
Linear orders as rankings
Manuel Eberl

January 23, 2026

This entry formalises the obvious isomorphism between finite linear orders
and lists, where the list in question is interpreted as a ranking, i.e. it lists the
elements in descending order without repetition.

It also provides an executable algorithm to compute topological sortings,
i.e. all rankings whose linear orders are extensions of a given relation.

1

Contents
1 Rankings 2

1.1 Preliminaries . 2
1.2 Definition . 3
1.3 Transformations . 5
1.4 Inverse operation and isomorphism . 7
1.5 Topological sorting . 8

1 Rankings
theory Rankings
imports

HOL−Combinatorics.Multiset-Permutations
List−Index.List-Index
Randomised-Social-Choice.Order-Predicates

begin

1.1 Preliminaries
lemma find-index-map: find-index P (map f xs) = find-index (λx. P (f x)) xs

by (induction xs) auto

lemma map-index-self :
assumes distinct xs
shows map (index xs) xs = [0 ..<length xs]

proof −
have xs = map (λi. xs ! i) [0 ..<length xs]

by (simp add: map-nth)
also have map (index xs) . . . = map id [0 ..<length xs]

unfolding map-map by (intro map-cong) (use assms in ‹simp-all add: index-nth-id›)
finally show ?thesis

by simp
qed

lemma bij-betw-map-prod:
assumes bij-betw f A B bij-betw g C D
shows bij-betw (map-prod f g) (A × C) (B × D)
using assms unfolding bij-betw-def by (auto simp: inj-on-def)

definition comap-relation :: (′a ⇒ ′b) ⇒ ′a relation ⇒ ′b relation where
comap-relation f R = (λx y. ∃ x ′ y ′. x = f x ′ ∧ y = f y ′ ∧ R x ′ y ′)

lemma is-weak-ranking-map-singleton-iff [simp]:
is-weak-ranking (map (λx. {x}) xs) ←→ distinct xs
by (induction xs) (auto simp: is-weak-ranking-Cons)

2

lemma is-finite-weak-ranking-map-singleton-iff [simp]:
is-finite-weak-ranking (map (λx. {x}) xs) ←→ distinct xs
by (induction xs) (auto simp: is-finite-weak-ranking-Cons)

lemma of-weak-ranking-altdef ′:
assumes is-weak-ranking xs
shows of-weak-ranking xs x y ←→ x ∈

⋃
(set xs) ∧ y ∈

⋃
(set xs) ∧

find-index ((∈) x) xs ≥ find-index ((∈) y) xs
proof (cases x ∈

⋃
(set xs) ∧ y ∈

⋃
(set xs))

case True
thus ?thesis

using True of-weak-ranking-altdef [OF assms, of x y] by auto
next

case False
interpret total-preorder-on

⋃
(set xs) of-weak-ranking xs

by (rule total-preorder-of-weak-ranking) (use assms in auto)
have ¬of-weak-ranking xs x y

using not-outside False by blast
thus ?thesis using False

by blast
qed

1.2 Definition

A ranking is a representation of a linear order on a finite set as a list in descending order,
starting with the biggest element. Clearly, this gives a bijection between the linear orders
on a finite set and the permutations of that set.
inductive of-ranking :: ′alt list ⇒ ′alt relation where

i ≤ j =⇒ i < length xs =⇒ j < length xs =⇒ xs ! i �[of-ranking xs] xs ! j

lemma of-ranking-conv-of-weak-ranking:
x �[of-ranking xs] y ←→ x �[of-weak-ranking (map (λx. {x}) xs)] y
unfolding of-ranking.simps of-weak-ranking.simps by fastforce

lemma of-ranking-imp-in-set:
assumes of-ranking xs a b
shows a ∈ set xs b ∈ set xs
using assms by (fastforce elim!: of-ranking.cases)+

lemma of-ranking-Nil [simp]: of-ranking [] = (λ- -. False)
by (auto simp: of-ranking.simps fun-eq-iff)

lemma of-ranking-Nil ′ [code]: of-ranking [] x y = False
by simp

lemma of-ranking-Cons [code]:
x �[of-ranking (z#zs)] y ←→ x = z ∧ y ∈ set (z#zs) ∨ x �[of-ranking zs] y
by (auto simp: of-ranking-conv-of-weak-ranking of-weak-ranking-Cons)

3

lemma of-ranking-Cons ′:
assumes distinct (x#xs) a ∈ set (x#xs) b ∈ set (x#xs)
shows of-ranking (x#xs) a b ←→ b = x ∨ (a 6= x ∧ of-ranking xs a b)
using assms of-ranking-imp-in-set[of xs a b] by (auto simp: of-ranking-Cons)

lemma of-ranking-append:
x �[of-ranking (xs @ ys)] y ←→ x ∈ set xs ∧ y ∈ set ys ∨ x �[of-ranking xs] y ∨ x �[of-ranking

ys] y
by (induction xs) (auto simp: of-ranking-Cons)

lemma of-ranking-strongly-preferred-Cons-iff :
assumes distinct (x # xs)
shows a �[of-ranking (x # xs)] b ←→ x = a ∧ b ∈ set xs ∨ a �[of-ranking xs] b
using assms of-ranking-imp-in-set[of xs]
by (auto simp: strongly-preferred-def of-ranking-Cons)

lemma of-ranking-strongly-preferred-append-iff :
assumes distinct (xs @ ys)
shows a �[of-ranking (xs @ ys)] b ←→

a ∈ set xs ∧ b ∈ set ys ∨ a �[of-ranking xs] b ∨ a �[of-ranking ys] b
using assms of-ranking-imp-in-set[of xs a b] of-ranking-imp-in-set[of ys a b]

of-ranking-imp-in-set[of xs b a] of-ranking-imp-in-set[of ys b a]
unfolding strongly-preferred-def of-ranking-append distinct-append set-eq-iff Int-iff empty-iff
by metis

lemma not-strongly-preferred-of-ranking-iff :
assumes a ∈ set xs b ∈ set xs
shows ¬a ≺[of-ranking xs] b ←→ a �[of-ranking xs] b
using assms unfolding strongly-preferred-def
by (metis index-less-size-conv linorder-le-cases nth-index of-ranking.intros)

lemma of-ranking-refl:
assumes x ∈ set xs
shows x �[of-ranking xs] x
using assms by (induction xs) (auto simp: of-ranking-Cons)

lemma of-ranking-altdef :
assumes distinct xs x ∈ set xs y ∈ set xs
shows of-ranking xs x y ←→ index xs x ≥ index xs y
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-altdef)
(use assms in ‹auto simp: index-def find-index-map eq-commute[of - y] eq-commute[of - x]›)

lemma of-ranking-altdef ′:
assumes distinct xs
shows of-ranking xs x y ←→ x ∈ set xs ∧ y ∈ set xs ∧ index xs x ≥ index xs y
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-altdef ′)

4

(use assms in ‹auto simp: index-def find-index-map eq-commute[of - y] eq-commute[of - x]›)

lemma of-ranking-nth-iff :
assumes distinct xs i < length xs j < length xs
shows of-ranking xs (xs ! i) (xs ! j) ←→ i ≥ j
using assms by (simp add: index-nth-id of-ranking-altdef)

lemma strongly-preferred-of-ranking-nth-iff :
assumes distinct xs i < length xs j < length xs
shows xs ! i �[of-ranking xs] xs ! j ←→ i < j
using assms by (auto simp: strongly-preferred-def of-ranking-nth-iff)

lemma of-ranking-total: x ∈ set xs =⇒ y ∈ set xs =⇒ of-ranking xs x y ∨ of-ranking xs y x
by (induction xs) (auto simp: of-ranking-Cons)

lemma of-ranking-antisym:
x ∈ set xs =⇒ y ∈ set xs =⇒ of-ranking xs x y =⇒ of-ranking xs y x =⇒ distinct xs =⇒ x =

y
by (simp add: of-ranking-altdef ′)

lemma finite-linorder-of-ranking:
assumes set xs = A distinct xs
shows finite-linorder-on A (of-ranking xs)

proof −
interpret total-preorder-on A of-ranking xs

unfolding of-ranking-conv-of-weak-ranking
by (rule total-preorder-of-weak-ranking) (use assms in auto)

show ?thesis
proof

fix x y assume of-ranking xs x y of-ranking xs y x
thus x = y

by (metis assms(1 ,2) index-eq-index-conv nle-le not-outside(2) of-ranking-altdef)
qed (use assms(1) in auto)

qed

lemma linorder-of-ranking:
assumes set xs = A distinct xs
shows linorder-on A (of-ranking xs)

proof −
interpret finite-linorder-on A of-ranking xs

by (rule finite-linorder-of-ranking) fact+
show ?thesis ..

qed

lemma total-preorder-of-ranking:
assumes set xs = A distinct xs
shows total-preorder-on A (of-ranking xs)
unfolding of-ranking-conv-of-weak-ranking

5

by (rule total-preorder-of-weak-ranking) (use assms in auto)

1.3 Transformations
lemma map-relation-of-ranking:

map-relation f (of-ranking xs) = of-weak-ranking (map (λx. f −‘ {x}) xs)
unfolding of-ranking-conv-of-weak-ranking of-weak-ranking-map map-map o-def ..

lemma of-ranking-map: of-ranking (map f xs) = comap-relation f (of-ranking xs)
by (induction xs) (auto simp: comap-relation-def of-ranking-Cons fun-eq-iff)

lemma of-ranking-permute ′:
assumes f permutes set xs
shows map-relation f (of-ranking xs) = of-ranking (map (inv f) xs)
unfolding of-ranking-conv-of-weak-ranking
by (subst of-weak-ranking-permute ′) (use assms in ‹auto simp: map-map o-def ›)

lemma of-ranking-permute:
assumes f permutes set xs
shows of-ranking (map f xs) = map-relation (inv f) (of-ranking xs)
using of-ranking-permute ′[OF permutes-inv[OF assms]] assms
by (simp add: inv-inv-eq permutes-bij)

lemma of-ranking-rev [simp]:
of-ranking (rev xs) x y ←→ of-ranking xs y x
unfolding of-ranking-conv-of-weak-ranking by (simp flip: rev-map)

lemma of-ranking-filter :
of-ranking (filter P xs) = restrict-relation {x. P x} (of-ranking xs)
by (induction xs) (auto simp: of-ranking-Cons restrict-relation-def fun-eq-iff)

lemma strongly-preferred-of-ranking-conv-index:
assumes distinct xs
shows x ≺[of-ranking xs] y ←→ x ∈ set xs ∧ y ∈ set xs ∧ index xs x > index xs y
unfolding strongly-preferred-def using of-ranking-altdef ′[OF assms] by auto

lemma restrict-relation-of-weak-ranking-Cons:
assumes distinct (x # xs)
shows restrict-relation (set xs) (of-ranking (x # xs)) = of-ranking xs

proof −
from assms interpret R: total-preorder-on set xs of-ranking xs

by (intro total-preorder-of-ranking) auto
from assms show ?thesis using R.not-outside

by (intro ext) (auto simp: restrict-relation-def of-ranking-Cons)
qed

lemma of-ranking-zero-upt-nat:
of-ranking [0 ::nat..<n] = (λx y. x ≥ y ∧ x < n)
by (induction n) (auto simp: of-ranking-append of-ranking-Cons fun-eq-iff)

6

lemma of-ranking-rev-zero-upt-nat:
of-ranking (rev [0 ::nat..<n]) = (λx y. x ≤ y ∧ y < n)
by (induction n) (auto simp: of-ranking-Cons fun-eq-iff)

lemma sorted-wrt-ranking: distinct xs =⇒ sorted-wrt (of-ranking xs) (rev xs)
unfolding sorted-wrt-iff-nth-less by (force simp: of-ranking.simps rev-nth)

1.4 Inverse operation and isomorphism
lemma (in finite-linorder-on) of-ranking-ranking: of-ranking (ranking le) = le
proof −

have of-ranking (ranking le) =
of-weak-ranking (map (λx. {the-elem x}) (weak-ranking le))

unfolding of-ranking-conv-of-weak-ranking ranking-def by (simp add: map-map o-def)
also have map (λx. {the-elem x}) (weak-ranking le) = map (λx. x) (weak-ranking le)

by (intro map-cong HOL.refl)
(metis is-singleton-the-elem singleton-weak-ranking)+

also have of-weak-ranking (map (λx. x) (weak-ranking le)) = le
using of-weak-ranking-weak-ranking[OF finite-total-preorder-on-axioms] by simp

finally show ?thesis .
qed

lemma (in finite-linorder-on) distinct-ranking: distinct (ranking le)
using weak-ranking-ranking weak-ranking-total-preorder(1) by simp

lemma ranking-of-ranking:
assumes distinct xs
shows ranking (of-ranking xs) = xs

proof −
have ranking (of-ranking xs) = map the-elem (weak-ranking (of-weak-ranking (map (λx. {x})

xs)))
unfolding ranking-def of-ranking-conv-of-weak-ranking ..

also have . . . = xs
by (subst weak-ranking-of-weak-ranking) (use assms in ‹auto simp: o-def ›)

finally show ?thesis .
qed

lemma (in finite-linorder-on) set-ranking: set (ranking le) = carrier
using weak-ranking-Union weak-ranking-ranking by auto

lemma bij-betw-permutations-of-set-finite-linorders-on:
bij-betw of-ranking (permutations-of-set A) {R. finite-linorder-on A R}
by (rule bij-betwI [of - - - ranking])

(auto simp: finite-linorder-on.of-ranking-ranking ranking-of-ranking
permutations-of-set-def finite-linorder-on.distinct-ranking
finite-linorder-on.set-ranking intro: finite-linorder-of-ranking)

lemma bij-betw-permutations-of-set-finite-linorders-on ′:

7

bij-betw ranking {R. finite-linorder-on A R} (permutations-of-set A)
by (rule bij-betwI [of - - - of-ranking])

(auto simp: finite-linorder-on.of-ranking-ranking ranking-of-ranking
permutations-of-set-def finite-linorder-on.distinct-ranking
finite-linorder-on.set-ranking intro: finite-linorder-of-ranking)

lemma card-linorders-on:
assumes finite A
shows card {R. linorder-on A R} = fact (card A)

proof −
have {R. linorder-on A R} = {R. finite-linorder-on A R}

using assms by (simp add: finite-linorder-on-def finite-linorder-on-axioms-def)
also have card . . . = card (permutations-of-set A)

using bij-betw-same-card[OF bij-betw-permutations-of-set-finite-linorders-on[of A]] by simp
also have . . . = fact (card A)

using assms by simp
finally show ?thesis .

qed

lemma finite-linorders-on [intro]:
assumes finite A
shows finite {R. linorder-on A R}

proof −
from assms have finite (permutations-of-set A)

by simp
also have finite (permutations-of-set A) ←→ finite {R. finite-linorder-on A R}

by (rule bij-betw-finite[OF bij-betw-permutations-of-set-finite-linorders-on])
also have {R. finite-linorder-on A R} = {R. linorder-on A R}

using assms by (simp add: finite-linorder-on-axioms.intro finite-linorder-on-def)
finally show ?thesis .

qed

end

1.5 Topological sorting
theory Topological-Sortings-Rankings

imports Rankings
begin

The following returns the set of all rankings of the given set A that are extensions of the
given relation R, i.e. all topological sortings of R.
Note that there are no requirements about R; in particular it does not have to be
reflexive, antisymmetric, or transitive. If it is not antisymmetric or not transitive, the
result set will simply be empty.
function topo-sorts :: ′a set ⇒ ′a relation ⇒ ′a list set where

topo-sorts A R =
(if infinite A then {} else if A = {} then {[]} else

8

⋃
x∈{x∈A. ∀ z∈A. R x z −→ z = x}. (λxs. x # xs) ‘ topo-sorts (A − {x}) (λy z . R y z ∧

y 6= x ∧ z 6= x))
by auto

termination
proof (relation Wellfounded.measure (card ◦ fst), goal-cases)

case (2 A R x)
show ?case
proof (cases infinite A ∨ A = {})

case False
have A − {x} ⊂ A

using 2 by auto
with False have card (A − {x}) < card A

by (intro psubset-card-mono) auto
thus ?thesis

using False 2 by simp
qed (use 2 in auto)

qed auto

lemmas [simp del] = topo-sorts.simps

lemma topo-sorts-empty [simp]: topo-sorts {} R = {[]}
by (subst topo-sorts.simps) auto

lemma topo-sorts-infinite: infinite A =⇒ topo-sorts A R = {}
by (subst topo-sorts.simps) auto

lemma topo-sorts-rec:
finite A =⇒ A 6= {} =⇒

topo-sorts A R = (
⋃

x∈{x∈A. ∀ z∈A. R x z −→ z = x}.
(λxs. x # xs) ‘ topo-sorts (A − {x}) (λy z . R y z ∧ y 6= x ∧ z 6= x))

by (subst topo-sorts.simps) simp-all

lemma topo-sorts-cong [cong]:
assumes A = B

∧
x y. x ∈ A =⇒ y ∈ B =⇒ x 6= y =⇒ R x y = R ′ x y

shows topo-sorts A R = topo-sorts B R ′

proof (cases finite A)
case True
from this and assms(2) show ?thesis

unfolding assms(1)[symmetric]
proof (induction arbitrary: R R ′ rule: finite-psubset-induct)

case (psubset A R R ′)
show ?case
proof (cases A = {})

case False
have (

⋃
x∈{x ∈ A. ∀ z∈A. R x z −→ z = x}. (#) x ‘ topo-sorts (A − {x}) (λy z. R y z ∧

y 6= x ∧ z 6= x)) =
(
⋃

x∈{x ∈ A. ∀ z∈A. R ′ x z −→ z = x}. (#) x ‘ topo-sorts (A − {x}) (λy z. R ′ y z ∧
y 6= x ∧ z 6= x))

using psubset.prems psubset.hyps

9

by (intro arg-cong[of - -
⋃
] image-cong refl psubset.IH) auto

thus ?thesis
by (subst (1 2) topo-sorts-rec) (use False psubset.hyps in simp-all)

qed auto
qed

qed (simp-all add: assms(1) topo-sorts-infinite)

lemma topo-sorts-correct:
assumes

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

shows topo-sorts A R = {xs∈permutations-of-set A. R ≤ of-ranking xs}
using assms

proof (induction A R rule: topo-sorts.induct)
case (1 A R)
note R = 1 .prems

show ?case
proof (cases A = {} ∨ infinite A)

case True
thus ?thesis using R

by (auto simp: topo-sorts-infinite permutations-of-set-infinite)
next

case False
define M where M = {x∈A. ∀ z∈A. R x z −→ z = x}
define R ′ where R ′ = (λx y z. R y z ∧ y 6= x ∧ z 6= x)

have IH : topo-sorts (A − {x}) (R ′ x) = {xs ∈ permutations-of-set (A − {x}). (R ′ x) ≤
of-ranking xs}

if x: x ∈ M for x
unfolding R ′-def by (rule 1 .IH) (use False x R in ‹auto simp: M-def ›)

have {xs∈permutations-of-set A. R ≤ of-ranking xs} =
(
⋃

x∈A. ((#) x) ‘ {xs ∈ permutations-of-set (A − {x}). R ≤ of-ranking (x # xs)})
by (subst permutations-of-set-nonempty) (use False in auto)

also have . . . = (
⋃

x∈A. ((#) x) ‘ {xs ∈ permutations-of-set (A − {x}). x ∈ M ∧ R ′ x ≤
of-ranking xs})

proof (intro arg-cong[of - -
⋃
] image-cong Collect-cong conj-cong refl)

fix x xs
assume x: x ∈ A and xs: xs ∈ permutations-of-set (A − {x})
from xs have xs ′: set xs = A − {x} distinct xs

by (auto simp: permutations-of-set-def)

have R ≤ of-ranking (x # xs) ←→ (∀ y z. R y z −→ z = x ∧ y ∈ set (x # xs) ∨ of-ranking
xs y z)

unfolding le-fun-def of-ranking-Cons by auto
also have (λy z. R y z −→ z = x ∧ y ∈ set (x # xs) ∨ of-ranking xs y z) =

(λy z . R y z −→ ((y = x −→ z = x) ∧ (y 6= x ∧ z 6= x −→ of-ranking xs y z)))
unfolding fun-eq-iff using R of-ranking-altdef ′ xs ′(1 ,2) by fastforce

also have (∀ y z y z) ←→ (∀ z. R x z −→ z = x) ∧ R ′ x ≤ of-ranking xs
unfolding le-fun-def of-ranking-Cons R ′-def by auto

10

also have (∀ z. R x z −→ z = x) ←→ x ∈ M
unfolding M-def using x R by auto

finally show (R ≤ of-ranking (x # xs)) = (x ∈ M ∧ R ′ x ≤ of-ranking xs) .
qed
also have . . . = (

⋃
x∈M . ((#) x) ‘ {xs∈permutations-of-set (A − {x}). R ′ x ≤ of-ranking

xs})
unfolding M-def by blast

also have . . . = (
⋃

x∈M . ((#) x) ‘ topo-sorts (A − {x}) (R ′ x))
using IH by blast

also have . . . = topo-sorts A R
unfolding R ′-def M-def using False by (subst (2) topo-sorts-rec) simp-all

finally show ?thesis ..
qed

qed

lemma topo-sorts-nonempty:
assumes finite A

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

∧
x y. R x y =⇒ ¬R y x transp R

shows topo-sorts A R 6= {}
using assms

proof (induction A R rule: topo-sorts.induct)
case (1 A R)
define R ′ where R ′ = (λx y. x ∈ A ∧ y ∈ A ∧ x = y ∨ R x y)
interpret R ′: order-on A R ′

by standard (use 1 .prems(2 ,3) in ‹auto simp: R ′-def intro: transpD[OF ‹transp R›]›)

show ?case
proof (cases A = {})

case False
define M where M = Max-wrt-among R ′ A
have M 6= {}
unfolding M-def by (rule R ′.Max-wrt-among-nonempty) (use False ‹finite A› in simp-all)

obtain x where x: x ∈ M
using ‹M 6= {}› by blast

have M-altdef : M = {x∈A. ∀ z∈A. R x z −→ z = x}
unfolding M-def Max-wrt-among-def R ′-def using 1 .prems by blast

define L where L = topo-sorts (A − {x}) (λy z . R y z ∧ y 6= x ∧ z 6= x)
have L 6= {}

unfolding L-def
proof (rule 1 .IH)

show transp (λa b. R a b ∧ a 6= x ∧ b 6= x)
using ‹transp R› unfolding transp-def by blast

qed (use 1 .prems(2 ,3) False x ‹finite A› in ‹auto simp: M-altdef ›)

have topo-sorts A R =
(
⋃

x∈{x∈A. ∀ z∈A. R x z −→ z = x}.
(λxs. x # xs) ‘ topo-sorts (A − {x}) (λy z . R y z ∧ y 6= x ∧ z 6= x))

by (subst topo-sorts.simps) (use False ‹finite A› in simp-all)
also have {x∈A. ∀ z∈A. R x z −→ z = x} = M

11

unfolding M-altdef ..
finally show topo-sorts A R 6= {}

using ‹L 6= {}› ‹x ∈ M › unfolding L-def by blast
qed auto

qed

lemma bij-betw-topo-sorts-linorders-on:
assumes

∧
x y. R x y =⇒ x ∈ A ∧ y ∈ A

shows bij-betw of-ranking (topo-sorts A R) {R ′. finite-linorder-on A R ′ ∧ R ≤ R ′}
proof −

have bij-betw of-ranking {xs∈permutations-of-set A. R ≤ of-ranking xs}
{R ′∈{R ′. finite-linorder-on A R ′}. R ≤ R ′}

using bij-betw-permutations-of-set-finite-linorders-on
by (rule bij-betw-Collect) auto

also have {xs∈permutations-of-set A. R ≤ of-ranking xs} = topo-sorts A R
by (subst topo-sorts-correct) (use assms in auto)

finally show ?thesis
by simp

qed

In the following, we give a more convenient formulation of this for computation.
The input is a relation represented as a list of pairs (x, ys) where ys is the set of all
elements such that (x, y) is in the relation.
function topo-sorts-aux :: (′a × ′a set) list ⇒ ′a list list where

topo-sorts-aux xs =
(if xs = [] then [[]] else
List.bind (map fst (filter (λ(-,ys). ys = {}) xs))
(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) xs)))))

by auto
termination

by (relation Wellfounded.measure length)
(auto simp: length-filter-less)

lemmas [simp del] = topo-sorts-aux.simps

lemma topo-sorts-aux-Nil [simp]: topo-sorts-aux [] = [[]]
by (subst topo-sorts-aux.simps) auto

lemma topo-sorts-aux-rec:
xs 6= [] =⇒ topo-sorts-aux xs =

List.bind (map fst (filter (λ(-,ys). ys = {}) xs))
(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) xs))))

by (subst topo-sorts-aux.simps) auto

lemma topo-sorts-aux-Cons:
topo-sorts-aux (y#xs) =

List.bind (map fst (filter (λ(-,ys). ys = {}) (y#xs)))

12

(λx. map ((#) x) (topo-sorts-aux
(map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6= x) (y#xs)))))

by (rule topo-sorts-aux-rec) auto

lemma set-topo-sorts-aux:
assumes distinct (map fst xs)
assumes

∧
x ys. (x, ys) ∈ set xs =⇒ ys ⊆ set (map fst xs) − {x}

shows set (topo-sorts-aux xs) =
topo-sorts (set (map fst xs)) (λx y. ∃ ys. (x, ys) ∈ set xs ∧ y ∈ ys)

using assms
proof (induction xs rule: topo-sorts-aux.induct)

case (1 xs)
show ?case
proof (cases xs = [])

case True
thus ?thesis

by (simp add: topo-sorts.simps[of {}] topo-sorts-aux.simps[of []])
next

case False
define M where M = set (map fst (filter (λ(-,ys). ys = {}) xs))
define xs ′ where xs ′ = (λx. map (map-prod id (Set.filter (λy. y 6= x))) (filter (λ(y,-). y 6=

x) xs))
define R ′ where R ′ = (λx a b. ∃ ys. (a, ys) ∈ set (xs ′ x) ∧ b ∈ ys)

have IH : set (topo-sorts-aux (xs ′ x)) = topo-sorts (set (map fst (xs ′ x))) (R ′ x)
if x ∈ M for x
unfolding xs ′-def R ′-def

proof (rule 1 .IH , goal-cases)
case 2
show ?case using that by (auto simp: M-def)

next
case 3
thus ?case using 1 .prems

by (auto intro!: distinct-filter simp: distinct-map intro: inj-on-subset)
next

case 4
thus ?case using 1 .prems by fastforce

qed fact+

have topo-sorts (set (map fst xs)) (λx y. ∃ ys. (x, ys) ∈ set xs ∧ y ∈ ys) =
(
⋃

x∈{x ∈ set (map fst xs). ∀ z∈set (map fst xs). (∃ ys. (x, ys) ∈ set xs ∧ z ∈ ys) −→
z = x}.

(#) x ‘ topo-sorts (set (map fst xs) − {x}) (λy z. (∃ ys. (y, ys) ∈ set xs ∧ z ∈ ys)
∧ y 6= x ∧ z 6= x))

by (subst topo-sorts-rec) (use False in simp-all)
also have {x ∈ set (map fst xs). ∀ z∈set (map fst xs). (∃ ys. (x, ys) ∈ set xs ∧ z ∈ ys) −→

z = x} = M
(is ?lhs = ?rhs)

proof (intro equalityI subsetI)

13

fix x assume x ∈ ?rhs
thus x ∈ ?lhs

using 1 .prems by (fastforce simp: M-def distinct-map inj-on-def)
next

fix x assume x ∈ ?lhs
hence x: x ∈ set (map fst xs)

∧
z ys. z ∈ set (map fst xs) =⇒ (x, ys) ∈ set xs ∧ z ∈ ys

=⇒ z = x
by blast+

from x(1) obtain ys where ys: (x, ys) ∈ set xs
by force

have ys ⊆ {}
proof

fix y assume y ∈ ys
with ys show y ∈ {}

using x(2)[of y ys] 1 .prems by auto
qed
thus x ∈ ?rhs

unfolding M-def using x(1) ys by (auto simp: image-iff)
qed
also have (λx. set (map fst xs) − {x}) = (λx. set (map fst (xs ′ x)))

by (force simp: xs ′-def fun-eq-iff)
also have (λx y z. (∃ ys. (y, ys) ∈ set xs ∧ z ∈ ys) ∧ y 6= x ∧ z 6= x) = R ′

unfolding R ′-def using 1 .prems
by (auto simp: fun-eq-iff distinct-map inj-on-def xs ′-def map-prod-def

case-prod-unfold image-iff)
also have (

⋃
x∈M . (#) x ‘ topo-sorts (set (map fst (xs ′ x))) (R ′ x)) =

(
⋃

x∈M . (#) x ‘ set (topo-sorts-aux (xs ′ x)))
using IH by blast

also have . . . = set (topo-sorts-aux xs)
by (subst (2) topo-sorts-aux-rec) (use False in ‹auto simp: M-def xs ′-def List.bind-def ›)

finally show ?thesis ..
qed

qed

lemma topo-sorts-code [code]:
topo-sorts (set xs) R = (let xs ′ = remdups xs in

set (topo-sorts-aux (map (λx. (x, set (filter (λy. y 6= x ∧ R x y) xs ′))) xs ′)))
proof −

define xs ′ where xs ′ = remdups xs
have set (topo-sorts-aux (map (λx. (x, set (filter (λy. y 6= x ∧ R x y) xs ′))) xs ′)) =

topo-sorts (set xs) (λx y. ∃ ys. (x, ys) ∈ (λx. (x, set (filter (λy. y 6= x ∧ R x y) xs ′))) ‘
set xs ′ ∧ y ∈ ys)

by (subst set-topo-sorts-aux) (auto simp: o-def xs ′-def)
also have (λx y. ∃ ys. (x, ys) ∈ (λx. (x, set (filter (λy. y 6= x ∧ R x y) xs ′))) ‘ set xs ′ ∧ y ∈

ys) =
(λx y. x ∈ set xs ∧ y ∈ set xs ∧ x 6= y ∧ R x y)

by (auto simp: xs ′-def image-iff)
also have topo-sorts (set xs) . . . = topo-sorts (set xs) R

by (rule topo-sorts-cong) auto

14

finally show ?thesis
by (simp add: Let-def xs ′-def)

qed

end

15

	Rankings
	Preliminaries
	Definition
	Transformations
	Inverse operation and isomorphism
	Topological sorting

