
Recursion Theory I

Michael Nedzelsky

September 13, 2023

Abstract

This document presents the formalization of introductory material
from recursion theory — definitions and basic properties of primitive
recursive functions, Cantor pairing function and computably enumer-
able sets (including a proof of existence of a one-complete computably
enumerable set and a proof of the Rice’s theorem).

Contents
1 Cantor pairing function 2

1.1 Pairing function . 2
1.2 Inverse mapping . 7

2 Primitive recursive functions 12
2.1 Basic definitions . 12
2.2 Bounded least operator . 22
2.3 Examples . 29

3 Primitive recursive coding of lists of natural numbers 35

4 Primitive recursive functions of one variable 55
4.1 Alternative definition of primitive recursive functions of one

variable . 55
4.2 The scheme datatype . 60
4.3 Indexes of primitive recursive functions of one variables . . . 66
4.4 s-1-1 theorem for primitive recursive functions of one variable 69

5 Finite sets 75

6 The function which is universal for primitive recursive func-
tions of one variable 98

1

7 Computably enumerable sets of natural numbers 128
7.1 Basic definitions . 128
7.2 Basic properties of computably enumerable sets 128
7.3 Enumeration of computably enumerable sets 133
7.4 Characteristic functions . 134
7.5 Computably enumerable relations 135
7.6 Total computable functions 148
7.7 Computable sets, Post’s theorem 151
7.8 Universal computably enumerable set 154
7.9 s-1-1 theorem, one-one and many-one reducibilities 157
7.10 One-complete sets . 163
7.11 Index sets, Rice’s theorem . 163

1 Cantor pairing function
theory CPair
imports Main
begin

We introduce a particular coding c-pair from ordered pairs of natural num-
bers to natural numbers. See [1] and the Isabelle documentation for more
information.

1.1 Pairing function
definition

sf :: nat ⇒ nat where
sf-def : sf x = x ∗ (x+1) div 2

definition
c-pair :: nat ⇒ nat ⇒ nat where
c-pair x y = sf (x+y) + x

lemma sf-at-0 : sf 0 = 0 by (simp add: sf-def)

lemma sf-at-1 : sf 1 = 1 by (simp add: sf-def)

lemma sf-at-Suc: sf (x+1) = sf x + x + 1
proof −

have S1 : sf (x+1) = ((x+1)∗(x+2)) div 2 by (simp add: sf-def)
have S2 : (x+1)∗(x+2) = x∗(x+1) + 2∗(x+1) by (auto)
have S2-1 :

∧
x y. x=y =⇒ x div 2 = y div 2 by auto

from S2 have S3 : (x+1)∗(x+2) div 2 = (x∗(x+1) + 2∗(x+1)) div 2 by (rule
S2-1)

have S4 : (0 ::nat) < 2 by (auto)
from S4 have S5 : (x∗(x+1) + 2∗(x+1)) div 2 = (x+1) + x∗(x+1) div 2 by

simp

2

from S1 S3 S5 show ?thesis by (simp add: sf-def)
qed

lemma arg-le-sf : x ≤ sf x
proof −

have x + x ≤ x∗(x + 1) by simp
hence (x + x) div 2 ≤ x∗(x+1) div 2 by (rule div-le-mono)
hence x ≤ x∗(x+1) div 2 by simp
thus ?thesis by (simp add: sf-def)

qed

lemma sf-mono: x ≤ y =⇒ sf x ≤ sf y
proof −

assume A1 : x ≤ y
then have x+1 ≤ y+1 by (auto)
with A1 have x∗(x+1) ≤ y∗(y+1) by (rule mult-le-mono)
then have x∗(x+1) div 2 ≤ y∗(y+1) div 2 by (rule div-le-mono)
thus ?thesis by (simp add: sf-def)

qed

lemma sf-strict-mono: x < y =⇒ sf x < sf y
proof −

assume A1 : x < y
from A1 have S1 : x+1 ≤ y by simp
from S1 sf-mono have S2 : sf (x+1) ≤ sf y by (auto)
from sf-at-Suc have S3 : sf x < sf (x+1) by (auto)
from S2 S3 show ?thesis by (auto)

qed

lemma sf-posI : x > 0 =⇒ sf (x) > 0
proof −

assume A1 : x > 0
then have sf (0) < sf (x) by (rule sf-strict-mono)
then show ?thesis by simp

qed

lemma arg-less-sf : x > 1 =⇒ x < sf (x)
proof −

assume A1 : x > 1
let ?y = x−(1 ::nat)
from A1 have S1 : x = ?y+1 by simp
from A1 have ?y > 0 by simp
then have S2 : sf (?y) > 0 by (rule sf-posI)
have sf (?y+1) = sf (?y) + ?y + 1 by (rule sf-at-Suc)
with S1 have sf (x) = sf (?y) + x by simp
with S2 show ?thesis by simp

qed

lemma sf-eq-arg: sf x = x =⇒ x ≤ 1

3

proof −
assume sf (x) = x
then have ¬ (x < sf (x)) by simp
then have (¬ (x > 1)) by (auto simp add: arg-less-sf)
then show ?thesis by simp

qed

lemma sf-le-sfD: sf x ≤ sf y =⇒ x ≤ y
proof −

assume A1 : sf x ≤ sf y
have S1 : y < x =⇒ sf y < sf x by (rule sf-strict-mono)
have S2 : y < x ∨ x ≤ y by (auto)
from A1 S1 S2 show ?thesis by (auto)

qed

lemma sf-less-sfD: sf x < sf y =⇒ x < y
proof −

assume A1 : sf x < sf y
have S1 : y ≤ x =⇒ sf y ≤ sf x by (rule sf-mono)
have S2 : y ≤ x ∨ x < y by (auto)
from A1 S1 S2 show ?thesis by (auto)

qed

lemma sf-inj: sf x = sf y =⇒ x = y
proof −

assume A1 : sf x = sf y
have S1 : sf x ≤ sf y =⇒ x ≤ y by (rule sf-le-sfD)
have S2 : sf y ≤ sf x =⇒ y ≤ x by (rule sf-le-sfD)
from A1 have S3 : sf x ≤ sf y ∧ sf y ≤ sf x by (auto)
from S3 S1 S2 have S4 : x ≤ y ∧ y ≤ x by (auto)
from S4 show ?thesis by (auto)

qed

Auxiliary lemmas
lemma sf-aux1 : x + y < z =⇒ sf (x+y) + x < sf (z)
proof −

assume A1 : x+y < z
from A1 have S1 : x+y+1 ≤ z by (auto)
from S1 have S2 : sf (x+y+1) ≤ sf (z) by (rule sf-mono)
have S3 : sf (x+y+1) = sf (x+y) + (x+y)+1 by (rule sf-at-Suc)
from S3 S2 have S4 : sf (x+y) + (x+y) + 1 ≤ sf (z) by (auto)
from S4 show ?thesis by (auto)

qed

lemma sf-aux2 : sf (z) ≤ sf (x+y) + x =⇒ z ≤ x+y
proof −

assume A1 : sf (z) ≤ sf (x+y) + x
from A1 have S1 : ¬ sf (x+y) +x < sf (z) by (auto)
from S1 sf-aux1 have S2 : ¬ x+y < z by (auto)

4

from S2 show ?thesis by (auto)
qed

lemma sf-aux3 : sf (z) + m < sf (z+1) =⇒ m ≤ z
proof −

assume A1 : sf (z) + m < sf (z+1)
have S1 : sf (z+1) = sf (z) + z + 1 by (rule sf-at-Suc)
from A1 S1 have S2 : sf (z) + m < sf (z) + z + 1 by (auto)
from S2 have S3 : m < z + 1 by (auto)
from S3 show ?thesis by (auto)

qed

lemma sf-aux4 : (s::nat) < t =⇒ (sf s) + s < sf t
proof −

assume A1 : (s::nat) < t
have s∗(s + 1) + 2∗(s+1) ≤ t∗(t+1)
proof −

from A1 have S1 : (s::nat) + 1 ≤ t by (auto)
from A1 have (s::nat) + 2 ≤ t+1 by (auto)
with S1 have ((s::nat)+1)∗(s+2) ≤ t∗(t+1) by (rule mult-le-mono)
thus ?thesis by (auto)

qed
then have S1 : (s∗(s+1) + 2∗(s+1)) div 2 ≤ t∗(t+1) div 2 by (rule div-le-mono)
have (0 ::nat) < 2 by (auto)
then have (s∗(s+1) + 2∗(s+1)) div 2 = (s+1) + (s∗(s+1)) div 2 by simp
with S1 have (s∗(s+1)) div 2 + (s+1) ≤ t∗(t+1) div 2 by (auto)
then have (s∗(s+1)) div 2 + s < t∗(t+1) div 2 by (auto)
thus ?thesis by (simp add: sf-def)

qed

Basic properties of c_pair function
lemma sum-le-c-pair : x + y ≤ c-pair x y
proof −

have x+y ≤ sf (x+y) by (rule arg-le-sf)
thus ?thesis by (simp add: c-pair-def)

qed

lemma arg1-le-c-pair : x ≤ c-pair x y
proof −

have (x::nat) ≤ x + y by (simp)
moreover have x + y ≤ c-pair x y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)

qed

lemma arg2-le-c-pair : y ≤ c-pair x y
proof −

have (y::nat) ≤ x + y by (simp)
moreover have x + y ≤ c-pair x y by (rule sum-le-c-pair)
ultimately show ?thesis by (simp)

5

qed

lemma c-pair-sum-mono: (x1 ::nat) + y1 < x2 + y2 =⇒ c-pair x1 y1 < c-pair x2
y2
proof −

assume (x1 ::nat) + y1 < x2 + y2
hence sf (x1+y1) + (x1+y1) < sf (x2+y2) by (rule sf-aux4)
hence sf (x1+y1) + x1 < sf (x2+y2) + x2 by (auto)
thus ?thesis by (simp add: c-pair-def)

qed

lemma c-pair-sum-inj: c-pair x1 y1 = c-pair x2 y2 =⇒ x1 + y1 = x2 + y2
proof −

assume A1 : c-pair x1 y1 = c-pair x2 y2
have S1 : (x1 ::nat) + y1 < x2 + y2 =⇒ c-pair x1 y1 6= c-pair x2 y2 by (rule

less-not-refl3 , rule c-pair-sum-mono, auto)
have S2 : (x2 ::nat) + y2 < x1 + y1 =⇒ c-pair x1 y1 6= c-pair x2 y2 by (rule

less-not-refl2 , rule c-pair-sum-mono, auto)
from S1 S2 have (x1 ::nat) + y1 6= x2 + y2 =⇒ c-pair x1 y1 6= c-pair x2 y2

by (arith)
with A1 show ?thesis by (auto)

qed

lemma c-pair-inj: c-pair x1 y1 = c-pair x2 y2 =⇒ x1 = x2 ∧ y1 = y2
proof −

assume A1 : c-pair x1 y1 = c-pair x2 y2
from A1 have S1 : x1 + y1 = x2 + y2 by (rule c-pair-sum-inj)
from A1 have S2 : sf (x1+y1) + x1 = sf (x2+y2) + x2 by (unfold c-pair-def)
from S1 S2 have S3 : x1 = x2 by (simp)
from S1 S3 have S4 : y1 = y2 by (simp)
from S3 S4 show ?thesis by (auto)

qed

lemma c-pair-inj1 : c-pair x1 y1 = c-pair x2 y2 =⇒ x1 = x2 by (frule c-pair-inj,
drule conjunct1)

lemma c-pair-inj2 : c-pair x1 y1 = c-pair x2 y2 =⇒ y1 = y2 by (frule c-pair-inj,
drule conjunct2)

lemma c-pair-strict-mono1 : x1 < x2 =⇒ c-pair x1 y < c-pair x2 y
proof −

assume x1 < x2
then have x1 + y < x2 + y by simp
then show ?thesis by (rule c-pair-sum-mono)

qed

lemma c-pair-mono1 : x1 ≤ x2 =⇒ c-pair x1 y ≤ c-pair x2 y
proof −

assume A1 : x1 ≤ x2

6

show ?thesis
proof cases

assume x1 < x2
then have c-pair x1 y < c-pair x2 y by (rule c-pair-strict-mono1)
then show ?thesis by simp

next
assume ¬ x1 < x2
with A1 have x1 = x2 by simp
then show ?thesis by simp

qed
qed

lemma c-pair-strict-mono2 : y1 < y2 =⇒ c-pair x y1 < c-pair x y2
proof −

assume A1 : y1 < y2
from A1 have S1 : x + y1 < x + y2 by simp
then show ?thesis by (rule c-pair-sum-mono)

qed

lemma c-pair-mono2 : y1 ≤ y2 =⇒ c-pair x y1 ≤ c-pair x y2
proof −

assume A1 : y1 ≤ y2
show ?thesis
proof cases

assume y1 < y2
then have c-pair x y1 < c-pair x y2 by (rule c-pair-strict-mono2)
then show ?thesis by simp

next
assume ¬ y1 < y2
with A1 have y1 = y2 by simp
then show ?thesis by simp

qed
qed

1.2 Inverse mapping

c-fst and c-snd are the functions which yield the inverse mapping to c-pair.
definition

c-sum :: nat ⇒ nat where
c-sum u = (LEAST z. u < sf (z+1))

definition
c-fst :: nat ⇒ nat where
c-fst u = u − sf (c-sum u)

definition
c-snd :: nat ⇒ nat where
c-snd u = c-sum u − c-fst u

7

lemma arg-less-sf-at-Suc-of-c-sum: u < sf ((c-sum u) + 1)
proof −

have u+1 ≤ sf (u+1) by (rule arg-le-sf)
hence u < sf (u+1) by simp
thus ?thesis by (unfold c-sum-def , rule LeastI)

qed

lemma arg-less-sf-imp-c-sum-less-arg: u < sf (x) =⇒ c-sum u < x
proof −

assume A1 : u < sf (x)
then show ?thesis
proof (cases x)

assume x=0
with A1 show ?thesis by (simp add: sf-def)

next
fix y
assume A2 : x = Suc y
show ?thesis
proof −

from A1 A2 have u < sf (y+1) by simp
hence (Least (%z. u < sf (z+1))) ≤ y by (rule Least-le)
hence c-sum u ≤ y by (fold c-sum-def)
with A2 show ?thesis by simp

qed
qed

qed

lemma sf-c-sum-le-arg: u ≥ sf (c-sum u)
proof −

let ?z = c-sum u
from arg-less-sf-at-Suc-of-c-sum have S1 : u < sf (?z+1) by (auto)
have S2 : ¬ c-sum u < c-sum u by (auto)
from arg-less-sf-imp-c-sum-less-arg S2 have S3 : ¬ u < sf (c-sum u) by (auto)
from S3 show ?thesis by (auto)

qed

lemma c-sum-le-arg: c-sum u ≤ u
proof −

have c-sum u ≤ sf (c-sum u) by (rule arg-le-sf)
moreover have sf (c-sum u) ≤ u by (rule sf-c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-of-c-pair [simp]: c-sum (c-pair x y) = x + y
proof −

let ?u = c-pair x y
let ?z = c-sum ?u
have S1 : ?u < sf (?z+1) by (rule arg-less-sf-at-Suc-of-c-sum)
have S2 : sf (?z) ≤ ?u by (rule sf-c-sum-le-arg)

8

from S1 have S3 : sf (x+y)+x < sf (?z+1) by (simp add: c-pair-def)
from S2 have S4 : sf (?z) ≤ sf (x+y) + x by (simp add: c-pair-def)
from S3 have S5 : sf (x+y) < sf (?z+1) by (auto)
from S5 have S6 : x+y < ?z+1 by (rule sf-less-sfD)
from S6 have S7 : x+y ≤ ?z by (auto)
from S4 have S8 : ?z ≤ x+y by (rule sf-aux2)
from S7 S8 have S9 : ?z = x+y by (auto)
from S9 show ?thesis by (simp)

qed

lemma c-fst-of-c-pair [simp]: c-fst (c-pair x y) = x
proof −

let ?u = c-pair x y
have c-sum ?u = x + y by simp
hence c-fst ?u = ?u − sf (x+y) by (simp add: c-fst-def)
moreover have ?u = sf (x+y) + x by (simp add: c-pair-def)
ultimately show ?thesis by (simp)

qed

lemma c-snd-of-c-pair [simp]: c-snd (c-pair x y) = y
proof −

let ?u = c-pair x y
have c-sum ?u = x + y by simp
moreover have c-fst ?u = x by simp
ultimately show ?thesis by (simp add: c-snd-def)

qed

lemma c-pair-at-0 : c-pair 0 0 = 0 by (simp add: sf-def c-pair-def)

lemma c-fst-at-0 : c-fst 0 = 0
proof −

have c-pair 0 0 = 0 by (rule c-pair-at-0)
hence c-fst 0 = c-fst (c-pair 0 0) by simp
thus ?thesis by simp

qed

lemma c-snd-at-0 : c-snd 0 = 0
proof −

have c-pair 0 0 = 0 by (rule c-pair-at-0)
hence c-snd 0 = c-snd (c-pair 0 0) by simp
thus ?thesis by simp

qed

lemma sf-c-sum-plus-c-fst: sf (c-sum u) + c-fst u = u
proof −

have S1 : sf (c-sum u) ≤ u by (rule sf-c-sum-le-arg)
have S2 : c-fst u = u − sf (c-sum u) by (simp add: c-fst-def)
from S1 S2 show ?thesis by (auto)

qed

9

lemma c-fst-le-c-sum: c-fst u ≤ c-sum u
proof −

have S1 : sf (c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
have S2 : u < sf ((c-sum u) + 1) by (rule arg-less-sf-at-Suc-of-c-sum)
from S1 S2 sf-aux3 show ?thesis by (auto)

qed

lemma c-snd-le-c-sum: c-snd u ≤ c-sum u by (simp add: c-snd-def)

lemma c-fst-le-arg: c-fst u ≤ u
proof −

have c-fst u ≤ c-sum u by (rule c-fst-le-c-sum)
moreover have c-sum u ≤ u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-snd-le-arg: c-snd u ≤ u
proof −

have c-snd u ≤ c-sum u by (rule c-snd-le-c-sum)
moreover have c-sum u ≤ u by (rule c-sum-le-arg)
ultimately show ?thesis by simp

qed

lemma c-sum-is-sum: c-sum u = c-fst u + c-snd u by (simp add: c-snd-def
c-fst-le-c-sum)

lemma proj-eq-imp-arg-eq: [[c-fst u = c-fst v; c-snd u = c-snd v]] =⇒ u = v
proof −

assume A1 : c-fst u = c-fst v
assume A2 : c-snd u = c-snd v
from A1 A2 c-sum-is-sum have S1 : c-sum u = c-sum v by (auto)
have S2 : sf (c-sum u) + c-fst u = u by (rule sf-c-sum-plus-c-fst)
from A1 S1 S2 have S3 : sf (c-sum v) + c-fst v = u by (auto)
from S3 sf-c-sum-plus-c-fst show ?thesis by (auto)

qed

lemma c-pair-of-c-fst-c-snd[simp]: c-pair (c-fst u) (c-snd u) = u
proof −

let ?x = c-fst u
let ?y = c-snd u
have S1 : c-pair ?x ?y = sf (?x + ?y) + ?x by (simp add: c-pair-def)
have S2 : c-sum u = ?x + ?y by (rule c-sum-is-sum)
from S1 S2 have c-pair ?x ?y = sf (c-sum u) + c-fst u by (auto)
thus ?thesis by (simp add: sf-c-sum-plus-c-fst)

qed

lemma c-sum-eq-arg: c-sum x = x =⇒ x ≤ 1
proof −

10

assume A1 : c-sum x = x
have S1 : sf (c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2 : sf x + c-fst x = x by simp
have S3 : x ≤ sf x by (rule arg-le-sf)
from S2 S3 have sf (x)=x by simp
thus ?thesis by (rule sf-eq-arg)

qed

lemma c-sum-eq-arg-2 : c-sum x = x =⇒ c-fst x = 0
proof −

assume A1 : c-sum x = x
have S1 : sf (c-sum x) + c-fst x = x by (rule sf-c-sum-plus-c-fst)
from A1 S1 have S2 : sf x + c-fst x = x by simp
have S3 : x ≤ sf x by (rule arg-le-sf)
from S2 S3 show ?thesis by simp

qed

lemma c-fst-eq-arg: c-fst x = x =⇒ x = 0
proof −

assume A1 : c-fst x = x
have S1 : c-fst x ≤ c-sum x by (rule c-fst-le-c-sum)
have S2 : c-sum x ≤ x by (rule c-sum-le-arg)
from A1 S1 S2 have c-sum x = x by simp
then have c-fst x = 0 by (rule c-sum-eq-arg-2)
with A1 show ?thesis by simp

qed

lemma c-fst-less-arg: x > 0 =⇒ c-fst x < x
proof −

assume A1 : x > 0
show ?thesis
proof cases

assume c-fst x < x
then show ?thesis by simp

next
assume ¬ c-fst x < x
then have S1 : c-fst x ≥ x by simp
have c-fst x ≤ x by (rule c-fst-le-arg)
with S1 have c-fst x = x by simp
then have x = 0 by (rule c-fst-eq-arg)
with A1 show ?thesis by simp

qed
qed

lemma c-snd-eq-arg: c-snd x = x =⇒ x ≤ 1
proof −

assume A1 : c-snd x = x
have S1 : c-snd x ≤ c-sum x by (rule c-snd-le-c-sum)
have S2 : c-sum x ≤ x by (rule c-sum-le-arg)

11

from A1 S1 S2 have c-sum x = x by simp
then show ?thesis by (rule c-sum-eq-arg)

qed

lemma c-snd-less-arg: x > 1 =⇒ c-snd x < x
proof −

assume A1 : x > 1
show ?thesis
proof cases

assume c-snd x < x
then show ?thesis .

next
assume ¬ c-snd x < x
then have S1 : c-snd x ≥ x by auto
have c-snd x ≤ x by (rule c-snd-le-arg)
with S1 have c-snd x = x by simp
then have x ≤ 1 by (rule c-snd-eq-arg)
with A1 show ?thesis by simp

qed
qed

end

2 Primitive recursive functions
theory PRecFun imports CPair
begin

This theory contains definition of the primitive recursive functions.

2.1 Basic definitions
primrec

PrimRecOp :: (nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat)
where

PrimRecOp g h 0 x = g x
| PrimRecOp g h (Suc y) x = h y (PrimRecOp g h y x) x

primrec
PrimRecOp-last :: (nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒

nat)
where

PrimRecOp-last g h x 0 = g x
| PrimRecOp-last g h x (Suc y)= h x (PrimRecOp-last g h x y) y

primrec
PrimRecOp1 :: nat ⇒ (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat)

where
PrimRecOp1 a h 0 = a

12

| PrimRecOp1 a h (Suc y) = h y (PrimRecOp1 a h y)

inductive-set
PrimRec1 :: (nat ⇒ nat) set and
PrimRec2 :: (nat ⇒ nat ⇒ nat) set and
PrimRec3 :: (nat ⇒ nat ⇒ nat ⇒ nat) set

where
zero: (λ x. 0) ∈ PrimRec1
| suc: Suc ∈ PrimRec1
| id1-1 : (λ x. x) ∈ PrimRec1
| id2-1 : (λ x y. x) ∈ PrimRec2
| id2-2 : (λ x y. y) ∈ PrimRec2
| id3-1 : (λ x y z. x) ∈ PrimRec3
| id3-2 : (λ x y z. y) ∈ PrimRec3
| id3-3 : (λ x y z. z) ∈ PrimRec3
| comp1-1 : [[f ∈ PrimRec1 ; g ∈ PrimRec1]] =⇒ (λ x. f (g x)) ∈ PrimRec1
| comp1-2 : [[f ∈ PrimRec1 ; g ∈ PrimRec2]] =⇒ (λ x y. f (g x y)) ∈ PrimRec2
| comp1-3 : [[f ∈ PrimRec1 ; g ∈ PrimRec3]] =⇒ (λ x y z. f (g x y z)) ∈ PrimRec3
| comp2-1 : [[f ∈ PrimRec2 ; g ∈ PrimRec1 ; h ∈ PrimRec1]] =⇒ (λ x. f (g x) (h

x)) ∈ PrimRec1
| comp3-1 : [[f ∈ PrimRec3 ; g ∈ PrimRec1 ; h ∈ PrimRec1 ; k ∈ PrimRec1]] =⇒

(λ x. f (g x) (h x) (k x)) ∈ PrimRec1
| comp2-2 : [[f ∈ PrimRec2 ; g ∈ PrimRec2 ; h ∈ PrimRec2]] =⇒ (λ x y. f (g x

y) (h x y)) ∈ PrimRec2
| comp2-3 : [[f ∈ PrimRec2 ; g ∈ PrimRec3 ; h ∈ PrimRec3]] =⇒ (λ x y z. f (g x

y z) (h x y z)) ∈ PrimRec3
| comp3-2 : [[f ∈ PrimRec3 ; g ∈ PrimRec2 ; h ∈ PrimRec2 ; k ∈ PrimRec2]] =⇒

(λ x y. f (g x y) (h x y) (k x y)) ∈ PrimRec2
| comp3-3 : [[f ∈ PrimRec3 ; g ∈ PrimRec3 ; h ∈ PrimRec3 ; k ∈ PrimRec3]] =⇒

(λ x y z. f (g x y z) (h x y z) (k x y z)) ∈ PrimRec3
| prim-rec: [[g ∈ PrimRec1 ; h ∈ PrimRec3]] =⇒ PrimRecOp g h ∈ PrimRec2

lemmas pr-zero = PrimRec1-PrimRec2-PrimRec3 .zero
lemmas pr-suc = PrimRec1-PrimRec2-PrimRec3 .suc
lemmas pr-id1-1 = PrimRec1-PrimRec2-PrimRec3 .id1-1
lemmas pr-id2-1 = PrimRec1-PrimRec2-PrimRec3 .id2-1
lemmas pr-id2-2 = PrimRec1-PrimRec2-PrimRec3 .id2-2
lemmas pr-id3-1 = PrimRec1-PrimRec2-PrimRec3 .id3-1
lemmas pr-id3-2 = PrimRec1-PrimRec2-PrimRec3 .id3-2
lemmas pr-id3-3 = PrimRec1-PrimRec2-PrimRec3 .id3-3
lemmas pr-comp1-1 = PrimRec1-PrimRec2-PrimRec3 .comp1-1
lemmas pr-comp1-2 = PrimRec1-PrimRec2-PrimRec3 .comp1-2
lemmas pr-comp1-3 = PrimRec1-PrimRec2-PrimRec3 .comp1-3
lemmas pr-comp2-1 = PrimRec1-PrimRec2-PrimRec3 .comp2-1
lemmas pr-comp2-2 = PrimRec1-PrimRec2-PrimRec3 .comp2-2
lemmas pr-comp2-3 = PrimRec1-PrimRec2-PrimRec3 .comp2-3
lemmas pr-comp3-1 = PrimRec1-PrimRec2-PrimRec3 .comp3-1
lemmas pr-comp3-2 = PrimRec1-PrimRec2-PrimRec3 .comp3-2
lemmas pr-comp3-3 = PrimRec1-PrimRec2-PrimRec3 .comp3-3

13

lemmas pr-rec = PrimRec1-PrimRec2-PrimRec3 .prim-rec

ML-file ‹Utils.ML›

named-theorems prec

method-setup prec0 = ‹
Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts =>
HEADGOAL (prec0-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems

prec}))))
› apply primitive recursive functions

lemmas [prec] = pr-zero pr-suc pr-id1-1 pr-id2-1 pr-id2-2 pr-id3-1 pr-id3-2 pr-id3-3

lemma pr-swap: f ∈ PrimRec2 =⇒ (λ x y. f y x) ∈ PrimRec2 by prec0

theorem pr-rec-scheme: [[g ∈ PrimRec1 ; h ∈ PrimRec3 ; ∀ x. f 0 x = g x; ∀ x y.
f (Suc y) x = h y (f y x) x]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-at-0 : ∀ x. f 0 x = g x
assume f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
from f-at-0 f-at-Suc have

∧
x y. f y x = PrimRecOp g h y x by (induct-tac y,

simp-all)
then have f = PrimRecOp g h by (simp add: ext)
with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec)

qed

lemma op-plus-is-pr [prec]: (λ x y. x + y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y+x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. x) (λ x y z. Suc y) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1)
next

show (λ x y z. Suc y) ∈ PrimRec3 by prec0
qed
have (λ x y. y+x) = PrimRecOp (λ x. x) (λ x y z. Suc y) (is - = ?f)
proof −

have
∧

x y. (?f y x = y + x) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed

14

lemma op-mult-is-pr [prec]: (λ x y. x∗y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y∗x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. 0) (λ x y z. y+z) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. 0) ∈ PrimRec1 by (rule pr-zero)
next

show (λ x y z. y+z) ∈ PrimRec3 by prec0
qed
have (λ x y. y∗x) = PrimRecOp (λ x. 0) (λ x y z. y+z) (is - = ?f)
proof −

have
∧

x y. (?f y x = y ∗ x) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed

lemma const-is-pr : (λ x. (n::nat)) ∈ PrimRec1
proof (induct n)

show (λ x. 0) ∈ PrimRec1 by (rule pr-zero)
next

fix n assume (λ x. n) ∈ PrimRec1
then show (λ x. Suc n) ∈ PrimRec1 by prec0

qed

lemma const-is-pr-2 : (λ x y. (n::nat)) ∈ PrimRec2
proof (rule pr-comp1-2 [where ?f=%x.(n::nat) and ?g=%x y. x])

show (λ x. n) ∈ PrimRec1 by (rule const-is-pr)
next

show (λ x y. x) ∈ PrimRec2 by (rule pr-id2-1)
qed

lemma const-is-pr-3 : (λ x y z. (n::nat)) ∈ PrimRec3
proof (rule pr-comp1-3 [where ?f=%x.(n::nat) and ?g=%x y z. x])

show (λ x. n) ∈ PrimRec1 by (rule const-is-pr)
next

show (λ x y z. x) ∈ PrimRec3 by (rule pr-id3-1)
qed

theorem pr-rec-last: [[g ∈ PrimRec1 ; h ∈ PrimRec3]] =⇒ PrimRecOp-last g h ∈
PrimRec2
proof −

assume A1 : g ∈ PrimRec1
assume A2 : h ∈ PrimRec3
let ?h1 = λ x y z. h z y x
from A2 pr-id3-3 pr-id3-2 pr-id3-1 have h1-is-pr : ?h1 ∈ PrimRec3 by (rule

pr-comp3-3)

15

let ?f1 = PrimRecOp g ?h1
from A1 h1-is-pr have f1-is-pr : ?f1 ∈ PrimRec2 by (rule pr-rec)
let ?f = λ x y. ?f1 y x
from f1-is-pr have f-is-pr : ?f ∈ PrimRec2 by (rule pr-swap)
have

∧
x y. ?f x y = PrimRecOp-last g h x y by (induct-tac y, simp-all)

then have ?f = PrimRecOp-last g h by (simp add: ext)
with f-is-pr show ?thesis by simp

qed

theorem pr-rec1 : h ∈ PrimRec2 =⇒ PrimRecOp1 (a::nat) h ∈ PrimRec1
proof −

assume A1 : h ∈ PrimRec2
let ?g = (λ x. a)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
let ?h1 = (λ x y z. h x y)
from A1 have h1-is-pr : ?h1 ∈ PrimRec3 by prec0
let ?f1 = PrimRecOp ?g ?h1
from g-is-pr h1-is-pr have f1-is-pr : ?f1 ∈ PrimRec2 by (rule pr-rec)
let ?f = (λ x. ?f1 x 0)
from f1-is-pr pr-id1-1 pr-zero have f-is-pr : ?f ∈ PrimRec1 by (rule pr-comp2-1)
have

∧
y. ?f y = PrimRecOp1 a h y by (induct-tac y, auto)

then have ?f = PrimRecOp1 a h by (simp add: ext)
with f-is-pr show ?thesis by (auto)

qed

theorem pr-rec1-scheme: [[h ∈ PrimRec2 ; f 0 = a; ∀ y. f (Suc y) = h y (f y)]]
=⇒ f ∈ PrimRec1
proof −

assume h-is-pr : h ∈ PrimRec2
assume f-at-0 : f 0 = a
assume f-at-Suc: ∀ y. f (Suc y) = h y (f y)
from f-at-0 f-at-Suc have

∧
y. f y = PrimRecOp1 a h y by (induct-tac y,

simp-all)
then have f = PrimRecOp1 a h by (simp add: ext)
with h-is-pr show ?thesis by (simp add: pr-rec1)

qed

lemma pred-is-pr : (λ x. x − (1 ::nat)) ∈ PrimRec1
proof −

have S1 : PrimRecOp1 0 (λ x y. x) ∈ PrimRec1
proof (rule pr-rec1)

show (λ x y. x) ∈ PrimRec2 by (rule pr-id2-1)
qed
have (λ x. x−(1 ::nat)) = PrimRecOp1 0 (λ x y. x) (is - = ?f)
proof −

have
∧

x. (?f x = x−(1 ::nat)) by (induct-tac x, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

16

qed

lemma op-sub-is-pr [prec]: (λ x y. x−y) ∈ PrimRec2
proof (rule pr-swap)
show (λ x y. y − x) ∈ PrimRec2
proof −

have S1 : PrimRecOp (λ x. x) (λ x y z. y−(1 ::nat)) ∈ PrimRec2
proof (rule pr-rec)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1)
next

from pred-is-pr pr-id3-2 show (λ x y z. y−(1 ::nat)) ∈ PrimRec3 by (rule
pr-comp1-3)

qed
have (λ x y. y − x) = PrimRecOp (λ x. x) (λ x y z. y−(1 ::nat)) (is - = ?f)
proof −

have
∧

x y. (?f y x = x − y) by (induct-tac y, auto)
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed
qed

lemmas [prec] =
const-is-pr [of 0] const-is-pr-2 [of 0] const-is-pr-3 [of 0]
const-is-pr [of 1] const-is-pr-2 [of 1] const-is-pr-3 [of 1]
const-is-pr [of 2] const-is-pr-2 [of 2] const-is-pr-3 [of 2]

definition
sgn1 :: nat ⇒ nat where
sgn1 x = (case x of 0 ⇒ 0 | Suc y ⇒ 1)

definition
sgn2 :: nat ⇒ nat where
sgn2 x ≡ (case x of 0 ⇒ 1 | Suc y ⇒ 0)

definition
abs-of-diff :: nat ⇒ nat ⇒ nat where
abs-of-diff = (λ x y. (x − y) + (y − x))

lemma [simp]: sgn1 0 = 0 by (simp add: sgn1-def)
lemma [simp]: sgn1 (Suc y) = 1 by (simp add: sgn1-def)
lemma [simp]: sgn2 0 = 1 by (simp add: sgn2-def)
lemma [simp]: sgn2 (Suc y) = 0 by (simp add: sgn2-def)
lemma [simp]: x 6= 0 =⇒ sgn1 x = 1 by (simp add: sgn1-def , cases x, auto)
lemma [simp]: x 6= 0 =⇒ sgn2 x = 0 by (simp add: sgn2-def , cases x, auto)

lemma sgn1-nz-impl-arg-pos: sgn1 x 6= 0 =⇒ x > 0 by (cases x) auto
lemma sgn1-zero-impl-arg-zero: sgn1 x = 0 =⇒ x = 0 by (cases x) auto
lemma sgn2-nz-impl-arg-zero: sgn2 x 6= 0 =⇒ x = 0 by (cases x) auto

17

lemma sgn2-zero-impl-arg-pos: sgn2 x = 0 =⇒ x > 0 by (cases x) auto

lemma sgn1-nz-eq-arg-pos: (sgn1 x 6= 0) = (x > 0) by (cases x) auto
lemma sgn1-zero-eq-arg-zero: (sgn1 x = 0) = (x = 0) by (cases x) auto
lemma sgn2-nz-eq-arg-pos: (sgn2 x 6= 0) = (x = 0) by (cases x) auto
lemma sgn2-zero-eq-arg-zero: (sgn2 x = 0) = (x > 0) by (cases x) auto

lemma sgn1-pos-eq-one: sgn1 x > 0 =⇒ sgn1 x = 1 by (cases x) auto
lemma sgn2-pos-eq-one: sgn2 x > 0 =⇒ sgn2 x = 1 by (cases x) auto

lemma sgn2-eq-1-sub-arg: sgn2 = (λ x. 1 − x)
proof (rule ext)

fix x show sgn2 x = 1 − x by (cases x) auto
qed

lemma sgn1-eq-1-sub-sgn2 : sgn1 = (λ x. 1 − (sgn2 x))
proof

fix x show sgn1 x = 1 − sgn2 x
proof −

have 1− sgn2 x = 1 − (1 − x) by (simp add: sgn2-eq-1-sub-arg)
then show ?thesis by (simp add: sgn1-def , cases x, auto)

qed
qed

lemma sgn2-is-pr [prec]: sgn2 ∈ PrimRec1
proof −

have (λ x. 1 − x) ∈ PrimRec1 by prec0
thus ?thesis by (simp add: sgn2-eq-1-sub-arg)

qed

lemma sgn1-is-pr [prec]: sgn1 ∈ PrimRec1
proof −

from sgn2-is-pr have (λ x. 1 − (sgn2 x)) ∈ PrimRec1 by prec0
thus ?thesis by (simp add: sgn1-eq-1-sub-sgn2)

qed

lemma abs-of-diff-is-pr [prec]: abs-of-diff ∈ PrimRec2 unfolding abs-of-diff-def
by prec0

lemma abs-of-diff-eq: (abs-of-diff x y = 0) = (x = y) by (simp add: abs-of-diff-def ,
arith)

lemma sf-is-pr [prec]: sf ∈ PrimRec1
proof −

have S1 : PrimRecOp1 0 (λ x y. y + x + 1) ∈ PrimRec1
proof (rule pr-rec1)

show (λ x y. y + x + 1) ∈ PrimRec2 by prec0
qed
have (λ x. sf x) = PrimRecOp1 0 (λ x y. y + x + 1) (is - = ?f)

18

proof −
have

∧
x. (?f x = sf x)

proof (induct-tac x)
show ?f 0 = sf 0 by (simp add: sf-at-0)

next
fix x assume ?f x = sf x
with sf-at-Suc show ?f (Suc x) = sf (Suc x) by auto

qed
thus ?thesis by (simp add: ext)

qed
with S1 show ?thesis by simp

qed

lemma c-pair-is-pr [prec]: c-pair ∈ PrimRec2
proof −

have c-pair = (λ x y. sf (x+y) + x) by (simp add: c-pair-def ext)
moreover from sf-is-pr have (λ x y. sf (x+y) + x) ∈ PrimRec2 by prec0
ultimately show ?thesis by (simp)

qed

lemma if-is-pr : [[p ∈ PrimRec1 ; q1 ∈ PrimRec1 ; q2 ∈ PrimRec1]] =⇒ (λ x. if
(p x = 0) then (q1 x) else (q2 x)) ∈ PrimRec1
proof −

have if-as-pr : (λ x. if (p x = 0) then (q1 x) else (q2 x)) = (λ x. (sgn2 (p x)) ∗
(q1 x) + (sgn1 (p x)) ∗ (q2 x))

proof (rule ext)
fix x show (if (p x = 0) then (q1 x) else (q2 x)) = (sgn2 (p x)) ∗ (q1 x) +

(sgn1 (p x)) ∗ (q2 x) (is ?left = ?right)
proof cases

assume A1 : p x = 0
then have S1 : ?left = q1 x by simp
from A1 have S2 : ?right = q1 x by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x 6= 0
then have S3 : p x > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec1 and q1 ∈ PrimRec1 and q2 ∈ PrimRec1
then have (λ x. (sgn2 (p x)) ∗ (q1 x) + (sgn1 (p x)) ∗ (q2 x)) ∈ PrimRec1 by

prec0
with if-as-pr show ?thesis by simp

qed

lemma if-eq-is-pr [prec]: [[p1 ∈ PrimRec1 ; p2 ∈ PrimRec1 ; q1 ∈ PrimRec1 ; q2
∈ PrimRec1]] =⇒ (λ x. if (p1 x = p2 x) then (q1 x) else (q2 x)) ∈ PrimRec1
proof −

have S1 : (λ x. if (p1 x = p2 x) then (q1 x) else (q2 x)) = (λ x. if (abs-of-diff (p1

19

x) (p2 x) = 0) then (q1 x) else (q2 x)) (is ?L = ?R) by (simp add: abs-of-diff-eq)
assume A1 : p1 ∈ PrimRec1 and A2 : p2 ∈ PrimRec1
with abs-of-diff-is-pr have S2 : (λ x. abs-of-diff (p1 x) (p2 x)) ∈ PrimRec1 by

prec0
assume q1 ∈ PrimRec1 and q2 ∈ PrimRec1
with S2 have ?R ∈ PrimRec1 by (rule if-is-pr)
with S1 show ?thesis by simp

qed

lemma if-is-pr2 [prec]: [[p ∈ PrimRec2 ; q1 ∈ PrimRec2 ; q2 ∈ PrimRec2]] =⇒ (λ
x y. if (p x y = 0) then (q1 x y) else (q2 x y)) ∈ PrimRec2
proof −

have if-as-pr : (λ x y. if (p x y = 0) then (q1 x y) else (q2 x y)) = (λ x y. (sgn2
(p x y)) ∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y))

proof (rule ext, rule ext)
fix x fix y show (if (p x y = 0) then (q1 x y) else (q2 x y)) = (sgn2 (p x y))

∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y) (is ?left = ?right)
proof cases

assume A1 : p x y = 0
then have S1 : ?left = q1 x y by simp
from A1 have S2 : ?right = q1 x y by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x y 6= 0
then have S3 : p x y > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec2 and q1 ∈ PrimRec2 and q2 ∈ PrimRec2
then have (λ x y. (sgn2 (p x y)) ∗ (q1 x y) + (sgn1 (p x y)) ∗ (q2 x y)) ∈

PrimRec2 by prec0
with if-as-pr show ?thesis by simp

qed

lemma if-eq-is-pr2 : [[p1 ∈ PrimRec2 ; p2 ∈ PrimRec2 ; q1 ∈ PrimRec2 ; q2 ∈
PrimRec2]] =⇒ (λ x y. if (p1 x y = p2 x y) then (q1 x y) else (q2 x y)) ∈ PrimRec2
proof −

have S1 : (λ x y. if (p1 x y = p2 x y) then (q1 x y) else (q2 x y)) = (λ x y. if
(abs-of-diff (p1 x y) (p2 x y) = 0) then (q1 x y) else (q2 x y)) (is ?L = ?R) by
(simp add: abs-of-diff-eq)

assume A1 : p1 ∈ PrimRec2 and A2 : p2 ∈ PrimRec2
with abs-of-diff-is-pr have S2 : (λ x y. abs-of-diff (p1 x y) (p2 x y)) ∈ PrimRec2

by prec0
assume q1 ∈ PrimRec2 and q2 ∈ PrimRec2
with S2 have ?R ∈ PrimRec2 by (rule if-is-pr2)
with S1 show ?thesis by simp

qed

lemma if-is-pr3 [prec]: [[p ∈ PrimRec3 ; q1 ∈ PrimRec3 ; q2 ∈ PrimRec3]] =⇒ (λ

20

x y z. if (p x y z = 0) then (q1 x y z) else (q2 x y z)) ∈ PrimRec3
proof −

have if-as-pr : (λ x y z. if (p x y z = 0) then (q1 x y z) else (q2 x y z)) = (λ x y
z. (sgn2 (p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y z))

proof (rule ext, rule ext, rule ext)
fix x fix y fix z show (if (p x y z = 0) then (q1 x y z) else (q2 x y z)) = (sgn2

(p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y z) (is ?left = ?right)
proof cases

assume A1 : p x y z = 0
then have S1 : ?left = q1 x y z by simp
from A1 have S2 : ?right = q1 x y z by simp
from S1 S2 show ?thesis by simp

next
assume A2 : p x y z 6= 0
then have S3 : p x y z > 0 by simp
then show ?thesis by simp

qed
qed
assume p ∈ PrimRec3 and q1 ∈ PrimRec3 and q2 ∈ PrimRec3
then have (λ x y z . (sgn2 (p x y z)) ∗ (q1 x y z) + (sgn1 (p x y z)) ∗ (q2 x y

z)) ∈ PrimRec3
by prec0

with if-as-pr show ?thesis by simp
qed

lemma if-eq-is-pr3 : [[p1 ∈ PrimRec3 ; p2 ∈ PrimRec3 ; q1 ∈ PrimRec3 ; q2 ∈
PrimRec3]] =⇒ (λ x y z. if (p1 x y z = p2 x y z) then (q1 x y z) else (q2 x y z))
∈ PrimRec3
proof −

have S1 : (λ x y z. if (p1 x y z = p2 x y z) then (q1 x y z) else (q2 x y z)) = (λ
x y z. if (abs-of-diff (p1 x y z) (p2 x y z) = 0) then (q1 x y z) else (q2 x y z)) (is
?L = ?R) by (simp add: abs-of-diff-eq)

assume A1 : p1 ∈ PrimRec3 and A2 : p2 ∈ PrimRec3
with abs-of-diff-is-pr have S2 : (λ x y z. abs-of-diff (p1 x y z) (p2 x y z)) ∈

PrimRec3
by prec0

assume q1 ∈ PrimRec3 and q2 ∈ PrimRec3
with S2 have ?R ∈ PrimRec3 by (rule if-is-pr3)
with S1 show ?thesis by simp

qed

ML ‹
fun get-if-by-index 1 = @{thm if-eq-is-pr}
| get-if-by-index 2 = @{thm if-eq-is-pr2}
| get-if-by-index 3 = @{thm if-eq-is-pr3}
| get-if-by-index - = raise BadArgument

fun if-comp-tac ctxt = SUBGOAL (fn (t, i) =>
let

21

val t = extract-trueprop-arg (Logic.strip-imp-concl t)
val (t1 , t2) = extract-set-args t
val n2 =

let
val Const(s, -) = t2

in
get-num-by-set s

end
val (name, -, n1) = extract-free-arg t1

in
if name = @{const-name If } then

resolve-tac ctxt [get-if-by-index n2] i
else

let
val comp = get-comp-by-indexes (n1 , n2)

in
Rule-Insts.res-inst-tac ctxt
[(((f, 0), Position.none), Variable.revert-fixed ctxt name)] [] comp i

end
end
handle BadArgument => no-tac)

fun prec-tac ctxt facts i =
Method.insert-tac ctxt facts i THEN
REPEAT (resolve-tac ctxt [@{thm const-is-pr}, @{thm const-is-pr-2}, @{thm

const-is-pr-3}] i ORELSE
assume-tac ctxt i ORELSE if-comp-tac ctxt i)

›

method-setup prec = ‹
Attrib.thms >> (fn ths => fn ctxt => Method.METHOD (fn facts =>
HEADGOAL (prec-tac ctxt (facts @ Named-Theorems.get ctxt @{named-theorems

prec}))))
› apply primitive recursive functions

2.2 Bounded least operator
definition

b-least :: (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat) where
b-least f x ≡ (Least (%y. y = x ∨ (y < x ∧ (f x y) 6= 0)))

definition
b-least2 :: (nat ⇒ nat ⇒ nat) ⇒ (nat ⇒ nat ⇒ nat) where
b-least2 f x y ≡ (Least (%z. z = y ∨ (z < y ∧ (f x z) 6= 0)))

lemma b-least-aux1 : b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0)
proof −

let ?P = %y. y = x ∨ (y < x ∧ (f x y) 6= 0)
have ?P x by simp

22

then have ?P (Least ?P) by (rule LeastI)
thus ?thesis by (simp add: b-least-def)

qed

lemma b-least-le-arg: b-least f x ≤ x
proof −

have b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0) by (rule
b-least-aux1)

from this show ?thesis by (arith)
qed

lemma less-b-least-impl-zero: y < b-least f x =⇒ f x y = 0
proof −

assume A1 : y < b-least f x (is - < ?b)
have b-least f x ≤ x by (rule b-least-le-arg)
with A1 have S1 : y < x by simp
with A1 have y < (Least (%y. y = x ∨ (y < x ∧ (f x y) 6= 0))) by (simp add:

b-least-def)
then have ¬ (y = x ∨ (y < x ∧ (f x y) 6= 0)) by (rule not-less-Least)
with S1 show ?thesis by simp

qed

lemma nz-impl-b-least-le: (f x y) 6= 0 =⇒ (b-least f x) ≤ y
proof (rule ccontr)

assume A1 : f x y 6= 0
assume ¬ b-least f x ≤ y
then have y < b-least f x by simp
with A1 show False by (simp add: less-b-least-impl-zero)

qed

lemma b-least-less-impl-nz: b-least f x < x =⇒ f x (b-least f x) 6= 0
proof −

assume A1 : b-least f x < x
have b-least f x = x ∨ (b-least f x < x ∧ (f x (b-least f x)) 6= 0) by (rule

b-least-aux1)
from A1 this show ?thesis by simp

qed

lemma b-least-less-impl-eq: b-least f x < x =⇒ (b-least f x) = (Least (%y. (f x y)
6= 0))
proof −

assume A1 : b-least f x < x (is ?b < -)
let ?B = (Least (%y. (f x y) 6= 0))
from A1 have S1 : f x ?b 6= 0 by (rule b-least-less-impl-nz)
from S1 have S2 : ?B ≤ ?b by (rule Least-le)
from S1 have S3 : f x ?B 6= 0 by (rule LeastI)
from S3 have S4 : ?b ≤ ?B by (rule nz-impl-b-least-le)
from S2 S4 show ?thesis by simp

qed

23

lemma less-b-least-impl-zero2 : [[y < x; b-least f x = x]] =⇒ f x y = 0 by (simp
add: less-b-least-impl-zero)

lemma nz-impl-b-least-less: [[y<x; (f x y) 6= 0]] =⇒ (b-least f x) < x
proof −

assume A1 : y < x
assume f x y 6= 0
then have b-least f x ≤ y by (rule nz-impl-b-least-le)
with A1 show ?thesis by simp

qed

lemma b-least-aux2 : [[y<x; (f x y) 6= 0]] =⇒ (b-least f x) = (Least (%y. (f x y) 6=
0))
proof −

assume A1 : y < x and A2 : f x y 6= 0
from A1 A2 have S1 : b-least f x < x by (rule nz-impl-b-least-less)
thus ?thesis by (rule b-least-less-impl-eq)

qed

lemma b-least2-aux1 : b-least2 f x y = y ∨ (b-least2 f x y < y ∧ (f x (b-least2 f x
y)) 6= 0)
proof −

let ?P = %z. z = y ∨ (z < y ∧ (f x z) 6= 0)
have ?P y by simp
then have ?P (Least ?P) by (rule LeastI)
thus ?thesis by (simp add: b-least2-def)

qed

lemma b-least2-le-arg: b-least2 f x y ≤ y
proof −

let ?B = b-least2 f x y
have ?B = y ∨ (?B < y ∧ (f x ?B) 6= 0) by (rule b-least2-aux1)
from this show ?thesis by (arith)

qed

lemma less-b-least2-impl-zero: z < b-least2 f x y =⇒ f x z = 0
proof −

assume A1 : z < b-least2 f x y (is - < ?b)
have b-least2 f x y ≤ y by (rule b-least2-le-arg)
with A1 have S1 : z < y by simp
with A1 have z < (Least (%z. z = y ∨ (z < y ∧ (f x z) 6= 0))) by (simp add:

b-least2-def)
then have ¬ (z = y ∨ (z < y ∧ (f x z) 6= 0)) by (rule not-less-Least)
with S1 show ?thesis by simp

qed

lemma nz-impl-b-least2-le: (f x z) 6= 0 =⇒ (b-least2 f x y) ≤ z
proof −

24

assume A1 : f x z 6= 0
have S1 : z < b-least2 f x y =⇒ f x z = 0 by (rule less-b-least2-impl-zero)
from A1 S1 show ?thesis by arith

qed

lemma b-least2-less-impl-nz: b-least2 f x y < y =⇒ f x (b-least2 f x y) 6= 0
proof −

assume A1 : b-least2 f x y < y
have b-least2 f x y = y ∨ (b-least2 f x y < y ∧ (f x (b-least2 f x y)) 6= 0) by

(rule b-least2-aux1)
with A1 show ?thesis by simp

qed

lemma b-least2-less-impl-eq: b-least2 f x y < y =⇒ (b-least2 f x y) = (Least (%z.
(f x z) 6= 0))
proof −

assume A1 : b-least2 f x y < y (is ?b < -)
let ?B = (Least (%z. (f x z) 6= 0))
from A1 have S1 : f x ?b 6= 0 by (rule b-least2-less-impl-nz)
from S1 have S2 : ?B ≤ ?b by (rule Least-le)
from S1 have S3 : f x ?B 6= 0 by (rule LeastI)
from S3 have S4 : ?b ≤ ?B by (rule nz-impl-b-least2-le)
from S2 S4 show ?thesis by simp

qed

lemma less-b-least2-impl-zero2 : [[z<y; b-least2 f x y = y]] =⇒ f x z = 0
proof −

assume z < y and b-least2 f x y = y
hence z < b-least2 f x y by simp
thus ?thesis by (rule less-b-least2-impl-zero)

qed

lemma nz-b-least2-impl-less: [[z<y; (f x z) 6= 0]] =⇒ (b-least2 f x y) < y
proof (rule ccontr)

assume A1 : z < y
assume A2 : f x z 6= 0
assume ¬ (b-least2 f x y) < y then have A3 : y ≤ (b-least2 f x y) by simp
have b-least2 f x y ≤ y by (rule b-least2-le-arg)
with A3 have b-least2 f x y = y by simp
with A1 have f x z = 0 by (rule less-b-least2-impl-zero2)
with A2 show False by simp

qed

lemma b-least2-less-impl-eq2 : [[z < y; (f x z) 6= 0]] =⇒ (b-least2 f x y) = (Least
(%z. (f x z) 6= 0))
proof −

assume A1 : z < y and A2 : f x z 6= 0
from A1 A2 have S1 : b-least2 f x y < y by (rule nz-b-least2-impl-less)
thus ?thesis by (rule b-least2-less-impl-eq)

25

qed

lemma b-least2-aux2 : b-least2 f x y < y =⇒ b-least2 f x (Suc y) = b-least2 f x y
proof −

let ?B = b-least2 f x y
assume A1 : ?B < y
from A1 have S1 : f x ?B 6= 0 by (rule b-least2-less-impl-nz)
from S1 have S2 : b-least2 f x (Suc y) ≤ ?B by (simp add: nz-impl-b-least2-le)
from A1 S2 have S3 : b-least2 f x (Suc y) < Suc y by (simp)
from S3 have S4 : f x (b-least2 f x (Suc y)) 6= 0 by (rule b-least2-less-impl-nz)
from S4 have S5 : ?B ≤ b-least2 f x (Suc y) by (rule nz-impl-b-least2-le)
from S2 S5 show ?thesis by simp

qed

lemma b-least2-aux3 : [[b-least2 f x y = y; f x y 6= 0]] =⇒ b-least2 f x (Suc y) = y
proof −

assume A1 : b-least2 f x y =y
assume A2 : f x y 6= 0
from A2 have S1 : b-least2 f x (Suc y) ≤ y by (rule nz-impl-b-least2-le)
have S2 : b-least2 f x (Suc y) < y =⇒ False
proof −

assume A2-1 : b-least2 f x (Suc y) < y (is ?z < -)
from A2-1 have S2-1 : ?z < Suc y by simp
from S2-1 have S2-2 : f x ?z 6= 0 by (rule b-least2-less-impl-nz)
from A2-1 S2-2 have S2-3 : b-least2 f x y < y by (rule nz-b-least2-impl-less)
from S2-3 A1 show ?thesis by simp

qed
from S2 have S3 : ¬ (b-least2 f x (Suc y) < y) by auto
from S1 S3 show ?thesis by simp

qed

lemma b-least2-mono: y1 ≤ y2 =⇒ b-least2 f x y1 ≤ b-least2 f x y2
proof (rule ccontr)

assume A1 : y1 ≤ y2
let ?b1 = b-least2 f x y1 and ?b2 = b-least2 f x y2
assume ¬ ?b1 ≤ ?b2 then have A2 : ?b2 < ?b1 by simp
have S1 : ?b1 ≤ y1 by (rule b-least2-le-arg)
have S2 : ?b2 ≤ y2 by (rule b-least2-le-arg)
from A1 A2 S1 S2 have S3 : ?b2 < y2 by simp
then have S4 : f x ?b2 6= 0 by (rule b-least2-less-impl-nz)
from A2 have S5 : f x ?b2 = 0 by (rule less-b-least2-impl-zero)
from S4 S5 show False by simp

qed

lemma b-least2-aux4 : [[b-least2 f x y = y; f x y = 0]] =⇒ b-least2 f x (Suc y) =
Suc y
proof −

assume A1 : b-least2 f x y = y
assume A2 : f x y = 0

26

have S1 : b-least2 f x (Suc y) ≤ Suc y by (rule b-least2-le-arg)
have S2 : y ≤ b-least2 f x (Suc y)
proof −

have y ≤ Suc y by simp
then have b-least2 f x y ≤ b-least2 f x (Suc y) by (rule b-least2-mono)
with A1 show ?thesis by simp

qed
from S1 S2 have b-least2 f x (Suc y) =y ∨ b-least2 f x (Suc y) = Suc y by

arith
moreover
{

assume A3 : b-least2 f x (Suc y) = y
have f x y 6= 0
proof −

have y < Suc y by simp
with A3 have b-least2 f x (Suc y) < Suc y by simp

from this have f x (b-least2 f x (Suc y)) 6= 0 by (simp add: b-least2-less-impl-nz)
with A3 show f x y 6= 0 by simp

qed
with A2 have ?thesis by simp

}
moreover
{

assume b-least2 f x (Suc y) = Suc y
then have ?thesis by simp

}
ultimately show ?thesis by blast

qed

lemma b-least2-at-zero: b-least2 f x 0 = 0
proof −

have S1 : b-least2 f x 0 ≤ 0 by (rule b-least2-le-arg)
from S1 show ?thesis by auto

qed

theorem pr-b-least2 : f ∈ PrimRec2 =⇒ b-least2 f ∈ PrimRec2
proof −

define loc-Op1 where loc-Op1 = (λ (f ::nat ⇒ nat ⇒ nat) x y z . (sgn1 (z −
y)) ∗ y + (sgn2 (z − y))∗((sgn1 (f x z))∗z + (sgn2 (f x z))∗(Suc z)))

define loc-Op2 where loc-Op2 = (λ f . PrimRecOp-last (λ x. 0) (loc-Op1 f))
have loc-op2-lm-1 :

∧
f x y. loc-Op2 f x y < y =⇒ loc-Op2 f x (Suc y) = loc-Op2

f x y
proof −

fix f x y
let ?b = loc-Op2 f x y
have S1 : loc-Op2 f x (Suc y) = (loc-Op1 f) x ?b y by (simp add: loc-Op2-def)
assume ?b < y
then have y − ?b > 0 by simp
then have loc-Op1 f x ?b y = ?b by (simp add: loc-Op1-def)

27

with S1 show loc-Op2 f x y < y =⇒ loc-Op2 f x (Suc y) = loc-Op2 f x y by
simp

qed
have loc-op2-lm-2 :

∧
f x y. [[¬(loc-Op2 f x y < y); f x y 6= 0]] =⇒ loc-Op2 f x

(Suc y) = y
proof −

fix f x y
let ?b = loc-Op2 f x y and ?h = loc-Op1 f
have S1 : loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def)
assume ¬(?b < y)
then have S2 : y − ?b = 0 by simp
assume f x y 6= 0
with S2 have ?h x ?b y = y by (simp add: loc-Op1-def)
with S1 show loc-Op2 f x (Suc y) = y by simp

qed
have loc-op2-lm-3 :

∧
f x y. [[¬(loc-Op2 f x y < y); f x y = 0]] =⇒ loc-Op2 f x

(Suc y) = Suc y
proof −

fix f x y
let ?b = loc-Op2 f x y and ?h = loc-Op1 f
have S1 : loc-Op2 f x (Suc y) = ?h x ?b y by (simp add: loc-Op2-def)
assume ¬(?b < y)
then have S2 : y − ?b = 0 by simp
assume f x y = 0
with S2 have ?h x ?b y = Suc y by (simp add: loc-Op1-def)
with S1 show loc-Op2 f x (Suc y) = Suc y by simp

qed
have Op2-eq-b-least2-at-point:

∧
f x y. loc-Op2 f x y = b-least2 f x y

proof − fix f x show
∧

y. loc-Op2 f x y = b-least2 f x y
proof (induct-tac y)

show loc-Op2 f x 0 = b-least2 f x 0 by (simp add: loc-Op2-def b-least2-at-zero)
next

fix y
assume A1 : loc-Op2 f x y = b-least2 f x y
then show loc-Op2 f x (Suc y) = b-least2 f x (Suc y)
proof cases

assume A2 : loc-Op2 f x y < y
then have S1 : loc-Op2 f x (Suc y) = loc-Op2 f x y by (rule loc-op2-lm-1)
from A1 A2 have b-least2 f x y < y by simp
then have S2 : b-least2 f x (Suc y) = b-least2 f x y by (rule b-least2-aux2)
from A1 S1 S2 show ?thesis by simp

next
assume A3 : ¬ loc-Op2 f x y < y
have A3 ′: b-least2 f x y = y
proof −

have b-least2 f x y ≤ y by (rule b-least2-le-arg)
from A1 A3 this show ?thesis by simp

qed
then show ?thesis

28

proof cases
assume A4 : f x y 6= 0
with A3 have S3 : loc-Op2 f x (Suc y) = y by (rule loc-op2-lm-2)
from A3 ′ A4 have S4 : b-least2 f x (Suc y) = y by (rule b-least2-aux3)
from S3 S4 show ?thesis by simp

next
assume ¬ f x y 6= 0
then have A5 : f x y = 0 by simp
with A3 have S5 : loc-Op2 f x (Suc y) = Suc y by (rule loc-op2-lm-3)
from A3 ′ A5 have S6 : b-least2 f x (Suc y) = Suc y by (rule b-least2-aux4)
from S5 S6 show ?thesis by simp

qed
qed

qed
qed
have Op2-eq-b-least2 : loc-Op2 = b-least2 by (simp add: Op2-eq-b-least2-at-point

ext)
assume A1 : f ∈ PrimRec2
have pr-loc-Op2 : loc-Op2 f ∈ PrimRec2
proof −

from A1 have S1 : loc-Op1 f ∈ PrimRec3 by (simp add: loc-Op1-def , prec)
from pr-zero S1 have S2 : PrimRecOp-last (λ x. 0) (loc-Op1 f) ∈ PrimRec2

by (rule pr-rec-last)
from this show ?thesis by (simp add: loc-Op2-def)

qed
from Op2-eq-b-least2 this show b-least2 f ∈ PrimRec2 by simp

qed

lemma b-least-def1 : b-least f = (λ x. b-least2 f x x) by (simp add: b-least2-def
b-least-def ext)

theorem pr-b-least: f ∈ PrimRec2 =⇒ b-least f ∈ PrimRec1
proof −

assume f ∈ PrimRec2
then have b-least2 f ∈ PrimRec2 by (rule pr-b-least2)
from this pr-id1-1 pr-id1-1 have (λ x. b-least2 f x x) ∈ PrimRec1 by (rule

pr-comp2-1)
then show ?thesis by (simp add: b-least-def1)

qed

2.3 Examples
theorem c-sum-as-b-least: c-sum = (λ u. b-least2 (λ u z. (sgn1 (sf (z+1) − u)))
u (Suc u))
proof (rule ext)

fix u show c-sum u = b-least2 (λ u z. (sgn1 (sf (z+1) − u))) u (Suc u)
proof −

have lm-1 : (λ x y. (sgn1 (sf (y+1) − x) 6= 0)) = (λ x y. (x < sf (y+1)))
proof (rule ext, rule ext)

29

fix x y show (sgn1 (sf (y+1) − x) 6= 0) = (x < sf (y+1))
proof −
have (sgn1 (sf (y+1) − x) 6= 0) = (sf (y+1) − x > 0) by (rule sgn1-nz-eq-arg-pos)

thus (sgn1 (sf (y+1) − x) 6= 0) = (x < sf (y+1)) by auto
qed

qed
let ?f = λ u z. (sgn1 (sf (z+1) − u))
have S1 : ?f u u 6= 0
proof −

have S1-1 : u+1 ≤ sf (u+1) by (rule arg-le-sf)
have S1-2 : u < u+1 by simp
from S1-1 S1-2 have S1-3 : u < sf (u+1) by simp
from S1-3 have S1-4 : sf (u+1) − u > 0 by simp
from S1-4 have S1-5 : sgn1 (sf (u+1)−u) = 1 by simp
from S1-5 show ?thesis by simp

qed
have S3 : u < Suc u by simp
from S3 S1 have S4 : b-least2 ?f u (Suc u) = (Least (%z. (?f u z) 6= 0)) by

(rule b-least2-less-impl-eq2)
let ?P = λ u z. ?f u z 6= 0
let ?Q = λ u z. u < sf (z+1)
from lm-1 have S6 : ?P = ?Q by simp
from S6 have S7 : (%z. ?P u z) = (%z. ?Q u z) by (rule fun-cong)
from S7 have S8 : (Least (%z. ?P u z)) = (Least (%z. ?Q u z)) by auto
from S4 S8 have S9 : b-least2 ?f u (Suc u) = (Least (%z. u < sf (z+1))) by

(rule trans)
thus ?thesis by (simp add: c-sum-def)

qed
qed

theorem c-sum-is-pr : c-sum ∈ PrimRec1
proof −

let ?f = λ u z. (sgn1 (sf (z+1) − u))
have S1 : (λ u z. sgn1 ((sf (z+1) − u))) ∈ PrimRec2 by prec
define g where g = b-least2 ?f
from g-def S1 have g ∈ PrimRec2 by (simp add: pr-b-least2)
then have S2 : (λ u. g u (Suc u)) ∈ PrimRec1 by prec
from g-def have c-sum = (λ u. g u (Suc u)) by (simp add: c-sum-as-b-least ext)
with S2 show ?thesis by simp

qed

theorem c-fst-is-pr [prec]: c-fst ∈ PrimRec1
proof −

have S1 : (λ u. c-fst u) = (λ u. (u − sf (c-sum u))) by (simp add: c-fst-def ext)
from c-sum-is-pr have (λ u. (u − sf (c-sum u))) ∈ PrimRec1 by prec
with S1 show ?thesis by simp

qed

theorem c-snd-is-pr [prec]: c-snd ∈ PrimRec1

30

proof −
have S1 : c-snd = (λ u. (c-sum u) − (c-fst u)) by (simp add: c-snd-def ext)
from c-sum-is-pr c-fst-is-pr have S2 : (λ u. (c-sum u) − (c-fst u)) ∈ PrimRec1

by prec
from S1 this show ?thesis by simp

qed

theorem pr-1-to-2 : f ∈ PrimRec1 =⇒ (λ x y. f (c-pair x y)) ∈ PrimRec2 by prec

theorem pr-2-to-1 : f ∈ PrimRec2 =⇒ (λ z. f (c-fst z) (c-snd z)) ∈ PrimRec1 by
prec

definition pr-conv-1-to-2 = (λ f x y. f (c-pair x y))
definition pr-conv-1-to-3 = (λ f x y z. f (c-pair (c-pair x y) z))
definition pr-conv-2-to-1 = (λ f x. f (c-fst x) (c-snd x))
definition pr-conv-3-to-1 = (λ f x. f (c-fst (c-fst x)) (c-snd (c-fst x)) (c-snd x))
definition pr-conv-3-to-2 = (λ f . pr-conv-1-to-2 (pr-conv-3-to-1 f))
definition pr-conv-2-to-3 = (λ f . pr-conv-1-to-3 (pr-conv-2-to-1 f))

lemma [simp]: pr-conv-1-to-2 (pr-conv-2-to-1 f) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def)
lemma [simp]: pr-conv-2-to-1 (pr-conv-1-to-2 f) = f by(simp add: pr-conv-1-to-2-def
pr-conv-2-to-1-def)
lemma [simp]: pr-conv-1-to-3 (pr-conv-3-to-1 f) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def)
lemma [simp]: pr-conv-3-to-1 (pr-conv-1-to-3 f) = f by(simp add: pr-conv-1-to-3-def
pr-conv-3-to-1-def)
lemma [simp]: pr-conv-3-to-2 (pr-conv-2-to-3 f) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def)
lemma [simp]: pr-conv-2-to-3 (pr-conv-3-to-2 f) = f by(simp add: pr-conv-3-to-2-def
pr-conv-2-to-3-def)

lemma pr-conv-1-to-2-lm: f ∈ PrimRec1 =⇒ pr-conv-1-to-2 f ∈ PrimRec2 by
(simp add: pr-conv-1-to-2-def , prec)
lemma pr-conv-1-to-3-lm: f ∈ PrimRec1 =⇒ pr-conv-1-to-3 f ∈ PrimRec3 by
(simp add: pr-conv-1-to-3-def , prec)
lemma pr-conv-2-to-1-lm: f ∈ PrimRec2 =⇒ pr-conv-2-to-1 f ∈ PrimRec1 by
(simp add: pr-conv-2-to-1-def , prec)
lemma pr-conv-3-to-1-lm: f ∈ PrimRec3 =⇒ pr-conv-3-to-1 f ∈ PrimRec1 by
(simp add: pr-conv-3-to-1-def , prec)
lemma pr-conv-3-to-2-lm: f ∈ PrimRec3 =⇒ pr-conv-3-to-2 f ∈ PrimRec2
proof −

assume f ∈ PrimRec3
then have pr-conv-3-to-1 f ∈ PrimRec1 by (rule pr-conv-3-to-1-lm)
thus ?thesis by (simp add: pr-conv-3-to-2-def pr-conv-1-to-2-lm)

qed
lemma pr-conv-2-to-3-lm: f ∈ PrimRec2 =⇒ pr-conv-2-to-3 f ∈ PrimRec3
proof −

assume f ∈ PrimRec2

31

then have pr-conv-2-to-1 f ∈ PrimRec1 by (rule pr-conv-2-to-1-lm)
thus ?thesis by (simp add: pr-conv-2-to-3-def pr-conv-1-to-3-lm)

qed

theorem b-least2-scheme: [[f ∈ PrimRec2 ; g ∈ PrimRec1 ; ∀ x. h x < g x ; ∀ x. f
x (h x) 6= 0 ; ∀ z x. z < h x −→ f x z = 0]] =⇒

h ∈ PrimRec1
proof −

assume f-is-pr : f ∈ PrimRec2
assume g-is-pr : g ∈ PrimRec1
assume h-lt-g: ∀ x. h x < g x
assume f-at-h-nz: ∀ x. f x (h x) 6= 0
assume h-is-min: ∀ z x. z < h x −→ f x z = 0
have h-def : h = (λ x. b-least2 f x (g x))
proof

fix x show h x = b-least2 f x (g x)
proof −
from f-at-h-nz have S1 : b-least2 f x (g x) ≤ h x by (simp add: nz-impl-b-least2-le)

from h-lt-g have h x < g x by auto
with S1 have b-least2 f x (g x) < g x by simp
then have S2 : f x (b-least2 f x (g x)) 6= 0 by (rule b-least2-less-impl-nz)
have S3 : h x ≤ b-least2 f x (g x)
proof (rule ccontr)

assume ¬ h x ≤ b-least2 f x (g x) then have b-least2 f x (g x) < h x by
auto

with h-is-min have f x (b-least2 f x (g x)) = 0 by simp
with S2 show False by auto

qed
from S1 S3 show ?thesis by auto

qed
qed
define f1 where f1 = b-least2 f
from f-is-pr f1-def have f1-is-pr : f1 ∈ PrimRec2 by (simp add: pr-b-least2)
with g-is-pr have (λ x. f1 x (g x)) ∈ PrimRec1 by prec
with h-def f1-def show h ∈ PrimRec1 by auto

qed

theorem b-least2-scheme2 : [[f ∈ PrimRec3 ; g ∈ PrimRec2 ; ∀ x y. h x y < g x y;
∀ x y. f x y (h x y) 6= 0 ;

∀ z x y. z < h x y −→ f x y z = 0]] =⇒
h ∈ PrimRec2

proof −
assume f-is-pr : f ∈ PrimRec3
assume g-is-pr : g ∈ PrimRec2
assume h-lt-g: ∀ x y. h x y < g x y
assume f-at-h-nz: ∀ x y. f x y (h x y) 6= 0
assume h-is-min: ∀ z x y. z < h x y −→ f x y z = 0
define f1 where f1 = pr-conv-3-to-2 f
define g1 where g1 = pr-conv-2-to-1 g

32

define h1 where h1 = pr-conv-2-to-1 h
from f-is-pr f1-def have f1-is-pr : f1 ∈ PrimRec2 by (simp add: pr-conv-3-to-2-lm)
from g-is-pr g1-def have g1-is-pr : g1 ∈ PrimRec1 by (simp add: pr-conv-2-to-1-lm)
from h-lt-g h1-def g1-def have h1-lt-g1 : ∀ x. h1 x < g1 x by (simp add:

pr-conv-2-to-1-def)
from f-at-h-nz f1-def h1-def have f1-at-h1-nz: ∀ x. f1 x (h1 x) 6= 0 by (simp

add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def)
from h-is-min f1-def h1-def have h1-is-min: ∀ z x. z < h1 x −→ f1 x z = 0 by

(simp add: pr-conv-2-to-1-def pr-conv-3-to-2-def pr-conv-3-to-1-def pr-conv-1-to-2-def)
from f1-is-pr g1-is-pr h1-lt-g1 f1-at-h1-nz h1-is-min have h1-is-pr : h1 ∈ Prim-

Rec1 by (rule b-least2-scheme)
from h1-def have h = pr-conv-1-to-2 h1 by simp
with h1-is-pr show h ∈ PrimRec2 by (simp add: pr-conv-1-to-2-lm)

qed

theorem div-is-pr : (λ a b. a div b) ∈ PrimRec2
proof −

define f where f a b z = (sgn1 b) ∗ (sgn1 (b∗(z+1)−a)) + (sgn2 b)∗(sgn2 z)
for a b z

have f-is-pr : f ∈ PrimRec3 unfolding f-def by prec
define h where h a b = a div b for a b :: nat
define g where g a b = a + 1 for a b :: nat
have g-is-pr : g ∈ PrimRec2 unfolding g-def by prec
have h-lt-g: ∀ a b. h a b < g a b
proof (rule allI , rule allI)

fix a b
from h-def have h a b ≤ a by simp
also from g-def have a < g a b by simp
ultimately show h a b < g a b by simp

qed
have f-at-h-nz: ∀ a b. f a b (h a b) 6= 0
proof (rule allI , rule allI)

fix a b show f a b (h a b) 6= 0
proof cases

assume A: b = 0
with h-def have h a b = 0 by simp
with f-def A show ?thesis by simp

next
assume A: b 6= 0
then have S1 : b > 0 by auto
from A f-def have S2 : f a b (h a b) = sgn1 (b ∗ (h a b + 1) − a) by simp
then have ?thesis = (sgn1 (b ∗ (h a b + 1) − a) 6= 0) by auto
also have . . . = (b ∗ (h a b + 1) − a > 0) by (rule sgn1-nz-eq-arg-pos)
also have . . . = (a < b ∗ (h a b + 1)) by auto
also have . . . = (a < b ∗ (h a b) + b) by auto
also from h-def have . . . = (a < b ∗ (a div b) + b) by simp
finally have S3 : ?thesis = (a < b ∗ (a div b) + b) by auto
have S4 : a < b ∗ (a div b) + b
proof −

33

from S1 have S4-1 : a mod b < b by (rule mod-less-divisor)
also have S4-2 : b ∗ (a div b) + a mod b = a by (rule mult-div-mod-eq)
from S4-1 have S4-3 : b ∗ (a div b) + a mod b < b ∗ (a div b) + b by arith
from S4-2 S4-3 show ?thesis by auto

qed
from S3 S4 show ?thesis by auto

qed
qed
have h-is-min: ∀ z a b. z < h a b −→ f a b z = 0
proof (rule allI , rule allI , rule allI , rule impI)

fix a b z assume A: z < h a b show f a b z = 0
proof −

from A h-def have S1 : z < a div b by simp
then have S2 : a div b > 0 by simp
have S3 : b 6= 0
proof (rule ccontr)

assume ¬ b 6= 0 then have b = 0 by auto
then have a div b = 0 by auto
with S2 show False by auto

qed
from S3 have b-pos: 0 < b by auto
from S1 have S4 : z+1 ≤ a div b by auto
from b-pos have (b ∗ (z+1) ≤ b ∗ (a div b)) = (z+1 ≤ a div b) by (rule

nat-mult-le-cancel1)
with S4 have S5 : b∗(z+1) ≤ b∗(a div b) by simp
moreover have b∗(a div b) ≤ a
proof −

have b∗(a div b) + (a mod b) = a by (rule mult-div-mod-eq)
moreover have 0 ≤ a mod b by auto
ultimately show ?thesis by arith

qed
ultimately have S6 : b∗(z+1) ≤ a

by (simp add: minus-mod-eq-mult-div [symmetric])
then have b∗(z+1) − a = 0 by auto
with S3 f-def show ?thesis by simp

qed
qed
from f-is-pr g-is-pr h-lt-g f-at-h-nz h-is-min have h-is-pr : h ∈ PrimRec2 by (rule

b-least2-scheme2)
with h-def [abs-def] show ?thesis by simp

qed

theorem mod-is-pr : (λ a b. a mod b) ∈ PrimRec2
proof −

have (λ (a::nat) (b::nat). a mod b) = (λ a b. a − (a div b) ∗ b)
proof (rule ext, rule ext)
fix a b show (a::nat) mod b = a − (a div b) ∗ b by (rule minus-div-mult-eq-mod

[symmetric])
qed

34

also from div-is-pr have (λ a b. a − (a div b) ∗ b) ∈ PrimRec2 by prec
ultimately show ?thesis by auto

qed

theorem pr-rec-last-scheme: [[g ∈ PrimRec1 ; h ∈ PrimRec3 ; ∀ x. f x 0 = g x; ∀
x y. f x (Suc y) = h x (f x y) y]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-at-0 : ∀ x. f x 0 = g x
assume f-at-Suc: ∀ x y. f x (Suc y) = h x (f x y) y
from f-at-0 f-at-Suc have

∧
x y. f x y = PrimRecOp-last g h x y by (induct-tac

y, simp-all)
then have f = PrimRecOp-last g h by (simp add: ext)
with g-is-pr h-is-pr show ?thesis by (simp add: pr-rec-last)

qed

theorem power-is-pr : (λ (x::nat) (n::nat). x ^ n) ∈ PrimRec2
proof −

define g :: nat ⇒ nat where g x = 1 for x
define h where h a b c = a ∗ b for a b c :: nat
have g-is-pr : g ∈ PrimRec1 unfolding g-def by prec
have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
let ?f = λ (x::nat) (n::nat). x ^ n
have f-at-0 : ∀ x. ?f x 0 = g x
proof

fix x show x ^ 0 = g x by (simp add: g-def)
qed
have f-at-Suc: ∀ x y. ?f x (Suc y) = h x (?f x y) y
proof (rule allI , rule allI)

fix x y show ?f x (Suc y) = h x (?f x y) y by (simp add: h-def)
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme)

qed

end

3 Primitive recursive coding of lists of natural num-
bers

theory PRecList
imports PRecFun
begin

We introduce a particular coding list-to-nat from lists of natural numbers
to natural numbers.
definition

c-len :: nat ⇒ nat where

35

c-len = (λ (u::nat). (sgn1 u) ∗ (c-fst(u−(1 ::nat))+1))

lemma c-len-1 : c-len u = (case u of 0 ⇒ 0 | Suc v ⇒ c-fst(v)+1) by (unfold
c-len-def , cases u, auto)

lemma c-len-is-pr : c-len ∈ PrimRec1 unfolding c-len-def by prec

lemma [simp]: c-len 0 = 0 by (simp add: c-len-def)

lemma c-len-2 : u 6= 0 =⇒ c-len u = c-fst(u−(1 ::nat))+1 by (simp add: c-len-def)

lemma c-len-3 : u>0 =⇒ c-len u > 0 by (simp add: c-len-2)

lemma c-len-4 : c-len u = 0 =⇒ u = 0
proof cases

assume A1 : u = 0
thus ?thesis by simp

next
assume A1 : c-len u = 0 and A2 : u 6= 0
from A2 have c-len u > 0 by (simp add: c-len-3)
from A1 this show u=0 by simp

qed

lemma c-len-5 : c-len u > 0 =⇒ u > 0
proof cases

assume A1 : c-len u > 0 and A2 : u=0
from A2 have c-len u = 0 by simp
from A1 this show ?thesis by simp

next
assume A1 : u 6= 0
from A1 show u>0 by simp

qed

fun c-fold :: nat list ⇒ nat where
c-fold [] = 0
| c-fold [x] = x
| c-fold (x#ls) = c-pair x (c-fold ls)

lemma c-fold-0 : ls 6= [] =⇒ c-fold (x#ls) = c-pair x (c-fold ls)
proof −

assume A1 : ls 6= []
then have S1 : ls = (hd ls)#(tl ls) by simp
then have S2 : x#ls = x#(hd ls)#(tl ls) by simp
have S3 : c-fold (x#(hd ls)#(tl ls)) = c-pair x (c-fold ((hd ls)#(tl ls))) by simp
from S1 S2 S3 show ?thesis by simp

qed

primrec
c-unfold :: nat ⇒ nat ⇒ nat list

36

where
c-unfold 0 u = []
| c-unfold (Suc k) u = (if k = 0 then [u] else ((c-fst u) # (c-unfold k (c-snd u))))

lemma c-fold-1 : c-unfold 1 (c-fold [x]) = [x] by simp

lemma c-fold-2 : c-fold (c-unfold 1 u) = u by simp

lemma c-unfold-1 : c-unfold 1 u = [u] by simp

lemma c-unfold-2 : c-unfold (Suc 1) u = (c-fst u) # (c-unfold 1 (c-snd u)) by
simp

lemma c-unfold-3 : c-unfold (Suc 1) u = [c-fst u, c-snd u] by simp

lemma c-unfold-4 : k > 0 =⇒ c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd
u)) by simp

lemma c-unfold-4-1 : k > 0 =⇒ c-unfold (Suc k) u 6= [] by (simp add: c-unfold-4)

lemma two: (2 ::nat) = Suc 1 by simp

lemma c-unfold-5 : c-unfold 2 u = [c-fst u, c-snd u] by (simp add: two)

lemma c-unfold-6 : k>0 =⇒ c-unfold k u 6= []
proof −

assume A1 : k>0
let ?k1 = k−(1 ::nat)
from A1 have S1 : k = Suc ?k1 by simp
have S2 : ?k1 = 0 =⇒ ?thesis
proof −

assume A2-1 : ?k1=0
from A1 A2-1 have S2-1 : k=1 by simp
from S2-1 show ?thesis by (simp add: c-unfold-1)

qed
have S3 : ?k1 > 0 =⇒ ?thesis
proof −

assume A3-1 : ?k1 > 0
from A3-1 have S3-1 : c-unfold (Suc ?k1) u 6= [] by (rule c-unfold-4-1)
from S1 S3-1 show ?thesis by simp

qed
from S2 S3 show ?thesis by arith

qed

lemma th-lm-1 : k=1 =⇒ (∀ u. c-fold (c-unfold k u) = u) by (simp add: c-fold-2)

lemma th-lm-2 : [[k>0 ; (∀ u. c-fold (c-unfold k u) = u)]] =⇒ (∀ u. c-fold (c-unfold
(Suc k) u) = u)
proof

37

assume A1 : k>0
assume A2 : ∀ u. c-fold (c-unfold k u) = u
fix u
from A1 have S1 : c-unfold (Suc k) u = (c-fst u) # (c-unfold k (c-snd u)) by

(rule c-unfold-4)
let ?ls = c-unfold k (c-snd u)
from A1 have S2 : ?ls 6= [] by (rule c-unfold-6)
from S2 have S3 : c-fold ((c-fst u) # ?ls) = c-pair (c-fst u) (c-fold ?ls) by (rule

c-fold-0)
from A2 have S4 : c-fold ?ls = c-snd u by simp
from S3 S4 have S5 : c-fold ((c-fst u) # ?ls) = c-pair (c-fst u) (c-snd u) by

simp
from S5 have S6 : c-fold ((c-fst u) # ?ls) = u by simp
from S1 S6 have S7 : c-fold (c-unfold (Suc k) u) = u by simp
thus c-fold (c-unfold (Suc k) u) = u .

qed

lemma th-lm-3 : (∀ u. c-fold (c-unfold (Suc k) u) = u)=⇒ (∀ u. c-fold (c-unfold
(Suc (Suc k)) u) = u)
proof −

assume A1 : ∀ u. c-fold (c-unfold (Suc k) u) = u
let ?k1 = Suc k
have S1 : ?k1 > 0 by simp
from S1 A1 have S2 : ∀ u. c-fold (c-unfold (Suc ?k1) u) = u by (rule th-lm-2)
thus ?thesis by simp

qed

theorem th-1 : ∀ u. c-fold (c-unfold (Suc k) u) = u
apply(induct k)
apply(simp add: c-fold-2)
apply(rule th-lm-3)
apply(assumption)
done

theorem th-2 : k > 0 =⇒ (∀ u. c-fold (c-unfold k u) = u)
proof −

assume A1 : k>0
let ?k1 = k−(1 ::nat)
from A1 have S1 : Suc ?k1 = k by simp
have S2 : ∀ u. c-fold (c-unfold (Suc ?k1) u) = u by (rule th-1)
from S1 S2 show ?thesis by simp

qed

lemma c-fold-3 : c-unfold 2 (c-fold [x, y]) = [x, y] by (simp add: two)

theorem c-unfold-len: ALL u. length (c-unfold k u) = k
apply(induct k)
apply(simp)
apply(subgoal-tac n=(0 ::nat) ∨ n>0)

38

apply(drule disjE)
prefer 3
apply(simp-all)
apply(auto)
done

lemma th-3-lm-0 : [[c-unfold (length ls) (c-fold ls) = ls; ls = a # ls1 ; ls1 = aa #
list]] =⇒ c-unfold (length (x # ls)) (c-fold (x # ls)) = x # ls
proof −

assume A1 : c-unfold (length ls) (c-fold ls) = ls
assume A2 : ls = a # ls1
assume A3 : ls1 = aa # list
from A2 have S1 : ls 6= [] by simp
from S1 have S2 : c-fold (x#ls) = c-pair x (c-fold ls) by (rule c-fold-0)
have S3 : length (x#ls) = Suc (length ls) by simp
from S3 have S4 : c-unfold (length (x # ls)) (c-fold (x # ls)) = c-unfold (Suc

(length ls)) (c-fold (x # ls)) by simp
from A2 have S5 : length ls > 0 by simp
from S5 have S6 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = c-fst (c-fold (x

ls))#(c-unfold (length ls) (c-snd (c-fold (x#ls)))) by (rule c-unfold-4)
from S2 have S7 : c-fst (c-fold (x#ls)) = x by simp
from S2 have S8 : c-snd (c-fold (x#ls)) = c-fold ls by simp
from S6 S7 S8 have S9 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = x #

(c-unfold (length ls) (c-fold ls)) by simp
from A1 have S10 : x # (c-unfold (length ls) (c-fold ls)) = x # ls by simp
from S9 S10 have S11 : c-unfold (Suc (length ls)) (c-fold (x # ls)) = (x # ls)

by simp
thus ?thesis by simp

qed

lemma th-3-lm-1 : [[c-unfold (length ls) (c-fold ls) = ls; ls = a # ls1]] =⇒ c-unfold
(length (x # ls)) (c-fold (x # ls)) = x # ls
apply(cases ls1)
apply(simp add: c-fold-1)
apply(simp)
done

lemma th-3-lm-2 : c-unfold (length ls) (c-fold ls) = ls =⇒ c-unfold (length (x #
ls)) (c-fold (x # ls)) = x # ls
apply(cases ls)
apply(simp add: c-fold-1)
apply(rule th-3-lm-1)
apply(assumption+)
done

theorem th-3 : c-unfold (length ls) (c-fold ls) = ls
apply(induct ls)
apply(simp)
apply(rule th-3-lm-2)

39

apply(assumption)
done

definition
list-to-nat :: nat list ⇒ nat where
list-to-nat = (λ ls. if ls=[] then 0 else (c-pair ((length ls) − 1) (c-fold ls))+1)

definition
nat-to-list :: nat ⇒ nat list where
nat-to-list = (λ u. if u=0 then [] else (c-unfold (c-len u) (c-snd (u−(1 ::nat)))))

lemma nat-to-list-of-pos: u>0 =⇒ nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat)))
by (simp add: nat-to-list-def)

theorem list-to-nat-th [simp]: list-to-nat (nat-to-list u) = u
proof −

have S1 : u=0 =⇒ ?thesis by (simp add: list-to-nat-def nat-to-list-def)
have S2 : u>0 =⇒ ?thesis
proof −

assume A1 : u>0
define ls where ls = nat-to-list u
from ls-def A1 have S2-1 : ls = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(simp add: nat-to-list-def)
let ?k = c-len u
from A1 have S2-2 : ?k > 0 by (rule c-len-3)
from S2-1 have S2-3 : length ls = ?k by (simp add: c-unfold-len)
from S2-2 S2-3 have S2-4 : length ls > 0 by simp
from S2-4 have S2-5 : ls 6= [] by simp
from S2-5 have S2-6 : list-to-nat ls = c-pair ((length ls)−(1 ::nat)) (c-fold ls)+1

by (simp add: list-to-nat-def)
have S2-7 : c-fold ls = c-snd(u−(1 ::nat))
proof −
from S2-1 have S2-7-1 : c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u−(1 ::nat))))

by simp
from S2-2 S2-7-1 show ?thesis by (simp add: th-2)

qed
have S2-8 : (length ls)−(1 ::nat) = c-fst (u−(1 ::nat))
proof −

from S2-3 have S2-8-1 : length ls = c-len u by simp
from A1 S2-8-1 have S2-8-2 : length ls = c-fst(u−(1 ::nat)) + 1 by (simp

add: c-len-2)
from S2-8-2 show ?thesis by simp

qed
from S2-7 S2-8 have S2-9 : c-pair ((length ls)−(1 ::nat)) (c-fold ls) = c-pair

(c-fst (u−(1 ::nat))) (c-snd (u−(1 ::nat))) by simp
from S2-9 have S2-10 : c-pair ((length ls)−(1 ::nat)) (c-fold ls) = u − (1 ::nat)

by simp
from S2-6 S2-10 have S2-11 : list-to-nat ls = (u − (1 ::nat))+1 by simp
from A1 have S2-12 : (u − (1 ::nat))+1 = u by simp

40

from ls-def S2-11 S2-12 show ?thesis by simp
qed
from S1 S2 show ?thesis by arith

qed

theorem nat-to-list-th [simp]: nat-to-list (list-to-nat ls) = ls
proof −

have S1 : ls=[] =⇒ ?thesis by (simp add: nat-to-list-def list-to-nat-def)
have S2 : ls 6= [] =⇒ ?thesis
proof −

assume A1 : ls 6= []
define u where u = list-to-nat ls
from u-def A1 have S2-1 : u = (c-pair ((length ls)−(1 ::nat)) (c-fold ls))+1 by

(simp add: list-to-nat-def)
let ?k = length ls
from A1 have S2-2 : ?k > 0 by simp
from S2-1 have S2-3 : u>0 by simp
from S2-3 have S2-4 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat)))

by (simp add: nat-to-list-def)
have S2-5 : c-len u = length ls
proof −

from S2-1 have S2-5-1 : u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold
ls) by simp

from S2-5-1 have S2-5-2 : c-fst (u−(1 ::nat)) = (length ls)−(1 ::nat) by simp
from S2-2 S2-5-2 have c-fst (u−(1 ::nat))+1 = length ls by simp
from S2-3 this show ?thesis by (simp add: c-len-2)

qed
have S2-6 : c-snd (u−(1 ::nat)) = c-fold ls
proof −

from S2-1 have S2-6-1 : u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold
ls) by simp

from S2-6-1 show ?thesis by simp
qed
from S2-4 S2-5 S2-6 have S2-7 :nat-to-list u = c-unfold (length ls) (c-fold ls)

by simp
from S2-7 have nat-to-list u = ls by (simp add: th-3)
from u-def this show ?thesis by simp

qed
have S3 : ls = [] ∨ ls 6= [] by simp
from S1 S2 S3 show ?thesis by auto

qed

lemma [simp]: list-to-nat [] = 0 by (simp add: list-to-nat-def)

lemma [simp]: nat-to-list 0 = [] by (simp add: nat-to-list-def)

theorem c-len-th-1 : c-len (list-to-nat ls) = length ls
proof (cases)

assume ls=[]

41

from this show ?thesis by simp
next

assume S1 : ls 6= []
then have S2 : list-to-nat ls = c-pair ((length ls)−(1 ::nat)) (c-fold ls)+1 by

(simp add: list-to-nat-def)
let ?u = list-to-nat ls
from S2 have u-not-zero: ?u > 0 by simp
from S2 have S3 : ?u−(1 ::nat) = c-pair ((length ls)−(1 ::nat)) (c-fold ls) by

simp
then have S4 : c-fst(?u−(1 ::nat)) = (length ls)−(1 ::nat) by simp
from S1 this have S5 : c-fst(?u−(1 ::nat))+1=length ls by simp
from u-not-zero S5 have S6 : c-len (?u) = length ls by (simp add: c-len-2)
from S1 S6 show ?thesis by simp

qed

theorem length (nat-to-list u) = c-len u
proof −

let ?ls = nat-to-list u
have S1 : u = list-to-nat ?ls by (rule list-to-nat-th [THEN sym])
from c-len-th-1 have S2 : length ?ls = c-len (list-to-nat ?ls) by (rule sym)
from S1 S2 show ?thesis by (rule ssubst)

qed

definition
c-hd :: nat ⇒ nat where
c-hd = (λ u. if u=0 then 0 else hd (nat-to-list u))

definition
c-tl :: nat ⇒ nat where
c-tl = (λ u. list-to-nat (tl (nat-to-list u)))

definition
c-cons :: nat ⇒ nat ⇒ nat where
c-cons = (λ x u. list-to-nat (x # (nat-to-list u)))

lemma [simp]: c-hd 0 = 0 by (simp add: c-hd-def)

lemma c-hd-aux0 : c-len u = 1 =⇒ nat-to-list u = [c-snd (u−(1 ::nat))] by (simp
add: nat-to-list-def c-len-5)

lemma c-hd-aux1 : c-len u = 1 =⇒ c-hd u = c-snd (u−(1 ::nat))
proof −

assume A1 : c-len u = 1
then have S1 : nat-to-list u = [c-snd (u−(1 ::nat))] by (simp add: nat-to-list-def

c-len-5)
from A1 have u > 0 by (simp add: c-len-5)
with S1 show ?thesis by (simp add: c-hd-def)

qed

42

lemma c-hd-aux2 : c-len u > 1 =⇒ c-hd u = c-fst (c-snd (u−(1 ::nat)))
proof −

assume A1 : c-len u > 1
let ?k = (c-len u) − 1
from A1 have S1 : c-len u = Suc ?k by simp
from A1 have S2 : c-len u > 0 by simp
from S2 have S3 : u > 0 by (rule c-len-5)
from S3 have S4 : c-hd u = hd (nat-to-list u) by (simp add: c-hd-def)
from S3 have S5 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
from S1 S5 have S6 : nat-to-list u = c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) by

simp
from A1 have S7 : ?k > 0 by simp
from S7 have S8 : c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) = (c-fst (c-snd (u−(1 ::nat))))

(c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) by (rule c-unfold-4)
from S6 S8 have S9 : nat-to-list u = (c-fst (c-snd (u−(1 ::nat)))) # (c-unfold ?k

(c-snd (c-snd (u−(1 ::nat))))) by simp
from S9 have S10 : hd (nat-to-list u) = c-fst (c-snd (u−(1 ::nat))) by simp
from S4 S10 show ?thesis by simp

qed

lemma c-hd-aux3 : u > 0 =⇒ c-hd u = (if (c-len u) = 1 then c-snd (u−(1 ::nat))
else c-fst (c-snd (u−(1 ::nat))))
proof −

assume A1 : u > 0
from A1 have c-len u > 0 by (rule c-len-3)
then have S1 : c-len u = 1 ∨ c-len u > 1 by arith
let ?tmp = if (c-len u) = 1 then c-snd (u−(1 ::nat)) else c-fst (c-snd (u−(1 ::nat)))
have S2 : c-len u = 1 =⇒ ?thesis
proof −

assume A2-1 : c-len u = 1
then have S2-1 : c-hd u = c-snd (u−(1 ::nat)) by (rule c-hd-aux1)
from A2-1 have S2-2 : ?tmp = c-snd(u−(1 ::nat)) by simp
from S2-1 this show ?thesis by simp

qed
have S3 : c-len u > 1 =⇒ ?thesis
proof −

assume A3-1 : c-len u > 1
from A3-1 have S3-1 : c-hd u = c-fst (c-snd (u−(1 ::nat))) by (rule c-hd-aux2)
from A3-1 have S3-2 : ?tmp = c-fst (c-snd (u−(1 ::nat))) by simp
from S3-1 this show ?thesis by simp

qed
from S1 S2 S3 show ?thesis by auto

qed

lemma c-hd-aux4 : c-hd u = (if u=0 then 0 else (if (c-len u) = 1 then c-snd
(u−(1 ::nat)) else c-fst (c-snd (u−(1 ::nat)))))
proof cases

43

assume u=0 then show ?thesis by simp
next

assume u 6= 0 then have A1 : u > 0 by simp
then show ?thesis by (simp add: c-hd-aux3)

qed

lemma c-hd-is-pr : c-hd ∈ PrimRec1
proof −

have c-hd = (%u. (if u=0 then 0 else (if (c-len u) = 1 then c-snd (u−(1 ::nat))
else c-fst (c-snd (u−(1 ::nat)))))) (is - = ?R) by (simp add: c-hd-aux4 ext)

moreover have ?R ∈ PrimRec1
proof (rule if-is-pr)

show (λ x. x) ∈ PrimRec1 by (rule pr-id1-1)
next show (λ x. 0) ∈ PrimRec1 by (rule pr-zero)
next show (λx. if c-len x = 1 then c-snd (x − 1) else c-fst (c-snd (x − 1)))

∈ PrimRec1
proof (rule if-eq-is-pr)

show c-len ∈ PrimRec1 by (rule c-len-is-pr)
next show (λ x. 1) ∈ PrimRec1 by (rule const-is-pr)
next show (λx. c-snd (x − 1)) ∈ PrimRec1 by prec
next show (λx. c-fst (c-snd (x − 1))) ∈ PrimRec1 by prec

qed
qed
ultimately show ?thesis by simp

qed

lemma [simp]: c-tl 0 = 0 by (simp add: c-tl-def)

lemma c-tl-eq-tl: c-tl (list-to-nat ls) = list-to-nat (tl ls) by (simp add: c-tl-def)

lemma tl-eq-c-tl: tl (nat-to-list x) = nat-to-list (c-tl x) by (simp add: c-tl-def)

lemma c-tl-aux1 : c-len u = 1 =⇒ c-tl u = 0 by (unfold c-tl-def , simp add:
c-hd-aux0)

lemma c-tl-aux2 : c-len u > 1 =⇒ c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd
(c-snd (u−(1 ::nat))))) + 1
proof −

assume A1 : c-len u > 1
let ?k = (c-len u) − 1
from A1 have S1 : c-len u = Suc ?k by simp
from A1 have S2 : c-len u > 0 by simp
from S2 have S3 : u > 0 by (rule c-len-5)
from S3 have S4 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
from A1 have S5 : ?k > 0 by simp
from S5 have S6 : c-unfold (Suc ?k) (c-snd (u−(1 ::nat))) = (c-fst (c-snd (u−(1 ::nat))))

(c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) by (rule c-unfold-4)
from S6 have S7 : tl (c-unfold (Suc ?k) (c-snd (u−(1 ::nat)))) = c-unfold ?k

44

(c-snd (c-snd (u−(1 ::nat)))) by simp
from S2 S4 S7 have S8 : tl (nat-to-list u) = c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))

by simp
define ls where ls = tl (nat-to-list u)
from ls-def S8 have S9 : length ls = ?k by (simp add: c-unfold-len)
from ls-def have S10 : c-tl u = list-to-nat ls by (simp add: c-tl-def)
from S5 S9 have S11 : length ls > 0 by simp
from S11 have S12 : ls 6= [] by simp
from S12 have S13 : list-to-nat ls = (c-pair ((length ls) − 1) (c-fold ls))+1 by

(simp add: list-to-nat-def)
from S10 S13 have S14 : c-tl u = (c-pair ((length ls) − 1) (c-fold ls))+1 by

simp
from S9 have S15 : (length ls)−(1 ::nat) = ?k−(1 ::nat) by simp
from A1 have S16 : ?k−(1 ::nat) = c-len u − (2 ::nat) by arith
from S15 S16 have S17 : (length ls)−(1 ::nat) = c-len u − (2 ::nat) by simp
from ls-def S8 have S18 : ls = c-unfold ?k (c-snd (c-snd (u−(1 ::nat)))) by simp
from S5 have S19 : c-fold (c-unfold ?k (c-snd (c-snd (u−(1 ::nat))))) = c-snd

(c-snd (u−(1 ::nat))) by (simp add: th-2)
from S18 S19 have S20 : c-fold ls = c-snd (c-snd (u−(1 ::nat))) by simp
from S14 S17 S20 show ?thesis by simp

qed

lemma c-tl-aux3 : c-tl u = (sgn1 ((c-len u) − 1))∗((c-pair (c-len u − (2 ::nat))
(c-snd (c-snd (u−(1 ::nat))))) + 1) (is - = ?R)
proof −

have S1 : u=0 =⇒ ?thesis by simp
have S2 : u>0 =⇒ ?thesis
proof −

assume A1 : u>0
have S2-1 : c-len u = 1 =⇒ ?thesis by (simp add: c-tl-aux1)
have S2-2 : c-len u 6= 1 =⇒ ?thesis
proof −

assume A2-2-1 : c-len u 6= 1
from A1 have S2-2-1 : c-len u > 0 by (rule c-len-3)
from A2-2-1 S2-2-1 have S2-2-2 : c-len u > 1 by arith
from this have S2-2-3 : c-len u − 1 > 0 by simp
from this have S2-2-4 : sgn1 (c-len u − 1)=1 by simp
from S2-2-4 have S2-2-5 : ?R = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd

(u−(1 ::nat))))) + 1 by simp
from S2-2-2 have S2-2-6 : c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd

(u−(1 ::nat))))) + 1 by (rule c-tl-aux2)
from S2-2-5 S2-2-6 show ?thesis by simp

qed
from S2-1 S2-2 show ?thesis by blast
qed
from S1 S2 show ?thesis by arith

qed

lemma c-tl-less: u > 0 =⇒ c-tl u < u

45

proof −
assume A1 : u > 0
then have S1 : c-len u > 0 by (rule c-len-3)
then show ?thesis
proof cases

assume c-len u = 1
from this A1 show ?thesis by (simp add: c-tl-aux1)

next
assume ¬ c-len u = 1 with S1 have A2 : c-len u > 1 by simp

then have S2 : c-tl u = (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat)))))
+ 1 by (rule c-tl-aux2)

from A1 have S3 : c-len u = c-fst(u−(1 ::nat))+1 by (simp add: c-len-def)
from A2 S3 have S4 : c-len u − (2 ::nat) < c-fst(u−(1 ::nat)) by simp
then have S5 : (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat))))) <

(c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) by (rule c-pair-strict-mono1)
have S6 : c-snd (c-snd (u−(1 ::nat))) ≤ c-snd (u−(1 ::nat)) by (rule c-snd-le-arg)

then have S7 : (c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) ≤
(c-pair (c-fst(u−(1 ::nat))) (c-snd (u−(1 ::nat)))) by (rule c-pair-mono2)

then have S8 : (c-pair (c-fst(u−(1 ::nat))) (c-snd (c-snd (u−(1 ::nat))))) ≤
u−(1 ::nat) by simp

with S5 have (c-pair (c-len u − (2 ::nat)) (c-snd (c-snd (u−(1 ::nat))))) < u
− (1 ::nat) by simp

with S2 have c-tl u < (u−(1 ::nat))+1 by simp
with A1 show ?thesis by simp

qed
qed

lemma c-tl-le: c-tl u ≤ u
proof (cases u)

assume u=0
then show ?thesis by simp

next
fix v assume A1 : u = Suc v
then have S1 : u > 0 by simp
then have S2 : c-tl u < u by (rule c-tl-less)
with A1 show c-tl u ≤ u by simp

qed

theorem c-tl-is-pr : c-tl ∈ PrimRec1
proof −

have c-tl = (λ u. (sgn1 ((c-len u) − 1))∗((c-pair (c-len u − (2 ::nat)) (c-snd
(c-snd (u−(1 ::nat))))) + 1)) (is - = ?R) by (simp add: c-tl-aux3 ext)

moreover from c-len-is-pr c-pair-is-pr have ?R ∈ PrimRec1 by prec
ultimately show ?thesis by simp

qed

lemma c-cons-aux1 : c-cons x 0 = (c-pair 0 x) + 1
apply(unfold c-cons-def)
apply(simp)

46

apply(unfold list-to-nat-def)
apply(simp)
done

lemma c-cons-aux2 : u > 0 =⇒ c-cons x u = (c-pair (c-len u) (c-pair x (c-snd
(u−(1 ::nat))))) + 1
proof −

assume A1 : u > 0
from A1 have S1 : c-len u > 0 by (rule c-len-3)
from A1 have S2 : nat-to-list u = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by

(rule nat-to-list-of-pos)
define ls where ls = nat-to-list u
from ls-def S2 have S3 : ls = c-unfold (c-len u) (c-snd (u−(1 ::nat))) by simp
from S3 have S4 : length ls = c-len u by (simp add: c-unfold-len)
from S4 S1 have S5 : length ls > 0 by simp
from S5 have S6 : ls 6= [] by simp
from ls-def have S7 : c-cons x u = list-to-nat (x # ls) by (simp add: c-cons-def)
have S8 : list-to-nat (x # ls) = (c-pair ((length (x#ls))−(1 ::nat)) (c-fold (x#ls)))+1

by (simp add: list-to-nat-def)
have S9 : (length (x#ls))−(1 ::nat) = length ls by simp
from S9 S4 S8 have S10 : list-to-nat (x # ls) = (c-pair (c-len u) (c-fold

(x#ls)))+1 by simp
have S11 : c-fold (x#ls) = c-pair x (c-snd (u−(1 ::nat)))
proof −

from S6 have S11-1 : c-fold (x#ls) = c-pair x (c-fold ls) by (rule c-fold-0)
from S3 have S11-2 : c-fold ls = c-fold (c-unfold (c-len u) (c-snd (u−(1 ::nat))))

by simp
from S1 S11-2 have S11-3 : c-fold ls = c-snd (u−(1 ::nat)) by (simp add: th-2)
from S11-1 S11-3 show ?thesis by simp

qed
from S7 S10 S11 show ?thesis by simp

qed

lemma c-cons-aux3 : c-cons = (λ x u. (sgn2 u)∗((c-pair 0 x)+1) + (sgn1 u)∗((c-pair
(c-len u) (c-pair x (c-snd (u−(1 ::nat))))) + 1))
proof (rule ext, rule ext)

fix x u show c-cons x u = (sgn2 u)∗((c-pair 0 x)+1) + (sgn1 u)∗((c-pair (c-len
u) (c-pair x (c-snd (u−(1 ::nat))))) + 1) (is - = ?R)

proof cases
assume A1 : u=0
then have ?R = (c-pair 0 x)+1 by simp

moreover from A1 have c-cons x u = (c-pair 0 x)+1 by (simp add: c-cons-aux1)
ultimately show ?thesis by simp

next
assume A1 : u 6=0
then have S1 : ?R = (c-pair (c-len u) (c-pair x (c-snd (u−(1 ::nat))))) + 1 by

simp
from A1 have S2 : c-cons x u = (c-pair (c-len u) (c-pair x (c-snd (u−(1 ::nat)))))

+ 1 by (simp add: c-cons-aux2)

47

from S1 S2 have c-cons x u = ?R by simp
then show ?thesis .

qed
qed

lemma c-cons-pos: c-cons x u > 0
proof cases

assume u=0
then show c-cons x u > 0 by (simp add: c-cons-aux1)

next
assume ¬ u=0 then have u>0 by simp
then show c-cons x u > 0 by (simp add: c-cons-aux2)

qed

theorem c-cons-is-pr : c-cons ∈ PrimRec2
proof −

have c-cons = (λ x u. (sgn2 u)∗((c-pair 0 x)+1) + (sgn1 u)∗((c-pair (c-len u)
(c-pair x (c-snd (u−(1 ::nat))))) + 1)) (is - = ?R) by (simp add: c-cons-aux3)

moreover from c-pair-is-pr c-len-is-pr have ?R ∈ PrimRec2 by prec
ultimately show ?thesis by simp

qed

definition
c-drop :: nat ⇒ nat ⇒ nat where
c-drop = PrimRecOp (λ x. x) (λ x y z. c-tl y)

lemma c-drop-at-0 [simp]: c-drop 0 x = x by (simp add: c-drop-def)

lemma c-drop-at-Suc: c-drop (Suc y) x = c-tl (c-drop y x) by (simp add: c-drop-def)

theorem c-drop-is-pr : c-drop ∈ PrimRec2
proof −

have (λ x. x) ∈ PrimRec1 by (rule pr-id1-1)
moreover from c-tl-is-pr have (λ x y z. c-tl y) ∈ PrimRec3 by prec
ultimately show ?thesis by (simp add: c-drop-def pr-rec)

qed

lemma c-tl-c-drop: c-tl (c-drop y x) = c-drop y (c-tl x)
apply(induct y)
apply(simp)
apply(simp add: c-drop-at-Suc)
done

lemma c-drop-at-Suc1 : c-drop (Suc y) x = c-drop y (c-tl x)
apply(simp add: c-drop-at-Suc c-tl-c-drop)
done

lemma c-drop-df : ∀ ls. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
proof (induct n)

48

show ∀ ls. drop 0 ls = nat-to-list (c-drop 0 (list-to-nat ls)) by (simp add:
c-drop-def)
next

fix n assume A1 : ∀ ls. drop n ls = nat-to-list (c-drop n (list-to-nat ls))
then show ∀ ls. drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls))
proof −

{
fix ls::nat list
have S1 : drop (Suc n) ls = drop n (tl ls) by (rule drop-Suc)
from A1 have S2 : drop n (tl ls) = nat-to-list (c-drop n (list-to-nat (tl ls))) by

simp
also have . . . = nat-to-list (c-drop n (c-tl (list-to-nat ls))) by (simp add:

c-tl-eq-tl)
also have . . . = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by (simp add:

c-drop-at-Suc1)
finally have drop n (tl ls) = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by simp
with S1 have drop (Suc n) ls = nat-to-list (c-drop (Suc n) (list-to-nat ls)) by

simp
}
then show ?thesis by blast

qed
qed

definition
c-nth :: nat ⇒ nat ⇒ nat where
c-nth = (λ x n. c-hd (c-drop n x))

lemma c-nth-is-pr : c-nth ∈ PrimRec2
proof (unfold c-nth-def)

from c-hd-is-pr c-drop-is-pr show (λx n. c-hd (c-drop n x)) ∈ PrimRec2 by prec
qed

lemma c-nth-at-0 : c-nth x 0 = c-hd x by (simp add: c-nth-def)

lemma c-hd-c-cons [simp]: c-hd (c-cons x y) = x
proof −

have c-cons x y > 0 by (rule c-cons-pos)
then show ?thesis by (simp add: c-hd-def c-cons-def)

qed

lemma c-tl-c-cons [simp]: c-tl (c-cons x y) = y by (simp add: c-tl-def c-cons-def)

definition
c-f-list :: (nat ⇒ nat ⇒ nat) ⇒ nat ⇒ nat ⇒ nat where
c-f-list = (λ f .
let g = (%x. c-cons (f 0 x) 0); h = (%a b c. c-cons (f (Suc a) c) b) in PrimRecOp

g h)

lemma c-f-list-at-0 : c-f-list f 0 x = c-cons (f 0 x) 0 by (simp add: c-f-list-def

49

Let-def)

lemma c-f-list-at-Suc: c-f-list f (Suc y) x = c-cons (f (Suc y) x) (c-f-list f y x) by
((simp add: c-f-list-def Let-def))

lemma c-f-list-is-pr : f ∈ PrimRec2 =⇒ c-f-list f ∈ PrimRec2
proof −

assume A1 : f ∈ PrimRec2
let ?g = (%x. c-cons (f 0 x) 0)
from A1 c-cons-is-pr have S1 : ?g ∈ PrimRec1 by prec
let ?h = (%a b c. c-cons (f (Suc a) c) b)
from A1 c-cons-is-pr have S2 : ?h ∈ PrimRec3 by prec
from S1 S2 show ?thesis by (simp add: pr-rec c-f-list-def Let-def)

qed

lemma c-f-list-to-f-0 : f y x = c-hd (c-f-list f y x)
apply(induct y)
apply(simp add: c-f-list-at-0)
apply(simp add: c-f-list-at-Suc)
done

lemma c-f-list-to-f : f = (λ y x. c-hd (c-f-list f y x))
apply(rule ext, rule ext)
apply(rule c-f-list-to-f-0)
done

lemma c-f-list-f-is-pr : c-f-list f ∈ PrimRec2 =⇒ f ∈ PrimRec2
proof −

assume A1 : c-f-list f ∈ PrimRec2
have S1 : f = (λ y x . c-hd (c-f-list f y x)) by (rule c-f-list-to-f)
from A1 c-hd-is-pr have S2 : (λ y x. c-hd (c-f-list f y x)) ∈ PrimRec2 by prec
with S1 show ?thesis by simp

qed

lemma c-f-list-lm-1 : c-nth (c-cons x y) (Suc z) = c-nth y z by (simp add: c-nth-def
c-drop-at-Suc1)

lemma c-f-list-lm-2 : z < Suc n =⇒ c-nth (c-f-list f (Suc n) x) (Suc n − z) =
c-nth (c-f-list f n x) (n − z)
proof −

assume z < Suc n
then have Suc n − z = Suc (n−z) by arith
then have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f (Suc n) x)

(Suc (n − z)) by simp
also have . . . = c-nth (c-cons (f (Suc n) x) (c-f-list f n x)) (Suc (n − z)) by

(simp add: c-f-list-at-Suc)
also have . . . = c-nth (c-f-list f n x) (n − z) by (simp add: c-f-list-lm-1)
finally show ?thesis by simp

qed

50

lemma c-f-list-nth: z ≤ y −→ c-nth (c-f-list f y x) (y−z) = f z x
proof (induct y)

show z ≤ 0 −→ c-nth (c-f-list f 0 x) (0 − z) = f z x
proof

assume z ≤ 0 then have A1 : z=0 by simp
then have c-nth (c-f-list f 0 x) (0 − z) = c-nth (c-f-list f 0 x) 0 by simp
also have . . . = c-hd (c-f-list f 0 x) by (simp add: c-nth-at-0)
also have . . . = c-hd (c-cons (f 0 x) 0) by (simp add: c-f-list-at-0)
also have . . . = f 0 x by simp
finally show c-nth (c-f-list f 0 x) (0 − z) = f z x by (simp add: A1)

qed
next

fix n assume A2 : z ≤ n −→ c-nth (c-f-list f n x) (n − z) = f z x show z ≤
Suc n −→ c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x

proof
assume A3 : z ≤ Suc n
show z ≤ Suc n =⇒ c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x
proof cases

assume AA1 : z ≤ n
then have AA2 : z < Suc n by simp
from A2 this have S1 : c-nth (c-f-list f n x) (n − z) = f z x by auto
from AA2 have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f n

x) (n − z) by (rule c-f-list-lm-2)
with S1 show c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x by simp

next
assume ¬ z ≤ n
from A3 this have S1 : z = Suc n by simp
then have S2 : Suc n − z = 0 by simp
then have c-nth (c-f-list f (Suc n) x) (Suc n − z) = c-nth (c-f-list f (Suc n)

x) 0 by simp
also have . . . = c-hd (c-f-list f (Suc n) x) by (simp add: c-nth-at-0)
also have . . . = c-hd (c-cons (f (Suc n) x) (c-f-list f n x)) by (simp add:

c-f-list-at-Suc)
also have . . . = f (Suc n) x by simp
finally show c-nth (c-f-list f (Suc n) x) (Suc n − z) = f z x by (simp add:

S1)
qed

qed
qed

theorem th-pr-rec: [[g ∈ PrimRec1 ; h ∈ PrimRec3 ; (∀ x. (f 0 x) = (g x)); (∀ x
y. (f (Suc y) x) = h y (f y x) x)]] =⇒ f ∈ PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume h-is-pr : h ∈ PrimRec3
assume f-0 : ∀ x. f 0 x = g x
assume f-1 : ∀ x y. (f (Suc y) x) = h y (f y x) x
let ?f = PrimRecOp g h

51

from g-is-pr h-is-pr have S1 : ?f ∈ PrimRec2 by (rule pr-rec)
have f-2 :∀ x. ?f 0 x = g x by simp
have f-3 : ∀ x y. (?f (Suc y) x) = h y (?f y x) x by simp
have S2 : f = ?f
proof −

have
∧

x y. f y x = ?f y x
apply(induct-tac y)
apply(insert f-0 f-1)
apply(auto)
done
then show f = ?f by (simp add: ext)

qed
from S1 S2 show ?thesis by simp

qed

theorem th-rec: [[g ∈ PrimRec1 ; α ∈ PrimRec2 ; h ∈ PrimRec3 ; (∀ x y. α y x ≤
y); (∀ x. (f 0 x) = (g x)); (∀ x y. (f (Suc y) x) = h y (f (α y x) x) x)]] =⇒ f ∈
PrimRec2
proof −

assume g-is-pr : g ∈ PrimRec1
assume a-is-pr : α ∈ PrimRec2
assume h-is-pr : h ∈ PrimRec3
assume a-le: (∀ x y. α y x ≤ y)
assume f-0 : ∀ x. f 0 x = g x
assume f-1 : ∀ x y. (f (Suc y) x) = h y (f (α y x) x) x
let ?g ′ = λ x. c-cons (g x) 0
let ?h ′ = λ a b c. c-cons (h a (c-nth b (a − (α a c))) c) b
let ?r = c-f-list f
from g-is-pr c-cons-is-pr have g ′-is-pr : ?g ′ ∈ PrimRec1 by prec
from h-is-pr c-cons-is-pr c-nth-is-pr a-is-pr have h ′-is-pr : ?h ′ ∈ PrimRec3 by

prec
have S1 : ∀ x. ?r 0 x = ?g ′ x
proof

fix x have ?r 0 x = c-cons (f 0 x) 0 by (rule c-f-list-at-0)
with f-0 have ?r 0 x = c-cons (g x) 0 by simp
then show ?r 0 x = ?g ′ x by simp

qed
have S2 : ∀ x y. ?r (Suc y) x = ?h ′ y (?r y x) x
proof (rule allI , rule allI)

fix x y show ?r (Suc y) x = ?h ′ y (?r y x) x
proof −
have S2-1 : ?r (Suc y) x = c-cons (f (Suc y) x) (?r y x) by (rule c-f-list-at-Suc)
with f-1 have S2-2 : f (Suc y) x = h y (f (α y x) x) x by simp
from a-le have S2-3 : α y x ≤ y by simp
then have S2-4 : f (α y x) x = c-nth (?r y x) (y−(α y x)) by (simp add:

c-f-list-nth)
from S2-1 S2-2 S2-4 show ?thesis by simp

qed
qed

52

from g ′-is-pr h ′-is-pr S1 S2 have S3 : ?r ∈ PrimRec2 by (rule th-pr-rec)
then show f ∈ PrimRec2 by (rule c-f-list-f-is-pr)

qed

declare c-tl-less [termination-simp]

fun c-assoc-have-key :: nat ⇒ nat ⇒ nat where
c-assoc-have-key-df [simp del]: c-assoc-have-key y x = (if y = 0 then 1 else
(if c-fst (c-hd y) = x then 0 else c-assoc-have-key (c-tl y) x))

lemma c-assoc-have-key-lm-1 : y 6= 0 =⇒ c-assoc-have-key y x = (if c-fst (c-hd y)
= x then 0 else c-assoc-have-key (c-tl y) x) by (simp add: c-assoc-have-key-df)

theorem c-assoc-have-key-is-pr : c-assoc-have-key ∈ PrimRec2
proof −

let ?h = λ a b c. if c-fst (c-hd (Suc a)) = c then 0 else b
let ?a = λ y x . c-tl (Suc y)
let ?g = λ x. (1 ::nat)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
from c-tl-is-pr have a-is-pr : ?a ∈ PrimRec2 by prec
have h-is-pr : ?h ∈ PrimRec3
proof (rule if-eq-is-pr3)

from c-fst-is-pr c-hd-is-pr show (λx y z. c-fst (c-hd (Suc x))) ∈ PrimRec3 by
prec

next
show (λx y z. z) ∈ PrimRec3 by (rule pr-id3-3)

next
show (λx y z. 0) ∈ PrimRec3 by prec

next
show (λx y z. y) ∈ PrimRec3 by (rule pr-id3-2)

qed
have a-le: ∀ x y. ?a y x ≤ y
proof (rule allI , rule allI)

fix x y show ?a y x ≤ y
proof −

have Suc y > 0 by simp
then have ?a y x < Suc y by (rule c-tl-less)
then show ?thesis by simp

qed
qed
have f-0 : ∀ x. c-assoc-have-key 0 x = ?g x by (simp add: c-assoc-have-key-df)
have f-1 : ∀ x y. c-assoc-have-key (Suc y) x = ?h y (c-assoc-have-key (?a y x)

x) x by (simp add: c-assoc-have-key-df)
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)

qed

fun c-assoc-value :: nat ⇒ nat ⇒ nat where
c-assoc-value-df [simp del]: c-assoc-value y x = (if y = 0 then 0 else
(if c-fst (c-hd y) = x then c-snd (c-hd y) else c-assoc-value (c-tl y) x))

53

lemma c-assoc-value-lm-1 : y 6= 0 =⇒ c-assoc-value y x = (if c-fst (c-hd y) = x
then c-snd (c-hd y) else c-assoc-value (c-tl y) x) by (simp add: c-assoc-value-df)

theorem c-assoc-value-is-pr : c-assoc-value ∈ PrimRec2
proof −

let ?h = λ a b c. if c-fst (c-hd (Suc a)) = c then c-snd (c-hd (Suc a)) else b
let ?a = λ y x . c-tl (Suc y)
let ?g = λ x. (0 ::nat)
have g-is-pr : ?g ∈ PrimRec1 by (rule const-is-pr)
from c-tl-is-pr have a-is-pr : ?a ∈ PrimRec2 by prec
have h-is-pr : ?h ∈ PrimRec3
proof (rule if-eq-is-pr3)

from c-fst-is-pr c-hd-is-pr show (λx y z. c-fst (c-hd (Suc x))) ∈ PrimRec3 by
prec

next
show (λx y z. z) ∈ PrimRec3 by (rule pr-id3-3)

next
from c-snd-is-pr c-hd-is-pr show (λx y z. c-snd (c-hd (Suc x))) ∈ PrimRec3

by prec
next

show (λx y z. y) ∈ PrimRec3 by (rule pr-id3-2)
qed
have a-le: ∀ x y. ?a y x ≤ y
proof (rule allI , rule allI)

fix x y show ?a y x ≤ y
proof −

have Suc y > 0 by simp
then have ?a y x < Suc y by (rule c-tl-less)
then show ?thesis by simp

qed
qed
have f-0 : ∀ x. c-assoc-value 0 x = ?g x by (simp add: c-assoc-value-df)
have f-1 : ∀ x y. c-assoc-value (Suc y) x = ?h y (c-assoc-value (?a y x) x) x by

(simp add: c-assoc-value-df)
from g-is-pr a-is-pr h-is-pr a-le f-0 f-1 show ?thesis by (rule th-rec)

qed

lemma c-assoc-lm-1 : c-assoc-have-key (c-cons (c-pair x y) z) x = 0
apply(simp add: c-assoc-have-key-df)
apply(simp add: c-cons-pos)
done

lemma c-assoc-lm-2 : c-assoc-value (c-cons (c-pair x y) z) x = y
apply(simp add: c-assoc-value-df)
apply(rule impI)
apply(insert c-cons-pos [where x=(c-pair x y) and u=z])
apply(auto)
done

54

lemma c-assoc-lm-3 : x1 6= x =⇒ c-assoc-have-key (c-cons (c-pair x y) z) x1 =
c-assoc-have-key z x1
proof −

assume A1 : x1 6= x
let ?ls = (c-cons (c-pair x y) z)
have S1 : ?ls 6= 0 by (simp add: c-cons-pos)
then have S2 : c-assoc-have-key ?ls x1 = (if c-fst (c-hd ?ls) = x1 then 0 else

c-assoc-have-key (c-tl ?ls) x1) (is - = ?R) by (rule c-assoc-have-key-lm-1)
have S3 : c-fst (c-hd ?ls) = x by simp
with A1 have S4 : ¬ (c-fst (c-hd ?ls) = x1) by simp
from S4 have S5 : ?R = c-assoc-have-key (c-tl ?ls) x1 by (rule if-not-P)
from S2 S5 show ?thesis by simp

qed

lemma c-assoc-lm-4 : x1 6= x =⇒ c-assoc-value (c-cons (c-pair x y) z) x1 =
c-assoc-value z x1
proof −

assume A1 : x1 6= x
let ?ls = (c-cons (c-pair x y) z)
have S1 : ?ls 6= 0 by (simp add: c-cons-pos)
then have S2 : c-assoc-value ?ls x1 = (if c-fst (c-hd ?ls) = x1 then c-snd (c-hd

?ls) else c-assoc-value (c-tl ?ls) x1) (is - = ?R) by (rule c-assoc-value-lm-1)
have S3 : c-fst (c-hd ?ls) = x by simp
with A1 have S4 : ¬ (c-fst (c-hd ?ls) = x1) by simp
from S4 have S5 : ?R = c-assoc-value (c-tl ?ls) x1 by (rule if-not-P)
from S2 S5 show ?thesis by simp

qed

end

4 Primitive recursive functions of one variable
theory PRecFun2
imports PRecFun
begin

4.1 Alternative definition of primitive recursive functions of
one variable

definition
UnaryRecOp :: (nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ (nat ⇒ nat) where
UnaryRecOp = (λ g h. pr-conv-2-to-1 (PrimRecOp g (pr-conv-1-to-3 h)))

lemma unary-rec-into-pr : [[g ∈ PrimRec1 ; h ∈ PrimRec1]] =⇒ UnaryRecOp g h
∈ PrimRec1 by (simp add: UnaryRecOp-def pr-conv-1-to-3-lm pr-conv-2-to-1-lm
pr-rec)

definition

55

c-f-pair :: (nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ (nat ⇒ nat) where
c-f-pair = (λ f g x. c-pair (f x) (g x))

lemma c-f-pair-to-pr : [[f ∈ PrimRec1 ; g ∈ PrimRec1]] =⇒ c-f-pair f g ∈ PrimRec1
unfolding c-f-pair-def by prec

inductive-set PrimRec1 ′ :: (nat ⇒ nat) set
where

zero: (λ x. 0) ∈ PrimRec1 ′

| suc: Suc ∈ PrimRec1 ′

| fst: c-fst ∈ PrimRec1 ′

| snd: c-snd ∈ PrimRec1 ′

| comp: [[f ∈ PrimRec1 ′; g ∈ PrimRec1 ′]] =⇒ (λ x. f (g x)) ∈ PrimRec1 ′

| pair : [[f ∈ PrimRec1 ′; g ∈ PrimRec1 ′]] =⇒ c-f-pair f g ∈ PrimRec1 ′

| un-rec: [[f ∈ PrimRec1 ′; g ∈ PrimRec1 ′]] =⇒ UnaryRecOp f g ∈ PrimRec1 ′

lemma primrec ′-into-primrec: f ∈ PrimRec1 ′ =⇒ f ∈ PrimRec1
proof (induct f rule: PrimRec1 ′.induct)

case zero show ?case by (rule pr-zero)
next

case suc show ?case by (rule pr-suc)
next

case fst show ?case by (rule c-fst-is-pr)
next

case snd show ?case by (rule c-snd-is-pr)
next

case comp from comp show ?case by (simp add: pr-comp1-1)
next

case pair from pair show ?case by (simp add: c-f-pair-to-pr)
next

case un-rec from un-rec show ?case by (simp add: unary-rec-into-pr)
qed

lemma pr-id1-1 ′: (λ x. x) ∈ PrimRec1 ′

proof −
have c-f-pair c-fst c-snd ∈ PrimRec1 ′ by (simp add: PrimRec1 ′.fst PrimRec1 ′.snd

PrimRec1 ′.pair)
moreover have c-f-pair c-fst c-snd = (λ x. x) by (simp add: c-f-pair-def)
ultimately show ?thesis by simp

qed

lemma pr-id2-1 ′: pr-conv-2-to-1 (λ x y. x) ∈ PrimRec1 ′ by (simp add: pr-conv-2-to-1-def
PrimRec1 ′.fst)

lemma pr-id2-2 ′: pr-conv-2-to-1 (λ x y. y) ∈ PrimRec1 ′ by (simp add: pr-conv-2-to-1-def
PrimRec1 ′.snd)

lemma pr-id3-1 ′: pr-conv-3-to-1 (λ x y z. x) ∈ PrimRec1 ′

proof −

56

have pr-conv-3-to-1 (λ x y z. x) = (λx. c-fst (c-fst x)) by (simp add: pr-conv-3-to-1-def)
moreover from PrimRec1 ′.fst PrimRec1 ′.fst have (λx. c-fst (c-fst x)) ∈ Prim-

Rec1 ′ by (rule PrimRec1 ′.comp)
ultimately show ?thesis by simp

qed

lemma pr-id3-2 ′: pr-conv-3-to-1 (λ x y z. y) ∈ PrimRec1 ′

proof −
have pr-conv-3-to-1 (λ x y z. y) = (λx. c-snd (c-fst x)) by (simp add: pr-conv-3-to-1-def)
moreover from PrimRec1 ′.snd PrimRec1 ′.fst have (λx. c-snd (c-fst x)) ∈ Prim-

Rec1 ′ by (rule PrimRec1 ′.comp)
ultimately show ?thesis by simp

qed

lemma pr-id3-3 ′: pr-conv-3-to-1 (λ x y z. z) ∈ PrimRec1 ′

proof −
have pr-conv-3-to-1 (λ x y z. z) = (λx. c-snd x) by (simp add: pr-conv-3-to-1-def)
thus ?thesis by (simp add: PrimRec1 ′.snd)

qed

lemma pr-comp2-1 ′: [[pr-conv-2-to-1 f ∈ PrimRec1 ′; g ∈ PrimRec1 ′; h ∈ Prim-
Rec1 ′]] =⇒ (λ x. f (g x) (h x)) ∈ PrimRec1 ′

proof −
assume A1 : pr-conv-2-to-1 f ∈ PrimRec1 ′

assume A2 : g ∈ PrimRec1 ′

assume A3 : h ∈ PrimRec1 ′

let ?f1 = pr-conv-2-to-1 f
have S1 : (%x. ?f1 ((c-f-pair g h) x)) = (λ x. f (g x) (h x)) by (simp add:

c-f-pair-def pr-conv-2-to-1-def)
from A2 A3 have S2 : c-f-pair g h ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from A1 S2 have S3 : (%x. ?f1 ((c-f-pair g h) x)) ∈ PrimRec1 ′ by (rule Prim-

Rec1 ′.comp)
with S1 show ?thesis by simp

qed

lemma pr-comp3-1 ′: [[pr-conv-3-to-1 f ∈ PrimRec1 ′; g ∈ PrimRec1 ′; h ∈ Prim-
Rec1 ′; k ∈ PrimRec1 ′]] =⇒ (λ x. f (g x) (h x) (k x)) ∈ PrimRec1 ′

proof −
assume A1 : pr-conv-3-to-1 f ∈ PrimRec1 ′

assume A2 : g ∈ PrimRec1 ′

assume A3 : h ∈ PrimRec1 ′

assume A4 : k ∈ PrimRec1 ′

from A2 A3 have c-f-pair g h ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from this A4 have c-f-pair (c-f-pair g h) k ∈ PrimRec1 ′ by (rule PrimRec1 ′.pair)
from A1 this have (%x. (pr-conv-3-to-1 f) ((c-f-pair (c-f-pair g h) k) x)) ∈

PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: c-f-pair-def pr-conv-3-to-1-def)

qed

57

lemma pr-comp1-2 ′: [[f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ PrimRec1 ′]] =⇒ pr-conv-2-to-1
(λ x y. f (g x y)) ∈ PrimRec1 ′

proof −
assume f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x)) ∈ PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: pr-conv-2-to-1-def)

qed

lemma pr-comp1-3 ′: [[f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ PrimRec1 ′]] =⇒ pr-conv-3-to-1
(λ x y z. f (g x y z)) ∈ PrimRec1 ′

proof −
assume f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x)) ∈ PrimRec1 ′ by (rule PrimRec1 ′.comp)
then show ?thesis by (simp add: pr-conv-3-to-1-def)

qed

lemma pr-comp2-2 ′: [[pr-conv-2-to-1 f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ Prim-
Rec1 ′; pr-conv-2-to-1 h ∈ PrimRec1 ′]] =⇒ pr-conv-2-to-1 (λ x y. f (g x y) (h x
y)) ∈ PrimRec1 ′

proof −
assume pr-conv-2-to-1 f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x)) ∈ PrimRec1 ′ by (rule pr-comp2-1 ′)
then show ?thesis by (simp add: pr-conv-2-to-1-def)

qed

lemma pr-comp2-3 ′: [[pr-conv-2-to-1 f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ Prim-
Rec1 ′; pr-conv-3-to-1 h ∈ PrimRec1 ′]] =⇒ pr-conv-3-to-1 (λ x y z . f (g x y z) (h
x y z)) ∈ PrimRec1 ′

proof −
assume pr-conv-2-to-1 f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x)) ∈ PrimRec1 ′ by (rule pr-comp2-1 ′)
then show ?thesis by (simp add: pr-conv-3-to-1-def)

qed

lemma pr-comp3-2 ′: [[pr-conv-3-to-1 f ∈ PrimRec1 ′; pr-conv-2-to-1 g ∈ Prim-
Rec1 ′; pr-conv-2-to-1 h ∈ PrimRec1 ′; pr-conv-2-to-1 k ∈ PrimRec1 ′]] =⇒ pr-conv-2-to-1
(λ x y. f (g x y) (h x y) (k x y)) ∈ PrimRec1 ′

proof −
assume pr-conv-3-to-1 f ∈ PrimRec1 ′

and pr-conv-2-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
and pr-conv-2-to-1 k ∈ PrimRec1 ′ (is ?k1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x) (?k1 x)) ∈ PrimRec1 ′ by (rule pr-comp3-1 ′)

58

then show ?thesis by (simp add: pr-conv-2-to-1-def)
qed

lemma pr-comp3-3 ′: [[pr-conv-3-to-1 f ∈ PrimRec1 ′; pr-conv-3-to-1 g ∈ Prim-
Rec1 ′; pr-conv-3-to-1 h ∈ PrimRec1 ′; pr-conv-3-to-1 k ∈ PrimRec1 ′]] =⇒ pr-conv-3-to-1
(λ x y z. f (g x y z) (h x y z) (k x y z)) ∈ PrimRec1 ′

proof −
assume pr-conv-3-to-1 f ∈ PrimRec1 ′

and pr-conv-3-to-1 g ∈ PrimRec1 ′ (is ?g1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 h ∈ PrimRec1 ′ (is ?h1 ∈ PrimRec1 ′)
and pr-conv-3-to-1 k ∈ PrimRec1 ′ (is ?k1 ∈ PrimRec1 ′)
then have (λ x. f (?g1 x) (?h1 x) (?k1 x)) ∈ PrimRec1 ′ by (rule pr-comp3-1 ′)
then show ?thesis by (simp add: pr-conv-3-to-1-def)

qed

lemma lm ′: (f1 ∈ PrimRec1 −→ f1 ∈ PrimRec1 ′) ∧ (g1 ∈ PrimRec2 −→ pr-conv-2-to-1
g1 ∈ PrimRec1 ′) ∧ (h1 ∈ PrimRec3 −→ pr-conv-3-to-1 h1 ∈ PrimRec1 ′)
proof (induct rule: PrimRec1-PrimRec2-PrimRec3 .induct)

case zero show ?case by (rule PrimRec1 ′.zero)
next case suc show ?case by (rule PrimRec1 ′.suc)
next case id1-1 show ?case by (rule pr-id1-1 ′)
next case id2-1 show ?case by (rule pr-id2-1 ′)
next case id2-2 show ?case by (rule pr-id2-2 ′)
next case id3-1 show ?case by (rule pr-id3-1 ′)
next case id3-2 show ?case by (rule pr-id3-2 ′)
next case id3-3 show ?case by (rule pr-id3-3 ′)
next case comp1-1 from comp1-1 show ?case by (simp add: PrimRec1 ′.comp)
next case comp1-2 from comp1-2 show ?case by (simp add: pr-comp1-2 ′)
next case comp1-3 from comp1-3 show ?case by (simp add: pr-comp1-3 ′)
next case comp2-1 from comp2-1 show ?case by (simp add: pr-comp2-1 ′)
next case comp2-2 from comp2-2 show ?case by (simp add: pr-comp2-2 ′)
next case comp2-3 from comp2-3 show ?case by (simp add: pr-comp2-3 ′)
next case comp3-1 from comp3-1 show ?case by (simp add: pr-comp3-1 ′)
next case comp3-2 from comp3-2 show ?case by (simp add: pr-comp3-2 ′)
next case comp3-3 from comp3-3 show ?case by (simp add: pr-comp3-3 ′)
next case prim-rec

fix g h assume A1 : g ∈ PrimRec1 ′ and pr-conv-3-to-1 h ∈ PrimRec1 ′

then have UnaryRecOp g (pr-conv-3-to-1 h) ∈ PrimRec1 ′ by (rule PrimRec1 ′.un-rec)
moreover have UnaryRecOp g (pr-conv-3-to-1 h) = pr-conv-2-to-1 (PrimRecOp

g h) by (simp add: UnaryRecOp-def)
ultimately show pr-conv-2-to-1 (PrimRecOp g h) ∈ PrimRec1 ′ by simp

qed

theorem pr-1-eq-1 ′: PrimRec1 = PrimRec1 ′

proof −
have S1 :

∧
f . f ∈ PrimRec1 −→ f ∈ PrimRec1 ′ by (simp add: lm ′)

have S2 :
∧

f . f ∈ PrimRec1 ′−→ f ∈ PrimRec1 by (simp add: primrec ′-into-primrec)
from S1 S2 show ?thesis by blast

qed

59

4.2 The scheme datatype
datatype PrimScheme = Base-zero | Base-suc | Base-fst | Base-snd

| Comp-op PrimScheme PrimScheme
| Pair-op PrimScheme PrimScheme
| Rec-op PrimScheme PrimScheme

primrec
sch-to-pr :: PrimScheme ⇒ (nat ⇒ nat)

where
sch-to-pr Base-zero = (λ x. 0)
| sch-to-pr Base-suc = Suc
| sch-to-pr Base-fst = c-fst
| sch-to-pr Base-snd = c-snd
| sch-to-pr (Comp-op t1 t2) = (λ x. (sch-to-pr t1) ((sch-to-pr t2) x))
| sch-to-pr (Pair-op t1 t2) = c-f-pair (sch-to-pr t1) (sch-to-pr t2)
| sch-to-pr (Rec-op t1 t2) = UnaryRecOp (sch-to-pr t1) (sch-to-pr t2)

lemma sch-to-pr-into-pr : sch-to-pr sch ∈ PrimRec1 by (simp add: pr-1-eq-1 ′,
induct sch, simp-all add: PrimRec1 ′.intros)

lemma sch-to-pr-srj: f ∈ PrimRec1 =⇒ (∃ sch. f = sch-to-pr sch)
proof −

assume f ∈ PrimRec1 then have A1 : f ∈ PrimRec1 ′ by (simp add: pr-1-eq-1 ′)
from A1 show ?thesis
proof (induct f rule: PrimRec1 ′.induct)

have (λ x. 0) = sch-to-pr Base-zero by simp
then show ∃ sch. (λu. 0) = sch-to-pr sch by (rule exI)

next
have Suc = sch-to-pr Base-suc by simp
then show ∃ sch. Suc = sch-to-pr sch by (rule exI)

next
have c-fst = sch-to-pr Base-fst by simp
then show ∃ sch. c-fst = sch-to-pr sch by (rule exI)

next
have c-snd = sch-to-pr Base-snd by simp
then show ∃ sch. c-snd = sch-to-pr sch by (rule exI)

next
fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr

sch
from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have (λ x. f1 (f2 x)) = sch-to-pr (Comp-op sch1 sch2) by simp
then show ∃ sch. (λx. f1 (f2 x)) = sch-to-pr sch by (rule exI)

next
fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr

sch
from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have c-f-pair f1 f2 = sch-to-pr (Pair-op sch1 sch2) by simp

60

then show ∃ sch. c-f-pair f1 f2 = sch-to-pr sch by (rule exI)
next

fix f1 f2 assume B1 : ∃ sch. f1 = sch-to-pr sch and B2 : ∃ sch. f2 = sch-to-pr
sch

from B1 obtain sch1 where S1 : f1 = sch-to-pr sch1 ..
from B2 obtain sch2 where S2 : f2 = sch-to-pr sch2 ..
from S1 S2 have UnaryRecOp f1 f2 = sch-to-pr (Rec-op sch1 sch2) by simp
then show ∃ sch. UnaryRecOp f1 f2 = sch-to-pr sch by (rule exI)

qed
qed

definition
loc-f :: nat ⇒ PrimScheme ⇒ PrimScheme ⇒ PrimScheme where
loc-f n sch1 sch2 =
(if n=0 then Base-zero else
if n=1 then Base-suc else
if n=2 then Base-fst else
if n=3 then Base-snd else
if n=4 then (Comp-op sch1 sch2) else
if n=5 then (Pair-op sch1 sch2) else
if n=6 then (Rec-op sch1 sch2) else
Base-zero)

definition
mod7 :: nat ⇒ nat where
mod7 = (λ x. x mod 7)

lemma c-snd-snd-lt [termination-simp]: c-snd (c-snd (Suc (Suc x))) < Suc (Suc
x)
proof −

let ?y = Suc (Suc x)
have ?y > 1 by simp
then have c-snd ?y < ?y by (rule c-snd-less-arg)
moreover have c-snd (c-snd ?y) ≤ c-snd ?y by (rule c-snd-le-arg)
ultimately show ?thesis by simp

qed

lemma c-fst-snd-lt [termination-simp]: c-fst (c-snd (Suc (Suc x))) < Suc (Suc x)
proof −

let ?y = Suc (Suc x)
have ?y > 1 by simp
then have c-snd ?y < ?y by (rule c-snd-less-arg)
moreover have c-fst (c-snd ?y) ≤ c-snd ?y by (rule c-fst-le-arg)
ultimately show ?thesis by simp

qed

fun nat-to-sch :: nat ⇒ PrimScheme where
nat-to-sch 0 = Base-zero
| nat-to-sch (Suc 0) = Base-zero

61

| nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x; v1=c-fst v; v2 = c-snd v;
sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2)

primrec sch-to-nat :: PrimScheme ⇒ nat where
sch-to-nat Base-zero = 0
| sch-to-nat Base-suc = c-pair 1 0
| sch-to-nat Base-fst = c-pair 2 0
| sch-to-nat Base-snd = c-pair 3 0
| sch-to-nat (Comp-op t1 t2) = c-pair 4 (c-pair (sch-to-nat t1) (sch-to-nat t2))
| sch-to-nat (Pair-op t1 t2) = c-pair 5 (c-pair (sch-to-nat t1) (sch-to-nat t2))
| sch-to-nat (Rec-op t1 t2) = c-pair 6 (c-pair (sch-to-nat t1) (sch-to-nat t2))

lemma loc-srj-lm-1 : nat-to-sch (Suc (Suc x)) = (let u=mod7 (c-fst (Suc (Suc x)));
v=c-snd (Suc (Suc x)); v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch
v2 in loc-f u sch1 sch2) by simp

lemma loc-srj-lm-2 : x > 1 =⇒ nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x;
v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1
sch2)
proof −

assume A1 : x > 1
let ?y = x−(2 ::nat)
from A1 have S1 : x = Suc (Suc ?y) by arith
have S2 : nat-to-sch (Suc (Suc ?y)) = (let u=mod7 (c-fst (Suc (Suc ?y)));

v=c-snd (Suc (Suc ?y)); v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch
v2 in loc-f u sch1 sch2) by (rule loc-srj-lm-1)

from S1 S2 show ?thesis by simp
qed

lemma loc-srj-0 : nat-to-sch (c-pair 1 0) = Base-suc
proof −

let ?x = c-pair 1 0
have S1 : ?x = 2 by (simp add: c-pair-def sf-def)
then have S2 : ?x = Suc (Suc 0) by simp
let ?y = Suc (Suc 0)
have S3 : nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R)
by (rule loc-srj-lm-1)

have S4 : c-fst ?y = 1
proof −

from S2 have c-fst ?y = c-fst ?x by simp
then show ?thesis by simp

qed
have S5 : c-snd ?y = 0
proof −

from S2 have c-snd ?y = c-snd ?x by simp
then show ?thesis by simp

qed
from S4 have S6 : mod7 (c-fst ?y) = 1 by (simp add: mod7-def)

62

from S3 S5 S6 have S9 : ?R = loc-f 1 Base-zero Base-zero by (simp add: Let-def
c-fst-at-0 c-snd-at-0)

then have S10 : ?R = Base-suc by (simp add: loc-f-def)
with S3 have S11 : nat-to-sch ?y = Base-suc by simp
from S2 this show ?thesis by simp

qed

lemma nat-to-sch-at-2 : nat-to-sch 2 = Base-suc
proof −

have S1 : c-pair 1 0 = 2 by (simp add: c-pair-def sf-def)
have S2 : nat-to-sch (c-pair 1 0) = Base-suc by (rule loc-srj-0)
from S1 S2 show ?thesis by simp

qed

lemma loc-srj-1 : nat-to-sch (c-pair 2 0) = Base-fst
proof −

let ?x = c-pair 2 0
have S1 : ?x = 5 by (simp add: c-pair-def sf-def)
then have S2 : ?x = Suc (Suc 3) by simp
let ?y = Suc (Suc 3)
have S3 : nat-to-sch ?y = (let u=mod7 (c-fst ?y); v=c-snd ?y; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is - = ?R)
by (rule loc-srj-lm-1)

have S4 : c-fst ?y = 2
proof −

from S2 have c-fst ?y = c-fst ?x by simp
then show ?thesis by simp

qed
have S5 : c-snd ?y = 0
proof −

from S2 have c-snd ?y = c-snd ?x by simp
then show ?thesis by simp

qed
from S4 have S6 : mod7 (c-fst ?y) = 2 by (simp add: mod7-def)
from S3 S5 S6 have S9 : ?R = loc-f 2 Base-zero Base-zero by (simp add: Let-def

c-fst-at-0 c-snd-at-0)
then have S10 : ?R = Base-fst by (simp add: loc-f-def)
with S3 have S11 : nat-to-sch ?y = Base-fst by simp
from S2 this show ?thesis by simp

qed

lemma loc-srj-2 : nat-to-sch (c-pair 3 0) = Base-snd
proof −

let ?x = c-pair 3 0
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 3 by simp

63

have S4 : c-snd ?x = 0 by simp
from S3 have S6 : mod7 (c-fst ?x) = 3 by (simp add: mod7-def)
from S3 S4 S6 have S7 : ?R = loc-f 3 Base-zero Base-zero by (simp add: Let-def

c-fst-at-0 c-snd-at-0)
then have S8 : ?R = Base-snd by (simp add: loc-f-def)
with S2 have S10 : nat-to-sch ?x = Base-snd by simp
from S2 this show ?thesis by simp

qed

lemma loc-srj-3 : [[nat-to-sch (sch-to-nat sch1) = sch1 ; nat-to-sch (sch-to-nat sch2)
= sch2]]

=⇒ nat-to-sch (c-pair 4 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) =
Comp-op sch1 sch2
proof −

assume A1 : nat-to-sch (sch-to-nat sch1) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2) = sch2
let ?x = c-pair 4 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 4 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp
from S3 have S5 : mod7 (c-fst ?x) = 4 by (simp add: mod7-def)
from A1 A2 S4 S5 have ?R = Comp-op sch1 sch2 by (simp add: Let-def

c-fst-at-0 c-snd-at-0 loc-f-def)
with S2 show ?thesis by simp

qed

lemma loc-srj-3-1 : nat-to-sch (c-pair 4 (c-pair n1 n2)) = Comp-op (nat-to-sch
n1) (nat-to-sch n2)
proof −

let ?x = c-pair 4 (c-pair n1 n2)
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 4 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 4 by (simp add: mod7-def)
from S4 S5 have ?R = Comp-op (nat-to-sch n1) (nat-to-sch n2) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def)
with S2 show ?thesis by simp

qed

lemma loc-srj-4 : [[nat-to-sch (sch-to-nat sch1) = sch1 ; nat-to-sch (sch-to-nat sch2)
= sch2]]

=⇒ nat-to-sch (c-pair 5 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) =
Pair-op sch1 sch2

64

proof −
assume A1 : nat-to-sch (sch-to-nat sch1) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2) = sch2
let ?x = c-pair 5 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 5 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp
from S3 have S5 : mod7 (c-fst ?x) = 5 by (simp add: mod7-def)
from A1 A2 S4 S5 have ?R = Pair-op sch1 sch2 by (simp add: Let-def c-fst-at-0

c-snd-at-0 loc-f-def)
with S2 show ?thesis by simp

qed

lemma loc-srj-4-1 : nat-to-sch (c-pair 5 (c-pair n1 n2)) = Pair-op (nat-to-sch n1)
(nat-to-sch n2)
proof −

let ?x = c-pair 5 (c-pair n1 n2)
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 5 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 5 by (simp add: mod7-def)
from S4 S5 have ?R = Pair-op (nat-to-sch n1) (nat-to-sch n2) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def)
with S2 show ?thesis by simp

qed

lemma loc-srj-5 : [[nat-to-sch (sch-to-nat sch1) = sch1 ; nat-to-sch (sch-to-nat sch2)
= sch2]]

=⇒ nat-to-sch (c-pair 6 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))) =
Rec-op sch1 sch2
proof −

assume A1 : nat-to-sch (sch-to-nat sch1) = sch1
assume A2 : nat-to-sch (sch-to-nat sch2) = sch2
let ?x = c-pair 6 (c-pair (sch-to-nat sch1) (sch-to-nat sch2))
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 6 by simp
have S4 : c-snd ?x = c-pair (sch-to-nat sch1) (sch-to-nat sch2) by simp
from S3 have S5 : mod7 (c-fst ?x) = 6 by (simp add: mod7-def)
from A1 A2 S4 S5 have ?R = Rec-op sch1 sch2 by (simp add: Let-def c-fst-at-0

c-snd-at-0 loc-f-def)

65

with S2 show ?thesis by simp
qed

lemma loc-srj-5-1 : nat-to-sch (c-pair 6 (c-pair n1 n2)) = Rec-op (nat-to-sch n1)
(nat-to-sch n2)
proof −

let ?x = c-pair 6 (c-pair n1 n2)
have S1 : ?x > 1 by (simp add: c-pair-def sf-def)
from S1 have S2 : nat-to-sch ?x = (let u=mod7 (c-fst ?x); v=c-snd ?x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) (is
- = ?R) by (rule loc-srj-lm-2)

have S3 : c-fst ?x = 6 by simp
have S4 : c-snd ?x = c-pair n1 n2 by simp
from S3 have S5 : mod7 (c-fst ?x) = 6 by (simp add: mod7-def)
from S4 S5 have ?R = Rec-op (nat-to-sch n1) (nat-to-sch n2) by (simp add:

Let-def c-fst-at-0 c-snd-at-0 loc-f-def)
with S2 show ?thesis by simp

qed

theorem nat-to-sch-srj: nat-to-sch (sch-to-nat sch) = sch
apply(induct sch, auto simp add: loc-srj-0 loc-srj-1 loc-srj-2 loc-srj-3 loc-srj-4
loc-srj-5)
apply(insert loc-srj-0)
apply(simp)
done

4.3 Indexes of primitive recursive functions of one variables
definition

nat-to-pr :: nat ⇒ (nat ⇒ nat) where
nat-to-pr = (λ x. sch-to-pr (nat-to-sch x))

theorem nat-to-pr-into-pr : nat-to-pr n ∈ PrimRec1 by (simp add: nat-to-pr-def
sch-to-pr-into-pr)

lemma nat-to-pr-srj: f ∈ PrimRec1 =⇒ (∃ n. f = nat-to-pr n)
proof −

assume f ∈ PrimRec1
then have S1 : (∃ t. f = sch-to-pr t) by (rule sch-to-pr-srj)
from S1 obtain t where S2 : f = sch-to-pr t ..
let ?n = sch-to-nat t
have S3 : nat-to-pr ?n = sch-to-pr (nat-to-sch ?n) by (simp add: nat-to-pr-def)
have S4 : nat-to-sch ?n = t by (rule nat-to-sch-srj)
from S3 S4 have S5 : nat-to-pr ?n = sch-to-pr t by simp
from S2 S5 have nat-to-pr ?n = f by simp
then have f = nat-to-pr ?n by simp
then show ?thesis ..

qed

66

lemma nat-to-pr-at-0 : nat-to-pr 0 = (λ x. 0) by (simp add: nat-to-pr-def)

definition
index-of-pr :: (nat ⇒ nat) ⇒ nat where
index-of-pr f = (SOME n. f = nat-to-pr n)

theorem index-of-pr-is-real: f ∈ PrimRec1 =⇒ nat-to-pr (index-of-pr f) = f
proof −

assume f ∈ PrimRec1
hence ∃ n. f = nat-to-pr n by (rule nat-to-pr-srj)
hence f = nat-to-pr (SOME n. f = nat-to-pr n) by (rule someI-ex)
thus ?thesis by (simp add: index-of-pr-def)

qed

definition
comp-by-index :: nat ⇒ nat ⇒ nat where
comp-by-index = (λ n1 n2 . c-pair 4 (c-pair n1 n2))

definition
pair-by-index :: nat ⇒ nat ⇒ nat where
pair-by-index = (λ n1 n2 . c-pair 5 (c-pair n1 n2))

definition
rec-by-index :: nat ⇒ nat ⇒ nat where
rec-by-index = (λ n1 n2 . c-pair 6 (c-pair n1 n2))

lemma comp-by-index-is-pr : comp-by-index ∈ PrimRec2
unfolding comp-by-index-def
using const-is-pr-2 [of 4] by prec

lemma comp-by-index-inj: comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ x1=x2
∧ y1=y2
proof −

assume comp-by-index x1 y1 = comp-by-index x2 y2
hence c-pair 4 (c-pair x1 y1) = c-pair 4 (c-pair x2 y2) by (unfold comp-by-index-def)
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)

qed

lemma comp-by-index-inj1 : comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ x1
= x2 by (frule comp-by-index-inj, drule conjunct1)

lemma comp-by-index-inj2 : comp-by-index x1 y1 = comp-by-index x2 y2 =⇒ y1
= y2 by (frule comp-by-index-inj, drule conjunct2)

lemma comp-by-index-main: nat-to-pr (comp-by-index n1 n2) = (λ x. (nat-to-pr
n1) ((nat-to-pr n2) x)) by (unfold comp-by-index-def , unfold nat-to-pr-def , simp
add: loc-srj-3-1)

67

lemma pair-by-index-is-pr : pair-by-index ∈ PrimRec2 by (unfold pair-by-index-def ,
insert const-is-pr-2 [where ?n=(5 ::nat)], prec)

lemma pair-by-index-inj: pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ x1=x2 ∧
y1=y2
proof −

assume pair-by-index x1 y1 = pair-by-index x2 y2
hence c-pair 5 (c-pair x1 y1) = c-pair 5 (c-pair x2 y2) by (unfold pair-by-index-def)
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)

qed

lemma pair-by-index-inj1 : pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ x1 = x2
by (frule pair-by-index-inj, drule conjunct1)

lemma pair-by-index-inj2 : pair-by-index x1 y1 = pair-by-index x2 y2 =⇒ y1 = y2
by (frule pair-by-index-inj, drule conjunct2)

lemma pair-by-index-main: nat-to-pr (pair-by-index n1 n2) = c-f-pair (nat-to-pr
n1) (nat-to-pr n2) by (unfold pair-by-index-def , unfold nat-to-pr-def , simp add:
loc-srj-4-1)

lemma nat-to-sch-of-pair-by-index [simp]: nat-to-sch (pair-by-index n1 n2) = Pair-op
(nat-to-sch n1) (nat-to-sch n2)

by (simp add: pair-by-index-def loc-srj-4-1)

lemma rec-by-index-is-pr : rec-by-index ∈ PrimRec2 by (unfold rec-by-index-def ,
insert const-is-pr-2 [where ?n=(6 ::nat)], prec)

lemma rec-by-index-inj: rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ x1=x2 ∧
y1=y2
proof −

assume rec-by-index x1 y1 = rec-by-index x2 y2
hence c-pair 6 (c-pair x1 y1) = c-pair 6 (c-pair x2 y2) by (unfold rec-by-index-def)
hence c-pair x1 y1 = c-pair x2 y2 by (rule c-pair-inj2)
thus ?thesis by (rule c-pair-inj)

qed

lemma rec-by-index-inj1 : rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ x1 = x2
by (frule rec-by-index-inj, drule conjunct1)

lemma rec-by-index-inj2 : rec-by-index x1 y1 = rec-by-index x2 y2 =⇒ y1 = y2
by (frule rec-by-index-inj, drule conjunct2)

lemma rec-by-index-main: nat-to-pr (rec-by-index n1 n2) = UnaryRecOp (nat-to-pr
n1) (nat-to-pr n2) by (unfold rec-by-index-def , unfold nat-to-pr-def , simp add:
loc-srj-5-1)

68

4.4 s-1-1 theorem for primitive recursive functions of one
variable

definition
index-of-const :: nat ⇒ nat where
index-of-const = PrimRecOp1 0 (λ x y. c-pair 4 (c-pair 2 y))

lemma index-of-const-is-pr : index-of-const ∈ PrimRec1
proof −
have (λ x y. c-pair (4 ::nat) (c-pair (2 ::nat) y)) ∈ PrimRec2 by (insert const-is-pr-2

[where ?n=(4 ::nat)], prec)
then show ?thesis by (simp add: index-of-const-def pr-rec1)

qed

lemma index-of-const-at-0 : index-of-const 0 = 0 by (simp add: index-of-const-def)

lemma index-of-const-at-suc: index-of-const (Suc u) = c-pair 4 (c-pair 2 (index-of-const
u)) by (unfold index-of-const-def , induct u, auto)

lemma index-of-const-main: nat-to-pr (index-of-const n) = (λ x. n) (is ?P n)
proof (induct n)

show ?P 0 by (simp add: index-of-const-at-0 nat-to-pr-at-0)
next

fix n assume ?P n
then show ?P (Suc n) by ((simp add: index-of-const-at-suc nat-to-sch-at-2

nat-to-pr-def loc-srj-3-1))
qed

lemma index-of-const-lm-1 : (nat-to-pr (index-of-const n)) 0 = n by (simp add:
index-of-const-main)

lemma index-of-const-inj: index-of-const n1 = index-of-const n2 =⇒ n1 = n2
proof −

assume index-of-const n1 = index-of-const n2
then have (nat-to-pr (index-of-const n1)) 0 = (nat-to-pr (index-of-const n2))

0 by simp
thus ?thesis by (simp add: index-of-const-lm-1)

qed

definition index-of-zero = sch-to-nat Base-zero
definition index-of-suc = sch-to-nat Base-suc
definition index-of-c-fst = sch-to-nat Base-fst
definition index-of-c-snd = sch-to-nat Base-snd
definition index-of-id = pair-by-index index-of-c-fst index-of-c-snd

lemma index-of-zero-main: nat-to-pr index-of-zero = (λ x. 0) by (simp add: in-
dex-of-zero-def nat-to-pr-def)

lemma index-of-suc-main: nat-to-pr index-of-suc = Suc
apply(simp add: index-of-suc-def nat-to-pr-def)

69

apply(insert loc-srj-0)
apply(simp)
done

lemma index-of-c-fst-main: nat-to-pr index-of-c-fst = c-fst by (simp add: in-
dex-of-c-fst-def nat-to-pr-def loc-srj-1)

lemma [simp]: nat-to-sch index-of-c-fst = Base-fst by (unfold index-of-c-fst-def ,
rule nat-to-sch-srj)

lemma index-of-c-snd-main: nat-to-pr index-of-c-snd = c-snd by (simp add: in-
dex-of-c-snd-def nat-to-pr-def loc-srj-2)

lemma [simp]: nat-to-sch index-of-c-snd = Base-snd by (unfold index-of-c-snd-def ,
rule nat-to-sch-srj)

lemma index-of-id-main: nat-to-pr index-of-id = (λ x. x) by (simp add: index-of-id-def
nat-to-pr-def c-f-pair-def)

definition
index-of-c-pair-n :: nat ⇒ nat where
index-of-c-pair-n = (λ n. pair-by-index (index-of-const n) index-of-id)

lemma index-of-c-pair-n-is-pr : index-of-c-pair-n ∈ PrimRec1
proof −

have (λ x. index-of-id) ∈ PrimRec1 by (rule const-is-pr)
with pair-by-index-is-pr index-of-const-is-pr have (λ n. pair-by-index (index-of-const

n) index-of-id) ∈ PrimRec1 by prec
then show ?thesis by (fold index-of-c-pair-n-def)

qed

lemma index-of-c-pair-n-main: nat-to-pr (index-of-c-pair-n n) = (λ x. c-pair n x)
proof −

have nat-to-pr (index-of-c-pair-n n) = nat-to-pr (pair-by-index (index-of-const
n) index-of-id) by (simp add: index-of-c-pair-n-def)

also have . . . = c-f-pair (nat-to-pr (index-of-const n)) (nat-to-pr index-of-id) by
(simp add: pair-by-index-main)

also have . . . = c-f-pair (λ x. n) (λ x. x) by (simp add: index-of-const-main
index-of-id-main)

finally show ?thesis by (simp add: c-f-pair-def)
qed

lemma index-of-c-pair-n-inj: index-of-c-pair-n x1 = index-of-c-pair-n x2 =⇒ x1=x2
proof −

assume index-of-c-pair-n x1 = index-of-c-pair-n x2
hence pair-by-index (index-of-const x1) index-of-id = pair-by-index (index-of-const

x2) index-of-id by (unfold index-of-c-pair-n-def)
hence index-of-const x1 = index-of-const x2 by (rule pair-by-index-inj1)
thus ?thesis by (rule index-of-const-inj)

70

qed

definition
s1-1 :: nat ⇒ nat ⇒ nat where
s1-1 = (λ n x. comp-by-index n (index-of-c-pair-n x))

lemma s1-1-is-pr : s1-1 ∈ PrimRec2 by (unfold s1-1-def , insert comp-by-index-is-pr
index-of-c-pair-n-is-pr , prec)

theorem s1-1-th: (λ y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n x)
proof −

have nat-to-pr (s1-1 n x) = nat-to-pr (comp-by-index n (index-of-c-pair-n x))
by (simp add: s1-1-def)

also have . . . = (λ z. (nat-to-pr n) ((nat-to-pr (index-of-c-pair-n x)) z)) by
(simp add: comp-by-index-main)

also have . . . = (λ z. (nat-to-pr n) ((λ u. c-pair x u) z)) by (simp add: in-
dex-of-c-pair-n-main)

finally show ?thesis by simp
qed

lemma s1-1-inj: s1-1 x1 y1 = s1-1 x2 y2 =⇒ x1=x2 ∧ y1=y2
proof −

assume s1-1 x1 y1 = s1-1 x2 y2
then have comp-by-index x1 (index-of-c-pair-n y1) = comp-by-index x2 (index-of-c-pair-n

y2) by (unfold s1-1-def)
then have S1 : x1=x2 ∧ index-of-c-pair-n y1 = index-of-c-pair-n y2 by (rule

comp-by-index-inj)
then have S2 : x1=x2 ..
from S1 have index-of-c-pair-n y1 = index-of-c-pair-n y2 ..
then have y1 = y2 by (rule index-of-c-pair-n-inj)
with S2 show ?thesis ..

qed

lemma s1-1-inj1 : s1-1 x1 y1 = s1-1 x2 y2 =⇒ x1=x2 by (frule s1-1-inj, drule
conjunct1)

lemma s1-1-inj2 : s1-1 x1 y1 = s1-1 x2 y2 =⇒ y1=y2 by (frule s1-1-inj, drule
conjunct2)

primrec
pr-index-enumerator :: nat ⇒ nat ⇒ nat

where
pr-index-enumerator n 0 = n
| pr-index-enumerator n (Suc m) = comp-by-index index-of-id (pr-index-enumerator
n m)

theorem pr-index-enumerator-is-pr : pr-index-enumerator ∈ PrimRec2
proof −

define g where g x = x for x :: nat

71

have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule pr-id1-1)
define h where h a b c = comp-by-index index-of-id b for a b c :: nat
from comp-by-index-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
let ?f = pr-index-enumerator
from g-def have f-at-0 : ∀ x. ?f x 0 = g x by auto
from h-def have f-at-Suc: ∀ x y. ?f x (Suc y) = h x (?f x y) y by auto
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-last-scheme)

qed

lemma pr-index-enumerator-increase1 : pr-index-enumerator n m < pr-index-enumerator
(n+1) m
proof (induct m)

show pr-index-enumerator n 0 < pr-index-enumerator (n + 1) 0 by simp
next fix na assume A: pr-index-enumerator n na < pr-index-enumerator (n +

1) na
show pr-index-enumerator n (Suc na) < pr-index-enumerator (n + 1) (Suc na)
proof −

let ?a = pr-index-enumerator n na
let ?b = pr-index-enumerator (n+1) na
have S1 : pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by

simp
have L1 : pr-index-enumerator (n+1) (Suc na) = comp-by-index index-of-id ?b

by simp
from A have c-pair index-of-id ?a < c-pair index-of-id ?b by (rule c-pair-strict-mono2)

then have c-pair 4 (c-pair index-of-id ?a) < c-pair 4 (c-pair index-of-id ?b)
by (rule c-pair-strict-mono2)

then have comp-by-index index-of-id ?a < c-pair 4 (c-pair index-of-id ?b) by
(simp add: comp-by-index-def)

then have comp-by-index index-of-id ?a < comp-by-index index-of-id ?b by
(simp add: comp-by-index-def)

with S1 L1 show ?thesis by auto
qed

qed

lemma pr-index-enumerator-increase2 : pr-index-enumerator n m < pr-index-enumerator
n (m + 1)
proof −

let ?a = pr-index-enumerator n m
have S1 : pr-index-enumerator n (m + 1) = comp-by-index index-of-id ?a by

simp
have S2 : comp-by-index index-of-id ?a = c-pair 4 (c-pair index-of-id ?a) by

(simp add: comp-by-index-def)
have S3 : 4 + c-pair index-of-id ?a ≤ c-pair 4 (c-pair index-of-id ?a) by (rule

sum-le-c-pair)
then have S4 : c-pair index-of-id ?a < c-pair 4 (c-pair index-of-id ?a) by auto
have S5 : ?a ≤ c-pair index-of-id ?a by (rule arg2-le-c-pair)
from S4 S5 have S6 : ?a < c-pair 4 (c-pair index-of-id ?a) by auto
with S1 S2 show ?thesis by auto

qed

72

lemma f-inc-mono: (∀ (x::nat). (f ::nat⇒nat) x < f (x+1)) =⇒ ∀ (x::nat) (y::nat).
(x < y −→ f x < f y)
proof (rule allI , rule allI)

fix x y assume A: ∀ (x::nat). f x < f (x+1) show x < y −→ f x < f y
proof

assume A1 : x < y
have L1 :

∧
u v. f u < f (u + (v+1))

proof −
fix u v show f u < f (u + (v+1))
proof (induct v)

from A show f u < f (u + (0 + 1)) by auto
next

fix v n
assume A2 : f u < f (u + (n + 1))
from A have S1 : f (u + (n + 1)) < f (u + (Suc n + 1)) by auto
from A2 S1 show f u < f (u + (Suc n + 1)) by (rule less-trans)

qed
qed

let ?v = (y − x) − 1
from A1 have S2 : y = x + (?v + 1) by auto
have f x < f (x + (?v + 1)) by (rule L1)
with S2 show f x < f y by auto
qed

qed

lemma pr-index-enumerator-mono1 : n1 < n2 =⇒ pr-index-enumerator n1 m <
pr-index-enumerator n2 m
proof −

assume A: n1 < n2
define f where f x = pr-index-enumerator x m for x
have f-inc: ∀ x. f x < f (x+1)
proof
fix x show f x < f (x+1) by (unfold f-def , rule pr-index-enumerator-increase1)

qed
from f-inc have ∀ x y. (x < y −→ f x < f y) by (rule f-inc-mono)
with A f-def show ?thesis by auto

qed

lemma pr-index-enumerator-mono2 : m1 < m2 =⇒ pr-index-enumerator n m1 <
pr-index-enumerator n m2
proof −

assume A: m1 < m2
define f where f x = pr-index-enumerator n x for x
have f-inc: ∀ x. f x < f (x+1)
proof
fix x show f x < f (x+1) by (unfold f-def , rule pr-index-enumerator-increase2)

qed
from f-inc have ∀ x y. (x < y −→ f x < f y) by (rule f-inc-mono)

73

with A f-def show ?thesis by auto
qed

lemma f-mono-inj: ∀ (x::nat) (y::nat). (x < y −→ (f ::nat⇒nat) x < f y) =⇒ ∀
(x::nat) (y::nat). (f x = f y −→ x = y)
proof (rule allI , rule allI)

fix x y assume A: ∀ x y. x < y −→ f x < f y show f x = f y −→ x = y
proof

assume A1 : f x = f y show x = y
proof (rule ccontr)

assume A2 : x 6= y show False
proof cases

assume A3 : x < y
from A A3 have f x < f y by auto
with A1 show False by auto

next
assume ¬ x < y with A2 have A4 : y < x by auto
from A A4 have f y < f x by auto
with A1 show False by auto

qed
qed

qed
qed

theorem pr-index-enumerator-inj1 : pr-index-enumerator n1 m = pr-index-enumerator
n2 m =⇒ n1 = n2
proof −

assume A: pr-index-enumerator n1 m = pr-index-enumerator n2 m
define f where f x = pr-index-enumerator x m for x
have f-mono: ∀ x y. (x < y −→ f x < f y)
proof (rule allI , rule allI)
fix x y show x < y −→ f x < f y by (unfold f-def , simp add: pr-index-enumerator-mono1)

qed
from f-mono have ∀ x y. (f x = f y −→ x = y) by (rule f-mono-inj)
with A f-def show ?thesis by auto

qed

theorem pr-index-enumerator-inj2 : pr-index-enumerator n m1 = pr-index-enumerator
n m2 =⇒ m1 = m2
proof −

assume A: pr-index-enumerator n m1 = pr-index-enumerator n m2
define f where f x = pr-index-enumerator n x for x
have f-mono: ∀ x y. (x < y −→ f x < f y)
proof (rule allI , rule allI)
fix x y show x < y −→ f x < f y by (unfold f-def , simp add: pr-index-enumerator-mono2)

qed
from f-mono have ∀ x y. (f x = f y −→ x = y) by (rule f-mono-inj)
with A f-def show ?thesis by auto

qed

74

theorem pr-index-enumerator-main: nat-to-pr n = nat-to-pr (pr-index-enumerator
n m)
proof (induct m)

show nat-to-pr n = nat-to-pr (pr-index-enumerator n 0) by simp
next

fix na assume A: nat-to-pr n = nat-to-pr (pr-index-enumerator n na)
show nat-to-pr n = nat-to-pr (pr-index-enumerator n (Suc na))
proof −

let ?a = pr-index-enumerator n na
have S1 : pr-index-enumerator n (Suc na) = comp-by-index index-of-id ?a by

simp
have nat-to-pr (comp-by-index index-of-id ?a) = (λ x. (nat-to-pr index-of-id)

(nat-to-pr ?a x)) by (rule comp-by-index-main)
with index-of-id-main have nat-to-pr (comp-by-index index-of-id ?a) = nat-to-pr

?a by simp
with A S1 show ?thesis by simp

qed
qed

end

5 Finite sets
theory PRecFinSet
imports PRecFun
begin

We introduce a particular mapping nat-to-set from natural numbers to finite
sets of natural numbers and a particular mapping set-to-nat from finite sets
of natural numbers to natural numbers. See [1] and [2] for more information.
definition

c-in :: nat ⇒ nat ⇒ nat where
c-in = (λ x u. (u div (2 ^ x)) mod 2)

lemma c-in-is-pr : c-in ∈ PrimRec2
proof −

from mod-is-pr power-is-pr div-is-pr have (λ x u. (u div (2 ^ x)) mod 2) ∈
PrimRec2 by prec

with c-in-def show ?thesis by auto
qed

definition
nat-to-set :: nat ⇒ nat set where
nat-to-set u ≡ {x. 2^x ≤ u ∧ c-in x u = 1}

lemma c-in-upper-bound: c-in x u = 1 =⇒ 2 ^ x ≤ u
proof −

75

assume A: c-in x u = 1
then have S1 : (u div (2^x)) mod 2 = 1 by (unfold c-in-def)
then have S2 : u div (2^x) > 0 by arith
show ?thesis
proof (rule ccontr)

assume ¬ 2 ^ x ≤ u
then have u < 2^x by auto
then have u div (2^x) = 0 by (rule div-less)
with S2 show False by auto

qed
qed

lemma nat-to-set-upper-bound: x ∈ nat-to-set u =⇒ 2 ^ x ≤ u by (simp add:
nat-to-set-def)

lemma x-lt-2-x: x < 2 ^ x
by (rule less-exp)

lemma nat-to-set-upper-bound1 : x ∈ nat-to-set u =⇒ x < u
proof −

assume x ∈ nat-to-set u
then have S1 : 2 ^ x ≤ u by (simp add: nat-to-set-def)
have S2 : x < 2 ^ x by (rule x-lt-2-x)
from S2 S1 show ?thesis

by (rule less-le-trans)
qed

lemma nat-to-set-upper-bound2 : nat-to-set u ⊆ {i. i < u}
proof −

from nat-to-set-upper-bound1 show ?thesis by blast
qed

lemma nat-to-set-is-finite: finite (nat-to-set u)
proof −

have S1 : finite {i. i<u}
proof −

let ?B = {i. i<u}
let ?f = (λ (x::nat). x)
have ?B = ?f ‘ ?B by auto
then show finite ?B by (rule nat-seg-image-imp-finite)

qed
have S2 : nat-to-set u ⊆ {i. i<u} by (rule nat-to-set-upper-bound2)
from S2 S1 show ?thesis by (rule finite-subset)

qed

lemma x-in-u-eq: (x ∈ nat-to-set u) = (c-in x u = 1) by (auto simp add: nat-to-set-def
c-in-upper-bound)

definition

76

log2 :: nat ⇒ nat where
log2 = (λ x. Least(%z. x < 2^(z+1)))

lemma log2-at-0 : log2 0 = 0
proof −

let ?v = log2 0
have S1 : 0 ≤ ?v by auto
have S2 : ?v = Least(%(z::nat). (0 ::nat)<2^(z+1)) by (simp add: log2-def)
have S3 : (0 ::nat)<2^(0+1) by auto
from S3 have S4 : Least(%(z::nat). (0 ::nat)<2^(z+1)) ≤ 0 by (rule Least-le)
from S2 S4 have S5 : ?v ≤ 0 by auto
from S1 S5 have S6 : ?v = 0 by auto
thus ?thesis by auto

qed

lemma log2-at-1 : log2 1 = 0
proof −

let ?v = log2 1
have S1 : 0 ≤ ?v by auto
have S2 : ?v = Least(%(z::nat). (1 ::nat)<2^(z+1)) by (simp add: log2-def)
have S3 : (1 ::nat)<2^(0+1) by auto
from S3 have S4 : Least(%(z::nat). (1 ::nat)<2^(z+1)) ≤ 0 by (rule Least-le)
from S2 S4 have S5 : ?v ≤ 0 by auto
from S1 S5 have S6 : ?v = 0 by auto
thus ?thesis by auto

qed

lemma log2-le: x > 0 =⇒ 2 ^ log2 x ≤ x
proof −

assume A: x > 0
show ?thesis
proof (cases)

assume A1 : log2 x = 0
with A show ?thesis by auto

next
assume A1 : log2 x 6= 0
then have S1 : log2 x > 0 by auto
define y where y = log2 x − 1
from S1 y-def have S2 : log2 x = y + 1 by auto
then have S3 : y < log2 x by auto
have 2^(y+1) ≤ x
proof (rule ccontr)

assume A2 : ¬ 2^(y+1) ≤ x then have x < 2^(y+1) by auto
then have log2 x ≤ y by (simp add: log2-def Least-le)
with S3 show False by auto

qed
with S2 show ?thesis by auto

qed
qed

77

lemma log2-gt: x < 2 ^ (log2 x + 1)
proof −

have x < 2^x by (rule x-lt-2-x)
then have S1 : x < 2^(x+1)

by (simp add: numeral-2-eq-2)
define y where y = x
from S1 y-def have S2 : x < 2^(y+1) by auto
let ?P = λ z. x < 2^(z+1)
from S2 have S3 : ?P y by auto
then have S4 : ?P (Least ?P) by (rule LeastI)
from log2-def have S5 : log2 x = Least ?P by (unfold log2-def , auto)
from S4 S5 show ?thesis by auto

qed

lemma x-div-x: x > 0 =⇒ (x::nat) div x = 1 by auto
lemma div-ge: (k::nat) ≤ m div n =⇒ n∗k ≤ m
proof −

assume A: k ≤ m div n
have S1 : n ∗ (m div n) + m mod n = m by (rule mult-div-mod-eq)
have S2 : 0 ≤ m mod n by auto
from S1 S2 have S3 : n ∗ (m div n) ≤ m by arith
from A have S4 : n ∗ k ≤ n ∗ (m div n) by auto
from S4 S3 show ?thesis by (rule order-trans)

qed
lemma div-lt: m < n∗k =⇒ m div n < (k::nat)
proof −

assume A: m < n∗k
show ?thesis
proof (rule ccontr)

assume ¬ m div n < k
then have S1 : k ≤ m div n by auto
then have S2 : n∗k ≤ m by (rule div-ge)
with A show False by auto

qed
qed

lemma log2-lm1 : u > 0 =⇒ u div 2 ^ (log2 u) = 1
proof −

assume A: u > 0
then have S1 : 2^(log2 u) ≤ u by (rule log2-le)
have S2 : u < 2^(log2 u+1) by (rule log2-gt)
then have S3 : u < (2^log2 u)∗2 by simp
have (2 ::nat) > 0 by simp
then have (2 ::nat)^log2 u > 0 by simp
then have S4 : (2 ::nat)^log2 u div 2^log2 u = 1 by auto
from S1 have S5 : (2 ::nat)^log2 u div 2^log2 u ≤ u div 2^log2 u by (rule

div-le-mono)
with S4 have S6 : 1 ≤ u div 2^log2 u by auto

78

from S3 have S7 : u div 2^log2 u < 2 by (rule div-lt)
from S6 S7 show ?thesis by auto

qed

lemma log2-lm2 : u > 0 =⇒ c-in (log2 u) u = 1
proof −

assume A: u > 0
then have S1 : u div 2 ^ (log2 u) = 1 by (rule log2-lm1)
have c-in (log2 u) u = (u div 2 ^ (log2 u)) mod 2 by (simp add: c-in-def)
also from S1 have . . . = 1 mod 2 by simp
also have . . . = 1 by auto
finally show ?thesis by auto

qed

lemma log2-lm3 : log2 u < x =⇒ c-in x u = 0
proof −

assume A: log2 u < x
then have S1 : (log2 u)+1 ≤ x by auto
have S2 : 1 ≤ (2 ::nat) by auto
from S1 S2 have S3 : (2 ::nat)^ ((log2 u)+1) ≤ 2^x by (rule power-increasing)
have S4 : u < (2 ::nat)^ ((log2 u)+1) by (rule log2-gt)
from S3 S4 have S5 : u < 2^x by auto
then have S6 : u div 2^x = 0 by (rule div-less)
have c-in x u = (u div 2^x) mod 2 by (simp add: c-in-def)
also from S6 have . . . = 0 mod 2 by simp
also have . . . = 0 by auto
finally have ?thesis by auto
thus ?thesis by auto

qed

lemma log2-lm4 : c-in x u = 1 =⇒ x ≤ log2 u
proof −

assume A: c-in x u = 1
show ?thesis
proof (rule ccontr)

assume ¬ x ≤ log2 u
then have S1 : log2 u < x by auto
then have S2 : c-in x u = 0 by (rule log2-lm3)
with A show False by auto

qed
qed

lemma nat-to-set-lub: x ∈ nat-to-set u =⇒ x ≤ log2 u
proof −

assume x ∈ nat-to-set u
then have S1 : c-in x u = 1 by (simp add: x-in-u-eq)
then show ?thesis by (rule log2-lm4)

qed

79

lemma log2-lm5 : u > 0 =⇒ log2 u ∈ nat-to-set u
proof −

assume A: u > 0
then have c-in (log2 u) u = 1 by (rule log2-lm2)
then show ?thesis by (simp add: x-in-u-eq)

qed

lemma pos-imp-ne: u > 0 =⇒ nat-to-set u 6= {}
proof −

assume u > 0
then have log2 u ∈ nat-to-set u by (rule log2-lm5)
thus ?thesis by auto

qed

lemma empty-is-zero: nat-to-set u = {} =⇒ u = 0
proof (rule ccontr)

assume A1 : nat-to-set u = {}
assume A2 : u 6= 0 then have S1 : u > 0 by auto
from S1 have nat-to-set u 6= {} by (rule pos-imp-ne)
with A1 show False by auto

qed

lemma log2-is-max: u > 0 =⇒ log2 u = Max (nat-to-set u)
proof −

assume A: u > 0
then have S1 : log2 u ∈ nat-to-set u by (rule log2-lm5)
define max where max = Max (nat-to-set u)
from A have ne: nat-to-set u 6= {} by (rule pos-imp-ne)
have finite: finite (nat-to-set u) by (rule nat-to-set-is-finite)
from max-def finite ne have max-in: max ∈ nat-to-set u by simp
from max-in have S2 : c-in max u = 1 by (simp add: x-in-u-eq)
then have S3 : max ≤ log2 u by (rule log2-lm4)
from finite ne S1 max-def have S4 : log2 u ≤ max by simp
from S3 S4 max-def show ?thesis by auto

qed

lemma zero-is-empty: nat-to-set 0 = {}
proof −

have S1 : {i. i<(0 ::nat)} = {} by blast
have S2 : nat-to-set 0 ⊆ {i. i<0} by (rule nat-to-set-upper-bound2)
from S1 S2 show ?thesis by auto

qed

lemma ne-imp-pos: nat-to-set u 6= {} =⇒ u > 0
proof (rule ccontr)

assume A1 : nat-to-set u 6= {}
assume ¬ 0 < u then have u = 0 by auto
then have nat-to-set u = {} by (simp add: zero-is-empty)
with A1 show False by auto

80

qed

lemma div-mod-lm: y < x =⇒ ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u
div (2 ::nat)^y) mod 2
proof −

assume y-lt-x: y < x
let ?n = (2 ::nat)^y
have n-pos: 0 < ?n by auto
let ?s = x−y
from y-lt-x have s-pos: 0 < ?s by auto
from y-lt-x have S3 : x = y + ?s by auto
from S3 have (2 ::nat)^x = (2 ::nat)^(y + ?s) by auto
moreover have (2 ::nat)^(y +?s) = (2 ::nat)^y ∗ 2^ ?s by (rule power-add)
ultimately have (2 ::nat)^x = 2^y ∗ 2^?s by auto
then have S4 : u + (2 ::nat)^x = u + (2 ::nat)^y ∗ 2^?s by auto
from n-pos have S5 : (u + (2 ::nat)^y ∗ 2^?s) div 2^y = 2^?s + (u div 2^y) by

simp
from S4 S5 have S6 : (u + (2 ::nat)^x) div 2^y = 2^?s + (u div 2^y) by auto
from s-pos have S8 : ?s = (?s − 1) + 1 by auto
have (2 ::nat) ^ ((?s − (1 ::nat)) + (1 ::nat)) = (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2^1

by (rule power-add)
with S8 have S9 : (2 ::nat) ^ ?s = (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2 by auto
then have S10 : 2^?s + (u div 2^y) = (u div 2^y) + (2 ::nat) ^ (?s − (1 ::nat))
∗ 2 by auto

have S11 : ((u div 2^y) + (2 ::nat) ^ (?s − (1 ::nat)) ∗ 2) mod 2 = (u div 2^y)
mod 2 by (rule mod-mult-self1)

from S6 S10 S11 show ?thesis by auto
qed

lemma add-power : u < 2^x =⇒ nat-to-set (u + 2^x) = nat-to-set u ∪ {x}
proof −

assume A: u < 2^x
have log2-is-x: log2 (u+2^x) = x
proof (unfold log2-def , rule Least-equality)

from A show u+2^x < 2^(x+1) by auto
next

fix z
assume A1 : u + 2^x < 2^(z+1)
show x ≤ z
proof (rule ccontr)

assume ¬ x ≤ z
then have z < x by auto
then have L1 : z+1 ≤ x by auto
have L2 : 1 ≤ (2 ::nat) by auto

from L1 L2 have L3 : (2 ::nat)^(z+1) ≤ (2 ::nat)^x by (rule power-increasing)
with A1 show False by auto

qed
qed
show ?thesis

81

proof (rule subset-antisym)
show nat-to-set (u + 2 ^ x) ⊆ nat-to-set u ∪ {x}
proof fix y

assume A1 : y ∈ nat-to-set (u + 2 ^ x)
show y ∈ nat-to-set u ∪ {x}
proof

assume y /∈ {x} then have S1 : y 6= x by auto
from A1 have y ≤ log2 (u + 2 ^ x) by (rule nat-to-set-lub)
with log2-is-x have y ≤ x by auto
with S1 have y-lt-x: y < x by auto
from A1 have c-in y (u + 2 ^ x) = 1 by (simp add: x-in-u-eq)
then have S2 : ((u + 2 ^ x) div 2^y) mod 2 = 1 by (unfold c-in-def)

from y-lt-x have ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u div
(2 ::nat)^y) mod 2 by (rule div-mod-lm)

with S2 have (u div 2^y) mod 2 = 1 by auto
then have c-in y u = 1 by (simp add: c-in-def)
then show y ∈ nat-to-set u by (simp add: x-in-u-eq)

qed
qed

next
show nat-to-set u ∪ {x} ⊆ nat-to-set (u + 2 ^ x)
proof fix y

assume A1 : y ∈ nat-to-set u ∪ {x}
show y ∈ nat-to-set (u + 2 ^ x)
proof cases

assume y ∈ {x}
then have y=x by auto
then have y = log2 (u + 2 ^ x) by (simp add: log2-is-x)
then show ?thesis by (simp add: log2-lm5)

next
assume y-notin: y /∈ {x}
then have y-ne-x: y 6= x by auto
from A1 y-notin have y-in: y ∈ nat-to-set u by auto
have y-lt-x: y < x
proof (rule ccontr)

assume ¬ y < x
with y-ne-x have y-gt-x: x < y by auto
have 1 < (2 ::nat) by auto

from y-gt-x this have L1 : (2 ::nat)^x < 2^y by (rule power-strict-increasing)
from y-in have L2 : 2^y ≤ u by (rule nat-to-set-upper-bound)
from L1 L2 have (2 ::nat)^x < u by arith
with A show False by auto

qed
from y-in have c-in y u = 1 by (simp add: x-in-u-eq)
then have S2 : (u div 2^y) mod 2 = 1 by (unfold c-in-def)

from y-lt-x have ((u + (2 ::nat) ^ x) div (2 ::nat)^y) mod 2 = (u div
(2 ::nat)^y) mod 2 by (rule div-mod-lm)

with S2 have ((u + (2 ::nat) ^ x)div 2^y) mod 2 = 1 by auto
then have c-in y (u + (2 ::nat) ^ x) = 1 by (simp add: c-in-def)

82

then show y ∈ nat-to-set (u + (2 ::nat) ^ x) by (simp add: x-in-u-eq)
qed

qed
qed

qed

theorem nat-to-set-inj: nat-to-set u = nat-to-set v =⇒ u = v
proof −

assume A: nat-to-set u = nat-to-set v
let ?P = λ (n::nat). (∀ (D::nat set). finite D ∧ card D ≤ n −→ (∀ u v. nat-to-set

u = D ∧ nat-to-set v = D −→ u = v))
have P-at-0 : ?P 0
proof fix D show finite D ∧ card D ≤ 0 −→ (∀ u v. nat-to-set u = D ∧ nat-to-set

v = D −→ u = v)
proof (rule impI)

assume A1 : finite D ∧ card D ≤ 0
from A1 have S1 : finite D by auto
from A1 have S2 : card D = 0 by auto
from S1 S2 have S3 : D = {} by auto
show (∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v)
proof (rule allI , rule allI) fix u v show nat-to-set u = D ∧ nat-to-set v =

D −→ u = v
proof

assume A2 : nat-to-set u = D ∧ nat-to-set v = D
from A2 have L1 : nat-to-set u = D by auto
from A2 have L2 : nat-to-set v = D by auto
from L1 S3 have nat-to-set u = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from L2 S3 have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u=v by auto

qed
qed

qed
qed
have P-at-Suc:

∧
n. ?P n =⇒ ?P (Suc n)

proof − fix n
assume A-n: ?P n
show ?P (Suc n)
proof fix D show finite D ∧ card D ≤ Suc n −→ (∀ u v. nat-to-set u = D ∧

nat-to-set v = D −→ u = v)
proof (rule impI)

assume A1 : finite D ∧ card D ≤ Suc n
from A1 have S1 : finite D by auto
from A1 have S2 : card D ≤ Suc n by auto
show (∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v)
proof (rule allI , rule allI , rule impI)

fix u v
assume A2 : nat-to-set u = D ∧ nat-to-set v = D

83

from A2 have d-u-d: nat-to-set u = D by auto
from A2 have d-v-d: nat-to-set v = D by auto
show u = v
proof (cases)

assume A3 : D = {}
from A3 d-u-d have nat-to-set u = {} by auto
then have u-z: u = 0 by (rule empty-is-zero)
from A3 d-v-d have nat-to-set v = {} by auto
then have v-z: v = 0 by (rule empty-is-zero)
from u-z v-z show u = v by auto

next
assume A3 : D 6= {}
from A3 d-u-d have nat-to-set u 6= {} by auto
then have u-pos: u > 0 by (rule ne-imp-pos)
from A3 d-v-d have nat-to-set v 6= {} by auto
then have v-pos: v > 0 by (rule ne-imp-pos)
define m where m = Max D
from S1 m-def A3 have m-in: m ∈ D by auto
from d-u-d m-def have m-u: m = Max (nat-to-set u) by auto
from d-v-d m-def have m-v: m = Max (nat-to-set v) by auto
from u-pos m-u log2-is-max have m-log-u: m = log2 u by auto
from v-pos m-v log2-is-max have m-log-v: m = log2 v by auto
define D1 where D1 = D − {m}
define u1 where u1 = u − 2^m
define v1 where v1 = v − 2^m
have card-D1 : card D1 ≤ n
proof −

from D1-def S1 m-in have card D1 = (card D) − 1 by (simp add:
card-Diff-singleton)

with S2 show ?thesis by auto
qed
have u-u1 : u = u1 + 2^m
proof −

from u-pos have L1 : 2 ^ log2 u ≤ u by (rule log2-le)
with m-log-u have L2 : 2 ^ m ≤ u by auto
with u1-def show ?thesis by auto

qed
have u1-d1 : nat-to-set u1 = D1
proof −

from m-log-u log2-gt have u < 2^(m+1) by auto
with u-u1 have u1-lt-2-m: u1 < 2^m by auto
with u-u1 have L1 : nat-to-set u = nat-to-set u1 ∪ {m} by (simp add:

add-power)
have m-notin: m /∈ nat-to-set u1
proof (rule ccontr)

assume ¬ m /∈ nat-to-set u1 then have m ∈ nat-to-set u1 by auto
then have 2^m ≤ u1 by (rule nat-to-set-upper-bound)
with u1-lt-2-m show False by auto

qed

84

from L1 m-notin have nat-to-set u1 = nat-to-set u − {m} by auto
with d-u-d have nat-to-set u1 = D − {m} by auto
with D1-def show ?thesis by auto

qed
have v-v1 : v = v1 + 2^m
proof −

from v-pos have L1 : 2 ^ log2 v ≤ v by (rule log2-le)
with m-log-v have L2 : 2 ^ m ≤ v by auto
with v1-def show ?thesis by auto

qed
have v1-d1 : nat-to-set v1 = D1
proof −

from m-log-v log2-gt have v < 2^(m+1) by auto
with v-v1 have v1-lt-2-m: v1 < 2^m by auto
with v-v1 have L1 : nat-to-set v = nat-to-set v1 ∪ {m} by (simp add:

add-power)
have m-notin: m /∈ nat-to-set v1
proof (rule ccontr)

assume ¬ m /∈ nat-to-set v1 then have m ∈ nat-to-set v1 by auto
then have 2^m ≤ v1 by (rule nat-to-set-upper-bound)
with v1-lt-2-m show False by auto

qed
from L1 m-notin have nat-to-set v1 = nat-to-set v − {m} by auto
with d-v-d have nat-to-set v1 = D − {m} by auto
with D1-def show ?thesis by auto

qed
from S1 D1-def have P1 : finite D1 by auto
with card-D1 have P2 : finite D1 ∧ card D1 ≤ n by auto
from A-n P2 have (∀ u v. nat-to-set u = D1 ∧ nat-to-set v = D1 −→ u

= v) by auto
with u1-d1 v1-d1 have u1 = v1 by auto
with u-u1 v-v1 show u = v by auto

qed
qed

qed
qed

qed
from P-at-0 P-at-Suc have main:

∧
n. ?P n by (rule nat.induct)

define D where D = nat-to-set u
from D-def A have P1 : nat-to-set u = D by auto
from D-def A have P2 : nat-to-set v = D by auto
from D-def nat-to-set-is-finite have d-finite: finite D by auto
define n where n = card D
from n-def d-finite have card-le: card D ≤ n by auto
from d-finite card-le have P3 : finite D ∧ card D ≤ n by auto
with main have P4 : ∀ u v. nat-to-set u = D ∧ nat-to-set v = D −→ u = v by

auto
with P1 P2 show u = v by auto

qed

85

definition
set-to-nat :: nat set => nat where
set-to-nat = (λ D. sum (λ x. 2 ^ x) D)

lemma two-power-sum: sum (λ x. (2 ::nat) ^ x) {i. i< Suc m} = (2 ^ Suc m) −
1
proof (induct m)

show sum (λ x. (2 ::nat) ^ x) {i. i< Suc 0} = (2 ^ Suc 0) − 1 by auto
next

fix n
assume A: sum (λ x. (2 ::nat) ^ x) {i. i< Suc n} = (2 ^ Suc n) − 1
show sum (λ x. (2 ::nat) ^ x) {i. i< Suc (Suc n)} = (2 ^ Suc (Suc n)) − 1
proof −

let ?f = λ x. (2 ::nat) ^ x
have S1 : {i. i< Suc (Suc n)} = {i. i ≤ Suc n} by auto
have S2 : {i. i ≤ Suc n} = {i. i < Suc n} ∪ { Suc n} by auto
from S1 S2 have S3 : {i. i< Suc (Suc n)} = {i. i < Suc n} ∪ { Suc n} by

auto
have S4 : {i. i < Suc n} = (λ x. x) ‘ {i. i < Suc n} by auto
then have S5 : finite {i. i < Suc n} by (rule nat-seg-image-imp-finite)
have S6 : Suc n /∈ {i. i < Suc n} by auto
from S5 S6 sum.insert have S7 : sum ?f ({i. i< Suc n} ∪ {Suc n}) = 2 ^ Suc

n + sum ?f {i. i< Suc n} by auto
from S3 have sum ?f {i. i< Suc (Suc n)} = sum ?f ({i. i< Suc n} ∪ {Suc

n}) by auto
also from S7 have . . . = 2 ^ Suc n + sum ?f {i. i< Suc n} by auto
also from A have . . . = 2 ^ Suc n + (((2 ::nat) ^ Suc n)−(1 ::nat)) by auto
also have . . . = (2 ^ Suc (Suc n)) − 1 by auto
finally show ?thesis by auto

qed
qed

lemma finite-interval: finite {i. (i::nat)<m}
proof −

have {i. i < m} = (λ x. x) ‘ {i. i < m} by auto
then show ?thesis by (rule nat-seg-image-imp-finite)

qed

lemma set-to-nat-at-empty: set-to-nat {} = 0 by (unfold set-to-nat-def , rule sum.empty)

lemma set-to-nat-of-interval: set-to-nat {i. (i::nat)<m} = 2 ^ m − 1
proof (induct m)

show set-to-nat {i. i < 0} = 2 ^ 0 − 1
proof −

have S1 : {i. (i::nat) < 0} = {} by auto
with set-to-nat-at-empty have set-to-nat {i. i<0} = 0 by auto
thus ?thesis by auto

qed

86

next
fix n show set-to-nat {i. i < Suc n} = 2 ^ Suc n − 1 by (unfold set-to-nat-def ,

rule two-power-sum)
qed

lemma set-to-nat-mono: [[finite B; A ⊆ B]] =⇒ set-to-nat A ≤ set-to-nat B
proof −

assume b-finite: finite B
assume a-le-b: A ⊆ B
let ?f = λ (x::nat). (2 ::nat) ^ x
have S1 : set-to-nat A = sum ?f A by (simp add: set-to-nat-def)
have S2 : set-to-nat B = sum ?f B by (simp add: set-to-nat-def)
have S3 :

∧
x. x ∈ B − A =⇒ 0 ≤ ?f x by auto

from b-finite a-le-b S3 have sum ?f A ≤ sum ?f B by (rule sum-mono2)
with S1 S2 show ?thesis by auto

qed

theorem nat-to-set-srj: finite (D::nat set) =⇒ nat-to-set (set-to-nat D) = D
proof −

assume A: finite D
let ?P = λ (n::nat). (∀ (D::nat set). finite D ∧ card D = n −→ nat-to-set

(set-to-nat D) = D)
have P-at-0 : ?P 0
proof (rule allI)

fix D
show finite D ∧ card D = 0 −→ nat-to-set (set-to-nat D) = D
proof

assume A1 : finite D ∧ card D = 0
from A1 have S1 : finite D by auto
from A1 have S2 : card D = 0 by auto
from S1 S2 have S3 : D = {} by auto
with set-to-nat-def have set-to-nat D = sum (λ x. 2 ^ x) D by simp
with S3 sum.empty have set-to-nat D = 0 by auto
with zero-is-empty S3 show nat-to-set (set-to-nat D) = D by auto

qed
qed
have P-at-Suc:

∧
n. ?P n =⇒ ?P (Suc n)

proof − fix n
assume A-n: ?P n
show ?P (Suc n)
proof

fix D show finite D ∧ card D = Suc n −→ nat-to-set (set-to-nat D) = D
proof

assume A1 : finite D ∧ card D = Suc n
from A1 have S1 : finite D by auto
from A1 have S2 : card D = Suc n by auto
define m where m = Max D
from S2 have D-ne: D 6= {} by auto
with S1 m-def have m-in: m ∈ D by auto

87

define D1 where D1 = D − {m}
from S1 D1-def have d1-finite: finite D1 by auto

from D1-def m-in S1 have card D1 = card D − 1 by (simp add:
card-Diff-singleton)

with S2 have card-d1 : card D1 = n by auto
from d1-finite card-d1 have finite D1 ∧ card D1 = n by auto
with A-n have S3 : nat-to-set (set-to-nat D1) = D1 by auto
define u where u = set-to-nat D
define u1 where u1 = set-to-nat D1
from S1 m-in have sum (λ (x::nat). (2 ::nat) ^ x) D = 2 ^ m + sum (λ x.

2 ^ x) (D − {m})
by (rule sum.remove)

with set-to-nat-def have set-to-nat D = 2 ^ m + set-to-nat (D − {m}) by
auto

with u-def u1-def D1-def have u-u1 : u = u1 + 2 ^ m by auto
from S3 u1-def have d1-u1 : nat-to-set u1 = D1 by auto
have u1-lt: u1 < 2 ^ m
proof −

have L1 : D1 ⊆ {i. i<m}
proof fix x

assume A1 : x ∈ D1
show x ∈ {i. i<m}
proof

from A1 D1-def have L1-1 : x ∈ D by auto
from S1 D-ne L1-1 m-def have L1-2 : x ≤ m by auto
with A1 L1-1 D1-def have x 6= m by auto
with L1-2 show x < m by auto

qed
qed
have L2 : finite {i. i<m} by (rule finite-interval)

from L2 L1 have set-to-nat D1 ≤ set-to-nat {i. i<m} by (rule
set-to-nat-mono)

with u1-def have u1 ≤ set-to-nat {i. i<m} by auto
with set-to-nat-of-interval have L3 : u1 ≤ 2 ^ m − 1 by auto
have 0 < (2 ::nat) ^ m by auto
then have (2 ::nat) ^ m − 1 < (2 ::nat) ^ m by auto
with L3 show ?thesis by arith

qed
from u-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
also from u-u1 have . . . = nat-to-set (u1 + 2 ^ m) by auto
also from u1-lt have . . . = nat-to-set u1 ∪ {m} by (rule add-power)
also from d1-u1 have . . . = D1 ∪ {m} by auto
also from D1-def m-in have . . . = D by auto
finally show nat-to-set (set-to-nat D) = D by auto

qed
qed

qed
from P-at-0 P-at-Suc have main:

∧
n. ?P n by (rule nat.induct)

from A main show ?thesis by auto

88

qed

theorem nat-to-set-srj1 : finite (D::nat set) =⇒ ∃ u. nat-to-set u = D
proof −

assume A: finite D
show ∃ u. nat-to-set u = D
proof

from A show nat-to-set (set-to-nat D) = D by (rule nat-to-set-srj)
qed

qed

lemma sum-of-pr-is-pr : g ∈ PrimRec1 =⇒ (λ n. sum g {i. i<n}) ∈ PrimRec1
proof −

assume g-is-pr : g ∈ PrimRec1
define f where f n = sum g {i. i<n} for n
from f-def have f-at-0 : f 0 = 0 by auto
define h where h a b = g a + b for a b
from g-is-pr have h-is-pr : h ∈ PrimRec2 unfolding h-def by prec
have f-at-Suc: ∀ y. f (Suc y) = h y (f y)
proof

fix y show f (Suc y) = h y (f y)
proof −

from f-def have S1 : f (Suc y) = sum g {i. i < Suc y} by auto
have S2 : {i. i < Suc y} = {i. i < y} ∪ {y} by auto
have S3 : finite {i. i < y} by (rule finite-interval)
have S4 : y /∈ {i. i < y} by auto
from S1 S2 have f (Suc y) = sum g ({i. (i::nat) < y} ∪ {y}) by auto
also from S3 S4 sum.insert have . . . = g y + sum g {i. i<y} by auto
also from f-def have . . . = g y + f y by auto
also from h-def have . . . = h y (f y) by auto
finally show ?thesis by auto

qed
qed
from h-is-pr f-at-0 f-at-Suc have f-is-pr : f ∈ PrimRec1 by (rule pr-rec1-scheme)
with f-def [abs-def] show ?thesis by auto

qed

lemma sum-of-pr-is-pr2 : p ∈ PrimRec2 =⇒ (λ n m. sum (λ x. p x m) {i. i<n})
∈ PrimRec2
proof −

assume p-is-pr : p ∈ PrimRec2
define f where f n m = sum (λ x. p x m) {i. i<n} for n m
define g :: nat ⇒ nat where g x = 0 for x
have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule const-is-pr [where ?n=0])
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x from f-def g-def show f 0 x = g x by auto
qed
define h where h a b c = p a c + b for a b c

89

from p-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by prec
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI)

fix x y show f (Suc y) x = h y (f y x) x
proof −

from f-def have S1 : f (Suc y) x = sum (λ z. p z x) {i. i < Suc y} by auto
have S2 : {i. i < Suc y} = {i. i < y} ∪ {y} by auto
have S3 : finite {i. i < y} by (rule finite-interval)
have S4 : y /∈ {i. i < y} by auto
define g1 where g1 z = p z x for z
from S1 S2 g1-def have f (Suc y) x = sum g1 ({i. (i::nat) < y} ∪ {y}) by

auto
also from S3 S4 sum.insert have . . . = g1 y + sum g1 {i. i<y} by auto
also from f-def g1-def have . . . = g1 y + f y x by auto
also from h-def g1-def have . . . = h y (f y x) x by auto
finally show ?thesis by auto

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc have f-is-pr : f ∈ PrimRec2 by (rule pr-rec-scheme)
with f-def [abs-def] show ?thesis by auto

qed

lemma sum-is-pr : g ∈ PrimRec1 =⇒ (λ u. sum g (nat-to-set u)) ∈ PrimRec1
proof −

assume g-is-pr : g ∈ PrimRec1
define g1 where g1 x u = (if (c-in x u = 1) then (g x) else 0) for x u
have g1-is-pr : g1 ∈ PrimRec2
proof (unfold g1-def , rule if-eq-is-pr2)

show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 1) ∈ PrimRec2 by (rule const-is-pr-2 [where ?n=1])
next

from g-is-pr show (λx y. g x) ∈ PrimRec2 by prec
next

show (λx y. 0) ∈ PrimRec2 by (rule const-is-pr-2 [where ?n=0])
qed
define f where f u = sum (λ x. g1 x u) {i. (i::nat) < u} for u
define f1 where f1 u v = sum (λ x. g1 x v) {i. (i::nat) < u} for u v
from g1-is-pr have (λ (u::nat) v. sum (λ x. g1 x v) {i. (i::nat) < u}) ∈ PrimRec2

by (rule sum-of-pr-is-pr2)
with f1-def [abs-def] have f1-is-pr : f1 ∈ PrimRec2 by auto
from f-def f1-def have f-f1 : f = (λ u. f1 u u) by auto
from f1-is-pr have (λ u. f1 u u) ∈ PrimRec1 by prec
with f-f1 have f-is-pr : f ∈ PrimRec1 by auto
have f-is-result: f = (λ u. sum g (nat-to-set u))
proof

fix u show f u = sum g (nat-to-set u)
proof −

define U where U = {i. i < u}

90

define A where A = {x ∈ U . c-in x u = 1}
define B where B = {x ∈ U . c-in x u 6= 1}
have U-finite: finite U by (unfold U-def , rule finite-interval)
from A-def U-finite have A-finite: finite A by auto
from B-def U-finite have B-finite: finite B by auto
from U-def A-def B-def have U-A-B: U = A ∪ B by auto
from U-def A-def B-def have A-B: A ∩ B = {} by auto
from B-def g1-def have B-z: sum (λ x. g1 x u) B = 0 by auto

have u-in-U : nat-to-set u ⊆ U by (unfold U-def , rule nat-to-set-upper-bound2)
from u-in-U x-in-u-eq A-def have A-u: A = nat-to-set u by auto

from A-u x-in-u-eq g1-def have A-res: sum (λ x. g1 x u) A = sum g (nat-to-set
u) by auto

from f-def have f u = sum (λ x. g1 x u) {i. (i::nat) < u} by auto
also from U-def have . . . = sum (λ x. g1 x u) U by auto
also from U-A-B have . . . = sum (λ x. g1 x u) (A ∪ B) by auto
also from A-finite B-finite A-B have . . . = sum (λ x. g1 x u) A + sum (λ

x. g1 x u) B by (rule sum.union-disjoint)
also from B-z have . . . = sum (λ x. g1 x u) A by auto
also from A-res have . . . = sum g (nat-to-set u) by auto
finally show ?thesis by auto

qed
qed
with f-is-pr show ?thesis by auto

qed

definition
c-card :: nat ⇒ nat where
c-card = (λ u. card (nat-to-set u))

theorem c-card-is-pr : c-card ∈ PrimRec1
proof −

define g :: nat ⇒ nat where g x = 1 for x
have g-is-pr : g ∈ PrimRec1 by (unfold g-def , rule const-is-pr)
have c-card = (λ u. sum g (nat-to-set u))
proof
fix u show c-card u = sum g (nat-to-set u) by (unfold c-card-def , unfold g-def ,

rule card-eq-sum)
qed
moreover from g-is-pr have (λ u. sum g (nat-to-set u)) ∈ PrimRec1 by (rule

sum-is-pr)
ultimately show ?thesis by auto

qed

definition
c-insert :: nat ⇒ nat ⇒ nat where
c-insert = (λ x u. if c-in x u = 1 then u else u + 2^x)

lemma c-insert-is-pr : c-insert ∈ PrimRec2
proof (unfold c-insert-def , rule if-eq-is-pr2)

91

show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 1) ∈ PrimRec2 by (rule const-is-pr-2)
next

show (λx y. y) ∈ PrimRec2 by (rule pr-id2-2)
next

from power-is-pr show (λx y. y + 2 ^ x) ∈ PrimRec2 by prec
qed

lemma [simp]: set-to-nat (nat-to-set u) = u
proof −

define D where D = nat-to-set u
from D-def nat-to-set-is-finite have D-finite: finite D by auto
then have nat-to-set (set-to-nat D) = D by (rule nat-to-set-srj)
with D-def have nat-to-set (set-to-nat D) = nat-to-set u by auto
then have set-to-nat D = u by (rule nat-to-set-inj)
with D-def show ?thesis by auto

qed

lemma insert-lemma: x /∈ nat-to-set u =⇒ set-to-nat (nat-to-set u ∪ {x}) = u +
2 ^ x
proof −

assume A: x /∈ nat-to-set u
define D where D = nat-to-set u
from A D-def have S1 : x /∈ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = λ (x::nat). (2 ::nat)^x
from set-to-nat-def have set-to-nat (D ∪ {x}) = sum ?f (D ∪ {x}) by auto
also from D-finite S1 have . . . = ?f x + sum ?f D by simp
also from set-to-nat-def have . . . = 2 ^ x + set-to-nat D by auto
finally have set-to-nat (D ∪ {x}) = set-to-nat D + 2 ^ x by auto
with D-def show ?thesis by auto

qed

lemma c-insert-df : c-insert = (λ x u. set-to-nat ((nat-to-set u) ∪ {x}))
proof (rule ext, rule ext)

fix x u show c-insert x u = set-to-nat (nat-to-set u ∪ {x})
proof (cases)

assume A: x ∈ nat-to-set u
then have nat-to-set u ∪ {x} = nat-to-set u by auto
then have S1 : set-to-nat (nat-to-set u ∪ {x}) = u by auto
from A have c-in x u = 1 by (simp add: x-in-u-eq)
then have c-insert x u = u by (unfold c-insert-def , simp)
with S1 show ?thesis by auto

next
assume A: x /∈ nat-to-set u
then have S1 : c-in x u 6= 1 by (simp add: x-in-u-eq)
then have S2 : c-insert x u = u + 2 ^ x by (unfold c-insert-def , simp)

92

from A have set-to-nat (nat-to-set u ∪ {x}) = u + 2 ^ x by (rule insert-lemma)
with S2 show ?thesis by auto

qed
qed

definition
c-remove :: nat ⇒ nat ⇒ nat where
c-remove = (λ x u. if c-in x u = 0 then u else u − 2^x)

lemma c-remove-is-pr : c-remove ∈ PrimRec2
proof (unfold c-remove-def , rule if-eq-is-pr2)

show c-in ∈ PrimRec2 by (rule c-in-is-pr)
next

show (λx y. 0) ∈ PrimRec2 by (rule const-is-pr-2)
next

show (λx y. y) ∈ PrimRec2 by (rule pr-id2-2)
next

from power-is-pr show (λx y. y − 2 ^ x) ∈ PrimRec2 by prec
qed

lemma remove-lemma: x ∈ nat-to-set u =⇒ set-to-nat (nat-to-set u − {x}) = u
− 2 ^ x
proof −

assume A: x ∈ nat-to-set u
define D where D = nat-to-set u − {x}
from A D-def have S1 : x /∈ D by auto
have finite (nat-to-set u) by (rule nat-to-set-is-finite)
with D-def have D-finite: finite D by auto
let ?f = λ (x::nat). (2 ::nat)^x
from set-to-nat-def have set-to-nat (D ∪ {x}) = sum ?f (D ∪ {x}) by auto
also from D-finite S1 have . . . = ?f x + sum ?f D by simp
also from set-to-nat-def have . . . = 2 ^ x + set-to-nat D by auto
finally have S2 : set-to-nat (D ∪ {x}) = set-to-nat D + 2 ^ x by auto
from A D-def have D ∪ {x} = nat-to-set u by auto
with S2 have S3 : u = set-to-nat D + 2 ^ x by auto
from A have S4 : 2 ^ x ≤ u by (rule nat-to-set-upper-bound)
with S3 D-def show ?thesis by auto

qed

lemma c-remove-df : c-remove = (λ x u. set-to-nat ((nat-to-set u) − {x}))
proof (rule ext, rule ext)

fix x u show c-remove x u = set-to-nat (nat-to-set u − {x})
proof (cases)

assume A: x ∈ nat-to-set u
then have S1 : c-in x u = 1 by (simp add: x-in-u-eq)
then have S2 : c-remove x u = u − 2^x by (simp add: c-remove-def)

from A have set-to-nat (nat-to-set u − {x}) = u − 2 ^ x by (rule re-
move-lemma)

with S2 show ?thesis by auto

93

next
assume A: x /∈ nat-to-set u
then have S1 : c-in x u 6= 1 by (simp add: x-in-u-eq)
then have S2 : c-remove x u = u by (simp add: c-remove-def c-in-def)
from A have nat-to-set u − {x} = nat-to-set u by auto
with S2 show ?thesis by auto

qed
qed

definition
c-union :: nat ⇒ nat ⇒ nat where
c-union = (λ u v. set-to-nat (nat-to-set u ∪ nat-to-set v))

theorem c-union-is-pr : c-union ∈ PrimRec2
proof −

define f where f y x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set (c-snd
x). z < y})

for y x
have f-is-pr : f ∈ PrimRec2
proof −

define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr : g ∈ PrimRec1 by auto
define h where h a b c = (if c-in a (c-snd c) = 1 then c-insert a b else b) for

a b c
from c-in-is-pr c-insert-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def by

prec
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x show f 0 x = g x by (unfold f-def , unfold g-def , simp)
qed
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI)

fix x y show f (Suc y) x = h y (f y x) x
proof (cases)

assume A: c-in y (c-snd x) = 1
then have S1 : y ∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = c-insert y (f y x) by auto
from S1 have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set

(c-snd x). z < y} ∪ {y} by auto
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

∪ {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set

(c-snd x). z < y}) ∪ {y}) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x) ∪ {y}) by auto
also have . . . = c-insert y (f y x) by (simp add: c-insert-df)

94

finally show ?thesis by (simp add: S2)
next

assume A: ¬ c-in y (c-snd x) = 1
then have S1 : y /∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = f y x by auto
have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x).

z < y}
proof −

have {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x). z
< y} ∪ {z ∈ nat-to-set (c-snd x). z = y}

by auto
with S1 show ?thesis by auto

qed
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

∪ {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) ∪ {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) ∪ {z ∈ nat-to-set

(c-snd x). z < y})) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x)) by auto
also have . . . = f y x by simp
finally show ?thesis by (simp add: S2)

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)

qed
define union where union u v = f v (c-pair u v) for u v
from f-is-pr have union-is-pr : union ∈ PrimRec2 unfolding union-def by prec
have

∧
u v. union u v = set-to-nat (nat-to-set u ∪ nat-to-set v)

proof −
fix u v show union u v = set-to-nat (nat-to-set u ∪ nat-to-set v)
proof −

from nat-to-set-upper-bound1 have {z ∈ nat-to-set v. z < v} = nat-to-set v
by auto

with union-def f-def show ?thesis by auto
qed

qed
then have union = (λ u v. set-to-nat (nat-to-set u ∪ nat-to-set v)) by (simp

add: ext)
with c-union-def have c-union = union by simp
with union-is-pr show ?thesis by simp

qed

definition
c-diff :: nat ⇒ nat ⇒ nat where
c-diff = (λ u v. set-to-nat (nat-to-set u − nat-to-set v))

95

theorem c-diff-is-pr : c-diff ∈ PrimRec2
proof −

define f where f y x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈ nat-to-set (c-snd
x). z < y})

for y x
have f-is-pr : f ∈ PrimRec2
proof −

define g where g = c-fst
from c-fst-is-pr g-def have g-is-pr : g ∈ PrimRec1 by auto
define h where h a b c = (if c-in a (c-snd c) = 1 then c-remove a b else b)

for a b c
from c-in-is-pr c-remove-is-pr have h-is-pr : h ∈ PrimRec3 unfolding h-def

by prec
have f-at-0 : ∀ x. f 0 x = g x
proof

fix x show f 0 x = g x by (unfold f-def , unfold g-def , simp)
qed
have f-at-Suc: ∀ x y. f (Suc y) x = h y (f y x) x
proof (rule allI , rule allI)

fix x y show f (Suc y) x = h y (f y x) x
proof (cases)

assume A: c-in y (c-snd x) = 1
then have S1 : y ∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)
from A h-def have S2 : h y (f y x) x = c-remove y (f y x) by auto
have (nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd x). z < y} ∪ {y}) =

((nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd x). z < y}) − {y}) by
auto

then have lm1 : set-to-nat (nat-to-set (c-fst x) − ({z ∈ nat-to-set (c-snd
x). z < y} ∪ {y})) =

set-to-nat (nat-to-set (c-fst x) − {z ∈ nat-to-set (c-snd x). z <
y} − {y}) by auto

from S1 have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set
(c-snd x). z < y} ∪ {y} by auto

from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) − {z ∈
nat-to-set (c-snd x). z < y}) by auto

with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))
− {z ∈ nat-to-set (c-snd x). z < y} by auto

from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈
nat-to-set (c-snd x). z < Suc y}) by simp

also from S3 have . . . = set-to-nat ((nat-to-set (c-fst x)) − ({z ∈ nat-to-set
(c-snd x). z < y} ∪ {y})) by auto

also have . . . = set-to-nat (((nat-to-set (c-fst x)) − ({z ∈ nat-to-set (c-snd
x). z < y}) − {y})) by (rule lm1)

also from S5 have . . . = set-to-nat (nat-to-set (f y x) − {y}) by auto
also have . . . = c-remove y (f y x) by (simp add: c-remove-df)
finally show ?thesis by (simp add: S2)

next
assume A: ¬ c-in y (c-snd x) = 1
then have S1 : y /∈ (nat-to-set (c-snd x)) by (simp add: x-in-u-eq)

96

from A h-def have S2 : h y (f y x) x = f y x by auto
have S3 : {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x).

z < y}
proof −

have {z ∈ nat-to-set (c-snd x). z < Suc y} = {z ∈ nat-to-set (c-snd x). z
< y} ∪ {z ∈ nat-to-set (c-snd x). z = y}

by auto
with S1 show ?thesis by auto

qed
from nat-to-set-is-finite have S4 : finite ((nat-to-set (c-fst x)) − {z ∈

nat-to-set (c-snd x). z < y}) by auto
with nat-to-set-srj f-def have S5 : nat-to-set (f y x) = (nat-to-set (c-fst x))

− {z ∈ nat-to-set (c-snd x). z < y} by auto
from f-def have S6 : f (Suc y) x = set-to-nat ((nat-to-set (c-fst x)) − {z ∈

nat-to-set (c-snd x). z < Suc y}) by simp
also from S3 have . . . = set-to-nat (((nat-to-set (c-fst x)) − {z ∈ nat-to-set

(c-snd x). z < y})) by auto
also from S5 have . . . = set-to-nat (nat-to-set (f y x)) by auto
also have . . . = f y x by simp
finally show ?thesis by (simp add: S2)

qed
qed
from g-is-pr h-is-pr f-at-0 f-at-Suc show ?thesis by (rule pr-rec-scheme)

qed
define diff where diff u v = f v (c-pair u v) for u v
from f-is-pr have diff-is-pr : diff ∈ PrimRec2 unfolding diff-def by prec
have

∧
u v. diff u v = set-to-nat (nat-to-set u − nat-to-set v)

proof −
fix u v show diff u v = set-to-nat (nat-to-set u − nat-to-set v)
proof −

from nat-to-set-upper-bound1 have {z ∈ nat-to-set v. z < v} = nat-to-set v
by auto

with diff-def f-def show ?thesis by auto
qed

qed
then have diff = (λ u v. set-to-nat (nat-to-set u − nat-to-set v)) by (simp add:

ext)
with c-diff-def have c-diff = diff by simp
with diff-is-pr show ?thesis by simp

qed

definition
c-intersect :: nat ⇒ nat ⇒ nat where
c-intersect = (λ u v. set-to-nat (nat-to-set u ∩ nat-to-set v))

theorem c-intersect-is-pr : c-intersect ∈ PrimRec2
proof −

define f where f u v = c-diff (c-union u v) (c-union (c-diff u v) (c-diff v u))
for u v

97

from c-diff-is-pr c-union-is-pr have f-is-pr : f ∈ PrimRec2 unfolding f-def by
prec

have
∧

u v. f u v = c-intersect u v
proof −

fix u v show f u v = c-intersect u v
proof −

let ?A = nat-to-set u
let ?B = nat-to-set v
have A-fin: finite ?A by (rule nat-to-set-is-finite)
have B-fin: finite ?B by (rule nat-to-set-is-finite)
have S1 : c-union u v = set-to-nat (?A ∪ ?B) by (simp add: c-union-def)
have S2 : c-diff u v = set-to-nat (?A − ?B) by (simp add: c-diff-def)
have S3 : c-diff v u = set-to-nat (?B − ?A) by (simp add: c-diff-def)
from S2 A-fin B-fin have S4 : nat-to-set (c-diff u v) = ?A − ?B by (simp

add: nat-to-set-srj)
from S3 A-fin B-fin have S5 : nat-to-set (c-diff v u) = ?B − ?A by (simp

add: nat-to-set-srj)
from S4 S5 have S6 : c-union (c-diff u v) (c-diff v u) = set-to-nat ((?A −

?B) ∪ (?B − ?A)) by (simp add: c-union-def)
from S1 A-fin B-fin have S7 : nat-to-set (c-union u v) = ?A ∪ ?B by (simp

add: nat-to-set-srj)
from S6 A-fin B-fin have S8 : nat-to-set (c-union (c-diff u v) (c-diff v u)) =

(?A − ?B) ∪ (?B − ?A) by (simp add: nat-to-set-srj)
from S7 S8 have S9 : f u v = set-to-nat ((?A ∪ ?B) − ((?A − ?B) ∪ (?B −

?A))) by (simp add: c-diff-def f-def)
have S10 : ?A ∩ ?B = (?A ∪ ?B) − ((?A − ?B) ∪ (?B − ?A)) by auto
with S9 have S11 : f u v = set-to-nat (?A ∩ ?B) by auto
have c-intersect u v = set-to-nat (?A ∩ ?B) by (simp add: c-intersect-def)
with S11 show ?thesis by auto

qed
qed
then have f = c-intersect by (simp add: ext)
with f-is-pr show ?thesis by auto

qed

end

6 The function which is universal for primitive re-
cursive functions of one variable

theory PRecUnGr
imports PRecFun2 PRecList
begin

We introduce a particular function which is universal for primitive recursive
functions of one variable.
definition

g-comp :: nat ⇒ nat ⇒ nat where

98

g-comp c-ls key = (
let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>.
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y = c-assoc-value c-ls (c-pair m2 x) in
if c-assoc-have-key c-ls (c-pair m1 y) = 0 then
(let z = c-assoc-value c-ls (c-pair m1 y) in
c-cons (c-pair key z) c-ls)

else c-ls
)

else c-ls
)

definition
g-pair :: nat ⇒ nat ⇒ nat where
g-pair c-ls key = (

let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>.
if c-assoc-have-key c-ls (c-pair m1 x) = 0 then
(let y1 = c-assoc-value c-ls (c-pair m1 x) in
if c-assoc-have-key c-ls (c-pair m2 x) = 0 then
(let y2 = c-assoc-value c-ls (c-pair m2 x) in
c-cons (c-pair key (c-pair y1 y2)) c-ls)

else c-ls
)

else c-ls
)

definition
g-rec :: nat ⇒ nat ⇒ nat where
g-rec c-ls key = (

let n = c-fst key; x = c-snd key; m = c-snd n;
m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in
— We have key = <n, x>; n = <?, m>; m = <m1 , m2>; x = <y1 , x1>.
if y1 = 0 then
(

if c-assoc-have-key c-ls (c-pair m1 x1) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m1 x1))) c-ls

else c-ls
)
else
(
let y2 = y1−(1 ::nat) in
if c-assoc-have-key c-ls (c-pair n (c-pair y2 x1)) = 0 then
(

let t1 = c-assoc-value c-ls (c-pair n (c-pair y2 x1)); t2 = c-pair (c-pair y2
t1) x1 in

99

if c-assoc-have-key c-ls (c-pair m2 t2) = 0 then
c-cons (c-pair key (c-assoc-value c-ls (c-pair m2 t2))) c-ls

else c-ls
)
else c-ls

)
)

definition
g-step :: nat ⇒ nat ⇒ nat where
g-step c-ls key = (

let n = c-fst key; x = c-snd key; n1 = (c-fst n) mod 7 in
if n1 = 0 then c-cons (c-pair key 0) c-ls else
if n1 = 1 then c-cons (c-pair key (Suc x)) c-ls else
if n1 = 2 then c-cons (c-pair key (c-fst x)) c-ls else
if n1 = 3 then c-cons (c-pair key (c-snd x)) c-ls else
if n1 = 4 then g-comp c-ls key else
if n1 = 5 then g-pair c-ls key else
if n1 = 6 then g-rec c-ls key else
c-ls

)

definition
pr-gr :: nat ⇒ nat where
pr-gr-def : pr-gr = PrimRecOp1 0 (λ a b. g-step b (c-fst a))

lemma pr-gr-at-0 : pr-gr 0 = 0 by (simp add: pr-gr-def)

lemma pr-gr-at-Suc: pr-gr (Suc x) = g-step (pr-gr x) (c-fst x) by (simp add:
pr-gr-def)

definition
univ-for-pr :: nat ⇒ nat where
univ-for-pr = pr-conv-2-to-1 nat-to-pr

theorem univ-is-not-pr : univ-for-pr /∈ PrimRec1
proof (rule ccontr)

assume ¬ univ-for-pr /∈ PrimRec1 then have A1 : univ-for-pr ∈ PrimRec1 by
simp

let ?f = λ n. univ-for-pr (c-pair n n) + 1
let ?n0 = index-of-pr ?f
from A1 have S1 : ?f ∈ PrimRec1 by prec
then have S2 : nat-to-pr ?n0 = ?f by (rule index-of-pr-is-real)
then have S3 : nat-to-pr ?n0 ?n0 = ?f ?n0 by simp
have S4 : ?f ?n0 = univ-for-pr (c-pair ?n0 ?n0) + 1 by simp
from S3 S4 show False by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

qed

definition

100

c-is-sub-fun :: nat ⇒ (nat ⇒ nat) ⇒ bool where
c-is-sub-fun ls f ←→ (∀ x. c-assoc-have-key ls x = 0 −→ c-assoc-value ls x = f

x)

lemma c-is-sub-fun-lm-1 : [[c-is-sub-fun ls f ; c-assoc-have-key ls x = 0]] =⇒
c-assoc-value ls x = f x
apply(unfold c-is-sub-fun-def)
apply(auto)
done

lemma c-is-sub-fun-lm-2 : c-is-sub-fun ls f =⇒ c-is-sub-fun (c-cons (c-pair x (f x))
ls) f
proof −

assume A1 : c-is-sub-fun ls f
show ?thesis
proof (unfold c-is-sub-fun-def , rule allI , rule impI)

fix xa assume A2 : c-assoc-have-key (c-cons (c-pair x (f x)) ls) xa = 0 show
c-assoc-value (c-cons (c-pair x (f x)) ls) xa = f xa

proof cases
assume C1 : xa = x
then show c-assoc-value (c-cons (c-pair x (f x)) ls) xa = f xa by (simp add:

PRecList.c-assoc-lm-2)
next

assume C2 : ¬ xa = x
then have S1 : c-assoc-have-key (c-cons (c-pair x (f x)) ls) xa = c-assoc-have-key

ls xa by (rule c-assoc-lm-3)
from C2 have S2 : c-assoc-value (c-cons (c-pair x (f x)) ls) xa = c-assoc-value

ls xa by (rule c-assoc-lm-4)
from A2 S1 have S3 : c-assoc-have-key ls xa = 0 by simp
from A1 S3 have c-assoc-value ls xa = f xa by (rule c-is-sub-fun-lm-1)
with S2 show ?thesis by simp

qed
qed

qed

lemma mod7-lm: (n::nat) mod 7 = 0 ∨
(n::nat) mod 7 = 1 ∨
(n::nat) mod 7 = 2 ∨
(n::nat) mod 7 = 3 ∨
(n::nat) mod 7 = 4 ∨
(n::nat) mod 7 = 5 ∨
(n::nat) mod 7 = 6 by arith

lemma nat-to-sch-at-pos: x > 0 =⇒ nat-to-sch x = (let u=(c-fst x) mod 7 ;
v=c-snd x; v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2
in loc-f u sch1 sch2)
proof −

assume A: x > 0
show ?thesis

101

proof cases
assume A1 : x = 1
then have S1 : c-fst x = 0
proof −

have 1 = c-pair 0 1 by (simp add: c-pair-def sf-def)
then have c-fst 1 = c-fst (c-pair 0 1) by simp
then have c-fst 1 = 0 by simp
with A1 show ?thesis by simp

qed
from A1 have S2 : nat-to-sch x = Base-zero by simp
from S1 S2 show nat-to-sch x = (let u=(c-fst x) mod 7 ; v=c-snd x; v1=c-fst

v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2)
apply(insert S1 S2)
apply(simp add: Let-def loc-f-def)
done

next
assume ¬ x = 1
from A this have A2 : x > 1 by simp
from this have nat-to-sch x = (let u=mod7 (c-fst x); v=c-snd x; v1=c-fst v;

v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by
(rule loc-srj-lm-2)

from this show nat-to-sch x = (let u=(c-fst x) mod 7 ; v=c-snd x; v1=c-fst
v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by
(simp add: mod7-def)

qed
qed

lemma nat-to-sch-0 : c-fst n mod 7 = 0 =⇒ nat-to-sch n = Base-zero
proof −

assume A: c-fst n mod 7 = 0
show ?thesis
proof cases

assume n=0
then show nat-to-sch n = Base-zero by simp

next
assume ¬ n = 0 then have n > 0 by simp
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2

= c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (rule
nat-to-sch-at-pos)

with A show nat-to-sch n = Base-zero by (simp add: Let-def loc-f-def)
qed

qed

lemma loc-lm-1 : c-fst n mod 7 6= 0 =⇒ n > 0
proof −

assume A: c-fst n mod 7 6= 0
have n = 0 =⇒ False
proof −

assume n = 0

102

then have c-fst n mod 7 = 0 by (simp add: c-fst-at-0)
with A show ?thesis by simp

qed
then have ¬ n = 0 by auto
then show ?thesis by simp

qed

lemma loc-lm-2 : c-fst n mod 7 6= 0 =⇒ nat-to-sch n = (let u=(c-fst n) mod 7 ;
v=c-snd n; v1=c-fst v; v2 = c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in
loc-f u sch1 sch2)
proof −

assume c-fst n mod 7 6= 0
then have n > 0 by (rule loc-lm-1)
then show ?thesis by (rule nat-to-sch-at-pos)

qed

lemma nat-to-sch-1 : c-fst n mod 7 = 1 =⇒ nat-to-sch n = Base-suc
proof −

assume A1 : c-fst n mod 7 = 1
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-suc by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-2 : c-fst n mod 7 = 2 =⇒ nat-to-sch n = Base-fst
proof −

assume A1 : c-fst n mod 7 = 2
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-fst by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-3 : c-fst n mod 7 = 3 =⇒ nat-to-sch n = Base-snd
proof −

assume A1 : c-fst n mod 7 = 3
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Base-snd by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-4 : c-fst n mod 7 = 4 =⇒ nat-to-sch n = Comp-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 4
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp

103

add: loc-lm-2)
with A1 show nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-5 : c-fst n mod 7 = 5 =⇒ nat-to-sch n = Pair-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 5
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qed

lemma nat-to-sch-6 : c-fst n mod 7 = 6 =⇒ nat-to-sch n = Rec-op (nat-to-sch
(c-fst (c-snd n))) (nat-to-sch (c-snd (c-snd n)))
proof −

assume A1 : c-fst n mod 7 = 6
then have nat-to-sch n = (let u=(c-fst n) mod 7 ; v=c-snd n; v1=c-fst v; v2 =

c-snd v; sch1=nat-to-sch v1 ; sch2=nat-to-sch v2 in loc-f u sch1 sch2) by (simp
add: loc-lm-2)

with A1 show nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch
(c-snd (c-snd n))) by (simp add: Let-def loc-f-def)
qed

lemma nat-to-pr-lm-0 : c-fst n mod 7 = 0 =⇒ nat-to-pr n x = 0
proof −

assume A: c-fst n mod 7 = 0
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Base-zero by (rule nat-to-sch-0)
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-1 : c-fst n mod 7 = 1 =⇒ nat-to-pr n x = Suc x
proof −

assume A: c-fst n mod 7 = 1
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Base-suc by (rule nat-to-sch-1)
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-2 : c-fst n mod 7 = 2 =⇒ nat-to-pr n x = c-fst x
proof −

assume A: c-fst n mod 7 = 2
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Base-fst by (rule nat-to-sch-2)
from S1 S2 show ?thesis by simp

104

qed

lemma nat-to-pr-lm-3 : c-fst n mod 7 = 3 =⇒ nat-to-pr n x = c-snd x
proof −

assume A: c-fst n mod 7 = 3
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Base-snd by (rule nat-to-sch-3)
from S1 S2 show ?thesis by simp

qed

lemma nat-to-pr-lm-4 : c-fst n mod 7 = 4 =⇒ nat-to-pr n x = (nat-to-pr (c-fst
(c-snd n)) (nat-to-pr (c-snd (c-snd n)) x))
proof −

assume A: c-fst n mod 7 = 4
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Comp-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-4)
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Comp-op (nat-to-sch (c-fst

(c-snd n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 have S4 : nat-to-pr n x = (sch-to-pr (nat-to-sch (c-fst (c-snd n))))

((sch-to-pr (nat-to-sch (c-snd (c-snd n)))) x) by simp
from S4 show ?thesis by (simp add: nat-to-pr-def)

qed

lemma nat-to-pr-lm-5 : c-fst n mod 7 = 5 =⇒ nat-to-pr n x = (c-f-pair (nat-to-pr
(c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) x
proof −

assume A: c-fst n mod 7 = 5
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Pair-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-5)
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Pair-op (nat-to-sch (c-fst (c-snd

n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 show ?thesis by (simp add: nat-to-pr-def)

qed

lemma nat-to-pr-lm-6 : c-fst n mod 7 = 6 =⇒ nat-to-pr n x = (UnaryRecOp
(nat-to-pr (c-fst (c-snd n))) (nat-to-pr (c-snd (c-snd n)))) x
proof −

assume A: c-fst n mod 7 = 6
have S1 : nat-to-pr n x = sch-to-pr (nat-to-sch n) x by (simp add: nat-to-pr-def)
from A have S2 : nat-to-sch n = Rec-op (nat-to-sch (c-fst (c-snd n))) (nat-to-sch

(c-snd (c-snd n))) by (rule nat-to-sch-6)
from S1 S2 have S3 : nat-to-pr n x = sch-to-pr (Rec-op (nat-to-sch (c-fst (c-snd

n))) (nat-to-sch (c-snd (c-snd n)))) x by simp
from S3 show ?thesis by (simp add: nat-to-pr-def)

qed

lemma univ-for-pr-lm-0 : c-fst (c-fst key) mod 7 = 0 =⇒ univ-for-pr key = 0

105

proof −
assume A: c-fst (c-fst key) mod 7 = 0
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-0)

qed

lemma univ-for-pr-lm-1 : c-fst (c-fst key) mod 7 = 1 =⇒ univ-for-pr key = Suc
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 1
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-1)

qed

lemma univ-for-pr-lm-2 : c-fst (c-fst key) mod 7 = 2 =⇒ univ-for-pr key = c-fst
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 2
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-2)

qed

lemma univ-for-pr-lm-3 : c-fst (c-fst key) mod 7 = 3 =⇒ univ-for-pr key = c-snd
(c-snd key)
proof −

assume A: c-fst (c-fst key) mod 7 = 3
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-3)

qed

lemma univ-for-pr-lm-4 : c-fst (c-fst key) mod 7 = 4 =⇒ univ-for-pr key = (nat-to-pr
(c-fst (c-snd (c-fst key))) (nat-to-pr (c-snd (c-snd (c-fst key))) (c-snd key)))
proof −

assume A: c-fst (c-fst key) mod 7 = 4
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-4)

qed

lemma univ-for-pr-lm-4-1 : c-fst (c-fst key) mod 7 = 4 =⇒ univ-for-pr key =
univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (univ-for-pr (c-pair (c-snd (c-snd
(c-fst key))) (c-snd key))))
proof −

assume A: c-fst (c-fst key) mod 7 = 4

106

have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:
univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-4 univ-for-pr-def pr-conv-2-to-1-def)

qed

lemma univ-for-pr-lm-5 : c-fst (c-fst key) mod 7 = 5 =⇒ univ-for-pr key = c-pair
(univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd key))) (univ-for-pr (c-pair
(c-snd (c-snd (c-fst key))) (c-snd key)))
proof −

assume A: c-fst (c-fst key) mod 7 = 5
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A show ?thesis by (simp add: nat-to-pr-lm-5 c-f-pair-def univ-for-pr-def

pr-conv-2-to-1-def)
qed

lemma univ-for-pr-lm-6-1 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) = 0]]
=⇒ univ-for-pr key = univ-for-pr (c-pair (c-fst (c-snd (c-fst key))) (c-snd (c-snd
key)))
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) = 0
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A1 A2 show ?thesis by (simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def

pr-conv-2-to-1-def)
qed

lemma univ-for-pr-lm-6-2 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) = Suc
u]] =⇒ univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair u (univ-for-pr (c-pair (c-fst key) (c-pair u (c-snd (c-snd

key)))))) (c-snd (c-snd key))))
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) = Suc u
have S1 : univ-for-pr key = nat-to-pr (c-fst key) (c-snd key) by (simp add:

univ-for-pr-def pr-conv-2-to-1-def)
with A1 A2 show ?thesis
apply(simp add: nat-to-pr-lm-6 UnaryRecOp-def univ-for-pr-def pr-conv-2-to-1-def)
apply(simp add: pr-conv-1-to-3-def)
done

qed

lemma univ-for-pr-lm-6-3 : [[c-fst (c-fst key) mod 7 = 6 ; c-fst (c-snd key) 6= 0]]
=⇒ univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair (c-fst (c-snd key) − 1) (univ-for-pr (c-pair (c-fst key)

(c-pair (c-fst (c-snd key) − 1) (c-snd (c-snd key)))))) (c-snd (c-snd key))))

107

proof −
assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-fst (c-snd key) 6= 0 then have
A3 : c-fst (c-snd key) > 0 by simp
let ?u = c-fst (c-snd key) − (1 ::nat)
from A3 have S1 : c-fst (c-snd key) = Suc ?u by simp
from A1 S1 have S2 : univ-for-pr key = univ-for-pr

(c-pair (c-snd (c-snd (c-fst key)))
(c-pair (c-pair ?u (univ-for-pr (c-pair (c-fst key) (c-pair ?u (c-snd

(c-snd key)))))) (c-snd (c-snd key)))) by (rule univ-for-pr-lm-6-2)
thus ?thesis by simp

qed

lemma g-comp-lm-0 : [[c-fst (c-fst key) mod 7 = 4 ; c-is-sub-fun ls univ-for-pr ;
g-comp ls key 6= ls]] =⇒ g-comp ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 4
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-comp ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?k1 = c-pair ?m2 ?x
have S1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume A1-1 : c-assoc-have-key ls ?k1 6= 0
then have g-comp ls key = ls by(simp add: g-comp-def)
with A3 show False by simp

qed
let ?y = c-assoc-value ls ?k1
from A2 S1 have S2 : ?y = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1)
let ?k2 = c-pair ?m1 ?y
have S3 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume A3-1 : c-assoc-have-key ls ?k2 6= 0
then have g-comp ls key = ls by (simp add: g-comp-def Let-def)
with A3 show False by simp

qed
let ?z = c-assoc-value ls ?k2
from A2 S3 have S4 : ?z = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1)
from S2 have S5 : ?k2 = c-pair ?m1 (univ-for-pr ?k1) by simp
from S4 S5 have S6 : ?z = univ-for-pr (c-pair ?m1 (univ-for-pr ?k1)) by simp
from A1 S6 have S7 : ?z = univ-for-pr key by (simp add: univ-for-pr-lm-4-1)
from S1 S3 S7 show ?thesis by (simp add: g-comp-def Let-def)

qed

lemma g-comp-lm-1 : [[c-fst (c-fst key) mod 7 = 4 ; c-is-sub-fun ls univ-for-pr]]

108

=⇒ c-is-sub-fun (g-comp ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 4
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-comp ls key = ls
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by simp

next
assume g-comp ls key 6= ls
from A1 A2 this have S1 : g-comp ls key = c-cons (c-pair key (univ-for-pr

key)) ls by (rule g-comp-lm-0)
with A2 show c-is-sub-fun (g-comp ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)

qed
qed

lemma g-pair-lm-0 : [[c-fst (c-fst key) mod 7 = 5 ; c-is-sub-fun ls univ-for-pr ; g-pair
ls key 6= ls]] =⇒ g-pair ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 5
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-pair ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?k1 = c-pair ?m1 ?x
have S1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume A1-1 : c-assoc-have-key ls ?k1 6= 0
then have g-pair ls key = ls by(simp add: g-pair-def)
with A3 show False by simp

qed
let ?y1 = c-assoc-value ls ?k1
from A2 S1 have S2 : ?y1 = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1)
let ?k2 = c-pair ?m2 ?x
have S3 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume A3-1 : c-assoc-have-key ls ?k2 6= 0
then have g-pair ls key = ls by (simp add: g-pair-def Let-def)
with A3 show False by simp

qed
let ?y2 = c-assoc-value ls ?k2
from A2 S3 have S4 : ?y2 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1)
let ?z = c-pair ?y1 ?y2
from S2 S4 have S5 : ?z = c-pair (univ-for-pr ?k1) (univ-for-pr ?k2) by simp
from A1 S5 have S6 : ?z = univ-for-pr key by (simp add: univ-for-pr-lm-5)
from S1 S3 S6 show ?thesis by (simp add: g-pair-def Let-def)

109

qed

lemma g-pair-lm-1 : [[c-fst (c-fst key) mod 7 = 5 ; c-is-sub-fun ls univ-for-pr]] =⇒
c-is-sub-fun (g-pair ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 5
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-pair ls key = ls
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by simp

next
assume g-pair ls key 6= ls
from A1 A2 this have S1 : g-pair ls key = c-cons (c-pair key (univ-for-pr key))

ls by (rule g-pair-lm-0)
with A2 show c-is-sub-fun (g-pair ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)

qed
qed

lemma g-rec-lm-0 : [[c-fst (c-fst key) mod 7 = 6 ; c-is-sub-fun ls univ-for-pr ; g-rec
ls key 6= ls]] =⇒ g-rec ls key = c-cons (c-pair key (univ-for-pr key)) ls
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-is-sub-fun ls univ-for-pr
assume A3 : g-rec ls key 6= ls
let ?n = c-fst key
let ?x = c-snd key
let ?m = c-snd ?n
let ?m1 = c-fst ?m
let ?m2 = c-snd ?m
let ?y1 = c-fst ?x
let ?x1 = c-snd ?x
show ?thesis
proof cases

assume A1-1 : ?y1 = 0
let ?k1 = c-pair ?m1 ?x1
have S1-1 : c-assoc-have-key ls ?k1 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k1 6= 0
with A1-1 have g-rec ls key = ls by(simp add: g-rec-def)
with A3 show False by simp

qed
let ?v = c-assoc-value ls ?k1
from A2 S1-1 have S1-2 : ?v = univ-for-pr ?k1 by (rule c-is-sub-fun-lm-1)

from A1 A1-1 S1-2 have S1-3 : ?v = univ-for-pr key by (simp add: univ-for-pr-lm-6-1)
from A1-1 S1-1 S1-3 show ?thesis by (simp add: g-rec-def Let-def)

next
assume A2-1 : ?y1 6= 0 then have A2-2 : ?y1 > 0 by simp
let ?y2 = ?y1 − (1 ::nat)

110

let ?k2 = c-pair ?n (c-pair ?y2 ?x1)
have S2-1 : c-assoc-have-key ls ?k2 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k2 6= 0
with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def)
with A3 show False by simp

qed
let ?t1 = c-assoc-value ls ?k2
from A2 S2-1 have S2-2 : ?t1 = univ-for-pr ?k2 by (rule c-is-sub-fun-lm-1)
let ?t2 = c-pair (c-pair ?y2 ?t1) ?x1
let ?k3 = c-pair ?m2 ?t2
have S2-3 : c-assoc-have-key ls ?k3 = 0
proof (rule ccontr)

assume c-assoc-have-key ls ?k3 6= 0
with A2-1 have g-rec ls key = ls by (simp add: g-rec-def Let-def)
with A3 show False by simp

qed
let ?u = c-assoc-value ls ?k3
from A2 S2-3 have S2-4 : ?u = univ-for-pr ?k3 by (rule c-is-sub-fun-lm-1)
from S2-4 S2-2 have S2-5 : ?u = univ-for-pr (c-pair ?m2 (c-pair (c-pair ?y2

(univ-for-pr ?k2)) ?x1)) by simp
from A1 A2-1 S2-5 have S2-6 : ?u = univ-for-pr key by (simp add: univ-for-pr-lm-6-3)
from A2-1 S2-1 S2-3 S2-6 show ?thesis by (simp add: g-rec-def Let-def)

qed
qed

lemma g-rec-lm-1 : [[c-fst (c-fst key) mod 7 = 6 ; c-is-sub-fun ls univ-for-pr]] =⇒
c-is-sub-fun (g-rec ls key) univ-for-pr
proof −

assume A1 : c-fst (c-fst key) mod 7 = 6
assume A2 : c-is-sub-fun ls univ-for-pr
show ?thesis
proof cases

assume g-rec ls key = ls
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by simp

next
assume g-rec ls key 6= ls
from A1 A2 this have S1 : g-rec ls key = c-cons (c-pair key (univ-for-pr key))

ls by (rule g-rec-lm-0)
with A2 show c-is-sub-fun (g-rec ls key) univ-for-pr by (simp add: c-is-sub-fun-lm-2)

qed
qed

lemma g-step-lm-0 : c-fst (c-fst key) mod 7 = 0 =⇒ g-step ls key = c-cons (c-pair
key 0) ls by (simp add: g-step-def)

lemma g-step-lm-1 : c-fst (c-fst key) mod 7 = 1 =⇒ g-step ls key = c-cons (c-pair
key (Suc (c-snd key))) ls by (simp add: g-step-def Let-def)

111

lemma g-step-lm-2 : c-fst (c-fst key) mod 7 = 2 =⇒ g-step ls key = c-cons (c-pair
key (c-fst (c-snd key))) ls by (simp add: g-step-def Let-def)

lemma g-step-lm-3 : c-fst (c-fst key) mod 7 = 3 =⇒ g-step ls key = c-cons (c-pair
key (c-snd (c-snd key))) ls by (simp add: g-step-def Let-def)

lemma g-step-lm-4 : c-fst (c-fst key) mod 7 = 4 =⇒ g-step ls key = g-comp ls key
by (simp add: g-step-def)

lemma g-step-lm-5 : c-fst (c-fst key) mod 7 = 5 =⇒ g-step ls key = g-pair ls key
by (simp add: g-step-def)

lemma g-step-lm-6 : c-fst (c-fst key) mod 7 = 6 =⇒ g-step ls key = g-rec ls key
by (simp add: g-step-def)

lemma g-step-lm-7 : c-is-sub-fun ls univ-for-pr =⇒ c-is-sub-fun (g-step ls key)
univ-for-pr
proof −

assume A1 : c-is-sub-fun ls univ-for-pr
let ?n = c-fst key
let ?x = c-snd key
let ?n1 = (c-fst ?n) mod 7
have S1 : ?n1 = 0 =⇒ ?thesis
proof −

assume A: ?n1 = 0
then have S1-1 : g-step ls key = c-cons (c-pair key 0) ls by (rule g-step-lm-0)
from A have S1-2 : univ-for-pr key = 0 by (rule univ-for-pr-lm-0)
from A1 have S1-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)

univ-for-pr by (rule c-is-sub-fun-lm-2)
from S1-3 S1-1 S1-2 show ?thesis by simp

qed
have S2 : ?n1 = 1 =⇒ ?thesis
proof −

assume A: ?n1 = 1
then have S2-1 : g-step ls key = c-cons (c-pair key (Suc (c-snd key))) ls by

(rule g-step-lm-1)
from A have S2-2 : univ-for-pr key = Suc (c-snd key) by (rule univ-for-pr-lm-1)

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2)

from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S3 : ?n1 = 2 =⇒ ?thesis
proof −

assume A: ?n1 = 2
then have S2-1 : g-step ls key = c-cons (c-pair key (c-fst (c-snd key))) ls by

(rule g-step-lm-2)
from A have S2-2 : univ-for-pr key = c-fst (c-snd key) by (rule univ-for-pr-lm-2)

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2)

112

from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S4 : ?n1 = 3 =⇒ ?thesis
proof −

assume A: ?n1 = 3
then have S2-1 : g-step ls key = c-cons (c-pair key (c-snd (c-snd key))) ls by

(rule g-step-lm-3)
from A have S2-2 : univ-for-pr key = c-snd (c-snd key) by (rule univ-for-pr-lm-3)

from A1 have S2-3 : c-is-sub-fun (c-cons (c-pair key (univ-for-pr key)) ls)
univ-for-pr by (rule c-is-sub-fun-lm-2)

from S2-3 S2-1 S2-2 show ?thesis by simp
qed
have S5 : ?n1 = 4 =⇒ ?thesis
proof −

assume A: ?n1 = 4
then have S2-1 : g-step ls key = g-comp ls key by (rule g-step-lm-4)
from A A1 S2-1 show ?thesis by (simp add: g-comp-lm-1)

qed
have S6 : ?n1 = 5 =⇒ ?thesis
proof −

assume A: ?n1 = 5
then have S2-1 : g-step ls key = g-pair ls key by (rule g-step-lm-5)
from A A1 S2-1 show ?thesis by (simp add: g-pair-lm-1)

qed
have S7 : ?n1 = 6 =⇒ ?thesis
proof −

assume A: ?n1 = 6
then have S2-1 : g-step ls key = g-rec ls key by (rule g-step-lm-6)
from A A1 S2-1 show ?thesis by (simp add: g-rec-lm-1)

qed
have S8 : ?n1=0 ∨ ?n1=1 ∨ ?n1=2 ∨ ?n1=3 ∨ ?n1=4 ∨ ?n1=5 ∨ ?n1=6

by (rule mod7-lm)
with S1 S2 S3 S4 S5 S6 S7 show ?thesis by fast

qed

theorem pr-gr-1 : c-is-sub-fun (pr-gr x) univ-for-pr
apply(induct x)
apply(simp add: pr-gr-at-0 c-is-sub-fun-def c-assoc-have-key-df)
apply(simp add: pr-gr-at-Suc)
apply(simp add: g-step-lm-7)
done

lemma comp-next: g-comp ls key = ls ∨ c-tl (g-comp ls key) = ls by(simp add:
g-comp-def Let-def)
lemma pair-next: g-pair ls key = ls ∨ c-tl (g-pair ls key) = ls by(simp add:
g-pair-def Let-def)
lemma rec-next: g-rec ls key = ls ∨ c-tl (g-rec ls key) = ls by(simp add: g-rec-def
Let-def)

113

lemma step-next: g-step ls key = ls ∨ c-tl (g-step ls key) = ls
apply(simp add: g-step-def comp-next pair-next rec-next Let-def)

done

lemma lm1 : pr-gr (Suc x) = pr-gr x ∨ c-tl (pr-gr (Suc x)) = pr-gr x by(simp
add: pr-gr-at-Suc step-next)

lemma c-assoc-have-key-pos: c-assoc-have-key ls x = 0 =⇒ ls > 0
proof −

assume A1 : c-assoc-have-key ls x = 0
thus ?thesis
proof (cases)

assume A2 : ls = 0
then have S1 : c-assoc-have-key ls x = 1 by (simp add: c-assoc-have-key-df)
with A1 have S2 : False by auto
then show ls > 0 by auto

next
assume A3 : ¬ ls = 0
then show ls > 0 by auto

qed
qed

lemma lm2 : c-assoc-have-key (c-tl ls) key = 0 =⇒ c-assoc-have-key ls key = 0
proof −

assume A1 : c-assoc-have-key (c-tl ls) key = 0
from A1 have S1 : c-tl ls > 0 by (rule c-assoc-have-key-pos)
have S2 : c-tl ls ≤ ls by (rule c-tl-le)
from S1 S2 have S3 : ls 6= 0 by auto
from A1 S3 show ?thesis by (auto simp add: c-assoc-have-key-lm-1)

qed

lemma lm3 : c-assoc-have-key (pr-gr x) key = 0 =⇒ c-assoc-have-key (pr-gr (Suc
x)) key = 0
proof −

assume A1 : c-assoc-have-key (pr-gr x) key = 0
have S1 : pr-gr (Suc x) = pr-gr x ∨ c-tl (pr-gr (Suc x)) = pr-gr x by (rule lm1)
from A1 have S2 : pr-gr (Suc x) = pr-gr x =⇒ ?thesis by auto
have S3 : c-tl (pr-gr (Suc x)) = pr-gr x =⇒ ?thesis
proof −

assume c-tl (pr-gr (Suc x)) = pr-gr x (is c-tl ?ls = -)
with A1 have c-assoc-have-key (c-tl ?ls) key = 0 by auto
then show c-assoc-have-key ?ls key = 0 by (rule lm2)

qed
from S1 S2 S3 show ?thesis by auto

qed

lemma lm4 : [[c-assoc-have-key (pr-gr x) key = 0 ; 0 ≤ y]] =⇒ c-assoc-have-key
(pr-gr (x+y)) key = 0

114

apply(induct-tac y)
apply(auto)
apply(simp add: lm3)
done

lemma lm5 : [[c-assoc-have-key (pr-gr x) key = 0 ; x ≤ y]] =⇒ c-assoc-have-key
(pr-gr y) key = 0
proof −

assume A1 : c-assoc-have-key (pr-gr x) key = 0
assume A2 : x ≤ y
let ?z = y−x
from A2 have S1 : 0 ≤ ?z by auto
from A2 have S2 : y = x + ?z by auto
from A1 S1 have S3 : c-assoc-have-key (pr-gr (x+?z)) key = 0 by (rule lm4)
from S2 S3 show ?thesis by auto

qed

lemma loc-upb-lm-1 : n = 0 =⇒ (c-fst n) mod 7 = 0
apply(simp add: c-fst-at-0)
done

lemma loc-upb-lm-2 : (c-fst n) mod 7 > 1 =⇒ c-snd n < n
proof −

assume A1 : c-fst n mod 7 > 1
from A1 have S1 : 1 < c-fst n by simp
have S2 : c-fst n ≤ n by (rule c-fst-le-arg)
from S1 S2 have S3 : 1 < n by simp
from S3 have S4 : n>1 by simp
from S4 show ?thesis by (rule c-snd-less-arg)

qed

lemma loc-upb-lm-2-0 : (c-fst n) mod 7 = 4 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 4
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-2 : (c-fst n) mod 7 = 4 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 4
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed

115

lemma loc-upb-lm-2-3 : (c-fst n) mod 7 = 5 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 5
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-4 : (c-fst n) mod 7 = 5 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 5
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-5 : (c-fst n) mod 7 = 6 −→ c-fst (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 6
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-fst (c-snd n) ≤ c-snd n by (rule c-fst-le-arg)
from S1 S2 show c-fst (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-6 : (c-fst n) mod 7 = 6 −→ c-snd (c-snd n) < n
proof

assume A1 : c-fst n mod 7 = 6
then have S0 : c-fst n mod 7 > 1 by auto
then have S1 : c-snd n < n by (rule loc-upb-lm-2)
have S2 : c-snd (c-snd n) ≤ c-snd n by (rule c-snd-le-arg)
from S1 S2 show c-snd (c-snd n) < n by auto

qed

lemma loc-upb-lm-2-7 : [[y2 = y1 − (1 ::nat); 0 < y1 ; x1 = c-snd x; y1 = c-fst x]]
=⇒ c-pair y2 x1 < x
proof −

assume A1 : y2 = y1 − (1 ::nat) and A2 : 0 < y1 and A3 : x1 = c-snd x and
A4 : y1 = c-fst x

from A1 A2 have S1 : y2 < y1 by auto
from S1 have S2 : c-pair y2 x1 < c-pair y1 x1 by (rule c-pair-strict-mono1)
from A3 A4 have S3 : c-pair y1 x1 = x by auto
from S2 S3 show c-pair y2 x1 < x by auto

qed

function loc-upb :: nat ⇒ nat ⇒ nat where
aa: loc-upb n x = (

116

let n1 = (c-fst n) mod 7 in
if n1 = 0 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 1 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 2 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 3 then (c-pair (c-pair n x) 0) + 1 else
if n1 = 4 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m;
y = c-assoc-value (pr-gr (loc-upb m2 x)) (c-pair m2 x) in
(c-pair (c-pair n x) (loc-upb m2 x + loc-upb m1 y)) + 1

) else
if n1 = 5 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m in
(c-pair (c-pair n x) (loc-upb m1 x + loc-upb m2 x)) + 1

) else
if n1 = 6 then (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst x; x1 = c-snd x in

if y1 = 0 then (
(c-pair (c-pair n x) (loc-upb m1 x1)) + 1

) else (
let y2 = y1−(1 ::nat);

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair n (c-pair
y2 x1)); t2 = c-pair (c-pair y2 t1) x1 in

(c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + loc-upb m2 t2)) + 1
)

)
else 0

)
by auto

termination
apply (relation measure (λ m. m) <∗lex∗> measure (λ n. n))
apply (simp-all add: loc-upb-lm-2-0 loc-upb-lm-2-2 loc-upb-lm-2-3 loc-upb-lm-2-4
loc-upb-lm-2-5 loc-upb-lm-2-6 loc-upb-lm-2-7)
apply auto
done

definition
lex-p :: ((nat × nat) × nat × nat) set where
lex-p = ((measure (λ m. m)) <∗lex∗> (measure (λ n. n)))

lemma wf-lex-p: wf (lex-p)
apply(simp add: lex-p-def)
apply(auto)
done

lemma lex-p-eq: ((n ′,x ′), (n,x)) ∈ lex-p = (n ′<n ∨ n ′=n ∧ x ′<x)
apply(simp add: lex-p-def)
done

117

lemma loc-upb-lex-0 : c-fst n mod 7 = 0 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 0
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key 0) ?ls by (simp add:

g-step-def)
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key 0) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-lex-1 : c-fst n mod 7 = 1 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 1
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (Suc x)) ?ls by (simp

add: g-step-def)
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (Suc x)) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-lex-2 : c-fst n mod 7 = 2 =⇒ c-assoc-have-key (pr-gr (loc-upb n
x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 2
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (c-fst x)) ?ls by (simp

add: g-step-def)
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-fst x)) ?ls by auto
thus ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-lex-3 : c-fst n mod 7 = 3 =⇒ c-assoc-have-key (pr-gr (loc-upb n

118

x)) (c-pair n x) = 0
proof −

assume A1 : c-fst n mod 7 = 3
let ?key = c-pair n x
let ?s = c-pair ?key 0
let ?ls = pr-gr ?s
from A1 have loc-upb n x = ?s + 1 by simp
then have S1 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from A1 have S2 : g-step ?ls ?key = c-cons (c-pair ?key (c-snd x)) ?ls by (simp

add: g-step-def)
from S1 S2 have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-snd x)) ?ls by

auto
thus ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-lex-4 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 4]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 4
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
define upb1 where upb1 = loc-upb ?m2 x
from A2 have m2-lt-n: ?m2 < n by (simp add: loc-upb-lm-2-2)
then have M2 : ((?m2 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 upb1-def have S1 : c-assoc-have-key (pr-gr upb1) (c-pair ?m2 x) = 0

by auto
from M2 have M2 ′: ((?m2 , x), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn.

n) by (simp add: lex-p-def)
have T1 : c-is-sub-fun (pr-gr upb1) univ-for-pr by (rule pr-gr-1)
from T1 S1 have T2 : c-assoc-value (pr-gr upb1) (c-pair ?m2 x) = univ-for-pr

(c-pair ?m2 x) by (rule c-is-sub-fun-lm-1)
define y where y = c-assoc-value (pr-gr upb1) (c-pair ?m2 x)
from T2 y-def have T3 : y = univ-for-pr (c-pair ?m2 x) by auto

define upb2 where upb2 = loc-upb ?m1 y
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-0)
then have M1 : ((?m1 , y), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S2 : c-assoc-have-key (pr-gr (loc-upb ?m1 y)) (c-pair ?m1 y) = 0

by auto
from M1 have M1 ′: ((?m1 , y), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn.

n) by (simp add: lex-p-def)
from S1 upb1-def have S3 : c-assoc-have-key (pr-gr upb1) (c-pair ?m2 x) = 0

by auto

119

from S2 upb2-def have S4 : c-assoc-have-key (pr-gr upb2) (c-pair ?m1 y) = 0
by auto

let ?s = c-pair ?key (upb1 + upb2)
let ?ls = pr-gr ?s
let ?sum-upb = upb1 +upb2
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-0)
then have ((?m1 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
then have M1 ′′: ((?m1 , x), n, x) ∈ measure (λm. m) <∗lex∗> measure (λn. n)

by (simp add: lex-p-def)
from A2 M2 ′ M1 ′′ have S11 : loc-upb n x = (let y = c-assoc-value (pr-gr (loc-upb

?m2 x)) (c-pair ?m2 x)
in (c-pair (c-pair n x)

(loc-upb ?m2 x + loc-upb ?m1 y)) + 1)
by(simp add: Let-def)

define upb where upb = loc-upb n x
from S11 y-def upb1-def upb2-def have loc-upb n x = ?s + 1 by (simp add:

Let-def)
with upb-def have S11 : upb = ?s + 1 by auto

have S7 : ?sum-upb ≤ ?s by (rule arg2-le-c-pair)
have upb1-le-s: upb1 ≤ ?s
proof −

have S1 : upb1 ≤ ?sum-upb by (rule Nat.le-add1)
from S1 S7 show ?thesis by auto

qed
have upb2-le-s: upb2 ≤ ?s
proof −

have S1 : upb2 ≤ ?sum-upb by (rule Nat.le-add2)
from S1 S7 show ?thesis by auto

qed

have S18 : pr-gr upb = g-comp ?ls ?key
proof −

from S11 have S1 : pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:
pr-gr-at-Suc)

from A2 have S2 : g-step ?ls ?key = g-comp ?ls ?key by (simp add: g-step-def)
from S1 S2 show ?thesis by auto

qed

from S3 upb1-le-s have S19 : c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule
lm5)

from S4 upb2-le-s have S20 : c-assoc-have-key ?ls (c-pair ?m1 y) = 0 by (rule
lm5)

have T-ls: c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1)
from T-ls S19 have T-ls2 : c-assoc-value ?ls (c-pair ?m2 x) = univ-for-pr (c-pair

?m2 x) by (rule c-is-sub-fun-lm-1)
from T3 T-ls2 have T-y: c-assoc-value ?ls (c-pair ?m2 x) = y by auto
from T-y S19 S20 have S21 : g-comp ?ls ?key = c-cons (c-pair ?key (c-assoc-value

120

?ls (c-pair ?m1 y))) ?ls
by(unfold g-comp-def)(simp del: loc-upb.simps add: Let-def)

from S18 S21 have pr-gr upb = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair
?m1 y))) ?ls by auto

with upb-def have pr-gr (loc-upb n x) = c-cons (c-pair ?key (c-assoc-value ?ls
(c-pair ?m1 y))) ?ls by auto

thus ?thesis by (simp add: c-assoc-lm-1)
qed

lemma loc-upb-lex-5 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 5]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 5
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
from A2 have ?m1 < n by (simp add: loc-upb-lm-2-3)
then have ((?m1 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S1 : c-assoc-have-key (pr-gr (loc-upb ?m1 x)) (c-pair ?m1 x) = 0

by auto
from A2 have ?m2 < n by (simp add: loc-upb-lm-2-4)
then have ((?m2 , x), (n,x)) ∈ lex-p by (simp add: lex-p-eq)
with A1 have S2 : c-assoc-have-key (pr-gr (loc-upb ?m2 x)) (c-pair ?m2 x) = 0

by auto
define upb1 where upb1 = loc-upb ?m1 x
define upb2 where upb2 = loc-upb ?m2 x
from upb1-def S1 have S3 : c-assoc-have-key (pr-gr upb1) (c-pair ?m1 x) = 0

by auto
from upb2-def S2 have S4 : c-assoc-have-key (pr-gr upb2) (c-pair ?m2 x) = 0

by auto
let ?sum-upb = upb1 +upb2
have S5 : upb1 ≤ ?sum-upb by (rule Nat.le-add1)
have S6 : upb2 ≤ ?sum-upb by (rule Nat.le-add2)
let ?s = (c-pair ?key ?sum-upb)
have S7 : ?sum-upb ≤ ?s by (rule arg2-le-c-pair)
from S5 S7 have S8 : upb1 ≤ ?s by auto
from S6 S7 have S9 : upb2 ≤ ?s by auto
let ?ls = pr-gr ?s
from A2 upb1-def upb2-def have S10 : loc-upb n x = ?s + 1 by (simp add:

Let-def)
define upb where upb = loc-upb n x
from upb-def S10 have S11 : upb = ?s + 1 by auto
from S11 have S12 : pr-gr upb = g-step (pr-gr ?s) (c-fst ?s) by (simp add:

pr-gr-at-Suc)
from S8 S10 upb-def have S13 : upb1 ≤ upb by (simp only:)

121

from S9 S10 upb-def have S14 : upb2 ≤ upb by (simp only:)
from S3 S13 have S15 : c-assoc-have-key (pr-gr upb) (c-pair ?m1 x) = 0 by

(rule lm5)
from S4 S14 have S16 : c-assoc-have-key (pr-gr upb) (c-pair ?m2 x) = 0 by

(rule lm5)
from A2 have S17 : g-step ?ls ?key = g-pair ?ls ?key by (simp add: g-step-def)
from S12 S17 have S18 : pr-gr upb = g-pair ?ls ?key by auto
from S3 S8 have S19 : c-assoc-have-key ?ls (c-pair ?m1 x) = 0 by (rule lm5)
from S4 S9 have S20 : c-assoc-have-key ?ls (c-pair ?m2 x) = 0 by (rule lm5)
let ?y1 = c-assoc-value ?ls (c-pair ?m1 x)
let ?y2 = c-assoc-value ?ls (c-pair ?m2 x)
let ?y = c-pair ?y1 ?y2
from S19 S20 have S21 : g-pair ?ls ?key = c-cons (c-pair ?key ?y) ?ls by (unfold

g-pair-def , simp add: Let-def)
from S18 S21 have S22 : pr-gr upb = c-cons (c-pair ?key ?y) ?ls by auto
from upb-def S22 have S23 : pr-gr (loc-upb n x) = c-cons (c-pair ?key ?y) ?ls

by auto
from S23 show ?thesis by (simp add: c-assoc-lm-1)

qed

lemma loc-upb-6-z: [[c-fst n mod 7 =6 ; c-fst x = 0]] =⇒
loc-upb n x = c-pair (c-pair n x) (loc-upb (c-fst (c-snd n)) (c-snd x)) + 1 by

(simp add: Let-def)

lemma loc-upb-6 : [[c-fst n mod 7 =6 ; c-fst x 6= 0]] =⇒ loc-upb n x = (
let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst

x; x1 = c-snd x;
y2 = y1 − 1 ;

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair
n (c-pair y2 x1));

t2 = c-pair (c-pair y2 t1) x1 in
c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + (loc-upb

m2 t2)) + 1)
by (simp add: Let-def)

lemma loc-upb-lex-6 : [[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr
(loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 ;

c-fst n mod 7 = 6]] =⇒
c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0

proof −
assume A1 :

∧
n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb

n ′ x ′)) (c-pair n ′ x ′) = 0
assume A2 : c-fst n mod 7 = 6
let ?key = c-pair n x
let ?m1 = c-fst (c-snd n)
let ?m2 = c-snd (c-snd n)
let ?y1 = c-fst x
let ?x1 = c-snd x
define upb where upb = loc-upb n x

122

show ?thesis
proof (cases)

assume A: ?y1 = 0
from A2 A have S1 : loc-upb n x = c-pair ?key (loc-upb ?m1 (c-snd x)) + 1

by (rule loc-upb-6-z)
define upb1 where upb1 = loc-upb ?m1 (c-snd x)
from upb1-def S1 have S2 : loc-upb n x = c-pair ?key upb1 + 1 by auto
let ?s = c-pair ?key upb1
from S2 have S3 : pr-gr (loc-upb n x) = pr-gr (Suc ?s) by simp
have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc)
with S3 have S4 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by auto
let ?ls = pr-gr ?s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def)
with S4 have S5 : pr-gr (loc-upb n x) = g-rec ?ls ?key by auto
have S6 : c-assoc-have-key ?ls (c-pair ?m1 ?x1) = 0
proof −

from A2 have ?m1 < n by (simp add: loc-upb-lm-2-5)
then have ((?m1 ,?x1), n, x) ∈ lex-p by (simp add: lex-p-eq)
with A1 upb1-def have c-assoc-have-key (pr-gr upb1) (c-pair ?m1 ?x1) = 0

by auto
also have upb1 ≤ ?s by (rule arg2-le-c-pair)
ultimately show ?thesis by (rule lm5)

qed
from A S6 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls (c-pair

?m1 ?x1))) ?ls by (simp add: g-rec-def Let-def)
with S5 show ?thesis by (simp add: c-assoc-lm-1)

next
assume A: c-fst x 6= 0 then have y1-pos: c-fst x > 0 by auto
let ?y2 = ?y1 − 1
from A2 A have loc-upb n x = (

let m = c-snd n; m1 = c-fst m; m2 = c-snd m; y1 = c-fst
x; x1 = c-snd x;

y2 = y1 − 1 ;
t1 = c-assoc-value (pr-gr (loc-upb n (c-pair y2 x1))) (c-pair

n (c-pair y2 x1));
t2 = c-pair (c-pair y2 t1) x1 in

c-pair (c-pair n x) (loc-upb n (c-pair y2 x1) + (loc-upb
m2 t2)) + 1) by (rule loc-upb-6)

then have S1 : loc-upb n x = (
let

t1 = c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1)))
(c-pair n (c-pair ?y2 ?x1));

t2 = c-pair (c-pair ?y2 t1) ?x1 in
c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1) + (loc-upb

?m2 t2)) + 1) by (simp del: loc-upb.simps add: Let-def)
let ?t1 = univ-for-pr (c-pair n (c-pair ?y2 ?x1))
let ?t2 = c-pair (c-pair ?y2 ?t1) ?x1
have S1-1 : c-assoc-have-key (pr-gr (loc-upb n (c-pair ?y2 ?x1))) (c-pair n (c-pair

?y2 ?x1)) = 0

123

proof −
from A have ?y2 < ?y1 by auto
then have c-pair ?y2 ?x1 < c-pair ?y1 ?x1 by (rule c-pair-strict-mono1)
then have ((n, c-pair ?y2 ?x1),n,x) ∈ lex-p by (simp add: lex-p-eq)
with A1 show ?thesis by auto

qed
have S2 : c-assoc-value (pr-gr (loc-upb n (c-pair ?y2 ?x1))) (c-pair n (c-pair ?y2

?x1)) = univ-for-pr (c-pair n (c-pair ?y2 ?x1))
proof −

have c-is-sub-fun (pr-gr (loc-upb n (c-pair ?y2 ?x1))) univ-for-pr by (rule
pr-gr-1)

with S1-1 show ?thesis by (simp add: c-is-sub-fun-lm-1)
qed
from S1 S2 have S3 : loc-upb n x = c-pair (c-pair n x) (loc-upb n (c-pair ?y2

?x1) + loc-upb ?m2 ?t2) + 1 by (simp del: loc-upb.simps add: Let-def)
let ?s = c-pair (c-pair n x) (loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2)

from S3 have S4 : pr-gr (loc-upb n x) = pr-gr (Suc ?s) by (simp del: loc-upb.simps)
have pr-gr (Suc ?s) = g-step (pr-gr ?s) (c-fst ?s) by (rule pr-gr-at-Suc)
with S4 have S5 : pr-gr (loc-upb n x) = g-step (pr-gr ?s) ?key by (simp del:

loc-upb.simps)
let ?ls = pr-gr ?s
from A2 have g-step ?ls ?key = g-rec ?ls ?key by (simp add: g-step-def)

with S5 have S6 : pr-gr (loc-upb n x) = g-rec ?ls ?key by (simp del: loc-upb.simps)
have S7 : c-assoc-have-key ?ls (c-pair n (c-pair ?y2 ?x1)) = 0
proof −

have loc-upb n (c-pair ?y2 ?x1) ≤ loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2
?t2 by (auto simp del: loc-upb.simps)

also have loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2 ≤ ?s by (rule
arg2-le-c-pair)

ultimately have S7-1 : loc-upb n (c-pair ?y2 ?x1) ≤ ?s by (auto simp del:
loc-upb.simps)

from S1-1 S7-1 show ?thesis by (rule lm5)
qed
have S8 : c-assoc-value ?ls (c-pair n (c-pair ?y2 ?x1)) = ?t1
proof −

have c-is-sub-fun ?ls univ-for-pr by (rule pr-gr-1)
with S7 show ?thesis by (simp add: c-is-sub-fun-lm-1)

qed
have S9 : c-assoc-have-key ?ls (c-pair ?m2 ?t2) = 0
proof −

from A2 have ?m2 < n by (simp add: loc-upb-lm-2-6)
then have ((?m2 ,?t2), n, x) ∈ lex-p by (simp add: lex-p-eq)
with A1 have c-assoc-have-key (pr-gr (loc-upb ?m2 ?t2)) (c-pair ?m2 ?t2) =

0 by auto
also have loc-upb ?m2 ?t2 ≤ ?s
proof −

have loc-upb ?m2 ?t2 ≤ loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2 by
(auto simp del: loc-upb.simps)

also have loc-upb n (c-pair ?y2 ?x1) + loc-upb ?m2 ?t2 ≤ ?s by (rule

124

arg2-le-c-pair)
ultimately show ?thesis by (auto simp del: loc-upb.simps)

qed
ultimately show ?thesis by (rule lm5)

qed
from A S7 S8 S9 have g-rec ?ls ?key = c-cons (c-pair ?key (c-assoc-value ?ls

(c-pair ?m2 ?t2))) ?ls by (simp del: loc-upb.simps add: g-rec-def Let-def)
with S6 show ?thesis by (simp add: c-assoc-lm-1)

qed
qed

lemma wf-upb-step-0 :
[[
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb n ′ x ′))
(c-pair n ′ x ′) = 0]] =⇒

c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0
proof −

assume A1 :
∧

n ′ x ′. ((n ′,x ′), (n,x)) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb
n ′ x ′)) (c-pair n ′ x ′) = 0

let ?n1 = (c-fst n) mod 7
have S1 : ?n1 = 0 =⇒ ?thesis
proof −

assume A: ?n1 = 0
thus ?thesis by (rule loc-upb-lex-0)

qed
have S2 : ?n1 = 1 =⇒ ?thesis
proof −

assume A: ?n1 = 1
thus ?thesis by (rule loc-upb-lex-1)

qed
have S3 : ?n1 = 2 =⇒ ?thesis
proof −

assume A: ?n1 = 2
thus ?thesis by (rule loc-upb-lex-2)

qed
have S4 : ?n1 = 3 =⇒ ?thesis
proof −

assume A: ?n1 = 3
thus ?thesis by (rule loc-upb-lex-3)

qed
have S5 : ?n1 = 4 =⇒ ?thesis
proof −

assume A: ?n1 = 4
from A1 A show ?thesis by (rule loc-upb-lex-4)

qed
have S6 : ?n1 = 5 =⇒ ?thesis
proof −

assume A: ?n1 = 5
from A1 A show ?thesis by (rule loc-upb-lex-5)

qed

125

have S7 : ?n1 = 6 =⇒ ?thesis
proof −

assume A: ?n1 = 6
from A1 A show ?thesis by (rule loc-upb-lex-6)

qed
have S8 : ?n1=0 ∨ ?n1=1 ∨ ?n1=2 ∨ ?n1=3 ∨ ?n1=4 ∨ ?n1=5 ∨ ?n1=6

by (rule mod7-lm)
from S1 S2 S3 S4 S5 S6 S7 S8 show ?thesis by fast

qed

lemma wf-upb-step:
assumes A1 :

∧
p2 . (p2 , p1) ∈ lex-p =⇒

c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2))
= 0

shows c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd
p1)) = 0
proof −

let ?n = fst p1
let ?x = snd p1
from A1 have S1 :

∧
p2 . (p2 , (?n, ?x)) ∈ lex-p =⇒

c-assoc-have-key (pr-gr (loc-upb (fst p2) (snd p2))) (c-pair (fst p2) (snd p2))
= 0

by auto
have S2 : (

∧
n ′ x ′. ((n ′,x ′), (fst p1 , snd p1)) ∈ lex-p

=⇒ c-assoc-have-key (pr-gr (loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0) =⇒
c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd p1))

= 0
by (rule wf-upb-step-0)

then have S3 : (
∧

n ′ x ′. ((n ′,x ′), p1) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb
n ′ x ′)) (c-pair n ′ x ′) = 0)

=⇒ c-assoc-have-key (pr-gr (loc-upb (fst p1) (snd p1))) (c-pair (fst p1) (snd
p1)) = 0 by auto

have S4 :
∧

n ′ x ′. ((n ′, x ′), p1) ∈ lex-p =⇒ c-assoc-have-key (pr-gr (loc-upb n ′

x ′)) (c-pair n ′ x ′) = 0
proof −

fix n ′ x ′

assume A4-1 : ((n ′, x ′), p1) ∈ lex-p
let ?p2 = (n ′, x ′)
from A4-1 have S4-1 : (?p2 , p1) ∈ lex-p by auto
from S4-1 have c-assoc-have-key (pr-gr (loc-upb (fst ?p2) (snd ?p2))) (c-pair

(fst ?p2) (snd ?p2)) = 0
by (rule A1)

then show c-assoc-have-key (pr-gr (loc-upb n ′ x ′)) (c-pair n ′ x ′) = 0 by auto
qed
from S4 S3 show ?thesis by auto

qed

theorem loc-upb-main: c-assoc-have-key (pr-gr (loc-upb n x)) (c-pair n x) = 0
proof −

126

have loc-upb-lm:
∧

p. c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) = 0

proof − fix p show c-assoc-have-key (pr-gr (loc-upb (fst p) (snd p))) (c-pair
(fst p) (snd p)) = 0

proof −
have S1 : wf lex-p by (auto simp add: lex-p-def)
from S1 wf-upb-step show ?thesis by (rule wf-induct-rule)

qed
qed
let ?p = (n,x)
have c-assoc-have-key (pr-gr (loc-upb (fst ?p) (snd ?p))) (c-pair (fst ?p) (snd

?p)) = 0 by (rule loc-upb-lm)
thus ?thesis by simp

qed

theorem pr-gr-value: c-assoc-value (pr-gr (loc-upb n x)) (c-pair n x) = univ-for-pr
(c-pair n x)

by (simp del: loc-upb.simps add: loc-upb-main pr-gr-1 c-is-sub-fun-lm-1)

theorem g-comp-is-pr : g-comp ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-comp
x y) ∈ PrimRec2

unfolding g-comp-def Let-def by prec
thus ?thesis by auto

qed

theorem g-pair-is-pr : g-pair ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-pair
x y) ∈ PrimRec2

unfolding g-pair-def Let-def by prec
thus ?thesis by auto

qed

theorem g-rec-is-pr : g-rec ∈ PrimRec2
proof −

from c-assoc-have-key-is-pr c-assoc-value-is-pr c-cons-is-pr have (λ x y. g-rec x
y) ∈ PrimRec2

unfolding g-rec-def Let-def by prec
thus ?thesis by auto

qed

theorem g-step-is-pr : g-step ∈ PrimRec2
proof −
from g-comp-is-pr g-pair-is-pr g-rec-is-pr mod-is-pr c-assoc-have-key-is-pr c-assoc-value-is-pr

c-cons-is-pr have
(λ ls key. g-step ls key) ∈ PrimRec2 unfolding g-step-def Let-def by prec

thus ?thesis by auto

127

qed

theorem pr-gr-is-pr : pr-gr ∈ PrimRec1
proof −

have S1 : (λ x. pr-gr x) = PrimRecOp1 0 (λ x y. g-step y (c-fst x)) (is - = ?f)
proof

fix x
show pr-gr x = ?f x by (induct x) (simp add: pr-gr-at-0 , simp add: pr-gr-at-Suc)

qed
have S2 : PrimRecOp1 0 (λ x y. g-step y (c-fst x)) ∈ PrimRec1
proof (rule pr-rec1)

from g-step-is-pr show (λx y. g-step y (c-fst x)) ∈ PrimRec2 by prec
qed
from S1 S2 show ?thesis by auto

qed

end

7 Computably enumerable sets of natural num-
bers

theory RecEnSet
imports PRecList PRecFun2 PRecFinSet PRecUnGr
begin

7.1 Basic definitions
definition

fn-to-set :: (nat ⇒ nat ⇒ nat) ⇒ nat set where
fn-to-set f = { x. ∃ y. f x y = 0 }

definition
ce-sets :: (nat set) set where
ce-sets = { (fn-to-set p) | p. p ∈ PrimRec2 }

7.2 Basic properties of computably enumerable sets
lemma ce-set-lm-1 : p ∈ PrimRec2 =⇒ fn-to-set p ∈ ce-sets by (auto simp add:
ce-sets-def)

lemma ce-set-lm-2 : [[p ∈ PrimRec2 ; ∀ x. (x ∈ A) = (∃ y. p x y = 0)]] =⇒ A ∈
ce-sets
proof −

assume p-is-pr : p ∈ PrimRec2
assume ∀ x. (x ∈ A) = (∃ y. p x y = 0)
then have A = fn-to-set p by (unfold fn-to-set-def , auto)
with p-is-pr show A ∈ ce-sets by (simp add: ce-set-lm-1)

qed

128

lemma ce-set-lm-3 : A ∈ ce-sets =⇒ ∃ p ∈ PrimRec2 . A = fn-to-set p
proof −

assume A ∈ ce-sets
then have A ∈ { (fn-to-set p) | p. p ∈ PrimRec2 } by (simp add: ce-sets-def)
thus ?thesis by auto

qed

lemma ce-set-lm-4 : A ∈ ce-sets =⇒ ∃ p ∈ PrimRec2 . ∀ x. (x ∈ A) = (∃ y. p x
y = 0)
proof −

assume A ∈ ce-sets
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3)
then obtain p where p-is-pr : p ∈ PrimRec2 and L1 : A = fn-to-set p ..
from p-is-pr L1 show ?thesis by (unfold fn-to-set-def , auto)

qed

lemma ce-set-lm-5 : [[A ∈ ce-sets; p ∈ PrimRec1]] =⇒ { x . p x ∈ A } ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
assume A2 : p ∈ PrimRec1
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA ..
from S1 have S2 : A = { x . ∃ y. pA x y = 0 } by (simp add: fn-to-set-def)
define q where q x y = pA (p x) y for x y
from pA-is-pr A2 have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have

∧
x. (p x ∈ A) = (∃ y. q x y = 0)

proof −
fix x show (p x ∈ A) = (∃ y. q x y = 0)
proof

assume A: p x ∈ A
with S2 obtain y where L1 : pA (p x) y = 0 by auto
then have q x y = 0 by (simp add: q-def)
thus ∃ y. q x y = 0 ..

next
assume A: ∃ y. q x y = 0
then obtain y where L1 : q x y = 0 ..
then have pA (p x) y = 0 by (simp add: q-def)
with S2 show p x ∈ A by auto

qed
qed
then have { x . p x ∈ A } = { x. ∃ y. q x y = 0 } by auto
then have { x . p x ∈ A } = fn-to-set q by (simp add: fn-to-set-def)
moreover from q-is-pr have fn-to-set q ∈ ce-sets by (rule ce-set-lm-1)
ultimately show ?thesis by auto

qed

lemma ce-set-lm-6 : [[A ∈ ce-sets; A 6= {}]] =⇒ ∃ q ∈ PrimRec1 . A = { q x | x.
x ∈ UNIV }
proof −

129

assume A1 : A ∈ ce-sets
assume A2 : A 6= {}
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA ..
from S1 have S2 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def)
from A2 obtain a where a-in: a ∈ A by auto
define q where q z = (if pA (c-fst z) (c-snd z) = 0 then c-fst z else a) for z
from pA-is-pr have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
have S3 : ∀ z. q z ∈ A
proof

fix z show q z ∈ A
proof cases

assume A: pA (c-fst z) (c-snd z) = 0
with S2 have c-fst z ∈ A by auto
moreover from A q-def have q z = c-fst z by simp
ultimately show q z ∈ A by auto

next
assume A: pA (c-fst z) (c-snd z) 6= 0
with q-def have q z = a by simp
with a-in show q z ∈ A by auto

qed
qed
then have S4 : { q x | x. x ∈ UNIV } ⊆ A by auto
have S5 : A ⊆ { q x | x. x ∈ UNIV }
proof

fix x assume A: x ∈ A show x ∈ {q x |x. x ∈ UNIV }
proof

from A S2 obtain y where L1 : pA x y = 0 by auto
let ?z = c-pair x y
from L1 have q ?z = x by (simp add: q-def)
then have ∃ u. q u = x by blast
then show ∃ u. x = q u ∧ u ∈ UNIV by auto

qed
qed
from S4 S5 have S6 : A = { q x | x. x ∈ UNIV } by auto
with q-is-pr show ?thesis by blast

qed

lemma ce-set-lm-7 : [[A ∈ ce-sets; p ∈ PrimRec1]] =⇒ { p x | x. x ∈ A } ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
assume A2 : p ∈ PrimRec1
let ?B = { p x | x. x ∈ A }
fix y have S1 : (y ∈ ?B) = (∃ x. x ∈ A ∧ (y = p x)) by auto
from A1 have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S2 : A = fn-to-set pA ..
from S2 have S3 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def)
define q where q y t = (if y = p (c-snd t) then pA (c-snd t) (c-fst t) else 1)

for y t

130

from pA-is-pr A2 have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have L1 :

∧
y. (y ∈ ?B) = (∃ z. q y z = 0)

proof − fix y show (y ∈ ?B) = (∃ z. q y z = 0)
proof

assume AA1 : y ∈ ?B
then obtain x0 where LL-2 : x0 ∈ A and LL-3 : y = p x0 by auto
from S3 have LL-4 : (x0 ∈ A) = (∃ z. pA x0 z = 0) by auto
from LL-2 LL-4 obtain z0 where LL-5 : pA x0 z0 = 0 by auto
define t where t = c-pair z0 x0
from t-def q-def LL-3 LL-5 have q y t = 0 by simp
then show ∃ z. q y z = 0 by auto

next
assume A1 : ∃ z. q y z = 0
then obtain z0 where LL-1 : q y z0 = 0 ..
have LL2 : y = p (c-snd z0)
proof (rule ccontr)

assume y 6= p (c-snd z0)
with q-def LL-1 have q y z0 = 1 by auto
with LL-1 show False by auto

qed
from LL2 LL-1 q-def have LL3 : pA (c-snd z0) (c-fst z0) = 0 by auto
with S3 have LL4 : c-snd z0 ∈ A by auto
with LL2 show y ∈ {p x | x. x ∈ A} by auto

qed
qed
then have L2 : ?B = { y | y. ∃ z. q y z = 0} by auto
with fn-to-set-def have ?B = fn-to-set q by auto
with q-is-pr ce-set-lm-1 show ?thesis by auto

qed

theorem ce-empty: {} ∈ ce-sets
proof −

let ?f = (λ x a. (1 ::nat))
have S1 : ?f ∈ PrimRec2 by (rule const-is-pr-2)
then have ∀ x a. ?f x a 6= 0 by simp
then have {x. ∃ a. ?f x a = 0 }={} by auto
also have fn-to-set ?f = . . . by (simp add: fn-to-set-def)
with S1 show ?thesis by (auto simp add: ce-sets-def)

qed

theorem ce-univ: UNIV ∈ ce-sets
proof −

let ?f = (λ x a. (0 ::nat))
have S1 : ?f ∈ PrimRec2 by (rule const-is-pr-2)
then have ∀ x a. ?f x a = 0 by simp
then have {x. ∃ a. ?f x a = 0 }=UNIV by auto
also have fn-to-set ?f = . . . by (simp add: fn-to-set-def)
with S1 show ?thesis by (auto simp add: ce-sets-def)

qed

131

theorem ce-singleton: {a} ∈ ce-sets
proof −

let ?f = λ x y. (abs-of-diff x a) + y
have S1 : ?f ∈ PrimRec2 using const-is-pr-2 [where ?n=a] by prec
then have ∀ x y. (?f x y = 0) = (x=a ∧ y=0) by (simp add: abs-of-diff-eq)
then have S2 : {x. ∃ y. ?f x y = 0 }={a} by auto
have fn-to-set ?f = {x. ∃ y. ?f x y = 0 } by (simp add: fn-to-set-def)
with S2 have fn-to-set ?f = {a} by simp
with S1 show ?thesis by (auto simp add: ce-sets-def)

qed

theorem ce-union: [[A ∈ ce-sets; B ∈ ce-sets]] =⇒ A ∪ B ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
then obtain p-a where S2 : p-a ∈ PrimRec2 and S3 : A = fn-to-set p-a

by (auto simp add: ce-sets-def)
assume A2 : B ∈ ce-sets
then obtain p-b where S5 : p-b ∈ PrimRec2 and S6 : B = fn-to-set p-b

by (auto simp add: ce-sets-def)
let ?p = (λ x y. (p-a x y) ∗ (p-b x y))
from S2 S5 have S7 : ?p ∈ PrimRec2 by prec
have S8 : ∀ x y. (?p x y = 0) = ((p-a x y = 0) ∨ (p-b x y = 0)) by simp
let ?C = fn-to-set ?p
have S9 : ?C = {x. ∃ y. ?p x y = 0} by (simp add: fn-to-set-def)
from S3 have S10 : A = {x. ∃ y. p-a x y = 0} by (simp add: fn-to-set-def)
from S6 have S11 : B = {x. ∃ y. p-b x y = 0} by (simp add: fn-to-set-def)
from S10 S11 S9 S8 have S12 : ?C = A ∪ B by auto
from S7 have ?C ∈ ce-sets by (auto simp add: ce-sets-def)
with S12 show ?thesis by simp

qed

theorem ce-intersect: [[A ∈ ce-sets; B ∈ ce-sets]] =⇒ A ∩ B ∈ ce-sets
proof −

assume A1 : A ∈ ce-sets
then obtain p-a where S2 : p-a ∈ PrimRec2 and S3 : A = fn-to-set p-a

by (auto simp add: ce-sets-def)
assume A2 : B ∈ ce-sets
then obtain p-b where S5 : p-b ∈ PrimRec2 and S6 : B = fn-to-set p-b

by (auto simp add: ce-sets-def)
let ?p = (λ x y. (p-a x (c-fst y)) + (p-b x (c-snd y)))
from S2 S5 have S7 : ?p ∈ PrimRec2 by prec
have S8 : ∀ x. (∃ y. ?p x y = 0) = ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0))
proof

fix x show (∃ y. ?p x y = 0) = ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0))
proof −
have 1 : (∃ y. ?p x y = 0) =⇒ ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0))
by blast
have 2 : ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0)) =⇒ (∃ y. ?p x y = 0)

132

proof −
assume ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0))
then obtain z1 z2 where s-23 : p-a x z1 = 0 and s-24 : p-b x z2 = 0 by

auto
let ?y1 = c-pair z1 z2
from s-23 have s-25 : p-a x (c-fst ?y1) = 0 by simp
from s-24 have s-26 : p-b x (c-snd ?y1) = 0 by simp
from s-25 s-26 have s-27 : p-a x (c-fst ?y1) + p-b x (c-snd ?y1) = 0 by simp
then show ?thesis ..

qed
from 1 2 have (∃ y. ?p x y = 0) = ((∃ z. p-a x z = 0) ∧ (∃ z. p-b x z = 0))

by (rule iffI)
then show ?thesis by auto
qed

qed
let ?C = fn-to-set ?p
have S9 : ?C = {x. ∃ y. ?p x y = 0} by (simp add: fn-to-set-def)
from S3 have S10 : A = {x. ∃ y. p-a x y = 0} by (simp add: fn-to-set-def)
from S6 have S11 : B = {x. ∃ y. p-b x y = 0} by (simp add: fn-to-set-def)
from S10 S11 S9 S8 have S12 : ?C = A ∩ B by auto
from S7 have ?C ∈ ce-sets by (auto simp add: ce-sets-def)
with S12 show ?thesis by simp

qed

7.3 Enumeration of computably enumerable sets
definition

nat-to-ce-set :: nat ⇒ (nat set) where
nat-to-ce-set = (λ n. fn-to-set (pr-conv-1-to-2 (nat-to-pr n)))

lemma nat-to-ce-set-lm-1 : nat-to-ce-set n = { x . ∃ y. (nat-to-pr n) (c-pair x y)
= 0 }
proof −

have S1 : nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def)

then have S2 : nat-to-ce-set n = { x . ∃ y. (pr-conv-1-to-2 (nat-to-pr n)) x y =
0} by (simp add: fn-to-set-def)

have S3 :
∧

x y. (pr-conv-1-to-2 (nat-to-pr n)) x y = (nat-to-pr n) (c-pair x y)
by (simp add: pr-conv-1-to-2-def)

from S2 S3 show ?thesis by auto
qed

lemma nat-to-ce-set-into-ce: nat-to-ce-set n ∈ ce-sets
proof −

have S1 : nat-to-ce-set n = fn-to-set (pr-conv-1-to-2 (nat-to-pr n)) by (simp add:
nat-to-ce-set-def)

have (nat-to-pr n) ∈ PrimRec1 by (rule nat-to-pr-into-pr)
then have S2 : (pr-conv-1-to-2 (nat-to-pr n)) ∈ PrimRec2 by (rule pr-conv-1-to-2-lm)
from S2 S1 show ?thesis by (simp add: ce-set-lm-1)

133

qed

lemma nat-to-ce-set-srj: A ∈ ce-sets =⇒ ∃ n. A = nat-to-ce-set n
proof −

assume A: A ∈ ce-sets
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3)
then obtain p where p-is-pr : p ∈ PrimRec2 and S1 : A = fn-to-set p ..
define q where q = pr-conv-2-to-1 p
from p-is-pr have q-is-pr : q ∈ PrimRec1 by (unfold q-def , rule pr-conv-2-to-1-lm)
from q-def have S2 : pr-conv-1-to-2 q = p by simp
let ?n = index-of-pr q
from q-is-pr have nat-to-pr ?n = q by (rule index-of-pr-is-real)
with S2 S1 have A = fn-to-set (pr-conv-1-to-2 (nat-to-pr ?n)) by auto
then have A = nat-to-ce-set ?n by (simp add: nat-to-ce-set-def)
thus ?thesis ..

qed

7.4 Characteristic functions
definition

chf :: nat set ⇒ (nat ⇒ nat) — Characteristic function where
chf = (λ A x . if x ∈ A then 0 else 1)

definition
zero-set :: (nat ⇒ nat) ⇒ nat set where
zero-set = (λ f . { x. f x = 0})

lemma chf-lm-1 [simp]: zero-set (chf A) = A by (unfold chf-def , unfold zero-set-def ,
simp)

lemma chf-lm-2 : (x ∈ A) = (chf A x = 0) by (unfold chf-def , simp)

lemma chf-lm-3 : (x /∈ A) = (chf A x = 1) by (unfold chf-def , simp)

lemma chf-lm-4 : chf A ∈ PrimRec1 =⇒ A ∈ ce-sets
proof −

assume A: chf A ∈ PrimRec1
define p where p = chf A
from A p-def have p-is-pr : p ∈ PrimRec1 by auto
define q where q x y = p x for x y :: nat
from p-is-pr have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
have S1 : A = {x. p(x) = 0}
proof −

have zero-set p = A by (unfold p-def , simp)
thus ?thesis by (simp add: zero-set-def)

qed
have S2 : fn-to-set q = {x. ∃ y. q x y = 0} by (simp add: fn-to-set-def)
have S3 :

∧
x. (p x = 0) = (∃ y. q x y = 0) by (unfold q-def , auto)

then have S4 : {x. p x = 0} = {x. ∃ y. q x y = 0} by auto

134

with S1 S2 have S5 : fn-to-set q = A by auto
from q-is-pr have fn-to-set q ∈ ce-sets by (rule ce-set-lm-1)
with S5 show ?thesis by auto

qed

lemma chf-lm-5 : finite A =⇒ chf A ∈ PrimRec1
proof −

assume A: finite A
define u where u = set-to-nat A
from A have S1 : nat-to-set u = A by (unfold u-def , rule nat-to-set-srj)
have chf A = (λ x. sgn2 (c-in x u))
proof

fix x show chf A x = sgn2 (c-in x u)
proof cases

assume A: x ∈ A
then have S1-1 : chf A x = 0 by (simp add: chf-lm-2)
from A S1 have x ∈ nat-to-set u by auto
then have c-in x u = 1 by (simp add: x-in-u-eq)
with S1-1 show ?thesis by simp

next
assume A: x /∈ A
then have S1-1 : chf A x = 1 by (simp add: chf-def)
from A S1 have x /∈ nat-to-set u by auto
then have c-in x u = 0 by (simp add: x-in-u-eq c-in-def)
with S1-1 show ?thesis by simp

qed
qed
moreover from c-in-is-pr have (λ x. sgn2 (c-in x u)) ∈ PrimRec1 by prec
ultimately show ?thesis by auto

qed

theorem ce-finite: finite A =⇒ A ∈ ce-sets
proof −

assume A: finite A
then have chf A ∈ PrimRec1 by (rule chf-lm-5)
then show ?thesis by (rule chf-lm-4)

qed

7.5 Computably enumerable relations
definition

ce-set-to-rel :: nat set ⇒ (nat ∗ nat) set where
ce-set-to-rel = (λ A. { (c-fst x, c-snd x) | x. x ∈ A})

definition
ce-rel-to-set :: (nat ∗ nat) set ⇒ nat set where
ce-rel-to-set = (λ R. { c-pair x y | x y. (x,y) ∈ R})

definition

135

ce-rels :: ((nat ∗ nat) set) set where
ce-rels = { R | R. ce-rel-to-set R ∈ ce-sets }

lemma ce-rel-lm-1 [simp]: ce-set-to-rel (ce-rel-to-set r) = r
proof

show ce-set-to-rel (ce-rel-to-set r) ⊆ r
proof fix z

assume A: z ∈ ce-set-to-rel (ce-rel-to-set r)
then obtain u where L1 : u ∈ (ce-rel-to-set r) and L2 : z = (c-fst u, c-snd u)

unfolding ce-set-to-rel-def by auto
from L1 obtain x y where L3 : (x,y) ∈ r and L4 : u = c-pair x y

unfolding ce-rel-to-set-def by auto
from L4 have L5 : c-fst u = x by simp
from L4 have L6 : c-snd u = y by simp
from L5 L6 L2 have z = (x,y) by simp
with L3 show z ∈ r by auto

qed
next

show r ⊆ ce-set-to-rel (ce-rel-to-set r)
proof fix z show z ∈ r =⇒ z ∈ ce-set-to-rel (ce-rel-to-set r)

proof −
assume A: z ∈ r
define x where x = fst z
define y where y = snd z
from x-def y-def have L1 : z = (x,y) by simp
define u where u = c-pair x y
from A L1 u-def have L2 : u ∈ ce-rel-to-set r by (unfold ce-rel-to-set-def ,

auto)
from L1 u-def have L3 : z = (c-fst u, c-snd u) by simp

from L2 L3 show z ∈ ce-set-to-rel (ce-rel-to-set r) by (unfold ce-set-to-rel-def ,
auto)

qed
qed

qed

lemma ce-rel-lm-2 [simp]: ce-rel-to-set (ce-set-to-rel A) = A
proof

show ce-rel-to-set (ce-set-to-rel A) ⊆ A
proof fix z show z ∈ ce-rel-to-set (ce-set-to-rel A) =⇒ z ∈ A

proof −
assume A: z ∈ ce-rel-to-set (ce-set-to-rel A)
then obtain x y where L1 : z = c-pair x y and L2 : (x,y) ∈ ce-set-to-rel A

unfolding ce-rel-to-set-def by auto
from L2 obtain u where L3 : (x,y) = (c-fst u, c-snd u) and L4 : u ∈ A

unfolding ce-set-to-rel-def by auto
from L3 L1 have L5 : z = u by simp
with L4 show z ∈ A by auto

qed
qed

136

next
show A ⊆ ce-rel-to-set (ce-set-to-rel A)
proof fix z show z ∈ A =⇒ z ∈ ce-rel-to-set (ce-set-to-rel A)

proof −
assume A: z ∈ A
then have L1 : (c-fst z, c-snd z) ∈ ce-set-to-rel A by (unfold ce-set-to-rel-def ,

auto)
define x where x = c-fst z
define y where y = c-snd z
from L1 x-def y-def have L2 : (x,y) ∈ ce-set-to-rel A by simp

then have L3 : c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by (unfold ce-rel-to-set-def ,
auto)

with x-def y-def show z ∈ ce-rel-to-set (ce-set-to-rel A) by simp
qed

qed
qed

lemma ce-rels-def1 : ce-rels = { ce-set-to-rel A | A. A ∈ ce-sets}
proof

show ce-rels ⊆ {ce-set-to-rel A |A. A ∈ ce-sets}
proof fix r show r ∈ ce-rels =⇒ r ∈ {ce-set-to-rel A |A. A ∈ ce-sets}

proof −
assume A: r ∈ ce-rels
then have L1 : ce-rel-to-set r ∈ ce-sets by (unfold ce-rels-def , auto)
define A where A = ce-rel-to-set r
from A-def L1 have L2 : A ∈ ce-sets by auto
from A-def have L3 : ce-set-to-rel A = r by simp
with L2 show r ∈ {ce-set-to-rel A |A. A ∈ ce-sets} by auto

qed
qed

next
show {ce-set-to-rel A |A. A ∈ ce-sets} ⊆ ce-rels
proof fix r show r ∈ {ce-set-to-rel A |A. A ∈ ce-sets} =⇒ r ∈ ce-rels

proof −
assume A: r ∈ {ce-set-to-rel A |A. A ∈ ce-sets}
then obtain A where L1 : r = ce-set-to-rel A and L2 : A ∈ ce-sets by auto
from L1 have ce-rel-to-set r = A by simp
with L2 show r ∈ ce-rels unfolding ce-rels-def by auto

qed
qed

qed

lemma ce-rel-to-set-inj: inj ce-rel-to-set
proof (rule inj-on-inverseI)

fix x assume A: (x::(nat×nat) set) ∈ UNIV show ce-set-to-rel (ce-rel-to-set x)
= x by (rule ce-rel-lm-1)
qed

lemma ce-rel-to-set-srj: surj ce-rel-to-set

137

proof (rule surjI [where ?f=ce-set-to-rel])
fix x show ce-rel-to-set (ce-set-to-rel x) = x by (rule ce-rel-lm-2)

qed

lemma ce-rel-to-set-bij: bij ce-rel-to-set
proof (rule bijI)

show inj ce-rel-to-set by (rule ce-rel-to-set-inj)
next

show surj ce-rel-to-set by (rule ce-rel-to-set-srj)
qed

lemma ce-set-to-rel-inj: inj ce-set-to-rel
proof (rule inj-on-inverseI)

fix x assume A: (x::nat set) ∈ UNIV show ce-rel-to-set (ce-set-to-rel x) = x by
(rule ce-rel-lm-2)
qed

lemma ce-set-to-rel-srj: surj ce-set-to-rel
proof (rule surjI [where ?f=ce-rel-to-set])

fix x show ce-set-to-rel (ce-rel-to-set x) = x by (rule ce-rel-lm-1)
qed

lemma ce-set-to-rel-bij: bij ce-set-to-rel
proof (rule bijI)

show inj ce-set-to-rel by (rule ce-set-to-rel-inj)
next

show surj ce-set-to-rel by (rule ce-set-to-rel-srj)
qed

lemma ce-rel-lm-3 : A ∈ ce-sets =⇒ ce-set-to-rel A ∈ ce-rels
proof −

assume A: A ∈ ce-sets
from A ce-rels-def1 show ?thesis by auto

qed

lemma ce-rel-lm-4 : ce-set-to-rel A ∈ ce-rels =⇒ A ∈ ce-sets
proof −

assume A: ce-set-to-rel A ∈ ce-rels
from A show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-5 : (A ∈ ce-sets) = (ce-set-to-rel A ∈ ce-rels)
proof

assume A ∈ ce-sets then show ce-set-to-rel A ∈ ce-rels by (rule ce-rel-lm-3)
next

assume ce-set-to-rel A ∈ ce-rels then show A ∈ ce-sets by (rule ce-rel-lm-4)
qed

lemma ce-rel-lm-6 : r ∈ ce-rels =⇒ ce-rel-to-set r ∈ ce-sets

138

proof −
assume A: r ∈ ce-rels
then show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-7 : ce-rel-to-set r ∈ ce-sets =⇒ r ∈ ce-rels
proof −

assume ce-rel-to-set r ∈ ce-sets
then show ?thesis by (unfold ce-rels-def , auto)

qed

lemma ce-rel-lm-8 : (r ∈ ce-rels) = (ce-rel-to-set r ∈ ce-sets) by (unfold ce-rels-def ,
auto)

lemma ce-rel-lm-9 : (x,y) ∈ r =⇒ c-pair x y ∈ ce-rel-to-set r by (unfold ce-rel-to-set-def ,
auto)

lemma ce-rel-lm-10 : x ∈ A =⇒ (c-fst x, c-snd x) ∈ ce-set-to-rel A by (unfold
ce-set-to-rel-def , auto)

lemma ce-rel-lm-11 : c-pair x y ∈ ce-rel-to-set r =⇒ (x,y) ∈ r
proof −

assume A: c-pair x y ∈ ce-rel-to-set r
let ?z = c-pair x y
from A have (c-fst ?z, c-snd ?z) ∈ ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10)
then show (x,y) ∈ r by simp

qed

lemma ce-rel-lm-12 : (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r)
proof

assume c-pair x y ∈ ce-rel-to-set r then show (x, y) ∈ r by (rule ce-rel-lm-11)
next

assume (x, y) ∈ r then show c-pair x y ∈ ce-rel-to-set r by (rule ce-rel-lm-9)
qed

lemma ce-rel-lm-13 : (x,y) ∈ ce-set-to-rel A =⇒ c-pair x y ∈ A
proof −

assume (x,y) ∈ ce-set-to-rel A
then have c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by (rule ce-rel-lm-9)
then show ?thesis by simp

qed

lemma ce-rel-lm-14 : c-pair x y ∈ A =⇒ (x,y) ∈ ce-set-to-rel A
proof −

assume c-pair x y ∈ A
then have c-pair x y ∈ ce-rel-to-set (ce-set-to-rel A) by simp
then show ?thesis by (rule ce-rel-lm-11)

qed

139

lemma ce-rel-lm-15 : ((x,y) ∈ ce-set-to-rel A) = (c-pair x y ∈ A)
proof

assume (x, y) ∈ ce-set-to-rel A then show c-pair x y ∈ A by (rule ce-rel-lm-13)
next

assume c-pair x y ∈ A then show (x, y) ∈ ce-set-to-rel A by (rule ce-rel-lm-14)
qed

lemma ce-rel-lm-16 : x ∈ ce-rel-to-set r =⇒ (c-fst x, c-snd x) ∈ r
proof −

assume x ∈ ce-rel-to-set r
then have (c-fst x, c-snd x) ∈ ce-set-to-rel (ce-rel-to-set r) by (rule ce-rel-lm-10)
then show ?thesis by simp

qed

lemma ce-rel-lm-17 : (c-fst x, c-snd x) ∈ ce-set-to-rel A =⇒ x ∈ A
proof −

assume (c-fst x, c-snd x) ∈ ce-set-to-rel A
then have c-pair (c-fst x) (c-snd x) ∈ A by (rule ce-rel-lm-13)
then show ?thesis by simp

qed

lemma ce-rel-lm-18 : ((c-fst x, c-snd x) ∈ ce-set-to-rel A) = (x ∈ A)
proof
assume (c-fst x, c-snd x) ∈ ce-set-to-rel A then show x ∈ A by (rule ce-rel-lm-17)

next
assume x ∈ A then show (c-fst x, c-snd x) ∈ ce-set-to-rel A by (rule ce-rel-lm-10)

qed

lemma ce-rel-lm-19 : (c-fst x, c-snd x) ∈ r =⇒ x ∈ ce-rel-to-set r
proof −

assume (c-fst x, c-snd x) ∈ r
then have (c-fst x, c-snd x) ∈ ce-set-to-rel (ce-rel-to-set r) by simp
then show ?thesis by (rule ce-rel-lm-17)

qed

lemma ce-rel-lm-20 : ((c-fst x, c-snd x) ∈ r) = (x ∈ ce-rel-to-set r)
proof
assume (c-fst x, c-snd x) ∈ r then show x ∈ ce-rel-to-set r by (rule ce-rel-lm-19)

next
assume x ∈ ce-rel-to-set r then show (c-fst x, c-snd x) ∈ r by (rule ce-rel-lm-16)

qed

lemma ce-rel-lm-21 : r ∈ ce-rels =⇒ ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u.
p x y u = 0)
proof −

assume r-ce: r ∈ ce-rels
define A where A = ce-rel-to-set r
from r-ce have A-ce: A ∈ ce-sets by (unfold A-def , rule ce-rel-lm-6)
then have ∃ p ∈ PrimRec2 . A = fn-to-set p by (rule ce-set-lm-3)

140

then obtain q where q-is-pr : q ∈ PrimRec2 and A-def1 : A = fn-to-set q ..
from A-def1 have A-def2 : A = { x. ∃ y. q x y = 0} by (unfold fn-to-set-def)
define p where p x y u = q (c-pair x y) u for x y u
from q-is-pr have p-is-pr : p ∈ PrimRec3 unfolding p-def by prec
have

∧
x y. ((x,y) ∈ r) = (∃ u. p x y u = 0)

proof − fix x y show ((x,y) ∈ r) = (∃ u. p x y u = 0)
proof

assume A: (x,y) ∈ r
define z where z = c-pair x y
with A-def A have z-in-A: z ∈ A by (unfold ce-rel-to-set-def , auto)
with A-def2 have z ∈ { x. ∃ y. q x y = 0} by auto
then obtain u where q z u = 0 by auto
with z-def have p x y u = 0 by (simp add: z-def p-def)
then show ∃ u. p x y u = 0 by auto

next
assume A: ∃ u. p x y u = 0
define z where z = c-pair x y
from A obtain u where p x y u = 0 by auto
then have q-z: q z u = 0 by (simp add: z-def p-def)
with A-def2 have z-in-A: z ∈ A by auto
then have c-pair x y ∈ A by (unfold z-def)
then have c-pair x y ∈ ce-rel-to-set r by (unfold A-def)
then show (x,y) ∈ r by (rule ce-rel-lm-11)

qed
qed
with p-is-pr show ?thesis by auto

qed

lemma ce-rel-lm-22 : r ∈ ce-rels =⇒ ∃ p ∈ PrimRec3 . r = { (x,y). ∃ u. p x y u
= 0 }
proof −

assume r-ce: r ∈ ce-rels
then have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0) by (rule

ce-rel-lm-21)
then obtain p where p-is-pr : p ∈ PrimRec3 and L1 : ∀ x y. ((x,y) ∈ r) = (∃

u. p x y u = 0) by auto
from p-is-pr L1 show ?thesis by blast

qed

lemma ce-rel-lm-23 : [[p ∈ PrimRec3 ; ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0)]]
=⇒ r ∈ ce-rels
proof −

assume p-is-pr : p ∈ PrimRec3
assume A: ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0)
define q where q z u = p (c-fst z) (c-snd z) u for z u
from p-is-pr have q-is-pr : q ∈ PrimRec2 unfolding q-def by prec
define A where A = { x. ∃ y. q x y = 0}
then have A-def1 : A = fn-to-set q by (unfold fn-to-set-def , auto)
from q-is-pr A-def1 have A-ce: A ∈ ce-sets by (simp add: ce-set-lm-1)

141

have main: A = ce-rel-to-set r
proof

show A ⊆ ce-rel-to-set r
proof

fix z assume z-in-A: z ∈ A
show z ∈ ce-rel-to-set r
proof −

define x where x = c-fst z
define y where y = c-snd z
from z-in-A A-def obtain u where L2 : q z u = 0 by auto
with x-def y-def q-def have L3 : p x y u = 0 by simp
then have ∃ u. p x y u = 0 by auto
with A have (x,y) ∈ r by auto
then have c-pair x y ∈ ce-rel-to-set r by (rule ce-rel-lm-9)
with x-def y-def show ?thesis by simp

qed
qed

next
show ce-rel-to-set r ⊆ A
proof

fix z assume z-in-r : z ∈ ce-rel-to-set r
show z ∈ A
proof −

define x where x = c-fst z
define y where y = c-snd z
from z-in-r have (c-fst z, c-snd z) ∈ r by (rule ce-rel-lm-16)
with x-def y-def have (x,y) ∈ r by simp
with A obtain u where L1 : p x y u = 0 by auto
with x-def y-def q-def have q z u = 0 by simp
with A-def show z ∈ A by auto

qed
qed

qed
with A-ce have ce-rel-to-set r ∈ ce-sets by auto
then show r ∈ ce-rels by (rule ce-rel-lm-7)

qed

lemma ce-rel-lm-24 : [[r ∈ ce-rels; s ∈ ce-rels]] =⇒ s O r ∈ ce-rels
proof −

assume r-ce: r ∈ ce-rels
assume s-ce: s ∈ ce-rels
from r-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r)=(∃ u. p x y u = 0) by

(rule ce-rel-lm-21)
then obtain p-r where p-r-is-pr : p-r ∈ PrimRec3 and R1 : ∀ x y. ((x,y) ∈

r)=(∃ u. p-r x y u = 0)
by auto

from s-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ s)=(∃ u. p x y u = 0) by
(rule ce-rel-lm-21)

then obtain p-s where p-s-is-pr : p-s ∈ PrimRec3 and S1 : ∀ x y. ((x,y) ∈

142

s)=(∃ u. p-s x y u = 0)
by auto

define p where p x z u = (p-s x (c-fst u) (c-fst (c-snd u))) + (p-r (c-fst u) z
(c-snd (c-snd u)))

for x z u
from p-r-is-pr p-s-is-pr have p-is-pr : p ∈ PrimRec3 unfolding p-def by prec
define sr where sr = s O r
have main: ∀ x z. ((x,z) ∈ sr) = (∃ u. p x z u = 0)
proof (rule allI , rule allI)

fix x z
show ((x, z) ∈ sr) = (∃ u. p x z u = 0)
proof

assume A: (x, z) ∈ sr
show ∃ u. p x z u = 0
proof −

from A sr-def obtain y where L1 : (x,y) ∈ s and L2 : (y,z) ∈ r by auto
from L1 S1 obtain u-s where L3 : p-s x y u-s = 0 by auto
from L2 R1 obtain u-r where L4 : p-r y z u-r = 0 by auto
define u where u = c-pair y (c-pair u-s u-r)
from L3 L4 have p x z u = 0 by (unfold p-def , unfold u-def , simp)
then show ?thesis by auto

qed
next

assume A: ∃ u. p x z u = 0
show (x, z) ∈ sr
proof −

from A obtain u where L1 : p x z u = 0 by auto
then have L2 : (p-s x (c-fst u) (c-fst (c-snd u))) + (p-r (c-fst u) z (c-snd

(c-snd u))) = 0 by (unfold p-def)
from L2 have L3 : p-s x (c-fst u) (c-fst (c-snd u)) = 0 by auto
from L2 have L4 : p-r (c-fst u) z (c-snd (c-snd u)) = 0 by auto
from L3 S1 have L5 : (x,(c-fst u)) ∈ s by auto
from L4 R1 have L6 : ((c-fst u),z) ∈ r by auto
from L5 L6 have (x,z) ∈ s O r by auto
with sr-def show ?thesis by auto

qed
qed

qed
from p-is-pr main have sr ∈ ce-rels by (rule ce-rel-lm-23)
then show ?thesis by (unfold sr-def)

qed

lemma ce-rel-lm-25 : r ∈ ce-rels =⇒ r^−1 ∈ ce-rels
proof −

assume r-ce: r ∈ ce-rels
have r^−1 = {(y,x). (x,y) ∈ r} by auto
then have L1 : ∀ x y. ((x,y) ∈ r) = ((y,x) ∈ r^−1) by auto
from r-ce have ∃ p ∈ PrimRec3 . ∀ x y. ((x,y) ∈ r) = (∃ u. p x y u = 0) by

(rule ce-rel-lm-21)

143

then obtain p where p-is-pr : p ∈ PrimRec3 and R1 : ∀ x y. ((x,y) ∈ r) = (∃
u. p x y u = 0) by auto

define q where q x y u = p y x u for x y u
from p-is-pr have q-is-pr : q ∈ PrimRec3 unfolding q-def by prec
from L1 R1 have L2 : ∀ x y. ((x,y) ∈ r^−1) = (∃ u. p y x u = 0) by auto
with q-def have L3 : ∀ x y. ((x,y) ∈ r^−1) = (∃ u. q x y u = 0) by auto
with q-is-pr show ?thesis by (rule ce-rel-lm-23)

qed

lemma ce-rel-lm-26 : r ∈ ce-rels =⇒ Domain r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
have L1 : ∀ x. (x ∈ Domain r) = (∃ y. (x,y) ∈ r) by auto
define A where A = ce-rel-to-set r
from r-ce have ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6)
then have A-ce: A ∈ ce-sets by (unfold A-def)
have ∀ x y. ((x,y) ∈ r) = (c-pair x y ∈ ce-rel-to-set r) by (simp add: ce-rel-lm-12)
then have L2 : ∀ x y. ((x,y) ∈ r) = (c-pair x y ∈ A) by (unfold A-def)
from A-ce c-fst-is-pr have L3 : { c-fst z |z. z ∈ A } ∈ ce-sets by (rule ce-set-lm-7)
have L4 : ∀ x. (x ∈ { c-fst z |z. z ∈ A }) =(∃ y. c-pair x y ∈ A)
proof fix x show (x ∈ { c-fst z |z. z ∈ A }) =(∃ y. c-pair x y ∈ A)

proof
assume A: x ∈ {c-fst z |z. z ∈ A}
then obtain z where z-in-A: z ∈ A and x-z: x = c-fst z by auto
from x-z have z = c-pair x (c-snd z) by simp
with z-in-A have c-pair x (c-snd z) ∈ A by auto
then show ∃ y. c-pair x y ∈ A by auto

next
assume A: ∃ y. c-pair x y ∈ A
then obtain y where y-1 : c-pair x y ∈ A by auto
define z where z = c-pair x y
from y-1 have z-in-A: z ∈ A by (unfold z-def)
from z-def have x-z: x = c-fst z by (unfold z-def , simp)
from z-in-A x-z show x ∈ {c-fst z |z. z ∈ A} by auto

qed
qed
from L1 L2 have L5 : ∀ x. (x ∈ Domain r) = (∃ y. c-pair x y ∈ A) by auto
from L4 L5 have L6 : ∀ x. (x ∈ Domain r) = (x ∈ { c-fst z |z. z ∈ A }) by

auto
then have Domain r = { c-fst z |z. z ∈ A } by auto
with L3 show Domain r ∈ ce-sets by auto

qed

lemma ce-rel-lm-27 : r ∈ ce-rels =⇒ Range r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
then have r^−1 ∈ ce-rels by (rule ce-rel-lm-25)
then have Domain (r^−1) ∈ ce-sets by (rule ce-rel-lm-26)
then show ?thesis by (unfold Domain-converse [symmetric])

144

qed

lemma ce-rel-lm-28 : r ∈ ce-rels =⇒ Field r ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
from r-ce have L1 : Domain r ∈ ce-sets by (rule ce-rel-lm-26)
from r-ce have L2 : Range r ∈ ce-sets by (rule ce-rel-lm-27)
from L1 L2 have L3 : Domain r ∪ Range r ∈ ce-sets by (rule ce-union)
then show ?thesis by (unfold Field-def)

qed

lemma ce-rel-lm-29 : [[A ∈ ce-sets; B ∈ ce-sets]] =⇒ A × B ∈ ce-rels
proof −

assume A-ce: A ∈ ce-sets
assume B-ce: B ∈ ce-sets
define r-a where r-a = {(x,(0 ::nat)) | x. x ∈ A}
define r-b where r-b = {((0 ::nat),z) | z. z ∈ B}
have L1 : r-a O r-b = A × B by (unfold r-a-def , unfold r-b-def , auto)
have r-a-ce: r-a ∈ ce-rels
proof −
have loc1 : ce-rel-to-set r-a = { c-pair x 0 | x. x ∈ A} by (unfold r-a-def , unfold

ce-rel-to-set-def , auto)
define p where p x = c-pair x 0 for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from A-ce p-is-pr have { c-pair x 0 | x. x ∈ A} ∈ ce-sets

unfolding p-def by (simp add: ce-set-lm-7)
with loc1 have ce-rel-to-set r-a ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

qed
have r-b-ce: r-b ∈ ce-rels
proof −

have loc1 : ce-rel-to-set r-b = { c-pair 0 z | z. z ∈ B}
by (unfold r-b-def , unfold ce-rel-to-set-def , auto)

define p where p z = c-pair 0 z for z
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from B-ce p-is-pr have { c-pair 0 z | z. z ∈ B} ∈ ce-sets

unfolding p-def by (simp add: ce-set-lm-7)
with loc1 have ce-rel-to-set r-b ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

qed
from r-b-ce r-a-ce have r-a O r-b ∈ ce-rels by (rule ce-rel-lm-24)
with L1 show ?thesis by auto

qed

lemma ce-rel-lm-30 : {} ∈ ce-rels
proof −

have ce-rel-to-set {} = {} by (unfold ce-rel-to-set-def , auto)
with ce-empty have ce-rel-to-set {} ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

145

qed

lemma ce-rel-lm-31 : UNIV ∈ ce-rels
proof −

from ce-univ ce-univ have UNIV × UNIV ∈ ce-rels by (rule ce-rel-lm-29)
then show ?thesis by auto

qed

lemma ce-rel-lm-32 : ce-rel-to-set (r ∪ s) = (ce-rel-to-set r) ∪ (ce-rel-to-set s) by
(unfold ce-rel-to-set-def , auto)

lemma ce-rel-lm-33 : [[r ∈ ce-rels; s ∈ ce-rels]] =⇒ r ∪ s ∈ ce-rels
proof −

assume r ∈ ce-rels
then have r-ce: ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6)
assume s ∈ ce-rels
then have s-ce: ce-rel-to-set s ∈ ce-sets by (rule ce-rel-lm-6)
have ce-rel-to-set (r ∪ s) = (ce-rel-to-set r) ∪ (ce-rel-to-set s) by (unfold ce-rel-to-set-def ,

auto)
moreover from r-ce s-ce have (ce-rel-to-set r) ∪ (ce-rel-to-set s) ∈ ce-sets by

(rule ce-union)
ultimately have ce-rel-to-set (r ∪ s) ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

qed

lemma ce-rel-lm-34 : ce-rel-to-set (r ∩ s) = (ce-rel-to-set r) ∩ (ce-rel-to-set s)
proof
show ce-rel-to-set (r ∩ s) ⊆ ce-rel-to-set r ∩ ce-rel-to-set s by (unfold ce-rel-to-set-def ,

auto)
next

show ce-rel-to-set r ∩ ce-rel-to-set s ⊆ ce-rel-to-set (r ∩ s)
proof fix x assume A: x ∈ ce-rel-to-set r ∩ ce-rel-to-set s

from A have L1 : x ∈ ce-rel-to-set r by auto
from A have L2 : x ∈ ce-rel-to-set s by auto
from L1 obtain u v where L3 : (u,v) ∈ r and L4 : x = c-pair u v

unfolding ce-rel-to-set-def by auto
from L2 obtain u1 v1 where L5 : (u1 ,v1) ∈ s and L6 : x = c-pair u1 v1

unfolding ce-rel-to-set-def by auto
from L4 L6 have L7 : c-pair u1 v1 = c-pair u v by auto
then have u1=u by (rule c-pair-inj1)
moreover from L7 have v1=v by (rule c-pair-inj2)
ultimately have (u,v)=(u1 ,v1) by auto
with L3 L5 have (u,v) ∈ r ∩ s by auto
with L4 show x ∈ ce-rel-to-set (r ∩ s) by (unfold ce-rel-to-set-def , auto)

qed
qed

lemma ce-rel-lm-35 : [[r ∈ ce-rels; s ∈ ce-rels]] =⇒ r ∩ s ∈ ce-rels
proof −

146

assume r ∈ ce-rels
then have r-ce: ce-rel-to-set r ∈ ce-sets by (rule ce-rel-lm-6)
assume s ∈ ce-rels
then have s-ce: ce-rel-to-set s ∈ ce-sets by (rule ce-rel-lm-6)
have ce-rel-to-set (r ∩ s) = (ce-rel-to-set r) ∩ (ce-rel-to-set s) by (rule ce-rel-lm-34)
moreover from r-ce s-ce have (ce-rel-to-set r) ∩ (ce-rel-to-set s) ∈ ce-sets by

(rule ce-intersect)
ultimately have ce-rel-to-set (r ∩ s) ∈ ce-sets by auto
then show ?thesis by (rule ce-rel-lm-7)

qed

lemma ce-rel-lm-36 : ce-set-to-rel (A ∪ B) = (ce-set-to-rel A) ∪ (ce-set-to-rel B)
by (unfold ce-set-to-rel-def , auto)

lemma ce-rel-lm-37 : ce-set-to-rel (A ∩ B) = (ce-set-to-rel A) ∩ (ce-set-to-rel B)
proof −

define f where f x = (c-fst x, c-snd x) for x
have f-inj: inj f
proof (unfold f-def , rule inj-on-inverseI [where ?g=λ (u,v). c-pair u v])

fix x :: nat
assume x ∈ UNIV
show case-prod c-pair (c-fst x, c-snd x) = x by simp

qed
from f-inj have f ‘ (A ∩ B) = f ‘ A ∩ f ‘ B by (rule image-Int)
then show ?thesis by (unfold f-def , unfold ce-set-to-rel-def , auto)

qed

lemma ce-rel-lm-38 : [[r ∈ ce-rels; A ∈ ce-sets]] =⇒ r‘‘A ∈ ce-sets
proof −

assume r-ce: r ∈ ce-rels
assume A-ce: A ∈ ce-sets
have L1 : r‘‘A = Range (r ∩ A × UNIV) by blast
have L2 : Range (r ∩ A × UNIV) ∈ ce-sets
proof (rule ce-rel-lm-27)

show r ∩ A × UNIV ∈ ce-rels
proof (rule ce-rel-lm-35)

show r ∈ ce-rels by (rule r-ce)
next

show A × UNIV ∈ ce-rels
proof (rule ce-rel-lm-29)

show A ∈ ce-sets by (rule A-ce)
next

show UNIV ∈ ce-sets by (rule ce-univ)
qed

qed
qed
from L1 L2 show ?thesis by auto

qed

147

7.6 Total computable functions
definition

graph :: (nat ⇒ nat) ⇒ (nat × nat) set where
graph = (λ f . { (x, f x) | x. x ∈ UNIV })

lemma graph-lm-1 : (x,y) ∈ graph f =⇒ y = f x by (unfold graph-def , auto)

lemma graph-lm-2 : y = f x =⇒ (x,y) ∈ graph f by (unfold graph-def , auto)

lemma graph-lm-3 : ((x,y) ∈ graph f) = (y = f x) by (unfold graph-def , auto)

lemma graph-lm-4 : graph (f o g) = (graph g) O (graph f) by (unfold graph-def ,
auto)

definition
c-graph :: (nat ⇒ nat) ⇒ nat set where
c-graph = (λ f . { c-pair x (f x) | x. x ∈ UNIV })

lemma c-graph-lm-1 : c-pair x y ∈ c-graph f =⇒ y = f x
proof −

assume A: c-pair x y ∈ c-graph f
have S1 : c-graph f = {c-pair x (f x) | x. x ∈ UNIV } by (simp add: c-graph-def)
from A S1 obtain z where S2 : c-pair x y = c-pair z (f z) by auto
then have x = z by (rule c-pair-inj1)
moreover from S2 have y = f z by (rule c-pair-inj2)
ultimately show ?thesis by auto

qed

lemma c-graph-lm-2 : y = f x =⇒ c-pair x y ∈ c-graph f by (unfold c-graph-def ,
auto)

lemma c-graph-lm-3 : (c-pair x y ∈ c-graph f) = (y = f x)
proof

assume c-pair x y ∈ c-graph f then show y = f x by (rule c-graph-lm-1)
next

assume y = f x then show c-pair x y ∈ c-graph f by (rule c-graph-lm-2)
qed

lemma c-graph-lm-4 : c-graph f = ce-rel-to-set (graph f) by (unfold c-graph-def
ce-rel-to-set-def graph-def , auto)

lemma c-graph-lm-5 : graph f = ce-set-to-rel (c-graph f) by (simp add: c-graph-lm-4)

definition
total-recursive :: (nat ⇒ nat) ⇒ bool where
total-recursive = (λ f . graph f ∈ ce-rels)

lemma total-recursive-def1 : total-recursive = (λ f . c-graph f ∈ ce-sets)
proof (rule ext) fix f show total-recursive f = (c-graph f ∈ ce-sets)

148

proof
assume A: total-recursive f
then have graph f ∈ ce-rels by (unfold total-recursive-def)
then have ce-rel-to-set (graph f) ∈ ce-sets by (rule ce-rel-lm-6)
then show c-graph f ∈ ce-sets by (simp add: c-graph-lm-4)

next
assume c-graph f ∈ ce-sets
then have ce-rel-to-set (graph f) ∈ ce-sets by (simp add: c-graph-lm-4)
then have graph f ∈ ce-rels by (rule ce-rel-lm-7)
then show total-recursive f by (unfold total-recursive-def)

qed
qed

theorem pr-is-total-rec: f ∈ PrimRec1 =⇒ total-recursive f
proof −

assume A: f ∈ PrimRec1
define p where p x = c-pair x (f x) for x
from A have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
let ?U = { p x | x. x ∈ UNIV }
from ce-univ p-is-pr have U-ce: ?U ∈ ce-sets by (rule ce-set-lm-7)
have U-1 : ?U = { c-pair x (f x) | x. x ∈ UNIV } by (simp add: p-def)
with U-ce have S1 : { c-pair x (f x) | x. x ∈ UNIV } ∈ ce-sets by simp
with c-graph-def have c-graph-f-is-ce: c-graph f ∈ ce-sets by (unfold c-graph-def ,

auto)
then show ?thesis by (unfold total-recursive-def1 , auto)

qed

theorem comp-tot-rec: [[total-recursive f ; total-recursive g]] =⇒ total-recursive (f
o g)
proof −

assume total-recursive f
then have f-ce: graph f ∈ ce-rels by (unfold total-recursive-def)
assume total-recursive g
then have g-ce: graph g ∈ ce-rels by (unfold total-recursive-def)
from f-ce g-ce have graph g O graph f ∈ ce-rels by (rule ce-rel-lm-24)
then have graph (f o g) ∈ ce-rels by (simp add: graph-lm-4)
then show ?thesis by (unfold total-recursive-def)

qed

lemma univ-for-pr-tot-rec-lm: c-graph univ-for-pr ∈ ce-sets
proof −

define A where A = c-graph univ-for-pr
from A-def have S1 : A = { c-pair x (univ-for-pr x) | x. x ∈ UNIV }

by (simp add: c-graph-def)
from S1 have S2 : A = { z . ∃ x. z = c-pair x (univ-for-pr x) } by auto
have S3 :

∧
z. (∃ x. (z = c-pair x (univ-for-pr x))) = (univ-for-pr (c-fst z) =

c-snd z)
proof −

fix z show (∃ x. (z = c-pair x (univ-for-pr x))) = (univ-for-pr (c-fst z) =

149

c-snd z)
proof

assume A: ∃ x. z = c-pair x (univ-for-pr x)
then obtain x where S3-1 : z = c-pair x (univ-for-pr x) ..
then show univ-for-pr (c-fst z) = c-snd z by simp

next
assume A: univ-for-pr (c-fst z) = c-snd z
from A have z = c-pair (c-fst z) (univ-for-pr (c-fst z)) by simp
thus ∃ x. z = c-pair x (univ-for-pr x) ..

qed
qed
with S2 have S4 : A = { z . univ-for-pr (c-fst z) = c-snd z } by auto
define p where p x y =
(if c-assoc-have-key (pr-gr y) (c-fst x) = 0 then
(if c-assoc-value (pr-gr y) (c-fst x) = c-snd x then (0 ::nat) else 1)

else 1) for x y
from c-assoc-have-key-is-pr c-assoc-value-is-pr pr-gr-is-pr have p-is-pr : p ∈

PrimRec2
unfolding p-def by prec

have S5 :
∧

z. (univ-for-pr (c-fst z) = c-snd z) = (∃ y. p z y = 0)
proof −

fix z show (univ-for-pr (c-fst z) = c-snd z) = (∃ y. p z y = 0)
proof

assume A: univ-for-pr (c-fst z) = c-snd z
let ?n = c-fst (c-fst z)
let ?x = c-snd (c-fst z)
let ?y = loc-upb ?n ?x

have S5-1 : c-assoc-have-key (pr-gr ?y) (c-pair ?n ?x) = 0 by (rule loc-upb-main)
have S5-2 : c-assoc-value (pr-gr ?y) (c-pair ?n ?x) = univ-for-pr (c-pair ?n

?x) by (rule pr-gr-value)
from S5-1 have S5-3 : c-assoc-have-key (pr-gr ?y) (c-fst z) = 0 by simp
from S5-2 A have S5-4 : c-assoc-value (pr-gr ?y) (c-fst z) = c-snd z by simp
from S5-3 S5-4 have p z ?y = 0 by (simp add: p-def)
thus ∃ y. p z y = 0 ..

next
assume A: ∃ y. p z y = 0
then obtain y where S5-1 : p z y = 0 ..
have S5-2 : c-assoc-have-key (pr-gr y) (c-fst z) = 0
proof (rule ccontr)

assume A-1 : c-assoc-have-key (pr-gr y) (c-fst z) 6= 0
then have p z y = 1 by (simp add: p-def)
with S5-1 show False by auto

qed
then have S5-3 : p z y = (if c-assoc-value (pr-gr y) (c-fst z) = c-snd z then

(0 ::nat) else 1) by (simp add: p-def)
have S5-4 : c-assoc-value (pr-gr y) (c-fst z) = c-snd z
proof (rule ccontr)

assume A-2 : c-assoc-value (pr-gr y) (c-fst z) 6= c-snd z
then have p z y = 1 by (simp add: p-def)

150

with S5-1 show False by auto
qed
have S5-5 : c-is-sub-fun (pr-gr y) univ-for-pr by (rule pr-gr-1)
from S5-5 S5-2 have S5-6 : c-assoc-value (pr-gr y) (c-fst z) = univ-for-pr

(c-fst z) by (rule c-is-sub-fun-lm-1)
with S5-4 show univ-for-pr (c-fst z) = c-snd z by auto

qed
qed
from S5 S4 have A = {z. ∃ y. p z y = 0} by auto
then have A = fn-to-set p by (simp add: fn-to-set-def)
moreover from p-is-pr have fn-to-set p ∈ ce-sets by (rule ce-set-lm-1)
ultimately have A ∈ ce-sets by auto
with A-def show ?thesis by auto

qed

theorem univ-for-pr-tot-rec: total-recursive univ-for-pr
proof −

have c-graph univ-for-pr ∈ ce-sets by (rule univ-for-pr-tot-rec-lm)
then show ?thesis by (unfold total-recursive-def1 , auto)

qed

7.7 Computable sets, Post’s theorem
definition

computable :: nat set ⇒ bool where
computable = (λ A. A ∈ ce-sets ∧ −A ∈ ce-sets)

lemma computable-complement-1 : computable A =⇒ computable (− A)
proof −

assume computable A
then show ?thesis by (unfold computable-def , auto)

qed

lemma computable-complement-2 : computable (− A) =⇒ computable A
proof −

assume computable (− A)
then show ?thesis by (unfold computable-def , auto)

qed

lemma computable-complement-3 : (computable A) = (computable (− A)) by (unfold
computable-def , auto)

theorem comp-impl-tot-rec: computable A =⇒ total-recursive (chf A)
proof −

assume A: computable A
from A have A1 : A ∈ ce-sets by (unfold computable-def , simp)
from A have A2 : −A ∈ ce-sets by (unfold computable-def , simp)
define p where p x = c-pair x 0 for x
define q where q x = c-pair x 1 for x

151

from p-def have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
from q-def have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
define U0 where U0 = {p x | x. x ∈ A}
define U1 where U1 = {q x | x. x ∈ − A}
from A1 p-is-pr have U0-ce: U0 ∈ ce-sets by(unfold U0-def , rule ce-set-lm-7)
from A2 q-is-pr have U1-ce: U1 ∈ ce-sets by(unfold U1-def , rule ce-set-lm-7)
define U where U = U0 ∪ U1
from U0-ce U1-ce have U-ce: U ∈ ce-sets by (unfold U-def , rule ce-union)
define V where V = c-graph (chf A)
have V-1 : V = { c-pair x (chf A x) | x. x ∈ UNIV } by (simp add: V-def

c-graph-def)
from U0-def p-def have U0-1 : U0 = { c-pair x y | x y. x ∈ A ∧ y=0} by auto
from U1-def q-def have U1-1 : U1 = { c-pair x y | x y. x /∈ A ∧ y=1} by auto
from U0-1 U1-1 U-def have U-1 : U = { c-pair x y | x y. (x ∈ A ∧ y=0) ∨ (x

/∈ A ∧ y=1)} by auto
from V-1 have V-2 : V = { c-pair x y | x y. y = chf A x} by auto
have L1 :

∧
x y. ((x ∈ A ∧ y=0) ∨ (x /∈ A ∧ y=1)) = (y = chf A x)

proof −
fix x y
show ((x ∈ A ∧ y=0) ∨ (x /∈ A ∧ y=1)) = (y = chf A x) by(unfold chf-def ,

auto)
qed
from V-2 U-1 L1 have U=V by simp
with U-ce have V-ce: V ∈ ce-sets by auto
with V-def have c-graph (chf A) ∈ ce-sets by auto
then show ?thesis by (unfold total-recursive-def1)

qed

theorem tot-rec-impl-comp: total-recursive (chf A) =⇒ computable A
proof −

assume A: total-recursive (chf A)
then have A1 : c-graph (chf A) ∈ ce-sets by (unfold total-recursive-def1)
let ?U = c-graph (chf A)
have L1 : ?U = { c-pair x (chf A x) | x. x ∈ UNIV } by (simp add: c-graph-def)
have L2 :

∧
x y. ((x ∈ A ∧ y=0) ∨ (x /∈ A ∧ y=1)) = (y = chf A x)

proof − fix x y show ((x ∈ A ∧ y=0) ∨ (x /∈ A ∧ y=1)) = (y = chf A x)
by(unfold chf-def , auto)

qed
from L1 L2 have L3 : ?U = { c-pair x y | x y. (x ∈ A ∧ y=0) ∨ (x /∈ A ∧

y=1)} by auto
define p where p x = c-pair x 0 for x
define q where q x = c-pair x 1 for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
have q-is-pr : q ∈ PrimRec1 unfolding q-def by prec
define V where V = { c-pair x y | x y. (x ∈ A ∧ y=0) ∨ (x /∈ A ∧ y=1)}
from V-def L3 A1 have V-ce: V ∈ ce-sets by auto
from V-def have L4 : ∀ z. (z ∈ V) = (∃ x y. z = c-pair x y ∧ ((x ∈ A ∧ y=0)
∨ (x /∈ A ∧ y=1))) by blast

have L5 :
∧

x. (p x ∈ V) = (x ∈ A)

152

proof − fix x show (p x ∈ V) = (x ∈ A)
proof

assume A: p x ∈ V
then have c-pair x 0 ∈ V by (unfold p-def)
with V-def obtain x1 y1 where L5-2 : c-pair x 0 = c-pair x1 y1

and L5-3 : ((x1 ∈ A ∧ y1=0) ∨ (x1 /∈ A ∧ y1=1)) by auto
from L5-2 have X-eq-X1 : x=x1 by (rule c-pair-inj1)
from L5-2 have Y1-eq-0 : 0=y1 by (rule c-pair-inj2)
from L5-3 X-eq-X1 Y1-eq-0 show x ∈ A by auto

next
assume A: x ∈ A
let ?z = c-pair x 0
from A have L5-1 : ∃ x1 y1 . c-pair x 0 = c-pair x1 y1 ∧ ((x1 ∈ A ∧ y1=0)

∨ (x1 /∈ A ∧ y1=1)) by auto
with V-def have c-pair x 0 ∈ V by auto
with p-def show p x ∈ V by simp

qed
qed
then have A-eq: A = { x. p x ∈ V } by auto
from V-ce p-is-pr have { x. p x ∈ V } ∈ ce-sets by (rule ce-set-lm-5)
with A-eq have A-ce: A ∈ ce-sets by simp
have CA-eq: − A = {x. q x ∈ V }
proof −

have
∧

x. (q x ∈ V) = (x /∈ A)
proof − fix x show (q x ∈ V) = (x /∈ A)

proof
assume A: q x ∈ V
then have c-pair x 1 ∈ V by (unfold q-def)
with V-def obtain x1 y1 where L5-2 : c-pair x 1 = c-pair x1 y1

and L5-3 : ((x1 ∈ A ∧ y1=0) ∨ (x1 /∈ A ∧ y1=1)) by auto
from L5-2 have X-eq-X1 : x=x1 by (rule c-pair-inj1)
from L5-2 have Y1-eq-1 : 1=y1 by (rule c-pair-inj2)
from L5-3 X-eq-X1 Y1-eq-1 show x /∈ A by auto

next
assume A: x /∈ A
from A have L5-1 : ∃ x1 y1 . c-pair x 1 = c-pair x1 y1 ∧ ((x1 ∈ A ∧

y1=0) ∨ (x1 /∈ A ∧ y1=1)) by auto
with V-def have c-pair x 1 ∈ V by auto
with q-def show q x ∈ V by simp

qed
qed
then show ?thesis by auto

qed
from V-ce q-is-pr have { x. q x ∈ V } ∈ ce-sets by (rule ce-set-lm-5)
with CA-eq have CA-ce: − A ∈ ce-sets by simp
from A-ce CA-ce show ?thesis by (simp add: computable-def)

qed

theorem post-th-0 : (computable A) = (total-recursive (chf A))

153

proof
assume computable A then show total-recursive (chf A) by (rule comp-impl-tot-rec)

next
assume total-recursive (chf A) then show computable A by (rule tot-rec-impl-comp)

qed

7.8 Universal computably enumerable set
definition

univ-ce :: nat set where
univ-ce = { c-pair n x | n x. x ∈ nat-to-ce-set n }

lemma univ-for-pr-lm: univ-for-pr (c-pair n x) = (nat-to-pr n) x
by (simp add: univ-for-pr-def pr-conv-2-to-1-def)

theorem univ-is-ce: univ-ce ∈ ce-sets
proof −

define A where A = c-graph univ-for-pr
then have A ∈ ce-sets by (simp add: univ-for-pr-tot-rec-lm)
then have ∃ pA ∈ PrimRec2 . A = fn-to-set pA by (rule ce-set-lm-3)
then obtain pA where pA-is-pr : pA ∈ PrimRec2 and S1 : A = fn-to-set pA

by auto
from S1 have S2 : A = { x. ∃ y. pA x y = 0 } by (simp add: fn-to-set-def)
define p where p z y = pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))

0) (c-snd y)
for z y

from pA-is-pr have p-is-pr : p ∈ PrimRec2 unfolding p-def by prec
have

∧
z. (∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n) = (c-snd z ∈ nat-to-ce-set

(c-fst z))
proof −

fix z show (∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n) = (c-snd z ∈
nat-to-ce-set (c-fst z))

proof
assume A: ∃n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n
then obtain n x where L1 : z = c-pair n x ∧ x ∈ nat-to-ce-set n by auto
from L1 have L2 : z = c-pair n x by auto
from L1 have L3 : x ∈ nat-to-ce-set n by auto
from L1 have L4 : c-fst z = n by simp
from L1 have L5 : c-snd z = x by simp
from L3 L4 L5 show c-snd z ∈ nat-to-ce-set (c-fst z) by auto

next
assume A: c-snd z ∈ nat-to-ce-set (c-fst z)
let ?n = c-fst z
let ?x = c-snd z
have L1 : z = c-pair ?n ?x by simp
from L1 A have z = c-pair ?n ?x ∧ ?x ∈ nat-to-ce-set ?n by auto
thus ∃n x. z = c-pair n x ∧ x ∈ nat-to-ce-set n by blast

qed
qed

154

then have { c-pair n x | n x. x ∈ nat-to-ce-set n } = { z. c-snd z ∈ nat-to-ce-set
(c-fst z)} by auto

then have S3 : univ-ce = { z. c-snd z ∈ nat-to-ce-set (c-fst z)} by (simp add:
univ-ce-def)

have S4 :
∧

z. (c-snd z ∈ nat-to-ce-set (c-fst z)) = (∃ y. p z y = 0)
proof −

fix z show (c-snd z ∈ nat-to-ce-set (c-fst z)) = (∃ y. p z y = 0)
proof

assume A: c-snd z ∈ nat-to-ce-set (c-fst z)
have nat-to-ce-set (c-fst z) = { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x y) = 0

} by (simp add: nat-to-ce-set-lm-1)
with A obtain u where S4-1 : (nat-to-pr (c-fst z)) (c-pair (c-snd z) u) = 0

by auto
then have S4-2 : univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) u)) = 0 by

(simp add: univ-for-pr-lm)
from A-def have S4-3 : A = { c-pair x (univ-for-pr x) | x. x ∈ UNIV } by

(simp add: c-graph-def)
then have S4-4 :

∧
x. c-pair x (univ-for-pr x) ∈ A by auto

then have c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) (univ-for-pr (c-pair
(c-fst z) (c-pair (c-snd z) u))) ∈ A by auto

with S4-2 have S4-5 : c-pair (c-pair (c-fst z) (c-pair (c-snd z) u)) 0 ∈ A by
auto

with S2 obtain v where S4-6 : pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)
u)) 0) v = 0

by auto
define y where y = c-pair u v
from y-def have S4-7 : u = c-fst y by simp
from y-def have S4-8 : v = c-snd y by simp
from S4-6 S4-7 S4-8 p-def have p z y = 0 by simp
thus ∃ y. p z y = 0 ..

next
assume A: ∃ y. p z y = 0
then obtain y where S4-1 : p z y = 0 ..
from S4-1 p-def have S4-2 : pA (c-pair (c-pair (c-fst z) (c-pair (c-snd z)

(c-fst y))) 0) (c-snd y) = 0 by simp
with S2 have S4-3 : c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) 0 ∈

A by auto
with A-def have c-pair (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) 0 ∈

c-graph univ-for-pr by simp
then have S4-4 : 0 = univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y)))

by (rule c-graph-lm-1)
then have S4-5 : univ-for-pr (c-pair (c-fst z) (c-pair (c-snd z) (c-fst y))) =

0 by auto
then have S4-6 : (nat-to-pr (c-fst z)) (c-pair (c-snd z) (c-fst y)) = 0 by

(simp add: univ-for-pr-lm)
then have S4-7 : ∃ y. (nat-to-pr (c-fst z)) (c-pair (c-snd z) y) = 0 ..
have S4-8 : nat-to-ce-set (c-fst z) = { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x

y) = 0 } by (simp add: nat-to-ce-set-lm-1)
from S4-7 have S4-9 : c-snd z ∈ { x . ∃ y. (nat-to-pr (c-fst z)) (c-pair x y)

155

= 0 } by auto
with S4-8 show c-snd z ∈ nat-to-ce-set (c-fst z) by auto

qed
qed
with S3 have univ-ce = {z. ∃ y. p z y = 0} by auto
then have univ-ce = fn-to-set p by (simp add: fn-to-set-def)
moreover from p-is-pr have fn-to-set p ∈ ce-sets by (rule ce-set-lm-1)
ultimately show univ-ce ∈ ce-sets by auto

qed

lemma univ-ce-lm-1 : (c-pair n x ∈ univ-ce) = (x ∈ nat-to-ce-set n)
proof −
from univ-ce-def have S1 : univ-ce = {z . ∃ n x. z = c-pair n x ∧ x ∈ nat-to-ce-set

n} by auto
have S2 : (∃ n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1) = (x ∈

nat-to-ce-set n)
proof

assume ∃n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1
then obtain n1 x1 where L1 : c-pair n x = c-pair n1 x1 and L2 : x1 ∈

nat-to-ce-set n1 by auto
from L1 have L3 : n = n1 by (rule c-pair-inj1)
from L1 have L4 : x = x1 by (rule c-pair-inj2)
from L2 L3 L4 show x ∈ nat-to-ce-set n by auto

next
assume A: x ∈ nat-to-ce-set n
then have c-pair n x = c-pair n x ∧ x ∈ nat-to-ce-set n by auto
thus ∃ n1 x1 . c-pair n x = c-pair n1 x1 ∧ x1 ∈ nat-to-ce-set n1 by blast

qed
with S1 show ?thesis by auto

qed

theorem univ-ce-is-not-comp1 : − univ-ce /∈ ce-sets
proof (rule ccontr)

assume ¬ − univ-ce /∈ ce-sets
then have A: − univ-ce ∈ ce-sets by auto
define p where p x = c-pair x x for x
have p-is-pr : p ∈ PrimRec1 unfolding p-def by prec
define A where A = { x. p x ∈ − univ-ce }
from A p-is-pr have { x. p x ∈ − univ-ce } ∈ ce-sets by (rule ce-set-lm-5)
with A-def have S1 : A ∈ ce-sets by auto
then have ∃ n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where S2 : A = nat-to-ce-set n ..
from A-def have (n ∈ A) = (p n ∈ − univ-ce) by auto
with p-def have (n ∈ A) = (c-pair n n /∈ univ-ce) by auto
with univ-ce-def univ-ce-lm-1 have (n ∈ A) = (n /∈ nat-to-ce-set n) by auto
with S2 have (n ∈ A) = (n /∈ A) by auto
thus False by auto

qed

156

theorem univ-ce-is-not-comp2 : ¬ total-recursive (chf univ-ce)
proof

assume total-recursive (chf univ-ce)
then have computable univ-ce by (rule tot-rec-impl-comp)
then have − univ-ce ∈ ce-sets by (unfold computable-def , auto)
with univ-ce-is-not-comp1 show False by auto

qed

theorem univ-ce-is-not-comp3 : ¬ computable univ-ce
proof (rule ccontr)

assume ¬ ¬ computable univ-ce
then have computable univ-ce by auto
then have total-recursive (chf univ-ce) by (rule comp-impl-tot-rec)
with univ-ce-is-not-comp2 show False by auto

qed

7.9 s-1-1 theorem, one-one and many-one reducibilities
definition

index-of-r-to-l :: nat where
index-of-r-to-l =
pair-by-index
(pair-by-index index-of-c-fst (comp-by-index index-of-c-fst index-of-c-snd))
(comp-by-index index-of-c-snd index-of-c-snd)

lemma index-of-r-to-l-lm: nat-to-pr index-of-r-to-l (c-pair x (c-pair y z)) = c-pair
(c-pair x y) z

apply(unfold index-of-r-to-l-def)
apply(simp add: pair-by-index-main)
apply(unfold c-f-pair-def)
apply(simp add: index-of-c-fst-main)
apply(simp add: comp-by-index-main)
apply(simp add: index-of-c-fst-main)
apply(simp add: index-of-c-snd-main)

done

definition
s-ce :: nat ⇒ nat ⇒ nat where
s-ce == (λ e x. s1-1 (comp-by-index e index-of-r-to-l) x)

lemma s-ce-is-pr : s-ce ∈ PrimRec2
unfolding s-ce-def using comp-by-index-is-pr s1-1-is-pr by prec

lemma s-ce-inj: s-ce e1 x1 = s-ce e2 x2 =⇒ e1=e2 ∧ x1=x2
proof −

let ?n1 = index-of-r-to-l
assume s-ce e1 x1 = s-ce e2 x2
then have s1-1 (comp-by-index e1 ?n1) x1 = s1-1 (comp-by-index e2 ?n1) x2

by (unfold s-ce-def)

157

then have L1 : comp-by-index e1 ?n1 = comp-by-index e2 ?n1 ∧ x1=x2 by (rule
s1-1-inj)

from L1 have comp-by-index e1 ?n1 = comp-by-index e2 ?n1 ..
then have e1=e2 by (rule comp-by-index-inj1)
moreover from L1 have x1=x2 by auto
ultimately show ?thesis by auto

qed

lemma s-ce-inj1 : s-ce e1 x = s-ce e2 x =⇒ e1=e2
proof −

assume s-ce e1 x = s-ce e2 x
then have e1=e2 ∧ x=x by (rule s-ce-inj)
then show e1=e2 by auto

qed

lemma s-ce-inj2 : s-ce e x1 = s-ce e x2 =⇒ x1=x2
proof −

assume s-ce e x1 = s-ce e x2
then have e=e ∧ x1=x2 by (rule s-ce-inj)
then show x1=x2 by auto

qed

theorem s1-1-th1 : ∀ n x y. ((nat-to-pr n) (c-pair x y)) = (nat-to-pr (s1-1 n x)) y
proof (rule allI , rule allI , rule allI)

fix n x y show nat-to-pr n (c-pair x y) = nat-to-pr (s1-1 n x) y
proof −

have (λ y. (nat-to-pr n) (c-pair x y)) = nat-to-pr (s1-1 n x) by (rule s1-1-th)
then show ?thesis by (simp add: fun-eq-iff)

qed
qed

lemma s-lm: (nat-to-pr (s-ce e x)) (c-pair y z) = (nat-to-pr e) (c-pair (c-pair x
y) z)
proof −

let ?n1 = index-of-r-to-l
have (nat-to-pr (s-ce e x)) (c-pair y z) = nat-to-pr (s1-1 (comp-by-index e ?n1)

x) (c-pair y z) by (unfold s-ce-def , simp)
also have . . . = (nat-to-pr (comp-by-index e ?n1)) (c-pair x (c-pair y z)) by

(simp add: s1-1-th1)
also have . . . = (nat-to-pr e) ((nat-to-pr ?n1) (c-pair x (c-pair y z))) by (simp

add: comp-by-index-main)
finally show ?thesis by (simp add: index-of-r-to-l-lm)

qed

theorem s-ce-1-1-th: (c-pair x y ∈ nat-to-ce-set e) = (y ∈ nat-to-ce-set (s-ce e x))
proof

assume A: c-pair x y ∈ nat-to-ce-set e
then obtain z where L1 : (nat-to-pr e) (c-pair (c-pair x y) z) = 0

by (auto simp add: nat-to-ce-set-lm-1)

158

have (nat-to-pr (s-ce e x)) (c-pair y z) = 0 by (simp add: s-lm L1)
with nat-to-ce-set-lm-1 show y ∈ nat-to-ce-set (s-ce e x) by auto

next
assume A: y ∈ nat-to-ce-set (s-ce e x)
then obtain z where L1 : (nat-to-pr (s-ce e x)) (c-pair y z) = 0

by (auto simp add: nat-to-ce-set-lm-1)
then have (nat-to-pr e) (c-pair (c-pair x y) z) = 0 by (simp add: s-lm)
with nat-to-ce-set-lm-1 show c-pair x y ∈ nat-to-ce-set e by auto

qed

definition
one-reducible-to-via :: (nat set) ⇒ (nat set) ⇒ (nat ⇒ nat) ⇒ bool where
one-reducible-to-via = (λ A B f . total-recursive f ∧ inj f ∧ (∀ x. (x ∈ A) = (f x
∈ B)))

definition
one-reducible-to :: (nat set) ⇒ (nat set) ⇒ bool where
one-reducible-to = (λ A B. ∃ f . one-reducible-to-via A B f)

definition
many-reducible-to-via :: (nat set) ⇒ (nat set) ⇒ (nat ⇒ nat) ⇒ bool where
many-reducible-to-via = (λ A B f . total-recursive f ∧ (∀ x. (x ∈ A) = (f x ∈

B)))

definition
many-reducible-to :: (nat set) ⇒ (nat set) ⇒ bool where
many-reducible-to = (λ A B. ∃ f . many-reducible-to-via A B f)

lemma one-reducible-to-via-trans: [[one-reducible-to-via A B f ; one-reducible-to-via
B C g]] =⇒ one-reducible-to-via A C (g o f)
proof −

assume A1 : one-reducible-to-via A B f
assume A2 : one-reducible-to-via B C g
from A1 have f-tr : total-recursive f by (unfold one-reducible-to-via-def , auto)
from A1 have f-inj: inj f by (unfold one-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold one-reducible-to-via-def ,

auto)
from A2 have g-tr : total-recursive g by (unfold one-reducible-to-via-def , auto)
from A2 have g-inj: inj g by (unfold one-reducible-to-via-def , auto)
from A2 have L2 : ∀ x. (x ∈ B) = (g x ∈ C) by (unfold one-reducible-to-via-def ,

auto)
from g-tr f-tr have fg-tr : total-recursive (g o f) by (rule comp-tot-rec)
from g-inj f-inj have fg-inj: inj (g o f) by (rule inj-compose)
from L1 L2 have L3 : (∀ x. (x ∈ A) = ((g o f) x ∈ C)) by auto
with fg-tr fg-inj show ?thesis by (unfold one-reducible-to-via-def , auto)

qed

lemma one-reducible-to-trans: [[one-reducible-to A B; one-reducible-to B C]] =⇒
one-reducible-to A C

159

proof −
assume one-reducible-to A B
then obtain f where A1 : one-reducible-to-via A B f unfolding one-reducible-to-def

by auto
assume one-reducible-to B C
then obtain g where A2 : one-reducible-to-via B C g unfolding one-reducible-to-def

by auto
from A1 A2 have one-reducible-to-via A C (g o f) by (rule one-reducible-to-via-trans)
then show ?thesis unfolding one-reducible-to-def by auto

qed

lemma one-reducible-to-via-refl: one-reducible-to-via A A (λ x. x)
proof −

have is-pr : (λ x. x) ∈ PrimRec1 by (rule pr-id1-1)
then have is-tr : total-recursive (λ x. x) by (rule pr-is-total-rec)
have is-inj: inj (λ x. x) by simp
have L1 : ∀ x. (x ∈ A) = (((λ x. x) x) ∈ A) by simp
with is-tr is-inj show ?thesis by (unfold one-reducible-to-via-def , auto)

qed

lemma one-reducible-to-refl: one-reducible-to A A
proof −

have one-reducible-to-via A A (λ x. x) by (rule one-reducible-to-via-refl)
then show ?thesis by (unfold one-reducible-to-def , auto)

qed

lemma many-reducible-to-via-trans: [[many-reducible-to-via A B f ; many-reducible-to-via
B C g]] =⇒ many-reducible-to-via A C (g o f)
proof −

assume A1 : many-reducible-to-via A B f
assume A2 : many-reducible-to-via B C g
from A1 have f-tr : total-recursive f by (unfold many-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold many-reducible-to-via-def ,

auto)
from A2 have g-tr : total-recursive g by (unfold many-reducible-to-via-def , auto)
from A2 have L2 : ∀ x. (x ∈ B) = (g x ∈ C) by (unfold many-reducible-to-via-def ,

auto)
from g-tr f-tr have fg-tr : total-recursive (g o f) by (rule comp-tot-rec)
from L1 L2 have L3 : (∀ x. (x ∈ A) = ((g o f) x ∈ C)) by auto
with fg-tr show ?thesis by (unfold many-reducible-to-via-def , auto)

qed

lemma many-reducible-to-trans: [[many-reducible-to A B; many-reducible-to B C
]] =⇒ many-reducible-to A C
proof −

assume many-reducible-to A B
then obtain f where A1 : many-reducible-to-via A B f

unfolding many-reducible-to-def by auto
assume many-reducible-to B C

160

then obtain g where A2 : many-reducible-to-via B C g
unfolding many-reducible-to-def by auto

from A1 A2 have many-reducible-to-via A C (g o f) by (rule many-reducible-to-via-trans)
then show ?thesis unfolding many-reducible-to-def by auto

qed

lemma one-reducibility-via-is-many: one-reducible-to-via A B f =⇒ many-reducible-to-via
A B f
proof −

assume A: one-reducible-to-via A B f
from A have f-tr : total-recursive f by (unfold one-reducible-to-via-def , auto)
from A have ∀ x. (x ∈ A) = (f x ∈ B) by (unfold one-reducible-to-via-def , auto)
with f-tr show ?thesis by (unfold many-reducible-to-via-def , auto)

qed

lemma one-reducibility-is-many: one-reducible-to A B =⇒ many-reducible-to A B
proof −

assume one-reducible-to A B
then obtain f where A: one-reducible-to-via A B f

unfolding one-reducible-to-def by auto
then have many-reducible-to-via A B f by (rule one-reducibility-via-is-many)
then show ?thesis unfolding many-reducible-to-def by auto

qed

lemma many-reducible-to-via-refl: many-reducible-to-via A A (λ x. x)
proof −

have one-reducible-to-via A A (λ x. x) by (rule one-reducible-to-via-refl)
then show ?thesis by (rule one-reducibility-via-is-many)

qed

lemma many-reducible-to-refl: many-reducible-to A A
proof −

have one-reducible-to A A by (rule one-reducible-to-refl)
then show ?thesis by (rule one-reducibility-is-many)

qed

theorem m-red-to-comp: [[many-reducible-to A B; computable B]] =⇒ computable
A
proof −

assume many-reducible-to A B
then obtain f where A1 : many-reducible-to-via A B f

unfolding many-reducible-to-def by auto
from A1 have f-tr : total-recursive f by (unfold many-reducible-to-via-def , auto)
from A1 have L1 : ∀ x. (x ∈ A) = (f x ∈ B) by (unfold many-reducible-to-via-def ,

auto)
assume computable B
then have L2 : total-recursive (chf B) by (rule comp-impl-tot-rec)
have L3 : chf A = (chf B) o f
proof fix x

161

have chf A x = (chf B) (f x)
proof cases

assume A: x ∈ A
then have L3-1 : chf A x = 0 by (simp add: chf-lm-2)
from A L1 have f x ∈ B by auto
then have L3-2 : (chf B) (f x) = 0 by (simp add: chf-lm-2)
from L3-1 L3-2 show chf A x = (chf B) (f x) by auto

next
assume A: x /∈ A
then have L3-1 : chf A x = 1 by (simp add: chf-lm-3)
from A L1 have f x /∈ B by auto
then have L3-2 : (chf B) (f x) = 1 by (simp add: chf-lm-3)
from L3-1 L3-2 show chf A x = (chf B) (f x) by auto

qed
then show chf A x = (chf B ◦ f) x by auto

qed
from L2 f-tr have total-recursive (chf B ◦ f) by (rule comp-tot-rec)
with L3 have total-recursive (chf A) by auto
then show ?thesis by (rule tot-rec-impl-comp)

qed

lemma many-reducible-lm-1 : many-reducible-to univ-ce A =⇒ ¬ computable A
proof (rule ccontr)

assume A1 : many-reducible-to univ-ce A
assume ¬ ¬ computable A
then have A2 : computable A by auto
from A1 A2 have computable univ-ce by (rule m-red-to-comp)
with univ-ce-is-not-comp3 show False by auto

qed

lemma one-reducible-lm-1 : one-reducible-to univ-ce A =⇒ ¬ computable A
proof −

assume one-reducible-to univ-ce A
then have many-reducible-to univ-ce A by (rule one-reducibility-is-many)
then show ?thesis by (rule many-reducible-lm-1)

qed

lemma one-reducible-lm-2 : one-reducible-to-via (nat-to-ce-set n) univ-ce (λ x. c-pair
n x)
proof −

define f where f x = c-pair n x for x
have f-is-pr : f ∈ PrimRec1 unfolding f-def by prec
then have f-tr : total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI)

fix x y assume A: f x = f y
then have c-pair n x = c-pair n y by (unfold f-def)
then show x = y by (rule c-pair-inj2)

qed

162

have ∀ x. (x ∈ (nat-to-ce-set n)) = (f x ∈ univ-ce)
proof fix x show (x ∈ nat-to-ce-set n) = (f x ∈ univ-ce) by (unfold f-def , simp

add: univ-ce-lm-1)
qed
with f-tr f-inj show ?thesis by (unfold f-def , unfold one-reducible-to-via-def ,

auto)
qed

lemma one-reducible-lm-3 : one-reducible-to (nat-to-ce-set n) univ-ce
proof −

have one-reducible-to-via (nat-to-ce-set n) univ-ce (λ x. c-pair n x) by (rule
one-reducible-lm-2)

then show ?thesis by (unfold one-reducible-to-def , auto)
qed

lemma one-reducible-lm-4 : A ∈ ce-sets =⇒ one-reducible-to A univ-ce
proof −

assume A ∈ ce-sets
then have ∃ n. A = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where A = nat-to-ce-set n by auto
with one-reducible-lm-3 show ?thesis by auto

qed

7.10 One-complete sets
definition

one-complete :: nat set ⇒ bool where
one-complete = (λ A. A ∈ ce-sets ∧ (∀ B. B ∈ ce-sets −→ one-reducible-to B

A))

theorem univ-is-complete: one-complete univ-ce
proof (unfold one-complete-def)

show univ-ce ∈ ce-sets ∧ (∀B. B ∈ ce-sets −→ one-reducible-to B univ-ce)
proof

show univ-ce ∈ ce-sets by (rule univ-is-ce)
next

show ∀B. B ∈ ce-sets −→ one-reducible-to B univ-ce
proof (rule allI , rule impI)

fix B assume B ∈ ce-sets then show one-reducible-to B univ-ce by (rule
one-reducible-lm-4)

qed
qed

qed

7.11 Index sets, Rice’s theorem
definition

index-set :: nat set ⇒ bool where
index-set = (λ A. ∀ n m. n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) −→ m ∈

A)

163

lemma index-set-lm-1 : [[index-set A; n∈ A; nat-to-ce-set n = nat-to-ce-set m]]
=⇒ m ∈ A
proof −

assume A1 : index-set A
assume A2 : n ∈ A
assume A3 : nat-to-ce-set n = nat-to-ce-set m
from A2 A3 have L1 : n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) by auto
from A1 have L2 : ∀ n m. n ∈ A ∧ (nat-to-ce-set n = nat-to-ce-set m) −→ m
∈ A by (unfold index-set-def)

from L1 L2 show ?thesis by auto
qed

lemma index-set-lm-2 : index-set A =⇒ index-set (−A)
proof −

assume A: index-set A
show index-set (−A)
proof (unfold index-set-def)

show ∀n m. n ∈ − A ∧ nat-to-ce-set n = nat-to-ce-set m −→ m ∈ − A
proof (rule allI , rule allI , rule impI)

fix n m assume A1 : n ∈ − A ∧ nat-to-ce-set n = nat-to-ce-set m
from A1 have A2 : n ∈ −A by auto
from A1 have A3 : nat-to-ce-set m = nat-to-ce-set n by auto
show m ∈ − A
proof

assume m ∈ A
from A this A3 have n ∈ A by (rule index-set-lm-1)
with A2 show False by auto

qed
qed

qed
qed

lemma Rice-lm-1 : [[index-set A; A 6= {}; A 6= UNIV ; ∃ n ∈ A. nat-to-ce-set n =
{}]] =⇒ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
assume ∃ n ∈ A. nat-to-ce-set n = {}
then obtain e-0 where e-0-in-A: e-0 ∈ A and e-0-empty: nat-to-ce-set e-0 =
{} by auto

from e-0-in-A A3 obtain e-1 where e-1-not-in-A: e-1 ∈ (− A) by auto
with e-0-in-A have e-0-neq-e-1 : e-0 6= e-1 by auto
have nat-to-ce-set e-0 6= nat-to-ce-set e-1
proof

assume nat-to-ce-set e-0 = nat-to-ce-set e-1
with A1 e-0-in-A have e-1 ∈ A by (rule index-set-lm-1)
with e-1-not-in-A show False by auto

164

qed
with e-0-empty have e1-not-empty: nat-to-ce-set e-1 6= {} by auto
define we-1 where we-1 = nat-to-ce-set e-1
from e1-not-empty have we-1-not-empty: we-1 6= {} by (unfold we-1-def)
define r where r = univ-ce × we-1
have loc-lm-1 :

∧
x. x ∈ univ-ce =⇒ ∀ y. (y ∈ we-1) = ((x,y) ∈ r) by (unfold

r-def , auto)
have loc-lm-2 :

∧
x. x /∈ univ-ce =⇒ ∀ y. (y ∈ {}) = ((x,y) ∈ r) by (unfold

r-def , auto)
have r-ce: r ∈ ce-rels
proof (unfold r-def , rule ce-rel-lm-29)

show univ-ce ∈ ce-sets by (rule univ-is-ce)
show we-1 ∈ ce-sets by (unfold we-1-def , rule nat-to-ce-set-into-ce)

qed
define we-n where we-n = ce-rel-to-set r
from r-ce have we-n-ce: we-n ∈ ce-sets by (unfold we-n-def , rule ce-rel-lm-6)
then have ∃ n. we-n = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where we-n-df1 : we-n = nat-to-ce-set n by auto
define f where f x = s-ce n x for x
from s-ce-is-pr have f-is-pr : f ∈ PrimRec1 unfolding f-def by prec
then have f-tr : total-recursive f by (rule pr-is-total-rec)
have f-inj: inj f
proof (rule injI)

fix x y
assume f x = f y
then have s-ce n x = s-ce n y by (unfold f-def)
then show x = y by (rule s-ce-inj2)

qed
have loc-lm-3 : ∀ x y. (c-pair x y ∈ we-n) = (y ∈ nat-to-ce-set (f x))
proof (rule allI , rule allI)

fix x y show (c-pair x y ∈ we-n) = (y ∈ nat-to-ce-set (f x)) by (unfold f-def ,
unfold we-n-df1 , simp add: s-ce-1-1-th)

qed
from A1 have loc-lm-4 : index-set (− A) by (rule index-set-lm-2)
have loc-lm-5 : ∀ x. (x ∈ univ-ce) = (f x ∈ −A)
proof fix x show (x ∈ univ-ce) = (f x ∈ −A)

proof
assume A: x ∈ univ-ce
then have S1 : ∀ y. (y ∈ we-1) = ((x,y) ∈ r) by (rule loc-lm-1)
from ce-rel-lm-12 have ∀ y. (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r) by

auto
then have ∀ y. ((x,y) ∈ r) = (c-pair x y ∈ we-n) by (unfold we-n-def , auto)
with S1 have ∀ y. (y ∈ we-1) = (c-pair x y ∈ we-n) by auto
with loc-lm-3 have ∀ y. (y ∈ we-1) = (y ∈ nat-to-ce-set (f x)) by auto
then have S2 : we-1 = nat-to-ce-set (f x) by auto
then have nat-to-ce-set e-1 = nat-to-ce-set (f x) by (unfold we-1-def)
with loc-lm-4 e-1-not-in-A show f x ∈ −A by (rule index-set-lm-1)

next
show f x ∈ − A =⇒ x ∈ univ-ce

165

proof (rule ccontr)
assume fx-in-A: f x ∈ − A
assume x-not-in-univ: x /∈ univ-ce
then have S1 : ∀ y. (y ∈ {}) = ((x,y) ∈ r) by (rule loc-lm-2)
from ce-rel-lm-12 have ∀ y. (c-pair x y ∈ ce-rel-to-set r) = ((x,y) ∈ r) by

auto
then have ∀ y. ((x,y) ∈ r) = (c-pair x y ∈ we-n) by (unfold we-n-def ,

auto)
with S1 have ∀ y. (y ∈ {}) = (c-pair x y ∈ we-n) by auto
with loc-lm-3 have ∀ y. (y ∈ {}) = (y ∈ nat-to-ce-set (f x)) by auto
then have S2 : {} = nat-to-ce-set (f x) by auto
then have nat-to-ce-set e-0 = nat-to-ce-set (f x) by (unfold e-0-empty)
with A1 e-0-in-A have f x ∈ A by (rule index-set-lm-1)
with fx-in-A show False by auto

qed
qed

qed
with f-tr f-inj have one-reducible-to-via univ-ce (−A) f by (unfold one-reducible-to-via-def ,

auto)
then show ?thesis by (unfold one-reducible-to-def , auto)

qed

lemma Rice-lm-2 : [[index-set A; A 6= {}; A 6= UNIV ; n ∈ A; nat-to-ce-set n =
{}]] =⇒ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
assume A4 : n ∈ A
assume A5 : nat-to-ce-set n = {}
from A4 A5 have S1 : ∃ n ∈ A. nat-to-ce-set n = {} by auto
from A1 A2 A3 S1 show ?thesis by (rule Rice-lm-1)

qed

theorem Rice-1 : [[index-set A; A 6= {}; A 6= UNIV]] =⇒ one-reducible-to univ-ce
A ∨ one-reducible-to univ-ce (− A)
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
from ce-empty have ∃ n. {} = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where n-empty: nat-to-ce-set n = {} by auto
show ?thesis
proof cases

assume A: n ∈ A
from A1 A2 A3 A n-empty have one-reducible-to univ-ce (− A) by (rule

Rice-lm-2)
then show ?thesis by auto

next

166

assume n /∈ A then have A: n ∈ − A by auto
from A1 have S1 : index-set (− A) by (rule index-set-lm-2)
from A3 have S2 : − A 6= {} by auto
from A2 have S3 : − A 6= UNIV by auto
from S1 S2 S3 A n-empty have one-reducible-to univ-ce (− (− A)) by (rule

Rice-lm-2)
then have one-reducible-to univ-ce A by simp
then show ?thesis by auto

qed
qed

theorem Rice-2 : [[index-set A; A 6= {}; A 6= UNIV]] =⇒ ¬ computable A
proof −

assume A1 : index-set A
assume A2 : A 6= {}
assume A3 : A 6= UNIV
from A1 A2 A3 have one-reducible-to univ-ce A ∨ one-reducible-to univ-ce (−

A) by (rule Rice-1)
then have S1 : ¬ one-reducible-to univ-ce A −→ one-reducible-to univ-ce (− A)

by auto
show ?thesis
proof cases

assume one-reducible-to univ-ce A
then show ¬ computable A by (rule one-reducible-lm-1)

next
assume ¬ one-reducible-to univ-ce A
with S1 have one-reducible-to univ-ce (− A) by auto
then have ¬ computable (− A) by (rule one-reducible-lm-1)
with computable-complement-3 show ¬ computable A by auto

qed
qed

theorem Rice-3 : [[C ⊆ ce-sets; computable { n. nat-to-ce-set n ∈ C}]] =⇒ C =
{} ∨ C = ce-sets
proof (rule ccontr)

assume A1 : C ⊆ ce-sets
assume A2 : computable { n. nat-to-ce-set n ∈ C}
assume A3 : ¬ (C = {} ∨ C = ce-sets)
from A3 have A4 : C 6= {} by auto
from A3 have A5 : C 6= ce-sets by auto
define A where A = { n. nat-to-ce-set n ∈ C}
have S1 : index-set A
proof (unfold index-set-def)

show ∀n m. n ∈ A ∧ nat-to-ce-set n = nat-to-ce-set m −→ m ∈ A
proof (rule allI , rule allI , rule impI)

fix n m assume A1-1 : n ∈ A ∧ nat-to-ce-set n = nat-to-ce-set m
from A1-1 have n ∈ A by auto
then have S1-1 : nat-to-ce-set n ∈ C by (unfold A-def , auto)
from A1-1 have nat-to-ce-set n = nat-to-ce-set m by auto

167

with S1-1 have nat-to-ce-set m ∈ C by auto
then show m ∈ A by (unfold A-def , auto)

qed
qed
have S2 : A 6= {}
proof −

from A4 obtain B where S2-1 : B ∈ C by auto
with A1 have B ∈ ce-sets by auto
then have ∃ n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with S2-1 have nat-to-ce-set n ∈ C by auto
then show ?thesis by (unfold A-def , auto)

qed
have S3 : A 6= UNIV
proof −

from A1 A5 obtain B where S2-1 : B /∈ C and S2-2 : B ∈ ce-sets by auto
from S2-2 have ∃ n. B = nat-to-ce-set n by (rule nat-to-ce-set-srj)
then obtain n where B = nat-to-ce-set n ..
with S2-1 have nat-to-ce-set n /∈ C by auto
then show ?thesis by (unfold A-def , auto)

qed
from S1 S2 S3 have ¬ computable A by (rule Rice-2)
with A2 show False unfolding A-def by auto

qed

end

References

[1] Rogers. Theory of recursive functions and effective computatibility. 1967.

[2] Soare. Recursively enumerable sets and degrees. 1987.

168

	Cantor pairing function
	Pairing function
	Inverse mapping

	Primitive recursive functions
	Basic definitions
	Bounded least operator
	Examples

	Primitive recursive coding of lists of natural numbers
	Primitive recursive functions of one variable
	Alternative definition of primitive recursive functions of one variable
	The scheme datatype
	Indexes of primitive recursive functions of one variables
	s-1-1 theorem for primitive recursive functions of one variable

	Finite sets
	The function which is universal for primitive recursive functions of one variable
	Computably enumerable sets of natural numbers
	Basic definitions
	Basic properties of computably enumerable sets
	Enumeration of computably enumerable sets
	Characteristic functions
	Computably enumerable relations
	Total computable functions
	Computable sets, Post's theorem
	Universal computably enumerable set
	s-1-1 theorem, one-one and many-one reducibilities
	One-complete sets
	Index sets, Rice's theorem

