
Relational Disjoint-Set Forests

Walter Guttmann

December 14, 2021

Abstract

We give a simple relation-algebraic semantics of read and write
operations on associative arrays. The array operations seamlessly in-
tegrate with assignments in the Hoare-logic library. Using relation al-
gebras and Kleene algebras we verify the correctness of an array-based
implementation of disjoint-set forests using the union-by-rank strategy
and find operations with path compression, path splitting and path
halving.

Contents
1 Overview 2

2 Relation-Algebraic Semantics of Associative Array Access 3

3 Relation-Algebraic Semantics of Disjoint-Set Forests 5

4 Verifying Operations on Disjoint-Set Forests 12
4.1 Make-Set . 13
4.2 Find-Set . 14
4.3 Path Compression . 15
4.4 Find-Set with Path Compression 17
4.5 Union-Sets . 19

5 More on Array Access and Disjoint-Set Forests 21

6 Verifying Further Operations on Disjoint-Set Forests 25
6.1 Init-Sets . 25
6.2 Path Halving . 26
6.3 Path Splitting . 27

7 Verifying Union by Rank 28
7.1 Peano structures . 29
7.2 Initialising Ranks . 32
7.3 Union by Rank . 33

1

1 Overview
Relation algebras and Kleene algebras have previously been used to reason
about graphs and graph algorithms [2, 3, 4, 5, 9, 12, 15]. The operations
of these algebras manipulate entire graphs, which is useful for specification
but not directly intended for implementation. Low-level array access is
a key ingredient for efficient algorithms [6]. We give a relation-algebraic
semantics for such read/write access to associative arrays. This allows us
to extend relation-algebraic verification methods to a lower level of more
efficient implementations.

In this theory we focus on arrays with the same index and value sets,
which can be modelled as homogeneous relations and therefore as elements
of relation algebras and Kleene algebras [13, 17]. We implement and verify
the correctness of disjoint-set forests with path compression strategies and
union-by-rank [6, 8, 16].

In order to prepare this theory for future applications with weighted
graphs, the verification uses Stone relation algebras, which have weaker ax-
ioms than relation algebras [10].

Section 2 contains the simple relation-algebraic semantics of associative
array read and write and basic properties of these access operations. In Sec-
tion 3 we give a Kleene-relation-algebraic semantics of disjoint-set forests.
The make-set operation, find-set with path compression and the naive union-
sets operation are implemented and verified in Section 4. Section 5 presents
further results on disjoint-set forests and relational array access. The ini-
tialisation of disjoint-set forests, path halving and path splitting are imple-
mented and verified in Section 6. In Section 7 we study relational Peano
structures and implement and verify union-by-rank.

This Isabelle/HOL theory formally verifies results in [11] and in an ex-
tended version of that paper. Theorem numbers from the extended version
of the paper are mentioned in the theories for reference. See the paper for
further details and related work.

Several Isabelle/HOL theories are related to disjoint sets. The the-
ory HOL/Library/Disjoint_Sets.thy contains results about partitions and
sets of disjoint sets and does not consider their implementation. An imple-
mentation of disjoint-set forests with path compression and a size-based
heuristic in the Imperative/HOL framework is verified in Archive of For-
mal Proofs entry [14]. Improved automation of this proof is considered in
Archive of Formal Proofs entry [18]. These approaches are based on logical
specifications whereas the present theory uses relation algebras and Kleene
algebras.

theory Disjoint-Set-Forests

2

imports
HOL−Hoare.Hoare-Logic
Stone-Kleene-Relation-Algebras.Kleene-Relation-Algebras

begin

no-notation
trancl ((-+) [1000] 999)

An arc in a Stone relation algebra corresponds to an atom in a relation
algebra and represents a single edge in a graph. A point represents a set
of nodes. A rectangle represents the Cartesian product of two sets of nodes
[4].
context times-top
begin

abbreviation rectangle :: ′a ⇒ bool
where rectangle x ≡ x ∗ top ∗ x = x

end

context stone-relation-algebra
begin

lemma arc-rectangle:
arc x =⇒ rectangle x
〈proof 〉

2 Relation-Algebraic Semantics of Associative
Array Access

The following two operations model updating array x at index y to value
z, and reading the content of array x at index y, respectively. The read
operation uses double brackets to avoid ambiguity with list syntax. The
remainder of this section shows basic properties of these operations.
abbreviation rel-update :: ′a ⇒ ′a ⇒ ′a ⇒ ′a ((-[- 7−→-]) [70 , 65 , 65] 61)

where x[y 7−→z] ≡ (y u zT) t (−y u x)

abbreviation rel-access :: ′a ⇒ ′a ⇒ ′a ((2-[[-]]) [70 , 65] 65)
where x[[y]] ≡ xT ∗ y

Theorem 1.1
lemma update-univalent:

assumes univalent x
and vector y
and injective z

shows univalent (x[y 7−→z])
〈proof 〉

3

Theorem 1.2
lemma update-total:

assumes total x
and vector y
and regular y
and surjective z

shows total (x[y 7−→z])
〈proof 〉

Theorem 1.3
lemma update-mapping:

assumes mapping x
and vector y
and regular y
and bijective z

shows mapping (x[y 7−→z])
〈proof 〉

Theorem 1.4
lemma read-injective:

assumes injective y
and univalent x

shows injective (x[[y]])
〈proof 〉

Theorem 1.5
lemma read-surjective:

assumes surjective y
and total x

shows surjective (x[[y]])
〈proof 〉

Theorem 1.6
lemma read-bijective:

assumes bijective y
and mapping x

shows bijective (x[[y]])
〈proof 〉

Theorem 1.7
lemma read-point:

assumes point p
and mapping x

shows point (x[[p]])
〈proof 〉

Theorem 1.8
lemma update-postcondition:

4

assumes point x point y
shows x u p = x ∗ yT ←→ p[[x]] = y
〈proof 〉

Back and von Wright’s array independence requirements [1], later also
lens laws [7]

Theorem 2.1
lemma put-get:

assumes vector y surjective y vector z
shows (x[y 7−→z])[[y]] = z
〈proof 〉

Theorem 2.3
lemma put-put:
(x[y 7−→z])[y 7−→w] = x[y 7−→w]
〈proof 〉

Theorem 2.5
lemma get-put:

assumes point y
shows x[y 7−→x[[y]]] = x
〈proof 〉

lemma update-inf :
u ≤ y =⇒ (x[y 7−→z]) u u = zT u u
〈proof 〉

lemma update-inf-same:
(x[y 7−→z]) u y = zT u y
〈proof 〉

lemma update-inf-different:
u ≤ −y =⇒ (x[y 7−→z]) u u = x u u
〈proof 〉

end

3 Relation-Algebraic Semantics of Disjoint-Set
Forests

A disjoint-set forest represents a partition of a set into equivalence classes.
We take the represented equivalence relation as the semantics of a forest.
It is obtained by operation fc below. Additionally, operation wcc giving
the weakly connected components of a graph will be used for the semantics
of the union of two disjoint sets. Finally, operation root yields the root
of a component tree, that is, the representative of a set containing a given
element. This section defines these operations and derives their properties.

5

context stone-kleene-relation-algebra
begin

Theorem 5.2
lemma omit-redundant-points:

assumes point p
shows p u x? = (p u 1) t (p u x) ∗ (−p u x)?
〈proof 〉

Weakly connected components
abbreviation wcc x ≡ (x t xT)?

Theorem 7.1
lemma wcc-equivalence:

equivalence (wcc x)
〈proof 〉

Theorem 7.2
lemma wcc-increasing:

x ≤ wcc x
〈proof 〉

lemma wcc-isotone:
x ≤ y =⇒ wcc x ≤ wcc y
〈proof 〉

lemma wcc-idempotent:
wcc (wcc x) = wcc x
〈proof 〉

Theorem 7.3
lemma wcc-below-wcc:

x ≤ wcc y =⇒ wcc x ≤ wcc y
〈proof 〉

Theorem 7.4
lemma wcc-bot:

wcc bot = 1
〈proof 〉

lemma wcc-one:
wcc 1 = 1
〈proof 〉

Theorem 7.5
lemma wcc-top:

wcc top = top
〈proof 〉

6

Theorem 7.6
lemma wcc-with-loops:

wcc x = wcc (x t 1)
〈proof 〉

lemma wcc-without-loops:
wcc x = wcc (x u −1)
〈proof 〉

lemma forest-components-wcc:
injective x =⇒ wcc x = forest-components x
〈proof 〉

Theorem 7.8
lemma wcc-sup-wcc:

wcc (x t y) = wcc (x t wcc y)
〈proof 〉

Components of a forest, which is represented using edges directed to-
wards the roots
abbreviation fc x ≡ x? ∗ xT ?

Theorem 3.1
lemma fc-equivalence:

univalent x =⇒ equivalence (fc x)
〈proof 〉

Theorem 3.2
lemma fc-increasing:

x ≤ fc x
〈proof 〉

Theorem 3.3
lemma fc-isotone:

x ≤ y =⇒ fc x ≤ fc y
〈proof 〉

Theorem 3.4
lemma fc-idempotent:

univalent x =⇒ fc (fc x) = fc x
〈proof 〉

Theorem 3.5
lemma fc-star :

univalent x =⇒ (fc x)? = fc x
〈proof 〉

lemma fc-plus:

7

univalent x =⇒ (fc x)+ = fc x
〈proof 〉

Theorem 3.6
lemma fc-bot:

fc bot = 1
〈proof 〉

lemma fc-one:
fc 1 = 1
〈proof 〉

Theorem 3.7
lemma fc-top:

fc top = top
〈proof 〉

Theorem 7.7
lemma fc-wcc:

univalent x =⇒ wcc x = fc x
〈proof 〉

lemma fc-via-root:
assumes total (p? ∗ (p u 1))
shows fc p = p? ∗ (p u 1) ∗ pT ?

〈proof 〉

Theorem 5.1
lemma update-acyclic-1 :

assumes acyclic (p u −1)
and point y
and vector w
and w ≤ p? ∗ y

shows acyclic ((p[w 7−→y]) u −1)
〈proof 〉

lemma update-acyclic-2 :
assumes acyclic (p u −1)

and point y
and point x
and y ≤ pT ? ∗ x
and univalent p
and pT ∗ y ≤ y

shows acyclic ((p[pT ?∗x 7−→y]) u −1)
〈proof 〉

lemma update-acyclic-3 :
assumes acyclic (p u −1)

and point y

8

and point w
and y ≤ pT ? ∗ w

shows acyclic ((p[w 7−→y]) u −1)
〈proof 〉

lemma rectangle-star-rectangle:
rectangle a =⇒ a ∗ x? ∗ a ≤ a
〈proof 〉

lemma arc-star-arc:
arc a =⇒ a ∗ x? ∗ a ≤ a
〈proof 〉

lemma star-rectangle-decompose:
assumes rectangle a
shows (a t x)? = x? t x? ∗ a ∗ x?

〈proof 〉

lemma star-arc-decompose:
arc a =⇒ (a t x)? = x? t x? ∗ a ∗ x?

〈proof 〉

lemma plus-rectangle-decompose:
assumes rectangle a
shows (a t x)+ = x+ t x? ∗ a ∗ x?

〈proof 〉

Theorem 8.1
lemma plus-arc-decompose:

arc a =⇒ (a t x)+ = x+ t x? ∗ a ∗ x?

〈proof 〉

Theorem 8.2
lemma update-acyclic-4 :

assumes acyclic (p u −1)
and point y
and point w
and y u p? ∗ w = bot

shows acyclic ((p[w 7−→y]) u −1)
〈proof 〉

Theorem 8.3
lemma update-acyclic-5 :

assumes acyclic (p u −1)
and point w

shows acyclic ((p[w 7−→w]) u −1)
〈proof 〉

Root of the tree containing point x in the disjoint-set forest p

9

abbreviation root p x ≡ pT ? ∗ x u (p u 1) ∗ top

Theorem 4.1
lemma root-var :

root p x = (p u 1) ∗ pT ? ∗ x
〈proof 〉

Theorem 4.2
lemma root-successor-loop:

univalent p =⇒ root p x = p[[root p x]]
〈proof 〉

lemma root-transitive-successor-loop:
univalent p =⇒ root p x = pT ? ∗ (root p x)
〈proof 〉

The root of a tree of a node belongs to the same component as the node.
lemma root-same-component:

injective x =⇒ root p x ∗ xT ≤ fc p
〈proof 〉

lemma root-vector :
vector x =⇒ vector (root p x)
〈proof 〉

lemma root-vector-inf :
vector x =⇒ root p x ∗ xT = root p x u xT

〈proof 〉

lemma root-same-component-vector :
injective x =⇒ vector x =⇒ root p x u xT ≤ fc p
〈proof 〉

lemma univalent-root-successors:
assumes univalent p
shows (p u 1) ∗ p? = p u 1
〈proof 〉

lemma same-component-same-root-sub:
assumes univalent p

and bijective y
and x ∗ yT ≤ fc p

shows root p x ≤ root p y
〈proof 〉

lemma same-component-same-root:
assumes univalent p

and bijective x
and bijective y

10

and x ∗ yT ≤ fc p
shows root p x = root p y
〈proof 〉

lemma same-roots-sub:
assumes univalent q

and p u 1 ≤ q u 1
and fc p ≤ fc q

shows p? ∗ (p u 1) ≤ q? ∗ (q u 1)
〈proof 〉

lemma same-roots:
assumes univalent p

and univalent q
and p u 1 = q u 1
and fc p = fc q

shows p? ∗ (p u 1) = q? ∗ (q u 1)
〈proof 〉

lemma same-root:
assumes univalent p

and univalent q
and p u 1 = q u 1
and fc p = fc q

shows root p x = root q x
〈proof 〉

lemma loop-root:
assumes injective x

and x = p[[x]]
shows x = root p x
〈proof 〉

lemma one-loop:
assumes acyclic (p u −1)

and univalent p
shows (p u 1) ∗ (pT u −1)+ ∗ (p u 1) = bot
〈proof 〉

lemma root-root:
root p x = root p (root p x)
〈proof 〉

lemma loop-root-2 :
assumes acyclic (p u −1)

and univalent p
and injective x
and x ≤ pT+ ∗ x

shows x = root p x

11

〈proof 〉

lemma path-compression-invariant-simplify:
assumes point w

and pT+ ∗ w ≤ −w
and w 6= y

shows p[[w]] 6= w
〈proof 〉

end

context stone-relation-algebra-tarski
begin

Theorem 5.4 distinct-points has been moved to theory Relation-Algebras
in entry Stone-Relation-Algebras

Back and von Wright’s array independence requirements [1]

Theorem 2.2
lemma put-get-different-vector :

assumes vector y w ≤ −y
shows (x[y 7−→z])[[w]] = x[[w]]
〈proof 〉

lemma put-get-different:
assumes point y point w w 6= y
shows (x[y 7−→z])[[w]] = x[[w]]
〈proof 〉

Theorem 2.4
lemma put-put-different-vector :

assumes vector y vector v v u y = bot
shows (x[y 7−→z])[v 7−→w] = (x[v 7−→w])[y 7−→z]
〈proof 〉

lemma put-put-different:
assumes point y point v v 6= y
shows (x[y 7−→z])[v 7−→w] = (x[v 7−→w])[y 7−→z]
〈proof 〉

end

4 Verifying Operations on Disjoint-Set Forests
In this section we verify the make-set, find-set and union-sets operations of
disjoint-set forests. We start by introducing syntax for updating arrays in
programs. Updating the value at a given array index means updating the
whole array.

12

syntax
-rel-update :: idt ⇒ ′a ⇒ ′a ⇒ ′b com ((2-[-] :=/ -) [70 , 65 , 65] 61)

translations
x[y] := z => (x := (y u zT) t (CONST uminus y u x))

The finiteness requirement in the following class is used for proving that
the operations terminate.
class finite-regular-p-algebra = p-algebra +

assumes finite-regular : finite { x . regular x }

class stone-kleene-relation-algebra-tarski-finite-regular =
stone-kleene-relation-algebra-tarski + finite-regular-p-algebra
begin

4.1 Make-Set
We prove two correctness results about make-set. The first shows that the
forest changes only to the extent of making one node the root of a tree. The
second result adds that only singleton sets are created.
definition make-set-postcondition p x p0 ≡ x u p = x ∗ xT ∧ −x u p = −x u p0

theorem make-set:
VARS p
[point x ∧ p0 = p]
p[x] := x
[make-set-postcondition p x p0]
〈proof 〉

theorem make-set-2 :
VARS p
[point x ∧ p0 = p ∧ p ≤ 1]
p[x] := x
[make-set-postcondition p x p0 ∧ p ≤ 1]
〈proof 〉

The above total-correctness proof allows us to extract a function, which
can be used in other implementations below. This is a technique of [10].
lemma make-set-exists:

point x =⇒ ∃ p ′ . make-set-postcondition p ′ x p
〈proof 〉

definition make-set p x ≡ (SOME p ′ . make-set-postcondition p ′ x p)

lemma make-set-function:
assumes point x

and p ′ = make-set p x
shows make-set-postcondition p ′ x p

13

〈proof 〉

end

4.2 Find-Set
Disjoint-set forests are represented by their parent mapping. It is a forest
except each root of a component tree points to itself.

We prove that find-set returns the root of the component tree of the
given node.
context pd-kleene-allegory
begin

abbreviation disjoint-set-forest p ≡ mapping p ∧ acyclic (p u −1)

end

context stone-kleene-relation-algebra-tarski-finite-regular
begin

definition find-set-precondition p x ≡ disjoint-set-forest p ∧ point x
definition find-set-invariant p x y ≡ find-set-precondition p x ∧ point y ∧ y ≤
pT ? ∗ x
definition find-set-postcondition p x y ≡ point y ∧ y = root p x

lemma find-set-1 :
find-set-precondition p x =⇒ find-set-invariant p x x
〈proof 〉

lemma find-set-2 :
find-set-invariant p x y ∧ y 6= p[[y]] =⇒ find-set-invariant p x (p[[y]]) ∧ card { z

. regular z ∧ z ≤ pT ? ∗ (p[[y]]) } < card { z . regular z ∧ z ≤ pT ? ∗ y }
〈proof 〉

lemma find-set-3 :
find-set-invariant p x y ∧ y = p[[y]] =⇒ find-set-postcondition p x y
〈proof 〉

theorem find-set:
VARS y
[find-set-precondition p x]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ y } }
DO y := p[[y]]
OD

[find-set-postcondition p x y]
〈proof 〉

14

lemma find-set-exists:
find-set-precondition p x =⇒ ∃ y . find-set-postcondition p x y
〈proof 〉

The root of a component tree is a point, that is, represents a singleton set
of nodes. This could be proved from the definitions using Kleene-relation
algebraic calculations. But they can be avoided because the property di-
rectly follows from the postcondition of the previous correctness proof. The
corresponding algorithm shows how to obtain the root. We therefore have
an essentially constructive proof of the following result.

Theorem 4.3
lemma root-point:

disjoint-set-forest p =⇒ point x =⇒ point (root p x)
〈proof 〉

definition find-set p x ≡ (SOME y . find-set-postcondition p x y)

lemma find-set-function:
assumes find-set-precondition p x

and y = find-set p x
shows find-set-postcondition p x y
〈proof 〉

4.3 Path Compression
The path-compression technique is frequently implemented in recursive im-
plementations of find-set modifying the tree on the way out from recursive
calls. Here we implement it using a second while-loop, which iterates over
the same path to the root and changes edges to point to the root of the
component, which is known after the while-loop in find-set completes. We
prove that path compression preserves the equivalence-relational semantics
of the disjoint-set forest and also preserves the roots of the component trees.
Additionally we prove the exact effect of path compression.
definition path-compression-precondition p x y ≡ disjoint-set-forest p ∧ point x
∧ point y ∧ y = root p x
definition path-compression-invariant p x y p0 w ≡

path-compression-precondition p x y ∧ point w ∧ y ≤ pT ? ∗ w ∧
(w 6= x −→ p[[x]] = y ∧ y 6= x ∧ pT+ ∗ w ≤ −x) ∧ p u 1 = p0 u 1 ∧ fc p =

fc p0 ∧
root p w = y ∧ (w 6= y −→ pT+ ∗ w ≤ −w) ∧ p[[w]] = p0 [[w]] ∧ p0 [p0T ? ∗ x
u −(p0T ? ∗ w)7−→y] = p ∧

disjoint-set-forest p0 ∧ y = root p0 x ∧ w ≤ p0T ? ∗ x
definition path-compression-postcondition p x y p0 ≡

path-compression-precondition p x y ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [p0T ? ∗ x 7−→y] = p

15

We first consider a variant that achieves the effect as a single update.
The parents of all nodes reachable from x are simultaneously updated to the
root of the component of x.
lemma path-compression-exact:

assumes path-compression-precondition p0 x y
and p0 [p0T ? ∗ x 7−→y] = p

shows p u 1 = p0 u 1 fc p = fc p0
〈proof 〉

lemma update-acyclic-6 :
assumes disjoint-set-forest p

and point x
shows acyclic ((p[pT ?∗x 7−→root p x]) u −1)
〈proof 〉

theorem path-compression-assign:
VARS p
[path-compression-precondition p x y ∧ p0 = p]
p[pT ? ∗ x] := y
[path-compression-postcondition p x y p0]
〈proof 〉

We next look at implementing these updates using a loop.
lemma path-compression-1a:

assumes point x
and disjoint-set-forest p
and x 6= root p x

shows pT+ ∗ x ≤ − x
〈proof 〉

lemma path-compression-1b:
x ≤ pT ? ∗ x
〈proof 〉

lemma path-compression-1 :
path-compression-precondition p x y =⇒ path-compression-invariant p x y p x
〈proof 〉

lemma path-compression-2 :
path-compression-invariant p x y p0 w ∧ y 6= p[[w]] =⇒

path-compression-invariant (p[w 7−→y]) x y p0 (p[[w]]) ∧ card { z . regular z ∧ z
≤ (p[w 7−→y])T ? ∗ (p[[w]]) } < card { z . regular z ∧ z ≤ pT ? ∗ w }
〈proof 〉

lemma path-compression-3a:
assumes path-compression-invariant p x (p[[w]]) p0 w
shows p0 [p0T ? ∗ x 7−→p[[w]]] = p
〈proof 〉

16

lemma path-compression-3 :
path-compression-invariant p x (p[[w]]) p0 w =⇒ path-compression-postcondition

p x (p[[w]]) p0
〈proof 〉

theorem path-compression:
VARS p t w
[path-compression-precondition p x y ∧ p0 = p]
w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ w } }
DO t := w;

w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
〈proof 〉

lemma path-compression-exists:
path-compression-precondition p x y =⇒ ∃ p ′ . path-compression-postcondition p ′

x y p
〈proof 〉

definition path-compression p x y ≡ (SOME p ′ . path-compression-postcondition
p ′ x y p)

lemma path-compression-function:
assumes path-compression-precondition p x y

and p ′ = path-compression p x y
shows path-compression-postcondition p ′ x y p
〈proof 〉

4.4 Find-Set with Path Compression
We sequentially combine find-set and path compression. We consider imple-
mentations which use the previously derived functions and implementations
which unfold their definitions.
theorem find-set-path-compression:

VARS p y
[find-set-precondition p x ∧ p0 = p]
y := find-set p x;
p := path-compression p x y
[path-compression-postcondition p x y p0]
〈proof 〉

theorem find-set-path-compression-1 :
VARS p t w y
[find-set-precondition p x ∧ p0 = p]

17

y := find-set p x;
w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ w } }
DO t := w;

w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
〈proof 〉

theorem find-set-path-compression-2 :
VARS p y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y ∧ p0 = p }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ y } }
DO y := p[[y]]
OD;

p := path-compression p x y
[path-compression-postcondition p x y p0]
〈proof 〉

theorem find-set-path-compression-3 :
VARS p t w y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y ∧ p0 = p }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ y } }
DO y := p[[y]]
OD;

w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ w } }
DO t := w;

w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
〈proof 〉

Find-set with path compression returns two results: the representative
of the tree and the modified disjoint-set forest.
lemma find-set-path-compression-exists:

find-set-precondition p x =⇒ ∃ p ′ y . path-compression-postcondition p ′ x y p

18

〈proof 〉

definition find-set-path-compression p x ≡ (SOME (p ′,y) .
path-compression-postcondition p ′ x y p)

lemma find-set-path-compression-function:
assumes find-set-precondition p x

and (p ′,y) = find-set-path-compression p x
shows path-compression-postcondition p ′ x y p
〈proof 〉

We prove that find-set-path-compression returns the same representative
as find-set.
lemma find-set-path-compression-find-set:

assumes find-set-precondition p x
shows find-set p x = snd (find-set-path-compression p x)
〈proof 〉

A weaker postcondition suffices to prove that the two forests have the
same semantics; that is, they describe the same disjoint sets and have the
same roots.
lemma find-set-path-compression-path-compression-semantics:

assumes find-set-precondition p x
shows fc (path-compression p x (find-set p x)) = fc (fst

(find-set-path-compression p x))
and path-compression p x (find-set p x) u 1 = fst (find-set-path-compression p

x) u 1
〈proof 〉

With the current, stronger postcondition of path compression describing
the precise effect of how links change, we can prove that the two forests are
actually equal.
lemma find-set-path-compression-find-set-pathcompression:

assumes find-set-precondition p x
shows path-compression p x (find-set p x) = fst (find-set-path-compression p x)
〈proof 〉

4.5 Union-Sets
We only consider a naive union-sets operation (without ranks). The se-
mantics is the equivalence closure obtained after adding the link between
the two given nodes, which requires those two elements to be in the same
set. The implementation uses temporary variable t to store the two results
returned by find-set with path compression. The disjoint-set forest, which
keeps being updated, is threaded through the sequence of operations.
definition union-sets-precondition p x y ≡ disjoint-set-forest p ∧ point x ∧ point
y

19

definition union-sets-postcondition p x y p0 ≡ union-sets-precondition p x y ∧ fc
p = wcc (p0 t x ∗ yT)

lemma union-sets-1 :
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y s p1

shows union-sets-postcondition (p2 [r 7−→s]) x y p0
〈proof 〉

theorem union-sets:
VARS p r s t
[union-sets-precondition p x y ∧ p0 = p]
t := find-set-path-compression p x;
p := fst t;
r := snd t;
t := find-set-path-compression p y;
p := fst t;
s := snd t;
p[r] := s
[union-sets-postcondition p x y p0]
〈proof 〉

lemma union-sets-exists:
union-sets-precondition p x y =⇒ ∃ p ′ . union-sets-postcondition p ′ x y p
〈proof 〉

definition union-sets p x y ≡ (SOME p ′ . union-sets-postcondition p ′ x y p)

lemma union-sets-function:
assumes union-sets-precondition p x y

and p ′ = union-sets p x y
shows union-sets-postcondition p ′ x y p
〈proof 〉

theorem union-sets-2 :
VARS p r s
[union-sets-precondition p x y ∧ p0 = p]
r := find-set p x;
p := path-compression p x r ;
s := find-set p y;
p := path-compression p y s;
p[r] := s
[union-sets-postcondition p x y p0]
〈proof 〉

end

end

20

theory More-Disjoint-Set-Forests

imports Disjoint-Set-Forests

begin

5 More on Array Access and Disjoint-Set Forests
This section contains further results about directed acyclic graphs and rela-
tional array operations.
context stone-relation-algebra
begin

Theorem 6.4
lemma update-square:

assumes point y
shows x[y 7−→x[[x[[y]]]]] ≤ x ∗ x t x

〈proof 〉

Theorem 2.13
lemma update-ub:

x[y 7−→z] ≤ x t zT
〈proof 〉

Theorem 6.7
lemma update-square-ub:

x[y 7−→(x ∗ x)T] ≤ x t x ∗ x
〈proof 〉

Theorem 2.14
lemma update-same-sub:

assumes u u x = u u z
and y ≤ u
and regular y

shows x[y 7−→zT] = x
〈proof 〉

Theorem 2.15
lemma update-point-get:

point y =⇒ x[y 7−→z[[y]]] = x[y 7−→zT]
〈proof 〉

Theorem 2.11
lemma update-bot:

x[bot 7−→z] = x
〈proof 〉

21

Theorem 2.12
lemma update-top:

x[top 7−→z] = zT
〈proof 〉

Theorem 2.6
lemma update-same:

assumes regular u
shows (x[y 7−→z])[u 7−→z] = x[y t u 7−→z]

〈proof 〉

lemma update-same-3 :
assumes regular u

and regular v
shows ((x[y 7−→z])[u 7−→z])[v 7−→z] = x[y t u t v 7−→z]
〈proof 〉

Theorem 2.7
lemma update-split:

assumes regular w
shows x[y 7−→z] = (x[y u −w 7−→z])[y u w 7−→z]
〈proof 〉

Theorem 2.8
lemma update-injective-swap:

assumes injective x
and point y
and injective z
and vector z

shows injective ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
〈proof 〉

lemma update-injective-swap-2 :
assumes injective x

shows injective ((x[y 7−→x[[bot]]])[bot 7−→x[[y]]])
〈proof 〉

Theorem 2.9
lemma update-univalent-swap:

assumes univalent x
and injective y
and vector y
and injective z
and vector z

shows univalent ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
〈proof 〉

Theorem 2.10
lemma update-mapping-swap:

22

assumes mapping x
and point y
and point z

shows mapping ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
〈proof 〉

Theorem 2.16 mapping-inf-point-arc has been moved to theory Rela-
tion-Algebras in entry Stone-Relation-Algebras
end

context stone-kleene-relation-algebra
begin

lemma omit-redundant-points-2 :
assumes point p
shows p u x? = (p u 1) t (p u x u −pT) ∗ (x u −pT)?

〈proof 〉

Theorem 5.3
lemma omit-redundant-points-3 :

assumes point p
shows p u x? = (p u 1) t (p u (x u −pT)+)
〈proof 〉

Theorem 6.1
lemma even-odd-root:

assumes acyclic (x u −1)
and regular x
and univalent x

shows (x ∗ x)T ? u xT ∗ (x ∗ x)T ? = (1 u x) ∗ ((x ∗ x)T ? u xT ∗ (x ∗ x)T ?)
〈proof 〉

lemma update-square-plus:
point y =⇒ x[y 7−→x[[x[[y]]]]] ≤ x+

〈proof 〉

lemma update-square-ub-plus:
x[y 7−→(x ∗ x)T] ≤ x+

〈proof 〉

Theorem 6.2
lemma acyclic-square:

assumes acyclic (x u −1)
shows x ∗ x u 1 = x u 1

〈proof 〉

lemma diagonal-update-square-aux:
assumes acyclic (x u −1)

and point y

23

shows 1 u y u yT ∗ x ∗ x = 1 u y u x
〈proof 〉

Theorem 6.5
lemma diagonal-update-square:

assumes acyclic (x u −1)
and point y

shows (x[y 7−→x[[x[[y]]]]]) u 1 = x u 1
〈proof 〉

Theorem 6.6
lemma fc-update-square:

assumes mapping x
and point y

shows fc (x[y 7−→x[[x[[y]]]]]) = fc x
〈proof 〉

Theorem 6.2
lemma acyclic-plus-loop:

assumes acyclic (x u −1)
shows x+ u 1 = x u 1
〈proof 〉

lemma star-irreflexive-part-eq:
x? u −1 = (x u −1)+ u −1
〈proof 〉

Theorem 6.3
lemma star-irreflexive-part:

x? u −1 ≤ (x u −1)+
〈proof 〉

lemma square-irreflexive-part:
x ∗ x u −1 ≤ (x u −1)+
〈proof 〉

Theorem 6.3
lemma square-irreflexive-part-2 :

x ∗ x u −1 ≤ x? u −1
〈proof 〉

Theorem 6.8
lemma acyclic-update-square:

assumes acyclic (x u −1)
shows acyclic ((x[y 7−→(x ∗ x)T]) u −1)
〈proof 〉

Theorem 6.9
lemma disjoint-set-forest-update-square:

24

assumes disjoint-set-forest x
and vector y
and regular y

shows disjoint-set-forest (x[y 7−→(x ∗ x)T])
〈proof 〉

lemma disjoint-set-forest-update-square-point:
assumes disjoint-set-forest x

and point y
shows disjoint-set-forest (x[y 7−→(x ∗ x)T])
〈proof 〉

end

6 Verifying Further Operations on Disjoint-Set
Forests

In this section we verify the init-sets, path-halving and path-splitting oper-
ations of disjoint-set forests.
class choose-point =

fixes choose-point :: ′a ⇒ ′a

class stone-kleene-relation-algebra-choose-point-finite-regular =
stone-kleene-relation-algebra + finite-regular-p-algebra + choose-point +

assumes choose-point-point: vector x =⇒ x 6= bot =⇒ point (choose-point x)
assumes choose-point-decreasing: choose-point x ≤ −−x

begin

subclass stone-kleene-relation-algebra-tarski-finite-regular
〈proof 〉

6.1 Init-Sets
A disjoint-set forest is initialised by applying make-set to each node. We
prove that the resulting disjoint-set forest is the identity relation.
theorem init-sets:

VARS h p x
[True]
h := top;
WHILE h 6= bot

INV { regular h ∧ vector h ∧ p u −h = 1 u −h }
VAR { card { x . regular x ∧ x ≤ h } }
DO x := choose-point h;

p := make-set p x;
h[x] := bot

OD
[p = 1 ∧ disjoint-set-forest p ∧ h = bot]

25

〈proof 〉

end

6.2 Path Halving
Path halving is a variant of the path compression technique. Similarly to
path compression, we implement path halving independently of find-set,
using a second while-loop which iterates over the same path to the root.
We prove that path halving preserves the equivalence-relational semantics
of the disjoint-set forest and also preserves the roots of the component trees.
Additionally we prove the exact effect of path halving, which is to replace
every other parent pointer with a pointer to the respective grandparent.
context stone-kleene-relation-algebra-tarski-finite-regular
begin

definition path-halving-invariant p x y p0 ≡
find-set-precondition p x ∧ point y ∧ y ≤ pT ? ∗ x ∧ y ≤ (p0 ∗ p0)T ? ∗ x ∧
p0 [(p0 ∗ p0)T ? ∗ x u −(p0T ? ∗ y)7−→(p0 ∗ p0)T] = p ∧
disjoint-set-forest p0

definition path-halving-postcondition p x y p0 ≡
path-compression-precondition p x y ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [(p0 ∗ p0)T ? ∗ x 7−→(p0 ∗ p0)T] = p

lemma path-halving-invariant-aux-1 :
assumes point x

and point y
and disjoint-set-forest p0

shows p0 ≤ wcc (p0 [(p0 ∗ p0)T ? ∗ x u −(p0T ? ∗ y)7−→(p0 ∗ p0)T])
〈proof 〉

lemma path-halving-invariant-aux:
assumes path-halving-invariant p x y p0
shows p[[y]] = p0 [[y]]

and p[[p[[y]]]] = p0 [[p0 [[y]]]]
and p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
and p u 1 = p0 u 1
and fc p = fc p0

〈proof 〉

lemma path-halving-1 :
find-set-precondition p0 x =⇒ path-halving-invariant p0 x x p0
〈proof 〉

lemma path-halving-2 :
path-halving-invariant p x y p0 ∧ y 6= p[[y]] =⇒ path-halving-invariant

(p[y 7−→p[[p[[y]]]]]) x ((p[y 7−→p[[p[[y]]]]])[[y]]) p0 ∧ card { z . regular z ∧ z ≤
(p[y 7−→p[[p[[y]]]]])T ? ∗ ((p[y 7−→p[[p[[y]]]]])[[y]]) } < card { z . regular z ∧ z ≤ pT ?

26

∗ y }
〈proof 〉

lemma path-halving-3 :
path-halving-invariant p x y p0 ∧ y = p[[y]] =⇒ path-halving-postcondition p x y

p0
〈proof 〉

theorem find-path-halving:
VARS p y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { path-halving-invariant p x y p0 }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ y } }
DO p[y] := p[[p[[y]]]];

y := p[[y]]
OD

[path-halving-postcondition p x y p0]
〈proof 〉

6.3 Path Splitting
Path splitting is another variant of the path compression technique. We im-
plement it again independently of find-set, using a second while-loop which
iterates over the same path to the root. We prove that path splitting pre-
serves the equivalence-relational semantics of the disjoint-set forest and also
preserves the roots of the component trees. Additionally we prove the ex-
act effect of path splitting, which is to replace every parent pointer with a
pointer to the respective grandparent.
definition path-splitting-invariant p x y p0 ≡

find-set-precondition p x ∧ point y ∧ y ≤ p0T ? ∗ x ∧
p0 [p0T ? ∗ x u −(p0T ? ∗ y)7−→(p0 ∗ p0)T] = p ∧
disjoint-set-forest p0

definition path-splitting-postcondition p x y p0 ≡
path-compression-precondition p x y ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [p0T ? ∗ x 7−→(p0 ∗ p0)T] = p

lemma path-splitting-invariant-aux-1 :
assumes point x

and point y
and disjoint-set-forest p0

shows (p0 [p0T ? ∗ x u −(p0T ? ∗ y)7−→(p0 ∗ p0)T]) u 1 = p0 u 1
and fc (p0 [p0T ? ∗ x u −(p0T ? ∗ y) 7−→(p0 ∗ p0)T]) = fc p0
and p0T ? ∗ x ≤ p0 ? ∗ root p0 x

〈proof 〉

lemma path-splitting-invariant-aux:

27

assumes path-splitting-invariant p x y p0
shows p[[y]] = p0 [[y]]

and p[[p[[y]]]] = p0 [[p0 [[y]]]]
and p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
and p u 1 = p0 u 1
and fc p = fc p0

〈proof 〉

lemma path-splitting-1 :
find-set-precondition p0 x =⇒ path-splitting-invariant p0 x x p0
〈proof 〉

lemma path-splitting-2 :
path-splitting-invariant p x y p0 ∧ y 6= p[[y]] =⇒ path-splitting-invariant

(p[y 7−→p[[p[[y]]]]]) x (p[[y]]) p0 ∧ card { z . regular z ∧ z ≤ (p[y 7−→p[[p[[y]]]]])T ?

∗ (p[[y]]) } < card { z . regular z ∧ z ≤ pT ? ∗ y }
〈proof 〉

lemma path-splitting-3 :
path-splitting-invariant p x y p0 ∧ y = p[[y]] =⇒ path-splitting-postcondition p x

y p0
〈proof 〉

theorem find-path-splitting:
VARS p t y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { path-splitting-invariant p x y p0 }
VAR { card { z . regular z ∧ z ≤ pT ? ∗ y } }
DO t := p[[y]];

p[y] := p[[p[[y]]]];
y := t

OD
[path-splitting-postcondition p x y p0]
〈proof 〉

end

7 Verifying Union by Rank
In this section we verify the union-by-rank operation of disjoint-set forests.
The rank of a node is an upper bound of the height of the subtree rooted
at that node. The rank array of a disjoint-set forest maps each node to its
rank. This can be represented as a homogeneous relation since the possible
rank values are 0, . . . , n−1 where n is the number of nodes of the disjoint-set
forest.

28

7.1 Peano structures
Since ranks are natural numbers we start by introducing basic Peano arith-
metic. Numbers are represented as (relational) points. Constant Z rep-
resents the number 0. Constant S represents the successor function. The
successor of a number x is obtained by the relational composition ST ∗ x.
The composition S ∗ x results in the predecessor of x.
class peano-signature =

fixes Z :: ′a
fixes S :: ′a

The numbers will be used in arrays, which are represented by homoge-
neous finite relations. Such relations can only represent finitely many num-
bers. This means that we weaken the Peano axioms, which are usually used
to obtain (infinitely many) natural numbers. Axiom Z-point specifies that 0
is a number. Axiom S-univalent specifies that every number has at most one
‘successor’. Together with axiom S-total, which is added later, this means
that every number has exactly one ‘successor’. Axiom S-injective specifies
that numbers with the same successor are equal. Axiom S-star-Z-top speci-
fies that every number can be obtained from 0 by finitely many applications
of the successor. We omit the Peano axiom S ∗ Z = bot which would specify
that 0 is not the successor of any number. Since only finitely many numbers
will be represented, the remaining axioms will model successor modulo m
for some m depending on the carrier of the algebra. That is, the algebra
will be able to represent numbers 0, . . . ,m− 1 where the successor of m− 1
is 0.
class skra-peano-1 = stone-kleene-relation-algebra +
stone-relation-algebra-tarski-consistent + peano-signature +

assumes Z-point: point Z
assumes S-univalent: univalent S
assumes S-injective: injective S
assumes S-star-Z-top: ST ? ∗ Z = top

begin

lemma conv-Z-Z :
ZT ∗ Z = top
〈proof 〉

Theorem 9.2
lemma Z-below-S-star :

Z ≤ S?

〈proof 〉

Theorem 9.3
lemma S-connected:

ST ? ∗ S? = top
〈proof 〉

29

Theorem 9.4
lemma S-star-connex:

S? t ST ? = top
〈proof 〉

Theorem 9.5
lemma Z-sup-conv-S-top:

Z t ST ∗ top = top
〈proof 〉

lemma top-S-sup-conv-Z :
top ∗ S t ZT = top
〈proof 〉

Theorem 9.1
lemma S-inf-1-below-Z :

S u 1 ≤ Z
〈proof 〉

lemma S-inf-1-below-conv-Z :
S u 1 ≤ ZT

〈proof 〉

The successor operation provides a convenient way to compare two nat-
ural numbers. Namely, k < m if m can be reached from k by finitely many
applications of the successor, formally m ≤ ST ? ∗ k or k ≤ S? ∗ m. This
does not work for numbers modulo m since comparison depends on the cho-
sen representative. We therefore work with a modified successor relation S ′,
which is a partial function that computes the successor for all numbers ex-
cept m− 1. If S is surjective, the point M representing the greatest number
m− 1 is the predecessor of 0 under S. If S is not surjective (like for the set
of all natural numbers), M = bot.
abbreviation S ′ ≡ S u −ZT

abbreviation M ≡ S ∗ Z

Theorem 11.1
lemma M-point-iff-S-surjective:

point M ←→ surjective S
〈proof 〉

Theorem 10.1
lemma S ′-univalent:

univalent S ′

〈proof 〉

Theorem 10.2
lemma S ′-injective:

30

injective S ′

〈proof 〉

Theorem 10.9
lemma S ′-Z :

S ′ ∗ Z = bot
〈proof 〉

Theorem 10.4
lemma S ′-irreflexive:

irreflexive S ′

〈proof 〉

end

class skra-peano-2 = skra-peano-1 +
assumes S-total: total S

begin

lemma S-mapping:
mapping S
〈proof 〉

Theorem 11.2
lemma M-bot-iff-S-not-surjective:

M 6= bot ←→ surjective S
〈proof 〉

Theorem 11.3
lemma M-point-or-bot:

point M ∨ M = bot
〈proof 〉

Alternative way to express S ′

Theorem 12.1
lemma S ′-var :

S ′ = S u −M
〈proof 〉

Special case of just 1 number

Theorem 12.2
lemma M-is-Z-iff-1-is-top:

M = Z ←→ 1 = top
〈proof 〉

Theorem 12.3
lemma S-irreflexive:

assumes M 6= Z

31

shows irreflexive S
〈proof 〉

We show that S ′ satisfies most properties of S.
lemma M-regular :

regular M
〈proof 〉

lemma S ′-regular :
regular S ′

〈proof 〉

Theorem 10.3
lemma S ′-star-Z-top:

S ′T ? ∗ Z = top
〈proof 〉

Theorem 10.5
lemma Z-below-S ′-star :

Z ≤ S ′?

〈proof 〉

Theorem 10.6
lemma S ′-connected:

S ′T ? ∗ S ′? = top
〈proof 〉

Theorem 10.7
lemma S ′-star-connex:

S ′? t S ′T ? = top
〈proof 〉

Theorem 10.8
lemma Z-sup-conv-S ′-top:

Z t S ′T ∗ top = top
〈proof 〉

lemma top-S ′-sup-conv-Z :
top ∗ S ′ t ZT = top
〈proof 〉

end

7.2 Initialising Ranks
We show that the rank array satisfies three properties which are estab-
lished/preserved by the union-find operations. First, every node has a rank,
that is, the rank array is a mapping. Second, the rank of a node is strictly

32

smaller than the rank of its parent, except if the node is a root. This im-
plies that the rank of a node is an upper bound on the height of its subtree.
Third, the number of roots in the disjoint-set forest (the number of disjoint
sets) is not larger than m−k where m is the total number of nodes and k is
the maximum rank of any node. The third property is useful to show that
ranks never overflow (exceed m− 1). To compare the number of roots and
m−k we use the existence of an injective univalent relation between the set
of roots and the set of m− k largest numbers, both represented as vectors.
The three properties are captured in rank-property.
class skra-peano-3 = stone-kleene-relation-algebra-tarski-finite-regular +
skra-peano-2
begin

definition card-less-eq v w ≡ ∃ i . injective i ∧ univalent i ∧ regular i ∧ v ≤ i ∗ w
definition rank-property p rank ≡ mapping rank ∧ (p u −1) ∗ rank ≤ rank ∗
S ′+ ∧ card-less-eq ((p u 1) ∗ top) (−(S ′+ ∗ rankT ∗ top))

end

class skra-peano-4 = stone-kleene-relation-algebra-choose-point-finite-regular +
skra-peano-2
begin

subclass skra-peano-3 〈proof 〉

The initialisation loop is augmented by setting the rank of each node to
0. The resulting rank array satisfies the desired properties explained above.
theorem init-rank:

VARS h p x rank
[True]
h := top;
WHILE h 6= bot

INV { regular h ∧ vector h ∧ p u −h = 1 u −h ∧ rank u −h = ZT u −h }
VAR { card { x . regular x ∧ x ≤ h } }
DO x := choose-point h;

p := make-set p x;
rank[x] := Z ;
h[x] := bot

OD
[p = 1 ∧ disjoint-set-forest p ∧ rank = ZT ∧ rank-property p rank ∧ h = bot]
〈proof 〉

end

7.3 Union by Rank
We show that path compression and union-by-rank preserve the rank prop-
erty.

33

context stone-kleene-relation-algebra-tarski-finite-regular
begin

lemma union-sets-1-swap:
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y s p1

shows union-sets-postcondition (p2 [s 7−→r]) x y p0
〈proof 〉

lemma union-sets-1-skip:
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y r p1

shows union-sets-postcondition p2 x y p0
〈proof 〉

end

context skra-peano-3
begin

lemma path-compression-preserves-rank-property:
assumes path-compression-postcondition p x y p0

and disjoint-set-forest p0
and rank-property p0 rank

shows rank-property p rank
〈proof 〉

theorem union-sets-by-rank:
VARS p r s rank
[union-sets-precondition p x y ∧ rank-property p rank ∧ p0 = p]
r := find-set p x;
p := path-compression p x r ;
s := find-set p y;
p := path-compression p y s;
IF r 6= s THEN

IF rank[[r]] ≤ S ′+ ∗ (rank[[s]]) THEN
p[r] := s

ELSE
p[s] := r ;
IF rank[[r]] = rank[[s]] THEN

rank[r] := S ′T ∗ (rank[[r]])
ELSE

SKIP
FI

FI
ELSE

SKIP

34

FI
[union-sets-postcondition p x y p0 ∧ rank-property p rank]
〈proof 〉

end

end

References
[1] R.-J. Back and J. von Wright. Refinement Calculus. Springer, New

York, 1998.

[2] R. C. Backhouse and B. A. Carré. Regular algebra applied to path-
finding problems. Journal of the Institute of Mathematics and its Ap-
plications, 15(2):161–186, 1975.

[3] R. Berghammer. Combining relational calculus and the Dijkstra–
Gries method for deriving relational programs. Information Sciences,
119(3–4):155–171, 1999.

[4] R. Berghammer and G. Struth. On automated program construction
and verification. In C. Bolduc, J. Desharnais, and B. Ktari, editors,
Mathematics of Program Construction (MPC 2010), volume 6120 of
Lecture Notes in Computer Science, pages 22–41. Springer, 2010.

[5] R. Berghammer, B. von Karger, and A. Wolf. Relation-algebraic deriva-
tion of spanning tree algorithms. In J. Jeuring, editor, Mathematics of
Program Construction (MPC 1998), volume 1422 of Lecture Notes in
Computer Science, pages 23–43. Springer, 1998.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM Trans. Prog. Lang.
Syst., 29(3:17):1–65, 2007.

[8] B. A. Galler and M. J. Fisher. An improved equivalence algorithm.
Commun. ACM, 7(5):301–303, 1964.

[9] M. Gondran and M. Minoux. Graphs, Dioids and Semirings. Springer,
2008.

[10] W. Guttmann. Verifying minimum spanning tree algorithms with Stone
relation algebras. Journal of Logical and Algebraic Methods in Program-
ming, 101:132–150, 2018.

35

[11] W. Guttmann. Verifying the correctness of disjoint-set forests with
Kleene relation algebras. In U. Fahrenberg, P. Jipsen, and M. Winter,
editors, Relational and Algebraic Methods in Computer Science (RAM-
iCS 2020), volume 12062 of Lecture Notes in Computer Science, pages
134–151. Springer, 2020.

[12] P. Höfner and B. Möller. Dijkstra, Floyd and Warshall meet Kleene.
Formal Aspects of Computing, 24(4):459–476, 2012.

[13] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366–390, 1994.

[14] P. Lammich and R. Meis. A separation logic framework for Imperative
HOL. Archive of Formal Proofs, 2012.

[15] B. Möller. Derivation of graph and pointer algorithms. In B. Möller,
H. A. Partsch, and S. A. Schuman, editors, Formal Program Develop-
ment, volume 755 of Lecture Notes in Computer Science, pages 123–160.
Springer, 1993.

[16] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.

[17] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941.

[18] B. Zhan. Verifying imperative programs using Auto2. Archive of Formal
Proofs, 2018.

36

	Overview
	Relation-Algebraic Semantics of Associative Array Access
	Relation-Algebraic Semantics of Disjoint-Set Forests
	Verifying Operations on Disjoint-Set Forests
	Make-Set
	Find-Set
	Path Compression
	Find-Set with Path Compression
	Union-Sets

	More on Array Access and Disjoint-Set Forests
	Verifying Further Operations on Disjoint-Set Forests
	Init-Sets
	Path Halving
	Path Splitting

	Verifying Union by Rank
	Peano structures
	Initialising Ranks
	Union by Rank

