Recursion Theory I

Michael Nedzelsky

March 17, 2025

Abstract

This document presents the formalization of introductory material from recursion theory — definitions and basic properties of primitive recursive functions, Cantor pairing function and computably enumerable sets (including a proof of existence of a one-complete computably enumerable set and a proof of the Rice's theorem).

Contents

1	Cantor pairing function		
	1.1	Pairing function	2
	1.2	Inverse mapping	7
2	Primitive recursive functions		
	2.1	Basic definitions	12
	2.2	Bounded least operator	22
	2.3	Examples	29
3	Pri	mitive recursive coding of lists of natural numbers	35
4	Pri	mitive recursive functions of one variable	55
	4.1	Alternative definition of primitive recursive functions of one	
		variable	55
	4.2	The scheme datatype	60
	4.3	Indexes of primitive recursive functions of one variables	66
	4.4	s-1-1 theorem for primitive recursive functions of one variable	69
5	Finite sets		75
6	The	e function which is universal for primitive recursive func-	
		s of one variable	98

7	Con	nputably enumerable sets of natural numbers	128
	7.1	Basic definitions	128
	7.2	Basic properties of computably enumerable sets	128
	7.3	Enumeration of computably enumerable sets	133
	7.4	Characteristic functions	134
	7.5	Computably enumerable relations	135
	7.6	Total computable functions	148
	7.7	Computable sets, Post's theorem	151
	7.8	Universal computably enumerable set	154
	7.9	s-1-1 theorem, one-one and many-one reducibilities	157
	7.10	One-complete sets	163
	7.11	Index sets, Rice's theorem	163

1 Cantor pairing function

theory *CPair* imports *Main* begin

We introduce a particular coding c-pair from ordered pairs of natural numbers to natural numbers. See [1] and the Isabelle documentation for more information.

1.1 Pairing function

definition

 $sf :: nat \Rightarrow nat$ where sf-def: sf x = x * (x+1) div 2

definition

c-pair :: $nat \Rightarrow nat \Rightarrow nat$ where *c*-pair $x \ y = sf(x+y) + x$

lemma sf-at-0: sf 0 = 0 by (simp add: sf-def)

lemma sf-at-1: sf 1 = 1 by (simp add: sf-def)

lemma sf-at-Suc: sf (x+1) = sf x + x + 1 **proof** – **have** S1: sf (x+1) = ((x+1)*(x+2)) div 2 by (simp add: sf-def) **have** S2: (x+1)*(x+2) = x*(x+1) + 2*(x+1) by (auto) **have** S2-1: $\bigwedge x y. x=y \implies x \text{ div } 2 = y \text{ div } 2$ by auto from S2 **have** S3: (x+1)*(x+2) div 2 = (x*(x+1) + 2*(x+1)) div 2 by (rule S2-1) **have** S4: (0::nat) < 2 by (auto) from S4 **have** S5: (x*(x+1) + 2*(x+1)) div 2 = (x+1) + x*(x+1) div 2 by simp

```
from S1 S3 S5 show ?thesis by (simp add: sf-def)
qed
lemma arg-le-sf: x \leq sf x
proof –
 have x + x \le x*(x + 1) by simp
 hence (x + x) \operatorname{div} 2 \leq x * (x+1) \operatorname{div} 2 by (rule div-le-mono)
 hence x \leq x*(x+1) div 2 by simp
 thus ?thesis by (simp add: sf-def)
qed
lemma sf-mono: x \leq y \Longrightarrow sf x \leq sf y
proof -
 assume A1: x \leq y
 then have x+1 \leq y+1 by (auto)
 with A1 have x*(x+1) \leq y*(y+1) by (rule mult-le-mono)
 then have x*(x+1) div 2 \le y*(y+1) div 2 by (rule div-le-mono)
 thus ?thesis by (simp add: sf-def)
qed
lemma sf-strict-mono: x < y \implies sf x < sf y
proof -
 assume A1: x < y
 from A1 have S1: x+1 \leq y by simp
 from S1 sf-mono have S2: sf (x+1) \leq sf y by (auto)
 from sf-at-Suc have S3: sf x < sf(x+1) by (auto)
 from S2 S3 show ?thesis by (auto)
qed
lemma sf-posI: x > 0 \implies sf(x) > 0
proof -
 assume A1: x > 0
 then have sf(\theta) < sf(x) by (rule sf-strict-mono)
 then show ?thesis by simp
qed
lemma arg-less-sf: x > 1 \implies x < sf(x)
proof –
 assume A1: x > 1
 let ?y = x - (1::nat)
 from A1 have S1: x = ?y+1 by simp
 from A1 have ?y > 0 by simp
 then have S2: sf(?y) > 0 by (rule sf-posI)
 have sf(?y+1) = sf(?y) + ?y + 1 by (rule sf-at-Suc)
 with S1 have sf(x) = sf(?y) + x by simp
 with S2 show ?thesis by simp
ged
```

lemma sf-eq-arg: sf $x = x \Longrightarrow x \leq 1$

proof – assume sf(x) = xthen have \neg (x < sf(x)) by simp then have $(\neg (x > 1))$ by (auto simp add: arg-less-sf) then show ?thesis by simp qed **lemma** sf-le-sfD: sf $x \leq sf y \implies x \leq y$ proof assume A1: sf $x \leq sf y$ have S1: $y < x \implies sf \ y < sf \ x$ by (rule sf-strict-mono) have S2: $y < x \lor x \leq y$ by (auto) from A1 S1 S2 show ?thesis by (auto) qed lemma sf-less-sfD: sf $x < sf y \implies x < y$ proof assume A1: sf x < sf yhave S1: $y \leq x \Longrightarrow sf y \leq sf x$ by (rule sf-mono) have S2: $y \leq x \lor x < y$ by (auto) from A1 S1 S2 show ?thesis by (auto) qed **lemma** sf-inj: sf $x = sf y \implies x = y$ proof **assume** A1: sf x = sf yhave S1: sf $x \leq sf y \implies x \leq y$ by (rule sf-le-sfD) have S2: sf $y \leq sf x \implies y \leq x$ by (rule sf-le-sfD) from A1 have S3: sf $x \leq sf y \wedge sf y \leq sf x$ by (auto) from S3 S1 S2 have S4: $x \leq y \land y \leq x$ by (auto) from S4 show ?thesis by (auto) qed Auxiliary lemmas **lemma** sf-aux1: $x + y < z \implies sf(x+y) + x < sf(z)$ proof assume A1: x+y < zfrom A1 have S1: $x+y+1 \leq z$ by (auto) from S1 have S2: $sf(x+y+1) \leq sf(z)$ by (rule sf-mono) have S3: sf(x+y+1) = sf(x+y) + (x+y)+1 by (rule sf-at-Suc) from S3 S2 have S4: $sf(x+y) + (x+y) + 1 \le sf(z)$ by (auto) from S4 show ?thesis by (auto) qed **lemma** sf-aux2: $sf(z) \leq sf(x+y) + x \Longrightarrow z \leq x+y$ proof – assume A1: $sf(z) \leq sf(x+y) + x$ from A1 have $S1: \neg sf(x+y) + x < sf(z)$ by (auto) from S1 sf-aux1 have S2: $\neg x+y < z$ by (auto)

```
from S2 show ?thesis by (auto)
qed
lemma sf-aux3: sf(z) + m < sf(z+1) \Longrightarrow m \le z
proof –
 assume A1: sf(z) + m < sf(z+1)
 have S1: sf(z+1) = sf(z) + z + 1 by (rule sf-at-Suc)
 from A1 S1 have S2: sf(z) + m < sf(z) + z + 1 by (auto)
 from S2 have S3: m < z + 1 by (auto)
 from S3 show ?thesis by (auto)
qed
lemma sf-aux4: (s::nat) < t \implies (sf s) + s < sf t
proof -
 assume A1: (s::nat) < t
 have s*(s + 1) + 2*(s+1) < t*(t+1)
 proof -
   from A1 have S1: (s::nat) + 1 \le t by (auto)
   from A1 have (s::nat) + 2 \le t+1 by (auto)
   with S1 have ((s::nat)+1)*(s+2) \leq t*(t+1) by (rule mult-le-mono)
   thus ?thesis by (auto)
 \mathbf{qed}
 then have S1: (s*(s+1) + 2*(s+1)) div 2 \le t*(t+1) div 2 by (rule div-le-mono)
 have (0::nat) < 2 by (auto)
 then have (s*(s+1) + 2*(s+1)) div 2 = (s+1) + (s*(s+1)) div 2 by simp
 with S1 have (s*(s+1)) div 2 + (s+1) \le t*(t+1) div 2 by (auto)
 then have (s*(s+1)) div 2 + s < t*(t+1) div 2 by (auto)
 thus ?thesis by (simp add: sf-def)
qed
Basic properties of c pair function
lemma sum-le-c-pair: x + y \leq c-pair x y
proof –
 have x+y \leq sf(x+y) by (rule arg-le-sf)
 thus ?thesis by (simp add: c-pair-def)
qed
lemma arg1-le-c-pair: x \leq c-pair x y
proof -
 have (x::nat) \leq x + y by (simp)
 moreover have x + y \leq c-pair x y by (rule sum-le-c-pair)
 ultimately show ?thesis by (simp)
qed
lemma arg2-le-c-pair: y \leq c-pair x y
proof –
 have (y::nat) \leq x + y by (simp)
 moreover have x + y \leq c-pair x y by (rule sum-le-c-pair)
 ultimately show ?thesis by (simp)
```

\mathbf{qed}

lemma c-pair-sum-mono: $(x1::nat) + y1 < x2 + y2 \implies$ c-pair x1 y1 < c-pair x2 y2proof – **assume** (x1::nat) + y1 < x2 + y2hence $sf(x_1+y_1) + (x_1+y_1) < sf(x_2+y_2)$ by (rule sf-aux4) hence $sf(x_1+y_1) + x_1 < sf(x_2+y_2) + x_2$ by (auto) thus ?thesis by (simp add: c-pair-def) qed **lemma** c-pair-sum-inj: c-pair x1 y1 = c-pair x2 $y2 \Longrightarrow x1 + y1 = x2 + y2$ proof assume A1: c-pair x1 y1 = c-pair x2 y2have S1: $(x1::nat) + y1 < x2 + y2 \implies c\text{-pair } x1 \ y1 \neq c\text{-pair } x2 \ y2$ by (rule less-not-refl3, rule c-pair-sum-mono, auto) have S2: $(x2::nat) + y2 < x1 + y1 \implies c\text{-pair } x1 \ y1 \neq c\text{-pair } x2 \ y2$ by (rule less-not-refl2, rule c-pair-sum-mono, auto) from S1 S2 have $(x_1::nat) + y_1 \neq x_2 + y_2 \implies c$ -pair x1 $y_1 \neq c$ -pair x2 y_2 **by** (*arith*) with A1 show ?thesis by (auto) qed **lemma** *c*-pair-inj: *c*-pair x1 y1 = c-pair x2 $y2 \Longrightarrow x1 = x2 \land y1 = y2$ proof assume A1: c-pair x1 y1 = c-pair x2 y2 from A1 have S1: x1 + y1 = x2 + y2 by (rule c-pair-sum-inj) from A1 have S2: sf (x1+y1) + x1 = sf(x2+y2) + x2 by (unfold c-pair-def) from S1 S2 have S3: x1 = x2 by (simp)from S1 S3 have S4: y1 = y2 by (simp)from S3 S4 show ?thesis by (auto) qed **lemma** c-pair-inj1: c-pair x1 y1 = c-pair x2 y2 \implies x1 = x2 by (frule c-pair-inj, drule conjunct1) **lemma** *c*-pair-inj2: *c*-pair x1 y1 = *c*-pair x2 y2 \implies y1 = y2 by (frule *c*-pair-inj, drule conjunct2) **lemma** *c*-pair-strict-mono1: $x1 < x2 \implies c$ -pair x1 y < c-pair x2 yproof assume x1 < x2then have x1 + y < x2 + y by simp then show ?thesis by (rule c-pair-sum-mono) qed **lemma** *c*-pair-mono1: $x1 \leq x2 \implies c$ -pair $x1 y \leq c$ -pair x2 yproof assume A1: $x1 \le x2$

```
show ?thesis
 proof cases
   assume x1 < x2
   then have c-pair x1 y < c-pair x2 y by (rule c-pair-strict-mono1)
   then show ?thesis by simp
 next
   assume \neg x1 < x2
   with A1 have x1 = x2 by simp
   then show ?thesis by simp
 qed
qed
lemma c-pair-strict-mono2: y1 < y2 \implies c-pair x y1 < c-pair x y2
proof -
 assume A1: y1 < y2
 from A1 have S1: x + y1 < x + y2 by simp
 then show ?thesis by (rule c-pair-sum-mono)
qed
lemma c-pair-mono2: y1 \le y2 \implies c-pair x y1 \le c-pair x y2
proof –
 assume A1: y1 \le y2
 \mathbf{show}~? thesis
 proof cases
   assume y1 < y2
   then have c-pair x y_1 < c-pair x y_2 by (rule c-pair-strict-mono2)
   then show ?thesis by simp
 next
   assume \neg y1 < y2
   with A1 have y1 = y2 by simp
   then show ?thesis by simp
 qed
\mathbf{qed}
```

```
1.2 Inverse mapping
```

c-fst and *c-snd* are the functions which yield the inverse mapping to *c-pair*.

definition

c-sum :: $nat \Rightarrow nat$ where *c-sum* u = (LEAST z. u < sf(z+1))

definition

c-fst :: nat \Rightarrow nat where c-fst u = u - sf (c-sum u)

definition

 $c\text{-snd} :: nat \Rightarrow nat$ where c-snd u = c-sum u - c-fst u

```
lemma arg-less-sf-at-Suc-of-c-sum: u < sf((c-sum u) + 1)
proof -
 have u+1 \leq sf(u+1) by (rule arg-le-sf)
 hence u < sf(u+1) by simp
 thus ?thesis by (unfold c-sum-def, rule LeastI)
qed
lemma arg-less-sf-imp-c-sum-less-arg: u < sf(x) \implies c-sum u < x
proof –
 assume A1: u < sf(x)
 then show ?thesis
 proof (cases x)
   assume x=0
   with A1 show ?thesis by (simp add: sf-def)
 \mathbf{next}
   fix y
   assume A2: x = Suc y
   show ?thesis
   proof -
    from A1 A2 have u < sf(y+1) by simp
    hence (Least (\%z. u < sf (z+1))) \le y by (rule Least-le)
    hence c-sum u \leq y by (fold c-sum-def)
    with A2 show ?thesis by simp
   qed
 qed
qed
lemma sf-c-sum-le-arg: u \ge sf (c-sum u)
proof -
 let ?z = c-sum u
 from arg-less-sf-at-Suc-of-c-sum have S1: u < sf(?z+1) by (auto)
 have S2: \neg c\text{-sum } u < c\text{-sum } u by (auto)
 from arg-less-sf-imp-c-sum-less-arg S2 have S3: \neg u < sf (c-sum u) by (auto)
 from S3 show ?thesis by (auto)
qed
lemma c-sum-le-arg: c-sum u \leq u
proof –
 have c-sum u \leq sf (c-sum u) by (rule arg-le-sf)
 moreover have sf(c\text{-sum } u) \leq u by (rule sf-c-sum-le-arg)
 ultimately show ?thesis by simp
qed
lemma c-sum-of-c-pair [simp]: c-sum (c-pair x y) = x + y
proof -
 let ?u = c-pair x y
 let ?z = c-sum ?u
 have S1: u < sf(2z+1) by (rule arg-less-sf-at-Suc-of-c-sum)
 have S2: sf(?z) \leq ?u by (rule sf-c-sum-le-arg)
```

```
from S1 have S3: sf(x+y)+x < sf(2z+1) by (simp add: c-pair-def)
 from S2 have S4: sf(?z) \leq sf(x+y) + x by (simp add: c-pair-def)
 from S3 have S5: sf(x+y) < sf(2x+1) by (auto)
 from S5 have S6: x+y < ?z+1 by (rule sf-less-sfD)
 from S6 have S7: x+y \leq 2z by (auto)
 from S4 have S8: ?z \le x+y by (rule sf-aux2)
 from S7 S8 have S9: ?z = x+y by (auto)
 from S9 show ?thesis by (simp)
qed
lemma c-fst-of-c-pair[simp]: c-fst (c-pair x y) = x
proof –
 let ?u = c-pair x y
 have c-sum ?u = x + y by simp
 hence c-fst ?u = ?u - sf(x+y) by (simp add: c-fst-def)
 moreover have 2u = sf(x+y) + x by (simp add: c-pair-def)
 ultimately show ?thesis by (simp)
qed
lemma c-snd-of-c-pair[simp]: c-snd (c-pair x y) = y
proof –
 let ?u = c-pair x y
 have c-sum ?u = x + y by simp
 moreover have c-fst ?u = x by simp
 ultimately show ?thesis by (simp add: c-snd-def)
qed
lemma c-pair-at-0: c-pair 0 0 = 0 by (simp add: sf-def c-pair-def)
lemma c-fst-at-0: c-fst 0 = 0
proof –
 have c-pair \theta \ \theta = \theta by (rule c-pair-at-\theta)
 hence c-fst 0 = c-fst (c-pair 0 0) by simp
 thus ?thesis by simp
qed
lemma c-snd-at-\theta: c-snd \theta = \theta
proof –
 have c-pair \theta \ \theta = \theta by (rule c-pair-at-\theta)
 hence c-snd \theta = c-snd (c-pair \theta \theta) by simp
 thus ?thesis by simp
qed
lemma sf-c-sum-plus-c-fst: sf(c-sum \ u) + c-fst u = u
proof -
 have S1: sf(c\text{-sum } u) \leq u by (rule sf-c-sum-le-arg)
 have S2: c-fst u = u - sf(c-sum u) by (simp add: c-fst-def)
 from S1 S2 show ?thesis by (auto)
qed
```

```
lemma c-fst-le-c-sum: c-fst u \leq c-sum u
proof -
 have S1: sf(c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
 have S2: u < sf((c-sum u) + 1) by (rule arg-less-sf-at-Suc-of-c-sum)
 from S1 S2 sf-aux3 show ?thesis by (auto)
\mathbf{qed}
lemma c-snd-le-c-sum: c-snd u \leq c-sum u by (simp add: c-snd-def)
lemma c-fst-le-arg: c-fst u \leq u
proof –
 have c-fst u \leq c-sum u by (rule c-fst-le-c-sum)
 moreover have c-sum u \leq u by (rule c-sum-le-arg)
 ultimately show ?thesis by simp
qed
lemma c-snd-le-arg: c-snd u \leq u
proof -
 have c-snd u \leq c-sum u by (rule c-snd-le-c-sum)
 moreover have c-sum u \leq u by (rule c-sum-le-arg)
 ultimately show ?thesis by simp
qed
lemma c-sum-is-sum: c-sum u = c-fst u + c-snd u by (simp add: c-snd-def
c-fst-le-c-sum)
lemma proj-eq-imp-arg-eq: \llbracket c-fst u = c-fst v; c-snd u = c-snd v \rrbracket \Longrightarrow u = v
proof -
 assume A1: c-fst u = c-fst v
 assume A2: c-snd u = c-snd v
 from A1 A2 c-sum-is-sum have S1: c-sum u = c-sum v by (auto)
 have S2: sf(c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
 from A1 S1 S2 have S3: sf(c-sum v) + c-fst v = u by (auto)
 from S3 sf-c-sum-plus-c-fst show ?thesis by (auto)
qed
lemma c-pair-of-c-fst-c-snd[simp]: c-pair (c-fst u) (c-snd u) = u
proof –
 let ?x = c-fst u
 let ?y = c-snd u
 have S1: c-pair ?x ?y = sf(?x + ?y) + ?x by (simp add: c-pair-def)
 have S2: c-sum u = ?x + ?y by (rule c-sum-is-sum)
 from S1 S2 have c-pair ?x ?y = sf(c-sum u) + c-fst u by (auto)
 thus ?thesis by (simp add: sf-c-sum-plus-c-fst)
qed
lemma c-sum-eq-arg: c-sum x = x \Longrightarrow x \leq 1
proof –
```

10

```
assume A1: c-sum x = x
 have S1: sf(c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
 from A1 S1 have S2: sf x + c-fst x = x by simp
 have S3: x \leq sf x by (rule arg-le-sf)
 from S2 S3 have sf(x)=x by simp
 thus ?thesis by (rule sf-eq-arg)
\mathbf{qed}
lemma c-sum-eq-arg-2: c-sum x = x \implies c-fst x = 0
proof -
 assume A1: c-sum x = x
 have S1: sf(c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
 from A1 S1 have S2: sf x + c-fst x = x by simp
 have S3: x \leq sf x by (rule arg-le-sf)
 from S2 S3 show ?thesis by simp
qed
lemma c-fst-eq-arg: c-fst x = x \Longrightarrow x = 0
proof -
 assume A1: c-fst x = x
 have S1: c-fst x \leq c-sum x by (rule c-fst-le-c-sum)
 have S2: c-sum x \leq x by (rule c-sum-le-arg)
 from A1 S1 S2 have c-sum x = x by simp
 then have c-fst x = 0 by (rule c-sum-eq-arg-2)
 with A1 show ?thesis by simp
qed
lemma c-fst-less-arg: x > 0 \implies c-fst x < x
proof -
 assume A1: x > 0
 show ?thesis
 proof cases
   assume c-fst x < x
   then show ?thesis by simp
 \mathbf{next}
   assume \neg c-fst x < x
   then have S1: c-fst x \ge x by simp
   have c-fst x \leq x by (rule c-fst-le-arg)
   with S1 have c-fst x = x by simp
   then have x = 0 by (rule c-fst-eq-arg)
   with A1 show ?thesis by simp
 qed
qed
lemma c-snd-eq-arg: c-snd x = x \Longrightarrow x \leq 1
proof -
 assume A1: c-snd x = x
 have S1: c-snd x \leq c-sum x by (rule c-snd-le-c-sum)
 have S2: c-sum x \leq x by (rule c-sum-le-arg)
```

```
from A1 S1 S2 have c-sum x = x by simp
 then show ?thesis by (rule c-sum-eq-arg)
qed
lemma c-snd-less-arg: x > 1 \implies c\text{-snd} x < x
proof –
 assume A1: x > 1
 show ?thesis
 proof cases
   assume c-snd x < x
   then show ?thesis.
 \mathbf{next}
   assume \neg c-snd x < x
   then have S1: c-snd x \ge x by auto
   have c-snd x \leq x by (rule c-snd-le-arg)
   with S1 have c-snd x = x by simp
   then have x \leq 1 by (rule c-snd-eq-arg)
   with A1 show ?thesis by simp
 qed
qed
```

end

2 Primitive recursive functions

theory *PRecFun* imports *CPair* begin

This theory contains definition of the primitive recursive functions.

2.1 Basic definitions

```
primrec

PrimRecOp :: (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat \Rightarrow nat)

where

PrimRecOp \ g \ h \ 0 \ x = g \ x

| \ PrimRecOp \ g \ h \ (Suc \ y) \ x = h \ y \ (PrimRecOp \ g \ h \ y \ x) \ x

primrec

PrimRecOp-last :: (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat \Rightarrow nat)

where

PrimRecOp-last \ g \ h \ x \ 0 = g \ x

| \ PrimRecOp-last \ g \ h \ x \ (Suc \ y) = h \ x \ (PrimRecOp-last \ g \ h \ x \ y) \ y

primrec

PrimRecOp1 :: nat \Rightarrow (nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat)

where

PrimRecOp1 :: nat \Rightarrow (nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat)

where

PrimRecOp1 \ a \ h \ 0 = a
```

 $| PrimRecOp1 \ a \ h \ (Suc \ y) = h \ y \ (PrimRecOp1 \ a \ h \ y)$

${\bf inductive-set}$

 $PrimRec1 :: (nat \Rightarrow nat) set and$ $PrimRec2 :: (nat \Rightarrow nat \Rightarrow nat)$ set and $PrimRec3 :: (nat \Rightarrow nat \Rightarrow nat \Rightarrow nat)$ set where zero: $(\lambda x. \theta) \in PrimRec1$ suc: $Suc \in PrimRec1$ *id1-1*: $(\lambda \ x. \ x) \in PrimRec1$ $id2-1: (\lambda \ x \ y. \ x) \in PrimRec2$ $id2-2: (\lambda \ x \ y. \ y) \in PrimRec2$ *id3-1*: $(\lambda \ x \ y \ z. \ x) \in PrimRec3$ *id3-2*: $(\lambda \ x \ y \ z. \ y) \in PrimRec3$ *id3-3*: $(\lambda x y z, z) \in PrimRec3$ *comp1-1*: $[f \in PrimRec1; g \in PrimRec1] \implies (\lambda x. f (g x)) \in PrimRec1$ $comp1-2: [f \in PrimRec1; g \in PrimRec2] \implies (\lambda \ x \ y. \ f \ (g \ x \ y)) \in PrimRec2$ $comp1-3: [f \in PrimRec1; g \in PrimRec3] \implies (\lambda \ x \ y \ z. \ f \ (g \ x \ y \ z)) \in PrimRec3$ $comp2-1: [f \in PrimRec2; g \in PrimRec1; h \in PrimRec1] \Longrightarrow (\lambda x. f (g x) (h))$ $(x)) \in PrimRec1$ $| comp3-1: [f \in PrimRec3; g \in PrimRec1; h \in PrimRec1; k \in PrimRec1] \implies$ $(\lambda x. f (g x) (h x) (k x)) \in PrimRec1$ $| comp2-2: [f \in PrimRec2; g \in PrimRec2; h \in PrimRec2] \implies (\lambda \ x \ y. f \ (g \ x))$ $y) (h x y)) \in PrimRec2$ $| comp2-3: [f \in PrimRec2; g \in PrimRec3; h \in PrimRec3] \implies (\lambda \ x \ y \ z. \ f \ (g \ x))$ $(y z) (h x y z) \in PrimRec3$ $| comp3-2: [f \in PrimRec3; q \in PrimRec2; h \in PrimRec2; k \in PrimRec2] \implies$ $(\lambda x y. f (g x y) (h x y) (k x y)) \in PrimRec2$ $| comp3-3: [f \in PrimRec3; g \in PrimRec3; h \in PrimRec3; k \in PrimRec3] \implies$ $(\lambda x y z. f (g x y z) (h x y z) (k x y z)) \in PrimRec3$ $| prim-rec: [g \in PrimRec1; h \in PrimRec3] \implies PrimRecOp \ g \ h \in PrimRec2$ **lemmas** pr-zero = PrimRec1-PrimRec2-PrimRec3.zero **lemmas** pr-suc = PrimRec1-PrimRec2-PrimRec3.suc **lemmas** pr-id1-1 = PrimRec1-PrimRec2-PrimRec3.id1-1 **lemmas** pr-id2-1 = PrimRec1-PrimRec2-PrimRec3.id2-1 **lemmas** pr-id2-2 = PrimRec1-PrimRec2-PrimRec3.id2-2**lemmas** pr-id3-1 = PrimRec1-PrimRec2-PrimRec3.id3-1 **lemmas** pr-id3-2 = PrimRec1-PrimRec2-PrimRec3.id3-2**lemmas** pr-id3-3 = PrimRec1-PrimRec2-PrimRec3.id3-3**lemmas** pr-comp1-1 = PrimRec1-PrimRec2-PrimRec3.comp1-1 **lemmas** pr-comp1-2 = PrimRec1-PrimRec2-PrimRec3.comp1-2 **lemmas** pr-comp1-3 = PrimRec1-PrimRec2-PrimRec3.comp1-3 **lemmas** pr-comp2-1 = PrimRec1-PrimRec2-PrimRec3.comp2-1 **lemmas** pr-comp2-2 = PrimRec1-PrimRec2-PrimRec3.comp2-2 **lemmas** pr-comp2-3 = PrimRec1-PrimRec2-PrimRec3.comp2-3 **lemmas** pr-comp3-1 = PrimRec1-PrimRec2-PrimRec3.comp3-1 **lemmas** pr-comp3-2 = PrimRec1-PrimRec2-PrimRec3.comp3-2

 $\textbf{lemmas} \ pr\text{-}comp3\text{-}3 = PrimRec1\text{-}PrimRec2\text{-}PrimRec3\text{.}comp3\text{-}3$

lemmas pr-rec = PrimRec1-PrimRec2-PrimRec3.prim-rec

ML-file $\langle Utils.ML \rangle$

named-theorems prec

```
method-setup prec0 = <
   Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts =>
   HEADGOAL (prec0-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems
   prec}))))
> apply primitive recursive functions
```

lemmas [prec] = pr-zero pr-suc pr-id1-1 pr-id2-1 pr-id2-2 pr-id3-1 pr-id3-2 pr-id3-3

lemma pr-swap: $f \in PrimRec2 \implies (\lambda \ x \ y. \ f \ y \ x) \in PrimRec2$ by prec0

```
theorem pr-rec-scheme: [] g \in PrimRec1; h \in PrimRec3; \forall x. f \ 0 \ x = g \ x; \forall x \ y.
f (Suc y) x = h y (f y x) x \parallel \Longrightarrow f \in PrimRec2
proof –
 assume g-is-pr: g \in PrimRec1
 assume h-is-pr: h \in PrimRec3
 assume f-at-0: \forall x. f 0 x = g x
 assume f-at-Suc: \forall x y. f (Suc y) x = h y (f y x) x
 from f-at-0 f-at-Suc have \bigwedge x y. f y x = PrimRecOp \ g \ h \ y \ x by (induct-tac y,
simp-all)
 then have f = PrimRecOp \ g \ h  by (simp add: ext)
  with q-is-pr h-is-pr show ?thesis by (simp add: pr-rec)
\mathbf{qed}
lemma op-plus-is-pr [prec]: (\lambda \ x \ y. \ x + y) \in PrimRec2
proof (rule pr-swap)
show (\lambda \ x \ y. \ y+x) \in PrimRec2
 proof -
   have S1: PrimRecOp(\lambda x. x)(\lambda x y z. Suc y) \in PrimRec2
   proof (rule pr-rec)
     show (\lambda \ x. \ x) \in PrimRec1 by (rule pr-id1-1)
   \mathbf{next}
     show (\lambda \ x \ y \ z. \ Suc \ y) \in PrimRec3 by prec0
   qed
   have (\lambda x y, y+x) = PrimRecOp (\lambda x, x) (\lambda x y z, Suc y) (is - = ?f)
   proof –
     have \bigwedge x y. (?f y x = y + x) by (induct-tac y, auto)
     thus ?thesis by (simp add: ext)
   qed
   with S1 show ?thesis by simp
 ged
qed
```

lemma op-mult-is-pr [prec]: $(\lambda \ x \ y. \ x*y) \in PrimRec2$ **proof** (*rule pr-swap*) show $(\lambda \ x \ y. \ y*x) \in PrimRec2$ proof have S1: $PrimRecOp \ (\lambda \ x. \ \theta) \ (\lambda \ x \ y \ z. \ y+z) \in PrimRec2$ **proof** (*rule pr-rec*) show $(\lambda \ x. \ \theta) \in PrimRec1$ by (rule pr-zero) next show $(\lambda \ x \ y \ z. \ y+z) \in PrimRec3$ by prec0 qed have $(\lambda x y. y*x) = PrimRecOp (\lambda x. 0) (\lambda x y z. y+z)$ (is - = ?f) proof – have $\bigwedge x y$. (?f y x = y * x) by (induct-tac y, auto) thus ?thesis by (simp add: ext) qed with S1 show ?thesis by simp qed qed **lemma** const-is-pr: $(\lambda \ x. \ (n::nat)) \in PrimRec1$ **proof** (*induct* n) show $(\lambda \ x. \ \theta) \in PrimRec1$ by (rule pr-zero) \mathbf{next} fix *n* assume $(\lambda x. n) \in PrimRec1$ then show $(\lambda x. Suc n) \in PrimRec1$ by prec0 qed **lemma** const-is-pr-2: $(\lambda \ x \ y. \ (n::nat)) \in PrimRec2$ **proof** (rule pr-comp1-2 [where ?f = %x.(n::nat) and ?g = %x y. x]) show $(\lambda x. n) \in PrimRec1$ by (rule const-is-pr) \mathbf{next} show $(\lambda \ x \ y. \ x) \in PrimRec2$ by (rule pr-id2-1) qed **lemma** const-is-pr-3: $(\lambda \ x \ y \ z. \ (n::nat)) \in PrimRec3$ **proof** (rule pr-comp1-3 [where ?f = %x.(n::nat) and ?q = %x y z. x]) show $(\lambda x. n) \in PrimRec1$ by (rule const-is-pr) next show $(\lambda \ x \ y \ z. \ x) \in PrimRec3$ by (rule pr-id3-1) qed **theorem** pr-rec-last: $[g \in PrimRec1; h \in PrimRec3] \implies PrimRecOp-last g h \in$ PrimRec2 proof – assume A1: $g \in PrimRec1$ assume $A2: h \in PrimRec3$ let $?h1 = \lambda x y z$. h z y xfrom A2 pr-id3-3 pr-id3-2 pr-id3-1 have h1-is-pr: ? $h1 \in PrimRec3$ by (rule pr-comp3-3)

let ?f1 = PrimRecOp g ?h1from A1 h1-is-pr have f1-is-pr: $?f1 \in PrimRec2$ by (rule pr-rec) let $?f = \lambda x y$. ?f1 y xfrom f1-is-pr have f-is-pr: $?f \in PrimRec2$ by (rule pr-swap) have $\bigwedge x y$. ?f x y = PrimRecOp-last g h x y by (induct-tac y, simp-all) then have ?f = PrimRecOp-last g h by (simp add: ext) with f-is-pr show ?thesis by simp qed

theorem pr-rec1: $h \in PrimRec2 \implies PrimRecOp1$ (a::nat) $h \in PrimRec1$ proof – assume A1: $h \in PrimRec2$ let $?g = (\lambda \ x. \ a)$ have g-is-pr: $?g \in PrimRec1$ by (rule const-is-pr) let $?h1 = (\lambda \ x \ y \ z. \ h \ x \ y)$ from A1 have h1-is-pr: $?h1 \in PrimRec3$ by prec0 let $?f1 = PrimRecOp \ ?g \ ?h1$ from g-is-pr h1-is-pr have f1-is-pr: $?f1 \in PrimRec2$ by (rule pr-rec) let $?f = (\lambda \ x. \ ?f1 \ x \ 0)$ from f1-is-pr pr-id1-1 pr-zero have f-is-pr: $?f \in PrimRec1$ by (rule pr-comp2-1) have $\bigwedge y. \ ?f \ y = PrimRecOp1 \ a \ h \ y$ by (induct-tac y, auto) then have $?f = PrimRecOp1 \ a \ h \ y$ (simp add: ext) with f-is-pr show ?thesis by (auto)

```
\mathbf{qed}
```

theorem pr-rec1-scheme: $\llbracket h \in PrimRec2; f \ 0 = a; \forall y. f (Suc y) = h y (f y) \rrbracket$ $\implies f \in PrimRec1$ proof – assume h-is-pr: $h \in PrimRec2$ assume f-at-0: $f \ 0 = a$ assume f-at-Suc: $\forall y. f (Suc y) = h y (f y)$ from f-at-0 f-at-Suc have $\bigwedge y. f y = PrimRecOp1 \ a \ h y$ by (induct-tac y, simp-all) then have $f = PrimRecOp1 \ a \ h$ by (simp add: ext) with h-is-pr show ?thesis by (simp add: pr-rec1) qed lemma pred-is-pr: $(\lambda x. x - (1::nat)) \in PrimRec1$ proof – have S1: PrimRecOp1 0 ($\lambda x y. x$) $\in PrimRec2$ proof (rule pr-rec1) show ($\lambda x y. x$) $\in PrimRec2$ by (rule pr id2 1)

show $(\lambda \ x \ y. \ x) \in PrimRec2$ by $(rule \ pr-id2-1)$ qed have $(\lambda \ x. \ x-(1::nat)) = PrimRecOp1 \ 0 \ (\lambda \ x \ y. \ x)$ (is - = ?f) proof have $\bigwedge x. \ (?f \ x = x-(1::nat))$ by $(induct-tac \ x, \ auto)$ thus ?thesis by $(simp \ add: \ ext)$ qed

with S1 show ?thesis by simp

qed

lemma op-sub-is-pr [prec]: $(\lambda \ x \ y. \ x-y) \in PrimRec2$ **proof** (*rule pr-swap*) show $(\lambda \ x \ y. \ y - x) \in PrimRec2$ proof have S1: $PrimRecOp(\lambda x. x)(\lambda x y z. y-(1::nat)) \in PrimRec2$ **proof** (*rule pr-rec*) show $(\lambda \ x. \ x) \in PrimRec1$ by $(rule \ pr-id1-1)$ \mathbf{next} from pred-is-pr pr-id3-2 show ($\lambda x y z$. y-(1::nat)) \in PrimRec3 by (rule pr-comp1-3) qed have $(\lambda x y. y - x) = PrimRecOp (\lambda x. x) (\lambda x y z. y-(1::nat))$ (is - = ?f) proof – have $\bigwedge x y$. (?f y x = x - y) by (induct-tac y, auto) thus ?thesis by (simp add: ext) qed with S1 show ?thesis by simp qed qed lemmas [prec] = $const-is-pr \ [of \ 0] \ const-is-pr-2 \ [of \ 0] \ const-is-pr-3 \ [of \ 0]$ const-is-pr [of 1] const-is-pr-2 [of 1] const-is-pr-3 [of 1] const-is-pr [of 2] const-is-pr-2 [of 2] const-is-pr-3 [of 2] definition $sgn1 :: nat \Rightarrow nat$ where $sgn1 \ x = (case \ x \ of \ \theta \Rightarrow \theta \mid Suc \ y \Rightarrow 1)$ definition $sgn2 :: nat \Rightarrow nat$ where $sgn2 \ x \equiv (case \ x \ of \ \theta \Rightarrow 1 \mid Suc \ y \Rightarrow \theta)$ definition $abs-of-diff :: nat \Rightarrow nat \Rightarrow nat$ where $abs-of-diff = (\lambda \ x \ y. \ (x - y) + (y - x))$ **lemma** [simp]: sgn1 $\theta = \theta$ by (simp add: sgn1-def) **lemma** [simp]: sgn1 (Suc y) = 1 by (simp add: sgn1-def) **lemma** [simp]: $sgn2 \ 0 = 1$ by (simp add: sgn2-def) **lemma** [simp]: sgn2 (Suc y) = 0 by (simp add: sgn2-def) **lemma** [simp]: $x \neq 0 \implies sgn1 \ x = 1$ by (simp add: sgn1-def, cases x, auto) **lemma** [simp]: $x \neq 0 \implies sgn2 \ x = 0$ by (simp add: sgn2-def, cases x, auto) **lemma** sgn1-nz-impl-arg-pos: sgn1 $x \neq 0 \implies x > 0$ by (cases x) auto **lemma** sgn1-zero-impl-arg-zero: sgn1 $x = 0 \implies x = 0$ by (cases x) auto

lemma sgn2-nz-impl-arg-zero: sgn2 $x \neq 0 \implies x = 0$ by (cases x) auto

lemma sgn2-zero-impl-arg-pos: sgn2 $x = 0 \implies x > 0$ by (cases x) auto

lemma sgn1-nz-eq-arg-pos: $(sgn1 \ x \neq 0) = (x > 0)$ by $(cases \ x)$ auto **lemma** sgn1-zero-eq-arg-zero: $(sgn1 \ x = 0) = (x = 0)$ by $(cases \ x)$ auto **lemma** sgn2-nz-eq-arg-pos: $(sgn2 \ x \neq 0) = (x = 0)$ by $(cases \ x)$ auto **lemma** sgn2-zero-eq-arg-zero: $(sgn2 \ x = 0) = (x > 0)$ by $(cases \ x)$ auto

```
lemma sgn1-pos-eq-one: sgn1 x > 0 \implies sgn1 x = 1 by (cases x) auto
lemma sgn2-pos-eq-one: sgn2 x > 0 \implies sgn2 x = 1 by (cases x) auto
```

```
lemma sgn2-eq-1-sub-arg: sgn2 = (\lambda x. 1 - x)
proof (rule ext)
 fix x show sgn2 x = 1 - x by (cases x) auto
qed
lemma sqn1-eq-1-sub-sqn2: sqn1 = (\lambda x. 1 - (sqn2 x))
proof
 fix x show sgn1 x = 1 - sgn2 x
 proof -
   have 1 - sgn2 x = 1 - (1 - x) by (simp add: sgn2-eq-1-sub-arg)
   then show ?thesis by (simp add: sgn1-def, cases x, auto)
 qed
qed
lemma sgn2-is-pr [prec]: sgn2 \in PrimRec1
proof -
 have (\lambda x. 1 - x) \in PrimRec1 by prec0
 thus ?thesis by (simp add: sgn2-eq-1-sub-arg)
qed
lemma sgn1-is-pr [prec]: sgn1 \in PrimRec1
proof -
 from sgn2-is-pr have (\lambda x. 1 - (sgn2 x)) \in PrimRec1 by prec0
 thus ?thesis by (simp add: sgn1-eq-1-sub-sgn2)
qed
```

lemma abs-of-diff-is-pr [prec]: abs-of-diff \in PrimRec2 unfolding abs-of-diff-def by prec0

lemma abs-of-diff-eq: (abs-of-diff x y = 0) = (x = y) by (simp add: abs-of-diff-def, arith)

lemma sf-is-pr [prec]: $sf \in PrimRec1$ **proof** – **have** S1: PrimRecOp1 0 ($\lambda x y. y + x + 1$) \in PrimRec1 **proof** (rule pr-rec1) **show** ($\lambda x y. y + x + 1$) \in PrimRec2 **by** prec0 **qed have** ($\lambda x. sf x$) = PrimRecOp1 0 ($\lambda x y. y + x + 1$) (**is** -= ?f)

proof – have $\bigwedge x$. (?f x = sf x) **proof** (*induct-tac* x) **show** ?f $\theta = sf \theta$ by (simp add: sf-at- θ) \mathbf{next} fix x assume ?f x = sf xwith sf-at-Suc show ?f(Suc x) = sf(Suc x) by auto qed thus ?thesis by (simp add: ext) qed with S1 show ?thesis by simp qed **lemma** c-pair-is-pr [prec]: c-pair \in PrimRec2 proof have c-pair = $(\lambda x y)$ sf (x+y) + x by (simp add: c-pair-def ext) **moreover from** sf-is-pr have $(\lambda \ x \ y. \ sf(x+y) + x) \in PrimRec2$ by prec0 ultimately show *?thesis* by (*simp*) qed **lemma** if-is-pr: $[p \in PrimRec1; q1 \in PrimRec1; q2 \in PrimRec1]] \implies (\lambda x. if$ $(p \ x = 0)$ then $(q1 \ x)$ else $(q2 \ x)) \in PrimRec1$ proof have if-as-pr: $(\lambda x. if (p x = 0) then (q1 x) else (q2 x)) = (\lambda x. (sgn2 (p x)) *$ (q1 x) + (sgn1 (p x)) * (q2 x))proof (rule ext) fix x show (if $(p \ x = 0)$ then $(q1 \ x)$ else $(q2 \ x)$) = $(sqn2 \ (p \ x)) * (q1 \ x) +$ (sgn1 (p x)) * (q2 x) (is ?left = ?right) **proof** cases assume A1: p x = 0then have S1: ?left = q1 x by simpfrom A1 have S2: ?right = q1 x by simpfrom S1 S2 show ?thesis by simp \mathbf{next} assume A2: $p \ x \neq 0$ then have S3: p x > 0 by simp then show ?thesis by simp qed qed assume $p \in PrimRec1$ and $q1 \in PrimRec1$ and $q2 \in PrimRec1$ then have $(\lambda x. (sgn2 (p x)) * (q1 x) + (sgn1 (p x)) * (q2 x)) \in PrimRec1$ by $prec\theta$ with *if-as-pr* show ?thesis by simp \mathbf{qed} **lemma** if-eq-is-pr [prec]: $[p1 \in PrimRec1; p2 \in PrimRec1; q1 \in PrimRec1; q2$ $\in PrimRec1$ \implies $(\lambda x. if (p1 x = p2 x) then (q1 x) else (q2 x)) \in PrimRec1$ proof -

have S1: $(\lambda x. if (p1 x = p2 x) then (q1 x) else (q2 x)) = (\lambda x. if (abs-of-diff (p1 x)))$

x) (p2 x) = 0 then (q1 x) else (q2 x) (is ?L = ?R) by (simp add: abs-of-diff-eq) assume A1: $p1 \in PrimRec1$ and A2: $p2 \in PrimRec1$ with abs-of-diff-is-pr have S2: $(\lambda \ x. \ abs-of-diff \ (p1 \ x) \ (p2 \ x)) \in PrimRec1$ by $prec\theta$ assume $q1 \in PrimRec1$ and $q2 \in PrimRec1$ with S2 have $?R \in PrimRec1$ by (rule if-is-pr) with S1 show ?thesis by simp qed **lemma** *if-is-pr2* [*prec*]: $\llbracket p \in PrimRec2; q1 \in PrimRec2; q2 \in PrimRec2 <math>\rrbracket \Longrightarrow (\lambda$ x y. if (p x y = 0) then (q1 x y) else $(q2 x y)) \in PrimRec2$ proof have if-as-pr: $(\lambda x y)$ if (p x y = 0) then (q1 x y) else $(q2 x y) = (\lambda x y)$ (sgn2 $(p \ x \ y)) * (q1 \ x \ y) + (sgn1 \ (p \ x \ y)) * (q2 \ x \ y))$ **proof** (*rule ext*, *rule ext*) fix x fix y show (if (p x y = 0) then (q1 x y) else (q2 x y) = (sqn2 (p x y))*(q1 x y) + (sgn1 (p x y)) * (q2 x y) (is ?left = ?right) **proof** cases assume A1: p x y = 0then have S1: ?left = q1 x y by simp from A1 have S2: ?right = q1 x y by simpfrom S1 S2 show ?thesis by simp \mathbf{next} assume A2: $p x y \neq 0$ then have S3: p x y > 0 by simp then show ?thesis by simp qed ged assume $p \in PrimRec2$ and $q1 \in PrimRec2$ and $q2 \in PrimRec2$ then have $(\lambda \ x \ y)$. $(sgn2 \ (p \ x \ y)) * (q1 \ x \ y) + (sgn1 \ (p \ x \ y)) * (q2 \ x \ y)) \in$ PrimRec2 by prec0with *if-as-pr* show ?thesis by simp qed **lemma** if-eq-is-pr2: $[p_1 \in PrimRec2; p_2 \in PrimRec2; q_1 \in PrimRec2; q_2 \in$ PrimRec2 \implies $(\lambda x y, if (p1 x y = p2 x y) then (q1 x y) else (q2 x y)) \in PrimRec2$ proof have S1: $(\lambda x y)$ if (p1 x y) = p2 x y then (q1 x y) else $(q2 x y) = (\lambda x y)$ if (abs-of-diff (p1 x y) (p2 x y) = 0) then (q1 x y) else (q2 x y) (is ?L = ?R) by (simp add: abs-of-diff-eq) assume A1: $p1 \in PrimRec2$ and A2: $p2 \in PrimRec2$ with abs-of-diff-is-pr have $S2: (\lambda \ x \ y. \ abs-of-diff \ (p1 \ x \ y) \ (p2 \ x \ y)) \in PrimRec2$ by prec0 assume $q1 \in PrimRec2$ and $q2 \in PrimRec2$

with S2 have $?R \in PrimRec2$ by (rule if-is-pr2)

with S1 show ?thesis by simp

qed

lemma *if-is-pr3* [*prec*]: $\llbracket p \in PrimRec3; q1 \in PrimRec3; q2 \in PrimRec3 <math>\rrbracket \Longrightarrow (\lambda$

x y z. if (p x y z = 0) then (q1 x y z) else $(q2 x y z)) \in PrimRec3$ proof have if-as-pr: $(\lambda x y z)$ if (p x y z = 0) then (q1 x y z) else $(q2 x y z) = (\lambda x y z)$ z. (sqn2 (p x y z)) * (q1 x y z) + (sqn1 (p x y z)) * (q2 x y z))**proof** (*rule ext*, *rule ext*, *rule ext*) fix x fix y fix z show (if (p x y z = 0) then (q1 x y z) else (q2 x y z)) = (sgn2)(p x y z)) * (q1 x y z) + (sgn1 (p x y z)) * (q2 x y z) (is ?left = ?right) **proof** cases assume A1: p x y z = 0then have S1: ?left = q1 x y z by simp from A1 have S2: ?right = q1 x y z by simpfrom S1 S2 show ?thesis by simp \mathbf{next} assume A2: $p x y z \neq 0$ then have S3: p x y z > 0 by simp then show ?thesis by simp qed qed assume $p \in PrimRec3$ and $q1 \in PrimRec3$ and $q2 \in PrimRec3$ then have $(\lambda x y z) (sgn2 (p x y z)) * (q1 x y z) + (sgn1 (p x y z)) * (q2 x y z)$ $z)) \in PrimRec3$ by $prec\theta$ with *if-as-pr* show ?thesis by simp qed **lemma** if-eq-is-pr3: $[p1 \in PrimRec3; p2 \in PrimRec3; q1 \in PrimRec3; q2 \in$ $PrimRec3 \implies (\lambda x y z)$ if (p1 x y z = p2 x y z) then (q1 x y z) else (q2 x y z) $\in PrimRec3$ proof have S1: $(\lambda x y z)$ if (p1 x y z) = p2 x y z) then (q1 x y z) else $(q2 x y z)) = (\lambda z)$ x y z. if (abs-of-diff (p1 x y z) (p2 x y z) = 0) then (q1 x y z) else (q2 x y z)) (is ?L = ?R) by (simp add: abs-of-diff-eq) assume A1: $p1 \in PrimRec3$ and A2: $p2 \in PrimRec3$ with abs-of-diff-is-pr have S2: $(\lambda x y z, abs-of-diff (p1 x y z) (p2 x y z)) \in$ PrimRec3 by $prec\theta$ assume $q1 \in PrimRec3$ and $q2 \in PrimRec3$ with S2 have $?R \in PrimRec3$ by (rule if-is-pr3) with S1 show ?thesis by simp qed ML <fun get-if-by-index $1 = \mathbb{Q}\{\text{thm if-eq-is-pr}\}$ | get-if-by-index 2 = $@{thm if-eq-is-pr2}$ get-if-by-index $3 = @\{thm \ if-eq-is-pr3\}$ | get-if-by-index - = raise BadArgument

 $\begin{array}{l} \textit{fun if-comp-tac ctxt} = \textit{SUBGOAL} (\textit{fn} (t, i) => \\ \textit{let} \end{array} \end{array}$

```
val t = extract-true prop-arg (Logic.strip-imp-concl t)
             val(t1, t2) = extract-set-args t
             val n2 =
                   let
                          val Const(s, -) = t2
                    in
                          get-num-by-set s
                    end
             val (name, -, n1) = extract-free-arg t1
       in
              if name = @\{const-name If\} then
                   resolve-tac ctxt [get-if-by-index n2] i
             else
                    let
                          val\ comp = get\text{-}comp\text{-}by\text{-}indexes\ (n1,\ n2)
                    in
                          Rule-Insts.res-inst-tac ctxt
                                 [(((f, 0), Position.none), Variable.revert-fixed ctxt name)] [] comp i
                    end
       end
      handle BadArgument => no-tac)
fun prec-tac ctxt facts i =
       Method.insert-tac ctxt facts i THEN
        REPEAT (resolve-tac ctxt [@{thm const-is-pr}], @{thm const-is-pr-2}, @{thm const-is-pr
const-is-pr-3] i ORELSE
             assume-tac ctxt i ORELSE if-comp-tac ctxt i)
```

method-setup $prec = \langle$

Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts => HEADGOAL (prec-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems prec}))))

2.2 Bounded least operator

definition

b-least :: $(nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat)$ where *b-least* $f x \equiv (Least (\%y, y = x \lor (y < x \land (f x y) \neq 0)))$

definition

b-least2 :: $(nat \Rightarrow nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat \Rightarrow nat)$ where *b*-least2 f x y \equiv (Least (%z. z = y \lor (z < y \land (f x z) \neq 0)))

lemma b-least-aux1: b-least $f x = x \lor (b$ -least $f x < x \land (f x (b$ -least $f x)) \neq 0)$ **proof** – **let** ?P = %y. $y = x \lor (y < x \land (f x y) \neq 0)$ **have** ?P x by simp

then have ?P (Least ?P) by (rule LeastI) thus ?thesis by (simp add: b-least-def) qed **lemma** *b-least-le-arg*: *b-least* f x < xproof have b-least $f x = x \lor (b$ -least $f x < x \land (f x (b$ -least $f x)) \neq 0)$ by (rule b-least-aux1) from this show ?thesis by (arith) qed **lemma** less-b-least-impl-zero: y < b-least $f x \implies f x y = 0$ proof assume A1: y < b-least f x (is - < ?b) have b-least $f x \leq x$ by (rule b-least-le-arg) with A1 have S1: y < x by simp with A1 have $y < (Least (\% y, y = x \lor (y < x \land (f x y) \neq 0)))$ by (simp add: *b*-*least*-*def*) then have $\neg (y = x \lor (y < x \land (f x y) \neq 0))$ by (rule not-less-Least) with S1 show ?thesis by simp \mathbf{qed} **lemma** *nz-impl-b-least-le*: $(f x y) \neq 0 \implies (b-least f x) \leq y$ **proof** (rule ccontr) assume A1: $f x y \neq 0$ **assume** \neg *b-least* $f x \leq y$ then have y < b-least f x by simp with A1 show False by (simp add: less-b-least-impl-zero) qed **lemma** b-least-less-impl-nz: b-least $f x < x \Longrightarrow f x$ (b-least $f x) \neq 0$ proof – assume A1: b-least f x < xhave b-least $f x = x \lor (b$ -least $f x < x \land (f x (b$ -least $f x)) \neq 0)$ by (rule b-least-aux1) from A1 this show ?thesis by simp \mathbf{qed} **lemma** b-least-less-impl-eq: b-least $f x < x \implies (b-least f x) = (Least (\% y, (f x y)))$ $\neq 0))$ proof assume A1: b-least f x < x (is ?b < -) let $?B = (Least (\% y. (f x y) \neq 0))$ from A1 have S1: $f x ? b \neq 0$ by (rule b-least-less-impl-nz) from S1 have S2: ?B \leq ?b by (rule Least-le) from S1 have S3: $f x ?B \neq 0$ by (rule LeastI) from S3 have S4: $?b \leq ?B$ by (rule nz-impl-b-least-le) from S2 S4 show ?thesis by simp qed

lemma less-b-least-impl-zero2: $[y < x; b-least f x = x] \implies f x y = 0$ by (simp add: less-b-least-impl-zero)

```
lemma nz-impl-b-least-less: [y < x; (f x y) \neq 0] \implies (b-least f x) < x
proof –
    assume A1: y < x
    assume f x y \neq 0
    then have b-least f x \leq y by (rule nz-impl-b-least-le)
    with A1 show ?thesis by simp
qed
lemma b-least-aux2: [\![y < x; (f x y) \neq 0]\!] \implies (b\text{-least } f x) = (Least (\% y, (f x y) \neq 0)]
\theta))
proof -
    assume A1: y < x and A2: f x y \neq 0
    from A1 A2 have S1: b-least f x < x by (rule nz-impl-b-least-less)
    thus ?thesis by (rule b-least-less-impl-eq)
qed
lemma b-least2-aux1: b-least2 f x y = y \lor (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b-least2 f x y < y \land (f x (b
y)) \neq 0)
proof -
    let ?P = \%z. z = y \lor (z < y \land (f x z) \neq 0)
    have ?P y by simp
    then have ?P (Least ?P) by (rule LeastI)
    thus ?thesis by (simp add: b-least2-def)
qed
lemma b-least2-le-arg: b-least2 f x y \leq y
proof –
    let ?B = b-least2 f x y
    have ?B = y \lor (?B < y \land (f x ?B) \neq 0) by (rule b-least2-aux1)
    from this show ?thesis by (arith)
qed
lemma less-b-least2-impl-zero: z < b-least2 f x y \Longrightarrow f x z = 0
proof –
    assume A1: z < b-least2 f x y (is - < ?b)
    have b-least2 f x y \leq y by (rule b-least2-le-arg)
    with A1 have S1: z < y by simp
    with A1 have z < (Least (\% z. \ z = y \lor (z < y \land (f \ x \ z) \neq 0))) by (simp add:
b-least2-def)
    then have \neg (z = y \lor (z < y \land (f x z) \neq 0)) by (rule not-less-Least)
    with S1 show ?thesis by simp
qed
lemma nz-impl-b-least2-le: (f x z) \neq 0 \implies (b\text{-}least2 f x y) \leq z
proof –
```

assume A1: $f x z \neq 0$ have S1: z < b-least2 f x y \Longrightarrow f x z = 0 by (rule less-b-least2-impl-zero) from A1 S1 show ?thesis by arith qed **lemma** b-least2-less-impl-nz: b-least2 f x y < y \implies f x (b-least2 f x y) $\neq 0$ proof – assume A1: b-least2 f x y < yhave b-least2 f x y = y \lor (b-least2 f x y < y \land (f x (b-least2 f x y)) \neq 0) by (rule b-least2-aux1) with A1 show ?thesis by simp qed **lemma** b-least2-less-impl-eq: b-least2 f x y < y \implies (b-least2 f x y) = (Least (%z. $(f x z) \neq 0))$ proof assume A1: b-least2 f x y < y (is ?b < -) let $?B = (Least (\%z. (f x z) \neq 0))$ from A1 have S1: $f x ? b \neq 0$ by (rule b-least2-less-impl-nz) from S1 have S2: $?B \leq ?b$ by (rule Least-le) from S1 have S3: $f x ?B \neq 0$ by (rule LeastI) from S3 have S4: $?b \leq ?B$ by (rule nz-impl-b-least2-le) from S2 S4 show ?thesis by simp qed **lemma** *less-b-least2-impl-zero2*: $[z < y; b-least2 f x y = y] \implies f x z = 0$ proof assume z < y and *b*-least2 f x y = yhence z < b-least2 f x y by simp thus ?thesis by (rule less-b-least2-impl-zero) qed lemma nz-b-least2-impl-less: $[[z < y; (f x z) \neq 0]] \implies (b-least2 f x y) < y$ **proof** (*rule ccontr*) assume A1: z < yassume A2: $f x z \neq 0$ assume \neg (*b*-least2 f x y) < y then have A3: $y \le (b - least2 f x y)$ by simp have *b*-least2 $f x y \leq y$ by (rule *b*-least2-le-arg) with A3 have b-least2 f x y = y by simp with A1 have f x z = 0 by (rule less-b-least2-impl-zero2) with A2 show False by simp qed **lemma** b-least2-less-impl-eq2: $[z < y; (f x z) \neq 0] \implies (b-least2 f x y) = (Least2 f x y)$ $(\% z. (f x z) \neq 0))$ proof assume A1: z < y and A2: $f x z \neq 0$ from A1 A2 have S1: b-least2 f x y < y by (rule nz-b-least2-impl-less) thus ?thesis by (rule b-least2-less-impl-eq)

qed

lemma b-least2-aux2: b-least2 f x y < y \implies b-least2 f x (Suc y) = b-least2 f x y proof – let ?B = b-least2 f x y assume A1: ?B < yfrom A1 have S1: $f x ?B \neq 0$ by (rule b-least2-less-impl-nz) from S1 have S2: b-least2 f x (Suc y) $\leq ?B$ by (simp add: nz-impl-b-least2-le) from A1 S2 have S3: b-least2 f x (Suc y) < Suc y by (simp) from S3 have S4: f x (b-least2 f x (Suc y)) $\neq 0$ by (rule b-least2-less-impl-nz) from S4 have S5: $?B \leq b$ -least2 f x (Suc y) by (rule nz-impl-b-least2-le) from S2 S5 show ?thesis by simp qed **lemma** *b-least2-aux3*: $\llbracket b-least2 f x y = y; f x y \neq 0 \rrbracket \implies b-least2 f x (Suc y) = y$ proof assume A1: b-least2 f x y = yassume A2: $f x y \neq 0$ from A2 have S1: b-least2 f x (Suc y) $\leq y$ by (rule nz-impl-b-least2-le) have S2: b-least2 f x (Suc y) $\langle y \implies$ False proof – assume A2-1: b-least2 f x (Suc y) < y (is ?z < -) from A2-1 have S2-1: $2 < Suc \ y$ by simp from S2-1 have S2-2: $f x ? z \neq 0$ by (rule b-least2-less-impl-nz) from A2-1 S2-2 have S2-3: b-least2 f x y < y by (rule nz-b-least2-impl-less) from S2-3 A1 show ?thesis by simp ged from S2 have S3: \neg (b-least2 f x (Suc y) < y) by auto from S1 S3 show ?thesis by simp qed **lemma** *b-least2-mono:* $y1 \le y2 \implies b$ *-least2* $f x y1 \le b$ *-least2* f x y2**proof** (*rule ccontr*) assume A1: $y1 \leq y2$ let ?b1 = b-least2 f x y1 and ?b2 = b-least2 f x y2 assume \neg ?b1 < ?b2 then have A2: ?b2 < ?b1 by simp have S1: ?b1 \leq y1 by (rule b-least2-le-arg) have S2: $2b2 \leq y2$ by (rule b-least2-le-arg) from A1 A2 S1 S2 have S3: 2b2 < y2 by simp then have S4: $f x ?b2 \neq 0$ by (rule b-least2-less-impl-nz) from A2 have S5: f x ?b2 = 0 by (rule less-b-least2-impl-zero) from S4 S5 show False by simp qed **lemma** b-least2-aux4: $\llbracket b$ -least2 f x y = y; f x y = 0 $\rrbracket \implies b$ -least2 f x (Suc y) = Suc yproof assume A1: b-least2 f x y = yassume A2: f x y = 0

have S1: b-least2 f x (Suc y) \leq Suc y by (rule b-least2-le-arg) have S2: $y \leq b$ -least2 f x (Suc y) proof have $y \leq Suc \ y$ by simp then have b-least2 f x $y \leq$ b-least2 f x (Suc y) by (rule b-least2-mono) with A1 show ?thesis by simp qed from S1 S2 have b-least2 f x (Suc y) = $y \lor b$ -least2 f x (Suc y) = Suc y by arith moreover ł assume A3: b-least2 f x (Suc y) = y have $f x y \neq 0$ proof have y < Suc y by simp with A3 have b-least2 f x (Suc y) < Suc y by simp from this have f x (b-least 2 f x (Suc y)) $\neq 0$ by (simp add: b-least 2-less-impl-nz) with A3 show $f x y \neq 0$ by simp qed with A2 have ?thesis by simp } moreover Ł assume *b*-least2 f x (Suc y) = Suc ythen have ?thesis by simp } ultimately show ?thesis by blast qed lemma b-least2-at-zero: b-least2 f x 0 = 0proof have S1: b-least2 f x $0 \le 0$ by (rule b-least2-le-arg) from S1 show ?thesis by auto qed **theorem** *pr-b-least2*: $f \in PrimRec2 \implies b-least2$ $f \in PrimRec2$ proof – define loc-Op1 where loc-Op1 = $(\lambda \ (f::nat \Rightarrow nat \Rightarrow nat) \ x \ y \ z. \ (sgn1 \ (z - a))$ y) * y + (sgn2 (z - y)) * ((sgn1 (f x z)) * z + (sgn2 (f x z)) * (Suc z)))**define** *loc-Op2* where *loc-Op2* = (λ *f*. *PrimRecOp-last* (λ *x*. 0) (*loc-Op1 f*)) have loc - op2 - lm - 1: $\bigwedge f x y$. $loc - Op2 f x y < y \implies loc - Op2 f x (Suc y) = loc - Op2$ f x yproof – fix f x ylet ?b = loc - Op2 f x yhave S1: loc-Op2 f x (Suc y) = (loc-Op1 f) x ?b y by (simp add: loc-Op2-def) assume ?b < ythen have y - ?b > 0 by simpthen have loc-Op1 f x ?b y = ?b by $(simp \ add: \ loc-Op1-def)$

with S1 show loc-Op2 f x y < y \implies loc-Op2 f x (Suc y) = loc-Op2 f x y by simp qed have loc - op2 - lm - 2: $\bigwedge f x y$. $[\neg (loc - Op2 f x y < y); f x y \neq 0] \implies loc - Op2 f x$ $(Suc \ y) = y$ proof – fix f x ylet ?b = loc-Op2 f x y and ?h = loc-Op1 fhave S1: loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def) assume $\neg(?b < y)$ then have S2: y - ?b = 0 by simp assume $f x y \neq 0$ with S2 have ?h x ?b y = y by (simp add: loc-Op1-def) with S1 show loc-Op2 f x (Suc y) = y by simp qed have loc - op2 - lm - 3: $\bigwedge f x y$. $[\neg (loc - Op2 f x y < y); f x y = 0]] \implies loc - Op2 f x$ $(Suc \ y) = Suc \ y$ proof fix f x ylet ?b = loc - Op2 f x y and ?h = loc - Op1 fhave S1: loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def) assume $\neg(?b < y)$ then have S2: y - ?b = 0 by simpassume f x y = 0with S2 have ?h x ?b y = Suc y by (simp add: loc-Op1-def) with S1 show loc-Op2 f x (Suc y) = Suc y by simp qed have Op2-eq-b-least2-at-point: $\bigwedge f x y$. loc-Op2 f x y = b-least2 f x y **proof** - **fix** f x **show** $\bigwedge y$. *loc-Op2* f x y = b-*least2* f x y**proof** (*induct-tac* y) show loc-Op2 f x 0 = b-least2 f x 0 by (simp add: loc-Op2-def b-least2-at-zero) \mathbf{next} fix y**assume** A1: loc-Op2 f x y = b-least2 f x ythen show loc-Op2 f x (Suc y) = b-least2 f x (Suc y) proof cases assume A2: loc-Op2 f x y < ythen have S1: loc-Op2 f x (Suc y) = loc-Op2 f x y by (rule loc-op2-lm-1) from A1 A2 have b-least2 f x y < y by simp then have S2: b-least2 f x (Suc y) = b-least2 f x y by (rule b-least2-aux2) from A1 S1 S2 show ?thesis by simp \mathbf{next} assume A3: \neg loc-Op2 f x y < y have A3': b-least2 f x y = y proof have *b*-least2 $f x y \le y$ by (rule *b*-least2-le-arg) from A1 A3 this show ?thesis by simp qed then show ?thesis

proof cases assume A_4 : $f x y \neq 0$ with A3 have S3: loc-Op2 f x (Suc y) = y by (rule loc-op2-lm-2) from A3' A4 have S4: b-least2 f x (Suc y) = y by (rule b-least2-aux3) from S3 S4 show ?thesis by simp next assume $\neg f x y \neq 0$ then have A5: f x y = 0 by simp with A3 have S5: loc-Op2 f x (Suc y) = Suc y by (rule loc-op2-lm-3) from A3' A5 have S6: b-least2 f x (Suc y) = Suc y by (rule b-least2-aux4) from S5 S6 show ?thesis by simp qed qed qed qed have Op2-eq-b-least2: loc-Op2 = b-least2 by (simp add: Op2-eq-b-least2-at-point ext) assume $A1: f \in PrimRec2$ have pr-loc-Op2: loc- $Op2 f \in PrimRec2$ proof – from A1 have S1: loc-Op1 $f \in PrimRec3$ by (simp add: loc-Op1-def, prec) from pr-zero S1 have S2: PrimRecOp-last ($\lambda x. 0$) (loc-Op1 f) \in PrimRec2 **by** (*rule pr-rec-last*) from this show ?thesis by (simp add: loc-Op2-def) qed from Op2-eq-b-least2 this show b-least2 $f \in PrimRec2$ by simp qed

lemma b-least-def1: b-least $f = (\lambda x. b-least2 f x x)$ by (simp add: b-least2-def b-least-def ext)

theorem pr-b-least: $f \in PrimRec2 \implies b$ -least $f \in PrimRec1$ **proof** – **assume** $f \in PrimRec2$ **then have** b-least2 $f \in PrimRec2$ **by** (rule pr-b-least2) **from** this pr-id1-1 pr-id1-1 **have** (λx . b-least2 f x x) \in PrimRec1 **by** (rule pr-comp2-1) **then show** ?thesis **by** (simp add: b-least-def1) **qed**

2.3 Examples

theorem c-sum-as-b-least: c-sum = $(\lambda \ u. \ b-least 2 \ (\lambda \ u \ z. \ (sgn1 \ (sf(z+1) - u)))$ $u \ (Suc \ u))$ proof (rule ext) fix u show c-sum u = b-least 2 ($\lambda \ u \ z. \ (sgn1 \ (sf(z+1) - u)))$ u (Suc u) proof – have $lm-1: (\lambda \ x \ y. \ (sgn1 \ (sf(y+1) - x) \neq 0)) = (\lambda \ x \ y. \ (x < sf(y+1)))$ proof (rule ext, rule ext)

fix x y show $(sgn1 (sf(y+1) - x) \neq 0) = (x < sf(y+1))$ proof have $(sgn1 (sf(y+1) - x) \neq 0) = (sf(y+1) - x > 0)$ by (rule sgn1-nz-eq-arg-pos) thus $(sgn1 \ (sf(y+1) - x) \neq 0) = (x < sf(y+1))$ by auto ged qed let $?f = \lambda \ u \ z. \ (sgn1 \ (sf(z+1) - u))$ have S1: ?f $u \ u \neq 0$ proof have S1-1: $u+1 \leq sf(u+1)$ by (rule arg-le-sf) have S1-2: u < u+1 by simp from S1-1 S1-2 have S1-3: u < sf(u+1) by simp from S1-3 have S1-4: sf(u+1) - u > 0 by simp from S1-4 have S1-5: sgn1 (sf(u+1)-u) = 1 by simpfrom S1-5 show ?thesis by simp qed have S3: $u < Suc \ u$ by simp from S3 S1 have S4: b-least2 ?f u (Suc u) = (Least (%z. (?f u z) $\neq 0$)) by (rule b-least2-less-impl-eq2) let $?P = \lambda \ u \ z$. ?f $u \ z \neq 0$ let $?Q = \lambda \ u \ z. \ u < sf(z+1)$ from lm-1 have S6: ?P = ?Q by simpfrom S6 have S7: $(\% z. ?P \ u \ z) = (\% z. ?Q \ u \ z)$ by (rule fun-cong) from S7 have S8: (Least (%z. ?P u z)) = (Least (%z. ?Q u z)) by auto from S4 S8 have S9: b-least2 ?f u (Suc u) = (Least (%z. u < sf(z+1))) by (rule trans) thus ?thesis by (simp add: c-sum-def) ged qed **theorem** *c*-sum-is-pr: c-sum \in PrimRec1 proof let $?f = \lambda \ u \ z. \ (sgn1 \ (sf(z+1) - u))$ have S1: $(\lambda \ u \ z. \ sgn1 \ ((sf(z+1) - u))) \in PrimRec2$ by prec define g where g = b-least2 ?f from q-def S1 have $q \in PrimRec2$ by (simp add: pr-b-least2) then have S2: $(\lambda \ u. \ g \ u \ (Suc \ u)) \in PrimRec1$ by prec from g-def have c-sum = $(\lambda \ u. \ g \ u \ (Suc \ u))$ by (simp add: c-sum-as-b-least ext) with S2 show ?thesis by simp qed **theorem** c-fst-is-pr [prec]: c-fst \in PrimRec1 proof have S1: $(\lambda \ u. \ c\text{-fst} \ u) = (\lambda \ u. \ (u - sf \ (c\text{-sum } u)))$ by $(simp \ add: \ c\text{-fst-def } ext)$ from c-sum-is-pr have $(\lambda \ u. \ (u - sf \ (c-sum \ u))) \in PrimRec1$ by prec with S1 show ?thesis by simp ged

theorem *c-snd-is-pr* [*prec*]: *c-snd* \in *PrimRec1*

proof -

have S1: c-snd = $(\lambda \ u. \ (c\text{-sum } u) - (c\text{-}fst \ u))$ by $(simp \ add: \ c\text{-snd-def } ext)$ from c-sum-is-pr c-fst-is-pr have S2: $(\lambda \ u. \ (c\text{-sum } u) - (c\text{-}fst \ u)) \in PrimRec1$ by prec

from S1 this show ?thesis by simp qed

theorem pr-1-to-2: $f \in PrimRec1 \Longrightarrow (\lambda \ x \ y. \ f \ (c-pair \ x \ y)) \in PrimRec2$ by prec

theorem pr-2-to-1: $f \in PrimRec2 \implies (\lambda \ z. \ f \ (c-snd \ z)) \in PrimRec1$ by prec

definition pr-conv-1-to-2 = $(\lambda f x y. f (c-pair x y))$ definition pr-conv-1-to-3 = $(\lambda f x y z. f (c-pair (c-pair x y) z))$ definition pr-conv-2-to-1 = $(\lambda f x. f (c-fst x) (c-snd x))$ definition pr-conv-3-to-1 = $(\lambda f x. f (c-fst (c-fst x)) (c-snd (c-fst x)) (c-snd x))$ definition pr-conv-3-to-2 = $(\lambda f. pr$ -conv-1-to-2 (pr-conv-3-to-1 f))definition pr-conv-2-to-3 = $(\lambda f. pr$ -conv-1-to-3 (pr-conv-2-to-1 f))

 $\begin{array}{l} \textbf{lemma} \ [simp]: \ pr-conv-1-to-2 \ (pr-conv-2-to-1 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-1-to-2-def \ pr-conv-2-to-1-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-1 \ (pr-conv-1-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-1-to-2-def \ pr-conv-2-to-1-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-1-to-3 \ (pr-conv-3-to-1 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-1-to-3-def \ pr-conv-3-to-1-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-3-to-1 \ (pr-conv-1-to-3 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-1-to-3-def \ pr-conv-3-to-1-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-3-to-1 \ (pr-conv-2-to-3 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-3-to-2 \ (pr-conv-2-to-3 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-3 \ (pr-conv-3-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-3 \ (pr-conv-3-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-3 \ (pr-conv-3-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-3 \ (pr-conv-3-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-2-def) \\ \textbf{lemma} \ [simp]: \ pr-conv-2-to-3 \ (pr-conv-3-to-2 \ f) = f \ \textbf{by}(simp \ add: \ pr-conv-3-to-2-def \ pr-conv-3-to-3-def \ pr$

lemma pr-conv-1-to-2-lm: $f \in PrimRec1 \implies pr-conv-1-to-2 \ f \in PrimRec2$ by (simp add: pr-conv-1-to-2-def, prec) lemma pr-conv-1-to-3-lm: $f \in PrimRec1 \implies pr-conv-1-to-3 f \in PrimRec3$ by (simp add: pr-conv-1-to-3-def, prec) **lemma** pr-conv-2-to-1-lm: $f \in PrimRec2 \implies pr-conv-2-to-1 \ f \in PrimRec1$ by (simp add: pr-conv-2-to-1-def, prec) lemma pr-conv-3-to-1-lm: $f \in PrimRec3 \implies pr-conv-3-to-1 \ f \in PrimRec1$ by (simp add: pr-conv-3-to-1-def, prec) **lemma** pr-conv-3-to-2-lm: $f \in PrimRec3 \implies pr-conv-3-to-2$ $f \in PrimRec2$ proof – assume $f \in PrimRec3$ then have pr-conv-3-to-1 $f \in PrimRec1$ by (rule pr-conv-3-to-1-lm) thus ?thesis by (simp add: pr-conv-3-to-2-def pr-conv-1-to-2-lm) qed **lemma** pr-conv-2-to-3-lm: $f \in PrimRec2 \implies pr-conv-2-to-3$ $f \in PrimRec3$ proof assume $f \in PrimRec2$

then have pr-conv-2-to-1 $f \in PrimRec1$ by $(rule \ pr-conv-2-to-1-lm)$ thus ?thesis by $(simp \ add: \ pr-conv-2-to-3-def \ pr-conv-1-to-3-lm)$ qed

theorem *b*-least2-scheme: $[f \in PrimRec2; g \in PrimRec1; \forall x. h x < g x; \forall x. f$ $x (h x) \neq 0; \forall z x. z < h x \longrightarrow f x z = 0$ $h \in PrimRec1$ proof – assume *f-is-pr*: $f \in PrimRec2$ assume g-is-pr: $g \in PrimRec1$ assume *h*-*lt*-*g*: $\forall x. h x < g x$ assume *f*-at-*h*-nz: $\forall x. f x (h x) \neq 0$ **assume** *h*-*is*-*min*: $\forall z x. z < h x \longrightarrow f x z = 0$ have *h*-def: $h = (\lambda x. b$ -least2 f x (g x))proof fix x show h x = b-least 2 f x (q x) proof from f-at-h-nz have S1: b-least2 f x $(gx) \leq hx$ by (simp add: nz-impl-b-least2-le)from *h*-lt-g have h x < g x by auto with S1 have b-least2 f x (g x) < g x by simp then have S2: f x (b-least2 f x (g x)) $\neq 0$ by (rule b-least2-less-impl-nz) have S3: $h x \leq b$ -least2 f x (g x)**proof** (*rule ccontr*) assume $\neg h x \leq b$ -least 2 f x (g x) then have b-least 2 f x (g x) < h x by autowith *h*-is-min have f x (*b*-least 2 f x (g x)) = 0 by simp with S2 show False by auto qed from S1 S3 show ?thesis by auto qed qed define f1 where f1 = b-least2 ffrom f-is-pr f1-def have f1-is-pr: $f1 \in PrimRec2$ by (simp add: pr-b-least2) with g-is-pr have $(\lambda x. f1 x (g x)) \in PrimRec1$ by prec with *h*-def f1-def show $h \in PrimRec1$ by auto qed

theorem *b-least2-scheme2*: $\llbracket f \in PrimRec3; g \in PrimRec2; \forall x y. h x y < g x y;$ $\forall x y. f x y (h x y) \neq 0;$ $\forall z x y \neq f x y (h x y) \neq 0;$

$$\begin{array}{c} \forall \ z \ x \ y. \ z < h \ x \ y \longrightarrow f \ x \ y \ z = 0 \end{array} \\ h \in PrimRec2 \end{array}$$

proof -

assume f-is-pr: $f \in PrimRec3$ assume g-is-pr: $g \in PrimRec2$ assume h-lt-g: $\forall x y. h x y < g x y$ assume f-at-h-nz: $\forall x y. f x y (h x y) \neq 0$ assume h-is-min: $\forall z x y. z < h x y \longrightarrow f x y z = 0$ define f1 where f1 = pr-conv-3-to-2 f define g1 where g1 = pr-conv-2-to-1 g define h1 where h1 = pr-conv-2-to-1 h

from *f-is-pr f1-def* **have** *f1-is-pr:* $f1 \in PrimRec2$ **by** (simp add: pr-conv-3-to-2-lm) **from** *g-is-pr* g1-def **have** g1-is-pr: g1 \in PrimRec1 **by** (simp add: pr-conv-2-to-1-lm) from h-lt-q h1-def q1-def have h1-lt-q1: $\forall x$. h1 x < q1 x by (simp add: pr-conv-2-to-1-def) from f-at-h-nz f1-def h1-def have f1-at-h1-nz: $\forall x$. f1 x (h1 x) $\neq 0$ by (simp add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def) from h-is-min f1-def h1-def have h1-is-min: $\forall z x. z < h1 x \longrightarrow f1 x z = 0$ by (simp add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def) from f1-is-pr g1-is-pr h1-lt-g1 f1-at-h1-nz h1-is-min have h1-is-pr: $h1 \in Prim$ -*Rec1* by (*rule b-least2-scheme*) from h1-def have h = pr-conv-1-to-2 h1 by simp with h1-is-pr show $h \in PrimRec2$ by (simp add: pr-conv-1-to-2-lm) qed **theorem** div-is-pr: $(\lambda \ a \ b. \ a \ div \ b) \in PrimRec2$ proof define f where f a b $z = (sgn1 \ b) * (sgn1 \ (b*(z+1)-a)) + (sgn2 \ b)*(sgn2 \ z)$ for $a \ b \ z$ have *f*-is-pr: $f \in PrimRec3$ unfolding *f*-def by prec define h where h a $b = a \operatorname{div} b$ for a b :: natdefine g where g a b = a + 1 for a b :: nathave g-is-pr: $g \in PrimRec2$ unfolding g-def by prec have h-lt-g: $\forall a b. h a b < g a b$ **proof** (rule allI, rule allI) fix a bfrom *h*-def have $h \ a \ b \leq a$ by simp also from *g*-def have $a < g \ a \ b$ by simp ultimately show $h \ a \ b < g \ a \ b$ by simpqed have *f*-at-*h*-nz: \forall a b. f a b (h a b) \neq 0 **proof** (rule allI, rule allI) fix a b show f a b $(h a b) \neq 0$ **proof** cases assume A: b = 0with *h*-def have $h \ a \ b = 0$ by simp with *f*-def A show ?thesis by simp \mathbf{next} assume $A: b \neq 0$ then have S1: b > 0 by *auto* from A f-def have S2: f a b (h a b) = sgn1 (b * (h a b + 1) - a) by simp then have $?thesis = (sgn1(b * (h a b + 1) - a) \neq 0)$ by auto also have $\dots = (b * (h a b + 1) - a > 0)$ by (rule sgn1-nz-eq-arg-pos) also have $\ldots = (a < b * (h \ a \ b + 1))$ by *auto* also have $\ldots = (a < b * (h \ a \ b) + b)$ by *auto* also from h-def have $\ldots = (a < b * (a \ div \ b) + b)$ by simp finally have S3: ?thesis = $(a < b * (a \ div \ b) + b)$ by auto have S4: $a < b * (a \ div \ b) + b$ proof –

from S1 have S4-1: a mod b < b by (rule mod-less-divisor) also have S4-2: $b * (a \ div \ b) + a \ mod \ b = a$ by (rule mult-div-mod-eq) from S4-1 have S4-3: $b * (a \operatorname{div} b) + a \operatorname{mod} b < b * (a \operatorname{div} b) + b$ by arith from S4-2 S4-3 show ?thesis by auto qed from S3 S4 show ?thesis by auto qed qed **have** h-is-min: $\forall z \ a \ b. \ z < h \ a \ b \longrightarrow f \ a \ b \ z = 0$ **proof** (*rule allI*, *rule allI*, *rule allI*, *rule impI*) fix a b z assume A: z < h a b show f a b z = 0proof from A h-def have S1: $z < a \ div \ b$ by simp then have S2: a div b > 0 by simp have S3: $b \neq 0$ **proof** (*rule ccontr*) assume $\neg b \neq 0$ then have b = 0 by *auto* then have a div b = 0 by auto with S2 show False by auto qed from S3 have b-pos: 0 < b by auto from S1 have S4: $z+1 \leq a \ div \ b$ by auto from b-pos have $(b * (z+1) \leq b * (a \text{ div } b)) = (z+1 \leq a \text{ div } b)$ by (rule nat-mult-le-cancel1) with S4 have S5: $b*(z+1) \leq b*(a \ div \ b)$ by simp moreover have $b*(a \ div \ b) \leq a$ proof – have $b*(a \ div \ b) + (a \ mod \ b) = a$ by (rule mult-div-mod-eq) moreover have $0 \leq a \mod b$ by *auto* ultimately show ?thesis by arith qed ultimately have S6: $b*(z+1) \leq a$ **by** (*simp add: minus-mod-eq-mult-div* [*symmetric*]) then have b*(z+1) - a = 0 by *auto* with S3 f-def show ?thesis by simp qed qed from f-is-pr g-is-pr h-lt-g f-at-h-nz h-is-min have h-is-pr: $h \in PrimRec2$ by (rule *b-least2-scheme2*) with *h*-def [abs-def] show ?thesis by simp \mathbf{qed} **theorem** mod-is-pr: $(\lambda \ a \ b. \ a \ mod \ b) \in PrimRec2$ proof – have $(\lambda \ (a::nat) \ (b::nat)$. $a \ mod \ b) = (\lambda \ a \ b. \ a - (a \ div \ b) * b)$ **proof** (*rule ext*, *rule ext*) fix a b show (a::nat) mod b = a - (a div b) * b by (rule minus-div-mult-eq-mod [symmetric])

qed

ultimately show ?thesis by auto qed **theorem** pr-rec-last-scheme: $[g \in PrimRec1; h \in PrimRec3; \forall x. f x 0 = g x; \forall$ $x y. f x (Suc y) = h x (f x y) y] \Longrightarrow f \in PrimRec2$ proof assume *g-is-pr*: $g \in PrimRec1$ assume *h*-is-pr: $h \in PrimRec3$ **assume** f-at-0: $\forall x. f x \theta = g x$ **assume** f-at-Suc: $\forall x y$. f x (Suc y) = h x (f x y) y **from** f-at-0 f-at-Suc have $\bigwedge x y$. f x y = PrimRecOp-last g h x y by (induct-tac y, simp-all) then have f = PrimRecOp-last g h by (simp add: ext) with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec-last) qed **theorem** power-is-pr: $(\lambda \ (x::nat) \ (n::nat). \ x \ \widehat{} n) \in PrimRec2$ proof – define $g :: nat \Rightarrow nat$ where g x = 1 for x define h where h a b c = a * b for a b c :: nat have g-is-pr: $g \in PrimRec1$ unfolding g-def by prec have h-is-pr: $h \in PrimRec3$ unfolding h-def by prec let $?f = \lambda$ (x::nat) (n::nat). $x \cap n$ have f-at-0: $\forall x. ?f x 0 = g x$ proof fix x show $x \cap 0 = g x$ by (simp add: g-def) qed have f-at-Suc: $\forall x y$. ?f x (Suc y) = h x (?f x y) y**proof** (*rule allI*, *rule allI*) fix x y show ?f x (Suc y) = h x (?f x y) y by (simp add: h-def)qed from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme) qed

also from div-is-pr have $(\lambda \ a \ b. \ a - (a \ div \ b) * b) \in PrimRec2$ by prec

\mathbf{end}

3 Primitive recursive coding of lists of natural numbers

theory PRecList imports PRecFun begin

We introduce a particular coding *list-to-nat* from lists of natural numbers to natural numbers.

definition

c-len :: $nat \Rightarrow nat$ where

 $c\text{-len} = (\lambda \ (u::nat). \ (sgn1 \ u) * (c\text{-}fst(u-(1::nat))+1))$

lemma c-len-1: c-len $u = (case \ u \ of \ 0 \Rightarrow 0 | Suc \ v \Rightarrow c-fst(v)+1)$ by (unfold c-len-def, cases u, auto)

lemma c-len-is-pr: c-len \in PrimRec1 unfolding c-len-def by prec

```
lemma [simp]: c-len 0 = 0 by (simp add: c-len-def)
lemma c-len-2: u \neq 0 \implies c-len u = c-fst(u - (1::nat)) + 1 by (simp add: c-len-def)
lemma c-len-3: u > 0 \implies c-len u > 0 by (simp add: c-len-2)
lemma c-len-4: c-len u = 0 \implies u = 0
proof cases
 assume A1: u = 0
 thus ?thesis by simp
next
 assume A1: c-len u = 0 and A2: u \neq 0
 from A2 have c-len u > 0 by (simp add: c-len-3)
 from A1 this show u=0 by simp
qed
lemma c-len-5: c-len u > 0 \Longrightarrow u > 0
proof cases
 assume A1: c-len u > 0 and A2: u=0
 from A2 have c-len u = 0 by simp
 from A1 this show ?thesis by simp
next
 assume A1: u \neq 0
 from A1 show u > 0 by simp
qed
fun c-fold :: nat list \Rightarrow nat where
   c-fold [] = 0
 | c-fold [x] = x
 | c-fold (x \# ls) = c-pair x (c-fold ls)
lemma c-fold-0: ls \neq [] \implies c-fold (x \# ls) = c-pair x (c-fold ls)
proof -
 assume A1: ls \neq []
 then have S1: ls = (hd \ ls) \# (tl \ ls) by simp
 then have S2: x \# ls = x \# (hd \ ls) \# (tl \ ls) by simp
 have S3: c-fold (x \# (hd \ ls) \# (tl \ ls)) = c-pair x (c-fold ((hd \ ls) \# (tl \ ls))) by simp
 from S1 S2 S3 show ?thesis by simp
qed
primrec
 c-unfold :: nat \Rightarrow nat \Rightarrow nat list
```

where

c-unfold $0 \ u = []$

| c-unfold (Suc k) u = (if k = 0 then [u] else ((c-fst u) # (c-unfold k (c-snd u))))

lemma *c-fold-1*: *c-unfold 1* (c-fold [x]) = [x] by simp

lemma *c-fold-2*: *c-fold* (c*-unfold* 1 u) = u by simp

lemma *c*-unfold-1: *c*-unfold 1 u = [u] by simp

lemma c-unfold-2: c-unfold (Suc 1) $u = (c-fst \ u) \# (c-unfold \ 1 \ (c-snd \ u))$ by simp

lemma c-unfold-3: c-unfold (Suc 1) $u = [c-fst \ u, \ c-snd \ u]$ by simp

lemma c-unfold-4: $k > 0 \implies$ c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd u)) by simp

lemma *c*-unfold-4-1: $k > 0 \implies$ *c*-unfold (Suc k) $u \neq []$ by (simp add: *c*-unfold-4)

lemma two: $(2::nat) = Suc \ 1$ by simp

lemma c-unfold-5: c-unfold 2 $u = [c-fst \ u, \ c-snd \ u]$ by (simp add: two)

```
lemma c-unfold-6: k > 0 \implies c-unfold k \ u \neq []
proof -
 assume A1: k > 0
 let ?k1 = k - (1::nat)
 from A1 have S1: k = Suc ?k1 by simp
 have S2: ?k1 = 0 \implies ?thesis
 proof -
   assume A2-1: ?k1=0
   from A1 A2-1 have S2-1: k=1 by simp
   from S2-1 show ?thesis by (simp add: c-unfold-1)
 qed
 have S3: ?k1 > 0 \implies ?thesis
 proof -
   assume A3-1: ?k1 > 0
   from A3-1 have S3-1: c-unfold (Suc ?k1) u \neq [] by (rule c-unfold-4-1)
   from S1 S3-1 show ?thesis by simp
 \mathbf{qed}
 from S2 S3 show ?thesis by arith
qed
```

lemma th-lm-1: $k=1 \implies (\forall u. c-fold (c-unfold k u) = u)$ by (simp add: c-fold-2)

lemma th-lm-2: $[k>0; (\forall u. c-fold (c-unfold k u) = u)] \implies (\forall u. c-fold (c-unfold (Suc k) u) = u)$ **proof**

assume A1: k > 0**assume** A2: \forall u. c-fold (c-unfold k u) = u fix ufrom A1 have S1: c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd u)) by (rule c-unfold-4) let ?ls = c-unfold k (c-snd u) from A1 have S2: $?ls \neq []$ by (rule c-unfold-6) from S2 have S3: c-fold ((c-fst u) #?ls) = c-pair (c-fst u) (c-fold ?ls) by (rule c-fold-0) from A2 have S4: c-fold ?ls = c-snd u by simp from S3 S4 have S5: c-fold ((c-fst u) #?ls) = c-pair (c-fst u) (c-snd u) by simpfrom S5 have S6: c-fold ((c-fst u) # ?ls) = u by simp from S1 S6 have S7: c-fold (c-unfold (Suc k) u) = u by simp thus c-fold (c-unfold (Suc k) u) = u. qed **lemma** th-lm-3: $(\forall u. c-fold (c-unfold (Suc k) u) = u) \Longrightarrow (\forall u. c-fold (c-unfold (C-$ (Suc (Suc k)) u) = u)proof – **assume** A1: \forall u. c-fold (c-unfold (Suc k) u) = u $\mathbf{let}~?k1~=~Suc~k$ have S1: ?k1 > 0 by simp **from** S1 A1 have S2: \forall u. c-fold (c-unfold (Suc ?k1) u) = u by (rule th-lm-2) thus ?thesis by simp qed **theorem** th-1: \forall u. c-fold (c-unfold (Suc k) u) = u $apply(induct \ k)$ **apply**(*simp add*: *c*-fold-2) apply(rule th-lm-3) apply(assumption) done **theorem** th-2: $k > 0 \implies (\forall u. c-fold (c-unfold k u) = u)$ proof – assume A1: k > 0let ?k1 = k - (1::nat)from A1 have S1: Suc ?k1 = k by simp have $S2: \forall u. c$ -fold (c-unfold (Suc ?k1) u) = u by (rule th-1) from S1 S2 show ?thesis by simp qed **lemma** c-fold-3: c-unfold 2 (c-fold [x, y]) = [x, y] by (simp add: two) **theorem** *c*-unfold-len: ALL *u*. length (*c*-unfold k u) = kapply(induct k)apply(simp)apply(subgoal-tac $n=(0::nat) \lor n>0$)

```
apply(drule disjE)
prefer 3
apply(simp-all)
apply(auto)
done
```

```
lemma th-3-lm-0: [c-unfold (length ls) (c-fold ls) = ls; ls = a \# ls1; ls1 = aa \#
list \implies c-unfold (length (x # ls)) (c-fold (x # ls)) = x # ls
proof -
 assume A1: c-unfold (length ls) (c-fold ls) = ls
 assume A2: ls = a \# ls1
 assume A3: ls1 = aa \# list
 from A2 have S1: ls \neq [] by simp
 from S1 have S2: c-fold (x \# ls) = c-pair x (c-fold ls) by (rule c-fold-0)
 have S3: length (x \# ls) = Suc (length ls) by simp
 from S3 have S4: c-unfold (length (x \# ls)) (c-fold (x \# ls)) = c-unfold (Suc
(length \ ls)) \ (c-fold \ (x \ \# \ ls)) \ by \ simp
 from A2 have S5: length ls > 0 by simp
 from S5 have S6: c-unfold (Suc (length ls)) (c-fold (x \# ls)) = c-fst (c-fold (x
\# ls))\#(c-unfold (length ls) (c-snd (c-fold (x\#ls)))) by (rule c-unfold-4)
 from S2 have S7: c-fst (c-fold (x \# ls)) = x by simp
 from S2 have S8: c-snd (c-fold (x \# ls)) = c-fold ls by simp
  from S6 S7 S8 have S9: c-unfold (Suc (length ls)) (c-fold (x \# ls)) = x \#
(c-unfold (length ls) (c-fold ls)) by simp
 from A1 have S10: x \# (c\text{-unfold (length ls) (c-fold ls)}) = x \# ls by simp
 from S9 S10 have S11: c-unfold (Suc (length ls)) (c-fold (x \# ls)) = (x \# ls)
by simp
 thus ?thesis by simp
\mathbf{qed}
lemma th-3-lm-1: [c\text{-unfold (length ls) (c-fold ls)} = ls; ls = a \# ls1] \implies c\text{-unfold}
(length (x \# ls)) (c-fold (x \# ls)) = x \# ls
apply(cases ls1)
apply(simp add: c-fold-1)
apply(simp)
done
```

```
lemma th-3-lm-2: c-unfold (length ls) (c-fold ls) = ls \implies c-unfold (length (x \# ls)) (c-fold (x \# ls)) = x \# ls

apply(cases ls)

apply(simp add: c-fold-1)

apply(rule th-3-lm-1)

apply(assumption+)

done

theorem th-3: c-unfold (length ls) (c-fold ls) = ls
```

```
theorem th-3: c-unfold (length is) (c-fold is) = is

apply(induct ls)

apply(simp)

apply(rule th-3-lm-2)
```

apply(assumption) done

definition

list-to-nat :: *nat list* \Rightarrow *nat* where *list-to-nat* = (λ *ls. if ls*=[] *then 0 else* (*c-pair* ((*length ls*) - 1) (*c-fold ls*))+1)

definition

 $nat-to-list :: nat \Rightarrow nat \ list \ where$ $nat-to-list = (\lambda \ u. \ if \ u=0 \ then \ [] \ else \ (c-unfold \ (c-len \ u) \ (c-snd \ (u-(1::nat)))))$

lemma *nat-to-list-of-pos*: $u > 0 \implies nat-to-list u = c-unfold (c-len u) (c-snd (u-(1::nat)))$ by (simp add: nat-to-list-def)

theorem *list-to-nat-th* [*simp*]: *list-to-nat* (*nat-to-list* u) = uproof have S1: $u=0 \implies$?thesis by (simp add: list-to-nat-def nat-to-list-def) have S2: $u > 0 \implies$?thesis proof – assume A1: u > 0define ls where ls = nat-to-list ufrom ls-def A1 have S2-1: ls = c-unfold (c-len u) (c-snd (u-(1::nat))) by (simp add: nat-to-list-def) let ?k = c-len u from A1 have S2-2: k > 0 by (rule c-len-3) from S2-1 have S2-3: length ls = ?k by (simp add: c-unfold-len) from S2-2 S2-3 have S2-4: length ls > 0 by simp from S2-4 have S2-5: $ls \neq []$ by simp from S2-5 have S2-6: list-to-nat ls = c-pair ((length ls)-(1::nat)) (c-fold ls)+1 by (simp add: list-to-nat-def) have S2-7: c-fold ls = c-snd(u-(1::nat))proof from S2-1 have S2-7-1: c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u-(1::nat)))) by simp from S2-2 S2-7-1 show ?thesis by (simp add: th-2) qed have S2-8: $(length \ ls) - (1::nat) = c - fst \ (u - (1::nat))$ proof – from S2-3 have S2-8-1: length ls = c-len u by simp from A1 S2-8-1 have S2-8-2: length ls = c - fst(u - (1::nat)) + 1 by (simpadd: c-len-2) from S2-8-2 show ?thesis by simp qed from S2-7 S2-8 have S2-9: c-pair ((length ls)-(1::nat)) (c-fold ls) = c-pair (c-fst (u-(1::nat))) (c-snd (u-(1::nat))) by simp from S2-9 have S2-10: c-pair ((length ls)-(1::nat)) (c-fold ls) = u - (1::nat) by simp from S2-6 S2-10 have S2-11: list-to-nat ls = (u - (1::nat)) + 1 by simp from A1 have S2-12: (u - (1::nat)) + 1 = u by simp

```
from ls-def S2-11 S2-12 show ?thesis by simp
 qed
 from S1 S2 show ?thesis by arith
qed
theorem nat-to-list-th [simp]: nat-to-list (list-to-nat ls) = ls
proof –
 have S1: ls=[] \implies ?thesis by (simp add: nat-to-list-def list-to-nat-def)
 have S2: ls \neq [] \implies ?thesis
 proof -
   assume A1: ls \neq []
   define u where u = list-to-nat ls
  from u-def A1 have S2-1: u = (c-pair ((length ls) - (1::nat)) (c-fold ls)) + 1 by
(simp add: list-to-nat-def)
   let ?k = length ls
   from A1 have S2-2: k > 0 by simp
   from S2-1 have S2-3: u > 0 by simp
   from S2-3 have S2-4: nat-to-list u = c-unfold (c-len u) (c-snd (u-(1::nat)))
by (simp add: nat-to-list-def)
   have S2-5: c-len u = length ls
   proof -
     from S2-1 have S2-5-1: u - (1::nat) = c - pair ((length ls) - (1::nat)) (c - fold
ls) by simp
    from S2-5-1 have S2-5-2: c-fst (u-(1::nat)) = (length \ ls)-(1::nat) by simp
    from S2-2 S2-5-2 have c-fst (u-(1::nat))+1 = length ls by simp
    from S2-3 this show ?thesis by (simp add: c-len-2)
   qed
   have S2-6: c-snd (u-(1::nat)) = c-fold ls
   proof -
     from S2-1 have S2-6-1: u - (1::nat) = c - pair ((length ls) - (1::nat)) (c - fold
ls) by simp
    from S2-6-1 show ?thesis by simp
   qed
   from S2-4 S2-5 S2-6 have S2-7:nat-to-list u = c-unfold (length ls) (c-fold ls)
by simp
   from S2-7 have nat-to-list u = ls by (simp add: th-3)
   from u-def this show ?thesis by simp
 qed
 have S3: ls = [] \lor ls \neq [] by simp
 from S1 S2 S3 show ?thesis by auto
\mathbf{qed}
lemma [simp]: list-to-nat [] = 0 by (simp add: list-to-nat-def)
lemma [simp]: nat-to-list 0 = [] by (simp add: nat-to-list-def)
theorem c-len-th-1: c-len (list-to-nat ls) = length ls
proof (cases)
 assume ls=[]
```

from this show ?thesis by simp next assume S1: $ls \neq []$ then have S2: list-to-nat ls = c-pair ((length ls)-(1::nat)) (c-fold ls)+1 by (simp add: list-to-nat-def) let ?u = list-to-nat ls from S2 have u-not-zero: ?u > 0 by simp from S2 have S3: ?u-(1::nat) = c-pair ((length ls)-(1::nat)) (c-fold ls) by simp then have S4: c-fst(?u-(1::nat)) = (length ls)-(1::nat) by simp from S1 this have S5: c-fst(?u-(1::nat))+1=length ls by simp from u-not-zero S5 have S6: c-len (?u) = length ls by (simp add: c-len-2) from S1 S6 show ?thesis by simp ged

qed

theorem length (nat-to-list u) = c-len u
proof let ?ls = nat-to-list u
have S1: u = list-to-nat ?ls by (rule list-to-nat-th [THEN sym])
from c-len-th-1 have S2: length ?ls = c-len (list-to-nat ?ls) by (rule sym)
from S1 S2 show ?thesis by (rule ssubst)
qed

definition

 $c\text{-}hd :: nat \Rightarrow nat \text{ where}$ $c\text{-}hd = (\lambda \ u. \ if \ u=0 \ then \ 0 \ else \ hd \ (nat\text{-}to\text{-}list \ u))$

definition

 $\begin{array}{l} c\text{-tl} :: nat \Rightarrow nat \ \mathbf{where} \\ c\text{-tl} = (\lambda \ u. \ list\text{-to-nat} \ (tl \ (nat\text{-to-list} \ u))) \end{array}$

definition

c-cons :: $nat \Rightarrow nat \Rightarrow nat$ where *c-cons* = ($\lambda x u$. *list-to-nat* (x # (nat-to-list u)))

lemma [simp]: c-hd $\theta = \theta$ by (simp add: c-hd-def)

lemma *c*-*hd*-*aux0*: *c*-*len* $u = 1 \implies nat$ -*to*-*list* u = [c-*snd* (u - (1::nat))] by (simp add: nat-*to*-*list*-*def c*-*len*-5)

lemma c-hd-aux1: c-len $u = 1 \implies$ c-hd u = c-snd (u-(1::nat)) **proof** – **assume** A1: c-len u = 1 **then have** S1: nat-to-list u = [c-snd (u-(1::nat))] **by** (simp add: nat-to-list-def c-len-5) **from** A1 **have** u > 0 **by** (simp add: c-len-5) **with** S1 **show** ?thesis **by** (simp add: c-hd-def) **qed** **lemma** c-hd-aux2: c-len $u > 1 \implies$ c-hd u = c-fst (c-snd (u - (1::nat)))proof assume A1: c-len u > 1let $?k = (c - len \ u) - 1$ from A1 have S1: c-len u = Suc ?k by simp from A1 have S2: c-len u > 0 by simp from S2 have S3: u > 0 by (rule c-len-5) from S3 have S4: c-hd u = hd (nat-to-list u) by (simp add: c-hd-def) from S3 have S5: nat-to-list u = c-unfold (c-len u) (c-snd (u-(1::nat))) by (rule nat-to-list-of-pos) from S1 S5 have S6: nat-to-list u = c-unfold (Suc ?k) (c-snd (u-(1::nat))) by simp from A1 have S7: ?k > 0 by simp from S7 have S8: c-unfold (Suc ?k) (c-snd (u-(1::nat))) = (c-fst (c-snd (u-(1::nat))))# (c-unfold ?k (c-snd (c-snd (u-(1::nat))))) by (rule c-unfold-4) from S6 S8 have S9: nat-to-list u = (c-fst (c-snd (u-(1::nat)))) # (c-unfold ?k(c-snd (c-snd (u-(1::nat))))) by simp from S9 have S10: hd (nat-to-list u) = c-fst (c-snd (u-(1::nat))) by simp from S4 S10 show ?thesis by simp \mathbf{qed} **lemma** c-hd-aux3: $u > 0 \implies$ c-hd u = (if (c-len u) = 1 then c-snd (u-(1::nat)))else c-fst (c-snd (u-(1::nat))))proof assume A1: u > 0from A1 have c-len u > 0 by (rule c-len-3) then have S1: c-len $u = 1 \lor c$ -len u > 1 by arith let ?tmp = if (c-len u) = 1 then c-snd (u-(1::nat)) else c-fst (c-snd (u-(1::nat)))have S2: c-len $u = 1 \implies$?thesis proof – assume A2-1: c-len u = 1then have S2-1: c-hd u = c-snd (u - (1::nat)) by (rule c-hd-aux1) from A2-1 have S2-2: ?tmp = c-snd(u-(1::nat)) by simp from S2-1 this show ?thesis by simp qed have S3: c-len $u > 1 \implies$?thesis proof – assume A3-1: c-len u > 1from A3-1 have S3-1: c-hd u = c-fst (c-snd (u-(1::nat))) by (rule c-hd-aux2) from A3-1 have S3-2: ?tmp = c-fst (c-snd (u-(1::nat))) by simp from S3-1 this show ?thesis by simp qed from S1 S2 S3 show ?thesis by auto qed

lemma c-hd-aux4: c-hd $u = (if \ u=0 \ then \ 0 \ else \ (if \ (c-len \ u) = 1 \ then \ c-snd \ (u-(1::nat)) \ else \ c-fst \ (c-snd \ (u-(1::nat)))))$ **proof** cases

assume u=0 then show ?thesis by simp \mathbf{next} assume $u \neq 0$ then have A1: u > 0 by simp then show ?thesis by (simp add: c-hd-aux3) ged lemma c-hd-is-pr: c-hd \in PrimRec1 proof – have c-hd = (%u. (if u=0 then 0 else (if (c-len u) = 1 then c-snd (u-(1::nat))) else c-fst (c-snd (u-(1::nat))))) (is - = ?R) by (simp add: c-hd-aux4 ext) moreover have $?R \in PrimRec1$ **proof** (*rule if-is-pr*) show $(\lambda \ x. \ x) \in PrimRec1$ by (rule pr-id1-1) **next show** $(\lambda \ x. \ \theta) \in PrimRec1$ by (rule pr-zero) **next show** (λx . if c-len x = 1 then c-snd (x - 1) else c-fst (c-snd (x - 1))) $\in PrimRec1$ **proof** (rule *if-eq-is-pr*) show c-len \in PrimRec1 by (rule c-len-is-pr) **next show** $(\lambda \ x. \ 1) \in PrimRec1$ by (rule const-is-pr) **next show** $(\lambda x. \ c\text{-snd} \ (x - 1)) \in PrimRec1$ by prec **next show** $(\lambda x. c-fst (c-snd (x - 1))) \in PrimRec1$ by prec qed qed ultimately show ?thesis by simp qed **lemma** [simp]: c-tl 0 = 0 by (simp add: c-tl-def) **lemma** c-tl-eq-tl: c-tl (list-to-nat ls) = list-to-nat (tl ls) by (simp add: c-tl-def) **lemma** tl-eq-c-tl: tl (nat-to-list x) = nat-to-list (c-tl x) by (simp add: c-tl-def) **lemma** c-tl-aux1: c-len $u = 1 \implies c$ -tl u = 0 by (unfold c-tl-def, simp add: c-hd-aux0) **lemma** c-tl-aux2: c-len $u > 1 \implies$ c-tl u = (c-pair (c-len u - (2::nat)) (c-snd(c-snd (u-(1::nat)))) + 1proof – assume A1: c-len u > 1let $?k = (c - len \ u) - 1$ from A1 have S1: c-len u = Suc ?k by simp from A1 have S2: c-len u > 0 by simp from S2 have S3: u > 0 by (rule c-len-5) from S3 have S4: nat-to-list u = c-unfold (c-len u) (c-snd (u-(1::nat))) by (rule nat-to-list-of-pos) from A1 have S5: ?k > 0 by simp from S5 have S6: c-unfold (Suc ?k) (c-snd (u-(1::nat))) = (c-fst (c-snd (u-(1::nat))))# (c-unfold ?k (c-snd (c-snd (u-(1::nat))))) by (rule c-unfold-4) from S6 have S7: tl (c-unfold (Suc ?k) (c-snd (u-(1::nat)))) = c-unfold ?k

(c-snd (c-snd (u-(1::nat)))) by simp from S2 S4 S7 have S8: tl (nat-to-list u) = c-unfold ?k (c-snd (c-snd (u-(1::nat)))) by simp define ls where ls = tl (nat-to-list u) **from** *ls-def* S8 **have** S9: *length* ls = ?k **by** (*simp* add: *c-unfold-len*) from *ls-def* have S10: *c-tl* u = list-to-nat ls by (simp add: *c-tl-def*) from S5 S9 have S11: length ls > 0 by simp from S11 have S12: $ls \neq []$ by simp from S12 have S13: list-to-nat ls = (c-pair ((length ls) - 1) (c-fold ls))+1 by (simp add: list-to-nat-def) from S10 S13 have S14: c-tl u = (c-pair ((length ls) - 1) (c-fold ls))+1 by simp from S9 have S15: $(length \ ls) - (1::nat) = ?k - (1::nat)$ by simp from A1 have S16: ?k-(1::nat) = c-len u - (2::nat) by arith from S15 S16 have S17: (length ls) - (1::nat) = c - len u - (2::nat) by simp from ls-def S8 have S18: ls = c-unfold ?k (c-snd (u-(1::nat)))) by simp from S5 have S19: c-fold (c-unfold ?k (c-snd (c-snd (u-(1::nat))))) = c-snd(c-snd (u-(1::nat))) by (simp add: th-2)from S18 S19 have S20: c-fold ls = c-snd (c-snd (u-(1::nat))) by simp from S14 S17 S20 show ?thesis by simp \mathbf{qed} **lemma** c-tl-aux3: c-tl u = (sgn1 ((c-len u) - 1))*((c-pair (c-len u - (2::nat)))(c-snd (c-snd (u-(1::nat)))) + 1) (is - = ?R) proof have S1: $u=0 \implies$?thesis by simp have S2: $u > 0 \implies$?thesis proof assume A1: u > 0have S2-1: c-len $u = 1 \implies$?thesis by (simp add: c-tl-aux1) have S2-2: c-len $u \neq 1 \implies$?thesis proof assume A2-2-1: c-len $u \neq 1$ from A1 have S2-2-1: c-len u > 0 by (rule c-len-3) from A2-2-1 S2-2-1 have S2-2-2: c-len u > 1 by arith from this have S2-2-3: c-len u - 1 > 0 by simp from this have S2-2-4: sqn1 (c-len u - 1)=1 by simp from S2-2-4 have S2-2-5: ?R = (c-pair (c-len u - (2::nat)) (c-snd (c-snd))(u-(1::nat)))) + 1 by simp from S2-2-2 have S2-2-6: c-tl u = (c-pair (c-len u - (2::nat)) (c-snd (c-snd u))(u-(1::nat)))) + 1 by (rule c-tl-aux2) from S2-2-5 S2-2-6 show ?thesis by simp qed from S2-1 S2-2 show ?thesis by blast ged from S1 S2 show ?thesis by arith ged

lemma c-tl-less: $u > 0 \implies$ c-tl u < u

```
proof -
 assume A1: u > 0
 then have S1: c-len u > 0 by (rule c-len-3)
 then show ?thesis
 proof cases
   assume c-len u = 1
   from this A1 show ?thesis by (simp add: c-tl-aux1)
 \mathbf{next}
   assume \neg c-len u = 1 with S1 have A2: c-len u > 1 by simp
  then have S2: c-tl u = (c-pair (c-len u - (2::nat)) (c-snd (c-snd (u-(1::nat)))))
+ 1 by (rule c-tl-aux2)
   from A1 have S3: c-len u = c-fst(u - (1::nat)) + 1 by (simp \ add: c-len-def)
   from A2 S3 have S4: c-len u - (2::nat) < c-fst(u - (1::nat)) by simp
   then have S5: (c-pair (c-len u - (2::nat)) (c-snd (c-snd (u-(1::nat))))) <
(c-pair (c-fst(u-(1::nat))) (c-snd (c-snd (u-(1::nat))))) by (rule c-pair-strict-mono1)
  have S6: c-snd (c-snd (u-(1::nat))) \leq c-snd (u-(1::nat)) by (rule c-snd-le-arg)
    then have S7: (c\text{-pair } (c\text{-fst}(u-(1::nat))) (c\text{-snd } (c\text{-snd } (u-(1::nat))))) \leq
(c\text{-pair} (c\text{-fst}(u-(1::nat)))) (c\text{-snd} (u-(1::nat)))) by (rule c\text{-pair-mono2})
    then have S8: (c\text{-pair } (c\text{-fst}(u-(1::nat))) (c\text{-snd } (c\text{-snd } (u-(1::nat))))) \leq
u-(1::nat) by simp
   with S5 have (c-pair (c-len u - (2::nat)) (c-snd (c-snd (u-(1::nat))))) < u
-(1::nat) by simp
   with S2 have c-tl u < (u - (1::nat)) + 1 by simp
   with A1 show ?thesis by simp
 qed
qed
lemma c-tl-le: c-tl u \leq u
proof (cases u)
 assume u=0
 then show ?thesis by simp
next
 fix v assume A1: u = Suc v
 then have S1: u > 0 by simp
 then have S2: c-tl u < u by (rule c-tl-less)
 with A1 show c-tl u < u by simp
\mathbf{qed}
theorem c-tl-is-pr: c-tl \in PrimRec1
proof –
 have c-tl = (\lambda \ u. \ (sgn1 \ ((c-len \ u) - 1))*((c-pair \ (c-len \ u - (2::nat))) \ (c-snd
(c-snd (u-(1::nat)))) + 1) (is - = ?R) by (simp \ add: \ c-tl-aux3 \ ext)
 moreover from c-len-is-pr c-pair-is-pr have ?R \in PrimRec1 by prec
 ultimately show ?thesis by simp
qed
lemma c-cons-aux1: c-cons x \ \theta = (c\text{-pair } \theta x) + 1
apply(unfold c-cons-def)
```

```
apply(simp)
```

apply(*unfold list-to-nat-def*) apply(simp)done **lemma** c-cons-aux2: $u > 0 \implies$ c-cons x u = (c-pair (c-len u) (c-pair x (c-snd(u-(1::nat))))) + 1proof assume A1: u > 0from A1 have S1: c-len u > 0 by (rule c-len-3) from A1 have S2: nat-to-list u = c-unfold (c-len u) (c-snd (u-(1::nat))) by (rule nat-to-list-of-pos) define ls where ls = nat-to-list ufrom ls-def S2 have S3: ls = c-unfold (c-len u) (c-snd (u-(1::nat))) by simp from S3 have S4: length ls = c-len u by (simp add: c-unfold-len) from S4 S1 have S5: length ls > 0 by simp from S5 have S6: $ls \neq []$ by simp from *ls-def* have S7: *c-cons* x u = list-to-nat (x # ls) by (simp add: *c-cons-def*) have S8: list-to-nat (x # ls) = (c-pair((length(x # ls)) - (1::nat))(c-fold(x # ls))) + 1**by** (*simp add: list-to-nat-def*) have S9: (length (x # ls)) - (1::nat) = length ls by simp from S9 S4 S8 have S10: list-to-nat (x # ls) = (c-pair (c-len u) (c-fold(x # ls))) + 1 by simp have S11: c-fold (x # ls) = c-pair x (c-snd (u - (1::nat)))proof from S6 have S11-1: c-fold (x # ls) = c-pair x (c-fold ls) by (rule c-fold-0) from S3 have S11-2: c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u-(1::nat)))) by simp from S1 S11-2 have S11-3: c-fold ls = c-snd (u-(1::nat)) by (simp add: th-2)from S11-1 S11-3 show ?thesis by simp qed from S7 S10 S11 show ?thesis by simp qed lemma c-cons-aux3: c-cons = $(\lambda x u. (sgn2 u)*((c-pair 0 x)+1) + (sgn1 u)*((c-pair 0 x)+1))$ $(c-len \ u) \ (c-pair \ x \ (c-snd \ (u-(1::nat))))) + 1))$ **proof** (*rule ext*, *rule ext*) fix x u show c-cons x u = $(sgn2 \ u)*((c-pair \ 0 \ x)+1) + (sgn1 \ u)*((c-pair \ (c-len \ x)+1)) + (sgn1 \ u)*((c-pair \ (c-len \ x)+1)))$ u) $(c\text{-pair } x \ (c\text{-snd} \ (u-(1::nat))))) + 1)$ (is - = ?R) **proof** cases assume A1: u=0then have ?R = (c-pair 0 x) + 1 by simp moreover from A1 have c-cons x u = (c-pair 0 x) + 1 by (simp add: c-cons-aux1) ultimately show ?thesis by simp \mathbf{next} assume A1: $u \neq 0$ then have S1: ?R = (c-pair(c-len u)(c-pair x(c-snd(u-(1::nat))))) + 1 by simp from A1 have S2: c-cons x u = (c-pair (c-len u) (c-pair x (c-snd (u-(1::nat)))))+ 1 by (simp add: c-cons-aux2)

```
from S1 S2 have c-cons x u = ?R by simp
   then show ?thesis .
 \mathbf{qed}
qed
lemma c-cons-pos: c-cons x \ u > 0
proof cases
 assume u=0
  then show c-cons x \ u > 0 by (simp add: c-cons-aux1)
\mathbf{next}
 assume \neg u = \theta then have u > \theta by simp
 then show c-cons x \ u > 0 by (simp add: c-cons-aux2)
qed
theorem c-cons-is-pr: c-cons \in PrimRec2
proof -
 have c\text{-}cons = (\lambda \ x \ u. \ (sgn2 \ u)*((c\text{-}pair \ 0 \ x)+1) + (sgn1 \ u)*((c\text{-}pair \ (c\text{-}len \ u)
(c\text{-pair } x \ (c\text{-snd} \ (u-(1::nat))))) + 1)) (is -= ?R) by (simp \ add: \ c\text{-cons-aux3})
 moreover from c-pair-is-pr c-len-is-pr have ?R \in PrimRec2 by prec
 ultimately show ?thesis by simp
qed
definition
  c-drop :: nat \Rightarrow nat \Rightarrow nat where
  c-drop = PrimRecOp (\lambda x. x) (\lambda x y z. c-tl y)
lemma c-drop-at-\theta [simp]: c-drop \theta x = x by (simp add: c-drop-def)
lemma c-drop-at-Suc: c-drop (Suc y) x = c-tl (c-drop y x) by (simp add: c-drop-def)
theorem c-drop-is-pr: c-drop \in PrimRec2
proof -
 have (\lambda \ x. \ x) \in PrimRec1 by (rule pr-id1-1)
 moreover from c-tl-is-pr have (\lambda \ x \ y \ z. \ c-tl \ y) \in PrimRec3 by prec
 ultimately show ?thesis by (simp add: c-drop-def pr-rec)
qed
lemma c-tl-c-drop: c-tl (c-drop y x) = c-drop y (c-tl x)
apply(induct y)
apply(simp)
apply(simp add: c-drop-at-Suc)
done
lemma c-drop-at-Suc1: c-drop (Suc y) x = c-drop y (c-tl x)
apply(simp add: c-drop-at-Suc c-tl-c-drop)
done
lemma c-drop-df: \forall ls. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
```

```
proof (induct n)
```

show \forall *ls. drop* 0 *ls* = *nat-to-list* (*c-drop* 0 (*list-to-nat ls*)) by (*simp add: c-drop-def*)

\mathbf{next}

fix n assume $A1: \forall ls. drop \ n \ ls = nat-to-list \ (c-drop \ n \ (list-to-nat \ ls))$ then show $\forall ls. drop \ (Suc \ n) \ ls = nat-to-list \ (c-drop \ (Suc \ n) \ (list-to-nat \ ls))$ proof – { fix $ls::nat \ list$ have $S1: \ drop \ (Suc \ n) \ ls = drop \ n \ (tl \ ls)$ by $(rule \ drop-Suc)$ from A1 have $S2: \ drop \ n \ (tl \ ls) = nat-to-list \ (c-drop \ n \ (list-to-nat \ (tl \ ls)))$ by simp also have $\dots = nat-to-list \ (c-drop \ n \ (c-tl \ (list-to-nat \ ls)))$ by $(simp \ add: c-tl-eq-tl)$ also have $\dots = nat-to-list \ (c-drop \ (Suc \ n) \ (list-to-nat \ ls))$ by $(simp \ add: c-drop-at-Suc1)$

finally have drop n (tl ls) = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by simp with S1 have drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by simp

}
then show ?thesis by blast
qed
qed

definition

 $c\text{-}nth :: nat \Rightarrow nat \Rightarrow nat$ where $c\text{-}nth = (\lambda \ x \ n. \ c\text{-}hd \ (c\text{-}drop \ n \ x))$

lemma *c*-*n*t*h*-*is*-*p*r: *c*-*n*t*h* \in *PrimRec2* **proof** (*unfold c*-*n*t*h*-*def*) **from** *c*-*h*d-*is*-*p*r *c*-*drop*-*is*-*p*r **show** ($\lambda x n. c$ -*h*d (*c*-*drop* n x)) \in *PrimRec2* **by** *prec* **qed**

lemma *c*-*n*th-*a*t- θ : *c*-*n*th $x \theta = c$ -hd x by (simp add: *c*-nth-def)

lemma c-hd-c-cons [simp]: c-hd (c-cons x y) = x
proof have c-cons x y > 0 by (rule c-cons-pos)
then show ?thesis by (simp add: c-hd-def c-cons-def)
qed

lemma c-tl-c-cons [simp]: c-tl (c-cons x y) = y by (simp add: c-tl-def c-cons-def)

definition

 $\begin{array}{l} c\text{-}f\text{-}list :: (nat \Rightarrow nat \Rightarrow nat) \Rightarrow nat \Rightarrow nat \Rightarrow nat \Rightarrow nat \text{ where} \\ c\text{-}f\text{-}list = (\lambda \ f. \\ let \ g = (\%x. \ c\text{-}cons \ (f \ 0 \ x) \ 0); \ h = (\%a \ b \ c. \ c\text{-}cons \ (f \ (Suc \ a) \ c) \ b) \ in \ PrimRecOp \\ g \ h) \end{array}$

lemma c-f-list-at-0: c-f-list f 0 x = c-cons (f 0 x) 0 by (simp add: c-f-list-def

Let-def)

lemma *c*-*f*-list-at-Suc: *c*-*f*-list f (Suc y) x = c-cons (f (Suc y) x) (*c*-*f*-list f y x) by ((simp add: *c*-*f*-list-def Let-def))

lemma c-f-list-is-pr: $f \in PrimRec2 \implies c$ -f-list $f \in PrimRec2$ **proof** – **assume** A1: $f \in PrimRec2$ **let** ?g = (%x. c-cons $(f \ 0 \ x) \ 0)$ **from** A1 c-cons-is-pr **have** S1: ? $g \in PrimRec1$ **by** prec **let** ? $h = (\%a \ b \ c. c$ -cons $(f \ (Suc \ a) \ c) \ b)$ **from** A1 c-cons-is-pr **have** S2: ? $h \in PrimRec3$ **by** prec **from** S1 S2 **show** ?thesis **by** (simp add: pr-rec c-f-list-def Let-def) **qed**

lemma c-f-list-to-f-0: f y x = c-hd (c-f-list f y x) **apply**(*induct* y) **apply**(*simp add*: c-f-list-at-0) **apply**(*simp add*: c-f-list-at-Suc) **done**

```
lemma c-f-list-to-f: f = (\lambda \ y \ x. \ c-hd \ (c-f-list \ f \ y \ x))
apply(rule ext, rule ext)
apply(rule c-f-list-to-f-0)
done
```

lemma c-f-list-f-is-pr: c-f-list $f \in PrimRec2 \implies f \in PrimRec2$ **proof** – **assume** A1: c-f-list $f \in PrimRec2$ **have** S1: $f = (\lambda \ y \ x. \ c-hd \ (c-f-list \ f \ y \ x))$ **by** (rule c-f-list-to-f) **from** A1 c-hd-is-pr **have** S2: $(\lambda \ y \ x. \ c-hd \ (c-f-list \ f \ y \ x)) \in PrimRec2$ **by** prec with S1 show ?thesis **by** simp **qed**

lemma *c*-*f*-*list*-*lm*-1: *c*-*nth* (*c*-*cons* x y) (Suc z) = *c*-*nth* y z by (simp add: *c*-*nth*-def *c*-drop-at-Suc1)

lemma c-f-list-lm-2: $z < Suc \ n \implies c-nth \ (c-f-list \ f \ (Suc \ n) \ x) \ (Suc \ n-z) = c-nth \ (c-f-list \ f \ n \ x) \ (n-z)$ **proof** – **assume** $z < Suc \ n$ **then have** $Suc \ n - z = Suc \ (n-z)$ **by** arith **then have** $c-nth \ (c-f-list \ f \ (Suc \ n) \ x) \ (Suc \ n-z) = c-nth \ (c-f-list \ f \ (Suc \ n) \ x)$ $(Suc \ (n-z))$ **by** simp **also have** ... = $c-nth \ (c-cons \ (f \ (Suc \ n) \ x) \ (c-f-list \ f \ n \ x)) \ (Suc \ (n-z))$ **by** $(simp \ add: \ c-f-list-at-Suc)$ **also have** ... = $c-nth \ (c-f-list \ f \ n \ x) \ (n-z)$ **by** $(simp \ add: \ c-f-list-lm-1)$ **finally show** ?thesis **by** simp**qed** **lemma** *c-f-list-nth*: $z \le y \longrightarrow c$ -*nth* (*c-f-list* f y x) (y-z) = f z x**proof** (*induct* y) show $z \leq 0 \longrightarrow c$ -nth (c-f-list $f \ 0 \ x$) $(0 - z) = f \ z \ x$ proof assume $z \leq 0$ then have A1: z=0 by simp then have c-nth (c-f-list f 0 x) (0 - z) = c-nth (c-f-list f 0 x) 0 by simp also have $\ldots = c - hd (c - f - list f \theta x)$ by $(simp add: c - nth - at - \theta)$ also have $\ldots = c - hd (c - cons (f \ \theta \ x) \ \theta)$ by $(simp \ add: c - f - list - at - \theta)$ also have $\ldots = f \ \theta x$ by simp**finally show** *c*-*n*th (*c*-*f*-list $f \ 0 \ x$) $(0 \ - \ z) = f \ z \ x$ by (simp add: A1) qed \mathbf{next} fix *n* assume A2: $z \leq n \longrightarrow c$ -nth (c-f-list f n x) (n - z) = f z x show $z \leq c$ Suc $n \longrightarrow c$ -nth (c-f-list f (Suc n) x) (Suc n - z) = f z x proof assume A3: z < Suc nshow $z \leq Suc \ n \implies c\text{-nth} (c\text{-f-list} f (Suc \ n) \ x) (Suc \ n - z) = f \ z \ x$ **proof** cases assume $AA1: z \leq n$ then have $AA2: z < Suc \ n \ by \ simp$ from A2 this have S1: c-nth (c-f-list f n x) (n - z) = f z x by auto from AA2 have c-nth (c-f-list f (Suc n) x) (Suc n - z) = c-nth (c-f-list f n x) (n-z) by (rule c-f-list-lm-2) with S1 show c-nth (c-f-list f (Suc n) x) (Suc n - z) = f z x by simp \mathbf{next} assume $\neg z \leq n$ from A3 this have S1: $z = Suc \ n$ by simp then have S2: Suc n - z = 0 by simp then have c-nth (c-f-list f (Suc n) x) (Suc n - z) = c-nth (c-f-list f (Suc n) x) θ by simp also have $\ldots = c - hd (c - f - list f (Suc n) x)$ by $(simp add: c - nth - at - \theta)$ also have $\ldots = c$ -hd (c-cons (f (Suc n) x) (c-f-list f n x)) by (simp add: c-f-list-at-Suc) also have $\ldots = f$ (Suc n) x by simp finally show c-nth (c-f-list f (Suc n) x) (Suc n - z) = f z x by (simp add: S1)qed qed qed **theorem** th-pr-rec: $[g \in PrimRec1; h \in PrimRec3; (\forall x. (f 0 x) = (g x)); (\forall x$ y. $(f (Suc y) x) = h y (f y x) x)] \Longrightarrow f \in PrimRec2$ proof – assume g-is-pr: $g \in PrimRec1$ assume *h*-is-pr: $h \in PrimRec3$ **assume** $f \cdot \theta : \forall x. f \theta x = g x$ **assume** f-1: $\forall x y$. (f (Suc y) x) = h y (f y x) x let $?f = PrimRecOp \ g \ h$

from g-is-pr h-is-pr have $S1: ?f \in PrimRec2$ by (rule pr-rec) have $f-2: \forall x ?f 0 x = g x$ by simp have $f-3: \forall x y. (?f (Suc y) x) = h y (?f y x) x$ by simp have S2: f = ?fproof – have $\bigwedge x y. f y x = ?f y x$ apply(induct-tac y) apply(insert f-0 f-1) apply(auto) done then show f = ?f by (simp add: ext) qed from S1 S2 show ?thesis by simp qed

theorem th-rec: $[q \in PrimRec1; \alpha \in PrimRec2; h \in PrimRec3; (\forall x y, \alpha y x <$ y); $(\forall x. (f \ 0 x) = (g \ x)); (\forall x \ y. (f \ (Suc \ y) \ x) = h \ y \ (f \ (\alpha \ y \ x) \ x) \ x) \] \Longrightarrow f \in$ PrimRec2 proof assume *q*-is-pr: $q \in PrimRec1$ assume *a-is-pr*: $\alpha \in PrimRec2$ assume *h*-is-pr: $h \in PrimRec3$ assume *a*-le: $(\forall x y. \alpha y x \leq y)$ **assume** $f \cdot 0$: $\forall x. f 0 x = g x$ **assume** f-1: $\forall x y$. (f (Suc y) x) = h y (f ($\alpha y x$) x) x let $?g' = \lambda x. c\text{-}cons (g x) 0$ let $?h' = \lambda \ a \ b \ c. \ c\text{-cons} \ (h \ a \ (c\text{-nth} \ b \ (a - (\alpha \ a \ c))) \ c) \ b$ let ?r = c-f-list f from g-is-pr c-cons-is-pr have g'-is-pr: $?g' \in PrimRec1$ by prec from h-is-pr c-cons-is-pr c-nth-is-pr a-is-pr have h'-is-pr: $?h' \in PrimRec3$ by prechave S1: $\forall x. ?r \ 0 \ x = ?g' \ x$ proof fix x have $?r \ 0 \ x = c \text{-cons} \ (f \ 0 \ x) \ 0$ by $(rule \ c \text{-} f \text{-} list \text{-} at \text{-} 0)$ with f-0 have $?r \ 0 \ x = c \text{-cons} \ (g \ x) \ 0$ by simp then show $?r \ \theta \ x = ?q' \ x$ by simpqed have S2: $\forall x y$. ?r (Suc y) x = ?h' y (?r y x) x **proof** (rule allI, rule allI) fix x y show ?r (Suc y) x = ?h' y (?r y x) xproof have S2-1: ?r (Suc y) x = c-cons (f (Suc y) x) (?r y x) by (rule c-f-list-at-Suc) with f-1 have S2-2: $f(Suc y) x = h y (f(\alpha y x) x) x$ by simp from a-le have S2-3: $\alpha \ y \ x \leq y$ by simp then have S2-4: $f(\alpha y x) x = c$ -nth (?r y x) $(y-(\alpha y x))$ by (simp add: c-f-list-nth) from S2-1 S2-2 S2-4 show ?thesis by simp qed qed

from g'-is-pr h'-is-pr S1 S2 have S3: $?r \in PrimRec2$ by (rule th-pr-rec) then show $f \in PrimRec2$ by (rule c-f-list-f-is-pr) qed

declare *c*-tl-less [termination-simp]

fun *c*-assoc-have-key :: $nat \Rightarrow nat \Rightarrow nat$ **where** *c*-assoc-have-key-df [simp del]: *c*-assoc-have-key $y \ x = (if \ y = 0 \ then \ 1 \ else$ (*if c*-fst (*c*-hd *y*) = *x* then 0 else *c*-assoc-have-key (*c*-tl *y*) *x*))

lemma *c*-assoc-have-key-lm-1: $y \neq 0 \implies$ *c*-assoc-have-key $y x = (if \ c-fst \ (c-hd \ y) = x \ then \ 0 \ else \ c-assoc-have-key \ (c-tl \ y) \ x)$ by (simp add: *c*-assoc-have-key-df)

```
theorem c-assoc-have-key-is-pr: c-assoc-have-key \in PrimRec2
proof -
 let ?h = \lambda \ a \ b \ c. if c-fst (c-hd (Suc a)) = c then 0 else b
 let ?a = \lambda y x. c-tl (Suc y)
 let ?g = \lambda x. (1::nat)
 have g-is-pr: ?g \in PrimRec1 by (rule const-is-pr)
 from c-tl-is-pr have a-is-pr: ?a \in PrimRec2 by prec
 have h-is-pr: ?h \in PrimRec3
 proof (rule if-eq-is-pr3)
   from c-fst-is-pr c-hd-is-pr show (\lambda x \ y \ z. \ c-fst \ (c-hd \ (Suc \ x))) \in PrimRec3 by
prec
 next
   show (\lambda x \ y \ z. \ z) \in PrimRec3 by (rule \ pr-id3-3)
 next
   show (\lambda x \ y \ z. \ \theta) \in PrimRec3 by prec
 next
   show (\lambda x \ y \ z. \ y) \in PrimRec3 by (rule \ pr-id3-2)
  qed
  have a-le: \forall x y. ?a y x \leq y
 proof (rule allI, rule allI)
   fix x y show ?a y x \le y
   proof -
     have Suc y > 0 by simp
     then have a y x < Suc y by (rule c-tl-less)
     then show ?thesis by simp
   qed
 qed
 have f - 0: \forall x. c-assoc-have-key 0 x = ?g x by (simp add: c-assoc-have-key-df)
  have f-1: \forall x y. c-assoc-have-key (Suc y) x = ?h y (c-assoc-have-key (?a y x))
x) x by (simp add: c-assoc-have-key-df)
 from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)
qed
```

fun *c*-assoc-value :: $nat \Rightarrow nat \Rightarrow nat$ where *c*-assoc-value-df [simp del]: *c*-assoc-value y = 0 then 0 else (if *c*-fet (*c*-bd *y*) = *x* then *c*-snd (*c*-bd *y*) else *c*-assoc-value (*c*-tl *y*) *x*

(if c-fst (c-hd y) = x then c-snd (c-hd y) else c-assoc-value (c-tl y) x))

lemma c-assoc-value-lm-1: $y \neq 0 \implies$ c-assoc-value y x = (if c-fst (c-hd y) = x then c-snd (c-hd y) else c-assoc-value (c-tl y) x) by (simp add: c-assoc-value-df)

theorem *c*-assoc-value-is-pr: *c*-assoc-value \in PrimRec2 proof – let $?h = \lambda \ a \ b \ c.$ if c-fst (c-hd (Suc a)) = c then c-snd (c-hd (Suc a)) else b let $?a = \lambda y x$. c-tl (Suc y) let $?q = \lambda x. (0::nat)$ have g-is-pr: $?g \in PrimRec1$ by (rule const-is-pr) from *c*-tl-is-pr have a-is-pr: $?a \in PrimRec2$ by prec have h-is-pr: ? $h \in PrimRec3$ **proof** (*rule if-eq-is-pr3*) from *c*-fst-is-pr *c*-hd-is-pr show $(\lambda x \ y \ z. \ c$ -fst (c-hd $(Suc \ x))) \in PrimRec3$ by precnext show $(\lambda x \ y \ z. \ z) \in PrimRec3$ by (rule pr-id3-3) \mathbf{next} **from** *c-snd-is-pr c-hd-is-pr* **show** $(\lambda x \ y \ z. \ c-snd \ (c-hd \ (Suc \ x))) \in PrimRec3$ by prec \mathbf{next} show $(\lambda x \ y \ z. \ y) \in PrimRec3$ by $(rule \ pr-id3-2)$ qed have a-le: $\forall x y$. ?a $y x \leq y$ **proof** (*rule allI*, *rule allI*) fix x y show $?a y x \le y$ proof have Suc y > 0 by simp then have a y x < Suc y by (rule c-tl-less) then show ?thesis by simp qed qed have f - 0: $\forall x. c$ -assoc-value 0 x = ?g x by (simp add: c-assoc-value-df) have f-1: $\forall x y$. c-assoc-value (Suc y) x = ?h y (c-assoc-value (?a y x) x) x by (simp add: c-assoc-value-df) from *q-is-pr a-is-pr h-is-pr a-le f-0 f-1* show ?thesis by (rule th-rec) qed **lemma** *c*-assoc-lm-1: *c*-assoc-have-key (*c*-cons (*c*-pair x y) z) x = 0**apply**(*simp add: c-assoc-have-key-df*) **apply**(*simp add: c-cons-pos*) done **lemma** c-assoc-lm-2: c-assoc-value (c-cons (c-pair x y) z) x = y**apply**(*simp add*: *c*-*assoc*-*value*-*df*) apply(rule impI) apply(insert c-cons-pos [where x=(c-pair x y) and u=z]) apply(auto)done

lemma c-assoc-lm-3: $x1 \neq x \implies$ c-assoc-have-key (c-cons (c-pair x y) z) x1 =c-assoc-have-key z x1 proof assume $A1: x1 \neq x$ let ?ls = (c-cons (c-pair x y) z)have S1: $?ls \neq 0$ by (simp add: c-cons-pos) then have S2: c-assoc-have-key ?ls $x_1 = (if c-fst (c-hd ?ls) = x_1 then 0 else$ *c*-assoc-have-key (*c*-tl ?ls) x1) (is - = ?R) by (rule *c*-assoc-have-key-lm-1) have S3: c-fst (c-hd ?ls) = x by simp with A1 have S_4 : \neg (*c-fst* (*c-hd* ?*ls*) = *x*1) by simp from S4 have S5: ?R = c-assoc-have-key (c-tl ?ls) x1 by (rule if-not-P) from S2 S5 show ?thesis by simp \mathbf{qed} **lemma** c-assoc-lm-4: $x1 \neq x \implies$ c-assoc-value (c-cons (c-pair x y) z) x1 =c-assoc-value z x1proof assume $A1: x1 \neq x$ let ?ls = (c - cons (c - pair x y) z)have S1: $?ls \neq 0$ by (simp add: c-cons-pos) then have S2: c-assoc-value ?ls x1 = (if c-fst (c-hd ?ls) = x1 then c-snd (c-hd?ls) else c-assoc-value (c-tl ?ls) x1) (is - = ?R) by (rule c-assoc-value-lm-1) have S3: c-fst (c-hd ?ls) = x by simp with A1 have S_4 : \neg (*c-fst* (*c-hd* ?*ls*) = *x*1) by simp from S4 have S5: ?R = c-assoc-value (c-tl ?ls) x1 by (rule if-not-P) from S2 S5 show ?thesis by simp qed

 \mathbf{end}

4 Primitive recursive functions of one variable

theory PRecFun2 imports PRecFun begin

4.1 Alternative definition of primitive recursive functions of one variable

definition

 $UnaryRecOp :: (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat)$ where $UnaryRecOp = (\lambda \ g \ h. \ pr-conv-2-to-1 \ (PrimRecOp \ g \ (pr-conv-1-to-3 \ h)))$

lemma unary-rec-into-pr: $[g \in PrimRec1; h \in PrimRec1] \implies UnaryRecOp g h \in PrimRec1$ by (simp add: UnaryRecOp-def pr-conv-1-to-3-lm pr-conv-2-to-1-lm pr-rec)

definition

c-f-pair :: $(nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat) \Rightarrow (nat \Rightarrow nat)$ where *c-f-pair* = $(\lambda f g x. c-pair (f x) (g x))$

lemma *c*-*f*-pair-to-pr: $\llbracket f \in PrimRec1$; $g \in PrimRec1$ $\rrbracket \implies c$ -*f*-pair $fg \in PrimRec1$ **unfolding** *c*-*f*-pair-def **by** prec

```
inductive-set PrimRec1' :: (nat \Rightarrow nat) set
where
  zero: (\lambda x. 0) \in PrimRec1'
  | suc: Suc \in PrimRec1'
  | fst: c-fst \in PrimRec1'
  snd: c-snd \in PrimRec1'
   comp: \llbracket f \in PrimRec1'; g \in PrimRec1' \rrbracket \Longrightarrow (\lambda x. f (g x)) \in PrimRec1'
   pair: \llbracket f \in PrimRec1'; g \in PrimRec1' \rrbracket \Longrightarrow c-f-pair f g \in PrimRec1'
  un-rec: [f \in PrimRec1'; g \in PrimRec1'] \implies UnaryRecOp f g \in PrimRec1'
lemma primrec'-into-primrec: f \in PrimRec1' \Longrightarrow f \in PrimRec1
proof (induct f rule: PrimRec1'.induct)
 case zero show ?case by (rule pr-zero)
next
 case suc show ?case by (rule pr-suc)
next
  case fst show ?case by (rule c-fst-is-pr)
\mathbf{next}
 case snd show ?case by (rule c-snd-is-pr)
\mathbf{next}
 case comp from comp show ?case by (simp add: pr-comp1-1)
\mathbf{next}
 case pair from pair show ?case by (simp add: c-f-pair-to-pr)
next
 case un-rec from un-rec show ?case by (simp add: unary-rec-into-pr)
qed
lemma pr-id1-1': (\lambda x. x) \in PrimRec1'
proof -
 have c-f-pair c-fst c-snd \in PrimRec1' by (simp add: PrimRec1'.fst PrimRec1'.snd
PrimRec1'.pair)
 moreover have c-f-pair c-fst c-snd = (\lambda x. x) by (simp add: c-f-pair-def)
  ultimately show ?thesis by simp
qed
lemma pr-id2-1': pr-conv-2-to-1 (\lambda x y. x) \in PrimRec1' by (simp add: pr-conv-2-to-1-def
PrimRec1'.fst)
```

lemma pr-id2-2': pr-conv-2-to-1 $(\lambda x y, y) \in PrimRec1'$ by (simp add: pr-conv-2-to-1-def PrimRec1'.snd)

lemma pr-id3-1': pr-conv-3-to-1 ($\lambda x y z. x$) \in PrimRec1' proof –

have pr-conv-3-to-1 ($\lambda x y z$. x) = (λx . c-fst (c-fst x)) by (simp add: pr-conv-3-to-1-def) **moreover from** PrimRec1'.fst PrimRec1'.fst **have** $(\lambda x. c-fst (c-fst x)) \in Prim-$ Rec1' by (rule PrimRec1'.comp) ultimately show ?thesis by simp ged **lemma** pr-id3-2': pr-conv-3-to-1 ($\lambda x y z. y$) \in PrimRec1' proof – have pr-conv-3-to-1 $(\lambda x y z, y) = (\lambda x. c-snd (c-fst x))$ by (simp add: pr-conv-3-to-1-def)**moreover from** *PrimRec1'.snd PrimRec1'.fst* **have** $(\lambda x. c-snd (c-fst x)) \in Prim-$ *Rec1'* by (*rule PrimRec1'.comp*) ultimately show ?thesis by simp qed lemma pr-id3-3': pr-conv-3-to-1 ($\lambda x y z. z$) \in PrimRec1' proof have pr-conv-3-to-1 ($\lambda x y z. z$) = ($\lambda x. c$ -snd x) by (simp add: pr-conv-3-to-1-def) thus ?thesis by (simp add: PrimRec1'.snd) qed **lemma** pr-comp2-1': [] pr-conv-2-to-1 $f \in PrimRec1'; g \in PrimRec1'; h \in Prim Rec1' \parallel \Longrightarrow (\lambda \ x. \ f \ (g \ x) \ (h \ x)) \in PrimRec1'$ proof – assume A1: pr-conv-2-to-1 $f \in PrimRec1'$ assume A2: $q \in PrimRec1'$ assume A3: $h \in PrimRec1'$ let ?f1 = pr-conv-2-to-1 fhave S1: $(\%x. ?f1 ((c-f-pair g h) x)) = (\lambda x. f (g x) (h x))$ by (simp add: *c-f-pair-def* pr-conv-2-to-1-def) from A2 A3 have S2: c-f-pair $g h \in PrimRec1'$ by (rule PrimRec1'.pair) from A1 S2 have S3: $(\%x. ?f1 ((c-f-pair g h) x)) \in PrimRec1'$ by (rule Prim-Rec1'.comp) with S1 show ?thesis by simp qed **lemma** pr-comp3-1': [] pr-conv-3-to-1 $f \in PrimRec1'; g \in PrimRec1'; h \in Prim Rec1'; k \in PrimRec1' \parallel \Longrightarrow (\lambda x. f (g x) (h x) (k x)) \in PrimRec1'$ proof assume A1: pr-conv-3-to-1 $f \in PrimRec1'$ assume $A2: g \in PrimRec1'$ assume A3: $h \in PrimRec1'$ assume $A_4: k \in PrimRec1'$ from A2 A3 have c-f-pair $g h \in PrimRec1'$ by (rule PrimRec1'.pair) from this A4 have c-f-pair (c-f-pair g h) $k \in PrimRec1'$ by (rule PrimRec1'.pair) from A1 this have $(\%x. (pr-conv-3-to-1 f) ((c-f-pair (c-f-pair g h) k) x)) \in$ PrimRec1' by (rule PrimRec1'.comp) then show ?thesis by (simp add: c-f-pair-def pr-conv-3-to-1-def) qed

lemma pr-comp1-2': $\llbracket f \in PrimRec1'$; pr-conv-2-to-1 $g \in PrimRec1' \rrbracket \implies pr$ -conv-2-to-1 $(\lambda \ x \ y. \ f \ (g \ x \ y)) \in PrimRec1'$ **proof assume** $f \in PrimRec1'$ **and** pr-conv-2-to-1 $g \in PrimRec1'$ (**is** ? $g1 \in PrimRec1'$) **then have** $(\lambda \ x. \ f \ (?g1 \ x)) \in PrimRec1'$ **by** $(rule \ PrimRec1'.comp)$ **then show** ?thesis **by** $(simp \ add: \ pr-conv-2-to-1-def)$ **qed**

lemma pr-comp1-3': $\llbracket f \in PrimRec1'$; pr-conv-3-to-1 $g \in PrimRec1' \rrbracket \implies pr$ -conv-3-to-1 $(\lambda \ x \ y \ z. \ f \ (g \ x \ y \ z)) \in PrimRec1'$ **proof** – **assume** $f \in PrimRec1'$ **and** pr-conv-3-to-1 $g \in PrimRec1'$ (**is** ? $g1 \in PrimRec1'$) **then have** $(\lambda \ x. \ f \ (?g1 \ x)) \in PrimRec1'$ **by** $(rule \ PrimRec1'.comp)$ **then show** ?thesis **by** $(simp \ add: \ pr-conv-3$ -to-1-def) **qed**

lemma pr-comp2-2': $[\![pr-conv-2-to-1 f \in PrimRec1'; pr-conv-2-to-1 g \in PrimRec1'; pr-conv-2-to-1 h \in PrimRec1']\!] \implies pr-conv-2-to-1 (\lambda x y. f (g x y) (h x y)) \in PrimRec1'$ **proof** – **assume** pr-conv-2-to-1 f \in PrimRec1' **and** pr-conv-2-to-1 g \in PrimRec1' (**is** ?g1 \in PrimRec1') **and** pr-conv-2-to-1 h \in PrimRec1' (**is** ?h1 \in PrimRec1') **then have** ($\lambda x. f$ (?g1 x) (?h1 x)) \in PrimRec1' by (rule pr-comp2-1') **then show** ?thesis by (simp add: pr-conv-2-to-1-def) **ged**

lemma pr-comp2-3': $[\![pr$ -conv-2-to-1 $f \in PrimRec1'; pr$ -conv-3-to-1 $g \in PrimRec1'; pr$ -conv-3-to-1 $h \in PrimRec1']\!] \implies pr$ -conv-3-to-1 $(\lambda \ x \ y \ z) \ f \ (g \ x \ y \ z) \ (h \ x \ y \ z)) \in PrimRec1'$ **proof assume** pr-conv-2-to-1 $f \in PrimRec1'$ **and** pr-conv-3-to-1 $g \in PrimRec1' \ (is \ ?g1 \in PrimRec1')$ **and** pr-conv-3-to-1 $h \in PrimRec1' \ (is \ ?h1 \in PrimRec1')$ **then have** $(\lambda \ x. \ f \ (?g1 \ x) \ (?h1 \ x)) \in PrimRec1' \ by \ (rule \ pr-comp2-1')$ **then show** ?thesis **by** $(simp \ add: \ pr-conv-3$ -to-1-def) **qed**

lemma pr-comp3-2': [[pr- $conv-3-to-1 f \in PrimRec1'; pr$ - $conv-2-to-1 g \in PrimRec1'; pr$ - $conv-2-to-1 h \in PrimRec1'; pr$ - $conv-2-to-1 k \in PrimRec1'] \implies pr$ - $conv-2-to-1 (\lambda x y, f (g x y) (h x y) (k x y)) \in PrimRec1'$ **proof assume** pr- $conv-3-to-1 f \in PrimRec1'$ **and** pr- $conv-2-to-1 g \in PrimRec1'$ (**is** ? $g1 \in PrimRec1'$) **and** pr- $conv-2-to-1 h \in PrimRec1'$ (**is** ? $h1 \in PrimRec1'$) **and** pr- $conv-2-to-1 k \in PrimRec1'$ (**is** ? $h1 \in PrimRec1'$) **and** pr- $conv-2-to-1 k \in PrimRec1'$ (**is** ? $h1 \in PrimRec1'$) **then have** ($\lambda x, f$ (?g1 x) (?h1 x) (?k1 x)) $\in PrimRec1'$ by (rule pr-comp3-1') then show ?thesis by (simp add: pr-conv-2-to-1-def) qed

lemma pr-comp3-3': [] pr-conv-3-to-1 $f \in PrimRec1'$; pr-conv-3-to-1 $g \in Prim$ -Rec1'; $pr-conv-3-to-1 h \in PrimRec1'$; $pr-conv-3-to-1 k \in PrimRec1'$] $\implies pr-conv-3-to-1$ $(\lambda x y z. f (g x y z) (h x y z) (k x y z)) \in PrimRec1'$ proof assume pr-conv-3-to-1 $f \in PrimRec1'$ and pr-conv-3-to-1 $g \in PrimRec1'$ (is $?g1 \in PrimRec1'$) and pr-conv-3-to-1 $h \in PrimRec1'$ (is $?h1 \in PrimRec1'$) and pr-conv-3-to-1 $k \in PrimRec1'$ (is $?k1 \in PrimRec1'$) then have $(\lambda x, f(?g1 x)(?h1 x)(?h1 x)) \in PrimRec1'$ by (rule pr-comp3-1') then show ?thesis by (simp add: pr-conv-3-to-1-def) \mathbf{qed} **lemma** lm': $(f1 \in PrimRec1 \longrightarrow f1 \in PrimRec1') \land (g1 \in PrimRec2 \longrightarrow pr-conv-2-to-1)$ $g1 \in PrimRec1') \land (h1 \in PrimRec3 \longrightarrow pr-conv-3-to-1 h1 \in PrimRec1')$ proof (induct rule: PrimRec1-PrimRec2-PrimRec3.induct) case zero show ?case by (rule PrimRec1'.zero) **next case** suc **show** ?case **by** (rule PrimRec1'.suc) next case *id1-1* show ?case by (rule pr-*id1-1*') next case *id2-1* show ?case by (rule pr-*id2-1*') next case *id2-2* show ?case by (rule pr-*id2-2*') next case *id3-1* show ?case by (rule pr-*id3-1*') next case id3-2 show ?case by (rule pr-id3-2') next case *id3-3* show ?case by (rule pr-*id3-3*') next case comp1-1 from comp1-1 show ?case by (simp add: PrimRec1'.comp) next case comp1-2 from comp1-2 show ?case by (simp add: pr-comp1-2') next case comp1-3 from comp1-3 show ?case by (simp add: pr-comp1-3') next case comp2-1 from comp2-1 show ?case by (simp add: pr-comp2-1') next case comp2-2 from comp2-2 show ?case by (simp add: pr-comp2-2') next case comp2-3 from comp2-3 show ?case by (simp add: pr-comp2-3') next case comp3-1 from comp3-1 show ?case by (simp add: pr-comp3-1') next case comp3-2 from comp3-2 show ?case by (simp add: pr-comp3-2') next case comp3-3 from comp3-3 show ?case by (simp add: pr-comp3-3') next case prim-rec fix g h assume A1: $g \in PrimRec1'$ and $pr-conv-3-to-1 h \in PrimRec1'$ then have $UnaryRecOp \ g \ (pr-conv-3-to-1 \ h) \in PrimRec1'$ by $(rule \ PrimRec1'.un-rec)$ moreover have $UnaryRecOp \ q \ (pr-conv-3-to-1 \ h) = pr-conv-2-to-1 \ (PrimRecOp$ (g h) by (simp add: UnaryRecOp-def) ultimately show pr-conv-2-to-1 ($PrimRecOp \ g \ h$) $\in PrimRec1'$ by simp qed theorem pr-1-eq-1': PrimRec1 = PrimRec1' proof -

have $S1: \bigwedge f. f \in PrimRec1 \longrightarrow f \in PrimRec1'$ by $(simp \ add: \ lm')$ have $S2: \bigwedge f. f \in PrimRec1' \longrightarrow f \in PrimRec1$ by $(simp \ add: \ primrec' \ into-primrec)$ from $S1 \ S2$ show ?thesis by blast qed

4.2 The scheme datatype

datatype PrimScheme = Base-zero | Base-suc | Base-fst | Base-sud | Comp-op PrimScheme PrimScheme | Pair-op PrimScheme PrimScheme

| Rec-op PrimScheme PrimScheme

primrec

 $sch-to-pr :: PrimScheme \Rightarrow (nat \Rightarrow nat)$ where $sch-to-pr \ Base-zero = (\lambda \ x. \ 0)$ $| \ sch-to-pr \ Base-suc = Suc$ $| \ sch-to-pr \ Base-fst = c-fst$ $| \ sch-to-pr \ Base-sud = c-sud$ $| \ sch-to-pr \ (Comp-op \ t1 \ t2) = (\lambda \ x. \ (sch-to-pr \ t1) \ ((sch-to-pr \ t2) \ x))$ $| \ sch-to-pr \ (Pair-op \ t1 \ t2) = c-f-pair \ (sch-to-pr \ t1) \ (sch-to-pr \ t2)$ $| \ sch-to-pr \ (Rec-op \ t1 \ t2) = UnaryRecOp \ (sch-to-pr \ t1) \ (sch-to-pr \ t2)$

lemma sch-to-pr-into-pr: sch-to-pr sch \in PrimRec1 by (simp add: pr-1-eq-1', induct sch, simp-all add: PrimRec1'.intros)

lemma sch-to-pr-srj: $f \in PrimRec1 \implies (\exists sch. f = sch-to-pr sch)$ proof – assume $f \in PrimRec1$ then have $A1: f \in PrimRec1'$ by (simp add: pr-1-eq-1') from A1 show ?thesis **proof** (*induct f rule: PrimRec1'.induct*) have $(\lambda x, \theta) = sch-to-pr Base-zero$ by simp then show \exists sch. (λu . 0) = sch-to-pr sch by (rule exI) \mathbf{next} have Suc = sch-to-pr Base-suc by simp then show \exists sch. Suc = sch-to-pr sch by (rule exI) next have c-fst = sch-to-pr Base-fst by simp then show \exists sch. c-fst = sch-to-pr sch by (rule exI) next have c-snd = sch-to-pr Base-snd by simp then show \exists sch. c-snd = sch-to-pr sch by (rule exI) next fix f1 f2 assume B1: \exists sch. f1 = sch-to-pr sch and B2: \exists sch. f2 = sch-to-pr sch from B1 obtain sch1 where S1: $f1 = sch-to-pr \ sch1$. from B2 obtain sch2 where S2: $f2 = sch-to-pr \ sch2$. from S1 S2 have $(\lambda x, f1 (f2 x)) = sch-to-pr (Comp-op sch1 sch2)$ by simp then show $\exists sch. (\lambda x. f1 (f2 x)) = sch-to-pr sch by (rule exI)$ \mathbf{next} fix f1 f2 assume B1: \exists sch. f1 = sch-to-pr sch and B2: \exists sch. f2 = sch-to-pr schfrom B1 obtain sch1 where $S1: f1 = sch-to-pr \ sch1$.. from B2 obtain sch2 where S2: $f2 = sch-to-pr \ sch2$. from S1 S2 have c-f-pair f1 f2 = sch-to-pr (Pair-op sch1 sch2) by simp

then show $\exists sch. c-f-pair f1 f2 = sch-to-pr sch by (rule exI)$ next fix f1 f2 assume B1: $\exists sch. f1 = sch-to-pr sch$ and B2: $\exists sch. f2 = sch-to-pr$ sch from B1 obtain sch1 where S1: f1 = sch-to-pr sch1 ... from B2 obtain sch2 where S2: f2 = sch-to-pr sch2 ... from S1 S2 have UnaryRecOp f1 f2 = sch-to-pr (Rec-op sch1 sch2) by simp then show $\exists sch. UnaryRecOp f1 f2 = sch-to-pr sch by (rule exI)$ qed qed

definition

 $\begin{array}{l} loc-f::nat \Rightarrow PrimScheme \Rightarrow PrimScheme \Rightarrow PrimScheme \mbox{ where } \\ loc-f n \ sch1 \ sch2 = \\ (if \ n=0 \ then \ Base-zero \ else \\ if \ n=1 \ then \ Base-zero \ else \\ if \ n=2 \ then \ Base-suc \ else \\ if \ n=3 \ then \ Base-sud \ else \\ if \ n=4 \ then \ (Comp-op \ sch1 \ sch2) \ else \\ if \ n=5 \ then \ (Pair-op \ sch1 \ sch2) \ else \\ if \ n=6 \ then \ (Rec-op \ sch1 \ sch2) \ else \\ Base-zero) \end{array}$

definition

mod? :: $nat \Rightarrow nat$ where mod? = ($\lambda x. x mod$?)

lemma c-snd-snd-lt [termination-simp]: c-snd (c-snd (Suc (Suc x))) < Suc (Suc x)

proof – let ?y = Suc (Suc x)have ?y > 1 by simp then have c-snd ?y < ?y by (rule c-snd-less-arg) moreover have $c\text{-snd }(c\text{-snd }?y) \leq c\text{-snd }?y$ by (rule c-snd-le-arg) ultimately show ?thesis by simp qed

lemma c-fst-snd-lt [termination-simp]: c-fst (c-snd (Suc (Suc x))) < Suc (Suc x) **proof** – **let** ?y = Suc (Suc x) **have** ?y > 1 **by** simp **then have** c-snd ?y < ?y **by** (rule c-snd-less-arg) **moreover have** c-fst (c-snd ?y) \leq c-snd ?y **by** (rule c-fst-le-arg) **ultimately show** ?thesis **by** simp

qed

fun $nat-to-sch :: nat \Rightarrow PrimScheme where$ $<math>nat-to-sch \ 0 = Base-zero$ $\mid nat-to-sch \ (Suc \ 0) = Base-zero$ | nat-to-sch $x = (let \ u = mod 7 \ (c-fst \ x); \ v = c-snd \ x; \ v1 = c-fst \ v; \ v2 = c-snd \ v; sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$

primrec sch-to-nat :: PrimScheme \Rightarrow nat where sch-to-nat Base-zero = 0 | sch-to-nat Base-suc = c-pair 1 0 | sch-to-nat Base-fst = c-pair 2 0 | sch-to-nat Base-snd = c-pair 3 0 | sch-to-nat (Comp-op t1 t2) = c-pair 4 (c-pair (sch-to-nat t1) (sch-to-nat t2)) | sch-to-nat (Pair-op t1 t2) = c-pair 5 (c-pair (sch-to-nat t1) (sch-to-nat t2))

 $sch-to-nat (Rec-op \ t1 \ t2) = c-pair \ 6 \ (c-pair \ (sch-to-nat \ t1) \ (sch-to-nat \ t2))$

lemma loc-srj-lm-1: nat-to-sch (Suc (Suc x)) = (let u=mod7 (c-fst (Suc (Suc x))); v=c-snd (Suc (Suc x)); v1=c-fst v; v2=c-snd v; sch1=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by simp

```
lemma loc-srj-lm-2: x > 1 \implies nat-to-sch x = (let \ u = mod7 \ (c-fst \ x); \ v = c-snd \ x;
v1 = c-fst v; v2 = c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1
sch2)
proof –
 assume A1: x > 1
 let ?y = x - (2::nat)
 from A1 have S1: x = Suc (Suc ?y) by arith
  have S2: nat-to-sch (Suc (Suc ?y)) = (let u=mod7 (c-fst (Suc (Suc ?y)));
v=c-snd (Suc (Suc ?y)); v1=c-fst v; v2=c-snd v; sch1=nat-to-sch v1; sch2=nat-to-sch
v2 in loc-f u sch1 sch2) by (rule loc-srj-lm-1)
 from S1 S2 show ?thesis by simp
qed
lemma loc-srj-0: nat-to-sch (c-pair 1 0) = Base-suc
proof –
 let ?x = c-pair 1 0
 have S1: ?x = 2 by (simp add: c-pair-def sf-def)
 then have S2: ?x = Suc (Suc \ \theta) by simp
 let ?y = Suc (Suc \ \theta)
 have S3: nat-to-sch ?y = (let \ u = mod7 \ (c-fst \ ?y); \ v = c-snd \ ?y; \ v1 = c-fst \ v; \ v2 =
c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R)
by (rule loc-srj-lm-1)
 have S4: c-fst ?y = 1
 proof -
   from S2 have c-fst ?y = c-fst ?x by simp
   then show ?thesis by simp
 qed
 have S5: c-snd ?y = 0
 proof -
   from S2 have c-snd ?y = c-snd ?x by simp
   then show ?thesis by simp
 aed
 from S4 have S6: mod7 (c-fst ?y) = 1 by (simp add: mod7-def)
```

from S3 S5 S6 have S9: ?R = loc f 1 Base-zero Base-zero by (simp add: Let-def c-fst-at-0 c-snd-at-0) then have S10: ?R = Base-suc by (simp add: loc-f-def) with S3 have S11: nat-to-sch 2y = Base-suc by simp from S2 this show ?thesis by simp qed lemma nat-to-sch-at-2: nat-to-sch 2 = Base-suc proof have S1: c-pair 1 0 = 2 by (simp add: c-pair-def sf-def) have S2: nat-to-sch (c-pair 1 θ) = Base-suc by (rule loc-srj- θ) from S1 S2 show ?thesis by simp qed **lemma** loc-srj-1: nat-to-sch $(c-pair \ 2 \ 0) = Base-fst$ proof let ?x = c-pair 2 0 have S1: ?x = 5 by (simp add: c-pair-def sf-def) then have S2: ?x = Suc (Suc 3) by simp let ?y = Suc (Suc 3)have S3: nat-to-sch ?y = (let u = mod7 (c-fst ?y); v=c-snd ?y; v1=c-fst v; v2 = mod7 (c-fst ?y); v=c-snd ?y; vc-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R) by (rule loc-srj-lm-1) have S4: c-fst ?y = 2proof from S2 have c-fst ?y = c-fst ?x by simp then show ?thesis by simp ged have S5: c-snd ?y = 0proof from S2 have c-snd ?y = c-snd ?x by simp then show ?thesis by simp qed from S4 have S6: mod7 (c-fst ?y) = 2 by (simp add: mod7-def) from S3 S5 S6 have S9: ?R = loc f 2 Base-zero Base-zero by (simp add: Let-def c-fst-at-0 c-snd-at-0) then have S10: ?R = Base-fst by (simp add: loc-f-def) with S3 have S11: nat-to-sch ?y = Base-fst by simp from S2 this show ?thesis by simp qed **lemma** loc-srj-2: nat-to-sch (c-pair 3 0) = Base-snd proof – let ?x = c-pair 3 0 have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst $v; v^2 = c$ -snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -=?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 3 by simp

have S4: c-snd ?x = 0 by simp from S3 have S6: mod7 (c-fst ?x) = 3 by (simp add: mod7-def) from S3 S4 S6 have S7: ?R = loc-f 3 Base-zero Base-zero by (simp add: Let-def c-fst-at-0 c-snd-at-0) then have S8: ?R = Base-snd by (simp add: loc-f-def) with S2 have S10: nat-to-sch ?x = Base-snd by simp from S2 this show ?thesis by simp qed **lemma** loc-srj-3: [nat-to-sch (sch-to-nat sch1) = sch1; nat-to-sch (sch-to-nat sch2) = sch2 \Rightarrow nat-to-sch (c-pair 4 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) = Comp-op sch1 sch2 proof **assume** A1: nat-to-sch (sch-to-nat sch1) = sch1**assume** A2: nat-to-sch (sch-to-nat sch2) = sch2let ?x = c-pair 4 (c-pair (sch-to-nat sch1) (sch-to-nat sch2)) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst $v; v^2 = c$ -snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -=?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 4 by simp have S4: c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp from S3 have S5: mod7 (c-fst ?x) = 4 by (simp add: mod7-def) from A1 A2 S4 S5 have $?R = Comp \cdot op \ sch1 \ sch2$ by (simp add: Let-def c-fst-at-0 c-snd-at-0 loc-f-def) with S2 show ?thesis by simp qed lemma loc-srj-3-1: nat-to-sch (c-pair 4 (c-pair n1 n2)) = Comp-op (nat-to-schn1) (nat-to-sch n2) proof – let ?x = c-pair 4 (c-pair n1 n2) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst $v; v^2 = c$ -snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -= ?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 4 by simp have S4: c-snd ?x = c-pair n1 n2 by simp from S3 have S5: mod7 (c-fst ?x) = 4 by (simp add: mod7-def) from S4 S5 have $?R = Comp \cdot op (nat-to-sch n1) (nat-to-sch n2)$ by (simp add: Let-def c-fst-at-0 c-snd-at-0 loc-f-def) with S2 show ?thesis by simp qed

lemma *loc-srj-4*: [nat-to-sch (sch-to-nat sch1) = sch1; nat-to-sch (sch-to-nat sch2) = sch2]

 \implies nat-to-sch (c-pair 5 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) = Pair-op sch1 sch2

proof -

assume A1: nat-to-sch (sch-to-nat sch1) = sch1assume A2: nat-to-sch $(sch-to-nat \ sch2) = sch2$ let ?x = c-pair 5 (c-pair (sch-to-nat sch1) (sch-to-nat sch2)) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst $v; v^2 = c$ -snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -= ?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 5 by simp have S4: c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp from S3 have S5: mod7 (c-fst ?x) = 5 by (simp add: mod7-def) from A1 A2 S4 S5 have $?R = Pair-op \ sch1 \ sch2 \ by (simp \ add: \ Let-def \ c-fst-at-0)$ c-snd-at-0 loc-f-def) with S2 show ?thesis by simp qed **lemma** loc-srj-4-1: nat-to-sch (c-pair 5 (c-pair n1 n2)) = Pair-op (nat-to-sch n1) (nat-to-sch n2)proof – let ?x = c-pair 5 (c-pair n1 n2) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fstv; v2 = c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -=?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 5 by simp have S4: c-snd ?x = c-pair n1 n2 by simp from S3 have S5: mod7 (c-fst ?x) = 5 by (simp add: mod7-def) from S4 S5 have ?R = Pair-op (nat-to-sch n1) (nat-to-sch n2) by (simp add: Let-def c-fst-at-0 c-snd-at-0 loc-f-def) with S2 show ?thesis by simp qed **lemma** loc-srj-5: [nat-to-sch (sch-to-nat sch1) = sch1; nat-to-sch (sch-to-nat sch2) = sch 2 \implies nat-to-sch (c-pair 6 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) = Rec-op sch1 sch2 proof – **assume** A1: nat-to-sch (sch-to-nat sch1) = sch1**assume** A2: nat-to-sch (sch-to-nat sch2) = sch2 let ?x = c-pair 6 (c-pair (sch-to-nat sch1) (sch-to-nat sch2)) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst $v; v^2 = c$ -snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is -=?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 6 by simp have S4: c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp from S3 have S5: mod7 (c-fst ?x) = 6 by (simp add: mod7-def) from A1 A2 S4 S5 have $?R = Rec-op \ sch1 \ sch2$ by (simp add: Let-def c-fst-at-0 *c*-*snd*-*at*-0 *loc*-*f*-*def*)

with S2 show ?thesis by simp qed

lemma loc-srj-5-1: nat-to-sch $(c-pair \ 6 \ (c-pair \ n1 \ n2)) = Rec-op \ (nat-to-sch \ n1)$ (nat-to-sch n2)proof let ?x = c-pair 6 (c-pair n1 n2) have S1: ?x > 1 by (simp add: c-pair-def sf-def) from S1 have S2: nat-to-sch ?x = (let u = mod7 (c-fst ?x); v=c-snd ?x; v1=c-fstv; v2 = c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R) by (rule loc-srj-lm-2) have S3: c-fst ?x = 6 by simp have S4: c-snd ?x = c-pair n1 n2 by simp from S3 have S5: mod7 (c-fst ?x) = 6 by (simp add: mod7-def) from S4 S5 have ?R = Rec-op (nat-to-sch n1) (nat-to-sch n2) by (simp add: Let-def c-fst-at-0 c-snd-at-0 loc-f-def) with S2 show ?thesis by simp qed **theorem** nat-to-sch-srj: nat-to-sch (sch-to-nat sch) = sch

```
apply(induct sch, auto simp add: loc-srj-0 loc-srj-1 loc-srj-2 loc-srj-3 loc-srj-4
loc-srj-5)
apply(insert loc-srj-0)
apply(simp)
done
```

4.3 Indexes of primitive recursive functions of one variables

definition

 $nat\text{-}to\text{-}pr :: nat \Rightarrow (nat \Rightarrow nat)$ where $nat\text{-}to\text{-}pr = (\lambda x. sch\text{-}to\text{-}pr (nat\text{-}to\text{-}sch x))$

theorem *nat-to-pr-into-pr: nat-to-pr n* \in *PrimRec1* **by** (*simp add: nat-to-pr-def sch-to-pr-into-pr*)

```
lemma nat-to-pr-srj: f \in PrimRec1 \implies (\exists n. f = nat-to-pr n)

proof –

assume f \in PrimRec1

then have S1: (\exists t. f = sch-to-pr t) by (rule sch-to-pr-srj)

from S1 obtain t where S2: f = sch-to-pr t..

let ?n = sch-to-nat t

have S3: nat-to-pr ?n = sch-to-pr (nat-to-sch ?n) by (simp add: nat-to-pr-def)

have S4: nat-to-sch ?n = t by (rule nat-to-sch-srj)

from S3 S4 have S5: nat-to-pr ?n = sch-to-pr t by simp

from S2 S5 have nat-to-pr ?n = f by simp

then have f = nat-to-pr ?n by simp

then show ?thesis ..

qed
```

lemma nat-to-pr-at- θ : nat-to-pr $\theta = (\lambda x, \theta)$ by (simp add: nat-to-pr-def)

definition

index-of- $pr :: (nat \Rightarrow nat) \Rightarrow nat$ where index-of-pr f = (SOME n. f = nat-to-pr n)

theorem index-of-pr-is-real: $f \in PrimRec1 \implies nat-to-pr \ (index-of-pr \ f) = f$ **proof** – **assume** $f \in PrimRec1$ **hence** \exists $n. \ f = nat-to-pr \ n$ **by** (rule nat-to-pr-srj) **hence** $f = nat-to-pr \ (SOME \ n. \ f = nat-to-pr \ n)$ **by** (rule someI-ex) **thus** ?thesis **by** (simp add: index-of-pr-def) **qed**

definition

comp-by-index :: $nat \Rightarrow nat \Rightarrow nat$ where comp-by-index = $(\lambda \ n1 \ n2. \ c\text{-pair} \ 4 \ (c\text{-pair} \ n1 \ n2))$

definition

pair-by-index :: $nat \Rightarrow nat \Rightarrow nat$ where pair-by-index = $(\lambda \ n1 \ n2. \ c\text{-pair} \ 5 \ (c\text{-pair} \ n1 \ n2))$

definition

rec-by-index :: $nat \Rightarrow nat \Rightarrow nat$ where rec-by-index = $(\lambda \ n1 \ n2. \ c\text{-pair} \ 6 \ (c\text{-pair} \ n1 \ n2))$

lemma comp-by-index-is-pr: comp-by-index \in PrimRec2 unfolding comp-by-index-def using const-is-pr-2 [of 4] by prec

lemma comp-by-index-inj: comp-by-index x1 y1 = comp-by-index x2 y2 \implies x1=x2 \land y1=y2 **proof** – **assume** comp-by-index x1 y1 = comp-by-index x2 y2 **hence** c-pair 4 (c-pair x1 y1) = c-pair 4 (c-pair x2 y2) **by** (unfold comp-by-index-def) **hence** c-pair x1 y1 = c-pair x2 y2 **by** (rule c-pair-inj2) **thus** ?thesis **by** (rule c-pair-inj) **qed**

lemma comp-by-index-inj1: comp-by-index x1 y1 = comp-by-index x2 y2 \implies x1 = x2 by (frule comp-by-index-inj, drule conjunct1)

lemma comp-by-index-inj2: comp-by-index x1 y1 = comp-by-index x2 y2 \implies y1 = y2 by (frule comp-by-index-inj, drule conjunct2)

lemma comp-by-index-main: nat-to-pr (comp-by-index n1 n2) = $(\lambda x. (nat-to-pr n1) ((nat-to-pr n2) x))$ by (unfold comp-by-index-def, unfold nat-to-pr-def, simp add: loc-srj-3-1)

lemma pair-by-index-is-pr: pair-by-index \in PrimRec2 by (unfold pair-by-index-def, insert const-is-pr-2 [where ?n=(5::nat)], prec)

lemma pair-by-index-inj: pair-by-index x1 y1 = pair-by-index x2 y2 \implies x1=x2 \land y1=y2 **proof** – **assume** pair-by-index x1 y1 = pair-by-index x2 y2 **hence** c-pair 5 (c-pair x1 y1) = c-pair 5 (c-pair x2 y2) **by** (unfold pair-by-index-def) **hence** c-pair x1 y1 = c-pair x2 y2 **by** (rule c-pair-inj2) **thus** ?thesis **by** (rule c-pair-inj) **qed**

lemma pair-by-index-inj1: pair-by-index x1 y1 = pair-by-index x2 y2 \implies x1 = x2 by (frule pair-by-index-inj, drule conjunct1)

lemma pair-by-index-inj2: pair-by-index x1 y1 = pair-by-index x2 y2 \implies y1 = y2 by (frule pair-by-index-inj, drule conjunct2)

lemma pair-by-index-main: nat-to-pr (pair-by-index n1 n2) = c-f-pair (nat-to-pr n1) (nat-to-pr n2) by (unfold pair-by-index-def, unfold nat-to-pr-def, simp add: loc-srj-4-1)

lemma nat-to-sch-of-pair-by-index [simp]: nat-to-sch (pair-by-index n1 n2) = Pair-op (nat-to-sch n1) (nat-to-sch n2)by (simp add: pair-by-index-def loc-srj-4-1)

lemma rec-by-index-is-pr: rec-by-index \in PrimRec2 by (unfold rec-by-index-def, insert const-is-pr-2 [where ?n=(6::nat)], prec)

lemma rec-by-index-inj: rec-by-index x1 y1 = rec-by-index x2 y2 \implies x1=x2 \land y1=y2

proof -

assume rec-by-index x1 y1 = rec-by-index x2 y2 hence c-pair 6 (c-pair x1 y1) = c-pair 6 (c-pair x2 y2) by (unfold rec-by-index-def) hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2) thus ?thesis by (rule c-pair-inj) qed

lemma rec-by-index-inj1: rec-by-index x1 y1 = rec-by-index x2 y2 \implies x1 = x2 by (frule rec-by-index-inj, drule conjunct1)

lemma rec-by-index-inj2: rec-by-index x1 y1 = rec-by-index x2 y2 \implies y1 = y2 by (frule rec-by-index-inj, drule conjunct2)

lemma rec-by-index-main: nat-to-pr (rec-by-index n1 n2) = UnaryRecOp (nat-to-pr n1) (nat-to-pr n2) by (unfold rec-by-index-def, unfold nat-to-pr-def, simp add: loc-srj-5-1)

4.4 s-1-1 theorem for primitive recursive functions of one variable

definition

index-of-const :: nat \Rightarrow nat where index-of-const = PrimRecOp1 0 ($\lambda x y$. c-pair 4 (c-pair 2 y))

 $\begin{array}{l} \textbf{lemma index-of-const-is-pr: index-of-const \in PrimRec1} \\ \textbf{proof} & - \\ \textbf{have} \left(\lambda \; x \; y. \; c\text{-pair} \; (4::nat) \; (c\text{-pair} \; (2::nat) \; y)\right) \in PrimRec2 \; \textbf{by} \; (insert \; const-is-pr-2 \; [\textbf{where} \; ?n=(4::nat)], \; prec) \\ \textbf{then show} \; ?thesis \; \textbf{by} \; (simp \; add: \; index-of-const-def \; pr-rec1) \\ \textbf{qed} \end{array}$

lemma index-of-const-at-0: index-of-const 0 = 0 by (simp add: index-of-const-def)

lemma index-of-const-at-suc: index-of-const (Suc u) = c-pair 4 (c-pair 2 (index-of-const u)) by (unfold index-of-const-def, induct u, auto)

lemma index-of-const-main: nat-to-pr (index-of-const n) = (λ x. n) (is ?P n)
proof (induct n)
show ?P 0 by (simp add: index-of-const-at-0 nat-to-pr-at-0)
next
fix n assume ?P n
then show ?P (Suc n) by ((simp add: index-of-const-at-suc nat-to-sch-at-2
nat-to-pr-def loc-srj-3-1))
qed

lemma index-of-const-lm-1: (nat-to-pr (index-of-const n)) 0 = n by (simp add: index-of-const-main)

lemma index-of-const-inj: index-of-const $n1 = index-of-const n2 \implies n1 = n2$ **proof** – **assume** index-of-const n1 = index-of-const n2 **then have** (nat-to-pr (index-of-const n1)) 0 = (nat-to-pr (index-of-const n2)) 0 by simp **thus** ?thesis by (simp add: index-of-const-lm-1)

qed

definition index-of-zero = sch-to-nat Base-zero **definition** index-of-suc = sch-to-nat Base-suc **definition** index-of-c-fst = sch-to-nat Base-fst **definition** index-of-c-snd = sch-to-nat Base-snd **definition** index-of-id = pair-by-index index-of-c-fst index-of-c-snd

lemma index-of-zero-main: nat-to-pr index-of-zero = $(\lambda \ x. \ 0)$ by (simp add: index-of-zero-def nat-to-pr-def)

lemma index-of-suc-main: nat-to-pr index-of-suc = Suc **apply**(simp add: index-of-suc-def nat-to-pr-def) apply(insert loc-srj-0)
apply(simp)
done

lemma index-of-c-fst-main: nat-to-pr index-of-c-fst = c-fst by (simp add: index-of-c-fst-def nat-to-pr-def loc-srj-1)

lemma [simp]: nat-to-sch index-of-c-fst = Base-fst by (unfold index-of-c-fst-def, rule nat-to-sch-srj)

lemma index-of-c-snd-main: nat-to-pr index-of-c-snd = c-snd by (simp add: index-of-c-snd-def nat-to-pr-def loc-srj-2)

lemma [*simp*]: *nat-to-sch index-of-c-snd* = Base-snd **by** (*unfold index-of-c-snd-def*, *rule nat-to-sch-srj*)

lemma index-of-id-main: nat-to-pr index-of-id = $(\lambda x. x)$ by (simp add: index-of-id-def nat-to-pr-def c-f-pair-def)

definition

index-of-c-pair-n :: nat \Rightarrow nat where index-of-c-pair-n = (λ n. pair-by-index (index-of-const n) index-of-id)

lemma index-of-c-pair-n-is-pr: index-of-c-pair- $n \in PrimRec1$ **proof** -

have $(\lambda \ x. \ index-of-id) \in PrimRec1$ by $(rule \ const-is-pr)$ with pair-by-index-is-pr index-of-const-is-pr have $(\lambda \ n. \ pair-by-index \ (index-of-const$ $n) \ index-of-id) \in PrimRec1$ by prec

then show ?thesis by (fold index-of-c-pair-n-def) qed

lemma index-of-c-pair-n-main: nat-to-pr (index-of-c-pair-n n) = $(\lambda x. c-pair n x)$ proof –

have nat-to-pr (index-of-c-pair-n n) = nat-to-pr (pair-by-index (index-of-const n) index-of-id) by (simp add: index-of-c-pair-n-def)

also have $\ldots = c$ -f-pair (nat-to-pr (index-of-const n)) (nat-to-pr index-of-id) by (simp add: pair-by-index-main)

also have ... = c-f-pair ($\lambda x. n$) ($\lambda x. x$) by (simp add: index-of-const-main index-of-id-main)

finally show ?thesis by (simp add: c-f-pair-def) qed

lemma index-of-c-pair-n-inj: index-of-c-pair-n x1 = index-of-c-pair-n $x2 \implies x1=x2$ **proof** -

assume index-of-c-pair-n x1 = index-of-c-pair-n x2

hence pair-by-index (index-of-const x1) index-of-id = pair-by-index (index-of-const x2) index-of-id by (unfold index-of-c-pair-n-def)

hence index-of-const x1 = index-of-const x2 by (rule pair-by-index-inj1) thus 2 these by (mule index of const ini)

thus ?thesis by (rule index-of-const-inj)

\mathbf{qed}

definition

 $s1-1 :: nat \Rightarrow nat \Rightarrow nat$ where $s1-1 = (\lambda \ n \ x. \ comp-by-index \ n \ (index-of-c-pair-n \ x))$

lemma $s_{1-1-is-pr: s_{1-1} \in PrimRec_2}$ by (unfold $s_{1-1-def}$, insert comp-by-index-is-pr index-of-c-pair-n-is-pr, prec)

theorem s1-1-th: $(\lambda \ y. \ (nat-to-pr \ n) \ (c-pair \ x \ y)) = nat-to-pr \ (s1-1 \ n \ x)$ proof – have nat-to-pr(s1-1 n x) = nat-to-pr(comp-by-index n (index-of-c-pair-n x))by (simp add: s1-1-def) also have $\ldots = (\lambda \ z. \ (nat-to-pr \ n) \ ((nat-to-pr \ (index-of-c-pair-n \ x)) \ z))$ by (simp add: comp-by-index-main) also have $\ldots = (\lambda \ z. \ (nat-to-pr \ n) \ ((\lambda \ u. \ c-pair \ x \ u) \ z))$ by (simp add: in*dex-of-c-pair-n-main*) finally show ?thesis by simp qed **lemma** s1-1-inj: s1-1 x1 y1 = s1-1 x2 y2 \implies x1=x2 \land y1=y2 proof – **assume** $s_{1-1} x_1 y_1 = s_{1-1} x_2 y_2$ then have comp-by-index x1 (index-of-c-pair-n y1) = comp-by-index x2 (index-of-c-pair-n y2) by (unfold s1-1-def) then have S1: $x_1 = x_2 \land index - of - c - pair - n y_1 = index - of - c - pair - n y_2$ by (rule *comp-by-index-inj*) then have S2: x1 = x2... from S1 have index-of-c-pair-n y1 = index-of-c-pair-n y2... then have y1 = y2 by (rule index-of-c-pair-n-inj) with S2 show ?thesis .. qed

lemma s1-1-inj1: s1-1 x1 y1 = s1-1 x2 y2 \implies x1=x2 by (frule s1-1-inj, drule conjunct1)

lemma s1-1-inj2: s1-1 x1 y1 = s1-1 x2 y2 \implies y1=y2 by (frule s1-1-inj, drule conjunct2)

primrec

pr-index-enumerator :: $nat \Rightarrow nat \Rightarrow nat$ where pr-index-enumerator $n \ 0 = n$ $\mid pr$ -index-enumerator $n \ (Suc \ m) = comp$ -by-index index-of-id (pr-index-enumerator $n \ m)$

theorem pr-index-enumerator-is-pr: pr-index-enumerator \in PrimRec2 **proof define** g where g x = x for x :: nat have g-is-pr: $g \in PrimRec1$ by (unfold g-def, rule pr-id1-1) define h where h a b c = comp-by-index index-of-id b for a b c :: nat from comp-by-index-is-pr have h-is-pr: $h \in PrimRec3$ unfolding h-def by prec let ?f = pr-index-enumerator from g-def have f-at-0: $\forall x. ?f x \ 0 = g x$ by auto from h-def have f-at-Suc: $\forall x y. ?f x (Suc y) = h x (?f x y) y$ by auto from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme) qed

lemma pr-index-enumerator-increase1: pr-index-enumerator n m < pr-index-enumerator (n+1) m

proof $(induct \ m)$

show pr-index-enumerator $n \ 0 < pr$ -index-enumerator $(n + 1) \ 0$ by simp next fix na assume A: pr-index-enumerator n na < pr-index-enumerator (n + 1) na

show pr-index-enumerator n (Suc na) < pr-index-enumerator (n + 1) (Suc na) proof –

let ?a = pr-index-enumerator n na

let ?b = pr-index-enumerator (n+1) na

have S1: pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by simp

have L1: pr-index-enumerator (n+1) (Suc na) = comp-by-index index-of-id ?b by simp

from A have c-pair index-of-id ?a < c-pair index-of-id ?b by (rule c-pair-strict-mono2) then have c-pair 4 (c-pair index-of-id ?a) < c-pair 4 (c-pair index-of-id ?b)

by (rule c-pair-strict-mono2)

then have comp-by-index index-of-id ?a < c-pair 4 (c-pair index-of-id ?b) by (simp add: comp-by-index-def)

then have comp-by-index index-of-id ?a < comp-by-index index-of-id ?b by (simp add: comp-by-index-def)

with S1 L1 show ?thesis by auto

qed qed

lemma pr-index-enumerator-increase2: pr-index-enumerator n m < pr-index-enumerator n (m + 1)

proof -

let ?a = pr-index-enumerator n m

have S1: pr-index-enumerator n (m + 1) = comp-by-index index-of-id ?a by simp

have S2: comp-by-index index-of-id ?a = c-pair 4 (c-pair index-of-id ?a) by (simp add: comp-by-index-def)

have S3: 4 + c-pair index-of-id ? $a \le c$ -pair 4 (c-pair index-of-id ?a) by (rule sum-le-c-pair)

then have S4: c-pair index-of-id ?a < c-pair 4 (c-pair index-of-id ?a) by auto have S5: ?a \leq c-pair index-of-id ?a by (rule arg2-le-c-pair)

from S4 S5 have S6: ?a < c-pair 4 (c-pair index-of-id ?a) by auto with S1 S2 show ?thesis by auto

qed

lemma *f*-inc-mono: $(\forall (x::nat). (f::nat \Rightarrow nat) x < f(x+1)) \Longrightarrow \forall (x::nat) (y::nat).$ $(x < y \longrightarrow f x < f y)$ **proof** (*rule allI*, *rule allI*) fix x y assume A: \forall (x::nat). f x < f (x+1) show x < y \longrightarrow f x < f y proof assume A1: x < yhave $L1: \bigwedge u v. f u < f (u + (v+1))$ proof fix u v show f u < f (u + (v+1))**proof** (*induct* v) from A show $f u < f (u + (\theta + 1))$ by *auto* next fix v n**assume** A2: f u < f (u + (n + 1))from A have S1: f(u + (n + 1)) < f(u + (Suc n + 1)) by auto from A2 S1 show $f u < f (u + (Suc \ n + 1))$ by (rule less-trans) qed qed let ?v = (y - x) - 1from A1 have S2: y = x + (?v + 1) by auto have f x < f (x + (?v + 1)) by (rule L1) with S2 show f x < f y by auto qed \mathbf{qed} **lemma** pr-index-enumerator-mono1: $n1 < n2 \implies pr$ -index-enumerator n1 m < pr-index-enumerator n2 mproof assume A: n1 < n2define f where f x = pr-index-enumerator x m for x have *f*-inc: $\forall x. fx < f(x+1)$

have f-inc: $\forall x. f x < f (x+1)$ proof fix x show f x < f (x+1) by (unfold f-def, rule pr-index-enumerator-increase1) qed from f-inc have $\forall x y. (x < y \longrightarrow f x < f y)$ by (rule f-inc-mono) with A f-def show ?thesis by auto

\mathbf{qed}

lemma pr-index-enumerator-mono2: $m1 < m2 \implies pr$ -index-enumerator n m1 < pr-index-enumerator n m2 **proof** – **assume** A: m1 < m2 **define** f where f x = pr-index-enumerator n x for x **have** f-inc: $\forall x. f x < f (x+1)$ **proof fix** x **show** f x < f (x+1) **by** (unfold f-def, rule pr-index-enumerator-increase2) **qed from** f-inc **have** $\forall x y. (x < y \longrightarrow f x < f y)$ **by** (rule f-inc-mono)

with A f-def show ?thesis by auto qed

lemma f-mono-inj: \forall (x::nat) (y::nat). ($x < y \longrightarrow$ (f::nat \Rightarrow nat) x < f y) $\Longrightarrow \forall$ (x::nat) (y::nat). ($f x = f y \longrightarrow x = y$) **proof** (*rule allI*, *rule allI*) fix x y assume $A: \forall x y. x < y \longrightarrow f x < f y$ show $f x = f y \longrightarrow x = y$ proof assume A1: f x = f y show x = y**proof** (*rule ccontr*) assume A2: $x \neq y$ show False **proof** cases assume A3: x < yfrom A A3 have f x < f y by *auto* with A1 show False by auto next assume $\neg x < y$ with A2 have A4: y < x by auto from A A4 have f y < f x by *auto* with A1 show False by auto qed qed qed qed **theorem** pr-index-enumerator-inj1: pr-index-enumerator n1 m = pr-index-enumerator $n2 \ m \implies n1 = n2$ proof – assume A: pr-index-enumerator n1 m = pr-index-enumerator n2 mdefine f where f x = pr-index-enumerator x m for x have f-mono: $\forall x y. (x < y \longrightarrow f x < f y)$ **proof** (*rule allI*, *rule allI*) fix x y show $x < y \longrightarrow fx < fy$ by (unfold f-def, simp add: pr-index-enumerator-mono1) qed **from** f-mono have $\forall x y$. (f $x = f y \longrightarrow x = y$) by (rule f-mono-inj) with A f-def show ?thesis by auto qed

theorem pr-index-enumerator-inj2: pr-index-enumerator n m1 = pr-index-enumerator $n m2 \Longrightarrow m1 = m2$ **proof** – **assume** A: pr-index-enumerator n m1 = pr-index-enumerator n m2 **define** f where f x = pr-index-enumerator n x for x have f-mono: $\forall x y. (x < y \longrightarrow f x < f y)$ **proof** (rule allI, rule allI) **fix** x y **show** $x < y \longrightarrow f x < f y$ **by** (unfold f-def, simp add: pr-index-enumerator-mono2) **qed from** f-mono **have** $\forall x y. (f x = f y \longrightarrow x = y)$ **by** (rule f-mono-inj) **with** A f-def **show** ?thesis **by** auto **qed** **theorem** pr-index-enumerator-main: nat-to-pr n = nat-to-pr (pr-index-enumerator n m)

proof (*induct* m)

show *nat-to-pr* n = nat-to-pr (*pr-index-enumerator* n θ) by *simp* **next**

fix na assume A: nat-to-pr n = nat-to-pr (pr-index-enumerator n na)
show nat-to-pr n = nat-to-pr (pr-index-enumerator n (Suc na))
proof let ?a = pr-index-enumerator n na

have S1: pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by simp

have nat-to-pr (comp-by-index index-of-id ?a) = $(\lambda \ x. \ (nat-to-pr \ index-of-id) \ (nat-to-pr \ ?a \ x))$ by (rule comp-by-index-main)

with index-of-id-main have nat-to-pr (comp-by-index index-of-id a) = nat-to-pr a by simp

with A S1 show ?thesis by simp

 \mathbf{qed}

qed

end

5 Finite sets

theory PRecFinSet imports PRecFun begin

We introduce a particular mapping *nat-to-set* from natural numbers to finite sets of natural numbers and a particular mapping *set-to-nat* from finite sets of natural numbers to natural numbers. See [1] and [2] for more information.

definition

c-in :: *nat* \Rightarrow *nat* \Rightarrow *nat* **where** *c-in* = ($\lambda x u$. ($u div (2 \land x)$) mod 2)

lemma c-in-is-pr: c-in \in PrimRec2 **proof** – **from** mod-is-pr power-is-pr div-is-pr **have** ($\lambda \ x \ u$. ($u \ div \ (2 \ x)$) mod 2) \in PrimRec2 **by** prec **with** c-in-def **show** ?thesis **by** auto **qed**

definition

nat-to-set :: *nat* \Rightarrow *nat set* where *nat-to-set* $u \equiv \{x. \ 2\ x \leq u \land c\ in x u = 1\}$

lemma c-in-upper-bound: c-in $x \ u = 1 \implies 2 \ \widehat{} \ x \le u$ proof –

```
assume A: c-in x u = 1
 then have S1: (u \text{ div } (2x)) \mod 2 = 1 by (unfold \text{ c-in-def})
 then have S2: u \operatorname{div} (2\hat{x}) > 0 by arith
 show ?thesis
 proof (rule ccontr)
   assume \neg 2 \uparrow x \leq u
   then have u < 2\hat{x} by auto
   then have u \operatorname{div} (2\widehat{x}) = 0 by (rule div-less)
   with S2 show False by auto
 \mathbf{qed}
\mathbf{qed}
lemma nat-to-set-upper-bound: x \in nat-to-set u \implies 2 \land x \leq u by (simp add:
nat-to-set-def)
lemma x-lt-2-x: x < 2 \ \hat{x}
 by (rule less-exp)
lemma nat-to-set-upper-bound1: x \in nat-to-set \ u \Longrightarrow x < u
proof –
 assume x \in nat\text{-to-set } u
 then have S1: 2 \ x \le u by (simp add: nat-to-set-def)
have S2: x < 2 \ x by (rule x-lt-2-x)
 from S2 S1 show ?thesis
   by (rule less-le-trans)
qed
lemma nat-to-set-upper-bound2: nat-to-set u \subseteq \{i, i < u\}
proof -
 from nat-to-set-upper-bound1 show ?thesis by blast
qed
lemma nat-to-set-is-finite: finite (nat-to-set u)
proof -
 have S1: finite \{i. i < u\}
 proof -
   let ?B = \{i. i < u\}
   let ?f = (\lambda (x::nat), x)
   have ?B = ?f \cdot ?B by auto
   then show finite ?B by (rule nat-seg-image-imp-finite)
 qed
 have S2: nat-to-set u \subseteq \{i. i < u\} by (rule nat-to-set-upper-bound2)
 from S2 S1 show ?thesis by (rule finite-subset)
qed
```

lemma x-in-u-eq: $(x \in nat-to-set u) = (c-in x u = 1)$ by (auto simp add: nat-to-set-def c-in-upper-bound)

definition

 $log2 :: nat \Rightarrow nat$ where $log 2 = (\lambda x. Least(\% z. x < 2 (z+1)))$ lemma log2-at-0: $log2 \ 0 = 0$ proof – let $?v = log 2 \ 0$ have S1: $0 \leq ?v$ by auto have S2: $v = Least(\%(z::nat), (0::nat) < 2^{(z+1)})$ by $(simp \ add: \ log2-def)$ have S3: $(0::nat) < 2^{(0+1)}$ by auto from S3 have S4: Least(%(z::nat). (0::nat)<2(z+1)) ≤ 0 by (rule Least-le) from S2 S4 have S5: $v \le 0$ by auto from S1 S5 have S6: ?v = 0 by auto thus ?thesis by auto qed lemma log2-at-1: log2 1 = 0 proof let ?v = log2 1 have S1: $0 \leq ?v$ by auto have S2: $v = Least(\%(z::nat), (1::nat) < 2^{(z+1)})$ by $(simp \ add: \ log2-def)$ have S3: $(1::nat) < 2^{(0+1)}$ by auto from S3 have S4: Least(%(z::nat). $(1::nat) < 2^{(z+1)} \le 0$ by (rule Least-le) from S2 S4 have S5: $?v \leq 0$ by auto from S1 S5 have S6: ?v = 0 by auto thus ?thesis by auto qed lemma log2-le: $x > 0 \implies 2 \cap \log 2 x \le x$ proof assume A: x > 0show ?thesis **proof** (*cases*) assume A1: log2 x = 0with A show ?thesis by auto \mathbf{next} assume A1: $log2 \ x \neq 0$ then have S1: log 2 x > 0 by auto define y where y = log 2 x - 1from S1 y-def have S2: log 2 x = y + 1 by auto then have S3: y < log2 x by auto have $2\widehat{(y+1)} \leq x$ **proof** (rule ccontr) assume $A2: \neg 2(y+1) \leq x$ then have x < 2(y+1) by *auto* then have $log2 \ x \leq y$ by (simp add: log2-def Least-le) with S3 show False by auto qed with S2 show ?thesis by auto qed qed

77

lemma log2-gt: $x < 2 \cap (log2 x + 1)$ proof have $x < 2\hat{x}$ by (rule x-lt-2-x) then have S1: $x < 2^{(x+1)}$ by (simp add: numeral-2-eq-2) define y where y = xfrom S1 y-def have S2: $x < 2^{(y+1)}$ by auto let $?P = \lambda z. x < 2(z+1)$ from S2 have S3: ?P y by auto then have S_4 : ?P (Least ?P) by (rule LeastI) from log2-def have S5: log2 x = Least ?P by (unfold log2-def, auto) from S4 S5 show ?thesis by auto \mathbf{qed} **lemma** x-div-x: $x > 0 \implies (x::nat)$ div x = 1 by auto **lemma** div-ge: $(k::nat) \leq m$ div $n \Longrightarrow n*k \leq m$ proof assume $A: k \leq m \operatorname{div} n$ have S1: n * (m div n) + m mod n = m by (rule mult-div-mod-eq) have S2: $0 \leq m \mod n$ by auto from S1 S2 have S3: $n * (m \text{ div } n) \leq m$ by arith from A have S4: $n * k \leq n * (m \text{ div } n)$ by auto from S4 S3 show ?thesis by (rule order-trans) qed **lemma** div-lt: $m < n * k \implies m$ div n < (k::nat)proof – assume A: m < n * kshow ?thesis **proof** (*rule ccontr*) assume $\neg m \ div \ n < k$ then have S1: $k \leq m \text{ div } n$ by auto then have S2: $n*k \leq m$ by (rule div-ge) with A show False by auto qed qed **lemma** log2-lm1: $u > 0 \implies u \ div \ 2 \ \widehat{} (log2 \ u) = 1$ proof – assume A: u > 0then have S1: $2^{(\log 2 u)} \leq u$ by (rule log2-le) have S2: u < 2 (log 2 u+1) by (rule log 2-gt) then have S3: $u < (2 \log 2 u) * 2$ by simp have (2::nat) > 0 by simpthen have (2::nat) $\log 2 u > 0$ by simp then have S4: (2::nat) $\log 2 u \ div \ 2 \ \log 2 u = 1$ by auto from S1 have S5: (2::nat) log2 u div 2 log2 u $\leq u$ div 2 log2 u by (rule div-le-mono) with S4 have S6: $1 \le u \text{ div } 2 \log 2 u$ by auto

```
from S3 have S7: u \operatorname{div} 2 \operatorname{log} 2 u < 2 by (rule div-lt)
 from S6 S7 show ?thesis by auto
qed
lemma log2-lm2: u > 0 \implies c-in (log2 u) u = 1
proof -
 assume A: u > \theta
 then have S1: u \operatorname{div} 2 \cap (\log 2 u) = 1 by (rule \log 2 - \ln 1)
 have c-in (log 2 \ u) \ u = (u \ div \ 2 \ (log 2 \ u)) \ mod \ 2 by (simp \ add: \ c-in-def)
 also from S1 have \ldots = 1 \mod 2 by simp
 also have \ldots = 1 by auto
 finally show ?thesis by auto
qed
lemma log2-lm3: log2 u < x \implies c\text{-in } x u = 0
proof -
 assume A: log2 \ u < x
 then have S1: (log 2 \ u) + 1 \le x by auto
 have S2: 1 \leq (2::nat) by auto
 from S1 S2 have S3: (2::nat)^{(log2 u)+1} \leq 2^x by (rule power-increasing)
 have S4: u < (2::nat)^{(log2 u)+1} by (rule log2-gt)
 from S3 S4 have S5: u < 2^x by auto
 then have S6: u div 2\hat{x} = 0 by (rule div-less)
 have c-in x u = (u \text{ div } 2\hat{x}) \mod 2 by (simp add: c-in-def)
 also from S6 have \ldots = 0 \mod 2 by simp
 also have \ldots = 0 by auto
 finally have ?thesis by auto
 thus ?thesis by auto
qed
lemma log2-lm4: c-in x u = 1 \implies x \le \log 2 u
proof -
 assume A: c-in x u = 1
 \mathbf{show}~? thesis
 proof (rule ccontr)
   assume \neg x < log2 u
   then have S1: log2 \ u < x by auto
   then have S2: c-in x u = 0 by (rule log2-lm3)
   with A show False by auto
 qed
qed
lemma nat-to-set-lub: x \in nat-to-set u \Longrightarrow x \leq \log 2 u
proof –
 assume x \in nat\text{-to-set } u
 then have S1: c-in x u = 1 by (simp add: x-in-u-eq)
 then show ?thesis by (rule log2-lm4)
qed
```

lemma log2- $lm5: u > 0 \implies log2 \ u \in nat-to-set \ u$ proof assume A: u > 0then have c-in $(log2 \ u) \ u = 1$ by $(rule \ log2 \ lm2)$ then show ?thesis by (simp add: x-in-u-eq) qed **lemma** pos-imp-ne: $u > 0 \implies nat-to-set \ u \neq \{\}$ proof assume $u > \theta$ then have $log2 \ u \in nat\text{-}to\text{-}set \ u$ by (rule log2-lm5) thus ?thesis by auto qed **lemma** empty-is-zero: nat-to-set $u = \{\} \implies u = 0$ **proof** (*rule ccontr*) assume A1: nat-to-set $u = \{\}$ assume A2: $u \neq 0$ then have S1: u > 0 by auto from S1 have nat-to-set $u \neq \{\}$ by (rule pos-imp-ne) with A1 show False by auto \mathbf{qed} **lemma** log2-is-max: $u > 0 \implies log2$ u = Max (nat-to-set u) proof assume $A: u > \theta$ then have S1: $log2 \ u \in nat-to-set \ u$ by (rule log2-lm5) define max where max = Max (nat-to-set u) from A have ne: nat-to-set $u \neq \{\}$ by (rule pos-imp-ne) have finite: finite (nat-to-set u) by (rule nat-to-set-is-finite) from max-def finite ne have max-in: $max \in nat-to-set \ u \ by \ simp$ from max-in have S2: c-in max u = 1 by (simp add: x-in-u-eq) then have S3: $max \leq log2 \ u$ by (rule log2-lm4) from finite ne S1 max-def have S4: $log2 \ u \le max$ by simp from S3 S4 max-def show ?thesis by auto qed lemma zero-is-empty: nat-to-set $0 = \{\}$ proof have S1: $\{i. \ i < (0::nat)\} = \{\}$ by blast have S2: nat-to-set $0 \subseteq \{i. i < 0\}$ by (rule nat-to-set-upper-bound2) from S1 S2 show ?thesis by auto qed **lemma** *ne-imp-pos: nat-to-set* $u \neq \{\} \Longrightarrow u > 0$ **proof** (*rule ccontr*) assume A1: nat-to-set $u \neq \{\}$ assume $\neg \theta < u$ then have $u = \theta$ by *auto* then have *nat-to-set* $u = \{\}$ by (*simp add: zero-is-empty*) with A1 show False by auto

qed

lemma div-mod-lm: $y < x \implies ((u + (2::nat) \hat{x}) div (2::nat) \hat{y}) mod 2 = (u$ $div (2::nat) \hat{y} \mod 2$ proof assume *y*-*lt*-*x*: y < xlet $?n = (2::nat)^y$ have *n*-pos: $\theta < ?n$ by auto let ?s = x - yfrom y-lt-x have s-pos: 0 < ?s by auto from y-lt-x have S3: x = y + ?s by auto from S3 have $(2::nat) \hat{x} = (2::nat) \hat{y} + \hat{s}$ by auto moreover have (2::nat) (y + ?s) = (2::nat) $y * 2^{?s}$ by (rule power-add) ultimately have (2::nat) $\hat{x} = 2$ $\hat{y} * 2$ \hat{s} by auto then have $S_4: u + (2::nat) \hat{x} = u + (2::nat) \hat{y} * 2^{?s}$ by auto from *n*-pos have S5: $(u + (2::nat)^{y} * 2^{?s}) div 2^{y} = 2^{?s} + (u div 2^{y}) by$ simp from S4 S5 have S6: $(u + (2::nat)^x) div 2^y = 2^?s + (u div 2^y)$ by auto from s-pos have S8: ?s = (?s - 1) + 1 by auto have $(2::nat) \cap ((?s - (1::nat)) + (1::nat)) = (2::nat) \cap (?s - (1::nat)) * 2^1$ by (rule power-add) with S8 have S9: (2::nat) ?s = (2::nat) (?s - (1::nat)) * 2 by auto then have S10: $2^{?s} + (u \operatorname{div} 2^{y}) = (u \operatorname{div} 2^{y}) + (2::nat)^{(s)} (2^{s} - (1::nat))$ * 2 by auto have S11: $((u \ div \ 2\hat{y}) + (2::nat) \hat{(}?s - (1::nat)) * 2) \ mod \ 2 = (u \ div \ 2\hat{y})$ $mod \ 2 \ by \ (rule \ mod-mult-self1)$ from S6 S10 S11 show ?thesis by auto qed **lemma** add-power: $u < 2^{x} \Longrightarrow nat-to-set (u + 2^{x}) = nat-to-set u \cup \{x\}$ proof – assume A: $u < 2\hat{x}$ have log2-is-x: log2 $(u+2\hat{x}) = x$ **proof** (unfold log2-def, rule Least-equality) from A show $u+2\hat{x} < 2\hat{x}+1$ by auto \mathbf{next} fix zassume A1: $u + 2\hat{x} < 2\hat{(z+1)}$ show $x \leq z$ **proof** (rule ccontr) assume $\neg x \leq z$ then have z < x by *auto* then have $L1: z+1 \leq x$ by *auto* have L2: $1 \leq (2::nat)$ by auto from L1 L2 have L3: (2::nat) $(z+1) \leq (2::nat)$ x by (rule power-increasing) with A1 show False by auto ged qed show ?thesis

proof (*rule subset-antisym*) show nat-to-set $(u + 2 \ x) \subseteq$ nat-to-set $u \cup \{x\}$ **proof fix** yassume A1: $y \in nat\text{-}to\text{-}set (u + 2 \widehat{x})$ show $y \in nat\text{-to-set } u \cup \{x\}$ proof assume $y \notin \{x\}$ then have S1: $y \neq x$ by auto from A1 have $y \leq \log 2$ $(u + 2 \hat{x})$ by (rule nat-to-set-lub) with log2-is-x have $y \leq x$ by auto with S1 have y-lt-x: y < x by auto from A1 have c-in $y(u + 2 \hat{x}) = 1$ by (simp add: x-in-u-eq) then have S2: $((u + 2 \hat{x}) div 2\hat{y}) mod 2 = 1$ by (unfold c-in-def) from y-lt-x have $((u + (2::nat) \hat{x}) div (2::nat) \hat{y}) mod 2 = (u div$ (2::nat) y) mod 2 by (rule div-mod-lm) with S2 have $(u \ div \ 2 \ y) \ mod \ 2 = 1$ by auto then have c-in y u = 1 by (simp add: c-in-def) then show $y \in nat-to-set \ u$ by $(simp \ add: x-in-u-eq)$ qed qed \mathbf{next} show nat-to-set $u \cup \{x\} \subseteq$ nat-to-set $(u + 2 \land x)$ **proof fix** yassume A1: $y \in nat\text{-}to\text{-}set \ u \cup \{x\}$ show $y \in nat\text{-to-set} (u + 2 \widehat{x})$ **proof** cases assume $y \in \{x\}$ then have y=x by *auto* then have y = log2 $(u + 2 \hat{x})$ by (simp add: log2-is-x) then show ?thesis by (simp add: log2-lm5) next assume y-notin: $y \notin \{x\}$ then have *y*-ne-x: $y \neq x$ by *auto* from A1 y-notin have y-in: $y \in nat$ -to-set u by auto have *y*-*lt*-*x*: y < x**proof** (*rule ccontr*) assume $\neg y < x$ with y-ne-x have y-gt-x: x < y by auto have 1 < (2::nat) by auto from y-gt-x this have L1: $(2::nat)^x < 2^y$ by (rule power-strict-increasing) from y-in have L2: $2\hat{y} \leq u$ by (rule nat-to-set-upper-bound) from L1 L2 have (2::nat) x < u by arith with A show False by auto qed from y-in have c-in y u = 1 by (simp add: x-in-u-eq) then have S2: $(u \text{ div } 2^y) \mod 2 = 1$ by $(unfold \ c\text{-in-def})$ from y-lt-x have $((u + (2::nat) \hat{x}) div (2::nat) \hat{y}) mod 2 = (u div$ (2::nat) y mod 2 by (rule div-mod-lm) with S2 have $((u + (2::nat) \hat{x}) div 2\hat{y}) \mod 2 = 1$ by auto then have c-in y $(u + (2::nat) \hat{x}) = 1$ by $(simp \ add: \ c-in-def)$

```
then show y \in nat\text{-}to\text{-}set (u + (2::nat) \ \widehat{} x) by (simp \ add: x\text{-}in\text{-}u\text{-}eq)
   qed
 qed
 qed
qed
theorem nat-to-set-inj: nat-to-set u = nat-to-set v \Longrightarrow u = v
proof –
 assume A: nat-to-set u = nat-to-set v
 let ?P = \lambda (n::nat). (\forall (D::nat set). finite D \land card D \leq n \longrightarrow (\forall u v. nat-to-set)
u = D \land nat\text{-to-set } v = D \longrightarrow u = v))
 have P-at-\theta: ?P \ \theta
 proof fix D show finite D \land card D \leq 0 \longrightarrow (\forall u v. nat-to-set u = D \land nat-to-set
v = D \longrightarrow u = v)
   proof (rule impI)
     assume A1: finite D \wedge card D < 0
     from A1 have S1: finite D by auto
     from A1 have S2: card D = 0 by auto
     from S1 S2 have S3: D = \{\} by auto
     show (\forall u \ v. \ nat-to-set \ u = D \land nat-to-set \ v = D \longrightarrow u = v)
     proof (rule allI, rule allI) fix u v show nat-to-set u = D \wedge nat-to-set v =
D \longrightarrow u = v
       proof
         assume A2: nat-to-set u = D \land nat-to-set v = D
         from A2 have L1: nat-to-set u = D by auto
         from A2 have L2: nat-to-set v = D by auto
         from L1 S3 have nat-to-set u = \{\} by auto
         then have u-z: u = 0 by (rule empty-is-zero)
         from L2 S3 have nat-to-set v = \{\} by auto
         then have v-z: v = 0 by (rule empty-is-zero)
         from u-z v-z show u=v by auto
       qed
     \mathbf{qed}
   qed
 qed
 have P-at-Suc: \bigwedge n. ?P n \implies ?P (Suc n)
 proof - fix n
   assume A-n: ?P n
   show ?P (Suc n)
   proof fix D show finite D \land card D \leq Suc n \longrightarrow (\forall u v. nat-to-set u = D \land
nat-to-set v = D \longrightarrow u = v)
   proof (rule impI)
     assume A1: finite D \wedge card D \leq Suc n
     from A1 have S1: finite D by auto
     from A1 have S2: card D \leq Suc \ n by auto
     show (\forall u \ v. \ nat-to-set \ u = D \land nat-to-set \ v = D \longrightarrow u = v)
     proof (rule allI, rule allI, rule impI)
       fix u v
       assume A2: nat-to-set u = D \land nat-to-set v = D
```

from A2 have d-u-d: nat-to-set u = D by auto from A2 have d-v-d: nat-to-set v = D by auto show u = v**proof** (*cases*) assume $A3: D = \{\}$ from A3 d-u-d have nat-to-set $u = \{\}$ by auto then have u-z: u = 0 by (rule empty-is-zero) from A3 d-v-d have nat-to-set $v = \{\}$ by auto then have v-z: v = 0 by (rule empty-is-zero) from u-z v-z show u = v by auto \mathbf{next} assume A3: $D \neq \{\}$ from A3 d-u-d have nat-to-set $u \neq \{\}$ by auto then have *u*-pos: u > 0 by (rule ne-imp-pos) from A3 d-v-d have nat-to-set $v \neq \{\}$ by auto then have *v*-pos: v > 0 by (rule ne-imp-pos) define m where m = Max Dfrom S1 m-def A3 have m-in: $m \in D$ by auto from d-u-d m-def have m-u: m = Max (nat-to-set u) by auto from d-v-d m-def have m-v: m = Max (nat-to-set v) by auto from u-pos m-u log2-is-max have m-log-u: m = log2 u by auto from v-pos m-v log2-is-max have m-log-v: m = log2 v by auto define D1 where $D1 = D - \{m\}$ define u1 where $u1 = u - 2\hat{m}$ define v1 where $v1 = v - 2\hat{m}$ have card-D1: card D1 $\leq n$ proof – from D1-def S1 m-in have card D1 = (card D) - 1 by (simp add:*card-Diff-singleton*) with S2 show ?thesis by auto qed have $u - u1: u = u1 + 2\hat{m}$ proof from u-pos have L1: $2 \cap \log 2$ $u \leq u$ by (rule log2-le) with *m*-log-*u* have L2: $2 \uparrow m \leq u$ by auto with u1-def show ?thesis by auto qed have u1-d1: nat-to-set u1 = D1proof – from *m*-log-*u* log2-gt have $u < 2^{(m+1)}$ by auto with u-u1 have u1-lt-2-m: $u1 < 2^m$ by auto with u-u1 have L1: nat-to-set u = nat-to-set $u1 \cup \{m\}$ by (simp add: add-power) have *m*-notin: $m \notin nat$ -to-set u1 **proof** (*rule ccontr*) assume $\neg m \notin nat\text{-}to\text{-}set \ u1$ then have $m \in nat\text{-}to\text{-}set \ u1$ by auto then have $2 m \le u1$ by (rule nat-to-set-upper-bound) with u1-lt-2-m show False by auto qed

```
from L1 m-notin have nat-to-set u1 = nat-to-set u - \{m\} by auto
          with d-u-d have nat-to-set u1 = D - \{m\} by auto
          with D1-def show ?thesis by auto
        qed
        have v - v1: v = v1 + 2^m
        proof –
          from v-pos have L1: 2 \cap \log 2 v \leq v by (rule log2-le)
          with m-log-v have L2: 2 \uparrow m \leq v by auto
          with v1-def show ?thesis by auto
        \mathbf{qed}
        have v1-d1: nat-to-set v1 = D1
        proof –
          from m-log-v log2-gt have v < 2^{(m+1)} by auto
          with v-v1 have v1-lt-2-m: v1 < 2 m by auto
          with v-v1 have L1: nat-to-set v = nat-to-set v1 \cup \{m\} by (simp add:
add-power)
          have m-notin: m \notin nat-to-set v1
          proof (rule ccontr)
           assume \neg m \notin nat\text{-}to\text{-}set v1 then have m \in nat\text{-}to\text{-}set v1 by auto
           then have 2 \ m \le v1 by (rule nat-to-set-upper-bound)
           with v1-lt-2-m show False by auto
          qed
          from L1 m-notin have nat-to-set v1 = nat-to-set v - \{m\} by auto
          with d-v-d have nat-to-set v1 = D - \{m\} by auto
          with D1-def show ?thesis by auto
        qed
        from S1 D1-def have P1: finite D1 by auto
        with card-D1 have P2: finite D1 \wedge card D1 \leq n by auto
        from A-n P2 have (\forall u \ v. \ nat-to-set \ u = D1 \land nat-to-set \ v = D1 \longrightarrow u
= v) by auto
        with u1-d1 v1-d1 have u1 = v1 by auto
        with u-u1 v-v1 show u = v by auto
      qed
    qed
   qed
 qed
qed
 from P-at-0 P-at-Suc have main: \bigwedge n. ?P n by (rule nat.induct)
 define D where D = nat-to-set u
 from D-def A have P1: nat-to-set u = D by auto
 from D-def A have P2: nat-to-set v = D by auto
 from D-def nat-to-set-is-finite have d-finite: finite D by auto
 define n where n = card D
 from n-def d-finite have card-le: card D \leq n by auto
 from d-finite card-le have P3: finite D \wedge card D \leq n by auto
 with main have P_4: \forall u \ v. \ nat-to-set \ u = D \land nat-to-set \ v = D \longrightarrow u = v by
auto
 with P1 P2 show u = v by auto
qed
```

definition

set-to-nat :: nat set => nat where set-to-nat = $(\lambda \ D. \ sum \ (\lambda \ x. \ 2 \ \widehat{x}) \ D)$ **lemma** two-power-sum: sum $(\lambda x. (2::nat) \hat{x}) \{i. i < Suc m\} = (2 \hat{Suc m}) -$ 1 **proof** (*induct* m) show sum $(\lambda x. (2::nat) \hat{x}) \{i. i < Suc \ 0\} = (2 \hat{Suc \ 0}) - 1$ by auto \mathbf{next} fix nassume A: sum $(\lambda x. (2::nat) \uparrow x)$ {i. i < Suc n} = $(2 \uparrow Suc n) - 1$ show sum $(\lambda x. (2::nat) \uparrow x) \{i. i < Suc (Suc n)\} = (2 \uparrow Suc (Suc n)) - 1$ proof let $?f = \lambda x. (2::nat) \uparrow x$ have S1: $\{i. i < Suc (Suc n)\} = \{i. i < Suc n\}$ by auto have S2: $\{i. i \leq Suc n\} = \{i. i < Suc n\} \cup \{Suc n\}$ by auto from S1 S2 have S3: $\{i. i < Suc (Suc n)\} = \{i. i < Suc n\} \cup \{Suc n\}$ by autohave S4: $\{i. i < Suc n\} = (\lambda x. x)$ ' $\{i. i < Suc n\}$ by auto then have S5: finite $\{i. i < Suc n\}$ by (rule nat-seg-image-imp-finite) have S6: Suc $n \notin \{i. i < Suc n\}$ by auto **from** S5 S6 sum.insert have S7: sum ?f $(\{i. i < Suc n\} \cup \{Suc n\}) = 2 \cap Suc$ $n + sum ?f \{i. i < Suc n\}$ by auto from S3 have sum ?f {i. i< Suc (Suc n)} = sum ?f ({i. i< Suc n} \cup {Suc n) by *auto* also from S7 have $\ldots = 2 \ \widehat{} Suc \ n + sum ?f \{i. i < Suc \ n\}$ by auto also from A have $\ldots = 2 \ Suc \ n + (((2::nat) \ Suc \ n) - (1::nat))$ by auto also have $\ldots = (2 \cap Suc (Suc n)) - 1$ by *auto* finally show ?thesis by auto qed qed **lemma** finite-interval: finite $\{i. (i::nat) < m\}$ proof have $\{i, i < m\} = (\lambda x, x)$ ' $\{i, i < m\}$ by auto then show ?thesis by (rule nat-seg-image-imp-finite) qed **lemma** set-to-nat-at-empty: set-to-nat $\{\} = 0$ by (unfold set-to-nat-def, rule sum.empty) **lemma** set-to-nat-of-interval: set-to-nat $\{i. (i::nat) < m\} = 2 \ \widehat{} m - 1$ **proof** (*induct* m)

proof (induct m) show set-to-nat $\{i. i < 0\} = 2 \ 0 - 1$ proof – have S1: $\{i. (i::nat) < 0\} = \{\}$ by auto with set-to-nat-at-empty have set-to-nat $\{i. i < 0\} = 0$ by auto thus ?thesis by auto qed

\mathbf{next}

fix n show set-to-nat $\{i. i < Suc n\} = 2 \ Suc n - 1$ by (unfold set-to-nat-def, rule two-power-sum) qed

lemma set-to-nat-mono: [[finite B; $A \subseteq B$]] \implies set-to-nat $A \leq$ set-to-nat B **proof** – assume b-finite: finite B assume a-le-b: $A \subseteq B$ **let** ?f = λ (x::nat). (2::nat) ^x have S1: set-to-nat A = sum ?f A by (simp add: set-to-nat-def) have S2: set-to-nat B = sum ?f B by (simp add: set-to-nat-def) have S3: $\bigwedge x. x \in B - A \Longrightarrow 0 \leq ?f x$ by auto from b-finite a-le-b S3 have sum ?f A \leq sum ?f B by (rule sum-mono2) with S1 S2 show ?thesis by auto qed

theorem nat-to-set-srj: finite $(D::nat set) \implies nat-to-set (set-to-nat D) = D$ **proof** –

assume A: finite D let $?P = \lambda$ (n::nat). (\forall (D::nat set). finite $D \land card D = n \longrightarrow nat-to-set$ (set-to-nat D) = D)have P-at- θ : $?P \ \theta$ **proof** (rule allI) fix D**show** finite $D \land card D = 0 \longrightarrow nat-to-set (set-to-nat D) = D$ proof **assume** A1: finite $D \wedge card D = 0$ from A1 have S1: finite D by auto from A1 have S2: card D = 0 by auto from S1 S2 have S3: $D = \{\}$ by auto with set-to-nat-def have set-to-nat $D = sum (\lambda x. 2 \uparrow x) D$ by simp with S3 sum.empty have set-to-nat D = 0 by auto with zero-is-empty S3 show nat-to-set (set-to-nat D) = D by auto qed qed have P-at-Suc: $\bigwedge n$. ?P $n \implies$?P (Suc n) **proof** - **fix** nassume A-n: ?P nshow ?P (Suc n) proof **fix** D show finite $D \land card D = Suc n \longrightarrow nat-to-set (set-to-nat D) = D$ proof **assume** A1: finite $D \land card D = Suc n$ from A1 have S1: finite D by auto from A1 have S2: card $D = Suc \ n$ by auto define m where m = Max Dfrom S2 have D-ne: $D \neq \{\}$ by auto with S1 m-def have m-in: $m \in D$ by auto

define D1 where $D1 = D - \{m\}$ from S1 D1-def have d1-finite: finite D1 by auto from D1-def m-in S1 have card D1 = card D - 1 by (simp add: *card-Diff-singleton*) with S2 have card-d1: card D1 = n by auto from d1-finite card-d1 have finite $D1 \wedge card D1 = n$ by auto with A-n have S3: nat-to-set (set-to-nat D1) = D1 by auto define u where u = set-to-nat Ddefine u1 where u1 = set-to-nat D1from S1 m-in have sum (λ (x::nat). (2::nat) ^x) D = 2 ^m + sum (λ x. $2 \hat{x} (D - \{m\})$ **by** (*rule sum.remove*) with set-to-nat-def have set-to-nat $D = 2 \ (m + set-to-nat \ (D - \{m\}))$ by autowith u-def u1-def D1-def have u-u1: $u = u1 + 2 \ \widehat{} m$ by auto from S3 u1-def have d1-u1: nat-to-set u1 = D1 by auto have u1-lt: u1 < 2 $\hat{}$ m proof have $L1: D1 \subseteq \{i. i < m\}$ proof fix xassume $A1: x \in D1$ show $x \in \{i. i < m\}$ proof from A1 D1-def have L1-1: $x \in D$ by auto from S1 D-ne L1-1 m-def have L1-2: $x \leq m$ by auto with A1 L1-1 D1-def have $x \neq m$ by auto with L1-2 show x < m by auto ged qed have L2: finite $\{i. i < m\}$ by (rule finite-interval) from L2 L1 have set-to-nat D1 \leq set-to-nat {i. i<m} by (rule *set-to-nat-mono*) with u1-def have $u1 \leq set-to-nat \{i. i < m\}$ by auto with set-to-nat-of-interval have L3: $u1 \leq 2 \ m-1$ by auto have $\theta < (2::nat) \cap m$ by auto then have $(2::nat) \cap m - 1 < (2::nat) \cap m$ by auto with L3 show ?thesis by arith qed from u-def have nat-to-set (set-to-nat D) = nat-to-set u by auto also from u-u1 have $\ldots = nat$ -to-set $(u1 + 2 \cap m)$ by auto also from *u1-lt* have $\ldots = nat\text{-}to\text{-}set \ u1 \cup \{m\}$ by (rule add-power) also from d1-u1 have $\ldots = D1 \cup \{m\}$ by *auto* also from D1-def m-in have $\ldots = D$ by auto finally show *nat-to-set* (*set-to-nat* D) = D by *auto* qed qed qed from P-at-0 P-at-Suc have main: $\bigwedge n$. ?P n by (rule nat.induct) from A main show ?thesis by auto

\mathbf{qed}

theorem nat-to-set-srj1: finite $(D::nat set) \implies \exists u. nat-to-set u = D$ proof – assume A: finite D **show** \exists *u. nat-to-set* u = Dproof from A show nat-to-set (set-to-nat D) = D by (rule nat-to-set-srj) qed qed **lemma** sum-of-pr-is-pr: $g \in PrimRec1 \implies (\lambda \ n. \ sum \ g \ \{i. \ i < n\}) \in PrimRec1$ proof assume g-is-pr: $g \in PrimRec1$ define f where $f n = sum g \{i. i < n\}$ for n from f-def have f-at-0: $f \theta = \theta$ by auto define h where h a b = g a + b for a bfrom g-is-pr have h-is-pr: $h \in PrimRec2$ unfolding h-def by prec have *f*-at-Suc: $\forall y$. f(Suc y) = h y (f y)proof fix y show f(Suc y) = h y (f y)proof from f-def have S1: $f(Suc y) = sum g\{i. i < Suc y\}$ by auto have S2: $\{i. \ i < Suc \ y\} = \{i. \ i < y\} \cup \{y\}$ by *auto* have S3: finite $\{i, i < y\}$ by (rule finite-interval) have S4: $y \notin \{i. i < y\}$ by auto from S1 S2 have $f(Suc y) = sum g(\{i. (i::nat) < y\} \cup \{y\})$ by auto also from S3 S4 sum.insert have $\ldots = g y + sum g \{i. i < y\}$ by auto also from *f*-def have $\ldots = g y + f y$ by *auto* also from *h*-def have $\ldots = h y (f y)$ by *auto* finally show ?thesis by auto qed qed from h-is-pr f-at-0 f-at-Suc have f-is-pr: $f \in PrimRec1$ by (rule pr-rec1-scheme) with *f*-def [abs-def] show ?thesis by auto qed **lemma** sum-of-pr-is-pr2: $p \in PrimRec2 \implies (\lambda \ n \ m. \ sum \ (\lambda \ x. \ p \ x \ m) \ \{i. \ i < n\})$ $\in PrimRec2$ proof assume *p*-is-pr: $p \in PrimRec2$ define f where f n m = sum ($\lambda x. p x m$) {i. i<n} for n m

define $q :: nat \Rightarrow nat$ where q x = 0 for x

have g-is-pr: $g \in PrimRec1$ by (unfold g-def, rule const-is-pr [where ?n=0]) have f-at-0: $\forall x. f \ 0 \ x = g \ x$

proof

fix x from f-def g-def show f 0 x = g x by auto qed

define h where h a b c = p a c + b for a b c

from *p*-is-pr have *h*-is-pr: $h \in PrimRec3$ unfolding *h*-def by prec **have** f-at-Suc: $\forall x y$. f (Suc y) x = h y (f y x) x **proof** (*rule allI*, *rule allI*) fix x y show f (Suc y) x = h y (f y x) xproof from f-def have S1: f (Suc y) $x = sum (\lambda z. p z x)$ {i. i < Suc y} by auto have S2: $\{i. \ i < Suc \ y\} = \{i. \ i < y\} \cup \{y\}$ by *auto* have S3: finite $\{i, i < y\}$ by (rule finite-interval) have S4: $y \notin \{i. i < y\}$ by auto define g1 where g1 = p = z x for zfrom S1 S2 g1-def have f (Suc y) x = sum g1 ({i. (i::nat) < y} \cup {y}) by autoalso from S3 S4 sum.insert have $\ldots = g1 y + sum g1 \{i. i < y\}$ by auto also from *f*-def g1-def have $\ldots = g1 y + f y x$ by auto also from *h*-def g1-def have $\ldots = h y (f y x) x$ by auto finally show ?thesis by auto qed qed from g-is-pr h-is-pr f-at-0 f-at-Suc have f-is-pr: $f \in PrimRec2$ by (rule pr-rec-scheme) with f-def [abs-def] show ?thesis by auto qed **lemma** sum-is-pr: $g \in PrimRec1 \implies (\lambda \ u. \ sum \ g \ (nat-to-set \ u)) \in PrimRec1$ proof assume *g-is-pr*: $g \in PrimRec1$ define q1 where q1 x u = (if (c-in x u = 1) then (q x) else 0) for x uhave g1-is-pr: $g1 \in PrimRec2$ **proof** (*unfold g1-def*, *rule if-eq-is-pr2*) show $c\text{-in} \in PrimRec2$ by (rule c-in-is-pr)next show $(\lambda x \ y. \ 1) \in PrimRec2$ by $(rule \ const-is-pr-2 \ [where \ ?n=1])$ next from g-is-pr show $(\lambda x \ y. \ g \ x) \in PrimRec2$ by prec next show $(\lambda x \ y. \ \theta) \in PrimRec2$ by $(rule \ const-is-pr-2 \ [where \ ?n=\theta])$ qed define f where $f u = sum (\lambda x. g1 x u) \{i. (i::nat) < u\}$ for u define f1 where f1 $u v = sum (\lambda x, g1 x v) \{i, (i::nat) < u\}$ for u vfrom g1-is-pr have $(\lambda (u::nat) v. sum (\lambda x. g1 x v) \{i. (i::nat) < u\}) \in PrimRec2$ **by** (*rule sum-of-pr-is-pr2*) with f1-def [abs-def] have f1-is-pr: $f1 \in PrimRec2$ by auto **from** f-def f1-def **have** f-f1: $f = (\lambda \ u. \ f1 \ u \ u)$ by auto from f1-is-pr have $(\lambda \ u. \ f1 \ u \ u) \in PrimRec1$ by prec with f-f1 have f-is-pr: $f \in PrimRec1$ by auto have f-is-result: $f = (\lambda \ u. \ sum \ g \ (nat-to-set \ u))$ proof fix u show f u = sum q (nat-to-set u) proof – define U where $U = \{i, i < u\}$

define A where $A = \{x \in U. \ c\text{-in } x \ u = 1\}$ define B where $B = \{x \in U. \ c \text{-in } x \ u \neq 1\}$ have U-finite: finite U by (unfold U-def, rule finite-interval) from A-def U-finite have A-finite: finite A by auto from B-def U-finite have B-finite: finite B by auto from U-def A-def B-def have U-A-B: $U = A \cup B$ by auto from U-def A-def B-def have A-B: $A \cap B = \{\}$ by auto from B-def g1-def have B-z: sum (λx . g1 x u) B = 0 by auto have u-in-U: nat-to-set $u \subseteq U$ by (unfold U-def, rule nat-to-set-upper-bound2) from u-in-U x-in-u-eq A-def have A-u: A = nat-to-set u by auto from A-u x-in-u-eq g1-def have A-res: sum $(\lambda x. g1 x u) A = sum g (nat-to-set$ u) by auto from f-def have $f u = sum (\lambda x. g1 x u) \{i. (i::nat) < u\}$ by auto also from U-def have $\ldots = sum (\lambda x. g1 x u) U$ by auto also from U-A-B have $\ldots = sum (\lambda x, g1 x u) (A \cup B)$ by auto also from A-finite B-finite A-B have $\ldots = sum (\lambda x, q1 x u) A + sum (\lambda x)$ x. q1 x u) B by (rule sum.union-disjoint) also from *B-z* have $\ldots = sum (\lambda x, g1 x u) A$ by *auto* also from A-res have $\ldots = sum g (nat-to-set u)$ by auto finally show ?thesis by auto qed \mathbf{qed} with f-is-pr show ?thesis by auto qed definition *c*-*card* :: *nat* \Rightarrow *nat* **where** $c\text{-}card = (\lambda \ u. \ card \ (nat-to-set \ u))$ **theorem** *c*-*card*-*is*-*pr*: *c*-*card* \in *PrimRec1* proof – define $q :: nat \Rightarrow nat$ where q x = 1 for x have g-is-pr: $g \in PrimRec1$ by (unfold g-def, rule const-is-pr) have c-card = $(\lambda \ u. \ sum \ g \ (nat-to-set \ u))$ proof fix u show c-card u = sum q (nat-to-set u) by (unfold c-card-def, unfold q-def, rule card-eq-sum) qed **moreover from** *q*-is-pr have $(\lambda \ u. \ sum \ q \ (nat-to-set \ u)) \in PrimRec1$ by (rule sum-is-pr) ultimately show ?thesis by auto qed definition *c*-*insert* :: $nat \Rightarrow nat \Rightarrow nat$ where c-insert = $(\lambda x u)$ if c-in x u = 1 then u else $u + 2\hat{x}$

lemma c-insert-is-pr: c-insert \in PrimRec2 **proof** (unfold c-insert-def, rule if-eq-is-pr2)

show $c\text{-in} \in PrimRec2$ by (rule c-in-is-pr) next show $(\lambda x \ y. \ 1) \in PrimRec2$ by $(rule \ const-is-pr-2)$ \mathbf{next} show $(\lambda x \ y, \ y) \in PrimRec2$ by $(rule \ pr-id2-2)$ \mathbf{next} from power-is-pr show $(\lambda x \ y, \ y + 2 \ \hat{x}) \in PrimRec2$ by prec qed **lemma** [simp]: set-to-nat (nat-to-set u) = uproof define D where D = nat-to-set ufrom D-def nat-to-set-is-finite have D-finite: finite D by auto then have *nat-to-set* (*set-to-nat* D) = D by (*rule nat-to-set-srj*) with D-def have nat-to-set (set-to-nat D) = nat-to-set u by auto then have set-to-nat D = u by (rule nat-to-set-inj) with *D*-def show ?thesis by auto qed **lemma** insert-lemma: $x \notin$ nat-to-set $u \Longrightarrow$ set-to-nat (nat-to-set $u \cup \{x\}) = u +$ $2 \hat{x}$ proof – assume $A: x \notin nat\text{-to-set } u$ define D where D = nat-to-set ufrom A D-def have S1: $x \notin D$ by auto have finite (nat-to-set u) by (rule nat-to-set-is-finite) with *D*-def have *D*-finite: finite *D* by auto let $?f = \lambda$ (x::nat). (2::nat) \hat{x} **from** set-to-nat-def have set-to-nat $(D \cup \{x\}) = sum ?f (D \cup \{x\})$ by auto also from *D*-finite S1 have $\ldots = ?f x + sum ?f D$ by simp also from set-to-nat-def have $\ldots = 2 \ \widehat{} x + set$ -to-nat D by auto finally have set-to-nat $(D \cup \{x\}) = set$ -to-nat $D + 2 \land x$ by auto with *D*-def show ?thesis by auto qed **lemma** *c-insert-df*: *c-insert* = ($\lambda x u$. *set-to-nat* ((*nat-to-set* u) \cup {x})) **proof** (rule ext, rule ext) fix x u show c-insert x u = set-to-nat (nat-to-set $u \cup \{x\}$) **proof** (*cases*) assume $A: x \in nat\text{-to-set } u$ then have *nat-to-set* $u \cup \{x\} = nat-to-set u$ by *auto* then have S1: set-to-nat (nat-to-set $u \cup \{x\}$) = u by auto from A have c-in x u = 1 by (simp add: x-in-u-eq) then have *c*-insert $x \ u = u$ by (unfold *c*-insert-def, simp) with S1 show ?thesis by auto \mathbf{next} assume $A: x \notin nat\text{-to-set } u$ then have S1: c-in $x \ u \neq 1$ by (simp add: x-in-u-eq) then have S2: c-insert $x u = u + 2 \hat{x}$ by (unfold c-insert-def, simp)

from A have set-to-nat (nat-to-set $u \cup \{x\}$) = $u + 2 \widehat{x}$ by (rule insert-lemma) with S2 show ?thesis by auto qed qed definition *c*-remove :: $nat \Rightarrow nat \Rightarrow nat$ where c-remove = $(\lambda x u)$ if c-in x u = 0 then u else $u - 2\hat{x}$ **lemma** *c*-remove-is-pr: c-remove \in PrimRec2 **proof** (unfold c-remove-def, rule if-eq-is-pr2) show $c\text{-in} \in PrimRec2$ by (rule c-in-is-pr)next show $(\lambda x \ y. \ \theta) \in PrimRec2$ by (rule const-is-pr-2) next show $(\lambda x \ y, \ y) \in PrimRec2$ by (rule pr-id2-2) next from power-is-pr show $(\lambda x \ y. \ y - 2 \ \hat{x}) \in PrimRec2$ by prec qed **lemma** remove-lemma: $x \in nat$ -to-set $u \Longrightarrow set$ -to-nat (nat-to-set $u - \{x\}) = u$ $-2^{2}x$ proof assume $A: x \in nat\text{-to-set } u$ define D where $D = nat\text{-}to\text{-}set \ u - \{x\}$ from A D-def have S1: $x \notin D$ by auto have finite (nat-to-set u) by (rule nat-to-set-is-finite) with *D*-def have *D*-finite: finite *D* by auto let $?f = \lambda$ (x::nat). (2::nat) \hat{x} from set-to-nat-def have set-to-nat $(D \cup \{x\}) = sum ?f (D \cup \{x\})$ by auto also from *D*-finite S1 have $\ldots = ?f x + sum ?f D$ by simp also from set-to-nat-def have $\ldots = 2 \ \widehat{} x + set$ -to-nat D by auto finally have S2: set-to-nat $(D \cup \{x\}) = set$ -to-nat $D + 2 \uparrow x$ by auto from A D-def have $D \cup \{x\} = nat\text{-}to\text{-}set \ u$ by auto with S2 have S3: $u = set-to-nat D + 2 \uparrow x$ by auto from A have S4: $2 \uparrow x < u$ by (rule nat-to-set-upper-bound) with S3 D-def show ?thesis by auto qed **lemma** *c*-remove-df: *c*-remove = $(\lambda \ x \ u. \ set-to-nat \ ((nat-to-set \ u) - \{x\}))$ **proof** (*rule ext*, *rule ext*) fix x u show c-remove x u = set-to-nat (nat-to-set $u - \{x\}$) **proof** (*cases*) assume $A: x \in nat\text{-to-set } u$ then have S1: c-in x u = 1 by (simp add: x-in-u-eq) then have S2: c-remove $x \ u = u - 2\hat{x}$ by (simp add: c-remove-def) from A have set-to-nat (nat-to-set $u - \{x\}$) = $u - 2 \hat{x}$ by (rule remove-lemma) with S2 show ?thesis by auto

```
\mathbf{next}
   assume A: x \notin nat\text{-to-set } u
   then have S1: c-in x \ u \neq 1 by (simp add: x-in-u-eq)
   then have S2: c-remove x \ u = u by (simp add: c-remove-def c-in-def)
   from A have nat-to-set u - \{x\} = nat-to-set u by auto
   with S2 show ?thesis by auto
 qed
qed
definition
  c-union :: nat \Rightarrow nat \Rightarrow nat where
  c-union = (\lambda \ u \ v. set-to-nat (nat-to-set u \cup nat-to-set v))
theorem c-union-is-pr: c-union \in PrimRec2
proof -
 define f where f y x = set-to-nat ((nat-to-set (c-fst x)) \cup \{z \in nat-to-set (c-snd
x). z < y
   for y x
 have f-is-pr: f \in PrimRec2
 proof –
   define q where q = c-fst
   from c-fst-is-pr g-def have g-is-pr: g \in PrimRec1 by auto
   define h where h a b c = (if c - in a (c - snd c)) = 1 then c-insert a b else b) for
a \ b \ c
   from c-in-is-pr c-insert-is-pr have h-is-pr: h \in PrimRec3 unfolding h-def by
prec
   have f-at-\theta: \forall x. f \ \theta x = g x
   proof
     fix x show f 0 x = g x by (unfold f-def, unfold g-def, simp)
   qed
   have f-at-Suc: \forall x y. f (Suc y) x = h y (f y x) x
   proof (rule allI, rule allI)
     fix x y show f (Suc y) x = h y (f y x) x
     proof (cases)
       assume A: c-in y (c-snd x) = 1
       then have S1: y \in (nat\text{-}to\text{-}set (c\text{-}snd x)) by (simp add: x\text{-}in\text{-}u\text{-}eq)
       from A h-def have S2: h y (f y x) x = c-insert y (f y x) by auto
       from S1 have S3: \{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < Suc y\} = \{z \in nat\text{-}to\text{-}set \}
(c\text{-snd } x). z < y \} \cup \{y\} by auto
          from nat-to-set-is-finite have S4: finite ((nat-to-set (c-fst x)) \cup \{z \in 
nat-to-set (c-snd x). z < y}) by auto
       with nat-to-set-srj f-def have S5: nat-to-set (f y x) = (nat-to-set (c-fst x))
\cup \{z \in nat\text{-to-set } (c\text{-snd } x) : z < y\} by auto
       from f-def have S6: f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) \cup \{z \in a\}
nat-to-set (c-snd x). z < Suc y}) by simp
      also from S3 have \ldots = set-to-nat (((nat-to-set (c-fst x)) \cup \{z \in nat-to-set
(c\text{-snd } x). z < y\} \cup \{y\} by auto
       also from S5 have \ldots = set-to-nat (nat-to-set (f y x) \cup {y}) by auto
       also have \ldots = c-insert y(f y x) by (simp add: c-insert-df)
```

94

finally show ?thesis by (simp add: S2) next assume $A: \neg c \text{-in } y (c \text{-snd } x) = 1$ then have S1: $y \notin (nat\text{-}to\text{-}set (c\text{-}snd x))$ by (simp add: x-in-u-eq)from A h-def have S2: h y (f y x) x = f y x by auto have S3: { $z \in nat\text{-}to\text{-}set (c\text{-}snd x)$. z < Suc y} = { $z \in nat\text{-}to\text{-}set (c\text{-}snd x)$. z < yproof – have $\{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < Suc y\} = \{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z \in Suc y\}$ $\langle y \rangle \cup \{z \in nat\text{-to-set } (c\text{-snd } x) : z = y \}$ by auto with S1 show ?thesis by auto qed from nat-to-set-is-finite have S4: finite $((nat-to-set (c-fst x)) \cup \{z \in$ nat-to-set (c-snd x). z < y}) by auto with nat-to-set-srif-def have S5: nat-to-set $(f \ y \ x) = (nat-to-set \ (c-fst \ x))$ $\cup \{z \in nat\text{-to-set } (c\text{-snd } x) : z < y\}$ by auto from f-def have S6: f (Suc y) $x = set-to-nat ((nat-to-set (c-fst x)) \cup \{z \in a\}$ nat-to-set (c-snd x). z < Suc y}) by simp also from S3 have $\ldots = set-to-nat (((nat-to-set (c-fst x))) \cup \{z \in nat-to-set$ (c-snd x). $z < y\})$ by auto also from S5 have \ldots = set-to-nat (nat-to-set (f y x)) by auto also have $\ldots = f y x$ by simpfinally show ?thesis by (simp add: S2) qed qed from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme) qed define union where union u v = f v (c-pair u v) for u vfrom f-is-pr have union-is-pr: union \in PrimRec2 unfolding union-def by prec have $\bigwedge u v$. union u v = set-to-nat (nat-to-set $u \cup nat$ -to-set v) proof fix u v show union u v = set-to-nat (nat-to-set $u \cup nat-to-set v$) proof from *nat-to-set-upper-bound1* have $\{z \in nat-to-set v, z < v\} = nat-to-set v$ by auto with union-def f-def show ?thesis by auto qed qed then have $union = (\lambda \ u \ v. \ set-to-nat \ (nat-to-set \ u \cup nat-to-set \ v))$ by (simpadd: ext) with *c*-union-def have c-union = union by simp with union-is-pr show ?thesis by simp qed definition

c-diff :: $nat \Rightarrow nat \Rightarrow nat$ where c-diff = $(\lambda \ u \ v. \ set$ -to-nat (nat-to-set u - nat-to-set v)) **theorem** c-diff-is-pr: c-diff \in PrimRec2 proof define f where f y x = set-to-nat $((nat-to-set (c-fst x)) - \{z \in nat-to-set (c-snd$ x). z < yfor y xhave *f*-is-pr: $f \in PrimRec2$ proof – define q where q = c-fst from c-fst-is-pr g-def have g-is-pr: $g \in PrimRec1$ by auto define h where h a b c = (if c - in a (c - snd c)) = 1 then c-remove a b else b) for $a \ b \ c$ from *c-in-is-pr c-remove-is-pr* have *h-is-pr*: $h \in PrimRec3$ unfolding *h-def* by prec have f-at-0: $\forall x. f 0 x = g x$ proof fix x show f 0 x = q x by (unfold f-def, unfold q-def, simp) qed have f-at-Suc: $\forall x y$. f (Suc y) x = h y (f y x) x proof (rule allI, rule allI) fix x y show f (Suc y) x = h y (f y x) x**proof** (*cases*) assume A: c-in y (c-snd x) = 1 then have S1: $y \in (nat\text{-}to\text{-}set (c\text{-}snd x))$ by (simp add: x-in-u-eq)from A h-def have S2: h y (f y x) x = c-remove y (f y x) by auto have $(nat\text{-}to\text{-}set (c\text{-}fst x)) - (\{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < y\} \cup \{y\}) =$ $((nat-to-set (c-fst x)) - (\{z \in nat-to-set (c-snd x), z < y\}) - \{y\})$ by autothen have lm1: set-to-nat (nat-to-set (c-fst x) - ({z \in nat-to-set (c-snd x). z < y} \cup {y})) = set-to-nat (nat-to-set (c-fst x) $- \{z \in nat-to-set (c-snd x), z < z \}$ $y - \{y\}$ by auto from S1 have S3: $\{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < Suc y\} = \{z \in nat\text{-}to\text{-}set \}$ (c-snd x). $z < y \} \cup \{y\}$ by auto from nat-to-set-is-finite have S4: finite $((nat-to-set (c-fst x)) - \{z \in$ nat-to-set (c-snd x). z < y}) by auto with *nat-to-set-srj* f-def have S5: *nat-to-set* $(f \ y \ x) = (nat-to-set \ (c-fst \ x))$ $- \{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < y\}$ by auto from f-def have S6: f (Suc y) $x = set-to-nat ((nat-to-set (c-fst x)) - \{z \in a\}$ nat-to-set (c-snd x). z < Suc y) by simp also from S3 have $\ldots = set\text{-}to\text{-}nat ((nat\text{-}to\text{-}set (c\text{-}fst x))) - (\{z \in nat\text{-}to\text{-}set$ (c-snd x). $z < y \} \cup \{y\})$ by auto also have $\ldots = set$ -to-nat $(((nat-to-set (c-fst x))) - (\{z \in nat-to-set (c-snd$ x). z < y) - {y}) by (rule lm1) also from S5 have \ldots = set-to-nat (nat-to-set (f y x) - {y}) by auto also have $\ldots = c$ -remove y(f y x) by $(simp \ add: c$ -remove-df)finally show ?thesis by (simp add: S2) next assume A: \neg c-in y (c-snd x) = 1 then have S1: $y \notin (nat\text{-}to\text{-}set (c\text{-}snd x))$ by (simp add: x-in-u-eq)

from A h-def have S2: h y (f y x) x = f y x by auto have S3: { $z \in nat\text{-}to\text{-}set (c\text{-}snd x)$. z < Suc y} = { $z \in nat\text{-}to\text{-}set (c\text{-}snd x)$. z < yproof have $\{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < Suc y\} = \{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z \in Suc y\}$ $\langle y \rangle \cup \{ z \in nat\text{-}to\text{-}set (c\text{-}snd x) \ z = y \}$ by *auto* with S1 show ?thesis by auto qed from nat-to-set-is-finite have S4: finite $((nat-to-set (c-fst x)) - \{z \in$ nat-to-set (c-snd x). z < y}) by auto with nat-to-set-srj f-def have S5: nat-to-set (f y x) = (nat-to-set (c-fst x)) $- \{z \in nat\text{-}to\text{-}set (c\text{-}snd x), z < y\}$ by auto from f-def have S6: f (Suc y) $x = set-to-nat ((nat-to-set (c-fst x)) - \{z \in a\}$ *nat-to-set* (*c-snd* x). z < Suc y}) by simp also from S3 have $\ldots = set-to-nat (((nat-to-set (c-fst x))) - \{z \in nat-to-set (c-fst x)\})$ (c-snd x). $z < y\})$ by auto also from S5 have \ldots = set-to-nat (nat-to-set (f y x)) by auto also have $\ldots = f y x$ by simp finally show ?thesis by (simp add: S2) qed qed from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme) qed **define** diff where diff u v = f v (*c*-pair u v) for u vfrom *f-is-pr* have diff-is-pr: $diff \in PrimRec2$ unfolding diff-def by prec have $\bigwedge u v$. diff u v = set-to-nat (nat-to-set u - nat-to-set v) proof fix u v show diff u v = set-to-nat (nat-to-set u - nat-to-set v) proof from nat-to-set-upper-bound1 have $\{z \in nat-to-set v, z < v\} = nat-to-set v$ by *auto* with diff-def f-def show ?thesis by auto qed qed then have diff = $(\lambda \ u \ v. \ set-to-nat \ (nat-to-set \ u - nat-to-set \ v))$ by $(simp \ add:$ ext) with *c*-diff-def have c-diff = diff by simp with diff-is-pr show ?thesis by simp qed definition *c*-*intersect* :: $nat \Rightarrow nat \Rightarrow nat$ where c-intersect = ($\lambda \ u \ v$. set-to-nat (nat-to-set $u \cap nat$ -to-set v))

theorem c-intersect-is-pr: c-intersect \in PrimRec2 **proof** – **define** f where f u v = c-diff (c-union u v) (c-union (c-diff u v) (c-diff v u)) for u v

from c-diff-is-pr c-union-is-pr have f-is-pr: $f \in PrimRec2$ unfolding f-def by prechave $\bigwedge u v$. f u v = c-intersect u vproof – fix u v show f u v = c-intersect u vproof let ?A = nat-to-set ulet ?B = nat-to-set vhave A-fin: finite ?A by (rule nat-to-set-is-finite) have *B*-fin: finite ?B by (rule nat-to-set-is-finite) have S1: c-union u v = set-to-nat (?A \cup ?B) by (simp add: c-union-def) have S2: c-diff u v = set-to-nat (?A - ?B) by (simp add: c-diff-def)have S3: c-diff v u = set-to-nat (?B - ?A) by (simp add: c-diff-def) from S2 A-fin B-fin have S4: nat-to-set $(c-diff \ u \ v) = ?A - ?B$ by (simpadd: nat-to-set-srj) from S3 A-fin B-fin have S5: nat-to-set (c-diff v u) = ?B - ?A by (simpadd: nat-to-set-srj) from S4 S5 have S6: c-union (c-diff u v) (c-diff v u) = set-to-nat ((?A – $(B) \cup (B - A)$ by (simp add: c-union-def) **from** S1 A-fin B-fin have S7: nat-to-set (c-union u v) = $?A \cup ?B$ by (simp add: nat-to-set-srj) from S6 A-fin B-fin have S8: nat-to-set (c-union $(c-diff \ u \ v) \ (c-diff \ v \ u)) =$ $(?A - ?B) \cup (?B - ?A)$ by (simp add: nat-to-set-srj) from S7 S8 have S9: $f u v = set-to-nat ((?A \cup ?B) - ((?A - ?B) \cup (?B - A)))$ (A)) by (simp add: c-diff-def f-def) have S10: $?A \cap ?B = (?A \cup ?B) - ((?A - ?B) \cup (?B - ?A))$ by auto with S9 have S11: f u v = set-to-nat (?A \cap ?B) by auto have c-intersect u v = set-to-nat (? $A \cap ?B$) by (simp add: c-intersect-def) with S11 show ?thesis by auto qed qed then have f = c-intersect by (simp add: ext) with f-is-pr show ?thesis by auto qed

 \mathbf{end}

6 The function which is universal for primitive recursive functions of one variable

theory PRecUnGr imports PRecFun2 PRecList begin

We introduce a particular function which is universal for primitive recursive functions of one variable.

definition

 $g\text{-}comp:::nat \Rightarrow nat \Rightarrow nat \textbf{ where }$

definition

 $\begin{array}{l} g\text{-pair} :: nat \Rightarrow nat \Rightarrow nat \ \textbf{where} \\ g\text{-pair } c\text{-ls } key = (\\ let \ n = c\text{-fst } key; \ x = c\text{-snd } key; \ m = c\text{-snd } n; \\ m1 = c\text{-fst } m; \ m2 = c\text{-snd } m \ in \\ \hline & - \ We \ have \ key = < n, \ x >; \ n = <?, \ m >; \ m = < m1, \ m2 >. \\ if \ c\text{-assoc-have-key } c\text{-ls } (c\text{-pair } m1 \ x) = 0 \ then \\ (let \ y1 = c\text{-assoc-value } c\text{-ls } (c\text{-pair } m2 \ x) = 0 \ then \\ (let \ y2 = c\text{-assoc-value } c\text{-ls } (c\text{-pair } m2 \ x) = 0 \ then \\ (let \ y2 = c\text{-assoc-value } c\text{-ls } (c\text{-pair } m2 \ x) \ in \\ c\text{-cons } (c\text{-pair } key \ (c\text{-pair } y1 \ y2)) \ c\text{-ls}) \\ else \ c\text{-ls} \end{array}$

definition

g-rec :: $nat \Rightarrow nat \Rightarrow nat$ where g-rec c-ls key = (let n = c-fst key; x = c-snd key; m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in - We have $key = \langle n, x \rangle$; $n = \langle ?, m \rangle$; $m = \langle m1, m2 \rangle$; $x = \langle y1, x1 \rangle$. if y1 = 0 then if c-assoc-have-key c-ls (c-pair m1 x1) = 0 then c-cons (c-pair key (c-assoc-value c-ls (c-pair m1 x1))) c-ls $else \ c-ls$) else(let $y_{2} = y_{1} - (1::nat)$ in if c-assoc-have-key c-ls (c-pair n (c-pair y2 x1)) = 0 then (let t1 = c-assoc-value c-ls (c-pair n (c-pair y2 x1)); t2 = c-pair (c-pair y2 *t1*) *x1* in

definition

```
\begin{array}{l} g\text{-step}::nat \Rightarrow nat \Rightarrow nat \text{ where} \\ g\text{-step } c\text{-ls } key = (\\ let \ n = c\text{-fst } key; \ x = c\text{-snd } key; \ n1 = (c\text{-fst } n) \ mod \ 7 \ in \\ if \ n1 = 0 \ then \ c\text{-cons} \ (c\text{-pair } key \ 0) \ c\text{-ls } else \\ if \ n1 = 1 \ then \ c\text{-cons} \ (c\text{-pair } key \ (Suc \ x)) \ c\text{-ls } else \\ if \ n1 = 2 \ then \ c\text{-cons} \ (c\text{-pair } key \ (c\text{-fst } x)) \ c\text{-ls } else \\ if \ n1 = 3 \ then \ c\text{-cons} \ (c\text{-pair } key \ (c\text{-snd } x)) \ c\text{-ls } else \\ if \ n1 = 3 \ then \ c\text{-cons} \ (c\text{-pair } key \ (c\text{-snd } x)) \ c\text{-ls } else \\ if \ n1 = 4 \ then \ g\text{-comp } c\text{-ls } key \ else \\ if \ n1 = 5 \ then \ g\text{-pair } c\text{-ls } key \ else \\ if \ n1 = 6 \ then \ g\text{-rec } c\text{-ls } key \ else \\ c\text{-ls} \end{array}
```

definition

 $pr-gr :: nat \Rightarrow nat$ where $pr-gr-def: pr-gr = PrimRecOp1 \ 0 \ (\lambda \ a \ b. \ g-step \ b \ (c-fst \ a))$

lemma pr-gr-at-0: pr-gr 0 = 0 by (simp add: pr-gr-def)

lemma pr-gr-at-Suc: pr-gr (Suc x) = g-step (pr-gr x) (c-fst x) by (simp add: pr-gr-def)

definition

univ-for- $pr :: nat \Rightarrow nat$ where univ-for-pr = pr-conv-2-to-1 nat-to-pr

theorem univ-is-not-pr: univ-for-pr \notin PrimRec1 proof (rule ccontr) assume \neg univ-for-pr \notin PrimRec1 then have A1: univ-for-pr \in PrimRec1 by simp let ?f = λ n. univ-for-pr (c-pair n n) + 1 let ?n0 = index-of-pr ?f from A1 have S1: ?f \in PrimRec1 by prec then have S2: nat-to-pr ?n0 = ?f by (rule index-of-pr-is-real) then have S3: nat-to-pr ?n0 ?n0 = ?f ?n0 by simp have S4: ?f ?n0 = univ-for-pr (c-pair ?n0 ?n0) + 1 by simp from S3 S4 show False by (simp add: univ-for-pr-def pr-conv-2-to-1-def) ged

definition

c-is-sub-fun :: $nat \Rightarrow (nat \Rightarrow nat) \Rightarrow bool$ where *c-is-sub-fun ls* $f \longleftrightarrow (\forall x. c-assoc-have-key ls <math>x = 0 \longrightarrow c$ -assoc-value ls x = fx)lemma c-is-sub-fun-lm-1: $[c-is-sub-fun \ ls \ f; \ c-assoc-have-key \ ls \ x = 0]] \implies$ *c*-assoc-value ls x = f x**apply**(*unfold c-is-sub-fun-def*) apply(auto)done **lemma** *c-is-sub-fun-lm-2*: *c-is-sub-fun* $ls f \implies c-is-sub-fun (c-cons (c-pair x (f x)))$ ls) fproof assume A1: c-is-sub-fun ls f show ?thesis **proof** (unfold c-is-sub-fun-def, rule allI, rule impI) fix xa assume A2: c-assoc-have-key (c-cons (c-pair x (f x)) ls) xa = 0 show *c*-assoc-value (*c*-cons (*c*-pair x (f x)) ls) xa = f xa**proof** cases assume C1: xa = xthen show *c*-assoc-value (*c*-cons (*c*-pair x (f x)) ls) xa = f xa by (simp add: PRecList.c-assoc-lm-2) next assume $C2: \neg xa = x$ then have S1: c-assoc-have-key (c-cons (c-pair x(fx)) ls) xa = c-assoc-have-key ls xa by (rule c-assoc-lm-3) from C2 have S2: c-assoc-value (c-cons (c-pair x(f x)) ls) xa = c-assoc-value ls xa by (rule c-assoc-lm-4)from A2 S1 have S3: c-assoc-have-key ls xa = 0 by simp from A1 S3 have c-assoc-value ls xa = f xa by (rule c-is-sub-fun-lm-1) with S2 show ?thesis by simp qed \mathbf{qed} qed lemma mod7-lm: (n::nat) mod 7 = 0 \lor (n::nat) mod $7 = 1 \lor$ (n::nat) mod 7 = $2 \vee$ (n::nat) mod $7 = 3 \lor$ (n::nat) mod $7 = 4 \lor$ (n::nat) mod 7 = 5 \lor $(n::nat) \mod 7 = 6$ by arith **lemma** nat-to-sch-at-pos: $x > 0 \implies$ nat-to-sch $x = (let \ u = (c-fst \ x) \mod 7;$ v=c-snd x; v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u sch1 sch2)

```
proof –
```

assume A: x > 0**show** ?thesis

```
proof cases
   assume A1: x = 1
   then have S1: c-fst x = 0
   proof –
     have 1 = c-pair 0 1 by (simp add: c-pair-def sf-def)
     then have c-fst 1 = c-fst (c-pair 0 1) by simp
     then have c-fst 1 = 0 by simp
     with A1 show ?thesis by simp
   qed
   from A1 have S2: nat-to-sch x = Base-zero by simp
   from S1 S2 show nat-to-sch x = (let \ u = (c-fst \ x) \ mod \ 7; \ v = c-snd \ x; \ v1 = c-fst
v; v2 = c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2)
   apply(insert S1 S2)
   apply(simp add: Let-def loc-f-def)
   done
 next
   assume \neg x = 1
   from A this have A2: x > 1 by simp
   from this have nat-to-sch x = (let \ u = mod7 \ (c-fst \ x); \ v = c-snd \ x; \ v1 = c-fst \ v;
v^2 = c-snd v; sch1=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by
(rule \ loc-srj-lm-2)
   from this show nat-to-sch x = (let \ u = (c-fst \ x) \ mod \ 7; \ v = c-snd \ x; \ v1 = c-fst
v; v^2 = c-snd v; sch1 = nat-to-sch v1; sch2 = nat-to-sch v2 in loc-f u sch1 sch2) by
(simp add: mod7-def)
 qed
qed
lemma nat-to-sch-0: c-fst n \mod 7 = 0 \implies nat-to-sch n = Base-zero
proof –
 assume A: c-fst n mod 7 = 0
 show ?thesis
 proof cases
   assume n=0
   then show nat-to-sch n = Base-zero by simp
 \mathbf{next}
   assume \neg n = 0 then have n > 0 by simp
   then have nat-to-sch n = (let \ u = (c-fst \ n) \mod 7; \ v = c-snd \ n; \ v1 = c-fst \ v; \ v2
= c-snd v; sch1=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (rule
nat-to-sch-at-pos)
   with A show nat-to-sch n = Base-zero by (simp add: Let-def loc-f-def)
 qed
qed
lemma loc-lm-1: c-fst n mod 7 \neq 0 \implies n > 0
proof –
 assume A: c-fst n mod 7 \neq 0
 have n = 0 \Longrightarrow False
 proof –
   assume n = 0
```

```
102
```

then have c-fst n mod 7 = 0 by (simp add: c-fst-at-0) with A show ?thesis by simp qed then have $\neg n = 0$ by auto then show ?thesis by simp qed

lemma loc-lm-2: c-fst n mod $7 \neq 0 \implies$ nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7;$ $v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat\text{-}to\text{-}sch \ v1; \ sch2 = nat\text{-}to\text{-}sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ **proof assume** $c\text{-}fst \ n \mod 7 \neq 0$ **then have** n > 0 **by** (rule loc-lm-1) **then show** ?thesis **by** (rule nat-to-sch-at-pos) **qed**

lemma *nat-to-sch-1*: *c-fst* $n \mod 7 = 1 \implies nat-to-sch n = Base-suc$ **proof** -

assume A1: c-fst n mod 7 = 1

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by $(simp \ add: \ loc-lm-2)$

with A1 show nat-to-sch n = Base-suc by (simp add: Let-def loc-f-def) qed

lemma nat-to-sch-2: c-fst n mod $\gamma = 2 \implies$ nat-to-sch n = Base-fst proof –

assume A1: c-fst n mod 7 = 2

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by $(simp \ add: \ loc-lm-2)$

with A1 show nat-to-sch n = Base-fst by (simp add: Let-def loc-f-def) qed

lemma *nat-to-sch-3*: *c-fst* $n \mod 7 = 3 \implies nat-to-sch n = Base-snd$ proof –

assume A1: c-fst n mod 7 = 3

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by $(simp \ add: \ loc-lm-2)$

with A1 show nat-to-sch n = Base-snd by (simp add: Let-def loc-f-def) qed

lemma *nat-to-sch-4*: *c-fst* $n \mod 7 = 4 \implies nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))$

proof -

assume A1: c-fst n mod 7 = 4

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat\text{-}to\text{-}sch \ v1; \ sch2 = nat\text{-}to\text{-}sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by (simp

add: loc-lm-2)

with A1 show nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n))) by (simp add: Let-def loc-f-def) ged

lemma nat-to-sch-5: c-fst n mod $7 = 5 \implies$ nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))

proof -

assume A1: c-fst n mod 7 = 5

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by $(simp \ add: \ loc-lm-2)$

with A1 show nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n))) by (simp add: Let-def loc-f-def) ged

lemma nat-to-sch-6: c-fst n mod $7 = 6 \implies$ nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n))) **proof** -

assume A1: c-fst n mod 7 = 6

then have nat-to-sch $n = (let \ u = (c\text{-}fst \ n) \mod 7; \ v = c\text{-}snd \ n; \ v1 = c\text{-}fst \ v; \ v2 = c\text{-}snd \ v; \ sch1 = nat-to-sch \ v1; \ sch2 = nat-to-sch \ v2 \ in \ loc-f \ u \ sch1 \ sch2)$ by $(simp \ add: \ loc-lm-2)$

with A1 show nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n))) by (simp add: Let-def loc-f-def) ged

lemma nat-to-pr-lm-0: c-fst n mod $7 = 0 \implies$ nat-to-pr n x = 0 **proof** – **assume** A: c-fst n mod 7 = 0 **have** S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x **by** (simp add: nat-to-pr-def) **from** A **have** S2: nat-to-sch n = Base-zero **by** (rule nat-to-sch-0) **from** S1 S2 **show** ?thesis **by** simp **qed**

lemma nat-to-pr-lm-1: c-fst n mod $7 = 1 \implies$ nat-to-pr n x = Suc x **proof** – **assume** A: c-fst n mod 7 = 1 **have** S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x **by** (simp add: nat-to-pr-def) **from** A **have** S2: nat-to-sch n = Base-suc **by** (rule nat-to-sch-1) **from** S1 S2 **show** ?thesis **by** simp **qed**

lemma nat-to-pr-lm-2: c-fst n mod $7 = 2 \implies$ nat-to-pr n x = c-fst x **proof** – **assume** A: c-fst n mod 7 = 2**have** S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x **by** (simp add: nat-to-pr-def)

have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by $(simp \ aaa: nat-to-pr-aef)$ from A have S2: nat-to-sch n = Base-fst by $(rule \ nat-to-sch-2)$ from S1 S2 show ?thesis by simp

\mathbf{qed}

lemma nat-to-pr-lm-3: c-fst n mod $7 = 3 \implies$ nat-to-pr n x = c-snd x proof – assume A: c-fst n mod 7 = 3have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)from A have S2: nat-to-sch n = Base-snd by (rule nat-to-sch-3) from S1 S2 show ?thesis by simp qed lemma nat-to-pr-lm-4: c-fst n mod $7 = 4 \implies$ nat-to-pr n x = (nat-to-pr (c-fst))(c-snd n) (nat-to-pr (c-snd (c-snd n)) x))proof assume A: c-fst n mod 7 = 4have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)from A have S2: nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch(c-snd (c-snd n))) by (rule nat-to-sch-4)from S1 S2 have S3: nat-to-pr n x = sch-to-pr (Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))) x by simp from S3 have S4: nat-to-pr n x = (sch-to-pr (nat-to-sch (c-fst (c-snd n))))((sch-to-pr (nat-to-sch (c-snd (c-snd n)))) x) by simp from S4 show ?thesis by (simp add: nat-to-pr-def) qed **lemma** nat-to-pr-lm-5: c-fst n mod $7 = 5 \implies$ nat-to-pr n x = (c-f-pair (nat-to-pr))(c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) xproof – assume A: c-fst n mod 7 = 5have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def) from A have S2: nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch(c-snd (c-snd n))) by (rule nat-to-sch-5)from S1 S2 have S3: nat-to-pr n x = sch-to-pr (Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))) x by simp from S3 show ?thesis by (simp add: nat-to-pr-def) qed **lemma** nat-to-pr-lm-6: c-fst n mod $7 = 6 \implies$ nat-to-pr n x = (UnaryRecOp $(nat-to-pr \ (c-fst \ (c-snd \ n))) \ (nat-to-pr \ (c-snd \ (c-snd \ n)))) \ x$ proof – assume A: c-fst n mod 7 = 6have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def) from A have S2: nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n))) by (rule nat-to-sch-6)

from S1 S2 have S3: nat-to-pr n x = sch-to-pr (Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))) x by simp

from S3 show ?thesis by (simp add: nat-to-pr-def)
qed

lemma univ-for-pr-lm-0: c-fst (c-fst key) mod $7 = 0 \implies$ univ-for-pr key = 0

proof -

assume A: c-fst (c-fst key) mod 7 = 0

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-0)

qed

lemma univ-for-pr-lm-1: c-fst (c-fst key) mod $7 = 1 \implies$ univ-for-pr key = Suc (c-snd key) **proof** -

assume A: c-fst (c-fst key) mod 7 = 1

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-1)

qed

lemma univ-for-pr-lm-2: c-fst (c-fst key) mod $7 = 2 \implies$ univ-for-pr key = c-fst (c-snd key)

proof -

assume A: c-fst (c-fst key) mod 7 = 2

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-2)

 \mathbf{qed}

lemma univ-for-pr-lm-3: c-fst (c-fst key) mod $7 = 3 \implies$ univ-for-pr key = c-snd (c-snd key)

proof assume A: c-fst (c-fst key) mod 7 = 3
 have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
 univ-for-pr-def pr-conv-2-to-1-def)
 with A show ?thesis by (simp add: nat-to-pr-lm-3)
 qed

 $\begin{array}{l} \textbf{lemma } univ-for-pr-lm-4: \ c-fst \ (c-fst \ key) \ mod \ 7=4 \implies univ-for-pr \ key=(nat-to-pr \ (c-fst \ (c-snd \ (c-fst \ key))) \ (nat-to-pr \ (c-snd \ (c-fst \ key))) \ (c-snd \ key))) \end{array}$

proof –

assume A: c-fst (c-fst key) mod 7 = 4

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-4)

 \mathbf{qed}

lemma univ-for-pr-lm-4-1: c-fst (c-fst key) mod $\gamma = 4 \implies$ univ-for-pr key = univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (univ-for-pr (c-pair (c-snd (c-snd (c-snd (c-snd (c-snd key))))))

proof -

assume A: c-fst (c-fst key) mod 7 = 4

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-4 univ-for-pr-def pr-conv-2-to-1-def) qed

lemma univ-for-pr-lm-5: c-fst (c-fst key) mod $7 = 5 \implies$ univ-for-pr key = c-pair (univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd key))) (univ-for-pr (c-pair (c-snd (c-snd (c-fst key))) (c-snd key)))

proof -

assume A: c-fst (c-fst key) mod 7 = 5

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A show ?thesis by (simp add: nat-to-pr-lm-5 c-f-pair-def univ-for-pr-def pr-conv-2-to-1-def)

qed

lemma univ-for-pr-lm-6-1: $\llbracket c$ -fst (c-fst key) mod 7 = 6; c-fst (c-snd key) = $0 \rrbracket$ \implies univ-for-pr key = univ-for-pr (c-pair (c-fst (c-snd (c-fst key)))) (c-snd key)))proof –

assume A1: c-fst (c-fst key) mod 7 = 6

assume A2: c-fst (c-snd key) = 0

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A1 A2 show ?thesis by (simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def pr-conv-2-to-1-def)

qed

lemma univ-for-pr-lm-6-2: $[c-fst (c-fst key) \mod 7 = 6; c-fst (c-snd key) = Suc$ $u \implies univ-for-pr \ key = univ-for-pr$

(c-pair (c-snd (c-snd (c-fst key)))

(c-pair (c-pair u (univ-for-pr (c-pair (c-fst key) (c-pair u (c-snd (c-snd *key*)))))) (*c*-*snd* (*c*-*snd key*))))

proof -

assume A1: c-fst (c-fst key) mod 7 = 6

assume A2: c-fst (c-snd key) = Suc u

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

with A1 A2 show ?thesis

```
apply(simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def pr-conv-2-to-1-def)
apply(simp add: pr-conv-1-to-3-def)
```

done

```
qed
```

lemma univ-for-pr-lm-6-3: $[c-fst (c-fst key) \mod 7 = 6; c-fst (c-snd key) \neq 0]$ \implies univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))

(c-pair (c-pair (c-fst (c-snd key) - 1) (univ-for-pr (c-pair (c-fst key)))(c-pair (c-fst (c-snd key) - 1) (c-snd (c-snd key)))))) (c-snd (c-snd key))))

proof **assume** A1: c-fst (c-fst key) mod 7 = 6assume A2: c-fst (c-snd key) $\neq 0$ then have A3: c-fst (c-snd key) > 0 by simp let ?u = c-fst (c-snd key) - (1::nat) from A3 have S1: c-fst (c-snd key) = Suc ?u by simp from A1 S1 have S2: univ-for-pr key = univ-for-pr (c-pair (c-snd (c-snd (c-fst key))) (c-pair (c-pair ?u (univ-for-pr (c-pair (c-fst key) (c-pair ?u (c-snd (c-snd key)))))) (c-snd (c-snd key)))) by (rule univ-for-pr-lm-6-2)thus ?thesis by simp qed **lemma** g-comp-lm-0: [c-fst (c-fst key) mod 7 = 4; c-is-sub-fun ls univ-for-pr;g-comp ls key \neq ls \implies g-comp ls key = c-cons (c-pair key (univ-for-pr key)) ls proof assume A1: c-fst (c-fst key) mod 7 = 4assume A2: c-is-sub-fun ls univ-for-pr assume A3: g-comp ls key \neq ls let ?n = c-fst key let ?x = c-snd key $\mathbf{let}~?m=\mathit{c}\text{-}\mathit{snd}~?n$ let ?m1 = c-fst ?mlet ?m2 = c-snd ?mlet ?k1 = c-pair ?m2 ?xhave S1: c-assoc-have-key ls ?k1 = 0**proof** (*rule ccontr*) assume A1-1: c-assoc-have-key ls $?k1 \neq 0$ then have g-comp ls key = ls by (simp add: g-comp-def) with A3 show False by simp qed let ?y = c-assoc-value ls ?k1from A2 S1 have S2: ?y = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1) let ?k2 = c-pair ?m1 ?yhave S3: c-assoc-have-key ls ?k2 = 0**proof** (*rule ccontr*) assume A3-1: c-assoc-have-key ls $?k2 \neq 0$ then have g-comp ls key = ls by (simp add: g-comp-def Let-def) with A3 show False by simp ged let ?z = c-assoc-value ls ?k2from A2 S3 have S4: ?z = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1) from S2 have S5: ?k2 = c-pair ?m1 (univ-for-pr ?k1) by simp from S4 S5 have S6: ?z = univ-for-pr (c-pair ?m1 (univ-for-pr ?k1)) by simp from A1 S6 have S7: ?z = univ-for-pr key by (simp add: univ-for-pr-lm-4-1) from S1 S3 S7 show ?thesis by (simp add: g-comp-def Let-def) ged

lemma g-comp-lm-1: \llbracket c-fst (c-fst key) mod 7 = 4; c-is-sub-fun ls univ-for-pr

 \implies c-is-sub-fun (g-comp ls key) univ-for-pr proof **assume** A1: c-fst (c-fst key) mod 7 = 4assume A2: c-is-sub-fun ls univ-for-pr show ?thesis **proof** cases assume *g*-comp ls key = lswith A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by simp next assume g-comp ls key \neq ls from A1 A2 this have S1: g-comp ls key = c-cons (c-pair key (univ-for-pr (key)) ls by $(rule g-comp-lm-\theta)$ with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2) qed qed **lemma** g-pair-lm-0: $[c-fst (c-fst key) \mod 7 = 5; c-is-sub-fun ls univ-for-pr; g-pair$ $ls \ key \neq ls$ \implies g-pair $ls \ key = c$ -cons (c-pair key (univ-for-pr key)) lsproof – assume A1: c-fst (c-fst key) mod 7 = 5assume A2: c-is-sub-fun ls univ-for-pr assume A3: g-pair ls key \neq ls let ?n = c-fst key let ?x = c-snd key let ?m = c-snd ?nlet ?m1 = c-fst ?mlet ?m2 = c-snd ?mlet ?k1 = c-pair ?m1 ?xhave S1: c-assoc-have-key ls ?k1 = 0**proof** (*rule ccontr*) assume A1-1: c-assoc-have-key ls $?k1 \neq 0$ then have g-pair ls key = ls by (simp add: g-pair-def) with A3 show False by simp qed let ?y1 = c-assoc-value ls ?k1from A2 S1 have S2: ?y1 = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1) let ?k2 = c-pair ?m2 ?xhave S3: c-assoc-have-key ls ?k2 = 0**proof** (*rule ccontr*) assume A3-1: c-assoc-have-key ls $?k2 \neq 0$ then have g-pair ls key = ls by (simp add: g-pair-def Let-def) with A3 show False by simp qed let ?y2 = c-assoc-value ls ?k2from A2 S3 have S4: ?y2 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1) let ?z = c-pair ?y1 ?y2from S2 S4 have S5: ?z = c-pair (univ-for-pr ?k1) (univ-for-pr ?k2) by simp from A1 S5 have S6: ?z = univ-for-pr key by (simp add: univ-for-pr-lm-5) from S1 S3 S6 show ?thesis by (simp add: g-pair-def Let-def)

qed

lemma g-pair-lm-1: $[c-fst (c-fst key) \mod 7 = 5; c-is-sub-fun ls univ-for-pr] \implies$ c-is-sub-fun (g-pair ls key) univ-for-pr proof – **assume** A1: c-fst (c-fst key) mod 7 = 5assume A2: c-is-sub-fun ls univ-for-pr show ?thesis proof cases assume g-pair ls key = lswith A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by simp \mathbf{next} assume g-pair ls key \neq ls from A1 A2 this have S1: g-pair ls key = c-cons (c-pair key (univ-for-pr key)) ls by (rule g-pair-lm- θ) with A2 show c-is-sub-fun (q-pair ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2) qed qed **lemma** g-rec-lm-0: $\begin{bmatrix} c-fst \ (c-fst \ key) \ mod \ \gamma = 6; \ c-is-sub-fun \ ls \ univ-for-pr; \ g-rec$ $ls \ key \neq ls \implies g\text{-rec} \ ls \ key = c\text{-cons} \ (c\text{-pair} \ key \ (univ\text{-for-pr} \ key)) \ ls$ proof assume A1: c-fst (c-fst key) mod 7 = 6assume A2: c-is-sub-fun ls univ-for-pr assume A3: g-rec ls key \neq ls let ?n = c-fst key let ?x = c-snd key let ?m = c-snd ?nlet ?m1 = c-fst ?mlet ?m2 = c-snd ?mlet ?y1 = c-fst ?xlet ?x1 = c-snd ?xshow ?thesis proof cases **assume** A1-1: ?y1 = 0let ?k1 = c-pair ?m1 ?x1have S1-1: c-assoc-have-key ls ?k1 = 0**proof** (*rule ccontr*) assume *c*-assoc-have-key ls $?k1 \neq 0$ with A1-1 have g-rec ls key = ls by (simp add: g-rec-def) with A3 show False by simp qed let ?v = c-assoc-value ls ?k1from A2 S1-1 have S1-2: ?v = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1) from A1 A1-1 S1-2 have S1-3: v = univ-for-pr key by (simp add: univ-for-pr-lm-6-1) from A1-1 S1-1 S1-3 show ?thesis by (simp add: g-rec-def Let-def) next assume A2-1: $?y1 \neq 0$ then have A2-2: ?y1 > 0 by simp

let ?y2 = ?y1 - (1::nat)

let ?k2 = c-pair ?n (c-pair ?y2 ?x1) have S2-1: c-assoc-have-key ls ?k2 = 0**proof** (*rule ccontr*) assume c-assoc-have-key ls $?k2 \neq 0$ with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def) with A3 show False by simp qed let ?t1 = c-assoc-value ls ?k2from A2 S2-1 have S2-2: ?t1 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1) let ?t2 = c-pair (c-pair ?y2 ?t1) ?x1let ?k3 = c-pair ?m2 ?t2have S2-3: c-assoc-have-key ls ?k3 = 0**proof** (*rule ccontr*) **assume** c-assoc-have-key ls $?k3 \neq 0$ with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def) with A3 show False by simp qed let ?u = c-assoc-value ls ?k3from A2 S2-3 have S2-4: ?u = univ-for-pr ?k3 by (rule c-is-sub-fun-lm-1) from S2-4 S2-2 have S2-5: ?u = univ-for-pr (c-pair ?m2 (c-pair (c-pair ?y2)) (univ-for-pr ?k2)) ?x1) by simp from A1 A2-1 S2-5 have S2-6: ?u = univ-for-pr key by (simp add: univ-for-pr-lm-6-3) from A2-1 S2-1 S2-3 S2-6 show ?thesis by (simp add: g-rec-def Let-def) qed \mathbf{qed} **lemma** q-rec-lm-1: [c-fst (c-fst key) mod 7 = 6; c-is-sub-fun ls univ-for-pr $] \Longrightarrow$ c-is-sub-fun (g-rec ls key) univ-for-pr proof – **assume** A1: c-fst (c-fst key) mod 7 = 6assume A2: c-is-sub-fun ls univ-for-pr show ?thesis **proof** cases assume g-rec $ls \ key = ls$ with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by simp \mathbf{next} assume g-rec ls key \neq ls **from** A1 A2 this **have** S1: g-rec ls key = c-cons (c-pair key (univ-for-pr key)) ls by (rule g-rec-lm- θ) with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2) qed qed

lemma g-step-lm-0: c-fst (c-fst key) mod $7 = 0 \implies$ g-step ls key = c-cons (c-pair key 0) ls **by** (simp add: g-step-def)

lemma g-step-lm-1: c-fst (c-fst key) mod $7 = 1 \implies$ g-step ls key = c-cons (c-pair key (Suc (c-snd key))) ls by (simp add: g-step-def Let-def)

lemma g-step-lm-2: c-fst (c-fst key) mod $7 = 2 \implies$ g-step ls key = c-cons (c-pair key (c-fst (c-snd key))) ls **by** (simp add: g-step-def Let-def)

lemma g-step-lm-3: c-fst (c-fst key) mod $7 = 3 \implies$ g-step ls key = c-cons (c-pair key (c-snd (c-snd key))) ls **by** (simp add: g-step-def Let-def)

lemma g-step-lm-4: c-fst (c-fst key) mod $7 = 4 \implies$ g-step ls key = g-comp ls key by (simp add: g-step-def)

lemma g-step-lm-5: c-fst (c-fst key) mod $7 = 5 \implies$ g-step ls key = g-pair ls key by (simp add: g-step-def)

lemma g-step-lm-6: c-fst (c-fst key) mod $7 = 6 \implies$ g-step ls key = g-rec ls key by (simp add: g-step-def)

lemma g-step-lm-7: c-is-sub-fun ls univ-for-pr \implies c-is-sub-fun (g-step ls key) univ-for-pr

proof assume A1: c-is-sub-fun ls univ-for-pr let ?n = c-fst key let ?x = c-snd key let $?n1 = (c\text{-}fst ?n) \mod 7$ have S1: $?n1 = 0 \implies ?thesis$ proof assume A: ?n1 = 0then have S1-1: g-step ls key = c-cons (c-pair key θ) ls by (rule g-step-lm- θ) from A have S1-2: univ-for-pr key = 0 by (rule univ-for-pr-lm-0) from A1 have S1-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls) univ-for-pr by (rule c-is-sub-fun-lm-2) from S1-3 S1-1 S1-2 show ?thesis by simp qed have S2: $?n1 = 1 \implies ?thesis$ proof assume A: ?n1 = 1then have S2-1: g-step ls key = c-cons (c-pair key (Suc (c-snd key))) ls by (rule q-step-lm-1) from A have S2-2: univ-for-pr key = Suc (c-snd key) by (rule univ-for-pr-lm-1) from A1 have S2-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls) univ-for-pr by (rule c-is-sub-fun-lm-2) from S2-3 S2-1 S2-2 show ?thesis by simp qed have S3: $?n1 = 2 \implies ?thesis$ proof – assume A: ?n1 = 2then have S2-1: g-step ls key = c-cons (c-pair key (c-fst (c-snd key))) ls by (rule g-step-lm-2)from A have S2-2: univ-for-pr key = c-fst (c-snd key) by (rule univ-for-pr-lm-2) from A1 have S2-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)

univ-for-pr by $(rule \ c-is-sub-fun-lm-2)$

from S2-3 S2-1 S2-2 show ?thesis by simp qed have S_4 : ?n1 = 3 \implies ?thesis proof assume A: ?n1 = 3then have S2-1: g-step ls key = c-cons (c-pair key (c-snd (c-snd key))) ls by (rule g-step-lm-3)from A have S2-2: univ-for-pr key = c-snd (c-snd key) by (rule univ-for-pr-lm-3) from A1 have S2-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls) univ-for-pr by (rule c-is-sub-fun-lm-2) from S2-3 S2-1 S2-2 show ?thesis by simp qed have S5: $?n1 = 4 \implies ?thesis$ proof assume A: ?n1 = 4then have S2-1: q-step ls key = q-comp ls key by (rule q-step-lm-4) from A A1 S2-1 show ?thesis by (simp add: q-comp-lm-1) qed have S6: $?n1 = 5 \implies ?thesis$ proof – assume A: ?n1 = 5then have S2-1: g-step ls key = g-pair ls key by (rule g-step-lm-5) from A A1 S2-1 show ?thesis by (simp add: g-pair-lm-1) qed have S7: $?n1 = 6 \implies ?thesis$ proof assume A: ?n1 = 6then have S2-1: g-step ls key = g-rec ls key by (rule g-step-lm-6) from A A1 S2-1 show ?thesis by (simp add: g-rec-lm-1) qed have S8: $?n1=0 \lor ?n1=1 \lor ?n1=2 \lor ?n1=3 \lor ?n1=4 \lor ?n1=5 \lor ?n1=6$ by (rule mod7-lm) with S1 S2 S3 S4 S5 S6 S7 show ?thesis by fast qed **theorem** pr-qr-1: c-is-sub-fun (pr-qr x) univ-for-pr apply(induct x)**apply**(*simp add: pr-gr-at-0 c-is-sub-fun-def c-assoc-have-key-df*) **apply**(*simp add: pr-gr-at-Suc*) **apply**(*simp add*: *g*-step-lm-7) done **lemma** comp-next: q-comp ls key = $ls \lor c$ -tl (q-comp ls key) = ls by(simp add: *g*-comp-def Let-def) **lemma** pair-next: g-pair ls key = $ls \lor c$ -tl (g-pair ls key) = ls by(simp add: g-pair-def Let-def) **lemma** rec-next: q-rec ls key = $ls \lor c$ -tl (q-rec ls key) = ls by(simp add: q-rec-def

lemma step-next: g-step ls key = $ls \lor c\text{-tl}(g\text{-step ls key}) = ls$ apply(simp add: g-step-def comp-next pair-next rec-next Let-def)

done

lemma $lm1: pr-gr (Suc x) = pr-gr x \lor c-tl (pr-gr (Suc x)) = pr-gr x by(simp add: pr-gr-at-Suc step-next)$

lemma *c*-assoc-have-key-pos: *c*-assoc-have-key ls $x = 0 \implies ls > 0$ proof – assume A1: c-assoc-have-key ls x = 0thus *?thesis* **proof** (*cases*) assume A2: ls = 0then have S1: c-assoc-have-key ls x = 1 by (simp add: c-assoc-have-key-df) with A1 have S2: False by auto then show ls > 0 by *auto* next assume $A3: \neg ls = 0$ then show ls > 0 by *auto* qed qed **lemma** *lm2*: *c*-assoc-have-key (*c*-tl *ls*) $key = 0 \implies c$ -assoc-have-key *ls* key = 0proof assume A1: c-assoc-have-key (c-tl ls) key = 0

from A1 have S1: c-tl ls > 0 by (rule c-assoc-have-key-pos) have S2: c-tl ls \leq ls by (rule c-tl-le) from S1 S2 have S3: ls \neq 0 by auto from A1 S3 show ?thesis by (auto simp add: c-assoc-have-key-lm-1) qed

lemma lm3: c-assoc-have-key (pr-gr x) key = 0 \implies c-assoc-have-key (pr-gr (Suc x)) key = 0

proof –

assume A1: c-assoc-have-key (pr-gr x) key = 0 have S1: pr-gr $(Suc x) = pr-gr x \lor c-tl (pr-gr <math>(Suc x)) = pr-gr x$ by (rule lm1)from A1 have S2: pr-gr $(Suc x) = pr-gr x \implies$?thesis by auto have S3: c-tl $(pr-gr (Suc x)) = pr-gr x \implies$?thesis proof – assume c-tl (pr-gr (Suc x)) = pr-gr x (is c-tl ?ls = -) with A1 have c-assoc-have-key (c-tl ?ls) key = 0 by auto then show c-assoc-have-key ?ls key = 0 by (rule lm2)qed from S1 S2 S3 show ?thesis by auto qed

lemma lm_4 : $[c-assoc-have-key (pr-gr x) key = 0; 0 \le y] \implies c-assoc-have-key (pr-gr (x+y)) key = 0$

```
apply(induct-tac y)
apply(auto)
apply(simp add: lm3)
done
lemma lm5: [c-assoc-have-key (pr-gr x) key = 0; x \le y] \implies c-assoc-have-key
(pr-gr y) key = 0
proof –
 assume A1: c-assoc-have-key (pr-gr x) key = 0
 assume A2: x \leq y
 let ?z = y - x
 from A2 have S1: 0 \leq 2z by auto
 from A2 have S2: y = x + 2z by auto
 from A1 S1 have S3: c-assoc-have-key (pr-gr (x+2)) key = 0 by (rule lm4)
 from S2 S3 show ?thesis by auto
qed
lemma loc-upb-lm-1: n = 0 \implies (c\text{-fst } n) \mod 7 = 0
apply(simp add: c-fst-at-0)
done
lemma loc-upb-lm-2: (c-fst n) mod 7 > 1 \implies c-snd n < n
proof –
 assume A1: c-fst n mod 7 > 1
 from A1 have S1: 1 < c-fst n by simp
 have S2: c-fst n \leq n by (rule c-fst-le-arg)
 from S1 S2 have S3: 1 < n by simp
 from S3 have S4: n>1 by simp
 from S4 show ?thesis by (rule c-snd-less-arg)
qed
lemma loc-upb-lm-2-0: (c-fst n) mod 7 = 4 \longrightarrow c-fst (c-snd n) < n
proof
 assume A1: c-fst n mod 7 = 4
 then have S0: c-fst n mod 7 > 1 by auto
 then have S1: c-snd n < n by (rule loc-upb-lm-2)
 have S2: c-fst (c-snd n) \leq c-snd n by (rule c-fst-le-arg)
 from S1 S2 show c-fst (c-snd n) < n by auto
qed
lemma loc-upb-lm-2-2: (c-fst n) mod 7 = 4 \longrightarrow c-snd (c-snd n) < n
proof
 assume A1: c-fst n mod 7 = 4
 then have S0: c-fst n mod 7 > 1 by auto
 then have S1: c-snd n < n by (rule loc-upb-lm-2)
 have S2: c-snd (c-snd n) \leq c-snd n by (rule c-snd-le-arg)
 from S1 S2 show c-snd (c-snd n) < n by auto
qed
```

lemma loc-upb-lm-2-3: (c-fst n) mod $7 = 5 \longrightarrow c$ -fst (c-snd n) < n proof assume A1: c-fst n mod 7 = 5then have S0: c-fst n mod 7 > 1 by auto then have S1: c-snd n < n by (rule loc-upb-lm-2) have S2: c-fst (c-snd n) \leq c-snd n by (rule c-fst-le-arg) from S1 S2 show c-fst (c-snd n) < n by auto qed **lemma** loc-upb-lm-2-4: (c-fst n) mod $7 = 5 \longrightarrow c$ -snd (c-snd n) < n proof assume A1: c-fst n mod 7 = 5then have S0: c-fst n mod 7 > 1 by auto then have S1: c-snd n < n by (rule loc-upb-lm-2) have S2: c-snd (c-snd n) \leq c-snd n by (rule c-snd-le-arg) from S1 S2 show c-snd (c-snd n) < n by auto qed **lemma** loc-upb-lm-2-5: (c-fst n) mod $7 = 6 \longrightarrow c$ -fst (c-snd n) < n proof assume A1: c-fst n mod 7 = 6then have S0: c-fst n mod 7 > 1 by auto then have S1: c-snd n < n by (rule loc-upb-lm-2) have S2: c-fst (c-snd n) \leq c-snd n by (rule c-fst-le-arg) from S1 S2 show c-fst (c-snd n) < n by auto qed **lemma** loc-upb-lm-2-6: (c-fst n) mod $7 = 6 \longrightarrow c$ -snd (c-snd n) < n proof assume A1: c-fst n mod 7 = 6then have S0: c-fst n mod 7 > 1 by auto then have S1: c-snd n < n by (rule loc-upb-lm-2) have S2: c-snd (c-snd n) \leq c-snd n by (rule c-snd-le-arg) from S1 S2 show c-snd (c-snd n) < n by auto qed **lemma** loc-upb-lm-2-7: $[y_2 = y_1 - (1::nat); 0 < y_1; x_1 = c$ -snd x; $y_1 = c$ -fst x] \implies c-pair y2 x1 < x proof – assume A1: $y^2 = y^1 - (1::nat)$ and A2: $0 < y^1$ and A3: $x^1 = c$ -snd x and A4: y1 = c-fst xfrom A1 A2 have S1: y2 < y1 by auto from S1 have S2: c-pair y2 x1 < c-pair y1 x1 by (rule c-pair-strict-mono1) from A3 A4 have S3: c-pair y1 x1 = x by auto from S2 S3 show c-pair y2 x1 < x by auto qed function *loc-upb* :: $nat \Rightarrow nat \Rightarrow nat$ where

aa: loc-upb n x = (

let $n1 = (c-fst \ n) \mod 7$ in if n1 = 0 then (c-pair n x) 0) + 1 else if n1 = 1 then $(c\text{-pair } (c\text{-pair } n x) \ \theta) + 1$ else if n1 = 2 then (c-pair (c-pair n x) 0) + 1 else if n1 = 3 then (c-pair (c-pair n x) 0) + 1 else if n1 = 4 then (let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y = c-assoc-value (pr-gr (loc-upb m2 x)) (c-pair m2 x) in (c-pair (c-pair n x) (loc-upb m2 x + loc-upb m1 y)) + 1) else if n1 = 5 then (let m = c-snd n; m1 = c-fst m; m2 = c-snd m in (c-pair (c-pair n x) (loc-upb m1 x + loc-upb m2 x)) + 1) else if n1 = 6 then (let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in if y1 = 0 then ((c-pair (c-pair n x) (loc-upb m1 x1)) + 1) else (let $y_{2}^{2} = y_{1}^{2} - (1::nat);$ t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair n (c-pair y2 x1)); t2 = c-pair (c-pair y2 t1) x1 in(c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + loc-upb m2 t2)) + 1)) $else \ 0$) **by** *auto*

termination

apply (relation measure $(\lambda \ m. \ m) <*lex*>$ measure $(\lambda \ n. \ n)$) apply (simp-all add: loc-upb-lm-2-0 loc-upb-lm-2-2 loc-upb-lm-2-3 loc-upb-lm-2-4 loc-upb-lm-2-5 loc-upb-lm-2-6 loc-upb-lm-2-7) apply auto done

definition

 $\begin{array}{l} \textit{lex-p} :: ((\textit{nat} \times \textit{nat}) \times \textit{nat} \times \textit{nat}) \textit{ set where} \\ \textit{lex-p} = ((\textit{measure} (\lambda \textit{ m. m})) < *\textit{lex*} > (\textit{measure} (\lambda \textit{ n. n}))) \end{array}$

lemma wf-lex-p: wf(lex-p)
apply(simp add: lex-p-def)
apply(auto)
done

lemma lex-p-eq: $((n',x'),\,(n,x))\in lex-p=(n'<\!n\vee n'\!=\!n\wedge x'\!<\!x)$ apply(simp add: lex-p-def) done

lemma loc-upb-lex- θ : c-fst n mod $\gamma = \theta \implies$ c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0proof assume A1: c-fst n mod 7 = 0let ?key = c-pair n xlet ?s = c-pair ?key 0let ?ls = pr-gr ?sfrom A1 have loc-upb n x = ?s + 1 by simp then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add: pr-gr-at-Suc)from A1 have S2: g-step ?ls ?key = c-cons (c-pair ?key 0) ?ls by (simp add: g-step-def) from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key 0) ?ls by auto thus ?thesis by (simp add: c-assoc-lm-1) qed lemma loc-upb-lex-1: c-fst n mod 7 = 1 \implies c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0proof – assume A1: c-fst n mod 7 = 1let ?key = c-pair n xlet ?s = c-pair ?key 0let ?ls = pr-gr ?sfrom A1 have loc-upb n x = ?s + 1 by simp then have S1: pr-qr (loc-upb n x) = q-step (pr-qr ?s) (c-fst ?s) by (simp add: pr-gr-at-Suc)from A1 have S2: q-step ?ls ?key = c-cons (c-pair ?key (Suc x)) ?ls by (simp add: g-step-def) from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (Suc x)) ?ls by auto thus ?thesis by (simp add: c-assoc-lm-1) qed lemma loc-upb-lex-2: c-fst n mod $7 = 2 \implies$ c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0proof assume A1: c-fst n mod 7 = 2let ?key = c-pair n xlet ?s = c-pair ?key 0let ?ls = pr-gr ?sfrom A1 have loc-upb n x = ?s + 1 by simp then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add: pr-gr-at-Suc)from A1 have S2: g-step ?ls ?key = c-cons (c-pair ?key (c-fst x)) ?ls by (simp add: g-step-def) from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-fst x)) ?ls by auto thus ?thesis by (simp add: c-assoc-lm-1) ged

lemma loc-upb-lex-3: c-fst n mod 7 = 3 \implies c-assoc-have-key (pr-gr (loc-upb n

x)) (c-pair n x) = 0proof assume A1: c-fst n mod 7 = 3let ?key = c-pair n xlet ?s = c-pair ?key 0let ?ls = pr-gr ?sfrom A1 have loc-upb n x = ?s + 1 by simp then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add: pr-gr-at-Suc)from A1 have S2: g-step ?ls ?key = c-cons (c-pair ?key (c-snd x)) ?ls by (simp add: g-step-def) from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-snd x)) ?ls by autothus ?thesis by (simp add: c-assoc-lm-1) qed (loc-upb n' x')) (c-pair n' x') = 0; $c\text{-fst } n \mod 7 = 4] \Longrightarrow$ c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0 proof – assume A1: $\bigwedge n' x'$. $((n',x'), (n,x)) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0assume A2: c-fst n mod 7 = 4let ?key = c-pair n xlet ?m1 = c-fst (c-snd n) let ?m2 = c-snd (c-snd n)define upb1 where upb1 = loc-upb ?m2 x from A2 have m2-lt-n: ?m2 < n by (simp add: loc-upb-lm-2-2) then have M2: $((?m2, x), (n,x)) \in lex-p$ by $(simp \ add: \ lex-p-eq)$ with A1 upb1-def have S1: c-assoc-have-key (pr-gr upb1) (c-pair $2m^2 x$) = 0 by *auto* from M2 have M2': $((?m2, x), n, x) \in measure (\lambda m. m) < lex > measure (\lambda n. m)$ n) by (simp add: lex-p-def) have T1: c-is-sub-fun (pr-gr upb1) univ-for-pr by (rule pr-gr-1) from T1 S1 have T2: c-assoc-value (pr-qr upb1) (c-pair ?m2 x) = univ-for-pr(c-pair ?m2 x) by (rule c-is-sub-fun-lm-1)define y where y = c-assoc-value (pr-qr upb1) (c-pair ?m2 x) from T2 y-def have T3: y = univ-for-pr (c-pair ?m2 x) by auto define upb2 where upb2 = loc-upb ?m1 y from A2 have ?m1 < n by $(simp \ add: \ loc-upb-lm-2-0)$ then have M1: $((?m1, y), (n,x)) \in lex-p$ by $(simp \ add: \ lex-p-eq)$ with A1 have S2: c-assoc-have-key (pr-gr (loc-upb ?m1 y)) (c-pair ?m1 y) = 0by auto from M1 have M1': $((?m1, y), n, x) \in measure (\lambda m. m) < lex > measure (\lambda n.$ n) by (simp add: lex-p-def) from S1 upb1-def have S3: c-assoc-have-key (pr-gr upb1) (c-pair ?m2 x) = 0

by *auto*

from S2 upb2-def have S4: c-assoc-have-key (pr-gr upb2) (c-pair ?m1 y) = 0 by auto

let ?s = c-pair ?key (upb1 + upb2)let ?ls = pr-qr ?s let ?sum-upb = upb1 + upb2from A2 have ?m1 < n by (simp add: loc-upb-lm-2-0)then have $((?m1, x), (n,x)) \in lex-p$ by $(simp \ add: \ lex-p-eq)$ then have M1 ": $((?m1, x), n, x) \in measure (\lambda m. m) < lex > measure (\lambda n. n)$ **by** (*simp add: lex-p-def*) from A2 M2' M1'' have S11: loc-upb n x = (let y = c-assoc-value (pr-gr (loc-upb (c-pair (m2 x)) (c-pair (m2 x)) in (c-pair (c-pair n x))(loc-upb ?m2 x + loc-upb ?m1 y)) + 1)**by**(*simp add*: *Let-def*) define upb where upb = loc-upb n xfrom S11 y-def upb1-def upb2-def have loc-upb n x = ?s + 1 by (simp add: Let-def) with upb-def have S11: upb = ?s + 1 by auto have S7: ?sum-upb \leq ?s by (rule arg2-le-c-pair) have upb1-le-s: $upb1 \leq ?s$ proof – have S1: $upb1 \leq ?sum-upb$ by (rule Nat.le-add1) from S1 S7 show ?thesis by auto qed have upb2-le-s: $upb2 \leq ?s$ proof have S1: $upb2 \leq ?sum-upb$ by (rule Nat.le-add2) from S1 S7 show ?thesis by auto qed have S18: pr-gr upb = g-comp ?ls ?key proof from S11 have S1: $pr-gr\ upb = g-step\ (pr-gr\ ?s)\ (c-fst\ ?s)$ by $(simp\ add:$ pr-qr-at-Suc)from A2 have S2: g-step ?ls ?key = g-comp ?ls ?key by (simp add: g-step-def) from S1 S2 show ?thesis by auto qed from S3 upb1-le-s have S19: c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule lm5)from S4 upb2-le-s have S20: c-assoc-have-key ?ls (c-pair ?m1 y) = 0 by (rule lm5)have T-ls: c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1) from T-ls S19 have T-ls2: c-assoc-value ?ls (c-pair ?m2 x) = univ-for-pr (c-pair ?m2 x)(m2 x) by (rule c-is-sub-fun-lm-1)

from T3 T-ls2 have T-y: c-assoc-value ?ls (c-pair ?m2 x) = y by auto

from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 S20 have S21) have S21: g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value from T-y S19 Aave S21) have S21 h

?ls (c-pair ?m1 y))) ?ls

by(unfold g-comp-def)(simp del: loc-upb.simps add: Let-def)

from S18 S21 have $pr-gr\ upb = c$ -cons (c-pair ?key (c-assoc-value ?ls (c-pair ?m1 y))) ?ls by auto

with upb-def have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair ?m1 y))) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-lex-5: $[\land n' x'. ((n',x'), (n,x)) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0; $c\text{-fst } n \mod 7 = 5$ c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0 proof assume $A1: \bigwedge n' x'$. $((n',x'), (n,x)) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n' x') (c-pair n' x') = 0 assume A2: c-fst n mod 7 = 5let ?key = c-pair n xlet ?m1 = c-fst (c-snd n) let ?m2 = c-snd (c-snd n)from A2 have ?m1 < n by $(simp \ add: \ loc-upb-lm-2-3)$ then have $((?m1, x), (n,x)) \in lex-p$ by $(simp \ add: \ lex-p-eq)$ with A1 have S1: c-assoc-have-key (pr-gr (loc-upb ?m1 x)) (c-pair ?m1 x) = 0by auto from A2 have ?m2 < n by (simp add: loc-upb-lm-2-4)then have $((?m2, x), (n,x)) \in lex-p$ by (simp add: lex-p-eq)with A1 have S2: c-assoc-have-key (pr-gr (loc-upb ?m2 x)) (c-pair ?m2 x) = 0 by auto define upb1 where upb1 = loc-upb ?m1 x define upb2 where upb2 = loc - upb ?m2 xfrom upb1-def S1 have S3: c-assoc-have-key (pr-gr upb1) (c-pair ?m1 x) = 0 by *auto* from upb2-def S2 have S4: c-assoc-have-key (pr-gr upb2) (c-pair ?m2 x) = 0 by auto let ?sum-upb = upb1 + upb2have S5: upb1 < ?sum-upb by (rule Nat.le-add1) have S6: $upb2 \leq ?sum-upb$ by (rule Nat.le-add2) let ?s = (c-pair ?key ?sum-upb)have S7: ?sum-upb \leq ?s by (rule arg2-le-c-pair) from S5 S7 have S8: $upb1 \leq ?s$ by auto from S6 S7 have S9: $upb2 \leq ?s$ by autolet ?ls = pr-gr ?sfrom A2 upb1-def upb2-def have S10: loc-upb n x = ?s + 1 by (simp add: Let-def) define upb where upb = loc-upb n xfrom upb-def S10 have S11: upb = ?s + 1 by autofrom S11 have S12: $pr-gr\ upb = g-step\ (pr-gr\ ?s)\ (c-fst\ ?s)$ by $(simp\ add:$ pr-gr-at-Suc)from S8 S10 upb-def have S13: upb1 \leq upb by (simp only:)

from S9 S10 upb-def have S14: $upb2 \leq upb$ by (simp only:)

from S3 S13 have S15: c-assoc-have-key (pr-gr upb) (c-pair ?m1 x) = 0 by (rule lm5)

from S4 S14 have S16: c-assoc-have-key (pr-gr upb) (c-pair ?m2 x) = 0 by (rule lm5)

from A2 have S17: g-step ?ls ?key = g-pair ?ls ?key by (simp add: g-step-def) from S12 S17 have S18: pr-gr upb = g-pair ?ls ?key by auto

from S3 S8 have S19: c-assoc-have-key ?ls (c-pair ?m1 x) = 0 by (rule lm5) from S4 S9 have S20: c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule lm5)

let ?y1 = c-assoc-value ?ls (c-pair ?m1 x)

let ?y2 = c-assoc-value ?ls (c-pair ?m2 x)

let ?y = c-pair ?y1 ?y2

from S19 S20 have S21: g-pair ?ls ?key = c-cons (c-pair ?key ?y) ?ls by (unfold g-pair-def, simp add: Let-def)

from S18 S21 have S22: $pr-gr\ upb = c-cons\ (c-pair\ ?key\ ?y)\ ?ls$ by auto

from upb-def S22 have S23: pr-gr (loc-upb n x) = c-cons (c-pair ?key ?y) ?ls by auto

from S23 show ?thesis by (simp add: c-assoc-lm-1) qed

lemma loc-upb-6-z: $[c-fst n \mod 7 = 6; c-fst x = 0] \Longrightarrow$

loc-upb n x = c-pair (c-pair n x) (loc-upb (c-fst (c-snd n)) (c-snd x)) + 1 by (simp add: Let-def)

lemma loc-upb-6: $[c\text{-fst } n \mod 7 = 6; c\text{-fst } x \neq 0] \implies \text{loc-upb } n x = ($ let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst

x; x1 = c-snd x;

$$y2 = y1 - 1;$$

$$t1 = c\text{-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair)}$$

$$t2 = c\text{-pair (c-pair y2 t1) x1 in}$$

n (c-pair y2 x1));

c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + (loc-upb

m2 t2)) + 1)by (simp add: Let-def)

lemma *loc-upb-lex-6*: $[[\land n' x'. ((n',x'), (n,x)) \in lex-p \implies c\text{-assoc-have-key} (pr-gr (loc-upb n' x')) (c-pair n' x') = 0;$

 $\begin{array}{l} c\text{-fst }n \ mod \ \mathcal{I} = \ 6 \end{array} \\ c\text{-assoc-have-key} \ (pr\text{-}gr \ (loc\text{-}upb \ n \ x)) \ (c\text{-}pair \ n \ x) = \ 0 \end{array}$

proof -

assume $A1: \bigwedge n' x'. ((n',x'), (n,x)) \in lex-p \implies c\text{-}assoc\text{-}have\text{-}key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0$ assume $A2: c\text{-}fst n \mod 7 = 6$ let ?key = c-pair n x let ?m1 = c-fst (c-snd n) let ?m2 = c-snd (c-snd n) let ?y1 = c-fst x let ?x1 = c-snd x define upb where upb = loc-upb n x

show ?thesis **proof** (*cases*) assume A: ?y1 = 0from A2 A have S1: loc-upb n x = c-pair ?key (loc-upb ?m1 (c-snd x)) + 1 **by** (rule loc-upb-6-z) define upb1 where upb1 = loc - upb ?m1 (c-snd x) from upb1-def S1 have S2: loc-upb n x = c-pair ?key upb1 + 1 by auto let ?s = c-pair ?key upb1from S2 have S3: pr-gr (loc-upb n x) = pr-gr (Suc ?s) by simp have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc) with S3 have S4: pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by auto let ?ls = pr-gr ?sfrom A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def) with S4 have S5: pr-gr (loc-upb n x) = g-rec ?ls ?key by auto have S6: c-assoc-have-key ?ls (c-pair ?m1 ?x1) = 0 proof from A2 have ?m1 < n by (simp add: loc-upb-lm-2-5)then have $((?m1,?x1), n, x) \in lex-p$ by $(simp \ add: \ lex-p-eq)$ with A1 upb1-def have c-assoc-have-key (pr-gr upb1) (c-pair ?m1 ?x1) = 0by *auto* also have $upb1 \leq ?s$ by (rule arg2-le-c-pair) ultimately show ?thesis by (rule lm5) qed from A S6 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair (m1 (x1))) ?ls by (simp add: g-rec-def Let-def) with S5 show ?thesis by (simp add: c-assoc-lm-1) next assume A: c-fst $x \neq 0$ then have y1-pos: c-fst x > 0 by auto let ?y2 = ?y1 - 1from A2 A have *loc-upb* n x = (let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x; $y^2 = y^1 - 1;$ t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair n (c-pair y2 x1));t2 = c-pair (c-pair y2 t1) x1 in c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + (loc-upb m2 t2) + 1 by (rule loc-upb-6) then have S1: loc-upb n x = (lett1 = c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1))) (c-pair n (c-pair ?y2 ?x1));t2 = c-pair (c-pair ?y2 t1) ?x1 in c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1) + (loc-upb $(2m2\ t2)) + 1)$ by (simp del: loc-upb.simps add: Let-def) let ?t1 = univ-for-pr (c-pair n (c-pair ?y2 ?x1))let ?t2 = c-pair (c-pair ?y2 ?t1) ?x1have S1-1: c-assoc-have-key (pr-qr (loc-upb n (c-pair ?y2 ?x1))) (c-pair n (c-pair ?y2 ?x1)) $(2y2 \ (2x1)) = 0$

proof from A have $2y^2 < 2y^1$ by auto then have c-pair ?y2 ?x1 < c-pair ?y1 ?x1 by (rule c-pair-strict-mono1) then have $((n, c\text{-pair }?y2 ?x1), n, x) \in lex-p$ by (simp add: lex-p-eq)with A1 show ?thesis by auto ged have S2: c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1))) (c-pair n (c-pair ?y2 (x_1) = univ-for-pr (c-pair n (c-pair (y_2, x_1)) proof – have c-is-sub-fun (pr-gr (loc-upb n (c-pair ?y2 ?x1))) univ-for-pr by (rule pr-gr-1) with S1-1 show ?thesis by (simp add: c-is-sub-fun-lm-1) qed from S1 S2 have S3: loc-upb n x = c-pair (c-pair n x) (loc-upb n (c-pair ?y2 $(2x1) + loc-upb \ (2m2 \ (2t2) + 1 \ by \ (simp \ del: \ loc-upb.simps \ add: \ Let-def)$ let ?s = c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2)from S3 have S4: pr-gr (loc-upb n x) = pr-gr (Suc ?s) by (simp del: loc-upb.simps) have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc) with S4 have S5: pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by (simp del: *loc-upb.simps*) let ?ls = pr-gr ?sfrom A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def) with S5 have S6: pr-gr (loc-upb n x) = g-rec ?ls ?key by (simp del: loc-upb.simps) have S7: c-assoc-have-key ?ls (c-pair n (c-pair ?y2 ?x1)) = 0 proof have loc-upb n (c-pair ?y2 ?x1) \leq loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2?t2 by (auto simp del: loc-upb.simps) also have loc-upb n (c-pair ?y2 ?x1) + loc-upb $?m2 ?t2 \leq ?s$ by (rule arg2-le-c-pair) ultimately have S7-1: loc-upb n (c-pair ?y2 ?x1) $\leq ?s$ by (auto simp del: *loc-upb.simps*) from S1-1 S7-1 show ?thesis by (rule lm5) qed have S8: c-assoc-value ?ls (c-pair n (c-pair ?y2 ?x1)) = ?t1 proof have c-is-sub-fun ?ls univ-for-pr by (rule pr-qr-1) with S7 show ?thesis by (simp add: c-is-sub-fun-lm-1) qed have S9: c-assoc-have-key ?ls (c-pair ?m2 ?t2) = 0 proof – from A2 have ?m2 < n by $(simp \ add: \ loc-upb-lm-2-6)$ then have $((?m2,?t2), n, x) \in lex-p$ by (simp add: lex-p-eq)with A1 have c-assoc-have-key (pr-gr (loc-upb ?m2 ?t2)) (c-pair ?m2 ?t2) = θ by *auto* also have *loc-upb* ?m2 $?t2 \leq ?s$ proof have loc-upb ?m2 $?t2 \leq loc-upb \ n \ (c-pair \ ?y2 \ ?x1) + loc-upb \ ?m2 \ ?t2$ by (auto simp del: loc-upb.simps) also have loc-upb n (c-pair ?y2 ?x1) + loc-upb $?m2 ?t2 \leq ?s$ by (rule

arg2-le-c-pair) ultimately show ?thesis by (auto simp del: loc-upb.simps) qed ultimately show ?thesis by (rule lm5) ged from A S7 S8 S9 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair ?m2 ?t2))) ?ls by (simp del: loc-upb.simps add: g-rec-def Let-def) with S6 show ?thesis by (simp add: c-assoc-lm-1) qed qed **lemma** *wf-upb-step-0*: $[\land n' x'. ((n',x'), (n,x)) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0 \implies c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0 proof assume A1: $\bigwedge n' x'$. $((n',x'), (n,x)) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n'x')) (c-pair n'x') = 0let $?n1 = (c\text{-}fst \ n) \mod 7$ have S1: $?n1 = 0 \implies ?thesis$ proof – assume A: ?n1 = 0thus *?thesis* by (*rule loc-upb-lex-0*) qed have S2: $?n1 = 1 \implies ?thesis$ proof assume A: ?n1 = 1thus ?thesis by (rule loc-upb-lex-1) qed have S3: $?n1 = 2 \implies ?thesis$ proof – assume A: ?n1 = 2thus ?thesis by (rule loc-upb-lex-2) qed have S_4 : ?n1 = 3 \implies ?thesis proof – assume A: ?n1 = 3thus ?thesis by (rule loc-upb-lex-3) qed have S5: $?n1 = 4 \implies ?thesis$ proof assume A: ?n1 = 4from A1 A show ?thesis by (rule loc-upb-lex-4) qed have S6: $?n1 = 5 \implies ?thesis$ proof assume A: ?n1 = 5from A1 A show ?thesis by (rule loc-upb-lex-5) qed

have S7: $?n1 = 6 \implies ?thesis$ proof assume A: ?n1 = 6from A1 A show ?thesis by (rule loc-upb-lex-6) ged have S8: $?n1=0 \lor ?n1=1 \lor ?n1=2 \lor ?n1=3 \lor ?n1=4 \lor ?n1=5 \lor ?n1=6$ by (rule mod7-lm) from S1 S2 S3 S4 S5 S6 S7 S8 show ?thesis by fast qed lemma wf-upb-step: assumes A1: $\bigwedge p2$. $(p2, p1) \in lex-p \Longrightarrow$ c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2)) = 0shows c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd (p1)) = 0proof – let ?n = fst p1let ?x = snd p1from A1 have S1: $\land p2$. $(p2, (?n, ?x)) \in lex-p \Longrightarrow$ c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2)) = 0by auto have S2: $(\bigwedge n' x'. ((n',x'), (fst p1, snd p1)) \in lex-p$ \implies c-assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0) \implies c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd p1)) = 0**by** (rule wf-upb-step- θ) then have S3: $(\bigwedge n' x'. ((n',x'), p1) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb))n' x') (*c*-pair n' x') = 0) \implies c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd p1)) = 0 by auto have S4: $\bigwedge n' x'$. $((n', x'), p1) \in lex-p \implies c$ -assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0proof fix n' x'**assume** $A_{4-1}: ((n', x'), p_{1}) \in lex-p$ let ?p2 = (n', x')from A4-1 have S4-1: $(?p2, p1) \in lex-p$ by auto from S4-1 have c-assoc-have-key (pr-gr (loc-upb (fst ?p2) (snd ?p2))) (c-pair (fst ?p2) (snd ?p2)) = 0by (rule A1) then show c-assoc-have-key (pr-gr (loc-upb n' x')) (c-pair n' x') = 0 by auto qed from S4 S3 show ?thesis by auto qed

theorem loc-upb-main: c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0 proof –

have loc-upb-lm: \bigwedge p. c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair (fst p) (snd p)) = 0**proof** - **fix** p **show** c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair (fst p) (snd p)) = 0proof have S1: wf lex-p by (auto simp add: lex-p-def) from S1 wf-upb-step show ?thesis by (rule wf-induct-rule) qed qed let ?p = (n,x)have c-assoc-have-key (pr-gr (loc-upb (fst ?p) (snd ?p))) (c-pair (fst ?p) (snd(p) = 0 by (rule loc-upb-lm) thus ?thesis by simp qed **theorem** pr-qr-value: c-assoc-value (pr-qr (loc-upb n x)) (c-pair n x) = univ-for-pr $(c-pair \ n \ x)$ by (simp del: loc-upb.simps add: loc-upb-main pr-gr-1 c-is-sub-fun-lm-1) **theorem** *g*-comp-is-pr: g-comp \in PrimRec2 proof – from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have ($\lambda x y$. g-comp $(x \ y) \in PrimRec2$ unfolding g-comp-def Let-def by prec thus ?thesis by auto qed **theorem** *g*-pair-is-pr: g-pair \in PrimRec2 proof from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have ($\lambda x y$. g-pair $(x \ y) \in PrimRec2$ unfolding g-pair-def Let-def by prec thus ?thesis by auto qed **theorem** *q*-rec-is-pr: q-rec \in PrimRec2 proof – from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have ($\lambda x y$. g-rec x $y) \in PrimRec2$ unfolding g-rec-def Let-def by prec thus ?thesis by auto qed **theorem** g-step-is-pr: g-step \in PrimRec2 proof – from g-comp-is-pr g-pair-is-pr g-rec-is-pr mod-is-pr c-assoc-have-key-is-pr c-assoc-value-is-pr *c*-cons-is-pr have $(\lambda \ ls \ key. \ g\text{-step} \ ls \ key) \in PrimRec2$ unfolding g-step-def Let-def by prec

```
thus ?thesis by auto
```

 \mathbf{qed}

theorem pr-gr-is-pr: pr- $gr \in PrimRec1$ proof – have S1: $(\lambda \ x. \ pr$ - $gr \ x) = PrimRecOp1 \ 0 \ (\lambda \ x \ y. \ g$ - $step \ y \ (c$ - $fst \ x))$ (is - = ?f) proof fix xshow pr- $gr \ x = ?f \ x$ by $(induct \ x) \ (simp \ add: \ pr$ -gr-at- $0, \ simp \ add: \ pr$ -gr-at-Suc)qedhave <math>S2: $PrimRecOp1 \ 0 \ (\lambda \ x \ y. \ g$ - $step \ y \ (c$ - $fst \ x)) \in PrimRec1$ proof $(rule \ pr$ -rec1)from g-step-is- $pr \ show \ (\lambda x \ y. \ g$ - $step \ y \ (c$ - $fst \ x)) \in PrimRec2$ by precqed from $S1 \ S2 \ show \ ?thesis \ by \ auto$

 \mathbf{end}

7 Computably enumerable sets of natural numbers

theory RecEnSet imports PRecList PRecFun2 PRecFinSet PRecUnGr begin

7.1 Basic definitions

definition

fn-to-set :: $(nat \Rightarrow nat \Rightarrow nat) \Rightarrow nat set where$ *fn-to-set* $<math>f = \{x. \exists y. fx y = 0\}$

definition

ce-sets :: (nat set) set where ce-sets = { (fn-to-set p) | $p. p \in PrimRec2$ }

7.2 Basic properties of computably enumerable sets

lemma ce-set-lm-1: $p \in PrimRec2 \implies fn$ -to-set $p \in ce$ -sets by (auto simp add: ce-sets-def)

lemma ce-set-lm-2: $[p \in PrimRec2; \forall x. (x \in A) = (\exists y. p x y = 0)]] \implies A \in ce\text{-sets}$ **proof** – **assume** p-is-pr: $p \in PrimRec2$ **assume** $\forall x. (x \in A) = (\exists y. p x y = 0)$ **then have** A = fn-to-set p **by** (unfold fn-to-set-def, auto) with p-is-pr show $A \in ce\text{-sets}$ **by** (simp add: ce-set-lm-1) **qed** **lemma** ce-set-lm-3: $A \in ce$ -sets $\Longrightarrow \exists p \in PrimRec2$. A = fn-to-set p proof assume $A \in ce\text{-sets}$ then have $A \in \{ (fn\text{-}to\text{-}set p) \mid p. p \in PrimRec2 \}$ by (simp add: ce-sets-def)thus ?thesis by auto qed **lemma** ce-set-lm-4: $A \in ce\text{-sets} \implies \exists p \in PrimRec2. \forall x. (x \in A) = (\exists y. p x)$ $y = \theta$ proof assume $A \in ce\text{-sets}$ then have $\exists p \in PrimRec2$. A = fn-to-set p by (rule ce-set-lm-3) then obtain p where p-is-pr: $p \in PrimRec2$ and L1: A = fn-to-set p ... from *p*-is-pr L1 show ?thesis by (unfold fn-to-set-def, auto) qed **lemma** ce-set-lm-5: $[A \in ce\text{-sets}; p \in PrimRec1] \implies \{x \cdot p \ x \in A\} \in ce\text{-sets}$ proof assume $A1: A \in ce\text{-sets}$ assume $A2: p \in PrimRec1$ from A1 have $\exists pA \in PrimRec2$. A = fn-to-set pA by (rule ce-set-lm-3) then obtain pA where pA-is-pr: $pA \in PrimRec2$ and S1: A = fn-to-set pA... from S1 have S2: $A = \{x : \exists y. pA \ x \ y = 0 \}$ by (simp add: fn-to-set-def) define q where q x y = pA(p x) y for x yfrom pA-is-pr A2 have q-is-pr: $q \in PrimRec2$ unfolding q-def by prec have $\bigwedge x$. $(p \ x \in A) = (\exists y, q \ x \ y = 0)$ proof – fix x show $(p \ x \in A) = (\exists y. q \ x \ y = 0)$ proof assume $A: p \ x \in A$ with S2 obtain y where L1: pA(p x) y = 0 by auto then have q x y = 0 by (simp add: q-def) thus $\exists y. q x y = 0$... \mathbf{next} assume $A: \exists y. q x y = 0$ then obtain y where L1: q x y = 0.. then have pA(p x) y = 0 by (simp add: q-def) with S2 show $p \ x \in A$ by auto qed qed then have $\{x : p \ x \in A\} = \{x : \exists y : q \ x \ y = 0\}$ by auto then have $\{x : p \ x \in A\} = \text{fn-to-set } q$ by $(simp \ add: \text{fn-to-set-def})$ moreover from q-is-pr have fn-to-set $q \in ce$ -sets by (rule ce-set-lm-1) ultimately show ?thesis by auto \mathbf{qed}

lemma ce-set-lm-6: $[A \in ce\text{-sets}; A \neq \{\}] \implies \exists q \in PrimRec1. A = \{q x \mid x. x \in UNIV \}$ **proof** -

assume A1: $A \in ce\text{-sets}$ assume $A2: A \neq \{\}$ from A1 have $\exists pA \in PrimRec2$. A = fn-to-set pA by (rule ce-set-lm-3) then obtain pA where pA-is-pr: $pA \in PrimRec2$ and S1: A = fn-to-set pA... from S1 have S2: $A = \{x, \exists y, pA \ x \ y = 0\}$ by (simp add: fn-to-set-def) from A2 obtain a where a-in: $a \in A$ by auto define q where q z = (if pA (c-fst z) (c-snd z) = 0 then c-fst z else a) for z from pA-is-pr have q-is-pr: $q \in PrimRec1$ unfolding q-def by prec have S3: $\forall z. q z \in A$ proof fix z show $q \ z \in A$ **proof** cases assume A: pA(c-fst z)(c-snd z) = 0with S2 have c-fst $z \in A$ by auto moreover from A q-def have q z = c-fst z by simp ultimately show $q \ z \in A$ by *auto* next assume A: pA (c-fst z) (c-snd z) $\neq 0$ with *q*-def have q z = a by simp with *a*-in show $q \ z \in A$ by *auto* qed qed then have S4: { $q x \mid x. x \in UNIV$ } $\subseteq A$ by auto have S5: $A \subseteq \{ q x \mid x. x \in UNIV \}$ proof fix x assume $A: x \in A$ show $x \in \{q \ x \ | x. x \in UNIV\}$ proof from A S2 obtain y where L1: pA x y = 0 by auto let 2z = c-pair x yfrom L1 have q ?z = x by (simp add: q-def) then have $\exists u. q u = x$ by blast then show $\exists u. x = q u \land u \in UNIV$ by *auto* qed qed from S4 S5 have S6: $A = \{ q x \mid x. x \in UNIV \}$ by auto with *q*-is-pr show ?thesis by blast \mathbf{qed} **lemma** ce-set-lm-7: $[A \in ce\text{-sets}; p \in PrimRec1] \implies \{p \mid x. x \in A\} \in ce\text{-sets}\}$ proof – assume $A1: A \in ce\text{-sets}$ assume $A2: p \in PrimRec1$ let $?B = \{ p x \mid x. x \in A \}$ fix y have S1: $(y \in ?B) = (\exists x. x \in A \land (y = p x))$ by auto from A1 have $\exists pA \in PrimRec2$. A = fn-to-set pA by (rule ce-set-lm-3) then obtain pA where pA-is-pr: $pA \in PrimRec2$ and S2: A = fn-to-set pA ... from S2 have S3: $A = \{x. \exists y. pA \ x \ y = 0 \}$ by (simp add: fn-to-set-def) define q where q y t = (if y = p (c-snd t) then pA (c-snd t) (c-fst t) else 1)for y t

from pA-is-pr A2 have q-is- $pr: q \in PrimRec2$ unfolding q-def by prec have $L1: \bigwedge y. (y \in ?B) = (\exists z. q y z = 0)$ **proof** - **fix** y show $(y \in ?B) = (\exists z. q y z = 0)$ proof assume $AA1: y \in ?B$ then obtain x0 where LL-2: $x0 \in A$ and LL-3: y = p x0 by *auto* from S3 have LL-4: $(x0 \in A) = (\exists z. pA \ x0 \ z = 0)$ by auto from LL-2 LL-4 obtain z0 where LL-5: $pA \ x0 \ z0 = 0$ by auto define t where t = c-pair $z\theta x\theta$ from t-def q-def LL-3 LL-5 have q y t = 0 by simp then show $\exists z. q y z = 0$ by *auto* \mathbf{next} assume A1: $\exists z. q y z = 0$ then obtain $z\theta$ where *LL-1*: $q y z\theta = \theta$... have LL2: $y = p (c-snd \ z\theta)$ **proof** (*rule ccontr*) assume $y \neq p$ (*c*-snd z0) with q-def LL-1 have $q y z \theta = 1$ by auto with LL-1 show False by auto qed from LL2 LL-1 q-def have LL3: pA(c-snd z0)(c-fst z0) = 0 by auto with S3 have LL4: c-snd $z0 \in A$ by auto with LL2 show $y \in \{p \ x \mid x. x \in A\}$ by auto qed qed then have L2: $?B = \{ y \mid y, \exists z, q y z = 0 \}$ by auto with fn-to-set-def have ?B = fn-to-set q by auto with q-is-pr ce-set-lm-1 show ?thesis by auto qed **theorem** ce-empty: $\{\} \in ce\text{-sets}$ proof let $?f = (\lambda \ x \ a. \ (1::nat))$ have S1: $?f \in PrimRec2$ by (rule const-is-pr-2) then have $\forall x a$. ?f $x a \neq 0$ by simp then have $\{x. \exists a. ?f x a = 0\} = \{\}$ by *auto* also have fn-to-set ? $f = \dots$ by $(simp \ add: fn$ -to-set-def) with S1 show ?thesis by (auto simp add: ce-sets-def) qed **theorem** ce-univ: $UNIV \in ce$ -sets proof – let $?f = (\lambda \ x \ a. \ (0::nat))$

let $?f = (\lambda \ x \ a. \ (0::nat))$ have $S1: ?f \in PrimRec2$ by $(rule \ const-is-pr-2)$ then have $\forall \ x \ a. ?f \ x \ a = 0$ by simpthen have $\{x. \exists \ a. ?f \ x \ a = 0 \} = UNIV$ by autoalso have fn-to-set $?f = \dots$ by $(simp \ add: \ fn$ -to-set-def) with S1 show ?thesis by $(auto \ simp \ add: \ ce-sets-def)$ qed **theorem** ce-singleton: $\{a\} \in ce$ -sets proof let $?f = \lambda x y$. (abs-of-diff x a) + y have S1: $?f \in PrimRec2$ using const-is-pr-2 [where ?n=a] by prec then have $\forall x y$. (?f x y = 0) = ($x = a \land y = 0$) by (simp add: abs-of-diff-eq) then have S2: $\{x. \exists y. ?f x y = 0\} = \{a\}$ by auto have fn-to-set $?f = \{x. \exists y. ?f x y = 0\}$ by (simp add: fn-to-set-def) with S2 have fn-to-set $?f = \{a\}$ by simp with S1 show ?thesis by (auto simp add: ce-sets-def) qed **theorem** ce-union: $[A \in ce\text{-sets}; B \in ce\text{-sets}] \implies A \cup B \in ce\text{-sets}$ proof assume A1: $A \in ce\text{-sets}$ then obtain p-a where S2: $p-a \in PrimRec2$ and S3: A = fn-to-set p-aby (auto simp add: ce-sets-def) assume $A2: B \in ce\text{-sets}$ then obtain *p*-*b* where $S5: p-b \in PrimRec2$ and S6: B = fn-to-set p-bby (auto simp add: ce-sets-def) let $?p = (\lambda \ x \ y. \ (p-a \ x \ y) * \ (p-b \ x \ y))$ from S2 S5 have S7: $p \in PrimRec2$ by prec have $S8: \forall x y. (?p x y = 0) = ((p - a x y = 0) \lor (p - b x y = 0))$ by simp let ?C = fn-to-set ?phave S9: $?C = \{x. \exists y. ?p x y = 0\}$ by (simp add: fn-to-set-def) from S3 have S10: $A = \{x, \exists y, p \text{-} a x y = 0\}$ by (simp add: fn-to-set-def) from S6 have S11: $B = \{x, \exists y, p-b \mid x \mid y = 0\}$ by (simp add: fn-to-set-def) from S10 S11 S9 S8 have S12: $?C = A \cup B$ by auto from S7 have $?C \in ce\text{-sets}$ by (auto simp add: ce-sets-def) with S12 show ?thesis by simp qed **theorem** ce-intersect: $[A \in ce\text{-sets}; B \in ce\text{-sets}] \implies A \cap B \in ce\text{-sets}$ proof assume $A1: A \in ce\text{-sets}$ then obtain *p*-*a* where S2: *p*-*a* \in PrimRec2 and S3: *A* = fn-to-set *p*-*a* by (auto simp add: ce-sets-def) assume $A2: B \in ce\text{-sets}$ then obtain *p*-*b* where $S5: p-b \in PrimRec2$ and S6: B = fn-to-set p-bby (auto simp add: ce-sets-def) let $?p = (\lambda x y. (p-a x (c-fst y)) + (p-b x (c-snd y)))$ from S2 S5 have S7: $?p \in PrimRec2$ by prec have $S8: \forall x. (\exists y. ?p x y = 0) = ((\exists z. p-a x z = 0) \land (\exists z. p-b x z = 0))$ proof fix x show $(\exists y. ?p x y = 0) = ((\exists z. p-a x z = 0) \land (\exists z. p-b x z = 0))$ proof have 1: $(\exists y. ?p x y = 0) \Longrightarrow ((\exists z. p-a x z = 0) \land (\exists z. p-b x z = 0))$ **bv** blast have $2: ((\exists z. p-a \ x \ z = 0) \land (\exists z. p-b \ x \ z = 0)) \Longrightarrow (\exists y. ?p \ x \ y = 0)$

proof assume $((\exists z. p - a x z = 0) \land (\exists z. p - b x z = 0))$ then obtain z1 z2 where s-23: p-a x z1 = 0 and s-24: p-b x z2 = 0 by autolet ?y1 = c-pair $z1 \ z2$ from s-23 have s-25: p-a x (c-fst ?y1) = 0 by simp from s-24 have s-26: p-b x (c-snd ?y1) = 0 by simp from s-25 s-26 have s-27: p-a x (c-fst ?y1) + p-b x (c-snd ?y1) = 0 by simp then show ?thesis .. \mathbf{qed} from 1 2 have $(\exists y. ?p x y = 0) = ((\exists z. p-a x z = 0) \land (\exists z. p-b x z = 0))$ by (rule iffI) then show ?thesis by auto qed qed let ?C = fn-to-set ?phave S9: $?C = \{x. \exists y. ?p x y = 0\}$ by (simp add: fn-to-set-def) from S3 have S10: $A = \{x, \exists y, p \text{-} a x y = 0\}$ by (simp add: fn-to-set-def) from S6 have S11: $B = \{x, \exists y, p-b \ x \ y = 0\}$ by (simp add: fn-to-set-def) from S10 S11 S9 S8 have S12: $?C = A \cap B$ by auto from S7 have $?C \in ce\text{-sets}$ by (auto simp add: ce-sets-def) with S12 show ?thesis by simp qed

7.3 Enumeration of computably enumerable sets

definition

 $nat-to-ce-set :: nat \Rightarrow (nat set)$ where $nat-to-ce-set = (\lambda \ n. \ fn-to-set \ (pr-conv-1-to-2 \ (nat-to-pr \ n)))$

lemma nat-to-ce-set-lm-1: nat-to-ce-set $n = \{x : \exists y. (nat-to-pr n) (c-pair x y) = 0 \}$

proof -

have S1: nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add: nat-to-ce-set-def)

then have S2: nat-to-ce-set $n = \{x : \exists y. (pr-conv-1-to-2 (nat-to-pr n)) x y = 0\}$ by (simp add: fn-to-set-def)

have S3: $\bigwedge x y$. (pr-conv-1-to-2 (nat-to-pr n)) x y = (nat-to-pr n) (c-pair x y)by (simp add: pr-conv-1-to-2-def)

from S2 S3 show ?thesis by auto

 \mathbf{qed}

lemma *nat-to-ce-set-into-ce*: *nat-to-ce-set* $n \in ce\text{-sets}$ **proof** -

have S1: nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add: nat-to-ce-set-def)

have $(nat-to-pr \ n) \in PrimRec1$ by $(rule \ nat-to-pr-into-pr)$ then have $S2: (pr-conv-1-to-2 \ (nat-to-pr \ n)) \in PrimRec2$ by $(rule \ pr-conv-1-to-2-lm)$ from $S2 \ S1$ show ?thesis by $(simp \ add: \ ce-set-lm-1)$

\mathbf{qed}

lemma nat-to-ce-set-srj: $A \in ce$ -sets $\Longrightarrow \exists n. A = nat$ -to-ce-set n **proof** – **assume** $A: A \in ce$ -sets **then have** $\exists p \in PrimRec2. A = fn$ -to-set p **by** (rule ce-set-lm-3) **then obtain** p where p-is- $pr: p \in PrimRec2$ and S1: A = fn-to-set p .. **define** q where q = pr-conv-2-to-1 pfrom p-is-pr have q-is- $pr: q \in PrimRec1$ by (unfold q-def, rule pr-conv-2-to-1-lm) from q-def have S2: pr-conv-1-to-2 q = p by simp **let** ?n = index-of-pr qfrom q-is-pr have nat-to-pr ?n = q by (rule index-of-pr-is-real) with S2 S1 have A = fn-to-set (pr-conv-1-to-2 (nat-to-pr ?n)) by auto **then have** A = nat-to-ce-set ?n by (simp add: nat-to-ce-set-def) **thus** ?thesis .. **qed**

7.4 Characteristic functions

definition

 $chf :: nat set \Rightarrow (nat \Rightarrow nat)$ — Characteristic function where $chf = (\lambda \ A \ x. \ if \ x \in A \ then \ 0 \ else \ 1 \)$

definition

zero-set :: $(nat \Rightarrow nat) \Rightarrow nat set$ where *zero-set* = $(\lambda f. \{ x. fx = 0 \})$

lemma chf-lm-1 [simp]: zero-set (chf A) = A by (unfold chf-def, unfold zero-set-def, simp)

lemma chf-lm-2: $(x \in A) = (chf A x = 0)$ by (unfold chf-def, simp)

lemma chf-lm-3: $(x \notin A) = (chf A x = 1)$ by (unfold chf-def, simp)

lemma chf-lm-4: $chf A \in PrimRec1 \implies A \in ce\text{-sets}$ **proof** – **assume** A: $chf A \in PrimRec1$ **define** p **where** p = chf A **from** A p-def **have** p-is-pr: $p \in PrimRec1$ **by** auto **define** q **where** q x y = p x **for** x y :: nat **from** p-is-pr **have** q-is-pr: $q \in PrimRec2$ **unfolding** q-def **by** prec **have** S1: $A = \{x. p(x) = 0\}$ **proof** – **have** zero-set p = A **by** (unfold p-def, simp) **thus** ?thesis **by** (simp add: zero-set-def) **qed have** S2: fn-to-set $q = \{x. \exists y. q x y = 0\}$ **by** (simp add: fn-to-set-def) **have** S3: $\bigwedge x. (p x = 0) = (\exists y. q x y = 0)$ **by** (unfold q-def, auto) **then have** S4: $\{x. p x = 0\} = \{x. \exists y. q x y = 0\}$ **by** auto

with S1 S2 have S5: fn-to-set q = A by auto from q-is-pr have fn-to-set $q \in ce$ -sets by (rule ce-set-lm-1) with S5 show ?thesis by auto qed **lemma** chf-lm-5: finite $A \Longrightarrow chf A \in PrimRec1$ proof assume A: finite A define u where u = set-to-nat Afrom A have S1: nat-to-set u = A by (unfold u-def, rule nat-to-set-srj) have $chf A = (\lambda x. sgn2 (c-in x u))$ proof fix x show chf A x = sgn2 (c-in x u)**proof** cases assume $A: x \in A$ then have S1-1: chf A x = 0 by (simp add: chf-lm-2) from A S1 have $x \in nat\text{-}to\text{-}set \ u$ by autothen have c-in x u = 1 by (simp add: x-in-u-eq) with S1-1 show ?thesis by simp \mathbf{next} assume $A: x \notin A$ then have S1-1: chf A x = 1 by $(simp \ add: \ chf-def)$ from A S1 have $x \notin nat\text{-}to\text{-}set \ u$ by autothen have c-in x u = 0 by (simp add: x-in-u-eq c-in-def) with S1-1 show ?thesis by simp qed qed **moreover from** *c-in-is-pr* have $(\lambda \ x. \ sgn2 \ (c-in \ x \ u)) \in PrimRec1$ by prec ultimately show ?thesis by auto qed **theorem** ce-finite: finite $A \Longrightarrow A \in ce\text{-sets}$

proof – assume A: finite A then have $chf \ A \in PrimRec1$ by (rule chf-lm-5) then show ?thesis by (rule chf-lm-4) qed

7.5 Computably enumerable relations

definition

ce-set-to-rel :: *nat set* \Rightarrow (*nat* * *nat*) *set* **where** *ce-set-to-rel* = (λ A. { (*c-fst* x, *c-snd* x) | x. x \in A})

definition

ce-rel-to-set :: (*nat* * *nat*) *set* \Rightarrow *nat set* where *ce-rel-to-set* = (λR . { *c-pair* $x y \mid x y$. (x,y) $\in R$ })

definition

ce-rels :: ((nat * nat) set) set where $ce\text{-rels} = \{ R \mid R. ce\text{-rel-to-set } R \in ce\text{-sets} \}$ **lemma** ce-rel-lm-1 [simp]: ce-set-to-rel (ce-rel-to-set r) = rproof **show** ce-set-to-rel (ce-rel-to-set r) $\subseteq r$ proof fix zassume A: $z \in ce\text{-set-to-rel}$ (ce-rel-to-set r) then obtain u where L1: $u \in (ce\text{-rel-to-set } r)$ and L2: z = (c-fst u, c-snd u)unfolding ce-set-to-rel-def by auto from L1 obtain x y where L3: $(x,y) \in r$ and L4: u = c-pair x y unfolding ce-rel-to-set-def by auto from L4 have L5: c-fst u = x by simp from L4 have L6: c-snd u = y by simp from L5 L6 L2 have z = (x,y) by simp with L3 show $z \in r$ by auto qed \mathbf{next} show $r \subseteq ce\text{-set-to-rel} (ce\text{-rel-to-set } r)$ **proof fix** z show $z \in r \implies z \in ce\text{-set-to-rel}$ (ce-rel-to-set r) proof – assume $A: z \in r$ define x where x = fst zdefine y where y = snd zfrom x-def y-def have L1: z = (x,y) by simp define u where u = c-pair x yfrom A L1 u-def have L2: $u \in ce\text{-rel-to-set } r$ by (unfold ce-rel-to-set-def, auto) from L1 u-def have L3: $z = (c-fst \ u, \ c-snd \ u)$ by simp from L2 L3 show $z \in ce\text{-set-to-rel}$ (ce-rel-to-set r) by (unfold ce-set-to-rel-def, auto) qed \mathbf{qed} qed **lemma** ce-rel-lm-2 [simp]: ce-rel-to-set (ce-set-to-rel A) = Aproof show ce-rel-to-set (ce-set-to-rel A) $\subseteq A$ **proof fix** z show $z \in ce\text{-rel-to-set}$ (ce-set-to-rel A) $\Longrightarrow z \in A$ proof – assume $A: z \in ce\text{-rel-to-set} (ce\text{-set-to-rel} A)$ then obtain x y where L1: z = c-pair x y and L2: $(x,y) \in ce$ -set-to-rel A unfolding ce-rel-to-set-def by auto from L2 obtain u where L3: $(x,y) = (c \text{-} fst \ u, \ c \text{-} snd \ u)$ and L4: $u \in A$ unfolding ce-set-to-rel-def by auto from L3 L1 have L5: z = u by simp with L4 show $z \in A$ by *auto* qed qed

 \mathbf{next} **show** $A \subseteq ce\text{-rel-to-set}$ (ce-set-to-rel A) **proof fix** z show $z \in A \implies z \in ce\text{-rel-to-set}$ (ce-set-to-rel A) proof – assume $A: z \in A$ then have $L1: (c\text{-}fst z, c\text{-}snd z) \in ce\text{-}set\text{-}to\text{-}rel A$ by (unfold ce-set-to-rel-def, auto) define x where x = c-fst z define y where y = c-snd z from L1 x-def y-def have L2: $(x,y) \in ce\text{-set-to-rel } A$ by simp then have L3: c-pair $x y \in ce\text{-rel-to-set}$ (ce-set-to-rel A) by (unfold ce-rel-to-set-def, auto) with x-def y-def show $z \in ce\text{-rel-to-set}$ (ce-set-to-rel A) by simp qed qed qed **lemma** ce-rels-def1: ce-rels = { ce-set-to-rel $A \mid A. A \in ce\text{-sets}$ } proof **show** ce-rels \subseteq {ce-set-to-rel $A \mid A. A \in ce-sets$ } **proof fix** r **show** $r \in ce\text{-rels} \implies r \in \{ce\text{-set-to-rel } A \mid A. A \in ce\text{-sets}\}$ proof assume $A: r \in ce\text{-rels}$ then have L1: ce-rel-to-set $r \in$ ce-sets by (unfold ce-rels-def, auto) define A where A = ce-rel-to-set rfrom A-def L1 have L2: $A \in ce\text{-sets}$ by auto from A-def have L3: ce-set-to-rel A = r by simp with L2 show $r \in \{ce\text{-set-to-rel } A \mid A. A \in ce\text{-sets}\}$ by auto qed qed \mathbf{next} **show** {*ce-set-to-rel* $A \mid A. A \in ce\text{-sets}$ } $\subseteq ce\text{-rels}$ **proof fix** r show $r \in \{ce\text{-set-to-rel } A \mid A. A \in ce\text{-sets}\} \Longrightarrow r \in ce\text{-rels}$ proof assume $A: r \in \{ce\text{-set-to-rel } A \mid A. A \in ce\text{-sets}\}$ then obtain A where L1: r = ce-set-to-rel A and L2: $A \in ce$ -sets by auto from L1 have ce-rel-to-set r = A by simp with L2 show $r \in ce\text{-rels}$ unfolding ce-rels-def by auto qed qed qed **lemma** ce-rel-to-set-inj: inj ce-rel-to-set **proof** (*rule inj-on-inverseI*) fix x assume A: $(x::(nat \times nat) set) \in UNIV$ show ce-set-to-rel (ce-rel-to-set x) = x by (rule ce-rel-lm-1) qed

lemma ce-rel-to-set-srj: surj ce-rel-to-set

```
proof (rule surjI [where ?f=ce-set-to-rel])
 fix x show ce-rel-to-set (ce-set-to-rel x) = x by (rule ce-rel-lm-2)
qed
lemma ce-rel-to-set-bij: bij ce-rel-to-set
proof (rule bijI)
 show inj ce-rel-to-set by (rule ce-rel-to-set-inj)
\mathbf{next}
 show surj ce-rel-to-set by (rule ce-rel-to-set-srj)
qed
lemma ce-set-to-rel-inj: inj ce-set-to-rel
proof (rule inj-on-inverseI)
 fix x assume A: (x::nat set) \in UNIV show ce-rel-to-set (ce-set-to-rel x) = x by
(rule \ ce-rel-lm-2)
qed
lemma ce-set-to-rel-srj: surj ce-set-to-rel
proof (rule surjI [where ?f=ce-rel-to-set])
 fix x show ce-set-to-rel (ce-rel-to-set x) = x by (rule ce-rel-lm-1)
qed
lemma ce-set-to-rel-bij: bij ce-set-to-rel
proof (rule bijI)
 show inj ce-set-to-rel by (rule ce-set-to-rel-inj)
\mathbf{next}
 show surj ce-set-to-rel by (rule ce-set-to-rel-srj)
qed
lemma ce-rel-lm-3: A \in ce-sets \implies ce-set-to-rel A \in ce-rels
proof –
 assume A: A \in ce\text{-sets}
 from A ce-rels-def1 show ?thesis by auto
qed
lemma ce-rel-lm-4: ce-set-to-rel A \in ce-rels \Longrightarrow A \in ce-sets
proof –
 assume A: ce-set-to-rel A \in ce-rels
 from A show ?thesis by (unfold ce-rels-def, auto)
qed
lemma ce-rel-lm-5: (A \in ce\text{-sets}) = (ce\text{-set-to-rel} A \in ce\text{-rels})
proof
 assume A \in ce\text{-sets} then show ce\text{-set-to-rel} A \in ce\text{-rels} by (rule ce\text{-rel-lm-3})
\mathbf{next}
 assume ce-set-to-rel A \in ce-rels then show A \in ce-sets by (rule ce-rel-lm-4)
ged
```

lemma ce-rel-lm-6: $r \in$ ce-rels \implies ce-rel-to-set $r \in$ ce-sets

```
proof –
 assume A: r \in ce\text{-rels}
 then show ?thesis by (unfold ce-rels-def, auto)
qed
lemma ce-rel-lm-7: ce-rel-to-set r \in ce-sets \implies r \in ce-rels
proof –
 assume ce-rel-to-set r \in ce-sets
 then show ?thesis by (unfold ce-rels-def, auto)
qed
lemma ce-rel-lm-8: (r \in ce\text{-rels}) = (ce\text{-rel-to-set } r \in ce\text{-sets}) by (unfold ce-rels-def,
auto)
lemma ce-rel-lm-9: (x,y) \in r \implies c-pair x \in ce-rel-to-set r by (unfold ce-rel-to-set-def,
auto)
lemma ce-rel-lm-10: x \in A \implies (c\text{-fst } x, c\text{-snd } x) \in ce\text{-set-to-rel } A by (unfold
ce-set-to-rel-def, auto)
lemma ce-rel-lm-11: c-pair x \ y \in ce-rel-to-set r \Longrightarrow (x,y) \in r
proof –
 assume A: c-pair x y \in ce\text{-rel-to-set } r
 let 2z = c-pair x y
 from A have (c-fst ?z, c-snd ?z) \in ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10)
 then show (x,y) \in r by simp
qed
lemma ce-rel-lm-12: (c\text{-pair } x \ y \in ce\text{-rel-to-set } r) = ((x,y) \in r)
proof
 assume c-pair x y \in ce-rel-to-set r then show (x, y) \in r by (rule ce-rel-lm-11)
\mathbf{next}
 assume (x, y) \in r then show c-pair x y \in ce-rel-to-set r by (rule ce-rel-lm-9)
qed
lemma ce-rel-lm-13: (x,y) \in ce-set-to-rel A \implies c-pair x y \in A
proof –
 assume (x,y) \in ce\text{-set-to-rel } A
 then have c-pair x y \in ce\text{-rel-to-set} (ce-set-to-rel A) by (rule ce-rel-lm-9)
 then show ?thesis by simp
qed
lemma ce-rel-lm-14: c-pair x y \in A \implies (x,y) \in ce-set-to-rel A
proof –
 assume c-pair x y \in A
 then have c-pair x y \in ce\text{-rel-to-set} (ce-set-to-rel A) by simp
 then show ?thesis by (rule ce-rel-lm-11)
qed
```

lemma ce-rel-lm-15: $((x,y) \in ce\text{-set-to-rel } A) = (c\text{-pair } x \ y \in A)$ proof assume $(x, y) \in ce\text{-set-to-rel } A$ then show $c\text{-pair } x y \in A$ by (rule ce-rel-lm-13) \mathbf{next} assume *c*-pair $x y \in A$ then show $(x, y) \in ce$ -set-to-rel A by (rule ce-rel-lm-14) qed **lemma** ce-rel-lm-16: $x \in$ ce-rel-to-set $r \implies$ (c-fst x, c-snd x) \in r proof – assume $x \in ce\text{-rel-to-set } r$ then have $(c\text{-}fst x, c\text{-}snd x) \in ce\text{-}set\text{-}to\text{-}rel (ce\text{-}rel\text{-}to\text{-}set r)$ by (rule ce-rel-lm-10)then show ?thesis by simp qed **lemma** ce-rel-lm-17: (c-fst x, c-snd x) \in ce-set-to-rel $A \Longrightarrow x \in A$ proof **assume** $(c\text{-}fst x, c\text{-}snd x) \in ce\text{-}set\text{-}to\text{-}rel A$ then have *c*-pair (*c*-fst x) (*c*-snd x) $\in A$ by (rule ce-rel-lm-13) then show ?thesis by simp qed **lemma** ce-rel-lm-18: $((c\text{-fst } x, c\text{-snd } x) \in ce\text{-set-to-rel } A) = (x \in A)$ proof assume $(c\text{-}fst x, c\text{-}snd x) \in ce\text{-}set\text{-}to\text{-}rel A$ then show $x \in A$ by (rule ce-rel-lm-17) \mathbf{next} assume $x \in A$ then show $(c\text{-}fst x, c\text{-}snd x) \in ce\text{-}set\text{-}to\text{-}rel A$ by (rule ce-rel-lm-10)qed **lemma** ce-rel-lm-19: (c-fst x, c-snd x) $\in r \implies x \in$ ce-rel-to-set r proof – assume $(c\text{-}fst x, c\text{-}snd x) \in r$ then have $(c\text{-}fst x, c\text{-}snd x) \in ce\text{-}set\text{-}to\text{-}rel (ce\text{-}rel\text{-}to\text{-}set r)$ by simp then show ?thesis by (rule ce-rel-lm-17) qed **lemma** ce-rel-lm-20: $((c-fst x, c-snd x) \in r) = (x \in ce-rel-to-set r)$ proof assume $(c\text{-}fst x, c\text{-}snd x) \in r$ then show $x \in ce\text{-}rel\text{-}to\text{-}set r$ by (rule ce-rel-lm-19)next assume $x \in ce\text{-rel-to-set } r$ then show $(c\text{-fst } x, c\text{-snd } x) \in r$ by $(rule \ ce\text{-rel-lm-16})$ qed **lemma** ce-rel-lm-21: $r \in ce$ -rels $\implies \exists p \in PrimRec3. \forall x y. ((x,y) \in r) = (\exists u.$ p x y u = 0proof assume *r*-*ce*: $r \in ce$ -*rels* define A where A = ce-rel-to-set rfrom r-ce have A-ce: $A \in ce$ -sets by (unfold A-def, rule ce-rel-lm-6) then have $\exists p \in PrimRec2$. A = fn-to-set p by (rule ce-set-lm-3)

then obtain q where q-is-pr: $q \in PrimRec2$ and A-def1: A = fn-to-set q... **from** A-def1 have A-def2: $A = \{x. \exists y. q x y = 0\}$ by (unfold fn-to-set-def) define p where p x y u = q (*c*-pair x y) u for x y ufrom q-is-pr have p-is-pr: $p \in PrimRec3$ unfolding p-def by prec have $\bigwedge x y$. $((x,y) \in r) = (\exists u. p x y u = 0)$ **proof** - **fix** x y **show** $((x,y) \in r) = (\exists u. p x y u = 0)$ proof assume $A: (x,y) \in r$ define z where z = c-pair x y with A-def A have z-in-A: $z \in A$ by (unfold ce-rel-to-set-def, auto) with A-def2 have $z \in \{x. \exists y. q x y = 0\}$ by auto then obtain u where q z u = 0 by *auto* with z-def have p x y u = 0 by (simp add: z-def p-def) then show $\exists u. p x y u = 0$ by *auto* \mathbf{next} assume $A: \exists u. p x y u = 0$ define z where z = c-pair x y from A obtain u where p x y u = 0 by auto then have q-z: q z u = 0 by (simp add: z-def p-def) with A-def2 have z-in-A: $z \in A$ by auto then have *c*-pair $x y \in A$ by (unfold *z*-def) then have *c*-pair $x y \in ce\text{-rel-to-set } r$ by (unfold A-def) then show $(x,y) \in r$ by (rule ce-rel-lm-11) qed qed with *p*-is-pr show ?thesis by auto qed **lemma** ce-rel-lm-22: $r \in$ ce-rels $\implies \exists p \in PrimRec3$. $r = \{ (x,y), \exists u, p x y u \}$ $= 0 \}$ proof assume *r*-*ce*: $r \in ce$ -*rels* then have $\exists p \in PrimRec3$. $\forall x y. ((x,y) \in r) = (\exists u. p x y u = 0)$ by (rule ce-rel-lm-21) then obtain p where p-is-pr: $p \in PrimRec3$ and $L1: \forall x y. ((x,y) \in r) = (\exists$ u. p x y u = 0) by auto from *p*-is-pr L1 show ?thesis by blast qed **lemma** ce-rel-lm-23: $\llbracket p \in PrimRec3; \forall x y. ((x,y) \in r) = (\exists u. p x y u = 0) \rrbracket$ $\implies r \in \mathit{ce-rels}$ proof – assume *p*-is-pr: $p \in PrimRec3$ assume $A: \forall x y. ((x,y) \in r) = (\exists u. p x y u = 0)$ define q where q z u = p (c-fst z) (c-snd z) u for z u from *p*-is-pr have *q*-is-pr: $q \in PrimRec2$ unfolding *q*-def by prec define A where $A = \{ x. \exists y. q x y = 0 \}$ then have A-def1: A = fn-to-set q by (unfold fn-to-set-def, auto) from q-is-pr A-def1 have A-ce: $A \in ce$ -sets by (simp add: ce-set-lm-1)

```
have main: A = ce\text{-rel-to-set } r
 proof
   show A \subseteq ce\text{-}rel\text{-}to\text{-}set r
   proof
     fix z assume z-in-A: z \in A
     show z \in ce\text{-}rel\text{-}to\text{-}set r
     proof –
       define x where x = c-fst z
       define y where y = c-snd z
       from z-in-A A-def obtain u where L2: q z u = 0 by auto
       with x-def y-def q-def have L3: p x y u = 0 by simp
       then have \exists u. p x y u = 0 by auto
       with A have (x,y) \in r by auto
      then have c-pair x y \in ce\text{-rel-to-set } r by (rule ce-rel-lm-9)
       with x-def y-def show ?thesis by simp
     qed
   qed
 \mathbf{next}
   show ce-rel-to-set r \subseteq A
   proof
     fix z assume z-in-r: z \in ce\text{-rel-to-set } r
     show z \in A
     proof -
       define x where x = c-fst z
       define y where y = c-snd z
       from z-in-r have (c-fst z, c-snd z) \in r by (rule ce-rel-lm-16)
       with x-def y-def have (x,y) \in r by simp
       with A obtain u where L1: p x y u = 0 by auto
       with x-def y-def q-def have q z u = 0 by simp
       with A-def show z \in A by auto
     qed
   qed
 qed
 with A-ce have ce-rel-to-set r \in ce-sets by auto
 then show r \in ce\text{-rels} by (rule ce-rel-lm-7)
qed
lemma ce-rel-lm-24: [r \in ce\text{-rels}; s \in ce\text{-rels}] \implies s \ O \ r \in ce\text{-rels}
proof –
 assume r-ce: r \in ce-rels
 assume s-ce: s \in ce-rels
  from r-ce have \exists p \in PrimRec3. \forall x y. ((x,y) \in r) = (\exists u. p x y u = 0) by
(rule \ ce-rel-lm-21)
  then obtain p-r where p-r-is-pr: p-r \in PrimRec3 and R1: \forall x y. ((x,y) \in
r = (\exists u. p - r x y u = 0)
   by auto
  from s-ce have \exists p \in PrimRec3. \forall x y. ((x,y) \in s) = (\exists u, p x y u = 0) by
(rule ce-rel-lm-21)
  then obtain p-s where p-s-is-pr: p-s \in PrimRec3 and S1: \forall x y. ((x,y) \in
```

 $s = (\exists u. p - s x y u = 0)$ by auto define p where p x z u = (p-s x (c-fst u) (c-fst (c-snd u))) + (p-r (c-fst u) z(c-snd (c-snd u)))for x z ufrom *p*-*r*-*is*-*pr p*-*s*-*is*-*pr* have *p*-*is*-*pr*: $p \in PrimRec3$ unfolding *p*-*def* by *prec* define sr where $sr = s \ O \ r$ have main: $\forall x z. ((x,z) \in sr) = (\exists u. p x z u = 0)$ **proof** (rule allI, rule allI) fix x z**show** $((x, z) \in sr) = (\exists u. p \ x \ z \ u = 0)$ proof assume $A: (x, z) \in sr$ show $\exists u. p x z u = 0$ proof from A sr-def obtain y where L1: $(x,y) \in s$ and L2: $(y,z) \in r$ by auto from L1 S1 obtain u-s where L3: p-s x y u-s = 0 by auto from L2 R1 obtain u-r where L4: p-r y z u-r = 0 by auto define u where u = c-pair y (c-pair u-s u-r) from L3 L4 have $p \ x \ z \ u = 0$ by (unfold p-def, unfold u-def, simp) then show ?thesis by auto qed \mathbf{next} assume $A: \exists u. p \ x \ z \ u = 0$ show $(x, z) \in sr$ proof from A obtain u where L1: p x z u = 0 by auto then have L2: $(p-s \ x \ (c-fst \ u) \ (c-fst \ (c-snd \ u))) + (p-r \ (c-fst \ u) \ z \ (c-snd \ u))$ $(c-snd \ u)) = 0$ by $(unfold \ p-def)$ from L2 have L3: p-s x (c-fst u) (c-fst (c-snd u)) = 0 by auto from L2 have L4: p-r (c-fst u) z (c-snd (c-snd u)) = 0 by auto from L3 S1 have L5: $(x, (c-fst \ u)) \in s$ by auto from L4 R1 have L6: $((c-fst \ u),z) \in r$ by auto from L5 L6 have $(x,z) \in s \ O \ r$ by auto with sr-def show ?thesis by auto qed qed qed from *p*-is-pr main have $sr \in ce$ -rels by (rule ce-rel-lm-23) then show ?thesis by (unfold sr-def) qed lemma ce-rel-lm-25: $r \in ce\text{-rels} \implies r^{-1} \in ce\text{-rels}$ proof – assume *r*-*ce*: $r \in ce$ -*rels* have $r - 1 = \{(y,x), (x,y) \in r\}$ by *auto* then have $L1: \forall x y. ((x,y) \in r) = ((y,x) \in r^{-1})$ by *auto* from r-ce have $\exists p \in PrimRec3$. $\forall x y$. $((x,y) \in r) = (\exists u. p x y u = 0)$ by (rule ce-rel-lm-21)

then obtain p where p-is-pr: $p \in PrimRec3$ and $R1: \forall x y. ((x,y) \in r) = (\exists$ u. p x y u = 0 by auto define q where q x y u = p y x u for x y ufrom *p*-is-pr have *q*-is-pr: $q \in PrimRec3$ unfolding *q*-def by prec from L1 R1 have L2: $\forall x y$. $((x,y) \in r^{-1}) = (\exists u, p y x u = 0)$ by auto with q-def have $L3: \forall x y. ((x,y) \in r^{-1}) = (\exists u. q x y u = 0)$ by auto with q-is-pr show ?thesis by (rule ce-rel-lm-23) qed **lemma** ce-rel-lm-26: $r \in$ ce-rels \Longrightarrow Domain $r \in$ ce-sets proof assume *r*-*ce*: $r \in ce$ -*rels* have $L1: \forall x. (x \in Domain r) = (\exists y. (x,y) \in r)$ by auto define A where A = ce-rel-to-set rfrom *r*-ce have ce-rel-to-set $r \in$ ce-sets by (rule ce-rel-lm-6) then have A-ce: $A \in ce\text{-sets}$ by (unfold A-def) have $\forall x y. ((x,y) \in r) = (c\text{-pair } x y \in ce\text{-rel-to-set } r)$ by (simp add: ce-rel-lm-12) then have $L2: \forall x y. ((x,y) \in r) = (c\text{-pair } x y \in A)$ by (unfold A-def) from A-ce c-fst-is-pr have L3: { c-fst $z \mid z$. $z \in A$ } \in ce-sets by (rule ce-set-lm-7) have $L_4: \forall x. (x \in \{ c\text{-fst } z \mid z. z \in A \}) = (\exists y. c\text{-pair } x y \in A)$ **proof fix** x show $(x \in \{ c \text{-fst } z \mid z, z \in A \}) = (\exists y, c \text{-pair } x y \in A)$ proof assume $A: x \in \{c \text{-fst } z \mid z \in A\}$ then obtain z where z-in-A: $z \in A$ and x-z: x = c-fst z by auto from x-z have z = c-pair x (c-snd z) by simp with z-in-A have c-pair x (c-snd z) $\in A$ by auto then show $\exists y. c\text{-pair } x y \in A$ by *auto* \mathbf{next} assume $A: \exists y. c\text{-pair } x y \in A$ then obtain y where y-1: c-pair $x y \in A$ by auto define z where z = c-pair x y from y-1 have z-in-A: $z \in A$ by (unfold z-def) from z-def have x-z: x = c-fst z by (unfold z-def, simp) from z-in-A x-z show $x \in \{c\text{-fst } z \mid z. z \in A\}$ by auto qed qed from L1 L2 have L5: $\forall x. (x \in Domain r) = (\exists y. c-pair x y \in A)$ by auto from L4 L5 have L6: $\forall x. (x \in Domain r) = (x \in \{c \text{-fst } z \mid z. z \in A\})$ by autothen have Domain $r = \{ c \text{-fst } z \mid z \in A \}$ by auto with L3 show Domain $r \in ce\text{-sets}$ by auto qed **lemma** ce-rel-lm-27: $r \in$ ce-rels \implies Range $r \in$ ce-sets proof assume r-ce: $r \in ce$ -rels then have $r - 1 \in ce\text{-rels}$ by (rule ce-rel-lm-25) then have Domain $(r^{-1}) \in ce\text{-sets by } (rule \ ce\text{-rel-lm-26})$ then show ?thesis by (unfold Domain-converse [symmetric])

\mathbf{qed}

lemma ce-rel-lm-28: $r \in$ ce-rels \implies Field $r \in$ ce-sets proof – assume *r*-*ce*: $r \in ce$ -*rels* from r-ce have L1: Domain $r \in ce\text{-sets}$ by (rule ce-rel-lm-26) from r-ce have L2: Range $r \in ce\text{-sets}$ by (rule ce-rel-lm-27) from L1 L2 have L3: Domain $r \cup Range r \in ce\text{-sets by (rule ce-union)}$ then show ?thesis by (unfold Field-def) \mathbf{qed} **lemma** ce-rel-lm-29: $[A \in ce\text{-sets}; B \in ce\text{-sets}] \implies A \times B \in ce\text{-rels}$ proof assume A-ce: $A \in ce$ -sets assume *B*-ce: $B \in ce$ -sets define r-a where $r-a = \{(x, (0::nat)) \mid x. x \in A\}$ define r-b where r- $b = \{((0::nat), z) \mid z. z \in B\}$ have L1: r-a O r-b = $A \times B$ by (unfold r-a-def, unfold r-b-def, auto) have *r*-*a*-*ce*: r-*a* \in *ce*-*rels* proof – have loc1: ce-rel-to-set r-a = { c-pair $x \ 0 \mid x. x \in A$ } by (unfold r-a-def, unfold *ce-rel-to-set-def*, *auto*) define p where p x = c-pair x 0 for x have *p*-is-pr: $p \in PrimRec1$ unfolding *p*-def by prec from A-ce p-is-pr have $\{ c\text{-pair } x \ 0 \mid x. \ x \in A \} \in ce\text{-sets}$ **unfolding** *p*-*def* **by** (*simp add*: *ce-set-lm-7*) with *loc1* have *ce-rel-to-set* r- $a \in ce$ -sets by *auto* then show ?thesis by (rule ce-rel-lm-7) qed have r-b-ce: r- $b \in ce$ -relsproof have loc1: ce-rel-to-set $r-b = \{ c-pair \ 0 \ z \mid z, z \in B \}$ **by** (*unfold r*-*b*-*def*, *unfold ce*-*rel*-*to*-*set*-*def*, *auto*) define p where $p \ z = c$ -pair $0 \ z$ for z have *p*-is-pr: $p \in PrimRec1$ unfolding *p*-def by prec from *B*-ce *p*-is-pr have { c-pair $0 \ z \mid z. \ z \in B$ } \in ce-sets **unfolding** *p*-*def* **by** (*simp add*: *ce-set-lm-7*) with *loc1* have *ce-rel-to-set* r- $b \in ce$ -sets by *auto* then show ?thesis by (rule ce-rel-lm-7) qed from r-b-ce r-a-ce have r-a O r-b \in ce-rels by (rule ce-rel-lm-24) with L1 show ?thesis by auto qed lemma ce-rel-lm-30: $\{\} \in ce\text{-rels}$ proof – have ce-rel-to-set $\{\} = \{\}$ by (unfold ce-rel-to-set-def, auto) with ce-empty have ce-rel-to-set $\{\} \in ce\text{-sets by auto}$ then show ?thesis by (rule ce-rel-lm-7)

\mathbf{qed}

lemma ce-rel-lm-31: UNIV \in ce-rels proof – from ce-univ ce-univ have UNIV × UNIV \in ce-rels by (rule ce-rel-lm-29) then show ?thesis by auto qed lemma ce-rel-lm-32: ce-rel-to-set ($r \cup s$) = (ce-rel-to-set r) \cup (ce-rel-to-set s) by

(unfold ce-rel-to-set-def, auto)

lemma ce-rel-lm-33: $[r \in ce\text{-rels}; s \in ce\text{-rels}] \implies r \cup s \in ce\text{-rels}$ proof assume $r \in ce\text{-rels}$ then have r-ce: ce-rel-to-set $r \in$ ce-sets by (rule ce-rel-lm-6) assume $s \in ce$ -rels then have s-ce: ce-rel-to-set $s \in ce$ -sets by (rule ce-rel-lm-6) have ce-rel-to-set $(r \cup s) = (ce\text{-rel-to-set } r) \cup (ce\text{-rel-to-set } s)$ by (unfold ce-rel-to-set-def, auto) **moreover from** r-ce s-ce have (ce-rel-to-set r) \cup (ce-rel-to-set s) \in ce-sets by (rule ce-union) ultimately have ce-rel-to-set $(r \cup s) \in ce$ -sets by auto then show ?thesis by (rule ce-rel-lm-7) qed **lemma** ce-rel-lm-34: ce-rel-to-set $(r \cap s) = (ce-rel-to-set r) \cap (ce-rel-to-set s)$ proof show ce-rel-to-set $(r \cap s) \subseteq$ ce-rel-to-set $r \cap$ ce-rel-to-set s by (unfold ce-rel-to-set-def, auto) next show ce-rel-to-set $r \cap$ ce-rel-to-set $s \subseteq$ ce-rel-to-set $(r \cap s)$ **proof fix** x assume A: $x \in ce\text{-rel-to-set } r \cap ce\text{-rel-to-set } s$ from A have $L1: x \in ce\text{-rel-to-set } r$ by auto from A have $L2: x \in ce\text{-rel-to-set } s$ by auto from L1 obtain u v where L3: $(u,v) \in r$ and L4: x = c-pair u vunfolding ce-rel-to-set-def by auto from L2 obtain u1 v1 where L5: $(u1,v1) \in s$ and L6: x = c-pair u1 v1 unfolding ce-rel-to-set-def by auto from L4 L6 have L7: c-pair u1 v1 = c-pair u v by auto then have u1 = u by (rule c-pair-inj1) moreover from L7 have v1=v by (rule c-pair-inj2) ultimately have (u,v)=(u1,v1) by *auto* with L3 L5 have $(u,v) \in r \cap s$ by auto with L4 show $x \in ce\text{-rel-to-set}$ $(r \cap s)$ by (unfold ce-rel-to-set-def, auto) qed qed

lemma ce-rel-lm-35: [[$r \in ce\text{-rels}$; $s \in ce\text{-rels}$]] $\implies r \cap s \in ce\text{-rels}$ proof –

assume $r \in ce\text{-rels}$ then have r-ce: ce-rel-to-set $r \in$ ce-sets by (rule ce-rel-lm-6) assume $s \in ce\text{-rels}$ then have s-ce: ce-rel-to-set $s \in ce$ -sets by (rule ce-rel-lm-6) have ce-rel-to-set $(r \cap s) = (ce\text{-rel-to-set } r) \cap (ce\text{-rel-to-set } s)$ by (rule ce-rel-lm-34) **moreover from** *r*-*ce s*-*ce* **have** $(ce\text{-}rel\text{-}to\text{-}set r) \cap (ce\text{-}rel\text{-}to\text{-}set s) \in ce\text{-}sets$ by (rule ce-intersect) ultimately have ce-rel-to-set $(r \cap s) \in ce$ -sets by auto then show ?thesis by (rule ce-rel-lm-7) qed **lemma** ce-rel-lm-36: ce-set-to-rel $(A \cup B) = (ce-set-to-rel A) \cup (ce-set-to-rel B)$ by (unfold ce-set-to-rel-def, auto) **lemma** ce-rel-lm-37: ce-set-to-rel $(A \cap B) = (ce-set-to-rel A) \cap (ce-set-to-rel B)$ proof define f where f x = (c - fst x, c - snd x) for x have *f-inj*: *inj f* **proof** (unfold f-def, rule inj-on-inverseI [where $?g=\lambda$ (u,v). c-pair u v]) fix x :: natassume $x \in UNIV$ **show** case-prod c-pair (c-fst x, c-snd x) = x by simp qed from f-inj have $f'(A \cap B) = f'A \cap f'B$ by (rule image-Int) then show ?thesis by (unfold f-def, unfold ce-set-to-rel-def, auto) qed **lemma** ce-rel-lm-38: $[\![r \in ce\text{-rels}; A \in ce\text{-sets}]\!] \implies r''A \in ce\text{-sets}$ proof assume *r*-*ce*: $r \in ce$ -*rels* assume A-ce: $A \in ce$ -sets have L1: $r''A = Range (r \cap A \times UNIV)$ by blast have L2: Range $(r \cap A \times UNIV) \in ce\text{-sets}$ **proof** (*rule ce-rel-lm-27*) show $r \cap A \times UNIV \in ce\text{-rels}$ **proof** (*rule ce-rel-lm-35*) show $r \in ce\text{-rels}$ by (rule r-ce) next **show** $A \times UNIV \in ce\text{-rels}$ **proof** (rule ce-rel-lm-29) show $A \in ce\text{-sets by } (rule A - ce)$ \mathbf{next} show $UNIV \in ce\text{-sets by } (rule \ ce\text{-univ})$ qed qed qed from L1 L2 show ?thesis by auto qed

7.6 Total computable functions

definition

 $graph :: (nat \Rightarrow nat) \Rightarrow (nat \times nat) set where$ $graph = (\lambda f. \{ (x, f x) | x. x \in UNIV \})$

lemma graph-lm-1: $(x,y) \in graph f \implies y = f x$ by (unfold graph-def, auto)

lemma graph-lm-2: $y = f x \implies (x,y) \in graph f$ by (unfold graph-def, auto)

lemma graph-lm-3: $((x,y) \in graph f) = (y = f x)$ by (unfold graph-def, auto)

lemma graph-lm-4: graph $(f \circ g) = (graph g) O (graph f)$ by (unfold graph-def, auto)

definition

c-graph :: $(nat \Rightarrow nat) \Rightarrow nat set$ where c-graph = $(\lambda f. \{ c$ -pair $x (f x) | x. x \in UNIV \})$

lemma c-graph-lm-1: c-pair $x \ y \in c$ -graph $f \implies y = f \ x$ **proof** – **assume** A: c-pair $x \ y \in c$ -graph f **have** S1: c-graph $f = \{c\text{-pair } x \ (f \ x) \mid x. \ x \in UNIV\}$ by (simp add: c-graph-def) from A S1 obtain z where S2: c-pair $x \ y = c\text{-pair } z \ (f \ z)$ by auto then have x = z by (rule c-pair-inj1) moreover from S2 have $y = f \ z$ by (rule c-pair-inj2) ultimately show ?thesis by auto qed

lemma c-graph-lm-2: $y = f x \implies$ c-pair $x y \in$ c-graph f by (unfold c-graph-def, auto)

lemma c-graph-lm-3: $(c\text{-pair } x \ y \in c\text{-graph } f) = (y = f \ x)$ **proof assume** c-pair $x \ y \in c\text{-graph } f$ **then show** $y = f \ x$ **by** (rule c-graph-lm-1) **next assume** $y = f \ x$ **then show** c-pair $x \ y \in c\text{-graph } f$ **by** (rule c-graph-lm-2) **qed**

lemma c-graph-lm-4: c-graph f = ce-rel-to-set (graph f) by (unfold c-graph-def ce-rel-to-set-def graph-def, auto)

lemma *c*-graph-lm-5: graph f = ce-set-to-rel (*c*-graph f) by (simp add: *c*-graph-lm-4)

definition

total-recursive :: $(nat \Rightarrow nat) \Rightarrow bool$ where total-recursive = $(\lambda f. graph f \in ce\text{-rels})$

lemma total-recursive-def1: total-recursive = $(\lambda \ f. \ c\text{-}graph \ f \in ce\text{-}sets)$ **proof** (rule ext) fix f show total-recursive $f = (c\text{-}graph \ f \in ce\text{-}sets)$

```
proof
```

```
assume A: total-recursive f

then have graph f \in ce-rels by (unfold total-recursive-def)

then have ce-rel-to-set (graph f) \in ce-sets by (rule ce-rel-lm-6)

then show c-graph f \in ce-sets by (simp add: c-graph-lm-4)

next

assume c-graph f \in ce-sets

then have ce-rel-to-set (graph f) \in ce-sets by (simp add: c-graph-lm-4)

then have graph f \in ce-rels by (rule ce-rel-lm-7)

then show total-recursive f by (unfold total-recursive-def)

qed

qed

theorem pr-is-total-rec: f \in PrimRec1 \implies total-recursive f
```

proof –

assume A: $f \in PrimRec1$ define p where $p \ x = c\text{-pair } x \ (f \ x)$ for x from A have p-is-pr: $p \in PrimRec1$ unfolding p-def by prec let $?U = \{ p \ x \mid x. \ x \in UNIV \}$ from ce-univ p-is-pr have U-ce: $?U \in ce\text{-sets by} (rule \ ce\text{-set-lm-7})$ have U-1: $?U = \{ c\text{-pair } x \ (f \ x) \mid x. \ x \in UNIV \}$ by $(simp \ add: \ p\text{-def})$ with U-ce have S1: $\{ c\text{-pair } x \ (f \ x) \mid x. \ x \in UNIV \} \in ce\text{-sets by simp}$ with c-graph-def have c-graph-f-is-ce: c-graph $f \in ce\text{-sets by} (unfold \ c\text{-graph-def}, auto)$ then show ?thesis by $(unfold \ total\text{-recursive-def1}, \ auto)$

qed

theorem comp-tot-rec: [[total-recursive f; total-recursive g]] \implies total-recursive (f o g)

proof –

assume total-recursive f then have f-ce: graph $f \in$ ce-rels by (unfold total-recursive-def) assume total-recursive g then have g-ce: graph $g \in$ ce-rels by (unfold total-recursive-def) from f-ce g-ce have graph g O graph $f \in$ ce-rels by (rule ce-rel-lm-24) then have graph (f o g) \in ce-rels by (simp add: graph-lm-4) then show ?thesis by (unfold total-recursive-def) qed

lemma univ-for-pr-tot-rec-lm: c-graph univ-for-pr \in ce-sets proof –

define A where A = c-graph univ-for-pr from A-def have S1: $A = \{ c\text{-pair } x \text{ (univ-for-pr } x) \mid x. x \in UNIV \}$ by (simp add: c-graph-def) from S1 have S2: $A = \{ z : \exists x. z = c\text{-pair } x \text{ (univ-for-pr } x) \}$ by auto have S3: $\bigwedge z$. ($\exists x. (z = c\text{-pair } x \text{ (univ-for-pr } x))$) = (univ-for-pr (c-fst z) = c-snd z) proof -

 $\mathbf{fix} \ z \ \mathbf{show} \ (\exists \ x. \ (z = c\text{-pair} \ x \ (univ\text{-}for\text{-}pr \ x))) = (univ\text{-}for\text{-}pr \ (c\text{-}fst \ z) = (univ\text{-}for\text{-}pr \ (c\text{-}fst \ z))$

c-snd z) proof **assume** $A: \exists x. z = c\text{-pair } x \text{ (univ-for-pr } x)$ then obtain x where S3-1: z = c-pair x (univ-for-pr x). then show univ-for-pr (c-fst z) = c-snd z by simp \mathbf{next} **assume** A: univ-for-pr (c-fst z) = c-snd zfrom A have z = c-pair (c-fst z) (univ-for-pr (c-fst z)) by simp thus $\exists x. z = c$ -pair x (univ-for-pr x)... qed qed with S2 have S4: $A = \{z : univ-for-pr (c-fst z) = c-snd z\}$ by auto define p where p x y =(if c-assoc-have-key (pr-gr y) (c-fst x) = 0 then (if c-assoc-value (pr-gr y) (c-fst x) = c-snd x then (0::nat) else 1) else 1) for x yfrom *c*-assoc-have-key-is-pr *c*-assoc-value-is-pr pr-qr-is-pr have p-is-pr: $p \in$ PrimRec2 unfolding *p*-def by prec have S5: $\bigwedge z$. (univ-for-pr (c-fst z) = c-snd z) = $(\exists y, p z y = 0)$ proof – fix z show (univ-for-pr (c-fst z) = c-snd z) = $(\exists y, p z y = 0)$ proof **assume** A: univ-for-pr (c-fst z) = c-snd zlet ?n = c-fst (c-fst z) let ?x = c-snd (c-fst z)let ?y = loc - upb ?n ?xhave S5-1: c-assoc-have-key (pr-gr ?y) (c-pair ?n ?x) = 0 by (rule loc-upb-main)have S5-2: c-assoc-value (pr-gr ?y) (c-pair ?n ?x) = univ-for-pr (c-pair ?n(x) by $(rule \ pr-gr-value)$ from S5-1 have S5-3: c-assoc-have-key (pr-gr ?y) (c-fst z) = 0 by simp from S5-2 A have S5-4: c-assoc-value (pr-gr ?y) (c-fst z) = c-snd z by simp from S5-3 S5-4 have $p \neq 2$?y = 0 by (simp add: p-def) thus $\exists y. p z y = 0$... \mathbf{next} assume $A: \exists y. p \ z \ y = 0$ then obtain y where S5-1: $p \ z \ y = 0$.. have S5-2: c-assoc-have-key (pr-gr y) (c-fst z) = 0**proof** (*rule ccontr*) **assume** A-1: c-assoc-have-key (pr-gr y) (c-fst z) $\neq 0$ then have $p \ z \ y = 1$ by (simp add: p-def) with S5-1 show False by auto qed then have S5-3: $p \ z \ y = (if \ c$ -assoc-value $(pr-gr \ y) \ (c$ -fst z) = c-snd z then (0::nat) else 1) by $(simp \ add: \ p-def)$ have S5-4: c-assoc-value (pr-gr y) (c-fst z) = c-snd z**proof** (*rule ccontr*) **assume** A-2: c-assoc-value (pr-gr y) (c-fst z) \neq c-snd z then have $p \ z \ y = 1$ by (simp add: p-def)

with S5-1 show False by auto qed have S5-5: c-is-sub-fun (pr-gr y) univ-for-pr by (rule pr-gr-1) from S5-5 S5-2 have S5-6: c-assoc-value (pr-gr y) (c-fst z) = univ-for-pr (c-fst z) by (rule c-is-sub-fun-lm-1) with S5-4 show univ-for-pr (c-fst z) = c-snd z by auto qed qed from S5 S4 have $A = \{z. \exists y. p z y = 0\}$ by auto then have A = fn-to-set p by (simp add: fn-to-set-def) moreover from p-is-pr have fn-to-set $p \in ce$ -sets by (rule ce-set-lm-1) ultimately have $A \in ce$ -sets by auto with A-def show ?thesis by auto qed

theorem univ-for-pr-tot-rec: total-recursive univ-for-pr **proof** – **have** c-graph univ-for-pr \in ce-sets **by** (rule univ-for-pr-tot-rec-lm) **then show** ?thesis **by** (unfold total-recursive-def1, auto) **ged**

7.7 Computable sets, Post's theorem

definition

 $computable :: nat set \Rightarrow bool where$ $computable = (\lambda \ A. \ A \in ce\text{-sets} \land -A \in ce\text{-sets})$ lemma computable-complement-1: computable $A \Longrightarrow$ computable (-A)proof assume computable Athen show ?thesis by (unfold computable-def, auto) qed lemma computable-complement-2: computable $(-A) \Longrightarrow$ computable Aproof -

assume computable (-A)then show ?thesis by (unfold computable-def, auto) ged

lemma computable-complement-3: (computable A) = (computable (-A)) by (unfold computable-def, auto)

theorem comp-impl-tot-rec: computable $A \implies total$ -recursive (chf A) **proof** – **assume** A: computable A **from** A **have** A1: $A \in ce$ -sets **by** (unfold computable-def, simp) **from** A **have** A2: $-A \in ce$ -sets **by** (unfold computable-def, simp) **define** p **where** $p \ x = c$ -pair $x \ 0$ **for** x**define** q **where** $q \ x = c$ -pair $x \ 1$ **for** x

from *p*-def have *p*-is-pr: $p \in PrimRec1$ unfolding *p*-def by prec from q-def have q-is-pr: $q \in PrimRec1$ unfolding q-def by prec define $U\theta$ where $U\theta = \{p \ x \mid x. x \in A\}$ define U1 where $U1 = \{q \ x \mid x. \ x \in -A\}$ from A1 p-is-pr have U0-ce: $U0 \in ce$ -sets by (unfold U0-def, rule ce-set-lm-7) from A2 q-is-pr have U1-ce: $U1 \in ce\text{-sets by}(unfold U1\text{-}def, rule ce\text{-set-lm-7})$ define U where $U = U0 \cup U1$ from U0-ce U1-ce have U-ce: $U \in ce\text{-sets}$ by (unfold U-def, rule ce-union) define V where V = c-graph (chf A) have V-1: $V = \{ c \text{-pair } x \text{ (chf } A x) \mid x. x \in UNIV \}$ by (simp add: V-def c-graph-def) **from** U0-def p-def have U0-1: $U0 = \{ c \text{-pair } x \ y \mid x \ y \text{.} x \in A \land y=0 \}$ by auto from U1-def q-def have U1-1: U1 = { c-pair $x y \mid x y. x \notin A \land y=1$ } by auto from U0-1 U1-1 U-def have U-1: $U = \{ c \text{-pair } x \ y \mid x \ y, \ (x \in A \land y=0) \lor (x \in A \lor y$ $\notin A \land y=1$ **by** *auto* from V-1 have V-2: $V = \{ c \text{-pair } x \ y \mid x \ y, \ y = chf \ A \ x \}$ by auto have $L1: \bigwedge x y$. $((x \in A \land y=0) \lor (x \notin A \land y=1)) = (y = chf A x)$ proof fix x yshow $((x \in A \land y=0) \lor (x \notin A \land y=1)) = (y = chf A x)$ by (unfold chf-def, auto) qed from V-2 U-1 L1 have U=V by simp with U-ce have V-ce: $V \in ce$ -sets by auto with V-def have c-graph $(chf A) \in ce\text{-sets by auto}$ then show ?thesis by (unfold total-recursive-def1) qed **theorem** tot-rec-impl-comp: total-recursive $(chf A) \Longrightarrow computable A$ proof **assume** A: total-recursive (chf A) then have A1: c-graph (chf A) \in ce-sets by (unfold total-recursive-def1) let ?U = c-graph (chf A) have $L1: ?U = \{ c \text{-pair } x (chf A x) \mid x. x \in UNIV \}$ by (simp add: c-graph-def) have L2: $\bigwedge x y$. $((x \in A \land y=0) \lor (x \notin A \land y=1)) = (y = chf A x)$ **proof** - fix x y show $((x \in A \land y=0) \lor (x \notin A \land y=1)) = (y = chf A x)$ **by**(*unfold chf-def*, *auto*) qed from L1 L2 have L3: $U = \{ c \text{-pair } x \ y \mid x \ y \text{.} (x \in A \land y=0) \lor (x \notin A \land y=0) \}$ y=1) by auto define p where p x = c-pair $x \theta$ for x define q where q x = c-pair x 1 for x have *p*-is-pr: $p \in PrimRec1$ unfolding *p*-def by prec have q-is-pr: $q \in PrimRec1$ unfolding q-def by prec define V where $V = \{ c \text{-pair } x \ y \mid x \ y \text{.} (x \in A \land y=0) \lor (x \notin A \land y=1) \}$ from V-def L3 A1 have V-ce: $V \in ce\text{-sets}$ by auto **from** V-def have $L_4: \forall z. (z \in V) = (\exists x y. z = c-pair x y \land ((x \in A \land y=0)))$ $\lor (x \notin A \land y=1))$ by blast have $L5: \bigwedge x. (p \ x \in V) = (x \in A)$

proof - **fix** x **show** $(p \ x \in V) = (x \in A)$ proof assume $A: p \ x \in V$ then have *c*-pair $x \ 0 \in V$ by (unfold *p*-def) with V-def obtain x1 y1 where L5-2: c-pair x 0 = c-pair x1 y1 and L5-3: $((x1 \in A \land y1=0) \lor (x1 \notin A \land y1=1))$ by auto from L5-2 have X-eq-X1: x=x1 by (rule c-pair-inj1) from L5-2 have Y1-eq-0: 0=y1 by (rule c-pair-inj2) from L5-3 X-eq-X1 Y1-eq-0 show $x \in A$ by auto \mathbf{next} assume $A: x \in A$ let ?z = c-pair $x \ \theta$ from A have L5-1: $\exists x1 y1$. c-pair $x \theta = c$ -pair $x1 y1 \land ((x1 \in A \land y1 = \theta))$ $\lor (x1 \notin A \land y1=1))$ by auto with V-def have c-pair $x \ 0 \in V$ by auto with *p*-def show $p \ x \in V$ by simp qed \mathbf{qed} then have A-eq: $A = \{x, p \ x \in V\}$ by auto from V-ce p-is-pr have { $x. p x \in V$ } \in ce-sets by (rule ce-set-lm-5) with A-eq have A-ce: $A \in ce$ -sets by simp have CA-eq: $-A = \{x. q \ x \in V\}$ proof – have $\bigwedge x. (q \ x \in V) = (x \notin A)$ **proof** - **fix** x **show** $(q \ x \in V) = (x \notin A)$ proof assume $A: q x \in V$ then have *c*-pair $x \ 1 \in V$ by (unfold *q*-def) with V-def obtain x1 y1 where L5-2: c-pair x 1 = c-pair x1 y1 and L5-3: $((x1 \in A \land y1=0) \lor (x1 \notin A \land y1=1))$ by auto from L5-2 have X-eq-X1: x=x1 by (rule c-pair-inj1) from L5-2 have Y1-eq-1: 1=y1 by (rule c-pair-inj2) from L5-3 X-eq-X1 Y1-eq-1 show $x \notin A$ by auto \mathbf{next} assume $A: x \notin A$ from A have L5-1: $\exists x_1 y_1$. c-pair $x_1 = c$ -pair $x_1 y_1 \land ((x_1 \in A \land A))$ $y1=0) \lor (x1 \notin A \land y1=1)$) by auto with V-def have c-pair $x \ 1 \in V$ by auto with *q*-def show $q \ x \in V$ by simp qed qed then show ?thesis by auto qed from V-ce q-is-pr have { $x. q x \in V$ } \in ce-sets by (rule ce-set-lm-5) with CA-eq have CA-ce: $-A \in ce\text{-sets}$ by simp from A-ce CA-ce show ?thesis by (simp add: computable-def) ged

theorem post-th-0: (computable A) = (total-recursive (chf A))

proof

assume computable A then show total-recursive (chf A) by (rule comp-impl-tot-rec) next

assume total-recursive (chf A) then show computable A by (rule tot-rec-impl-comp) qed

7.8 Universal computably enumerable set

definition

```
univ-ce :: nat set where
univ-ce = \{ c-pair n x \mid n x. x \in nat-to-ce-set n \}
lemma univ-for-pr-lm: univ-for-pr (c-pair n x) = (nat-to-pr n) x
by (simp add: univ-for-pr-def pr-conv-2-to-1-def)
```

theorem *univ-is-ce*: *univ-ce* \in *ce-sets* proof define A where A = c-graph univ-for-pr then have $A \in ce\text{-sets}$ by (simp add: univ-for-pr-tot-rec-lm) then have $\exists pA \in PrimRec2$. A = fn-to-set pA by (rule ce-set-lm-3) then obtain pA where pA-is-pr: $pA \in PrimRec2$ and S1: A = fn-to-set pAby auto from S1 have S2: $A = \{x. \exists y. pA \ x \ y = 0 \}$ by (simp add: fn-to-set-def) define p where $p \ z \ y = pA \ (c\text{-pair} \ (c\text{-fst} \ z) \ (c\text{-pair} \ (c\text{-snd} \ z) \ (c\text{-fst} \ y)))$ 0) (c-snd y) for z yfrom pA-is-pr have p-is-pr: $p \in PrimRec2$ unfolding p-def by prec have $\bigwedge z$. ($\exists n x. z = c$ -pair $n x \land x \in nat$ -to-ce-set n) = (c-snd $z \in nat$ -to-ce-set (c-fst z))proof fix z show $(\exists n x. z = c\text{-pair } n x \land x \in nat\text{-to-ce-set } n) = (c\text{-snd } z \in nat\text{-to-ce-set } n)$ nat-to-ce-set (c-fst z))proof **assume** $A: \exists n x. z = c$ -pair $n x \land x \in nat$ -to-ce-set nthen obtain n x where L1: z = c-pair $n x \land x \in nat$ -to-ce-set n by auto from L1 have L2: z = c-pair n x by auto from L1 have L3: $x \in nat\text{-to-ce-set } n$ by auto from L1 have L4: c-fst z = n by simp from L1 have L5: c-snd z = x by simp from L3 L4 L5 show c-snd $z \in nat-to-ce-set$ (c-fst z) by auto \mathbf{next} **assume** A: c-snd $z \in nat-to-ce-set$ (c-fst z) let ?n = c-fst z let ?x = c-snd z have L1: z = c-pair ?n ?x by simp from L1 A have z = c-pair ?n ?x \land ?x \in nat-to-ce-set ?n by auto **thus** $\exists n \ x. \ z = c$ -pair $n \ x \land x \in nat$ -to-ce-set n by blast qed qed

then have { c-pair $n x \mid n x$. $x \in nat$ -to-ce-set n } = { z. c-snd $z \in nat$ -to-ce-set (c-fst z)} by auto

then have S3: univ-ce = { z. c-snd $z \in nat-to-ce-set (c-fst z)$ } by (simp add: univ-ce-def)

have S4: $\bigwedge z$. $(c\text{-snd } z \in nat\text{-}to\text{-}ce\text{-}set (c\text{-}fst z)) = (\exists y, p z y = 0)$ proof -

fix z show $(c\text{-snd } z \in \text{nat-to-ce-set } (c\text{-fst } z)) = (\exists y. p \ z \ y = 0)$

proof

assume A: c-snd $z \in nat-to-ce-set$ (c-fst z)

have nat-to-ce-set (c-fst z) = { $x : \exists y. (nat-to-pr (c-fst z)) (c-pair x y) = 0$ } by (simp add: nat-to-ce-set-lm-1)

with A obtain u where S4-1: (nat-to-pr (c-fst z)) (c-pair (c-snd z) u) = 0by *auto*

then have S4-2: univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) u)) = 0 by (simp add: univ-for-pr-lm)

from A-def have S4-3: $A = \{ c\text{-pair } x (univ\text{-for-pr } x) \mid x. x \in UNIV \}$ by (simp add: c-graph-def)

then have S_{4-4} : $\bigwedge x$. *c*-pair x (univ-for-pr x) $\in A$ by auto

then have c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) (univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) u))) $\in A$ by auto

with S4-2 have S4-5: c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) $0 \in A$ by auto

with S2 obtain v where S4-6: pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) 0) v = 0

by auto define y where y = c-pair u v from y-def have S4-7: u = c-fst y by simp from y-def have S4-8: v = c-snd y by simp from S4-6 S4-7 S4-8 p-def have $p \ z \ y = 0$ by simp thus $\exists y. p z y = 0$... \mathbf{next} assume $A: \exists y. p \ z \ y = 0$ then obtain y where S4-1: p z y = 0.. from S4-1 p-def have S4-2: pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)) 0 (c-snd y) = 0 by simp with S2 have S4-3: c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) $0 \in$ A by auto with A-def have c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) $0 \in$ c-graph univ-for-pr by simp then have S_{4-4} : 0 = univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) **by** (*rule c-graph-lm-1*) then have S4-5: univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) = θ by *auto*

then have S4-6: (nat-to-pr (c-fst z)) (c-pair (c-snd z) (c-fst y)) = 0 by (simp add: univ-for-pr-lm)

then have S4-7: $\exists y$. (nat-to-pr (c-fst z)) (c-pair (c-snd z) y) = 0 ...

have S4-8: nat-to-ce-set (c-fst z) = { $x : \exists y. (nat-to-pr (c-fst z)) (c-pair x y) = 0$ } by (simp add: nat-to-ce-set-lm-1)

from S4-7 have S4-9: c-snd $z \in \{x : \exists y. (nat-to-pr (c-fst z)) (c-pair x y)$

= 0 } by auto with S4-8 show c-snd $z \in nat-to-ce-set$ (c-fst z) by auto qed qed with S3 have univ-ce = $\{z, \exists y, p \ z \ y = 0\}$ by auto then have $univ-ce = fn-to-set \ p \ by (simp \ add: fn-to-set-def)$ moreover from *p*-is-pr have fn-to-set $p \in ce$ -sets by (rule ce-set-lm-1) ultimately show $univ-ce \in ce\text{-sets}$ by autoqed **lemma** univ-ce-lm-1: $(c\text{-pair } n \ x \in univ\text{-}ce) = (x \in nat\text{-}to\text{-}ce\text{-}set \ n)$ proof **from** *univ-ce-def* **have** *S1*: *univ-ce* = { $z \, . \exists n x. z = c$ -*pair* $n x \land x \in nat$ -*to-ce-set* n **by** *auto* have S2: $(\exists n1 \ x1. \ c\text{-pair} \ n \ x = c\text{-pair} \ n1 \ x1 \land x1 \in nat\text{-to-ce-set} \ n1) = (x \in a)$ nat-to-ce-set n) proof **assume** $\exists n1 \ x1$. *c-pair* $n \ x = c$ -*pair* $n1 \ x1 \land x1 \in nat$ -to-ce-set n1then obtain n1 x1 where L1: c-pair n x = c-pair n1 x1 and L2: x1 \in $nat-to-ce-set \ n1$ by autofrom L1 have L3: n = n1 by (rule c-pair-inj1) from L1 have L4: x = x1 by (rule c-pair-inj2) from L2 L3 L4 show $x \in nat\text{-}to\text{-}ce\text{-}set \ n$ by auto \mathbf{next} **assume** A: $x \in nat-to-ce-set n$ then have c-pair n x = c-pair $n x \wedge x \in nat$ -to-ce-set n by auto **thus** \exists n1 x1. c-pair n x = c-pair n1 x1 \land x1 \in nat-to-ce-set n1 by blast ged with S1 show ?thesis by auto \mathbf{qed} **theorem** univ-ce-is-not-comp1: -univ-ce \notin ce-sets **proof** (*rule ccontr*) assume $\neg - univ ce \notin ce$ -sets then have A: - univ-ce \in ce-sets by auto define p where p x = c-pair x x for x have *p*-is-pr: $p \in PrimRec1$ unfolding *p*-def by prec define A where $A = \{ x. p \ x \in - univ ce \}$ from A p-is-pr have { $x. p x \in -$ univ-ce } \in ce-sets by (rule ce-set-lm-5) with A-def have S1: $A \in ce\text{-sets}$ by auto then have $\exists n. A = nat-to-ce-set n$ by (rule nat-to-ce-set-srj) then obtain n where S2: A = nat-to-ce-set n.. from A-def have $(n \in A) = (p \ n \in -univ-ce)$ by auto with *p*-def have $(n \in A) = (c\text{-pair } n \ n \notin univ\text{-}ce)$ by auto with univ-ce-def univ-ce-lm-1 have $(n \in A) = (n \notin nat-to-ce-set n)$ by auto with S2 have $(n \in A) = (n \notin A)$ by auto thus False by auto qed

theorem univ-ce-is-not-comp2: ¬ total-recursive (chf univ-ce)
proof
 assume total-recursive (chf univ-ce)
 then have computable univ-ce by (rule tot-rec-impl-comp)
 then have - univ-ce ∈ ce-sets by (unfold computable-def, auto)
 with univ-ce-is-not-comp1 show False by auto
 qed
theorem univ-ce-is-not-comp3: ¬ computable univ-ce
proof (rule ccontr)
 assume ¬ ¬ computable univ-ce
 then have computable univ-ce by auto
 then have total-recursive (chf univ-ce) by (rule comp-impl-tot-rec)
 with univ-ce-is-not-comp2 show False by auto
 qed

7.9 s-1-1 theorem, one-one and many-one reducibilities

definition

index-of-r-to-l :: nat where index-of-r-to-l = pair-by-index (pair-by-index index-of-c-fst (comp-by-index index-of-c-fst index-of-c-snd)) (comp-by-index index-of-c-snd index-of-c-snd)

lemma index-of-r-to-l-lm: nat-to-pr index-of-r-to-l (c-pair x (c-pair y z)) = c-pair (c-pair x y) zapply(unfold index-of-r-to-l-def)

apply(simp add: pair-by-index-main) apply(unfold c-f-pair-def) apply(simp add: index-of-c-fst-main) apply(simp add: comp-by-index-main) apply(simp add: index-of-c-fst-main) apply(simp add: index-of-c-snd-main) done

definition

s-ce :: nat \Rightarrow nat \Rightarrow nat where s-ce == ($\lambda \ e \ x. \ s1-1 \ (comp-by-index \ e \ index-of-r-to-l) \ x$)

lemma *s-ce-is-pr*: *s-ce* \in *PrimRec2* unfolding *s-ce-def* using *comp-by-index-is-pr s1-1-is-pr* by *prec*

lemma s-ce-inj: s-ce e1 x1 = s-ce e2 $x2 \implies e1 = e2 \land x1 = x2$ **proof** – **let** ?n1 = index-of-r-to-l **assume** s-ce e1 x1 = s-ce e2 x2 **then have** s1-1 (comp-by-index e1 ?n1) x1 = s1-1 (comp-by-index e2 ?n1) x2**by** (unfold s-ce-def)

then have L1: comp-by-index e1 ?n1 = comp-by-index e2 ?n1 \wedge x1=x2 by (rule *s1-1-inj*) from L1 have comp-by-index e1 ?n1 = comp-by-index e2 ?n1 ... then have e1 = e2 by (rule comp-by-index-inj1) moreover from L1 have x1 = x2 by *auto* ultimately show ?thesis by auto qed **lemma** s-ce-inj1: s-ce e1 x = s-ce e2 $x \Longrightarrow e1 = e2$ proof – assume s-ce e1 x = s-ce e2 xthen have $e1 = e2 \land x = x$ by (rule s-ce-inj) then show e1 = e2 by *auto* qed **lemma** s-ce-inj2: s-ce e x1 = s-ce e $x2 \implies x1 = x2$ proof assume s-ce e x1 = s-ce e x2then have $e=e \land x1=x2$ by (rule s-ce-inj) then show $x_1 = x_2$ by *auto* qed **theorem** s_{1-1-th_1} : $\forall n x y$. $((nat-to-pr n) (c-pair x y)) = (nat-to-pr (s_{1-1} n x)) y$ **proof** (rule allI, rule allI, rule allI) fix n x y show nat-to-pr n (c-pair x y) = nat-to-pr (s1-1 n x) yproof have $(\lambda y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n x)$ by (rule s1-1-th) then show ?thesis by (simp add: fun-eq-iff) qed qed **lemma** s-lm: $(nat-to-pr (s-ce \ e \ x)) (c-pair \ y \ z) = (nat-to-pr \ e) (c-pair \ x)$ y) z)proof let ?n1 = index-of-r-to-lhave $(nat-to-pr (s-ce \ e \ x)) (c-pair \ y \ z) = nat-to-pr (s1-1 \ (comp-by-index \ e \ ?n1)$ x) (c-pair y z) by (unfold s-ce-def, simp) also have $\ldots = (nat-to-pr \ (comp-by-index \ e \ ?n1)) \ (c-pair \ x \ (c-pair \ y \ z))$ by (simp add: s1-1-th1) also have $\ldots = (nat\text{-}to\text{-}pr \ e) \ ((nat\text{-}to\text{-}pr \ ?n1) \ (c\text{-}pair \ x \ (c\text{-}pair \ y \ z)))$ by (simpadd: comp-by-index-main) finally show ?thesis by (simp add: index-of-r-to-l-lm) qed **theorem** s-ce-1-1-th: $(c\text{-pair } x \ y \in \text{nat-to-ce-set } e) = (y \in \text{nat-to-ce-set } (s\text{-ce } e \ x))$ proof **assume** A: c-pair $x y \in nat$ -to-ce-set e then obtain z where L1: $(nat-to-pr \ e) \ (c-pair \ (c-pair \ x \ y) \ z) = 0$

by (auto simp add: nat-to-ce-set-lm-1)

have $(nat-to-pr \ (s-ce \ e \ x)) \ (c-pair \ y \ z) = 0$ by $(simp \ add: \ s-lm \ L1)$ with nat-to-ce-set-lm-1 show $y \in nat-to-ce-set \ (s-ce \ e \ x)$ by autonext

assume A: $y \in nat\text{-}to\text{-}ce\text{-}set$ (s-ce e x)

then obtain z where L1: $(nat-to-pr (s-ce \ e \ x)) (c-pair \ y \ z) = 0$ by $(auto \ simp \ add: \ nat-to-ce-set-lm-1)$

then have $(nat-to-pr \ e) \ (c-pair \ (c-pair \ x \ y) \ z) = 0$ by $(simp \ add: \ s-lm)$ with nat-to-ce-set-lm-1 show $c-pair \ x \ y \in nat-to-ce-set \ e$ by autoqed

definition

one-reducible-to-via :: (nat set) \Rightarrow (nat set) \Rightarrow (nat \Rightarrow nat) \Rightarrow bool where one-reducible-to-via = ($\lambda \ A \ B \ f$. total-recursive $f \land$ inj $f \land$ ($\forall x. (x \in A) = (f \ x \in B)$))

definition

one-reducible-to :: (nat set) \Rightarrow (nat set) \Rightarrow bool where one-reducible-to = ($\lambda \land B$. $\exists f$. one-reducible-to-via $\land B f$)

definition

 $\begin{array}{l} many-reducible-to-via :: (nat set) \Rightarrow (nat set) \Rightarrow (nat \Rightarrow nat) \Rightarrow bool \ \textbf{where} \\ many-reducible-to-via = (\lambda \ A \ B \ f. \ total-recursive \ f \ \land \ (\forall \ x. \ (x \in A) = (f \ x \in B))) \end{array}$

definition

many-reducible-to :: (nat set) \Rightarrow (nat set) \Rightarrow bool where many-reducible-to = ($\lambda \ A \ B. \exists \ f.$ many-reducible-to-via $A \ B \ f$)

lemma one-reducible-to-via-trans: [] one-reducible-to-via A B f; one-reducible-to-via $B \ C \ g \parallel \implies one-reducible-to-via \ A \ C \ (g \ o \ f)$ proof – assume A1: one-reducible-to-via A B f assume A2: one-reducible-to-via $B \ C \ g$ from A1 have f-tr: total-recursive f by (unfold one-reducible-to-via-def, auto) from A1 have f-inj: inj f by (unfold one-reducible-to-via-def, auto) from A1 have $L1: \forall x. (x \in A) = (f x \in B)$ by (unfold one-reducible-to-via-def, auto) from A2 have g-tr: total-recursive g by (unfold one-reducible-to-via-def, auto) from A2 have g-inj: inj g by (unfold one-reducible-to-via-def, auto) from A2 have $L2: \forall x. (x \in B) = (g x \in C)$ by (unfold one-reducible-to-via-def, auto) **from** g-tr f-tr **have** fg-tr: total-recursive $(g \ o \ f)$ **by** (rule comp-tot-rec) **from** *g*-inj *f*-inj **have** *fg*-inj: inj (*g* o *f*) **by** (*rule inj*-compose) from L1 L2 have L3: $(\forall x. (x \in A) = ((g \circ f) x \in C))$ by auto with fg-tr fg-inj show ?thesis by (unfold one-reducible-to-via-def, auto) qed

lemma one-reducible-to-trans: [[one-reducible-to A B; one-reducible-to B C]] \Longrightarrow one-reducible-to A C

proof assume one-reducible-to A B then obtain f where A1: one-reducible-to-via A B f unfolding one-reducible-to-def by auto assume one-reducible-to B Cthen obtain q where A2: one-reducible-to-via B C q unfolding one-reducible-to-def by auto from A1 A2 have one-reducible-to-via A C (g o f) by (rule one-reducible-to-via-trans) then show ?thesis unfolding one-reducible-to-def by auto qed **lemma** one-reducible-to-via-refl: one-reducible-to-via A A $(\lambda x, x)$ proof have is-pr: $(\lambda \ x. \ x) \in PrimRec1$ by (rule pr-id1-1) then have is-tr: total-recursive ($\lambda x. x$) by (rule pr-is-total-rec) have is-inj: inj $(\lambda x. x)$ by simp have $L1: \forall x. (x \in A) = (((\lambda x. x) x) \in A)$ by simp with is-tr is-inj show ?thesis by (unfold one-reducible-to-via-def, auto) qed lemma one-reducible-to-refl: one-reducible-to A A proof – have one-reducible-to-via A A ($\lambda x. x$) by (rule one-reducible-to-via-refl) then show ?thesis by (unfold one-reducible-to-def, auto) qed lemma many-reducible-to-via-trans: [many-reducible-to-via A B f; many-reducible-to-via $B \ C \ g \ \implies many-reducible-to-via \ A \ C \ (g \ o \ f)$ proof assume A1: many-reducible-to-via A B f assume A2: many-reducible-to-via B C gfrom A1 have f-tr: total-recursive f by (unfold many-reducible-to-via-def, auto) from A1 have $L1: \forall x. (x \in A) = (f x \in B)$ by (unfold many-reducible-to-via-def, auto) from A2 have g-tr: total-recursive g by (unfold many-reducible-to-via-def, auto) from A2 have $L2: \forall x. (x \in B) = (q x \in C)$ by (unfold many-reducible-to-via-def, auto) **from** *g*-*tr f*-*tr* **have** *fg*-*tr*: *total*-*recursive* (*g o f*) **by** (*rule comp*-*tot*-*rec*) from L1 L2 have L3: $(\forall x. (x \in A) = ((g \circ f) x \in C))$ by auto with fq-tr show ?thesis by (unfold many-reducible-to-via-def, auto) \mathbf{qed} lemma many-reducible-to-trans: [many-reducible-to A B; many-reducible-to B C $] \implies many-reducible-to A C$ proof assume many-reducible-to A Bthen obtain f where A1: many-reducible-to-via A B f

unfolding many-reducible-to-def by auto

assume many-reducible-to B C

then obtain q where A2: many-reducible-to-via B C q unfolding many-reducible-to-def by auto from A1 A2 have many-reducible-to-via A C (g o f) by (rule many-reducible-to-via-trans) then show ?thesis unfolding many-reducible-to-def by auto qed **lemma** one-reducibility-via-is-many: one-reducible-to-via $A B f \Longrightarrow$ many-reducible-to-via A B fproof assume A: one-reducible-to-via A B f from A have f-tr: total-recursive f by (unfold one-reducible-to-via-def, auto) from A have $\forall x. (x \in A) = (f x \in B)$ by (unfold one-reducible-to-via-def, auto) with *f*-tr show *?thesis* by (unfold many-reducible-to-via-def, auto) qed **lemma** one-reducibility-is-many: one-reducible-to $A \ B \Longrightarrow$ many-reducible-to $A \ B$ proof assume one-reducible-to A Bthen obtain f where A: one-reducible-to-via A B funfolding one-reducible-to-def by auto then have many-reducible-to-via A B f by (rule one-reducibility-via-is-many) then show ?thesis unfolding many-reducible-to-def by auto qed **lemma** many-reducible-to-via-refl: many-reducible-to-via A A $(\lambda x. x)$ proof have one-reducible-to-via $A A (\lambda x. x)$ by (rule one-reducible-to-via-refl) then show ?thesis by (rule one-reducibility-via-is-many) qed lemma many-reducible-to-refl: many-reducible-to A A proof – have one-reducible-to A A by (rule one-reducible-to-refl) then show ?thesis by (rule one-reducibility-is-many) qed **theorem** *m*-red-to-comp: \llbracket many-reducible-to A B; computable B $\rrbracket \Longrightarrow$ computable Α proof assume many-reducible-to A B then obtain f where A1: many-reducible-to-via A B f $unfolding {\it many-reducible-to-def by auto}$ from A1 have f-tr: total-recursive f by (unfold many-reducible-to-via-def, auto) from A1 have $L1: \forall x. (x \in A) = (fx \in B)$ by (unfold many-reducible-to-via-def, auto) assume computable Bthen have L2: total-recursive (chf B) by (rule comp-impl-tot-rec) have L3: chf A = (chf B) o f

proof fix x

have chf A x = (chf B) (f x)proof cases assume $A: x \in A$ then have L3-1: chf A x = 0 by (simp add: chf-lm-2) from A L1 have $f x \in B$ by *auto* then have L3-2: (chf B) (f x) = 0 by $(simp \ add: chf-lm-2)$ from L3-1 L3-2 show chf A x = (chf B) (f x) by auto \mathbf{next} assume $A: x \notin A$ then have L3-1: chf A x = 1 by (simp add: chf-lm-3)from A L1 have $f x \notin B$ by *auto* then have L3-2: (chf B) (f x) = 1 by (simp add: chf-lm-3)from L3-1 L3-2 show chf A x = (chf B) (f x) by auto qed then show $chf A x = (chf B \circ f) x$ by auto qed from L2 f-tr have total-recursive (chf $B \circ f$) by (rule comp-tot-rec) with L3 have total-recursive (chf A) by auto then show ?thesis by (rule tot-rec-impl-comp) qed **lemma** many-reducible-lm-1: many-reducible-to univ-ce $A \Longrightarrow \neg$ computable A **proof** (*rule ccontr*) assume A1: many-reducible-to univ-ce A assume $\neg \neg$ computable A then have A2: computable A by auto from A1 A2 have computable univ-ce by (rule m-red-to-comp) with univ-ce-is-not-comp3 show False by auto qed **lemma** one-reducible-lm-1: one-reducible-to univ-ce $A \Longrightarrow \neg$ computable A proof assume one-reducible-to univ-ce A then have many-reducible-to univ-ce A by (rule one-reducibility-is-many) then show ?thesis by (rule many-reducible-lm-1) qed **lemma** one-reducible-lm-2: one-reducible-to-via (nat-to-ce-set n) univ-ce (λx . c-pair n xproof define f where f x = c-pair n x for x have *f*-is-pr: $f \in PrimRec1$ unfolding *f*-def by prec then have *f*-tr: total-recursive *f* by (rule pr-is-total-rec) have f-inj: inj f**proof** (*rule injI*) fix x y assume A: f x = f y

then have *c*-pair n x = c-pair n y by (unfold *f*-def) then show x = y by (rule *c*-pair-inj2)

 \mathbf{qed}

have $\forall x. (x \in (nat-to-ce-set n)) = (f x \in univ-ce)$ proof fix x show $(x \in nat-to-ce-set n) = (f x \in univ-ce)$ by (unfold f-def, simp add: univ-ce-lm-1)qed

with f-tr f-inj show ?thesis by (unfold f-def, unfold one-reducible-to-via-def, auto)

qed

lemma one-reducible-lm-3: one-reducible-to (nat-to-ce-set n) univ-ce proof –

have one-reducible-to-via (nat-to-ce-set n) univ-ce (λx . c-pair n x) by (rule one-reducible-lm-2)

then show *?thesis* by (*unfold one-reducible-to-def, auto*) qed

lemma one-reducible-lm-4: $A \in ce\text{-sets} \implies one\text{-reducible-to } A \text{ univ-ce}$ **proof** – **assume** $A \in ce\text{-sets}$ **then have** $\exists n. A = nat\text{-to-ce-set } n$ **by** (rule nat-to-ce-set-srj) **then obtain** n where A = nat-to-ce-set n **by** auto with one-reducible-lm-3 show ?thesis by auto **qed**

7.10 One-complete sets

definition

one-complete :: nat set \Rightarrow bool where one-complete = ($\lambda \ A$. $A \in$ ce-sets \land ($\forall \ B$. $B \in$ ce-sets \longrightarrow one-reducible-to $B \land A$))

theorem univ-is-complete: one-complete univ-ce proof (unfold one-complete-def) show univ-ce \in ce-sets \land ($\forall B. B \in$ ce-sets \longrightarrow one-reducible-to B univ-ce) proof show univ-ce \in ce-sets by (rule univ-is-ce) next show $\forall B. B \in$ ce-sets \longrightarrow one-reducible-to B univ-ce proof (rule allI, rule impI) fix B assume $B \in$ ce-sets then show one-reducible-to B univ-ce by (rule one-reducible-lm-4) qed qed qed

7.11 Index sets, Rice's theorem

definition

```
index-set :: nat set \Rightarrow bool where
index-set = (\lambda \ A. \ \forall \ n \ m. \ n \in A \land (nat-to-ce-set \ n = nat-to-ce-set \ m) \longrightarrow m \in A)
```

lemma index-set-lm-1: \llbracket index-set A; $n \in A$; nat-to-ce-set n = nat-to-ce-set $m \rrbracket$ $\implies m \in A$ proof assume A1: index-set A assume $A2: n \in A$ **assume** A3: nat-to-ce-set n = nat-to-ce-set mfrom A2 A3 have L1: $n \in A \land (nat-to-ce-set \ n = nat-to-ce-set \ m)$ by auto from A1 have L2: $\forall n m. n \in A \land (nat\text{-}to\text{-}ce\text{-}set n = nat\text{-}to\text{-}ce\text{-}set m) \longrightarrow m$ $\in A$ by (unfold index-set-def) from L1 L2 show ?thesis by auto qed **lemma** index-set-lm-2: index-set $A \implies$ index-set (-A)proof assume A: index-set A show index-set (-A)**proof** (unfold index-set-def) **show** $\forall n \ m. \ n \in -A \land nat-to-ce-set \ n = nat-to-ce-set \ m \longrightarrow m \in -A$ **proof** (rule allI, rule allI, rule impI) fix n m assume $A1: n \in -A \land nat\text{-to-ce-set } n = nat\text{-to-ce-set } m$ from A1 have A2: $n \in -A$ by auto from A1 have A3: nat-to-ce-set m = nat-to-ce-set n by auto show $m \in -A$ proof assume $m \in A$ from A this A3 have $n \in A$ by (rule index-set-lm-1) with A2 show False by auto qed qed qed qed **lemma** Rice-lm-1: [[index-set A; $A \neq \{\}$; $A \neq UNIV$; $\exists n \in A$. nat-to-ce-set n = $\{\} \parallel \implies one\-reducible\-to\ univ\-ce\ (-A)$ proof assume A1: index-set A assume $A2: A \neq \{\}$ assume $A3: A \neq UNIV$ assume $\exists n \in A$. nat-to-ce-set $n = \{\}$ then obtain e-0 where e-0-in-A: $e-0 \in A$ and e-0-empty: nat-to-ce-set e-0 ={} by auto from e-0-in-A A3 obtain e-1 where e-1-not-in-A: $e-1 \in (-A)$ by auto with e-0-in-A have e-0-neq-e-1: $e-0 \neq e-1$ by auto have nat-to-ce-set $e-0 \neq nat$ -to-ce-set e-1proof assume nat-to-ce-set e-0 = nat-to-ce-set e-1with A1 e-0-in-A have $e-1 \in A$ by (rule index-set-lm-1) with e-1-not-in-A show False by auto

qed

with e-0-empty have e1-not-empty: nat-to-ce-set e-1 \neq {} by auto define we-1 where we-1 = nat-to-ce-set e-1 from e1-not-empty have we-1-not-empty: we-1 \neq {} by (unfold we-1-def) define r where $r = univ-ce \times we-1$ have loc-lm-1: $\bigwedge x. x \in univ-ce \implies \forall y. (y \in we-1) = ((x,y) \in r)$ by (unfold r-def, auto) have loc-lm-2: $\bigwedge x. x \notin univ-ce \implies \forall y. (y \in \{\}) = ((x,y) \in r)$ by (unfold r-def, auto) have r-ce: $r \in ce$ -rels **proof** (unfold r-def, rule ce-rel-lm-29) show univ- $ce \in ce$ -sets by (rule univ-is-ce) show we-1 \in ce-sets by (unfold we-1-def, rule nat-to-ce-set-into-ce) qed define we-n where we-n = ce-rel-to-set rfrom r-ce have we-n-ce: we-n \in ce-sets by (unfold we-n-def, rule ce-rel-lm-6) then have \exists *n.* we-*n* = *nat-to-ce-set n* by (*rule nat-to-ce-set-srj*) then obtain *n* where we-n-df1: we-n = nat-to-ce-set *n* by auto define f where f x = s-ce n x for x from s-ce-is-pr have f-is-pr: $f \in PrimRec1$ unfolding f-def by prec then have *f*-tr: total-recursive *f* by (rule pr-is-total-rec) have f-inj: inj f**proof** (*rule injI*) fix x yassume f x = f ythen have s-ce n x = s-ce n y by (unfold f-def) then show x = y by (rule s-ce-inj2) ged have loc-lm-3: $\forall x y$. (c-pair $x y \in we-n$) = ($y \in nat-to-ce-set(f x)$) **proof** (*rule allI*, *rule allI*) fix x y show (c-pair x y \in we-n) = (y \in nat-to-ce-set (f x)) by (unfold f-def, unfold we-n-df1, simp add: s-ce-1-1-th) qed from A1 have loc-lm-4: index-set (-A) by (rule index-set-lm-2) have *loc-lm-5*: $\forall x. (x \in univ-ce) = (f x \in -A)$ **proof fix** x show $(x \in univ-ce) = (f x \in -A)$ proof assume $A: x \in univ-ce$ then have $S1: \forall y. (y \in we-1) = ((x,y) \in r)$ by (rule loc-lm-1) from ce-rel-lm-12 have $\forall y$. (c-pair $x y \in ce\text{-rel-to-set } r$) = $((x,y) \in r)$ by autothen have $\forall y. ((x,y) \in r) = (c\text{-pair } x y \in we\text{-}n)$ by (unfold we-n-def, auto) with S1 have $\forall y. (y \in we-1) = (c\text{-pair } x y \in we-n)$ by auto with loc-lm-3 have $\forall y. (y \in we-1) = (y \in nat-to-ce-set (f x))$ by auto then have S2: we-1 = nat-to-ce-set (f x) by auto then have nat-to-ce-set e-1 = nat-to-ce-set (f x) by (unfold we-1-def) with *loc-lm-4* e-1-not-in-A show $f x \in -A$ by (rule index-set-lm-1) next show $f x \in -A \implies x \in univ\text{-}ce$

proof (*rule ccontr*) assume fx-in-A: $f x \in -A$ assume x-not-in-univ: $x \notin univ-ce$ then have $S1: \forall y. (y \in \{\}) = ((x,y) \in r)$ by (rule loc-lm-2) from ce-rel-lm-12 have $\forall y$. (c-pair $x y \in ce\text{-rel-to-set } r$) = $((x,y) \in r)$ by autothen have $\forall y. ((x,y) \in r) = (c\text{-pair } x \ y \in we\text{-}n)$ by (unfold we-n-def, auto) with S1 have $\forall y. (y \in \{\}) = (c\text{-pair } x \ y \in we\text{-}n)$ by auto with loc-lm-3 have $\forall y. (y \in \{\}) = (y \in nat\text{-to-ce-set } (f x))$ by auto then have S2: $\{\} = nat\text{-}to\text{-}ce\text{-}set (f x)$ by auto then have *nat-to-ce-set* e - 0 = nat-to-ce-set (f x) by (unfold e-0-empty) with A1 e-0-in-A have $f x \in A$ by (rule index-set-lm-1) with fx-in-A show False by auto qed qed qed with f-tr f-inj have one-reducible-to-via univ-ce (-A) f by (unfold one-reducible-to-via-def, auto) then show ?thesis by (unfold one-reducible-to-def, auto) \mathbf{qed} **lemma** Rice-lm-2: [[index-set A; $A \neq \{\}$; $A \neq UNIV$; $n \in A$; nat-to-ce-set n = $\{\} \parallel \implies one\-reducible\-to\ univ\-ce\ (-A)$ proof assume A1: index-set A assume $A2: A \neq \{\}$ assume A3: $A \neq UNIV$ assume $A_4: n \in A$ assume A5: nat-to-ce-set $n = \{\}$ from A4 A5 have S1: $\exists n \in A$. nat-to-ce-set $n = \{\}$ by auto from A1 A2 A3 S1 show ?thesis by (rule Rice-lm-1) \mathbf{qed} **theorem** Rice-1: $[\![index-set A; A \neq \{\}; A \neq UNIV]\!] \implies one-reducible-to univ-ce$ $A \lor one-reducible-to univ-ce (-A)$ proof assume A1: index-set A assume $A2: A \neq \{\}$ assume A3: $A \neq UNIV$ from ce-empty have $\exists n. \{\} = nat-to-ce-set n by (rule nat-to-ce-set-srj)$ then obtain *n* where *n*-empty: *nat*-to-ce-set $n = \{\}$ by auto show ?thesis **proof** cases assume $A: n \in A$ from A1 A2 A3 A n-empty have one-reducible-to univ-ce (-A) by (rule Rice-lm-2) then show ?thesis by auto next

assume $n \notin A$ then have $A: n \in -A$ by *auto* from A1 have S1: index-set (-A) by (rule index-set-lm-2) from A3 have $S2: -A \neq \{\}$ by auto from A2 have $S3: -A \neq UNIV$ by auto from S1 S2 S3 A n-empty have one-reducible-to univ-ce (-(-A)) by (rule Rice-lm-2) then have one-reducible-to univ-ce A by simp then show ?thesis by auto qed qed **theorem** Rice-2: \llbracket index-set A; $A \neq \{\}$; $A \neq UNIV \rrbracket \Longrightarrow \neg$ computable A proof assume A1: index-set A assume $A2: A \neq \{\}$ assume A3: $A \neq UNIV$ **from** A1 A2 A3 have one-reducible-to univ-ce $A \lor$ one-reducible-to univ-ce (-A) by (rule Rice-1) then have S1: \neg one-reducible-to univ-ce $A \longrightarrow$ one-reducible-to univ-ce (-A)by auto show ?thesis **proof** cases assume one-reducible-to univ-ce A then show \neg computable A by (rule one-reducible-lm-1) next assume \neg one-reducible-to univ-ce A with S1 have one-reducible-to univ-ce (-A) by auto then have \neg computable (-A) by (rule one-reducible-lm-1) with computable-complement-3 show \neg computable A by auto qed qed **theorem** Rice-3: $[C \subseteq ce\text{-sets}; computable \{ n. nat-to-ce\text{-set} n \in C \}]] \implies C =$ $\{\} \lor C = ce\text{-sets}$ **proof** (rule ccontr) assume A1: $C \subseteq ce\text{-sets}$ assume A2: computable { n. nat-to-ce-set $n \in C$ } assume $A3: \neg (C = \{\} \lor C = ce\text{-sets})$ from A3 have A4: $C \neq \{\}$ by auto from A3 have A5: $C \neq ce\text{-sets}$ by auto define A where $A = \{ n. nat-to-ce-set n \in C \}$ have S1: index-set A **proof** (*unfold index-set-def*) **show** $\forall n \ m. \ n \in A \land nat-to-ce-set \ n = nat-to-ce-set \ m \longrightarrow m \in A$ **proof** (rule allI, rule allI, rule impI) fix n m assume A1-1: $n \in A \land nat-to-ce-set n = nat-to-ce-set m$ from A1-1 have $n \in A$ by *auto* then have S1-1: nat-to-ce-set $n \in C$ by (unfold A-def, auto) from A1-1 have nat-to-ce-set n = nat-to-ce-set m by auto

```
with S1-1 have nat-to-ce-set m \in C by auto
    then show m \in A by (unfold A-def, auto)
   qed
 qed
 have S2: A \neq \{\}
 proof -
   from A4 obtain B where S2-1: B \in C by auto
   with A1 have B \in ce\text{-sets} by auto
   then have \exists n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
   then obtain n where B = nat-to-ce-set n..
   with S2-1 have nat-to-ce-set n \in C by auto
   then show ?thesis by (unfold A-def, auto)
 qed
 have S3: A \neq UNIV
 proof –
   from A1 A5 obtain B where S2-1: B \notin C and S2-2: B \in ce\text{-sets by auto}
   from S2-2 have \exists n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
   then obtain n where B = nat-to-ce-set n..
   with S2-1 have nat-to-ce-set n \notin C by auto
   then show ?thesis by (unfold A-def, auto)
 qed
 from S1 S2 S3 have \neg computable A by (rule Rice-2)
 with A2 show False unfolding A-def by auto
qed
```

 \mathbf{end}

References

- [1] Rogers. Theory of recursive functions and effective computatibility. 1967.
- [2] Soare. Recursively enumerable sets and degrees. 1987.