Linear orders as rankings

Manuel Eberl

January 23, 2026

This entry formalises the obvious isomorphism between finite linear orders
and lists, where the list in question is interpreted as a ranking, i.e. it lists the
elements in descending order without repetition.

It also provides an executable algorithm to compute topological sortings,
i.e. all rankings whose linear orders are extensions of a given relation.

Contents

1 Rankings
1.1 Preliminaries Lo
1.2 Definition
1.3 Transformations L L
1.4 Inverse operation and isomorphism
1.5 Topological sorting

1 Rankings

theory Rankings

imports
HOL— Combinatorics. Multiset- Permutations
List— Index. List-Index
Randomised-Social-Choice. Order-Predicates

begin

1.1 Preliminaries

lemma find-index-map: find-index P (map f xs) = find-index (A\z. P (f z)) zs
by (induction xs) auto

lemma map-indez-self:
assumes distinct s
shows map (index zs) zs = [0..<length zs]
proof —
have xs = map (Ai. xs ! i) [0..<length xs]
by (simp add: map-nth)
also have map (index xs) ... = map id [0..<length zs|
unfolding map-map by (intro map-cong) (use assms in <simp-all add: indez-nth-id»)
finally show ?thesis
by simp
qed

lemma bij-betw-map-prod:
assumes bij-betw f A B bij-betw g C D
shows bij-betw (map-prod f g) (A x C) (B x D)
using assms unfolding bij-betw-def by (auto simp: inj-on-def)

definition comap-relation :: ('a = 'b) = 'a relation = 'b relation where
comap-relation fR = Az y. Iz’ y. z=fax' Ny=fy' A Rz'y’)

lemma is-weak-ranking-map-singleton-iff [simp):
is-weak-ranking (map (Az. {z}) xs) +— distinct zs
by (induction xs) (auto simp: is-weak-ranking-Cons)

lemma is-finite-weak-ranking-map-singleton-iff [simp]:
is-finite-weak-ranking (map (Az. {x}) xs) +— distinct s
by (induction xs) (auto simp: is-finite-weak-ranking-Cons)

lemma of-weak-ranking-altdef":
assumes is-weak-ranking s
shows of-weak-ranking zs © y «— z € |J (set zs) A y € J (set zs) A
find-indezx ((€) z) zs > find-index ((€) y) zs
proof (cases z € |J(set xs) Ay € | (set xs))
case True
thus ?thesis
using True of-weak-ranking-altdef[OF assms, of x y] by auto
next
case Fulse
interpret total-preorder-on | J (set xs) of-weak-ranking xs
by (rule total-preorder-of-weak-ranking) (use assms in auto)
have —of-weak-ranking zs x y
using not-outside False by blast
thus ?thesis using Fulse
by blast
qed

1.2 Definition

A ranking is a representation of a linear order on a finite set as a list in descending order,
starting with the biggest element. Clearly, this gives a bijection between the linear orders
on a finite set and the permutations of that set.

inductive of-ranking :: 'alt list = 'alt relation where
i < j= i < length s = j < length s = s ! i =[of-ranking zs] zs ! j

lemma of-ranking-conv-of-weak-ranking:
x »[of-ranking xzs] y «+— = =[of-weak-ranking (map (A\z. {z}) zs)] y
unfolding of-ranking.simps of-weak-ranking.simps by fastforce

lemma of-ranking-imp-in-set:
assumes of-ranking s a b
shows a € set zs b € set xs
using assms by (fastforce elim!: of-ranking.cases)+

lemma of-ranking-Nil [simp]: of-ranking [| = (\- -. False)
by (auto simp: of-ranking.simps fun-eq-iff)

lemma of-ranking-Nil’ [code]: of-ranking || z y = False
by simp

lemma of-ranking-Cons [code]:
z =[of-ranking (z#2s)] y «— x = z A y € set (z#2s) V x =|of-ranking zs| y
by (auto simp: of-ranking-conv-of-weak-ranking of-weak-ranking-Cons)

lemma of-ranking-Cons”:
assumes distinct (x#xs) a € set (z#as) b € set (z#xs)
shows of-ranking (z#xs) a b +— b=z V (a # x A of-ranking zs a b)
using assms of-ranking-imp-in-set[of zs a b] by (auto simp: of-ranking-Cons)

lemma of-ranking-append:

x =[of-ranking (xs Q ys)] y +— x € set xs A\ y € set ys V x =[of-ranking zs] y V x =[of-ranking
ys| y

by (induction xs) (auto simp: of-ranking-Cons)

lemma of-ranking-strongly-preferred- Cons-iff
assumes distinct (x # xs)
shows a >[of-ranking (z # xs)] b +— = = a A b € set s V a >[of-ranking zs] b
using assms of-ranking-imp-in-set[of xs
by (auto simp: strongly-preferred-def of-ranking-Cons)

lemma of-ranking-strongly-preferred-append-iff:

assumes distinct (zs Q ys)

shows a >[of-ranking (zs @ ys)] b «—
a € set xs A\ b € set ys V a >[of-ranking zs] b V a >[of-ranking ys] b

using assms of-ranking-imp-in-set[of zs a b] of-ranking-imp-in-set|of ys a b]
of-ranking-imp-in-set[of xs b a] of-ranking-imp-in-set[of ys b a]

unfolding strongly-preferred-def of-ranking-append distinct-append set-eq-iff Int-iff empty-iff

by metis

lemma not-strongly-preferred-of-ranking-iff:
assumes a € set xs b € set xs
shows —a <[of-ranking zs| b <— a >[of-ranking zs] b
using assms unfolding strongly-preferred-def
by (metis index-less-size-conv linorder-le-cases nth-index of-ranking.intros)

lemma of-ranking-refi:
assumes r € set xs
shows =z <[of-ranking xs| ©
using assms by (induction zs) (auto simp: of-ranking-Cons)

lemma of-ranking-altdef:
assumes distinct s x € set xs y € set xs
shows of-ranking zs ¢ y <— index xs x > index xs y
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-altdef)
(use assms in <auto simp: index-def find-indez-map eq-commute[of - y] eg-commute|of - z]»)

lemma of-ranking-altdef":
assumes distinct s
shows of-ranking s x y «— = € set ks A y € set xs A index xs x > indexr s y
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-altdef”’)

(use assms in <auto simp: index-def find-indez-map eq-commute[of - y] eg-commute|of - x]»)

lemma of-ranking-nth-iff:
assumes distinct xs i < length zs j < length s
shows of-ranking zs (zs ! i) (ws!j) +— i >j
using assms by (simp add: index-nth-id of-ranking-altdef)

lemma strongly-preferred-of-ranking-nth-iff:
assumes distinct zs 1 < length xs j < length zs
shows s ! i >=[of-ranking zs| zs | j +— { < j
using assms by (auto simp: strongly-preferred-def of-ranking-nth-iff)

lemma of-ranking-total: x € set xs = y € set xs => of-ranking xs x y V of-ranking zs y
by (induction xs) (auto simp: of-ranking-Cons)

lemma of-ranking-antisym:
x € set xs = y € set s = of-ranking xs x y = of-ranking s y x = distinct s = . =

Y
by (simp add: of-ranking-altdef”)

lemma finite-linorder-of-ranking:
assumes set s = A distinct zs
shows finite-linorder-on A (of-ranking xs)
proof —
interpret total-preorder-on A of-ranking s
unfolding of-ranking-conv-of-weak-ranking
by (rule total-preorder-of-weak-ranking) (use assms in auto)
show ?thesis

proof
fix x y assume of-ranking xs x y of-ranking xs y x
thus z =y

by (metis assms(1,2) indez-eg-index-conv nle-le not-outside(2) of-ranking-altdef)
qged (use assms(1) in auto)
qed

lemma linorder-of-ranking:
assumes set s = A distinct zs
shows linorder-on A (of-ranking xs)
proof —
interpret finite-linorder-on A of-ranking s
by (rule finite-linorder-of-ranking) fact+
show ?thesis ..
qed

lemma total-preorder-of-ranking:
assumes set zs = A distinct s
shows total-preorder-on A (of-ranking xs)
unfolding of-ranking-conv-of-weak-ranking

by (rule total-preorder-of-weak-ranking) (use assms in auto)

1.3 Transformations

lemma map-relation-of-ranking:
map-relation f (of-ranking xs) = of-weak-ranking (map (\z. f —‘{z}) xs)
unfolding of-ranking-conv-of-weak-ranking of-weak-ranking-map map-map o-def ..

lemma of-ranking-map: of-ranking (map f xs) = comap-relation f (of-ranking xs)
by (induction xs) (auto simp: comap-relation-def of-ranking-Cons fun-eq-iff)

lemma of-ranking-permute’:
assumes [permutes set xs
shows map-relation f (of-ranking xzs) = of-ranking (map (inv f) xs)
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-permute’) (use assms in <auto simp: map-map o-def»)

lemma of-ranking-permute:
assumes | permutes set xs
shows of-ranking (map f xs) = map-relation (inv f) (of-ranking xs)
using of-ranking-permute’|OF permutes-inv[OF assms]] assms
by (simp add: inv-inv-eq permutes-bij)

lemma of-ranking-rev [simp):
of-ranking (rev xs) x y <— of-ranking zs y x
unfolding of-ranking-conv-of-weak-ranking by (simp flip: rev-map)

lemma of-ranking-filter:
of-ranking (filter P xzs) = restrict-relation {x. P z} (of-ranking xs)
by (induction zs) (auto simp: of-ranking-Cons restrict-relation-def fun-eq-iff)

lemma strongly-preferred-of-ranking-conv-index:
assumes distinct s
shows 1z <[of-ranking xzs| y «— z € set xs \ y € set zs A index xs © > index xs y
unfolding strongly-preferred-def using of-ranking-altdef'|OF assms] by auto

lemma restrict-relation-of-weak-ranking-Cons:
assumes distinct (x # xs)
shows restrict-relation (set zs) (of-ranking (x # xs)) = of-ranking xs
proof —
from assms interpret R: total-preorder-on set xs of-ranking s
by (intro total-preorder-of-ranking) auto
from assms show ?thesis using R.not-outside
by (intro ext) (auto simp: restrict-relation-def of-ranking-Cons)
qed

lemma of-ranking-zero-upt-nat:
of-ranking [0:nat..<n] = Az y. > y Az < n)
by (induction n) (auto simp: of-ranking-append of-ranking-Cons fun-eq-iff)

lemma of-ranking-rev-zero-upt-nat:
of-ranking (rev [0::nat..<n)) = Az y. ¢ < y Ay < n)
by (induction n) (auto simp: of-ranking-Cons fun-eq-iff’)

lemma sorted-wrt-ranking: distinct xs = sorted-wrt (of-ranking xs) (rev xs)
unfolding sorted-wrt-iff-nth-less by (force simp: of-ranking.simps rev-nth)

1.4 Inverse operation and isomorphism

lemma (in finite-linorder-on) of-ranking-ranking: of-ranking (ranking le) = le
proof —
have of-ranking (ranking le) =
of-weak-ranking (map (Ax. {the-elem z}) (weak-ranking le))
unfolding of-ranking-conv-of-weak-ranking ranking-def by (simp add: map-map o-def)
also have map (Az. {the-elem z}) (weak-ranking le) = map (Az. z) (weak-ranking le)
by (intro map-cong HOL.refl)
(metis is-singleton-the-elem singleton-weak-ranking)+
also have of-weak-ranking (map (Az. z) (weak-ranking le)) = le
using of-weak-ranking-weak-ranking|OF finite-total-preorder-on-azioms] by simp
finally show ?thesis .
qed

lemma (in finite-linorder-on) distinct-ranking: distinct (ranking le)
using weak-ranking-ranking weak-ranking-total-preorder(1) by simp

lemma ranking-of-ranking:
assumes distinct s
shows ranking (of-ranking xzs) = xs
proof —
have ranking (of-ranking xs) = map the-elem (weak-ranking (of-weak-ranking (map (Az. {z})
x5)))
unfolding ranking-def of-ranking-conv-of-weak-ranking ..
also have ... = xs
by (subst weak-ranking-of-weak-ranking) (use assms in <auto simp: o-def»)
finally show ?thesis .
qed

lemma (in finite-linorder-on) set-ranking: set (ranking le) = carrier
using weak-ranking- Union weak-ranking-ranking by auto

lemma bij-betw-permutations-of-set-finite-linorders-on:
bij-betw of-ranking (permutations-of-set A) {R. finite-linorder-on A R}
by (rule bij-betwl[of - - - ranking])
(auto simp: finite-linorder-on.of-ranking-ranking ranking-of-ranking
permutations-of-set-def finite-linorder-on.distinct-ranking
finite-linorder-on.set-ranking intro: finite-linorder-of-ranking)

lemma bij-betw-permutations-of-set-finite-linorders-on’:

bij-betw ranking {R. finite-linorder-on A R} (permutations-of-set A)
by (rule bij-betwl[of - - - of-ranking))
(auto simp: finite-linorder-on.of-ranking-ranking ranking-of-ranking
permutations-of-set-def finite-linorder-on.distinct-ranking
finite-linorder-on.set-ranking intro: finite-linorder-of-ranking)

lemma card-linorders-on:
assumes finite A
shows card {R. linorder-on A R} = fact (card A)
proof —
have {R. linorder-on A R} = {R. finite-linorder-on A R}
using assms by (simp add: finite-linorder-on-def finite-linorder-on-axioms-def)
also have card ... = card (permutations-of-set A)
using bij-betw-same-card| OF bij-betw-permutations-of-set-finite-linorders-on|of A]] by simp
also have ... = fact (card A)
using assms by simp
finally show ?thesis .
qed

lemma finite-linorders-on [intro):
assumes finite A
shows finite {R. linorder-on A R}
proof —
from assms have finite (permutations-of-set A)
by simp
also have finite (permutations-of-set A) <— finite {R. finite-linorder-on A R}
by (rule bij-betw-finite[OF bij-betw-permutations-of-set-finite-linorders-on))
also have {R. finite-linorder-on A R} = {R. linorder-on A R}
using assms by (simp add: finite-linorder-on-azioms.intro finite-linorder-on-def)
finally show ?thesis .
qed

end

1.5 Topological sorting
theory Topological-Sortings-Rankings

imports Rankings
begin

The following returns the set of all rankings of the given set A that are extensions of the
given relation R, i.e. all topological sortings of R.

Note that there are no requirements about R; in particular it does not have to be
reflexive, antisymmetric, or transitive. If it is not antisymmetric or not transitive, the
result set will simply be empty.

function topo-sorts :: 'a set = 'a relation = ’a list set where

topo-sorts A R =
(if infinite A then {} else if A = {} then {[]} else

Jze{z€eA. V2€A. Rz 2z — z = z}. (Azs. x # xs) ‘ topo-sorts (A — {z}) Ay z. Ry z A
y£ A2 £)
by auto
termination
proof (relation Wellfounded.measure (card o fst), goal-cases)
case (2 AR 1)
show ?case
proof (cases infinite AV A = {})
case Fulse
have A — {z} C 4
using 2 by auto
with False have card (A — {z}) < card A
by (intro psubset-card-mono) auto
thus ?thesis
using False 2 by simp
qed (use 2 in auto)
qed auto

lemmas [simp del] = topo-sorts.simps

lemma topo-sorts-empty [simp|: topo-sorts {} R = {[|}
by (subst topo-sorts.simps) auto

lemma topo-sorts-infinite: infinite A = topo-sorts A R = {}
by (subst topo-sorts.simps) auto

lemma topo-sorts-rec:
finite A = A # {} =
topo-sorts A R = (|Jze{z€A. V2€A. Rz 2z — 2z = z}.
(Azs. x # xs) ‘ topo-sorts (A — {z}) A\yz. Ryz ANy #z A z# 1)
by (subst topo-sorts.simps) simp-all

lemma topo-sorts-cong [congl:
assumes A= B ANty 1€ A—yeB=uc#y— Raxy=R' zy
shows topo-sorts A R = topo-sorts B R’
proof (cases finite A)
case True
from this and assms(2) show ?thesis
unfolding assms(1)[symmetric]
proof (induction arbitrary: R R’ rule: finite-psubset-induct)
case (psubset A R R’)
show Zcase
proof (cases A = {})
case Fulse
have (Jze{x € A.V2€A. Rz z — z = x}. (#) x ‘ topo-sorts (A — {z}) Ay z. Ry z A
y#FTNhz#)=
(Uze{z € A.V2€A. R'x 2z — z = z}. (#) x ‘ topo-sorts (A — {z}) Ay z. R"y z A
y£0 Nz #)

using psubset.prems psubset.hyps

by (intro arg-conglof - - |J] image-cong refl psubset.IH) auto
thus ?thesis
by (subst (1 2) topo-sorts-rec) (use False psubset.hyps in simp-all)
qed auto
qged
qed (simp-all add: assms(1) topo-sorts-infinite)

lemma topo-sorts-correct:
assumes A\zy. Rzy=—z€ ANyc A
shows topo-sorts A R = {zs€permutations-of-set A. R < of-ranking xs}
using assms
proof (induction A R rule: topo-sorts.induct)
case (1 A R)
note R = 1.prems

show ?Zcase
proof (cases A = {} V infinite A)

case True

thus ?thesis using R

by (auto simp: topo-sorts-infinite permutations-of-set-infinite)

next

case Fulse

define M where M = {z€A. V2€A. Rz 2z — z = z}

define R’ where R'= Az yz. Ryz ANy #z A z# 1)

have IH: topo-sorts (A — {z}) (R’ z) = {zs € permutations-of-set (A — {z}). (R' z) <
of-ranking zs}

ifz:z e M for z

unfolding R’-def by (rule 1.IH) (use False R in <auto simp: M-def»)

have {zs€permutations-of-set A. R < of-ranking xs} =
(UzeA. ((#) z) ‘ {zs € permutations-of-set (A — {z}). R < of-ranking (z # xs)})
by (subst permutations-of-set-nonempty) (use False in auto)
also have ... = (Uz€A. ((#) =) ‘ {zs € permutations-of-set (A — {z}). € M AN R'z <
of-ranking xs})
proof (intro arg-cong[of - - |J] image-cong Collect-cong conj-cong refl)
fix z xs
assume z: z € A and zs: zs € permutations-of-set (A — {z})
from xs have zs” set zs = A — {z} distinct xs
by (auto simp: permutations-of-set-def)

have R < of-ranking (x # zs) +— (Vyz. Ryz — z=1x A y € set (x # xs) V of-ranking
xS Y 2)
unfolding le-fun-def of-ranking-Cons by auto
also have (A\yz. Ryz — z =12 A y € set (x # x3) V of-ranking xs y z) =
M2z Ryz— (y=2z—2=2)AN(y#x A 2z# 2 — of-ranking zs y z)))
unfolding fun-eq-iff using R of-ranking-altdef’ zs'(1,2) by fastforce
also have (Vy 2. ... y2) +— (V2. Rz z — 2z =1z) A R' z < of-ranking xs
unfolding le-fun-def of-ranking-Cons R’-def by auto

10

also have (Vz. Rz z — z=2)«— 2 €M
unfolding M-def using z R by auto
finally show (R < of-ranking (z # zs)) = (x € M AN R’ z < of-ranking xs) .
qed
also have ... = (JzeM. ((#) =) ‘ {zs€permutations-of-set (A — {z}). R' < of-ranking

xs})
unfolding M-def by blast

also have ... = ([JzeM. ((#) z) topo-sorts (A — {z}) (R z))
using IH by blast
also have ... = topo-sorts A R

unfolding R’-def M-def using False by (subst (2) topo-sorts-rec) simp-all
finally show ?thesis ..
qged
qed

lemma topo-sorts-nonempty:
assumes finite A N\ey. Rery=—=z € ANye ANzvy Raxy—=— -Ryuxtransp R
shows topo-sorts A R # {}
using assms
proof (induction A R rule: topo-sorts.induct)
case (1 A R)
define R’ where R'= Az y. 2 € ANye ANz=yV Rzy)
interpret R’ order-on A R’
by standard (use 1.prems(2,3) in <auto simp: R’-def intro: transpD[OF <transp R>]»)

show ?Zcase
proof (cases A = {})
case Fulse
define M where M = Max-wrt-among R’ A
have M # {}
unfolding M-def by (rule R’.Maz-wrt-among-nonempty) (use False <finite A in simp-all)
obtain z where z: z € M
using <M # {}> by blast
have M-altdef: M = {z€A. V2€A. Rz 2z — z = z}
unfolding M-def Maz-wrt-among-def R’-def using 1.prems by blast

define L where L = topo-sorts (A — {z}) Ay z. Ryz ANy # z A z # 1)
have L # {}
unfolding L-def
proof (rule 1.IH)
show transp (Aa b. Ra b A a#x Ab#x)
using <transp R) unfolding transp-def by blast
qed (use 1.prems(2,3) False x <finite Ay in <auto simp: M-altdef>)

have topo-sorts A R =
(Uze{zcA.V2€A. Rz 2z — z = z}.
(Axs. & # xs) ‘ topo-sorts (A — {z}) Ay z. RyzAy#z A z#ux))
by (subst topo-sorts.simps) (use False <finite A> in simp-all)
also have {z€A.V2€A. Rz 2z — z=a} =M

11

unfolding M-altdef ..
finally show topo-sorts A R # {}
using <L # {}» «x € M) unfolding L-def by blast
qged auto
qed

lemma bij-betw-topo-sorts-linorders-on:
assumes A\zy. Rey =z € ANyecA
shows bij-betw of-ranking (topo-sorts A R) {R'. finite-linorder-on A R’ N R < R’}
proof —
have bij-betw of-ranking {zs€permutations-of-set A. R < of-ranking xs}
{R'e{R’. finite-linorder-on A R'}. R < R'}
using bij-betw-permutations-of-set-finite-linorders-on
by (rule bij-betw-Collect) auto
also have {zs€permutations-of-set A. R < of-ranking zs} = topo-sorts A R
by (subst topo-sorts-correct) (use assms in auto)
finally show ?thesis
by simp
qed

In the following, we give a more convenient formulation of this for computation.

The input is a relation represented as a list of pairs (x, ys) where ys is the set of all
elements such that (x,y) is in the relation.

function topo-sorts-aux :: (‘a x 'a set) list = 'a list list where
topo-sorts-aux rs =
(if ws =[] then [[]] else
List.bind (map fst (filter (A(-,ys). ys = {}) zs))
(Az. map ((#) z) (topo-sorts-auz
(map (map-prod id (Set.filter (Ay. y #))) (filter (A(y,-). y # x) xs)))))
by auto
termination
by (relation Wellfounded.measure length)
(auto simp: length-filter-less)

lemmas [simp del] = topo-sorts-auz.simps

lemma topo-sorts-aux-Nil [simp]: topo-sorts-auz [| = [[]]
by (subst topo-sorts-aux.simps) auto

lemma topo-sorts-auz-rec:
zs # [| = topo-sorts-auz xs =
List.bind (map fst (filter (A(-,ys). ys = {}) zs))
(Az. map ((#) z) (topo-sorts-auz

(map (map-prod id (Set.filter (Ay. y # x))) (filter (A(y,-). y # z) 5))))
by (subst topo-sorts-aux.simps) auto

lemma topo-sorts-auz-Cons:

topo-sorts-auz (y#1s) =
List.bind (map fst (filter (A(-,ys). ys = {}) (y#=xs)))

12

(Az. map ((#) z) (topo-sorts-auz
(map (map-prod id (Set.filter (Ay. y # z))) (filter (A(y,-). v # x) (y#1s)))))

by (rule topo-sorts-auz-rec) auto

lemma set-topo-sorts-aux:
assumes distinct (map fst s)
assumes Az ys. (z, ys) € set xs = ys C set (map fst zs) — {z}
shows set (topo-sorts-aur xs) =
topo-sorts (set (map fst xs)) (Az y. Jys. (z, ys) € set zs N y € ys)
using assms
proof (induction xs rule: topo-sorts-auz.induct)
case (1 zs)
show ?case
proof (cases zs = [])
case True
thus ?thesis
by (simp add: topo-sorts.simps[of {}] topo-sorts-aux.simps|of []])
next
case False
define M where M = set (map fst (filter (A(-,ys). ys = {}) zs))
define zs’ where zs’ = (Az. map (map-prod id (Set.filter (A\y. y # x))) (filter (A(y,-). y #

define R’ where R’ = (Az a b. ys. (a, ys) € set (zs’ z) A b € ys)

have IH: set (topo-sorts-auz (zs’ x)) = topo-sorts (set (map fst (zs’ z))) (R z)
ifx € M for z
unfolding zs’-def R’-def
proof (rule 1.IH, goal-cases)
case 2
show ?case using that by (auto simp: M-def)
next
case 3
thus ?case using 1.prems
by (auto intro!: distinct-filter simp: distinct-map intro: inj-on-subset)
next
case 4
thus ?case using 1.prems by fastforce
qed fact+

have topo-sorts (set (map fst xs)) (Az y. Fys. (z, ys) € set s N\ y € ys) =
(Uze{z € set (map fst xs). ¥V z€set (map fst xs). (ys. (z, ys) € set xs A\ z € ys) —»
z = x}.
(#) x ¢ topo-sorts (set (map fst xs) — {z}) (A\y z. 3ys. (y, ys) € set xs A\ z € ys)
Ny#zAz#z)
by (subst topo-sorts-rec) (use False in simp-all)
also have {z € set (map fst xs). V z€set (map fst zs). (Fys. (z, ys) € set xs N\ z € ys) —
z=a}=M
(is ?lhs = ?rhs)
proof (intro equalityl subsetl)

13

fix z assume z € ?rhs
thus z € %lhs
using I .prems by (fastforce simp: M-def distinct-map inj-on-def)
next
fix z assume z € ?lhs
hence z: © € set (map fst zs) Nz ys. z € set (map fst xs) = (x, ys) € set xs N\ z € ys
= z=u=x
by blast+
from z(1) obtain ys where ys: (z, ys) € set zs
by force
have ys C {}
proof
fix y assume y € ys
with ys show y € {}
using z(2)[of y ys|] 1.prems by auto
qed
thus z € ?rhs
unfolding M-def using z(1) ys by (auto simp: image-iff)
qed
also have (Az. set (map fst zs) — {z}) = (Az. set (map fst (zs’ z)))
by (force simp: zs’-def fun-eq-iff)
also have (Az y z. (3ys. (y, ys) € setas Nz € ys) Ny#£xzANz#zx)=R'
unfolding R’-def using 1.prems
by (auto simp: fun-eq-iff distinct-map inj-on-def zs’-def map-prod-def
case-prod-unfold image-iff)
also have ((JzeM. (#) = * topo-sorts (set (map fst (zs’ z))) (R' z)) =
(UzeM. (#) z ‘ set (topo-sorts-auz (xs' z)))
using [/H by blast
also have ... = set (topo-sorts-auz xs)
by (subst (2) topo-sorts-auz-rec) (use False in <auto simp: M-def xs’-def List.bind-def»)
finally show ?thesis ..
qed
qed

lemma topo-sorts-code [code]:
topo-sorts (set xs) R = (let xs’ = remdups xs in
set (topo-sorts-auzx (map (Az. (z, set (filter (A\y. y # A R z y) zs'))) xs’)))
proof —
define zs’ where zs’ = remdups zs
have set (topo-sorts-aur (map (Az. (z, set (filter (A\y. y # x A Rz y) xs'))) zs’)) =
topo-sorts (set xs) (A\x y. Jys. (z, ys) € (Az. (z, set (filter (A\y. y # x A Rz y) xs')) *
set s’ N\ y € ys)
by (subst set-topo-sorts-auz) (auto simp: o-def zs’-def)
also have (Az y. Jys. (z, ys) € (Az. (z, set (filter (A\y. y #x A Rxy) xs)) ‘setas’ Ny €
ys) =
Ay z€setas Ny € setas Nz #yANRzy)
by (auto simp: zs’-def image-iff)
also have topo-sorts (set zs) ... = topo-sorts (set xs) R
by (rule topo-sorts-cong) auto

14

finally show ?thesis
by (simp add: Let-def zs’-def)
qed

end

15

	Rankings
	Preliminaries
	Definition
	Transformations
	Inverse operation and isomorphism
	Topological sorting

