
Real-Time Double-Ended Queue

Balazs Toth and Tobias Nipkow
Technical University of Munich

March 17, 2025

Abstract

A double-ended queue (deque) is a queue where one can enqueue
and dequeue at both ends. We define and verify the deque implemen-
tation by Chuang and Goldberg [1]. It is purely functional and all
operations run in constant time.

Contents
1 Double-Ended Queue Specification 2

2 Type Classes 3

3 Stack 4

4 Current Stack 4

5 Idle 5

6 Common 5

7 Bigger End of Deque 7

8 Smaller End of Deque 8

9 Combining Big and Small 9

10 Real-Time Deque Implementation 10

11 Basic Lemma Library 24

12 Stack Proofs 26

13 Idle Proofs 28

14 Current Proofs 29

1

15 Common Proofs 31

16 Big Proofs 41

17 Small Proofs 48

18 Big + Small Proofs 53

19 Dequeue Proofs 79

20 Enqueue Proofs 89

21 Top-Level Proof 96

1 Double-Ended Queue Specification
theory Deque
imports Main
begin

Model-oriented specification in terms of an abstraction function to a list.
locale Deque =
fixes empty :: ′q
fixes enqL :: ′a ⇒ ′q ⇒ ′q
fixes enqR :: ′a ⇒ ′q ⇒ ′q
fixes firstL :: ′q ⇒ ′a
fixes firstR :: ′q ⇒ ′a
fixes deqL :: ′q ⇒ ′q
fixes deqR :: ′q ⇒ ′q
fixes is-empty :: ′q ⇒ bool
fixes listL :: ′q ⇒ ′a list
fixes invar :: ′q ⇒ bool

assumes list-empty:
listL empty = []

assumes list-enqL:
invar q =⇒ listL(enqL x q) = x # listL q

assumes list-enqR:
invar q =⇒ rev (listL (enqR x q)) = x # rev (listL q)

assumes list-deqL:
[[invar q; ¬ listL q = []]] =⇒ listL(deqL q) = tl(listL q)

assumes list-deqR:
[[invar q; ¬ rev (listL q) = []]] =⇒ rev (listL (deqR q)) = tl (rev (listL q))

assumes list-firstL:
[[invar q; ¬ listL q = []]] =⇒ firstL q = hd(listL q)

assumes list-firstR:

2

[[invar q; ¬ rev (listL q) = []]] =⇒ firstR q = hd(rev(listL q))

assumes list-is-empty:
invar q =⇒ is-empty q = (listL q = [])

assumes invar-empty:
invar empty

assumes invar-enqL:
invar q =⇒ invar(enqL x q)

assumes invar-enqR:
invar q =⇒ invar(enqR x q)

assumes invar-deqL:
[[invar q; ¬ is-empty q]] =⇒ invar(deqL q)

assumes invar-deqR:
[[invar q; ¬ is-empty q]] =⇒ invar(deqR q)

begin

abbreviation listR :: ′q ⇒ ′a list where
listR deque ≡ rev (listL deque)

end

end

2 Type Classes
theory Type-Classes
imports Main
begin

Overloaded functions:
class is-empty =

fixes is-empty :: ′a ⇒ bool

class invar =
fixes invar :: ′a ⇒ bool

class size-new =
fixes size-new :: ′a ⇒ nat

class step =
fixes step :: ′a ⇒ ′a

class remaining-steps =
fixes remaining-steps :: ′a ⇒ nat

3

end

3 Stack
theory Stack
imports Type-Classes
begin

A datatype encapsulating two lists. Is used as a base data-structure in
different places. It has the operations push, pop and first.
datatype (plugins del: size) ′a stack = Stack ′a list ′a list

fun push :: ′a ⇒ ′a stack ⇒ ′a stack where
push x (Stack left right) = Stack (x#left) right

fun pop :: ′a stack ⇒ ′a stack where
pop (Stack [] []) = Stack [] []
| pop (Stack (x#left) right) = Stack left right
| pop (Stack [] (x#right)) = Stack [] right

fun first :: ′a stack ⇒ ′a where
first (Stack (x#left) right) = x
| first (Stack [] (x#right)) = x

instantiation stack ::(type) is-empty
begin

fun is-empty-stack where
is-empty-stack (Stack [] []) = True
| is-empty-stack - = False

instance..
end

end

4 Current Stack
theory Current
imports Stack
begin

This data structure is composed of:

• the newly added elements to one end of a deque during the rebalancing
phase

• the number of these newly added elements

4

• the originally contained elements

• the number of elements which will be contained after the rebalancing
is finished.

datatype (plugins del: size) ′a current = Current ′a list nat ′a stack nat

fun push :: ′a ⇒ ′a current ⇒ ′a current where
push x (Current extra added old remained) = Current (x#extra) (added + 1) old

remained

fun pop :: ′a current ⇒ ′a ∗ ′a current where
pop (Current [] added old remained) =
(first old, Current [] added (Stack.pop old) (remained − 1))

| pop (Current (x#xs) added old remained) =
(x, Current xs (added − 1) old remained)

fun first :: ′a current ⇒ ′a where
first current = fst (pop current)

abbreviation drop-first :: ′a current ⇒ ′a current where
drop-first current ≡ snd (pop current)

end

5 Idle
theory Idle
imports Stack
begin

Represents the ‘idle’ state of one deque end. It contains a stack and its
size as a natural number.
datatype (plugins del: size) ′a idle = Idle ′a stack nat

fun push :: ′a ⇒ ′a idle ⇒ ′a idle where
push x (Idle stack stackSize) = Idle (Stack.push x stack) (Suc stackSize)

fun pop :: ′a idle ⇒ (′a ∗ ′a idle) where
pop (Idle stack stackSize) = (Stack.first stack, Idle (Stack.pop stack) (stackSize
− 1))

end

6 Common
theory Common
imports Current Idle

5

begin

The last two phases of both deque ends during rebalancing:

Copy: Using the step function the new elements of this deque end are
brought back into the original order.

Idle: The rebalancing of the deque end is finished.

Each phase contains a current state, that holds the original elements of the
deque end.
datatype (plugins del: size) ′a common-state =

Copy ′a current ′a list ′a list nat
| Idle ′a current ′a idle

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing, while keeping the invariant.

fun normalize :: ′a common-state ⇒ ′a common-state where
normalize (Copy current old new moved) = (

case current of Current extra added - remained ⇒
if moved ≥ remained
then Idle current (idle.Idle (Stack extra new) (added + moved))
else Copy current old new moved

)

instantiation common-state ::(type) step
begin

fun step-common-state :: ′a common-state ⇒ ′a common-state where
step (Idle current idle) = Idle current idle
| step (Copy current aux new moved) = (

case current of Current - - - remained ⇒
normalize (

if moved < remained
then Copy current (tl aux) ((hd aux)#new) (moved + 1)
else Copy current aux new moved

)
)

instance..
end

fun push :: ′a ⇒ ′a common-state ⇒ ′a common-state where
push x (Idle current (idle.Idle stack stackSize)) =

6

Idle (Current.push x current) (idle.Idle (Stack.push x stack) (Suc stackSize))
| push x (Copy current aux new moved) = Copy (Current.push x current) aux new
moved

fun pop :: ′a common-state ⇒ ′a ∗ ′a common-state where
pop (Idle current idle) = (let (x, idle) = Idle.pop idle in (x, Idle (drop-first

current) idle))
| pop (Copy current aux new moved) =

(first current, normalize (Copy (drop-first current) aux new moved))

end

7 Bigger End of Deque
theory Big
imports Common
begin

The bigger end of the deque during rebalancing can be in two phases:

Big1 : Using the step function the originally contained elements, which will
be kept in this end, are reversed.

Big2 : Specified in theory Common. Is used to reverse the elements from
the previous phase again to get them in the original order.

Each phase contains a current state, which holds the original elements of
the deque end.
datatype (plugins del: size) ′a big-state =

Big1 ′a current ′a stack ′a list nat
| Big2 ′a common-state

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing

instantiation big-state ::(type) step
begin

fun step-big-state :: ′a big-state ⇒ ′a big-state where
step (Big2 state) = Big2 (step state)
| step (Big1 current - aux 0) = Big2 (normalize (Copy current aux [] 0))
| step (Big1 current big aux count) =

Big1 current (Stack.pop big) ((Stack.first big)#aux) (count − 1)

instance..

7

end

fun push :: ′a ⇒ ′a big-state ⇒ ′a big-state where
push x (Big2 state) = Big2 (Common.push x state)
| push x (Big1 current big aux count) = Big1 (Current.push x current) big aux
count

fun pop :: ′a big-state ⇒ ′a ∗ ′a big-state where
pop (Big2 state) = (let (x, state) = Common.pop state in (x, Big2 state))
| pop (Big1 current big aux count) =

(first current, Big1 (drop-first current) big aux count)

end

8 Smaller End of Deque
theory Small
imports Common
begin

The smaller end of the deque during Rebalancing can be in one three phases:

Small1 : Using the step function the originally contained elements are re-
versed.

Small2 : Using the step function the newly obtained elements from the
bigger end are reversed on top of the ones reversed in the previous
phase.

Small3 : See theory Common. Is used to reverse the elements from the two
previous phases again to get them again in the original order.

Each phase contains a current state, which holds the original elements of
the deque end.
datatype (plugins del: size) ′a small-state =

Small1 ′a current ′a stack ′a list
| Small2 ′a current ′a list ′a stack ′a list nat
| Small3 ′a common-state

Functions:

push, pop: Add and remove elements using the current state.

step: Executes one step of the rebalancing, while keeping the invariant.

instantiation small-state::(type) step
begin

8

fun step-small-state :: ′a small-state ⇒ ′a small-state where
step (Small3 state) = Small3 (step state)
| step (Small1 current small auxS) = (

if is-empty small
then Small1 current small auxS
else Small1 current (Stack.pop small) ((Stack.first small)#auxS)

)
| step (Small2 current auxS big newS count) = (

if is-empty big
then Small3 (normalize (Copy current auxS newS count))
else Small2 current auxS (Stack.pop big) ((Stack.first big)#newS) (count + 1)

)

instance..
end

fun push :: ′a ⇒ ′a small-state ⇒ ′a small-state where
push x (Small3 state) = Small3 (Common.push x state)
| push x (Small1 current small auxS) = Small1 (Current.push x current) small
auxS
| push x (Small2 current auxS big newS count) =

Small2 (Current.push x current) auxS big newS count

fun pop :: ′a small-state ⇒ ′a ∗ ′a small-state where
pop (Small3 state) = (

let (x, state) = Common.pop state
in (x, Small3 state)

)
| pop (Small1 current small auxS) =

(first current, Small1 (drop-first current) small auxS)
| pop (Small2 current auxS big newS count) =

(first current, Small2 (drop-first current) auxS big newS count)

end

9 Combining Big and Small
theory States
imports Big Small
begin

datatype direction = Left | Right

datatype ′a states = States direction ′a big-state ′a small-state

instantiation states::(type) step
begin

fun step-states :: ′a states ⇒ ′a states where

9

step (States dir (Big1 currentB big auxB 0) (Small1 currentS - auxS)) =
States dir (step (Big1 currentB big auxB 0)) (Small2 currentS auxS big [] 0)

| step (States dir left right) = States dir (step left) (step right)

instance..
end

end

10 Real-Time Deque Implementation
theory RealTimeDeque
imports States
begin

The real-time deque can be in the following states:

Empty: No values stored. No dequeue operation possible.

One: One element in the deque.

Two: Two elements in the deque.

Three: Three elements in the deque.

Idles: Deque with a left and a right end, fulfilling the following invariant:

• 3 * size of left end ≥ size of right end
• 3 * size of right end ≥ size of left end
• Neither of the ends is empty

Rebal: Deque which violated the invariant of the Idles state by non-balanced
dequeue and enqueue operations. The invariants during in this state
are:

• The rebalancing is not done yet. The deque needs to be in Idles
state otherwise.

• The rebalancing is in a valid state (Defined in theory States)
• The two ends of the deque are in a size window, such that after

finishing the rebalancing the invariant of the Idles state will be
met.

Functions:

is-empty: Checks if a deque is in the Empty state

10

deqL ′: Dequeues an element on the left end and return the element and the
deque without this element. If the deque is in idle state and the size
invariant is violated either a rebalancing is started or if there are 3 or
less elements left the respective states are used. On rebalancing start,
six steps are executed initially. During rebalancing state four steps are
executed and if it is finished the deque returns to idle state.

deqL: Removes one element on the left end and only returns the new deque.

firstL: Removes one element on the left end and only returns the element.

enqL: Enqueues an element on the left and returns the resulting deque. Like
in deqL ′ when violating the size invariant in idle state, a rebalancing
with six initial steps is started. During rebalancing state four steps
are executed and if it is finished the deque returns to idle state.

swap: The two ends of the deque are swapped.

deqR ′, deqR, firstR, enqR: Same behaviour as the left-counterparts. Imple-
mented using the left-counterparts by swapping the deque before and
after the operation.

listL, listR: Get all elements of the deque in a list starting at the left or
right end. They are needed as list abstractions for the correctness
proofs.

datatype ′a deque =
Empty
| One ′a
| Two ′a ′a
| Three ′a ′a ′a
| Idles ′a idle ′a idle
| Rebal ′a states

definition empty where
empty = Empty

instantiation deque::(type) is-empty
begin

fun is-empty-deque :: ′a deque ⇒ bool where
is-empty-deque Empty = True
| is-empty-deque - = False

instance..
end

fun swap :: ′a deque ⇒ ′a deque where

11

swap Empty = Empty
| swap (One x) = One x
| swap (Two x y) = Two y x
| swap (Three x y z) = Three z y x
| swap (Idles left right) = Idles right left
| swap (Rebal (States Left big small)) = (Rebal (States Right big small))
| swap (Rebal (States Right big small)) = (Rebal (States Left big small))

fun small-deque :: ′a list ⇒ ′a list ⇒ ′a deque where
small-deque [] [] = Empty

| small-deque (x#[]) [] = One x
| small-deque [] (x#[]) = One x

| small-deque (x#[])(y#[]) = Two y x
| small-deque (x#y#[]) [] = Two y x
| small-deque [] (x#y#[])= Two y x

| small-deque [] (x#y#z#[]) = Three z y x
| small-deque (x#y#z#[]) [] = Three z y x
| small-deque (x#y#[]) (z#[]) = Three z y x
| small-deque (x#[]) (y#z#[]) = Three z y x

fun deqL ′ :: ′a deque ⇒ ′a ∗ ′a deque where
deqL ′ (One x) = (x, Empty)
| deqL ′ (Two x y) = (x, One y)
| deqL ′ (Three x y z) = (x, Two y z)
| deqL ′ (Idles left (idle.Idle right length-right)) = (

case Idle.pop left of (x, (idle.Idle left length-left)) ⇒
if 3 ∗ length-left ≥ length-right
then
(x, Idles (idle.Idle left length-left) (idle.Idle right length-right))

else if length-left ≥ 1
then

let length-left ′ = 2 ∗ length-left + 1 in
let length-right ′ = length-right − length-left − 1 in

let small = Small1 (Current [] 0 left length-left ′) left [] in
let big = Big1 (Current [] 0 right length-right ′) right [] length-right ′ in

let states = States Left big small in
let states = (step^^6) states in

(x, Rebal states)
else

case right of Stack r1 r2 ⇒ (x, small-deque r1 r2)
)
| deqL ′ (Rebal (States Left big small)) = (

let (x, small) = Small.pop small in

12

let states = (step^^4) (States Left big small) in
case states of

States Left
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ (x, Idles small big)

| - ⇒ (x, Rebal states)
)
| deqL ′ (Rebal (States Right big small)) = (

let (x, big) = Big.pop big in
let states = (step^^4) (States Right big small) in
case states of

States Right
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small)) ⇒
(x, Idles big small)

| - ⇒ (x, Rebal states)
)

fun deqR ′ :: ′a deque ⇒ ′a ∗ ′a deque where
deqR ′ deque = (

let (x, deque) = deqL ′ (swap deque)
in (x, swap deque)

)

fun deqL :: ′a deque ⇒ ′a deque where
deqL deque = (let (-, deque) = deqL ′ deque in deque)

fun deqR :: ′a deque ⇒ ′a deque where
deqR deque = (let (-, deque) = deqR ′ deque in deque)

fun firstL :: ′a deque ⇒ ′a where
firstL deque = (let (x, -) = deqL ′ deque in x)

fun firstR :: ′a deque ⇒ ′a where
firstR deque = (let (x, -) = deqR ′ deque in x)

fun enqL :: ′a ⇒ ′a deque ⇒ ′a deque where
enqL x Empty = One x
| enqL x (One y) = Two x y
| enqL x (Two y z) = Three x y z
| enqL x (Three a b c) = Idles (idle.Idle (Stack [x, a] []) 2) (idle.Idle (Stack [c, b]
[]) 2)
| enqL x (Idles left (idle.Idle right length-right)) = (

case Idle.push x left of idle.Idle left length-left ⇒
if 3 ∗ length-right ≥ length-left
then

Idles (idle.Idle left length-left) (idle.Idle right length-right)
else

13

let length-left = length-left − length-right − 1 in
let length-right = 2 ∗ length-right + 1 in

let big = Big1 (Current [] 0 left length-left) left [] length-left in
let small = Small1 (Current [] 0 right length-right) right [] in

let states = States Right big small in
let states = (step^^6) states in

Rebal states
)
| enqL x (Rebal (States Left big small)) = (

let small = Small.push x small in
let states = (step^^4) (States Left big small) in
case states of

States Left
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ Idles small big

| - ⇒ Rebal states
)
| enqL x (Rebal (States Right big small)) = (

let big = Big.push x big in
let states = (step^^4) (States Right big small) in
case states of

States Right
(Big2 (Common.Idle - big))
(Small3 (Common.Idle - small))
⇒ Idles big small

| - ⇒ Rebal states
)

fun enqR :: ′a ⇒ ′a deque ⇒ ′a deque where
enqR x deque = (

let deque = enqL x (swap deque)
in swap deque

)

end
theory Stack-Aux
imports Stack
begin

The function list appends the two lists and is needed for the list abstrac-
tion of the deque.
fun list :: ′a stack ⇒ ′a list where

list (Stack left right) = left @ right

instantiation stack ::(type) size

14

begin

fun size-stack :: ′a stack ⇒ nat where
size (Stack left right) = length left + length right

instance..
end

end
theory Current-Aux
imports Current Stack-Aux
begin

Specification functions:

list: list abstraction for the originally contained elements of a deque end
during transformation.

invar : Is the stored number of newly added elements correct?

size: The number of the originally contained elements.

size-new: Number of elements which will be contained after the transfor-
mation is finished.

fun list :: ′a current ⇒ ′a list where
list (Current extra - old -) = extra @ (Stack-Aux.list old)

instantiation current::(type) invar
begin

fun invar-current :: ′a current ⇒ bool where
invar (Current extra added - -) ←→ length extra = added

instance..
end

instantiation current::(type) size
begin

fun size-current :: ′a current ⇒ nat where
size (Current - added old -) = added + size old

instance..
end

instantiation current::(type) size-new
begin

fun size-new-current :: ′a current ⇒ nat where

15

size-new (Current - added - remained) = added + remained

instance..
end

end
theory Idle-Aux
imports Idle Stack-Aux
begin

fun list :: ′a idle ⇒ ′a list where
list (Idle stack -) = Stack-Aux.list stack

instantiation idle :: (type) size
begin

fun size-idle :: ′a idle ⇒ nat where
size (Idle stack -) = size stack

instance..
end

instantiation idle :: (type) is-empty
begin

fun is-empty-idle :: ′a idle ⇒ bool where
is-empty (Idle stack -) ←→ is-empty stack

instance..
end

instantiation idle ::(type) invar
begin

fun invar-idle :: ′a idle ⇒ bool where
invar (Idle stack stackSize) ←→ size stack = stackSize

instance..
end

end
theory Common-Aux
imports Common Current-Aux Idle-Aux
begin

Functions:

list: List abstraction of the elements which this end will contain after the
rebalancing is finished

16

list-current: List abstraction of the elements currently in this deque end.

remaining-steps: Returns how many steps are left until the rebalancing is
finished.

size-new: Returns the size, that the deque end will have after the rebalanc-
ing is finished.

size: Minimum of size-new and the number of elements contained in the
current state.

definition take-rev where
[simp]: take-rev n xs = rev (take n xs)

fun list :: ′a common-state ⇒ ′a list where
list (Idle - idle) = Idle-Aux.list idle
| list (Copy (Current extra - - remained) old new moved)

= extra @ take-rev (remained − moved) old @ new

fun list-current :: ′a common-state ⇒ ′a list where
list-current (Idle current -) = Current-Aux.list current
| list-current (Copy current - - -) = Current-Aux.list current

instantiation common-state::(type) invar
begin

fun invar-common-state :: ′a common-state ⇒ bool where
invar (Idle current idle) ←→

invar idle
∧ invar current
∧ size-new current = size idle
∧ take (size idle) (Current-Aux.list current) =

take (size current) (Idle-Aux.list idle)
| invar (Copy current aux new moved) ←→ (

case current of Current - - old remained ⇒
moved < remained
∧ moved = length new
∧ remained ≤ length aux + moved
∧ invar current
∧ take remained (Stack-Aux.list old) = take (size old) (take-rev (remained −

moved) aux @ new)
)

instance..
end

instantiation common-state::(type) size
begin

17

fun size-common-state :: ′a common-state ⇒ nat where
size (Idle current idle) = min (size current) (size idle)
| size (Copy current - - -) = min (size current) (size-new current)

instance..
end

instantiation common-state::(type) size-new
begin

fun size-new-common-state :: ′a common-state ⇒ nat where
size-new (Idle current -) = size-new current
| size-new (Copy current - - -) = size-new current

instance..
end

instantiation common-state::(type) remaining-steps
begin

fun remaining-steps-common-state :: ′a common-state ⇒ nat where
remaining-steps (Idle - -) = 0
| remaining-steps (Copy (Current - - - remained) aux new moved) = remained −
moved

instance..
end

end
theory Big-Aux
imports Big Common-Aux
begin

Functions:

size-new: Returns the size that the deque end will have after the rebalancing
is finished.

size: Minimum of size-new and the number of elements contained in the
current state.

remaining-steps: Returns how many steps are left until the rebalancing is
finished.

list: List abstraction of the elements which this end will contain after the
rebalancing is finished

list-current: List abstraction of the elements currently in this deque end.

18

fun list :: ′a big-state ⇒ ′a list where
list (Big2 common) = Common-Aux.list common
| list (Big1 (Current extra - - remained) big aux count) = (

let reversed = take-rev count (Stack-Aux.list big) @ aux in
extra @ (take-rev remained reversed)

)

fun list-current :: ′a big-state ⇒ ′a list where
list-current (Big2 common) = Common-Aux.list-current common
| list-current (Big1 current - - -) = Current-Aux.list current

instantiation big-state ::(type) invar
begin

fun invar-big-state :: ′a big-state ⇒ bool where
invar (Big2 state) ←→ invar state
| invar (Big1 current big aux count) ←→ (

case current of Current extra added old remained ⇒
invar current
∧ remained ≤ length aux + count
∧ count ≤ size big
∧ Stack-Aux.list old = rev (take (size old) ((rev (Stack-Aux.list big)) @ aux))
∧ take remained (Stack-Aux.list old) =

rev (take remained (take-rev count (Stack-Aux.list big) @ aux))
)

instance..
end

instantiation big-state ::(type) size
begin

fun size-big-state :: ′a big-state ⇒ nat where
size (Big2 state) = size state
| size (Big1 current - - -) = min (size current) (size-new current)

instance..
end

instantiation big-state ::(type) size-new
begin

fun size-new-big-state :: ′a big-state ⇒ nat where
size-new (Big2 state) = size-new state
| size-new (Big1 current - - -) = size-new current

instance..
end

19

instantiation big-state ::(type) remaining-steps
begin

fun remaining-steps-big-state :: ′a big-state ⇒ nat where
remaining-steps (Big2 state) = remaining-steps state
| remaining-steps (Big1 (Current - - - remaining) - - count) = count + remaining
+ 1

instance..
end

end
theory Small-Aux
imports Small Common-Aux
begin

Functions:

size-new: Returns the size, that the deque end will have after the rebalanc-
ing is finished.

size: Minimum of size-new and the number of elements contained in the
‘current‘ state.

list: List abstraction of the elements which this end will contain after the
rebalancing is finished. The first phase is not covered, since the el-
ements, which will be transferred from the bigger deque end are not
known yet.

list-current: List abstraction of the elements currently in this deque end.

fun list :: ′a small-state ⇒ ′a list where
list (Small3 common) = Common-Aux.list common
| list (Small2 (Current extra - - remained) aux big new count) =

extra @ (take-rev (remained − (count + size big)) aux) @ (rev (Stack-Aux.list
big) @ new)

fun list-current :: ′a small-state ⇒ ′a list where
list-current (Small3 common) = Common-Aux.list-current common
| list-current (Small2 current - - - -) = Current-Aux.list current
| list-current (Small1 current - -) = Current-Aux.list current

instantiation small-state::(type) invar
begin

fun invar-small-state :: ′a small-state ⇒ bool where
invar (Small3 state) = invar state
| invar (Small2 current auxS big newS count) = (

case current of Current - - old remained ⇒

20

remained = count + size big + size old
∧ count = List.length newS
∧ invar current
∧ List.length auxS ≥ size old
∧ Stack-Aux.list old = rev (take (size old) auxS)

)
| invar (Small1 current small auxS) = (

case current of Current - - old remained ⇒
invar current
∧ remained ≥ size old
∧ size small + List.length auxS ≥ size old
∧ Stack-Aux.list old = rev (take (size old) (rev (Stack-Aux.list small) @ auxS))

)

instance..
end

instantiation small-state::(type) size
begin

fun size-small-state :: ′a small-state ⇒ nat where
size (Small3 state) = size state
| size (Small2 current - - - -) = min (size current) (size-new current)
| size (Small1 current - -) = min (size current) (size-new current)

instance..
end

instantiation small-state::(type) size-new
begin

fun size-new-small-state :: ′a small-state ⇒ nat where
size-new (Small3 state) = size-new state
| size-new (Small2 current - - - -) = size-new current
| size-new (Small1 current - -) = size-new current

instance..
end

end
theory States-Aux
imports States Big-Aux Small-Aux
begin

instantiation states::(type) remaining-steps
begin

fun remaining-steps-states :: ′a states ⇒ nat where
remaining-steps (States - big small) = max

21

(remaining-steps big)
(case small of

Small3 common ⇒ remaining-steps common
| Small2 (Current - - - remaining) - big - count ⇒ remaining − count + 1
| Small1 (Current - - - remaining) - - ⇒

case big of Big1 currentB big auxB count ⇒ remaining + count + 2
)

instance..
end

fun lists :: ′a states ⇒ ′a list ∗ ′a list where
lists (States - (Big1 currentB big auxB count) (Small1 currentS small auxS)) = (

Big-Aux.list (Big1 currentB big auxB count),
Small-Aux.list (Small2 currentS (take-rev count (Stack-Aux.list small) @ auxS)

((Stack.pop ^^ count) big) [] 0)
)
| lists (States - big small) = (Big-Aux.list big, Small-Aux.list small)

fun list-small-first :: ′a states ⇒ ′a list where
list-small-first states = (let (big, small) = lists states in small @ (rev big))

fun list-big-first :: ′a states ⇒ ′a list where
list-big-first states = (let (big, small) = lists states in big @ (rev small))

fun lists-current :: ′a states ⇒ ′a list ∗ ′a list where
lists-current (States - big small) = (Big-Aux.list-current big, Small-Aux.list-current

small)

fun list-current-small-first :: ′a states ⇒ ′a list where
list-current-small-first states = (let (big, small) = lists-current states in small @

(rev big))

fun list-current-big-first :: ′a states ⇒ ′a list where
list-current-big-first states = (let (big, small) = lists-current states in big @ (rev

small))

fun listL :: ′a states ⇒ ′a list where
listL (States Left big small) = list-small-first (States Left big small)
| listL (States Right big small) = list-big-first (States Right big small)

instantiation states::(type) invar
begin

fun invar-states :: ′a states ⇒ bool where
invar (States dir big small) ←→ (

invar big
∧ invar small
∧ list-small-first (States dir big small) = list-current-small-first (States dir big

22

small)
∧ (case (big, small) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
))

instance..
end

fun size-ok ′ :: ′a states ⇒ nat ⇒ bool where
size-ok ′ (States - big small) steps ←→

size-new small + steps + 2 ≤ 3 ∗ size-new big
∧ size-new big + steps + 2 ≤ 3 ∗ size-new small
∧ steps + 1 ≤ 4 ∗ size small
∧ steps + 1 ≤ 4 ∗ size big

abbreviation size-ok :: ′a states ⇒ bool where
size-ok states ≡ size-ok ′ states (remaining-steps states)

abbreviation size-small where size-small states ≡ case states of States - - small
⇒ size small

abbreviation size-new-small where
size-new-small states ≡ case states of States - - small ⇒ size-new small

abbreviation size-big where size-big states ≡ case states of States - big - ⇒ size
big

abbreviation size-new-big where
size-new-big states ≡ case states of States - big - ⇒ size-new big

end
theory RealTimeDeque-Aux

imports RealTimeDeque States-Aux
begin

listL, listR: Get all elements of the deque in a list starting at the left or
right end. They are needed as list abstractions for the correctness
proofs.

fun listL :: ′a deque ⇒ ′a list where
listL Empty = []
| listL (One x) = [x]
| listL (Two x y) = [x, y]

23

| listL (Three x y z) = [x, y, z]
| listL (Idles left right) = Idle-Aux.list left @ (rev (Idle-Aux.list right))
| listL (Rebal states) = States-Aux.listL states

abbreviation listR :: ′a deque ⇒ ′a list where
listR deque ≡ rev (listL deque)

instantiation deque::(type) invar
begin

fun invar-deque :: ′a deque ⇒ bool where
invar Empty = True
| invar (One -) = True
| invar (Two - -) = True
| invar (Three - - -) = True
| invar (Idles left right) ←→

invar left ∧
invar right ∧
¬ is-empty left ∧
¬ is-empty right ∧
3 ∗ size right ≥ size left ∧
3 ∗ size left ≥ size right

| invar (Rebal states) ←→
invar states ∧
size-ok states ∧
0 < remaining-steps states

instance..
end

end

11 Basic Lemma Library
theory RTD-Util
imports Main
begin

lemma take-last-length: [[take (Suc 0) (rev xs) = [last xs]]] =⇒ Suc 0 ≤ length xs
by(induction xs) auto

lemma take-last: xs 6= [] =⇒ take 1 (rev xs) = [last xs]
by(induction xs)(auto simp: take-last-length)

lemma take-hd [simp]: xs 6= [] =⇒ take (Suc 0) xs = [hd xs]
by(induction xs) auto

24

lemma cons-tl: x # xs = ys =⇒ xs = tl ys
by auto

lemma cons-hd: x # xs = ys =⇒ x = hd ys
by auto

lemma take-hd ′: ys 6= [] =⇒ take (size ys) (x # xs) = take (Suc (size xs)) ys =⇒
hd ys = x

by(induction ys) auto

lemma rev-app-single: rev xs @ [x] = rev (x # xs)
by auto

lemma hd-drop-1 [simp]: xs 6= [] =⇒ hd xs # drop (Suc 0) xs = xs
by(induction xs) auto

lemma hd-drop [simp]: n < length xs =⇒ hd (drop n xs) # drop (Suc n) xs =
drop n xs

by(induction xs)(auto simp: list.expand tl-drop)

lemma take-1 : 0 < x ∧ 0 < y =⇒ take x xs = take y ys =⇒ take 1 xs = take 1
ys

by (metis One-nat-def bot-nat-0 .not-eq-extremum hd-take take-Suc take-eq-Nil)

lemma last-drop-rev: xs 6= [] =⇒ last xs # drop 1 (rev xs) = rev xs
by (metis One-nat-def hd-drop-1 hd-rev rev.simps(1) rev-rev-ident)

lemma Suc-min [simp]: 0 < x =⇒ 0 < y =⇒ Suc (min (x − Suc 0) (y − Suc
0)) = min x y

by auto

lemma rev-tl-hd: xs 6= [] =⇒ rev (tl xs) @ [hd xs] = rev xs
by (simp add: rev-app-single)

lemma app-rev: as @ rev bs = cs @ rev ds =⇒ bs @ rev as = ds @ rev cs
by (metis rev-append rev-rev-ident)

lemma tl-drop-2 : tl (drop n xs) = drop (Suc n) xs
by (simp add: drop-Suc tl-drop)

lemma Suc-sub: Suc n = m =⇒ n = m − 1
by simp

lemma length-one-hd: length xs = 1 =⇒ xs = [hd xs]
by(induction xs) auto

end

25

12 Stack Proofs
theory Stack-Proof
imports Stack-Aux RTD-Util
begin

lemma push-list [simp]: list (push x stack) = x # list stack
by(cases stack) auto

lemma pop-list [simp]: list (pop stack) = tl (list stack)
by(induction stack rule: pop.induct) auto

lemma first-list [simp]: ¬ is-empty stack =⇒ first stack = hd (list stack)
by(induction stack rule: first.induct) auto

lemma list-empty: list stack = [] ←→ is-empty stack
by(induction stack rule: is-empty-stack.induct) auto

lemma list-not-empty: list stack 6= [] ←→ ¬ is-empty stack
by(induction stack rule: is-empty-stack.induct) auto

lemma list-empty-2 [simp]: [[list stack 6= []; is-empty stack]] =⇒ False
by (simp add: list-empty)

lemma list-not-empty-2 [simp]:[[list stack = []; ¬ is-empty stack]] =⇒ False
by (simp add: list-empty)

lemma list-empty-size: list stack = [] ←→ size stack = 0
by(induction stack) auto

lemma list-not-empty-size:list stack 6= [] ←→ 0 < size stack
by(induction stack) auto

lemma list-empty-size-2 [simp]: [[list stack 6= []; size stack = 0]] =⇒ False
by (simp add: list-empty-size)

lemma list-not-empty-size-2 [simp]:[[list stack = []; 0 < size stack]] =⇒ False
by (simp add: list-empty-size)

lemma size-push [simp]: size (push x stack) = Suc (size stack)
by(cases stack) auto

lemma size-pop [simp]: size (pop stack) = size stack − Suc 0
by(induction stack rule: pop.induct) auto

lemma size-empty: size (stack :: ′a stack) = 0 ←→ is-empty stack
by(induction stack rule: is-empty-stack.induct) auto

lemma size-not-empty: size (stack :: ′a stack) > 0 ←→ ¬ is-empty stack

26

by(induction stack rule: is-empty-stack.induct) auto

lemma size-empty-2 [simp]: [[size (stack :: ′a stack) = 0 ; ¬is-empty stack]] =⇒
False

by (simp add: size-empty)

lemma size-not-empty-2 [simp]: [[0 < size (stack :: ′a stack); is-empty stack]] =⇒
False

by (simp add: size-not-empty)

lemma size-list-length [simp]: length (list stack) = size stack
by(cases stack) auto

lemma first-pop [simp]: ¬ is-empty stack =⇒ first stack # list (pop stack) = list
stack

by(induction stack rule: pop.induct) auto

lemma push-not-empty [simp]: [[¬ is-empty stack; is-empty (push x stack)]] =⇒
False

by(induction x stack rule: push.induct) auto

lemma pop-list-length [simp]: ¬ is-empty stack
=⇒ Suc (length (list (pop stack))) = length (list stack)

by(induction stack rule: pop.induct) auto

lemma first-take: ¬is-empty stack =⇒ [first stack] = take 1 (list stack)
by (simp add: list-empty)

lemma first-take-tl [simp]: 0 < size big
=⇒ (first big # take count (tl (list big))) = take (Suc count) (list big)

by(induction big rule: Stack.first.induct) auto

lemma first-take-pop [simp]: [[¬is-empty stack; 0 < x]]
=⇒ first stack # take (x − Suc 0) (list (pop stack)) = take x (list stack)

by(induction stack rule: pop.induct) (auto simp: take-Cons ′)

lemma [simp]: first (Stack [] []) = undefined
by (meson first.elims list.distinct(1) stack.inject)

lemma first-hd: first stack = hd (list stack)
by(induction stack rule: first.induct)(auto simp: hd-def)

lemma pop-tl [simp]: list (pop stack) = tl (list stack)
by(induction stack rule: pop.induct) auto

lemma pop-drop: list (pop stack) = drop 1 (list stack)
by (simp add: drop-Suc)

lemma popN-drop [simp]: list ((pop ^^ n) stack) = drop n (list stack)

27

by(induction n)(auto simp: drop-Suc tl-drop)

lemma popN-size [simp]: size ((pop ^^ n) stack) = (size stack) − n
by(induction n) auto

lemma take-first: [[0 < size s1 ; 0 < size s2 ; take (size s1) (list s2) = take (size
s2) (list s1)]]

=⇒ first s1 = first s2
by(induction s1 rule: first.induct; induction s2 rule: first.induct) auto

end

13 Idle Proofs
theory Idle-Proof

imports Idle-Aux Stack-Proof
begin

lemma push-list [simp]: list (push x idle) = x # list idle
by(induction idle arbitrary: x) auto

lemma pop-list [simp]: [[¬ is-empty idle; pop idle = (x, idle ′)]] =⇒ x # list idle ′

= list idle
by(induction idle arbitrary: x)(auto simp: list-not-empty)

lemma pop-list-tl [simp]:
[[¬ is-empty idle; pop idle = (x, idle ′)]] =⇒ x # (tl (list idle)) = list idle

by(induction idle arbitrary: x) (auto simp: list-not-empty)

lemma pop-list-tl ′ [simp]: [[pop idle = (x, idle ′)]] =⇒ list idle ′ = tl (list idle)
by(induction idle arbitrary: x)(auto simp: drop-Suc)

lemma size-push [simp]: size (push x idle) = Suc (size idle)
by(induction idle arbitrary: x) auto

lemma size-pop [simp]: [[¬is-empty idle; pop idle = (x, idle ′)]] =⇒ Suc (size idle ′)
= size idle

by(induction idle arbitrary: x)(auto simp: size-not-empty)

lemma size-pop-sub: [[pop idle = (x, idle ′)]] =⇒ size idle ′ = size idle − 1
by(induction idle arbitrary: x) auto

lemma invar-push: invar idle =⇒ invar (push x idle)
by(induction x idle rule: push.induct) auto

lemma invar-pop: [[invar idle; pop idle = (x, idle ′)]] =⇒ invar idle ′

by(induction idle arbitrary: x rule: pop.induct) auto

lemma size-empty: size idle = 0 ←→ is-empty (idle :: ′a idle)

28

by(induction idle)(auto simp: size-empty)

lemma size-not-empty: 0 < size idle ←→ ¬is-empty (idle :: ′a idle)
by(induction idle)(auto simp: size-not-empty)

lemma size-empty-2 [simp]: [[¬is-empty (idle :: ′a idle); 0 = size idle]] =⇒ False
by (simp add: size-empty)

lemma size-not-empty-2 [simp]: [[is-empty (idle :: ′a idle); 0 < size idle]] =⇒ False

by (simp add: size-not-empty)

lemma list-empty: list idle = [] ←→ is-empty idle
by(induction idle)(simp add: list-empty)

lemma list-not-empty: list idle 6= [] ←→ ¬ is-empty idle
by(induction idle)(simp add: list-not-empty)

lemma list-empty-2 [simp]: [[list idle = []; ¬is-empty (idle :: ′a idle)]] =⇒ False
using list-empty by blast

lemma list-not-empty-2 [simp]: [[list idle 6= []; is-empty (idle :: ′a idle)]] =⇒ False
using list-not-empty by blast

lemma list-empty-size: list idle = [] ←→ 0 = size idle
by (simp add: list-empty size-empty)

lemma list-not-empty-size: list idle 6= [] ←→ 0 < size idle
by (simp add: list-empty-size)

lemma list-empty-size-2 [simp]: [[list idle 6= []; 0 = size idle]] =⇒ False
by (simp add: list-empty size-empty)

lemma list-not-empty-size-2 [simp]: [[list idle = []; 0 < size idle]] =⇒ False
by (simp add: list-empty-size)

end

14 Current Proofs
theory Current-Proof
imports Current-Aux Stack-Proof
begin

lemma push-list [simp]: list (push x current) = x # list current
by(induction x current rule: push.induct) auto

lemma pop-list [simp]:
[[0 < size current; invar current]] =⇒ fst (pop current) # tl (list current) = list

29

current
by(induction current rule: pop.induct)(auto simp: size-not-empty list-not-empty)

lemma drop-first-list [simp]: [[invar current; 0 < size current]]
=⇒ list (drop-first current) = tl (list current)
by(induction current rule: pop.induct)(auto simp: drop-Suc)

lemma invar-push: invar current =⇒ invar (push x current)
by(induction x current rule: push.induct) auto

lemma invar-pop: [[0 < size current; invar current; pop current = (x, current ′)]]
=⇒ invar current ′

by(induction current arbitrary: x rule: pop.induct) auto

lemma invar-drop-first: [[0 < size current; invar current]] =⇒ invar (drop-first
current)

using invar-pop
by (metis eq-snd-iff)

lemma list-size [simp]: [[invar current; list current = []; 0 < size current]] =⇒
False

by(induction current)(auto simp: size-not-empty list-empty)

lemma size-new-push [simp]: invar current =⇒ size-new (push x current) = Suc
(size-new current)

by(induction x current rule: push.induct) auto

lemma size-push [simp]: size (push x current) = Suc (size current)
by(induction x current rule: push.induct) auto

lemma size-new-pop [simp]: [[0 < size-new current; invar current]]
=⇒ Suc (size-new (drop-first current)) = size-new current
by(induction current rule: pop.induct) auto

lemma size-pop [simp]: [[0 < size current; invar current]]
=⇒ Suc (size (drop-first current)) = size current

by(induction current rule: pop.induct) auto

lemma size-pop-suc [simp]: [[0 < size current; invar current; pop current = (x,
current ′)]]

=⇒ Suc (size current ′) = size current
by(induction current rule: pop.induct) auto

lemma size-pop-sub: [[0 < size current; invar current; pop current = (x, current ′)
]]

=⇒ size current ′ = size current − 1
by(induction current rule: pop.induct) auto

lemma size-drop-first-sub: [[0 < size current; invar current]]

30

=⇒ size (drop-first current) = size current − 1
by(induction current rule: pop.induct) auto

end

15 Common Proofs
theory Common-Proof
imports Common-Aux Idle-Proof Current-Proof
begin

lemma take-rev-drop: take-rev n xs @ acc = drop (length xs − n) (rev xs) @ acc
unfolding take-rev-def using rev-take by blast

lemma take-rev-step: xs 6= [] =⇒ take-rev n (tl xs) @ (hd xs # acc) = take-rev
(Suc n) xs @ acc

by (simp add: take-Suc)

lemma take-rev-empty [simp]: take-rev n [] = []
by simp

lemma take-rev-tl-hd:
0 < n =⇒ xs 6= [] =⇒ take-rev n xs @ ys = take-rev (n − (Suc 0)) (tl xs) @

(hd xs #ys)
by (simp add: take-rev-step del: take-rev-def)

lemma take-rev-nth:
n < length xs =⇒ x = xs ! n =⇒ x # take-rev n xs @ ys = take-rev (Suc n)

xs @ ys
by (simp add: take-Suc-conv-app-nth)

lemma step-list [simp]: invar common =⇒ list (step common) = list common
proof(induction common rule: step-common-state.induct)

case (1 idle)
then show ?case by auto

next
case (2 current aux new moved)

then show ?case
proof(cases current)

case (Current extra added old remained)

with 2 have aux-not-empty: aux 6= []
by auto

from 2 Current show ?thesis
proof(cases remained ≤ Suc moved)

case True

31

with 2 Current have remained − length new = 1
by auto

with True Current 2 aux-not-empty show ?thesis
by auto

next
case False
with Current show ?thesis
by(auto simp: aux-not-empty take-rev-step Suc-diff-Suc simp del: take-rev-def)

qed
qed

qed

lemma step-list-current [simp]: invar common =⇒ list-current (step common) =
list-current common

by(cases common)(auto split: current.splits)

lemma push-list [simp]: list (push x common) = x # list common
proof(induction x common rule: push.induct)

case (1 x stack stackSize)
then show ?case

by auto
next

case (2 x current aux new moved)
then show ?case

by(induction x current rule: Current.push.induct) auto
qed

lemma invar-step: invar (common :: ′a common-state) =⇒ invar (step common)
proof(induction common rule: invar-common-state.induct)

case (1 idle)
then show ?case

by auto
next

case (2 current aux new moved)
then show ?case
proof(cases current)

case (Current extra added old remained)
then show ?thesis
proof(cases aux = [])

case True
with 2 Current show ?thesis by auto

next
case False
note AUX-NOT-EMPTY = False

then show ?thesis
proof(cases remained ≤ Suc (length new))

case True

32

with 2 Current False
have take (Suc (length new)) (Stack-Aux.list old) = take (size old) (hd

aux # new)
by(auto simp: le-Suc-eq take-Cons ′)

with 2 Current True show ?thesis
by auto

next
case False
with 2 Current AUX-NOT-EMPTY show ?thesis

by(auto simp: take-rev-step Suc-diff-Suc simp del: take-rev-def)
qed

qed
qed

qed

lemma invar-push: invar common =⇒ invar (push x common)
proof(induction x common rule: push.induct)

case (1 x current stack stackSize)
then show ?case
proof(induction x current rule: Current.push.induct)

case (1 x extra added old remained)
then show ?case
proof(induction x stack rule: Stack.push.induct)

case (1 x left right)
then show ?case by auto

qed
qed

next
case (2 x current aux new moved)
then show ?case
proof(induction x current rule: Current.push.induct)

case (1 x extra added old remained)
then show ?case by auto

qed
qed

lemma invar-pop: [[
0 < size common;
invar common;
pop common = (x, common ′)

]] =⇒ invar common ′

proof(induction common arbitrary: x rule: pop.induct)
case (1 current idle)
then obtain idle ′ where idle: Idle.pop idle = (x, idle ′)

by(auto split: prod.splits)

obtain current ′ where current: drop-first current = current ′

by auto

33

from 1 current idle show ?case
using Idle-Proof .size-pop[of idle x idle ′, symmetric]

size-new-pop[of current]
size-pop-sub[of current - current ′]

by(auto simp: Idle-Proof .invar-pop invar-pop eq-snd-iff take-tl size-not-empty)
next

case (2 current aux new moved)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then show ?case
proof(cases remained − Suc 0 ≤ length new)

case True

with 1 have [simp]:
0 < size old
Stack-Aux.list old 6= []
aux 6= []
length new = remained − Suc 0

by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-not-empty)

then have [simp]: Suc 0 ≤ size old
by linarith

from 1 have 0 < remained
by auto

then have take remained (Stack-Aux.list old)
= hd (Stack-Aux.list old) # take (remained − Suc 0) (tl (Stack-Aux.list

old))
by (metis Suc-pred ‹Stack-Aux.list old 6= []› list.collapse take-Suc-Cons)

with 1 True show ?thesis
using Stack-Proof .pop-list[of old]
by(auto simp: Stack-Proof .size-not-empty)

next
case False
with 1 have remained − Suc 0 ≤ length aux + length new by auto

with 1 False show ?thesis
using Stack-Proof .pop-list[of old]

apply(auto simp: Suc-diff-Suc take-tl Stack-Proof .size-not-empty tl-append-if)
by (simp add: Suc-diff-le rev-take tl-drop-2 tl-take)

qed
next
case (2 x xs added old remained)
then show ?case by auto

qed

34

qed

lemma push-list-current [simp]: list-current (push x left) = x # list-current left
by(induction x left rule: push.induct) auto

lemma pop-list [simp]: invar common =⇒ 0 < size common =⇒ pop common =
(x, common ′) =⇒

x # list common ′ = list common
proof(induction common arbitrary: x rule: pop.induct)

case 1
then show ?case

by(auto simp: size-not-empty split: prod.splits)
next

case (2 current aux new moved)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then show ?case
proof(cases remained − Suc 0 ≤ length new)

case True

from 1 True have [simp]:
aux 6= [] 0 < remained
Stack-Aux.list old 6= [] remained − length new = 1

by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-not-empty)

then have take remained (Stack-Aux.list old) = hd aux # take (size old −
Suc 0) new

=⇒ Stack.first old = hd aux
by (metis first-hd hd-take list.sel(1))

with 1 True take-hd[of aux] show ?thesis
by(auto simp: Suc-leI)

next
case False
then show ?thesis
proof(cases remained − length new = length aux)

case True

then have length-minus-1 : remained − Suc (length new) = length aux − 1
by simp

from 1 have not-empty: 0 < remained 0 < size old aux 6= [] ¬ is-empty
old

by(auto simp: Stack-Proof .size-not-empty)

from 1 True not-empty have take 1 (Stack-Aux.list old) = take 1 (rev aux)
using take-1 [of

remained

35

size old
Stack-Aux.list old
(rev aux) @ take (size old + length new − remained) new
]

by(simp)

then have [last aux] = [Stack.first old]
using take-last first-take not-empty
by fastforce

then have last aux = Stack.first old
by auto

with 1 True False show ?thesis
using not-empty last-drop-rev[of aux]
by(auto simp: take-rev-drop length-minus-1 simp del: take-rev-def)

next
case False

with 1 have a: take (remained − length new) aux 6= []
by auto

from 1 False have b: ¬ is-empty old
by(auto simp: Stack-Proof .size-not-empty)

from 1 have c: remained − Suc (length new) < length aux
by auto

from 1 have not-empty:
0 < remained
0 < size old
0 < remained − length new
0 < length aux

by auto

with False have
take remained (Stack-Aux.list old) =
take (size old) (take-rev (remained − length new) aux @ new)
=⇒ take (Suc 0) (Stack-Aux.list old) =

take (Suc 0) (rev (take (remained − length new) aux))
using take-1 [of

remained
size old
Stack-Aux.list old
(take-rev (remained − length new) aux @ new)

]
by(auto simp: not-empty Suc-le-eq)

with 1 False have

36

take 1 (Stack-Aux.list old) = take 1 (rev (take (remained − length new)
aux))

by auto

then have d: [Stack.first old] = [last (take (remained − length new) aux)]
using take-last first-take a b
by metis

have last (take (remained − length new) aux) # rev (take (remained − Suc
(length new)) aux)

= rev (take (remained − length new) aux)
using Suc-diff-Suc c not-empty
by (metis a drop-drop last-drop-rev plus-1-eq-Suc rev-take zero-less-diff)

with 1 (1) 1 (3) False not-empty d show ?thesis
by(cases remained − length new = 1) (auto)

qed
qed

next
case 2
then show ?case by auto

qed
qed

lemma pop-list-current: invar common =⇒ 0 < size common =⇒ pop common =
(x, common ′)

=⇒ x # list-current common ′ = list-current common
proof(induction common arbitrary: x rule: pop.induct)

case (1 current idle)
then show ?case
proof(induction idle rule: Idle.pop.induct)

case (1 stack stackSize)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then have Stack.first old = Stack.first stack

using take-first[of old stack]
by auto

with 1 show ?case
by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-not-empty)

next
case (2 x xs added old remained)
then have 0 < size stack

by auto

with Stack-Proof .size-not-empty Stack-Proof .list-not-empty
have not-empty: ¬ is-empty stack Stack-Aux.list stack 6= []

by auto

37

with 2 have hd (Stack-Aux.list stack) = x
using take-hd ′[of Stack-Aux.list stack x xs @ Stack-Aux.list old]
by auto

with 2 show ?case
using first-list[of stack] not-empty
by auto

qed
qed

next
case (2 current)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then have ¬ is-empty old

by(auto simp: Stack-Proof .size-not-empty)

with 1 show ?case
using first-pop
by(auto simp: Stack-Proof .list-not-empty)

next
case 2
then show ?case by auto

qed
qed

lemma list-current-size [simp]:
[[0 < size common; list-current common = []; invar common]] =⇒ False

proof(induction common rule: invar-common-state.induct)
case 1
then show ?case

using list-size by auto
next

case (2 current)
then have invar current

Current-Aux.list current = []
0 < size current

by(auto split: current.splits)

then show ?case using list-size by auto
qed

lemma list-size [simp]: [[0 < size common; list common = []; invar common]] =⇒
False
proof(induction common rule: invar-common-state.induct)

case 1
then show ?case

using list-size Idle-Proof .size-empty

38

by auto
next

case (2 current aux new moved)
then have invar current

Current-Aux.list current = []
0 < size current

by(auto split: current.splits)

then show ?case using list-size by auto
qed

lemma step-size [simp]: invar (common :: ′a common-state) =⇒ size (step com-
mon) = size common
proof(induction common rule: step-common-state.induct)

case 1
then show ?case by auto

next
case 2
then show ?case

by(auto simp: min-def split: current.splits)
qed

lemma step-size-new [simp]: invar (common :: ′a common-state)
=⇒ size-new (step common) = size-new common

proof(induction common rule: step-common-state.induct)
case (1 current idle)
then show ?case by auto

next
case (2 current aux new moved)
then show ?case by(auto split: current.splits)

qed

lemma remaining-steps-step [simp]: [[invar (common :: ′a common-state); remain-
ing-steps common > 0]]

=⇒ Suc (remaining-steps (step common)) = remaining-steps common
by(induction common)(auto split: current.splits)

lemma remaining-steps-step-sub [simp]: [[invar (common :: ′a common-state)]]
=⇒ remaining-steps (step common) = remaining-steps common − 1
by(induction common)(auto split: current.splits)

lemma remaining-steps-step-0 [simp]: [[invar (common :: ′a common-state); re-
maining-steps common = 0]]

=⇒ remaining-steps (step common) = 0
by(induction common)(auto split: current.splits)

lemma remaining-steps-push [simp]: invar common
=⇒ remaining-steps (push x common) = remaining-steps common

by(induction x common rule: Common.push.induct)(auto split: current.splits)

39

lemma remaining-steps-pop: [[invar common; pop common = (x, common ′)]]
=⇒ remaining-steps common ′ ≤ remaining-steps common

proof(induction common rule: pop.induct)
case (1 current idle)
then show ?case
proof(induction idle rule: Idle.pop.induct)

case 1
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

next
case (2 current aux new moved)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-push [simp]: invar common =⇒ size (push x common) = Suc (size
common)

by(induction x common rule: push.induct) (auto split: current.splits)

lemma size-new-push [simp]: invar common =⇒ size-new (push x common) = Suc
(size-new common)

by(induction x common rule: Common.push.induct) (auto split: current.splits)

lemma size-pop [simp]: [[invar common; 0 < size common; pop common = (x,
common ′)]]

=⇒ Suc (size common ′) = size common
proof(induction common rule: Common.pop.induct)

case (1 current idle)
then show ?case

using size-drop-first-sub[of current] Idle-Proof .size-pop-sub[of idle]
by(auto simp: size-not-empty split: prod.splits)

next
case (2 current aux new moved)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-new-pop [simp]: [[invar common; 0 < size-new common; pop common
= (x, common ′)]]

=⇒ Suc (size-new common ′) = size-new common
proof(induction common rule: Common.pop.induct)

case (1 current idle)
then show ?case

using size-new-pop[of current]
by(auto split: prod.splits)

next
case (2 current aux new moved)

40

then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then show ?case by auto

next
case (2 x xs added old remained)
then show ?case by auto

qed
qed

lemma size-size-new: [[invar (common :: ′a common-state); 0 < size common]] =⇒
0 < size-new common

by(cases common) auto

end

16 Big Proofs
theory Big-Proof
imports Big-Aux Common-Proof
begin

lemma step-list [simp]: invar big =⇒ list (step big) = list big
proof(induction big rule: step-big-state.induct)

case 1
then show ?case

by auto
next

case 2
then show ?case

by(auto split: current.splits)
next

case 3
then show ?case

by(auto simp: rev-take take-drop drop-Suc tl-take rev-drop split: current.splits)
qed

lemma step-list-current [simp]: invar big =⇒ list-current (step big) = list-current
big

by(induction big rule: step-big-state.induct)(auto split: current.splits)

lemma push-list [simp]: list (push x big) = x # list big
proof(induction x big rule: push.induct)

case (1 x state)
then show ?case

by auto
next

case (2 x current big aux count)
then show ?case

41

by(induction x current rule: Current.push.induct) auto
qed

lemma list-Big1 : [[
0 < size (Big1 current big aux count);
invar (Big1 current big aux count)

]] =⇒ first current # list (Big1 (drop-first current) big aux count) =
list (Big1 current big aux count)

proof(induction current rule: Current.pop.induct)
case (1 added old remained)
then have [simp]: remained − Suc 0 < length (take-rev count (Stack-Aux.list

big) @ aux)
by(auto simp: le-diff-conv)

then have
[[0 < size old; 0 < remained; added = 0 ; remained − count ≤ length aux; count
≤ size big;

Stack-Aux.list old =
rev (take (size old − size big) aux) @ rev (take (size old) (rev (Stack-Aux.list

big)));
take remained (rev (take (size old − size big) aux)) @
take (remained − min (length aux) (size old − size big))
(rev (take (size old) (rev (Stack-Aux.list big)))) =
rev (take (remained − count) aux) @ rev (take remained (rev (take count

(Stack-Aux.list big))))]]
=⇒ hd (rev (take (size old − size big) aux) @ rev (take (size old) (rev

(Stack-Aux.list big)))) =
(rev (take count (Stack-Aux.list big)) @ aux) ! (remained − Suc 0)

by (smt (verit) Suc-pred hd-drop-conv-nth hd-rev hd-take last-snoc length-rev
length-take min.absorb2 rev-append take-rev-def size-list-length take-append take-hd-drop)

with 1 have [simp]: Stack.first old = (take-rev count (Stack-Aux.list big) @ aux)
! (remained − Suc 0)

by(auto simp: take-hd-drop first-hd)

from 1 show ?case
using take-rev-nth[of

remained − Suc 0 take-rev count (Stack-Aux.list big) @ aux Stack.first old
[]

]
by auto

next
case 2
then show ?case by auto

qed

lemma size-list [simp]: [[0 < size big; invar big; list big = []]] =⇒ False
proof(induction big rule: list.induct)

42

case 1
then show ?case

using list-size by auto
next

case 2
then show ?case

by (metis list.distinct(1) list-Big1)
qed

lemma pop-list [simp]: [[0 < size big; invar big; Big.pop big = (x, big ′)]]
=⇒ x # list big ′ = list big

proof(induction big arbitrary: x rule: list.induct)
case 1
then show ?case

by(auto split: prod.splits)
next

case 2
then show ?case

by (metis Big.pop.simps(2) list-Big1 prod.inject)
qed

lemma pop-list-tl: [[0 < size big; invar big; pop big = (x, big ′)]] =⇒ list big ′ = tl
(list big)

using pop-list cons-tl[of x list big ′ list big]
by force

lemma invar-step: invar (big :: ′a big-state) =⇒ invar (step big)
proof(induction big rule: step-big-state.induct)

case 1
then show ?case

by(auto simp: invar-step)
next

case (2 current big aux)

then obtain extra old remained where current:
current = Current extra (length extra) old remained

by(auto split: current.splits)

with 2 have [[
current = Current extra (length extra) old remained;
remained ≤ length aux;
Stack-Aux.list old =
rev (take (size old − size big) aux) @ rev (take (size old) (rev (Stack-Aux.list

big)));
take remained (rev (take (size old − size big) aux)) @
take (remained − min (length aux) (size old − size big))
(rev (take (size old) (rev (Stack-Aux.list big)))) =

43

rev (take remained aux)]]
=⇒ remained ≤ size old
by(metis length-rev length-take min.absorb-iff2 size-list-length take-append)

with 2 current have remained − size old = 0
by auto

with current 2 show ?case
by(auto simp: take-rev-drop drop-rev)

next
case (3 current big aux count)
then have 0 < size big

by(auto split: current.splits)

then have big-not-empty: Stack-Aux.list big 6= []
by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-not-empty)

with 3 have a:
rev (Stack-Aux.list big) @ aux =
rev (Stack-Aux.list (Stack.pop big)) @ Stack.first big # aux

by(auto simp: rev-tl-hd first-hd split: current.splits)

from 3 have 0 < size big
by(auto split: current.splits)

from 3 big-not-empty have
take-rev (Suc count) (Stack-Aux.list big) @ aux =
take-rev count (Stack-Aux.list (Stack.pop big)) @ (Stack.first big # aux)

using take-rev-tl-hd[of Suc count Stack-Aux.list big aux]
by(auto simp: Stack-Proof .list-not-empty split: current.splits)

with 3 a show ?case
by(auto split: current.splits)

qed

lemma invar-push: invar big =⇒ invar (push x big)
by(induction x big rule: push.induct)(auto simp: invar-push split: current.splits)

lemma invar-pop: [[
0 < size big;
invar big;
pop big = (x, big ′)

]] =⇒ invar big ′

proof(induction big arbitrary: x rule: pop.induct)
case (1 state)
then show ?case

by(auto simp: invar-pop split: prod.splits)
next

44

case (2 current big aux count)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
have linarith:

∧
x y z. x − y ≤ z =⇒ x − (Suc y) ≤ z

by linarith

have a: [[remained ≤ count + length aux; 0 < remained; added = 0 ; x =
Stack.first old;

big ′ = Big1 (Current [] 0 (Stack.pop old) (remained − Suc 0)) big aux
count;

count ≤ size big; Stack-Aux.list old = rev aux @ Stack-Aux.list big;
take remained (rev aux) @ take (remained − length aux) (Stack-Aux.list

big) =
drop (count + length aux − remained) (rev aux) @
drop (count − remained) (take count (Stack-Aux.list big));
¬ size old ≤ length aux + size big]]
=⇒ tl (rev aux @ Stack-Aux.list big) = rev aux @ Stack-Aux.list big

by (metis le-refl length-append length-rev size-list-length)

have b: [[remained ≤ length (take-rev count (Stack-Aux.list big) @ aux); 0 <
size old;

0 < remained; added = 0 ;
x = Stack.first old;

big ′ = Big1 (Current [] 0 (Stack.pop old) (remained − Suc 0)) big aux
count;

remained − count ≤ length aux; count ≤ size big;
Stack-Aux.list old =

drop (length aux − (size old − size big)) (rev aux) @
drop (size big − size old) (Stack-Aux.list big);

take remained (drop (length aux − (size old − size big)) (rev aux)) @
take (remained + (length aux − (size old − size big)) − length aux)
(drop (size big − size old) (Stack-Aux.list big)) =

drop (length (take-rev count (Stack-Aux.list big) @ aux) − remained)
(rev (take-rev count (Stack-Aux.list big) @ aux))]]

=⇒ tl (drop (length aux − (size old − size big)) (rev aux) @
drop (size big − size old) (Stack-Aux.list big)) =

drop (length aux − (size old − Suc (size big))) (rev aux) @
drop (Suc (size big) − size old) (Stack-Aux.list big)

apply(cases size old − size big ≤ length aux; cases size old ≤ size big)
by(auto simp: tl-drop-2 Suc-diff-le le-diff-conv le-refl a)

from 1 have remained ≤ length (take-rev count (Stack-Aux.list big) @ aux)
by(auto)

with 1 show ?case
apply(auto simp: rev-take take-tl drop-Suc Suc-diff-le tl-drop linarith simp del:

take-rev-def)
using b

45

apply (metis ‹remained ≤ length (take-rev count (Stack-Aux.list big) @ aux)›
le-diff-conv rev-append rev-take take-append)

by (smt (verit, del-insts) Nat.diff-cancel tl-append-if Suc-diff-le append-self-conv2
diff-add-inverse diff-diff-cancel diff-is-0-eq diff-le-mono drop-eq-Nil2 length-rev nle-le
not-less-eq-eq plus-1-eq-Suc tl-drop-2)

next
case (2 x xs added old remained)
then show ?case by auto

qed
qed

lemma push-list-current [simp]: list-current (push x big) = x # list-current big
by(induction x big rule: push.induct) auto

lemma pop-list-current [simp]: [[invar big; 0 < size big; Big.pop big = (x, big ′)]]
=⇒ x # list-current big ′ = list-current big

proof(induction big arbitrary: x rule: pop.induct)
case (1 state)
then show ?case

by(auto simp: pop-list-current split: prod.splits)
next

case (2 current big aux count)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)

then have
rev (take (size old − size big) aux) @ rev (take (size old) (rev (Stack-Aux.list

big))) 6= []
using

order-less-le-trans[of 0 size old size big]
order-less-le-trans[of 0 count size big]

by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-not-empty)

with 1 show ?case
by(auto simp: first-hd)

next
case (2 x xs added old remained)
then show ?case

by auto
qed

qed

lemma list-current-size: [[0 < size big; list-current big = []; invar big]] =⇒ False
proof(induction big rule: list-current.induct)

case 1
then show ?case

using list-current-size
by simp

46

next
case (2 current uu uv uw)
then show ?case

apply(cases current)
by(auto simp: Stack-Proof .size-not-empty Stack-Proof .list-empty)

qed

lemma step-size: invar (big :: ′a big-state) =⇒ size big = size (step big)
by(induction big rule: step-big-state.induct)(auto split: current.splits)

lemma remaining-steps-step [simp]: [[invar (big :: ′a big-state); remaining-steps big
> 0]]

=⇒ Suc (remaining-steps (step big)) = remaining-steps big
by(induction big rule: step-big-state.induct)(auto split: current.splits)

lemma remaining-steps-step-0 [simp]: [[invar (big :: ′a big-state); remaining-steps
big = 0]]

=⇒ remaining-steps (step big) = 0
by(induction big)(auto split: current.splits)

lemma remaining-steps-push: invar big =⇒ remaining-steps (push x big) = re-
maining-steps big

by(induction x big rule: push.induct)(auto split: current.splits)

lemma remaining-steps-pop: [[invar big; pop big = (x, big ′)]]
=⇒ remaining-steps big ′ ≤ remaining-steps big

proof(induction big rule: pop.induct)
case (1 state)
then show ?case

by(auto simp: remaining-steps-pop split: prod.splits)
next

case (2 current big aux count)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-push [simp]: invar big =⇒ size (push x big) = Suc (size big)
by(induction x big rule: push.induct)(auto split: current.splits)

lemma size-new-push [simp]: invar big =⇒ size-new (push x big) = Suc (size-new
big)

by(induction x big rule: Big.push.induct)(auto split: current.splits)

lemma size-pop [simp]: [[invar big; 0 < size big; pop big = (x, big ′)]]
=⇒ Suc (size big ′) = size big

proof(induction big rule: pop.induct)
case 1
then show ?case

by(auto split: prod.splits)

47

next
case (2 current big aux count)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-new-pop [simp]: [[invar big; 0 < size-new big; pop big = (x, big ′)]]
=⇒ Suc (size-new big ′) = size-new big

proof(induction big rule: pop.induct)
case 1
then show ?case

by(auto split: prod.splits)
next

case (2 current big aux count)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-size-new: [[invar (big :: ′a big-state); 0 < size big]] =⇒ 0 < size-new
big

by(induction big)(auto simp: size-size-new)

end

17 Small Proofs
theory Small-Proof
imports Common-Proof Small-Aux
begin

lemma step-size [simp]: invar (small :: ′a small-state) =⇒ size (step small) = size
small

by(induction small rule: step-small-state.induct)(auto split: current.splits)

lemma step-size-new [simp]:
invar (small :: ′a small-state) =⇒ size-new (step small) = size-new small

by(induction small rule: step-small-state.induct)(auto split: current.splits)

lemma size-push [simp]: invar small =⇒ size (push x small) = Suc (size small)
by(induction x small rule: push.induct) (auto split: current.splits)

lemma size-new-push [simp]: invar small =⇒ size-new (push x small) = Suc
(size-new small)

by(induction x small rule: push.induct) (auto split: current.splits)

lemma size-pop [simp]: [[invar small; 0 < size small; pop small = (x, small ′)]]
=⇒ Suc (size small ′) = size small

proof(induction small rule: pop.induct)
case (1 state)

48

then show ?case
by(auto split: prod.splits)

next
case (2 current small auxS)
then show ?case

using Current-Proof .size-pop[of current]
by(induction current rule: Current.pop.induct) auto

next
case (3 current auxS big newS count)
then show ?case

using Current-Proof .size-pop[of current]
by(induction current rule: Current.pop.induct) auto

qed

lemma size-new-pop [simp]: [[invar small; 0 < size-new small; pop small = (x,
small ′)]]

=⇒ Suc (size-new small ′) = size-new small
proof(induction small rule: pop.induct)

case (1 state)
then show ?case

by(auto split: prod.splits)
next

case (2 current small auxS)
then show ?case
by(induction current rule: Current.pop.induct) auto

next
case (3 current auxS big newS count)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma size-size-new: [[invar (small :: ′a small-state); 0 < size small]] =⇒ 0 <
size-new small

by(induction small)(auto simp: size-size-new)

lemma step-list-current [simp]: invar small =⇒ list-current (step small) = list-current
small

by(induction small rule: step-small-state.induct)(auto split: current.splits)

lemma step-list-common [simp]:
[[small = Small3 common; invar small]] =⇒ list (step small) = list small

by auto

lemma step-list-Small2 [simp]:
assumes

small = (Small2 current aux big new count)
invar small

shows
list (step small) = list small

49

proof −

have size-not-empty: (0 < size big) = (¬ is-empty big)
by (simp add: Stack-Proof .size-not-empty)

have ¬ is-empty big
=⇒ rev (Stack-Aux.list (Stack.pop big)) @ [Stack.first big] = rev (Stack-Aux.list

big)
by(induction big rule: Stack.pop.induct) auto

with assms show ?thesis
using Stack-Proof .size-pop[of big] size-not-empty
by(auto simp: Stack-Proof .list-empty split: current.splits)

qed

lemma invar-step: invar (small :: ′a small-state) =⇒ invar (step small)
proof(induction small rule: step-small-state.induct)

case (1 state)
then show ?case

by(auto simp: invar-step)
next

case (2 current small aux)
then show ?case
proof(cases is-empty small)

case True
with 2 show ?thesis

by auto
next

case False

with 2 have rev (Stack-Aux.list small) @ aux =
rev (Stack-Aux.list (Stack.pop small)) @ Stack.first small # aux

by(auto simp: rev-app-single Stack-Proof .list-not-empty)

with 2 show ?thesis
by(auto split: current.splits)

qed
next

case (3 current auxS big newS count)
then show ?case
proof(cases is-empty big)

case True

then have big-size [simp]: size big = 0
by (simp add: Stack-Proof .size-empty)

with True 3 show ?thesis
proof(cases current)

case (Current extra added old remained)

50

with 3 True show ?thesis
proof(cases remained ≤ count)

case True
with 3 Current show ?thesis

using Stack-Proof .size-empty[of big]
by auto

next
case False
with True 3 Current show ?thesis

by(auto)
qed

qed
next

case False
with 3 show ?thesis

using Stack-Proof .size-pop[of big]
by(auto simp: Stack-Proof .size-not-empty split: current.splits)

qed
qed

lemma invar-push: invar small =⇒ invar (push x small)
by(induction x small rule: push.induct)(auto simp: invar-push split: current.splits)

lemma invar-pop: [[
0 < size small;
invar small;
pop small = (x, small ′)

]] =⇒ invar small ′
proof(induction small arbitrary: x rule: pop.induct)
case (1 state)

then show ?case
by(auto simp: invar-pop split: prod.splits)

next
case (2 current small auxS)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then show ?case

by(cases size small < size old)
(auto simp: rev-take Suc-diff-le drop-Suc tl-drop)

next
case 2
then show ?case by auto

qed
next

case (3 current auxS big newS count)
then show ?case

by (induction current rule: Current.pop.induct)
(auto simp: rev-take Suc-diff-le drop-Suc tl-drop)

51

qed

lemma push-list-common [simp]: small = Small3 common =⇒ list (push x small)
= x # list small

by auto

lemma push-list-current [simp]: list-current (push x small) = x # list-current
small

by(induction x small rule: push.induct) auto

lemma pop-list-current [simp]: [[invar small; 0 < size small; Small.pop small =
(x, small ′)]]
=⇒ x # list-current small ′ = list-current small

proof(induction small arbitrary: x rule: pop.induct)
case (1 state)
then show ?case

by(auto simp: pop-list-current split: prod.splits)
next

case (2 current small auxS)
then have invar current

by(auto split: current.splits)

with 2 show ?case
by auto

next
case (3 current auxS big newS count)
then show ?case
proof(induction current rule: Current.pop.induct)

case (1 added old remained)
then have ¬is-empty old

by(auto simp: Stack-Proof .size-not-empty)

with 1 show ?case
by(auto simp: rev-take drop-Suc drop-tl)

next
case 2
then show ?case

by auto
qed

qed

lemma list-current-size [simp]: [[0 < size small; list-current small = []; invar
small]] =⇒ False
proof(induction small)

case (Small1 current)
then have invar current

by(auto split: current.splits)

with Small1 show ?case

52

using Current-Proof .list-size
by auto

next
case Small2
then show ?case

by(auto split: current.splits)
next

case Small3
then show ?case

using list-current-size by auto
qed

lemma list-Small2 [simp]: [[
0 < size (Small2 current auxS big newS count);
invar (Small2 current auxS big newS count)

]] =⇒
fst (Current.pop current) # list (Small2 (drop-first current) auxS big newS

count) =
list (Small2 current auxS big newS count)

by(induction current rule: Current.pop.induct)
(auto simp: first-hd rev-take Suc-diff-le)

end

18 Big + Small Proofs
theory States-Proof
imports States-Aux Big-Proof Small-Proof
begin

lemmas state-splits = idle.splits common-state.splits small-state.splits big-state.splits
lemmas invar-steps = Big-Proof .invar-step Common-Proof .invar-step Small-Proof .invar-step

lemma invar-list-big-first:
invar states =⇒ list-big-first states = list-current-big-first states

using app-rev
by(cases states)(auto split: prod.splits)

lemma step-lists [simp]: invar states =⇒ lists (step states) = lists states
proof(induction states rule: lists.induct)

case (1 dir currentB big auxB count currentS small auxS)
then show ?case
proof(induction

(States dir (Big1 currentB big auxB count) (Small1 currentS small auxS))
rule: step-states.induct)

case 1
then show ?case

by(cases currentB) auto
next

53

case (2-1 count ′)
then have 0 < size big

by(cases currentB) auto

then have big-not-empty: Stack-Aux.list big 6= []
by (simp add: Stack-Proof .size-not-empty Stack-Proof .list-empty)

with 2-1 show ?case
using

take-rev-step[of Stack-Aux.list big count ′ auxB]
Stack-Proof .list-empty[symmetric, of small]

apply (cases currentB)
by(auto simp: first-hd funpow-swap1 take-rev-step simp del: take-rev-def)

qed
next

case (2-1 dir common small)
then show ?case

using step-list-Small2 [of small]
by(auto split: small-state.splits)

next
case (2-2 dir big current auxS big newS count)
then show ?case

using step-list-Small2 [of Small2 current auxS big newS count]
by auto

next
case (2-3 dir big common)
then show ?case

by auto
qed

lemma step-lists-current [simp]:
invar states =⇒ lists-current (step states) = lists-current states

by(induction states rule: step-states.induct)(auto split: current.splits)

lemma push-big: lists (States dir big small) = (big ′, small ′)
=⇒ lists (States dir (Big.push x big) small) = (x # big ′, small ′)

proof(induction States dir (Big.push x big) small rule: lists.induct)
case 1
then show ?case
proof(induction x big rule: Big.push.induct)

case 1
then show ?case

by auto
next

case (2 x current big aux count)
then show ?case

by(cases current) auto
qed

next

54

case 2-1
then show ?case

by(cases big) auto
qed auto

lemma push-small-lists:
invar (States dir big small)
=⇒ lists (States dir big (Small.push x small)) = (big ′, x # small ′) ←→

lists (States dir big small) = (big ′, small ′)
apply(induction States dir big (Small.push x small) rule: lists.induct)
by (auto split: current.splits small-state.splits)

lemma list-small-big:
list-small-first (States dir big small) = list-current-small-first (States dir big

small) ←→
list-big-first (States dir big small) = list-current-big-first (States dir big small)

using app-rev
by(auto split: prod.splits)

lemma list-big-first-pop-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ x # list-big-first (States dir big ′ small) = list-big-first (States dir big small)
by(induction States dir big small rule: lists.induct)(auto split: prod.splits)

lemma list-current-big-first-pop-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ x # list-current-big-first (States dir big ′ small) =

list-current-big-first (States dir big small)
by auto

lemma lists-big-first-pop-big: [[
invar (States dir big small);
0 < size big;

Big.pop big = (x, big ′)]]
=⇒ list-big-first (States dir big ′ small) = list-current-big-first (States dir big ′

small)
by (metis invar-list-big-first list-big-first-pop-big list-current-big-first-pop-big list.sel(3))

lemma lists-small-first-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ list-small-first (States dir big ′ small) = list-current-small-first (States dir big ′

small)
by (meson lists-big-first-pop-big list-small-big)

55

lemma list-small-first-pop-small [simp]: [[
invar (States dir big small);
0 < size small;

Small.pop small = (x, small ′)]]
=⇒ x # list-small-first (States dir big small ′) = list-small-first (States dir big

small)
proof(induction States dir big small rule: lists.induct)

case (1 currentB big auxB count currentS small auxS)
then show ?case

by(cases currentS)(auto simp: Cons-eq-appendI)
next

case (2-1 common)
then show ?case
proof(induction small rule: Small.pop.induct)

case (1 common)
then show ?case

by(cases Common.pop common)(auto simp: Cons-eq-appendI)
next

case 2
then show ?case by auto

next
case 3
then show ?case

by(cases Common.pop common)(auto simp: Cons-eq-appendI)
qed

next
case (2-2 current)
then show ?case

by(induction current rule: Current.pop.induct)
(auto simp: first-hd rev-take Suc-diff-le)

next
case (2-3 common)
then show ?case

by(cases Common.pop common)(auto simp: Cons-eq-appendI)
qed

lemma list-current-small-first-pop-small [simp]: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ x # list-current-small-first (States dir big small ′) =

list-current-small-first (States dir big small)
by auto

lemma lists-small-first-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]

56

=⇒ list-small-first (States dir big small ′) = list-current-small-first (States dir big
small ′)

by (metis (no-types, opaque-lifting) invar-states.simps list.sel(3)
list-current-small-first-pop-small list-small-first-pop-small)

lemma invars-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ invar big ′ ∧ invar small
by(auto simp: Big-Proof .invar-pop)

lemma invar-pop-big-aux: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ (case (big ′, small) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
)

by(auto split: big-state.splits small-state.splits prod.splits)

lemma invar-pop-big: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, big ′)]]
=⇒ invar (States dir big ′ small)
using invars-pop-big[of dir big small x big ′]

lists-small-first-pop-big[of dir big small x big ′]
invar-pop-big-aux[of dir big small x big ′]

by auto

lemma invars-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ invar big ∧ invar small ′
by(auto simp: Small-Proof .invar-pop)

lemma invar-pop-small-aux: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)]]
=⇒ (case (big, small ′) of

(Big1 - big - count, Small1 (Current - - old remained) small -) ⇒
size big − count = remained − size old ∧ count ≥ size small

57

| (-, Small1 - - -) ⇒ False
| (Big1 - - - -, -) ⇒ False
| - ⇒ True
)

proof(induction small rule: Small.pop.induct)
case 1
then show ?case

by(auto split: big-state.splits small-state.splits prod.splits)
next

case (2 current)
then show ?case
proof(induction current rule: Current.pop.induct)

case 1
then show ?case

by(auto split: big-state.splits)
next

case 2
then show ?case

by(auto split: big-state.splits)
qed

next
case 3
then show ?case

by(auto split: big-state.splits)
qed

lemma invar-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, small ′)

]] =⇒ invar (States dir big small ′)
using invars-pop-small[of dir big small x small ′]

lists-small-first-pop-small[of dir big small x small ′]
invar-pop-small-aux[of dir big small x small ′]

by fastforce

lemma invar-push-big: invar (States dir big small) =⇒ invar (States dir (Big.push
x big) small)
proof(induction x big arbitrary: small rule: Big.push.induct)

case 1
then show ?case

by(auto simp: Common-Proof .invar-push)
next

case (2 x current big aux count)
then show ?case

by(cases current)(auto split: prod.splits small-state.splits)
qed

lemma invar-push-small: invar (States dir big small)

58

=⇒ invar (States dir big (Small.push x small))
proof(induction x small arbitrary: big rule: Small.push.induct)

case (1 x state)
then show ?case

by(auto simp: Common-Proof .invar-push split: big-state.splits)
next

case (2 x current small auxS)
then show ?case

by(induction x current rule: Current.push.induct)(auto split: big-state.splits)
next

case (3 x current auxS big newS count)
then show ?case

by(induction x current rule: Current.push.induct)(auto split: big-state.splits)
qed

lemma step-invars:[[invar states; step states = States dir big small]] =⇒ invar big
∧ invar small
proof(induction states rule: step-states.induct)

case (1 dir currentB big ′ auxB currentS small ′ auxS)
with Big-Proof .invar-step have invar (Big1 currentB big ′ auxB 0)

by auto
with 1 have invar-big: invar big

using Big-Proof .invar-step[of Big1 currentB big ′ auxB 0]
by auto

from 1 have invar-small: invar small
using Stack-Proof .list-empty-size[of small ′]
by(cases currentS) auto

from invar-small invar-big show ?case
by simp

next
case (2-1 dir current big aux count small)
then show ?case

using Big-Proof .invar-step[of Big1 current big aux (Suc count)]
Small-Proof .invar-step[of small]

by simp
next

case 2-2
then show ?case

by(auto simp: Common-Proof .invar-step Small-Proof .invar-step)
next

case (2-3 dir big current auxS big ′ newS count)
then show ?case

using Big-Proof .invar-step[of big]
Small-Proof .invar-step[of Small2 current auxS big ′ newS count]

by auto
next

case 2-4

59

then show ?case
by(auto simp: Common-Proof .invar-step Big-Proof .invar-step)

qed

lemma step-lists-small-first: invar states =⇒
list-small-first (step states) = list-current-small-first (step states)

using step-lists-current step-lists invar-states.elims(2)
by fastforce

lemma invar-step-aux: invar states =⇒(case step states of
(States - (Big1 - big - count) (Small1 (Current - - old remained) small -))

⇒
size big − count = remained − size old ∧ count ≥ size small

| (States - - (Small1 - - -)) ⇒ False
| (States - (Big1 - - - -) -) ⇒ False
| - ⇒ True
)

proof(induction states rule: step-states.induct)
case (2-1 dir current big aux count small)
then show ?case
proof(cases small)

case (Small1 current small auxS)
with 2-1 show ?thesis

using Stack-Proof .size-empty[symmetric, of small]
by(auto split: current.splits)

qed auto
qed (auto split: big-state.splits small-state.splits)

lemma invar-step: invar (states :: ′a states) =⇒ invar (step states)
using invar-step-aux[of states] step-lists-small-first[of states]
by(cases step states)(auto simp: step-invars)

lemma step-consistent [simp]:
[[
∧

states. invar (states :: ′a states) =⇒ P (step states) = P states; invar states]]
=⇒ P states = P ((step ^^n) states)

by(induction n arbitrary: states)
(auto simp: States-Proof .invar-step funpow-swap1)

lemma step-consistent-2 :
[[
∧

states. [[invar (states :: ′a states); P states]] =⇒ P (step states); invar states;
P states]]

=⇒ P ((step ^^n) states)
by(induction n arbitrary: states)
(auto simp: States-Proof .invar-step funpow-swap1)

lemma size-ok ′-Suc: size-ok ′ states (Suc steps) =⇒ size-ok ′ states steps
by(induction states steps rule: size-ok ′.induct) auto

lemma size-ok ′-decline: size-ok ′ states x =⇒ x ≥ y =⇒ size-ok ′ states y

60

by(induction states x rule: size-ok ′.induct) auto

lemma remaining-steps-0 [simp]: [[invar (states :: ′a states); remaining-steps states
= 0]]

=⇒ remaining-steps (step states) = 0
by(induction states rule: step-states.induct)
(auto split: current.splits small-state.splits)

lemma remaining-steps-0 ′: [[invar (states :: ′a states); remaining-steps states = 0]]
=⇒ remaining-steps ((step ^^ n) states) = 0

by(induction n arbitrary: states)(auto simp: invar-step funpow-swap1)

lemma remaining-steps-decline-Suc:
[[invar (states :: ′a states); 0 < remaining-steps states]]

=⇒ Suc (remaining-steps (step states)) = remaining-steps states
proof(induction states rule: step-states.induct)

case 1
then show ?case

by(auto simp: max-def split: big-state.splits small-state.splits current.splits)
next

case (2-1 - - - - - small)
then show ?case

by(cases small)(auto split: current.splits)
next

case (2-2 dir big small)
then show ?case
proof(cases small)

case (Small2 current auxS big newS count)
with 2-2 show ?thesis

using Stack-Proof .size-empty-2 [of big]
by(cases current) auto

qed auto
next

case (2-3 dir big current auxS big ′ newS count)
then show ?case
proof(induction big)

case Big1
then show ?case by auto

next
case Big2
then show ?case

using Stack-Proof .size-empty-2 [of big ′]
by(cases current) auto

qed
next

case (2-4 - big)
then show ?case

by(cases big) auto
qed

61

lemma remaining-steps-decline-sub [simp]: invar (states :: ′a states)
=⇒ remaining-steps (step states) = remaining-steps states − 1

using Suc-sub[of remaining-steps (step states) remaining-steps states]
by(cases 0 < remaining-steps states) (auto simp: remaining-steps-decline-Suc)

lemma remaining-steps-decline: invar (states :: ′a states)
=⇒ remaining-steps (step states) ≤ remaining-steps states

using remaining-steps-decline-sub[of states] by auto

lemma remaining-steps-decline-n-steps [simp]:
[[invar (states :: ′a states); remaining-steps states ≤ n]]
=⇒ remaining-steps ((step ^^ n) states) = 0

by(induction n arbitrary: states)(auto simp: funpow-swap1 invar-step)

lemma remaining-steps-n-steps-plus [simp]:
[[n ≤ remaining-steps states; invar (states :: ′a states)]]
=⇒ remaining-steps ((step ^^ n) states) + n = remaining-steps states

by(induction n arbitrary: states)(auto simp: funpow-swap1 invar-step)

lemma remaining-steps-n-steps-sub [simp]: invar (states :: ′a states)
=⇒ remaining-steps ((step ^^ n) states) = remaining-steps states − n

by(induction n arbitrary: states)(auto simp: funpow-swap1 invar-step)

lemma step-size-new-small [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]
=⇒ size-new small ′ = size-new small

proof(induction States dir big small rule: step-states.induct)
case 1
then show ?case

by auto
next

case 2-1
then show ?case

by(auto split: small-state.splits)
next

case 2-2
then show ?case

by(auto split: small-state.splits current.splits)
next

case 2-3
then show ?case

by(auto split: current.splits)
next

case 2-4
then show ?case

by auto
qed

62

lemma step-size-new-small-2 [simp]:
invar states =⇒ size-new-small (step states) = size-new-small states
by(cases states; cases step states) auto

lemma step-size-new-big [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]
=⇒ size-new big ′ = size-new big

proof(induction States dir big small rule: step-states.induct)
case 1
then show ?case

by(auto split: current.splits)
next

case 2-1
then show ?case

by auto
next

case 2-2
then show ?case

by auto
next

case 2-3
then show ?case

by(auto split: big-state.splits)
next

case 2-4
then show ?case

by(auto split: big-state.splits)
qed

lemma step-size-new-big-2 [simp]:
invar states =⇒ size-new-big (step states) = size-new-big states
by(cases states; cases step states) auto

lemma step-size-small [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]

=⇒ size small ′ = size small
proof(induction States dir big small rule: step-states.induct)

case 2-3
then show ?case

by(auto split: current.splits)
qed auto

lemma step-size-small-2 [simp]:
invar states =⇒ size-small (step states) = size-small states
by(cases states; cases step states) auto

lemma step-size-big [simp]:
[[invar (States dir big small); step (States dir big small) = States dir ′ big ′ small ′]]

=⇒ size big ′ = size big

63

proof(induction States dir big small rule: step-states.induct)
case 1
then show ?case

by(auto split: current.splits)
next

case 2-1
then show ?case

by(auto split: small-state.splits current.splits)
next

case 2-2
then show ?case

by(auto split: small-state.splits current.splits)
next

case 2-3
then show ?case

by(auto split: current.splits big-state.splits)
next

case 2-4
then show ?case

by(auto split: big-state.splits)
qed

lemma step-size-big-2 [simp]:
invar states =⇒ size-big (step states) = size-big states
by(cases states; cases step states) auto

lemma step-size-ok-1 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′

using step-size-new-small step-size-new-big remaining-steps-decline
by (smt (verit, ccfv-SIG) add.commute le-trans nat-add-left-cancel-le)

lemma step-size-ok-2 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗
size-new big ′

using remaining-steps-decline step-size-new-small step-size-new-big
by (smt (verit, best) add-le-mono le-refl le-trans)

lemma step-size-ok-3 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′

64

using remaining-steps-decline step-size-small
by (metis Suc-eq-plus1 Suc-le-mono le-trans)

lemma step-size-ok-4 : [[
invar (States dir big small);
step (States dir big small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

using remaining-steps-decline step-size-big
by (metis (no-types, lifting) add-mono-thms-linordered-semiring(3) order .trans)

lemma step-size-ok: [[invar states; size-ok states]] =⇒ size-ok (step states)
using step-size-ok-1 step-size-ok-2 step-size-ok-3 step-size-ok-4
by (smt (verit) invar-states.elims(1) size-ok ′.elims(3) size-ok ′.simps)

lemma step-n-size-ok: [[invar states; size-ok states]] =⇒ size-ok ((step ^^ n) states)
using step-consistent-2 [of size-ok states n] step-size-ok by blast

lemma step-push-size-small [simp]: [[
invar (States dir big small);
step (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size small ′ = Suc (size small)
using

invar-push-small[of dir big small x]
step-size-small[of dir big Small.push x small dir ′ big ′ small ′]
size-push[of small x]

by simp

lemma step-push-size-new-small [simp]: [[
invar (States dir big small);
step (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size-new small ′ = Suc (size-new small)
using

invar-push-small[of dir big small x]
step-size-new-small[of dir big Small.push x small dir ′ big ′ small ′]
size-new-push[of small x]

by simp

lemma step-push-size-big [simp]: [[
invar (States dir big small);
step (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size big ′ = Suc (size big)
using

invar-push-big[of dir big small x]
Big-Proof .size-push[of big]
step-size-big[of dir Big.push x big small dir ′ big ′ small ′]

by simp

lemma step-push-size-new-big [simp]: [[

65

invar (States dir big small);
step (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size-new big ′ = Suc (size-new big)
using

invar-push-big[of dir big small x]
step-size-new-big[of dir Big.push x big small dir ′ big ′ small ′]
Big-Proof .size-new-push[of big x]

by simp

lemma step-pop-size-big [simp]: [[
invar (States dir big small);
0 < size big;
Big.pop big = (x, bigP);
step (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size big ′) = size big
using

invar-pop-big[of dir big small x bigP]
step-size-big[of dir bigP small dir ′ big ′ small ′]
Big-Proof .size-pop[of big x bigP]

by simp

lemma step-pop-size-new-big [simp]: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
step (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new big ′) = size-new big
using

invar-pop-big[of dir big small x bigP]
Big-Proof .size-size-new[of big]
step-size-new-big[of dir bigP small dir ′ big ′ small ′]
Big-Proof .size-new-pop[of big x bigP]

by simp

lemma step-n-size-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big small) = States dir ′ big ′ small ′

]] =⇒ size small ′ = size small
using step-consistent[of size-small States dir big small n]
by simp

lemma step-n-size-big [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

small ′]]
=⇒ size big ′ = size big

using step-consistent[of size-big States dir big small n]
by simp

lemma step-n-size-new-small [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

66

small ′]]
=⇒ size-new small ′ = size-new small

using step-consistent[of size-new-small States dir big small n]
by simp

lemma step-n-size-new-big [simp]:
[[invar (States dir big small); (step ^^ n) (States dir big small) = States dir ′ big ′

small ′]]
=⇒ size-new big ′ = size-new big

using step-consistent[of size-new-big States dir big small n]
by simp

lemma step-n-push-size-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size small ′ = Suc (size small)
using step-n-size-small invar-push-small Small-Proof .size-push
by (metis invar-states.simps)

lemma step-n-push-size-new-small [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir big (Small.push x small)) = States dir ′ big ′ small ′

]] =⇒ size-new small ′ = Suc (size-new small)
by (metis Small-Proof .size-new-push invar-states.simps invar-push-small step-n-size-new-small)

lemma step-n-push-size-big [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size big ′ = Suc (size big)
by (metis Big-Proof .size-push invar-states.simps invar-push-big step-n-size-big)

lemma step-n-push-size-new-big [simp]: [[
invar (States dir big small);
(step ^^ n) (States dir (Big.push x big) small) = States dir ′ big ′ small ′

]] =⇒ size-new big ′ = Suc (size-new big)
by (metis Big-Proof .size-new-push invar-states.simps invar-push-big step-n-size-new-big)

lemma step-n-pop-size-small [simp]: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
(step ^^ n) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ Suc (size small ′) = size small
using invar-pop-small size-pop step-n-size-small
by (metis (no-types, opaque-lifting) invar-states.simps)

lemma step-n-pop-size-new-small [simp]: [[
invar (States dir big small);
0 < size small;

67

Small.pop small = (x, smallP);
(step ^^ n) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new small ′) = size-new small
using invar-pop-small size-new-pop step-n-size-new-small size-size-new
by (metis (no-types, lifting) invar-states.simps)

lemma step-n-pop-size-big [simp]: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
(step ^^ n) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size big ′) = size big
using invar-pop-big Big-Proof .size-pop step-n-size-big
by fastforce

lemma step-n-pop-size-new-big: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
(step ^^ n) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ Suc (size-new big ′) = size-new big
using invar-pop-big Big-Proof .size-new-pop step-n-size-new-big Big-Proof .size-size-new
by (metis (no-types, lifting) invar-states.simps)

lemma remaining-steps-push-small [simp]: invar (States dir big small)
=⇒ remaining-steps (States dir big small) =

remaining-steps (States dir big (Small.push x small))
by(induction x small rule: Small.push.induct)(auto split: current.splits)

lemma remaining-steps-pop-small:
[[invar (States dir big small); 0 < size small; Small.pop small = (x, smallP)]]
=⇒ remaining-steps (States dir big smallP) ≤ remaining-steps (States dir big

small)
proof(induction small rule: Small.pop.induct)

case 1
then show ?case
by(auto simp: Common-Proof .remaining-steps-pop max.coboundedI2 split: prod.splits)

next
case (2 current small auxS)
then show ?case

by(induction current rule: Current.pop.induct)(auto split: big-state.splits)
next

case (3 current auxS big newS count)
then show ?case

by(induction current rule: Current.pop.induct) auto
qed

lemma remaining-steps-pop-big:
[[invar (States dir big small); 0 < size big; Big.pop big = (x, bigP)]]
=⇒ remaining-steps (States dir bigP small) ≤ remaining-steps (States dir big

small)

68

proof(induction big rule: Big.pop.induct)
case (1 state)
then show ?case
proof(induction state rule: Common.pop.induct)

case (1 current idle)
then show ?case

by(cases idle)(auto split: small-state.splits)
next

case (2 current aux new moved)
then show ?case

by(induction current rule: Current.pop.induct)(auto split: small-state.splits)
qed

next
case (2 current big aux count)
then show ?case
proof(induction current rule: Current.pop.induct)

case 1
then show ?case

by(auto split: small-state.splits current.splits)
next

case 2
then show ?case

by(auto split: small-state.splits current.splits)
qed

qed

lemma remaining-steps-push-big [simp]: invar (States dir big small)
=⇒ remaining-steps (States dir (Big.push x big) small) =

remaining-steps (States dir big small)
by(induction x big rule: Big.push.induct)(auto split: small-state.splits current.splits)

lemma step-4-remaining-steps-push-big [simp]: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir ′ big ′ small ′]]
=⇒ remaining-steps (States dir ′ big ′ small ′) = remaining-steps (States dir big

small) − 4
by (metis invar-push-big remaining-steps-n-steps-sub remaining-steps-push-big)

lemma step-4-remaining-steps-push-small [simp]: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir big (Small.push x small)) = States dir ′ big ′ small ′
]] =⇒ remaining-steps (States dir ′ big ′ small ′) = remaining-steps (States dir big
small) − 4
by (metis invar-push-small remaining-steps-n-steps-sub remaining-steps-push-small)

lemma step-4-remaining-steps-pop-big: [[
invar (States dir big small);

69

0 < size big;
Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
(step^^4) (States dir bigP small) = States dir ′ big ′ small ′

]] =⇒ remaining-steps (States dir ′ big ′ small ′) ≤ remaining-steps (States dir big
small) − 4
by (metis add-le-imp-le-diff invar-pop-big remaining-steps-pop-big remaining-steps-n-steps-plus)

lemma step-4-remaining-steps-pop-small: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4) (States dir big smallP) = States dir ′ big ′ small ′

]] =⇒ remaining-steps (States dir ′ big ′ small ′) ≤ remaining-steps (States dir big
small) − 4

by (metis add-le-imp-le-diff invar-pop-small remaining-steps-n-steps-plus remain-
ing-steps-pop-small)

lemma step-4-pop-small-size-ok-1 : [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4) (States dir big smallP) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
by (smt (verit, ccfv-SIG) add.left-commute add.right-neutral add-le-cancel-left

distrib-left-numeral dual-order .trans invar-pop-small le-add-diff-inverse2 mult.right-neutral
plus-1-eq-Suc remaining-steps-n-steps-sub remaining-steps-pop-small step-n-pop-size-small)

lemma step-4-pop-big-size-ok-1 : [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
(step^^4) (States dir bigP small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
by (smt (verit, ccfv-SIG) add-leE add-le-cancel-right invar-pop-big order-trans

remaining-steps-pop-big step-n-size-small remaining-steps-n-steps-plus)

lemma step-4-pop-small-size-ok-2 : [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
(step^^4) (States dir big smallP) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

70

by (smt (z3) add.commute add-leE invar-pop-small le-add-diff-inverse2 nat-add-left-cancel-le
remaining-steps-n-steps-sub step-n-size-big remaining-steps-pop-small)

lemma step-4-pop-big-size-ok-2 :
assumes

invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4) (States dir bigP small)) = States dir ′ big ′ small ′
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

shows
remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

proof −
from assms have remaining-steps (States dir bigP small) + 1 ≤ 4 ∗ size big

by (meson add-le-cancel-right order .trans remaining-steps-pop-big)

with assms show ?thesis
by (smt (z3) Suc-diff-le Suc-eq-plus1 add-mult-distrib2 diff-diff-add diff-is-0-eq

invar-pop-big mult-numeral-1-right numerals(1) plus-1-eq-Suc remaining-steps-n-steps-sub
step-n-pop-size-big)
qed

lemma step-4-pop-small-size-ok-3 :
assumes

invar (States dir big small)
0 < size small
Small.pop small = (x, smallP)
remaining-steps (States dir big smallP) ≥ 4
((step ^^ 4) (States dir big smallP)) = States dir ′ big ′ small ′
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

shows
size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

big ′

by (smt (verit, best) add-leD2 add-mono-thms-linordered-semiring(1) add-mono-thms-linordered-semiring(3)
assms(1) assms(2) assms(3) assms(4) assms(5) assms(6) invar-pop-small le-add2
le-add-diff-inverse order-trans plus-1-eq-Suc remaining-steps-n-steps-sub remaining-steps-pop-small
step-n-pop-size-new-small step-n-size-new-big)

lemma step-4-pop-big-size-ok-3-aux: [[
0 < size big;
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗
(size-new big − 1)

by linarith

lemma step-4-pop-big-size-ok-3 :

71

assumes
invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4) (States dir bigP small)) = (States dir ′ big ′ small ′)
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new

big
shows
size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

big ′

proof−
from assms
have size-new small + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗

(size-new big − 1)
by (meson dual-order .trans remaining-steps-pop-big step-4-pop-big-size-ok-3-aux)

then
have size-new small + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗

(size-new big − 1)
by (smt (verit, ccfv-SIG) add-le-mono assms(1) assms(2) assms(3) assms(4)

assms(5) dual-order .trans le-antisym less-or-eq-imp-le nat-less-le step-4-remaining-steps-pop-big)

with assms show ?thesis
by (metis diff-Suc-1 invar-pop-big step-n-size-new-small step-n-pop-size-new-big)

qed

lemma step-4-pop-small-size-ok-4-aux: [[
0 < size small;
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗
(size-new small − 1)

by linarith

lemma step-4-pop-small-size-ok-4 :
assumes

invar (States dir big small)
0 < size small
Small.pop small = (x, smallP)
remaining-steps (States dir big smallP) ≥ 4
((step ^^ 4) (States dir big smallP)) = (States dir ′ big ′ small ′)
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new

small
shows

size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′
proof−

from assms step-4-pop-small-size-ok-4-aux

72

have size-new big + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗
(size-new small − 1)

by (smt (verit, best) add-leE le-add-diff-inverse remaining-steps-pop-small)

with assms
have size-new big + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ (size-new

small − 1)
by (smt (verit, best) add-le-cancel-left add-mono-thms-linordered-semiring(3)

diff-le-mono invar-pop-small order-trans remaining-steps-n-steps-sub remaining-steps-pop-small)

with assms show ?thesis
by (metis diff-Suc-1 invar-pop-small step-n-size-new-big step-n-pop-size-new-small)

qed

lemma step-4-pop-big-size-ok-4-aux: [[
0 < size big;
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big − 1 + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗
size-new small

by linarith

lemma step-4-pop-big-size-ok-4 :
assumes

invar (States dir big small)
0 < size big
Big.pop big = (x, bigP)
remaining-steps (States dir bigP small) ≥ 4
((step ^^ 4) (States dir bigP small)) = (States dir ′ big ′ small ′)
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

shows
size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new

small ′
proof −

from assms step-4-pop-big-size-ok-4-aux
have (size-new big − 1) + (remaining-steps (States dir big small) − 4) + 2 ≤

3 ∗ size-new small
by linarith

with assms
have (size-new big − 1) + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗

size-new small
by (meson add-le-mono dual-order .eq-iff order-trans step-4-remaining-steps-pop-big)

with assms show ?thesis
by (metis diff-Suc-1 invar-pop-big step-n-size-new-small step-n-pop-size-new-big)

qed

lemma step-4-push-small-size-ok-1 : [[

73

invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
by (smt (z3) add.commute add-leD1 add-le-mono le-add1 le-add-diff-inverse2

mult-Suc-right nat-1-add-1 numeral-Bit0 step-n-push-size-small step-4-remaining-steps-push-small)

lemma step-4-push-big-size-ok-1 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size small

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size small ′
by (smt (verit, ccfv-SIG) Nat.le-diff-conv2 add-leD2 invar-push-big le-add1 le-add-diff-inverse2

remaining-steps-n-steps-sub remaining-steps-push-big step-n-size-small)

lemma step-4-push-small-size-ok-2 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

by (metis (full-types) Suc-diff-le Suc-eq-plus1 invar-push-small less-Suc-eq-le less-imp-diff-less
step-4-remaining-steps-push-small step-n-size-big)

lemma step-4-push-big-size-ok-2 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
remaining-steps (States dir big small) + 1 ≤ 4 ∗ size big

]] =⇒ remaining-steps (States dir ′ big ′ small ′) + 1 ≤ 4 ∗ size big ′

by (smt (verit, ccfv-SIG) add.commute add-diff-cancel-left ′ add-leD1 add-le-mono
invar-push-big mult-Suc-right nat-le-iff-add one-le-numeral remaining-steps-n-steps-sub
remaining-steps-push-big step-n-push-size-big)

lemma step-4-push-small-size-ok-3-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ Suc (size-new small) + (remaining-steps (States dir big small) − 4) + 2 ≤
3 ∗ size-new big

using distrib-left dual-order .trans le-add-diff-inverse2 by force

lemma step-4-push-small-size-ok-3 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗

74

size-new big ′

using step-n-size-new-big step-n-push-size-new-small step-4-remaining-steps-push-small
by (metis invar-push-small step-4-push-small-size-ok-3-aux)

lemma step-4-push-big-size-ok-3-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗
Suc (size-new big)

using distrib-left dual-order .trans le-add-diff-inverse2 by force

lemma step-4-push-big-size-ok-3 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;
size-new small + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new big

]] =⇒ size-new small ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗
size-new big ′

by (metis invar-push-big remaining-steps-n-steps-sub remaining-steps-push-big
step-4-push-big-size-ok-3-aux step-n-push-size-new-big step-n-size-new-small)

lemma step-4-push-small-size-ok-4-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big + (remaining-steps (States dir big small) − 4) + 2 ≤ 3 ∗ Suc
(size-new small)

using distrib-left dual-order .trans le-add-diff-inverse2 by force

lemma step-4-push-small-size-ok-4 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir big (Small.push x small)) = States dir ′ big ′ small ′;
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′
by (metis invar-push-small step-n-size-new-big step-n-push-size-new-small step-4-remaining-steps-push-small

step-4-push-small-size-ok-4-aux)

lemma step-4-push-big-size-ok-4-aux: [[
4 ≤ remaining-steps (States dir big small);
size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small

]] =⇒ Suc (size-new big) + (remaining-steps (States dir big small) − 4) + 2 ≤ 3
∗ size-new small

using distrib-left dual-order .trans le-add-diff-inverse2 by force

lemma step-4-push-big-size-ok-4 : [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir ′ big ′ small ′;

75

size-new big + remaining-steps (States dir big small) + 2 ≤ 3 ∗ size-new small
]] =⇒ size-new big ′ + remaining-steps (States dir ′ big ′ small ′) + 2 ≤ 3 ∗ size-new
small ′

by (metis invar-push-big remaining-steps-n-steps-sub remaining-steps-push-big
step-4-push-big-size-ok-4-aux step-n-push-size-new-big step-n-size-new-small)

lemma step-4-push-small-size-ok: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4) (States dir big (Small.push x small)))
using step-4-push-small-size-ok-1 step-4-push-small-size-ok-2 step-4-push-small-size-ok-3

step-4-push-small-size-ok-4
by (smt (verit) size-ok ′.elims(3) size-ok ′.simps)

lemma step-4-push-big-size-ok: [[
invar (States dir big small);
4 ≤ remaining-steps (States dir big small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4) (States dir (Big.push x big) small))
using step-4-push-big-size-ok-1 step-4-push-big-size-ok-2 step-4-push-big-size-ok-3

step-4-push-big-size-ok-4
by (smt (verit) size-ok ′.elims(3) size-ok ′.simps)

lemma step-4-pop-small-size-ok: [[
invar (States dir big small);
0 < size small;
Small.pop small = (x, smallP);
4 ≤ remaining-steps (States dir big smallP);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4) (States dir big smallP))
by (smt (verit) size-ok ′.elims(3) size-ok ′.simps step-4-pop-small-size-ok-1 step-4-pop-small-size-ok-2

step-4-pop-small-size-ok-3 step-4-pop-small-size-ok-4)

lemma step-4-pop-big-size-ok: [[
invar (States dir big small);
0 < size big; Big.pop big = (x, bigP);
4 ≤ remaining-steps (States dir bigP small);
size-ok (States dir big small)

]] =⇒ size-ok ((step^^4) (States dir bigP small))
using step-4-pop-big-size-ok-1 step-4-pop-big-size-ok-2 step-4-pop-big-size-ok-3 step-4-pop-big-size-ok-4
by (smt (verit) size-ok ′.elims(3) size-ok ′.simps)

lemma size-ok-size-small: size-ok (States dir big small) =⇒ 0 < size small
by auto

lemma size-ok-size-big: size-ok (States dir big small) =⇒ 0 < size big
by auto

76

lemma size-ok-size-new-small: size-ok (States dir big small) =⇒ 0 < size-new
small

by auto

lemma size-ok-size-new-big: size-ok (States dir big small) =⇒ 0 < size-new big
by auto

lemma step-size-ok ′: [[invar states; size-ok ′ states n]] =⇒ size-ok ′ (step states) n
by (smt (verit, ccfv-SIG) size-ok ′.elims(2) size-ok ′.elims(3) step-size-big step-size-new-big

step-size-new-small step-size-small)

lemma step-same: step (States dir big small) = States dir ′ big ′ small ′ =⇒ dir =
dir ′

by(induction States dir big small rule: step-states.induct) auto

lemma step-n-same: (step^^n) (States dir big small) = States dir ′ big ′ small ′ =⇒
dir = dir ′

proof(induction n arbitrary: big small big ′ small ′)
case 0
then show ?case

by simp
next

case (Suc n)
obtain big ′′ small ′′ where step (States dir big small) = States dir big ′′ small ′′

by (metis states.exhaust step-same)

with Suc show ?case
by(auto simp: funpow-swap1)

qed

lemma step-listL: invar states =⇒ listL (step states) = listL states
proof(induction states rule: listL.induct)

case (1 big small)
then have list-small-first (States Left big small) =

Small-Aux.list-current small @ rev (Big-Aux.list-current big)
by auto

then have list-small-first (step (States Left big small)) =
Small-Aux.list-current small @ rev (Big-Aux.list-current big)

using 1 step-lists by fastforce

then have listL (step (States Left big small)) =
Small-Aux.list-current small @ rev (Big-Aux.list-current big)

by (smt (verit, ccfv-SIG) 1 invar-states.elims(2) States-Proof .invar-step listL.simps(1)
step-same)

with 1 show ?case
by auto

next

77

case (2 big small)
then have a: list-big-first (States Right big small) =

Big-Aux.list-current big @ rev (Small-Aux.list-current small)
using invar-list-big-first[of States Right big small]
by auto

then have list-big-first (step (States Right big small)) =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

using 2 step-lists by fastforce

then have listL (step (States Right big small)) =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

by (metis(full-types) listL.cases listL.simps(2) step-same)

with 2 show ?case
using a by force

qed

lemma step-n-listL: invar states =⇒ listL ((step^^n) states) = listL states
using step-consistent[of listL states] step-listL
by metis

lemma listL-remaining-steps:
assumes

listL states = []
0 < remaining-steps states
invar states
size-ok states

shows
False

proof(cases states)
case (States dir big small)
with assms show ?thesis

using Small-Proof .list-current-size size-ok-size-small
by(cases dir ; cases lists (States dir big small)) auto

qed

lemma invar-step-n: invar (states :: ′a states) =⇒ invar ((step^^n) states)
by (simp add: invar-step step-consistent-2)

lemma step-n-size-ok ′: [[invar states; size-ok ′ states x]] =⇒ size-ok ′ ((step ^^ n)
states) x
proof(induction n arbitrary: states x)

case 0
then show ?case by auto

next
case Suc
then show ?case

using invar-step-n step-size-ok ′

78

by fastforce
qed

lemma size-ok-steps: [[
invar states;
size-ok ′ states (remaining-steps states − n)

]] =⇒ size-ok ((step ^^ n) states)
by (simp add: step-n-size-ok ′)

lemma remaining-steps-idle: invar states
=⇒ remaining-steps states = 0 ←→ (

case states of
States - (Big2 (Common.Idle - -)) (Small3 (Common.Idle - -)) ⇒ True

| - ⇒ False)
by(cases states)
(auto split: big-state.split small-state.split common-state.split current.splits)

lemma remaining-steps-idle ′:
[[invar (States dir big small); remaining-steps (States dir big small) = 0]]
=⇒ ∃ big-current big-idle small-current small-idle. States dir big small =

States dir
(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

using remaining-steps-idle[of States dir big small]
by(cases big; cases small) (auto split!: common-state.splits)

end

19 Dequeue Proofs
theory RealTimeDeque-Dequeue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin

lemma list-deqL ′ [simp]: [[invar deque; listL deque 6= []; deqL ′ deque = (x, deque ′)]]
=⇒ x # listL deque ′ = listL deque

proof(induction deque arbitrary: x rule: deqL ′.induct)
case (4 left right length-right)

then obtain left ′ where pop-left[simp]: Idle.pop left = (x, left ′)
by(auto simp: Let-def split: if-splits stack.splits prod.splits idle.splits)

then obtain stack-left ′ length-left ′

where left ′[simp]: left ′ = idle.Idle stack-left ′ length-left ′

using idle.exhaust by blast

from 4 have invar-left ′: invar left ′

using Idle-Proof .invar-pop[of left]
by auto

79

then have size-left ′ [simp]: size stack-left ′ = length-left ′

by auto

have size-left ′-size-left [simp]: size stack-left ′ = (size left) − 1
using Idle-Proof .size-pop-sub[of left x left ′]
by auto

show ?case
proof(cases 3 ∗ length-left ′ ≥ length-right)

case True
with 4 pop-left show ?thesis

using Idle-Proof .pop-list[of left x left ′]
by auto

next
case False
note Start-Rebalancing = False

then show ?thesis
proof(cases length-left ′ ≥ 1)

case True
let ?big = Big1 (Current [] 0 right (size right − Suc length-left ′))

right [] (size right − Suc length-left ′)
let ?small = Small1 (Current [] 0 stack-left ′ (Suc (2 ∗ length-left ′))) stack-left ′

[]
let ?states = States Left ?big ?small

from 4 Start-Rebalancing True invar-left ′ have invar : invar ?states
by(auto simp: Let-def rev-take rev-drop)

with 4 Start-Rebalancing True invar-left ′

have States-Aux.listL ?states = tl (Idle-Aux.list left) @ rev (Stack-Aux.list
right)

using pop-list-tl ′[of left x left ′]
by (auto simp del: take-rev-def)

with invar
have States-Aux.listL ((step^^6) ?states) =

tl (Idle-Aux.list left) @ rev (Stack-Aux.list right)
using step-n-listL[of ?states 6]
by presburger

with 4 Start-Rebalancing True show ?thesis
by(auto simp: Let-def)

next
case False
from False Start-Rebalancing 4 have [simp]:size left = 1

using size-left ′ size-left ′-size-left by auto

80

with False Start-Rebalancing 4 have [simp]: Idle-Aux.list left = [x]
by(induction left)(auto simp: length-one-hd split: stack.splits)

obtain right1 right2 where right = Stack right1 right2
using Stack-Aux.list.cases by blast

with False Start-Rebalancing 4 show ?thesis
by(induction right1 right2 rule: small-deque.induct) auto

qed
qed

next
case (5 big small)

then have start-invar : invar (States Left big small)
by auto

from 5 have small-invar : invar small
by auto

from 5 have small-size: 0 < size small
by auto

with 5 (3) obtain small ′ where pop: Small.pop small = (x, small ′)
by(cases small)
(auto simp: Let-def split: states.splits direction.splits state-splits prod.splits)

let ?states-new = States Left big small ′
let ?states-stepped = (step^^4) ?states-new

have invar : invar ?states-new
using pop start-invar small-size invar-pop-small[of Left big small x small ′]
by auto

have x # Small-Aux.list-current small ′ = Small-Aux.list-current small
using small-invar small-size pop Small-Proof .pop-list-current[of small x small ′]

by auto

then have listL:
x # States-Aux.listL ?states-new =
Small-Aux.list-current small @ rev (Big-Aux.list-current big)

using invar small-size Small-Proof .pop-list-current[of small x small ′] 5 (1)
by auto

from invar have invar ?states-stepped
using invar-step-n by blast

then have states-listL-list-current [simp]: x # States-Aux.listL ?states-stepped
=

Small-Aux.list-current small @ rev (Big-Aux.list-current big)

81

using States-Proof .step-n-listL invar listL by metis

then have listL (deqL (Rebal (States Left big small))) = States-Aux.listL ?states-stepped
by(auto simp: Let-def pop split: prod.splits direction.splits states.splits state-splits)

then have states-listL-list-current:
x # listL (deqL (Rebal (States Left big small))) =
Small-Aux.list-current small @ rev (Big-Aux.list-current big)

by auto

with 5 (1) have listL (Rebal (States Left big small)) =
Small-Aux.list-current small @ rev (Big-Aux.list-current big)

by auto

with states-listL-list-current
have x # listL (deqL (Rebal (States Left big small))) =

listL (Rebal (States Left big small))
by auto

with 5 show ?case by auto
next

case (6 big small)
then have start-invar : invar (States Right big small)

by auto

from 6 have big-invar : invar big
by auto

from 6 have big-size: 0 < size big
by auto

with 6 (3) obtain big ′ where pop: Big.pop big = (x, big ′)
by(cases big)
(auto simp: Let-def split: prod.splits direction.splits states.splits state-splits)

let ?states-new = States Right big ′ small
let ?states-stepped = (step^^4) ?states-new

have invar : invar ?states-new
using pop start-invar big-size invar-pop-big[of Right big small]
by auto

have big-list-current: x # Big-Aux.list-current big ′ = Big-Aux.list-current big
using big-invar big-size pop by auto

then have listL:
x # States-Aux.listL ?states-new =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

proof(cases States-Aux.lists ?states-new)

82

case (Pair bigs smalls)
with invar big-list-current show ?thesis

using app-rev[of smalls bigs]
by(auto split: prod.splits)

qed

from invar have four-steps: invar ?states-stepped
using invar-step-n by blast

then have [simp]:
x # States-Aux.listL ?states-stepped =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

using States-Proof .step-n-listL[of ?states-new 4] invar listL
by auto

then have listL (deqL (Rebal (States Right big small))) =
States-Aux.listL ?states-stepped

by(auto simp: Let-def pop split: prod.splits direction.splits states.splits state-splits)

then have listL-list-current:
x # listL (deqL (Rebal (States Right big small))) =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

by auto

with 6 (1) have listL (Rebal (States Right big small)) =
Big-Aux.list-current big @ rev (Small-Aux.list-current small)

using invar-list-big-first[of States Right big small] by fastforce

with listL-list-current have
x # listL (deqL (Rebal (States Right big small))) =
listL (Rebal (States Right big small))

by auto

with 6 show ?case by auto
qed auto

lemma list-deqL [simp]:
[[invar deque; listL deque 6= []]] =⇒ listL (deqL deque) = tl (listL deque)

using cons-tl[of fst (deqL ′ deque) listL (deqL deque) listL deque]
by(auto split: prod.splits)

lemma list-firstL [simp]:
[[invar deque; listL deque 6= []]] =⇒ firstL deque = hd (listL deque)

using cons-hd[of fst (deqL ′ deque) listL (deqL deque) listL deque]
by(auto split: prod.splits)

lemma invar-deqL:
[[invar deque; ¬ is-empty deque]] =⇒ invar (deqL deque)

proof(induction deque rule: deqL ′.induct)

83

case (4 left right length-right)
then obtain x left ′ where pop-left[simp]: Idle.pop left = (x, left ′)

by fastforce

then obtain stack-left ′ length-left ′

where left ′[simp]: left ′ = idle.Idle stack-left ′ length-left ′

using idle.exhaust by blast

from 4 have invar-left ′: invar left ′ invar left
using Idle-Proof .invar-pop by fastforce+

have [simp]: size stack-left ′ = size left − 1
by (metis Idle-Proof .size-pop-sub left ′ pop-left size-idle.simps)

have [simp]: length-left ′ = size left − 1
using invar-left ′ by auto

from 4 have list: x # Idle-Aux.list left ′ = Idle-Aux.list left
using Idle-Proof .pop-list[of left x left ′]
by auto

show ?case
proof(cases length-right ≤ 3 ∗ size left ′)

case True
with 4 invar-left ′ show ?thesis

by(auto simp: Stack-Proof .size-empty[symmetric])
next

case False
note Start-Rebalancing = False
then show ?thesis
proof(cases 1 ≤ size left ′)

case True
let ?big =

Big1
(Current [] 0 right (size right − Suc length-left ′))
right [] (size right − Suc length-left ′)

let ?small = Small1 (Current [] 0 stack-left ′ (Suc (2 ∗ length-left ′))) stack-left ′

[]
let ?states = States Left ?big ?small

from 4 Start-Rebalancing True invar-left ′

have invar : invar ?states
by(auto simp: Let-def rev-take rev-drop)

then have invar-stepped: invar ((step^^6) ?states)
using invar-step-n by blast

from 4 Start-Rebalancing True
have remaining-steps: 6 < remaining-steps ?states

84

by auto

then have remaining-steps-end: 0 < remaining-steps ((step^^6) ?states)
by(simp only: remaining-steps-n-steps-sub[of ?states 6] invar)

from 4 Start-Rebalancing True
have size-ok ′: size-ok ′ ?states (remaining-steps ?states − 6)

by auto

then have size-ok: size-ok ((step^^6) ?states)
using invar remaining-steps size-ok-steps by blast

from True Start-Rebalancing 4 show ?thesis
using remaining-steps-end size-ok invar-stepped
by(auto simp: Let-def)

next
case False
from False Start-Rebalancing 4 have [simp]: size left = 1

by auto

with False Start-Rebalancing 4 have [simp]: Idle-Aux.list left = [x]
using list[symmetric]
by(auto simp: list Stack-Proof .list-empty-size)

obtain right1 right2 where right = Stack right1 right2
using Stack-Aux.list.cases by blast

with False Start-Rebalancing 4 show ?thesis
by(induction right1 right2 rule: small-deque.induct) auto

qed
qed

next
case (5 big small)

obtain x small ′ where small ′ [simp]: Small.pop small = (x, small ′)
by fastforce

let ?states = States Left big small ′
let ?states-stepped = (step^^4) ?states

obtain big-stepped small-stepped where stepped [simp]:
?states-stepped = States Left big-stepped small-stepped

by (metis remaining-steps-states.cases step-n-same)

from 5 have invar : invar ?states
using invar-pop-small[of Left big small x small ′]
by auto

then have invar-stepped: invar ?states-stepped

85

using invar-step-n by blast

show ?case
proof(cases 4 < remaining-steps ?states)

case True

then have remaining-steps: 0 < remaining-steps ?states-stepped
using invar remaining-steps-n-steps-sub[of ?states 4]
by simp

from True have size-ok: size-ok ?states-stepped
using step-4-pop-small-size-ok[of Left big small x small ′] 5 (1)
by auto

from remaining-steps size-ok invar-stepped show ?thesis
by(cases big-stepped; cases small-stepped) (auto simp: Let-def split!: com-

mon-state.split)
next

case False
then have remaining-steps-stepped: remaining-steps ?states-stepped = 0

using invar by(auto simp del: stepped)

then obtain small-current small-idle big-current big-idle where idle [simp]:
States Left big-stepped small-stepped =
States Left

(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

using remaining-steps-idle ′ invar-stepped remaining-steps-stepped
by fastforce

have size-new-small : 1 < size-new small
using 5 by auto

have [simp]: size-new small = Suc (size-new small ′)
using 5 by auto

have [simp]: size-new small ′ = size-new small-stepped
using invar step-n-size-new-small stepped
by metis

have [simp]: size-new small-stepped = size small-idle
using idle invar-stepped
by(cases small-stepped) auto

have [simp]: ¬is-empty small-idle
using size-new-small
by (simp add: Idle-Proof .size-not-empty)

86

have [simp]: size-new big = size-new big-stepped
by (metis invar step-n-size-new-big stepped)

have [simp]: size-new big-stepped = size big-idle
using idle invar-stepped
by(cases big-stepped) auto

have 0 < size big-idle
using 5 by auto

then have [simp]: ¬is-empty big-idle
by (auto simp: Idle-Proof .size-not-empty)

have [simp]: size small-idle ≤ 3 ∗ size big-idle
using 5 by auto

have [simp]: size big-idle ≤ 3 ∗ size small-idle
using 5 by auto

show ?thesis
using invar-stepped by auto

qed
next

case (6 big small)

obtain x big ′ where big ′ [simp]: Big.pop big = (x, big ′)
by fastforce

let ?states = States Right big ′ small
let ?states-stepped = (step^^4) ?states

obtain big-stepped small-stepped where stepped [simp]:
?states-stepped = States Right big-stepped small-stepped

by (metis remaining-steps-states.cases step-n-same)

from 6 have invar : invar ?states
using invar-pop-big[of Right big small x big ′]
by auto

then have invar-stepped: invar ?states-stepped
using invar-step-n by blast

show ?case
proof(cases 4 < remaining-steps ?states)

case True

then have remaining-steps: 0 < remaining-steps ?states-stepped
using invar remaining-steps-n-steps-sub[of ?states 4]
by simp

87

from True have size-ok: size-ok ?states-stepped
using step-4-pop-big-size-ok[of Right big small x big ′] 6 (1)
by auto

from remaining-steps size-ok invar-stepped show ?thesis
by(cases big-stepped; cases small-stepped) (auto simp: Let-def split!: com-

mon-state.split)
next

case False
then have remaining-steps-stepped: remaining-steps ?states-stepped = 0

using invar by(auto simp del: stepped)

then obtain small-current small-idle big-current big-idle where idle [simp]:
States Right big-stepped small-stepped =
States Right

(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

using remaining-steps-idle ′ invar-stepped remaining-steps-stepped
by fastforce

have size-new-big : 1 < size-new big
using 6 by auto

have [simp]: size-new big = Suc (size-new big ′)
using 6 by auto

have [simp]: size-new big ′ = size-new big-stepped
using invar step-n-size-new-big stepped
by metis

have [simp]: size-new big-stepped = size big-idle
using idle invar-stepped
by(cases big-stepped) auto

have [simp]: ¬is-empty big-idle
using size-new-big
by (simp add: Idle-Proof .size-not-empty)

have [simp]: size-new small = size-new small-stepped
by (metis invar step-n-size-new-small stepped)

have [simp]: size-new small-stepped = size small-idle
using idle invar-stepped
by(cases small-stepped) auto

have 0 < size small-idle
using 6 by auto

88

then have [simp]: ¬is-empty small-idle
by (auto simp: Idle-Proof .size-not-empty)

have [simp]: size big-idle ≤ 3 ∗ size small-idle
using 6 by auto

have [simp]: size small-idle ≤ 3 ∗ size big-idle
using 6 by auto

show ?thesis
using invar-stepped by auto

qed
qed auto

end

20 Enqueue Proofs
theory RealTimeDeque-Enqueue-Proof
imports Deque RealTimeDeque-Aux States-Proof
begin

lemma list-enqL: invar deque =⇒ listL (enqL x deque) = x # listL deque
proof(induction x deque rule: enqL.induct)

case (5 x left right length-right)

obtain left ′ length-left ′ where pushed [simp]:
Idle.push x left = idle.Idle left ′ length-left ′

using is-empty-idle.cases by blast

then have invar-left ′: invar (idle.Idle left ′ length-left ′)
using Idle-Proof .invar-push[of left x] 5 by auto

show ?case
proof(cases length-left ′ ≤ 3 ∗ length-right)

case True
then show ?thesis

using Idle-Proof .push-list[of x left]
by(auto simp: Let-def)

next
case False
let ?length-left = length-left ′ − length-right − 1
let ?length-right = 2 ∗ length-right + 1
let ?big = Big1 (Current [] 0 left ′ ?length-left) left ′ [] ?length-left
let ?small = Small1 (Current [] 0 right ?length-right) right []
let ?states = States Right ?big ?small
let ?states-stepped = (step^^6) ?states

89

from False 5 invar-left ′ have invar : invar ?states
by(auto simp: rev-drop rev-take)

then have States-Aux.listL ?states = x # Idle-Aux.list left @ rev (Stack-Aux.list
right)

using Idle-Proof .push-list[of x left]
by(auto)

then have States-Aux.listL ?states-stepped = x # Idle-Aux.list left @ rev
(Stack-Aux.list right)

by (metis invar step-n-listL)

with False show ?thesis
by(auto simp: Let-def)

qed
next

case (6 x big small)
let ?small = Small.push x small
let ?states = States Left big ?small
let ?states-stepped = (step^^4) ?states

obtain big-stepped small-stepped where stepped:
?states-stepped = States Left big-stepped small-stepped

by (metis remaining-steps-states.cases step-n-same)

from 6 have invar ?states
using invar-push-small[of Left big small x]
by auto

then have
States-Aux.listL ?states-stepped =
x # Small-Aux.list-current small @ rev (Big-Aux.list-current big)

using step-n-listL by fastforce

with 6 show ?case
by(cases big-stepped; cases small-stepped)
(auto simp: Let-def stepped split!: common-state.split)

next
case (7 x big small)

let ?big = Big.push x big
let ?states = States Right ?big small
let ?states-stepped = (step^^4) ?states

obtain big-stepped small-stepped where stepped:
?states-stepped = States Right big-stepped small-stepped

by (metis remaining-steps-states.cases step-n-same)

from 7 have list-invar :

90

list-current-small-first (States Right big small) = list-small-first (States Right
big small)

by auto

from 7 have invar : invar ?states
using invar-push-big[of Right big small x]
by auto

then have
States-Aux.listL ?states = x # Big-Aux.list-current big @ rev (Small-Aux.list-current

small)
using app-rev[of - - - x # Big-Aux.list-current big]
by(auto split: prod.split)

then have
States-Aux.listL ?states-stepped =
x # Big-Aux.list-current big @ rev (Small-Aux.list-current small)

by (metis invar step-n-listL)

with list-invar show ?case
using app-rev[of Small-Aux.list-current small Big-Aux.list-current big]
by(cases big-stepped; cases small-stepped)
(auto simp: Let-def stepped split!: prod.split common-state.split)

qed auto

lemma invar-enqL: invar deque =⇒ invar (enqL x deque)
proof(induction x deque rule: enqL.induct)

case (5 x left right length-right)
obtain left ′ length-left ′ where pushed [simp]:

Idle.push x left = idle.Idle left ′ length-left ′

using is-empty-idle.cases by blast

then have invar-left ′: invar (idle.Idle left ′ length-left ′)
using Idle-Proof .invar-push[of left x] 5 by auto

have [simp]: size left ′ = Suc (size left)
using Idle-Proof .size-push[of x left]
by auto

show ?case
proof(cases length-left ′ ≤ 3 ∗ length-right)

case True
with 5 show ?thesis

using invar-left ′ Idle-Proof .size-push[of x left] Stack-Proof .size-not-empty[of
left ′]

by auto
next

case False
let ?length-left = length-left ′ − length-right − 1

91

let ?length-right = Suc (2 ∗ length-right)
let ?states = States Right

(Big1 (Current [] 0 left ′ ?length-left) left ′ [] ?length-left)
(Small1 (Current [] 0 right ?length-right) right [])

let ?states-stepped = (step^^6) ?states

from invar-left ′ 5 False have invar : invar ?states
by(auto simp: rev-drop rev-take)

then have invar-stepped: invar ?states-stepped
using invar-step-n by blast

from False invar-left ′ 5 have remaining-steps: 6 < remaining-steps ?states
using Stack-Proof .size-not-empty[of right]
by auto

then have remaining-steps-stepped: 0 < remaining-steps ?states-stepped
using invar remaining-steps-n-steps-sub
by (metis zero-less-diff)

from False invar-left ′ 5 have size-ok ′ ?states (remaining-steps ?states − 6)
using Stack-Proof .size-not-empty[of right]

size-not-empty
by auto

then have size-ok-stepped: size-ok ?states-stepped
using size-ok-steps[of ?states 6] remaining-steps invar
by blast

from False show ?thesis
using invar-stepped remaining-steps-stepped size-ok-stepped
by(auto simp: Let-def)

qed
next

case (6 x big small)
let ?small = Small.push x small
let ?states = States Left big ?small
let ?states-stepped = (step^^4) ?states

from 6 have invar : invar ?states
using invar-push-small[of Left big small x]
by auto

then have invar-stepped: invar ?states-stepped
using invar-step-n by blast

show ?case
proof(cases 4 < remaining-steps ?states)

case True

92

obtain big-stepped small-stepped where stepped [simp]:
?states-stepped = States Left big-stepped small-stepped
by (metis remaining-steps-states.cases step-n-same)

from True have remaining-steps: 0 < remaining-steps ?states-stepped
using invar remaining-steps-n-steps-sub[of ?states 4]
by simp

from True 6 (1) have size-ok: size-ok ?states-stepped
using

step-4-push-small-size-ok[of Left big small x]
remaining-steps-push-small[of Left big small x]

by auto

from remaining-steps size-ok invar-stepped show ?thesis
by(cases big-stepped; cases small-stepped)
(auto simp: Let-def split!: common-state.split)

next
case False
then have remaining-steps-stepped: remaining-steps ?states-stepped = 0

using invar by auto

then obtain small-current small-idle big-current big-idle where idle [simp]:
?states-stepped =
States Left

(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

using remaining-steps-idle ′ invar-stepped remaining-steps-stepped step-n-same
by (smt (verit) invar-states.elims(2))

from 6 have [simp]: size-new (Small.push x small) = Suc (size-new small)
using Small-Proof .size-new-push by auto

have [simp]: size small-idle = size-new (Small.push x small)
using invar invar-stepped step-n-size-new-small[of Left big Small.push x small

4]
by auto

then have [simp]: ¬is-empty small-idle
using Idle-Proof .size-not-empty[of small-idle]
by auto

have size-new-big [simp]: 0 < size-new big
using 6
by auto

then have [simp]: size big-idle = size-new big

93

using invar invar-stepped step-n-size-new-big[of Left big Small.push x small
4]

by auto

then have [simp]: ¬is-empty big-idle
using Idle-Proof .size-not-empty size-new-big
by metis

have size-ok-1 : size small-idle ≤ 3 ∗ size big-idle
using 6 by auto

have size-ok-2 : size big-idle ≤ 3 ∗ size small-idle
using 6 by auto

from False show ?thesis
using invar-stepped size-ok-1 size-ok-2
by auto

qed
next

case (7 x big small)
let ?big = Big.push x big
let ?states = States Right ?big small
let ?states-stepped = (step^^4) ?states

from 7 have invar : invar ?states
using invar-push-big[of Right big small x]
by auto

then have invar-stepped: invar ?states-stepped
using invar-step-n by blast

show ?case
proof(cases 4 < remaining-steps ?states)

case True

obtain big-stepped small-stepped where stepped [simp]:
?states-stepped = States Right big-stepped small-stepped
by (metis remaining-steps-states.cases step-n-same)

from True have remaining-steps: 0 < remaining-steps ?states-stepped
using invar remaining-steps-n-steps-sub[of ?states 4]
by simp

from True 7 (1) have size-ok: size-ok ?states-stepped
using

step-4-push-big-size-ok[of Right big small x]
remaining-steps-push-big[of Right big small x]

by auto

94

from remaining-steps size-ok invar-stepped show ?thesis
by(cases big-stepped; cases small-stepped)
(auto simp: Let-def split!: common-state.split)

next
case False
then have remaining-steps-stepped: remaining-steps ?states-stepped = 0

using invar by auto

then obtain small-current small-idle big-current big-idle where idle [simp]:
?states-stepped =
States Right

(Big2 (common-state.Idle big-current big-idle))
(Small3 (common-state.Idle small-current small-idle))

using remaining-steps-idle ′ invar-stepped remaining-steps-stepped step-n-same
by (smt (verit) invar-states.elims(2))

from 7 have [simp]: size-new (Big.push x big) = Suc (size-new big)
using Big-Proof .size-new-push by auto

have [simp]: size big-idle = size-new (Big.push x big)
using invar invar-stepped step-n-size-new-big[of Right Big.push x big small

4]
by auto

then have [simp]: ¬is-empty big-idle
using Idle-Proof .size-not-empty[of big-idle]
by auto

have size-new-small [simp]: 0 < size-new small
using 7
by auto

then have [simp]: size small-idle = size-new small
using invar invar-stepped step-n-size-new-small[of Right Big.push x big small

4]
by auto

then have [simp]: ¬is-empty small-idle
using Idle-Proof .size-not-empty size-new-small
by metis

have size-ok-1 : size small-idle ≤ 3 ∗ size big-idle
using 7 by auto

have size-ok-2 : size big-idle ≤ 3 ∗ size small-idle
using 7 by auto

from False show ?thesis

95

using invar-stepped size-ok-1 size-ok-2
by auto

qed
qed auto

end

21 Top-Level Proof
theory RealTimeDeque-Proof
imports RealTimeDeque-Dequeue-Proof RealTimeDeque-Enqueue-Proof
begin

lemma swap-lists-left: invar (States Left big small) =⇒
States-Aux.listL (States Left big small) = rev (States-Aux.listL (States Right

big small))
by(auto split: prod.splits big-state.splits small-state.splits)

lemma swap-lists-right: invar (States Right big small) =⇒
States-Aux.listL (States Right big small) = rev (States-Aux.listL (States Left

big small))
by(auto split: prod.splits big-state.splits small-state.splits)

lemma swap-list [simp]: invar q =⇒ listR (swap q) = listL q
proof(induction q)

case (Rebal states)
then show ?case

apply(cases states)
using swap-lists-left swap-lists-right
by (metis (full-types) RealTimeDeque-Aux.listL.simps(6) direction.exhaust in-

var-deque.simps(6) swap.simps(6) swap.simps(7))
qed auto

lemma swap-list ′: invar q =⇒ listL (swap q) = listR q
using swap-list rev-swap
by blast

lemma lists-same: lists (States Left big small) = lists (States Right big small)
by(induction States Left big small rule: lists.induct) auto

lemma invar-swap: invar q =⇒ invar (swap q)
by(induction q rule: swap.induct) (auto simp: lists-same split: prod.splits)

lemma listL-is-empty: invar deque =⇒ is-empty deque = (listL deque = [])
using Idle-Proof .list-empty listL-remaining-steps
by(cases deque) auto

interpretation RealTimeDeque: Deque where
empty = empty and

96

enqL = enqL and
enqR = enqR and
firstL = firstL and
firstR = firstR and
deqL = deqL and
deqR = deqR and
is-empty = is-empty and
listL = listL and
invar = invar

proof (standard, goal-cases)
case 1
then show ?case

by (simp add: empty-def)
next

case 2
then show ?case

by(simp add: list-enqL)
next

case (3 q x)

then have listL (enqL x (swap q)) = x # listR q
by (simp add: list-enqL invar-swap swap-list ′)

with 3 show ?case
by (simp add: invar-enqL invar-swap)

next
case 4
then show ?case

using list-deqL by simp
next

case (5 q)
then have listL (deqL (swap q)) = tl (listR q)

using 5 list-deqL swap-list ′ invar-swap by fastforce

then have listR (swap (deqL (swap q))) = tl (listR q)
using 5 swap-list ′ invar-deqL invar-swap listL-is-empty swap-list
by metis

then show ?case
by(auto split: prod.splits)

next
case 6
then show ?case

using list-firstL by simp
next

case (7 q)

from 7 have [simp]: listR q = listL (swap q)
by (simp add: invar-swap swap-list ′)

97

from 7 have [simp]: firstR q = firstL (swap q)
by(auto split: prod.splits)

from 7 have listL (swap q) 6= []
by auto

with 7 have firstL (swap q) = hd (listL (swap q))
using invar-swap list-firstL by blast

then show ?case
using ‹firstR q = firstL (swap q)› by auto

next
case 8
then show ?case

using listL-is-empty by auto
next

case 9
then show ?case

by (simp add: empty-def)
next

case 10
then show ?case

by(simp add: invar-enqL)
next

case 11
then show ?case

by (simp add: invar-enqL invar-swap)
next

case 12
then show ?case

using invar-deqL by simp
next

case (13 q)
then have invar (swap (deqL (swap q)))

by (metis invar-deqL invar-swap listL-is-empty rev.simps(1) swap-list)

then show ?case
by (auto split: prod.splits)

qed

end

References
[1] T. Chuang and B. Goldberg. Real-time deques, multihead Turing ma-

chines, and purely functional programming. In J. Williams, editor, Pro-
ceedings of the conference on Functional programming languages and

98

computer architecture, FPCA 1993, Copenhagen, Denmark, June 9-11,
1993, pages 289–298. ACM, 1993.

99

	Double-Ended Queue Specification
	Type Classes
	Stack
	Current Stack
	Idle
	Common
	Bigger End of Deque
	Smaller End of Deque
	Combining Big and Small
	Real-Time Deque Implementation
	Basic Lemma Library
	Stack Proofs
	Idle Proofs
	Current Proofs
	Common Proofs
	Big Proofs
	Small Proofs
	Big + Small Proofs
	Dequeue Proofs
	Enqueue Proofs
	Top-Level Proof

