Implementing field extensions of the form $\mathbb{Q}[\sqrt{b}]$*

René Thiemann

June 11, 2019

Abstract

We apply data refinement to implement the real numbers, where we support all numbers in the field extension $\mathbb{Q}[\sqrt{b}]$, i.e., all numbers of the form $p + q\sqrt{b}$ for rational numbers p and q and some fixed natural number b. To this end, we also developed algorithms to precisely compute roots of a rational number, and to perform a factorization of natural numbers which eliminates duplicate prime factors.

Our results have been used to certify termination proofs which involve polynomial interpretations over the reals.

Contents

1 Introduction 1
2 Auxiliary lemmas which might be moved into the Isabelle distribution. 2
3 Prime products 2
4 A representation of real numbers via triples 3
5 A unique representation of real numbers via triples 7

1 Introduction

It has been shown that polynomial interpretations over the reals are strictly more powerful for termination proving than polynomial interpretations over the rationals. To this end, also automated termination prover started to generate such interpretations. [3, 4, 5, 7, 8]. However, for all current implementations, only reals of the form $p + q \cdot \sqrt{b}$ are generated where b is some fixed natural number and p and q may be arbitrary rationals, i.e., we get numbers within $\mathbb{Q}[\sqrt{b}]$.

*This research is supported by FWF (Austrian Science Fund) project P22767-N13.
To support these termination proofs in our certifier CeTA [6], we therefore required executable functions on $\mathbb{Q}[\sqrt{b}]$, which can then be used as an implementation type for the reals. Here, we used ideas from [1, 2] to provide a sufficiently powerful partial implementations via data refinement.

2 Auxiliary lemmas which might be moved into the Isabelle distribution.

theory Real-Impl-Auxiliary
import HOL-Computational-Algebra.Primes
begin

lemma multiplicity-prime:
assumes p: prime (i :: nat) and ji: j ≠ i
shows multiplicity j i = 0
⟨proof⟩
end

3 Prime products

theory Prime-Product
import Real-Impl-Auxiliary
Sqrt-Babylonian.Sqrt-Babylonian
begin

Prime products are natural numbers where no prime factor occurs more than once.

definition prime-product
where prime-product (n :: nat) = (∀ p. prime p ⟷ multiplicity p n ≤ 1)

The main property is that whenever b_1 and b_2 are different prime products, then $p_1 + q_1\sqrt{b_1} = p_2 + q_2\sqrt{b_2}$ implies $(p_1, q_1, b_1) = (p_2, q_2, b_2)$ for all rational numbers p_1, q_1, p_2, q_2. This is the key property to uniquely represent numbers in $\mathbb{Q}[\sqrt{b}]$ by triples. In the following we develop an algorithm to decompose any natural number n into $n = s^2 \cdot p$ for some s and prime product p.

function prime-product-factor-main :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat × nat where
prime-product-factor-main factor-sq factor-pr limit n i =
(if i ≤ limit ∧ i ≥ 2 then
 (if i dvd n
 then (let n' = n div i in
 (if i dvd n' then
...
let $n'' = n' \div_i$ in

`prime-product-factor-main (factor-sq * i) factor-pr (nat (root-nat-floor 3 n'')) n'' i`

else

`(case sqrt-nat n' of
 Cons sn - \Rightarrow (factor-sq * sn, factor-pr * i)
 \| [] \Rightarrow prime-product-factor-main-factor-sq (factor-pr * i) (nat (root-nat-floor 3 n'')) n' (Suc i)
)
)
else

`prime-product-factor-main-factor-sq factor-pr limit n (Suc i))`

else

`(factor-sq, factor-pr * n)) ⟨proof⟩

termination ⟨proof⟩

lemma `prime-product-factor-main: assumes \neg (\exists \ s. s * s = n)
and limit = nat (root-nat-floor 3 n)
and m = factor-sq * factor-sq * factor-pr * n
and prime-product-factor-main-factor-sq factor-pr limit n i = (sq, p)
and i ≥ 2
and \(\bigwedge j. j \geq 2 \implies j < i \implies \neg j \ \text{dvd} \ n \)
and \(\bigwedge j. \text{prime } j \implies j < i \implies \text{multiplicity } j \ \text{factor-pr} \leq 1 \)
and \(\bigwedge j. \text{prime } j \implies j \geq i \implies \text{multiplicity } j \ \text{factor-pr} = 0 \)
and factor-pr > 0
shows m = sq * sq * p \land prime-product p
⟨proof⟩

definition `prime-product-factor :: nat ⇒ nat × nat where
prime-product-factor n = (case sqrt-nat n of
 (Cons s -) ⇒ (s,1)
 \| [] ⇒ prime-product-factor-main 1 1 (nat (root-nat-floor 3 n)) n 2)

lemma `prime-product-one[simp, intro]: prime-product 1
⟨proof⟩

lemma `prime-product-factor: assumes pf: prime-product-factor n = (sq,p)
shows n = sq * sq * p \land prime-product p
⟨proof⟩

end

4 A representation of real numbers via triples

theory Real-Impl
imports
Sqrt-Babylonian.

begin

We represent real numbers of the form $p + q \cdot \sqrt{b}$ for $p, q \in \mathbb{Q}$, $n \in \mathbb{N}$ by triples (p, q, b). However, we require the invariant that \sqrt{b} is irrational. Most binary operations are implemented via partial functions where the common the restriction is that the numbers b in both triples have to be identical. So, we support addition of $\sqrt{2} + \sqrt{2}$, but not $\sqrt{2} + \sqrt{3}$.

The set of natural numbers whose \sqrt{b} is irrational

definition sqrt-irrat = { q :: nat. ~ (\exists p. p \cdot p = rat-of-nat q) }

lemma sqrt-irrat: assumes choice: q = 0 \lor b \in sqrt-irrat
and eq: real-of-rat p + real-of-rat q \cdot sqrt (of-nat b) = 0
shows q = 0
⟨proof⟩

To represent numbers of the form $p + q \cdot \sqrt{b}$, use mini algebraic numbers, i.e., triples (p, q, b) with irrational \sqrt{b}.

typedef mini-alg =
{(p,q,b) | (p :: rat) (q :: rat) (b :: nat).
q = 0 \lor b \in sqrt-irrat}
⟨proof⟩

setup-lifting type-definition-mini-alg

lift-definition real-of :: mini-alg \Rightarrow real is
\lambda (p,q,b). of-rat p + of-rat q \cdot sqrt (of-nat b) ⟨proof⟩

lift-definition ma-of-rat :: rat \Rightarrow mini-alg is \lambda x. (x,0,0) ⟨proof⟩

lift-definition ma-rat :: mini-alg \Rightarrow rat is fst ⟨proof⟩

lift-definition ma-base :: mini-alg \Rightarrow nat is snd o snd ⟨proof⟩

lift-definition ma-coeff :: mini-alg \Rightarrow rat is fst o snd ⟨proof⟩

lift-definition ma-uminus :: mini-alg \Rightarrow mini-alg is
\lambda (p1,q1,b1). (\neg p1, q1, b1) ⟨proof⟩

lift-definition ma-compatible :: mini-alg \Rightarrow mini-alg \Rightarrow bool is
\lambda (p1,q1,b1) (p2,q2,b2). q1 = 0 \lor q2 = 0 \lor b1 = b2 ⟨proof⟩

definition ma-normalize :: rat \times rat \times nat \Rightarrow rat \times rat \times nat where
ma-normalize x \equiv \text{case } x \text{ of } (a,b,c) \Rightarrow \text{if } b = 0 \text{ then } (a,0,0) \text{ else } (a,b,c)

lemma ma-normalize-case[simp]: (case ma-normalize r of (a,b,c) \Rightarrow \text{real-of-rat } a + \text{real-of-rat } b \cdot \sqrt{\text{of-nat } c})
= (case r of (a,b,c) \Rightarrow \text{real-of-rat } a + \text{real-of-rat } b \cdot \sqrt{\text{of-nat } c})
⟨proof⟩
lift-definition ma-plus :: mini-alg ⇒ mini-alg ⇒ mini-alg is
\[\lambda (p1,q1,b1) (p2,q2,b2). \text{if } q1 = 0 \text{ then } (p1 + p2, q2, b2) \text{ else ma-normalize } (p1 + p2, q1 + q2, b1) \] (proof)

lift-definition ma-times :: mini-alg ⇒ mini-alg ⇒ mini-alg is
\[\lambda (p1,q1,b1) (p2,q2,b2). \text{if } q1 = 0 \text{ then } \text{ma-normalize } (p1*p2, p1*q2, b2) \text{ else } \text{ma-normalize } (p1*p2 + of-nat b2*q1*q2, p1*q2 + q1*p2, b1) \] (proof)

lift-definition ma-floor :: mini-alg ⇒ int is
\[\lambda (p,q,b). \text{let } d = \text{inverse } (p*p - of-nat b * q * q) \text{ in } \text{ma-normalize } (p*d, -q*d, b) \] (proof)

lift-definition ma-sqrt :: mini-alg ⇒ mini-alg is
\[\lambda (p,q,b). \text{let } (a,b) = \text{quotient-of } p; \text{aa} = \text{abs } (a*b) \text{ in } \text{case } \text{sqrt-int aa of } [] \Rightarrow (0,\text{inverse } (of-int b,\text{nat } aa) \mid (\text{Cons } s) \Rightarrow (\text{of-int } s/\text{of-int } b,0,0) \] (proof)

lift-definition ma-equal :: mini-alg ⇒ mini-alg ⇒ bool is
\[\lambda (p1,q1,b1) (p2,q2,b2). \text{p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2) } \] (proof)

lift-definition ma-ge-0 :: mini-alg ⇒ bool is
\[\lambda (p,q,b). \text{let } bqq = \text{of-nat } b * q * q; \text{pp} = p*p \text{ in } 0 \leq p ∧ bqq \leq pp ∨ 0 \leq q ∧ pp \leq bqq \] (proof)

lift-definition ma-is-rat :: mini-alg ⇒ bool is
\[\lambda (p,q,b). q = 0 \] (proof)

definition ge-0 :: real ⇒ bool where [code del]: ge-0 x = (x ≥ 0)

lemma ma-ge-0: ge-0 (real-of x) = ma-ge-0 x (proof)

lemma ma-0: 0 = real-of (ma-of-rat 0) (proof)

lemma ma-1: 1 = real-of (ma-of-rat 1) (proof)

lemma ma-uminus:
- (real-of x) = real-of (ma-uminus x)
lemma ma-inverse: inverse (real-of r) = real-of (ma-inverse r)

lemma ma-sqrt-main: ma-rat r ≥ 0 ⇒ ma-coeff r = 0 ⇒ sqrt (real-of r) = real-of (ma-sqrt r)

lemma ma-sqrt: sqrt (real-of r) = (if ma-coeff r = 0 then
 (if ma-rat r ≥ 0 then real-of (ma-sqrt (ma-uminus r)) else
 Code.abort (STR "cannot represent sqrt of irrational number") (λ -. sqrt (real-of r)))
else Code.abort (STR "different base") (λ -. real-of r1 + real-of r2))

lemma ma-plus:
 (real-of r1 + real-of r2) = (if ma-compatible r1 r2 then
 real-of (ma-plus r1 r2) else
 Code.abort (STR "different base") (λ -. real-of r1 + real-of r2))

lemma ma-times:
 (real-of r1 * real-of r2) = (if ma-compatible r1 r2 then
 real-of (ma-times r1 r2) else
 Code.abort (STR "different base") (λ -. real-of r1 * real-of r2))

lemma ma-equal:
 HOL.equal (real-of r1) (real-of r2) = (if ma-compatible r1 r2 then
 ma-equal r1 r2 else
 Code.abort (STR "different base") (λ -. HOL.equal (real-of r1) (real-of r2)))

lemma ma-floor: floor (real-of r) = ma-floor r

lemma comparison-impl:
 (x :: real) ≤ (y :: real) = ge-0 (y - x)
 (x :: real) < (y :: real) = (x ≠ y) ∧ ge-0 (y - x)

lemma ma-of-rat: real-of-rat r = real-of (ma-of-rat r)

definition is-rat :: real ⇒ bool where
 [code-abbrev]: is-rat x ↔ x ∈ Q

lemma ma-is-rat: is-rat (real-of x) = ma-is-rat x
proof

definition \(\text{sqrt-real } x = (\text{if } x \in \mathbb{Q} \land x \geq 0 \text{ then } (\text{if } x = 0 \text{ then } 0 \text{ else } (\text{let } sx = \sqrt{x} \text{ in } [sx, -sx])) \text{ else } []) \)

lemma \(\text{sqrt-real[simp]: assumes } x: x \in \mathbb{Q} \)
 \(\text{shows set } (\text{sqrt-real } x) = \{ y . y \ast y = x \} \)
(proof)

code-datatype real-of

declare \[[\text{code drop:} \]
 \(\text{plus :: real }\Rightarrow \text{ real } \Rightarrow \text{ real} \)
 \(\text{uminus :: real }\Rightarrow \text{ real } \Rightarrow \text{ real} \)
 \(\text{times :: real }\Rightarrow \text{ real } \Rightarrow \text{ real} \)
 \(\text{inverse :: real }\Rightarrow \text{ real } \Rightarrow \text{ real} \)
 \(\text{floor :: real }\Rightarrow \text{ int} \)
 \(\text{sqrt } \)
 \(\text{HOL.equal :: real }\Rightarrow \text{ real } \Rightarrow \text{ bool} \)
 \] \]

lemma \[\text{[code]:} \]
\(\text{Ratreal }= \text{real-of }\circ \text{ma-of-rat} \)
(proof)

lemmas \(\text{ma-code-eqns [code equation]} = \text{ma-ge-0 ma-floor ma-0 ma-1 ma-uminus ma-inverse ma-sqrt ma-plus ma-times ma-equal ma-is-rat comparison-impl} \)

lemma \[\text{[code equation]}:\]
\((x :: \text{ real }) / (y :: \text{ real }) = x \ast \text{ inverse } y \)
\((x :: \text{ real }) - (y :: \text{ real }) = x + (-y) \)
(proof)

Some tests with small numbers. To work on larger number, one should additionally import the theories for efficient calculation on numbers

value \[101.1 \ast (3 \ast \sqrt{2} + 6 \ast \sqrt{0.5})\]
value \[606.2 \ast \sqrt{2} + 0.001\]
value \(101.1 \ast (3 \ast \sqrt{2} + 6 \ast \sqrt{0.5}) = 606.2 \ast \sqrt{2} + 0.001\)
value \(101.1 \ast (3 \ast \sqrt{2} + 6 \ast \sqrt{0.5}) > 606.2 \ast \sqrt{2} + 0.001\)
value \((\sqrt{0.1} \in \mathbb{Q}, \sqrt{(-0.09)} \in \mathbb{Q})\)

end

5 A unique representation of real numbers via triples

theory Real-Unique-Impl
imports
Prime-Product
Real-Impl
Show.Show-Instances
Show.Show-Real

begin

We implement the real numbers again using triples, but now we require
an additional invariant on the triples, namely that the base has to be a
prime product. This has the consequence that the mapping of triples into
\(\mathbb{R} \) is injective. Hence, equality on reals is now equality on triples, which can
even be executed in case of different bases. Similarly, we now also allow
different basis in comparisons. Ultimately, injectivity allows us to define
a show-function for real numbers, which pretty prints real numbers into
strings.

typedef mini-alg-unique =
\{ r :: mini-alg . ma-coeff r = 0 \land ma-base r = 0 \lor ma-coeff r \neq 0 \land prime-product (ma-base r) \}
(proof)

setup-lifting type-definition-mini-alg-unique

lift-definition real-of-u :: mini-alg-unique \Rightarrow real is real-of (proof)

lift-definition mau-floor :: mini-alg-unique \Rightarrow int is ma-floor (proof)

lift-definition mau-of-rat :: rat \Rightarrow mini-alg-unique is ma-of-rat (proof)

lift-definition mau-rat :: mini-alg-unique \Rightarrow rat is ma-rat (proof)

lift-definition mau-base :: mini-alg-unique \Rightarrow nat is ma-base (proof)

lift-definition mau-coeff :: mini-alg-unique \Rightarrow rat is ma-coeff (proof)

lift-definition mau-uminus :: mini-alg-unique \Rightarrow mini-alg-unique is ma-uminus (proof)

lift-definition mau-compatible :: mini-alg-unique \Rightarrow mini-alg-unique \Rightarrow bool is ma-compatible (proof)

lift-definition mau-ge-0 :: mini-alg-unique \Rightarrow bool is ma-ge-0 (proof)

lift-definition mau-inverse :: mini-alg-unique \Rightarrow mini-alg-unique is ma-inverse (proof)

lift-definition mau-plus :: mini-alg-unique \Rightarrow mini-alg-unique \Rightarrow mini-alg-unique
is ma-plus (proof)

lift-definition mau-times :: mini-alg-unique \Rightarrow mini-alg-unique \Rightarrow mini-alg-unique
is ma-times (proof)

lift-definition ma-identity :: mini-alg \Rightarrow mini-alg \Rightarrow bool is (=) (proof)

lift-definition mau-equal :: mini-alg-unique \Rightarrow mini-alg-unique \Rightarrow bool is ma-identity (proof)

lift-definition mau-is-rat :: mini-alg-unique \Rightarrow bool is ma-is-rat (proof)

lemma Ratreal-code[code]:
Ratreal = real-of-u \circ mau-of-rat
(proof)
lemma mau-floor: floor (real-of-u r) = mau-floor r
 ⟨proof⟩
lemma mau-inverse: inverse (real-of-u r) = real-of-u (mau-inverse r)
 ⟨proof⟩
lemma mau-uminus: − (real-of-u r) = real-of-u (mau-uminus r)
 ⟨proof⟩
lemma mau-times: (real-of-u r1 * real-of-u r2) = (if mau-compatible r1 r2
 then real-of-u (mau-times r1 r2) else
 Code.abort (STR "different base") (λ -. real-of-u r1 * real-of-u r2))
 ⟨proof⟩
lemma mau-plus: (real-of-u r1 + real-of-u r2) = (if mau-compatible r1 r2
 then real-of-u (mau-plus r1 r2) else
 Code.abort (STR "different base") (λ -. real-of-u r1 + real-of-u r2))
 ⟨proof⟩

lemma real-of-u-inj[simp]: real-of-u x = real-of-u y ←→ x = y
 ⟨proof⟩

lift-definition mau-sqrt :: mini-alg-unique ⇒ mini-alg-unique is
 λ ma. let (a,b) = quotient-of (ma-rat ma); (sq,fact) = prime-product-factor
 (nat (abs a * b));
 ma' = ma-of-rat (of-int (sgn(a)) * of-nat sq / of-int b)
 in ma-times ma' (ma-sqrt (ma-of-rat (of-nat fact)))
 ⟨proof⟩

lemma sqrt-sgn[simp]: sqrt (of-int (sgn a)) = of-int (sgn a)
 ⟨proof⟩
lemma mau-sqrt-main: mau-coeff r = 0 ⇒ sqrt (real-of-u r) = real-of-u (mau-sqrt r)
 ⟨proof⟩
lemma mau-sqrt: sqrt (real-of-u r) = (if mau-coeff r = 0 then
 real-of-u (mau-sqrt r)
 else Code.abort (STR "cannot represent sqrt of irrational number") (λ -. sqrt
 (real-of-u r)))
 ⟨proof⟩

lemma mau-0: 0 = real-of-u (mau-of-rat 0) ⟨proof⟩
lemma mau-1: 1 = real-of-u (mau-of-rat 1) ⟨proof⟩
lemma mau-equal:
 HOL.equal (real-of-u r1) (real-of-u r2) = mau-equal r1 r2 ⟨proof⟩
lemma mau-ge-0: ge-0 (real-of-u x) = mau-ge-0 x ⟨proof⟩
definition real-lt :: real ⇒ real ⇒ bool where real-lt = (<)

The following code equation terminates if it is started on two different inputs.

lemma real-lt [code equation]:

real-lt x y = (let fx = floor x; fy = floor y in
 (if fx < fy then True else if fx > fy then False else real-lt (x * 1024) (y * 1024)))

⟨proof⟩

For comparisons we first check for equality. Then, if the bases are compatible we can just compare the differences with 0. Otherwise, we start the recursive algorithm real-lt which works on arbitrary bases. In this way, we have an implementation of comparisons which can compare all representable numbers.

Note that in Real-Impl.Real-Impl we did not use real-lt as there the code-equations for equality already require identical bases.

lemma comparison-impl:

real-of-u x ≤ real-of-u y ←→ real-of-u x = real-of-u y ∨
 (if mau-compatible x y then ge-0 (real-of-u y − real-of-u x) else real-lt (real-of-u x) (real-of-u y))

real-of-u x < real-of-u y ←→ real-of-u x ≠ real-of-u y ∧
 (if mau-compatible x y then ge-0 (real-of-u y − real-of-u x) else real-lt (real-of-u x) (real-of-u y))

⟨proof⟩

lemma mau-is-rat: is-rat (real-of-u x) = mau-is-rat x

⟨proof⟩

lift-definition mau-show-real :: mini-alg ⇒ string is

λ (p,q,b). let sb = shows "sqrt(" ◦ shows b ◦ shows ")";
 qb = (if q = 1 then sb else if q = −1 then shows "−" ◦ sb else shows q ◦ shows "+" ◦ sb) in
 if q = 0 then shows p [] else
 if p = 0 then qb [] else
 if q < 0 then ((shows p ◦ qb) [])
 else ((shows p ◦ shows "−" ◦ qb) [])

⟨proof⟩

lift-definition mau-show-real :: mini-alg-unique ⇒ string is mau-show-real ⟨proof⟩

overloading show-real ≡ show-real begin

definition show-real

where show-real x ≡
 (if (∃ y. x = real-of-u y) then mau-show-real (THE y. x = real-of-u y) else [])

end

lemma mau-show-real: show-real (real-of-u x) = mau-show-real x ⟨proof⟩

code-datatype real-of-u
declare [[code drop:

\begin{align*}
\text{plus} :: \mathbb{R} & \to \mathbb{R} & \text{uminus} :: \mathbb{R} & \to \mathbb{R} \\
\text{times} :: \mathbb{R} & \to \mathbb{R} & \text{inverse} :: \mathbb{R} & \to \mathbb{R} \\
\text{floor} :: \mathbb{R} & \to \mathbb{Z} & \text{sqrt} :: \mathbb{R} & \to \mathbb{R} \\
\text{HOL.equal} :: \mathbb{R} & \to \mathbb{R} & \to \mathbb{B} & \\
\text{ge} :: \mathbb{R} & \to \mathbb{R} & \to \mathbb{B} & \\
\text{less} :: \mathbb{R} & \to \mathbb{R} & \to \mathbb{B} & \\
\text{less-eq} :: \mathbb{R} & \to \mathbb{R} & \to \mathbb{B} & \\
\end{align*}

\]

\]]

lemmas mau-code-eqns [code] = mau-floor mau-0 mau-1 mau-uminus mau-inverse
mau-sqrt mau-plus mau-times mau-equal mau-ge-0 mau-is-rat
mau-show-real comparison-impl

Some tests with small numbers. To work on larger number, one should additionally import the theories for efficient calculation on numbers

value [101.1 * (sqrt 18 + 6 * sqrt 0.5)]
value [324 * sqrt 7 + 0.001]
value 101.1 * (sqrt 18 + 6 * sqrt 0.5) = 324 * sqrt 7 + 0.001
value 101.1 * (sqrt 18 + 6 * sqrt 0.5) > 324 * sqrt 7 + 0.001
value show (101.1 * (sqrt 18 + 6 * sqrt 0.5))
value (sqrt 0.1 ∈ ℚ, sqrt (- 0.09) ∈ ℚ)

end

Acknowledgements

We thank Bertram Felgenhauer for interesting discussions and especially for mentioning Cauchy’s mean theorem during the formalization of the algorithms for computing roots.

References

