Recursion Theory |

Michael Nedzelsky
March 17, 2025

Abstract

This document presents the formalization of introductory material
from recursion theory — definitions and basic properties of primitive
recursive functions, Cantor pairing function and computably enumer-
able sets (including a proof of existence of a one-complete computably
enumerable set and a proof of the Rice’s theorem).

Contents

1

Cantor pairing function
1.1 Pairing function o
1.2 Inverse mapping o .o

Primitive recursive functions

2.1 Basic definitions o
2.2 Bounded least operator 0L
2.3 Examples

Primitive recursive coding of lists of natural numbers

Primitive recursive functions of one variable

4.1 Alternative definition of primitive recursive functions of one
variable

4.2 The scheme datatype

4.3 Indexes of primitive recursive functions of one variables

4.4 s-1-1 theorem for primitive recursive functions of one variable

Finite sets

The function which is universal for primitive recursive func-
tions of one variable

98

7 Computably enumerable sets of natural numbers 128

7.1 Basic definitions L 128
7.2 Basic properties of computably enumerable sets 128
7.3 Enumeration of computably enumerable sets. 133
7.4 Characteristic functions 134
7.5 Computably enumerable relations 135
7.6 Total computable functions 148
7.7 Computable sets, Post’s theorem 151
7.8 Universal computably enumerable set 154
7.9 s-1-1 theorem, one-one and many-one reducibilities 157
7.10 One-completesets 163
7.11 Index sets, Rice’s theorem 163

1 Cantor pairing function

theory CPair
imports Main

begin

We introduce a particular coding c-pair from ordered pairs of natural num-
bers to natural numbers. See [1] and the Isabelle documentation for more
information.

1.1 Pairing function

definition
sf 1 nat = nat where
sf-def: sfx = x % (z+1) div 2

definition

c-pair

nat = nat = nat where

c-pairx y = sf (z4y) + z

lemma sf-at-0: sf 0 = 0 by (simp add: sf-def)

lemma sf-at-1: sf 1 = 1 by (simp add: sf-def)

lemma sf-at-Suc: sf (z+1) = sfz + 2 + 1

proof —

have S1: sf(z+1) = ((z+1)*(x+2)) div 2 by (simp add: sf-def)
have S2: (z+1)*(z+2) = zx(2+1) + 2x(z+1) by (auto)
have 52-1: \ z y. 2=y = z div 2 = y div 2 by auto

from S2 have S3: (z+1)*(2+2) div 2 = (xx(z+1) + 2x(2+1)) div 2 by (rule

S2-1)
have S4: (0::nat) < 2 by (auto)

from S4 have S5: (zx(z+1) + 2x(z+1)) div 2 = (z+1) + zx(z+1) div 2 by

stmp

from S1 53 S5 show ?Zthesis by (simp add: sf-def)
qed

lemma arg-le-sf: ¢ < sfz
proof —
have z + = < x*(z + 1) by simp
hence (z + z) div 2 < ax(z+1) div 2 by (rule div-le-mono)
hence = < zx(z+1) div 2 by simp
thus ?thesis by (simp add: sf-def)
qed

lemma sf-mono: ¢ < y = sfz < sfy
proof —
assume Al:z <y
then have z+1 < y+1 by (auto)
with A1 have zx(z+1) < yx(y+1) by (rule mult-le-mono)
then have zx(z+1) div 2 < yx(y+1) div 2 by (rule div-le-mono)
thus ?thesis by (simp add: sf-def)
qed

lemma sf-strict-mono: ¢ < y = sfx < sfy

proof —
assume Al:z <y
from A1 have S1: z+1 < y by simp
from S1 sf-mono have S2: sf (z+1) < sf y by (auto)
from sf-at-Suc have S3: sf © < sf (z+1) by (auto)
from 52 58 show ?thesis by (auto)

qed

lemma sf-posl: z > 0 = sf(z) > 0

proof —
assume Al:z > 0
then have sf(0) < sf(z) by (rule sf-strict-mono)
then show ?thesis by simp

qed

lemma arg-less-sf: ¢ > 1 = = < sf(x)
proof —
assume Al:z > 1
let %y = z—(1::nat)
from A1 have SI1: x = ?y+1 by simp
from A1 have ?y > 0 by simp
then have S2: sf(?y) > 0 by (rule sf-posI)
have sf(?y+1) = sf(?y) + %2y + 1 by (rule sf-at-Suc)
with S7 have sf(z) = sf(%y) + = by simp
with S2 show ?thesis by simp
qed

lemma sf-eq-arg: sfv =2 =z < 1

proof —
assume sf(z) = x
then have - (z < sf(z)) by simp
then have (- (z > 1)) by (auto simp add: arg-less-sf)
then show ?thesis by simp
qed

lemma sf-le-sfD: sfx < sfy =z <y
proof —
assume Al: sfz < sfy
have SI: y < z = sf y < sf z by (rule sf-strict-mono)
have 52: y < z V z < y by (auto)
from A1 51 52 show ?thesis by (auto)
qed

lemma sf-less-sfD: sfx < sfy = x < y
proof —
assume Al: sfx < sfy
have S1: y < z = sfy < sf z by (rule sf~mono)
have 52: y < z V z < y by (auto)
from A1 S1 52 show ?thesis by (auto)
qed

lemma sf-inj: sfe =sfy=—=z =y

proof —
assume Al: sfrz = sfy
have S1: sfz < sf y = z < y by (rule sf-le-sfD)
have 52: sf y < sf x = y < z by (rule sf-le-sfD)
from A1 have S3: sfz < sfy A sfy < sf z by (auto)
from S3 S1 S2 have S/: z < y A y < z by (auto)
from S4 show ?thesis by (auto)

qed

Auxiliary lemmas

lemma sf-auzl: z + y < z = sf(z+y) + = < sf(?)
proof —
assume Al: z+y < z
from A1 have SI: z+y+1 < z by (auto)
from S1 have S2: sf(z+y+1) < sf(z) by (rule sf-mono)
have S3: sf(z+y+1) = sf(z+y) + (z+y)+1 by (rule sf-at-Suc)
from S3 S2 have Sj: sf(z+y) + (z+y) + 1 < sf(z) by (auto)
from S4 show ?thesis by (auto)
qed

lemma sf-auz2: sf(z) < sf(z+y) + ¢ = 2z < a2ty
proof —
assume A7: sf(z) < sf(z+y) + =
from A1 have S1: - sf(z+y) +z < sf(z) by (auto)
from S1 sf-auz! have S2: - 24y < z by (auto)

from S2 show ?thesis by (auto)
qed

lemma sf-auz8: sf(z) + m < sf(z+1) = m < z

proof —
assume AIl: sf(z) + m < sf(z+1)
have S1: sf(z+1) = sf(z) + z + 1 by (rule sf-at-Suc)
from A1 51 have 52: sf(z) + m < sf(z) + z + 1 by (auto)
from S2 have S3: m < z + 1 by (auto)
from S3 show ?thesis by (auto)

qged

lemma sf-auzq: (s:nat) < t = (sfs) + s < sf ¢
proof —
assume AIl: (s:nat) < t
have sx(s + 1) + 2%(s+1) < tx(t+1)
proof —
from A1 have S1: (s:nat) + 1 < t by (auto)
from A1 have (s:nat) + 2 < t+1 by (auto)
with SI have ((s:inat)+1)x(s+2) < tx(t+1) by (rule mult-le-mono)
thus ?thesis by (auto)
qed
then have S1: (sx(s+1) + 2x(s+1)) div 2 < tx(t+1) div 2 by (rule div-le-mono)
have (0::nat) < 2 by (auto)
then have (sx(s+1) + 2x(s+1)) div 2 = (s+1) + (sx(s+1)) div 2 by simp
with S1 have (sx(s+1)) div 2 + (s+1) < tx(t4+1) div 2 by (auto)
then have (s*(s+1)) div 2 + s < tx(t+1) div 2 by (auto)
thus ?thesis by (simp add: sf-def)
qed

Basic properties of ¢c_ pair function

lemma sum-le-c-pair: x + y < c-pair x y
proof —
have z+y < sf(z+y) by (rule arg-le-sf)
thus ?thesis by (simp add: c-pair-def)
qed

lemma argl-le-c-pair: x < c-pair T y

proof —
have (z::nat) < z + y by (simp)
moreover have z + y < c-pair z y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)

qed

lemma arg2-le-c-pair: y < c-pair x y

proof —
have (y::nat) < x 4+ y by (simp)
moreover have z + y < c-pair ¢ y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)

qed

lemma c-pair-sum-mono: (z1::nat) + yl < 22 + y2 = c-pair z1 y1 < c-pair z2
y2
proof —
assume (zl:nat) + yl < 22 + y2
hence sf (z1+yl1) + (z1+yl) < sf(z2+y2) by (rule sf-auzj)
hence sf (z14+yl1) + z1 < sf(z2+y2) + 22 by (auto)
thus ?thesis by (simp add: c-pair-def)
qed

lemma c-pair-sum-inj: c-pair 1 y1 = c-pair 2 y2 — =1 + yl = 22 + y2
proof —

assume Al: c-pair 1 yl = c-pair z2 y2

have SI: (z1:nat) + yl < 22 + y2 = c-pair 1 y1 # c-pair z2 y2 by (rule
less-not-refl3, rule c-pair-sum-mono, auto)

have S2: (z2::nat) + y2 < z1 + yl = c-pair x1 y1 # c-pair 2 y2 by (rule
less-not-refl2, rule c-pair-sum-mono, auto)

from S1 S2 have (z1::nat) + yl # 22 + y2 = c-pair 1 y1 # c-pair 2 y2
by (arith)

with A1 show ?thesis by (auto)
qged

lemma c-pair-inj: c-pair x1 y1 = c-pair 22 y2 —> z1 = 22 N\ yl = y2
proof —
assume Al: c-pair 1 yl = c-pair z2 y2
from A1 have S1: z1 + yl = 22 + y2 by (rule c-pair-sum-inj)
from A7 have S2: sf (x1+4yl) + 1 = sf (z2+y2) + 22 by (unfold c-pair-def)
from S1 S2 have S3: 1 = z2 by (simp)
from S1 S8 have S4: y1 = y2 by (simp)
from 53 S/ show ?thesis by (auto)
qed

lemma c-pair-inj1: c-pair 1 y1 = c-pair z2 y2 —> x1 = 22 by (frule c-pair-inj,
drule conjunctl)

lemma c-pair-ing2: c-pair t1 yl = c-pair 22 y2 — y1 = y2 by (frule c-pair-inj,
drule conjunct?)

lemma c-pair-strict-monol: v1 < 2 = c-pair 1 y < c-pair z2 y
proof —

assume 7l < 22

then have z1 + y < 22 4+ y by simp

then show ?thesis by (rule c-pair-sum-mono)
qed

lemma c-pair-monol: r1 < 2 = c-pair 1 y < c-pair 2 y
proof —
assume A7: 1 < 22

show ?thesis

proof cases
assume z1 < z2
then have c-pair x1 y < c-pair 22 y by (rule c-pair-strict-monol)
then show ?thesis by simp

next
assume — zl < z2
with A7 have z1 = z2 by simp
then show ?thesis by simp

qged

qed

lemma c-pair-strict-mono2: y1 < y2 = c-pair ¢ yl < c-pair x y2
proof —

assume Al: y1 < y2

from A7 have S1: x + y1 < z + y2 by simp

then show ?thesis by (rule c-pair-sum-mono)
qed

lemma c-pair-mono2: yl < y2 = c-pair x y1 < c-pair x y2
proof —
assume A7l: y1 < y2
show ?thesis
proof cases
assume yl1 < y2
then have c-pair z yI < c-pair x y2 by (rule c-pair-strict-mono2)
then show ?thesis by simp
next
assume - yl < y2
with A1 have yI = y2 by simp
then show ?thesis by simp
qed
qed

1.2 Inverse mapping

c-fst and c-snd are the functions which yield the inverse mapping to c-pair.

definition
c-sum :: nat = nat where
c-sum u = (LEAST z. u < sf (z+1))

definition
c-fst :: nat = nat where
c-fst u=u — sf (c-sum u)

definition
c-snd :: nat = nat where
c-snd u = c-sum u — c-fst u

lemma arg-less-sf-at-Suc-of-c-sum: u < sf ((c-sum u) + 1)
proof —

have u+1 < sf(u+1) by (rule arg-le-sf)

hence u < sf(u+1) by simp

thus ?thesis by (unfold c-sum-def, rule LeastI)
qed

lemma arg-less-sf-imp-c-sum-less-arg: u < sf(z) = c-sum u < z
proof —
assume A7l: u < sf(x)
then show ?thesis
proof (cases 1)
assume z=0
with A1 show ?thesis by (simp add: sf-def)
next
fix y
assume A2: z = Suc y
show ?thesis
proof —
from A1 A2 have u < sf(y+1) by simp
hence (Least (%z. u < sf (z+1))) < y by (rule Least-le)
hence c-sum u < y by (fold c-sum-def)
with A2 show ?thesis by simp
qed
qed
qed

lemma sf-c-sum-le-arg: u > sf (c-sum u)
proof —
let %z = c-sum u
from arg-less-sf-at-Suc-of-c-sum have S1: u < sf (?z+1) by (auto)
have S2: = c-sum u < c-sum u by (auto)
from arg-less-sf-imp-c-sum-less-arg S2 have S3: = u < sf (c-sum u) by (auto)
from 53 show ?thesis by (auto)
qed

lemma c-sum-le-arg: c-sum u < u

proof —
have c-sum u < sf (c-sum u) by (rule arg-le-sf)
moreover have sf(c-sum u) < u by (rule sf-c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-of-c-pair [simp]: c-sum (c-pair x y) =z + y
proof —
let 2u = c-pair x y
let 72 = c-sum ?u
have S1: %u < sf(?z+1) by (rule arg-less-sf-at-Suc-of-c-sum)
have S2: sf(%z) < ?u by (rule sf-c-sum-le-arg)

from S1 have S3: sf(z+y)+z < sf(?z+1) by (simp add: c-pair-def)
from S2 have S/: sf(?z) < sf(z+y) + z by (simp add: c-pair-def)
from S8 have S5: sf(z+y) < sf(?z+1) by (auto)
from S5 have S6: z+y < %z+1 by (rule sf-less-sfD)
from S6 have S7: z+y < %z by (auto)
from 5S4 have S8: 2z < z+y by (rule sf-auz2)
from S7 S8 have S9: %z = z+y by (auto)
from 59 show ?thesis by (simp)
qed

lemma c-fst-of-c-pair[simp: c-fst (c-pair z y) = z

proof —
let 2u = c-pair x y
have c-sum ?u = = + y by simp
hence c-fst 2u = ?2u — sf(z+y) by (simp add: c-fst-def)
moreover have ?u = sf(z+y) + z by (simp add: c-pair-def)
ultimately show ?thesis by (simp)

qed

lemma c-snd-of-c-pair[simp]: c-snd (c-pair x y) =y
proof —

let %u = c-pair z y

have c-sum ?u = z + y by simp

moreover have c-fst u = z by simp

ultimately show ?thesis by (simp add: c-snd-def)
qed

lemma c-pair-at-0: c-pair 0 0 = 0 by (simp add: sf-def c-pair-def)

lemma c-fst-at-0: c-fst 0 = 0

proof —
have c-pair 0 0 = 0 by (rule c-pair-at-0)
hence c-fst 0 = c-fst (c-pair 0 0) by simp
thus ?thesis by simp

qed

lemma c-snd-at-0: c-snd 0 = 0

proof —
have c-pair 0 0 = 0 by (rule c-pair-at-0)
hence c-snd 0 = c-snd (c-pair 0 0) by simp
thus ?thesis by simp

qed

lemma sf-c-sum-plus-c-fst: sf(c-sum u) + c-fst u = u

proof —
have S1: sf(c-sum u) < u by (rule sf-c-sum-le-arg)
have S2: c-fst u = v — sf(c-sum u) by (simp add: c-fst-def)
from S1 52 show ?thesis by (auto)

qed

lemma c-fst-le-c-sum: c-fst u < c-sum u

proof —
have S1: sf(c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
have S2: u < sf((c-sum u) + 1) by (rule arg-less-sf-at-Suc-of-c-sum)
from S1 52 sf-auz3 show ?thesis by (auto)

qed

lemma c-snd-le-c-sum: c-snd u < c-sum u by (simp add: c-snd-def)

lemma c-fst-le-arg: c-fst u < u

proof —
have c-fst u < c-sum u by (rule c-fst-le-c-sum)
moreover have c-sum v < u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-snd-le-arg: c-snd u < u

proof —
have c-snd u < c-sum u by (rule c-snd-le-c-sum)
moreover have c-sum u < u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-is-sum: c-sum u = c-fst u + c-snd u by (simp add: c-snd-def
c-fst-le-c-sum,)

lemma proj-eq-imp-arg-eq: | c-fst v = c-fst v; c-snd uw = c-snd V] = u = v
proof —

assume Al: c-fst u = c-fst v

assume A2: c-snd u = c-snd v

from A1 A2 c-sum-is-sum have SI: c-sum u = c-sum v by (auto)

have S2: sf(c-sum u) + c-fst w = u by (rule sf-c-sum-plus-c-fst)

from A1 S1 52 have S3: sf(c-sum v) + c-fst v = u by (auto)

from S3 sf-c-sum-plus-c-fst show ?thesis by (auto)
qed

lemma c-pair-of-c-fst-c-snd[simp): c-pair (c-fst u) (c-snd u) = u
proof —
let 2z = c-fst u
let 2y = c-snd u
have S1: c-pair 2z %y = sf(%z + ?y) + %z by (simp add: c-pair-def)
have S2: c-sum v = %z + %y by (rule c-sum-is-sum)
from S1 52 have c-pair 2z %y = sf(c-sum u) + c-fst u by (auto)
thus ?thesis by (simp add: sf-c-sum-plus-c-fst)
qed

lemma c-sum-eq-arg: c-sum x = ¢ = x < 1
proof —

10

assume Al: c-sumz =z
have S1: sf(c-sum z) + c-fst x = = by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2: sf x + c-fst x = z by simp
have 53: z < sf z by (rule arg-le-sf)
from S2 S3% have sf(z)=xz by simp
thus ?thesis by (rule sf-eq-arg)
qed

lemma c-sum-eq-arg-2: c-sum v = © = c-fst x = 0
proof —
assume Al: c-sumzx =z
have S1: sf(c-sum z) + c-fst z = = by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2: sf x + c-fst x = z by simp
have 53: z < sf z by (rule arg-le-sf)
from S2 53 show ?thesis by simp
qed

lemma c-fst-eq-arg: c-fstx =z =z =0

proof —
assume Al: c-fstx ==z
have S1: c-fst x < c-sum z by (rule c-fst-le-c-sum)
have 52: c-sum z < z by (rule c-sum-le-arg)
from A1 S1 52 have c-sum x = z by simp
then have c-fst ¢ = 0 by (rule c-sum-eg-arg-2)
with A1 show ?thesis by simp

qed

lemma c-fst-less-arg: © > 0 = c-fst x < x
proof —
assume Al:z > 0
show ?thesis
proof cases
assume c-fstz < z
then show ?thesis by simp
next
assume - c-fst r < T
then have S1: c-fst t > = by simp
have c-fst © < x by (rule c-fst-le-arg)
with S1 have c-fst x = = by simp
then have z = 0 by (rule c-fst-eg-arg)
with A1 show ?thesis by simp
qed
qed

lemma c-snd-eq-arg: c-snd x =z — x < 1

proof —
assume Al: c-sndx =z
have S1: c-snd © < c-sum z by (rule c-snd-le-c-sum)
have S2: c-sum z < z by (rule c-sum-le-arg)

11

from A1 S1 52 have c-sum x = z by simp
then show %thesis by (rule c-sum-eq-arg)
qed

lemma c-snd-less-arg: © > 1 = c-sndx < z
proof —
assume Al:z > 1
show ?thesis
proof cases
assume c-snd z < T
then show ?thesis .
next
assume - c-snd z < T
then have S1: c-snd x > z by auto
have c-snd © < x by (rule c-snd-le-arg)
with S7 have c-snd x = x by simp
then have z < 1 by (rule c-snd-eq-arg)
with A1 show ?thesis by simp
qed
qed

end

2 Primitive recursive functions

theory PRecFun imports CPair
begin

This theory contains definition of the primitive recursive functions.

2.1 Basic definitions

primrec

PrimRecOp :: (nat = nat) = (nat = nat = nat = nat) = (nat = nat = nat)
where

PrimRecOp gh 0z =gz
| PrimRecOp g h (Suc y) z = hy (PrimRecOp g h y x) z

primrec
PrimRecOp-last :: (nat = nat) = (nat = nat = nat = nat) = (nat = nat =
nat)
where
PrimRecOp-last gh x 0 = g x
| PrimRecOp-last g h x (Suc y)= h x (PrimRecOp-last g h z y) y

primrec

PrimRecOpl :: nat = (nat = nat = nat) = (nat = nat)
where

PrimRecOpl a h 0 = a

12

| PrimRecOpl1 a h (Suc y) = h y (PrimRecOpl a h y)

inductive-set

PrimRecl :: (nat = nat) set and

PrimRec2 :: (nat = nat = nat) set and

PrimRec3 :: (nat = nat = nat = nat) set
where

zero: (A z. 0) € PrimRecl

| suc: Suc € PrimRecl

| id1-1: (X z. x) € PrimRecl

| id2-1: (X z y. ©) € PrimRec2

| id2-2: (X zy. y) € PrimRec2

| id3-1: (A z y z. x) € PrimRec3

| id3-2: (A zy 2. y) € PrimRec8

| id3-3: (A z y 2. z) € PrimRec3

| compl-1: [f € PrimRecl; g € PrimRecl] = (A z. f (g x)) € PrimRecl

| comp1-2: [f € PrimRecl; g € PrimRec2] = (A zy. f (g xy)) € PrimRec2

| comp1-3: [f € PrimRecl; g € PrimRec3] = Az yz. f (9zy2)) € PrimRec3

| comp2-1: [f € PrimRec2; g € PrimRecl; h € PrimRecl] = (A z. f (g z) (h
z)) € PrimRecl

| comp3-1: [f € PrimRec3; g € PrimRecl; h € PrimRecl; k € PrimRecl] =
Az f (gz) (hz) (k) € PrimRecl

| comp2-2: [f € PrimRec2; g € PrimRec2; h € PrimRec2] — Az vy. f (g z
y) (h zy)) € PrimRec?

| comp2-3: [f € PrimRec2; g € PrimRec3; h € PrimRec3] = Az yz f (gx
yz) (hzyz)) € PrimRec8

| comp3-2: [f € PrimRec3; g € PrimRec2; h € PrimRec2; k € PrimRec2] =
ANzy. f(gzy) (hzy) (kzy)) € PrimRec2

| comp3-3: [f € PrimRec3; g € PrimRec3; h € PrimRec3; k € PrimRec3] =
ANzyz fgzyz) (heyz) (kxyz)) € PrimRec3

| prim-rec: | g € PrimRecl; h € PrimRec3] = PrimRecOp g h € PrimRec2

lemmas pr-zero = PrimRecl-PrimRec2-PrimRec3.zero
lemmas pr-suc = PrimRec1-PrimRec2-PrimRec3.suc

lemmas pr-id1-1 = PrimRecl-PrimRec2-PrimRec3.id1-1
lemmas pr-id2-1 = PrimRec1-PrimRec2-PrimRec3.id2-1
lemmas pr-id2-2 = PrimRecl-PrimRec2-PrimRec8.id2-2
lemmas pr-id3-1 = PrimRecl-PrimRec2-PrimRecS.id3-1
lemmas pr-id3-2 = PrimRecl-PrimRec2-PrimRecS.id3-2
lemmas pr-id3-3 = PrimRecl-PrimRec2-PrimRecS3.id3-3
lemmas pr-compi-1 = PrimRecl-PrimRec2-PrimRec3.compl-1
lemmas pr-compl-2 = PrimRecl-PrimRec2-PrimRec8.compl-2
lemmas pr-comp1-38 = PrimRecl-PrimRec2-PrimRec3.comp1-3
lemmas pr-comp2-1 = PrimRecl-PrimRec2-PrimRec3.comp2-1
lemmas pr-comp2-2 = PrimRec1-PrimRec2-PrimRec3.comp2-2
lemmas pr-comp2-3 = PrimRecl-PrimRec2-PrimRec3.comp2-3
lemmas pr-comp3-1 = PrimRecl-PrimRec2-PrimRec3.comp3-1
lemmas pr-comp3-2 = PrimRecl-PrimRec2-PrimRec3.comp3-2
lemmas pr-comp3-3 = PrimRec1-PrimRec2-PrimRec3.comp3-3

13

lemmas pr-rec = PrimRecl-PrimRec2-PrimRec3.prim-rec
ML-file « Utils. ML»
named-theorems prec

method-setup precl = «
Attrib.thms >> (fn ths => fn ctet => Method. METHOD (fn facts =>
HEADGOAL (precO-tac ctxt (facts @ Named- Theorems.get ctzt Q{named-theorems
prec}))))

y apply primitive recursive functions

lemmas [prec|] = pr-zero pr-suc pr-id1-1 pr-id2-1 pr-id2-2 pr-id3-1 pr-id3-2 pr-id3-3
lemma pr-swap: f € PrimRec2 = (A z y. fy x) € PrimRec2 by prec0

theorem pr-rec-scheme: | g € PrimRecl; h € PrimRec3;V z. fO0x =g z;V zy.
fSucy) z=hy (fyz) 2] = f € PrimRec2
proof —

assume g-is-pr: g € PrimRecl

assume h-is-pr: h € PrimRec3

assume f-at-0:V z. f0x =gz

assume f-at-Suc:V zy. f (Sucy) c=hy (fyz)z

from f-at-0 f-at-Suc have A\ z y. fy x = PrimRecOp g h y x by (induct-tac y,
simp-all)

then have f = PrimRecOp g h by (simp add: ext)

with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec)
qed

lemma op-plus-is-pr [prec]: (A z y. © + y) € PrimRec2
proof (rule pr-swap)
show (A z y. y+z) € PrimRec2
proof —
have S1: PrimRecOp (A z. z) (A z y z. Suc y) € PrimRec2
proof (rule pr-rec)
show (A z. z) € PrimRecl by (rule pr-id1-1)
next
show (A z y z. Suc y) € PrimRec8 by prec0
qed
have (A z y. y+z) = PrimRecOp (A z. z) (A x y z. Suc y) (is - = ?f)
proof —
have A\ zy. (?fy z = y + z) by (induct-tac y, auto)
thus %thesis by (simp add: ext)
qed
with SI1 show %thesis by simp
qed
qed

14

lemma op-mult-is-pr [prec]: (A z y. x*xy) € PrimRec2
proof (rule pr-swap)
show (A z y. y*z) € PrimRec2
proof —
have S1: PrimRecOp (A z. 0) (A z y z. y+z) € PrimRec2
proof (rule pr-rec)
show (A z. 0) € PrimRecl by (rule pr-zero)
next
show (A z y z. y+z) € PrimRec3 by prec0
qed
have (A z y. yxz) = PrimRecOp (A z. 0) (A z y 2. y+2) (is - = ?f)
proof —
have A zy. (9 y z = y * z) by (induct-tac y, auto)
thus %thesis by (simp add: ext)
qed
with S1 show %thesis by simp
qed
qed

lemma const-is-pr: (A z. (n::nat)) € PrimRecl
proof (induct n)

show (A z. 0) € PrimRecl by (rule pr-zero)
next

fix n assume (A z. n) € PrimRecl

then show (A z. Suc n) € PrimRecl by precO
qged

lemma const-is-pr-2: (A z y. (n:nat)) € PrimRec2

proof (rule pr-comp1-2 [where ?f=%z.(n::nat) and 2g=%z y. z])
show (A z. n) € PrimRecl by (rule const-is-pr)

next
show (A z y. £) € PrimRec2 by (rule pr-id2-1)

qed

lemma const-is-pr-3: (A z y z. (n::nat)) € PrimRec3

proof (rule pr-comp1-3 [where 2f=%z.(n::nat) and ?29=%z y 2. x))
show (A z. n) € PrimRecl by (rule const-is-pr)

next
show (A z y z.) € PrimRec3 by (rule pr-id3-1)

qed

theorem pr-rec-last: [g € PrimRecl; h € PrimRec3] = PrimRecOp-last g h €
PrimRec2
proof —

assume A1: g € PrimRecl

assume A2: h € PrimRec3

let 2hi = zyz. hzyzx

from A2 pr-id3-8 pr-id3-2 pr-id3-1 have hl-is-pr: ?h1 € PrimRec3 by (rule
pr-comp3-3)

15

let ?f1 = PrimRecOp g ?h1
from A1 hi-is-pr have fl-is-pr: ?f1 € PrimRec2 by (rule pr-rec)
let 2f =X zy. 2f1yx
from fI-is-pr have f-is-pr: ?f € PrimRec2 by (rule pr-swap)
have A\ z y. ?fx y = PrimRecOp-last g h z y by (induct-tac y, simp-all)
then have 9f = PrimRecOp-last g h by (simp add: ext)
with f-is-pr show ?thesis by simp
qed

theorem pr-recl: h € PrimRec2 —> PrimRecOpl (a::nat) h € PrimRecl
proof —
assume A1: h € PrimRec2
let 29 = (\ z. a)
have g-is-pr: ?g € PrimRecl by (rule const-is-pr)
let 2h1 = ANz yz hay)
from A1 have hl-is-pr: ?h1 € PrimRec3 by precO
let ?f1 = PrimRecOp ?g ?hl1
from g-is-pr hil-is-pr have fl-is-pr: ?f1 € PrimRec2 by (rule pr-rec)
let ?f = (A z. 2f1 2 0)
from f1-is-pr pr-id1-1 pr-zero have f-is-pr: ?f € PrimRecl by (rule pr-comp2-1)
have A y. f y = PrimRecOpl a h y by (induct-tac y, auto)
then have ?f = PrimRecOpl a h by (simp add: ext)
with f-is-pr show ?thesis by (auto)
qed

theorem pr-reci-scheme: [h € PrimRec2; f0 = a; ¥V y. f (Sucy) =hy (fy)]
= f € PrimRecl
proof —

assume h-is-pr: h € PrimRec2

assume f-at-0: f0 = a

assume f-at-Suc: V y. f (Sucy) = hy (fy)

from f-at-0 f-at-Suc have A y. fy = PrimRecOpl a h y by (induct-tac y,
stmp-all)

then have f = PrimRecOpl a h by (simp add: ext)

with h-is-pr show ?thesis by (simp add: pr-recl)
qed

lemma pred-is-pr: (A z. x — (1::nat)) € PrimRecl
proof —
have S1: PrimRecOpl 0 (A z y. x) € PrimRecl
proof (rule pr-recl)
show (A z y.) € PrimRec2 by (rule pr-id2-1)
qed
have (A z. x—(1::nat)) = PrimRecOpl 0 (A z y. z) (is - = 7f)
proof —
have A z. (?f © = z—(1::nat)) by (induct-tac z, auto)
thus ?thesis by (simp add: ext)
qged
with S1 show ?thesis by simp

16

qed

lemma op-sub-is-pr [prec]: (A z y. x—y) € PrimRec2
proof (rule pr-swap)
show (A z y. y — z) € PrimRec2
proof —
have S1: PrimRecOp (A z.) (A zy z. y—(1:nat)) € PrimRec2
proof (rule pr-rec)
show (A z. z) € PrimRecl by (rule pr-id1-1)
next
from pred-is-pr pr-id3-2 show (A z y z. y—(1::nat)) € PrimRec3 by (rule
pr-compl-8)
qed
have (A z y. y —) = PrimRecOp (A z.) (A zy z. y—(1:nat)) (is - = 2f)
proof —
have A zy. (%fy x = z — y) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)
qed
with SI1 show %thesis by simp
qed
qed

lemmas [prec] =
const-is-pr [of 0] const-is-pr-2 [of 0] const-is-pr-3 [of 0]
const-is-pr [of 1] const-is-pr-2 [of 1] const-is-pr-3 [of 1]
const-is-pr [of 2] const-is-pr-2 [of 2] const-is-pr-3 [of 2]

definition
sgnl :: nat = nat where
sgnl x = (case z of 0 = 0 | Sucy = 1)

definition
sgn2 :: nat = nat where
sgn2 z = (case x of 0 = 1 | Sucy = 0)

definition
abs-of-diff :: nat = nat = nat where
abs-of-diff = Az y. (x — y) + (y — 7))

[|: sgn1 0 = 0 by (simp add: sgni-def)

[|: sgn1 (Suc y) = 1 by (simp add: sgnl-def)
lemma [simp]: sgn2 0 = 1 by (simp add: sgn2-def)

[simp]

[simp]

[simp]

simpl: sgn2 (Suc y) = 0 by (simp add: sgn2-def)
lemma [simp]: © # 0 = sgnl x = 1 by (simp add: sgnl-def, cases x, auto)
lemma [simp]: © # 0 = sgn2 x = 0 by (simp add: sgn2-def, cases x, auto)

lemma sgnl-nz-impl-arg-pos: sgnl © # 0 = z > 0 by (cases x) auto
lemma sgni-zero-impl-arg-zero: sgnl © = 0 => x = 0 by (cases z) auto
lemma sgn2-nz-impl-arg-zero: sgn2 v # 0 = x = 0 by (cases z) auto

17

lemma sgn2-zero-impl-arg-pos: sgn2 z = 0 = = > 0 by (cases z) auto

V

lemma sgnl-nz-eq-arg-pos: (sgnl z # 0) =
lemma sgnl-zero-eq-arg-zero: (sgnl z = 0
lemma sgn2-nz-eq-arg-pos: (sgn2 x # 0) =
lemma sgn2-zero-eq-arg-zero: (sgn2 x = 0

0) by (cases x) auto
= 0) by (cases x) auto
0) by (cases x) auto
xz > 0) by (cases x) auto

I
|| S

lemma sgni-pos-eq-one: sgnl z > 0 = sgnl x =

1 by (cases x) auto
lemma sgn2-pos-eq-one: sgn2 x > 0 = sgn2x =1 b

(cases x) auto

< <

lemma sgn2-eq-1-sub-arg: sgn2 = (A z. 1 —)
proof (rule ext)
fix x show sgn2 x = 1 — = by (cases z) auto

qed
lemma sgni-eq-1-sub-sgn2: sgni = (A z. 1 — (sgn2 x))
proof

fix z show sgnl x = 1 — sgn2 z

proof —

have 1— sgn2z =1 — (1 — z) by (simp add: sgn2-eq-1-sub-arg)
then show ?thesis by (simp add: sgni-def, cases z, auto)
qed
qed

lemma sgn2-is-pr [prec]: sgn2 € PrimRecl
proof —
have (A z. I — z) € PrimRecl by prec0
thus ?thesis by (simp add: sgn2-eq-1-sub-arg)
qed

lemma sgni-is-pr [prec]: sgnl € PrimRecl

proof —
from sgn2-is-pr have (A z. 1 — (sgn2 x)) € PrimRecl by prec0
thus ?thesis by (simp add: sgni-eq-1-sub-sgn2)

qed

lemma abs-of-diff-is-pr [prec]: abs-of-diff € PrimRec2 unfolding abs-of-diff-def
by prec0

lemma abs-of-diff-eq: (abs-of-diff v y = 0) = (z = y) by (simp add: abs-of-diff-def,
arith)

lemma sf-is-pr [prec]: sf € PrimRecl
proof —
have S1: PrimRecOpl 0 (A zy. y + z + 1) € PrimRecl
proof (rule pr-recl)
show (A zy. y + = + 1) € PrimRec2 by precO
qged
have (A z. sf) = PrimRecOpl 0 Az y. y+z+ 1) (is - = ?f)

18

proof —
have A z. (9fz = sfz)
proof (induct-tac x)
show ?f 0 = sf 0 by (simp add: sf-at-0)
next
fix x assume ?fz = sfz
with sf-at-Suc show ?f (Suc z) = sf (Suc z) by auto
qed
thus %thesis by (simp add: ext)
qged
with S1 show ?thesis by simp
qed

lemma c-pair-is-pr [prec|: c-pair € PrimRec2

proof —
have c-pair = (A z y. sf (z+y) + z) by (simp add: c-pair-def ext)
moreover from sf-is-pr have (A z y. sf (z+y) + z) € PrimRec2 by prec0
ultimately show ?thesis by (simp)

qed

lemma if-is-pr: [p € PrimRecl; q1 € PrimRecl; q2 € PrimRecl] = (\ z. if
(p z = 0) then (ql) else (¢2 z)) € PrimRecl
proof —
have if-as-pr: (A z. if (p x = 0) then (¢l z) else (g2 z)) = (A z. (sgn2 (p x)) *
(g1 =) + (sgni (p @) * (¢2 7))
proof (rule ext)
fix z show (if (p x = 0) then (g1 z) else (¢2 z)) = (sgn2 (p z)) * (¢l x) +
(sgnl (p x)) = (¢2) (is ?left = ?right)
proof cases
assume Al:px =0
then have S1: ?left = q1 = by simp
from A1 have S2: ?right = q1 z by simp
from S1 52 show ?thesis by simp
next
assume A2: px # 0
then have S3: p z > 0 by simp
then show ?thesis by simp
qed
qed
assume p € PrimRecl and g1 € PrimRecl and ¢2 € PrimRecl
then have (A z. (sgn2 (p z)) * (¢ z) + (sgnl (p z)) * (¢2 z)) € PrimRecl by
precl
with if-as-pr show ?thesis by simp
qed

lemma if-eq-is-pr [prec]: | pI € PrimRecl; p2 € PrimRecl; q1 € PrimRecl; ¢2
€ PrimRecl] = (A z. if (pl x = p2 x) then (qI) else (¢2 z)) € PrimRecl
proof —

have S1: (A z. if (p1 x = p2x) then (¢l x) else (¢2 z)) = (A z. if (abs-of-diff (p1

19

z) (p2 x) = 0) then (¢l z) else (¢2 z)) (is L = ?R) by (simp add: abs-of-diff-eq)
assume A71: pl € PrimRecl and A2: p2 € PrimRecl
with abs-of-diff-is-pr have S2: (X z. abs-of-diff (p! z) (p2 z)) € PrimRecl by
prec
assume ¢qI € PrimRecl and ¢2 € PrimRecl
with S2 have ?R € PrimRecl by (rule if-is-pr)
with S1 show ?thesis by simp
qed

lemma if-is-pr2 [prec]: [p € PrimRec2; q1 € PrimRec2; ¢2 € PrimRec2] = (A
zy. if (pxy=20)then (¢l zy) else (¢2 zy)) € PrimRec2
proof —
have if-as-pr: Az y. if (pxy = 0) then (¢ z y) else (¢2z y)) = (A z y. (sgn2
(pay)) * (¢l zy) + (sgnd (pzy)) * (¢2zy))
proof (rule ext, rule ext)
fix z fix y show (if (p zy = 0) then (g1 z y) else (¢2 z y)) = (sgn2 (p = y))
* (g1 zy) + (sgnl (p zy)) * (g2 x y) (is ?left = ?right)
proof cases
assume Al:pxy =0
then have S1: ?left = q1 © y by simp
from A1 have S2: ?right = q1 z y by simp
from S1 52 show ?thesis by simp
next
assume A2: pxy # 0
then have S3%: p z y > 0 by simp
then show ?thesis by simp
qed
qed
assume p € PrimRec2 and g1 € PrimRec2 and ¢2 € PrimRec2
then have (A z y. (sgn2 (p 2z y)) * (¢ x y) + (sgnl (p z y)) * (2 x y)) €
PrimRec2 by precO
with if-as-pr show ?thesis by simp
qed

lemma if-eq-is-pr2: | pl € PrimRec2; p2 € PrimRec2; q1 € PrimRec2; ¢2 €
PrimRec2] = (A zy. if (plxzy=p2zy) then (¢l xy) else (¢2zy)) € PrimRec2
proof —

have S1: Az y. if (pl zy = p2zy) then (¢l z y) else (¢2zy)) = Az y. if
(abs-of-diff (p1 zy) (p2 zy) = 0) then (qf z y) else (¢2 z y)) (is ?L = ?YR) by
(simp add: abs-of-diff-eq)

assume A71: pl € PrimRec2 and A2: p2 € PrimRec?

with abs-of-diff-is-pr have S2: (X z y. abs-of-diff (p1 xy) (p2 1z y)) € PrimRec2
by prec0

assume qI € PrimRec2 and ¢2 € PrimRec?2

with S2 have ?R € PrimRec2 by (rule if-is-pr2)

with S1 show ?thesis by simp
qed

lemma if-is-pr3 [prec]: [p € PrimRec3; q1 € PrimRec3; ¢2 € PrimRec3] = (A

20

zyz if (pryz=0)then (¢l zyz) else (¢2 x y z)) € PrimRec3
proof —
have if-as-pr: Az yz. if (pxyz=0)then (¢glxyz)else(2zyz)=ANzy
z. (sgn2 (pxy 2)) * (gl zy z) + (sgnd (pzyz)) x (2 y 2))
proof (rule ext, rule ext, rule ext)
fix z fix y fix z show (if (pzyz=0) then (¢l xzy 2) else (¢2z y 2)) = (sgn2
(pzyz)*(qlzyz) + (sgnl (pzy2)*(q2zyz) (is ?left = Pright)
proof cases
assume Al:pzryz=10
then have S1: ?left = q1 z y z by simp
from A1 have S2: ?right = q1 z y z by simp
from S1 52 show ?thesis by simp
next
assume A2: pryz # 0
then have S3: p zy z > 0 by simp
then show ?thesis by simp
qed
qed
assume p € PrimRec3 and g1 € PrimRec3 and ¢2 € PrimRec3
then have (A z y z. (sgn2 (paxy2)) *x (gl xzyz) + (sgnl (pxyz2)) * (¢2zy
z)) € PrimRec3
by precO
with if-as-pr show Zthesis by simp
qed

lemma if-eq-is-pr3: [pl € PrimRec3; p2 € PrimRec3; q1 € PrimRec3; ¢2 €
PrimRec3] = Az yz if (plaxyz=p2xyz) then (¢l x y 2) else (¢2 z y z))
€ PrimRec3
proof —

have S1: Az yz. if (plxzyz=p2xyz) then (gl zy 2) else (¢2xy z)) = (A
zy z if (abs-of-diff (pl zyz) (p2xyz)=0)then (gl zy z) else (¢2 z y z)) (is
?L = ?R) by (simp add: abs-of-diff-eq)

assume A71: pl € PrimRec3 and A2: p2 € PrimRec3

with abs-of-diff-is-pr have S2: (A z y z. abs-of-diff (pl xz y 2) (p2xy 2)) €
PrimRec3

by precO

assume ¢qI € PrimRec3 and ¢2 € PrimRec3

with S2 have ?R € PrimRec3 by (rule if-is-pr3)

with S1 show ?thesis by simp
qed

ML «

fun get-if-by-index 1 = Q{thm if-eq-is-pr}
| get-if-by-index 2 = Q{thm if-eq-is-pr2}
| get-if-by-index 8 = Q{thm if-eq-is-pr3}
| get-if-by-index - = raise BadArgument

fun if-comp-tac ctat = SUBGOAL (fn (t, i) =>
let

21

val t = extract-trueprop-arg (Logic.strip-imp-concl t)
val (t1, t2) = extract-set-args t

val n2 =
let
val Const(s, -) = t2
m
get-num-by-set s
end
val (name, -, n1) = extract-free-arg t1
in

if name = @Q{const-name If} then
resolve-tac ctxt [get-if-by-index n2] i
else
let
val comp = get-comp-by-indexes (n1, n2)
m
Rule-Insts.res-inst-tac ctxt
[(((f, 0), Position.none), Variable.revert-fized ctrt name)] [comp @
end
end
handle BadArgument => no-tac)

fun prec-tac ctxt facts i =
Method.insert-tac ctzt facts i THEN
REPEAT (resolve-tac ctat [Q{thm const-is-pr}, @Q{thm const-is-pr-2}, Q{thm
const-is-pr-3}] i ORELSE
assume-tac ctxt i ORELSE if-comp-tac ctxzt 1)
)

method-setup prec = «
Attrib.thms >> (fn ths => fn ctet => Method. METHOD (fn facts =>
HEADGOAL (prec-tac ctxt (facts @ Named-Theorems.get ctrt Q{named-theorems
prec}))))

y apply primitive recursive functions

2.2 Bounded least operator

definition
b-least :: (nat = nat = nat) = (nat = nat) where
b-least f x = (Least (%oy. y =z V (y <z A (fzy) #0)))

definition
b-least2 :: (nat = nat = nat) = (nat = nat = nat) where
b-least? fxy = (Least (%oz. z=yV (z <y A (fzz) # 0)))

lemma b-least-auzl: b-least fx = x V (b-least fx < z A (f x (b-least fz)) # 0)
proof —

let %P =%y.y=zV (y<z A (fzy) #0)

have ?P z by simp

22

then have 7P (Least ?P) by (rule Leastl)
thus ?thesis by (simp add: b-least-def)
qed

lemma b-least-le-arg: b-least fx < x
proof —
have b-least f x = x V (b-least fz < x A (f z (b-least f x)) # 0) by (rule
b-least-auxl)
from this show ?thesis by (arith)
qed

lemma less-b-least-impl-zero: y < b-least fx = fzy = 0
proof —
assume Al: y < b-least fz (is - < 9b)
have b-least f & < x by (rule b-least-le-arg)
with A1 have SI1: y < z by simp
with A1 have y < (Least (%y. y=xzV (y <z A (fzxy) # 0))) by (simp add:
b-least-def)
then have - (y =2z V (y <z A (fzy) # 0)) by (rule not-less-Least)
with S1 show ?thesis by simp
qed

lemma nz-impl-b-least-le: (f x y) # 0 = (b-least fz) < y
proof (rule ccontr)

assume Al: fzy # 0

assume - b-least fx < y

then have y < b-least f x by simp

with A1 show False by (simp add: less-b-least-impl-zero)
qed

lemma b-least-less-impl-nz: b-least f x < x = fx (b-least fx) # 0
proof —
assume Al: b-least fz < x
have b-least f x = x V (b-least f o < x A (f z (b-least f z)) # 0) by (rule
b-least-auzl)
from A1 this show ?thesis by simp
qed

lemma b-least-less-impl-eq: b-least f x < x => (b-least f x) = (Least (%oy. (f z y)
#0))
proof —
assume A1: b-least fx < x (is 2b < -)
let ?B = (Least (%y. (fz y) # 0))
from A1 have SI: fz ?b # 0 by (rule b-least-less-impl-nz)
from S1 have 52: ?B < ?b by (rule Least-le)
from S1 have S3: fz ?B # 0 by (rule Leastl)
from S3 have Sj: ?b < ?B by (rule nz-impl-b-least-le)
from 52 5/ show ?thesis by simp
qed

23

lemma less-b-least-impl-zero2: [y < x; b-least f x = 2] = fz y = 0 by (simp
add: less-b-least-impl-zero)

lemma nz-impl-b-least-less: [y<z; (f z y) # 0] = (b-least f z) < x
proof —

assume Al:y <z

assume fzx y # 0

then have b-least f x < y by (rule nz-impl-b-least-le)

with A1 show ?thesis by simp
qged

lemma b-least-auz?2: [y<z; (fz y) # 0] = (b-least f z) = (Least (%oy. (fz y) #
0))
proof —
assume Al: y < zand A2: fzy # 0
from A1 A2 have S1: b-least f x < z by (rule nz-impl-b-least-less)
thus ?thesis by (rule b-least-less-impl-eq)
qed

lemma b-least2-auxl: b-least?2 fzy = y V (b-least2 fxy < y A (f x (b-least2 f x
y)) # 0)
proof —
let P =%z z=yV (z<yA(fzz)#0)
have ?P y by simp
then have ?P (Least ?P) by (rule Leastl)
thus ?thesis by (simp add: b-least2-def)
qed

lemma b-least2-le-arg: b-least2 fxz y < y

proof —
let B = b-least2 fx y
have ?B =y V (B < y A (fz ?B) # 0) by (rule b-least2-auzxl)
from this show ?thesis by (arith)

qed

lemma less-b-least2-impl-zero: z < b-least2 fry = fx z =0
proof —
assume Al: z < b-least2 fz y (is - < %b)
have b-least2 f x y < y by (rule b-least2-le-arg)
with A1 have S1: z < y by simp
with A1 have z < (Least (%z. z=yV (z <y A (fz2) # 0))) by (simp add:
b-least2-def)
then have - (z =y V (z < y A (fz 2) # 0)) by (rule not-less-Least)
with S1 show ?thesis by simp
qed

lemma nz-impl-b-least2-le: (fz z) # 0 = (b-least2 fz y) < z
proof —

24

assume Al: fzxz # 0
have S1: z < b-least2 f x y = fz z = 0 by (rule less-b-least2-impl-zero)
from A1 S1 show ?thesis by arith

qed

lemma b-least2-less-impl-nz: b-least? fzy < y = fx (b-least2 fx y) # 0
proof —

assume A71: b-least2 fzxy < y

have b-least2 fx y = y V (b-least2 fx y < y A (f z (b-least2 f x y)) # 0) by
(rule b-least2-auzxl)

with A1 show ?thesis by simp
qed

lemma b-least2-less-impl-eq: b-least? fx y < y = (b-least2 f x y) = (Least (%z.
(F22) £ 0))
proof —
assume A71: b-least? fxy < y (is %b < -)
let ?B = (Least (%z. (fx z) # 0))
from A1 have SI: fz ?b # 0 by (rule b-least2-less-impl-nz)
from S1 have S2: ?B < ?b by (rule Least-le)
from S1 have S3: fz ?B # 0 by (rule Leastl)
from S3 have S/: ?b < ¢B by (rule nz-impl-b-least2-le)
from 52 5/ show ?thesis by simp
qed

lemma less-b-least2-impl-zero2: [z<y; b-least2 fry = y] = fz 2= 0
proof —

assume z < y and b-least2 fzry =y

hence z < b-least2 f z y by simp

thus ?thesis by (rule less-b-least2-impl-zero)
qed

lemma nz-b-least2-impl-less: [z<y; (f x 2) # 0] = (b-least2 fz y) < y
proof (rule ccontr)
assume Al: z <y
assume A2: fzx z £ 0
assume — (b-least? f x y) < y then have A3: y < (b-least2 f z y) by simp
have b-least2 f x y < y by (rule b-least2-le-arg)
with A% have b-least2 fz y = y by simp
with A1 have fz z = 0 by (rule less-b-least2-impl-zero2)
with A2 show Fulse by simp
qged

lemma b-least2-less-impl-eq2: [z < y; (f 2) # 0] = (b-least2 f z y) = (Least
(hz. (f2 2) £ 0))
proof —

assume Al: z < yand A2: fx z # 0

from A1 A2 have S1: b-least? f x y < y by (rule nz-b-least2-impl-less)

thus ?thesis by (rule b-least2-less-impl-eq)

25

qed

lemma b-least2-auz2: b-least2 fx y < y = b-least? fx (Suc y) = b-least2 fz y
proof —
let B = b-least2 fx y
assume Al: /B < y
from A1 have SI: fz ?B # 0 by (rule b-least2-less-impl-nz)
from S1 have S2: b-least? f z (Suc y) < ?B by (simp add: nz-impl-b-least2-le)
from A1 S2 have S3: b-least? f x (Suc y) < Suc y by (simp)
from S3 have S4: fz (b-least2 f x (Suc y)) # 0 by (rule b-least2-less-impl-nz)
from S have S5: ?B < b-least2 f z (Suc y) by (rule nz-impl-b-least2-le)
from 52 S5 show ?thesis by simp
qed

lemma b-least2-auz3: [b-least2 fxy = y; foy # 0] = b-least2 fz (Sucy) =y
proof —
assume Al: b-least? fz y =y
assume A2: fzy # 0
from A2 have S1: b-least? fz (Suc y) < y by (rule nz-impl-b-least2-le)
have S2: b-least2 f x (Suc y) < y = False
proof —
assume A2-1: b-least2 fx (Suc y) < y (is %2 < -)
from A2-1 have S2-1: 72 < Suc y by simp
from S2-1 have S2-2: fz %2 # 0 by (rule b-least2-less-impl-nz)
from A2-1 52-2 have 52-3: b-least2 f x y < y by (rule nz-b-least2-impl-less)
from S2-3 A1 show ?thesis by simp
qed
from S2 have S3: = (b-least2 f x (Suc y) < y) by auto
from S1 53 show ?thesis by simp
qed

lemma b-least2-mono: y1 < y2 = b-least2 f x y1 < b-least2 f x y2
proof (rule ccontr)
assume A71: yl < y2
let b1 = b-least2 fx y1 and 702 = b-least2 f z y2
assume - 701 < ?b2 then have A2: 202 < ?b1 by simp
have S1: ?b1 < y1 by (rule b-least2-le-arg)
have 52: 902 < y2 by (rule b-least2-le-arg)
from A1 A2 S1 52 have S3: 202 < y2 by simp
then have S/: fz 902 # 0 by (rule b-least2-less-impl-nz)
from A2 have S5: fz 262 = 0 by (rule less-b-least2-impl-zero)
from S4 S5 show Fulse by simp
qed

lemma b-least2-auzs: [b-least2 fzy = y; fzy = 0] = b-least2 f z (Suc y) =
Suc y
proof —

assume A1: b-least2 fry =1y

assume A2: fzxy =0

26

have S1: b-least2 f v (Suc y) < Suc y by (rule b-least2-le-arg)
have 52: y < b-least2 f x (Suc y)
proof —
have y < Suc y by simp
then have b-least2 f z y < b-least2 f z (Suc y) by (rule b-least2-mono)
with A1 show ?thesis by simp
qed
from S1 52 have b-least? f x (Suc y) =y V b-least? f z (Suc y) = Suc y by
arith
moreover
{
assume A3: b-least? fz (Suc y) =y
have fz y # 0
proof —
have y < Suc y by simp
with A3 have b-least? f z (Suc y) < Suc y by simp
from this have fz (b-least2 fx (Suc y)) # 0 by (simp add: b-least2-less-impl-nz)
with A% show fz y # 0 by simp
qed
with A2 have ?thesis by simp

}

moreover
{
assume b-least?2 f x (Suc y) = Suc y
then have ?thesis by simp
}
ultimately show ¢thesis by blast
qed

lemma b-least2-at-zero: b-least2 fx 0 = 0

proof —
have S1: b-least2 f x 0 < 0 by (rule b-least2-le-arg)
from S1 show %thesis by auto

qed

theorem pr-b-least2: f € PrimRec2 = b-least2 f € PrimRec2
proof —
define loc-Op!1 where loc-Opl = (A (f::nat = nat = nat) z y 2. (sgnl (2 —
9) g+ (sgn2 (= — y)((sgnl (F)z + (sgn2 (f 7 2))*(Suc 2))
define loc-Op2 where loc-Op2 = (X f. PrimRecOp-last (A z. 0) (loc-Op1 f))
have loc-op2-im-1: \ fz y. loc-Op2 fxy < y = loc-Op2 f x (Suc y) = loc-Op2
fzy
proof —
fix fzy
let 2b = loc-Op2 fx y
have S1: loc-Op2 f z (Suc y) = (loc-Op1 f) x 2b y by (simp add: loc-Op2-def)
assume b < y
then have y — ?b > 0 by simp
then have loc-Op! fz b y = 2b by (simp add: loc-Op1-def)

27

with S1 show loc-Op2 fxy < y = loc-Op2 f x (Suc y) = loc-Op2 f x y by
stmp
qed
have loc-op2-Im-2: N\ fz y. [-(loc-Op2 fzy < y); fzy # 0] = loc-Op2 f x
(Sucy) =y
proof —
fix fzy
let 2b = loc-Op2 f x y and ?h = loc-Opl f
have S1: loc-Op2 f z (Suc y) = ?h x ?b y by (simp add: loc-Op2-def)
assume —(%b < y)
then have 52: y — 2b = 0 by simp
assume fz y # 0
with S2 have ?h z ?b y = y by (simp add: loc-Op1-def)
with S1 show loc-Op2 f z (Suc y) = y by simp
qed
have loc-op2-Im-3: N\ fz y. [-(loc-Op2 fzy < y); fzy = 0] = loc-Op2 f z
(Suc y) = Suc y
proof —
fix fzuy
let 2b = loc-Op2 f x y and ?h = loc-Opl f
have S1: loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def)
assume —(?b < y)
then have 52: y — ?b = 0 by simp
assume fzy = 0
with S2 have ?h z ?b y = Suc y by (simp add: loc-Op1-def)
with S1 show loc-Op2 f x (Suc y) = Suc y by simp
qed
have Op2-eg-b-least2-at-point: N\ fx y. loc-Op2 fz y = b-least2 fx y
proof — fix fz show A y. loc-Op2 fz y = b-least2 fz y
proof (induct-tac y)
show loc-Op2 fx 0 = b-least2 f x 0 by (simp add: loc-Op2-def b-least2-at-zero)
next
fix y
assume A1: loc-Op2 fxy = b-least2 fz y
then show loc-Op2 f x (Suc y) = b-least? f x (Suc y)
proof cases
assume A2: loc-Op2 fzy < y
then have S7: loc-Op2 f z (Suc y) = loc-Op2 f x y by (rule loc-op2-lm-1)
from A1 A2 have b-least2 fz y < y by simp
then have 52: b-least? f z (Suc y) = b-least? f x y by (rule b-least2-auz2)
from A1 S1 52 show ?thesis by simp
next
assume A3: = loc-Op2 fry <y
have A3 b-least2 fzy =y
proof —
have b-least2 f x y < y by (rule b-least2-le-arg)
from A1 A3 this show ?thesis by simp
qed
then show ?thesis

28

proof cases
assume A/: fzy # 0
with A3 have S3: loc-Op2 f z (Suc y) = y by (rule loc-op2-lm-2)
from A3’ A4 have Sj: b-least2 f x (Suc y) = y by (rule b-least2-aux3)
from S3 S/ show ?thesis by simp
next
assume - fxy £ 0
then have A5: fz y = 0 by simp
with A3 have S5: loc-Op2 f x (Suc y) = Suc y by (rule loc-op2-lm-3)
from A8’ A5 have S6: b-least2 f x (Suc y) = Suc y by (rule b-least2-auzs)
from S5 S6 show ?thesis by simp
qed
qed
qed
qed
have Op2-eq-b-least2: loc-Op2 = b-least2 by (simp add: Op2-eq-b-least2-at-point
ext)
assume Al: f € PrimRec2
have pr-loc-Op2: loc-Op2 f € PrimRec2
proof —
from A1 have SI: loc-Opl f € PrimRec3 by (simp add: loc-Op1-def, prec)
from pr-zero S1 have S2: PrimRecOp-last (A z. 0) (loc-Opl f) € PrimRec?2
by (rule pr-rec-last)
from this show ?Zthesis by (simp add: loc-Op2-def)
qed
from Op2-eq-b-least2 this show b-least? f € PrimRec2 by simp
qged

lemma b-least-def1: b-least f = (A x. b-least? f x z) by (simp add: b-least2-def
b-least-def ext)

theorem pr-b-least: f € PrimRec2 —> b-least f € PrimRecl
proof —
assume f € PrimRec?2
then have b-least2 f € PrimRec2 by (rule pr-b-least2)
from this pr-idi-1 pr-idi-1 have (A z. b-least? f ©) € PrimRecl by (rule
pr-comp2-1)
then show %thesis by (simp add: b-least-def1)
qed

2.3 Examples

theorem c-sum-as-b-least: c-sum = (X u. b-least2 (A u z. (sgnl (sf(z+1) — u)))
u (Suc u))
proof (rule ext)
fix u show c-sum u = b-least? (A u z. (sgnl (sf(z+1) — u))) u (Suc u)
proof —
have Im-1: (A z y. (sgnl (sf(y+1) —z) # 0)) = Az y. (z < sf(y+1)))
proof (rule ext, rule ext)

29

fix y show (sgnl (sf(y+1) — z) # 0) = (z < sf(y+1))
proof —

have (sgn! (sf(y+1) —z) # 0) = (sf(y+1) — x> 0) by (rule sgni-nz-eq-arg-pos)

thus (sgnl (sf(y+1) — z) # 0) = (z < sf(y+1)) by auto
qed
qed
let 2f = A uz. (sgnl (sf(z+1) — u))
have S1: %fuu # 0
proof —
have S1-1: u+1 < sf(u+1) by (rule arg-le-sf)
have S1-2: u < u+1 by simp
from S1-1 S1-2 have S1-3: u < sf(u+1) by simp
from S1-3 have S1-4: sf(u+1) — u > 0 by simp
from S1-/ have S1-5: sgnl (sf(u+1)—u) = 1 by simp
from S1-5 show ?thesis by simp
qed
have S3: u < Suc u by simp
from S3 S1 have S4: b-least2 ?f u (Suc u) = (Least (%oz. (?f u z) # 0)) by
(rule b-least2-less-impl-eq2)
let 2P =AXuz fuz+#0
let 2Q =X\ uz u < sf(z+1)
from [Im-1 have S6: ?P = ?Q) by simp
from S6 have S7: (%z. 7P u z) = (%oz. ?Q u z) by (rule fun-cong)
from S7 have S8: (Least (%z. ?P u z)) = (Least (%z. Q) u z)) by auto
from S/ S8 have S9: b-least2 ?f u (Suc u) = (Least (%z. u < sf(z+1))) by
(rule trans)
thus ?thesis by (simp add: c-sum-def)
qed
qed

theorem c-sum-is-pr: c-sum € PrimRecl
proof —
let 2f = A w z. (sgnl (sf(z+1) — u))
have S1: (A u z. sgnl ((sf(z+1) — u))) € PrimRec2 by prec
define g where g = b-least2 ?f
from g¢-def S1 have g € PrimRec2 by (simp add: pr-b-least2)
then have S2: (A u. g u (Suc u)) € PrimRecl by prec
from g-def have c-sum = (A u. g u (Suc w)) by (simp add: c-sum-as-b-least ext)
with S2 show ?thesis by simp
qed

theorem c-fst-is-pr [prec]: c-fst € PrimRecl

proof —
have S1: (A u. c-fst u) = (A u. (u — sf (c-sum u))) by (simp add: c-fst-def ext)
from c-sum-is-pr have (A u. (v — sf (c-sum u))) € PrimRecl by prec
with S1 show ?thesis by simp

qed

theorem c-snd-is-pr [prec]: c-snd € PrimRecl

30

proof —
have S1: c-snd = (A u. (c-sum u) — (c-fst u)) by (simp add: c-snd-def ext)
from c-sum-is-pr c-fst-is-pr have S2: (A u. (c-sum u) — (c-fst u)) € PrimRecl
by prec
from S1 this show ?thesis by simp
qed

theorem pr-1-to-2: f € PrimRecl = (A z y. f (c-pair x y)) € PrimRec2 by prec

theorem pr-2-to-1: f € PrimRec2 = (X z. f (c-fst 2) (¢-snd z)) € PrimRecl by
prec

definition pr-conv-1-to-2 =
definition pr-conv-1-to-8 =

E fay. [(cpair z y))
definition pr-conv-2-to-1 = (

(

(

(

A

X fzyz f (c-pair (c-pair z y) 2))

X fz f (c-fst x) (c-snd z))
definition pr-conv-3-to-1 = (A fz. f (c-fst (c-fst x)) (c-snd (c-fst) (c-snd z))
definition pr-conv-3-to-2 = (A
definition pr-conv-2-to-3 = (A

f. pr-conv-1-to-2 (pr-conv-3-to-1 f))
f. pr-conv-1-to-3 (pr-conv-2-to-1 f))

lemma [simp]: pr-conv-1-to-2 (pr-conv-2-to-1 f) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def)
lemma [simp]: pr-conv-2-to-1 (pr-conv-1-to-2 f) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def)
lemma [simp]: pr-conv-1-to-3 (pr-conv-3-to-1f) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def)
lemma [simp]: pr-conv-8-to-1 (pr-conv-1-to-8 f) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def)
lemma [simp]: pr-conv-3-to-2 (pr-conv-2-to-8 f) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def)
lemma [simp]: pr-conv-2-to-3 (pr-conv-3-to-2 f) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def)

lemma pr-conv-1-to-2-lm: f € PrimRecl = pr-conv-1-to-2 f € PrimRec2 by
(simp add: pr-conv-1-to-2-def, prec)
lemma pr-conv-1-to-3-lm: f € PrimRecl = pr-conv-1-to-3 f € PrimRec3 by
(simp add: pr-conv-1-to-3-def, prec)
lemma pr-conv-2-to-1-lm: f € PrimRec2 = pr-conv-2-to-1 f € PrimRecl by
(simp add: pr-conv-2-to-1-def, prec)
lemma pr-conv-3-to-1-lm: f € PrimRec3 —> pr-conv-3-to-1 f € PrimRecl by
(simp add: pr-conv-3-to-1-def, prec)
lemma pr-conv-3-to-2-lm: f € PrimRec3 = pr-conv-3-to-2 f € PrimRec2
proof —

assume f € PrimRec3

then have pr-conv-3-to-1 f € PrimRecl by (rule pr-conv-3-to-1-lm)

thus ?thesis by (simp add: pr-conv-3-to-2-def pr-conv-1-to-2-lm)
qed
lemma pr-conv-2-to-3-lm: f € PrimRec2 = pr-conv-2-to-3 f € PrimRec8
proof —

assume f € PrimRec2

31

then have pr-conv-2-to-1 f € PrimRecl by (rule pr-conv-2-to-1-Im)
thus ?thesis by (simp add: pr-conv-2-to-3-def pr-conv-1-to-3-lm)
qed

theorem b-least2-scheme: [f € PrimRec2; g € PrimRecl;V z. hx < gx; ¥V x. f
zhe) £ 0,V zz.2<he — fzz=0] =
h € PrimRecl
proof —
assume f-is-pr: f € PrimRec2
assume g-is-pr: g € PrimRecl
assume h-lt-g:V z. hz < gz
assume f-at-h-nz: ¥V z. fz (hz) # 0
assume h-is-min:V zz. 2 < hx — fzxz= 10
have h-def: h = (X z. b-least2 f z (g z))
proof
fix © show h x = b-least2 f z (g 1)
proof —
from f-at-h-nz have S1: b-least2 fz (g x) < hz by (simp add: nz-impl-b-least2-le)
from h-lt-g have h z < g z by auto
with S1 have b-least2 fz (g) < g = by simp
then have S2: fz (b-least2 f x (g x)) # 0 by (rule b-least2-less-impl-nz)
have S3: h z < b-least2 f z (g x)
proof (rule ccontr)
assume — h z < b-least? f x (g) then have b-least? fz (g z) < h z by
auto
with h-is-min have fx (b-least2 fz (g z)) = 0 by simp
with 52 show Fulse by auto
qed
from S1 S8 show ?thesis by auto
qed
qed
define fI where f1 = b-least2 f
from f-is-pr f1-def have f1-is-pr: f1 € PrimRec2 by (simp add: pr-b-least?2)
with g-is-pr have (A z. fI x (g z)) € PrimRecl by prec
with h-def f1-def show h € PrimRecl by auto
qed

theorem b-least2-scheme2: [f € PrimRec3; g € PrimRec2;¥ xy. hxy < gz y;
Vazy fry(hzy) # 0;
Vzzy z<hzy—fzyz=0] =
h € PrimRec2
proof —
assume f-is-pr: f € PrimRec3
assume g-is-pr: g € PrimRec?2
assume h-lt-g:V zy. hzy < gzy
assume f-at-h-nz:V zy. fzy (hzy) # 0
assume h-is-min:V zzy. z< hzy — fzyz=10
define fI where f1I = pr-conv-3-to-2 f
define g1 where g1 = pr-conv-2-to-1 g

32

define h! where hl1 = pr-conv-2-to-1 h

from f-is-pr f1-def have f1-is-pr: f1 € PrimRec2 by (simp add: pr-conv-3-to-2-lm)

from g-is-pr g1-def have g1-is-pr: g1 € PrimRecl by (simp add: pr-conv-2-to-1-lm)

from h-lt-g hi-def g1-def have hi-lt-g1: ¥V z. hl z < gl z by (simp add:
pr-conv-2-to-1-def)

from f-at-h-nz f1-def hi-def have fl-at-h1-nz: V z. f1 = (hl z) # 0 by (simp
add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def)

from h-is-min f1-def h1-def have hi-is-min:V zxz. 2z < hl © — fl x z = 0 by
(simp add: pr-conv-2-to-1-def pr-conv-8-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def)

from f1-is-pr g1-is-pr h1-lt-g1 f1-at-h1-nz h1-is-min have hi-is-pr: h1 € Prim-
Rec1 by (rule b-least2-scheme)

from hi-def have h = pr-conv-1-to-2 h1 by simp

with hi1-is-pr show h € PrimRec2 by (simp add: pr-conv-1-to-2-lm)
qed

theorem div-is-pr: (A a b. a div b) € PrimRec2
proof —
define f where fa bz = (sgnl b) * (sgnl (bx(z+1)—a)) + (sgn2 b)x(sgn2 z)
for a b z
have f-is-pr: f € PrimRec3 unfolding f-def by prec
define h where h a b = a div b for a b :: nat
define g where ga b = a + 1 for a b :: nat
have g-is-pr: g € PrimRec2 unfolding g-def by prec
have h-lt-g:V ab. hab < gabd
proof (rule alll, rule alll)
fix a b
from h-def have h a b < a by simp
also from g-def have a < g a b by simp
ultimately show h a b < g a b by simp
qed
have f-at-h-nz:V a b. fa b (hab) # 0
proof (rule alll, rule alll)
fix a bshow fab (hab)#0
proof cases
assume A: b = 0
with h-def have h a b = 0 by simp
with f-def A show ?thesis by simp
next
assume A: b # 0
then have S1: b > 0 by auto
from A f-def have S2: fa b (hab)=sgnl (bx(hab+ 1) — a) by simp
then have ?thesis = (sgnl(bx (ha b+ 1) — a) # 0) by auto

alsohave ... = (bx (hab+ 1) — a > 0) by (rule sgnl-nz-eq-arg-pos)
also have ... = (a < b * (ha b+ 1)) by auto

also have ... = (a < b * (h a b) + b) by auto

also from h-def have ... = (a < b * (a div b) + b) by simp

finally have S8: ?thesis = (a < b * (a div b) + b) by auto
have S/: a < b * (a divd) + b
proof —

33

from S1 have S4-1: a mod b < b by (rule mod-less-divisor)
also have S4-2: b x (a div b) + a mod b = a by (rule mult-div-mod-eq)
from S/-1 have S4-3: b x (a div b) + a mod b < b x (a div b) + b by arith
from S4-2 S4-3 show ?thesis by auto
qed
from S8 S/ show ?thesis by auto
qed
qed
have h-is-min:V zab. z< hab— fabz=20
proof (rule alll, rule alll, rule alll, rule impI)
fix a b z assume A: z < habshow fabz=10
proof —
from A h-def have S1: z < a div b by simp
then have S2: a div b > 0 by simp
have 53: b # 0
proof (rule ccontr)
assume — b # 0 then have b = 0 by auto
then have a div b = 0 by auto
with S2 show Fulse by auto
qed
from S8 have b-pos: 0 < b by auto
from S1 have S4: z+1 < a div b by auto
from b-pos have (b x (24+1) < b * (a div b)) = (2+1 < a div b) by (rule
nat-mult-le-cancell)
with 54 have S5: bx(z+1)
moreover have bx(a div b)
proof —
have bx(a div b) + (a mod b) = a by (rule mult-div-mod-eq)
moreover have 0 < a mod b by auto
ultimately show ?thesis by arith
qed
ultimately have S6: bx(z+1) < a
by (simp add: minus-mod-eg-mult-div [symmetric])
then have bx(z+1) — a = 0 by auto
with S3 f-def show ?thesis by simp
qed
qged
from f-is-pr g-is-pr h-lt-g f-at-h-nz h-is-min have h-is-pr: h € PrimRec2 by (rule
b-least2-scheme?2)
with h-def [abs-def] show ?thesis by simp
qed

< bx(a div b) by simp
<a

theorem mod-is-pr: (A a b. a mod b) € PrimRec2
proof —

have (A (a::nat) (b:inat). a mod b) = (A a b. a — (a div b) * b)

proof (rule ext, rule ext)

fix a b show (a::nat) mod b = a — (a div b) * b by (rule minus-div-mult-eq-mod
[symmetric])

qed

34

also from div-is-pr have (A a b. a — (a div b) % b) € PrimRec2 by prec
ultimately show ?thesis by auto
qed

theorem pr-rec-last-scheme: [g € PrimRecl; h € PrimRec3;¥ z. fz 0 = g x; ¥V
zy. fo(Sucy)=hz (fzy) y] = f € PrimRec2
proof —

assume g-is-pr: g € PrimRecl

assume h-is-pr: h € PrimRec3

assume f-at-0:V z. fz 0 =gz

assume f-at-Suc: ¥V zy. fx (Sucy) =hzx (fzy)y

from f-at-0 f-at-Suc have A\ z y. fz y = PrimRecOp-last g h x y by (induct-tac
y, simp-all)

then have f = PrimRecOp-last g h by (simp add: ext)

with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec-last)
qed

theorem power-is-pr: (A (z::nat) (n::nat). £ ~n) € PrimRec?
proof —
define g :: nat = nat where g x = 1 for z
define h where h a b ¢ = a x b for a b ¢ :: nat
have g¢-is-pr: g € PrimRecl unfolding g¢-def by prec
have h-is-pr: h € PrimRec3 unfolding h-def by prec
let 2f = X (z::nat) (n:nat). z " n
have f-at-0:V z. %z 0 = gx
proof
fix z show =z ~ 0 = g x by (simp add: g-def)
qed
have f-at-Suc:V zy. ?fz (Sucy) = hz (?fzy)y
proof (rule alll, rule alll)
fix x y show ?f x (Suc y) = hz (?fz y) y by (simp add: h-def)
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show Zthesis by (rule pr-rec-last-scheme)
qed

end

3 Primitive recursive coding of lists of natural num-
bers

theory PRecList
imports PRecFun
begin

We introduce a particular coding list-to-nat from lists of natural numbers
to natural numbers.

definition
c-len :: nat = nat where

35

c-len = (X (unat). (sgnl u) x (c-fst(u—(1::nat))+1))

lemma c-len-1: c-len u = (case v of 0 = 0 | Suc v = c-fst(v)+1) by (unfold
c-len-def, cases u, auto)

lemma c-len-is-pr: c-len € PrimRecl unfolding c-len-def by prec

lemma [simp]: c-len 0 = 0 by (simp add: c-len-def)

lemma c-len-2: u # 0 = c-len u = c-fst(u—(1::nat))+1 by (simp add: c-len-def)
lemma c-len-3: u>0 = c-len v > 0 by (simp add: c-len-2)

lemma c-len-4: c-len u = 0 = u =0
proof cases
assume Al: u =0
thus ?thesis by simp
next
assume Al: c-len u = 0 and A2: u # 0
from A2 have c-len u > 0 by (simp add: c-len-8)
from A1 this show u=0 by simp
qed

lemma c-len-5: c-len v > 0 = u > 0
proof cases
assume A7l: c-len u > 0 and A2: u=0
from A2 have c-len u = 0 by simp
from A1 this show ?thesis by simp
next
assume Al: u # 0
from A1 show u>0 by simp

qed
fun c-fold :: nat list = nat where
c-fold [| = 0
| c-fold [z] = =

| c-fold (z#ls) = c-pair x (c-fold ls)

lemma c-fold-0: Is # [| = c-fold (z#ls) = c-pair x (c-fold ls)
proof —
assume A7l: ls # ||
then have S1: Is = (hd ls)#(tl ls) by simp
then have S2: z#ls = z#(hd ls)#(tl ls) by simp
have S3: c-fold (z#(hd Is)#(tl Is)) = c-pair x (c-fold ((hd Is)#(tl ls))) by simp
from S1 52 S3 show ?thesis by simp
qed

primrec
c-unfold :: nat = nat = nat list

36

where
c-unfold 0 u = []
| c-unfold (Suc k) u = (if k = 0 then [u] else ((c-fst u) # (c-unfold k (c-snd u))))

lemma c-fold-1: c-unfold 1 (c-fold [z]) = [z] by simp
lemma c-fold-2: c-fold (c-unfold 1 u) = u by simp
lemma c-unfold-1: c-unfold 1 u = [u] by simp

lemma c-unfold-2: c-unfold (Suc 1) u = (c-fst u) # (c-unfold 1 (c-snd u)) by

stmp
lemma c-unfold-3: c-unfold (Suc 1) u = [c-fst u, c-snd u] by simp

lemma c-unfold-4: k > 0 = c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd
u)) by simp

lemma c-unfold-4-1: k > 0 = c-unfold (Suc k) u # [] by (simp add: c-unfold-4)
lemma two: (2::nat) = Suc 1 by simp
lemma c-unfold-5: c-unfold 2 u = [c-fst u, c-snd u] by (simp add: two)

lemma c-unfold-6: k>0 = c-unfold k u # ||
proof —
assume A1: k>0
let %k1 = k—(1::nat)
from A1 have Si1: k = Suc ?k1 by simp
have 52: %k1 = 0 = ?thesis
proof —
assume A2-1: ?k1=0
from A1 A2-1 have S2-1: k=1 by simp
from S2-1 show ?thesis by (simp add: c-unfold-1)
qed
have 53: %k1 > 0 = ?thesis
proof —
assume A3-1: ?%k1 > 0
from A3-1 have S3-1: c-unfold (Suc ?%k1) u # [] by (rule c-unfold-4-1)
from S71 53-1 show ?thesis by simp
qed
from S2 53 show ?thesis by arith
qed

lemma th-im-1: k=1 = (V¥ w. c-fold (c-unfold k u) = u) by (simp add: c-fold-2)
lemma th-lm-2: [k>0; (V u. c-fold (c-unfold k u) = u)] = (V u. c-fold (c-unfold
(Suc k) u) = u)

proof

37

assume AI: k>0

assume A2: VYV wu. c-fold (c-unfold k u) = u

fix u

from A1 have SI: c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd u)) by
(rule c-unfold-4)

let ?ls = c-unfold k (c-snd u)

from A1 have S2: ?ls # [| by (rule c-unfold-6)

from S2 have S3: c-fold ((c-fst u) # ?ls) = c-pair (c-fst u) (c-fold ?ls) by (rule
c-fold-0)

from A2 have S/: c-fold ?ls = c-snd u by simp

from S3 S4 have S5: c-fold ((c-fst u) # ?2ls) = c-pair (c-fst u) (c-snd u) by
stmp

from S5 have S6: c-fold ((c-fst u) # ?ls) = u by simp

from S1 S6 have S7: c-fold (c-unfold (Suc k) u) = u by simp

thus c-fold (c-unfold (Suc k) u) = u .
qed

lemma th-Im-3: (¥ u. c-fold (c-unfold (Suc k) u) = u)= (V wu. c-fold (c-unfold
(Suc (Suc k)) u) = u)
proof —
assume A71: VY wu. c-fold (c-unfold (Suc k) u) = u
let ?k1 = Suc k
have S1: %k1 > 0 by simp
from S1 A1 have S2: VY u. c-fold (c-unfold (Suc ?k1) u) = u by (rule th-lm-2)
thus ?thesis by simp
qged

theorem th-1:V wu. c-fold (c-unfold (Suc k) u) = u
apply (induct k)

apply(simp add: c-fold-2)

apply (rule th-Im-3)

apply (assumption)

done

theorem th-2: k > 0 = (VY wu. c-fold (c-unfold k u) = u)
proof —
assume AI: k>0
let ?k1 = k—(1::nat)
from A1 have S1: Suc ?k1 = k by simp
have 52: YV u. c-fold (c-unfold (Suc ?k1) u) = u by (rule th-1)
from S1 52 show ?thesis by simp
qged

lemma c-fold-3: c-unfold 2 (c-fold [z, y]) = [z, y] by (simp add: two)

theorem c-unfold-len: ALL u. length (c-unfold k u) = k
apply (induct k)

apply (simp)
apply(subgoal-tac n=(0::nat) V n>0)

38

apply(drule disjE)
prefer 3

apply (simp-all)
apply (auto)

done

lemma th-3-lm-0: [c-unfold (length ls) (c-fold ls) = ls; Is = a # Is1; ls] = aa #
list) = c-unfold (length (z # 1s)) (c-fold (x # ls)) =z # Is
proof —

assume AI: c-unfold (length ls) (c-fold Is) = Is

assume A2: Is = a # sl

assume A38: Is1 = aa # list

from A2 have S1: Is # [] by simp

from S1 have S2: c-fold (z#ls) = c-pair z (c-fold ls) by (rule c-fold-0)

have S3: length (z#ls) = Suc (length ls) by simp

from S3 have S4: c-unfold (length (z # 1s)) (c-fold (x # ls)) = c-unfold (Suc
(length 1s)) (c-fold (x # ls)) by simp

from A2 have S5: length Is > 0 by simp

from S5 have S6: c-unfold (Suc (length ls)) (c-fold (z # ls)) = c-fst (c-fold (z
13))#(c-unfold (length ls) (c-snd (c-fold (z+#ls)))) by (rule c-unfold-4)

from S2 have S7: c-fst (c-fold (z#ls)) = = by simp

from 52 have S8: c-snd (c-fold (z#tls)) = c-fold ls by simp

from S6 S7 S8 have S9: c-unfold (Suc (length Is)) (c-fold (z # Is)) = = #
(c-unfold (length ls) (c-fold ls)) by simp

from A1 have S10: x # (c-unfold (length ls) (c-fold ls)) = x # Is by simp

from S9 S10 have S11: c-unfold (Suc (length ls)) (c-fold (z # 1s)) = (x # Is)
by simp

thus ?thesis by simp
qed

lemma th-3-Ilm-1: [c-unfold (length ls) (c-fold Is) = Is; Is = a # ls1] = c-unfold
(length (z # 1s)) (c-fold (z # 1s)) = x # Is

apply(cases Is1)

apply(simp add: c-fold-1)

apply(simp)

done

lemma th-3-lm-2: c-unfold (length ls) (c-fold ls) = ls => c-unfold (length (x #
Is)) (c-fold (z # 1s)) =z # Is

apply/(cases Is)

apply(simp add: c-fold-1)

apply (rule th-3-Im-1)

apply (assumption+)

done

theorem th-3: c-unfold (length ls) (c-fold ls) = Is
apply (induct ls)

apply (simp)
apply(rule th-3-lm-2)

39

apply (assumption)
done

definition
list-to-nat :: nat list = nat where
list-to-nat = (X Is. if ls=]] then 0 else (c-pair ((length ls) — 1) (c-fold ls))+1)

definition
nat-to-list :: nat = nat list where
nat-to-list = (A u. if u=0 then [| else (c-unfold (c-len u) (c-snd (u—(1::nat)))))

lemma nat-to-list-of-pos: u>0 = nat-to-list u = c-unfold (c-len u) (c-snd (u—(1::nat)))
by (simp add: nat-to-list-def)

theorem list-to-nat-th [simp): list-to-nat (nat-to-list u) = u
proof —
have S1: u=0 = ?thesis by (simp add: list-to-nat-def nat-to-list-def)
have 52: u>0 = “thesis
proof —
assume Al: u>0
define Is where [s = nat-to-list u
from Is-def A1 have S2-1: ls = c-unfold (c-len u) (c-snd (u—(1::nat))) by
(simp add: nat-to-list-def)
let %k = c-len u
from A1 have S2-2: %k > 0 by (rule c-len-3)
from S2-1 have S2-3: length ls = %k by (simp add: c-unfold-len)
from S52-2 52-3 have S2-4: length ls > 0 by simp
from S52-/ have 52-5: ls # [] by simp
from S2-5 have S2-6: list-to-nat Is = c-pair ((length ls)—(1::nat)) (c-fold ls)+1
by (simp add: list-to-nat-def)
have 52-7: c-fold ls = c-snd(u—(1::nat))
proof —
from S2-1 have S2-7-1: c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u—(1::nat))))
by simp
from S52-2 52-7-1 show ?thesis by (simp add: th-2)
qed
have 52-8: (length ls)—(1::nat) = c-fst (u—(1::nat))
proof —
from 52-3 have S52-8-1: length ls = c-len u by simp
from A1 52-8-1 have 52-8-2: length Is = c-fst(u—(1::nat)) + 1 by (simp
add: c-len-2)
from S52-8-2 show ?thesis by simp
qed
from S2-7 52-8 have S2-9: c-pair ((length ls)—(1::nat)) (c-fold ls) = c-pair
(c-fst (u—(1::nat))) (c-snd (u—(1::nat))) by simp
from 52-9 have S2-10: c-pair ((length ls)—(1::nat)) (c-fold ls) = uw — (1::nat)
by simp
from S52-6 52-10 have S2-11: list-to-nat ls = (u — (1::nat))+1 by simp
from A1 have S2-12: (u — (1:nat))+1 = u by simp

40

from Is-def S2-11 S2-12 show ?thesis by simp
qed
from S1 52 show ?thesis by arith
qed

theorem nat-to-list-th [simpl: nat-to-list (list-to-nat ls) = Is
proof —
have SI: ls=[] = ?%thesis by (simp add: nat-to-list-def list-to-nat-def)
have S2: ls # [| = ?thesis
proof —
assume Al: [s # [|
define v where u = list-to-nat Is
from u-def A1 have S2-1: u = (c-pair ((length ls)—(1::nat)) (c-fold ls))+1 by
(simp add: list-to-nat-def)
let 2k = length Is
from A1 have S2-2: 2k > 0 by simp
from S2-1 have S2-3: u>0 by simp
from S52-3 have S2-4: nat-to-list u = c-unfold (c-len u) (c-snd (u—(1::nat)))
by (simp add: nat-to-list-def)
have S2-5: c-len u = length ls
proof —
from S52-1 have S2-5-1: u—(1:nat) = c-pair ((length ls)—(1::nat)) (c-fold
Is) by simp
from S$2-5-1 have S2-5-2: c-fst (u—(1::nat)) = (length ls)—(1::nat) by simp
from S2-2 52-5-2 have c-fst (u—(1::nat))+1 = length Is by simp
from S52-3 this show ?thesis by (simp add: c-len-2)
qed
have 52-6: c-snd (u—(1::nat)) = c-fold Is
proof —
from S52-1 have 52-6-1: u—(1:nat) = c-pair ((length Is)—(1::nat)) (c-fold
ls) by simp
from S2-6-1 show ?thesis by simp
qed
from S52-4 52-5 52-6 have S2-7:nat-to-list w = c-unfold (length ls) (c-fold ls)
by simp
from S2-7 have nat-to-list u = Is by (simp add: th-3)
from u-def this show ?thesis by simp
qed
have S3: [s =[] V Is # [| by simp
from S1 52 S3 show ?thesis by auto

qed
lemma [simp]: list-to-nat [| = 0 by (simp add: list-to-nat-def)
lemma [simp]: nat-to-list 0 = [| by (simp add: nat-to-list-def)

theorem c-len-th-1: c-len (list-to-nat ls) = length Is
proof (cases)
assume [s=[]

41

from this show ?thesis by simp
next

assume S71: s # |]

then have S2: list-to-nat s = c-pair ((length ls)—(1::nat)) (c-fold Is)+1 by
(simp add: list-to-nat-def)

let %u = list-to-nat s

from S2 have u-not-zero: ?u > 0 by simp

from S2 have S3: %u—(1:nat) = c-pair ((length ls)—(1::nat)) (c-fold ls) by
stmp

then have S4: c-fst(?u—(1:nat)) = (length ls)—(1::nat) by simp

from S1 this have S5: c-fst(?u—(1::nat))+1=length ls by simp

from u-not-zero S5 have S6: c-len (?u) = length ls by (simp add: c-len-2)

from S1 S6 show ?thesis by simp
qed

theorem length (nat-to-list u) = c-len u
proof —
let ?ls = nat-to-list u
have S1: u = list-to-nat ?ls by (rule list-to-nat-th [THEN sym])
from c-len-th-1 have S2: length ?ls = c-len (list-to-nat ?ls) by (rule sym)
from S1 52 show ?thesis by (rule ssubst)
qged

definition
c-hd :: nat = nat where
c-hd = (X . if u=0 then 0 else hd (nat-to-list u))

definition
c-tl :: nat = nat where
c-tl = (X u. list-to-nat (tl (nat-to-list u)))

definition
c-cons :: nat = nat = nat where
c-cons = (A x u. list-to-nat (z # (nat-to-list u)))

lemma [simp]: c-hd 0 = 0 by (simp add: c-hd-def)

lemma c-hd-auz0: c-len w = 1 = nat-to-list u = [c-snd (u—(1::nat))] by (simp
add: nat-to-list-def c-len-5)

lemma c-hd-auzl: c-len u = 1 = c-hd u = c-snd (u—(1::nat))
proof —
assume AI: c-len u = 1
then have S1: nat-to-list u = [c-snd (u—(1::nat))] by (simp add: nat-to-list-def
c-len-9)
from A1 have u > 0 by (simp add: c-len-5)
with S1 show %thesis by (simp add: c-hd-def)
qed

42

lemma c-hd-auz2: c-len u > 1 = c-hd u = c-fst (c-snd (u—(1::nat)))
proof —

assume Al: c-len u > 1

let % = (c-len u) — 1

from A1 have S1: c-len u = Suc ?k by simp

from A1 have S2: c-len u > 0 by simp

from 52 have S3: u > 0 by (rule c-len-5)

from S% have S4: c-hd u = hd (nat-to-list u) by (simp add: c-hd-def)

from S3 have S5: nat-to-list u = c-unfold (c-len u) (c-snd (u—(1::nat))) by
(rule nat-to-list-of-pos)

from S1 S5 have S6: nat-to-list uw = c-unfold (Suc ?k) (c-snd (u—(1::nat))) by
stmp

from A1 have S7: %k > 0 by simp

from S7 have S8: c-unfold (Suc ?k) (c-snd (u—(1::nat))) = (c-fst (c-snd (u—(1::nat))))
(c-unfold 2k (c-snd (c-snd (u—(1::nat))))) by (rule c-unfold-4)

from S6 S8 have S9: nat-to-list uw = (c-fst (c-snd (u—(1::nat)))) # (c-unfold %k
(c-snd (c-snd (u—(1::nat))))) by simp

from 59 have S10: hd (nat-to-list u) = c-fst (c-snd (u—(1::nat))) by simp

from S4 S10 show ?thesis by simp
qed

lemma c-hd-auz3: w > 0 = c-hd u = (if (c-len u) = 1 then c-snd (u—(1::nat))
else c-fst (c-snd (u—(1::nat))))
proof —
assume AI: u > 0
from A1 have c-len u > 0 by (rule c-len-3)
then have S1: c-len u = 1 V c-len u > 1 by arith
let 2tmp = if (c-len u) = 1 then c-snd (u—(1::nat)) else c-fst (c-snd (u—(1::nat)))
have S2: c-len u = 1 = %thesis
proof —
assume A2-1: c-len u = 1
then have S2-1: c-hd u = c-snd (u—(1::nat)) by (rule c-hd-auzl)
from A2-1 have S2-2: ?tmp = c-snd(u—(1::nat)) by simp
from S2-1 this show ?thesis by simp
qed
have S3: c-len u > 1 = ?thesis
proof —
assume AS3-1: c-len u > 1
from A3-1 have S3-1: c-hd u = c-fst (c-snd (u—(1::nat))) by (rule c-hd-auz2)
from A3-1 have 53-2: ?tmp = c-fst (c-snd (u—(1::nat))) by simp
from S3-1 this show ?thesis by simp
qed
from S1 52 S3 show ?thesis by auto
qed

lemma c-hd-auz4: c-hd v = (if u=0 then 0 else (if (c-len u) = 1 then c-snd

(u—(1::nat)) else c-fst (c-snd (u—(1::nat)))))
proof cases

43

assume u=0 then show ?thesis by simp
next

assume u # () then have A1: u > 0 by simp

then show ?thesis by (simp add: c-hd-auz3)
qed

lemma c-hd-is-pr: c-hd € PrimRecl
proof —
have c-hd = (%u. (if u=0 then 0 else (if (c-len u) = 1 then c-snd (u—(1::nat))
else c-fst (c-snd (u—(1::nat)))))) (is - = ?R) by (simp add: c-hd-auzj ext)
moreover have R € PrimRecl
proof (rule if-is-pr)
show (A z. z) € PrimRecl by (rule pr-id1-1)
next show (A z. 0) € PrimRecl by (rule pr-zero)
next show (Az. if c-len x = 1 then c-snd (x — 1) else c-fst (c-snd (z — 1)))
€ PrimRecl
proof (rule if-eq-is-pr)
show c-len € PrimRecl by (rule c-len-is-pr)
next show (A z. 1) € PrimRecl by (rule const-is-pr)
next show (Az. c-snd (z — 1)) € PrimRecl by prec
next show (Az. c-fst (c-snd (x — 1))) € PrimRecl by prec
qed
qed
ultimately show ?thesis by simp
qed

lemma [simp]: c-tl 0 = 0 by (simp add: c-tl-def)
lemma c-tl-eq-tl: c-tl (list-to-nat ls) = list-to-nat (tl ls) by (simp add: c-tl-def)
lemma tl-eq-c-tl: tl (nat-to-list ©) = nat-to-list (c-tl z) by (simp add: c-tl-def)

lemma c-tl-auzl: c-len uw = 1 = c¢-tl w = 0 by (unfold c-tl-def, simp add:
c-hd-auz0)

lemma c-tl-auz2: c-len v > 1 = c-tl u = (c-pair (c-len u — (2::nat)) (c-snd
(c-snd (u—(1::nat))))) + 1
proof —

assume Al: c-len u > 1

let %k = (c-len u) — 1

from A1 have S1: c-len u = Suc %k by simp

from A1 have S2: c-len u > 0 by simp

from S2 have S3: u > 0 by (rule c-len-5)

from S3 have S4: nat-to-list u = c-unfold (c-len u) (c-snd (u—(1::nat))) by
(rule nat-to-list-of-pos)

from A1 have S5: %k > 0 by simp

from S5 have S6: c-unfold (Suc ?k) (c-snd (u—(1::nat))) = (c-fst (c-snd (u—(1::nat))))
(c-unfold 2k (c-snd (c-snd (u—(1::nat))))) by (rule c-unfold-4)

from S6 have S7: tl (c-unfold (Suc ?k) (c-snd (u—(1::nat)))) = c-unfold 2k

44

(c-snd (c-snd (u—(1::nat)))) by simp

from 52 54 S7 have S8: tl (nat-to-list u) = c-unfold %k (c-snd (c-snd (u—(1::nat))))
by simp

define Is where Is = tl (nat-to-list u)

from Is-def S8 have S9: length Is = %k by (simp add: c-unfold-len)

from Is-def have S10: c-tl u = list-to-nat Is by (simp add: c-tl-def)

from S5 59 have S11: length Is > 0 by simp

from S11 have S12: Is # [| by simp

from S12 have S13: list-to-nat ls = (c-pair ((length ls) — 1) (c-fold ls))+1 by
(simp add: list-to-nat-def)

from S10 S13 have S14: c-tl u = (c-pair ((length Is) — 1) (c-fold Is))+1 by
stmp

from 59 have S15: (length ls)—(1::nat) = %k—(1:nat) by simp

from A1 have S16: ?k—(1::nat) = c-len u — (2::nat) by arith

from S15 S16 have S17: (length ls)—(1:nat) = c-len u — (2::nat) by simp

from Is-def S8 have S18: Is = c-unfold ?k (c-snd (c-snd (u—(1::nat)))) by simp

from S5 have S19: c-fold (c-unfold ?k (c-snd (c-snd (u—(1::nat))))) = c-snd
(c-snd (u—(1::nat))) by (simp add: th-2)

from 518 S19 have S20: c-fold Is = c-snd (c-snd (u—(1::nat))) by simp

from S14 S17 520 show ?thesis by simp
qed

lemma c-tl-auz3: c-tl uw = (sgnl ((c-len u) — 1))x((c-pair (c-len u — (2::nat))
(c-snd (c-snd (u—(1:nat))))) + 1) (is - = ?R)
proof —
have S1: u=0 = ?thesis by simp
have S2: u>0 = %thesis
proof —
assume Al: u>0
have S2-1: c-len uw = 1 = ?thesis by (simp add: c-tl-auzl)
have S2-2: c-len u # 1 = ?thesis
proof —
assume A2-2-1: c-len u # 1
from A1 have S2-2-1: c-len u > 0 by (rule c-len-3)
from A2-2-1 52-2-1 have 52-2-2: c-len uw > 1 by arith
from this have 52-2-3: c-len v — 1 > 0 by simp
from this have 52-2-4: sgnl (c-len uw — 1)=1 by simp
from 52-2-/ have 52-2-5: R = (c-pair (c-len u — (2::nat)) (c-snd (c-snd
(u—(1:nat))))) + 1 by simp
from 5$2-2-2 have S2-2-6: c-tl u = (c-pair (c-len u — (2:nat)) (c-snd (c-snd
(u—(1::nat))))) + 1 by (rule c-tl-auz2)
from S52-2-5 52-2-6 show ?thesis by simp
qed
from S52-1 52-2 show ?thesis by blast
qed
from S1 52 show ?thesis by arith
qed

lemma c-tl-less: u > 0 — c-tlu < u

45

proof —
assume AI: u > 0
then have S1: c-len u > 0 by (rule c-len-3)
then show %thesis
proof cases
assume c-len u = 1
from this A1 show ?thesis by (simp add: c-tl-auzl)
next
assume — c-len u = 1 with S1 have A2: c-len v > 1 by simp
then have S2: c-tl u = (c-pair (c-len u — (2:nat)) (c-snd (c-snd (u—(1::nat)))))
+ 1 by (rule c-tl-aux2)
from A1 have S3: c-len u = c-fst(u—(1::nat))+1 by (simp add: c-len-def)
from A2 53 have S4: c-len u — (2:nat) < c-fst(u—(1::nat)) by simp
then have S5: (c-pair (c-len u — (2::nat)) (c-snd (c-snd (u—(1::nat))))) <
(c-pair (c-fst(u—(1::nat))) (c-snd (c-snd (u—(1::nat))))) by (rule c-pair-strict-monol)
have S6: c-snd (c-snd (u—(1::nat))) < c-snd (u—(1::nat)) by (rule c-snd-le-arg)
then have S7: (c-pair (c-fst(u—(1::nat))) (c-snd (c-snd (u—(1::nat))))) <
(c-pair (c-fst(u—(1:nat))) (c-snd (u—(1::nat)))) by (rule c-pair-mono2)
then have S8: (c-pair (c-fst(u—(1::nat))) (c-snd (c-snd (u—(1::nat))))) <
u—(1::nat) by simp
with S5 have (c-pair (c-len v — (2:nat)) (c-snd (c-snd (u—(1:nat))))) < u
— (1::nat) by simp
with 52 have c-tl v < (u—(1::nat))+1 by simp
with A1 show ?thesis by simp
qed
qged

lemma c-tl-le: c-tl u < u
proof (cases u)
assume u=0
then show ?thesis by simp
next
fix v assume A1: u = Suc v
then have S7: v > 0 by simp
then have S2: c-tl v < u by (rule c-tl-less)
with A1 show c-tl u < u by simp
qed

theorem c-tl-is-pr: c-tl € PrimRecl

proof —
have c-tl = (A u. (sgnl ((c-len u) — 1))x((c-pair (c-len v — (2::nat)) (c-snd

(c-snd (u—(1:nat))))) + 1)) (is - = ?R) by (simp add: c-tl-aux3 ext)
moreover from c-len-is-pr c-pair-is-pr have ?R € PrimRecl by prec
ultimately show ?thesis by simp

qed

lemma c-cons-auzl: c-cons © 0 = (c-pair 0 z) + 1

apply (unfold c-cons-def)
apply (simp)

46

apply (unfold list-to-nat-def)

apply(simp)
done

lemma c-cons-auz2: u > 0 = c-cons ¢ u = (c-pair (c-len u) (c-pair z (c-snd
(u—(1::nat))))) + 1
proof —
assume Al: u > 0
from A1 have S1: c-len v > 0 by (rule c-len-3)
from A! have S2: nat-to-list u = c-unfold (c-len u) (c-snd (u—(1::nat))) by
(rule nat-to-list-of-pos)
define ls where [s = nat-to-list u
from Is-def S2 have S3: Is = c-unfold (c-len u) (c-snd (u—(1::nat))) by simp
from S3 have S4: length ls = c-len u by (simp add: c-unfold-len)
from S4 S1 have S5: length s > 0 by simp
from S5 have S6: Is # [| by simp
from Is-def have S7: c-cons x u = list-to-nat (z # Is) by (simp add: c-cons-def)
have S8: list-to-nat (x # Is) = (c-pair ((length (z#1s))—(1::nat)) (c-fold (z#ls)))+1
by (simp add: list-to-nat-def)
have 59: (length (x#ls))—(1::nat) = length ls by simp
from S9 S4 S8 have S10: list-to-nat (z # Is) = (c-pair (c-len u) (c-fold
(z#1s)))+1 by simp
have S11: c-fold (z#tls) = c-pair x (c-snd (u—(1::nat)))
proof —
from S6 have S11-1: c-fold (x#ls) = c-pair x (c-fold ls) by (rule c-fold-0)
from S8 have S11-2: c-fold Is = c-fold (c-unfold (c-len u) (c-snd (u—(1::nat))))
by simp
from S1 S11-2 have S11-3: c-fold Is = c-snd (u—(1::nat)) by (simp add: th-2)
from S11-1 S11-83 show ?thesis by simp
qed
from S7 510 S11 show f?thesis by simp
qed

lemma c-cons-auz3: c-cons = (A z u. (sgn2 u)*((c-pair 0 x)+1) + (sgnl u)*((c-pair
(c-len u) (c-pair x (c-snd (u—(1::nat))))) + 1))
proof (rule ext, rule ext)
fix x u show c-cons z u = (sgn2 uw)x((c-pair 0 z)+1) + (sgni u)x((c-pair (c-len
u) (c-pair z (c-snd (u—(1::nat))))) + 1) (is - = ?R)
proof cases
assume Al: u=0
then have ?R = (c-pair 0 x)+1 by simp
moreover from A1 have c-cons x u = (c-pair 0 x)+1 by (simp add: c-cons-auzxl)
ultimately show ?thesis by simp
next
assume A7l: u#0
then have S1: YR = (c-pair (c-len u) (c-pair z (c-snd (u—(1::nat))))) + 1 by
simp
from A1 have S2: c-cons z u = (c-pair (c-len u) (c-pair z (c-snd (u—(1::nat)))))
+ 1 by (simp add: c-cons-auz2)

47

from S1 S2 have c-cons x u = ?R by simp
then show ?thesis .
qed
qed

lemma c-cons-pos: c-cons x u > 0
proof cases

assume u=0

then show c-cons z u > 0 by (simp add: c-cons-auzl)
next

assume — u=0 then have u>0 by simp

then show c-cons x u > 0 by (simp add: c-cons-auz2)
qed

theorem c-cons-is-pr: c-cons € PrimRec2

proof —
have c-cons = (A z u. (sgn2 u)*((c-pair 0 x)+1) + (sgnl u)*((c-pair (c-len w)

(e-pair z (c-snd (u—(1:nat))))) + 1)) (is - = ?R) by (simp add: c-cons-auz3)
moreover from c-pair-is-pr c-len-is-pr have ?R € PrimRec2 by prec
ultimately show ?thesis by simp

qed

definition
c-drop :: nat = nat = nat where
c-drop = PrimRecOp (A z. z) (A z y z. c-tl y)

lemma c-drop-at-0 [simp]: c-drop 0 x = z by (simp add: c-drop-def)
lemma c-drop-at-Suc: c-drop (Suc y) z = c-tl (c-drop y x) by (simp add: c-drop-def)

theorem c-drop-is-pr: c-drop € PrimRec?2

proof —
have (A z. z) € PrimRecl by (rule pr-id1-1)
moreover from c-tl-is-pr have (A z y z. c-tl y) € PrimRec3 by prec
ultimately show ?thesis by (simp add: c-drop-def pr-rec)

qed

lemma c-tl-c-drop: c-tl (c-drop y x) = c-drop y (c-tl x)
apply (induct y)

apply(simp)

apply(simp add: c-drop-at-Suc)

done

lemma c-drop-at-Sucl: c-drop (Suc y) x = c-drop y (c-tl x)
apply(simp add: c-drop-at-Suc c-tl-c-drop)

done

lemma c-drop-df: V ls. drop n ls = nat-to-list (c-drop n (list-to-nat 1s))
proof (induct n)

48

show V Is. drop 0 ls = nat-to-list (c-drop 0 (list-to-nat ls)) by (simp add:
c-drop-def)
next
fix n assume A1:V Is. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
then show V Is. drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls))
proof —
{
fix [s::nat list
have S1: drop (Suc n) ls = drop n (tl Is) by (rule drop-Suc)
from A1 have S2: drop n (tl ls) = nat-to-list (c-drop n (list-to-nat (¢l ls))) by
simp

also have ... = nat-to-list (c-drop n (c-tl (list-to-nat 1s))) by (simp add:
c-tl-eq-tl)
also have ... = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by (simp add:

c-drop-at-Sucl)

finally have drop n (¢l ls) = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by simp

with S1 have drop (Suc n) Is = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by
stmp

}

then show ?thesis by blast

qed

qed

definition
c-nth :: nat = nat = nat where
c-nth = (A z n. ¢-hd (c-drop n z))

lemma c-nth-is-pr: c-nth € PrimRec2
proof (unfold c-nth-def)

from c-hd-is-pr c-drop-is-pr show (Az n. c-hd (c-drop n z)) € PrimRec2 by prec
qed

lemma c-nth-at-0: c-nth x 0 = c-hd x by (simp add: c-nth-def)

lemma c-hd-c-cons [simp]: c-hd (c-cons x y) = z
proof —

have c-cons z y > 0 by (rule c-cons-pos)

then show %thesis by (simp add: c-hd-def c-cons-def)
qed

lemma c-tl-c-cons [simp]: c-tl (c-cons x y) = y by (simp add: c-tl-def c-cons-def)

definition
c-f-list :: (nat = nat = nat) = nat = nat = nat where
c-f-list = (\ f.

let g = (%x. c-cons (f0x) 0); h = (%a b c. c-cons (f (Suc a) ¢) b) in PrimRecOp
g h)

lemma c-f-list-at-0: c-f-list f 0 z = c-cons (f 0 z) 0 by (simp add: c-f-list-def

49

Let-def)

lemma c-f-list-at-Suc: c-f-list f (Suc y) x = c-cons (f (Suc y) z) (c-f-list f y x) by
((simp add: c-f-list-def Let-def))

lemma c-f-list-is-pr: f € PrimRec2 —> c-f-list f € PrimRec2
proof —

assume Al: f € PrimRec2

let 29 = (%z. c-cons (f 0 z) 0)

from A1 c-cons-is-pr have S1: ?g € PrimRecl by prec

let ?h = (%a b c. c-cons (f (Suc a) c) b)

from A1 c-cons-is-pr have S2: ?h € PrimRec3 by prec

from S1 S2 show ?thesis by (simp add: pr-rec c-f-list-def Let-def)
qed

lemma c-f-list-to-f-0: f y x = c-hd (c-f-list f y)
apply (induct y)

apply(simp add: c-f-list-at-0)

apply(simp add: c-f-list-at-Suc)

done

lemma c-f-list-to-f: f = (A y x. c-hd (c-f-list f y z))
apply(rule ext, rule ext)

apply(rule c-f-list-to-f-0)

done

lemma c-f-list-f-is-pr: c-f-list f € PrimRec2 — f € PrimRec2
proof —
assume A1: c-f-list f € PrimRec2
have S1: f = (A y z. ¢-hd (c-f-list f y x)) by (rule c-f-list-to-f)
from A1 c-hd-is-pr have S2: (A y x. c-hd (c-f-list f y ©)) € PrimRec2 by prec
with S1 show ?thesis by simp
qed

lemma c-f-list-Im-1: c-nth (c-cons z y) (Suc z) = c-nth y z by (simp add: c-nth-def
c-drop-at-Sucl)

lemma c-f-list-lm-2: 2z < Suc n = c-nth (c-f-list f (Suc n) z) (Sucn — z) =
c-nth (c-f-list fn z) (n — 2)
proof —

assume z < Suc n

then have Suc n — z = Suc (n—=z) by arith

then have c-nth (c-f-list f (Suc n) z) (Suc n — z) = c-nth (c-f-list f (Suc n) x)
(Suc (n — z)) by simp

also have ... = c-nth (c-cons (f (Suc n) z) (c-f-list f n x)) (Suc (n — 2)) by
(simp add: c-f-list-at-Suc)
also have ... = c-nth (c-f-list fn z) (n — z) by (simp add: c-f-list-Im-1)
finally show ?thesis by simp
qed

50

lemma c-f-list-nth: z < y — c-nth (c¢-f-list fyx) (y—z) = fzz
proof (induct y)
show z < 0 — c-nth (¢-f-list f0z) (0 — 2) =fzx
proof
assume z < (then have A1: 2=0 by simp
then have c-nth (c-f-list f 0 x) (0 — z) = c-nth (c-f-list f 0 z) 0 by simp

also have ... = c¢-hd (c-f-list f 0 z) by (simp add: c-nth-at-0)
also have ... = c¢-hd (c-cons (f 0) 0) by (simp add: c-f-list-at-0)
also have ... = f 0 x by simp
finally show c-nth (c-f-list f 0 x) (0 — 2) = f z z by (simp add: A1)
qed
next

fix n assume A2: z < n — c-nth (¢-f-list fnz) (n — 2) = f 2z 2 show z <
Suc n — c-nth (c-f-list f (Suc n) z) (Sucn —z) =fzz
proof
assume A3: 2z < Sucn
show 2z < Suc n = c-nth (c-f-list f (Suc n) z) (Sucn — 2) =fzzx
proof cases
assume AAl: z < n
then have AA2: 2z < Suc n by simp
from A2 this have S1: c-nth (c-f-list fn z) (n — 2) = f z by auto
from AA2 have c-nth (c-f-list f (Suc n) x) (Suc n — z) = c-nth (c-f-list fn
z) (n — z) by (rule c-f-list-lm-2)
with S1 show c-nth (c-f-list f (Suc n) x) (Suc n — 2) = f 2z z by simp
next
assume — z < n
from A3 this have S1: z = Suc n by simp
then have S2: Suc n — z = 0 by simp
then have c-nth (c-f-list f (Suc n)) (Suc n — z) = c-nth (c-f-list f (Suc n)

z) 0 by simp

also have ... = c-hd (c-f-list f (Suc n) z) by (simp add: c-nth-at-0)

also have ... = c¢-hd (c-cons (f (Suc n) z) (c-f-list f n x)) by (simp add:
c-f-list-at-Suc)

also have ... = f (Suc n) z by simp

finally show c-nth (c-f-list f (Suc n) z) (Suc n — z) = f z x by (simp add:
S1)

qed
qed

qed

theorem th-pr-rec: [g € PrimRecl; h € PrimRec3; (¥ z. (f0x) = (g x)); (V z
y. (f (Sucy)) =hy(fyz)z)] = f € PrimRec2
proof —

assume g-is-pr: g € PrimRecl

assume h-is-pr: h € PrimRec3

assume f-0:V z. fO0rx =gz

assume f-1:V zy. (f (Sucy) z)=hy (fyz)z

let ?f = PrimRecOp g h

o1

from g-is-pr h-is-pr have S1: ?f € PrimRec2 by (rule pr-rec)
have f-2:V z. ?f 0z = g x by simp
have f-3:V z y. (?f (Sucy) z) = hy (?fy z) z by simp
have S2: f = ?f
proof —
have Azy. fyz=?fyzx
apply (induct-tac y)
apply (insert f-0 f-1)
apply(auto)
done
then show f = ?f by (simp add: ext)
qed
from S1 52 show ?thesis by simp
qed

theorem th-rec: [g € PrimRecl; a € PrimRec2; h € PrimRec3; (V zy. a yz <
y); (Vo (f0z)=(g2); (Vay (f (Sucy)z)=hy(f(ayz)z)z)] =[¢€
PrimRec?2
proof —
assume g-is-pr: g € PrimRecl
assume a-is-pr: @ € PrimRec2
assume h-is-pr: h € PrimRec3
assume a-le: (V zy. ayz < y)
assume f-0:V z. fO0x =gz
assume f-1:V zy. (f (Sucy) z)=hy(f (ayz))
let 29’ = X z. c-cons (g x) 0
let b/ =X abc. c-cons (ha (cnthd (a — (aac)))c)b
let 2r = c-f-list f
from g-is-pr c-cons-is-pr have g’-is-pr: ?g’ € PrimRecl by prec
from h-is-pr c-cons-is-pr c-nth-is-pr a-is-pr have h’-is-pr: ?h’ € PrimRec3 by
prec
have S1:V z. r 0z = %'z
proof
fix x have ?r 0 © = c-cons (f 0 x) 0 by (rule c-f-list-at-0)
with f-0 have ?r 0 x = c-cons (g) 0 by simp
then show ?r 0 z = %9’ x by simp
qged
have S2:V zy. 2r (Sucy) z = %"y (9ryz) z
proof (rule alll, rule alll)
fix z y show ?r (Sucy) z= %"y (ryz) x
proof —
have S2-1: ?r (Suc y) © = c-cons (f (Suc y) x) (?ry z) by (rule c-f-list-at-Suc)
with f-1 have 52-2: f (Sucy) x = hy (f (o y) z) x by simp
from a-le have S2-3: a y z < y by simp
then have S2-4: f (a y) © = c-nth (?r y z) (y—(a y z)) by (simp add:
c-f-list-nth)
from S2-1 52-2 52-4 show ?thesis by simp
qed
qed

52

from g’-is-pr h'-is-pr S1 S2 have S3: ?r € PrimRec2 by (rule th-pr-rec)
then show f € PrimRec2 by (rule c-f-list-f-is-pr)
qed

declare c-tl-less [termination-simp]

fun c-assoc-have-key :: nat = nat = nat where
c-assoc-have-key-df [simp del]: c-assoc-have-key y x = (if y = 0 then 1 else
(if c-fst (¢c-hd y) = z then 0 else c-assoc-have-key (c-tl y) x))

lemma c-assoc-have-key-lm-1: y # 0 = c-assoc-have-key y x = (if c-fst (c-hd y)
= z then 0 else c-assoc-have-key (c-tl y) x) by (simp add: c-assoc-have-key-df)

theorem c-assoc-have-key-is-pr: c-assoc-have-key € PrimRec2
proof —
let ?h = X a b c. if c-fst (c-hd (Suc a)) = ¢ then 0 else b
let %a = X y z. c-tl (Suc y)
let 29 = X\ z. (1::nat)
have g-is-pr: ?g € PrimRecl by (rule const-is-pr)
from c-ti-is-pr have a-is-pr: ?a € PrimRec2 by prec
have h-is-pr: ?h € PrimRec3
proof (rule if-eq-is-pr3)
from c-fst-is-pr c-hd-is-pr show (Az y z. c-fst (c-hd (Suc z))) € PrimRec3 by
prec
next
show (Az y z. z) € PrimRec3 by (rule pr-id3-3)
next
show (Az y z. 0) € PrimRec3 by prec
next
show (Az y z. y) € PrimRec3 by (rule pr-id3-2)
qed
have a-le:V zy. 2ayz <y
proof (rule alll, rule alll)
fix z y show 2a yxz <y
proof —
have Suc y > 0 by simp
then have %a y z < Suc y by (rule c-tl-less)
then show ?thesis by simp
qed
qed
have f-0: V z. c-assoc-have-key 0 © = %9 x by (simp add: c-assoc-have-key-df)
have f-1: V 1 y. c-assoc-have-key (Suc y) © = ?h y (c-assoc-have-key (?a y x)
x) z by (simp add: c-assoc-have-key-df)
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)
qed

fun c-assoc-value :: nat = nat = nat where

c-assoc-value-df [simp del|: c-assoc-value y © = (if y = 0 then 0 else
(if c-fst (c-hd y) = x then c-snd (c-hd y) else c-assoc-value (c-tl y) x))

93

lemma c-assoc-value-lm-1: y # 0 = c-assoc-value y © = (if c-fst (c-hd y) = z
then c-snd (c-hd y) else c-assoc-value (c-tl y) =) by (simp add: c-assoc-value-df)

theorem c-assoc-value-is-pr: c-assoc-value € PrimRec2
proof —
let ?h = X a b c. if c-fst (¢c-hd (Suc a)) = ¢ then c-snd (c-hd (Suc a)) else b
let %a = X y . c-tl (Suc y)
let 79 = A\ z. (0::nat)
have g-is-pr: ?g € PrimRecl by (rule const-is-pr)
from c-tl-is-pr have a-is-pr: ?a € PrimRec2 by prec
have h-is-pr: ?h € PrimRec3
proof (rule if-eq-is-pr3)
from c-fst-is-pr c-hd-is-pr show (A\z y z. c-fst (¢-hd (Suc z))) € PrimRec8 by
prec
next
show (Az y z. z) € PrimRec3 by (rule pr-id3-3)
next
from c-snd-is-pr c-hd-is-pr show (Az y z. c-snd (c¢-hd (Suc z))) € PrimRec3
by prec
next
show (Az y z. y) € PrimRec3 by (rule pr-id3-2)
qed
have a-le:V 2z y. 2ayz <y
proof (rule alll, rule alll)
fix z y show 2a yx <y
proof —
have Suc y > 0 by simp
then have %a y x < Suc y by (rule c-tl-less)
then show ?thesis by simp
qed
qed
have f-0: V z. c-assoc-value 0 x = ?g x by (simp add: c-assoc-value-df)
have f-1: YV z y. c-assoc-value (Suc y) x = ?h y (c-assoc-value (%a y x) z) © by
(simp add: c-assoc-value-df)
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)
qed

lemma c-assoc-lm-1: c-assoc-have-key (c-cons (c-pair x y) z) © = 0
apply(simp add: c-assoc-have-key-df)

apply(simp add: c-cons-pos)

done

lemma c-assoc-Im-2: c-assoc-value (c-cons (c-pair x y) z) © =y
apply(simp add: c-assoc-value-df)

apply(rule impl)

apply (insert c-cons-pos [where z=(c-pair x y) and u=2z])
apply(auto)

done

54

lemma c-assoc-lm-3: x1 # x = c-assoc-have-key (c-cons (c-pair ¢ y) z) ©1 =
c-assoc-have-key z x1
proof —
assume Al: zl #
let ?ls = (c-cons (c-pair z y) 2)
have S1: ?ls # 0 by (simp add: c-cons-pos)
then have S2: c-assoc-have-key ?ls x1 = (if c-fst (c-hd ?ls) = x1 then 0 else
c-assoc-have-key (c-tl ?ls) z1) (is - = ?R) by (rule c-assoc-have-key-lm-1)
have S3: c-fst (c-hd ?ls) = x by simp
with A7 have S4: = (c-fst (¢c-hd ?ls) = z1) by simp
from S4 have S5: ?R = c-assoc-have-key (c-tl ?ls) x1 by (rule if-not-P)
from 52 S5 show ?thesis by simp
qed

lemma c-assoc-lm-4: 1 # 1z = c-assoc-value (c-cons (c-pair x y) z) 1 =
c-assoc-value z x1
proof —
assume Al: zl #
let ?ls = (c-cons (c-pair x y) z)
have S1: ?ls # 0 by (simp add: c-cons-pos)
then have S2: c-assoc-value ?ls x1 = (if c-fst (c-hd ?ls) = z1 then c-snd (c-hd
?ls) else c-assoc-value (c-tl ?ls) x1) (is - = ?R) by (rule c-assoc-value-lm-1)
have S3: c-fst (c-hd ?ls) = = by simp
with A1 have S/: = (c-fst (¢c-hd ?ls) = z1) by simp
from S4 have S5: ?R = c-assoc-value (c-tl ?ls) z1 by (rule if-not-P)
from S2 S5 show ?thesis by simp
qed

end

4 Primitive recursive functions of one variable

theory PRecFun2
imports PRecFun
begin

4.1 Alternative definition of primitive recursive functions of
one variable

definition
UnaryRecOp :: (nat = nat) = (nat = nat) = (nat = nat) where
UnaryRecOp = (A g h. pr-conv-2-to-1 (PrimRecOp g (pr-conv-1-to-3 h)))

lemma unary-rec-into-pr: [g € PrimRecl; h € PrimRecl | = UnaryRecOp g h
€ PrimRecl by (simp add: UnaryRecOp-def pr-conv-1-to-8-lm pr-conv-2-to-1-lm

pr-rec)

definition

95

c-f-pair :: (nat = nat) = (nat = nat) = (nat = nat) where
c-f-pair = (X f g x. c-pair (f z) (g z))

lemma c-f-pair-to-pr: [f € PrimRecl; g € PrimRecl | = c-f-pair f g € PrimRecl
unfolding c-f-pair-def by prec

inductive-set PrimRecl’ :: (nat = nat) set
where
zero: (A z. 0) € PrimRecl’
| suc: Suc € PrimRecl’
| fst: c-fst € PrimRecl’
| snd: c-snd € PrimRecl’
| comp: [f € PrimRecl’; g € PrimRecl’' | = (A z. f (g z)) € PrimRecl’
| pair: [f € PrimRecl’; g € PrimRecl’ | = c-f-pair f ¢ € PrimRecl’
| un-rec: [f € PrimRecl’; g € PrimRecl’] = UnaryRecOp f g € PrimRecl’

lemma primrec’-into-primrec: f € PrimRecl’ = f € PrimRecl
proof (induct f rule: PrimRecl’.induct)
case zero show ?case by (rule pr-zero)

next

case suc show ?case by (rule pr-suc)
next

case fst show Zcase by (rule c-fst-is-pr)
next

case snd show ?Zcase by (rule c-snd-is-pr)
next

case comp from comp show Zcase by (simp add: pr-compl-1)
next

case pair from pair show ?case by (simp add: c-f-pair-to-pr)
next

case un-rec from un-rec show ?case by (simp add: unary-rec-into-pr)
qed

lemma pr-idi-1" (A . ©) € PrimRecl’
proof —
have c-f-pair c-fst c-snd € PrimRecl'by (simp add: PrimRecl’.fst PrimRecl’.snd
PrimRecl’.pair)
moreover have c-f-pair c-fst c-snd = (A z. z) by (simp add: c-f-pair-def)
ultimately show ?thesis by simp
qed

lemma pr-id2-1": pr-conv-2-to-1 (A z y.) € PrimRecl’ by (simp add: pr-conv-2-to-1-def
PrimRecl’.fst)

lemma pr-id2-2": pr-conv-2-to-1 (A z y. y) € PrimRecl’ by (simp add: pr-conv-2-to-1-def
PrimRecl’.snd)

lemma pr-id3-1" pr-conv-3-to-1 (A z y z.) € PrimRecl’
proof —

o6

have pr-conv-3-to-1 (A zy z.) = (\z. c-fst (c-fst x)) by (simp add: pr-conv-3-to-1-def)
moreover from PrimRecl’.fst PrimRecl’.fst have (Az. c-fst (c-fst x)) € Prim-
Rec1’ by (rule PrimRecl’.comp)
ultimately show ?thesis by simp
qed

lemma pr-id3-2": pr-conv-8-to-1 (A z y z. y) € PrimRecl’

proof —
have pr-conv-3-to-1 (A zy z. y) = (Az. c-snd (c-fst z)) by (simp add: pr-conv-3-to-1-def)
moreover from PrimRecl’.snd PrimRecl’.fst have (A\z. c-snd (c-fst z)) € Prim-

Rec1’ by (rule PrimRecl’.comp)
ultimately show ?thesis by simp

qed

lemma pr-id3-3": pr-conv-3-to-1 (A z y z. z) € PrimRecl’

proof —
have pr-conv-3-to-1 (A zy z. z) = (Az. c-snd) by (simp add: pr-conv-3-to-1-def)
thus ?thesis by (simp add: PrimRecl’.snd)

qed

lemma pr-comp2-1": [pr-conv-2-to-1 f € PrimRecl’; g € PrimRecl’; h € Prim-
Recl’'] = (A z. f (g z) (hx)) € PrimRecl’
proof —

assume A1: pr-conv-2-to-1 f € PrimRecl’

assume A2: g € PrimRecl’

assume A3: h € PrimRecl’

let ?f1 = pr-conv-2-to-1 f

have S1: (%x. ?f1 ((c-f-pair g h) z)) = (A z. f (g z) (h z)) by (simp add:
c-f-pair-def pr-conv-2-to-1-def)

from A2 A3 have S2: c-f-pair g h € PrimRecl’ by (rule PrimRecl’.pair)

from A1 52 have S3: (%z. ?f1 ((c-f-pair g h) x)) € PrimRecl’ by (rule Prim-
Rec1’.comp)

with S1 show ?thesis by simp
qed

lemma pr-comp3-1": | pr-conv-3-to-1 f € PrimRecl’; g € PrimRecl’; h € Prim-
Recl’; k € PrimRecl’ | = (A z. f (g z) (h z) (kz)) € PrimRecl’
proof —
assume Al: pr-conv-3-to-1 f € PrimRecl’
assume A2: g € PrimRecl’
assume A3: h € PrimRecl’
assume A/: k € PrimRecl’
from A2 A3 have c-f-pair g h € PrimRecl’ by (rule PrimRecl’.pair)
from this A4 have c-f-pair (c-f-pair g h) k € PrimRec1’by (rule PrimRec1’.pair)
from A1 this have (%z. (pr-conv-3-to-1 f) ((c-f-pair (c-f-pair g h) k) z)) €
PrimRecl’ by (rule PrimRecl’.comp)
then show ?thesis by (simp add: c-f-pair-def pr-conv-3-to-1-def)
qed

o7

lemma pr-comp1-2": [f € PrimRecl’; pr-conv-2-to-1 g € PrimRecl'] = pr-conv-2-to-1
Azy. f(gzy)) € PrimRecl’
proof —
assume [€ PrimRecl’
and pr-conv-2-to-1 g € PrimRecl’ (is 2?91 € PrimRecl’)
then have (A z. f (%91 x)) € PrimRecl’ by (rule PrimRecl’.comp)
then show %thesis by (simp add: pr-conv-2-to-1-def)
qed

lemma pr-comp1-3": [f € PrimRecl’; pr-conv-3-to-1 g € PrimRecl'] = pr-conv-3-to-1
ANzyz f(9gzyz)) € PrimRecl’
proof —
assume f € PrimRecl’
and pr-conv-3-to-1 g € PrimRecl’ (is ?g1 € PrimRecl’)
then have (A z. f (%91 z)) € PrimRecl’ by (rule PrimRecl’.comp)
then show %thesis by (simp add: pr-conv-3-to-1-def)
qed

lemma pr-comp2-2" [pr-conv-2-to-1 f € PrimRecl’; pr-conv-2-to-1 g € Prim-
Recl’; pr-conv-2-to-1 h € PrimRecl’] = pr-conv-2-to-1 Az y. f (9 zy) (hz
y)) € PrimRecl’
proof —

assume pr-conv-2-to-1 f € PrimRecl’

and pr-conv-2-to-1 g € PrimRecl’ (is ?g1 € PrimRecl’)

and pr-conv-2-to-1 h € PrimRecl’ (is ?h1 € PrimRecl’)

then have (A z. f (%91 z) (?h1 z)) € PrimRecl’ by (rule pr-comp2-1")

then show %thesis by (simp add: pr-conv-2-to-1-def)
qed

lemma pr-comp2-3” [pr-conv-2-to-1 f € PrimRecl’; pr-conv-3-to-1 g € Prim-
Recl’; pr-conv-3-to-1 h € PrimRecl’]| = pr-conv-3-to-1 Az yz. f (gzy2) (h
xy 2)) € PrimRecl’
proof —

assume pr-conv-2-to-1 f € PrimRecl’

and pr-conv-3-to-1 g € PrimRecl’ (is ?g1 € PrimRecl’)

and pr-conv-3-to-1 h € PrimRecl’ (is ?h1 € PrimRecl’)

then have (A z. f (%91 z) (?h1 z)) € PrimRecl’ by (rule pr-comp2-1")

then show %thesis by (simp add: pr-conv-3-to-1-def)
qed

lemma pr-comp3-2" [pr-conv-8-to-1 f € PrimRecl’; pr-conv-2-to-1 g € Prim-
Recl’; pr-conv-2-to-1 h € PrimRecl’; pr-conv-2-to-1 k € PrimRecl'] = pr-conv-2-to-1
MNzy. f(gzy) (hzy) (kzvy)) € PrimRecl’
proof —

assume pr-conv-3-to-1 f € PrimRecl’

and pr-conv-2-to-1 g € PrimRecl’ (is ?g1 € PrimRecl’)

and pr-conv-2-to-1 h € PrimRecl’ (is ?h1 € PrimRecl’)

and pr-conv-2-to-1 k € PrimRecl’ (is ?k1 € PrimRecl’)

then have (A z. f (%91 z) (?h x) (?k1 x)) € PrimRecl’ by (rule pr-comp3-1")

o8

then show %thesis by (simp add: pr-conv-2-to-1-def)

qed

lemma pr-comp3-3" [pr-conv-3-to-1 f € PrimRecl'; pr-conv-3-to-1 g € Prim-
Recl1’; pr-conv-3-to-1 h € PrimRecl’; pr-conv-3-to-1 k € PrimRecl'] = pr-conv-3-to-1

MNzyz. f(gzyz) (hzyz) (kzyz)) € PrimRecl’

proof —

assume pr-conv-3-to-1 f € PrimRecl’
and pr-conv-3-to-1 g € PrimRecl’ (is ?g1 € PrimRecl’)
and pr-conv-3-to-1 h € PrimRecl’ (is ?h1 € PrimRecl’)
and pr-conv-3-to-1 k € PrimRecl’ (is ?k1 € PrimRecl’)

then have (\ z. f (%91 z) (?h1 x) (?k1 z)) € PrimRecl’ by (rule pr-comp3-1")

then show %thesis by (simp add: pr-conv-3-to-1-def)

qed

lemma Im” (fI € PrimRecl —> f1 € PrimRecl’) A (g1 € PrimRec2 — pr-conv-2-to-1

gl € PrimRecl’) A (h1 € PrimRec3 — pr-conv-3-to-1 h1 € PrimRecl’)

proof (induct rule: PrimRecl-PrimRec2-PrimRec3.induct)
case zero show ?case by (rule PrimRecl’.zero)

next case suc show ?case by (rule PrimRecl’.suc)

next case
next case
next case
next case
next case
next case
next case
next case
next case
next case
next case
next case
next case
next case
next case

id1-1 show
id2-1 show
id2-2 show
id3-1 show
id3-2 show
id3-3 show
compl-1 from
compl-2 from
compl-3 from
comp2-1 from
comp2-2 from
comp2-3 from
comp3-1 from
comp3-2 from
comp3-3 from

next case prim-rec
fix g h assume AI1: g € PrimRecl’ and pr-conv-3-to-1 h € PrimRecl’

then have UnaryRecOp g (pr-conv-3-to-1 h) € PrimRecl’by (rule PrimRec1’.un-rec)
moreover have UnaryRecOp g (pr-conv-3-to-1 h) = pr-conv-2-to-1 (PrimRecOp

?case by (rule pr-id1-1
?case by (rule pr-id2-1
Zcase by (rule pr-id2-2
?case by (rule pr-id3-1
?case by (rule pr-id3-2
?case by (rule pr-id3-3

compl-1 show
compl-2 show
compl-3 show
comp2-1 show
comp2-2 show
comp2-3 show
comp3-1 show
comp3-2 show
comp3-3 show

g h) by (simp add: UnaryRecOp-def)
ultimately show pr-conv-2-to-1 (PrimRecOp g h) € PrimRecl’ by simp

qged

)
)
)
)
)
)

?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:
?case by (simp add:

theorem pr-1-eq-1": PrimRecl = PrimRecl’

proof —

PrimRecl’.comp)

pr-compl-27)
pr-comp1-37)
pr-comp2-17)
pr-comp2-27)
pr-comp2-3")
pr-comp3-1")
pr-comp3-27)
pr-comp3-37)

have S1: A\ f. f € PrimRecl — f € PrimRecl’ by (simp add: Im’)

have S2: A\ f. f € PrimRecl’ — f € PrimRecl by (simp add: primrec’-into-primrec)

from S1 52 show ?thesis by blast

qed

99

4.2 The scheme datatype

datatype PrimScheme = Base-zero | Base-suc | Base-fst | Base-snd
| Comp-op PrimScheme PrimScheme
| Pair-op PrimScheme PrimScheme
| Rec-op PrimScheme PrimScheme

primrec
sch-to-pr :: PrimScheme = (nat = nat)
where
sch-to-pr Base-zero = (A z. 0)
| sch-to-pr Base-suc = Suc
| sch-to-pr Base-fst = c-fst
| sch-to-pr Base-snd = c-snd
| sch-to-pr (Comp-op t1 t2) = (X z. (sch-to-pr t1) ((sch-to-pr t2) z))
| sch-to-pr (Pair-op t1 t2) = c-f-pair (sch-to-pr t1) (sch-to-pr t2)
| sch-to-pr (Rec-op t1 t2) = UnaryRecOp (sch-to-pr t1) (sch-to-pr t2)

lemma sch-to-pr-into-pr: sch-to-pr sch € PrimRecl by (simp add: pr-1-eq-1’,
induct sch, simp-all add: PrimRecl’.intros)

lemma sch-to-pr-srj: f € PrimRecl = (3 sch. f = sch-to-pr sch)
proof —
assume f € PrimRec! then have A1: f € PrimRecl’ by (simp add: pr-1-eq-1")
from A1 show ?%thesis
proof (induct f rule: PrimRecl’.induct)
have (A z. 0) = sch-to-pr Base-zero by simp
then show Jsch. (Au. 0) = sch-to-pr sch by (rule exl)
next
have Suc = sch-to-pr Base-suc by simp
then show 3 sch. Suc = sch-to-pr sch by (rule exl)
next
have c-fst = sch-to-pr Base-fst by simp
then show Jsch. c-fst = sch-to-pr sch by (rule exI)
next
have c-snd = sch-to-pr Base-snd by simp
then show 3 sch. c-snd = sch-to-pr sch by (rule exI)
next
fix f1 f2 assume BI: dsch. f1 = sch-to-pr sch and B2: 3 sch. f2 = sch-to-pr
sch
from B1 obtain schl where S1: f1 = sch-to-pr schl ..
from B2 obtain sch2 where S2: f2 = sch-to-pr sch2 ..
from S17 52 have (A z. f1 (f2 x)) = sch-to-pr (Comp-op schl sch2) by simp
then show Jsch. (Az. f1 (f2 z)) = sch-to-pr sch by (rule exl)
next
fix f1 f2 assume BI: dsch. f1 = sch-to-pr sch and B2: Jsch. f2 = sch-to-pr
sch
from B1 obtain sch! where S1: f1 = sch-to-pr schi ..
from B2 obtain sch2 where S2: f2 = sch-to-pr sch2 ..
from S1 S2 have c-f-pair f1 f2 = sch-to-pr (Pair-op schl sch2) by simp

60

then show Jsch. c-f-pair f1 f2 = sch-to-pr sch by (rule exI)
next
fix f1 f2 assume BI: dsch. f1 = sch-to-pr sch and B2: Jsch. f2 = sch-to-pr
sch
from B1 obtain sch! where S1: f1 = sch-to-pr schi ..
from B2 obtain sch2 where S2: f2 = sch-to-pr sch2 ..
from S1 52 have UnaryRecOp f1 f2 = sch-to-pr (Rec-op schl sch2) by simp
then show 3 sch. UnaryRecOp f1 f2 = sch-to-pr sch by (rule exI)
qed
qed

definition

loc-f :: nat = PrimScheme = PrimScheme = PrimScheme where

loc-f n schl sch2 =
(if n=0 then Base-zero else
if n=1 then Base-suc else
if n=2 then Base-fst else
if n=3 then Base-snd else
if n=4 then (Comp-op schl sch2) else
if n=>5 then (Pair-op schl sch2) else
if n=06 then (Rec-op schl sch2) else
Base-zero)

definition
mod7 :: nat = nat where
mod7 = (A z. x mod 7)

lemma c-snd-snd-lt [termination-simp]: c-snd (c-snd (Suc (Suc z))) < Suc (Suc
)
proof —
let 2y = Suc (Suc x)
have %y > 1 by simp
then have c-snd %y < ?y by (rule c-snd-less-arg)
moreover have c-snd (c-snd ?y) < c-snd ?y by (rule c-snd-le-arg)
ultimately show ?thesis by simp
qed

lemma c-fst-snd-lt [termination-simp|: c-fst (c-snd (Suc (Suc z))) < Suc (Suc x)
proof —

let 2y = Suc (Suc)

have ?y > 1 by simp

then have c-snd %y < 2y by (rule c-snd-less-arg)

moreover have c-fst (c-snd ?y) < c-snd ?y by (rule c-fst-le-arg)

ultimately show ?thesis by simp
qed

fun nat-to-sch :: nat = PrimScheme where

nat-to-sch 0 = Base-zero
| nat-to-sch (Suc 0) = Base-zero

61

| nat-to-sch x = (let u=mod7 (c-fst z); v=c-snd z; vi=c-fst v; v2 = c-snd v;
sch1=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2)

primrec sch-to-nat :: PrimScheme = nat where
sch-to-nat Base-zero = 0
| sch-to-nat Base-suc = c-pair 1 0
| sch-to-nat Base-fst = c-pair 2 0
| sch-to-nat Base-snd = c-pair 3 0
| sch-to-nat (Comp-op t1 t2) = c-pair 4 (c-pair (sch-to-nat t1) (sch-to-nat t2))
| sch-to-nat (Pair-op t1 t2) = c-pair 5 (c-pair (sch-to-nat t1) (sch-to-nat t2))
| sch-to-nat (Rec-op t1 t2) = c-pair 6 (c-pair (sch-to-nat t1) (sch-to-nat t2))

lemma loc-srj-lm-1: nat-to-sch (Suc (Suc z)) = (let u=mod7 (c-fst (Suc (Suc x)));
v=c-snd (Suc (Suc z)); vi=c-fst v; v2 = c-snd v; schl =nat-to-sch vl; sch2=nat-to-sch
v2 in loc-f u schl sch2) by simp

lemma loc-srj-Im-2: © > 1 = nat-to-sch x = (let u=mod7 (c-fst z); v=c-snd ;
vl=c-fst v; v2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schi
sch2)
proof —

assume Al: z > 1

let 2y = z—(2::nat)

from A1 have S1: z = Suc (Suc ?y) by arith

have S$2: nat-to-sch (Suc (Suc ?y)) = (let u=mod7 (c-fst (Suc (Suc ?y)));
v=c-snd (Suc (Suc ?y)); vI=c-fst v; v2 = c-snd v; sch1=nat-to-sch vl; sch2=nat-to-sch
v2 in loc-f u schl sch2) by (rule loc-srj-lm-1)

from S1 S§2 show ?thesis by simp
qed

lemma loc-srj-0: nat-to-sch (c-pair 1 0) = Base-suc
proof —
let 2z = c-pair 1 0
have S1: %z = 2 by (simp add: c-pair-def sf-def)
then have S2: %z = Suc (Suc 0) by simp
let %y = Suc (Suc 0)
have S3: nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R)
by (rule loc-srj-lm-1)
have S/: c-fst 2y = 1
proof —
from S2 have c-fst 7y = c-fst %z by simp
then show ?thesis by simp
qed
have S5: c-snd 2y = 0
proof —
from S2 have c-snd %y = c-snd ?x by simp
then show ?thesis by simp
qged
from S4 have S6: mod7 (c-fst ?y) = 1 by (simp add: mod7-def)

62

from 53 55 56 have S9: ?R = loc-f 1 Base-zero Base-zero by (simp add: Let-def
c-fst-at-0 c-snd-at-0)

then have S10: YR = Base-suc by (simp add: loc-f-def)

with S8 have S11: nat-to-sch ?y = Base-suc by simp

from S2 this show ?thesis by simp
qed

lemma nat-to-sch-at-2: nat-to-sch 2 = Base-suc

proof —
have S1: c-pair 1 0 = 2 by (simp add: c-pair-def sf-def)
have S2: nat-to-sch (c-pair 1 0) = Base-suc by (rule loc-srj-0)
from S1 52 show ?thesis by simp

qed

lemma loc-srj-1: nat-to-sch (c-pair 2 0) = Base-fst
proof —
let %x = c-pair 2 0
have S1: %z = 5 by (simp add: c-pair-def sf-def)
then have S2: %z = Suc (Suc 3) by simp
let 2y = Suc (Suc 3)
have S3: nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; vl=c-fst v; v2 =
c-snd v; schl1=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) (is - = ?R)
by (rule loc-srj-lm-1)
have 54: c-fst 2y = 2
proof —
from S2 have c-fst ?y = c-fst %z by simp
then show ?thesis by simp
qed
have S5: c-snd 2y = 0
proof —
from S2 have c-snd %y = c-snd ?z by simp
then show ?thesis by simp
qed
from S4 have S6: mod7 (c-fst 2y) = 2 by (simp add: mod7-def)
from 53 55 56 have S9: ?R = loc-f 2 Base-zero Base-zero by (simp add: Let-def
c-fst-at-0 c-snd-at-0)
then have S10: YR = Base-fst by (simp add: loc-f-def)
with S8 have S11: nat-to-sch ?y = Base-fst by simp
from S2 this show ?thesis by simp
qed

lemma loc-srj-2: nat-to-sch (c-pair 3 0) = Base-snd
proof —

let %x = c-pair 8 0

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch %z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vl=c-fst
v; 2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3: c-fst ¢ = 8 by simp

63

have S/: c-snd ?z = 0 by simp

from 53 have S6: mod7 (c-fst ?z) = 3 by (simp add: mod7-def)

from 53 54 S6 have S7: ?R = loc-f 8 Base-zero Base-zero by (simp add: Let-def
c-fst-at-0 c-snd-at-0)

then have S8: YR = Base-snd by (simp add: loc-f-def)

with S2 have S10: nat-to-sch ?x = Base-snd by simp

from S2 this show ?thesis by simp
qed

lemma loc-srj-3: [nat-to-sch (sch-to-nat schl) = schl; nat-to-sch (sch-to-nat sch2)
= sch2]
= nat-to-sch (c-pair 4 (c-pair (sch-to-nat schl) (sch-to-nat sch2))) =

Comp-op schl sch2
proof —

assume AI: nat-to-sch (sch-to-nat schl) = schl

assume A2: nat-to-sch (sch-to-nat sch2) = sch2

let 2z = c-pair 4 (c-pair (sch-to-nat schl) (sch-to-nat sch2))

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch %z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vi=c-fst
v; 2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3: c-fst ¢ = / by simp

have S4: c-snd ?x = c-pair (sch-to-nat schl) (sch-to-nat sch2) by simp

from S3 have S5: mod7 (c-fst ?z) = 4 by (simp add: mod7-def)

from A1 A2 S4 S5 have ?R = Comp-op schl sch2 by (simp add: Let-def
c-fst-at-0 c-snd-at-0 loc-f-def)

with S2 show ?thesis by simp
qed

lemma loc-srj-3-1: nat-to-sch (c-pair 4 (c-pair n1 n2)) = Comp-op (nat-to-sch
nl) (nat-to-sch n2)
proof —

let %z = c-pair 4 (c-pair nl n2)

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch %z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vl=c-fst
v; V2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3: c-fst ¢ = / by simp

have S/: c-snd ?x = c-pair n1 n2 by simp

from S3 have S5: mod7 (c-fst ?z) = 4 by (simp add: mod7-def)

from S/ S5 have 7R = Comp-op (nat-to-sch nl) (nat-to-sch n2) by (simp add:
Let-def c-fst-at-0 c-snd-at-0 loc-f-def)

with S2 show ?thesis by simp
qed

lemma loc-srj-4 : [nat-to-sch (sch-to-nat schl) = schl; nat-to-sch (sch-to-nat sch2)
= sch?2]

= nat-to-sch (c-pair 5 (c-pair (sch-to-nat schl) (sch-to-nat sch2))) =
Pair-op schl sch2

64

proof —

assume AI: nat-to-sch (sch-to-nat schl) = schl

assume A2: nat-to-sch (sch-to-nat sch2) = sch2

let 2z = c-pair 5 (c-pair (sch-to-nat schl) (sch-to-nat sch2))

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch 2z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vi=c-fst
v; v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-Im-2)

have S8: c-fst %z = 5 by simp

have S4: c-snd ?x = c-pair (sch-to-nat schl) (sch-to-nat sch2) by simp

from 53 have S5: mod7 (c-fst 2z) = 5 by (simp add: mod7-def)

from A1 A2 S/ S5 have ?R = Pair-op schl sch2 by (simp add: Let-def c-fst-at-0
c-snd-at-0 loc-f-def)

with S2 show ?thesis by simp
qed

lemma loc-srj-4-1: nat-to-sch (c-pair 5 (c-pair n1 n2)) = Pair-op (nat-to-sch nl)
(nat-to-sch n2)
proof —

let %z = c-pair 5 (c-pair n1 n2)

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch 2z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vi=c-fst
v; v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-Im-2)

have S8: c-fst %z = 5 by simp

have S4: c-snd ?x = c-pair n1 n2 by simp

from 53 have S5: mod7 (c-fst ?z) = 5 by (simp add: mod7-def)

from S4 S5 have ?R = Pair-op (nat-to-sch n1) (nat-to-sch n2) by (simp add:
Let-def c-fst-at-0 c-snd-at-0 loc-f-def)

with S2 show ?thesis by simp
qed

lemma loc-srj-5: [nat-to-sch (sch-to-nat schl) = schl; nat-to-sch (sch-to-nat sch2)
= sch2]
= nat-to-sch (c-pair 6 (c-pair (sch-to-nat schl) (sch-to-nat sch2))) =

Rec-op schl sch2
proof —

assume A1: nat-to-sch (sch-to-nat schl) = schl

assume A2: nat-to-sch (sch-to-nat sch2) = sch2

let 2z = c-pair 6 (c-pair (sch-to-nat schl) (sch-to-nat sch2))

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch 2z = (let u=mod7 (c-fst ?z); v=c-snd ?x; vi=c-fst
v; v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S53: c¢-fst 2z = 6 by simp

have S4: c-snd %z = c-pair (sch-to-nat schl) (sch-to-nat sch2) by simp

from S3 have S5: mod7 (c-fst ?z) = 6 by (simp add: mod7-def)

from A1 A2 S4 S5 have ?R = Rec-op schl sch2 by (simp add: Let-def c-fst-at-0
c-snd-at-0 loc-f-def)

65

with S2 show ?thesis by simp
qed

lemma loc-srj-5-1: nat-to-sch (c-pair 6 (c-pair nl n2)) = Rec-op (nat-to-sch nl)
(nat-to-sch n2)
proof —

let %z = c-pair 6 (c-pair n1 n2)

have S1: %z > 1 by (simp add: c-pair-def sf-def)

from S1 have S2: nat-to-sch ?z = (let u=mod7 (c-fst ?z); v=c-snd ?z; vi=c-fst
v; v2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3: c-fst 2z = 6 by simp

have S/: c-snd ?x = c-pair n1 n2 by simp

from S3 have S5: mod7 (c-fst ?z) = 6 by (simp add: mod7-def)

from S/ S5 have ?R = Rec-op (nat-to-sch n1) (nat-to-sch n2) by (simp add:
Let-def c-fst-at-0 c-snd-at-0 loc-f-def)

with S2 show ?thesis by simp
qed

theorem nat-to-sch-srj: nat-to-sch (sch-to-nat sch) = sch

apply(induct sch, auto simp add: loc-srj-0 loc-srj-1 loc-srj-2 loc-srj-3 loc-srj-4
loc-srj-5)

apply (insert loc-srj-0)

apply(simp)

done

4.3 Indexes of primitive recursive functions of one variables

definition
nat-to-pr :: nat = (nat = nat) where
nat-to-pr = (X x. sch-to-pr (nat-to-sch x))

theorem nat-to-pr-into-pr: nat-to-pr n € PrimRecl by (simp add: nat-to-pr-def
sch-to-pr-into-pr)

lemma nat-to-pr-srj: f € PrimRecl = (3 n. f = nat-to-pr n)
proof —
assume f € PrimRecl
then have S7: (3 t. f = sch-to-pr t) by (rule sch-to-pr-srj)
from S7 obtain ¢t where S2: f = sch-to-prt ..
let ?n = sch-to-nat t
have S3: nat-to-pr ?n = sch-to-pr (nat-to-sch ?n) by (simp add: nat-to-pr-def)
have S4: nat-to-sch ?n = t by (rule nat-to-sch-srj)
from S8 S/ have S5: nat-to-pr ?n = sch-to-pr t by simp
from S2 S5 have nat-to-pr ?n = f by simp
then have f = nat-to-pr ?n by simp
then show ?thesis ..
qed

66

lemma nat-to-pr-at-0: nat-to-pr 0 = (A z. 0) by (simp add: nat-to-pr-def)

definition
index-of-pr :: (nat = nat) = nat where
index-of-pr f = (SOME n. f = nat-to-pr n)

theorem indez-of-pr-is-real: f € PrimRec] = nat-to-pr (indez-of-pr f) = f
proof —

assume f € PrimRecl

hence 3 n. f = nat-to-pr n by (rule nat-to-pr-srj)

hence f = nat-to-pr (SOMEFE n. f = nat-to-pr n) by (rule somel-ex)

thus ?thesis by (simp add: indez-of-pr-def)
qed

definition
comp-by-index :: nat = nat = nat where
comp-by-index = (A n1 n2. c-pair 4 (c-pair nl n2))

definition
pair-by-index :: nat = nat = nat where
pair-by-index = (A nl n2. c-pair 5 (c-pair nl n2))

definition
rec-by-index :: nat = nat = nat where
rec-by-index = (A nl n2. c-pair 6 (c-pair nl n2))

lemma comp-by-index-is-pr: comp-by-index € PrimRec2
unfolding comp-by-index-def
using const-is-pr-2 [of 4] by prec

lemma comp-by-index-inj: comp-by-index x1 y1 = comp-by-index x2 y2 — x1=2x2
A yl=y2
proof —
assume comp-by-index 1 ylI = comp-by-indexr =2 y2
hence c-pair 4 (c-pair x1 y1) = c-pair 4 (c-pair 22 y2) by (unfold comp-by-indez-def)
hence c-pair 1 y1 = c-pair 2 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)
qged

lemma comp-by-index-inj1: comp-by-index x1 y1 = comp-by-index 22 y2 — z1
= 22 by (frule comp-by-index-inj, drule conjunctl)

lemma comp-by-index-inj2: comp-by-index x1 y1 = comp-by-inder 2 y2 —> yl
= y2 by (frule comp-by-indez-inj, drule conjunct?2)

lemma comp-by-index-main: nat-to-pr (comp-by-index nl n2) = (A z. (nat-to-pr

nl) ((nat-to-pr n2) x)) by (unfold comp-by-indez-def, unfold nat-to-pr-def, simp
add: loc-srj-3-1)

67

lemma pair-by-index-is-pr: pair-by-index € PrimRec2 by (unfold pair-by-index-def,
insert const-is-pr-2 [where ?n=(5:nat)], prec)

lemma pair-by-index-ing: pair-by-index x1 y1 = pair-by-index 2 y2 —> rl=z2 A
yl=y2
proof —
assume pair-by-index 1 yI = pair-by-index 2 y2
hence c-pair 5 (c-pair x1 y1) = c-pair 5 (c-pair 22 y2) by (unfold pair-by-indez-def)
hence c-pair 1 y1 = c-pair 2 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)
qged

lemma pair-by-index-inj1: pair-by-index 1 y1 = pair-by-index 2 y2 —> x1 = 22
by (frule pair-by-indezx-inj, drule conjunctl)

lemma pair-by-index-inj2: pair-by-index x1 y1 = pair-by-index 2 y2 — yl = y2
by (frule pair-by-index-inj, drule conjunct2)

lemma pair-by-indez-main: nat-to-pr (pair-by-index nl n2) = c-f-pair (nat-to-pr
nl) (nat-to-pr n2) by (unfold pair-by-index-def, unfold nat-to-pr-def, simp add:
loc-srj-4-1)

lemma nat-to-sch-of-pair-by-index [simp]: nat-to-sch (pair-by-index n1 n2) = Pair-op
(nat-to-sch nl1) (nat-to-sch n2)
by (simp add: pair-by-indezx-def loc-srj-4-1)

lemma rec-by-index-is-pr: rec-by-index € PrimRec2 by (unfold rec-by-index-def,
insert const-is-pr-2 [where ?n=(6:nat)], prec)

lemma rec-by-indez-inj: rec-by-index x1 y1 = rec-by-index z2 y2 — zl1=x2 N
yl=y2
proof —
assume rec-by-index x1 y1 = rec-by-inder x2 y2
hence c-pair 6 (c-pair x1 y1) = c-pair 6 (c-pair 22 y2) by (unfold rec-by-index-def)
hence c-pair z1 y1 = c-pair 22 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)
qged

lemma rec-by-index-inj1: rec-by-indexr x1 y1 = rec-by-index z2 y2 — z1 = 22
by (frule rec-by-index-inj, drule conjunctl)

lemma rec-by-index-inj2: rec-by-indexr x1 y1 = rec-by-inder z2 y2 — yl = y2
by (frule rec-by-index-inj, drule conjunct2)

lemma rec-by-indez-main: nat-to-pr (rec-by-index n1 n2) = UnaryRecOp (nat-to-pr

nl) (nat-to-pr n2) by (unfold rec-by-index-def, unfold nat-to-pr-def, simp add:
loc-srj-5-1)

68

4.4 s-1-1 theorem for primitive recursive functions of one
variable

definition
indez-of-const :: nat = nat where
index-of-const = PrimRecOpl 0 (X z y. c-pair 4 (c-pair 2 y))

lemma indez-of-const-is-pr: index-of-const € PrimRecl
proof —
have (A z y. c-pair (4::nat) (c-pair (2::nat) y)) € PrimRec2 by (insert const-is-pr-2
[where ?n=(/::nat)], prec)
then show %thesis by (simp add: index-of-const-def pr-recl)
qged

lemma index-of-const-at-0: indez-of-const 0 = 0 by (simp add: indez-of-const-def)

lemma index-of-const-at-suc: indez-of-const (Suc u) = c-pair 4 (c-pair 2 (indezx-of-const
u)) by (unfold index-of-const-def, induct u, auto)

lemma index-of-const-main: nat-to-pr (index-of-const n) = (A z. n) (is ¢P n)
proof (induct n)

show ?P 0 by (simp add: index-of-const-at-0 nat-to-pr-at-0)
next

fix n assume ?P n

then show 7P (Suc n) by ((simp add: indezx-of-const-at-suc nat-to-sch-at-2
nat-to-pr-def loc-srj-3-1))
qed

lemma indez-of-const-lm-1: (nat-to-pr (indezx-of-const n)) 0 = n by (simp add:
indez-of-const-main)

lemma index-of-const-inj: index-of-const n1 = index-of-const n2 = nl = n2
proof —

assume index-of-const nl = index-of-const n2

then have (nat-to-pr (indez-of-const n1)) 0 = (nat-to-pr (indez-of-const n2))
0 by simp

thus ?thesis by (simp add: indez-of-const-lm-1)
qed

definition indez-of-zero = sch-to-nat Base-zero

definition indez-of-suc = sch-to-nat Base-suc

definition indez-of-c-fst = sch-to-nat Base-fst

definition indez-of-c-snd = sch-to-nat Base-snd

definition indez-of-id = pair-by-index index-of-c-fst indezx-of-c-snd

lemma indez-of-zero-main: nat-to-pr index-of-zero = (X z. 0) by (simp add: in-
dez-of-zero-def nat-to-pr-def)

lemma index-of-suc-main: nat-to-pr index-of-suc = Suc
apply(simp add: index-of-suc-def nat-to-pr-def)

69

apply (insert loc-srj-0)

apply(simp)
done

lemma indez-of-c-fst-main: nat-to-pr index-of-c-fst = c-fst by (simp add: in-
dez-of-c-fst-def nat-to-pr-def loc-srj-1)

lemma [simp]: nat-to-sch index-of-c-fst = Base-fst by (unfold indez-of-c-fst-def,
rule nat-to-sch-srj)

lemma indez-of-c-snd-main: nat-to-pr index-of-c-snd = c-snd by (simp add: in-
dez-of-c-snd-def nat-to-pr-def loc-srj-2)

lemma [simp]: nat-to-sch indez-of-c-snd = Base-snd by (unfold indez-of-c-snd-def,
rule nat-to-sch-srj)

lemma index-of-id-main: nat-to-pr indez-of-id = (A z. z) by (simp add: index-of-id-def
nat-to-pr-def c-f-pair-def)

definition
index-of-c-pair-n :: nat = nat where
indez-of-c-pair-n = (X n. pair-by-index (index-of-const n) index-of-id)

lemma indez-of-c-pair-n-is-pr: indez-of-c-pair-n € PrimRecl
proof —

have (A z. indez-of-id) € PrimRecl by (rule const-is-pr)

with pair-by-indez-is-pr indexz-of-const-is-pr have (A n. pair-by-index (index-of-const
n) index-of-id) € PrimRecl by prec

then show %thesis by (fold index-of-c-pair-n-def)
qed

lemma indez-of-c-pair-n-main: nat-to-pr (index-of-c-pair-n n) = (\ z. c-pair n x)
proof —

have nat-to-pr (indez-of-c-pair-n n) = nat-to-pr (pair-by-index (indez-of-const
n) index-of-id) by (simp add: index-of-c-pair-n-def)

also have ... = c-f-pair (nat-to-pr (indexz-of-const n)) (nat-to-pr indez-of-id) by
(simp add: pair-by-indez-main)
also have ... = c-f-pair (A z. n) (A z. z) by (simp add: indez-of-const-main

indez-of-id-main)
finally show ?thesis by (simp add: c-f-pair-def)
qed

lemma index-of-c-pair-n-inj: index-of-c-pair-n x1 = indez-of-c-pair-n 2 —> xl=1z2
proof —

assume indez-of-c-pair-n x1 = index-of-c-pair-n 2

hence pair-by-index (index-of-const 1) index-of-id = pair-by-index (indez-of-const
x2) index-of-id by (unfold index-of-c-pair-n-def)

hence indez-of-const x1 = index-of-const £2 by (rule pair-by-index-inj1)

thus ?thesis by (rule indez-of-const-ing)

70

qed

definition
s1-1 :: nat = nat = nat where
s1-1 = (X n z. comp-by-index n (indez-of-c-pair-n x))

lemma s1-1-is-pr: s1-1 € PrimRec?2 by (unfold s1-1-def, insert comp-by-index-is-pr
indez-of-c-pair-n-is-pr, prec)

theorem si-1-th: (A y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n)
proof —
have nat-to-pr (s1-1 n x) = nat-to-pr (comp-by-index n (index-of-c-pair-n x))

by (simp add: s1-1-def)

also have ... = (A z. (nat-to-pr n) ((nat-to-pr (indez-of-c-pair-n z)) z)) by
(simp add: comp-by-index-main)
also have ... = (A z. (nat-to-pr n) (A u. c-pair x u) 2)) by (simp add: in-

dez-of-c-pair-n-main)
finally show ?thesis by simp
qed

lemma si1-1-inj: s1-1 x1 y1 = s1-1 22 y2 = xl=z2 N yl=y2
proof —

assume s1-1 x1 yl = s1-1 z2 y2

then have comp-by-index z1 (indezx-of-c-pair-n y1) = comp-by-index z2 (indez-of-c-pair-n
y2) by (unfold s1-1-def)

then have S1: z1=12 A index-of-c-pair-n yl = index-of-c-pair-n y2 by (rule
comp-by-index-inyj)

then have S2: z1=z2 ..

from S1 have index-of-c-pair-n y1 = index-of-c-pair-n y2 ..

then have yI = y2 by (rule indez-of-c-pair-n-inj)

with S2 show ?thesis ..
qed

lemma si-1-inj1: si1-1 =1 yl = s1-1 22 y2 —> z1=x2 by (frule s1-1-inj, drule
conjunctl)

lemma s1-1-inj2: s1-1 z1 y1 = s1-1 22 y2 — yl=y2 by (frule s1-1-inj, drule
conjunct2)

primrec
pr-index-enumerator :: nat = nat = nat
where
pr-index-enumerator n 0 = n
| pr-indez-enumerator n (Suc m) = comp-by-index index-of-id (pr-indez-enumerator
nm)

theorem pr-index-enumerator-is-pr: pr-index-enumerator € PrimRec2

proof —
define g where g x = z for z :: nat

71

have g-is-pr: g € PrimRecl by (unfold g-def, rule pr-id1-1)

define h where h a b ¢ = comp-by-index index-of-id b for a b ¢ :: nat

from comp-by-indez-is-pr have h-is-pr: h € PrimRec3 unfolding h-def by prec

let ?f = pr-index-enumerator

from g-def have f-at-0: ¥V z. ?fz 0 = g z by auto

from h-def have f-at-Suc: V zy. ?fz (Sucy) = hz (?fz y) y by auto

from g-is-pr h-is-pr f-at-0 f-at-Suc show Zthesis by (rule pr-rec-last-scheme)
qed

lemma pr-indez-enumerator-increasel : pr-index-enumerator n m < pr-indez-enumerator
(n+1) m
proof (induct m)
show pr-indez-enumerator n 0 < pr-indez-enumerator (n + 1) 0 by simp
next fix na assume A: pr-indez-enumerator n na < pr-indez-enumerator (n +
1) na
show pr-index-enumerator n (Suc na) < pr-indez-enumerator (n + 1) (Suc na)
proof —
let ?a = pr-index-enumerator n na
let ?b = pr-index-enumerator (n+1) na
have SI: pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by
stmp
have L1: pr-indez-enumerator (n+1) (Suc na) = comp-by-index indez-of-id ?b
by simp
from A have c-pair indez-of-id ?a < c-pair indez-of-id ?b by (rule c-pair-strict-mono2)
then have c-pair 4 (c-pair index-of-id ?a) < c-pair 4 (c-pair index-of-id 2b)
by (rule c-pair-strict-mono2)
then have comp-by-index index-of-id ?a < c-pair 4 (c-pair index-of-id ?b) by
(simp add: comp-by-index-def)
then have comp-by-index index-of-id ?a < comp-by-index index-of-id ?b by
(simp add: comp-by-index-def)
with S1 L1 show ?thesis by auto
qed
qed

lemma pr-indezx-enumerator-increase2: pr-indez-enumerator n m < pr-index-enumerator
n(m+ 1)
proof —

let ?a = pr-indez-enumerator n m

have S1: pr-index-enumerator n (m + 1) = comp-by-index indez-of-id ?a by
stmp

have S2: comp-by-index indez-of-id ?a = c-pair 4 (c-pair indez-of-id %a) by
(simp add: comp-by-index-def)

have S3: / + c-pair index-of-id ?a < c-pair 4 (c-pair index-of-id ?a) by (rule
sum-le-c-pair)

then have S/: c-pair indez-of-id ?a < c-pair 4 (c-pair index-of-id ?a) by auto

have S5: %a < c-pair indez-of-id ?a by (rule arg2-le-c-pair)

from S4 S5 have S6: %a < c-pair 4 (c-pair indez-of-id ?a) by auto

with S1 S2 show #%thesis by auto
qed

72

lemma f-inc-mono: (¥ (z::nat). (f::nat=nat) z < f (z+1)) =V (z::nat) (y:nat).
(z<y-—fz<fy)
proof (rule alll, rule alll)
fix x y assume A: V (z:nat). fo < f (z+1)show z <y — fz < fy
proof
assume Al:z <y
have L1: N uv. fu<f (u+ (v+1))
proof —
fix u v show fu < f (u + (v+1))
proof (induct v)
from A show fu < f (u+ (0 + 1)) by auto
next
fix vn
assume A2: fu < f (u+ (n+ 1))
from A have SI: f (u+ (n + 1)) < f (u 4+ (Suc n + 1)) by auto
from A2 S1 show fu < f (u+ (Sucn + 1)) by (rule less-trans)
qed
qed
let 2v=(y—z)— 1
from A7 have S2: y = z + (%v + 1) by auto
have fz < f (z + (v + 1)) by (rule L1)
with S2 show fz < fy by auto
qed
qed

lemma pr-index-enumerator-monol: nl < n2 — pr-index-enumerator nl m <
pr-index-enumerator n2 m
proof —
assume A: nl < n2
define f where f x = pr-index-enumerator r m for x
have f-inc: V z. fz < f (z+1)
proof
fix z show fz < f (z+1) by (unfold f-def, rule pr-indez-enumerator-increasel)
qed
from f-inc have V z y. (z < y — fz < fy) by (rule f~inc-mono)
with A f-def show ?thesis by auto
qged

lemma pr-indez-enumerator-mono2: m1 < m2 = pr-index-enumerator n mi1 <
pr-index-enumerator n. m2
proof —
assume A: m1 < m2
define f where f x = pr-index-enumerator n x for z
have f-inc: V z. fz < f (z+1)
proof
fix z show fz < f (x+1) by (unfold f-def, rule pr-index-enumerator-increase?2)
qged
from f-inc have V z y. (z < y — fz < fy) by (rule f-inc-mono)

73

with A f-def show ?thesis by auto
qed

lemma f-mono-inj: V (z::nat) (y:nat). (z < y — (funat=nat) z < fy) =V
(z:nat) (yunat). (fz=fy—z=1y)
proof (rule alll, rule alll)
fix r y assume A:Vzy. 2 <y — fax < fyshow fe=fy—z =y
proof
assume Al: fz = fyshow z =y
proof (rule ccontr)
assume A2: z # y show Fulse
proof cases
assume A3: z < y
from A A% have fz < fy by auto
with A1 show Fulse by auto
next
assume - z < y with A2 have A4: y < x by auto
from A A4 have fy < fx by auto
with A1 show Fulse by auto
qed
qed
qed
qed

theorem pr-index-enumerator-injl: pr-index-enumerator nl m = pr-index-enumerator
n2 m = nl = nl
proof —
assume A: pr-index-enumerator nl m = pr-indez-enumerator n2 m
define f where f x = pr-index-enumerator m for x
have f-mono:V zy. (z <y — fz < fy)
proof (rule alll, rule alll)
fix z y show z < y — fx < fy by (unfold f-def, simp add: pr-index-enumerator-monol)
qed
from f-mono have V zy. (fz = fy — z = y) by (rule f~mono-inj)
with A f-def show ?thesis by auto
qed

theorem pr-index-enumerator-inj2: pr-index-enumerator n mi = pr-indez-enumerator
n m2 — ml = m2
proof —
assume A: pr-index-enumerator n mi1 = pr-indez-enumerator n m2
define f where f x = pr-index-enumerator n r for z
have f-mono:V zy. (zx <y — fz < fy)
proof (rule alll, rule alll)
fix z y show z < y — fa < fy by (unfold f-def, simp add: pr-index-enumerator-mono2)
qed
from f-mono have V zy. (fz = fy — = = y) by (rule f-mono-inj)
with A f-def show ?thesis by auto
qed

74

theorem pr-indez-enumerator-main: nat-to-pr n = nat-to-pr (pr-indez-enumerator
nm)
proof (induct m)
show nat-to-pr n = nat-to-pr (pr-index-enumerator n 0) by simp
next
fix na assume A: nat-to-pr n = nat-to-pr (pr-index-enumerator n na)
show nat-to-pr n = nat-to-pr (pr-index-enumerator n (Suc na))
proof —
let ?a = pr-indez-enumerator n na
have S1: pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by
stmp
have nat-to-pr (comp-by-index indez-of-id ?a) = (\ z. (nat-to-pr indez-of-id)
(nat-to-pr ?a z)) by (rule comp-by-indez-main)
with indez-of-id-main have nat-to-pr (comp-by-indez index-of-id ?a) = nat-to-pr
?a by simp
with A S1 show ?thesis by simp
qed
qed

end

5 Finite sets

theory PRecFinSet
imports PRecFun
begin

We introduce a particular mapping nat-to-set from natural numbers to finite
sets of natural numbers and a particular mapping set-to-nat from finite sets
of natural numbers to natural numbers. See [1] and [2] for more information.

definition
c-in :: nat = nat = nat where
c-in = (A zu. (udiv (2" z)) mod 2)

lemma c-in-is-pr: c-in € PrimRec2
proof —
from mod-is-pr power-is-pr div-is-pr have (A z u. (u div (2 ~ z)) mod 2) €
PrimRec2 by prec
with c-in-def show ?thesis by auto
qed

definition
nat-to-set :: nat = nat set where
nat-to-set u = {z. 2x < u A cinzu=1}
lemma c-in-upper-bound: c-inzu=1=— 2 "z < u

proof —

75

assume A: c-inzu = 1
then have S1: (u div (27x)) mod 2 = 1 by (unfold c-in-def)
then have S2: u div (27x) > 0 by arith
show ?thesis
proof (rule ccontr)
assume - 2 "z < u
then have u < 27z by auto
then have v div (27z) = 0 by (rule div-less)
with S2 show Fualse by auto
qged
qged

lemma nat-to-set-upper-bound: = € nat-to-set v = 2 ~ x < u by (simp add:
nat-to-set-def)

lemma z-lt-2-z: © < 2 "z
by (rule less-exp)

lemma nat-to-set-upper-boundl: x € nat-to-set u = = < u
proof —

assume z € nat-to-set u

then have S1: 2~z < u by (simp add: nat-to-set-def)

have S2: z < 2 7z by (rule z-lt-2-)

from 52 S1 show ?thesis

by (rule less-le-trans)

qged

lemma nat-to-set-upper-bound2: nat-to-set u C {i. i < u}
proof —

from nat-to-set-upper-boundl show ?thesis by blast
qed

lemma nat-to-set-is-finite: finite (nat-to-set u)
proof —
have SI: finite {i. i<u}
proof —
let ?B = {i. i<u}
let 2f = (A (z::nat). z)
have ?B = ?f * ?B by auto
then show finite YB by (rule nat-seg-image-imp-finite)
qed
have 52: nat-to-set u C {i. i<u} by (rule nat-to-set-upper-bound2)
from 52 S1 show ?thesis by (rule finite-subset)
qed

lemma z-in-u-eq: (x € nat-to-set u) = (c-in v v = 1) by (auto simp add: nat-to-set-def
c-in-upper-bound)

definition

76

log2 :: nat = nat where
log2 = (X z. Least(%oz. © < 27(z2+1)))

lemma log2-at-0: log2 0 = 0
proof —
let v = log2 0
have S1: 0 < ?v by auto
have 52: %v = Least(%(z::nat). (0::nat)<27(z+1)) by (simp add: log2-def)
have S3: (0:nat)<27(0+1) by auto
from S3 have S4: Least(%(z::nat). (0::nat)<27(z+1)) < 0 by (rule Least-le)
from 52 S/ have S5: v < 0 by auto
from S1 S5 have S6: ?v = 0 by auto
thus ?thesis by auto
qed

lemma log2-at-1: log2 1 = 0
proof —
let v = log2 1
have S1: 0 < ?v by auto
have S2: %v = Least(%(z::nat). (1:nat)<27(z+1)) by (simp add: log2-def)
have S3: (1:nat)<27(0+1) by auto
from S3 have S4: Least(%(z::nat). (1::nat)<27(2+1)) < 0 by (rule Least-le)
from S2 S/ have S5: ?v < 0 by auto
from S1 S5 have S6: ?v = 0 by auto
thus ?thesis by auto
qed

lemma log2-le: x > 0 = 2 " log2 z < x
proof —
assume A: z > 0
show ?thesis
proof (cases)
assume A1: log2 z = 0
with A show ?thesis by auto
next
assume Al: log2 © # 0
then have SI: log2 x > 0 by auto
define y where y = log2 © — 1
from S1 y-def have S2: log2 v = y + 1 by auto
then have S3: y < log2 x by auto
have 27 (y+1) < x
proof (rule ccontr)
assume A2: - 27(y+1) < z then have z < 27(y+1) by auto
then have log2 © < y by (simp add: log2-def Least-le)
with S8 show Fulse by auto
qed
with S2 show ?thesis by auto
qged
qed

77

lemma log2-gt: © < 2 ~ (log2 z + 1)
proof —
have z < 27z by (rule z-lt-2-1)
then have SI: 1 < 27(z+1)
by (simp add: numeral-2-eg-2)
define y where y = z
from S1 y-def have S2: © < 27(y+1) by auto
let P =Xz z< 2(2+1)
from S2 have S3: ?P y by auto
then have S/: ?P (Least ?P) by (rule LeastI)
from log2-def have S5: log2 x = Least ?P by (unfold log2-def, auto)
from S/ S5 show ?thesis by auto
qed

lemma z-div-z: z > 0 = (z::nat) divx = 1 by auto
lemma div-ge: (k:nat) < m div n = nxk < m
proof —
assume A: k< m divn
have S1: n % (m div n) + m mod n = m by (rule mult-div-mod-eq)
have S2: 0 < m mod n by auto
from S1 52 have S3: n x (m div n) < m by arith
from A have S/: n x k < n x (m div n) by auto
from S4 S8 show ?thesis by (rule order-trans)
qed
lemma div-it: m < nxk = m div n < (k::nat)
proof —
assume A: m < nxk
show ?thesis
proof (rule ccontr)
assume - m divn < k
then have S1: k < m div n by auto
then have S2: nxk < m by (rule div-ge)
with A show Fualse by auto
qed
qed

lemma log2-lm1: u > 0 = u div 2 ~ (log2 u) = 1
proof —
assume A: u > 0
then have S7: 27(log2 u) < u by (rule log2-le)
have 52: u < 27(log2 u+1) by (rule log2-gt)
then have S3: u < (271092 u)x2 by simp
have (2::nat) > 0 by simp
then have (2::nat) log2 u > 0 by simp
then have S/: (2::nat) log2 u div 2 log2 v = 1 by auto
from S1 have S5: (2:nat) log2 u div 271092 v < u div 27log2 u by (rule
div-le-mono)
with S/ have S6: 1 < u div 27log2 u by auto

78

from S3 have S7: u div 27l0g2 v < 2 by (rule div-it)
from S6 S7 show ?thesis by auto
qed

lemma log2-im2: v > 0 = c-in (log2 u) u = 1
proof —
assume A: v > 0
then have S1: u div 2 ~ (log2 u) = 1 by (rule log2-im1)
have c-in (log2 u) u = (u div 2 ~ (log2 u)) mod 2 by (simp add: c-in-def)
also from S17 have ... = 1 mod 2 by simp
also have ... = 1 by auto
finally show ?thesis by auto
qed

lemma log2-Im3: log2 w < © = c-inxu = 0
proof —
assume A: log2 u < z
then have S1: (log2 u)+1 < z by auto
have 52: 1 < (2::nat) by auto
from S1 52 have S3: (2:nat)” ((log2 u)+1) < 27z by (rule power-increasing)
have S4: v < (2:nat)” ((log2 w)+1) by (rule log2-gt)
from S3 S/ have S5: u < 27z by auto
then have S6: u div 27z = 0 by (rule div-less)
have c-in ¢ u = (u div 27x) mod 2 by (simp add: c-in-def)
also from S6 have ... = 0 mod 2 by simp
also have ... = 0 by auto
finally have ?thesis by auto
thus ?thesis by auto
qed

lemma log2-Imj: c-inxu =1 = x < log2 u
proof —
assume A: c-inzu = 1
show ?thesis
proof (rule ccontr)
assume - z < log2 u
then have S1: log2 u < z by auto
then have S2: c-in z v = 0 by (rule log2-Im3)
with A show Fualse by auto
qed
qed

lemma nat-to-set-lub: © € nat-to-set u = = < log2 u
proof —
assume z € nat-to-set u
then have S1: c-in z u = 1 by (simp add: z-in-u-eq)
then show ?thesis by (rule log2-lmj)
qed

79

lemma log2-lmb: u > 0 = log2 u € nat-to-set u
proof —
assume A: u > 0
then have c-in (log2 u) u = 1 by (rule log2-lm2)
then show ?thesis by (simp add: z-in-u-eq)
qed

lemma pos-imp-ne: u > 0 = nat-to-set u # {}
proof —
assume u > 0
then have log2 u € nat-to-set u by (rule log2-lm5)
thus ?thesis by auto
qed

lemma empty-is-zero: nat-to-set u = {} = u =0
proof (rule ccontr)
assume A1: nat-to-set u = {}
assume A2: u # 0 then have S1: u > 0 by auto
from SI have nat-to-set u # {} by (rule pos-imp-ne)
with A1 show Fulse by auto
qed

lemma log2-is-maz: v > 0 = log2 u = Max (nat-to-set u)
proof —
assume A: u > 0
then have SI: log2 u € nat-to-set u by (rule log2-lm5)
define maz where max = Maz (nat-to-set u)
from A have ne: nat-to-set u # {} by (rule pos-imp-ne)
have finite: finite (nat-to-set u) by (rule nat-to-set-is-finite)
from mazx-def finite ne have maz-in: maz € nat-to-set u by simp
from maz-in have S2: c-in maz v = 1 by (simp add: z-in-u-eq)
then have S3: maz < log2 u by (rule log2-lm4)
from finite ne S1 maz-def have S4: log2 v < maz by simp
from S8 S/ maz-def show ?thesis by auto
qed

lemma zero-is-empty: nat-to-set 0 = {}

proof —
have S1: {i. i<(0::nat)} = {} by blast
have S2: nat-to-set 0 C {i. i<0} by (rule nat-to-set-upper-bound?2)
from S1 52 show ?thesis by auto

qed

lemma ne-imp-pos: nat-to-set v # {} = u > 0
proof (rule ccontr)
assume AI: nat-to-set u # {}
assume - (< u then have u = 0 by auto
then have nat-to-set u = {} by (simp add: zero-is-empty)
with A1 show Fulse by auto

80

qed

lemma div-mod-lm: y < © = ((u + (2:nat) ~ z) div (2::nat) y) mod 2 = (u
div (2::nat) y) mod 2
proof —

assume y-lt-z: y < z

let ?n = (2::nat) "y

have n-pos: 0 < ?n by auto

let 7s = z—y

from y-lt-x have s-pos: 0 < ?s by auto

from y-lt-x have S3: z = y + ?s by auto

from S3 have (2::nat) "z = (2::nat) (y + ?s) by auto

moreover have (2::nat) (y +%s) = (2::nat) 7y * 27 s by (rule power-add)

ultimately have (2::nat) z = 27y * 27 %s by auto

then have S4: u + (2:nat) . = u + (2:nat) "y * 279 by auto

from n-pos have S5: (u + (2::nat) 7y * 27%s) div 27y = 27%s + (u div 27y) by
stmp

from S4 S5 have S6: (u + (2::nat) x) div 27y = 27 %s + (u div 27y) by auto

from s-pos have S8: ?s = (?s — 1) + 1 by auto

have (2::nat) ~ ((%s — (1::nat)) + (1::nat)) = (2:nat) ~ (9s — (1::nat)) * 271
by (rule power-add)

with S8 have 59: (2::nat) ~ %s = (2::nat) ~ (%s — (1::nat)) * 2 by auto

then have S10: 27% + (u div 27y) = (v div 27y) + (2:nat) ~ (%s — (1:nat))
*x 2 by auto

have S11: ((u div 27y) + (2:nat) ~ (?s — (1:nat)) * 2) mod 2 = (u div 27y)
mod 2 by (rule mod-mult-self1)

from S6 S10 S11 show ?thesis by auto
qed

lemma add-power: u < 27z = nat-to-set (v + 27x) = nat-to-set v U {z}
proof —
assume A: u < 271
have log2-is-z: log2 (u+27z) = x
proof (unfold log2-def, rule Least-equality)
from A show u+27z < 27(z+1) by auto
next
fix z
assume Al: u + 27z < 27(2+1)
show z < z
proof (rule ccontr)
assume -z < 2z
then have z < z by auto
then have L1: z4+1 < z by auto
have L2: 1 < (2:nat) by auto
from L1 L2 have L3: (2:nat) (z+1) < (2:nat) z by (rule power-increasing)
with A1 show Fulse by auto
qed
qged
show ?thesis

81

proof (rule subset-antisym)
show nat-to-set (u + 2 ~z) C nat-to-set v U {z}
proof fix y
assume Al: y € nat-to-set (u + 2 " x)
show y € nat-to-set u U {z}
proof
assume y ¢ {z} then have SI: y # z by auto
from A1 have y < log2 (v + 2 ~ z) by (rule nat-to-set-lub)
with log2-is-x have y < z by auto
with S71 have y-lt-z: y < = by auto
from A7 have c-iny (v + 2 ~z) = 1 by (simp add: z-in-u-eq)
then have S2: ((v + 2 " z) div 27y) mod 2 = 1 by (unfold c-in-def)
from y-lt-x have ((v + (2:nat) ~ z) div (2::nat) " y) mod 2 = (u div
(2::nat) y) mod 2 by (rule div-mod-Ilm)
with S2 have (u div 27y) mod 2 = 1 by auto
then have c-in y u = 1 by (simp add: c-in-def)
then show y € nat-to-set u by (simp add: z-in-u-eq)
qed
qed
next
show nat-to-set u U {z} C nat-to-set (v + 2 ")
proof fix y
assume AI: y € nat-to-set u U {z}
show y € nat-to-set (v + 2 ~ z)
proof cases
assume y € {z}
then have y=x by auto
then have y = log2 (v + 2 ~ z) by (simp add: log2-is-x)
then show %thesis by (simp add: log2-Im¥5)
next
assume y-notin: y ¢ {z}
then have y-ne-z: y # = by auto
from A1 y-notin have y-in: y € nat-to-set u by auto
have y-lt-z: y < z
proof (rule ccontr)
assume -y <
with y-ne-z have y-gt-z: © < y by auto
have 1 < (2::nat) by auto
from y-gt-z this have L1: (2::nat) "z < 27y by (rule power-strict-increasing)
from y-in have L2: 27y < u by (rule nat-to-set-upper-bound)
from L1 L2 have (2:nat) z < u by arith
with A show Fulse by auto
qed
from y-in have c-in y u = 1 by (simp add: z-in-u-eq)
then have S2: (u div 27y) mod 2 = 1 by (unfold c-in-def)
from y-lt-z have ((v + (2:nat) ~ z) div (2:nat) y) mod 2 = (u div
(2:nat) Ty) mod 2 by (rule div-mod-Im)
with 52 have ((uv + (2::nat) ~z)div 27y) mod 2 = 1 by auto
then have c-in y (v + (2::nat) ~z) = 1 by (simp add: c-in-def)

82

then show y € nat-to-set (u + (2::nat) ~ z) by (simp add: z-in-u-eq)
qed
qed
qed
qed

theorem nat-to-set-inj: nat-to-set u = nat-to-set v =—= u = v
proof —
assume A: nat-to-set u = nat-to-set v
let P = X (nunat). (V (D::nat set). finite D A card D < n — (¥ u v. nat-to-set
u = D A nat-to-set v =D — u = v))
have P-at-0: ?P 0
proof fix D show finite D A card D < 0 — (Y u v. nat-to-set u = D N\ nat-to-set
v=D— u=v)
proof (rule impl)
assume A1: finite D A card D < 0
from A1 have S1: finite D by auto
from A1 have S2: card D = 0 by auto
from S1 S2 have S3: D = {} by auto
show (Vu v. nat-to-set u = D A nat-to-set v =D — u = v)
proof (rule alll, rule alll) fix u v show nat-to-set uw = D A nat-to-set v =
D—u=w
proof
assume A2: nat-to-set u = D A nat-to-set v = D
from A2 have LI1: nat-to-set u = D by auto
from A2 have L2: nat-to-set v = D by auto
from L1 S3 have nat-to-set u = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from L2 S3 have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u=v by auto
ged
qed
qed
qed
have P-at-Suc: \ n. 2P n = ?P (Suc n)
proof — fix n
assume A-n: P n
show ?P (Suc n)
proof fix D show finite D A card D < Suc n — (VY u v. nat-to-set u = D A
nat-to-set v =D — u = v)
proof (rule impl)
assume A1: finite D A card D < Suc n
from A1 have S1: finite D by auto
from A1 have S2: card D < Suc n by auto
show (¥ u v. nat-to-set u = D A nat-to-set v =D — u = v)
proof (rule alll, rule alll, rule impI)
fix uwv
assume A2: nat-to-set v = D A nat-to-set v = D

83

from A2 have d-u-d: nat-to-set u = D by auto
from A2 have d-v-d: nat-to-set v = D by auto
show v = v
proof (cases)
assume A3: D = {}
from A3 d-u-d have nat-to-set v = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from A3 d-v-d have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u = v by auto
next
assume A3: D # {}
from A3 d-u-d have nat-to-set u # {} by auto
then have u-pos: u > 0 by (rule ne-imp-pos)
from A3 d-v-d have nat-to-set v # {} by auto
then have v-pos: v > 0 by (rule ne-imp-pos)
define m where m = Max D
from S1 m-def A3 have m-in: m € D by auto
from d-u-d m-def have m-u: m = Maz (nat-to-set u) by auto
from d-v-d m-def have m-v: m = Max (nat-to-set v) by auto
from u-pos m-u log2-is-max have m-log-u: m = log2 u by auto
from v-pos m-v log2-is-max have m-log-v: m = log2 v by auto
define D1 where D1 = D — {m}
define vl where vl = u — 2" m
define v where vi = v — 2™m
have card-D1: card D1 < n
proof —
from D1-def S1 m-in have card DI = (card D) — 1 by (simp add:
card-Diff-singleton)
with S2 show ?Zthesis by auto
qed
have w-ul: v =ul + 2"m
proof —
from wu-pos have L1: 2 " log2 u < u by (rule log2-le)
with m-log-u have L2: 2 = m < u by auto
with ul-def show ?thesis by auto
qged
have u1-d1: nat-to-set ul = D1
proof —
from m-log-u log2-gt have u < 27 (m+1) by auto
with u-ul have ul-lt-2-m: ul < 2”°m by auto
with u-ul have L1: nat-to-set u = nat-to-set ul U {m} by (simp add:
add-power)
have m-notin: m ¢ nat-to-set ul
proof (rule ccontr)
assume — m ¢ nat-to-set ul then have m € nat-to-set ul by auto
then have 27m < ul by (rule nat-to-set-upper-bound)
with w1-lt-2-m show False by auto
qed

84

from L1 m-notin have nat-to-set ul = nat-to-set u — {m} by auto
with d-u-d have nat-to-set ul = D — {m} by auto
with DI1-def show ?thesis by auto
qed
have v-vl: v =0l + 2”m
proof —
from v-pos have L1: 2 " log2 v < v by (rule log2-le)
with m-log-v have L2: 2 = m < v by auto
with vi-def show ?thesis by auto
qged
have v1-d1: nat-to-set v1 = D1
proof —
from m-log-v log2-gt have v < 27 (m+1) by auto
with v-v1 have vI-it-2-m: v1 < 2”m by auto
with v-vl have L1: nat-to-set v = nat-to-set v1 U {m} by (simp add:
add-power)
have m-notin: m ¢ nat-to-set vl
proof (rule ccontr)
assume — m ¢ nat-to-set vI then have m € nat-to-set vl by auto
then have 27m < v! by (rule nat-to-set-upper-bound)
with vi1-lt-2-m show Fualse by auto
qed
from L1 m-notin have nat-to-set vl = nat-to-set v — {m} by auto
with d-v-d have nat-to-set vi = D — {m} by auto
with DI1-def show ?thesis by auto
ged
from SI1 Di-def have P1: finite D1 by auto
with card-D1 have P2: finite DI A card D1 < n by auto
from A-n P2 have (VY u v. nat-to-set w = D1 A nat-to-set v= DI — u
= v) by auto
with u1-d1 vi-d1 have ul = vl by auto
with u-ul v-vl show u = v by auto
qed
qed
qed
qed
qed
from P-at-0 P-at-Suc have main: \ n. ?P n by (rule nat.induct)
define D where D = nat-to-set u
from D-def A have P1: nat-to-set w = D by auto
from D-def A have P2: nat-to-set v = D by auto
from D-def nat-to-set-is-finite have d-finite: finite D by auto
define n where n = card D
from n-def d-finite have card-le: card D < n by auto
from d-finite card-le have P3: finite D A\ card D < n by auto
with main have P4: Vu v. nat-to-set u = D A nat-to-set v=D — u = v by
auto
with P! P2 show u = v by auto
qed

85

definition
set-to-nat :: nat set => nat where
set-to-nat = (A D. sum (A z. 2 " x) D)

lemma two-power-sum: sum (A z. (2::nat) ~) {i. i< Suc m} = (2 = Suc m) —
1
proof (induct m)
show sum (A z. (2::nat) ~x) {i. i< Suc 0} = (2 ~ Suc 0) — 1 by auto
next
fix n
assume A: sum (A z. (2::nat) ") {i. i< Sucn} = (2 " Sucn) — 1
show sum (A z. (2::nat) ~z) {i. i< Suc (Suc n)} = (2 ~ Suc (Suc n)) — 1
proof —
let ?f = A z. (2::nat) "z
have S1: {i. i< Suc (Suc n)} = {i. i < Suc n} by auto
have 52: {i. i < Suc n} = {i. i < Suc n} U { Suc n} by auto
from S1 S2 have S3: {i. i< Suc (Suc n)} = {i. i < Suc n} U { Suc n} by
auto
have S4: {i. i < Suc n} = (A z. z) ‘{i. i < Suc n} by auto
then have S5: finite {i. i < Suc n} by (rule nat-seg-image-imp-finite)
have S6: Suc n ¢ {i. i < Suc n} by auto
from S5 S6 sum.insert have S7: sum ?f ({i. i< Suc n} U {Suc n}) = 2 ~ Suc
n + sum ?f {i. i< Suc n} by auto
from S3% have sum ?f {i. i< Suc (Suc n)} = sum ?f ({i. i< Suc n} U {Suc

n}) by auto
also from S7 have ... = 2 = Suc n + sum ?f {i. i< Suc n} by auto
also from A have ... = 2 7 Suc n + (((2::nat) ~ Suc n)—(1::nat)) by auto
also have ... = (2 7 Suc (Suc n)) — 1 by auto
finally show ?thesis by auto
qed
qed

lemma finite-interval: finite {i. (i::nat)<m}
proof —
have {i. i < m} = (A z. z) ‘{i. i < m} by auto
then show ?thesis by (rule nat-seg-image-imp-finite)
qged

lemma set-to-nat-at-empty: set-to-nat {} = 0 by (unfold set-to-nat-def , rule sum.empty)

lemma set-to-nat-of-interval: set-to-nat {i. (iznat)<m} =2 "~ m — 1
proof (induct m)
show set-to-nat {i. i < 0} =2 "0 — 1
proof —
have SI: {i. (iznat) < 0} = {} by auto
with set-to-nat-at-empty have set-to-nat {i. i<0} = 0 by auto
thus ?thesis by auto
qed

86

next

fix n show set-to-nat {i. i < Suc n} = 2 ~ Suc n — 1 by (unfold set-to-nat-def,
rule two-power-sum)
qed

lemma set-to-nat-mono: [finite B; A C B] = set-to-nat A < set-to-nat B
proof —
assume b-finite: finite B
assume a-le-b: A C B
let ?f = X (z:nat). (2::nat) "z
have S1: set-to-nat A = sum ?f A by (simp add: set-to-nat-def)
have S2: set-to-nat B = sum ?f B by (simp add: set-to-nat-def)
have S3: A z. 2 € B— A = 0 < ?fz by auto
from b-finite a-le-b S3 have sum 2f A < sum ?f B by (rule sum-mono2)
with S1 52 show %thesis by auto
qed

theorem nat-to-set-srj: finite (D::nat set) = nat-to-set (set-to-nat D) = D
proof —
assume A: finite D
let P = X\ (nunat). (V (Dunat set). finite D A card D = n — nat-to-set
(set-to-nat D) = D)
have P-at-0: ?P 0
proof (rule alll)
fix D
show finite D A card D = 0 — nat-to-set (set-to-nat D) = D
proof
assume A1: finite D A card D = 0
from A1 have S1: finite D by auto
from A1 have 52: card D = 0 by auto
from S1 52 have S3: D = {} by auto
with set-to-nat-def have set-to-nat D = sum (A z. 2 " z) D by simp
with S8 sum.empty have set-to-nat D = 0 by auto
with zero-is-empty S3 show nat-to-set (set-to-nat D) = D by auto
qed
qed
have P-at-Suc: \ n. 2P n = ?P (Suc n)
proof — fix n
assume A-n: ?P n
show ?P (Suc n)
proof
fix D show finite D A card D = Suc n — nat-to-set (set-to-nat D) = D
proof
assume A1: finite D A card D = Suc n
from A1 have S1: finite D by auto
from A1 have S2: card D = Suc n by auto
define m where m = Max D
from S2 have D-ne: D # {} by auto
with SI1 m-def have m-in: m € D by auto

87

define D1 where D1 = D — {m}
from S1 Di-def have dI-finite: finite D1 by auto
from Di-def m-in S1 have card DI = card D — 1 by (simp add:
card-Diff-singleton)
with S2 have card-d1: card DI = n by auto
from di-finite card-d1 have finite DI A card D1 = n by auto
with A-n have S3: nat-to-set (set-to-nat D1) = D1 by auto
define u where u = set-to-nat D
define u! where ul = set-to-nat D1
from S1 m-in have sum (A (z::nat). (2:nat) “z) D=2 " m + sum (A 2.
2°2) (D - {m})
by (rule sum.remove)
with set-to-nat-def have set-to-nat D = 2 ~m + set-to-nat (D — {m}) by
auto
with u-def ul-def D1-def have u-ul: u = ul + 2 ~ m by auto
from S3 ul-def have d1-ul: nat-to-set ul = D1 by auto
have ul-it: ul < 2 " m
proof —
have L1: D1 C {i. i<m}
proof fix z
assume Al: z € DI
show z € {i. i<m}
proof
from A1 Di-def have Li1-1: z € D by auto
from S1 D-ne L1-1 m-def have L1-2: © < m by auto
with A1 L1-1 D1-def have = # m by auto
with L1-2 show z < m by auto
qed
qed
have L2: finite {i. i<m} by (rule finite-interval)
from L2 L1 have set-to-nat DI < set-to-nat {i. i<m} by (rule
set-to-nat-mono)
with ul-def have ul < set-to-nat {i. i<m} by auto
with set-to-nat-of-interval have L3: ul < 2 ~m — 1 by auto
have 0 < (2:nat) ~ m by auto
then have (2:nat) “m — 1 < (2:nat) ~ m by auto
with L3 show ?thesis by arith

qed
from u-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
also from wu-ul have ... = nat-to-set (ul + 2 ~ m) by auto
also from ul-lt have ... = nat-to-set ul U {m} by (rule add-power)
also from dI-ul have ... = DI U {m} by auto
also from DI-def m-in have ... = D by auto
finally show nat-to-set (set-to-nat D) = D by auto
qed
qed

qed
from P-at-0 P-at-Suc have main: A\ n. ?P n by (rule nat.induct)
from A main show ?thesis by auto

88

qed

theorem nat-to-set-srjl: finite (D::nat set) = 3 u. nat-to-set u = D
proof —

assume A: finite D

show 3 wu. nat-to-set w = D

proof

from A show nat-to-set (set-to-nat D) = D by (rule nat-to-set-sryj)

qed

qed

lemma sum-of-pr-is-pr: g € PrimRecl = (A n. sum g {i. i<n}) € PrimRec1
proof —
assume g-is-pr: g € PrimRecl
define f where fn = sum g {i. i<n} for n
from f-def have f-at-0: f 0 = 0 by auto
define h where hab=ga + bfor ab
from g-is-pr have h-is-pr: h € PrimRec2 unfolding h-def by prec
have f-at-Suc: V y. f (Sucy) = hy (fy)
proof
fix y show f (Suc y) = hy (fy)
proof —
from f-def have S1: f (Suc y) = sum g {i. i < Suc y} by auto
have 52: {i. ¢ < Suc y} = {i. i < y} U {y} by auto
have S3: finite {i. i < y} by (rule finite-interval)
have S4: y ¢ {i. { < y} by auto
from S1 52 have f (Suc y) = sum g ({i. (imnat) < y} U {y}) by auto

also from S3 S/ sum.insert have ... = g y + sum g {i. i<y} by auto
also from f-def have ... = g y + fy by auto
also from h-def have ... = h y (f y) by auto
finally show ?thesis by auto
qed
qed

from h-is-pr f-at-0 f-at-Suc have f-is-pr: f € PrimRecl by (rule pr-rec1-scheme)
with f-def [abs-def] show ?thesis by auto
qed

lemma sum-of-pr-is-pr2: p € PrimRec2 => (A n m. sum (A z. p x m) {i. i<n})
€ PrimRec?2
proof —

assume p-is-pr: p € PrimRec?2

define f where fn m = sum (A z. p x m) {i. i<n} for n m

define g :: nat = nat where g x = 0 for =

have g-is-pr: g € PrimRecl by (unfold g-def, rule const-is-pr [where ?n=0])

have f-at-0:V z. fO0x =gz

proof

fix z from f-def g-def show f 0z = g z by auto
qged
define h where habc=pac+ bforabc

89

from p-is-pr have h-is-pr: h € PrimRec3 unfolding h-def by prec
have f-at-Suc:V zy. f (Sucy) x =hy (fyz) z
proof (rule alll, rule alll)
fix x y show [(Sucy) z=hy (fyz)z
proof —
from f-def have S1: f (Suc y) z = sum (A z. p zx) {i. i < Suc y} by auto
have 52: {i. i < Suc y} = {i. i < y} U {y} by auto
have S3: finite {i. i < y} by (rule finite-interval)
have S4: y ¢ {i. i < y} by auto
define g1 where g1 z = p z x for 2
from S1 52 g1-def have f (Suc y) z = sum g1 ({i. (iznat) < y} U {y}) by
auto

also from S3 S/ sum.insert have ... = g1 y + sum g1 {i. i<y} by auto
also from f-def g1-def have ... = g1 y + f y = by auto
also from h-def g1-def have ... = hy (fy z) x by auto
finally show ?thesis by auto
qed
qed

from g-is-pr h-is-pr f-at-0 f-at-Suc have f-is-pr: f € PrimRec2 by (rule pr-rec-scheme)
with f-def [abs-def] show ?thesis by auto
qed

lemma sum-is-pr: g € PrimRecl = (A u. sum g (nat-to-set u)) € PrimRecl
proof —
assume g-is-pr: g € PrimRecl
define g1 where g z u = (if (c-inz u = 1) then (g z) else 0) for z u
have g1-is-pr: g1 € PrimRec2
proof (unfold g1-def, rule if-eq-is-pr2)
show c-in € PrimRec2 by (rule c-in-is-pr)
next
show (Az y. 1) € PrimRec2 by (rule const-is-pr-2 [where ?n=1])
next
from g-is-pr show (Az y. g) € PrimRec2 by prec
next
show (\z y. 0) € PrimRec2 by (rule const-is-pr-2 [where ?n=0))
qed
define f where fu = sum (A z. g1 z u) {i. (i:nat) < u} for u
define fI where f1 v v = sum (A z. g1 x v) {i. (iz:nat) < u} for uwwv
from g1-is-pr have (A (u::nat) v. sum (A z. g1 z v) {i. (iz:nat) < u}) € PrimRec2
by (rule sum-of-pr-is-pr2)
with fI-def [abs-def] have fI-is-pr: fI € PrimRec2 by auto
from f-def f1-def have f-f1: f = (A u. f1 u u) by auto
from fI-is-pr have (\ u. f1 u u) € PrimRecl by prec
with f-fI have f-is-pr: f € PrimRecl by auto
have f-is-result: f = (A u. sum g (nat-to-set u))
proof
fix u show fu = sum g (nat-to-set u)
proof —
define U where U = {i. i < u}

90

define A where A = {z € U. c-inzu = 1}
define B where B={zr € U. ccinzu # 1}
have U-finite: finite U by (unfold U-def, rule finite-interval)
from A-def U-finite have A-finite: finite A by auto
from B-def U-finite have B-finite: finite B by auto
from U-def A-def B-def have U-A-B: U = A U B by auto
from U-def A-def B-def have A-B: AN B = {} by auto
from B-def g1-def have B-z: sum (A z. g1 z u) B = 0 by auto
have u-in-U: nat-to-set w C U by (unfold U-def, rule nat-to-set-upper-bound2)
from u-in-U z-in-u-eq A-def have A-u: A = nat-to-set u by auto
from A-u z-in-u-eq g1-def have A-res: sum (A z. g1 zu) A = sum g (nat-to-set

u) by auto
from f-def have fu = sum (A z. g1 z u) {i. (i::nat) < u} by auto
also from U-def have ... = sum (A z. g1 z u) U by auto
also from U-A-B have ... = sum (A z. g1 z u) (A U B) by auto
also from A-finite B-finite A-B have ... = sum (A z. g1 z u) A + sum (A
z. g1 £ u) B by (rule sum.union-disjoint)
also from B-z have ... = sum (A z. g1 z u) A by auto
also from A-res have ... = sum g (nat-to-set u) by auto
finally show ?thesis by auto
qed
qed
with f-is-pr show ?thesis by auto
qed
definition

c-card :: nat = nat where
c-card = (A u. card (nat-to-set u))

theorem c-card-is-pr: c-card € PrimRecl
proof —

define g :: nat = nat where g x = 1 for =

have g-is-pr: ¢ € PrimRecl by (unfold g-def, rule const-is-pr)

have c-card = (\ u. sum g (nat-to-set u))

proof

fix u show c-card u = sum g (nat-to-set u) by (unfold c-card-def, unfold g-def,

rule card-eq-sum)

qed

moreover from g-is-pr have (A u. sum g (nat-to-set u)) € PrimRecl by (rule
sum-is-pr)

ultimately show #?thesis by auto
qed

definition

c-insert :: nat = nat = nat where

c-insert = (A z w. if c-in x uw = 1 then u else u + 27x)
lemma c-insert-is-pr: c-insert € PrimRec2

proof (unfold c-insert-def, rule if-eq-is-pr2)

91

show c-in € PrimRec2 by (rule c-in-is-pr)
next
show (Az y. 1) € PrimRec2 by (rule const-is-pr-2)
next
show (Az y. y) € PrimRec2 by (rule pr-id2-2)
next
from power-is-pr show (Az y. y + 2 ~ z) € PrimRec2 by prec
qed

lemma [simp]: set-to-nat (nat-to-set u) = u

proof —
define D where D = nat-to-set u
from D-def nat-to-set-is-finite have D-finite: finite D by auto
then have nat-to-set (set-to-nat D) = D by (rule nat-to-set-sryj)
with D-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
then have set-to-nat D = u by (rule nat-to-set-inj)
with D-def show ?thesis by auto

qed

lemma insert-lemma: x ¢ nat-to-set uw = set-to-nat (nat-to-set u U {z}) = u +
27z
proof —
assume A: z ¢ nat-to-set u
define D where D = nat-to-set u
from A D-def have SI1: z ¢ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = A (z:nat). (2::nat)
from set-to-nat-def have set-to-nat (D U {z}) = sum ?f (D U {z}) by auto
also from D-finite S1 have ... = ?fz + sum 9f D by simp
also from set-to-nat-def have ... = 2 ~ x + set-to-nat D by auto
finally have set-to-nat (D U {z}) = set-to-nat D + 2 ~ z by auto
with D-def show ?thesis by auto
qed

lemma c-insert-df: c-insert = (A x u. set-to-nat ((nat-to-set u) U {z}))
proof (rule ext, rule ext)
fix z u show c-insert © u = set-to-nat (nat-to-set v U {z})
proof (cases)
assume A: z € nat-to-set u
then have nat-to-set u U {2} = nat-to-set u by auto
then have S1: set-to-nat (nat-to-set v U {z}) = u by auto
from A have c-in z v = 1 by (simp add: z-in-u-eq)
then have c-insert z u = u by (unfold c-insert-def, simp)
with SI1 show ?Zthesis by auto
next
assume A: z ¢ nat-to-set u
then have S1: c-in z u # 1 by (simp add: z-in-u-eq)
then have S2: c-insert u = u + 2 ~ z by (unfold c-insert-def, simp)

92

from A have set-to-nat (nat-to-set u U {z}) = u + 2 "z by (rule insert-lemma)
with S2 show ?Zthesis by auto
qed
qed

definition
c-remove :: nat = nat = nalt where
c-remove = (A z u. if c-in x u = 0 then u else u — 27x)

lemma c-remove-is-pr: c-remove € PrimRec2
proof (unfold c-remove-def, rule if-eq-is-pr2)
show c-in € PrimRec2 by (rule c-in-is-pr)
next
show (A\z y. 0) € PrimRec2 by (rule const-is-pr-2)
next
show (Az y. y) € PrimRec2 by (rule pr-id2-2)
next
from power-is-pr show (Az y. y — 2 ~ z) € PrimRec2 by prec
qed

lemma remove-lemma: © € nat-to-set u = set-to-nat (nat-to-set v — {z}) = u
-2z
proof —
assume A: z € nat-to-set u
define D where D = nat-to-set u — {z}
from A D-def have SI1: z ¢ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = A (z::nat). (2::nat)
from set-to-nat-def have set-to-nat (D U {z}) = sum 2f (D U {z}) by auto
also from D-finite S1 have ... = ?f z 4+ sum ?f D by simp
also from set-to-nat-def have ... = 2 ~ x + set-to-nat D by auto
finally have S2: set-to-nat (D U {z}) = set-to-nat D + 2 ~ x by auto
from A D-def have D U {z} = nat-to-set u by auto
with S2 have S3: u = set-to-nat D + 2 ~ z by auto
from A have S4: 2 "z < u by (rule nat-to-set-upper-bound)
with S8 D-def show ?thesis by auto
qged

lemma c-remove-df: c-remove = (A x u. set-to-nat ((nat-to-set u) — {z}))
proof (rule ext, rule ext)
fix x u show c-remove x u = set-to-nat (nat-to-set u — {z})
proof (cases)
assume A: z € nat-to-set u
then have S1: c-in z w = 1 by (simp add: 2-in-u-eq)
then have S2: c-remove z u = u — 27z by (simp add: c-remove-def)
from A have set-to-nat (nat-to-set u — {z}) = v — 2 ~ z by (rule re-
move-lemma)
with S2 show ?Zthesis by auto

93

next
assume A: z ¢ nat-to-set u
then have S1: c-in z v # 1 by (simp add: z-in-u-eq)
then have S2: c-remove z uw = u by (simp add: c-remove-def c-in-def)
from A have nat-to-set u — {z} = nat-to-set u by auto
with S2 show ?thesis by auto

qed

qed

definition
c-union :: nat = nat = nat where
c-union = (XA u v. set-to-nat (nat-to-set u U nat-to-set v))

theorem c-union-is-pr: c-union € PrimRec?2
proof —
define f where fy z = set-to-nat ((nat-to-set (c-fst z)) U {z € nat-to-set (c-snd
5. 2 < o))
for y z
have f-is-pr: f € PrimRec2
proof —
define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr: g € PrimRecl by auto
define h where h a b ¢ = (if c-in a (c-snd ¢) = 1 then c-insert a b else b) for
abec
from c-in-is-pr c-insert-is-pr have h-is-pr: h € PrimRec3 unfolding h-def by
prec
have f-at-0:V z. fO0x =g x
proof
fix z show f 0 x = g x by (unfold f-def, unfold g-def, simp)
qed
have f-at-Suc:V zy. f (Sucy) z=hy (fyz) z
proof (rule alll, rule alll)
fix z y show f (Sucy) z =hy (fyz)x
proof (cases)
assume A: c-in y (c-snd z) = 1
then have S1: y € (nat-to-set (c-snd z)) by (simp add: z-in-u-eq)
from A h-def have S2: hy (fy z) x = c-insert y (f y) by auto
from S have S3: {z € nat-to-set (c-snd z). z < Suc y} = {z € nat-to-set
(c-snd z). z < y} U {y} by auto
from nat-to-set-is-finite have S4: finite ((nat-to-set (c-fst z)) U {z €
nat-to-set (c-snd z). z < y}) by auto
with nat-to-set-srj f-def have S5: nat-to-set (f y ©) = (nat-to-set (c-fst x))
U {z € nat-to-set (c-snd). z < y} by auto
from f-def have S6: f (Suc y) © = set-to-nat ((nat-to-set (c-fst)) U {z €
nat-to-set (c-snd). z < Suc y}) by simp
also from S3 have ... = set-to-nat (((nat-to-set (c-fst x)) U {z € nat-to-set
(ec-snd). z < y}) U {y}) by auto
also from S5 have ... = set-to-nat (nat-to-set (f y x) U {y}) by auto
also have ... = c-insert y (f y x) by (simp add: c-insert-df)

94

finally show ?thesis by (simp add: S2)
next
assume A: = c-in y (c-snd z) = 1
then have SI: y ¢ (nat-to-set (c-snd x)) by (simp add: z-in-u-eq)
from A h-def have S2: hy (fy z) x = fy x by auto
have S3: {z € nat-to-set (c-snd). z < Suc y} = {z € nat-to-set (c-snd z).
z <y}
proof —
have {z € nat-to-set (c-snd x). z < Suc y} = {z € nat-to-set (c-snd z). z
< y} U {z € nat-to-set (c-snd x). z = y}
by auto
with S1 show %thesis by auto
qged
from nat-to-set-is-finite have S4: finite ((nat-to-set (c-fst z)) U {z €
nat-to-set (c-snd z). z < y}) by auto
with nat-to-set-srj f-def have S5: nat-to-set (f y x) = (nat-to-set (c-fst z))
U {z € nat-to-set (c-snd z). z < y} by auto
from f-def have S6: f (Suc y) © = set-to-nat ((nat-to-set (c-fst z)) U {z €
nat-to-set (c-snd z). z < Suc y}) by simp

also from S3 have ... = set-to-nat (((nat-to-set (c-fst z)) U {z € nat-to-set
(e-snd). z < y})) by auto
also from S5 have ... = set-to-nat (nat-to-set (f y x)) by auto
also have ... = fy x by simp
finally show ?thesis by (simp add: S2)
qed
qged

from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)
qed
define union where union u v = fv (c-pair u v) for u v
from f-is-pr have union-is-pr: union € PrimRec2 unfolding union-def by prec
have A u v. union u v = set-to-nat (nat-to-set u U nat-to-set v)
proof —
fix u v show union u v = set-to-nat (nat-to-set u U nat-to-set v)
proof —
from nat-to-set-upper-bound! have {z € nat-to-set v. z < v} = nat-to-set v
by auto
with union-def f-def show ?thesis by auto
qed
qed
then have union = (A u v. set-to-nat (nat-to-set u U nat-to-set v)) by (simp
add: ext)
with c-union-def have c-union = union by simp
with union-is-pr show ?thesis by simp
qed

definition

c-diff :: mat = nat = nat where
c-diff = (X u v. set-to-nat (nat-to-set u — nat-to-set v))

95

theorem c-diff-is-pr: c-diff € PrimRec2
proof —
define f where [y z = set-to-nat ((nat-to-set (c-fst z)) — {z € nat-to-set (c-snd
z). 2 < y})
for y z
have f-is-pr: f € PrimRec?2
proof —
define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr: g € PrimRecl by auto
define h where h a b ¢ = (if c-in a (c-snd ¢) = 1 then c-remove a b else b)
for a b ¢
from c-in-is-pr c-remove-is-pr have h-is-pr: h € PrimRec3 unfolding h-def
by prec
have f-at-0:V z. fO0xz =gz
proof
fix z show f 0 x = g x by (unfold f-def, unfold g-def, simp)
qed
have f-at-Suc:V zy. f (Sucy) z=hy (fyz) x
proof (rule alll, rule alll)
fix x y show f (Sucy) z=hvy (fyz)z
proof (cases)
assume A: c-in y (c-snd z) = 1
then have SI: y € (nat-to-set (c-snd x)) by (simp add: z-in-u-eq)
from A h-def have S2: hy (fy z) x = c-remove y (f y) by auto
have (nat-to-set (c-fst z)) — ({z € nat-to-set (c-snd z). z < y} U {y}) =
((nat-to-set (c-fst z)) — ({# € nat-to-set (c-snd z). z < y}) — {y}) by
auto
then have Im1: set-to-nat (nat-to-set (c-fst z) — ({z € nat-to-set (c-snd
z). z <yt U{y})) =
set-to-nat (nat-to-set (c-fst) — {z € nat-to-set (c-snd z). z <
y} — {y}) by auto
from SI have S3: {z € nat-to-set (c-snd). z < Suc y} = {z € nat-to-set
(c-snd z). z < y} U {y} by auto
from nat-to-set-is-finite have S4: finite ((nat-to-set (c-fst x)) — {z €
nat-to-set (c-snd z). z < y}) by auto
with nat-to-set-srj f-def have S5: nat-to-set (f y ©) = (nat-to-set (c-fst x))
— {z € nat-to-set (c-snd z). z < y} by auto
from f-def have S6: f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) — {z €
nat-to-set (c-snd). z < Suc y}) by simp

also from S3 have ... = set-to-nat ((nat-to-set (c-fst z)) — ({z € nat-to-set
(c-snd). z < y} U {y})) by auto
also have ... = set-to-nat (((nat-to-set (c-fst z)) — ({z € nat-to-set (c-snd
7). 2 < y}) — {y}) by (rule Im1)
also from S5 have ... = set-to-nat (nat-to-set (f y) — {y}) by auto
also have ... = c-remove y (f y z) by (simp add: c-remove-df)
finally show ?thesis by (simp add: S2)
next

assume A: = c-in y (c-snd z) = 1
then have SI: y ¢ (nat-to-set (c-snd x)) by (simp add: z-in-u-eq)

96

from A h-def have S2: hy (fyx) x = fy = by auto
have S3: {z € nat-to-set (c-snd z). z < Suc y} = {z € nat-to-set (c-snd).
z <y}
proof —
have {z € nat-to-set (c-snd z). z < Suc y} = {z € nat-to-set (c-snd z). z
< y} U {z € nat-to-set (c-snd z). z = y}
by auto
with SI1 show ?%thesis by auto
qed
from nat-to-set-is-finite have Sj: finite ((nat-to-set (c-fst x)) — {z €
nat-to-set (c-snd). z < y}) by auto
with nat-to-set-srj f-def have S5: nat-to-set (f y ©) = (nat-to-set (c-fst x))
— {2z € nat-to-set (c-snd). z < y} by auto
from f-def have S6: f (Suc y) © = set-to-nat ((nat-to-set (c-fst z)) — {z €
nat-to-set (c-snd). z < Suc y}) by simp

also from S3 have ... = set-to-nat (((nat-to-set (c-fst x)) — {z € nat-to-set
(c-snd). z < y})) by auto
also from S5 have ... = set-to-nat (nat-to-set (f y x)) by auto
also have ... = fy z by simp
finally show ?thesis by (simp add: S2)
qed
qed

from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)
qed
define diff where diff v v = f v (c-pair u v) for u v
from f-is-pr have diff-is-pr: diff € PrimRec2 unfolding diff-def by prec
have A\ u v. diff u v = set-to-nat (nat-to-set u — nat-to-set v)
proof —
fix v v show diff u v = set-to-nat (nat-to-set v — nat-to-set v)
proof —
from nat-to-set-upper-bound! have {z € nat-to-set v. z < v} = nat-to-set v
by auto
with diff-def f-def show ?thesis by auto
qed
qed
then have diff = (A u v. set-to-nat (nat-to-set u — nat-to-set v)) by (simp add:
ext)
with c-diff-def have c-diff = diff by simp
with diff-is-pr show ?thesis by simp
qed

definition
c-intersect :: nat = nat = nat where
c-intersect = (X w v. set-to-nat (nat-to-set u N nat-to-set v))

theorem c-intersect-is-pr: c-intersect € PrimRec2
proof —
define f where fu v = c-diff (c-union u v) (c-union (c-diff u v) (c-diff v u))

for u v

97

from c-diff-is-pr c-union-is-pr have f-is-pr: f € PrimRec2 unfolding f-def by
prec
have A u v. fu v = c-intersect u v
proof —
fix u v show fu v = c-intersect u v
proof —
let ?A = nat-to-set u
let ?B = nat-to-set v
have A-fin: finite ?A by (rule nat-to-set-is-finite)
have B-fin: finite B by (rule nat-to-set-is-finite)
have S1: c-union u v = set-to-nat (YA U ?B) by (simp add: c-union-def)
have S2: c-diff u v = set-to-nat (?A — ?B) by (simp add: c-diff-def)
have S3: c-diff v u = set-to-nat (?B — ?A) by (simp add: c-diff-def)
from S2 A-fin B-fin have Sj: nat-to-set (c-diff uv) = ?A — ?B by (simp
add: nat-to-set-srj)
from S3 A-fin B-fin have S5: nat-to-set (c-diff v u) = ?B — ?A by (simp
add: nat-to-set-srj)
from S4 S5 have S6: c-union (c-diff u v) (c-diff v u) = set-to-nat ((?A —
?B) U (B — ?A)) by (simp add: c-union-def)
from S1 A-fin B-fin have S7: nat-to-set (c-union v v) = A U ?B by (simp
add: nat-to-set-srj)
from S6 A-fin B-fin have S8: nat-to-set (c-union (c-diff u v) (c-diff v u)) =
(?A — ?B) U (B — ?4) by (simp add: nat-to-set-srj)
from S7 S8 have S9: fu v = set-to-nat (AU ?B) — ((YA — YB) U (?B —
?A4))) by (simp add: c-diff-def f-def)
have S10: 7A N 7B = (A U ?B) — ((?A — #B) U (B — ?4)) by auto
with S9 have S11: fu v = set-to-nat (?A N ?B) by auto
have c-intersect u v = set-to-nat (?A N ?B) by (simp add: c-intersect-def)
with S11 show ?thesis by auto
qed
qed
then have f = c-intersect by (simp add: ext)
with f-is-pr show ?thesis by auto
qed

end

6 The function which is universal for primitive re-
cursive functions of one variable

theory PRecUnGr
imports PRecFun?2 PRecList
begin

We introduce a particular function which is universal for primitive recursive
functions of one variable.

definition
g-comp :: nat = nat = nat where

98

g-comp c-ls key = (
let n = c-fst key; © = c-snd key; m = c-snd n;
ml = c-fst m; m2 = c-snd m in
— We have key = <n, z>; n = <?, m>; m = <ml, m2>.
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y = c-assoc-value c-ls (c-pair m2 x) in
if c-assoc-have-key c-ls (c-pair m1 y) = 0 then
(let z = c-assoc-value c-ls (c-pair m1 y) in
c-cons (c-pair key z) c-ls)
else c-ls

)

else c-ls

)

definition
g-pair :: nat = nat = nat where
g-pair c-ls key = (
let n = c-fst key; © = c-snd key; m = c-snd n;
ml = c-fst m; m2 = c-snd m in
— We have key = <n, z>; n = <2, m>; m = <ml, m2>.
if c-assoc-have-key c-ls (c-pair m1 x) = 0 then
(let y1 = c-assoc-value c-ls (c-pair m1 x) in
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y2 = c-assoc-value c-ls (c-pair m2 x) in
c-cons (c-pair key (c-pair y1 y2)) c-ls)
else c-ls

)

else c-ls

)

definition
g-rec :: nat = nat = nat where
g-rec c-ls key = (
let n = c-fst key; © = c-snd key; m = c-snd n;
ml = c-fst m; m2 = c-snd m; yl = c-fst z; x1 = c-snd x in
— We have key = <n, z>; n = <? m>; m = <ml, m2>; ¢ = <yl, x1>.
if yl = 0 then
(
if c-assoc-have-key c-ls (c-pair m1 xz1) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m1 z1))) c-ls
else c-ls

)

else

(
let y2 = y1—(1::nat) in
if c-assoc-have-key c-ls (c-pair n (c-pair y2 z1)) = 0 then

(

let t1 = c-assoc-value c-ls (c-pair n (c-pair y2 x1)); t2 = c-pair (c-pair y2
t1) z1 in

99

if c-assoc-have-key c-ls (c-pair m2 t2) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m2 t2))) c-ls
else c-Is
)
else c-Is
)
)

definition

g-step :: mat = nat = nat where

g-step c-ls key = (
let n = c-fst key; x = c-snd key; n1 = (c-fst n) mod 7 in
if n1 = 0 then c-cons (c-pair key 0) c-ls else
if n1 = 1 then c-cons (c-pair key (Suc z)) c-ls else
if n1 = 2 then c-cons (c-pair key (c-fst z)) c-ls else
if n1 = 8 then c-cons (c-pair key (c-snd x)) c-ls else
if n1 = 4 then g-comp c-ls key else
if n1 = 5 then g-pair c-ls key else
if n1 = 6 then g-rec c-ls key else
c-ls

)

definition
pr-gr :: nat = nat where
pr-gr-def: pr-gr = PrimRecOpl 0 (X a b. g-step b (c-fst a))

lemma pr-gr-at-0: pr-gr 0 = 0 by (simp add: pr-gr-def)

lemma pr-gr-at-Suc: pr-gr (Suc z) = g-step (pr-gr z) (c-fst x) by (simp add:
pr-gr-def)

definition
univ-for-pr :: nat = nat where
univ-for-pr = pr-conv-2-to-1 nat-to-pr

theorem univ-is-not-pr: univ-for-pr ¢ PrimRecl
proof (rule ccontr)

assume — univ-for-pr ¢ PrimRecl then have A1: univ-for-pr € PrimRecl by
stmp

let f = X n. univ-for-pr (c-pair n n) + 1

let ?n0 = index-of-pr ?f

from A1 have S1: ?f € PrimRecl by prec

then have S2: nat-to-pr ?n0 = ?f by (rule index-of-pr-is-real)

then have S3: nat-to-pr ?n0 ?n0 = ?f ?n0 by simp

have S4: ?f ?n0 = univ-for-pr (c-pair ?n0 ?n0) + 1 by simp

from S3 S4 show Fualse by (simp add: univ-for-pr-def pr-conv-2-to-1-def)
qed

definition

100

c-is-sub-fun :: nat = (nat = nat) = bool where
c-is-sub-fun ls f +— (V z. c-assoc-have-key ls © = 0 — c-assoc-value Is © = f

z)

lemma c-is-sub-fun-lm-1: [c-is-sub-fun Is f; c-assoc-have-key ls x = 0] =
c-assoc-value ls x = fx

apply (unfold c-is-sub-fun-def)

apply(auto)

done

lemma c-is-sub-fun-lm-2: c-is-sub-fun ls f = c-is-sub-fun (c-cons (c-pair = (f z))
i) f
proof —
assume Al1: c-is-sub-fun ls f
show ?thesis
proof (unfold c-is-sub-fun-def, rule alll, rule impI)
fix za assume A2: c-assoc-have-key (c-cons (c-pair z (f z)) ls) za = 0 show
c-assoc-value (c-cons (c-pair = (f z)) ls) za = f za
proof cases
assume CI: za = x
then show c-assoc-value (c-cons (c-pair z (f z)) Is) za = f za by (simp add:
PRecList.c-assoc-lm-2)
next
assume C2: = za = x
then have S1: c-assoc-have-key (c-cons (c-pair z (fx)) ls) za = c-assoc-have-key
Is za by (rule c-assoc-lm-3)
from C2 have S2: c-assoc-value (c-cons (c-pair z (f z)) Is) xa = c-assoc-value
Is za by (rule c-assoc-lm-4)
from A2 S1 have S3: c-assoc-have-key ls xa = 0 by simp
from A1 S3 have c-assoc-value ls za = f za by (rule c-is-sub-fun-lm-1)
with S2 show ?thesis by simp
qed
qed
qed

lemma mod7-lm: (n::nat) mod 7 = 0 V
(n:nat) mod 7 =1V

(n::nat) mod 7= 2 V
(n:nat) mod 7 = 3 V
(n:nat) mod 7 = 4 V
(n:nat) mod 7 =5V
(n::inat) mod 7 = 6 by arith

lemma nat-to-sch-at-pos: © > 0 = nat-to-sch x = (let u=(c-fst =) mod 7,

v=c-snd z; vli=c-fst v; v2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2
in loc-f u schl sch2)
proof —

assume A: z > 0
show ?thesis

101

proof cases
assume Al: z = 1
then have S1: c-fstx = 0
proof —
have 1 = c-pair 0 1 by (simp add: c-pair-def sf-def)
then have c-fst 1 = c-fst (c-pair 0 1) by simp
then have c-fst 1 = 0 by simp
with A1 show ?thesis by simp
qed
from A1 have S2: nat-to-sch x = Base-zero by simp
from S1 52 show nat-to-sch © = (let u=(c-fst) mod 7; v=c-snd x; vi=c-fst
v; v2 = c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2)
apply (insert S1 S2)
apply(simp add: Let-def loc-f-def)
done
next
assume -z = I
from A this have A2: © > 1 by simp
from this have nat-to-sch © = (let u=mod7 (c-fst x); v=c-snd z; vl=c-fst v;
v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) by
(rule loc-srj-lm-2)
from this show nat-to-sch © = (let u=(c-fst x) mod 7; v=c-snd x; vl=c-fst
v; v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) by
(simp add: mod7-def)
qed
qged

lemma nat-to-sch-0: c-fst n mod 7 = 0 = nat-to-sch n = Base-zero
proof —
assume A: c-fst n mod 7 = 0
show ?thesis
proof cases
assume n=0
then show nat-to-sch n = Base-zero by simp
next
assume — n = () then have n > 0 by simp
then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2
= c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schi sch2) by (rule
nat-to-sch-at-pos)
with A show nat-to-sch n = Base-zero by (simp add: Let-def loc-f-def)
qed
qged

lemma loc-lm-1: c-fst n mod 7 # 0 = n > 0
proof —
assume A: c-fst n mod 7 # 0
have n = 0 = Fulse
proof —
assume n = (

102

then have c-fst n mod 7 = 0 by (simp add: c-fst-at-0)
with A show ?thesis by simp
qed
then have - n = 0 by auto
then show ?thesis by simp
qed

lemma loc-lm-2: c-fst n mod 7 # 0 = nat-to-sch n = (let u=(c-fst n) mod 7,
v=c-snd n; vl=c-fst v; v2 = c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in
loc-f u schl sch2)
proof —

assume c-fst n mod 7 # 0

then have n > 0 by (rule loc-lm-1)

then show ?thesis by (rule nat-to-sch-at-pos)
qed

lemma nat-to-sch-1: c-fst n mod 7 = 1 = nat-to-sch n = Base-suc
proof —

assume A1: c-fst n mod 7 = 1

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vl=c-fst v; v2 =
c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-suc by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-2: c-fst n mod 7 = 2 = nat-to-sch n = Base-fst
proof —

assume A1: c-fst n mod 7 = 2

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-fst by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-3: c-fst n mod 7 = 8 = nat-to-sch n = Base-snd
proof —

assume A1: c-fst n mod 7 = 3

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-snd by (simp add: Let-def loc-f-def)
qged

lemma nat-to-sch-4: c-fst n mod 7 = 4 = nat-to-sch n = Comp-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof —

assume Al: c-fst n mod 7 = 4

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch v1; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp

103

add: loc-lm-2)

with A1 show nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-5: c-fst n mod 7 = 5 = nat-to-sch n = Pair-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof —

assume Al: c-fst n mod 7 = 5

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-6: c-fst n mod 7 = 6 = nat-to-sch n = Rec-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof —

assume Al: c-fst n mod 7 = 6

then have nat-to-sch n = (let u=(c-fst n) mod 7; v=c-snd n; vi=c-fst v; v2 =
c-snd v; schl=nat-to-sch vl; sch2=nat-to-sch v2 in loc-f u schl sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qged

lemma nat-to-pr-lm-0: c-fst n mod 7 = 0 = nat-to-pr n x = 0
proof —
assume A: c-fst n mod 7 = 0
have S1: nat-to-pr n & = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2: nat-to-sch n = Base-zero by (rule nat-to-sch-0)
from S1 52 show ?thesis by simp
qed

lemma nat-to-pr-lm-1: c-fst n mod 7 = 1 = nat-to-pr n t = Suc x
proof —
assume A: c-fst n mod 7 = 1
have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2: nat-to-sch n = Base-suc by (rule nat-to-sch-1)
from S1 52 show ?thesis by simp
qged

lemma nat-to-pr-lm-2: c-fst n mod 7 = 2 = nat-to-pr n x = c-fst
proof —
assume A: c-fst n mod 7 = 2
have S1: nat-to-pr n & = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2: nat-to-sch n = Base-fst by (rule nat-to-sch-2)
from S1 52 show ?thesis by simp

104

qed

lemma nat-to-pr-lm-3: c-fst n mod 7 = 8 = nat-to-pr n x = c-snd x
proof —
assume A: c-fst n mod 7 = 3
have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2: nat-to-sch n = Base-snd by (rule nat-to-sch-3)
from S1 52 show ?thesis by simp
qed

lemma nat-to-pr-lm-4: c-fst n mod 7 =
(c-snd n)) (nat-to-pr (c-snd (c-snd n)) x)
proof —

assume A: c-fst n mod 7 =

have S1: nat-to-pr n & = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)

from A have S2: nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (rule nat-to-sch-4)

from S1 S2 have S3: nat-to-pr n x = sch-to-pr (Comp-op (nat-to-sch (c-fst
(c-snd n))) (nat-to-sch (c-snd (c-snd n)))) = by simp

from S3 have S4: nat-to-pr n © = (sch-to-pr (nat-to-sch (c-fst (c-snd n))))
((sch-to-pr (nat-to-sch (c-snd (c-snd n)))) z) by simp

from S4 show ?%thesis by (simp add: nat-to-pr-def)
qed

4 = nat-to-pr n x = (nat-to-pr (c-fst
)

lemma nat-to-pr-Im-5: c-fst n mod 7 = 5 = nat-to-pr n x = (c-f-pair (nat-to-pr
(c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n))))
proof —
assume A: c-fst n mod 7 = 5
have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A4 have S2: nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (rule nat-to-sch-5)
from S1 52 have S3: nat-to-pr n x = sch-to-pr (Pair-op (nat-to-sch (c-fst (c-snd
n))) (nat-to-sch (c-snd (c-snd n)))) = by simp
from S3 show ?%thesis by (simp add: nat-to-pr-def)
qed

lemma nat-to-pr-lm-6: c-fst n mod 7 = 6 = nat-to-pr n x = (UnaryRecOp
(nat-to-pr (c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) x
proof —
assume A: c-fst n mod 7 = 6
have S1: nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2: nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (rule nat-to-sch-6)
from S1 S2 have S3: nat-to-pr n x = sch-to-pr (Rec-op (nat-to-sch (c-fst (c-snd
n))) (nat-to-sch (c-snd (c-snd n)))) = by simp
from S3 show ?%thesis by (simp add: nat-to-pr-def)
qed

lemma univ-for-pr-lm-0: c-fst (c-fst key) mod 7 = 0 = univ-for-pr key = 0

105

proof —

assume A: c-fst (c-fst key) mod 7 = 0

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show ?%thesis by (simp add: nat-to-pr-lm-0)
qed

lemma univ-for-pr-lm-1: c-fst (c-fst key) mod 7 = 1 = univ-for-pr key = Suc
(c-snd key)
proof —

assume A: c-fst (c-fst key) mod 7 = 1

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show ?Zthesis by (simp add: nat-to-pr-lm-1)
qed

lemma univ-for-pr-lm-2: c-fst (c-fst key) mod 7 = 2 = univ-for-pr key = c-fst
(c-snd key)
proof —

assume A: c-fst (c-fst key) mod 7 = 2

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show ?Zthesis by (simp add: nat-to-pr-lm-2)
qed

lemma univ-for-pr-lm-3: c-fst (c-fst key) mod 7 = 3 = univ-for-pr key = c-snd
(c-snd key)
proof —

assume A: c-fst (c-fst key) mod 7 = 3

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show %thesis by (simp add: nat-to-pr-lm-3)
qed

lemma univ-for-pr-lm-4: c-fst (c-fst key) mod 7 = 4 = univ-for-pr key = (nat-to-pr
(c-fst (c-snd (c-fst key))) (nat-to-pr (c-snd (c-snd (c-fst key))) (c-snd key)))
proof —

assume A: c-fst (c-fst key) mod 7 = /

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show ?Zthesis by (simp add: nat-to-pr-lm-4)

qged

lemma univ-for-pr-lm-4-1: c-fst (c-fst key) mod 7 = 4 = univ-for-pr key =
univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (univ-for-pr (c-pair (c-snd (c-snd
(c-fst key))) (c-snd key))))
proof —

assume A: c-fst (c-fst key) mod 7 = /

106

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)
with A show ?Zthesis by (simp add: nat-to-pr-lm-4 univ-for-pr-def pr-conv-2-to-1-def)
qed

lemma univ-for-pr-lm-5: c-fst (c-fst key) mod 7 = 5 = univ-for-pr key = c-pair
(univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd key))) (univ-for-pr (c-pair
(c-snd (c-snd (c-fst key))) (c-snd key)))
proof —

assume A: c-fst (c-fst key) mod 7 = 5

have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A show ?Zthesis by (simp add: nat-to-pr-lm-5 c-f-pair-def univ-for-pr-def
pr-conv-2-to-1-def)
qed

lemma univ-for-pr-lm-6-1: [c-fst (c-fst key) mod 7 = 6; c-fst (c-snd key) = 0]
= univ-for-pr key = univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd (c-snd
e)))
proof —

assume A1: c-fst (c-fst key) mod 7 = 6

assume A2: c-fst (c-snd key) = 0

have SI: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)

with A1 A2 show ?thesis by (simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def
pr-conv-2-to-1-def)
qged

lemma univ-for-pr-lm-6-2: [c-fst (c-fst key) mod 7 = 6; c-fst (c-snd key) = Suc
u] = univ-for-pr key = univ-for-pr
(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair u (univ-for-pr (c-pair (c-fst key) (c-pair u (c-snd (c-snd
key)))))) (c-snd (c-snd key))))
proof —
assume AI: c-fst (c-fst key) mod 7 = 6
assume A2: c-fst (c-snd key) = Suc u
have S1: univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)
with A1 A2 show ?Zthesis
apply(simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def pr-conv-2-to-1-def)
apply(simp add: pr-conv-1-to-3-def)
done
qged

lemma univ-for-pr-lm-6-3: [c-fst (c-fst key) mod 7 = 6; c-fst (c-snd key) # 0]
= univ-for-pr key = univ-for-pr
(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair (c-fst (c-snd key) — 1) (univ-for-pr (c-pair (c-fst key)
(c-pair (c-fst (c-snd key) — 1) (c-snd (c-snd key)))))) (c-snd (c-snd key))))

107

proof —

assume AI: c-fst (c-fst key) mod 7 = 6

assume A2: c-fst (c-snd key) # 0 then have

AS8: c-fst (c-snd key) > 0 by simp

let 2u = c-fst (c-snd key) — (1::nat)

from A3 have SI: c-fst (c-snd key) = Suc ?u by simp

from A1 S1 have S2: univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair ?u (univ-for-pr (c-pair (c-fst key) (c-pair ?u (c-snd

(c-snd key)))))) (c-snd (c-snd key)))) by (rule univ-for-pr-lm-6-2)

thus ?thesis by simp
qed

lemma g-comp-lm-0: [c-fst (c-fst key) mod 7 = 4; c-is-sub-fun ls univ-for-pr;
g-comp ls key # Is] = g-comp s key = c-cons (c-pair key (univ-for-pr key)) ls
proof —
assume AI: c-fst (c-fst key) mod 7 = 4
assume A2: c-is-sub-fun ls univ-for-pr
assume AS8: g-comp s key # s
let ?n = c-fst key
let %z = c-snd key
let ¢m = c-snd ?n
let ?m1 = c-fst ?m
let Ym2 = c-snd %m
let ?k1 = c-pair ?m2 %z
have S1: c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)
assume A1-1: c-assoc-have-key ls k1 # 0
then have g-comp s key = Is by(simp add: g-comp-def)
with A% show Fulse by simp
qed
let %y = c-assoc-value Is ?k1
from A2 S1 have S2: %y = univ-for-pr 2kl by (rule c-is-sub-fun-lm-1)
let 9k2 = c-pair ?m1 ?y
have 53: c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)
assume A3-1: c-assoc-have-key ls 2k2 # 0
then have g-comp s key = Is by (simp add: g-comp-def Let-def)
with A8 show Fulse by simp
qed
let 9z = c-assoc-value ls 7k2
from A2 53 have Sj: 2z = univ-for-pr ?k2 by (rule c-is-sub-fun-Im-1)
from 52 have S5: 2k2 = c-pair ?m1 (univ-for-pr ?k1) by simp
from S/ S5 have S6: 2z = univ-for-pr (c-pair ?ml1 (univ-for-pr 2k1)) by simp
from A1 S6 have S7: 9z = univ-for-pr key by (simp add: univ-for-pr-lm-4-1)
from S1 58 S7 show ?%thesis by (simp add: g-comp-def Let-def)
qed

lemma g-comp-lm-1: [c-fst (c-fst key) mod 7 = 4; c-is-sub-fun ls univ-for-pr]

108

= c-is-sub-fun (g-comp ls key) univ-for-pr
proof —
assume AI1: c-fst (c-fst key) mod 7 = 4
assume A2: c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases
assume g-comp Is key = Is
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by simp
next
assume g-comp Is key # s
from A1 A2 this have S1: g-comp ls key = c-cons (c-pair key (univ-for-pr
key)) ls by (rule g-comp-lm-0)
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)
qed
qed

lemma g-pair-lm-0: [c-fst (c-fst key) mod 7 = 5; c-is-sub-fun ls univ-for-pr; g-pair
Is key # Is] = g-pair ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof —
assume AI: c-fst (c-fst key) mod 7 =5
assume A2: c-is-sub-fun ls univ-for-pr
assume AS8: g-pair ls key # s
let ?n = c-fst key
let 2z = c-snd key
let Ym = c-snd ?n
let ?mi1 = c-fst ?m
let ?m2 = c-snd ?m
let ?k1 = c-pair ?ml1 %z
have S1: c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)
assume Al1-1: c-assoc-have-key ls ?k1 # 0
then have g-pair ls key = Is by(simp add: g-pair-def)
with A8 show Fulse by simp
qed
let 2yl = c-assoc-value ls ?k1
from A2 S1 have S2: 2yl = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1)
let 2k2 = c-pair ?m2 %z
have S3: c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)
assume A3-1: c-assoc-have-key ls k2 # 0
then have g-pair s key = Is by (simp add: g-pair-def Let-def)
with A3 show Fulse by simp
qed
let ?y2 = c-assoc-value Is ?k2
from A2 53 have Sj: %y2 = univ-for-pr 2k2 by (rule c-is-sub-fun-lm-1)
let 9z = c-pair 2yl ?y2
from S2 5S4 have S5: %z = c-pair (univ-for-pr ?k1) (univ-for-pr ?k2) by simp
from A1 S5 have S6: 9z = univ-for-pr key by (simp add: univ-for-pr-Im-5)
from S1 58 S6 show %thesis by (simp add: g-pair-def Let-def)

109

qed

lemma g-pair-lm-1: [c-fst (c-fst key) mod 7 = 5; c-is-sub-fun ls univ-for-pr] =
c-is-sub-fun (g-pair ls key) univ-for-pr
proof —
assume A1: c-fst (c-fst key) mod 7 = 5
assume A2: c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases
assume g-pair Is key = s
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by simp
next
assume g¢-pair ls key # s
from A1 A2 this have S1: g-pair ls key = c-cons (c-pair key (univ-for-pr key))
Is by (rule g-pair-lm-0)
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)
qed
qed

lemma g-rec-lm-0: [c-fst (c-fst key) mod 7 = 6; c-is-sub-fun ls univ-for-pr; g-rec
Is key # ls] = g-rec s key = c-cons (c-pair key (univ-for-pr key)) ls
proof —
assume AI: c-fst (c-fst key) mod 7 = 6
assume A2: c-is-sub-fun ls univ-for-pr
assume A3: g-rec Is key # Is
let ?n = c-fst key
let %z = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let m2 = c-snd ?m
let %yl = c-fst %
let %x1 = c-snd %x
show ?thesis
proof cases
assume Al-1: 2yl = 0
let ?k1 = c-pair ?m1 %zl
have S1-1: c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)
assume c-assoc-have-key ls ?k1 # 0
with A1-1 have g-rec ls key = ls by(simp add: g-rec-def)
with A% show Fulse by simp
qed
let ?v = c-assoc-value ls 7k1
from A2 S1-1 have S1-2: 2v = univ-for-pr ?k1 by (rule c-is-sub-fun-Im-1)
from A1 A1-1 51-2 have S1-8: 2v = univ-for-pr key by (simp add: univ-for-pr-lm-6-1)
from A1-1 S1-1 S1-8 show f?thesis by (simp add: g-rec-def Let-def)
next
assume A2-1: 2yl # 0 then have A2-2: 7yl > 0 by simp
let ?y2 = %yl — (1::nat)

110

let %k2 = c-pair ?n (c-pair ?y2 %x1)
have S2-1: c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)
assume c-assoc-have-key ls ?k2 # 0
with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def)
with A3 show Fulse by simp
qed
let ?t1 = c-assoc-value ls 7k2
from A2 S2-1 have S2-2: ?t1 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1)
let ?t2 = c-pair (c-pair 2y2 ?t1) %zl
let 2k3 = c-pair ?m2 ?t2
have 52-3: c-assoc-have-key ls ?k3 = 0
proof (rule ccontr)
assume c-assoc-have-key ls ?k3 # 0
with A2-1 have g-rec Is key = ls by (simp add: g-rec-def Let-def)
with A8 show Fulse by simp
qed
let %u = c-assoc-value ls 7k3
from A2 52-3 have S2-4: ?u = univ-for-pr ?k3 by (rule c-is-sub-fun-lm-1)
from S2-4 52-2 have 52-5: 2u = univ-for-pr (c-pair ?m2 (c-pair (c-pair ?y2
(ungv-for-pr 2k2)) %z1)) by simp
from A1 A2-152-5 have S2-6: 2u = univ-for-pr key by (simp add: univ-for-pr-lm-6-3)
from A2-1 52-1 52-8 S2-6 show ?thesis by (simp add: g-rec-def Let-def)
qed
qed

lemma g-rec-lm-1: [c-fst (c-fst key) mod 7 = 6; c-is-sub-fun ls univ-for-pr] =
c-is-sub-fun (g-rec ls key) univ-for-pr
proof —
assume AI: c-fst (c-fst key) mod 7 = 6
assume A2: c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases
assume g-rec ls key = Is
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by simp
next
assume g-rec Is key # s
from A1 A2 this have S1: g-rec ls key = c-cons (c-pair key (univ-for-pr key))
Is by (rule g-rec-lm-0)
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)
qed
qged

lemma g-step-lm-0: c-fst (c-fst key) mod 7 = 0 => g-step ls key = c-cons (c-pair
key 0) ls by (simp add: g-step-def)

lemma g-step-lm-1: c-fst (c-fst key) mod 7 = 1 = g-step ls key = c-cons (c-pair
key (Suc (c-snd key))) Is by (simp add: g-step-def Let-def)

111

lemma g-step-lm-2: c-fst (c-fst key) mod 7 = 2 => g-step ls key = c-cons (c-pair
key (c-fst (c-snd key))) ls by (simp add: g-step-def Let-def)

lemma g-step-lm-3: c-fst (c-fst key) mod 7 = 8 = g-step ls key = c-cons (c-pair
key (c-snd (c-snd key))) Is by (simp add: g-step-def Let-def)

lemma g-step-lm-4: c-fst (c-fst key) mod 7 = 4 = g-step ls key = g-comp s key
by (simp add: g-step-def)

lemma g-step-lm-5: c-fst (c-fst key) mod 7 = 5 = g-step ls key = g-pair ls key
by (simp add: g-step-def)

lemma g-step-lm-6: c-fst (c-fst key) mod 7 = 6 = g-step Is key = g-rec ls key
by (simp add: g-step-def)

lemma g-step-lm-7: c-is-sub-fun ls univ-for-pr = c-is-sub-fun (g-step ls key)
univ-for-pr
proof —
assume Al: c-is-sub-fun ls univ-for-pr
let ?n = c-fst key
let %z = c-snd key
let n1 = (c-fst ?n) mod 7
have S1: ?n1 = 0 = ?thesis
proof —
assume A: nl = 0
then have S1-1: g-step ls key = c-cons (c-pair key 0) ls by (rule g-step-lm-0)
from A have S1-2: univ-for-pr key = 0 by (rule univ-for-pr-lm-0)
from A1 have S1-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-Im-2)
from S1-3 S1-1 S1-2 show ?thesis by simp
qed
have 52: %n1 = 1 — ?thesis
proof —
assume A: nl = 1
then have S2-1: g-step ls key = c-cons (c-pair key (Suc (c-snd key))) ls by
(rule g-step-lm-1)
from A have 52-2: univ-for-pr key = Suc (c-snd key) by (rule univ-for-pr-lm-1)
from A1 have S2-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-Im-2)
from S52-3 52-1 S2-2 show ?thesis by simp
qed
have 53: %nl = 2 = ?thesis
proof —
assume A: ?nl = 2
then have S2-1: g-step ls key = c-cons (c-pair key (c-fst (c-snd key))) ls by
(rule g-step-lm-2)
from A have 52-2: univ-for-pr key = c-fst (c-snd key) by (rule univ-for-pr-lm-2)
from A1 have S2-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2)

112

from 52-3 52-1 S2-2 show f?thesis by simp
qed
have 54: %n1 = 3 = ?thesis
proof —
assume A: nl = 3
then have 52-1: g-step ls key = c-cons (c-pair key (c-snd (c-snd key))) Is by
(rule g-step-lm-3)
from A have S2-2: univ-for-pr key = c-snd (c-snd key) by (rule univ-for-pr-lm-38)
from A1 have S52-3: c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) Is)
univ-for-pr by (rule c-is-sub-fun-lm-2)
from S52-3 52-1 52-2 show ?thesis by simp
qed
have S5: ?n1 = 4 = ?thesis
proof —
assume A: nl = J
then have S2-1: g-step ls key = g-comp ls key by (rule g-step-lm-4)
from A A1 52-1 show ?thesis by (simp add: g-comp-lm-1)
qed
have S6: ?n1 = 5 = ?thesis
proof —
assume A: nl =5
then have S2-1: g-step ls key = g-pair ls key by (rule g-step-lm-5)
from A A1 52-1 show %thesis by (simp add: g-pair-lm-1)
qed
have S7: %n1 = 6 = ?thesis
proof —
assume A: ?nl = 6
then have S2-1: g-step ls key = g-rec ls key by (rule g-step-lm-6)
from A A1 S2-1 show ?thesis by (simp add: g-rec-lm-1)
qed
have S8: ni=0V ni=1V n1=2V ni=38 V ni=4 V ni=5V ni=06
by (rule mod7-Im)
with S1 52 58 5/ S5 56 S7 show ?thesis by fast
qed

theorem pr-gr-1: c-is-sub-fun (pr-gr z) univ-for-pr

apply (induct z)

apply(simp add: pr-gr-at-0 c-is-sub-fun-def c-assoc-have-key-df)
apply(simp add: pr-gr-at-Suc)

apply(simp add: g-step-lm-7)

done

lemma comp-next: g-comp ls key = Is V c-tl (g-comp s key) = Is by(simp add:
g-comp-def Let-def)

lemma pair-next: g-pair ls key = Is V c-tl (g-pair ls key) = Is by(simp add:
g-pair-def Let-def)

lemma rec-next: g-rec ls key = ls V c-tl (g-rec ls key) = Is by (simp add: g-rec-def
Let-def)

113

lemma step-next: g-step ls key = ls V c-tl (g-step ls key) = Is
apply(simp add: g-step-def comp-next pair-next rec-next Let-def)

done

lemma Im1: pr-gr (Suc z) = pr-gr x V c-tl (pr-gr (Suc z)) = pr-gr x by(simp
add: pr-gr-at-Suc step-next)

lemma c-assoc-have-key-pos: c-assoc-have-key ls x = 0 = Is > 0
proof —
assume A1: c-assoc-have-key ls © = 0
thus ?thesis
proof (cases)
assume A2: s =0
then have S1: c-assoc-have-key ls © = 1 by (simp add: c-assoc-have-key-df)
with A1 have S2: Fualse by auto
then show Is > 0 by auto
next
assume A3: - s =0
then show Is > 0 by auto
qged
qged

lemma Im2: c-assoc-have-key (c-tl ls) key = 0 = c-assoc-have-key ls key = 0
proof —

assume AI: c-assoc-have-key (c-tl ls) key = 0

from A1 have S1: c-tl ls > 0 by (rule c-assoc-have-key-pos)

have S2: c¢-tl Is < Is by (rule c-tl-le)

from S1 52 have S3: Is # 0 by auto

from A1 S8 show ?thesis by (auto simp add: c-assoc-have-key-lm-1)
qed

lemma Im3: c-assoc-have-key (pr-gr x) key = 0 = c-assoc-have-key (pr-gr (Suc
z)) key = 0
proof —
assume AI: c-assoc-have-key (pr-gr x) key = 0
have S1: pr-gr (Suc x) = pr-gr V c-tl (pr-gr (Suc z)) = pr-gr « by (rule Im1)
from A1 have S2: pr-gr (Suc z) = pr-gr x = ?thesis by auto
have S3: c-tl (pr-gr (Suc x)) = pr-gr t => ?thesis
proof —
assume c-tl (pr-gr (Suc x)) = pr-gr z (is c-tl ?ls = -)
with A1 have c-assoc-have-key (c-tl ?ls) key = 0 by auto
then show c-assoc-have-key ?ls key = 0 by (rule Im2)
qed
from S1 52 S3 show ?thesis by auto
qed

lemma Im4: [c-assoc-have-key (pr-gr z) key = 0; 0 < y] = c-assoc-have-key
(pr-gr (z+y)) key = 0

114

apply (induct-tac y)
apply(auto)
apply(simp add: Im3)
done

lemma im5: [c-assoc-have-key (pr-gr) key = 0; © < y | = c-assoc-have-key
(pr-gr y) key = 0
proof —
assume AI: c-assoc-have-key (pr-gr z) key = 0
assume A2: z < y
let 7z = y—x
from A2 have Si1: 0 < ?z by auto
from A2 have S2: y = z + ?z by auto
from A1 S1 have S3: c-assoc-have-key (pr-gr (z+2z2)) key = 0 by (rule Im4)
from S2 53 show ?thesis by auto
qed

lemma loc-upb-lm-1: n = 0 = (c-fst n) mod 7 = 0
apply(simp add: c-fst-at-0)
done

lemma loc-upb-lm-2: (c-fst n) mod 7 > 1 = c-snd n < n
proof —

assume A1: c-fst n mod 7 > 1

from A1 have S1: 1 < c-fst n by simp

have S2: c-fst n < n by (rule c-fst-le-arg)

from S1 52 have S3%: 1 < n by simp

from S% have S4: n>1 by simp

from S show ?%thesis by (rule c-snd-less-arg)
qed

lemma loc-upb-Im-2-0: (c-fst n) mod 7 = 4 — c-fst (c-snd n) < n
proof

assume A1: c-fst n mod 7 = 4

then have S0: c-fst n mod 7 > 1 by auto

then have SI: c-snd n < n by (rule loc-upb-Im-2)

have 52: c-fst (c-snd n) < c-snd n by (rule c-fst-le-arg)

from S1 52 show c-fst (c-snd n) < n by auto
qed

lemma loc-upb-Im-2-2: (c-fst n) mod 7 = 4 — c-snd (c-snd n) < n
proof

assume A1: c-fst n mod 7 = 4

then have S0: c-fst n mod 7 > 1 by auto

then have S1: c-snd n < n by (rule loc-upb-lm-2)

have 52: c-snd (c-snd n) < c-snd n by (rule c-snd-le-arg)

from S1 S2 show c-snd (c-snd n) < n by auto
qed

115

lemma loc-upb-lm-2-3: (c-fst n) mod 7 = 5 — c-fst (c-snd n) < n
proof

assume Al: c-fst n mod 7 =5

then have S0: c-fst n mod 7 > 1 by auto

then have SI: c-snd n < n by (rule loc-upb-Im-2)

have 52: c-fst (c-snd n) < c-snd n by (rule c-fst-le-arg)

from S1 S2 show c-fst (¢-snd n) < n by auto
qed

lemma loc-upb-lm-2-4: (c-fst n) mod 7 = 5 — c-snd (c-snd n) < n
proof

assume A1: c-fst n mod 7 =5

then have S0: c-fst n mod 7 > 1 by auto

then have S1: c¢-snd n < n by (rule loc-upb-lm-2)

have 52: c-snd (c-snd n) < c-snd n by (rule c-snd-le-arg)

from S1 52 show c-snd (c-snd n) < n by auto
qed

lemma loc-upb-lm-2-5: (c-fst n) mod 7 = 6 — c-fst (¢c-snd n) < n
proof

assume Al: c-fst n mod 7 = 6

then have S0: c-fst n mod 7 > 1 by auto

then have S1: c-snd n < n by (rule loc-upb-Im-2)

have 52: c-fst (c-snd n) < c-snd n by (rule c-fst-le-arg)

from S1 S2 show c-fst (c-snd n) < n by auto
qed

lemma loc-upb-lm-2-6: (c-fst n) mod 7 = 6 — c-snd (c-snd n) < n
proof

assume A1: c-fst n mod 7 = 6

then have S0: c-fst n mod 7 > 1 by auto

then have SI: c-snd n < n by (rule loc-upb-Im-2)

have S2: c-snd (c-snd n) < c-snd n by (rule c-snd-le-arg)

from S1 S2 show c-snd (c-snd n) < n by auto
qed

lemma loc-upb-lm-2-7: [y2 = y1 — (1:nat); 0 < yl; x1 = c-snd z; yl = c-fst z]
= c-pairy2zl <z
proof —
assume A7l: y2 = yl — (1:nat) and A2: 0 < y1 and A3: z1 = c-snd z and
A4: yl = c-fstx
from A1 A2 have S1: y2 < yl by auto
from S1 have S2: c-pair y2 1 < c-pair y1 z1 by (rule c-pair-strict-monol)
from A3 A/ have S3: c-pair y1 x1 = z by auto
from 52 53 show c-pair y2 z1 < z by auto
qed

function loc-upb :: nat = nat = nat where
aa: loc-upb n z = (

116

let n1 = (c-fst n) mod 7 in

if n1 = 0 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 1 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 2 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 3 then (c-pair (c-pair n x) 0) + 1 else

if nl = 4 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m;
y = c-assoc-value (pr-gr (loc-upb m2 z)) (c-pair m2) in
(c-pair (c-pair n z) (loc-upb m2 x + loc-upb m1 y)) + 1
) else
if nl = 5 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m in
(e-pair (c-pair n) (loc-upb m1 x + loc-upb m2 x)) + 1
) else
if nl = 6 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; yl = c-fst x; t1 = c-snd x in
if y1 = 0 then (
(c-pair (c-pair n z) (loc-upb m1 x1)) + 1
) else (
let y2 = y1—(1::nat);
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair n (c-pair
y2 z1)); t2 = c-pair (c-pair y2 t1) x1 in
(c-pair (c-pair n z) (loc-upb n (c-pair y2 1) + loc-upb m2 t2)) + 1
)

)

else 0

)

by auto

termination

apply (relation measure (A m. m) <slexx> measure (A n. n))

apply (simp-all add: loc-upb-lm-2-0 loc-upb-Im-2-2 loc-upb-lm-2-3 loc-upb-lm-2-4
loc-upb-lm-2-5 loc-upb-lm-2-6 loc-upb-lm-2-7)

apply auto

done

definition
lex-p :: ((nat x nat) x nat X nat) set where
lez-p = ((measure (A m. m)) <xlexx> (measure (A n. n)))

lemma wf-lex-p: wf(lez-p)
apply(simp add: lex-p-def)
apply(auto)

done

lemma lez-p-eq: ((n',z'), (n,z)) € lez-p = (n'<n V n'=n A 2'<z)

apply(simp add: lex-p-def)
done

117

lemma loc-upb-lex-0: c-fst n mod 7 = 0 = c-assoc-have-key (pr-gr (loc-upb n
z)) (c-pair n z) = 0
proof —

assume Al: c-fst n mod 7 = 0

let ?key = c-pair n x

let %s = c-pair %key 0

let ?ls = pr-gr %s

from A1 have loc-upb nx = ?s + 1 by simp

then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst 9s) by (simp add:
pr-gr-at-Suc)

from A1 have S2: g-step ?ls ?key = c-cons (c-pair ?key 0) ?ls by (simp add:
g-step-def)

from S1 52 have pr-gr (loc-upb n z) = c-cons (c-pair ?key 0) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-1: c-fst n mod 7 = 1 = c-assoc-have-key (pr-gr (loc-upb n
z)) (c-pairn z) = 0
proof —

assume Al: c-fst n mod 7 = 1

let %key = c-pair n x

let %s = c-pair %key 0

let ?ls = pr-gr %s

from A1 have loc-upb nxz = ?s + 1 by simp

then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst 9s) by (simp add:
pr-gr-at-Suc)

from A1 have S2: g-step ?ls %key = c-cons (c-pair ?key (Suc z)) ?ls by (simp
add: g-step-def)

from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (Suc z)) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-2: c-fst n mod 7 = 2 = c-assoc-have-key (pr-gr (loc-upb n
z)) (c-pair n z) = 0
proof —

assume Al: c-fst n mod 7 = 2

let ?key = c-pair n x

let %s = c-pair %key 0

let ?ls = pr-gr %s

from A1 have loc-upb n x = ?s + 1 by simp

then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst 2s) by (simp add:
pr-gr-at-Suc)

from A7 have S2: g-step ?ls ?key = c-cons (c-pair ?key (c-fst x)) ?ls by (simp
add: g-step-def)

from S1 52 have pr-gr (loc-upb n) = c-cons (c-pair ?key (c-fst x)) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-3: c-fst n mod 7 = 8 = c-assoc-have-key (pr-gr (loc-upb n

118

z)) (c-pair n z) = 0
proof —

assume A1: c-fst n mod 7 = 3

let %key = c-pair n x

let %s = c-pair %key 0

let ?ls = pr-gr ?s

from A1 have loc-upb nxz = ?s + 1 by simp

then have S1: pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:
pr-gr-at-Suc)

from A1 have S2: g-step ?ls ?key = c-cons (c-pair ?key (c-snd x)) ?ls by (simp
add: g-step-def)

from S1 S2 have pr-gr (loc-upb n) = c-cons (c-pair ?key (c-snd z)) ?ls by
auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-4: [\ n' z’. ((n',z'), (n,x)) € lex-p = c-assoc-have-key (pr-gr
(loc-upb n' z')) (c-pair n’ z') = 0;
c-fst nmod 7 = J] =
c-assoc-have-key (pr-gr (loc-upb n z)) (c-pair n x) = 0

proof —

assume A1: A n'z’. (n',2"), (n,x)) € lex-p => c-assoc-have-key (pr-gr (loc-upb
n'z’) (c-pairn’ z') = 0

assume A2: c-fst n mod 7 = 4

let ?key = c-pair n x

let ?m1 = c-fst (c-snd n)

let ?m2 = c-snd (c-snd n)

define upb! where upbl = loc-upb m2 x

from A2 have m2-lt-n: Ym2 < n by (simp add: loc-upb-Im-2-2)

then have M2: ((?m2, z), (n,x)) € lez-p by (simp add: lez-p-eq)

with A1 upbl-def have S1: c-assoc-have-key (pr-gr upbl) (c-pair ?m2 z) = 0
by auto

from M2 have M2" ((?m2, z), n,) € measure (Am. m) <sxlexx> measure (An.
n) by (simp add: lex-p-def)

have T1: c-is-sub-fun (pr-gr upbl) univ-for-pr by (rule pr-gr-1)

from T1 S1 have T2: c-assoc-value (pr-gr upbl) (c-pair ?m2 x) = univ-for-pr
(c-pair ?m2 x) by (rule c-is-sub-fun-lm-1)

define y where y = c-assoc-value (pr-gr upbl) (c-pair ?m2 x)

from T2 y-def have T3: y = univ-for-pr (c-pair ?m2 z) by auto

define upb2 where upb2 = loc-upb ?m1l y

from A2 have ?m! < n by (simp add: loc-upb-Im-2-0)

then have M1: ((¢m1, y), (n,x)) € lex-p by (simp add: lez-p-eq)

with A1 have S2: c-assoc-have-key (pr-gr (loc-upb ?m1 y)) (c-pair ?ml1 y) = 0
by auto

from M1 have M1" ((?m1, y), n,) € measure (Am. m) <xlexx> measure (An.
n) by (simp add: lex-p-def)

from S1 upbi-def have S3: c-assoc-have-key (pr-gr upbl) (c-pair ¢m2 x) = 0
by auto

119

from S2 upb2-def have S/: c-assoc-have-key (pr-gr upb2) (c-pair ?m1 y) = 0
by auto

let ?s = c-pair Zkey (upbl + upb2)

let ?ls = pr-gr s

let Zsum-upb = upbl +upb2

from A2 have ?mi1 < n by (simp add: loc-upb-lm-2-0)

then have ((?m1, z), (n,z)) € lex-p by (simp add: lex-p-eq)

then have M1": ((m1, z), n, x) € measure (Am. m) <xlexx> measure (An. n)
by (simp add: lex-p-def)

from A2 M2' M1" have S11: loc-upb n z = (let y = c-assoc-value (pr-gr (loc-upb
m2 z)) (c-pair ?m2 x)

in (c-pair (c-pair n x)
(loc-upb ?m2 x + loc-upb ?ml y)) + 1)
by (simp add: Let-def)

define upb where upb = loc-upb n x

from S11 y-def upbl-def upb2-def have loc-upb n x = %s + 1 by (simp add:
Let-def)

with upb-def have S11: upb = ?s + 1 by auto

have S7: Zsum-upb < ?s by (rule arg2-le-c-pair)

have upbi-le-s: upbl < %s

proof —
have S1: upbl < Zsum-upb by (rule Nat.le-add1)
from S1 S7 show ?thesis by auto

qged

have upb2-le-s: upb2 < %s

proof —
have S1: upb2 < Zsum-upb by (rule Nat.le-add?2)
from S1 57 show ?thesis by auto

qed

have S18: pr-gr upb = g-comp ?ls ?key
proof —
from S11 have S1: pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:
pr-gr-at-Suc)
from A2 have S2: g-step ?ls ?key = g-comp ?ls ?key by (simp add: g-step-def)
from S1 52 show ?thesis by auto

qed

from S3 upbl-le-s have S19: c-assoc-have-key ?ls (c-pair ?m2 z) = 0 by (rule
Im5)

from 5S4 upb2-le-s have S20: c-assoc-have-key ?ls (c-pair ?m1 y) = 0 by (rule
Im5)

have T-ls: c-is-sub-fun %ls univ-for-pr by (rule pr-gr-1)

from T-ls S19 have T-ls2: c-assoc-value ?ls (c-pair m2 x) = univ-for-pr (c-pair
?m2 z) by (rule c-is-sub-fun-lm-1)

from T8 T-ls2 have T-y: c-assoc-value ?ls (c-pair #m2 x) = y by auto

from T-y S19 520 have S21: g-comp ?ls Zkey = c-cons (c-pair ?key (c-assoc-value

120

?ls (c-pair ?ml1 y))) ?ls
by (unfold g-comp-def)(simp del: loc-upb.simps add: Let-def)

from S18 S21 have pr-gr upb = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair
?m1 y))) ?ls by auto

with upb-def have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-assoc-value ?ls
(c-pair ?ml1 y))) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-5: [\ n' z’. ((n',z'), (n,z)) € lex-p = c-assoc-have-key (pr-gr
(loc-upb n'" z')) (c-pair n' z") = 0;
c-fst nmod 7 = 5] =
c-assoc-have-key (pr-gr (loc-upb n z)) (c-pair n z) = 0

proof —

assume A1: A\ n'z'. (n',2"), (n,x)) € lex-p = c-assoc-have-key (pr-gr (loc-upb
n’ z)) (c-pair n’ ') = 0

assume A2: c-fst n mod 7 =5

let ?key = c-pair n x

let Ym1 = c-fst (c-snd n)

let #m2 = c-snd (c-snd n)

from A2 have ?mi1 < n by (simp add: loc-upb-lm-2-3)

then have ((¢m1, z), (n,x)) € lex-p by (simp add: lex-p-eq)

with A1 have S1: c-assoc-have-key (pr-gr (loc-upb ?ml1 z)) (c-pair ?ml1 z) = 0
by auto

from A2 have ?m2 < n by (simp add: loc-upb-lm-2-4)

then have ((?m2, x), (n,z)) € lez-p by (simp add: lez-p-eq)

with A1 have S2: c-assoc-have-key (pr-gr (loc-upb ?m2 x)) (c-pair m2 z) = 0
by auto

define upbl where upbl = loc-upb ?mi1 x

define upb2 where upb2 = loc-upb ?m2 x

from upbi-def S1 have S3: c-assoc-have-key (pr-gr upbl) (c-pair ?m1 x) = 0
by auto

from upb2-def S2 have S/: c-assoc-have-key (pr-gr upb2) (c-pair ?m2 z) = 0
by auto

let Zsum-upb = upbl +upb?2

have S5: upbl < ?sum-upb by (rule Nat.le-addl)

have S6: upb2 < ?sum-upb by (rule Nat.le-add2)

let %s = (c-pair %key ?sum-upb)

have S7: Zsum-upb < ?s by (rule arg2-le-c-pair)

from S5 57 have S8: upbl < ?s by auto

from S6 S7 have S9: upb2 < ?s by auto

let ?ls = pr-gr %s

from A2 upbi-def upb2-def have S10: loc-upb n x = ?s + 1 by (simp add:
Let-def)

define upb where upb = loc-upb n x

from upb-def S10 have S11: upb = ?s + 1 by auto

from S11 have S12: pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:
pr-gr-at-Suc)

from S8 S10 upb-def have S13: upbl < upb by (simp only:)

121

from 59 S10 upb-def have S14: upb2 < upb by (simp only:)

from S3 S138 have S15: c-assoc-have-key (pr-gr upb) (c-pair ?m1 z) = 0 by
(rule Im5)

from S S14 have S16: c-assoc-have-key (pr-gr upb) (c-pair #m2 x) = 0 by
(rule Im5)

from A2 have S17: g-step ?ls %key = g-pair ?ls ?key by (simp add: g-step-def)

from S12 S17 have S18: pr-gr upb = g-pair ?ls ?key by auto

from 53 S8 have 519: c-assoc-have-key ?ls (c-pair ?m1 z) = 0 by (rule Im5)

from S4 S9 have S20: c-assoc-have-key ?ls (c-pair #m2 z) = 0 by (rule Imb)

let 2yl = c-assoc-value ?ls (c-pair ?ml x)

let ?y2 = c-assoc-value ?ls (c-pair ?m2 x)

let %y = c-pair 2yl ?y2

from 519 520 have S21: g-pair ?ls ?key = c-cons (c-pair %key ?y) ?ls by (unfold
g-pair-def, simp add: Let-def)

from S18 S21 have S22: pr-gr upb = c-cons (c-pair ?key ?y) ?ls by auto

from upb-def S22 have S23: pr-gr (loc-upb n x) = c-cons (c-pair ?key ?y) ?ls
by auto

from 523 show ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-6-z: [c-fst n mod 7 =6; c-fst ¢ = 0] =
loc-upb n z = c-pair (c-pair n z) (loc-upb (c-fst (c-snd n)) (c-snd z)) + 1 by
(simp add: Let-def)

lemma loc-upb-6: [c-fst n mod 7 =6; c-fst © # 0] = loc-upb n z = (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; yl = c-fst
z; t1 = c-snd x;
y2 =yl — 1
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair
n (c-pair y2 z1));
t2 = c-pair (c-pair y2 t1) x1 in
c-pair (c-pair n) (loc-upb n (c-pair y2 x1) + (loc-upb
m2t2)) + 1)
by (simp add: Let-def)

lemma loc-upb-lex-6: [\ n' z’. ((n',z'), (n,z)) € lex-p = c-assoc-have-key (pr-gr
(loc-upb n' z")) (c-pair n' z’) = 0;
c-fst n mod 7 = 6] =
c-assoc-have-key (pr-gr (loc-upb n z)) (c-pair n x) = 0
proof —
assume A1: A n’z’. (n',2'), (n,x)) € lex-p = c-assoc-have-key (pr-gr (loc-upbd
n’ z')) (e-pair n' ') = 0
assume A2: c-fst n mod 7 = 6
let ?key = c-pair n x
let 9m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
let 2yl = c-fstz
let %21 = c-snd z
define upb where upb = loc-upb n x

122

show ?thesis
proof (cases)
assume A: %yl = 0
from A2 A have S1: loc-upb n x = c-pair ?key (loc-upb ?ml1 (c-snd z)) + 1
by (rule loc-upb-6-z)
define upb! where upbl = loc-upb ?m1 (c-snd x)
from upbi-def S1 have S2: loc-upb n © = c-pair %key upbl + 1 by auto
let ?s = c-pair %key upbl
from S2 have S3: pr-gr (loc-upb n z) = pr-gr (Suc ?s) by simp
have pr-gr (Suc ?s) = g-step (pr-gr 9s) (c-fst ?s) by (rule pr-gr-at-Suc)
with S8 have S/: pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by auto
let 2ls = pr-gr %s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def)
with S4 have S5: pr-gr (loc-upb n z) = g-rec ?ls ?key by auto
have S6: c-assoc-have-key ?ls (c-pair ?m1 ?x1) = 0
proof —
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-5)
then have ((¢m1,%z1), n,) € lex-p by (simp add: lez-p-eq)
with A1 upbl-def have c-assoc-have-key (pr-gr upbl) (c-pair m1 %z1) = 0
by auto
also have upb! < ?s by (rule arg2-le-c-pair)
ultimately show ?thesis by (rule Im5)
qed
from A S6 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair
?m1 2x1))) ?ls by (simp add: g-rec-def Let-def)
with S5 show ?thesis by (simp add: c-assoc-lm-1)
next
assume A: c-fst # 0 then have y1-pos: c-fst x > 0 by auto
let 2y2 = %2y1 — 1
from A2 A have loc-upb n z = (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst
z; r1 = c-snd x;
y2 =yl — I
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 z1))) (c-pair
n (c-pair y2 x1));
t2 = c-pair (c-pair y2 t1) x1 in
c-pair (c-pair n z) (loc-upb n (c-pair y2 x1) + (loc-upb
m2 t2)) + 1) by (rule loc-upb-6)
then have S1: loc-upb n z = (
let
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1)))
(c-pair n (c-pair ?y2 ?z1));
t2 = c-pair (c-pair 2y2 t1) %zl in
c-pair (c-pair n x) (loc-upb n (c-pair 2y2 ?x1) + (loc-upb
m2 t2)) + 1) by (simp del: loc-upb.simps add: Let-def)
let ?t1 = univ-for-pr (c-pair n (c-pair ?y2 ?x1))
let 912 = c-pair (c-pair 2y2 9t1) ?x1
have S1-1: c-assoc-have-key (pr-gr (loc-upb n (c-pair 2y2 ?x1))) (c-pair n (c-pair
?y2 ?21)) = 0

123

proof —
from A have ?y2 < %yl by auto
then have c-pair ?y2 %z1 < c-pair %yl ?z1 by (rule c-pair-strict-monol)
then have ((n, c-pair ?y2 %z1),n,2) € lex-p by (simp add: lez-p-eq)
with A1 show ?%thesis by auto
qed
have S2: c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?z1))) (c-pair n (c-pair ?y2
?x1)) = univ-for-pr (c-pair n (c-pair ?y2 ?z1))

proof —
have c-is-sub-fun (pr-gr (loc-upb n (c-pair ?y2 ?x1))) univ-for-pr by (rule
pr-gr-1)
with S1-1 show ?thesis by (simp add: c-is-sub-fun-lm-1)
qed

from S1 S2 have S3: loc-upb n x = c-pair (c-pair n x) (loc-upb n (c-pair ?y2
2x1) + loc-upb ?m2 2t2) + 1 by (simp del: loc-upb.simps add: Let-def)
let %s = c-pair (c-pair n z) (loc-upb n (c-pair 2y2 2x1) + loc-upb ?m2 9t2)
from S3 have S/: pr-gr (loc-upb n x) = pr-gr (Suc ?s) by (simp del: loc-upb.simps)
have pr-gr (Suc ?s) = g-step (pr-gr 2s) (c-fst ?s) by (rule pr-gr-at-Suc)
with 54 have S5: pr-gr (loc-upb n z) = g-step (pr-gr ?s) ?key by (simp del:
loc-upb.simps)
let ?ls = pr-gr %s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def)
with S5 have S6: pr-gr (loc-upb n x) = g-rec ?ls ?key by (simp del: loc-upb.simps)
have S7: c-assoc-have-key ?ls (c-pair n (c-pair ?y2 ?x1)) = 0
proof —
have loc-upb n (c-pair ?y2 ?x1) < loc-upb n (c-pair 2y2 ?x1) + loc-upb ?m2
2t2 by (auto simp del: loc-upb.simps)
also have loc-upb n (c-pair ?y2 %x1) + loc-upb ?m2 ?t2 < ?s by (rule
arg2-le-c-pair)
ultimately have S7-1: loc-upb n (c-pair ?y2 ?z1) < %s by (auto simp del:
loc-upb.simps)
from S1-1 S7-1 show ?thesis by (rule Im5)
qed
have 58: c-assoc-value ?ls (c-pair n (c-pair ?y2 ?z1)) = ?t1
proof —
have c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1)
with S7 show ?thesis by (simp add: c-is-sub-fun-Im-1)
qed
have 59: c-assoc-have-key ?ls (c-pair ?m2 ?2t2) = 0
proof —
from A2 have ?m2 < n by (simp add: loc-upb-Im-2-6)
then have ((?m2,%t2), n, x) € lez-p by (simp add: lez-p-eq)
with A1 have c-assoc-have-key (pr-gr (loc-upb m2 9t2)) (c-pair ?m2 2t2) =
0 by auto
also have loc-upb ?m2 ?t2 < %s
proof —
have loc-upb ?m2 ?t2 < loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2 by
(auto simp del: loc-upb.simps)
also have loc-upb n (c-pair ?y2 %x1) + loc-upb ?m2 ?t2 < %s by (rule

124

arg2-le-c-pair)
ultimately show ?thesis by (auto simp del: loc-upb.simps)
qed
ultimately show ?thesis by (rule Im5)
qed
from A S7 588 S9 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls
(c-pair ?m2 ?2t2))) ?ls by (simp del: loc-upb.simps add: g-rec-def Let-def)
with 56 show ?thesis by (simp add: c-assoc-lm-1)
qed
qed

lemma wf-upb-step-0:
IA n" 2’ ((n,z"), (n,z)) € lez-p = c-assoc-have-key (pr-gr (loc-upb n’ z'))
(e-pair n' z') = 0] =
c-assoc-have-key (pr-gr (loc-upb n z)) (c-pair n) = 0
proof —
assume A1: A n'z’. (n',z'), (n,x)) € lex-p = c-assoc-have-key (pr-gr (loc-upb
n’ z) (c-pair n’ ') = 0
let ?n1 = (c-fst n) mod 7
have S1: ?n1 = 0 = ?thesis
proof —
assume A: nl = 0
thus ?thesis by (rule loc-upb-lex-0)
qed
have S§2: %n1 = 1 = %thesis
proof —
assume A: nl = 1
thus %thesis by (rule loc-upb-lex-1)
qed
have S§3: /nl1 = 2 = ?thesis
proof —
assume A: nl = 2
thus ?thesis by (rule loc-upb-lex-2)
qed
have 54: %n1 = 3 = ?thesis
proof —
assume A: nl = 3
thus %thesis by (rule loc-upb-lex-3)
qed
have S5: ?n1 = 4 = ?thesis
proof —
assume A: nl = J
from A1 A show ?thesis by (rule loc-upb-lex-4)
qed
have S6: n1 = 5 = ?thesis
proof —
assume A: nl =5
from A1 A show ?thesis by (rule loc-upb-lex-5)
qed

125

have S7: %n1 = 6 = ?thesis
proof —
assume A: ?nl =6
from A1 A show ?thesis by (rule loc-upb-lex-6)
qged
have S8: n1=0 V ni=1V ni=2V n1=8 V %ni=4 V %nl=5V nl=06
by (rule mod7-Im)
from S1 52 53 54 S5 56 S7 58 show ?thesis by fast
qed

lemma wf-upb-step:
assumes A1: \ p2. (p2, pl) € lex-p =
c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2))
=0
shows c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd
pl)) =0
proof —
let ?n = fst p1
let 2z = snd pl
from A1 have S1: A\ p2. (p2, (%n, %z)) € lez-p =
c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2))
=0
by auto
have S2: (A n' z’. ((n',z"), (fst p1, snd p1)) € lex-p
= c-assoc-have-key (pr-gr (loc-upb n' ') (e-pair n' z') = 0) =
c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd p1))
=0
by (rule wf-upb-step-0)
then have S3: (A n'z’. ((n',z'), p1) € lez-p => c-assoc-have-key (pr-gr (loc-upb
n' z')) (c-pair n’ z') = 0)
= c-assoc-have-key (pr-gr (loc-upd (fst p1) (snd p1))) (c-pair (fst p1) (snd
pl)) = 0 by auto
have S/: An’ z’. ((n', z'), p1) € lex-p = c-assoc-have-key (pr-gr (loc-upb n’
z) (c-pair n’ ') = 0
proof —
fix n' z’
assume A4-1: ((n', z'), p1) € lex-p
let ?p2 = (n', z/)
from A/-1 have S4-1: (9p2, p1) € lex-p by auto
from S4-1 have c-assoc-have-key (pr-gr (loc-upb (fst ?p2) (snd ?p2))) (c-pair
(fst ?p2) (snd ?p2)) = 0
by (rule A1)
then show c-assoc-have-key (pr-gr (loc-upb n' z')) (c-pair n’ ') = 0 by auto
qed
from S/ S3 show ?thesis by auto
qed

theorem loc-upb-main: c-assoc-have-key (pr-gr (loc-upb n z)) (c-pair n z) = 0
proof —

126

have loc-upb-lm: \ p. c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) = 0
proof — fix p show c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) =0
proof —
have S1: wf lex-p by (auto simp add: lex-p-def)
from S1 wf-upb-step show ?thesis by (rule wf-induct-rule)
qed
qed
let %p = (n,z)
have c-assoc-have-key (pr-gr (loc-upb (fst ?p) (snd ?p))) (c-pair (fst ?p) (snd
?p)) = 0 by (rule loc-upb-Im)
thus ?thesis by simp
qed

theorem pr-gr-value: c-assoc-value (pr-gr (loc-upb n x)) (c-pair n z) = univ-for-pr
(c-pair n x)
by (simp del: loc-upb.simps add: loc-upb-main pr-gr-1 c-is-sub-fun-lm-1)

theorem g¢-comp-is-pr: g-comp € PrimRec?2
proof —
from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (\ z y. g-comp
z y) € PrimRec2
unfolding g-comp-def Let-def by prec
thus ?thesis by auto
qged

theorem g¢-pair-is-pr: g-pair € PrimRec2
proof —
from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (A z y. g-pair
z y) € PrimRec2
unfolding g-pair-def Let-def by prec
thus ?thesis by auto
qed

theorem g-rec-is-pr: g-rec € PrimRec2
proof —
from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (\ z y. g-rec ©
y) € PrimRec2
unfolding g-rec-def Let-def by prec
thus ?thesis by auto
qged

theorem g-step-is-pr: g-step € PrimRec2
proof —
from g-comp-is-pr g-pair-is-pr g-rec-is-pr mod-is-pr c-assoc-have-key-is-pr c-assoc-value-is-pr
c-cons-is-pr have
(X s key. g-step ls key) € PrimRec2 unfolding g-step-def Let-def by prec
thus ?thesis by auto

127

qed

theorem pr-gr-is-pr: pr-gr € PrimRecl
proof —
have S1: (A z. pr-gr) = PrimRecOpl 0 (X z y. g-step y (c-fst x)) (is - = ?f)
proof
fix z
show pr-gr z = ?f z by (induct x) (simp add: pr-gr-at-0, simp add: pr-gr-at-Suc)
qed
have S2: PrimRecOpl 0 (X z y. g-step y (c-fst z)) € PrimRecl
proof (rule pr-recl)
from g-step-is-pr show (Az y. g-step y (c-fst x)) € PrimRec2 by prec
qed
from S1 52 show ?thesis by auto
qed

end

7 Computably enumerable sets of natural num-
bers

theory RecEnSet
imports PRecList PRecFun2 PRecFinSet PRecUnGr
begin

7.1 Basic definitions

definition
fn-to-set :: (nat = nat = nat) = nat set where

fn-to-set f ={x. 3y fzy=20}

definition
ce-sets :: (nat set) set where
ce-sets = { (fn-to-set p) | p. p € PrimRec2 }

7.2 Basic properties of computably enumerable sets

lemma ce-set-lm-1: p € PrimRec2 = fn-to-set p € ce-sets by (auto simp add:
ce-sets-def)

lemma ce-set-Im-2: [p € PrimRec2;V z. (t € A)=F y.pry=0)] = A€
ce-sets
proof —
assume p-is-pr: p € PrimRec?2
assumeV z. (z € A)=(F y.pzy=10)
then have A = fn-to-set p by (unfold fn-to-set-def, auto)
with p-is-pr show A € ce-sets by (simp add: ce-set-lm-1)
qed

128

lemma ce-set-Ilm-3: A € ce-sets = I p € PrimRec2. A = fn-to-set p

proof —
assume A € ce-sets
then have A € { (fn-to-set p) | p. p € PrimRec2 } by (simp add: ce-sets-def)
thus ?thesis by auto

qed

lemma ce-set-Im-4: A € ce-sets = 3 p € PrimRec2.V z. (z € A) =3 y.pzx
y=0)
proof —
assume A € ce-sets
then have 3 p € PrimRec2. A = fn-to-set p by (rule ce-set-lm-3)
then obtain p where p-is-pr: p € PrimRec2 and L1: A = fn-to-set p ..
from p-is-pr L1 show ?thesis by (unfold fn-to-set-def, auto)
qed

lemma ce-set-Im-5: [A € ce-sets; p € PrimRecl | = {z.pxz € A} € ce-sets
proof —
assume Al: A € ce-sets
assume A2: p € PrimRecl
from A1 have 3 pA € PrimRec2. A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr: pA € PrimRec2 and S1: A = fn-to-set pA ..
from S7 have S2: A={z.3 y. pAzy= 0} by (simp add: fn-to-set-def)
define ¢ where gz y = pA (pz) yforz y
from pA-is-pr A2 have g-is-pr: ¢ € PrimRec2 unfolding ¢-def by prec
have A z. (pzr e A)=3 y. qzy = 0)
proof —
fix x show (pz € A) =3 y. qzy = 0)
proof
assume A: pxr € A
with S2 obtain y where L1: pA (p z) y = 0 by auto
then have ¢ z y = 0 by (simp add: q-def)
thus3 y. qzy =0 ..
next
assume A: dy. qzy =0
then obtain y where L1: gz y =0 ..
then have pA (p) y = 0 by (simp add: ¢-def)
with S2 show p z € A by auto
qed
qed
thenhave { 2 .px € A} ={z.3 y. gz y = 0 } by auto
then have { z . p z € A } = fn-to-set ¢ by (simp add: fn-to-set-def)
moreover from ¢-is-pr have fn-to-set q € ce-sets by (rule ce-set-Im-1)
ultimately show ?thesis by auto
qed

lemma ce-set-Im-6: [A € ce-sets; A # {}] = 3 ¢ € PrimRecl. A={ qz| z.

z € UNIV }
proof —

129

assume Al: A € ce-sets
assume A2: A # {}
from A1 have 3 pA € PrimRec2. A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr: pA € PrimRec2 and S1: A = fn-to-set pA ..
from S1 have S2: A={z. 3 y. pA zy= 0} by (simp add: fn-to-set-def)
from A2 obtain a where a-in: a € A by auto
define ¢ where ¢ z = (if pA (c-fst z) (c-snd z) = 0 then c-fst z else a) for z
from pA-is-pr have ¢-is-pr: ¢ € PrimRecl unfolding ¢-def by prec
have S3:V 2. qz€ A
proof
fix zshow gz € A
proof cases
assume A: pA (c-fst z) (c-snd z) = 0
with S2 have c-fst z € A by auto
moreover from A ¢-def have ¢ z = c-fst z by simp
ultimately show ¢ z € A by auto
next
assume A: pA (c-fst z) (c-snd z) # 0
with ¢-def have q z = a by simp
with a-in show ¢ z € A by auto
qed
qed
then have S{: { gz | . x € UNIV } C A by auto
have S5: AC{qz |z z € UNIV }
proof
fix assume A: x € A show z € {q z |z. x € UNIV}
proof
from A S2 obtain y where L1: pA x y = 0 by auto
let 2z = c-pair z y
from L1 have ¢ ?z = z by (simp add: ¢-def)
then have 3 u. ¢ u = = by blast
then show Ju. z = g u A w € UNIV by auto
qed
qed
from S4 S5 have S6: A ={ gz | z. x € UNIV } by auto
with g-is-pr show ?thesis by blast
qed

lemma ce-set-lm-7: [A € ce-sets; p € PrimRecl]| = {pz |x.x € A} € ce-sets
proof —
assume Al: A € ce-sets
assume A2: p € PrimRecl
let B={px|z.2€ A}
fix y have S1: (y € ?B) = (3 z. z € AN (y = p z)) by auto
from A1 have 3 pA € PrimRec2. A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr: pA € PrimRec2 and S2: A = fn-to-set pA ..
from S2 have S3: A ={ 2.3 y. pA zy = 0 } by (simp add: fn-to-set-def)
define ¢ where q y t = (if y = p (c-snd t) then pA (c-snd t) (c-fst t) else 1)
for y ¢

130

from pA-is-pr A2 have g-is-pr: ¢ € PrimRec2 unfolding ¢-def by prec
have L1: N y. (ye ?B) =3 z. qyz=0)
proof — fix y show (y € ?B) = (3 z. qy z = 0)
proof
assume AAl: y € ?B
then obtain z0 where LL-2: z0 € A and LL-3: y = p 20 by auto
from S3 have LL-4: (z0 € A) = (3 2. pA 20 z = 0) by auto
from LL-2 LL-/ obtain 20 where LL-5: pA z0 20 = 0 by auto
define ¢ where t = c-pair 20 z0
from t-def q-def LL-3 LL-5 have q y t = 0 by simp
then show 3 z. ¢ y z = 0 by auto
next
assume Al: 3 z. qyz=10
then obtain 20 where LL-1: qy 20 = 0 ..
have LL2: y = p (c-snd 20)
proof (rule ccontr)
assume y # p (c-snd 20)
with ¢-def LL-1 have q y 20 = 1 by auto
with LL-1 show Fulse by auto
qed
from LL2 LL-1 ¢-def have LL3: pA (c-snd 20) (c-fst z0) = 0 by auto
with S8 have LL4: c-snd 20 € A by auto
with LL2 show y € {p z | z. z € A} by auto
qed
qed
then have L2: B={y | y. 3 z. gy z = 0} by auto
with fn-to-set-def have 7B = fn-to-set ¢ by auto
with g-is-pr ce-set-lm-1 show ?thesis by auto
qed

theorem ce-empty: {} € ce-sets
proof —
let ?f = (A z a. (1::nat))
have S1: ?f € PrimRec2 by (rule const-is-pr-2)
then have V z a. ?fz a # 0 by simp
then have {z. 3 a. %/ 2z a = 0 }={} by auto

also have fn-to-set ?f = ... by (simp add: fn-to-set-def)
with S1 show ?thesis by (auto simp add: ce-sets-def)
qed

theorem ce-univ: UNIV € ce-sets
proof —
let 2f = (A z a. (0::nat))
have S1: ?f € PrimRec2 by (rule const-is-pr-2)
then have V z a. ?fz a = 0 by simp
then have {z. 3 a. ?fz a = 0 }=UNIV by auto

also have fn-to-set ?f = ... by (simp add: fn-to-set-def)
with S1 show %thesis by (auto simp add: ce-sets-def)
qed

131

theorem ce-singleton: {a} € ce-sets
proof —
let 2f = X z y. (abs-of-diff x a) + y
have S1: ?f € PrimRec2 using const-is-pr-2 [where ?n=a| by prec
then have V z y. (?fzy = 0) = (z=a A y=0) by (simp add: abs-of-diff-eq)
then have S2: {z. 3 y. ?fzy = 0 }={a} by auto
have fn-to-set ?f = {z. 3 y. ?fzy = 0 } by (simp add: fn-to-set-def)
with S2 have fn-to-set ?f = {a} by simp
with S1 show ?thesis by (auto simp add: ce-sets-def)
qged

theorem ce-union: [A € ce-sets; B € ce-sets | = A U B € ce-sets
proof —
assume Al: A € ce-sets
then obtain p-a where S2: p-a € PrimRec2 and S3: A = fn-to-set p-a
by (auto simp add: ce-sets-def)
assume A2: B € ce-sets
then obtain p-b where S5: p-b € PrimRec2 and S6: B = fn-to-set p-b
by (auto simp add: ce-sets-def)
let ?p = (A zy. (p-azy) * (p-bzy))
from S2 S5 have S7: ?p € PrimRec2 by prec
have S8:V zy. (pzy=0)= ((p-azy=20)V (p-bxy=0)) by simp
let 2C = fn-to-set ?p
have 59: ?C = {z. 3 y. ?p x y = 0} by (simp add: fn-to-set-def)
from S3 have S10: A = {z. 3 y. p-a x y = 0} by (simp add: fn-to-set-def)
from S6 have S11: B = {z. 3 y. p-b x y = 0} by (simp add: fn-to-set-def)
from S10 S11 59 S8 have S12: ?C = A U B by auto
from S7 have ?C € ce-sets by (auto simp add: ce-sets-def)
with S12 show ?thesis by simp
qed

theorem ce-intersect: [A € ce-sets; B € ce-sets | = A N B € ce-sets
proof —
assume Al: A € ce-sets
then obtain p-a where S2: p-a € PrimRec2 and S3: A = fn-to-set p-a
by (auto simp add: ce-sets-def)
assume A2: B € ce-sets
then obtain p-b where S5: p-b € PrimRec2 and S6: B = fn-to-set p-b
by (auto simp add: ce-sets-def)
let 2p = (A zy. (p-ax (c-fsty)) + (p-b z (c-snd y)))
from S2 S5 have S7: ?p € PrimRec2 by prec
have S8:V z. B y. pzy=0)=(3 z.pazz=0)AN (3 2. p-bzz=0))
proof
fix xshow (3 y. pry=0)=(3 zpazz=0)A 3 2z pbzz=20))
proof —
have 1: 3 y. p2y=0) = (T z.paxz=0) AN (3 z. p-bzz=10))
by blast
have 2: (3 z.pazz2=0)AN3 z.pbrz=0)= Ty %pry=0)

132

proof —
assume ((3 z. p-azz=0) AN (3 2z p-bzz=0))
then obtain 27 22 where s-23: p-a x z1 = 0 and s-24: p-b x 22 = 0 by
auto
let 2yl = c-pair z1 22
from s-23 have s-25: p-a z (c-fst 2y1) = 0 by simp
from s-24 have s-26: p-b z (c-snd ?yl) = 0 by simp
from s-25 s-26 have s-27: p-a © (c-fst ?yl) + p-b x (c-snd ?y1) = 0 by simp
then show ?thesis ..
qed
from 71 2 have (3 y. pzy=0)=(F z.pazz=0)AN3 2. p-bzz=10))
by (rule iffI)
then show ?thesis by auto
qed
qed
let ?C = fn-to-set ?p
have S9: ?C = {z. 3 y. ?p x y = 0} by (simp add: fn-to-set-def)
from S3 have S10: A = {z. 3 y. p-a z y = 0} by (simp add: fn-to-set-def)
from S6 have S11: B = {z. 3 y. p-b x y = 0} by (simp add: fn-to-set-def)
from S10 S11 59 S8 have S12: ?C' = A N B by auto
from S7 have ?C € ce-sets by (auto simp add: ce-sets-def)
with S12 show ?thesis by simp
qed

7.3 Enumeration of computably enumerable sets

definition
nat-to-ce-set :: nat = (nat set) where
nat-to-ce-set = (A n. fn-to-set (pr-conv-1-to-2 (nat-to-pr n)))

lemma nat-to-ce-set-lm-1: nat-to-ce-set n = { . 3 y. (nat-to-pr n) (c-pair z y)
—0)
proof —

have S1: nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def)

then have S2: nat-to-ce-set n = { . 3 y. (pr-conv-1-to-2 (nat-to-pr n)) z y =
0} by (simp add: fn-to-set-def)

have S3: A z y. (pr-conv-1-to-2 (nat-to-pr n)) z y = (nat-to-pr n) (c-pair z y)
by (simp add: pr-conv-1-to-2-def)

from S2 53 show ?thesis by auto
qged

lemma nat-to-ce-set-into-ce: nat-to-ce-set n € ce-sets
proof —
have S1: nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def)
have (nat-to-pr n) € PrimRecl by (rule nat-to-pr-into-pr)
then have S2: (pr-conv-1-to-2 (nat-to-pr n)) € PrimRec2 by (rule pr-conv-1-to-2-Im)
from 52 S1 show ?thesis by (simp add: ce-set-lm-1)

133

qed

lemma nat-to-ce-set-srj: A € ce-sets => 3 n. A = nat-to-ce-set n
proof —
assume A: A € ce-sets
then have 3 p € PrimRec2. A = fn-to-set p by (rule ce-set-lm-3)
then obtain p where p-is-pr: p € PrimRec2 and S1: A = fn-to-set p ..
define ¢ where ¢ = pr-conv-2-to-1 p
from p-is-pr have g-is-pr: ¢ € PrimRecl by (unfold q-def, rule pr-conv-2-to-1-Im)
from ¢-def have S2: pr-conv-1-to-2 q = p by simp
let ?n = index-of-pr q
from ¢-is-pr have nat-to-pr ?n = q by (rule index-of-pr-is-real)
with 52 S1 have A = fn-to-set (pr-conv-1-to-2 (nat-to-pr ?n)) by auto
then have A = nat-to-ce-set ?n by (simp add: nat-to-ce-set-def)
thus %thesis ..
qed

7.4 Characteristic functions

definition
chf :: nat set = (nat = nat) — Characteristic function where
chf = (N Az ifv € Athen 0else 1)

definition
zero-set :: (nat = nat) = nat set where
zero-set = (A f. { z. fz = 0})

lemma chf-lm-1 [simp]: zero-set (chf A) = A by (unfold chf-def, unfold zero-set-def,
simp)

lemma chf-im-2: (z € A) = (chf A z = 0) by (unfold chf-def, simp)
lemma chf-im-3: (z ¢ A) = (chf A x = 1) by (unfold chf-def, simp)

lemma chf-Im-4: chf A € PrimRec] = A € ce-sets
proof —
assume A: chf A € PrimRecl
define p where p = chf A
from A p-def have p-is-pr: p € PrimRecl by auto
define ¢ where qx y = p z for z y :: nat
from p-is-pr have ¢-is-pr: ¢ € PrimRec2 unfolding ¢-def by prec
have S1: A = {z. p(z) = 0}
proof —
have zero-set p = A by (unfold p-def, simp)
thus ?thesis by (simp add: zero-set-def)
qged
have S2: fn-to-set ¢ = {z. 3 y. g x y = 0} by (simp add: fn-to-set-def)
have S3: A z. (pz=0)= (3 y. ¢z y = 0) by (unfold ¢-def, auto)
then have S/: {z. pz =0} = {z. 3 y. ¢z y = 0} by auto

134

with S1 S2 have S5: fn-to-set ¢ = A by auto
from ¢-is-pr have fn-to-set q € ce-sets by (rule ce-set-lm-1)
with S5 show ?thesis by auto

qed

lemma chf-lm-5: finite A = chf A € PrimRecl
proof —
assume A: finite A
define v where u = set-to-nat A
from A have SI: nat-to-set u = A by (unfold u-def, rule nat-to-set-srj)
have chf A = (X z. sgn2 (c-in = u))
proof
fix x show chf A v = sgn2 (c-in z u)
proof cases
assume A: z € A
then have S1-1: chf A x = 0 by (simp add: chf-lm-2)
from A S1 have z € nat-to-set u by auto
then have c-in z v = 1 by (simp add: z-in-u-eq)
with S1-1 show ?thesis by simp
next
assume A: ¢ ¢ A
then have S1-1: chf A x = 1 by (simp add: chf-def)
from A S1 have z ¢ nat-to-set u by auto
then have c-in z u = 0 by (simp add: z-in-u-eq c-in-def)
with S1-1 show ?thesis by simp
qged
qed
moreover from c-in-is-pr have (A z. sgn2 (c-in z u)) € PrimRecl by prec
ultimately show ¢thesis by auto
qed

theorem ce-finite: finite A = A € ce-sets
proof —
assume A: finite A
then have chf A € PrimRecl by (rule chf-Im-5)
then show ?thesis by (rule chf-lm-4)
qed

7.5 Computably enumerable relations

definition
ce-set-to-rel :: nat set = (nat * nat) set where
ce-set-to-rel = (N A. { (c-fst x, c-snd z) | z. v € A})

definition
ce-rel-to-set :: (nat * nat) set = nat set where

ce-rel-to-set = (A R. { c-pair z y | z y. (z,y) € R})

definition

135

ce-rels :: ((nat x nat) set) set where
ce-rels = { R | R. ce-rel-to-set R € ce-sets }

lemma ce-rel-lm-1 [simp]: ce-set-to-rel (ce-rel-to-set r) = r
proof
show ce-set-to-rel (ce-rel-to-set r) C r
proof fix z
assume A: z € ce-set-to-rel (ce-rel-to-set r)
then obtain v where L1: u € (ce-rel-to-set r) and L2: z = (c-fst u, c-snd u)
unfolding ce-set-to-rel-def by auto
from LI obtain z y where L3: (z,y) € r and L4: u = c-pair z y
unfolding ce-rel-to-set-def by auto
from L4 have L5: c-fst u = x by simp
from L/ have L6: c-snd v = y by simp
from L5 L6 L2 have z = (z,y) by simp
with L3 show z € r by auto
qed
next
show r C ce-set-to-rel (ce-rel-to-set)
proof fix z show z € r = z € ce-set-to-rel (ce-rel-to-set r)
proof —
assume A: z € 7
define x where z = fst z
define y where y = snd z
from a-def y-def have L1: z = (z,y) by simp
define u where u = c-pair z y
from A L1 u-def have L2: u € ce-rel-to-set r by (unfold ce-rel-to-set-def,
auto)
from LI u-def have L3: z = (c-fst u, c-snd u) by simp
from L2 L3 show z € ce-set-to-rel (ce-rel-to-set r) by (unfold ce-set-to-rel-def,
auto)
qed
qed
qed

lemma ce-rel-lm-2 [simp]: ce-rel-to-set (ce-set-to-rel A) = A
proof
show ce-rel-to-set (ce-set-to-rel A) C A
proof fix z show z € ce-rel-to-set (ce-set-to-rel A) = z € A
proof —
assume A: z € ce-rel-to-set (ce-set-to-rel A)
then obtain z y where LI: z = c-pair z y and L2: (z,y) € ce-set-to-rel A
unfolding ce-rel-to-set-def by auto
from L2 obtain u where L3: (z,y) = (c-fst u, c-snd u) and Lj: u € A
unfolding ce-set-to-rel-def by auto
from L3 L1 have L5: z = u by simp
with L/ show z € A by auto
qed
qed

136

next
show A C ce-rel-to-set (ce-set-to-rel A)
proof fix z show z € A = z € ce-rel-to-set (ce-set-to-rel A)
proof —
assume A: z € A
then have L1: (c¢c-fst z, c-snd z) € ce-set-to-rel A by (unfold ce-set-to-rel-def,
auto)
define z where z = c-fst z
define y where y = c-snd z
from L1 z-def y-def have L2: (z,y) € ce-set-to-rel A by simp
then have L3: c-pair x y € ce-rel-to-set (ce-set-to-rel A) by (unfold ce-rel-to-set-def,
auto)
with z-def y-def show z € ce-rel-to-set (ce-set-to-rel A) by simp
qed
qed
qed

lemma ce-rels-defl: ce-rels = { ce-set-to-rel A | A. A € ce-sets}
proof
show ce-rels C {ce-set-to-rel A |A. A € ce-sets}
proof fix r show r € ce-rels = r € {ce-set-to-rel A |A. A € ce-sets}
proof —
assume A: r € ce-rels
then have LI1: ce-rel-to-set r € ce-sets by (unfold ce-rels-def, auto)
define A where A = ce-rel-to-set r
from A-def L1 have L2: A € ce-sets by auto
from A-def have L3: ce-set-to-rel A = r by simp
with L2 show r € {ce-set-to-rel A |A. A € ce-sets} by auto
qed
qed
next
show {ce-set-to-rel A |A. A € ce-sets} C ce-rels
proof fix r show r € {ce-set-to-rel A |A. A € ce-sets} => r € ce-rels
proof —
assume A: r € {ce-set-to-rel A |A. A € ce-sets}
then obtain A where L1: r = ce-set-to-rel A and L2: A € ce-sets by auto
from L1 have ce-rel-to-set 1 = A by simp
with L2 show r € ce-rels unfolding ce-rels-def by auto
qed
qed
qed

lemma ce-rel-to-set-inj: inj ce-rel-to-set
proof (rule inj-on-inversel)
fix z assume A: (z::(natxnat) set) € UNIV show ce-set-to-rel (ce-rel-to-set x)
= z by (rule ce-rel-lm-1)
qed

lemma ce-rel-to-set-srj: surj ce-rel-to-set

137

proof (rule surjl [where ?f=ce-set-to-rel])
fix x show ce-rel-to-set (ce-set-to-rel x) = x by (rule ce-rel-lm-2)
qed

lemma ce-rel-to-set-bij: bij ce-rel-to-set
proof (rule bijl)

show inj ce-rel-to-set by (rule ce-rel-to-set-inj)
next

show surj ce-rel-to-set by (rule ce-rel-to-set-srj)
qed

lemma ce-set-to-rel-inj: inj ce-set-to-rel
proof (rule inj-on-inversel)
fix © assume A: (z::nat set) € UNIV show ce-rel-to-set (ce-set-to-rel) = z by
(rule ce-rel-lm-2)
qed

lemma ce-set-to-rel-srj: surj ce-set-to-rel
proof (rule surjl [where ?f=ce-rel-to-set])

fix © show ce-set-to-rel (ce-rel-to-set x) = z by (rule ce-rel-lm-1)
qed

lemma ce-set-to-rel-bij: bij ce-set-to-rel
proof (rule bijI)

show inj ce-set-to-rel by (rule ce-set-to-rel-inj)
next

show surj ce-set-to-rel by (rule ce-set-to-rel-srj)
qed

lemma ce-rel-Im-3: A € ce-sets —> ce-set-to-rel A € ce-rels
proof —

assume A: A € ce-sets

from A ce-rels-defl show %thesis by auto
qed

lemma ce-rel-lm-4: ce-set-to-rel A € ce-rels —> A € ce-sets
proof —

assume A: ce-set-to-rel A € ce-rels

from A show ?%thesis by (unfold ce-rels-def, auto)
qed

lemma ce-rel-lm-5: (A € ce-sets) = (ce-set-to-rel A € ce-rels)
proof

assume A € ce-sets then show ce-set-to-rel A € ce-rels by (rule ce-rel-lm-8)
next

assume ce-set-to-rel A € ce-rels then show A € ce-sets by (rule ce-rel-Im-4)
qed

lemma ce-rel-lm-6: r € ce-rels =—> ce-rel-to-set r € ce-sets

138

proof —

assume A: r € ce-rels

then show %thesis by (unfold ce-rels-def, auto)
qed

lemma ce-rel-Ilm-7: ce-rel-to-set r € ce-sets = r € ce-rels
proof —

assume ce-rel-to-set r € ce-sets

then show ?thesis by (unfold ce-rels-def, auto)
qed

lemma ce-rel-Im-8: (r € ce-rels) = (ce-rel-to-set r € ce-sets) by (unfold ce-rels-def,
auto)

lemma ce-rel-lm-9: (x,y) € r = c-pair x y € ce-rel-to-set r by (unfold ce-rel-to-set-def,
auto)

lemma ce-rel-lm-10: © € A = (c-fst z, c-snd z) € ce-sel-to-rel A by (unfold
ce-set-to-rel-def , auto)

lemma ce-rel-lm-11: c-pair x y € ce-rel-to-set r = (z,y) € r
proof —
assume A: c-pair x y € ce-rel-to-set r
let 7z = c-pair x y
from A have (c-fst %z, c-snd ?z) € ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-Im-10)
then show (z,y) € r by simp
qged

lemma ce-rel-lm-12: (c-pair © y € ce-rel-to-set r) = ((z,y) € r)
proof

assume c-pair & y € ce-rel-to-set r then show (z, y) € r by (rule ce-rel-lm-11)
next

assume (z, y) € r then show c-pair z y € ce-rel-to-set r by (rule ce-rel-lm-9)
qed

lemma ce-rel-lm-13: (z,y) € ce-set-to-rel A = c-pair zy € A

proof —
assume (z,y) € ce-set-to-rel A
then have c-pair x y € ce-rel-to-set (ce-set-to-rel A) by (rule ce-rel-Im-9)
then show ?thesis by simp

qed

lemma ce-rel-lm-14: c-pair z y € A = (z,y) € ce-set-to-rel A
proof —
assume c-pairzy € A
then have c-pair z y € ce-rel-to-set (ce-set-to-rel A) by simp
then show ?thesis by (rule ce-rel-lm-11)
qed

139

lemma ce-rel-lm-15: ((x,y) € ce-set-to-rel A) = (c-pair x y € A)
proof

assume (z, y) € ce-set-to-rel A then show c-pair © y € A by (rule ce-rel-lm-13)
next

assume c-pair z y € A then show (z, y) € ce-set-to-rel A by (rule ce-rel-lm-14)
qed

lemma ce-rel-lm-16: © € ce-rel-to-set r => (c-fst x, c-snd z) € r

proof —
assume z € ce-rel-to-set r
then have (c-fst x, c-snd z) € ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10)
then show ?thesis by simp

qed

lemma ce-rel-im-17: (c-fst x, c-snd) € ce-set-to-rel A = z € A
proof —
assume (c-fst z, c-snd) € ce-set-to-rel A
then have c-pair (c-fst x) (c-snd z) € A by (rule ce-rel-lm-13)
then show ?thesis by simp
qed

lemma ce-rel-lm-18: ((c-fst z, c-snd) € ce-set-to-rel A) = (z € A)
proof

assume (c-fst z, c-snd x) € ce-set-to-rel A then show z € A by (rule ce-rel-Im-17)
next

assume z € A then show (c-fst z, c-snd x) € ce-set-to-rel A by (rule ce-rel-Im-10)
qged

lemma ce-rel-lm-19: (c-fst z, c-snd ©) € r => x € ce-rel-to-set r
proof —
assume (c-fst z, c-snd x) € r
then have (c-fst z, c-snd z) € ce-set-to-rel (ce-rel-to-set r) by simp
then show ?thesis by (rule ce-rel-lm-17)
qed

lemma ce-rel-lm-20: ((c-fst z, c-snd z) € r) = (x € ce-rel-to-set r)
proof

assume (c-fst x, c-snd) € r then show x € ce-rel-to-set r by (rule ce-rel-Im-19)
next

assume z € ce-rel-to-set r then show (c-fst z, c-snd z) € r by (rule ce-rel-lm-16)
qed

lemma ce-rel-lm-21: r € ce-rels = 3 p € PrimRec3.V zy. ((z,y) € r) = (I w.
pryu=20)
proof —

assume 7-ce: 1 € ce-rels

define A where A = ce-rel-to-set r

from r-ce have A-ce: A € ce-sets by (unfold A-def, rule ce-rel-lm-6)

then have 3 p € PrimRec2. A = fn-to-set p by (rule ce-set-lm-3)

140

then obtain ¢ where ¢-is-pr: ¢ € PrimRec2 and A-defil: A = fn-to-set q ..
from A-defl have A-def2: A ={z. 3 y. gz y = 0} by (unfold fn-to-set-def)
define p where p z y u = ¢ (c-pair z y) u for z y u
from ¢-is-pr have p-is-pr: p € PrimRec3 unfolding p-def by prec
have A zy. (z,y) €er) =3 w.pryu=10)
proof — fix z y show ((z,y) € r)=F v.pzyu=0)
proof
assume A: (z,y) € r
define z where z = c-pair z y
with A-def A have z-in-A: z € A by (unfold ce-rel-to-set-def, auto)
with A-def2 have z € { 2. 3 y. ¢z y = 0} by auto
then obtain u where ¢ z u = 0 by auto
with z-def have p x y u = 0 by (simp add: z-def p-def)
then show 3 u. p z y u = 0 by auto
next
assume A: J u.pryu=20
define z where z = c-pair z y
from A obtain u where p z y v = 0 by auto
then have ¢-z: ¢ z uw = 0 by (simp add: z-def p-def)
with A-def2 have z-in-A: z € A by auto
then have c-pair z y € A by (unfold z-def)
then have c-pair z y € ce-rel-to-set r by (unfold A-def)
then show (z,y) € r by (rule ce-rel-lm-11)
qed
qed
with p-is-pr show ?thesis by auto
qed

lemma ce-rel-lm-22: r € ce-rels = 3 p € PrimRec3. r = { (z,y). 3 u. pz y u
=0 }
proof —

assume 7-ce: r € ce-rels

then have 3 p € PrimRec3. YV zy. ((z,y) € r) = (3 u. pzyu = 0) by (rule
ce-rel-lm-21)

then obtain p where p-is-pr: p € PrimRec3 and L1:V zy. ((z,y) € r) = (3
u.pxyu=0)by auto

from p-is-pr L1 show %thesis by blast
qed

lemma ce-rel-lm-253: [p € PrimRec3;V zy. (z,y) €r)= B u.pzyu=10)]
= r € ce-rels
proof —
assume p-is-pr: p € PrimRec3
assume A:V zy. ((z,y) € r)=F u.pryu=0)
define ¢ where ¢ z u = p (c-fst 2) (c-snd z) u for z u
from p-is-pr have ¢-is-pr: ¢ € PrimRec2 unfolding ¢-def by prec
define A where A ={z.3 y. gz y = 0}
then have A-defl: A = fn-to-set q by (unfold fn-to-set-def, auto)
from g-is-pr A-defl have A-ce: A € ce-sets by (simp add: ce-set-lm-1)

141

have main: A = ce-rel-to-set r
proof
show A C ce-rel-to-set r
proof
fix z assume z-in-A: z € A
show z € ce-rel-to-set r
proof —
define © where z = c-fst z
define y where y = c-snd z
from z-in-A A-def obtain u where L2: ¢ z u = 0 by auto
with z-def y-def q-def have L3: p x y u = 0 by simp
then have Ju. p z y u = 0 by auto
with A have (z,y) € r by auto
then have c-pair z y € ce-rel-to-set r by (rule ce-rel-Im-9)
with z-def y-def show ?thesis by simp
qed
qed
next
show ce-rel-to-set r C A
proof
fix z assume z-in-r: z € ce-rel-to-set r
show 2z € A
proof —
define © where z = c-fst z
define y where y = c-snd z
from z-in-r have (c-fst z, c-snd z) € r by (rule ce-rel-Im-16)
with z-def y-def have (z,y) € r by simp
with A obtain u where L1: p x y u = 0 by auto
with z-def y-def ¢-def have ¢ z u = 0 by simp
with A-def show z € A by auto
qed
qed
qed
with A-ce have ce-rel-to-set r € ce-sets by auto
then show r € ce-rels by (rule ce-rel-Im-7)
qed

lemma ce-rel-lm-24: [r € ce-rels; s € ce-rels | = s O r € ce-rels
proof —

assume 7-ce: T € ce-rels

assume s-ce: s € ce-rels

from r-ce have 3 p € PrimRec3.V z y. ((z,y) € r)=(3 u. pzy u = 0) by
(rule ce-rel-lm-21)

then obtain p-r where p-r-is-pr: p-r € PrimRec3 and RI1:V z y. ((z,y) €
=3 u. p-rzyu=0)

by auto

from s-ce have 3 p € PrimRec3. V¥V z y. ((z,y) € s)=(3 u. p x y u = 0) by
(rule ce-rel-lm-21)

then obtain p-s where p-s-is-pr: p-s € PrimRec3 and S1:V z y. ((z,y) €

142

$)=F u. p-szyu=20)
by auto
define p where p z 2z u = (p-s z (c-fst u) (c-fst (c-snd w))) + (p-r (c-fst u) z
(c-snd (c-snd w)))
for z z u
from p-r-is-pr p-s-is-pr have p-is-pr: p € PrimRec3 unfolding p-def by prec
define sr where sr = s O r
have main: V z 2. ((z,2) € sr) =3 u.prxzu=10)
proof (rule alll, rule alll)
fix z 2
show ((z, z) € sr) = (Fu. pzxzu=0)
proof
assume A: (z, z) € sr
show Ju. przu=0
proof —
from A sr-def obtain y where L1: (z,y) € s and L2: (y,2) € r by auto
from L1 S obtain u-s where L3: p-s z y u-s = 0 by auto
from L2 RI obtain u-r where Lj: p-r y z u-r = 0 by auto
define u where u = c-pair y (c-pair u-s u-r)
from L3 L/ have p x z u = 0 by (unfold p-def, unfold u-def, simp)
then show ?thesis by auto
qed
next
assume A: Ju.przu=10
show (z, z) € sr
proof —
from A obtain u where L1: p z z u = 0 by auto
then have L2: (p-s z (c-fst u) (c-fst (c-snd w))) + (p-r (c-fst u) z (c-snd
(c-snd u))) = 0 by (unfold p-def)
from L2 have L3: p-s x (c-fst u) (c-fst (c-snd u)) = 0 by auto
from L2 have L4: p-r (c-fst u) z (c-snd (c-snd u)) = 0 by auto
from L3 S1 have L5: (z,(c-fst u)) € s by auto
from L/ RI have L6: ((c-fst u),z) € r by auto
from L5 L6 have (z,z) € s O r by auto
with sr-def show ¢thesis by auto
qed
qged
qed
from p-is-pr main have sr € ce-rels by (rule ce-rel-Im-23)
then show %thesis by (unfold sr-def)
qed

lemma ce-rel-lm-25: r € ce-rels = r"—1 € ce-rels
proof —

assume 7-ce: T € ce-rels

have r™—1 = {(y,z). (z,y) € r} by auto

then have L1:V zy. ((z,y) € r) = ((y,x) € r"—1) by auto

from r-ce have 3 p € PrimRec3. ¥V zy. (z,y) €r) = (3 u. pzyu= 0) by
(rule ce-rel-lm-21)

143

then obtain p where p-is-pr: p € PrimRec3 and R1:V zy. ((z,y) € r) = (3
u.pxyu=0)by auto
define g where gz yu=pyzufor zyu
from p-is-pr have ¢-is-pr: ¢ € PrimRec3 unfolding ¢-def by prec
from L1 RI have L2:V zy. ((z,y) € " —1) = (3 u. p y z u = 0) by auto
with ¢-def have L3:V zy. ((z,y) € v —1) = (3 u. ¢z y u = 0) by auto
with g¢-is-pr show %thesis by (rule ce-rel-lm-28)
qed

lemma ce-rel-Im-26: r € ce-rels = Domain r € ce-sets
proof —
assume r-ce: r € ce-rels
have L1:V z. (z € Domain r) = (3 y. (2,y) €) by auto
define A where A = ce-rel-to-set r
from r-ce have ce-rel-to-set r € ce-sets by (rule ce-rel-Im-6)
then have A-ce: A € ce-sets by (unfold A-def)
haveV zy. ((z,y) € r) = (c-pair x y € ce-rel-to-set r) by (simp add: ce-rel-Im-12)
then have L2:V z y. ((z,y) €) = (c-pair z y € A) by (unfold A-def)
from A-ce c-fst-is-pr have L3: { c-fst z |z. z € A} € ce-sets by (rule ce-set-Im-7)
have Lj:V z. (z € { c-fstz |z. z€ A}) =3 y. c-pair z y € A)
proof fix x show (x € { ¢-fstz |z. 2€ A}) =3 y. c-pairzy € A)
proof
assume A: z € {c-fst z |z. z € A}
then obtain z where z-in-A: z € A and z-z: © = c-fst z by auto
from 2-z have z = c-pair z (c-snd z) by simp
with z-in-A have c-pair x (c-snd z) € A by auto
then show 3y. c-pair x y € A by auto
next
assume A: Jy. c-pairzy € A
then obtain y where y-1: c-pair x y € A by auto
define z where z = c-pair z y
from y-1 have z-in-A: z € A by (unfold z-def)
from z-def have z-2: © = c-fst z by (unfold z-def, simp)
from z-in-A z-z show = € {c-fst z |z. z € A} by auto
qed
qed
from L1 L2 have L5:V z. (x € Domain r) = (3 y. c-pair x y € A) by auto
from L/ L5 have L6:V z. (x € Domainr) = (z € { ¢-fst z |z. z € A}) by
auto
then have Domain r = { c-fst z |z. z € A } by auto
with L3 show Domain r € ce-sets by auto
qed

lemma ce-rel-lm-27: r € ce-rels = Range r € ce-sets
proof —
assume 7-ce: T € ce-rels
then have r"—1 € ce-rels by (rule ce-rel-Im-25)
then have Domain (r"—1) € ce-sets by (rule ce-rel-lm-26)
then show ?thesis by (unfold Domain-converse [symmetric])

144

qed

lemma ce-rel-Im-28: r € ce-rels = Field r € ce-sets
proof —
assume r-ce: r € ce-rels
from r-ce have L1: Domain r € ce-sets by (rule ce-rel-lm-26)
from r-ce have L2: Range r € ce-sets by (rule ce-rel-lm-27)
from L1 L2 have L3: Domain r U Range r € ce-sets by (rule ce-union)
then show ?thesis by (unfold Field-def)
qed

lemma ce-rel-lm-29: [A € ce-sets; B € ce-sets | = A X B € ce-rels
proof —
assume A-ce: A € ce-sets
assume B-ce: B € ce-sets
define r-a where r-a = {(z,(0::nat)) | z. z € A}
define r-b where r-b = {((0::nat),z) | z. z € B}
have L1: r-a O r-b = A x B by (unfold r-a-def, unfold r-b-def, auto)
have r-a-ce: r-a € ce-rels
proof —
have loc1: ce-rel-to-set r-a = { c-pair 0 | . © € A} by (unfold r-a-def, unfold
ce-rel-to-set-def , auto)
define p where p © = c-pair x 0 for z
have p-is-pr: p € PrimRecl unfolding p-def by prec
from A-ce p-is-pr have { c-pair x 0 | z. © € A} € ce-sets
unfolding p-def by (simp add: ce-set-Im-7)
with loc1 have ce-rel-to-set r-a € ce-sets by auto
then show ?2thesis by (rule ce-rel-lm-7)
qed
have r-b-ce: r-b € ce-rels
proof —
have loc1: ce-rel-to-set r-b = { c-pair 0 z | z. z € B}
by (unfold r-b-def, unfold ce-rel-to-set-def, auto)
define p where p z = c-pair 0 z for z
have p-is-pr: p € PrimRecl unfolding p-def by prec
from B-ce p-is-pr have { c-pair 0 z | z. z € B} € ce-sets
unfolding p-def by (simp add: ce-set-Im-7)
with loc1 have ce-rel-to-set -b € ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)
qed
from r-b-ce r-a-ce have r-a O r-b € ce-rels by (rule ce-rel-Im-24)
with L1 show %thesis by auto
qed

lemma ce-rel-lm-30: {} € ce-rels

proof —
have ce-rel-to-set {} = {} by (unfold ce-rel-to-set-def, auto)
with ce-empty have ce-rel-to-set {} € ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

145

qed

lemma ce-rel-Im-31: UNIV € ce-rels

proof —
from ce-univ ce-univ have UNIV x UNIV € ce-rels by (rule ce-rel-lm-29)
then show ?thesis by auto

qed

lemma ce-rel-lm-32: ce-rel-to-set (r U s) = (ce-rel-to-set r) U (ce-rel-to-set s) by
(unfold ce-rel-to-set-def, auto)

lemma ce-rel-lm-33: [r € ce-rels; s € ce-rels | = r U s € ce-rels
proof —

assume r € ce-rels

then have r-ce: ce-rel-to-set r € ce-sets by (rule ce-rel-lm-6)

assume s € ce-rels

then have s-ce: ce-rel-to-set s € ce-sets by (rule ce-rel-Im-6)

have ce-rel-to-set (r U s) = (ce-rel-to-set r) U (ce-rel-to-set s) by (unfold ce-rel-to-set-def,
auto)

moreover from r-ce s-ce have (ce-rel-to-set r) U (ce-rel-to-set s) € ce-sets by
(rule ce-union)

ultimately have ce-rel-to-set (r U s) € ce-sets by auto

then show ?thesis by (rule ce-rel-lm-7)
qed

lemma ce-rel-lm-34: ce-rel-to-set (r N s) = (ce-rel-to-set) N (ce-rel-to-set s)
proof
show ce-rel-to-set (r N s) C ce-rel-to-set r N ce-rel-to-set s by (unfold ce-rel-to-set-def,
auto)
next
show ce-rel-to-set r N ce-rel-to-set s C ce-rel-to-set (r N s)
proof fix z assume A: x € ce-rel-to-set v N ce-rel-to-set s
from A have L1: x € ce-rel-to-set r by auto
from A have L2: xz € ce-rel-to-set s by auto
from LI obtain « v where L3: (u,v) € r and L4: © = c-pair v v
unfolding ce-rel-to-set-def by auto
from L2 obtain u! v! where L5: (ul,v1) € s and L6: © = c-pair ul vl
unfolding ce-rel-to-set-def by auto
from L4 L6 have L7: c-pair ul vl = c-pair u v by auto
then have ul=u by (rule c-pair-inj1)
moreover from L7 have vi=v by (rule c-pair-inj2)
ultimately have (u,v)=(ul,v1) by auto
with L3 L5 have (u,v) € r N s by auto
with L/ show x € ce-rel-to-set (r N s) by (unfold ce-rel-to-set-def, auto)
qed
qed

lemma ce-rel-lm-35: [r € ce-rels; s € ce-rels | = r N s € ce-rels
proof —

146

assume r € ce-rels

then have r-ce: ce-rel-to-set r € ce-sets by (rule ce-rel-lm-6)

assume s € ce-rels

then have s-ce: ce-rel-to-set s € ce-sets by (rule ce-rel-Im-6)

have ce-rel-to-set (r N s) = (ce-rel-to-set r) N (ce-rel-to-set s) by (rule ce-rel-lm-34)

moreover from r-ce s-ce have (ce-rel-to-set r) N (ce-rel-to-set s) € ce-sets by
(rule ce-intersect)

ultimately have ce-rel-to-set (r N s) € ce-sets by auto

then show ?thesis by (rule ce-rel-lm-7)
qed

lemma ce-rel-lm-36: ce-set-to-rel (A U B) = (ce-set-to-rel A) U (ce-set-to-rel B)
by (unfold ce-set-to-rel-def, auto)

lemma ce-rel-lm-37: ce-set-to-rel (A N B) = (ce-set-to-rel A) N (ce-set-to-rel B)
proof —
define f where f 1 = (c-fst z, c-snd z) for z
have f-inj: inj f
proof (unjfold f-def, rule inj-on-inversel [where 2g=\ (u,v). c-pair u v])
fix z :: nat
assume z € UNIV
show case-prod c-pair (c-fst z, c-snd x) = = by simp
qed
from f-inj have f ‘(AN B) =f ‘AN f ‘B by (rule image-Int)
then show ?thesis by (unfold f-def, unfold ce-set-to-rel-def, auto)
qged

lemma ce-rel-lm-38: [r € ce-rels; A € ce-sets | = r*‘A € ce-sets
proof —
assume 7-ce: T € ce-rels
assume A-ce: A € ce-sets
have L1: r“A = Range (r N A x UNIV) by blast
have L2: Range (r N A x UNIV) € ce-sets
proof (rule ce-rel-lm-27)
show r N A x UNIV € ce-rels
proof (rule ce-rel-lm-35)
show r € ce-rels by (rule r-ce)
next
show A x UNIV € ce-rels
proof (rule ce-rel-lm-29)
show A € ce-sets by (rule A-ce)

next
show UNIV € ce-sets by (rule ce-univ)
qed
qed
qed
from L1 L2 show ?thesis by auto

qed

147

7.6 Total computable functions

definition
graph :: (nat = nat) = (nat x nat) set where
graph = (A f. { (z, fz) | z. x € UNIV})

lemma graph-lm-1: (z,y) € graph f = y = [z by (unfold graph-def, auto)
lemma graph-lm-2: y = f = (x,y) € graph f by (unfold graph-def, auto)
lemma graph-im-3: ((z,y) € graph f) = (y = f z) by (unfold graph-def, auto)

lemma graph-lm-4: graph (f o g) = (graph g) O (graph f) by (unfold graph-def,
auto)

definition
c-graph :: (nat = nat) = nat set where
c-graph = (X f. { c-pair (fz) | z. z € UNIV})

lemma c-graph-Im-1: c-pair x y € c-graph f = y = fz
proof —
assume A: c-pair x y € c-graph f
have S1: c-graph f = {c-pair z (fz) | . x € UNIV} by (simp add: c-graph-def)
from A S1 obtain z where S2: c-pair © y = c-pair z (f z) by auto
then have z = z by (rule c-pair-inj1)
moreover from S2 have y = f z by (rule c-pair-inj2)
ultimately show %thesis by auto
qed

lemma c-graph-lm-2: y = f x = c-pair x y € c-graph f by (unfold c-graph-def,
auto)

lemma c-graph-lm-38: (c-pair x y € c-graph f) = (y = f x)
proof

assume c-pair ¢ y € c-graph f then show y = fz by (rule c-graph-lm-1)
next

assume y = fz then show c-pair y € c-graph f by (rule c-graph-lm-2)
qed

lemma c-graph-lm-4: c-graph f = ce-rel-to-set (graph f) by (unfold c-graph-def
ce-rel-to-set-def graph-def, auto)

lemma c-graph-lm-5: graph f = ce-set-to-rel (c-graph f) by (simp add: c-graph-lm-4)
definition
total-recursive :: (nat = nat) = bool where

total-recursive = (X f. graph f € ce-rels)

lemma total-recursive-def1: total-recursive = (A f. c-graph f € ce-sets)
proof (rule ext) fix f show total-recursive f = (c-graph f € ce-sets)

148

proof
assume A: total-recursive f
then have graph f € ce-rels by (unfold total-recursive-def)
then have ce-rel-to-set (graph f) € ce-sets by (rule ce-rel-lm-6)
then show c-graph f € ce-sets by (simp add: c-graph-lm-4)

next
assume c-graph [€ ce-sets
then have ce-rel-to-set (graph f) € ce-sets by (simp add: c-graph-lm-4)
then have graph f € ce-rels by (rule ce-rel-Im-7)
then show total-recursive f by (unfold total-recursive-def)

qed

qed

theorem pr-is-total-rec: f € PrimRecl = total-recursive f
proof —
assume A: f € PrimRecl
define p where p x = c-pair z (f z) for =
from A have p-is-pr: p € PrimRec! unfolding p-def by prec
let 2U={px|x ze€ UNIV }
from ce-univ p-is-pr have U-ce: ?U € ce-sets by (rule ce-set-lm-7)
have U-1: ?U = { c-pair z (fz) | z. © € UNIV} by (simp add: p-def)
with U-ce have S1: { c¢-pair x (fz) | z. z € UNIV} € ce-sets by simp
with c-graph-def have c-graph-f-is-ce: c-graph f € ce-sets by (unfold c-graph-def,
auto)
then show ?thesis by (unfold total-recursive-defl, auto)
qged

theorem comp-tot-rec: [total-recursive f; total-recursive g | = total-recursive (f
09)
proof —
assume total-recursive f
then have f-ce: graph f € ce-rels by (unfold total-recursive-def)
assume total-recursive g
then have g-ce: graph g € ce-rels by (unfold total-recursive-def)
from f-ce g-ce have graph g O graph f € ce-rels by (rule ce-rel-lm-24)
then have graph (f o g) € ce-rels by (simp add: graph-lm-4)
then show ?thesis by (unfold total-recursive-def)
qged

lemma univ-for-pr-tot-rec-lm: c-graph univ-for-pr € ce-sets
proof —
define A where A = c-graph univ-for-pr
from A-def have S1: A = { c-pair x (univ-for-pr z) | . x € UNIV }
by (simp add: c-graph-def)
from S1 have S2: A ={ 2.3 z. z = c-pair x (univ-for-pr z) } by auto
have S3: A\ z. (3 z. (z = c-pair x (univ-for-pr z))) = (univ-for-pr (c-fst z) =
c-snd z)
proof —
fix z show (3 z. (z = c-pair x (univ-for-pr z))) = (univ-for-pr (c-fst z) =

149

c-snd z)
proof
assume A: 3z. z = c-pair x (univ-for-pr x)
then obtain z where S3-1: z = c-pair z (univ-for-pr x) ..
then show univ-for-pr (c-fst 2) = c-snd z by simp
next
assume A: univ-for-pr (c-fst z) = c-snd z
from A have z = c-pair (c-fst z) (univ-for-pr (c-fst z)) by simp
thus 3z. z = c-pair « (univ-for-pr z) ..
qed
qed
with S2 have S4: A = { z . univ-for-pr (c-fst z) = c-snd z } by auto
define p where p z y =
(if c-assoc-have-key (pr-gr y) (c-fst) = 0 then
(if c-assoc-value (pr-gr y) (c-fst) = c-snd x then (0::nat) else 1)
else 1) for z y
from c-assoc-have-key-is-pr c-assoc-value-is-pr pr-gr-is-pr have p-is-pr: p €
PrimRec?2
unfolding p-def by prec
have S5: A\ z. (univ-for-pr (c-fst z) = c-snd z) = (3 y.pzy = 0)
proof —
fix z show (univ-for-pr (c-fst z) = c-snd z) = (3 y. p 2y = 0)
proof
assume A: univ-for-pr (c-fst z) = c-snd z
let ?n = c-fst (c-fst 2)
let %z = c-snd (c-fst 2)
let 2y = loc-upb ?n %x
have S5-1: c-assoc-have-key (pr-gr ?y) (c-pair ?n ?z) = 0 by (rule loc-upb-main)
have 55-2: c-assoc-value (pr-gr ?y) (c-pair ?n ?z) = univ-for-pr (c-pair ?n
?z) by (rule pr-gr-value)
from S5-1 have S5-3: c-assoc-have-key (pr-gr ?y) (c-fst z) = 0 by simp
from S5-2 A have S5-4: c-assoc-value (pr-gr ?y) (c-fst z) = c-snd z by simp
from $5-3 S5-4 have p z 2y = 0 by (simp add: p-def)
thus3 y.pzy=0..
next
assume A: dy.pzy =10
then obtain y where S5-1: pzy = 0 ..
have S5-2: c-assoc-have-key (pr-gr y) (c-fst z) = 0
proof (rule ccontr)
assume A-1: c-assoc-have-key (pr-gr y) (c-fst z) # 0
then have p z y = 1 by (simp add: p-def)
with S5-1 show Fulse by auto
qed
then have 55-3: p z y = (if c-assoc-value (pr-gr y) (c-fst z) = c-snd z then
(0::nat) else 1) by (simp add: p-def)
have S5-/: c-assoc-value (pr-gr y) (c-fst z) = c-snd z
proof (rule ccontr)
assume A-2: c-assoc-value (pr-gr y) (c-fst z) # c-snd z
then have p z y = 1 by (simp add: p-def)

150

with S5-1 show Fulse by auto
qed
have S$5-5: c-is-sub-fun (pr-gr y) univ-for-pr by (rule pr-gr-1)
from S$5-5 S5-2 have 55-6: c-assoc-value (pr-gr y) (c-fst z) = univ-for-pr
(c-fst z) by (rule c-is-sub-fun-lm-1)
with S5-/ show univ-for-pr (c-fst z) = c-snd z by auto
qed
qed
from S5 S/ have A = {z. 3 y. p z y = 0} by auto
then have A = fn-to-set p by (simp add: fn-to-set-def)
moreover from p-is-pr have fn-to-set p € ce-sets by (rule ce-set-lm-1)
ultimately have A € ce-sets by auto
with A-def show ?thesis by auto
qed

theorem univ-for-pr-tot-rec: total-recursive univ-for-pr

proof —
have c-graph univ-for-pr € ce-sets by (rule univ-for-pr-tot-rec-lm)
then show %thesis by (unfold total-recursive-def1, auto)

qed

7.7 Computable sets, Post’s theorem

definition
computable :: nat set = bool where
computable = (A A. A € ce-sets N —A € ce-sets)

lemma computable-complement-1: computable A = computable (— A)
proof —

assume computable A

then show %thesis by (unfold computable-def, auto)
qed

lemma computable-complement-2: computable (— A) = computable A
proof —

assume computable (— A)

then show %thesis by (unfold computable-def, auto)
qed

lemma computable-complement-3: (computable A) = (computable (— A)) by (unfold
computable-def, auto)

theorem comp-impl-tot-rec: computable A = total-recursive (chf A)
proof —
assume A: computable A
from A have A1: A € ce-sets by (unfold computable-def, simp)
from A have A2: —A € ce-sets by (unfold computable-def, simp)
define p where p z = c-pair x 0 for z
define ¢ where g z = c-pair z 1 for z

151

from p-def have p-is-pr: p € PrimRecl unfolding p-def by prec

from ¢-def have g-is-pr: ¢ € PrimRecl unfolding ¢-def by prec

define U0 where U0 = {pz | z. z € A}

define Ul where Ul ={qz|z. 2z € — A}

from A1 p-is-pr have UQ-ce: U0 € ce-sets by(unfold U0-def, rule ce-set-Im-7)

from A2 g-is-pr have Ul-ce: Ul € ce-sets by(unfold Ul-def, rule ce-set-lm-7)

define U where U = U0 U Ul

from UQ-ce Ul-ce have U-ce: U € ce-sets by (unfold U-def, rule ce-union)

define V where V = c-graph (chf A)

have V-1: V = { c-pair (chf A x) | z. x € UNIV} by (simp add: V-def
c-graph-def)

from U0-def p-def have U0-1: U0 = { c-pairzy | zy. £ € A A y=0} by auto

from Ul-def g-def have Ul-1: Ul = { c-pairzy | zy. x ¢ A A y=1} by auto

from U0-1 Ul-1 U-def have U-1: U ={ cpairzy | zy. (xt € AN y=0)V (x
¢ AN y=1)} by auto

from V-1 have V-2: V ={ cpairzy | zy. y = chf A x} by auto

have LI: Azy. (z € ANy=0)V (t ¢ ANy=1)) = (y=chf Ax)

proof —

fix xy
show ((z € AANy=0)V (z ¢ AN y=1)) = (y = chf A z) by(unfold chf-def,

auto)

qed

from V-2 U-1 L1 have U=V by simp

with U-ce have V-ce: V € ce-sets by auto

with V-def have c-graph (chf A) € ce-sets by auto

then show ?thesis by (unfold total-recursive-defl)
qged

theorem tot-rec-impl-comp: total-recursive (chf A) = computable A
proof —

assume A: total-recursive (chf A)

then have A1: c-graph (chf A) € ce-sets by (unfold total-recursive-def1)

let ?U = c-graph (chf A)

have L1: ?U = { c-pair z (chf A z) | z. x € UNIV} by (simp add: c-graph-def)

have L2: Azy. (z €e ANy=0)V (x ¢ ANy=1)) = (y=chf Ax)

proof — fix z y show ((z € AN y=0)V (x ¢ AN y=1)) = (y = chf A x)
by (unfold chf-def, auto)

qed

from L1 L2 have L3: U ={ cpairzy | zy. (t € ANy=0)V (z ¢ AN
y=1)} by auto

define p where p x = c-pair z 0 for x

define ¢ where ¢ z = c-pair z 1 for z

have p-is-pr: p € PrimRecl unfolding p-def by prec

have ¢-is-pr: ¢ € PrimRecl unfolding ¢-def by prec

define V where V = { cpairzy |zy. (€ ANy=0)V (x ¢ AN y=1)}

from V-def L3 A1 have V-ce: V € ce-sets by auto

from V-def have Lj:V 2. (z€ V) =3 zy. z=cpairzy A ((z € A A y=0)
V(z ¢ AN y=1))) by blast

have L5: AN z. (pz e V) = (z € 4)

152

proof — fix z show (pz € V) = (z € A)
proof
assume A: px e V
then have c-pair 0 € V by (unfold p-def)
with V-def obtain z1 yI where L5-2: c-pair © 0 = c-pair 1 yl1
and L5-3: ((z1 € AN yl=0)V (1 ¢ A A yI=1)) by auto
from L5-2 have X-eq-X1: z=x1 by (rule c-pair-injl)
from L5-2 have Y1-eq-0: 0=yl by (rule c-pair-inj2)
from L5-3 X-eq-X1 Y1-eq-0 show z € A by auto
next
assume A: z € A
let 22 = c-pair z 0
from A have L5-1: 3 z1 y1. c-pair x 0 = c-pair 1 yI N ((z1 € A A y1=0)
V (z1 ¢ AN yl=1)) by auto
with V-def have c-pair z 0 € V by auto
with p-def show p z € V by simp
qed
qed
then have A-eq: A = { z. pz € V} by auto
from V-ce p-is-pr have { z. p x € V} € ce-sets by (rule ce-set-Im-5)
with A-eq have A-ce: A € ce-sets by simp
have CA-eq: — A ={z. qz € V}
proof —
have A z. (¢z € V) = (z ¢ A)
proof — fix z show (¢gz € V) = (z ¢ A)
proof
assume A: gz € V
then have c-pair 1 € V by (unfold ¢-def)
with V-def obtain z1 y1 where L5-2: c-pair z 1 = c-pair z1 y1
and L5-8: ((x1 € AN yl=0)V (z1 ¢ AN yl=1)) by auto
from L5-2 have X-eq-X1: z=x1 by (rule c-pair-inj1)
from L5-2 have Yli-eq-1: 1=yl by (rule c-pair-inj2)
from L5-8 X-eq-X1 Y1-eq-1 show z ¢ A by auto
next
assume A: z ¢ A
from A have L5-1: 3 1 yl. c-pair z 1 = c-pair 21 yI N ((zI € A A
yl=0) Vv (z1 ¢ A N yI=1)) by auto
with V-def have c-pair z 1 € V by auto
with ¢-def show gz € V by simp
qed
qed
then show %thesis by auto
qed
from V-ce g-is-pr have { . gz € V} € ce-sets by (rule ce-set-lm-5)
with CA-eq have CA-ce: — A € ce-sets by simp
from A-ce CA-ce show ?Zthesis by (simp add: computable-def)
qed

theorem post-th-0: (computable A) = (total-recursive (chf A))

153

proof

assume computable A then show total-recursive (chf A) by (rule comp-impl-tot-rec)
next

assume total-recursive (chf A) then show computable A by (rule tot-rec-impl-comp)
qed

7.8 Universal computably enumerable set

definition
univ-ce :: nat set where
univ-ce = { c-pair n x | n x. © € nat-to-ce-set n }

lemma univ-for-pr-lm: univ-for-pr (c-pair n) = (nat-to-pr n)
by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

theorem univ-is-ce: univ-ce € ce-sets
proof —
define A where A = c-graph univ-for-pr
then have A € ce-sets by (simp add: univ-for-pr-tot-rec-lm)
then have 3 pA € PrimRec2. A = fn-to-set pA by (rule ce-set-Im-8)
then obtain pA where pA-is-pr: pA € PrimRec2 and SI1: A = fn-to-set pA
by auto
from S1 have S2: A={ 2.3 y. pA zy= 0} by (simp add: fn-to-set-def)
define p where p z y = pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))
0) (c-snd y)
for z y
from pA-is-pr have p-is-pr: p € PrimRec2 unfolding p-def by prec
have A z. (3 nz. z = c-pair n x A © € nat-to-ce-set n) = (c-snd z € nat-to-ce-set
(c-fst 2))
proof —
fix z show (3 n z. z = c-pair n x A z € nat-to-ce-set n) = (c-snd z €
nat-to-ce-set (c-fst z))
proof
assume A: dn x. z = c-pair n x N x € nat-to-ce-set n
then obtain n z where L1: z = c-pair n x A © € nat-to-ce-set n by auto
from L1 have L2: z = c-pair n x by auto
from L1 have L3: z € nat-to-ce-set n by auto
from L1 have Lj: c-fst z = n by simp
from L1 have L5: c-snd z = x by simp
from L3 L L5 show c-snd z € nat-to-ce-set (c-fst z) by auto
next
assume A: c-snd z € nat-to-ce-set (c-fst z)
let ?n = c-fst z
let %2 = c-snd z
have L1: z = c-pair ?n ?x by simp
from L1 A have z = c-pair ?n ?x N ?x € nat-to-ce-set ?n by auto
thus 3n z. z = c-pair n z A = € nat-to-ce-set n by blast
qed
qed

154

then have { c-pair n z | n z. z € nat-to-ce-set n } = { z. c-snd z € nat-to-ce-set
(c-fst 2)} by auto
then have S3: univ-ce = { z. c-snd z € nat-to-ce-set (c-fst z)} by (simp add:
univ-ce-def)
have S{: A z. (c-snd z € nat-to-ce-set (c-fstz)) = (3 y.pzy = 0)
proof —
fix z show (c-snd z € nat-to-ce-set (c-fst z)) = (3 y. p zy = 0)
proof
assume A: c-snd z € nat-to-ce-set (c-fst z)
have nat-to-ce-set (c-fst z) = { = . 3 y. (nat-to-pr (c-fst z)) (c-pair x y) = 0
} by (simp add: nat-to-ce-set-lm-1)
with A obtain u where S4-1: (nat-to-pr (c-fst z)) (c-pair (c-snd z) u) = 0
by auto
then have S4-2: univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) u)) = 0 by
(simp add: univ-for-pr-lm)
from A-def have S4-3: A = { c-pair z (univ-for-pr z) | . x € UNIV } by
(simp add: c-graph-def)
then have S/-/: A\ z. c-pair z (univ-for-pr) € A by auto
then have c-pair (c-pair (c-fst z) (c-pair (c-snd z) w)) (univ-for-pr (c-pair
(c-fst z) (c-pair (c-snd z) u))) € A by auto
with S4-2 have S4-5: c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) 0 € A by
auto
with S2 obtain v where S4-6: pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)
u)) 0) v=20
by auto
define y where y = c-pair u v
from y-def have S4-7: u = c-fst y by simp
from y-def have S4-8: v = c-snd y by simp
from S4-6 S4-7 S4-8 p-def have p z y = 0 by simp
thus 3 y.pzy=0..
next
assume A: dy. pzy =0
then obtain y where S4-1: pzy =0 ..
from S/-1 p-def have S4-2: pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)
(e-fst y))) 0) (¢c-snd y) = 0 by simp
with S2 have S4-3: c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) 0 €
A by auto
with A-def have c-pair (c-pair (c-fst z) (c-pair (c-snd 2) (c-fst y))) 0 €
c-graph univ-for-pr by simp
then have S/-4: 0 = univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))
by (rule c-graph-lm-1)
then have S4-5: univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) =
0 by auto
then have S4-6: (nat-to-pr (c-fst z)) (c-pair (c-snd z) (c-fst y)) = 0 by
(simp add: univ-for-pr-lm)
then have S4-7: 3 y. (nat-to-pr (c-fst z)) (c-pair (c-snd z) y) = 0 ..
have 54-8: nat-to-ce-set (c-fst z) = { = . 3 y. (nat-to-pr (c-fst z)) (c-pair =
y) = 0 } by (simp add: nat-to-ce-set-Im-1)
from S4-7 have S4-9: c-snd z € { z . 3 y. (nat-to-pr (c-fst z)) (c-pair z y)

155

= 0 } by auto
with S/-8 show c-snd z € nat-to-ce-set (c-fst z) by auto
qed
qed
with S3 have univ-ce = {z. 3 y. p 2 y = 0} by auto
then have univ-ce = fn-to-set p by (simp add: fn-to-set-def)
moreover from p-is-pr have fn-to-set p € ce-sets by (rule ce-set-lm-1)
ultimately show univ-ce € ce-sets by auto
qed

lemma univ-ce-lm-1: (c-pair n © € univ-ce) = (z € nat-to-ce-set n)
proof —
from univ-ce-def have S1: univ-ce = {z .3 nz. z = c-pair n x A\ x € nal-to-ce-set
n} by auto
have S2: (3 nl x1. c-pair n © = c-pair nl 1 A zl € nat-to-ce-set nl) = (z €
nat-to-ce-set n)
proof
assume dnl zl. c-pair n © = c-pair nl x1 A x1 € nat-to-ce-set nl
then obtain n! z1 where L1: c-pair n x = c-pair nl z1 and L2: z1 €
nat-to-ce-set nl by auto
from L1 have L3: n = nl by (rule c-pair-inj1)
from L1 have Lj: © = z1 by (rule c-pair-inj2)
from L2 L3 L4 show z € nat-to-ce-set n by auto
next
assume A: z € nat-to-ce-set n
then have c-pair n © = c-pair n © A\ © € nat-to-ce-set n by auto
thus 3 n1 z1. c-pair n x = c-pair nl z1 A z1 € nat-to-ce-set n1 by blast
qed
with S1 show ?thesis by auto
qed

theorem univ-ce-is-not-compl: — univ-ce ¢ ce-sets
proof (rule ccontr)
assume — — univ-ce ¢ ce-sets
then have A: — univ-ce € ce-sets by auto
define p where p © = c-pair x x for z
have p-is-pr: p € PrimRecl unfolding p-def by prec
define A where A = { z. p x € — univ-ce }
from A p-is-pr have { z. p © € — univ-ce } € ce-sets by (rule ce-set-lm-5)
with A-def have S1: A € ce-sets by auto
then have 3 n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where 52: A = nat-to-ce-set n ..
from A-def have (n € A) = (p n € — univ-ce) by auto
with p-def have (n € A) = (c-pair n n ¢ univ-ce) by auto
with univ-ce-def univ-ce-lm-1 have (n € A) = (n ¢ nat-to-ce-set n) by auto
with 52 have (n € A) = (n ¢ A) by auto
thus False by auto
qed

156

theorem univ-ce-is-not-comp2: — total-recursive (chf univ-ce)
proof
assume total-recursive (chf univ-ce)
then have computable univ-ce by (rule tot-rec-impl-comp)
then have — univ-ce € ce-sets by (unfold computable-def, auto)
with univ-ce-is-not-comp1 show Fulse by auto
qed

theorem univ-ce-is-not-comp3: = computable univ-ce
proof (rule ccontr)
assume — — computable univ-ce
then have computable univ-ce by auto
then have total-recursive (chf univ-ce) by (rule comp-impl-tot-rec)
with univ-ce-is-not-comp2 show Fualse by auto
qed

7.9 s-1-1 theorem, one-one and many-one reducibilities

definition
index-of-r-to-l :: nat where
index-of-r-to-l =
pair-by-index
(pair-by-index indezx-of-c-fst (comp-by-index index-of-c-fst index-of-c-snd))
(comp-by-index index-of-c-snd index-of-c-snd)

lemma indez-of-r-to-I-Im: nat-to-pr index-of-r-to-l (c-pair z (c-pair y z)) = c-pair
(c-pair z y) z

apply (unfold index-of-r-to-l-def)

apply(simp add: pair-by-indez-main)

apply(unfold c-f-pair-def)

apply(simp add: index-of-c-fst-main)

apply(simp add: comp-by-index-main)

apply(simp add: indez-of-c-fst-main)

apply(simp add: index-of-c-snd-main)
done

P .

definition
s-ce :: nat = nat = nat where
s-ce == (X e z. s1-1 (comp-by-index e indez-of-r-to-1) x)

lemma s-ce-is-pr: s-ce € PrimRec2
unfolding s-ce-def using comp-by-index-is-pr s1-1-is-pr by prec

lemma s-ce-inj: s-ce el x1 = s-ce €2 x2 — el=e2 N xl=z2
proof —

let ?nl1 = index-of-r-to-l

assume s-ce el x1 = s-ce e2 z2

then have sI-1 (comp-by-index el ?nl) x1 = si-1 (comp-by-indezx e2 ?nl) 2
by (unfold s-ce-def)

157

then have L1: comp-by-index el ?nl = comp-by-index e2 ?nl A z1=z2 by (rule
s1-1-inj)

from L1 have comp-by-index el ?nl = comp-by-index e2 ?nl ..

then have el=e2 by (rule comp-by-indezx-inj1)

moreover from LI have z!=z2 by auto

ultimately show ?thesis by auto
qed

lemma s-ce-injl: s-ce el x = s-ce e2 xt = el=e2
proof —
assume s-ce el T = s-ce e2 x
then have el=e2 A z=z by (rule s-ce-inj)
then show el=e2 by auto
qed

lemma s-ce-inj2: s-ce e t1 = s-ce e 12 —> w1=12
proof —

assume s-ce e x1 = s-ce e 22

then have e=e A z1=12 by (rule s-ce-inj)

then show x1=22 by auto
qed

theorem si-1-th1:V n zy. ((nat-to-pr n) (c-pair x y)) = (nat-to-pr (si-1 nz)) y
proof (rule alll, rule alll, rule alll)
fix n z y show nat-to-pr n (c-pair x y) = nat-to-pr (s1-1 n z) y
proof —
have (A y. (nat-to-pr n) (c-pair z y)) = nat-to-pr (s1-1 n z) by (rule s1-1-th)
then show %thesis by (simp add: fun-eq-iff)
qed
qed

lemma s-lm: (nat-to-pr (s-ce e x)) (c-pair y z) = (nat-to-pr e) (c-pair (c-pair
y) 2)
proof —

let ?n1 = index-of-r-to-I

have (nat-to-pr (s-ce e x)) (c-pair y z) = nat-to-pr (s1-1 (comp-by-index e ?nl)
z) (c-pair y z) by (unfold s-ce-def, simp)

also have ... = (nat-to-pr (comp-by-index e ?nl1)) (c-pair x (c-pair y z)) by
(simp add: s1-1-th1)
also have ... = (nat-to-pr e) ((nat-to-pr ?n1) (c-pair z (c-pair y z))) by (simp

add: comp-by-index-main)
finally show ?thesis by (simp add: index-of-r-to-l-lm)
qed

theorem s-ce-1-1-th: (c-pair © y € nat-to-ce-set ¢) = (y € nat-to-ce-set (s-ce e 1))
proof
assume A: c-pair x y € nat-to-ce-set e
then obtain z where L1: (nat-to-pr e) (c-pair (c-pair x y) z) = 0
by (auto simp add: nat-to-ce-set-Im-1)

158

have (nat-to-pr (s-ce e x)) (c-pair y z) = 0 by (simp add: s-lm L1)
with nat-to-ce-set-Im-1 show y € nat-to-ce-set (s-ce e x) by auto
next
assume A: y € nat-to-ce-set (s-ce e x)
then obtain z where L1: (nat-to-pr (s-ce e x)) (c-pair y z) = 0
by (auto simp add: nat-to-ce-set-Im-1)
then have (nat-to-pr e) (c-pair (c-pair x y) z) = 0 by (simp add: s-Im)
with nat-to-ce-set-Im-1 show c-pair x y € nat-to-ce-set e by auto
qed

definition
one-reducible-to-via :: (nat set) = (nat set) = (nat = nat) = bool where
one-reducible-to-via = (A A B f. total-recursive f N inj f ANV z. (x € A) = (fz
€ B)))

definition
one-reducible-to :: (nat set) = (nat set) = bool where
one-reducible-to = (A A B. 3 f. one-reducible-to-via A B f)

definition
many-reducible-to-via :: (nat set) = (nat set) = (nat = nat) = bool where
many-reducible-to-via = (A A B f. total-recursive f A (V z. (x € A) = (fz €

B)))

definition
many-reducible-to :: (nat set) = (nat set) = bool where
many-reducible-to = (A A B. 3 f. many-reducible-to-via A B f)

lemma one-reducible-to-via-trans: | one-reducible-to-via A B f; one-reducible-to-via
B C g | = one-reducible-to-via A C (g o f)
proof —

assume A1: one-reducible-to-via A B f

assume A2: one-reducible-to-via B C g

from A1 have f-tr: total-recursive f by (unfold one-reducible-to-via-def, auto)

from A1 have f-inj: inj f by (unfold one-reducible-to-via-def, auto)

from A7 have L1:V z. (z € A) = (fz € B) by (unfold one-reducible-to-via-def,
auto)

from A2 have g-tr: total-recursive g by (unfold one-reducible-to-via-def, auto)

from A2 have g-inj: inj g by (unfold one-reducible-to-via-def, auto)

from A2 have L2:V z. (z € B) = (g z € C) by (unfold one-reducible-to-via-def,
auto)

from g-tr f-tr have fg-tr: total-recursive (g o f) by (rule comp-tot-rec)

from g-inj f-inj have fg-inj: inj (g o f) by (rule inj-compose)

from L1 L2 have L3: (V z. (z € A) = ((g o f) x € C)) by auto

with fg-tr fg-inj show ?thesis by (unfold one-reducible-to-via-def, auto)
qed

lemma one-reducible-to-trans: [one-reducible-to A B; one-reducible-to B C' | =
one-reducible-to A C

159

proof —

assume one-reducible-to A B

then obtain f where A1: one-reducible-to-via A B f unfolding one-reducible-to-def
by auto

assume one-reducible-to B C

then obtain g where A2: one-reducible-to-via B C' g unfolding one-reducible-to-def
by auto

from A1 A2 have one-reducible-to-via A C (g o f) by (rule one-reducible-to-via-trans)

then show ?thesis unfolding one-reducible-to-def by auto
qed

lemma one-reducible-to-via-refl: one-reducible-to-via A A (\ z. x)
proof —

have is-pr: (A z.) € PrimRecl by (rule pr-id1-1)

then have is-tr: total-recursive (A x. x) by (rule pr-is-total-rec)

have is-inj: inj (A z. z) by simp

have L1:V z. (z € A) = (A z. z)) € A) by simp

with is-tr is-inj show ?thesis by (unfold one-reducible-to-via-def, auto)
qed

lemma one-reducible-to-refl: one-reducible-to A A

proof —
have one-reducible-to-via A A (A z. x) by (rule one-reducible-to-via-refl)
then show %thesis by (unfold one-reducible-to-def, auto)

qed

lemma many-reducible-to-via-trans: [many-reducible-to-via A B f; many-reducible-to-via
B C g | = many-reducible-to-via A C (g o f)
proof —
assume A1: many-reducible-to-via A B f
assume A2: many-reducible-to-via B C g
from A1 have f-tr: total-recursive f by (unfold many-reducible-to-via-def, auto)
from A1 have L1:V z. (z € A) = (fz € B) by (unfold many-reducible-to-via-def,
auto)
from A2 have g-tr: total-recursive g by (unfold many-reducible-to-via-def, auto)
from A2 have L2:V z. (z € B) = (g z € C) by (unfold many-reducible-to-via-def
auto)
from g-tr f-tr have fg-tr: total-recursive (g o f) by (rule comp-tot-rec)
from L1 L2 have L3: (V z. (z € A) = ((9 o f) z € C)) by auto
with fg-tr show ?thesis by (unfold many-reducible-to-via-def, auto)
qed

lemma many-reducible-to-trans: [many-reducible-to A B; many-reducible-to B C
] = many-reducible-to A C
proof —
assume many-reducible-to A B
then obtain f where A1: many-reducible-to-via A B f
unfolding many-reducible-to-def by auto
assume many-reducible-to B C

160

then obtain g where A2: many-reducible-to-via B C g
unfolding many-reducible-to-def by auto
from A1 A2 have many-reducible-to-via A C (g o f) by (rule many-reducible-to-via-trans)
then show ?thesis unfolding many-reducible-to-def by auto
qed

lemma one-reducibility-via-is-many: one-reducible-to-via A B f = many-reducible-to-via
ABf
proof —
assume A: one-reducible-to-via A B f
from A have f-ir: total-recursive f by (unfold one-reducible-to-via-def, auto)
from A have V z. (z € A) = (fz € B) by (unfold one-reducible-to-via-def, auto)
with f-tr show ?Zthesis by (unfold many-reducible-to-via-def, auto)
qed

lemma one-reducibility-is-many: one-reducible-to A B =—> many-reducible-to A B
proof —

assume one-reducible-to A B

then obtain f where A: one-reducible-to-via A B f

unfolding one-reducible-to-def by auto

then have many-reducible-to-via A B f by (rule one-reducibility-via-is-many)

then show ?thesis unfolding many-reducible-to-def by auto
qed

lemma many-reducible-to-via-refl: many-reducible-to-via A A (X z. x)
proof —
have one-reducible-to-via A A (A z. x) by (rule one-reducible-to-via-refl)
then show %thesis by (rule one-reducibility-via-is-many)
qed

lemma many-reducible-to-refl: many-reducible-to A A
proof —
have one-reducible-to A A by (rule one-reducible-to-refl)
then show %thesis by (rule one-reducibility-is-many)
qed

theorem m-red-to-comp: [many-reducible-to A B; computable B | = computable
A
proof —

assume many-reducible-to A B

then obtain f where A1: many-reducible-to-via A B f

unfolding many-reducible-to-def by auto

from A1 have f-tr: total-recursive f by (unfold many-reducible-to-via-def, auto)

from A7 have L1:V z. (z € A) = (fx € B) by (unfold many-reducible-to-via-def,
auto)

assume computable B

then have L2: total-recursive (chf B) by (rule comp-impl-tot-rec)

have L3: chf A = (¢chf B) o f

proof fix z

161

have chf A z = (chf B) (f x)
proof cases
assume A: z € A
then have L3-1: chf A x = 0 by (simp add: chf-Im-2)
from A L1 have fz € B by auto
then have L3-2: (¢hf B) (f z) = 0 by (simp add: chf-lm-2)
from L3-1 L3-2 show chf A x = (chf B) (f) by auto
next
assume A: z ¢ A
then have L3-1: chf A x = 1 by (simp add: chf-Im-3)
from A L1 have fz ¢ B by auto
then have L3-2: (c¢hf B) (f) = 1 by (simp add: chf-lm-3)
from L3-1 L3-2 show chf A x = (chf B) (f) by auto
qed
then show chf A © = (chf B o f) z by auto
qged
from L2 f-tr have total-recursive (chf B o f) by (rule comp-tot-rec)
with L3 have total-recursive (chf A) by auto
then show %thesis by (rule tot-rec-impl-comp)
qed

lemma many-reducible-lm-1: many-reducible-to univ-ce A = — computable A
proof (rule ccontr)

assume A1: many-reducible-to univ-ce A

assume — — computable A

then have A2: computable A by auto

from A1 A2 have computable univ-ce by (rule m-red-to-comp)

with univ-ce-is-not-comp3 show False by auto
qed

lemma one-reducible-lm-1: one-reducible-to univ-ce A —> — computable A
proof —
assume one-reducible-to univ-ce A
then have many-reducible-to univ-ce A by (rule one-reducibility-is-many)
then show %thesis by (rule many-reducible-lm-1)
qed

lemma one-reducible-Im-2: one-reducible-to-via (nat-to-ce-set n) univ-ce (A z. c-pair
nx)
proof —
define f where fx = c-pair n z for x
have f-is-pr: f € PrimRecl unfolding f-def by prec
then have f-tr: total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI)
fix z y assume A: fz = fy
then have c-pair n © = c-pair n y by (unfold f-def)
then show z = y by (rule c-pair-inj2)
qed

162

have V z. (z € (nat-to-ce-set n)) = (f € univ-ce)

proof fix = show (z € nat-to-ce-set n) = (f x € univ-ce) by (unfold f-def, simp
add: univ-ce-Im-1)

qed

with f-tr f-inj show ?thesis by (unfold f-def, unfold one-reducible-to-via-def,
auto)
qed

lemma one-reducible-lm-3: one-reducible-to (nat-to-ce-set n) univ-ce
proof —
have one-reducible-to-via (nat-to-ce-set n) univ-ce (A z. c-pair n z) by (rule
one-reducible-lm-2)
then show %thesis by (unfold one-reducible-to-def, auto)
qed

lemma one-reducible-lm-4: A € ce-sets = one-reducible-to A univ-ce
proof —
assume A € ce-sets
then have 3 n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where A = nat-to-ce-set n by auto
with one-reducible-Im-8 show ?thesis by auto
qged

7.10 One-complete sets

definition
one-complete :: nat set = bool where
one-complete = (A A. A € ce-sets A (VY B. B € ce-sets — one-reducible-to B

4))

theorem univ-is-complete: one-complete univ-ce
proof (unfold one-complete-def)
show univ-ce € ce-sets A (Y B. B € ce-sets — one-reducible-to B univ-ce)
proof
show univ-ce € ce-sets by (rule univ-is-ce)
next
show V B. B € ce-sets — one-reducible-to B univ-ce
proof (rule alll, rule impl)
fix B assume B € ce-sets then show one-reducible-to B univ-ce by (rule
one-reducible-lm-4)
qed
qed
qed

7.11 Index sets, Rice’s theorem

definition

index-set :: nat set = bool where

index-set = (A A. ¥ nm. n € A A (nat-to-ce-set n = nat-to-ce-set m) — m €
A)

163

lemma indez-set-Im-1: [indez-set A; n€ A; nat-to-ce-set n = nat-to-ce-set m |
= mcA
proof —
assume AI: indez-set A
assume A2: n € A
assume A3: nat-to-ce-set n = nat-to-ce-set m
from A2 A3 have L1: n € A A (nat-to-ce-set n = nat-to-ce-set m) by auto
from A1 have L2:V nm. n € A A (nat-to-ce-set n = nat-to-ce-set m) — m
€ A by (unfold index-set-def)
from L1 L2 show ?thesis by auto
qed

lemma indez-set-lm-2: index-set A = index-set (—A)
proof —
assume A: indez-set A
show indez-set (—A)
proof (unfold index-set-def)
show Vn m. n € — A A nat-to-ce-set n = nat-to-ce-set m — m € — A
proof (rule alll, rule alll, rule impl)
fix n m assume Al: n € — A A nat-to-ce-set n = nat-to-ce-set m
from A1 have A2: n € —A by auto
from A1 have A3: nat-to-ce-set m = nat-to-ce-set n by auto
show m € — A
proof
assume m € A
from A this A3 have n € A by (rule indezx-set-Im-1)
with A2 show Fulse by auto
qed
qed
qed
qed

lemma Rice-lm-1: [index-set A; A # {}; A # UNIV; 3 n € A. nat-to-ce-set n =
{}] = one-reducible-to univ-ce (— A)
proof —
assume AI: indez-set A
assume A2: A # {}
assume A3: A # UNIV
assume 3 n € A. nat-to-ce-set n = {}
then obtain e-0 where e-0-in-A: e-0 € A and e-0-empty: nat-to-ce-set e-0 =
{} by auto
from e-0-in-A A3 obtain e-1 where e-1-not-in-A: e-1 € (— A) by auto
with e-0-in-A have e-0-neg-e-1: e-0 # e-1 by auto
have nat-to-ce-set e-0 # nat-to-ce-set e-1
proof
assume nat-to-ce-set e-0 = nat-to-ce-set e-1
with A1 e-0-in-A have e-1 € A by (rule indezx-set-Im-1)
with e-1-not-in-A show Fualse by auto

164

qed
with e-0-empty have el-not-empty: nat-to-ce-set e-1 # {} by auto
define we-1 where we-1 = nat-to-ce-set e-1
from el-not-empty have we-1-not-empty: we-1 # {} by (unfold we-1-def)
define r where r = univ-ce x we-1
have loc-lm-1: N\ z. © € univ-ce =V y. (y € we-1) = ((z,y) € r) by (unfold
r-def, auto)
have loc-lm-2: \ z. x ¢ univ-ce =V y. (y € {}) = ((z,y) € 7) by (unfold
r-def, auto)
have r-ce: r € ce-rels
proof (unfold r-def, rule ce-rel-Im-29)
show univ-ce € ce-sets by (rule univ-is-ce)
show we-1 € ce-sets by (unfold we-1-def, rule nat-to-ce-set-into-ce)
qed
define we-n where we-n = ce-rel-to-set r
from r-ce have we-n-ce: we-n € ce-sets by (unfold we-n-def, rule ce-rel-lm-6)
then have 3 n. we-n = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where we-n-df1: we-n = nat-to-ce-set n by auto
define f where fx = s-ce n z for z
from s-ce-is-pr have f-is-pr: f € PrimRecl unfolding f-def by prec
then have f-tr: total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI)
fix x y
assume fz = fy
then have s-ce n © = s-ce n y by (unfold f-def)
then show z = y by (rule s-ce-inj2)
qed
have loc-lm-3: ¥V z y. (c-pair z y € we-n) = (y € nat-to-ce-set (f x))
proof (rule alll, rule alll)
fix y show (c-pair z y € we-n) = (y € nat-to-ce-set (f z)) by (unfold f-def,
unfold we-n-df1, simp add: s-ce-1-1-th)
qed
from A1 have loc-lm-4: index-set (— A) by (rule indezx-set-Im-2)
have loc-lm-5:V z. (z € univ-ce) = (fz € —A)
proof fix z show (z € univ-ce) = (fz € —A)
proof
assume A: z € univ-ce
then have S1:V y. (y € we-1) = ((z,y) € 7) by (rule loc-lm-1)
from ce-rel-lm-12 have V y. (c-pair v y € ce-rel-to-set r) = ((z,y) € r) by
auto
then have V y. ((z,y) €) = (¢c-pair z y € we-n) by (unfold we-n-def, auto)
with S7 have V y. (y € we-1) = (¢c-pair z y € we-n) by auto
with loc-lm-3 have V y. (y € we-1) = (y € nat-to-ce-set (f x)) by auto
then have S2: we-1 = nat-to-ce-set (f x) by auto
then have nat-to-ce-set e-1 = nat-to-ce-set (f x) by (unfold we-1-def)
with loc-lm-4 e-1-not-in-A show fz € —A by (rule index-set-lm-1)
next
show fzx € — A = z € univ-ce

165

proof (rule ccontr)
assume fr-in-A: fz € — A
assume z-not-in-univ: x ¢ univ-ce
then have S1:V y. (y € {}) = ((z,y) € r) by (rule loc-Im-2)
from ce-rel-Im-12 have ¥V y. (c-pair x y € ce-rel-to-set r) = ((z,y) € r) by
auto
then have V y. ((z,y) € 7) = (c-pair z y € we-n) by (unfold we-n-def,

auto)
with SI have V y. (y € {}) = (c-pair x y € we-n) by auto
with loc-lm-3 have V y. (y € {}) = (y € nat-to-ce-set (f z)) by auto
then have S2: {} = nat-to-ce-set (f) by auto
then have nat-to-ce-set e-0 = nat-to-ce-set (f) by (unfold e-0-empty)
with A1 e-0-in-A have fz € A by (rule index-set-Im-1)
with fz-in-A show False by auto
qed
qed
qed
with f-tr f-inj have one-reducible-to-via univ-ce (—A) f by (unfold one-reducible-to-via-def,
auto)
then show ?thesis by (unfold one-reducible-to-def, auto)
qed

lemma Rice-Im-2: [index-set A; A # {}; A # UNIV; n € A; nat-to-ce-set n =
{}] = one-reducible-to univ-ce (— A)
proof —
assume Al: indezr-set A
assume A2: A # {}
assume A3: A # UNIV
assume A/:n € A
assume A5: nat-to-ce-set n = {}
from A/ A5 have S1: 3 n € A. nat-to-ce-set n = {} by auto
from A1 A2 A3 S1 show ?thesis by (rule Rice-lm-1)
qed

theorem Rice-1: [indez-set A; A # {}; A # UNIV | = one-reducible-to univ-ce
AV one-reducible-to univ-ce (— A)
proof —
assume AI: indez-set A
assume A2: A # {}
assume A3: A # UNIV
from ce-empty have 3 n. {} = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where n-empty: nat-to-ce-set n = {} by auto
show ?thesis
proof cases
assume A: n € A
from A1 A2 A3 A n-empty have one-reducible-to univ-ce (— A) by (rule
Rice-lm-2)
then show ?thesis by auto
next

166

assume n ¢ A then have A: n € — A by auto
from A1 have SI: index-set (— A) by (rule indezx-set-Im-2)
from A3 have 52: — A # {} by auto
from A2 have S3: — A # UNIV by auto
from S1 52 S3 A n-empty have one-reducible-to univ-ce (— (— A)) by (rule
Rice-lm-2)
then have one-reducible-to univ-ce A by simp
then show ?thesis by auto
qed
qed

theorem Rice-2: [index-set A; A # {}; A # UNIV | = — computable A
proof —
assume Al: indezr-set A
assume A2: A # {}
assume A8: A # UNIV
from A1 A2 A3 have one-reducible-to univ-ce A V one-reducible-to univ-ce (—
A) by (rule Rice-1)
then have S1: - one-reducible-to univ-ce A — one-reducible-to univ-ce (— A)
by auto
show ?thesis
proof cases
assume one-reducible-to univ-ce A
then show — computable A by (rule one-reducible-Im-1)
next
assume — one-reducible-to univ-ce A
with S7 have one-reducible-to univ-ce (— A) by auto
then have — computable (— A) by (rule one-reducible-lm-1)
with computable-complement-8 show — computable A by auto
qed
qed

theorem Rice-3: [C' C ce-sets; computable { n. nat-to-ce-set n € C} | = C =
{} v C = ce-sets
proof (rule ccontr)
assume AI: C C ce-sets
assume A2: computable { n. nat-to-ce-set n € C}
assume A3: - (C = {} V C = ce-sets)
from A3 have A4: C # {} by auto
from A3 have A5: C # ce-sets by auto
define A where A = { n. nat-to-ce-set n € C}
have S1: index-set A
proof (unfold index-set-def)
show Vn m. n € A A nat-to-ce-set n = nat-to-ce-set m —» m € A
proof (rule alll, rule alll, rule impl)
fix n m assume AI-1: n € A A nat-to-ce-set n = nat-to-ce-set m
from A1-1 have n € A by auto
then have S1-1: nat-to-ce-set n € C by (unfold A-def, auto)
from A1-1 have nat-to-ce-set n = nat-to-ce-set m by auto

167

with S1-1 have nat-to-ce-set m € C by auto
then show m € A by (unfold A-def, auto)
qed
qed
have S2: A # {}
proof —
from A4 obtain B where S2-1: B € C by auto
with A7 have B € ce-sets by auto
then have 3 n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with S2-1 have nat-to-ce-set n € C by auto
then show %thesis by (unfold A-def, auto)
qed
have S8: A # UNIV
proof —
from A1 A5 obtain B where S2-1: B ¢ C and S2-2: B € ce-sets by auto
from S52-2 have 3 n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with 52-1 have nat-to-ce-set n ¢ C by auto
then show %thesis by (unfold A-def, auto)
qged
from S1 52 S3 have — computable A by (rule Rice-2)
with A2 show Fulse unfolding A-def by auto
qed

end

References

[1] Rogers. Theory of recursive functions and effective computatibility. 1967.

[2] Soare. Recursively enumerable sets and degrees. 1987.

168

	Cantor pairing function
	Pairing function
	Inverse mapping

	Primitive recursive functions
	Basic definitions
	Bounded least operator
	Examples

	Primitive recursive coding of lists of natural numbers
	Primitive recursive functions of one variable
	Alternative definition of primitive recursive functions of one variable
	The scheme datatype
	Indexes of primitive recursive functions of one variables
	s-1-1 theorem for primitive recursive functions of one variable

	Finite sets
	The function which is universal for primitive recursive functions of one variable
	Computably enumerable sets of natural numbers
	Basic definitions
	Basic properties of computably enumerable sets
	Enumeration of computably enumerable sets
	Characteristic functions
	Computably enumerable relations
	Total computable functions
	Computable sets, Post's theorem
	Universal computably enumerable set
	s-1-1 theorem, one-one and many-one reducibilities
	One-complete sets
	Index sets, Rice's theorem

