
The Relational Method with Message Anonymity
for the Verification of Cryptographic Protocols

Pasquale Noce
Software Engineer at HID Global, Italy

pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

March 17, 2025

Abstract

This paper introduces a new method for the formal verification of
cryptographic protocols, the relational method, derived from Paulson’s
inductive method by means of some enhancements aimed at streamlin-
ing formal definitions and proofs, specially for protocols using public
key cryptography. Moreover, this paper proposes a method to for-
malize a further security property, message anonymity, in addition to
message confidentiality and authenticity.

The relational method, including message anonymity, is then ap-
plied to the verification of a sample authentication protocol, compris-
ing Password Authenticated Connection Establishment (PACE) with
Chip Authentication Mapping followed by the explicit verification of
an additional password over the PACE secure channel.

Contents
1 The relational method and message anonymity 1

1.1 Introduction . 2
1.2 A sample protocol . 7
1.3 Definitions . 13

2 Confidentiality and authenticity properties 21

3 Anonymity properties 65

4 Possibility properties 77

1 The relational method and message anonymity
theory Definitions

1

imports Main
begin

This paper is dedicated to my mother, my favourite chess opponent – in
addition to being many other wonderful things!

1.1 Introduction

As Bertrand Russell says in the last pages of A History of Western Phi-
losophy, a distinctive feature of science is that "we can make successive
approximations to the truth, in which each new stage results from an im-
provement, not a rejection, of what has gone before". When dealing with
a formal verification method for information processing systems, such as
Paulson’s inductive method for the verification of cryptographic protocols
(cf. [7], [5]), a more modest goal for this iterative improvement process,
yet of significant practical importance, is to streamline the definitions and
proofs needed to model such a system and verify its properties.
With this aim, specially when it comes to verifying protocols using public key
cryptography, this paper proposes an enhancement of the inductive method,
named relational method for reasons clarified in what follows, and puts it
into practice by verifying a sample protocol. This new method is the result
of some changes to the way how events, states, spy’s capabilities, and the
protocol itself are formalized in the inductive method. Here below is a
description of these changes, along with a rationale for them.

Events. In the inductive method, the fundamental building blocks of cryp-
tographic protocols are events of the form Says A B X, where X is a
message being exchanged, A is the agent that sends it, and B is the
agent to which it is addressed.
However, any exchanged message can be intercepted by the spy and
forwarded to any other agent, so its intended recipient is not relevant
for the protocol security correctness – though of course being relevant
for the protocol functional correctness. Moreover, a legitimate agent
may also generate messages, e.g. ephemeral private keys, that she
will never exchange with any other agent. To model such an event, a
datatype constructor other than Says should be used. How to make
things simpler?
The solution adopted in the relational method is to model events just
as ordered pairs of the form (A, X), where A is an agent and X is
a message. If event (A, X) stands for A’s sending of X to another
agent, where A is a legitimate agent, then this event will be accom-
panied by event (Spy, X), representing the spy’s interception of X. If
event (A, X) rather stands for A’s generation of private message X,

2

e.g. an ephemeral private key, for her own exclusive use – and if the
spy has not hacked A so as to steal her private messages as well –,
then no companion event (Spy, X) will occur instead.

States. In the inductive method, the possible states of a cryptographic
protocol are modeled as event traces, i.e. lists, and the protocol it-
self is formalized as a set of such traces. Consequently, the protocol
rules and security properties are expressed as formulae satisfied by any
event trace evs belonging to this set.
However, these formulae are such that their truth values depend only
on the events contained in evs, rather than on the actual order in
which they occur – in fact, robust protocol rules and security prop-
erties cannot depend on the exact sequence of message exchanges in
a scenario where the spy can freely intercept and forward messages,
or even generate and send her own ones. Thus, one library function,
set, and two custom recursive functions, used and knows, are needed
to convert event traces into event sets and message sets, respectively.
In the relational method, protocol states are simply modeled as event
sets, so that the occurrence of event (A, X) in state s can be expressed
as the transition to the augmented state insert (A, X) s. Hence, states
consist of relations between agents and messages. As a result, function
set need not be used any longer, whereas functions used and spied –
the latter one being a replacement for knows Spy –, which take a state
s as input, are mere abbreviations for Range s and s ‘‘ {Spy}.

Spy’s capabilities. In the inductive method, the spy’s attack capabilities
are formalized via two inductively defined functions, analz and synth,
used to construct the sets of all the messages that the spy can learn –
analz (knows Spy evs) – and send to legitimate agents – synth (analz
(knows Spy evs)) – downstream of event trace evs.
Indeed, the introduction of these functions goes in the direction of de-
coupling the formalization of the spy’s capabilities from that of the
protocol itself, consistently with the fact that what the spy can do is
independent of how the protocol works – which only matters when it
comes to verifying protocol security.
In principle, this promises to provide a relevant benefit: these func-
tions need to be defined, and their properties to be proven, just once,
whereupon such definitions and properties can be reused in the for-
malization and verification of whatever protocol.
In practice, since both functions are of type msg set ⇒ msg set, where
msg is the datatype defining all possible message formats, this benefit
only applies as long as message formats remain unchanged. However,
when it comes to verifying a protocol making use of public key cryptog-
raphy, some new message format, and consequently some new related

3

spy’s capability as well, are likely to be required. An example of this
will be provided right away by the protocol considered in this paper.
In the relational method, the representation of events as agent-message
pairs offers a simpler way to model the spy’s capabilities, namely as
supplementary protocol rules, analogous to the inductive method’s
Fake rule, augmenting a state by one or more events of the form (Spy,
X). In addition to eliminating the need for functions analz and synth –
which, in light of the above considerations, does not significantly harm
reusability –, this choice also abolishes any distinction between what
the spy can learn and what she can send. In fact, a state containing
event (Spy, X) is interpreted as one where the spy both knows mes-
sage X and may have sent it to whatever legitimate agent. Actually,
this formalizes the facts that a real-world attacker is free to send any
message she has learned to any other party, and conversely to use any
message she has generated to further augment her knowledge.
In the inductive method, the former fact is modeled by property H ⊆
synth H of function synth, but the latter one has no formal counterpart,
as in general H ⊂ synth H. This limitation on the spy’s capabilities is
not significant as long as the protocol makes use of static keys only,
but it is if session keys or ephemeral key pairs are generated – as hap-
pens in key establishment protocols, even in those using symmetric
cryptography alone. In any such case, a realistic spy must also be
able to learn from anything she herself has generated, such as a nonce
or an ephemeral private key – a result achieved without effort in the
relational method.
An additional, nontrivial problem for the inductive method is that
many protocols, including key establishment ones, require the spy to
be able to generate fresh ephemeral messages only, as otherwise the spy
could succeed in breaking the protocol by just guessing the ephemeral
messages already generated at random by some legitimate agent – a
quite unrealistic attack pattern, provided that such messages vary in a
sufficiently wide range. At first glance, this need could be addressed by
extending the inductive definition of function synth with introduction
rules of the form Nonce n /∈ H =⇒ Nonce n ∈ synth H or PriKey A
/∈ H =⇒ PriKey A ∈ synth H. However, private ephemeral messages
are not in general included in analz (knows Spy evs), since nonces may
be encrypted with uncompromised keys when exchanged and private
keys are usually not exchanged at all, so this approach would not work.
The only satisfactory alternative would be to change the signature of
function synth, e.g. by adding a second input message set H ′ standing
for used evs, or else by replacing H with event trace evs itself, but
this would render the function definition much more convoluted – a
problem easily bypassed in the relational method.

4

Protocol. In the inductive method, a cryptographic protocol consists of
an inductively defined set of event traces. This enables to prove the
protocol security properties by induction using the induction rule au-
tomatically generated as a result of such an inductive definition, i.e.
by means of rule induction. Actually, this feature is exactly what gives
the method its very name. Hence, a consistent way to name a protocol
verification method using some other form of induction would be to
replace adjective "inductive" with another one referring to that form
of induction.
The relational method owes its name to this consideration. In this
method, the introduction rules defining protocol rules, i.e. the pos-
sible transitions between protocol states, are replaced with relations
between states, henceforth named protocol relations. That is, for any
two states s and s ′, there exists a transition leading from s to s ′ just
in case the ordered pair (s, s ′) is contained in at least one protocol
relation – a state of affairs denoted using infix notation s ` s ′. Then,
the inductively defined set itself is replaced with the reflexive transi-
tive closure of the union of protocol relations. Namely, any state s
may be reached from initial state s0, viz. is a possible protocol state,
just in case pair (s0, s) lies within this reflexive transitive closure – a
state of affairs denoted using infix notation s0 |= s. As a result, rule
induction is replaced with induction over reflexive transitive closures
via rule rtrancl-induct, which is the circumstance that originates the
method name.
These changes provide the following important benefits.

• Inserting and modifying the formal definition of a protocol is
much more comfortable. In fact, any change even to a single in-
troduction rule within a monolithic inductive set definition entails
a re-evaluation of the whole definition, whereas each protocol re-
lation will have its own stand-alone definition, which also makes
it easier to find errors. This advantage may go almost unnoticed
for a very simple protocol providing for just a few protocol rules,
but gets evident in case of a complex protocol. An example of this
will be provided by the protocol considered in this paper: when
looking at the self-contained abbreviations used to define protocol
relations, the reader will easily grasp how much more convoluted
an equivalent inductive set definition would have been.

• In addition to induction via rule rtrancl-induct, a further pow-
erful reasoning pattern turns out to be available. It is based on
the following general rule applying to reflexive transitive closures
(indeed, a rule so general and useful that it could rightfully be-
come part of the standard library), later on proven and assigned
the name rtrancl-start:

5

[[(x, y) ∈ r∗; P y; ¬ P x]]
=⇒ ∃ u v. (x, u) ∈ r∗ ∧ (u, v) ∈ r ∧ (v, y) ∈ r∗ ∧ ¬ P u ∧ P v

In natural language, this rule states that for any chain of elements
linked by a relation, if some predicate is false for the first element
of the chain and true for the last one, there must exist a link in
the chain where the predicate becomes true.
This rule can be used to prove propositions of the form [[s |= s ′;
P s ′[; Q]]] =⇒ R s ′ for any state s and predicate P such that ¬
P s, with an optional additional assumption Q, without resorting
to induction. Notably, regularity lemmas have exactly this form,
where s = s0, P = (λs. X ∈ parts (used s)) for some term X
of type msg, and Q, if present, puts some constraint on X or its
components.
Such a proof consists of two steps. First, lemma [[s ` s ′; P s ′; ¬ P
s[; Q]]] =⇒ R s ′ is proven by simplification, using the definitions
of protocol relations. Then, the target proposition is proven by
applying rule rtrancl-start as a destruction rule (cf. [5]) and prov-
ing P s ′ by assumption, ¬ P s by simplification, and the residual
subgoal by means of the previous lemma.

In addition to the relational method, this paper is aimed at introducing
still another enhancement: besides message confidentiality and authenticity,
it takes into consideration a further important security property, message
anonymity. Being legitimate agents identified via natural numbers, the fact
that in state s the spy ignores that message Xn is associated with agent n,
viz. Xn’s property of being anonymous in state s, can be expressed as 〈n,
Xn〉 /∈ spied s, where notation 〈n, Xn〉 refers to a new constructor added to
datatype msg precisely for this purpose.
A basic constraint upon any protocol relation augmenting the spy’s knowl-
edge with 〈n, X〉 is that the spy must know message X in the current state,
as it is impossible to identify the agent associated with an unknown mes-
sage. There is also an additional, more subtle constraint. Any such protocol
relation either augments a state in which the spy knows 〈n, C X1 . . . Xm〉,
i.e. containing event (Spy, 〈n, C X1 . . . Xm〉), with event (Spy, 〈n, X i〉),
where 1 ≤ i ≤ m and C is some constructor of datatype msg, or conversely
augments a state containing event (Spy, 〈n, X i〉) with (Spy, 〈n, C X1 . . .
Xm〉). However, the latter spy’s inference is justified only if the compound
message C X1 . . . Xm is part of a message generated or accepted by some
legitimate agent according to the protocol rules. Otherwise, that is, if C X1

. . . Xm were just a message generated at random by the spy, her inference
would be as sound as those of most politicians and all advertisements: even
if the conclusion were true, it would be so by pure chance.
This problem can be solved as follows.

6

• A further constructor Log, taking a message as input, is added to
datatype msg, and every protocol relation modeling the generation or
acceptance of a message X by some legitimate agent must augment
the current state with event (Spy, Log X).
In this way, the set of all the messages that have been generated or
accepted by some legitimate agent in state s matches Log −‘ spied s.

• A function crypts is defined inductively. It takes a message set H as
input, and returns the least message set H ′ such that H ⊆ H ′ and for
any (even empty) list of keys KS, if the encryption of {|X , Y |}, {|Y ,
X |}, or Hash X with KS is contained in H ′, then the encryption of X
with KS is contained in H ′ as well.
In this way, the set of all the messages that are part of messages
exchanged by legitimate agents, viz. that may be mapped to agents,
in state s matches crypts (Log −‘ spied s).

• Another function key-sets is defined, too. It takes two inputs, a mes-
sage X and a message set H, and returns the set of the sets of KS ’
inverse keys for any list of keys KS such that the encryption of X with
KS is included in H.
In this way, the fact that in state s the spy can map a compound mes-
sage X to some agent, provided that she knows all the keys in set U,
can be expressed through conditions U ∈ key-sets X (crypts (Log −‘
spied s)) and U ⊆ spied s.
The choice to define key-sets so as to collect the inverse keys of encryp-
tion keys, viz. decryption ones, depends on the fact that the sample
protocol verified in this paper uses symmetric keys alone – which match
their own inverse keys – for encryption, whereas asymmetric key pairs
are used in cryptograms only for signature generation – so that the
inverse keys are public ones. In case of a protocol (also) using pub-
lic keys for encryption, encryption keys themselves should (also) be
collected, since the corresponding decryption keys, i.e. private keys,
would be unknown to the spy by default. This would formalize the
fact that encrypted messages can be mapped to agents not only by
decrypting them, but also by recomputing the cryptograms (provided
that the plaintexts are known) and checking whether they match the
exchanged ones.

1.2 A sample protocol

As previously mentioned, this paper tries the relational method, including
message anonymity, by applying it to the verification of a sample authenti-
cation protocol in which Password Authenticated Connection Establishment
(PACE) with Chip Authentication Mapping (cf. [1]) is first used by an owner

7

to establish a secure channel with her own asset and authenticate it, and
then the owner sends a password (other than the PACE one) to the asset
over that channel so as to authenticate herself. This enables to achieve a
reliable mutual authentication even if the PACE key is shared by multiple
owners or is weak, as happens in electronic passports. Although the PACE
mechanism is specified for use in electronic documents, nothing prevents it
in principle from being used in other kinds of smart cards or even outside of
the smart card world, which is the reason why this paper uses the generic
names asset and owner for the card and the cardholder, respectively.
In more detail, this protocol provides for the following steps. In this list,
messages are specified using the same syntax that will be adopted in the
formal text (for further information about PACE with Chip Authentication
Mapping, cf. [1]).

1. Asset n → Owner n:
Crypt (Auth-ShaKey n) (PriKey S)

2. Owner n → Asset n:
{|Num 1 , PubKey A|}

3. Asset n → Owner n:
{|Num 2 , PubKey B|}

4. Owner n → Asset n:
{|Num 3 , PubKey C |}

5. Asset n → Owner n:
{|Num 4 , PubKey D|}

6. Owner n → Asset n:
Crypt (SesK SK) (PubKey D)

7. Asset n → Owner n:
{|Crypt (SesK SK) (PubKey C),
Crypt (SesK SK) (Auth-PriK n ⊗ B),
Crypt (SesK SK) (Crypt SigK
{|Hash (Agent n), Hash (Auth-PubKey n)|})|}

8. Owner n → Asset n:
Crypt (SesK SK) (Pwd n)

9. Asset n → Owner n:
Crypt (SesK SK) (Num 0)

Legitimate agents consist of an infinite population of assets and owners. For
each natural number n, Owner n is an owner and Asset n is her own asset,
and these agents are assigned the following authentication data.

8

• Key (Auth-ShaKey n): static symmetric PACE key shared by both
agents.

• Auth-PriKey n, Auth-PubKey n: static private and public keys stored
on Asset n and used for Asset n’s authentication via Chip Authenti-
cation Mapping.

• Pwd n: unique password (other than the PACE one) shared by both
agents and used for Owner n’s authentication.

Function Pwd is defined as a constructor of datatype msg and then is injec-
tive, which formalizes the assumption that each asset-owner pair has a dis-
tinct password, whereas no such constraint is put on functions Auth-ShaKey,
Auth-PriKey, and Auth-PubKey, which allows multiple asset-owner pairs to
be assigned the same keys. On the other hand, function Auth-PriKey is
constrained to be such that the complement of its range is infinite. As
each protocol run requires the generation of fresh ephemeral private keys,
this constraint ensures that an unbounded number of protocol runs can be
carried out. All assumptions are formalized by applying the definitional
approach, viz. without introducing any axiom, and so is this constraint,
expressed by defining function Auth-PriKey using the indefinite description
operator SOME.
The protocol starts with Asset n sending an ephemeral private key encrypted
with the PACE key to Owner n. Actually, if Asset n is a smart card, the
protocol should rather start with Owner n sending a plain request for such
encrypted nonce, but this preliminary step is omitted here as it is irrele-
vant for protocol security. After that, Owner n and Asset n generate two
ephemeral key pairs each and send the respective public keys to the other
party.
Then, both parties agree on the same session key by deriving it from the
ephemeral keys generated previously (actually, two distinct session keys
would be derived, one for encryption and the other one for MAC compu-
tation, but such a level of detail is unnecessary for protocol verification).
The session key is modeled as Key (SesK SK), where SesK is an apposite
constructor added to datatype key and SK = (Some S , {A, B}, {C , D}).
The adoption of type nat option for the first component enables to represent
as (None, {A, B}, {C , D}) the wrong session key derived from Owner n
if PriKey S was encrypted using a key other than Key (Auth-ShaKey n) –
which reflects the fact that the protocol goes on even without the two par-
ties sharing the same session key. The use of type nat set for the other two
components enables the spy to compute Key (SesK SK) if she knows either
private key and the other public key referenced by each set, as long as she
also knows PriKey S – which reflects the fact that given two key pairs, Diffie-
Hellman key agreement generates the same shared secret independently of
which of the respective private keys is used for computation.

9

This session key is used by both parties to compute their authentication
tokens. Both encrypt the other party’s second ephemeral public key, but As-
set n appends two further fields: the Encrypted Chip Authentication Data,
as provided for by Chip Authentication Mapping, and an encrypted sig-
nature of the hash values of Agent n and Auth-PubKey n. Infix notation
Auth-PriK n ⊗ B refers to a constructor of datatype msg standing for plain
Chip Authentication Data, and Agent is another such constructor standing
for agent identification data. Owner n is expected to validate this signa-
ture by also checking Agent n’s hash value against reference identification
data known by other means – otherwise, the spy would not be forced to
know Auth-PriKey n to masquerade as Asset n, since she could do that by
just knowing Auth-PriKey m for some other m, even if Auth-PriKey m 6=
Auth-PriKey n. If Asset n is an electronic passport, the owner, i.e. the
inspection system, could get cardholder’s identification data by reading her
personal data on the booklet, and such a signature could be retrieved from
the chip (actually through a distinct message, but this is irrelevant for pro-
tocol security as long as the password is sent after the signature’s validation)
by reading the Document Security Object – provided that Auth-PubKey n
is included within Data Group 14.
The protocol ends with Owner n sending her password, encrypted with
the session key, to Asset n, who validates it and replies with an encrypted
acknowledgment.
Here below are some concluding remarks about the way how this sample
protocol is formalized.

• A single signature private key, unknown to the spy, is assumed to be
used for all legitimate agents. Similarly, the spy might have hacked
some legitimate agent so as to steal her ephemeral private keys and ses-
sion keys as soon as they are generated, but here all legitimate agents
are assumed to be out of the spy’s reach in this respect. Of course,
this is just the choice of one of multiple possible modeling scenarios,
and nothing prevents these assumptions from being dropped.

• In the real world, a legitimate agent would use any one of her ephemeral
private keys just once, after which the key would be destroyed. On the
contrary, no such constraint is enforced here, since it turns out to be
unnecessary for protocol verification. There is a single exception, re-
quired for the proof of a unicity lemma: after Asset n has used PriKey
B to compute her authentication token, she must discard PriKey B
so as not to use this key any longer. The way how this requirement
is expressed emphasizes once more the flexibility of the modeling of
events in the relational method: Asset n may use PriKey B in this
computation only if event (Asset n, PubKey B) is not yet contained in
the current state s, and then s is augmented with that event. Namely,

10

events can also be used to model garbage collection!

• The sets of the legitimate agents whose authentication data have been
identified in advance (or equivalently, by means other than attacking
the protocol, e.g. by social engineering) by the spy are defined con-
sistently with the constraint that known data alone can be mapped
to agents, as well as with the definition of initial state s0. For in-
stance, the set bad-id-prikey of the agents whose Chip Authentica-
tion private keys have been identified is defined as a subset of the set
bad-prikey of the agents whose Chip Authentication private keys have
been stolen. Moreover, all the signatures included in assets’ authenti-
cation tokens are assumed to be already known to the spy in state s0,
so that bad-id-prikey includes also any agent whose identification data
or Chip Authentication public key have been identified in advance.

• The protocol rules augmenting the spy’s knowledge with some message
of the form 〈n, X〉 generally require the spy to already know some other
message of the same form. There is just one exception: the spy can infer
〈n, Agent n〉 from Agent n. This expresses the fact that the detection
of identification data within a message generated or accepted by some
legitimate agent is in itself sufficient to map any known component of
that message to the identified agent, regardless of whether any data
were already mapped to that agent in advance.

• As opposed to what happens for constructors (⊗) and MPair, there
do not exist two protocol rules enabling the spy to infer 〈n, Crypt K
X〉 from 〈n, X〉 or 〈n, Key K 〉 and vice versa. A single protocol rule is
rather defined, which enables the spy to infer 〈n, X〉 from 〈n, Key K 〉
or vice versa, provided that Crypt K X has been exchanged by some
legitimate agent. In fact, the protocol provides for just one compound
message made up of cryptograms, i.e. the asset’s authentication token,
and all these cryptograms are generated using the same encryption key
Key (SesK SK). Thus, if two such cryptograms have plaintexts X1,
X2 and the spy knows 〈n, X1〉, she can infer 〈n, X2〉 by inferring 〈n,
Key (SesK SK)〉, viz. she need not know 〈n, Crypt (SesK SK) X1〉
to do that.

The formal content is split into the following sections.

• Section 1.3, Definitions, contains all the definitions needed to formal-
ize the sample protocol by means of the relational method, including
message anonymity.

• Section 2, Confidentiality and authenticity properties, proves that the
following theorems hold under appropriate assumptions.

11

1. Theorem sigkey-secret: the signature private key is secret.
2. Theorem auth-shakey-secret: an asset-owner pair’s PACE key is

secret.
3. Theorem auth-prikey-secret: an asset’s Chip Authentication pri-

vate key is secret.
4. Theorem owner-seskey-unique: an owner’s session key is unknown

to other owners.
5. Theorem owner-seskey-secret: an owner’s session key is secret.
6. Theorem owner-num-genuine: the encrypted acknowledgment re-

ceived by an owner has been sent by the respective asset.
7. Theorem owner-token-genuine: the PACE authentication token

received by an owner has been generated by the respective as-
set, using her Chip Authentication private key and the same
ephemeral keys used to derive the session key.

8. Theorem pwd-secret: an asset-owner pair’s password is secret.
9. Theorem asset-seskey-unique: an asset’s session key is unknown

to other assets, and may be used by that asset to compute just
one PACE authentication token.

10. Theorem asset-seskey-secret: an asset’s session key is secret.
11. Theorem asset-pwd-genuine: the encrypted password received by

an asset has been sent by the respective owner.
12. Theorem asset-token-genuine: the PACE authentication token re-

ceived by an asset has been generated by the respective owner,
using the same ephemeral key used to derive the session key.

13. Theorem seskey-forward-secret: a session key shared by an asset-
owner pair is endowed with forward secrecy, viz. it is secret in-
dependently of the secrecy of static keys.

Particularly, these proofs confirm that the mutual authentication be-
tween an owner and her asset is reliable even if their PACE key is
compromised, unless either their Chip Authentication private key or
their password also is – namely, the protocol succeeds in implementing
a two-factor mutual authentication –, with the forward secrecy of the
generated session keys being ensured as well.

• Section 3, Anonymity properties, proves that the following theorems
hold under appropriate assumptions.

1. Theorem pwd-anonymous: an asset-owner pair’s password is anony-
mous.

12

2. Theorem auth-prikey-anonymous: an asset’s Chip Authentication
private key is anonymous.

3. Theorem auth-shakey-anonymous: an asset-owner pair’s PACE
key is anonymous.

• Section 4, Possibility properties, shows how possibility properties (cf.
[7]) can be proven by constructing sample protocol runs, either ordi-
nary or attack ones. Two such properties are proven:

1. Theorem runs-unbounded: for any possible protocol state s and
any asset-owner pair, there exists a state s ′ reachable from s in
which a protocol run has been completed by those agents using an
ephemeral private key PriKey S not yet exchanged in s – namely,
an unbounded number of protocol runs can be carried out by
legitimate agents.

2. Theorem pwd-compromised: in a scenario not satisfying the as-
sumptions of theorem pwd-anonymous, the spy can steal an asset-
owner pair’s password and even identify those agents.

The latter is an example of a possibility property aimed at confirm-
ing that the assumptions of a given confidentiality, authenticity, or
anonymity property are necessary for it to hold.

For further information about the formal definitions and proofs contained in
these sections, see Isabelle documentation, particularly [5], [4], [2], and [3].
Important note. This sample protocol was already considered in a former
paper of mine (cf. [6]). For any purpose, that paper should be regarded as
being obsolete and superseded by the present paper.

1.3 Definitions

type-synonym agent-id = nat

type-synonym key-id = nat

type-synonym seskey-in = key-id option × key-id set × key-id set

datatype agent =
Asset agent-id |
Owner agent-id |
Spy

datatype key =
SigK |
VerK |

13

PriK key-id |
PubK key-id |
ShaK key-id |
SesK seskey-in

datatype msg =
Num nat |
Agent agent-id |
Pwd agent-id |
Key key |
Mult key-id key-id (infixl ‹⊗› 70) |
Hash msg |
Crypt key msg |
MPair msg msg |
IDInfo agent-id msg |
Log msg

syntax
-MPair :: [′a, args] ⇒ ′a ∗ ′b (‹(2{|-,/ -|})›)
-IDInfo :: [agent-id, msg] ⇒ msg (‹(2 〈-,/ -〉)›)

syntax-consts
-MPair ⇀↽ MPair and
-IDInfo ⇀↽ IDInfo

translations
{|X , Y , Z |} ⇀↽ {|X , {|Y , Z |}|}
{|X , Y |} ⇀↽ CONST MPair X Y
〈n, X〉 ⇀↽ CONST IDInfo n X

abbreviation SigKey :: msg where
SigKey ≡ Key SigK

abbreviation VerKey :: msg where
VerKey ≡ Key VerK

abbreviation PriKey :: key-id ⇒ msg where
PriKey ≡ Key ◦ PriK

abbreviation PubKey :: key-id ⇒ msg where
PubKey ≡ Key ◦ PubK

abbreviation ShaKey :: key-id ⇒ msg where
ShaKey ≡ Key ◦ ShaK

abbreviation SesKey :: seskey-in ⇒ msg where
SesKey ≡ Key ◦ SesK

primrec InvK :: key ⇒ key where
InvK SigK = VerK |

14

InvK VerK = SigK |
InvK (PriK A) = PubK A |
InvK (PubK A) = PriK A |
InvK (ShaK SK) = ShaK SK |
InvK (SesK SK) = SesK SK

abbreviation InvKey :: key ⇒ msg where
InvKey ≡ Key ◦ InvK

inductive-set parts :: msg set ⇒ msg set
for H :: msg set where

parts-used [intro]:
X ∈ H =⇒ X ∈ parts H |

parts-crypt [intro]:
Crypt K X ∈ parts H =⇒ X ∈ parts H |

parts-fst [intro]:
{|X , Y |} ∈ parts H =⇒ X ∈ parts H |

parts-snd [intro]:
{|X , Y |} ∈ parts H =⇒ Y ∈ parts H

inductive-set crypts :: msg set ⇒ msg set
for H :: msg set where

crypts-used [intro]:
X ∈ H =⇒ X ∈ crypts H |

crypts-hash [intro]:
foldr Crypt KS (Hash X) ∈ crypts H =⇒ foldr Crypt KS X ∈ crypts H |

crypts-fst [intro]:
foldr Crypt KS {|X , Y |} ∈ crypts H =⇒ foldr Crypt KS X ∈ crypts H |

crypts-snd [intro]:
foldr Crypt KS {|X , Y |} ∈ crypts H =⇒ foldr Crypt KS Y ∈ crypts H

definition key-sets :: msg ⇒ msg set ⇒ msg set set where
key-sets X H ≡ {InvKey ‘ set KS | KS . foldr Crypt KS X ∈ H}

definition parts-msg :: msg ⇒ msg set where
parts-msg X ≡ parts {X}

definition crypts-msg :: msg ⇒ msg set where

15

crypts-msg X ≡ crypts {X}

definition key-sets-msg :: msg ⇒ msg ⇒ msg set set where
key-sets-msg X Y ≡ key-sets X {Y }

fun seskey-set :: seskey-in ⇒ key-id set where
seskey-set (Some S , U , V) = insert S (U ∪ V) |
seskey-set (None, U , V) = U ∪ V

definition Auth-PriK :: agent-id ⇒ key-id where
Auth-PriK ≡ SOME f . infinite (− range f)

abbreviation Auth-PriKey :: agent-id ⇒ msg where
Auth-PriKey ≡ PriKey ◦ Auth-PriK

abbreviation Auth-PubKey :: agent-id ⇒ msg where
Auth-PubKey ≡ PubKey ◦ Auth-PriK

consts Auth-ShaK :: agent-id ⇒ key-id

abbreviation Auth-ShaKey :: agent-id ⇒ key where
Auth-ShaKey ≡ ShaK ◦ Auth-ShaK

abbreviation Sign :: agent-id ⇒ key-id ⇒ msg where
Sign n A ≡ Crypt SigK {|Hash (Agent n), Hash (PubKey A)|}

abbreviation Token :: agent-id ⇒ key-id ⇒ key-id ⇒ key-id ⇒ seskey-in ⇒ msg
where Token n A B C SK ≡ {|Crypt (SesK SK) (PubKey C),

Crypt (SesK SK) (A ⊗ B), Crypt (SesK SK) (Sign n A)|}

consts bad-agent :: agent-id set

consts bad-pwd :: agent-id set

consts bad-shak :: key-id set

consts bad-id-pwd :: agent-id set

consts bad-id-prik :: agent-id set

consts bad-id-pubk :: agent-id set

consts bad-id-shak :: agent-id set

definition bad-prik :: key-id set where
bad-prik ≡ SOME U . U ⊆ range Auth-PriK

16

abbreviation bad-prikey :: agent-id set where
bad-prikey ≡ Auth-PriK −‘ bad-prik

abbreviation bad-shakey :: agent-id set where
bad-shakey ≡ Auth-ShaK −‘ bad-shak

abbreviation bad-id-password :: agent-id set where
bad-id-password ≡ bad-id-pwd ∩ bad-pwd

abbreviation bad-id-prikey :: agent-id set where
bad-id-prikey ≡ (bad-agent ∪ bad-id-pubk ∪ bad-id-prik) ∩ bad-prikey

abbreviation bad-id-pubkey :: agent-id set where
bad-id-pubkey ≡ bad-agent ∪ bad-id-pubk ∪ bad-id-prik ∩ bad-prikey

abbreviation bad-id-shakey :: agent-id set where
bad-id-shakey ≡ bad-id-shak ∩ bad-shakey

type-synonym event = agent × msg

type-synonym state = event set

abbreviation used :: state ⇒ msg set where
used s ≡ Range s

abbreviation spied :: state ⇒ msg set where
spied s ≡ s ‘‘ {Spy}

abbreviation s0 :: state where
s0 ≡ range (λn. (Asset n, Auth-PriKey n)) ∪ {Spy} × insert VerKey
(range Num ∪ range Auth-PubKey ∪ range (λn. Sign n (Auth-PriK n)) ∪
Agent ‘ bad-agent ∪ Pwd ‘ bad-pwd ∪ PriKey ‘ bad-prik ∪ ShaKey ‘ bad-shak ∪
(λn. 〈n, Pwd n〉) ‘ bad-id-password ∪
(λn. 〈n, Auth-PriKey n〉) ‘ bad-id-prikey ∪
(λn. 〈n, Auth-PubKey n〉) ‘ bad-id-pubkey ∪
(λn. 〈n, Key (Auth-ShaKey n)〉) ‘ bad-id-shakey)

abbreviation rel-asset-i :: (state × state) set where
rel-asset-i ≡ {(s, s ′) | s s ′ n S .

s ′ = insert (Asset n, PriKey S) s ∪
{Asset n, Spy} × {Crypt (Auth-ShaKey n) (PriKey S)} ∪
{(Spy, Log (Crypt (Auth-ShaKey n) (PriKey S)))} ∧

PriKey S /∈ used s}

abbreviation rel-owner-ii :: (state × state) set where
rel-owner-ii ≡ {(s, s ′) | s s ′ n S A K .

s ′ = insert (Owner n, PriKey A) s ∪

17

{Owner n, Spy} × {{|Num 1 , PubKey A|}} ∪
{Spy} × Log ‘ {Crypt K (PriKey S), {|Num 1 , PubKey A|}} ∧

Crypt K (PriKey S) ∈ used s ∧
PriKey A /∈ used s}

abbreviation rel-asset-ii :: (state × state) set where
rel-asset-ii ≡ {(s, s ′) | s s ′ n A B.

s ′ = insert (Asset n, PriKey B) s ∪
{Asset n, Spy} × {{|Num 2 , PubKey B|}} ∪
{Spy} × Log ‘ {{|Num 1 , PubKey A|}, {|Num 2 , PubKey B|}} ∧

{|Num 1 , PubKey A|} ∈ used s ∧
PriKey B /∈ used s}

abbreviation rel-owner-iii :: (state × state) set where
rel-owner-iii ≡ {(s, s ′) | s s ′ n B C .

s ′ = insert (Owner n, PriKey C) s ∪
{Owner n, Spy} × {{|Num 3 , PubKey C |}} ∪
{Spy} × Log ‘ {{|Num 2 , PubKey B|}, {|Num 3 , PubKey C |}} ∧

{|Num 2 , PubKey B|} ∈ used s ∧
PriKey C /∈ used s}

abbreviation rel-asset-iii :: (state × state) set where
rel-asset-iii ≡ {(s, s ′) | s s ′ n C D.

s ′ = insert (Asset n, PriKey D) s ∪
{Asset n, Spy} × {{|Num 4 , PubKey D|}} ∪
{Spy} × Log ‘ {{|Num 3 , PubKey C |}, {|Num 4 , PubKey D|}} ∧

{|Num 3 , PubKey C |} ∈ used s ∧
PriKey D /∈ used s}

abbreviation rel-owner-iv :: (state × state) set where
rel-owner-iv ≡ {(s, s ′) | s s ′ n S A B C D K SK .

s ′ = insert (Owner n, SesKey SK) s ∪
{Owner n, Spy} × {Crypt (SesK SK) (PubKey D)} ∪
{Spy} × Log ‘ {{|Num 4 , PubKey D|}, Crypt (SesK SK) (PubKey D)} ∧

{Crypt K (PriKey S), {|Num 2 , PubKey B|}, {|Num 4 , PubKey D|}} ⊆ used s ∧
{Owner n} × {{|Num 1 , PubKey A|}, {|Num 3 , PubKey C |}} ⊆ s ∧
SK = (if K = Auth-ShaKey n then Some S else None, {A, B}, {C , D})}

abbreviation rel-asset-iv :: (state × state) set where
rel-asset-iv ≡ {(s, s ′) | s s ′ n S A B C D SK .

s ′ = s ∪ {Asset n} × {SesKey SK , PubKey B} ∪
{Asset n, Spy} × {Token n (Auth-PriK n) B C SK} ∪
{Spy} × Log ‘ {Crypt (SesK SK) (PubKey D),

Token n (Auth-PriK n) B C SK} ∧
{Asset n} × {Crypt (Auth-ShaKey n) (PriKey S),
{|Num 2 , PubKey B|}, {|Num 4 , PubKey D|}} ⊆ s ∧

{{|Num 1 , PubKey A|}, {|Num 3 , PubKey C |},
Crypt (SesK SK) (PubKey D)} ⊆ used s ∧

(Asset n, PubKey B) /∈ s ∧

18

SK = (Some S , {A, B}, {C , D})}

abbreviation rel-owner-v :: (state × state) set where
rel-owner-v ≡ {(s, s ′) | s s ′ n A B C SK .

s ′ = s ∪ {Owner n, Spy} × {Crypt (SesK SK) (Pwd n)} ∪
{Spy} × Log ‘ {Token n A B C SK , Crypt (SesK SK) (Pwd n)} ∧

Token n A B C SK ∈ used s ∧
(Owner n, SesKey SK) ∈ s ∧
B ∈ fst (snd SK)}

abbreviation rel-asset-v :: (state × state) set where
rel-asset-v ≡ {(s, s ′) | s s ′ n SK .

s ′ = s ∪ {Asset n, Spy} × {Crypt (SesK SK) (Num 0)} ∪
{Spy} × Log ‘ {Crypt (SesK SK) (Pwd n), Crypt (SesK SK) (Num 0)} ∧

(Asset n, SesKey SK) ∈ s ∧
Crypt (SesK SK) (Pwd n) ∈ used s}

abbreviation rel-prik :: (state × state) set where
rel-prik ≡ {(s, s ′) | s s ′ A.

s ′ = insert (Spy, PriKey A) s ∧
PriKey A /∈ used s}

abbreviation rel-pubk :: (state × state) set where
rel-pubk ≡ {(s, s ′) | s s ′ A.

s ′ = insert (Spy, PubKey A) s ∧
PriKey A ∈ spied s}

abbreviation rel-sesk :: (state × state) set where
rel-sesk ≡ {(s, s ′) | s s ′ A B C D S .

s ′ = insert (Spy, SesKey (Some S , {A, B}, {C , D})) s ∧
{PriKey S , PriKey A, PubKey B, PriKey C , PubKey D} ⊆ spied s}

abbreviation rel-fact :: (state × state) set where
rel-fact ≡ {(s, s ′) | s s ′ A B.

s ′ = s ∪ {Spy} × {PriKey A, PriKey B} ∧
A ⊗ B ∈ spied s ∧
(PriKey A ∈ spied s ∨ PriKey B ∈ spied s)}

abbreviation rel-mult :: (state × state) set where
rel-mult ≡ {(s, s ′) | s s ′ A B.

s ′ = insert (Spy, A ⊗ B) s ∧
{PriKey A, PriKey B} ⊆ spied s}

abbreviation rel-hash :: (state × state) set where
rel-hash ≡ {(s, s ′) | s s ′ X .

s ′ = insert (Spy, Hash X) s ∧
X ∈ spied s}

19

abbreviation rel-dec :: (state × state) set where
rel-dec ≡ {(s, s ′) | s s ′ K X .

s ′ = insert (Spy, X) s ∧
{Crypt K X , InvKey K} ⊆ spied s}

abbreviation rel-enc :: (state × state) set where
rel-enc ≡ {(s, s ′) | s s ′ K X .

s ′ = insert (Spy, Crypt K X) s ∧
{X , Key K} ⊆ spied s}

abbreviation rel-sep :: (state × state) set where
rel-sep ≡ {(s, s ′) | s s ′ X Y .

s ′ = s ∪ {Spy} × {X , Y } ∧
{|X , Y |} ∈ spied s}

abbreviation rel-con :: (state × state) set where
rel-con ≡ {(s, s ′) | s s ′ X Y .

s ′ = insert (Spy, {|X , Y |}) s ∧
{X , Y } ⊆ spied s}

abbreviation rel-id-agent :: (state × state) set where
rel-id-agent ≡ {(s, s ′) | s s ′ n.

s ′ = insert (Spy, 〈n, Agent n〉) s ∧
Agent n ∈ spied s}

abbreviation rel-id-invk :: (state × state) set where
rel-id-invk ≡ {(s, s ′) | s s ′ n K .

s ′ = insert (Spy, 〈n, InvKey K 〉) s ∧
{InvKey K , 〈n, Key K 〉} ⊆ spied s}

abbreviation rel-id-sesk :: (state × state) set where
rel-id-sesk ≡ {(s, s ′) | s s ′ n A SK X U .

s ′ = s ∪ {Spy} × {〈n, PubKey A〉, 〈n, SesKey SK 〉} ∧
{PubKey A, SesKey SK} ⊆ spied s ∧
(〈n, PubKey A〉 ∈ spied s ∨ 〈n, SesKey SK 〉 ∈ spied s) ∧
A ∈ seskey-set SK ∧
SesKey SK ∈ U ∧
U ∈ key-sets X (crypts (Log −‘ spied s))}

abbreviation rel-id-fact :: (state × state) set where
rel-id-fact ≡ {(s, s ′) | s s ′ n A B.

s ′ = s ∪ {Spy} × {〈n, PriKey A〉, 〈n, PriKey B〉} ∧
{PriKey A, PriKey B, 〈n, A ⊗ B〉} ⊆ spied s}

abbreviation rel-id-mult :: (state × state) set where
rel-id-mult ≡ {(s, s ′) | s s ′ n A B U .

s ′ = insert (Spy, 〈n, A ⊗ B〉) s ∧
U ∪ {PriKey A, PriKey B, A ⊗ B} ⊆ spied s ∧

20

(〈n, PriKey A〉 ∈ spied s ∨ 〈n, PriKey B〉 ∈ spied s) ∧
U ∈ key-sets (A ⊗ B) (crypts (Log −‘ spied s))}

abbreviation rel-id-hash :: (state × state) set where
rel-id-hash ≡ {(s, s ′) | s s ′ n X U .

s ′ = s ∪ {Spy} × {〈n, X〉, 〈n, Hash X〉} ∧
U ∪ {X , Hash X} ⊆ spied s ∧
(〈n, X〉 ∈ spied s ∨ 〈n, Hash X〉 ∈ spied s) ∧
U ∈ key-sets (Hash X) (crypts (Log −‘ spied s))}

abbreviation rel-id-crypt :: (state × state) set where
rel-id-crypt ≡ {(s, s ′) | s s ′ n X U .

s ′ = s ∪ {Spy} × IDInfo n ‘ insert X U ∧
insert X U ⊆ spied s ∧
(〈n, X〉 ∈ spied s ∨ (∃K ∈ U . 〈n, K 〉 ∈ spied s)) ∧
U ∈ key-sets X (crypts (Log −‘ spied s))}

abbreviation rel-id-sep :: (state × state) set where
rel-id-sep ≡ {(s, s ′) | s s ′ n X Y .

s ′ = s ∪ {Spy} × {〈n, X〉, 〈n, Y 〉} ∧
{X , Y , 〈n, {|X , Y |}〉} ⊆ spied s}

abbreviation rel-id-con :: (state × state) set where
rel-id-con ≡ {(s, s ′) | s s ′ n X Y U .

s ′ = insert (Spy, 〈n, {|X , Y |}〉) s ∧
U ∪ {X , Y , {|X , Y |}} ⊆ spied s ∧
(〈n, X〉 ∈ spied s ∨ 〈n, Y 〉 ∈ spied s) ∧
U ∈ key-sets {|X , Y |} (crypts (Log −‘ spied s))}

definition rel :: (state × state) set where
rel ≡ rel-asset-i ∪ rel-owner-ii ∪ rel-asset-ii ∪ rel-owner-iii ∪

rel-asset-iii ∪ rel-owner-iv ∪ rel-asset-iv ∪ rel-owner-v ∪ rel-asset-v ∪
rel-prik ∪ rel-pubk ∪ rel-sesk ∪ rel-fact ∪ rel-mult ∪ rel-hash ∪ rel-dec ∪
rel-enc ∪ rel-sep ∪ rel-con ∪ rel-id-agent ∪ rel-id-invk ∪ rel-id-sesk ∪
rel-id-fact ∪ rel-id-mult ∪ rel-id-hash ∪ rel-id-crypt ∪ rel-id-sep ∪ rel-id-con

abbreviation in-rel :: state ⇒ state ⇒ bool (infix ‹`› 60) where
s ` s ′ ≡ (s, s ′) ∈ rel

abbreviation in-rel-rtrancl :: state ⇒ state ⇒ bool (infix ‹|=› 60) where
s |= s ′ ≡ (s, s ′) ∈ rel∗

end

2 Confidentiality and authenticity properties
theory Authentication

imports Definitions

21

begin

proposition rtrancl-start [rule-format]:
(x, y) ∈ r∗ =⇒ P y −→ ¬ P x −→

(∃ u v. (x, u) ∈ r∗ ∧ (u, v) ∈ r ∧ (v, y) ∈ r∗ ∧ ¬ P u ∧ P v)
(is - =⇒ - −→ - −→ (∃ u v. ?Q x y u v))

proof (erule rtrancl-induct, simp, (rule impI)+)
fix y z
assume

A: (x, y) ∈ r∗ and
B: (y, z) ∈ r and
C : P z

assume P y −→ ¬ P x −→(∃ u v. ?Q x y u v) and ¬ P x
hence D: P y −→ (∃ u v. ?Q x y u v) by simp
show ∃ u v. ?Q x z u v
proof (cases P y)

case True
with D obtain u v where ?Q x y u v by blast
moreover from this and B have (v, z) ∈ r∗ by auto
ultimately show ?thesis by blast

next
case False
with A and B and C have ?Q x z y z by simp
thus ?thesis by blast

qed
qed

proposition state-subset:
s |= s ′ =⇒ s ⊆ s ′

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition spied-subset:
s |= s ′ =⇒ spied s ⊆ spied s ′

by (rule Image-mono, erule state-subset, simp)

proposition used-subset:
s |= s ′ =⇒ used s ⊆ used s ′

by (rule Range-mono, rule state-subset)

proposition asset-ii-init:
[[s0 |= s; (Asset n, {|Num 2 , PubKey A|}) ∈ s]] =⇒

PriKey A /∈ spied s0
by (drule rtrancl-start, assumption, simp add: image-def , (erule exE)+,
erule conjE , rule notI , drule spied-subset, drule subsetD, assumption,
auto simp add: rel-def)

proposition auth-prikey-used:
s0 |= s =⇒ Auth-PriKey n ∈ used s

by (drule used-subset, erule subsetD, simp add: Range-iff image-def , blast)

22

proposition asset-i-used:
s0 |= s =⇒

(Asset n, Crypt (Auth-ShaKey n) (PriKey A)) ∈ s −→
PriKey A ∈ used s

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition owner-ii-used:
s0 |= s =⇒

(Owner n, {|Num 1 , PubKey A|}) ∈ s −→
PriKey A ∈ used s

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition asset-ii-used:
s0 |= s =⇒

(Asset n, {|Num 2 , PubKey A|}) ∈ s −→
PriKey A ∈ used s

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition owner-iii-used:
s0 |= s =⇒

(Owner n, {|Num 3 , PubKey A|}) ∈ s −→
PriKey A ∈ used s

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition asset-iii-used:
s0 |= s =⇒

(Asset n, {|Num 4 , PubKey A|}) ∈ s −→
PriKey A ∈ used s

by (erule rtrancl-induct, auto simp add: rel-def image-def)

proposition asset-i-unique [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s −→
(Asset n, Crypt (Auth-ShaKey n) (PriKey A)) ∈ s −→

m = n
by (erule rtrancl-induct, simp add: image-def , frule asset-i-used [of - m A],
drule asset-i-used [of - n A], auto simp add: rel-def)

proposition owner-ii-unique [rule-format]:
s0 |= s =⇒

(Owner m, {|Num 1 , PubKey A|}) ∈ s −→
(Owner n, {|Num 1 , PubKey A|}) ∈ s −→

m = n
by (erule rtrancl-induct, simp add: image-def , frule owner-ii-used [of - m A],
drule owner-ii-used [of - n A], auto simp add: rel-def)

proposition asset-ii-unique [rule-format]:
s0 |= s =⇒

23

(Asset m, {|Num 2 , PubKey A|}) ∈ s −→
(Asset n, {|Num 2 , PubKey A|}) ∈ s −→

m = n
by (erule rtrancl-induct, simp add: image-def , frule asset-ii-used [of - m A],
drule asset-ii-used [of - n A], auto simp add: rel-def)

proposition auth-prikey-asset-i [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (Auth-PriKey n)) ∈ s −→
False

by (erule rtrancl-induct, simp add: image-def , drule auth-prikey-used [of - n],
auto simp add: rel-def)

proposition auth-pubkey-owner-ii [rule-format]:
s0 |= s =⇒

(Owner m, {|Num 1 , Auth-PubKey n|}) ∈ s −→
False

by (erule rtrancl-induct, simp add: image-def , drule auth-prikey-used [of - n],
auto simp add: rel-def)

proposition auth-pubkey-owner-iii [rule-format]:
s0 |= s =⇒

(Owner m, {|Num 3 , Auth-PubKey n|}) ∈ s −→
False

by (erule rtrancl-induct, simp add: image-def , drule auth-prikey-used [of - n],
auto simp add: rel-def)

proposition auth-pubkey-asset-ii [rule-format]:
s0 |= s =⇒

(Asset m, {|Num 2 , Auth-PubKey n|}) ∈ s −→
False

by (erule rtrancl-induct, simp add: image-def , drule auth-prikey-used [of - n],
auto simp add: rel-def)

proposition auth-pubkey-asset-iii [rule-format]:
s0 |= s =⇒

(Asset m, {|Num 4 , Auth-PubKey n|}) ∈ s −→
False

by (erule rtrancl-induct, simp add: image-def , drule auth-prikey-used [of - n],
auto simp add: rel-def)

proposition asset-i-owner-ii [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s −→
(Owner n, {|Num 1 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-i-used [of - m A],
drule owner-ii-used [of - n A], auto simp add: rel-def)

24

proposition asset-i-owner-iii [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s −→
(Owner n, {|Num 3 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-i-used [of - m A],
drule owner-iii-used [of - n A], auto simp add: rel-def)

proposition asset-i-asset-ii [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s −→
(Asset n, {|Num 2 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-i-used [of - m A],
drule asset-ii-used [of - n A], auto simp add: rel-def)

proposition asset-i-asset-iii [rule-format]:
s0 |= s =⇒

(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s −→
(Asset n, {|Num 4 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-i-used [of - m A],
drule asset-iii-used [of - n A], auto simp add: rel-def)

proposition asset-ii-owner-ii [rule-format]:
s0 |= s =⇒

(Asset m, {|Num 2 , PubKey A|}) ∈ s −→
(Owner n, {|Num 1 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-ii-used [of - m A],
drule owner-ii-used [of - n A], auto simp add: rel-def)

proposition asset-ii-owner-iii [rule-format]:
s0 |= s =⇒

(Asset m, {|Num 2 , PubKey A|}) ∈ s −→
(Owner n, {|Num 3 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-ii-used [of - m A],
drule owner-iii-used [of - n A], auto simp add: rel-def)

proposition asset-ii-asset-iii [rule-format]:
s0 |= s =⇒

(Asset m, {|Num 2 , PubKey A|}) ∈ s −→
(Asset n, {|Num 4 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-ii-used [of - m A],
drule asset-iii-used [of - n A], auto simp add: rel-def)

proposition asset-iii-owner-iii [rule-format]:

25

s0 |= s =⇒
(Asset m, {|Num 4 , PubKey A|}) ∈ s −→
(Owner n, {|Num 3 , PubKey A|}) ∈ s −→

False
by (erule rtrancl-induct, simp add: image-def , frule asset-iii-used [of - m A],
drule owner-iii-used [of - n A], auto simp add: rel-def)

proposition asset-iv-state [rule-format]:
s0 |= s =⇒

(Asset n, Token n (Auth-PriK n) B C SK) ∈ s −→
(∃A D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Asset n, {|Num 2 , PubKey B|}) ∈ s ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ s ∧
Crypt (SesK SK) (PubKey D) ∈ used s ∧ (Asset n, PubKey B) ∈ s)

by (erule rtrancl-induct, auto simp add: rel-def)

proposition owner-v-state [rule-format]:
s0 |= s =⇒

(Owner n, Crypt (SesK SK) (Pwd n)) ∈ s −→
(Owner n, SesKey SK) ∈ s ∧
(∃A B C . Token n A B C SK ∈ used s ∧ B ∈ fst (snd SK))

by (erule rtrancl-induct, auto simp add: rel-def , blast)

proposition asset-v-state [rule-format]:
s0 |= s =⇒

(Asset n, Crypt (SesK SK) (Num 0)) ∈ s −→
(Asset n, SesKey SK) ∈ s ∧ Crypt (SesK SK) (Pwd n) ∈ used s

by (erule rtrancl-induct, simp-all add: rel-def image-def ,
((erule disjE)?, (erule exE)+, simp add: Range-Un-eq)+)

lemma owner-seskey-nonce-1 :
[[s ` s ′;

(Owner n, SesKey SK) ∈ s −→
(∃S . fst SK = Some S ∧ Crypt (Auth-ShaKey n) (PriKey S) ∈ used s) ∨
fst SK = None;

(Owner n, SesKey SK) ∈ s ′]] =⇒
(∃S . fst SK = Some S ∧ Crypt (Auth-ShaKey n) (PriKey S) ∈ used s ′) ∨
fst SK = None

by (simp add: rel-def , (erule disjE , (erule exE)+, simp+)+,
split if-split-asm, auto)

proposition owner-seskey-nonce [rule-format]:
s0 |= s =⇒

(Owner n, SesKey SK) ∈ s −→
(∃S . fst SK = Some S ∧ Crypt (Auth-ShaKey n) (PriKey S) ∈ used s) ∨
fst SK = None

by (erule rtrancl-induct, simp add: image-def , rule impI , rule owner-seskey-nonce-1)

proposition owner-seskey-other [rule-format]:
s0 |= s =⇒

26

(Owner n, SesKey SK) ∈ s −→
(∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner n, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner n, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner n, Crypt (SesK SK) (PubKey D)) ∈ s)

by (erule rtrancl-induct, auto simp add: rel-def , blast+)

proposition asset-seskey-nonce [rule-format]:
s0 |= s =⇒

(Asset n, SesKey SK) ∈ s −→
(∃S . fst SK = Some S ∧ (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s)

by (erule rtrancl-induct, auto simp add: rel-def)

proposition asset-seskey-other [rule-format]:
s0 |= s =⇒

(Asset n, SesKey SK) ∈ s −→
(∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Asset n, {|Num 2 , PubKey B|}) ∈ s ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ s ∧
(Asset n, Token n (Auth-PriK n) B C SK) ∈ s)

by (erule rtrancl-induct, auto simp add: rel-def , blast)

declare Range-Un-eq [simp]

proposition used-prod [simp]:
A 6= {} =⇒ used (A × H) = H

by (simp add: Range-snd)

proposition parts-idem [simp]:
parts (parts H) = parts H

by (rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-mono:
H ⊆ H ′ =⇒ parts H ⊆ parts H ′

by (rule subsetI , erule parts.induct, auto)

proposition parts-msg-mono:
X ∈ H =⇒ parts-msg X ⊆ parts H

by (subgoal-tac {X} ⊆ H , subst parts-msg-def , erule parts-mono, simp)

lemma parts-union-1 :
parts (H ∪ H ′) ⊆ parts H ∪ parts H ′

by (rule subsetI , erule parts.induct, auto)

lemma parts-union-2 :
parts H ∪ parts H ′ ⊆ parts (H ∪ H ′)

by (rule subsetI , erule UnE , erule-tac [!] parts.induct, auto)

proposition parts-union [simp]:

27

parts (H ∪ H ′) = parts H ∪ parts H ′

by (rule equalityI , rule parts-union-1 , rule parts-union-2)

proposition parts-insert:
parts (insert X H) = parts-msg X ∪ parts H

by (simp only: insert-def parts-union, subst parts-msg-def , simp)

proposition parts-msg-num [simp]:
parts-msg (Num n) = {Num n}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-msg-pwd [simp]:
parts-msg (Pwd n) = {Pwd n}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-msg-key [simp]:
parts-msg (Key K) = {Key K}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-msg-mult [simp]:
parts-msg (A ⊗ B) = {A ⊗ B}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-msg-hash [simp]:
parts-msg (Hash X) = {Hash X}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

lemma parts-crypt-1 :
parts {Crypt K X} ⊆ insert (Crypt K X) (parts {X})

by (rule subsetI , erule parts.induct, auto)

lemma parts-crypt-2 :
insert (Crypt K X) (parts {X}) ⊆ parts {Crypt K X}

by (rule subsetI , simp, erule disjE , blast, erule parts.induct, auto)

proposition parts-msg-crypt [simp]:
parts-msg (Crypt K X) = insert (Crypt K X) (parts-msg X)

by (simp add: parts-msg-def , rule equalityI , rule parts-crypt-1 , rule parts-crypt-2)

lemma parts-mpair-1 :
parts {{|X , Y |}} ⊆ insert {|X , Y |} (parts {X} ∪ parts {Y })

by (rule subsetI , erule parts.induct, auto)

lemma parts-mpair-2 :
insert {|X , Y |} (parts {X} ∪ parts {Y }) ⊆ parts {{|X , Y |}}

by (rule subsetI , simp, erule disjE , blast, erule disjE , erule-tac [!] parts.induct,
auto)

proposition parts-msg-mpair [simp]:

28

parts-msg {|X , Y |} = insert {|X , Y |} (parts-msg X ∪ parts-msg Y)
by (simp add: parts-msg-def , rule equalityI , rule parts-mpair-1 , rule parts-mpair-2)

proposition parts-msg-idinfo [simp]:
parts-msg 〈n, X〉 = {〈n, X〉}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-msg-trace [simp]:
parts-msg (Log X) = {Log X}

by (subst parts-msg-def , rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-idinfo [simp]:
parts (IDInfo n ‘ H) = IDInfo n ‘ H

by (rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-trace [simp]:
parts (Log ‘ H) = Log ‘ H

by (rule equalityI , rule subsetI , erule parts.induct, auto)

proposition parts-dec:
[[s ′ = insert (Spy, X) s ∧ (Spy, Crypt K X) ∈ s ∧ (Spy, Key (InvK K)) ∈ s;

Y ∈ parts-msg X]] =⇒
Y ∈ parts (used s)

by (subgoal-tac X ∈ parts (used s), drule parts-msg-mono [of X], auto)

proposition parts-enc:
[[s ′ = insert (Spy, Crypt K X) s ∧ (Spy, X) ∈ s ∧ (Spy, Key K) ∈ s;

Y ∈ parts-msg X]] =⇒
Y ∈ parts (used s)

by (subgoal-tac X ∈ parts (used s), drule parts-msg-mono [of X], auto)

proposition parts-sep:
[[s ′ = insert (Spy, X) (insert (Spy, Y) s) ∧ (Spy, {|X , Y |}) ∈ s;

Z ∈ parts-msg X ∨ Z ∈ parts-msg Y]] =⇒
Z ∈ parts (used s)

by (erule disjE , subgoal-tac X ∈ parts (used s), drule parts-msg-mono [of X],
subgoal-tac [3] Y ∈ parts (used s), drule-tac [3] parts-msg-mono [of Y], auto)

proposition parts-con:
[[s ′ = insert (Spy, {|X , Y |}) s ∧ (Spy, X) ∈ s ∧ (Spy, Y) ∈ s;

Z ∈ parts-msg X ∨ Z ∈ parts-msg Y]] =⇒
Z ∈ parts (used s)

by (erule disjE , subgoal-tac X ∈ parts (used s), drule parts-msg-mono [of X],
subgoal-tac [3] Y ∈ parts (used s), drule-tac [3] parts-msg-mono [of Y], auto)

lemma parts-init-1 :
parts (used s0) ⊆ used s0 ∪ range (Hash ◦ Agent) ∪

range (Hash ◦ Auth-PubKey) ∪
range (λn. {|Hash (Agent n), Hash (Auth-PubKey n)|})

29

by (rule subsetI , erule parts.induct, (clarify | simp add: Range-iff image-def)+)

lemma parts-init-2 :
used s0 ∪ range (Hash ◦ Agent) ∪ range (Hash ◦ Auth-PubKey) ∪

range (λn. {|Hash (Agent n), Hash (Auth-PubKey n)|}) ⊆ parts (used s0)
by (rule subsetI , auto simp add: parts-insert)

proposition parts-init:
parts (used s0) = used s0 ∪ range (Hash ◦ Agent) ∪

range (Hash ◦ Auth-PubKey) ∪
range (λn. {|Hash (Agent n), Hash (Auth-PubKey n)|})

by (rule equalityI , rule parts-init-1 , rule parts-init-2)

proposition parts-crypt-prikey-start:
[[s ` s ′; Crypt K (PriKey A) ∈ parts (used s ′);

Crypt K (PriKey A) /∈ parts (used s)]] =⇒
(∃n. K = Auth-ShaKey n ∧
(Asset n, Crypt (Auth-ShaKey n) (PriKey A)) ∈ s ′) ∨

{PriKey A, Key K} ⊆ spied s ′

by (simp add: rel-def , erule disjE , (erule exE)+, simp add: parts-insert, blast,
(((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | erule disjE , simp, drule parts-enc |
drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-crypt-prikey:
[[s0 |= s; Crypt K (PriKey A) ∈ parts (used s)]] =⇒

(∃n. K = Auth-ShaKey n ∧
(Asset n, Crypt (Auth-ShaKey n) (PriKey A)) ∈ s) ∨

{PriKey A, Key K} ⊆ spied s
by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-prikey-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-pubkey-start:
[[s ` s ′; Crypt (SesK SK) (PubKey C) ∈ parts (used s ′);

Crypt (SesK SK) (PubKey C) /∈ parts (used s)]] =⇒
C ∈ snd (snd SK) ∧ ((∃n. (Owner n, SesKey SK) ∈ s ′) ∨
(∃n B. (Asset n, Token n (Auth-PriK n) B C SK) ∈ s ′)) ∨

SesKey SK ∈ spied s ′

by (simp add: rel-def , (erule disjE , (erule exE)+, simp add: parts-insert image-iff)+,
blast, erule disjE , (erule exE)+, simp add: parts-insert image-iff , blast,
(((erule disjE)?, ((erule exE)+)?, simp add: parts-insert image-iff)+,
((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-crypt-pubkey:
[[s0 |= s; Crypt (SesK SK) (PubKey C) ∈ parts (used s)]] =⇒

C ∈ snd (snd SK) ∧ ((∃n. (Owner n, SesKey SK) ∈ s) ∨

30

(∃n B. (Asset n, Token n (Auth-PriK n) B C SK) ∈ s)) ∨
SesKey SK ∈ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-pubkey-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-key-start:
[[s ` s ′; Crypt K (Key K ′) ∈ parts (used s ′);

Crypt K (Key K ′) /∈ parts (used s); K ′ /∈ range PriK ∪ range PubK]] =⇒
{Key K ′, Key K} ⊆ spied s ′

by (simp add: rel-def , (((erule disjE)?, ((erule exE)+)?, simp add: parts-insert
image-iff)+, ((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con),
simp+)?)+)

proposition parts-crypt-key:
[[s0 |= s; Crypt K (Key K ′) ∈ parts (used s);

K ′ /∈ range PriK ∪ range PubK]] =⇒
{Key K ′, Key K} ⊆ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-key-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-sign-start:
[[s ` s ′; Crypt (SesK SK) (Sign n A) ∈ parts (used s ′);

Crypt (SesK SK) (Sign n A) /∈ parts (used s)]] =⇒
(Asset n, SesKey SK) ∈ s ′ ∨ SesKey SK ∈ spied s ′

by (simp add: rel-def , (((erule disjE)?, ((erule exE)+)?, simp add: parts-insert
image-iff)+, ((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con),
simp+)?)+)

proposition parts-crypt-sign:
[[s0 |= s; Crypt (SesK SK) (Sign n A) ∈ parts (used s)]] =⇒

(Asset n, SesKey SK) ∈ s ∨ SesKey SK ∈ spied s
by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-sign-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-pwd-start:
[[s ` s ′; Crypt K (Pwd n) ∈ parts (used s ′);

Crypt K (Pwd n) /∈ parts (used s)]] =⇒
(∃SK . K = SesK SK ∧ (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ′) ∨
{Pwd n, Key K} ⊆ spied s ′

by (simp add: rel-def , (((erule disjE)?, ((erule exE)+)?, simp add: parts-insert
image-iff)+, ((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con),
simp+)?)+)

31

proposition parts-crypt-pwd:
[[s0 |= s; Crypt K (Pwd n) ∈ parts (used s)]] =⇒

(∃SK . K = SesK SK ∧ (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s) ∨
{Pwd n, Key K} ⊆ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-pwd-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-num-start:
[[s ` s ′; Crypt (SesK SK) (Num 0) ∈ parts (used s ′);

Crypt (SesK SK) (Num 0) /∈ parts (used s)]] =⇒
(∃n. (Asset n, Crypt (SesK SK) (Num 0)) ∈ s ′) ∨ SesKey SK ∈ spied s ′

by (simp add: rel-def , (erule disjE , (erule exE)+, simp add: parts-insert image-iff)+,
blast, (((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | erule disjE , simp, drule parts-enc |
drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-crypt-num:
[[s0 |= s; Crypt (SesK SK) (Num 0) ∈ parts (used s)]] =⇒

(∃n. (Asset n, Crypt (SesK SK) (Num 0)) ∈ s) ∨ SesKey SK ∈ spied s
by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-num-start, assumption+,
(drule state-subset)+, blast)

proposition parts-crypt-mult-start:
[[s ` s ′; Crypt (SesK SK) (A ⊗ B) ∈ parts (used s ′);

Crypt (SesK SK) (A ⊗ B) /∈ parts (used s)]] =⇒
B ∈ fst (snd SK) ∧ (∃n C . (Asset n, Token n (Auth-PriK n) B C SK) ∈ s ′) ∨
{A ⊗ B, SesKey SK} ⊆ spied s

by (simp add: rel-def , (erule disjE , (erule exE)+, simp add: parts-insert image-iff)+,
blast, (((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | erule disjE , simp, drule parts-enc |
drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-crypt-mult:
[[s0 |= s; Crypt (SesK SK) (A ⊗ B) ∈ parts (used s)]] =⇒

B ∈ fst (snd SK) ∧ (∃n C . (Asset n, Token n (Auth-PriK n) B C SK) ∈ s) ∨
{A ⊗ B, SesKey SK} ⊆ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-crypt-mult-start, assumption+,
drule converse-rtrancl-into-rtrancl, assumption, drule state-subset [of - s],
drule spied-subset [of - s], blast)

proposition parts-mult-start:
[[s ` s ′; A ⊗ B ∈ parts (used s ′); A ⊗ B /∈ parts (used s)]] =⇒

(∃n SK . A = Auth-PriK n ∧ (Asset n, {|Num 2 , PubKey B|}) ∈ s ′ ∧

32

Crypt (SesK SK) (A ⊗ B) ∈ parts (used s ′)) ∨
{PriKey A, PriKey B} ⊆ spied s ′

by (simp add: rel-def , (erule disjE , (erule exE)+, simp add: parts-insert image-iff)+,
blast, (((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-mult:
[[s0 |= s; A ⊗ B ∈ parts (used s)]] =⇒

(∃n. A = Auth-PriK n ∧ (Asset n, {|Num 2 , PubKey B|}) ∈ s) ∨
{PriKey A, PriKey B} ⊆ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
(erule exE)+, (erule conjE)+, frule parts-mult-start, assumption+,
(drule state-subset)+, blast)

proposition parts-mpair-key-start:
[[s ` s ′; {|X , Y |} ∈ parts (used s ′); {|X , Y |} /∈ parts (used s);

X = Key K ∨ Y = Key K ∧ K /∈ range PubK]] =⇒
{X , Y } ⊆ spied s ′

by (erule disjE , simp-all add: rel-def ,
(((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | drule parts-enc |
drule parts-sep | erule disjE , simp, drule parts-con), simp+)?)+)

proposition parts-mpair-key:
[[s0 |= s; {|X , Y |} ∈ parts (used s);

X = Key K ∨ Y = Key K ∧ K /∈ range PubK]] =⇒
{X , Y } ⊆ spied s

by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
blast, (erule exE)+, (erule conjE)+, frule parts-mpair-key-start, assumption+,
(drule state-subset)+, blast)

proposition parts-mpair-pwd-start:
[[s ` s ′; {|X , Y |} ∈ parts (used s ′); {|X , Y |} /∈ parts (used s);

X = Pwd n ∨ Y = Pwd n]] =⇒
{X , Y } ⊆ spied s ′

by (erule disjE , simp-all add: rel-def ,
(((erule disjE)?, (erule exE)+, simp add: parts-insert image-iff)+,
((drule parts-dec | drule parts-enc |
drule parts-sep | erule disjE , simp, drule parts-con), simp+)?)+)

proposition parts-mpair-pwd:
[[s0 |= s; {|X , Y |} ∈ parts (used s); X = Pwd n ∨ Y = Pwd n]] =⇒

{X , Y } ⊆ spied s
by (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff image-def ,
blast, (erule exE)+, (erule conjE)+, frule parts-mpair-pwd-start, assumption+,
(drule state-subset)+, blast)

33

proposition parts-pubkey-false-start:
assumes

A: s0 |= s and
B: s ` s ′ and
C : Crypt (SesK SK) (PubKey C) ∈ parts (used s ′) and
D: Crypt (SesK SK) (PubKey C) /∈ parts (used s) and
E : ∀n. (Owner n, SesKey SK) /∈ s ′ and
F : SesKey SK /∈ spied s ′

shows False
proof −

have C ∈ snd (snd SK) ∧ ((∃n. (Owner n, SesKey SK) ∈ s ′) ∨
(∃n B. (Asset n, Token n (Auth-PriK n) B C SK) ∈ s ′)) ∨
SesKey SK ∈ spied s ′

(is ?P C ∧ ((∃n. ?Q n s ′) ∨ (∃n B. ?R n B C s ′)) ∨ ?S s ′)
by (rule parts-crypt-pubkey-start [OF B C D])

then obtain n B where ?P C and ?R n B C s ′

using E and F by blast
moreover have ¬ ?R n B C s

using D by blast
ultimately have ∃D. Crypt (SesK SK) (PubKey D) ∈ used s
(is ∃D. ?U D)
using B by (auto simp add: rel-def)

then obtain D where ?U D ..
hence ?P D ∧ ((∃n. ?Q n s) ∨ (∃n B. ?R n B D s)) ∨ ?S s

by (rule-tac parts-crypt-pubkey [OF A], blast)
moreover have G: s ⊆ s ′

by (rule state-subset, insert B, simp)
have ∀n. (Owner n, SesKey SK) /∈ s

by (rule allI , rule notI , drule subsetD [OF G], insert E , simp)
moreover have H : spied s ⊆ spied s ′

by (rule Image-mono [OF G], simp)
have SesKey SK /∈ spied s

by (rule notI , drule subsetD [OF H], insert F , contradiction)
ultimately obtain n ′ B ′ where ?R n ′ B ′ D s by blast
have ∃A ′ D ′. fst (snd SK) = {A ′, B ′} ∧ snd (snd SK) = {D, D ′} ∧
(Asset n ′, {|Num 2 , PubKey B ′|}) ∈ s ∧
(Asset n ′, {|Num 4 , PubKey D ′|}) ∈ s ∧
?U D ′ ∧ (Asset n ′, PubKey B ′) ∈ s
by (rule asset-iv-state [OF A ‹?R n ′ B ′ D s›])

then obtain D ′ where snd (snd SK) = {D, D ′} and ?U D ′ by blast
hence Crypt (SesK SK) (PubKey C) ∈ parts (used s)

using ‹?P C › and ‹?U D› by auto
thus False

using D by contradiction
qed

proposition parts-pubkey-false:
[[s0 |= s; Crypt (SesK SK) (PubKey C) ∈ parts (used s);

34

∀n. (Owner n, SesKey SK) /∈ s; SesKey SK /∈ spied s]] =⇒
False

proof (drule rtrancl-start, assumption, subst parts-init, simp add: Range-iff im-
age-def ,
(erule exE)+, (erule conjE)+, erule parts-pubkey-false-start, assumption+,
rule allI , rule-tac [!] notI)
fix v n
assume (Owner n, SesKey SK) ∈ v and v |= s
hence (Owner n, SesKey SK) ∈ s

by (erule-tac rev-subsetD, rule-tac state-subset)
moreover assume ∀n. (Owner n, SesKey SK) /∈ s
ultimately show False by simp

next
fix v
assume SesKey SK ∈ spied v and v |= s
hence SesKey SK ∈ spied s

by (erule-tac rev-subsetD, rule-tac spied-subset)
moreover assume SesKey SK /∈ spied s
ultimately show False by contradiction

qed

proposition asset-ii-spied-start:
assumes

A: s0 |= s and
B: s ` s ′ and
C : PriKey B ∈ spied s ′ and
D: PriKey B /∈ spied s and
E : (Asset n, {|Num 2 , PubKey B|}) ∈ s

shows Auth-PriKey n ∈ spied s ∧
(∃C SK . (Asset n, Token n (Auth-PriK n) B C SK) ∈ s)
(is - ∧ (∃C SK . ?P n C SK s))

proof −
have ∃A. (A ⊗ B ∈ spied s ∨ B ⊗ A ∈ spied s) ∧ PriKey A ∈ spied s
proof (insert B C D, auto simp add: rel-def , rule-tac [!] FalseE)

assume Key (PriK B) /∈ used s
moreover have PriKey B ∈ used s

by (rule asset-ii-used [OF A, THEN mp, OF E])
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK B))) ∈ s
hence Crypt K (PriKey B) ∈ parts (used s) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey B)) ∈ s) ∨
{PriKey B, Key K} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-crypt-prikey [OF A])

then obtain m where ?P m

35

using D by blast
thus False

by (rule asset-i-asset-ii [OF A - E])
next

fix Y
assume (Spy, {|Key (PriK B), Y |}) ∈ s
hence {|PriKey B, Y |} ∈ parts (used s) by auto
hence {PriKey B, Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK B], simp)
thus False

using D by simp
next

fix X
assume (Spy, {|X , Key (PriK B)|}) ∈ s
hence {|X , PriKey B|} ∈ parts (used s) by auto
hence {X , PriKey B} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK B], simp add: image-def)
thus False

using D by simp
qed
then obtain A where F : PriKey A ∈ spied s and

A ⊗ B ∈ spied s ∨ B ⊗ A ∈ spied s
by blast

hence A ⊗ B ∈ parts (used s) ∨ B ⊗ A ∈ parts (used s) by blast
moreover have B ⊗ A /∈ parts (used s)
proof

assume B ⊗ A ∈ parts (used s)
hence (∃m. B = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey A|}) ∈ s) ∨
{PriKey B, PriKey A} ⊆ spied s
by (rule parts-mult [OF A])

then obtain m where B = Auth-PriK m
using D by blast

hence (Asset n, {|Num 2 , Auth-PubKey m|}) ∈ s
using E by simp

thus False
by (rule auth-pubkey-asset-ii [OF A])

qed
ultimately have A ⊗ B ∈ parts (used s) by simp
with A have ∃ u v. s0 |= u ∧ u ` v ∧ v |= s ∧

A ⊗ B /∈ parts (used u) ∧ A ⊗ B ∈ parts (used v)
by (rule rtrancl-start, subst parts-init, simp add: Range-iff image-def)

then obtain u v where G: u ` v and H : v |= s and
I : A ⊗ B /∈ parts (used u) and A ⊗ B ∈ parts (used v)
by blast

hence (∃m SK . A = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey B|}) ∈ v ∧
Crypt (SesK SK) (A ⊗ B) ∈ parts (used v)) ∨
{PriKey A, PriKey B} ⊆ spied v
by (rule-tac parts-mult-start, simp-all)

moreover have PriKey B /∈ spied v

36

proof
assume PriKey B ∈ spied v
hence PriKey B ∈ spied s

by (rule rev-subsetD, rule-tac spied-subset [OF H])
thus False

using D by contradiction
qed
ultimately obtain m SK where

J : Crypt (SesK SK) (A ⊗ B) ∈ parts (used v) and
A = Auth-PriK m and (Asset m, {|Num 2 , PubKey B|}) ∈ v
by blast

moreover from this have (Asset m, {|Num 2 , PubKey B|}) ∈ s
by (erule-tac rev-subsetD, rule-tac state-subset [OF H])

hence m = n
by (rule asset-ii-unique [OF A - E])

ultimately have K : Auth-PriKey n ∈ spied s
using F by simp

have Crypt (SesK SK) (A ⊗ B) /∈ parts (used u)
using I by blast

hence B ∈ fst (snd SK) ∧ (∃m C . ?P m C SK v) ∨
{A ⊗ B, SesKey SK} ⊆ spied u
by (rule parts-crypt-mult-start [OF G J])

moreover have A ⊗ B /∈ spied u
using I by blast

ultimately obtain m ′ C where ?P m ′ C SK v by blast
hence ?P m ′ C SK s

by (rule rev-subsetD, rule-tac state-subset [OF H])
moreover from this have ∃A ′ D. fst (snd SK) = {A ′, B} ∧

snd (snd SK) = {C , D} ∧ (Asset m ′, {|Num 2 , PubKey B|}) ∈ s ∧
(Asset m ′, {|Num 4 , PubKey D|}) ∈ s ∧
Crypt (SesK SK) (PubKey D) ∈ used s ∧ (Asset m ′, PubKey B) ∈ s
by (rule asset-iv-state [OF A])

hence (Asset m ′, {|Num 2 , PubKey B|}) ∈ s by blast
hence m ′ = n

by (rule asset-ii-unique [OF A - E])
ultimately show ?thesis

using K by blast
qed

proposition asset-ii-spied:
assumes

A: s0 |= s and
B: PriKey B ∈ spied s and
C : (Asset n, {|Num 2 , PubKey B|}) ∈ s

shows Auth-PriKey n ∈ spied s ∧
(∃C SK . (Asset n, Token n (Auth-PriK n) B C SK) ∈ s)
(is ?P s)

proof −
have ∃ u v. s0 |= u ∧ u ` v ∧ v |= s ∧

37

(Asset n, {|Num 2 , PubKey B|}) /∈ u ∧ (Asset n, {|Num 2 , PubKey B|}) ∈ v
using A and C by (rule rtrancl-start, auto)

then obtain u v where v |= s and (Asset n, {|Num 2 , PubKey B|}) /∈ u and
D: s0 |= u and E : u ` v and F : (Asset n, {|Num 2 , PubKey B|}) ∈ v
by blast

moreover from this have PriKey B /∈ spied v
by (auto simp add: rel-def)

ultimately have ∃w x . v |= w ∧ w ` x ∧ x |= s ∧
PriKey B /∈ spied w ∧ PriKey B ∈ spied x
using B by (rule-tac rtrancl-start, simp-all)

then obtain w x where PriKey B /∈ spied w and PriKey B ∈ spied x and
G: v |= w and H : w ` x and I : x |= s
by blast

moreover from this have s0 |= w
using D and E by simp

moreover have (Asset n, {|Num 2 , PubKey B|}) ∈ w
by (rule rev-subsetD [OF F], rule state-subset [OF G])

ultimately have ?P w
by (rule-tac asset-ii-spied-start, simp-all)

moreover have w ⊆ s
using H and I by (rule-tac state-subset, simp)

ultimately show ?thesis by blast
qed

proposition asset-iv-unique:
assumes

A: s0 |= s and
B: (Asset m, Token m (Auth-PriK m) B C ′ SK ′) ∈ s and
C : (Asset n, Token n (Auth-PriK n) B C SK) ∈ s
(is ?P n C SK s)

shows m = n ∧ C ′ = C ∧ SK ′ = SK
proof (subst (2) cases-simp [of m = n, symmetric], simp, rule conjI , rule impI ,
rule ccontr)
assume D: ¬ (C ′ = C ∧ SK ′ = SK) and m = n
moreover have ∃ u v. s0 |= u ∧ u ` v ∧ v |= s ∧
¬ (?P m C ′ SK ′ u ∧ ?P n C SK u) ∧ ?P m C ′ SK ′ v ∧ ?P n C SK v
using B and C by (rule-tac rtrancl-start [OF A], auto)

ultimately obtain u v where E : s0 |= u and F : u ` v and
G: ?P n C ′ SK ′ v and H : ?P n C SK v and
¬ ?P n C ′ SK ′ u ∨ ¬ ?P n C SK u
by blast

moreover {
assume I : ¬ ?P n C ′ SK ′ u
hence ?P n C SK u

by (insert D F G H , auto simp add: rel-def)
hence ∃A D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Asset n, {|Num 2 , PubKey B|}) ∈ u ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ u ∧
Crypt (SesK SK) (PubKey D) ∈ used u ∧ (Asset n, PubKey B) ∈ u

38

by (rule asset-iv-state [OF E])
moreover have (Asset n, PubKey B) /∈ u

by (insert F G I , auto simp add: rel-def)
ultimately have False by simp

}
moreover {

assume I : ¬ ?P n C SK u
hence ?P n C ′ SK ′ u

by (insert D F G H , auto simp add: rel-def)
hence ∃A D. fst (snd SK ′) = {A, B} ∧ snd (snd SK ′) = {C ′, D} ∧
(Asset n, {|Num 2 , PubKey B|}) ∈ u ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ u ∧
Crypt (SesK SK ′) (PubKey D) ∈ used u ∧ (Asset n, PubKey B) ∈ u
by (rule asset-iv-state [OF E])

moreover have (Asset n, PubKey B) /∈ u
by (insert F H I , auto simp add: rel-def)

ultimately have False by simp
}
ultimately show False by blast

next
have ∃A D. fst (snd SK ′) = {A, B} ∧ snd (snd SK ′) = {C ′, D} ∧
(Asset m, {|Num 2 , PubKey B|}) ∈ s ∧ (Asset m, {|Num 4 , PubKey D|}) ∈ s ∧
Crypt (SesK SK ′) (PubKey D) ∈ used s ∧ (Asset m, PubKey B) ∈ s
(is ?Q m C ′ SK ′)
by (rule asset-iv-state [OF A B])

hence (Asset m, {|Num 2 , PubKey B|}) ∈ s by blast
moreover have ?Q n C SK

by (rule asset-iv-state [OF A C])
hence (Asset n, {|Num 2 , PubKey B|}) ∈ s by blast
ultimately show m = n

by (rule asset-ii-unique [OF A])
qed

theorem sigkey-secret:
s0 |= s =⇒ SigKey /∈ spied s

proof (erule rtrancl-induct, simp add: image-def)
fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : SigKey /∈ spied s

show SigKey /∈ spied s ′

proof (insert B C , auto simp add: rel-def)
fix K
assume (Spy, Crypt K SigKey) ∈ s
hence Crypt K SigKey ∈ parts (used s) by blast
hence {SigKey, Key K} ⊆ spied s

by (rule parts-crypt-key [OF A], simp add: image-def)
with C show False by simp

39

next
fix Y
assume (Spy, {|SigKey, Y |}) ∈ s
hence {|SigKey, Y |} ∈ parts (used s) by blast
hence {SigKey, Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = SigK], simp)
with C show False by simp

next
fix X
assume (Spy, {|X , SigKey|}) ∈ s
hence {|X , SigKey|} ∈ parts (used s) by blast
hence {X , SigKey} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = SigK], simp add: image-def)
with C show False by simp

qed
qed

proposition parts-sign-start:
assumes A: s0 |= s
shows [[s ` s ′; Sign n A ∈ parts (used s ′); Sign n A /∈ parts (used s)]] =⇒

A = Auth-PriK n
by (simp add: rel-def , (((erule disjE)?, (erule exE)+, simp add: parts-insert im-
age-iff)+,
((drule parts-dec | erule disjE , insert sigkey-secret [OF A], simp, drule parts-enc |
drule parts-sep | drule parts-con), simp+)?)+)

proposition parts-sign:
[[s0 |= s; Sign n A ∈ parts (used s)]] =⇒

A = Auth-PriK n
by (rule classical, drule rtrancl-start, assumption, subst parts-init, simp add:
Range-iff image-def , (erule exE)+, (erule conjE)+, drule parts-sign-start)

theorem auth-shakey-secret:
[[s0 |= s; n /∈ bad-shakey]] =⇒

Key (Auth-ShaKey n) /∈ spied s
proof (erule rtrancl-induct, simp add: image-def)

fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : Key (Auth-ShaKey n) /∈ spied s

show Key (Auth-ShaKey n) /∈ spied s ′

proof (insert B C , auto simp add: rel-def)
fix K
assume (Spy, Crypt K (Key (ShaK (Auth-ShaK n)))) ∈ s
hence Crypt K (Key (Auth-ShaKey n)) ∈ parts (used s) by auto
hence {Key (Auth-ShaKey n), Key K} ⊆ spied s

by (rule parts-crypt-key [OF A], simp add: image-def)

40

with C show False by simp
next

fix Y
assume (Spy, {|Key (ShaK (Auth-ShaK n)), Y |}) ∈ s
hence {|Key (Auth-ShaKey n), Y |} ∈ parts (used s) by auto
hence {Key (Auth-ShaKey n), Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = Auth-ShaKey n], simp)
with C show False by simp

next
fix X
assume (Spy, {|X , Key (ShaK (Auth-ShaK n))|}) ∈ s
hence {|X , Key (Auth-ShaKey n)|} ∈ parts (used s) by auto
hence {X , Key (Auth-ShaKey n)} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = Auth-ShaKey n],
simp add: image-def)

with C show False by simp
qed

qed

theorem auth-prikey-secret:
assumes

A: s0 |= s and
B: n /∈ bad-prikey

shows Auth-PriKey n /∈ spied s
proof

assume Auth-PriKey n ∈ spied s
moreover have Auth-PriKey n /∈ spied s0

using B by auto
ultimately have ∃ u v. s0 |= u ∧ u ` v ∧ v |= s ∧

Auth-PriKey n /∈ spied u ∧ Auth-PriKey n ∈ spied v
by (rule rtrancl-start [OF A])

then obtain u v where C : s0 |= u and D: u ` v and
E : Auth-PriKey n /∈ spied u and F : Auth-PriKey n ∈ spied v
by blast

have ∃B. (Auth-PriK n ⊗ B ∈ spied u ∨ B ⊗ Auth-PriK n ∈ spied u) ∧
PriKey B ∈ spied u

proof (insert D E F , auto simp add: rel-def , rule-tac [!] FalseE)
assume Key (PriK (Auth-PriK n)) /∈ used u
moreover have Auth-PriKey n ∈ used u

by (rule auth-prikey-used [OF C])
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK (Auth-PriK n)))) ∈ u
hence Crypt K (PriKey (Auth-PriK n)) ∈ parts (used u) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey (Auth-PriK n))) ∈ u) ∨
{PriKey (Auth-PriK n), Key K} ⊆ spied u

41

by (rule parts-crypt-prikey [OF C])
then obtain m where
(Asset m, Crypt (Auth-ShaKey m) (Auth-PriKey n)) ∈ u
using E by auto

thus False
by (rule auth-prikey-asset-i [OF C])

next
fix Y
assume (Spy, {|Key (PriK (Auth-PriK n)), Y |}) ∈ u
hence {|Auth-PriKey n, Y |} ∈ parts (used u) by auto
hence {Auth-PriKey n, Y } ⊆ spied u

by (rule parts-mpair-key [OF C , where K = PriK (Auth-PriK n)], simp)
thus False

using E by simp
next

fix X
assume (Spy, {|X , Key (PriK (Auth-PriK n))|}) ∈ u
hence {|X , Auth-PriKey n|} ∈ parts (used u) by auto
hence {X , Auth-PriKey n} ⊆ spied u

by (rule parts-mpair-key [OF C , where K = PriK (Auth-PriK n)], simp
add: image-def)

thus False
using E by simp

qed
then obtain B where G: PriKey B ∈ spied u and

Auth-PriK n ⊗ B ∈ spied u ∨ B ⊗ Auth-PriK n ∈ spied u
by blast

hence Auth-PriK n ⊗ B ∈ parts (used u) ∨ B ⊗ Auth-PriK n ∈ parts (used u)
by blast

moreover have B ⊗ Auth-PriK n /∈ parts (used u)
proof

assume B ⊗ Auth-PriK n ∈ parts (used u)
hence (∃m. B = Auth-PriK m ∧
(Asset m, {|Num 2 , PubKey (Auth-PriK n)|}) ∈ u) ∨
{PriKey B, PriKey (Auth-PriK n)} ⊆ spied u
by (rule parts-mult [OF C])

then obtain m where (Asset m, {|Num 2 , Auth-PubKey n|}) ∈ u
using E by auto

thus False
by (rule auth-pubkey-asset-ii [OF C])

qed
ultimately have Auth-PriK n ⊗ B ∈ parts (used u) by simp
hence (∃m. Auth-PriK n = Auth-PriK m ∧
(Asset m, {|Num 2 , PubKey B|}) ∈ u) ∨
{PriKey (Auth-PriK n), PriKey B} ⊆ spied u
by (rule parts-mult [OF C])

then obtain m where Auth-PriK n = Auth-PriK m and
(Asset m, {|Num 2 , PubKey B|}) ∈ u
using E by auto

42

moreover from this have Auth-PriKey m ∈ spied u ∧
(∃C SK . (Asset m, Token m (Auth-PriK m) B C SK) ∈ u)
by (rule-tac asset-ii-spied [OF C G])

ultimately show False
using E by simp

qed

proposition asset-ii-secret:
[[s0 |= s; n /∈ bad-prikey; (Asset n, {|Num 2 , PubKey B|}) ∈ s]] =⇒

PriKey B /∈ spied s
by (rule notI , frule asset-ii-spied, assumption+, drule auth-prikey-secret, simp+)

proposition asset-i-secret [rule-format]:
assumes

A: s0 |= s and
B: n /∈ bad-shakey

shows (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s −→
PriKey S /∈ spied s

proof (rule rtrancl-induct [OF A], simp add: image-def , rule impI)
fix s s ′

assume
C : s0 |= s and
D: s ` s ′ and
E : (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s −→

PriKey S /∈ spied s and
F : (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s ′

show PriKey S /∈ spied s ′

proof (insert D E F , auto simp add: rel-def)
assume (Asset n, Crypt (ShaK (Auth-ShaK n)) (Key (PriK S))) ∈ s
hence (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s by simp
hence PriKey S ∈ used s

by (rule asset-i-used [OF C , THEN mp])
moreover assume Key (PriK S) /∈ used s
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK S))) ∈ s
hence Crypt K (PriKey S) ∈ parts (used s) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey S)) ∈ s) ∨
{PriKey S , Key K} ⊆ spied s
(is (∃m. ?P m ∧ ?Q m) ∨ -)
by (rule parts-crypt-prikey [OF C])

moreover assume (Spy, Key (PriK S)) /∈ s
ultimately obtain m where G: ?P m ∧ ?Q m by auto
hence ?Q m ..
moreover assume
(Asset n, Crypt (ShaK (Auth-ShaK n)) (Key (PriK S))) ∈ s

43

hence (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s by simp
ultimately have m = n

by (rule asset-i-unique [OF C])
moreover assume (Spy, Key (InvK K)) ∈ s
ultimately have Key (Auth-ShaKey n) ∈ spied s

using G by simp
moreover have Key (Auth-ShaKey n) /∈ spied s

by (rule auth-shakey-secret [OF C B])
ultimately show False by contradiction

next
fix B
assume (Spy, S ⊗ B) ∈ s
hence S ⊗ B ∈ parts (used s) by blast
hence (∃m. S = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey B|}) ∈ s) ∨
{PriKey S , PriKey B} ⊆ spied s
(is (∃m. ?P m ∧ -) ∨ -)
by (rule parts-mult [OF C])

moreover assume (Spy, Key (PriK S)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume
(Asset n, Crypt (ShaK (Auth-ShaK n)) (Key (PriK S))) ∈ s

ultimately have (Asset n, Crypt (Auth-ShaKey n) (Auth-PriKey m)) ∈ s
by simp

thus False
by (rule auth-prikey-asset-i [OF C])

next
fix A
assume (Spy, A ⊗ S) ∈ s
hence A ⊗ S ∈ parts (used s) by blast
hence (∃m. A = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey S |}) ∈ s) ∨
{PriKey A, PriKey S} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-mult [OF C])

moreover assume (Spy, Key (PriK S)) /∈ s
ultimately obtain m where ?P m by auto
assume (Asset n, Crypt (ShaK (Auth-ShaK n)) (Key (PriK S))) ∈ s
hence (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s by simp
thus False

by (rule asset-i-asset-ii [OF C - ‹?P m›])
next

fix Y
assume (Spy, {|Key (PriK S), Y |}) ∈ s
hence {|PriKey S , Y |} ∈ parts (used s) by auto
hence {PriKey S , Y } ⊆ spied s

by (rule parts-mpair-key [OF C , where K = PriK S], simp)
moreover assume (Spy, Key (PriK S)) /∈ s
ultimately show False by simp

next
fix X

44

assume (Spy, {|X , Key (PriK S)|}) ∈ s
hence {|X , PriKey S |} ∈ parts (used s) by auto
hence {X , PriKey S} ⊆ spied s

by (rule parts-mpair-key [OF C , where K = PriK S], simp add: image-def)
moreover assume (Spy, Key (PriK S)) /∈ s
ultimately show False by simp

qed
qed

proposition owner-ii-secret [rule-format]:
s0 |= s =⇒

(Owner n, {|Num 1 , PubKey A|}) ∈ s −→
PriKey A /∈ spied s

proof (erule rtrancl-induct, simp add: image-def , rule impI)
fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : (Owner n, {|Num 1 , PubKey A|}) ∈ s −→ PriKey A /∈ spied s and
D: (Owner n, {|Num 1 , PubKey A|}) ∈ s ′

show PriKey A /∈ spied s ′

proof (insert B C D, auto simp add: rel-def)
assume (Owner n, {|Num (Suc 0), Key (PubK A)|}) ∈ s
hence (Owner n, {|Num 1 , PubKey A|}) ∈ s by simp
hence PriKey A ∈ used s

by (rule owner-ii-used [OF A, THEN mp])
moreover assume Key (PriK A) /∈ used s
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK A))) ∈ s
hence Crypt K (PriKey A) ∈ parts (used s) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey A)) ∈ s) ∨
{PriKey A, Key K} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-crypt-prikey [OF A])

moreover assume (Spy, Key (PriK A)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num (Suc 0), Key (PubK A)|}) ∈ s
hence (Owner n, {|Num 1 , PubKey A|}) ∈ s by simp
ultimately show False

by (rule asset-i-owner-ii [OF A])
next

fix B
assume (Spy, A ⊗ B) ∈ s
hence A ⊗ B ∈ parts (used s) by blast
hence (∃m. A = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey B|}) ∈ s) ∨
{PriKey A, PriKey B} ⊆ spied s

45

(is (∃m. ?P m ∧ -) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK A)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num (Suc 0), Key (PubK A)|}) ∈ s
ultimately have (Owner n, {|Num 1 , Auth-PubKey m|}) ∈ s by simp
thus False

by (rule auth-pubkey-owner-ii [OF A])
next

fix B
assume (Spy, B ⊗ A) ∈ s
hence B ⊗ A ∈ parts (used s) by blast
hence (∃m. B = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey A|}) ∈ s) ∨
{PriKey B, PriKey A} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK A)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num (Suc 0), Key (PubK A)|}) ∈ s
hence (Owner n, {|Num 1 , PubKey A|}) ∈ s by simp
ultimately show False

by (rule asset-ii-owner-ii [OF A])
next

fix Y
assume (Spy, {|Key (PriK A), Y |}) ∈ s
hence {|PriKey A, Y |} ∈ parts (used s) by auto
hence {PriKey A, Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK A], simp)
moreover assume (Spy, Key (PriK A)) /∈ s
ultimately show False by simp

next
fix X
assume (Spy, {|X , Key (PriK A)|}) ∈ s
hence {|X , PriKey A|} ∈ parts (used s) by auto
hence {X , PriKey A} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK A], simp add: image-def)
moreover assume (Spy, Key (PriK A)) /∈ s
ultimately show False by simp

qed
qed

proposition seskey-spied [rule-format]:
s0 |= s =⇒

SesKey SK ∈ spied s −→
(∃S A C . fst SK = Some S ∧ A ∈ fst (snd SK) ∧ C ∈ snd (snd SK) ∧
{PriKey S , PriKey A, PriKey C} ⊆ spied s)

(is - =⇒ - −→ (∃S A C . ?P S A C s))
proof (erule rtrancl-induct, simp add: image-def , rule impI)

fix s s ′

46

assume
A: s0 |= s and
B: s ` s ′ and
C : SesKey SK ∈ spied s −→ (∃S A C . ?P S A C s) and
D: SesKey SK ∈ spied s ′

show ∃S A C . ?P S A C s ′

proof (insert B C D, auto simp add: rel-def , blast, rule-tac [!] FalseE)
fix K
assume (Spy, Crypt K (Key (SesK SK))) ∈ s
hence Crypt K (Key (SesK SK)) ∈ parts (used s) by blast
hence {Key (SesK SK), Key K} ⊆ spied s

by (rule parts-crypt-key [OF A], simp add: image-def)
moreover assume (Spy, Key (SesK SK)) /∈ s
ultimately show False by simp

next
fix Y
assume (Spy, {|Key (SesK SK), Y |}) ∈ s
hence {|SesKey SK , Y |} ∈ parts (used s) by auto
hence {SesKey SK , Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = SesK SK], simp)
moreover assume (Spy, Key (SesK SK)) /∈ s
ultimately show False by simp

next
fix X
assume (Spy, {|X , Key (SesK SK)|}) ∈ s
hence {|X , SesKey SK |} ∈ parts (used s) by auto
hence {X , SesKey SK} ⊆ spied s
by (rule parts-mpair-key [OF A, where K = SesK SK], simp add: image-def)

moreover assume (Spy, Key (SesK SK)) /∈ s
ultimately show False by simp

qed
qed

proposition owner-seskey-shakey:
assumes

A: s0 |= s and
B: n /∈ bad-shakey and
C : (Owner n, SesKey SK) ∈ s

shows SesKey SK /∈ spied s
proof

have (∃S . fst SK = Some S ∧ Crypt (Auth-ShaKey n) (PriKey S) ∈ used s) ∨
fst SK = None
(is (∃S . ?P S) ∨ -)
by (rule owner-seskey-nonce [OF A C])

moreover assume SesKey SK ∈ spied s
hence D: ∃S A C . fst SK = Some S ∧ A ∈ fst (snd SK) ∧

C ∈ snd (snd SK) ∧ {PriKey S , PriKey A, PriKey C} ⊆ spied s
by (rule seskey-spied [OF A])

ultimately obtain S where ?P S by auto

47

hence Crypt (Auth-ShaKey n) (PriKey S) ∈ parts (used s) by blast
hence (∃m. Auth-ShaKey n = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey S)) ∈ s) ∨
{PriKey S , Key (Auth-ShaKey n)} ⊆ spied s
(is (∃m. ?Q m ∧ ?R m) ∨ -)
by (rule parts-crypt-prikey [OF A])

moreover have Key (Auth-ShaKey n) /∈ spied s
by (rule auth-shakey-secret [OF A B])

ultimately obtain m where ?Q m and ?R m by blast
hence m /∈ bad-shakey

using B by simp
hence PriKey S /∈ spied s

by (rule asset-i-secret [OF A - ‹?R m›])
moreover have PriKey S ∈ spied s

using D and ‹?P S› by auto
ultimately show False by contradiction

qed

proposition owner-seskey-prikey:
assumes

A: s0 |= s and
B: n /∈ bad-prikey and
C : (Owner m, SesKey SK) ∈ s and
D: (Asset n, {|Num 2 , PubKey B|}) ∈ s and
E : B ∈ fst (snd SK)

shows SesKey SK /∈ spied s
proof

have ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner m, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner m, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner m, Crypt (SesK SK) (PubKey D)) ∈ s
(is ∃A B C D. ?P A B ∧ - ∧ ?Q A ∧ -)
by (rule owner-seskey-other [OF A C])

then obtain A B ′ where ?P A B ′ and ?Q A by blast
assume SesKey SK ∈ spied s
hence ∃S A ′ C . fst SK = Some S ∧ A ′ ∈ fst (snd SK) ∧ C ∈ snd (snd SK) ∧
{PriKey S , PriKey A ′, PriKey C} ⊆ spied s
(is ∃S A ′ C . - ∧ ?R A ′ ∧ -)
by (rule seskey-spied [OF A])

then obtain A ′ where A ′ ∈ fst (snd SK) and PriKey A ′ ∈ spied s (is ?R A ′)
by blast

hence {A ′, A, B} ⊆ {A, B ′}
using E and ‹?P A B ′› by simp

hence card {A ′, A, B} ≤ card {A, B ′}
by (rule-tac card-mono, simp)

also have . . . ≤ Suc (Suc 0)
by (rule card-insert-le-m1 , simp-all)

finally have card {A ′, A, B} ≤ Suc (Suc 0) .
moreover have card {A ′, A, B} = Suc (card {A, B})

48

proof (rule card-insert-disjoint, simp-all, rule conjI , rule-tac [!] notI)
assume A ′ = A
hence ?R A

using ‹?R A ′› by simp
moreover have ¬ ?R A

by (rule owner-ii-secret [OF A ‹?Q A›])
ultimately show False by contradiction

next
assume A ′ = B
hence ?R B

using ‹?R A ′› by simp
moreover have ¬ ?R B

by (rule asset-ii-secret [OF A B D])
ultimately show False by contradiction

qed
moreover have card {A, B} = Suc (card {B})
proof (rule card-insert-disjoint, simp-all, rule notI)

assume A = B
hence (Asset n, {|Num 2 , PubKey A|}) ∈ s

using D by simp
thus False

by (rule asset-ii-owner-ii [OF A - ‹?Q A›])
qed
ultimately show False by simp

qed

proposition asset-seskey-shakey:
assumes

A: s0 |= s and
B: n /∈ bad-shakey and
C : (Asset n, SesKey SK) ∈ s

shows SesKey SK /∈ spied s
proof

have ∃S . fst SK = Some S ∧
(Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s
(is ∃S . ?P S ∧ ?Q S)
by (rule asset-seskey-nonce [OF A C])

then obtain S where ?P S and ?Q S by blast
have PriKey S /∈ spied s

by (rule asset-i-secret [OF A B ‹?Q S›])
moreover assume SesKey SK ∈ spied s
hence ∃S A C . fst SK = Some S ∧ A ∈ fst (snd SK) ∧ C ∈ snd (snd SK) ∧
{PriKey S , PriKey A, PriKey C} ⊆ spied s
by (rule seskey-spied [OF A])

hence PriKey S ∈ spied s
using ‹?P S› by auto

ultimately show False by contradiction
qed

49

theorem owner-seskey-unique:
assumes

A: s0 |= s and
B: (Owner m, Crypt (SesK SK) (Pwd m)) ∈ s and
C : (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s

shows m = n
proof (rule ccontr)

have D: (Owner m, SesKey SK) ∈ s ∧
(∃A B C . Token m A B C SK ∈ used s ∧ B ∈ fst (snd SK))
(is ?P m ∧ (∃A B C . ?Q m A B C))
by (rule owner-v-state [OF A B])

hence ?P m by blast
hence ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner m, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner m, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner m, Crypt (SesK SK) (PubKey D)) ∈ s
(is ∃A B C D. ?R A B ∧ ?S C D ∧ ?T m A ∧ ?U m C D)
by (rule owner-seskey-other [OF A])

then obtain A B where ?R A B and ?T m A by blast
have ?P n ∧ (∃A B C . ?Q n A B C)

by (rule owner-v-state [OF A C])
hence ?P n by blast
hence ∃A B C D. ?R A B ∧ ?S C D ∧ ?T n A ∧ ?U n C D

by (rule owner-seskey-other [OF A])
then obtain A ′ B ′ where ?R A ′ B ′ and ?T n A ′ by blast
from D obtain A ′′ B ′′ C where ?Q m A ′′ B ′′ C by blast
hence Token m A ′′ B ′′ C SK ∈ parts (used s) by blast
hence Crypt (SesK SK) (A ′′ ⊗ B ′′) ∈ parts (used s) by blast
hence B ′′ ∈ fst (snd SK) ∧
(∃ i C ′. (Asset i, Token i (Auth-PriK i) B ′′ C ′ SK) ∈ s) ∨
{A ′′ ⊗ B ′′, SesKey SK} ⊆ spied s
(is ?V B ′′ ∧ (∃ i C ′. ?W i B ′′ C ′) ∨ -)
by (rule parts-crypt-mult [OF A])

hence ∃D. ?V D ∧ D /∈ {A, A ′}
proof (rule disjE , (erule-tac conjE , ((erule-tac exE)+)?)+)

fix i C ′

assume ?V B ′′ and ?W i B ′′ C ′

have ∃A D. ?R A B ′′ ∧ ?S C ′ D ∧
(Asset i, {|Num 2 , PubKey B ′′|}) ∈ s ∧ (Asset i, {|Num 4 , PubKey D|}) ∈ s ∧
Crypt (SesK SK) (PubKey D) ∈ used s ∧ (Asset i, PubKey B ′′) ∈ s
(is ∃A D. - ∧ - ∧ ?X i B ′′ ∧ -)
by (rule asset-iv-state [OF A ‹?W i B ′′ C ′›])

hence ?X i B ′′ by blast
have B ′′ 6= A
proof

assume B ′′ = A
hence ?X i A

using ‹?X i B ′′› by simp

50

thus False
by (rule asset-ii-owner-ii [OF A - ‹?T m A›])

qed
moreover have B ′′ 6= A ′

proof
assume B ′′ = A ′

hence ?X i A ′

using ‹?X i B ′′› by simp
thus False

by (rule asset-ii-owner-ii [OF A - ‹?T n A ′›])
qed
ultimately show ?thesis

using ‹?V B ′′› by blast
next

assume {A ′′ ⊗ B ′′, SesKey SK} ⊆ spied s
hence SesKey SK ∈ spied s by simp
hence ∃S D E . fst SK = Some S ∧ ?V D ∧ E ∈ snd (snd SK) ∧
{PriKey S , PriKey D, PriKey E} ⊆ spied s
by (rule seskey-spied [OF A])

then obtain D where ?V D and PriKey D ∈ spied s (is ?X D)
by blast

moreover have D 6= A
proof

assume D = A
hence ?X A

using ‹?X D› by simp
moreover have ¬ ?X A

by (rule owner-ii-secret [OF A ‹?T m A›])
ultimately show False by contradiction

qed
moreover have D 6= A ′

proof
assume D = A ′

hence ?X A ′

using ‹?X D› by simp
moreover have ¬ ?X A ′

by (rule owner-ii-secret [OF A ‹?T n A ′›])
ultimately show False by contradiction

qed
ultimately show ?thesis by blast

qed
then obtain D where ?V D and E : D /∈ {A, A ′} by blast
hence {D, A, A ′} ⊆ {A, B}

using ‹?R A B› and ‹?R A ′ B ′› by blast
hence card {D, A, A ′} ≤ card {A, B}

by (rule-tac card-mono, simp)
also have . . . ≤ Suc (Suc 0)

by (rule card-insert-le-m1 , simp-all)
finally have card {D, A, A ′} ≤ Suc (Suc 0) .

51

moreover have card {D, A, A ′} = Suc (card {A, A ′})
by (rule card-insert-disjoint [OF - E], simp)

moreover assume m 6= n
hence card {A, A ′} = Suc (card {A ′})
proof (rule-tac card-insert-disjoint, simp-all, erule-tac contrapos-nn)

assume A = A ′

hence ?T n A
using ‹?T n A ′› by simp

thus m = n
by (rule owner-ii-unique [OF A ‹?T m A›])

qed
ultimately show False by simp

qed

theorem owner-seskey-secret:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ bad-prikey and
C : (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s

shows SesKey SK /∈ spied s
proof −

have (Owner n, SesKey SK) ∈ s ∧
(∃A B C . Token n A B C SK ∈ used s ∧ B ∈ fst (snd SK))
(is ?P ∧ (∃A B C . ?Q A B C ∧ ?R B))
by (rule owner-v-state [OF A C])

then obtain A B C where ?P and ?Q A B C and ?R B by blast
have n ∈ bad-shakey ∨ n /∈ bad-shakey by simp
moreover {

assume n ∈ bad-shakey
hence D: n /∈ bad-prikey

using B by simp
hence Auth-PriKey n /∈ spied s

by (rule auth-prikey-secret [OF A])
moreover have Sign n A ∈ parts (used s)

using ‹?Q A B C › by blast
hence A = Auth-PriK n

by (rule parts-sign [OF A])
hence ?Q (Auth-PriK n) B C

using ‹?Q A B C › by simp
hence Auth-PriK n ⊗ B ∈ parts (used s) by blast
hence (∃m. Auth-PriK n = Auth-PriK m ∧
(Asset m, {|Num 2 , PubKey B|}) ∈ s) ∨
{PriKey (Auth-PriK n), PriKey B} ⊆ spied s
(is (∃m. ?S m ∧ ?T m) ∨ -)
by (rule parts-mult [OF A])

ultimately obtain m where ?S m and ?T m by auto
hence m /∈ bad-prikey

using D by simp

52

hence ?thesis
by (rule owner-seskey-prikey [OF A - ‹?P› ‹?T m› ‹?R B›])

}
moreover {

assume n /∈ bad-shakey
hence ?thesis

by (rule owner-seskey-shakey [OF A - ‹?P›])
}
ultimately show ?thesis ..

qed

theorem owner-num-genuine:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ bad-prikey and
C : (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s and
D: Crypt (SesK SK) (Num 0) ∈ used s

shows (Asset n, Crypt (SesK SK) (Num 0)) ∈ s
proof −

have Crypt (SesK SK) (Num 0) ∈ parts (used s)
using D ..

hence (∃m. (Asset m, Crypt (SesK SK) (Num 0)) ∈ s) ∨
SesKey SK ∈ spied s
by (rule parts-crypt-num [OF A])

moreover have E : SesKey SK /∈ spied s
by (rule owner-seskey-secret [OF A B C])

ultimately obtain m where (Asset m, Crypt (SesK SK) (Num 0)) ∈ s
by blast

moreover from this have (Asset m, SesKey SK) ∈ s ∧
Crypt (SesK SK) (Pwd m) ∈ used s
by (rule asset-v-state [OF A])

hence Crypt (SesK SK) (Pwd m) ∈ parts (used s) by blast
hence (∃SK ′. SesK SK = SesK SK ′ ∧
(Owner m, Crypt (SesK SK ′) (Pwd m)) ∈ s) ∨
{Pwd m, Key (SesK SK)} ⊆ spied s
by (rule parts-crypt-pwd [OF A])

hence (Owner m, Crypt (SesK SK) (Pwd m)) ∈ s
using E by simp

hence m = n
by (rule owner-seskey-unique [OF A - C])

ultimately show ?thesis by simp
qed

theorem owner-token-genuine:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ bad-prikey and

53

C : (Owner n, {|Num 3 , PubKey C |}) ∈ s and
D: (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s and
E : Token n A B C SK ∈ used s

shows A = Auth-PriK n ∧ B ∈ fst (snd SK) ∧ C ∈ snd (snd SK) ∧
(Asset n, {|Num 2 , PubKey B|}) ∈ s ∧ (Asset n, Token n A B C SK) ∈ s
(is ?P n A ∧ ?Q B ∧ ?R C ∧ ?S n B ∧ -)

proof −
have Crypt (SesK SK) (Sign n A) ∈ parts (used s)

using E by blast
hence (Asset n, SesKey SK) ∈ s ∨ SesKey SK ∈ spied s

by (rule parts-crypt-sign [OF A])
moreover have SesKey SK /∈ spied s

by (rule owner-seskey-secret [OF A B D])
ultimately have (Asset n, SesKey SK) ∈ s by simp
hence ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧

?S n B ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ s ∧
(Asset n, Token n (Auth-PriK n) B C SK) ∈ s
(is ∃A B C D. ?T A B ∧ ?U C D ∧ - ∧ ?V n D ∧ ?W n B C)
by (rule asset-seskey-other [OF A])

then obtain A ′ B ′ C ′ D where
?T A ′ B ′ and ?U C ′ D and ?S n B ′ and ?V n D and ?W n B ′ C ′

by blast
have Sign n A ∈ parts (used s)

using E by blast
hence ?P n A

by (rule parts-sign [OF A])
have Crypt (SesK SK) (A ⊗ B) ∈ parts (used s)

using E by blast
hence ?Q B ∧ (∃m C ′′. ?W m B C ′′) ∨ {A ⊗ B, SesKey SK} ⊆ spied s

by (rule parts-crypt-mult [OF A])
moreover have F : SesKey SK /∈ spied s

by (rule owner-seskey-secret [OF A B D])
ultimately obtain m C ′′ where ?Q B and ?W m B C ′′ by blast
have ∃A D. ?T A B ∧ ?U C ′′ D ∧ ?S m B ∧ ?V m D ∧

Crypt (SesK SK) (PubKey D) ∈ used s ∧ (Asset m, PubKey B) ∈ s
by (rule asset-iv-state [OF A ‹?W m B C ′′›])

hence ?S m B by blast
have (Owner n, SesKey SK) ∈ s ∧
(∃A B C . Token n A B C SK ∈ used s ∧ B ∈ fst (snd SK))
by (rule owner-v-state [OF A D])

hence (Owner n, SesKey SK) ∈ s by blast
hence ∃A B C D. ?T A B ∧ ?U C D ∧
(Owner n, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner n, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner n, Crypt (SesK SK) (PubKey D)) ∈ s
(is ∃A B C D. - ∧ - ∧ ?X A ∧ -)
by (rule owner-seskey-other [OF A])

then obtain A ′′ where ?Q A ′′ and ?X A ′′ by blast
have G: B ′ = B

54

proof (rule ccontr)
have {A ′′, B ′, B} ⊆ {A ′, B ′}

using ‹?T A ′ B ′› and ‹?Q B› and ‹?Q A ′′› by simp
hence card {A ′′, B ′, B} ≤ card {A ′, B ′}

by (rule-tac card-mono, simp)
also have . . . ≤ Suc (Suc 0)

by (rule card-insert-le-m1 , simp-all)
finally have card {A ′′, B ′, B} ≤ Suc (Suc 0) .
moreover have A ′′ /∈ {B ′, B}
proof (simp, rule conjI , rule-tac [!] notI)

assume A ′′ = B ′

hence ?S n A ′′

using ‹?S n B ′› by simp
thus False

by (rule asset-ii-owner-ii [OF A - ‹?X A ′′›])
next

assume A ′′ = B
hence ?S m A ′′

using ‹?S m B› by simp
thus False

by (rule asset-ii-owner-ii [OF A - ‹?X A ′′›])
qed
hence card {A ′′, B ′, B} = Suc (card {B ′, B})

by (rule-tac card-insert-disjoint, simp)
moreover assume B ′ 6= B
hence card {B ′, B} = Suc (card {B})

by (rule-tac card-insert-disjoint, simp-all)
ultimately show False by simp

qed
hence ?S n B

using ‹?S n B ′› by simp
have Crypt (SesK SK) (PubKey C) ∈ parts (used s)

using E by blast
hence ?R C ∧ ((∃n. (Owner n, SesKey SK) ∈ s) ∨ (∃n B. ?W n B C)) ∨

SesKey SK ∈ spied s
by (rule parts-crypt-pubkey [OF A])

hence ?R C
using F by simp

hence C ∈ {C ′, D}
using ‹?U C ′ D› by simp

moreover have C 6= D
proof

assume C = D
hence ?V n C

using ‹?V n D› by simp
thus False

by (rule asset-iii-owner-iii [OF A - C])
qed
ultimately have C = C ′ by simp

55

hence (Asset n, Token n A B C SK) ∈ s
using G and ‹?P n A› and ‹?W n B ′ C ′› by simp

thus ?thesis
using ‹?P n A› and ‹?Q B› and ‹?R C › and ‹?S n B› by simp

qed

theorem pwd-secret:
assumes

A: s0 |= s and
B: n /∈ bad-pwd ∪ bad-shakey ∩ bad-prikey

shows Pwd n /∈ spied s
proof (rule rtrancl-induct [OF A], insert B, simp add: image-def)

fix s s ′

assume
C : s0 |= s and
D: s ` s ′ and
E : Pwd n /∈ spied s

show Pwd n /∈ spied s ′

proof (insert D E , auto simp add: rel-def)
fix K
assume (Spy, Crypt K (Pwd n)) ∈ s
hence Crypt K (Pwd n) ∈ parts (used s) by blast
hence (∃SK . K = SesK SK ∧ (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s) ∨
{Pwd n, Key K} ⊆ spied s
(is (∃SK . ?P SK ∧ ?Q SK) ∨ -)
by (rule parts-crypt-pwd [OF C])

then obtain SK where ?P SK and ?Q SK
using E by blast

have n /∈ bad-shakey ∩ bad-prikey
using B by simp

hence SesKey SK /∈ spied s
by (rule owner-seskey-secret [OF C - ‹?Q SK ›])

moreover assume (Spy, Key (InvK K)) ∈ s
ultimately show False

using ‹?P SK › by simp
next

fix Y
assume (Spy, {|Pwd n, Y |}) ∈ s
hence {|Pwd n, Y |} ∈ parts (used s) by blast
hence {Pwd n, Y } ⊆ spied s

by (rule parts-mpair-pwd [OF C , where n = n], simp)
with E show False by simp

next
fix X
assume (Spy, {|X , Pwd n|}) ∈ s
hence {|X , Pwd n|} ∈ parts (used s) by blast
hence {X , Pwd n} ⊆ spied s

by (rule parts-mpair-pwd [OF C , where n = n], simp)

56

with E show False by simp
qed

qed

theorem asset-seskey-unique:
assumes

A: s0 |= s and
B: (Asset m, Token m (Auth-PriK m) B ′ C ′ SK) ∈ s and
C : (Asset n, Token n (Auth-PriK n) B C SK) ∈ s
(is ?P n B C SK s)

shows m = n ∧ B ′ = B ∧ C ′ = C
proof (subst (2) cases-simp [of B ′ = B, symmetric], simp, rule conjI , rule impI ,
insert B C , simp only:, drule asset-iv-unique [OF A], simp, simp, rule ccontr)
assume B ′ 6= B
moreover have ∃A D. fst (snd SK) = {A, B ′} ∧ snd (snd SK) = {C ′, D} ∧
(Asset m, {|Num 2 , PubKey B ′|}) ∈ s ∧ (Asset m, {|Num 4 , PubKey D|}) ∈ s ∧
Crypt (SesK SK) (PubKey D) ∈ used s ∧ (Asset m, PubKey B ′) ∈ s
(is ?Q m B ′ C ′)
by (rule asset-iv-state [OF A B])

then obtain A where fst (snd SK) = {A, B ′} and
(Asset m, {|Num 2 , PubKey B ′|}) ∈ s
by blast

moreover have ?Q n B C
by (rule asset-iv-state [OF A C])

hence B ∈ fst (snd SK) and (Asset n, {|Num 2 , PubKey B|}) ∈ s
by auto

ultimately have D: ∀A ∈ fst (snd SK).
∃ i C . (Asset i, {|Num 2 , PubKey A|}) ∈ s ∧ ?P i A C SK s
using B and C by auto

have Crypt (SesK SK) (PubKey C) ∈ parts (used s)
using C by blast

thus False
proof (rule parts-pubkey-false [OF A], rule-tac allI , rule-tac [!] notI)

fix i
assume (Owner i, SesKey SK) ∈ s
hence ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner i, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner i, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner i, Crypt (SesK SK) (PubKey D)) ∈ s
by (rule owner-seskey-other [OF A])

then obtain A where A ∈ fst (snd SK) and
E : (Owner i, {|Num 1 , PubKey A|}) ∈ s
by blast

then obtain j where (Asset j, {|Num 2 , PubKey A|}) ∈ s
using D by blast

thus False
by (rule asset-ii-owner-ii [OF A - E])

next

57

assume SesKey SK ∈ spied s
hence ∃S A C . fst SK = Some S ∧ A ∈ fst (snd SK) ∧ C ∈ snd (snd SK) ∧
{PriKey S , PriKey A, PriKey C} ⊆ spied s
(is ?R s)
by (rule seskey-spied [OF A])

moreover have ¬ (∃A ∈ fst (snd SK). PriKey A ∈ spied s)
(is ¬ ?S s)

proof
assume ?S s
moreover have ¬ ?S s0

by (subst bex-simps, rule ballI , drule bspec [OF D], (erule exE)+,
erule conjE , rule asset-ii-init [OF A])

ultimately have ∃ u v. s0 |= u ∧ u ` v ∧ v |= s ∧ ¬ ?S u ∧ ?S v
by (rule rtrancl-start [OF A])

then obtain u v A where E : s0 |= u and F : u ` v and G: v |= s and
H : ¬ ?S u and I : A ∈ fst (snd SK) and J : PriKey A /∈ spied u and
K : PriKey A ∈ spied v
by blast

then obtain i where (Asset i, {|Num 2 , PubKey A|}) ∈ s
using D by blast

hence (Asset i, {|Num 2 , PubKey A|}) ∈ v
proof (rule-tac ccontr , drule-tac rtrancl-start [OF G], simp,
(erule-tac exE)+, (erule-tac conjE)+)
fix w x
assume w ` x and (Asset i, {|Num 2 , PubKey A|}) /∈ w and
(Asset i, {|Num 2 , PubKey A|}) ∈ x

hence PriKey A /∈ spied w
by (auto simp add: rel-def)

moreover assume v |= w
hence PriKey A ∈ spied w

by (rule-tac rev-subsetD [OF K], rule spied-subset)
ultimately show False by contradiction

qed
hence (Asset i, {|Num 2 , PubKey A|}) ∈ u

using F and K by (auto simp add: rel-def)
hence Auth-PriKey i ∈ spied u ∧ (∃C SK . ?P i A C SK u)

by (rule asset-ii-spied-start [OF E F K J])
then obtain C ′ SK ′ where L: ?P i A C ′ SK ′ u by blast
moreover have M : u |= s

using F and G by simp
ultimately have ?P i A C ′ SK ′ s

by (erule-tac rev-subsetD, rule-tac state-subset)
moreover obtain j C where ?P j A C SK s

using D and I by blast
ultimately have i = j ∧ C ′ = C ∧ SK ′ = SK

by (rule asset-iv-unique [OF A])
hence Crypt (SesK SK) (PubKey C) ∈ parts (used u)

using L by blast
thus False

58

proof (rule parts-pubkey-false [OF E], rule-tac allI , rule-tac [!] notI)
fix i
assume (Owner i, SesKey SK) ∈ u
hence ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner i, {|Num 1 , PubKey A|}) ∈ u ∧
(Owner i, {|Num 3 , PubKey C |}) ∈ u ∧
(Owner i, Crypt (SesK SK) (PubKey D)) ∈ u
by (rule owner-seskey-other [OF E])

then obtain A where A ∈ fst (snd SK) and
N : (Owner i, {|Num 1 , PubKey A|}) ∈ u
by blast

then obtain j where (Asset j, {|Num 2 , PubKey A|}) ∈ s
using D by blast

moreover have (Owner i, {|Num 1 , PubKey A|}) ∈ s
by (rule rev-subsetD [OF N], rule state-subset [OF M])

ultimately show False
by (rule asset-ii-owner-ii [OF A])

next
assume SesKey SK ∈ spied u
hence ?R u

by (rule seskey-spied [OF E])
thus False

using H by blast
qed

qed
ultimately show False by blast

qed
qed

theorem asset-seskey-secret:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey) and
C : (Asset n, Crypt (SesK SK) (Num 0)) ∈ s

shows SesKey SK /∈ spied s
proof −

have D: (Asset n, SesKey SK) ∈ s ∧ Crypt (SesK SK) (Pwd n) ∈ used s
by (rule asset-v-state [OF A C])

have n ∈ bad-shakey ∨ n /∈ bad-shakey by simp
moreover {

assume n ∈ bad-shakey
hence Pwd n /∈ spied s

using B by (rule-tac pwd-secret [OF A], simp)
moreover have Crypt (SesK SK) (Pwd n) ∈ parts (used s)

using D by blast
hence (∃SK ′. SesK SK = SesK SK ′ ∧
(Owner n, Crypt (SesK SK ′) (Pwd n)) ∈ s) ∨
{Pwd n, Key (SesK SK)} ⊆ spied s

59

by (rule parts-crypt-pwd [OF A])
ultimately have (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s by simp
hence ?thesis

using B by (rule-tac owner-seskey-secret [OF A], simp-all)
}
moreover {

assume n /∈ bad-shakey
hence ?thesis

using D by (rule-tac asset-seskey-shakey [OF A], simp-all)
}
ultimately show ?thesis ..

qed

theorem asset-pwd-genuine:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey) and
C : (Asset n, Crypt (SesK SK) (Num 0)) ∈ s

shows (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s
proof −

have (Asset n, SesKey SK) ∈ s ∧ Crypt (SesK SK) (Pwd n) ∈ used s
by (rule asset-v-state [OF A C])

hence Crypt (SesK SK) (Pwd n) ∈ parts (used s) by blast
hence (∃SK ′. SesK SK = SesK SK ′ ∧
(Owner n, Crypt (SesK SK ′) (Pwd n)) ∈ s) ∨
{Pwd n, Key (SesK SK)} ⊆ spied s
by (rule parts-crypt-pwd [OF A])

moreover have SesKey SK /∈ spied s
by (rule asset-seskey-secret [OF A B C])

ultimately show ?thesis by simp
qed

theorem asset-token-genuine:
assumes

A: s0 |= s and
B: n /∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey) and
C : (Asset n, {|Num 4 , PubKey D|}) ∈ s and
D: (Asset n, Crypt (SesK SK) (Num 0)) ∈ s and
E : D ∈ snd (snd SK)

shows (Owner n, Crypt (SesK SK) (PubKey D)) ∈ s
proof −

have (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s
by (rule asset-pwd-genuine [OF A B D])

hence (Owner n, SesKey SK) ∈ s ∧
(∃A B C . Token n A B C SK ∈ used s ∧ B ∈ fst (snd SK))
by (rule owner-v-state [OF A])

hence (Owner n, SesKey SK) ∈ s ..

60

hence ∃A B C D. fst (snd SK) = {A, B} ∧ snd (snd SK) = {C , D} ∧
(Owner n, {|Num 1 , PubKey A|}) ∈ s ∧
(Owner n, {|Num 3 , PubKey C |}) ∈ s ∧
(Owner n, Crypt (SesK SK) (PubKey D)) ∈ s
(is ∃A B C D. - ∧ ?P C D ∧ - ∧ ?Q C ∧ ?R D)
by (rule owner-seskey-other [OF A])

then obtain C D ′ where ?P C D ′ and ?Q C and ?R D ′ by blast
have D 6= C
proof

assume D = C
hence ?Q D

using ‹?Q C › by simp
thus False

by (rule asset-iii-owner-iii [OF A C])
qed
hence D = D ′

using E and ‹?P C D ′› by simp
thus ?thesis

using ‹?R D ′› by simp
qed

proposition owner-iii-secret [rule-format]:
s0 |= s =⇒

(Owner n, {|Num 3 , PubKey C |}) ∈ s −→
PriKey C /∈ spied s

proof (erule rtrancl-induct, simp add: image-def , rule impI)
fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : (Owner n, {|Num 3 , PubKey C |}) ∈ s −→ PriKey C /∈ spied s and
D: (Owner n, {|Num 3 , PubKey C |}) ∈ s ′

show PriKey C /∈ spied s ′

proof (insert B C D, auto simp add: rel-def)
assume (Owner n, {|Num 3 , Key (PubK C)|}) ∈ s
hence (Owner n, {|Num 3 , PubKey C |}) ∈ s by simp
hence PriKey C ∈ used s

by (rule owner-iii-used [OF A, THEN mp])
moreover assume Key (PriK C) /∈ used s
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK C))) ∈ s
hence Crypt K (PriKey C) ∈ parts (used s) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey C)) ∈ s) ∨
{PriKey C , Key K} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)

61

by (rule parts-crypt-prikey [OF A])
moreover assume (Spy, Key (PriK C)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num 3 , Key (PubK C)|}) ∈ s
hence (Owner n, {|Num 3 , PubKey C |}) ∈ s by simp
ultimately show False

by (rule asset-i-owner-iii [OF A])
next

fix A
assume (Spy, C ⊗ A) ∈ s
hence C ⊗ A ∈ parts (used s) by blast
hence (∃m. C = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey A|}) ∈ s) ∨
{PriKey C , PriKey A} ⊆ spied s
(is (∃m. ?P m ∧ -) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK C)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num 3 , Key (PubK C)|}) ∈ s
ultimately have (Owner n, {|Num 3 , Auth-PubKey m|}) ∈ s by simp
thus False

by (rule auth-pubkey-owner-iii [OF A])
next

fix A
assume (Spy, A ⊗ C) ∈ s
hence A ⊗ C ∈ parts (used s) by blast
hence (∃m. A = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey C |}) ∈ s) ∨
{PriKey A, PriKey C} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK C)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Owner n, {|Num 3 , Key (PubK C)|}) ∈ s
hence (Owner n, {|Num 3 , PubKey C |}) ∈ s by simp
ultimately show False

by (rule asset-ii-owner-iii [OF A])
next

fix Y
assume (Spy, {|Key (PriK C), Y |}) ∈ s
hence {|PriKey C , Y |} ∈ parts (used s) by auto
hence {PriKey C , Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK C], simp)
moreover assume (Spy, Key (PriK C)) /∈ s
ultimately show False by simp

next
fix X
assume (Spy, {|X , Key (PriK C)|}) ∈ s
hence {|X , PriKey C |} ∈ parts (used s) by auto
hence {X , PriKey C} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK C], simp add: image-def)

62

moreover assume (Spy, Key (PriK C)) /∈ s
ultimately show False by simp

qed
qed

proposition asset-iii-secret [rule-format]:
s0 |= s =⇒

(Asset n, {|Num 4 , PubKey D|}) ∈ s −→
PriKey D /∈ spied s

proof (erule rtrancl-induct, simp add: image-def , rule impI)
fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : (Asset n, {|Num 4 , PubKey D|}) ∈ s −→ PriKey D /∈ spied s and
D: (Asset n, {|Num 4 , PubKey D|}) ∈ s ′

show PriKey D /∈ spied s ′

proof (insert B C D, auto simp add: rel-def)
assume (Asset n, {|Num 4 , Key (PubK D)|}) ∈ s
hence (Asset n, {|Num 4 , PubKey D|}) ∈ s by simp
hence PriKey D ∈ used s

by (rule asset-iii-used [OF A, THEN mp])
moreover assume Key (PriK D) /∈ used s
ultimately show False by simp

next
fix K
assume (Spy, Crypt K (Key (PriK D))) ∈ s
hence Crypt K (PriKey D) ∈ parts (used s) by auto
hence (∃m. K = Auth-ShaKey m ∧
(Asset m, Crypt (Auth-ShaKey m) (PriKey D)) ∈ s) ∨
{PriKey D, Key K} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-crypt-prikey [OF A])

moreover assume (Spy, Key (PriK D)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Asset n, {|Num 4 , Key (PubK D)|}) ∈ s
hence (Asset n, {|Num 4 , PubKey D|}) ∈ s by simp
ultimately show False

by (rule asset-i-asset-iii [OF A])
next

fix A
assume (Spy, D ⊗ A) ∈ s
hence D ⊗ A ∈ parts (used s) by blast
hence (∃m. D = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey A|}) ∈ s) ∨
{PriKey D, PriKey A} ⊆ spied s
(is (∃m. ?P m ∧ -) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK D)) /∈ s
ultimately obtain m where ?P m by auto

63

moreover assume (Asset n, {|Num 4 , Key (PubK D)|}) ∈ s
ultimately have (Asset n, {|Num 4 , Auth-PubKey m|}) ∈ s by simp
thus False

by (rule auth-pubkey-asset-iii [OF A])
next

fix A
assume (Spy, A ⊗ D) ∈ s
hence A ⊗ D ∈ parts (used s) by blast
hence (∃m. A = Auth-PriK m ∧ (Asset m, {|Num 2 , PubKey D|}) ∈ s) ∨
{PriKey A, PriKey D} ⊆ spied s
(is (∃m. - ∧ ?P m) ∨ -)
by (rule parts-mult [OF A])

moreover assume (Spy, Key (PriK D)) /∈ s
ultimately obtain m where ?P m by auto
moreover assume (Asset n, {|Num 4 , Key (PubK D)|}) ∈ s
hence (Asset n, {|Num 4 , PubKey D|}) ∈ s by simp
ultimately show False

by (rule asset-ii-asset-iii [OF A])
next

fix Y
assume (Spy, {|Key (PriK D), Y |}) ∈ s
hence {|PriKey D, Y |} ∈ parts (used s) by auto
hence {PriKey D, Y } ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK D], simp)
moreover assume (Spy, Key (PriK D)) /∈ s
ultimately show False by simp

next
fix X
assume (Spy, {|X , Key (PriK D)|}) ∈ s
hence {|X , PriKey D|} ∈ parts (used s) by auto
hence {X , PriKey D} ⊆ spied s

by (rule parts-mpair-key [OF A, where K = PriK D], simp add: image-def)
moreover assume (Spy, Key (PriK D)) /∈ s
ultimately show False by simp

qed
qed

theorem seskey-forward-secret:
assumes

A: s0 |= s and
B: (Owner m, Crypt (SesK SK) (Pwd m)) ∈ s and
C : (Asset n, Crypt (SesK SK) (Num 0)) ∈ s

shows m = n ∧ SesKey SK /∈ spied s
proof −

have (Owner m, SesKey SK) ∈ s
using A and B by (drule-tac owner-v-state, auto)

with A have ∃C D. snd (snd SK) = {C , D} ∧
(Owner m, {|Num 3 , PubKey C |}) ∈ s

64

by (drule-tac owner-seskey-other , auto)
then obtain C D where

D: snd (snd SK) = {C , D} ∧ (Owner m, {|Num 3 , PubKey C |}) ∈ s
by blast

with A have PriKey C /∈ spied s
by (erule-tac owner-iii-secret, simp)

moreover have (Asset n, SesKey SK) ∈ s
using A and C by (drule-tac asset-v-state, auto)

with A have ∃D. D ∈ snd (snd SK) ∧ (Asset n, {|Num 4 , PubKey D|}) ∈ s
by (drule-tac asset-seskey-other , auto)

then obtain D ′ where
E : D ′ ∈ snd (snd SK) ∧ (Asset n, {|Num 4 , PubKey D ′|}) ∈ s
by blast

with A have PriKey D ′ /∈ spied s
by (erule-tac asset-iii-secret, simp)

moreover have C 6= D ′

using A and D and E by (rule-tac notI , erule-tac asset-iii-owner-iii, auto)
ultimately have ¬ (∃A. A ∈ snd (snd SK) ∧ PriKey A ∈ spied s)

using D and E by auto
hence F : SesKey SK /∈ spied s

using A by (rule-tac notI , drule-tac seskey-spied, auto)
moreover have Crypt (SesK SK) (Pwd n) ∈ used s

using A and C by (drule-tac asset-v-state, auto)
hence (∃SK ′. SesK SK = SesK SK ′ ∧
(Owner n, Crypt (SesK SK ′) (Pwd n)) ∈ s) ∨
{Pwd n, Key (SesK SK)} ⊆ spied s
using A by (rule-tac parts-crypt-pwd, auto)

ultimately have (Owner n, Crypt (SesK SK) (Pwd n)) ∈ s
by simp

with A and B have m = n
by (rule owner-seskey-unique)

thus ?thesis
using F ..

qed

end

3 Anonymity properties
theory Anonymity

imports Authentication
begin

proposition crypts-empty [simp]:
crypts {} = {}

by (rule equalityI , rule subsetI , erule crypts.induct, simp-all)

proposition crypts-mono:
H ⊆ H ′ =⇒ crypts H ⊆ crypts H ′

65

by (rule subsetI , erule crypts.induct, auto)

lemma crypts-union-1 :
crypts (H ∪ H ′) ⊆ crypts H ∪ crypts H ′

by (rule subsetI , erule crypts.induct, auto)

lemma crypts-union-2 :
crypts H ∪ crypts H ′ ⊆ crypts (H ∪ H ′)

by (rule subsetI , erule UnE , erule-tac [!] crypts.induct, auto)

proposition crypts-union:
crypts (H ∪ H ′) = crypts H ∪ crypts H ′

by (rule equalityI , rule crypts-union-1 , rule crypts-union-2)

proposition crypts-insert:
crypts (insert X H) = crypts-msg X ∪ crypts H

by (simp only: insert-def crypts-union, subst crypts-msg-def , simp)

proposition crypts-msg-num [simp]:
crypts-msg (Num n) = {Num n}

by (subst crypts-msg-def , rule equalityI , rule subsetI , erule crypts.induct, simp,
rotate-tac [1−3], erule-tac [1−3] rev-mp, rule-tac [1−3] list.induct, simp-all,
blast)

proposition crypts-msg-agent [simp]:
crypts-msg (Agent n) = {Agent n}

by (subst crypts-msg-def , rule equalityI , rule subsetI , erule crypts.induct, simp,
rotate-tac [1−3], erule-tac [1−3] rev-mp, rule-tac [1−3] list.induct, simp-all,
blast)

proposition crypts-msg-pwd [simp]:
crypts-msg (Pwd n) = {Pwd n}

by (subst crypts-msg-def , rule equalityI , rule subsetI , erule crypts.induct, simp,
rotate-tac [1−3], erule-tac [1−3] rev-mp, rule-tac [1−3] list.induct, simp-all,
blast)

proposition crypts-msg-key [simp]:
crypts-msg (Key K) = {Key K}

by (subst crypts-msg-def , rule equalityI , rule subsetI , erule crypts.induct, simp,
rotate-tac [1−3], erule-tac [1−3] rev-mp, rule-tac [1−3] list.induct, simp-all,
blast)

proposition crypts-msg-mult [simp]:
crypts-msg (A ⊗ B) = {A ⊗ B}

by (subst crypts-msg-def , rule equalityI , rule subsetI , erule crypts.induct, simp,
rotate-tac [1−3], erule-tac [1−3] rev-mp, rule-tac [1−3] list.induct, simp-all,
blast)

lemma crypts-hash-1 :

66

crypts {Hash X} ⊆ insert (Hash X) (crypts {X})
by (rule subsetI , erule crypts.induct, simp-all, (erule disjE , rotate-tac, erule rev-mp,
rule list.induct, simp-all, blast, (drule crypts-hash, simp)?)+)

lemma crypts-hash-2 :
insert (Hash X) (crypts {X}) ⊆ crypts {Hash X}

by (rule subsetI , simp, erule disjE , blast, erule crypts.induct, simp,
subst id-apply [symmetric], subst foldr-Nil [symmetric], rule crypts-hash, simp,
blast+)

proposition crypts-msg-hash [simp]:
crypts-msg (Hash X) = insert (Hash X) (crypts-msg X)

by (simp add: crypts-msg-def , rule equalityI , rule crypts-hash-1 , rule crypts-hash-2)

proposition crypts-comp:
X ∈ crypts H =⇒ Crypt K X ∈ crypts (Crypt K ‘ H)

by (erule crypts.induct, blast, (simp only: comp-apply
[symmetric, where f = Crypt K] foldr-Cons [symmetric],
(erule crypts-hash | erule crypts-fst | erule crypts-snd))+)

lemma crypts-crypt-1 :
crypts {Crypt K X} ⊆ Crypt K ‘ crypts {X}

by (rule subsetI , erule crypts.induct, fastforce, rotate-tac [!], erule-tac [!] rev-mp,
rule-tac [!] list.induct, auto)

lemma crypts-crypt-2 :
Crypt K ‘ crypts {X} ⊆ crypts {Crypt K X}

by (rule subsetI , simp add: image-iff , erule bexE , drule crypts-comp, simp)

proposition crypts-msg-crypt [simp]:
crypts-msg (Crypt K X) = Crypt K ‘ crypts-msg X

by (simp add: crypts-msg-def , rule equalityI , rule crypts-crypt-1 , rule crypts-crypt-2)

lemma crypts-mpair-1 :
crypts {{|X , Y |}} ⊆ insert {|X , Y |} (crypts {X} ∪ crypts {Y })

by (rule subsetI , erule crypts.induct, simp-all, (erule disjE , rotate-tac, erule rev-mp,
rule list.induct, (simp+, blast)+)+)

lemma crypts-mpair-2 :
insert {|X , Y |} (crypts {X} ∪ crypts {Y }) ⊆ crypts {{|X , Y |}}

by (rule subsetI , simp, erule disjE , blast, erule disjE , (erule crypts.induct, simp,
subst id-apply [symmetric], subst foldr-Nil [symmetric], (rule crypts-fst [of - X] |
rule crypts-snd), rule crypts-used, simp, blast+)+)

proposition crypts-msg-mpair [simp]:
crypts-msg {|X , Y |} = insert {|X , Y |} (crypts-msg X ∪ crypts-msg Y)

by (simp add: crypts-msg-def , rule equalityI , rule crypts-mpair-1 , rule crypts-mpair-2)

67

proposition foldr-crypt-size:
size (foldr Crypt KS X) = size X + length KS

by (induction KS , simp-all)

proposition key-sets-empty [simp]:
key-sets X {} = {}

by (simp add: key-sets-def)

proposition key-sets-mono:
H ⊆ H ′ =⇒ key-sets X H ⊆ key-sets X H ′

by (auto simp add: key-sets-def)

proposition key-sets-union:
key-sets X (H ∪ H ′) = key-sets X H ∪ key-sets X H ′

by (auto simp add: key-sets-def)

proposition key-sets-insert:
key-sets X (insert Y H) = key-sets-msg X Y ∪ key-sets X H

by (simp only: insert-def key-sets-union, subst key-sets-msg-def , simp)

proposition key-sets-msg-eq:
key-sets-msg X X = {{}}

by (simp add: key-sets-msg-def key-sets-def , rule equalityI , rule subsetI , simp,
erule exE , erule rev-mp, rule list.induct, simp, rule impI , erule conjE ,
drule arg-cong [of - X size], simp-all add: foldr-crypt-size)

proposition key-sets-msg-num [simp]:
key-sets-msg X (Num n) = (if X = Num n then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

proposition key-sets-msg-agent [simp]:
key-sets-msg X (Agent n) = (if X = Agent n then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

proposition key-sets-msg-pwd [simp]:
key-sets-msg X (Pwd n) = (if X = Pwd n then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

proposition key-sets-msg-key [simp]:
key-sets-msg X (Key K) = (if X = Key K then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

proposition key-sets-msg-mult [simp]:
key-sets-msg X (A ⊗ B) = (if X = A ⊗ B then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,

68

rule allI , rule list.induct, simp-all)

proposition key-sets-msg-hash [simp]:
key-sets-msg X (Hash Y) = (if X = Hash Y then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

lemma key-sets-crypt-1 :
X 6= Crypt K Y =⇒

key-sets X {Crypt K Y } ⊆ insert (InvKey K) ‘ key-sets X {Y }
by (rule subsetI , simp add: key-sets-def , erule exE , rotate-tac, erule rev-mp,
rule list.induct, auto)

lemma key-sets-crypt-2 :
insert (InvKey K) ‘ key-sets X {Y } ⊆ key-sets X {Crypt K Y }

by (rule subsetI , simp add: key-sets-def image-iff , (erule exE , erule conjE)+,
drule arg-cong [where f = Crypt K], simp only: comp-apply
[symmetric, of Crypt K] foldr-Cons [symmetric], subst conj-commute,
rule exI , rule conjI , assumption, simp)

proposition key-sets-msg-crypt [simp]:
key-sets-msg X (Crypt K Y) = (if X = Crypt K Y then {{}} else

insert (InvKey K) ‘ key-sets-msg X Y)
by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def , rule impI ,
rule equalityI , erule key-sets-crypt-1 [simplified],
rule key-sets-crypt-2 [simplified])

proposition key-sets-msg-mpair [simp]:
key-sets-msg X {|Y , Z |} = (if X = {|Y , Z |} then {{}} else {})

by (simp add: key-sets-msg-eq, simp add: key-sets-msg-def key-sets-def , rule impI ,
rule allI , rule list.induct, simp-all)

proposition key-sets-range:
U ∈ key-sets X H =⇒ U ⊆ range Key

by (simp add: key-sets-def , blast)

proposition key-sets-crypts-hash:
key-sets (Hash X) (crypts H) ⊆ key-sets X (crypts H)

by (simp add: key-sets-def , blast)

proposition key-sets-crypts-fst:
key-sets {|X , Y |} (crypts H) ⊆ key-sets X (crypts H)

by (simp add: key-sets-def , blast)

proposition key-sets-crypts-snd:
key-sets {|X , Y |} (crypts H) ⊆ key-sets Y (crypts H)

by (simp add: key-sets-def , blast)

69

lemma log-spied-1 :
[[s ` s ′;

Log X ∈ parts (used s) −→ Log X ∈ spied s;
Log X ∈ parts (used s ′)]] =⇒

Log X ∈ spied s ′

by (simp add: rel-def , ((erule disjE)?, ((erule exE)+)?, simp add: parts-insert,
((subst (asm) disj-assoc [symmetric])?, erule disjE , (drule parts-dec |
drule parts-enc | drule parts-sep | drule parts-con), simp+)?)+)

proposition log-spied [rule-format]:
s0 |= s =⇒

Log X ∈ parts (used s) −→
Log X ∈ spied s

by (erule rtrancl-induct, subst parts-init, simp add: Range-iff image-def , rule impI ,
rule log-spied-1)

proposition log-dec:
[[s0 |= s; s ′ = insert (Spy, X) s ∧ (Spy, Crypt K X) ∈ s ∧

(Spy, Key (InvK K)) ∈ s]] =⇒
key-sets Y (crypts {Y . Log Y = X}) ⊆ key-sets Y (crypts (Log −‘ spied s))

by (rule key-sets-mono, rule crypts-mono, rule subsetI , simp, drule parts-dec
[where Y = X], drule-tac [!] sym, simp-all, rule log-spied [simplified])

proposition log-sep:
[[s0 |= s; s ′ = insert (Spy, X) (insert (Spy, Y) s) ∧ (Spy, {|X , Y |}) ∈ s]] =⇒

key-sets Z (crypts {Z . Log Z = X}) ⊆ key-sets Z (crypts (Log −‘ spied s)) ∧
key-sets Z (crypts {Z . Log Z = Y }) ⊆ key-sets Z (crypts (Log −‘ spied s))

by (rule conjI , (rule key-sets-mono, rule crypts-mono, rule subsetI , simp,
frule parts-sep [where Z = X], drule-tac [2] parts-sep [where Z = Y],
simp-all add: parts-msg-def , blast+, drule sym, simp,
rule log-spied [simplified], assumption+)+)

lemma idinfo-spied-1 :
[[s ` s ′;

〈n, X〉 ∈ parts (used s) −→ 〈n, X〉 ∈ spied s;
〈n, X〉 ∈ parts (used s ′)]] =⇒

〈n, X〉 ∈ spied s ′

by (simp add: rel-def , (erule disjE , (erule exE)+, simp add: parts-insert,
((subst (asm) disj-assoc [symmetric])?, erule disjE , (drule parts-dec |
drule parts-enc | drule parts-sep | drule parts-con), simp+)?)+,
auto simp add: parts-insert)

proposition idinfo-spied [rule-format]:
s0 |= s =⇒

〈n, X〉 ∈ parts (used s) −→
〈n, X〉 ∈ spied s

by (erule rtrancl-induct, subst parts-init, simp add: Range-iff image-def , rule impI ,

70

rule idinfo-spied-1)

proposition idinfo-dec:
[[s0 |= s; s ′ = insert (Spy, X) s ∧ (Spy, Crypt K X) ∈ s ∧

(Spy, Key (InvK K)) ∈ s; 〈n, Y 〉 = X]] =⇒
〈n, Y 〉 ∈ spied s

by (drule parts-dec [where Y = 〈n, Y 〉], drule sym, simp, rule idinfo-spied)

proposition idinfo-sep:
[[s0 |= s; s ′ = insert (Spy, X) (insert (Spy, Y) s) ∧ (Spy, {|X , Y |}) ∈ s;

〈n, Z 〉 = X ∨ 〈n, Z 〉 = Y]] =⇒
〈n, Z 〉 ∈ spied s

by (drule parts-sep [where Z = 〈n, Z 〉], erule disjE , (drule sym, simp)+,
rule idinfo-spied)

lemma idinfo-msg-1 :
assumes A: s0 |= s
shows [[s ` s ′; 〈n, X〉 ∈ spied s −→ X ∈ spied s; 〈n, X〉 ∈ spied s ′]] =⇒

X ∈ spied s ′

by (simp add: rel-def , (erule disjE , (erule exE)+, simp, ((subst (asm) disj-assoc
[symmetric])?, erule disjE , (drule idinfo-dec [OF A] | drule idinfo-sep [OF A]),
simp+ | erule disjE , (simp add: image-iff)+, blast?)?)+)

proposition idinfo-msg [rule-format]:
s0 |= s =⇒

〈n, X〉 ∈ spied s −→
X ∈ spied s

by (erule rtrancl-induct, simp, blast, rule impI , rule idinfo-msg-1)

proposition parts-agent-start:
[[s ` s ′; Agent n ∈ parts (used s ′); Agent n /∈ parts (used s)]] =⇒ False

by (simp add: rel-def , (((erule disjE)?, ((erule exE)+)?, simp add: parts-insert
image-iff)+, ((drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con),
simp+)?)+)

proposition parts-agent [rotated]:
assumes A: n /∈ bad-agent
shows s0 |= s =⇒ Agent n /∈ parts (used s)

by (rule notI , drule rtrancl-start, assumption, subst parts-init, simp add:
Range-iff image-def A, (erule exE)+, (erule conjE)+, drule parts-agent-start)

lemma idinfo-init-1 [rule-format]:
assumes A: s0 |= s
shows [[s ` s ′; n /∈ bad-id-password ∪ bad-id-pubkey ∪ bad-id-shakey;
∀X . 〈n, X〉 /∈ spied s]] =⇒

71

〈n, X〉 /∈ spied s ′

by (rule notI , simp add: rel-def , ((erule disjE)?, (erule exE)+, (blast | simp,
((drule idinfo-dec [OF A] | drule idinfo-sep [OF A]), simp, blast |
(erule conjE)+, drule parts-agent [OF A], blast))?)+)

proposition idinfo-init:
[[s0 |= s; n /∈ bad-id-password ∪ bad-id-pubkey ∪ bad-id-shakey]] =⇒
〈n, X〉 /∈ spied s

by (induction arbitrary: X rule: rtrancl-induct, simp add: image-def , blast,
rule idinfo-init-1)

lemma idinfo-mpair-1 [rule-format]:
[[(s, s ′) ∈ rel-id-hash ∪ rel-id-crypt ∪ rel-id-sep ∪ rel-id-con;

∀X Y . 〈n, {|X , Y |}〉 ∈ spied s −→
key-sets {|X , Y |} (crypts (Log −‘ spied s)) 6= {};

〈n, {|X , Y |}〉 ∈ spied s ′]] =⇒
key-sets {|X , Y |} (crypts (Log −‘ spied s ′)) 6= {}

by ((erule disjE)?, clarify?, simp add: image-iff Image-def , (drule subsetD
[OF key-sets-crypts-hash] | drule key-sets-range, blast | (drule spec)+,
drule mp, simp, simp add: ex-in-conv [symmetric], erule exE , frule subsetD
[OF key-sets-crypts-fst], drule subsetD [OF key-sets-crypts-snd])?)+

lemma idinfo-mpair-2 [rule-format]:
assumes A: s0 |= s
shows [[s ` s ′; (s, s ′) /∈ rel-id-hash ∪ rel-id-crypt ∪ rel-id-sep ∪ rel-id-con;
∀X Y . 〈n, {|X , Y |}〉 ∈ spied s −→

key-sets {|X , Y |} (crypts (Log −‘ spied s)) 6= {};
〈n, {|X , Y |}〉 ∈ spied s ′]] =⇒

key-sets {|X , Y |} (crypts (Log −‘ spied s ′)) 6= {}
by (simp only: rel-def Un-iff de-Morgan-disj, simp, ((erule disjE)?, (erule exE)+,
simp add: Image-def , (simp only: Collect-disj-eq crypts-union key-sets-union, simp)?,
((subst (asm) disj-assoc [symmetric])?, erule disjE , (drule idinfo-dec [OF A] |
drule idinfo-sep [OF A]), simp+)?)+)

proposition idinfo-mpair [rule-format]:
s0 |= s =⇒

〈n, {|X , Y |}〉 ∈ spied s −→
key-sets {|X , Y |} (crypts (Log −‘ spied s)) 6= {}

proof (induction arbitrary: X Y rule: rtrancl-induct, simp add: image-def ,
rule impI)
fix s s ′ X Y
assume
s0 |= s and
s ` s ′ and∧

X Y . 〈n, {|X , Y |}〉 ∈ spied s −→
key-sets {|X , Y |} (crypts (Log −‘ spied s)) 6= {} and

〈n, {|X , Y |}〉 ∈ spied s ′

thus key-sets {|X , Y |} (crypts (Log −‘ spied s ′)) 6= {}

72

by (cases (s, s ′) ∈ rel-id-hash ∪ rel-id-crypt ∪ rel-id-sep ∪ rel-id-con,
erule-tac [2] idinfo-mpair-2 , erule-tac idinfo-mpair-1 , simp-all)

qed

proposition key-sets-pwd-empty:
s0 |= s =⇒

key-sets (Hash (Pwd n)) (crypts (Log −‘ spied s)) = {} ∧
key-sets {|Pwd n, X |} (crypts (Log −‘ spied s)) = {} ∧
key-sets {|X , Pwd n|} (crypts (Log −‘ spied s)) = {}

(is - =⇒ key-sets ?X (?H s) = - ∧ key-sets ?Y - = - ∧ key-sets ?Z - = -)
proof (erule rtrancl-induct, simp add: image-iff Image-def)

fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : key-sets (Hash (Pwd n)) (?H s) = {} ∧

key-sets {|Pwd n, X |} (?H s) = {} ∧
key-sets {|X , Pwd n|} (?H s) = {}

show key-sets (Hash (Pwd n)) (?H s ′) = {} ∧
key-sets {|Pwd n, X |} (?H s ′) = {} ∧
key-sets {|X , Pwd n|} (?H s ′) = {}
by (insert B C , simp add: rel-def , ((erule disjE)?, ((erule exE)+)?, simp add:
image-iff Image-def , (simp only: Collect-disj-eq crypts-union
key-sets-union, simp add: crypts-insert key-sets-insert)?,
(frule log-dec [OF A, where Y = ?X],
frule log-dec [OF A, where Y = ?Y], drule log-dec [OF A, where Y = ?Z] |
frule log-sep [OF A, where Z = ?X], frule log-sep [OF A, where Z = ?Y],
drule log-sep [OF A, where Z = ?Z])?)+)

qed

proposition key-sets-pwd-seskey [rule-format]:
s0 |= s =⇒

U ∈ key-sets (Pwd n) (crypts (Log −‘ spied s)) −→
(∃SK . U = {SesKey SK} ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s))

(is - =⇒ - −→ ?P s)
proof (erule rtrancl-induct, simp add: image-iff Image-def , rule impI)

fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : U ∈ key-sets (Pwd n) (crypts (Log −‘ spied s)) −→ ?P s and
D: U ∈ key-sets (Pwd n) (crypts (Log −‘ spied s ′))

show ?P s ′

by (insert B C D, simp add: rel-def , ((erule disjE)?, ((erule exE)+)?, simp
add: image-iff Image-def , (simp only: Collect-disj-eq crypts-union
key-sets-union, simp add: crypts-insert key-sets-insert split: if-split-asm,

73

blast?)?, (erule disjE , (drule log-dec [OF A] | drule log-sep [OF A]),
(erule conjE)?, drule subsetD, simp)?)+)

qed

lemma pwd-anonymous-1 [rule-format]:
[[s0 |= s; n /∈ bad-id-password]] =⇒

〈n, Pwd n〉 ∈ spied s −→
(∃SK . SesKey SK ∈ spied s ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s))

(is [[-; -]] =⇒ - −→ ?P s)
proof (erule rtrancl-induct, simp add: image-def , rule impI)

fix s s ′

assume
A: s0 |= s and
B: s ` s ′ and
C : 〈n, Pwd n〉 ∈ spied s −→ ?P s and
D: 〈n, Pwd n〉 ∈ spied s ′

show ?P s ′

by (insert B C D, simp add: rel-def , ((erule disjE)?, (erule exE)+, simp add:
image-iff , blast?, ((subst (asm) disj-assoc [symmetric])?, erule disjE ,
(drule idinfo-dec [OF A] | drule idinfo-sep [OF A]), simp, blast+ |
insert key-sets-pwd-empty [OF A], clarsimp)?, (((erule disjE)?, erule
conjE , drule sym, simp, (drule key-sets-pwd-seskey [OF A] | drule
idinfo-mpair [OF A, simplified]), simp)+ | drule key-sets-range, blast)?)+)

qed

theorem pwd-anonymous:
assumes

A: s0 |= s and
B: n /∈ bad-id-password and
C : n /∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey) ∩ (bad-id-pubkey ∪ bad-id-shak)

shows 〈n, Pwd n〉 /∈ spied s
proof

assume D: 〈n, Pwd n〉 ∈ spied s
hence n ∈ bad-id-password ∪ bad-id-pubkey ∪ bad-id-shakey

by (rule contrapos-pp, rule-tac idinfo-init [OF A])
moreover have ∃SK . SesKey SK ∈ spied s ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s)
(is ∃SK . ?P SK ∧ (?Q SK ∨ ?R SK))
by (rule pwd-anonymous-1 [OF A B D])

then obtain SK where ?P SK and ?Q SK ∨ ?R SK by blast
moreover {

assume ?Q SK
hence n ∈ bad-shakey ∩ bad-prikey
by (rule-tac contrapos-pp [OF ‹?P SK ›], rule-tac owner-seskey-secret [OF A])

}

74

moreover {
assume ?R SK
hence n ∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey)

by (rule-tac contrapos-pp [OF ‹?P SK ›], rule-tac asset-seskey-secret [OF A])
}
ultimately show False

using B and C by blast
qed

proposition idinfo-pwd-start:
assumes

A: s0 |= s and
B: n /∈ bad-agent

shows [[s ` s ′; ∃X . 〈n, X〉 ∈ spied s ′ ∧ X 6= Pwd n;
¬ (∃X . 〈n, X〉 ∈ spied s ∧ X 6= Pwd n)]] =⇒
∃SK . SesKey SK ∈ spied s ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s)

proof (simp add: rel-def , insert parts-agent [OF A B], insert key-sets-pwd-empty
[OF A], (erule disjE , (erule exE)+, simp, erule conjE , (subst (asm) disj-assoc
[symmetric])?, (erule disjE)?, (drule idinfo-dec [OF A] | drule idinfo-sep
[OF A] | drule spec, drule mp), simp+)+, auto, rule FalseE , rule-tac [3] FalseE)
fix X U K
assume ∀X . (Spy, 〈n, X〉) ∈ s −→ X = Pwd n and (Spy, 〈n, K 〉) ∈ s
hence K = Pwd n by simp
moreover assume U ∈ key-sets X (crypts (Log −‘ spied s))
hence U ⊆ range Key

by (rule key-sets-range)
moreover assume K ∈ U
ultimately show False by blast

next
fix X U
assume ∀X . (Spy, 〈n, X〉) ∈ s −→ X = Pwd n and (Spy, 〈n, X〉) ∈ s
hence C : X = Pwd n by simp
moreover assume U ∈ key-sets X (crypts (Log −‘ spied s))
ultimately have U ∈ key-sets (Pwd n) (crypts (Log −‘ spied s)) by simp
hence ∃SK . U = {SesKey SK} ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s)

by (rule key-sets-pwd-seskey [OF A])
moreover assume U ⊆ spied s
ultimately show ∃ x U V . (Spy, Key (SesK (x, U , V))) ∈ s ∧
((Owner n, Crypt (SesK (x, U , V)) X) ∈ s ∨
(Asset n, Crypt (SesK (x, U , V)) (Num 0)) ∈ s)

using C by auto
next

fix X U K
assume ∀X . (Spy, 〈n, X〉) ∈ s −→ X = Pwd n and (Spy, 〈n, K 〉) ∈ s

75

hence K = Pwd n by simp
moreover assume U ∈ key-sets X (crypts (Log −‘ spied s))
hence U ⊆ range Key

by (rule key-sets-range)
moreover assume K ∈ U
ultimately show False by blast

qed

proposition idinfo-pwd:
[[s0 |= s; ∃X . 〈n, X〉 ∈ spied s ∧ X 6= Pwd n;

n /∈ bad-id-pubkey ∪ bad-id-shakey]] =⇒
∃SK . SesKey SK ∈ spied s ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s)

by (drule rtrancl-start, assumption, simp, blast, (erule exE)+, (erule conjE)+,
frule idinfo-pwd-start [of - n], simp+, drule r-into-rtrancl, drule rtrancl-trans,
assumption, (drule state-subset)+, blast)

theorem auth-prikey-anonymous:
assumes

A: s0 |= s and
B: n /∈ bad-id-prikey and
C : n /∈ bad-shakey ∩ bad-prikey ∩ (bad-id-password ∪ bad-id-shak)

shows 〈n, Auth-PriKey n〉 /∈ spied s
proof

assume D: 〈n, Auth-PriKey n〉 ∈ spied s
hence n ∈ bad-id-password ∪ bad-id-pubkey ∪ bad-id-shakey

by (rule contrapos-pp, rule-tac idinfo-init [OF A])
moreover have Auth-PriKey n ∈ spied s

by (rule idinfo-msg [OF A D])
hence n ∈ bad-prikey

by (rule contrapos-pp, rule-tac auth-prikey-secret [OF A])
moreover from this have E : n /∈ bad-id-pubkey

using B by simp
moreover have n ∈ bad-shakey
proof (cases n ∈ bad-id-shakey, simp)

case False
with D and E have ∃SK . SesKey SK ∈ spied s ∧
((Owner n, Crypt (SesK SK) (Pwd n)) ∈ s ∨
(Asset n, Crypt (SesK SK) (Num 0)) ∈ s)
(is ∃SK . ?P SK ∧ (?Q SK ∨ ?R SK))
by (rule-tac idinfo-pwd [OF A], rule-tac exI [of - Auth-PriKey n], simp-all)

then obtain SK where ?P SK and ?Q SK ∨ ?R SK by blast
moreover {

assume ?Q SK
hence n ∈ bad-shakey ∩ bad-prikey

by (rule-tac contrapos-pp [OF ‹?P SK ›], rule-tac owner-seskey-secret
[OF A])

76

}
moreover {

assume ?R SK
hence n ∈ bad-shakey ∩ (bad-pwd ∪ bad-prikey)

by (rule-tac contrapos-pp [OF ‹?P SK ›], rule-tac asset-seskey-secret
[OF A])

}
ultimately show ?thesis by blast

qed
ultimately show False

using C by blast
qed

theorem auth-shakey-anonymous:
assumes

A: s0 |= s and
B: n /∈ bad-id-shakey and
C : n /∈ bad-shakey ∩ (bad-id-password ∪ bad-id-pubkey)

shows 〈n, Key (Auth-ShaKey n)〉 /∈ spied s
proof

assume D: 〈n, Key (Auth-ShaKey n)〉 ∈ spied s
hence n ∈ bad-id-password ∪ bad-id-pubkey ∪ bad-id-shakey

by (rule contrapos-pp, rule-tac idinfo-init [OF A])
moreover have Key (Auth-ShaKey n) ∈ spied s

by (rule idinfo-msg [OF A D])
hence n ∈ bad-shakey

by (rule contrapos-pp, rule-tac auth-shakey-secret [OF A])
ultimately show False

using B and C by blast
qed

end

4 Possibility properties
theory Possibility

imports Anonymity
begin

type-synonym seskey-tuple = key-id × key-id × key-id × key-id × key-id

type-synonym stage = state × seskey-tuple

abbreviation pred-asset-i :: agent-id ⇒ state ⇒ stage ⇒ bool where
pred-asset-i n s x ≡
∃S . PriKey S /∈ used s ∧ x = (insert (Asset n, PriKey S) s ∪
{Asset n, Spy} × {Crypt (Auth-ShaKey n) (PriKey S)} ∪

77

{(Spy, Log (Crypt (Auth-ShaKey n) (PriKey S)))},
S , 0 , 0 , 0 , 0)

definition run-asset-i :: agent-id ⇒ state ⇒ stage where
run-asset-i n s ≡ SOME x. pred-asset-i n s x

abbreviation pred-owner-ii :: agent-id ⇒ stage ⇒ stage ⇒ bool where
pred-owner-ii n x y ≡ case x of (s, S , -) ⇒
∃A. PriKey A /∈ used s ∧ y = (insert (Owner n, PriKey A) s ∪
{Owner n, Spy} × {{|Num 1 , PubKey A|}} ∪
{Spy} × Log ‘ {Crypt (Auth-ShaKey n) (PriKey S), {|Num 1 , PubKey A|}},
S , A, 0 , 0 , 0)

definition run-owner-ii :: agent-id ⇒ state ⇒ stage where
run-owner-ii n s ≡ SOME x. pred-owner-ii n (run-asset-i n s) x

abbreviation pred-asset-ii :: agent-id ⇒ stage ⇒ stage ⇒ bool where
pred-asset-ii n x y ≡ case x of (s, S , A, -) ⇒
∃B. PriKey B /∈ used s ∧ y = (insert (Asset n, PriKey B) s ∪
{Asset n, Spy} × {{|Num 2 , PubKey B|}} ∪
{Spy} × Log ‘ {{|Num 1 , PubKey A|}, {|Num 2 , PubKey B|}},
S , A, B, 0 , 0)

definition run-asset-ii :: agent-id ⇒ state ⇒ stage where
run-asset-ii n s ≡ SOME x. pred-asset-ii n (run-owner-ii n s) x

abbreviation pred-owner-iii :: agent-id ⇒ stage ⇒ stage ⇒ bool where
pred-owner-iii n x y ≡ case x of (s, S , A, B, -) ⇒
∃C . PriKey C /∈ used s ∧ y = (insert (Owner n, PriKey C) s ∪
{Owner n, Spy} × {{|Num 3 , PubKey C |}} ∪
{Spy} × Log ‘ {{|Num 2 , PubKey B|}, {|Num 3 , PubKey C |}},
S , A, B, C , 0)

definition run-owner-iii :: agent-id ⇒ state ⇒ stage where
run-owner-iii n s ≡ SOME x. pred-owner-iii n (run-asset-ii n s) x

abbreviation pred-asset-iii :: agent-id ⇒ stage ⇒ stage ⇒ bool where
pred-asset-iii n x y ≡ case x of (s, S , A, B, C , -) ⇒
∃D. PriKey D /∈ used s ∧ y = (insert (Asset n, PriKey D) s ∪
{Asset n, Spy} × {{|Num 4 , PubKey D|}} ∪
{Spy} × Log ‘ {{|Num 3 , PubKey C |}, {|Num 4 , PubKey D|}},
S , A, B, C , D)

definition run-asset-iii :: agent-id ⇒ state ⇒ stage where
run-asset-iii n s ≡ SOME x. pred-asset-iii n (run-owner-iii n s) x

78

abbreviation stage-owner-iv :: agent-id ⇒ stage ⇒ stage where
stage-owner-iv n x ≡ let (s, S , A, B, C , D) = x;

SK = (Some S , {A, B}, {C , D}) in
(insert (Owner n, SesKey SK) s ∪
{Owner n, Spy} × {Crypt (SesK SK) (PubKey D)} ∪
{Spy} × Log ‘ {{|Num 4 , PubKey D|}, Crypt (SesK SK) (PubKey D)},
S , A, B, C , D)

definition run-owner-iv :: agent-id ⇒ state ⇒ stage where
run-owner-iv n s ≡ stage-owner-iv n (run-asset-iii n s)

abbreviation stage-asset-iv :: agent-id ⇒ stage ⇒ stage where
stage-asset-iv n x ≡ let (s, S , A, B, C , D) = x;

SK = (Some S , {A, B}, {C , D}) in
(s ∪ {Asset n} × {SesKey SK , PubKey B} ∪
{Asset n, Spy} × {Token n (Auth-PriK n) B C SK} ∪
{Spy} × Log ‘ {Crypt (SesK SK) (PubKey D),

Token n (Auth-PriK n) B C SK},
S , A, B, C , D)

definition run-asset-iv :: agent-id ⇒ state ⇒ stage where
run-asset-iv n s ≡ stage-asset-iv n (run-owner-iv n s)

abbreviation stage-owner-v :: agent-id ⇒ stage ⇒ stage where
stage-owner-v n x ≡ let (s, S , A, B, C , D) = x;

SK = (Some S , {A, B}, {C , D}) in
(s ∪ {Owner n, Spy} × {Crypt (SesK SK) (Pwd n)} ∪
{Spy} × Log ‘ {Token n (Auth-PriK n) B C SK , Crypt (SesK SK) (Pwd n)},
S , A, B, C , D)

definition run-owner-v :: agent-id ⇒ state ⇒ stage where
run-owner-v n s ≡ stage-owner-v n (run-asset-iv n s)

abbreviation stage-asset-v :: agent-id ⇒ stage ⇒ stage where
stage-asset-v n x ≡ let (s, S , A, B, C , D) = x;

SK = (Some S , {A, B}, {C , D}) in
(s ∪ {Asset n, Spy} × {Crypt (SesK SK) (Num 0)} ∪
{Spy} × Log ‘ {Crypt (SesK SK) (Pwd n), Crypt (SesK SK) (Num 0)},
S , A, B, C , D)

definition run-asset-v :: agent-id ⇒ state ⇒ stage where
run-asset-v n s ≡ stage-asset-v n (run-owner-v n s)

79

lemma prikey-unused-1 :
infinite {A. PriKey A /∈ used s0}

by (rule infinite-super [of − range Auth-PriK], rule subsetI , simp add:
image-def bad-prik-def , rule someI2 [of - {}], simp, blast, subst Auth-PriK-def ,
rule someI [of - λn. 0], simp)

lemma prikey-unused-2 :
[[s ` s ′; infinite {A. PriKey A /∈ used s}]] =⇒

infinite {A. PriKey A /∈ used s ′}
by (simp add: rel-def , ((erule disjE)?, (erule exE)+, simp add: image-iff ,
(((subst conj-commute | subst Int-commute), simp add: Collect-conj-eq Collect-neg-eq
Diff-eq [symmetric])+)?, ((rule Diff-infinite-finite, rule msg.induct, simp-all,
rule key.induct, simp-all)+)?)+)

proposition prikey-unused:
s0 |= s =⇒ ∃A. PriKey A /∈ used s

by (subgoal-tac infinite {A. PriKey A /∈ used s}, drule infinite-imp-nonempty,
simp, erule rtrancl-induct, rule prikey-unused-1 , rule prikey-unused-2)

lemma pubkey-unused-1 :
[[s ` s ′; PubKey A ∈ parts (used s) −→ PriKey A ∈ used s;

PubKey A ∈ parts (used s ′)]] =⇒
PriKey A ∈ used s ′

by (simp add: rel-def , ((erule disjE)?, ((erule exE)+)?, simp add: parts-insert
image-iff split: if-split-asm, ((erule conjE)+, drule RangeI , (drule parts-used,
drule parts-snd)?, simp | (subst (asm) disj-assoc [symmetric])?, erule disjE ,
(drule parts-dec | drule parts-enc | drule parts-sep | drule parts-con), simp)?)+)

proposition pubkey-unused [rule-format]:
s0 |= s =⇒

PriKey A /∈ used s −→
PubKey A /∈ parts (used s)

by (erule rtrancl-induct, subst parts-init, simp add: Range-iff image-def , rule impI ,
erule contrapos-nn [OF - pubkey-unused-1], blast+)

proposition run-asset-i-ex:
s0 |= s =⇒ pred-asset-i n s (run-asset-i n s)

by (drule prikey-unused, erule exE , subst run-asset-i-def , rule someI-ex, blast)

proposition run-asset-i-rel:
s0 |= s =⇒ s |= fst (run-asset-i n s)

(is - =⇒ - |= ?t)
by (drule run-asset-i-ex [of - n], rule r-into-rtrancl,
subgoal-tac (s, ?t) ∈ rel-asset-i, simp-all add: rel-def , erule exE , auto)

proposition run-asset-i-msg:
s0 |= s =⇒

80

case run-asset-i n s of (s ′, S , -) ⇒
(Asset n, Crypt (Auth-ShaKey n) (PriKey S)) ∈ s ′

by (drule run-asset-i-ex [of - n], auto)

proposition run-asset-i-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-asset-i n s))) /∈ used s

by (drule run-asset-i-ex [of - n], auto)

proposition run-asset-i-unused:
s0 |= s =⇒ ∃A. PriKey A /∈ used (fst (run-asset-i n s))

by (rule prikey-unused, rule rtrancl-trans, simp, rule run-asset-i-rel)

proposition run-owner-ii-ex:
s0 |= s =⇒ pred-owner-ii n (run-asset-i n s) (run-owner-ii n s)

by (drule run-asset-i-unused, erule exE , subst run-owner-ii-def , rule someI-ex,
auto simp add: split-def)

proposition run-owner-ii-rel:
s0 |= s =⇒ s |= fst (run-owner-ii n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-asset-i-rel [of - n], frule run-asset-i-msg,
drule run-owner-ii-ex, subgoal-tac (fst (run-asset-i n s), ?t) ∈ rel-owner-ii,
simp-all add: rel-def split-def , erule exE , (rule exI)+, auto)

proposition run-owner-ii-msg:
s0 |= s =⇒

case run-owner-ii n s of (s ′, S , A, -) ⇒
{(Asset n, Crypt (Auth-ShaKey n) (PriKey S)),
(Owner n, {|Num 1 , PubKey A|})} ⊆ s ′

by (frule run-asset-i-msg [of - n], drule run-owner-ii-ex [of - n], auto)

proposition run-owner-ii-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-owner-ii n s))) /∈ used s

by (frule run-asset-i-nonce [of - n], drule run-owner-ii-ex [of - n], auto)

proposition run-owner-ii-unused:
s0 |= s =⇒ ∃B. PriKey B /∈ used (fst (run-owner-ii n s))

by (rule prikey-unused, rule rtrancl-trans, simp, rule run-owner-ii-rel)

proposition run-asset-ii-ex:
s0 |= s =⇒ pred-asset-ii n (run-owner-ii n s) (run-asset-ii n s)

by (drule run-owner-ii-unused, erule exE , subst run-asset-ii-def , rule someI-ex,
auto simp add: split-def)

proposition run-asset-ii-rel:
s0 |= s =⇒ s |= fst (run-asset-ii n s)

(is - =⇒ - |= ?t)

81

by (rule rtrancl-into-rtrancl, erule run-owner-ii-rel [of - n], frule run-owner-ii-msg,
drule run-asset-ii-ex, subgoal-tac (fst (run-owner-ii n s), ?t) ∈ rel-asset-ii,
simp-all add: rel-def split-def , erule exE , (rule exI)+, auto)

proposition run-asset-ii-msg:
assumes A: s0 |= s
shows case run-asset-ii n s of (s ′, S , A, B, -) ⇒

insert (Owner n, {|Num 1 , PubKey A|})
({Asset n} × {Crypt (Auth-ShaKey n) (PriKey S),
{|Num 2 , PubKey B|}}) ⊆ s ′ ∧

(Asset n, PubKey B) /∈ s ′

by (insert run-owner-ii-msg [OF A, of n], insert run-asset-ii-ex [OF A, of n],
simp add: split-def , erule exE , simp, insert run-owner-ii-rel [OF A, of n],
drule rtrancl-trans [OF A], drule pubkey-unused, auto)

proposition run-asset-ii-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-asset-ii n s))) /∈ used s

by (frule run-owner-ii-nonce [of - n], drule run-asset-ii-ex [of - n], auto)

proposition run-asset-ii-unused:
s0 |= s =⇒ ∃C . PriKey C /∈ used (fst (run-asset-ii n s))

by (rule prikey-unused, rule rtrancl-trans, simp, rule run-asset-ii-rel)

proposition run-owner-iii-ex:
s0 |= s =⇒ pred-owner-iii n (run-asset-ii n s) (run-owner-iii n s)

by (drule run-asset-ii-unused, erule exE , subst run-owner-iii-def , rule someI-ex,
auto simp add: split-def)

proposition run-owner-iii-rel:
s0 |= s =⇒ s |= fst (run-owner-iii n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-asset-ii-rel [of - n], frule run-asset-ii-msg,
drule run-owner-iii-ex, subgoal-tac (fst (run-asset-ii n s), ?t) ∈ rel-owner-iii,
simp-all add: rel-def split-def , erule exE , (rule exI)+, auto)

proposition run-owner-iii-msg:
s0 |= s =⇒

case run-owner-iii n s of (s ′, S , A, B, C , -) ⇒
{Asset n} × {Crypt (Auth-ShaKey n) (PriKey S), {|Num 2 , PubKey B|}} ∪
{Owner n} × {{|Num 1 , PubKey A|}, {|Num 3 , PubKey C |}} ⊆ s ′ ∧
(Asset n, PubKey B) /∈ s ′

by (frule run-asset-ii-msg [of - n], drule run-owner-iii-ex [of - n], auto)

proposition run-owner-iii-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-owner-iii n s))) /∈ used s

by (frule run-asset-ii-nonce [of - n], drule run-owner-iii-ex [of - n], auto)

proposition run-owner-iii-unused:

82

s0 |= s =⇒ ∃D. PriKey D /∈ used (fst (run-owner-iii n s))
by (rule prikey-unused, rule rtrancl-trans, simp, rule run-owner-iii-rel)

proposition run-asset-iii-ex:
s0 |= s =⇒ pred-asset-iii n (run-owner-iii n s) (run-asset-iii n s)

by (drule run-owner-iii-unused, erule exE , subst run-asset-iii-def , rule someI-ex,
auto simp add: split-def)

proposition run-asset-iii-rel:
s0 |= s =⇒ s |= fst (run-asset-iii n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-owner-iii-rel [of - n], frule run-owner-iii-msg,
drule run-asset-iii-ex, subgoal-tac (fst (run-owner-iii n s), ?t) ∈ rel-asset-iii,
simp-all add: rel-def split-def , erule exE , (rule exI)+, auto)

proposition run-asset-iii-msg:
s0 |= s =⇒

case run-asset-iii n s of (s ′, S , A, B, C , D) ⇒
{Asset n} × {Crypt (Auth-ShaKey n) (PriKey S), {|Num 2 , PubKey B|},
{|Num 4 , PubKey D|}} ∪

{Owner n} × {{|Num 1 , PubKey A|}, {|Num 3 , PubKey C |}} ⊆ s ′ ∧
(Asset n, PubKey B) /∈ s ′

by (frule run-owner-iii-msg [of - n], drule run-asset-iii-ex [of - n], auto)

proposition run-asset-iii-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-asset-iii n s))) /∈ used s

by (frule run-owner-iii-nonce [of - n], drule run-asset-iii-ex [of - n], auto)

lemma run-owner-iv-rel-1 :
[[s0 |= s; run-asset-iii n s = (s ′, S , A, B, C , D)]] =⇒

s |= fst (run-owner-iv n s)
(is [[-; -]] =⇒ - |= ?t)

by (rule rtrancl-into-rtrancl, erule run-asset-iii-rel [of - n], drule run-asset-iii-msg
[of - n], subgoal-tac (s ′, ?t) ∈ rel-owner-iv, simp-all add: rel-def run-owner-iv-def
Let-def , rule exI [of - n], rule exI [of - S], rule exI [of - A], rule exI [of - B],
rule exI [of - C], rule exI [of - D], rule exI [of - Auth-ShaKey n], auto)

proposition run-owner-iv-rel:
s0 |= s =⇒ s |= fst (run-owner-iv n s)

by (insert run-owner-iv-rel-1 , cases run-asset-iii n s, simp)

proposition run-owner-iv-msg:
s0 |= s =⇒

let (s ′, S , A, B, C , D) = run-owner-iv n s;
SK = (Some S , {A, B}, {C , D}) in
{Asset n} × {Crypt (Auth-ShaKey n) (PriKey S), {|Num 2 , PubKey B|},
{|Num 4 , PubKey D|}} ∪

83

{Owner n} × {{|Num 1 , PubKey A|}, {|Num 3 , PubKey C |}, SesKey SK ,
Crypt (SesK SK) (PubKey D)} ⊆ s ′ ∧

(Asset n, PubKey B) /∈ s ′

by (drule run-asset-iii-msg [of - n], simp add: run-owner-iv-def split-def Let-def)

proposition run-owner-iv-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-owner-iv n s))) /∈ used s

by (drule run-asset-iii-nonce [of - n], simp add: run-owner-iv-def split-def Let-def)

proposition run-asset-iv-rel:
s0 |= s =⇒ s |= fst (run-asset-iv n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-owner-iv-rel [of - n], drule run-owner-iv-msg
[of - n], subgoal-tac (fst (run-owner-iv n s), ?t) ∈ rel-asset-iv, simp-all add:
rel-def run-asset-iv-def split-def Let-def , blast)

proposition run-asset-iv-msg:
s0 |= s =⇒

let (s ′, S , A, B, C , D) = run-asset-iv n s; SK = (Some S , {A, B}, {C , D}) in
insert (Owner n, SesKey SK)
({Asset n} × {SesKey SK , Token n (Auth-PriK n) B C SK}) ⊆ s ′

by (drule run-owner-iv-msg [of - n], simp add: run-asset-iv-def split-def Let-def)

proposition run-asset-iv-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-asset-iv n s))) /∈ used s

by (drule run-owner-iv-nonce [of - n], simp add: run-asset-iv-def split-def Let-def)

proposition run-owner-v-rel:
s0 |= s =⇒ s |= fst (run-owner-v n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-asset-iv-rel [of - n], drule run-asset-iv-msg
[of - n], subgoal-tac (fst (run-asset-iv n s), ?t) ∈ rel-owner-v, simp-all add:
rel-def run-owner-v-def split-def Let-def , blast)

proposition run-owner-v-msg:
s0 |= s =⇒

let (s ′, S , A, B, C , D) = run-owner-v n s;
SK = (Some S , {A, B}, {C , D}) in
{(Asset n, SesKey SK),
(Owner n, Crypt (SesK SK) (Pwd n))} ⊆ s ′

by (drule run-asset-iv-msg [of - n], simp add: run-owner-v-def split-def Let-def)

proposition run-owner-v-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-owner-v n s))) /∈ used s

by (drule run-asset-iv-nonce [of - n], simp add: run-owner-v-def split-def Let-def)

84

proposition run-asset-v-rel:
s0 |= s =⇒ s |= fst (run-asset-v n s)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule run-owner-v-rel [of - n], drule run-owner-v-msg
[of - n], subgoal-tac (fst (run-owner-v n s), ?t) ∈ rel-asset-v, simp-all add:
rel-def run-asset-v-def split-def Let-def , blast)

proposition run-asset-v-msg:
s0 |= s =⇒

let (s ′, S , A, B, C , D) = run-asset-v n s; SK = (Some S , {A, B}, {C , D}) in
{(Owner n, Crypt (SesK SK) (Pwd n)),
(Asset n, Crypt (SesK SK) (Num 0))} ⊆ s ′

by (drule run-owner-v-msg [of - n], simp add: run-asset-v-def split-def Let-def)

proposition run-asset-v-nonce:
s0 |= s =⇒ PriKey (fst (snd (run-asset-v n s))) /∈ used s

by (drule run-owner-v-nonce [of - n], simp add: run-asset-v-def split-def Let-def)

lemma runs-unbounded-1 :
[[s0 |= s; run-asset-v n s = (s ′, S , A, B, C , D)]] =⇒

∃ s ′ S SK . (Asset n, Crypt (Auth-ShaKey n) (PriKey S)) /∈ s ∧
{(Owner n, Crypt (SesK SK) (Pwd n)),
(Asset n, Crypt (SesK SK) (Num 0))} ⊆ s ′ ∧

s |= s ′ ∧ fst SK = Some S
by (rule exI [of - s ′], rule exI [of - S], rule exI [of - (Some S , {A, B}, {C , D})],
rule conjI , rule notI , frule run-asset-v-nonce [of - n], frule asset-i-used [of - n S],
simp, frule run-asset-v-rel [of - n], drule run-asset-v-msg [of - n],
simp add: Let-def)

theorem runs-unbounded:
s0 |= s =⇒ ∃ s ′ S SK . s |= s ′ ∧ fst SK = Some S ∧

(Asset n, Crypt (Auth-ShaKey n) (PriKey S)) /∈ s ∧
{(Owner n, Crypt (SesK SK) (Pwd n)),
(Asset n, Crypt (SesK SK) (Num 0))} ⊆ s ′

by (insert runs-unbounded-1 , cases run-asset-v n s, blast)

definition pwd-spy-i :: agent-id ⇒ stage where
pwd-spy-i n ≡
(insert (Spy, Crypt (Auth-ShaKey n) (Auth-PriKey n)) s0,

Auth-PriK n, 0 , 0 , 0 , 0)

definition pwd-owner-ii :: agent-id ⇒ stage where
pwd-owner-ii n ≡ SOME x. pred-owner-ii n (pwd-spy-i n) x

definition pwd-spy-ii :: agent-id ⇒ stage where
pwd-spy-ii n ≡

case pwd-owner-ii n of (s, S , A, -) ⇒

85

(insert (Spy, {|Num 2 , PubKey S |}) s, S , A, S , 0 , 0)

definition pwd-owner-iii :: agent-id ⇒ stage where
pwd-owner-iii n ≡ SOME x. pred-owner-iii n (pwd-spy-ii n) x

definition pwd-spy-iii :: agent-id ⇒ stage where
pwd-spy-iii n ≡

case pwd-owner-iii n of (s, S , A, B, C , -) ⇒
(insert (Spy, {|Num 4 , PubKey S |}) s, S , A, B, C , S)

definition pwd-owner-iv :: agent-id ⇒ stage where
pwd-owner-iv n ≡ stage-owner-iv n (pwd-spy-iii n)

definition pwd-spy-sep-map :: agent-id ⇒ stage where
pwd-spy-sep-map n ≡

case pwd-owner-iv n of (s, S , A, B, C , D) ⇒
(insert (Spy, PubKey A) s, S , A, B, C , D)

definition pwd-spy-sep-agr :: agent-id ⇒ stage where
pwd-spy-sep-agr n ≡

case pwd-spy-sep-map n of (s, S , A, B, C , D) ⇒
(insert (Spy, PubKey C) s, S , A, B, C , D)

definition pwd-spy-sesk :: agent-id ⇒ stage where
pwd-spy-sesk n ≡

let (s, S , A, B, C , D) = pwd-spy-sep-agr n;
SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, SesKey SK) s, S , A, B, C , D)

definition pwd-spy-mult :: agent-id ⇒ stage where
pwd-spy-mult n ≡

case pwd-spy-sesk n of (s, S , A, B, C , D) ⇒
(insert (Spy, Auth-PriK n ⊗ B) s, S , A, B, C , D)

definition pwd-spy-enc-pubk :: agent-id ⇒ stage where
pwd-spy-enc-pubk n ≡

let (s, S , A, B, C , D) = pwd-spy-mult n; SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, Crypt (SesK SK) (PubKey C)) s, S , A, B, C , D)

definition pwd-spy-enc-mult :: agent-id ⇒ stage where
pwd-spy-enc-mult n ≡

let (s, S , A, B, C , D) = pwd-spy-enc-pubk n;
SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, Crypt (SesK SK) (Auth-PriK n ⊗ B)) s, S , A, B, C , D)

definition pwd-spy-enc-sign :: agent-id ⇒ stage where
pwd-spy-enc-sign n ≡

let (s, S , A, B, C , D) = pwd-spy-enc-mult n;

86

SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, Crypt (SesK SK) (Sign n (Auth-PriK n))) s, S , A, B, C , D)

definition pwd-spy-con :: agent-id ⇒ stage where
pwd-spy-con n ≡

let (s, S , A, B, C , D) = pwd-spy-enc-sign n;
SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, {|Crypt (SesK SK) (Auth-PriK n ⊗ B),

Crypt (SesK SK) (Sign n (Auth-PriK n))|}) s, S , A, B, C , D)

definition pwd-spy-iv :: agent-id ⇒ stage where
pwd-spy-iv n ≡

let (s, S , A, B, C , D) = pwd-spy-con n; SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, Token n (Auth-PriK n) B C SK) s, S , A, B, C , D)

definition pwd-owner-v :: agent-id ⇒ stage where
pwd-owner-v n ≡ stage-owner-v n (pwd-spy-iv n)

definition pwd-spy-dec :: agent-id ⇒ stage where
pwd-spy-dec n ≡

case pwd-owner-v n of (s, S , A, B, C , D) ⇒
(insert (Spy, Pwd n) s, S , A, B, C , D)

definition pwd-spy-id-prik :: agent-id ⇒ stage where
pwd-spy-id-prik n ≡

case pwd-spy-dec n of (s, S , A, B, C , D) ⇒
(insert (Spy, 〈n, PriKey S〉) s, S , A, B, C , D)

definition pwd-spy-id-pubk :: agent-id ⇒ stage where
pwd-spy-id-pubk n ≡

case pwd-spy-id-prik n of (s, S , A, B, C , D) ⇒
(insert (Spy, 〈n, PubKey S〉) s, S , A, B, C , D)

definition pwd-spy-id-sesk :: agent-id ⇒ stage where
pwd-spy-id-sesk n ≡

let (s, S , A, B, C , D) = pwd-spy-id-pubk n;
SK = (Some S , {A, B}, {C , D}) in
(insert (Spy, 〈n, SesKey SK 〉) s, S , A, B, C , D)

definition pwd-spy-id-pwd :: agent-id ⇒ stage where
pwd-spy-id-pwd n ≡

case pwd-spy-id-sesk n of (s, S , A, B, C , D) ⇒
(insert (Spy, 〈n, Pwd n〉) s, S , A, B, C , D)

proposition key-sets-crypts-subset:
[[U ∈ key-sets X (crypts (Log −‘ spied H)); H ⊆ H ′]] =⇒

U ∈ key-sets X (crypts (Log −‘ spied H ′))

87

(is [[- ∈ ?A; -]] =⇒ -)
by (rule subsetD [of ?A], rule key-sets-mono, rule crypts-mono, blast)

fun pwd-spy-i-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-i-state n (S , -) = {Spy} × ({PriKey S , PubKey S , Key (Auth-ShaKey n),

Auth-PriKey n, Sign n (Auth-PriK n), Crypt (Auth-ShaKey n) (PriKey S),
〈n, Key (Auth-ShaKey n)〉} ∪ range Num)

proposition pwd-spy-i-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-i n)

(is - =⇒ - |= ?t)
by (rule r-into-rtrancl, subgoal-tac (s0, ?t) ∈ rel-enc, simp-all add: rel-def
pwd-spy-i-def , blast)

proposition pwd-spy-i-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-i n of (s, S , A, B, C , D) ⇒
pwd-spy-i-state n (S , A, B, C , D) ⊆ s

by (simp add: pwd-spy-i-def , blast)

proposition pwd-spy-i-unused:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ ∃A. PriKey A /∈ used (fst (pwd-spy-i n))

by (drule pwd-spy-i-rel, rule prikey-unused)

fun pwd-owner-ii-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-owner-ii-state n (S , A, B, C , D) =

pwd-spy-i-state n (S , A, B, C , D) ∪ {Owner n, Spy} × {{|Num 1 , PubKey A|}}

proposition pwd-owner-ii-ex:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

pred-owner-ii n (pwd-spy-i n) (pwd-owner-ii n)
by (drule pwd-spy-i-unused, erule exE , subst pwd-owner-ii-def , rule someI-ex,
auto simp add: split-def)

proposition pwd-owner-ii-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-owner-ii n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-i-rel, frule pwd-spy-i-msg,
drule pwd-owner-ii-ex, subgoal-tac (fst (pwd-spy-i n), ?t) ∈ rel-owner-ii,
simp-all add: rel-def split-def , erule exE , rule exI , auto)

proposition pwd-owner-ii-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-owner-ii n of (s, S , A, B, C , D) ⇒
pwd-owner-ii-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (frule pwd-spy-i-msg, drule pwd-owner-ii-ex, simp add: split-def , erule exE ,

88

simp add: Image-def , simp only: Collect-disj-eq crypts-union key-sets-union,
simp add: crypts-insert key-sets-insert, blast)

fun pwd-spy-ii-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-ii-state n (S , A, B, C , D) =

pwd-owner-ii-state n (S , A, B, C , D) ∪ {Spy} × {PriKey B,
{|Num 2 , PubKey B|}}

proposition pwd-spy-ii-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-ii n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-owner-ii-rel, drule pwd-owner-ii-msg,
subgoal-tac (fst (pwd-owner-ii n), ?t) ∈ rel-con, simp-all add: rel-def
pwd-spy-ii-def split-def , blast)

proposition pwd-spy-ii-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-ii n of (s, S , A, B, C , D) ⇒
pwd-spy-ii-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-owner-ii-msg, simp add: pwd-spy-ii-def split-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

proposition pwd-spy-ii-unused:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ ∃C . PriKey C /∈ used (fst (pwd-spy-ii n))

by (drule pwd-spy-ii-rel, rule prikey-unused)

fun pwd-owner-iii-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-owner-iii-state n (S , A, B, C , D) =

pwd-spy-ii-state n (S , A, B, C , D) ∪ {Owner n, Spy} × {{|Num 3 , PubKey C |}}

proposition pwd-owner-iii-ex:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

pred-owner-iii n (pwd-spy-ii n) (pwd-owner-iii n)
by (drule pwd-spy-ii-unused, erule exE , subst pwd-owner-iii-def , rule someI-ex,
auto simp add: split-def)

proposition pwd-owner-iii-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-owner-iii n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-ii-rel, frule pwd-spy-ii-msg,
drule pwd-owner-iii-ex, subgoal-tac (fst (pwd-spy-ii n), ?t) ∈ rel-owner-iii,
simp-all add: rel-def split-def , rule exI , rule exI , auto)

proposition pwd-owner-iii-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-owner-iii n of (s, S , A, B, C , D) ⇒

89

pwd-owner-iii-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (frule pwd-spy-ii-msg, drule pwd-owner-iii-ex, simp add: split-def , erule exE ,
simp, (erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-iii-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-iii-state n (S , A, B, C , D) =

pwd-owner-iii-state n (S , A, B, C , D) ∪ {Spy} × {PriKey D,
{|Num 4 , PubKey D|}}

proposition pwd-spy-iii-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-iii n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-owner-iii-rel, drule pwd-owner-iii-msg,
subgoal-tac (fst (pwd-owner-iii n), ?t) ∈ rel-con, simp-all add: rel-def
pwd-spy-iii-def split-def , blast)

proposition pwd-spy-iii-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-iii n of (s, S , A, B, C , D) ⇒
pwd-spy-iii-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-owner-iii-msg, simp add: pwd-spy-iii-def split-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-owner-iv-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-owner-iv-state n (S , A, B, C , D) = (let SK = (Some S , {A, B}, {C , D}) in

insert (Owner n, SesKey SK) (pwd-spy-iii-state n (S , A, B, C , D)))

lemma pwd-owner-iv-rel-1 :
[[n ∈ bad-prikey ∩ bad-id-shakey; pwd-spy-iii n = (s, S , A, B, C , D)]] =⇒

s0 |= fst (pwd-owner-iv n)
(is [[-; -]] =⇒ - |= ?t)

by (rule rtrancl-into-rtrancl, erule pwd-spy-iii-rel, drule pwd-spy-iii-msg,
subgoal-tac (s, ?t) ∈ rel-owner-iv, simp-all add: rel-def pwd-owner-iv-def
Let-def , rule exI [of - n], rule exI [of - S], rule exI [of - A], rule exI [of - B],
rule exI [of - C], rule exI [of - D], rule exI [of - Auth-ShaKey n], auto)

proposition pwd-owner-iv-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-owner-iv n)

by (insert pwd-owner-iv-rel-1 , cases pwd-spy-iii n, simp)

proposition pwd-owner-iv-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-owner-iv n of (s, S , A, B, C , D) ⇒
pwd-owner-iv-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

90

by (drule pwd-spy-iii-msg, simp add: pwd-owner-iv-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-sep-map-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-sep-map-state n (S , A, B, C , D) =

insert (Spy, PubKey A) (pwd-owner-iv-state n (S , A, B, C , D))

proposition pwd-spy-sep-map-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-sep-map n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-owner-iv-rel, drule pwd-owner-iv-msg,
subgoal-tac (fst (pwd-owner-iv n), ?t) ∈ rel-sep, simp-all add: rel-def
pwd-spy-sep-map-def split-def , blast)

proposition pwd-spy-sep-map-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-sep-map n of (s, S , A, B, C , D) ⇒
pwd-spy-sep-map-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-owner-iv-msg, simp add: pwd-spy-sep-map-def split-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-sep-agr-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-sep-agr-state n (S , A, B, C , D) =

insert (Spy, PubKey C) (pwd-spy-sep-map-state n (S , A, B, C , D))

proposition pwd-spy-sep-agr-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-sep-agr n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-sep-map-rel, drule pwd-spy-sep-map-msg,
subgoal-tac (fst (pwd-spy-sep-map n), ?t) ∈ rel-sep, simp-all add: rel-def
pwd-spy-sep-agr-def split-def , blast)

proposition pwd-spy-sep-agr-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-sep-agr n of (s, S , A, B, C , D) ⇒
pwd-spy-sep-agr-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-sep-map-msg, simp add: pwd-spy-sep-agr-def split-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-sesk-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-sesk-state n (S , A, B, C , D) = (let SK = (Some S , {A, B}, {C , D}) in

insert (Spy, SesKey SK) (pwd-spy-sep-agr-state n (S , A, B, C , D)))

proposition pwd-spy-sesk-rel:

91

n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-sesk n)
(is - =⇒ - |= ?t)

by (rule rtrancl-into-rtrancl, erule pwd-spy-sep-agr-rel, drule pwd-spy-sep-agr-msg,
subgoal-tac (fst (pwd-spy-sep-agr n), ?t) ∈ rel-sesk, simp-all add: rel-def
pwd-spy-sesk-def split-def Let-def , blast)

proposition pwd-spy-sesk-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-sesk n of (s, S , A, B, C , D) ⇒
pwd-spy-sesk-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-sep-agr-msg, simp add: pwd-spy-sesk-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-mult-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-mult-state n (S , A, B, C , D) =

insert (Spy, Auth-PriK n ⊗ B) (pwd-spy-sesk-state n (S , A, B, C , D))

proposition pwd-spy-mult-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-mult n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-sesk-rel, drule pwd-spy-sesk-msg,
subgoal-tac (fst (pwd-spy-sesk n), ?t) ∈ rel-mult, simp-all add: rel-def
pwd-spy-mult-def split-def , blast)

proposition pwd-spy-mult-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-mult n of (s, S , A, B, C , D) ⇒
pwd-spy-mult-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-sesk-msg, simp add: pwd-spy-mult-def split-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-enc-pubk-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-enc-pubk-state n (S , A, B, C , D) =
(let SK = (Some S , {A, B}, {C , D}) in
insert (Spy, Crypt (SesK SK) (PubKey C))
(pwd-spy-mult-state n (S , A, B, C , D)))

proposition pwd-spy-enc-pubk-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-enc-pubk n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-mult-rel, drule pwd-spy-mult-msg,
subgoal-tac (fst (pwd-spy-mult n), ?t) ∈ rel-enc, simp-all add: rel-def
pwd-spy-enc-pubk-def split-def Let-def , blast)

proposition pwd-spy-enc-pubk-msg:

92

n ∈ bad-prikey ∩ bad-id-shakey =⇒
case pwd-spy-enc-pubk n of (s, S , A, B, C , D) ⇒

pwd-spy-enc-pubk-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-mult-msg, simp add: pwd-spy-enc-pubk-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-enc-mult-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-enc-mult-state n (S , A, B, C , D) =
(let SK = (Some S , {A, B}, {C , D}) in
insert (Spy, Crypt (SesK SK) (Auth-PriK n ⊗ B))
(pwd-spy-enc-pubk-state n (S , A, B, C , D)))

proposition pwd-spy-enc-mult-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-enc-mult n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-enc-pubk-rel, drule pwd-spy-enc-pubk-msg,
subgoal-tac (fst (pwd-spy-enc-pubk n), ?t) ∈ rel-enc, simp-all add: rel-def
pwd-spy-enc-mult-def split-def Let-def , blast)

proposition pwd-spy-enc-mult-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-enc-mult n of (s, S , A, B, C , D) ⇒
pwd-spy-enc-mult-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-enc-pubk-msg, simp add: pwd-spy-enc-mult-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-enc-sign-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-enc-sign-state n (S , A, B, C , D) =
(let SK = (Some S , {A, B}, {C , D}) in
insert (Spy, Crypt (SesK SK) (Sign n (Auth-PriK n)))
(pwd-spy-enc-mult-state n (S , A, B, C , D)))

proposition pwd-spy-enc-sign-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-enc-sign n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-enc-mult-rel, drule pwd-spy-enc-mult-msg,
subgoal-tac (fst (pwd-spy-enc-mult n), ?t) ∈ rel-enc, simp-all add: rel-def
pwd-spy-enc-sign-def split-def Let-def , blast)

proposition pwd-spy-enc-sign-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-enc-sign n of (s, S , A, B, C , D) ⇒
pwd-spy-enc-sign-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-enc-mult-msg, simp add: pwd-spy-enc-sign-def split-def Let-def ,

93

(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-con-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-con-state n (S , A, B, C , D) = (let SK = (Some S , {A, B}, {C , D}) in

insert (Spy, {|Crypt (SesK SK) (Auth-PriK n ⊗ B),
Crypt (SesK SK) (Sign n (Auth-PriK n))|})
(pwd-spy-enc-sign-state n (S , A, B, C , D)))

proposition pwd-spy-con-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-con n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-enc-sign-rel, drule pwd-spy-enc-sign-msg,
subgoal-tac (fst (pwd-spy-enc-sign n), ?t) ∈ rel-con, simp-all add: rel-def
pwd-spy-con-def split-def Let-def , blast)

proposition pwd-spy-con-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-con n of (s, S , A, B, C , D) ⇒
pwd-spy-con-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-enc-sign-msg, simp add: pwd-spy-con-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-iv-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-iv-state n (S , A, B, C , D) = (let SK = (Some S , {A, B}, {C , D}) in

insert (Spy, Token n (Auth-PriK n) B C SK)
(pwd-spy-con-state n (S , A, B, C , D)))

proposition pwd-spy-iv-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-iv n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-con-rel, drule pwd-spy-con-msg,
subgoal-tac (fst (pwd-spy-con n), ?t) ∈ rel-con, simp-all add: rel-def
pwd-spy-iv-def split-def Let-def , blast)

proposition pwd-spy-iv-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-iv n of (s, S , A, B, C , D) ⇒
pwd-spy-iv-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s))

by (drule pwd-spy-con-msg, simp add: pwd-spy-iv-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-owner-v-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-owner-v-state n (S , A, B, C , D) = (let SK = (Some S , {A, B}, {C , D}) in

insert (Spy, Crypt (SesK SK) (Pwd n)) (pwd-spy-iv-state n (S , A, B, C , D)))

94

proposition pwd-owner-v-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-owner-v n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-iv-rel, drule pwd-spy-iv-msg,
subgoal-tac (fst (pwd-spy-iv n), ?t) ∈ rel-owner-v, simp-all add: rel-def
pwd-owner-v-def split-def Let-def , (rule exI)+, blast)

proposition pwd-owner-v-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

let (s, S , A, B, C , D) = pwd-owner-v n; SK = (Some S , {A, B}, {C , D}) in
pwd-owner-v-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s)) ∧
{SesKey SK} ∈ key-sets (Pwd n) (crypts (Log −‘ spied s))

by (drule pwd-spy-iv-msg, simp add: pwd-owner-v-def split-def Let-def , (erule conjE)+,
(rule conjI , (erule key-sets-crypts-subset)?, blast)+, simp add: Image-def , simp
only: Collect-disj-eq crypts-union key-sets-union, simp add: crypts-insert
key-sets-insert)

abbreviation pwd-spy-dec-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-dec-state n x ≡ insert (Spy, Pwd n) (pwd-owner-v-state n x)

proposition pwd-spy-dec-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-dec n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-owner-v-rel, drule pwd-owner-v-msg,
subgoal-tac (fst (pwd-owner-v n), ?t) ∈ rel-dec, simp-all add: rel-def
pwd-spy-dec-def split-def Let-def , (rule exI)+, auto)

proposition pwd-spy-dec-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

let (s, S , A, B, C , D) = pwd-spy-dec n; SK = (Some S , {A, B}, {C , D}) in
pwd-spy-dec-state n (S , A, B, C , D) ⊆ s ∧
{Key (Auth-ShaKey n)} ∈ key-sets (PriKey S) (crypts (Log −‘ spied s)) ∧
{SesKey SK} ∈ key-sets (Pwd n) (crypts (Log −‘ spied s))

by (drule pwd-owner-v-msg, simp add: pwd-spy-dec-def split-def Let-def ,
(erule conjE)+, ((rule conjI)?, (erule key-sets-crypts-subset)?, blast)+)

fun pwd-spy-id-prik-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-id-prik-state n (S , A, B, C , D) =

insert (Spy, 〈n, PriKey S〉) (pwd-spy-dec-state n (S , A, B, C , D))

proposition pwd-spy-id-prik-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-id-prik n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-dec-rel, drule pwd-spy-dec-msg,
subgoal-tac (fst (pwd-spy-dec n), ?t) ∈ rel-id-crypt, simp-all add: rel-def

95

pwd-spy-id-prik-def split-def Let-def , (rule exI)+, blast)

proposition pwd-spy-id-prik-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

let (s, S , A, B, C , D) = pwd-spy-id-prik n;
SK = (Some S , {A, B}, {C , D}) in
pwd-spy-id-prik-state n (S , A, B, C , D) ⊆ s ∧
{SesKey SK} ∈ key-sets (Pwd n) (crypts (Log −‘ spied s))

by (drule pwd-spy-dec-msg, simp add: pwd-spy-id-prik-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-id-pubk-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-id-pubk-state n (S , A, B, C , D) =

insert (Spy, 〈n, PubKey S〉) (pwd-spy-id-prik-state n (S , A, B, C , D))

proposition pwd-spy-id-pubk-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-id-pubk n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-id-prik-rel, drule pwd-spy-id-prik-msg,
subgoal-tac (fst (pwd-spy-id-prik n), ?t) ∈ rel-id-invk, simp-all add: rel-def
pwd-spy-id-pubk-def split-def Let-def , (rule exI)+, auto)

proposition pwd-spy-id-pubk-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

let (s, S , A, B, C , D) = pwd-spy-id-pubk n;
SK = (Some S , {A, B}, {C , D}) in
pwd-spy-id-pubk-state n (S , A, B, C , D) ⊆ s ∧
{SesKey SK} ∈ key-sets (Pwd n) (crypts (Log −‘ spied s))

by (drule pwd-spy-id-prik-msg, simp add: pwd-spy-id-pubk-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

fun pwd-spy-id-sesk-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-id-sesk-state n (S , A, B, C , D) =
(let SK = (Some S , {A, B}, {C , D}) in
insert (Spy, 〈n, SesKey SK 〉) (pwd-spy-id-pubk-state n (S , A, B, C , D)))

proposition pwd-spy-id-sesk-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-id-sesk n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-id-pubk-rel, drule pwd-spy-id-pubk-msg,
subgoal-tac (fst (pwd-spy-id-pubk n), ?t) ∈ rel-id-sesk, simp-all add: rel-def
pwd-spy-id-sesk-def split-def Let-def , rule exI , rule exI , rule exI
[of - Some (fst (snd (pwd-spy-id-pubk n)))], auto)

proposition pwd-spy-id-sesk-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

let (s, S , A, B, C , D) = pwd-spy-id-sesk n;

96

SK = (Some S , {A, B}, {C , D}) in
pwd-spy-id-sesk-state n (S , A, B, C , D) ⊆ s ∧
{SesKey SK} ∈ key-sets (Pwd n) (crypts (Log −‘ spied s))

by (drule pwd-spy-id-pubk-msg, simp add: pwd-spy-id-sesk-def split-def Let-def ,
(erule conjE)+, ((rule conjI | erule key-sets-crypts-subset), blast)+)

abbreviation pwd-spy-id-pwd-state :: agent-id ⇒ seskey-tuple ⇒ state where
pwd-spy-id-pwd-state n x ≡ insert (Spy, 〈n, Pwd n〉) (pwd-spy-id-sesk-state n x)

proposition pwd-spy-id-pwd-rel:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ s0 |= fst (pwd-spy-id-pwd n)

(is - =⇒ - |= ?t)
by (rule rtrancl-into-rtrancl, erule pwd-spy-id-sesk-rel, drule pwd-spy-id-sesk-msg,
subgoal-tac (fst (pwd-spy-id-sesk n), ?t) ∈ rel-id-crypt, simp-all add: rel-def
pwd-spy-id-pwd-def split-def Let-def , (rule exI)+, blast)

proposition pwd-spy-id-pwd-msg:
n ∈ bad-prikey ∩ bad-id-shakey =⇒

case pwd-spy-id-pwd n of (s, S , A, B, C , D) ⇒
pwd-spy-id-pwd-state n (S , A, B, C , D) ⊆ s

by (drule pwd-spy-id-sesk-msg, simp add: pwd-spy-id-pwd-def split-def Let-def ,
blast)

theorem pwd-compromised:
n ∈ bad-prikey ∩ bad-id-shakey =⇒ ∃ s. s0 |= s ∧ {Pwd n, 〈n, Pwd n〉} ⊆ spied s

by (rule exI [of - fst (pwd-spy-id-pwd n)], rule conjI , erule pwd-spy-id-pwd-rel,
drule pwd-spy-id-pwd-msg, simp add: split-def)

end

References

[1] International Civil Aviation Organization (ICAO). Doc 9303 – Machine
Readable Travel Documents – Part 11: Security Mechanisms for MRTDs,
7th edition, 2015.

[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL.
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/
doc/functions.pdf.

[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs.
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/
isar-overview.pdf.

97

https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/functions.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf
https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/doc/isar-overview.pdf

[4] T. Nipkow. Programming and Proving in Isabelle/HOL, Apr. 2020.
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/
prog-prove.pdf.

[5] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, Apr. 2020. https://isabelle.in.tum.de/
website-Isabelle2020/dist/Isabelle2020/doc/tutorial.pdf.

[6] P. Noce. Verification of a diffie-hellman password-based authen-
tication protocol by extending the inductive method. Archive
of Formal Proofs, Jan. 2017. http://isa-afp.org/entries/Password_
Authentication_Protocol.html, Formal proof development.

[7] L. C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, Dec. 1998.

98

https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/prog-prove.pdf
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/tutorial.pdf
https://isabelle.in.tum.de/website-Isabelle2020/dist/Isabelle2020/doc/tutorial.pdf
http://isa-afp.org/entries/Password_Authentication_Protocol.html
http://isa-afp.org/entries/Password_Authentication_Protocol.html

	The relational method and message anonymity
	Introduction
	A sample protocol
	Definitions

	Confidentiality and authenticity properties
	Anonymity properties
	Possibility properties

