
Relational Divisibility

Walter Guttmann

October 10, 2025

Abstract

We formalise key concepts and axioms of the divisibility relation on
natural numbers using relation algebras. They use standard relational
constructions for extrema, bounds, suprema, the univalent part and
symmetric quotients, which we also formalise. We moreover prove that
mono-atomic elements correspond to join-irreducible elements under
the divisibility axioms.

Contents
1 Relational Constructions 1

1.1 Extrema, bounds and suprema 4
1.2 Univalent part . 6
1.3 Symmetric quotients . 8

2 Divisibility 13
2.1 Partial order . 15
2.2 Bounds . 15
2.3 Atoms . 17
2.4 Fibers . 22
2.5 Fiber decomposition . 26
2.6 Support . 36
2.7 Increments . 41

3 Mono-Atomic Elements 50
3.1 Mono-atomic . 50
3.2 Join-irreducible . 54
3.3 Equivalence . 55

1 Relational Constructions
theory Relational-Constructions

imports Stone-Relation-Algebras.Relation-Algebras

1

begin

This theory defines relational constructions for extrema, bounds and
suprema, the univalent part and symmetric quotients. All definitions and
most properties are standard; for example, see [1, 3, 4, 5]. Some properties
are new. We start with a few general properties of relations and orders.
context bounded-distrib-allegory
begin

lemma transitive-mapping-idempotent:
transitive x =⇒ mapping x =⇒ idempotent x
by (smt (verit, ccfv-threshold) conv-dist-comp conv-involutive epm-3

inf .order-iff top-greatest total-conv-surjective transitive-conv-closed mult-assoc)

end

context pd-allegory
begin

lemma comp-univalent-complement:
assumes univalent x

shows x ∗ −y = x ∗ top u −(x ∗ y)
proof (rule order .antisym)

show x ∗ −y ≤ x ∗ top u −(x ∗ y)
by (simp add: assms comp-isotone comp-univalent-below-complement)

show x ∗ top u −(x ∗ y) ≤ x ∗ −y
by (metis inf .sup-left-divisibility inf-top.left-neutral theorem24xxiii)

qed

lemma comp-injective-complement:
injective x =⇒ −y ∗ x = top ∗ x u −(y ∗ x)
by (smt (verit, ccfv-threshold) antisym-conv comp-injective-below-complement

complement-conv-sub dedekind-2 inf .bounded-iff mult-left-isotone order-lesseq-imp
top.extremum)

lemma strict-order-irreflexive:
irreflexive (x u −1)
by simp

lemma strict-order-transitive-1 :
antisymmetric x =⇒ transitive x =⇒ x ∗ (x u −1) ≤ x u −1
by (smt (verit, best) bot-unique inf .order-trans inf .semilattice-order-axioms

mult.monoid-axioms p-shunting-swap schroeder-5-p semiring.add-decreasing2
semiring.mult-left-mono sup.bounded-iff symmetric-one-closed
monoid.right-neutral semilattice-order .boundedI semilattice-order .cobounded1
semilattice-order .cobounded2)

lemma strict-order-transitive-2 :

2

antisymmetric x =⇒ transitive x =⇒ (x u −1) ∗ x ≤ x u −1
by (smt (verit, ccfv-SIG) comp-commute-below-diversity dual-order .eq-iff

inf .boundedE inf .order-iff inf .sup-monoid.add-assoc mult-left-isotone
strict-order-transitive-1)

lemma strict-order-transitive:
antisymmetric x =⇒ transitive x =⇒ (x u −1) ∗ (x u −1) ≤ x u −1
using comp-isotone inf .cobounded1 inf .order-lesseq-imp strict-order-transitive-2

by blast

lemma strict-order-transitive-eq-1 :
order x =⇒ (x u −1) ∗ x = x u −1
by (metis comp-right-one dual-order .antisym mult-right-isotone

strict-order-transitive-2)

lemma strict-order-transitive-eq-2 :
order x =⇒ x ∗ (x u −1) = x u −1
by (metis dual-order .antisym mult-1-left mult-left-isotone

strict-order-transitive-1)

lemma strict-order-transitive-eq:
order x =⇒ (x u −1) ∗ x = x ∗ (x u −1)
by (simp add: strict-order-transitive-eq-1 strict-order-transitive-eq-2)

lemma strict-order-asymmetric:
antisymmetric x =⇒ asymmetric (x u −1)
by (metis antisymmetric-inf-closed antisymmetric-inf-diversity inf .order-iff

inf .right-idem pseudo-complement)

end

The following gives relational definitions for extrema, bounds, suprema,
the univalent part and symmetric quotients.
context relation-algebra-signature
begin

definition maximal :: ′a ⇒ ′a ⇒ ′a where
maximal r s ≡ s u −((r u −1) ∗ s)

definition minimal :: ′a ⇒ ′a ⇒ ′a where
minimal r s ≡ s u −((rT u −1) ∗ s)

definition upperbound :: ′a ⇒ ′a ⇒ ′a where
upperbound r s ≡ −(−rT ∗ s)

definition lowerbound :: ′a ⇒ ′a ⇒ ′a where
lowerbound r s ≡ −(−r ∗ s)

definition greatest :: ′a ⇒ ′a ⇒ ′a where

3

greatest r s ≡ s u −(−rT ∗ s)

definition least :: ′a ⇒ ′a ⇒ ′a where
least r s ≡ s u −(−r ∗ s)

definition supremum :: ′a ⇒ ′a ⇒ ′a where
supremum r s ≡ least r (upperbound r s)

definition infimum :: ′a ⇒ ′a ⇒ ′a where
infimum r s ≡ greatest r (lowerbound r s)

definition univalent-part :: ′a ⇒ ′a where
univalent-part r ≡ r u −(r ∗ −1)

definition symmetric-quotient :: ′a ⇒ ′a ⇒ ′a where
symmetric-quotient r s ≡ −(rT ∗ −s) u −(−rT ∗ s)

abbreviation noyau :: ′a ⇒ ′a where
noyau r ≡ symmetric-quotient r r

end

context relation-algebra
begin

1.1 Extrema, bounds and suprema
lemma maximal-comparable:

r u (maximal r s) ∗ (maximal r s)T ≤ rT

proof −
have r u −rT ≤ r u −1

by (metis inf-commute inf-le2 le-inf-iff one-inf-conv p-shunting-swap)
hence maximal r s u (r u −rT) ∗ maximal r s ≤ maximal r s u (r u −1) ∗ s

using comp-inf .mult-right-isotone comp-isotone dual-order .eq-iff maximal-def
by fastforce

also have ... ≤ bot
by (simp add: inf-commute maximal-def)

finally show ?thesis
by (smt (verit, best) double-compl inf .sup-monoid.add-assoc inf-commute

le-bot pseudo-complement schroeder-2)
qed

lemma maximal-comparable-same:
assumes antisymmetric r

shows r u (maximal r s) ∗ (maximal r s)T ≤ 1
by (meson assms inf .sup-left-divisibility le-infI order-trans maximal-comparable)

lemma transitive-lowerbound:
transitive r =⇒ r ∗ lowerbound r s ≤ lowerbound r s

4

by (metis comp-associative double-compl lowerbound-def mult-left-isotone
schroeder-3-p)

lemma transitive-least:
transitive r =⇒ r ∗ least r top ≤ least r top
using least-def lowerbound-def transitive-lowerbound by auto

lemma transitive-minimal-not-least:
assumes transitive r

shows rT ∗ minimal r (−least r top) ≤ −least r top
proof −

have least r top ≤ −minimal r (−least r top)
by (simp add: minimal-def)

hence r ∗ least r top ≤ −minimal r (−least r top)
using assms dual-order .trans transitive-least by blast

thus ?thesis
using schroeder-3-p by auto

qed

lemma least-injective:
assumes antisymmetric r

shows injective (least r s)
proof −

have (least r s) ∗ (least r s)T ≤ −(−r ∗ s) ∗ sT u s ∗ −(−r ∗ s)T
by (simp add: least-def comp-isotone conv-complement conv-dist-inf)

also have ... ≤ r u rT

by (metis comp-inf .comp-isotone conv-complement conv-dist-comp
pp-increasing schroeder-3 schroeder-5)

also have ... ≤ 1
by (simp add: assms)

finally show ?thesis
.

qed

lemma least-conv-greatest:
least r = greatest (rT)
using greatest-def least-def by fastforce

lemma greatest-injective:
antisymmetric r =⇒ injective (greatest r s)
by (metis antisymmetric-conv-closed least-injective least-conv-greatest

conv-involutive)

lemma supremum-upperbound:
assumes antisymmetric r

and s ≤ r
shows supremum r s = 1 ←→ upperbound r s ≤ rT

proof (rule iffI)
assume supremum r s = 1

5

hence 1 ≤ lowerbound r (upperbound r s)
using least-def lowerbound-def supremum-def by auto

thus upperbound r s ≤ rT

by (metis comp-right-one compl-le-compl-iff compl-le-swap1 conv-complement
schroeder-3-p lowerbound-def)
next

assume 1 : upperbound r s ≤ rT

hence 2 : 1 ≤ lowerbound r (upperbound r s)
by (simp add: compl-le-swap1 conv-complement schroeder-3-p lowerbound-def)

have 3 : 1 ≤ upperbound r s
by (simp add: assms(2) compl-le-swap1 conv-complement schroeder-3-p

upperbound-def)
hence lowerbound r (upperbound r s) ≤ r

using brouwer .p-antitone-iff mult-right-isotone lowerbound-def by fastforce
hence supremum r s ≤ 1

using 1 by (smt (verit, del-insts) assms(1) least-def inf .sup-mono
inf-commute order .trans lowerbound-def supremum-def)

thus supremum r s = 1
using 2 3 least-def order .eq-iff lowerbound-def supremum-def by auto

qed

1.2 Univalent part
lemma univalent-part-idempotent:

univalent-part (univalent-part r) = univalent-part r
by (smt (verit, best) inf .absorb2 inf .cobounded1 inf .order-iff inf-assoc

mult-left-isotone p-antitone-inf univalent-part-def)

lemma univalent-part-univalent:
univalent (univalent-part r)
by (smt (verit, ccfv-SIG) inf .cobounded1 inf .sup-monoid.add-commute

mult-left-isotone order-lesseq-imp p-antitone-iff regular-one-closed schroeder-3-p
univalent-part-def)

lemma univalent-part-times-converse:
rT ∗ univalent-part r = (univalent-part r)T ∗ univalent-part r

proof −
have 1 : (r u r ∗ −1)T ∗ univalent-part r ≤ 1

by (smt (verit, best) compl-le-swap1 inf .cobounded1 inf .cobounded2
mult-left-isotone order-lesseq-imp regular-one-closed schroeder-3-p
univalent-part-def)

hence 2 : (r u r ∗ −1)T ∗ univalent-part r ≤ −1
by (simp add: inf .coboundedI2 schroeder-3-p univalent-part-def)

have rT ∗ univalent-part r = (r u r ∗ −1)T ∗ univalent-part r t
(univalent-part r)T ∗ univalent-part r

by (metis conv-dist-sup maddux-3-11 mult-right-dist-sup univalent-part-def)
thus ?thesis

using 1 2 by (metis inf .orderE inf-compl-bot-right maddux-3-13
pseudo-complement)

6

qed

lemma univalent-part-times-converse-1 :
rT ∗ univalent-part r ≤ 1
by (simp add: univalent-part-times-converse univalent-part-univalent)

lemma minimal-univalent-part:
assumes reflexive r

and vector s
shows minimal r s = s u univalent-part ((r u s)T) ∗ top

proof (rule order .antisym)
have 1 u rT ∗ (−1 u s) ≤ (rT u −1 u sT) ∗ (−1 u s)

by (smt (z3) conv-complement conv-dist-inf dedekind-2 equivalence-one-closed
inf .sup-monoid.add-assoc inf .sup-monoid.add-commute mult-1-left)

also have ... ≤ (rT u −1) ∗ s
using inf-le1 inf-le2 mult-isotone by blast

finally have 1 u −((rT u −1) ∗ s) ≤ −(rT ∗ (−1 u s))
by (simp add: p-shunting-swap)

also have 1 : ... = −((r u s)T ∗ −1)
by (simp add: assms(2) conv-dist-inf covector-inf-comp-3

inf .sup-monoid.add-commute)
finally have 2 : 1 u −((rT u −1) ∗ s) ≤ rT u −((r u s)T ∗ −1)

by (simp add: assms(1) le-infI1 reflexive-conv-closed)
have minimal r s = (1 u −((rT u −1) ∗ s)) ∗ s

by (metis assms(2) complement-vector inf-commute vector-export-comp-unit
minimal-def mult-assoc)

also have ... ≤ (rT u −((r u s)T ∗ −1)) ∗ s
using 2 mult-left-isotone by blast

also have 3 : ... = univalent-part ((r u s)T) ∗ top
by (smt (verit, ccfv-threshold) assms(2) comp-inf .vector-top-closed

comp-inf-covector comp-inf-vector conv-dist-inf inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute surjective-one-closed vector-conv-covector
univalent-part-def)

finally show minimal r s ≤ s u univalent-part ((r u s)T) ∗ top
by (simp add: minimal-def)

have s u (rT u −1) ∗ s u 1 ≤ (rT u −1) ∗ s u 1
using comp-inf .comp-isotone inf .cobounded2 by blast

also have ... ≤ (rT u −1) ∗ (s u (rT u −1)T)
by (metis comp-right-one dedekind-1)

also have ... ≤ rT ∗ (s u −1)
using comp-inf .mult-right-isotone conv-complement conv-dist-inf mult-isotone

by auto
finally have 4 : s u (rT u −1) ∗ s u 1 ≤ rT ∗ (s u −1)

.
have s u (rT u −1) ∗ s u −1 ≤ rT ∗ (s u −1)

by (metis assms(1) comp-inf .comp-left-subdist-inf inf .coboundedI1
inf .order-trans mult-1-left mult-left-isotone order .refl reflexive-conv-closed)

hence 5 : s u (rT u −1) ∗ s ≤ rT ∗ (s u −1)
using 4 comp-inf .case-split-right heyting.implies-itself-top by blast

7

have s u (rT u −1) ∗ s u (rT u −(rT ∗ (s u −1))) ∗ s = (s u (rT u −1) ∗ s
u rT u −(rT ∗ (s u −1))) ∗ s

using assms(2) inf-assoc vector-inf-comp mult-assoc by simp
also have ... = bot

using 5 le-infI1 semiring.mult-not-zero shunting-1 by blast
finally have s u univalent-part ((r u s)T) ∗ top ≤ −((rT u −1) ∗ s)

using 1 3 by (simp add: inf .sup-monoid.add-commute p-shunting-swap
pseudo-complement)

thus s u univalent-part ((r u s)T) ∗ top ≤ minimal r s
by (simp add: minimal-def)

qed

1.3 Symmetric quotients
lemma univalent-part-syq:

univalent-part r = symmetric-quotient (rT) 1
by (simp add: inf-commute symmetric-quotient-def univalent-part-def)

lemma minimal-syq:
assumes reflexive r

and vector s
shows minimal r s = s u symmetric-quotient (r u s) 1 ∗ top

by (simp add: assms minimal-univalent-part univalent-part-syq)

lemma syq-complement:
symmetric-quotient (−r) (−s) = symmetric-quotient r s
by (simp add: conv-complement inf .sup-monoid.add-commute

symmetric-quotient-def)

lemma syq-converse:
(symmetric-quotient r s)T = symmetric-quotient s r
by (simp add: conv-complement conv-dist-comp conv-dist-inf

inf .sup-monoid.add-commute symmetric-quotient-def)

lemma syq-comp-transitive:
symmetric-quotient r s ∗ symmetric-quotient s p ≤ symmetric-quotient r p

proof −
have r ∗ −(rT ∗ −s) ∗ −(sT ∗ −p) ≤ s ∗ −(sT ∗ −p)

by (metis complement-conv-sub conv-complement mult-left-isotone schroeder-5)
also have ... ≤ p

by (simp add: schroeder-3)
finally have 1 : −(rT ∗ −s) ∗ −(sT ∗ −p) ≤ −(rT ∗ −p)

by (simp add: p-antitone-iff schroeder-3-p mult-assoc)
have −(−rT ∗ s) ∗ −(−sT ∗ p) ∗ pT ≤ −(−rT ∗ s) ∗ sT

by (metis complement-conv-sub double-compl mult-right-isotone mult-assoc)
also have ... ≤ rT

using brouwer .pp-increasing complement-conv-sub inf .order-trans by blast
finally have 2 : −(−rT ∗ s) ∗ −(−sT ∗ p) ≤ −(−rT ∗ p)

by (metis compl-le-swap1 double-compl schroeder-4)

8

have symmetric-quotient r s ∗ symmetric-quotient s p ≤ −(rT ∗ −s) ∗ −(sT ∗
−p) u −(−rT ∗ s) ∗ −(−sT ∗ p)

by (simp add: mult-isotone symmetric-quotient-def)
also have ... ≤ −(rT ∗ −p) u −(−rT ∗ p)

using 1 2 inf-mono by blast
finally show ?thesis

by (simp add: symmetric-quotient-def)
qed

lemma syq-comp-syq-top:
symmetric-quotient r s ∗ symmetric-quotient s p = symmetric-quotient r p u

symmetric-quotient r s ∗ top
proof (rule order .antisym)

show symmetric-quotient r s ∗ symmetric-quotient s p ≤ symmetric-quotient r
p u symmetric-quotient r s ∗ top

by (simp add: mult-right-isotone syq-comp-transitive)
have symmetric-quotient r p u symmetric-quotient r s ∗ top ≤

symmetric-quotient r s ∗ symmetric-quotient s r ∗ symmetric-quotient r p
by (metis comp-right-one dedekind-1 inf-top-left inf-vector-comp mult-assoc

syq-converse)
also have ... ≤ symmetric-quotient r s ∗ symmetric-quotient s p

by (simp add: mult-right-isotone mult-assoc syq-comp-transitive)
finally show symmetric-quotient r p u symmetric-quotient r s ∗ top ≤

symmetric-quotient r s ∗ symmetric-quotient s p
.

qed

lemma syq-comp-top-syq:
symmetric-quotient r s ∗ symmetric-quotient s p = symmetric-quotient r p u top
∗ symmetric-quotient s p

by (metis conv-dist-comp conv-dist-inf symmetric-top-closed syq-comp-syq-top
syq-converse)

lemma comp-syq-below:
r ∗ symmetric-quotient r s ≤ s
by (simp add: schroeder-3 symmetric-quotient-def)

lemma comp-syq-top:
r ∗ symmetric-quotient r s = s u top ∗ symmetric-quotient r s

proof (rule order .antisym)
show r ∗ symmetric-quotient r s ≤ s u top ∗ symmetric-quotient r s

by (simp add: comp-syq-below mult-left-isotone)
have s u top ∗ symmetric-quotient r s ≤ s ∗ symmetric-quotient s r ∗

symmetric-quotient r s
by (metis dedekind-2 inf-commute inf-top.right-neutral syq-converse)

also have ... ≤ r ∗ symmetric-quotient r s
by (simp add: comp-syq-below mult-left-isotone)

finally show s u top ∗ symmetric-quotient r s ≤ r ∗ symmetric-quotient r s
.

9

qed

lemma syq-comp-isotone:
symmetric-quotient r s ≤ symmetric-quotient (q ∗ r) (q ∗ s)

proof −
have qT ∗ −(q ∗ s) ≤ −s

by (simp add: conv-complement-sub-leq)
hence (q ∗ r)T ∗ −(q ∗ s) ≤ rT ∗ −s

by (simp add: comp-associative conv-dist-comp mult-right-isotone)
hence 1 : −(rT ∗ −s) ≤ −((q ∗ r)T ∗ −(q ∗ s))

by simp
have −(q ∗ r)T ∗ q ≤ −rT

using schroeder-6 by auto
hence −(q ∗ r)T ∗ q ∗ s ≤ −rT ∗ s

using mult-left-isotone by auto
hence −(−rT ∗ s) ≤ −(−(q ∗ r)T ∗ q ∗ s)

by simp
thus ?thesis

using 1 by (metis comp-inf .comp-isotone mult-assoc symmetric-quotient-def)
qed

lemma syq-comp-isotone-eq:
assumes univalent q

and surjective q
shows symmetric-quotient r s = symmetric-quotient (q ∗ r) (q ∗ s)

proof −
have symmetric-quotient (q ∗ r) (q ∗ s) ≤ symmetric-quotient (qT ∗ q ∗ r) (qT

∗ q ∗ s)
by (simp add: mult-assoc syq-comp-isotone)

also have ... = symmetric-quotient r s
using assms antisym-conv mult-left-one surjective-var by auto

finally show ?thesis
by (simp add: dual-order .antisym syq-comp-isotone)

qed

lemma univalent-comp-syq:
assumes univalent p

shows p ∗ symmetric-quotient r s = p ∗ top u symmetric-quotient (r ∗ pT) s
proof −

have p ∗ symmetric-quotient r s = p ∗ top u −(p ∗ rT ∗ −s) u −(p ∗ −rT ∗ s)
by (metis assms comp-associative comp-univalent-complement

inf .sup-monoid.add-assoc mult-left-dist-sup p-dist-sup symmetric-quotient-def)
also have ... = p ∗ top u −(p ∗ rT ∗ −s) u −(p ∗ top u −(p ∗ rT) ∗ s)

using assms comp-univalent-complement vector-export-comp by auto
also have ... = p ∗ top u −(p ∗ rT ∗ −s) u −(−(p ∗ rT) ∗ s)

by (simp add: comp-inf .coreflexive-comp-inf-complement)
also have ... = p ∗ top u −((r ∗ pT)T ∗ −s) u −(−(r ∗ pT)T ∗ s)

by (simp add: conv-dist-comp)
also have ... = p ∗ top u symmetric-quotient (r ∗ pT) s

10

by (simp add: inf .sup-monoid.add-assoc symmetric-quotient-def)
finally show ?thesis

.
qed

lemma coreflexive-comp-syq:
coreflexive p =⇒ p ∗ symmetric-quotient r s = p ∗ symmetric-quotient (r ∗ p) s
by (metis coreflexive-comp-top-inf coreflexive-injective coreflexive-symmetric

univalent-comp-syq)

lemma injective-comp-syq:
injective p =⇒ symmetric-quotient r s ∗ p = top ∗ p u symmetric-quotient r (s
∗ p)

by (metis univalent-comp-syq[of pT s r] conv-dist-comp conv-dist-inf
conv-involutive symmetric-top-closed syq-converse)

lemma syq-comp-coreflexive:
coreflexive p =⇒ symmetric-quotient r s ∗ p = symmetric-quotient r (s ∗ p) ∗ p
by (simp add: injective-comp-syq coreflexive-idempotent coreflexive-symmetric

mult-assoc)

lemma coreflexive-comp-syq-comp-coreflexive:
coreflexive p =⇒ coreflexive q =⇒ p ∗ symmetric-quotient r s ∗ q = p ∗

symmetric-quotient (r ∗ p) (s ∗ q) ∗ q
by (metis coreflexive-comp-syq comp-associative syq-comp-coreflexive)

lemma surjective-syq:
surjective (symmetric-quotient r s) =⇒ r ∗ symmetric-quotient r s = s
by (metis comp-syq-top inf-top.right-neutral)

lemma comp-syq-surjective:
assumes total (−(top ∗ r))

shows surjective (symmetric-quotient r s) ←→ r ∗ symmetric-quotient r s = s
proof (rule iffI , fact surjective-syq)

assume r ∗ symmetric-quotient r s = s
hence 1 : top ∗ s ≤ top ∗ symmetric-quotient r s

by (metis comp-syq-top comp-inf-covector inf .absorb-iff1)
have −(top ∗ s) = −(top ∗ r) ∗ −(top ∗ s)

by (metis assms comp-associative complement-covector vector-top-closed)
also have ... = top ∗ (−(rT ∗ top) u −(top ∗ s))

by (metis assms conv-complement conv-dist-comp covector-comp-inf
covector-complement-closed inf-top.left-neutral symmetric-top-closed
vector-top-closed mult-assoc)

also have ... ≤ top ∗ (−(rT ∗ −s) u −(−rT ∗ s))
by (meson comp-inf .mult-isotone comp-isotone order-refl p-antitone

top-greatest)
finally have −(top ∗ s) ≤ top ∗ symmetric-quotient r s

by (simp add: symmetric-quotient-def)
thus surjective (symmetric-quotient r s)

11

using 1 by (metis compl-inter-eq inf .order-iff top-greatest)
qed

lemma noyau-reflexive:
reflexive (noyau r)
by (simp add: compl-le-swap1 conv-complement schroeder-3

symmetric-quotient-def)

lemma noyau-equivalence:
equivalence (noyau r)
by (smt (z3) comp-associative comp-right-one conv-complement conv-dist-comp

conv-dist-inf conv-involutive inf .antisym-conv inf .boundedI inf .cobounded1
inf .sup-monoid.add-commute mult-right-isotone schroeder-5-p
symmetric-quotient-def noyau-reflexive)

lemma noyau-reflexive-comp:
r ∗ noyau r = r

proof (rule order .antisym)
show r ∗ noyau r ≤ r

by (simp add: schroeder-3 symmetric-quotient-def)
show r ≤ r ∗ noyau r

using mult-right-isotone noyau-reflexive by fastforce
qed

lemma syq-comp-reflexive:
noyau r ∗ symmetric-quotient r s = symmetric-quotient r s
by (simp add: inf-absorb1 top-left-mult-increasing syq-comp-top-syq)

lemma reflexive-antisymmetric-noyau:
assumes reflexive r

and antisymmetric r
shows noyau r = 1

proof −
have 1 : −(rT ∗ −r) ≤ r

using assms(1) brouwer .p-antitone-iff mult-left-isotone reflexive-conv-closed
by fastforce

have −(−rT ∗ r) ≤ rT

by (metis assms(1) compl-le-swap2 mult-1-right mult-right-isotone)
thus ?thesis

using 1 by (smt (verit, ccfv-threshold) assms(2) inf .sup-mono
inf .sup-monoid.add-assoc inf .sup-monoid.add-commute inf-absorb1
symmetric-quotient-def noyau-equivalence)
qed

end

end

12

2 Divisibility
theory Relational-Divisibility

imports Relational-Constructions

begin

This theory gives relational axioms and definitions for divisibility. We
start with the definitions, which are based on standard relational construc-
tions. Then follow the axioms, which are relational formulations of axioms
expressed in predicate logic in [2].
context bounded-distrib-allegory-signature
begin

definition antichain :: ′a ⇒ ′a ⇒ bool where
antichain r s ≡ vector s ∧ r u s u sT ≤ 1

end

class divisibility-op =
fixes divisibility :: ′a (D)

class divisibility-def = relation-algebra + divisibility-op
begin

Dbot is the least element of the divisibility order, which represents the
number 1.
definition Dbot :: ′a where

Dbot ≡ least D top

Datoms are the atoms of the divisibility order, which represent the prime
numbers.
definition Datoms :: ′a where

Datoms ≡ minimal D (−Dbot)

Datoms are the mono-atomic elements of the divisibility order, which
represent the prime powers.
definition Dmono :: ′a where

Dmono ≡ univalent-part ((D u Datoms)T) ∗ top

Dfactor relates p to x if and only if p is maximal prime power factor of
x.
definition Dfactor :: ′a where

Dfactor ≡ maximal D (D u Dmono)

Dsupport relates x to y if and only if y is the product of all primes below
x.

13

definition Dsupport :: ′a where
Dsupport ≡ symmetric-quotient (Datoms u D) Dfactor

Dsucc relates x to y if and only if y is the product of prime power x with
its base prime.
definition Dsucc :: ′a where

Dsucc ≡ greatest D (D u −1)

Dinc relates x to y if and only if y is the product of x with all its base
primes.
definition Dinc :: ′a where

Dinc ≡ symmetric-quotient Dfactor (Dsucc ∗ Dfactor)

Datomsbot includes the number 1 with the prime numbers.
definition Datomsbot :: ′a where

Datomsbot ≡ Datoms t Dbot

Dmonobot includes the number 1 with the prime powers.
definition Dmonobot :: ′a where

Dmonobot ≡ Dmono t Dbot

Dfactorbot is like Dfactor except it also relates 1 to 1.
definition Dfactorbot :: ′a where

Dfactorbot ≡ maximal D (D u Dmonobot)

We consider the following axioms for D. They correspond to axioms
A1–A3, A6–A9, A11–A13 and A15–A16 of [2].
abbreviation D1-reflexive :: ′a ⇒ bool where D1-reflexive -
≡ reflexive D
abbreviation D2-antisymmetric :: ′a ⇒ bool where D2-antisymmetric
- ≡ antisymmetric D
abbreviation D3-transitive :: ′a ⇒ bool where D3-transitive -
≡ transitive D
abbreviation D6-least-surjective :: ′a ⇒ bool where D6-least-surjective
- ≡ surjective Dbot
abbreviation D7-pre-f-decomposable :: ′a ⇒ bool where
D7-pre-f-decomposable - ≡ supremum D (D u Dmono) = 1
abbreviation D8-fibered :: ′a ⇒ bool where D8-fibered -
≡ Dmono u DT ∗ (Datoms u D) u DmonoT ≤ D t DT

abbreviation D9-f-decomposable :: ′a ⇒ bool where D9-f-decomposable
- ≡ Datoms u D ≤ D ∗ Dfactor
abbreviation D11-atomic :: ′a ⇒ bool where D11-atomic
- ≡ DT ∗ Datoms = −Dbot
abbreviation D12-infinite-base :: ′a ⇒ bool where D12-infinite-base
- ≡ −DT ∗ Datoms = top
abbreviation D13-supportable :: ′a ⇒ bool where D13-supportable
- ≡ total Dsupport
abbreviation D15a-discrete-fibers-succ :: ′a ⇒ bool where
D15a-discrete-fibers-succ - ≡ Dmono ≤ Dsucc ∗ top

14

abbreviation D15b-discrete-fibers-pred :: ′a ⇒ bool where
D15b-discrete-fibers-pred - ≡ Dmono ≤ DsuccT ∗ top
abbreviation D16-incrementable :: ′a ⇒ bool where D16-incrementable
- ≡ total Dinc

2.1 Partial order
lemma div-antisymmetric-equal:

assumes D1-reflexive -
and D2-antisymmetric -

shows D u DT = 1
by (simp add: assms dual-order .antisym reflexive-conv-closed)

lemma div-idempotent:
assumes D1-reflexive -

and D3-transitive -
shows idempotent D

using assms preorder-idempotent by auto

lemma div-total:
assumes D1-reflexive -

shows D ∗ top = top
by (simp add: assms reflexive-conv-closed reflexive-mult-closed total-var)

lemma div-surjective:
assumes D1-reflexive -

shows top ∗ D = top
by (simp add: assms reflexive-conv-closed reflexive-mult-closed surjective-var)

lemma div-below-div-converse:
assumes D2-antisymmetric -

and x ≤ D
shows D u xT ≤ x

by (smt assms conv-dist-inf conv-involutive coreflexive-symmetric
inf .cobounded2 inf .orderE inf-left-commute)

2.2 Bounds
The least element can be introduced equivalently by

∗ defining Dbot = least D top and axiomatising either surjective Dbot or
Dbot 6= bot, or

∗ axiomatising point Dbot and Dbot ≤ D.

lemma div-least-div:
Dbot ≤ D
by (simp add: Dbot-def compl-le-swap2 least-def top-right-mult-increasing)

lemma div-least-vector :

15

vector Dbot
by (simp add: Dbot-def complement-vector least-def mult-assoc)

lemma div-least-injective:
assumes D2-antisymmetric -

shows injective Dbot
by (metis assms div-least-div div-least-vector antisymmetric-inf-closed

inf .absorb2 vector-covector)

lemma div-least-point:
assumes D2-antisymmetric -

and D6-least-surjective -
shows point Dbot

using assms div-least-injective div-least-vector by blast

lemma div-point-least:
assumes D2-antisymmetric -

and point x
and x ≤ D

shows x = least D top
proof (rule order .antisym)

show x ≤ least D top
by (smt (verit, ccfv-SIG) assms(2 ,3) comp-associative double-compl

inf-top.left-neutral least-def schroeder-4 vector-covector)
have 1 : D u xT ≤ x

by (smt (verit, best) assms(1 ,3) conv-dist-inf inf .absorb1
inf .sup-same-context inf-assoc inf-le2 one-inf-conv)

have −x = (−x u xT) ∗ top
using assms(2) complement-vector surjective-conv-total vector-inf-comp by

auto
also have ... ≤ −D ∗ top

using 1 by (simp add: inf .sup-monoid.add-commute mult-left-isotone
p-shunting-swap)

finally show least D top ≤ x
by (simp add: compl-le-swap2 least-def)

qed

lemma div-least-surjective-iff :
assumes D2-antisymmetric -

shows D6-least-surjective - ←→ (∃ x . point x ∧ x ≤ D)
using Dbot-def assms div-least-div div-point-least div-least-point by auto

lemma div-least-converse:
assumes D2-antisymmetric -

shows D u DbotT ≤ Dbot
using assms div-below-div-converse div-least-div by blast

lemma bot-div-bot:
assumes D1-reflexive -

16

and D3-transitive -
shows D ∗ Dbot = Dbot

by (metis assms div-idempotent Dbot-def antisym-conv mult-1-left
mult-left-isotone transitive-least)

lemma all-div-bot:
assumes D2-antisymmetric -

and D6-least-surjective -
shows DT ∗ Dbot = top

using assms div-least-div div-least-point inf .order-eq-iff schroeder-4-p
schroeder-6 shunt-bijective by fastforce

lemma div-strict-bot:
assumes D2-antisymmetric -

shows (D u −1) ∗ Dbot = bot
proof −

have (DT u −1) ∗ top ≤ −D ∗ top
using assms inf-commute mult-left-isotone p-shunting-swap by force

thus ?thesis
by (smt (verit, ccfv-threshold) Dbot-def conv-complement conv-dist-comp

conv-dist-inf conv-involutive equivalence-one-closed inf-p inf-top.left-neutral le-bot
least-def regular-in-p-image-iff schroeder-6)
qed

2.3 Atoms
The atoms can be introduced equivalently by

∗ defining Datoms = minimal D (−Dbot) and axiomatising either DT ∗
Datoms = −Dbot or −Dbot ≤ DT ∗ Datoms or −D ≤ DT ∗ Datoms,
or

∗ axiomatising antichain D Datoms and DT ∗ Datoms = −Dbot.

lemma div-atoms-vector :
vector Datoms
by (simp add: Datoms-def div-least-vector comp-associative minimal-def

vector-complement-closed vector-inf-closed)

lemma div-atoms-bot-vector :
vector Datomsbot
by (simp add: div-atoms-vector Datomsbot-def div-least-vector

mult-right-dist-sup)

lemma div-least-not-atom:
Dbot ≤ −Datoms
by (simp add: Datoms-def minimal-def)

lemma div-atoms-antichain:

17

antichain D Datoms
proof (unfold antichain-def , rule conjI , fact div-atoms-vector)

have (D u −1) ∗ Datoms ≤ (D u −1) ∗ −((DT u −1) ∗ −Dbot)
by (simp add: Datoms-def minimal-def mult-right-isotone)

also have ... ≤ Dbot
by (metis complement-conv-sub conv-complement conv-dist-inf

equivalence-one-closed schroeder-5)
also have ... ≤ −Datoms

by (simp add: Datoms-def minimal-def)
finally have Datoms ∗ DatomsT ≤ −D t 1

by (simp add: schroeder-4-p)
thus D u Datoms u DatomsT ≤ 1

by (simp add: div-atoms-vector heyting.implies-galois-var inf-assoc
vector-covector)
qed

lemma div-atomic-bot:
assumes D2-antisymmetric -

and D6-least-surjective -
shows DT ∗ Datomsbot = top

using assms all-div-bot Datomsbot-def semiring.distrib-left by auto

lemma div-via-atom:
assumes D3-transitive -

and D11-atomic -
shows −Dbot u D ≤ DT ∗ (D u Datoms)

proof −
have DT ∗ Datoms u D ≤ DT ∗ (D u Datoms)

by (smt (verit, ccfv-SIG) assms(1) conv-involutive dedekind-1
inf .sup-monoid.add-commute inf .boundedI inf .order-lesseq-imp inf-le1
mult-right-isotone)

thus ?thesis
by (simp add: assms(2))

qed

lemma div-via-atom-bot:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

shows D ≤ DT ∗ (D u Datomsbot)
proof −

have DT ∗ Datomsbot u D ≤ DT ∗ (D u Datomsbot)
by (metis assms(1 ,3) div-idempotent conv-involutive dedekind-1

inf .sup-monoid.add-commute)
thus ?thesis

by (simp add: assms(2 ,4) div-atomic-bot)
qed

18

lemma div-converse-via-atom:
assumes D3-transitive -

and D11-atomic -
shows −DbotT u DT ≤ DT ∗ (D u Datoms)

proof −
have symmetric (DT ∗ (D u Datoms))

by (simp add: div-atoms-vector conv-dist-comp conv-dist-inf
covector-inf-comp-3 inf .sup-monoid.add-commute)

thus ?thesis
by (metis assms div-via-atom conv-complement conv-dist-inf conv-isotone)

qed

lemma div-converse-via-atom-bot:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

shows DT ≤ DT ∗ (D u Datomsbot)
by (metis assms div-atoms-bot-vector div-idempotent div-via-atom-bot

comp-inf-vector conv-dist-comp conv-dist-inf conv-involutive schroeder-4
schroeder-6 symmetric-top-closed)

lemma div-comparable-via-atom:
assumes D3-transitive -

and D11-atomic -
shows −Dbot u −DbotT u (D t DT) ≤ DT ∗ (D u Datoms)

proof −
have −Dbot u −DbotT u (D t DT) = (−Dbot u −DbotT u D) t (−Dbot u
−DbotT u DT)

by (simp add: comp-inf .semiring.distrib-left)
also have ... ≤ (−Dbot u D) t (−DbotT u DT)

by (metis comp-inf .coreflexive-comp-inf-comp comp-inf .semiring.add-mono
inf .cobounded1 inf .cobounded2 top.extremum)

also have ... ≤ DT ∗ (D u Datoms)
by (simp add: assms div-converse-via-atom div-via-atom)

finally show ?thesis
.

qed

lemma div-comparable-via-atom-bot:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

shows D t DT ≤ DT ∗ (D u Datomsbot)
by (simp add: assms div-converse-via-atom-bot div-via-atom-bot)

lemma div-atomic-iff-1 :
assumes D3-transitive -

19

shows D11-atomic - ←→ −Dbot ≤ DT ∗ Datoms
using Datoms-def Dbot-def assms transitive-minimal-not-least by force

lemma div-atomic-iff-2 :
assumes D3-transitive -

shows D11-atomic - ←→ −D ≤ DT ∗ Datoms
by (metis Dbot-def assms div-atomic-iff-1 div-atoms-vector div-least-div

brouwer .p-antitone comp-associative double-compl inf-top.left-neutral least-def
mult-left-isotone)

lemma div-atoms-antichain-minimal:
assumes D2-antisymmetric -

and D3-transitive -
and antichain D x
and DT ∗ x = −Dbot

shows x = minimal D (−Dbot)
proof (rule order .antisym)

have 1 : x ≤ −Dbot
by (smt (verit, del-insts) assms(4) Dbot-def ex231d div-least-vector

compl-le-compl-iff conv-complement-sub-leq conv-involutive double-compl
inf-top.left-neutral least-def order-lesseq-imp schroeder-4-p
top-right-mult-increasing)

have −Dbot ≤ ((DT u −1) t 1) ∗ x
by (metis assms(4) heyting.implies-galois-increasing mult-left-isotone

regular-one-closed sup-commute)
also have ... ≤ x t (DT u −1) ∗ x

by (simp add: mult-right-dist-sup)
also have ... ≤ x t (DT u −1) ∗ −Dbot

using 1 mult-isotone sup-right-isotone by blast
finally have −Dbot u −((DT u −1) ∗ −Dbot) ≤ x

using half-shunting sup-neg-inf by blast
thus minimal D (−Dbot) ≤ x

by (simp add: minimal-def)
have 2 : D u −1 u x ≤ −xT

using assms(3) antichain-def inf .sup-monoid.add-commute inf-left-commute
shunting-1 by auto

have D ∗ (D u −1) ≤ D u −1
by (smt (verit, ccfv-threshold) assms(1 ,2) antisymmetric-inf-diversity

conv-complement conv-involutive conv-order le-inf-iff mult-left-one
mult-right-isotone order-lesseq-imp schroeder-4-p)

hence (DT u −1) ∗ DT ≤ DT u −1
by (metis (mono-tags, opaque-lifting) conv-complement conv-dist-comp

conv-dist-inf conv-order equivalence-one-closed)
hence (DT u −1) ∗ −Dbot ≤ (DT u −1) ∗ x

by (metis assms(4) comp-associative mult-left-isotone)
also have ... = (D u −1 u x)T ∗ top

using assms(3) antichain-def conv-complement conv-dist-inf
covector-inf-comp-3 by auto

also have ... ≤ −x ∗ top

20

using 2 by (metis conv-complement conv-involutive conv-order
mult-left-isotone)

also have ... = −x
using assms(3) antichain-def complement-vector by auto

finally show x ≤ minimal D (−Dbot)
using 1 by (simp add: minimal-def p-antitone-iff)

qed

lemma div-atomic-iff-3 :
assumes D2-antisymmetric -

and D3-transitive -
shows D11-atomic - ←→ (∃ x . antichain D x ∧ DT ∗ x = −Dbot)

using Datoms-def assms div-atoms-antichain-minimal div-atoms-antichain by
fastforce

The literal translation of axiom A12 is −Dbot ≤ −DT ∗ Datoms. How-
ever, this allows a model without atoms, where Dbot = top and Datoms
= Dmono = Dfactor = bot. Nitpick finds a counterexample to surjective
Datoms. With A2 and A12 the latter is equivalent to −DT ∗ Datoms = top,
which we use as a replacement for axiom A12.
lemma div-atom-surjective:

assumes D12-infinite-base -
shows surjective Datoms

by (metis assms invertible-surjective top-greatest)

lemma div-infinite-base-upperbound:
assumes D12-infinite-base -

shows upperbound D Datoms = bot
by (simp add: assms upperbound-def)

lemma div-atom-surjective-iff-infinite-base:
assumes D2-antisymmetric -

and −Dbot ≤ −DT ∗ Datoms
shows surjective Datoms ←→ D12-infinite-base -

proof (rule iffI)
assume 1 : surjective Datoms
have 2 : Dbot u −DbotT ≤ −DT

by (metis assms(1) div-least-converse conv-dist-inf conv-involutive conv-order
double-compl inf .sup-monoid.add-commute p-shunting-swap)

have top = top ∗ Datoms
using 1 by simp

also have ... = top ∗ (−Dbot u Datoms)
by (simp add: Datoms-def minimal-def)

also have ... = −DbotT ∗ Datoms
by (metis complement-vector conv-complement covector-inf-comp-3

div-least-vector inf-top.left-neutral)
finally have Dbot = Dbot u −DbotT ∗ Datoms

by simp
also have ... = (Dbot u −DbotT) ∗ Datoms

21

by (simp add: div-least-vector vector-inf-comp)
also have ... ≤ −DT ∗ Datoms

using 2 mult-left-isotone by auto
finally have Dbot ≤ −DT ∗ Datoms

.
thus −DT ∗ Datoms = top

by (metis assms(2) sup-absorb2 sup-shunt)
next

assume −DT ∗ Datoms = top
thus surjective Datoms

using div-atom-surjective by auto
qed

2.4 Fibers
lemma div-mono-vector :

vector Dmono
by (simp add: Dmono-def comp-associative)

lemma div-mono-bot-vector :
vector Dmonobot
by (simp add: div-mono-vector Dmonobot-def div-least-vector vector-sup-closed)

lemma div-atom-mono-atom:
Datoms u D ∗ (DT u Dmono) u DatomsT ≤ 1

proof −
let ?u = univalent-part ((D u Datoms)T)
have 1 : DT u ?u ∗ top ≤ ?u ∗ (?uT ∗ DT)

by (metis dedekind-1 inf .absorb-iff1 inf-commute top-greatest)
have 2 : (Datoms u D) ∗ ?u ≤ 1

by (metis conv-involutive inf .sup-monoid.add-commute
univalent-part-times-converse-1)

have Datoms u D ∗ (DT u Dmono) u DatomsT = (Datoms u D) ∗ (DT u ?u
∗ top) u DatomsT

by (metis div-atoms-vector Dmono-def vector-export-comp)
also have ... ≤ (Datoms u D) ∗ ?u ∗ ?uT ∗ DT u DatomsT

using 1 by (simp add: comp-associative inf .sup-monoid.add-commute le-infI2
mult-right-isotone)

also have ... ≤ ?uT ∗ DT u DatomsT
using 2 by (metis comp-inf .mult-left-isotone mult-left-isotone

comp-associative comp-left-one)
also have ... = ?uT ∗ (D u Datoms)T

using div-atoms-vector conv-dist-inf covector-comp-inf vector-conv-covector by
force

also have ... = ?uT ∗ ?u
by (metis conv-dist-comp conv-involutive univalent-part-times-converse)

also have ... ≤ 1
by (simp add: univalent-part-univalent)

finally show ?thesis

22

.
qed

lemma div-atoms-mono:
assumes D1-reflexive -

shows Datoms ≤ Dmono
proof −

have DT u Datoms u DatomsT ≤ 1
by (smt (verit, ccfv-threshold) div-atoms-antichain antichain-def conv-dist-inf

conv-involutive coreflexive-symmetric inf .left-commute
inf .sup-monoid.add-commute)

hence 1 u (DT u Datoms u DatomsT) ∗ −1 ≤ bot
by (metis bot-least coreflexive-comp-top-inf inf-compl-bot-right)

hence 1 u Datoms u (DT u DatomsT) ∗ −1 ≤ bot
by (smt (verit, ccfv-threshold) div-atoms-vector inf .sup-monoid.add-commute

inf-assoc vector-inf-comp)
hence 1 u Datoms ≤ −((DT u DatomsT) ∗ −1)

using le-bot pseudo-complement by blast
hence 1 u Datoms u DatomsT ≤ DT u −((DT u DatomsT) ∗ −1) u DatomsT

using comp-inf .mult-left-isotone assms reflexive-conv-closed by fastforce
hence (1 u Datoms u DatomsT) ∗ top ≤ (DT u −((DT u DatomsT) ∗ −1) u

DatomsT) ∗ top
using mult-left-isotone by blast

hence Datoms ≤ (DT u −((DT u DatomsT) ∗ −1) u DatomsT) ∗ top
by (smt (verit) div-atoms-vector inf .absorb2 inf .cobounded2 inf .left-commute

inf-top.right-neutral one-inf-conv vector-export-comp-unit)
also have ... = ((D u Datoms)T u −((D u Datoms)T ∗ −1)) ∗ top

by (smt (verit) conv-dist-inf inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute univalent-part-def)

finally show ?thesis
by (simp add: Dmono-def univalent-part-def)

qed

lemma div-mono-downclosed:
assumes D3-transitive -

and D11-atomic -
shows −Dbot u D ∗ Dmono ≤ Dmono

proof −
let ?u = univalent-part ((D u Datoms)T)
have −Dbot u D ∗ ?u = (−Dbot u D) ∗ ?u

by (simp add: Dbot-def least-def vector-export-comp)
also have ... ≤ DT ∗ (D u Datoms) ∗ ?u

by (simp add: assms div-via-atom mult-left-isotone)
also have ... ≤ DT

by (metis comp-associative comp-right-one conv-involutive mult-right-isotone
univalent-part-times-converse-1)

finally have 1 : −Dbot u D ∗ ?u ≤ DT

.
have (Datoms u D) ∗ D ≤ Datoms u D

23

using assms(1) div-atoms-vector inf-mono vector-inf-comp by auto
hence DT ∗ (D u Datoms)T ∗ −1 ≤ (D u Datoms)T ∗ −1

by (metis conv-dist-comp conv-isotone inf-commute mult-left-isotone)
hence 2 : D ∗ −((D u Datoms)T ∗ −1) ≤ −((D u Datoms)T ∗ −1)

by (simp add: comp-associative schroeder-3-p)
have D ∗ ?u ≤ D ∗ (DT u DatomsT) u D ∗ −((D u Datoms)T ∗ −1)

using comp-right-subdist-inf conv-dist-inf univalent-part-def by auto
also have ... ≤ DatomsT u D ∗ −((D u Datoms)T ∗ −1)

using div-atoms-vector comp-inf .mult-left-isotone covector-comp-inf
vector-conv-covector by force

finally have −Dbot u D ∗ ?u ≤ DT u D ∗ −((D u Datoms)T ∗ −1) u
DatomsT

using 1 by (simp add: inf .coboundedI2)
also have ... ≤ DT u −((D u Datoms)T ∗ −1) u DatomsT

using 2 comp-inf .comp-isotone by blast
also have ... = ?u

by (smt (verit, ccfv-threshold) conv-dist-inf inf .sup-monoid.add-assoc
inf .sup-monoid.add-commute univalent-part-def)

finally have −Dbot u D ∗ ?u ∗ top ≤ ?u ∗ top
by (metis div-least-vector mult-left-isotone vector-complement-closed

vector-inf-comp)
thus −Dbot u D ∗ Dmono ≤ Dmono

by (simp add: Dmono-def comp-associative)
qed

lemma div-mono-bot-downclosed:
assumes D1-reflexive -

and D3-transitive -
and D11-atomic -

shows D ∗ Dmonobot ≤ Dmonobot
proof −

have D ∗ Dmonobot = D ∗ Dmono t D ∗ Dbot
using Dmonobot-def comp-left-dist-sup by auto

also have ... = (−Dbot u D ∗ Dmono) t Dbot
by (simp add: assms(1 ,2) bot-div-bot sup-commute)

also have ... ≤ Dmonobot
using assms div-mono-downclosed Dmonobot-def sup-left-isotone by auto

finally show ?thesis
.

qed

lemma div-least-not-mono:
assumes D2-antisymmetric -

shows Dbot ≤ −Dmono
proof −

let ?u = univalent-part ((D u Datoms)T)
have 1 : Dbot u DT ≤ DbotT

by (metis assms div-least-converse conv-dist-inf conv-involutive conv-order
inf .sup-monoid.add-commute)

24

have Dbot u ?u ≤ Dbot u DT u DatomsT
using conv-dist-inf inf .sup-left-divisibility inf-assoc univalent-part-def by auto

also have ... ≤ DbotT u DatomsT
using 1 inf .sup-left-isotone by blast

also have ... ≤ bot
by (metis div-least-not-atom bot-least conv-dist-inf coreflexive-symmetric

pseudo-complement)
finally show ?thesis

by (metis Dmono-def compl-le-swap1 div-least-vector inf-top.right-neutral
mult-left-isotone p-top pseudo-complement vector-complement-closed)
qed

lemma div-fibered-transitive-1 :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D11-atomic -

shows Dmono u DT ∗ (Datoms u D) u DmonoT = Dmono u (D t DT) ∗
(Dmono u (D t DT)) u DmonoT

proof (rule order .antisym)
show Dmono u DT ∗ (Datoms u D) u DmonoT ≤ Dmono u (D t DT) ∗

(Dmono u (D t DT)) u DmonoT

using assms(1) div-atoms-mono comp-inf .mult-right-isotone
inf .sup-left-isotone inf .sup-mono mult-isotone sup.cobounded1 sup-ge2 by auto

have Dmono u (D t DT) ∗ (Dmono u (D t DT)) u DmonoT = (Dmono u (D
t DT) u DmonoT) ∗ (Dmono u (D t DT)) u DmonoT

by (metis div-mono-vector covector-inf-comp-2 vector-export-comp)
also have ... ≤ (−Dbot u (D t DT) u DmonoT) ∗ (Dmono u (D t DT)) u

DmonoT

using assms(2) div-least-not-mono comp-inf .mult-left-isotone compl-le-swap1
mult-left-isotone by auto

also have ... ≤ (−Dbot u (D t DT) u −DbotT) ∗ (Dmono u (D t DT)) u
DmonoT

by (smt (verit) assms(2) div-least-not-mono compl-le-compl-iff
conv-complement conv-order double-compl inf .sup-monoid.add-commute
inf .sup-right-isotone mult-left-isotone)

also have ... ≤ DT ∗ (D u Datoms) ∗ (Dmono u (D t DT)) u DmonoT

by (smt (verit, del-insts) assms(3 ,4) div-comparable-via-atom inf-commute
inf-left-commute inf-sup-distrib1 mult-right-dist-sup sup.order-iff)

also have ... = DT ∗ (D u Datoms u DmonoT) ∗ (Dmono u (D t DT) u
DmonoT)

by (smt (verit, ccfv-SIG) div-mono-vector covector-comp-inf
covector-inf-comp-2 vector-conv-covector)

also have ... ≤ DT ∗ (D u Datoms u DmonoT) ∗ (−Dbot u (D t DT) u
DmonoT)

using assms(2) div-least-not-mono comp-inf .mult-left-isotone compl-le-swap1
mult-right-isotone by auto

also have ... ≤ DT ∗ (D u Datoms u DmonoT) ∗ (−Dbot u (D t DT) u
−DbotT)

25

by (metis assms(2) div-least-not-mono comp-inf .mult-right-isotone
compl-le-swap1 conv-complement conv-order mult-right-isotone)

also have ... = DT ∗ (D u Datoms u DmonoT) ∗ (−Dbot u (D t DT) u
−DbotT)T

using conv-complement conv-dist-inf conv-dist-sup conv-involutive
inf .sup-monoid.add-commute inf-assoc sup-commute by auto

also have ... ≤ DT ∗ (D u Datoms u DmonoT) ∗ (DT ∗ (D u Datoms))T
using assms(3 ,4) div-comparable-via-atom conv-order

inf .sup-monoid.add-commute inf-assoc mult-right-isotone by auto
also have ... = DT ∗ (D u Datoms u DmonoT) ∗ (D u Datoms)T ∗ D

by (simp add: comp-associative conv-dist-comp)
also have ... = DT ∗ (Datoms u D ∗ (Dmono u DT) u DatomsT) ∗ D

by (smt (verit, ccfv-threshold) div-atoms-vector div-mono-vector
comp-associative conv-dist-inf covector-inf-comp-3 inf .sup-monoid.add-commute)

also have ... = DT ∗ (Datoms u D ∗ (Dmono u DT) u DatomsT) ∗ (Datoms u
D)

using div-atoms-vector covector-comp-inf covector-inf-comp-3
vector-conv-covector by auto

also have ... ≤ DT ∗ (Datoms u D)
by (metis div-atom-mono-atom comp-right-one inf .sup-monoid.add-commute

mult-left-isotone mult-right-isotone)
finally show Dmono u (D t DT) ∗ (Dmono u (D t DT)) u DmonoT ≤

Dmono u DT ∗ (Datoms u D) u DmonoT

by (simp add: inf .coboundedI2 inf .sup-monoid.add-commute)
qed

lemma div-fibered-iff :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D11-atomic -

shows D8-fibered - ←→ Dmono u (D t DT) ∗ (Dmono u (D t DT)) u
DmonoT ≤ D t DT

using assms div-fibered-transitive-1 by auto

lemma div-fibered-transitive:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D11-atomic -

shows Dmono u (D t DT) ∗ (Dmono u (D t DT)) u DmonoT ≤ D t DT

using assms div-fibered-transitive-1 by auto

2.5 Fiber decomposition
lemma div-factor-div-mono:

Dfactor ≤ D u Dmono
by (metis Dfactor-def inf .cobounded1 maximal-def)

26

lemma div-factor-div:
Dfactor ≤ D
using div-factor-div-mono by auto

lemma div-factor-mono:
Dfactor ≤ Dmono
using div-factor-div-mono by auto

lemma div-factor-one-mono:
Dfactor u 1 ≤ Dmono
using div-factor-mono inf .coboundedI1 by blast

lemma div-pre-f-decomposable-1 :
assumes D2-antisymmetric -

and D7-pre-f-decomposable -
shows upperbound D (D u Dmono) ≤ DT

using assms supremum-upperbound by force

lemma div-pre-f-decomposable-iff :
assumes D2-antisymmetric -

shows D7-pre-f-decomposable - ←→ upperbound D (D u Dmono) ≤ DT

using assms supremum-upperbound by force

lemma div-pre-f-decomposable-char :
assumes D2-antisymmetric -

and D7-pre-f-decomposable -
shows upperbound D (D u Dmono) u (upperbound D (D u Dmono))T = 1

proof (rule order .antisym)
have 1 ≤ upperbound D (D u Dmono)

by (simp add: compl-le-swap1 conv-complement schroeder-3-p upperbound-def)
thus 1 ≤ upperbound D (D u Dmono) u (upperbound D (D u Dmono))T

using le-inf-iff reflexive-conv-closed by blast
have upperbound D (D u Dmono) u (upperbound D (D u Dmono))T ≤ DT u D

by (metis assms comp-inf .comp-isotone conv-involutive conv-order
div-pre-f-decomposable-1)

thus upperbound D (D u Dmono) u (upperbound D (D u Dmono))T ≤ 1
by (metis assms(1) inf .absorb2 inf .boundedE inf-commute)

qed

lemma div-factor-bot:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D11-atomic -

shows Dfactorbot = Dfactor t (Dbot u DbotT)
proof −

have Dbot u DatomsT ≤ −1
by (metis comp-inf .semiring.mult-not-zero div-least-not-atom

27

inf .sup-monoid.add-commute inf-left-commute one-inf-conv pseudo-complement)
hence Dbot u DatomsT ∗ D = (Dbot u DatomsT u −1) ∗ D

by (simp add: div-least-vector inf .absorb1 vector-inf-comp)
also have ... = (Dbot u −1) ∗ (D u Datoms)

by (smt (verit, del-insts) div-atoms-vector comp-inf-vector conv-dist-comp
inf .sup-monoid.add-assoc inf .sup-monoid.add-commute symmetric-top-closed)

also have ... ≤ (D u −1) ∗ (D u Dmono)
using assms(1) div-atoms-mono div-least-div comp-isotone inf .sup-mono

order-refl by blast
finally have 1 : Dbot u DatomsT ∗ D ≤ (D u −1) ∗ (D u Dmono)

.
hence 1 : Dbot u −((D u −1) ∗ (D u Dmono)) ≤ DbotT

by (metis assms(4) conv-complement conv-dist-comp conv-involutive
double-compl p-shunting-swap)

have Dbot u DbotT u (D u −1) ∗ (D u Dmono) ≤ DbotT u (D u −1) ∗ D
using comp-inf .mult-right-isotone comp-right-subdist-inf

inf .sup-monoid.add-assoc by force
also have ... = bot

by (smt (verit, best) assms bot-div-bot div-atoms-vector div-strict-bot
comp-associative comp-inf .vector-bot-closed complement-vector conv-dist-comp
schroeder-2 symmetric-top-closed)

finally have Dbot u DbotT ≤ −((D u −1) ∗ (D u Dmono))
using le-bot pseudo-complement by blast

hence 2 : Dbot u −((D u −1) ∗ (D u Dmono)) = Dbot u DbotT
using 1 by (smt (verit, del-insts) inf .absorb1 inf .sup-monoid.add-assoc

inf-commute)
have Dfactorbot = D u (Dmono t Dbot) u −((D u −1) ∗ (D u Dmono)) u
−((D u −1) ∗ (D u Dbot))

by (simp add: Dfactorbot-def Dmonobot-def comp-inf .vector-inf-comp
inf-sup-distrib1 maximal-def mult-left-dist-sup)

also have ... = D u (Dmono t Dbot) u −((D u −1) ∗ (D u Dmono))
by (simp add: assms(2) div-strict-bot div-least-div inf .absorb2)

also have ... = Dfactor t (Dbot u −((D u −1) ∗ (D u Dmono)))
using div-least-div Dfactor-def comp-inf .mult-right-dist-sup inf .absorb2

inf-sup-distrib1 maximal-def by auto
finally show ?thesis

using 2 by auto
qed

lemma div-factor-surjective:
assumes D1-reflexive -

and D3-transitive -
and D9-f-decomposable -
and D11-atomic -

shows surjective (DbotT t Dfactor)
proof −

have D u Datoms ≤ top ∗ Dfactor
by (metis assms(3) inf .sup-monoid.add-commute mult-left-isotone

order-lesseq-imp top-greatest)

28

hence DT ∗ (D u Datoms) ≤ top ∗ Dfactor
by (metis covector-mult-closed mult-isotone top-greatest vector-top-closed)

hence −Dbot u D ≤ top ∗ Dfactor
using assms(2 ,4) div-via-atom by auto

hence top ∗ (−Dbot u D) ≤ top ∗ Dfactor
by (metis comp-associative mult-right-isotone vector-top-closed)

hence −DbotT ∗ D ≤ top ∗ Dfactor
by (simp add: Dbot-def comp-inf-vector conv-complement conv-dist-comp

inf .sup-monoid.add-commute least-def)
hence −DbotT ≤ top ∗ Dfactor

by (metis assms(1) bot-least case-split-right inf .sup-monoid.add-commute
maddux-3-21 semiring.mult-not-zero shunting-1 sup.cobounded2)

hence top ≤ DbotT t top ∗ Dfactor
by (simp add: sup-neg-inf)

thus ?thesis
using div-least-vector mult-left-dist-sup top-le vector-conv-covector by auto

qed

lemma div-factor-bot-surjective:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D9-f-decomposable -
and D11-atomic -

shows surjective Dfactorbot
proof −

have top ∗ (Dbot u DbotT) = top ∗ DbotT
by (smt (verit) conv-dist-comp covector-inf-comp-3 div-least-vector ex231d

mult-right-isotone order .eq-iff top-greatest vector-conv-covector vector-covector
vector-top-closed)

thus ?thesis
using assms div-factor-bot div-factor-surjective mult-left-dist-sup

sup-monoid.add-commute by force
qed

lemma div-factor-surjective-2 :
assumes D1-reflexive -

and D3-transitive -
and D9-f-decomposable -
and D11-atomic -

shows −D ≤ DfactorT ∗ top
proof −

have −DT ≤ −DbotT
using div-least-div conv-order by auto

also have ... ≤ top ∗ Dfactor
by (metis assms div-factor-surjective conv-dist-comp equivalence-top-closed

mult-left-dist-sup sup-shunt div-least-vector)
finally show ?thesis

by (metis conv-complement conv-dist-comp conv-involutive conv-order

29

equivalence-top-closed)
qed

lemma div-conv-factor-div-factor :
assumes D1-reflexive -

shows Dmono u DT ∗ Dfactor u D ≤ D ∗ Dfactor
proof −

have −(1 t −DT)T ∗ (Dmono u D) ≤ (D u −1) ∗ (D u Dmono)
by (simp add: conv-complement conv-dist-sup inf .sup-monoid.add-commute)

hence (Dmono u D) ∗ −((D u −1) ∗ (D u Dmono))T ≤ 1 t −DT

using schroeder-5 schroeder-6 by blast
hence 1 : Dmono u DT u D ∗ −((D u −1) ∗ (D u Dmono))T ≤ 1

by (simp add: Dmono-def heyting.implies-galois-var
inf .sup-monoid.add-commute inf-assoc inf-vector-comp sup-commute)

have DfactorT ≤ −((D u −1) ∗ (D u Dmono))T
by (metis Dfactor-def conv-complement conv-order inf .sup-right-divisibility

maximal-def)
hence 2 : Dmono u DT u D ∗ DfactorT ≤ 1

using 1 by (meson inf .sup-right-isotone mult-right-isotone order-trans)
hence (Dmono u DT u D ∗ DfactorT) ∗ Dfactor u D ≤ D ∗ Dfactor

using assms(1) dual-order .trans inf .coboundedI1 mult-left-isotone by blast
thus ?thesis

using 2 by (smt (verit, del-insts) div-factor-div Dmono-def
coreflexive-comp-top-inf dedekind-2 dual-order .trans inf .absorb1 inf-assoc
vector-export-comp)
qed

lemma div-f-decomposable-mono:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dmono u D ≤ D ∗ Dfactor
proof −

have Dmono u D = Dmono u −Dbot u D
by (metis assms(2) div-least-not-mono compl-le-swap1 inf .order-iff)

also have ... = Dmono u DT ∗ (D u Datoms) u D
by (smt (verit, ccfv-SIG) assms(2 ,3 ,6) div-least-not-mono div-via-atom

compl-le-swap1 inf .le-iff-sup inf-assoc inf-left-commute)
also have ... = Dmono u DT ∗ (D u Datoms u D ∗ Dfactor) u D

using assms(5) inf .le-iff-sup inf .sup-monoid.add-commute by auto
also have ... = Dmono u DT ∗ (D u Datoms u D ∗ (Dmono u Dfactor)) u D

using div-factor-mono inf .le-iff-sup by fastforce
also have ... = Dmono u DT ∗ (D u (Datoms u D u DmonoT) ∗ Dfactor) u D

using div-atoms-vector div-mono-vector covector-inf-comp-3
inf .sup-monoid.add-assoc vector-inf-comp by auto

also have ... ≤ Dmono u DT ∗ (Datoms u D u DmonoT) ∗ Dfactor u D

30

by (simp add: comp-associative inf .coboundedI2 inf .sup-monoid.add-commute
mult-right-isotone)

also have ... = Dmono u (Dmono u DT ∗ (Datoms u D) u DmonoT) ∗
Dfactor u D

by (metis div-mono-vector covector-comp-inf inf .left-idem vector-conv-covector
vector-export-comp)

also have ... ≤ Dmono u (D t DT) ∗ Dfactor u D
by (metis assms(4) inf .sup-monoid.add-commute inf .sup-right-isotone

mult-left-isotone)
also have ... = (Dmono u D ∗ Dfactor u D) t (Dmono u DT ∗ Dfactor u D)

by (simp add: inf-sup-distrib1 inf-sup-distrib2 mult-right-dist-sup)
also have ... ≤ D ∗ Dfactor

by (simp add: assms(1) div-conv-factor-div-factor inf .coboundedI1)
finally show ?thesis

.
qed

lemma div-pre-f-decomposable-2 :
assumes D2-antisymmetric -

and D7-pre-f-decomposable -
shows −D ≤ (D u Dmono)T ∗ −D

by (metis assms brouwer .p-antitone-iff conv-complement conv-dist-comp
conv-involutive conv-order div-pre-f-decomposable-1 upperbound-def)

lemma div-f-decomposable-char-1 :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows DfactorT ∗ −D = −D
proof (rule order .antisym)

have Dfactor ∗ D ≤ D
using assms(3) div-factor-div dual-order .trans mult-left-isotone by blast

thus DfactorT ∗ −D ≤ −D
by (simp add: schroeder-3-p)

have −D ≤ (D u Dmono)T ∗ −D
by (simp add: assms(2 ,4) div-pre-f-decomposable-2)

also have ... ≤ DfactorT ∗ DT ∗ −D
by (metis assms(1−3 ,5−7) div-f-decomposable-mono conv-dist-comp

conv-order inf-commute mult-left-isotone)
also have ... ≤ DfactorT ∗ −D

using assms(3) comp-associative mult-right-isotone schroeder-3 by auto
finally show −D ≤ DfactorT ∗ −D

.
qed

31

lemma div-f-decomposable-char-2 :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows noyau Dfactor = 1
proof (rule order .antisym)

show reflexive (noyau Dfactor)
by (simp add: noyau-reflexive)

have −(DfactorT ∗ −Dfactor) ≤ −(DfactorT ∗ −D)
by (simp add: div-factor-div mult-right-isotone)

also have ... = D
by (simp add: assms div-f-decomposable-char-1)

finally have 1 : −(DfactorT ∗ −Dfactor) ≤ D
.

hence −(−DfactorT ∗ Dfactor) ≤ DT

by (metis conv-complement conv-dist-comp conv-involutive conv-order)
thus noyau Dfactor ≤ 1

using 1 assms(1 ,2) div-antisymmetric-equal comp-inf .comp-isotone
symmetric-quotient-def by force
qed

lemma div-mono-one-div-factor :
assumes D1-reflexive -

and D2-antisymmetric -
shows Dmono u 1 ≤ Dfactor

proof −
have Dmono u 1 u (D u −1) ∗ (D u Dmono) ≤ 1 u (D u −1) ∗ D

by (meson comp-inf .mult-right-isotone comp-right-subdist-inf inf .bounded-iff)
also have ... ≤ bot

by (metis assms(2) compl-le-swap1 dual-order .eq-iff inf-shunt mult-1-left
p-shunting-swap schroeder-4-p double-compl)

finally have 1 : Dmono u 1 ≤ −((D u −1) ∗ (D u Dmono))
using le-bot pseudo-complement by auto

have Dmono u 1 ≤ D u Dmono
by (simp add: assms(1) le-infI2)

thus ?thesis
using 1 by (simp add: Dfactor-def maximal-def)

qed

lemma div-mono-one-div-factor-one:
assumes D1-reflexive -

and D2-antisymmetric -
shows Dmono u 1 = Dfactor u 1

using assms div-mono-one-div-factor div-factor-mono inf .sup-same-context
le-infI1 by blast

32

lemma div-factor-div-mono-div-factor :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dfactor ∗ D = Dmono u D ∗ Dfactor
proof (rule order .antisym)

have Dfactor ∗ D ≤ D ∗ Dfactor
by (smt (verit, best) assms div-f-decomposable-mono div-factor-div-mono

div-idempotent div-mono-vector comp-isotone inf-commute order-trans
vector-export-comp)

thus Dfactor ∗ D ≤ Dmono u D ∗ Dfactor
by (metis div-factor-mono div-mono-vector inf .boundedI mult-isotone

top-greatest)
have Dmono u D ∗ Dfactor ≤ Dmono u D ∗ D

using div-factor-div comp-inf .mult-isotone mult-isotone by blast
also have ... ≤ Dmono u D

by (simp add: assms(3) inf .coboundedI1 inf-commute)
also have ... = (Dmono u 1) ∗ D

by (simp add: div-mono-vector vector-inf-one-comp)
also have ... ≤ Dfactor ∗ D

by (simp add: assms(1 ,2) div-mono-one-div-factor mult-left-isotone)
finally show Dmono u D ∗ Dfactor ≤ Dfactor ∗ D

.
qed

lemma div-mono-strict-div-factor :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -

shows Dmono u (D u −1) ∗ Dfactor ≤ Dfactor ∗ (D u −1)
proof −

have Dmono u (D u −1) ∗ Dfactor ≤ Dmono u (D u −1) ∗ D
using div-factor-div comp-inf .mult-isotone mult-isotone by blast

also have ... ≤ Dmono u D u −1
using assms(2 ,3) comp-inf .semiring.mult-left-mono strict-order-transitive-2

by auto
also have ... = (Dmono u 1) ∗ (D u −1)

by (simp add: div-mono-vector inf .sup-monoid.add-assoc vector-inf-one-comp)
also have ... ≤ Dfactor ∗ (D u −1)

by (simp add: assms(1 ,2) div-mono-one-div-factor mult-left-isotone)
finally show ?thesis

.
qed

lemma div-factor-div-strict:

33

assumes D1-reflexive -
and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dfactor ∗ D u −1 = Dfactor ∗ (D u −1)
proof (rule order .antisym)

have Dfactor ∗ D u −1 ≤ Dmono u D u −1
by (metis assms div-factor-div div-factor-div-mono-div-factor div-idempotent

inf .bounded-iff inf .cobounded1 inf .sup-left-isotone mult-left-isotone)
also have ... = (Dmono u 1) ∗ (D u −1)

by (simp add: div-mono-vector inf .sup-monoid.add-assoc vector-inf-one-comp)
also have ... ≤ Dfactor ∗ (D u −1)

using assms(1 ,2) div-mono-one-div-factor mult-left-isotone by auto
finally show Dfactor ∗ D u −1 ≤ Dfactor ∗ (D u −1)

.
have Dfactor ∗ (D u −1) ≤ D ∗ (D u −1)

by (simp add: div-factor-div mult-left-isotone)
also have ... ≤ −1

by (simp add: assms(1 ,2 ,3) strict-order-transitive-eq-2)
finally show Dfactor ∗ (D u −1) ≤ Dfactor ∗ D u −1

by (simp add: mult-right-isotone)
qed

lemma div-factor-strict:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dfactor u −1 ≤ Dfactor ∗ (D u −1)
by (metis assms div-factor-div-strict comp-right-one

inf .sup-monoid.add-commute inf .sup-right-isotone mult-right-isotone)

lemma div-factor-div-mono-div:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -

shows Dfactor ∗ D = Dmono u D
proof (rule order .antisym)

show Dfactor ∗ D ≤ Dmono u D
by (smt (verit, ccfv-SIG) assms(3) div-factor-div div-factor-mono

div-mono-vector comp-isotone inf .boundedI inf .order-trans order .refl top-greatest)
show Dmono u D ≤ Dfactor ∗ D

by (metis assms(1 ,2) div-mono-one-div-factor div-mono-vector
mult-left-isotone vector-export-comp-unit)
qed

34

lemma div-factor-div-div-factor :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dfactor ∗ D ≤ D ∗ Dfactor
by (simp add: assms div-factor-div-mono-div-factor)

lemma div-f-decomposable-eq:
assumes D3-transitive -

and D9-f-decomposable -
shows Datoms u D = Datoms u D ∗ Dfactor

by (smt (verit, ccfv-threshold) assms div-factor-div inf .absorb2
inf .sup-monoid.add-assoc inf-commute mult-isotone mult-right-isotone)

lemma div-f-decomposable-iff-1 :
assumes D3-transitive -

shows D9-f-decomposable - ←→ Datoms u D = Datoms u D ∗ Dfactor
using assms div-f-decomposable-eq by fastforce

lemma div-f-decomposable-iff-2 :
assumes D3-transitive -

shows Dmono u D ≤ D ∗ Dfactor ←→ Dmono u D = Dmono u D ∗ Dfactor
by (smt (verit, ccfv-SIG) assms div-factor-div div-mono-vector inf .absorb1

inf .cobounded2 inf .le-iff-sup inf .sup-monoid.add-assoc mult-isotone
vector-inf-comp)

lemma div-factor-not-bot-conv:
assumes D2-antisymmetric -

shows Dfactor ≤ −DbotT
by (smt (verit, best) assms div-least-converse div-least-not-mono

div-factor-div-mono inf .absorb2 inf .coboundedI1 p-shunting-swap)

lemma div-total-top-factor :
assumes D2-antisymmetric -

and D6-least-surjective -
shows total (−(top ∗ Dfactor))

proof −
have top = −(top ∗ −DbotT) ∗ top

using assms div-least-point surjective-conv-total vector-conv-compl by auto
also have ... ≤ −(top ∗ Dfactor) ∗ top

by (simp add: assms(1) div-factor-not-bot-conv mult-isotone)
finally show ?thesis

by (simp add: dual-order .antisym)
qed

35

lemma dif-f-decomposable-iff-3 :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D8-fibered -
and D11-atomic -

shows D9-f-decomposable - ←→ Dmono u D ≤ D ∗ Dfactor
using assms div-atoms-mono div-f-decomposable-iff-1 div-f-decomposable-iff-2

div-f-decomposable-mono inf .sup-relative-same-increasing by blast

2.6 Support
lemma div-support-div:

assumes D1-reflexive -
and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows Dsupport ≤ DT

proof −
have −DT = −DT ∗ Dfactor

by (metis assms div-f-decomposable-char-1 conv-complement conv-dist-comp
conv-involutive)

also have ... ≤ −(Datoms u D)T ∗ Dfactor
by (simp add: conv-isotone mult-left-isotone)

finally have −(−(Datoms u D)T ∗ Dfactor) ≤ DT

using compl-le-swap2 by blast
thus ?thesis

using Dsupport-def symmetric-quotient-def inf .coboundedI2 by auto
qed

lemma div-support-univalent:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows univalent Dsupport
by (metis assms div-f-decomposable-char-2 Dsupport-def syq-comp-transitive

syq-converse)

lemma div-support-mapping:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -

36

and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D13-supportable -

shows mapping Dsupport
by (simp add: assms div-support-univalent)

lemma div-support-2 :
assumes D2-antisymmetric -

and D3-transitive -
and D9-f-decomposable -
and D11-atomic -

shows Dsupport = −((Datoms u D)T ∗ −Dfactor) u −(−DT ∗ (Datoms u
D))
proof (rule order .antisym)

have −DT ∗ (Datoms u D) ≤ −DT ∗ D ∗ Dfactor
by (simp add: assms(3) comp-associative mult-right-isotone)

also have ... ≤ −(Datoms u D)T ∗ Dfactor
by (meson assms(2) comp-isotone inf-le2 order .refl order-trans schroeder-6)

finally show Dsupport ≤ −((Datoms u D)T ∗ −Dfactor) u −(−DT ∗ (Datoms
u D))

using Dsupport-def symmetric-quotient-def comp-inf .mult-right-isotone by
auto

have D u Dfactor ∗ DfactorT ≤ DT

using Dfactor-def maximal-comparable by auto
hence Datoms u D u Dfactor ∗ DfactorT ≤ Datoms u D u DT

by (simp add: inf .coboundedI2 inf .sup-monoid.add-assoc)
also have ... ≤ DatomsT

by (smt (verit, ccfv-threshold) assms(1) comp-inf .covector-comp-inf
comp-inf .mult-left-isotone inf-commute inf-top.left-neutral le-inf-iff one-inf-conv)

finally have Dfactor ∗ DfactorT ≤ DatomsT t −D t −Datoms
by (simp add: heyting.implies-galois-var sup.left-commute

sup-monoid.add-commute)
hence DfactorT ∗ −(DatomsT t −D t −Datoms)T ≤ −DfactorT

using schroeder-5 by auto
hence 1 : DfactorT ∗ (−Datoms u DT u DatomsT) ≤ −DfactorT

by (simp add: conv-complement conv-dist-sup)
have DfactorT ∗ (−Datoms u DT ∗ (Datoms u D)) = DfactorT ∗ (−Datoms u

DT u DatomsT) ∗ (Datoms u D)
by (metis div-atoms-vector covector-inf-comp-2 vector-complement-closed

vector-inf-comp mult-assoc)
also have ... ≤ −DfactorT ∗ (Datoms u D)

using 1 mult-left-isotone by blast
finally have 2 : DfactorT ∗ (−Datoms u DT ∗ (Datoms u D)) ≤ −DfactorT ∗

(Datoms u D)
.

have DfactorT ∗ (−Datoms u DT ∗ (Datoms u −D)) ≤ DT ∗ DT ∗ (Datoms u
−D)

37

by (simp add: div-factor-div comp-associative comp-isotone conv-isotone)
also have ... ≤ DT ∗ (Datoms u −D)

by (simp add: assms(2) mult-left-isotone transitive-conv-closed)
finally have 3 : DfactorT ∗ (−Datoms u DT ∗ (Datoms u −D)) ≤ DT ∗

(Datoms u −D)
.

have DfactorT ∗ −(Datoms u D) = DfactorT ∗ (−D u Datoms) t DfactorT ∗
−Datoms

by (smt (verit, del-insts) double-compl inf-import-p mult-left-dist-sup
p-dist-sup sup-monoid.add-commute)

also have ... ≤ DT ∗ (−D u Datoms) t (Dfactor u Dmono)T ∗ −Datoms
using div-factor-div div-factor-mono comp-inf .semiring.add-right-mono

conv-order mult-left-isotone sup-right-isotone by auto
also have ... = DT ∗ (−D u Datoms) t DfactorT ∗ (−Datoms u Dmono)

by (simp add: Dmono-def comp-inf-vector conv-dist-comp conv-dist-inf)
also have ... ≤ DT ∗ (−D u Datoms) t DfactorT ∗ (−Datoms u −Dbot)

using assms(1) div-least-not-mono mult-right-isotone p-antitone-iff
sup-right-isotone by force

also have ... ≤ DT ∗ (−D u Datoms) t DfactorT ∗ (−Datoms u DT ∗ Datoms)
by (simp add: assms(4))

also have ... = DT ∗ (−D u Datoms) t DfactorT ∗ (−Datoms u DT ∗
(Datoms u D)) t DfactorT ∗ (−Datoms u DT ∗ (Datoms u −D))

by (metis inf-sup-distrib1 inf-top-right mult-left-dist-sup sup-commute
sup-compl-top sup-left-commute)

also have ... ≤ DT ∗ (−D u Datoms) t −DfactorT ∗ (Datoms u D)
using 2 3 by (smt (verit, best) comp-inf .semiring.add-right-mono

inf .sup-monoid.add-commute sup-absorb2 sup-commute sup-monoid.add-assoc)
also have ... = −DfactorT ∗ (Datoms u D) t (Datoms u D)T ∗ −D

by (simp add: div-atoms-vector conv-dist-inf covector-inf-comp-3 inf-commute
sup-commute)

finally have DfactorT ∗ −(Datoms u D) ≤ −DfactorT ∗ (Datoms u D) t
(Datoms u D)T ∗ −D

.
hence −(Datoms u D)T ∗ Dfactor ≤ (Datoms u D)T ∗ −Dfactor t −DT ∗

(Datoms u D)
by (smt (verit, best) conv-complement conv-dist-comp conv-dist-sup

conv-involutive conv-order)
hence −((Datoms u D)T ∗ −Dfactor) u −(−DT ∗ (Datoms u D)) ≤
−(−(Datoms u D)T ∗ Dfactor)

using brouwer .p-antitone by fastforce
thus −((Datoms u D)T ∗ −Dfactor) u −(−DT ∗ (Datoms u D)) ≤ Dsupport

using Dsupport-def symmetric-quotient-def by simp
qed

lemma noyau-div-support:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -

38

and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D13-supportable -

shows noyau (Datoms u D) = Dsupport ∗ DsupportT
using assms div-support-mapping Dsupport-def syq-comp-syq-top syq-converse

by auto

lemma div-support-transitive:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D13-supportable -

shows idempotent Dsupport
proof −

let ?r = Datoms u D
let ?s = Datoms u Dfactor
have ?r ∗ −(?rT ∗ −?s) ∗ −(?rT ∗ −?s) ≤ ?s ∗ −(?rT ∗ −?s)

by (metis complement-conv-sub conv-complement mult-left-isotone schroeder-5)
also have ... ≤ ?r ∗ −(?rT ∗ −?s)

by (simp add: div-factor-div le-infI2 mult-left-isotone)
also have ... ≤ ?s

using pp-increasing schroeder-3 by blast
finally have −(?rT ∗ −?s) ∗ −(?rT ∗ −?s) ≤ −(?rT ∗ −?s)

by (simp add: p-antitone-iff schroeder-3-p mult-assoc)
hence 1 : −(?rT ∗ −Dfactor) ∗ −(?rT ∗ −Dfactor) ≤ −(?rT ∗ −Dfactor)

by (simp add: div-atoms-vector conv-dist-inf covector-inf-comp-3
inf .sup-monoid.add-commute)

have −(−?rT ∗ ?r) ∗ −(−?rT ∗ ?r) ∗ ?rT ≤ −(−?rT ∗ ?r) ∗ ?rT

by (metis complement-conv-sub double-compl mult-right-isotone mult-assoc)
also have ... ≤ ?rT

using brouwer .pp-increasing complement-conv-sub inf .order-trans by blast
finally have −(−?rT ∗ ?r) ∗ −(−?rT ∗ ?r) ≤ −(−?rT ∗ ?r)

by (simp add: p-antitone-iff schroeder-4-p)
hence 2 : −(−DT ∗ ?r) ∗ −(−DT ∗ ?r) ≤ −(−DT ∗ ?r)

by (smt (verit, del-insts) div-atoms-vector conv-dist-inf covector-inf-comp-3
inf .sup-monoid.add-commute inf-import-p)

have Dsupport ∗ Dsupport ≤ −(?rT ∗ −Dfactor) ∗ −(?rT ∗ −Dfactor) u
−(−DT ∗ ?r) ∗ −(−DT ∗ ?r)

by (simp add: assms(2 ,3 ,6 ,7) div-support-2 mult-isotone)
also have ... ≤ Dsupport

using 1 2 assms(2 ,3 ,6 ,7) div-support-2 inf .sup-mono by auto
finally have transitive Dsupport

.
thus ?thesis

39

using assms div-support-mapping transitive-mapping-idempotent by blast
qed

lemma div-support-below-noyau:
assumes D2-antisymmetric -

and D3-transitive -
and D9-f-decomposable -
and D11-atomic -

shows Dsupport ≤ noyau (Datoms u D)
proof −

have −((Datoms u D)T ∗ −Dfactor) ≤ −((Datoms u D)T ∗ −D)
by (simp add: div-factor-div mult-right-isotone)

also have ... = −((Datoms u D)T ∗ −(Datoms u D))
by (smt (verit, ccfv-threshold) div-atoms-vector comp-inf-vector

conv-dist-comp conv-dist-inf inf-commute inf-import-p symmetric-top-closed)
finally have 1 : −((Datoms u D)T ∗ −Dfactor) ≤ −((Datoms u D)T ∗
−(Datoms u D))

.
have −(−DT ∗ (Datoms u D)) = −(−(Datoms u D)T ∗ (Datoms u D))

by (smt (verit, ccfv-threshold) div-atoms-vector comp-inf-vector
conv-dist-comp conv-dist-inf inf-commute inf-import-p symmetric-top-closed)

thus Dsupport ≤ noyau (Datoms u D)
using 1 assms div-support-2 symmetric-quotient-def inf .sup-left-isotone by

auto
qed

lemma div-support-least-noyau:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D13-supportable -

shows Dsupport = (least D (noyau (Datoms u D)))T

proof (rule order .antisym)
let ?n = noyau (Datoms u D)
have ?n ≤ Dsupport ∗ D

by (metis assms div-support-div conv-involutive conv-order mult-right-isotone
noyau-div-support)

hence DsupportT ∗ ?n ≤ D
using assms div-support-mapping shunt-mapping by blast

hence Dsupport ≤ −(?n ∗ −DT)
by (simp add: compl-le-swap1 conv-complement schroeder-6-p)

hence Dsupport ≤ −(−D ∗ ?n)T
by (simp add: conv-complement conv-dist-comp syq-converse)

thus Dsupport ≤ (least D ?n)T
using assms(2 ,3 ,6 ,7) div-support-below-noyau least-def syq-converse

40

conv-complement conv-dist-inf by auto
have Dsupport u −1 ≤ (Dsupport u −1) ∗ (Dsupport u −1)T ∗ (Dsupport u
−1)

using ex231c by auto
also have ... ≤ (DT u −1) ∗ DsupportT ∗ Dsupport

using assms(1−7) div-support-div comp-inf .mult-left-isotone comp-isotone
conv-order by auto

also have ... ≤ −D ∗ Dsupport
by (metis assms div-antisymmetric-equal div-support-mapping

div-support-transitive inf-commute mult-isotone order-refl p-shunting-swap
pp-increasing shunt-mapping mult-assoc)

finally have 1 : least D Dsupport ≤ 1
by (metis double-compl least-def p-shunting-swap)

have least D ?n = Dsupport ∗ DsupportT u −(−D ∗ Dsupport ∗ DsupportT)
by (simp add: assms comp-associative least-def noyau-div-support)

also have ... = (Dsupport u −(−D ∗ Dsupport)) ∗ DsupportT
using assms div-support-univalent comp-bijective-complement

injective-comp-right-dist-inf total-conv-surjective by auto
also have ... ≤ DsupportT

using 1 least-def mult-left-isotone by fastforce
finally show (least D ?n)T ≤ Dsupport

using conv-order by fastforce
qed

lemma div-factor-support:
assumes D13-supportable -

shows Datoms u D = Dfactor ∗ DsupportT
by (metis assms Dsupport-def comp-syq-top inf .sup-monoid.add-commute

inf-top.left-neutral surjective-conv-total syq-converse)

lemma div-supportable-iff :
assumes D2-antisymmetric -

and D6-least-surjective -
shows D13-supportable - ←→ Datoms u D = Dfactor ∗ DsupportT

by (metis assms Dsupport-def div-total-top-factor comp-syq-surjective
conv-dist-comp symmetric-top-closed syq-converse)

2.7 Increments
lemma least-div-atoms-succ:

Dbot u DatomsT ≤ Dsucc
proof −

have 1 : Dbot u DatomsT ≤ D
using div-least-div inf .coboundedI1 by blast

have 2 : Dbot u DatomsT ≤ −1
by (metis div-least-not-atom comp-inf .semiring.mult-not-zero

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute one-inf-conv
pseudo-complement)

have (D u −1)T ∗ −Dbot ≤ −Datoms

41

by (simp add: Datoms-def minimal-def conv-complement conv-dist-inf)
hence (D u −1) ∗ Datoms ≤ Dbot

by (simp add: schroeder-3-p)
hence (D u −1) ∗ Datoms ∗ DbotT ≤ Dbot

by (metis div-least-vector mult-isotone top-greatest)
also have ... ≤ D

by (simp add: div-least-div)
finally have Dbot ∗ DatomsT ≤ −(−DT ∗ (D u −1))

by (metis comp-associative compl-le-swap1 conv-dist-comp conv-involutive
schroeder-6)

hence Dbot u DatomsT ≤ −(−DT ∗ (D u −1))
by (simp add: div-atoms-vector div-least-vector vector-covector)

thus ?thesis
using 1 2 Dsucc-def greatest-def by auto

qed

lemma least-div-succ:
assumes D12-infinite-base -

shows Dbot ≤ Dsucc ∗ top
proof −

have Dbot ≤ (Dbot u DatomsT) ∗ top
using assms div-atom-surjective div-least-vector surjective-conv-total

vector-inf-comp by auto
also have ... ≤ Dsucc ∗ top

using least-div-atoms-succ mult-left-isotone by blast
finally show ?thesis

.
qed

lemma noyau-div:
assumes D1-reflexive -

and D2-antisymmetric -
shows noyau D = 1

by (simp add: assms reflexive-antisymmetric-noyau)

lemma div-discrete-fibers-pred-geq:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows DsuccT ∗ top ≤ Dmono
proof −

have Dfactor u −DmonoT ≤ −1
by (metis brouwer .p-antitone conv-complement div-factor-mono

inf .coboundedI2 inf-commute one-inf-conv p-shunting-swap)
hence Dfactor u −DmonoT ≤ D u −1

42

by (simp add: div-factor-div le-infI1)
hence Dsucc ≤ D u −1 u −(−DT ∗ (Dfactor u −DmonoT))

by (metis Dsucc-def greatest-def inf .sup-right-isotone mult-right-isotone
p-antitone)

also have ... = D u −1 u −(−DT ∗ Dfactor u −DmonoT)
by (simp add: covector-comp-inf div-mono-vector vector-conv-compl)

also have ... = (D u −1 u −(−DT ∗ Dfactor)) t (D u −1 u DmonoT)
by (simp add: comp-inf .semiring.distrib-left)

also have ... = (D u −1 u DT) t (D u −1 u DmonoT)
by (metis assms div-f-decomposable-char-1 conv-complement conv-dist-comp

conv-involutive double-compl)
also have ... = D u −1 u DmonoT

using assms(1 ,2) div-antisymmetric-equal inf-commute by fastforce
also have ... ≤ DmonoT

by simp
finally show ?thesis

by (metis conv-involutive conv-order div-mono-vector mult-left-isotone)
qed

lemma div-discrete-fibers-pred-eq:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D15b-discrete-fibers-pred -

shows Dmono = DsuccT ∗ top
by (simp add: assms div-discrete-fibers-pred-geq dual-order .eq-iff)

lemma div-discrete-fibers-pred-iff :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -

shows D15b-discrete-fibers-pred - ←→ Dmono = DsuccT ∗ top
using assms div-discrete-fibers-pred-geq by force

lemma div-succ-univalent:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -

43

and D11-atomic -
and D15b-discrete-fibers-pred -

shows DsuccT ∗ (−Dbot u Dsucc) ≤ 1
proof −

have 1 : Dsucc ≤ D
by (simp add: Dsucc-def greatest-def inf-assoc)

have 2 : DT ∗ Datoms u D ≤ DT ∗ (Datoms u D)
using assms(3 ,7) div-via-atom comp-inf .coreflexive-commutative by auto

have 3 : (D u −1) ∗ DsuccT ≤ D
by (metis Dsucc-def conv-involutive double-compl greatest-def p-dist-sup

schroeder-6 sup.cobounded2)
have DsuccT ∗ Dsucc u D u −1 ≤ (DsuccT u (D u −1) ∗ DsuccT) ∗ Dsucc

by (simp add: comp-inf .vector-inf-comp dedekind-2)
also have ... ≤ (DsuccT u D) ∗ Dsucc

using 3 inf .sup-right-isotone mult-left-isotone by blast
also have ... ≤ ((D u −1)T u D) ∗ Dsucc

using Dsucc-def conv-dist-inf greatest-def inf .cobounded1 inf .sup-left-isotone
mult-left-isotone by auto

also have ... = bot
by (metis assms(2) antisymmetric-inf-diversity conv-inf-bot-iff

equivalence-one-closed inf-compl-bot-right mult-1-right mult-left-zero schroeder-2)
finally have 4 : DsuccT ∗ Dsucc u D ≤ 1

by (simp add: shunting-1)
hence 5 : DsuccT ∗ Dsucc u DT ≤ 1

by (metis conv-dist-comp conv-dist-inf conv-involutive coreflexive-symmetric)
have DsuccT ∗ (−Dbot u Dsucc) ≤ top ∗ Dsucc

by (simp add: mult-isotone)
also have ... = DmonoT

using assms div-discrete-fibers-pred-eq conv-dist-comp by fastforce
finally have DsuccT ∗ (−Dbot u Dsucc) = DsuccT ∗ (−Dbot u Dsucc) u

DmonoT

using inf .order-iff by auto
also have ... = Dmono u DsuccT ∗ (−Dbot u Dsucc) u DmonoT

by (metis assms div-discrete-fibers-pred-eq div-mono-vector domain-comp
vector-export-comp-unit vector-inf-comp)

also have ... ≤ Dmono u DT ∗ (−Dbot u D) u DmonoT

using 1 conv-order inf .sup-left-isotone inf .sup-right-isotone mult-isotone by
auto

also have ... = Dmono u DT ∗ (DT ∗ Datoms u D) u DmonoT

using assms(7) by auto
also have ... ≤ Dmono u DT ∗ DT ∗ (Datoms u D) u DmonoT

using 2 by (metis comp-inf .mult-left-isotone inf-commute mult-right-isotone
mult-assoc)

also have ... = Dmono u DT ∗ (Datoms u D) u DmonoT

by (metis assms(1 ,3) div-idempotent conv-dist-comp)
also have ... ≤ D t DT

using assms(5) by force
finally have DsuccT ∗ (−Dbot u Dsucc) = DsuccT ∗ (−Dbot u Dsucc) u (D t

DT)

44

using inf .absorb1 by auto
also have ... ≤ DsuccT ∗ Dsucc u (D t DT)

using comp-inf .mult-left-isotone comp-isotone by force
also have ... = (DsuccT ∗ Dsucc u D) t (DsuccT ∗ Dsucc u DT)

using inf-sup-distrib1 by blast
also have ... ≤ 1

using 4 5 le-sup-iff by blast
finally show ?thesis

.
qed

lemma div-succ-injective:
assumes D2-antisymmetric -

shows injective Dsucc
by (simp add: assms Dsucc-def greatest-injective)

lemma div-succ-below-div-irreflexive:
Dsucc ≤ D u −1
by (metis Dsucc-def greatest-def inf-le1)

lemma div-succ-below-div:
Dsucc ≤ D
using div-succ-below-div-irreflexive by auto

lemma div-succ-mono-bot:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D12-infinite-base -
and D15a-discrete-fibers-succ -

shows Dsucc ∗ top = Dmonobot
proof −

have Dsucc ∗ top ≤ Dsucc ∗ DsuccT ∗ Dsucc ∗ top
by (simp add: comp-isotone ex231c)

also have ... ≤ Dsucc ∗ DsuccT ∗ top
by (simp add: mult-right-isotone mult-assoc)

also have ... ≤ Dsucc ∗ Dmono
by (simp add: assms div-discrete-fibers-pred-geq mult-right-isotone mult-assoc)

also have ... ≤ D ∗ Dmono
using div-succ-below-div mult-left-isotone by auto

also have ... ≤ Dmonobot
using assms(3 ,7) div-mono-downclosed Dmonobot-def

heyting.implies-galois-var sup-commute by auto
finally have Dsucc ∗ top ≤ Dmonobot

.

45

thus ?thesis
by (simp add: assms(8 ,9) least-div-succ Dmonobot-def order .antisym)

qed

lemma div-discrete-fibers-succ-iff :
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D12-infinite-base -

shows D15a-discrete-fibers-succ - ←→ Dsucc ∗ top = Dmonobot
using Dmonobot-def assms div-succ-mono-bot by force

lemma div-succ-bot-atoms:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

shows DsuccT ∗ Dbot = Datoms
proof (rule order .antisym)

have DsuccT ∗ Dbot ≤ (D u −1)T ∗ top
using div-succ-below-div-irreflexive conv-order mult-isotone by auto

also have ... ≤ −Dbot
by (simp add: assms(2) div-strict-bot schroeder-3-p)

finally have 1 : DsuccT ∗ Dbot ≤ −Dbot
.

have −Dbot ∗ DbotT ≤ −D
by (metis assms(1 ,3) bot-div-bot complement-conv-sub)

hence (D u −1)T ∗ −Dbot ∗ DbotT ≤ (D u −1)T ∗ −D
by (simp add: comp-isotone mult-assoc)

hence 2 : −((D u −1)T ∗ −D) ∗ Dbot ≤ −((D u −1)T ∗ −Dbot)
by (simp add: schroeder-4-p)

have Dsucc ≤ −(−DT ∗ (D u −1))
by (simp add: Dsucc-def greatest-def)

hence DsuccT ≤ −((D u −1)T ∗ −D)
by (simp add: Dsucc-def conv-complement conv-dist-comp conv-dist-inf

greatest-def)
hence DsuccT ∗ Dbot ≤ −((D u −1)T ∗ −D) ∗ Dbot

using mult-left-isotone by blast
also have ... ≤ −((D u −1)T ∗ −Dbot)

using 2 by blast
finally show DsuccT ∗ Dbot ≤ Datoms

using 1 by (simp add: Datoms-def conv-complement conv-dist-inf
minimal-def)

have Datoms ∗ DbotT ≤ DsuccT
by (metis div-atoms-vector least-div-atoms-succ double-compl schroeder-3-p

46

schroeder-5 vector-covector div-least-vector)
thus Datoms ≤ DsuccT ∗ Dbot

using assms(2 ,4) div-least-point shunt-bijective by blast
qed

lemma div-succ-inverse-poly:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D15b-discrete-fibers-pred -

shows DsuccT ∗ Dsucc ∗ (Dmono u −Datoms u 1) = Dmono u −Datoms u 1
proof (rule order .antisym)

let ?q = Dmono u −Datoms u 1
have ?q = ?q u DsuccT ∗ top

using assms(1−3 ,5−9) div-discrete-fibers-pred-eq inf-commute
inf-left-commute by auto

also have ... = ?q u (DsuccT u ?q ∗ top) ∗ (top u Dsucc ∗ ?q)
by (simp add: dedekind-eq inf .sup-monoid.add-commute)

also have ... ≤ DsuccT ∗ Dsucc ∗ ?q
using comp-associative inf .coboundedI2 inf-vector-comp by auto

finally show ?q ≤ DsuccT ∗ Dsucc ∗ ?q
.

have Dsucc ∗ ?q ≤ Dsucc ∗ −Datoms
by (simp add: inf .coboundedI1 mult-right-isotone)

also have ... ≤ −Dbot
by (metis assms(1−4) div-succ-bot-atoms conv-complement-sub-leq

conv-involutive)
finally have DsuccT ∗ Dsucc ∗ ?q = DsuccT ∗ (−Dbot u Dsucc ∗ ?q)

by (simp add: inf .le-iff-sup mult-assoc)
also have ... = DsuccT ∗ (−Dbot u Dsucc) ∗ ?q

by (simp add: Dbot-def comp-associative least-def vector-export-comp)
also have ... ≤ ?q

by (metis assms(1−3 ,5−9) div-succ-univalent coreflexive-comp-inf
inf .sup-right-divisibility)

finally show DsuccT ∗ Dsucc ∗ ?q ≤ ?q
.

qed

lemma div-inc-injective:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D7-pre-f-decomposable -
and D8-fibered -

47

and D9-f-decomposable -
and D11-atomic -

shows injective Dinc
using assms div-f-decomposable-char-2 Dinc-def syq-comp-top-syq syq-converse

by force

lemma div-factor-not-bot:
assumes D2-antisymmetric -

shows Dfactor ≤ −Dbot
using assms div-factor-mono div-least-not-mono compl-le-swap1 inf .order-trans

by blast

lemma div-factor-conv-inc:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

shows Dfactor ∗ DincT ≤ Dmono u −Datoms
proof −

have 1 : Dfactor ∗ DincT ≤ Dmono
by (metis div-factor-mono div-mono-vector mult-isotone top-greatest)

have Dfactor ∗ DincT = Dfactor ∗ symmetric-quotient (Dsucc ∗ Dfactor)
Dfactor

by (simp add: Dinc-def syq-converse)
also have ... ≤ Dfactor ∗ −((Dsucc ∗ Dfactor)T ∗ −Dfactor)

using mult-right-isotone symmetric-quotient-def by force
also have ... ≤ Dfactor ∗ −((Dsucc ∗ Dfactor)T ∗ Dbot)

using assms(2) div-factor-not-bot mult-right-isotone p-antitone-iff by auto
also have ... = Dfactor ∗ −(DfactorT ∗ Datoms)

by (simp add: assms div-succ-bot-atoms conv-dist-comp mult-assoc)
also have ... ≤ −Datoms

by (simp add: schroeder-3)
finally show ?thesis

using 1 by auto
qed

lemma div-inc-univalent:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D15b-discrete-fibers-pred -

shows univalent Dinc
proof −

let ?sf = Dsucc ∗ Dfactor

48

let ?p = symmetric-quotient ?sf Dfactor ∗ top u 1
let ?q = Dmono u −Datoms u 1
have Dfactor ∗ ?p ≤ Dfactor ∗ DincT ∗ top

by (simp add: Dinc-def mult-right-isotone syq-converse mult-assoc)
also have ... ≤ Dmono u −Datoms

by (metis assms(1−4) div-atoms-vector div-factor-conv-inc Dmono-def
mult-left-isotone vector-complement-closed vector-export-comp)

finally have Dfactor ∗ ?p ≤ ?q ∗ Dfactor ∗ ?p
by (smt (verit, ccfv-threshold) div-atoms-vector div-mono-vector

complement-vector inf .le-sup-iff mult-left-one order-refl vector-inf-comp)
hence Dfactor ∗ ?p = ?q ∗ Dfactor ∗ ?p

by (simp add: inf .absorb2 test-comp-test-inf)
hence 1 : DsuccT ∗ ?sf ∗ ?p = Dfactor ∗ ?p

by (metis assms div-succ-inverse-poly mult-assoc)
have DincT ∗ Dinc = symmetric-quotient ?sf Dfactor ∗ symmetric-quotient

Dfactor ?sf
by (simp add: Dinc-def syq-converse)

also have ... = symmetric-quotient ?sf Dfactor ∗ top u symmetric-quotient ?sf
?sf u top ∗ symmetric-quotient Dfactor ?sf

by (smt (verit) comp-isotone inf .absorb-iff2 inf .sup-monoid.add-assoc
order .refl syq-comp-top-syq top.extremum)

also have ... = ?p ∗ symmetric-quotient ?sf ?sf u top ∗ symmetric-quotient
Dfactor ?sf

using vector-export-comp-unit by auto
also have ... = ?p ∗ symmetric-quotient ?sf ?sf ∗ ?p

by (simp add: comp-inf-vector inf-commute syq-converse)
also have ... = ?p ∗ symmetric-quotient (?sf ∗ ?p) (?sf ∗ ?p) ∗ ?p

using coreflexive-comp-syq-comp-coreflexive inf-le2 by blast
also have ... ≤ ?p ∗ symmetric-quotient (DsuccT ∗ ?sf ∗ ?p) (DsuccT ∗ ?sf ∗

?p) ∗ ?p
using comp-isotone order .refl syq-comp-isotone mult-assoc by auto

also have ... = ?p ∗ symmetric-quotient (Dfactor ∗ ?p) (Dfactor ∗ ?p) ∗ ?p
using 1 by auto

also have ... = ?p ∗ symmetric-quotient Dfactor Dfactor ∗ ?p
by (metis coreflexive-comp-syq-comp-coreflexive inf .cobounded2)

also have ... ≤ symmetric-quotient Dfactor Dfactor
by (simp add: assms(1−3 ,5−8) div-f-decomposable-char-2

vector-export-comp-unit)
also have ... = 1

using assms(1−3 ,5−8) div-f-decomposable-char-2 by blast
finally show ?thesis

.
qed

lemma div-inc-mapping:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -

49

and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D15b-discrete-fibers-pred -
and D16-incrementable -

shows mapping Dinc
using assms div-inc-univalent by blast

lemma div-inc-mapping:
assumes D1-reflexive -

and D2-antisymmetric -
and D3-transitive -
and D6-least-surjective -
and D7-pre-f-decomposable -
and D8-fibered -
and D9-f-decomposable -
and D11-atomic -
and D13-supportable -
and D15a-discrete-fibers-succ -
and D15b-discrete-fibers-pred -
and D16-incrementable -

shows surjective Datoms
nitpick[expect=genuine,card=2]
oops

end

end

3 Mono-Atomic Elements
theory Mono-Atomic

imports Stone-Relation-Algebras.Relation-Algebras

begin

This theory defines mono-atomic elements in a bounded semilattice and
shows that they correspond to join-irreducible elements under the divisibility
axioms A1–A17 of [2]. In the model of natural numbers both types of
elements correspond to prime powers.

3.1 Mono-atomic
context order-bot
begin

50

Divisibility axioms A1 (reflexivity), A2 (antisymmetry), A3 (transitivity)
and A6 (least element) are the axioms of class order-bot, so not mentioned
explicitly.

An atom in a partial order is an element that is strictly above only the
least element bot.
definition atom a ≡ a 6= bot ∧ (∀ x . x ≤ a −→ x = bot ∨ x =
a)
abbreviation atom-below a x ≡ atom a ∧ a ≤ x

A mono-atomic element has exactly one atom below it.
definition mono-atomic x ≡ (∃ !a . atom-below a x)
definition mono-atomic-with x a ≡ atom-below a x ∧ (∀ b . atom-below b x
−→ b = a)
abbreviation mono-atomic-below x y ≡ mono-atomic x ∧ x ≤ y
abbreviation mono-atomic-above x y ≡ mono-atomic x ∧ y ≤ x
definition mono-atomic-above-or-bot x y ≡ x = bot ∨ mono-atomic-above x y

Divisibility axiom A11 (atomicity) states that every element except bot
is above some atom.
abbreviation A11-atomic :: ′a ⇒ bool where A11-atomic - ≡
(∀ x . x 6= bot −→ (∃ a . atom-below a x))

lemma mono-atomic-above:
mono-atomic x ←→ (∃ a . mono-atomic-with x a)
by (metis mono-atomic-with-def mono-atomic-def)

Among others, the following divisibility axioms are considered in [2]. In
the model of natural numbers,

∗ A7 (pre-f-decomposability) expresses that every number x is the least
upper bound of the prime powers below x;

∗ A8 (fibered) expresses that the prime powers can be partitioned into
chains;

∗ A9 (f-decomposability) expresses that for every number x above an
atom a there is a maximal prime power of a below x;

∗ A14 (truncability) express that the prime powers contained in a num-
ber y can be restricted to those whose atoms are not below a number
x.

Their definitions are based on join-irreducible elements and given in class
bounded-semilattice-sup-bot below. Here we introduce corresponding axioms
B7, B8, B9 and B14 based on mono-atomic elements.
abbreviation B7-pre-f-decomposable :: ′a ⇒ bool where B7-pre-f-decomposable -
≡ (∀ x y . (∀ z . mono-atomic-below z x −→ z ≤ y) −→ x ≤ y)

51

abbreviation B8-fibered :: ′a ⇒ bool where B8-fibered - ≡ (∀ x
y z . mono-atomic x ∧ mono-atomic y ∧ mono-atomic z ∧ ((x ≤ z ∧ y ≤ z) ∨ (z
≤ x ∧ z ≤ y)) −→ x ≤ y ∨ y ≤ x)
abbreviation B9-f-decomposable :: ′a ⇒ bool where B9-f-decomposable -
≡ (∀ x a . atom a −→ (∃ z . mono-atomic-above-or-bot z a ∧ z ≤ x ∧ (∀w .
mono-atomic-above-or-bot w a ∧ w ≤ x −→ w ≤ z)))

Function mval returns the value whose existence is asserted by axiom
B9.
definition mval a x ≡ SOME z . mono-atomic-above-or-bot z a ∧ z ≤ x ∧ (∀w .
mono-atomic-above-or-bot w a ∧ w ≤ x −→ w ≤ z)

lemma mval-char :
assumes B9-f-decomposable -

and atom a
shows mono-atomic-above-or-bot (mval a x) a ∧ mval a x ≤ x ∧ (∀w .

mono-atomic-above-or-bot w a ∧ w ≤ x −→ w ≤ mval a x)
proof −

obtain z where mono-atomic-above-or-bot z a ∧ z ≤ x ∧ (∀w .
mono-atomic-above-or-bot w a ∧ w ≤ x −→ w ≤ z)

using assms by blast
thus ?thesis

using mval-def someI by simp
qed

lemma mval-unique:
assumes B9-f-decomposable -

and atom a
and mono-atomic-above-or-bot z a ∧ z ≤ x ∧ (∀w .

mono-atomic-above-or-bot w a ∧ w ≤ x −→ w ≤ z)
shows z = mval a x

by (simp add: assms dual-order .antisym mval-char)

lemma atom-below-mval:
assumes B9-f-decomposable -

and atom a
and a ≤ x

shows a ≤ mval a x
proof −

have mono-atomic-above-or-bot a a
using assms(2) atom-def mono-atomic-above-or-bot-def mono-atomic-def by

auto
thus ?thesis

by (simp add: assms mval-char)
qed

abbreviation B14-truncability :: ′a ⇒ bool where B14-truncability - ≡
(∀ x y . ∃ z . ∀ a . atom a −→ (if a ≤ x then mval a z = bot else mval a z = mval
a y))

52

Function mtrunc returns the value whose existence is asserted by axiom
B14.
definition mtrunc x y ≡ SOME z . ∀ a . atom a −→ (if a ≤ x then mval a z =
bot else mval a z = mval a y)

lemma mtrunc-char :
assumes B14-truncability -

shows ∀ a . atom a −→ (if a ≤ x then mval a (mtrunc x y) = bot else mval a
(mtrunc x y) = mval a y)
proof −

obtain z where ∀ a . atom a −→ (if a ≤ x then mval a z = bot else mval a z =
mval a y)

using assms by blast
thus ?thesis

by (smt mtrunc-def someI)
qed

lemma mtrunc-char-1 :
assumes B14-truncability -

and atom a
and a ≤ x

shows mval a (mtrunc x y) = bot
by (simp add: assms mtrunc-char)

lemma mtrunc-char-2 :
assumes B14-truncability -

and atom a
and ¬ a ≤ x

shows mval a (mtrunc x y) = mval a y
by (simp add: assms mtrunc-char)

lemma mtrunc-unique:
assumes B14-truncability -

and ∀ a . atom a −→ (if a ≤ x then mval a z = bot else mval a z = mval a y)
and atom a

shows mval a z = mval a (mtrunc x y)
by (smt (z3) assms mtrunc-char)

lemma lesseq-iff-mval-below:
assumes B7-pre-f-decomposable -

and B9-f-decomposable -
and atom a

shows x ≤ y ←→ (∀ a . atom a −→ mval a x ≤ y)
proof (rule iffI)

assume 1 : x ≤ y
show ∀ a . atom a −→ mval a x ≤ y
proof (rule allI , rule impI)

fix a
assume atom a

53

thus mval a x ≤ y
using 1 assms(2) dual-order .trans mval-char by blast

qed
next

assume 2 : ∀ a . atom a −→ mval a x ≤ y
have ∀ z . mono-atomic-below z x −→ z ≤ y
proof (rule allI , rule impI)

fix z
assume 3 : mono-atomic-below z x
from this obtain a where 4 : atom-below a z

using mono-atomic-def by blast
hence z ≤ mval a x

using 3 assms(2) mono-atomic-above-or-bot-def mval-char by auto
thus z ≤ y

using 2 4 by auto
qed
thus x ≤ y

using assms(1) by blast
qed

end

3.2 Join-irreducible
context bounded-semilattice-sup-bot
begin

Divisibility axioms A1 (reflexivity), A2 (antisymmetry), A3 (transitiv-
ity), A5 (least upper bound) and A6 (least element) are the axioms of class
bounded-semilattice-sup-bot, so not mentioned explicitly.

A join-irreducible element cannot be expressed as the join of two incom-
parable elements.
definition join-irreducible x ≡ x 6= bot ∧ (∀ y z . x = y t z −→ x =
y ∨ x = z)
abbreviation join-irreducible-below x y ≡ join-irreducible x ∧ x ≤ y
abbreviation join-irreducible-above x y ≡ join-irreducible x ∧ y ≤ x
definition join-irreducible-above-or-bot x y ≡ x = bot ∨ join-irreducible-above x y

Divisibility axioms A7, A8 and A9 based on join-irreducible elements are
introduced here; axiom A14 is not needed for this development.
abbreviation A7-pre-f-decomposable :: ′a ⇒ bool where A7-pre-f-decomposable -
≡ (∀ x y . (∀ z . join-irreducible-below z x −→ z ≤ y) −→ x ≤ y)
abbreviation A8-fibered :: ′a ⇒ bool where A8-fibered - ≡ (∀ x
y z . join-irreducible x ∧ join-irreducible y ∧ join-irreducible z ∧ ((x ≤ z ∧ y ≤
z) ∨ (z ≤ x ∧ z ≤ y)) −→ x ≤ y ∨ y ≤ x)
abbreviation A9-f-decomposable :: ′a ⇒ bool where A9-f-decomposable -
≡ (∀ x a . atom a −→ (∃ z . join-irreducible-above-or-bot z a ∧ z ≤ x ∧ (∀w .
join-irreducible-above-or-bot w a ∧ w ≤ x −→ w ≤ z)))

54

lemma atom-join-irreducible:
assumes atom a

shows join-irreducible a
by (metis assms join-irreducible-def atom-def sup.cobounded1 sup-bot-left)

lemma mono-atomic-with-downclosed:
assumes A11-atomic -

and mono-atomic-with x a
and y 6= bot
and y ≤ x

shows mono-atomic-with y a
using assms mono-atomic-with-def [of y a] mono-atomic-with-def [of x a]

order-lesseq-imp[of y] by blast

3.3 Equivalence
The following result shows that under divisibility axioms A1–A3, A5–A9
and A11, join-irreducible elements coincide with mono-atomic elements.
lemma join-irreducible-iff-mono-atomic:

assumes A7-pre-f-decomposable -
and A8-fibered -
and A9-f-decomposable -
and A11-atomic -

shows join-irreducible x ←→ mono-atomic x
proof (rule iffI)

assume 1 : join-irreducible x
from this obtain a where 2 : atom-below a x

using assms(4) join-irreducible-def by blast
have ∀ b . atom-below b x −→ b = a
proof (rule allI , rule impI)

fix b
assume 3 : atom-below b x
hence join-irreducible a ∧ join-irreducible b

using 2 atom-join-irreducible by auto
hence a ≤ b ∨ b ≤ a

using 1 2 3 assms(2) by blast
thus b = a

using 2 3 atom-def by auto
qed
thus mono-atomic x

using 2 mono-atomic-def by auto
next

assume mono-atomic x
from this obtain a where 4 : mono-atomic-with x a

using mono-atomic-above by blast
hence 5 : x 6= bot

using atom-def le-bot mono-atomic-with-def by blast
have ∀ y z . x = y t z −→ x = y ∨ x = z

55

proof (intro allI , rule impI)
fix y z
assume 6 : x = y t z
show x = y ∨ x = z
proof (cases y = bot ∨ z = bot)

case True
thus x = y ∨ x = z

using 6 by auto
next

case False
hence 7 : mono-atomic-with y a ∧ mono-atomic-with z a

using 4 6 assms(4) sup.cobounded1 sup.cobounded2
mono-atomic-with-downclosed by blast

from this obtain u where 8 : join-irreducible-above-or-bot u a ∧ u ≤ y ∧
(∀w . join-irreducible-above-or-bot w a ∧ w ≤ y −→ w ≤ u)

using assms(3) mono-atomic-with-def by blast
from 7 obtain v where 9 : join-irreducible-above-or-bot v a ∧ v ≤ z ∧ (∀w

. join-irreducible-above-or-bot w a ∧ w ≤ z −→ w ≤ v)
using assms(3) mono-atomic-with-def by blast

have join-irreducible a
using 4 atom-join-irreducible mono-atomic-with-def by blast

hence 10 : u ≤ v ∨ v ≤ u
using 8 9 assms(2) join-irreducible-above-or-bot-def by auto

have 11 : u ≤ v =⇒ y ≤ z
proof −

assume 12 : u ≤ v
have ∀w . join-irreducible-below w y −→ w ≤ z
proof (rule allI , rule impI)

fix w
assume 13 : join-irreducible-below w y
hence mono-atomic-with w a

using 7 by (metis assms(4) join-irreducible-def
mono-atomic-with-downclosed)

hence w ≤ u
using 8 13 by (simp add: join-irreducible-above-or-bot-def

mono-atomic-with-def)
thus w ≤ z

using 9 12 by force
qed
thus y ≤ z

using assms(1) by blast
qed
have v ≤ u =⇒ z ≤ y
proof −

assume 14 : v ≤ u
have ∀w . join-irreducible-below w z −→ w ≤ y
proof (rule allI , rule impI)

fix w
assume 15 : join-irreducible-below w z

56

hence mono-atomic-with w a
using 7 by (metis assms(4) join-irreducible-def

mono-atomic-with-downclosed)
hence w ≤ v

using 9 15 by (simp add: join-irreducible-above-or-bot-def
mono-atomic-with-def)

thus w ≤ y
using 8 14 by force

qed
thus z ≤ y

using assms(1) by blast
qed
thus ?thesis

using 6 10 11 sup.order-iff sup-monoid.add-commute by force
qed

qed
thus join-irreducible x

using 5 join-irreducible-def by blast
qed

The following result shows that under divisibility axioms A1–A3, A5–A6,
B7–B9, A11 and B14, join-irreducible elements coincide with mono-atomic
elements.
lemma mono-atomic-iff-join-irreducible:

assumes B7-pre-f-decomposable -
and B8-fibered -
and B9-f-decomposable -
and A11-atomic -
and B14-truncability -

shows mono-atomic x ←→ join-irreducible x
proof (rule iffI)

assume 1 : mono-atomic x
from this obtain a where mono-atomic-below a x

by blast
hence 2 : x 6= bot

using atom-def bot-unique mono-atomic-def by force
have ∀ y z . x = y t z −→ x = y ∨ x = z
proof (intro allI , rule impI)

fix y z
assume 3 : x = y t z
show x = y ∨ x = z
proof (cases y = bot ∨ z = bot)

case True
thus ?thesis

using 3 by fastforce
next

case False
hence mono-atomic y ∧ mono-atomic z

using 1 3 by (metis assms(4) mono-atomic-above sup.cobounded1

57

sup-right-divisibility mono-atomic-with-downclosed)
hence y ≤ z ∨ z ≤ y

using 1 3 assms(2) by force
thus ?thesis

using 3 sup.order-iff sup-monoid.add-commute by force
qed

qed
thus join-irreducible x

using 2 join-irreducible-def by blast
next

assume join-irreducible x
from this obtain a where 4 : atom a ∧ join-irreducible-above x a

using assms(4) join-irreducible-def by blast
let ?y = mval a x
let ?z = mtrunc ?y x
have 5 : mval a ?z = bot

using 4 by (smt (z3) assms(3 ,5) mono-atomic-above-or-bot-def mtrunc-char
mval-char)

have 6 : mono-atomic-above-or-bot ?y a
using 4 assms(3) mval-char by simp

hence ∀ b . atom b ∧ b 6= a −→ ¬ b ≤ ?y
using 4 by (metis atom-def bot-unique mono-atomic-above-or-bot-def

mono-atomic-def)
hence 7 : ∀ b . atom b ∧ b 6= a −→ mval b ?z = mval b x

by (simp add: assms(5) mtrunc-char)
have 8 : ?y ≤ x

using 4 assms(3) mval-char by blast
have ∀ b . atom b −→ mval b ?z ≤ x
proof (rule allI , rule impI)

fix b
assume 9 : atom b
show mval b ?z ≤ x
proof (cases b = a)

case True
thus ?thesis

using 5 by auto
next

case False
thus ?thesis

using 7 9 by (simp add: assms(3) mval-char)
qed

qed
hence 10 : ?z ≤ x

using 4 assms(1 ,3) lesseq-iff-mval-below by blast
have ∀w . ?y ≤ w ∧ ?z ≤ w −→ x ≤ w
proof (rule allI , rule impI)

fix w
assume 11 : ?y ≤ w ∧ ?z ≤ w
have ∀ c . atom c −→ mval c x ≤ w

58

proof (rule allI , rule impI)
fix c
assume 12 : atom c
show mval c x ≤ w
proof (cases c = a)

case True
thus ?thesis

using 11 by blast
next

case False
thus ?thesis

using 7 11 12 by (smt (z3) assms(3) dual-order .trans mval-char)
qed

qed
thus x ≤ w

using 4 assms(1 ,3) lesseq-iff-mval-below by blast
qed
hence 13 : x = ?y t ?z

using 8 10 order .ordering-axioms ordering.antisym by force
have x 6= ?z
proof (rule notI)

assume x = ?z
hence ?y = bot

using 5 by force
hence a = bot

using 4 assms(3) atom-below-mval bot-unique by fastforce
thus False

using 4 atom-def by blast
qed
hence x = ?y

using 4 13 join-irreducible-def by force
thus mono-atomic x

using 4 6 join-irreducible-def mono-atomic-above-or-bot-def by auto
qed

end

end

References
[1] R. Berghammer, G. Schmidt, and H. Zierer. Symmetric quotients and

domain constructions. Inf. Process. Lett., 33(3):163–168, 1989.

[2] P. Cegielski. The elementary theory of the natural lattice is finitely
axiomatizable. Notre Dame Journal of Formal Logic, 30(1):138–150,
1989.

59

[3] J. Riguet. Relations binaires, fermetures, correspondances de Galois.
Bulletin de la Société Mathématique de France, 76:114–155, 1948.

[4] G. Schmidt. Relational Mathematics. Cambridge University Press, 2011.

[5] G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer-Verlag,
1989.

60

	Relational Constructions
	Extrema, bounds and suprema
	Univalent part
	Symmetric quotients

	Divisibility
	Partial order
	Bounds
	Atoms
	Fibers
	Fiber decomposition
	Support
	Increments

	Mono-Atomic Elements
	Mono-atomic
	Join-irreducible
	Equivalence

