
Implementing field extensions of the form Q[
√
b]∗

René Thiemann

March 17, 2025

Abstract
We apply data refinement to implement the real numbers, where

we support all numbers in the field extension Q[
√
b], i.e., all numbers

of the form p+ q
√
b for rational numbers p and q and some fixed nat-

ural number b. To this end, we also developed algorithms to precisely
compute roots of a rational number, and to perform a factorization of
natural numbers which eliminates duplicate prime factors.

Our results have been used to certify termination proofs which in-
volve polynomial interpretations over the reals.

Contents
1 Introduction 1

2 Auxiliary lemmas which might be moved into the Isabelle
distribution. 2

3 Prime products 2

4 A representation of real numbers via triples 9

5 A unique representation of real numbers via triples 19

1 Introduction
It has been shown that polynomial interpretations over the reals are strictly
more powerful for termination proving than polynomial interpretations over
the rationals. To this end, also automated termination prover started to
generate such interpretations. [3, 4, 5, 7, 8]. However, for all current imple-
mentations, only reals of the form p+ q ·

√
b are generated where b is some

fixed natural number and p and q may be arbitrary rationals, i.e., we get
numbers within Q[

√
b].

∗This research is supported by FWF (Austrian Science Fund) project P22767-N13.

1

To support these termination proofs in our certifier CeTA [6], we there-
fore required executable functions on Q[

√
b], which can then be used as an

implementation type for the reals. Here, we used ideas from [1, 2] to provide
a sufficiently powerful partial implementations via data refinement.

2 Auxiliary lemmas which might be moved into
the Isabelle distribution.

theory Real-Impl-Auxiliary
imports

HOL−Computational-Algebra.Primes
begin

lemma multiplicity-prime:
assumes p: prime (i :: nat) and ji: j 6= i
shows multiplicity j i = 0
using assms
by (metis dvd-refl prime-nat-iff multiplicity-eq-zero-iff

multiplicity-unit-left multiplicity-zero)

end

3 Prime products
theory Prime-Product
imports

Real-Impl-Auxiliary
Sqrt-Babylonian.Sqrt-Babylonian

begin

Prime products are natural numbers where no prime factor occurs more
than once.
definition prime-product

where prime-product (n :: nat) = (∀ p. prime p −→ multiplicity p n ≤ 1)

The main property is that whenever b1 and b2 are different prime prod-
ucts, then p1 + q1

√
b1 = p2 + q2

√
b2 implies (p1, q1, b1) = (p2, q2, b2) for all

rational numbers p1, q1, p2, q2. This is the key property to uniquely repre-
sent numbers in Q[

√
b] by triples. In the following we develop an algorithm

to decompose any natural number n into n = s2 · p for some s and prime
product p.
function prime-product-factor-main :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat ×
nat where

prime-product-factor-main factor-sq factor-pr limit n i =
(if i ≤ limit ∧ i ≥ 2 then

(if i dvd n

2

then (let n ′ = n div i in
(if i dvd n ′ then

let n ′′ = n ′ div i in
prime-product-factor-main (factor-sq ∗ i) factor-pr (nat (root-nat-floor

3 n ′′)) n ′′ i
else
(case sqrt-nat n ′ of

Cons sn - ⇒ (factor-sq ∗ sn, factor-pr ∗ i)
| [] ⇒ prime-product-factor-main factor-sq (factor-pr ∗ i) (nat

(root-nat-floor 3 n ′)) n ′ (Suc i)
)

)
)

else
prime-product-factor-main factor-sq factor-pr limit n (Suc i))

else
(factor-sq, factor-pr ∗ n)) by pat-completeness auto

termination
proof −

let ?m1 = λ (factor-sq :: nat,factor-pr :: nat,limit :: nat,n :: nat,i :: nat). n
let ?m2 = λ (factor-sq,factor-pr ,limit,n,i). (Suc limit − i)
{

fix i
have 2 ≤ i =⇒ Suc 0 < i ∗ i using one-less-mult[of i i] by auto

} note ∗ = this
show ?thesis

using wf-measures [of [?m1 , ?m2]]
by rule (auto simp add: ∗ elim!: dvdE split: if-splits)

qed

lemma prime-product-factor-main: assumes ¬ (∃ s. s ∗ s = n)
and limit = nat (root-nat-floor 3 n)
and m = factor-sq ∗ factor-sq ∗ factor-pr ∗ n
and prime-product-factor-main factor-sq factor-pr limit n i = (sq, p)
and i ≥ 2
and

∧
j. j ≥ 2 =⇒ j < i =⇒ ¬ j dvd n

and
∧

j. prime j =⇒ j < i =⇒ multiplicity j factor-pr ≤ 1
and

∧
j. prime j =⇒ j ≥ i =⇒ multiplicity j factor-pr = 0

and factor-pr > 0
shows m = sq ∗ sq ∗ p ∧ prime-product p
using assms

proof (induct factor-sq factor-pr limit n i rule: prime-product-factor-main.induct)
case (1 factor-sq factor-pr limit n i)
note IH = 1 (1−3)
note prems = 1 (4−)
note simp = prems(4)[unfolded prime-product-factor-main.simps[of factor-sq fac-

tor-pr limit n i]]
show ?case

3

proof (cases i ≤ limit)
case True note i = this
with prems(5) have cond: i ≤ limit ∧ i ≥ 2 and ∗: (i ≤ limit ∧ i ≥ 2) =

True by blast+
note IH = IH [OF cond]
note simp = simp[unfolded ∗ if-True]
show ?thesis
proof (cases i dvd n)

case False
hence ∗: (i dvd n) = False by simp
note simp = simp[unfolded ∗ if-False]
note IH = IH (3)[OF False prems(1−3) simp]
show ?thesis
proof (rule IH)

fix j
assume 2 : 2 ≤ j and j: j < Suc i
from prems(6)[OF 2] j False
show ¬ j dvd n by (cases j = i, auto)

next
fix j :: nat
assume j: j < Suc i prime j
with prems(7−8)[of j]
show multiplicity j factor-pr ≤ 1 by (cases j = i, auto)

qed (insert prems(8−9) cond, auto)
next

case True note mod = this
hence (i dvd n) = True by simp
note simp = simp[unfolded this if-True Let-def]
note IH = IH (1 ,2)[OF True refl]
show ?thesis
proof (cases i dvd n div i)

case True
hence ∗: (i dvd n div i) = True by auto
define n ′ where n ′ = n div i div i

from mod True have n: n = n ′ ∗ i ∗ i by (auto simp: n ′-def dvd-eq-mod-eq-0)
note simp = simp[unfolded ∗ if-True split]
note IH = IH (1)[OF True refl - refl - simp prems(5) - prems(7−9)]
show ?thesis
proof (rule IH)

show m = factor-sq ∗ i ∗ (factor-sq ∗ i) ∗ factor-pr ∗ (n div i div i)
unfolding prems(3) n ′-def [symmetric]
unfolding n by (auto simp: field-simps)

next
fix j
assume 2 ≤ j j < i
from prems(6)[OF this] have ¬ j dvd n by auto
thus ¬ j dvd n div i div i

by (metis dvd-mult n n ′-def mult.commute)
next

4

show ¬ (∃ s. s ∗ s = n div i div i)
proof

assume ∃ s. s ∗ s = n div i div i
then obtain s where s ∗ s = n div i div i by auto
hence (s ∗ i) ∗ (s ∗ i) = n unfolding n by auto
with prems(1) show False by blast

qed
qed

next
case False
define n ′ where n ′ = n div i
from mod True have n: n = n ′ ∗ i by (auto simp: n ′-def dvd-eq-mod-eq-0)
have prime: prime i

unfolding prime-nat-iff
proof (intro conjI allI impI)

fix m
assume m: m dvd i
hence m dvd n unfolding n by auto
with prems(6)[of m] have choice: m ≤ 1 ∨ m ≥ i by arith
from m prems(5) have m > 0

by (metis dvd-0-left-iff le0 le-antisym neq0-conv zero-neq-numeral)
with choice have choice: m = 1 ∨ m ≥ i by arith
from m prems(5) have m ≤ i

by (metis False div-by-0 dvd-refl dvd-imp-le gr0I)
with choice
show m = 1 ∨ m = i by auto

qed (insert prems(5), auto)
from False have (i dvd n div i) = False by auto
note simp = simp[unfolded this if-False]
note IH = IH (2)[OF False - - refl]
from prime have i > 0 by (simp add: prime-gt-0-nat)

show ?thesis
proof (cases sqrt-nat (n div i))

case (Cons s)
note simp = simp[unfolded Cons list.simps]
hence sq: sq = factor-sq ∗ s and p: p = factor-pr ∗ i by auto
from arg-cong[OF Cons, of set] have s: s ∗ s = n div i by auto
have pp: prime-product (factor-pr ∗ i)

unfolding prime-product-def
proof safe

fix m :: nat assume m: prime m
consider i < m | i > m | i = m by force
thus multiplicity m (factor-pr ∗ i) ≤ 1
by cases (insert prems(7)[of m] prems(8)[of m] prems(9) ‹i > 0 › prime

m,
simp-all add: multiplicity-prime prime-elem-multiplicity-mult-distrib)

qed
show ?thesis unfolding sq p prems(3) n unfolding n ′-def s[symmetric]

5

using pp by auto
next

case Nil
note simp = simp[unfolded Nil list.simps]
from arg-cong[OF Nil, of set] have ¬ (∃ x. x ∗ x = n div i) by simp
note IH = IH [OF Nil this - simp]
show ?thesis
proof (rule IH)

show m = factor-sq ∗ factor-sq ∗ (factor-pr ∗ i) ∗ (n div i)
unfolding prems(3) n by auto

next
fix j
assume ∗: 2 ≤ j j < Suc i
show ¬ j dvd n div i
proof

assume j: j dvd n div i
with False have j 6= i by auto
with ∗ have 2 ≤ j j < i by auto
from prems(6)[OF this] j
show False unfolding n

by (metis dvd-mult n n ′-def mult.commute)
qed

next
fix j :: nat
assume Suc i ≤ j and j-prime: prime j
hence ij: i ≤ j and j: j 6= i by auto
have 0 : multiplicity j i = 0 using prime j by (rule multiplicity-prime)
show multiplicity j (factor-pr ∗ i) = 0

unfolding prems(8)[OF j-prime ij] 0
using prime j-prime j ‹ 0 < factor-pr› ‹multiplicity j factor-pr = 0 ›
by (subst prime-elem-multiplicity-mult-distrib) (auto simp: multiplic-

ity-prime)
next

fix j
assume j < Suc i and j-prime: prime j
hence j < i ∨ j = i by auto
thus multiplicity j (factor-pr ∗ i) ≤ 1
proof

assume j = i
with prems(8)[of i] prime j-prime ‹0 < factor-pr› show ?thesis

by (subst prime-elem-multiplicity-mult-distrib) auto
next

assume ji: j < i
hence j 6= i by auto
from prems(7)[OF j-prime ji] multiplicity-prime[OF prime this]

prime j-prime ‹0 < factor-pr›
show ?thesis by (subst prime-elem-multiplicity-mult-distrib) auto

qed
qed (insert prems(5 ,9), auto)

6

qed
qed

qed
next

case False
hence (i ≤ limit ∧ i ≥ 2) = False by auto
note simp = simp[unfolded this if-False]
hence sq: sq = factor-sq and p: p = factor-pr ∗ n by auto
show ?thesis
proof

show m = sq ∗ sq ∗ p unfolding sq p prems(3) by simp
show prime-product p unfolding prime-product-def
proof safe

fix m :: nat assume m: prime m
from prems(1) have n1 : n > 1 by (cases n, auto, case-tac nat, auto)
hence n0 : n > 0 by auto
have i > limit using False by auto
from this[unfolded prems(2)] have less: int i ≥ root-nat-floor 3 n + 1 by

auto
have int n < (root-nat-floor 3 n + 1) ^ 3 by (rule root-nat-floor-upper ,

auto)
also have . . . ≤ int i ^ 3 by (rule power-mono[OF less, of 3], auto)
finally have n-i3 : n < i ^ 3

by (metis of-nat-less-iff of-nat-power [symmetric])
{

fix m
assume m: prime m multiplicity m n > 0
hence mp: m ∈ prime-factors n

by (auto simp: prime-factors-multiplicity)
hence md: m dvd n

by auto
then obtain k where n: n = m ∗ k ..
from mp have pm: prime m by auto
hence m2 : m ≥ 2 and m0 : m > 0 by (auto simp: prime-nat-iff)
from prems(6)[OF m2] md have mi: m ≥ i by force
{

assume multiplicity m n 6= 1
with m have ∃ k. multiplicity m n = 2 + k by presburger
then obtain j where mult: multiplicity m n = 2 + j ..
from n0 n have k: k > 0 by auto
from mult m0 k n m have multiplicity m k > 0

by (auto simp: prime-elem-multiplicity-mult-distrib)
with m have mp: m ∈ prime-factors k

by (auto simp: prime-factors-multiplicity)
hence md: m dvd k by (auto simp: k)
then obtain l where kml: k = m ∗ l ..
note n = n[unfolded kml]
from n have l dvd n by auto
with prems(6)[of l] have l ≤ 1 ∨ l ≥ i by arith

7

with n n0 have l: l = 1 ∨ l ≥ i by auto
from n prems(1) have l 6= 1 by auto
with l have l: l ≥ i by auto
from mult-le-mono[OF mult-le-mono[OF mi mi] l]
have n ≥ i^3 unfolding n by (auto simp: power3-eq-cube)
with n-i3 have False by auto

}
with mi m
have multiplicity m n = 1 ∧ m ≥ i by auto

} note n = this
have multiplicity m p = multiplicity m factor-pr + multiplicity m n

unfolding p using prems(1 ,9) m ‹n > 0 ›
by (auto simp: prime-elem-multiplicity-mult-distrib)

also have . . . ≤ 1
proof (cases m < i)

case True
from prems(7)[of m] n[of m] True m show ?thesis by force

next
case False
hence m ≥ i by auto
from prems(8)[OF m(1) this] n[of m] m show ?thesis by force

qed
finally show multiplicity m p ≤ 1 .

qed
qed

qed
qed

definition prime-product-factor :: nat ⇒ nat × nat where
prime-product-factor n = (case sqrt-nat n of

(Cons s -) ⇒ (s,1)
| [] ⇒ prime-product-factor-main 1 1 (nat (root-nat-floor 3 n)) n 2)

lemma prime-product-one[simp, intro]: prime-product 1
unfolding prime-product-def multiplicity-one-nat by auto

lemma prime-product-factor : assumes pf : prime-product-factor n = (sq,p)
shows n = sq ∗ sq ∗ p ∧ prime-product p

proof (cases sqrt-nat n)
case (Cons s)
from pf [unfolded prime-product-factor-def Cons] arg-cong[OF Cons, of set]

prime-product-one
show ?thesis by auto

next
case Nil
from arg-cong[OF Nil, of set] have nsq: ¬ (∃ s. s ∗ s = n) by auto
show ?thesis

by (rule prime-product-factor-main[OF nsq refl, of - 1 1 2], unfold multiplic-

8

ity-one,
insert pf [unfolded prime-product-factor-def Nil], auto)

qed

end

4 A representation of real numbers via triples
theory Real-Impl
imports

Sqrt-Babylonian.Sqrt-Babylonian
begin

We represent real numbers of the form p+ q ·
√
b for p, q ∈ Q, n ∈ N by

triples (p, q, b). However, we require the invariant that
√
b is irrational. Most

binary operations are implemented via partial functions where the common
the restriction is that the numbers b in both triples have to be identical. So,
we support addition of

√
2 +
√
2, but not

√
2 +
√
3.

The set of natural numbers whose sqrt is irrational
definition sqrt-irrat = { q :: nat. ¬ (∃ p. p ∗ p = rat-of-nat q)}

lemma sqrt-irrat: assumes choice: q = 0 ∨ b ∈ sqrt-irrat
and eq: real-of-rat p + real-of-rat q ∗ sqrt (of-nat b) = 0
shows q = 0

using choice
proof (cases q = 0)

case False
with choice have sqrt-irrat: b ∈ sqrt-irrat by blast
from eq have real-of-rat q ∗ sqrt (of-nat b) = real-of-rat (− p)

by (auto simp: of-rat-minus)
then obtain p where real-of-rat q ∗ sqrt (of-nat b) = real-of-rat p by blast
from arg-cong[OF this, of λ x. x ∗ x] have real-of-rat (q ∗ q) ∗ (sqrt (of-nat b)
∗ sqrt (of-nat b)) =

real-of-rat (p ∗ p) by (auto simp: field-simps of-rat-mult)
also have sqrt (of-nat b) ∗ sqrt (of-nat b) = of-nat b by simp
finally have real-of-rat (q ∗ q ∗ rat-of-nat b) = real-of-rat (p ∗ p) by (auto simp:

of-rat-mult)
hence q ∗ q ∗ (rat-of-nat b) = p ∗ p by auto
from arg-cong[OF this, of λ x. x / (q ∗ q)]
have (p / q) ∗ (p / q) = rat-of-nat b using False by (auto simp: field-simps)
with sqrt-irrat show ?thesis unfolding sqrt-irrat-def by blast

qed

To represent numbers of the form p+ q ·
√
b, use mini algebraic numbers,

i.e., triples (p, q, b) with irrational
√
b.

typedef mini-alg =
{(p,q,b) | (p :: rat) (q :: rat) (b :: nat).
q = 0 ∨ b ∈ sqrt-irrat}

9

by auto

setup-lifting type-definition-mini-alg

lift-definition real-of :: mini-alg ⇒ real is
λ (p,q,b). of-rat p + of-rat q ∗ sqrt (of-nat b) .

lift-definition ma-of-rat :: rat ⇒ mini-alg is λ x. (x,0 ,0) by auto

lift-definition ma-rat :: mini-alg ⇒ rat is fst .
lift-definition ma-base :: mini-alg ⇒ nat is snd o snd .
lift-definition ma-coeff :: mini-alg ⇒ rat is fst o snd .

lift-definition ma-uminus :: mini-alg ⇒ mini-alg is
λ (p1 ,q1 ,b1). (− p1 , − q1 , b1) by auto

lift-definition ma-compatible :: mini-alg ⇒ mini-alg ⇒ bool is
λ (p1 ,q1 ,b1) (p2 ,q2 ,b2). q1 = 0 ∨ q2 = 0 ∨ b1 = b2 .

definition ma-normalize :: rat × rat × nat ⇒ rat × rat × nat where
ma-normalize x ≡ case x of (a,b,c) ⇒ if b = 0 then (a,0 ,0) else (a,b,c)

lemma ma-normalize-case[simp]: (case ma-normalize r of (a,b,c) ⇒ real-of-rat a
+ real-of-rat b ∗ sqrt (of-nat c))
= (case r of (a,b,c) ⇒ real-of-rat a + real-of-rat b ∗ sqrt (of-nat c))
by (cases r , auto simp: ma-normalize-def)

lift-definition ma-plus :: mini-alg ⇒ mini-alg ⇒ mini-alg is
λ (p1 ,q1 ,b1) (p2 ,q2 ,b2). if q1 = 0 then
(p1 + p2 , q2 , b2) else ma-normalize (p1 + p2 , q1 + q2 , b1) by (auto simp:

ma-normalize-def)

lift-definition ma-times :: mini-alg ⇒ mini-alg ⇒ mini-alg is
λ (p1 ,q1 ,b1) (p2 ,q2 ,b2). if q1 = 0 then

ma-normalize (p1∗p2 , p1∗q2 , b2) else
ma-normalize (p1∗p2 + of-nat b2∗q1∗q2 , p1∗q2 + q1∗p2 , b1) by (auto simp:

ma-normalize-def)

lift-definition ma-inverse :: mini-alg ⇒ mini-alg is
λ (p,q,b). let d = inverse (p ∗ p − of-nat b ∗ q ∗ q) in
ma-normalize (p ∗ d, − q ∗ d, b) by (auto simp: Let-def ma-normalize-def)

lift-definition ma-floor :: mini-alg ⇒ int is
λ (p,q,b). case (quotient-of p,quotient-of q) of ((z1 ,n1),(z2 ,n2)) ⇒

let z2n1 = z2 ∗ n1 ; z1n2 = z1 ∗ n2 ; n12 = n1 ∗ n2 ; prod = z2n1 ∗ z2n1 ∗
int b in

(z1n2 + (if z2n1 ≥ 0 then sqrt-int-floor-pos prod else − sqrt-int-ceiling-pos
prod)) div n12 .

10

lift-definition ma-sqrt :: mini-alg ⇒ mini-alg is
λ (p,q,b). let (a,b) = quotient-of p; aa = abs (a ∗ b) in
case sqrt-int aa of [] ⇒ (0 ,inverse (of-int b),nat aa) | (Cons s -) ⇒ (of-int s /

of-int b,0 ,0)
proof (unfold Let-def)

fix prod :: rat × rat × nat
obtain p q b where prod: prod = (p,q,b) by (cases prod, auto)
obtain a b where p: quotient-of p = (a,b) by force
show ∃ p q b. (case prod of

(p, q, b) ⇒
case quotient-of p of
(a, b) ⇒
(case sqrt-int |a ∗ b| of [] ⇒ (0 , inverse (of-int b), nat |a ∗ b|)
| s # x ⇒ (of-int s / of-int b, 0 , 0))) =

(p, q, b) ∧
(q = 0 ∨ b ∈ sqrt-irrat)

proof (cases sqrt-int (abs (a ∗ b)))
case Nil
from sqrt-int[of abs (a ∗ b)] Nil have irrat: ¬ (∃ y. y ∗ y = |a ∗ b|) by auto
have nat |a ∗ b| ∈ sqrt-irrat
proof (rule ccontr)

assume nat |a ∗ b| /∈ sqrt-irrat
then obtain x :: rat
where x ∗ x = rat-of-nat (nat |a ∗ b|) unfolding sqrt-irrat-def by auto
hence x ∗ x = rat-of-int |a ∗ b| by auto
from sqr-rat-of-int[OF this] irrat show False by blast

qed
thus ?thesis using Nil by (auto simp: prod p)

qed (auto simp: prod p Cons)
qed

lift-definition ma-equal :: mini-alg ⇒ mini-alg ⇒ bool is
λ (p1 ,q1 ,b1) (p2 ,q2 ,b2).
p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2) .

lift-definition ma-ge-0 :: mini-alg ⇒ bool is
λ (p,q,b). let bqq = of-nat b ∗ q ∗ q; pp = p ∗ p in
0 ≤ p ∧ bqq ≤ pp ∨ 0 ≤ q ∧ pp ≤ bqq .

lift-definition ma-is-rat :: mini-alg ⇒ bool is
λ (p,q,b). q = 0 .

definition ge-0 :: real ⇒ bool where [code del]: ge-0 x = (x ≥ 0)

lemma ma-ge-0 : ge-0 (real-of x) = ma-ge-0 x
proof (transfer , unfold Let-def , clarsimp)

fix p ′ q ′ :: rat and b ′ :: nat
assume b ′: q ′ = 0 ∨ b ′ ∈ sqrt-irrat
define b where b = real-of-nat b ′

11

define p where p = real-of-rat p ′

define q where q = real-of-rat q ′

from b ′ have b: 0 ≤ b q = 0 ∨ b ′ ∈ sqrt-irrat unfolding b-def q-def by auto
define qb where qb = q ∗ sqrt b
from b have sqrt: sqrt b ≥ 0 by auto
from b(2) have disj: q = 0 ∨ b 6= 0 unfolding sqrt-irrat-def b-def by auto
have bdef : b = real-of-rat (of-nat b ′) unfolding b-def by auto
have (0 ≤ p + q ∗ sqrt b) = (0 ≤ p + qb) unfolding qb-def by simp
also have . . . ←→ (0 ≤ p ∧ abs qb ≤ abs p ∨ 0 ≤ qb ∧ abs p ≤ abs qb) by arith
also have . . . ←→ (0 ≤ p ∧ qb ∗ qb ≤ p ∗ p ∨ 0 ≤ qb ∧ p ∗ p ≤ qb ∗ qb)

unfolding abs-lesseq-square ..
also have qb ∗ qb = b ∗ q ∗ q unfolding qb-def

using b by auto
also have 0 ≤ qb ←→ 0 ≤ q unfolding qb-def using sqrt disj

by (metis le-cases mult-eq-0-iff mult-nonneg-nonneg mult-nonpos-nonneg or-
der-class.order .antisym qb-def real-sqrt-eq-zero-cancel-iff)

also have (0 ≤ p ∧ b ∗ q ∗ q ≤ p ∗ p ∨ 0 ≤ q ∧ p ∗ p ≤ b ∗ q ∗ q)
←→ (0 ≤ p ′ ∧ of-nat b ′ ∗ q ′ ∗ q ′ ≤ p ′ ∗ p ′ ∨ 0 ≤ q ′ ∧ p ′ ∗ p ′ ≤ of-nat b ′ ∗ q ′

∗ q ′) unfolding qb-def
by (unfold bdef p-def q-def of-rat-mult[symmetric] of-rat-less-eq, simp)

finally
show ge-0 (real-of-rat p ′ + real-of-rat q ′ ∗ sqrt (of-nat b ′)) =

(0 ≤ p ′ ∧ of-nat b ′ ∗ q ′ ∗ q ′ ≤ p ′ ∗ p ′ ∨ 0 ≤ q ′ ∧ p ′ ∗ p ′ ≤ of-nat b ′ ∗ q ′ ∗
q ′)

unfolding ge-0-def p-def b-def q-def
by (auto simp: of-rat-add of-rat-mult)

qed

lemma ma-0 : 0 = real-of (ma-of-rat 0) by (transfer , auto)

lemma ma-1 : 1 = real-of (ma-of-rat 1) by (transfer , auto)

lemma ma-uminus:
− (real-of x) = real-of (ma-uminus x)
by (transfer , auto simp: of-rat-minus)

lemma ma-inverse: inverse (real-of r) = real-of (ma-inverse r)
proof (transfer , unfold Let-def , clarsimp)

fix p ′ q ′ :: rat and b ′ :: nat
assume b ′: q ′ = 0 ∨ b ′ ∈ sqrt-irrat
define b where b = real-of-nat b ′

define p where p = real-of-rat p ′

define q where q = real-of-rat q ′

from b ′ have b: b ≥ 0 q = 0 ∨ b ′ ∈ sqrt-irrat unfolding b-def q-def by auto
have inverse (p + q ∗ sqrt b) = (p − q ∗ sqrt b) ∗ inverse (p ∗ p − b ∗ (q ∗ q))
proof (cases q = 0)

case True thus ?thesis by (cases p = 0 , auto simp: field-simps)
next

case False

12

from sqrt-irrat[OF b ′, of p ′] b-def p-def q-def False have nnull: p + q ∗ sqrt b
6= 0 by auto

have ?thesis ←→ (p + q ∗ sqrt b) ∗ inverse (p + q ∗ sqrt b) =
(p + q ∗ sqrt b) ∗ ((p − q ∗ sqrt b) ∗ inverse (p ∗ p − b ∗ (q ∗ q)))
unfolding mult-left-cancel[OF nnull] by auto

also have (p + q ∗ sqrt b) ∗ inverse (p + q ∗ sqrt b) = 1 using nnull by auto
also have (p + q ∗ sqrt b) ∗ ((p − q ∗ sqrt b) ∗ inverse (p ∗ p − b ∗ (q ∗ q)))
= (p ∗ p − b ∗ (q ∗ q)) ∗ inverse (p ∗ p − b ∗ (q ∗ q))
using b by (auto simp: field-simps)

also have ... = 1
proof (rule right-inverse, rule)

assume eq: p ∗ p − b ∗ (q ∗ q) = 0
have real-of-rat (p ′ ∗ p ′ / (q ′ ∗ q ′)) = p ∗ p / (q ∗ q)

unfolding p-def b-def q-def by (auto simp: of-rat-mult of-rat-divide)
also have . . . = b using eq False by (auto simp: field-simps)
also have . . . = real-of-rat (of-nat b ′) unfolding b-def by auto
finally have (p ′ / q ′) ∗ (p ′ / q ′) = of-nat b ′

unfolding of-rat-eq-iff by simp
with b False show False unfolding sqrt-irrat-def by blast

qed
finally
show ?thesis by simp

qed
thus inverse (real-of-rat p ′ + real-of-rat q ′ ∗ sqrt (of-nat b ′)) =

real-of-rat (p ′ ∗ inverse (p ′ ∗ p ′ − of-nat b ′ ∗ q ′ ∗ q ′)) +
real-of-rat (− (q ′ ∗ inverse (p ′ ∗ p ′ − of-nat b ′ ∗ q ′ ∗ q ′))) ∗ sqrt (of-nat b ′)

by (simp add: divide-simps of-rat-mult of-rat-divide of-rat-diff of-rat-minus b-def
p-def q-def

split: if-splits)
qed

lemma ma-sqrt-main: ma-rat r ≥ 0 =⇒ ma-coeff r = 0 =⇒ sqrt (real-of r) =
real-of (ma-sqrt r)
proof (transfer , unfold Let-def , clarsimp)

fix p :: rat
assume p: 0 ≤ p
hence abs: abs p = p by auto
obtain a b where ab: quotient-of p = (a,b) by force
hence pab: p = of-int a / of-int b by (rule quotient-of-div)
from ab have b: b > 0 by (rule quotient-of-denom-pos)
with p pab have abpos: a ∗ b ≥ 0

by (metis of-int-0-le-iff of-int-le-0-iff zero-le-divide-iff zero-le-mult-iff)
have rab: of-nat (nat (a ∗ b)) = real-of-int a ∗ real-of-int b using abpos

by simp
let ?lhs = sqrt (of-int a / of-int b)
let ?rhs = (case case quotient-of p of

(a, b) ⇒ (case sqrt-int |a ∗ b| of [] ⇒ (0 , inverse (of-int b), nat |a ∗
b|)

| s # x ⇒ (of-int s / of-int b, 0 , 0)) of

13

(p, q, b) ⇒ of-rat p + of-rat q ∗ sqrt (of-nat b))
have sqrt (real-of-rat p) = ?lhs unfolding pab

by (metis of-rat-divide of-rat-of-int-eq)
also have . . . = ?rhs
proof (cases sqrt-int |a ∗ b|)

case Nil
define sb where sb = sqrt (of-int b)
define sa where sa = sqrt (of-int a)
from b sb-def have sb: sb > 0 real-of-int b > 0 by auto
have sbb: sb ∗ sb = real-of-int b unfolding sb-def

by (rule sqrt-sqrt, insert b, auto)
from Nil have ?thesis = (sa / sb =

inverse (of-int b) ∗ (sa ∗ sb)) unfolding ab sa-def sb-def using abpos
by (simp add: rab of-rat-divide real-sqrt-mult real-sqrt-divide of-rat-inverse)

also have . . . = (sa = inverse (of-int b) ∗ sa ∗ (sb ∗ sb)) using sb
by (metis b divide-real-def eq-divide-imp inverse-divide inverse-inverse-eq

inverse-mult-distrib less-int-code(1) of-int-eq-0-iff real-sqrt-eq-zero-cancel-iff sb-def
sbb times-divide-eq-right)

also have . . . = True using sb(2) unfolding sbb by auto
finally show ?thesis by simp

next
case (Cons s x)
from b have b: real-of-int b > 0 by auto
from Cons sqrt-int[of abs (a ∗ b)] have s ∗ s = abs (a ∗ b) by auto
with sqrt-int-pos[OF Cons] have sqrt (real-of-int (abs (a ∗ b))) = of-int s

by (metis abs-of-nonneg of-int-mult of-int-abs real-sqrt-abs2)
with abpos have of-int s = sqrt (real-of-int (a ∗ b)) by auto
thus ?thesis unfolding ab split using Cons b

by (auto simp: of-rat-divide field-simps real-sqrt-divide real-sqrt-mult)
qed
finally show sqrt (real-of-rat p) = ?rhs .

qed

lemma ma-sqrt: sqrt (real-of r) = (if ma-coeff r = 0 then
(if ma-rat r ≥ 0 then real-of (ma-sqrt r) else − real-of (ma-sqrt (ma-uminus r)))
else Code.abort (STR ′′cannot represent sqrt of irrational number ′′) (λ -. sqrt

(real-of r)))
proof (cases ma-coeff r = 0)

case True note 0 = this
hence 00 : ma-coeff (ma-uminus r) = 0 by (transfer , auto)
show ?thesis
proof (cases ma-rat r ≥ 0)

case True
from ma-sqrt-main[OF this 0] 0 True show ?thesis by auto

next
case False
hence ma-rat (ma-uminus r) ≥ 0 by (transfer , auto)
from ma-sqrt-main[OF this 00 , folded ma-uminus, symmetric] False 0
show ?thesis by (auto simp: real-sqrt-minus)

14

qed
qed auto

lemma ma-plus:
(real-of r1 + real-of r2) = (if ma-compatible r1 r2

then real-of (ma-plus r1 r2) else
Code.abort (STR ′′different base ′′) (λ -. real-of r1 + real-of r2))

by transfer (auto split: prod.split simp: field-simps of-rat-add)

lemma ma-times:
(real-of r1 ∗ real-of r2) = (if ma-compatible r1 r2

then real-of (ma-times r1 r2) else
Code.abort (STR ′′different base ′′) (λ -. real-of r1 ∗ real-of r2))

by transfer (auto split: prod.split simp: field-simps of-rat-mult of-rat-add)

lemma ma-equal:
HOL.equal (real-of r1) (real-of r2) = (if ma-compatible r1 r2

then ma-equal r1 r2 else
Code.abort (STR ′′different base ′′) (λ -. HOL.equal (real-of r1) (real-of r2)))

proof (transfer , unfold equal-real-def , clarsimp)
fix p1 q1 p2 q2 :: rat and b1 b2 :: nat
assume b1 : q1 = 0 ∨ b1 ∈ sqrt-irrat
assume b2 : q2 = 0 ∨ b2 ∈ sqrt-irrat
assume base: q1 = 0 ∨ q2 = 0 ∨ b1 = b2
let ?l = real-of-rat p1 + real-of-rat q1 ∗ sqrt (of-nat b1) =

real-of-rat p2 + real-of-rat q2 ∗ sqrt (of-nat b2)
let ?m = real-of-rat q1 ∗ sqrt (of-nat b1) = real-of-rat (p2 − p1) + real-of-rat

q2 ∗ sqrt (of-nat b2)
let ?r = p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2)
have ?l ←→ real-of-rat q1 ∗ sqrt (of-nat b1) = real-of-rat (p2 − p1) + real-of-rat

q2 ∗ sqrt (of-nat b2)
by (auto simp: of-rat-add of-rat-diff of-rat-minus)

also have . . . ←→ p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2)
proof

assume ?m
from base have q1 = 0 ∨ q1 6= 0 ∧ q2 = 0 ∨ q1 6= 0 ∧ q2 6= 0 ∧ b1 = b2

by auto
thus p1 = p2 ∧ q1 = q2 ∧ (q1 = 0 ∨ b1 = b2)
proof

assume q1 : q1 = 0
with ‹?m› have real-of-rat (p2 − p1) + real-of-rat q2 ∗ sqrt (of-nat b2) =

0 by auto
with sqrt-irrat b2 have q2 : q2 = 0 by auto
with q1 ‹?m› show ?thesis by auto

next
assume q1 6= 0 ∧ q2 = 0 ∨ q1 6= 0 ∧ q2 6= 0 ∧ b1 = b2
thus ?thesis
proof

assume ass: q1 6= 0 ∧ q2 = 0

15

with ‹?m› have real-of-rat (p1 − p2) + real-of-rat q1 ∗ sqrt (of-nat b1) =
0

by (auto simp: of-rat-diff)
with b1 have q1 = 0 using sqrt-irrat by auto
with ass show ?thesis by auto

next
assume ass: q1 6= 0 ∧ q2 6= 0 ∧ b1 = b2
with ‹?m› have ∗: real-of-rat (p2 − p1) + real-of-rat (q2 − q1) ∗ sqrt

(of-nat b2) = 0
by (auto simp: field-simps of-rat-diff)

have q2 − q1 = 0
by (rule sqrt-irrat[OF - ∗], insert ass b2 , auto)

with ∗ ass show ?thesis by auto
qed

qed
qed auto
finally show ?l = ?r by simp

qed

lemma ma-floor : floor (real-of r) = ma-floor r
proof (transfer , unfold Let-def , clarsimp)

fix p q :: rat and b :: nat
obtain z1 n1 where qp: quotient-of p = (z1 ,n1) by force
obtain z2 n2 where qq: quotient-of q = (z2 ,n2) by force
from quotient-of-denom-pos[OF qp] have n1 : 0 < n1 .
from quotient-of-denom-pos[OF qq] have n2 : 0 < n2 .
from quotient-of-div[OF qp] have p: p = of-int z1 / of-int n1 .
from quotient-of-div[OF qq] have q: q = of-int z2 / of-int n2 .
have p: p = of-int (z1 ∗ n2) / of-int (n1 ∗ n2) unfolding p using n2 by auto
have q: q = of-int (z2 ∗ n1) / of-int (n1 ∗ n2) unfolding q using n1 by auto
define z1n2 where z1n2 = z1 ∗ n2
define z2n1 where z2n1 = z2 ∗ n1
define n12 where n12 = n1 ∗ n2
define r-add where r-add = of-int (z2n1) ∗ sqrt (real-of-int (int b))
from n1 n2 have n120 : n12 > 0 unfolding n12-def by simp
have floor (of-rat p + of-rat q ∗ sqrt (real-of-nat b)) = floor ((of-int z1n2 +

r-add) / of-int n12)
unfolding r-add-def n12-def z1n2-def z2n1-def
unfolding p q add-divide-distrib of-rat-divide of-rat-of-int-eq of-int-of-nat-eq by

simp
also have . . . = floor (of-int z1n2 + r-add) div n12

by (rule floor-div-pos-int[OF n120])
also have of-int z1n2 + r-add = r-add + of-int z1n2 by simp
also have floor (. . .) = floor r-add + z1n2 by simp
also have . . . = z1n2 + floor r-add by simp
finally have id: bof-rat p + of-rat q ∗ sqrt (of-nat b)c = (z1n2 + br-addc) div

n12 .
show bof-rat p + of-rat q ∗ sqrt (of-nat b)c =

(case quotient-of p of

16

(z1 , n1) ⇒
case quotient-of q of
(z2 , n2) ⇒
(z1 ∗ n2 + (if 0 ≤ z2 ∗ n1 then sqrt-int-floor-pos (z2 ∗ n1 ∗ (z2 ∗

n1) ∗ int b) else
− sqrt-int-ceiling-pos (z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int b))) div (n1 ∗

n2))
unfolding qp qq split id n12-def z1n2-def

proof (rule arg-cong[of - - λ x. ((z1 ∗ n2) + x) div (n1 ∗ n2)])
have ge-int: z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int b ≥ 0

by (metis mult-nonneg-nonneg zero-le-square of-nat-0-le-iff)
show br-addc = (if 0 ≤ z2 ∗ n1 then sqrt-int-floor-pos (z2 ∗ n1 ∗ (z2 ∗ n1) ∗

int b) else − sqrt-int-ceiling-pos (z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int b))
proof (cases z2 ∗ n1 ≥ 0)

case True
hence ge: real-of-int (z2 ∗ n1) ≥ 0 by (metis of-int-0-le-iff)
have radd: r-add = sqrt (of-int (z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int b))

unfolding r-add-def z2n1-def using sqrt-sqrt[OF ge]
by (simp add: ac-simps real-sqrt-mult)
show ?thesis unfolding radd sqrt-int-floor-pos[OF ge-int] using True by

simp
next

case False
hence ge: real-of-int (− (z2 ∗ n1)) ≥ 0
by (metis mult-zero-left neg-0-le-iff-le of-int-0-le-iff order-refl zero-le-mult-iff)
have r-add = − sqrt (of-int (z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int b))

unfolding r-add-def z2n1-def using sqrt-sqrt[OF ge]
by (metis minus-minus minus-mult-commute minus-mult-right of-int-minus

of-int-mult real-sqrt-minus real-sqrt-mult z2n1-def)
hence radd: floor r-add = − ceiling (sqrt (of-int (z2 ∗ n1 ∗ (z2 ∗ n1) ∗ int

b)))
by (metis ceiling-def minus-minus)

show ?thesis unfolding radd sqrt-int-ceiling-pos[OF ge-int] using False by
simp

qed
qed

qed

lemma comparison-impl:
(x :: real) ≤ (y :: real) = ge-0 (y − x)
(x :: real) < (y :: real) = (x 6= y ∧ ge-0 (y − x))
by (simp-all add: ge-0-def , linarith+)

lemma ma-of-rat: real-of-rat r = real-of (ma-of-rat r)
by (transfer , auto)

definition is-rat :: real ⇒ bool where
[code-abbrev]: is-rat x ←→ x ∈ �

17

lemma ma-is-rat: is-rat (real-of x) = ma-is-rat x
proof (transfer , unfold is-rat-def , clarsimp)

fix p q :: rat and b :: nat
let ?p = real-of-rat p
let ?q = real-of-rat q
let ?b = real-of-nat b
let ?b ′ = real-of-rat (of-nat b)
assume b: q = 0 ∨ b ∈ sqrt-irrat
show (?p + ?q ∗ sqrt ?b ∈ �) = (q = 0)
proof (cases q = 0)

case False
from False b have b: b ∈ sqrt-irrat by auto
{

assume ?p + ?q ∗ sqrt ?b ∈ �
from this[unfolded Rats-def] obtain r where r : ?p + ?q ∗ sqrt ?b = real-of-rat

r by auto
let ?r = real-of-rat r
from r have real-of-rat (p − r) + ?q ∗ sqrt ?b = 0 by (simp add: of-rat-diff)
from sqrt-irrat[OF disjI2 [OF b] this] False have False by auto

}
thus ?thesis by auto

qed auto
qed

definition sqrt-real x = (if x ∈ � ∧ x ≥ 0 then (if x = 0 then [0] else (let sx =
sqrt x in [sx,−sx])) else [])

lemma sqrt-real[simp]: assumes x: x ∈ �
shows set (sqrt-real x) = {y . y ∗ y = x}

proof (cases x ≥ 0)
case False
hence

∧
y. y ∗ y 6= x by auto

with False show ?thesis unfolding sqrt-real-def by auto
next

case True
thus ?thesis using x

by (cases x = 0 , auto simp: Let-def sqrt-real-def)
qed

code-datatype real-of

declare [[code drop:
plus :: real ⇒ real ⇒ real
uminus :: real ⇒ real
times :: real ⇒ real ⇒ real
inverse :: real ⇒ real
floor :: real ⇒ int
sqrt

18

HOL.equal :: real ⇒ real ⇒ bool
]]

lemma [code]:
Ratreal = real-of ◦ ma-of-rat
by (simp add: fun-eq-iff) (transfer , simp)

lemmas ma-code-eqns [code equation] = ma-ge-0 ma-floor ma-0 ma-1 ma-uminus
ma-inverse ma-sqrt ma-plus ma-times ma-equal ma-is-rat

comparison-impl

lemma [code equation]:
(x :: real) / (y :: real) = x ∗ inverse y
(x :: real) − (y :: real) = x + (− y)
by (simp-all add: divide-inverse)

Some tests with small numbers. To work on larger number, one should
additionally import the theories for efficient calculation on numbers
value b101 .1 ∗ (3 ∗ sqrt 2 + 6 ∗ sqrt 0 .5)c
value b606 .2 ∗ sqrt 2 + 0 .001 c
value 101 .1 ∗ (3 ∗ sqrt 2 + 6 ∗ sqrt 0 .5) = 606 .2 ∗ sqrt 2 + 0 .001
value 101 .1 ∗ (3 ∗ sqrt 2 + 6 ∗ sqrt 0 .5) > 606 .2 ∗ sqrt 2 + 0 .001
value (sqrt 0 .1 ∈ �, sqrt (− 0 .09) ∈ �)

end

5 A unique representation of real numbers via triples
theory Real-Unique-Impl
imports

Prime-Product
Real-Impl
Show.Show-Instances
Show.Show-Real

begin

We implement the real numbers again using triples, but now we require
an additional invariant on the triples, namely that the base has to be a
prime product. This has the consequence that the mapping of triples into
R is injective. Hence, equality on reals is now equality on triples, which can
even be executed in case of different bases. Similarly, we now also allow
different basis in comparisons. Ultimately, injectivity allows us to define
a show-function for real numbers, which pretty prints real numbers into
strings.
typedef mini-alg-unique =
{ r :: mini-alg . ma-coeff r = 0 ∧ ma-base r = 0 ∨ ma-coeff r 6= 0 ∧ prime-product

(ma-base r)}
by (transfer , auto)

19

setup-lifting type-definition-mini-alg-unique

lift-definition real-of-u :: mini-alg-unique ⇒ real is real-of .
lift-definition mau-floor :: mini-alg-unique ⇒ int is ma-floor .
lift-definition mau-of-rat :: rat ⇒ mini-alg-unique is ma-of-rat by (transfer ,
auto)
lift-definition mau-rat :: mini-alg-unique ⇒ rat is ma-rat .
lift-definition mau-base :: mini-alg-unique ⇒ nat is ma-base .
lift-definition mau-coeff :: mini-alg-unique ⇒ rat is ma-coeff .
lift-definition mau-uminus :: mini-alg-unique ⇒ mini-alg-unique is ma-uminus
by (transfer , auto)
lift-definition mau-compatible :: mini-alg-unique ⇒ mini-alg-unique ⇒ bool is
ma-compatible .
lift-definition mau-ge-0 :: mini-alg-unique ⇒ bool is ma-ge-0 .
lift-definition mau-inverse :: mini-alg-unique ⇒ mini-alg-unique is ma-inverse

by (transfer , auto simp: ma-normalize-def Let-def split: if-splits)
lift-definition mau-plus :: mini-alg-unique ⇒ mini-alg-unique ⇒ mini-alg-unique
is ma-plus

by (transfer , auto simp: ma-normalize-def split: if-splits)
lift-definition mau-times :: mini-alg-unique⇒ mini-alg-unique⇒ mini-alg-unique
is ma-times

by (transfer , auto simp: ma-normalize-def split: if-splits)
lift-definition ma-identity :: mini-alg ⇒ mini-alg ⇒ bool is (=) .
lift-definition mau-equal :: mini-alg-unique⇒ mini-alg-unique⇒ bool is ma-identity
.
lift-definition mau-is-rat :: mini-alg-unique ⇒ bool is ma-is-rat .

lemma Ratreal-code[code]:
Ratreal = real-of-u ◦ mau-of-rat
by (simp add: fun-eq-iff) (transfer , transfer , simp)

lemma mau-floor : floor (real-of-u r) = mau-floor r
using ma-floor by (transfer , auto)

lemma mau-inverse: inverse (real-of-u r) = real-of-u (mau-inverse r)
using ma-inverse by (transfer , auto)

lemma mau-uminus: − (real-of-u r) = real-of-u (mau-uminus r)
using ma-uminus by (transfer , auto)

lemma mau-times:
(real-of-u r1 ∗ real-of-u r2) = (if mau-compatible r1 r2

then real-of-u (mau-times r1 r2) else
Code.abort (STR ′′different base ′′) (λ -. real-of-u r1 ∗ real-of-u r2))

using ma-times by (transfer , auto)
lemma mau-plus:
(real-of-u r1 + real-of-u r2) = (if mau-compatible r1 r2

then real-of-u (mau-plus r1 r2) else
Code.abort (STR ′′different base ′′) (λ -. real-of-u r1 + real-of-u r2))

using ma-plus by (transfer , auto)

20

lemma real-of-u-inj[simp]: real-of-u x = real-of-u y ←→ x = y
proof

note field-simps[simp] of-rat-diff [simp]
assume real-of-u x = real-of-u y
thus x = y
proof (transfer)

fix x y
assume ma-coeff x = 0 ∧ ma-base x = 0 ∨ ma-coeff x 6= 0 ∧ prime-product

(ma-base x)
and ma-coeff y = 0 ∧ ma-base y = 0 ∨ ma-coeff y 6= 0 ∧ prime-product

(ma-base y)
and real-of x = real-of y

thus x = y
proof (transfer , clarsimp)

fix p1 q1 p2 q2 :: rat and b1 b2
let ?p1 = real-of-rat p1
let ?p2 = real-of-rat p2
let ?q1 = real-of-rat q1
let ?q2 = real-of-rat q2
let ?b1 = real-of-nat b1
let ?b2 = real-of-nat b2
assume q1 : q1 = 0 ∧ b1 = 0 ∨ q1 6= 0 ∧ prime-product b1
and q2 : q2 = 0 ∧ b2 = 0 ∨ q2 6= 0 ∧ prime-product b2
and i1 : q1 = 0 ∨ b1 ∈ sqrt-irrat
and i2 : q2 = 0 ∨ b2 ∈ sqrt-irrat
and eq: ?p1 + ?q1 ∗ sqrt ?b1 = ?p2 + ?q2 ∗ sqrt ?b2
show p1 = p2 ∧ q1 = q2 ∧ b1 = b2
proof (cases q1 = 0)

case True
have q2 = 0

by (rule sqrt-irrat[OF i2 , of p2 − p1], insert eq True q1 , auto)
with True q1 q2 eq show ?thesis by auto

next
case False
hence 1 : q1 6= 0 prime-product b1 using q1 by auto
{

assume ∗: q2 = 0
have q1 = 0

by (rule sqrt-irrat[OF i1 , of p1 − p2], insert eq ∗ q2 , auto)
with False have False by auto

}
hence 2 : q2 6= 0 prime-product b2 using q2 by auto
from 1 i1 have b1 : b1 6= 0 unfolding sqrt-irrat-def by (cases b1 , auto)
from 2 i2 have b2 : b2 6= 0 unfolding sqrt-irrat-def by (cases b2 , auto)
let ?sq = λ x. x ∗ x
define q3 where q3 = p2 − p1
let ?q3 = real-of-rat q3
let ?e = of-rat (q2 ∗ q2 ∗ of-nat b2 + ?sq q3 − ?sq q1 ∗ of-nat b1) +

of-rat (2 ∗ q2 ∗ q3) ∗ sqrt ?b2

21

from eq have ∗: ?q1 ∗ sqrt ?b1 = ?q2 ∗ sqrt ?b2 + ?q3
by (simp add: q3-def)

from arg-cong[OF this, of ?sq] have 0 = (real-of-rat 2 ∗ ?q2 ∗ ?q3) ∗ sqrt
?b2 +

(?sq ?q2 ∗ ?b2 + ?sq ?q3 − ?sq ?q1 ∗ ?b1)
by auto

also have . . . = ?e
by (simp add: of-rat-mult of-rat-add of-rat-minus)

finally have eq: ?e = 0 by simp
from sqrt-irrat[OF - this] 2 i2 have q3 : q3 = 0 by auto
hence p: p1 = p2 unfolding q3-def by simp
let ?b1 = rat-of-nat b1
let ?b2 = rat-of-nat b2
from eq[unfolded q3] have eq: ?sq q2 ∗ ?b2 = ?sq q1 ∗ ?b1 by auto
obtain z1 n1 where d1 : quotient-of q1 = (z1 ,n1) by force
obtain z2 n2 where d2 : quotient-of q2 = (z2 ,n2) by force
note id = quotient-of-div[OF d1] quotient-of-div[OF d2]
note pos = quotient-of-denom-pos[OF d1] quotient-of-denom-pos[OF d2]
from id(1) 1 (1) pos(1) have z1 : z1 6= 0 by auto
from id(2) 2 (1) pos(2) have z2 : z2 6= 0 by auto
let ?n1 = rat-of-int n1
let ?n2 = rat-of-int n2
let ?z1 = rat-of-int z1
let ?z2 = rat-of-int z2
from arg-cong[OF eq[simplified id], of λ x. x ∗ ?sq ?n1 ∗ ?sq ?n2 ,

simplified field-simps]
have ?sq (?n1 ∗ ?z2) ∗ ?b2 = ?sq (?n2 ∗ ?z1) ∗ ?b1

using pos by auto
moreover have ?n1 ∗ ?z2 6= 0 ?n2 ∗ ?z1 6= 0 using z1 z2 pos by auto
ultimately obtain i1 i2 where 0 : rat-of-int i1 6= 0 rat-of-int i2 6= 0

and eq: ?sq (rat-of-int i2) ∗ ?b2 = ?sq (rat-of-int i1) ∗ ?b1
unfolding of-int-mult[symmetric] by blast+

let ?b1 = int b1
let ?b2 = int b2
from eq have eq: ?sq i1 ∗ ?b1 = ?sq i2 ∗ ?b2
by (metis (opaque-lifting, no-types) of-int-eq-iff of-int-mult of-int-of-nat-eq)
from 0 have 0 : i1 6= 0 i2 6= 0 by auto
from arg-cong[OF eq, of nat] have ?sq (nat (abs i1)) ∗ b1 = ?sq (nat (abs

i2)) ∗ b2
by (metis abs-of-nat eq nat-abs-mult-distrib nat-int)

moreover have nat (abs i1) > 0 nat (abs i2) > 0 using 0 by auto
ultimately obtain n1 n2 where 0 : n1 > 0 n2 > 0 and eq: ?sq n1 ∗ b1

= ?sq n2 ∗ b2 by blast
from b1 0 have b1 : b1 > 0 n1 > 0 n1 ∗ n1 > 0 by auto
from b2 0 have b2 : b2 > 0 n2 > 0 n2 ∗ n2 > 0 by auto
{

fix p :: nat assume p: prime p
have multiplicity p (?sq n1 ∗ b1) = multiplicity p b1 + 2 ∗ multiplicity p

n1

22

using b1 p by (auto simp: prime-elem-multiplicity-mult-distrib)
also have . . . mod 2 = multiplicity p b1 mod 2 by presburger
finally have id1 : multiplicity p (?sq n1 ∗ b1) mod 2 = multiplicity p b1

mod 2 .
have multiplicity p (?sq n2 ∗ b2) = multiplicity p b2 + 2 ∗ multiplicity p

n2
using b2 p by (auto simp: prime-elem-multiplicity-mult-distrib)

also have . . . mod 2 = multiplicity p b2 mod 2 by presburger
finally have id2 : multiplicity p (?sq n2 ∗ b2) mod 2 = multiplicity p b2

mod 2 .
from id1 id2 eq have eq: multiplicity p b1 mod 2 = multiplicity p b2 mod

2 by simp
from 1 (2) 2 (2) p have multiplicity p b1 ≤ 1 multiplicity p b2 ≤ 1

unfolding prime-product-def by auto
with eq have multiplicity p b1 = multiplicity p b2 by simp

}
with b1 (1) b2 (1) have b: b1 = b2 by (rule multiplicity-eq-nat)
from ∗[unfolded b q3] b1 (1) b2 (1) have q: q1 = q2 by simp
from p q b show ?thesis by blast

qed
qed

qed
qed simp

lift-definition mau-sqrt :: mini-alg-unique ⇒ mini-alg-unique is
λ ma. let (a,b) = quotient-of (ma-rat ma); (sq,fact) = prime-product-factor (nat

(abs a ∗ b));
ma ′ = ma-of-rat (of-int (sgn(a)) ∗ of-nat sq / of-int b)
in ma-times ma ′ (ma-sqrt (ma-of-rat (of-nat fact)))

proof −
fix ma :: mini-alg
let ?num =
let (a, b) = quotient-of (ma-rat ma); (sq, fact) = prime-product-factor (nat (|a|

∗ b));
ma ′ = ma-of-rat (rat-of-int (sgn a) ∗ rat-of-nat sq / of-int b)

in ma-times ma ′ (ma-sqrt (ma-of-rat (rat-of-nat fact)))
obtain a b where q: quotient-of (ma-rat ma) = (a,b) by force
obtain sq fact where ppf : prime-product-factor (nat (abs a ∗ b)) = (sq,fact) by

force
define asq where asq = rat-of-int (sgn a) ∗ of-nat sq / of-int b
define ma ′ where ma ′ = ma-of-rat asq
define sqrt where sqrt = ma-sqrt (ma-of-rat (rat-of-nat fact))
have num: ?num = ma-times ma ′ sqrt unfolding q ppf asq-def Let-def split

ma ′-def sqrt-def ..
let ?inv = λ ma. ma-coeff ma = 0 ∧ ma-base ma = 0 ∨ ma-coeff ma 6= 0 ∧

prime-product (ma-base ma)
have ma ′: ?inv ma ′ unfolding ma ′-def

by (transfer , auto)
have id:

∧
i. int i ∗ 1 = i

∧
i :: rat. i / 1 = i rat-of-int 1 = 1 inverse (1 ::

23

rat) = 1∧
n. nat |int n| = n by auto

from prime-product-factor [OF ppf] have prime-product fact by auto
hence sqrt: ?inv sqrt unfolding sqrt-def

by (transfer , unfold split quotient-of-nat Let-def id, case-tac sqrt-int |int facta|,
auto)

show ?inv ?num unfolding num using ma ′ sqrt
by (transfer , auto simp: ma-normalize-def split: if-splits)

qed

lemma sqrt-sgn[simp]: sqrt (of-int (sgn a)) = of-int (sgn a)
by (cases a ≥ 0 , cases a = 0 , auto simp: real-sqrt-minus)

lemma mau-sqrt-main: mau-coeff r = 0 =⇒ sqrt (real-of-u r) = real-of-u (mau-sqrt
r)
proof (transfer)

fix r
assume ma-coeff r = 0
hence rr : real-of r = of-rat (ma-rat r) by (transfer , auto)
obtain a b where q: quotient-of (ma-rat r) = (a,b) by force
from quotient-of-div[OF q] have r : ma-rat r = of-int a / of-int b by auto
from quotient-of-denom-pos[OF q] have b: b > 0 by auto
obtain sq fact where ppf : prime-product-factor (nat (|a| ∗ b)) = (sq, fact) by

force
from prime-product-factor [OF ppf] have ab: nat (|a| ∗ b) = sq ∗ sq ∗ fact ..
have sqrt (real-of r) = sqrt(of-int a / of-int b) unfolding rr r

by (metis of-rat-divide of-rat-of-int-eq)
also have real-of-int a / of-int b = of-int a ∗ of-int b / (of-int b ∗ of-int b) using

b by auto
also have sqrt (. . .) = sqrt (of-int a ∗ of-int b) / of-int b using sqrt-sqrt[of

real-of-int b] b
by (metis less-eq-real-def of-int-0-less-iff real-sqrt-divide real-sqrt-mult)

also have real-of-int a ∗ of-int b = real-of-int (a ∗ b) by auto
also have a ∗ b = sgn a ∗ (abs a ∗ b) by (simp, metis mult-sgn-abs)
also have real-of-int (. . .) = of-int (sgn a) ∗ real-of-int (|a| ∗ b)

unfolding of-int-mult[of sgn a] ..
also have real-of-int (|a| ∗ b) = of-nat (nat (abs a ∗ b)) using b

by (metis abs-sgn mult-pos-pos mult-zero-left nat-int of-int-of-nat-eq of-nat-0
zero-less-abs-iff zero-less-imp-eq-int)

also have . . . = of-nat fact ∗ (of-nat sq ∗ of-nat sq) unfolding ab of-nat-mult
by simp

also have sqrt (of-int (sgn a) ∗ (of-nat fact ∗ (of-nat sq ∗ of-nat sq))) =
of-int (sgn a) ∗ sqrt (of-nat fact) ∗ of-nat sq
unfolding real-sqrt-mult by simp

finally have r : sqrt (real-of r) = real-of-int (sgn a) ∗ real-of-nat sq / real-of-int
b ∗ sqrt (real-of-nat fact) by simp

let ?asqb = ma-of-rat (rat-of-int (sgn a) ∗ rat-of-nat sq / rat-of-int b)
let ?f = ma-of-rat (rat-of-nat fact)
let ?sq = ma-sqrt ?f

24

have sq: 0 ≤ ma-rat ?f ma-coeff ?f = 0 by ((transfer , simp)+)
have compat:

∧
m. (ma-compatible ?asqb m) = True

by (transfer , auto)
show sqrt (real-of r) =

real-of
(let (a, b) = quotient-of (ma-rat r); (sq, fact) = prime-product-factor (nat

(|a| ∗ b));
ma ′ = ma-of-rat (rat-of-int (sgn a) ∗ rat-of-nat sq / rat-of-int b)

in ma-times ma ′ (ma-sqrt (ma-of-rat (rat-of-nat fact))))
unfolding q ppf Let-def split
unfolding r
unfolding ma-times[symmetric, of ?asqb, unfolded compat if-True]
unfolding ma-sqrt-main[OF sq, symmetric]
unfolding ma-of-rat[symmetric]
by (simp add: of-rat-divide of-rat-mult)

qed

lemma mau-sqrt: sqrt (real-of-u r) = (if mau-coeff r = 0 then
real-of-u (mau-sqrt r)
else Code.abort (STR ′′cannot represent sqrt of irrational number ′′) (λ -. sqrt

(real-of-u r)))
using mau-sqrt-main[of r] by (cases mau-coeff r = 0 , auto)

lemma mau-0 : 0 = real-of-u (mau-of-rat 0) using ma-0 by (transfer , auto)

lemma mau-1 : 1 = real-of-u (mau-of-rat 1) using ma-1 by (transfer , auto)

lemma mau-equal:
HOL.equal (real-of-u r1) (real-of-u r2) = mau-equal r1 r2 unfolding equal-real-def
using real-of-u-inj[of r1 r2]
by (transfer , transfer , auto)

lemma mau-ge-0 : ge-0 (real-of-u x) = mau-ge-0 x using ma-ge-0
by (transfer , auto)

definition real-lt :: real ⇒ real ⇒ bool where real-lt = (<)

The following code equation terminates if it is started on two different
inputs.
lemma real-lt [code equation]: real-lt x y = (let fx = floor x; fy = floor y in
(if fx < fy then True else if fx > fy then False else real-lt (x ∗ 1024) (y ∗ 1024)))

proof (cases floor x < floor y)
case True
thus ?thesis by (auto simp: real-lt-def floor-less-cancel)

next
case False note nless = this
show ?thesis
proof (cases floor x > floor y)

case True

25

from floor-less-cancel[OF this] True nless show ?thesis
by (simp add: real-lt-def)

next
case False
with nless show ?thesis unfolding real-lt-def by auto

qed
qed

For comparisons we first check for equality. Then, if the bases are com-
patible we can just compare the differences with 0. Otherwise, we start the
recursive algorithm real-lt which works on arbitrary bases. In this way, we
have an implementation of comparisons which can compare all representable
numbers.

Note that in Real-Impl.Real-Impl we did not use real-lt as there the
code-equations for equality already require identical bases.
lemma comparison-impl:

real-of-u x ≤ real-of-u y ←→ real-of-u x = real-of-u y ∨
(if mau-compatible x y then ge-0 (real-of-u y − real-of-u x) else real-lt (real-of-u

x) (real-of-u y))
real-of-u x < real-of-u y ←→ real-of-u x 6= real-of-u y ∧
(if mau-compatible x y then ge-0 (real-of-u y − real-of-u x) else real-lt (real-of-u

x) (real-of-u y))
unfolding ge-0-def real-lt-def by (auto simp del: real-of-u-inj)

lemma mau-is-rat: is-rat (real-of-u x) = mau-is-rat x using ma-is-rat
by (transfer , auto)

lift-definition ma-show-real :: mini-alg ⇒ string is
λ (p,q,b). let sb = shows ′′sqrt(′′ ◦ shows b ◦ shows ′′) ′′;

qb = (if q = 1 then sb else if q = −1 then shows ′′− ′′ ◦ sb else shows q ◦
shows ′′∗ ′′ ◦ sb) in

if q = 0 then shows p [] else
if p = 0 then qb [] else
if q < 0 then ((shows p ◦ qb) [])
else ((shows p ◦ shows ′′+ ′′ ◦ qb) []) .

lift-definition mau-show-real :: mini-alg-unique ⇒ string is ma-show-real .

overloading show-real ≡ show-real
begin

definition show-real
where show-real x ≡
(if (∃ y. x = real-of-u y) then mau-show-real (THE y. x = real-of-u y) else [])

end

lemma mau-show-real: show-real (real-of-u x) = mau-show-real x
unfolding show-real-def by simp

code-datatype real-of-u

26

declare [[code drop:
plus :: real ⇒ real ⇒ real
uminus :: real ⇒ real
times :: real ⇒ real ⇒ real
inverse :: real ⇒ real
floor :: real ⇒ int
sqrt
HOL.equal :: real ⇒ real ⇒ bool
ge-0
is-rat
less :: real ⇒ real ⇒ bool
less-eq :: real ⇒ real ⇒ bool

]]

lemmas mau-code-eqns [code] = mau-floor mau-0 mau-1 mau-uminus mau-inverse
mau-sqrt mau-plus mau-times mau-equal mau-ge-0 mau-is-rat

mau-show-real comparison-impl

Some tests with small numbers. To work on larger number, one should
additionally import the theories for efficient calculation on numbers
value b101 .1 ∗ (sqrt 18 + 6 ∗ sqrt 0 .5)c
value b324 ∗ sqrt 7 + 0 .001 c
value 101 .1 ∗ (sqrt 18 + 6 ∗ sqrt 0 .5) = 324 ∗ sqrt 7 + 0 .001
value 101 .1 ∗ (sqrt 18 + 6 ∗ sqrt 0 .5) > 324 ∗ sqrt 7 + 0 .001
value show (101 .1 ∗ (sqrt 18 + 6 ∗ sqrt 0 .5))
value (sqrt 0 .1 ∈ �, sqrt (− 0 .09) ∈ �)

end

Acknowledgements
We thank Bertram Felgenhauer for interesting discussions and especially for
mentioning Cauchy’s mean theorem during the formalization of the algo-
rithms for computing roots.

References
[1] F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data refinement in

Isabelle/HOL. In Interactive Theorem Proving, volume 7998 of LNCS,
pages 100–115, 2013.

[2] A. Lochbihler. Light-weight containers for Isabelle: Efficient, extensible,
nestable. In Interactive Theorem Proving, volume 7998 of LNCS, pages
116–132, 2013.

27

[3] S. Lucas. Polynomials over the reals in proofs of termination: From
theory to practice. RAIRO Theoretical Informatics and Applications,
39(3):547–586, 2005.

[4] S. Lucas. On the relative power of polynomials with real, rational, and
integer coefficients in proofs of termination of rewriting. Appl. Algebra
in Engineering, Communication and Computing, 17(1):49–73, 2006.

[5] S. Lucas. Practical use of polynomials over the reals in proofs of termi-
nation. In Principles and Practice of Declarative Programming, pages
39–50, 2007.

[6] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Theorem Proving in Higher Order Logics, LNCS 5674, pages
452–468, 2009.

[7] H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational
arithmetic. In Logic for Programming and Automated Reasoning, volume
6355, pages 481–500, 2010.

[8] H. Zankl, R. Thiemann, and A. Middeldorp. Satisfiability of non-linear
arithmetic over algebraic numbers. In Symbolic Computation in Software
Science, volume 10-10 of RISC-Linz Technical Report, pages 19–24, 2010.

28

	Introduction
	Auxiliary lemmas which might be moved into the Isabelle distribution.
	Prime products
	A representation of real numbers via triples
	A unique representation of real numbers via triples

