g)? ≤ rT ∗ w?

using 1 2 prim-invariant-def prim-spanning-invariant-def
prim-precondition-def minimum-spanning-tree-def spanning-tree-def
reachable-restrict by simp

hence 12: w ∗ v ≤ v
using predecessors-reachable reachable-restrict by auto

have 13: g = gT
using 1 prim-invariant-def prim-spanning-invariant-def prim-precondition-def

by simp
hence 14: ?gT = ?g

using conv-complement by simp
show prim-invariant ?t ?v g r ∧ ?n2 < ?n1
proof (unfold prim-invariant-def , intro conjI)

show prim-spanning-invariant ?t ?v g r
using 1 prim-invariant-def prim-vc-2 by blast

next
show ∃w . minimum-spanning-tree w g r ∧ ?t ≤ w
proof

let ?f = w u v ∗ −vT u top ∗ ?e ∗ wT ?

let ?p = w u −v ∗ −vT u top ∗ ?e ∗ wT ?

let ?fp = w u −vT u top ∗ ?e ∗ wT ?

let ?w = (w u −?fp) t ?pT t ?e
have 15: regular ?f ∧ regular ?fp ∧ regular ?w

using 2 10 by (metis regular-conv-closed regular-closed-star
regular-mult-closed regular-closed-top regular-closed-inf regular-closed-sup
minarc-regular minimum-spanning-tree-def spanning-tree-def)

show minimum-spanning-tree ?w g r ∧ ?t ≤ ?w
proof (intro conjI)

show minimum-spanning-tree ?w g r
proof (unfold minimum-spanning-tree-def , intro conjI)

show spanning-tree ?w g r
proof (unfold spanning-tree-def , intro conjI)

show injective ?w
using 7 8 9 11 exchange-injective by blast

next
show acyclic ?w

using 7 8 11 12 exchange-acyclic by blast
next

show ?w ≤ ?cT ∗ ?c u −−g
proof −

have 16: w u −?fp ≤ ?cT ∗ ?c u −−g
using 10 by (simp add: le-infI1 minimum-spanning-tree-def

spanning-tree-def)

23

have ?pT ≤ wT

by (simp add: conv-isotone inf .sup-monoid.add-assoc)
also have ... ≤ (?cT ∗ ?c u −−g)T

using 11 conv-order by simp
also have ... = ?cT ∗ ?c u −−g

using 2 14 conv-dist-comp conv-dist-inf by simp
finally have 17 : ?pT ≤ ?cT ∗ ?c u −−g

.
have ?e ≤ ?cT ∗ ?c u ?g

using 5 6 11 mst-subgraph-inv by auto
thus ?thesis

using 16 17 by simp
qed

next
show ?c ≤ rT ∗ ?w?

proof −
have ?c ≤ rT ∗ w?

using 10 minimum-spanning-tree-def spanning-tree-def by simp
also have ... ≤ rT ∗ ?w?

using 4 7 8 10 11 12 15 by (metis mst-reachable-inv)
finally show ?thesis

.
qed

next
show regular ?w

using 15 by simp
qed

next
have 18: ?f t ?p = ?fp

using 2 8 epm-1 by fastforce
have arc (w u −−v ∗ −vT u top ∗ ?e ∗ wT ?)

using 5 6 8 9 11 12 reachable-restrict arc-edge by auto
hence 19: arc ?f

using 2 by simp
hence ?f = bot −→ top = bot

by (metis mult-left-zero mult-right-zero)
hence ?f 6= bot

using 1 le-bot by auto
hence ?f u v ∗ −vT u ?g 6= bot

using 2 11 by (simp add: inf .absorb1 le-infI1)
hence g u (?f u v ∗ −vT) 6= bot

using inf-commute pp-inf-bot-iff by simp
hence 20: ?f u ?vcv 6= bot

by (simp add: inf-assoc inf-commute)
hence 21: ?f u g = ?f u ?vcv

using 2 by (simp add: inf-assoc inf-commute inf-left-commute)
have 22: ?e u g = minarc ?vcv u ?vcv

using 7 by (simp add: inf .absorb2 inf .assoc inf .commute)
hence 23: sum (?e u g) ≤ sum (?f u g)

24

using 15 19 20 21 by (simp add: minarc-min)
have ?e 6= bot

using 20 comp-inf .semiring.mult-not-zero semiring.mult-not-zero by
blast

hence 24: ?e u g 6= bot
using 22 minarc-meet-bot by auto

have sum (?w u g) = sum (w u −?fp u g) + sum (?pT u g) + sum (?e
u g)

using 7 8 10 by (metis sum-disjoint-3 epm-8 epm-9 epm-10
minimum-spanning-tree-def spanning-tree-def)

also have ... = sum (((w u −?fp) t ?pT) u g) + sum (?e u g)
using 11 by (metis epm-8 sum-disjoint)

also have ... ≤ sum (((w u −?fp) t ?pT) u g) + sum (?f u g)
using 23 24 by (simp add: sum-plus-right-isotone)

also have ... = sum (w u −?fp u g) + sum (?pT u g) + sum (?f u g)
using 11 by (metis epm-8 sum-disjoint)

also have ... = sum (w u −?fp u g) + sum (?p u g) + sum (?f u g)
using 13 sum-symmetric by auto

also have ... = sum (((w u −?fp) t ?p t ?f) u g)
using 2 8 by (metis sum-disjoint-3 epm-11 epm-12 epm-13)

also have ... = sum (w u g)
using 2 8 15 18 epm-2 by force

finally have sum (?w u g) ≤ sum (w u g)
.

thus ∀ u . spanning-tree u g r −→ sum (?w u g) ≤ sum (u u g)
using 10 order-lesseq-imp minimum-spanning-tree-def by auto

qed
next

show ?t ≤ ?w
using 4 8 10 mst-extends-new-tree by simp

qed
qed

next
show ?n2 < ?n1

using 1 prim-invariant-def prim-vc-2 by auto
qed

next
fix t v
let ?g = −−g
assume 25: prim-invariant t v g r ∧ v ∗ −vT u g = bot
hence 26: regular v

by (metis prim-invariant-def prim-spanning-invariant-def spanning-tree-def
prim-precondition-def regular-conv-closed regular-closed-star regular-mult-closed
conv-involutive)

from 25 obtain w where 27 : minimum-spanning-tree w g r ∧ t ≤ w
by (metis prim-invariant-def)

have spanning-tree t g r
using 25 prim-invariant-def prim-vc-3 by blast

hence component g r = vT

25

by (metis 25 prim-invariant-def span-tree-component
prim-spanning-invariant-def spanning-tree-def)

hence 28: w ≤ v ∗ vT

using 26 27 by (simp add: minimum-spanning-tree-def spanning-tree-def
inf-pp-commute)

have vector r ∧ injective r ∧ forest w
using 25 27 by (simp add: prim-invariant-def prim-spanning-invariant-def

prim-precondition-def minimum-spanning-tree-def spanning-tree-def)
hence w = t

using 25 27 28 prim-invariant-def prim-spanning-invariant-def mst-post by
blast

thus minimum-spanning-tree t g r
using 27 by simp

qed

end

end

4 Borůvka’s Minimum Spanning Tree Algorithm
In this theory we prove partial correctness of Borůvka’s minimum spanning
tree algorithm.
theory Boruvka

imports
Relational-Disjoint-Set-Forests.Disjoint-Set-Forests
Kruskal

begin

4.1 General results
The proof is carried out in m-k-Stone-Kleene relation algebras. In this
section we give results that hold more generally.
context stone-kleene-relation-algebra
begin

definition big-forest H d ≡
equivalence H
∧ d ≤ −H
∧ univalent (H ∗ d)
∧ H u d ∗ dT ≤ 1
∧ (H ∗ d)+ ≤ − H

definition bf-between-points p q H d ≡ point p ∧ point q ∧ p ≤ (H ∗ d)? ∗ H ∗ d

26

definition bf-between-arcs a b H d ≡ arc a ∧ arc b ∧ aT ∗ top ≤ (H ∗ d)? ∗ H ∗
b ∗ top

Theorem 3
lemma He-eq-He-THe-star :

assumes arc e
and equivalence H

shows H ∗ e = H ∗ e ∗ (top ∗ H ∗ e)?
proof −

let ?x = H ∗ e
have 1: H ∗ e ≤ H ∗ e ∗ (top ∗ H ∗ e)?

using comp-isotone star .circ-reflexive by fastforce
have H ∗ e ∗ (top ∗ H ∗ e)? = H ∗ e ∗ (top ∗ e)?

by (metis assms(2) preorder-idempotent surjective-var)
also have ... ≤ H ∗ e ∗ (1 t top ∗ (e ∗ top)? ∗ e)

by (metis eq-refl star .circ-mult-1)
also have ... ≤ H ∗ e ∗ (1 t top ∗ top ∗ e)

by (simp add: star .circ-left-top)
also have ... = H ∗ e t H ∗ e ∗ top ∗ e

by (simp add: mult.semigroup-axioms semiring.distrib-left semigroup.assoc)
finally have 2: H ∗ e ∗ (top ∗ H ∗ e)? ≤ H ∗ e

using assms arc-top-arc mult-assoc by auto
thus ?thesis

using 1 2 by simp
qed

lemma path-through-components:
assumes equivalence H

and arc e
shows (H ∗ (d t e))? = (H ∗ d)? t (H ∗ d)? ∗ H ∗ e ∗ (H ∗ d)?

proof −
have H ∗ e ∗ (H ∗ d)? ∗ H ∗ e ≤ H ∗ e ∗ top ∗ H ∗ e

by (simp add: comp-isotone)
also have ... = H ∗ e ∗ top ∗ e

by (metis assms(1) preorder-idempotent surjective-var mult-assoc)
also have ... = H ∗ e

using assms(2) arc-top-arc mult-assoc by auto
finally have 1: H ∗ e ∗ (H ∗ d)? ∗ H ∗ e ≤ H ∗ e

by simp
have (H ∗ (d t e))? = (H ∗ d t H ∗ e)?

by (simp add: comp-left-dist-sup)
also have ... = (H ∗ d)? t (H ∗ d)? ∗ H ∗ e ∗ (H ∗ d)?

using 1 star-separate-3 by (simp add: mult-assoc)
finally show ?thesis

by simp
qed

lemma simplify-f :
assumes regular p

27

and regular e
shows (f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u − eT u
− p)T t eT t e = f t f T t e t eT
proof −

have (f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u − eT u −
p)T t eT t e

= (f u − eT u − p) t (f u − eT u p) t (f T u − e u pT) t (f T u − e u −
pT) t eT t e

by (simp add: conv-complement conv-dist-inf)
also have ... =

((f t (f u − eT u p)) u (− eT t (f u − eT u p)) u (− p t (f u − eT u p)))
t ((f T t (f T u − e u − pT)) u (− e t (f T u − e u − pT)) u (pT t (f T u −

e u − pT)))
t eT t e
by (metis sup-inf-distrib2 sup-assoc)

also have ... =
((f t f) u (f t − eT) u (f t p) u (− eT t f) u (− eT t − eT) u (− eT t

p) u (− p t f) u (− p t − eT) u (− p t p))
t ((f T t f T) u (f T t − e) u (f T t − pT) u (− e t f T) u (− e t − e) u (−

e t − pT) u (pT t f T) u (pT t − e) u (pT t − pT))
t eT t e
using sup-inf-distrib1 sup-assoc inf-assoc sup-inf-distrib1 by simp

also have ... =
((f t f) u (f t − eT) u (f t p) u (f t − p) u (− eT t f) u (− eT t − eT)

u (− eT t p) u (− eT t − p) u (− p t p))
t ((f T t f T) u (f T t − e) u (f T t − pT) u (− e t f T) u (f T t pT) u (− e

t − e) u (− e t − pT) u (− e t pT) u (pT t − pT))
t eT t e
by (smt abel-semigroup.commute inf .abel-semigroup-axioms inf .left-commute

sup.abel-semigroup-axioms)
also have ... = (f u − eT u (− p t p)) t (f T u − e u (pT t − pT)) t eT t e

by (smt inf .sup-monoid.add-assoc inf .sup-monoid.add-commute inf-sup-absorb
sup.idem)

also have ... = (f u − eT) t (f T u − e) t eT t e
by (metis assms(1) conv-complement inf-top-right stone)

also have ... = (f t eT) u (− eT t eT) t (f T t e) u (− e t e)
by (metis sup.left-commute sup-assoc sup-inf-distrib2)

finally show ?thesis
by (metis abel-semigroup.commute assms(2) conv-complement inf-top-right

stone sup.abel-semigroup-axioms sup-assoc)
qed

lemma simplify-forest-components-f :
assumes regular p

and regular e
and injective (f u − eT u − p t (f u − eT u p)T t e)
and injective f

shows forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = (f t f T
t e t eT)?

28

proof −
have forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = wcc ((f u
− eT u − p) t (f u − eT u p)T t e)

by (simp add: assms(3) forest-components-wcc)
also have ... = ((f u − eT u − p) t (f u − eT u p)T t e t (f u − eT u −

p)T t (f u − eT u p) t eT)?
using conv-dist-sup sup-assoc by auto

also have ... = ((f u − eT u − p) t (f u − eT u p) t (f u − eT u p)T t (f u
− eT u − p)T t eT t e)?

using sup-assoc sup-commute by auto
also have ... = (f t f T t e t eT)?

using assms(1, 2, 3, 4) simplify-f by auto
finally show ?thesis

by simp
qed

lemma components-disj-increasing:
assumes regular p

and regular e
and injective (f u − eT u − p t (f u − eT u p)T t e)
and injective f

shows forest-components f ≤ forest-components (f u − eT u − p t (f u − eT
u p)T t e)
proof −

have 1: forest-components ((f u − eT u − p) t (f u −eT u p)T t e) = (f t
f T t e t eT)?

using simplify-forest-components-f assms(1, 2, 3, 4) by blast
have forest-components f = wcc f

by (simp add: assms(4) forest-components-wcc)
also have ... ≤ (f t f T t eT t e)?

by (simp add: le-supI2 star-isotone sup-commute)
finally show ?thesis

using 1 sup.left-commute sup-commute by simp
qed

lemma fch-equivalence:
assumes forest h
shows equivalence (forest-components h)
by (simp add: assms forest-components-equivalence)

lemma big-forest-path-split-1:
assumes arc a

and equivalence H
shows (H ∗ d)? ∗ H ∗ a ∗ top = (H ∗ (d u − a))? ∗ H ∗ a ∗ top

proof −
let ?H = H
let ?x = ?H ∗ (d u −a)
let ?y = ?H ∗ a
let ?a = ?H ∗ a ∗ top

29

let ?d = ?H ∗ d
have 1: ?d? ∗ ?a ≤ ?x? ∗ ?a
proof −

have ?x? ∗?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a ∗ ?a
by (smt mult-left-isotone star .circ-right-top top-right-mult-increasing

mult-assoc)
also have ... = ?x? ∗ ?a ∗ a ∗ top

by (metis ex231e mult-assoc)
also have ... = ?x? ∗ ?a

by (simp add: assms(1) mult-assoc)
finally have 11: ?x? ∗?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a

by simp
have ?d? ∗ ?a = (?H ∗ (d u a) t ?H ∗ (d u −a))? ∗ ?a
proof −

have 12: regular a
using assms(1) arc-regular by simp

have ?H ∗ ((d u a) t (d u − a)) = ?H ∗ (d u top)
using 12 by (metis inf-top-right maddux-3-11-pp)

thus ?thesis
using mult-left-dist-sup by auto

qed
also have ... ≤ (?y t ?x)? ∗ ?a

by (metis comp-inf .coreflexive-idempotent comp-isotone inf .cobounded1
inf .sup-monoid.add-commute semiring.add-mono star-isotone top.extremum)

also have ... = (?x t ?y)? ∗ ?a
by (simp add: sup-commute mult-assoc)

also have ... = ?x? ∗ ?a t (?x? ∗ ?y ∗ (?x? ∗ ?y)? ∗ ?x?) ∗ ?a
by (smt mult-right-dist-sup star .circ-sup-9 star .circ-unfold-sum mult-assoc)

also have ... ≤ ?x? ∗ ?a t (?x? ∗ ?y ∗ (top ∗ ?y)? ∗ ?x?) ∗ ?a
proof −

have (?x? ∗ ?y)? ≤ (top ∗ ?y)?
by (simp add: mult-left-isotone star-isotone)

thus ?thesis
by (metis comp-inf .coreflexive-idempotent comp-inf .transitive-star eq-refl

mult-left-dist-sup top.extremum mult-assoc)
qed
also have ... = ?x? ∗ ?a t (?x? ∗ ?y ∗ ?x?) ∗ ?a

using assms(1, 2) He-eq-He-THe-star arc-regular mult-assoc by auto
finally have 13: (?H ∗ d)? ∗ ?a ≤ ?x? ∗ ?a t ?x? ∗ ?y ∗ ?x? ∗ ?a

by (simp add: mult-assoc)
have 14: ?x? ∗ ?y ∗ ?x? ∗ ?a ≤ ?x? ∗ ?a

using 11 mult-assoc by auto
thus ?thesis

using 13 14 sup.absorb1 by auto
qed
have 2: ?d? ∗ ?a ≥ ?x? ∗?a

by (simp add: comp-isotone star-isotone)
thus ?thesis

using 1 2 antisym mult-assoc by simp

30

qed

lemma dTransHd-le-1:
assumes equivalence H

and univalent (H ∗ d)
shows dT ∗ H ∗ d ≤ 1

proof −
have dT ∗ HT ∗ H ∗ d ≤ 1

using assms(2) conv-dist-comp mult-assoc by auto
thus ?thesis

using assms(1) mult-assoc by (simp add: preorder-idempotent)
qed

lemma HcompaT-le-compHaT :
assumes equivalence H

and injective (a ∗ top)
shows −H ∗ a ∗ top ≤ − (H ∗ a ∗ top)

proof −
have a ∗ top ∗ aT ≤ 1

by (metis assms(2) conv-dist-comp symmetric-top-closed vector-top-closed
mult-assoc)

hence a ∗ top ∗ aT ∗ H ≤ H
using assms(1) comp-isotone order-trans by blast

hence a ∗ top ∗ top ∗ aT ∗ H ≤ H
by (simp add: vector-mult-closed)

hence a ∗ top ∗ (H ∗ a ∗ top)T ≤ H
by (metis assms(1) conv-dist-comp symmetric-top-closed vector-top-closed

mult-assoc)
thus ?thesis

using assms(2) comp-injective-below-complement mult-assoc by auto
qed

Theorem 4
lemma expand-big-forest:

assumes big-forest H d
shows (dT ∗ H)? ∗ (H ∗ d)? = (dT ∗ H)? t (H ∗ d)?

proof −
have (H ∗ d)T ∗ H ∗ d ≤ 1

using assms big-forest-def mult-assoc by auto
hence dT ∗ H ∗ H ∗ d ≤ 1

using assms big-forest-def conv-dist-comp by auto
thus ?thesis

by (simp add: cancel-separate-eq comp-associative)
qed

lemma big-forest-path-bot:
assumes arc a

and a ≤ d

31

and big-forest H d
shows (d u − a)T ∗ (H ∗ a ∗ top) ≤ bot

proof −
have 1: dT ∗ H ∗ d ≤ 1

using assms(3) big-forest-def dTransHd-le-1 by blast
hence d ∗ − 1 ∗ dT ≤ − H

using triple-schroeder-p by force
hence d ∗ − 1 ∗ dT ≤ 1 t − H

by (simp add: le-supI2)
hence d ∗ dT t d ∗ − 1 ∗ dT ≤ 1 t − H

by (metis assms(3) big-forest-def inf-commute regular-one-closed shunting-p
le-supI)

hence d ∗ 1 ∗ dT t d ∗ − 1 ∗ dT ≤ 1 t − H
by simp

hence d ∗ (1 t − 1) ∗ dT ≤ 1 t − H
using comp-associative mult-right-dist-sup by (simp add: mult-left-dist-sup)

hence d ∗ top ∗ dT ≤ 1 t − H
using regular-complement-top by auto

hence d ∗ top ∗ aT ≤ 1 t − H
using assms(2) conv-isotone dual-order .trans mult-right-isotone by blast

hence d ∗ (a ∗ top)T ≤ 1 t − H
by (simp add: comp-associative conv-dist-comp)

hence d ≤ (1 t − H) ∗ (a ∗ top)
by (simp add: assms(1) shunt-bijective)

hence d ≤ a ∗ top t − H ∗ a ∗ top
by (simp add: comp-associative mult-right-dist-sup)

also have ... ≤ a ∗ top t − (H ∗ a ∗ top)
using assms(1, 3) HcompaT-le-compHaT big-forest-def sup-right-isotone by

auto
finally have d ≤ a ∗ top t − (H ∗ a ∗ top)

by simp
hence d u −−(H ∗ a ∗ top) ≤ a ∗ top

using shunting-var-p by auto
hence 2:d u H ∗ a ∗ top ≤ a ∗ top

using inf .sup-right-isotone order .trans pp-increasing by blast
have 3:d u H ∗ a ∗ top ≤ top ∗ a
proof −

have d u H ∗ a ∗ top ≤ (H ∗ a u d ∗ topT) ∗ (top u (H ∗ a)T ∗ d)
by (metis dedekind inf-commute)

also have ... = d ∗ top u H ∗ a ∗ aT ∗ HT ∗ d
by (simp add: conv-dist-comp inf-vector-comp mult-assoc)

also have ... ≤ d ∗ top u H ∗ a ∗ dT ∗ HT ∗ d
using assms(2) mult-right-isotone mult-left-isotone conv-isotone

inf .sup-right-isotone by auto
also have ... = d ∗ top u H ∗ a ∗ dT ∗ H ∗ d

using assms(3) big-forest-def by auto
also have ... ≤ d ∗ top u H ∗ a ∗ 1

using 1 by (metis inf .sup-right-isotone mult-right-isotone mult-assoc)
also have ... ≤ H ∗ a

32

by simp
also have ... ≤ top ∗ a

by (simp add: mult-left-isotone)
finally have d u H ∗ a ∗ top ≤ top ∗ a

by simp
thus ?thesis

by simp
qed
have d u H ∗ a ∗ top ≤ a ∗ top u top ∗ a

using 2 3 by simp
also have ... = a ∗ top ∗ top ∗ a

by (metis comp-associative comp-inf .star .circ-decompose-9
comp-inf .star-star-absorb comp-inf-covector vector-inf-comp vector-top-closed)

also have ... = a ∗ top ∗ a
by (simp add: vector-mult-closed)

finally have 4:d u H ∗ a ∗ top ≤ a
by (simp add: assms(1) arc-top-arc)

hence d u − a ≤ −(H ∗ a ∗ top)
using assms(1) arc-regular p-shunting-swap by fastforce

hence (d u − a) ∗ top ≤ −(H ∗ a ∗ top)
using mult.semigroup-axioms p-antitone-iff schroeder-4-p semigroup.assoc by

fastforce
thus ?thesis

by (simp add: schroeder-3-p)
qed

lemma big-forest-path-split-2:
assumes arc a

and a ≤ d
and big-forest H d

shows (H ∗ (d u − a))? ∗ H ∗ a ∗ top = (H ∗ ((d u − a) t (d u − a)T))? ∗
H ∗ a ∗ top
proof −

let ?lhs = (H ∗ (d u − a))? ∗ H ∗ a ∗ top
have 1: dT ∗ H ∗ d ≤ 1

using assms(3) big-forest-def dTransHd-le-1 by blast
have 2: H ∗ a ∗ top ≤ ?lhs

by (metis le-iff-sup star .circ-loop-fixpoint star .circ-transitive-equal
star-involutive sup-commute mult-assoc)

have (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) = (d u − a)T ∗ H ∗ (d u
− a) ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

proof −
have (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) = (d u − a)T ∗ (1 t H

∗ (d u − a) ∗ (H ∗ (d u − a))?) ∗ (H ∗ a ∗ top)
by (simp add: star-left-unfold-equal)

also have ... = (d u − a)T ∗ H ∗ a ∗ top t (d u − a)T ∗ H ∗ (d u − a) ∗
(H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

by (smt mult-left-dist-sup star .circ-loop-fixpoint star .circ-mult-1 star-slide
sup-commute mult-assoc)

33

also have ... = bot t (d u − a)T ∗ H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ (H ∗
a ∗ top)

by (metis assms(1, 2, 3) big-forest-path-bot mult-assoc le-bot)
thus ?thesis

by (simp add: calculation)
qed
also have ... ≤ dT ∗ H ∗ d ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

using conv-isotone inf .cobounded1 mult-isotone by auto
also have ... ≤ 1 ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top)

using 1 by (metis le-iff-sup mult-right-dist-sup)
finally have 3: (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ ?lhs

using mult-assoc by auto
hence 4: H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ ?lhs
proof −

have H ∗ (d u − a)T ∗ (H ∗ (d u − a))? ∗ (H ∗ a ∗ top) ≤ H ∗ (H ∗ (d u −
a))? ∗ H ∗ a ∗ top

using 3 mult-right-isotone mult-assoc by auto
also have ... = H ∗ H ∗ ((d u − a) ∗ H)? ∗ H ∗ a ∗ top

by (metis assms(3) big-forest-def star-slide mult-assoc preorder-idempotent)
also have ... = H ∗ ((d u − a) ∗ H)? ∗ H ∗ a ∗ top

using assms(3) big-forest-def preorder-idempotent by fastforce
finally show ?thesis

by (metis assms(3) big-forest-def preorder-idempotent star-slide mult-assoc)
qed
have 5: (H ∗ (d u − a) t H ∗ (d u − a)T) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top
≤ ?lhs

proof −
have 51: H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ (H ∗ (d u −

a))? ∗ H ∗ a ∗ top
using star .left-plus-below-circ mult-left-isotone by simp

have 52: (H ∗ (d u − a) t H ∗ (d u − a)T) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗
top = H ∗ (d u − a) ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top t H ∗ (d u − a)T ∗ (H
∗ (d u − a))? ∗ H ∗ a ∗ top

using mult-right-dist-sup by auto
hence ... ≤ (H ∗ (d u − a))? ∗ H ∗ a ∗ top t H ∗ (d u − a)T ∗ (H ∗ (d u −

a))? ∗ H ∗ a ∗ top
using star .left-plus-below-circ mult-left-isotone sup-left-isotone by auto

thus ?thesis
using 4 51 52 mult-assoc by auto

qed
hence (H ∗ (d u − a) t H ∗ (d u − a)T)? ∗ H ∗ a ∗ top ≤ ?lhs
proof −

have (H ∗ (d u − a) t H ∗ (d u − a)T)? ∗ (H ∗ (d u − a))? ∗ H ∗ a ∗ top
≤ ?lhs

using 5 star-left-induct-mult-iff mult-assoc by auto
thus ?thesis

using star .circ-decompose-11 star-decompose-1 by auto
qed
hence 6: (H ∗ ((d u − a) t (d u − a)T))? ∗ H ∗ a ∗ top ≤ ?lhs

34

using mult-left-dist-sup by auto
have 7 : (H ∗ (d u − a))? ∗ H ∗ a ∗ top ≤ (H ∗ ((d u − a) t (d u − a)T))? ∗

H ∗ a ∗ top
by (simp add: mult-left-isotone semiring.distrib-left star-isotone)

thus ?thesis
using 6 7 by (simp add: mult-assoc)

qed

end

4.2 An operation to select components
We introduce the operation choose-component.

∗ Axiom component-in-v expresses that the result of choose-component
is contained in the set of vertices, v, we are selecting from, ignoring
the weights.

∗ Axiom component-is-vector states that the result of choose-component
is a vector.

∗ Axiom component-is-regular states that the result of choose-component
is regular.

∗ Axiom component-is-connected states that any two vertices from the
result of choose-component are connected in e.

∗ Axiom component-single states that the result of choose-component is
closed under being connected in e.

∗ Finally, axiom component-not-bot-when-v-bot-bot expresses that the
operation choose-component returns a non-empty component if the
input satisfies the given criteria.

class choose-component =
fixes choose-component :: ′a ⇒ ′a ⇒ ′a

class choose-component-algebra = choose-component + stone-relation-algebra +
assumes component-in-v: choose-component e v ≤ −−v
assumes component-is-vector : vector (choose-component e v)
assumes component-is-regular : regular (choose-component e v)
assumes component-is-connected: choose-component e v ∗ (choose-component e

v)T ≤ e
assumes component-single: choose-component e v = e ∗ choose-component e v
assumes component-not-bot-when-v-bot-bot:

regular e
∧ equivalence e
∧ vector v
∧ regular v

35

∧ e ∗ v = v
∧ v 6= bot −→ choose-component e v 6= bot

Theorem 1

Every m-kleene-algebra is an instance of choose-component-algebra when
the choose-component operation is defined as follows:
context m-kleene-algebra
begin

definition choose-component-input-condition e v ≡
regular e
∧ equivalence e
∧ vector v
∧ regular v
∧ e ∗ v = v

definition m-choose-component e v ≡
if choose-component-input-condition e v then

e ∗ minarc(v) ∗ top
else

bot

sublocale m-choose-component-algebra: choose-component-algebra where
choose-component = m-choose-component
proof

fix e v
show m-choose-component e v ≤ −− v
proof (cases choose-component-input-condition e v)

case True
hence m-choose-component e v = e ∗ minarc(v) ∗ top

by (simp add: m-choose-component-def)
also have ... ≤ e ∗ −−v ∗ top

by (simp add: comp-isotone minarc-below)
also have ... = e ∗ v ∗ top

using True choose-component-input-condition-def by auto
also have ... = v ∗ top

using True choose-component-input-condition-def by auto
finally show ?thesis

using True choose-component-input-condition-def by auto
next

case False
hence m-choose-component e v = bot

using False m-choose-component-def by auto
thus ?thesis

by simp
qed

next
fix e v
show vector (m-choose-component e v)

36

proof (cases choose-component-input-condition e v)
case True
thus ?thesis

by (simp add: mult-assoc m-choose-component-def)
next

case False
thus ?thesis

by (simp add: m-choose-component-def)
qed

next
fix e v
show regular (m-choose-component e v)

using choose-component-input-condition-def minarc-regular regular-closed-star
regular-mult-closed m-choose-component-def by auto
next

fix e v
show m-choose-component e v ∗ (m-choose-component e v)T ≤ e
proof (cases choose-component-input-condition e v)

case True
assume 1: choose-component-input-condition e v
hence m-choose-component e v ∗ (m-choose-component e v)T = e ∗ minarc(v)

∗ top ∗ (e ∗ minarc(v) ∗ top)T
by (simp add: m-choose-component-def)

also have ... = e ∗ minarc(v) ∗ top ∗ topT ∗ minarc(v)T ∗ eT
by (metis comp-associative conv-dist-comp)

also have ... = e ∗ minarc(v) ∗ top ∗ top ∗ minarc(v)T ∗ e
using 1 choose-component-input-condition-def by auto

also have ... = e ∗ minarc(v) ∗ top ∗ minarc(v)T ∗ e
by (simp add: comp-associative)

also have ... ≤ e
proof (cases v = bot)

case True
thus ?thesis

by (simp add: True minarc-bot)
next

case False
assume 3: v 6= bot
hence e ∗ minarc(v) ∗ top ∗ minarc(v)T ≤ e ∗ 1

using 3 minarc-arc arc-expanded comp-associative mult-right-isotone by
fastforce

hence e ∗ minarc(v) ∗ top ∗ minarc(v)T ∗ e ≤ e ∗ 1 ∗ e
using mult-left-isotone by auto

also have ... = e
using 1 choose-component-input-condition-def preorder-idempotent by auto

thus ?thesis
using calculation by auto

qed
thus ?thesis

by (simp add: calculation)

37

next
case False
thus ?thesis

by (simp add: m-choose-component-def)
qed

next
fix e v
show m-choose-component e v = e ∗ m-choose-component e v
proof (cases choose-component-input-condition e v)

case True
thus ?thesis

by (metis choose-component-input-condition-def preorder-idempotent
m-choose-component-def mult-assoc)

next
case False
thus ?thesis

by (simp add: m-choose-component-def)
qed

next
fix e v
show regular e ∧ equivalence e ∧ vector v ∧ regular v ∧ e ∗ v = v ∧ v 6= bot
−→ m-choose-component e v 6= bot

proof (cases choose-component-input-condition e v)
case True
hence m-choose-component e v ≥ minarc(v) ∗ top

by (metis choose-component-input-condition-def mult-1-left mult-left-isotone
m-choose-component-def)

also have ... ≥ minarc(v)
using calculation dual-order .trans top-right-mult-increasing by blast

thus ?thesis
using True bot-unique minarc-bot-iff by fastforce

next
case False
thus ?thesis

using choose-component-input-condition-def by blast
qed

qed

end

4.3 m-k-Stone-Kleene relation algebras
m-k-Stone-Kleene relation algebras are an extension of m-Kleene algebras
where the choose-component operation has been added.
class m-kleene-algebra-choose-component =

m-kleene-algebra
+ choose-component-algebra

begin

38

A selected-edge is a minimum-weight edge whose source is in a compo-
nent, with respect to h, j and g, and whose target is not in that component.
abbreviation selected-edge h j g ≡ minarc (choose-component
(forest-components h) j ∗ − choose-component (forest-components h) jT u g)

A path is any sequence of edges in the forest, f , of the graph, g, backwards
from the target of the selected-edge to a root in f .
abbreviation path f h j g ≡ top ∗ selected-edge h j g ∗ (f u − selected-edge h j
gT)T ?

definition boruvka-outer-invariant f g ≡
symmetric g
∧ forest f
∧ f ≤ −−g
∧ regular f
∧ (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)

definition boruvka-inner-invariant j f h g d ≡
boruvka-outer-invariant f g
∧ g 6= bot
∧ vector j
∧ regular j
∧ boruvka-outer-invariant h g
∧ forest h
∧ forest-components h ≤ forest-components f
∧ big-forest (forest-components h) d
∧ d ∗ top ≤ − j
∧ forest-components h ∗ j = j
∧ forest-components f = (forest-components h ∗ (d t dT))? ∗ forest-components

h
∧ f t f T = h t hT t d t dT

∧ (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤
−(forest-components h) u −− g ∧ b ≤ d
−→ sum(b u g) ≤ sum(a u g))
∧ regular d

lemma expression-equivalent-without-e-complement:
assumes selected-edge h j g ≤ − forest-components f
shows f u − (selected-edge h j g)T u − (path f h j g) t (f u − (selected-edge h

j g)T u (path f h j g))T t (selected-edge h j g)
= f u − (path f h j g) t (f u (path f h j g))T t (selected-edge h j g)

proof −
let ?p = path f h j g
let ?e = selected-edge h j g
let ?F = forest-components f
have 1: ?e ≤ − ?F

by (simp add: assms)
have f T ≤ ?F

by (metis conv-dist-comp conv-involutive conv-order conv-star-commute

39

forest-components-increasing)
hence − ?F ≤ − f T

using p-antitone by auto
hence ?e ≤ − f T

using 1 dual-order .trans by blast
hence f T ≤ − ?e

by (simp add: p-antitone-iff)
hence f T T ≤ − ?eT

by (metis conv-complement conv-dist-inf inf .orderE inf .orderI)
hence f ≤ − ?eT

by auto
hence f = f u − ?eT

using inf .orderE by blast
hence f u − ?eT u − ?p t (f u − ?eT u ?p)T t ?e = f u − ?p t (f u ?p)T t

?e
by auto

thus ?thesis by auto
qed

Theorem 2

The source of the selected-edge is contained in j, the vector describing
those vertices still to be processed in the inner loop of Borůvka’s algorithm.
lemma et-below-j:

assumes vector j
and regular j
and j 6= bot

shows selected-edge h j g ∗ top ≤ j
proof −

let ?e = selected-edge h j g
let ?c = choose-component (forest-components h) j
have ?e ∗ top ≤ −−(?c ∗ −?cT u g) ∗ top

using comp-isotone minarc-below by blast
also have ... = (−−(?c ∗ −?cT) u −−g) ∗ top

by simp
also have ... = (?c ∗ −?cT u −−g) ∗ top

using component-is-regular regular-mult-closed by auto
also have ... = (?c u −?cT u −−g) ∗ top

by (metis component-is-vector conv-complement vector-complement-closed
vector-covector)

also have ... ≤ ?c ∗ top
using inf .cobounded1 mult-left-isotone order-trans by blast

also have ... ≤ j ∗ top
by (metis assms(2) comp-inf .star .circ-sup-2 comp-isotone component-in-v)

also have ... = j
by (simp add: assms(1))

finally show ?thesis
by simp

qed

40

4.3.1 Components of forests and big forests

We prove a number of properties about big-forest and forest-components.
lemma fc-j-eq-j-inv:

assumes forest h
and forest-components h ∗ j = j

shows forest-components h ∗ (j u − choose-component (forest-components h) j)
= j u − choose-component (forest-components h) j
proof −

let ?c = choose-component (forest-components h) j
let ?H = forest-components h
have 1:equivalence ?H

by (simp add: assms(1) forest-components-equivalence)
have ?H ∗ (j u − ?c) = ?H ∗ j u ?H ∗ − ?c

using 1 by (metis assms(2) equivalence-comp-dist-inf
inf .sup-monoid.add-commute)

hence 2: ?H ∗ (j u − ?c) = j u ?H ∗ − ?c
by (simp add: assms(2))

have 3: j u − ?c ≤ ?H ∗ − ?c
using 1 by (metis assms(2) dedekind-1 dual-order .trans

equivalence-comp-dist-inf inf .cobounded2)
have ?H ∗ ?c ≤ ?c

using component-single by auto
hence ?HT ∗ ?c ≤ ?c

using 1 by simp
hence ?H ∗ − ?c ≤ − ?c

using component-is-regular schroeder-3-p by force
hence j u ?H ∗ − ?c ≤ j u − ?c

using inf .sup-right-isotone by auto
thus ?thesis

using 2 3 antisym by simp
qed

Theorem 5
There is a path in the big-forest between edges a and b if and only if

there is either a path in the big-forest from a to b or one from a to c and
one from c to b.
lemma big-forest-path-split-disj:

assumes equivalence H
and arc c
and regular a ∧ regular b ∧ regular c ∧ regular d ∧ regular H

shows bf-between-arcs a b H (d t c) ←→ bf-between-arcs a b H d ∨
(bf-between-arcs a c H d ∧ bf-between-arcs c b H d)
proof −

have 1: bf-between-arcs a b H (d t c) −→ bf-between-arcs a b H d ∨
(bf-between-arcs a c H d ∧ bf-between-arcs c b H d)

proof (rule impI)
assume 11: bf-between-arcs a b H (d t c)
hence aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

41

by (simp add: bf-between-arcs-def)
also have ... = ((H ∗ d)? t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)?) ∗ H ∗ b ∗ top

using assms(1, 2) path-through-components by simp
also have ... = (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗

b ∗ top
by (simp add: mult-right-dist-sup)

finally have 12:aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H
∗ d)? ∗ H ∗ b ∗ top

by simp
have 13: aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top ∨ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗

(H ∗ d)? ∗ H ∗ b ∗ top
proof (rule point-in-vector-sup)

show point (aT ∗ top)
using 11 bf-between-arcs-def mult-assoc by auto

next
show vector ((H ∗ d)? ∗ H ∗ b ∗ top)

using vector-mult-closed by simp
next

show regular ((H ∗ d)? ∗ H ∗ b ∗ top)
using assms(3) pp-dist-comp pp-dist-star by auto

next
show aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H

∗ b ∗ top
using 12 by simp

qed
thus bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧ bf-between-arcs c b

H d)
proof (cases aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top)

case True
assume aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
hence bf-between-arcs a b H d

using 11 bf-between-arcs-def by auto
thus ?thesis

by simp
next

case False
have 14: aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top

using 13 by (simp add: False)
hence 15: aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ top

by (metis mult-right-isotone order-lesseq-imp top-greatest mult-assoc)
have cT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
proof (rule ccontr)

assume ¬ cT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top
hence cT ∗ top ≤ −((H ∗ d)? ∗ H ∗ b ∗ top)

by (meson assms(2, 3) point-in-vector-or-complement regular-closed-star
regular-closed-top regular-mult-closed vector-mult-closed vector-top-closed)

hence c ∗ (H ∗ d)? ∗ H ∗ b ∗ top ≤ bot
using schroeder-3-p mult-assoc by auto

thus False

42

using 13 False sup.absorb-iff1 mult-assoc by auto
qed
hence bf-between-arcs a c H d ∧ bf-between-arcs c b H d

using 11 15 assms(2) bf-between-arcs-def by auto
thus ?thesis

by simp
qed

qed
have 2: bf-between-arcs a b H d ∨ (bf-between-arcs a c H d ∧ bf-between-arcs c

b H d) −→ bf-between-arcs a b H (d t c)
proof −

have 21: bf-between-arcs a b H d −→ bf-between-arcs a b H (d t c)
proof (rule impI)

assume 22:bf-between-arcs a b H d
hence aT ∗ top ≤ (H ∗ d)? ∗ H ∗ b ∗ top

using bf-between-arcs-def by blast
hence aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

by (simp add: mult-left-isotone mult-right-dist-sup mult-right-isotone
order .trans star-isotone star-slide)

thus bf-between-arcs a b H (d t c)
using 22 bf-between-arcs-def by blast

qed
have bf-between-arcs a c H d ∧ bf-between-arcs c b H d −→ bf-between-arcs a

b H (d t c)
proof (rule impI)

assume 23: bf-between-arcs a c H d ∧ bf-between-arcs c b H d
hence aT ∗ top ≤ (H ∗ d)? ∗ H ∗ c ∗ top

using bf-between-arcs-def by blast
also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ cT ∗ c ∗ top

by (metis ex231c comp-inf .star .circ-sup-2 mult-isotone mult-right-isotone
mult-assoc)

also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ cT ∗ top
by (simp add: mult-right-isotone mult-assoc)

also have ... ≤ (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H ∗ b ∗ top
using 23 mult-right-isotone mult-assoc by (simp add: bf-between-arcs-def)

also have ... ≤ (H ∗ d)? ∗ H ∗ b ∗ top t (H ∗ d)? ∗ H ∗ c ∗ (H ∗ d)? ∗ H
∗ b ∗ top

by (simp add: bf-between-arcs-def)
finally have aT ∗ top ≤ (H ∗ (d t c))? ∗ H ∗ b ∗ top

using assms(1, 2) path-through-components mult-right-dist-sup by simp
thus bf-between-arcs a b H (d t c)

using 23 bf-between-arcs-def by blast
qed
thus ?thesis

using 21 by auto
qed
thus ?thesis

using 1 2 by blast
qed

43

lemma dT-He-eq-bot:
assumes vector j

and regular j
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and j 6= bot

shows dT ∗ forest-components h ∗ selected-edge h j g ≤ bot
proof −

let ?e = selected-edge h j g
let ?H = forest-components h
have 1: ?e ∗ top ≤ j

using assms(1, 2, 5) et-below-j by auto
have dT ∗ ?H ∗ ?e ≤ (d ∗ top)T ∗ ?H ∗ (?e ∗ top)

by (simp add: comp-isotone conv-isotone top-right-mult-increasing)
also have ... ≤ (d ∗ top)T ∗ ?H ∗ j

using 1 mult-right-isotone by auto
also have ... ≤ (− j)T ∗ ?H ∗ j

by (simp add: assms(3) conv-isotone mult-left-isotone)
also have ... = (− j)T ∗ j

using assms(4) comp-associative by auto
also have ... = bot

by (simp add: assms(1) conv-complement covector-vector-comp)
finally show ?thesis

using coreflexive-bot-closed le-bot by blast
qed

lemma big-forest-d-U-e:
assumes forest f

and vector j
and regular j
and forest h
and forest-components h ≤ forest-components f
and big-forest (forest-components h) d
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and f t f T = h t hT t d t dT

and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot
and j 6= bot

shows big-forest (forest-components h) (d t selected-edge h j g)
proof (unfold big-forest-def , intro conjI)

let ?H = forest-components h
let ?F = forest-components f
let ?e = selected-edge h j g
let ?d ′ = d t ?e
show 01: reflexive ?H

by (simp add: assms(4) forest-components-equivalence)
show 02: transitive ?H

44

by (simp add: assms(4) forest-components-equivalence)
show 03: symmetric ?H

by (simp add: assms(4) forest-components-equivalence)
have 04: equivalence ?H

by (simp add: 01 02 03)
show 1: ?d ′ ≤ − ?H
proof −

have ?H ≤ ?F
by (simp add: assms(5))

hence 11: ?e ≤ − ?H
using assms(10) order-lesseq-imp p-antitone by blast

have d ≤ − ?H
using assms(6) big-forest-def by auto

thus ?thesis
by (simp add: 11)

qed
show univalent (?H ∗ ?d ′)
proof −

have (?H ∗ ?d ′)T ∗ (?H ∗ ?d ′) = ?d ′T ∗ ?HT ∗ ?H ∗ ?d ′

using conv-dist-comp mult-assoc by auto
also have ... = ?d ′T ∗ ?H ∗ ?H ∗ ?d ′

by (simp add: conv-dist-comp conv-star-commute)
also have ... = ?d ′T ∗ ?H ∗ ?d ′

using 01 02 by (metis preorder-idempotent mult-assoc)
finally have 21: univalent (?H ∗ ?d ′) ←→ ?eT ∗ ?H ∗ d t dT ∗ ?H ∗ ?e t

?eT ∗ ?H ∗ ?e t dT ∗ ?H ∗ d ≤ 1
using conv-dist-sup semiring.distrib-left semiring.distrib-right by auto

have 22: ?eT ∗ ?H ∗ ?e ≤ 1
proof −

have 221: ?eT ∗ ?H ∗ ?e ≤ ?eT ∗ top ∗ ?e
by (simp add: mult-left-isotone mult-right-isotone)

have arc ?e
using assms(11) minarc-arc minarc-bot-iff by blast

hence ?eT ∗ top ∗ ?e ≤ 1
using arc-expanded by blast

thus ?thesis
using 221 dual-order .trans by blast

qed
have 24: dT ∗ ?H ∗ ?e ≤ 1

by (metis assms(2, 3, 7 , 8, 12) dT-He-eq-bot coreflexive-bot-closed le-bot)
hence (dT ∗ ?H ∗ ?e)T ≤ 1T

using conv-isotone by blast
hence ?eT ∗ ?HT ∗ dT T ≤ 1

by (simp add: conv-dist-comp mult-assoc)
hence 25: ?eT ∗ ?H ∗ d ≤ 1

using assms(4) fch-equivalence by auto
have 8: dT ∗ ?H ∗ d ≤ 1

using 04 assms(6) dTransHd-le-1 big-forest-def by blast
thus ?thesis

45

using 21 22 24 25 by simp
qed
show coreflexive (?H u ?d ′ ∗ ?d ′T)
proof −

have coreflexive (?H u ?d ′ ∗ ?d ′T) ←→ ?H u (d t ?e) ∗ (dT t ?eT) ≤ 1
by (simp add: conv-dist-sup)

also have ... ←→ ?H u (d ∗ dT t d ∗ ?eT t ?e ∗ dT t ?e ∗ ?eT) ≤ 1
by (metis mult-left-dist-sup mult-right-dist-sup sup.left-commute

sup-commute)
finally have 1: coreflexive (?H u ?d ′ ∗ ?d ′T) ←→ ?H u d ∗ dT t ?H u d ∗

?eT t ?H u ?e ∗ dT t ?H u ?e ∗ ?eT ≤ 1
by (simp add: inf-sup-distrib1)

have 31: ?H u d ∗ dT ≤ 1
using assms(6) big-forest-def by blast

have 32: ?H u ?e ∗ dT ≤ 1
proof −

have ?e ∗ dT ≤ ?e ∗ top ∗ (d ∗ top)T
by (simp add: conv-isotone mult-isotone top-right-mult-increasing)

also have ... ≤ ?e ∗ top ∗ − jT
by (metis assms(7) conv-complement conv-isotone mult-right-isotone)

also have ... ≤ j ∗ − jT
using assms(2, 3, 12) et-below-j mult-left-isotone by auto

also have ... ≤ − ?H
using 03 by (metis assms(2, 3, 8) conv-complement conv-dist-comp

equivalence-top-closed mult-left-isotone schroeder-3-p vector-top-closed)
finally have ?e ∗ dT ≤ − ?H

by simp
thus ?thesis
by (metis inf .coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)

qed
have 33: ?H u d ∗ ?eT ≤ 1
proof −

have 331: injective h
by (simp add: assms(4))

have (?H u ?e ∗ dT)T ≤ 1
using 32 coreflexive-conv-closed by auto

hence ?H u (?e ∗ dT)T ≤ 1
using 331 conv-dist-inf forest-components-equivalence by auto

thus ?thesis
using conv-dist-comp by auto

qed
have 34: ?H u ?e ∗ ?eT ≤ 1
proof −

have 341:arc ?e ∧ arc (?eT)
using assms(11) minarc-arc minarc-bot-iff by auto

have ?H u ?e ∗ ?eT ≤ ?e ∗ ?eT
by auto

thus ?thesis
using 341 arc-injective le-infI2 by blast

46

qed
thus ?thesis

using 1 31 32 33 34 by simp
qed
show 4:(?H ∗ (d t ?e))+ ≤ − ?H
proof −

have ?e ≤ − ?F
by (simp add: assms(10))

hence ?F ≤ − ?e
by (simp add: p-antitone-iff)

hence ?FT ∗ ?F ≤ − ?e
using assms(1) fch-equivalence by fastforce

hence ?FT ∗ ?F ∗ ?FT ≤ − ?e
by (metis assms(1) fch-equivalence forest-components-star

star .circ-decompose-9)
hence 41: ?F ∗ ?e ∗ ?F ≤ − ?F

using triple-schroeder-p by blast
hence 42:(?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)? ≤ − ?F
proof −

have 43: ?F ∗ ?F = ?F
using assms(1) forest-components-equivalence preorder-idempotent by auto

hence ?F ∗ ?e ∗ ?F = ?F ∗ ?F ∗ ?e ∗ ?F
by simp

also have ... = (?F)? ∗ ?F ∗ ?e ∗ (?F)?

by (simp add: assms(1) forest-components-star)
also have ... = (?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)?

using 43 by simp
finally show ?thesis

using 41 by simp
qed
hence 44: (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ≤ − ?H
proof −

have 45: ?H ≤ ?F
by (simp add: assms(5))

hence 46:?H ∗ ?e ≤ ?F ∗ ?e
by (simp add: mult-left-isotone)

have d ≤ f t f T
using assms(9) sup.left-commute sup-commute by auto

also have ... ≤ ?F
by (metis forest-components-increasing le-supI2 star .circ-back-loop-fixpoint

star .circ-increasing sup.bounded-iff)
finally have d ≤ ?F

by simp
hence ?H ∗ d ≤ ?F ∗ ?F

using 45 mult-isotone by auto
hence 47 : (?H ∗ d)? ≤ (?F ∗ ?F)?

by (simp add: star-isotone)
hence (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ≤ (?H ∗ d)? ∗ ?F ∗ ?e ∗ (?H ∗ d)?

using 46 by (metis mult-left-isotone mult-right-isotone mult-assoc)

47

also have ... ≤ (?F ∗ ?F)? ∗ ?F ∗ ?e ∗ (?F ∗ ?F)?

using 47 mult-left-isotone mult-right-isotone by (simp add: comp-isotone)
also have ... ≤ − ?F

using 42 by simp
also have ... ≤ − ?H

using 45 by (simp add: p-antitone)
finally show ?thesis

by simp
qed
have (?H ∗ (d t ?e))+ = (?H ∗ (d t ?e))? ∗ (?H ∗ (d t ?e))

using star .circ-plus-same by auto
also have ... = ((?H ∗ d)? t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)?) ∗ (?H ∗ (d t

?e))
using assms(4, 11) forest-components-equivalence minarc-arc minarc-bot-iff

path-through-components by auto
also have ... = (?H ∗ d)? ∗ (?H ∗ (d t ?e)) t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗

d)? ∗ (?H ∗ (d t ?e))
using mult-right-dist-sup by auto

also have ... = (?H ∗ d)? ∗ (?H ∗ d t ?H ∗ ?e) t (?H ∗ d)? ∗ ?H ∗ ?e ∗
(?H ∗ d)? ∗ (?H ∗ d t ?H ∗ ?e)

by (simp add: mult-left-dist-sup)
also have ... = (?H ∗ d)? ∗ ?H ∗ d t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H

∗ ?e ∗ (?H ∗ d)? ∗ (?H ∗ d t ?H ∗ ?e)
using mult-left-dist-sup mult-assoc by auto

also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗
(?H ∗ d)? ∗ (?H ∗ d t ?H ∗ ?e)

by (simp add: star .circ-plus-same mult-assoc)
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗

(?H ∗ d)? ∗ ?H ∗ d t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e
by (simp add: mult.semigroup-axioms semiring.distrib-left

sup.semigroup-axioms semigroup.assoc)
also have ... ≤ (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗

(?H ∗ d)? ∗ ?H ∗ d t (?H ∗ d)? ∗ ?H ∗ ?e
proof −

have ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?e ∗ top ∗ ?e
by (metis comp-associative comp-inf .coreflexive-idempotent

comp-inf .coreflexive-transitive comp-isotone top.extremum)
also have ... ≤ ?e

using assms(11) arc-top-arc minarc-arc minarc-bot-iff by auto
finally have ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?e

by simp
hence (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

by (simp add: comp-associative comp-isotone)
thus ?thesis

using sup-right-isotone by blast
qed
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗

(?H ∗ d)? ∗ ?H ∗ d
by (smt eq-iff sup.left-commute sup.orderE sup-commute)

48

also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e t (?H ∗ d)? ∗ ?H ∗ ?e ∗
(?H ∗ d)+

using star .circ-plus-same mult-assoc by auto
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (1 t (?H ∗ d)+)

by (simp add: mult-left-dist-sup sup-assoc)
also have ... = (?H ∗ d)+ t (?H ∗ d)? ∗ ?H ∗ ?e ∗ (?H ∗ d)?

by (simp add: star-left-unfold-equal)
also have ... ≤ − ?H

using 44 assms(6) big-forest-def by auto
finally show ?thesis

by simp
qed

qed

4.3.2 Identifying arcs

The expression d u >e>H u (Hd>)∗Ha>> identifies the edge incoming to
the component that the selected-edge, e, is outgoing from and which is on
the path from edge a to e. Here, we prove this expression is an arc.
lemma shows-arc-x:

assumes big-forest H d
and bf-between-arcs a e H d
and H ∗ d ∗ (H ∗ d)? ≤ − H
and ¬ aT ∗ top ≤ H ∗ e ∗ top
and regular a
and regular e
and regular H
and regular d

shows arc (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)
proof −

let ?x = d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top
have 1:regular ?x

using assms(5, 6, 7 , 8) regular-closed-star regular-conv-closed
regular-mult-closed by auto

have 2: aT ∗ top ∗ a ≤ 1
using arc-expanded assms(2) bf-between-arcs-def by auto

have 3: e ∗ top ∗ eT ≤ 1
using assms(2) bf-between-arcs-def arc-expanded by blast

have 4: top ∗ ?x ∗ top = top
proof −

have aT ∗ top ≤ (H ∗ d)? ∗ H ∗ e ∗ top
using assms(2) bf-between-arcs-def by blast

also have ... = H ∗ e ∗ top t (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
by (metis star .circ-loop-fixpoint star .circ-plus-same sup-commute mult-assoc)

finally have aT ∗ top ≤ H ∗ e ∗ top t (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
by simp

hence aT ∗ top ≤ H ∗ e ∗ top ∨ aT ∗ top ≤ (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
using assms(2, 6, 7) point-in-vector-sup bf-between-arcs-def

regular-mult-closed vector-mult-closed by auto

49

hence aT ∗ top ≤ (H ∗ d)? ∗ H ∗ d ∗ H ∗ e ∗ top
using assms(4) by blast

also have ... = (H ∗ d)? ∗ H ∗ d ∗ (H ∗ e ∗ top u H ∗ e ∗ top)
by (simp add: mult-assoc)

also have ... = (H ∗ d)? ∗ H ∗ (d u (H ∗ e ∗ top)T) ∗ H ∗ e ∗ top
by (metis comp-associative covector-inf-comp-3 star .circ-left-top star .circ-top)

also have ... = (H ∗ d)? ∗ H ∗ (d u topT ∗ eT ∗ HT) ∗ H ∗ e ∗ top
using conv-dist-comp mult-assoc by auto

also have ... = (H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H ∗ e ∗ top
using assms(1) by (simp add: big-forest-def)

finally have 2: aT ∗ top ≤ (H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H ∗ e ∗ top
by simp

hence e ∗ top ≤ ((H ∗ d)? ∗ H ∗ (d u top ∗ eT ∗ H) ∗ H)T ∗ aT ∗ top
proof −

have bijective (e ∗ top) ∧ bijective (aT ∗ top)
using assms(2) bf-between-arcs-def by auto

thus ?thesis
using 2 by (metis bijective-reverse mult-assoc)

qed
also have ... = HT ∗ (d u top ∗ eT ∗ H)T ∗ HT ∗ (H ∗ d)?T ∗ aT ∗ top

by (simp add: conv-dist-comp mult-assoc)
also have ... = H ∗ (d u top ∗ eT ∗ H)T ∗ H ∗ (H ∗ d)?T ∗ aT ∗ top

using assms(1) big-forest-def by auto
also have ... = H ∗ (d u top ∗ eT ∗ H)T ∗ H ∗ (dT ∗ H)? ∗ aT ∗ top

using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto
also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ H ∗ (dT ∗ H)? ∗ aT ∗ top

using assms(1) conv-dist-comp big-forest-def comp-associative conv-dist-inf
by auto

also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top
by (simp add: comp-associative star-slide)

also have ... = H ∗ (dT u H ∗ e ∗ top) ∗ ((H ∗ dT)? ∗ H ∗ aT ∗ top u (H ∗
dT)? ∗ H ∗ aT ∗ top)

using mult-assoc by auto
also have ... = H ∗ (dT u H ∗ e ∗ top u ((H ∗ dT)? ∗ H ∗ aT ∗ top)T) ∗ (H

∗ dT)? ∗ H ∗ aT ∗ top
by (smt comp-inf-vector covector-comp-inf vector-conv-covector

vector-top-closed mult-assoc)
also have ... = H ∗ (dT u (top ∗ eT ∗ H)T u ((H ∗ dT)? ∗ H ∗ aT ∗ top)T)

∗ (H ∗ dT)? ∗ H ∗ aT ∗ top
using assms(1) big-forest-def conv-dist-comp mult-assoc by auto

also have ... = H ∗ (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)T ∗ (H ∗
dT)? ∗ H ∗ aT ∗ top

by (simp add: conv-dist-inf)
finally have 3: e ∗ top ≤ H ∗ ?xT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top

by auto
have ?x 6= bot
proof (rule ccontr)

assume ¬ ?x 6= bot
hence e ∗ top = bot

50

using 3 le-bot by auto
thus False

using assms(2, 4) bf-between-arcs-def mult-assoc semiring.mult-zero-right
by auto

qed
thus ?thesis

using 1 using tarski by blast
qed
have 5: ?x ∗ top ∗ ?xT ≤ 1
proof −

have 51: H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
proof −

have 511: d ∗ (H ∗ d)? ≤ − H
using assms(1, 3) big-forest-def preorder-idempotent schroeder-4-p

triple-schroeder-p by fastforce
hence (d ∗ H)? ∗ d ≤ − H

using star-slide by auto
hence H ∗ (dT ∗ H)? ≤ − d

by (smt assms(1) big-forest-def conv-dist-comp conv-star-commute
schroeder-4-p star-slide)

hence H ∗ (d ∗ H)? ≤ − dT

using 511 by (metis assms(1) big-forest-def schroeder-5-p star-slide)
hence H ∗ (d ∗ H)? ≤ − (H ∗ dT)

by (metis assms(3) p-antitone-iff schroeder-4-p star-slide mult-assoc)
hence H ∗ (d ∗ H)? u H ∗ dT ≤ bot

by (simp add: bot-unique pseudo-complement)
hence H ∗ d ∗ (H ∗ (d ∗ H)? u H ∗ dT) ≤ 1

by (simp add: bot-unique)
hence 512: H ∗ d ∗ H ∗ (d ∗ H)? u H ∗ d ∗ H ∗ dT ≤ 1

using univalent-comp-left-dist-inf assms(1) big-forest-def mult-assoc by
fastforce

hence 513: H ∗ d ∗ H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
proof −

have d ∗ H ∗ dT ≤ H ∗ d ∗ H ∗ dT

by (metis assms(1) big-forest-def conv-dist-comp conv-involutive
mult-1-right mult-left-isotone)

thus ?thesis
using 512 by (smt dual-order .trans p-antitone p-shunting-swap

regular-one-closed)
qed
have dT ∗ H ∗ d ≤ 1 t − H

using assms(1) big-forest-def dTransHd-le-1 le-supI1 by blast
hence (− 1 u H) ∗ dT ∗ H ≤ − dT

by (metis assms(1) big-forest-def dTransHd-le-1
inf .sup-monoid.add-commute le-infI2 p-antitone-iff regular-one-closed
schroeder-4-p mult-assoc)

hence d ∗ (− 1 u H) ∗ dT ≤ − H
by (metis assms(1) big-forest-def conv-dist-comp schroeder-3-p

triple-schroeder-p)

51

hence H u d ∗ (− 1 u H) ∗ dT ≤ 1
by (metis inf .coboundedI1 p-antitone-iff p-shunting-swap regular-one-closed)

hence H u d ∗ dT t H u d ∗ (− 1 u H) ∗ dT ≤ 1
using assms(1) big-forest-def le-supI by blast

hence H u (d ∗ 1 ∗ dT t d ∗ (− 1 u H) ∗ dT) ≤ 1
using comp-inf .semiring.distrib-left by auto

hence H u (d ∗ (1 t (− 1 u H)) ∗ dT) ≤ 1
by (simp add: mult-left-dist-sup mult-right-dist-sup)

hence 514: H u d ∗ H ∗ dT ≤ 1
by (metis assms(1) big-forest-def comp-inf .semiring.distrib-left inf .le-iff-sup

inf .sup-monoid.add-commute inf-top-right regular-one-closed stone)
thus ?thesis
proof −

have H u d ∗ H ∗ dT t H ∗ d ∗ H ∗ (d ∗ H)? u d ∗ H ∗ dT ≤ 1
using 513 514 by simp

hence d ∗ H ∗ dT u (H t H ∗ d ∗ H ∗ (d ∗ H)?) ≤ 1
by (simp add: comp-inf .semiring.distrib-left inf .sup-monoid.add-commute)

hence d ∗ H ∗ dT u H ∗ (1 t d ∗ H ∗ (d ∗ H)?) ≤ 1
by (simp add: mult-left-dist-sup mult-assoc)

thus ?thesis
by (simp add: inf .sup-monoid.add-commute star-left-unfold-equal)

qed
qed
have ?x ∗ top ∗ ?xT = (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top) ∗ top

∗ (dT u HT ∗ eT T ∗ topT u topT ∗ aT T ∗ HT ∗ (dT T ∗ HT)?)
by (simp add: conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)

also have ... = (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top) ∗ top ∗ (dT

u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?)
using assms(1) big-forest-def by auto

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u (d u top ∗ eT ∗ H) ∗ top ∗ (dT

u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?)
by (metis inf-vector-comp vector-export-comp)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u (d u top ∗ eT ∗ H) ∗ top ∗ top ∗
(dT u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?)

by (simp add: vector-mult-closed)
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u d ∗ ((top ∗ eT ∗ H)T u top) ∗

top ∗ (dT u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?)
by (simp add: covector-comp-inf-1 covector-mult-closed)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u d ∗ ((top ∗ eT ∗ H)T u (H ∗ e ∗
top)T) ∗ dT u top ∗ a ∗ H ∗ (d ∗ H)?

by (smt comp-associative comp-inf .star-star-absorb comp-inf-vector
conv-star-commute covector-comp-inf covector-conv-vector fc-top star .circ-top
total-conv-surjective vector-conv-covector vector-inf-comp)

also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top u top ∗ a ∗ H ∗ (d ∗ H)? u d ∗
((top ∗ eT ∗ H)T u (H ∗ e ∗ top)T) ∗ dT

using inf .sup-monoid.add-assoc inf .sup-monoid.add-commute by auto
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗

((top ∗ eT ∗ H)T u (H ∗ e ∗ top)T) ∗ dT

by (smt comp-inf .star .circ-decompose-9 comp-inf .star-star-absorb

52

comp-inf-covector fc-top star .circ-decompose-11 star .circ-top vector-export-comp)
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ (H ∗ e ∗

top u top ∗ eT ∗ H) ∗ dT

using assms(1) big-forest-def conv-dist-comp mult-assoc by auto
also have ... = (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? u d ∗ H ∗ e ∗

top ∗ eT ∗ H ∗ dT

by (metis comp-inf-covector inf-top.left-neutral mult-assoc)
also have ... ≤ (H ∗ dT)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ e ∗ top ∗ eT ∗ H ∗ dT

proof −
have (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ≤ (H ∗ dT)? ∗ H ∗ 1 ∗

H ∗ (d ∗ H)?

using 2 by (metis comp-associative comp-isotone mult-left-isotone
mult-semi-associative star .circ-transitive-equal)

also have ... = (H ∗ dT)? ∗ H ∗ (d ∗ H)?

using assms(1) big-forest-def mult.semigroup-axioms preorder-idempotent
semigroup.assoc by fastforce

also have ... = (H ∗ dT)? ∗ (H ∗ d)? ∗ H
by (metis star-slide mult-assoc)

finally show ?thesis
using inf .sup-left-isotone by auto

qed
also have ... ≤ (H ∗ dT)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ dT

proof −
have d ∗ H ∗ e ∗ top ∗ eT ∗ H ∗ dT ≤ d ∗ H ∗ 1 ∗ H ∗ dT

using 3 by (metis comp-isotone idempotent-one-closed mult-left-isotone
mult-sub-right-one mult-assoc)

also have ... ≤ d ∗ H ∗ dT

by (metis assms(1) big-forest-def mult-left-isotone mult-one-associative
mult-semi-associative preorder-idempotent)

finally show ?thesis
using inf .sup-right-isotone by auto

qed
also have ... = H ∗ (dT ∗ H)? ∗ (H ∗ d)? ∗ H u d ∗ H ∗ dT

by (metis assms(1) big-forest-def comp-associative preorder-idempotent
star-slide)

also have ... = H ∗ ((dT ∗ H)? t (H ∗ d)?) ∗ H u d ∗ H ∗ dT

by (simp add: assms(1) expand-big-forest mult.semigroup-axioms
semigroup.assoc)

also have ... = (H ∗ (dT ∗ H)? ∗ H t H ∗ (H ∗ d)? ∗ H) u d ∗ H ∗ dT

by (simp add: mult-left-dist-sup mult-right-dist-sup)
also have ... = (H ∗ dT)? ∗ H u d ∗ H ∗ dT t H ∗ (d ∗ H)? u d ∗ H ∗ dT

by (smt assms(1) big-forest-def inf-sup-distrib2 mult.semigroup-axioms
preorder-idempotent star-slide semigroup.assoc)

also have ... ≤ (H ∗ dT)? ∗ H u d ∗ H ∗ dT t 1
using 51 comp-inf .semiring.add-left-mono by blast

finally have ?x ∗ top ∗ ?xT ≤ 1
using 51 by (smt assms(1) big-forest-def conv-dist-comp conv-dist-inf

conv-dist-sup conv-involutive conv-star-commute equivalence-one-closed
mult.semigroup-axioms sup.absorb2 semigroup.assoc conv-isotone conv-order)

53

thus ?thesis
by simp

qed
have 6: ?xT ∗ top ∗ ?x ≤ 1
proof −

have ?xT ∗ top ∗ ?x = (dT u HT ∗ eT T ∗ topT u topT ∗ aT T ∗ HT ∗ (dT T ∗
HT)?) ∗ top ∗ (d u top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)

by (simp add: conv-dist-comp conv-dist-inf conv-star-commute mult-assoc)
also have ... = (dT u H ∗ e ∗ top u top ∗ a ∗ H ∗ (d ∗ H)?) ∗ top ∗ (d u top

∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)
using assms(1) big-forest-def by auto

also have ... = H ∗ e ∗ top u (dT u top ∗ a ∗ H ∗ (d ∗ H)?) ∗ top ∗ (d u top
∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)

by (smt comp-associative inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute star .circ-left-top star .circ-top vector-inf-comp)

also have ... = H ∗ e ∗ top u dT ∗ ((top ∗ a ∗ H ∗ (d ∗ H)?)T u top) ∗ (d u
top ∗ eT ∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)

by (simp add: covector-comp-inf-1 covector-mult-closed)
also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ top ∗ (d u top ∗ eT

∗ H u (H ∗ dT)? ∗ H ∗ aT ∗ top)
using assms(1) big-forest-def comp-associative conv-dist-comp by auto

also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ top ∗ (d u (H ∗
dT)? ∗ H ∗ aT ∗ top) u top ∗ eT ∗ H

by (smt comp-associative comp-inf-covector inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute)

also have ... = H ∗ e ∗ top u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗ (top u ((H ∗ dT)?

∗ H ∗ aT ∗ top)T) ∗ d u top ∗ eT ∗ H
by (metis comp-associative comp-inf-vector vector-conv-covector

vector-top-closed)
also have ... = H ∗ e ∗ top u (H ∗ e ∗ top)T u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗

((H ∗ dT)? ∗ H ∗ aT ∗ top)T ∗ d
by (smt assms(1) big-forest-def conv-dist-comp inf .left-commute

inf .sup-monoid.add-commute symmetric-top-closed mult-assoc inf-top.left-neutral)
also have ... = H ∗ e ∗ top ∗ (H ∗ e ∗ top)T u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗

((H ∗ dT)? ∗ H ∗ aT ∗ top)T ∗ d
using vector-covector vector-mult-closed by auto

also have ... = H ∗ e ∗ top ∗ topT ∗ eT ∗ HT u dT ∗ (d ∗ H)?T ∗ H ∗ aT ∗
topT ∗ aT T ∗ HT ∗ (H ∗ dT)?T ∗ d

by (smt conv-dist-comp mult.semigroup-axioms symmetric-top-closed
semigroup.assoc)

also have ... = H ∗ e ∗ top ∗ top ∗ eT ∗ H u dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top
∗ a ∗ H ∗ (d ∗ H)? ∗ d

using assms(1) big-forest-def conv-dist-comp conv-star-commute by auto
also have ... = H ∗ e ∗ top ∗ eT ∗ H u dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗

H ∗ (d ∗ H)? ∗ d
using vector-top-closed mult-assoc by auto

also have ... ≤ H u dT ∗ (H ∗ dT)? ∗ H ∗ (d ∗ H)? ∗ d
proof −

have H ∗ e ∗ top ∗ eT ∗ H ≤ H ∗ 1 ∗ H

54

using 3 by (metis comp-associative mult-left-isotone mult-right-isotone)
also have ... = H

using assms(1) big-forest-def preorder-idempotent by auto
finally have 611: H ∗ e ∗ top ∗ eT ∗ H ≤ H

by simp
have dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ∗ d ≤ dT ∗ (H ∗

dT)? ∗ H ∗ 1 ∗ H ∗ (d ∗ H)? ∗ d
using 2 by (metis comp-associative mult-left-isotone mult-right-isotone)

also have ... = dT ∗ (H ∗ dT)? ∗ H ∗ (d ∗ H)? ∗ d
using assms(1) big-forest-def mult.semigroup-axioms preorder-idempotent

semigroup.assoc by fastforce
finally have dT ∗ (H ∗ dT)? ∗ H ∗ aT ∗ top ∗ a ∗ H ∗ (d ∗ H)? ∗ d ≤ dT ∗

(H ∗ dT)? ∗ H ∗ (d ∗ H)? ∗ d
by simp

thus ?thesis
using 611 comp-inf .comp-isotone by blast

qed
also have ... = H u (dT ∗ H)? ∗ dT ∗ H ∗ d ∗ (H ∗ d)?

using star-slide mult-assoc by auto
also have ... ≤ H u (dT ∗ H)? ∗ (H ∗ d)?
proof −

have (dT ∗ H)? ∗ dT ∗ H ∗ d ∗ (H ∗ d)? ≤ (dT ∗ H)? ∗ 1 ∗ (H ∗ d)?
by (smt assms(1) big-forest-def conv-dist-comp mult-left-isotone

mult-right-isotone preorder-idempotent mult-assoc)
also have ... = (dT ∗ H)? ∗ (H ∗ d)?

by simp
finally show ?thesis

using inf .sup-right-isotone by blast
qed
also have ... = H u ((dT ∗ H)? t (H ∗ d)?)

by (simp add: assms(1) expand-big-forest)
also have ... = H u (dT ∗ H)? t H u (H ∗ d)?

by (simp add: comp-inf .semiring.distrib-left)
also have ... = 1 t H u (dT ∗ H)+ t H u (H ∗ d)+
proof −

have 612: H u (H ∗ d)? = 1 t H u (H ∗ d)+
using assms(1) big-forest-def reflexive-inf-star by blast

have H u (dT ∗ H)? = 1 t H u (dT ∗ H)+

using assms(1) big-forest-def reflexive-inf-star by auto
thus ?thesis

using 612 sup-assoc sup-commute by auto
qed
also have ... ≤ 1
proof −

have 613: H u (H ∗ d)+ ≤ 1
by (metis assms(3) inf .coboundedI1 p-antitone-iff p-shunting-swap

regular-one-closed)
hence H u (dT ∗ H)+ ≤ 1

by (metis assms(1) big-forest-def conv-dist-comp conv-dist-inf

55

conv-plus-commute coreflexive-symmetric)
thus ?thesis

by (simp add: 613)
qed
finally show ?thesis

by simp
qed
have 7 :bijective (?x ∗ top)

using 4 5 6 arc-expanded by blast
have bijective (?xT ∗ top)

using 4 5 6 arc-expanded by blast
thus ?thesis

using 7 by simp
qed

To maintain that f can be extended to a minimum spanning forest we
identify an edge, i = v u Fe> u >e>F , that may be exchanged with the
selected-edge, e. Here, we show that i is an arc.
lemma boruvka-edge-arc:

assumes equivalence F
and forest v
and arc e
and regular F
and F ≤ forest-components (F u v)
and regular v
and v ∗ eT = bot
and e ∗ F ∗ e = bot
and eT ≤ v?

and e 6= bot
shows arc (v u −F ∗ e ∗ top u top ∗ eT ∗ F)

proof −
let ?i = v u −F ∗ e ∗ top u top ∗ eT ∗ F
have 1: ?iT ∗ top ∗ ?i ≤ 1
proof −

have ?iT ∗ top ∗ ?i = (vT u top ∗ eT ∗ −F u F ∗ e ∗ top) ∗ top ∗ (v u −F ∗
e ∗ top u top ∗ eT ∗ F)

using assms(1) conv-complement conv-dist-comp conv-dist-inf
mult.semigroup-axioms semigroup.assoc by fastforce

also have ... = F ∗ e ∗ top u (vT u top ∗ eT ∗ −F) ∗ top ∗ (v u −F ∗ e ∗
top) u top ∗ eT ∗ F

by (smt covector-comp-inf covector-mult-closed inf-vector-comp
vector-export-comp vector-top-closed)

also have ... = F ∗ e ∗ top u (vT u top ∗ eT ∗ −F) ∗ top ∗ top ∗ (v u −F ∗
e ∗ top) u top ∗ eT ∗ F

by (simp add: comp-associative)
also have ... = F ∗ e ∗ top u vT ∗ (top u (top ∗ eT ∗ −F)T) ∗ top ∗ (v u −F

∗ e ∗ top) u top ∗ eT ∗ F
using comp-associative comp-inf-vector-1 by auto

also have ... = F ∗ e ∗ top u vT ∗ (top u (top ∗ eT ∗ −F)T) ∗ (top u (−F ∗

56

e ∗ top)T) ∗ v u top ∗ eT ∗ F
by (smt comp-inf-vector conv-dist-comp mult.semigroup-axioms

symmetric-top-closed semigroup.assoc)
also have ... = F ∗ e ∗ top u vT ∗ (top ∗ eT ∗ −F)T ∗ (−F ∗ e ∗ top)T ∗ v u

top ∗ eT ∗ F
by simp

also have ... = F ∗ e ∗ top u vT ∗ −FT ∗ eT T ∗ topT ∗ topT ∗ eT ∗ −FT ∗ v
u top ∗ eT ∗ F

by (metis comp-associative conv-complement conv-dist-comp)
also have ... = F ∗ e ∗ top u vT ∗ −F ∗ e ∗ top ∗ top ∗ eT ∗ −F ∗ v u top ∗

eT ∗ F
by (simp add: assms(1))

also have ... = F ∗ e ∗ top u vT ∗ −F ∗ e ∗ top u top ∗ eT ∗ −F ∗ v u top ∗
eT ∗ F

by (metis comp-associative comp-inf-covector inf .sup-monoid.add-assoc
inf-top.left-neutral vector-top-closed)

also have ... = (F u vT ∗ −F) ∗ e ∗ top u top ∗ eT ∗ −F ∗ v u top ∗ eT ∗ F
using assms(3) injective-comp-right-dist-inf mult-assoc by auto

also have ... = (F u vT ∗ −F) ∗ e ∗ top u top ∗ eT ∗ (F u −F ∗ v)
using assms(3) conv-dist-comp inf .sup-monoid.add-assoc

inf .sup-monoid.add-commute mult.semigroup-axioms univalent-comp-left-dist-inf
semigroup.assoc by fastforce

also have ... = (F u vT ∗ −F) ∗ e ∗ top ∗ top ∗ eT ∗ (F u −F ∗ v)
by (metis comp-associative comp-inf-covector inf-top.left-neutral

vector-top-closed)
also have ... = (F u vT ∗ −F) ∗ e ∗ top ∗ eT ∗ (F u −F ∗ v)

by (simp add: comp-associative)
also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v)

by (smt assms(3) conv-dist-comp mult-left-isotone shunt-bijective
symmetric-top-closed top-right-mult-increasing mult-assoc)

also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v) u F
by (metis assms(1) inf .absorb1 inf .cobounded1 mult-isotone

preorder-idempotent)
also have ... ≤ (F u vT ∗ −F) ∗ (F u −F ∗ v) u (F u v)T ? ∗ (F u v)?

using assms(5) comp-inf .mult-right-isotone by auto
also have ... ≤ (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)T ? ∗ (F u v)?
proof −

have F u vT ∗ −F ≤ (vT u F ∗ −FT) ∗ −F
by (metis conv-complement dedekind-2 inf-commute)

also have ... = (vT u −FT) ∗ −F
using assms(1) equivalence-comp-left-complement by simp

finally have F u vT ∗ −F ≤ F u (vT u −F) ∗ −F
using assms(1) by auto

hence 11: F u vT ∗ −F = F u (−F u vT) ∗ −F
by (metis inf .antisym-conv inf .sup-monoid.add-commute

comp-left-subdist-inf inf .boundedE inf .sup-right-isotone)
hence FT u −FT ∗ vT T = FT u −FT ∗ (−FT u vT T)

by (metis (full-types) assms(1) conv-complement conv-dist-comp
conv-dist-inf)

57

hence 12: F u −F ∗ v = F u −F ∗ (−F u v)
using assms(1) by (simp add: abel-semigroup.commute

inf .abel-semigroup-axioms)
have (F u vT ∗ −F) ∗ (F u −F ∗ v) = (F u (−F u vT) ∗ −F) ∗ (F u −F

∗ (−F u v))
using 11 12 by auto

also have ... ≤ (−F u vT) ∗ −F ∗ −F ∗ (−F u v)
by (metis comp-associative comp-isotone inf .cobounded2)

finally show ?thesis
using comp-inf .mult-left-isotone by blast

qed
also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)T ∗ (F u v)T ?

∗ (F u v)?) t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)
by (metis comp-associative inf-sup-distrib1 star .circ-loop-fixpoint)

also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u vT) ∗ (F u v)T ?

∗ (F u v)?) t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)
using assms(1) conv-dist-inf by auto

also have ... = bot t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)?)
proof −

have (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u vT) ∗ (F u v)T ? ∗ (F u
v)? ≤ bot

using assms(1, 2) forests-bot-2 by (simp add: comp-associative)
thus ?thesis

using le-bot by blast
qed
also have ... = (−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (1 t (F u v)? ∗ (F u v))

by (simp add: star .circ-plus-same star-left-unfold-equal)
also have ... = ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u 1) t ((−F u vT) ∗ −F

∗ −F ∗ (−F u v) u (F u v)? ∗ (F u v))
by (simp add: comp-inf .semiring.distrib-left)

also have ... ≤ 1 t ((−F u vT) ∗ −F ∗ −F ∗ (−F u v) u (F u v)? ∗ (F u v))
using sup-left-isotone by auto

also have ... ≤ 1 t bot
using assms(1, 2) forests-bot-3 comp-inf .semiring.add-left-mono by simp

finally show ?thesis
by simp

qed
have 2: ?i ∗ top ∗ ?iT ≤ 1
proof −

have ?i ∗ top ∗ ?iT = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u (−F
∗ e ∗ top)T u (top ∗ eT ∗ F)T)

by (simp add: conv-dist-inf)
also have ... = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u topT ∗ eT ∗

−FT u FT ∗ eT T ∗ topT)
by (simp add: conv-complement conv-dist-comp mult-assoc)

also have ... = (v u −F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top ∗ (vT u top ∗ eT ∗
−F u F ∗ e ∗ top)

by (simp add: assms(1))
also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ (vT u top ∗ eT ∗

58

−F u F ∗ e ∗ top)
by (smt inf .left-commute inf .sup-monoid.add-assoc vector-export-comp)

also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ (vT u F ∗ e ∗ top)
u top ∗ eT ∗ −F

by (smt comp-inf-covector inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute mult-assoc)

also have ... = −F ∗ e ∗ top u (v u top ∗ eT ∗ F) ∗ top ∗ top ∗ (vT u F ∗ e
∗ top) u top ∗ eT ∗ −F

by (simp add: mult-assoc)
also have ... = −F ∗ e ∗ top u v ∗ ((top ∗ eT ∗ F)T u top) ∗ top ∗ (vT u F ∗

e ∗ top) u top ∗ eT ∗ −F
by (simp add: comp-inf-vector-1 mult.semigroup-axioms semigroup.assoc)

also have ... = −F ∗ e ∗ top u v ∗ ((top ∗ eT ∗ F)T u top) ∗ (top u (F ∗ e ∗
top)T) ∗ vT u top ∗ eT ∗ −F

by (smt comp-inf-vector covector-comp-inf vector-conv-covector
vector-mult-closed vector-top-closed)

also have ... = −F ∗ e ∗ top u v ∗ (top ∗ eT ∗ F)T ∗ (F ∗ e ∗ top)T ∗ vT u
top ∗ eT ∗ −F

by simp
also have ... = −F ∗ e ∗ top u v ∗ FT ∗ eT T ∗ topT ∗ topT ∗ eT ∗ FT ∗ vT

u top ∗ eT ∗ −F
by (metis comp-associative conv-dist-comp)

also have ... = −F ∗ e ∗ top u v ∗ F ∗ e ∗ top ∗ top ∗ eT ∗ F ∗ vT u top ∗
eT ∗ −F

using assms(1) by auto
also have ... = −F ∗ e ∗ top u v ∗ F ∗ e ∗ top u top ∗ eT ∗ F ∗ vT u top ∗

eT ∗ −F
by (smt comp-associative comp-inf-covector inf .sup-monoid.add-assoc

inf-top.left-neutral vector-top-closed)
also have ... = (−F u v ∗ F) ∗ e ∗ top u top ∗ eT ∗ F ∗ vT u top ∗ eT ∗ −F

using injective-comp-right-dist-inf assms(3) mult.semigroup-axioms
semigroup.assoc by fastforce

also have ... = (−F u v ∗ F) ∗ e ∗ top u top ∗ eT ∗ (F ∗ vT u −F)
using injective-comp-right-dist-inf assms(3) conv-dist-comp

inf .sup-monoid.add-assoc mult.semigroup-axioms univalent-comp-left-dist-inf
semigroup.assoc by fastforce

also have ... = (−F u v ∗ F) ∗ e ∗ top ∗ top ∗ eT ∗ (F ∗ vT u −F)
by (metis inf-top-right vector-export-comp vector-top-closed)

also have ... = (−F u v ∗ F) ∗ e ∗ top ∗ eT ∗ (F ∗ vT u −F)
by (simp add: comp-associative)

also have ... ≤ (−F u v ∗ F) ∗ (F ∗ vT u −F)
by (smt assms(3) conv-dist-comp mult.semigroup-axioms mult-left-isotone

shunt-bijective symmetric-top-closed top-right-mult-increasing semigroup.assoc)
also have ... = (−F u v ∗ F) ∗ ((v ∗ F)T u −F)

by (simp add: assms(1) conv-dist-comp)
also have ... = (−F u v ∗ F) ∗ (−F u v ∗ F)T

using assms(1) conv-complement conv-dist-inf by (simp add:
inf .sup-monoid.add-commute)

also have ... ≤ (−F u v) ∗ (F u v)? ∗ (F u v)T ? ∗ (−F u v)T

59

proof −
let ?Fv = F u v
have −F u v ∗ F ≤ −F u v ∗ (F u v)T ? ∗ (F u v)?

using assms(5) inf .sup-right-isotone mult-right-isotone comp-associative
by auto

also have ... ≤ −F u v ∗ (F u v)?
proof −

have v ∗ vT ≤ 1
by (simp add: assms(2))

hence v ∗ vT ∗ F ≤ F
using assms(1) dual-order .trans mult-left-isotone by blast

hence v ∗ vT ∗ FT ? ∗ F? ≤ F
by (metis assms(1) mult-1-right preorder-idempotent

star .circ-sup-one-right-unfold star .circ-transitive-equal star-one
star-simulation-right-equal mult-assoc)

hence v ∗ (F u v)T ∗ FT ? ∗ F? ≤ F
by (meson conv-isotone dual-order .trans inf .cobounded2

inf .sup-monoid.add-commute mult-left-isotone mult-right-isotone)
hence v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? ≤ F

by (meson conv-isotone dual-order .trans inf .cobounded2
inf .sup-monoid.add-commute mult-left-isotone mult-right-isotone comp-isotone
conv-dist-inf inf .cobounded1 star-isotone)

hence −F u v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? ≤ bot
using eq-iff p-antitone pseudo-complement by auto

hence (−F u v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)?) t v ∗ (v u F)? ≤ v ∗
(v u F)?

using bot-least le-bot by fastforce
hence (−F t v ∗ (v u F)?) u (v ∗ (F u v)T ∗ (F u v)T ? ∗ (F u v)? t v ∗

(v u F)?) ≤ v ∗ (v u F)?

by (simp add: sup-inf-distrib2)
hence (−F t v ∗ (v u F)?) u v ∗ ((F u v)T ∗ (F u v)T ? t 1) ∗ (v u F)?

≤ v ∗ (v u F)?

by (simp add: inf .sup-monoid.add-commute mult.semigroup-axioms
mult-left-dist-sup mult-right-dist-sup semigroup.assoc)

hence (−F t v ∗ (v u F)?) u v ∗ (F u v)T ? ∗ (v u F)? ≤ v ∗ (v u F)?

by (simp add: star-left-unfold-equal sup-commute)
hence −F u v ∗ (F u v)T ? ∗ (v u F)? ≤ v ∗ (v u F)?

using comp-inf .mult-right-sub-dist-sup-left inf .order-lesseq-imp by blast
thus ?thesis

by (simp add: inf .sup-monoid.add-commute)
qed
also have ... ≤ (v u −F ∗ (F u v)T ?) ∗ (F u v)?

by (metis dedekind-2 conv-star-commute inf .sup-monoid.add-commute)
also have ... ≤ (v u −F ∗ FT ?) ∗ (F u v)?

using conv-isotone inf .sup-right-isotone mult-left-isotone mult-right-isotone
star-isotone by auto

also have ... = (v u −F ∗ F) ∗ (F u v)?
by (metis assms(1) equivalence-comp-right-complement mult-left-one

star-one star-simulation-right-equal)

60

also have ... = (−F u v) ∗ (F u v)?
using assms(1) equivalence-comp-right-complement

inf .sup-monoid.add-commute by auto
finally have −F u v ∗ F ≤ (−F u v) ∗ (F u v)?

by simp
hence (−F u v ∗ F) ∗ (−F u v ∗ F)T ≤ (−F u v) ∗ (F u v)? ∗ ((−F u v)

∗ (F u v)?)T
by (simp add: comp-isotone conv-isotone)

also have ... = (−F u v) ∗ (F u v)? ∗ (F u v)T ? ∗ (−F u v)T
by (simp add: comp-associative conv-dist-comp conv-star-commute)

finally show ?thesis
by simp

qed
also have ... ≤ (−F u v) ∗ ((F u v?) t (F u vT ?)) ∗ (−F u v)T
proof −

have (F u v)? ∗ (F u v)T ? ≤ F? ∗ FT ?

using fc-isotone by auto
also have ... ≤ F ∗ F

by (metis assms(1) preorder-idempotent star .circ-sup-one-left-unfold
star .circ-transitive-equal star-right-induct-mult)

finally have 21: (F u v)? ∗ (F u v)T ? ≤ F
using assms(1) dual-order .trans by blast

have (F u v)? ∗ (F u v)T ? ≤ v? ∗ vT ?

by (simp add: fc-isotone)
hence (F u v)? ∗ (F u v)T ? ≤ F u v? ∗ vT ?

using 21 by simp
also have ... = F u (v? t vT ?)

by (simp add: assms(2) cancel-separate-eq)
finally show ?thesis

by (metis assms(4, 6) comp-associative comp-inf .semiring.distrib-left
comp-isotone inf-pp-semi-commute mult-left-isotone regular-closed-inf)

qed
also have ... ≤ (−F u v) ∗ (F u vT ?) ∗ (−F u v)T t (−F u v) ∗ (F u v?) ∗

(−F u v)T
by (simp add: mult-left-dist-sup mult-right-dist-sup)

also have ... ≤ (−F u v) ∗ (−F u v)T t (−F u v) ∗ (−F u v)T
proof −

have (−F u v) ∗ (F u vT ?) ≤ (−F u v) ∗ ((F u v)T ? ∗ (F u v)? u vT ?)
by (simp add: assms(5) inf .coboundedI1 mult-right-isotone)

also have ... = (−F u v) ∗ ((F u v)T ∗ (F u v)T ? ∗ (F u v)? u vT ?) t
(−F u v) ∗ ((F u v)? u vT ?)

by (metis comp-associative comp-inf .mult-right-dist-sup mult-left-dist-sup
star .circ-loop-fixpoint)

also have ... ≤ (−F u v) ∗ (F u v)T ∗ top t (−F u v) ∗ ((F u v)? u vT ?)
by (simp add: comp-associative comp-isotone inf .coboundedI2

inf .sup-monoid.add-commute le-supI1)
also have ... ≤ (−F u v) ∗ (F u v)T ∗ top t (−F u v) ∗ (v? u vT ?)

by (smt comp-inf .mult-right-isotone comp-inf .semiring.add-mono eq-iff
inf .cobounded2 inf .sup-monoid.add-commute mult-right-isotone star-isotone)

61

also have ... ≤ bot t (−F u v) ∗ (v? u vT ?)
by (metis assms(1, 2) forests-bot-1 comp-associative

comp-inf .semiring.add-right-mono mult-semi-associative vector-bot-closed)
also have ... ≤ −F u v

by (simp add: assms(2) acyclic-star-inf-conv)
finally have 22: (−F u v) ∗ (F u vT ?) ≤ −F u v

by simp
have ((−F u v) ∗ (F u vT ?))T = (F u v?) ∗ (−F u v)T

by (simp add: assms(1) conv-dist-inf conv-star-commute conv-dist-comp)
hence (F u v?) ∗ (−F u v)T ≤ (−F u v)T

using 22 conv-isotone by fastforce
thus ?thesis

using 22 by (metis assms(4, 6) comp-associative
comp-inf .pp-comp-semi-commute comp-inf .semiring.add-mono comp-isotone
inf-pp-commute mult-left-isotone)

qed
also have ... = (−F u v) ∗ (−F u v)T

by simp
also have ... ≤ v ∗ vT

by (simp add: comp-isotone conv-isotone)
also have ... ≤ 1

by (simp add: assms(2))
thus ?thesis

using calculation dual-order .trans by blast
qed
have 3: top ∗ ?i ∗ top = top
proof −

have 31: regular (eT ∗ −F ∗ v ∗ F ∗ e)
using assms(3, 4, 6) arc-regular regular-mult-closed by auto

have 32: bijective ((top ∗ eT)T)
using assms(3) by (simp add: conv-dist-comp)

have top ∗ ?i ∗ top = top ∗ (v u −F ∗ e ∗ top) ∗ ((top ∗ eT ∗ F)T u top)
by (simp add: comp-associative comp-inf-vector-1)

also have ... = (top u (−F ∗ e ∗ top)T) ∗ v ∗ ((top ∗ eT ∗ F)T u top)
using comp-inf-vector conv-dist-comp by auto

also have ... = (−F ∗ e ∗ top)T ∗ v ∗ (top ∗ eT ∗ F)T

by simp
also have ... = topT ∗ eT ∗ −FT ∗ v ∗ FT ∗ eT T ∗ topT

by (simp add: comp-associative conv-complement conv-dist-comp)
finally have 33: top ∗ ?i ∗ top = top ∗ eT ∗ −F ∗ v ∗ F ∗ e ∗ top

by (simp add: assms(1))
have top ∗ ?i ∗ top 6= bot
proof (rule ccontr)

assume ¬ top ∗ (v u − F ∗ e ∗ top u top ∗ eT ∗ F) ∗ top 6= bot
hence top ∗ eT ∗ −F ∗ v ∗ F ∗ e ∗ top = bot

using 33 by auto
hence eT ∗ −F ∗ v ∗ F ∗ e = bot

using 31 tarski comp-associative le-bot by fastforce
hence top ∗ (−F ∗ v ∗ F ∗ e)T ≤ −(eT)

62

by (metis comp-associative conv-complement-sub-leq conv-involutive p-bot
schroeder-5-p)

hence top ∗ eT ∗ FT ∗ vT ∗ −FT ≤ −(eT)
by (simp add: comp-associative conv-complement conv-dist-comp)

hence v ∗ F ∗ e ∗ top ∗ eT ≤ F
by (metis assms(1, 4) comp-associative conv-dist-comp schroeder-3-p

symmetric-top-closed)
hence v ∗ F ∗ e ∗ top ∗ top ∗ eT ≤ F

by (simp add: comp-associative)
hence v ∗ F ∗ e ∗ top ≤ F ∗ (top ∗ eT)T

using 32 by (metis shunt-bijective comp-associative conv-involutive)
hence v ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

using comp-associative conv-dist-comp by auto
hence v? ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

using comp-associative star-left-induct-mult-iff by auto
hence eT ∗ F ∗ e ∗ top ≤ F ∗ e ∗ top

by (meson assms(9) mult-left-isotone order-trans)
hence eT ∗ F ∗ e ∗ top ∗ (e ∗ top)T ≤ F

using 32 shunt-bijective assms(3) mult-assoc by auto
hence 34: eT ∗ F ∗ e ∗ top ∗ top ∗ eT ≤ F

by (metis conv-dist-comp mult.semigroup-axioms symmetric-top-closed
semigroup.assoc)

hence eT ≤ F
proof −

have eT ≤ eT ∗ e ∗ eT
by (metis conv-involutive ex231c)

also have ... ≤ eT ∗ F ∗ e ∗ eT
using assms(1) comp-associative mult-left-isotone mult-right-isotone by

fastforce
also have ... ≤ eT ∗ F ∗ e ∗ top ∗ top ∗ eT

by (simp add: mult-left-isotone top-right-mult-increasing
vector-mult-closed)

finally show ?thesis
using 34 by simp

qed
hence 35: e ≤ F

using assms(1) conv-order by fastforce
have top ∗ (F ∗ e)T ≤ − e

using assms(8) comp-associative schroeder-4-p by auto
hence top ∗ eT ∗ F ≤ − e

by (simp add: assms(1) comp-associative conv-dist-comp)
hence (top ∗ eT)T ∗ e ≤ − F

using schroeder-3-p by auto
hence e ∗ top ∗ e ≤ − F

by (simp add: conv-dist-comp)
hence e ≤ − F

by (simp add: assms(3) arc-top-arc)
hence e ≤ F u − F

using 35 inf .boundedI by blast

63

hence e = bot
using bot-unique by auto

thus False
using assms(10) by auto

qed
thus ?thesis

by (metis assms(3, 4, 6) arc-regular regular-closed-inf regular-closed-top
regular-conv-closed regular-mult-closed semiring.mult-not-zero tarski)

qed
have bijective (?i ∗ top) ∧ bijective (?iT ∗ top)

using 1 2 3 arc-expanded by blast
thus ?thesis

by blast
qed

4.3.3 Comparison of edge weights

In this section we compare the weight of the selected-edge with other edges
of interest. Theorems 8, 9, 10 and 11 are supporting lemmas. For example,
Theorem 8 is used to show that the selected-edge has its source inside and
its target outside the component it is chosen for.

Theorem 8
lemma e-leq-c-c-complement-transpose-general:

assumes e = minarc (c ∗ −(c)T u g)
and regular c

shows e ≤ c ∗ −(c)T
proof −

have e ≤ −− (c ∗ − cT u g)
using assms(1) minarc-below order-trans by blast

also have ... ≤ −− (c ∗ − cT)
using order-lesseq-imp pp-isotone-inf by blast

also have ... = c ∗ − cT
using assms(2) regular-mult-closed by auto

finally show ?thesis
by simp

qed

Theorem 9
lemma x-leq-c-transpose-general:

assumes forest h
and vector c
and xT ∗ top ≤ forest-components(h) ∗ e ∗ top
and e ≤ c ∗ −cT
and c = forest-components(h) ∗ c

shows x ≤ cT
proof −

let ?H = forest-components h
have x ≤ top ∗ x

64

using top-left-mult-increasing by blast
also have ... ≤ (?H ∗ e ∗ top)T

using assms(3) conv-dist-comp conv-order by force
also have ... = top ∗ eT ∗ ?H

using assms(1) comp-associative conv-dist-comp forest-components-equivalence
by auto

also have ... ≤ top ∗ (c ∗ − cT)T ∗ ?H
by (simp add: assms(4) conv-isotone mult-left-isotone mult-right-isotone)

also have ... = top ∗ (− c ∗ cT) ∗ ?H
by (simp add: conv-complement conv-dist-comp)

also have ... ≤ top ∗ cT ∗ ?H
by (metis mult-left-isotone top.extremum mult-assoc)

also have ... = cT ∗ ?H
using assms(1, 2) component-is-vector vector-conv-covector by auto

also have ... = cT
by (metis assms(1, 5) fch-equivalence conv-dist-comp)

finally show ?thesis
by simp

qed

Theorem 10
lemma x-leq-c-complement-general:

assumes vector c
and c ∗ cT ≤ forest-components h
and x ≤ cT
and x ≤ −forest-components h

shows x ≤ −c
proof −

let ?H = forest-components h
have x ≤ − ?H u cT

using assms(3, 4) by auto
also have ... ≤ − c
proof −

have c u cT ≤ ?H
using assms(1, 2) vector-covector by auto

hence −?H u c u cT ≤ bot
using inf .sup-monoid.add-assoc p-antitone pseudo-complement by fastforce

thus ?thesis
using le-bot p-shunting-swap pseudo-complement by blast

qed
finally show ?thesis

by simp
qed

Theorem 11
lemma sum-e-below-sum-x-when-outgoing-same-component-general:

assumes e = minarc (c ∗ −(c)T u g)
and regular c
and forest h

65

and vector c
and xT ∗ top ≤ (forest-components h) ∗ e ∗ top
and c = (forest-components h) ∗ c
and c ∗ cT ≤ forest-components h
and x ≤ − forest-components h u −− g
and symmetric g
and arc x
and c 6= bot

shows sum (e u g) ≤ sum (x u g)
proof −

let ?H = forest-components h
have 1:e ≤ c ∗ − cT

using assms(1, 2) e-leq-c-c-complement-transpose-general by auto
have 2: x ≤ cT

using 1 assms(3, 4, 5, 6) x-leq-c-transpose-general by auto
hence x ≤ −c

using assms(4, 7 , 8) x-leq-c-complement-general inf .boundedE by blast
hence x ≤ − c u cT

using 2 by simp
hence x ≤ − c ∗ cT

using assms(4) by (simp add: vector-complement-closed vector-covector)
hence xT ≤ cT T ∗ − cT

by (metis conv-complement conv-dist-comp conv-isotone)
hence 3: xT ≤ c ∗ − cT

by simp
hence x ≤ −− g

using assms(8) by auto
hence xT ≤ −− g

using assms(9) conv-complement conv-isotone by fastforce
hence xT u c ∗ − cT u −− g 6= bot

using 3 by (metis assms(10, 11) comp-inf .semiring.mult-not-zero
conv-dist-comp

conv-involutive inf .orderE mult-right-zero top.extremum)
hence xT u c ∗ − cT u g 6= bot

using inf .sup-monoid.add-commute pp-inf-bot-iff by auto
hence sum (minarc (c ∗ − cT u g) u (c ∗ − cT u g)) ≤ sum (xT u c ∗ − cT u

g)
using assms(10) minarc-min inf .sup-monoid.add-assoc by auto

hence sum (e u c ∗ − cT u g) ≤ sum (xT u c ∗ − cT u g)
using assms(1) inf .sup-monoid.add-assoc by auto

hence sum (e u g) ≤ sum (xT u g)
using 1 3 by (metis inf .orderE)

hence sum (e u g) ≤ sum (x u g)
using assms(9) sum-symmetric by auto

thus ?thesis
by simp

qed

lemma sum-e-below-sum-x-when-outgoing-same-component:

66

assumes symmetric g
and vector j
and forest h
and x ≤ − forest-components h u −− g
and xT ∗ top ≤ forest-components h ∗ selected-edge h j g ∗ top
and j 6= bot
and arc x

shows sum (selected-edge h j g u g) ≤ sum (x u g)
proof −

let ?e = selected-edge h j g
let ?c = choose-component (forest-components h) j
let ?H = forest-components h
show ?thesis
proof (rule sum-e-below-sum-x-when-outgoing-same-component-general)
next

show ?e = minarc (?c ∗ − ?cT u g)
by simp

next
show regular ?c

using component-is-regular by auto
next

show forest h
by (simp add: assms(3))

next
show vector ?c

by (simp add: assms(2, 6) component-is-vector)
next

show xT ∗ top ≤ ?H ∗ ?e ∗ top
by (simp add: assms(5))

next
show ?c = ?H ∗ ?c

using component-single by auto
next

show ?c ∗ ?cT ≤ ?H
by (simp add: component-is-connected)

next
show x ≤ −?H u −− g

using assms(4) by auto
next

show symmetric g
by (simp add: assms(1))

next
show arc x

by (simp add: assms(7))
next

show ?c 6= bot
using assms(2, 5 , 6, 7) inf-bot-left le-bot minarc-bot mult-left-zero

mult-right-zero by fastforce
qed

67

qed

If there is a path in the big-forest from an edge between components, a,
to the selected-edge, e, then the weight of e is no greater than the weight of
a. This is because either,

∗ the edges a and e are adjacent the same component so that we can use
sum-e-below-sum-x-when-outgoing-same-component, or

∗ there is at least one edge between a and e, namely x, the edge in-
coming to the component that e is outgoing from. The path from a
to e is split on x using big-forest-path-split-disj. We show that the
weight of e is no greater than the weight of x by making use of lemma
sum-e-below-sum-x-when-outgoing-same-component. We define x in a
way that we can show that the weight of x is no greater than the
weight of a using the invariant. Then, it follows that the weight of e
is no greater than the weight of a owing to transitivity.

lemma a-to-e-in-bigforest:
assumes symmetric g

and f ≤ −−g
and vector j
and forest h
and big-forest (forest-components h) d
and f t f T = h t hT t d t dT

and (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤
−(forest-components h) u −− g ∧ b ≤ d −→ sum(b u g) ≤ sum(a u g))

and regular d
and j 6= bot
and b = selected-edge h j g
and arc a
and bf-between-arcs a b (forest-components h) (d t selected-edge h j g)
and a ≤ − forest-components h u −− g
and regular h

shows sum (b u g) ≤ sum (a u g)
proof −

let ?p = path f h j g
let ?e = selected-edge h j g
let ?F = forest-components f
let ?H = forest-components h
have sum (b u g) ≤ sum (a u g)
proof (cases aT ∗ top ≤ ?H ∗ ?e ∗ top)

case True
show aT ∗ top ≤ ?H ∗ ?e ∗ top =⇒ sum (b u g) ≤ sum (a u g)
proof−

have sum (?e u g) ≤ sum (a u g)
proof (rule sum-e-below-sum-x-when-outgoing-same-component)

show symmetric g
using assms(1) by auto

68

next
show vector j

using assms(3) by blast
next

show forest h
by (simp add: assms(4))

next
show a ≤ − ?H u −− g

using assms(13) by auto
next

show aT ∗ top ≤ ?H ∗ ?e ∗ top
using True by auto

next
show j 6= bot

by (simp add: assms(9))
next

show arc a
by (simp add: assms(11))

qed
thus ?thesis

using assms(10) by auto
qed

next
case False
show ¬ aT ∗ top ≤ ?H ∗ ?e ∗ top =⇒ sum (b u g) ≤ sum (a u g)
proof −

let ?d ′ = d t ?e
let ?x = d u top ∗ ?eT ∗ ?H u (?H ∗ dT)? ∗ ?H ∗ aT ∗ top
have 61: arc (?x)
proof (rule shows-arc-x)

show big-forest ?H d
by (simp add: assms(5))

next
show bf-between-arcs a ?e ?H d
proof −

have 611: bf-between-arcs a b ?H (d t b)
using assms(10, 12) by auto

have 616: regular h
using assms(14) by auto

have regular a
using 611 bf-between-arcs-def arc-regular by fastforce

thus ?thesis
using 616 by (smt big-forest-path-split-disj assms(4, 8, 10, 12)

bf-between-arcs-def fch-equivalence minarc-regular regular-closed-star
regular-conv-closed regular-mult-closed)

qed
next

show (?H ∗ d)+ ≤ − ?H
using assms(5) big-forest-def by blast

69

next
show ¬ aT ∗ top ≤ ?H ∗ ?e ∗ top

by (simp add: False)
next

show regular a
using assms(12) bf-between-arcs-def arc-regular by auto

next
show regular ?e

using minarc-regular by auto
next

show regular ?H
using assms(14) pp-dist-star regular-conv-closed regular-mult-closed by

auto
next

show regular d
using assms(8) by auto

qed
have 62: bijective (aT ∗ top)

by (simp add: assms(11))
have 63: bijective (?x ∗ top)

using 61 by simp
have 64: ?x ≤ (?H ∗ dT)? ∗ ?H ∗ aT ∗ top

by simp
hence ?x ∗ top ≤ (?H ∗ dT)? ∗ ?H ∗ aT ∗ top

using mult-left-isotone inf-vector-comp by auto
hence aT ∗ top ≤ ((?H ∗ dT)? ∗ ?H)T ∗ ?x ∗ top

using 62 63 64 by (smt bijective-reverse mult-assoc)
also have ... = ?H ∗ (d ∗ ?H)? ∗ ?x ∗ top

using conv-dist-comp conv-star-commute by auto
also have ... = (?H ∗ d)? ∗ ?H ∗ ?x ∗ top

by (simp add: star-slide)
finally have aT ∗ top ≤ (?H ∗ d)? ∗ ?H ∗ ?x ∗ top

by simp
hence 65: bf-between-arcs a ?x ?H d

using 61 assms(12) bf-between-arcs-def by blast
have 66: ?x ≤ d

by (simp add: inf .sup-monoid.add-assoc)
hence x-below-a: sum (?x u g) ≤ sum (a u g)

using 65 bf-between-arcs-def assms(7 , 13) by blast
have sum (?e u g) ≤ sum (?x u g)
proof (rule sum-e-below-sum-x-when-outgoing-same-component)

show symmetric g
using assms(1) by auto

next
show vector j

using assms(3) by blast
next

show forest h
by (simp add: assms(4))

70

next
show ?x ≤ − ?H u −− g
proof −

have 67 : ?x ≤ − ?H
using 66 assms(5) big-forest-def order-lesseq-imp by blast

have ?x ≤ d
by (simp add: conv-isotone inf .sup-monoid.add-assoc)

also have ... ≤ f t f T
proof −

have h t hT t d t dT = f t f T
by (simp add: assms(6))

thus ?thesis
by (metis (no-types) le-supE sup.absorb-iff2 sup.idem)

qed
also have ... ≤ −− g

using assms(1, 2) conv-complement conv-isotone by fastforce
finally have ?x ≤ −− g

by simp
thus ?thesis

by (simp add: 67)
qed

next
show ?xT ∗ top ≤ ?H ∗ ?e ∗ top
proof −

have ?x ≤ top ∗ ?eT ∗ ?H
using inf .coboundedI1 by auto

hence ?xT ≤ ?H ∗ ?e ∗ top
using conv-dist-comp conv-dist-inf conv-star-commute inf .orderI

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute mult-assoc by auto
hence ?xT ∗ top ≤ ?H ∗ ?e ∗ top ∗ top

by (simp add: mult-left-isotone)
thus ?thesis

by (simp add: mult-assoc)
qed

next
show j 6= bot

by (simp add: assms(9))
next

show arc (?x)
using 61 by blast

qed
hence sum (?e u g) ≤ sum (a u g)

using x-below-a order .trans by blast
thus ?thesis

by (simp add: assms(10))
qed

qed
thus ?thesis

by simp

71

qed

4.3.4 Maintenance of algorithm invariants

In this section, most of the work is done to maintain the invariants of the
inner and outer loops of the algorithm. In particular, we use exists-a-w to
maintain that f can be extended to a minimum spanning forest.
lemma boruvka-exchange-spanning-inv:

assumes forest v
and v? ∗ eT = eT
and i ≤ v u top ∗ eT ∗ wT ?

and arc i
and arc e
and v ≤ −−g
and w ≤ −−g
and e ≤ −−g
and components g ≤ forest-components v

shows i ≤ (v u −i)T ? ∗ eT ∗ top
proof −

have 1: (v u −i u −iT) ∗ (vT u −i u −iT) ≤ 1
using assms(1) comp-isotone order .trans inf .cobounded1 by blast

have 2: bijective (i ∗ top) ∧ bijective (eT ∗ top)
using assms(4, 5) mult-assoc by auto

have i ≤ v ∗ (top ∗ eT ∗ wT ?)T

using assms(3) covector-mult-closed covector-restrict-comp-conv
order-lesseq-imp vector-top-closed by blast

also have ... ≤ v ∗ wT ?T ∗ eT T ∗ topT

by (simp add: comp-associative conv-dist-comp)
also have ... ≤ v ∗ w? ∗ e ∗ top

by (simp add: conv-star-commute)
also have ... = v ∗ w? ∗ e ∗ eT ∗ e ∗ top

using assms(5) arc-eq-1 by (simp add: comp-associative)
also have ... ≤ v ∗ w? ∗ e ∗ eT ∗ top

by (simp add: comp-associative mult-right-isotone)
also have ... ≤ (−−g) ∗ (−−g)? ∗ (−−g) ∗ eT ∗ top

using assms(6, 7 , 8) by (simp add: comp-isotone star-isotone)
also have ... ≤ (−−g)? ∗ eT ∗ top

by (metis comp-isotone mult-left-isotone star .circ-increasing
star .circ-transitive-equal)

also have ... ≤ vT ? ∗ v? ∗ eT ∗ top
by (simp add: assms(9) mult-left-isotone)

also have ... ≤ vT ? ∗ eT ∗ top
by (simp add: assms(2) comp-associative)

finally have i ≤ vT ? ∗ eT ∗ top
by simp

hence i ∗ top ≤ vT ? ∗ eT ∗ top
by (metis comp-associative mult-left-isotone vector-top-closed)

hence eT ∗ top ≤ vT ?T ∗ i ∗ top
using 2 by (metis bijective-reverse mult-assoc)

72

also have ... = v? ∗ i ∗ top
by (simp add: conv-star-commute)

also have ... ≤ (v u −i u −iT)? ∗ i ∗ top
proof −

have 3: i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using star .circ-loop-fixpoint sup-right-divisibility mult-assoc by auto

have (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ i ∗ top ∗ i ∗ top
by (metis comp-isotone inf .cobounded1 inf .sup-monoid.add-commute

mult-left-isotone top.extremum)
also have ... ≤ i ∗ top

by simp
finally have 4: (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗

top
using 3 dual-order .trans by blast

have 5: (v u −i u −iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗
top

by (metis mult-left-isotone star .circ-increasing star .left-plus-circ)
have v+ ≤ −1

by (simp add: assms(1))
hence v ∗ v ≤ −1

by (metis mult-left-isotone order-trans star .circ-increasing
star .circ-plus-same)

hence v ∗ 1 ≤ −vT

by (simp add: schroeder-5-p)
hence v ≤ −vT

by simp
hence v u vT ≤ bot

by (simp add: bot-unique pseudo-complement)
hence 7 : v u iT ≤ bot

by (metis assms(3) comp-inf .mult-right-isotone conv-dist-inf inf .boundedE
inf .le-iff-sup le-bot)

hence (v u iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ bot
using le-bot semiring.mult-zero-left by fastforce

hence 6: (v u iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using bot-least le-bot by blast

have 8: v = (v u i) t (v u iT) t (v u −i u −iT)
proof −

have 81: regular i
by (simp add: assms(4) arc-regular)

have (v u iT) t (v u −i u −iT) = (v u −i)
using 7 by (metis comp-inf .coreflexive-comp-inf-complement inf-import-p

inf-p le-bot maddux-3-11-pp top.extremum)
hence (v u i) t (v u iT) t (v u −i u −iT) = (v u i) t (v u −i)

by (simp add: sup.semigroup-axioms semigroup.assoc)
also have ... = v

using 81 by (metis maddux-3-11-pp)
finally show ?thesis

by simp
qed

73

have (v u i) ∗ (v u −i u −iT)? ∗ i ∗ top t (v u iT) ∗ (v u −i u −iT)? ∗ i ∗
top t (v u −i u −iT) ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

using 4 5 6 by simp
hence ((v u i) t (v u iT) t (v u −i u −iT)) ∗ (v u −i u −iT)? ∗ i ∗ top ≤

(v u −i u −iT)? ∗ i ∗ top
by (simp add: mult-right-dist-sup)

hence v ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using 8 by auto

hence i ∗ top t v ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
using 3 by auto

hence 9:v? ∗ (v u −i u −iT)? ∗ i ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top
by (simp add: star-left-induct-mult mult-assoc)

have v? ∗ i ∗ top ≤ v? ∗ (v u −i u −iT)? ∗ i ∗ top
using 3 mult-right-isotone mult-assoc by auto

thus ?thesis
using 9 order .trans by blast

qed
finally have eT ∗ top ≤ (v u −i u −iT)? ∗ i ∗ top

by simp
hence i ∗ top ≤ (v u −i u −iT)?T ∗ eT ∗ top

using 2 by (metis bijective-reverse mult-assoc)
also have ... = (vT u −i u −iT)? ∗ eT ∗ top

using comp-inf .inf-vector-comp conv-complement conv-dist-inf
conv-star-commute inf .sup-monoid.add-commute by auto

also have ... ≤ ((v u −i u −iT) t (vT u −i u −iT))? ∗ eT ∗ top
by (simp add: mult-left-isotone star-isotone)

finally have i ≤ ((vT u −i u −iT) t (v u −i u −iT))? ∗ eT ∗ top
using dual-order .trans top-right-mult-increasing sup-commute by auto

also have ... = (vT u −i u −iT)? ∗ (v u −i u −iT)? ∗ eT ∗ top
using 1 cancel-separate-1 by (simp add: sup-commute)

also have ... ≤ (vT u −i u −iT)? ∗ v? ∗ eT ∗ top
by (simp add: inf-assoc mult-left-isotone mult-right-isotone star-isotone)

also have ... = (vT u −i u −iT)? ∗ eT ∗ top
using assms(2) mult-assoc by simp

also have ... ≤ (vT u −iT)? ∗ eT ∗ top
by (metis mult-left-isotone star-isotone inf .cobounded2 inf .left-commute

inf .sup-monoid.add-commute)
also have ... = (v u −i)T ? ∗ eT ∗ top

using conv-complement conv-dist-inf by auto
finally show ?thesis

by simp
qed

lemma exists-a-w:
assumes symmetric g

and forest f
and f ≤ −−g
and regular f
and (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)

74

and vector j
and regular j
and forest h
and forest-components h ≤ forest-components f
and big-forest (forest-components h) d
and d ∗ top ≤ − j
and forest-components h ∗ j = j
and forest-components f = (forest-components h ∗ (d t dT))? ∗

forest-components h
and f t f T = h t hT t d t dT

and (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤
−(forest-components h) u −− g ∧ b ≤ d −→ sum(b u g) ≤ sum(a u g))

and regular d
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot
and j 6= bot
and regular h
and h ≤ −−g

shows ∃w. minimum-spanning-forest w g ∧
f u − (selected-edge h j g)T u − (path f h j g) t (f u − (selected-edge h j g)T

u (path f h j g))T t (selected-edge h j g) ≤ w t wT

proof −
let ?p = path f h j g
let ?e = selected-edge h j g
let ?f = (f u −?eT u −?p) t (f u −?eT u ?p)T t ?e
let ?F = forest-components f
let ?H = forest-components h
let ?ec = choose-component (forest-components h) j ∗ − choose-component

(forest-components h) jT u g
from assms(4) obtain w where 2: minimum-spanning-forest w g ∧ f ≤ w t wT

using assms(5) by blast
hence 3: regular w ∧ regular f ∧ regular ?e

by (metis assms(4) minarc-regular minimum-spanning-forest-def
spanning-forest-def)

have 5: equivalence ?F
using assms(2) forest-components-equivalence by auto

have ?eT ∗ top ∗ ?eT = ?eT
by (metis arc-conv-closed arc-top-arc coreflexive-bot-closed

coreflexive-symmetric minarc-arc minarc-bot-iff semiring.mult-not-zero)
hence ?eT ∗ top ∗ ?eT ≤ −?F

using 5 assms(17) conv-complement conv-isotone by fastforce
hence 6: ?e ∗ ?F ∗ ?e = bot

using assms(2) le-bot triple-schroeder-p by simp
let ?q = w u top ∗ ?e ∗ wT ?

let ?v = (w u −(top ∗ ?e ∗ wT ?)) t ?qT

have 7 : regular ?q
using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto

have 8: injective ?v
proof (rule kruskal-exchange-injective-inv-1)

75

show injective w
using 2 minimum-spanning-forest-def spanning-forest-def by blast

next
show covector (top ∗ ?e ∗ wT ?)

by (simp add: covector-mult-closed)
next

show top ∗ ?e ∗ wT ? ∗ wT ≤ top ∗ ?e ∗ wT ?

by (simp add: mult-right-isotone star .right-plus-below-circ mult-assoc)
next

show coreflexive ((top ∗ ?e ∗ wT ?)T ∗ (top ∗ ?e ∗ wT ?) u wT ∗ w)
using 2 by (metis comp-inf .semiring.mult-not-zero forest-bot

kruskal-injective-inv-3 minarc-arc minarc-bot-iff minimum-spanning-forest-def
semiring.mult-not-zero spanning-forest-def)

qed
have 9: components g ≤ forest-components ?v
proof (rule kruskal-exchange-spanning-inv-1)

show injective (w u − (top ∗?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T)
using 8 by simp

next
show regular (w u top ∗ ?e ∗ wT ?)

using 7 by simp
next

show components g ≤ forest-components w
using 2 minimum-spanning-forest-def spanning-forest-def by blast

qed
have 10: spanning-forest ?v g
proof (unfold spanning-forest-def , intro conjI)

show injective ?v
using 8 by auto

next
show acyclic ?v
proof (rule kruskal-exchange-acyclic-inv-1)

show pd-kleene-allegory-class.acyclic w
using 2 minimum-spanning-forest-def spanning-forest-def by blast

next
show covector (top ∗ ?e ∗ wT ?)

by (simp add: covector-mult-closed)
qed

next
show ?v ≤ −−g
proof (rule sup-least)

show w u − (top ∗ ?e ∗ wT ?) ≤ − − g
using 7 inf .coboundedI1 minimum-spanning-forest-def spanning-forest-def 2

by blast
next

show (w u top ∗ ?e ∗ wT ?)T ≤ − − g
using 2 by (metis assms(1) conv-complement conv-isotone inf .coboundedI1

minimum-spanning-forest-def spanning-forest-def)
qed

76

next
show components g ≤ forest-components ?v

using 9 by simp
next

show regular ?v
using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto

qed
have 11: sum (?v u g) = sum (w u g)
proof −

have sum (?v u g) = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?qT u g)
using 2 by (smt conv-complement conv-top epm-8 inf-import-p inf-top-right

regular-closed-top vector-top-closed minimum-spanning-forest-def
spanning-forest-def sum-disjoint)

also have ... = sum (w u −(top ∗ ?e ∗ wT ?) u g) + sum (?q u g)
by (simp add: assms(1) sum-symmetric)

also have ... = sum (((w u −(top ∗ ?e ∗ wT ?)) t ?q) u g)
using inf-commute inf-left-commute sum-disjoint by simp

also have ... = sum (w u g)
using 3 7 8 maddux-3-11-pp by auto

finally show ?thesis
by simp

qed
have 12: ?v t ?vT = w t wT

proof −
have ?v t ?vT = (w u −?q) t ?qT t (wT u −?qT) t ?q

using conv-complement conv-dist-inf conv-dist-sup inf-import-p sup-assoc by
simp

also have ... = w t wT

using 3 7 conv-complement conv-dist-inf inf-import-p maddux-3-11-pp
sup-monoid.add-assoc sup-monoid.add-commute by auto

finally show ?thesis
by simp

qed
have 13: ?v ∗ ?eT = bot
proof (rule kruskal-reroot-edge)

show injective (?eT ∗ top)
using assms(18) minarc-arc minarc-bot-iff by blast

next
show pd-kleene-allegory-class.acyclic w

using 2 minimum-spanning-forest-def spanning-forest-def by simp
qed
have ?v u ?e ≤ ?v u top ∗ ?e

using inf .sup-right-isotone top-left-mult-increasing by simp
also have ... ≤ ?v ∗ (top ∗ ?e)T

using covector-restrict-comp-conv covector-mult-closed vector-top-closed by
simp

finally have 14: ?v u ?e = bot
using 13 by (metis conv-dist-comp mult-assoc le-bot mult-left-zero)

let ?i = ?v u (− ?F) ∗ ?e ∗ top u top ∗ ?eT ∗ ?F

77

let ?w = (?v u −?i) t ?e
have 15: regular ?i

using 3 regular-closed-star regular-conv-closed regular-mult-closed by simp
have 16: ?F ≤ −?i
proof −

have 161: bijective (?e ∗ top)
using assms(18) minarc-arc minarc-bot-iff by auto

have ?i ≤ − ?F ∗ ?e ∗ top
using inf .cobounded2 inf .coboundedI1 by blast

also have ... = − (?F ∗ ?e ∗ top)
using 161 comp-bijective-complement by (simp add: mult-assoc)

finally have ?i ≤ − (?F ∗ ?e ∗ top)
by blast

hence 162: ?i u ?F ≤ − (?F ∗ ?e ∗ top)
using inf .coboundedI1 by blast

have ?i u ?F ≤ ?F u (top ∗ ?eT ∗ ?F)
by (meson inf-le1 inf-le2 le-infI order-trans)

also have ... ≤ ?F ∗ (top ∗ ?eT ∗ ?F)T

by (simp add: covector-mult-closed covector-restrict-comp-conv)
also have ... = ?F ∗ ?FT ∗ ?eT T ∗ topT

by (simp add: conv-dist-comp mult-assoc)
also have ... = ?F ∗ ?F ∗ ?e ∗ top

by (simp add: conv-dist-comp conv-star-commute)
also have ... = ?F ∗ ?e ∗ top

by (simp add: 5 preorder-idempotent)
finally have ?i u ?F ≤ ?F ∗ ?e ∗ top

by simp
hence ?i u ?F ≤ ?F ∗ ?e ∗ top u − (?F ∗ ?e ∗ top)

using 162 inf .bounded-iff by blast
also have ... = bot

by simp
finally show ?thesis

using le-bot p-antitone-iff pseudo-complement by blast
qed
have 17 : ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

proof −
have ?i ≤ ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)?

using 2 8 12 by (smt inf .sup-right-isotone kruskal-forest-components-inf
mult-right-isotone mult-assoc)

also have ... = ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗ (1 t (?F
u ?v)? ∗ (?F u ?v))

using star-left-unfold-equal star .circ-right-unfold-1 by auto
also have ... = ?v u − ?F ∗ ?e ∗ top u (top ∗ ?eT ∗ (?F u ?v)T ? t top ∗

?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)? ∗ (?F u ?v))
by (simp add: mult-left-dist-sup mult-assoc)

also have ... = (?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ?) t (?v u −
?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)? ∗ (?F u ?v))

using comp-inf .semiring.distrib-left by blast
also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗

78

?eT ∗ (?F u ?v)T ? ∗ (?F u ?v)? ∗ (?F u ?v))
using comp-inf .semiring.add-right-mono inf-le2 by blast

also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗
?eT ∗ (?FT u ?vT)? ∗ (?F u ?v)? ∗ (?F u ?v))

by (simp add: conv-dist-inf)
also have ... ≤ top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗

?eT ∗ ?FT ? ∗ ?F? ∗ (?F u ?v))
proof −

have top ∗ ?eT ∗ (?FT u ?vT)? ∗ (?F u ?v)? ∗ (?F u ?v) ≤ top ∗ ?eT ∗
?FT ? ∗ ?F? ∗ (?F u ?v)

using star-isotone by (simp add: comp-isotone)
hence ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ (?FT u ?vT)? ∗ (?F u ?v)? ∗

(?F u ?v) ≤ ?v u − ?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?FT ? ∗ ?F? ∗ (?F u ?v)
using inf .sup-right-isotone by blast

thus ?thesis
using sup-right-isotone by blast

qed
also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗

?eT ∗ ?F? ∗ ?F? ∗ (?F u ?v))
using 5 by auto

also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗
?eT ∗ ?F ∗ ?F ∗ (?F u ?v))

by (simp add: assms(2) forest-components-star)
also have ... = top ∗ ?eT ∗ (?F u ?v)T ? t (?v u − ?F ∗ ?e ∗ top u top ∗

?eT ∗ ?F ∗ (?F u ?v))
using 5 mult.semigroup-axioms preorder-idempotent semigroup.assoc by

fastforce
also have ... = top ∗ ?eT ∗ (?F u ?v)T ?

proof −
have ?e ∗ top ∗ ?eT ≤ 1

using assms(18) arc-expanded minarc-arc minarc-bot-iff by auto
hence ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F ∗ 1

by (metis comp-associative comp-isotone mult-semi-associative
star .circ-transitive-equal)

hence ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ 1 ∗ ?F ∗ 1
using 8 by (smt comp-isotone mult-assoc)

hence 171: ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F
by simp

hence ?v ∗ (?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?F
proof −

have ?v ∗ (?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT ≤ ?v ∗ ?vT ∗ ?F ∗ ?e ∗ top ∗
?eT

by (simp add: conv-dist-inf mult-left-isotone mult-right-isotone)
thus ?thesis

using 171 order-trans by blast
qed
hence 172: −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T ≤ −?v

by (smt schroeder-4-p comp-associative order-lesseq-imp pp-increasing)
have −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T = −?F ∗ ?eT T ∗ topT ∗

79

?eT ∗ ?FT ∗ (?F u ?v)T T

by (simp add: comp-associative conv-dist-comp)
also have ... = −?F ∗ ?e ∗ top ∗ ?eT ∗ ?F ∗ (?F u ?v)

using 5 by auto
also have ... = −?F ∗ ?e ∗ top ∗ top ∗ ?eT ∗ ?F ∗ (?F u ?v)

using comp-associative by auto
also have ... = −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v)

by (smt comp-associative comp-inf .star .circ-decompose-9
comp-inf .star-star-absorb comp-inf-covector inf-vector-comp vector-top-closed)

finally have −?F ∗ ((?F u ?v)T ∗ ?F ∗ ?e ∗ top ∗ ?eT)T = −?F ∗ ?e ∗ top
u top ∗ ?eT ∗ ?F ∗ (?F u ?v)

by simp
hence −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v) ≤ −?v

using 172 by auto
hence ?v u −?F ∗ ?e ∗ top u top ∗ ?eT ∗ ?F ∗ (?F u ?v) ≤ bot

by (smt bot-unique inf .sup-monoid.add-commute p-shunting-swap
pseudo-complement)

thus ?thesis
using le-bot sup-monoid.add-0-right by blast

qed
also have ... = top ∗ ?eT ∗ (?F u ?v u −?i)T ?

using 16 by (smt comp-inf .coreflexive-comp-inf-complement inf-top-right
p-bot pseudo-complement top.extremum)

finally show ?thesis
by blast

qed
have 18: ?i ≤ top ∗ ?eT ∗ ?wT ?

proof −
have ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

using 17 by simp
also have ... ≤ top ∗ ?eT ∗ (?v u −?i)T ?

using mult-right-isotone conv-isotone star-isotone inf .cobounded2
inf .sup-monoid.add-assoc by (simp add: inf .sup-monoid.add-assoc eq-iff
inf .sup-monoid.add-commute)

also have ... ≤ top ∗ ?eT ∗ ((?v u −?i) t ?e)T ?

using mult-right-isotone conv-isotone star-isotone sup-ge1 by simp
finally show ?thesis

by blast
qed
have 19: ?i ≤ top ∗ ?eT ∗ ?vT ?

proof −
have ?i ≤ top ∗ ?eT ∗ (?F u ?v u −?i)T ?

using 17 by simp
also have ... ≤ top ∗ ?eT ∗ (?v u −?i)T ?

using mult-right-isotone conv-isotone star-isotone inf .cobounded2
inf .sup-monoid.add-assoc by (simp add: inf .sup-monoid.add-assoc eq-iff
inf .sup-monoid.add-commute)

also have ... ≤ top ∗ ?eT ∗ (?v)T ?

using mult-right-isotone conv-isotone star-isotone by auto

80

finally show ?thesis
by blast

qed
have 20: f t f T ≤ (?v u −?i u −?iT) t (?vT u −?i u −?iT)
proof (rule kruskal-edge-between-components-2)

show ?F ≤ − ?i
using 16 by simp

next
show injective f

by (simp add: assms(2))
next

show f t f T ≤ w u − (top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T t (w u −
(top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T)T

using 2 12 by (metis conv-dist-sup conv-involutive conv-isotone le-supI
sup-commute)

qed
have minimum-spanning-forest ?w g ∧ ?f ≤ ?w t ?wT

proof (intro conjI)
have 211: ?eT ≤ ?v?

proof (rule kruskal-edge-arc-1[where g=g and h=?ec])
show ?e ≤ −− ?ec

using minarc-below by blast
next

show ?ec ≤ g
using assms(4) inf .cobounded2 by (simp add: boruvka-inner-invariant-def

boruvka-outer-invariant-def conv-dist-inf)
next

show symmetric g
by (meson assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def)
next

show components g ≤ forest-components (w u − (top ∗ ?e ∗ wT ?) t (w u
top ∗ ?e ∗ wT ?)T)

using 9 by simp
next

show (w u − (top ∗ ?e ∗ wT ?) t (w u top ∗ ?e ∗ wT ?)T) ∗ ?eT = bot
using 13 by blast

qed
have 212: arc ?i
proof (rule boruvka-edge-arc)

show equivalence ?F
by (simp add: 5)

next
show forest ?v

using 10 spanning-forest-def by blast
next

show arc ?e
using assms(18) minarc-arc minarc-bot-iff by blast

next

81

show regular ?F
using 3 regular-closed-star regular-conv-closed regular-mult-closed by auto

next
show ?F ≤ forest-components (?F u ?v)

by (simp add: 12 2 8 kruskal-forest-components-inf)
next

show regular ?v
using 10 spanning-forest-def by blast

next
show ?v ∗ ?eT = bot

using 13 by auto
next

show ?e ∗ ?F ∗ ?e = bot
by (simp add: 6)

next
show ?eT ≤ ?v?

using 211 by auto

next
show ?e 6= bot

by (simp add: assms(18))
qed
show minimum-spanning-forest ?w g
proof (unfold minimum-spanning-forest-def , intro conjI)

have (?v u −?i) ∗ ?eT ≤ ?v ∗ ?eT
using inf-le1 mult-left-isotone by simp

hence (?v u −?i) ∗ ?eT = bot
using 13 le-bot by simp

hence 221: ?e ∗ (?v u −?i)T = bot
using conv-dist-comp conv-involutive conv-bot by force

have 222: injective ?w
proof (rule injective-sup)

show injective (?v u −?i)
using 8 by (simp add: injective-inf-closed)

next
show coreflexive (?e ∗ (?v u −?i)T)

using 221 by simp
next

show injective ?e
by (metis arc-injective minarc-arc coreflexive-bot-closed

coreflexive-injective minarc-bot-iff)
qed
show spanning-forest ?w g
proof (unfold spanning-forest-def , intro conjI)

show injective ?w
using 222 by simp

next
show acyclic ?w
proof (rule kruskal-exchange-acyclic-inv-2)

82

show acyclic ?v
using 10 spanning-forest-def by blast

next
show injective ?v

using 8 by simp
next

show ?i ≤?v
using inf .coboundedI1 by simp

next
show bijective (?iT ∗ top)

using 212 by simp
next

show bijective (?e ∗ top)
using 14 212 by (smt assms(4) comp-inf .idempotent-bot-closed

conv-complement minarc-arc minarc-bot-iff p-bot regular-closed-bot
semiring.mult-not-zero symmetric-top-closed)

next
show ?i ≤ top ∗ ?eT ∗?vT ?

using 19 by simp
next

show ?v ∗ ?eT ∗ top = bot
using 13 by simp

qed
next

have ?w ≤ ?v t ?e
using inf-le1 sup-left-isotone by simp

also have ... ≤ −−g t ?e
using 10 sup-left-isotone spanning-forest-def by blast

also have ... ≤ −−g t −−h
proof −

have 1: −−g ≤ −−g t −−h
by simp

have 2: ?e ≤ −−g t −−h
by (metis inf .coboundedI1 inf .sup-monoid.add-commute minarc-below

order .trans p-dist-inf p-dist-sup sup.cobounded1)
thus ?thesis

using 1 2 by simp
qed
also have ... ≤ −−g

using assms(20, 21) by auto
finally show ?w ≤ −−g

by simp
next

have 223: ?i ≤ (?v u −?i)T ? ∗ ?eT ∗ top
proof (rule boruvka-exchange-spanning-inv)

show forest ?v
using 10 spanning-forest-def by blast

next
show ?v? ∗ ?eT = ?eT

83

using 13 by (smt conv-complement conv-dist-comp conv-involutive
conv-star-commute dense-pp fc-top regular-closed-top star-absorb)

next
show ?i ≤ ?v u top ∗ ?eT ∗ ?wT ?

using 18 inf .sup-monoid.add-assoc by auto
next

show arc ?i
using 212 by blast

next
show arc ?e

using assms(18) minarc-arc minarc-bot-iff by auto
next

show ?v ≤ −−g
using 10 spanning-forest-def by blast

next
show ?w ≤ −−g
proof −

have 2231: ?e ≤ −−g
by (metis inf .boundedE minarc-below pp-dist-inf)

have ?w ≤ ?v t ?e
using inf-le1 sup-left-isotone by simp

also have ... ≤ −−g
using 2231 10 spanning-forest-def sup-least by blast

finally show ?thesis
by blast

qed
next

show ?e ≤ −−g
by (metis inf .boundedE minarc-below pp-dist-inf)

next
show components g ≤ forest-components ?v

by (simp add: 9)
qed
have components g ≤ forest-components ?v

using 10 spanning-forest-def by auto
also have ... ≤ forest-components ?w
proof (rule kruskal-exchange-forest-components-inv)
next

show injective ((?v u −?i) t ?e)
using 222 by simp

next
show regular ?i

using 15 by simp
next

show ?e ∗ top ∗ ?e = ?e
by (metis arc-top-arc minarc-arc minarc-bot-iff semiring.mult-not-zero)

next
show ?i ≤ top ∗ ?eT ∗ ?vT ?

using 19 by blast

84

next
show ?v ∗ ?eT ∗ top = bot

using 13 by simp
next

show injective ?v
using 8 by simp

next
show ?i ≤ ?v

by (simp add: le-infI1)
next

show ?i ≤ (?v u −?i)T ? ∗ ?eT ∗ top
using 223 by blast

qed
finally show components g ≤ forest-components ?w

by simp
next

show regular ?w
using 3 7 regular-conv-closed by simp

qed
next

have 224: ?e u g 6= bot
using assms(18) inf .left-commute inf-bot-right minarc-meet-bot by fastforce

have 225: sum (?e u g) ≤ sum (?i u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def

by auto
next

show j 6= bot
by (simp add: assms(19))

next
show f ≤ −− g

by (simp add: assms(3))
next

show vector j
using assms(6) boruvka-inner-invariant-def by blast

next
show forest h

by (simp add: assms(8))
next

show big-forest (forest-components h) d
by (simp add: assms(10))

next
show f t f T = h t hT t d t dT

by (simp add: assms(14))
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d −→
sum (b u g) ≤ sum (a u g)

by (simp add: assms(15))

85

next
show regular d

using assms(16) by auto
next

show ?e = ?e
by simp

next
show arc ?i

using 212 by blast
next

show bf-between-arcs ?i ?e ?H (d t ?e)
proof −

have dT ∗ ?H ∗ ?e = bot
using assms(6, 7 , 11, 12, 19) dT-He-eq-bot le-bot by blast

hence 251: dT ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by simp

hence dT ∗ ?H ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (metis assms(8) forest-components-star star .circ-decompose-9

mult-assoc)
hence dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
proof −

have dT ∗ ?H ∗ d ≤ 1
using assms(10) big-forest-def dTransHd-le-1 by blast

hence dT ∗ ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (metis mult-left-isotone star .circ-circ-mult star-involutive star-one)

hence dT ∗ ?H ∗ ?e t dT ∗ ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗
d)? ∗ ?H ∗ ?e

using 251 by simp
hence dT ∗ (1 t ?H ∗ d ∗ (?H ∗ d)?) ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

by (simp add: comp-associative comp-left-dist-sup
semiring.distrib-right)

thus ?thesis
by (simp add: star-left-unfold-equal)

qed
hence ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ (?H ∗ d)? ∗ ?H ∗ ?e

by (simp add: mult-right-isotone mult-assoc)
hence ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ ?H ∗ (d ∗ ?H)? ∗ ?e

by (smt star-slide mult-assoc)
hence ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ ?H ∗ (d ∗ ?H)? ∗ ?e

by (metis assms(8) forest-components-star star .circ-decompose-9)
hence ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

using star-slide by auto
hence ?H ∗ d ∗ (?H ∗ d)? ∗ ?H ∗ ?e t ?H ∗ dT ∗ (?H ∗ d)? ∗ ?H ∗ ?e

≤ (?H ∗ d)? ∗ ?H ∗ ?e
by (smt le-supI star .circ-loop-fixpoint sup.cobounded2 sup-commute

mult-assoc)
hence (?H ∗ (d t dT)) ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

by (simp add: semiring.distrib-left semiring.distrib-right)
hence (?H ∗ (d t dT))? ∗ (?H ∗ d)? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

86

by (simp add: star-left-induct-mult mult-assoc)
hence 252: (?H ∗ (d t dT))? ∗ ?H ∗ ?e ≤ (?H ∗ d)? ∗ ?H ∗ ?e

by (smt mult-left-dist-sup star .circ-transitive-equal star-slide star-sup-1
mult-assoc)

have ?i ≤ top ∗ ?eT ∗ ?F
by auto

hence ?iT ≤ ?FT ∗ ?eT T ∗ topT

by (simp add: conv-dist-comp conv-dist-inf mult-assoc)
hence ?iT ∗ top ≤ ?FT ∗ ?eT T ∗ topT ∗ top

using comp-isotone by blast
also have ... = ?FT ∗ ?eT T ∗ topT

by (simp add: vector-mult-closed)
also have ... = ?F ∗ ?eT T ∗ topT

by (simp add: conv-dist-comp conv-star-commute)
also have ... = ?F ∗ ?e ∗ top

by simp
also have ... = (?H ∗ (d t dT))? ∗ ?H ∗ ?e ∗ top

by (simp add: assms(13))
also have ... ≤ (?H ∗ d)? ∗ ?H ∗ ?e ∗ top

by (simp add: 252 comp-isotone)
also have ... ≤ (?H ∗ (d t ?e))? ∗ ?H ∗ ?e ∗ top

by (simp add: comp-isotone star-isotone)
finally have ?iT ∗ top ≤ (?H ∗ (d t ?e))? ∗ ?H ∗ ?e ∗ top

by blast
thus ?thesis

using 212 assms(18) bf-between-arcs-def minarc-arc minarc-bot-iff by
blast

qed
next

show ?i ≤ − ?H u −− g
proof −

have 241: ?i ≤ −?H
using 16 assms(9) inf .order-lesseq-imp p-antitone-iff by blast

have ?i ≤ −− g
using 10 inf .coboundedI1 spanning-forest-def by blast

thus ?thesis
using 241 inf-greatest by blast

qed
next

show regular h
using assms(20) by auto

qed
have ?v u ?e u −?i = bot

using 14 by simp
hence sum (?w u g) = sum (?v u −?i u g) + sum (?e u g)

using sum-disjoint inf-commute inf-assoc by simp
also have ... ≤ sum (?v u −?i u g) + sum (?i u g)

using 224 225 sum-plus-right-isotone by simp
also have ... = sum (((?v u −?i) t ?i) u g)

87

using sum-disjoint inf-le2 pseudo-complement by simp
also have ... = sum ((?v t ?i) u (−?i t ?i) u g)

by (simp add: sup-inf-distrib2)
also have ... = sum ((?v t ?i) u g)

using 15 by (metis inf-top-right stone)
also have ... = sum (?v u g)

by (simp add: inf .sup-monoid.add-assoc)
finally have sum (?w u g) ≤ sum (?v u g)

by simp
thus ∀ u . spanning-forest u g −→ sum (?w u g) ≤ sum (u u g)

using 2 11 minimum-spanning-forest-def by auto
qed

next
have ?f ≤ f t f T t ?e

by (smt conv-dist-inf inf-le1 sup-left-isotone sup-mono inf .order-lesseq-imp)
also have ... ≤ (?v u −?i u −?iT) t (?vT u −?i u −?iT) t ?e

using 20 sup-left-isotone by simp
also have ... ≤ (?v u −?i) t (?vT u −?i u −?iT) t ?e

by (metis inf .cobounded1 sup-inf-distrib2)
also have ... = ?w t (?vT u −?i u −?iT)

by (simp add: sup-assoc sup-commute)
also have ... ≤ ?w t (?vT u −?iT)

using inf .sup-right-isotone inf-assoc sup-right-isotone by simp
also have ... ≤ ?w t ?wT

using conv-complement conv-dist-inf conv-dist-sup sup-right-isotone by simp
finally show ?f ≤ ?w t ?wT

by simp
qed
thus ?thesis by auto

qed

lemma boruvka-outer-invariant-when-e-not-bot:
assumes boruvka-inner-invariant j f h g d

and j 6= bot
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot

shows boruvka-outer-invariant (f u − selected-edge h j gT u − path f h j g t (f
u − selected-edge h j gT u path f h j g)T t selected-edge h j g) g
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
show boruvka-outer-invariant ?f ′ g
proof (unfold boruvka-outer-invariant-def , intro conjI)

88

show symmetric g
by (meson assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def)

next
show injective ?f ′

proof (rule kruskal-injective-inv)
show injective (f u − ?eT)

by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def injective-inf-closed)

show covector (?p)
using covector-mult-closed by simp

show ?p ∗ (f u − ?eT)T ≤ ?p
by (simp add: mult-right-isotone star .left-plus-below-circ star-plus

mult-assoc)
show ?e ≤ ?p
by (meson mult-left-isotone order .trans star-outer-increasing top.extremum)

show ?p ∗ (f u − ?eT)T ≤ − ?e
proof −

have ?p ∗ (f u − ?eT)T ≤ ?p ∗ f T
by (simp add: conv-dist-inf mult-right-isotone)

also have ... ≤ top ∗ ?e ∗ (f)T ? ∗ f T
using conv-dist-inf star-isotone comp-isotone by simp

also have ... ≤ − ?e
using assms(1, 4) boruvka-inner-invariant-def boruvka-outer-invariant-def

kruskal-injective-inv-2 minarc-arc minarc-bot-iff by auto
finally show ?thesis .

qed
show injective (?e)

by (metis arc-injective coreflexive-bot-closed minarc-arc minarc-bot-iff
semiring.mult-not-zero)

show coreflexive (?pT ∗ ?p u (f u − ?eT)T ∗ (f u − ?eT))
proof −

have (?pT ∗ ?p u (f u − ?eT)T ∗ (f u − ?eT)) ≤ ?pT ∗ ?p u f T ∗ f
using conv-dist-inf inf .sup-right-isotone mult-isotone by simp

also have ... ≤ (top ∗ ?e ∗ f T ?)T ∗ (top ∗ ?e ∗ f T ?) u f T ∗ f
by (metis comp-associative comp-inf .coreflexive-transitive

comp-inf .mult-right-isotone comp-isotone conv-isotone inf .cobounded1 inf .idem
inf .sup-monoid.add-commute star-isotone top.extremum)

also have ... ≤ 1
using assms(1, 4) boruvka-inner-invariant-def boruvka-outer-invariant-def

kruskal-injective-inv-3 minarc-arc minarc-bot-iff by auto
finally show ?thesis

by simp
qed

qed
next

show acyclic ?f ′

proof (rule kruskal-acyclic-inv)
show acyclic (f u − ?eT)
proof −

89

have f-intersect-below: (f u − ?eT) ≤ f by simp
have acyclic f

by (meson assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def)

thus ?thesis
using comp-isotone dual-order .trans star-isotone f-intersect-below by blast

qed
next

show covector ?p
by (metis comp-associative vector-top-closed)

next
show (f u − ?eT u ?p)T ∗ (f u − ?eT)? ∗ ?e = bot
proof −

have ?e ≤ − (f T ? ∗ f ?)
by (simp add: assms(3))

hence ?e ∗ top ∗ ?e ≤ − (f T ? ∗ f ?)
by (metis arc-top-arc minarc-arc minarc-bot-iff semiring.mult-not-zero)

hence ?eT ∗ top ∗ ?eT ≤ − (f T ? ∗ f ?)T
by (metis comp-associative conv-complement conv-dist-comp conv-isotone

symmetric-top-closed)
hence ?eT ∗ top ∗ ?eT ≤ − (f T ? ∗ f ?)

by (simp add: conv-dist-comp conv-star-commute)
hence ?e ∗ (f T ? ∗ f ?) ∗ ?e ≤ bot

using triple-schroeder-p by auto
hence 1: ?e ∗ f T ? ∗ f ? ∗ ?e ≤ bot

using mult-assoc by auto
have 2: (f u − ?eT)T ? ≤ f T ?

by (simp add: conv-dist-inf star-isotone)
have (f u − ?eT u ?p)T ∗ (f u − ?eT)? ∗ ?e ≤ (f u ?p)T ∗ (f u − ?eT)?

∗ ?e
by (simp add: comp-isotone conv-dist-inf inf .orderI

inf .sup-monoid.add-assoc)
also have ... ≤ (f u ?p)T ∗ f ? ∗ ?e

by (simp add: comp-isotone star-isotone)
also have ... ≤ (f u top ∗ ?e ∗ (f)T ?)T ∗ f ? ∗ ?e

using 2 by (metis comp-inf .comp-isotone comp-inf .coreflexive-transitive
comp-isotone conv-isotone inf .idem top.extremum)

also have ... = (f T u (top ∗ ?e ∗ f T ?)T) ∗ f ? ∗ ?e
by (simp add: conv-dist-inf)

also have ... ≤ top ∗ (f T u (top ∗ ?e ∗ f T ?)T) ∗ f ? ∗ ?e
using top-left-mult-increasing mult-assoc by auto

also have ... = (top u top ∗ ?e ∗ f T ?) ∗ f T ∗ f ? ∗ ?e
by (smt covector-comp-inf-1 covector-mult-closed eq-iff

inf .sup-monoid.add-commute vector-top-closed)
also have ... = top ∗ ?e ∗ f T ? ∗ f T ∗ f ? ∗ ?e

by simp
also have ... ≤ top ∗ ?e ∗ f T ? ∗ f ? ∗ ?e

by (smt conv-dist-comp conv-isotone conv-star-commute mult-left-isotone
mult-right-isotone star .left-plus-below-circ mult-assoc)

90

also have ... ≤ bot
using 1 covector-bot-closed le-bot mult-assoc by fastforce

finally show ?thesis
using le-bot by auto

qed
next

show ?e ∗ (f u − ?eT)? ∗ ?e = bot
proof −

have 1: ?e ≤ − ?F
by (simp add: assms(3))

have 2: injective f
by (meson assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def)
have 3: equivalence ?F

using 2 forest-components-equivalence by simp
hence 4: ?eT = ?eT ∗ top ∗ ?eT

by (smt arc-conv-closed arc-top-arc covector-complement-closed
covector-conv-vector ex231e minarc-arc minarc-bot-iff pp-surjective
regular-closed-top vector-mult-closed vector-top-closed)

also have ... ≤ − ?F using 1 3 conv-isotone conv-complement calculation
by fastforce

finally have 5: ?e ∗ ?F ∗ ?e = bot
using 4 by (smt triple-schroeder-p le-bot pp-total regular-closed-top

vector-top-closed)
have (f u − ?eT)? ≤ f ?

by (simp add: star-isotone)
hence ?e ∗ (f u − ?eT)? ∗ ?e ≤ ?e ∗ f ? ∗ ?e

using mult-left-isotone mult-right-isotone by blast
also have ... ≤ ?e ∗ ?F ∗ ?e

by (metis conv-star-commute forest-components-increasing
mult-left-isotone mult-right-isotone star-involutive)

also have 6: ... = bot
using 5 by simp

finally show ?thesis using 6 le-bot by blast
qed

next
show forest-components (f u −?eT) ≤ − ?e
proof −

have 1: ?e ≤ − ?F
by (simp add: assms(3))

have f u − ?eT ≤ f
by simp

hence forest-components (f u − ?eT) ≤ ?F
using forest-components-isotone by blast

thus ?thesis
using 1 order-lesseq-imp p-antitone-iff by blast

qed
qed

next

91

show ?f ′ ≤ −−g
proof −

have 1: (f u − ?eT u − ?p) ≤ −−g
by (meson assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def inf .coboundedI1)
have 2: (f u − ?eT u ?p)T ≤ −−g
proof −

have (f u − ?eT u ?p)T ≤ f T
by (simp add: conv-isotone inf .sup-monoid.add-assoc)

also have ... ≤ −−g
by (metis assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def conv-complement conv-isotone)
finally show ?thesis

by simp
qed
have 3: ?e ≤ −−g

by (metis inf .boundedE minarc-below pp-dist-inf)
show ?thesis using 1 2 3

by simp
qed

next
show regular ?f ′

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto

next
show ∃w. minimum-spanning-forest w g ∧ ?f ′ ≤ w t wT

proof (rule exists-a-w)
show symmetric g

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto

next
show forest f

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto

next
show f ≤ −−g

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto

next
show regular f

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto

next
show (∃w . minimum-spanning-forest w g ∧ f ≤ w t wT)

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by
auto

next
show vector j

using assms(1) boruvka-inner-invariant-def by blast

92

next
show regular j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest h
using assms(1) boruvka-inner-invariant-def by blast

next
show forest-components h ≤ forest-components f

using assms(1) boruvka-inner-invariant-def by blast
next

show big-forest (forest-components h) d
using assms(1) boruvka-inner-invariant-def by blast

next
show d ∗ top ≤ − j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest-components h ∗ j = j
using assms(1) boruvka-inner-invariant-def by blast

next
show forest-components f = (forest-components h ∗ (d t dT))? ∗

forest-components h
using assms(1) boruvka-inner-invariant-def by blast

next
show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show (∀ a b . bf-between-arcs a b (forest-components h) d ∧ a ≤
−(forest-components h) u −− g ∧ b ≤ d −→ sum(b u g) ≤ sum(a u g))

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show selected-edge h j g ≤ − forest-components f

by (simp add: assms(3))
next

show selected-edge h j g 6= bot
by (simp add: assms(4))

next
show j 6= bot

by (simp add: assms(2))
next

show regular h
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by

auto
next

show h ≤ −−g
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def by

auto

93

qed
qed

qed

lemma second-inner-invariant-when-e-not-bot:
assumes boruvka-inner-invariant j f h g d

and j 6= bot
and selected-edge h j g ≤ − forest-components f
and selected-edge h j g 6= bot

shows boruvka-inner-invariant
(j u − choose-component (forest-components h) j)
(f u − selected-edge h j gT u − path f h j g t
(f u − selected-edge h j gT u path f h j g)T t
selected-edge h j g)

h g (d t selected-edge h j g)
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
show boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (unfold boruvka-inner-invariant-def , intro conjI)
have 1: boruvka-outer-invariant ?f ′ g

using assms(1, 2, 3, 4) boruvka-outer-invariant-when-e-not-bot by blast
show boruvka-outer-invariant ?f ′ g

using assms(1, 2, 3, 4) boruvka-outer-invariant-when-e-not-bot by blast
show g 6= bot

using assms(1) boruvka-inner-invariant-def by force
show vector ?j ′

using assms(1, 2) boruvka-inner-invariant-def component-is-vector
vector-complement-closed vector-inf-closed by simp

show regular ?j ′
using assms(1) boruvka-inner-invariant-def by auto

show boruvka-outer-invariant h g
by (meson assms(1) boruvka-inner-invariant-def)

show injective h
by (meson assms(1) boruvka-inner-invariant-def)

show pd-kleene-allegory-class.acyclic h
by (meson assms(1) boruvka-inner-invariant-def)

show ?H ≤ forest-components ?f ′

proof −
have 2: ?F ≤ forest-components ?f ′

proof (rule components-disj-increasing)
show regular ?p

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def

94

minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by
auto[1]

next
show regular ?e

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by
auto[1]

next
show injective ?f ′

using 1 boruvka-outer-invariant-def by blast
next

show injective f
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def

by blast
qed
thus ?thesis

using assms(1) boruvka-inner-invariant-def dual-order .trans by blast
qed
show big-forest ?H ?d ′

using assms(1, 2, 3, 4) big-forest-d-U-e boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto

next
show ?d ′ ∗ top ≤ −?j ′
proof −

have 31: ?d ′ ∗ top = d ∗ top t ?e ∗ top
by (simp add: mult-right-dist-sup)

have 32: d ∗ top ≤ −?j ′
by (meson assms(1) boruvka-inner-invariant-def inf .coboundedI1

p-antitone-iff)
have regular (?c ∗ − ?cT)

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
component-is-regular regular-conv-closed regular-mult-closed by auto

hence minarc(?c ∗ − ?cT u g) = minarc(?c u − ?cT u g)
by (metis component-is-vector covector-comp-inf inf-top.left-neutral

vector-conv-compl)
also have ... ≤ −− (?c u − ?cT u g)

using minarc-below by blast
also have ... ≤ −− ?c

by (simp add: inf .sup-monoid.add-assoc)
also have ... = ?c

using component-is-regular by auto
finally have ?e ≤ ?c

by simp
hence ?e ∗ top ≤ ?c

by (metis component-is-vector mult-left-isotone)
also have ... ≤ −j t ?c

by simp
also have ... = − (j u − ?c)

using component-is-regular by auto

95

finally have 33: ?e ∗ top ≤ − (j u − ?c)
by simp

show ?thesis
using 31 32 33 by auto

qed
next

show ?H ∗ ?j ′ = ?j ′
using fc-j-eq-j-inv assms(1) boruvka-inner-invariant-def by blast

next
show forest-components ?f ′ = (?H ∗ (?d ′ t ?d ′T))? ∗ ?H
proof −

have forest-components ?f ′ = (f t f T t ?e t ?eT)?
proof (rule simplify-forest-components-f)

show regular ?p
using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def

minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto
next

show regular ?e
using minarc-regular by auto

next
show injective ?f ′

using assms(1, 2, 3, 4) boruvka-outer-invariant-def
boruvka-outer-invariant-when-e-not-bot by blast

next
show injective f

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
by blast

qed
also have ... = (h t hT t d t dT t ?e t ?eT)?

using assms(1) boruvka-inner-invariant-def by simp
also have ... = (h t hT t ?d ′ t ?d ′T)?

by (smt conv-dist-sup sup-monoid.add-assoc sup-monoid.add-commute)
also have ... = ((h t hT)? ∗ (?d ′ t ?d ′T))? ∗ (h t hT)?

by (metis star .circ-sup-9 sup-assoc)
finally show ?thesis

using assms(1) boruvka-inner-invariant-def forest-components-wcc by simp
qed

next
show ?f ′ t ?f ′T = h t hT t ?d ′ t ?d ′T

proof −
have ?f ′ t ?f ′T = f u − ?eT u − ?p t (f u − ?eT u ?p)T t ?e t (f u −

?eT u − ?p)T t (f u − ?eT u ?p) t ?eT
by (simp add: conv-dist-sup sup-monoid.add-assoc)

also have ... = (f u − ?eT u − ?p) t (f u − ?eT u ?p) t (f u − ?eT u
?p)T t (f u − ?eT u − ?p)T t ?eT t ?e

by (simp add: sup.left-commute sup-commute)
also have ... = f t f T t ?e t ?eT
proof (rule simplify-f)

show regular ?p

96

using assms(1) boruvka-inner-invariant-def boruvka-outer-invariant-def
minarc-regular regular-closed-star regular-conv-closed regular-mult-closed by auto

next
show regular ?e

using minarc-regular by blast
qed
also have ... = h t hT t d t dT t ?e t ?eT

using assms(1) boruvka-inner-invariant-def by auto
finally show ?thesis

by (smt conv-dist-sup sup.left-commute sup-commute)
qed

next
show ∀ a b . bf-between-arcs a b ?H ?d ′ ∧ a ≤ − ?H u −− g ∧ b ≤ ?d ′ −→

sum (b u g) ≤ sum (a u g)
proof (intro allI , rule impI , unfold bf-between-arcs-def)

fix a b
assume 1: (arc a ∧ arc b ∧ aT ∗ top ≤ (?H ∗ ?d ′)? ∗ ?H ∗ b ∗ top) ∧ a ≤

− ?H u −− g ∧ b ≤ ?d ′

thus sum (b u g) ≤ sum (a u g)
proof (cases b = ?e)

case b-equals-e: True
thus ?thesis
proof (cases a = ?e)

case True
thus ?thesis

using b-equals-e by auto
next

case a-ne-e: False
have sum (b u g) ≤ sum (a u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def by auto
next

show j 6= bot
by (simp add: assms(2))

next
show f ≤ −− g

using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto

next
show vector j

using assms(1) boruvka-inner-invariant-def by blast
next

show forest h
using assms(1) boruvka-inner-invariant-def by blast

next
show big-forest (forest-components h) d

using assms(1) boruvka-inner-invariant-def by blast

97

next
show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d
−→ sum (b u g) ≤ sum (a u g)

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show b = ?e

using b-equals-e by simp
next

show arc a
using 1 by simp

next
show bf-between-arcs a b ?H ?d ′

using 1 bf-between-arcs-def by simp
next

show a ≤ − ?H u −− g
using 1 by simp

next
show regular h

using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto

qed
thus ?thesis

by simp
qed

next
case b-not-equal-e: False
hence b-below-d: b ≤ d

using 1 by (metis assms(4) different-arc-in-sup-arc minarc-arc
minarc-bot-iff)

thus ?thesis
proof (cases ?e ≤ d)

case True
hence bf-between-arcs a b ?H d ∧ b ≤ d

using 1 bf-between-arcs-def sup.absorb1 by auto
thus ?thesis

using 1 assms(1) boruvka-inner-invariant-def by blast
next

case e-not-less-than-d: False
have 71:equivalence ?H

using assms(1) fch-equivalence boruvka-inner-invariant-def by auto
hence 72: bf-between-arcs a b ?H ?d ′←→ bf-between-arcs a b ?H d ∨

(bf-between-arcs a ?e ?H d ∧ bf-between-arcs ?e b ?H d)
proof (rule big-forest-path-split-disj)

98

show arc ?e
using assms(4) minarc-arc minarc-bot-iff by blast

next
show regular a ∧ regular b ∧ regular ?e ∧ regular d ∧ regular ?H

using assms(1) 1 boruvka-inner-invariant-def
boruvka-outer-invariant-def arc-regular minarc-regular regular-closed-star
regular-conv-closed regular-mult-closed by auto

qed
thus ?thesis
proof (cases bf-between-arcs a b ?H d)

case True
have bf-between-arcs a b ?H d ∧ b ≤ d

using 1 by (metis assms(4) True b-not-equal-e minarc-arc
minarc-bot-iff different-arc-in-sup-arc)

thus ?thesis
using 1 assms(1) b-below-d boruvka-inner-invariant-def by auto

next
case False
have 73:bf-between-arcs a ?e ?H d ∧ bf-between-arcs ?e b ?H d

using 1 72 False bf-between-arcs-def by blast
have 74: ?e ≤ −−g

by (metis inf .boundedE minarc-below pp-dist-inf)
have ?e ≤ − ?H

by (meson assms(1, 3) boruvka-inner-invariant-def dual-order .trans
p-antitone-iff)

hence ?e ≤ − ?H u −−g
using 74 by simp

hence 75: sum (b u g) ≤ sum (?e u g)
using assms(1) b-below-d 73 boruvka-inner-invariant-def by blast

have 76: bf-between-arcs a ?e ?H ?d ′

using 73 by (meson big-forest-path-split-disj assms(1)
bf-between-arcs-def boruvka-inner-invariant-def boruvka-outer-invariant-def
fch-equivalence arc-regular regular-closed-star regular-conv-closed
regular-mult-closed)

have 77 : sum (?e u g) ≤ sum (a u g)
proof (rule a-to-e-in-bigforest)

show symmetric g
using assms(1) boruvka-inner-invariant-def

boruvka-outer-invariant-def by auto
next

show j 6= bot
by (simp add: assms(2))

next
show f ≤ −− g

using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto

next
show vector j

using assms(1) boruvka-inner-invariant-def by blast

99

next
show forest h

using assms(1) boruvka-inner-invariant-def by blast
next

show big-forest (forest-components h) d
using assms(1) boruvka-inner-invariant-def by blast

next
show f t f T = h t hT t d t dT

using assms(1) boruvka-inner-invariant-def by blast
next

show ∀ a b. bf-between-arcs a b (?H) d ∧ a ≤ − ?H u − − g ∧ b ≤ d
−→ sum (b u g) ≤ sum (a u g)

using assms(1) boruvka-inner-invariant-def by blast
next

show regular d
using assms(1) boruvka-inner-invariant-def by blast

next
show ?e = ?e

by simp
next

show arc a
using 1 by simp

next
show bf-between-arcs a ?e ?H ?d ′

by (simp add: 76)
next

show a ≤ − ?H u −−g
using 1 by simp

next
show regular h

using assms(1) boruvka-inner-invariant-def
boruvka-outer-invariant-def by auto

qed
thus ?thesis

using 75 order .trans by blast
qed

qed
qed

qed
next

show regular ?d ′

using assms(1) boruvka-inner-invariant-def minarc-regular by auto
qed

qed

lemma second-inner-invariant-when-e-bot:
assumes selected-edge h j g = bot

and selected-edge h j g ≤ − forest-components f
and boruvka-inner-invariant j f h g d

100

shows boruvka-inner-invariant
(j u − choose-component (forest-components h) j)
(f u − selected-edge h j gT u − path f h j g t
(f u − selected-edge h j gT u path f h j g)T t
selected-edge h j g)

h g (d t selected-edge h j g)
proof −

let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
show boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (unfold boruvka-inner-invariant-def , intro conjI)
next

show boruvka-outer-invariant ?f ′ g
using assms(1, 3) boruvka-inner-invariant-def by auto

next
show g 6= bot

using assms(3) boruvka-inner-invariant-def by blast
next

show vector ?j ′
by (metis assms(3) boruvka-inner-invariant-def component-is-vector

vector-complement-closed vector-inf-closed)
next

show regular ?j ′
using assms(3) boruvka-inner-invariant-def by auto

next
show boruvka-outer-invariant h g

using assms(3) boruvka-inner-invariant-def by blast
next

show injective h
using assms(3) boruvka-inner-invariant-def by blast

next
show pd-kleene-allegory-class.acyclic h

using assms(3) boruvka-inner-invariant-def by blast
next

show ?H ≤ forest-components ?f ′

using assms(1, 3) boruvka-inner-invariant-def by auto
next

show big-forest ?H ?d ′

using assms(1, 3) boruvka-inner-invariant-def by auto
next

show ?d ′ ∗ top ≤ −?j ′
by (metis assms(1, 3) boruvka-inner-invariant-def order .trans p-antitone-inf

sup-monoid.add-0-right)

101

next
show ?H ∗ ?j ′ = ?j ′

using assms(3) fc-j-eq-j-inv boruvka-inner-invariant-def by blast
next

show forest-components ?f ′ = (?H ∗ (?d ′ t ?d ′T))? ∗?H
using assms(1, 3) boruvka-inner-invariant-def by auto

next
show ?f ′ t ?f ′T = h t hT t ?d ′ t ?d ′T

using assms(1, 3) boruvka-inner-invariant-def by auto
next

show ∀ a b. bf-between-arcs a b ?H ?d ′ ∧ a ≤ −?H u −−g ∧ b ≤ ?d ′ −→
sum(b u g) ≤ sum(a u g)

using assms(1, 3) boruvka-inner-invariant-def by auto
next

show regular ?d ′

using assms(1, 3) boruvka-inner-invariant-def by auto
qed

qed

4.4 Formalization and correctness proof
The following result shows that Borůvka’s algorithm constructs a minimum
spanning forest. We have the same postcondition as the proof of Kruskal’s
minimum spanning tree algorithm. We show only partial correctness.
theorem boruvka-mst:

VARS f j h c e d
{ symmetric g }
f := bot;
WHILE −(forest-components f) u g 6= bot

INV { boruvka-outer-invariant f g }
DO

j := top;
h := f ;
d := bot;
WHILE j 6= bot

INV { boruvka-inner-invariant j f h g d }
DO

c := choose-component (forest-components h) j;
e := minarc(c ∗ −cT u g);
IF e ≤ −(forest-components f) THEN

f := f u −eT ;
f := (f u −(top ∗ e ∗ f T ?)) t (f u top ∗ e ∗ f T ?)T t e;
d := d t e

ELSE
SKIP

FI ;
j := j u −c

OD
OD

102

{ minimum-spanning-forest f g }
proof vcg-simp

assume 1: symmetric g
show boruvka-outer-invariant bot g

using 1 boruvka-outer-invariant-def kruskal-exists-minimal-spanning by auto
next

fix f
let ?F = forest-components f
assume 1: boruvka-outer-invariant f g ∧ − ?F u g 6= bot
have 2: equivalence ?F

using 1 boruvka-outer-invariant-def forest-components-equivalence by auto
show boruvka-inner-invariant top f f g bot
proof (unfold boruvka-inner-invariant-def , intro conjI)

show boruvka-outer-invariant f g
by (simp add: 1)

next
show g 6= bot

using 1 by auto
next

show surjective top
by simp

next
show regular top

by simp
next

show boruvka-outer-invariant f g
using 1 by auto

next
show injective f

using 1 boruvka-outer-invariant-def by blast
next

show pd-kleene-allegory-class.acyclic f
using 1 boruvka-outer-invariant-def by blast

next
show ?F ≤ ?F

by simp
next

show big-forest ?F bot
by (simp add: 2 big-forest-def)

next
show bot ∗ top ≤ − top

by simp
next

show times-top-class.total (?F)
by (simp add: star .circ-right-top mult-assoc)

next
show ?F = (?F ∗ (bot t botT))? ∗ ?F

by (metis mult-right-zero semiring.mult-zero-left star .circ-loop-fixpoint
sup-commute sup-monoid.add-0-right symmetric-bot-closed)

103

next
show f t f T = f t f T t bot t botT

by simp
next

show ∀ a b. bf-between-arcs a b ?F bot ∧ a ≤ − ?F u −− g ∧ b ≤ bot −→
sum (b u g) ≤ sum (a u g)

by (metis (full-types) bf-between-arcs-def bot-unique mult-left-zero
mult-right-zero top.extremum)

next
show regular bot

by auto
qed

next
fix f j h d
let ?c = choose-component (forest-components h) j
let ?p = path f h j g
let ?F = forest-components f
let ?H = forest-components h
let ?e = selected-edge h j g
let ?f ′ = f u −?eT u −?p t (f u −?eT u ?p)T t ?e
let ?d ′ = d t ?e
let ?j ′ = j u −?c
assume 1: boruvka-inner-invariant j f h g d ∧ j 6= bot
show (?e ≤ −?F −→ boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′) ∧ (¬ ?e ≤ −?F
−→ boruvka-inner-invariant ?j ′ f h g d)

proof (intro conjI)
show ?e ≤ −?F −→ boruvka-inner-invariant ?j ′ ?f ′ h g ?d ′

proof (cases ?e = bot)
case True
thus ?thesis

using 1 second-inner-invariant-when-e-bot by simp
next

case False
thus ?thesis

using 1 second-inner-invariant-when-e-not-bot by simp
qed

next
show ¬ ?e ≤ −?F −→ boruvka-inner-invariant ?j ′ f h g d
proof (rule impI , unfold boruvka-inner-invariant-def , intro conjI)

show boruvka-outer-invariant f g
using 1 boruvka-inner-invariant-def by blast

next
show g 6= bot

using 1 boruvka-inner-invariant-def by blast
next

show vector ?j ′
using 1 boruvka-inner-invariant-def component-is-vector

vector-complement-closed vector-inf-closed by auto
next

104

show regular ?j ′
using 1 boruvka-inner-invariant-def by auto

next
show boruvka-outer-invariant h g

using 1 boruvka-inner-invariant-def by auto
next

show injective h
using 1 boruvka-inner-invariant-def by blast

next
show pd-kleene-allegory-class.acyclic h

using 1 boruvka-inner-invariant-def by blast
next

show ?H ≤ ?F
using 1 boruvka-inner-invariant-def by blast

next
show big-forest ?H d

using 1 boruvka-inner-invariant-def by blast
next

show d ∗ top ≤ −?j ′
using 1 by (meson boruvka-inner-invariant-def dual-order .trans

p-antitone-inf)
next

show ?H ∗ ?j ′ = ?j ′
using 1 fc-j-eq-j-inv boruvka-inner-invariant-def by blast

next
show ?F = (?H ∗ (d t dT))? ∗ ?H

using 1 boruvka-inner-invariant-def by blast
next

show f t f T = h t hT t d t dT

using 1 boruvka-inner-invariant-def by blast
next

show ¬ ?e ≤ −?F =⇒ ∀ a b. bf-between-arcs a b ?H d ∧ a ≤ −?H u −−g ∧
b ≤ d −→ sum(b u g) ≤ sum(a u g)

using 1 boruvka-inner-invariant-def by blast
next

show ¬ ?e ≤ −?F =⇒ regular d
using 1 boruvka-inner-invariant-def by blast

qed
qed

next
fix f h d
assume boruvka-inner-invariant bot f h g d
thus boruvka-outer-invariant f g

by (meson boruvka-inner-invariant-def)
next

fix f
assume 1: boruvka-outer-invariant f g ∧ − forest-components f u g = bot
hence 2:spanning-forest f g
proof (unfold spanning-forest-def , intro conjI)

105

show injective f
using 1 boruvka-outer-invariant-def by blast

next
show acyclic f

using 1 boruvka-outer-invariant-def by blast
next

show f ≤ −−g
using 1 boruvka-outer-invariant-def by blast

next
show components g ≤ forest-components f
proof −

let ?F = forest-components f
have −?F u g ≤ bot

by (simp add: 1)
hence −−g ≤ bot t −−?F

using 1 shunting-p p-antitone pseudo-complement by auto
hence −−g ≤ ?F

using 1 boruvka-outer-invariant-def pp-dist-comp pp-dist-star
regular-conv-closed by auto

hence (−−g)? ≤ ?F?

by (simp add: star-isotone)
thus ?thesis

using 1 boruvka-outer-invariant-def forest-components-star by auto
qed

next
show regular f

using 1 boruvka-outer-invariant-def by auto
qed
from 1 obtain w where 3: minimum-spanning-forest w g ∧ f ≤ w t wT

using boruvka-outer-invariant-def by blast
hence w = w u −−g

by (simp add: inf .absorb1 minimum-spanning-forest-def spanning-forest-def)
also have ... ≤ w u components g

by (metis inf .sup-right-isotone star .circ-increasing)
also have ... ≤ w u f T ? ∗ f ?

using 2 spanning-forest-def inf .sup-right-isotone by simp
also have ... ≤ f t f T
proof (rule cancel-separate-6[where z=w and y=wT])

show injective w
using 3 minimum-spanning-forest-def spanning-forest-def by simp

next
show f T ≤ wT t w

using 3 by (metis conv-dist-inf conv-dist-sup conv-involutive inf .cobounded2
inf .orderE)

next
show f ≤ wT t w

using 3 by (simp add: sup-commute)
next

show injective w

106

using 3 minimum-spanning-forest-def spanning-forest-def by simp
next

show w u wT ? = bot
using 3 by (metis acyclic-star-below-complement comp-inf .mult-right-isotone

inf-p le-bot minimum-spanning-forest-def spanning-forest-def)
qed
finally have 4: w ≤ f t f T

by simp
have sum (f u g) = sum ((w t wT) u (f u g))

using 3 by (metis inf-absorb2 inf .assoc)
also have ... = sum (w u (f u g)) + sum (wT u (f u g))

using 3 inf .commute acyclic-asymmetric sum-disjoint
minimum-spanning-forest-def spanning-forest-def by simp

also have ... = sum (w u (f u g)) + sum (w u (f T u gT))
by (metis conv-dist-inf conv-involutive sum-conv)

also have ... = sum (f u (w u g)) + sum (f T u (w u g))
proof −

have 51:f T u (w u g) = f T u (w u gT)
using 1 boruvka-outer-invariant-def by auto

have 52:f u (w u g) = w u (f u g)
by (simp add: inf .left-commute)

thus ?thesis
using 51 52 abel-semigroup.left-commute inf .abel-semigroup-axioms by

fastforce
qed
also have ... = sum ((f t f T) u (w u g))

using 2 acyclic-asymmetric inf .sup-monoid.add-commute sum-disjoint
spanning-forest-def by simp

also have ... = sum (w u g)
using 4 by (metis inf-absorb2 inf .assoc)

finally show minimum-spanning-forest f g
using 2 3 minimum-spanning-forest-def by simp

qed

end

end

References
[1] O. Borůvka. O jistém problému minimálním. Práce moravské přírodo-

vědecké společnosti, 3(3):37–58, 1926.

[2] R. L. Graham and P. Hell. On the history of the minimum spanning tree
problem. Annals of the History of Computing, 7(1):43–57, 1985.

[3] W. Guttmann. Relation-algebraic verification of Prim’s minimum span-
ning tree algorithm. In A. Sampaio and F. Wang, editors, Theoretical

107

Aspects of Computing – ICTAC 2016, volume 9965 of Lecture Notes in
Computer Science, pages 51–68. Springer, 2016.

[4] W. Guttmann. Aggregation algebras. Archive of Formal Proofs, 2018.

[5] W. Guttmann. An algebraic framework for minimum spanning tree prob-
lems. Theoretical Computer Science, 744:37–55, 2018.

[6] W. Guttmann. Verifying minimum spanning tree algorithms with Stone
relation algebras. Journal of Logical and Algebraic Methods in Program-
ming, 101:132–150, 2018.

[7] J. Nešetřil, E. Milková, and H. Nešetřilová. Otakar Borůvka on minimum
spanning tree problem – Translation of both the 1926 papers, comments,
history. Discrete Mathematics, 233(1–3):3–36, 2001.

[8] N. Robinson-O’Brien. A formal correctness proof of Borůvka’s minimum
spanning tree algorithm. Master’s thesis, University of Canterbury, 2020.
https://doi.org/10.26021/10196.

108

https://doi.org/10.26021/10196

	Overview
	Prim's and Kruskal's minimum spanning tree algorithms
	Borůvka's minimum spanning tree algorithm

	Kruskal's Minimum Spanning Tree Algorithm
	Prim's Minimum Spanning Tree Algorithm
	Borůvka's Minimum Spanning Tree Algorithm
	General results
	An operation to select components
	m-k-Stone-Kleene relation algebras
	Components of forests and big forests
	Identifying arcs
	Comparison of edge weights
	Maintenance of algorithm invariants

	Formalization and correctness proof

