
Relational Disjoint-Set Forests

Walter Guttmann

March 17, 2025

Abstract

We give a simple relation-algebraic semantics of read and write
operations on associative arrays. The array operations seamlessly in-
tegrate with assignments in the Hoare-logic library. Using relation al-
gebras and Kleene algebras we verify the correctness of an array-based
implementation of disjoint-set forests using the union-by-rank strategy
and find operations with path compression, path splitting and path
halving.

Contents
1 Overview 2

2 Relation-Algebraic Semantics of Associative Array Access 3

3 Relation-Algebraic Semantics of Disjoint-Set Forests 8

4 Verifying Operations on Disjoint-Set Forests 21
4.1 Make-Set . 22
4.2 Find-Set . 23
4.3 Path Compression . 28
4.4 Find-Set with Path Compression 43
4.5 Union-Sets . 47

5 More on Array Access and Disjoint-Set Forests 52

6 Verifying Further Operations on Disjoint-Set Forests 64
6.1 Init-Sets . 66
6.2 Path Halving . 67
6.3 Path Splitting . 80

7 Verifying Union by Rank 95
7.1 Peano structures . 95
7.2 Initialising Ranks . 101
7.3 Union by Rank . 104

1

8 Matrix Peano Algebras 125

1 Overview
Relation algebras and Kleene algebras have previously been used to reason
about graphs and graph algorithms [2, 3, 4, 5, 9, 13, 16]. The operations
of these algebras manipulate entire graphs, which is useful for specification
but not directly intended for implementation. Low-level array access is
a key ingredient for efficient algorithms [6]. We give a relation-algebraic
semantics for such read/write access to associative arrays. This allows us
to extend relation-algebraic verification methods to a lower level of more
efficient implementations.

In this theory we focus on arrays with the same index and value sets,
which can be modelled as homogeneous relations and therefore as elements
of relation algebras and Kleene algebras [14, 18]. We implement and verify
the correctness of disjoint-set forests with path compression strategies and
union-by-rank [6, 8, 17].

In order to prepare this theory for future applications with weighted
graphs, the verification uses Stone relation algebras, which have weaker ax-
ioms than relation algebras [10].

Section 2 contains the simple relation-algebraic semantics of associative
array read and write and basic properties of these access operations. In Sec-
tion 3 we give a Kleene-relation-algebraic semantics of disjoint-set forests.
The make-set operation, find-set with path compression and the naive union-
sets operation are implemented and verified in Section 4. Section 5 presents
further results on disjoint-set forests and relational array access. The ini-
tialisation of disjoint-set forests, path halving and path splitting are imple-
mented and verified in Section 6. In Section 7 we study relational Peano
structures and implement and verify union-by-rank. Section 8 instantiates
the Peano axioms by Boolean matrices.

This Isabelle/HOL theory formally verifies results in [11] and an ex-
tended version of that paper [12]. Theorem numbers from the extended
version of the paper are mentioned in the theories for reference. See the
paper for further details and related work.

Several Isabelle/HOL theories are related to disjoint sets. The the-
ory HOL/Library/Disjoint_Sets.thy contains results about partitions and
sets of disjoint sets and does not consider their implementation. An imple-
mentation of disjoint-set forests with path compression and a size-based
heuristic in the Imperative/HOL framework is verified in Archive of For-
mal Proofs entry [15]. Improved automation of this proof is considered in
Archive of Formal Proofs entry [19]. These approaches are based on logical
specifications whereas the present theory uses relation algebras and Kleene
algebras.

2

theory Disjoint-Set-Forests

imports
HOL−Hoare.Hoare-Logic
Stone-Kleene-Relation-Algebras.Kleene-Relation-Algebras

begin

no-notation minus (infixl ‹−› 65)
unbundle no trancl-syntax

context p-algebra
begin

abbreviation minus :: ′a ⇒ ′a ⇒ ′a (infixl ‹−› 65)
where x − y ≡ x u −y

end

An arc in a Stone relation algebra corresponds to an atom in a relation
algebra and represents a single edge in a graph. A point represents a set
of nodes. A rectangle represents the Cartesian product of two sets of nodes
[4].
context times-top
begin

abbreviation rectangle :: ′a ⇒ bool
where rectangle x ≡ x ∗ top ∗ x = x

end

context stone-relation-algebra
begin

lemma arc-rectangle:
arc x =⇒ rectangle x
using arc-top-arc by blast

2 Relation-Algebraic Semantics of Associative
Array Access

The following two operations model updating array x at index y to value
z, and reading the content of array x at index y, respectively. The read
operation uses double brackets to avoid ambiguity with list syntax. The
remainder of this section shows basic properties of these operations.
abbreviation rel-update :: ′a ⇒ ′a ⇒ ′a ⇒ ′a (‹(-[- 7−→-])› [70 , 65 , 65] 61)

3

where x[y 7−→z] ≡ (y u zT) t (−y u x)

abbreviation rel-access :: ′a ⇒ ′a ⇒ ′a (‹(2-[[-]])› [70 , 65] 65)
where x[[y]] ≡ xT ∗ y

lemma update-univalent:
assumes univalent x

and vector y
and injective z

shows univalent (x[y 7−→z])
proof −

have 1 : univalent (y u zT)
using assms(3) inf-commute univalent-inf-closed by force

have (y u zT)T ∗ (−y u x) = (yT u z) ∗ (−y u x)
by (simp add: conv-dist-inf)

also have ... = z ∗ (y u −y u x)
by (metis assms(2) covector-inf-comp-3 inf .sup-monoid.add-assoc

inf .sup-monoid.add-commute)
finally have 2 : (y u zT)T ∗ (−y u x) = bot

by simp
have 3 : vector (−y)

using assms(2) vector-complement-closed by simp
have (−y u x)T ∗ (y u zT) = (−yT u xT) ∗ (y u zT)

by (simp add: conv-complement conv-dist-inf)
also have ... = xT ∗ (−y u y u zT)

using 3 by (metis (mono-tags, opaque-lifting) conv-complement
covector-inf-comp-3 inf .sup-monoid.add-assoc inf .sup-monoid.add-commute)

finally have 4 : (−y u x)T ∗ (y u zT) = bot
by simp

have 5 : univalent (−y u x)
using assms(1) inf-commute univalent-inf-closed by fastforce

have (x[y 7−→z])T ∗ (x[y 7−→z]) = (y u zT)T ∗ (x[y 7−→z]) t (−y u x)T ∗
(x[y 7−→z])

by (simp add: conv-dist-sup mult-right-dist-sup)
also have ... = (y u zT)T ∗ (y u zT) t (y u zT)T ∗ (−y u x) t (−y u x)T ∗

(y u zT) t (−y u x)T ∗ (−y u x)
by (simp add: mult-left-dist-sup sup-assoc)

finally show ?thesis
using 1 2 4 5 by simp

qed

lemma update-total:
assumes total x

and vector y
and regular y
and surjective z

shows total (x[y 7−→z])
proof −

have (x[y 7−→z]) ∗ top = x∗top[y 7−→top∗z]

4

by (simp add: assms(2) semiring.distrib-right vector-complement-closed
vector-inf-comp conv-dist-comp)

also have ... = top[y 7−→top]
using assms(1) assms(4) by simp

also have ... = top
using assms(3) regular-complement-top by auto

finally show ?thesis
by simp

qed

lemma update-mapping:
assumes mapping x

and vector y
and regular y
and bijective z

shows mapping (x[y 7−→z])
using assms update-univalent update-total by simp

lemma read-injective:
assumes injective y

and univalent x
shows injective (x[[y]])
using assms injective-mult-closed univalent-conv-injective by blast

lemma read-surjective:
assumes surjective y

and total x
shows surjective (x[[y]])
using assms surjective-mult-closed total-conv-surjective by blast

lemma read-bijective:
assumes bijective y

and mapping x
shows bijective (x[[y]])
by (simp add: assms read-injective read-surjective)

lemma read-point:
assumes point p

and mapping x
shows point (x[[p]])
using assms comp-associative read-injective read-surjective by auto

lemma update-postcondition:
assumes point x point y
shows x u p = x ∗ yT ←→ p[[x]] = y
apply (rule iffI)
subgoal by (metis assms comp-associative conv-dist-comp conv-involutive

covector-inf-comp-3 equivalence-top-closed vector-covector)
subgoal

5

apply (rule order .antisym)
subgoal by (metis assms conv-dist-comp conv-involutive inf .boundedI

inf .cobounded1 vector-covector vector-restrict-comp-conv)
subgoal by (smt assms comp-associative conv-dist-comp conv-involutive

covector-restrict-comp-conv dense-conv-closed equivalence-top-closed inf .boundedI
shunt-mapping vector-covector preorder-idempotent)

done
done

Back and von Wright’s array independence requirements [1], later also
lens laws [7]
lemma put-get-sub:

assumes vector y surjective u vector z u ≤ y
shows (x[y 7−→z])[[u]] = z

proof −
have (x[y 7−→z])[[u]] = (yT u z) ∗ u t (−yT u xT) ∗ u

by (simp add: conv-complement conv-dist-inf conv-dist-sup mult-right-dist-sup)
also have ... = z ∗ u
proof −

have (−yT u xT) ∗ u ≤ (−yT u xT) ∗ y
by (simp add: assms(4) mult-right-isotone)

also have ... = bot
by (metis assms(1) covector-inf-comp-3 inf-commute conv-complement

mult-right-zero p-inf vector-complement-closed)
finally have (−yT u xT) ∗ u = bot

by (simp add: bot-unique)
thus ?thesis

using assms(1 ,4) covector-inf-comp-3 inf .absorb-iff1 inf-commute by auto
qed
also have ... = z

by (metis assms(2 ,3) mult-assoc)
finally show ?thesis

.
qed

lemma put-get:
assumes vector y surjective y vector z
shows (x[y 7−→z])[[y]] = z
by (simp add: assms put-get-sub)

lemma put-put:
(x[y 7−→z])[y 7−→w] = x[y 7−→w]
by (metis inf-absorb2 inf-commute inf-le1 inf-sup-distrib1 maddux-3-13

sup-inf-absorb)

lemma get-put:
assumes point y
shows x[y 7−→x[[y]]] = x

proof −

6

have x[y 7−→x[[y]]] = (y u yT ∗ x) t (−y u x)
by (simp add: conv-dist-comp)

also have ... = (y u x) t (−y u x)
proof −

have y u yT ∗ x = y u x
proof (rule order .antisym)

have y u yT ∗ x = (y u yT) ∗ x
by (simp add: assms vector-inf-comp)

also have (y u yT) ∗ x = y ∗ yT ∗ x
by (simp add: assms vector-covector)

also have ... ≤ x
using assms comp-isotone by fastforce

finally show y u yT ∗ x ≤ y u x
by simp

have y u x ≤ yT ∗ x
by (simp add: assms vector-restrict-comp-conv)

thus y u x ≤ y u yT ∗ x
by simp

qed
thus ?thesis

by simp
qed
also have ... = x
proof −

have regular y
using assms bijective-regular by blast

thus ?thesis
by (metis inf .sup-monoid.add-commute maddux-3-11-pp)

qed
finally show ?thesis

.
qed

lemma update-inf :
u ≤ y =⇒ (x[y 7−→z]) u u = zT u u
by (smt comp-inf .mult-right-dist-sup comp-inf .semiring.mult-zero-right

inf .left-commute inf .sup-monoid.add-assoc inf-absorb2 p-inf sup-bot-right
inf .sup-monoid.add-commute)

lemma update-inf-same:
(x[y 7−→z]) u y = zT u y
by (simp add: update-inf)

lemma update-inf-different:
u ≤ −y =⇒ (x[y 7−→z]) u u = x u u
by (smt inf .right-idem inf .sup-monoid.add-commute

inf .sup-relative-same-increasing inf-import-p maddux-3-13 sup.cobounded2
update-inf-same)

7

end

3 Relation-Algebraic Semantics of Disjoint-Set
Forests

A disjoint-set forest represents a partition of a set into equivalence classes.
We take the represented equivalence relation as the semantics of a forest.
It is obtained by operation fc below. Additionally, operation wcc giving
the weakly connected components of a graph will be used for the semantics
of the union of two disjoint sets. Finally, operation root yields the root
of a component tree, that is, the representative of a set containing a given
element. This section defines these operations and derives their properties.
context stone-kleene-relation-algebra
begin

lemma omit-redundant-points:
assumes point p
shows p u x? = (p u 1) t (p u x) ∗ (−p u x)?

proof (rule order .antisym)
let ?p = p u 1
have ?p ∗ x ∗ (−p u x)? ∗ ?p ≤ ?p ∗ top ∗ ?p

by (metis comp-associative mult-left-isotone mult-right-isotone top.extremum)
also have ... ≤ ?p

by (simp add: assms injective-codomain vector-inf-one-comp)
finally have ?p ∗ x ∗ (−p u x)? ∗ ?p ∗ x ≤ ?p ∗ x

using mult-left-isotone by blast
hence ?p ∗ x ∗ (−p u x)? ∗ (p u x) ≤ ?p ∗ x

by (simp add: assms comp-associative vector-inf-one-comp)
also have 1 : ... ≤ ?p ∗ x ∗ (−p u x)?

using mult-right-isotone star .circ-reflexive by fastforce
finally have ?p ∗ x ∗ (−p u x)? ∗ (p u x) t ?p ∗ x ∗ (−p u x)? ∗ (−p u x) ≤

?p ∗ x ∗ (−p u x)?
by (simp add: mult-right-isotone star .circ-plus-same star .left-plus-below-circ

mult-assoc)
hence ?p ∗ x ∗ (−p u x)? ∗ ((p t −p) u x) ≤ ?p ∗ x ∗ (−p u x)?

by (simp add: comp-inf .mult-right-dist-sup mult-left-dist-sup)
hence ?p ∗ x ∗ (−p u x)? ∗ x ≤ ?p ∗ x ∗ (−p u x)?

by (metis assms bijective-regular inf .absorb2 inf .cobounded1
inf .sup-monoid.add-commute shunting-p)

hence ?p ∗ x ∗ (−p u x)? ∗ x t ?p ∗ x ≤ ?p ∗ x ∗ (−p u x)?
using 1 by simp

hence ?p ∗ (1 t x ∗ (−p u x)?) ∗ x ≤ ?p ∗ x ∗ (−p u x)?
by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup)

also have ... ≤ ?p ∗ (1 t x ∗ (−p u x)?)
by (simp add: comp-associative mult-right-isotone)

finally have ?p ∗ x? ≤ ?p ∗ (1 t x ∗ (−p u x)?)
using star-right-induct by (meson dual-order .trans le-supI

8

mult-left-sub-dist-sup-left mult-sub-right-one)
also have ... = ?p t ?p ∗ x ∗ (−p u x)?

by (simp add: comp-associative semiring.distrib-left)
finally show p u x? ≤ ?p t (p u x) ∗ (−p u x)?

by (simp add: assms vector-inf-one-comp)
show ?p t (p u x) ∗ (−p u x)? ≤ p u x?

by (metis assms comp-isotone inf .boundedI inf .cobounded1 inf .coboundedI2
inf .sup-monoid.add-commute le-supI star .circ-increasing star .circ-transitive-equal
star-isotone star-left-unfold-equal sup.cobounded1 vector-export-comp)
qed

Weakly connected components
abbreviation wcc x ≡ (x t xT)?

lemma wcc-equivalence:
equivalence (wcc x)
apply (intro conjI)
subgoal by (simp add: star .circ-reflexive)
subgoal by (simp add: star .circ-transitive-equal)
subgoal by (simp add: conv-dist-sup conv-star-commute sup-commute)
done

lemma wcc-increasing:
x ≤ wcc x
by (simp add: star .circ-sub-dist-1)

lemma wcc-isotone:
x ≤ y =⇒ wcc x ≤ wcc y
using conv-isotone star-isotone sup-mono by blast

lemma wcc-idempotent:
wcc (wcc x) = wcc x
using star-involutive wcc-equivalence by auto

lemma wcc-below-wcc:
x ≤ wcc y =⇒ wcc x ≤ wcc y
using wcc-idempotent wcc-isotone by fastforce

lemma wcc-galois:
x ≤ wcc y ←→ wcc x ≤ wcc y
using order-trans star .circ-sub-dist-1 wcc-below-wcc by blast

lemma wcc-bot:
wcc bot = 1
by (simp add: star .circ-zero)

lemma wcc-one:
wcc 1 = 1
by (simp add: star-one)

9

lemma wcc-top:
wcc top = top
by (simp add: star .circ-top)

lemma wcc-with-loops:
wcc x = wcc (x t 1)
by (metis conv-dist-sup star-decompose-1 star-sup-one sup-commute

symmetric-one-closed)

lemma wcc-without-loops:
wcc x = wcc (x − 1)
by (metis conv-star-commute star-sum reachable-without-loops)

lemma forest-components-wcc:
injective x =⇒ wcc x = forest-components x
by (simp add: cancel-separate-1)

lemma wcc-sup-wcc:
wcc (x t y) = wcc (x t wcc y)
by (smt (verit, ccfv-SIG) le-sup-iff order .antisym sup-right-divisibility

wcc-below-wcc wcc-increasing)

Components of a forest, which is represented using edges directed to-
wards the roots
abbreviation fc x ≡ x? ∗ xT ?

lemma fc-equivalence:
univalent x =⇒ equivalence (fc x)
apply (intro conjI)
subgoal by (simp add: reflexive-mult-closed star .circ-reflexive)
subgoal by (metis cancel-separate-1 order .eq-iff star .circ-transitive-equal)
subgoal by (simp add: conv-dist-comp conv-star-commute)
done

lemma fc-increasing:
x ≤ fc x
by (metis le-supE mult-left-isotone star .circ-back-loop-fixpoint

star .circ-increasing)

lemma fc-isotone:
x ≤ y =⇒ fc x ≤ fc y
by (simp add: comp-isotone conv-isotone star-isotone)

lemma fc-idempotent:
univalent x =⇒ fc (fc x) = fc x
by (metis fc-equivalence cancel-separate-1 star .circ-transitive-equal

star-involutive)

10

lemma fc-star :
univalent x =⇒ (fc x)? = fc x
using fc-equivalence fc-idempotent star .circ-transitive-equal by simp

lemma fc-plus:
univalent x =⇒ (fc x)+ = fc x
by (metis fc-star star .circ-decompose-9)

lemma fc-bot:
fc bot = 1
by (simp add: star .circ-zero)

lemma fc-one:
fc 1 = 1
by (simp add: star-one)

lemma fc-top:
fc top = top
by (simp add: star .circ-top)

lemma fc-wcc:
univalent x =⇒ wcc x = fc x
by (simp add: fc-star star-decompose-1)

lemma fc-via-root:
assumes total (p? ∗ (p u 1))
shows fc p = p? ∗ (p u 1) ∗ pT ?

proof (rule order .antisym)
have 1 ≤ p? ∗ (p u 1) ∗ pT ?

by (smt assms comp-associative conv-dist-comp conv-star-commute
coreflexive-idempotent coreflexive-symmetric inf .cobounded2 total-var)

hence fc p ≤ p? ∗ p? ∗ (p u 1) ∗ pT ? ∗ pT ?

by (metis comp-right-one mult-left-isotone mult-right-isotone mult-assoc)
thus fc p ≤ p? ∗ (p u 1) ∗ pT ?

by (simp add: star .circ-transitive-equal mult-assoc)
show p? ∗ (p u 1) ∗ pT ? ≤ fc p

by (metis comp-isotone inf .cobounded2 mult-1-right order .refl)
qed

lemma update-acyclic-1 :
assumes acyclic (p − 1)

and point y
and vector w
and w ≤ p? ∗ y

shows acyclic ((p[w 7−→y]) − 1)
proof −

let ?p = p[w 7−→y]
have w ∗ yT ≤ p?

using assms(2 ,4) shunt-bijective by blast

11

hence w ∗ yT ≤ (p − 1)?
using reachable-without-loops by auto

hence w ∗ yT − 1 ≤ (p − 1)? − 1
by (simp add: inf .coboundedI2 inf .sup-monoid.add-commute)

also have ... ≤ (p − 1)+
by (simp add: star-plus-without-loops)

finally have 1 : w u yT u −1 ≤ (p − 1)+
using assms(2 ,3) vector-covector by auto

have ?p − 1 = (w u yT u −1) t (−w u p u −1)
by (simp add: inf-sup-distrib2)

also have ... ≤ (p − 1)+ t (−w u p u −1)
using 1 sup-left-isotone by blast

also have ... ≤ (p − 1)+ t (p − 1)
using comp-inf .mult-semi-associative sup-right-isotone by auto

also have ... = (p − 1)+
by (metis star .circ-back-loop-fixpoint sup.right-idem)

finally have (?p − 1)+ ≤ (p − 1)+
by (metis comp-associative comp-isotone star .circ-transitive-equal

star .left-plus-circ star-isotone)
also have ... ≤ −1

using assms(1) by blast
finally show ?thesis

by simp
qed

lemma update-acyclic-2 :
assumes acyclic (p − 1)

and point y
and point x
and y ≤ pT ? ∗ x
and univalent p
and pT ∗ y ≤ y

shows acyclic ((p[pT ?∗x 7−→y]) − 1)
proof −

have pT ∗ p? ∗ y = pT ∗ p ∗ p? ∗ y t pT ∗ y
by (metis comp-associative mult-left-dist-sup star .circ-loop-fixpoint)

also have ... ≤ p? ∗ y
by (metis assms(5 ,6) comp-right-one le-supI le-supI2 mult-left-isotone

star .circ-loop-fixpoint star .circ-transitive-equal)
finally have pT ? ∗ x ≤ p? ∗ y

by (simp add: assms(2−4) bijective-reverse conv-star-commute
comp-associative star-left-induct)

thus ?thesis
by (simp add: assms(1−3) vector-mult-closed update-acyclic-1)

qed

lemma update-acyclic-3 :
assumes acyclic (p − 1)

and point y

12

and point w
and y ≤ pT ? ∗ w

shows acyclic ((p[w 7−→y]) − 1)
by (simp add: assms bijective-reverse conv-star-commute update-acyclic-1)

lemma rectangle-star-rectangle:
rectangle a =⇒ a ∗ x? ∗ a ≤ a
by (metis mult-left-isotone mult-right-isotone top.extremum)

lemma arc-star-arc:
arc a =⇒ a ∗ x? ∗ a ≤ a
using arc-top-arc rectangle-star-rectangle by blast

lemma star-rectangle-decompose:
assumes rectangle a
shows (a t x)? = x? t x? ∗ a ∗ x?

proof (rule order .antisym)
have 1 : 1 ≤ x? t x? ∗ a ∗ x?

by (simp add: star .circ-reflexive sup.coboundedI1)
have (a t x) ∗ (x? t x? ∗ a ∗ x?) = a ∗ x? t a ∗ x? ∗ a ∗ x? t x+ t x+ ∗ a ∗

x?

by (metis comp-associative semiring.combine-common-factor
semiring.distrib-left sup-commute)

also have ... = a ∗ x? t x+ t x+ ∗ a ∗ x?

using assms rectangle-star-rectangle by (simp add: mult-left-isotone
sup-absorb1)

also have ... = x+ t x? ∗ a ∗ x?

by (metis comp-associative star .circ-loop-fixpoint sup-assoc sup-commute)
also have ... ≤ x? t x? ∗ a ∗ x?

using star .left-plus-below-circ sup-left-isotone by auto
finally show (a t x)? ≤ x? t x? ∗ a ∗ x?

using 1 by (metis comp-right-one le-supI star-left-induct)
next

show x? t x? ∗ a ∗ x? ≤ (a t x)?
by (metis comp-isotone le-supE le-supI star .circ-increasing

star .circ-transitive-equal star-isotone sup-ge2)
qed

lemma star-arc-decompose:
arc a =⇒ (a t x)? = x? t x? ∗ a ∗ x?

using arc-top-arc star-rectangle-decompose by blast

lemma plus-rectangle-decompose:
assumes rectangle a
shows (a t x)+ = x+ t x? ∗ a ∗ x?

proof −
have (a t x)+ = (a t x) ∗ (x? t x? ∗ a ∗ x?)

by (simp add: assms star-rectangle-decompose)
also have ... = a ∗ x? t a ∗ x? ∗ a ∗ x? t x+ t x+ ∗ a ∗ x?

13

by (metis comp-associative semiring.combine-common-factor
semiring.distrib-left sup-commute)

also have ... = a ∗ x? t x+ t x+ ∗ a ∗ x?

using assms rectangle-star-rectangle by (simp add: mult-left-isotone
sup-absorb1)

also have ... = x+ t x? ∗ a ∗ x?

by (metis comp-associative star .circ-loop-fixpoint sup-assoc sup-commute)
finally show ?thesis

by simp
qed

lemma plus-arc-decompose:
arc a =⇒ (a t x)+ = x+ t x? ∗ a ∗ x?

using arc-top-arc plus-rectangle-decompose by blast

lemma update-acyclic-4 :
assumes acyclic (p − 1)

and point y
and point w
and y u p? ∗ w = bot

shows acyclic ((p[w 7−→y]) − 1)
proof −

let ?p = p[w 7−→y]
have yT ∗ p? ∗ w ≤ −1

using assms(4) comp-associative pseudo-complement schroeder-3-p by auto
hence 1 : p? ∗ w ∗ yT ∗ p? ≤ −1

by (metis comp-associative comp-commute-below-diversity
star .circ-transitive-equal)

have ?p − 1 ≤ (w u yT) t (p − 1)
by (metis comp-inf .mult-right-dist-sup dual-order .trans inf .cobounded1

inf .coboundedI2 inf .sup-monoid.add-assoc le-supI sup.cobounded1 sup-ge2)
also have ... = w ∗ yT t (p − 1)

using assms(2 ,3) by (simp add: vector-covector)
finally have (?p − 1)+ ≤ (w ∗ yT t (p − 1))+

by (simp add: comp-isotone star-isotone)
also have ... = (p − 1)+ t (p − 1)? ∗ w ∗ yT ∗ (p − 1)?

using assms(2 ,3) plus-arc-decompose points-arc by (simp add:
comp-associative)

also have ... ≤ (p − 1)+ t p? ∗ w ∗ yT ∗ p?

using reachable-without-loops by auto
also have ... ≤ −1

using 1 assms(1) by simp
finally show ?thesis

by simp
qed

lemma update-acyclic-5 :
assumes acyclic (p − 1)

and point w

14

shows acyclic ((p[w 7−→w]) − 1)
proof −

let ?p = p[w 7−→w]
have ?p − 1 ≤ (w u wT u −1) t (p − 1)

by (metis comp-inf .mult-right-dist-sup inf .cobounded2
inf .sup-monoid.add-assoc sup-right-isotone)

also have ... = p − 1
using assms(2) by (metis comp-inf .covector-complement-closed

equivalence-top-closed inf-top.right-neutral maddux-3-13 pseudo-complement
regular-closed-top regular-one-closed vector-covector vector-top-closed)

finally show ?thesis
using assms(1) acyclic-down-closed by blast

qed

Root of the tree containing point x in the disjoint-set forest p

abbreviation roots p ≡ (p u 1) ∗ top
abbreviation root p x ≡ pT ? ∗ x u roots p

lemma root-var :
root p x = (p u 1) ∗ pT ? ∗ x
by (simp add: coreflexive-comp-top-inf inf-commute mult-assoc)

lemma root-successor-loop:
univalent p =⇒ root p x = p[[root p x]]
by (metis root-var injective-codomain comp-associative conv-dist-inf

coreflexive-symmetric equivalence-one-closed inf .cobounded2
univalent-conv-injective)

lemma root-transitive-successor-loop:
univalent p =⇒ root p x = pT ? ∗ (root p x)
by (metis mult-1-right star-one star-simulation-right-equal root-successor-loop)

lemma roots-successor-loop:
univalent p =⇒ p[[roots p]] = roots p
by (metis conv-involutive inf-commute injective-codomain one-inf-conv

mult-assoc)

lemma roots-transitive-successor-loop:
univalent p =⇒ pT ? ∗ (roots p) = roots p
by (metis comp-associative star .circ-left-top star-simulation-right-equal

roots-successor-loop)

The root of a tree of a node belongs to the same component as the node.
lemma root-same-component:

injective x =⇒ root p x ∗ xT ≤ fc p
by (metis comp-associative coreflexive-comp-top-inf eq-refl

inf .sup-left-divisibility inf .sup-monoid.add-commute mult-isotone
star .circ-circ-mult star .circ-right-top star .circ-transitive-equal star-one
star-outer-increasing test-preserves-equation top-greatest)

15

lemma root-vector :
vector x =⇒ vector (root p x)
by (simp add: vector-mult-closed root-var)

lemma root-vector-inf :
vector x =⇒ root p x ∗ xT = root p x u xT

by (simp add: vector-covector root-vector)

lemma root-same-component-vector :
injective x =⇒ vector x =⇒ root p x u xT ≤ fc p
using root-same-component root-vector-inf by fastforce

lemma univalent-root-successors:
assumes univalent p
shows (p u 1) ∗ p? = p u 1

proof (rule order .antisym)
have (p u 1) ∗ p ≤ p u 1

by (smt assms(1) comp-inf .mult-semi-associative conv-dist-comp conv-dist-inf
conv-order equivalence-one-closed inf .absorb1 inf .sup-monoid.add-assoc
injective-codomain)

thus (p u 1) ∗ p? ≤ p u 1
using star-right-induct-mult by blast

show p u 1 ≤ (p u 1) ∗ p?

by (metis coreflexive-idempotent inf-le1 inf-le2 mult-right-isotone order-trans
star .circ-increasing)
qed

lemma same-component-same-root-sub:
assumes univalent p

and bijective y
and x ∗ yT ≤ fc p

shows root p x ≤ root p y
proof −

have root p x ∗ yT ≤ (p u 1) ∗ pT ?

by (smt assms(1 ,3) mult-isotone mult-assoc root-var fc-plus fc-star order .eq-iff
univalent-root-successors)

thus ?thesis
by (simp add: assms(2) shunt-bijective root-var)

qed

lemma same-component-same-root:
assumes univalent p

and bijective x
and bijective y
and x ∗ yT ≤ fc p

shows root p x = root p y
proof (rule order .antisym)

show root p x ≤ root p y

16

using assms(1 ,3 ,4) same-component-same-root-sub by blast
have y ∗ xT ≤ fc p

using assms(1 ,4) fc-equivalence conv-dist-comp conv-isotone by fastforce
thus root p y ≤ root p x

using assms(1 ,2) same-component-same-root-sub by blast
qed

lemma same-roots-sub:
assumes univalent q

and p u 1 ≤ q u 1
and fc p ≤ fc q

shows p? ∗ (p u 1) ≤ q? ∗ (q u 1)
proof −

have p? ∗ (p u 1) ≤ p? ∗ (q u 1)
using assms(2) mult-right-isotone by auto

also have ... ≤ fc p ∗ (q u 1)
using mult-left-isotone mult-right-isotone star .circ-reflexive by fastforce

also have ... ≤ fc q ∗ (q u 1)
by (simp add: assms(3) mult-left-isotone)

also have ... = q? ∗ (q u 1)
by (metis assms(1) conv-dist-comp conv-dist-inf conv-star-commute

inf-commute one-inf-conv symmetric-one-closed mult-assoc
univalent-root-successors)

finally show ?thesis
.

qed

lemma same-roots:
assumes univalent p

and univalent q
and p u 1 = q u 1
and fc p = fc q

shows p? ∗ (p u 1) = q? ∗ (q u 1)
by (smt assms conv-dist-comp conv-dist-inf conv-involutive conv-star-commute

inf-commute one-inf-conv symmetric-one-closed root-var univalent-root-successors)

lemma same-root:
assumes univalent p

and univalent q
and p u 1 = q u 1
and fc p = fc q

shows root p x = root q x
by (metis assms mult-assoc root-var univalent-root-successors)

lemma loop-root:
assumes injective x

and x = p[[x]]
shows x = root p x

proof (rule order .antisym)

17

have x ≤ p ∗ x
by (metis assms comp-associative comp-right-one conv-order

equivalence-one-closed ex231c inf .orderE inf .sup-monoid.add-commute
mult-left-isotone mult-right-isotone one-inf-conv)

hence x = (p u 1) ∗ x
by (simp add: assms(1) inf-absorb2 injective-comp-right-dist-inf)

thus x ≤ root p x
by (metis assms(2) coreflexive-comp-top-inf inf .boundedI inf .cobounded1

inf .cobounded2 mult-isotone star .circ-increasing)
next

show root p x ≤ x
using assms(2) le-infI1 star-left-induct-mult by auto

qed

lemma one-loop:
assumes acyclic (p − 1)

and univalent p
shows (p u 1) ∗ (pT − 1)+ ∗ (p u 1) = bot

proof −
have pT+ u (p u 1) ∗ top ∗ (p u 1) = (p u 1) ∗ pT+ ∗ (p u 1)

by (simp add: test-comp-test-top)
also have ... ≤ pT ? ∗ (p u 1)

by (simp add: inf .coboundedI2 mult-left-isotone star .circ-mult-upper-bound
star .circ-reflexive star .left-plus-below-circ)

also have ... = p u 1
by (metis assms(2) conv-dist-comp conv-dist-inf conv-star-commute

inf-commute one-inf-conv symmetric-one-closed univalent-root-successors)
also have ... ≤ 1

by simp
finally have (p u 1) ∗ top ∗ (p u 1) ≤ −(pT+ − 1)

using p-antitone p-antitone-iff p-shunting-swap by blast
hence (p u 1)T ∗ (pT+ − 1) ∗ (p u 1)T ≤ bot

using triple-schroeder-p p-top by blast
hence (p u 1) ∗ (pT+ − 1) ∗ (p u 1) = bot

by (simp add: coreflexive-symmetric le-bot)
thus ?thesis

by (smt assms(1) conv-complement conv-dist-comp conv-dist-inf
conv-star-commute inf-absorb1 star .circ-plus-same symmetric-one-closed
reachable-without-loops star-plus-without-loops)
qed

lemma root-root:
root p x = root p (root p x)
by (smt comp-associative comp-inf .mult-right-sub-dist-sup-right dual-order .eq-iff

inf .cobounded1 inf .cobounded2 inf .orderE mult-right-isotone
star .circ-loop-fixpoint star .circ-transitive-equal root-var)

lemma loop-root-2 :
assumes acyclic (p − 1)

18

and univalent p
and injective x
and x ≤ pT+ ∗ x

shows x = root p x
proof (rule order .antisym)

have 1 : x = x − (−1 ∗ x)
by (metis assms(3) comp-injective-below-complement inf .orderE mult-1-left

regular-one-closed)
have x ≤ (pT − 1)+ ∗ x t (p u 1) ∗ x

by (metis assms(4) inf-commute mult-right-dist-sup one-inf-conv
plus-reachable-without-loops)

also have ... ≤ −1 ∗ x t (p u 1) ∗ x
by (metis assms(1) conv-complement conv-dist-inf conv-isotone

conv-plus-commute mult-left-isotone semiring.add-right-mono
symmetric-one-closed)

also have ... ≤ −1 ∗ x t root p x
using comp-isotone inf .coboundedI2 star .circ-reflexive sup-right-isotone by

auto
finally have x ≤ (−1 ∗ x t root p x) − (−1 ∗ x)

using 1 inf .boundedI inf .order-iff by blast
also have ... ≤ root p x

using inf .sup-left-divisibility by auto
finally show 2 : x ≤ root p x

.
have root p x = (p u 1) ∗ x t (p u 1) ∗ (pT − 1)+ ∗ x

by (metis comp-associative mult-left-dist-sup star .circ-loop-fixpoint
sup-commute reachable-without-loops root-var)

also have ... ≤ x t (p u 1) ∗ (pT − 1)+ ∗ root p x
using 2 by (metis coreflexive-comp-top-inf inf .cobounded2 mult-right-isotone

semiring.add-mono)
also have ... = x

by (metis assms(1 ,2) one-loop root-var mult-assoc semiring.mult-not-zero
sup-bot-right)

finally show root p x ≤ x
.

qed

lemma path-compression-invariant-simplify:
assumes point w

and pT+ ∗ w ≤ −w
and w 6= y

shows p[[w]] 6= w
proof

assume p[[w]] = w
hence w ≤ pT+ ∗ w

by (metis comp-isotone eq-refl star .circ-mult-increasing)
also have ... ≤ −w

by (simp add: assms(2))
finally have w = bot

19

using inf .orderE by fastforce
thus False

using assms(1 ,3) le-bot by force
qed

end

context stone-relation-algebra-tarski
begin

lemma distinct-points has been moved to theory Relation-Algebras in
entry Stone-Relation-Algebras

Back and von Wright’s array independence requirements [1]
lemma put-get-different-vector :

assumes vector y w ≤ −y
shows (x[y 7−→z])[[w]] = x[[w]]

proof −
have (x[y 7−→z])[[w]] = (yT u z) ∗ w t (−yT u xT) ∗ w

by (simp add: conv-complement conv-dist-inf conv-dist-sup mult-right-dist-sup)
also have ... = z ∗ (w u y) t xT ∗ (w − y)

by (metis assms(1) conv-complement covector-inf-comp-3 inf-commute
vector-complement-closed)

also have ... = z ∗ (w u y) t xT ∗ w
by (simp add: assms(2) inf .absorb1)

also have ... = z ∗ bot t xT ∗ w
by (metis assms(2) comp-inf .semiring.mult-zero-right inf .absorb1

inf .sup-monoid.add-assoc p-inf)
also have ... = xT ∗ w

by simp
finally show ?thesis

.
qed

lemma put-get-different:
assumes point y point w w 6= y
shows (x[y 7−→z])[[w]] = x[[w]]

proof −
have w u y = bot

using assms distinct-points by simp
hence w ≤ −y

using pseudo-complement by simp
thus ?thesis

by (simp add: assms(1) assms(2) put-get-different-vector)
qed

lemma put-put-different-vector :
assumes vector y vector v v u y = bot
shows (x[y 7−→z])[v 7−→w] = (x[v 7−→w])[y 7−→z]

proof −

20

have (x[y 7−→z])[v 7−→w] = (v u wT) t (−v u y u zT) t (−v u −y u x)
by (simp add: comp-inf .semiring.distrib-left inf-assoc sup-assoc)

also have ... = (v u wT) t (y u zT) t (−v u −y u x)
by (metis assms(3) inf-commute inf-import-p p-inf selection-closed-id)

also have ... = (y u zT) t (v u wT) t (−y u −v u x)
by (simp add: inf-commute sup-commute)

also have ... = (y u zT) t (−y u v u wT) t (−y u −v u x)
using assms distinct-points pseudo-complement inf .absorb2 by simp

also have ... = (x[v 7−→w])[y 7−→z]
by (simp add: comp-inf .semiring.distrib-left inf-assoc sup-assoc)

finally show ?thesis
.

qed

lemma put-put-different:
assumes point y point v v 6= y
shows (x[y 7−→z])[v 7−→w] = (x[v 7−→w])[y 7−→z]
using assms distinct-points put-put-different-vector by blast

end

4 Verifying Operations on Disjoint-Set Forests
In this section we verify the make-set, find-set and union-sets operations of
disjoint-set forests. We start by introducing syntax for updating arrays in
programs. Updating the value at a given array index means updating the
whole array.
syntax

-rel-update :: idt ⇒ ′a ⇒ ′a ⇒ ′b com (‹(2-[-] :=/ -)› [70 , 65 , 65] 61)

translations
x[y] := z => (x := (y u zT) t (CONST uminus y u x))

The finiteness requirement in the following class is used for proving that
the operations terminate.
class finite-regular-p-algebra = p-algebra +

assumes finite-regular : finite { x . regular x }
begin

abbreviation card-down-regular :: ′a ⇒ nat (‹-↓› [100] 100)
where x↓ ≡ card { z . regular z ∧ z ≤ x }

end

class stone-kleene-relation-algebra-tarski-finite-regular =
stone-kleene-relation-algebra-tarski + finite-regular-p-algebra
begin

21

4.1 Make-Set
We prove two correctness results about make-set. The first shows that the
forest changes only to the extent of making one node the root of a tree. The
second result adds that only singleton sets are created.
definition make-set-postcondition p x p0 ≡ x u p = x ∗ xT ∧ −x u p = −x u p0

theorem make-set:
VARS p
[point x ∧ p0 = p]
p[x] := x
[make-set-postcondition p x p0]
apply vcg-tc-simp
by (simp add: make-set-postcondition-def inf-sup-distrib1 inf-assoc[THEN sym]

vector-covector [THEN sym])

theorem make-set-2 :
VARS p
[point x ∧ p0 = p ∧ p ≤ 1]
p[x] := x
[make-set-postcondition p x p0 ∧ p ≤ 1]

proof vcg-tc
fix p
assume 1 : point x ∧ p0 = p ∧ p ≤ 1
show make-set-postcondition (p[x 7−→x]) x p0 ∧ p[x 7−→x] ≤ 1
proof (rule conjI)

show make-set-postcondition (p[x 7−→x]) x p0
using 1 by (simp add: make-set-postcondition-def inf-sup-distrib1

inf-assoc[THEN sym] vector-covector [THEN sym])
show p[x 7−→x] ≤ 1

using 1 by (metis coreflexive-sup-closed dual-order .trans inf .cobounded2
vector-covector)

qed
qed

The above total-correctness proof allows us to extract a function, which
can be used in other implementations below. This is a technique of [10].
lemma make-set-exists:

point x =⇒ ∃ p ′ . make-set-postcondition p ′ x p
using tc-extract-function make-set by blast

definition make-set p x ≡ (SOME p ′ . make-set-postcondition p ′ x p)

lemma make-set-function:
assumes point x

and p ′ = make-set p x
shows make-set-postcondition p ′ x p

proof −
let ?P = λp ′ . make-set-postcondition p ′ x p

22

have ?P (SOME z . ?P z)
using assms(1) make-set-exists by (meson someI)

thus ?thesis
using assms(2) make-set-def by auto

qed

end

4.2 Find-Set
Disjoint-set forests are represented by their parent mapping. It is a forest
except each root of a component tree points to itself.

We prove that find-set returns the root of the component tree of the
given node.
context pd-kleene-allegory
begin

abbreviation disjoint-set-forest p ≡ mapping p ∧ acyclic (p − 1)

end

context stone-kleene-relation-algebra-tarski
begin

If two nodes are mutually reachable from each other in a disjoint-set
forest, they must be equal.
lemma forest-mutually-reachable:

assumes acyclic (p − 1) point x point y x ≤ p? ∗ y y ≤ p? ∗ x
shows x = y

proof (rule ccontr)
assume 1 : x 6= y
hence 2 : x ≤ −y

by (meson assms(2 ,3) bijective-regular dual-order .eq-iff
point-in-vector-or-complement point-in-vector-or-complement-2)

have x ≤ (p − 1)? ∗ y
using assms(4) reachable-without-loops by auto

also have ... = (p − 1)+ ∗ y t y
by (simp add: star .circ-loop-fixpoint mult-assoc)

finally have 3 : x ≤ (p − 1)+ ∗ y
using 2 by (metis half-shunting inf .orderE)

have 4 : y ≤ −x
using 1 by (meson assms(2 ,3) bijective-regular dual-order .eq-iff

point-in-vector-or-complement point-in-vector-or-complement-2)
have y ≤ (p − 1)? ∗ x

using assms(5) reachable-without-loops by auto
also have ... = (p − 1)+ ∗ x t x

by (simp add: star .circ-loop-fixpoint mult-assoc)
finally have y ≤ (p − 1)+ ∗ x

23

using 4 by (metis half-shunting inf .orderE)
also have ... ≤ (p − 1)+ ∗ (p − 1)+ ∗ y

using 3 by (simp add: comp-associative mult-right-isotone)
also have ... ≤ (p − 1)+ ∗ y

by (simp add: mult-left-isotone plus-transitive)
finally have y ∗ yT ≤ (p − 1)+

using assms(3) shunt-bijective by blast
also have ... ≤ −1

by (simp add: assms(1))
finally have y = bot

using inf .absorb-iff1 schroeder-4-p by auto
thus False

using 1 assms(3) bot-least top-unique by auto
qed

lemma forest-mutually-reachable-2 :
assumes acyclic (p − 1) point x point y x ≤ pT ? ∗ y y ≤ pT ? ∗ x
shows x = y

proof −
have 1 : x ≤ p? ∗ y

by (simp add: assms(2 ,3 ,5) bijective-reverse conv-star-commute)
have y ≤ p? ∗ x

by (simp add: assms(2−4) bijective-reverse conv-star-commute)
thus ?thesis

using 1 assms(1−3) forest-mutually-reachable by blast
qed

end

context stone-kleene-relation-algebra-tarski-finite-regular
begin

definition find-set-precondition p x ≡ disjoint-set-forest p ∧ point x
definition find-set-invariant p x y ≡ find-set-precondition p x ∧ point y ∧ y ≤
pT ? ∗ x
definition find-set-postcondition p x y ≡ point y ∧ y = root p x

lemma find-set-1 :
find-set-precondition p x =⇒ find-set-invariant p x x
apply (unfold find-set-invariant-def)
using mult-left-isotone star .circ-reflexive find-set-precondition-def by fastforce

lemma find-set-2 :
find-set-invariant p x y ∧ y 6= p[[y]] =⇒ find-set-invariant p x (p[[y]]) ∧ (pT ? ∗

(p[[y]]))↓ < (pT ? ∗ y)↓
proof −

let ?s = { z . regular z ∧ z ≤ pT ? ∗ y }
let ?t = { z . regular z ∧ z ≤ pT ? ∗ (p[[y]]) }
assume 1 : find-set-invariant p x y ∧ y 6= p[[y]]

24

have 2 : point (p[[y]])
using 1 read-point find-set-invariant-def find-set-precondition-def by simp

show find-set-invariant p x (p[[y]]) ∧ card ?t < card ?s
proof (unfold find-set-invariant-def , intro conjI)

show find-set-precondition p x
using 1 find-set-invariant-def by simp

show vector (p[[y]])
using 2 by simp

show injective (p[[y]])
using 2 by simp

show surjective (p[[y]])
using 2 by simp

show p[[y]] ≤ pT ? ∗ x
using 1 by (metis (opaque-lifting) find-set-invariant-def comp-associative

comp-isotone star .circ-increasing star .circ-transitive-equal)
show card ?t < card ?s
proof −

have p[[y]] = (pT u 1) ∗ y t (pT − 1) ∗ y
by (metis maddux-3-11-pp mult-right-dist-sup regular-one-closed)

also have ... ≤ ((p[[y]]) u y) t (pT − 1) ∗ y
by (metis comp-left-subdist-inf mult-1-left semiring.add-right-mono)

also have ... = (pT − 1) ∗ y
using 1 2 find-set-invariant-def distinct-points by auto

finally have 3 : (pT − 1)? ∗ (p[[y]]) ≤ (pT − 1)+ ∗ y
by (simp add: mult-right-isotone star-simulation-right-equal mult-assoc)

have pT ? ∗ (p[[y]]) ≤ pT ? ∗ y
by (metis mult-left-isotone star .right-plus-below-circ mult-assoc)

hence 4 : ?t ⊆ ?s
using order-trans by auto

have 5 : y ∈ ?s
using 1 find-set-invariant-def bijective-regular mult-left-isotone

star .circ-reflexive by fastforce
have 6 : ¬ y ∈ ?t
proof

assume y ∈ ?t
hence y ≤ (pT − 1)+ ∗ y

using 3 by (metis reachable-without-loops mem-Collect-eq order-trans)
hence y ∗ yT ≤ (pT − 1)+

using 1 find-set-invariant-def shunt-bijective by simp
also have ... ≤ −1

using 1 by (metis (mono-tags, lifting) find-set-invariant-def
find-set-precondition-def conv-dist-comp conv-dist-inf conv-isotone
conv-star-commute equivalence-one-closed star .circ-plus-same
symmetric-complement-closed)

finally have y ≤ −y
using schroeder-4-p by auto

thus False
using 1 by (metis find-set-invariant-def comp-inf .coreflexive-idempotent

conv-complement covector-vector-comp inf .absorb1 inf .sup-monoid.add-commute

25

pseudo-complement surjective-conv-total top.extremum vector-top-closed
regular-closed-top)

qed
show card ?t < card ?s

apply (rule psubset-card-mono)
subgoal using finite-regular by simp
subgoal using 4 5 6 by auto
done

qed
qed

qed

lemma find-set-3 :
find-set-invariant p x y ∧ y = p[[y]] =⇒ find-set-postcondition p x y

proof −
assume 1 : find-set-invariant p x y ∧ y = p[[y]]
show find-set-postcondition p x y
proof (unfold find-set-postcondition-def , rule conjI)

show point y
using 1 find-set-invariant-def by simp

show y = root p x
proof (rule order .antisym)

have y ∗ yT ≤ p
using 1 by (metis find-set-invariant-def find-set-precondition-def

shunt-bijective shunt-mapping top-right-mult-increasing)
hence y ∗ yT ≤ p u 1

using 1 find-set-invariant-def le-infI by blast
hence y ≤ roots p

using 1 by (metis find-set-invariant-def order-lesseq-imp shunt-bijective
top-right-mult-increasing mult-assoc)

thus y ≤ root p x
using 1 find-set-invariant-def by simp

next
have 2 : x ≤ p? ∗ y

using 1 find-set-invariant-def find-set-precondition-def bijective-reverse
conv-star-commute by auto

have pT ∗ p? ∗ y = pT ∗ p ∗ p? ∗ y t (p[[y]])
by (metis comp-associative mult-left-dist-sup star .circ-loop-fixpoint)

also have ... ≤ p? ∗ y t y
using 1 by (metis find-set-invariant-def find-set-precondition-def

comp-isotone mult-left-sub-dist-sup semiring.add-right-mono
star .circ-back-loop-fixpoint star .circ-circ-mult star .circ-top
star .circ-transitive-equal star-involutive star-one)

also have ... = p? ∗ y
by (metis star .circ-loop-fixpoint sup.left-idem sup-commute)

finally have 3 : pT ? ∗ x ≤ p? ∗ y
using 2 by (simp add: comp-associative star-left-induct)

have p ∗ y u roots p = (p u 1) ∗ p ∗ y
using comp-associative coreflexive-comp-top-inf inf-commute by auto

26

also have ... ≤ pT ∗ p ∗ y
by (metis inf .cobounded2 inf .sup-monoid.add-commute mult-left-isotone

one-inf-conv)
also have ... ≤ y

using 1 find-set-invariant-def find-set-precondition-def mult-left-isotone by
fastforce

finally have 4 : p ∗ y ≤ y t −roots p
using 1 by (metis find-set-invariant-def shunting-p bijective-regular)

have p ∗ −roots p ≤ −roots p
using 1 by (metis find-set-invariant-def find-set-precondition-def

conv-complement-sub-leq conv-involutive roots-successor-loop)
hence p ∗ y t p ∗ −roots p ≤ y t −roots p

using 4 dual-order .trans le-supI sup-ge2 by blast
hence p ∗ (y t −roots p) ≤ y t −roots p

by (simp add: mult-left-dist-sup)
hence p? ∗ y ≤ y t −roots p

by (simp add: star-left-induct)
hence pT ? ∗ x ≤ y t −roots p

using 3 dual-order .trans by blast
thus root p x ≤ y

using 1 by (metis find-set-invariant-def shunting-p bijective-regular)
qed

qed
qed

theorem find-set:
VARS y
[find-set-precondition p x]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y }
VAR { (pT ? ∗ y)↓ }
DO y := p[[y]]
OD

[find-set-postcondition p x y]
apply vcg-tc-simp

apply (fact find-set-1)
apply (fact find-set-2)

by (fact find-set-3)

lemma find-set-exists:
find-set-precondition p x =⇒ ∃ y . find-set-postcondition p x y
using tc-extract-function find-set by blast

The root of a component tree is a point, that is, represents a singleton set
of nodes. This could be proved from the definitions using Kleene-relation
algebraic calculations. But they can be avoided because the property di-
rectly follows from the postcondition of the previous correctness proof. The
corresponding algorithm shows how to obtain the root. We therefore have

27

an essentially constructive proof of the following result.
lemma root-point:

disjoint-set-forest p =⇒ point x =⇒ point (root p x)
using find-set-exists find-set-precondition-def find-set-postcondition-def by simp

definition find-set p x ≡ (SOME y . find-set-postcondition p x y)

lemma find-set-function:
assumes find-set-precondition p x

and y = find-set p x
shows find-set-postcondition p x y
by (metis assms find-set-def find-set-exists someI)

4.3 Path Compression
The path-compression technique is frequently implemented in recursive im-
plementations of find-set modifying the tree on the way out from recursive
calls. Here we implement it using a second while-loop, which iterates over
the same path to the root and changes edges to point to the root of the
component, which is known after the while-loop in find-set completes. We
prove that path compression preserves the equivalence-relational semantics
of the disjoint-set forest and also preserves the roots of the component trees.
Additionally we prove the exact effect of path compression.
definition path-compression-precondition p x y ≡ disjoint-set-forest p ∧ point x
∧ point y ∧ y = root p x
definition path-compression-invariant p x y p0 w ≡

path-compression-precondition p x y ∧ point w ∧
p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
root p w = y ∧ p0 [p0T ? ∗ x − p0T ? ∗ w 7−→y] = p ∧
disjoint-set-forest p0 ∧ w ≤ p0T ? ∗ x

definition path-compression-postcondition p x y p0 ≡
disjoint-set-forest p ∧ y = root p x ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [p0T ? ∗ x 7−→y] = p

We first consider a variant that achieves the effect as a single update.
The parents of all nodes reachable from x are simultaneously updated to the
root of the component of x.
lemma path-compression-exact:

assumes path-compression-precondition p0 x y
and p0 [p0T ? ∗ x 7−→y] = p

shows p u 1 = p0 u 1 fc p = fc p0
proof −

have a1 : disjoint-set-forest p0 and a2 : point x and a3 : point y and a4 : y =
root p0 x

using path-compression-precondition-def assms(1) by auto
have 1 : regular (p0T ? ∗ x)

using a1 a2 bijective-regular mapping-regular regular-closed-star
regular-conv-closed regular-mult-closed by auto

28

have p u 1 = (p0T ? ∗ x u yT u 1) t (−(p0T ? ∗ x) u p0 u 1)
using assms(2) inf-sup-distrib2 by auto

also have ... = (p0T ? ∗ x u p0 u 1) t (−(p0T ? ∗ x) u p0 u 1)
proof −

have p0T ? ∗ x u yT u 1 = p0T ? ∗ x u p0 u 1
proof (rule order .antisym)

have (p0 u 1) ∗ p0T ? ∗ x u 1 ≤ p0
by (smt coreflexive-comp-top-inf-one inf .absorb-iff2 inf .cobounded2

inf .sup-monoid.add-assoc root-var)
hence p0T ? ∗ x u yT u 1 ≤ p0

by (metis inf-le1 a4 conv-dist-inf coreflexive-symmetric inf .absorb2
inf .cobounded2 inf .sup-monoid.add-assoc root-var symmetric-one-closed)

thus p0T ? ∗ x u yT u 1 ≤ p0T ? ∗ x u p0 u 1
by (meson inf .le-sup-iff order .refl)

have p0T ? ∗ x u p0 u 1 ≤ y
by (metis a4 coreflexive-comp-top-inf-one inf .cobounded1 inf-assoc inf-le2)

thus p0T ? ∗ x u p0 u 1 ≤ p0T ? ∗ x u yT u 1
by (smt conv-dist-inf coreflexive-symmetric inf .absorb-iff2 inf .cobounded2

inf .sup-monoid.add-assoc)
qed
thus ?thesis

by simp
qed
also have ... = p0 u 1

using 1 by (metis inf .sup-monoid.add-commute inf-sup-distrib1
maddux-3-11-pp)

finally show p u 1 = p0 u 1
.

show fc p = fc p0
proof (rule order .antisym)

have 2 : univalent (p0 [p0T ? ∗ x 7−→y])
by (simp add: a1 a2 a3 update-univalent mult-assoc)

have 3 : −(p0T ? ∗ x) u p0 ≤ (p0 [p0T ? ∗ x 7−→y])? ∗ (p0 [p0T ? ∗ x 7−→y])T ?

using fc-increasing inf .order-trans sup.cobounded2 by blast
have p0T ? ∗ x u p0 ≤ (p0T ? u p0 ∗ xT) ∗ (x u p0 ? ∗ p0)

by (metis conv-involutive conv-star-commute dedekind)
also have ... ≤ p0T ? ∗ x u p0 ∗ xT ∗ p0 ? ∗ p0

by (metis comp-associative inf .boundedI inf .cobounded2 inf-le1 mult-isotone)
also have ... ≤ p0T ? ∗ x u top ∗ xT ∗ p0 ?

using comp-associative comp-inf .mult-right-isotone mult-isotone
star .right-plus-below-circ by auto

also have ... = p0T ? ∗ x ∗ xT ∗ p0 ?

by (metis a2 symmetric-top-closed vector-covector vector-inf-comp
vector-mult-closed)

also have ... ≤ (p0T ? ∗ x ∗ yT) ∗ (y ∗ xT ∗ p0 ?)
by (metis a3 order .antisym comp-inf .top-right-mult-increasing

conv-involutive dedekind-1 inf .sup-left-divisibility inf .sup-monoid.add-commute
mult-right-isotone surjective-conv-total mult-assoc)

also have ... = (p0T ? ∗ x u yT) ∗ (y u xT ∗ p0 ?)

29

by (metis a2 a3 vector-covector vector-inf-comp vector-mult-closed)
also have ... = (p0T ? ∗ x u yT) ∗ (p0T ? ∗ x u yT)T

by (simp add: conv-dist-comp conv-dist-inf conv-star-commute inf-commute)
also have ... ≤ (p0 [p0T ? ∗ x 7−→y])? ∗ (p0 [p0T ? ∗ x 7−→y])T ?

by (meson conv-isotone dual-order .trans mult-isotone star .circ-increasing
sup.cobounded1)

finally have p0T ? ∗ x u p0 ≤ (p0 [p0T ? ∗ x 7−→y])? ∗ (p0 [p0T ? ∗ x 7−→y])T ?

.
hence (p0T ? ∗ x u p0) t (−(p0T ? ∗ x) u p0) ≤ (p0 [p0T ? ∗ x 7−→y])? ∗

(p0 [p0T ? ∗ x 7−→y])T ?

using 3 le-supI by blast
hence p0 ≤ (p0 [p0T ? ∗ x 7−→y])? ∗ (p0 [p0T ? ∗ x 7−→y])T ?

using 1 by (metis inf-commute maddux-3-11-pp)
hence fc p0 ≤ (p0 [p0T ? ∗ x 7−→y])? ∗ (p0 [p0T ? ∗ x 7−→y])T ?

using 2 fc-idempotent fc-isotone by fastforce
thus fc p0 ≤ fc p

by (simp add: assms(2))
have ((p0T ? ∗ x u yT) t (−(p0T ? ∗ x) u p0))? = (−(p0T ? ∗ x) u p0)? ∗

((p0T ? ∗ x u yT) t 1)
proof (rule star-sup-2)

have 4 : transitive (p0T ? ∗ x)
using a2 comp-associative mult-right-isotone rectangle-star-rectangle by

auto
have transitive (yT)

by (metis a3 conv-dist-comp inf .eq-refl mult-assoc)
thus transitive (p0T ? ∗ x u yT)

using 4 transitive-inf-closed by auto
have 5 : p0T ? ∗ x ∗ (−(p0T ? ∗ x) u p0) ≤ p0T ? ∗ x

by (metis a2 mult-right-isotone top-greatest mult-assoc)
have (−(p0T ? ∗ x) u p0)T ∗ y ≤ p0T ∗ y

by (simp add: conv-dist-inf mult-left-isotone)
also have ... ≤ y

using a1 a4 root-successor-loop by auto
finally have yT ∗ (−(p0T ? ∗ x) u p0) ≤ yT

using conv-dist-comp conv-isotone by fastforce
thus (p0T ? ∗ x u yT) ∗ (−(p0T ? ∗ x) u p0) ≤ p0T ? ∗ x u yT

using 5 comp-left-subdist-inf inf-mono order-trans by blast
qed
hence p? = (−(p0T ? ∗ x) u p0)? ∗ ((p0T ? ∗ x u yT) t 1)

by (simp add: assms(2))
also have ... ≤ p0 ? ∗ ((p0T ? ∗ x u yT) t 1)

by (simp add: mult-left-isotone star-isotone)
also have ... = p0 ? ∗ (p0T ? ∗ x ∗ yT t 1)

by (simp add: a2 a3 vector-covector vector-mult-closed)
also have ... = p0 ? ∗ (p0T ? ∗ (x ∗ xT) ∗ p0 ? ∗ (p0 u 1) t 1)

by (metis a4 coreflexive-symmetric inf .cobounded2 root-var comp-associative
conv-dist-comp conv-involutive conv-star-commute)

also have ... ≤ p0 ? ∗ (p0T ? ∗ 1 ∗ p0 ? ∗ (p0 u 1) t 1)
by (metis a2 mult-left-isotone mult-right-isotone semiring.add-left-mono

30

sup-commute)
also have ... = p0 ? ∗ (p0T ? ∗ (p0 u 1) t p0 ? ∗ (p0 u 1) t 1)

by (simp add: a1 cancel-separate-eq mult-right-dist-sup)
also have ... = p0 ? ∗ ((p0 u 1) t p0 ? ∗ (p0 u 1) t 1)

by (smt univalent-root-successors a1 conv-dist-comp conv-dist-inf
coreflexive-idempotent coreflexive-symmetric inf .cobounded2 injective-codomain
loop-root root-transitive-successor-loop symmetric-one-closed)

also have ... = p0 ? ∗ (p0 ? ∗ (p0 u 1) t 1)
by (metis inf .sup-left-divisibility inf-commute sup.left-idem sup-commute

sup-relative-same-increasing)
also have ... ≤ p0 ? ∗ p0 ?

by (metis inf .cobounded2 inf-commute order .refl order-lesseq-imp
star .circ-mult-upper-bound star .circ-reflexive star .circ-transitive-equal
sup.boundedI sup-monoid.add-commute)

also have ... = p0 ?

by (simp add: star .circ-transitive-equal)
finally show fc p ≤ fc p0

by (metis conv-order conv-star-commute mult-isotone)
qed

qed

lemma update-acyclic-6 :
assumes disjoint-set-forest p

and point x
shows acyclic ((p[pT ?∗x 7−→root p x]) − 1)
using assms root-point root-successor-loop update-acyclic-2 by auto

theorem path-compression-assign:
VARS p
[path-compression-precondition p x y ∧ p0 = p]
p[pT ? ∗ x] := y
[path-compression-postcondition p x y p0]
apply vcg-tc-simp
apply (unfold path-compression-precondition-def

path-compression-postcondition-def)
apply (intro conjI)
subgoal using update-univalent mult-assoc by auto
subgoal using bijective-regular mapping-regular regular-closed-star

regular-conv-closed regular-mult-closed update-mapping mult-assoc by auto
subgoal using update-acyclic-6 by blast
subgoal by (smt same-root path-compression-exact

path-compression-precondition-def update-univalent vector-mult-closed)
subgoal using path-compression-exact(1) path-compression-precondition-def

by blast
subgoal using path-compression-exact(2) path-compression-precondition-def

by blast
by blast

We next look at implementing these updates using a loop.

31

lemma path-compression-1a:
assumes point x

and disjoint-set-forest p
and x 6= root p x

shows pT+ ∗ x ≤ − x
by (meson assms bijective-regular mapping-regular regular-closed-star

regular-conv-closed regular-mult-closed vector-mult-closed
point-in-vector-or-complement-2 loop-root-2)

lemma path-compression-1b:
x ≤ pT ? ∗ x
using mult-left-isotone star .circ-reflexive by fastforce

lemma path-compression-1 :
path-compression-precondition p x y =⇒ path-compression-invariant p x y p x
using path-compression-invariant-def path-compression-precondition-def

loop-root path-compression-1a path-compression-1b by auto

lemma path-compression-2 :
path-compression-invariant p x y p0 w ∧ y 6= p[[w]] =⇒

path-compression-invariant (p[w 7−→y]) x y p0 (p[[w]]) ∧ ((p[w 7−→y])T ? ∗
(p[[w]]))↓ < (pT ? ∗ w)↓
proof −

let ?p = p[w 7−→y]
let ?s = { z . regular z ∧ z ≤ pT ? ∗ w }
let ?t = { z . regular z ∧ z ≤ ?pT ? ∗ (p[[w]]) }
assume 1 : path-compression-invariant p x y p0 w ∧ y 6= p[[w]]
have i1 : disjoint-set-forest p and i2 : point x and i3 : point y and i4 : y = root

p x
using 1 path-compression-invariant-def path-compression-precondition-def by

meson+
have i5 : point w

and i8 : p u 1 = p0 u 1 and i9 : fc p = fc p0
and i10 : root p w = y and i12 : p0 [p0T ? ∗ x − p0T ? ∗ w 7−→y] = p
using 1 path-compression-invariant-def by blast+

have i13 : disjoint-set-forest p0 and i15 : w ≤ p0T ? ∗ x
using 1 path-compression-invariant-def by auto

have i6 : y ≤ pT ? ∗ w
using i10 by force

have i11 : p[[w]] = p0 [[w]]
by (smt (verit) i12 i2 i5 dual-order .trans inf-le2 p-antitone-iff

put-get-different-vector vector-complement-closed vector-inf-closed
vector-mult-closed path-compression-1b)

have i14 : y = root p0 x
using i1 i13 i4 i8 i9 same-root by blast

have 2 : point (p[[w]])
using i1 i5 read-point by blast

show path-compression-invariant ?p x y p0 (p[[w]]) ∧ card ?t < card ?s
proof (unfold path-compression-invariant-def , intro conjI)

32

have 3 : mapping ?p
by (simp add: i1 i3 i5 bijective-regular update-total update-univalent)

have 4 : w 6= y
using 1 i1 i4 root-successor-loop by blast

hence 5 : w u y = bot
by (simp add: i3 i5 distinct-points)

hence y ∗ wT ≤ −1
using pseudo-complement schroeder-4-p by auto

hence y ∗ wT ≤ pT ? − 1
using i5 i6 shunt-bijective by auto

also have ... ≤ pT+

by (simp add: star-plus-without-loops)
finally have 6 : y ≤ pT+ ∗ w

using i5 shunt-bijective by auto
have 7 : w ∗ wT ≤ −pT+

proof (rule ccontr)
assume ¬ w ∗ wT ≤ −pT+

hence w ∗ wT ≤ −−pT+

using i5 point-arc arc-in-partition by blast
hence w ∗ wT ≤ pT+ u 1

using i1 i5 mapping-regular regular-conv-closed regular-closed-star
regular-mult-closed by simp

also have ... = ((pT u 1) ∗ pT ? u 1) t ((pT − 1) ∗ pT ? u 1)
by (metis comp-inf .mult-right-dist-sup maddux-3-11-pp mult-right-dist-sup

regular-one-closed)
also have ... = ((pT u 1) ∗ pT ? u 1) t ((p − 1)+ u 1)T

by (metis conv-complement conv-dist-inf conv-plus-commute
equivalence-one-closed reachable-without-loops)

also have ... ≤ ((pT u 1) ∗ pT ? u 1) t (−1 u 1)T
by (metis (no-types, opaque-lifting) i1 sup-right-isotone inf .sup-left-isotone

conv-isotone)
also have ... = (pT u 1) ∗ pT ? u 1

by simp
also have ... ≤ (pT u 1) ∗ top u 1

by (metis comp-inf .comp-isotone coreflexive-comp-top-inf
equivalence-one-closed inf .cobounded1 inf .cobounded2)

also have ... ≤ pT

by (simp add: coreflexive-comp-top-inf-one)
finally have w ∗ wT ≤ pT

by simp
hence w ≤ p[[w]]

using i5 shunt-bijective by blast
hence w = p[[w]]

using 2 by (metis i5 epm-3 mult-semi-associative)
thus False

using 2 4 i10 loop-root by auto
qed
have 10 : acyclic (?p − 1)

using i1 i10 i3 i5 inf-le1 update-acyclic-3 by blast

33

have ?p[[pT+ ∗ w]] ≤ pT+ ∗ w
proof −

have (wT u y) ∗ pT+ ∗ w = y u wT ∗ pT+ ∗ w
by (metis i3 inf-vector-comp vector-inf-comp)

hence ?p[[pT+ ∗ w]] = (y u wT ∗ pT+ ∗ w) t (−wT u pT) ∗ pT+ ∗ w
by (simp add: comp-associative conv-complement conv-dist-inf

conv-dist-sup mult-right-dist-sup)
also have ... ≤ y t (−wT u pT) ∗ pT+ ∗ w

using sup-left-isotone by auto
also have ... ≤ y t pT ∗ pT+ ∗ w

using mult-left-isotone sup-right-isotone by auto
also have ... ≤ y t pT+ ∗ w

using semiring.add-left-mono mult-left-isotone mult-right-isotone
star .left-plus-below-circ by auto

also have ... = pT+ ∗ w
using 6 by (simp add: sup-absorb2)

finally show ?thesis
by simp

qed
hence 11 : ?pT ? ∗ (p[[w]]) ≤ pT+ ∗ w

using star-left-induct by (simp add: mult-left-isotone
star .circ-mult-increasing)

have 13 : ?p[[x]] = y
proof (cases w = x)

case True
hence ?p[[x]] = (wT u y) ∗ w t (−wT u pT) ∗ w

by (simp add: conv-complement conv-dist-inf conv-dist-sup
mult-right-dist-sup)

also have ... = (wT u y) ∗ w t pT ∗ (−w u w)
by (metis i5 conv-complement covector-inf-comp-3

inf .sup-monoid.add-commute vector-complement-closed)
also have ... = (wT u y) ∗ w

by simp
also have ... = y ∗ w

by (simp add: i5 covector-inf-comp-3 inf .sup-monoid.add-commute)
also have ... = y

by (metis i3 i5 comp-associative)
finally show ?thesis

.
next

case False
hence ¬ x ≤ p0T ? ∗ w

using forest-mutually-reachable-2 i13 i15 i2 i5 by blast
hence x ≤ − p0T ? ∗ w

by (metis (mono-tags, lifting) i13 i2 i5 comp-bijective-complement
mapping-regular point-in-vector-or-complement regular-closed-star
regular-conv-closed vector-mult-closed)

hence x ≤ p0T ? ∗ x − p0T ? ∗ w
by (simp add: i5 comp-bijective-complement path-compression-1b)

34

hence p[[x]] = y
by (smt (verit) i12 i2 i3 i5 comp-bijective-complement put-get-sub

vector-inf-comp vector-mult-closed)
thus ?p[[x]] = y

using False i2 i5 put-get-different by blast
qed
have 14 : ?pT ? ∗ x = x t y
proof (rule order .antisym)

have ?pT ∗ (x t y) = y t ?pT ∗ y
using 13 by (simp add: mult-left-dist-sup)

also have ... = y t (wT u y) ∗ y t (−wT u pT) ∗ y
by (simp add: conv-complement conv-dist-inf conv-dist-sup

mult-right-dist-sup sup-assoc)
also have ... ≤ y t (wT u y) ∗ y t pT ∗ y

using mult-left-isotone sup-right-isotone by auto
also have ... = y t (wT u y) ∗ y

using i1 i10 root-successor-loop sup-commute by auto
also have ... ≤ y t y ∗ y

using mult-left-isotone sup-right-isotone by auto
also have ... = y

by (metis i3 comp-associative sup.idem)
also have ... ≤ x t y

by simp
finally show ?pT ? ∗ x ≤ x t y

by (simp add: star-left-induct)
next

show x t y ≤ ?pT ? ∗ x
using 13 by (metis mult-left-isotone star .circ-increasing

star .circ-loop-fixpoint sup.boundedI sup-ge2)
qed
have 15 : y = root ?p x
proof −

have (p u 1) ∗ y = (p u 1) ∗ (p u 1) ∗ pT ? ∗ x
by (simp add: i4 comp-associative root-var)

also have ... = (p u 1) ∗ pT ? ∗ x
using coreflexive-idempotent by auto

finally have 16 : (p u 1) ∗ y = y
by (simp add: i4 root-var)

have 17 : (p u 1) ∗ x ≤ y
by (metis (no-types, lifting) i4 comp-right-one mult-left-isotone

mult-right-isotone star .circ-reflexive root-var)
have root ?p x = (?p u 1) ∗ (x t y)

using 14 by (metis mult-assoc root-var)
also have ... = (w u yT u 1) ∗ (x t y) t (−w u p u 1) ∗ (x t y)

by (simp add: inf-sup-distrib2 semiring.distrib-right)
also have ... = (w u 1 u yT) ∗ (x t y) t (−w u p u 1) ∗ (x t y)

by (simp add: inf .left-commute inf .sup-monoid.add-commute)
also have ... = (w u 1) ∗ (y u (x t y)) t (−w u p u 1) ∗ (x t y)

by (simp add: i3 covector-inf-comp-3)

35

also have ... = (w u 1) ∗ y t (−w u p u 1) ∗ (x t y)
by (simp add: inf .absorb1)

also have ... = (w u 1 ∗ y) t (−w u (p u 1) ∗ (x t y))
by (simp add: i5 inf-assoc vector-complement-closed vector-inf-comp)

also have ... = (w u y) t (−w u ((p u 1) ∗ x t y))
using 16 by (simp add: mult-left-dist-sup)

also have ... = (w u y) t (−w u y)
using 17 by (simp add: sup.absorb2)

also have ... = y
using 5 inf .sup-monoid.add-commute le-iff-inf pseudo-complement

sup-monoid.add-0-left by fastforce
finally show ?thesis

by simp
qed
show path-compression-precondition ?p x y

using 3 10 15 i2 i3 path-compression-precondition-def by blast
show vector (p[[w]])

using 2 by simp
show injective (p[[w]])

using 2 by simp
show surjective (p[[w]])

using 2 by simp
have w u p u 1 ≤ w u wT u p

by (metis inf .boundedE inf .boundedI inf .cobounded1 inf .cobounded2
one-inf-conv)

also have ... = w ∗ wT u p
by (simp add: i5 vector-covector)

also have ... ≤ −pT+ u p
using 7 by (simp add: inf .coboundedI2 inf .sup-monoid.add-commute)

finally have w u p u 1 = bot
by (metis (no-types, opaque-lifting) conv-dist-inf coreflexive-symmetric

inf .absorb1 inf .boundedE inf .cobounded2 pseudo-complement
star .circ-mult-increasing)

also have w u yT u 1 = bot
using 5 antisymmetric-bot-closed asymmetric-bot-closed comp-inf .schroeder-2

inf .absorb1 one-inf-conv by fastforce
finally have w u p u 1 = w u yT u 1

by simp
thus 18 : ?p u 1 = p0 u 1

by (metis i5 i8 bijective-regular inf .sup-monoid.add-commute inf-sup-distrib2
maddux-3-11-pp)

show 19 : fc ?p = fc p0
proof −

have p[[w]] = pT ∗ (w u p? ∗ y)
by (metis i3 i5 i6 bijective-reverse conv-star-commute inf .absorb1)

also have ... = pT ∗ (w u p?) ∗ y
by (simp add: i5 vector-inf-comp mult-assoc)

also have ... = pT ∗ ((w u 1) t (w u p) ∗ (−w u p)?) ∗ y
by (simp add: i5 omit-redundant-points)

36

also have ... = pT ∗ (w u 1) ∗ y t pT ∗ (w u p) ∗ (−w u p)? ∗ y
by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup)

also have ... ≤ pT ∗ y t pT ∗ (w u p) ∗ (−w u p)? ∗ y
by (metis semiring.add-right-mono comp-isotone order .eq-iff

inf .cobounded1 inf .sup-monoid.add-commute mult-1-right)
also have ... = y t pT ∗ (w u p) ∗ (−w u p)? ∗ y

using i1 i4 root-successor-loop by auto
also have ... ≤ y t pT ∗ p ∗ (−w u p)? ∗ y

using comp-isotone sup-right-isotone by auto
also have ... ≤ y t (−w u p)? ∗ y

by (metis i1 comp-associative eq-refl shunt-mapping sup-right-isotone)
also have ... = (−w u p)? ∗ y

by (metis star .circ-loop-fixpoint sup.left-idem sup-commute)
finally have 20 : p[[w]] ≤ (−w u p)? ∗ y

by simp
have pT ∗ (−w u p)? ∗ y = pT ∗ y t pT ∗ (−w u p) ∗ (−w u p)? ∗ y

by (metis comp-associative mult-left-dist-sup star .circ-loop-fixpoint
sup-commute)

also have ... = y t pT ∗ (−w u p) ∗ (−w u p)? ∗ y
using i1 i4 root-successor-loop by auto

also have ... ≤ y t pT ∗ p ∗ (−w u p)? ∗ y
using comp-isotone sup-right-isotone by auto

also have ... ≤ y t (−w u p)? ∗ y
by (metis i1 comp-associative eq-refl shunt-mapping sup-right-isotone)

also have ... = (−w u p)? ∗ y
by (metis star .circ-loop-fixpoint sup.left-idem sup-commute)

finally have 21 : pT ? ∗ pT ∗ w ≤ (−w u p)? ∗ y
using 20 by (simp add: comp-associative star-left-induct)

have wT u pT = pT ∗ (wT u 1)
by (metis i5 comp-right-one covector-inf-comp-3

inf .sup-monoid.add-commute one-inf-conv)
also have ... ≤ p[[w]]

by (metis comp-right-subdist-inf inf .boundedE inf .sup-monoid.add-commute
one-inf-conv)

also have ... ≤ pT ? ∗ pT ∗ w
by (simp add: mult-left-isotone star .circ-mult-increasing-2)

also have ... ≤ (−w u p)? ∗ y
using 21 by simp

finally have w u p ≤ yT ∗ (−w u p)T ?

by (metis conv-dist-comp conv-dist-inf conv-involutive conv-isotone
conv-star-commute)

hence w u p ≤ (w u yT) ∗ (−w u p)T ?

by (simp add: i5 vector-inf-comp)
also have ... ≤ (w u yT) ∗ ?pT ?

by (simp add: conv-isotone mult-right-isotone star-isotone)
also have ... ≤ ?p ∗ ?pT ?

by (simp add: mult-left-isotone)
also have ... ≤ fc ?p

by (simp add: mult-left-isotone star .circ-increasing)

37

finally have 22 : w u p ≤ fc ?p
by simp

have −w u p ≤ ?p
by simp

also have ... ≤ fc ?p
by (simp add: fc-increasing)

finally have (w t −w) u p ≤ fc ?p
using 22 by (simp add: comp-inf .semiring.distrib-left

inf .sup-monoid.add-commute)
hence p ≤ fc ?p

by (metis i5 bijective-regular inf .sup-monoid.add-commute inf-sup-distrib1
maddux-3-11-pp)

hence 23 : fc p ≤ fc ?p
using 3 fc-idempotent fc-isotone by fastforce

have ?p ≤ (w u yT) t p
using sup-right-isotone by auto

also have ... = w ∗ yT t p
by (simp add: i3 i5 vector-covector)

also have ... ≤ p? t p
by (smt i5 i6 conv-dist-comp conv-involutive conv-isotone

conv-star-commute le-supI shunt-bijective star .circ-increasing sup-absorb1)
also have ... ≤ fc p

using fc-increasing star .circ-back-loop-prefixpoint by auto
finally have fc ?p ≤ fc p

using i1 fc-idempotent fc-isotone by fastforce
thus ?thesis

using 23 i9 by auto
qed
have 24 : root ?p (p[[w]]) = root p0 (p[[w]])

using 3 18 19 i13 same-root by blast
also have ... = root p0 (p0 [[w]])

by (simp add: i11)
also have 25 : ... = root p0 w

by (metis i5 i13 conv-involutive forest-components-increasing
mult-left-isotone shunt-bijective injective-mult-closed read-surjective
same-component-same-root)

finally show 26 : root ?p (p[[w]]) = y
by (metis i1 i10 i13 i8 i9 same-root)

show univalent p0 total p0 acyclic (p0 − 1)
by (simp-all add: i13)

show p[[w]] ≤ p0T ? ∗ x
by (metis i11 i15 mult-isotone star .circ-increasing star .circ-transitive-equal

mult-assoc)
let ?q = p0 [p0T ? ∗ x − p0T ? ∗ (p[[w]])7−→y]
show ?q = ?p
proof −

have 27 : w t p0T+ ∗ w = p0T ? ∗ w
using comp-associative star .circ-loop-fixpoint sup-commute by auto

hence 28 : p0T+ ∗ w = p0T ? ∗ w − w

38

using 4 24 25 26 by (metis i11 i13 i5 inf .orderE maddux-3-13
path-compression-1a)

hence p0T ? ∗ (p[[w]]) ≤ −w
by (metis i11 inf-le2 star-plus mult.assoc)

hence w ≤ −(p0T ? ∗ (p[[w]]))
by (simp add: p-antitone-iff)

hence w ≤ p0T ? ∗ x − p0T ? ∗ (p[[w]])
by (simp add: i15)

hence 29 : ?q u w = ?p u w
by (metis update-inf update-inf-same)

have 30 : ?q u p0T+ ∗ w = ?p u p0T+ ∗ w
proof −

have ?q u p0T+ ∗ w = p0 u p0T+ ∗ w
by (metis i11 comp-associative inf .cobounded2 p-antitone-iff

star .circ-plus-same update-inf-different)
also have ... = p u p0T+ ∗ w

using 28 by (metis i12 inf .cobounded2 inf .sup-monoid.add-assoc
p-antitone-iff update-inf-different)

also have ... = ?p u p0T+ ∗ w
using 28 by (simp add: update-inf-different)

finally show ?thesis
.

qed
have 31 : ?q u p0T ? ∗ w = ?p u p0T ? ∗ w

using 27 29 30 by (metis inf-sup-distrib1)
have 32 : ?q u (p0T ? ∗ x − p0T ? ∗ w) = ?p u (p0T ? ∗ x − p0T ? ∗ w)
proof −

have p0T ? ∗ x − p0T ? ∗ w ≤ p0T ? ∗ x − p0T ? ∗ (p[[w]])
using 28 by (metis i11 inf .sup-right-isotone mult.semigroup-axioms

p-antitone-inf star-plus semigroup.assoc)
hence ?q u (p0T ? ∗ x − p0T ? ∗ w) = yT u p0T ? ∗ x u −(p0T ? ∗ w)

by (metis inf-assoc update-inf)
also have ... = p u (p0T ? ∗ x − p0T ? ∗ w)

by (metis i12 inf-assoc update-inf-same)
also have ... = ?p u (p0T ? ∗ x − p0T ? ∗ w)

by (simp add: inf .coboundedI2 p-antitone path-compression-1b inf-assoc
update-inf-different)

finally show ?thesis
.

qed
have p0T ? ∗ w t (p0T ? ∗ x − p0T ? ∗ w) = p0T ? ∗ x
proof −

have 33 : regular (p0T ? ∗ w)
using i13 i5 bijective-regular mapping-regular regular-closed-star

regular-conv-closed regular-mult-closed by auto
have p0T ? ∗ w ≤ p0T ? ∗ x

by (metis i15 comp-associative mult-right-isotone
star .circ-transitive-equal)

hence p0T ? ∗ w t (p0T ? ∗ x − p0T ? ∗ w) = p0T ? ∗ x u (p0T ? ∗ w t

39

−(p0T ? ∗ w))
by (simp add: comp-inf .semiring.distrib-left inf .absorb2)

also have ... = p0T ? ∗ x
using 33 by (metis inf-sup-distrib1 maddux-3-11-pp)

finally show ?thesis
.

qed
hence 34 : ?q u p0T ? ∗ x = ?p u p0T ? ∗ x

using 31 32 by (metis inf-sup-distrib1)
have 35 : regular (p0T ? ∗ x)

using i13 i2 bijective-regular mapping-regular regular-closed-star
regular-conv-closed regular-mult-closed by auto

have −(p0T ? ∗ x) ≤ −w
by (simp add: i15 p-antitone)

hence ?q − p0T ? ∗ x = ?p − p0T ? ∗ x
by (metis i12 p-antitone-inf update-inf-different)

thus ?thesis
using 34 35 by (metis maddux-3-11-pp)

qed
show card ?t < card ?s
proof −

have ?pT ∗ pT ? ∗ w = (wT u y) ∗ pT ? ∗ w t (−wT u pT) ∗ pT ? ∗ w
by (simp add: conv-complement conv-dist-inf conv-dist-sup

mult-right-dist-sup)
also have ... ≤ (wT u y) ∗ pT ? ∗ w t pT ∗ pT ? ∗ w

using mult-left-isotone sup-right-isotone by auto
also have ... ≤ (wT u y) ∗ pT ? ∗ w t pT ? ∗ w

using mult-left-isotone star .left-plus-below-circ sup-right-isotone by blast
also have ... ≤ y ∗ pT ? ∗ w t pT ? ∗ w

using semiring.add-right-mono mult-left-isotone by auto
also have ... ≤ y ∗ top t pT ? ∗ w

by (simp add: comp-associative le-supI1 mult-right-isotone)
also have ... = pT ? ∗ w

by (simp add: i3 i6 sup-absorb2)
finally have ?pT ? ∗ pT ∗ w ≤ pT ? ∗ w

using 11 by (metis dual-order .trans star .circ-loop-fixpoint sup-commute
sup-ge2 mult-assoc)

hence 36 : ?t ⊆ ?s
using order-lesseq-imp mult-assoc by auto

have 37 : w ∈ ?s
by (simp add: i5 bijective-regular path-compression-1b)

have 38 : ¬ w ∈ ?t
proof

assume w ∈ ?t
hence 39 : w ≤ (?pT − 1)? ∗ (p[[w]])

using reachable-without-loops by auto
hence p[[w]] ≤ (?p − 1)? ∗ w

using 2 by (smt i5 bijective-reverse conv-star-commute
reachable-without-loops)

40

also have ... ≤ p? ∗ w
proof −

have pT ? ∗ y = y
using i1 i4 root-transitive-successor-loop by auto

hence yT ∗ p? ∗ w = yT ∗ w
by (metis conv-dist-comp conv-involutive conv-star-commute)

also have ... = bot
using 5 by (metis i5 inf .idem inf .sup-monoid.add-commute

mult-left-zero schroeder-1 vector-inf-comp)
finally have 40 : yT ∗ p? ∗ w = bot

by simp
have (?p − 1) ∗ p? ∗ w = (w u yT u −1) ∗ p? ∗ w t (−w u p u −1) ∗

p? ∗ w
by (simp add: comp-inf .mult-right-dist-sup mult-right-dist-sup)

also have ... ≤ (w u yT u −1) ∗ p? ∗ w t p ∗ p? ∗ w
by (meson inf-le1 inf-le2 mult-left-isotone order-trans sup-right-isotone)

also have ... ≤ (w u yT u −1) ∗ p? ∗ w t p? ∗ w
using mult-left-isotone star .left-plus-below-circ sup-right-isotone by blast

also have ... ≤ yT ∗ p? ∗ w t p? ∗ w
by (meson inf-le1 inf-le2 mult-left-isotone order-trans sup-left-isotone)

also have ... = p? ∗ w
using 40 by simp

finally show ?thesis
by (metis comp-associative le-supI star .circ-loop-fixpoint sup-ge2

star-left-induct)
qed
finally have w ≤ pT ? ∗ pT ∗ w

using 11 39 reachable-without-loops star-plus by auto
thus False

using 4 i1 i10 i5 loop-root-2 star .circ-plus-same by auto
qed
show card ?t < card ?s

apply (rule psubset-card-mono)
subgoal using finite-regular by simp
subgoal using 36 37 38 by auto
done

qed
qed

qed

lemma path-compression-3a:
assumes path-compression-invariant p x (p[[w]]) p0 w
shows p0 [p0T ? ∗ x 7−→p[[w]]] = p

proof −
let ?y = p[[w]]
let ?p = p0 [p0T ? ∗ x 7−→?y]
have i1 : disjoint-set-forest p and i2 : point x and i3 : point ?y and i4 : ?y =

root p x
using assms path-compression-invariant-def path-compression-precondition-def

41

by meson+
have i5 : point w

and i8 : p u 1 = p0 u 1 and i9 : fc p = fc p0
and i10 : root p w = ?y and i12 : p0 [p0T ? ∗ x − p0T ? ∗ w 7−→?y] = p
and i13 : disjoint-set-forest p0 and i15 : w ≤ p0T ? ∗ x
using assms path-compression-invariant-def by blast+

have i11 : p[[w]] = p0 [[w]]
by (smt (verit) i12 i2 i5 dual-order .trans inf-le2 p-antitone-iff

put-get-different-vector vector-complement-closed vector-inf-closed
vector-mult-closed path-compression-1b)

have i14 : ?y = root p0 x
by (metis i1 i13 i4 i8 i9 same-root)

have 1 : ?p u ?y = p u ?y
by (metis i1 i14 i3 i4 get-put inf-le1 root-successor-loop update-inf

update-inf-same)
have 2 : ?p u w = p u w

by (metis i5 i11 i15 get-put update-inf update-inf-same)
have ?y = root p0 w

by (metis i1 i10 i13 i8 i9 same-root)
hence p0T ? ∗ w = w t ?y

by (metis i11 i13 root-transitive-successor-loop star .circ-loop-fixpoint star-plus
sup-monoid.add-commute mult-assoc)

hence 3 : ?p u p0T ? ∗ w = p u p0T ? ∗ w
using 1 2 by (simp add: inf-sup-distrib1)

have p0T ? ∗ w ≤ p0T ? ∗ x
by (metis i15 comp-associative mult-right-isotone star .circ-transitive-equal)

hence 4 : ?p u (p0T ? ∗ x u p0T ? ∗ w) = p u (p0T ? ∗ x u p0T ? ∗ w)
using 3 by (simp add: inf .absorb2)

have 5 : ?p u (p0T ? ∗ x − p0T ? ∗ w) = p u (p0T ? ∗ x − p0T ? ∗ w)
by (metis i12 inf-le1 update-inf update-inf-same)

have regular (p0T ? ∗ w)
using i13 i5 bijective-regular mapping-regular regular-closed-star

regular-conv-closed regular-mult-closed by auto
hence 6 : ?p u p0T ? ∗ x = p u p0T ? ∗ x

using 4 5 by (smt inf-sup-distrib1 maddux-3-11-pp)
have 7 : ?p − p0T ? ∗ x = p − p0T ? ∗ x

by (smt i12 inf .sup-monoid.add-commute inf-import-p inf-sup-absorb le-iff-inf
p-dist-inf update-inf-different inf .idem p-antitone-inf)

have regular (p0T ? ∗ x)
using i13 i2 bijective-regular mapping-regular regular-closed-star

regular-conv-closed regular-mult-closed by auto
thus ?p = p

using 6 7 by (smt inf-sup-distrib1 maddux-3-11-pp)
qed

lemma path-compression-3 :
path-compression-invariant p x (p[[w]]) p0 w =⇒ path-compression-postcondition

p x (p[[w]]) p0
using path-compression-invariant-def path-compression-postcondition-def

42

path-compression-precondition-def path-compression-3a by blast

theorem path-compression:
VARS p t w
[path-compression-precondition p x y ∧ p0 = p]
w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { (pT ? ∗ w)↓ }
DO t := w;

w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
apply vcg-tc-simp

apply (fact path-compression-1)
apply (fact path-compression-2)

using path-compression-3 by auto

lemma path-compression-exists:
path-compression-precondition p x y =⇒ ∃ p ′ . path-compression-postcondition p ′

x y p
using tc-extract-function path-compression by blast

definition path-compression p x y ≡ (SOME p ′ . path-compression-postcondition
p ′ x y p)

lemma path-compression-function:
assumes path-compression-precondition p x y

and p ′ = path-compression p x y
shows path-compression-postcondition p ′ x y p
by (metis assms path-compression-def path-compression-exists someI)

4.4 Find-Set with Path Compression
We sequentially combine find-set and path compression. We consider imple-
mentations which use the previously derived functions and implementations
which unfold their definitions.
theorem find-set-path-compression:

VARS p y
[find-set-precondition p x ∧ p0 = p]
y := find-set p x;
p := path-compression p x y
[path-compression-postcondition p x y p0]
apply vcg-tc-simp
using find-set-function find-set-postcondition-def find-set-precondition-def

path-compression-function path-compression-precondition-def by fastforce

theorem find-set-path-compression-1 :

43

VARS p t w y
[find-set-precondition p x ∧ p0 = p]
y := find-set p x;
w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { (pT ? ∗ w)↓ }
DO t := w;

w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
apply vcg-tc-simp

using find-set-function find-set-postcondition-def find-set-precondition-def
path-compression-1 path-compression-precondition-def apply fastforce

apply (fact path-compression-2)
by (fact path-compression-3)

theorem find-set-path-compression-2 :
VARS p y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y ∧ p0 = p }
VAR { (pT ? ∗ y)↓ }
DO y := p[[y]]
OD;

p := path-compression p x y
[path-compression-postcondition p x y p0]
apply vcg-tc-simp

apply (fact find-set-1)
apply (fact find-set-2)

by (smt find-set-3 find-set-invariant-def find-set-postcondition-def
find-set-precondition-def path-compression-function
path-compression-precondition-def)

theorem find-set-path-compression-3 :
VARS p t w y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { find-set-invariant p x y ∧ p0 = p }
VAR { (pT ? ∗ y)↓ }
DO y := p[[y]]
OD;

w := x;
WHILE y 6= p[[w]]

INV { path-compression-invariant p x y p0 w }
VAR { (pT ? ∗ w)↓ }

44

DO t := w;
w := p[[w]];
p[t] := y

OD
[path-compression-postcondition p x y p0]
apply vcg-tc-simp

apply (simp add: find-set-1)
apply (fact find-set-2)

using find-set-3 find-set-invariant-def find-set-postcondition-def
find-set-precondition-def path-compression-1 path-compression-precondition-def
apply blast

apply (fact path-compression-2)
by (fact path-compression-3)

Find-set with path compression returns two results: the representative
of the tree and the modified disjoint-set forest.
lemma find-set-path-compression-exists:

find-set-precondition p x =⇒ ∃ p ′ y . path-compression-postcondition p ′ x y p
using tc-extract-function find-set-path-compression by blast

definition find-set-path-compression p x ≡ (SOME (p ′,y) .
path-compression-postcondition p ′ x y p)

lemma find-set-path-compression-function:
assumes find-set-precondition p x

and (p ′,y) = find-set-path-compression p x
shows path-compression-postcondition p ′ x y p

proof −
let ?P = λ(p ′,y) . path-compression-postcondition p ′ x y p
have ?P (SOME z . ?P z)

apply (unfold some-eq-ex)
using assms(1) find-set-path-compression-exists by simp

thus ?thesis
using assms(2) find-set-path-compression-def by auto

qed

We prove that find-set-path-compression returns the same representative
as find-set.
lemma find-set-path-compression-find-set:

assumes find-set-precondition p x
shows find-set p x = snd (find-set-path-compression p x)

proof −
let ?r = find-set p x
let ?p = fst (find-set-path-compression p x)
let ?y = snd (find-set-path-compression p x)
have 1 : find-set-postcondition p x ?r

by (simp add: assms find-set-function)
have path-compression-postcondition ?p x ?y p

using assms find-set-path-compression-function prod.collapse by blast

45

thus ?r = ?y
using 1 by (smt assms same-root find-set-precondition-def

find-set-postcondition-def path-compression-postcondition-def)
qed

A weaker postcondition suffices to prove that the two forests have the
same semantics; that is, they describe the same disjoint sets and have the
same roots.
lemma find-set-path-compression-path-compression-semantics:

assumes find-set-precondition p x
shows fc (path-compression p x (find-set p x)) = fc (fst

(find-set-path-compression p x))
and path-compression p x (find-set p x) u 1 = fst (find-set-path-compression p

x) u 1
proof −

let ?r = find-set p x
let ?q = path-compression p x ?r
let ?p = fst (find-set-path-compression p x)
let ?y = snd (find-set-path-compression p x)
have 1 : path-compression-postcondition (path-compression p x ?r) x ?r p

using assms find-set-function find-set-postcondition-def
find-set-precondition-def path-compression-function
path-compression-precondition-def by auto

have 2 : path-compression-postcondition ?p x ?y p
using assms find-set-path-compression-function prod.collapse by blast

show fc ?q = fc ?p
using 1 2 by (simp add: path-compression-postcondition-def)

show ?q u 1 = ?p u 1
using 1 2 by (simp add: path-compression-postcondition-def)

qed

With the current, stronger postcondition of path compression describing
the precise effect of how links change, we can prove that the two forests are
actually equal.
lemma find-set-path-compression-find-set-pathcompression:

assumes find-set-precondition p x
shows path-compression p x (find-set p x) = fst (find-set-path-compression p x)

proof −
let ?r = find-set p x
let ?q = path-compression p x ?r
let ?p = fst (find-set-path-compression p x)
let ?y = snd (find-set-path-compression p x)
have 1 : path-compression-postcondition (path-compression p x ?r) x ?r p

using assms find-set-function find-set-postcondition-def
find-set-precondition-def path-compression-function
path-compression-precondition-def by auto

have 2 : path-compression-postcondition ?p x ?y p
using assms find-set-path-compression-function prod.collapse by blast

have ?r = ?y

46

by (simp add: assms find-set-path-compression-find-set)
thus ?q = ?p

using 1 2 path-compression-postcondition-def by auto
qed

4.5 Union-Sets
We only consider a naive union-sets operation (without ranks). The se-
mantics is the equivalence closure obtained after adding the link between
the two given nodes, which requires those two elements to be in the same
set. The implementation uses temporary variable t to store the two results
returned by find-set with path compression. The disjoint-set forest, which
keeps being updated, is threaded through the sequence of operations.
definition union-sets-precondition p x y ≡ disjoint-set-forest p ∧ point x ∧ point
y
definition union-sets-postcondition p x y p0 ≡ disjoint-set-forest p ∧ fc p = wcc
(p0 t x ∗ yT)

lemma union-sets-1 :
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y s p1

shows union-sets-postcondition (p2 [r 7−→s]) x y p0
proof (unfold union-sets-postcondition-def , intro conjI)

let ?p = p2 [r 7−→s]
have 1 : disjoint-set-forest p1 ∧ point r ∧ r = root p1 x ∧ p1 u 1 = p0 u 1 ∧

fc p1 = fc p0
by (smt (verit) assms(1 ,2) path-compression-postcondition-def root-point

union-sets-precondition-def)
have 2 : disjoint-set-forest p2 ∧ point s ∧ s = root p2 y ∧ p2 u 1 = p1 u 1 ∧

fc p2 = fc p1
by (smt (verit) assms(1 ,3) path-compression-postcondition-def root-point

union-sets-precondition-def)
hence 3 : fc p2 = fc p0

using 1 by simp
show 4 : univalent ?p

using 1 2 update-univalent by blast
show total ?p

using 1 2 bijective-regular update-total by blast
show acyclic (?p − 1)
proof (cases r = s)

case True
thus ?thesis

using 2 update-acyclic-5 by fastforce
next

case False
hence bot = r u s

using 1 2 distinct-points by blast

47

also have ... = r u p2T ? ∗ s
using 2 by (smt root-transitive-successor-loop)

finally have s u p2 ? ∗ r = bot
using schroeder-1 conv-star-commute inf .sup-monoid.add-commute by

fastforce
thus ?thesis

using 1 2 update-acyclic-4 by blast
qed
show fc ?p = wcc (p0 t x ∗ yT)
proof (rule order .antisym)

have r = p1 [[r]]
using 1 by (metis root-successor-loop)

hence r ∗ rT ≤ p1T

using 1 eq-refl shunt-bijective by blast
hence r ∗ rT ≤ p1

using 1 conv-order coreflexive-symmetric by fastforce
hence r ∗ rT ≤ p1 u 1

using 1 inf .boundedI by blast
also have ... = p2 u 1

using 2 by simp
finally have r ∗ rT ≤ p2

by simp
hence r ≤ p2 ∗ r

using 1 shunt-bijective by blast
hence 5 : p2 [[r]] ≤ r

using 2 shunt-mapping by blast
have r u p2 ≤ r ∗ (top u rT ∗ p2)

using 1 by (metis dedekind-1)
also have ... = r ∗ rT ∗ p2

by (simp add: mult-assoc)
also have ... ≤ r ∗ rT

using 5 by (metis comp-associative conv-dist-comp conv-involutive
conv-order mult-right-isotone)

also have ... ≤ 1
using 1 by blast

finally have 6 : r u p2 ≤ 1
by simp

have p0 ≤ wcc p0
by (simp add: star .circ-sub-dist-1)

also have ... = wcc p2
using 3 by (simp add: star-decompose-1)

also have 7 : ... ≤ wcc ?p
proof −

have wcc p2 = wcc ((−r u p2) t (r u p2))
using 1 by (metis bijective-regular inf .sup-monoid.add-commute

maddux-3-11-pp)
also have ... ≤ wcc ((−r u p2) t 1)

using 6 wcc-isotone sup-right-isotone by simp
also have ... = wcc (−r u p2)

48

using wcc-with-loops by simp
also have ... ≤ wcc ?p

using wcc-isotone sup-ge2 by blast
finally show ?thesis

by simp
qed
finally have 8 : p0 ≤ wcc ?p

by force
have r ≤ p1T ? ∗ x

using 1 by (metis inf-le1)
hence 9 : r ∗ xT ≤ p1T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
hence x ∗ rT ≤ p1 ?

using conv-dist-comp conv-order conv-star-commute by force
also have ... ≤ wcc p1

by (simp add: star .circ-sub-dist)
also have ... = wcc p2

using 1 2 by (simp add: fc-wcc)
also have ... ≤ wcc ?p

using 7 by simp
finally have 10 : x ∗ rT ≤ wcc ?p

by simp
have 11 : r ∗ sT ≤ wcc ?p

using 1 2 star .circ-sub-dist-1 sup-assoc vector-covector by auto
have s ≤ p2T ? ∗ y

using 2 by (metis inf-le1)
hence 12 : s ∗ yT ≤ p2T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
also have ... ≤ wcc p2

using star-isotone sup-ge2 by blast
also have ... ≤ wcc ?p

using 7 by simp
finally have 13 : s ∗ yT ≤ wcc ?p

by simp
have x ≤ x ∗ rT ∗ r ∧ y ≤ y ∗ sT ∗ s

using 1 2 shunt-bijective by blast
hence x ∗ yT ≤ x ∗ rT ∗ r ∗ (y ∗ sT ∗ s)T

using comp-isotone conv-isotone by blast
also have ... = x ∗ rT ∗ r ∗ sT ∗ s ∗ yT

by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc ?p ∗ (r ∗ sT) ∗ (s ∗ yT)

using 10 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc ?p ∗ wcc ?p ∗ (s ∗ yT)

using 11 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc ?p ∗ wcc ?p ∗ wcc ?p

using 13 by (metis mult-right-isotone)
also have ... = wcc ?p

by (simp add: star .circ-transitive-equal)
finally have p0 t x ∗ yT ≤ wcc ?p

49

using 8 by simp
hence wcc (p0 t x ∗ yT) ≤ wcc ?p

using wcc-below-wcc by simp
thus wcc (p0 t x ∗ yT) ≤ fc ?p

using 4 fc-wcc by simp
have −r u p2 ≤ wcc p2

by (simp add: inf .coboundedI2 star .circ-sub-dist-1)
also have ... = wcc p0

using 3 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t x ∗ yT)

by (simp add: wcc-isotone)
finally have 14 : −r u p2 ≤ wcc (p0 t x ∗ yT)

by simp
have r ∗ xT ≤ wcc p1

using 9 inf .order-trans star .circ-sub-dist sup-commute by fastforce
also have ... = wcc p0

using 1 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t x ∗ yT)

by (simp add: wcc-isotone)
finally have 15 : r ∗ xT ≤ wcc (p0 t x ∗ yT)

by simp
have 16 : x ∗ yT ≤ wcc (p0 t x ∗ yT)

using le-supE star .circ-sub-dist-1 by blast
have y ∗ sT ≤ p2 ?

using 12 conv-dist-comp conv-order conv-star-commute by fastforce
also have ... ≤ wcc p2

using star .circ-sub-dist sup-commute by fastforce
also have ... = wcc p0

using 3 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t x ∗ yT)

by (simp add: wcc-isotone)
finally have 17 : y ∗ sT ≤ wcc (p0 t x ∗ yT)

by simp
have r ≤ r ∗ xT ∗ x ∧ s ≤ s ∗ yT ∗ y

using assms(1) shunt-bijective union-sets-precondition-def by blast
hence r ∗ sT ≤ r ∗ xT ∗ x ∗ (s ∗ yT ∗ y)T

using comp-isotone conv-isotone by blast
also have ... = r ∗ xT ∗ x ∗ yT ∗ y ∗ sT

by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc (p0 t x ∗ yT) ∗ (x ∗ yT) ∗ (y ∗ sT)

using 15 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc (p0 t x ∗ yT) ∗ wcc (p0 t x ∗ yT) ∗ (y ∗ sT)

using 16 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc (p0 t x ∗ yT) ∗ wcc (p0 t x ∗ yT) ∗ wcc (p0 t x ∗ yT)

using 17 by (metis mult-right-isotone)
also have ... = wcc (p0 t x ∗ yT)

by (simp add: star .circ-transitive-equal)
finally have ?p ≤ wcc (p0 t x ∗ yT)

using 1 2 14 vector-covector by auto

50

hence wcc ?p ≤ wcc (p0 t x ∗ yT)
using wcc-below-wcc by blast

thus fc ?p ≤ wcc (p0 t x ∗ yT)
using 4 fc-wcc by simp

qed
qed

theorem union-sets:
VARS p r s t
[union-sets-precondition p x y ∧ p0 = p]
t := find-set-path-compression p x;
p := fst t;
r := snd t;
t := find-set-path-compression p y;
p := fst t;
s := snd t;
p[r] := s
[union-sets-postcondition p x y p0]

proof vcg-tc-simp
let ?t1 = find-set-path-compression p0 x
let ?p1 = fst ?t1
let ?r = snd ?t1
let ?t2 = find-set-path-compression ?p1 y
let ?p2 = fst ?t2
let ?s = snd ?t2
let ?p = ?p2 [?r 7−→?s]
assume 1 : union-sets-precondition p0 x y
hence 2 : path-compression-postcondition ?p1 x ?r p0

by (simp add: find-set-precondition-def union-sets-precondition-def
find-set-path-compression-function)

hence path-compression-postcondition ?p2 y ?s ?p1
using 1 by (meson find-set-precondition-def union-sets-precondition-def

find-set-path-compression-function path-compression-postcondition-def
prod.collapse)

thus union-sets-postcondition (?p2 [?r 7−→?s]) x y p0
using 1 2 by (simp add: union-sets-1)

qed

lemma union-sets-exists:
union-sets-precondition p x y =⇒ ∃ p ′ . union-sets-postcondition p ′ x y p
using tc-extract-function union-sets by blast

definition union-sets p x y ≡ (SOME p ′ . union-sets-postcondition p ′ x y p)

lemma union-sets-function:
assumes union-sets-precondition p x y

and p ′ = union-sets p x y
shows union-sets-postcondition p ′ x y p
by (metis assms union-sets-def union-sets-exists someI)

51

theorem union-sets-2 :
VARS p r s
[union-sets-precondition p x y ∧ p0 = p]
r := find-set p x;
p := path-compression p x r ;
s := find-set p y;
p := path-compression p y s;
p[r] := s
[union-sets-postcondition p x y p0]

proof vcg-tc-simp
let ?r = find-set p0 x
let ?p1 = path-compression p0 x ?r
let ?s = find-set ?p1 y
let ?p2 = path-compression ?p1 y ?s
assume 1 : union-sets-precondition p0 x y
hence 2 : path-compression-postcondition ?p1 x ?r p0

using find-set-function find-set-postcondition-def find-set-precondition-def
path-compression-function path-compression-precondition-def
union-sets-precondition-def by auto

hence path-compression-postcondition ?p2 y ?s ?p1
using 1 find-set-function find-set-postcondition-def find-set-precondition-def

path-compression-function path-compression-precondition-def
union-sets-precondition-def path-compression-postcondition-def by meson

thus union-sets-postcondition (?p2 [?r 7−→?s]) x y p0
using 1 2 by (simp add: union-sets-1)

qed

end

end

theory More-Disjoint-Set-Forests

imports Disjoint-Set-Forests

begin

5 More on Array Access and Disjoint-Set Forests
This section contains further results about directed acyclic graphs and rela-
tional array operations.
unbundle no uminus-syntax

context stone-relation-algebra
begin

52

lemma update-square:
assumes point y

shows x[y 7−→x[[x[[y]]]]] ≤ x ∗ x t x
proof −

have x[y 7−→x[[x[[y]]]]] = (y u yT ∗ x ∗ x) t (−y u x)
by (simp add: conv-dist-comp)

also have ... ≤ (y u yT) ∗ x ∗ x t x
by (smt assms inf .eq-refl inf .sup-monoid.add-commute inf-le1 sup-mono

vector-inf-comp)
also have ... ≤ x ∗ x t x

by (smt (z3) assms comp-associative conv-dist-comp coreflexive-comp-top-inf
inf .cobounded2 sup-left-isotone symmetric-top-closed)

finally show ?thesis
.

qed

lemma update-ub:
x[y 7−→z] ≤ x t zT
by (meson dual-order .trans inf .cobounded2 le-supI sup.cobounded1 sup-ge2)

lemma update-square-ub:
x[y 7−→(x ∗ x)T] ≤ x t x ∗ x
by (metis conv-involutive update-ub)

lemma update-same-sub:
assumes u u x = u u z

and y ≤ u
and regular y

shows x[y 7−→zT] = x
by (smt (z3) assms conv-involutive inf .sup-monoid.add-commute

inf .sup-relative-same-increasing maddux-3-11-pp)

lemma update-point-get:
point y =⇒ x[y 7−→z[[y]]] = x[y 7−→zT]
by (metis conv-involutive get-put inf-commute update-inf-same)

lemma update-bot:
x[bot 7−→z] = x
by simp

lemma update-top:
x[top 7−→z] = zT
by simp

lemma update-same:
assumes regular u

shows (x[y 7−→z])[u 7−→z] = x[y t u 7−→z]
proof −

have (x[y 7−→z])[u 7−→z] = (u u zT) t (−u u y u zT) t (−u u −y u x)

53

using inf .sup-monoid.add-assoc inf-sup-distrib1 sup-assoc by force
also have ... = (u u zT) t (y u zT) t (−(u t y) u x)

by (metis assms inf-sup-distrib2 maddux-3-21-pp p-dist-sup)
also have ... = x[y t u 7−→z]

using comp-inf .mult-right-dist-sup sup-commute by auto
finally show ?thesis

.
qed

lemma update-same-3 :
assumes regular u

and regular v
shows ((x[y 7−→z])[u 7−→z])[v 7−→z] = x[y t u t v 7−→z]

by (metis assms update-same)

lemma update-split:
assumes regular w

shows x[y 7−→z] = (x[y − w 7−→z])[y u w 7−→z]
by (smt (z3) assms comp-inf .semiring.distrib-left inf .left-commute

inf .sup-monoid.add-commute inf-import-p maddux-3-11-pp maddux-3-12 p-dist-inf
sup-assoc)

lemma update-injective-swap:
assumes injective x

and point y
and injective z
and vector z

shows injective ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
proof −

have 1 : (z u yT ∗ x) ∗ (z u yT ∗ x)T ≤ 1
using assms(3) injective-inf-closed by auto

have (z u yT ∗ x) ∗ (−z u y u zT ∗ x)T ≤ (z u yT ∗ x) ∗ (yT u xT ∗ z)
by (metis conv-dist-comp conv-involutive conv-order inf .boundedE

inf .boundedI inf .cobounded1 inf .cobounded2 mult-right-isotone)
also have ... = (z u zT ∗ x) ∗ (yT u xT ∗ y)

by (smt (z3) assms(2 ,4) covector-inf-comp-3 inf .left-commute
inf .sup-monoid.add-commute comp-associative conv-dist-comp conv-involutive)

also have ... = (z u zT) ∗ x ∗ xT ∗ (y u yT)
by (smt (z3) assms(2 ,4) comp-associative inf .sup-monoid.add-commute

vector-covector vector-inf-comp)
also have ... ≤ x ∗ xT

by (metis assms(2−4) comp-associative comp-right-one
coreflexive-comp-top-inf inf .coboundedI2 mult-right-isotone vector-covector)

also have ... ≤ 1
by (simp add: assms(1))

finally have 2 : (z u yT ∗ x) ∗ (−z u y u zT ∗ x)T ≤ 1
.

have (z u yT ∗ x) ∗ (−z u −y u x)T ≤ yT ∗ x ∗ (−yT u xT)
by (smt comp-isotone conv-complement conv-dist-inf inf .cobounded2

54

inf .sup-monoid.add-assoc)
also have ... = yT ∗ x ∗ xT u −yT

by (simp add: inf .commute assms(2) covector-comp-inf vector-conv-compl)
also have ... ≤ yT u −yT

by (metis assms(1) comp-associative comp-inf .mult-left-isotone comp-isotone
comp-right-one mult-sub-right-one)

finally have 3 : (z u yT ∗ x) ∗ (−z u −y u x)T ≤ 1
using pseudo-complement by fastforce

have 4 : (−z u y u zT ∗ x) ∗ (z u yT ∗ x)T ≤ 1
using 2 conv-dist-comp conv-order by force

have 5 : (−z u y u zT ∗ x) ∗ (−z u y u zT ∗ x)T ≤ 1
by (simp add: assms(2) inf-assoc inf-left-commute injective-inf-closed)

have (−z u y u zT ∗ x) ∗ (−z u −y u x)T ≤ zT ∗ x ∗ (−zT u xT)
using comp-inf .mult-left-isotone comp-isotone conv-complement conv-dist-inf

inf .cobounded1 inf .cobounded2 by auto
also have ... = zT ∗ x ∗ xT u −zT

by (metis assms(4) covector-comp-inf inf .sup-monoid.add-commute
vector-conv-compl)

also have ... ≤ zT u −zT
by (metis assms(1) comp-associative comp-inf .mult-left-isotone comp-isotone

comp-right-one mult-sub-right-one)
finally have 6 : (−z u y u zT ∗ x) ∗ (−z u −y u x)T ≤ 1

using pseudo-complement by fastforce
have 7 : (−z u −y u x) ∗ (z u yT ∗ x)T ≤ 1

using 3 conv-dist-comp coreflexive-symmetric by fastforce
have 8 : (−z u −y u x) ∗ (−z u y u zT ∗ x)T ≤ 1

using 6 conv-dist-comp coreflexive-symmetric by fastforce
have 9 : (−z u −y u x) ∗ (−z u −y u x)T ≤ 1

using assms(1) inf .sup-monoid.add-commute injective-inf-closed by auto
have (x[y 7−→x[[z]]])[z 7−→x[[y]]] = (z u yT ∗ x) t (−z u y u zT ∗ x) t (−z u
−y u x)

by (simp add: comp-inf .comp-left-dist-sup conv-dist-comp inf-assoc
sup-monoid.add-assoc)

hence ((x[y 7−→x[[z]]])[z 7−→x[[y]]]) ∗ ((x[y 7−→x[[z]]])[z 7−→x[[y]]])T = ((z u yT ∗
x) t (−z u y u zT ∗ x) t (−z u −y u x)) ∗ ((z u yT ∗ x)T t (−z u y u zT ∗
x)T t (−z u −y u x)T)

by (simp add: conv-dist-sup)
also have ... = (z u yT ∗ x) ∗ ((z u yT ∗ x)T t (−z u y u zT ∗ x)T t (−z u
−y u x)T) t

(−z u y u zT ∗ x) ∗ ((z u yT ∗ x)T t (−z u y u zT ∗ x)T t (−z
u −y u x)T) t

(−z u −y u x) ∗ ((z u yT ∗ x)T t (−z u y u zT ∗ x)T t (−z u
−y u x)T)

using mult-right-dist-sup by auto
also have ... = (z u yT ∗ x) ∗ (z u yT ∗ x)T t (z u yT ∗ x) ∗ (−z u y u zT ∗

x)T t (z u yT ∗ x) ∗ (−z u −y u x)T t
(−z u y u zT ∗ x) ∗ (z u yT ∗ x)T t (−z u y u zT ∗ x) ∗ (−z u

y u zT ∗ x)T t (−z u y u zT ∗ x) ∗ (−z u −y u x)T t
(−z u −y u x) ∗ (z u yT ∗ x)T t (−z u −y u x) ∗ (−z u y u zT

55

∗ x)T t (−z u −y u x) ∗ (−z u −y u x)T
using mult-left-dist-sup sup.left-commute sup-commute by auto

also have ... ≤ 1
using 1 2 3 4 5 6 7 8 9 by simp-all

finally show ?thesis
.

qed

lemma update-injective-swap-2 :
assumes injective x

shows injective ((x[y 7−→x[[bot]]])[bot 7−→x[[y]]])
by (simp add: assms inf .sup-monoid.add-commute injective-inf-closed)

lemma update-univalent-swap:
assumes univalent x

and injective y
and vector y
and injective z
and vector z

shows univalent ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
by (simp add: assms read-injective update-univalent)

lemma update-mapping-swap:
assumes mapping x

and point y
and point z

shows mapping ((x[y 7−→x[[z]]])[z 7−→x[[y]]])
by (simp add: assms bijective-regular read-injective read-surjective update-total

update-univalent)

lemma mapping-inf-point-arc has been moved to theory Relation-Algebras
in entry Stone-Relation-Algebras
end

context stone-kleene-relation-algebra
begin

lemma omit-redundant-points-2 :
assumes point p
shows p u x? = (p u 1) t (p u x u −pT) ∗ (x u −pT)?

proof −
let ?p = p u 1
let ?np = −p u 1
have 1 : p u x? u 1 = p u 1

by (metis inf .le-iff-sup inf .left-commute inf .sup-monoid.add-commute
star .circ-reflexive)

have 2 : p u 1 u −pT = bot
by (smt (z3) inf-bot-right inf-commute inf-left-commute one-inf-conv p-inf)

have p u x? u −1 = p u x? u −pT

56

by (metis assms antisymmetric-inf-diversity inf .cobounded1
inf .sup-relative-same-increasing vector-covector)

also have ... = (p u 1 u −pT) t ((p u x) ∗ (−p u x)? u −pT)
by (simp add: assms omit-redundant-points comp-inf .semiring.distrib-right)

also have ... = (p u x) ∗ (−p u x)? u −pT

using 2 by simp
also have ... = ?p ∗ x ∗ (−p u x)? u −pT

by (metis assms vector-export-comp-unit)
also have ... = ?p ∗ x ∗ (?np ∗ x)? u −pT

by (metis assms vector-complement-closed vector-export-comp-unit)
also have ... = ?p ∗ x ∗ (?np ∗ x)? ∗ ?np

by (metis assms conv-complement covector-comp-inf
inf .sup-monoid.add-commute mult-1-right one-inf-conv vector-conv-compl)

also have ... = ?p ∗ x ∗ ?np ∗ (x ∗ ?np)?
using star-slide mult-assoc by auto

also have ... = (?p ∗ x u −pT) ∗ (x ∗ ?np)?
by (metis assms conv-complement covector-comp-inf

inf .sup-monoid.add-commute mult-1-right one-inf-conv vector-conv-compl)
also have ... = (?p ∗ x u −pT) ∗ (x u −pT)?

by (metis assms conv-complement covector-comp-inf
inf .sup-monoid.add-commute mult-1-right one-inf-conv vector-conv-compl)

also have ... = (p u x u −pT) ∗ (x u −pT)?

by (metis assms vector-export-comp-unit)
finally show ?thesis

using 1 by (metis maddux-3-11-pp regular-one-closed)
qed

lemma omit-redundant-points-3 :
assumes point p
shows p u x? = (p u 1) t (p u (x u −pT)+)
by (simp add: assms inf-assoc vector-inf-comp omit-redundant-points-2)

lemma even-odd-root:
assumes acyclic (x − 1)

and regular x
and univalent x

shows (x ∗ x)T ? u xT ∗ (x ∗ x)T ? = (1 u x) ∗ ((x ∗ x)T ? u xT ∗ (x ∗ x)T ?)
proof −

have 1 : univalent (x ∗ x)
by (simp add: assms(3) univalent-mult-closed)

have x u 1 ≤ top ∗ (x u 1)
by (simp add: top-left-mult-increasing)

hence x u −(top ∗ (x u 1)) ≤ x − 1
using assms(2) p-shunting-swap pp-dist-comp by auto

hence x? ∗ (x u −(top ∗ (x u 1))) ≤ (x − 1)? ∗ (x − 1)
using mult-right-isotone reachable-without-loops by auto

also have ... ≤ −1
by (simp add: assms(1) star-plus)

finally have (x u −(top ∗ (x u 1)))T ≤ −x?

57

using schroeder-4-p by force
hence xT u x? ≤ (top ∗ (x u 1))T

by (smt (z3) assms(2) conv-complement conv-dist-inf p-shunting-swap
regular-closed-inf regular-closed-top regular-mult-closed regular-one-closed)

also have ... = (1 u x) ∗ top
by (metis conv-dist-comp conv-dist-inf inf-commute one-inf-conv

symmetric-one-closed symmetric-top-closed)
finally have 2 : (xT u x?) ∗ top ≤ (1 u x) ∗ top

by (metis inf .orderE inf .orderI inf-commute inf-vector-comp)
have 1 u xT+ ≤ (xT u 1 ∗ x?) ∗ xT ?

by (metis conv-involutive conv-star-commute dedekind-2 inf-commute)
also have ... ≤ (xT u x?) ∗ top

by (simp add: mult-right-isotone)
also have ... ≤ (1 u x) ∗ top

using 2 by simp
finally have 3 : 1 u xT+ ≤ (1 u x) ∗ top

.
have xT u (xT ∗ xT)+ = 1 ∗ xT u (xT ∗ xT)? ∗ xT ∗ xT

using star-plus mult-assoc by auto
also have ... = (1 u (xT ∗ xT)? ∗ xT) ∗ xT

using assms(3) injective-comp-right-dist-inf by force
also have ... ≤ (1 u xT ? ∗ xT) ∗ xT

by (meson comp-inf .mult-right-isotone comp-isotone inf .eq-refl
star .circ-square)

also have ... ≤ (1 u x) ∗ top ∗ xT

using 3 by (simp add: mult-left-isotone star-plus)
also have ... ≤ (1 u x) ∗ top

by (simp add: comp-associative mult-right-isotone)
finally have 4 : xT u (xT ∗ xT)+ ≤ (1 u x) ∗ top

.
have xT u (xT ∗ xT)? = (xT u 1) t (xT u (xT ∗ xT)+)

by (metis inf-sup-distrib1 star-left-unfold-equal)
also have ... ≤ (1 u x) ∗ top

using 4 by (metis inf .sup-monoid.add-commute le-supI one-inf-conv
top-right-mult-increasing)

finally have 4 : xT u (xT ∗ xT)? ≤ (1 u x) ∗ top
.

have xT u (x ∗ x)? u −1 ≤ xT u x? u −1
by (simp add: inf .coboundedI2 inf .sup-monoid.add-commute star .circ-square)

also have ... = (x − 1)? u (x − 1)T
using conv-complement conv-dist-inf inf-assoc inf-left-commute

reachable-without-loops symmetric-one-closed by auto
also have ... = bot

using assms(1) acyclic-star-below-complement-1 by auto
finally have 5 : xT u (x ∗ x)? u −1 = bot

by (simp add: le-bot)
have xT u (x ∗ x)? = (xT u (x ∗ x)? u 1) t (xT u (x ∗ x)? u −1)

by (metis maddux-3-11-pp regular-one-closed)
also have ... = xT u (x ∗ x)? u 1

58

using 5 by simp
also have ... = xT u 1

by (metis calculation comp-inf .semiring.distrib-left
inf .sup-monoid.add-commute star .circ-transitive-equal star-involutive
star-left-unfold-equal sup-inf-absorb)

finally have (xT u (x ∗ x)?) t (xT u (xT ∗ xT)?) ≤ (1 u x) ∗ top
using 4 inf .sup-monoid.add-commute one-inf-conv top-right-mult-increasing

by auto
hence xT u ((x ∗ x)? t (x ∗ x)T ?) ≤ (1 u x) ∗ top

by (simp add: comp-inf .semiring.distrib-left conv-dist-comp)
hence 6 : xT u (x ∗ x)T ? ∗ (x ∗ x)? ≤ (1 u x) ∗ top

using 1 by (simp add: cancel-separate-eq sup-commute)
have (x ∗ x)T ? u xT ∗ (x ∗ x)T ? ≤ (xT u (x ∗ x)T ? ∗ (x ∗ x)?) ∗ (x ∗ x)T ?

by (metis conv-involutive conv-star-commute dedekind-2 inf-commute)
also have ... ≤ (1 u x) ∗ top ∗ (x ∗ x)T ?

using 6 by (simp add: mult-left-isotone)
also have ... = (1 u x) ∗ top

by (simp add: comp-associative star .circ-left-top)
finally have (x ∗ x)T ? u xT ∗ (x ∗ x)T ? = (x ∗ x)T ? u xT ∗ (x ∗ x)T ? u (1 u

x) ∗ top
using inf .order-iff by auto

also have ... = (1 u x) ∗ ((x ∗ x)T ? u xT ∗ (x ∗ x)T ?)
by (metis coreflexive-comp-top-inf inf .cobounded1

inf .sup-monoid.add-commute)
finally show ?thesis

.
qed

lemma update-square-plus:
point y =⇒ x[y 7−→x[[x[[y]]]]] ≤ x+

by (meson update-square comp-isotone dual-order .trans le-supI order-refl
star .circ-increasing star .circ-mult-increasing)

lemma update-square-ub-plus:
x[y 7−→(x ∗ x)T] ≤ x+

by (simp add: comp-isotone inf .coboundedI2 star .circ-increasing
star .circ-mult-increasing)

lemma acyclic-square:
assumes acyclic (x − 1)

shows x ∗ x u 1 = x u 1
proof (rule order .antisym)

have 1 u x ∗ x = 1 u ((x − 1) ∗ x t (x u 1) ∗ x)
by (metis maddux-3-11-pp regular-one-closed semiring.distrib-right)

also have ... ≤ 1 u ((x − 1) ∗ x t x)
by (metis inf .cobounded2 mult-1-left mult-left-isotone inf .sup-right-isotone

semiring.add-left-mono)
also have ... = 1 u ((x − 1) ∗ (x − 1) t (x − 1) ∗ (x u 1) t x)

by (metis maddux-3-11-pp mult-left-dist-sup regular-one-closed)

59

also have ... ≤ (1 u (x − 1) ∗ (x − 1)) t (x − 1) ∗ (x u 1) t x
by (metis inf-le2 inf-sup-distrib1 semiring.add-left-mono

sup-monoid.add-assoc)
also have ... ≤ (1 u (x − 1)+) t (x − 1) ∗ (x u 1) t x

by (metis comp-isotone inf .eq-refl inf .sup-right-isotone star .circ-increasing
sup-monoid.add-commute sup-right-isotone)

also have ... = (x − 1) ∗ (x u 1) t x
by (metis assms inf .le-iff-sup inf .sup-monoid.add-commute inf-import-p inf-p

regular-one-closed sup-inf-absorb sup-monoid.add-commute)
also have ... = x

by (metis comp-isotone inf .cobounded1 inf-le2 mult-1-right sup.absorb2)
finally show x ∗ x u 1 ≤ x u 1

by (simp add: inf .sup-monoid.add-commute)
show x u 1 ≤ x ∗ x u 1

by (metis coreflexive-idempotent inf-le1 inf-le2 le-infI mult-isotone)
qed

lemma diagonal-update-square-aux:
assumes acyclic (x − 1)

and point y
shows 1 u y u yT ∗ x ∗ x = 1 u y u x

proof −
have 1 : 1 u y u x ≤ yT ∗ x ∗ x

by (metis comp-isotone coreflexive-idempotent inf .boundedE inf .cobounded1
inf .cobounded2 one-inf-conv)

have 1 u y u yT ∗ x ∗ x = 1 u (y u yT) ∗ x ∗ x
by (simp add: assms(2) inf .sup-monoid.add-assoc vector-inf-comp)

also have ... = 1 u (y u 1) ∗ x ∗ x
by (metis assms(2) inf .cobounded1 inf .sup-monoid.add-commute

inf .sup-same-context one-inf-conv vector-covector)
also have ... ≤ 1 u x ∗ x

by (metis comp-left-subdist-inf inf .sup-right-isotone le-infE mult-left-isotone
mult-left-one)

also have ... ≤ x
using assms(1) acyclic-square inf .sup-monoid.add-commute by auto

finally show ?thesis
using 1 by (metis inf .absorb2 inf .left-commute inf .sup-monoid.add-commute)

qed

lemma diagonal-update-square:
assumes acyclic (x − 1)

and point y
shows (x[y 7−→x[[x[[y]]]]]) u 1 = x u 1

proof −
let ?xy = x[[y]]
let ?xxy = x[[?xy]]
let ?xyxxy = x[y 7−→?xxy]
have ?xyxxy u 1 = ((y u yT ∗ x ∗ x) t (−y u x)) u 1

by (simp add: conv-dist-comp)

60

also have ... = (y u yT ∗ x ∗ x u 1) t (−y u x u 1)
by (simp add: inf-sup-distrib2)

also have ... = (y u x u 1) t (−y u x u 1)
using assms by (smt (verit, ccfv-threshold) diagonal-update-square-aux

find-set-precondition-def inf-assoc inf-commute)
also have ... = x u 1

by (metis assms(2) bijective-regular comp-inf .mult-right-dist-sup
inf .sup-monoid.add-commute maddux-3-11-pp)

finally show ?thesis
.

qed

lemma fc-update-square:
assumes mapping x

and point y
shows fc (x[y 7−→x[[x[[y]]]]]) = fc x

proof (rule order .antisym)
let ?xy = x[[y]]
let ?xxy = x[[?xy]]
let ?xyxxy = x[y 7−→?xxy]
have 1 : y u yT ∗ x ∗ x ≤ x ∗ x

by (smt (z3) assms(2) inf .cobounded2 inf .sup-monoid.add-commute
inf .sup-same-context mult-1-left one-inf-conv vector-covector vector-inf-comp)

have 2 : ?xyxxy = (y u yT ∗ x ∗ x) t (−y u x)
by (simp add: conv-dist-comp)

also have ... ≤ x ∗ x t x
using 1 inf-le2 sup-mono by blast

also have ... ≤ x?

by (simp add: star .circ-increasing star .circ-mult-upper-bound)
finally show fc ?xyxxy ≤ fc x

by (metis comp-isotone conv-order conv-star-commute star-involutive
star-isotone)

have 3 : y u x u 1 ≤ fc ?xyxxy
using inf .coboundedI1 inf .sup-monoid.add-commute reflexive-mult-closed

star .circ-reflexive by auto
have 4 : y − 1 ≤ −yT

using assms(2) p-shunting-swap regular-one-closed vector-covector by auto
have y u x ≤ yT ∗ x

by (simp add: assms(2) vector-restrict-comp-conv)
also have ... ≤ yT ∗ x ∗ x ∗ xT

by (metis assms(1) comp-associative mult-1-right mult-right-isotone total-var)
finally have y u x u −1 ≤ y u −yT u yT ∗ x ∗ x ∗ xT

using 4 by (smt (z3) inf .cobounded1 inf .coboundedI2
inf .sup-monoid.add-assoc inf .sup-monoid.add-commute inf-greatest)

also have ... = (y u yT ∗ x ∗ x) ∗ xT u −yT

by (metis assms(2) inf .sup-monoid.add-assoc inf .sup-monoid.add-commute
vector-inf-comp)

also have ... = (y u yT ∗ x ∗ x) ∗ (xT u −yT)
using assms(2) covector-comp-inf vector-conv-compl by auto

61

also have ... = (y u yT ∗ x ∗ x) ∗ (−y u x)T
by (simp add: conv-complement conv-dist-inf inf-commute)

also have ... ≤ ?xyxxy ∗ (−y u x)T
using 2 by (simp add: comp-left-increasing-sup)

also have ... ≤ ?xyxxy ∗ ?xyxxyT

by (simp add: conv-isotone mult-right-isotone)
also have ... ≤ fc ?xyxxy

using comp-isotone star .circ-increasing by blast
finally have 5 : y u x ≤ fc ?xyxxy

using 3 by (smt (z3) comp-inf .semiring.distrib-left inf .le-iff-sup
maddux-3-11-pp regular-one-closed)

have x = (y u x) t (−y u x)
by (metis assms(2) bijective-regular inf .sup-monoid.add-commute

maddux-3-11-pp)
also have ... ≤ fc ?xyxxy

using 5 dual-order .trans fc-increasing sup.cobounded2 sup-least by blast
finally show fc x ≤ fc ?xyxxy

by (smt (z3) assms fc-equivalence fc-isotone fc-wcc read-injective
star .circ-decompose-9 star-decompose-1 update-univalent)
qed

lemma acyclic-plus-loop:
assumes acyclic (x − 1)
shows x+ u 1 = x u 1

proof −
let ?r = x u 1
let ?i = x − 1
have x+ u 1 = (?i t ?r)+ u 1

by (metis maddux-3-11-pp regular-one-closed)
also have ... = ((?i? ∗ ?r)? ∗ ?i+ t (?i? ∗ ?r)+) u 1

using plus-sup by auto
also have ... ≤ (?i+ t (?i? ∗ ?r)+) u 1

by (metis comp-associative dual-order .eq-iff maddux-3-11-pp
reachable-without-loops regular-one-closed star .circ-plus-same star .circ-sup-9)

also have ... = (?i? ∗ ?r)+ u 1
by (smt (z3) assms comp-inf .mult-right-dist-sup inf .absorb2

inf .sup-monoid.add-commute inf-le2 maddux-3-11-pp pseudo-complement
regular-one-closed)

also have ... ≤ ?i? ∗ ?r u 1
by (metis comp-associative dual-order .eq-iff maddux-3-11-pp

reachable-without-loops regular-one-closed star .circ-sup-9 star-slide)
also have ... = (?r t ?i+ ∗ ?r) u 1

using comp-associative star .circ-loop-fixpoint sup-commute by force
also have ... ≤ x t (?i+ ∗ ?r u 1)

by (metis comp-inf .mult-right-dist-sup inf .absorb1 inf .cobounded1
inf .cobounded2)

also have ... ≤ x t (−1 ∗ ?r u 1)
by (meson assms comp-inf .comp-isotone mult-left-isotone order .refl

semiring.add-left-mono)

62

also have ... = x
by (metis comp-inf .semiring.mult-not-zero comp-right-one inf .cobounded2

inf-sup-absorb mult-right-isotone pseudo-complement sup.idem sup-inf-distrib1)
finally show ?thesis

by (meson inf .sup-same-context inf-le1 order-trans star .circ-mult-increasing)
qed

lemma star-irreflexive-part-eq:
x? − 1 = (x − 1)+ − 1
by (metis reachable-without-loops star-plus-without-loops)

lemma star-irreflexive-part:
x? − 1 ≤ (x − 1)+
using star-irreflexive-part-eq by auto

lemma square-irreflexive-part:
x ∗ x − 1 ≤ (x − 1)+

proof −
have x ∗ x = (x u 1) ∗ x t (x − 1) ∗ x

by (metis maddux-3-11-pp mult-right-dist-sup regular-one-closed)
also have ... ≤ 1 ∗ x t (x − 1) ∗ x

using comp-isotone inf .cobounded2 semiring.add-right-mono by blast
also have ... ≤ 1 t (x − 1) t (x − 1) ∗ x

by (metis inf .cobounded2 maddux-3-11-pp mult-1-left regular-one-closed
sup-left-isotone)

also have ... = (x − 1) ∗ (x t 1) t 1
by (simp add: mult-left-dist-sup sup-assoc sup-commute)

finally have x ∗ x − 1 ≤ (x − 1) ∗ (x t 1)
using shunting-var-p by auto

also have ... = (x − 1) ∗ (x − 1) t (x − 1)
by (metis comp-right-one inf .sup-monoid.add-commute maddux-3-21-pp

mult-left-dist-sup regular-one-closed sup-commute)
also have ... ≤ (x − 1)+

by (metis mult-left-isotone star .circ-increasing star .circ-mult-increasing
star .circ-plus-same sup.bounded-iff)

finally show ?thesis
.

qed

lemma square-irreflexive-part-2 :
x ∗ x − 1 ≤ x? − 1
using comp-inf .mult-left-isotone star .circ-increasing star .circ-mult-upper-bound

by blast

lemma acyclic-update-square:
assumes acyclic (x − 1)
shows acyclic ((x[y 7−→(x ∗ x)T]) − 1)

proof −
have ((x[y 7−→(x ∗ x)T]) − 1)+ ≤ ((x t x ∗ x) − 1)+

63

by (metis comp-inf .mult-right-isotone comp-isotone
inf .sup-monoid.add-commute star-isotone update-square-ub)

also have ... = ((x − 1) t (x ∗ x − 1))+
using comp-inf .semiring.distrib-right by auto

also have ... ≤ ((x − 1)+)+
by (smt (verit, del-insts) comp-isotone reachable-without-loops

star .circ-mult-increasing star .circ-plus-same star .circ-right-slide
star .circ-separate-5 star .circ-square star .circ-transitive-equal star .left-plus-circ
sup.bounded-iff sup-ge1 square-irreflexive-part)

also have ... ≤ −1
using assms by (simp add: acyclic-plus)

finally show ?thesis
.

qed

lemma disjoint-set-forest-update-square:
assumes disjoint-set-forest x

and vector y
and regular y

shows disjoint-set-forest (x[y 7−→(x ∗ x)T])
proof (intro conjI)

show univalent (x[y 7−→(x ∗ x)T])
using assms update-univalent mapping-mult-closed univalent-conv-injective by

blast
show total (x[y 7−→(x ∗ x)T])

using assms update-total total-conv-surjective total-mult-closed by blast
show acyclic ((x[y 7−→(x ∗ x)T]) − 1)

using acyclic-update-square assms(1) by blast
qed

lemma disjoint-set-forest-update-square-point:
assumes disjoint-set-forest x

and point y
shows disjoint-set-forest (x[y 7−→(x ∗ x)T])

using assms disjoint-set-forest-update-square bijective-regular by blast

end

6 Verifying Further Operations on Disjoint-Set
Forests

In this section we verify the init-sets, path-halving and path-splitting oper-
ations of disjoint-set forests.
class choose-point =

fixes choose-point :: ′a ⇒ ′a

Using the choose-point operation we define a simple for-each-loop ab-
straction as syntactic sugar translated to a while-loop. Regular vector h

64

describes the set of all elements that are yet to be processed. It is made
explicit so that the invariant can refer to it.
syntax

-Foreach :: idt ⇒ idt ⇒ ′assn ⇒ ′com ⇒ ′com (‹(1FOREACH -/ USING -/
INV {-} //DO - /OD)› [0 ,0 ,0 ,0] 61)
translations FOREACH x USING h INV { i } DO c OD =>

h := CONST top;
WHILE h 6= CONST bot

INV { CONST regular h ∧ CONST vector h ∧ i }
VAR { h↓ }
DO x := CONST choose-point h;

c;
h[x] := CONST bot

OD

class stone-kleene-relation-algebra-choose-point-finite-regular =
stone-kleene-relation-algebra + finite-regular-p-algebra + choose-point +

assumes choose-point-point: vector x =⇒ x 6= bot =⇒ point (choose-point x)
assumes choose-point-decreasing: choose-point x ≤ −−x

begin

subclass stone-kleene-relation-algebra-tarski-finite-regular
proof unfold-locales

fix x
let ?p = choose-point (x ∗ top)
let ?q = choose-point ((?p u x)T ∗ top)
let ?y = ?p u ?qT

assume 1 : regular x x 6= bot
hence 2 : x ∗ top 6= bot

using le-bot top-right-mult-increasing by auto
hence 3 : point ?p

by (simp add: choose-point-point comp-associative)
hence 4 : ?p 6= bot

using 2 mult-right-zero by force
have ?p u x 6= bot
proof

assume ?p u x = bot
hence 5 : x ≤ −?p

using p-antitone-iff pseudo-complement by auto
have ?p ≤ −−(x ∗ top)

by (simp add: choose-point-decreasing)
also have ... ≤ −−(−?p ∗ top)

using 5 by (simp add: comp-isotone pp-isotone)
also have ... = −?p ∗ top

using regular-mult-closed by auto
also have ... = −?p

using 3 vector-complement-closed by auto
finally have ?p = bot

using inf-absorb2 by fastforce

65

thus False
using 4 by auto

qed
hence (?p u x)T ∗ top 6= bot

by (metis comp-inf .semiring.mult-zero-left comp-right-one
inf .sup-monoid.add-commute inf-top.left-neutral schroeder-1)

hence point ?q
using choose-point-point vector-top-closed mult-assoc by auto

hence 6 : arc ?y
using 3 by (smt bijective-conv-mapping inf .sup-monoid.add-commute

mapping-inf-point-arc)
have ?q ≤ −−((?p u x)T ∗ top)

by (simp add: choose-point-decreasing)
hence ?y ≤ ?p u −−((?p u x)T ∗ top)T

by (metis conv-complement conv-isotone inf .sup-right-isotone)
also have ... = ?p u −−(top ∗ (?p u x))

by (simp add: conv-dist-comp)
also have ... = ?p u top ∗ (?p u x)

using 1 3 bijective-regular pp-dist-comp by auto
also have ... = ?p u ?pT ∗ x

using 3 by (metis comp-inf-vector conv-dist-comp
inf .sup-monoid.add-commute inf-top-right symmetric-top-closed)

also have ... = (?p u ?pT) ∗ x
using 3 by (simp add: vector-inf-comp)

also have ... ≤ 1 ∗ x
using 3 point-antisymmetric mult-left-isotone by blast

finally have ?y ≤ x
by simp

thus top ∗ x ∗ top = top
using 6 by (smt (verit, ccfv-SIG) mult-assoc le-iff-sup mult-left-isotone

semiring.distrib-left sup.orderE top.extremum)
qed

6.1 Init-Sets
A disjoint-set forest is initialised by applying make-set to each node. We
prove that the resulting disjoint-set forest is the identity relation.
theorem init-sets:

VARS h p x
[True]
FOREACH x

USING h
INV { p − h = 1 − h }
DO p := make-set p x
OD

[p = 1 ∧ disjoint-set-forest p ∧ h = bot]
proof vcg-tc-simp

fix h p
let ?x = choose-point h

66

let ?m = make-set p ?x
assume 1 : regular h ∧ vector h ∧ p − h = 1 − h ∧ h 6= bot
show vector (−?x u h) ∧

?m u (−−?x t −h) = 1 u (−−?x t −h) ∧
card { x . regular x ∧ x ≤ −?x ∧ x ≤ h } < h↓

proof (intro conjI)
show vector (−?x u h)

using 1 choose-point-point vector-complement-closed vector-inf-closed by
blast

have 2 : point ?x ∧ regular ?x
using 1 bijective-regular choose-point-point by blast

have 3 : −h ≤ −?x
using choose-point-decreasing p-antitone-iff by auto

have 4 : ?x u ?m = ?x ∗ ?xT ∧ −?x u ?m = −?x u p
using 1 choose-point-point make-set-function make-set-postcondition-def by

auto
have ?m u (−−?x t −h) = (?m u ?x) t (?m − h)

using 2 comp-inf .comp-left-dist-sup by auto
also have ... = ?x ∗ ?xT t (?m u −?x u −h)

using 3 4 by (smt (z3) inf-absorb2 inf-assoc inf-commute)
also have ... = ?x ∗ ?xT t (1 − h)

using 1 3 4 inf .absorb2 inf .sup-monoid.add-assoc inf-commute by auto
also have ... = (1 u ?x) t (1 − h)

using 2 by (metis inf .cobounded2 inf .sup-same-context one-inf-conv
vector-covector)

also have ... = 1 u (−−?x t −h)
using 2 comp-inf .semiring.distrib-left by auto

finally show ?m u (−−?x t −h) = 1 u (−−?x t −h)
.

have 5 : ¬ ?x ≤ −?x
using 1 2 by (metis comp-commute-below-diversity conv-order

inf .cobounded2 inf-absorb2 pseudo-complement strict-order-var top.extremum)
have 6 : ?x ≤ h

using 1 by (metis choose-point-decreasing)
show card { x . regular x ∧ x ≤ −?x ∧ x ≤ h } < h↓

apply (rule psubset-card-mono)
using finite-regular apply simp
using 2 5 6 by auto

qed
qed

end

6.2 Path Halving
Path halving is a variant of the path compression technique. Similarly to
path compression, we implement path halving independently of find-set,
using a second while-loop which iterates over the same path to the root.
We prove that path halving preserves the equivalence-relational semantics

67

of the disjoint-set forest and also preserves the roots of the component trees.
Additionally we prove the exact effect of path halving, which is to replace
every other parent pointer with a pointer to the respective grandparent.
context stone-kleene-relation-algebra-tarski-finite-regular
begin

definition path-halving-invariant p x y p0 ≡
find-set-precondition p x ∧ point y ∧ y ≤ pT ? ∗ x ∧ y ≤ (p0 ∗ p0)T ? ∗ x ∧
p0 [(p0 ∗ p0)T ? ∗ x − p0T ? ∗ y 7−→(p0 ∗ p0)T] = p ∧
disjoint-set-forest p0

definition path-halving-postcondition p x y p0 ≡
disjoint-set-forest p ∧ y = root p x ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [(p0 ∗ p0)T ? ∗ x 7−→(p0 ∗ p0)T] = p

lemma path-halving-invariant-aux-1 :
assumes point x

and point y
and disjoint-set-forest p0

shows p0 ≤ wcc (p0 [(p0 ∗ p0)T ? ∗ x − p0T ? ∗ y 7−→(p0 ∗ p0)T])
proof −

let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?p2ts = ?p2t?
let ?px = ?p2ts ∗ x
let ?py = −(p0T ? ∗ y)
let ?pxy = ?px u ?py
let ?p = p0 [?pxy 7−→?p2t]
have 1 : regular ?pxy

using assms(1 ,3) bijective-regular find-set-precondition-def mapping-regular
pp-dist-comp regular-closed-star regular-conv-closed path-halving-invariant-def by
auto

have 2 : vector x ∧ vector ?px ∧ vector ?py
using assms(1 ,2) find-set-precondition-def vector-complement-closed

vector-mult-closed path-halving-invariant-def by auto
have 3 : ?pxy u p0 u −?p2 ≤ −?pxT

proof −
have 4 : injective x ∧ univalent ?p2 ∧ regular p0

using assms(1 ,3) find-set-precondition-def mapping-regular
univalent-mult-closed path-halving-invariant-def by auto

have ?p2 ? ∗ p0 u 1 ≤ p0+ u 1
using comp-inf .mult-left-isotone comp-isotone comp-right-one

mult-sub-right-one star .circ-square star-slide by auto
also have ... ≤ p0

using acyclic-plus-loop assms(3) path-halving-invariant-def by auto
finally have 5 : ?p2 ? ∗ p0 u 1 ≤ p0

.
hence 6 : ?p2ts ∗ (1 − p0) ≤ −p0

by (smt (verit, ccfv-SIG) conv-star-commute dual-order .trans
inf .sup-monoid.add-assoc order .refl p-antitone-iff pseudo-complement

68

schroeder-4-p schroeder-6-p)
have ?p2t+ ∗ p0 u 1 = ?p2ts ∗ p0T ∗ (p0T ∗ p0) u 1

by (metis conv-dist-comp star-plus mult-assoc)
also have ... ≤ ?p2ts ∗ p0T u 1

by (metis assms(3) comp-inf .mult-left-isotone comp-isotone comp-right-one
mult-sub-right-one)

also have ... ≤ p0
using 5 by (metis conv-dist-comp conv-star-commute inf-commute

one-inf-conv star-slide)
finally have ?p2t+ ∗ p0 ≤ −1 t p0

by (metis regular-one-closed shunting-var-p sup-commute)
hence 7 : ?p2+ ∗ (1 − p0) ≤ −p0

by (smt (z3) conv-dist-comp conv-star-commute half-shunting
inf .sup-monoid.add-assoc inf .sup-monoid.add-commute pseudo-complement
schroeder-4-p schroeder-6-p star .circ-plus-same)

have (1 u ?px) ∗ top ∗ (1 u ?px u −p0) = ?px u top ∗ (1 u ?px u −p0)
using 2 by (metis inf-commute vector-inf-one-comp mult-assoc)

also have ... = ?px u ?pxT ∗ (1 − p0)
using 2 by (smt (verit, ccfv-threshold) covector-inf-comp-3

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute inf-top.left-neutral)
also have ... = ?px u xT ∗ ?p2 ? ∗ (1 − p0)

by (simp add: conv-dist-comp conv-star-commute)
also have ... = (?px u xT) ∗ ?p2 ? ∗ (1 − p0)

using 2 vector-inf-comp by auto
also have ... = ?p2ts ∗ (x ∗ xT) ∗ ?p2 ? ∗ (1 − p0)

using 2 vector-covector mult-assoc by auto
also have ... ≤ ?p2ts ∗ ?p2 ? ∗ (1 − p0)

using 4 by (metis inf .order-lesseq-imp mult-left-isotone
star .circ-mult-upper-bound star .circ-reflexive)

also have ... = (?p2ts t ?p2 ?) ∗ (1 − p0)
using 4 by (simp add: cancel-separate-eq)

also have ... = (?p2ts t ?p2+) ∗ (1 − p0)
by (metis star .circ-plus-one star-plus-loops sup-assoc sup-commute)

also have ... ≤ −p0
using 6 7 by (simp add: mult-right-dist-sup)

finally have (1 u ?px)T ∗ p0 ∗ (1 u ?px u −p0)T ≤ bot
by (smt (z3) inf .boundedI inf-p top.extremum triple-schroeder-p)

hence 8 : (1 u ?px) ∗ p0 ∗ (1 u ?px u −p0) = bot
by (simp add: coreflexive-inf-closed coreflexive-symmetric le-bot)

have ?px u p0 u ?pxT = (1 u ?px) ∗ p0 u ?pxT

using 2 inf-commute vector-inf-one-comp by fastforce
also have ... = (1 u ?px) ∗ p0 ∗ (1 u ?px)

using 2 by (metis comp-inf-vector mult-1-right vector-conv-covector)
also have ... = (1 u ?px) ∗ p0 ∗ (1 u ?px u p0) t (1 u ?px) ∗ p0 ∗ (1 u

?px u −p0)
using 4 by (metis maddux-3-11-pp mult-left-dist-sup)

also have ... = (1 u ?px) ∗ p0 ∗ (1 u ?px u p0)
using 8 by simp

also have ... ≤ ?p2

69

by (metis comp-isotone coreflexive-comp-top-inf inf .cobounded1
inf .cobounded2)

finally have ?px u p0 u −?p2 ≤ −?pxT

using 4 p-shunting-swap regular-mult-closed by fastforce
thus ?thesis

by (meson comp-inf .mult-left-isotone dual-order .trans inf .cobounded1)
qed
have p0 ≤ ?p2 ∗ p0T

by (metis assms(3) comp-associative comp-isotone comp-right-one eq-refl
total-var)

hence ?pxy u p0 u −?p2 ≤ ?p2 ∗ p0T

by (metis inf .coboundedI1 inf .sup-monoid.add-commute)
hence ?pxy u p0 u −?p2 ≤ ?pxy u ?p2 ∗ p0T u −?pxT

using 3 by (meson dual-order .trans inf .boundedI inf .cobounded1)
also have ... = (?pxy u ?p2) ∗ p0T u −?pxT

using 2 vector-inf-comp by auto
also have ... = (?pxy u ?p2) ∗ (−?px u p0)T

using 2 by (simp add: covector-comp-inf inf .sup-monoid.add-commute
vector-conv-compl conv-complement conv-dist-inf)

also have ... ≤ ?p ∗ (−?px u p0)T
using comp-left-increasing-sup by auto

also have ... ≤ ?p ∗ ?pT

by (metis comp-inf .mult-right-isotone comp-isotone conv-isotone inf .eq-refl
inf .sup-monoid.add-commute le-supI1 p-antitone-inf sup-commute)

also have ... ≤ wcc ?p
using star .circ-sub-dist-2 by auto

finally have 9 : ?pxy u p0 u −?p2 ≤ wcc ?p
.

have p0 = (?pxy u p0) t (−?pxy u p0)
using 1 by (metis inf .sup-monoid.add-commute maddux-3-11-pp)

also have ... ≤ (?pxy u p0) t ?p
using sup-right-isotone by auto

also have ... = (?pxy u p0 u −?p2) t (?pxy u p0 u ?p2) t ?p
by (smt (z3) assms(3) maddux-3-11-pp mapping-regular pp-dist-comp

path-halving-invariant-def)
also have ... ≤ (?pxy u p0 u −?p2) t (?pxy u ?p2) t ?p

by (meson comp-inf .comp-left-subdist-inf inf .boundedE semiring.add-left-mono
semiring.add-right-mono)

also have ... = (?pxy u p0 u −?p2) t ?p
using sup-assoc by auto

also have ... ≤ wcc ?p t ?p
using 9 sup-left-isotone by blast

also have ... ≤ wcc ?p
by (simp add: star .circ-sub-dist-1)

finally show ?thesis
.

qed

lemma path-halving-invariant-aux:

70

assumes path-halving-invariant p x y p0
shows p[[y]] = p0 [[y]]

and p[[p[[y]]]] = p0 [[p0 [[y]]]]
and p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
and p u 1 = p0 u 1
and fc p = fc p0

proof −
let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?p2ts = ?p2t?
let ?px = ?p2ts ∗ x
let ?py = −(p0T ? ∗ y)
let ?pxy = ?px u ?py
let ?p = p0 [?pxy 7−→?p2t]
have ?p[[y]] = p0 [[y]]

apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-halving-invariant-def apply force
by (meson inf .cobounded2 order-lesseq-imp p-antitone-iff path-compression-1b)

thus 1 : p[[y]] = p0 [[y]]
using assms path-halving-invariant-def by auto

have ?p[[p0 [[y]]]] = p0 [[p0 [[y]]]]
apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-halving-invariant-def apply force
by (metis comp-isotone inf .boundedE inf .coboundedI2 inf .eq-refl p-antitone-iff

selection-closed-id star .circ-increasing)
thus 2 : p[[p[[y]]]] = p0 [[p0 [[y]]]]

using 1 assms path-halving-invariant-def by auto
have ?p[[p0 [[p0 [[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]

apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-halving-invariant-def apply force
by (metis comp-associative comp-isotone conv-dist-comp conv-involutive

conv-order inf .coboundedI2 inf .le-iff-sup mult-left-isotone p-antitone-iff
p-antitone-inf star .circ-increasing star .circ-transitive-equal)

thus p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
using 2 assms path-halving-invariant-def by auto

have 3 : regular ?pxy
using assms bijective-regular find-set-precondition-def mapping-regular

pp-dist-comp regular-closed-star regular-conv-closed path-halving-invariant-def by
auto

have p u 1 = ?p u 1
using assms path-halving-invariant-def by auto

also have ... = (?pxy u ?p2 u 1) t (−?pxy u p0 u 1)
using comp-inf .semiring.distrib-right conv-involutive by auto

also have ... = (?pxy u p0 u 1) t (−?pxy u p0 u 1)
using assms acyclic-square path-halving-invariant-def

inf .sup-monoid.add-assoc by auto

71

also have ... = (?pxy t −?pxy) u p0 u 1
using inf-sup-distrib2 by auto

also have ... = p0 u 1
using 3 by (metis inf .sup-monoid.add-commute inf-sup-distrib1

maddux-3-11-pp)
finally show p u 1 = p0 u 1

.
have p ≤ p0+

by (metis assms path-halving-invariant-def update-square-ub-plus)
hence 4 : fc p ≤ fc p0

using conv-plus-commute fc-isotone star .left-plus-circ by fastforce
have wcc p0 ≤ wcc ?p

by (meson assms wcc-below-wcc path-halving-invariant-aux-1
path-halving-invariant-def find-set-precondition-def)

hence fc p0 ≤ fc ?p
using assms find-set-precondition-def path-halving-invariant-def fc-wcc by auto

thus fc p = fc p0
using 4 assms path-halving-invariant-def by auto

qed

lemma path-halving-1 :
find-set-precondition p0 x =⇒ path-halving-invariant p0 x x p0

proof −
assume 1 : find-set-precondition p0 x
show path-halving-invariant p0 x x p0
proof (unfold path-halving-invariant-def , intro conjI)

show find-set-precondition p0 x
using 1 by simp

show vector x injective x surjective x
using 1 find-set-precondition-def by auto

show x ≤ p0T ? ∗ x
by (simp add: path-compression-1b)

show x ≤ (p0 ∗ p0)T ? ∗ x
by (simp add: path-compression-1b)

have (p0 ∗ p0)T ? ∗ x ≤ p0T ? ∗ x
by (simp add: conv-dist-comp mult-left-isotone star .circ-square)

thus p0 [(p0 ∗ p0)T ? ∗ x − p0T ? ∗ x 7−→(p0 ∗ p0)T] = p0
by (smt (z3) inf .le-iff-sup inf-commute maddux-3-11-pp p-antitone-inf

pseudo-complement)
show univalent p0 total p0 acyclic (p0 − 1)

using 1 find-set-precondition-def by auto
qed

qed

lemma path-halving-2 :
path-halving-invariant p x y p0 ∧ y 6= p[[y]] =⇒ path-halving-invariant

(p[y 7−→p[[p[[y]]]]]) x ((p[y 7−→p[[p[[y]]]]])[[y]]) p0 ∧ ((p[y 7−→p[[p[[y]]]]])T ? ∗
((p[y 7−→p[[p[[y]]]]])[[y]]))↓ < (pT ? ∗ y)↓
proof −

72

let ?py = p[[y]]
let ?ppy = p[[?py]]
let ?pyppy = p[y 7−→?ppy]
let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?p2ts = ?p2t?
let ?px = ?p2ts ∗ x
let ?py2 = −(p0T ? ∗ y)
let ?pxy = ?px u ?py2
let ?p = p0 [?pxy 7−→?p2t]
let ?pty = p0T ∗ y
let ?pt2y = p0T ∗ p0T ∗ y
let ?pt2sy = p0T ? ∗ p0T ∗ p0T ∗ y
assume 1 : path-halving-invariant p x y p0 ∧ y 6= ?py
have 2 : point ?pty ∧ point ?pt2y

using 1 by (smt (verit) comp-associative read-injective read-surjective
path-halving-invariant-def)

show path-halving-invariant ?pyppy x (?pyppy[[y]]) p0 ∧ (?pyppyT ? ∗
(?pyppy[[y]]))↓ < (pT ? ∗ y)↓

proof
show path-halving-invariant ?pyppy x (?pyppy[[y]]) p0
proof (unfold path-halving-invariant-def , intro conjI)

show 3 : find-set-precondition ?pyppy x
proof (unfold find-set-precondition-def , intro conjI)

show univalent ?pyppy
using 1 find-set-precondition-def read-injective update-univalent

path-halving-invariant-def by auto
show total ?pyppy

using 1 bijective-regular find-set-precondition-def read-surjective
update-total path-halving-invariant-def by force

show acyclic (?pyppy − 1)
apply (rule update-acyclic-3)
using 1 find-set-precondition-def path-halving-invariant-def apply blast
using 1 2 comp-associative path-halving-invariant-aux(2) apply force
using 1 path-halving-invariant-def apply blast
by (metis inf .order-lesseq-imp mult-isotone star .circ-increasing

star .circ-square mult-assoc)
show vector x injective x surjective x

using 1 find-set-precondition-def path-halving-invariant-def by auto
qed
show vector (?pyppy[[y]])

using 1 comp-associative path-halving-invariant-def by auto
show injective (?pyppy[[y]])

using 1 3 read-injective path-halving-invariant-def find-set-precondition-def
by auto

show surjective (?pyppy[[y]])
using 1 3 read-surjective path-halving-invariant-def

find-set-precondition-def by auto
show ?pyppy[[y]] ≤ ?pyppyT ? ∗ x

73

proof −
have y = (y u pT ?) ∗ x

using 1 le-iff-inf vector-inf-comp path-halving-invariant-def by auto
also have ... = ((y u 1) t (y u (pT u −yT)+)) ∗ x

using 1 omit-redundant-points-3 path-halving-invariant-def by auto
also have ... ≤ (1 t (y u (pT u −yT)+)) ∗ x

using 1 sup-inf-distrib2 vector-inf-comp path-halving-invariant-def by
auto

also have ... ≤ (1 t (pT u −yT)+) ∗ x
by (simp add: inf .coboundedI2 mult-left-isotone)

also have ... = (p u −y)T ? ∗ x
by (simp add: conv-complement conv-dist-inf star-left-unfold-equal)

also have ... ≤ ?pyppyT ? ∗ x
by (simp add: conv-isotone inf .sup-monoid.add-commute mult-left-isotone

star-isotone)
finally show ?thesis

by (metis mult-isotone star .circ-increasing star .circ-transitive-equal
mult-assoc)

qed
show ?pyppy[[y]] ≤ ?px
proof −

have ?pyppy[[y]] = p[[?py]]
using 1 put-get vector-mult-closed path-halving-invariant-def by force

also have ... = p0 [[p0 [[y]]]]
using 1 path-halving-invariant-aux(2) by blast

also have ... = ?p2t ∗ y
by (simp add: conv-dist-comp mult-assoc)

also have ... ≤ ?p2t ∗ ?px
using 1 path-halving-invariant-def comp-associative mult-right-isotone by

force
also have ... ≤ ?px

by (metis comp-associative mult-left-isotone star .left-plus-below-circ)
finally show ?thesis

.
qed
show p0 [?px − p0T ? ∗ (?pyppy[[y]])7−→?p2t] = ?pyppy
proof −

have ?px u ?pty = ?px u p0T ∗ ?px u ?pty
using 1 inf .absorb2 inf .sup-monoid.add-assoc mult-right-isotone

path-halving-invariant-def by force
also have ... = (?p2ts u p0T ∗ ?p2ts) ∗ x u ?pty

using 3 comp-associative find-set-precondition-def
injective-comp-right-dist-inf by auto

also have ... = (1 u p0) ∗ (?p2ts u p0T ∗ ?p2ts) ∗ x u ?pty
using 1 even-odd-root mapping-regular path-halving-invariant-def by auto

also have ... ≤ (1 u p0) ∗ top u ?pty
by (metis comp-associative comp-inf .mult-left-isotone

comp-inf .star .circ-sub-dist-2 comp-left-subdist-inf dual-order .trans
mult-right-isotone)

74

also have 4 : ... = (1 u p0T) ∗ ?pty
using coreflexive-comp-top-inf one-inf-conv by auto

also have ... ≤ ?pt2y
by (simp add: mult-assoc mult-left-isotone)

finally have 5 : ?px u ?pty ≤ ?pt2y
.

have 6 : p[?px u −?pt2sy u ?pty 7−→?p2t] = p
proof (cases ?pty ≤ ?px u −?pt2sy)

case True
hence ?pty ≤ ?pt2y

using 5 conv-dist-comp inf .absorb2 by auto
hence 7 : ?pty = ?pt2y

using 2 epm-3 by fastforce
have p[?px u −?pt2sy u ?pty 7−→?p2t] = p[?pty 7−→?p2t]

using True inf .absorb2 by auto
also have ... = p[?pty 7−→?p2 [[?pty]]]

using 2 update-point-get by auto
also have ... = p[?pty 7−→p0T ∗ p0T ∗ p0T ∗ y]

using comp-associative conv-dist-comp by auto
also have ... = p[?pty 7−→?pt2y]

using 7 mult-assoc by simp
also have ... = p[?pty 7−→p[[?pty]]]

using 1 path-halving-invariant-aux(1 ,2) mult-assoc by force
also have ... = p

using 2 get-put by auto
finally show ?thesis

.
next

case False
have mapping ?p2

using 1 mapping-mult-closed path-halving-invariant-def by blast
hence 8 : regular (?px u −?pt2sy)

using 1 bijective-regular find-set-precondition-def mapping-regular
pp-dist-comp regular-closed-star regular-conv-closed path-halving-invariant-def by
auto

have vector (?px u −?pt2sy)
using 1 find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-halving-invariant-def by force
hence ?pty ≤ −(?px u −?pt2sy)

using 2 8 point-in-vector-or-complement False by blast
hence ?px u −?pt2sy u ?pty = bot

by (simp add: p-antitone-iff pseudo-complement)
thus ?thesis

by simp
qed
have 9 : p[?px u −?pt2sy u y 7−→?p2t] = ?pyppy
proof (cases y ≤ −?pt2sy)

case True
hence p[?px u −?pt2sy u y 7−→?p2t] = p[y 7−→?p2t]

75

using 1 inf .absorb2 path-halving-invariant-def by auto
also have ... = ?pyppy

using 1 by (metis comp-associative conv-dist-comp
path-halving-invariant-aux(2) path-halving-invariant-def update-point-get)

finally show ?thesis
.

next
case False
have vector (−?pt2sy)

using 1 vector-complement-closed vector-mult-closed
path-halving-invariant-def by blast

hence 10 : y ≤ ?pt2sy
using 1 by (smt (verit, del-insts) False bijective-regular

point-in-vector-or-complement regular-closed-star regular-mult-closed
total-conv-surjective univalent-conv-injective path-halving-invariant-def)

hence ?px u −?pt2sy u y = bot
by (simp add: inf .coboundedI2 p-antitone pseudo-complement)

hence 11 : p[?px u −?pt2sy u y 7−→?p2t] = p
by simp

have y ≤ p0T+ ∗ y
using 10 by (metis mult-left-isotone order-lesseq-imp

star .circ-plus-same star .left-plus-below-circ)
hence 12 : y = root p0 y

using 1 loop-root-2 path-halving-invariant-def by blast
have ?pyppy = p[y 7−→p0 [[p0 [[y]]]]]

using 1 path-halving-invariant-aux(2) by force
also have ... = p[y 7−→p0 [[y]]]

using 1 12 by (metis root-successor-loop path-halving-invariant-def)
also have ... = p[y 7−→?py]

using 1 path-halving-invariant-aux(1) by force
also have ... = p

using 1 get-put path-halving-invariant-def by blast
finally show ?thesis

using 11 by simp
qed
have 13 : −?pt2sy = −(p0T ? ∗ y) t (−?pt2sy u ?pty) t (−?pt2sy u y)
proof (rule order .antisym)

have 14 : regular (p0T ? ∗ y) ∧ regular ?pt2sy
using 1 by (metis order .antisym conv-complement conv-dist-comp

conv-involutive conv-star-commute forest-components-increasing mapping-regular
pp-dist-star regular-mult-closed top.extremum path-halving-invariant-def)

have p0T ? = p0T ? ∗ p0T ∗ p0T t p0T t 1
using star .circ-back-loop-fixpoint star .circ-plus-same

star-left-unfold-equal sup-commute by auto
hence p0T ? ∗ y ≤ ?pt2sy t ?pty t y

by (metis inf .eq-refl mult-1-left mult-right-dist-sup)
also have ... = ?pt2sy t (−?pt2sy u ?pty) t y

using 14 by (metis maddux-3-21-pp)
also have ... = ?pt2sy t (−?pt2sy u ?pty) t (−?pt2sy u y)

76

using 14 by (smt (z3) maddux-3-21-pp sup.left-commute sup-assoc)
hence p0T ? ∗ y u −?pt2sy ≤ (−?pt2sy u ?pty) t (−?pt2sy u y)

using calculation half-shunting sup-assoc sup-commute by auto
thus −?pt2sy ≤ −(p0T ? ∗ y) t (−?pt2sy u ?pty) t (−?pt2sy u y)

using 14 by (smt (z3) inf .sup-monoid.add-commute shunting-var-p
sup.left-commute sup-commute)

have −(p0T ? ∗ y) ≤ −?pt2sy
by (meson mult-left-isotone order .trans p-antitone

star .right-plus-below-circ)
thus −(p0T ? ∗ y) t (−?pt2sy u ?pty) t (−?pt2sy u y) ≤ −?pt2sy

by simp
qed
have regular ?px regular ?pty regular y

using 1 bijective-regular find-set-precondition-def mapping-regular
pp-dist-comp regular-closed-star regular-conv-closed path-halving-invariant-def by
auto

hence 15 : regular (?px u −?pt2sy u ?pty) regular (?px u −?pt2sy u y)
by auto

have p0 [?px − p0T ? ∗ (?pyppy[[y]])7−→?p2t] = p0 [?px − p0T ? ∗
(p[[?py]])7−→?p2t]

using 1 put-get vector-mult-closed path-halving-invariant-def by auto
also have ... = p0 [?px − ?pt2sy 7−→?p2t]

using 1 comp-associative path-halving-invariant-aux(2) by force
also have ... = p0 [?pxy t (?px u −?pt2sy u ?pty) t (?px u −?pt2sy u

y)7−→?p2t]
using 13 by (metis comp-inf .semiring.distrib-left

inf .sup-monoid.add-assoc)
also have ... = (?p[?px u −?pt2sy u ?pty 7−→?p2t])[?px u −?pt2sy u

y 7−→?p2t]
using 15 by (smt (z3) update-same-3 comp-inf .semiring.mult-not-zero

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute)
also have ... = (p[?px u −?pt2sy u ?pty 7−→?p2t])[?px u −?pt2sy u

y 7−→?p2t]
using 1 path-halving-invariant-def by auto

also have ... = p[?px u −?pt2sy u y 7−→?p2t]
using 6 by simp

also have ... = ?pyppy
using 9 by auto

finally show ?thesis
.

qed
show univalent p0 total p0 acyclic (p0 − 1)

using 1 path-halving-invariant-def by auto
qed
let ?s = { z . regular z ∧ z ≤ pT ? ∗ y }
let ?t = { z . regular z ∧ z ≤ ?pyppyT ? ∗ (?pyppy[[y]]) }
have ?pyppyT ? ∗ (?pyppy[[y]]) = ?pyppyT ? ∗ (p[[?py]])

using 1 put-get vector-mult-closed path-halving-invariant-def by force
also have ... ≤ p+T ? ∗ (p[[?py]])

77

using 1 path-halving-invariant-def update-square-plus conv-order
mult-left-isotone star-isotone by force

also have ... = pT ? ∗ pT ∗ pT ∗ y
by (simp add: conv-plus-commute star .left-plus-circ mult-assoc)

also have ... ≤ pT+ ∗ y
by (metis mult-left-isotone star .left-plus-below-circ star-plus)

finally have 16 : ?pyppyT ? ∗ (?pyppy[[y]]) ≤ pT+ ∗ y
.

hence ?pyppyT ? ∗ (?pyppy[[y]]) ≤ pT ? ∗ y
using mult-left-isotone order-lesseq-imp star .left-plus-below-circ by blast

hence 17 : ?t ⊆ ?s
using order-trans by auto

have 18 : y ∈ ?s
using 1 bijective-regular path-compression-1b path-halving-invariant-def by

force
have 19 : ¬ y ∈ ?t
proof

assume y ∈ ?t
hence y ≤ ?pyppyT ? ∗ (?pyppy[[y]])

by simp
hence y ≤ pT+ ∗ y

using 16 dual-order .trans by blast
hence y = root p y

using 1 find-set-precondition-def loop-root-2 path-halving-invariant-def by
blast

hence y = ?py
using 1 by (metis find-set-precondition-def root-successor-loop

path-halving-invariant-def)
thus False

using 1 by simp
qed
show card ?t < card ?s

apply (rule psubset-card-mono)
subgoal using finite-regular by simp
subgoal using 17 18 19 by auto
done

qed
qed

lemma path-halving-3 :
path-halving-invariant p x y p0 ∧ y = p[[y]] =⇒ path-halving-postcondition p x y

p0
proof −

assume 1 : path-halving-invariant p x y p0 ∧ y = p[[y]]
show path-halving-postcondition p x y p0
proof (unfold path-halving-postcondition-def , intro conjI)

show univalent p total p acyclic (p − 1)
using 1 find-set-precondition-def path-halving-invariant-def by blast+

have find-set-invariant p x y

78

using 1 find-set-invariant-def path-halving-invariant-def by blast
thus y = root p x

using 1 find-set-3 find-set-postcondition-def by blast
show p u 1 = p0 u 1

using 1 path-halving-invariant-aux(4) by blast
show fc p = fc p0

using 1 path-halving-invariant-aux(5) by blast
have 2 : y = p0 [[y]]

using 1 path-halving-invariant-aux(1) by auto
hence p0T ? ∗ y = y

using order .antisym path-compression-1b star-left-induct-mult-equal by auto
hence 3 : p0 [(p0 ∗ p0)T ? ∗ x − y 7−→(p0 ∗ p0)T] = p

using 1 path-halving-invariant-def by auto
have (p0 ∗ p0)T ∗ y = y

using 2 mult-assoc conv-dist-comp by auto
hence y u p0 ∗ p0 = y u p0

using 1 2 by (smt path-halving-invariant-def update-postcondition)
hence 4 : y u p = y u p0 ∗ p0

using 1 2 by (smt path-halving-invariant-def update-postcondition)
have p0 [(p0 ∗ p0)T ? ∗ x 7−→(p0 ∗ p0)T] = (p0 [(p0 ∗ p0)T ? ∗ x − y 7−→(p0 ∗

p0)T])[(p0 ∗ p0)T ? ∗ x u y 7−→(p0 ∗ p0)T]
using 1 bijective-regular path-halving-invariant-def update-split by blast

also have ... = p[(p0 ∗ p0)T ? ∗ x u y 7−→(p0 ∗ p0)T]
using 3 by simp

also have ... = p
apply (rule update-same-sub)
using 4 apply simp
apply simp
using 1 bijective-regular inf .absorb2 path-halving-invariant-def by auto

finally show p0 [(p0 ∗ p0)T ? ∗ x 7−→(p0 ∗ p0)T] = p
.

qed
qed

theorem find-path-halving:
VARS p y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { path-halving-invariant p x y p0 }
VAR { (pT ? ∗ y)↓ }
DO p[y] := p[[p[[y]]]];

y := p[[y]]
OD

[path-halving-postcondition p x y p0]
apply vcg-tc-simp

apply (fact path-halving-1)
apply (fact path-halving-2)

by (fact path-halving-3)

79

6.3 Path Splitting
Path splitting is another variant of the path compression technique. We im-
plement it again independently of find-set, using a second while-loop which
iterates over the same path to the root. We prove that path splitting pre-
serves the equivalence-relational semantics of the disjoint-set forest and also
preserves the roots of the component trees. Additionally we prove the ex-
act effect of path splitting, which is to replace every parent pointer with a
pointer to the respective grandparent.
definition path-splitting-invariant p x y p0 ≡

find-set-precondition p x ∧ point y ∧ y ≤ p0T ? ∗ x ∧
p0 [p0T ? ∗ x − p0T ? ∗ y 7−→(p0 ∗ p0)T] = p ∧
disjoint-set-forest p0

definition path-splitting-postcondition p x y p0 ≡
disjoint-set-forest p ∧ y = root p x ∧ p u 1 = p0 u 1 ∧ fc p = fc p0 ∧
p0 [p0T ? ∗ x 7−→(p0 ∗ p0)T] = p

lemma path-splitting-invariant-aux-1 :
assumes point x

and point y
and disjoint-set-forest p0

shows (p0 [p0T ? ∗ x − p0T ? ∗ y 7−→(p0 ∗ p0)T]) u 1 = p0 u 1
and fc (p0 [p0T ? ∗ x − p0T ? ∗ y 7−→(p0 ∗ p0)T]) = fc p0
and p0T ? ∗ x ≤ p0 ? ∗ root p0 x

proof −
let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?px = p0T ? ∗ x
let ?py = −(p0T ? ∗ y)
let ?pxy = ?px u ?py
let ?q1 = ?pxy u p0
let ?q2 = −?pxy u p0
let ?q3 = ?pxy u ?p2
let ?q4 = −?pxy u ?p2
let ?p = p0 [?pxy 7−→?p2t]
let ?r0 = root p0 x
let ?rp = root ?p x
have 1 : regular ?px ∧ regular (p0T ? ∗ y) ∧ regular ?pxy

using assms bijective-regular find-set-precondition-def mapping-regular
pp-dist-comp regular-closed-star regular-conv-closed path-halving-invariant-def
regular-closed-inf by auto

have 2 : vector x ∧ vector ?px ∧ vector ?py ∧ vector ?pxy
using assms(1 ,2) find-set-precondition-def vector-complement-closed

vector-mult-closed path-halving-invariant-def vector-inf-closed by auto
have 3 : ?r0 ≤ p0 ∗ ?r0

by (metis assms(3) dedekind-1 inf .le-iff-sup root-successor-loop top-greatest)
hence ?pxy u p0 ∗ ?r0 ≤ ?pxy u ?p2 ∗ ?r0

by (metis comp-associative inf .eq-refl inf .sup-right-isotone mult-isotone)

80

hence 4 : ?q1 ∗ ?r0 ≤ ?q3 ∗ ?r0
using 2 by (simp add: vector-inf-comp)

have 5 : ?q1 ∗ ?q2 ≤ ?q3
using 2 by (smt (z3) comp-isotone inf .cobounded1 inf .cobounded2 inf-greatest

vector-export-comp)
have ?q1 ∗ ?q2 ? ∗ ?r0 = ?q1 ∗ ?r0 t ?q1 ∗ ?q2 ∗ ?q2 ? ∗ ?r0

by (metis comp-associative semiring.distrib-left star .circ-loop-fixpoint
sup-commute)

also have ... ≤ ?q1 ∗ ?r0 t ?q3 ∗ ?q2 ? ∗ ?r0
using 5 by (meson mult-left-isotone sup-right-isotone)

also have ... ≤ ?q3 ∗ ?r0 t ?q3 ∗ ?q2 ? ∗ ?r0
using 4 sup-left-isotone by blast

also have ... = ?q3 ∗ ?q2 ? ∗ ?r0
by (smt (verit, del-insts) comp-associative semiring.distrib-left

star .circ-loop-fixpoint star .circ-transitive-equal star-involutive sup-commute)
finally have 6 : ?q1 ∗ ?q2 ? ∗ ?r0 ≤ ?q3 ∗ ?q2 ? ∗ ?r0

.
have ?q1 ∗ (−?pxy u p0+) ∗ ?pxy ≤ (?px u p0) ∗ (−?pxy u p0+) ∗ ?pxy

by (meson comp-inf .comp-left-subdist-inf inf .boundedE mult-left-isotone)
also have ... ≤ (?px u p0) ∗ (−?pxy u p0+) ∗ ?py

by (simp add: mult-right-isotone)
also have ... ≤ ?pxT ∗ (−?pxy u p0+) ∗ ?py
proof −

have ?px u p0 ≤ ?pxT ∗ p0
using 2 by (simp add: vector-restrict-comp-conv)

also have ... ≤ ?pxT

by (metis comp-associative conv-dist-comp conv-involutive conv-star-commute
mult-right-isotone star .circ-increasing star .circ-transitive-equal)

finally show ?thesis
using mult-left-isotone by auto

qed
also have ... = top ∗ (?px u −?pxy u p0+) ∗ ?py

using 2 by (smt (z3) comp-inf .star-plus conv-dist-inf covector-inf-comp-3
inf-top.right-neutral vector-complement-closed vector-inf-closed)

also have ... ≤ top ∗ (−?py u p0+) ∗ ?py
by (metis comp-inf .comp-isotone comp-isotone inf .cobounded2 inf .eq-refl

inf-import-p)
also have ... = top ∗ (−?py u p0+ u ?pyT) ∗ top

using 2 by (simp add: comp-associative covector-inf-comp-3)
also have ... = bot
proof −

have p0T ? ∗ y − yT ∗ p0 ? = p0T ? ∗ y ∗ yT ∗ −p0 ?

using 2 by (metis assms(2) bijective-conv-mapping
comp-mapping-complement vector-covector vector-export-comp vector-mult-closed)

also have ... ≤ p0T ? ∗ −p0 ?

by (meson assms(2) mult-left-isotone order-refl shunt-bijective)
also have ... ≤ −p0 ?

by (simp add: conv-complement conv-star-commute pp-increasing
schroeder-6-p star .circ-transitive-equal)

81

also have ... ≤ −p0+

by (simp add: p-antitone star .left-plus-below-circ)
finally have −?py u p0+ u ?pyT = bot

by (metis comp-inf .p-pp-comp conv-complement conv-dist-comp
conv-involutive conv-star-commute p-shunting-swap pp-isotone
pseudo-complement-pp regular-closed-p)

thus ?thesis
by simp

qed
finally have 7 : ?q1 ∗ (−?pxy u p0+) ∗ ?pxy = bot

using le-bot by blast
have ?q2+ ≤ −?pxy

using 2 by (smt (z3) comp-isotone complement-conv-sub inf .order-trans
inf .sup-right-divisibility inf-commute symmetric-top-closed top-greatest)

hence ?q2+ ≤ −?pxy u p0+

by (simp add: comp-isotone star-isotone)
hence 8 : ?q1 ∗ ?q2+ ∗ ?pxy = bot

using 7 mult-left-isotone mult-right-isotone le-bot by auto
have ?q1 ∗ ?q2+ ∗ ?q3 ? = ?q1 ∗ ?q2+ t ?q1 ∗ ?q2+ ∗ ?q3+

by (smt (z3) comp-associative star .circ-back-loop-fixpoint star .circ-plus-same
sup-commute)

also have ... ≤ ?q1 ∗ ?q2+ t ?q1 ∗ ?q2+ ∗ ?pxy
using 2 by (smt (z3) inf .cobounded1 mult-right-isotone sup-right-isotone

vector-inf-comp)
finally have 9 : ?q1 ∗ ?q2+ ∗ ?q3 ? ≤ ?q1 ∗ ?q2+

using 8 by simp
have 10 : ?q1 ∗ ?q4 ∗ ?pxy = bot
proof −

have ?p2 ≤ p0+

by (simp add: mult-right-isotone star .circ-increasing)
thus ?thesis

using 7 by (metis mult-left-isotone mult-right-isotone le-bot
comp-inf .comp-isotone eq-refl)

qed
have 11 : ?q1 ∗ ?q2 ∗ ?pxy = bot
proof −

have p0 ≤ p0+

by (simp add: star .circ-mult-increasing)
thus ?thesis

using 7 by (metis mult-left-isotone mult-right-isotone le-bot
comp-inf .comp-isotone eq-refl)

qed
have 12 : ?q2 ≤ p0 ∗ ?q3 ? ∗ ?q2 ?

by (smt (verit, del-insts) conv-dist-comp conv-order conv-star-commute
inf .coboundedI1 inf .orderE inf .sup-monoid.add-commute path-compression-1b)

have ?q3 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? = ?q1 ∗ p0 ∗ p0 ∗ ?q3 ? ∗ ?q2 ?

using 2 vector-inf-comp by auto
also have ... = ?q1 ∗ (?q3 t ?q4) ∗ ?q3 ? ∗ ?q2 ?

using 1 by (smt (z3) comp-associative comp-inf .mult-right-dist-sup

82

comp-inf .star-slide inf-top.right-neutral regular-complement-top)
also have ... = ?q1 ∗ ?q3 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q3 ? ∗ ?q2 ?

using mult-left-dist-sup mult-right-dist-sup by auto
also have ... ≤ ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q3 ? ∗ ?q2 ?

by (smt (z3) mult-left-isotone mult-left-sub-dist-sup-right sup-left-isotone
sup-right-divisibility mult-assoc star .left-plus-below-circ)

also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q3+ ∗
?q2 ?

by (smt (z3) semiring.combine-common-factor star .circ-back-loop-fixpoint
star-plus sup-monoid.add-commute mult-assoc)

also have ... ≤ ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?pxy ∗
?q3 ? ∗ ?q2 ?

by (smt (verit, ccfv-threshold) comp-isotone inf .sup-right-divisibility
inf-commute order .refl semiring.add-left-mono mult-assoc)

also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q4 ∗ ?q2 ?

using 10 by simp
also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ∗ p0 ∗ ?q2 ?

using 2 by (smt vector-complement-closed vector-inf-comp mult-assoc)
also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ∗ (?q2 t ?q1) ∗ ?q2 ?

using 1 by (smt (z3) comp-associative comp-inf .mult-right-dist-sup
comp-inf .star-slide inf-top.right-neutral regular-complement-top)

also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ∗ ?q2 ∗ ?q2 ? t ?q1 ∗ ?q2 ∗
?q1 ∗ ?q2 ?

using mult-left-dist-sup mult-right-dist-sup sup-commute sup-left-commute by
auto

also have ... ≤ ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ∗ ?q2 ∗ ?q2 ? t ?q1 ∗ ?q2 ∗
?pxy ∗ ?q2 ?

by (smt (verit, ccfv-threshold) comp-isotone inf .sup-right-divisibility
inf-commute order .refl semiring.add-left-mono mult-assoc)

also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ∗ ?q2 ∗ ?q2 ?

using 11 by simp
also have ... ≤ ?q1 ∗ ?q3 ? ∗ ?q2 ? t ?q1 ∗ ?q2 ?

by (smt comp-associative comp-isotone mult-right-isotone star .circ-increasing
star .circ-transitive-equal star .left-plus-below-circ sup-right-isotone)

also have ... = ?q1 ∗ ?q3 ? ∗ ?q2 ?

by (smt (verit, best) comp-associative semiring.distrib-left
star .circ-loop-fixpoint star .circ-transitive-equal star-involutive)

finally have 13 : ?q3 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? ≤ p0 ∗ ?q3 ? ∗ ?q2 ?

by (meson inf .cobounded2 mult-left-isotone order-lesseq-imp)
hence ?q3 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? t ?q2 ≤ p0 ∗ ?q3 ? ∗ ?q2 ?

using 12 by simp
hence ?q3 ? ∗ ?q2 ≤ p0 ∗ ?q3 ? ∗ ?q2 ?

by (simp add: star-left-induct mult-assoc)
hence ?q1 ∗ ?q3 ? ∗ ?q2 ≤ ?q1 ∗ p0 ∗ ?q3 ? ∗ ?q2 ?

by (simp add: comp-associative mult-right-isotone)
hence ?q1 ∗ ?q3 ? ∗ ?q2 ≤ ?q3+ ∗ ?q2 ?

using 2 by (simp add: vector-inf-comp)
hence 14 : ?q1 ∗ ?q3 ? ∗ ?q2 ≤ ?q3 ? ∗ ?q2 ?

using mult-left-isotone order-lesseq-imp star .left-plus-below-circ by blast

83

have p0 ∗ ?r0 ≤ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0
by (metis comp-associative mult-1-right mult-left-isotone mult-right-isotone

reflexive-mult-closed star .circ-reflexive)
hence 15 : ?r0 ≤ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using 3 dual-order .trans by blast
have ?q3 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 ≤ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using 13 mult-left-isotone by blast
hence ?q3 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?r0 ≤ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using 15 by simp
hence ?q3 ? ∗ ?r0 ≤ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (simp add: star-left-induct mult-assoc)
hence ?q1 ∗ ?q3 ? ∗ ?r0 ≤ ?q1 ∗ p0 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (simp add: comp-associative mult-right-isotone)
hence ?q1 ∗ ?q3 ? ∗ ?r0 ≤ ?q3+ ∗ ?q2 ? ∗ ?r0

using 2 by (simp add: vector-inf-comp)
hence 16 : ?q1 ∗ ?q3 ? ∗ ?r0 ≤ ?q3 ? ∗ ?q2 ? ∗ ?r0

using mult-left-isotone order-lesseq-imp star .left-plus-below-circ by blast
have ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 = ?q1 ∗ ?q3 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2+ ∗ ?r0

by (smt (z3) comp-associative mult-right-dist-sup star .circ-back-loop-fixpoint
star .circ-plus-same sup-commute)

also have ... ≤ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2+ ∗ ?r0
using 16 sup-left-isotone by blast

also have ... ≤ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q3 ? ∗ ?q2 ? ∗ ?q2 ? ∗ ?r0
using 14 by (smt (z3) inf .eq-refl semiring.distrib-right

star .circ-transitive-equal sup.absorb2 sup-monoid.add-commute mult-assoc)
also have ... = ?q3 ? ∗ ?q2 ? ∗ ?r0

by (simp add: comp-associative star .circ-transitive-equal)
finally have 17 : ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 ≤ ?q3 ? ∗ ?q2 ? ∗ ?r0

.
have ?r0 ≤ ?q2 ? ∗ ?r0

using star .circ-loop-fixpoint sup-right-divisibility by auto
also have ... ≤ ?q3 ? ∗ ?q2 ? ∗ ?r0

using comp-associative star .circ-loop-fixpoint sup-right-divisibility by force
also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using comp-associative star .circ-loop-fixpoint sup-right-divisibility by force
finally have 18 : ?r0 ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

.
have p0 ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 = (?q2 t ?q1) ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using 1 by (smt (z3) comp-inf .mult-right-dist-sup comp-inf .star-plus
inf-top.right-neutral regular-complement-top)

also have ... = ?q2 ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗
?r0

using mult-right-dist-sup by auto
also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (smt (z3) comp-left-increasing-sup star .circ-loop-fixpoint sup-left-isotone
mult-assoc)

also have ... = ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗
?q2+ ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (smt (z3) mult-left-dist-sup semiring.combine-common-factor

84

star .circ-loop-fixpoint sup-monoid.add-commute mult-assoc)
also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗

?q2+ ∗ ?q2 ? ∗ ?r0
using 9 mult-left-isotone sup-right-isotone by auto

also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗
?q2 ? ∗ ?r0

by (smt (z3) comp-associative comp-isotone inf .eq-refl
semiring.add-right-mono star .circ-transitive-equal star .left-plus-below-circ
sup-commute)

also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q1 ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q3 ∗
?q2 ? ∗ ?r0

using 6 sup-right-isotone by blast
also have ... = ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q3 ∗ ?q2 ? ∗ ?r0

using 17 by (smt (z3) le-iff-sup semiring.combine-common-factor
semiring.distrib-right star .circ-loop-fixpoint sup-monoid.add-commute)

also have ... ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?q3 ? ∗ ?q2 ? ∗ ?r0
by (meson mult-left-isotone star .circ-increasing sup-right-isotone)

also have ... = ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0
by (smt (z3) comp-associative star .circ-loop-fixpoint star .circ-transitive-equal

star-involutive)
finally have p0 ∗ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0 t ?r0 ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

using 18 sup.boundedI by blast
hence p0 ? ∗ ?r0 ≤ ?q2 ? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (simp add: comp-associative star-left-induct)
also have ... ≤ ?p? ∗ ?q3 ? ∗ ?q2 ? ∗ ?r0

by (metis mult-left-isotone star .circ-sub-dist sup-commute)
also have ... ≤ ?p? ∗ ?p? ∗ ?q2 ? ∗ ?r0

by (simp add: mult-left-isotone mult-right-isotone star-isotone)
also have ... ≤ ?p? ∗ ?p? ∗ ?p? ∗ ?r0

by (metis mult-isotone order .refl star .circ-sub-dist sup-commute)
finally have 19 : p0 ? ∗ ?r0 ≤ ?p? ∗ ?r0

by (simp add: star .circ-transitive-equal)
have 20 : ?p? ≤ p0 ?

by (metis star .left-plus-circ star-isotone update-square-ub-plus)
hence 21 : p0 ? ∗ ?r0 = ?p? ∗ ?r0

using 19 order .antisym mult-left-isotone by auto
have ?p u 1 = (?q3 u 1) t (?q2 u 1)

using comp-inf .semiring.distrib-right conv-involutive by auto
also have ... = (?q1 u 1) t (?q2 u 1)

using assms(3) acyclic-square path-splitting-invariant-def
inf .sup-monoid.add-assoc by auto

also have ... = (?pxy t −?pxy) u p0 u 1
using inf-sup-distrib2 by auto

also have ... = p0 u 1
using 1 by (metis inf .sup-monoid.add-commute inf-sup-distrib1

maddux-3-11-pp)
finally show 22 : ?p u 1 = p0 u 1

.
have ?pT ? ∗ x ≤ p0T ? ∗ x

85

using 20 by (metis conv-isotone conv-star-commute mult-left-isotone)
hence 23 : ?rp ≤ ?r0

using 22 comp-inf .mult-left-isotone by auto
have 24 : disjoint-set-forest ?p

using 1 2 assms(3) disjoint-set-forest-update-square by blast
hence 25 : point ?rp

using root-point assms(1) by auto
have ?r0 ∗ ?rpT = ?r0 ∗ xT ∗ ?p? ∗ (?p u 1)

by (smt (z3) comp-associative conv-dist-comp conv-dist-inf conv-involutive
conv-star-commute inf .sup-monoid.add-commute one-inf-conv root-var star-one
star-sup-one wcc-one)

also have ... ≤ (p0 u 1) ∗ p0T ? ∗ 1 ∗ ?p? ∗ (?p u 1)
by (smt (z3) assms(1) comp-associative mult-left-isotone mult-right-isotone

root-var)
also have ... ≤ (p0 u 1) ∗ p0T ? ∗ p0 ? ∗ (p0 u 1)

using 20 22 comp-isotone by force
also have ... = (p0 u 1) ∗ p0 ? ∗ (p0 u 1) t (p0 u 1) ∗ p0T ? ∗ (p0 u 1)

by (simp add: assms(3) cancel-separate-eq sup-monoid.add-commute
mult-assoc mult-left-dist-sup semiring.distrib-right)

also have ... = (p0 u 1) ∗ (p0 u 1) t (p0 u 1) ∗ p0T ? ∗ (p0 u 1)
using univalent-root-successors assms(3) by simp

also have ... = (p0 u 1) ∗ (p0 u 1) t (p0 u 1) ∗ ((p0 u 1) ∗ p0 ?)T

by (smt (z3) comp-associative conv-dist-comp conv-dist-inf conv-star-commute
inf .sup-monoid.add-commute one-inf-conv star-one star-sup-one wcc-one)

also have ... = (p0 u 1) ∗ (p0 u 1)
by (metis univalent-root-successors assms(3) conv-dist-inf

inf .sup-monoid.add-commute one-inf-conv sup-idem symmetric-one-closed)
also have ... ≤ 1

by (simp add: coreflexive-mult-closed)
finally have ?r0 ∗ ?rpT ≤ 1

.
hence ?r0 ≤ 1 ∗ ?rp

using 25 shunt-bijective by blast
hence 26 : ?r0 = ?rp

using 23 order .antisym by simp
have ?px ∗ ?r0T = ?px ∗ xT ∗ p0 ? ∗ (p0 u 1)

by (smt (z3) comp-associative conv-dist-comp conv-dist-inf conv-involutive
conv-star-commute inf .sup-monoid.add-commute one-inf-conv root-var star-one
star-sup-one wcc-one)

also have ... ≤ p0T ? ∗ 1 ∗ p0 ? ∗ (p0 u 1)
by (smt (z3) assms(1) comp-associative mult-left-isotone mult-right-isotone

root-var)
also have ... = p0 ? ∗ (p0 u 1) t p0T ? ∗ (p0 u 1)

by (simp add: assms(3) cancel-separate-eq sup-monoid.add-commute
mult-right-dist-sup)

also have ... = p0 ? ∗ (p0 u 1) t ((p0 u 1) ∗ p0 ?)T

by (smt (z3) conv-dist-comp conv-dist-inf conv-star-commute
inf .sup-monoid.add-commute one-inf-conv star-one star-sup-one wcc-one)

also have ... = p0 ? ∗ (p0 u 1) t (p0 u 1)

86

by (metis univalent-root-successors assms(3) conv-dist-inf
inf .sup-monoid.add-commute one-inf-conv symmetric-one-closed)

also have ... = p0 ? ∗ (p0 u 1)
by (metis conv-involutive path-compression-1b sup.absorb2 sup-commute)

also have ... ≤ p0 ?

by (simp add: inf .coboundedI1 star .circ-increasing star .circ-mult-upper-bound)
finally have 27 : ?px ∗ ?r0T ≤ p0 ?

.
thus 28 : ?px ≤ p0 ? ∗ ?r0

by (simp add: assms(1 ,3) root-point shunt-bijective)
have 29 : point ?r0

using root-point assms(1 ,3) by auto
hence 30 : mapping (?r0T)

using bijective-conv-mapping by blast
have ?r0 ∗ (?px u p0) = ?r0 ∗ top ∗ (?px u p0)

using 29 by force
also have ... = ?r0 ∗ ?pxT ∗ p0

using 29 by (metis assms(1) covector-inf-comp-3 vector-covector
vector-mult-closed)

also have ... = ?r0 ∗ xT ∗ p0 ? ∗ p0
using comp-associative conv-dist-comp conv-star-commute by auto

also have ... ≤ ?r0 ∗ xT ∗ p0 ?

by (simp add: comp-associative mult-right-isotone star .circ-plus-same
star .left-plus-below-circ)

also have ... = ?r0 ∗ ?pxT

by (simp add: comp-associative conv-dist-comp conv-star-commute)
also have ... = (?px ∗ ?r0T)T

by (simp add: conv-dist-comp)
also have ... ≤ p0T ?

using 27 conv-isotone conv-star-commute by fastforce
finally have ?r0 ∗ (?px u p0) ≤ p0T ?

.
hence ?px u p0 ≤ ?r0T ∗ p0T ?

using 30 shunt-mapping by auto
hence ?px u p0 ≤ p0 ? ∗ ?r0 u ?r0T ∗ p0T ?

using 28 inf .coboundedI2 inf .sup-monoid.add-commute by fastforce
also have ... = p0 ? ∗ ?r0 ∗ ?r0T ∗ p0T ?

using 29 by (smt (z3) vector-covector vector-inf-comp vector-mult-closed)
also have ... = ?p? ∗ ?r0 ∗ ?r0T ∗ ?pT ?

using 21 by (smt comp-associative conv-dist-comp conv-star-commute)
also have ... = ?p? ∗ ?rp ∗ ?rpT ∗ ?pT ?

using 26 by auto
also have ... ≤ ?p? ∗ 1 ∗ ?pT ?

using 25 by (smt (z3) comp-associative mult-left-isotone mult-right-isotone)
finally have 31 : ?px u p0 ≤ fc ?p

by auto
have −?px u p0 ≤ ?p

by (simp add: inf .sup-monoid.add-commute le-supI1 sup-commute)
also have ... ≤ fc ?p

87

using fc-increasing by auto
finally have p0 ≤ fc ?p

using 1 31 by (smt (z3) inf .sup-monoid.add-commute maddux-3-11-pp
semiring.add-left-mono sup.orderE sup-commute)

also have ... ≤ wcc ?p
using star .circ-sub-dist-3 by auto

finally have 32 : wcc p0 ≤ wcc ?p
using wcc-below-wcc by blast

have ?p ≤ wcc p0
by (simp add: inf .coboundedI1 inf .sup-monoid.add-commute

star .circ-mult-upper-bound star .circ-sub-dist-1)
hence wcc ?p ≤ wcc p0

using wcc-below-wcc by blast
hence wcc ?p = wcc p0

using 32 order .antisym by blast
thus fc ?p = fc p0

using 24 assms(3) fc-wcc by auto
qed

lemma path-splitting-invariant-aux:
assumes path-splitting-invariant p x y p0
shows p[[y]] = p0 [[y]]

and p[[p[[y]]]] = p0 [[p0 [[y]]]]
and p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
and p u 1 = p0 u 1
and fc p = fc p0

proof −
let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?px = p0T ? ∗ x
let ?py = −(p0T ? ∗ y)
let ?pxy = ?px u ?py
let ?p = p0 [?pxy 7−→?p2t]
have ?p[[y]] = p0 [[y]]

apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-splitting-invariant-def apply force
by (meson inf .cobounded2 order-lesseq-imp p-antitone-iff path-compression-1b)

thus 1 : p[[y]] = p0 [[y]]
using assms path-splitting-invariant-def by auto

have ?p[[p0 [[y]]]] = p0 [[p0 [[y]]]]
apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-splitting-invariant-def apply force
by (metis comp-isotone inf .boundedE inf .coboundedI2 inf .eq-refl p-antitone-iff

selection-closed-id star .circ-increasing)
thus 2 : p[[p[[y]]]] = p0 [[p0 [[y]]]]

using 1 assms path-splitting-invariant-def by auto
have ?p[[p0 [[p0 [[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]

88

apply (rule put-get-different-vector)
using assms find-set-precondition-def vector-complement-closed

vector-inf-closed vector-mult-closed path-splitting-invariant-def apply force
by (metis comp-associative comp-isotone conv-dist-comp conv-involutive

conv-order inf .coboundedI2 inf .le-iff-sup mult-left-isotone p-antitone-iff
p-antitone-inf star .circ-increasing star .circ-transitive-equal)

thus p[[p[[p[[y]]]]]] = p0 [[p0 [[p0 [[y]]]]]]
using 2 assms path-splitting-invariant-def by auto

show p u 1 = p0 u 1
using assms path-splitting-invariant-aux-1 (1) path-splitting-invariant-def

find-set-precondition-def by auto
show fc p = fc p0

using assms path-splitting-invariant-aux-1 (2) path-splitting-invariant-def
find-set-precondition-def by auto
qed

lemma path-splitting-1 :
find-set-precondition p0 x =⇒ path-splitting-invariant p0 x x p0

proof −
assume 1 : find-set-precondition p0 x
show path-splitting-invariant p0 x x p0
proof (unfold path-splitting-invariant-def , intro conjI)

show find-set-precondition p0 x
using 1 by simp

show vector x injective x surjective x
using 1 find-set-precondition-def by auto

show x ≤ p0T ? ∗ x
by (simp add: path-compression-1b)

have (p0 ∗ p0)T ? ∗ x ≤ p0T ? ∗ x
by (simp add: conv-dist-comp mult-left-isotone star .circ-square)

thus p0 [p0T ? ∗ x − p0T ? ∗ x 7−→(p0 ∗ p0)T] = p0
by (smt (z3) inf .le-iff-sup inf-commute maddux-3-11-pp p-antitone-inf

pseudo-complement)
show univalent p0 total p0 acyclic (p0 − 1)

using 1 find-set-precondition-def by auto
qed

qed

lemma path-splitting-2 :
path-splitting-invariant p x y p0 ∧ y 6= p[[y]] =⇒ path-splitting-invariant

(p[y 7−→p[[p[[y]]]]]) x (p[[y]]) p0 ∧ ((p[y 7−→p[[p[[y]]]]])T ? ∗ (p[[y]]))↓ < (pT ? ∗ y)↓
proof −

let ?py = p[[y]]
let ?ppy = p[[?py]]
let ?pyppy = p[y 7−→?ppy]
let ?p2 = p0 ∗ p0
let ?p2t = ?p2T

let ?p2ts = ?p2t?
let ?px = p0T ? ∗ x

89

let ?py2 = −(p0T ? ∗ y)
let ?pxy = ?px u ?py2
let ?p = p0 [?pxy 7−→?p2t]
let ?pty = p0T ∗ y
let ?pt2y = p0T ∗ p0T ∗ y
let ?pt2sy = p0T ? ∗ p0T ∗ p0T ∗ y
let ?ptpy = p0T+ ∗ y
assume 1 : path-splitting-invariant p x y p0 ∧ y 6= ?py
have 2 : point ?pty ∧ point ?pt2y

using 1 by (smt (verit) comp-associative read-injective read-surjective
path-splitting-invariant-def)

show path-splitting-invariant ?pyppy x (p[[y]]) p0 ∧ (?pyppyT ? ∗ (p[[y]]))↓ <
(pT ? ∗ y)↓

proof
show path-splitting-invariant ?pyppy x (p[[y]]) p0
proof (unfold path-splitting-invariant-def , intro conjI)

show 3 : find-set-precondition ?pyppy x
proof (unfold find-set-precondition-def , intro conjI)

show univalent ?pyppy
using 1 find-set-precondition-def read-injective update-univalent

path-splitting-invariant-def by auto
show total ?pyppy

using 1 bijective-regular find-set-precondition-def read-surjective
update-total path-splitting-invariant-def by force

show acyclic (?pyppy − 1)
apply (rule update-acyclic-3)
using 1 find-set-precondition-def path-splitting-invariant-def apply blast
using 1 2 comp-associative path-splitting-invariant-aux(2) apply force
using 1 path-splitting-invariant-def apply blast
by (metis inf .order-lesseq-imp mult-isotone star .circ-increasing

star .circ-square mult-assoc)
show vector x injective x surjective x

using 1 find-set-precondition-def path-splitting-invariant-def by auto
qed
show vector (p[[y]])

using 1 comp-associative path-splitting-invariant-def by auto
show injective (p[[y]])

using 1 3 read-injective path-splitting-invariant-def find-set-precondition-def
by auto

show surjective (p[[y]])
using 1 3 read-surjective path-splitting-invariant-def

find-set-precondition-def by auto
show p[[y]] ≤ ?px
proof −

have p[[y]] = p0 [[y]]
using 1 path-splitting-invariant-aux(1) by blast

also have ... ≤ p0T ∗ ?px
using 1 path-splitting-invariant-def mult-right-isotone by force

also have ... ≤ ?px

90

by (metis comp-associative mult-left-isotone star .left-plus-below-circ)
finally show ?thesis

.
qed
show p0 [?px − p0T ? ∗ (p[[y]])7−→?p2t] = ?pyppy
proof −

have 4 : p[?px u −?ptpy u y 7−→?p2t] = ?pyppy
proof (cases y ≤ −?ptpy)

case True
hence p[?px u −?ptpy u y 7−→?p2t] = p[y 7−→?p2t]

using 1 inf .absorb2 path-splitting-invariant-def by auto
also have ... = ?pyppy

using 1 by (metis comp-associative conv-dist-comp
path-splitting-invariant-aux(2) path-splitting-invariant-def update-point-get)

finally show ?thesis
.

next
case False
have vector (−?ptpy)

using 1 vector-complement-closed vector-mult-closed
path-splitting-invariant-def by blast

hence 5 : y ≤ ?ptpy
using 1 by (smt (verit, del-insts) False bijective-regular

point-in-vector-or-complement regular-closed-star regular-mult-closed
total-conv-surjective univalent-conv-injective path-splitting-invariant-def)

hence ?px u −?ptpy u y = bot
by (simp add: inf .coboundedI2 p-antitone pseudo-complement)

hence 6 : p[?px u −?ptpy u y 7−→?p2t] = p
by simp

have 7 : y = root p0 y
using 1 5 loop-root-2 path-splitting-invariant-def by blast

have ?pyppy = p[y 7−→p0 [[p0 [[y]]]]]
using 1 path-splitting-invariant-aux(2) by force

also have ... = p[y 7−→p0 [[y]]]
using 1 7 by (metis root-successor-loop path-splitting-invariant-def)

also have ... = p[y 7−→?py]
using 1 path-splitting-invariant-aux(1) by force

also have ... = p
using 1 get-put path-splitting-invariant-def by blast

finally show ?thesis
using 6 by simp

qed
have 8 : −?ptpy = ?py2 t (−?ptpy u y)
proof (rule order .antisym)

have 9 : regular (p0T ? ∗ y) ∧ regular ?ptpy
using 1 bijective-regular mapping-conv-bijective pp-dist-star

regular-mult-closed path-splitting-invariant-def by auto
have p0T ? ∗ y ≤ ?ptpy t y

by (simp add: star .circ-loop-fixpoint mult-assoc)

91

also have ... = ?ptpy t (−?ptpy u y)
using 9 by (metis maddux-3-21-pp)

hence p0T ? ∗ y u −?ptpy ≤ −?ptpy u y
using calculation half-shunting sup-commute by auto

thus −?ptpy ≤ ?py2 t (−?ptpy u y)
using 9 by (smt (z3) inf .sup-monoid.add-commute shunting-var-p

sup.left-commute sup-commute)
have −(p0T ? ∗ y) ≤ −?ptpy

by (simp add: comp-isotone p-antitone star .left-plus-below-circ)
thus −(p0T ? ∗ y) t (−?ptpy u y) ≤ −?ptpy

by simp
qed
have regular ?px regular y

using 1 bijective-regular find-set-precondition-def mapping-regular
pp-dist-comp regular-closed-star regular-conv-closed path-splitting-invariant-def by
auto

hence 10 : regular (?px u −?ptpy u y)
by auto

have p0 [?px u −(p0T ? ∗ (p[[y]]))7−→?p2t] = p0 [?px u −?ptpy 7−→?p2t]
using 1 by (smt comp-associative path-splitting-invariant-aux(1)

star-plus)
also have ... = p0 [?pxy t (?px u −?ptpy u y) 7−→?p2t]

using 8 by (metis comp-inf .semiring.distrib-left
inf .sup-monoid.add-assoc)

also have ... = ?p[?px u −?ptpy u y 7−→?p2t]
using 10 by (smt (z3) update-same comp-inf .semiring.mult-not-zero

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute)
also have ... = p[?px u −?ptpy u y 7−→?p2t]

using 1 path-splitting-invariant-def by auto
also have ... = ?pyppy

using 4 by auto
finally show ?thesis

.
qed
show univalent p0 total p0 acyclic (p0 − 1)

using 1 path-splitting-invariant-def by auto
qed
let ?s = { z . regular z ∧ z ≤ pT ? ∗ y }
let ?t = { z . regular z ∧ z ≤ ?pyppyT ? ∗ (p[[y]]) }
have ?pyppyT ? ∗ (p[[y]]) ≤ p+T ? ∗ (p[[y]])

using 1 path-splitting-invariant-def update-square-plus conv-order
mult-left-isotone star-isotone by force

also have ... = pT ? ∗ pT ∗ y
by (simp add: conv-plus-commute star .left-plus-circ mult-assoc)

also have ... = pT+ ∗ y
by (simp add: star-plus)

finally have 11 : ?pyppyT ? ∗ (p[[y]]) ≤ pT+ ∗ y
.

hence ?pyppyT ? ∗ (p[[y]]) ≤ pT ? ∗ y

92

using mult-left-isotone order-lesseq-imp star .left-plus-below-circ by blast
hence 12 : ?t ⊆ ?s

using order-trans by auto
have 13 : y ∈ ?s

using 1 bijective-regular path-compression-1b path-splitting-invariant-def by
force

have 14 : ¬ y ∈ ?t
proof

assume y ∈ ?t
hence y ≤ ?pyppyT ? ∗ (p[[y]])

by simp
hence y ≤ pT+ ∗ y

using 11 dual-order .trans by blast
hence y = root p y

using 1 find-set-precondition-def loop-root-2 path-splitting-invariant-def by
blast

hence y = ?py
using 1 by (metis find-set-precondition-def root-successor-loop

path-splitting-invariant-def)
thus False

using 1 by simp
qed
show card ?t < card ?s

apply (rule psubset-card-mono)
subgoal using finite-regular by simp
subgoal using 12 13 14 by auto
done

qed
qed

lemma path-splitting-3 :
path-splitting-invariant p x y p0 ∧ y = p[[y]] =⇒ path-splitting-postcondition p x

y p0
proof −

assume 1 : path-splitting-invariant p x y p0 ∧ y = p[[y]]
show path-splitting-postcondition p x y p0
proof (unfold path-splitting-postcondition-def , intro conjI)

show univalent p total p acyclic (p − 1)
using 1 find-set-precondition-def path-splitting-invariant-def by blast+

show 2 : p u 1 = p0 u 1
using 1 path-splitting-invariant-aux(4) by blast

show 3 : fc p = fc p0
using 1 path-splitting-invariant-aux(5) by blast

have y ≤ p0T ? ∗ x
using 1 path-splitting-invariant-def by simp

hence 4 : y ∗ xT ≤ fc p0
using 1 by (metis dual-order .trans fc-wcc find-set-precondition-def

shunt-bijective star .circ-decompose-11 star-decompose-1 star-outer-increasing
path-splitting-invariant-def)

93

have 5 : y = p0 [[y]]
using 1 path-splitting-invariant-aux(1) by auto

hence y = root p0 y
using 1 path-splitting-invariant-def loop-root by auto

also have ... = root p0 x
using 1 4 find-set-precondition-def path-splitting-invariant-def

same-component-same-root by auto
also have ... = root p x

using 1 2 3 by (metis find-set-precondition-def path-splitting-invariant-def
same-root)

finally show y = root p x
.

have p0T ? ∗ y = y
using 5 order .antisym path-compression-1b star-left-induct-mult-equal by

auto
hence 6 : p0 [p0T ? ∗ x − y 7−→(p0 ∗ p0)T] = p

using 1 path-splitting-invariant-def by auto
have (p0 ∗ p0)T ∗ y = y

using 5 mult-assoc conv-dist-comp by auto
hence y u p0 ∗ p0 = y u p0

using 1 5 by (smt path-splitting-invariant-def update-postcondition)
hence 7 : y u p = y u p0 ∗ p0

using 1 5 by (smt path-splitting-invariant-def update-postcondition)
have p0 [p0T ? ∗ x 7−→(p0 ∗ p0)T] = (p0 [p0T ? ∗ x − y 7−→(p0 ∗ p0)T])[p0T ? ∗

x u y 7−→(p0 ∗ p0)T]
using 1 bijective-regular path-splitting-invariant-def update-split by blast

also have ... = p[p0T ? ∗ x u y 7−→(p0 ∗ p0)T]
using 6 by simp

also have ... = p
apply (rule update-same-sub)
using 7 apply simp
apply simp
using 1 bijective-regular inf .absorb2 path-splitting-invariant-def by auto

finally show p0 [p0T ? ∗ x 7−→(p0 ∗ p0)T] = p
.

qed
qed

theorem find-path-splitting:
VARS p t y
[find-set-precondition p x ∧ p0 = p]
y := x;
WHILE y 6= p[[y]]

INV { path-splitting-invariant p x y p0 }
VAR { (pT ? ∗ y)↓ }
DO t := p[[y]];

p[y] := p[[p[[y]]]];
y := t

OD

94

[path-splitting-postcondition p x y p0]
apply vcg-tc-simp

apply (fact path-splitting-1)
apply (fact path-splitting-2)

by (fact path-splitting-3)

end

7 Verifying Union by Rank
In this section we verify the union-by-rank operation of disjoint-set forests.
The rank of a node is an upper bound of the height of the subtree rooted
at that node. The rank array of a disjoint-set forest maps each node to its
rank. This can be represented as a homogeneous relation since the possible
rank values are 0, . . . , n−1 where n is the number of nodes of the disjoint-set
forest.

7.1 Peano structures
Since ranks are natural numbers we start by introducing basic Peano arith-
metic. Numbers are represented as (relational) points. Constant Z rep-
resents the number 0. Constant S represents the successor function. The
successor of a number x is obtained by the relational composition ST ∗ x.
The composition S ∗ x results in the predecessor of x.
class peano-signature =

fixes Z :: ′a
fixes S :: ′a

The numbers will be used in arrays, which are represented by homoge-
neous finite relations. Such relations can only represent finitely many num-
bers. This means that we weaken the Peano axioms, which are usually used
to obtain (infinitely many) natural numbers. Axiom Z-point specifies that 0
is a number. Axiom S-univalent specifies that every number has at most one
‘successor’. Together with axiom S-total, which is added later, this means
that every number has exactly one ‘successor’. Axiom S-injective specifies
that numbers with the same successor are equal. Axiom S-star-Z-top speci-
fies that every number can be obtained from 0 by finitely many applications
of the successor. We omit the Peano axiom S ∗ Z = bot which would specify
that 0 is not the successor of any number. Since only finitely many numbers
will be represented, the remaining axioms will model successor modulo m
for some m depending on the carrier of the algebra. That is, the algebra
will be able to represent numbers 0, . . . ,m− 1 where the successor of m− 1
is 0.
class skra-peano-1 = stone-kleene-relation-algebra-tarski-consistent +
peano-signature +

95

assumes Z-point: point Z
assumes S-univalent: univalent S
assumes S-injective: injective S
assumes S-star-Z-top: ST ? ∗ Z = top

begin

lemma conv-Z-Z :
ZT ∗ Z = top
by (simp add: Z-point point-conv-comp)

lemma Z-below-S-star :
Z ≤ S?

proof −
have top ∗ ZT ≤ ST ?

using S-star-Z-top Z-point shunt-bijective by blast
thus ?thesis

using Z-point conv-order conv-star-commute vector-conv-covector by force
qed

lemma S-connected:
ST ? ∗ S? = top
by (metis Z-below-S-star S-star-Z-top mult-left-dist-sup sup.orderE sup-commute

top.extremum)

lemma S-star-connex:
S? t ST ? = top
using S-connected S-univalent cancel-separate-eq sup-commute by auto

lemma Z-sup-conv-S-top:
Z t ST ∗ top = top
using S-star-Z-top star .circ-loop-fixpoint sup-commute by auto

lemma top-S-sup-conv-Z :
top ∗ S t ZT = top
by (metis S-star-Z-top conv-dist-comp conv-involutive conv-star-commute

star .circ-back-loop-fixpoint symmetric-top-closed)

lemma S-inf-1-below-Z :
S u 1 ≤ Z

proof −
have (S u 1) ∗ ST ≤ S u 1

by (metis S-injective conv-dist-comp coreflexive-symmetric inf .boundedI
inf .cobounded1 inf .cobounded2 injective-codomain)

hence (S u 1) ∗ ST ? ≤ S u 1
using star-right-induct-mult by blast

hence (S u 1) ∗ ST ? ∗ Z ≤ (S u 1) ∗ Z
by (simp add: mult-left-isotone)

also have ... ≤ Z
by (metis comp-left-subdist-inf inf .boundedE mult-1-left)

96

finally show ?thesis
using S-star-Z-top inf .order-trans top-right-mult-increasing mult-assoc by

auto
qed

lemma S-inf-1-below-conv-Z :
S u 1 ≤ ZT

using S-inf-1-below-Z conv-order coreflexive-symmetric by fastforce

The successor operation provides a convenient way to compare two nat-
ural numbers. Namely, k < m if m can be reached from k by finitely many
applications of the successor, formally m ≤ ST ? ∗ k or k ≤ S? ∗ m. This
does not work for numbers modulo m since comparison depends on the cho-
sen representative. We therefore work with a modified successor relation S ′,
which is a partial function that computes the successor for all numbers ex-
cept m− 1. If S is surjective, the point M representing the greatest number
m− 1 is the predecessor of 0 under S. If S is not surjective (like for the set
of all natural numbers), M = bot.
abbreviation S ′ ≡ S − ZT

abbreviation M ≡ S ∗ Z

lemma M-point-iff-S-surjective:
point M ←→ surjective S

proof
assume 1 : point M
hence 1 ≤ ZT ∗ ST ∗ S ∗ Z

using comp-associative conv-dist-comp surjective-var by auto
hence Z ≤ ST ∗ S ∗ Z

using 1 Z-point bijective-reverse mult-assoc by auto
also have ... ≤ ST ∗ top

by (simp add: comp-isotone mult-assoc)
finally have ST ∗ ST ∗ top t Z ≤ ST ∗ top

using mult-isotone mult-assoc by force
hence ST ? ∗ Z ≤ ST ∗ top

by (simp add: star-left-induct mult-assoc)
thus surjective S

by (simp add: S-star-Z-top order .antisym surjective-conv-total)
next

assume surjective S
thus point M

by (metis S-injective Z-point comp-associative injective-mult-closed)
qed

lemma S ′-univalent:
univalent S ′

by (simp add: S-univalent univalent-inf-closed)

lemma S ′-injective:

97

injective S ′

by (simp add: S-injective injective-inf-closed)

lemma S ′-Z :
S ′ ∗ Z = bot
by (simp add: Z-point covector-vector-comp injective-comp-right-dist-inf)

lemma S ′-irreflexive:
irreflexive S ′

using S-inf-1-below-conv-Z order-lesseq-imp p-shunting-swap pp-increasing by
blast

end

class skra-peano-2 = skra-peano-1 +
assumes S-total: total S

begin

lemma S-mapping:
mapping S
by (simp add: S-total S-univalent)

lemma M-bot-iff-S-not-surjective:
M 6= bot ←→ surjective S

proof
assume M 6= bot
hence top ∗ S ∗ Z = top

by (metis S-mapping Z-point bijective-regular comp-associative
mapping-regular regular-mult-closed tarski)

hence ZT ≤ top ∗ S
using M-point-iff-S-surjective S-injective Z-point comp-associative

injective-mult-closed by auto
thus surjective S

using sup.orderE top-S-sup-conv-Z by fastforce
next

assume surjective S
thus M 6= bot

using M-point-iff-S-surjective consistent covector-bot-closed by force
qed

lemma M-point-or-bot:
point M ∨ M = bot
using M-bot-iff-S-not-surjective M-point-iff-S-surjective by blast

Alternative way to express S ′

lemma S ′-var :
S ′ = S − M

proof −
have S ′ = S ∗ (1 − ZT)

98

by (simp add: Z-point covector-comp-inf vector-conv-compl)
also have ... = S ∗ (1 − Z)

by (metis conv-complement one-inf-conv)
also have ... = S ∗ 1 u S ∗ −Z

by (simp add: S-mapping univalent-comp-left-dist-inf)
also have ... = S − M

by (simp add: comp-mapping-complement S-mapping)
finally show ?thesis

.
qed

Special case of just 1 number
lemma M-is-Z-iff-1-is-top:

M = Z ←→ 1 = top
proof

assume M = Z
hence Z = ST ∗ Z

by (metis S-mapping Z-point order .antisym bijective-reverse inf .eq-refl
shunt-mapping)

thus 1 = top
by (metis S-star-Z-top Z-point inf .eq-refl star-left-induct sup.absorb2

symmetric-top-closed top-le)
next

assume 1 = top
thus M = Z

using S-mapping comp-right-one mult-1-left by auto
qed

lemma S-irreflexive:
assumes M 6= Z
shows irreflexive S

proof −
have (S u 1) ∗ ST ≤ S u 1

by (smt (z3) S-injective S-mapping coreflexive-comp-top-inf dual-order .eq-iff
inf .cobounded1 inf .sup-monoid.add-commute inf .sup-same-context
mult-left-isotone one-inf-conv top-right-mult-increasing total-var)

hence (S u 1) ∗ ST ? ≤ S u 1
using star-right-induct-mult by blast

hence (S u 1) ∗ ST ? ∗ Z ≤ (S u 1) ∗ Z
by (simp add: mult-left-isotone)

also have ... = M u Z
by (simp add: Z-point injective-comp-right-dist-inf)

also have ... = bot
by (smt (verit, ccfv-threshold) M-point-or-bot assms Z-point

bijective-one-closed bijective-regular comp-associative conv-complement
coreflexive-comp-top-inf epm-3 inf .sup-monoid.add-commute one-inf-conv
regular-mult-closed star .circ-increasing star .circ-zero tarski vector-conv-covector
vector-export-comp-unit)

finally have S u 1 ≤ bot

99

using S-star-Z-top comp-associative le-bot top-right-mult-increasing by
fastforce

thus ?thesis
using le-bot pseudo-complement by blast

qed

We show that S ′ satisfies most properties of S.
lemma M-regular :

regular M
using S-mapping Z-point bijective-regular mapping-regular regular-mult-closed

by blast

lemma S ′-regular :
regular S ′

using S-mapping mapping-regular by auto

lemma S ′-star-Z-top:
S ′T ? ∗ Z = top

proof −
have ST ? ∗ Z = (S ′ t (S u M))T ? ∗ Z

by (metis M-regular maddux-3-11-pp S ′-var)
also have ... ≤ S ′T ? ∗ Z
proof (cases M = bot)

case True
thus ?thesis

by simp
next

case False
hence point M

using M-point-or-bot by auto
hence arc (S u M)

using S-mapping mapping-inf-point-arc by blast
hence 1 : arc ((S u M)T)

using conv-involutive by auto
have 2 : S u M ≤ ZT

by (metis S ′-var Z-point bijective-regular conv-complement inf .cobounded2
p-shunting-swap)

have (S ′ t (S u M))T ? ∗ Z = (S ′T t (S u M)T)? ∗ Z
by (simp add: S ′-var conv-dist-sup)

also have ... = (S ′T ? ∗ (S u M)T ∗ S ′T ? t S ′T ?) ∗ Z
using 1 star-arc-decompose sup-commute by auto

also have ... = S ′T ? ∗ (S u M)T ∗ S ′T ? ∗ Z t S ′T ? ∗ Z
using mult-right-dist-sup by auto

also have ... ≤ S ′T ? ∗ ZT T ∗ S ′T ? ∗ Z t S ′T ? ∗ Z
using 2 by (meson comp-isotone conv-isotone inf .eq-refl semiring.add-mono)

also have ... ≤ S ′T ? ∗ Z
by (metis Z-point comp-associative conv-involutive le-supI mult-right-isotone

top.extremum)
finally show ?thesis

100

.
qed
finally show ?thesis

using S-star-Z-top top-le by auto
qed

lemma Z-below-S ′-star :
Z ≤ S ′?

by (metis S ′-star-Z-top Z-point comp-associative comp-right-one conv-order
conv-star-commute mult-right-isotone vector-conv-covector)

lemma S ′-connected:
S ′T ? ∗ S ′? = top
by (metis Z-below-S ′-star S ′-star-Z-top mult-left-dist-sup sup.orderE

sup-commute top.extremum)

lemma S ′-star-connex:
S ′? t S ′T ? = top
using S ′-connected S ′-univalent cancel-separate-eq sup-commute by auto

lemma Z-sup-conv-S ′-top:
Z t S ′T ∗ top = top
using S ′-star-Z-top star .circ-loop-fixpoint sup-commute by auto

lemma top-S ′-sup-conv-Z :
top ∗ S ′ t ZT = top
by (metis S ′-star-Z-top conv-dist-comp conv-involutive conv-star-commute

star .circ-back-loop-fixpoint symmetric-top-closed)

lemma S-power-point-or-bot:
assumes regular S ′

shows point (S ′T ^ n ∗ Z) ∨ S ′T ^ n ∗ Z = bot
proof −

have 1 : regular (S ′T ^ n ∗ Z)
using assms Z-point bijective-regular regular-conv-closed regular-mult-closed

regular-power-closed by auto
have injective (S ′T ^ n)

by (simp add: injective-power-closed S ′-univalent)
hence injective (S ′T ^ n ∗ Z)

using Z-point injective-mult-closed by blast
thus ?thesis

using 1 Z-point comp-associative tarski by force
qed

end

7.2 Initialising Ranks

101

We show that the rank array satisfies three properties which are estab-
lished/preserved by the union-find operations. First, every node has a rank,
that is, the rank array is a mapping. Second, the rank of a node is strictly
smaller than the rank of its parent, except if the node is a root. This im-
plies that the rank of a node is an upper bound on the height of its subtree.
Third, the number of roots in the disjoint-set forest (the number of disjoint
sets) is not larger than m−k where m is the total number of nodes and k is
the maximum rank of any node. The third property is useful to show that
ranks never overflow (exceed m− 1). To compare the number of roots and
m−k we use the existence of an injective univalent relation between the set
of roots and the set of m− k largest numbers, both represented as vectors.
The three properties are captured in rank-property.
class skra-peano-3 = stone-kleene-relation-algebra-tarski-finite-regular +
skra-peano-2
begin

definition card-less-eq v w ≡ ∃ i . injective i ∧ univalent i ∧ regular i ∧ v ≤ i ∗ w
definition rank-property p rank ≡ mapping rank ∧ (p − 1) ∗ rank ≤ rank ∗ S ′+

∧ card-less-eq (roots p) (−(S ′+ ∗ rankT ∗ top))

end

class skra-peano-4 = stone-kleene-relation-algebra-choose-point-finite-regular +
skra-peano-2
begin

subclass skra-peano-3 ..

The initialisation loop is augmented by setting the rank of each node to
0. The resulting rank array satisfies the desired properties explained above.
theorem init-ranks:

VARS h p x rank
[True]
FOREACH x

USING h
INV { p − h = 1 − h ∧ rank − h = ZT − h }
DO p := make-set p x;

rank[x] := Z
OD

[p = 1 ∧ disjoint-set-forest p ∧ rank = ZT ∧ rank-property p rank ∧ h = bot]
proof vcg-tc-simp

fix h p rank
let ?x = choose-point h
let ?m = make-set p ?x
let ?rank = rank[?x 7−→Z]
assume 1 : regular h ∧ vector h ∧ p − h = 1 − h ∧ rank − h = ZT − h ∧ h 6=

bot
show vector (−?x u h) ∧

102

?m u (−−?x t −h) = 1 u (−−?x t −h) ∧
?rank u (−−?x t −h) = ZT u (−−?x t −h) ∧
card { x . regular x ∧ x ≤ −?x ∧ x ≤ h } < h↓

proof (intro conjI)
show vector (−?x u h)

using 1 choose-point-point vector-complement-closed vector-inf-closed by
blast

have 2 : point ?x ∧ regular ?x
using 1 bijective-regular choose-point-point by blast

have 3 : −h ≤ −?x
using choose-point-decreasing p-antitone-iff by auto

have 4 : ?x u ?m = ?x ∗ ?xT ∧ −?x u ?m = −?x u p
using 1 choose-point-point make-set-function make-set-postcondition-def by

auto
have ?m u (−−?x t −h) = (?m u ?x) t (?m − h)

using 2 comp-inf .comp-left-dist-sup by auto
also have ... = ?x ∗ ?xT t (?m u −?x u −h)

using 3 4 by (smt (z3) inf-absorb2 inf-assoc inf-commute)
also have ... = ?x ∗ ?xT t (1 − h)

using 1 3 4 inf .absorb2 inf .sup-monoid.add-assoc inf-commute by auto
also have ... = (1 u ?x) t (1 − h)

using 2 by (metis inf .cobounded2 inf .sup-same-context one-inf-conv
vector-covector)

also have ... = 1 u (−−?x t −h)
using 2 comp-inf .semiring.distrib-left by auto

finally show ?m u (−−?x t −h) = 1 u (−−?x t −h)
.

have 5 : ?x u ?rank = ?x u ZT ∧ −?x u ?rank = −?x u rank
by (smt (z3) inf-commute order-refl update-inf-different update-inf-same)

have ?rank u (−−?x t −h) = (?rank u ?x) t (?rank − h)
using 2 comp-inf .comp-left-dist-sup by auto

also have ... = (?x u ZT) t (?rank u −?x u −h)
using 3 5 by (smt (z3) inf-absorb2 inf-assoc inf-commute)

also have ... = (ZT u ?x) t (ZT − h)
using 1 3 5 inf .absorb2 inf .sup-monoid.add-assoc inf-commute by auto

also have ... = ZT u (−−?x t −h)
using 2 comp-inf .semiring.distrib-left by auto

finally show ?rank u (−−?x t −h) = ZT u (−−?x t −h)
.

have 5 : ¬ ?x ≤ −?x
using 1 2 by (metis comp-commute-below-diversity conv-order

inf .cobounded2 inf-absorb2 pseudo-complement strict-order-var top.extremum)
have 6 : ?x ≤ h

using 1 by (metis choose-point-decreasing)
show card { x . regular x ∧ x ≤ −?x ∧ x ≤ h } < h↓

apply (rule psubset-card-mono)
using finite-regular apply simp
using 2 5 6 by auto

qed

103

next
show rank-property 1 (ZT)
proof (unfold rank-property-def , intro conjI)

show univalent (ZT) total (ZT)
using Z-point surjective-conv-total by auto

show (1 − 1) ∗ (ZT) ≤ (ZT) ∗ S ′+

by simp
have top ≤ 1 ∗ −(S ′+ ∗ Z ∗ top)

by (simp add: S ′-Z comp-associative star-simulation-right-equal)
thus card-less-eq (roots 1) (−(S ′+ ∗ ZT T ∗ top))

by (metis conv-involutive inf .idem mapping-one-closed regular-one-closed
card-less-eq-def bijective-one-closed)

qed
qed

end

7.3 Union by Rank
We show that path compression and union-by-rank preserve the rank prop-
erty.
context stone-kleene-relation-algebra-tarski-finite-regular
begin

lemma union-sets-1-swap:
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y s p1

shows union-sets-postcondition (p2 [s 7−→r]) x y p0
proof (unfold union-sets-postcondition-def union-sets-precondition-def , intro
conjI)

let ?p = p2 [s 7−→r]
have 1 : disjoint-set-forest p1 ∧ point r ∧ r = root p1 x ∧ p1 u 1 = p0 u 1 ∧

fc p1 = fc p0
by (smt assms(1 ,2) union-sets-precondition-def

path-compression-postcondition-def root-point)
have 2 : disjoint-set-forest p2 ∧ point s ∧ s = root p2 y ∧ p2 u 1 = p1 u 1 ∧

fc p2 = fc p1
by (smt assms(1 ,3) union-sets-precondition-def

path-compression-postcondition-def root-point)
hence 3 : fc p2 = fc p0

using 1 by simp
show 4 : univalent ?p

using 1 2 update-univalent by blast
show total ?p

using 1 2 bijective-regular update-total by blast
show acyclic (?p − 1)
proof (cases r = s)

case True

104

thus ?thesis
using 2 update-acyclic-5 by fastforce

next
case False
hence bot = s u r

using 1 2 distinct-points inf-commute by blast
also have ... = s u p1T ? ∗ r

using 1 by (smt root-transitive-successor-loop)
also have ... = s u p2T ? ∗ r

using 1 2 by (smt (z3) inf-assoc inf-commute same-root)
finally have r u p2 ? ∗ s = bot

using schroeder-1 conv-star-commute inf .sup-monoid.add-commute by
fastforce

thus ?thesis
using 1 2 update-acyclic-4 by blast

qed
show fc ?p = wcc (p0 t x ∗ yT)
proof (rule order .antisym)

have s = p2 [[s]]
using 2 by (metis root-successor-loop)

hence s ∗ sT ≤ p2T

using 2 eq-refl shunt-bijective by blast
hence s ∗ sT ≤ p2

using 2 conv-order coreflexive-symmetric by fastforce
hence s ≤ p2 ∗ s

using 2 shunt-bijective by blast
hence 5 : p2 [[s]] ≤ s

using 2 shunt-mapping by blast
have s u p2 ≤ s ∗ (top u sT ∗ p2)

using 2 by (metis dedekind-1)
also have ... = s ∗ sT ∗ p2

by (simp add: mult-assoc)
also have ... ≤ s ∗ sT

using 5 by (metis comp-associative conv-dist-comp conv-involutive
conv-order mult-right-isotone)

also have ... ≤ 1
using 2 by blast

finally have 6 : s u p2 ≤ 1
by simp

have p0 ≤ wcc p0
by (simp add: star .circ-sub-dist-1)

also have ... = wcc p2
using 3 by (simp add: star-decompose-1)

also have 7 : ... ≤ wcc ?p
proof −

have wcc p2 = wcc ((−s u p2) t (s u p2))
using 2 by (metis bijective-regular inf .sup-monoid.add-commute

maddux-3-11-pp)
also have ... ≤ wcc ((−s u p2) t 1)

105

using 6 wcc-isotone sup-right-isotone by simp
also have ... = wcc (−s u p2)

using wcc-with-loops by simp
also have ... ≤ wcc ?p

using wcc-isotone sup-ge2 by blast
finally show ?thesis

by simp
qed
finally have 8 : p0 ≤ wcc ?p

by force
have s ≤ p2T ? ∗ y

using 2 by (metis inf-le1)
hence 9 : s ∗ yT ≤ p2T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
hence y ∗ sT ≤ p2 ?

using conv-dist-comp conv-order conv-star-commute by force
also have ... ≤ wcc p2

by (simp add: star .circ-sub-dist)
also have ... ≤ wcc ?p

using 7 by simp
finally have 10 : y ∗ sT ≤ wcc ?p

by simp
have 11 : s ∗ rT ≤ wcc ?p

using 1 2 star .circ-sub-dist-1 sup-assoc vector-covector by auto
have r ≤ p1T ? ∗ x

using 1 by (metis inf-le1)
hence 12 : r ∗ xT ≤ p1T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
also have ... ≤ wcc p1

using star-isotone sup-ge2 by blast
also have ... = wcc p2

using 2 by (simp add: star-decompose-1)
also have ... ≤ wcc ?p

using 7 by simp
finally have 13 : r ∗ xT ≤ wcc ?p

by simp
have x ≤ x ∗ rT ∗ r ∧ y ≤ y ∗ sT ∗ s

using 1 2 shunt-bijective by blast
hence y ∗ xT ≤ y ∗ sT ∗ s ∗ (x ∗ rT ∗ r)T

using comp-isotone conv-isotone by blast
also have ... = y ∗ sT ∗ s ∗ rT ∗ r ∗ xT

by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc ?p ∗ (s ∗ rT) ∗ (r ∗ xT)

using 10 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc ?p ∗ wcc ?p ∗ (r ∗ xT)

using 11 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc ?p ∗ wcc ?p ∗ wcc ?p

using 13 by (metis mult-right-isotone)
also have ... = wcc ?p

106

by (simp add: star .circ-transitive-equal)
finally have x ∗ yT ≤ wcc ?p

by (metis conv-dist-comp conv-involutive conv-order wcc-equivalence)
hence p0 t x ∗ yT ≤ wcc ?p

using 8 by simp
hence wcc (p0 t x ∗ yT) ≤ wcc ?p

using wcc-below-wcc by simp
thus wcc (p0 t x ∗ yT) ≤ fc ?p

using 4 fc-wcc by simp
have −s u p2 ≤ wcc p2

by (simp add: inf .coboundedI2 star .circ-sub-dist-1)
also have ... = wcc p0

using 3 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t y ∗ xT)

by (simp add: wcc-isotone)
finally have 14 : −s u p2 ≤ wcc (p0 t y ∗ xT)

by simp
have s ∗ yT ≤ wcc p2

using 9 inf .order-trans star .circ-sub-dist sup-commute by fastforce
also have ... = wcc p0

using 1 2 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t y ∗ xT)

by (simp add: wcc-isotone)
finally have 15 : s ∗ yT ≤ wcc (p0 t y ∗ xT)

by simp
have 16 : y ∗ xT ≤ wcc (p0 t y ∗ xT)

using le-supE star .circ-sub-dist-1 by blast
have x ∗ rT ≤ p1 ?

using 12 conv-dist-comp conv-order conv-star-commute by fastforce
also have ... ≤ wcc p1

using star .circ-sub-dist sup-commute by fastforce
also have ... = wcc p0

using 1 by (simp add: star-decompose-1)
also have ... ≤ wcc (p0 t y ∗ xT)

by (simp add: wcc-isotone)
finally have 17 : x ∗ rT ≤ wcc (p0 t y ∗ xT)

by simp
have r ≤ r ∗ xT ∗ x ∧ s ≤ s ∗ yT ∗ y

using assms(1) shunt-bijective union-sets-precondition-def by blast
hence s ∗ rT ≤ s ∗ yT ∗ y ∗ (r ∗ xT ∗ x)T

using comp-isotone conv-isotone by blast
also have ... = s ∗ yT ∗ y ∗ xT ∗ x ∗ rT

by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc (p0 t y ∗ xT) ∗ (y ∗ xT) ∗ (x ∗ rT)

using 15 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc (p0 t y ∗ xT) ∗ wcc (p0 t y ∗ xT) ∗ (x ∗ rT)

using 16 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc (p0 t y ∗ xT) ∗ wcc (p0 t y ∗ xT) ∗ wcc (p0 t y ∗ xT)

using 17 by (metis mult-right-isotone)

107

also have ... = wcc (p0 t y ∗ xT)
by (simp add: star .circ-transitive-equal)

finally have ?p ≤ wcc (p0 t y ∗ xT)
using 1 2 14 vector-covector by auto

hence wcc ?p ≤ wcc (p0 t y ∗ xT)
using wcc-below-wcc by blast

also have ... = wcc (p0 t x ∗ yT)
using conv-dist-comp conv-dist-sup sup-assoc sup-commute by auto

finally show fc ?p ≤ wcc (p0 t x ∗ yT)
using 4 fc-wcc by simp

qed
qed

lemma union-sets-1-skip:
assumes union-sets-precondition p0 x y

and path-compression-postcondition p1 x r p0
and path-compression-postcondition p2 y r p1

shows union-sets-postcondition p2 x y p0
proof (unfold union-sets-postcondition-def union-sets-precondition-def , intro
conjI)

have 1 : point r ∧ r = root p1 x ∧ fc p1 = fc p0 ∧ disjoint-set-forest p2 ∧ r =
root p2 y ∧ fc p2 = fc p1

by (smt assms(1−3) union-sets-precondition-def
path-compression-postcondition-def root-point)

thus univalent p2 total p2 acyclic (p2 − 1)
by auto

have r ≤ p1T ? ∗ x
using 1 by (metis inf-le1)

hence r ∗ xT ≤ p1T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
hence 2 : x ∗ rT ≤ p1 ?

using conv-dist-comp conv-order conv-star-commute by force
have r ≤ p2T ? ∗ y

using 1 by (metis inf-le1)
hence 3 : r ∗ yT ≤ p2T ?

using assms(1) shunt-bijective union-sets-precondition-def by blast
have x ∗ yT ≤ x ∗ rT ∗ r ∗ yT

using 1 mult-left-isotone shunt-bijective by blast
also have ... ≤ p1 ? ∗ p2T ?

using 2 3 by (metis comp-associative comp-isotone)
also have ... ≤ wcc p0

using 1 by (metis star .circ-mult-upper-bound star-decompose-1 star-isotone
sup-ge2 star .circ-sub-dist)

finally show fc p2 = wcc (p0 t x ∗ yT)
using 1 by (smt (z3) fc-star star-decompose-1 sup-absorb1 wcc-sup-wcc

star .circ-sub-dist-3 sup-commute wcc-equivalence)
qed

end

108

syntax
-Cond1 :: ′bexp ⇒ ′com ⇒ ′com (‹(1IF -/ THEN -/ FI)› [0 ,0] 61)

translations IF b THEN c FI == IF b THEN c ELSE SKIP FI

context skra-peano-3
begin

lemma path-compression-preserves-rank-property:
assumes path-compression-postcondition p x y p0

and point x
and disjoint-set-forest p0
and rank-property p0 rank

shows rank-property p rank
proof (unfold rank-property-def , intro conjI)

let ?px = p0T ? ∗ x
have 1 : point y

by (smt assms(1 ,2) path-compression-postcondition-def root-point)
have 2 : vector ?px

using assms(1 ,2) comp-associative path-compression-postcondition-def by
auto

have root p0 x = root p x
by (smt (verit) assms(1 ,3) path-compression-postcondition-def same-root)

hence root p0 x = y
using assms(1) path-compression-postcondition-def by auto

hence ?px ≤ p0 ? ∗ y
by (meson assms(2 ,3) path-splitting-invariant-aux-1 (3))

hence ?px ∗ yT ≤ p0 ?

using 1 shunt-bijective by blast
hence ?px u yT ≤ p0 ?

using 1 2 by (simp add: vector-covector)
also have ... = (p0 − 1)+ t 1

using reachable-without-loops star-left-unfold-equal sup-commute by fastforce
finally have 3 : ?px u yT u −1 ≤ (p0 − 1)+

using half-shunting by blast
have p0 [?px 7−→y] = p

using assms(1) path-compression-postcondition-def by auto
hence (p − 1) ∗ rank = (?px u yT u −1) ∗ rank t (−?px u p0 u −1) ∗ rank

using inf-sup-distrib2 mult-right-dist-sup by force
also have ... ≤ (?px u yT u −1) ∗ rank t (p0 − 1) ∗ rank

by (meson comp-inf .mult-semi-associative le-infE mult-left-isotone
sup-right-isotone)

also have ... ≤ (?px u yT u −1) ∗ rank t rank ∗ S ′+

using assms(4) rank-property-def sup-right-isotone by auto
also have ... ≤ (p0 − 1)+ ∗ rank t rank ∗ S ′+

using 3 mult-left-isotone sup-left-isotone by blast
also have ... ≤ rank ∗ S ′+

proof −
have (p0 − 1)? ∗ rank ≤ rank ∗ S ′?

109

using assms(4) rank-property-def star-simulation-left star .left-plus-circ by
fastforce

hence (p0 − 1)+ ∗ rank ≤ (p0 − 1) ∗ rank ∗ S ′?

by (simp add: comp-associative mult-right-isotone)
also have ... ≤ rank ∗ S ′+

by (smt (z3) assms(4) rank-property-def comp-associative
comp-left-subdist-inf inf .boundedE inf .sup-right-divisibility
star .circ-transitive-equal)

finally show ?thesis
by simp

qed
finally show (p − 1) ∗ rank ≤ rank ∗ S ′+

.
show univalent rank total rank

using rank-property-def assms(4) by auto
show card-less-eq (roots p) (−(S ′+ ∗ rankT ∗ top))

using assms(1 ,4) path-compression-postcondition-def rank-property-def by
auto
qed

theorem union-sets-by-rank:
VARS p r s rank
[union-sets-precondition p x y ∧ rank-property p rank ∧ p0 = p]
r := find-set p x;
p := path-compression p x r ;
s := find-set p y;
p := path-compression p y s;
IF r 6= s THEN

IF rank[[r]] ≤ S ′+ ∗ (rank[[s]]) THEN
p[r] := s

ELSE
p[s] := r ;
IF rank[[r]] = rank[[s]] THEN

rank[r] := S ′T ∗ (rank[[r]])
FI

FI
FI
[union-sets-postcondition p x y p0 ∧ rank-property p rank]

proof vcg-tc-simp
fix rank
let ?r = find-set p0 x
let ?p1 = path-compression p0 x ?r
let ?s = find-set ?p1 y
let ?p2 = path-compression ?p1 y ?s
let ?p5 = path-compression ?p1 y ?r
let ?rr = rank[[?r]]
let ?rs = rank[[?s]]
let ?rank = rank[?r 7−→S ′T ∗ ?rs]
let ?p3 = ?p2 [?r 7−→?s]

110

let ?p4 = ?p2 [?s 7−→?r]
assume 1 : union-sets-precondition p0 x y ∧ rank-property p0 rank
hence 2 : path-compression-postcondition ?p1 x ?r p0

using find-set-function find-set-postcondition-def find-set-precondition-def
path-compression-function path-compression-precondition-def
union-sets-precondition-def by auto

hence 3 : path-compression-postcondition ?p2 y ?s ?p1
using 1 find-set-function find-set-postcondition-def find-set-precondition-def

path-compression-function path-compression-precondition-def
union-sets-precondition-def path-compression-postcondition-def by meson

have rank-property ?p1 rank
using 1 2 path-compression-preserves-rank-property

union-sets-precondition-def by blast
hence 4 : rank-property ?p2 rank

using 1 2 3 by (meson path-compression-preserves-rank-property
path-compression-postcondition-def union-sets-precondition-def)

have 5 : point ?r point ?s
using 1 2 3 by (smt path-compression-postcondition-def

union-sets-precondition-def root-point)+
hence 6 : point ?rr point ?rs

using 1 comp-associative read-injective read-surjective rank-property-def by
auto

have top ≤ S ′? t S ′+T

by (metis S ′-star-connex conv-dist-comp conv-star-commute eq-refl
star .circ-reflexive star-left-unfold-equal star-simulation-right-equal sup.orderE
sup-monoid.add-assoc)

hence 7 : −S ′+T ≤ S ′?

by (metis comp-inf .case-split-left comp-inf .star .circ-plus-one
comp-inf .star .circ-sup-2 half-shunting)

show (?r 6= ?s −→ (?rr ≤ S ′+ ∗ ?rs −→ union-sets-postcondition ?p3 x y p0 ∧
rank-property ?p3 rank) ∧

(¬ ?rr ≤ S ′+ ∗ ?rs −→ ((?rr = ?rs −→
union-sets-postcondition ?p4 x y p0 ∧ rank-property ?p4 ?rank) ∧

(?rr 6= ?rs −→ union-sets-postcondition ?p4 x
y p0 ∧ rank-property ?p4 rank)))) ∧

(?r = ?s −→ union-sets-postcondition ?p5 x y p0 ∧ rank-property ?p5 rank)
proof

show ?r 6= ?s −→ (?rr ≤ S ′+ ∗ ?rs −→ union-sets-postcondition ?p3 x y p0
∧ rank-property ?p3 rank) ∧

(¬ ?rr ≤ S ′+ ∗ ?rs −→ ((?rr = ?rs −→
union-sets-postcondition ?p4 x y p0 ∧ rank-property ?p4 ?rank) ∧

(?rr 6= ?rs −→ union-sets-postcondition ?p4 x
y p0 ∧ rank-property ?p4 rank)))

proof
assume 8 : ?r 6= ?s
show (?rr ≤ S ′+ ∗ ?rs −→ union-sets-postcondition ?p3 x y p0 ∧

rank-property ?p3 rank) ∧
(¬ ?rr ≤ S ′+ ∗ ?rs −→ ((?rr = ?rs −→ union-sets-postcondition ?p4 x

y p0 ∧ rank-property ?p4 ?rank) ∧

111

(?rr 6= ?rs −→ union-sets-postcondition ?p4 x y p0 ∧
rank-property ?p4 rank)))

proof
show ?rr ≤ S ′+ ∗ ?rs −→ union-sets-postcondition ?p3 x y p0 ∧

rank-property ?p3 rank
proof

assume 9 : ?rr ≤ S ′+ ∗ ?rs
show union-sets-postcondition ?p3 x y p0 ∧ rank-property ?p3 rank
proof

show union-sets-postcondition ?p3 x y p0
using 1 2 3 by (simp add: union-sets-1)

show rank-property ?p3 rank
proof (unfold rank-property-def , intro conjI)

show univalent rank total rank
using 1 rank-property-def by auto

have ?s ≤ −?r
using 5 8 by (meson order .antisym bijective-regular

point-in-vector-or-complement point-in-vector-or-complement-2)
hence ?r u ?sT u 1 = bot

by (metis (full-types) bot-least inf .left-commute
inf .sup-monoid.add-commute one-inf-conv pseudo-complement)

hence ?p3 u 1 ≤ ?p2
by (smt half-shunting inf .cobounded2 pseudo-complement

regular-one-closed semiring.add-mono sup-commute)
hence roots ?p3 ≤ roots ?p2

by (simp add: mult-left-isotone)
thus card-less-eq (roots ?p3) (−(S ′+ ∗ rankT ∗ top))

using 4 by (meson rank-property-def card-less-eq-def order-trans)
have (?p3 − 1) ∗ rank = (?r u ?sT u −1) ∗ rank t (−?r u ?p2 u

−1) ∗ rank
using comp-inf .semiring.distrib-right mult-right-dist-sup by auto

also have ... ≤ (?r u ?sT u −1) ∗ rank t (?p2 − 1) ∗ rank
using comp-inf .mult-semi-associative mult-left-isotone

sup-right-isotone by auto
also have ... ≤ (?r u ?sT u −1) ∗ rank t rank ∗ S ′+

using 4 sup-right-isotone rank-property-def by blast
also have ... ≤ (?r u ?sT) ∗ rank t rank ∗ S ′+

using inf-le1 mult-left-isotone sup-left-isotone by blast
also have ... = ?r ∗ ?sT ∗ rank t rank ∗ S ′+

using 5 by (simp add: vector-covector)
also have ... = rank ∗ S ′+

proof −
have rankT ∗ ?r ≤ S ′+ ∗ rankT ∗ ?s

using 9 comp-associative by auto
hence ?r ≤ rank ∗ S ′+ ∗ rankT ∗ ?s

using 4 shunt-mapping comp-associative rank-property-def by auto
hence ?r ∗ ?sT ≤ rank ∗ S ′+ ∗ rankT

using 5 shunt-bijective by blast
hence ?r ∗ ?sT ∗ rank ≤ rank ∗ S ′+

112

using 4 shunt-bijective rank-property-def mapping-conv-bijective by
auto

thus ?thesis
using sup-absorb2 by blast

qed
finally show (?p3 − 1) ∗ rank ≤ rank ∗ S ′+

.
qed

qed
qed
show ¬ ?rr ≤ S ′+ ∗ ?rs −→ ((?rr = ?rs −→ union-sets-postcondition ?p4

x y p0 ∧ rank-property ?p4 ?rank) ∧
(?rr 6= ?rs −→ union-sets-postcondition ?p4 x y p0

∧ rank-property ?p4 rank))
proof

assume ¬ ?rr ≤ S ′+ ∗ ?rs
hence ?rr ≤ −(S ′+ ∗ ?rs)

using 6 by (meson point-in-vector-or-complement S ′-regular
bijective-regular regular-closed-star regular-mult-closed vector-mult-closed)

also have ... = −S ′+ ∗ ?rs
using 6 comp-bijective-complement by simp

finally have ?rs ≤ −S ′+T ∗ ?rr
using 6 by (metis bijective-reverse conv-complement)

also have ... ≤ S ′? ∗ ?rr
using 7 by (simp add: mult-left-isotone)

also have ... = S ′+ ∗ ?rr t ?rr
using star .circ-loop-fixpoint mult-assoc by auto

finally have 10 : ?rs − ?rr ≤ S ′+ ∗ ?rr
using half-shunting by blast

show ((?rr = ?rs −→ union-sets-postcondition ?p4 x y p0 ∧
rank-property ?p4 ?rank) ∧

(?rr 6= ?rs −→ union-sets-postcondition ?p4 x y p0 ∧ rank-property
?p4 rank))

proof
show ?rr = ?rs −→ union-sets-postcondition ?p4 x y p0 ∧

rank-property ?p4 ?rank
proof

assume 11 : ?rr = ?rs
show union-sets-postcondition ?p4 x y p0 ∧ rank-property ?p4 ?rank
proof

show union-sets-postcondition ?p4 x y p0
using 1 2 3 by (simp add: union-sets-1-swap)

show rank-property ?p4 ?rank
proof (unfold rank-property-def , intro conjI)

show univalent ?rank
using 4 5 6 by (meson S ′-univalent read-injective

update-univalent rank-property-def)
have card-less-eq (roots ?p2) (−(S ′+ ∗ rankT ∗ top))

using 4 rank-property-def by blast

113

from this obtain i where 12 : injective i ∧ univalent i ∧ regular i
∧ roots ?p2 ≤ i ∗ −(S ′+ ∗ rankT ∗ top)

using card-less-eq-def by blast
let ?i = (i[?s 7−→i[[i ∗ ?rr]]])[i ∗ ?rr 7−→i[[?s]]]
have 13 : ?i = (i ∗ ?rr u ?sT ∗ i) t (−(i ∗ ?rr) u ?s u ?rrT ∗ iT

∗ i) t (−(i ∗ ?rr) u −?s u i)
by (smt (z3) conv-dist-comp conv-involutive

inf .sup-monoid.add-assoc inf-sup-distrib1 sup-assoc)
have 14 : injective ?i

apply (rule update-injective-swap)
subgoal using 12 by simp
subgoal using 5 by simp
subgoal using 6 12 injective-mult-closed by simp
subgoal using 5 comp-associative by simp
done

have 15 : univalent ?i
apply (rule update-univalent-swap)
subgoal using 12 by simp
subgoal using 5 by simp
subgoal using 5 by simp
subgoal using 6 12 injective-mult-closed by simp
subgoal using 5 comp-associative by simp
done

have 16 : regular ?i
using 5 6 12 by (smt (z3) bijective-regular p-dist-inf p-dist-sup

pp-dist-comp regular-closed-inf regular-conv-closed)
have 17 : regular (i ∗ ?rr)

using 6 12 bijective-regular regular-mult-closed by blast
have 18 : find-set-precondition ?p1 y

using 1 2 find-set-precondition-def
path-compression-postcondition-def union-sets-precondition-def by blast

hence ?s = root ?p1 y
by (meson find-set-function find-set-postcondition-def)

also have ... = root ?p2 y
using 3 18 by (smt (z3) find-set-precondition-def

path-compression-postcondition-def same-root)
also have ... ≤ roots ?p2

by simp
also have ... ≤ i ∗ −(S ′+ ∗ rankT ∗ top)

using 12 by simp
finally have 19 : ?s ≤ i ∗ −(S ′+ ∗ rankT ∗ top)

.
have roots ?p4 ≤ ?i ∗ −(S ′+ ∗ ?rankT ∗ top)
proof −

have ?r ≤ −?s
using 5 8 by (meson order .antisym bijective-regular

point-in-vector-or-complement point-in-vector-or-complement-2)
hence ?s u ?rT u 1 = bot

by (metis (full-types) bot-least inf .left-commute

114

inf .sup-monoid.add-commute one-inf-conv pseudo-complement)
hence ?p4 u 1 ≤ −?s u ?p2

by (smt (z3) bot-least comp-inf .semiring.distrib-left
inf .cobounded2 inf .sup-monoid.add-commute le-supI)

hence roots ?p4 ≤ roots (−?s u ?p2)
by (simp add: mult-left-isotone)

also have ... = −?s u roots ?p2
using 5 inf-assoc vector-complement-closed vector-inf-comp by

auto
also have ... = (i ∗ ?rr u −?s u roots ?p2) t (−(i ∗ ?rr) u −?s

u roots ?p2)
using 17 by (smt (z3) comp-inf .star-plus inf-sup-distrib2

inf-top.right-neutral regular-complement-top)
also have ... ≤ ?i ∗ (−(S ′+ ∗ ?rankT ∗ top))
proof (rule sup-least)

have ?rankT ∗ top = (?r u (S ′T ∗ ?rs)T)T ∗ top t (−?r u
rank)T ∗ top

using conv-dist-sup mult-right-dist-sup by auto
also have ... = (?rT u S ′T ∗ ?rs) ∗ top t (−?rT u rankT) ∗ top

using conv-complement conv-dist-inf conv-involutive by auto
also have ... = S ′T ∗ ?rs ∗ (?r u top) t (−?rT u rankT) ∗ top

using 5 by (smt (z3) covector-inf-comp-3 inf-commute)
also have ... = S ′T ∗ ?rs ∗ (?r u top) t rankT ∗ (−?r u top)

using 5 by (smt (z3) conv-complement
vector-complement-closed covector-inf-comp-3 inf-commute)

also have ... = S ′T ∗ ?rs ∗ ?r t rankT ∗ −?r
by simp

also have ... ≤ S ′T ∗ ?rs ∗ ?r t rankT ∗ top
using mult-right-isotone sup-right-isotone by force

also have ... ≤ S ′T ∗ ?rs t rankT ∗ top
using 5 6 by (metis inf .eq-refl mult-assoc)

finally have S ′+ ∗ ?rankT ∗ top ≤ S ′+ ∗ S ′T ∗ ?rs t S ′+ ∗
rankT ∗ top

by (smt comp-associative mult-left-dist-sup mult-right-isotone)
also have ... = S ′? ∗ (S ′ ∗ S ′T) ∗ ?rs t S ′+ ∗ rankT ∗ top

by (smt star-plus mult-assoc)
also have ... ≤ S ′? ∗ ?rs t S ′+ ∗ rankT ∗ top

by (metis S ′-injective comp-right-one mult-left-isotone
mult-right-isotone sup-left-isotone)

also have ... = ?rs t S ′+ ∗ ?rs t S ′+ ∗ rankT ∗ top
using comp-associative star .circ-loop-fixpoint sup-commute by

fastforce
also have ... = ?rs t S ′+ ∗ rankT ∗ top

by (smt (verit, del-insts) comp-associative mult-left-dist-sup
sup.orderE sup-assoc sup-commute top.extremum)

finally have 20 : S ′+ ∗ ?rankT ∗ top ≤ ?rs t S ′+ ∗ rankT ∗ top
.

have ?s ∗ ?sT = (?s u i ∗ −(S ′+ ∗ rankT ∗ top)) ∗ ?sT
using 19 inf .orderE by fastforce

115

also have ... = (?s u i ∗ −(S ′+ ∗ rankT ∗ top)) ∗ top u ?sT
using 5 by (smt (z3) covector-comp-inf vector-conv-covector

vector-covector vector-top-closed)
also have ... = ?s u i ∗ −(S ′+ ∗ rankT ∗ top) ∗ top u ?sT

using 5 vector-inf-comp by auto
also have ... ≤ 1 u i ∗ −(S ′+ ∗ rankT ∗ top) ∗ top

using 5 by (smt (verit, ccfv-SIG) inf .cobounded1
inf .cobounded2 inf-greatest order-trans vector-covector)

also have ... = 1 u i ∗ −(S ′+ ∗ rankT ∗ top)
using comp-associative vector-complement-closed

vector-top-closed by auto
also have ... ≤ 1 u i ∗ −(S ′+ ∗ rankT)

by (meson comp-inf .mult-right-isotone mult-right-isotone
p-antitone top-right-mult-increasing)

also have ... ≤ 1 u i ∗ S ′?T ∗ rankT

proof −
have S ′?T ∗ rankT t S ′+ ∗ rankT = (S ′T ? t S ′+) ∗ rankT

by (simp add: conv-star-commute mult-right-dist-sup)
also have ... = (S ′T ? t S ′?) ∗ rankT

by (smt (z3) comp-associative semiring.distrib-right
star .circ-loop-fixpoint sup.left-commute sup-commute sup-idem)

also have ... = top ∗ rankT

by (simp add: S ′-star-connex sup-commute)
also have ... = top

using 4 rank-property-def total-conv-surjective by blast
finally have −(S ′+ ∗ rankT) ≤ S ′?T ∗ rankT

by (metis half-shunting inf .idem top-greatest)
thus ?thesis

using comp-associative inf .sup-right-isotone
mult-right-isotone by auto

qed
also have ... = 1 u rank ∗ S ′? ∗ iT

by (metis comp-associative conv-dist-comp conv-involutive
one-inf-conv)

also have ... ≤ rank ∗ S ′? ∗ iT
by simp

finally have ?s ≤ rank ∗ S ′? ∗ iT ∗ ?s
using 5 shunt-bijective by auto

hence ?rs ≤ S ′? ∗ iT ∗ ?s
using 4 shunt-mapping comp-associative rank-property-def by

auto
hence ?s ∗ (i ∗ ?rr u −?s u roots ?p2) ≤ ?s ∗ (i ∗ S ′? ∗ iT ∗

?s u −?s u roots ?p2)
using 11 comp-associative comp-inf .mult-left-isotone

comp-isotone inf .eq-refl by auto
also have ... = ?s ∗ ((i ∗ S ′+ ∗ iT ∗ ?s t i ∗ iT ∗ ?s) u −?s u

roots ?p2)
by (metis comp-associative mult-left-dist-sup

star .circ-loop-fixpoint)

116

also have ... ≤ ?s ∗ ((i ∗ S ′+ ∗ iT ∗ ?s t 1 ∗ ?s) u −?s u
roots ?p2)

using 12 by (metis mult-left-isotone sup-right-isotone
comp-inf .mult-left-isotone mult-right-isotone)

also have ... = ?s ∗ (i ∗ S ′+ ∗ iT ∗ ?s u −?s u roots ?p2)
using comp-inf .comp-right-dist-sup by simp

also have ... ≤ ?s ∗ (i ∗ S ′+ ∗ iT ∗ ?s u roots ?p2)
using comp-inf .mult-left-isotone inf .cobounded1

mult-right-isotone by blast
also have ... ≤ ?s ∗ (i ∗ S ′+ ∗ iT ∗ ?s u i ∗ −(S ′+ ∗ rankT ∗

top))
using 12 comp-inf .mult-right-isotone mult-right-isotone by auto
also have ... = ?s ∗ (i ∗ S ′+ ∗ iT ∗ ?s u i) ∗ −(S ′+ ∗ rankT ∗

top)
using 5 by (simp add: comp-associative vector-inf-comp)

also have ... = (?s u (i ∗ S ′+ ∗ iT ∗ ?s)T) ∗ i ∗ −(S ′+ ∗ rankT

∗ top)
using 5 covector-inf-comp-3 mult-assoc by auto

also have ... = (?s u ?sT ∗ i ∗ S ′+T ∗ iT) ∗ i ∗ −(S ′+ ∗ rankT

∗ top)
using conv-dist-comp conv-involutive mult-assoc by auto

also have ... = (?s u ?sT) ∗ i ∗ S ′+T ∗ iT ∗ i ∗ −(S ′+ ∗ rankT

∗ top)
using 5 vector-inf-comp by auto

also have ... ≤ i ∗ S ′+T ∗ iT ∗ i ∗ −(S ′+ ∗ rankT ∗ top)
using 5 by (metis point-antisymmetric mult-left-isotone

mult-left-one)
also have ... ≤ i ∗ S ′+T ∗ −(S ′+ ∗ rankT ∗ top)

using 12 by (smt mult-left-isotone mult-right-isotone
mult-assoc comp-right-one)

also have ... ≤ i ∗ −(S ′? ∗ rankT ∗ top)
proof −

have S ′+ ∗ S ′? ∗ rankT ∗ top ≤ S ′+ ∗ rankT ∗ top
by (simp add: comp-associative star .circ-transitive-equal)

hence S ′+T ∗ −(S ′+ ∗ rankT ∗ top) ≤ −(S ′? ∗ rankT ∗ top)
by (smt (verit, ccfv-SIG) comp-associative

conv-complement-sub-leq mult-right-isotone order .trans p-antitone)
thus ?thesis

by (simp add: comp-associative mult-right-isotone)
qed
also have ... ≤ i ∗ −(S ′+ ∗ ?rankT ∗ top)
proof −

have S ′+ ∗ ?rankT ∗ top ≤ ?rs t S ′+ ∗ rankT ∗ top
using 20 by simp

also have ... ≤ rankT ∗ top t S ′+ ∗ rankT ∗ top
using mult-right-isotone sup-left-isotone top.extremum by

blast
also have ... = S ′? ∗ rankT ∗ top

using comp-associative star .circ-loop-fixpoint sup-commute

117

by auto
finally show ?thesis

using mult-right-isotone p-antitone by blast
qed
finally have ?s ∗ (i ∗ ?rr u −?s u roots ?p2) ≤ i ∗ −(S ′+ ∗

?rankT ∗ top)
.

hence i ∗ ?rr u −?s u roots ?p2 ≤ ?sT ∗ i ∗ −(S ′+ ∗ ?rankT ∗
top)

using 5 shunt-mapping bijective-conv-mapping mult-assoc by
auto

hence i ∗ ?rr u −?s u roots ?p2 ≤ i ∗ ?rr u ?sT ∗ i ∗ −(S ′+ ∗
?rankT ∗ top)

by (simp add: inf .sup-monoid.add-assoc)
also have ... = (i ∗ ?rr u ?sT ∗ i) ∗ −(S ′+ ∗ ?rankT ∗ top)

using 6 vector-inf-comp vector-mult-closed by simp
also have ... ≤ ?i ∗ −(S ′+ ∗ ?rankT ∗ top)

using 13 comp-left-increasing-sup sup-assoc by auto
finally show i ∗ ?rr u −?s u roots ?p2 ≤ ?i ∗ −(S ′+ ∗ ?rankT

∗ top)
.

have −(i ∗ ?rr) u roots ?p2 ≤ −(i ∗ ?rr) u i ∗ −(S ′+ ∗ rankT

∗ top)
using 12 inf .sup-right-isotone by auto

also have ... ≤ −(i ∗ ?rr) u i ∗ −(?rs t S ′+ ∗ rankT ∗ top)
proof −

have 21 : regular (?rs t S ′+ ∗ rankT ∗ top)
using 4 6 rank-property-def mapping-regular S ′-regular

pp-dist-star regular-conv-closed regular-mult-closed bijective-regular
regular-closed-sup by auto

have ?rs t S ′+ ∗ rankT ∗ top ≤ S ′+ ∗ rankT ∗ top t ?rr
using 11 by simp

hence (?rs t S ′+ ∗ rankT ∗ top) − S ′+ ∗ rankT ∗ top ≤ ?rr
using half-shunting sup-commute by auto

hence −(S ′+ ∗ rankT ∗ top) ≤ −(?rs t S ′+ ∗ rankT ∗ top) t
?rr

using 21 by (metis inf .sup-monoid.add-commute
shunting-var-p sup-commute)

hence i ∗ −(S ′+ ∗ rankT ∗ top) ≤ i ∗ −(?rs t S ′+ ∗ rankT ∗
top) t i ∗ ?rr

by (metis mult-left-dist-sup mult-right-isotone)
hence −(i ∗ ?rr) u i ∗ −(S ′+ ∗ rankT ∗ top) ≤ i ∗ −(?rs t

S ′+ ∗ rankT ∗ top)
using half-shunting inf .sup-monoid.add-commute by fastforce
thus ?thesis

using inf .le-sup-iff by blast
qed
also have ... ≤ −(i ∗ ?rr) u i ∗ −(S ′+ ∗ ?rankT ∗ top)

using 20 by (meson comp-inf .mult-right-isotone

118

mult-right-isotone p-antitone)
finally have −(i ∗ ?rr) u −?s u roots ?p2 ≤ −(i ∗ ?rr) u −?s

u i ∗ −(S ′+ ∗ ?rankT ∗ top)
by (smt (z3) inf .boundedI inf .cobounded1 inf .coboundedI2

inf .sup-monoid.add-assoc inf .sup-monoid.add-commute)
also have ... ≤ ?i ∗ (−(S ′+ ∗ ?rankT ∗ top))

using 5 6 13 by (smt (z3) sup-commute
vector-complement-closed vector-inf-comp vector-mult-closed
comp-left-increasing-sup)

finally show −(i ∗ ?rr) u −?s u roots ?p2 ≤ ?i ∗ −(S ′+ ∗
?rankT ∗ top)

.
qed
finally show ?thesis

.
qed
thus card-less-eq (roots ?p4) (−(S ′+ ∗ ?rankT ∗ top))

using 14 15 16 card-less-eq-def by auto
have ?s ≤ i ∗ −(S ′+ ∗ rankT ∗ top)

using 19 by simp
also have ... ≤ i ∗ −(S ′+ ∗ ?rr)

using mult-right-isotone p-antitone top.extremum mult-assoc by
auto

also have ... = i ∗ −S ′+ ∗ ?rr
using 6 comp-bijective-complement mult-assoc by fastforce

finally have ?rr ≤ −S ′T+ ∗ iT ∗ ?s
using 5 6 by (metis conv-complement conv-dist-comp

conv-plus-commute bijective-reverse)
also have ... ≤ S ′? ∗ iT ∗ ?s

using 7 conv-plus-commute mult-left-isotone by auto
finally have 22 : ?rr ≤ S ′? ∗ iT ∗ ?s

.
have ?r = root ?p1 x

using 2 path-compression-postcondition-def by blast
also have ... = root ?p2 x

using 3 18 by (smt (z3) find-set-precondition-def
path-compression-postcondition-def same-root)

also have ... ≤ roots ?p2
by simp

also have ... ≤ i ∗ −(S ′+ ∗ rankT ∗ top)
using 12 by simp

also have ... ≤ i ∗ −(S ′+ ∗ ?rr)
using mult-right-isotone p-antitone top.extremum mult-assoc by

auto
also have ... = i ∗ −S ′+ ∗ ?rr

using 6 comp-bijective-complement mult-assoc by fastforce
finally have ?rr ≤ −S ′T+ ∗ iT ∗ ?r

using 5 6 by (metis conv-complement conv-dist-comp
conv-plus-commute bijective-reverse)

119

also have ... ≤ S ′? ∗ iT ∗ ?r
using 7 conv-plus-commute mult-left-isotone by auto

finally have ?rr ≤ S ′? ∗ iT ∗ ?r
.

hence ?rr ≤ S ′? ∗ iT ∗ ?r u S ′? ∗ iT ∗ ?s
using 22 inf .boundedI by blast

also have ... = (S ′+ ∗ iT ∗ ?r t iT ∗ ?r) u S ′? ∗ iT ∗ ?s
by (simp add: star .circ-loop-fixpoint mult-assoc)

also have ... ≤ S ′+ ∗ iT ∗ ?r t (iT ∗ ?r u S ′? ∗ iT ∗ ?s)
by (metis comp-inf .mult-right-dist-sup eq-refl inf .cobounded1

semiring.add-mono)
also have ... ≤ S ′ ∗ top t (iT ∗ ?r u S ′? ∗ iT ∗ ?s)

using comp-associative mult-right-isotone sup-left-isotone
top.extremum by auto

also have ... = S ′ ∗ top t (iT ∗ ?r u (S ′+ ∗ iT ∗ ?s t iT ∗ ?s))
by (simp add: star .circ-loop-fixpoint mult-assoc)

also have ... ≤ S ′ ∗ top t S ′+ ∗ iT ∗ ?s t (iT ∗ ?r u iT ∗ ?s)
by (smt (z3) comp-inf .semiring.distrib-left inf .sup-right-divisibility

star .circ-loop-fixpoint sup-assoc sup-commute sup-inf-distrib1)
also have ... ≤ S ′ ∗ top t (iT ∗ ?r u iT ∗ ?s)

by (metis comp-associative mult-right-isotone order .refl
sup.orderE top.extremum)

also have ... = S ′ ∗ top t iT ∗ (?r u ?s)
using 12 conv-involutive univalent-comp-left-dist-inf by auto

also have ... = S ′ ∗ top
using 5 8 distinct-points by auto

finally have top ≤ ?rrT ∗ S ′ ∗ top
using 6 by (smt conv-involutive shunt-mapping

bijective-conv-mapping mult-assoc)
hence surjective (S ′T ∗ ?rs)

using 6 11 by (smt conv-dist-comp conv-involutive
point-conv-comp top-le)

thus total ?rank
using 4 5 bijective-regular update-total rank-property-def by blast

show (?p4 − 1) ∗ ?rank ≤ ?rank ∗ S ′+

proof −
have 23 : univalent ?p2

using 3 path-compression-postcondition-def by blast
have 24 : ?r u (?p4 − 1) ∗ ?rank ≤ ?sT ∗ rank ∗ S ′ ∗ S ′+

proof −
have ?r u (?p4 − 1) ∗ ?rank = (?r u ?p4 u −1) ∗ ?rank
using 5 vector-complement-closed vector-inf-comp inf-assoc by

auto
also have ... = (?r u −?s u ?p4 u −1) ∗ ?rank

using 5 8 by (smt (z3) order .antisym bijective-regular
point-in-vector-or-complement point-in-vector-or-complement-2 inf-absorb1)

also have ... = (?r u −?s u ?p2 u −1) ∗ ?rank
by (simp add: inf .left-commute inf .sup-monoid.add-commute

inf-sup-distrib1 inf-assoc)

120

also have ... ≤ (?r u ?p2 u −1) ∗ ?rank
using inf .sup-left-isotone inf-le1 mult-left-isotone by blast

also have ... = bot
proof −

have ?r = root ?p1 x
using 2 path-compression-postcondition-def by blast

also have ... = root ?p2 x
using 3 18 by (smt (z3) find-set-precondition-def

path-compression-postcondition-def same-root)
also have ... ≤ roots ?p2

by simp
finally have ?r u ?p2 ≤ roots ?p2 u ?p2

using inf .sup-left-isotone by blast
also have ... ≤ (?p2 u 1) ∗ (?p2 u 1)T ∗ ?p2

by (smt (z3) comp-associative comp-inf .star-plus dedekind-1
inf-top-right order-lesseq-imp)

also have ... = (?p2 u 1) ∗ (?p2 u 1) ∗ ?p2
using coreflexive-symmetric by force

also have ... ≤ (?p2 u 1) ∗ ?p2
by (metis coreflexive-comp-top-inf inf .cobounded2

mult-left-isotone)
also have ... ≤ ?p2 u 1

by (smt 23 comp-inf .mult-semi-associative conv-dist-comp
conv-dist-inf conv-order equivalence-one-closed inf .absorb1
inf .sup-monoid.add-assoc injective-codomain)

also have ... ≤ 1
by simp

finally have ?r u ?p2 ≤ 1
.

thus ?thesis
by (metis pseudo-complement regular-one-closed

semiring.mult-not-zero)
qed
finally show ?thesis

using bot-least le-bot by blast
qed
have 25 : −?r u (?p4 − 1) ∗ ?rank ≤ rank ∗ S ′+

proof −
have −?r u (?p4 − 1) ∗ ?rank = (−?r u ?p4 u −1) ∗ ?rank
using 5 vector-complement-closed vector-inf-comp inf-assoc by

auto
also have ... = (−?r u (?s t −?s) u ?p4 u −1) ∗ ?rank

using 5 bijective-regular inf-top-right regular-complement-top
by auto

also have ... = (−?r u ?s u ?p4 u −1) ∗ ?rank t (−?r u −?s
u ?p4 u −1) ∗ ?rank

by (smt (z3) inf-sup-distrib1 inf-sup-distrib2
mult-right-dist-sup)

also have ... = (−?r u ?s u ?rT u −1) ∗ ?rank t (−?r u −?s

121

u ?p2 u −1) ∗ ?rank
using 5 by (smt (z3) bijective-regular

comp-inf .comp-left-dist-sup inf-assoc inf-commute inf-top-right mult-right-dist-sup
regular-complement-top)

also have ... ≤ (?s u ?rT u −1) ∗ ?rank t (−?s u ?p2 u −1)
∗ ?rank

by (smt (z3) comp-inf .semiring.distrib-left inf .cobounded2
inf .sup-monoid.add-assoc mult-left-isotone mult-right-dist-sup)

also have ... ≤ (?s u ?rT) ∗ ?rank t (?p2 − 1) ∗ ?rank
by (smt (z3) inf .cobounded1 inf .cobounded2

inf .sup-monoid.add-assoc mult-left-isotone semiring.add-mono)
also have ... = ?s ∗ (?r u ?rank) t (?p2 − 1) ∗ ?rank

using 5 by (simp add: covector-inf-comp-3)
also have ... = ?s ∗ (?r u (S ′T ∗ ?rs)T) t (?p2 − 1) ∗ ?rank

using inf-commute update-inf-same mult-assoc by force
also have ... = ?s ∗ (?r u ?sT ∗ rank ∗ S ′) t (?p2 − 1) ∗ ?rank

using comp-associative conv-dist-comp conv-involutive by auto
also have ... ≤ ?s ∗ ?sT ∗ rank ∗ S ′ t (?p2 − 1) ∗ ?rank

using comp-associative inf .cobounded2 mult-right-isotone
semiring.add-right-mono by auto

also have ... ≤ 1 ∗ rank ∗ S ′ t (?p2 − 1) ∗ ?rank
using 5 by (meson mult-left-isotone order .refl

semiring.add-mono)
also have ... = rank ∗ S ′ t (?p2 − 1) ∗ (?r u (S ′T ∗ ?rr)T) t

(?p2 − 1) ∗ (−?r u rank)
using 11 comp-associative mult-1-left mult-left-dist-sup

sup-assoc by auto
also have ... ≤ rank ∗ S ′ t (?p2 − 1) ∗ (?r u ?rT ∗ rank ∗ S ′)

t (?p2 − 1) ∗ rank
using comp-associative conv-dist-comp conv-involutive

inf .cobounded1 inf .sup-monoid.add-commute mult-right-isotone
semiring.add-left-mono by auto

also have ... = rank ∗ S ′ t (?p2 − 1) ∗ (?r u ?rT) ∗ rank ∗ S ′

t (?p2 − 1) ∗ rank
using 5 comp-associative vector-inf-comp by auto

also have ... ≤ rank ∗ S ′ t (?p2 − 1) ∗ rank ∗ S ′ t (?p2 − 1)
∗ rank

using 5 by (metis point-antisymmetric mult-left-isotone
mult-right-isotone sup-left-isotone sup-right-isotone comp-right-one)

also have ... ≤ rank ∗ S ′ t rank ∗ S ′+ ∗ S ′ t (?p2 − 1) ∗ rank
using 4 by (metis rank-property-def mult-left-isotone

sup-left-isotone sup-right-isotone)
also have ... ≤ rank ∗ S ′ t rank ∗ S ′+ ∗ S ′ t rank ∗ S ′+

using 4 by (metis rank-property-def sup-right-isotone)
also have ... ≤ rank ∗ S ′+

using comp-associative eq-refl le-sup-iff mult-right-isotone
star .circ-mult-increasing star .circ-plus-same star .left-plus-below-circ by auto

finally show ?thesis
.

122

qed
have (?p4 − 1) ∗ ?rank = (?r u (?p4 − 1) ∗ ?rank) t (−?r u

(?p4 − 1) ∗ ?rank)
using 5 by (smt (verit, ccfv-threshold) bijective-regular

inf-commute inf-sup-distrib2 inf-top-right regular-complement-top)
also have ... ≤ (?r u ?sT ∗ rank ∗ S ′ ∗ S ′+) t (−?r u rank ∗

S ′+)
using 24 25 by (meson inf .boundedI inf .cobounded1

semiring.add-mono)
also have ... = (?r u ?sT ∗ rank ∗ S ′) ∗ S ′+ t (−?r u rank) ∗

S ′+

using 5 vector-complement-closed vector-inf-comp by auto
also have ... = ?rank ∗ S ′+

using conv-dist-comp mult-right-dist-sup by auto
finally show ?thesis

.
qed

qed
qed

qed
show ?rr 6= ?rs −→ union-sets-postcondition ?p4 x y p0 ∧

rank-property ?p4 rank
proof

assume ?rr 6= ?rs
hence ?rs u ?rr = bot

using 6 by (meson bijective-regular dual-order .eq-iff
point-in-vector-or-complement point-in-vector-or-complement-2
pseudo-complement)

hence 26 : ?rs ≤ S ′+ ∗ ?rr
using 10 le-iff-inf pseudo-complement by auto

show union-sets-postcondition ?p4 x y p0 ∧ rank-property ?p4 rank
proof

show union-sets-postcondition ?p4 x y p0
using 1 2 3 by (simp add: union-sets-1-swap)

show rank-property ?p4 rank
proof (unfold rank-property-def , intro conjI)

show univalent rank total rank
using 1 rank-property-def by auto

have ?r ≤ −?s
using 5 8 by (meson order .antisym bijective-regular

point-in-vector-or-complement point-in-vector-or-complement-2)
hence ?s u ?rT u 1 = bot

by (metis (full-types) bot-least inf .left-commute
inf .sup-monoid.add-commute one-inf-conv pseudo-complement)

hence ?p4 u 1 ≤ ?p2
by (smt half-shunting inf .cobounded2 pseudo-complement

regular-one-closed semiring.add-mono sup-commute)
hence roots ?p4 ≤ roots ?p2

by (simp add: mult-left-isotone)

123

thus card-less-eq (roots ?p4) (−(S ′+ ∗ rankT ∗ top))
using 4 by (meson rank-property-def card-less-eq-def order-trans)

have (?p4 − 1) ∗ rank = (?s u ?rT u −1) ∗ rank t (−?s u ?p2
u −1) ∗ rank

using comp-inf .semiring.distrib-right mult-right-dist-sup by auto
also have ... ≤ (?s u ?rT u −1) ∗ rank t (?p2 − 1) ∗ rank

using comp-inf .mult-semi-associative mult-left-isotone
sup-right-isotone by auto

also have ... ≤ (?s u ?rT u −1) ∗ rank t rank ∗ S ′+

using 4 sup-right-isotone rank-property-def by blast
also have ... ≤ (?s u ?rT) ∗ rank t rank ∗ S ′+

using inf-le1 mult-left-isotone sup-left-isotone by blast
also have ... = ?s ∗ ?rT ∗ rank t rank ∗ S ′+

using 5 by (simp add: vector-covector)
also have ... = rank ∗ S ′+

proof −
have rankT ∗ ?s ≤ S ′+ ∗ rankT ∗ ?r

using 26 comp-associative by auto
hence ?s ≤ rank ∗ S ′+ ∗ rankT ∗ ?r

using 4 shunt-mapping comp-associative rank-property-def by
auto

hence ?s ∗ ?rT ≤ rank ∗ S ′+ ∗ rankT

using 5 shunt-bijective by blast
hence ?s ∗ ?rT ∗ rank ≤ rank ∗ S ′+

using 4 shunt-bijective rank-property-def mapping-conv-bijective
by auto

thus ?thesis
using sup-absorb2 by blast

qed
finally show (?p4 − 1) ∗ rank ≤ rank ∗ S ′+

.
qed

qed
qed

qed
qed

qed
qed
show ?r = ?s −→ union-sets-postcondition ?p5 x y p0 ∧ rank-property ?p5

rank
proof

assume 27 : ?r = ?s
show union-sets-postcondition ?p5 x y p0 ∧ rank-property ?p5 rank
proof

show union-sets-postcondition ?p5 x y p0
using 1 2 3 27 by (simp add: union-sets-1-skip)

show rank-property ?p5 rank
using 4 27 by simp

qed

124

qed
qed

qed

end

end

8 Matrix Peano Algebras
We define a Boolean matrix representation of natural numbers up to n,
where n the size of an enumeration type ′a::enum. Numbers (obtained by
Z-matrix for 0 and N-matrix n for n) are represented as relational vectors.
The total successor function (S-matrix, modulo n) and the partial successor
function (S ′-matrix, for numbers up to n−1) are relations that are (partial)
functions.

We give an order-embedding of nat into this representation. We show
that this representation satisfies a relational version of the Peano axioms.
We also implement a function CP-matrix that chooses a number in a non-
empty set.
theory Matrix-Peano-Algebras

imports Aggregation-Algebras.M-Choose-Component
Relational-Disjoint-Set-Forests.More-Disjoint-Set-Forests

begin

no-notation minus-class.minus (infixl ‹−› 65)

definition Z-matrix :: (′a::enum, ′b::{bot,top}) square (‹mZero›) where mZero =
(λ(i,j) . if i = hd enum-class.enum then top else bot)
definition S-matrix :: (′a::enum, ′b::{bot,top}) square (‹msuccmod›) where
msuccmod = (λ(i,j) . let e = (enum-class.enum :: ′a list) in if (∃ k . Suc
k<length e ∧ i = e ! k ∧ j = e ! Suc k) ∨ (i = e ! minus-class.minus (length e) 1
∧ j = hd e) then top else bot)
definition S ′-matrix :: (′a::enum, ′b::{bot,top}) square (‹msucc›) where msucc =
(λ(i,j) . let e = (enum-class.enum :: ′a list) in if ∃ k . Suc k<length e ∧ i = e ! k
∧ j = e ! Suc k then top else bot)
definition N-matrix :: nat ⇒ (′a::enum, ′b::{bot,top}) square (‹mnat›) where
mnat n = (λ(i,j) . if i = enum-class.enum ! n then top else bot)
definition CP-matrix :: (′a::enum, ′b::{bot,uminus}) square ⇒ (′a, ′b) square
(‹mcp›) where mcp f = (λ(i,j) . if Some i = find (λx . f (x,x) 6= bot)
enum-class.enum then uminus-class.uminus (uminus-class.uminus (f (i,j))) else
bot)

lemma S ′-matrix-S-matrix:
(msucc :: (′a::enum, ′b::stone-relation-algebra) square) = msuccmod 	 mZerot

125

proof (rule ext, rule prod-cases)
let ?e = enum-class.enum :: ′a list
let ?h = hd ?e
let ?s = msuccmod :: (′a, ′b) square
let ?s ′ = msucc :: (′a, ′b) square
let ?z = mZero :: (′a, ′b) square
fix i j
have ?s ′ (i,j) = ?s (i,j) − ?z (j,i)
proof (cases j = ?h)

case True
have ?s ′ (i,j) = bot
proof (unfold S ′-matrix-def , clarsimp)

fix k
assume 1 : Suc k < length ?e j = ?e ! Suc k
have (UNIV :: ′a set) 6= {}

by simp
hence ?e ! Suc k = ?e ! 0

using 1 by (simp add: hd-conv-nth UNIV-enum True)
hence Suc k = 0

apply (subst nth-eq-iff-index-eq[THEN sym, of ?e])
using 1 enum-distinct by auto

thus top = bot
by simp

qed
thus ?thesis

by (simp add: Z-matrix-def True)
next

case False
thus ?thesis

by (simp add: Z-matrix-def S-matrix-def S ′-matrix-def)
qed
thus ?s ′ (i,j) = (?s 	 ?zt) (i,j)

by (simp add: minus-matrix-def conv-matrix-def Z-matrix-def)
qed

lemma N-matrix-power-S :
n < length (enum-class.enum :: ′a list) −→ mnat n = matrix-monoid.power

(msuccmodt) n � (mZero :: (′a::enum, ′b::stone-relation-algebra) square)
proof (induct n)

let ?z = mZero :: (′a, ′b) square
let ?s = msuccmod :: (′a, ′b) square
let ?e = enum-class.enum :: ′a list
let ?h = hd ?e
let ?l = length ?e
let ?g = ?e ! minus-class.minus ?l 1
let ?p = matrix-monoid.power (?st)
case 0
have (UNIV :: ′a set) 6= {}

by simp

126

hence ?h = ?e ! 0
by (simp add: hd-conv-nth UNIV-enum)

thus ?case
by (simp add: N-matrix-def Z-matrix-def)

case (Suc n)
assume 1 : n < ?l −→ mnat n = ?p n � ?z
show Suc n < ?l −→ mnat (Suc n) = ?p (Suc n) � ?z
proof

assume 2 : Suc n < ?l
hence n < ?l

by simp
hence ∀ l<?l . (?e ! l = ?e ! n −→ l = n)

using nth-eq-iff-index-eq enum-distinct by auto
hence 3 :

∧
i . (∃ l<?l . ?e ! n = ?e ! l ∧ i = ?e ! Suc l) −→ (i = ?e ! Suc n)

by auto
have 4 :

∧
i . (∃ l . Suc l<?l ∧ ?e ! n = ?e ! l ∧ i = ?e ! Suc l) ←→ (i = ?e !

Suc n)
apply (rule iffI)
using 3 apply (metis Suc-lessD)
using 2 by auto

show mnat (Suc n) = ?p (Suc n) � ?z
proof (rule ext, rule prod-cases)

fix i j :: ′a
have (?p (Suc n) � ?z) (i,j) = (?st � mnat n) (i,j)

using 1 2 by (simp add: matrix-monoid.mult-assoc)
also have ... = (

⊔
k ((?s (k,i))T ∗ mnat n (k,j)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k ((if (∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc

l) ∨ (k = ?g ∧ i = ?h) then top else bot)T ∗ (if k = ?e ! n then top else bot)))
by (simp add: S-matrix-def N-matrix-def)

also have ... = (
⊔

k ((if (∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc
l) ∨ (k = ?g ∧ i = ?h) then top else bot) ∗ (if k = ?e ! n then top else bot)))

by (smt (verit, best) sup-monoid.sum.cong symmetric-bot-closed
symmetric-top-closed)

also have ... = (
⊔

k (if (∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc l
∧ k = ?e ! n) ∨ (k = ?g ∧ i = ?h ∧ k = ?e ! n) then top else bot))

by (smt (verit, best) covector-bot-closed idempotent-bot-closed
sup-monoid.sum.cong surjective-top-closed vector-bot-closed)

also have ... = (if ∃ l . Suc l<length ?e ∧ ?e ! n = ?e ! l ∧ i = ?e ! Suc l
then top else bot)

proof −
have

∧
k . ¬(k = ?g ∧ i = ?h ∧ k = ?e ! n)

using 2 distinct-conv-nth[of ?e] enum-distinct by auto
thus ?thesis

by (smt (verit, del-insts) comp-inf .ub-sum sup.order-iff
sup-monoid.sum.neutral sup-top-right)

qed
also have ... = (if i = ?e ! Suc n then top else bot)

using 4 by simp

127

also have ... = mnat (Suc n) (i,j)
by (simp add: N-matrix-def)

finally show mnat (Suc n) (i,j) = (?p (Suc n) � ?z) (i,j)
by simp

qed
qed

qed

lemma N-matrix-power-S ′:
n < length (enum-class.enum :: ′a list) −→ mnat n = matrix-monoid.power

(msucct) n � (mZero :: (′a::enum, ′b::stone-relation-algebra) square)
proof (induct n)

let ?z = mZero :: (′a, ′b) square
let ?s = msucc :: (′a, ′b) square
let ?e = enum-class.enum :: ′a list
let ?h = hd ?e
let ?l = length ?e
let ?p = matrix-monoid.power (?st)
case 0
have (UNIV :: ′a set) 6= {}

by simp
hence ?h = ?e ! 0

by (simp add: hd-conv-nth UNIV-enum)
thus ?case

by (simp add: N-matrix-def Z-matrix-def)
case (Suc n)
assume 1 : n < ?l −→ mnat n = ?p n � ?z
show Suc n < ?l −→ mnat (Suc n) = ?p (Suc n) � ?z
proof

assume 2 : Suc n < ?l
hence n < ?l

by simp
hence ∀ l<?l . (?e ! l = ?e ! n −→ l = n)

using nth-eq-iff-index-eq enum-distinct by auto
hence 3 :

∧
i . (∃ l<?l . ?e ! n = ?e ! l ∧ i = ?e ! Suc l) −→ (i = ?e ! Suc n)

by auto
have 4 :

∧
i . (∃ l . Suc l<?l ∧ ?e ! n = ?e ! l ∧ i = ?e ! Suc l) ←→ (i = ?e !

Suc n)
apply (rule iffI)
using 3 apply (metis Suc-lessD)
using 2 by auto

show mnat (Suc n) = ?p (Suc n) � ?z
proof (rule ext, rule prod-cases)

fix i j :: ′a
have (?p (Suc n) � ?z) (i,j) = (?st � mnat n) (i,j)

using 1 2 by (simp add: matrix-monoid.mult-assoc)
also have ... = (

⊔
k ((?s (k,i))T ∗ mnat n (k,j)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k ((if ∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc l

128

then top else bot)T ∗ (if k = ?e ! n then top else bot)))
by (simp add: S ′-matrix-def N-matrix-def)

also have ... = (
⊔

k ((if ∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc l
then top else bot) ∗ (if k = ?e ! n then top else bot)))

by (smt (verit, best) sup-monoid.sum.cong symmetric-bot-closed
symmetric-top-closed)

also have ... = (
⊔

k (if ∃ l . Suc l<length ?e ∧ k = ?e ! l ∧ i = ?e ! Suc l ∧
k = ?e ! n then top else bot))

by (smt (verit, best) covector-bot-closed idempotent-bot-closed
sup-monoid.sum.cong surjective-top-closed vector-bot-closed)

also have ... = (if ∃ l . Suc l<length ?e ∧ ?e ! n = ?e ! l ∧ i = ?e ! Suc l
then top else bot)

by (smt (verit, del-insts) comp-inf .ub-sum sup.order-iff
sup-monoid.sum.neutral sup-top-right)

also have ... = (if i = ?e ! Suc n then top else bot)
using 4 by simp

also have ... = mnat (Suc n) (i,j)
by (simp add: N-matrix-def)

finally show mnat (Suc n) (i,j) = (?p (Suc n) � ?z) (i,j)
by simp

qed
qed

qed

lemma N-matrix-power-S ′-hom-zero:
mnat 0 = (mZero :: (′a::enum, ′b::stone-relation-algebra) square)

proof −
let ?e = enum-class.enum :: ′a list
have (UNIV :: ′a set) = set ?e

using UNIV-enum by simp
hence 0 < length ?e

by auto
thus ?thesis

using N-matrix-power-S ′ by force
qed

lemma N-matrix-power-S ′-hom-succ:
assumes Suc n < length (enum-class.enum :: ′a list)

shows mnat (Suc n) = msucct � (mnat n ::
(′a::enum, ′b::stone-relation-algebra) square)
proof −

let ?e = enum-class.enum :: ′a list
let ?z = mZero :: (′a, ′b) square
have 1 : n < length ?e

using assms by simp
have mnat (Suc n) = matrix-monoid.power (msucct) (Suc n) � ?z

using assms N-matrix-power-S ′ by blast
also have ... = msucct � matrix-monoid.power (msucct) n � ?z

by simp

129

also have ... = msucct � (matrix-monoid.power (msucct) n � ?z)
by (simp add: matrix-monoid.mult-assoc)

also have ... = msucct � mnat n
using 1 by (metis N-matrix-power-S ′)

finally show ?thesis
.

qed

lemma N-matrix-power-S ′-hom-inj:
assumes m < length (enum-class.enum :: ′a list)

and n < length (enum-class.enum :: ′a list)
and m 6= n

shows mnat m 6= (mnat n :: (′a::enum, ′b::stone-relation-algebra-consistent)
square)
proof −

let ?e = enum-class.enum :: ′a list
let ?m = ?e ! m
have 1 : mnat m (?m,?m) = top

by (simp add: N-matrix-def)
have mnat n (?m,?m) = bot

apply (unfold N-matrix-def)
using assms enum-distinct nth-eq-iff-index-eq by auto

thus ?thesis
using 1 by (metis consistent)

qed

syntax
-sum-sup-monoid :: idt ⇒ nat ⇒ ′a::bounded-semilattice-sup-bot ⇒ ′a (‹(

⊔
-<- .

-)› [0 ,51 ,10] 10)
syntax-consts

-sum-sup-monoid == sup-monoid.sum
translations⊔

x<y . t => XCONST sup-monoid.sum (λx . t) { x . x < y }

context bounded-semilattice-sup-bot
begin

lemma ub-sum-nat:
fixes f :: nat ⇒ ′a
assumes i < l

shows f i ≤ (
⊔

k<l . f k)
by (metis (no-types, lifting) assms finite-Collect-less-nat sup-ge1

sup-monoid.sum.remove mem-Collect-eq)

lemma lub-sum-nat:
fixes f :: nat ⇒ ′a
assumes ∀ k<l . f k ≤ x

shows (
⊔

k<l . f k) ≤ x
apply (rule finite-subset-induct[where A={k . k < l}])

130

by (simp-all add: assms)

end

lemma ext-sum-nat:
fixes l :: nat
shows (

⊔
k<l . f k x) = (

⊔
k<l . f k) x

apply (rule finite-subset-induct[where A={k . k < l}])
apply simp
apply simp
apply (metis (no-types, lifting) bot-apply sup-monoid.sum.empty)
by (metis (mono-tags, lifting) sup-apply sup-monoid.sum.insert)

interpretation matrix-skra-peano-1 : skra-peano-1 where sup = sup-matrix and
inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square and top = top-matrix and uminus = uminus-matrix and one =
one-matrix and times = times-matrix and conv = conv-matrix and star =
star-matrix and Z = Z-matrix and S = S-matrix
proof

let ?z = mZero :: (′a, ′b) square
let ?s = msuccmod :: (′a, ′b) square
let ?e = enum-class.enum :: ′a list
let ?h = hd ?e
let ?l = length ?e
let ?g = ?e ! minus-class.minus ?l 1
let ?p = matrix-monoid.power (?st)
have 1 : ?z � mtop = ?z
proof (rule ext, rule prod-cases)

fix i j :: ′a
have (?z � mtop) (i,j) = (

⊔
k (?z (i,k) ∗ top))

by (simp add: times-matrix-def top-matrix-def)
also have ... = (

⊔
k::

′a (if i = ?h then top else bot) ∗ top)
by (simp add: Z-matrix-def)

also have ... = (if i = ?h then top else bot) ∗ (top :: ′b)
using sum-const by blast

also have ... = ?z (i,j)
by (simp add: Z-matrix-def)

finally show (?z � mtop) (i,j) = ?z (i,j)
.

qed
have 2 : ?z � ?zt � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (?z � ?zt) (i,j) = (

⊔
k (?z (i,k) ∗ (?z (j,k))T))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k::

′a (if i = ?h then top else bot) ∗ (if j = ?h then top else
bot))

131

by (simp add: Z-matrix-def)
also have ... = (if i = ?h then top else bot) ∗ (if j = ?h then top else bot)

using sum-const by blast
also have ... ≤ mone (i,j)

by (simp add: one-matrix-def)
finally show (?z � ?zt) (i,j) ≤ mone (i,j)

.
qed
have 3 : mtop � ?z = mtop
proof (rule ext, rule prod-cases)

fix i j :: ′a
have mtop (i,j) = (top:: ′b) ∗ (if ?h = ?h then top else bot)

by (simp add: top-matrix-def)
also have ... ≤ (

⊔
k::

′a (top ∗ (if k = ?h then top else bot)))
by (rule ub-sum)

also have ... = (
⊔

k (top ∗ ?z (k,j)))
by (simp add: Z-matrix-def)

also have ... = (mtop � ?z) (i,j)
by (simp add: times-matrix-def top-matrix-def)

finally show (mtop � ?z) (i,j) = mtop (i,j)
by (simp add: inf .le-bot top-matrix-def)

qed
show matrix-stone-relation-algebra.point ?z

using 1 2 3 by simp
have ∀ i (j:: ′a) (k:: ′a) . (∃ l<?l . ∃m<?l . k = ?e ! l ∧ i = ?e ! Suc l ∧ k = ?e

! m ∧ j = ?e ! Suc m) −→ i = j
using distinct-conv-nth enum-distinct by auto

hence 4 : ∀ i (j:: ′a) (k:: ′a) . (∃ l m . Suc l<?l ∧ Suc m<?l ∧ k = ?e ! l ∧ i =
?e ! Suc l ∧ k = ?e ! m ∧ j = ?e ! Suc m) −→ i = j

by (metis Suc-lessD)
show ?st � ?s � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (?st � ?s) (i,j) = (

⊔
k (?s (k,i) ∗ ?s (k,j)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k::

′a ((if (∃ l . Suc l<?l ∧ k = ?e ! l ∧ i = ?e ! Suc l) ∨ (k
= ?g ∧ i = ?h) then top else bot) ∗ (if (∃m . Suc m<?l ∧ k = ?e ! m ∧ j = ?e !
Suc m) ∨ (k = ?g ∧ j = ?h) then top else bot)))

by (simp add: S-matrix-def)
also have ... = (

⊔
k::

′a (if (∃ l m . Suc l<?l ∧ Suc m<?l ∧ k = ?e ! l ∧ i =
?e ! Suc l ∧ k = ?e ! m ∧ j = ?e ! Suc m) ∨ (k = ?g ∧ i = ?h ∧ j = ?h) then
top else bot))

proof −
have 5 :

∧
k . ¬((∃ l . Suc l<?l ∧ k = ?e ! l ∧ i = ?e ! Suc l) ∧ (k = ?g ∧ j

= ?h))
using distinct-conv-nth[of ?e] enum-distinct by auto

have
∧

k . ¬((k = ?g ∧ i = ?h) ∧ (∃m . Suc m<?l ∧ k = ?e ! m ∧ j = ?e !
Suc m))

using distinct-conv-nth[of ?e] enum-distinct by auto

132

thus ?thesis
using 5 by (smt (verit) covector-bot-closed idempotent-bot-closed

sup-monoid.sum.cong surjective-top-closed vector-bot-closed)
qed
also have ... ≤ (

⊔
k::

′a (if i = j then top else bot))
using 4 by (smt (verit, best) comp-inf .ub-sum order-top-class.top-greatest

sup-monoid.sum.not-neutral-contains-not-neutral top.extremum-uniqueI)
also have ... ≤ (if i = j then top else bot)

by (simp add: sum-const)
also have ... = mone (i,j)

by (simp add: one-matrix-def)
finally show (?st � ?s) (i,j) ≤ mone (i,j)

.
qed
have 6 : ∀ i (j:: ′a) (k:: ′a) . (∃ l m . Suc l<?l ∧ Suc m<?l ∧ i = ?e ! l ∧ k = ?e

! Suc l ∧ j = ?e ! m ∧ k = ?e ! Suc m) −→ i = j
using distinct-conv-nth enum-distinct by auto

show ?s � ?st � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (?s � ?st) (i,j) = (

⊔
k (?s (i,k) ∗ ?s (j,k)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k::

′a ((if (∃ l . Suc l<?l ∧ i = ?e ! l ∧ k = ?e ! Suc l) ∨ (i
= ?g ∧ k = ?h) then top else bot) ∗ (if (∃m . Suc m<?l ∧ j = ?e ! m ∧ k = ?e !
Suc m) ∨ (j = ?g ∧ k = ?h) then top else bot)))

by (simp add: S-matrix-def)
also have ... = (

⊔
k::

′a (if (∃ l m . Suc l<?l ∧ Suc m<?l ∧ i = ?e ! l ∧ k =
?e ! Suc l ∧ j = ?e ! m ∧ k = ?e ! Suc m) ∨ (i = ?g ∧ k = ?h ∧ j = ?g) then
top else bot))

proof −
have 7 :

∧
l . Suc l<?l −→ 0<?l

by auto
have 8 : ?h = ?e ! 0
proof (rule hd-conv-nth, rule)

assume ?e = []
hence (UNIV :: ′a set) = {}

by (auto simp add: UNIV-enum)
thus False

by simp
qed
have 9 :

∧
k . ¬((∃ l . Suc l<?l ∧ i = ?e ! l ∧ k = ?e ! Suc l) ∧ (j = ?g ∧ k

= ?h))
using 7 8 distinct-conv-nth[of ?e] enum-distinct by auto

have
∧

k . ¬((i = ?g ∧ k = ?h) ∧ (∃m . Suc m<?l ∧ j = ?e ! m ∧ k = ?e !
Suc m))

using 7 8 distinct-conv-nth[of ?e] enum-distinct by auto
thus ?thesis

using 9 by (smt (verit) covector-bot-closed idempotent-bot-closed
sup-monoid.sum.cong surjective-top-closed vector-bot-closed)

133

qed
also have ... ≤ (

⊔
k::

′a (if i = j then top else bot))
using 6 by (smt (verit, best) comp-inf .ub-sum order-top-class.top-greatest

sup-monoid.sum.not-neutral-contains-not-neutral top.extremum-uniqueI)
also have ... ≤ (if i = j then top else bot)

by simp
also have ... = mone (i,j)

by (simp add: one-matrix-def)
finally show (?s � ?st) (i,j) ≤ mone (i,j)

.
qed
have (mtop :: (′a, ′b) square) = (

⊔
k<?l . mnat k)

proof (rule ext, rule prod-cases)
fix i j :: ′a
have mtop (i,j) = (top :: ′b)

by (simp add: top-matrix-def)
also have ... = (

⊔
k<?l . (if i = ?e ! k then top else bot))

proof −
have i ∈ set ?e

using UNIV-enum by auto
from this obtain k where 6 : k < ?l ∧ i = ?e ! k

by (metis in-set-conv-nth)
hence (λk . if i = ?e ! k then top else bot) k ≤ (

⊔
k<?l . (if i = ?e ! k then

top else bot :: ′b))
by (metis ub-sum-nat)

hence top ≤ (
⊔

k<?l . (if i = ?e ! k then top else bot :: ′b))
using 6 by simp

thus ?thesis
using top.extremum-uniqueI by force

qed
also have ... = (

⊔
k<?l . mnat k (i,j))

by (simp add: N-matrix-def)
also have ... = (

⊔
k<?l . mnat k) (i,j)

by (simp add: ext-sum-nat)
finally show (mtop (i,j) :: ′b) = (

⊔
k<?l . mnat k) (i,j)

.
qed
also have ... = (

⊔
k<?l . ?p k � ?z)

proof −
have

∧
k . k<?l −→ mnat k = ?p k � ?z

using N-matrix-power-S by auto
thus ?thesis

by (metis (no-types, lifting) mem-Collect-eq sup-monoid.sum.cong)
qed
also have ... � ?st� � ?z
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (

⊔
k<?l . ?p k � ?z) (i,j) = (

⊔
k<?l . (?p k � ?z) (i,j))

by (metis ext-sum-nat)

134

also have ... ≤ (?st� � ?z) (i,j)
apply (rule lub-sum-nat)
by (metis less-eq-matrix-def matrix-idempotent-semiring.mult-left-isotone

matrix-kleene-algebra.star .power-below-circ)
finally show (

⊔
k<?l . ?p k � ?z) (i,j) ≤ (?st� � ?z) (i,j)

.
qed
finally show ?st� � ?z = mtop

by (simp add: matrix-order .antisym-conv)
qed

interpretation matrix-skra-peano-2 : skra-peano-2 where sup = sup-matrix and
inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square and top = top-matrix and uminus = uminus-matrix and one =
one-matrix and times = times-matrix and conv = conv-matrix and star =
star-matrix and Z = Z-matrix and S = S-matrix
proof

let ?s = msuccmod :: (′a, ′b) square
let ?e = enum-class.enum :: ′a list
let ?h = hd ?e
let ?l = length ?e
let ?g = ?e ! minus-class.minus ?l 1
show matrix-bounded-idempotent-semiring.total ?s
proof (rule ext, rule prod-cases)

fix i j :: ′a
have (?s � mtop) (i,j) = (

⊔
k (?s (i,k) ∗ top))

by (simp add: times-matrix-def top-matrix-def)
also have ... = (

⊔
k::

′a if (∃ l . Suc l<?l ∧ i = ?e ! l ∧ k = ?e ! Suc l) ∨ (i
= ?g ∧ k = ?h) then top else bot)

by (simp add: S-matrix-def)
also have ... = top
proof −

have
∧

i . (∃ l . Suc l<?l ∧ i = ?e ! l) ∨ i = ?g
by (metis in-set-conv-nth in-enum Suc-lessI diff-Suc-1)

hence
∧

i . ∃ k . (∃ l . Suc l<?l ∧ i = ?e ! l ∧ k = ?e ! Suc l) ∨ (i = ?g ∧ k
= ?h)

by blast
thus ?thesis

by (smt (verit, ccfv-threshold) comp-inf .ub-sum top.extremum-uniqueI)
qed
finally show (?s � mtop) (i,j) = mtop (i,j)

by (simp add: top-matrix-def)
qed

qed

interpretation matrix-skra-peano-3 : skra-peano-3 where sup = sup-matrix and
inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =

135

bot-matrix ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square and top = top-matrix and uminus = uminus-matrix and one =
one-matrix and times = times-matrix and conv = conv-matrix and star =
star-matrix and Z = Z-matrix and S = S-matrix
proof (unfold-locales, rule finite-surj)

show finite (UNIV :: ′a rel set)
by simp

let ?f = λR p . if p ∈ R then top else bot
show { f :: (′a, ′b) square . matrix-p-algebra.regular f } ⊆ range ?f
proof

fix f :: (′a, ′b) square
let ?R = { (x,y) . f (x,y) = top }
assume f ∈ { f . matrix-p-algebra.regular f }
hence matrix-p-algebra.regular f

by simp
hence

∧
p . f p 6= top −→ f p = bot

by (metis linorder-stone-algebra-expansion-class.uminus-def
uminus-matrix-def)

hence f = ?f ?R
by fastforce

thus f ∈ range ?f
by blast

qed
qed

interpretation matrix-skra-peano-4 : skra-peano-4 where sup = sup-matrix and
inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and bot =
bot-matrix ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-plus-expansion)
square and top = top-matrix and uminus = uminus-matrix and one =
one-matrix and times = times-matrix and conv = conv-matrix
and star = star-matrix and Z = Z-matrix and S = S-matrix and choose-point =
agg-square-m-kleene-algebra-2 .m-choose-component-algebra-tarski.choose-component-point

apply unfold-locales
apply (simp add:

agg-square-m-kleene-algebra-2 .m-choose-component-algebra-tarski.choose-component-point-point)
by (simp add:

agg-square-m-kleene-algebra-2 .m-choose-component-algebra-tarski.choose-component-point-decreasing)

interpretation matrix ′-skra-peano-1 : skra-peano-1 where sup = sup-matrix
and inf = inf-matrix and less-eq = less-eq-matrix and less = less-matrix and
bot = bot-matrix ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square and top = top-matrix and uminus = uminus-matrix and one =
one-matrix and times = times-matrix and conv = conv-matrix and star =
star-matrix and Z = Z-matrix and S = S ′-matrix
proof

let ?z = mZero :: (′a, ′b) square

136

let ?s = msucc :: (′a, ′b) square
let ?e = enum-class.enum :: ′a list
let ?l = length ?e
let ?p = matrix-monoid.power (?st)
show matrix-stone-relation-algebra.point ?z

using matrix-skra-peano-1 .Z-point by auto
have ∀ i (j:: ′a) (k:: ′a) . (∃ l<?l . ∃m<?l . k = ?e ! l ∧ i = ?e ! Suc l ∧ k = ?e

! m ∧ j = ?e ! Suc m) −→ i = j
using distinct-conv-nth enum-distinct by auto

hence 4 : ∀ i (j:: ′a) (k:: ′a) . (∃ l m . Suc l<?l ∧ Suc m<?l ∧ k = ?e ! l ∧ i =
?e ! Suc l ∧ k = ?e ! m ∧ j = ?e ! Suc m) −→ i = j

by (metis Suc-lessD)
show ?st � ?s � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (?st � ?s) (i,j) = (

⊔
k (?s (k,i) ∗ ?s (k,j)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k::

′a ((if ∃ l . Suc l<?l ∧ k = ?e ! l ∧ i = ?e ! Suc l then
top else bot) ∗ (if ∃m . Suc m<?l ∧ k = ?e ! m ∧ j = ?e ! Suc m then top else
bot)))

by (simp add: S ′-matrix-def)
also have ... = (

⊔
k::

′a (if (∃ l m . Suc l<?l ∧ Suc m<?l ∧ k = ?e ! l ∧ i =
?e ! Suc l ∧ k = ?e ! m ∧ j = ?e ! Suc m) then top else bot))

by (smt (verit) covector-bot-closed idempotent-bot-closed
sup-monoid.sum.cong surjective-top-closed vector-bot-closed)

also have ... ≤ (
⊔

k::
′a (if i = j then top else bot))

using 4 by (smt (verit, best) comp-inf .ub-sum order-top-class.top-greatest
sup-monoid.sum.not-neutral-contains-not-neutral top.extremum-uniqueI)

also have ... ≤ (if i = j then top else bot)
by (simp add: sum-const)

also have ... = mone (i,j)
by (simp add: one-matrix-def)

finally show (?st � ?s) (i,j) ≤ mone (i,j)
.

qed
have 5 : ∀ i (j:: ′a) (k:: ′a) . (∃ l m . Suc l<?l ∧ Suc m<?l ∧ i = ?e ! l ∧ k = ?e

! Suc l ∧ j = ?e ! m ∧ k = ?e ! Suc m) −→ i = j
using distinct-conv-nth enum-distinct by auto

show ?s � ?st � mone
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (?s � ?st) (i,j) = (

⊔
k (?s (i,k) ∗ ?s (j,k)))

by (simp add: times-matrix-def conv-matrix-def)
also have ... = (

⊔
k::

′a ((if ∃ l . Suc l<?l ∧ i = ?e ! l ∧ k = ?e ! Suc l then
top else bot) ∗ (if ∃m . Suc m<?l ∧ j = ?e ! m ∧ k = ?e ! Suc m then top else
bot)))

by (simp add: S ′-matrix-def)
also have ... = (

⊔
k::

′a (if (∃ l m . Suc l<?l ∧ Suc m<?l ∧ i = ?e ! l ∧ k =
?e ! Suc l ∧ j = ?e ! m ∧ k = ?e ! Suc m) then top else bot))

137

by (smt (verit) covector-bot-closed idempotent-bot-closed
sup-monoid.sum.cong surjective-top-closed vector-bot-closed)

also have ... ≤ (
⊔

k::
′a (if i = j then top else bot))

using 5 by (smt (verit, best) comp-inf .ub-sum order-top-class.top-greatest
sup-monoid.sum.not-neutral-contains-not-neutral top.extremum-uniqueI)

also have ... ≤ (if i = j then top else bot)
by simp

also have ... = mone (i,j)
by (simp add: one-matrix-def)

finally show (?s � ?st) (i,j) ≤ mone (i,j)
.

qed
have (mtop :: (′a, ′b) square) = (

⊔
k<?l . mnat k)

proof (rule ext, rule prod-cases)
fix i j :: ′a
have mtop (i,j) = (top :: ′b)

by (simp add: top-matrix-def)
also have ... = (

⊔
k<?l . (if i = ?e ! k then top else bot))

proof −
have i ∈ set ?e

using UNIV-enum by auto
from this obtain k where 6 : k < ?l ∧ i = ?e ! k

by (metis in-set-conv-nth)
hence (λk . if i = ?e ! k then top else bot) k ≤ (

⊔
k<?l . (if i = ?e ! k then

top else bot :: ′b))
by (metis ub-sum-nat)

hence top ≤ (
⊔

k<?l . (if i = ?e ! k then top else bot :: ′b))
using 6 by simp

thus ?thesis
using top.extremum-uniqueI by force

qed
also have ... = (

⊔
k<?l . mnat k (i,j))

by (simp add: N-matrix-def)
also have ... = (

⊔
k<?l . mnat k) (i,j)

by (simp add: ext-sum-nat)
finally show (mtop (i,j) :: ′b) = (

⊔
k<?l . mnat k) (i,j)

.
qed
also have ... = (

⊔
k<?l . ?p k � ?z)

proof −
have

∧
k . k<?l −→ mnat k = ?p k � ?z

using N-matrix-power-S ′ by auto
thus ?thesis

by (metis (no-types, lifting) mem-Collect-eq sup-monoid.sum.cong)
qed
also have ... � ?st� � ?z
proof (unfold less-eq-matrix-def , rule allI , rule prod-cases)

fix i j :: ′a
have (

⊔
k<?l . ?p k � ?z) (i,j) = (

⊔
k<?l . (?p k � ?z) (i,j))

138

by (metis ext-sum-nat)
also have ... ≤ (?st� � ?z) (i,j)

apply (rule lub-sum-nat)
by (metis less-eq-matrix-def matrix-idempotent-semiring.mult-left-isotone

matrix-kleene-algebra.star .power-below-circ)
finally show (

⊔
k<?l . ?p k � ?z) (i,j) ≤ (?st� � ?z) (i,j)

.
qed
finally show ?st� � ?z = mtop

by (simp add: matrix-order .antisym-conv)
qed

lemma nat-less-lesseq-pred:
(m :: nat) < n =⇒ m ≤ minus-class.minus n 1
by simp

lemma S ′-matrix-acyclic:
matrix-stone-kleene-relation-algebra.acyclic (msucc ::

(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square)
proof (rule ccontr)

let ?e = enum-class.enum :: ′a list
let ?l = length ?e
let ?l1 = minus-class.minus ?l 1
let ?s = msucc :: (′a, ′b) square
have (UNIV :: ′a set) 6= {}

by simp
hence 1 : ?e 6= []

by (simp add: UNIV-enum)
hence 2 : ?l 6= 0

by simp
assume ¬ matrix-stone-kleene-relation-algebra.acyclic ?s
hence ?s � ?s� ⊗ mone 6= mbot

by (simp add: matrix-p-algebra.pseudo-complement)
from this obtain i1 i2 where (?s � ?s� ⊗ mone) (i1 ,i2) 6= bot

by (metis bot-matrix-def ext surj-pair)
hence 3 : (?s � ?s�) (i1 ,i2) u mone (i1 ,i2) 6= bot

by (simp add: inf-matrix-def)
hence mone (i1 ,i2) 6= (bot :: ′b)

by force
hence i1 = i2

by (metis (mono-tags, lifting) prod.simps(2) one-matrix-def)
hence (?s � ?s�) (i1 ,i1) 6= bot

using 3 by force
hence (

⊔
k ?s (i1 ,k) ∗ (?s�) (k,i1)) 6= bot

by (smt (verit, best) times-matrix-def case-prod-conv sup-monoid.sum.cong)
from this obtain i3 where 4 : ?s (i1 ,i3) ∗ (?s�) (i3 ,i1) 6= bot

by force
hence ?s (i1 ,i3) 6= bot

139

by force
hence (if ∃ j1 . Suc j1<?l ∧ i1 = ?e ! j1 ∧ i3 = ?e ! Suc j1 then top else bot ::

′b) 6= bot
by (simp add: S ′-matrix-def)

from this obtain j1 where 5 : Suc j1 < ?l ∧ i1 = ?e ! j1 ∧ i3 = ?e ! Suc j1
by meson

have j1 6= ?l1
using 5 enum-distinct by auto

hence i1 6= last ?e
apply (subst last-conv-nth)
using 1 apply simp
apply (subst 5)
apply (subst nth-eq-iff-index-eq[of ?e])
using 1 5 enum-distinct by auto

hence 6 : mone (last ?e,i1) = (bot :: ′b)
by (simp add: one-matrix-def)

have 7 : (?s�) (i3 ,i1) 6= bot
using 4 by force

have
∧

j2 . Suc j1 + j2 < ?l −→ (?s�) (?e ! (Suc j1 + j2),i1) 6= bot
proof −

fix j2
show Suc j1 + j2 < ?l −→ (?s�) (?e ! (Suc j1 + j2),i1) 6= bot
proof (induct j2)

case 0
show ?case

using 5 7 by simp
next

case (Suc j3)
show ?case
proof

assume 8 : Suc j1 + Suc j3 < ?l
hence (?s�) (?e ! (Suc j1 + j3),i1) 6= bot

using Suc by simp
hence (mone ⊕ ?s � ?s�) (?e ! (Suc j1 + j3),i1) 6= bot

by (metis matrix-kleene-algebra.star-left-unfold-equal)
hence 9 : mone (?e ! (Suc j1 + j3),i1) t (?s � ?s�) (?e ! (Suc j1 +

j3),i1) 6= bot
by (simp add: sup-matrix-def)

have ?e ! (Suc j1 + j3) 6= i1
using 5 8 distinct-conv-nth[of ?e] enum-distinct by auto

hence mone (?e ! (Suc j1 + j3),i1) = (bot :: ′b)
by (simp add: one-matrix-def)

hence (?s � ?s�) (?e ! (Suc j1 + j3),i1) 6= bot
using 9 by simp

hence (
⊔

k ?s (?e ! (Suc j1 + j3),k) ∗ (?s�) (k,i1)) 6= bot
by (smt (verit, best) times-matrix-def case-prod-conv

sup-monoid.sum.cong)
from this obtain i4 where 10 : ?s (?e ! (Suc j1 + j3),i4) ∗ (?s�) (i4 ,i1)

6= bot

140

by force
hence ?s (?e ! (Suc j1 + j3),i4) 6= bot

by force
hence (if ∃ j4 . Suc j4<?l ∧ ?e ! (Suc j1 + j3) = ?e ! j4 ∧ i4 = ?e ! Suc

j4 then top else bot :: ′b) 6= bot
by (simp add: S ′-matrix-def)

from this obtain j4 where 11 : Suc j4<?l ∧ ?e ! (Suc j1 + j3) = ?e ! j4
∧ i4 = ?e ! Suc j4

by meson
hence Suc j1 + j3 = j4

apply (subst nth-eq-iff-index-eq[of ?e, THEN sym])
using 8 enum-distinct by auto

hence i4 = ?e ! (Suc j1 + Suc j3)
using 11 by simp

thus (?s�) (?e ! (Suc j1 + Suc j3),i1) 6= bot
using 10 by force

qed
qed

qed
hence

∧
j5 . Suc j1 ≤ j5 ∧ j5 < ?l −→ (?s�) (?e ! j5 ,i1) 6= bot

using le-Suc-ex by blast
hence (?s�) (last ?e,i1) 6= bot

apply (subst last-conv-nth)
using 1 2 5 nat-less-lesseq-pred by auto

hence (mone ⊕ ?s � ?s�) (last ?e,i1) 6= bot
by (metis matrix-kleene-algebra.star-left-unfold-equal)

hence mone (last ?e,i1) t (?s � ?s�) (last ?e,i1) 6= bot
by (simp add: sup-matrix-def)

hence (?s � ?s�) (last ?e,i1) 6= bot
using 6 by simp

hence (
⊔

k ?s (last ?e,k) ∗ (?s�) (k,i1)) 6= bot
by (smt (verit, best) times-matrix-def case-prod-conv sup-monoid.sum.cong)

from this obtain i5 where ?s (last ?e,i5) ∗ (?s�) (i5 ,i1) 6= bot
by force

hence ?s (last ?e,i5) 6= bot
by force

hence (if ∃ j6 . Suc j6<?l ∧ last ?e = ?e ! j6 ∧ i5 = ?e ! Suc j6 then top else
bot :: ′b) 6= bot

by (simp add: S ′-matrix-def)
from this obtain j6 where 12 : Suc j6<?l ∧ last ?e = ?e ! j6 ∧ i5 = ?e ! Suc

j6
by force

hence ?e ! ?l1 = ?e ! j6
using 1 5 by (metis last-conv-nth)

hence ?l1 = j6
apply (subst nth-eq-iff-index-eq[of ?e, THEN sym])
using 2 12 enum-distinct by auto

thus False
using 12 by auto

141

qed

lemma N-matrix-point:
assumes n < length (enum-class.enum :: ′a list)

shows matrix-stone-relation-algebra.point (mnat n ::
(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square)
proof −

let ?e = enum-class.enum :: ′a list
let ?n = mnat n :: (′a, ′b) square
let ?s = msucc :: (′a, ′b) square
let ?z = mZero :: (′a, ′b) square
have 1 : ?n = matrix-monoid.power (?st) n � ?z

using assms N-matrix-power-S ′ by blast
have ?s = matrix-skra-peano-1 .S ′

by (simp add: S ′-matrix-S-matrix inf-matrix-def minus-matrix-def
uminus-matrix-def)

hence 2 : matrix-p-algebra.regular ?s
by (metis matrix-skra-peano-2 .S ′-regular)

have ?n 6= mbot
proof

assume ?n = mbot
hence ?n (?e ! n,?e ! n) = mbot (?e ! n,?e ! n)

by simp
hence top = (bot :: ′b)

by (simp add: N-matrix-def bot-matrix-def)
thus False

by (metis bot-not-top)
qed
thus matrix-stone-relation-algebra.point ?n

using 1 2 by (metis (no-types, lifting) matrix ′-skra-peano-1 .S-univalent
matrix ′-skra-peano-1 .Z-point matrix-stone-relation-algebra.injective-power-closed
ma-
trix-stone-relation-algebra-tarski-consistent.regular-injective-vector-point-xor-bot
matrix-stone-relation-algebra.regular-power-closed
matrix-stone-relation-algebra.bijective-regular
matrix-stone-relation-algebra.comp-associative
matrix-stone-relation-algebra.injective-mult-closed
matrix-stone-relation-algebra.regular-conv-closed
matrix-stone-relation-algebra.regular-mult-closed
matrix-stone-relation-algebra.univalent-conv-injective)
qed

lemma N-matrix-power-S ′-hom-lesseq:
assumes m < length (enum-class.enum :: ′a list)

and n < length (enum-class.enum :: ′a list)
shows m < n ←→ mnat m � msucc � msucc� � (mnat n ::

(′a::enum, ′b::linorder-stone-kleene-relation-algebra-tarski-consistent-expansion)
square)

142

proof −
let ?m = mnat m :: (′a, ′b) square
let ?n = mnat n :: (′a, ′b) square
let ?s = msucc :: (′a, ′b) square
let ?z = mZero :: (′a, ′b) square
have 1 : ?m = matrix-monoid.power (?st) m � ?z

using assms(1) N-matrix-power-S ′ by blast
have 2 : ?n = matrix-monoid.power (?st) n � ?z

using assms(2) N-matrix-power-S ′ by blast
have 3 : matrix-stone-relation-algebra.point ?m

by (simp add: assms(1) N-matrix-point)
have 4 : matrix-stone-relation-algebra.point ?n

by (simp add: assms(2) N-matrix-point)
show m < n ←→ ?m � ?s � ?s� � ?n
proof

assume m < n
from this obtain k where n = Suc k + m

using less-iff-Suc-add by auto
hence ?n = matrix-monoid.power (?st) (Suc k) � matrix-monoid.power (?st)

m � ?z
using 2 by (metis matrix-monoid.power-add)

also have ... = matrix-monoid.power (?st) (Suc k) � ?m
using 1 by (simp add: matrix-monoid.mult-assoc)

also have ... = (matrix-monoid.power ?s (Suc k))t � ?m
by (metis matrix-stone-relation-algebra.power-conv-commute)

finally have ?m � matrix-monoid.power ?s (Suc k) � ?n
using 3 4 by (simp add: matrix-stone-relation-algebra.bijective-reverse)

also have ... = ?s � matrix-monoid.power ?s k � ?n
by simp

also have ... � ?s � ?s� � ?n
using matrix-idempotent-semiring.mult-left-isotone

matrix-idempotent-semiring.mult-right-isotone
matrix-kleene-algebra.star .power-below-circ by blast

finally show ?m � ?s � ?s� � ?n
.

next
assume 5 : ?m � ?s � ?s� � ?n
show m < n
proof (rule ccontr)

assume ¬ m < n
from this obtain k where m = k + n

by (metis add.commute add-diff-inverse-nat)
hence ?m = matrix-monoid.power (?st) k � matrix-monoid.power (?st) n

� ?z
using 1 by (metis matrix-monoid.power-add)

also have ... = matrix-monoid.power (?st) k � ?n
using 2 by (simp add: matrix-monoid.mult-assoc)

also have ... = (matrix-monoid.power ?s k)t � ?n
by (metis matrix-stone-relation-algebra.power-conv-commute)

143

finally have ?n � matrix-monoid.power ?s k � ?m
using 3 4 by (simp add: matrix-stone-relation-algebra.bijective-reverse)

also have ... � ?s� � ?m
using matrix-kleene-algebra.star .power-below-circ

matrix-stone-relation-algebra.comp-left-isotone by blast
finally have ?n � ?s� � ?m

.
hence ?m � ?s � ?s� � ?s� � ?m

using 5 by (metis (no-types, opaque-lifting) matrix-monoid.mult-assoc
matrix-order .dual-order .trans matrix-stone-relation-algebra.comp-right-isotone)

hence ?m � ?s � ?s� � ?m
by (metis matrix-kleene-algebra.star .circ-transitive-equal

matrix-monoid.mult-assoc)
thus False

using 3 S ′-matrix-acyclic
matrix-stone-kleene-relation-algebra-consistent.acyclic-reachable-different by blast

qed
qed

qed

end

References
[1] R.-J. Back and J. von Wright. Refinement Calculus. Springer, New

York, 1998.

[2] R. C. Backhouse and B. A. Carré. Regular algebra applied to path-
finding problems. Journal of the Institute of Mathematics and its Ap-
plications, 15(2):161–186, 1975.

[3] R. Berghammer. Combining relational calculus and the Dijkstra–
Gries method for deriving relational programs. Information Sciences,
119(3–4):155–171, 1999.

[4] R. Berghammer and G. Struth. On automated program construction
and verification. In C. Bolduc, J. Desharnais, and B. Ktari, editors,
Mathematics of Program Construction (MPC 2010), volume 6120 of
Lecture Notes in Computer Science, pages 22–41. Springer, 2010.

[5] R. Berghammer, B. von Karger, and A. Wolf. Relation-algebraic deriva-
tion of spanning tree algorithms. In J. Jeuring, editor, Mathematics of
Program Construction (MPC 1998), volume 1422 of Lecture Notes in
Computer Science, pages 23–43. Springer, 1998.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

144

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM Trans. Prog. Lang.
Syst., 29(3:17):1–65, 2007.

[8] B. A. Galler and M. J. Fisher. An improved equivalence algorithm.
Commun. ACM, 7(5):301–303, 1964.

[9] M. Gondran and M. Minoux. Graphs, Dioids and Semirings. Springer,
2008.

[10] W. Guttmann. Verifying minimum spanning tree algorithms with Stone
relation algebras. Journal of Logical and Algebraic Methods in Program-
ming, 101:132–150, 2018.

[11] W. Guttmann. Verifying the correctness of disjoint-set forests with
Kleene relation algebras. In U. Fahrenberg, P. Jipsen, and M. Winter,
editors, Relational and Algebraic Methods in Computer Science (RAM-
iCS 2020), volume 12062 of Lecture Notes in Computer Science, pages
134–151. Springer, 2020.

[12] W. Guttmann. Relation-algebraic verification of disjoint-set forests.
arXiv, 2301.10311, 2023. https://arxiv.org/abs/2301.10311.

[13] P. Höfner and B. Möller. Dijkstra, Floyd and Warshall meet Kleene.
Formal Aspects of Computing, 24(4):459–476, 2012.

[14] D. Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation, 110(2):366–390, 1994.

[15] P. Lammich and R. Meis. A separation logic framework for Imperative
HOL. Archive of Formal Proofs, 2012.

[16] B. Möller. Derivation of graph and pointer algorithms. In B. Möller,
H. A. Partsch, and S. A. Schuman, editors, Formal Program Develop-
ment, volume 755 of Lecture Notes in Computer Science, pages 123–160.
Springer, 1993.

[17] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.

[18] A. Tarski. On the calculus of relations. The Journal of Symbolic Logic,
6(3):73–89, 1941.

[19] B. Zhan. Verifying imperative programs using Auto2. Archive of Formal
Proofs, 2018.

145

https://arxiv.org/abs/2301.10311

	Overview
	Relation-Algebraic Semantics of Associative Array Access
	Relation-Algebraic Semantics of Disjoint-Set Forests
	Verifying Operations on Disjoint-Set Forests
	Make-Set
	Find-Set
	Path Compression
	Find-Set with Path Compression
	Union-Sets

	More on Array Access and Disjoint-Set Forests
	Verifying Further Operations on Disjoint-Set Forests
	Init-Sets
	Path Halving
	Path Splitting

	Verifying Union by Rank
	Peano structures
	Initialising Ranks
	Union by Rank

	Matrix Peano Algebras

