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Abstract

This document presents the formalization of introductory material
from recursion theory — definitions and basic properties of primitive
recursive functions, Cantor pairing function and computably enumer-
able sets (including a proof of existence of a one-complete computably
enumerable set and a proof of the Rice’s theorem).
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1 Cantor pairing function
theory CPair
imports Main
begin

We introduce a particular coding c-pair from ordered pairs of natural num-
bers to natural numbers. See [1] and the Isabelle documentation for more
information.

1.1 Pairing function
definition

sf :: nat ⇒ nat where
sf-def : sf x = x ∗ (x+1 ) div 2

definition
c-pair :: nat ⇒ nat ⇒ nat where
c-pair x y = sf (x+y) + x

lemma sf-at-0 : sf 0 = 0 by (simp add: sf-def )

lemma sf-at-1 : sf 1 = 1 by (simp add: sf-def )

lemma sf-at-Suc: sf (x+1 ) = sf x + x + 1
proof −

have S1 : sf (x+1 ) = ((x+1 )∗(x+2 )) div 2 by (simp add: sf-def )
have S2 : (x+1 )∗(x+2 ) = x∗(x+1 ) + 2∗(x+1 ) by (auto)
have S2-1 :

∧
x y. x=y =⇒ x div 2 = y div 2 by auto

from S2 have S3 : (x+1 )∗(x+2 ) div 2 = (x∗(x+1 ) + 2∗(x+1 )) div 2 by (rule
S2-1 )

have S4 : (0 ::nat) < 2 by (auto)
from S4 have S5 : (x∗(x+1 ) + 2∗(x+1 )) div 2 = (x+1 ) + x∗(x+1 ) div 2 by

simp
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from S1 S3 S5 show ?thesis by (simp add: sf-def )
qed

lemma arg-le-sf : x ≤ sf x
proof −

have x + x ≤ x∗(x + 1 ) by simp
hence (x + x) div 2 ≤ x∗(x+1 ) div 2 by (rule div-le-mono)
hence x ≤ x∗(x+1 ) div 2 by simp
thus ?thesis by (simp add: sf-def )

qed

lemma sf-mono: x ≤ y =⇒ sf x ≤ sf y
proof −

assume A1 : x ≤ y
then have x+1 ≤ y+1 by (auto)
with A1 have x∗(x+1 ) ≤ y∗(y+1 ) by (rule mult-le-mono)
then have x∗(x+1 ) div 2 ≤ y∗(y+1 ) div 2 by (rule div-le-mono)
thus ?thesis by (simp add: sf-def )

qed

lemma sf-strict-mono: x < y =⇒ sf x < sf y
proof −

assume A1 : x < y
from A1 have S1 : x+1 ≤ y by simp
from S1 sf-mono have S2 : sf (x+1 ) ≤ sf y by (auto)
from sf-at-Suc have S3 : sf x < sf (x+1 ) by (auto)
from S2 S3 show ?thesis by (auto)

qed

lemma sf-posI : x > 0 =⇒ sf (x) > 0
proof −

assume A1 : x > 0
then have sf (0 ) < sf (x) by (rule sf-strict-mono)
then show ?thesis by simp

qed

lemma arg-less-sf : x > 1 =⇒ x < sf (x)
proof −

assume A1 : x > 1
let ?y = x−(1 ::nat)
from A1 have S1 : x = ?y+1 by simp
from A1 have ?y > 0 by simp
then have S2 : sf (?y) > 0 by (rule sf-posI )
have sf (?y+1 ) = sf (?y) + ?y + 1 by (rule sf-at-Suc)
with S1 have sf (x) = sf (?y) + x by simp
with S2 show ?thesis by simp

qed

lemma sf-eq-arg: sf x = x =⇒ x ≤ 1

3



proof −
assume sf (x) = x
then have ¬ (x < sf (x)) by simp
then have (¬ (x > 1 )) by (auto simp add: arg-less-sf )
then show ?thesis by simp

qed

lemma sf-le-sfD: sf x ≤ sf y =⇒ x ≤ y
proof −

assume A1 : sf x ≤ sf y
have S1 : y < x =⇒ sf y < sf x by (rule sf-strict-mono)
have S2 : y < x ∨ x ≤ y by (auto)
from A1 S1 S2 show ?thesis by (auto)

qed

lemma sf-less-sfD: sf x < sf y =⇒ x < y
proof −

assume A1 : sf x < sf y
have S1 : y ≤ x =⇒ sf y ≤ sf x by (rule sf-mono)
have S2 : y ≤ x ∨ x < y by (auto)
from A1 S1 S2 show ?thesis by (auto)

qed

lemma sf-inj: sf x = sf y =⇒ x = y
proof −

assume A1 : sf x = sf y
have S1 : sf x ≤ sf y =⇒ x ≤ y by (rule sf-le-sfD)
have S2 : sf y ≤ sf x =⇒ y ≤ x by (rule sf-le-sfD)
from A1 have S3 : sf x ≤ sf y ∧ sf y ≤ sf x by (auto)
from S3 S1 S2 have S4 : x ≤ y ∧ y ≤ x by (auto)
from S4 show ?thesis by (auto)

qed

Auxiliary lemmas
lemma sf-aux1 : x + y < z =⇒ sf (x+y) + x < sf (z)
proof −

assume A1 : x+y < z
from A1 have S1 : x+y+1 ≤ z by (auto)
from S1 have S2 : sf (x+y+1 ) ≤ sf (z) by (rule sf-mono)
have S3 : sf (x+y+1 ) = sf (x+y) + (x+y)+1 by (rule sf-at-Suc)
from S3 S2 have S4 : sf (x+y) + (x+y) + 1 ≤ sf (z) by (auto)
from S4 show ?thesis by (auto)

qed

lemma sf-aux2 : sf (z) ≤ sf (x+y) + x =⇒ z ≤ x+y
proof −

assume A1 : sf (z) ≤ sf (x+y) + x
from A1 have S1 : ¬ sf (x+y) +x < sf (z) by (auto)
from S1 sf-aux1 have S2 : ¬ x+y < z by (auto)
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from S2 show ?thesis by (auto)
qed

lemma sf-aux3 : sf (z) + m < sf (z+1 ) =⇒ m ≤ z
proof −

assume A1 : sf (z) + m < sf (z+1 )
have S1 : sf (z+1 ) = sf (z) + z + 1 by (rule sf-at-Suc)
from A1 S1 have S2 : sf (z) + m < sf (z) + z + 1 by (auto)
from S2 have S3 : m < z + 1 by (auto)
from S3 show ?thesis by (auto)

qed

lemma sf-aux4 : (s::nat) < t =⇒ (sf s) + s < sf t
proof −

assume A1 : (s::nat) < t
have s∗(s + 1 ) + 2∗(s+1 ) ≤ t∗(t+1 )
proof −

from A1 have S1 : (s::nat) + 1 ≤ t by (auto)
from A1 have (s::nat) + 2 ≤ t+1 by (auto)
with S1 have ((s::nat)+1 )∗(s+2 ) ≤ t∗(t+1 ) by (rule mult-le-mono)
thus ?thesis by (auto)

qed
then have S1 : (s∗(s+1 ) + 2∗(s+1 )) div 2 ≤ t∗(t+1 ) div 2 by (rule div-le-mono)
have (0 ::nat) < 2 by (auto)
then have (s∗(s+1 ) + 2∗(s+1 )) div 2 = (s+1 ) + (s∗(s+1 )) div 2 by simp
with S1 have (s∗(s+1 )) div 2 + (s+1 ) ≤ t∗(t+1 ) div 2 by (auto)
then have (s∗(s+1 )) div 2 + s < t∗(t+1 ) div 2 by (auto)
thus ?thesis by (simp add: sf-def )

qed

Basic properties of c_pair function
lemma sum-le-c-pair : x + y ≤ c-pair x y
proof −

have x+y ≤ sf (x+y) by (rule arg-le-sf )
thus ?thesis by (simp add: c-pair-def )

qed

lemma arg1-le-c-pair : x ≤ c-pair x y
proof −

have (x::nat) ≤ x + y by (simp)
moreover have x + y ≤ c-pair x y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)

qed

lemma arg2-le-c-pair : y ≤ c-pair x y
proof −

have (y::nat) ≤ x + y by (simp)
moreover have x + y ≤ c-pair x y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)
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qed

lemma c-pair-sum-mono: (x1 ::nat) + y1 < x2 + y2 =⇒ c-pair x1 y1 < c-pair x2
y2
proof −

assume (x1 ::nat) + y1 < x2 + y2
hence sf (x1+y1 ) + (x1+y1 ) < sf (x2+y2 ) by (rule sf-aux4 )
hence sf (x1+y1 ) + x1 < sf (x2+y2 ) + x2 by (auto)
thus ?thesis by (simp add: c-pair-def )

qed

lemma c-pair-sum-inj: c-pair x1 y1 = c-pair x2 y2 =⇒ x1 + y1 = x2 + y2
proof −

assume A1 : c-pair x1 y1 = c-pair x2 y2
have S1 : (x1 ::nat) + y1 < x2 + y2 =⇒ c-pair x1 y1 6= c-pair x2 y2 by (rule

less-not-refl3 , rule c-pair-sum-mono, auto)
have S2 : (x2 ::nat) + y2 < x1 + y1 =⇒ c-pair x1 y1 6= c-pair x2 y2 by (rule

less-not-refl2 , rule c-pair-sum-mono, auto)
from S1 S2 have (x1 ::nat) + y1 6= x2 + y2 =⇒ c-pair x1 y1 6= c-pair x2 y2

by (arith)
with A1 show ?thesis by (auto)

qed

lemma c-pair-inj: c-pair x1 y1 = c-pair x2 y2 =⇒ x1 = x2 ∧ y1 = y2
proof −

assume A1 : c-pair x1 y1 = c-pair x2 y2
from A1 have S1 : x1 + y1 = x2 + y2 by (rule c-pair-sum-inj)
from A1 have S2 : sf (x1+y1 ) + x1 = sf (x2+y2 ) + x2 by (unfold c-pair-def )
from S1 S2 have S3 : x1 = x2 by (simp)
from S1 S3 have S4 : y1 = y2 by (simp)
from S3 S4 show ?thesis by (auto)

qed

lemma c-pair-inj1 : c-pair x1 y1 = c-pair x2 y2 =⇒ x1 = x2 by (frule c-pair-inj,
drule conjunct1 )

lemma c-pair-inj2 : c-pair x1 y1 = c-pair x2 y2 =⇒ y1 = y2 by (frule c-pair-inj,
drule conjunct2 )

lemma c-pair-strict-mono1 : x1 < x2 =⇒ c-pair x1 y < c-pair x2 y
proof −

assume x1 < x2
then have x1 + y < x2 + y by simp
then show ?thesis by (rule c-pair-sum-mono)

qed

lemma c-pair-mono1 : x1 ≤ x2 =⇒ c-pair x1 y ≤ c-pair x2 y
proof −

assume A1 : x1 ≤ x2

6



show ?thesis
proof cases

assume x1 < x2
then have c-pair x1 y < c-pair x2 y by (rule c-pair-strict-mono1 )
then show ?thesis by simp

next
assume ¬ x1 < x2
with A1 have x1 = x2 by simp
then show ?thesis by simp

qed
qed

lemma c-pair-strict-mono2 : y1 < y2 =⇒ c-pair x y1 < c-pair x y2
proof −

assume A1 : y1 < y2
from A1 have S1 : x + y1 < x + y2 by simp
then show ?thesis by (rule c-pair-sum-mono)

qed

lemma c-pair-mono2 : y1 ≤ y2 =⇒ c-pair x y1 ≤ c-pair x y2
proof −

assume A1 : y1 ≤ y2
show ?thesis
proof cases

assume y1 < y2
then have c-pair x y1 < c-pair x y2 by (rule c-pair-strict-mono2 )
then show ?thesis by simp

next
assume ¬ y1 < y2
with A1 have y1 = y2 by simp
then show ?thesis by simp

qed
qed

1.2 Inverse mapping

c-fst and c-snd are the functions which yield the inverse mapping to c-pair.
definition

c-sum :: nat ⇒ nat where
c-sum u = (LEAST z. u < sf (z+1 ))

definition
c-fst :: nat ⇒ nat where
c-fst u = u − sf (c-sum u)

definition
c-snd :: nat ⇒ nat where
c-snd u = c-sum u − c-fst u
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lemma arg-less-sf-at-Suc-of-c-sum: u < sf ((c-sum u) + 1 )
proof −

have u+1 ≤ sf (u+1 ) by (rule arg-le-sf )
hence u < sf (u+1 ) by simp
thus ?thesis by (unfold c-sum-def , rule LeastI )

qed

lemma arg-less-sf-imp-c-sum-less-arg: u < sf (x) =⇒ c-sum u < x
proof −

assume A1 : u < sf (x)
then show ?thesis
proof (cases x)

assume x=0
with A1 show ?thesis by (simp add: sf-def )

next
fix y
assume A2 : x = Suc y
show ?thesis
proof −

from A1 A2 have u < sf (y+1 ) by simp
hence (Least (%z. u < sf (z+1 ))) ≤ y by (rule Least-le)
hence c-sum u ≤ y by (fold c-sum-def )
with A2 show ?thesis by simp

qed
qed

qed

lemma sf-c-sum-le-arg: u ≥ sf (c-sum u)
proof −

let ?z = c-sum u
from arg-less-sf-at-Suc-of-c-sum have S1 : u < sf (?z+1 ) by (auto)
have S2 : ¬ c-sum u < c-sum u by (auto)
from arg-less-sf-imp-c-sum-less-arg S2 have S3 : ¬ u < sf (c-sum u) by (auto)
from S3 show ?thesis by (auto)

qed

lemma c-sum-le-arg: c-sum u ≤ u
proof −

have c-sum u ≤ sf (c-sum u) by (rule arg-le-sf )
moreover have sf (c-sum u) ≤ u by (rule sf-c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-of-c-pair [simp]: c-sum (c-pair x y) = x + y
proof −

let ?u = c-pair x y
let ?z = c-sum ?u
have S1 : ?u < sf (?z+1 ) by (rule arg-less-sf-at-Suc-of-c-sum)
have S2 : sf (?z) ≤ ?u by (rule sf-c-sum-le-arg)
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from S1 have S3 : sf (x+y)+x < sf (?z+1 ) by (simp add: c-pair-def )
from S2 have S4 : sf (?z) ≤ sf (x+y) + x by (simp add: c-pair-def )
from S3 have S5 : sf (x+y) < sf (?z+1 ) by (auto)
from S5 have S6 : x+y < ?z+1 by (rule sf-less-sfD)
from S6 have S7 : x+y ≤ ?z by (auto)
from S4 have S8 : ?z ≤ x+y by (rule sf-aux2 )
from S7 S8 have S9 : ?z = x+y by (auto)
from S9 show ?thesis by (simp)

qed

lemma c-fst-of-c-pair [simp]: c-fst (c-pair x y) = x
proof −

let ?u = c-pair x y
have c-sum ?u = x + y by simp
hence c-fst ?u = ?u − sf (x+y) by (simp add: c-fst-def )
moreover have ?u = sf (x+y) + x by (simp add: c-pair-def )
ultimately show ?thesis by (simp)

qed

lemma c-snd-of-c-pair [simp]: c-snd (c-pair x y) = y
proof −

let ?u = c-pair x y
have c-sum ?u = x + y by simp
moreover have c-fst ?u = x by simp
ultimately show ?thesis by (simp add: c-snd-def )

qed

lemma c-pair-at-0 : c-pair 0 0 = 0 by (simp add: sf-def c-pair-def )

lemma c-fst-at-0 : c-fst 0 = 0
proof −

have c-pair 0 0 = 0 by (rule c-pair-at-0 )
hence c-fst 0 = c-fst (c-pair 0 0 ) by simp
thus ?thesis by simp

qed

lemma c-snd-at-0 : c-snd 0 = 0
proof −

have c-pair 0 0 = 0 by (rule c-pair-at-0 )
hence c-snd 0 = c-snd (c-pair 0 0 ) by simp
thus ?thesis by simp

qed

lemma sf-c-sum-plus-c-fst: sf (c-sum u) + c-fst u = u
proof −

have S1 : sf (c-sum u) ≤ u by (rule sf-c-sum-le-arg)
have S2 : c-fst u = u − sf (c-sum u) by (simp add: c-fst-def )
from S1 S2 show ?thesis by (auto)

qed
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lemma c-fst-le-c-sum: c-fst u ≤ c-sum u
proof −

have S1 : sf (c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
have S2 : u < sf ((c-sum u) + 1 ) by (rule arg-less-sf-at-Suc-of-c-sum)
from S1 S2 sf-aux3 show ?thesis by (auto)

qed

lemma c-snd-le-c-sum: c-snd u ≤ c-sum u by (simp add: c-snd-def )

lemma c-fst-le-arg: c-fst u ≤ u
proof −

have c-fst u ≤ c-sum u by (rule c-fst-le-c-sum)
moreover have c-sum u ≤ u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-snd-le-arg: c-snd u ≤ u
proof −

have c-snd u ≤ c-sum u by (rule c-snd-le-c-sum)
moreover have c-sum u ≤ u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-is-sum: c-sum u = c-fst u + c-snd u by (simp add: c-snd-def
c-fst-le-c-sum)

lemma proj-eq-imp-arg-eq: [[ c-fst u = c-fst v; c-snd u = c-snd v]] =⇒ u = v
proof −

assume A1 : c-fst u = c-fst v
assume A2 : c-snd u = c-snd v
from A1 A2 c-sum-is-sum have S1 : c-sum u = c-sum v by (auto)
have S2 : sf (c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
from A1 S1 S2 have S3 : sf (c-sum v) + c-fst v = u by (auto)
from S3 sf-c-sum-plus-c-fst show ?thesis by (auto)

qed

lemma c-pair-of-c-fst-c-snd[simp]: c-pair (c-fst u) (c-snd u) = u
proof −

let ?x = c-fst u
let ?y = c-snd u
have S1 : c-pair ?x ?y = sf (?x + ?y) + ?x by (simp add: c-pair-def )
have S2 : c-sum u = ?x + ?y by (rule c-sum-is-sum)
from S1 S2 have c-pair ?x ?y = sf (c-sum u) + c-fst u by (auto)
thus ?thesis by (simp add: sf-c-sum-plus-c-fst)

qed

lemma c-sum-eq-arg: c-sum x = x =⇒ x ≤ 1
proof −
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assume A1 : c-sum x = x
have S1 : sf (c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2 : sf x + c-fst x = x by simp
have S3 : x ≤ sf x by (rule arg-le-sf )
from S2 S3 have sf (x)=x by simp
thus ?thesis by (rule sf-eq-arg)

qed

lemma c-sum-eq-arg-2 : c-sum x = x =⇒ c-fst x = 0
proof −

assume A1 : c-sum x = x
have S1 : sf (c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2 : sf x + c-fst x = x by simp
have S3 : x ≤ sf x by (rule arg-le-sf )
from S2 S3 show ?thesis by simp

qed

lemma c-fst-eq-arg: c-fst x = x =⇒ x = 0
proof −

assume A1 : c-fst x = x
have S1 : c-fst x ≤ c-sum x by (rule c-fst-le-c-sum)
have S2 : c-sum x ≤ x by (rule c-sum-le-arg)
from A1 S1 S2 have c-sum x = x by simp
then have c-fst x = 0 by (rule c-sum-eq-arg-2 )
with A1 show ?thesis by simp

qed

lemma c-fst-less-arg: x > 0 =⇒ c-fst x < x
proof −

assume A1 : x > 0
show ?thesis
proof cases

assume c-fst x < x
then show ?thesis by simp

next
assume ¬ c-fst x < x
then have S1 : c-fst x ≥ x by simp
have c-fst x ≤ x by (rule c-fst-le-arg)
with S1 have c-fst x = x by simp
then have x = 0 by (rule c-fst-eq-arg)
with A1 show ?thesis by simp

qed
qed

lemma c-snd-eq-arg: c-snd x = x =⇒ x ≤ 1
proof −

assume A1 : c-snd x = x
have S1 : c-snd x ≤ c-sum x by (rule c-snd-le-c-sum)
have S2 : c-sum x ≤ x by (rule c-sum-le-arg)
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from A1 S1 S2 have c-sum x = x by simp
then show ?thesis by (rule c-sum-eq-arg)

qed

lemma c-snd-less-arg: x > 1 =⇒ c-snd x < x
proof −

assume A1 : x > 1
show ?thesis
proof cases

assume c-snd x < x
then show ?thesis .

next
assume ¬ c-snd x < x
then have S1 : c-snd x ≥ x by auto
have c-snd x ≤ x by (rule c-snd-le-arg)
with S1 have c-snd x = x by simp
then have x ≤ 1 by (rule c-snd-eq-arg)
with A1 show ?thesis by simp

qed
qed

end

2 Primitive recursive functions
theory PRecFun imports CPair
begin

This theory contains definition of the primitive recursive functions.

2.1 Basic definitions
primrec

PrimRecOp :: (nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat)
where

PrimRecOp g h 0 x = g x
| PrimRecOp g h (Suc y) x = h y (PrimRecOp g h y x) x

primrec
PrimRecOp-last :: (nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒

nat)
where

PrimRecOp-last g h x 0 = g x
| PrimRecOp-last g h x (Suc y)= h x (PrimRecOp-last g h x y) y

primrec
PrimRecOp1 :: nat ⇒ (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat)

where
PrimRecOp1 a h 0 = a

12



| PrimRecOp1 a h (Suc y) = h y (PrimRecOp1 a h y)

inductive-set
PrimRec1 :: (nat ⇒ nat) set and
PrimRec2 :: (nat ⇒ nat ⇒ nat) set and
PrimRec3 :: (nat ⇒ nat ⇒ nat ⇒ nat) set

where
zero: (λ x. 0 ) ∈ PrimRec1
| suc: Suc ∈ PrimRec1
| id1-1 : (λ x. x) ∈ PrimRec1
| id2-1 : (λ x y. x) ∈ PrimRec2
| id2-2 : (λ x y. y) ∈ PrimRec2
| id3-1 : (λ x y z. x) ∈ PrimRec3
| id3-2 : (λ x y z. y) ∈ PrimRec3
| id3-3 : (λ x y z. z) ∈ PrimRec3
| comp1-1 : [[ f ∈ PrimRec1 ; g ∈ PrimRec1 ]] =⇒ (λ x. f (g x)) ∈ PrimRec1
| comp1-2 : [[ f ∈ PrimRec1 ; g ∈ PrimRec2 ]] =⇒ (λ x y. f (g x y)) ∈ PrimRec2
| comp1-3 : [[ f ∈ PrimRec1 ; g ∈ PrimRec3 ]] =⇒ (λ x y z. f (g x y z)) ∈ PrimRec3
| comp2-1 : [[ f ∈ PrimRec2 ; g ∈ PrimRec1 ; h ∈ PrimRec1 ]] =⇒ (λ x. f (g x) (h

x)) ∈ PrimRec1
| comp3-1 : [[ f ∈ PrimRec3 ; g ∈ PrimRec1 ; h ∈ PrimRec1 ; k ∈ PrimRec1 ]] =⇒

(λ x. f (g x) (h x) (k x)) ∈ PrimRec1
| comp2-2 : [[ f ∈ PrimRec2 ; g ∈ PrimRec2 ; h ∈ PrimRec2 ]] =⇒ (λ x y. f (g x

y) (h x y)) ∈ PrimRec2
| comp2-3 : [[ f ∈ PrimRec2 ; g ∈ PrimRec3 ; h ∈ PrimRec3 ]] =⇒ (λ x y z. f (g x

y z) (h x y z)) ∈ PrimRec3
| comp3-2 : [[ f ∈ PrimRec3 ; g ∈ PrimRec2 ; h ∈ PrimRec2 ; k ∈ PrimRec2 ]] =⇒

(λ x y. f (g x y) (h x y) (k x y)) ∈ PrimRec2
| comp3-3 : [[ f ∈ PrimRec3 ; g ∈ PrimRec3 ; h ∈ PrimRec3 ; k ∈ PrimRec3 ]] =⇒

(λ x y z. f (g x y z) (h x y z) (k x y z)) ∈ PrimRec3
| prim-rec: [[ g ∈ PrimRec1 ; h ∈ PrimRec3 ]] =⇒ PrimRecOp g h ∈ PrimRec2

lemmas pr-zero = PrimRec1-PrimRec2-PrimRec3 .zero
lemmas pr-suc = PrimRec1-PrimRec2-PrimRec3 .suc
lemmas pr-id1-1 = PrimRec1-PrimRec2-PrimRec3 .id1-1
lemmas pr-id2-1 = PrimRec1-PrimRec2-PrimRec3 .id2-1
lemmas pr-id2-2 = PrimRec1-PrimRec2-PrimRec3 .id2-2
lemmas pr-id3-1 = PrimRec1-PrimRec2-PrimRec3 .id3-1
lemmas pr-id3-2 = PrimRec1-PrimRec2-PrimRec3 .id3-2
lemmas pr-id3-3 = PrimRec1-PrimRec2-PrimRec3 .id3-3
lemmas pr-comp1-1 = PrimRec1-PrimRec2-PrimRec3 .comp1-1
lemmas pr-comp1-2 = PrimRec1-PrimRec2-PrimRec3 .comp1-2
lemmas pr-comp1-3 = PrimRec1-PrimRec2-PrimRec3 .comp1-3
lemmas pr-comp2-1 = PrimRec1-PrimRec2-PrimRec3 .comp2-1
lemmas pr-comp2-2 = PrimRec1-PrimRec2-PrimRec3 .comp2-2
lemmas pr-comp2-3 = PrimRec1-PrimRec2-PrimRec3 .comp2-3
lemmas pr-comp3-1 = PrimRec1-PrimRec2-PrimRec3 .comp3-1
lemmas pr-comp3-2 = PrimRec1-PrimRec2-PrimRec3 .comp3-2
lemmas pr-comp3-3 = PrimRec1-PrimRec2-PrimRec3 .comp3-3
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lemmas pr-rec = PrimRec1-PrimRec2-PrimRec3 .prim-rec

ML-file ‹Utils.ML›

named-theorems prec

method-setup prec0 = ‹
Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts =>
HEADGOAL (prec0-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems

prec}))))
› apply primitive recursive functions

lemmas [prec] = pr-zero pr-suc pr-id1-1 pr-id2-1 pr-id2-2 pr-id3-1 pr-id3-2 pr-id3-3

lemma pr-swap: f ∈ PrimRec2 =⇒ (λ x y. f y x) ∈ PrimRec2 by prec0

theorem pr-rec-scheme: [[ g ∈ PrimRec1 ; h ∈ PrimRec3 ; ∀ x. f 0 x = g x; ∀ x y.
f (Suc y) x = h y (f y x) x ]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-at-0 : ∀ x. f 0 x = g x
assume f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
from f-at-0 f-at-Suc have

∧
x y. f y x = PrimRecOp g h y x by (induct-tac y,

simp-all)
then have f = PrimRecOp g h by (simp add: ext)
with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec)

qed

lemma op-plus-is-pr [prec]: (λ x y. x + y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y+x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. x) (λ x y z. Suc y) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1 )
next

show (λ x y z. Suc y) ∈ PrimRec3 by prec0
qed
have (λ x y. y+x) = PrimRecOp (λ x. x) (λ x y z. Suc y) (is - = ?f )
proof −

have
∧

x y. (?f y x = y + x) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed
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lemma op-mult-is-pr [prec]: (λ x y. x∗y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y∗x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. 0 ) (λ x y z. y+z) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. 0 ) ∈ PrimRec1 by (rule pr-zero)
next

show (λ x y z. y+z) ∈ PrimRec3 by prec0
qed
have (λ x y. y∗x) = PrimRecOp (λ x. 0 ) (λ x y z. y+z) (is - = ?f )
proof −

have
∧

x y. (?f y x = y ∗ x) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed

lemma const-is-pr : (λ x. (n::nat)) ∈ PrimRec1
proof (induct n)

show (λ x. 0 ) ∈ PrimRec1 by (rule pr-zero)
next

fix n assume (λ x. n) ∈ PrimRec1
then show (λ x. Suc n) ∈ PrimRec1 by prec0

qed

lemma const-is-pr-2 : (λ x y. (n::nat)) ∈ PrimRec2
proof (rule pr-comp1-2 [where ?f=%x.(n::nat) and ?g=%x y. x])

show (λ x. n) ∈ PrimRec1 by (rule const-is-pr)
next

show (λ x y. x) ∈ PrimRec2 by (rule pr-id2-1 )
qed

lemma const-is-pr-3 : (λ x y z. (n::nat)) ∈ PrimRec3
proof (rule pr-comp1-3 [where ?f=%x.(n::nat) and ?g=%x y z. x])

show (λ x. n) ∈ PrimRec1 by (rule const-is-pr)
next

show (λ x y z. x) ∈ PrimRec3 by (rule pr-id3-1 )
qed

theorem pr-rec-last: [[g ∈ PrimRec1 ; h ∈ PrimRec3 ]] =⇒ PrimRecOp-last g h ∈
PrimRec2
proof −

assume A1 : g ∈ PrimRec1
assume A2 : h ∈ PrimRec3
let ?h1 = λ x y z. h z y x
from A2 pr-id3-3 pr-id3-2 pr-id3-1 have h1-is-pr : ?h1 ∈ PrimRec3 by (rule

pr-comp3-3 )
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let ?f1 = PrimRecOp g ?h1
from A1 h1-is-pr have f1-is-pr : ?f1 ∈ PrimRec2 by (rule pr-rec)
let ?f = λ x y. ?f1 y x
from f1-is-pr have f-is-pr : ?f ∈ PrimRec2 by (rule pr-swap)
have

∧
x y. ?f x y = PrimRecOp-last g h x y by (induct-tac y, simp-all)

then have ?f = PrimRecOp-last g h by (simp add: ext)
with f-is-pr show ?thesis by simp

qed

theorem pr-rec1 : h ∈ PrimRec2 =⇒ PrimRecOp1 (a::nat) h ∈ PrimRec1
proof −

assume A1 : h ∈ PrimRec2
let ?g = (λ x. a)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
let ?h1 = (λ x y z. h x y)
from A1 have h1-is-pr : ?h1 ∈ PrimRec3 by prec0
let ?f1 = PrimRecOp ?g ?h1
from g-is-pr h1-is-pr have f1-is-pr : ?f1 ∈ PrimRec2 by (rule pr-rec)
let ?f = (λ x. ?f1 x 0 )
from f1-is-pr pr-id1-1 pr-zero have f-is-pr : ?f ∈ PrimRec1 by (rule pr-comp2-1 )
have

∧
y. ?f y = PrimRecOp1 a h y by (induct-tac y, auto)

then have ?f = PrimRecOp1 a h by (simp add: ext)
with f-is-pr show ?thesis by (auto)

qed

theorem pr-rec1-scheme: [[ h ∈ PrimRec2 ; f 0 = a; ∀ y. f (Suc y) = h y (f y) ]]
=⇒ f ∈ PrimRec1
proof −

assume h-is-pr : h ∈ PrimRec2
assume f-at-0 : f 0 = a
assume f-at-Suc: ∀ y. f (Suc y) = h y (f y)
from f-at-0 f-at-Suc have

∧
y. f y = PrimRecOp1 a h y by (induct-tac y,

simp-all)
then have f = PrimRecOp1 a h by (simp add: ext)
with h-is-pr show ?thesis by (simp add: pr-rec1 )

qed

lemma pred-is-pr : (λ x. x − (1 ::nat)) ∈ PrimRec1
proof −

have S1 : PrimRecOp1 0 (λ x y. x) ∈ PrimRec1
proof (rule pr-rec1 )

show (λ x y. x) ∈ PrimRec2 by (rule pr-id2-1 )
qed
have (λ x. x−(1 ::nat)) = PrimRecOp1 0 (λ x y. x) (is - = ?f )
proof −

have
∧

x. (?f x = x−(1 ::nat)) by (induct-tac x, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp
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qed

lemma op-sub-is-pr [prec]: (λ x y. x−y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y − x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. x) (λ x y z. y−(1 ::nat)) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1 )
next

from pred-is-pr pr-id3-2 show (λ x y z. y−(1 ::nat)) ∈ PrimRec3 by (rule
pr-comp1-3 )

qed
have (λ x y. y − x) = PrimRecOp (λ x. x) (λ x y z. y−(1 ::nat)) (is - = ?f )
proof −

have
∧

x y. (?f y x = x − y) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed

lemmas [prec] =
const-is-pr [of 0 ] const-is-pr-2 [of 0 ] const-is-pr-3 [of 0 ]
const-is-pr [of 1 ] const-is-pr-2 [of 1 ] const-is-pr-3 [of 1 ]
const-is-pr [of 2 ] const-is-pr-2 [of 2 ] const-is-pr-3 [of 2 ]

definition
sgn1 :: nat ⇒ nat where
sgn1 x = (case x of 0 ⇒ 0 | Suc y ⇒ 1 )

definition
sgn2 :: nat ⇒ nat where
sgn2 x ≡ (case x of 0 ⇒ 1 | Suc y ⇒ 0 )

definition
abs-of-diff :: nat ⇒ nat ⇒ nat where
abs-of-diff = (λ x y. (x − y) + (y − x))

lemma [simp]: sgn1 0 = 0 by (simp add: sgn1-def )
lemma [simp]: sgn1 (Suc y) = 1 by (simp add: sgn1-def )
lemma [simp]: sgn2 0 = 1 by (simp add: sgn2-def )
lemma [simp]: sgn2 (Suc y) = 0 by (simp add: sgn2-def )
lemma [simp]: x 6= 0 =⇒ sgn1 x = 1 by (simp add: sgn1-def , cases x, auto)
lemma [simp]: x 6= 0 =⇒ sgn2 x = 0 by (simp add: sgn2-def , cases x, auto)

lemma sgn1-nz-impl-arg-pos: sgn1 x 6= 0 =⇒ x > 0 by (cases x) auto
lemma sgn1-zero-impl-arg-zero: sgn1 x = 0 =⇒ x = 0 by (cases x) auto
lemma sgn2-nz-impl-arg-zero: sgn2 x 6= 0 =⇒ x = 0 by (cases x) auto

17



lemma sgn2-zero-impl-arg-pos: sgn2 x = 0 =⇒ x > 0 by (cases x) auto

lemma sgn1-nz-eq-arg-pos: (sgn1 x 6= 0 ) = (x > 0 ) by (cases x) auto
lemma sgn1-zero-eq-arg-zero: (sgn1 x = 0 ) = (x = 0 ) by (cases x) auto
lemma sgn2-nz-eq-arg-pos: (sgn2 x 6= 0 ) = (x = 0 ) by (cases x) auto
lemma sgn2-zero-eq-arg-zero: (sgn2 x = 0 ) = (x > 0 ) by (cases x) auto

lemma sgn1-pos-eq-one: sgn1 x > 0 =⇒ sgn1 x = 1 by (cases x) auto
lemma sgn2-pos-eq-one: sgn2 x > 0 =⇒ sgn2 x = 1 by (cases x) auto

lemma sgn2-eq-1-sub-arg: sgn2 = (λ x. 1 − x)
proof (rule ext)

fix x show sgn2 x = 1 − x by (cases x) auto
qed

lemma sgn1-eq-1-sub-sgn2 : sgn1 = (λ x. 1 − (sgn2 x))
proof

fix x show sgn1 x = 1 − sgn2 x
proof −

have 1− sgn2 x = 1 − (1 − x) by (simp add: sgn2-eq-1-sub-arg)
then show ?thesis by (simp add: sgn1-def , cases x, auto)

qed
qed

lemma sgn2-is-pr [prec]: sgn2 ∈ PrimRec1
proof −

have (λ x. 1 − x) ∈ PrimRec1 by prec0
thus ?thesis by (simp add: sgn2-eq-1-sub-arg)

qed

lemma sgn1-is-pr [prec]: sgn1 ∈ PrimRec1
proof −

from sgn2-is-pr have (λ x. 1 − (sgn2 x)) ∈ PrimRec1 by prec0
thus ?thesis by (simp add: sgn1-eq-1-sub-sgn2 )

qed

lemma abs-of-diff-is-pr [prec]: abs-of-diff ∈ PrimRec2 unfolding abs-of-diff-def
by prec0

lemma abs-of-diff-eq: (abs-of-diff x y = 0 ) = (x = y) by (simp add: abs-of-diff-def ,
arith)

lemma sf-is-pr [prec]: sf ∈ PrimRec1
proof −

have S1 : PrimRecOp1 0 (λ x y. y + x + 1 ) ∈ PrimRec1
proof (rule pr-rec1 )

show (λ x y. y + x + 1 ) ∈ PrimRec2 by prec0
qed
have (λ x. sf x) = PrimRecOp1 0 (λ x y. y + x + 1 ) (is - = ?f )
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proof −
have

∧
x. (?f x = sf x)

proof (induct-tac x)
show ?f 0 = sf 0 by (simp add: sf-at-0 )

next
fix x assume ?f x = sf x
with sf-at-Suc show ?f (Suc x) = sf (Suc x) by auto

qed
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed

lemma c-pair-is-pr [prec]: c-pair ∈ PrimRec2
proof −

have c-pair = (λ x y. sf (x+y) + x) by (simp add: c-pair-def ext)
moreover from sf-is-pr have (λ x y. sf (x+y) + x) ∈ PrimRec2 by prec0
ultimately show ?thesis by (simp)

qed

lemma if-is-pr : [[ p ∈ PrimRec1 ; q1 ∈ PrimRec1 ; q2 ∈ PrimRec1 ]] =⇒ (λ x. if
(p x = 0 ) then (q1 x) else (q2 x)) ∈ PrimRec1
proof −

have if-as-pr : (λ x. if (p x = 0 ) then (q1 x) else (q2 x)) = (λ x. (sgn2 (p x)) ∗
(q1 x) + (sgn1 (p x)) ∗ (q2 x))

proof (rule ext)
fix x show (if (p x = 0 ) then (q1 x) else (q2 x)) = (sgn2 (p x)) ∗ (q1 x) +

(sgn1 (p x)) ∗ (q2 x) (is ?left = ?right)
proof cases

assume A1 : p x = 0
then have S1 : ?left = q1 x by simp
from A1 have S2 : ?right = q1 x by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x 6= 0
then have S3 : p x > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec1 and q1 ∈ PrimRec1 and q2 ∈ PrimRec1
then have (λ x. (sgn2 (p x)) ∗ (q1 x) + (sgn1 (p x)) ∗ (q2 x)) ∈ PrimRec1 by

prec0
with if-as-pr show ?thesis by simp

qed

lemma if-eq-is-pr [prec]: [[ p1 ∈ PrimRec1 ; p2 ∈ PrimRec1 ; q1 ∈ PrimRec1 ; q2
∈ PrimRec1 ]] =⇒ (λ x. if (p1 x = p2 x) then (q1 x) else (q2 x)) ∈ PrimRec1
proof −

have S1 : (λ x. if (p1 x = p2 x) then (q1 x) else (q2 x)) = (λ x. if (abs-of-diff (p1
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x) (p2 x) = 0 ) then (q1 x) else (q2 x)) (is ?L = ?R) by (simp add: abs-of-diff-eq)
assume A1 : p1 ∈ PrimRec1 and A2 : p2 ∈ PrimRec1
with abs-of-diff-is-pr have S2 : (λ x. abs-of-diff (p1 x) (p2 x)) ∈ PrimRec1 by

prec0
assume q1 ∈ PrimRec1 and q2 ∈ PrimRec1
with S2 have ?R ∈ PrimRec1 by (rule if-is-pr)
with S1 show ?thesis by simp

qed

lemma if-is-pr2 [prec]: [[ p ∈ PrimRec2 ; q1 ∈ PrimRec2 ; q2 ∈ PrimRec2 ]] =⇒ (λ
x y. if (p x y = 0 ) then (q1 x y) else (q2 x y)) ∈ PrimRec2
proof −

have if-as-pr : (λ x y. if (p x y = 0 ) then (q1 x y) else (q2 x y)) = (λ x y. (sgn2
(p x y)) ∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y))

proof (rule ext, rule ext)
fix x fix y show (if (p x y = 0 ) then (q1 x y) else (q2 x y)) = (sgn2 (p x y))

∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y) (is ?left = ?right)
proof cases

assume A1 : p x y = 0
then have S1 : ?left = q1 x y by simp
from A1 have S2 : ?right = q1 x y by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x y 6= 0
then have S3 : p x y > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec2 and q1 ∈ PrimRec2 and q2 ∈ PrimRec2
then have (λ x y. (sgn2 (p x y)) ∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y)) ∈

PrimRec2 by prec0
with if-as-pr show ?thesis by simp

qed

lemma if-eq-is-pr2 : [[ p1 ∈ PrimRec2 ; p2 ∈ PrimRec2 ; q1 ∈ PrimRec2 ; q2 ∈
PrimRec2 ]] =⇒ (λ x y. if (p1 x y = p2 x y) then (q1 x y) else (q2 x y)) ∈ PrimRec2
proof −

have S1 : (λ x y. if (p1 x y = p2 x y) then (q1 x y) else (q2 x y)) = (λ x y. if
(abs-of-diff (p1 x y) (p2 x y) = 0 ) then (q1 x y) else (q2 x y)) (is ?L = ?R) by
(simp add: abs-of-diff-eq)

assume A1 : p1 ∈ PrimRec2 and A2 : p2 ∈ PrimRec2
with abs-of-diff-is-pr have S2 : (λ x y. abs-of-diff (p1 x y) (p2 x y)) ∈ PrimRec2

by prec0
assume q1 ∈ PrimRec2 and q2 ∈ PrimRec2
with S2 have ?R ∈ PrimRec2 by (rule if-is-pr2 )
with S1 show ?thesis by simp

qed

lemma if-is-pr3 [prec]: [[ p ∈ PrimRec3 ; q1 ∈ PrimRec3 ; q2 ∈ PrimRec3 ]] =⇒ (λ
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x y z. if (p x y z = 0 ) then (q1 x y z) else (q2 x y z)) ∈ PrimRec3
proof −

have if-as-pr : (λ x y z. if (p x y z = 0 ) then (q1 x y z) else (q2 x y z)) = (λ x y
z. (sgn2 (p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y z))

proof (rule ext, rule ext, rule ext)
fix x fix y fix z show (if (p x y z = 0 ) then (q1 x y z) else (q2 x y z)) = (sgn2

(p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y z) (is ?left = ?right)
proof cases

assume A1 : p x y z = 0
then have S1 : ?left = q1 x y z by simp
from A1 have S2 : ?right = q1 x y z by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x y z 6= 0
then have S3 : p x y z > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec3 and q1 ∈ PrimRec3 and q2 ∈ PrimRec3
then have (λ x y z . (sgn2 (p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y

z)) ∈ PrimRec3
by prec0

with if-as-pr show ?thesis by simp
qed

lemma if-eq-is-pr3 : [[ p1 ∈ PrimRec3 ; p2 ∈ PrimRec3 ; q1 ∈ PrimRec3 ; q2 ∈
PrimRec3 ]] =⇒ (λ x y z. if (p1 x y z = p2 x y z) then (q1 x y z) else (q2 x y z))
∈ PrimRec3
proof −

have S1 : (λ x y z. if (p1 x y z = p2 x y z) then (q1 x y z) else (q2 x y z)) = (λ
x y z. if (abs-of-diff (p1 x y z) (p2 x y z) = 0 ) then (q1 x y z) else (q2 x y z)) (is
?L = ?R) by (simp add: abs-of-diff-eq)

assume A1 : p1 ∈ PrimRec3 and A2 : p2 ∈ PrimRec3
with abs-of-diff-is-pr have S2 : (λ x y z. abs-of-diff (p1 x y z) (p2 x y z)) ∈

PrimRec3
by prec0

assume q1 ∈ PrimRec3 and q2 ∈ PrimRec3
with S2 have ?R ∈ PrimRec3 by (rule if-is-pr3 )
with S1 show ?thesis by simp

qed

ML ‹
fun get-if-by-index 1 = @{thm if-eq-is-pr}
| get-if-by-index 2 = @{thm if-eq-is-pr2}
| get-if-by-index 3 = @{thm if-eq-is-pr3}
| get-if-by-index - = raise BadArgument

fun if-comp-tac ctxt = SUBGOAL (fn (t, i) =>
let
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val t = extract-trueprop-arg (Logic.strip-imp-concl t)
val (t1 , t2 ) = extract-set-args t
val n2 =

let
val Const(s, -) = t2

in
get-num-by-set s

end
val (name, -, n1 ) = extract-free-arg t1

in
if name = @{const-name If } then

resolve-tac ctxt [get-if-by-index n2 ] i
else

let
val comp = get-comp-by-indexes (n1 , n2 )

in
Rule-Insts.res-inst-tac ctxt
[(((f, 0 ), Position.none), Variable.revert-fixed ctxt name)] [] comp i

end
end
handle BadArgument => no-tac)

fun prec-tac ctxt facts i =
Method.insert-tac ctxt facts i THEN
REPEAT (resolve-tac ctxt [@{thm const-is-pr}, @{thm const-is-pr-2}, @{thm

const-is-pr-3}] i ORELSE
assume-tac ctxt i ORELSE if-comp-tac ctxt i)

›

method-setup prec = ‹
Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts =>
HEADGOAL (prec-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems

prec}))))
› apply primitive recursive functions

2.2 Bounded least operator
definition

b-least :: (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat) where
b-least f x ≡ (Least (%y. y = x ∨ (y < x ∧ (f x y) 6= 0 )))

definition
b-least2 :: (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat) where
b-least2 f x y ≡ (Least (%z. z = y ∨ (z < y ∧ (f x z) 6= 0 )))

lemma b-least-aux1 : b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0 )
proof −

let ?P = %y. y = x ∨ (y < x ∧ (f x y) 6= 0 )
have ?P x by simp
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then have ?P (Least ?P) by (rule LeastI )
thus ?thesis by (simp add: b-least-def )

qed

lemma b-least-le-arg: b-least f x ≤ x
proof −

have b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0 ) by (rule
b-least-aux1 )

from this show ?thesis by (arith)
qed

lemma less-b-least-impl-zero: y < b-least f x =⇒ f x y = 0
proof −

assume A1 : y < b-least f x (is - < ?b)
have b-least f x ≤ x by (rule b-least-le-arg)
with A1 have S1 : y < x by simp
with A1 have y < (Least (%y. y = x ∨ (y < x ∧ (f x y) 6= 0 ))) by (simp add:

b-least-def )
then have ¬ (y = x ∨ (y < x ∧ (f x y) 6= 0 )) by (rule not-less-Least)
with S1 show ?thesis by simp

qed

lemma nz-impl-b-least-le: (f x y) 6= 0 =⇒ (b-least f x) ≤ y
proof (rule ccontr)

assume A1 : f x y 6= 0
assume ¬ b-least f x ≤ y
then have y < b-least f x by simp
with A1 show False by (simp add: less-b-least-impl-zero)

qed

lemma b-least-less-impl-nz: b-least f x < x =⇒ f x (b-least f x) 6= 0
proof −

assume A1 : b-least f x < x
have b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0 ) by (rule

b-least-aux1 )
from A1 this show ?thesis by simp

qed

lemma b-least-less-impl-eq: b-least f x < x =⇒ (b-least f x) = (Least (%y. (f x y)
6= 0 ))
proof −

assume A1 : b-least f x < x (is ?b < -)
let ?B = (Least (%y. (f x y) 6= 0 ))
from A1 have S1 : f x ?b 6= 0 by (rule b-least-less-impl-nz)
from S1 have S2 : ?B ≤ ?b by (rule Least-le)
from S1 have S3 : f x ?B 6= 0 by (rule LeastI )
from S3 have S4 : ?b ≤ ?B by (rule nz-impl-b-least-le)
from S2 S4 show ?thesis by simp

qed
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lemma less-b-least-impl-zero2 : [[y < x; b-least f x = x]] =⇒ f x y = 0 by (simp
add: less-b-least-impl-zero)

lemma nz-impl-b-least-less: [[y<x; (f x y) 6= 0 ]] =⇒ (b-least f x) < x
proof −

assume A1 : y < x
assume f x y 6= 0
then have b-least f x ≤ y by (rule nz-impl-b-least-le)
with A1 show ?thesis by simp

qed

lemma b-least-aux2 : [[y<x; (f x y) 6= 0 ]] =⇒ (b-least f x) = (Least (%y. (f x y) 6=
0 ))
proof −

assume A1 : y < x and A2 : f x y 6= 0
from A1 A2 have S1 : b-least f x < x by (rule nz-impl-b-least-less)
thus ?thesis by (rule b-least-less-impl-eq)

qed

lemma b-least2-aux1 : b-least2 f x y = y ∨ (b-least2 f x y < y ∧ (f x (b-least2 f x
y)) 6= 0 )
proof −

let ?P = %z. z = y ∨ (z < y ∧ (f x z) 6= 0 )
have ?P y by simp
then have ?P (Least ?P) by (rule LeastI )
thus ?thesis by (simp add: b-least2-def )

qed

lemma b-least2-le-arg: b-least2 f x y ≤ y
proof −

let ?B = b-least2 f x y
have ?B = y ∨ (?B < y ∧ (f x ?B) 6= 0 ) by (rule b-least2-aux1 )
from this show ?thesis by (arith)

qed

lemma less-b-least2-impl-zero: z < b-least2 f x y =⇒ f x z = 0
proof −

assume A1 : z < b-least2 f x y (is - < ?b)
have b-least2 f x y ≤ y by (rule b-least2-le-arg)
with A1 have S1 : z < y by simp
with A1 have z < (Least (%z. z = y ∨ (z < y ∧ (f x z) 6= 0 ))) by (simp add:

b-least2-def )
then have ¬ (z = y ∨ (z < y ∧ (f x z) 6= 0 )) by (rule not-less-Least)
with S1 show ?thesis by simp

qed

lemma nz-impl-b-least2-le: (f x z) 6= 0 =⇒ (b-least2 f x y) ≤ z
proof −
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assume A1 : f x z 6= 0
have S1 : z < b-least2 f x y =⇒ f x z = 0 by (rule less-b-least2-impl-zero)
from A1 S1 show ?thesis by arith

qed

lemma b-least2-less-impl-nz: b-least2 f x y < y =⇒ f x (b-least2 f x y) 6= 0
proof −

assume A1 : b-least2 f x y < y
have b-least2 f x y = y ∨ (b-least2 f x y < y ∧ (f x (b-least2 f x y)) 6= 0 ) by

(rule b-least2-aux1 )
with A1 show ?thesis by simp

qed

lemma b-least2-less-impl-eq: b-least2 f x y < y =⇒ (b-least2 f x y) = (Least (%z.
(f x z) 6= 0 ))
proof −

assume A1 : b-least2 f x y < y (is ?b < -)
let ?B = (Least (%z. (f x z) 6= 0 ))
from A1 have S1 : f x ?b 6= 0 by (rule b-least2-less-impl-nz)
from S1 have S2 : ?B ≤ ?b by (rule Least-le)
from S1 have S3 : f x ?B 6= 0 by (rule LeastI )
from S3 have S4 : ?b ≤ ?B by (rule nz-impl-b-least2-le)
from S2 S4 show ?thesis by simp

qed

lemma less-b-least2-impl-zero2 : [[z<y; b-least2 f x y = y]] =⇒ f x z = 0
proof −

assume z < y and b-least2 f x y = y
hence z < b-least2 f x y by simp
thus ?thesis by (rule less-b-least2-impl-zero)

qed

lemma nz-b-least2-impl-less: [[z<y; (f x z) 6= 0 ]] =⇒ (b-least2 f x y) < y
proof (rule ccontr)

assume A1 : z < y
assume A2 : f x z 6= 0
assume ¬ (b-least2 f x y) < y then have A3 : y ≤ (b-least2 f x y) by simp
have b-least2 f x y ≤ y by (rule b-least2-le-arg)
with A3 have b-least2 f x y = y by simp
with A1 have f x z = 0 by (rule less-b-least2-impl-zero2 )
with A2 show False by simp

qed

lemma b-least2-less-impl-eq2 : [[z < y; (f x z) 6= 0 ]] =⇒ (b-least2 f x y) = (Least
(%z. (f x z) 6= 0 ))
proof −

assume A1 : z < y and A2 : f x z 6= 0
from A1 A2 have S1 : b-least2 f x y < y by (rule nz-b-least2-impl-less)
thus ?thesis by (rule b-least2-less-impl-eq)
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qed

lemma b-least2-aux2 : b-least2 f x y < y =⇒ b-least2 f x (Suc y) = b-least2 f x y
proof −

let ?B = b-least2 f x y
assume A1 : ?B < y
from A1 have S1 : f x ?B 6= 0 by (rule b-least2-less-impl-nz)
from S1 have S2 : b-least2 f x (Suc y) ≤ ?B by (simp add: nz-impl-b-least2-le)
from A1 S2 have S3 : b-least2 f x (Suc y) < Suc y by (simp)
from S3 have S4 : f x (b-least2 f x (Suc y)) 6= 0 by (rule b-least2-less-impl-nz)
from S4 have S5 : ?B ≤ b-least2 f x (Suc y) by (rule nz-impl-b-least2-le)
from S2 S5 show ?thesis by simp

qed

lemma b-least2-aux3 : [[ b-least2 f x y = y; f x y 6= 0 ]] =⇒ b-least2 f x (Suc y) = y
proof −

assume A1 : b-least2 f x y =y
assume A2 : f x y 6= 0
from A2 have S1 : b-least2 f x (Suc y) ≤ y by (rule nz-impl-b-least2-le)
have S2 : b-least2 f x (Suc y) < y =⇒ False
proof −

assume A2-1 : b-least2 f x (Suc y) < y (is ?z < -)
from A2-1 have S2-1 : ?z < Suc y by simp
from S2-1 have S2-2 : f x ?z 6= 0 by (rule b-least2-less-impl-nz)
from A2-1 S2-2 have S2-3 : b-least2 f x y < y by (rule nz-b-least2-impl-less)
from S2-3 A1 show ?thesis by simp

qed
from S2 have S3 : ¬ (b-least2 f x (Suc y) < y) by auto
from S1 S3 show ?thesis by simp

qed

lemma b-least2-mono: y1 ≤ y2 =⇒ b-least2 f x y1 ≤ b-least2 f x y2
proof (rule ccontr)

assume A1 : y1 ≤ y2
let ?b1 = b-least2 f x y1 and ?b2 = b-least2 f x y2
assume ¬ ?b1 ≤ ?b2 then have A2 : ?b2 < ?b1 by simp
have S1 : ?b1 ≤ y1 by (rule b-least2-le-arg)
have S2 : ?b2 ≤ y2 by (rule b-least2-le-arg)
from A1 A2 S1 S2 have S3 : ?b2 < y2 by simp
then have S4 : f x ?b2 6= 0 by (rule b-least2-less-impl-nz)
from A2 have S5 : f x ?b2 = 0 by (rule less-b-least2-impl-zero)
from S4 S5 show False by simp

qed

lemma b-least2-aux4 : [[ b-least2 f x y = y; f x y = 0 ]] =⇒ b-least2 f x (Suc y) =
Suc y
proof −

assume A1 : b-least2 f x y = y
assume A2 : f x y = 0
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have S1 : b-least2 f x (Suc y) ≤ Suc y by (rule b-least2-le-arg)
have S2 : y ≤ b-least2 f x (Suc y)
proof −

have y ≤ Suc y by simp
then have b-least2 f x y ≤ b-least2 f x (Suc y) by (rule b-least2-mono)
with A1 show ?thesis by simp

qed
from S1 S2 have b-least2 f x (Suc y) =y ∨ b-least2 f x (Suc y) = Suc y by

arith
moreover
{

assume A3 : b-least2 f x (Suc y) = y
have f x y 6= 0
proof −

have y < Suc y by simp
with A3 have b-least2 f x (Suc y) < Suc y by simp

from this have f x (b-least2 f x (Suc y)) 6= 0 by (simp add: b-least2-less-impl-nz)
with A3 show f x y 6= 0 by simp

qed
with A2 have ?thesis by simp

}
moreover
{

assume b-least2 f x (Suc y) = Suc y
then have ?thesis by simp

}
ultimately show ?thesis by blast

qed

lemma b-least2-at-zero: b-least2 f x 0 = 0
proof −

have S1 : b-least2 f x 0 ≤ 0 by (rule b-least2-le-arg)
from S1 show ?thesis by auto

qed

theorem pr-b-least2 : f ∈ PrimRec2 =⇒ b-least2 f ∈ PrimRec2
proof −

define loc-Op1 where loc-Op1 = (λ (f ::nat ⇒ nat ⇒ nat) x y z . (sgn1 (z −
y)) ∗ y + (sgn2 (z − y))∗((sgn1 (f x z))∗z + (sgn2 (f x z))∗(Suc z)))

define loc-Op2 where loc-Op2 = (λ f . PrimRecOp-last (λ x. 0 ) (loc-Op1 f ))
have loc-op2-lm-1 :

∧
f x y. loc-Op2 f x y < y =⇒ loc-Op2 f x (Suc y) = loc-Op2

f x y
proof −

fix f x y
let ?b = loc-Op2 f x y
have S1 : loc-Op2 f x (Suc y) = (loc-Op1 f ) x ?b y by (simp add: loc-Op2-def )
assume ?b < y
then have y − ?b > 0 by simp
then have loc-Op1 f x ?b y = ?b by (simp add: loc-Op1-def )
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with S1 show loc-Op2 f x y < y =⇒ loc-Op2 f x (Suc y) = loc-Op2 f x y by
simp

qed
have loc-op2-lm-2 :

∧
f x y. [[¬(loc-Op2 f x y < y); f x y 6= 0 ]] =⇒ loc-Op2 f x

(Suc y) = y
proof −

fix f x y
let ?b = loc-Op2 f x y and ?h = loc-Op1 f
have S1 : loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def )
assume ¬(?b < y)
then have S2 : y − ?b = 0 by simp
assume f x y 6= 0
with S2 have ?h x ?b y = y by (simp add: loc-Op1-def )
with S1 show loc-Op2 f x (Suc y) = y by simp

qed
have loc-op2-lm-3 :

∧
f x y. [[¬(loc-Op2 f x y < y); f x y = 0 ]] =⇒ loc-Op2 f x

(Suc y) = Suc y
proof −

fix f x y
let ?b = loc-Op2 f x y and ?h = loc-Op1 f
have S1 : loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def )
assume ¬(?b < y)
then have S2 : y − ?b = 0 by simp
assume f x y = 0
with S2 have ?h x ?b y = Suc y by (simp add: loc-Op1-def )
with S1 show loc-Op2 f x (Suc y) = Suc y by simp

qed
have Op2-eq-b-least2-at-point:

∧
f x y. loc-Op2 f x y = b-least2 f x y

proof − fix f x show
∧

y. loc-Op2 f x y = b-least2 f x y
proof (induct-tac y)

show loc-Op2 f x 0 = b-least2 f x 0 by (simp add: loc-Op2-def b-least2-at-zero)
next

fix y
assume A1 : loc-Op2 f x y = b-least2 f x y
then show loc-Op2 f x (Suc y) = b-least2 f x (Suc y)
proof cases

assume A2 : loc-Op2 f x y < y
then have S1 : loc-Op2 f x (Suc y) = loc-Op2 f x y by (rule loc-op2-lm-1 )
from A1 A2 have b-least2 f x y < y by simp
then have S2 : b-least2 f x (Suc y) = b-least2 f x y by (rule b-least2-aux2 )
from A1 S1 S2 show ?thesis by simp

next
assume A3 : ¬ loc-Op2 f x y < y
have A3 ′: b-least2 f x y = y
proof −

have b-least2 f x y ≤ y by (rule b-least2-le-arg)
from A1 A3 this show ?thesis by simp

qed
then show ?thesis
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proof cases
assume A4 : f x y 6= 0
with A3 have S3 : loc-Op2 f x (Suc y) = y by (rule loc-op2-lm-2 )
from A3 ′ A4 have S4 : b-least2 f x (Suc y) = y by (rule b-least2-aux3 )
from S3 S4 show ?thesis by simp

next
assume ¬ f x y 6= 0
then have A5 : f x y = 0 by simp
with A3 have S5 : loc-Op2 f x (Suc y) = Suc y by (rule loc-op2-lm-3 )
from A3 ′ A5 have S6 : b-least2 f x (Suc y) = Suc y by (rule b-least2-aux4 )
from S5 S6 show ?thesis by simp

qed
qed

qed
qed
have Op2-eq-b-least2 : loc-Op2 = b-least2 by (simp add: Op2-eq-b-least2-at-point

ext)
assume A1 : f ∈ PrimRec2
have pr-loc-Op2 : loc-Op2 f ∈ PrimRec2
proof −

from A1 have S1 : loc-Op1 f ∈ PrimRec3 by (simp add: loc-Op1-def , prec)
from pr-zero S1 have S2 : PrimRecOp-last (λ x. 0 ) (loc-Op1 f ) ∈ PrimRec2

by (rule pr-rec-last)
from this show ?thesis by (simp add: loc-Op2-def )

qed
from Op2-eq-b-least2 this show b-least2 f ∈ PrimRec2 by simp

qed

lemma b-least-def1 : b-least f = (λ x. b-least2 f x x) by (simp add: b-least2-def
b-least-def ext)

theorem pr-b-least: f ∈ PrimRec2 =⇒ b-least f ∈ PrimRec1
proof −

assume f ∈ PrimRec2
then have b-least2 f ∈ PrimRec2 by (rule pr-b-least2 )
from this pr-id1-1 pr-id1-1 have (λ x. b-least2 f x x) ∈ PrimRec1 by (rule

pr-comp2-1 )
then show ?thesis by (simp add: b-least-def1 )

qed

2.3 Examples
theorem c-sum-as-b-least: c-sum = (λ u. b-least2 (λ u z. (sgn1 (sf (z+1 ) − u)))
u (Suc u))
proof (rule ext)

fix u show c-sum u = b-least2 (λ u z. (sgn1 (sf (z+1 ) − u))) u (Suc u)
proof −

have lm-1 : (λ x y. (sgn1 (sf (y+1 ) − x) 6= 0 )) = (λ x y. (x < sf (y+1 )))
proof (rule ext, rule ext)
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fix x y show (sgn1 (sf (y+1 ) − x) 6= 0 ) = (x < sf (y+1 ))
proof −
have (sgn1 (sf (y+1 ) − x) 6= 0 ) = (sf (y+1 ) − x > 0 ) by (rule sgn1-nz-eq-arg-pos)

thus (sgn1 (sf (y+1 ) − x) 6= 0 ) = (x < sf (y+1 )) by auto
qed

qed
let ?f = λ u z. (sgn1 (sf (z+1 ) − u))
have S1 : ?f u u 6= 0
proof −

have S1-1 : u+1 ≤ sf (u+1 ) by (rule arg-le-sf )
have S1-2 : u < u+1 by simp
from S1-1 S1-2 have S1-3 : u < sf (u+1 ) by simp
from S1-3 have S1-4 : sf (u+1 ) − u > 0 by simp
from S1-4 have S1-5 : sgn1 (sf (u+1 )−u) = 1 by simp
from S1-5 show ?thesis by simp

qed
have S3 : u < Suc u by simp
from S3 S1 have S4 : b-least2 ?f u (Suc u) = (Least (%z. (?f u z) 6= 0 )) by

(rule b-least2-less-impl-eq2 )
let ?P = λ u z. ?f u z 6= 0
let ?Q = λ u z. u < sf (z+1 )
from lm-1 have S6 : ?P = ?Q by simp
from S6 have S7 : (%z. ?P u z) = (%z. ?Q u z) by (rule fun-cong)
from S7 have S8 : (Least (%z. ?P u z)) = (Least (%z. ?Q u z)) by auto
from S4 S8 have S9 : b-least2 ?f u (Suc u) = (Least (%z. u < sf (z+1 ))) by

(rule trans)
thus ?thesis by (simp add: c-sum-def )

qed
qed

theorem c-sum-is-pr : c-sum ∈ PrimRec1
proof −

let ?f = λ u z. (sgn1 (sf (z+1 ) − u))
have S1 : (λ u z. sgn1 ((sf (z+1 ) − u))) ∈ PrimRec2 by prec
define g where g = b-least2 ?f
from g-def S1 have g ∈ PrimRec2 by (simp add: pr-b-least2 )
then have S2 : (λ u. g u (Suc u)) ∈ PrimRec1 by prec
from g-def have c-sum = (λ u. g u (Suc u)) by (simp add: c-sum-as-b-least ext)
with S2 show ?thesis by simp

qed

theorem c-fst-is-pr [prec]: c-fst ∈ PrimRec1
proof −

have S1 : (λ u. c-fst u) = (λ u. (u − sf (c-sum u))) by (simp add: c-fst-def ext)
from c-sum-is-pr have (λ u. (u − sf (c-sum u))) ∈ PrimRec1 by prec
with S1 show ?thesis by simp

qed

theorem c-snd-is-pr [prec]: c-snd ∈ PrimRec1
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proof −
have S1 : c-snd = (λ u. (c-sum u) − (c-fst u)) by (simp add: c-snd-def ext)
from c-sum-is-pr c-fst-is-pr have S2 : (λ u. (c-sum u) − (c-fst u)) ∈ PrimRec1

by prec
from S1 this show ?thesis by simp

qed

theorem pr-1-to-2 : f ∈ PrimRec1 =⇒ (λ x y. f (c-pair x y)) ∈ PrimRec2 by prec

theorem pr-2-to-1 : f ∈ PrimRec2 =⇒ (λ z. f (c-fst z) (c-snd z)) ∈ PrimRec1 by
prec

definition pr-conv-1-to-2 = (λ f x y. f (c-pair x y))
definition pr-conv-1-to-3 = (λ f x y z. f (c-pair (c-pair x y) z))
definition pr-conv-2-to-1 = (λ f x. f (c-fst x) (c-snd x))
definition pr-conv-3-to-1 = (λ f x. f (c-fst (c-fst x)) (c-snd (c-fst x)) (c-snd x))
definition pr-conv-3-to-2 = (λ f . pr-conv-1-to-2 (pr-conv-3-to-1 f ))
definition pr-conv-2-to-3 = (λ f . pr-conv-1-to-3 (pr-conv-2-to-1 f ))

lemma [simp]: pr-conv-1-to-2 (pr-conv-2-to-1 f ) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def )
lemma [simp]: pr-conv-2-to-1 (pr-conv-1-to-2 f ) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def )
lemma [simp]: pr-conv-1-to-3 (pr-conv-3-to-1 f ) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def )
lemma [simp]: pr-conv-3-to-1 (pr-conv-1-to-3 f ) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def )
lemma [simp]: pr-conv-3-to-2 (pr-conv-2-to-3 f ) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def )
lemma [simp]: pr-conv-2-to-3 (pr-conv-3-to-2 f ) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def )

lemma pr-conv-1-to-2-lm: f ∈ PrimRec1 =⇒ pr-conv-1-to-2 f ∈ PrimRec2 by
(simp add: pr-conv-1-to-2-def , prec)
lemma pr-conv-1-to-3-lm: f ∈ PrimRec1 =⇒ pr-conv-1-to-3 f ∈ PrimRec3 by
(simp add: pr-conv-1-to-3-def , prec)
lemma pr-conv-2-to-1-lm: f ∈ PrimRec2 =⇒ pr-conv-2-to-1 f ∈ PrimRec1 by
(simp add: pr-conv-2-to-1-def , prec)
lemma pr-conv-3-to-1-lm: f ∈ PrimRec3 =⇒ pr-conv-3-to-1 f ∈ PrimRec1 by
(simp add: pr-conv-3-to-1-def , prec)
lemma pr-conv-3-to-2-lm: f ∈ PrimRec3 =⇒ pr-conv-3-to-2 f ∈ PrimRec2
proof −

assume f ∈ PrimRec3
then have pr-conv-3-to-1 f ∈ PrimRec1 by (rule pr-conv-3-to-1-lm)
thus ?thesis by (simp add: pr-conv-3-to-2-def pr-conv-1-to-2-lm)

qed
lemma pr-conv-2-to-3-lm: f ∈ PrimRec2 =⇒ pr-conv-2-to-3 f ∈ PrimRec3
proof −

assume f ∈ PrimRec2
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then have pr-conv-2-to-1 f ∈ PrimRec1 by (rule pr-conv-2-to-1-lm)
thus ?thesis by (simp add: pr-conv-2-to-3-def pr-conv-1-to-3-lm)

qed

theorem b-least2-scheme: [[ f ∈ PrimRec2 ; g ∈ PrimRec1 ; ∀ x. h x < g x ; ∀ x. f
x (h x) 6= 0 ; ∀ z x. z < h x −→ f x z = 0 ]] =⇒

h ∈ PrimRec1
proof −

assume f-is-pr : f ∈ PrimRec2
assume g-is-pr : g ∈ PrimRec1
assume h-lt-g: ∀ x. h x < g x
assume f-at-h-nz: ∀ x. f x (h x) 6= 0
assume h-is-min: ∀ z x. z < h x −→ f x z = 0
have h-def : h = (λ x. b-least2 f x (g x))
proof

fix x show h x = b-least2 f x (g x)
proof −
from f-at-h-nz have S1 : b-least2 f x (g x) ≤ h x by (simp add: nz-impl-b-least2-le)

from h-lt-g have h x < g x by auto
with S1 have b-least2 f x (g x) < g x by simp
then have S2 : f x (b-least2 f x (g x)) 6= 0 by (rule b-least2-less-impl-nz)
have S3 : h x ≤ b-least2 f x (g x)
proof (rule ccontr)

assume ¬ h x ≤ b-least2 f x (g x) then have b-least2 f x (g x) < h x by
auto

with h-is-min have f x (b-least2 f x (g x)) = 0 by simp
with S2 show False by auto

qed
from S1 S3 show ?thesis by auto

qed
qed
define f1 where f1 = b-least2 f
from f-is-pr f1-def have f1-is-pr : f1 ∈ PrimRec2 by (simp add: pr-b-least2 )
with g-is-pr have (λ x. f1 x (g x)) ∈ PrimRec1 by prec
with h-def f1-def show h ∈ PrimRec1 by auto

qed

theorem b-least2-scheme2 : [[ f ∈ PrimRec3 ; g ∈ PrimRec2 ; ∀ x y. h x y < g x y;
∀ x y. f x y (h x y) 6= 0 ;

∀ z x y. z < h x y −→ f x y z = 0 ]] =⇒
h ∈ PrimRec2

proof −
assume f-is-pr : f ∈ PrimRec3
assume g-is-pr : g ∈ PrimRec2
assume h-lt-g: ∀ x y. h x y < g x y
assume f-at-h-nz: ∀ x y. f x y (h x y) 6= 0
assume h-is-min: ∀ z x y. z < h x y −→ f x y z = 0
define f1 where f1 = pr-conv-3-to-2 f
define g1 where g1 = pr-conv-2-to-1 g

32



define h1 where h1 = pr-conv-2-to-1 h
from f-is-pr f1-def have f1-is-pr : f1 ∈ PrimRec2 by (simp add: pr-conv-3-to-2-lm)
from g-is-pr g1-def have g1-is-pr : g1 ∈ PrimRec1 by (simp add: pr-conv-2-to-1-lm)
from h-lt-g h1-def g1-def have h1-lt-g1 : ∀ x. h1 x < g1 x by (simp add:

pr-conv-2-to-1-def )
from f-at-h-nz f1-def h1-def have f1-at-h1-nz: ∀ x. f1 x (h1 x) 6= 0 by (simp

add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def )
from h-is-min f1-def h1-def have h1-is-min: ∀ z x. z < h1 x −→ f1 x z = 0 by

(simp add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def )
from f1-is-pr g1-is-pr h1-lt-g1 f1-at-h1-nz h1-is-min have h1-is-pr : h1 ∈ Prim-

Rec1 by (rule b-least2-scheme)
from h1-def have h = pr-conv-1-to-2 h1 by simp
with h1-is-pr show h ∈ PrimRec2 by (simp add: pr-conv-1-to-2-lm)

qed

theorem div-is-pr : (λ a b. a div b) ∈ PrimRec2
proof −

define f where f a b z = (sgn1 b) ∗ (sgn1 (b∗(z+1 )−a)) + (sgn2 b)∗(sgn2 z)
for a b z

have f-is-pr : f ∈ PrimRec3 unfolding f-def by prec
define h where h a b = a div b for a b :: nat
define g where g a b = a + 1 for a b :: nat
have g-is-pr : g ∈ PrimRec2 unfolding g-def by prec
have h-lt-g: ∀ a b. h a b < g a b
proof (rule allI , rule allI )

fix a b
from h-def have h a b ≤ a by simp
also from g-def have a < g a b by simp
ultimately show h a b < g a b by simp

qed
have f-at-h-nz: ∀ a b. f a b (h a b) 6= 0
proof (rule allI , rule allI )

fix a b show f a b (h a b) 6= 0
proof cases

assume A: b = 0
with h-def have h a b = 0 by simp
with f-def A show ?thesis by simp

next
assume A: b 6= 0
then have S1 : b > 0 by auto
from A f-def have S2 : f a b (h a b) = sgn1 (b ∗ (h a b + 1 ) − a) by simp
then have ?thesis = (sgn1 (b ∗ (h a b + 1 ) − a) 6= 0 ) by auto
also have . . . = (b ∗ (h a b + 1 ) − a > 0 ) by (rule sgn1-nz-eq-arg-pos)
also have . . . = (a < b ∗ (h a b + 1 )) by auto
also have . . . = (a < b ∗ (h a b) + b) by auto
also from h-def have . . . = (a < b ∗ (a div b) + b) by simp
finally have S3 : ?thesis = (a < b ∗ (a div b) + b) by auto
have S4 : a < b ∗ (a div b) + b
proof −
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from S1 have S4-1 : a mod b < b by (rule mod-less-divisor)
also have S4-2 : b ∗ (a div b) + a mod b = a by (rule mult-div-mod-eq)
from S4-1 have S4-3 : b ∗ (a div b) + a mod b < b ∗ (a div b) + b by arith
from S4-2 S4-3 show ?thesis by auto

qed
from S3 S4 show ?thesis by auto

qed
qed
have h-is-min: ∀ z a b. z < h a b −→ f a b z = 0
proof (rule allI , rule allI , rule allI , rule impI )

fix a b z assume A: z < h a b show f a b z = 0
proof −

from A h-def have S1 : z < a div b by simp
then have S2 : a div b > 0 by simp
have S3 : b 6= 0
proof (rule ccontr)

assume ¬ b 6= 0 then have b = 0 by auto
then have a div b = 0 by auto
with S2 show False by auto

qed
from S3 have b-pos: 0 < b by auto
from S1 have S4 : z+1 ≤ a div b by auto
from b-pos have (b ∗ (z+1 ) ≤ b ∗ (a div b)) = (z+1 ≤ a div b) by (rule

nat-mult-le-cancel1 )
with S4 have S5 : b∗(z+1 ) ≤ b∗(a div b) by simp
moreover have b∗(a div b) ≤ a
proof −

have b∗(a div b) + (a mod b) = a by (rule mult-div-mod-eq)
moreover have 0 ≤ a mod b by auto
ultimately show ?thesis by arith

qed
ultimately have S6 : b∗(z+1 ) ≤ a

by (simp add: minus-mod-eq-mult-div [symmetric])
then have b∗(z+1 ) − a = 0 by auto
with S3 f-def show ?thesis by simp

qed
qed
from f-is-pr g-is-pr h-lt-g f-at-h-nz h-is-min have h-is-pr : h ∈ PrimRec2 by (rule

b-least2-scheme2 )
with h-def [abs-def ] show ?thesis by simp

qed

theorem mod-is-pr : (λ a b. a mod b) ∈ PrimRec2
proof −

have (λ (a::nat) (b::nat). a mod b) = (λ a b. a − (a div b) ∗ b)
proof (rule ext, rule ext)
fix a b show (a::nat) mod b = a − (a div b) ∗ b by (rule minus-div-mult-eq-mod

[symmetric])
qed
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also from div-is-pr have (λ a b. a − (a div b) ∗ b) ∈ PrimRec2 by prec
ultimately show ?thesis by auto

qed

theorem pr-rec-last-scheme: [[ g ∈ PrimRec1 ; h ∈ PrimRec3 ; ∀ x. f x 0 = g x; ∀
x y. f x (Suc y) = h x (f x y) y ]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-at-0 : ∀ x. f x 0 = g x
assume f-at-Suc: ∀ x y. f x (Suc y) = h x (f x y) y
from f-at-0 f-at-Suc have

∧
x y. f x y = PrimRecOp-last g h x y by (induct-tac

y, simp-all)
then have f = PrimRecOp-last g h by (simp add: ext)
with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec-last)

qed

theorem power-is-pr : (λ (x::nat) (n::nat). x ^ n) ∈ PrimRec2
proof −

define g :: nat ⇒ nat where g x = 1 for x
define h where h a b c = a ∗ b for a b c :: nat
have g-is-pr : g ∈ PrimRec1 unfolding g-def by prec
have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
let ?f = λ (x::nat) (n::nat). x ^ n
have f-at-0 : ∀ x. ?f x 0 = g x
proof

fix x show x ^ 0 = g x by (simp add: g-def )
qed
have f-at-Suc: ∀ x y. ?f x (Suc y) = h x (?f x y) y
proof (rule allI , rule allI )

fix x y show ?f x (Suc y) = h x (?f x y) y by (simp add: h-def )
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme)

qed

end

3 Primitive recursive coding of lists of natural num-
bers

theory PRecList
imports PRecFun
begin

We introduce a particular coding list-to-nat from lists of natural numbers
to natural numbers.
definition

c-len :: nat ⇒ nat where
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c-len = (λ (u::nat). (sgn1 u) ∗ (c-fst(u−(1 ::nat))+1 ))

lemma c-len-1 : c-len u = (case u of 0 ⇒ 0 | Suc v ⇒ c-fst(v)+1 ) by (unfold
c-len-def , cases u, auto)

lemma c-len-is-pr : c-len ∈ PrimRec1 unfolding c-len-def by prec

lemma [simp]: c-len 0 = 0 by (simp add: c-len-def )

lemma c-len-2 : u 6= 0 =⇒ c-len u = c-fst(u−(1 ::nat))+1 by (simp add: c-len-def )

lemma c-len-3 : u>0 =⇒ c-len u > 0 by (simp add: c-len-2 )

lemma c-len-4 : c-len u = 0 =⇒ u = 0
proof cases

assume A1 : u = 0
thus ?thesis by simp

next
assume A1 : c-len u = 0 and A2 : u 6= 0
from A2 have c-len u > 0 by (simp add: c-len-3 )
from A1 this show u=0 by simp

qed

lemma c-len-5 : c-len u > 0 =⇒ u > 0
proof cases

assume A1 : c-len u > 0 and A2 : u=0
from A2 have c-len u = 0 by simp
from A1 this show ?thesis by simp

next
assume A1 : u 6= 0
from A1 show u>0 by simp

qed

fun c-fold :: nat list ⇒ nat where
c-fold [] = 0
| c-fold [x] = x
| c-fold (x#ls) = c-pair x (c-fold ls)

lemma c-fold-0 : ls 6= [] =⇒ c-fold (x#ls) = c-pair x (c-fold ls)
proof −

assume A1 : ls 6= []
then have S1 : ls = (hd ls)#(tl ls) by simp
then have S2 : x#ls = x#(hd ls)#(tl ls) by simp
have S3 : c-fold (x#(hd ls)#(tl ls)) = c-pair x (c-fold ((hd ls)#(tl ls))) by simp
from S1 S2 S3 show ?thesis by simp

qed

primrec
c-unfold :: nat ⇒ nat ⇒ nat list
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where
c-unfold 0 u = []
| c-unfold (Suc k) u = (if k = 0 then [u] else ((c-fst u) # (c-unfold k (c-snd u))))

lemma c-fold-1 : c-unfold 1 (c-fold [x]) = [x] by simp

lemma c-fold-2 : c-fold (c-unfold 1 u) = u by simp

lemma c-unfold-1 : c-unfold 1 u = [u] by simp

lemma c-unfold-2 : c-unfold (Suc 1 ) u = (c-fst u) # (c-unfold 1 (c-snd u)) by
simp

lemma c-unfold-3 : c-unfold (Suc 1 ) u = [c-fst u, c-snd u] by simp

lemma c-unfold-4 : k > 0 =⇒ c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd
u)) by simp

lemma c-unfold-4-1 : k > 0 =⇒ c-unfold (Suc k) u 6= [] by (simp add: c-unfold-4 )

lemma two: (2 ::nat) = Suc 1 by simp

lemma c-unfold-5 : c-unfold 2 u = [c-fst u, c-snd u] by (simp add: two)

lemma c-unfold-6 : k>0 =⇒ c-unfold k u 6= []
proof −

assume A1 : k>0
let ?k1 = k−(1 ::nat)
from A1 have S1 : k = Suc ?k1 by simp
have S2 : ?k1 = 0 =⇒ ?thesis
proof −

assume A2-1 : ?k1=0
from A1 A2-1 have S2-1 : k=1 by simp
from S2-1 show ?thesis by (simp add: c-unfold-1 )

qed
have S3 : ?k1 > 0 =⇒ ?thesis
proof −

assume A3-1 : ?k1 > 0
from A3-1 have S3-1 : c-unfold (Suc ?k1 ) u 6= [] by (rule c-unfold-4-1 )
from S1 S3-1 show ?thesis by simp

qed
from S2 S3 show ?thesis by arith

qed

lemma th-lm-1 : k=1 =⇒ (∀ u. c-fold (c-unfold k u) = u) by (simp add: c-fold-2 )

lemma th-lm-2 : [[k>0 ; (∀ u. c-fold (c-unfold k u) = u)]] =⇒ (∀ u. c-fold (c-unfold
(Suc k) u) = u)
proof
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assume A1 : k>0
assume A2 : ∀ u. c-fold (c-unfold k u) = u
fix u
from A1 have S1 : c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd u)) by

(rule c-unfold-4 )
let ?ls = c-unfold k (c-snd u)
from A1 have S2 : ?ls 6= [] by (rule c-unfold-6 )
from S2 have S3 : c-fold ( (c-fst u) # ?ls) = c-pair (c-fst u) (c-fold ?ls) by (rule

c-fold-0 )
from A2 have S4 : c-fold ?ls = c-snd u by simp
from S3 S4 have S5 : c-fold ( (c-fst u) # ?ls) = c-pair (c-fst u) (c-snd u) by

simp
from S5 have S6 : c-fold ( (c-fst u) # ?ls) = u by simp
from S1 S6 have S7 : c-fold (c-unfold (Suc k) u) = u by simp
thus c-fold (c-unfold (Suc k) u) = u .

qed

lemma th-lm-3 : (∀ u. c-fold (c-unfold (Suc k) u) = u)=⇒ (∀ u. c-fold (c-unfold
(Suc (Suc k)) u) = u)
proof −

assume A1 : ∀ u. c-fold (c-unfold (Suc k) u) = u
let ?k1 = Suc k
have S1 : ?k1 > 0 by simp
from S1 A1 have S2 : ∀ u. c-fold (c-unfold (Suc ?k1 ) u) = u by (rule th-lm-2 )
thus ?thesis by simp

qed

theorem th-1 : ∀ u. c-fold (c-unfold (Suc k) u) = u
apply(induct k)
apply(simp add: c-fold-2 )
apply(rule th-lm-3 )
apply(assumption)
done

theorem th-2 : k > 0 =⇒ (∀ u. c-fold (c-unfold k u) = u)
proof −

assume A1 : k>0
let ?k1 = k−(1 ::nat)
from A1 have S1 : Suc ?k1 = k by simp
have S2 : ∀ u. c-fold (c-unfold (Suc ?k1 ) u) = u by (rule th-1 )
from S1 S2 show ?thesis by simp

qed

lemma c-fold-3 : c-unfold 2 (c-fold [x, y]) = [x, y] by (simp add: two)

theorem c-unfold-len: ALL u. length (c-unfold k u) = k
apply(induct k)
apply(simp)
apply(subgoal-tac n=(0 ::nat) ∨ n>0 )
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apply(drule disjE)
prefer 3
apply(simp-all)
apply(auto)
done

lemma th-3-lm-0 : [[c-unfold (length ls) (c-fold ls) = ls; ls = a # ls1 ; ls1 = aa #
list]] =⇒ c-unfold (length (x # ls)) (c-fold (x # ls)) = x # ls
proof −

assume A1 : c-unfold (length ls) (c-fold ls) = ls
assume A2 : ls = a # ls1
assume A3 : ls1 = aa # list
from A2 have S1 : ls 6= [] by simp
from S1 have S2 : c-fold (x#ls) = c-pair x (c-fold ls) by (rule c-fold-0 )
have S3 : length (x#ls) = Suc (length ls) by simp
from S3 have S4 : c-unfold (length (x # ls)) (c-fold (x # ls)) = c-unfold (Suc

(length ls)) (c-fold (x # ls)) by simp
from A2 have S5 : length ls > 0 by simp
from S5 have S6 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = c-fst (c-fold (x

# ls))#(c-unfold (length ls) (c-snd (c-fold (x#ls)))) by (rule c-unfold-4 )
from S2 have S7 : c-fst (c-fold (x#ls)) = x by simp
from S2 have S8 : c-snd (c-fold (x#ls)) = c-fold ls by simp
from S6 S7 S8 have S9 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = x #

(c-unfold (length ls) (c-fold ls)) by simp
from A1 have S10 : x # (c-unfold (length ls) (c-fold ls)) = x # ls by simp
from S9 S10 have S11 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = (x # ls)

by simp
thus ?thesis by simp

qed

lemma th-3-lm-1 : [[c-unfold (length ls) (c-fold ls) = ls; ls = a # ls1 ]] =⇒ c-unfold
(length (x # ls)) (c-fold (x # ls)) = x # ls
apply(cases ls1 )
apply(simp add: c-fold-1 )
apply(simp)
done

lemma th-3-lm-2 : c-unfold (length ls) (c-fold ls) = ls =⇒ c-unfold (length (x #
ls)) (c-fold (x # ls)) = x # ls
apply(cases ls)
apply(simp add: c-fold-1 )
apply(rule th-3-lm-1 )
apply(assumption+)
done

theorem th-3 : c-unfold (length ls) (c-fold ls) = ls
apply(induct ls)
apply(simp)
apply(rule th-3-lm-2 )
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apply(assumption)
done

definition
list-to-nat :: nat list ⇒ nat where
list-to-nat = (λ ls. if ls=[] then 0 else (c-pair ((length ls) − 1 ) (c-fold ls))+1 )

definition
nat-to-list :: nat ⇒ nat list where
nat-to-list = (λ u. if u=0 then [] else (c-unfold (c-len u) (c-snd (u−(1 ::nat)))))

lemma nat-to-list-of-pos: u>0 =⇒ nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat)))
by (simp add: nat-to-list-def )

theorem list-to-nat-th [simp]: list-to-nat (nat-to-list u) = u
proof −

have S1 : u=0 =⇒ ?thesis by (simp add: list-to-nat-def nat-to-list-def )
have S2 : u>0 =⇒ ?thesis
proof −

assume A1 : u>0
define ls where ls = nat-to-list u
from ls-def A1 have S2-1 : ls = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(simp add: nat-to-list-def )
let ?k = c-len u
from A1 have S2-2 : ?k > 0 by (rule c-len-3 )
from S2-1 have S2-3 : length ls = ?k by (simp add: c-unfold-len)
from S2-2 S2-3 have S2-4 : length ls > 0 by simp
from S2-4 have S2-5 : ls 6= [] by simp
from S2-5 have S2-6 : list-to-nat ls = c-pair ((length ls)−(1 ::nat)) (c-fold ls)+1

by (simp add: list-to-nat-def )
have S2-7 : c-fold ls = c-snd(u−(1 ::nat))
proof −
from S2-1 have S2-7-1 : c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u−(1 ::nat))))

by simp
from S2-2 S2-7-1 show ?thesis by (simp add: th-2 )

qed
have S2-8 : (length ls)−(1 ::nat) = c-fst (u−(1 ::nat))
proof −

from S2-3 have S2-8-1 : length ls = c-len u by simp
from A1 S2-8-1 have S2-8-2 : length ls = c-fst(u−(1 ::nat)) + 1 by (simp

add: c-len-2 )
from S2-8-2 show ?thesis by simp

qed
from S2-7 S2-8 have S2-9 : c-pair ((length ls)−(1 ::nat)) (c-fold ls) = c-pair

(c-fst (u−(1 ::nat))) (c-snd (u−(1 ::nat))) by simp
from S2-9 have S2-10 : c-pair ((length ls)−(1 ::nat)) (c-fold ls) = u − (1 ::nat)

by simp
from S2-6 S2-10 have S2-11 : list-to-nat ls = (u − (1 ::nat))+1 by simp
from A1 have S2-12 : (u − (1 ::nat))+1 = u by simp
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from ls-def S2-11 S2-12 show ?thesis by simp
qed
from S1 S2 show ?thesis by arith

qed

theorem nat-to-list-th [simp]: nat-to-list (list-to-nat ls) = ls
proof −

have S1 : ls=[] =⇒ ?thesis by (simp add: nat-to-list-def list-to-nat-def )
have S2 : ls 6= [] =⇒ ?thesis
proof −

assume A1 : ls 6= []
define u where u = list-to-nat ls
from u-def A1 have S2-1 : u = (c-pair ((length ls)−(1 ::nat)) (c-fold ls))+1 by

(simp add: list-to-nat-def )
let ?k = length ls
from A1 have S2-2 : ?k > 0 by simp
from S2-1 have S2-3 : u>0 by simp
from S2-3 have S2-4 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat)))

by (simp add: nat-to-list-def )
have S2-5 : c-len u = length ls
proof −

from S2-1 have S2-5-1 : u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold
ls) by simp

from S2-5-1 have S2-5-2 : c-fst (u−(1 ::nat)) = (length ls)−(1 ::nat) by simp
from S2-2 S2-5-2 have c-fst (u−(1 ::nat))+1 = length ls by simp
from S2-3 this show ?thesis by (simp add: c-len-2 )

qed
have S2-6 : c-snd (u−(1 ::nat)) = c-fold ls
proof −

from S2-1 have S2-6-1 : u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold
ls) by simp

from S2-6-1 show ?thesis by simp
qed
from S2-4 S2-5 S2-6 have S2-7 :nat-to-list u = c-unfold (length ls) (c-fold ls)

by simp
from S2-7 have nat-to-list u = ls by (simp add: th-3 )
from u-def this show ?thesis by simp

qed
have S3 : ls = [] ∨ ls 6= [] by simp
from S1 S2 S3 show ?thesis by auto

qed

lemma [simp]: list-to-nat [] = 0 by (simp add: list-to-nat-def )

lemma [simp]: nat-to-list 0 = [] by (simp add: nat-to-list-def )

theorem c-len-th-1 : c-len (list-to-nat ls) = length ls
proof (cases)

assume ls=[]
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from this show ?thesis by simp
next

assume S1 : ls 6= []
then have S2 : list-to-nat ls = c-pair ((length ls)−(1 ::nat)) (c-fold ls)+1 by

(simp add: list-to-nat-def )
let ?u = list-to-nat ls
from S2 have u-not-zero: ?u > 0 by simp
from S2 have S3 : ?u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold ls) by

simp
then have S4 : c-fst(?u−(1 ::nat)) = (length ls)−(1 ::nat) by simp
from S1 this have S5 : c-fst(?u−(1 ::nat))+1=length ls by simp
from u-not-zero S5 have S6 : c-len (?u) = length ls by (simp add: c-len-2 )
from S1 S6 show ?thesis by simp

qed

theorem length (nat-to-list u) = c-len u
proof −

let ?ls = nat-to-list u
have S1 : u = list-to-nat ?ls by (rule list-to-nat-th [THEN sym])
from c-len-th-1 have S2 : length ?ls = c-len (list-to-nat ?ls) by (rule sym)
from S1 S2 show ?thesis by (rule ssubst)

qed

definition
c-hd :: nat ⇒ nat where
c-hd = (λ u. if u=0 then 0 else hd (nat-to-list u))

definition
c-tl :: nat ⇒ nat where
c-tl = (λ u. list-to-nat (tl (nat-to-list u)))

definition
c-cons :: nat ⇒ nat ⇒ nat where
c-cons = (λ x u. list-to-nat (x # (nat-to-list u)))

lemma [simp]: c-hd 0 = 0 by (simp add: c-hd-def )

lemma c-hd-aux0 : c-len u = 1 =⇒ nat-to-list u = [c-snd (u−(1 ::nat))] by (simp
add: nat-to-list-def c-len-5 )

lemma c-hd-aux1 : c-len u = 1 =⇒ c-hd u = c-snd (u−(1 ::nat))
proof −

assume A1 : c-len u = 1
then have S1 : nat-to-list u = [c-snd (u−(1 ::nat))] by (simp add: nat-to-list-def

c-len-5 )
from A1 have u > 0 by (simp add: c-len-5 )
with S1 show ?thesis by (simp add: c-hd-def )

qed
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lemma c-hd-aux2 : c-len u > 1 =⇒ c-hd u = c-fst (c-snd (u−(1 ::nat)))
proof −

assume A1 : c-len u > 1
let ?k = (c-len u) − 1
from A1 have S1 : c-len u = Suc ?k by simp
from A1 have S2 : c-len u > 0 by simp
from S2 have S3 : u > 0 by (rule c-len-5 )
from S3 have S4 : c-hd u = hd (nat-to-list u) by (simp add: c-hd-def )
from S3 have S5 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
from S1 S5 have S6 : nat-to-list u = c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) by

simp
from A1 have S7 : ?k > 0 by simp
from S7 have S8 : c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) = (c-fst (c-snd (u−(1 ::nat))))

# (c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) by (rule c-unfold-4 )
from S6 S8 have S9 : nat-to-list u = (c-fst (c-snd (u−(1 ::nat)))) # (c-unfold ?k

(c-snd (c-snd (u−(1 ::nat))))) by simp
from S9 have S10 : hd (nat-to-list u) = c-fst (c-snd (u−(1 ::nat))) by simp
from S4 S10 show ?thesis by simp

qed

lemma c-hd-aux3 : u > 0 =⇒ c-hd u = (if (c-len u) = 1 then c-snd (u−(1 ::nat))
else c-fst (c-snd (u−(1 ::nat))))
proof −

assume A1 : u > 0
from A1 have c-len u > 0 by (rule c-len-3 )
then have S1 : c-len u = 1 ∨ c-len u > 1 by arith
let ?tmp = if (c-len u) = 1 then c-snd (u−(1 ::nat)) else c-fst (c-snd (u−(1 ::nat)))
have S2 : c-len u = 1 =⇒ ?thesis
proof −

assume A2-1 : c-len u = 1
then have S2-1 : c-hd u = c-snd (u−(1 ::nat)) by (rule c-hd-aux1 )
from A2-1 have S2-2 : ?tmp = c-snd(u−(1 ::nat)) by simp
from S2-1 this show ?thesis by simp

qed
have S3 : c-len u > 1 =⇒ ?thesis
proof −

assume A3-1 : c-len u > 1
from A3-1 have S3-1 : c-hd u = c-fst (c-snd (u−(1 ::nat))) by (rule c-hd-aux2 )
from A3-1 have S3-2 : ?tmp = c-fst (c-snd (u−(1 ::nat))) by simp
from S3-1 this show ?thesis by simp

qed
from S1 S2 S3 show ?thesis by auto

qed

lemma c-hd-aux4 : c-hd u = (if u=0 then 0 else (if (c-len u) = 1 then c-snd
(u−(1 ::nat)) else c-fst (c-snd (u−(1 ::nat)))))
proof cases
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assume u=0 then show ?thesis by simp
next

assume u 6= 0 then have A1 : u > 0 by simp
then show ?thesis by (simp add: c-hd-aux3 )

qed

lemma c-hd-is-pr : c-hd ∈ PrimRec1
proof −

have c-hd = (%u. (if u=0 then 0 else (if (c-len u) = 1 then c-snd (u−(1 ::nat))
else c-fst (c-snd (u−(1 ::nat)))))) (is - = ?R) by (simp add: c-hd-aux4 ext)

moreover have ?R ∈ PrimRec1
proof (rule if-is-pr)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1 )
next show (λ x. 0 ) ∈ PrimRec1 by (rule pr-zero)
next show (λx. if c-len x = 1 then c-snd (x − 1 ) else c-fst (c-snd (x − 1 )))

∈ PrimRec1
proof (rule if-eq-is-pr)

show c-len ∈ PrimRec1 by (rule c-len-is-pr)
next show (λ x. 1 ) ∈ PrimRec1 by (rule const-is-pr)
next show (λx. c-snd (x − 1 )) ∈ PrimRec1 by prec
next show (λx. c-fst (c-snd (x − 1 ))) ∈ PrimRec1 by prec

qed
qed
ultimately show ?thesis by simp

qed

lemma [simp]: c-tl 0 = 0 by (simp add: c-tl-def )

lemma c-tl-eq-tl: c-tl (list-to-nat ls) = list-to-nat (tl ls) by (simp add: c-tl-def )

lemma tl-eq-c-tl: tl (nat-to-list x) = nat-to-list (c-tl x) by (simp add: c-tl-def )

lemma c-tl-aux1 : c-len u = 1 =⇒ c-tl u = 0 by (unfold c-tl-def , simp add:
c-hd-aux0 )

lemma c-tl-aux2 : c-len u > 1 =⇒ c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd
(c-snd (u−(1 ::nat))))) + 1
proof −

assume A1 : c-len u > 1
let ?k = (c-len u) − 1
from A1 have S1 : c-len u = Suc ?k by simp
from A1 have S2 : c-len u > 0 by simp
from S2 have S3 : u > 0 by (rule c-len-5 )
from S3 have S4 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
from A1 have S5 : ?k > 0 by simp
from S5 have S6 : c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) = (c-fst (c-snd (u−(1 ::nat))))

# (c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) by (rule c-unfold-4 )
from S6 have S7 : tl (c-unfold (Suc ?k) (c-snd (u−(1 ::nat)))) = c-unfold ?k
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(c-snd (c-snd (u−(1 ::nat)))) by simp
from S2 S4 S7 have S8 : tl (nat-to-list u) = c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))

by simp
define ls where ls = tl (nat-to-list u)
from ls-def S8 have S9 : length ls = ?k by (simp add: c-unfold-len)
from ls-def have S10 : c-tl u = list-to-nat ls by (simp add: c-tl-def )
from S5 S9 have S11 : length ls > 0 by simp
from S11 have S12 : ls 6= [] by simp
from S12 have S13 : list-to-nat ls = (c-pair ((length ls) − 1 ) (c-fold ls))+1 by

(simp add: list-to-nat-def )
from S10 S13 have S14 : c-tl u = (c-pair ((length ls) − 1 ) (c-fold ls))+1 by

simp
from S9 have S15 : (length ls)−(1 ::nat) = ?k−(1 ::nat) by simp
from A1 have S16 : ?k−(1 ::nat) = c-len u − (2 ::nat) by arith
from S15 S16 have S17 : (length ls)−(1 ::nat) = c-len u − (2 ::nat) by simp
from ls-def S8 have S18 : ls = c-unfold ?k (c-snd (c-snd (u−(1 ::nat)))) by simp
from S5 have S19 : c-fold (c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) = c-snd

(c-snd (u−(1 ::nat))) by (simp add: th-2 )
from S18 S19 have S20 : c-fold ls = c-snd (c-snd (u−(1 ::nat))) by simp
from S14 S17 S20 show ?thesis by simp

qed

lemma c-tl-aux3 : c-tl u = (sgn1 ((c-len u) − 1 ))∗((c-pair (c-len u − (2 ::nat))
(c-snd (c-snd (u−(1 ::nat))))) + 1 ) (is - = ?R)
proof −

have S1 : u=0 =⇒ ?thesis by simp
have S2 : u>0 =⇒ ?thesis
proof −

assume A1 : u>0
have S2-1 : c-len u = 1 =⇒ ?thesis by (simp add: c-tl-aux1 )
have S2-2 : c-len u 6= 1 =⇒ ?thesis
proof −

assume A2-2-1 : c-len u 6= 1
from A1 have S2-2-1 : c-len u > 0 by (rule c-len-3 )
from A2-2-1 S2-2-1 have S2-2-2 : c-len u > 1 by arith
from this have S2-2-3 : c-len u − 1 > 0 by simp
from this have S2-2-4 : sgn1 (c-len u − 1 )=1 by simp
from S2-2-4 have S2-2-5 : ?R = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd

(u−(1 ::nat))))) + 1 by simp
from S2-2-2 have S2-2-6 : c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd

(u−(1 ::nat))))) + 1 by (rule c-tl-aux2 )
from S2-2-5 S2-2-6 show ?thesis by simp

qed
from S2-1 S2-2 show ?thesis by blast
qed
from S1 S2 show ?thesis by arith

qed

lemma c-tl-less: u > 0 =⇒ c-tl u < u
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proof −
assume A1 : u > 0
then have S1 : c-len u > 0 by (rule c-len-3 )
then show ?thesis
proof cases

assume c-len u = 1
from this A1 show ?thesis by (simp add: c-tl-aux1 )

next
assume ¬ c-len u = 1 with S1 have A2 : c-len u > 1 by simp

then have S2 : c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat)))))
+ 1 by (rule c-tl-aux2 )

from A1 have S3 : c-len u = c-fst(u−(1 ::nat))+1 by (simp add: c-len-def )
from A2 S3 have S4 : c-len u − (2 ::nat) < c-fst(u−(1 ::nat)) by simp
then have S5 : (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat))))) <

(c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) by (rule c-pair-strict-mono1 )
have S6 : c-snd (c-snd (u−(1 ::nat))) ≤ c-snd (u−(1 ::nat)) by (rule c-snd-le-arg)

then have S7 : (c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) ≤
(c-pair (c-fst(u−(1 ::nat))) (c-snd (u−(1 ::nat)))) by (rule c-pair-mono2 )

then have S8 : (c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) ≤
u−(1 ::nat) by simp

with S5 have (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat))))) < u
− (1 ::nat) by simp

with S2 have c-tl u < (u−(1 ::nat))+1 by simp
with A1 show ?thesis by simp

qed
qed

lemma c-tl-le: c-tl u ≤ u
proof (cases u)

assume u=0
then show ?thesis by simp

next
fix v assume A1 : u = Suc v
then have S1 : u > 0 by simp
then have S2 : c-tl u < u by (rule c-tl-less)
with A1 show c-tl u ≤ u by simp

qed

theorem c-tl-is-pr : c-tl ∈ PrimRec1
proof −

have c-tl = (λ u. (sgn1 ((c-len u) − 1 ))∗((c-pair (c-len u − (2 ::nat)) (c-snd
(c-snd (u−(1 ::nat))))) + 1 )) (is - = ?R) by (simp add: c-tl-aux3 ext)

moreover from c-len-is-pr c-pair-is-pr have ?R ∈ PrimRec1 by prec
ultimately show ?thesis by simp

qed

lemma c-cons-aux1 : c-cons x 0 = (c-pair 0 x) + 1
apply(unfold c-cons-def )
apply(simp)
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apply(unfold list-to-nat-def )
apply(simp)
done

lemma c-cons-aux2 : u > 0 =⇒ c-cons x u = (c-pair (c-len u) (c-pair x (c-snd
(u−(1 ::nat))))) + 1
proof −

assume A1 : u > 0
from A1 have S1 : c-len u > 0 by (rule c-len-3 )
from A1 have S2 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
define ls where ls = nat-to-list u
from ls-def S2 have S3 : ls = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by simp
from S3 have S4 : length ls = c-len u by (simp add: c-unfold-len)
from S4 S1 have S5 : length ls > 0 by simp
from S5 have S6 : ls 6= [] by simp
from ls-def have S7 : c-cons x u = list-to-nat (x # ls) by (simp add: c-cons-def )
have S8 : list-to-nat (x # ls) = (c-pair ((length (x#ls))−(1 ::nat)) (c-fold (x#ls)))+1

by (simp add: list-to-nat-def )
have S9 : (length (x#ls))−(1 ::nat) = length ls by simp
from S9 S4 S8 have S10 : list-to-nat (x # ls) = (c-pair (c-len u) (c-fold

(x#ls)))+1 by simp
have S11 : c-fold (x#ls) = c-pair x (c-snd (u−(1 ::nat)))
proof −

from S6 have S11-1 : c-fold (x#ls) = c-pair x (c-fold ls) by (rule c-fold-0 )
from S3 have S11-2 : c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u−(1 ::nat))))

by simp
from S1 S11-2 have S11-3 : c-fold ls = c-snd (u−(1 ::nat)) by (simp add: th-2 )
from S11-1 S11-3 show ?thesis by simp

qed
from S7 S10 S11 show ?thesis by simp

qed

lemma c-cons-aux3 : c-cons = (λ x u. (sgn2 u)∗((c-pair 0 x)+1 ) + (sgn1 u)∗((c-pair
(c-len u) (c-pair x (c-snd (u−(1 ::nat))))) + 1 ))
proof (rule ext, rule ext)

fix x u show c-cons x u = (sgn2 u)∗((c-pair 0 x)+1 ) + (sgn1 u)∗((c-pair (c-len
u) (c-pair x (c-snd (u−(1 ::nat))))) + 1 ) (is - = ?R)

proof cases
assume A1 : u=0
then have ?R = (c-pair 0 x)+1 by simp

moreover from A1 have c-cons x u = (c-pair 0 x)+1 by (simp add: c-cons-aux1 )
ultimately show ?thesis by simp

next
assume A1 : u 6=0
then have S1 : ?R = (c-pair (c-len u) (c-pair x (c-snd (u−(1 ::nat))))) + 1 by

simp
from A1 have S2 : c-cons x u = (c-pair (c-len u) (c-pair x (c-snd (u−(1 ::nat)))))

+ 1 by (simp add: c-cons-aux2 )
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from S1 S2 have c-cons x u = ?R by simp
then show ?thesis .

qed
qed

lemma c-cons-pos: c-cons x u > 0
proof cases

assume u=0
then show c-cons x u > 0 by (simp add: c-cons-aux1 )

next
assume ¬ u=0 then have u>0 by simp
then show c-cons x u > 0 by (simp add: c-cons-aux2 )

qed

theorem c-cons-is-pr : c-cons ∈ PrimRec2
proof −

have c-cons = (λ x u. (sgn2 u)∗((c-pair 0 x)+1 ) + (sgn1 u)∗((c-pair (c-len u)
(c-pair x (c-snd (u−(1 ::nat))))) + 1 )) (is - = ?R) by (simp add: c-cons-aux3 )

moreover from c-pair-is-pr c-len-is-pr have ?R ∈ PrimRec2 by prec
ultimately show ?thesis by simp

qed

definition
c-drop :: nat ⇒ nat ⇒ nat where
c-drop = PrimRecOp (λ x. x) (λ x y z. c-tl y)

lemma c-drop-at-0 [simp]: c-drop 0 x = x by (simp add: c-drop-def )

lemma c-drop-at-Suc: c-drop (Suc y) x = c-tl (c-drop y x) by (simp add: c-drop-def )

theorem c-drop-is-pr : c-drop ∈ PrimRec2
proof −

have (λ x. x) ∈ PrimRec1 by (rule pr-id1-1 )
moreover from c-tl-is-pr have (λ x y z. c-tl y) ∈ PrimRec3 by prec
ultimately show ?thesis by (simp add: c-drop-def pr-rec)

qed

lemma c-tl-c-drop: c-tl (c-drop y x) = c-drop y (c-tl x)
apply(induct y)
apply(simp)
apply(simp add: c-drop-at-Suc)
done

lemma c-drop-at-Suc1 : c-drop (Suc y) x = c-drop y (c-tl x)
apply(simp add: c-drop-at-Suc c-tl-c-drop)
done

lemma c-drop-df : ∀ ls. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
proof (induct n)
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show ∀ ls. drop 0 ls = nat-to-list (c-drop 0 (list-to-nat ls)) by (simp add:
c-drop-def )
next

fix n assume A1 : ∀ ls. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
then show ∀ ls. drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls))
proof −

{
fix ls::nat list
have S1 : drop (Suc n) ls = drop n (tl ls) by (rule drop-Suc)
from A1 have S2 : drop n (tl ls) = nat-to-list (c-drop n (list-to-nat (tl ls))) by

simp
also have . . . = nat-to-list (c-drop n (c-tl (list-to-nat ls))) by (simp add:

c-tl-eq-tl)
also have . . . = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by (simp add:

c-drop-at-Suc1 )
finally have drop n (tl ls) = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by simp
with S1 have drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by

simp
}
then show ?thesis by blast

qed
qed

definition
c-nth :: nat ⇒ nat ⇒ nat where
c-nth = (λ x n. c-hd (c-drop n x))

lemma c-nth-is-pr : c-nth ∈ PrimRec2
proof (unfold c-nth-def )

from c-hd-is-pr c-drop-is-pr show (λx n. c-hd (c-drop n x)) ∈ PrimRec2 by prec
qed

lemma c-nth-at-0 : c-nth x 0 = c-hd x by (simp add: c-nth-def )

lemma c-hd-c-cons [simp]: c-hd (c-cons x y) = x
proof −

have c-cons x y > 0 by (rule c-cons-pos)
then show ?thesis by (simp add: c-hd-def c-cons-def )

qed

lemma c-tl-c-cons [simp]: c-tl (c-cons x y) = y by (simp add: c-tl-def c-cons-def )

definition
c-f-list :: (nat ⇒ nat ⇒ nat) ⇒ nat ⇒ nat ⇒ nat where
c-f-list = (λ f .
let g = (%x. c-cons (f 0 x) 0 ); h = (%a b c. c-cons (f (Suc a) c) b) in PrimRecOp

g h)

lemma c-f-list-at-0 : c-f-list f 0 x = c-cons (f 0 x) 0 by (simp add: c-f-list-def
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Let-def )

lemma c-f-list-at-Suc: c-f-list f (Suc y) x = c-cons (f (Suc y) x) (c-f-list f y x) by
((simp add: c-f-list-def Let-def ))

lemma c-f-list-is-pr : f ∈ PrimRec2 =⇒ c-f-list f ∈ PrimRec2
proof −

assume A1 : f ∈ PrimRec2
let ?g = (%x. c-cons (f 0 x) 0 )
from A1 c-cons-is-pr have S1 : ?g ∈ PrimRec1 by prec
let ?h = (%a b c. c-cons (f (Suc a) c) b)
from A1 c-cons-is-pr have S2 : ?h ∈ PrimRec3 by prec
from S1 S2 show ?thesis by (simp add: pr-rec c-f-list-def Let-def )

qed

lemma c-f-list-to-f-0 : f y x = c-hd (c-f-list f y x)
apply(induct y)
apply(simp add: c-f-list-at-0 )
apply(simp add: c-f-list-at-Suc)
done

lemma c-f-list-to-f : f = (λ y x. c-hd (c-f-list f y x))
apply(rule ext, rule ext)
apply(rule c-f-list-to-f-0 )
done

lemma c-f-list-f-is-pr : c-f-list f ∈ PrimRec2 =⇒ f ∈ PrimRec2
proof −

assume A1 : c-f-list f ∈ PrimRec2
have S1 : f = (λ y x . c-hd (c-f-list f y x)) by (rule c-f-list-to-f )
from A1 c-hd-is-pr have S2 : (λ y x. c-hd (c-f-list f y x)) ∈ PrimRec2 by prec
with S1 show ?thesis by simp

qed

lemma c-f-list-lm-1 : c-nth (c-cons x y) (Suc z) = c-nth y z by (simp add: c-nth-def
c-drop-at-Suc1 )

lemma c-f-list-lm-2 : z < Suc n =⇒ c-nth (c-f-list f (Suc n) x) (Suc n − z) =
c-nth (c-f-list f n x) (n − z)
proof −

assume z < Suc n
then have Suc n − z = Suc (n−z) by arith
then have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f (Suc n) x)

(Suc (n − z)) by simp
also have . . . = c-nth (c-cons (f (Suc n) x) (c-f-list f n x)) (Suc (n − z)) by

(simp add: c-f-list-at-Suc)
also have . . . = c-nth (c-f-list f n x) (n − z) by (simp add: c-f-list-lm-1 )
finally show ?thesis by simp

qed
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lemma c-f-list-nth: z ≤ y −→ c-nth (c-f-list f y x) (y−z) = f z x
proof (induct y)

show z ≤ 0 −→ c-nth (c-f-list f 0 x) (0 − z) = f z x
proof

assume z ≤ 0 then have A1 : z=0 by simp
then have c-nth (c-f-list f 0 x) (0 − z) = c-nth (c-f-list f 0 x) 0 by simp
also have . . . = c-hd (c-f-list f 0 x) by (simp add: c-nth-at-0 )
also have . . . = c-hd (c-cons (f 0 x) 0 ) by (simp add: c-f-list-at-0 )
also have . . . = f 0 x by simp
finally show c-nth (c-f-list f 0 x) (0 − z) = f z x by (simp add: A1 )

qed
next

fix n assume A2 : z ≤ n −→ c-nth (c-f-list f n x) (n − z) = f z x show z ≤
Suc n −→ c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x

proof
assume A3 : z ≤ Suc n
show z ≤ Suc n =⇒ c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x
proof cases

assume AA1 : z ≤ n
then have AA2 : z < Suc n by simp
from A2 this have S1 : c-nth (c-f-list f n x) (n − z) = f z x by auto
from AA2 have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f n

x) (n − z) by (rule c-f-list-lm-2 )
with S1 show c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x by simp

next
assume ¬ z ≤ n
from A3 this have S1 : z = Suc n by simp
then have S2 : Suc n − z = 0 by simp
then have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f (Suc n)

x) 0 by simp
also have . . . = c-hd (c-f-list f (Suc n) x) by (simp add: c-nth-at-0 )
also have . . . = c-hd (c-cons (f (Suc n) x) (c-f-list f n x)) by (simp add:

c-f-list-at-Suc)
also have . . . = f (Suc n) x by simp
finally show c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x by (simp add:

S1 )
qed

qed
qed

theorem th-pr-rec: [[ g ∈ PrimRec1 ; h ∈ PrimRec3 ; (∀ x. (f 0 x) = (g x)); (∀ x
y. (f (Suc y) x) = h y (f y x) x) ]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-0 : ∀ x. f 0 x = g x
assume f-1 : ∀ x y. (f (Suc y) x) = h y (f y x) x
let ?f = PrimRecOp g h
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from g-is-pr h-is-pr have S1 : ?f ∈ PrimRec2 by (rule pr-rec)
have f-2 :∀ x. ?f 0 x = g x by simp
have f-3 : ∀ x y. (?f (Suc y) x) = h y (?f y x) x by simp
have S2 : f = ?f
proof −

have
∧

x y. f y x = ?f y x
apply(induct-tac y)
apply(insert f-0 f-1 )
apply(auto)
done
then show f = ?f by (simp add: ext)

qed
from S1 S2 show ?thesis by simp

qed

theorem th-rec: [[ g ∈ PrimRec1 ; α ∈ PrimRec2 ; h ∈ PrimRec3 ; (∀ x y. α y x ≤
y); (∀ x. (f 0 x) = (g x)); (∀ x y. (f (Suc y) x) = h y (f (α y x) x) x) ]] =⇒ f ∈
PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume a-is-pr : α ∈ PrimRec2
assume h-is-pr : h ∈ PrimRec3
assume a-le: (∀ x y. α y x ≤ y)
assume f-0 : ∀ x. f 0 x = g x
assume f-1 : ∀ x y. (f (Suc y) x) = h y (f (α y x) x) x
let ?g ′ = λ x. c-cons (g x) 0
let ?h ′ = λ a b c. c-cons (h a (c-nth b (a − (α a c))) c) b
let ?r = c-f-list f
from g-is-pr c-cons-is-pr have g ′-is-pr : ?g ′ ∈ PrimRec1 by prec
from h-is-pr c-cons-is-pr c-nth-is-pr a-is-pr have h ′-is-pr : ?h ′ ∈ PrimRec3 by

prec
have S1 : ∀ x. ?r 0 x = ?g ′ x
proof

fix x have ?r 0 x = c-cons (f 0 x) 0 by (rule c-f-list-at-0 )
with f-0 have ?r 0 x = c-cons (g x) 0 by simp
then show ?r 0 x = ?g ′ x by simp

qed
have S2 : ∀ x y. ?r (Suc y) x = ?h ′ y (?r y x) x
proof (rule allI , rule allI )

fix x y show ?r (Suc y) x = ?h ′ y (?r y x) x
proof −
have S2-1 : ?r (Suc y) x = c-cons (f (Suc y) x) (?r y x) by (rule c-f-list-at-Suc)
with f-1 have S2-2 : f (Suc y) x = h y (f (α y x) x) x by simp
from a-le have S2-3 : α y x ≤ y by simp
then have S2-4 : f (α y x) x = c-nth (?r y x) (y−(α y x)) by (simp add:

c-f-list-nth)
from S2-1 S2-2 S2-4 show ?thesis by simp

qed
qed
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from g ′-is-pr h ′-is-pr S1 S2 have S3 : ?r ∈ PrimRec2 by (rule th-pr-rec)
then show f ∈ PrimRec2 by (rule c-f-list-f-is-pr)

qed

declare c-tl-less [termination-simp]

fun c-assoc-have-key :: nat ⇒ nat ⇒ nat where
c-assoc-have-key-df [simp del]: c-assoc-have-key y x = (if y = 0 then 1 else
(if c-fst (c-hd y) = x then 0 else c-assoc-have-key (c-tl y) x))

lemma c-assoc-have-key-lm-1 : y 6= 0 =⇒ c-assoc-have-key y x = (if c-fst (c-hd y)
= x then 0 else c-assoc-have-key (c-tl y) x) by (simp add: c-assoc-have-key-df )

theorem c-assoc-have-key-is-pr : c-assoc-have-key ∈ PrimRec2
proof −

let ?h = λ a b c. if c-fst (c-hd (Suc a)) = c then 0 else b
let ?a = λ y x . c-tl (Suc y)
let ?g = λ x. (1 ::nat)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
from c-tl-is-pr have a-is-pr : ?a ∈ PrimRec2 by prec
have h-is-pr : ?h ∈ PrimRec3
proof (rule if-eq-is-pr3 )

from c-fst-is-pr c-hd-is-pr show (λx y z. c-fst (c-hd (Suc x))) ∈ PrimRec3 by
prec

next
show (λx y z. z) ∈ PrimRec3 by (rule pr-id3-3 )

next
show (λx y z. 0 ) ∈ PrimRec3 by prec

next
show (λx y z. y) ∈ PrimRec3 by (rule pr-id3-2 )

qed
have a-le: ∀ x y. ?a y x ≤ y
proof (rule allI , rule allI )

fix x y show ?a y x ≤ y
proof −

have Suc y > 0 by simp
then have ?a y x < Suc y by (rule c-tl-less)
then show ?thesis by simp

qed
qed
have f-0 : ∀ x. c-assoc-have-key 0 x = ?g x by (simp add: c-assoc-have-key-df )
have f-1 : ∀ x y. c-assoc-have-key (Suc y) x = ?h y (c-assoc-have-key (?a y x)

x) x by (simp add: c-assoc-have-key-df )
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)

qed

fun c-assoc-value :: nat ⇒ nat ⇒ nat where
c-assoc-value-df [simp del]: c-assoc-value y x = (if y = 0 then 0 else
(if c-fst (c-hd y) = x then c-snd (c-hd y) else c-assoc-value (c-tl y) x))
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lemma c-assoc-value-lm-1 : y 6= 0 =⇒ c-assoc-value y x = (if c-fst (c-hd y) = x
then c-snd (c-hd y) else c-assoc-value (c-tl y) x) by (simp add: c-assoc-value-df )

theorem c-assoc-value-is-pr : c-assoc-value ∈ PrimRec2
proof −

let ?h = λ a b c. if c-fst (c-hd (Suc a)) = c then c-snd (c-hd (Suc a)) else b
let ?a = λ y x . c-tl (Suc y)
let ?g = λ x. (0 ::nat)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
from c-tl-is-pr have a-is-pr : ?a ∈ PrimRec2 by prec
have h-is-pr : ?h ∈ PrimRec3
proof (rule if-eq-is-pr3 )

from c-fst-is-pr c-hd-is-pr show (λx y z. c-fst (c-hd (Suc x))) ∈ PrimRec3 by
prec

next
show (λx y z. z) ∈ PrimRec3 by (rule pr-id3-3 )

next
from c-snd-is-pr c-hd-is-pr show (λx y z. c-snd (c-hd (Suc x))) ∈ PrimRec3

by prec
next

show (λx y z. y) ∈ PrimRec3 by (rule pr-id3-2 )
qed
have a-le: ∀ x y. ?a y x ≤ y
proof (rule allI , rule allI )

fix x y show ?a y x ≤ y
proof −

have Suc y > 0 by simp
then have ?a y x < Suc y by (rule c-tl-less)
then show ?thesis by simp

qed
qed
have f-0 : ∀ x. c-assoc-value 0 x = ?g x by (simp add: c-assoc-value-df )
have f-1 : ∀ x y. c-assoc-value (Suc y) x = ?h y (c-assoc-value (?a y x) x) x by

(simp add: c-assoc-value-df )
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)

qed

lemma c-assoc-lm-1 : c-assoc-have-key (c-cons (c-pair x y) z) x = 0
apply(simp add: c-assoc-have-key-df )
apply(simp add: c-cons-pos)
done

lemma c-assoc-lm-2 : c-assoc-value (c-cons (c-pair x y) z) x = y
apply(simp add: c-assoc-value-df )
apply(rule impI )
apply(insert c-cons-pos [where x=(c-pair x y) and u=z])
apply(auto)
done
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lemma c-assoc-lm-3 : x1 6= x =⇒ c-assoc-have-key (c-cons (c-pair x y) z) x1 =
c-assoc-have-key z x1
proof −

assume A1 : x1 6= x
let ?ls = (c-cons (c-pair x y) z)
have S1 : ?ls 6= 0 by (simp add: c-cons-pos)
then have S2 : c-assoc-have-key ?ls x1 = (if c-fst (c-hd ?ls) = x1 then 0 else

c-assoc-have-key (c-tl ?ls) x1 ) (is - = ?R) by (rule c-assoc-have-key-lm-1 )
have S3 : c-fst (c-hd ?ls) = x by simp
with A1 have S4 : ¬ (c-fst (c-hd ?ls) = x1 ) by simp
from S4 have S5 : ?R = c-assoc-have-key (c-tl ?ls) x1 by (rule if-not-P)
from S2 S5 show ?thesis by simp

qed

lemma c-assoc-lm-4 : x1 6= x =⇒ c-assoc-value (c-cons (c-pair x y) z) x1 =
c-assoc-value z x1
proof −

assume A1 : x1 6= x
let ?ls = (c-cons (c-pair x y) z)
have S1 : ?ls 6= 0 by (simp add: c-cons-pos)
then have S2 : c-assoc-value ?ls x1 = (if c-fst (c-hd ?ls) = x1 then c-snd (c-hd

?ls) else c-assoc-value (c-tl ?ls) x1 ) (is - = ?R) by (rule c-assoc-value-lm-1 )
have S3 : c-fst (c-hd ?ls) = x by simp
with A1 have S4 : ¬ (c-fst (c-hd ?ls) = x1 ) by simp
from S4 have S5 : ?R = c-assoc-value (c-tl ?ls) x1 by (rule if-not-P)
from S2 S5 show ?thesis by simp

qed

end

4 Primitive recursive functions of one variable
theory PRecFun2
imports PRecFun
begin

4.1 Alternative definition of primitive recursive functions of
one variable

definition
UnaryRecOp :: (nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ (nat ⇒ nat) where
UnaryRecOp = (λ g h. pr-conv-2-to-1 (PrimRecOp g (pr-conv-1-to-3 h)))

lemma unary-rec-into-pr : [[ g ∈ PrimRec1 ; h ∈ PrimRec1 ]] =⇒ UnaryRecOp g h
∈ PrimRec1 by (simp add: UnaryRecOp-def pr-conv-1-to-3-lm pr-conv-2-to-1-lm
pr-rec)

definition
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c-f-pair :: (nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ (nat ⇒ nat) where
c-f-pair = (λ f g x. c-pair (f x) (g x))

lemma c-f-pair-to-pr : [[ f ∈ PrimRec1 ; g ∈ PrimRec1 ]] =⇒ c-f-pair f g ∈ PrimRec1
unfolding c-f-pair-def by prec

inductive-set PrimRec1 ′ :: (nat ⇒ nat) set
where

zero: (λ x. 0 ) ∈ PrimRec1 ′

| suc: Suc ∈ PrimRec1 ′

| fst: c-fst ∈ PrimRec1 ′

| snd: c-snd ∈ PrimRec1 ′

| comp: [[ f ∈ PrimRec1 ′; g ∈ PrimRec1 ′ ]] =⇒ (λ x. f (g x)) ∈ PrimRec1 ′

| pair : [[ f ∈ PrimRec1 ′; g ∈ PrimRec1 ′ ]] =⇒ c-f-pair f g ∈ PrimRec1 ′

| un-rec: [[ f ∈ PrimRec1 ′; g ∈ PrimRec1 ′ ]] =⇒ UnaryRecOp f g ∈ PrimRec1 ′

lemma primrec ′-into-primrec: f ∈ PrimRec1 ′ =⇒ f ∈ PrimRec1
proof (induct f rule: PrimRec1 ′.induct)

case zero show ?case by (rule pr-zero)
next

case suc show ?case by (rule pr-suc)
next

case fst show ?case by (rule c-fst-is-pr)
next

case snd show ?case by (rule c-snd-is-pr)
next

case comp from comp show ?case by (simp add: pr-comp1-1 )
next

case pair from pair show ?case by (simp add: c-f-pair-to-pr)
next

case un-rec from un-rec show ?case by (simp add: unary-rec-into-pr)
qed

lemma pr-id1-1 ′: (λ x. x) ∈ PrimRec1 ′

proof −
have c-f-pair c-fst c-snd ∈ PrimRec1 ′ by (simp add: PrimRec1 ′.fst PrimRec1 ′.snd

PrimRec1 ′.pair)
moreover have c-f-pair c-fst c-snd = (λ x. x) by (simp add: c-f-pair-def )
ultimately show ?thesis by simp

qed

lemma pr-id2-1 ′: pr-conv-2-to-1 (λ x y. x) ∈ PrimRec1 ′ by (simp add: pr-conv-2-to-1-def
PrimRec1 ′.fst)

lemma pr-id2-2 ′: pr-conv-2-to-1 (λ x y. y) ∈ PrimRec1 ′ by (simp add: pr-conv-2-to-1-def
PrimRec1 ′.snd)

lemma pr-id3-1 ′: pr-conv-3-to-1 (λ x y z. x) ∈ PrimRec1 ′

proof −
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have pr-conv-3-to-1 (λ x y z. x) = (λx. c-fst (c-fst x)) by (simp add: pr-conv-3-to-1-def )
moreover from PrimRec1 ′.fst PrimRec1 ′.fst have (λx. c-fst (c-fst x)) ∈ Prim-

Rec1 ′ by (rule PrimRec1 ′.comp)
ultimately show ?thesis by simp

qed

lemma pr-id3-2 ′: pr-conv-3-to-1 (λ x y z. y) ∈ PrimRec1 ′

proof −
have pr-conv-3-to-1 (λ x y z. y) = (λx. c-snd (c-fst x)) by (simp add: pr-conv-3-to-1-def )
moreover from PrimRec1 ′.snd PrimRec1 ′.fst have (λx. c-snd (c-fst x)) ∈ Prim-

Rec1 ′ by (rule PrimRec1 ′.comp)
ultimately show ?thesis by simp

qed

lemma pr-id3-3 ′: pr-conv-3-to-1 (λ x y z. z) ∈ PrimRec1 ′

proof −
have pr-conv-3-to-1 (λ x y z. z) = (λx. c-snd x) by (simp add: pr-conv-3-to-1-def )
thus ?thesis by (simp add: PrimRec1 ′.snd)

qed

lemma pr-comp2-1 ′: [[ pr-conv-2-to-1 f ∈ PrimRec1 ′; g ∈ PrimRec1 ′; h ∈ Prim-
Rec1 ′ ]] =⇒ (λ x. f (g x) (h x)) ∈ PrimRec1 ′

proof −
assume A1 : pr-conv-2-to-1 f ∈ PrimRec1 ′

assume A2 : g ∈ PrimRec1 ′

assume A3 : h ∈ PrimRec1 ′

let ?f1 = pr-conv-2-to-1 f
have S1 : (%x. ?f1 ((c-f-pair g h) x)) = (λ x. f (g x) (h x)) by (simp add:

c-f-pair-def pr-conv-2-to-1-def )
from A2 A3 have S2 : c-f-pair g h ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from A1 S2 have S3 : (%x. ?f1 ((c-f-pair g h) x)) ∈ PrimRec1 ′ by (rule Prim-

Rec1 ′.comp)
with S1 show ?thesis by simp

qed

lemma pr-comp3-1 ′: [[ pr-conv-3-to-1 f ∈ PrimRec1 ′; g ∈ PrimRec1 ′; h ∈ Prim-
Rec1 ′; k ∈ PrimRec1 ′ ]] =⇒ (λ x. f (g x) (h x) (k x)) ∈ PrimRec1 ′

proof −
assume A1 : pr-conv-3-to-1 f ∈ PrimRec1 ′

assume A2 : g ∈ PrimRec1 ′

assume A3 : h ∈ PrimRec1 ′

assume A4 : k ∈ PrimRec1 ′

from A2 A3 have c-f-pair g h ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from this A4 have c-f-pair (c-f-pair g h) k ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from A1 this have (%x. (pr-conv-3-to-1 f ) ((c-f-pair (c-f-pair g h) k) x)) ∈

PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: c-f-pair-def pr-conv-3-to-1-def )

qed
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lemma pr-comp1-2 ′: [[ f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ PrimRec1 ′ ]] =⇒ pr-conv-2-to-1
(λ x y. f (g x y)) ∈ PrimRec1 ′

proof −
assume f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x)) ∈ PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: pr-conv-2-to-1-def )

qed

lemma pr-comp1-3 ′: [[ f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ PrimRec1 ′ ]] =⇒ pr-conv-3-to-1
(λ x y z. f (g x y z)) ∈ PrimRec1 ′

proof −
assume f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x)) ∈ PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: pr-conv-3-to-1-def )

qed

lemma pr-comp2-2 ′: [[ pr-conv-2-to-1 f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ Prim-
Rec1 ′; pr-conv-2-to-1 h ∈ PrimRec1 ′ ]] =⇒ pr-conv-2-to-1 (λ x y. f (g x y) (h x
y)) ∈ PrimRec1 ′

proof −
assume pr-conv-2-to-1 f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x)) ∈ PrimRec1 ′ by (rule pr-comp2-1 ′)
then show ?thesis by (simp add: pr-conv-2-to-1-def )

qed

lemma pr-comp2-3 ′: [[ pr-conv-2-to-1 f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ Prim-
Rec1 ′; pr-conv-3-to-1 h ∈ PrimRec1 ′ ]] =⇒ pr-conv-3-to-1 (λ x y z . f (g x y z) (h
x y z)) ∈ PrimRec1 ′

proof −
assume pr-conv-2-to-1 f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x)) ∈ PrimRec1 ′ by (rule pr-comp2-1 ′)
then show ?thesis by (simp add: pr-conv-3-to-1-def )

qed

lemma pr-comp3-2 ′: [[ pr-conv-3-to-1 f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ Prim-
Rec1 ′; pr-conv-2-to-1 h ∈ PrimRec1 ′; pr-conv-2-to-1 k ∈ PrimRec1 ′ ]] =⇒ pr-conv-2-to-1
(λ x y. f (g x y) (h x y) (k x y)) ∈ PrimRec1 ′

proof −
assume pr-conv-3-to-1 f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 k ∈ PrimRec1 ′ (is ?k1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x) (?k1 x)) ∈ PrimRec1 ′ by (rule pr-comp3-1 ′)
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then show ?thesis by (simp add: pr-conv-2-to-1-def )
qed

lemma pr-comp3-3 ′: [[ pr-conv-3-to-1 f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ Prim-
Rec1 ′; pr-conv-3-to-1 h ∈ PrimRec1 ′; pr-conv-3-to-1 k ∈ PrimRec1 ′ ]] =⇒ pr-conv-3-to-1
(λ x y z. f (g x y z) (h x y z) (k x y z)) ∈ PrimRec1 ′

proof −
assume pr-conv-3-to-1 f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 k ∈ PrimRec1 ′ (is ?k1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x) (?k1 x)) ∈ PrimRec1 ′ by (rule pr-comp3-1 ′)
then show ?thesis by (simp add: pr-conv-3-to-1-def )

qed

lemma lm ′: (f1 ∈ PrimRec1 −→ f1 ∈ PrimRec1 ′) ∧ (g1 ∈ PrimRec2 −→ pr-conv-2-to-1
g1 ∈ PrimRec1 ′) ∧ (h1 ∈ PrimRec3 −→ pr-conv-3-to-1 h1 ∈ PrimRec1 ′)
proof (induct rule: PrimRec1-PrimRec2-PrimRec3 .induct)

case zero show ?case by (rule PrimRec1 ′.zero)
next case suc show ?case by (rule PrimRec1 ′.suc)
next case id1-1 show ?case by (rule pr-id1-1 ′)
next case id2-1 show ?case by (rule pr-id2-1 ′)
next case id2-2 show ?case by (rule pr-id2-2 ′)
next case id3-1 show ?case by (rule pr-id3-1 ′)
next case id3-2 show ?case by (rule pr-id3-2 ′)
next case id3-3 show ?case by (rule pr-id3-3 ′)
next case comp1-1 from comp1-1 show ?case by (simp add: PrimRec1 ′.comp)
next case comp1-2 from comp1-2 show ?case by (simp add: pr-comp1-2 ′)
next case comp1-3 from comp1-3 show ?case by (simp add: pr-comp1-3 ′)
next case comp2-1 from comp2-1 show ?case by (simp add: pr-comp2-1 ′)
next case comp2-2 from comp2-2 show ?case by (simp add: pr-comp2-2 ′)
next case comp2-3 from comp2-3 show ?case by (simp add: pr-comp2-3 ′)
next case comp3-1 from comp3-1 show ?case by (simp add: pr-comp3-1 ′)
next case comp3-2 from comp3-2 show ?case by (simp add: pr-comp3-2 ′)
next case comp3-3 from comp3-3 show ?case by (simp add: pr-comp3-3 ′)
next case prim-rec

fix g h assume A1 : g ∈ PrimRec1 ′ and pr-conv-3-to-1 h ∈ PrimRec1 ′

then have UnaryRecOp g (pr-conv-3-to-1 h) ∈ PrimRec1 ′ by (rule PrimRec1 ′.un-rec)
moreover have UnaryRecOp g (pr-conv-3-to-1 h) = pr-conv-2-to-1 (PrimRecOp

g h) by (simp add: UnaryRecOp-def )
ultimately show pr-conv-2-to-1 (PrimRecOp g h) ∈ PrimRec1 ′ by simp

qed

theorem pr-1-eq-1 ′: PrimRec1 = PrimRec1 ′

proof −
have S1 :

∧
f . f ∈ PrimRec1 −→ f ∈ PrimRec1 ′ by (simp add: lm ′)

have S2 :
∧

f . f ∈ PrimRec1 ′−→ f ∈ PrimRec1 by (simp add: primrec ′-into-primrec)
from S1 S2 show ?thesis by blast

qed
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4.2 The scheme datatype
datatype PrimScheme = Base-zero | Base-suc | Base-fst | Base-snd

| Comp-op PrimScheme PrimScheme
| Pair-op PrimScheme PrimScheme
| Rec-op PrimScheme PrimScheme

primrec
sch-to-pr :: PrimScheme ⇒ (nat ⇒ nat)

where
sch-to-pr Base-zero = (λ x. 0 )
| sch-to-pr Base-suc = Suc
| sch-to-pr Base-fst = c-fst
| sch-to-pr Base-snd = c-snd
| sch-to-pr (Comp-op t1 t2 ) = (λ x. (sch-to-pr t1 ) ((sch-to-pr t2 ) x))
| sch-to-pr (Pair-op t1 t2 ) = c-f-pair (sch-to-pr t1 ) (sch-to-pr t2 )
| sch-to-pr (Rec-op t1 t2 ) = UnaryRecOp (sch-to-pr t1 ) (sch-to-pr t2 )

lemma sch-to-pr-into-pr : sch-to-pr sch ∈ PrimRec1 by (simp add: pr-1-eq-1 ′,
induct sch, simp-all add: PrimRec1 ′.intros)

lemma sch-to-pr-srj: f ∈ PrimRec1 =⇒ (∃ sch. f = sch-to-pr sch)
proof −

assume f ∈ PrimRec1 then have A1 : f ∈ PrimRec1 ′ by (simp add: pr-1-eq-1 ′)
from A1 show ?thesis
proof (induct f rule: PrimRec1 ′.induct)

have (λ x. 0 ) = sch-to-pr Base-zero by simp
then show ∃ sch. (λu. 0 ) = sch-to-pr sch by (rule exI )

next
have Suc = sch-to-pr Base-suc by simp
then show ∃ sch. Suc = sch-to-pr sch by (rule exI )

next
have c-fst = sch-to-pr Base-fst by simp
then show ∃ sch. c-fst = sch-to-pr sch by (rule exI )

next
have c-snd = sch-to-pr Base-snd by simp
then show ∃ sch. c-snd = sch-to-pr sch by (rule exI )

next
fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr

sch
from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have (λ x. f1 (f2 x)) = sch-to-pr (Comp-op sch1 sch2 ) by simp
then show ∃ sch. (λx. f1 (f2 x)) = sch-to-pr sch by (rule exI )

next
fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr

sch
from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have c-f-pair f1 f2 = sch-to-pr (Pair-op sch1 sch2 ) by simp
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then show ∃ sch. c-f-pair f1 f2 = sch-to-pr sch by (rule exI )
next

fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr
sch

from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have UnaryRecOp f1 f2 = sch-to-pr (Rec-op sch1 sch2 ) by simp
then show ∃ sch. UnaryRecOp f1 f2 = sch-to-pr sch by (rule exI )

qed
qed

definition
loc-f :: nat ⇒ PrimScheme ⇒ PrimScheme ⇒ PrimScheme where
loc-f n sch1 sch2 =
(if n=0 then Base-zero else
if n=1 then Base-suc else
if n=2 then Base-fst else
if n=3 then Base-snd else
if n=4 then (Comp-op sch1 sch2 ) else
if n=5 then (Pair-op sch1 sch2 ) else
if n=6 then (Rec-op sch1 sch2 ) else
Base-zero)

definition
mod7 :: nat ⇒ nat where
mod7 = (λ x. x mod 7 )

lemma c-snd-snd-lt [termination-simp]: c-snd (c-snd (Suc (Suc x))) < Suc (Suc
x)
proof −

let ?y = Suc (Suc x)
have ?y > 1 by simp
then have c-snd ?y < ?y by (rule c-snd-less-arg)
moreover have c-snd (c-snd ?y) ≤ c-snd ?y by (rule c-snd-le-arg)
ultimately show ?thesis by simp

qed

lemma c-fst-snd-lt [termination-simp]: c-fst (c-snd (Suc (Suc x))) < Suc (Suc x)
proof −

let ?y = Suc (Suc x)
have ?y > 1 by simp
then have c-snd ?y < ?y by (rule c-snd-less-arg)
moreover have c-fst (c-snd ?y) ≤ c-snd ?y by (rule c-fst-le-arg)
ultimately show ?thesis by simp

qed

fun nat-to-sch :: nat ⇒ PrimScheme where
nat-to-sch 0 = Base-zero
| nat-to-sch (Suc 0 ) = Base-zero
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| nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x; v1=c-fst v; v2 = c-snd v;
sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 )

primrec sch-to-nat :: PrimScheme ⇒ nat where
sch-to-nat Base-zero = 0
| sch-to-nat Base-suc = c-pair 1 0
| sch-to-nat Base-fst = c-pair 2 0
| sch-to-nat Base-snd = c-pair 3 0
| sch-to-nat (Comp-op t1 t2 ) = c-pair 4 (c-pair (sch-to-nat t1 ) (sch-to-nat t2 ))
| sch-to-nat (Pair-op t1 t2 ) = c-pair 5 (c-pair (sch-to-nat t1 ) (sch-to-nat t2 ))
| sch-to-nat (Rec-op t1 t2 ) = c-pair 6 (c-pair (sch-to-nat t1 ) (sch-to-nat t2 ))

lemma loc-srj-lm-1 : nat-to-sch (Suc (Suc x)) = (let u=mod7 (c-fst (Suc (Suc x)));
v=c-snd (Suc (Suc x)); v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch
v2 in loc-f u sch1 sch2 ) by simp

lemma loc-srj-lm-2 : x > 1 =⇒ nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x;
v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1
sch2 )
proof −

assume A1 : x > 1
let ?y = x−(2 ::nat)
from A1 have S1 : x = Suc (Suc ?y) by arith
have S2 : nat-to-sch (Suc (Suc ?y)) = (let u=mod7 (c-fst (Suc (Suc ?y)));

v=c-snd (Suc (Suc ?y)); v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch
v2 in loc-f u sch1 sch2 ) by (rule loc-srj-lm-1 )

from S1 S2 show ?thesis by simp
qed

lemma loc-srj-0 : nat-to-sch (c-pair 1 0 ) = Base-suc
proof −

let ?x = c-pair 1 0
have S1 : ?x = 2 by (simp add: c-pair-def sf-def )
then have S2 : ?x = Suc (Suc 0 ) by simp
let ?y = Suc (Suc 0 )
have S3 : nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is - = ?R)
by (rule loc-srj-lm-1 )

have S4 : c-fst ?y = 1
proof −

from S2 have c-fst ?y = c-fst ?x by simp
then show ?thesis by simp

qed
have S5 : c-snd ?y = 0
proof −

from S2 have c-snd ?y = c-snd ?x by simp
then show ?thesis by simp

qed
from S4 have S6 : mod7 (c-fst ?y) = 1 by (simp add: mod7-def )
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from S3 S5 S6 have S9 : ?R = loc-f 1 Base-zero Base-zero by (simp add: Let-def
c-fst-at-0 c-snd-at-0 )

then have S10 : ?R = Base-suc by (simp add: loc-f-def )
with S3 have S11 : nat-to-sch ?y = Base-suc by simp
from S2 this show ?thesis by simp

qed

lemma nat-to-sch-at-2 : nat-to-sch 2 = Base-suc
proof −

have S1 : c-pair 1 0 = 2 by (simp add: c-pair-def sf-def )
have S2 : nat-to-sch (c-pair 1 0 ) = Base-suc by (rule loc-srj-0 )
from S1 S2 show ?thesis by simp

qed

lemma loc-srj-1 : nat-to-sch (c-pair 2 0 ) = Base-fst
proof −

let ?x = c-pair 2 0
have S1 : ?x = 5 by (simp add: c-pair-def sf-def )
then have S2 : ?x = Suc (Suc 3 ) by simp
let ?y = Suc (Suc 3 )
have S3 : nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is - = ?R)
by (rule loc-srj-lm-1 )

have S4 : c-fst ?y = 2
proof −

from S2 have c-fst ?y = c-fst ?x by simp
then show ?thesis by simp

qed
have S5 : c-snd ?y = 0
proof −

from S2 have c-snd ?y = c-snd ?x by simp
then show ?thesis by simp

qed
from S4 have S6 : mod7 (c-fst ?y) = 2 by (simp add: mod7-def )
from S3 S5 S6 have S9 : ?R = loc-f 2 Base-zero Base-zero by (simp add: Let-def

c-fst-at-0 c-snd-at-0 )
then have S10 : ?R = Base-fst by (simp add: loc-f-def )
with S3 have S11 : nat-to-sch ?y = Base-fst by simp
from S2 this show ?thesis by simp

qed

lemma loc-srj-2 : nat-to-sch (c-pair 3 0 ) = Base-snd
proof −

let ?x = c-pair 3 0
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 3 by simp
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have S4 : c-snd ?x = 0 by simp
from S3 have S6 : mod7 (c-fst ?x) = 3 by (simp add: mod7-def )
from S3 S4 S6 have S7 : ?R = loc-f 3 Base-zero Base-zero by (simp add: Let-def

c-fst-at-0 c-snd-at-0 )
then have S8 : ?R = Base-snd by (simp add: loc-f-def )
with S2 have S10 : nat-to-sch ?x = Base-snd by simp
from S2 this show ?thesis by simp

qed

lemma loc-srj-3 : [[nat-to-sch (sch-to-nat sch1 ) = sch1 ; nat-to-sch (sch-to-nat sch2 )
= sch2 ]]

=⇒ nat-to-sch (c-pair 4 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))) =
Comp-op sch1 sch2
proof −

assume A1 : nat-to-sch (sch-to-nat sch1 ) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2 ) = sch2
let ?x = c-pair 4 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 4 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ) by simp
from S3 have S5 : mod7 (c-fst ?x) = 4 by (simp add: mod7-def )
from A1 A2 S4 S5 have ?R = Comp-op sch1 sch2 by (simp add: Let-def

c-fst-at-0 c-snd-at-0 loc-f-def )
with S2 show ?thesis by simp

qed

lemma loc-srj-3-1 : nat-to-sch (c-pair 4 (c-pair n1 n2 )) = Comp-op (nat-to-sch
n1 ) (nat-to-sch n2 )
proof −

let ?x = c-pair 4 (c-pair n1 n2 )
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 4 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 4 by (simp add: mod7-def )
from S4 S5 have ?R = Comp-op (nat-to-sch n1 ) (nat-to-sch n2 ) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def )
with S2 show ?thesis by simp

qed

lemma loc-srj-4 : [[nat-to-sch (sch-to-nat sch1 ) = sch1 ; nat-to-sch (sch-to-nat sch2 )
= sch2 ]]

=⇒ nat-to-sch (c-pair 5 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))) =
Pair-op sch1 sch2
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proof −
assume A1 : nat-to-sch (sch-to-nat sch1 ) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2 ) = sch2
let ?x = c-pair 5 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 5 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ) by simp
from S3 have S5 : mod7 (c-fst ?x) = 5 by (simp add: mod7-def )
from A1 A2 S4 S5 have ?R = Pair-op sch1 sch2 by (simp add: Let-def c-fst-at-0

c-snd-at-0 loc-f-def )
with S2 show ?thesis by simp

qed

lemma loc-srj-4-1 : nat-to-sch (c-pair 5 (c-pair n1 n2 )) = Pair-op (nat-to-sch n1 )
(nat-to-sch n2 )
proof −

let ?x = c-pair 5 (c-pair n1 n2 )
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 5 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 5 by (simp add: mod7-def )
from S4 S5 have ?R = Pair-op (nat-to-sch n1 ) (nat-to-sch n2 ) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def )
with S2 show ?thesis by simp

qed

lemma loc-srj-5 : [[nat-to-sch (sch-to-nat sch1 ) = sch1 ; nat-to-sch (sch-to-nat sch2 )
= sch2 ]]

=⇒ nat-to-sch (c-pair 6 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))) =
Rec-op sch1 sch2
proof −

assume A1 : nat-to-sch (sch-to-nat sch1 ) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2 ) = sch2
let ?x = c-pair 6 (c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 6 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1 ) (sch-to-nat sch2 ) by simp
from S3 have S5 : mod7 (c-fst ?x) = 6 by (simp add: mod7-def )
from A1 A2 S4 S5 have ?R = Rec-op sch1 sch2 by (simp add: Let-def c-fst-at-0

c-snd-at-0 loc-f-def )

65



with S2 show ?thesis by simp
qed

lemma loc-srj-5-1 : nat-to-sch (c-pair 6 (c-pair n1 n2 )) = Rec-op (nat-to-sch n1 )
(nat-to-sch n2 )
proof −

let ?x = c-pair 6 (c-pair n1 n2 )
have S1 : ?x > 1 by (simp add: c-pair-def sf-def )
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) (is
- = ?R) by (rule loc-srj-lm-2 )

have S3 : c-fst ?x = 6 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 6 by (simp add: mod7-def )
from S4 S5 have ?R = Rec-op (nat-to-sch n1 ) (nat-to-sch n2 ) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def )
with S2 show ?thesis by simp

qed

theorem nat-to-sch-srj: nat-to-sch (sch-to-nat sch) = sch
apply(induct sch, auto simp add: loc-srj-0 loc-srj-1 loc-srj-2 loc-srj-3 loc-srj-4
loc-srj-5 )
apply(insert loc-srj-0 )
apply(simp)
done

4.3 Indexes of primitive recursive functions of one variables
definition

nat-to-pr :: nat ⇒ (nat ⇒ nat) where
nat-to-pr = (λ x. sch-to-pr (nat-to-sch x))

theorem nat-to-pr-into-pr : nat-to-pr n ∈ PrimRec1 by (simp add: nat-to-pr-def
sch-to-pr-into-pr)

lemma nat-to-pr-srj: f ∈ PrimRec1 =⇒ (∃ n. f = nat-to-pr n)
proof −

assume f ∈ PrimRec1
then have S1 : (∃ t. f = sch-to-pr t) by (rule sch-to-pr-srj)
from S1 obtain t where S2 : f = sch-to-pr t ..
let ?n = sch-to-nat t
have S3 : nat-to-pr ?n = sch-to-pr (nat-to-sch ?n) by (simp add: nat-to-pr-def )
have S4 : nat-to-sch ?n = t by (rule nat-to-sch-srj)
from S3 S4 have S5 : nat-to-pr ?n = sch-to-pr t by simp
from S2 S5 have nat-to-pr ?n = f by simp
then have f = nat-to-pr ?n by simp
then show ?thesis ..

qed
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lemma nat-to-pr-at-0 : nat-to-pr 0 = (λ x. 0 ) by (simp add: nat-to-pr-def )

definition
index-of-pr :: (nat ⇒ nat) ⇒ nat where
index-of-pr f = (SOME n. f = nat-to-pr n)

theorem index-of-pr-is-real: f ∈ PrimRec1 =⇒ nat-to-pr (index-of-pr f ) = f
proof −

assume f ∈ PrimRec1
hence ∃ n. f = nat-to-pr n by (rule nat-to-pr-srj)
hence f = nat-to-pr (SOME n. f = nat-to-pr n) by (rule someI-ex)
thus ?thesis by (simp add: index-of-pr-def )

qed

definition
comp-by-index :: nat ⇒ nat ⇒ nat where
comp-by-index = (λ n1 n2 . c-pair 4 (c-pair n1 n2 ))

definition
pair-by-index :: nat ⇒ nat ⇒ nat where
pair-by-index = (λ n1 n2 . c-pair 5 (c-pair n1 n2 ))

definition
rec-by-index :: nat ⇒ nat ⇒ nat where
rec-by-index = (λ n1 n2 . c-pair 6 (c-pair n1 n2 ))

lemma comp-by-index-is-pr : comp-by-index ∈ PrimRec2
unfolding comp-by-index-def
using const-is-pr-2 [of 4 ] by prec

lemma comp-by-index-inj: comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ x1=x2
∧ y1=y2
proof −

assume comp-by-index x1 y1 = comp-by-index x2 y2
hence c-pair 4 (c-pair x1 y1 ) = c-pair 4 (c-pair x2 y2 ) by (unfold comp-by-index-def )
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2 )
thus ?thesis by (rule c-pair-inj)

qed

lemma comp-by-index-inj1 : comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ x1
= x2 by (frule comp-by-index-inj, drule conjunct1 )

lemma comp-by-index-inj2 : comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ y1
= y2 by (frule comp-by-index-inj, drule conjunct2 )

lemma comp-by-index-main: nat-to-pr (comp-by-index n1 n2 ) = (λ x. (nat-to-pr
n1 ) ((nat-to-pr n2 ) x)) by (unfold comp-by-index-def , unfold nat-to-pr-def , simp
add: loc-srj-3-1 )
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lemma pair-by-index-is-pr : pair-by-index ∈ PrimRec2 by (unfold pair-by-index-def ,
insert const-is-pr-2 [where ?n=(5 ::nat)], prec)

lemma pair-by-index-inj: pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ x1=x2 ∧
y1=y2
proof −

assume pair-by-index x1 y1 = pair-by-index x2 y2
hence c-pair 5 (c-pair x1 y1 ) = c-pair 5 (c-pair x2 y2 ) by (unfold pair-by-index-def )
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2 )
thus ?thesis by (rule c-pair-inj)

qed

lemma pair-by-index-inj1 : pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ x1 = x2
by (frule pair-by-index-inj, drule conjunct1 )

lemma pair-by-index-inj2 : pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ y1 = y2
by (frule pair-by-index-inj, drule conjunct2 )

lemma pair-by-index-main: nat-to-pr (pair-by-index n1 n2 ) = c-f-pair (nat-to-pr
n1 ) (nat-to-pr n2 ) by (unfold pair-by-index-def , unfold nat-to-pr-def , simp add:
loc-srj-4-1 )

lemma nat-to-sch-of-pair-by-index [simp]: nat-to-sch (pair-by-index n1 n2 ) = Pair-op
(nat-to-sch n1 ) (nat-to-sch n2 )

by (simp add: pair-by-index-def loc-srj-4-1 )

lemma rec-by-index-is-pr : rec-by-index ∈ PrimRec2 by (unfold rec-by-index-def ,
insert const-is-pr-2 [where ?n=(6 ::nat)], prec)

lemma rec-by-index-inj: rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ x1=x2 ∧
y1=y2
proof −

assume rec-by-index x1 y1 = rec-by-index x2 y2
hence c-pair 6 (c-pair x1 y1 ) = c-pair 6 (c-pair x2 y2 ) by (unfold rec-by-index-def )
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2 )
thus ?thesis by (rule c-pair-inj)

qed

lemma rec-by-index-inj1 : rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ x1 = x2
by (frule rec-by-index-inj, drule conjunct1 )

lemma rec-by-index-inj2 : rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ y1 = y2
by (frule rec-by-index-inj, drule conjunct2 )

lemma rec-by-index-main: nat-to-pr (rec-by-index n1 n2 ) = UnaryRecOp (nat-to-pr
n1 ) (nat-to-pr n2 ) by (unfold rec-by-index-def , unfold nat-to-pr-def , simp add:
loc-srj-5-1 )
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4.4 s-1-1 theorem for primitive recursive functions of one
variable

definition
index-of-const :: nat ⇒ nat where
index-of-const = PrimRecOp1 0 (λ x y. c-pair 4 (c-pair 2 y))

lemma index-of-const-is-pr : index-of-const ∈ PrimRec1
proof −
have (λ x y. c-pair (4 ::nat) (c-pair (2 ::nat) y)) ∈ PrimRec2 by (insert const-is-pr-2

[where ?n=(4 ::nat)], prec)
then show ?thesis by (simp add: index-of-const-def pr-rec1 )

qed

lemma index-of-const-at-0 : index-of-const 0 = 0 by (simp add: index-of-const-def )

lemma index-of-const-at-suc: index-of-const (Suc u) = c-pair 4 (c-pair 2 (index-of-const
u)) by (unfold index-of-const-def , induct u, auto)

lemma index-of-const-main: nat-to-pr (index-of-const n) = (λ x. n) (is ?P n)
proof (induct n)

show ?P 0 by (simp add: index-of-const-at-0 nat-to-pr-at-0 )
next

fix n assume ?P n
then show ?P (Suc n) by ((simp add: index-of-const-at-suc nat-to-sch-at-2

nat-to-pr-def loc-srj-3-1 ))
qed

lemma index-of-const-lm-1 : (nat-to-pr (index-of-const n)) 0 = n by (simp add:
index-of-const-main)

lemma index-of-const-inj: index-of-const n1 = index-of-const n2 =⇒ n1 = n2
proof −

assume index-of-const n1 = index-of-const n2
then have (nat-to-pr (index-of-const n1 )) 0 = (nat-to-pr (index-of-const n2 ))

0 by simp
thus ?thesis by (simp add: index-of-const-lm-1 )

qed

definition index-of-zero = sch-to-nat Base-zero
definition index-of-suc = sch-to-nat Base-suc
definition index-of-c-fst = sch-to-nat Base-fst
definition index-of-c-snd = sch-to-nat Base-snd
definition index-of-id = pair-by-index index-of-c-fst index-of-c-snd

lemma index-of-zero-main: nat-to-pr index-of-zero = (λ x. 0 ) by (simp add: in-
dex-of-zero-def nat-to-pr-def )

lemma index-of-suc-main: nat-to-pr index-of-suc = Suc
apply(simp add: index-of-suc-def nat-to-pr-def )
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apply(insert loc-srj-0 )
apply(simp)
done

lemma index-of-c-fst-main: nat-to-pr index-of-c-fst = c-fst by (simp add: in-
dex-of-c-fst-def nat-to-pr-def loc-srj-1 )

lemma [simp]: nat-to-sch index-of-c-fst = Base-fst by (unfold index-of-c-fst-def ,
rule nat-to-sch-srj)

lemma index-of-c-snd-main: nat-to-pr index-of-c-snd = c-snd by (simp add: in-
dex-of-c-snd-def nat-to-pr-def loc-srj-2 )

lemma [simp]: nat-to-sch index-of-c-snd = Base-snd by (unfold index-of-c-snd-def ,
rule nat-to-sch-srj)

lemma index-of-id-main: nat-to-pr index-of-id = (λ x. x) by (simp add: index-of-id-def
nat-to-pr-def c-f-pair-def )

definition
index-of-c-pair-n :: nat ⇒ nat where
index-of-c-pair-n = (λ n. pair-by-index (index-of-const n) index-of-id)

lemma index-of-c-pair-n-is-pr : index-of-c-pair-n ∈ PrimRec1
proof −

have (λ x. index-of-id) ∈ PrimRec1 by (rule const-is-pr)
with pair-by-index-is-pr index-of-const-is-pr have (λ n. pair-by-index (index-of-const

n) index-of-id) ∈ PrimRec1 by prec
then show ?thesis by (fold index-of-c-pair-n-def )

qed

lemma index-of-c-pair-n-main: nat-to-pr (index-of-c-pair-n n) = (λ x. c-pair n x)
proof −

have nat-to-pr (index-of-c-pair-n n) = nat-to-pr (pair-by-index (index-of-const
n) index-of-id) by (simp add: index-of-c-pair-n-def )

also have . . . = c-f-pair (nat-to-pr (index-of-const n)) (nat-to-pr index-of-id) by
(simp add: pair-by-index-main)

also have . . . = c-f-pair (λ x. n) (λ x. x) by (simp add: index-of-const-main
index-of-id-main)

finally show ?thesis by (simp add: c-f-pair-def )
qed

lemma index-of-c-pair-n-inj: index-of-c-pair-n x1 = index-of-c-pair-n x2 =⇒ x1=x2
proof −

assume index-of-c-pair-n x1 = index-of-c-pair-n x2
hence pair-by-index (index-of-const x1 ) index-of-id = pair-by-index (index-of-const

x2 ) index-of-id by (unfold index-of-c-pair-n-def )
hence index-of-const x1 = index-of-const x2 by (rule pair-by-index-inj1 )
thus ?thesis by (rule index-of-const-inj)
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qed

definition
s1-1 :: nat ⇒ nat ⇒ nat where
s1-1 = (λ n x. comp-by-index n (index-of-c-pair-n x))

lemma s1-1-is-pr : s1-1 ∈ PrimRec2 by (unfold s1-1-def , insert comp-by-index-is-pr
index-of-c-pair-n-is-pr , prec)

theorem s1-1-th: (λ y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n x)
proof −

have nat-to-pr (s1-1 n x) = nat-to-pr (comp-by-index n (index-of-c-pair-n x))
by (simp add: s1-1-def )

also have . . . = (λ z. (nat-to-pr n) ((nat-to-pr (index-of-c-pair-n x)) z)) by
(simp add: comp-by-index-main)

also have . . . = (λ z. (nat-to-pr n) ((λ u. c-pair x u) z)) by (simp add: in-
dex-of-c-pair-n-main)

finally show ?thesis by simp
qed

lemma s1-1-inj: s1-1 x1 y1 = s1-1 x2 y2 =⇒ x1=x2 ∧ y1=y2
proof −

assume s1-1 x1 y1 = s1-1 x2 y2
then have comp-by-index x1 (index-of-c-pair-n y1 ) = comp-by-index x2 (index-of-c-pair-n

y2 ) by (unfold s1-1-def )
then have S1 : x1=x2 ∧ index-of-c-pair-n y1 = index-of-c-pair-n y2 by (rule

comp-by-index-inj)
then have S2 : x1=x2 ..
from S1 have index-of-c-pair-n y1 = index-of-c-pair-n y2 ..
then have y1 = y2 by (rule index-of-c-pair-n-inj)
with S2 show ?thesis ..

qed

lemma s1-1-inj1 : s1-1 x1 y1 = s1-1 x2 y2 =⇒ x1=x2 by (frule s1-1-inj, drule
conjunct1 )

lemma s1-1-inj2 : s1-1 x1 y1 = s1-1 x2 y2 =⇒ y1=y2 by (frule s1-1-inj, drule
conjunct2 )

primrec
pr-index-enumerator :: nat ⇒ nat ⇒ nat

where
pr-index-enumerator n 0 = n
| pr-index-enumerator n (Suc m) = comp-by-index index-of-id (pr-index-enumerator
n m)

theorem pr-index-enumerator-is-pr : pr-index-enumerator ∈ PrimRec2
proof −

define g where g x = x for x :: nat
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have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule pr-id1-1 )
define h where h a b c = comp-by-index index-of-id b for a b c :: nat
from comp-by-index-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
let ?f = pr-index-enumerator
from g-def have f-at-0 : ∀ x. ?f x 0 = g x by auto
from h-def have f-at-Suc: ∀ x y. ?f x (Suc y) = h x (?f x y) y by auto
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme)

qed

lemma pr-index-enumerator-increase1 : pr-index-enumerator n m < pr-index-enumerator
(n+1 ) m
proof (induct m)

show pr-index-enumerator n 0 < pr-index-enumerator (n + 1 ) 0 by simp
next fix na assume A: pr-index-enumerator n na < pr-index-enumerator (n +

1 ) na
show pr-index-enumerator n (Suc na) < pr-index-enumerator (n + 1 ) (Suc na)
proof −

let ?a = pr-index-enumerator n na
let ?b = pr-index-enumerator (n+1 ) na
have S1 : pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by

simp
have L1 : pr-index-enumerator (n+1 ) (Suc na) = comp-by-index index-of-id ?b

by simp
from A have c-pair index-of-id ?a < c-pair index-of-id ?b by (rule c-pair-strict-mono2 )

then have c-pair 4 (c-pair index-of-id ?a) < c-pair 4 (c-pair index-of-id ?b)
by (rule c-pair-strict-mono2 )

then have comp-by-index index-of-id ?a < c-pair 4 (c-pair index-of-id ?b) by
(simp add: comp-by-index-def )

then have comp-by-index index-of-id ?a < comp-by-index index-of-id ?b by
(simp add: comp-by-index-def )

with S1 L1 show ?thesis by auto
qed

qed

lemma pr-index-enumerator-increase2 : pr-index-enumerator n m < pr-index-enumerator
n (m + 1 )
proof −

let ?a = pr-index-enumerator n m
have S1 : pr-index-enumerator n (m + 1 ) = comp-by-index index-of-id ?a by

simp
have S2 : comp-by-index index-of-id ?a = c-pair 4 (c-pair index-of-id ?a) by

(simp add: comp-by-index-def )
have S3 : 4 + c-pair index-of-id ?a ≤ c-pair 4 (c-pair index-of-id ?a) by (rule

sum-le-c-pair)
then have S4 : c-pair index-of-id ?a < c-pair 4 (c-pair index-of-id ?a) by auto
have S5 : ?a ≤ c-pair index-of-id ?a by (rule arg2-le-c-pair)
from S4 S5 have S6 : ?a < c-pair 4 (c-pair index-of-id ?a) by auto
with S1 S2 show ?thesis by auto

qed
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lemma f-inc-mono: (∀ (x::nat). (f ::nat⇒nat) x < f (x+1 )) =⇒ ∀ (x::nat) (y::nat).
(x < y −→ f x < f y)
proof (rule allI , rule allI )

fix x y assume A: ∀ (x::nat). f x < f (x+1 ) show x < y −→ f x < f y
proof

assume A1 : x < y
have L1 :

∧
u v. f u < f (u + (v+1 ))

proof −
fix u v show f u < f (u + (v+1 ))
proof (induct v)

from A show f u < f (u + (0 + 1 )) by auto
next

fix v n
assume A2 : f u < f (u + (n + 1 ))
from A have S1 : f (u + (n + 1 )) < f (u + (Suc n + 1 )) by auto
from A2 S1 show f u < f (u + (Suc n + 1 )) by (rule less-trans)

qed
qed

let ?v = (y − x) − 1
from A1 have S2 : y = x + (?v + 1 ) by auto
have f x < f (x + (?v + 1 )) by (rule L1 )
with S2 show f x < f y by auto
qed

qed

lemma pr-index-enumerator-mono1 : n1 < n2 =⇒ pr-index-enumerator n1 m <
pr-index-enumerator n2 m
proof −

assume A: n1 < n2
define f where f x = pr-index-enumerator x m for x
have f-inc: ∀ x. f x < f (x+1 )
proof
fix x show f x < f (x+1 ) by (unfold f-def , rule pr-index-enumerator-increase1 )

qed
from f-inc have ∀ x y. (x < y −→ f x < f y) by (rule f-inc-mono)
with A f-def show ?thesis by auto

qed

lemma pr-index-enumerator-mono2 : m1 < m2 =⇒ pr-index-enumerator n m1 <
pr-index-enumerator n m2
proof −

assume A: m1 < m2
define f where f x = pr-index-enumerator n x for x
have f-inc: ∀ x. f x < f (x+1 )
proof
fix x show f x < f (x+1 ) by (unfold f-def , rule pr-index-enumerator-increase2 )

qed
from f-inc have ∀ x y. (x < y −→ f x < f y) by (rule f-inc-mono)
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with A f-def show ?thesis by auto
qed

lemma f-mono-inj: ∀ (x::nat) (y::nat). (x < y −→ (f ::nat⇒nat) x < f y) =⇒ ∀
(x::nat) (y::nat). (f x = f y −→ x = y)
proof (rule allI , rule allI )

fix x y assume A: ∀ x y. x < y −→ f x < f y show f x = f y −→ x = y
proof

assume A1 : f x = f y show x = y
proof (rule ccontr)

assume A2 : x 6= y show False
proof cases

assume A3 : x < y
from A A3 have f x < f y by auto
with A1 show False by auto

next
assume ¬ x < y with A2 have A4 : y < x by auto
from A A4 have f y < f x by auto
with A1 show False by auto

qed
qed

qed
qed

theorem pr-index-enumerator-inj1 : pr-index-enumerator n1 m = pr-index-enumerator
n2 m =⇒ n1 = n2
proof −

assume A: pr-index-enumerator n1 m = pr-index-enumerator n2 m
define f where f x = pr-index-enumerator x m for x
have f-mono: ∀ x y. (x < y −→ f x < f y)
proof (rule allI , rule allI )
fix x y show x < y −→ f x < f y by (unfold f-def , simp add: pr-index-enumerator-mono1 )

qed
from f-mono have ∀ x y. (f x = f y −→ x = y) by (rule f-mono-inj)
with A f-def show ?thesis by auto

qed

theorem pr-index-enumerator-inj2 : pr-index-enumerator n m1 = pr-index-enumerator
n m2 =⇒ m1 = m2
proof −

assume A: pr-index-enumerator n m1 = pr-index-enumerator n m2
define f where f x = pr-index-enumerator n x for x
have f-mono: ∀ x y. (x < y −→ f x < f y)
proof (rule allI , rule allI )
fix x y show x < y −→ f x < f y by (unfold f-def , simp add: pr-index-enumerator-mono2 )

qed
from f-mono have ∀ x y. (f x = f y −→ x = y) by (rule f-mono-inj)
with A f-def show ?thesis by auto

qed
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theorem pr-index-enumerator-main: nat-to-pr n = nat-to-pr (pr-index-enumerator
n m)
proof (induct m)

show nat-to-pr n = nat-to-pr (pr-index-enumerator n 0 ) by simp
next

fix na assume A: nat-to-pr n = nat-to-pr (pr-index-enumerator n na)
show nat-to-pr n = nat-to-pr (pr-index-enumerator n (Suc na))
proof −

let ?a = pr-index-enumerator n na
have S1 : pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by

simp
have nat-to-pr (comp-by-index index-of-id ?a) = (λ x. (nat-to-pr index-of-id)

(nat-to-pr ?a x)) by (rule comp-by-index-main)
with index-of-id-main have nat-to-pr (comp-by-index index-of-id ?a) = nat-to-pr

?a by simp
with A S1 show ?thesis by simp

qed
qed

end

5 Finite sets
theory PRecFinSet
imports PRecFun
begin

We introduce a particular mapping nat-to-set from natural numbers to finite
sets of natural numbers and a particular mapping set-to-nat from finite sets
of natural numbers to natural numbers. See [1] and [2] for more information.
definition

c-in :: nat ⇒ nat ⇒ nat where
c-in = (λ x u. (u div (2 ^ x)) mod 2 )

lemma c-in-is-pr : c-in ∈ PrimRec2
proof −

from mod-is-pr power-is-pr div-is-pr have (λ x u. (u div (2 ^ x)) mod 2 ) ∈
PrimRec2 by prec

with c-in-def show ?thesis by auto
qed

definition
nat-to-set :: nat ⇒ nat set where
nat-to-set u ≡ {x. 2^x ≤ u ∧ c-in x u = 1}

lemma c-in-upper-bound: c-in x u = 1 =⇒ 2 ^ x ≤ u
proof −

75



assume A: c-in x u = 1
then have S1 : (u div (2^x)) mod 2 = 1 by (unfold c-in-def )
then have S2 : u div (2^x) > 0 by arith
show ?thesis
proof (rule ccontr)

assume ¬ 2 ^ x ≤ u
then have u < 2^x by auto
then have u div (2^x) = 0 by (rule div-less)
with S2 show False by auto

qed
qed

lemma nat-to-set-upper-bound: x ∈ nat-to-set u =⇒ 2 ^ x ≤ u by (simp add:
nat-to-set-def )

lemma x-lt-2-x: x < 2 ^ x
by (rule less-exp)

lemma nat-to-set-upper-bound1 : x ∈ nat-to-set u =⇒ x < u
proof −

assume x ∈ nat-to-set u
then have S1 : 2 ^ x ≤ u by (simp add: nat-to-set-def )
have S2 : x < 2 ^ x by (rule x-lt-2-x)
from S2 S1 show ?thesis

by (rule less-le-trans)
qed

lemma nat-to-set-upper-bound2 : nat-to-set u ⊆ {i. i < u}
proof −

from nat-to-set-upper-bound1 show ?thesis by blast
qed

lemma nat-to-set-is-finite: finite (nat-to-set u)
proof −

have S1 : finite {i. i<u}
proof −

let ?B = {i. i<u}
let ?f = (λ (x::nat). x)
have ?B = ?f ‘ ?B by auto
then show finite ?B by (rule nat-seg-image-imp-finite)

qed
have S2 : nat-to-set u ⊆ {i. i<u} by (rule nat-to-set-upper-bound2 )
from S2 S1 show ?thesis by (rule finite-subset)

qed

lemma x-in-u-eq: (x ∈ nat-to-set u) = (c-in x u = 1 ) by (auto simp add: nat-to-set-def
c-in-upper-bound)

definition
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log2 :: nat ⇒ nat where
log2 = (λ x. Least(%z. x < 2^(z+1 )))

lemma log2-at-0 : log2 0 = 0
proof −

let ?v = log2 0
have S1 : 0 ≤ ?v by auto
have S2 : ?v = Least(%(z::nat). (0 ::nat)<2^(z+1 )) by (simp add: log2-def )
have S3 : (0 ::nat)<2^(0+1 ) by auto
from S3 have S4 : Least(%(z::nat). (0 ::nat)<2^(z+1 )) ≤ 0 by (rule Least-le)
from S2 S4 have S5 : ?v ≤ 0 by auto
from S1 S5 have S6 : ?v = 0 by auto
thus ?thesis by auto

qed

lemma log2-at-1 : log2 1 = 0
proof −

let ?v = log2 1
have S1 : 0 ≤ ?v by auto
have S2 : ?v = Least(%(z::nat). (1 ::nat)<2^(z+1 )) by (simp add: log2-def )
have S3 : (1 ::nat)<2^(0+1 ) by auto
from S3 have S4 : Least(%(z::nat). (1 ::nat)<2^(z+1 )) ≤ 0 by (rule Least-le)
from S2 S4 have S5 : ?v ≤ 0 by auto
from S1 S5 have S6 : ?v = 0 by auto
thus ?thesis by auto

qed

lemma log2-le: x > 0 =⇒ 2 ^ log2 x ≤ x
proof −

assume A: x > 0
show ?thesis
proof (cases)

assume A1 : log2 x = 0
with A show ?thesis by auto

next
assume A1 : log2 x 6= 0
then have S1 : log2 x > 0 by auto
define y where y = log2 x − 1
from S1 y-def have S2 : log2 x = y + 1 by auto
then have S3 : y < log2 x by auto
have 2^(y+1 ) ≤ x
proof (rule ccontr)

assume A2 : ¬ 2^(y+1 ) ≤ x then have x < 2^(y+1 ) by auto
then have log2 x ≤ y by (simp add: log2-def Least-le)
with S3 show False by auto

qed
with S2 show ?thesis by auto

qed
qed
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lemma log2-gt: x < 2 ^ (log2 x + 1 )
proof −

have x < 2^x by (rule x-lt-2-x)
then have S1 : x < 2^(x+1 )

by (simp add: numeral-2-eq-2 )
define y where y = x
from S1 y-def have S2 : x < 2^(y+1 ) by auto
let ?P = λ z. x < 2^(z+1 )
from S2 have S3 : ?P y by auto
then have S4 : ?P (Least ?P) by (rule LeastI )
from log2-def have S5 : log2 x = Least ?P by (unfold log2-def , auto)
from S4 S5 show ?thesis by auto

qed

lemma x-div-x: x > 0 =⇒ (x::nat) div x = 1 by auto
lemma div-ge: (k::nat) ≤ m div n =⇒ n∗k ≤ m
proof −

assume A: k ≤ m div n
have S1 : n ∗ (m div n) + m mod n = m by (rule mult-div-mod-eq)
have S2 : 0 ≤ m mod n by auto
from S1 S2 have S3 : n ∗ (m div n) ≤ m by arith
from A have S4 : n ∗ k ≤ n ∗ (m div n) by auto
from S4 S3 show ?thesis by (rule order-trans)

qed
lemma div-lt: m < n∗k =⇒ m div n < (k::nat)
proof −

assume A: m < n∗k
show ?thesis
proof (rule ccontr)

assume ¬ m div n < k
then have S1 : k ≤ m div n by auto
then have S2 : n∗k ≤ m by (rule div-ge)
with A show False by auto

qed
qed

lemma log2-lm1 : u > 0 =⇒ u div 2 ^ (log2 u) = 1
proof −

assume A: u > 0
then have S1 : 2^(log2 u) ≤ u by (rule log2-le)
have S2 : u < 2^(log2 u+1 ) by (rule log2-gt)
then have S3 : u < (2^log2 u)∗2 by simp
have (2 ::nat) > 0 by simp
then have (2 ::nat)^log2 u > 0 by simp
then have S4 : (2 ::nat)^log2 u div 2^log2 u = 1 by auto
from S1 have S5 : (2 ::nat)^log2 u div 2^log2 u ≤ u div 2^log2 u by (rule

div-le-mono)
with S4 have S6 : 1 ≤ u div 2^log2 u by auto
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from S3 have S7 : u div 2^log2 u < 2 by (rule div-lt)
from S6 S7 show ?thesis by auto

qed

lemma log2-lm2 : u > 0 =⇒ c-in (log2 u) u = 1
proof −

assume A: u > 0
then have S1 : u div 2 ^ (log2 u) = 1 by (rule log2-lm1 )
have c-in (log2 u) u = (u div 2 ^ (log2 u)) mod 2 by (simp add: c-in-def )
also from S1 have . . . = 1 mod 2 by simp
also have . . . = 1 by auto
finally show ?thesis by auto

qed

lemma log2-lm3 : log2 u < x =⇒ c-in x u = 0
proof −

assume A: log2 u < x
then have S1 : (log2 u)+1 ≤ x by auto
have S2 : 1 ≤ (2 ::nat) by auto
from S1 S2 have S3 : (2 ::nat)^ ((log2 u)+1 ) ≤ 2^x by (rule power-increasing)
have S4 : u < (2 ::nat)^ ((log2 u)+1 ) by (rule log2-gt)
from S3 S4 have S5 : u < 2^x by auto
then have S6 : u div 2^x = 0 by (rule div-less)
have c-in x u = (u div 2^x) mod 2 by (simp add: c-in-def )
also from S6 have . . . = 0 mod 2 by simp
also have . . . = 0 by auto
finally have ?thesis by auto
thus ?thesis by auto

qed

lemma log2-lm4 : c-in x u = 1 =⇒ x ≤ log2 u
proof −

assume A: c-in x u = 1
show ?thesis
proof (rule ccontr)

assume ¬ x ≤ log2 u
then have S1 : log2 u < x by auto
then have S2 : c-in x u = 0 by (rule log2-lm3 )
with A show False by auto

qed
qed

lemma nat-to-set-lub: x ∈ nat-to-set u =⇒ x ≤ log2 u
proof −

assume x ∈ nat-to-set u
then have S1 : c-in x u = 1 by (simp add: x-in-u-eq)
then show ?thesis by (rule log2-lm4 )

qed
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lemma log2-lm5 : u > 0 =⇒ log2 u ∈ nat-to-set u
proof −

assume A: u > 0
then have c-in (log2 u) u = 1 by (rule log2-lm2 )
then show ?thesis by (simp add: x-in-u-eq)

qed

lemma pos-imp-ne: u > 0 =⇒ nat-to-set u 6= {}
proof −

assume u > 0
then have log2 u ∈ nat-to-set u by (rule log2-lm5 )
thus ?thesis by auto

qed

lemma empty-is-zero: nat-to-set u = {} =⇒ u = 0
proof (rule ccontr)

assume A1 : nat-to-set u = {}
assume A2 : u 6= 0 then have S1 : u > 0 by auto
from S1 have nat-to-set u 6= {} by (rule pos-imp-ne)
with A1 show False by auto

qed

lemma log2-is-max: u > 0 =⇒ log2 u = Max (nat-to-set u)
proof −

assume A: u > 0
then have S1 : log2 u ∈ nat-to-set u by (rule log2-lm5 )
define max where max = Max (nat-to-set u)
from A have ne: nat-to-set u 6= {} by (rule pos-imp-ne)
have finite: finite (nat-to-set u) by (rule nat-to-set-is-finite)
from max-def finite ne have max-in: max ∈ nat-to-set u by simp
from max-in have S2 : c-in max u = 1 by (simp add: x-in-u-eq)
then have S3 : max ≤ log2 u by (rule log2-lm4 )
from finite ne S1 max-def have S4 : log2 u ≤ max by simp
from S3 S4 max-def show ?thesis by auto

qed

lemma zero-is-empty: nat-to-set 0 = {}
proof −

have S1 : {i. i<(0 ::nat)} = {} by blast
have S2 : nat-to-set 0 ⊆ {i. i<0} by (rule nat-to-set-upper-bound2 )
from S1 S2 show ?thesis by auto

qed

lemma ne-imp-pos: nat-to-set u 6= {} =⇒ u > 0
proof (rule ccontr)

assume A1 : nat-to-set u 6= {}
assume ¬ 0 < u then have u = 0 by auto
then have nat-to-set u = {} by (simp add: zero-is-empty)
with A1 show False by auto
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qed

lemma div-mod-lm: y < x =⇒ ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u
div (2 ::nat)^y) mod 2
proof −

assume y-lt-x: y < x
let ?n = (2 ::nat)^y
have n-pos: 0 < ?n by auto
let ?s = x−y
from y-lt-x have s-pos: 0 < ?s by auto
from y-lt-x have S3 : x = y + ?s by auto
from S3 have (2 ::nat)^x = (2 ::nat)^(y + ?s) by auto
moreover have (2 ::nat)^(y +?s) = (2 ::nat)^y ∗ 2^ ?s by (rule power-add)
ultimately have (2 ::nat)^x = 2^y ∗ 2^?s by auto
then have S4 : u + (2 ::nat)^x = u + (2 ::nat)^y ∗ 2^?s by auto
from n-pos have S5 : (u + (2 ::nat)^y ∗ 2^?s) div 2^y = 2^?s + (u div 2^y) by

simp
from S4 S5 have S6 : (u + (2 ::nat)^x) div 2^y = 2^?s + (u div 2^y) by auto
from s-pos have S8 : ?s = (?s − 1 ) + 1 by auto
have (2 ::nat) ^ ((?s − (1 ::nat)) + (1 ::nat)) = (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2^1

by (rule power-add)
with S8 have S9 : (2 ::nat) ^ ?s = (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2 by auto
then have S10 : 2^?s + (u div 2^y) = (u div 2^y) + (2 ::nat) ^ (?s − (1 ::nat))
∗ 2 by auto

have S11 : ((u div 2^y) + (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2 ) mod 2 = (u div 2^y)
mod 2 by (rule mod-mult-self1 )

from S6 S10 S11 show ?thesis by auto
qed

lemma add-power : u < 2^x =⇒ nat-to-set (u + 2^x) = nat-to-set u ∪ {x}
proof −

assume A: u < 2^x
have log2-is-x: log2 (u+2^x) = x
proof (unfold log2-def , rule Least-equality)

from A show u+2^x < 2^(x+1 ) by auto
next

fix z
assume A1 : u + 2^x < 2^(z+1 )
show x ≤ z
proof (rule ccontr)

assume ¬ x ≤ z
then have z < x by auto
then have L1 : z+1 ≤ x by auto
have L2 : 1 ≤ (2 ::nat) by auto

from L1 L2 have L3 : (2 ::nat)^(z+1 ) ≤ (2 ::nat)^x by (rule power-increasing)
with A1 show False by auto

qed
qed
show ?thesis
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proof (rule subset-antisym)
show nat-to-set (u + 2 ^ x) ⊆ nat-to-set u ∪ {x}
proof fix y

assume A1 : y ∈ nat-to-set (u + 2 ^ x)
show y ∈ nat-to-set u ∪ {x}
proof

assume y /∈ {x} then have S1 : y 6= x by auto
from A1 have y ≤ log2 (u + 2 ^ x) by (rule nat-to-set-lub)
with log2-is-x have y ≤ x by auto
with S1 have y-lt-x: y < x by auto
from A1 have c-in y (u + 2 ^ x) = 1 by (simp add: x-in-u-eq)
then have S2 : ((u + 2 ^ x) div 2^y) mod 2 = 1 by (unfold c-in-def )

from y-lt-x have ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u div
(2 ::nat)^y) mod 2 by (rule div-mod-lm)

with S2 have (u div 2^y) mod 2 = 1 by auto
then have c-in y u = 1 by (simp add: c-in-def )
then show y ∈ nat-to-set u by (simp add: x-in-u-eq)

qed
qed

next
show nat-to-set u ∪ {x} ⊆ nat-to-set (u + 2 ^ x)
proof fix y

assume A1 : y ∈ nat-to-set u ∪ {x}
show y ∈ nat-to-set (u + 2 ^ x)
proof cases

assume y ∈ {x}
then have y=x by auto
then have y = log2 (u + 2 ^ x) by (simp add: log2-is-x)
then show ?thesis by (simp add: log2-lm5 )

next
assume y-notin: y /∈ {x}
then have y-ne-x: y 6= x by auto
from A1 y-notin have y-in: y ∈ nat-to-set u by auto
have y-lt-x: y < x
proof (rule ccontr)

assume ¬ y < x
with y-ne-x have y-gt-x: x < y by auto
have 1 < (2 ::nat) by auto

from y-gt-x this have L1 : (2 ::nat)^x < 2^y by (rule power-strict-increasing)
from y-in have L2 : 2^y ≤ u by (rule nat-to-set-upper-bound)
from L1 L2 have (2 ::nat)^x < u by arith
with A show False by auto

qed
from y-in have c-in y u = 1 by (simp add: x-in-u-eq)
then have S2 : (u div 2^y) mod 2 = 1 by (unfold c-in-def )

from y-lt-x have ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u div
(2 ::nat)^y) mod 2 by (rule div-mod-lm)

with S2 have ((u + (2 ::nat) ^ x)div 2^y) mod 2 = 1 by auto
then have c-in y (u + (2 ::nat) ^ x) = 1 by (simp add: c-in-def )
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then show y ∈ nat-to-set (u + (2 ::nat) ^ x) by (simp add: x-in-u-eq)
qed

qed
qed

qed

theorem nat-to-set-inj: nat-to-set u = nat-to-set v =⇒ u = v
proof −

assume A: nat-to-set u = nat-to-set v
let ?P = λ (n::nat). (∀ (D::nat set). finite D ∧ card D ≤ n −→ (∀ u v. nat-to-set

u = D ∧ nat-to-set v = D −→ u = v))
have P-at-0 : ?P 0
proof fix D show finite D ∧ card D ≤ 0 −→ (∀ u v. nat-to-set u = D ∧ nat-to-set

v = D −→ u = v)
proof (rule impI )

assume A1 : finite D ∧ card D ≤ 0
from A1 have S1 : finite D by auto
from A1 have S2 : card D = 0 by auto
from S1 S2 have S3 : D = {} by auto
show (∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v)
proof (rule allI , rule allI ) fix u v show nat-to-set u = D ∧ nat-to-set v =

D −→ u = v
proof

assume A2 : nat-to-set u = D ∧ nat-to-set v = D
from A2 have L1 : nat-to-set u = D by auto
from A2 have L2 : nat-to-set v = D by auto
from L1 S3 have nat-to-set u = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from L2 S3 have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u=v by auto

qed
qed

qed
qed
have P-at-Suc:

∧
n. ?P n =⇒ ?P (Suc n)

proof − fix n
assume A-n: ?P n
show ?P (Suc n)
proof fix D show finite D ∧ card D ≤ Suc n −→ (∀ u v. nat-to-set u = D ∧

nat-to-set v = D −→ u = v)
proof (rule impI )

assume A1 : finite D ∧ card D ≤ Suc n
from A1 have S1 : finite D by auto
from A1 have S2 : card D ≤ Suc n by auto
show (∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v)
proof (rule allI , rule allI , rule impI )

fix u v
assume A2 : nat-to-set u = D ∧ nat-to-set v = D
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from A2 have d-u-d: nat-to-set u = D by auto
from A2 have d-v-d: nat-to-set v = D by auto
show u = v
proof (cases)

assume A3 : D = {}
from A3 d-u-d have nat-to-set u = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from A3 d-v-d have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u = v by auto

next
assume A3 : D 6= {}
from A3 d-u-d have nat-to-set u 6= {} by auto
then have u-pos: u > 0 by (rule ne-imp-pos)
from A3 d-v-d have nat-to-set v 6= {} by auto
then have v-pos: v > 0 by (rule ne-imp-pos)
define m where m = Max D
from S1 m-def A3 have m-in: m ∈ D by auto
from d-u-d m-def have m-u: m = Max (nat-to-set u) by auto
from d-v-d m-def have m-v: m = Max (nat-to-set v) by auto
from u-pos m-u log2-is-max have m-log-u: m = log2 u by auto
from v-pos m-v log2-is-max have m-log-v: m = log2 v by auto
define D1 where D1 = D − {m}
define u1 where u1 = u − 2^m
define v1 where v1 = v − 2^m
have card-D1 : card D1 ≤ n
proof −

from D1-def S1 m-in have card D1 = (card D) − 1 by (simp add:
card-Diff-singleton)

with S2 show ?thesis by auto
qed
have u-u1 : u = u1 + 2^m
proof −

from u-pos have L1 : 2 ^ log2 u ≤ u by (rule log2-le)
with m-log-u have L2 : 2 ^ m ≤ u by auto
with u1-def show ?thesis by auto

qed
have u1-d1 : nat-to-set u1 = D1
proof −

from m-log-u log2-gt have u < 2^(m+1 ) by auto
with u-u1 have u1-lt-2-m: u1 < 2^m by auto
with u-u1 have L1 : nat-to-set u = nat-to-set u1 ∪ {m} by (simp add:

add-power)
have m-notin: m /∈ nat-to-set u1
proof (rule ccontr)

assume ¬ m /∈ nat-to-set u1 then have m ∈ nat-to-set u1 by auto
then have 2^m ≤ u1 by (rule nat-to-set-upper-bound)
with u1-lt-2-m show False by auto

qed
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from L1 m-notin have nat-to-set u1 = nat-to-set u − {m} by auto
with d-u-d have nat-to-set u1 = D − {m} by auto
with D1-def show ?thesis by auto

qed
have v-v1 : v = v1 + 2^m
proof −

from v-pos have L1 : 2 ^ log2 v ≤ v by (rule log2-le)
with m-log-v have L2 : 2 ^ m ≤ v by auto
with v1-def show ?thesis by auto

qed
have v1-d1 : nat-to-set v1 = D1
proof −

from m-log-v log2-gt have v < 2^(m+1 ) by auto
with v-v1 have v1-lt-2-m: v1 < 2^m by auto
with v-v1 have L1 : nat-to-set v = nat-to-set v1 ∪ {m} by (simp add:

add-power)
have m-notin: m /∈ nat-to-set v1
proof (rule ccontr)

assume ¬ m /∈ nat-to-set v1 then have m ∈ nat-to-set v1 by auto
then have 2^m ≤ v1 by (rule nat-to-set-upper-bound)
with v1-lt-2-m show False by auto

qed
from L1 m-notin have nat-to-set v1 = nat-to-set v − {m} by auto
with d-v-d have nat-to-set v1 = D − {m} by auto
with D1-def show ?thesis by auto

qed
from S1 D1-def have P1 : finite D1 by auto
with card-D1 have P2 : finite D1 ∧ card D1 ≤ n by auto
from A-n P2 have (∀ u v. nat-to-set u = D1 ∧ nat-to-set v = D1 −→ u

= v) by auto
with u1-d1 v1-d1 have u1 = v1 by auto
with u-u1 v-v1 show u = v by auto

qed
qed

qed
qed

qed
from P-at-0 P-at-Suc have main:

∧
n. ?P n by (rule nat.induct)

define D where D = nat-to-set u
from D-def A have P1 : nat-to-set u = D by auto
from D-def A have P2 : nat-to-set v = D by auto
from D-def nat-to-set-is-finite have d-finite: finite D by auto
define n where n = card D
from n-def d-finite have card-le: card D ≤ n by auto
from d-finite card-le have P3 : finite D ∧ card D ≤ n by auto
with main have P4 : ∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v by

auto
with P1 P2 show u = v by auto

qed
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definition
set-to-nat :: nat set => nat where
set-to-nat = (λ D. sum (λ x. 2 ^ x) D)

lemma two-power-sum: sum (λ x. (2 ::nat) ^ x) {i. i< Suc m} = (2 ^ Suc m) −
1
proof (induct m)

show sum (λ x. (2 ::nat) ^ x) {i. i< Suc 0} = (2 ^ Suc 0 ) − 1 by auto
next

fix n
assume A: sum (λ x. (2 ::nat) ^ x) {i. i< Suc n} = (2 ^ Suc n) − 1
show sum (λ x. (2 ::nat) ^ x) {i. i< Suc (Suc n)} = (2 ^ Suc (Suc n)) − 1
proof −

let ?f = λ x. (2 ::nat) ^ x
have S1 : {i. i< Suc (Suc n)} = {i. i ≤ Suc n} by auto
have S2 : {i. i ≤ Suc n} = {i. i < Suc n} ∪ { Suc n} by auto
from S1 S2 have S3 : {i. i< Suc (Suc n)} = {i. i < Suc n} ∪ { Suc n} by

auto
have S4 : {i. i < Suc n} = (λ x. x) ‘ {i. i < Suc n} by auto
then have S5 : finite {i. i < Suc n} by (rule nat-seg-image-imp-finite)
have S6 : Suc n /∈ {i. i < Suc n} by auto
from S5 S6 sum.insert have S7 : sum ?f ({i. i< Suc n} ∪ {Suc n}) = 2 ^ Suc

n + sum ?f {i. i< Suc n} by auto
from S3 have sum ?f {i. i< Suc (Suc n)} = sum ?f ({i. i< Suc n} ∪ {Suc

n}) by auto
also from S7 have . . . = 2 ^ Suc n + sum ?f {i. i< Suc n} by auto
also from A have . . . = 2 ^ Suc n + (((2 ::nat) ^ Suc n)−(1 ::nat)) by auto
also have . . . = (2 ^ Suc (Suc n)) − 1 by auto
finally show ?thesis by auto

qed
qed

lemma finite-interval: finite {i. (i::nat)<m}
proof −

have {i. i < m} = (λ x. x) ‘ {i. i < m} by auto
then show ?thesis by (rule nat-seg-image-imp-finite)

qed

lemma set-to-nat-at-empty: set-to-nat {} = 0 by (unfold set-to-nat-def , rule sum.empty)

lemma set-to-nat-of-interval: set-to-nat {i. (i::nat)<m} = 2 ^ m − 1
proof (induct m)

show set-to-nat {i. i < 0} = 2 ^ 0 − 1
proof −

have S1 : {i. (i::nat) < 0} = {} by auto
with set-to-nat-at-empty have set-to-nat {i. i<0} = 0 by auto
thus ?thesis by auto

qed
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next
fix n show set-to-nat {i. i < Suc n} = 2 ^ Suc n − 1 by (unfold set-to-nat-def ,

rule two-power-sum)
qed

lemma set-to-nat-mono: [[ finite B; A ⊆ B]] =⇒ set-to-nat A ≤ set-to-nat B
proof −

assume b-finite: finite B
assume a-le-b: A ⊆ B
let ?f = λ (x::nat). (2 ::nat) ^ x
have S1 : set-to-nat A = sum ?f A by (simp add: set-to-nat-def )
have S2 : set-to-nat B = sum ?f B by (simp add: set-to-nat-def )
have S3 :

∧
x. x ∈ B − A =⇒ 0 ≤ ?f x by auto

from b-finite a-le-b S3 have sum ?f A ≤ sum ?f B by (rule sum-mono2 )
with S1 S2 show ?thesis by auto

qed

theorem nat-to-set-srj: finite (D::nat set) =⇒ nat-to-set (set-to-nat D) = D
proof −

assume A: finite D
let ?P = λ (n::nat). (∀ (D::nat set). finite D ∧ card D = n −→ nat-to-set

(set-to-nat D) = D)
have P-at-0 : ?P 0
proof (rule allI )

fix D
show finite D ∧ card D = 0 −→ nat-to-set (set-to-nat D) = D
proof

assume A1 : finite D ∧ card D = 0
from A1 have S1 : finite D by auto
from A1 have S2 : card D = 0 by auto
from S1 S2 have S3 : D = {} by auto
with set-to-nat-def have set-to-nat D = sum (λ x. 2 ^ x) D by simp
with S3 sum.empty have set-to-nat D = 0 by auto
with zero-is-empty S3 show nat-to-set (set-to-nat D) = D by auto

qed
qed
have P-at-Suc:

∧
n. ?P n =⇒ ?P (Suc n)

proof − fix n
assume A-n: ?P n
show ?P (Suc n)
proof

fix D show finite D ∧ card D = Suc n −→ nat-to-set (set-to-nat D) = D
proof

assume A1 : finite D ∧ card D = Suc n
from A1 have S1 : finite D by auto
from A1 have S2 : card D = Suc n by auto
define m where m = Max D
from S2 have D-ne: D 6= {} by auto
with S1 m-def have m-in: m ∈ D by auto
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define D1 where D1 = D − {m}
from S1 D1-def have d1-finite: finite D1 by auto

from D1-def m-in S1 have card D1 = card D − 1 by (simp add:
card-Diff-singleton)

with S2 have card-d1 : card D1 = n by auto
from d1-finite card-d1 have finite D1 ∧ card D1 = n by auto
with A-n have S3 : nat-to-set (set-to-nat D1 ) = D1 by auto
define u where u = set-to-nat D
define u1 where u1 = set-to-nat D1
from S1 m-in have sum (λ (x::nat). (2 ::nat) ^ x) D = 2 ^ m + sum (λ x.

2 ^ x) (D − {m})
by (rule sum.remove)

with set-to-nat-def have set-to-nat D = 2 ^ m + set-to-nat (D − {m}) by
auto

with u-def u1-def D1-def have u-u1 : u = u1 + 2 ^ m by auto
from S3 u1-def have d1-u1 : nat-to-set u1 = D1 by auto
have u1-lt: u1 < 2 ^ m
proof −

have L1 : D1 ⊆ {i. i<m}
proof fix x

assume A1 : x ∈ D1
show x ∈ {i. i<m}
proof

from A1 D1-def have L1-1 : x ∈ D by auto
from S1 D-ne L1-1 m-def have L1-2 : x ≤ m by auto
with A1 L1-1 D1-def have x 6= m by auto
with L1-2 show x < m by auto

qed
qed
have L2 : finite {i. i<m} by (rule finite-interval)

from L2 L1 have set-to-nat D1 ≤ set-to-nat {i. i<m} by (rule
set-to-nat-mono)

with u1-def have u1 ≤ set-to-nat {i. i<m} by auto
with set-to-nat-of-interval have L3 : u1 ≤ 2 ^ m − 1 by auto
have 0 < (2 ::nat) ^ m by auto
then have (2 ::nat) ^ m − 1 < (2 ::nat) ^ m by auto
with L3 show ?thesis by arith

qed
from u-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
also from u-u1 have . . . = nat-to-set (u1 + 2 ^ m) by auto
also from u1-lt have . . . = nat-to-set u1 ∪ {m} by (rule add-power)
also from d1-u1 have . . . = D1 ∪ {m} by auto
also from D1-def m-in have . . . = D by auto
finally show nat-to-set (set-to-nat D) = D by auto

qed
qed

qed
from P-at-0 P-at-Suc have main:

∧
n. ?P n by (rule nat.induct)

from A main show ?thesis by auto
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qed

theorem nat-to-set-srj1 : finite (D::nat set) =⇒ ∃ u. nat-to-set u = D
proof −

assume A: finite D
show ∃ u. nat-to-set u = D
proof

from A show nat-to-set (set-to-nat D) = D by (rule nat-to-set-srj)
qed

qed

lemma sum-of-pr-is-pr : g ∈ PrimRec1 =⇒ (λ n. sum g {i. i<n}) ∈ PrimRec1
proof −

assume g-is-pr : g ∈ PrimRec1
define f where f n = sum g {i. i<n} for n
from f-def have f-at-0 : f 0 = 0 by auto
define h where h a b = g a + b for a b
from g-is-pr have h-is-pr : h ∈ PrimRec2 unfolding h-def by prec
have f-at-Suc: ∀ y. f (Suc y) = h y (f y)
proof

fix y show f (Suc y) = h y (f y)
proof −

from f-def have S1 : f (Suc y) = sum g {i. i < Suc y} by auto
have S2 : {i. i < Suc y} = {i. i < y} ∪ {y} by auto
have S3 : finite {i. i < y} by (rule finite-interval)
have S4 : y /∈ {i. i < y} by auto
from S1 S2 have f (Suc y) = sum g ({i. (i::nat) < y} ∪ {y}) by auto
also from S3 S4 sum.insert have . . . = g y + sum g {i. i<y} by auto
also from f-def have . . . = g y + f y by auto
also from h-def have . . . = h y (f y) by auto
finally show ?thesis by auto

qed
qed
from h-is-pr f-at-0 f-at-Suc have f-is-pr : f ∈ PrimRec1 by (rule pr-rec1-scheme)
with f-def [abs-def ] show ?thesis by auto

qed

lemma sum-of-pr-is-pr2 : p ∈ PrimRec2 =⇒ (λ n m. sum (λ x. p x m) {i. i<n})
∈ PrimRec2
proof −

assume p-is-pr : p ∈ PrimRec2
define f where f n m = sum (λ x. p x m) {i. i<n} for n m
define g :: nat ⇒ nat where g x = 0 for x
have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule const-is-pr [where ?n=0 ])
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x from f-def g-def show f 0 x = g x by auto
qed
define h where h a b c = p a c + b for a b c
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from p-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI )

fix x y show f (Suc y) x = h y (f y x) x
proof −

from f-def have S1 : f (Suc y) x = sum (λ z. p z x) {i. i < Suc y} by auto
have S2 : {i. i < Suc y} = {i. i < y} ∪ {y} by auto
have S3 : finite {i. i < y} by (rule finite-interval)
have S4 : y /∈ {i. i < y} by auto
define g1 where g1 z = p z x for z
from S1 S2 g1-def have f (Suc y) x = sum g1 ({i. (i::nat) < y} ∪ {y}) by

auto
also from S3 S4 sum.insert have . . . = g1 y + sum g1 {i. i<y} by auto
also from f-def g1-def have . . . = g1 y + f y x by auto
also from h-def g1-def have . . . = h y (f y x) x by auto
finally show ?thesis by auto

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc have f-is-pr : f ∈ PrimRec2 by (rule pr-rec-scheme)
with f-def [abs-def ] show ?thesis by auto

qed

lemma sum-is-pr : g ∈ PrimRec1 =⇒ (λ u. sum g (nat-to-set u)) ∈ PrimRec1
proof −

assume g-is-pr : g ∈ PrimRec1
define g1 where g1 x u = (if (c-in x u = 1 ) then (g x) else 0 ) for x u
have g1-is-pr : g1 ∈ PrimRec2
proof (unfold g1-def , rule if-eq-is-pr2 )

show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 1 ) ∈ PrimRec2 by (rule const-is-pr-2 [where ?n=1 ])
next

from g-is-pr show (λx y. g x) ∈ PrimRec2 by prec
next

show (λx y. 0 ) ∈ PrimRec2 by (rule const-is-pr-2 [where ?n=0 ])
qed
define f where f u = sum (λ x. g1 x u) {i. (i::nat) < u} for u
define f1 where f1 u v = sum (λ x. g1 x v) {i. (i::nat) < u} for u v
from g1-is-pr have (λ (u::nat) v. sum (λ x. g1 x v) {i. (i::nat) < u}) ∈ PrimRec2

by (rule sum-of-pr-is-pr2 )
with f1-def [abs-def ] have f1-is-pr : f1 ∈ PrimRec2 by auto
from f-def f1-def have f-f1 : f = (λ u. f1 u u) by auto
from f1-is-pr have (λ u. f1 u u) ∈ PrimRec1 by prec
with f-f1 have f-is-pr : f ∈ PrimRec1 by auto
have f-is-result: f = (λ u. sum g (nat-to-set u))
proof

fix u show f u = sum g (nat-to-set u)
proof −

define U where U = {i. i < u}
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define A where A = {x ∈ U . c-in x u = 1}
define B where B = {x ∈ U . c-in x u 6= 1}
have U-finite: finite U by (unfold U-def , rule finite-interval)
from A-def U-finite have A-finite: finite A by auto
from B-def U-finite have B-finite: finite B by auto
from U-def A-def B-def have U-A-B: U = A ∪ B by auto
from U-def A-def B-def have A-B: A ∩ B = {} by auto
from B-def g1-def have B-z: sum (λ x. g1 x u) B = 0 by auto

have u-in-U : nat-to-set u ⊆ U by (unfold U-def , rule nat-to-set-upper-bound2 )
from u-in-U x-in-u-eq A-def have A-u: A = nat-to-set u by auto

from A-u x-in-u-eq g1-def have A-res: sum (λ x. g1 x u) A = sum g (nat-to-set
u) by auto

from f-def have f u = sum (λ x. g1 x u) {i. (i::nat) < u} by auto
also from U-def have . . . = sum (λ x. g1 x u) U by auto
also from U-A-B have . . . = sum (λ x. g1 x u) (A ∪ B) by auto
also from A-finite B-finite A-B have . . . = sum (λ x. g1 x u) A + sum (λ

x. g1 x u) B by (rule sum.union-disjoint)
also from B-z have . . . = sum (λ x. g1 x u) A by auto
also from A-res have . . . = sum g (nat-to-set u) by auto
finally show ?thesis by auto

qed
qed
with f-is-pr show ?thesis by auto

qed

definition
c-card :: nat ⇒ nat where
c-card = (λ u. card (nat-to-set u))

theorem c-card-is-pr : c-card ∈ PrimRec1
proof −

define g :: nat ⇒ nat where g x = 1 for x
have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule const-is-pr)
have c-card = (λ u. sum g (nat-to-set u))
proof
fix u show c-card u = sum g (nat-to-set u) by (unfold c-card-def , unfold g-def ,

rule card-eq-sum)
qed
moreover from g-is-pr have (λ u. sum g (nat-to-set u)) ∈ PrimRec1 by (rule

sum-is-pr)
ultimately show ?thesis by auto

qed

definition
c-insert :: nat ⇒ nat ⇒ nat where
c-insert = (λ x u. if c-in x u = 1 then u else u + 2^x)

lemma c-insert-is-pr : c-insert ∈ PrimRec2
proof (unfold c-insert-def , rule if-eq-is-pr2 )
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show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 1 ) ∈ PrimRec2 by (rule const-is-pr-2 )
next

show (λx y. y) ∈ PrimRec2 by (rule pr-id2-2 )
next

from power-is-pr show (λx y. y + 2 ^ x) ∈ PrimRec2 by prec
qed

lemma [simp]: set-to-nat (nat-to-set u) = u
proof −

define D where D = nat-to-set u
from D-def nat-to-set-is-finite have D-finite: finite D by auto
then have nat-to-set (set-to-nat D) = D by (rule nat-to-set-srj)
with D-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
then have set-to-nat D = u by (rule nat-to-set-inj)
with D-def show ?thesis by auto

qed

lemma insert-lemma: x /∈ nat-to-set u =⇒ set-to-nat (nat-to-set u ∪ {x}) = u +
2 ^ x
proof −

assume A: x /∈ nat-to-set u
define D where D = nat-to-set u
from A D-def have S1 : x /∈ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = λ (x::nat). (2 ::nat)^x
from set-to-nat-def have set-to-nat (D ∪ {x}) = sum ?f (D ∪ {x}) by auto
also from D-finite S1 have . . . = ?f x + sum ?f D by simp
also from set-to-nat-def have . . . = 2 ^ x + set-to-nat D by auto
finally have set-to-nat (D ∪ {x}) = set-to-nat D + 2 ^ x by auto
with D-def show ?thesis by auto

qed

lemma c-insert-df : c-insert = (λ x u. set-to-nat ((nat-to-set u) ∪ {x}))
proof (rule ext, rule ext)

fix x u show c-insert x u = set-to-nat (nat-to-set u ∪ {x})
proof (cases)

assume A: x ∈ nat-to-set u
then have nat-to-set u ∪ {x} = nat-to-set u by auto
then have S1 : set-to-nat (nat-to-set u ∪ {x}) = u by auto
from A have c-in x u = 1 by (simp add: x-in-u-eq)
then have c-insert x u = u by (unfold c-insert-def , simp)
with S1 show ?thesis by auto

next
assume A: x /∈ nat-to-set u
then have S1 : c-in x u 6= 1 by (simp add: x-in-u-eq)
then have S2 : c-insert x u = u + 2 ^ x by (unfold c-insert-def , simp)
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from A have set-to-nat (nat-to-set u ∪ {x}) = u + 2 ^ x by (rule insert-lemma)
with S2 show ?thesis by auto

qed
qed

definition
c-remove :: nat ⇒ nat ⇒ nat where
c-remove = (λ x u. if c-in x u = 0 then u else u − 2^x)

lemma c-remove-is-pr : c-remove ∈ PrimRec2
proof (unfold c-remove-def , rule if-eq-is-pr2 )

show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 0 ) ∈ PrimRec2 by (rule const-is-pr-2 )
next

show (λx y. y) ∈ PrimRec2 by (rule pr-id2-2 )
next

from power-is-pr show (λx y. y − 2 ^ x) ∈ PrimRec2 by prec
qed

lemma remove-lemma: x ∈ nat-to-set u =⇒ set-to-nat (nat-to-set u − {x}) = u
− 2 ^ x
proof −

assume A: x ∈ nat-to-set u
define D where D = nat-to-set u − {x}
from A D-def have S1 : x /∈ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = λ (x::nat). (2 ::nat)^x
from set-to-nat-def have set-to-nat (D ∪ {x}) = sum ?f (D ∪ {x}) by auto
also from D-finite S1 have . . . = ?f x + sum ?f D by simp
also from set-to-nat-def have . . . = 2 ^ x + set-to-nat D by auto
finally have S2 : set-to-nat (D ∪ {x}) = set-to-nat D + 2 ^ x by auto
from A D-def have D ∪ {x} = nat-to-set u by auto
with S2 have S3 : u = set-to-nat D + 2 ^ x by auto
from A have S4 : 2 ^ x ≤ u by (rule nat-to-set-upper-bound)
with S3 D-def show ?thesis by auto

qed

lemma c-remove-df : c-remove = (λ x u. set-to-nat ((nat-to-set u) − {x}))
proof (rule ext, rule ext)

fix x u show c-remove x u = set-to-nat (nat-to-set u − {x})
proof (cases)

assume A: x ∈ nat-to-set u
then have S1 : c-in x u = 1 by (simp add: x-in-u-eq)
then have S2 : c-remove x u = u − 2^x by (simp add: c-remove-def )

from A have set-to-nat (nat-to-set u − {x}) = u − 2 ^ x by (rule re-
move-lemma)

with S2 show ?thesis by auto
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next
assume A: x /∈ nat-to-set u
then have S1 : c-in x u 6= 1 by (simp add: x-in-u-eq)
then have S2 : c-remove x u = u by (simp add: c-remove-def c-in-def )
from A have nat-to-set u − {x} = nat-to-set u by auto
with S2 show ?thesis by auto

qed
qed

definition
c-union :: nat ⇒ nat ⇒ nat where
c-union = (λ u v. set-to-nat (nat-to-set u ∪ nat-to-set v))

theorem c-union-is-pr : c-union ∈ PrimRec2
proof −

define f where f y x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set (c-snd
x). z < y})

for y x
have f-is-pr : f ∈ PrimRec2
proof −

define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr : g ∈ PrimRec1 by auto
define h where h a b c = (if c-in a (c-snd c) = 1 then c-insert a b else b) for

a b c
from c-in-is-pr c-insert-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by

prec
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x show f 0 x = g x by (unfold f-def , unfold g-def , simp)
qed
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI )

fix x y show f (Suc y) x = h y (f y x) x
proof (cases)

assume A: c-in y (c-snd x) = 1
then have S1 : y ∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = c-insert y (f y x) by auto
from S1 have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set

(c-snd x). z < y} ∪ {y} by auto
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

∪ {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set

(c-snd x). z < y}) ∪ {y}) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x) ∪ {y}) by auto
also have . . . = c-insert y (f y x) by (simp add: c-insert-df )
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finally show ?thesis by (simp add: S2 )
next

assume A: ¬ c-in y (c-snd x) = 1
then have S1 : y /∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = f y x by auto
have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x).

z < y}
proof −

have {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x). z
< y} ∪ {z ∈ nat-to-set (c-snd x). z = y}

by auto
with S1 show ?thesis by auto

qed
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

∪ {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set

(c-snd x). z < y})) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x)) by auto
also have . . . = f y x by simp
finally show ?thesis by (simp add: S2 )

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)

qed
define union where union u v = f v (c-pair u v) for u v
from f-is-pr have union-is-pr : union ∈ PrimRec2 unfolding union-def by prec
have

∧
u v. union u v = set-to-nat (nat-to-set u ∪ nat-to-set v)

proof −
fix u v show union u v = set-to-nat (nat-to-set u ∪ nat-to-set v)
proof −

from nat-to-set-upper-bound1 have {z ∈ nat-to-set v. z < v} = nat-to-set v
by auto

with union-def f-def show ?thesis by auto
qed

qed
then have union = (λ u v. set-to-nat (nat-to-set u ∪ nat-to-set v)) by (simp

add: ext)
with c-union-def have c-union = union by simp
with union-is-pr show ?thesis by simp

qed

definition
c-diff :: nat ⇒ nat ⇒ nat where
c-diff = (λ u v. set-to-nat (nat-to-set u − nat-to-set v))
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theorem c-diff-is-pr : c-diff ∈ PrimRec2
proof −

define f where f y x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈ nat-to-set (c-snd
x). z < y})

for y x
have f-is-pr : f ∈ PrimRec2
proof −

define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr : g ∈ PrimRec1 by auto
define h where h a b c = (if c-in a (c-snd c) = 1 then c-remove a b else b)

for a b c
from c-in-is-pr c-remove-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def

by prec
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x show f 0 x = g x by (unfold f-def , unfold g-def , simp)
qed
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI )

fix x y show f (Suc y) x = h y (f y x) x
proof (cases)

assume A: c-in y (c-snd x) = 1
then have S1 : y ∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = c-remove y (f y x) by auto
have (nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd x). z < y} ∪ {y}) =

((nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd x). z < y}) − {y}) by
auto

then have lm1 : set-to-nat (nat-to-set (c-fst x) − ({z ∈ nat-to-set (c-snd
x). z < y} ∪ {y})) =

set-to-nat (nat-to-set (c-fst x) − {z ∈ nat-to-set (c-snd x). z <
y} − {y}) by auto

from S1 have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set
(c-snd x). z < y} ∪ {y} by auto

from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) − {z ∈
nat-to-set (c-snd x). z < y}) by auto

with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))
− {z ∈ nat-to-set (c-snd x). z < y} by auto

from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈
nat-to-set (c-snd x). z < Suc y}) by simp

also from S3 have . . . = set-to-nat ((nat-to-set (c-fst x)) − ({z ∈ nat-to-set
(c-snd x). z < y} ∪ {y})) by auto

also have . . . = set-to-nat (((nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd
x). z < y}) − {y})) by (rule lm1 )

also from S5 have . . . = set-to-nat (nat-to-set (f y x) − {y}) by auto
also have . . . = c-remove y (f y x) by (simp add: c-remove-df )
finally show ?thesis by (simp add: S2 )

next
assume A: ¬ c-in y (c-snd x) = 1
then have S1 : y /∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
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from A h-def have S2 : h y (f y x) x = f y x by auto
have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x).

z < y}
proof −

have {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x). z
< y} ∪ {z ∈ nat-to-set (c-snd x). z = y}

by auto
with S1 show ?thesis by auto

qed
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) − {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

− {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) − {z ∈ nat-to-set

(c-snd x). z < y})) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x)) by auto
also have . . . = f y x by simp
finally show ?thesis by (simp add: S2 )

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)

qed
define diff where diff u v = f v (c-pair u v) for u v
from f-is-pr have diff-is-pr : diff ∈ PrimRec2 unfolding diff-def by prec
have

∧
u v. diff u v = set-to-nat (nat-to-set u − nat-to-set v)

proof −
fix u v show diff u v = set-to-nat (nat-to-set u − nat-to-set v)
proof −

from nat-to-set-upper-bound1 have {z ∈ nat-to-set v. z < v} = nat-to-set v
by auto

with diff-def f-def show ?thesis by auto
qed

qed
then have diff = (λ u v. set-to-nat (nat-to-set u − nat-to-set v)) by (simp add:

ext)
with c-diff-def have c-diff = diff by simp
with diff-is-pr show ?thesis by simp

qed

definition
c-intersect :: nat ⇒ nat ⇒ nat where
c-intersect = (λ u v. set-to-nat (nat-to-set u ∩ nat-to-set v))

theorem c-intersect-is-pr : c-intersect ∈ PrimRec2
proof −

define f where f u v = c-diff (c-union u v) (c-union (c-diff u v) (c-diff v u))
for u v
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from c-diff-is-pr c-union-is-pr have f-is-pr : f ∈ PrimRec2 unfolding f-def by
prec

have
∧

u v. f u v = c-intersect u v
proof −

fix u v show f u v = c-intersect u v
proof −

let ?A = nat-to-set u
let ?B = nat-to-set v
have A-fin: finite ?A by (rule nat-to-set-is-finite)
have B-fin: finite ?B by (rule nat-to-set-is-finite)
have S1 : c-union u v = set-to-nat (?A ∪ ?B) by (simp add: c-union-def )
have S2 : c-diff u v = set-to-nat (?A − ?B) by (simp add: c-diff-def )
have S3 : c-diff v u = set-to-nat (?B − ?A) by (simp add: c-diff-def )
from S2 A-fin B-fin have S4 : nat-to-set (c-diff u v) = ?A − ?B by (simp

add: nat-to-set-srj)
from S3 A-fin B-fin have S5 : nat-to-set (c-diff v u) = ?B − ?A by (simp

add: nat-to-set-srj)
from S4 S5 have S6 : c-union (c-diff u v) (c-diff v u) = set-to-nat ((?A −

?B) ∪ (?B − ?A)) by (simp add: c-union-def )
from S1 A-fin B-fin have S7 : nat-to-set (c-union u v) = ?A ∪ ?B by (simp

add: nat-to-set-srj)
from S6 A-fin B-fin have S8 : nat-to-set (c-union (c-diff u v) (c-diff v u)) =

(?A − ?B) ∪ (?B − ?A) by (simp add: nat-to-set-srj)
from S7 S8 have S9 : f u v = set-to-nat ((?A ∪ ?B) − ((?A − ?B) ∪ (?B −

?A))) by (simp add: c-diff-def f-def )
have S10 : ?A ∩ ?B = (?A ∪ ?B) − ((?A − ?B) ∪ (?B − ?A)) by auto
with S9 have S11 : f u v = set-to-nat (?A ∩ ?B) by auto
have c-intersect u v = set-to-nat (?A ∩ ?B) by (simp add: c-intersect-def )
with S11 show ?thesis by auto

qed
qed
then have f = c-intersect by (simp add: ext)
with f-is-pr show ?thesis by auto

qed

end

6 The function which is universal for primitive re-
cursive functions of one variable

theory PRecUnGr
imports PRecFun2 PRecList
begin

We introduce a particular function which is universal for primitive recursive
functions of one variable.
definition

g-comp :: nat ⇒ nat ⇒ nat where
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g-comp c-ls key = (
let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>.
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y = c-assoc-value c-ls (c-pair m2 x) in
if c-assoc-have-key c-ls (c-pair m1 y) = 0 then
(let z = c-assoc-value c-ls (c-pair m1 y) in
c-cons (c-pair key z) c-ls)

else c-ls
)

else c-ls
)

definition
g-pair :: nat ⇒ nat ⇒ nat where
g-pair c-ls key = (

let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>.
if c-assoc-have-key c-ls (c-pair m1 x) = 0 then
(let y1 = c-assoc-value c-ls (c-pair m1 x) in
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y2 = c-assoc-value c-ls (c-pair m2 x) in
c-cons (c-pair key (c-pair y1 y2 )) c-ls)

else c-ls
)

else c-ls
)

definition
g-rec :: nat ⇒ nat ⇒ nat where
g-rec c-ls key = (

let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>; x = <y1 , x1>.
if y1 = 0 then
(

if c-assoc-have-key c-ls (c-pair m1 x1 ) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m1 x1 ))) c-ls

else c-ls
)
else
(
let y2 = y1−(1 ::nat) in
if c-assoc-have-key c-ls (c-pair n (c-pair y2 x1 )) = 0 then
(

let t1 = c-assoc-value c-ls (c-pair n (c-pair y2 x1 )); t2 = c-pair (c-pair y2
t1 ) x1 in
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if c-assoc-have-key c-ls (c-pair m2 t2 ) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m2 t2 ))) c-ls

else c-ls
)
else c-ls

)
)

definition
g-step :: nat ⇒ nat ⇒ nat where
g-step c-ls key = (

let n = c-fst key; x = c-snd key; n1 = (c-fst n) mod 7 in
if n1 = 0 then c-cons (c-pair key 0 ) c-ls else
if n1 = 1 then c-cons (c-pair key (Suc x)) c-ls else
if n1 = 2 then c-cons (c-pair key (c-fst x)) c-ls else
if n1 = 3 then c-cons (c-pair key (c-snd x)) c-ls else
if n1 = 4 then g-comp c-ls key else
if n1 = 5 then g-pair c-ls key else
if n1 = 6 then g-rec c-ls key else
c-ls

)

definition
pr-gr :: nat ⇒ nat where
pr-gr-def : pr-gr = PrimRecOp1 0 (λ a b. g-step b (c-fst a))

lemma pr-gr-at-0 : pr-gr 0 = 0 by (simp add: pr-gr-def )

lemma pr-gr-at-Suc: pr-gr (Suc x) = g-step (pr-gr x) (c-fst x) by (simp add:
pr-gr-def )

definition
univ-for-pr :: nat ⇒ nat where
univ-for-pr = pr-conv-2-to-1 nat-to-pr

theorem univ-is-not-pr : univ-for-pr /∈ PrimRec1
proof (rule ccontr)

assume ¬ univ-for-pr /∈ PrimRec1 then have A1 : univ-for-pr ∈ PrimRec1 by
simp

let ?f = λ n. univ-for-pr (c-pair n n) + 1
let ?n0 = index-of-pr ?f
from A1 have S1 : ?f ∈ PrimRec1 by prec
then have S2 : nat-to-pr ?n0 = ?f by (rule index-of-pr-is-real)
then have S3 : nat-to-pr ?n0 ?n0 = ?f ?n0 by simp
have S4 : ?f ?n0 = univ-for-pr (c-pair ?n0 ?n0 ) + 1 by simp
from S3 S4 show False by (simp add: univ-for-pr-def pr-conv-2-to-1-def )

qed

definition
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c-is-sub-fun :: nat ⇒ (nat ⇒ nat) ⇒ bool where
c-is-sub-fun ls f ←→ (∀ x. c-assoc-have-key ls x = 0 −→ c-assoc-value ls x = f

x)

lemma c-is-sub-fun-lm-1 : [[ c-is-sub-fun ls f ; c-assoc-have-key ls x = 0 ]] =⇒
c-assoc-value ls x = f x
apply(unfold c-is-sub-fun-def )
apply(auto)
done

lemma c-is-sub-fun-lm-2 : c-is-sub-fun ls f =⇒ c-is-sub-fun (c-cons (c-pair x (f x))
ls) f
proof −

assume A1 : c-is-sub-fun ls f
show ?thesis
proof (unfold c-is-sub-fun-def , rule allI , rule impI )

fix xa assume A2 : c-assoc-have-key (c-cons (c-pair x (f x)) ls) xa = 0 show
c-assoc-value (c-cons (c-pair x (f x)) ls) xa = f xa

proof cases
assume C1 : xa = x
then show c-assoc-value (c-cons (c-pair x (f x)) ls) xa = f xa by (simp add:

PRecList.c-assoc-lm-2 )
next

assume C2 : ¬ xa = x
then have S1 : c-assoc-have-key (c-cons (c-pair x (f x)) ls) xa = c-assoc-have-key

ls xa by (rule c-assoc-lm-3 )
from C2 have S2 : c-assoc-value (c-cons (c-pair x (f x)) ls) xa = c-assoc-value

ls xa by (rule c-assoc-lm-4 )
from A2 S1 have S3 : c-assoc-have-key ls xa = 0 by simp
from A1 S3 have c-assoc-value ls xa = f xa by (rule c-is-sub-fun-lm-1 )
with S2 show ?thesis by simp

qed
qed

qed

lemma mod7-lm: (n::nat) mod 7 = 0 ∨
(n::nat) mod 7 = 1 ∨
(n::nat) mod 7 = 2 ∨
(n::nat) mod 7 = 3 ∨
(n::nat) mod 7 = 4 ∨
(n::nat) mod 7 = 5 ∨
(n::nat) mod 7 = 6 by arith

lemma nat-to-sch-at-pos: x > 0 =⇒ nat-to-sch x = (let u=(c-fst x) mod 7 ;
v=c-snd x; v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2
in loc-f u sch1 sch2 )
proof −

assume A: x > 0
show ?thesis
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proof cases
assume A1 : x = 1
then have S1 : c-fst x = 0
proof −

have 1 = c-pair 0 1 by (simp add: c-pair-def sf-def )
then have c-fst 1 = c-fst (c-pair 0 1 ) by simp
then have c-fst 1 = 0 by simp
with A1 show ?thesis by simp

qed
from A1 have S2 : nat-to-sch x = Base-zero by simp
from S1 S2 show nat-to-sch x = (let u=(c-fst x) mod 7 ; v=c-snd x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 )
apply(insert S1 S2 )
apply(simp add: Let-def loc-f-def )
done

next
assume ¬ x = 1
from A this have A2 : x > 1 by simp
from this have nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x; v1=c-fst v;

v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by
(rule loc-srj-lm-2 )

from this show nat-to-sch x = (let u=(c-fst x) mod 7 ; v=c-snd x; v1=c-fst
v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by
(simp add: mod7-def )

qed
qed

lemma nat-to-sch-0 : c-fst n mod 7 = 0 =⇒ nat-to-sch n = Base-zero
proof −

assume A: c-fst n mod 7 = 0
show ?thesis
proof cases

assume n=0
then show nat-to-sch n = Base-zero by simp

next
assume ¬ n = 0 then have n > 0 by simp
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2

= c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (rule
nat-to-sch-at-pos)

with A show nat-to-sch n = Base-zero by (simp add: Let-def loc-f-def )
qed

qed

lemma loc-lm-1 : c-fst n mod 7 6= 0 =⇒ n > 0
proof −

assume A: c-fst n mod 7 6= 0
have n = 0 =⇒ False
proof −

assume n = 0
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then have c-fst n mod 7 = 0 by (simp add: c-fst-at-0 )
with A show ?thesis by simp

qed
then have ¬ n = 0 by auto
then show ?thesis by simp

qed

lemma loc-lm-2 : c-fst n mod 7 6= 0 =⇒ nat-to-sch n = (let u=(c-fst n) mod 7 ;
v=c-snd n; v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in
loc-f u sch1 sch2 )
proof −

assume c-fst n mod 7 6= 0
then have n > 0 by (rule loc-lm-1 )
then show ?thesis by (rule nat-to-sch-at-pos)

qed

lemma nat-to-sch-1 : c-fst n mod 7 = 1 =⇒ nat-to-sch n = Base-suc
proof −

assume A1 : c-fst n mod 7 = 1
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
add: loc-lm-2 )

with A1 show nat-to-sch n = Base-suc by (simp add: Let-def loc-f-def )
qed

lemma nat-to-sch-2 : c-fst n mod 7 = 2 =⇒ nat-to-sch n = Base-fst
proof −

assume A1 : c-fst n mod 7 = 2
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
add: loc-lm-2 )

with A1 show nat-to-sch n = Base-fst by (simp add: Let-def loc-f-def )
qed

lemma nat-to-sch-3 : c-fst n mod 7 = 3 =⇒ nat-to-sch n = Base-snd
proof −

assume A1 : c-fst n mod 7 = 3
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
add: loc-lm-2 )

with A1 show nat-to-sch n = Base-snd by (simp add: Let-def loc-f-def )
qed

lemma nat-to-sch-4 : c-fst n mod 7 = 4 =⇒ nat-to-sch n = Comp-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 4
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
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add: loc-lm-2 )
with A1 show nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (simp add: Let-def loc-f-def )
qed

lemma nat-to-sch-5 : c-fst n mod 7 = 5 =⇒ nat-to-sch n = Pair-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 5
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
add: loc-lm-2 )

with A1 show nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def )
qed

lemma nat-to-sch-6 : c-fst n mod 7 = 6 =⇒ nat-to-sch n = Rec-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 6
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2 ) by (simp
add: loc-lm-2 )

with A1 show nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def )
qed

lemma nat-to-pr-lm-0 : c-fst n mod 7 = 0 =⇒ nat-to-pr n x = 0
proof −

assume A: c-fst n mod 7 = 0
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Base-zero by (rule nat-to-sch-0 )
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-1 : c-fst n mod 7 = 1 =⇒ nat-to-pr n x = Suc x
proof −

assume A: c-fst n mod 7 = 1
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Base-suc by (rule nat-to-sch-1 )
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-2 : c-fst n mod 7 = 2 =⇒ nat-to-pr n x = c-fst x
proof −

assume A: c-fst n mod 7 = 2
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Base-fst by (rule nat-to-sch-2 )
from S1 S2 show ?thesis by simp
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qed

lemma nat-to-pr-lm-3 : c-fst n mod 7 = 3 =⇒ nat-to-pr n x = c-snd x
proof −

assume A: c-fst n mod 7 = 3
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Base-snd by (rule nat-to-sch-3 )
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-4 : c-fst n mod 7 = 4 =⇒ nat-to-pr n x = (nat-to-pr (c-fst
(c-snd n)) (nat-to-pr (c-snd (c-snd n)) x))
proof −

assume A: c-fst n mod 7 = 4
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-4 )
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Comp-op (nat-to-sch (c-fst

(c-snd n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 have S4 : nat-to-pr n x = (sch-to-pr (nat-to-sch (c-fst (c-snd n))))

((sch-to-pr (nat-to-sch (c-snd (c-snd n)))) x) by simp
from S4 show ?thesis by (simp add: nat-to-pr-def )

qed

lemma nat-to-pr-lm-5 : c-fst n mod 7 = 5 =⇒ nat-to-pr n x = (c-f-pair (nat-to-pr
(c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) x
proof −

assume A: c-fst n mod 7 = 5
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-5 )
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Pair-op (nat-to-sch (c-fst (c-snd

n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 show ?thesis by (simp add: nat-to-pr-def )

qed

lemma nat-to-pr-lm-6 : c-fst n mod 7 = 6 =⇒ nat-to-pr n x = (UnaryRecOp
(nat-to-pr (c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) x
proof −

assume A: c-fst n mod 7 = 6
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def )
from A have S2 : nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-6 )
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Rec-op (nat-to-sch (c-fst (c-snd

n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 show ?thesis by (simp add: nat-to-pr-def )

qed

lemma univ-for-pr-lm-0 : c-fst (c-fst key) mod 7 = 0 =⇒ univ-for-pr key = 0
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proof −
assume A: c-fst (c-fst key) mod 7 = 0
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-0 )

qed

lemma univ-for-pr-lm-1 : c-fst (c-fst key) mod 7 = 1 =⇒ univ-for-pr key = Suc
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 1
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-1 )

qed

lemma univ-for-pr-lm-2 : c-fst (c-fst key) mod 7 = 2 =⇒ univ-for-pr key = c-fst
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 2
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-2 )

qed

lemma univ-for-pr-lm-3 : c-fst (c-fst key) mod 7 = 3 =⇒ univ-for-pr key = c-snd
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 3
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-3 )

qed

lemma univ-for-pr-lm-4 : c-fst (c-fst key) mod 7 = 4 =⇒ univ-for-pr key = (nat-to-pr
(c-fst (c-snd (c-fst key))) (nat-to-pr (c-snd (c-snd (c-fst key))) (c-snd key)))
proof −

assume A: c-fst (c-fst key) mod 7 = 4
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-4 )

qed

lemma univ-for-pr-lm-4-1 : c-fst (c-fst key) mod 7 = 4 =⇒ univ-for-pr key =
univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (univ-for-pr (c-pair (c-snd (c-snd
(c-fst key))) (c-snd key))))
proof −

assume A: c-fst (c-fst key) mod 7 = 4
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have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-4 univ-for-pr-def pr-conv-2-to-1-def )

qed

lemma univ-for-pr-lm-5 : c-fst (c-fst key) mod 7 = 5 =⇒ univ-for-pr key = c-pair
(univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd key))) (univ-for-pr (c-pair
(c-snd (c-snd (c-fst key))) (c-snd key)))
proof −

assume A: c-fst (c-fst key) mod 7 = 5
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A show ?thesis by (simp add: nat-to-pr-lm-5 c-f-pair-def univ-for-pr-def

pr-conv-2-to-1-def )
qed

lemma univ-for-pr-lm-6-1 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) = 0 ]]
=⇒ univ-for-pr key = univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd (c-snd
key)))
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) = 0
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A1 A2 show ?thesis by (simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def

pr-conv-2-to-1-def )
qed

lemma univ-for-pr-lm-6-2 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) = Suc
u]] =⇒ univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair u (univ-for-pr (c-pair (c-fst key) (c-pair u (c-snd (c-snd

key)))))) (c-snd (c-snd key))))
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) = Suc u
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def )
with A1 A2 show ?thesis
apply(simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def pr-conv-2-to-1-def )
apply(simp add: pr-conv-1-to-3-def )
done

qed

lemma univ-for-pr-lm-6-3 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) 6= 0 ]]
=⇒ univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair (c-fst (c-snd key) − 1 ) (univ-for-pr (c-pair (c-fst key)

(c-pair (c-fst (c-snd key) − 1 ) (c-snd (c-snd key)))))) (c-snd (c-snd key))))
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proof −
assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) 6= 0 then have
A3 : c-fst (c-snd key) > 0 by simp
let ?u = c-fst (c-snd key) − (1 ::nat)
from A3 have S1 : c-fst (c-snd key) = Suc ?u by simp
from A1 S1 have S2 : univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair ?u (univ-for-pr (c-pair (c-fst key) (c-pair ?u (c-snd

(c-snd key)))))) (c-snd (c-snd key)))) by (rule univ-for-pr-lm-6-2 )
thus ?thesis by simp

qed

lemma g-comp-lm-0 : [[ c-fst (c-fst key) mod 7 = 4 ; c-is-sub-fun ls univ-for-pr ;
g-comp ls key 6= ls]] =⇒ g-comp ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 4
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-comp ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?k1 = c-pair ?m2 ?x
have S1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume A1-1 : c-assoc-have-key ls ?k1 6= 0
then have g-comp ls key = ls by(simp add: g-comp-def )
with A3 show False by simp

qed
let ?y = c-assoc-value ls ?k1
from A2 S1 have S2 : ?y = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1 )
let ?k2 = c-pair ?m1 ?y
have S3 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume A3-1 : c-assoc-have-key ls ?k2 6= 0
then have g-comp ls key = ls by (simp add: g-comp-def Let-def )
with A3 show False by simp

qed
let ?z = c-assoc-value ls ?k2
from A2 S3 have S4 : ?z = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1 )
from S2 have S5 : ?k2 = c-pair ?m1 (univ-for-pr ?k1 ) by simp
from S4 S5 have S6 : ?z = univ-for-pr (c-pair ?m1 (univ-for-pr ?k1 )) by simp
from A1 S6 have S7 : ?z = univ-for-pr key by (simp add: univ-for-pr-lm-4-1 )
from S1 S3 S7 show ?thesis by (simp add: g-comp-def Let-def )

qed

lemma g-comp-lm-1 : [[ c-fst (c-fst key) mod 7 = 4 ; c-is-sub-fun ls univ-for-pr ]]
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=⇒ c-is-sub-fun (g-comp ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 4
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-comp ls key = ls
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by simp

next
assume g-comp ls key 6= ls
from A1 A2 this have S1 : g-comp ls key = c-cons (c-pair key (univ-for-pr

key)) ls by (rule g-comp-lm-0 )
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2 )

qed
qed

lemma g-pair-lm-0 : [[ c-fst (c-fst key) mod 7 = 5 ; c-is-sub-fun ls univ-for-pr ; g-pair
ls key 6= ls]] =⇒ g-pair ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 5
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-pair ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?k1 = c-pair ?m1 ?x
have S1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume A1-1 : c-assoc-have-key ls ?k1 6= 0
then have g-pair ls key = ls by(simp add: g-pair-def )
with A3 show False by simp

qed
let ?y1 = c-assoc-value ls ?k1
from A2 S1 have S2 : ?y1 = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1 )
let ?k2 = c-pair ?m2 ?x
have S3 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume A3-1 : c-assoc-have-key ls ?k2 6= 0
then have g-pair ls key = ls by (simp add: g-pair-def Let-def )
with A3 show False by simp

qed
let ?y2 = c-assoc-value ls ?k2
from A2 S3 have S4 : ?y2 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1 )
let ?z = c-pair ?y1 ?y2
from S2 S4 have S5 : ?z = c-pair (univ-for-pr ?k1 ) (univ-for-pr ?k2 ) by simp
from A1 S5 have S6 : ?z = univ-for-pr key by (simp add: univ-for-pr-lm-5 )
from S1 S3 S6 show ?thesis by (simp add: g-pair-def Let-def )
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qed

lemma g-pair-lm-1 : [[ c-fst (c-fst key) mod 7 = 5 ; c-is-sub-fun ls univ-for-pr ]] =⇒
c-is-sub-fun (g-pair ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 5
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-pair ls key = ls
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by simp

next
assume g-pair ls key 6= ls
from A1 A2 this have S1 : g-pair ls key = c-cons (c-pair key (univ-for-pr key))

ls by (rule g-pair-lm-0 )
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2 )

qed
qed

lemma g-rec-lm-0 : [[ c-fst (c-fst key) mod 7 = 6 ; c-is-sub-fun ls univ-for-pr ; g-rec
ls key 6= ls]] =⇒ g-rec ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-rec ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?y1 = c-fst ?x
let ?x1 = c-snd ?x
show ?thesis
proof cases

assume A1-1 : ?y1 = 0
let ?k1 = c-pair ?m1 ?x1
have S1-1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k1 6= 0
with A1-1 have g-rec ls key = ls by(simp add: g-rec-def )
with A3 show False by simp

qed
let ?v = c-assoc-value ls ?k1
from A2 S1-1 have S1-2 : ?v = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1 )

from A1 A1-1 S1-2 have S1-3 : ?v = univ-for-pr key by (simp add: univ-for-pr-lm-6-1 )
from A1-1 S1-1 S1-3 show ?thesis by (simp add: g-rec-def Let-def )

next
assume A2-1 : ?y1 6= 0 then have A2-2 : ?y1 > 0 by simp
let ?y2 = ?y1 − (1 ::nat)
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let ?k2 = c-pair ?n (c-pair ?y2 ?x1 )
have S2-1 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k2 6= 0
with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def )
with A3 show False by simp

qed
let ?t1 = c-assoc-value ls ?k2
from A2 S2-1 have S2-2 : ?t1 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1 )
let ?t2 = c-pair (c-pair ?y2 ?t1 ) ?x1
let ?k3 = c-pair ?m2 ?t2
have S2-3 : c-assoc-have-key ls ?k3 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k3 6= 0
with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def )
with A3 show False by simp

qed
let ?u = c-assoc-value ls ?k3
from A2 S2-3 have S2-4 : ?u = univ-for-pr ?k3 by (rule c-is-sub-fun-lm-1 )
from S2-4 S2-2 have S2-5 : ?u = univ-for-pr (c-pair ?m2 (c-pair (c-pair ?y2

(univ-for-pr ?k2 )) ?x1 )) by simp
from A1 A2-1 S2-5 have S2-6 : ?u = univ-for-pr key by (simp add: univ-for-pr-lm-6-3 )
from A2-1 S2-1 S2-3 S2-6 show ?thesis by (simp add: g-rec-def Let-def )

qed
qed

lemma g-rec-lm-1 : [[ c-fst (c-fst key) mod 7 = 6 ; c-is-sub-fun ls univ-for-pr ]] =⇒
c-is-sub-fun (g-rec ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-rec ls key = ls
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by simp

next
assume g-rec ls key 6= ls
from A1 A2 this have S1 : g-rec ls key = c-cons (c-pair key (univ-for-pr key))

ls by (rule g-rec-lm-0 )
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2 )

qed
qed

lemma g-step-lm-0 : c-fst (c-fst key) mod 7 = 0 =⇒ g-step ls key = c-cons (c-pair
key 0 ) ls by (simp add: g-step-def )

lemma g-step-lm-1 : c-fst (c-fst key) mod 7 = 1 =⇒ g-step ls key = c-cons (c-pair
key (Suc (c-snd key))) ls by (simp add: g-step-def Let-def )
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lemma g-step-lm-2 : c-fst (c-fst key) mod 7 = 2 =⇒ g-step ls key = c-cons (c-pair
key (c-fst (c-snd key))) ls by (simp add: g-step-def Let-def )

lemma g-step-lm-3 : c-fst (c-fst key) mod 7 = 3 =⇒ g-step ls key = c-cons (c-pair
key (c-snd (c-snd key))) ls by (simp add: g-step-def Let-def )

lemma g-step-lm-4 : c-fst (c-fst key) mod 7 = 4 =⇒ g-step ls key = g-comp ls key
by (simp add: g-step-def )

lemma g-step-lm-5 : c-fst (c-fst key) mod 7 = 5 =⇒ g-step ls key = g-pair ls key
by (simp add: g-step-def )

lemma g-step-lm-6 : c-fst (c-fst key) mod 7 = 6 =⇒ g-step ls key = g-rec ls key
by (simp add: g-step-def )

lemma g-step-lm-7 : c-is-sub-fun ls univ-for-pr =⇒ c-is-sub-fun (g-step ls key)
univ-for-pr
proof −

assume A1 : c-is-sub-fun ls univ-for-pr
let ?n = c-fst key
let ?x = c-snd key
let ?n1 = (c-fst ?n) mod 7
have S1 : ?n1 = 0 =⇒ ?thesis
proof −

assume A: ?n1 = 0
then have S1-1 : g-step ls key = c-cons (c-pair key 0 ) ls by (rule g-step-lm-0 )
from A have S1-2 : univ-for-pr key = 0 by (rule univ-for-pr-lm-0 )
from A1 have S1-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)

univ-for-pr by (rule c-is-sub-fun-lm-2 )
from S1-3 S1-1 S1-2 show ?thesis by simp

qed
have S2 : ?n1 = 1 =⇒ ?thesis
proof −

assume A: ?n1 = 1
then have S2-1 : g-step ls key = c-cons (c-pair key (Suc (c-snd key))) ls by

(rule g-step-lm-1 )
from A have S2-2 : univ-for-pr key = Suc (c-snd key) by (rule univ-for-pr-lm-1 )

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2 )

from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S3 : ?n1 = 2 =⇒ ?thesis
proof −

assume A: ?n1 = 2
then have S2-1 : g-step ls key = c-cons (c-pair key (c-fst (c-snd key))) ls by

(rule g-step-lm-2 )
from A have S2-2 : univ-for-pr key = c-fst (c-snd key) by (rule univ-for-pr-lm-2 )

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2 )
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from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S4 : ?n1 = 3 =⇒ ?thesis
proof −

assume A: ?n1 = 3
then have S2-1 : g-step ls key = c-cons (c-pair key (c-snd (c-snd key))) ls by

(rule g-step-lm-3 )
from A have S2-2 : univ-for-pr key = c-snd (c-snd key) by (rule univ-for-pr-lm-3 )

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2 )

from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S5 : ?n1 = 4 =⇒ ?thesis
proof −

assume A: ?n1 = 4
then have S2-1 : g-step ls key = g-comp ls key by (rule g-step-lm-4 )
from A A1 S2-1 show ?thesis by (simp add: g-comp-lm-1 )

qed
have S6 : ?n1 = 5 =⇒ ?thesis
proof −

assume A: ?n1 = 5
then have S2-1 : g-step ls key = g-pair ls key by (rule g-step-lm-5 )
from A A1 S2-1 show ?thesis by (simp add: g-pair-lm-1 )

qed
have S7 : ?n1 = 6 =⇒ ?thesis
proof −

assume A: ?n1 = 6
then have S2-1 : g-step ls key = g-rec ls key by (rule g-step-lm-6 )
from A A1 S2-1 show ?thesis by (simp add: g-rec-lm-1 )

qed
have S8 : ?n1=0 ∨ ?n1=1 ∨ ?n1=2 ∨ ?n1=3 ∨ ?n1=4 ∨ ?n1=5 ∨ ?n1=6

by (rule mod7-lm)
with S1 S2 S3 S4 S5 S6 S7 show ?thesis by fast

qed

theorem pr-gr-1 : c-is-sub-fun (pr-gr x) univ-for-pr
apply(induct x)
apply(simp add: pr-gr-at-0 c-is-sub-fun-def c-assoc-have-key-df )
apply(simp add: pr-gr-at-Suc)
apply(simp add: g-step-lm-7 )
done

lemma comp-next: g-comp ls key = ls ∨ c-tl (g-comp ls key) = ls by(simp add:
g-comp-def Let-def )
lemma pair-next: g-pair ls key = ls ∨ c-tl (g-pair ls key) = ls by(simp add:
g-pair-def Let-def )
lemma rec-next: g-rec ls key = ls ∨ c-tl (g-rec ls key) = ls by(simp add: g-rec-def
Let-def )

113



lemma step-next: g-step ls key = ls ∨ c-tl (g-step ls key) = ls
apply(simp add: g-step-def comp-next pair-next rec-next Let-def )

done

lemma lm1 : pr-gr (Suc x) = pr-gr x ∨ c-tl (pr-gr (Suc x)) = pr-gr x by(simp
add: pr-gr-at-Suc step-next)

lemma c-assoc-have-key-pos: c-assoc-have-key ls x = 0 =⇒ ls > 0
proof −

assume A1 : c-assoc-have-key ls x = 0
thus ?thesis
proof (cases)

assume A2 : ls = 0
then have S1 : c-assoc-have-key ls x = 1 by (simp add: c-assoc-have-key-df )
with A1 have S2 : False by auto
then show ls > 0 by auto

next
assume A3 : ¬ ls = 0
then show ls > 0 by auto

qed
qed

lemma lm2 : c-assoc-have-key (c-tl ls) key = 0 =⇒ c-assoc-have-key ls key = 0
proof −

assume A1 : c-assoc-have-key (c-tl ls) key = 0
from A1 have S1 : c-tl ls > 0 by (rule c-assoc-have-key-pos)
have S2 : c-tl ls ≤ ls by (rule c-tl-le)
from S1 S2 have S3 : ls 6= 0 by auto
from A1 S3 show ?thesis by (auto simp add: c-assoc-have-key-lm-1 )

qed

lemma lm3 : c-assoc-have-key (pr-gr x) key = 0 =⇒ c-assoc-have-key (pr-gr (Suc
x)) key = 0
proof −

assume A1 : c-assoc-have-key (pr-gr x) key = 0
have S1 : pr-gr (Suc x) = pr-gr x ∨ c-tl (pr-gr (Suc x)) = pr-gr x by (rule lm1 )
from A1 have S2 : pr-gr (Suc x) = pr-gr x =⇒ ?thesis by auto
have S3 : c-tl (pr-gr (Suc x)) = pr-gr x =⇒ ?thesis
proof −

assume c-tl (pr-gr (Suc x)) = pr-gr x (is c-tl ?ls = -)
with A1 have c-assoc-have-key (c-tl ?ls) key = 0 by auto
then show c-assoc-have-key ?ls key = 0 by (rule lm2 )

qed
from S1 S2 S3 show ?thesis by auto

qed

lemma lm4 : [[ c-assoc-have-key (pr-gr x) key = 0 ; 0 ≤ y]] =⇒ c-assoc-have-key
(pr-gr (x+y)) key = 0
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apply(induct-tac y)
apply(auto)
apply(simp add: lm3 )
done

lemma lm5 : [[ c-assoc-have-key (pr-gr x) key = 0 ; x ≤ y ]] =⇒ c-assoc-have-key
(pr-gr y) key = 0
proof −

assume A1 : c-assoc-have-key (pr-gr x) key = 0
assume A2 : x ≤ y
let ?z = y−x
from A2 have S1 : 0 ≤ ?z by auto
from A2 have S2 : y = x + ?z by auto
from A1 S1 have S3 : c-assoc-have-key (pr-gr (x+?z)) key = 0 by (rule lm4 )
from S2 S3 show ?thesis by auto

qed

lemma loc-upb-lm-1 : n = 0 =⇒ (c-fst n) mod 7 = 0
apply(simp add: c-fst-at-0 )
done

lemma loc-upb-lm-2 : (c-fst n) mod 7 > 1 =⇒ c-snd n < n
proof −

assume A1 : c-fst n mod 7 > 1
from A1 have S1 : 1 < c-fst n by simp
have S2 : c-fst n ≤ n by (rule c-fst-le-arg)
from S1 S2 have S3 : 1 < n by simp
from S3 have S4 : n>1 by simp
from S4 show ?thesis by (rule c-snd-less-arg)

qed

lemma loc-upb-lm-2-0 : (c-fst n) mod 7 = 4 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 4
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-2 : (c-fst n) mod 7 = 4 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 4
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed
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lemma loc-upb-lm-2-3 : (c-fst n) mod 7 = 5 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 5
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-4 : (c-fst n) mod 7 = 5 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 5
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-5 : (c-fst n) mod 7 = 6 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 6
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-6 : (c-fst n) mod 7 = 6 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 6
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2 )
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-7 : [[y2 = y1 − (1 ::nat); 0 < y1 ; x1 = c-snd x; y1 = c-fst x ]]
=⇒ c-pair y2 x1 < x
proof −

assume A1 : y2 = y1 − (1 ::nat) and A2 : 0 < y1 and A3 : x1 = c-snd x and
A4 : y1 = c-fst x

from A1 A2 have S1 : y2 < y1 by auto
from S1 have S2 : c-pair y2 x1 < c-pair y1 x1 by (rule c-pair-strict-mono1 )
from A3 A4 have S3 : c-pair y1 x1 = x by auto
from S2 S3 show c-pair y2 x1 < x by auto

qed

function loc-upb :: nat ⇒ nat ⇒ nat where
aa: loc-upb n x = (
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let n1 = (c-fst n) mod 7 in
if n1 = 0 then (c-pair (c-pair n x) 0 ) + 1 else
if n1 = 1 then (c-pair (c-pair n x) 0 ) + 1 else
if n1 = 2 then (c-pair (c-pair n x) 0 ) + 1 else
if n1 = 3 then (c-pair (c-pair n x) 0 ) + 1 else
if n1 = 4 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m;
y = c-assoc-value (pr-gr (loc-upb m2 x)) (c-pair m2 x) in
(c-pair (c-pair n x) (loc-upb m2 x + loc-upb m1 y)) + 1

) else
if n1 = 5 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m in
(c-pair (c-pair n x) (loc-upb m1 x + loc-upb m2 x)) + 1

) else
if n1 = 6 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in

if y1 = 0 then (
(c-pair (c-pair n x) (loc-upb m1 x1 )) + 1

) else (
let y2 = y1−(1 ::nat);

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1 ))) (c-pair n (c-pair
y2 x1 )); t2 = c-pair (c-pair y2 t1 ) x1 in

(c-pair (c-pair n x) (loc-upb n (c-pair y2 x1 ) + loc-upb m2 t2 )) + 1
)

)
else 0

)
by auto

termination
apply (relation measure (λ m. m) <∗lex∗> measure (λ n. n))
apply (simp-all add: loc-upb-lm-2-0 loc-upb-lm-2-2 loc-upb-lm-2-3 loc-upb-lm-2-4
loc-upb-lm-2-5 loc-upb-lm-2-6 loc-upb-lm-2-7 )
apply auto
done

definition
lex-p :: ((nat × nat) × nat × nat) set where
lex-p = ((measure (λ m. m)) <∗lex∗> (measure (λ n. n)))

lemma wf-lex-p: wf (lex-p)
apply(simp add: lex-p-def )
apply(auto)
done

lemma lex-p-eq: ((n ′,x ′), (n,x)) ∈ lex-p = (n ′<n ∨ n ′=n ∧ x ′<x)
apply(simp add: lex-p-def )
done
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lemma loc-upb-lex-0 : c-fst n mod 7 = 0 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 0
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key 0 ) ?ls by (simp add:

g-step-def )
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key 0 ) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1 )

qed

lemma loc-upb-lex-1 : c-fst n mod 7 = 1 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 1
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (Suc x)) ?ls by (simp

add: g-step-def )
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (Suc x)) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1 )

qed

lemma loc-upb-lex-2 : c-fst n mod 7 = 2 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 2
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (c-fst x)) ?ls by (simp

add: g-step-def )
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-fst x)) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1 )

qed

lemma loc-upb-lex-3 : c-fst n mod 7 = 3 =⇒ c-assoc-have-key (pr-gr (loc-upb n
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x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 3
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (c-snd x)) ?ls by (simp

add: g-step-def )
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-snd x)) ?ls by

auto
thus ?thesis by (simp add: c-assoc-lm-1 )

qed

lemma loc-upb-lex-4 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 4 ]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 4
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
define upb1 where upb1 = loc-upb ?m2 x
from A2 have m2-lt-n: ?m2 < n by (simp add: loc-upb-lm-2-2 )
then have M2 : ((?m2 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 upb1-def have S1 : c-assoc-have-key (pr-gr upb1 ) (c-pair ?m2 x) = 0

by auto
from M2 have M2 ′: ((?m2 , x), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn.

n) by (simp add: lex-p-def )
have T1 : c-is-sub-fun (pr-gr upb1 ) univ-for-pr by (rule pr-gr-1 )
from T1 S1 have T2 : c-assoc-value (pr-gr upb1 ) (c-pair ?m2 x) = univ-for-pr

(c-pair ?m2 x) by (rule c-is-sub-fun-lm-1 )
define y where y = c-assoc-value (pr-gr upb1 ) (c-pair ?m2 x)
from T2 y-def have T3 : y = univ-for-pr (c-pair ?m2 x) by auto

define upb2 where upb2 = loc-upb ?m1 y
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-0 )
then have M1 : ((?m1 , y), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S2 : c-assoc-have-key (pr-gr (loc-upb ?m1 y)) (c-pair ?m1 y) = 0

by auto
from M1 have M1 ′: ((?m1 , y), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn.

n) by (simp add: lex-p-def )
from S1 upb1-def have S3 : c-assoc-have-key (pr-gr upb1 ) (c-pair ?m2 x) = 0

by auto
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from S2 upb2-def have S4 : c-assoc-have-key (pr-gr upb2 ) (c-pair ?m1 y) = 0
by auto

let ?s = c-pair ?key (upb1 + upb2 )
let ?ls = pr-gr ?s
let ?sum-upb = upb1 +upb2
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-0 )
then have ((?m1 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
then have M1 ′′: ((?m1 , x), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn. n)

by (simp add: lex-p-def )
from A2 M2 ′ M1 ′′ have S11 : loc-upb n x = (let y = c-assoc-value (pr-gr (loc-upb

?m2 x)) (c-pair ?m2 x)
in (c-pair (c-pair n x)

(loc-upb ?m2 x + loc-upb ?m1 y)) + 1 )
by(simp add: Let-def )

define upb where upb = loc-upb n x
from S11 y-def upb1-def upb2-def have loc-upb n x = ?s + 1 by (simp add:

Let-def )
with upb-def have S11 : upb = ?s + 1 by auto

have S7 : ?sum-upb ≤ ?s by (rule arg2-le-c-pair)
have upb1-le-s: upb1 ≤ ?s
proof −

have S1 : upb1 ≤ ?sum-upb by (rule Nat.le-add1 )
from S1 S7 show ?thesis by auto

qed
have upb2-le-s: upb2 ≤ ?s
proof −

have S1 : upb2 ≤ ?sum-upb by (rule Nat.le-add2 )
from S1 S7 show ?thesis by auto

qed

have S18 : pr-gr upb = g-comp ?ls ?key
proof −

from S11 have S1 : pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:
pr-gr-at-Suc)

from A2 have S2 : g-step ?ls ?key = g-comp ?ls ?key by (simp add: g-step-def )
from S1 S2 show ?thesis by auto

qed

from S3 upb1-le-s have S19 : c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule
lm5 )

from S4 upb2-le-s have S20 : c-assoc-have-key ?ls (c-pair ?m1 y) = 0 by (rule
lm5 )

have T-ls: c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1 )
from T-ls S19 have T-ls2 : c-assoc-value ?ls (c-pair ?m2 x) = univ-for-pr (c-pair

?m2 x) by (rule c-is-sub-fun-lm-1 )
from T3 T-ls2 have T-y: c-assoc-value ?ls (c-pair ?m2 x) = y by auto
from T-y S19 S20 have S21 : g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value
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?ls (c-pair ?m1 y))) ?ls
by(unfold g-comp-def )(simp del: loc-upb.simps add: Let-def )

from S18 S21 have pr-gr upb = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair
?m1 y))) ?ls by auto

with upb-def have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-assoc-value ?ls
(c-pair ?m1 y))) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1 )
qed

lemma loc-upb-lex-5 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 5 ]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 5
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-3 )
then have ((?m1 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S1 : c-assoc-have-key (pr-gr (loc-upb ?m1 x)) (c-pair ?m1 x) = 0

by auto
from A2 have ?m2 < n by (simp add: loc-upb-lm-2-4 )
then have ((?m2 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S2 : c-assoc-have-key (pr-gr (loc-upb ?m2 x)) (c-pair ?m2 x) = 0

by auto
define upb1 where upb1 = loc-upb ?m1 x
define upb2 where upb2 = loc-upb ?m2 x
from upb1-def S1 have S3 : c-assoc-have-key (pr-gr upb1 ) (c-pair ?m1 x) = 0

by auto
from upb2-def S2 have S4 : c-assoc-have-key (pr-gr upb2 ) (c-pair ?m2 x) = 0

by auto
let ?sum-upb = upb1 +upb2
have S5 : upb1 ≤ ?sum-upb by (rule Nat.le-add1 )
have S6 : upb2 ≤ ?sum-upb by (rule Nat.le-add2 )
let ?s = (c-pair ?key ?sum-upb)
have S7 : ?sum-upb ≤ ?s by (rule arg2-le-c-pair)
from S5 S7 have S8 : upb1 ≤ ?s by auto
from S6 S7 have S9 : upb2 ≤ ?s by auto
let ?ls = pr-gr ?s
from A2 upb1-def upb2-def have S10 : loc-upb n x = ?s + 1 by (simp add:

Let-def )
define upb where upb = loc-upb n x
from upb-def S10 have S11 : upb = ?s + 1 by auto
from S11 have S12 : pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from S8 S10 upb-def have S13 : upb1 ≤ upb by (simp only:)
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from S9 S10 upb-def have S14 : upb2 ≤ upb by (simp only:)
from S3 S13 have S15 : c-assoc-have-key (pr-gr upb) (c-pair ?m1 x) = 0 by

(rule lm5 )
from S4 S14 have S16 : c-assoc-have-key (pr-gr upb) (c-pair ?m2 x) = 0 by

(rule lm5 )
from A2 have S17 : g-step ?ls ?key = g-pair ?ls ?key by (simp add: g-step-def )
from S12 S17 have S18 : pr-gr upb = g-pair ?ls ?key by auto
from S3 S8 have S19 : c-assoc-have-key ?ls (c-pair ?m1 x) = 0 by (rule lm5 )
from S4 S9 have S20 : c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule lm5 )
let ?y1 = c-assoc-value ?ls (c-pair ?m1 x)
let ?y2 = c-assoc-value ?ls (c-pair ?m2 x)
let ?y = c-pair ?y1 ?y2
from S19 S20 have S21 : g-pair ?ls ?key = c-cons (c-pair ?key ?y) ?ls by (unfold

g-pair-def , simp add: Let-def )
from S18 S21 have S22 : pr-gr upb = c-cons (c-pair ?key ?y) ?ls by auto
from upb-def S22 have S23 : pr-gr (loc-upb n x) = c-cons (c-pair ?key ?y) ?ls

by auto
from S23 show ?thesis by (simp add: c-assoc-lm-1 )

qed

lemma loc-upb-6-z: [[c-fst n mod 7 =6 ; c-fst x = 0 ]] =⇒
loc-upb n x = c-pair (c-pair n x) (loc-upb (c-fst (c-snd n)) (c-snd x)) + 1 by

(simp add: Let-def )

lemma loc-upb-6 : [[c-fst n mod 7 =6 ; c-fst x 6= 0 ]] =⇒ loc-upb n x = (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst

x; x1 = c-snd x;
y2 = y1 − 1 ;

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1 ))) (c-pair
n (c-pair y2 x1 ));

t2 = c-pair (c-pair y2 t1 ) x1 in
c-pair (c-pair n x) (loc-upb n (c-pair y2 x1 ) + (loc-upb

m2 t2 )) + 1 )
by (simp add: Let-def )

lemma loc-upb-lex-6 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 6 ]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 6
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
let ?y1 = c-fst x
let ?x1 = c-snd x
define upb where upb = loc-upb n x
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show ?thesis
proof (cases)

assume A: ?y1 = 0
from A2 A have S1 : loc-upb n x = c-pair ?key (loc-upb ?m1 (c-snd x)) + 1

by (rule loc-upb-6-z)
define upb1 where upb1 = loc-upb ?m1 (c-snd x)
from upb1-def S1 have S2 : loc-upb n x = c-pair ?key upb1 + 1 by auto
let ?s = c-pair ?key upb1
from S2 have S3 : pr-gr (loc-upb n x) = pr-gr (Suc ?s) by simp
have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc)
with S3 have S4 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by auto
let ?ls = pr-gr ?s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def )
with S4 have S5 : pr-gr (loc-upb n x) = g-rec ?ls ?key by auto
have S6 : c-assoc-have-key ?ls (c-pair ?m1 ?x1 ) = 0
proof −

from A2 have ?m1 < n by (simp add: loc-upb-lm-2-5 )
then have ((?m1 ,?x1 ), n, x) ∈ lex-p by (simp add: lex-p-eq)
with A1 upb1-def have c-assoc-have-key (pr-gr upb1 ) (c-pair ?m1 ?x1 ) = 0

by auto
also have upb1 ≤ ?s by (rule arg2-le-c-pair)
ultimately show ?thesis by (rule lm5 )

qed
from A S6 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair

?m1 ?x1 ))) ?ls by (simp add: g-rec-def Let-def )
with S5 show ?thesis by (simp add: c-assoc-lm-1 )

next
assume A: c-fst x 6= 0 then have y1-pos: c-fst x > 0 by auto
let ?y2 = ?y1 − 1
from A2 A have loc-upb n x = (

let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst
x; x1 = c-snd x;

y2 = y1 − 1 ;
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1 ))) (c-pair

n (c-pair y2 x1 ));
t2 = c-pair (c-pair y2 t1 ) x1 in

c-pair (c-pair n x) (loc-upb n (c-pair y2 x1 ) + (loc-upb
m2 t2 )) + 1 ) by (rule loc-upb-6 )

then have S1 : loc-upb n x = (
let

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1 )))
(c-pair n (c-pair ?y2 ?x1 ));

t2 = c-pair (c-pair ?y2 t1 ) ?x1 in
c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1 ) + (loc-upb

?m2 t2 )) + 1 ) by (simp del: loc-upb.simps add: Let-def )
let ?t1 = univ-for-pr (c-pair n (c-pair ?y2 ?x1 ))
let ?t2 = c-pair (c-pair ?y2 ?t1 ) ?x1
have S1-1 : c-assoc-have-key (pr-gr (loc-upb n (c-pair ?y2 ?x1 ))) (c-pair n (c-pair

?y2 ?x1 )) = 0
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proof −
from A have ?y2 < ?y1 by auto
then have c-pair ?y2 ?x1 < c-pair ?y1 ?x1 by (rule c-pair-strict-mono1 )
then have ((n, c-pair ?y2 ?x1 ),n,x) ∈ lex-p by (simp add: lex-p-eq)
with A1 show ?thesis by auto

qed
have S2 : c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1 ))) (c-pair n (c-pair ?y2

?x1 )) = univ-for-pr (c-pair n (c-pair ?y2 ?x1 ))
proof −

have c-is-sub-fun (pr-gr (loc-upb n (c-pair ?y2 ?x1 ))) univ-for-pr by (rule
pr-gr-1 )

with S1-1 show ?thesis by (simp add: c-is-sub-fun-lm-1 )
qed
from S1 S2 have S3 : loc-upb n x = c-pair (c-pair n x) (loc-upb n (c-pair ?y2

?x1 ) + loc-upb ?m2 ?t2 ) + 1 by (simp del: loc-upb.simps add: Let-def )
let ?s = c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1 ) + loc-upb ?m2 ?t2 )

from S3 have S4 : pr-gr (loc-upb n x) = pr-gr (Suc ?s) by (simp del: loc-upb.simps)
have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc)
with S4 have S5 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by (simp del:

loc-upb.simps)
let ?ls = pr-gr ?s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def )

with S5 have S6 : pr-gr (loc-upb n x) = g-rec ?ls ?key by (simp del: loc-upb.simps)
have S7 : c-assoc-have-key ?ls (c-pair n (c-pair ?y2 ?x1 )) = 0
proof −

have loc-upb n (c-pair ?y2 ?x1 ) ≤ loc-upb n (c-pair ?y2 ?x1 ) + loc-upb ?m2
?t2 by (auto simp del: loc-upb.simps)

also have loc-upb n (c-pair ?y2 ?x1 ) + loc-upb ?m2 ?t2 ≤ ?s by (rule
arg2-le-c-pair)

ultimately have S7-1 : loc-upb n (c-pair ?y2 ?x1 ) ≤ ?s by (auto simp del:
loc-upb.simps)

from S1-1 S7-1 show ?thesis by (rule lm5 )
qed
have S8 : c-assoc-value ?ls (c-pair n (c-pair ?y2 ?x1 )) = ?t1
proof −

have c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1 )
with S7 show ?thesis by (simp add: c-is-sub-fun-lm-1 )

qed
have S9 : c-assoc-have-key ?ls (c-pair ?m2 ?t2 ) = 0
proof −

from A2 have ?m2 < n by (simp add: loc-upb-lm-2-6 )
then have ((?m2 ,?t2 ), n, x) ∈ lex-p by (simp add: lex-p-eq)
with A1 have c-assoc-have-key (pr-gr (loc-upb ?m2 ?t2 )) (c-pair ?m2 ?t2 ) =

0 by auto
also have loc-upb ?m2 ?t2 ≤ ?s
proof −

have loc-upb ?m2 ?t2 ≤ loc-upb n (c-pair ?y2 ?x1 ) + loc-upb ?m2 ?t2 by
(auto simp del: loc-upb.simps)

also have loc-upb n (c-pair ?y2 ?x1 ) + loc-upb ?m2 ?t2 ≤ ?s by (rule
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arg2-le-c-pair)
ultimately show ?thesis by (auto simp del: loc-upb.simps)

qed
ultimately show ?thesis by (rule lm5 )

qed
from A S7 S8 S9 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls

(c-pair ?m2 ?t2 ))) ?ls by (simp del: loc-upb.simps add: g-rec-def Let-def )
with S6 show ?thesis by (simp add: c-assoc-lm-1 )

qed
qed

lemma wf-upb-step-0 :
[[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb n ′ x ′))
(c-pair n ′ x ′) = 0 ]] =⇒

c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0
proof −

assume A1 :
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb
n ′ x ′)) (c-pair n ′ x ′) = 0

let ?n1 = (c-fst n) mod 7
have S1 : ?n1 = 0 =⇒ ?thesis
proof −

assume A: ?n1 = 0
thus ?thesis by (rule loc-upb-lex-0 )

qed
have S2 : ?n1 = 1 =⇒ ?thesis
proof −

assume A: ?n1 = 1
thus ?thesis by (rule loc-upb-lex-1 )

qed
have S3 : ?n1 = 2 =⇒ ?thesis
proof −

assume A: ?n1 = 2
thus ?thesis by (rule loc-upb-lex-2 )

qed
have S4 : ?n1 = 3 =⇒ ?thesis
proof −

assume A: ?n1 = 3
thus ?thesis by (rule loc-upb-lex-3 )

qed
have S5 : ?n1 = 4 =⇒ ?thesis
proof −

assume A: ?n1 = 4
from A1 A show ?thesis by (rule loc-upb-lex-4 )

qed
have S6 : ?n1 = 5 =⇒ ?thesis
proof −

assume A: ?n1 = 5
from A1 A show ?thesis by (rule loc-upb-lex-5 )

qed
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have S7 : ?n1 = 6 =⇒ ?thesis
proof −

assume A: ?n1 = 6
from A1 A show ?thesis by (rule loc-upb-lex-6 )

qed
have S8 : ?n1=0 ∨ ?n1=1 ∨ ?n1=2 ∨ ?n1=3 ∨ ?n1=4 ∨ ?n1=5 ∨ ?n1=6

by (rule mod7-lm)
from S1 S2 S3 S4 S5 S6 S7 S8 show ?thesis by fast

qed

lemma wf-upb-step:
assumes A1 :

∧
p2 . (p2 , p1 ) ∈ lex-p =⇒

c-assoc-have-key (pr-gr (loc-upb (fst p2 ) (snd p2 ))) (c-pair (fst p2 ) (snd p2 ))
= 0

shows c-assoc-have-key (pr-gr (loc-upb (fst p1 ) (snd p1 ))) (c-pair (fst p1 ) (snd
p1 )) = 0
proof −

let ?n = fst p1
let ?x = snd p1
from A1 have S1 :

∧
p2 . (p2 , (?n, ?x)) ∈ lex-p =⇒

c-assoc-have-key (pr-gr (loc-upb (fst p2 ) (snd p2 ))) (c-pair (fst p2 ) (snd p2 ))
= 0

by auto
have S2 : (

∧
n ′ x ′. ((n ′,x ′), (fst p1 , snd p1 )) ∈ lex-p

=⇒ c-assoc-have-key (pr-gr (loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ) =⇒
c-assoc-have-key (pr-gr (loc-upb (fst p1 ) (snd p1 ))) (c-pair (fst p1 ) (snd p1 ))

= 0
by (rule wf-upb-step-0 )

then have S3 : (
∧

n ′ x ′. ((n ′,x ′), p1 ) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb
n ′ x ′)) (c-pair n ′ x ′) = 0 )

=⇒ c-assoc-have-key (pr-gr (loc-upb (fst p1 ) (snd p1 ))) (c-pair (fst p1 ) (snd
p1 )) = 0 by auto

have S4 :
∧

n ′ x ′. ((n ′, x ′), p1 ) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb n ′

x ′)) (c-pair n ′ x ′) = 0
proof −

fix n ′ x ′

assume A4-1 : ((n ′, x ′), p1 ) ∈ lex-p
let ?p2 = (n ′, x ′)
from A4-1 have S4-1 : (?p2 , p1 ) ∈ lex-p by auto
from S4-1 have c-assoc-have-key (pr-gr (loc-upb (fst ?p2 ) (snd ?p2 ))) (c-pair

(fst ?p2 ) (snd ?p2 )) = 0
by (rule A1 )

then show c-assoc-have-key (pr-gr (loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 by auto
qed
from S4 S3 show ?thesis by auto

qed

theorem loc-upb-main: c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0
proof −
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have loc-upb-lm:
∧

p. c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) = 0

proof − fix p show c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) = 0

proof −
have S1 : wf lex-p by (auto simp add: lex-p-def )
from S1 wf-upb-step show ?thesis by (rule wf-induct-rule)

qed
qed
let ?p = (n,x)
have c-assoc-have-key (pr-gr (loc-upb (fst ?p) (snd ?p))) (c-pair (fst ?p) (snd

?p)) = 0 by (rule loc-upb-lm)
thus ?thesis by simp

qed

theorem pr-gr-value: c-assoc-value (pr-gr (loc-upb n x)) (c-pair n x) = univ-for-pr
(c-pair n x)

by (simp del: loc-upb.simps add: loc-upb-main pr-gr-1 c-is-sub-fun-lm-1 )

theorem g-comp-is-pr : g-comp ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-comp
x y) ∈ PrimRec2

unfolding g-comp-def Let-def by prec
thus ?thesis by auto

qed

theorem g-pair-is-pr : g-pair ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-pair
x y) ∈ PrimRec2

unfolding g-pair-def Let-def by prec
thus ?thesis by auto

qed

theorem g-rec-is-pr : g-rec ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-rec x
y) ∈ PrimRec2

unfolding g-rec-def Let-def by prec
thus ?thesis by auto

qed

theorem g-step-is-pr : g-step ∈ PrimRec2
proof −
from g-comp-is-pr g-pair-is-pr g-rec-is-pr mod-is-pr c-assoc-have-key-is-pr c-assoc-value-is-pr

c-cons-is-pr have
(λ ls key. g-step ls key) ∈ PrimRec2 unfolding g-step-def Let-def by prec

thus ?thesis by auto
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qed

theorem pr-gr-is-pr : pr-gr ∈ PrimRec1
proof −

have S1 : (λ x. pr-gr x) = PrimRecOp1 0 (λ x y. g-step y (c-fst x)) (is - = ?f )
proof

fix x
show pr-gr x = ?f x by (induct x) (simp add: pr-gr-at-0 , simp add: pr-gr-at-Suc)

qed
have S2 : PrimRecOp1 0 (λ x y. g-step y (c-fst x)) ∈ PrimRec1
proof (rule pr-rec1 )

from g-step-is-pr show (λx y. g-step y (c-fst x)) ∈ PrimRec2 by prec
qed
from S1 S2 show ?thesis by auto

qed

end

7 Computably enumerable sets of natural num-
bers

theory RecEnSet
imports PRecList PRecFun2 PRecFinSet PRecUnGr
begin

7.1 Basic definitions
definition

fn-to-set :: (nat ⇒ nat ⇒ nat) ⇒ nat set where
fn-to-set f = { x. ∃ y. f x y = 0 }

definition
ce-sets :: (nat set) set where
ce-sets = { (fn-to-set p) | p. p ∈ PrimRec2 }

7.2 Basic properties of computably enumerable sets
lemma ce-set-lm-1 : p ∈ PrimRec2 =⇒ fn-to-set p ∈ ce-sets by (auto simp add:
ce-sets-def )

lemma ce-set-lm-2 : [[ p ∈ PrimRec2 ; ∀ x. (x ∈ A) = (∃ y. p x y = 0 )]] =⇒ A ∈
ce-sets
proof −

assume p-is-pr : p ∈ PrimRec2
assume ∀ x. (x ∈ A) = (∃ y. p x y = 0 )
then have A = fn-to-set p by (unfold fn-to-set-def , auto)
with p-is-pr show A ∈ ce-sets by (simp add: ce-set-lm-1 )

qed
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lemma ce-set-lm-3 : A ∈ ce-sets =⇒ ∃ p ∈ PrimRec2 . A = fn-to-set p
proof −

assume A ∈ ce-sets
then have A ∈ { (fn-to-set p) | p. p ∈ PrimRec2 } by (simp add: ce-sets-def )
thus ?thesis by auto

qed

lemma ce-set-lm-4 : A ∈ ce-sets =⇒ ∃ p ∈ PrimRec2 . ∀ x. (x ∈ A) = (∃ y. p x
y = 0 )
proof −

assume A ∈ ce-sets
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3 )
then obtain p where p-is-pr : p ∈ PrimRec2 and L1 : A = fn-to-set p ..
from p-is-pr L1 show ?thesis by (unfold fn-to-set-def , auto)

qed

lemma ce-set-lm-5 : [[ A ∈ ce-sets; p ∈ PrimRec1 ]] =⇒ { x . p x ∈ A } ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
assume A2 : p ∈ PrimRec1
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3 )
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA ..
from S1 have S2 : A = { x . ∃ y. pA x y = 0 } by (simp add: fn-to-set-def )
define q where q x y = pA (p x) y for x y
from pA-is-pr A2 have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have

∧
x. (p x ∈ A) = (∃ y. q x y = 0 )

proof −
fix x show (p x ∈ A) = (∃ y. q x y = 0 )
proof

assume A: p x ∈ A
with S2 obtain y where L1 : pA (p x) y = 0 by auto
then have q x y = 0 by (simp add: q-def )
thus ∃ y. q x y = 0 ..

next
assume A: ∃ y. q x y = 0
then obtain y where L1 : q x y = 0 ..
then have pA (p x) y = 0 by (simp add: q-def )
with S2 show p x ∈ A by auto

qed
qed
then have { x . p x ∈ A } = { x. ∃ y. q x y = 0 } by auto
then have { x . p x ∈ A } = fn-to-set q by (simp add: fn-to-set-def )
moreover from q-is-pr have fn-to-set q ∈ ce-sets by (rule ce-set-lm-1 )
ultimately show ?thesis by auto

qed

lemma ce-set-lm-6 : [[ A ∈ ce-sets; A 6= {}]] =⇒ ∃ q ∈ PrimRec1 . A = { q x | x.
x ∈ UNIV }
proof −

129



assume A1 : A ∈ ce-sets
assume A2 : A 6= {}
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3 )
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA ..
from S1 have S2 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def )
from A2 obtain a where a-in: a ∈ A by auto
define q where q z = (if pA (c-fst z) (c-snd z) = 0 then c-fst z else a) for z
from pA-is-pr have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
have S3 : ∀ z. q z ∈ A
proof

fix z show q z ∈ A
proof cases

assume A: pA (c-fst z) (c-snd z) = 0
with S2 have c-fst z ∈ A by auto
moreover from A q-def have q z = c-fst z by simp
ultimately show q z ∈ A by auto

next
assume A: pA (c-fst z) (c-snd z) 6= 0
with q-def have q z = a by simp
with a-in show q z ∈ A by auto

qed
qed
then have S4 : { q x | x. x ∈ UNIV } ⊆ A by auto
have S5 : A ⊆ { q x | x. x ∈ UNIV }
proof

fix x assume A: x ∈ A show x ∈ {q x |x. x ∈ UNIV }
proof

from A S2 obtain y where L1 : pA x y = 0 by auto
let ?z = c-pair x y
from L1 have q ?z = x by (simp add: q-def )
then have ∃ u. q u = x by blast
then show ∃ u. x = q u ∧ u ∈ UNIV by auto

qed
qed
from S4 S5 have S6 : A = { q x | x. x ∈ UNIV } by auto
with q-is-pr show ?thesis by blast

qed

lemma ce-set-lm-7 : [[ A ∈ ce-sets; p ∈ PrimRec1 ]] =⇒ { p x | x. x ∈ A } ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
assume A2 : p ∈ PrimRec1
let ?B = { p x | x. x ∈ A }
fix y have S1 : (y ∈ ?B) = (∃ x. x ∈ A ∧ (y = p x)) by auto
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3 )
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S2 : A = fn-to-set pA ..
from S2 have S3 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def )
define q where q y t = (if y = p (c-snd t) then pA (c-snd t) (c-fst t) else 1 )

for y t
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from pA-is-pr A2 have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have L1 :

∧
y. (y ∈ ?B) = (∃ z. q y z = 0 )

proof − fix y show (y ∈ ?B) = (∃ z. q y z = 0 )
proof

assume AA1 : y ∈ ?B
then obtain x0 where LL-2 : x0 ∈ A and LL-3 : y = p x0 by auto
from S3 have LL-4 : (x0 ∈ A) = (∃ z. pA x0 z = 0 ) by auto
from LL-2 LL-4 obtain z0 where LL-5 : pA x0 z0 = 0 by auto
define t where t = c-pair z0 x0
from t-def q-def LL-3 LL-5 have q y t = 0 by simp
then show ∃ z. q y z = 0 by auto

next
assume A1 : ∃ z. q y z = 0
then obtain z0 where LL-1 : q y z0 = 0 ..
have LL2 : y = p (c-snd z0 )
proof (rule ccontr)

assume y 6= p (c-snd z0 )
with q-def LL-1 have q y z0 = 1 by auto
with LL-1 show False by auto

qed
from LL2 LL-1 q-def have LL3 : pA (c-snd z0 ) (c-fst z0 ) = 0 by auto
with S3 have LL4 : c-snd z0 ∈ A by auto
with LL2 show y ∈ {p x | x. x ∈ A} by auto

qed
qed
then have L2 : ?B = { y | y. ∃ z. q y z = 0} by auto
with fn-to-set-def have ?B = fn-to-set q by auto
with q-is-pr ce-set-lm-1 show ?thesis by auto

qed

theorem ce-empty: {} ∈ ce-sets
proof −

let ?f = (λ x a. (1 ::nat))
have S1 : ?f ∈ PrimRec2 by (rule const-is-pr-2 )
then have ∀ x a. ?f x a 6= 0 by simp
then have {x. ∃ a. ?f x a = 0 }={} by auto
also have fn-to-set ?f = . . . by (simp add: fn-to-set-def )
with S1 show ?thesis by (auto simp add: ce-sets-def )

qed

theorem ce-univ: UNIV ∈ ce-sets
proof −

let ?f = (λ x a. (0 ::nat))
have S1 : ?f ∈ PrimRec2 by (rule const-is-pr-2 )
then have ∀ x a. ?f x a = 0 by simp
then have {x. ∃ a. ?f x a = 0 }=UNIV by auto
also have fn-to-set ?f = . . . by (simp add: fn-to-set-def )
with S1 show ?thesis by (auto simp add: ce-sets-def )

qed
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theorem ce-singleton: {a} ∈ ce-sets
proof −

let ?f = λ x y. (abs-of-diff x a) + y
have S1 : ?f ∈ PrimRec2 using const-is-pr-2 [where ?n=a] by prec
then have ∀ x y. (?f x y = 0 ) = (x=a ∧ y=0 ) by (simp add: abs-of-diff-eq)
then have S2 : {x. ∃ y. ?f x y = 0 }={a} by auto
have fn-to-set ?f = {x. ∃ y. ?f x y = 0 } by (simp add: fn-to-set-def )
with S2 have fn-to-set ?f = {a} by simp
with S1 show ?thesis by (auto simp add: ce-sets-def )

qed

theorem ce-union: [[ A ∈ ce-sets; B ∈ ce-sets ]] =⇒ A ∪ B ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
then obtain p-a where S2 : p-a ∈ PrimRec2 and S3 : A = fn-to-set p-a

by (auto simp add: ce-sets-def )
assume A2 : B ∈ ce-sets
then obtain p-b where S5 : p-b ∈ PrimRec2 and S6 : B = fn-to-set p-b

by (auto simp add: ce-sets-def )
let ?p = (λ x y. (p-a x y) ∗ (p-b x y))
from S2 S5 have S7 : ?p ∈ PrimRec2 by prec
have S8 : ∀ x y. (?p x y = 0 ) = ((p-a x y = 0 ) ∨ (p-b x y = 0 )) by simp
let ?C = fn-to-set ?p
have S9 : ?C = {x. ∃ y. ?p x y = 0} by (simp add: fn-to-set-def )
from S3 have S10 : A = {x. ∃ y. p-a x y = 0} by (simp add: fn-to-set-def )
from S6 have S11 : B = {x. ∃ y. p-b x y = 0} by (simp add: fn-to-set-def )
from S10 S11 S9 S8 have S12 : ?C = A ∪ B by auto
from S7 have ?C ∈ ce-sets by (auto simp add: ce-sets-def )
with S12 show ?thesis by simp

qed

theorem ce-intersect: [[ A ∈ ce-sets; B ∈ ce-sets ]] =⇒ A ∩ B ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
then obtain p-a where S2 : p-a ∈ PrimRec2 and S3 : A = fn-to-set p-a

by (auto simp add: ce-sets-def )
assume A2 : B ∈ ce-sets
then obtain p-b where S5 : p-b ∈ PrimRec2 and S6 : B = fn-to-set p-b

by (auto simp add: ce-sets-def )
let ?p = (λ x y. (p-a x (c-fst y)) + (p-b x (c-snd y)))
from S2 S5 have S7 : ?p ∈ PrimRec2 by prec
have S8 : ∀ x. (∃ y. ?p x y = 0 ) = ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 ))
proof

fix x show (∃ y. ?p x y = 0 ) = ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 ))
proof −
have 1 : (∃ y. ?p x y = 0 ) =⇒ ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 ))
by blast
have 2 : ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 )) =⇒ (∃ y. ?p x y = 0 )
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proof −
assume ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 ))
then obtain z1 z2 where s-23 : p-a x z1 = 0 and s-24 : p-b x z2 = 0 by

auto
let ?y1 = c-pair z1 z2
from s-23 have s-25 : p-a x (c-fst ?y1 ) = 0 by simp
from s-24 have s-26 : p-b x (c-snd ?y1 ) = 0 by simp
from s-25 s-26 have s-27 : p-a x (c-fst ?y1 ) + p-b x (c-snd ?y1 ) = 0 by simp
then show ?thesis ..

qed
from 1 2 have (∃ y. ?p x y = 0 ) = ((∃ z. p-a x z = 0 ) ∧ (∃ z. p-b x z = 0 ))

by (rule iffI )
then show ?thesis by auto
qed

qed
let ?C = fn-to-set ?p
have S9 : ?C = {x. ∃ y. ?p x y = 0} by (simp add: fn-to-set-def )
from S3 have S10 : A = {x. ∃ y. p-a x y = 0} by (simp add: fn-to-set-def )
from S6 have S11 : B = {x. ∃ y. p-b x y = 0} by (simp add: fn-to-set-def )
from S10 S11 S9 S8 have S12 : ?C = A ∩ B by auto
from S7 have ?C ∈ ce-sets by (auto simp add: ce-sets-def )
with S12 show ?thesis by simp

qed

7.3 Enumeration of computably enumerable sets
definition

nat-to-ce-set :: nat ⇒ (nat set) where
nat-to-ce-set = (λ n. fn-to-set (pr-conv-1-to-2 (nat-to-pr n)))

lemma nat-to-ce-set-lm-1 : nat-to-ce-set n = { x . ∃ y. (nat-to-pr n) (c-pair x y)
= 0 }
proof −

have S1 : nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def )

then have S2 : nat-to-ce-set n = { x . ∃ y. (pr-conv-1-to-2 (nat-to-pr n)) x y =
0} by (simp add: fn-to-set-def )

have S3 :
∧

x y. (pr-conv-1-to-2 (nat-to-pr n)) x y = (nat-to-pr n) (c-pair x y)
by (simp add: pr-conv-1-to-2-def )

from S2 S3 show ?thesis by auto
qed

lemma nat-to-ce-set-into-ce: nat-to-ce-set n ∈ ce-sets
proof −

have S1 : nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def )

have (nat-to-pr n) ∈ PrimRec1 by (rule nat-to-pr-into-pr)
then have S2 : (pr-conv-1-to-2 (nat-to-pr n)) ∈ PrimRec2 by (rule pr-conv-1-to-2-lm)
from S2 S1 show ?thesis by (simp add: ce-set-lm-1 )
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qed

lemma nat-to-ce-set-srj: A ∈ ce-sets =⇒ ∃ n. A = nat-to-ce-set n
proof −

assume A: A ∈ ce-sets
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3 )
then obtain p where p-is-pr : p ∈ PrimRec2 and S1 : A = fn-to-set p ..
define q where q = pr-conv-2-to-1 p
from p-is-pr have q-is-pr : q ∈ PrimRec1 by (unfold q-def , rule pr-conv-2-to-1-lm)
from q-def have S2 : pr-conv-1-to-2 q = p by simp
let ?n = index-of-pr q
from q-is-pr have nat-to-pr ?n = q by (rule index-of-pr-is-real)
with S2 S1 have A = fn-to-set (pr-conv-1-to-2 (nat-to-pr ?n)) by auto
then have A = nat-to-ce-set ?n by (simp add: nat-to-ce-set-def )
thus ?thesis ..

qed

7.4 Characteristic functions
definition

chf :: nat set ⇒ (nat ⇒ nat) — Characteristic function where
chf = (λ A x . if x ∈ A then 0 else 1 )

definition
zero-set :: (nat ⇒ nat) ⇒ nat set where
zero-set = (λ f . { x. f x = 0})

lemma chf-lm-1 [simp]: zero-set (chf A) = A by (unfold chf-def , unfold zero-set-def ,
simp)

lemma chf-lm-2 : (x ∈ A) = (chf A x = 0 ) by (unfold chf-def , simp)

lemma chf-lm-3 : (x /∈ A) = (chf A x = 1 ) by (unfold chf-def , simp)

lemma chf-lm-4 : chf A ∈ PrimRec1 =⇒ A ∈ ce-sets
proof −

assume A: chf A ∈ PrimRec1
define p where p = chf A
from A p-def have p-is-pr : p ∈ PrimRec1 by auto
define q where q x y = p x for x y :: nat
from p-is-pr have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have S1 : A = {x. p(x) = 0}
proof −

have zero-set p = A by (unfold p-def , simp)
thus ?thesis by (simp add: zero-set-def )

qed
have S2 : fn-to-set q = {x. ∃ y. q x y = 0} by (simp add: fn-to-set-def )
have S3 :

∧
x. (p x = 0 ) = (∃ y. q x y = 0 ) by (unfold q-def , auto)

then have S4 : {x. p x = 0} = {x. ∃ y. q x y = 0} by auto
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with S1 S2 have S5 : fn-to-set q = A by auto
from q-is-pr have fn-to-set q ∈ ce-sets by (rule ce-set-lm-1 )
with S5 show ?thesis by auto

qed

lemma chf-lm-5 : finite A =⇒ chf A ∈ PrimRec1
proof −

assume A: finite A
define u where u = set-to-nat A
from A have S1 : nat-to-set u = A by (unfold u-def , rule nat-to-set-srj)
have chf A = (λ x. sgn2 (c-in x u))
proof

fix x show chf A x = sgn2 (c-in x u)
proof cases

assume A: x ∈ A
then have S1-1 : chf A x = 0 by (simp add: chf-lm-2 )
from A S1 have x ∈ nat-to-set u by auto
then have c-in x u = 1 by (simp add: x-in-u-eq)
with S1-1 show ?thesis by simp

next
assume A: x /∈ A
then have S1-1 : chf A x = 1 by (simp add: chf-def )
from A S1 have x /∈ nat-to-set u by auto
then have c-in x u = 0 by (simp add: x-in-u-eq c-in-def )
with S1-1 show ?thesis by simp

qed
qed
moreover from c-in-is-pr have (λ x. sgn2 (c-in x u)) ∈ PrimRec1 by prec
ultimately show ?thesis by auto

qed

theorem ce-finite: finite A =⇒ A ∈ ce-sets
proof −

assume A: finite A
then have chf A ∈ PrimRec1 by (rule chf-lm-5 )
then show ?thesis by (rule chf-lm-4 )

qed

7.5 Computably enumerable relations
definition

ce-set-to-rel :: nat set ⇒ (nat ∗ nat) set where
ce-set-to-rel = (λ A. { (c-fst x, c-snd x) | x. x ∈ A})

definition
ce-rel-to-set :: (nat ∗ nat) set ⇒ nat set where
ce-rel-to-set = (λ R. { c-pair x y | x y. (x,y) ∈ R})

definition
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ce-rels :: ((nat ∗ nat) set) set where
ce-rels = { R | R. ce-rel-to-set R ∈ ce-sets }

lemma ce-rel-lm-1 [simp]: ce-set-to-rel (ce-rel-to-set r) = r
proof

show ce-set-to-rel (ce-rel-to-set r) ⊆ r
proof fix z

assume A: z ∈ ce-set-to-rel (ce-rel-to-set r)
then obtain u where L1 : u ∈ (ce-rel-to-set r) and L2 : z = (c-fst u, c-snd u)

unfolding ce-set-to-rel-def by auto
from L1 obtain x y where L3 : (x,y) ∈ r and L4 : u = c-pair x y

unfolding ce-rel-to-set-def by auto
from L4 have L5 : c-fst u = x by simp
from L4 have L6 : c-snd u = y by simp
from L5 L6 L2 have z = (x,y) by simp
with L3 show z ∈ r by auto

qed
next

show r ⊆ ce-set-to-rel (ce-rel-to-set r)
proof fix z show z ∈ r =⇒ z ∈ ce-set-to-rel (ce-rel-to-set r)

proof −
assume A: z ∈ r
define x where x = fst z
define y where y = snd z
from x-def y-def have L1 : z = (x,y) by simp
define u where u = c-pair x y
from A L1 u-def have L2 : u ∈ ce-rel-to-set r by (unfold ce-rel-to-set-def ,

auto)
from L1 u-def have L3 : z = (c-fst u, c-snd u) by simp

from L2 L3 show z ∈ ce-set-to-rel (ce-rel-to-set r) by (unfold ce-set-to-rel-def ,
auto)

qed
qed

qed

lemma ce-rel-lm-2 [simp]: ce-rel-to-set (ce-set-to-rel A) = A
proof

show ce-rel-to-set (ce-set-to-rel A) ⊆ A
proof fix z show z ∈ ce-rel-to-set (ce-set-to-rel A) =⇒ z ∈ A

proof −
assume A: z ∈ ce-rel-to-set (ce-set-to-rel A)
then obtain x y where L1 : z = c-pair x y and L2 : (x,y) ∈ ce-set-to-rel A

unfolding ce-rel-to-set-def by auto
from L2 obtain u where L3 : (x,y) = (c-fst u, c-snd u) and L4 : u ∈ A

unfolding ce-set-to-rel-def by auto
from L3 L1 have L5 : z = u by simp
with L4 show z ∈ A by auto

qed
qed
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next
show A ⊆ ce-rel-to-set (ce-set-to-rel A)
proof fix z show z ∈ A =⇒ z ∈ ce-rel-to-set (ce-set-to-rel A)

proof −
assume A: z ∈ A
then have L1 : (c-fst z, c-snd z) ∈ ce-set-to-rel A by (unfold ce-set-to-rel-def ,

auto)
define x where x = c-fst z
define y where y = c-snd z
from L1 x-def y-def have L2 : (x,y) ∈ ce-set-to-rel A by simp

then have L3 : c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by (unfold ce-rel-to-set-def ,
auto)

with x-def y-def show z ∈ ce-rel-to-set (ce-set-to-rel A) by simp
qed

qed
qed

lemma ce-rels-def1 : ce-rels = { ce-set-to-rel A | A. A ∈ ce-sets}
proof

show ce-rels ⊆ {ce-set-to-rel A |A. A ∈ ce-sets}
proof fix r show r ∈ ce-rels =⇒ r ∈ {ce-set-to-rel A |A. A ∈ ce-sets}

proof −
assume A: r ∈ ce-rels
then have L1 : ce-rel-to-set r ∈ ce-sets by (unfold ce-rels-def , auto)
define A where A = ce-rel-to-set r
from A-def L1 have L2 : A ∈ ce-sets by auto
from A-def have L3 : ce-set-to-rel A = r by simp
with L2 show r ∈ {ce-set-to-rel A |A. A ∈ ce-sets} by auto

qed
qed

next
show {ce-set-to-rel A |A. A ∈ ce-sets} ⊆ ce-rels
proof fix r show r ∈ {ce-set-to-rel A |A. A ∈ ce-sets} =⇒ r ∈ ce-rels

proof −
assume A: r ∈ {ce-set-to-rel A |A. A ∈ ce-sets}
then obtain A where L1 : r = ce-set-to-rel A and L2 : A ∈ ce-sets by auto
from L1 have ce-rel-to-set r = A by simp
with L2 show r ∈ ce-rels unfolding ce-rels-def by auto

qed
qed

qed

lemma ce-rel-to-set-inj: inj ce-rel-to-set
proof (rule inj-on-inverseI )

fix x assume A: (x::(nat×nat) set) ∈ UNIV show ce-set-to-rel (ce-rel-to-set x)
= x by (rule ce-rel-lm-1 )
qed

lemma ce-rel-to-set-srj: surj ce-rel-to-set
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proof (rule surjI [where ?f=ce-set-to-rel])
fix x show ce-rel-to-set (ce-set-to-rel x) = x by (rule ce-rel-lm-2 )

qed

lemma ce-rel-to-set-bij: bij ce-rel-to-set
proof (rule bijI )

show inj ce-rel-to-set by (rule ce-rel-to-set-inj)
next

show surj ce-rel-to-set by (rule ce-rel-to-set-srj)
qed

lemma ce-set-to-rel-inj: inj ce-set-to-rel
proof (rule inj-on-inverseI )

fix x assume A: (x::nat set) ∈ UNIV show ce-rel-to-set (ce-set-to-rel x) = x by
(rule ce-rel-lm-2 )
qed

lemma ce-set-to-rel-srj: surj ce-set-to-rel
proof (rule surjI [where ?f=ce-rel-to-set])

fix x show ce-set-to-rel (ce-rel-to-set x) = x by (rule ce-rel-lm-1 )
qed

lemma ce-set-to-rel-bij: bij ce-set-to-rel
proof (rule bijI )

show inj ce-set-to-rel by (rule ce-set-to-rel-inj)
next

show surj ce-set-to-rel by (rule ce-set-to-rel-srj)
qed

lemma ce-rel-lm-3 : A ∈ ce-sets =⇒ ce-set-to-rel A ∈ ce-rels
proof −

assume A: A ∈ ce-sets
from A ce-rels-def1 show ?thesis by auto

qed

lemma ce-rel-lm-4 : ce-set-to-rel A ∈ ce-rels =⇒ A ∈ ce-sets
proof −

assume A: ce-set-to-rel A ∈ ce-rels
from A show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-5 : (A ∈ ce-sets) = (ce-set-to-rel A ∈ ce-rels)
proof

assume A ∈ ce-sets then show ce-set-to-rel A ∈ ce-rels by (rule ce-rel-lm-3 )
next

assume ce-set-to-rel A ∈ ce-rels then show A ∈ ce-sets by (rule ce-rel-lm-4 )
qed

lemma ce-rel-lm-6 : r ∈ ce-rels =⇒ ce-rel-to-set r ∈ ce-sets
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proof −
assume A: r ∈ ce-rels
then show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-7 : ce-rel-to-set r ∈ ce-sets =⇒ r ∈ ce-rels
proof −

assume ce-rel-to-set r ∈ ce-sets
then show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-8 : (r ∈ ce-rels) = (ce-rel-to-set r ∈ ce-sets) by (unfold ce-rels-def ,
auto)

lemma ce-rel-lm-9 : (x,y) ∈ r =⇒ c-pair x y ∈ ce-rel-to-set r by (unfold ce-rel-to-set-def ,
auto)

lemma ce-rel-lm-10 : x ∈ A =⇒ (c-fst x, c-snd x) ∈ ce-set-to-rel A by (unfold
ce-set-to-rel-def , auto)

lemma ce-rel-lm-11 : c-pair x y ∈ ce-rel-to-set r =⇒ (x,y) ∈ r
proof −

assume A: c-pair x y ∈ ce-rel-to-set r
let ?z = c-pair x y
from A have (c-fst ?z, c-snd ?z) ∈ ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10 )
then show (x,y) ∈ r by simp

qed

lemma ce-rel-lm-12 : (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r)
proof

assume c-pair x y ∈ ce-rel-to-set r then show (x, y) ∈ r by (rule ce-rel-lm-11 )
next

assume (x, y) ∈ r then show c-pair x y ∈ ce-rel-to-set r by (rule ce-rel-lm-9 )
qed

lemma ce-rel-lm-13 : (x,y) ∈ ce-set-to-rel A =⇒ c-pair x y ∈ A
proof −

assume (x,y) ∈ ce-set-to-rel A
then have c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by (rule ce-rel-lm-9 )
then show ?thesis by simp

qed

lemma ce-rel-lm-14 : c-pair x y ∈ A =⇒ (x,y) ∈ ce-set-to-rel A
proof −

assume c-pair x y ∈ A
then have c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by simp
then show ?thesis by (rule ce-rel-lm-11 )

qed
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lemma ce-rel-lm-15 : ((x,y) ∈ ce-set-to-rel A) = (c-pair x y ∈ A)
proof

assume (x, y) ∈ ce-set-to-rel A then show c-pair x y ∈ A by (rule ce-rel-lm-13 )
next

assume c-pair x y ∈ A then show (x, y) ∈ ce-set-to-rel A by (rule ce-rel-lm-14 )
qed

lemma ce-rel-lm-16 : x ∈ ce-rel-to-set r =⇒ (c-fst x, c-snd x) ∈ r
proof −

assume x ∈ ce-rel-to-set r
then have (c-fst x, c-snd x) ∈ ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10 )
then show ?thesis by simp

qed

lemma ce-rel-lm-17 : (c-fst x, c-snd x) ∈ ce-set-to-rel A =⇒ x ∈ A
proof −

assume (c-fst x, c-snd x) ∈ ce-set-to-rel A
then have c-pair (c-fst x) (c-snd x) ∈ A by (rule ce-rel-lm-13 )
then show ?thesis by simp

qed

lemma ce-rel-lm-18 : ((c-fst x, c-snd x) ∈ ce-set-to-rel A) = (x ∈ A)
proof
assume (c-fst x, c-snd x) ∈ ce-set-to-rel A then show x ∈ A by (rule ce-rel-lm-17 )

next
assume x ∈ A then show (c-fst x, c-snd x) ∈ ce-set-to-rel A by (rule ce-rel-lm-10 )

qed

lemma ce-rel-lm-19 : (c-fst x, c-snd x) ∈ r =⇒ x ∈ ce-rel-to-set r
proof −

assume (c-fst x, c-snd x) ∈ r
then have (c-fst x, c-snd x) ∈ ce-set-to-rel (ce-rel-to-set r) by simp
then show ?thesis by (rule ce-rel-lm-17 )

qed

lemma ce-rel-lm-20 : ((c-fst x, c-snd x) ∈ r) = (x ∈ ce-rel-to-set r)
proof
assume (c-fst x, c-snd x) ∈ r then show x ∈ ce-rel-to-set r by (rule ce-rel-lm-19 )

next
assume x ∈ ce-rel-to-set r then show (c-fst x, c-snd x) ∈ r by (rule ce-rel-lm-16 )

qed

lemma ce-rel-lm-21 : r ∈ ce-rels =⇒ ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u.
p x y u = 0 )
proof −

assume r-ce: r ∈ ce-rels
define A where A = ce-rel-to-set r
from r-ce have A-ce: A ∈ ce-sets by (unfold A-def , rule ce-rel-lm-6 )
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3 )
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then obtain q where q-is-pr : q ∈ PrimRec2 and A-def1 : A = fn-to-set q ..
from A-def1 have A-def2 : A = { x. ∃ y. q x y = 0} by (unfold fn-to-set-def )
define p where p x y u = q (c-pair x y) u for x y u
from q-is-pr have p-is-pr : p ∈ PrimRec3 unfolding p-def by prec
have

∧
x y. ((x,y) ∈ r) = (∃ u. p x y u = 0 )

proof − fix x y show ((x,y) ∈ r) = (∃ u. p x y u = 0 )
proof

assume A: (x,y) ∈ r
define z where z = c-pair x y
with A-def A have z-in-A: z ∈ A by (unfold ce-rel-to-set-def , auto)
with A-def2 have z ∈ { x. ∃ y. q x y = 0} by auto
then obtain u where q z u = 0 by auto
with z-def have p x y u = 0 by (simp add: z-def p-def )
then show ∃ u. p x y u = 0 by auto

next
assume A: ∃ u. p x y u = 0
define z where z = c-pair x y
from A obtain u where p x y u = 0 by auto
then have q-z: q z u = 0 by (simp add: z-def p-def )
with A-def2 have z-in-A: z ∈ A by auto
then have c-pair x y ∈ A by (unfold z-def )
then have c-pair x y ∈ ce-rel-to-set r by (unfold A-def )
then show (x,y) ∈ r by (rule ce-rel-lm-11 )

qed
qed
with p-is-pr show ?thesis by auto

qed

lemma ce-rel-lm-22 : r ∈ ce-rels =⇒ ∃ p ∈ PrimRec3 . r = { (x,y). ∃ u. p x y u
= 0 }
proof −

assume r-ce: r ∈ ce-rels
then have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0 ) by (rule

ce-rel-lm-21 )
then obtain p where p-is-pr : p ∈ PrimRec3 and L1 : ∀ x y. ((x,y) ∈ r) = (∃

u. p x y u = 0 ) by auto
from p-is-pr L1 show ?thesis by blast

qed

lemma ce-rel-lm-23 : [[ p ∈ PrimRec3 ; ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0 ) ]]
=⇒ r ∈ ce-rels
proof −

assume p-is-pr : p ∈ PrimRec3
assume A: ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0 )
define q where q z u = p (c-fst z) (c-snd z) u for z u
from p-is-pr have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
define A where A = { x. ∃ y. q x y = 0}
then have A-def1 : A = fn-to-set q by (unfold fn-to-set-def , auto)
from q-is-pr A-def1 have A-ce: A ∈ ce-sets by (simp add: ce-set-lm-1 )
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have main: A = ce-rel-to-set r
proof

show A ⊆ ce-rel-to-set r
proof

fix z assume z-in-A: z ∈ A
show z ∈ ce-rel-to-set r
proof −

define x where x = c-fst z
define y where y = c-snd z
from z-in-A A-def obtain u where L2 : q z u = 0 by auto
with x-def y-def q-def have L3 : p x y u = 0 by simp
then have ∃ u. p x y u = 0 by auto
with A have (x,y) ∈ r by auto
then have c-pair x y ∈ ce-rel-to-set r by (rule ce-rel-lm-9 )
with x-def y-def show ?thesis by simp

qed
qed

next
show ce-rel-to-set r ⊆ A
proof

fix z assume z-in-r : z ∈ ce-rel-to-set r
show z ∈ A
proof −

define x where x = c-fst z
define y where y = c-snd z
from z-in-r have (c-fst z, c-snd z) ∈ r by (rule ce-rel-lm-16 )
with x-def y-def have (x,y) ∈ r by simp
with A obtain u where L1 : p x y u = 0 by auto
with x-def y-def q-def have q z u = 0 by simp
with A-def show z ∈ A by auto

qed
qed

qed
with A-ce have ce-rel-to-set r ∈ ce-sets by auto
then show r ∈ ce-rels by (rule ce-rel-lm-7 )

qed

lemma ce-rel-lm-24 : [[ r ∈ ce-rels; s ∈ ce-rels ]] =⇒ s O r ∈ ce-rels
proof −

assume r-ce: r ∈ ce-rels
assume s-ce: s ∈ ce-rels
from r-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r)=(∃ u. p x y u = 0 ) by

(rule ce-rel-lm-21 )
then obtain p-r where p-r-is-pr : p-r ∈ PrimRec3 and R1 : ∀ x y. ((x,y) ∈

r)=(∃ u. p-r x y u = 0 )
by auto

from s-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ s)=(∃ u. p x y u = 0 ) by
(rule ce-rel-lm-21 )

then obtain p-s where p-s-is-pr : p-s ∈ PrimRec3 and S1 : ∀ x y. ((x,y) ∈
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s)=(∃ u. p-s x y u = 0 )
by auto

define p where p x z u = (p-s x (c-fst u) (c-fst (c-snd u))) + (p-r (c-fst u) z
(c-snd (c-snd u)))

for x z u
from p-r-is-pr p-s-is-pr have p-is-pr : p ∈ PrimRec3 unfolding p-def by prec
define sr where sr = s O r
have main: ∀ x z. ((x,z) ∈ sr) = (∃ u. p x z u = 0 )
proof (rule allI , rule allI )

fix x z
show ((x, z) ∈ sr) = (∃ u. p x z u = 0 )
proof

assume A: (x, z) ∈ sr
show ∃ u. p x z u = 0
proof −

from A sr-def obtain y where L1 : (x,y) ∈ s and L2 : (y,z) ∈ r by auto
from L1 S1 obtain u-s where L3 : p-s x y u-s = 0 by auto
from L2 R1 obtain u-r where L4 : p-r y z u-r = 0 by auto
define u where u = c-pair y (c-pair u-s u-r)
from L3 L4 have p x z u = 0 by (unfold p-def , unfold u-def , simp)
then show ?thesis by auto

qed
next

assume A: ∃ u. p x z u = 0
show (x, z) ∈ sr
proof −

from A obtain u where L1 : p x z u = 0 by auto
then have L2 : (p-s x (c-fst u) (c-fst (c-snd u))) + (p-r (c-fst u) z (c-snd

(c-snd u))) = 0 by (unfold p-def )
from L2 have L3 : p-s x (c-fst u) (c-fst (c-snd u)) = 0 by auto
from L2 have L4 : p-r (c-fst u) z (c-snd (c-snd u)) = 0 by auto
from L3 S1 have L5 : (x,(c-fst u)) ∈ s by auto
from L4 R1 have L6 : ((c-fst u),z) ∈ r by auto
from L5 L6 have (x,z) ∈ s O r by auto
with sr-def show ?thesis by auto

qed
qed

qed
from p-is-pr main have sr ∈ ce-rels by (rule ce-rel-lm-23 )
then show ?thesis by (unfold sr-def )

qed

lemma ce-rel-lm-25 : r ∈ ce-rels =⇒ r^−1 ∈ ce-rels
proof −

assume r-ce: r ∈ ce-rels
have r^−1 = {(y,x). (x,y) ∈ r} by auto
then have L1 : ∀ x y. ((x,y) ∈ r) = ((y,x) ∈ r^−1 ) by auto
from r-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0 ) by

(rule ce-rel-lm-21 )
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then obtain p where p-is-pr : p ∈ PrimRec3 and R1 : ∀ x y. ((x,y) ∈ r) = (∃
u. p x y u = 0 ) by auto

define q where q x y u = p y x u for x y u
from p-is-pr have q-is-pr : q ∈ PrimRec3 unfolding q-def by prec
from L1 R1 have L2 : ∀ x y. ((x,y) ∈ r^−1 ) = (∃ u. p y x u = 0 ) by auto
with q-def have L3 : ∀ x y. ((x,y) ∈ r^−1 ) = (∃ u. q x y u = 0 ) by auto
with q-is-pr show ?thesis by (rule ce-rel-lm-23 )

qed

lemma ce-rel-lm-26 : r ∈ ce-rels =⇒ Domain r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
have L1 : ∀ x. (x ∈ Domain r) = (∃ y. (x,y) ∈ r) by auto
define A where A = ce-rel-to-set r
from r-ce have ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6 )
then have A-ce: A ∈ ce-sets by (unfold A-def )
have ∀ x y. ((x,y) ∈ r) = (c-pair x y ∈ ce-rel-to-set r) by (simp add: ce-rel-lm-12 )
then have L2 : ∀ x y. ((x,y) ∈ r) = (c-pair x y ∈ A) by (unfold A-def )
from A-ce c-fst-is-pr have L3 : { c-fst z |z. z ∈ A } ∈ ce-sets by (rule ce-set-lm-7 )
have L4 : ∀ x. (x ∈ { c-fst z |z. z ∈ A }) =(∃ y. c-pair x y ∈ A)
proof fix x show (x ∈ { c-fst z |z. z ∈ A }) =(∃ y. c-pair x y ∈ A)

proof
assume A: x ∈ {c-fst z |z. z ∈ A}
then obtain z where z-in-A: z ∈ A and x-z: x = c-fst z by auto
from x-z have z = c-pair x (c-snd z) by simp
with z-in-A have c-pair x (c-snd z) ∈ A by auto
then show ∃ y. c-pair x y ∈ A by auto

next
assume A: ∃ y. c-pair x y ∈ A
then obtain y where y-1 : c-pair x y ∈ A by auto
define z where z = c-pair x y
from y-1 have z-in-A: z ∈ A by (unfold z-def )
from z-def have x-z: x = c-fst z by (unfold z-def , simp)
from z-in-A x-z show x ∈ {c-fst z |z. z ∈ A} by auto

qed
qed
from L1 L2 have L5 : ∀ x. (x ∈ Domain r) = (∃ y. c-pair x y ∈ A) by auto
from L4 L5 have L6 : ∀ x. (x ∈ Domain r) = (x ∈ { c-fst z |z. z ∈ A }) by

auto
then have Domain r = { c-fst z |z. z ∈ A } by auto
with L3 show Domain r ∈ ce-sets by auto

qed

lemma ce-rel-lm-27 : r ∈ ce-rels =⇒ Range r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
then have r^−1 ∈ ce-rels by (rule ce-rel-lm-25 )
then have Domain (r^−1 ) ∈ ce-sets by (rule ce-rel-lm-26 )
then show ?thesis by (unfold Domain-converse [symmetric])
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qed

lemma ce-rel-lm-28 : r ∈ ce-rels =⇒ Field r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
from r-ce have L1 : Domain r ∈ ce-sets by (rule ce-rel-lm-26 )
from r-ce have L2 : Range r ∈ ce-sets by (rule ce-rel-lm-27 )
from L1 L2 have L3 : Domain r ∪ Range r ∈ ce-sets by (rule ce-union)
then show ?thesis by (unfold Field-def )

qed

lemma ce-rel-lm-29 : [[ A ∈ ce-sets; B ∈ ce-sets ]] =⇒ A × B ∈ ce-rels
proof −

assume A-ce: A ∈ ce-sets
assume B-ce: B ∈ ce-sets
define r-a where r-a = {(x,(0 ::nat)) | x. x ∈ A}
define r-b where r-b = {((0 ::nat),z) | z. z ∈ B}
have L1 : r-a O r-b = A × B by (unfold r-a-def , unfold r-b-def , auto)
have r-a-ce: r-a ∈ ce-rels
proof −
have loc1 : ce-rel-to-set r-a = { c-pair x 0 | x. x ∈ A} by (unfold r-a-def , unfold

ce-rel-to-set-def , auto)
define p where p x = c-pair x 0 for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from A-ce p-is-pr have { c-pair x 0 | x. x ∈ A} ∈ ce-sets

unfolding p-def by (simp add: ce-set-lm-7 )
with loc1 have ce-rel-to-set r-a ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7 )

qed
have r-b-ce: r-b ∈ ce-rels
proof −

have loc1 : ce-rel-to-set r-b = { c-pair 0 z | z. z ∈ B}
by (unfold r-b-def , unfold ce-rel-to-set-def , auto)

define p where p z = c-pair 0 z for z
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from B-ce p-is-pr have { c-pair 0 z | z. z ∈ B} ∈ ce-sets

unfolding p-def by (simp add: ce-set-lm-7 )
with loc1 have ce-rel-to-set r-b ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7 )

qed
from r-b-ce r-a-ce have r-a O r-b ∈ ce-rels by (rule ce-rel-lm-24 )
with L1 show ?thesis by auto

qed

lemma ce-rel-lm-30 : {} ∈ ce-rels
proof −

have ce-rel-to-set {} = {} by (unfold ce-rel-to-set-def , auto)
with ce-empty have ce-rel-to-set {} ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7 )
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qed

lemma ce-rel-lm-31 : UNIV ∈ ce-rels
proof −

from ce-univ ce-univ have UNIV × UNIV ∈ ce-rels by (rule ce-rel-lm-29 )
then show ?thesis by auto

qed

lemma ce-rel-lm-32 : ce-rel-to-set (r ∪ s) = (ce-rel-to-set r) ∪ (ce-rel-to-set s) by
(unfold ce-rel-to-set-def , auto)

lemma ce-rel-lm-33 : [[ r ∈ ce-rels; s ∈ ce-rels ]] =⇒ r ∪ s ∈ ce-rels
proof −

assume r ∈ ce-rels
then have r-ce: ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6 )
assume s ∈ ce-rels
then have s-ce: ce-rel-to-set s ∈ ce-sets by (rule ce-rel-lm-6 )
have ce-rel-to-set (r ∪ s) = (ce-rel-to-set r) ∪ (ce-rel-to-set s) by (unfold ce-rel-to-set-def ,

auto)
moreover from r-ce s-ce have (ce-rel-to-set r) ∪ (ce-rel-to-set s) ∈ ce-sets by

(rule ce-union)
ultimately have ce-rel-to-set (r ∪ s) ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7 )

qed

lemma ce-rel-lm-34 : ce-rel-to-set (r ∩ s) = (ce-rel-to-set r) ∩ (ce-rel-to-set s)
proof
show ce-rel-to-set (r ∩ s) ⊆ ce-rel-to-set r ∩ ce-rel-to-set s by (unfold ce-rel-to-set-def ,

auto)
next

show ce-rel-to-set r ∩ ce-rel-to-set s ⊆ ce-rel-to-set (r ∩ s)
proof fix x assume A: x ∈ ce-rel-to-set r ∩ ce-rel-to-set s

from A have L1 : x ∈ ce-rel-to-set r by auto
from A have L2 : x ∈ ce-rel-to-set s by auto
from L1 obtain u v where L3 : (u,v) ∈ r and L4 : x = c-pair u v

unfolding ce-rel-to-set-def by auto
from L2 obtain u1 v1 where L5 : (u1 ,v1 ) ∈ s and L6 : x = c-pair u1 v1

unfolding ce-rel-to-set-def by auto
from L4 L6 have L7 : c-pair u1 v1 = c-pair u v by auto
then have u1=u by (rule c-pair-inj1 )
moreover from L7 have v1=v by (rule c-pair-inj2 )
ultimately have (u,v)=(u1 ,v1 ) by auto
with L3 L5 have (u,v) ∈ r ∩ s by auto
with L4 show x ∈ ce-rel-to-set (r ∩ s) by (unfold ce-rel-to-set-def , auto)

qed
qed

lemma ce-rel-lm-35 : [[ r ∈ ce-rels; s ∈ ce-rels ]] =⇒ r ∩ s ∈ ce-rels
proof −
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assume r ∈ ce-rels
then have r-ce: ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6 )
assume s ∈ ce-rels
then have s-ce: ce-rel-to-set s ∈ ce-sets by (rule ce-rel-lm-6 )
have ce-rel-to-set (r ∩ s) = (ce-rel-to-set r) ∩ (ce-rel-to-set s) by (rule ce-rel-lm-34 )
moreover from r-ce s-ce have (ce-rel-to-set r) ∩ (ce-rel-to-set s) ∈ ce-sets by

(rule ce-intersect)
ultimately have ce-rel-to-set (r ∩ s) ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7 )

qed

lemma ce-rel-lm-36 : ce-set-to-rel (A ∪ B) = (ce-set-to-rel A) ∪ (ce-set-to-rel B)
by (unfold ce-set-to-rel-def , auto)

lemma ce-rel-lm-37 : ce-set-to-rel (A ∩ B) = (ce-set-to-rel A) ∩ (ce-set-to-rel B)
proof −

define f where f x = (c-fst x, c-snd x) for x
have f-inj: inj f
proof (unfold f-def , rule inj-on-inverseI [where ?g=λ (u,v). c-pair u v])

fix x :: nat
assume x ∈ UNIV
show case-prod c-pair (c-fst x, c-snd x) = x by simp

qed
from f-inj have f ‘ (A ∩ B) = f ‘ A ∩ f ‘ B by (rule image-Int)
then show ?thesis by (unfold f-def , unfold ce-set-to-rel-def , auto)

qed

lemma ce-rel-lm-38 : [[ r ∈ ce-rels; A ∈ ce-sets ]] =⇒ r‘‘A ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
assume A-ce: A ∈ ce-sets
have L1 : r‘‘A = Range (r ∩ A × UNIV ) by blast
have L2 : Range (r ∩ A × UNIV ) ∈ ce-sets
proof (rule ce-rel-lm-27 )

show r ∩ A × UNIV ∈ ce-rels
proof (rule ce-rel-lm-35 )

show r ∈ ce-rels by (rule r-ce)
next

show A × UNIV ∈ ce-rels
proof (rule ce-rel-lm-29 )

show A ∈ ce-sets by (rule A-ce)
next

show UNIV ∈ ce-sets by (rule ce-univ)
qed

qed
qed
from L1 L2 show ?thesis by auto

qed
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7.6 Total computable functions
definition

graph :: (nat ⇒ nat) ⇒ (nat × nat) set where
graph = (λ f . { (x, f x) | x. x ∈ UNIV })

lemma graph-lm-1 : (x,y) ∈ graph f =⇒ y = f x by (unfold graph-def , auto)

lemma graph-lm-2 : y = f x =⇒ (x,y) ∈ graph f by (unfold graph-def , auto)

lemma graph-lm-3 : ((x,y) ∈ graph f ) = (y = f x) by (unfold graph-def , auto)

lemma graph-lm-4 : graph (f o g) = (graph g) O (graph f ) by (unfold graph-def ,
auto)

definition
c-graph :: (nat ⇒ nat) ⇒ nat set where
c-graph = (λ f . { c-pair x (f x) | x. x ∈ UNIV })

lemma c-graph-lm-1 : c-pair x y ∈ c-graph f =⇒ y = f x
proof −

assume A: c-pair x y ∈ c-graph f
have S1 : c-graph f = {c-pair x (f x) | x. x ∈ UNIV } by (simp add: c-graph-def )
from A S1 obtain z where S2 : c-pair x y = c-pair z (f z) by auto
then have x = z by (rule c-pair-inj1 )
moreover from S2 have y = f z by (rule c-pair-inj2 )
ultimately show ?thesis by auto

qed

lemma c-graph-lm-2 : y = f x =⇒ c-pair x y ∈ c-graph f by (unfold c-graph-def ,
auto)

lemma c-graph-lm-3 : (c-pair x y ∈ c-graph f ) = (y = f x)
proof

assume c-pair x y ∈ c-graph f then show y = f x by (rule c-graph-lm-1 )
next

assume y = f x then show c-pair x y ∈ c-graph f by (rule c-graph-lm-2 )
qed

lemma c-graph-lm-4 : c-graph f = ce-rel-to-set (graph f ) by (unfold c-graph-def
ce-rel-to-set-def graph-def , auto)

lemma c-graph-lm-5 : graph f = ce-set-to-rel (c-graph f ) by (simp add: c-graph-lm-4 )

definition
total-recursive :: (nat ⇒ nat) ⇒ bool where
total-recursive = (λ f . graph f ∈ ce-rels)

lemma total-recursive-def1 : total-recursive = (λ f . c-graph f ∈ ce-sets)
proof (rule ext) fix f show total-recursive f = (c-graph f ∈ ce-sets)
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proof
assume A: total-recursive f
then have graph f ∈ ce-rels by (unfold total-recursive-def )
then have ce-rel-to-set (graph f ) ∈ ce-sets by (rule ce-rel-lm-6 )
then show c-graph f ∈ ce-sets by (simp add: c-graph-lm-4 )

next
assume c-graph f ∈ ce-sets
then have ce-rel-to-set (graph f ) ∈ ce-sets by (simp add: c-graph-lm-4 )
then have graph f ∈ ce-rels by (rule ce-rel-lm-7 )
then show total-recursive f by (unfold total-recursive-def )

qed
qed

theorem pr-is-total-rec: f ∈ PrimRec1 =⇒ total-recursive f
proof −

assume A: f ∈ PrimRec1
define p where p x = c-pair x (f x) for x
from A have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
let ?U = { p x | x. x ∈ UNIV }
from ce-univ p-is-pr have U-ce: ?U ∈ ce-sets by (rule ce-set-lm-7 )
have U-1 : ?U = { c-pair x (f x) | x. x ∈ UNIV } by (simp add: p-def )
with U-ce have S1 : { c-pair x (f x) | x. x ∈ UNIV } ∈ ce-sets by simp
with c-graph-def have c-graph-f-is-ce: c-graph f ∈ ce-sets by (unfold c-graph-def ,

auto)
then show ?thesis by (unfold total-recursive-def1 , auto)

qed

theorem comp-tot-rec: [[ total-recursive f ; total-recursive g ]] =⇒ total-recursive (f
o g)
proof −

assume total-recursive f
then have f-ce: graph f ∈ ce-rels by (unfold total-recursive-def )
assume total-recursive g
then have g-ce: graph g ∈ ce-rels by (unfold total-recursive-def )
from f-ce g-ce have graph g O graph f ∈ ce-rels by (rule ce-rel-lm-24 )
then have graph (f o g) ∈ ce-rels by (simp add: graph-lm-4 )
then show ?thesis by (unfold total-recursive-def )

qed

lemma univ-for-pr-tot-rec-lm: c-graph univ-for-pr ∈ ce-sets
proof −

define A where A = c-graph univ-for-pr
from A-def have S1 : A = { c-pair x (univ-for-pr x) | x. x ∈ UNIV }

by (simp add: c-graph-def )
from S1 have S2 : A = { z . ∃ x. z = c-pair x (univ-for-pr x) } by auto
have S3 :

∧
z. (∃ x. (z = c-pair x (univ-for-pr x))) = (univ-for-pr (c-fst z) =

c-snd z)
proof −

fix z show (∃ x. (z = c-pair x (univ-for-pr x))) = (univ-for-pr (c-fst z) =

149



c-snd z)
proof

assume A: ∃ x. z = c-pair x (univ-for-pr x)
then obtain x where S3-1 : z = c-pair x (univ-for-pr x) ..
then show univ-for-pr (c-fst z) = c-snd z by simp

next
assume A: univ-for-pr (c-fst z) = c-snd z
from A have z = c-pair (c-fst z) (univ-for-pr (c-fst z)) by simp
thus ∃ x. z = c-pair x (univ-for-pr x) ..

qed
qed
with S2 have S4 : A = { z . univ-for-pr (c-fst z) = c-snd z } by auto
define p where p x y =
(if c-assoc-have-key (pr-gr y) (c-fst x) = 0 then
(if c-assoc-value (pr-gr y) (c-fst x) = c-snd x then (0 ::nat) else 1 )

else 1 ) for x y
from c-assoc-have-key-is-pr c-assoc-value-is-pr pr-gr-is-pr have p-is-pr : p ∈

PrimRec2
unfolding p-def by prec

have S5 :
∧

z. (univ-for-pr (c-fst z) = c-snd z) = (∃ y. p z y = 0 )
proof −

fix z show (univ-for-pr (c-fst z) = c-snd z) = (∃ y. p z y = 0 )
proof

assume A: univ-for-pr (c-fst z) = c-snd z
let ?n = c-fst (c-fst z)
let ?x = c-snd (c-fst z)
let ?y = loc-upb ?n ?x

have S5-1 : c-assoc-have-key (pr-gr ?y) (c-pair ?n ?x) = 0 by (rule loc-upb-main)
have S5-2 : c-assoc-value (pr-gr ?y) (c-pair ?n ?x) = univ-for-pr (c-pair ?n

?x) by (rule pr-gr-value)
from S5-1 have S5-3 : c-assoc-have-key (pr-gr ?y) (c-fst z) = 0 by simp
from S5-2 A have S5-4 : c-assoc-value (pr-gr ?y) (c-fst z) = c-snd z by simp
from S5-3 S5-4 have p z ?y = 0 by (simp add: p-def )
thus ∃ y. p z y = 0 ..

next
assume A: ∃ y. p z y = 0
then obtain y where S5-1 : p z y = 0 ..
have S5-2 : c-assoc-have-key (pr-gr y) (c-fst z) = 0
proof (rule ccontr)

assume A-1 : c-assoc-have-key (pr-gr y) (c-fst z) 6= 0
then have p z y = 1 by (simp add: p-def )
with S5-1 show False by auto

qed
then have S5-3 : p z y = (if c-assoc-value (pr-gr y) (c-fst z) = c-snd z then

(0 ::nat) else 1 ) by (simp add: p-def )
have S5-4 : c-assoc-value (pr-gr y) (c-fst z) = c-snd z
proof (rule ccontr)

assume A-2 : c-assoc-value (pr-gr y) (c-fst z) 6= c-snd z
then have p z y = 1 by (simp add: p-def )

150



with S5-1 show False by auto
qed
have S5-5 : c-is-sub-fun (pr-gr y) univ-for-pr by (rule pr-gr-1 )
from S5-5 S5-2 have S5-6 : c-assoc-value (pr-gr y) (c-fst z) = univ-for-pr

(c-fst z) by (rule c-is-sub-fun-lm-1 )
with S5-4 show univ-for-pr (c-fst z) = c-snd z by auto

qed
qed
from S5 S4 have A = {z. ∃ y. p z y = 0} by auto
then have A = fn-to-set p by (simp add: fn-to-set-def )
moreover from p-is-pr have fn-to-set p ∈ ce-sets by (rule ce-set-lm-1 )
ultimately have A ∈ ce-sets by auto
with A-def show ?thesis by auto

qed

theorem univ-for-pr-tot-rec: total-recursive univ-for-pr
proof −

have c-graph univ-for-pr ∈ ce-sets by (rule univ-for-pr-tot-rec-lm)
then show ?thesis by (unfold total-recursive-def1 , auto)

qed

7.7 Computable sets, Post’s theorem
definition

computable :: nat set ⇒ bool where
computable = (λ A. A ∈ ce-sets ∧ −A ∈ ce-sets)

lemma computable-complement-1 : computable A =⇒ computable (− A)
proof −

assume computable A
then show ?thesis by (unfold computable-def , auto)

qed

lemma computable-complement-2 : computable (− A) =⇒ computable A
proof −

assume computable (− A)
then show ?thesis by (unfold computable-def , auto)

qed

lemma computable-complement-3 : (computable A) = (computable (− A)) by (unfold
computable-def , auto)

theorem comp-impl-tot-rec: computable A =⇒ total-recursive (chf A)
proof −

assume A: computable A
from A have A1 : A ∈ ce-sets by (unfold computable-def , simp)
from A have A2 : −A ∈ ce-sets by (unfold computable-def , simp)
define p where p x = c-pair x 0 for x
define q where q x = c-pair x 1 for x
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from p-def have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from q-def have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
define U0 where U0 = {p x | x. x ∈ A}
define U1 where U1 = {q x | x. x ∈ − A}
from A1 p-is-pr have U0-ce: U0 ∈ ce-sets by(unfold U0-def , rule ce-set-lm-7 )
from A2 q-is-pr have U1-ce: U1 ∈ ce-sets by(unfold U1-def , rule ce-set-lm-7 )
define U where U = U0 ∪ U1
from U0-ce U1-ce have U-ce: U ∈ ce-sets by (unfold U-def , rule ce-union)
define V where V = c-graph (chf A)
have V-1 : V = { c-pair x (chf A x) | x. x ∈ UNIV } by (simp add: V-def

c-graph-def )
from U0-def p-def have U0-1 : U0 = { c-pair x y | x y. x ∈ A ∧ y=0} by auto
from U1-def q-def have U1-1 : U1 = { c-pair x y | x y. x /∈ A ∧ y=1} by auto
from U0-1 U1-1 U-def have U-1 : U = { c-pair x y | x y. (x ∈ A ∧ y=0 ) ∨ (x

/∈ A ∧ y=1 )} by auto
from V-1 have V-2 : V = { c-pair x y | x y. y = chf A x} by auto
have L1 :

∧
x y. ((x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧ y=1 )) = (y = chf A x)

proof −
fix x y
show ((x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧ y=1 )) = (y = chf A x) by(unfold chf-def ,

auto)
qed
from V-2 U-1 L1 have U=V by simp
with U-ce have V-ce: V ∈ ce-sets by auto
with V-def have c-graph (chf A) ∈ ce-sets by auto
then show ?thesis by (unfold total-recursive-def1 )

qed

theorem tot-rec-impl-comp: total-recursive (chf A) =⇒ computable A
proof −

assume A: total-recursive (chf A)
then have A1 : c-graph (chf A) ∈ ce-sets by (unfold total-recursive-def1 )
let ?U = c-graph (chf A)
have L1 : ?U = { c-pair x (chf A x) | x. x ∈ UNIV } by (simp add: c-graph-def )
have L2 :

∧
x y. ((x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧ y=1 )) = (y = chf A x)

proof − fix x y show ((x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧ y=1 )) = (y = chf A x)
by(unfold chf-def , auto)

qed
from L1 L2 have L3 : ?U = { c-pair x y | x y. (x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧

y=1 )} by auto
define p where p x = c-pair x 0 for x
define q where q x = c-pair x 1 for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
define V where V = { c-pair x y | x y. (x ∈ A ∧ y=0 ) ∨ (x /∈ A ∧ y=1 )}
from V-def L3 A1 have V-ce: V ∈ ce-sets by auto
from V-def have L4 : ∀ z. (z ∈ V ) = (∃ x y. z = c-pair x y ∧ ((x ∈ A ∧ y=0 )
∨ (x /∈ A ∧ y=1 ))) by blast

have L5 :
∧

x. (p x ∈ V ) = (x ∈ A)
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proof − fix x show (p x ∈ V ) = (x ∈ A)
proof

assume A: p x ∈ V
then have c-pair x 0 ∈ V by (unfold p-def )
with V-def obtain x1 y1 where L5-2 : c-pair x 0 = c-pair x1 y1

and L5-3 : ((x1 ∈ A ∧ y1=0 ) ∨ (x1 /∈ A ∧ y1=1 )) by auto
from L5-2 have X-eq-X1 : x=x1 by (rule c-pair-inj1 )
from L5-2 have Y1-eq-0 : 0=y1 by (rule c-pair-inj2 )
from L5-3 X-eq-X1 Y1-eq-0 show x ∈ A by auto

next
assume A: x ∈ A
let ?z = c-pair x 0
from A have L5-1 : ∃ x1 y1 . c-pair x 0 = c-pair x1 y1 ∧ ((x1 ∈ A ∧ y1=0 )

∨ (x1 /∈ A ∧ y1=1 )) by auto
with V-def have c-pair x 0 ∈ V by auto
with p-def show p x ∈ V by simp

qed
qed
then have A-eq: A = { x. p x ∈ V } by auto
from V-ce p-is-pr have { x. p x ∈ V } ∈ ce-sets by (rule ce-set-lm-5 )
with A-eq have A-ce: A ∈ ce-sets by simp
have CA-eq: − A = {x. q x ∈ V }
proof −

have
∧

x. (q x ∈ V ) = (x /∈ A)
proof − fix x show (q x ∈ V ) = (x /∈ A)

proof
assume A: q x ∈ V
then have c-pair x 1 ∈ V by (unfold q-def )
with V-def obtain x1 y1 where L5-2 : c-pair x 1 = c-pair x1 y1

and L5-3 : ((x1 ∈ A ∧ y1=0 ) ∨ (x1 /∈ A ∧ y1=1 )) by auto
from L5-2 have X-eq-X1 : x=x1 by (rule c-pair-inj1 )
from L5-2 have Y1-eq-1 : 1=y1 by (rule c-pair-inj2 )
from L5-3 X-eq-X1 Y1-eq-1 show x /∈ A by auto

next
assume A: x /∈ A
from A have L5-1 : ∃ x1 y1 . c-pair x 1 = c-pair x1 y1 ∧ ((x1 ∈ A ∧

y1=0 ) ∨ (x1 /∈ A ∧ y1=1 )) by auto
with V-def have c-pair x 1 ∈ V by auto
with q-def show q x ∈ V by simp

qed
qed
then show ?thesis by auto

qed
from V-ce q-is-pr have { x. q x ∈ V } ∈ ce-sets by (rule ce-set-lm-5 )
with CA-eq have CA-ce: − A ∈ ce-sets by simp
from A-ce CA-ce show ?thesis by (simp add: computable-def )

qed

theorem post-th-0 : (computable A) = (total-recursive (chf A))
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proof
assume computable A then show total-recursive (chf A) by (rule comp-impl-tot-rec)

next
assume total-recursive (chf A) then show computable A by (rule tot-rec-impl-comp)

qed

7.8 Universal computably enumerable set
definition

univ-ce :: nat set where
univ-ce = { c-pair n x | n x. x ∈ nat-to-ce-set n }

lemma univ-for-pr-lm: univ-for-pr (c-pair n x) = (nat-to-pr n) x
by (simp add: univ-for-pr-def pr-conv-2-to-1-def )

theorem univ-is-ce: univ-ce ∈ ce-sets
proof −

define A where A = c-graph univ-for-pr
then have A ∈ ce-sets by (simp add: univ-for-pr-tot-rec-lm)
then have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3 )
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA

by auto
from S1 have S2 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def )
define p where p z y = pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))

0 ) (c-snd y)
for z y

from pA-is-pr have p-is-pr : p ∈ PrimRec2 unfolding p-def by prec
have

∧
z. (∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n) = (c-snd z ∈ nat-to-ce-set

(c-fst z))
proof −

fix z show (∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n) = (c-snd z ∈
nat-to-ce-set (c-fst z))

proof
assume A: ∃n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n
then obtain n x where L1 : z = c-pair n x ∧ x ∈ nat-to-ce-set n by auto
from L1 have L2 : z = c-pair n x by auto
from L1 have L3 : x ∈ nat-to-ce-set n by auto
from L1 have L4 : c-fst z = n by simp
from L1 have L5 : c-snd z = x by simp
from L3 L4 L5 show c-snd z ∈ nat-to-ce-set (c-fst z) by auto

next
assume A: c-snd z ∈ nat-to-ce-set (c-fst z)
let ?n = c-fst z
let ?x = c-snd z
have L1 : z = c-pair ?n ?x by simp
from L1 A have z = c-pair ?n ?x ∧ ?x ∈ nat-to-ce-set ?n by auto
thus ∃n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n by blast

qed
qed
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then have { c-pair n x | n x. x ∈ nat-to-ce-set n } = { z. c-snd z ∈ nat-to-ce-set
(c-fst z)} by auto

then have S3 : univ-ce = { z. c-snd z ∈ nat-to-ce-set (c-fst z)} by (simp add:
univ-ce-def )

have S4 :
∧

z. (c-snd z ∈ nat-to-ce-set (c-fst z)) = (∃ y. p z y = 0 )
proof −

fix z show (c-snd z ∈ nat-to-ce-set (c-fst z)) = (∃ y. p z y = 0 )
proof

assume A: c-snd z ∈ nat-to-ce-set (c-fst z)
have nat-to-ce-set (c-fst z) = { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x y) = 0

} by (simp add: nat-to-ce-set-lm-1 )
with A obtain u where S4-1 : (nat-to-pr (c-fst z)) (c-pair (c-snd z) u) = 0

by auto
then have S4-2 : univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) u)) = 0 by

(simp add: univ-for-pr-lm)
from A-def have S4-3 : A = { c-pair x (univ-for-pr x) | x. x ∈ UNIV } by

(simp add: c-graph-def )
then have S4-4 :

∧
x. c-pair x (univ-for-pr x) ∈ A by auto

then have c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) (univ-for-pr (c-pair
(c-fst z) (c-pair (c-snd z) u))) ∈ A by auto

with S4-2 have S4-5 : c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) 0 ∈ A by
auto

with S2 obtain v where S4-6 : pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)
u)) 0 ) v = 0

by auto
define y where y = c-pair u v
from y-def have S4-7 : u = c-fst y by simp
from y-def have S4-8 : v = c-snd y by simp
from S4-6 S4-7 S4-8 p-def have p z y = 0 by simp
thus ∃ y. p z y = 0 ..

next
assume A: ∃ y. p z y = 0
then obtain y where S4-1 : p z y = 0 ..
from S4-1 p-def have S4-2 : pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)

(c-fst y))) 0 ) (c-snd y) = 0 by simp
with S2 have S4-3 : c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) 0 ∈

A by auto
with A-def have c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) 0 ∈

c-graph univ-for-pr by simp
then have S4-4 : 0 = univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))

by (rule c-graph-lm-1 )
then have S4-5 : univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) =

0 by auto
then have S4-6 : (nat-to-pr (c-fst z)) (c-pair (c-snd z) (c-fst y)) = 0 by

(simp add: univ-for-pr-lm)
then have S4-7 : ∃ y. (nat-to-pr (c-fst z)) (c-pair (c-snd z) y) = 0 ..
have S4-8 : nat-to-ce-set (c-fst z) = { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x

y) = 0 } by (simp add: nat-to-ce-set-lm-1 )
from S4-7 have S4-9 : c-snd z ∈ { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x y)
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= 0 } by auto
with S4-8 show c-snd z ∈ nat-to-ce-set (c-fst z) by auto

qed
qed
with S3 have univ-ce = {z. ∃ y. p z y = 0} by auto
then have univ-ce = fn-to-set p by (simp add: fn-to-set-def )
moreover from p-is-pr have fn-to-set p ∈ ce-sets by (rule ce-set-lm-1 )
ultimately show univ-ce ∈ ce-sets by auto

qed

lemma univ-ce-lm-1 : (c-pair n x ∈ univ-ce) = (x ∈ nat-to-ce-set n)
proof −
from univ-ce-def have S1 : univ-ce = {z . ∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set

n} by auto
have S2 : (∃ n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1 ) = (x ∈

nat-to-ce-set n)
proof

assume ∃n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1
then obtain n1 x1 where L1 : c-pair n x = c-pair n1 x1 and L2 : x1 ∈

nat-to-ce-set n1 by auto
from L1 have L3 : n = n1 by (rule c-pair-inj1 )
from L1 have L4 : x = x1 by (rule c-pair-inj2 )
from L2 L3 L4 show x ∈ nat-to-ce-set n by auto

next
assume A: x ∈ nat-to-ce-set n
then have c-pair n x = c-pair n x ∧ x ∈ nat-to-ce-set n by auto
thus ∃ n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1 by blast

qed
with S1 show ?thesis by auto

qed

theorem univ-ce-is-not-comp1 : − univ-ce /∈ ce-sets
proof (rule ccontr)

assume ¬ − univ-ce /∈ ce-sets
then have A: − univ-ce ∈ ce-sets by auto
define p where p x = c-pair x x for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
define A where A = { x. p x ∈ − univ-ce }
from A p-is-pr have { x. p x ∈ − univ-ce } ∈ ce-sets by (rule ce-set-lm-5 )
with A-def have S1 : A ∈ ce-sets by auto
then have ∃ n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where S2 : A = nat-to-ce-set n ..
from A-def have (n ∈ A) = (p n ∈ − univ-ce) by auto
with p-def have (n ∈ A) = (c-pair n n /∈ univ-ce) by auto
with univ-ce-def univ-ce-lm-1 have (n ∈ A) = (n /∈ nat-to-ce-set n) by auto
with S2 have (n ∈ A) = (n /∈ A) by auto
thus False by auto

qed
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theorem univ-ce-is-not-comp2 : ¬ total-recursive (chf univ-ce)
proof

assume total-recursive (chf univ-ce)
then have computable univ-ce by (rule tot-rec-impl-comp)
then have − univ-ce ∈ ce-sets by (unfold computable-def , auto)
with univ-ce-is-not-comp1 show False by auto

qed

theorem univ-ce-is-not-comp3 : ¬ computable univ-ce
proof (rule ccontr)

assume ¬ ¬ computable univ-ce
then have computable univ-ce by auto
then have total-recursive (chf univ-ce) by (rule comp-impl-tot-rec)
with univ-ce-is-not-comp2 show False by auto

qed

7.9 s-1-1 theorem, one-one and many-one reducibilities
definition

index-of-r-to-l :: nat where
index-of-r-to-l =
pair-by-index
(pair-by-index index-of-c-fst (comp-by-index index-of-c-fst index-of-c-snd))
(comp-by-index index-of-c-snd index-of-c-snd)

lemma index-of-r-to-l-lm: nat-to-pr index-of-r-to-l (c-pair x (c-pair y z)) = c-pair
(c-pair x y) z

apply(unfold index-of-r-to-l-def )
apply(simp add: pair-by-index-main)
apply(unfold c-f-pair-def )
apply(simp add: index-of-c-fst-main)
apply(simp add: comp-by-index-main)
apply(simp add: index-of-c-fst-main)
apply(simp add: index-of-c-snd-main)

done

definition
s-ce :: nat ⇒ nat ⇒ nat where
s-ce == (λ e x. s1-1 (comp-by-index e index-of-r-to-l) x)

lemma s-ce-is-pr : s-ce ∈ PrimRec2
unfolding s-ce-def using comp-by-index-is-pr s1-1-is-pr by prec

lemma s-ce-inj: s-ce e1 x1 = s-ce e2 x2 =⇒ e1=e2 ∧ x1=x2
proof −

let ?n1 = index-of-r-to-l
assume s-ce e1 x1 = s-ce e2 x2
then have s1-1 (comp-by-index e1 ?n1 ) x1 = s1-1 (comp-by-index e2 ?n1 ) x2

by (unfold s-ce-def )
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then have L1 : comp-by-index e1 ?n1 = comp-by-index e2 ?n1 ∧ x1=x2 by (rule
s1-1-inj)

from L1 have comp-by-index e1 ?n1 = comp-by-index e2 ?n1 ..
then have e1=e2 by (rule comp-by-index-inj1 )
moreover from L1 have x1=x2 by auto
ultimately show ?thesis by auto

qed

lemma s-ce-inj1 : s-ce e1 x = s-ce e2 x =⇒ e1=e2
proof −

assume s-ce e1 x = s-ce e2 x
then have e1=e2 ∧ x=x by (rule s-ce-inj)
then show e1=e2 by auto

qed

lemma s-ce-inj2 : s-ce e x1 = s-ce e x2 =⇒ x1=x2
proof −

assume s-ce e x1 = s-ce e x2
then have e=e ∧ x1=x2 by (rule s-ce-inj)
then show x1=x2 by auto

qed

theorem s1-1-th1 : ∀ n x y. ((nat-to-pr n) (c-pair x y)) = (nat-to-pr (s1-1 n x)) y
proof (rule allI , rule allI , rule allI )

fix n x y show nat-to-pr n (c-pair x y) = nat-to-pr (s1-1 n x) y
proof −

have (λ y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n x) by (rule s1-1-th)
then show ?thesis by (simp add: fun-eq-iff )

qed
qed

lemma s-lm: (nat-to-pr (s-ce e x)) (c-pair y z) = (nat-to-pr e) (c-pair (c-pair x
y) z)
proof −

let ?n1 = index-of-r-to-l
have (nat-to-pr (s-ce e x)) (c-pair y z) = nat-to-pr (s1-1 (comp-by-index e ?n1 )

x) (c-pair y z) by (unfold s-ce-def , simp)
also have . . . = (nat-to-pr (comp-by-index e ?n1 )) (c-pair x (c-pair y z)) by

(simp add: s1-1-th1 )
also have . . . = (nat-to-pr e) ((nat-to-pr ?n1 ) (c-pair x (c-pair y z))) by (simp

add: comp-by-index-main)
finally show ?thesis by (simp add: index-of-r-to-l-lm)

qed

theorem s-ce-1-1-th: (c-pair x y ∈ nat-to-ce-set e) = (y ∈ nat-to-ce-set (s-ce e x))
proof

assume A: c-pair x y ∈ nat-to-ce-set e
then obtain z where L1 : (nat-to-pr e) (c-pair (c-pair x y) z) = 0

by (auto simp add: nat-to-ce-set-lm-1 )
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have (nat-to-pr (s-ce e x)) (c-pair y z) = 0 by (simp add: s-lm L1 )
with nat-to-ce-set-lm-1 show y ∈ nat-to-ce-set (s-ce e x) by auto

next
assume A: y ∈ nat-to-ce-set (s-ce e x)
then obtain z where L1 : (nat-to-pr (s-ce e x)) (c-pair y z) = 0

by (auto simp add: nat-to-ce-set-lm-1 )
then have (nat-to-pr e) (c-pair (c-pair x y) z) = 0 by (simp add: s-lm)
with nat-to-ce-set-lm-1 show c-pair x y ∈ nat-to-ce-set e by auto

qed

definition
one-reducible-to-via :: (nat set) ⇒ (nat set) ⇒ (nat ⇒ nat) ⇒ bool where
one-reducible-to-via = (λ A B f . total-recursive f ∧ inj f ∧ (∀ x. (x ∈ A) = (f x
∈ B)))

definition
one-reducible-to :: (nat set) ⇒ (nat set) ⇒ bool where
one-reducible-to = (λ A B. ∃ f . one-reducible-to-via A B f )

definition
many-reducible-to-via :: (nat set) ⇒ (nat set) ⇒ (nat ⇒ nat) ⇒ bool where
many-reducible-to-via = (λ A B f . total-recursive f ∧ (∀ x. (x ∈ A) = (f x ∈

B)))

definition
many-reducible-to :: (nat set) ⇒ (nat set) ⇒ bool where
many-reducible-to = (λ A B. ∃ f . many-reducible-to-via A B f )

lemma one-reducible-to-via-trans: [[ one-reducible-to-via A B f ; one-reducible-to-via
B C g ]] =⇒ one-reducible-to-via A C (g o f )
proof −

assume A1 : one-reducible-to-via A B f
assume A2 : one-reducible-to-via B C g
from A1 have f-tr : total-recursive f by (unfold one-reducible-to-via-def , auto)
from A1 have f-inj: inj f by (unfold one-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold one-reducible-to-via-def ,

auto)
from A2 have g-tr : total-recursive g by (unfold one-reducible-to-via-def , auto)
from A2 have g-inj: inj g by (unfold one-reducible-to-via-def , auto)
from A2 have L2 : ∀ x. (x ∈ B) = (g x ∈ C ) by (unfold one-reducible-to-via-def ,

auto)
from g-tr f-tr have fg-tr : total-recursive (g o f ) by (rule comp-tot-rec)
from g-inj f-inj have fg-inj: inj (g o f ) by (rule inj-compose)
from L1 L2 have L3 : (∀ x. (x ∈ A) = ((g o f ) x ∈ C )) by auto
with fg-tr fg-inj show ?thesis by (unfold one-reducible-to-via-def , auto)

qed

lemma one-reducible-to-trans: [[ one-reducible-to A B; one-reducible-to B C ]] =⇒
one-reducible-to A C
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proof −
assume one-reducible-to A B
then obtain f where A1 : one-reducible-to-via A B f unfolding one-reducible-to-def

by auto
assume one-reducible-to B C
then obtain g where A2 : one-reducible-to-via B C g unfolding one-reducible-to-def

by auto
from A1 A2 have one-reducible-to-via A C (g o f ) by (rule one-reducible-to-via-trans)
then show ?thesis unfolding one-reducible-to-def by auto

qed

lemma one-reducible-to-via-refl: one-reducible-to-via A A (λ x. x)
proof −

have is-pr : (λ x. x) ∈ PrimRec1 by (rule pr-id1-1 )
then have is-tr : total-recursive (λ x. x) by (rule pr-is-total-rec)
have is-inj: inj (λ x. x) by simp
have L1 : ∀ x. (x ∈ A) = (((λ x. x) x) ∈ A) by simp
with is-tr is-inj show ?thesis by (unfold one-reducible-to-via-def , auto)

qed

lemma one-reducible-to-refl: one-reducible-to A A
proof −

have one-reducible-to-via A A (λ x. x) by (rule one-reducible-to-via-refl)
then show ?thesis by (unfold one-reducible-to-def , auto)

qed

lemma many-reducible-to-via-trans: [[ many-reducible-to-via A B f ; many-reducible-to-via
B C g ]] =⇒ many-reducible-to-via A C (g o f )
proof −

assume A1 : many-reducible-to-via A B f
assume A2 : many-reducible-to-via B C g
from A1 have f-tr : total-recursive f by (unfold many-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold many-reducible-to-via-def ,

auto)
from A2 have g-tr : total-recursive g by (unfold many-reducible-to-via-def , auto)
from A2 have L2 : ∀ x. (x ∈ B) = (g x ∈ C ) by (unfold many-reducible-to-via-def ,

auto)
from g-tr f-tr have fg-tr : total-recursive (g o f ) by (rule comp-tot-rec)
from L1 L2 have L3 : (∀ x. (x ∈ A) = ((g o f ) x ∈ C )) by auto
with fg-tr show ?thesis by (unfold many-reducible-to-via-def , auto)

qed

lemma many-reducible-to-trans: [[ many-reducible-to A B; many-reducible-to B C
]] =⇒ many-reducible-to A C
proof −

assume many-reducible-to A B
then obtain f where A1 : many-reducible-to-via A B f

unfolding many-reducible-to-def by auto
assume many-reducible-to B C
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then obtain g where A2 : many-reducible-to-via B C g
unfolding many-reducible-to-def by auto

from A1 A2 have many-reducible-to-via A C (g o f ) by (rule many-reducible-to-via-trans)
then show ?thesis unfolding many-reducible-to-def by auto

qed

lemma one-reducibility-via-is-many: one-reducible-to-via A B f =⇒ many-reducible-to-via
A B f
proof −

assume A: one-reducible-to-via A B f
from A have f-tr : total-recursive f by (unfold one-reducible-to-via-def , auto)
from A have ∀ x. (x ∈ A) = (f x ∈ B) by (unfold one-reducible-to-via-def , auto)
with f-tr show ?thesis by (unfold many-reducible-to-via-def , auto)

qed

lemma one-reducibility-is-many: one-reducible-to A B =⇒ many-reducible-to A B
proof −

assume one-reducible-to A B
then obtain f where A: one-reducible-to-via A B f

unfolding one-reducible-to-def by auto
then have many-reducible-to-via A B f by (rule one-reducibility-via-is-many)
then show ?thesis unfolding many-reducible-to-def by auto

qed

lemma many-reducible-to-via-refl: many-reducible-to-via A A (λ x. x)
proof −

have one-reducible-to-via A A (λ x. x) by (rule one-reducible-to-via-refl)
then show ?thesis by (rule one-reducibility-via-is-many)

qed

lemma many-reducible-to-refl: many-reducible-to A A
proof −

have one-reducible-to A A by (rule one-reducible-to-refl)
then show ?thesis by (rule one-reducibility-is-many)

qed

theorem m-red-to-comp: [[ many-reducible-to A B; computable B ]] =⇒ computable
A
proof −

assume many-reducible-to A B
then obtain f where A1 : many-reducible-to-via A B f

unfolding many-reducible-to-def by auto
from A1 have f-tr : total-recursive f by (unfold many-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold many-reducible-to-via-def ,

auto)
assume computable B
then have L2 : total-recursive (chf B) by (rule comp-impl-tot-rec)
have L3 : chf A = (chf B) o f
proof fix x
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have chf A x = (chf B) (f x)
proof cases

assume A: x ∈ A
then have L3-1 : chf A x = 0 by (simp add: chf-lm-2 )
from A L1 have f x ∈ B by auto
then have L3-2 : (chf B) (f x) = 0 by (simp add: chf-lm-2 )
from L3-1 L3-2 show chf A x = (chf B) (f x) by auto

next
assume A: x /∈ A
then have L3-1 : chf A x = 1 by (simp add: chf-lm-3 )
from A L1 have f x /∈ B by auto
then have L3-2 : (chf B) (f x) = 1 by (simp add: chf-lm-3 )
from L3-1 L3-2 show chf A x = (chf B) (f x) by auto

qed
then show chf A x = (chf B ◦ f ) x by auto

qed
from L2 f-tr have total-recursive (chf B ◦ f ) by (rule comp-tot-rec)
with L3 have total-recursive (chf A) by auto
then show ?thesis by (rule tot-rec-impl-comp)

qed

lemma many-reducible-lm-1 : many-reducible-to univ-ce A =⇒ ¬ computable A
proof (rule ccontr)

assume A1 : many-reducible-to univ-ce A
assume ¬ ¬ computable A
then have A2 : computable A by auto
from A1 A2 have computable univ-ce by (rule m-red-to-comp)
with univ-ce-is-not-comp3 show False by auto

qed

lemma one-reducible-lm-1 : one-reducible-to univ-ce A =⇒ ¬ computable A
proof −

assume one-reducible-to univ-ce A
then have many-reducible-to univ-ce A by (rule one-reducibility-is-many)
then show ?thesis by (rule many-reducible-lm-1 )

qed

lemma one-reducible-lm-2 : one-reducible-to-via (nat-to-ce-set n) univ-ce (λ x. c-pair
n x)
proof −

define f where f x = c-pair n x for x
have f-is-pr : f ∈ PrimRec1 unfolding f-def by prec
then have f-tr : total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI )

fix x y assume A: f x = f y
then have c-pair n x = c-pair n y by (unfold f-def )
then show x = y by (rule c-pair-inj2 )

qed
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have ∀ x. (x ∈ (nat-to-ce-set n)) = (f x ∈ univ-ce)
proof fix x show (x ∈ nat-to-ce-set n) = (f x ∈ univ-ce) by (unfold f-def , simp

add: univ-ce-lm-1 )
qed
with f-tr f-inj show ?thesis by (unfold f-def , unfold one-reducible-to-via-def ,

auto)
qed

lemma one-reducible-lm-3 : one-reducible-to (nat-to-ce-set n) univ-ce
proof −

have one-reducible-to-via (nat-to-ce-set n) univ-ce (λ x. c-pair n x) by (rule
one-reducible-lm-2 )

then show ?thesis by (unfold one-reducible-to-def , auto)
qed

lemma one-reducible-lm-4 : A ∈ ce-sets =⇒ one-reducible-to A univ-ce
proof −

assume A ∈ ce-sets
then have ∃ n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where A = nat-to-ce-set n by auto
with one-reducible-lm-3 show ?thesis by auto

qed

7.10 One-complete sets
definition

one-complete :: nat set ⇒ bool where
one-complete = (λ A. A ∈ ce-sets ∧ (∀ B. B ∈ ce-sets −→ one-reducible-to B

A))

theorem univ-is-complete: one-complete univ-ce
proof (unfold one-complete-def )

show univ-ce ∈ ce-sets ∧ (∀B. B ∈ ce-sets −→ one-reducible-to B univ-ce)
proof

show univ-ce ∈ ce-sets by (rule univ-is-ce)
next

show ∀B. B ∈ ce-sets −→ one-reducible-to B univ-ce
proof (rule allI , rule impI )

fix B assume B ∈ ce-sets then show one-reducible-to B univ-ce by (rule
one-reducible-lm-4 )

qed
qed

qed

7.11 Index sets, Rice’s theorem
definition

index-set :: nat set ⇒ bool where
index-set = (λ A. ∀ n m. n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) −→ m ∈

A)
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lemma index-set-lm-1 : [[ index-set A; n∈ A; nat-to-ce-set n = nat-to-ce-set m ]]
=⇒ m ∈ A
proof −

assume A1 : index-set A
assume A2 : n ∈ A
assume A3 : nat-to-ce-set n = nat-to-ce-set m
from A2 A3 have L1 : n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) by auto
from A1 have L2 : ∀ n m. n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) −→ m
∈ A by (unfold index-set-def )

from L1 L2 show ?thesis by auto
qed

lemma index-set-lm-2 : index-set A =⇒ index-set (−A)
proof −

assume A: index-set A
show index-set (−A)
proof (unfold index-set-def )

show ∀n m. n ∈ − A ∧ nat-to-ce-set n = nat-to-ce-set m −→ m ∈ − A
proof (rule allI , rule allI , rule impI )

fix n m assume A1 : n ∈ − A ∧ nat-to-ce-set n = nat-to-ce-set m
from A1 have A2 : n ∈ −A by auto
from A1 have A3 : nat-to-ce-set m = nat-to-ce-set n by auto
show m ∈ − A
proof

assume m ∈ A
from A this A3 have n ∈ A by (rule index-set-lm-1 )
with A2 show False by auto

qed
qed

qed
qed

lemma Rice-lm-1 : [[ index-set A; A 6= {}; A 6= UNIV ; ∃ n ∈ A. nat-to-ce-set n =
{} ]] =⇒ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
assume ∃ n ∈ A. nat-to-ce-set n = {}
then obtain e-0 where e-0-in-A: e-0 ∈ A and e-0-empty: nat-to-ce-set e-0 =
{} by auto

from e-0-in-A A3 obtain e-1 where e-1-not-in-A: e-1 ∈ (− A) by auto
with e-0-in-A have e-0-neq-e-1 : e-0 6= e-1 by auto
have nat-to-ce-set e-0 6= nat-to-ce-set e-1
proof

assume nat-to-ce-set e-0 = nat-to-ce-set e-1
with A1 e-0-in-A have e-1 ∈ A by (rule index-set-lm-1 )
with e-1-not-in-A show False by auto
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qed
with e-0-empty have e1-not-empty: nat-to-ce-set e-1 6= {} by auto
define we-1 where we-1 = nat-to-ce-set e-1
from e1-not-empty have we-1-not-empty: we-1 6= {} by (unfold we-1-def )
define r where r = univ-ce × we-1
have loc-lm-1 :

∧
x. x ∈ univ-ce =⇒ ∀ y. (y ∈ we-1 ) = ((x,y) ∈ r) by (unfold

r-def , auto)
have loc-lm-2 :

∧
x. x /∈ univ-ce =⇒ ∀ y. (y ∈ {}) = ((x,y) ∈ r) by (unfold

r-def , auto)
have r-ce: r ∈ ce-rels
proof (unfold r-def , rule ce-rel-lm-29 )

show univ-ce ∈ ce-sets by (rule univ-is-ce)
show we-1 ∈ ce-sets by (unfold we-1-def , rule nat-to-ce-set-into-ce)

qed
define we-n where we-n = ce-rel-to-set r
from r-ce have we-n-ce: we-n ∈ ce-sets by (unfold we-n-def , rule ce-rel-lm-6 )
then have ∃ n. we-n = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where we-n-df1 : we-n = nat-to-ce-set n by auto
define f where f x = s-ce n x for x
from s-ce-is-pr have f-is-pr : f ∈ PrimRec1 unfolding f-def by prec
then have f-tr : total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI )

fix x y
assume f x = f y
then have s-ce n x = s-ce n y by (unfold f-def )
then show x = y by (rule s-ce-inj2 )

qed
have loc-lm-3 : ∀ x y. (c-pair x y ∈ we-n) = (y ∈ nat-to-ce-set (f x))
proof (rule allI , rule allI )

fix x y show (c-pair x y ∈ we-n) = (y ∈ nat-to-ce-set (f x)) by (unfold f-def ,
unfold we-n-df1 , simp add: s-ce-1-1-th)

qed
from A1 have loc-lm-4 : index-set (− A) by (rule index-set-lm-2 )
have loc-lm-5 : ∀ x. (x ∈ univ-ce) = (f x ∈ −A)
proof fix x show (x ∈ univ-ce) = (f x ∈ −A)

proof
assume A: x ∈ univ-ce
then have S1 : ∀ y. (y ∈ we-1 ) = ((x,y) ∈ r) by (rule loc-lm-1 )
from ce-rel-lm-12 have ∀ y. (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r) by

auto
then have ∀ y. ((x,y) ∈ r) = (c-pair x y ∈ we-n) by (unfold we-n-def , auto)
with S1 have ∀ y. (y ∈ we-1 ) = (c-pair x y ∈ we-n) by auto
with loc-lm-3 have ∀ y. (y ∈ we-1 ) = (y ∈ nat-to-ce-set (f x)) by auto
then have S2 : we-1 = nat-to-ce-set (f x) by auto
then have nat-to-ce-set e-1 = nat-to-ce-set (f x) by (unfold we-1-def )
with loc-lm-4 e-1-not-in-A show f x ∈ −A by (rule index-set-lm-1 )

next
show f x ∈ − A =⇒ x ∈ univ-ce
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proof (rule ccontr)
assume fx-in-A: f x ∈ − A
assume x-not-in-univ: x /∈ univ-ce
then have S1 : ∀ y. (y ∈ {}) = ((x,y) ∈ r) by (rule loc-lm-2 )
from ce-rel-lm-12 have ∀ y. (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r) by

auto
then have ∀ y. ((x,y) ∈ r) = (c-pair x y ∈ we-n) by (unfold we-n-def ,

auto)
with S1 have ∀ y. (y ∈ {}) = (c-pair x y ∈ we-n) by auto
with loc-lm-3 have ∀ y. (y ∈ {}) = (y ∈ nat-to-ce-set (f x)) by auto
then have S2 : {} = nat-to-ce-set (f x) by auto
then have nat-to-ce-set e-0 = nat-to-ce-set (f x) by (unfold e-0-empty)
with A1 e-0-in-A have f x ∈ A by (rule index-set-lm-1 )
with fx-in-A show False by auto

qed
qed

qed
with f-tr f-inj have one-reducible-to-via univ-ce (−A) f by (unfold one-reducible-to-via-def ,

auto)
then show ?thesis by (unfold one-reducible-to-def , auto)

qed

lemma Rice-lm-2 : [[ index-set A; A 6= {}; A 6= UNIV ; n ∈ A; nat-to-ce-set n =
{} ]] =⇒ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
assume A4 : n ∈ A
assume A5 : nat-to-ce-set n = {}
from A4 A5 have S1 : ∃ n ∈ A. nat-to-ce-set n = {} by auto
from A1 A2 A3 S1 show ?thesis by (rule Rice-lm-1 )

qed

theorem Rice-1 : [[ index-set A; A 6= {}; A 6= UNIV ]] =⇒ one-reducible-to univ-ce
A ∨ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
from ce-empty have ∃ n. {} = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where n-empty: nat-to-ce-set n = {} by auto
show ?thesis
proof cases

assume A: n ∈ A
from A1 A2 A3 A n-empty have one-reducible-to univ-ce (− A) by (rule

Rice-lm-2 )
then show ?thesis by auto

next
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assume n /∈ A then have A: n ∈ − A by auto
from A1 have S1 : index-set (− A) by (rule index-set-lm-2 )
from A3 have S2 : − A 6= {} by auto
from A2 have S3 : − A 6= UNIV by auto
from S1 S2 S3 A n-empty have one-reducible-to univ-ce (− (− A)) by (rule

Rice-lm-2 )
then have one-reducible-to univ-ce A by simp
then show ?thesis by auto

qed
qed

theorem Rice-2 : [[ index-set A; A 6= {}; A 6= UNIV ]] =⇒ ¬ computable A
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
from A1 A2 A3 have one-reducible-to univ-ce A ∨ one-reducible-to univ-ce (−

A) by (rule Rice-1 )
then have S1 : ¬ one-reducible-to univ-ce A −→ one-reducible-to univ-ce (− A)

by auto
show ?thesis
proof cases

assume one-reducible-to univ-ce A
then show ¬ computable A by (rule one-reducible-lm-1 )

next
assume ¬ one-reducible-to univ-ce A
with S1 have one-reducible-to univ-ce (− A) by auto
then have ¬ computable (− A) by (rule one-reducible-lm-1 )
with computable-complement-3 show ¬ computable A by auto

qed
qed

theorem Rice-3 : [[ C ⊆ ce-sets; computable { n. nat-to-ce-set n ∈ C} ]] =⇒ C =
{} ∨ C = ce-sets
proof (rule ccontr)

assume A1 : C ⊆ ce-sets
assume A2 : computable { n. nat-to-ce-set n ∈ C}
assume A3 : ¬ (C = {} ∨ C = ce-sets)
from A3 have A4 : C 6= {} by auto
from A3 have A5 : C 6= ce-sets by auto
define A where A = { n. nat-to-ce-set n ∈ C}
have S1 : index-set A
proof (unfold index-set-def )

show ∀n m. n ∈ A ∧ nat-to-ce-set n = nat-to-ce-set m −→ m ∈ A
proof (rule allI , rule allI , rule impI )

fix n m assume A1-1 : n ∈ A ∧ nat-to-ce-set n = nat-to-ce-set m
from A1-1 have n ∈ A by auto
then have S1-1 : nat-to-ce-set n ∈ C by (unfold A-def , auto)
from A1-1 have nat-to-ce-set n = nat-to-ce-set m by auto
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with S1-1 have nat-to-ce-set m ∈ C by auto
then show m ∈ A by (unfold A-def , auto)

qed
qed
have S2 : A 6= {}
proof −

from A4 obtain B where S2-1 : B ∈ C by auto
with A1 have B ∈ ce-sets by auto
then have ∃ n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with S2-1 have nat-to-ce-set n ∈ C by auto
then show ?thesis by (unfold A-def , auto)

qed
have S3 : A 6= UNIV
proof −

from A1 A5 obtain B where S2-1 : B /∈ C and S2-2 : B ∈ ce-sets by auto
from S2-2 have ∃ n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with S2-1 have nat-to-ce-set n /∈ C by auto
then show ?thesis by (unfold A-def , auto)

qed
from S1 S2 S3 have ¬ computable A by (rule Rice-2 )
with A2 show False unfolding A-def by auto

qed

end
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