
Real-Time Double-Ended Queue

Balazs Toth and Tobias Nipkow
Technical University of Munich

March 17, 2025

Abstract

A double-ended queue (deque) is a queue where one can enqueue
and dequeue at both ends. We define and verify the deque implemen-
tation by Chuang and Goldberg [1]. It is purely functional and all
operations run in constant time.

Contents
1 Double-Ended Queue Specification 2

2 Type Classes 3

3 Stack 4

4 Current Stack 4

5 Idle 5

6 Common 5

7 Bigger End of Deque 7

8 Smaller End of Deque 8

9 Combining Big and Small 9

10 Real-Time Deque Implementation 10

11 Basic Lemma Library 24

12 Stack Proofs 26

13 Idle Proofs 28

14 Current Proofs 29

1



15 Common Proofs 31

16 Big Proofs 33

17 Small Proofs 35

18 Big + Small Proofs 37

19 Dequeue Proofs 53

20 Enqueue Proofs 54

21 Top-Level Proof 54

1 Double-Ended Queue Specification
theory Deque
imports Main
begin

Model-oriented specification in terms of an abstraction function to a list.
locale Deque =
fixes empty :: ′q
fixes enqL :: ′a ⇒ ′q ⇒ ′q
fixes enqR :: ′a ⇒ ′q ⇒ ′q
fixes firstL :: ′q ⇒ ′a
fixes firstR :: ′q ⇒ ′a
fixes deqL :: ′q ⇒ ′q
fixes deqR :: ′q ⇒ ′q
fixes is-empty :: ′q ⇒ bool
fixes listL :: ′q ⇒ ′a list
fixes invar :: ′q ⇒ bool

assumes list-empty:
listL empty = []

assumes list-enqL:
invar q =⇒ listL(enqL x q) = x # listL q

assumes list-enqR:
invar q =⇒ rev (listL (enqR x q)) = x # rev (listL q)

assumes list-deqL:
[[invar q; ¬ listL q = []]] =⇒ listL(deqL q) = tl(listL q)

assumes list-deqR:
[[invar q; ¬ rev (listL q) = []]] =⇒ rev (listL (deqR q)) = tl (rev (listL q))

assumes list-firstL:
[[invar q; ¬ listL q = []]] =⇒ firstL q = hd(listL q)

assumes list-firstR:

2



[[invar q; ¬ rev (listL q) = []]] =⇒ firstR q = hd(rev(listL q))

assumes list-is-empty:
invar q =⇒ is-empty q = (listL q = [])

assumes invar-empty:
invar empty

assumes invar-enqL:
invar q =⇒ invar(enqL x q)

assumes invar-enqR:
invar q =⇒ invar(enqR x q)

assumes invar-deqL:
[[invar q; ¬ is-empty q]] =⇒ invar(deqL q)

assumes invar-deqR:
[[invar q; ¬ is-empty q]] =⇒ invar(deqR q)

begin

abbreviation listR :: ′q ⇒ ′a list where
listR deque ≡ rev (listL deque)

end

end

2 Type Classes
theory Type-Classes
imports Main
begin

Overloaded functions:
class is-empty =

fixes is-empty :: ′a ⇒ bool

class invar =
fixes invar :: ′a ⇒ bool

class size-new =
fixes size-new :: ′a ⇒ nat

class step =
fixes step :: ′a ⇒ ′a

class remaining-steps =
fixes remaining-steps :: ′a ⇒ nat

3



end

3 Stack
theory Stack
imports Type-Classes
begin

A datatype encapsulating two lists. Is used as a base data-structure in
different places. It has the operations push, pop and first.
datatype (plugins del: size) ′a stack = Stack ′a list ′a list

fun push :: ′a ⇒ ′a stack ⇒ ′a stack where
push x (Stack left right) = Stack (x#left) right

fun pop :: ′a stack ⇒ ′a stack where
pop (Stack [] []) = Stack [] []
| pop (Stack (x#left) right) = Stack left right
| pop (Stack [] (x#right)) = Stack [] right

fun first :: ′a stack ⇒ ′a where
first (Stack (x#left) right) = x
| first (Stack [] (x#right)) = x

instantiation stack ::(type) is-empty
begin

fun is-empty-stack where
is-empty-stack (Stack [] []) = True
| is-empty-stack - = False

instance〈proof 〉
end

end

4 Current Stack
theory Current
imports Stack
begin

This data structure is composed of:

• the newly added elements to one end of a deque during the rebalancing
phase

• the number of these newly added elements

4



• the originally contained elements

• the number of elements which will be contained after the rebalancing
is finished.

datatype (plugins del: size) ′a current = Current ′a list nat ′a stack nat

fun push :: ′a ⇒ ′a current ⇒ ′a current where
push x (Current extra added old remained) = Current (x#extra) (added + 1 ) old

remained

fun pop :: ′a current ⇒ ′a ∗ ′a current where
pop (Current [] added old remained) =
(first old, Current [] added (Stack.pop old) (remained − 1 ))

| pop (Current (x#xs) added old remained) =
(x, Current xs (added − 1 ) old remained)

fun first :: ′a current ⇒ ′a where
first current = fst (pop current)

abbreviation drop-first :: ′a current ⇒ ′a current where
drop-first current ≡ snd (pop current)

end

5 Idle
theory Idle
imports Stack
begin

Represents the ‘idle’ state of one deque end. It contains a stack and its
size as a natural number.
datatype (plugins del: size) ′a idle = Idle ′a stack nat

fun push :: ′a ⇒ ′a idle ⇒ ′a idle where
push x (Idle stack stackSize) = Idle (Stack.push x stack) (Suc stackSize)

fun pop :: ′a idle ⇒ ( ′a ∗ ′a idle) where
pop (Idle stack stackSize) = (Stack.first stack, Idle (Stack.pop stack) (stackSize
− 1 ))

end

6 Common
theory Common
imports Current Idle

5



begin

The last two phases of both deque ends during rebalancing:

Copy: Using the step function the new elements of this deque end are
brought back into the original order.

Idle: The rebalancing of the deque end is finished.

Each phase contains a current state, that holds the original elements of the
deque end.
datatype (plugins del: size) ′a common-state =

Copy ′a current ′a list ′a list nat
| Idle ′a current ′a idle

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing, while keeping the invariant.

fun normalize :: ′a common-state ⇒ ′a common-state where
normalize (Copy current old new moved) = (

case current of Current extra added - remained ⇒
if moved ≥ remained
then Idle current (idle.Idle (Stack extra new) (added + moved))
else Copy current old new moved

)

instantiation common-state ::(type) step
begin

fun step-common-state :: ′a common-state ⇒ ′a common-state where
step (Idle current idle) = Idle current idle
| step (Copy current aux new moved) = (

case current of Current - - - remained ⇒
normalize (

if moved < remained
then Copy current (tl aux) ((hd aux)#new) (moved + 1 )
else Copy current aux new moved

)
)

instance〈proof 〉
end

fun push :: ′a ⇒ ′a common-state ⇒ ′a common-state where
push x (Idle current (idle.Idle stack stackSize)) =

6



Idle (Current.push x current) (idle.Idle (Stack.push x stack) (Suc stackSize))
| push x (Copy current aux new moved) = Copy (Current.push x current) aux new
moved

fun pop :: ′a common-state ⇒ ′a ∗ ′a common-state where
pop (Idle current idle) = (let (x, idle) = Idle.pop idle in (x, Idle (drop-first

current) idle))
| pop (Copy current aux new moved) =

(first current, normalize (Copy (drop-first current) aux new moved))

end

7 Bigger End of Deque
theory Big
imports Common
begin

The bigger end of the deque during rebalancing can be in two phases:

Big1 : Using the step function the originally contained elements, which will
be kept in this end, are reversed.

Big2 : Specified in theory Common. Is used to reverse the elements from
the previous phase again to get them in the original order.

Each phase contains a current state, which holds the original elements of
the deque end.
datatype (plugins del: size) ′a big-state =

Big1 ′a current ′a stack ′a list nat
| Big2 ′a common-state

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing

instantiation big-state ::(type) step
begin

fun step-big-state :: ′a big-state ⇒ ′a big-state where
step (Big2 state) = Big2 (step state)
| step (Big1 current - aux 0 ) = Big2 (normalize (Copy current aux [] 0 ))
| step (Big1 current big aux count) =

Big1 current (Stack.pop big) ((Stack.first big)#aux) (count − 1 )

instance〈proof 〉

7



end

fun push :: ′a ⇒ ′a big-state ⇒ ′a big-state where
push x (Big2 state) = Big2 (Common.push x state)
| push x (Big1 current big aux count) = Big1 (Current.push x current) big aux
count

fun pop :: ′a big-state ⇒ ′a ∗ ′a big-state where
pop (Big2 state) = (let (x, state) = Common.pop state in (x, Big2 state))
| pop (Big1 current big aux count) =

(first current, Big1 (drop-first current) big aux count)

end

8 Smaller End of Deque
theory Small
imports Common
begin

The smaller end of the deque during Rebalancing can be in one three phases:

Small1 : Using the step function the originally contained elements are re-
versed.

Small2 : Using the step function the newly obtained elements from the
bigger end are reversed on top of the ones reversed in the previous
phase.

Small3 : See theory Common. Is used to reverse the elements from the two
previous phases again to get them again in the original order.

Each phase contains a current state, which holds the original elements of
the deque end.
datatype (plugins del: size) ′a small-state =

Small1 ′a current ′a stack ′a list
| Small2 ′a current ′a list ′a stack ′a list nat
| Small3 ′a common-state

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing, while keeping the invariant.

instantiation small-state::(type) step
begin

8



fun step-small-state :: ′a small-state ⇒ ′a small-state where
step (Small3 state) = Small3 (step state)
| step (Small1 current small auxS) = (

if is-empty small
then Small1 current small auxS
else Small1 current (Stack.pop small) ((Stack.first small)#auxS)

)
| step (Small2 current auxS big newS count) = (

if is-empty big
then Small3 (normalize (Copy current auxS newS count))
else Small2 current auxS (Stack.pop big) ((Stack.first big)#newS) (count + 1 )

)

instance〈proof 〉
end

fun push :: ′a ⇒ ′a small-state ⇒ ′a small-state where
push x (Small3 state) = Small3 (Common.push x state)
| push x (Small1 current small auxS) = Small1 (Current.push x current) small
auxS
| push x (Small2 current auxS big newS count) =

Small2 (Current.push x current) auxS big newS count

fun pop :: ′a small-state ⇒ ′a ∗ ′a small-state where
pop (Small3 state) = (

let (x, state) = Common.pop state
in (x, Small3 state)

)
| pop (Small1 current small auxS) =

(first current, Small1 (drop-first current) small auxS)
| pop (Small2 current auxS big newS count) =

(first current, Small2 (drop-first current) auxS big newS count)

end

9 Combining Big and Small
theory States
imports Big Small
begin

datatype direction = Left | Right

datatype ′a states = States direction ′a big-state ′a small-state

instantiation states::(type) step
begin

fun step-states :: ′a states ⇒ ′a states where

9



step (States dir (Big1 currentB big auxB 0 ) (Small1 currentS - auxS)) =
States dir (step (Big1 currentB big auxB 0 )) (Small2 currentS auxS big [] 0 )

| step (States dir left right) = States dir (step left) (step right)

instance〈proof 〉
end

end

10 Real-Time Deque Implementation
theory RealTimeDeque
imports States
begin

The real-time deque can be in the following states:

Empty: No values stored. No dequeue operation possible.

One: One element in the deque.

Two: Two elements in the deque.

Three: Three elements in the deque.

Idles: Deque with a left and a right end, fulfilling the following invariant:

• 3 * size of left end ≥ size of right end
• 3 * size of right end ≥ size of left end
• Neither of the ends is empty

Rebal: Deque which violated the invariant of the Idles state by non-balanced
dequeue and enqueue operations. The invariants during in this state
are:

• The rebalancing is not done yet. The deque needs to be in Idles
state otherwise.

• The rebalancing is in a valid state (Defined in theory States)
• The two ends of the deque are in a size window, such that after

finishing the rebalancing the invariant of the Idles state will be
met.

Functions:

is-empty: Checks if a deque is in the Empty state

10



deqL ′: Dequeues an element on the left end and return the element and the
deque without this element. If the deque is in idle state and the size
invariant is violated either a rebalancing is started or if there are 3 or
less elements left the respective states are used. On rebalancing start,
six steps are executed initially. During rebalancing state four steps are
executed and if it is finished the deque returns to idle state.

deqL: Removes one element on the left end and only returns the new deque.

firstL: Removes one element on the left end and only returns the element.

enqL: Enqueues an element on the left and returns the resulting deque. Like
in deqL ′ when violating the size invariant in idle state, a rebalancing
with six initial steps is started. During rebalancing state four steps
are executed and if it is finished the deque returns to idle state.

swap: The two ends of the deque are swapped.

deqR ′, deqR, firstR, enqR: Same behaviour as the left-counterparts. Imple-
mented using the left-counterparts by swapping the deque before and
after the operation.

listL, listR: Get all elements of the deque in a list starting at the left or
right end. They are needed as list abstractions for the correctness
proofs.

datatype ′a deque =
Empty
| One ′a
| Two ′a ′a
| Three ′a ′a ′a
| Idles ′a idle ′a idle
| Rebal ′a states

definition empty where
empty = Empty

instantiation deque::(type) is-empty
begin

fun is-empty-deque :: ′a deque ⇒ bool where
is-empty-deque Empty = True
| is-empty-deque - = False

instance〈proof 〉
end

fun swap :: ′a deque ⇒ ′a deque where

11



swap Empty = Empty
| swap (One x) = One x
| swap (Two x y) = Two y x
| swap (Three x y z) = Three z y x
| swap (Idles left right) = Idles right left
| swap (Rebal (States Left big small)) = (Rebal (States Right big small))
| swap (Rebal (States Right big small)) = (Rebal (States Left big small))

fun small-deque :: ′a list ⇒ ′a list ⇒ ′a deque where
small-deque [] [] = Empty

| small-deque (x#[]) [] = One x
| small-deque [] (x#[]) = One x

| small-deque (x#[])(y#[]) = Two y x
| small-deque (x#y#[]) [] = Two y x
| small-deque [] (x#y#[])= Two y x

| small-deque [] (x#y#z#[]) = Three z y x
| small-deque (x#y#z#[]) [] = Three z y x
| small-deque (x#y#[]) (z#[]) = Three z y x
| small-deque (x#[]) (y#z#[]) = Three z y x

fun deqL ′ :: ′a deque ⇒ ′a ∗ ′a deque where
deqL ′ (One x) = (x, Empty)
| deqL ′ (Two x y) = (x, One y)
| deqL ′ (Three x y z) = (x, Two y z)
| deqL ′ (Idles left (idle.Idle right length-right)) = (

case Idle.pop left of (x, (idle.Idle left length-left)) ⇒
if 3 ∗ length-left ≥ length-right
then
(x, Idles (idle.Idle left length-left) (idle.Idle right length-right))

else if length-left ≥ 1
then

let length-left ′ = 2 ∗ length-left + 1 in
let length-right ′ = length-right − length-left − 1 in

let small = Small1 (Current [] 0 left length-left ′) left [] in
let big = Big1 (Current [] 0 right length-right ′) right [] length-right ′ in

let states = States Left big small in
let states = (step^^6 ) states in

(x, Rebal states)
else

case right of Stack r1 r2 ⇒ (x, small-deque r1 r2 )
)
| deqL ′ (Rebal (States Left big small)) = (

let (x, small) = Small.pop small in

12



let states = (step^^4 ) (States Left big small) in
case states of

States Left
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ (x, Idles small big)

| - ⇒ (x, Rebal states)
)
| deqL ′ (Rebal (States Right big small)) = (

let (x, big) = Big.pop big in
let states = (step^^4 ) (States Right big small) in
case states of

States Right
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small)) ⇒
(x, Idles big small)

| - ⇒ (x, Rebal states)
)

fun deqR ′ :: ′a deque ⇒ ′a ∗ ′a deque where
deqR ′ deque = (

let (x, deque) = deqL ′ (swap deque)
in (x, swap deque)

)

fun deqL :: ′a deque ⇒ ′a deque where
deqL deque = (let (-, deque) = deqL ′ deque in deque)

fun deqR :: ′a deque ⇒ ′a deque where
deqR deque = (let (-, deque) = deqR ′ deque in deque)

fun firstL :: ′a deque ⇒ ′a where
firstL deque = (let (x, -) = deqL ′ deque in x)

fun firstR :: ′a deque ⇒ ′a where
firstR deque = (let (x, -) = deqR ′ deque in x)

fun enqL :: ′a ⇒ ′a deque ⇒ ′a deque where
enqL x Empty = One x
| enqL x (One y) = Two x y
| enqL x (Two y z) = Three x y z
| enqL x (Three a b c) = Idles (idle.Idle (Stack [x, a] []) 2 ) (idle.Idle (Stack [c, b]
[]) 2 )
| enqL x (Idles left (idle.Idle right length-right)) = (

case Idle.push x left of idle.Idle left length-left ⇒
if 3 ∗ length-right ≥ length-left
then

Idles (idle.Idle left length-left) (idle.Idle right length-right)
else

13



let length-left = length-left − length-right − 1 in
let length-right = 2 ∗ length-right + 1 in

let big = Big1 (Current [] 0 left length-left) left [] length-left in
let small = Small1 (Current [] 0 right length-right) right [] in

let states = States Right big small in
let states = (step^^6 ) states in

Rebal states
)
| enqL x (Rebal (States Left big small)) = (

let small = Small.push x small in
let states = (step^^4 ) (States Left big small) in
case states of

States Left
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ Idles small big

| - ⇒ Rebal states
)
| enqL x (Rebal (States Right big small)) = (

let big = Big.push x big in
let states = (step^^4 ) (States Right big small) in
case states of

States Right
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ Idles big small

| - ⇒ Rebal states
)

fun enqR :: ′a ⇒ ′a deque ⇒ ′a deque where
enqR x deque = (

let deque = enqL x (swap deque)
in swap deque

)

end
theory Stack-Aux
imports Stack
begin

The function list appends the two lists and is needed for the list abstrac-
tion of the deque.
fun list :: ′a stack ⇒ ′a list where

list (Stack left right) = left @ right

instantiation stack ::(type) size

14



begin

fun size-stack :: ′a stack ⇒ nat where
size (Stack left right) = length left + length right

instance〈proof 〉
end

end
theory Current-Aux
imports Current Stack-Aux
begin

Specification functions:

list: list abstraction for the originally contained elements of a deque end
during transformation.

invar : Is the stored number of newly added elements correct?

size: The number of the originally contained elements.

size-new: Number of elements which will be contained after the transfor-
mation is finished.

fun list :: ′a current ⇒ ′a list where
list (Current extra - old -) = extra @ (Stack-Aux.list old)

instantiation current::(type) invar
begin

fun invar-current :: ′a current ⇒ bool where
invar (Current extra added - -) ←→ length extra = added

instance〈proof 〉
end

instantiation current::(type) size
begin

fun size-current :: ′a current ⇒ nat where
size (Current - added old -) = added + size old

instance〈proof 〉
end

instantiation current::(type) size-new
begin

fun size-new-current :: ′a current ⇒ nat where

15



size-new (Current - added - remained) = added + remained

instance〈proof 〉
end

end
theory Idle-Aux
imports Idle Stack-Aux
begin

fun list :: ′a idle ⇒ ′a list where
list (Idle stack -) = Stack-Aux.list stack

instantiation idle :: (type) size
begin

fun size-idle :: ′a idle ⇒ nat where
size (Idle stack -) = size stack

instance〈proof 〉
end

instantiation idle :: (type) is-empty
begin

fun is-empty-idle :: ′a idle ⇒ bool where
is-empty (Idle stack -) ←→ is-empty stack

instance〈proof 〉
end

instantiation idle ::(type) invar
begin

fun invar-idle :: ′a idle ⇒ bool where
invar (Idle stack stackSize) ←→ size stack = stackSize

instance〈proof 〉
end

end
theory Common-Aux
imports Common Current-Aux Idle-Aux
begin

Functions:

list: List abstraction of the elements which this end will contain after the
rebalancing is finished

16



list-current: List abstraction of the elements currently in this deque end.

remaining-steps: Returns how many steps are left until the rebalancing is
finished.

size-new: Returns the size, that the deque end will have after the rebalanc-
ing is finished.

size: Minimum of size-new and the number of elements contained in the
current state.

definition take-rev where
[simp]: take-rev n xs = rev (take n xs)

fun list :: ′a common-state ⇒ ′a list where
list (Idle - idle) = Idle-Aux.list idle
| list (Copy (Current extra - - remained) old new moved)

= extra @ take-rev (remained − moved) old @ new

fun list-current :: ′a common-state ⇒ ′a list where
list-current (Idle current -) = Current-Aux.list current
| list-current (Copy current - - -) = Current-Aux.list current

instantiation common-state::(type) invar
begin

fun invar-common-state :: ′a common-state ⇒ bool where
invar (Idle current idle) ←→

invar idle
∧ invar current
∧ size-new current = size idle
∧ take (size idle) (Current-Aux.list current) =

take (size current) (Idle-Aux.list idle)
| invar (Copy current aux new moved) ←→ (

case current of Current - - old remained ⇒
moved < remained
∧ moved = length new
∧ remained ≤ length aux + moved
∧ invar current
∧ take remained (Stack-Aux.list old) = take (size old) (take-rev (remained −

moved) aux @ new)
)

instance〈proof 〉
end

instantiation common-state::(type) size
begin

17



fun size-common-state :: ′a common-state ⇒ nat where
size (Idle current idle) = min (size current) (size idle)
| size (Copy current - - -) = min (size current) (size-new current)

instance〈proof 〉
end

instantiation common-state::(type) size-new
begin

fun size-new-common-state :: ′a common-state ⇒ nat where
size-new (Idle current -) = size-new current
| size-new (Copy current - - -) = size-new current

instance〈proof 〉
end

instantiation common-state::(type) remaining-steps
begin

fun remaining-steps-common-state :: ′a common-state ⇒ nat where
remaining-steps (Idle - -) = 0
| remaining-steps (Copy (Current - - - remained) aux new moved) = remained −
moved

instance〈proof 〉
end

end
theory Big-Aux
imports Big Common-Aux
begin

Functions:

size-new: Returns the size that the deque end will have after the rebalancing
is finished.

size: Minimum of size-new and the number of elements contained in the
current state.

remaining-steps: Returns how many steps are left until the rebalancing is
finished.

list: List abstraction of the elements which this end will contain after the
rebalancing is finished

list-current: List abstraction of the elements currently in this deque end.

18



fun list :: ′a big-state ⇒ ′a list where
list (Big2 common) = Common-Aux.list common
| list (Big1 (Current extra - - remained) big aux count) = (

let reversed = take-rev count (Stack-Aux.list big) @ aux in
extra @ (take-rev remained reversed)

)

fun list-current :: ′a big-state ⇒ ′a list where
list-current (Big2 common) = Common-Aux.list-current common
| list-current (Big1 current - - -) = Current-Aux.list current

instantiation big-state ::(type) invar
begin

fun invar-big-state :: ′a big-state ⇒ bool where
invar (Big2 state) ←→ invar state
| invar (Big1 current big aux count) ←→ (

case current of Current extra added old remained ⇒
invar current
∧ remained ≤ length aux + count
∧ count ≤ size big
∧ Stack-Aux.list old = rev (take (size old) ((rev (Stack-Aux.list big)) @ aux))
∧ take remained (Stack-Aux.list old) =

rev (take remained (take-rev count (Stack-Aux.list big) @ aux))
)

instance〈proof 〉
end

instantiation big-state ::(type) size
begin

fun size-big-state :: ′a big-state ⇒ nat where
size (Big2 state) = size state
| size (Big1 current - - -) = min (size current) (size-new current)

instance〈proof 〉
end

instantiation big-state ::(type) size-new
begin

fun size-new-big-state :: ′a big-state ⇒ nat where
size-new (Big2 state) = size-new state
| size-new (Big1 current - - -) = size-new current

instance〈proof 〉
end

19



instantiation big-state ::(type) remaining-steps
begin

fun remaining-steps-big-state :: ′a big-state ⇒ nat where
remaining-steps (Big2 state) = remaining-steps state
| remaining-steps (Big1 (Current - - - remaining) - - count) = count + remaining
+ 1

instance〈proof 〉
end

end
theory Small-Aux
imports Small Common-Aux
begin

Functions:

size-new: Returns the size, that the deque end will have after the rebalanc-
ing is finished.

size: Minimum of size-new and the number of elements contained in the
‘current‘ state.

list: List abstraction of the elements which this end will contain after the
rebalancing is finished. The first phase is not covered, since the el-
ements, which will be transferred from the bigger deque end are not
known yet.

list-current: List abstraction of the elements currently in this deque end.

fun list :: ′a small-state ⇒ ′a list where
list (Small3 common) = Common-Aux.list common
| list (Small2 (Current extra - - remained) aux big new count) =

extra @ (take-rev (remained − (count + size big)) aux) @ (rev (Stack-Aux.list
big) @ new)

fun list-current :: ′a small-state ⇒ ′a list where
list-current (Small3 common) = Common-Aux.list-current common
| list-current (Small2 current - - - -) = Current-Aux.list current
| list-current (Small1 current - -) = Current-Aux.list current

instantiation small-state::(type) invar
begin

fun invar-small-state :: ′a small-state ⇒ bool where
invar (Small3 state) = invar state
| invar (Small2 current auxS big newS count) = (

case current of Current - - old remained ⇒

20



remained = count + size big + size old
∧ count = List.length newS
∧ invar current
∧ List.length auxS ≥ size old
∧ Stack-Aux.list old = rev (take (size old) auxS)

)
| invar (Small1 current small auxS) = (

case current of Current - - old remained ⇒
invar current
∧ remained ≥ size old
∧ size small + List.length auxS ≥ size old
∧ Stack-Aux.list old = rev (take (size old) (rev (Stack-Aux.list small) @ auxS))

)

instance〈proof 〉
end

instantiation small-state::(type) size
begin

fun size-small-state :: ′a small-state ⇒ nat where
size (Small3 state) = size state
| size (Small2 current - - - -) = min (size current) (size-new current)
| size (Small1 current - -) = min (size current) (size-new current)

instance〈proof 〉
end

instantiation small-state::(type) size-new
begin

fun size-new-small-state :: ′a small-state ⇒ nat where
size-new (Small3 state) = size-new state
| size-new (Small2 current - - - -) = size-new current
| size-new (Small1 current - -) = size-new current

instance〈proof 〉
end

end
theory States-Aux
imports States Big-Aux Small-Aux
begin

instantiation states::(type) remaining-steps
begin

fun remaining-steps-states :: ′a states ⇒ nat where
remaining-steps (States - big small) = max

21



(remaining-steps big)
(case small of

Small3 common ⇒ remaining-steps common
| Small2 (Current - - - remaining) - big - count ⇒ remaining − count + 1
| Small1 (Current - - - remaining) - - ⇒

case big of Big1 currentB big auxB count ⇒ remaining + count + 2
)

instance〈proof 〉
end

fun lists :: ′a states ⇒ ′a list ∗ ′a list where
lists (States - (Big1 currentB big auxB count) (Small1 currentS small auxS)) = (

Big-Aux.list (Big1 currentB big auxB count),
Small-Aux.list (Small2 currentS (take-rev count (Stack-Aux.list small) @ auxS)

((Stack.pop ^^ count) big) [] 0 )
)
| lists (States - big small) = (Big-Aux.list big, Small-Aux.list small)

fun list-small-first :: ′a states ⇒ ′a list where
list-small-first states = (let (big, small) = lists states in small @ (rev big))

fun list-big-first :: ′a states ⇒ ′a list where
list-big-first states = (let (big, small) = lists states in big @ (rev small))

fun lists-current :: ′a states ⇒ ′a list ∗ ′a list where
lists-current (States - big small) = (Big-Aux.list-current big, Small-Aux.list-current

small)

fun list-current-small-first :: ′a states ⇒ ′a list where
list-current-small-first states = (let (big, small) = lists-current states in small @

(rev big))

fun list-current-big-first :: ′a states ⇒ ′a list where
list-current-big-first states = (let (big, small) = lists-current states in big @ (rev

small))

fun listL :: ′a states ⇒ ′a list where
listL (States Left big small) = list-small-first (States Left big small)
| listL (States Right big small) = list-big-first (States Right big small)

instantiation states::(type) invar
begin

fun invar-states :: ′a states ⇒ bool where
invar (States dir big small) ←→ (

invar big
∧ invar small
∧ list-small-first (States dir big small) = list-current-small-first (States dir big

22



small)
∧ (case (big, small) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
))

instance〈proof 〉
end

fun size-ok ′ :: ′a states ⇒ nat ⇒ bool where
size-ok ′ (States - big small) steps ←→

size-new small + steps + 2 ≤ 3 ∗ size-new big
∧ size-new big + steps + 2 ≤ 3 ∗ size-new small
∧ steps + 1 ≤ 4 ∗ size small
∧ steps + 1 ≤ 4 ∗ size big

abbreviation size-ok :: ′a states ⇒ bool where
size-ok states ≡ size-ok ′ states (remaining-steps states)

abbreviation size-small where size-small states ≡ case states of States - - small
⇒ size small

abbreviation size-new-small where
size-new-small states ≡ case states of States - - small ⇒ size-new small

abbreviation size-big where size-big states ≡ case states of States - big - ⇒ size
big

abbreviation size-new-big where
size-new-big states ≡ case states of States - big - ⇒ size-new big

end
theory RealTimeDeque-Aux

imports RealTimeDeque States-Aux
begin

listL, listR: Get all elements of the deque in a list starting at the left or
right end. They are needed as list abstractions for the correctness
proofs.

fun listL :: ′a deque ⇒ ′a list where
listL Empty = []
| listL (One x) = [x]
| listL (Two x y) = [x, y]

23



| listL (Three x y z) = [x, y, z]
| listL (Idles left right) = Idle-Aux.list left @ (rev (Idle-Aux.list right))
| listL (Rebal states) = States-Aux.listL states

abbreviation listR :: ′a deque ⇒ ′a list where
listR deque ≡ rev (listL deque)

instantiation deque::(type) invar
begin

fun invar-deque :: ′a deque ⇒ bool where
invar Empty = True
| invar (One -) = True
| invar (Two - -) = True
| invar (Three - - -) = True
| invar (Idles left right) ←→

invar left ∧
invar right ∧
¬ is-empty left ∧
¬ is-empty right ∧
3 ∗ size right ≥ size left ∧
3 ∗ size left ≥ size right

| invar (Rebal states) ←→
invar states ∧
size-ok states ∧
0 < remaining-steps states

instance〈proof 〉
end

end

11 Basic Lemma Library
theory RTD-Util
imports Main
begin

lemma take-last-length: [[take (Suc 0 ) (rev xs) = [last xs]]] =⇒ Suc 0 ≤ length xs
〈proof 〉

lemma take-last: xs 6= [] =⇒ take 1 (rev xs) = [last xs]
〈proof 〉

lemma take-hd [simp]: xs 6= [] =⇒ take (Suc 0 ) xs = [hd xs]
〈proof 〉

24



lemma cons-tl: x # xs = ys =⇒ xs = tl ys
〈proof 〉

lemma cons-hd: x # xs = ys =⇒ x = hd ys
〈proof 〉

lemma take-hd ′: ys 6= [] =⇒ take (size ys) (x # xs) = take (Suc (size xs)) ys =⇒
hd ys = x
〈proof 〉

lemma rev-app-single: rev xs @ [x] = rev (x # xs)
〈proof 〉

lemma hd-drop-1 [simp]: xs 6= [] =⇒ hd xs # drop (Suc 0 ) xs = xs
〈proof 〉

lemma hd-drop [simp]: n < length xs =⇒ hd (drop n xs) # drop (Suc n) xs =
drop n xs
〈proof 〉

lemma take-1 : 0 < x ∧ 0 < y =⇒ take x xs = take y ys =⇒ take 1 xs = take 1
ys
〈proof 〉

lemma last-drop-rev: xs 6= [] =⇒ last xs # drop 1 (rev xs) = rev xs
〈proof 〉

lemma Suc-min [simp]: 0 < x =⇒ 0 < y =⇒ Suc (min (x − Suc 0 ) (y − Suc
0 )) = min x y
〈proof 〉

lemma rev-tl-hd: xs 6= [] =⇒ rev (tl xs) @ [hd xs] = rev xs
〈proof 〉

lemma app-rev: as @ rev bs = cs @ rev ds =⇒ bs @ rev as = ds @ rev cs
〈proof 〉

lemma tl-drop-2 : tl (drop n xs) = drop (Suc n) xs
〈proof 〉

lemma Suc-sub: Suc n = m =⇒ n = m − 1
〈proof 〉

lemma length-one-hd: length xs = 1 =⇒ xs = [hd xs]
〈proof 〉

end

25



12 Stack Proofs
theory Stack-Proof
imports Stack-Aux RTD-Util
begin

lemma push-list [simp]: list (push x stack) = x # list stack
〈proof 〉

lemma pop-list [simp]: list (pop stack) = tl (list stack)
〈proof 〉

lemma first-list [simp]: ¬ is-empty stack =⇒ first stack = hd (list stack)
〈proof 〉

lemma list-empty: list stack = [] ←→ is-empty stack
〈proof 〉

lemma list-not-empty: list stack 6= [] ←→ ¬ is-empty stack
〈proof 〉

lemma list-empty-2 [simp]: [[list stack 6= []; is-empty stack]] =⇒ False
〈proof 〉

lemma list-not-empty-2 [simp]:[[list stack = []; ¬ is-empty stack]] =⇒ False
〈proof 〉

lemma list-empty-size: list stack = [] ←→ size stack = 0
〈proof 〉

lemma list-not-empty-size:list stack 6= [] ←→ 0 < size stack
〈proof 〉

lemma list-empty-size-2 [simp]: [[list stack 6= []; size stack = 0 ]] =⇒ False
〈proof 〉

lemma list-not-empty-size-2 [simp]:[[list stack = []; 0 < size stack]] =⇒ False
〈proof 〉

lemma size-push [simp]: size (push x stack) = Suc (size stack)
〈proof 〉

lemma size-pop [simp]: size (pop stack) = size stack − Suc 0
〈proof 〉

lemma size-empty: size (stack :: ′a stack) = 0 ←→ is-empty stack
〈proof 〉

lemma size-not-empty: size (stack :: ′a stack) > 0 ←→ ¬ is-empty stack

26



〈proof 〉

lemma size-empty-2 [simp]: [[size (stack :: ′a stack) = 0 ; ¬is-empty stack]] =⇒
False
〈proof 〉

lemma size-not-empty-2 [simp]: [[0 < size (stack :: ′a stack); is-empty stack]] =⇒
False
〈proof 〉

lemma size-list-length [simp]: length (list stack) = size stack
〈proof 〉

lemma first-pop [simp]: ¬ is-empty stack =⇒ first stack # list (pop stack) = list
stack
〈proof 〉

lemma push-not-empty [simp]: [[¬ is-empty stack; is-empty (push x stack)]] =⇒
False
〈proof 〉

lemma pop-list-length [simp]: ¬ is-empty stack
=⇒ Suc (length (list (pop stack))) = length (list stack)
〈proof 〉

lemma first-take: ¬is-empty stack =⇒ [first stack] = take 1 (list stack)
〈proof 〉

lemma first-take-tl [simp]: 0 < size big
=⇒ (first big # take count (tl (list big))) = take (Suc count) (list big)
〈proof 〉

lemma first-take-pop [simp]: [[¬is-empty stack; 0 < x]]
=⇒ first stack # take (x − Suc 0 ) (list (pop stack)) = take x (list stack)
〈proof 〉

lemma [simp]: first (Stack [] []) = undefined
〈proof 〉

lemma first-hd: first stack = hd (list stack)
〈proof 〉

lemma pop-tl [simp]: list (pop stack) = tl (list stack)
〈proof 〉

lemma pop-drop: list (pop stack) = drop 1 (list stack)
〈proof 〉

lemma popN-drop [simp]: list ((pop ^^ n) stack) = drop n (list stack)

27



〈proof 〉

lemma popN-size [simp]: size ((pop ^^ n) stack) = (size stack) − n
〈proof 〉

lemma take-first: [[0 < size s1 ; 0 < size s2 ; take (size s1 ) (list s2 ) = take (size
s2 ) (list s1 )]]

=⇒ first s1 = first s2
〈proof 〉

end

13 Idle Proofs
theory Idle-Proof

imports Idle-Aux Stack-Proof
begin

lemma push-list [simp]: list (push x idle) = x # list idle
〈proof 〉

lemma pop-list [simp]: [[¬ is-empty idle; pop idle = (x, idle ′)]] =⇒ x # list idle ′

= list idle
〈proof 〉

lemma pop-list-tl [simp]:
[[¬ is-empty idle; pop idle = (x, idle ′)]] =⇒ x # (tl (list idle)) = list idle
〈proof 〉

lemma pop-list-tl ′ [simp]: [[pop idle = (x, idle ′)]] =⇒ list idle ′ = tl (list idle)
〈proof 〉

lemma size-push [simp]: size (push x idle) = Suc (size idle)
〈proof 〉

lemma size-pop [simp]: [[¬is-empty idle; pop idle = (x, idle ′)]] =⇒ Suc (size idle ′)
= size idle
〈proof 〉

lemma size-pop-sub: [[pop idle = (x, idle ′)]] =⇒ size idle ′ = size idle − 1
〈proof 〉

lemma invar-push: invar idle =⇒ invar (push x idle)
〈proof 〉

lemma invar-pop: [[invar idle; pop idle = (x, idle ′)]] =⇒ invar idle ′

〈proof 〉

lemma size-empty: size idle = 0 ←→ is-empty (idle :: ′a idle)

28



〈proof 〉

lemma size-not-empty: 0 < size idle ←→ ¬is-empty (idle :: ′a idle)
〈proof 〉

lemma size-empty-2 [simp]: [[¬is-empty (idle :: ′a idle); 0 = size idle]] =⇒ False
〈proof 〉

lemma size-not-empty-2 [simp]: [[is-empty (idle :: ′a idle); 0 < size idle]] =⇒ False

〈proof 〉

lemma list-empty: list idle = [] ←→ is-empty idle
〈proof 〉

lemma list-not-empty: list idle 6= [] ←→ ¬ is-empty idle
〈proof 〉

lemma list-empty-2 [simp]: [[list idle = []; ¬is-empty (idle :: ′a idle)]] =⇒ False
〈proof 〉

lemma list-not-empty-2 [simp]: [[list idle 6= []; is-empty (idle :: ′a idle)]] =⇒ False
〈proof 〉

lemma list-empty-size: list idle = [] ←→ 0 = size idle
〈proof 〉

lemma list-not-empty-size: list idle 6= [] ←→ 0 < size idle
〈proof 〉

lemma list-empty-size-2 [simp]: [[list idle 6= []; 0 = size idle]] =⇒ False
〈proof 〉

lemma list-not-empty-size-2 [simp]: [[list idle = []; 0 < size idle]] =⇒ False
〈proof 〉

end

14 Current Proofs
theory Current-Proof
imports Current-Aux Stack-Proof
begin

lemma push-list [simp]: list (push x current) = x # list current
〈proof 〉

lemma pop-list [simp]:
[[0 < size current; invar current]] =⇒ fst (pop current) # tl (list current) = list

29



current
〈proof 〉

lemma drop-first-list [simp]: [[invar current; 0 < size current]]
=⇒ list (drop-first current) = tl (list current)
〈proof 〉

lemma invar-push: invar current =⇒ invar (push x current)
〈proof 〉

lemma invar-pop: [[0 < size current; invar current; pop current = (x, current ′)]]
=⇒ invar current ′

〈proof 〉

lemma invar-drop-first: [[0 < size current; invar current]] =⇒ invar (drop-first
current)
〈proof 〉

lemma list-size [simp]: [[invar current; list current = []; 0 < size current]] =⇒
False
〈proof 〉

lemma size-new-push [simp]: invar current =⇒ size-new (push x current) = Suc
(size-new current)
〈proof 〉

lemma size-push [simp]: size (push x current) = Suc (size current)
〈proof 〉

lemma size-new-pop [simp]: [[0 < size-new current; invar current ]]
=⇒ Suc (size-new (drop-first current)) = size-new current
〈proof 〉

lemma size-pop [simp]: [[0 < size current; invar current ]]
=⇒ Suc (size (drop-first current)) = size current
〈proof 〉

lemma size-pop-suc [simp]: [[0 < size current; invar current; pop current = (x,
current ′) ]]

=⇒ Suc (size current ′) = size current
〈proof 〉

lemma size-pop-sub: [[0 < size current; invar current; pop current = (x, current ′)
]]

=⇒ size current ′ = size current − 1
〈proof 〉

lemma size-drop-first-sub: [[0 < size current; invar current ]]
=⇒ size (drop-first current) = size current − 1

30



〈proof 〉

end

15 Common Proofs
theory Common-Proof
imports Common-Aux Idle-Proof Current-Proof
begin

lemma take-rev-drop: take-rev n xs @ acc = drop (length xs − n) (rev xs) @ acc
〈proof 〉

lemma take-rev-step: xs 6= [] =⇒ take-rev n (tl xs) @ (hd xs # acc) = take-rev
(Suc n) xs @ acc
〈proof 〉

lemma take-rev-empty [simp]: take-rev n [] = []
〈proof 〉

lemma take-rev-tl-hd:
0 < n =⇒ xs 6= [] =⇒ take-rev n xs @ ys = take-rev (n − (Suc 0 )) (tl xs) @

(hd xs #ys)
〈proof 〉

lemma take-rev-nth:
n < length xs =⇒ x = xs ! n =⇒ x # take-rev n xs @ ys = take-rev (Suc n)

xs @ ys
〈proof 〉

lemma step-list [simp]: invar common =⇒ list (step common) = list common
〈proof 〉

lemma step-list-current [simp]: invar common =⇒ list-current (step common) =
list-current common
〈proof 〉

lemma push-list [simp]: list (push x common) = x # list common
〈proof 〉

lemma invar-step: invar (common :: ′a common-state) =⇒ invar (step common)
〈proof 〉

lemma invar-push: invar common =⇒ invar (push x common)
〈proof 〉

lemma invar-pop: [[
0 < size common;
invar common;

31



pop common = (x, common ′)
]] =⇒ invar common ′

〈proof 〉

lemma push-list-current [simp]: list-current (push x left) = x # list-current left
〈proof 〉

lemma pop-list [simp]: invar common =⇒ 0 < size common =⇒ pop common =
(x, common ′) =⇒

x # list common ′ = list common
〈proof 〉

lemma pop-list-current: invar common =⇒ 0 < size common =⇒ pop common =
(x, common ′)

=⇒ x # list-current common ′ = list-current common
〈proof 〉

lemma list-current-size [simp]:
[[0 < size common; list-current common = []; invar common]] =⇒ False
〈proof 〉

lemma list-size [simp]: [[0 < size common; list common = []; invar common]] =⇒
False
〈proof 〉

lemma step-size [simp]: invar (common :: ′a common-state) =⇒ size (step com-
mon) = size common
〈proof 〉

lemma step-size-new [simp]: invar (common :: ′a common-state)
=⇒ size-new (step common) = size-new common

〈proof 〉

lemma remaining-steps-step [simp]: [[invar (common :: ′a common-state); remain-
ing-steps common > 0 ]]

=⇒ Suc (remaining-steps (step common)) = remaining-steps common
〈proof 〉

lemma remaining-steps-step-sub [simp]: [[invar (common :: ′a common-state)]]
=⇒ remaining-steps (step common) = remaining-steps common − 1
〈proof 〉

lemma remaining-steps-step-0 [simp]: [[invar (common :: ′a common-state); re-
maining-steps common = 0 ]]

=⇒ remaining-steps (step common) = 0
〈proof 〉

lemma remaining-steps-push [simp]: invar common
=⇒ remaining-steps (push x common) = remaining-steps common

32



〈proof 〉

lemma remaining-steps-pop: [[invar common; pop common = (x, common ′)]]
=⇒ remaining-steps common ′ ≤ remaining-steps common
〈proof 〉

lemma size-push [simp]: invar common =⇒ size (push x common) = Suc (size
common)
〈proof 〉

lemma size-new-push [simp]: invar common =⇒ size-new (push x common) = Suc
(size-new common)
〈proof 〉

lemma size-pop [simp]: [[invar common; 0 < size common; pop common = (x,
common ′)]]

=⇒ Suc (size common ′) = size common
〈proof 〉

lemma size-new-pop [simp]: [[invar common; 0 < size-new common; pop common
= (x, common ′)]]

=⇒ Suc (size-new common ′) = size-new common
〈proof 〉

lemma size-size-new: [[invar (common :: ′a common-state); 0 < size common]] =⇒
0 < size-new common
〈proof 〉

end

16 Big Proofs
theory Big-Proof
imports Big-Aux Common-Proof
begin

lemma step-list [simp]: invar big =⇒ list (step big) = list big
〈proof 〉

lemma step-list-current [simp]: invar big =⇒ list-current (step big) = list-current
big
〈proof 〉

lemma push-list [simp]: list (push x big) = x # list big
〈proof 〉

lemma list-Big1 : [[
0 < size (Big1 current big aux count);
invar (Big1 current big aux count)

33



]] =⇒ first current # list (Big1 (drop-first current) big aux count) =
list (Big1 current big aux count)

〈proof 〉

lemma size-list [simp]: [[0 < size big; invar big; list big = []]] =⇒ False
〈proof 〉

lemma pop-list [simp]: [[0 < size big; invar big; Big.pop big = (x, big ′)]]
=⇒ x # list big ′ = list big

〈proof 〉

lemma pop-list-tl: [[0 < size big; invar big; pop big = (x, big ′)]] =⇒ list big ′ = tl
(list big)
〈proof 〉

lemma invar-step: invar (big :: ′a big-state) =⇒ invar (step big)
〈proof 〉

lemma invar-push: invar big =⇒ invar (push x big)
〈proof 〉

lemma invar-pop: [[
0 < size big;
invar big;
pop big = (x, big ′)

]] =⇒ invar big ′

〈proof 〉

lemma push-list-current [simp]: list-current (push x big) = x # list-current big
〈proof 〉

lemma pop-list-current [simp]: [[invar big; 0 < size big; Big.pop big = (x, big ′)]]
=⇒ x # list-current big ′ = list-current big

〈proof 〉

lemma list-current-size: [[0 < size big; list-current big = []; invar big]] =⇒ False
〈proof 〉

lemma step-size: invar (big :: ′a big-state) =⇒ size big = size (step big)
〈proof 〉

lemma remaining-steps-step [simp]: [[invar (big :: ′a big-state); remaining-steps big
> 0 ]]

=⇒ Suc (remaining-steps (step big)) = remaining-steps big
〈proof 〉

lemma remaining-steps-step-0 [simp]: [[invar (big :: ′a big-state); remaining-steps

34



big = 0 ]]
=⇒ remaining-steps (step big) = 0
〈proof 〉

lemma remaining-steps-push: invar big =⇒ remaining-steps (push x big) = re-
maining-steps big
〈proof 〉

lemma remaining-steps-pop: [[invar big; pop big = (x, big ′)]]
=⇒ remaining-steps big ′ ≤ remaining-steps big

〈proof 〉

lemma size-push [simp]: invar big =⇒ size (push x big) = Suc (size big)
〈proof 〉

lemma size-new-push [simp]: invar big =⇒ size-new (push x big) = Suc (size-new
big)
〈proof 〉

lemma size-pop [simp]: [[invar big; 0 < size big; pop big = (x, big ′)]]
=⇒ Suc (size big ′) = size big

〈proof 〉

lemma size-new-pop [simp]: [[invar big; 0 < size-new big; pop big = (x, big ′)]]
=⇒ Suc (size-new big ′) = size-new big

〈proof 〉

lemma size-size-new: [[invar (big :: ′a big-state); 0 < size big]] =⇒ 0 < size-new
big
〈proof 〉

end

17 Small Proofs
theory Small-Proof
imports Common-Proof Small-Aux
begin

lemma step-size [simp]: invar (small :: ′a small-state) =⇒ size (step small) = size
small
〈proof 〉

lemma step-size-new [simp]:
invar (small :: ′a small-state) =⇒ size-new (step small) = size-new small
〈proof 〉

lemma size-push [simp]: invar small =⇒ size (push x small) = Suc (size small)
〈proof 〉

35



lemma size-new-push [simp]: invar small =⇒ size-new (push x small) = Suc
(size-new small)
〈proof 〉

lemma size-pop [simp]: [[invar small; 0 < size small; pop small = (x, small ′)]]
=⇒ Suc (size small ′) = size small

〈proof 〉

lemma size-new-pop [simp]: [[invar small; 0 < size-new small; pop small = (x,
small ′)]]

=⇒ Suc (size-new small ′) = size-new small
〈proof 〉

lemma size-size-new: [[invar (small :: ′a small-state); 0 < size small]] =⇒ 0 <
size-new small
〈proof 〉

lemma step-list-current [simp]: invar small =⇒ list-current (step small) = list-current
small
〈proof 〉

lemma step-list-common [simp]:
[[small = Small3 common; invar small]] =⇒ list (step small) = list small
〈proof 〉

lemma step-list-Small2 [simp]:
assumes

small = (Small2 current aux big new count)
invar small

shows
list (step small) = list small

〈proof 〉

lemma invar-step: invar (small :: ′a small-state) =⇒ invar (step small)
〈proof 〉

lemma invar-push: invar small =⇒ invar (push x small)
〈proof 〉

lemma invar-pop: [[
0 < size small;
invar small;
pop small = (x, small ′)

]] =⇒ invar small ′
〈proof 〉

lemma push-list-common [simp]: small = Small3 common =⇒ list (push x small)
= x # list small

36



〈proof 〉

lemma push-list-current [simp]: list-current (push x small) = x # list-current
small
〈proof 〉

lemma pop-list-current [simp]: [[invar small; 0 < size small; Small.pop small =
(x, small ′)]]
=⇒ x # list-current small ′ = list-current small
〈proof 〉

lemma list-current-size [simp]: [[0 < size small; list-current small = []; invar
small]] =⇒ False
〈proof 〉

lemma list-Small2 [simp]: [[
0 < size (Small2 current auxS big newS count);
invar (Small2 current auxS big newS count)

]] =⇒
fst (Current.pop current) # list (Small2 (drop-first current) auxS big newS

count) =
list (Small2 current auxS big newS count)
〈proof 〉

end

18 Big + Small Proofs
theory States-Proof
imports States-Aux Big-Proof Small-Proof
begin

lemmas state-splits = idle.splits common-state.splits small-state.splits big-state.splits
lemmas invar-steps = Big-Proof .invar-step Common-Proof .invar-step Small-Proof .invar-step

lemma invar-list-big-first:
invar states =⇒ list-big-first states = list-current-big-first states
〈proof 〉

lemma step-lists [simp]: invar states =⇒ lists (step states) = lists states
〈proof 〉

lemma step-lists-current [simp]:
invar states =⇒ lists-current (step states) = lists-current states
〈proof 〉

lemma push-big: lists (States dir big small) = (big ′, small ′)
=⇒ lists (States dir (Big.push x big) small) = (x # big ′, small ′)

〈proof 〉

37



lemma push-small-lists:
invar (States dir big small)
=⇒ lists (States dir big (Small.push x small)) = (big ′, x # small ′) ←→

lists (States dir big small) = (big ′, small ′)
〈proof 〉

lemma list-small-big:
list-small-first (States dir big small) = list-current-small-first (States dir big

small) ←→
list-big-first (States dir big small) = list-current-big-first (States dir big small)
〈proof 〉

lemma list-big-first-pop-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ x # list-big-first (States dir big ′ small) = list-big-first (States dir big small)
〈proof 〉

lemma list-current-big-first-pop-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ x # list-current-big-first (States dir big ′ small) =

list-current-big-first (States dir big small)
〈proof 〉

lemma lists-big-first-pop-big: [[
invar (States dir big small);
0 < size big;

Big.pop big = (x, big ′)]]
=⇒ list-big-first (States dir big ′ small) = list-current-big-first (States dir big ′

small)
〈proof 〉

lemma lists-small-first-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ list-small-first (States dir big ′ small) = list-current-small-first (States dir big ′

small)
〈proof 〉

lemma list-small-first-pop-small [simp]: [[
invar (States dir big small);
0 < size small;

Small.pop small = (x, small ′)]]
=⇒ x # list-small-first (States dir big small ′) = list-small-first (States dir big

38



small)
〈proof 〉

lemma list-current-small-first-pop-small [simp]: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ x # list-current-small-first (States dir big small ′) =

list-current-small-first (States dir big small)
〈proof 〉

lemma lists-small-first-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ list-small-first (States dir big small ′) = list-current-small-first (States dir big

small ′)
〈proof 〉

lemma invars-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ invar big ′ ∧ invar small
〈proof 〉

lemma invar-pop-big-aux: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ (case (big ′, small) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
)

〈proof 〉

lemma invar-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ invar (States dir big ′ small)
〈proof 〉

lemma invars-pop-small: [[
invar (States dir big small);
0 < size small;

39



Small.pop small = (x, small ′)]]
=⇒ invar big ∧ invar small ′
〈proof 〉

lemma invar-pop-small-aux: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ (case (big, small ′) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
)

〈proof 〉

lemma invar-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)

]] =⇒ invar (States dir big small ′)
〈proof 〉

lemma invar-push-big: invar (States dir big small) =⇒ invar (States dir (Big.push
x big) small)
〈proof 〉

lemma invar-push-small: invar (States dir big small)
=⇒ invar (States dir big (Small.push x small))

〈proof 〉

lemma step-invars:[[invar states; step states = States dir big small]] =⇒ invar big
∧ invar small
〈proof 〉

lemma step-lists-small-first: invar states =⇒
list-small-first (step states) = list-current-small-first (step states)
〈proof 〉

lemma invar-step-aux: invar states =⇒(case step states of
(States - (Big1 - big - count) (Small1 (Current - - old remained) small -))

⇒
size big − count = remained − size old ∧ count ≥ size small

| (States - - (Small1 - - -)) ⇒ False
| (States - (Big1 - - - -) -) ⇒ False
| - ⇒ True
)

〈proof 〉

40



lemma invar-step: invar (states :: ′a states) =⇒ invar (step states)
〈proof 〉

lemma step-consistent [simp]:
[[
∧

states. invar (states :: ′a states) =⇒ P (step states) = P states; invar states]]
=⇒ P states = P ((step ^^n) states)
〈proof 〉

lemma step-consistent-2 :
[[
∧

states. [[invar (states :: ′a states); P states]] =⇒ P (step states); invar states;
P states]]

=⇒ P ((step ^^n) states)
〈proof 〉

lemma size-ok ′-Suc: size-ok ′ states (Suc steps) =⇒ size-ok ′ states steps
〈proof 〉

lemma size-ok ′-decline: size-ok ′ states x =⇒ x ≥ y =⇒ size-ok ′ states y
〈proof 〉

lemma remaining-steps-0 [simp]: [[invar (states :: ′a states); remaining-steps states
= 0 ]]

=⇒ remaining-steps (step states) = 0
〈proof 〉

lemma remaining-steps-0 ′: [[invar (states :: ′a states); remaining-steps states = 0 ]]
=⇒ remaining-steps ((step ^^ n) states) = 0
〈proof 〉

lemma remaining-steps-decline-Suc:
[[invar (states :: ′a states); 0 < remaining-steps states]]

=⇒ Suc (remaining-steps (step states)) = remaining-steps states
〈proof 〉

lemma remaining-steps-decline-sub [simp]: invar (states :: ′a states)
=⇒ remaining-steps (step states) = remaining-steps states − 1

〈proof 〉

lemma remaining-steps-decline: invar (states :: ′a states)
=⇒ remaining-steps (step states) ≤ remaining-steps states
〈proof 〉

lemma remaining-steps-decline-n-steps [simp]:
[[invar (states :: ′a states); remaining-steps states ≤ n]]
=⇒ remaining-steps ((step ^^ n) states) = 0
〈proof 〉

lemma remaining-steps-n-steps-plus [simp]:

41



[[n ≤ remaining-steps states; invar (states :: ′a states)]]
=⇒ remaining-steps ((step ^^ n) states) + n = remaining-steps states
〈proof 〉

lemma remaining-steps-n-steps-sub [simp]: invar (states :: ′a states)
=⇒ remaining-steps ((step ^^ n) states) = remaining-steps states − n
〈proof 〉

lemma step-size-new-small [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]
=⇒ size-new small ′ = size-new small

〈proof 〉

lemma step-size-new-small-2 [simp]:
invar states =⇒ size-new-small (step states) = size-new-small states
〈proof 〉

lemma step-size-new-big [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]
=⇒ size-new big ′ = size-new big

〈proof 〉

lemma step-size-new-big-2 [simp]:
invar states =⇒ size-new-big (step states) = size-new-big states
〈proof 〉

lemma step-size-small [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]

=⇒ size small ′ = size small
〈proof 〉

lemma step-size-small-2 [simp]:
invar states =⇒ size-small (step states) = size-small states
〈proof 〉

lemma step-size-big [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]

=⇒ size big ′ = size big
〈proof 〉

lemma step-size-big-2 [simp]:
invar states =⇒ size-big (step states) = size-big states
〈proof 〉

lemma step-size-ok-1 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

42



small ′
〈proof 〉

lemma step-size-ok-2 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗
size-new big ′

〈proof 〉

lemma step-size-ok-3 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
〈proof 〉

lemma step-size-ok-4 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

〈proof 〉

lemma step-size-ok: [[invar states; size-ok states]] =⇒ size-ok (step states)
〈proof 〉

lemma step-n-size-ok: [[invar states; size-ok states]] =⇒ size-ok ((step ^^ n) states)
〈proof 〉

lemma step-push-size-small [simp]: [[
invar (States dir big small);
step (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size small ′ = Suc (size small)
〈proof 〉

lemma step-push-size-new-small [simp]: [[
invar (States dir big small);
step (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size-new small ′ = Suc (size-new small)
〈proof 〉

lemma step-push-size-big [simp]: [[
invar (States dir big small);
step (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size big ′ = Suc (size big)
〈proof 〉

43



lemma step-push-size-new-big [simp]: [[
invar (States dir big small);
step (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size-new big ′ = Suc (size-new big)
〈proof 〉

lemma step-pop-size-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, bigP);
step (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size big ′) = size big
〈proof 〉

lemma step-pop-size-new-big [simp]: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
step (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new big ′) = size-new big
〈proof 〉

lemma step-n-size-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big small) = States dir ′ big ′ small ′

]] =⇒ size small ′ = size small
〈proof 〉

lemma step-n-size-big [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

small ′]]
=⇒ size big ′ = size big
〈proof 〉

lemma step-n-size-new-small [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

small ′]]
=⇒ size-new small ′ = size-new small
〈proof 〉

lemma step-n-size-new-big [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

small ′]]
=⇒ size-new big ′ = size-new big
〈proof 〉

lemma step-n-push-size-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size small ′ = Suc (size small)

44



〈proof 〉

lemma step-n-push-size-new-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size-new small ′ = Suc (size-new small)
〈proof 〉

lemma step-n-push-size-big [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size big ′ = Suc (size big)
〈proof 〉

lemma step-n-push-size-new-big [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size-new big ′ = Suc (size-new big)
〈proof 〉

lemma step-n-pop-size-small [simp]: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
(step ^^ n) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ Suc (size small ′) = size small
〈proof 〉

lemma step-n-pop-size-new-small [simp]: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
(step ^^ n) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new small ′) = size-new small
〈proof 〉

lemma step-n-pop-size-big [simp]: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
(step ^^ n) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size big ′) = size big
〈proof 〉

lemma step-n-pop-size-new-big: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
(step ^^ n) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new big ′) = size-new big
〈proof 〉

45



lemma remaining-steps-push-small [simp]: invar (States dir big small)
=⇒ remaining-steps (States dir big small) =

remaining-steps (States dir big (Small.push x small))
〈proof 〉

lemma remaining-steps-pop-small:
[[invar (States dir big small); 0 < size small; Small.pop small = (x, smallP)]]
=⇒ remaining-steps (States dir big smallP) ≤ remaining-steps (States dir big

small)
〈proof 〉

lemma remaining-steps-pop-big:
[[invar (States dir big small); 0 < size big; Big.pop big = (x, bigP)]]
=⇒ remaining-steps (States dir bigP small) ≤ remaining-steps (States dir big

small)
〈proof 〉

lemma remaining-steps-push-big [simp]: invar (States dir big small)
=⇒ remaining-steps (States dir (Big.push x big) small) =

remaining-steps (States dir big small)
〈proof 〉

lemma step-4-remaining-steps-push-big [simp]: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir (Big.push x big) small) = States dir ′ big ′ small ′]]
=⇒ remaining-steps (States dir ′ big ′ small ′) = remaining-steps (States dir big

small) − 4
〈proof 〉

lemma step-4-remaining-steps-push-small [simp]: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir big (Small.push x small)) = States dir ′ big ′ small ′
]] =⇒ remaining-steps (States dir ′ big ′ small ′) = remaining-steps (States dir big
small) − 4
〈proof 〉

lemma step-4-remaining-steps-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
(step^^4 ) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ remaining-steps (States dir ′ big ′ small ′) ≤ remaining-steps (States dir big
small) − 4
〈proof 〉

46



lemma step-4-remaining-steps-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4 ) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ remaining-steps (States dir ′ big ′ small ′) ≤ remaining-steps (States dir big
small) − 4
〈proof 〉

lemma step-4-pop-small-size-ok-1 : [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4 ) (States dir big smallP) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
〈proof 〉

lemma step-4-pop-big-size-ok-1 : [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
(step^^4 ) (States dir bigP small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
〈proof 〉

lemma step-4-pop-small-size-ok-2 : [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4 ) (States dir big smallP) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

〈proof 〉

lemma step-4-pop-big-size-ok-2 :
assumes

invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4 ) (States dir bigP small)) = States dir ′ big ′ small ′
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

shows
remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

47



〈proof 〉

lemma step-4-pop-small-size-ok-3 :
assumes

invar (States dir big small)
0 < size small
Small.pop small = (x, smallP)
remaining-steps (States dir big smallP) ≥ 4
((step ^^ 4 ) (States dir big smallP)) = States dir ′ big ′ small ′
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

shows
size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

big ′

〈proof 〉

lemma step-4-pop-big-size-ok-3-aux: [[
0 < size big;
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3 ∗
(size-new big − 1 )
〈proof 〉

lemma step-4-pop-big-size-ok-3 :
assumes

invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4 ) (States dir bigP small)) = (States dir ′ big ′ small ′)
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new

big
shows
size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

big ′

〈proof 〉

lemma step-4-pop-small-size-ok-4-aux: [[
0 < size small;
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3 ∗
(size-new small − 1 )
〈proof 〉

lemma step-4-pop-small-size-ok-4 :
assumes

invar (States dir big small)

48



0 < size small
Small.pop small = (x, smallP)
remaining-steps (States dir big smallP) ≥ 4
((step ^^ 4 ) (States dir big smallP)) = (States dir ′ big ′ small ′)
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new

small
shows

size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′
〈proof 〉

lemma step-4-pop-big-size-ok-4-aux: [[
0 < size big;
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big − 1 + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3 ∗
size-new small
〈proof 〉

lemma step-4-pop-big-size-ok-4 :
assumes

invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4 ) (States dir bigP small)) = (States dir ′ big ′ small ′)
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

shows
size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

small ′
〈proof 〉

lemma step-4-push-small-size-ok-1 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
〈proof 〉

lemma step-4-push-big-size-ok-1 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
〈proof 〉

lemma step-4-push-small-size-ok-2 : [[

49



invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

〈proof 〉

lemma step-4-push-big-size-ok-2 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

〈proof 〉

lemma step-4-push-small-size-ok-3-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ Suc (size-new small) + (remaining-steps (States dir big small) − 4 ) + 2 ≤
3 ∗ size-new big
〈proof 〉

lemma step-4-push-small-size-ok-3 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗
size-new big ′

〈proof 〉

lemma step-4-push-big-size-ok-3-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3 ∗
Suc (size-new big)
〈proof 〉

lemma step-4-push-big-size-ok-3 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗
size-new big ′

〈proof 〉

lemma step-4-push-small-size-ok-4-aux: [[
4 ≤ remaining-steps (States dir big small);

50



size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small
]] =⇒ size-new big + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3 ∗ Suc
(size-new small)
〈proof 〉

lemma step-4-push-small-size-ok-4 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′
〈proof 〉

lemma step-4-push-big-size-ok-4-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ Suc (size-new big) + (remaining-steps (States dir big small) − 4 ) + 2 ≤ 3
∗ size-new small
〈proof 〉

lemma step-4-push-big-size-ok-4 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4 ) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′
〈proof 〉

lemma step-4-push-small-size-ok: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4 ) (States dir big (Small.push x small)))
〈proof 〉

lemma step-4-push-big-size-ok: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4 ) (States dir (Big.push x big) small))
〈proof 〉

lemma step-4-pop-small-size-ok: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);

51



size-ok (States dir big small)
]] =⇒ size-ok ((step^^4 ) (States dir big smallP))
〈proof 〉

lemma step-4-pop-big-size-ok: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4 ) (States dir bigP small))
〈proof 〉

lemma size-ok-size-small: size-ok (States dir big small) =⇒ 0 < size small
〈proof 〉

lemma size-ok-size-big: size-ok (States dir big small) =⇒ 0 < size big
〈proof 〉

lemma size-ok-size-new-small: size-ok (States dir big small) =⇒ 0 < size-new
small
〈proof 〉

lemma size-ok-size-new-big: size-ok (States dir big small) =⇒ 0 < size-new big
〈proof 〉

lemma step-size-ok ′: [[invar states; size-ok ′ states n]] =⇒ size-ok ′ (step states) n
〈proof 〉

lemma step-same: step (States dir big small) = States dir ′ big ′ small ′ =⇒ dir =
dir ′

〈proof 〉

lemma step-n-same: (step^^n) (States dir big small) = States dir ′ big ′ small ′ =⇒
dir = dir ′

〈proof 〉

lemma step-listL: invar states =⇒ listL (step states) = listL states
〈proof 〉

lemma step-n-listL: invar states =⇒ listL ((step^^n) states) = listL states
〈proof 〉

lemma listL-remaining-steps:
assumes

listL states = []
0 < remaining-steps states
invar states
size-ok states

shows

52



False
〈proof 〉

lemma invar-step-n: invar (states :: ′a states) =⇒ invar ((step^^n) states)
〈proof 〉

lemma step-n-size-ok ′: [[invar states; size-ok ′ states x]] =⇒ size-ok ′ ((step ^^ n)
states) x
〈proof 〉

lemma size-ok-steps: [[
invar states;
size-ok ′ states (remaining-steps states − n)

]] =⇒ size-ok ((step ^^ n) states)
〈proof 〉

lemma remaining-steps-idle: invar states
=⇒ remaining-steps states = 0 ←→ (

case states of
States - (Big2 (Common.Idle - -)) (Small3 (Common.Idle - -)) ⇒ True

| - ⇒ False)
〈proof 〉

lemma remaining-steps-idle ′:
[[invar (States dir big small); remaining-steps (States dir big small) = 0 ]]
=⇒ ∃ big-current big-idle small-current small-idle. States dir big small =

States dir
(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

〈proof 〉

end

19 Dequeue Proofs
theory RealTimeDeque-Dequeue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin

lemma list-deqL ′ [simp]: [[invar deque; listL deque 6= []; deqL ′ deque = (x, deque ′)]]
=⇒ x # listL deque ′ = listL deque

〈proof 〉

lemma list-deqL [simp]:
[[invar deque; listL deque 6= []]] =⇒ listL (deqL deque) = tl (listL deque)
〈proof 〉

lemma list-firstL [simp]:
[[invar deque; listL deque 6= []]] =⇒ firstL deque = hd (listL deque)

53



〈proof 〉

lemma invar-deqL:
[[invar deque; ¬ is-empty deque]] =⇒ invar (deqL deque)

〈proof 〉

end

20 Enqueue Proofs
theory RealTimeDeque-Enqueue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin

lemma list-enqL: invar deque =⇒ listL (enqL x deque) = x # listL deque
〈proof 〉

lemma invar-enqL: invar deque =⇒ invar (enqL x deque)
〈proof 〉

end

21 Top-Level Proof
theory RealTimeDeque-Proof
imports RealTimeDeque-Dequeue-Proof RealTimeDeque-Enqueue-Proof
begin

lemma swap-lists-left: invar (States Left big small) =⇒
States-Aux.listL (States Left big small) = rev (States-Aux.listL (States Right

big small))
〈proof 〉

lemma swap-lists-right: invar (States Right big small) =⇒
States-Aux.listL (States Right big small) = rev (States-Aux.listL (States Left

big small))
〈proof 〉

lemma swap-list [simp]: invar q =⇒ listR (swap q) = listL q
〈proof 〉

lemma swap-list ′: invar q =⇒ listL (swap q) = listR q
〈proof 〉

lemma lists-same: lists (States Left big small) = lists (States Right big small)
〈proof 〉

lemma invar-swap: invar q =⇒ invar (swap q)

54



〈proof 〉

lemma listL-is-empty: invar deque =⇒ is-empty deque = (listL deque = [])
〈proof 〉

interpretation RealTimeDeque: Deque where
empty = empty and
enqL = enqL and
enqR = enqR and
firstL = firstL and
firstR = firstR and
deqL = deqL and
deqR = deqR and
is-empty = is-empty and
listL = listL and
invar = invar
〈proof 〉

end

References
[1] T. Chuang and B. Goldberg. Real-time deques, multihead Turing ma-

chines, and purely functional programming. In J. Williams, editor, Pro-
ceedings of the conference on Functional programming languages and
computer architecture, FPCA 1993, Copenhagen, Denmark, June 9-11,
1993, pages 289–298. ACM, 1993.

55


	Double-Ended Queue Specification
	Type Classes
	Stack
	Current Stack
	Idle
	Common
	Bigger End of Deque
	Smaller End of Deque
	Combining Big and Small
	Real-Time Deque Implementation
	Basic Lemma Library
	Stack Proofs
	Idle Proofs
	Current Proofs
	Common Proofs
	Big Proofs
	Small Proofs
	Big + Small Proofs
	Dequeue Proofs
	Enqueue Proofs
	Top-Level Proof

