Real-Time Double-Ended Queue

Balazs Toth and Tobias Nipkow Technical University of Munich

March 17, 2025

Abstract

A double-ended queue (deque) is a queue where one can enqueue and dequeue at both ends. We define and verify the deque implementation by Chuang and Goldberg [1]. It is purely functional and all operations run in constant time.

Contents

1	Double-Ended Queue Specification	2
2	Type Classes	3
3	Stack	4
4	Current Stack	4
5	Idle	5
6	Common	5
7	Bigger End of Deque	7
8	Smaller End of Deque	8
9	Combining Big and Small	9
10	Real-Time Deque Implementation	10
11	Basic Lemma Library	24
12	Stack Proofs	26
13	Idle Proofs	28
14	Current Proofs	29

15 Common Proofs	31		
16 Big Proofs	33		
17 Small Proofs	35		
18 Big + Small Proofs	37		
19 Dequeue Proofs	53		
20 Enqueue Proofs 54			
21 Top-Level Proof	54		
1 Double-Ended Queue Specification			
theory $Deque$ imports $Main$ begin			
Model-oriented specification in terms of an abstraction function to a	a list.		
locale $Deque =$ fixes $empty :: 'q$ fixes $enqL :: 'a \Rightarrow 'q \Rightarrow 'q$ fixes $enqR :: 'a \Rightarrow 'q \Rightarrow 'q$ fixes $firstL :: 'q \Rightarrow 'a$ fixes $firstR :: 'q \Rightarrow 'a$ fixes $deqL :: 'q \Rightarrow 'q$ fixes $deqR :: 'q \Rightarrow 'q$ fixes $is-empty :: 'q \Rightarrow bool$ fixes $listL :: 'q \Rightarrow 'a$ list fixes $invar :: 'q \Rightarrow bool$			
assumes $list-empty$: $listL\ empty = []$			
assumes $list\text{-}enqL$: $invar\ q \Longrightarrow listL(enqL\ x\ q) = x\ \#\ listL\ q$ assumes $list\text{-}enqR$: $invar\ q \Longrightarrow rev\ (listL\ (enqR\ x\ q)) = x\ \#\ rev\ (listL\ q)$ assumes $list\text{-}deqL$: $[invar\ q;\ \neg\ listL\ q = []] \Longrightarrow listL(deqL\ q) = tl(listL\ q)$ assumes $list\text{-}deqR$: $[invar\ q;\ \neg\ rev\ (listL\ q) = []] \Longrightarrow rev\ (listL\ (deqR\ q)) = tl\ (rev\ (listL\ q))$			
assumes $list$ -first L : $\llbracket invar\ q; \neg\ listL\ q = \llbracket \rrbracket \rrbracket \implies firstL\ q = hd(listL\ q)$ assumes $list$ -first R :			

```
\llbracket invar \ q; \ \neg \ rev \ (listL \ q) = \llbracket \rrbracket \rrbracket \Longrightarrow \mathit{firstR} \ q = \mathit{hd}(\mathit{rev}(\mathit{listL} \ q))
assumes list-is-empty:
 invar \ q \Longrightarrow is\text{-}empty \ q = (listL \ q = [])
assumes invar-empty:
 invar empty
assumes invar-enqL:
 invar q \Longrightarrow invar(enqL \ x \ q)
assumes invar-enqR:
 invar q \Longrightarrow invar(enqR \ x \ q)
{\bf assumes}\ invar\text{-}deqL:
 \llbracket invar\ q; \neg\ is\text{-}empty\ q \rrbracket \implies invar(deqL\ q)
assumes invar-deqR:
 \llbracket invar \; q; \; \neg \; is\text{-}empty \; q \rrbracket \; \Longrightarrow invar(deqR \; q)
begin
abbreviation listR :: 'q \Rightarrow 'a \ list \ \mathbf{where}
  listR \ deque \equiv rev \ (listL \ deque)
\quad \text{end} \quad
\quad \text{end} \quad
\mathbf{2}
        Type Classes
theory Type-Classes
imports Main
begin
     Overloaded functions:
class is\text{-}empty =
  fixes is-empty :: 'a \Rightarrow bool
{\bf class} \ invar =
  fixes invar :: 'a \Rightarrow bool
{f class} \ size-new =
  fixes size-new :: 'a \Rightarrow nat
{f class} \ step =
  fixes step :: 'a \Rightarrow 'a
{\bf class}\ remaining\text{-}steps =
  fixes remaining-steps :: 'a \Rightarrow nat
```

3 Stack

```
theory Stack
imports Type-Classes
begin
```

A datatype encapsulating two lists. Is used as a base data-structure in different places. It has the operations *push*, *pop* and *first*.

```
datatype (plugins del: size) 'a stack = Stack 'a list 'a list
```

```
fun push :: 'a \Rightarrow 'a \ stack \Rightarrow 'a \ stack where
 push\ x\ (Stack\ left\ right) = Stack\ (x\#left)\ right
fun pop :: 'a \ stack \Rightarrow 'a \ stack \ where
  pop (Stack [] [])
                      = Stack [] []
 pop (Stack (x \# left) right) = Stack left right
| pop (Stack []
                   (x \# right)) = Stack [] right
fun first :: 'a \ stack \Rightarrow 'a \ \mathbf{where}
 first (Stack (x \# left) right)
| first (Stack []
                     (x \# right)) = x
instantiation \ stack :: (type) \ is-empty
begin
fun is-empty-stack where
 is-empty-stack (Stack [] []) = True
| is-empty-stack -
                                = False
instance\langle proof \rangle
end
```

4 Current Stack

theory Current imports Stack begin

end

This data structure is composed of:

- the newly added elements to one end of a deque during the rebalancing phase
- the number of these newly added elements

- the originally contained elements
- the number of elements which will be contained after the rebalancing is finished.

```
datatype (plugins del: size) 'a current = Current 'a list nat 'a stack nat

fun push :: 'a \Rightarrow 'a current \Rightarrow 'a current where

push x (Current extra added old remained) = Current (x#extra) (added + 1) old

remained

fun pop :: 'a current \Rightarrow 'a * 'a current where

pop (Current [] added old remained) =

(first old, Current [] added (Stack.pop old) (remained - 1))

| pop (Current (x#xs) added old remained) =

(x, Current xs (added - 1) old remained)

fun first :: 'a current \Rightarrow 'a where

first current = fst (pop current)

abbreviation drop-first :: 'a current \Rightarrow 'a current where

drop-first current \equiv snd (pop current)
```

5 Idle

end

theory *Idle* imports *Stack* begin

Represents the 'idle' state of one deque end. It contains a stack and its size as a natural number.

```
datatype (plugins del: size) 'a idle = Idle 'a stack nat

fun push :: 'a \Rightarrow 'a idle \Rightarrow 'a idle where
  push x (Idle stack stackSize) = Idle (Stack.push x stack) (Suc stackSize)

fun pop :: 'a idle \Rightarrow ('a * 'a idle) where
  pop (Idle stack stackSize) = (Stack.first stack, Idle (Stack.pop stack) (stackSize - 1))
```

6 Common

end

theory Common imports Current Idle

begin

The last two phases of both deque ends during rebalancing:

Copy: Using the *step* function the new elements of this deque end are brought back into the original order.

Idle: The rebalancing of the deque end is finished.

datatype (plugins del: size)'a common-state = Copy 'a current 'a list 'a list nat

Each phase contains a *current* state, that holds the original elements of the deque end.

```
| Idle 'a current 'a idle
Functions:
 push, pop: Add and remove elements using the current state.
 step: Executes one step of the rebalancing, while keeping the invariant.
fun normalize :: 'a \ common-state \Rightarrow 'a \ common-state \ \mathbf{where}
  normalize (Copy current old new moved) = (
   case\ current\ of\ Current\ extra\ added\ -\ remained\ \Rightarrow
     if moved \ge remained
     then Idle current (idle.Idle (Stack extra new) (added + moved))
     else Copy current old new moved
instantiation common-state ::(type) step
begin
fun step-common-state :: 'a common-state \Rightarrow 'a common-state where
  step (Idle current idle) = Idle current idle
| step (Copy current aux new moved) = (
   case\ current\ of\ Current - - - remained \Rightarrow
     normalize (
       if moved < remained
       then Copy current (tl aux) ((hd aux)#new) (moved + 1)
       else Copy current aux new moved
instance\langle proof \rangle
end
fun push :: 'a \Rightarrow 'a \ common-state \Rightarrow 'a \ common-state \ \mathbf{where}
 push\ x\ (Idle\ current\ (idle.Idle\ stack\ stackSize)) =
```

```
Idle\ (Current.push\ x\ current)\ (idle.Idle\ (Stack.push\ x\ stack)\ (Suc\ stackSize))\\ |\ push\ x\ (Copy\ current\ aux\ new\ moved) =\ Copy\ (Current.push\ x\ current)\ aux\ new\ moved
```

```
fun pop :: 'a common-state \Rightarrow 'a * 'a common-state where
pop (Idle current idle) = (let (x, idle) = Idle.pop idle in (x, Idle (drop-first current) idle))
| pop (Copy current aux new moved) =
(first current, normalize (Copy (drop-first current) aux new moved))
```

end

7 Bigger End of Deque

theory Big imports Common begin

The bigger end of the deque during rebalancing can be in two phases:

Big1: Using the step function the originally contained elements, which will be kept in this end, are reversed.

Big2: Specified in theory Common. Is used to reverse the elements from the previous phase again to get them in the original order.

Each phase contains a current state, which holds the original elements of the deque end.

```
datatype (plugins del: size) 'a big-state =
Big1 'a current 'a stack 'a list nat
| Big2 'a common-state
```

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing

```
instantiation big-state ::(type) step begin
```

```
fun step-big-state :: 'a big-state \Rightarrow 'a big-state where step (Big2 state) = Big2 (step state) | step (Big1 current - aux 0) = Big2 (normalize (Copy current aux [] 0)) | step (Big1 current big aux count) = Big1 current (Stack.pop big) ((Stack.first big)#aux) (count - 1)
```

 $instance\langle proof \rangle$

end

end

8 Smaller End of Deque

theory Small imports Common begin

The smaller end of the deque during *Rebalancing* can be in one three phases:

Small1: Using the step function the originally contained elements are reversed.

Small2: Using the *step* function the newly obtained elements from the bigger end are reversed on top of the ones reversed in the previous phase.

Small3: See theory Common. Is used to reverse the elements from the two previous phases again to get them again in the original order.

Each phase contains a *current* state, which holds the original elements of the deque end.

```
datatype (plugins del: size) 'a small-state =
    Small1 'a current 'a stack 'a list
    | Small2 'a current 'a list 'a stack 'a list nat
    | Small3 'a common-state
```

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing, while keeping the invariant.

 $\begin{array}{ll} \textbf{instantiation} \ \textit{small-state} \ensuremath{::} (\textit{type}) \ \textit{step} \\ \textbf{begin} \end{array}$

```
fun step-small-state :: 'a small-state <math>\Rightarrow 'a small-state where
  step (Small3 \ state) = Small3 \ (step \ state)
| step (Small1 current small auxS) = (
   if is-empty small
   then Small1 current small auxS
   else Small1 current (Stack.pop small) ((Stack.first small)\#auxS)
| step (Small2 current auxS big newS count) = (
   if is-empty big
   then Small3 (normalize (Copy current auxS newS count))
   else Small2 current auxS (Stack.pop big) ((Stack.first big)#newS) (count + 1)
instance\langle proof \rangle
end
fun push :: 'a \Rightarrow 'a \ small-state \Rightarrow 'a \ small-state \ \mathbf{where}
 push\ x\ (Small 3\ state) = Small 3\ (Common.push\ x\ state)
\mid push \ x \ (Small1 \ current \ small \ auxS) = Small1 \ (Current.push \ x \ current) \ small
| push x (Small2 current auxS big newS count) =
   Small2 (Current.push x current) auxS big newS count
fun pop :: 'a \ small-state \Rightarrow 'a * 'a \ small-state \ \mathbf{where}
 pop (Small 3 state) = (
   let (x, state) = Common.pop state
   in (x, Small3 state)
\mid pop \; (Small1 \; current \; small \; auxS) =
   (first current, Small1 (drop-first current) small auxS)
| pop (Small2 current auxS big newS count) =
   (first current, Small2 (drop-first current) auxS big newS count)
end
```

9 Combining Big and Small

```
theory States imports Big\ Small begin  {\bf datatype}\ direction = Left \mid Right   {\bf datatype}\ 'a\ states = States\ direction\ 'a\ big\text{-}state\ 'a\ small\text{-}state }   instantiation states::(type)\ step begin  {\bf fun}\ step\text{-}states::\ 'a\ states \Rightarrow 'a\ states\ {\bf where}
```

```
step \; (States \; dir \; (Big1 \; currentB \; big \; auxB \; 0) \; (Small1 \; currentS \; - \; auxS)) = \\ States \; dir \; (step \; (Big1 \; currentB \; big \; auxB \; 0)) \; (Small2 \; currentS \; auxS \; big \; [] \; 0) \\ | \; step \; (States \; dir \; left \; right) = \; States \; dir \; (step \; left) \; (step \; right) \\ | \; instance \langle proof \rangle \\ end
```

end

10 Real-Time Deque Implementation

theory RealTimeDeque imports States begin

The real-time deque can be in the following states:

Empty: No values stored. No dequeue operation possible.

One: One element in the deque.

Two: Two elements in the deque.

Three: Three elements in the deque.

Idles: Deque with a left and a right end, fulfilling the following invariant:

- $3 * \text{size of left end} \ge \text{size of right end}$
- 3 * size of right end \geq size of left end
- Neither of the ends is empty

Rebal: Deque which violated the invariant of the *Idles* state by non-balanced dequeue and enqueue operations. The invariants during in this state are:

- The rebalancing is not done yet. The deque needs to be in *Idles* state otherwise.
- The rebalancing is in a valid state (Defined in theory *States*)
- The two ends of the deque are in a size window, such that after finishing the rebalancing the invariant of the *Idles* state will be met.

Functions:

is-empty: Checks if a deque is in the Empty state

- deqL': Dequeues an element on the left end and return the element and the deque without this element. If the deque is in *idle* state and the size invariant is violated either a *rebalancing* is started or if there are 3 or less elements left the respective states are used. On *rebalancing* start, six steps are executed initially. During *rebalancing* state four steps are executed and if it is finished the deque returns to *idle* state.
- deqL: Removes one element on the left end and only returns the new deque.
- firstL: Removes one element on the left end and only returns the element.
- enqL: Enqueues an element on the left and returns the resulting deque. Like in deqL' when violating the size invariant in idle state, a rebalancing with six initial steps is started. During rebalancing state four steps are executed and if it is finished the deque returns to idle state.

swap: The two ends of the deque are swapped.

- deqR', deqR, firstR, enqR: Same behaviour as the left-counterparts. Implemented using the left-counterparts by swapping the deque before and after the operation.
- listL, listR: Get all elements of the deque in a list starting at the left or right end. They are needed as list abstractions for the correctness proofs.

```
datatype 'a deque =
    Empty
   One'a
   Two \ 'a \ 'a
   Three \ 'a \ 'a \ 'a
   Idles 'a idle 'a idle
  Rebal 'a states
definition empty where
  empty = Empty
instantiation deque::(type) is-empty
begin
fun is-empty-deque :: 'a deque \Rightarrow bool where
  is-empty-deque Empty = True
| is\text{-}empty\text{-}deque - = False
instance\langle proof \rangle
end
fun swap :: 'a deque \Rightarrow 'a deque where
```

```
swap Empty = Empty
 swap (One x) = One x
 swap (Two x y) = Two y x
 swap (Three x y z) = Three z y x
 swap (Idles \ left \ right) = Idles \ right \ left
 swap (Rebal (States Left big small)) = (Rebal (States Right big small))
 swap (Rebal (States Right big small)) = (Rebal (States Left big small))
fun small-deque :: 'a list \Rightarrow 'a list \Rightarrow 'a deque where
  small-deque [] = Empty
| small-deque (x\#[]) [] = One x
| small-deque [] (x\#[]) = One x
 small-deque(x\#[])(y\#[]) = Two y x
 small-deque(x\#y\#[])[] = Two\ y\ x
 small-deque [] (x\#y\#[]) = Two y x
 small-deque [ (x\#y\#z\#[)) = Three z y x
 small-deque(x\#y\#z\#[])[] = Three\ z\ y\ x
 small\text{-}deque (x\#y\#[]) (z\#[]) = Three z y x
 small-deque(x\#[])(y\#z\#[]) = Three\ z\ y\ x
fun deqL':: 'a deque \Rightarrow 'a * 'a deque where
  deqL'(One \ x) = (x, Empty)
 deqL'(Two\ x\ y) = (x,\ One\ y)
 deqL' (Three x y z) = (x, Two y z)
 deqL' (Idles left (idle.Idle right length-right)) = (
   case Idle.pop left of (x, (idle.Idle left length-left)) \Rightarrow
   if \ 3 * length-left \ge length-right
   then
     (x, Idles (idle.Idle left length-left) (idle.Idle right length-right))
   else if length-left \geq 1
     let \ length-left' = 2 * length-left + 1 \ in
     let length-right' = length-right - length-left - 1 in
     let \ small = Small1 \ (Current \ [] \ 0 \ left \ length-left') \ left \ [] \ in
     let big = Big1 (Current [] 0 right length-right') right [] length-right' in
     let\ states = States\ Left\ big\ small\ in
     let \ states = (step \widehat{\phantom{a}} 6) \ states \ in
     (x, Rebal states)
   else
     case right of Stack r1 r2 \Rightarrow (x, small-deque \ r1 \ r2)
| deqL' (Rebal (States Left big small)) = (
   let (x, small) = Small.pop small in
```

```
let \ states = (step \widehat{\ \ } 4) \ (States \ Left \ big \ small) \ in
    case states of
        States Left
          (Big2 \ (Common.Idle - big))
          (Small3 (Common.Idle - small))
           \Rightarrow (x, Idles small big)
     | - \Rightarrow (x, Rebal \ states)
| deqL' (Rebal (States Right big small)) = (
    let(x, big) = Big.pop big in
    let \ states = (step \ \ ) \ (States \ Right \ big \ small) \ in
    case states of
       States Right
          (Big2 \ (Common.Idle - big))
          (Small 3 (Common.Idle - small)) \Rightarrow
            (x, Idles big small)
    | - \Rightarrow (x, Rebal \ states)
fun degR' :: 'a \ deque \Rightarrow 'a * 'a \ deque \ where
  degR' deque = (
    let(x, deque) = deqL'(swap deque)
    in (x, swap deque)
fun deqL :: 'a deque \Rightarrow 'a deque where
  deqL \ deque = (let \ (-, \ deque) = deqL' \ deque \ in \ deque)
fun deqR :: 'a deque \Rightarrow 'a deque where
  deqR \ deque = (let \ (\textit{-}, \ deque) = \ deqR' \ deque \ in \ deque)
fun firstL :: 'a \ deque \Rightarrow 'a \ \mathbf{where}
 firstL \ deque = (let \ (x, -) = deqL' \ deque \ in \ x)
fun firstR :: 'a \ deque \Rightarrow 'a \ \mathbf{where}
 firstR \ deque = (let \ (x, -) = deqR' \ deque \ in \ x)
fun enqL :: 'a \Rightarrow 'a \ deque \Rightarrow 'a \ deque \ \mathbf{where}
  enqL \ x \ Empty = One \ x
 enqL \ x \ (One \ y) = Two \ x \ y
 enqL \ x \ (Two \ y \ z) = Three \ x \ y \ z
 enqL\ x\ (Three\ a\ b\ c) = Idles\ (idle.Idle\ (Stack\ [x,\ a]\ [])\ 2)\ (idle.Idle\ (Stack\ [c,\ b]\ [])
[]) 2)
| enqL \ x \ (Idles \ left \ (idle.Idle \ right \ length-right)) = (
    case\ Idle.push\ x\ left\ of\ idle.Idle\ left\ length-left \Rightarrow
      if \ 3 * length-right \ge length-left
      then
        Idles (idle.Idle left length-left) (idle.Idle right length-right)
      else
```

```
let length-left = length-left - length-right - 1 in
       let\ length{-right} = 2 * length{-right} + 1\ in
       let big = Big1 (Current [] 0 left length-left) left [] length-left in
       let small = Small1 (Current [] 0 right length-right) right [] in
       let\ states = States\ Right\ big\ small\ in
       let \ states = (step \widehat{\phantom{a}} 6) \ states \ in
       Rebal\ states
| enqL \ x \ (Rebal \ (States \ Left \ big \ small)) = (
   let\ small\ =\ Small.push\ x\ small\ in
   let states = (step ~4) (States Left big small) in
    case states of
       States Left
         (Big2 (Common.Idle - big))
         (Small3 (Common.Idle - small))
        \Rightarrow Idles small big
    | - \Rightarrow Rebal \ states
| enqL \ x \ (Rebal \ (States \ Right \ big \ small)) = (
   let \ big = Big.push \ x \ big \ in
   let \ states = (step \ \ ) \ (States \ Right \ big \ small) \ in
   case states of
       States Right
         (Big2 \ (Common.Idle - big))
         (Small3 (Common.Idle - small))
        \Rightarrow Idles big small
    | - \Rightarrow Rebal \ states
fun enqR :: 'a \Rightarrow 'a \ deque \Rightarrow 'a \ deque \ \mathbf{where}
  enqR \ x \ deque = (
   let \ deque = enqL \ x \ (swap \ deque)
   in swap deque
end
theory Stack-Aux
imports Stack
begin
    The function list appends the two lists and is needed for the list abstrac-
tion of the deque.
fun list :: 'a \ stack \Rightarrow 'a \ list \ where
  list (Stack \ left \ right) = left @ right
instantiation stack :: (type) \ size
```

```
begin
\mathbf{fun} \ \mathit{size\text{-}stack} :: \ 'a \ \mathit{stack} \Rightarrow \mathit{nat} \ \mathbf{where}
  size (Stack \ left \ right) = length \ left + length \ right
\mathbf{instance} \langle \mathit{proof} \rangle
end
end
theory Current-Aux
{f imports} Current Stack-Aux
begin
    Specification functions:
 list: list abstraction for the originally contained elements of a deque end
       during transformation.
 invar: Is the stored number of newly added elements correct?
 size: The number of the originally contained elements.
 size-new: Number of elements which will be contained after the transfor-
       mation is finished.
fun list :: 'a \ current \Rightarrow 'a \ list \ \mathbf{where}
  list (Current \ extra - old -) = extra @ (Stack-Aux.list \ old)
instantiation \ current::(type) \ invar
begin
fun invar-current :: 'a \ current \Rightarrow bool \ \mathbf{where}
  invar\ (Current\ extra\ added\ -\ -) \longleftrightarrow length\ extra\ =\ added
instance\langle proof \rangle
end
instantiation \ current :: (type) \ size
begin
fun size-current :: 'a current <math>\Rightarrow nat where
  size (Current - added old -) = added + size old
instance\langle proof \rangle
end
{\bf instantiation}\ \ current :: (type)\ \ size-new
begin
```

fun $size-new-current :: 'a \ current \Rightarrow nat \ \mathbf{where}$

```
size-new (Current - added - remained) = added + remained
instance \langle proof \rangle
end
end
theory Idle-Aux
imports Idle Stack-Aux
begin
fun list :: 'a \ idle \Rightarrow 'a \ list \ \mathbf{where}
  list (Idle \ stack -) = Stack-Aux.list \ stack
instantiation idle :: (type) \ size
begin
fun size-idle :: 'a idle <math>\Rightarrow nat where
  size (Idle \ stack \ -) = size \ stack
instance\langle proof \rangle
end
instantiation idle :: (type) is-empty
begin
fun is-empty-idle :: 'a idle <math>\Rightarrow bool where
  is\text{-}empty (Idle stack -) \longleftrightarrow is\text{-}empty stack
instance\langle proof \rangle
\mathbf{end}
instantiation idle ::(type) invar
begin
fun invar-idle :: 'a idle \Rightarrow bool where
  invar\ (Idle\ stack\ stackSize) \longleftrightarrow size\ stack = stackSize
instance\langle proof \rangle
end
\quad \text{end} \quad
theory Common-Aux
\mathbf{imports}\ \mathit{Common}\ \mathit{Current}\text{-}\mathit{Aux}\ \mathit{Idle}\text{-}\mathit{Aux}
begin
Functions:
```

list: List abstraction of the elements which this end will contain after the rebalancing is finished

list-current: List abstraction of the elements currently in this deque end.

remaining-steps: Returns how many steps are left until the rebalancing is finished.

size-new: Returns the size, that the deque end will have after the rebalancing is finished.

size: Minimum of size-new and the number of elements contained in the current state.

```
definition take-rev where
[simp]: take-rev n xs = rev (take n xs)
fun list :: 'a \ common-state \Rightarrow 'a \ list \ where
 list (Idle - idle) = Idle-Aux.list idle
| list (Copy (Current extra - - remained) old new moved)
  = extra @ take-rev (remained - moved) old @ new
fun list-current :: 'a common-state \Rightarrow 'a list where
  list-current (Idle\ current -) = Current-Aux.list\ current
| list-current (Copy current - - -) = Current-Aux.list current
instantiation \ common-state::(type) \ invar
begin
fun invar-common-state :: 'a common-state <math>\Rightarrow bool where
  invar\ (Idle\ current\ idle) \longleftrightarrow
     invar\ idle
   \land invar current
   \land size-new current = size idle
   \land take (size idle) (Current-Aux.list current) =
     take (size current) (Idle-Aux.list idle)
| invar (Copy current aux new moved) \longleftrightarrow (
   case\ current\ of\ Current - - old\ remained \Rightarrow
     moved < remained
   \land moved = length new
   \land remained \leq length aux + moved
   \land \ invar \ current
    \land take remained (Stack-Aux.list old) = take (size old) (take-rev (remained -
moved) aux @ new)
instance\langle proof \rangle
end
instantiation common-state::(type) size
begin
```

```
size (Idle \ current \ idle) = min \ (size \ current) \ (size \ idle)
| size (Copy current - - -) = min (size current) (size-new current)
instance\langle proof \rangle
end
instantiation common-state::(type) size-new
begin
fun size-new-common-state :: 'a common-state <math>\Rightarrow nat where
 size-new (Idle \ current -) = size-new \ current
| size-new (Copy current - - -) = size-new current
instance \langle proof \rangle
end
instantiation \ common-state::(type) \ remaining-steps
begin
fun remaining-steps-common-state :: 'a common-state \Rightarrow nat where
 remaining-steps (Idle - -) = 0
| remaining-steps (Copy (Current - - - remained) aux new moved) = remained -
moved
instance \langle proof \rangle
end
end
theory Big-Aux
imports Big Common-Aux
begin
Functions:
 size-new: Returns the size that the deque end will have after the rebalancing
 size: Minimum of size-new and the number of elements contained in the
      current state.
```

fun size-common-state :: 'a common-state \Rightarrow nat where

remaining-steps: Returns how many steps are left until the rebalancing is

finished.

list: List abstraction of the elements which this end will contain after the rebalancing is finished

list-current: List abstraction of the elements currently in this deque end.

```
fun list :: 'a \ big-state \Rightarrow 'a \ list \ \mathbf{where}
  list (Big2 \ common) = Common-Aux.list \ common
| list (Big1 (Current extra - - remained) big aux count) = (
  let reversed = take-rev count (Stack-Aux.list big) @ aux in
    extra @ (take-rev remained reversed)
fun list-current :: 'a \ big-state \Rightarrow 'a \ list where
  list-current (Big2\ common) = Common-Aux.list-current common
| list-current (Big1 current - - -) = Current-Aux.list current
instantiation big-state ::(type) invar
begin
fun invar-big-state :: 'a big-state \Rightarrow bool where
  invar\ (Big2\ state) \longleftrightarrow invar\ state
| invar (Big1 \ current \ big \ aux \ count) \longleftrightarrow (
   case \ current \ of \ Current \ extra \ added \ old \ remained \Rightarrow
      invar current
    \land remained \leq length aux + count
    \land count \leq size \ big
   \land \ \mathit{Stack-Aux.list \ old} \ = \ \mathit{rev} \ (\mathit{take} \ (\mathit{size \ old}) \ ((\mathit{rev} \ (\mathit{Stack-Aux.list \ big})) \ @ \ \mathit{aux}))
    \land take remained (Stack-Aux.list old) =
      rev (take remained (take-rev count (Stack-Aux.list big) @ aux))
instance\langle proof \rangle
end
instantiation big-state ::(type) size
begin
fun size-big-state :: 'a big-state \Rightarrow nat where
  size (Big2 \ state) = size \ state
| size (Big1 current - - -) = min (size current) (size-new current)
instance\langle proof \rangle
end
{\bf instantiation} \ \textit{big-state} :: (type) \ \textit{size-new}
begin
fun size-new-big-state :: 'a big-state \Rightarrow nat where
  size-new (Big2 \ state) = size-new \ state
| size-new (Big1 current - - -) = size-new current
instance\langle proof \rangle
end
```

```
instantiation big-state ::(type) remaining-steps
begin
fun remaining-steps-big-state :: 'a big-state <math>\Rightarrow nat where
 remaining-steps (Big2\ state) = remaining-steps state
| remaining-steps (Big1 (Current - - - remaining) - - count) = count + remaining
+ 1
instance\langle proof \rangle
end
end
theory Small-Aux
imports \ Small \ Common-Aux
begin
Functions:
 size-new: Returns the size, that the deque end will have after the rebalanc-
      ing is finished.
 size: Minimum of size-new and the number of elements contained in the
      'current' state.
 list: List abstraction of the elements which this end will contain after the
      rebalancing is finished. The first phase is not covered, since the el-
      ements, which will be transferred from the bigger deque end are not
      known yet.
 list-current: List abstraction of the elements currently in this deque end.
fun list :: 'a \ small-state \Rightarrow 'a \ list \ \mathbf{where}
 list (Small 3 common) = Common-Aux.list common
| list (Small2 (Current extra - - remained) aux big new count) =
  extra @ (take-rev (remained - (count + size big)) aux) @ (rev (Stack-Aux.list
big) @ new)
fun list-current :: 'a small-state <math>\Rightarrow 'a \ list where
 list-current (Small \ common) = Common-Aux.list-current common
 list-current (Small2 current - - - -) = Current-Aux.list current
| list-current (Small1 current - -) = Current-Aux.list current
instantiation small-state::(type) invar
begin
fun invar-small-state :: 'a small-state <math>\Rightarrow bool where
 invar (Small 3 state) = invar state
| invar (Small2 current auxS big newS count) = (
  case\ current\ of\ Current - - old\ remained \Rightarrow
```

```
remained = count + size \ big + size \ old
   \land \ count = \mathit{List.length} \ \mathit{newS}
   \land invar current
   \land List.length \ auxS \ge size \ old
   \land Stack-Aux.list old = rev (take (size old) auxS)
| invar (Small1 current small auxS) = (
  case\ current\ of\ Current - - old\ remained \Rightarrow
     invar current
   \land \ remained \geq size \ old
   \land size small + List.length auxS \ge size old
   \land Stack-Aux.list old = rev (take (size old) (rev (Stack-Aux.list small) @ auxS))
instance\langle proof \rangle
end
instantiation small-state::(type) size
begin
fun size-small-state :: 'a small-state <math>\Rightarrow nat where
  size (Small 3 state) = size state
 size (Small2 \ current - - - -) = min (size \ current) (size-new \ current)
| size (Small1 current - -) = min (size current) (size-new current)
instance\langle proof \rangle
end
instantiation \ small-state::(type) \ size-new
begin
fun size-new-small-state :: 'a small-state <math>\Rightarrow nat where
 size-new (Small3 state) = size-new state
| size-new (Small2 current - - - -) = size-new current
| size-new (Small1 current - -) = size-new current
instance \langle proof \rangle
end
theory States-Aux
imports States Big-Aux Small-Aux
begin
{\bf instantiation}\ states {::} (type)\ remaining {-} steps
begin
fun remaining-steps-states :: 'a states \Rightarrow nat where
 remaining-steps (States - big\ small) = max
```

```
(remaining-steps \ big)
    (case small of
      Small 3 \ common \Rightarrow remaining-steps \ common
      Small2 (Current - - remaining) - big - count \Rightarrow remaining - count + 1
    | Small1 (Current - - remaining) - - \Rightarrow
        case big of Big1 currentB big auxB count \Rightarrow remaining + count + 2
instance\langle proof \rangle
end
fun lists :: 'a \ states \Rightarrow 'a \ list * 'a \ list \ where
 lists (States - (Big1 currentB big auxB count) (Small1 currentS small auxS)) = (
    Big-Aux.list (Big1 currentB big auxB count),
   Small-Aux.list\ (Small2\ currentS\ (take-rev\ count\ (Stack-Aux.list\ small)\ @\ auxS)
((Stack.pop \ \widehat{\ } count) \ big) \ [] \ \theta)
| lists (States - big small) = (Big-Aux.list big, Small-Aux.list small)
fun list-small-first :: 'a states \Rightarrow 'a list where
  list-small-first states = (let (big, small) = lists states in small @ (rev big))
fun list-big-first :: 'a states \Rightarrow 'a list where
  list-big-first\ states = (let\ (big,\ small) = lists\ states\ in\ big\ @\ (rev\ small))
fun lists-current :: 'a states \Rightarrow 'a list * 'a list where
 lists-current (States - big\ small) = (Big-Aux.list-current big, Small-Aux.list-current
small
fun list-current-small-first :: 'a states <math>\Rightarrow 'a list where
  list-current-small-first\ states = (let\ (big,\ small) = lists-current\ states\ in\ small\ @
(rev\ big)
fun list-current-big-first :: 'a states \Rightarrow 'a list where
  list-current-big-first states = (let (big, small) = lists-current states in big @ (rev
small))
fun listL :: 'a \ states \Rightarrow 'a \ list \ where
  listL (States Left big small) = list-small-first (States Left big small)
| listL (States Right big small) = list-big-first (States Right big small)
instantiation states::(type) invar
begin
fun invar-states :: 'a states \Rightarrow bool where
  invar\ (States\ dir\ big\ small)\ \longleftrightarrow\ (
    invar biq
   \land invar small
   \land list-small-first (States dir big small) = list-current-small-first (States dir big
```

```
small)
   \land (case (big, small) of
        (Big1 - big - count, Small1 (Current - - old remained) small -) \Rightarrow
          size\ big\ -\ count\ =\ remained\ -\ size\ old\ \land\ count\ \ge\ size\ small
      | (-, Small1 - - -) \Rightarrow False
      | (Big1 - - -, -) \Rightarrow False
      | - \Rightarrow True
      ))
instance\langle proof \rangle
end
fun size-ok':: 'a states \Rightarrow nat \Rightarrow bool where
  size-ok' (States - big\ small) steps \longleftrightarrow
      size-new\ small + steps + 2 \le 3 * size-new\ big
    \land size-new big + steps + 2 \leq 3 * size-new small
    \land \ steps + 1 \leq \textit{4} * \textit{size small}
    \land \ steps + 1 \le \textit{4} * \textit{size big}
abbreviation size-ok :: 'a \ states \Rightarrow bool \ where
  size-ok \ states \equiv size-ok' \ states \ (remaining-steps \ states)
abbreviation size-small where size-small states \equiv case states of States - - small
\Rightarrow size small
abbreviation size-new-small where
  size-new-small\ states \equiv case\ states\ of\ States - - small \Rightarrow size-new\ small
abbreviation size-big where size-big states \equiv case states of States - big - \Rightarrow size
big
abbreviation size-new-big where
  size-new-big\ states \equiv case\ states\ of\ States - big - \Rightarrow\ size-new\ big
theory RealTimeDeque-Aux
 imports RealTimeDeque States-Aux
begin
 listL, listR: Get all elements of the deque in a list starting at the left or
       right end. They are needed as list abstractions for the correctness
       proofs.
\mathbf{fun} \ \mathit{listL} :: \ 'a \ \mathit{deque} \Rightarrow \ 'a \ \mathit{list} \ \mathbf{where}
  listL \ Empty = []
 listL (One x) = [x]
| listL (Two x y) = [x, y]
```

```
listL (Three x y z) = [x, y, z]
 listL (Idles left right) = Idle-Aux.list left @ (rev (Idle-Aux.list right))
| listL (Rebal states) = States-Aux.listL states
abbreviation listR :: 'a \ deque \Rightarrow 'a \ list \ \mathbf{where}
  listR \ deque \equiv rev \ (listL \ deque)
instantiation deque::(type) invar
begin
fun invar-deque :: 'a deque \Rightarrow bool where
  invar\ Empty = True
 invar (One -) = True
 invar (Two - -) = True
 invar (Three - - -) = True
 invar\ (Idles\ left\ right) \longleftrightarrow
  invar\ left\ \land
  invar\ right\ \land
  \neg is-empty left \land
   \neg is-empty right \land
   3*size\ right \geq size\ left\ \land
   3 * size left \ge size right
| invar (Rebal states) \longleftrightarrow
   invar\ states\ \land
   size-ok states \land
   0 < remaining-steps states
instance \langle proof \rangle
end
end
```

11 Basic Lemma Library

```
theory RTD-Util imports Main begin lemma take-last-length: [take (Suc \ \theta) \ (rev \ xs) = [last \ xs]]] \Longrightarrow Suc \ \theta \leq length \ xs \ \langle proof \rangle lemma take-last: xs \neq [] \Longrightarrow take \ 1 \ (rev \ xs) = [last \ xs] \ \langle proof \rangle lemma take-hd [simp]: xs \neq [] \Longrightarrow take \ (Suc \ \theta) \ xs = [hd \ xs] \ \langle proof \rangle
```

```
lemma cons-tl: x \# xs = ys \Longrightarrow xs = tl \ ys
  \langle proof \rangle
lemma cons-hd: x \# xs = ys \Longrightarrow x = hd ys
  \langle proof \rangle
lemma take-hd': ys \neq [] \implies take (size ys) (x \# xs) = take (Suc (size xs)) ys \implies
hd ys = x
  \langle proof \rangle
lemma rev-app-single: rev xs @ [x] = rev (x \# xs)
lemma hd-drop-1 [simp]: xs \neq [] \implies hd \ xs \# \ drop \ (Suc \ \theta) \ xs = xs
lemma hd-drop [simp]: n < length xs \Longrightarrow hd (drop n xs) # drop <math>(Suc n) xs =
drop \ n \ xs
  \langle proof \rangle
lemma take-1: 0 < x \land 0 < y \Longrightarrow take \ x \ xs = take \ y \ ys \Longrightarrow take \ 1 \ xs = take \ 1
  \langle proof \rangle
lemma last-drop-rev: xs \neq [] \Longrightarrow last \ xs \ \# \ drop \ 1 \ (rev \ xs) = rev \ xs
lemma Suc-min [simp]: 0 < x \Longrightarrow 0 < y \Longrightarrow Suc \ (min \ (x - Suc \ 0) \ (y - Suc \ 0))
\theta)) = min \ x \ y
  \langle proof \rangle
lemma rev-tl-hd: xs \neq [] \Longrightarrow rev (tl xs) @ [hd xs] = rev xs
  \langle proof \rangle
lemma app-rev: as @ rev bs = cs @ rev ds \Longrightarrow bs @ rev as = ds @ rev cs
  \langle proof \rangle
lemma tl-drop-2: tl (drop n xs) = drop (Suc n) xs
  \langle proof \rangle
lemma Suc\text{-}sub: Suc\ n=m\Longrightarrow n=m-1
  \langle proof \rangle
lemma length-one-hd: length xs = 1 \implies xs = [hd \ xs]
  \langle proof \rangle
end
```

12 Stack Proofs

```
theory Stack-Proof
imports Stack-Aux RTD-Util
begin
lemma push-list [simp]: list (push \ x \ stack) = x \# list \ stack
  \langle proof \rangle
lemma pop-list [simp]: list (pop\ stack) = tl (list\ stack)
  \langle proof \rangle
lemma first-list [simp]: \neg is-empty stack \Longrightarrow first \; stack = hd \; (list \; stack)
  \langle proof \rangle
lemma list-empty: list stack = [] \longleftrightarrow is-empty stack
  \langle proof \rangle
lemma list-not-empty: list stack \neq [] \longleftrightarrow \neg is-empty stack
  \langle proof \rangle
lemma list-empty-2 [simp]: [list stack \neq []; is-empty stack] \Longrightarrow False
\mathbf{lemma} \ \mathit{list-not-empty-2} \ [\mathit{simp}] : \llbracket \mathit{list} \ \mathit{stack} = \llbracket \rrbracket; \ \neg \ \mathit{is-empty} \ \mathit{stack} \rrbracket \Longrightarrow \mathit{False}
  \langle proof \rangle
lemma list-empty-size: list stack = [] \longleftrightarrow size \ stack = 0
  \langle proof \rangle
lemma list-not-empty-size:list stack \neq [] \longleftrightarrow 0 < size stack
lemma list-empty-size-2 [simp]: [list stack \neq []; size stack = 0] \Longrightarrow False
  \langle proof \rangle
\mathbf{lemma} \ \mathit{list-not-empty-size-2} \ [\mathit{simp}] : \llbracket \mathit{list} \ \mathit{stack} = \llbracket \rrbracket; \ \mathit{0} < \mathit{size} \ \mathit{stack} \rrbracket \Longrightarrow \mathit{False}
lemma size-push [simp]: size (push x stack) = Suc (size stack)
  \langle proof \rangle
lemma size-pop [simp]: size (pop stack) = size stack - Suc 0
  \langle proof \rangle
lemma size-empty: size (stack :: 'a \ stack) = 0 \longleftrightarrow is-empty \ stack
lemma size-not-empty: size (stack :: 'a stack) > 0 \longleftrightarrow \neg is-empty stack
```

```
\langle proof \rangle
lemma size-empty-2[simp]: [size\ (stack\ ::\ 'a\ stack)\ =\ 0;\ \neg is-empty\ stack]] \Longrightarrow
  \langle proof \rangle
lemma size-not-empty-2[simp]: [0 < size (stack :: 'a stack); is-empty stack] \implies
False
  \langle proof \rangle
lemma size-list-length [simp]: length (list stack) = size stack
lemma first-pop [simp]: \neg is-empty stack \Longrightarrow first stack \# list (pop stack) = list
  \langle proof \rangle
lemma push-not-empty [simp]: \llbracket \neg is-empty stack; is-empty (push x stack) \rrbracket \Longrightarrow
False
  \langle proof \rangle
lemma pop-list-length [simp]: \neg is-empty stack
   \implies Suc (length (list (pop stack))) = length (list stack)
  \langle proof \rangle
lemma first-take: \neg is-empty stack \Longrightarrow [first \ stack] = take 1 \ (list \ stack)
  \langle proof \rangle
lemma first-take-tl [simp]: 0 < size big
   \implies (first big # take count (tl (list big))) = take (Suc count) (list big)
  \langle proof \rangle
lemma first-take-pop [simp]: \llbracket \neg is\text{-empty stack}; \ 0 < x \rrbracket
   \implies first stack # take (x - Suc \ 0) (list (pop \ stack)) = take x (list stack)
  \langle proof \rangle
lemma [simp]: first (Stack [] []) = undefined
  \langle proof \rangle
lemma first-hd: first stack = hd (list stack)
  \langle proof \rangle
lemma pop-tl [simp]: list (pop\ stack) = tl (list\ stack)
  \langle proof \rangle
lemma pop-drop: list (pop stack) = drop 1 (list stack)
lemma popN-drop [simp]: list ((pop \ ^n) stack) = drop n (list stack)
```

```
\langle proof \rangle
lemma popN-size [simp]: size ((pop \ ^n) stack) = (size stack) - n
lemma take-first: [0 < size s1; 0 < size s2; take (size s1) (list s2) = take (size s2)
s2) (list s1)
    \implies first \ s1 = first \ s2
  \langle proof \rangle
\mathbf{end}
13
         Idle Proofs
theory Idle-Proof
  imports Idle-Aux Stack-Proof
begin
lemma push-list [simp]: list (push \ x \ idle) = x \# list \ idle
  \langle proof \rangle
lemma pop-list [simp]: \llbracket \neg is\text{-empty idle}; pop idle = (x, idle') \rrbracket \implies x \# list idle'
= list idle
  \langle proof \rangle
lemma pop-list-tl [simp]:
    \llbracket \neg \text{ is-empty idle; pop idle} = (x, idle') \rrbracket \Longrightarrow x \# (tl (list idle)) = list idle
  \langle proof \rangle
lemma pop-list-tl' [simp]: [pop \ idle = (x, \ idle')] \implies list \ idle' = tl \ (list \ idle)
  \langle proof \rangle
lemma size-push [simp]: size (push x idle) = Suc (size idle)
  \langle proof \rangle
lemma size-pop [simp]: \llbracket \neg is-empty idle; pop idle = (x, idle') \rrbracket \Longrightarrow Suc (size idle')
= size idle
  \langle proof \rangle
lemma size-pop-sub: [pop \ idle = (x, \ idle')] \implies size idle' = size idle - 1
lemma invar-push: invar\ idle \implies invar\ (push\ x\ idle)
  \langle proof \rangle
lemma invar-pop: [invar\ idle;\ pop\ idle = (x,\ idle')] \implies invar\ idle'
  \langle proof \rangle
```

lemma size-empty: size $idle = 0 \longleftrightarrow is$ -empty (idle :: 'a idle)

```
\langle proof \rangle
lemma size-not-empty: 0 < size idle \longleftrightarrow \neg is\text{-empty} (idle :: 'a idle)
lemma size-empty-2 [simp]: \llbracket \neg is-empty (idle :: 'a idle); 0 = size idle\rrbracket \Longrightarrow False
  \langle proof \rangle
lemma size-not-empty-2 [simp]: [is-empty (idle :: 'a idle); 0 < size idle]] \Longrightarrow False
  \langle proof \rangle
lemma list-empty: list idle = [] \longleftrightarrow is-empty idle
  \langle proof \rangle
lemma list-not-empty: list idle \neq [] \longleftrightarrow \neg is-empty idle
lemma list-empty-2 [simp]: [list idle = []; \negis-empty (idle :: 'a idle)] \Longrightarrow False
  \langle proof \rangle
lemma list-not-empty-2 [simp]: [[list idle \neq []; is-empty (idle :: 'a idle)]] \Longrightarrow False
lemma list-empty-size: list idle = [] \longleftrightarrow 0 = size \ idle
  \langle proof \rangle
lemma list-not-empty-size: list idle \neq [] \longleftrightarrow 0 < size idle
  \langle proof \rangle
lemma list-empty-size-2 [simp]: [list idle \neq []; 0 = size \ idle ] \Longrightarrow False
lemma list-not-empty-size-2 [simp]: [list idle = []; 0 < size idle] \implies False
  \langle proof \rangle
end
```

14 Current Proofs

```
theory Current-Proof imports Current-Aux Stack-Proof begin  \begin{aligned} &\mathbf{lemma} \ push\text{-}list \ [simp]: \ list \ (push \ x \ current) = x \ \# \ list \ current \\ &\langle proof \rangle \end{aligned}   \begin{aligned} &\mathbf{lemma} \ pop\text{-}list \ [simp]: \\ &\mathbb{[}\theta < size \ current; \ invar \ current] \implies fst \ (pop \ current) \ \# \ tl \ (list \ current) = list \end{aligned}
```

```
current
  \langle proof \rangle
lemma drop-first-list [simp]: [invar\ current;\ 0 < size\ current]
  \implies list (drop-first current) = tl (list current)
  \langle proof \rangle
lemma invar-push: invar current \implies invar (push x current)
  \langle proof \rangle
lemma invar-pop: [0 < size\ current;\ invar\ current;\ pop\ current = (x,\ current')]
   \implies invar\ current'
  \langle proof \rangle
lemma invar-drop-first: [0 < size \ current; \ invar \ current] \implies invar \ (drop-first)
current)
  \langle proof \rangle
lemma list-size [simp]: [invar\ current;\ list\ current = [];\ 0 < size\ current] \Longrightarrow
False
  \langle proof \rangle
lemma size-new-push [simp]: invar current \implies size-new (push \ x \ current) = Suc
(size-new current)
  \langle proof \rangle
lemma size-push [simp]: size (push x current) = Suc (size current)
  \langle proof \rangle
lemma size-new-pop [simp]: [0 < size-new current; invar current]
  \implies Suc (size-new (drop-first current)) = size-new current
  \langle proof \rangle
lemma size-pop [simp]: [0 < size \ current; \ invar \ current]
  \implies Suc (size (drop-first current)) = size current
  \langle proof \rangle
lemma size-pop-suc [simp]: [0 < size \ current; \ invar \ current; \ pop \ current = (x, x)
   \implies Suc (size current') = size current
  \langle proof \rangle
lemma size-pop-sub: [0 < size \ current; \ invar \ current; \ pop \ current = (x, \ current')]
   \implies size current' = size current - 1
  \langle proof \rangle
lemma size-drop-first-sub: [0 < size current; invar current]
   \implies size (drop-first current) = size current - 1
```

 $\langle proof \rangle$

end

15 Common Proofs

```
theory Common-Proof
imports Common-Aux Idle-Proof Current-Proof
begin
lemma take-rev-drop: take-rev n xs @ acc = drop (length <math>xs - n) (rev xs) @ acc
  \langle proof \rangle
lemma take\text{-rev-step: } xs \neq [] \implies take\text{-rev } n \ (tl \ xs) @ \ (hd \ xs \ \# \ acc) = take\text{-rev}
(Suc \ n) \ xs @ acc
  \langle proof \rangle
lemma take\text{-}rev\text{-}empty [simp]: take\text{-}rev n [] = []
  \langle proof \rangle
lemma take-rev-tl-hd:
    0 < n \Longrightarrow xs \neq [] \Longrightarrow take\text{-rev} \ n \ xs @ ys = take\text{-rev} \ (n - (Suc \ \theta)) \ (tl \ xs) @
(hd xs \# ys)
  \langle proof \rangle
lemma take-rev-nth:
    n < length \ xs \implies x = xs \ ! \ n \implies x \ \# \ take-rev \ n \ xs \ @ \ ys = \ take-rev \ (Suc \ n)
xs @ ys
  \langle proof \rangle
\mathbf{lemma} \ \mathit{step-list} \ [\mathit{simp}] \colon \mathit{invar} \ \mathit{common} \Longrightarrow \mathit{list} \ (\mathit{step} \ \mathit{common}) = \mathit{list} \ \mathit{common}
\langle proof \rangle
lemma step-list-current [simp]: invar common \Longrightarrow list-current (step common) =
list\text{-}current\ common
  \langle proof \rangle
lemma push-list [simp]: list (push x common) = x # list common
\langle proof \rangle
lemma invar-step: invar (common :: 'a common-state) \implies invar (step common)
\langle proof \rangle
lemma invar-push: invar\ common \implies invar\ (push\ x\ common)
\langle proof \rangle
0 < size \ common;
  invar common;
```

```
pop\ common = (x,\ common')
] \implies invar\ common'
\langle proof \rangle
lemma push-list-current [simp]: list-current (push x left) = x # list-current left
  \langle proof \rangle
lemma pop-list [simp]: invar common \implies 0 < size \ common \implies pop \ common =
(x, common') \Longrightarrow
  x \# list common' = list common
\langle proof \rangle
lemma pop-list-current: invar common \Longrightarrow 0 < size common \Longrightarrow pop common =
(x, common')
  \implies x \# list\text{-}current \ common' = list\text{-}current \ common
\langle proof \rangle
lemma list-current-size [simp]:
 [0 < size\ common;\ list-current\ common = [];\ invar\ common] \Longrightarrow False
\langle proof \rangle
lemma list-size [simp]: [0 < size\ common;\ list\ common = [];\ invar\ common] \Longrightarrow
False
\langle proof \rangle
lemma step-size [simp]: invar (common :: 'a common-state) \implies size (step com-
mon) = size\ common
\langle proof \rangle
lemma step-size-new [simp]: invar (common :: 'a common-state)
   \implies size-new \ (step \ common) = size-new \ common
\langle proof \rangle
lemma remaining-steps-step [simp]: [invar (common :: 'a common-state); remain-
ing-steps common > 0
  \implies Suc (remaining-steps (step common)) = remaining-steps common
  \langle proof \rangle
lemma remaining-steps-step-sub [simp]: [invar (common :: 'a common-state)]
\implies remaining-steps (step common) = remaining-steps common - 1
 \langle proof \rangle
lemma remaining-steps-step-0 [simp]: [invar (common :: 'a common-state); re-
maining-steps common = 0
  \implies remaining-steps (step common) = 0
  \langle proof \rangle
lemma remaining-steps-push [simp]: invar common
  \implies remaining-steps (push x common) = remaining-steps common
```

```
lemma remaining-steps-pop: [invar\ common;\ pop\ common = (x,\ common')]
 \implies remaining-steps common' \leq remaining-steps common
\langle proof \rangle
lemma size-push [simp]: invar\ common \implies size\ (push\ x\ common) = Suc\ (size
 \langle proof \rangle
lemma size-new-push [simp]: invar\ common \implies size-new\ (push\ x\ common) = Suc
(size-new\ common)
 \langle proof \rangle
\implies Suc (size common') = size common
\langle proof \rangle
lemma size-new-pop [simp]: [invar common; 0 < size-new common; pop common
= (x, common')
  \implies Suc (size-new common') = size-new common
\langle proof \rangle
lemma size-size-new: [invar\ (common :: 'a\ common-state);\ 0 < size\ common] \Longrightarrow
0 < size-new\ common
 \langle proof \rangle
end
16
       Big Proofs
theory Big-Proof
imports Big-Aux Common-Proof
begin
lemma step-list [simp]: invar big \implies list (step\ big) = list\ big
\langle proof \rangle
lemma step-list-current [simp]: invar big \implies list-current (step big) = list-current
biq
 \langle proof \rangle
lemma push-list [simp]: list (push \ x \ big) = x \# list \ big
\langle proof \rangle
```

 $\langle proof \rangle$

0 < size (Big1 current big aux count); invar (Big1 current big aux count)

```
\parallel \implies first \ current \ \# \ list \ (Big1 \ (drop-first \ current) \ big \ aux \ count) =
      list (Big1 current big aux count)
\langle proof \rangle
lemma size-list [simp]: [0 < size \ big; \ invar \ big; \ list \ big = []] \Longrightarrow False
\langle proof \rangle
lemma pop-list [simp]: [0 < size big; invar big; Big.pop big = (x, big')]
   \implies x \# list big' = list big
\langle proof \rangle
lemma pop-list-tl: [0 < size \ big; \ invar \ big; \ pop \ big = (x, \ big')] \implies list \ big' = tl
  \langle proof \rangle
lemma invar-step: invar (biq :: 'a biq-state) \implies invar (step biq)
\langle proof \rangle
lemma invar-push: invar big \implies invar (push x big)
  \langle proof \rangle
0 < size big;
  invar big;
 pop \ big = (x, big')
] \implies invar \ big'
\langle proof \rangle
lemma push-list-current [simp]: list-current (push x big) = x \# list-current big
lemma pop-list-current [simp]: [invar big; 0 < size big; Big.pop big = (x, big')]
   \implies x \# list\text{-}current \ big' = list\text{-}current \ big
\langle proof \rangle
lemma list-current-size: [0 < size\ big;\ list-current\ big = [];\ invar\ big] \Longrightarrow False
\langle proof \rangle
lemma step-size: invar (big :: 'a big-state) \Longrightarrow size big = size (step big)
  \langle proof \rangle
lemma remaining-steps-step [simp]: [invar (big :: 'a big-state); remaining-steps big
   \implies Suc (remaining-steps (step big)) = remaining-steps big
  \langle proof \rangle
lemma remaining-steps-step-0 [simp]: [invar (big :: 'a big-state); remaining-steps
```

```
big = 0
   \implies remaining-steps (step big) = 0
  \langle proof \rangle
lemma remaining-steps-push: invar big \implies remaining-steps (push x big) = re-
maining-steps big
  \langle proof \rangle
lemma remaining-steps-pop: [invar\ big;\ pop\ big = (x,\ big')]
   \implies remaining-steps big' \leq remaining-steps big
\langle proof \rangle
lemma size-push \ [simp]: invar \ big \implies size \ (push \ x \ big) = Suc \ (size \ big)
  \langle proof \rangle
lemma size-new-push [simp]: invar big \implies size-new (push x big) = Suc (size-new
  \langle proof \rangle
lemma size-pop [simp]: [invar\ big;\ 0 < size\ big;\ pop\ big = (x,\ big')]
   \implies Suc \ (size \ big') = size \ big
\langle proof \rangle
lemma size-new-pop [simp]: [invar\ big;\ 0 < size-new\ big;\ pop\ big = (x,\ big')]
    \implies Suc (size-new big') = size-new big
\langle proof \rangle
lemma size-size-new: [invar\ (big :: 'a\ big-state);\ 0 < size\ big]] \Longrightarrow 0 < size-new
big
  \langle proof \rangle
end
17
         Small Proofs
theory Small-Proof
```

```
imports Common-Proof Small-Aux
begin
lemma step\text{-}size [simp]: invar (small :: 'a small-state) \Longrightarrow size (step small) = size
small
  \langle proof \rangle
lemma step-size-new [simp]:
    invar\ (small :: 'a\ small-state) \Longrightarrow size-new\ (step\ small) = size-new\ small
  \langle proof \rangle
lemma size-push [simp]: invar small <math>\Longrightarrow size (push x small) = Suc (size small)
  \langle proof \rangle
```

```
lemma size-new-push [simp]: invar small \implies size-new (push x small) = Suc
(size-new small)
  \langle proof \rangle
lemma size-pop [simp]: [invar\ small;\ 0 < size\ small;\ pop\ small = (x,\ small')]
   \implies Suc \ (size \ small') = size \ small
\langle proof \rangle
lemma size-new-pop [simp]: [invar small; 0 < size-new small; pop small = (x, y)
   \implies Suc \ (size-new \ small') = size-new \ small
\langle proof \rangle
lemma size-size-new: [invar (small :: 'a small-state); 0 < size small] \implies 0 <
size-new\ small
  \langle proof \rangle
lemma step-list-current [simp]: invar small \implies list-current (step small) = list-current
small
  \langle proof \rangle
lemma step-list-common [simp]:
    \llbracket small = Small \exists common; invar small \rrbracket \Longrightarrow list (step small) = list small
  \langle proof \rangle
lemma step-list-Small2 [simp]:
  assumes
   small = (Small \ current \ aux \ big \ new \ count)
   invar\ small
  shows
   list (step small) = list small
\langle proof \rangle
lemma invar-step: invar (small :: 'a small-state) \implies invar (step small)
\langle proof \rangle
lemma invar-push: invar\ small \implies invar\ (push\ x\ small)
  \langle proof \rangle
0 < size small;
  invar small;
 pop \ small = (x, small')
] \implies invar\ small'
\langle proof \rangle
lemma push-list-common [simp]: small = Small3 common \Longrightarrow list (push x small)
= x \# list small
```

```
\langle proof \rangle
lemma push-list-current [simp]: list-current (push x small) = x # list-current
  \langle proof \rangle
lemma pop-list-current [simp]: [invar small; 0 < size small; Small.pop small =
  \implies x \# list\text{-}current \ small' = list\text{-}current \ small
\langle proof \rangle
lemma list-current-size [simp]: [0 < size small; list-current small = []; invar
small \implies False
\langle proof \rangle
lemma list-Small2 [simp]: [
  0 < size (Small2 current auxS big newS count);
  invar (Small2 current auxS big newS count)
   fst (Current.pop current) # list (Small2 (drop-first current) auxS big newS
count) =
   list (Small2 current auxS big newS count)
  \langle proof \rangle
end
18
        Big + Small Proofs
theory States-Proof
imports States-Aux Big-Proof Small-Proof
begin
{f lemmas}\ state-splits=idle.splits\ common-state.splits\ small-state.splits\ big-state.splits
{\bf lemmas}\ invar\text{-}steps = Big\text{-}Proof.invar\text{-}step\ Common\text{-}Proof.invar\text{-}step\ Small\text{-}Proof.invar\text{-}step\ Small\text{-}}
lemma invar-list-big-first:
    invar\ states \Longrightarrow list-big-first states = list-current-big-first states
  \langle proof \rangle
lemma step-lists [simp]: invar states <math>\Longrightarrow lists (step states) = lists states
\langle proof \rangle
lemma step-lists-current [simp]:
    invar\ states \Longrightarrow lists-current\ (step\ states) = lists-current\ states
  \langle proof \rangle
lemma push-big: lists (States dir big small) = (big', small')
   \implies lists (States dir (Big.push x big) small) = (x # big', small')
\langle proof \rangle
```

```
lemma push-small-lists:
  invar (States dir big small)
  \implies lists (States dir big (Small.push x small)) = (big', x # small') \longleftrightarrow
      lists (States dir big small) = (big', small')
  \langle proof \rangle
lemma list-small-big:
    list-small-first (States dir big small) = list-current-small-first (States dir big
small) \longleftrightarrow
   list-big-first (States dir big small) = list-current-big-first (States dir big small)
  \langle proof \rangle
lemma list-big-first-pop-big [simp]: [
  invar (States dir big small);
  0 < size big;
 Big.pop\ big = (x,\ big')
\implies x \# list\text{-big-first (States dir big' small)} = list\text{-big-first (States dir big small)}
lemma list-current-big-first-pop-big [simp]: [\![
  invar (States dir big small);
  0 < size \ big;
 Big.pop\ big = (x,\ big')
\implies x \# list\text{-}current\text{-}big\text{-}first (States dir big' small) =
   list-current-big-first (States dir big small)
  \langle proof \rangle
lemma lists-big-first-pop-big:
  invar (States dir big small);
  0 < size big;
 Big.pop\ big = (x,\ big')
 ⇒ list-big-first (States dir big' small) = list-current-big-first (States dir big'
small)
  \langle proof \rangle
invar (States dir big small);
  0 < size big;
  Big.pop\ big = (x, big')
⇒ list-small-first (States dir big' small) = list-current-small-first (States dir big'
small)
  \langle proof \rangle
lemma list-small-first-pop-small [simp]:
  invar (States dir big small);
  0 < size small:
 Small.pop\ small = (x, small')
 \implies x \# list\text{-small-first (States dir big small')} = list\text{-small-first (States dir big}
```

```
small)
\langle proof \rangle
lemma list-current-small-first-pop-small [simp]:
  invar (States dir big small);
 0 < size small;
 Small.pop\ small = (x,\ small')
\implies x \# list\text{-}current\text{-}small\text{-}first (States dir big small') =
    list-current-small-first (States dir big small)
  \langle proof \rangle
lemma lists-small-first-pop-small:
  invar (States dir big small);
  0 < size small;
 Small.pop\ small = (x, small')
 ⇒ list-small-first (States dir big small') = list-current-small-first (States dir big
small')
 \langle proof \rangle
invar (States dir big small);
  0 < size big;
  Big.pop\ big = (x, big')
\implies invar\ big' \wedge\ invar\ small
 \langle proof \rangle
lemma invar-pop-big-aux:
  invar (States dir big small);
  0 < size big;
 Big.pop\ big = (x,\ big')
 \implies (case (big', small) of
       (Big1 - big - count, Small1 (Current - old remained) small -) \Rightarrow
         size \ big - count = remained - size \ old \land \ count \ge size \ small
     | (-, Small1 - - -) \Rightarrow False
     | (Big1 - - - -, -) \Rightarrow False
     | - \Rightarrow True
  \langle proof \rangle
invar (States dir big small);
  0 < size big;
 Big.pop\ big = (x, big')
\implies invar (States dir big' small)
 \langle proof \rangle
invar (States dir big small);
  0 < size small;
```

```
Small.pop\ small = (x, small')
 \implies invar big \land invar small'
  \langle proof \rangle
invar (States dir big small);
  0 < size small;
  Small.pop\ small = (x, small')
 \implies (case (big, small') of
        (Big1 - big - count, Small1 (Current - - old remained) small -) \Rightarrow
          size \ big - count = remained - size \ old \land \ count \ge size \ small
      | (-, Small1 - - -) \Rightarrow False
      | (Big1 - - - -, -) \Rightarrow False
      | - \Rightarrow True
\langle proof \rangle
invar (States dir big small);
    0 < size small;
    Small.pop \ small = (x, small')
 ] \implies invar (States dir big small')
  \langle proof \rangle
lemma invar-push-big: invar (States dir big small) ⇒ invar (States dir (Big.push
x \ big) \ small)
\langle proof \rangle
lemma invar-push-small: invar (States dir big small)
   \implies invar (States dir big (Small.push x small))
\langle proof \rangle
lemma step-invars: [invar\ states;\ step\ states = States\ dir\ big\ small] \implies invar\ big
\land \ invar \ small
\langle proof \rangle
lemma step-lists-small-first: invar\ states \Longrightarrow
   list-small-first (step states) = list-current-small-first (step states)
  \langle proof \rangle
lemma invar-step-aux: invar states \Longrightarrow (case step states of
        (States - (Big1 - big - count) (Small1 (Current - - old remained) small -))
          \mathit{size}\ \mathit{big}\ -\ \mathit{count}\ =\ \mathit{remained}\ -\ \mathit{size}\ \mathit{old}\ \land\ \mathit{count}\ \geq\ \mathit{size}\ \mathit{small}
      | (States - - (Small1 - - -)) \Rightarrow False
       (States - (Big1 - - - -) -) \Rightarrow False
       \rightarrow True
\langle proof \rangle
```

```
lemma invar-step: invar (states :: 'a states) \implies invar (step states)
  \langle proof \rangle
lemma step-consistent [simp]:
  [\![ \land states. invar (states :: 'a states) \implies P (step states) = P states; invar states ]\!]
   \implies P \ states = P \ ((step \widehat{n}) \ states)
  \langle proof \rangle
lemma step-consistent-2:
  [\![ \land states. \ [\![ invar (states :: 'a states); P states ]\!] \implies P (step states); invar states;
P \ states
  \implies P((step \widehat{n}) states)
  \langle proof \rangle
lemma size-ok'-Suc: size-ok' states (Suc steps) \implies size-ok' states steps
lemma size-ok'-decline: size-ok' states x \Longrightarrow x \ge y \Longrightarrow size-ok' states y
lemma remaining-steps-0 [simp]: [invar (states :: 'a states); remaining-steps states
   \implies remaining-steps (step states) = 0
  \langle proof \rangle
lemma remaining-steps-0': \llbracket invar \ (states :: 'a \ states); remaining-steps \ states = 0 \rrbracket
   \implies remaining-steps ((step ^{n} n) states) = 0
  \langle proof \rangle
\mathbf{lemma}\ remaining\text{-}steps\text{-}decline\text{-}Suc:
  [invar\ (states: 'a\ states);\ 0 < remaining-steps\ states]
     \implies Suc (remaining-steps (step states)) = remaining-steps states
\langle proof \rangle
lemma remaining-steps-decline-sub [simp]: invar (states :: 'a states)
     \implies remaining-steps (step states) = remaining-steps states - 1
  \langle proof \rangle
lemma remaining-steps-decline: invar (states :: 'a states)
   \implies remaining-steps (step states) \leq remaining-steps states
  \langle proof \rangle
lemma remaining-steps-decline-n-steps [simp]:
  [invar\ (states: 'a\ states);\ remaining-steps\ states \leq n]
   \implies remaining\text{-}steps\ ((step \ ^n)\ states) = 0
  \langle proof \rangle
lemma remaining-steps-n-steps-plus [simp]:
```

```
[n \le remaining\text{-steps states}; invar (states :: 'a states)]
    \implies remaining-steps ((step ^{\sim} n) states) + n = remaining-steps states
  \langle proof \rangle
lemma remaining-steps-n-steps-sub [simp]: invar (states :: 'a states)
    \implies remaining-steps ((step ^{n} n) states) = remaining-steps states - n
  \langle proof \rangle
lemma step-size-new-small [simp]:
  [invar\ (States\ dir\ big\ small);\ step\ (States\ dir\ big\ small) = States\ dir'\ big'\ small'
   \implies size\text{-}new \ small' = size\text{-}new \ small
\langle proof \rangle
lemma step-size-new-small-2 [simp]:
 invar\ states \Longrightarrow size-new-small\ (step\ states) = size-new-small\ states
  \langle proof \rangle
lemma step-size-new-big [simp]:
 [invar (States dir big small); step (States dir big small) = States dir' big' small' [invar (States dir big small)]
   \implies size-new big' = size-new big
\langle proof \rangle
lemma step-size-new-big-2 [simp]:
 invar\ states \Longrightarrow size-new-big\ (step\ states) = size-new-big\ states
 \langle proof \rangle
lemma step-size-small [simp]:
 \llbracket invar \ (States \ dir \ biq \ small); \ step \ (States \ dir \ biq \ small) = States \ dir' \ biq' \ small' \rrbracket
    \implies size \ small' = size \ small
\langle proof \rangle
lemma step-size-small-2 [simp]:
 invar\ states \Longrightarrow size\text{-}small\ (step\ states) = size\text{-}small\ states
 \langle proof \rangle
lemma step-size-biq [simp]:
 [invar (States dir big small); step (States dir big small) = States dir' big' small']
     \implies size big' = size big
\langle proof \rangle
lemma step-size-big-2 [simp]:
 invar\ states \Longrightarrow size-big\ (step\ states) = size-big\ states
  \langle proof \rangle
lemma step-size-ok-1: [
    invar (States dir big small);
    step (States dir big small) = States dir' big' small';
    size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
\implies size-new big' + remaining-steps (States dir' big' small') + 2 \le 3 * size-new
```

```
small'
  \langle proof \rangle
invar (States dir big small);
  step (States dir big small) = States dir' big' small';
  size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\parallel \implies size\text{-}new \ small' + remaining\text{-}steps \ (States \ dir' \ big' \ small') + 2 \le 3 *
size-new big'
  \langle proof \rangle
lemma step-size-ok-3: [
  invar (States dir big small);
  step (States dir big small) = States dir' big' small';
  remaining-steps (States dir big small) + 1 \le 4 * size small
\rrbracket \implies \textit{remaining-steps (States dir' big' small')} + 1 \leq \textit{4} * \textit{size small'}
  \langle proof \rangle
lemma step-size-ok-₄: [
  invar (States dir big small);
  step (States dir big small) = States dir' big' small';
  remaining-steps (States dir big small) + 1 \le 4 * size big
] \implies remaining\text{-steps (States dir' big' small')} + 1 \le 4 * size big'
  \langle proof \rangle
lemma step-size-ok: [invar\ states;\ size-ok\ states] \implies size-ok\ (step\ states)
  \langle proof \rangle
lemma step-n-size-ok: [invar\ states;\ size-ok\ states] <math>\Longrightarrow size-ok\ ((step\ ^n)\ states)
  \langle proof \rangle
lemma step-push-size-small [simp]:
  invar (States dir big small);
  step\ (States\ dir\ big\ (Small.push\ x\ small)) = States\ dir'\ big'\ small'
] \implies size \ small' = Suc \ (size \ small)
  \langle proof \rangle
lemma step-push-size-new-small [simp]:
  invar (States dir big small);
  step\ (States\ dir\ big\ (Small.push\ x\ small)) = States\ dir'\ big'\ small'
] \implies size\text{-}new \ small' = Suc \ (size\text{-}new \ small)
  \langle proof \rangle
lemma step-push-size-big [simp]: [
  invar (States dir big small);
  step (States dir (Big.push x big) small) = States dir' big' small'
] \implies size \ big' = Suc \ (size \ big)
  \langle proof \rangle
```

```
lemma step-push-size-new-big [simp]: [
  invar (States dir big small);
  step\ (States\ dir\ (Big.push\ x\ big)\ small) = States\ dir'\ big'\ small'
\parallel \implies size\text{-}new\ big' = Suc\ (size\text{-}new\ big)
  \langle proof \rangle
lemma step	ent{-}pop	ent{-}size	ent{-}big\ [simp]:\ [\![
  invar (States dir big small);
  \theta < size \ big;
  Big.pop\ big = (x,\ bigP);
  step (States dir bigP small) = States dir' big' small'
\rrbracket \implies Suc \ (size \ big') = size \ big
  \langle proof \rangle
lemma step-pop-size-new-big [simp]: [
  invar (States dir big small);
  0 < size \ big; \ Big.pop \ big = (x, \ bigP);
  step (States dir bigP small) = States dir' big' small'
\implies Suc \ (size-new \ big') = size-new \ big
  \langle proof \rangle
lemma step-n-size-small [simp]:
  invar (States dir big small);
  (step \ \widehat{\ } \ n) \ (States \ dir \ big \ small) = States \ dir' \ big' \ small'
\rrbracket \implies size \ small' = size \ small
  \langle proof \rangle
lemma step-n-size-big [simp]:
 [invar\ (States\ dir\ big\ small);\ (step\ ^n)\ (States\ dir\ big\ small) = States\ dir'\ big'
small'
    \implies size \ big' = size \ big
  \langle proof \rangle
lemma step-n-size-new-small [simp]:
 [invar (States dir big small); (step ^{\sim} n) (States dir big small) = States dir' big'
    \implies size-new small' = size-new small
  \langle proof \rangle
lemma step-n-size-new-big [simp]:
  [invar (States dir big small); (step ^^ n) (States dir big small) = States dir' big'
small'
   \implies size\text{-}new\ big' = size\text{-}new\ big
  \langle proof \rangle
lemma step-n-push-size-small [simp]:
  invar (States dir big small);
  (step \ \widehat{\ } \ n) \ (States \ dir \ big \ (Small.push \ x \ small)) = States \ dir' \ big' \ small'
] \implies size \ small' = Suc \ (size \ small)
```

```
\langle proof \rangle
lemma step-n-push-size-new-small [simp]: [
  invar (States dir big small);
  (step \ \widehat{} \ n) \ (States \ dir \ big \ (Small.push \ x \ small)) = States \ dir' \ big' \ small'
] \implies size\text{-}new \ small' = Suc \ (size\text{-}new \ small)
  \langle proof \rangle
lemma step-n-push-size-big [simp]: [
  invar (States dir big small);
  (step \ \widehat{\ } \ n) \ (States \ dir \ (Big.push \ x \ big) \ small) = States \ dir' \ big' \ small'
] \implies size \ big' = Suc \ (size \ big)
  \langle proof \rangle
lemma step-n-push-size-new-big [simp]:
  invar (States dir big small);
  (step \stackrel{\sim}{\frown} n) (States dir (Big.push x big) small) = States dir' big' small'
] \implies size-new \ big' = Suc \ (size-new \ big)
  \langle proof \rangle
lemma step-n-pop-size-small [simp]: [
  invar (States dir big small);
  0 < size small;
  Small.pop \ small = (x, smallP);
  (step \ \widehat{\ } \ n) \ (States \ dir \ big \ small P) = States \ dir' \ big' \ small'
] \implies Suc \ (size \ small') = size \ small
  \langle proof \rangle
\mathbf{lemma}\ step-n\text{-}pop\text{-}size\text{-}new\text{-}small\ [simp]\text{:}\ \llbracket
  invar (States dir big small);
  0 < size small;
  Small.pop \ small = (x, smallP);
  (step \ \widehat{\ } \ n) \ (States \ dir \ big \ small P) = States \ dir' \ big' \ small'
] \implies Suc \ (size-new \ small') = size-new \ small
  \langle proof \rangle
lemma step-n-pop-size-big [simp]: [
  invar (States dir big small);
  0 < size \ big; \ Big.pop \ big = (x, \ bigP);
  (step \ \widehat{\ } \ n) \ (States \ dir \ bigP \ small) = States \ dir' \ big' \ small'
] \implies Suc \ (size \ big') = size \ big
  \langle proof \rangle
invar (States dir big small);
  0 < size \ big; \ Big.pop \ big = (x, \ bigP);
  (step \ \widehat{\ } \ n) \ (States \ dir \ bigP \ small) = States \ dir' \ big' \ small'
] \implies Suc \ (size-new \ big') = size-new \ big
  \langle proof \rangle
```

```
lemma remaining-steps-push-small [simp]: invar (States dir big small)
   \implies remaining-steps (States dir big small) =
       remaining-steps (States dir big (Small.push x small))
  \langle proof \rangle
lemma remaining-steps-pop-small:
  [invar (States dir big small); 0 < size small; Small.pop small = (x, smallP)]
    \implies remaining-steps (States dir big smallP) \leq remaining-steps (States dir big
small)
\langle proof \rangle
lemma remaining-steps-pop-big:
  [invar (States dir big small); 0 < size big; Big.pop big = (x, bigP)]
    \implies remaining-steps (States dir bigP small) \leq remaining-steps (States dir big
small)
\langle proof \rangle
lemma remaining-steps-push-big [simp]: invar (States dir big small)
  \implies remaining-steps (States dir (Big.push x big) small) =
      remaining-steps (States dir big small)
  \langle proof \rangle
lemma step-4-remaining-steps-push-big [simp]:
  invar (States dir big small);
  4 \leq remaining\text{-steps (States dir big small)};
  (step ^4) (States dir (Big.push x big) small) = States dir' big' small
   ⇒ remaining-steps (States dir' big' small') = remaining-steps (States dir big
small) - 4
  \langle proof \rangle
lemma step-4-remaining-steps-push-small [simp]: [
  invar (States dir big small);
 4 \le remaining\text{-}steps (States dir big small);
(step \sim 4) (States dir big (Small.push x small)) = States dir' big' small'
\implies remaining-steps (States dir' big' small') = remaining-steps (States dir big
small) - 4
 \langle proof \rangle
lemma step-4-remaining-steps-pop-big:
  invar (States dir big small);
  0 < size \ big;
  Big.pop\ big = (x,\ bigP);
 4 \le remaining\text{-}steps (States dir bigP small);
 (step ^ 4) (States dir bigP small) = States dir' big' small'
\parallel \implies remaining\text{-steps (States dir' big' small')} \le remaining\text{-steps (States dir big')}
small) – 4
  \langle proof \rangle
```

```
lemma step-4-remaining-steps-pop-small:
  invar (States dir big small);
  0 < size small;
  Small.pop \ small = (x, smallP);
  4 \leq remaining\text{-steps (States dir big smallP)};
  (step ~4) (States dir big smallP) = States dir' big' small'

Arr \implies remaining-steps (States dir' big' small') \leq remaining-steps (States dir big
small) - 4
 \langle proof \rangle
lemma step-4-pop-small-size-ok-1:
  invar (States dir big small);
  0 < size small;
  Small.pop \ small = (x, \ smallP);
  4 \leq remaining\text{-steps (States dir big smallP)};
  (step \ \ ) (States\ dir\ big\ small P) = States\ dir'\ big'\ small';
  remaining-steps (States dir big small) + 1 \le 4 * size small
] \implies remaining-steps (States dir' big' small') + 1 \leq 4 * size small'
lemma step-4-pop-big-size-ok-1:
  invar (States dir big small);
  0 < size \ big; \ Big.pop \ big = (x, \ bigP);
  4 \leq remaining\text{-steps (States dir bigP small)};
  (step ^4) (States dir bigP small) = States dir' big' small';
  remaining-steps (States dir big small) + 1 \le 4 * size small
] \implies remaining-steps (States dir' big' small') + 1 \leq 4 * size small'
  \langle proof \rangle
lemma step-4-pop-small-size-ok-2:
  invar (States dir big small);
  0 < size small;
  Small.pop \ small = (x, smallP);
  4 \le remaining\text{-steps (States dir big smallP)};
  (step ^{ } ) (States dir big small P) = States dir' big' small';
  remaining-steps (States dir big small) + 1 \le 4 * size big
] \implies remaining\text{-steps} (States dir' big' small') + 1 \le 4 * size big'
  \langle proof \rangle
lemma step-4-pop-big-size-ok-2:
 assumes
   invar (States dir big small)
   0 < size big
   Big.pop\ big = (x,\ bigP)
   remaining-steps (States dir bigP small) \geq 4
   ((step \ ^ 4) \ (States \ dir \ bigP \ small)) = States \ dir' \ big' \ small'
   remaining-steps (States dir big small) + 1 \le 4 * size big
 shows
   remaining-steps (States dir' big' small') + 1 \le 4 * size big'
```

```
\langle proof \rangle
lemma step-4-pop-small-size-ok-3:
 assumes
   invar (States dir big small)
   \theta < size \ small
   Small.pop \ small = (x, \ smallP)
   remaining-steps (States dir big smallP) \geq 4
   ((step \ ^{\sim} 4) \ (States \ dir \ big \ small P)) = States \ dir' \ big' \ small'
   size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
 shows
   size-new\ small'+remaining-steps\ (States\ dir'\ big'\ small')+2\leq 3*size-new
big'
  \langle proof \rangle
lemma step-4-pop-big-size-ok-3-aux: [
  0 < size big;
  4 \leq remaining\text{-steps (States dir big small)};
  size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\parallel \implies size-new \ small + (remaining-steps \ (States \ dir \ big \ small) - 4) + 2 \le 3 *
(size-new\ big\ -\ 1)
  \langle proof \rangle
lemma step-4-pop-big-size-ok-3:
   assumes
     invar (States dir big small)
     0 < size big
     Big.pop\ big = (x,\ bigP)
     remaining\text{-}steps \; (States \; dir \; bigP \; small) \geq 4
     ((step \ ^ 4) \ (States \ dir \ bigP \ small)) = (States \ dir' \ big' \ small')
     size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new
big
   shows
     size-new\ small'+remaining-steps\ (States\ dir'\ big'\ small')+2\leq 3*size-new
biq'
\langle proof \rangle
lemma step-4-pop-small-size-ok-4-aux:
  0 < size small;
 4 \leq remaining\text{-}steps (States dir big small);
 size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
\Rightarrow size\text{-}new\ big + (remaining\text{-}steps\ (States\ dir\ big\ small) - 4) + 2 \leq 3 *
(size-new\ small\ -\ 1)
  \langle proof \rangle
lemma step-4-pop-small-size-ok-4:
   assumes
     invar (States dir big small)
```

```
0 < size small
     Small.pop \ small = (x, \ smallP)
     remaining-steps (States dir big smallP) \geq 4
     ((step \ ^ 4) \ (States \ dir \ big \ small P)) = (States \ dir' \ big' \ small')
      size-new\ big\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\ \le\ 3\ *\ size-new
small
   shows
      size-new\ big'+remaining-steps\ (States\ dir'\ big'\ small')+2\leq 3*size-new
small'
\langle proof \rangle
lemma step-4-pop-big-size-ok-4-aux:
  0 < size \ big;
 4 \leq remaining\text{-}steps (States dir big small);
 size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
\gg size-new\ big-1+(remaining-steps\ (States\ dir\ big\ small)-4)+2\leq 3*
size-new\ small
  \langle proof \rangle
lemma step-4-pop-big-size-ok-4:
 assumes
   invar (States dir big small)
   0 < size big
   Big.pop\ big = (x,\ bigP)
   remaining-steps (States dir bigP small) \geq 4
   ((step \ ^ 4) \ (States \ dir \ bigP \ small)) = (States \ dir' \ big' \ small')
   size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
    size-new\ big'+remaining-steps\ (States\ dir'\ big'\ small')+2\leq 3*size-new
small'
\langle proof \rangle
lemma step-4-push-small-size-ok-1: [
  invar (States dir big small);
  4 \leq remaining\text{-steps (States dir big small)};
 (step ^4) (States dir big (Small.push x small)) = States dir' big' small';
  remaining-steps (States dir big small) + 1 \le 4 * size small
] \implies remaining-steps (States dir' big' small') + 1 \leq 4 * size small'
  \langle proof \rangle
lemma step-4-push-big-size-ok-1:
  invar (States dir big small);
  4 \leq remaining\text{-steps (States dir big small)};
 (step ^4) (States dir (Big.push x big) small) = States dir' big' small';
 remaining-steps (States dir big small) + 1 \leq 4 * size small
] \implies remaining\text{-steps (States dir' big' small')} + 1 \le 4 * size small'
lemma step-4-push-small-size-ok-2:
```

```
invar (States dir big small);
  4 \leq remaining\text{-}steps (States dir big small);
  (step ^ 4) (States \ dir \ big \ (Small.push \ x \ small)) = States \ dir' \ big' \ small';
  remaining\text{-}steps \; (States \; dir \; big \; small) \; + \; 1 \; \leq \; \textit{4} \; * \; size \; big
] \implies remaining\text{-steps (States dir' big' small')} + 1 \le 4 * size big'
 \langle proof \rangle
lemma step-4-push-big-size-ok-2:
  invar (States dir big small);
  4 \leq remaining\text{-steps (States dir big small)};
 (step \ \ ) (States dir (Big.push x big) small) = States dir big' small';
 remaining-steps (States dir big small) + 1 \le 4 * size big
] \implies remaining-steps (States dir' big' small') + 1 \leq 4 * size big'
  \langle proof \rangle
lemma step-4-push-small-size-ok-3-aux:
  4 \le remaining\text{-steps (States dir big small)};
 size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\implies Suc\ (size-new\ small) + (remaining-steps\ (States\ dir\ big\ small) - 4) + 2 \le
3 * size-new big
  \langle proof \rangle
lemma step-4-push-small-size-ok-3:
  invar (States dir big small);
  4 \le remaining\text{-steps (States dir big small)};
 (step \ \ ) (States\ dir\ big\ (Small.push\ x\ small)) = States\ dir'\ big'\ small';
 size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\implies size-new small' + remaining-steps (States dir' big' small') + 2 \leq 3 *
size-new big'
  \langle proof \rangle
lemma step-4-push-big-size-ok-3-aux:
  4 \le remaining\text{-}steps (States dir big small);
 size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\implies size-new small + (remaining-steps (States dir big small) - 4) + 2 \leq 3 *
Suc (size-new big)
  \langle proof \rangle
invar (States dir big small);
  4 \leq remaining\text{-}steps (States dir big small);
 (step ^ 4) (States dir (Big.push x big) small) = States dir' big' small';
 size-new\ small\ +\ remaining-steps\ (States\ dir\ big\ small)\ +\ 2\le 3*size-new\ big
\implies size\text{-}new \ small' + remaining\text{-}steps \ (States \ dir' \ big' \ small') + 2 \leq 3 *
size\text{-}new\ big'
  \langle proof \rangle
lemma step-4-push-small-size-ok-4-aux:
 4 \leq remaining\text{-}steps (States dir big small);
```

```
size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
] \implies size-new big + (remaining-steps (States dir big small) - 4) + 2 \le 3 * Suc
(size-new\ small)
  \langle proof \rangle
lemma step-4-push-small-size-ok-4:
  invar (States dir big small);
  4 \le remaining\text{-steps (States dir big small)};
  (step ^4) (States\ dir\ big\ (Small.push\ x\ small)) = States\ dir'\ big'\ small';
 size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
] \implies size-new big' + remaining-steps (States dir' big' small') + 2 \le 3 * size-new
small'
  \langle proof \rangle
lemma step-4-push-big-size-ok-4-aux:
  4 \le remaining\text{-steps (States dir big small)};
 size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
] \Longrightarrow Suc (size-new big) + (remaining-steps (States dir big small) - 4) + 2 \leq 3
* size-new small
  \langle proof \rangle
lemma step-4-push-big-size-ok-4:
  invar (States dir big small);
  4 \leq remaining\text{-steps (States dir big small)};
 (step ^4) (States dir (Big.push x big) small) = States dir' big' small';
 size-new\ big+remaining-steps\ (States\ dir\ big\ small)+2\leq 3*size-new\ small
\implies size-new big' + remaining-steps (States dir' big' small') + 2 \le 3 * size-new
small'
  \langle proof \rangle
lemma step-4-push-small-size-ok:
  invar (States dir big small);
  4 \le remaining\text{-steps (States dir big small)};
 size-ok (States dir big small)
\implies size\text{-}ok \ ((step \ \ ) \ (States \ dir \ big \ (Small.push \ x \ small)))
  \langle proof \rangle
invar (States dir big small);
  4 \le remaining\text{-}steps (States dir big small);
 size-ok (States dir big small)
\implies size\text{-}ok \ ((step \ \ ) \ (States \ dir \ (Big.push \ x \ big) \ small))
  \langle proof \rangle
lemma step-4-pop-small-size-ok:
  invar (States dir big small);
  0 < size small:
  Small.pop \ small = (x, smallP);
  4 \leq remaining\text{-}steps (States dir big smallP);
```

```
size-ok (States dir big small)
] \implies size\text{-}ok \ ((step \ \ ) \ (States \ dir \ big \ smallP))
  \langle proof \rangle
invar (States dir big small);
  0 < size \ big; \ Big.pop \ big = (x, \ bigP);
  4 \le remaining\text{-}steps (States dir bigP small);
  size-ok (States dir big small)
] \implies size\text{-}ok \ ((step \ \ ) \ (States \ dir \ bigP \ small))
  \langle proof \rangle
lemma size-ok-size-small: size-ok (States dir big small) \Longrightarrow 0 < size small
  \langle proof \rangle
lemma size-ok-size-big: size-ok (States dir big small) \implies 0 < size big
  \langle proof \rangle
lemma size-ok-size-new-small: size-ok (States dir\ big\ small) \Longrightarrow 0 < size-new
small
  \langle proof \rangle
lemma size-ok-size-new-big: size-ok (States dir big small) \implies 0 < size-new big
  \langle proof \rangle
lemma step-size-ok': [invar\ states;\ size-ok'\ states\ n] \implies size-ok'\ (step\ states)\ n
  \langle proof \rangle
lemma step-same: step (States dir big small) = States dir big' small' \Longrightarrow dir =
  \langle proof \rangle
lemma step-n-same: (step ^n) (States dir big small) = States dir' big' <math>small' \Longrightarrow
dir = dir'
\langle proof \rangle
lemma step-listL: invar states \implies listL (step states) = listL states
\langle proof \rangle
lemma step-n-listL: invar\ states \implies listL\ ((step \widehat{\ \ } n)\ states) = listL\ states
  \langle proof \rangle
lemma listL-remaining-steps:
  assumes
    listL \ states = []
    0 < remaining-steps states
    invar\ states
    size-ok states
  shows
```

```
False
\langle proof \rangle
lemma invar-step-n: invar (states :: 'a states) \implies invar ((step \widehat{\phantom{a}}n) states)
  \langle proof \rangle
lemma step-n-size-ok': \llbracket invar \ states; \ size-ok' \ states \ x \rrbracket \implies size-ok' \ ((step \ ^ n)
\langle proof \rangle
invar states;
  size-ok' states (remaining-steps states - n)
] \implies size-ok \ ((step \ ^n) \ states)
  \langle proof \rangle
lemma remaining-steps-idle: invar states
  \implies remaining-steps states = 0 \longleftrightarrow (
    case states of
       States - (Big2 \ (Common.Idle - -)) \ (Small3 \ (Common.Idle - -)) \ \Rightarrow \ True
    | - \Rightarrow False \rangle
  \langle proof \rangle
lemma remaining-steps-idle':
  \llbracket invar \ (States \ dir \ big \ small); \ remaining-steps \ (States \ dir \ big \ small) = 0 \rrbracket
    \implies \exists \ big\text{-}current \ big\text{-}idle \ small\text{-}current \ small\text{-}idle. \ States \ dir \ big \ small =
             (Big2 (common-state.Idle big-current big-idle))
             (Small3 (common-state.Idle small-current small-idle))
  \langle proof \rangle
end
19
         Dequeue Proofs
theory RealTimeDeque-Dequeue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin
lemma list-deqL' [simp]: [linvar\ deque; listL\ deque \neq []; deqL'\ deque = (x,\ deque')]
   \implies x \# listL \ deque' = listL \ deque
\langle proof \rangle
lemma list-deqL [simp]:
    \llbracket invar\ deque;\ listL\ deque 
eq [] 
bracket \implies listL\ (deqL\ deque) = tl\ (listL\ deque)
  \langle proof \rangle
lemma list-firstL [simp]:
    \llbracket invar\ deque;\ listL\ deque \neq \llbracket \rrbracket \rrbracket \Longrightarrow \mathit{firstL}\ deque = \mathit{hd}\ (\mathit{listL}\ deque)
```

```
\langle proof \rangle
lemma invar-deqL:
   \llbracket invar\ deque; \neg\ is\text{-}empty\ deque} \rrbracket \implies invar\ (deqL\ deque)
\langle proof \rangle
end
20
        Enqueue Proofs
theory RealTimeDeque-Enqueue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin
lemma list-enqL: invar deque \implies listL (enqL x deque) = x # listL deque
\langle proof \rangle
lemma invar-enqL: invar\ deque \implies invar\ (enqL\ x\ deque)
\langle proof \rangle
end
21
        Top-Level Proof
{\bf theory}\ Real Time Deque-Proof
imports Real Time Deque-Proof Real Time Deque-Enqueue-Proof
begin
lemma swap-lists-left: invar (States Left big small) \Longrightarrow
    States-Aux.listL (States Left big small) = rev (States-Aux.listL (States Right
big small))
 \langle proof \rangle
lemma swap-lists-right: invar (States Right\ big\ small) \Longrightarrow
    States-Aux.listL (States Right big small) = rev (States-Aux.listL (States Left
big small))
  \langle proof \rangle
lemma swap-list [simp]: invar q \Longrightarrow listR (swap q) = listL q
lemma swap-list': invar q \Longrightarrow listL (swap q) = listR q
  \langle proof \rangle
```

lemma lists-same: lists (States Left big small) = lists (States Right big small)

 $\mathbf{lemma} \ invar\text{-}swap\text{: } invar \ q \Longrightarrow invar \ (swap \ q)$

```
\langle proof \rangle
lemma listL-is-empty: invar\ deque \implies is-empty\ deque = (listL\ deque = [])
interpretation RealTimeDeque: Deque where
                       and
  empty
           = empty
  enqL
           = enqL
                       and
  enqR
           = enqR
                       and
 firstL
          = firstL and
 firstR
          = firstR
                     and
  deqL
           = deqL
                      and
  deqR
           = deqR
                       and
  is\text{-}empty = is\text{-}empty and
  listL
          = listL and
  invar
          = invar
\langle proof \rangle
```

end

References

[1] T. Chuang and B. Goldberg. Real-time deques, multihead Turing machines, and purely functional programming. In J. Williams, editor, *Proceedings of the conference on Functional programming languages and computer architecture*, FPCA 1993, Copenhagen, Denmark, June 9-11, 1993, pages 289–298. ACM, 1993.