Rank-Nullity Theorem in Linear Algebra

By Jose Divasón and Jesús Aransay*

April 20, 2020

Abstract

In this contribution, we present some formalizations based on the HOL-Multivariate-Analysis session of Isabelle. Firstly, a generalization of several theorems of such library are presented. Secondly, some definitions and proofs involving Linear Algebra and the four fundamental subspaces of a matrix are shown. Finally, we present a proof of the result known in Linear Algebra as the “Rank-Nullity Theorem”, which states that, given any linear map \(f \) from a finite dimensional vector space \(V \) to a vector space \(W \), then the dimension of \(V \) is equal to the dimension of the kernel of \(f \) (which is a subspace of \(V \)) and the dimension of the range of \(f \) (which is a subspace of \(W \)). The proof presented here is based on the one given in [1]. As a corollary of the previous theorem, and taking advantage of the relationship between linear maps and matrices, we prove that, for every matrix \(A \) (which has associated a linear map between finite dimensional vector spaces), the sum of its null space and its column space (which is equal to the range of the linear map) is equal to the number of columns of \(A \).

Contents

1 Dual Order 2
 1.1 Interpretation of dual wellorder based on wellorder 2
 1.2 Properties of the Greatest operator 2

2 Class for modular arithmetic 3
 2.1 Definition and properties . 3
 2.2 Conversion between a modular class and the subset of natural numbers associated. 4
 2.3 Instantiations . 9

*This research has been funded by the research grant FPIUR12 of the Universidad de La Rioja.
3 Miscellaneous 9
3.1 Definitions of number of rows and columns of a matrix 9
3.2 Basic properties about matrices 10
3.3 Theorems obtained from the AFP 10
3.4 Basic properties involving span, linearity and dimensions . . . 11
3.5 Basic properties about matrix multiplication 12
3.6 Properties about invertibility 12
3.7 Properties about the dimension of vectors 13
3.8 Instantiations and interpretations 13

4 Fundamental Subspaces 14
4.1 The fundamental subspaces of a matrix 14
4.1.1 Definitions . 14
4.1.2 Relationships among them 14
4.2 Proving that they are subspaces 15
4.3 More useful properties and equivalences 15

5 Rank Nullity Theorem of Linear Algebra 16
5.1 Previous results . 16
5.2 The proof . 18
5.3 The rank nullity theorem for matrices 18

1 Dual Order
theory Dual-Order
 imports Main
begin

1.1 Interpretation of dual wellorder based on wellorder

lemma wf-wellorderI2:
 assumes wf: wf \{(x::'a::ord, y). y < x\}
 assumes lin: class.linorder (\lambda (x::'a) y::'a. y \leq x) (\lambda (x::'a) y::'a. y < x)
 shows class.wellorder (\lambda (x::'a) y::'a. y \leq x) (\lambda (x::'a) y::'a. y < x)
⟨proof⟩

lemma (in preorder) tranclp-less’: (>)+ = (>)
⟨proof⟩

interpretation dual-wellorder: wellorder (\geq)::('a::{linorder, finite}=>'a=>bool)
⟨>⟩
⟨proof⟩

1.2 Properties of the Greatest operator

lemma dual-wellorder-Least-eq-Greatest[simp]: dual-wellorder.Least = Greatest
lemmas GreatestI = dual-wellorder.LeastI[unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2-ex = dual-wellorder.LeastI2-ex[unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2-wellorder = dual-wellorder.LeastI2-wellorder[unfolded dual-wellorder-Least-eq-Greatest]
lemmas not-greater-Greatest = dual-wellorder.not-less-Least[unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2 = dual-wellorder.LeastI2[unfolded dual-wellorder-Least-eq-Greatest]
lemmas Greatest-ge = dual-wellorder.Least-le[unfolded dual-wellorder-Least-eq-Greatest]

2 Class for modular arithmetic

theory Mod-Type
imports
HOL-Library.Numeral-Type
HOL-Analysis.Cartesian-Euclidean-Space
Dual-Order
begin

2.1 Definition and properties

Class for modular arithmetic. It is inspired by the locale mod_type.

class mod-type = times + wellorder + neg-numeral +
fixes Rep :: 'a => int
and Abs :: int => 'a
assumes type: type-definition Rep Abs {0..< int CARD ('a)}
and size1: 1 < int CARD ('a)
and zero-def: 0 = Abs 0
and one-def: 1 = Abs 1
and add-def: x + y = Abs ((Rep x + Rep y) mod (int CARD ('a)))
and mult-def: x * y = Abs ((Rep x * Rep y) mod (int CARD ('a)))
and diff-def: x - y = Abs ((Rep x - Rep y) mod (int CARD ('a)))
and minus-def: - x = Abs ((- Rep x) mod (int CARD ('a)))
and strict-mono-Rep: strict-mono Rep
begin

lemma size0: 0 < int CARD ('a)
 ⟨proof⟩

lemmas definitions =
 zero-def one-def add-def mult-def minus-def diff-def

lemma Rep-less-n: Rep x < int CARD ('a)
 ⟨proof⟩

lemma Rep-le-n: Rep x ≤ int CARD ('a)
proof

lemma Rep-inject-sym: x = y ⟷ Rep x = Rep y
(proof)

lemma Rep-inverse: Abs (Rep x) = x
(proof)

lemma Abs-inverse: m ∈ {0..<int CARD (′a)} ⟹ Rep (Abs m) = m
(proof)

lemma Rep-Abs-mod: Rep (Abs (m mod int CARD (′a))) = m mod int CARD (′a)
(proof)

lemma Rep-Abs-0: Rep (Abs 0) = 0
(proof)

lemma Rep-0: Rep 0 = 0
(proof)

lemma Rep-Abs-1: Rep (Abs 1) = 1
(proof)

lemma Rep-1: Rep 1 = 1
(proof)

lemma Rep-mod: Rep x mod int CARD (′a) = Rep x
(proof)

lemmas Rep-simps =

2.2 Conversion between a modular class and the subset of natural numbers associated.

Definitions to make transformations among elements of a modular class and naturals

definition to-nat :: (′a ⇒ nat
 where to-nat = nat o Rep

definition Abs :: int ⇒ (′a
 where Abs x = Abs(x mod int CARD (′a))

definition from-nat :: nat ⇒ (′a
 where from-nat = (Abs o int)

lemma bij-Rep: bij-betw (Rep) (UNIV::′a set) {0..<int CARD(′a)}
lemma mono-Rep: mono Rep ⟨proof⟩

lemma Rep-ge-0: 0 ≤ Rep x ⟨proof⟩

lemma bij-Abs: bij-betw (Abs) {0..<int CARD('a)} (UNIV::'a set) ⟨proof⟩

corollary bij-Abs': bij-betw (Abs') {0..<int CARD('a)} (UNIV::'a set) ⟨proof⟩

lemma bij-from-nat: bij-betw (from-nat) {0..<CARD('a)} (UNIV::'a set) ⟨proof⟩

lemma least-0: (LEAST n. n ∈ (UNIV::'a set)) = 0 ⟨proof⟩

lemma add-to-nat-def: x + y = from-nat (to-nat x + to-nat y) ⟨proof⟩

lemma to-nat-1: to-nat 1 = 1 ⟨proof⟩

lemma add-def':
shows x + y = Abs' (Rep x + Rep y) ⟨proof⟩

lemma Abs'-0:
shows Abs' (CARD('a))=(0::'a) ⟨proof⟩

lemma Rep-plus-one-le-card:
assumes a: a + 1 ≠ 0
shows (Rep a) + 1 < CARD ('a) ⟨proof⟩

lemma to-nat-plus-one-less-card: ∀ a. a+1 ≠ 0 --- to-nat a + 1 < CARD('a) ⟨proof⟩
corollary to-nat-plus-one-less-card':
assumes a+1 ≠ 0
shows to-nat a + 1 < CARD('a) ⟨proof⟩

lemma strict-mono-to-nat: strict-mono to-nat
⟨proof⟩

lemma to-nat-eq [simp]: to-nat x = to-nat y ⟷ x = y
⟨proof⟩

lemma mod-type-forall-eq [simp]: (∀ j::'a. (to-nat j)<CARD('a) ⟷ P j) = (∀ a. P a)
⟨proof⟩

lemma to-nat-from-nat:
assumes t:to-nat j = k
shows from-nat k = j
⟨proof⟩

lemma to-nat-mono:
assumes ab: a < b
shows to-nat a < to-nat b
⟨proof⟩

lemma to-nat-mono':
assumes ab: a ≤ b
shows to-nat a ≤ to-nat b
⟨proof⟩

lemma least-mod-type:
shows 0 ≤ (n::'a)
⟨proof⟩

lemma to-nat-from-nat-id:
assumes x: x<CARD('a)
shows to-nat ((from-nat x)::'a) = x
⟨proof⟩

lemma from-nat-to-nat-id[simp]:
shows from-nat (to-nat x) = x ⟨proof⟩

lemma from-nat-to-nat:
assumes t:from-nat j = k and j: j<CARD('a)
shows to-nat k = j ⟨proof⟩

lemma from-nat-mono:
assumes i-le-j: i<j and j: j<CARD('a)
shows (from-nat i::'a) < from-nat j
⟨proof⟩
lemma \textit{from-nat-mono}':
assumes \textit{i-le-j}: \(i \leq j \) and \(j < \text{CARD} \ (\mathcal{A}) \)
shows \((\text{from-nat} \ i) :: \mathcal{A} \) \(\leq \) \((\text{from-nat} \ j) :: \mathcal{A} \)
(proof)

lemma \textit{to-nat-suc}:
assumes \textit{to-nat} \((x) + 1 < \text{CARD} \ (\mathcal{A}) \)
shows \((\text{to-nat} \ (x + 1) :: \mathcal{A}) = (\text{to-nat} \ x) + 1 \)
(proof)

lemma \textit{to-nat-le}:
assumes \(y < \text{from-nat} \ k \)
shows \((\text{to-nat} \ y) < k \)
(proof)

lemma \textit{le-Suc}:
assumes \(a < \ (b :: \mathcal{A}) \)
shows \((a + 1) \leq b \)
(proof)

lemma \textit{le-Suc}':
assumes \(a + 1 \leq b \)
and \textit{less-card}: \((\text{to-nat} \ a) + 1 < \text{CARD} \ (\mathcal{A}) \)
shows \(a < b \)
(proof)

lemma \textit{Suc-le}:
assumes \textit{less-card}: \((\text{to-nat} \ a) + 1 < \text{CARD} \ (\mathcal{A}) \)
shows \(a < a + 1 \)
(proof)

lemma \textit{Suc-le}':
fixes \(a :: \mathcal{A} \)
assumes \(a + 1 \neq 0 \)
shows \(a < a + 1 \) (proof)

lemma \textit{from-nat-not-eq}:
assumes \textit{a-eq-to-nat}: \(a \neq \text{to-nat} \ b \)
and \textit{a-less-card}: \(a < \text{CARD} \ (\mathcal{A}) \)
shows \(\text{from-nat} \ a \neq b \)
(proof)

lemma \textit{Suc-less}:
fixes \(i :: \mathcal{A} \)
assumes \(i < j \)
and \(i + 1 \neq j \)
shows \(i + 1 < j \) (proof)
lemma Greatest-is-minus-1: \(\forall \ a \::\ 'a. \ a \leq -1 \)
(proof)

lemma a-eq-minus-1: \(\forall \ a \::\ 'a. \ a+1 = 0 \rightarrow a = -1 \)
(proof)

lemma forall-from-nat-rw:
 shows (\(\forall x \in \{0..<\text{CARD}(a)\} \). \(P (\text{from-nat } x) \)) = (\(\forall x. \ P (\text{from-nat } x) \))
(proof)

lemma from-nat-eq-imp-eq:
 assumes f-eq: \(\text{from-nat } x = (\text{from-nat } xa) \)
 and x: \(x < \text{CARD}(a) \) and xa: \(xa < \text{CARD}(a) \)
 shows x=xa
(proof)

lemma to-nat-less-card:
 fixes j::'a
 shows to-nat j < \text{CARD} ('a)
(proof)

lemma from-nat-0: from-nat 0 = 0
(proof)

lemma to-nat-0: to-nat 0 = 0
(proof)

lemma to-nat-eq-0: (to-nat x = 0) = (x = 0)
(proof)

lemma suc-not-zero:
 assumes to-nat a + 1 \(\neq \) \text{CARD}(a)
 shows a+1 \(\neq \) 0
(proof)

lemma from-nat-suc:
 shows from-nat (j + 1) = from-nat j + 1
(proof)

lemma to-nat-plus-1-set:
 shows to-nat a + 1 \(\in \) \{1..<\text{CARD}(a)+1\}
(proof)

end

lemma from-nat-CARD:
 shows from-nat (\text{CARD}(a)) = (0::'a::\{\text{mod-type}\})
(proof)
2.3 Instantiations

instantiation bit0 and bit1:: (finite) mod-type begin

definition (Rep::'a bit0 => int) x = Rep-bit0 x
definition (Abs::int => 'a bit0) x = Abs-bit0' x

definition (Rep::'a bit1 => int) x = Rep-bit1 x
definition (Abs::int => 'a bit1) x = Abs-bit1' x

instance (proof)
end

end

3 Miscellaneous

theory Miscellaneous
 imports
 HOL-Analysis.Determinants
 Mod-Type
 HOL-Library.Function-Algebras
begin

context Vector-Spaces.linear begin
sublocale vector-space-pair (proof)
end

hide-const (open) Real-Vector-Spaces.linear
abbreviation linear ≡ Vector-Spaces.linear

In this file, we present some basic definitions and lemmas about linear algebra and matrices.

3.1 Definitions of number of rows and columns of a matrix

definition nrows :: 'a ^'columns ^'rows => nat
where nrows A = CARD('rows)

definition ncols :: 'a ^'columns ^'rows => nat
where ncols A = CARD('columns)

definition matrix-scalar-mult :: 'a::ab-semigroup-mult => 'a ^'n ^'m => 'a ^'n ^'m
(infix1 *k 70)
where k *k A ≡ (\chi i j. k * A $ i $ j)
3.2 Basic properties about matrices

Lemma 3.2.1 (nrows-not-0)**: shows** $0 \neq \text{nrows } A$

Lemma 3.2.2 (ncols-not-0)**: shows** $0 \neq \text{ncols } A$

Lemma 3.2.3 (nrows-transpose)**: \text{nrows } \text{(transpose } A\text{)} = \text{ncols } A

Lemma 3.2.4 (ncols-transpose)**: \text{ncols } \text{(transpose } A\text{)} = \text{nrows } A

Lemma 3.2.5 (finite-rows)**: finite \text{(rows } A\text{)}

Lemma 3.2.6 (finite-columns)**: finite \text{(columns } A\text{)}

Lemma 3.2.7 (transpose-vector)**: \text{x v} * \text{A} = \text{transpose } A * \text{v x}

Lemma 3.2.8 (transpose-zero)**: \text{(transpose } A = 0\text{)} = \text{(A = 0)}

3.3 Theorems obtained from the AFP

The following theorems and definitions have been obtained from the AFP http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html. I have removed some restrictions over the type classes.

Lemma vector-scalar-matrix-ac:**
fixes $k :: (\text{field})$
and $x :: (\text{field})^{n}$
and $A :: (m,n)$
shows $x * (k * x A) = k * (x * A)$

Lemma transpose-scalar:** \text{transpose } (k * A) = k * \text{transpose } A

Lemma scalar-matrix-vector-assoc:**
fixes $A :: (\text{field})^{m,n}$
shows $k * (A * v v) = k * k A * v v$

Lemma matrix-scalar-vector-ac:**
fixes $A :: (\text{field})^{m,n}$
shows $A * v (k * s v) = k * k A * v v$
definition

\[\text{is-basis :: } (\text{'a::{field} \to 'n}) \to \text{bool} \quad \text{where} \]
\[\text{is-basis } S \equiv \text{vec.independent } S \land \text{vec.span } S = \text{UNIV} \]

lemma \text{card-finite:}
\begin{align*}
\text{assumes} & \quad \text{card } S = \text{CARD}(\text{'n::finite}) \\
\text{shows} & \quad \text{finite } S
\end{align*}

\langle \text{proof} \rangle

lemma \text{independent-is-basis:}
\begin{align*}
\text{fixes} & \quad B :: (\text{'a::{field} \to 'n}) \to \text{set} \\
\text{shows} & \quad \text{vec.independent } B \land \text{card } B = \text{CARD}(\text{'n}) \iff \text{is-basis } B
\end{align*}

\langle \text{proof} \rangle

lemma \text{basis-finite:}
\begin{align*}
\text{fixes} & \quad B :: (\text{'a::{field} \to 'n}) \to \text{set} \\
\text{assumes} & \quad \text{is-basis } B \\
\text{shows} & \quad \text{finite } B
\end{align*}

\langle \text{proof} \rangle

Here ends the statements obtained from AFP: http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html which have been generalized.

3.4 Basic properties involving span, linearity and dimensions

context \text{finite-dimensional-vector-space}

begin

This theorem is the reciprocal theorem of \text{local.independent } ?B \implies \text{finite } ?B \land \text{card } ?B = \text{local.dim } (\text{local.span } ?B)

lemma \text{card-eq-dim-span-indep:}
\begin{align*}
\text{assumes} & \quad \text{dim } (\text{span } A) = \text{card } A \land \text{finite } A \\
\text{shows} & \quad \text{independent } A
\end{align*}

\langle \text{proof} \rangle

lemma \text{dim-zero-eq:}
\begin{align*}
\text{assumes} & \quad \text{dim-A: } \text{dim } A = 0 \\
\text{shows} & \quad A = \{\} \lor A = \{0\}
\end{align*}

\langle \text{proof} \rangle

lemma \text{dim-zero-eq':}
\begin{align*}
\text{assumes} & \quad A = \{\} \lor A = \{0\} \\
\text{shows} & \quad \text{dim } A = 0
\end{align*}

\langle \text{proof} \rangle

lemma \text{dim-zero-subspace-eq:}
\begin{align*}
\text{assumes} & \quad \text{subs-A: } \text{subspace } A
\end{align*}
\begin{proof}
\end{proof}
assumes invertible M
shows matrix-inv-left: matrix-inv M $**$ M = mat 1
 and matrix-inv-right: M $**$ matrix-inv M = mat 1
⟨proof⟩

In the library, matrix-inv $?A$ = (SOME A', $?A$ $**$ A' = mat (1::'?a') ∧ $A'$$**$ $?A$ = mat (1::'?a')) allows the use of non square matrices. The following lemma can be also proved fixing A

lemma matrix-inv-unique:
 fixes A'::{'a::{semiring-I}''n''n'}
 assumes AB: A $**$ B = mat 1 and BA: B $**$ A = mat 1
 shows matrix-inv A = B
⟨proof⟩

lemma matrix-vector-mult-zero-eq:
 assumes P: invertible P
 shows (((P $**$ A) $*$ v x = 0) = (A $*$ v x = 0))
⟨proof⟩

lemma independent-image-matrix-vector-mult:
 fixes P::{'a::{field}''n''m'}
 assumes ind-B: vec.independent B and inv-P: invertible P
 shows vec.independent ((((v) P) $'$ B)
⟨proof⟩

lemma independent-preimage-matrix-vector-mult:
 fixes P::{'a::{field}''n''m'}
 assumes ind-B: vec.independent ((((v) P) $'$ B) and inv-P: invertible P
 shows vec.independent B
⟨proof⟩

3.7 Properties about the dimension of vectors

lemma dimension-vector[code-unfold]: vec.dimension TYPE('a::{field}) TYPE('rows::{mod-type}) = CARD('n')
⟨proof⟩

3.8 Instantiations and interpretations

Functions between two real vector spaces form a real vector

instantiation fun :: (real-vector, real-vector) real-vector
begin
 definition scaleR-fun a f = ($λi$. a $*$ R f i)
instance
 ⟨proof⟩
end
4 Fundamental Subspaces

theory Fundamental-Subspaces
imports
 Miscellaneous
begin

4.1 The fundamental subspaces of a matrix

4.1.1 Definitions

definition left-null-space :: 'a::{semiring-1} ↣ 'n → ('a→'m) set
 where left-null-space A = {x. x v A = 0}

definition null-space :: 'a::{semiring-1} ↣ 'n → ('a→'n) set
 where null-space A = {x. A * v x = 0}

definition row-space :: 'a::{field} ↣ 'n → ('a→'n) set
 where row-space A = vec.span (rows A)

definition col-space :: 'a::{field} ↣ 'n → ('a→'m) set
 where col-space A = vec.span (columns A)

4.1.2 Relationships among them

lemma left-null-space-eq-null-space-transpose: left-null-space A = null-space (transpose A)
 ⟨proof⟩

lemma null-space-eq-left-null-space-transpose: null-space A = left-null-space (transpose A)
 ⟨proof⟩

lemma row-space-eq-col-space-transpose:
fixes $A :: \text{field} \rightarrow \text{columns} \rightarrow \text{rows}$
shows $\text{row-space } A = \text{col-space } (\text{transpose } A)$
⟨proof⟩

lemma col-space-eq-row-space-transpose:
fixes $A :: [\text{field}]^n \rightarrow m$
shows $\text{col-space } A = \text{row-space } (\text{transpose } A)$
⟨proof⟩

4.2 Proving that they are subspaces

lemma subspace-null-space:
fixes $A :: [\text{field}]^n \rightarrow m$
shows $\text{vec.subspace } (\text{null-space } A)$
⟨proof⟩

lemma subspace-left-null-space:
fixes $A :: [\text{field}]^n \rightarrow m$
shows $\text{vec.subspace } (\text{left-null-space } A)$
⟨proof⟩

lemma subspace-row-space:
shows $\text{vec.subspace } (\text{row-space } A)$
⟨proof⟩

lemma subspace-col-space:
shows $\text{vec.subspace } (\text{col-space } A)$
⟨proof⟩

4.3 More useful properties and equivalences

lemma col-space-eq:
fixes $A :: [\text{field}]^m \rightarrow [\text{finite, wellorder}]^n$
shows $\text{col-space } A = \{ y. \exists x. A * v x = y \}$
⟨proof⟩

corollary col-space-eq1:
fixes $A :: [\text{field}]^m \rightarrow [\text{finite, wellorder}]^n$
shows $\text{col-space } A = \text{range } (\lambda x. A * v x)$
⟨proof⟩

lemma row-space-eq:
fixes $A :: [\text{field}]^m \rightarrow [\text{finite, wellorder}]^n$
shows $\text{row-space } A = \{ w. \exists y. (\text{transpose } A) * v y = w \}$
⟨proof⟩

lemma null-space-eq-ker:
fixes $f :: [\text{field}]^n \rightarrow [\text{finite, wellorder}]^m$
assumes $f : \text{Vector-Spaces.linear } (*s) (*s) f$
shows $\text{null-space } (\text{matrix } f) = \{ x. f x = 0 \}$
⟨proof⟩

15
lemma col-space-eq-range:
 fixes f::('a::field⇒'n::{finite, wellorder}) ⇒ ('a⇒'m)
 assumes f: Vector-Spaces.linear (**) (** f)
 shows col-space (matrix f) = range f
⟨proof⟩

lemma null-space-is-preserved:
 fixes A::'a::{field} cols rows
 assumes P: invertible P
 shows null-space (P**A) = null-space A
⟨proof⟩

lemma row-space-is-preserved:
 fixes A::'a::{field} cols rows::{finite, wellorder}
 and P::'a::{field} rows::{finite, wellorder} rows::{finite, wellorder}
 assumes P: invertible P
 shows row-space (P**A) = row-space A
⟨proof⟩
end

5 Rank Nullity Theorem of Linear Algebra

theory Dim-Formula
 imports Fundamental-Subspaces
begin

context vector-space
begin

5.1 Previous results

Linear dependency is a monotone property, based on the monotonocity of linear independence:

lemma dependent-mono:
 assumes d:dependent A
 and A-in-B: A ⊆ B
 shows dependent B
⟨proof⟩

Given a finite independent set, a linear combination of its elements equal to zero is possible only if every coefficient is zero:

lemma scalars-zero-if-independent:
 assumes fin-A: finite A
 and ind: independent A
 and sum: (∑ x∈A. scale (f x) x) = 0
 shows ∀ x ∈ A. f x = 0
⟨proof⟩
In a finite-dimensional vector space, every independent set is finite, and thus
\[\forall x \in A. \ f x = (0::'a) \]
holds:

Corollary scalars-zero-if-independent-euclidean:
- **Assumes** ind: independent A
- **and** sum: (\(\sum x \in A. \ scale (f x) x \)) = 0
- **shows** \(\forall x \in A. \ f x = 0 \)

Proof

The following lemma states that every linear form is injective over the elements which define the basis of the range of the linear form. This property is applied later over the elements of an arbitrary basis which are not in the basis of the nullifier or kernel set (i.e., the candidates to be the basis of the range space of the linear form).

Thanks to this result, it can be concluded that the cardinal of the elements of a basis which do not belong to the kernel of a linear form \(f \) is equal to the cardinal of the set obtained when applying \(f \) to such elements.

The application of this lemma is not usually found in the pencil and paper proofs of the "rank nullity theorem", but will be crucial to know that, being \(f \) a linear form from a finite-dimensional vector space \(V \) to a vector space \(V' \), and given a basis \(B \) of \(\ker f \), when \(B \) is completed up to a basis of \(V \) with a set \(W \), the cardinal of this set is equal to the cardinal of its range set:

Lemma inj-on-extended:
- **Assumes** If: Vector-Spaces.linear scaleB scaleC f
- **and** f: finite C
- **and** ind-C: independent C
- **and** C-eq: C = B \(\cup \) W
- **and** disj-set: B \(\cap \) W = \{\}
- **and** span-B: \{x. f x = 0\} \(\subseteq \) span B
- **shows** inj-on f W

— The proof is carried out by reductio ad absurdum
5.2 The proof

Now the rank nullity theorem can be proved; given any linear form \(f \), the sum of the dimensions of its kernel and range subspaces is equal to the dimension of the source vector space.

The statement of the “rank nullity theorem for linear algebra”, as well as its proof, follow the ones on [1]. The proof is the traditional one found in the literature. The theorem is also named “fundamental theorem of linear algebra” in some texts (for instance, in [2]).

context finite-dimensional-vector-space
begin

theorem rank-nullity-theorem:
 assumes l: Vector-Spaces.linear scale scaleC f
 shows dimension = dim \{ x. f x = \theta \} + vector-space.dim scaleC (range f)
⟨proof⟩
end

5.3 The rank nullity theorem for matrices

The proof of the theorem for matrices is direct, as a consequence of the “rank nullity theorem”.

lemma rank-nullity-theorem-matrices:
 fixes A::'a::{field} 'cols::{finite, wellorder} 'rows
 shows ncols A = vec.dim (null-space A) + vec.dim (col-space A)
⟨proof⟩
end

References
