
Rank-Nullity Theorem in Linear Algebra

By Jose Divasón and Jesús Aransay∗

March 19, 2025

Abstract

In this contribution, we present some formalizations based on the
HOL-Multivariate-Analysis session of Isabelle. Firstly, a generaliza-
tion of several theorems of such library are presented. Secondly, some
definitions and proofs involving Linear Algebra and the four funda-
mental subspaces of a matrix are shown. Finally, we present a proof
of the result known in Linear Algebra as the “Rank-Nullity Theorem”,
which states that, given any linear map f from a finite dimensional
vector space V to a vector space W , then the dimension of V is equal
to the dimension of the kernel of f (which is a subspace of V) and the
dimension of the range of f (which is a subspace of W). The proof
presented here is based on the one given in [1]. As a corollary of the
previous theorem, and taking advantage of the relationship between
linear maps and matrices, we prove that, for every matrix A (which
has associated a linear map between finite dimensional vector spaces),
the sum of its null space and its column space (which is equal to the
range of the linear map) is equal to the number of columns of A.

Contents
1 Dual Order 2

1.1 Interpretation of dual wellorder based on wellorder 2
1.2 Properties of the Greatest operator 3

2 Class for modular arithmetic 3
2.1 Definition and properties . 3
2.2 Conversion between a modular class and the subset of natural

numbers associated. 4
2.3 Instantiations . 13

∗This research has been funded by the research grant FPIUR12 of the Universidad de
La Rioja.

1

3 Miscellaneous 15
3.1 Definitions of number of rows and columns of a matrix 15
3.2 Basic properties about matrices 15
3.3 Theorems obtained from the AFP 16
3.4 Basic properties involving span, linearity and dimensions . . . 18
3.5 Basic properties about matrix multiplication 19
3.6 Properties about invertibility 20
3.7 Properties about the dimension of vectors 21
3.8 Instantiations and interpretations 22

4 Fundamental Subspaces 23
4.1 The fundamental subspaces of a matrix 23

4.1.1 Definitions . 23
4.1.2 Relationships among them 23

4.2 Proving that they are subspaces 23
4.3 More useful properties and equivalences 24

5 Rank Nullity Theorem of Linear Algebra 27
5.1 Previous results . 27
5.2 The proof . 29
5.3 The rank nullity theorem for matrices 32

1 Dual Order
theory Dual-Order

imports Main
begin

1.1 Interpretation of dual wellorder based on wellorder
lemma wf-wellorderI2 :

assumes wf : wf {(x:: ′a::ord, y). y < x}
assumes lin: class.linorder (λ(x:: ′a) y:: ′a. y ≤ x) (λ(x:: ′a) y:: ′a. y < x)
shows class.wellorder (λ(x:: ′a) y:: ′a. y ≤ x) (λ(x:: ′a) y:: ′a. y < x)
using lin unfolding class.wellorder-def apply (rule conjI)
apply (rule class.wellorder-axioms.intro) by (blast intro: wf-induct-rule [OF wf])

interpretation dual-wellorder : wellorder (≥)::(′a::{linorder , finite}=> ′a=>bool)
(>)
proof (rule wf-wellorderI2)

show wf {(x :: ′a, y). y < x}
by(auto simp add: trancl-def intro!: finite-acyclic-wf acyclicI)

show class.linorder (λ(x:: ′a) y:: ′a. y ≤ x) (λ(x:: ′a) y:: ′a. y < x)
unfolding class.linorder-def unfolding class.linorder-axioms-def unfolding

class.order-def
unfolding class.preorder-def unfolding class.order-axioms-def by auto

qed

2

1.2 Properties of the Greatest operator
lemma dual-wellorder-Least-eq-Greatest[simp]: dual-wellorder .Least = Greatest

by (auto simp add: Greatest-def dual-wellorder .Least-def)

lemmas GreatestI = dual-wellorder .LeastI [unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2-ex = dual-wellorder .LeastI2-ex[unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2-wellorder = dual-wellorder .LeastI2-wellorder [unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI-ex = dual-wellorder .LeastI-ex[unfolded dual-wellorder-Least-eq-Greatest]
lemmas not-greater-Greatest = dual-wellorder .not-less-Least[unfolded dual-wellorder-Least-eq-Greatest]
lemmas GreatestI2 = dual-wellorder .LeastI2 [unfolded dual-wellorder-Least-eq-Greatest]
lemmas Greatest-ge = dual-wellorder .Least-le[unfolded dual-wellorder-Least-eq-Greatest]

end

2 Class for modular arithmetic
theory Mod-Type
imports

HOL−Library.Numeral-Type
HOL−Analysis.Cartesian-Euclidean-Space
Dual-Order

begin

2.1 Definition and properties

Class for modular arithmetic. It is inspired by the locale mod_type.
class mod-type = times + wellorder + neg-numeral +
fixes Rep :: ′a => int

and Abs :: int => ′a
assumes type: type-definition Rep Abs {0 ..<int CARD (′a)}
and size1 : 1 < int CARD (′a)
and zero-def : 0 = Abs 0
and one-def : 1 = Abs 1
and add-def : x + y = Abs ((Rep x + Rep y) mod (int CARD (′a)))
and mult-def : x ∗ y = Abs ((Rep x ∗ Rep y) mod (int CARD (′a)))
and diff-def : x − y = Abs ((Rep x − Rep y) mod (int CARD (′a)))
and minus-def : − x = Abs ((− Rep x) mod (int CARD (′a)))
and strict-mono-Rep: strict-mono Rep

begin

lemma size0 : 0 < int CARD (′a)
using size1 by simp

lemmas definitions =
zero-def one-def add-def mult-def minus-def diff-def

lemma Rep-less-n: Rep x < int CARD (′a)
by (rule type-definition.Rep [OF type, simplified, THEN conjunct2])

3

lemma Rep-le-n: Rep x ≤ int CARD (′a)
by (rule Rep-less-n [THEN order-less-imp-le])

lemma Rep-inject-sym: x = y ←→ Rep x = Rep y
by (rule type-definition.Rep-inject [OF type, symmetric])

lemma Rep-inverse: Abs (Rep x) = x
by (rule type-definition.Rep-inverse [OF type])

lemma Abs-inverse: m ∈ {0 ..<int CARD (′a)} =⇒ Rep (Abs m) = m
by (rule type-definition.Abs-inverse [OF type])

lemma Rep-Abs-mod: Rep (Abs (m mod int CARD (′a))) = m mod int CARD (′a)
using size0 by (auto simp add: Abs-inverse)

lemma Rep-Abs-0 : Rep (Abs 0) = 0
apply (rule Abs-inverse [of 0])
using size0 by simp

lemma Rep-0 : Rep 0 = 0
by (simp add: zero-def Rep-Abs-0)

lemma Rep-Abs-1 : Rep (Abs 1) = 1
using size1 by (simp add: Abs-inverse)

lemma Rep-1 : Rep 1 = 1
by (simp add: one-def Rep-Abs-1)

lemma Rep-mod: Rep x mod int CARD (′a) = Rep x
apply (rule-tac x=x in type-definition.Abs-cases [OF type])
apply (simp add: type-definition.Abs-inverse [OF type])
done

lemmas Rep-simps =
Rep-inject-sym Rep-inverse Rep-Abs-mod Rep-mod Rep-Abs-0 Rep-Abs-1

2.2 Conversion between a modular class and the subset of
natural numbers associated.

Definitions to make transformations among elements of a modular class and
naturals
definition to-nat :: ′a => nat

where to-nat = nat ◦ Rep

definition Abs ′ :: int => ′a
where Abs ′ x = Abs(x mod int CARD (′a))

4

definition from-nat :: nat ⇒ ′a
where from-nat = (Abs ′ ◦ int)

lemma bij-Rep: bij-betw (Rep) (UNIV :: ′a set) {0 ..<int CARD(′a)}
proof (unfold bij-betw-def , rule conjI)

show inj Rep by (metis strict-mono-imp-inj-on strict-mono-Rep)
show range Rep = {0 ..<int CARD(′a)} using Typedef .type-definition.Rep-range[OF

type] .
qed

lemma mono-Rep: mono Rep by (metis strict-mono-Rep strict-mono-mono)

lemma Rep-ge-0 : 0 ≤ Rep x using bij-Rep unfolding bij-betw-def by auto

lemma bij-Abs: bij-betw (Abs) {0 ..<int CARD(′a)} (UNIV :: ′a set)
proof (unfold bij-betw-def , rule conjI)
show inj-on Abs {0 ..<int CARD(′a)} by (metis inj-on-inverseI type type-definition.Abs-inverse)
show Abs ‘ {0 ..<int CARD(′a)} = (UNIV :: ′a set) by (metis type type-definition.univ)

qed

corollary bij-Abs ′: bij-betw (Abs ′) {0 ..<int CARD(′a)} (UNIV :: ′a set)
proof (unfold bij-betw-def , rule conjI)

show inj-on Abs ′ {0 ..<int CARD(′a)}
unfolding inj-on-def Abs ′-def
by (auto, metis Rep-Abs-mod mod-pos-pos-trivial)

show Abs ′ ‘ {0 ..<int CARD(′a)} = (UNIV :: ′a set)
proof (unfold image-def Abs ′-def , auto)

fix x show ∃ xa∈{0 ..<int CARD(′a)}. x = Abs xa
by (rule bexI [of - Rep x], auto simp add: Rep-less-n[of x] Rep-ge-0 [of x], metis

Rep-inverse)
qed

qed

lemma bij-from-nat: bij-betw (from-nat) {0 ..<CARD(′a)} (UNIV :: ′a set)
proof (unfold bij-betw-def , rule conjI)

have set-eq: {0 ::int..<int CARD(′a)} = int‘ {0 ..<CARD(′a)} apply (auto)
proof −

fix x::int assume x1 : (0 ::int) ≤ x and x2 : x < int CARD(′a) show x ∈ int
‘ {0 ::nat..<CARD(′a)}

proof (unfold image-def , auto, rule bexI [of - nat x])
show x = int (nat x) using x1 by auto
show nat x ∈ {0 ::nat..<CARD(′a)} using x1 x2 by auto

qed
qed
show inj-on (from-nat::nat⇒ ′a) {0 ::nat..<CARD(′a)}
proof (unfold from-nat-def , rule comp-inj-on)
show inj-on int {0 ::nat..<CARD(′a)} by (metis inj-of-nat subset-inj-on top-greatest)
show inj-on (Abs ′::int=> ′a) (int ‘ {0 ::nat..<CARD(′a)})

using bij-Abs unfolding bij-betw-def set-eq

5

by (metis (opaque-lifting, no-types) Abs ′-def Abs-inverse Rep-inverse Rep-mod
inj-on-def set-eq)

qed
show (from-nat::nat=> ′a)‘ {0 ::nat..<CARD(′a)} = UNIV

unfolding from-nat-def using bij-Abs ′

unfolding bij-betw-def set-eq o-def by blast
qed

lemma to-nat-is-inv: the-inv-into {0 ..<CARD(′a)} (from-nat::nat=> ′a) = (to-nat:: ′a=>nat)
proof (unfold the-inv-into-def fun-eq-iff from-nat-def to-nat-def o-def , clarify)

fix x:: ′a show (THE y::nat. y ∈ {0 ::nat..<CARD(′a)} ∧ Abs ′ (int y) = x) =
nat (Rep x)

proof (rule the-equality, auto)
show Abs ′ (Rep x) = x by (metis Abs ′-def Rep-inverse Rep-mod)
show nat (Rep x) < CARD(′a) by (metis (full-types) Rep-less-n nat-int size0

zless-nat-conj)
assume x: ¬ (0 ::int) ≤ Rep x show (0 ::nat) < CARD(′a) and Abs ′ (0 ::int)

= x
using Rep-ge-0 x by auto

next
fix y::nat assume y: y < CARD(′a)
have (Rep(Abs ′(int y):: ′a)) = (Rep((Abs(int y mod int CARD(′a))):: ′a)) un-

folding Abs ′-def ..
also have ... = (Rep (Abs (int y):: ′a)) using zmod-int[of y CARD(′a)]

using y mod-less by auto
also have ... = (int y) proof (rule Abs-inverse) show int y ∈ {0 ::int..<int

CARD(′a)}
using y by auto qed

finally show y = nat (Rep (Abs ′ (int y):: ′a)) by (metis nat-int)
qed

qed

lemma bij-to-nat: bij-betw (to-nat) (UNIV :: ′a set) {0 ..<CARD(′a)}
using bij-betw-the-inv-into[OF bij-from-nat] unfolding to-nat-is-inv .

lemma finite-mod-type: finite (UNIV :: ′a set)
using finite-imageD[of to-nat UNIV :: ′a set] using bij-to-nat unfolding bij-betw-def

by auto

subclass (in mod-type) finite by (intro-classes, rule finite-mod-type)

lemma least-0 : (LEAST n. n ∈ (UNIV :: ′a set)) = 0
proof (rule Least-equality, auto)

fix y:: ′a
have (0 :: ′a) ≤ Abs (Rep y mod int CARD(′a)) using strict-mono-Rep unfolding

strict-mono-def
by (metis (opaque-lifting, mono-tags) Rep-0 Rep-ge-0 strict-mono-Rep strict-mono-less-eq)
also have ... = y by (metis Rep-inverse Rep-mod)
finally show (0 :: ′a) ≤ y .

6

qed

lemma add-to-nat-def : x + y = from-nat (to-nat x + to-nat y)
unfolding from-nat-def to-nat-def o-def using Rep-ge-0 [of x] using Rep-ge-0 [of

y]
using Rep-less-n[of x] Rep-less-n[of y]
unfolding Abs ′-def unfolding add-def [of x y] by auto

lemma to-nat-1 : to-nat 1 = 1
by (simp add: to-nat-def Rep-1)

lemma add-def ′:
shows x + y = Abs ′ (Rep x + Rep y) unfolding Abs ′-def using add-def by

simp

lemma Abs ′-0 :
shows Abs ′ (CARD(′a))=(0 :: ′a) by (metis (opaque-lifting, mono-tags) Abs ′-def

mod-self zero-def)

lemma Rep-plus-one-le-card:
assumes a: a + 1 6= 0
shows (Rep a) + 1 < CARD (′a)

proof (rule ccontr)
assume ¬ Rep a + 1 < CARD(′a) hence to-nat-eq-card: Rep a + 1 = CARD(′a)

using Rep-less-n
by (simp add: add1-zle-eq order-class.less-le)

have a+1 = Abs ′ (Rep a + Rep (1 :: ′a)) using add-def ′ by auto
also have ... = Abs ′ ((Rep a) + 1) using Rep-1 by simp
also have ... = Abs ′ (CARD(′a)) unfolding to-nat-eq-card ..
also have ... = 0 using Abs ′-0 by auto
finally show False using a by contradiction

qed

lemma to-nat-plus-one-less-card: ∀ a. a+1 6= 0 −−> to-nat a + 1 < CARD(′a)
proof (clarify)
fix a
assume a: a + 1 6= 0
have Rep a + 1 < int CARD(′a) using Rep-plus-one-le-card[OF a] by auto
hence nat (Rep a + 1) < nat (int CARD(′a)) unfolding zless-nat-conj using
size0 by fast
thus to-nat a + 1 < CARD(′a) unfolding to-nat-def o-def using nat-add-distrib[OF
Rep-ge-0] by simp
qed

corollary to-nat-plus-one-less-card ′:
assumes a+1 6= 0
shows to-nat a + 1 < CARD(′a) using to-nat-plus-one-less-card assms by simp

lemma strict-mono-to-nat: strict-mono to-nat

7

using strict-mono-Rep
unfolding strict-mono-def to-nat-def using Rep-ge-0 by (metis comp-apply

nat-less-eq-zless)

lemma to-nat-eq [simp]: to-nat x = to-nat y ←→ x = y
using injD [OF bij-betw-imp-inj-on[OF bij-to-nat]] by blast

lemma mod-type-forall-eq [simp]: (∀ j:: ′a. (to-nat j)<CARD(′a) −→ P j) = (∀ a.
P a)
proof (auto)

fix a assume a: ∀ j. (to-nat:: ′a=>nat) j < CARD(′a) −→ P j
have (to-nat:: ′a=>nat) a < CARD(′a) using bij-to-nat unfolding bij-betw-def

by auto
thus P a using a by auto

qed

lemma to-nat-from-nat:
assumes t:to-nat j = k
shows from-nat k = j

proof −
have from-nat k = from-nat (to-nat j) unfolding t ..
also have ... = from-nat (the-inv-into {0 ..<CARD(′a)} (from-nat) j) unfolding

to-nat-is-inv ..
also have ... = j
proof (rule f-the-inv-into-f)
show inj-on from-nat {0 ..<CARD(′a)} by (metis bij-betw-imp-inj-on bij-from-nat)
show j ∈ from-nat ‘ {0 ..<CARD(′a)} by (metis UNIV-I bij-betw-def bij-from-nat)

qed
finally show from-nat k = j .

qed

lemma to-nat-mono:
assumes ab: a < b
shows to-nat a < to-nat b
using strict-mono-to-nat unfolding strict-mono-def using assms by fast

lemma to-nat-mono ′:
assumes ab: a ≤ b
shows to-nat a ≤ to-nat b

proof (cases a=b)
case True thus ?thesis by auto

next
case False
hence a<b using ab by simp
thus ?thesis using to-nat-mono by fastforce

qed

lemma least-mod-type:
shows 0 ≤ (n:: ′a)

8

using least-0 by (metis (full-types) Least-le UNIV-I)

lemma to-nat-from-nat-id:
assumes x: x<CARD(′a)
shows to-nat ((from-nat x):: ′a) = x
unfolding to-nat-is-inv[symmetric] proof (rule the-inv-into-f-f)
show inj-on (from-nat::nat=> ′a) {0 ..<CARD(′a)} using bij-from-nat unfold-

ing bij-betw-def by auto
show x ∈ {0 ..<CARD(′a)} using x by simp

qed

lemma from-nat-to-nat-id[simp]:
shows from-nat (to-nat x) = x by (metis to-nat-from-nat)

lemma from-nat-to-nat:
assumes t:from-nat j = k and j: j<CARD(′a)
shows to-nat k = j by (metis j t to-nat-from-nat-id)

lemma from-nat-mono:
assumes i-le-j: i<j and j: j<CARD(′a)
shows (from-nat i:: ′a) < from-nat j

proof −
have i: i<CARD(′a) using i-le-j j by simp
obtain a where a: i=to-nat a

using bij-to-nat unfolding bij-betw-def using i to-nat-from-nat-id by metis
obtain b where b: j=to-nat b

using bij-to-nat unfolding bij-betw-def using j to-nat-from-nat-id by metis
show ?thesis by (metis a b from-nat-to-nat-id i-le-j strict-mono-less strict-mono-to-nat)
qed

lemma from-nat-mono ′:
assumes i-le-j: i ≤ j and j<CARD (′a)
shows (from-nat i:: ′a) ≤ from-nat j

proof (cases i=j)
case True
have (from-nat i:: ′a) = from-nat j using True by simp
thus ?thesis by simp

next
case False
hence i<j using i-le-j by simp
thus ?thesis by (metis assms(2) from-nat-mono less-imp-le)

qed

lemma to-nat-suc:
assumes to-nat (x)+1 < CARD (′a)
shows to-nat (x + 1 :: ′a) = (to-nat x) + 1

proof −
have (x:: ′a) + 1 = from-nat (to-nat x + to-nat (1 :: ′a)) unfolding add-to-nat-def

..

9

hence to-nat ((x:: ′a) + 1) = to-nat (from-nat (to-nat x + to-nat (1 :: ′a)):: ′a)
by presburger

also have ... = to-nat (from-nat (to-nat x + 1):: ′a) unfolding to-nat-1 ..
also have ... = (to-nat x + 1) by (metis assms to-nat-from-nat-id)
finally show ?thesis .

qed

lemma to-nat-le:
assumes y < from-nat k
shows to-nat y < k

proof (cases k<CARD(′a))
case True show ?thesis by (metis (full-types) True assms to-nat-from-nat-id

to-nat-mono)
next

case False have to-nat y < CARD (′a) using bij-to-nat unfolding bij-betw-def
by auto

thus ?thesis using False by auto
qed

lemma le-Suc:
assumes ab: a < (b:: ′a)
shows a + 1 ≤ b

proof −
have a + 1 = (from-nat (to-nat (a + 1)):: ′a) using from-nat-to-nat-id [of

a+1 ,symmetric] .
also have ... ≤ (from-nat (to-nat (b:: ′a)):: ′a)
proof (rule from-nat-mono ′)

have to-nat a < to-nat b using ab by (metis to-nat-mono)
hence to-nat a + 1 ≤ to-nat b by simp
thus to-nat b < CARD (′a) using bij-to-nat unfolding bij-betw-def by auto

hence to-nat a + 1 < CARD (′a) by (metis ‹to-nat a + 1 ≤ to-nat b›
preorder-class.le-less-trans)

thus to-nat (a + 1) ≤ to-nat b by (metis ‹to-nat a + 1 ≤ to-nat b› to-nat-suc)
qed
also have ... = b by (metis from-nat-to-nat-id)
finally show a + (1 :: ′a) ≤ b .

qed

lemma le-Suc ′:
assumes ab: a + 1 ≤ b

and less-card: (to-nat a) + 1 < CARD (′a)
shows a < b

proof −
have a = (from-nat (to-nat a):: ′a) using from-nat-to-nat-id [of a,symmetric] .
also have ... < (from-nat (to-nat b):: ′a)
proof (rule from-nat-mono)

show to-nat b < CARD(′a) using bij-to-nat unfolding bij-betw-def by auto
have to-nat (a + 1) ≤ to-nat b using ab by (metis to-nat-mono ′)
hence to-nat (a) + 1 ≤ to-nat b using to-nat-suc[OF less-card] by auto

10

thus to-nat a < to-nat b by simp
qed
finally show a < b by (metis to-nat-from-nat)

qed

lemma Suc-le:
assumes less-card: (to-nat a) + 1 < CARD (′a)
shows a < a + 1

proof −
have (to-nat a) < (to-nat a) + 1 by simp
hence (to-nat a) < to-nat (a + 1) by (metis less-card to-nat-suc)
hence (from-nat (to-nat a):: ′a) < from-nat (to-nat (a + 1))

by (rule from-nat-mono, metis less-card to-nat-suc)
thus a < a + 1 by (metis to-nat-from-nat)

qed

lemma Suc-le ′:
fixes a:: ′a
assumes a + 1 6= 0
shows a < a + 1 using Suc-le to-nat-plus-one-less-card assms by blast

lemma from-nat-not-eq:
assumes a-eq-to-nat: a 6= to-nat b
and a-less-card: a<CARD(′a)
shows from-nat a 6= b

proof (rule ccontr)
assume ¬ from-nat a 6= b hence from-nat a = b by simp
hence to-nat ((from-nat a):: ′a) = to-nat b by auto
thus False by (metis a-eq-to-nat a-less-card to-nat-from-nat-id)

qed

lemma Suc-less:
fixes i:: ′a
assumes i<j
and i+1 6= j
shows i+1<j by (metis assms le-Suc le-neq-trans)

lemma Greatest-is-minus-1 : ∀ a:: ′a. a ≤ −1
proof (clarify)

fix a:: ′a
have zero-ge-card-1 : 0 ≤ int CARD(′a) − 1 using size1 by auto
have card-less: int CARD(′a) − 1 < int CARD(′a) by auto
have not-zero: 1 mod int CARD(′a) 6= 0

by (metis (opaque-lifting, mono-tags) Rep-Abs-1 Rep-mod zero-neq-one)
have int-card: int (CARD(′a) − 1) = int CARD(′a) − 1 using of-nat-diff [of 1

CARD (′a)]
using size1 by simp

have a = Abs ′ (Rep a) by (metis (opaque-lifting, mono-tags) Rep-0 add-0-right

11

add-def ′

monoid-add-class.add.right-neutral)
also have ... = Abs ′ (int (nat (Rep a))) by (metis Rep-ge-0 int-nat-eq)
also have ... ≤ Abs ′ (int (CARD(′a) − 1))
proof (rule from-nat-mono ′[unfolded from-nat-def o-def , of nat (Rep a) CARD(′a)
− 1])

show nat (Rep a) ≤ CARD(′a) − 1 using Rep-less-n
using int-card nat-le-iff by auto

show CARD(′a) − 1 < CARD(′a) using finite-UNIV-card-ge-0 finite-mod-type
by fastforce

qed
also have ... = − 1
unfolding Abs ′-def unfolding minus-def zmod-zminus1-eq-if unfolding Rep-1
apply (rule cong [of Abs], rule refl)
unfolding if-not-P [OF not-zero]
unfolding int-card
unfolding mod-pos-pos-trivial[OF zero-ge-card-1 card-less]
using mod-pos-pos-trivial[OF - size1] by presburger
finally show a ≤ −1 by fastforce

qed

lemma a-eq-minus-1 : ∀ a:: ′a. a+1 = 0 −→ a = −1
by (metis eq-neg-iff-add-eq-0)

lemma forall-from-nat-rw:
shows (∀ x∈{0 ..<CARD(′a)}. P (from-nat x:: ′a)) = (∀ x. P (from-nat x))

proof (auto)
fix y assume ∗: ∀ x∈{0 ..<CARD(′a)}. P (from-nat x)
have from-nat y ∈ (UNIV :: ′a set) by auto
from this obtain x where x1 : from-nat y = (from-nat x:: ′a) and x2 : x∈{0 ..<CARD(′a)}

using bij-from-nat unfolding bij-betw-def
by (metis from-nat-to-nat-id rangeI the-inv-into-onto to-nat-is-inv)

show P (from-nat y:: ′a) unfolding x1 using ∗ x2 by simp
qed

lemma from-nat-eq-imp-eq:
assumes f-eq: from-nat x = (from-nat xa:: ′a)

and x: x<CARD(′a) and xa: xa<CARD(′a)
shows x=xa using assms from-nat-not-eq by metis

lemma to-nat-less-card:
fixes j:: ′a
shows to-nat j < CARD (′a)
using bij-to-nat unfolding bij-betw-def by auto

lemma from-nat-0 : from-nat 0 = 0
unfolding from-nat-def o-def of-nat-0 Abs ′-def mod-0 zero-def ..

lemma to-nat-0 : to-nat 0 = 0 unfolding to-nat-def o-def Rep-0 nat-0 ..

12

lemma to-nat-eq-0 : (to-nat x = 0) = (x = 0)
by (auto simp add: to-nat-0 from-nat-0 dest: to-nat-from-nat)

lemma suc-not-zero:
assumes to-nat a + 1 6= CARD(′a)
shows a+1 6= 0

proof (rule ccontr , simp)
assume a-plus-one-zero: a + 1 = 0
hence rep-eq-card: Rep a + 1 = CARD(′a)
using assms to-nat-0 Suc-eq-plus1 Suc-lessI Zero-not-Suc to-nat-less-card to-nat-suc
by (metis (opaque-lifting, mono-tags))

moreover have Rep a + 1 < CARD(′a)
using Abs ′-0 Rep-1 Suc-eq-plus1 Suc-lessI Suc-neq-Zero add-def ′ assms

rep-eq-card to-nat-0 to-nat-less-card to-nat-suc by (metis (opaque-lifting, mono-tags))
ultimately show False by fastforce

qed

lemma from-nat-suc:
shows from-nat (j + 1) = from-nat j + 1
unfolding from-nat-def o-def Abs ′-def add-def ′ Rep-1 Rep-Abs-mod
unfolding of-nat-add apply (subst mod-add-left-eq) unfolding of-nat-1 ..

lemma to-nat-plus-1-set:
shows to-nat a + 1 ∈ {1 ..<CARD(′a)+1}
using to-nat-less-card by simp

end

lemma from-nat-CARD:
shows from-nat (CARD(′a)) = (0 :: ′a::{mod-type})
unfolding from-nat-def o-def Abs ′-def by (simp add: zero-def)

2.3 Instantiations
instantiation bit0 and bit1 :: (finite) mod-type
begin

definition (Rep:: ′a bit0 => int) x = Rep-bit0 x
definition (Abs::int => ′a bit0) x = Abs-bit0 ′ x

definition (Rep:: ′a bit1 => int) x = Rep-bit1 x
definition (Abs::int => ′a bit1) x = Abs-bit1 ′ x

instance
proof
show (0 :: ′a bit0) = Abs (0 ::int) unfolding Abs-bit0-def Abs-bit0 ′-def zero-bit0-def

by auto
show (1 ::int) < int CARD(′a bit0) by (metis bit0 .size1)

13

show type-definition (Rep:: ′a bit0 => int) (Abs:: int => ′a bit0) {0 ::int..<int
CARD(′a bit0)}

proof (unfold type-definition-def Rep-bit0-def [abs-def]
Abs-bit0-def [abs-def] Abs-bit0 ′-def , intro conjI)

show ∀ x:: ′a bit0 . Rep-bit0 x ∈ {0 ::int..<int CARD(′a bit0)}
unfolding card-bit0 unfolding of-nat-mult
using Rep-bit0 [where ? ′a = ′a] by simp

show ∀ x:: ′a bit0 . Abs-bit0 (Rep-bit0 x mod int CARD(′a bit0)) = x
by (metis Rep-bit0-inverse bit0 .Rep-mod)

show ∀ y::int. y ∈ {0 ::int..<int CARD(′a bit0)}
−→ Rep-bit0 ((Abs-bit0 ::int => ′a bit0) (y mod int CARD(′a bit0))) = y
by (metis bit0 .Abs-inverse bit0 .Rep-mod)

qed
show (1 :: ′a bit0) = Abs (1 ::int) unfolding Abs-bit0-def Abs-bit0 ′-def one-bit0-def

by (metis bit0 .of-nat-eq of-nat-1 one-bit0-def)
fix x y :: ′a bit0
show x + y = Abs ((Rep x + Rep y) mod int CARD(′a bit0))

unfolding Abs-bit0-def Rep-bit0-def plus-bit0-def Abs-bit0 ′-def by fastforce
show x ∗ y = Abs (Rep x ∗ Rep y mod int CARD(′a bit0))

unfolding Abs-bit0-def Rep-bit0-def times-bit0-def Abs-bit0 ′-def by fastforce
show x − y = Abs ((Rep x − Rep y) mod int CARD(′a bit0))

unfolding Abs-bit0-def Rep-bit0-def minus-bit0-def Abs-bit0 ′-def by fastforce
show − x = Abs (− Rep x mod int CARD(′a bit0))

unfolding Abs-bit0-def Rep-bit0-def uminus-bit0-def Abs-bit0 ′-def by fastforce
show (0 :: ′a bit1) = Abs (0 ::int) unfolding Abs-bit1-def Abs-bit1 ′-def zero-bit1-def

by auto
show (1 ::int) < int CARD(′a bit1) by (metis bit1 .size1)
show (1 :: ′a bit1) = Abs (1 ::int) unfolding Abs-bit1-def Abs-bit1 ′-def one-bit1-def

by (metis bit1 .of-nat-eq of-nat-1 one-bit1-def)
fix x y :: ′a bit1
show x + y = Abs ((Rep x + Rep y) mod int CARD(′a bit1))

unfolding Abs-bit1-def Abs-bit1 ′-def Rep-bit1-def plus-bit1-def by fastforce
show x ∗ y = Abs (Rep x ∗ Rep y mod int CARD(′a bit1))

unfolding Abs-bit1-def Rep-bit1-def times-bit1-def Abs-bit1 ′-def by fastforce
show x − y = Abs ((Rep x − Rep y) mod int CARD(′a bit1))

unfolding Abs-bit1-def Rep-bit1-def minus-bit1-def Abs-bit1 ′-def by fastforce
show − x = Abs (− Rep x mod int CARD(′a bit1))

unfolding Abs-bit1-def Rep-bit1-def uminus-bit1-def Abs-bit1 ′-def by fastforce
show type-definition (Rep:: ′a bit1 => int) (Abs:: int => ′a bit1) {0 ::int..<int

CARD(′a bit1)}
proof (unfold type-definition-def Rep-bit1-def [abs-def]

Abs-bit1-def [abs-def] Abs-bit1 ′-def , intro conjI)
have int-2 : int 2 = 2 by auto

show ∀ x:: ′a bit1 . Rep-bit1 x ∈ {0 ::int..<int CARD(′a bit1)}
unfolding card-bit1
unfolding of-nat-Suc of-nat-mult
using Rep-bit1 [where ? ′a = ′a]
unfolding int-2 ..

show ∀ x:: ′a bit1 . Abs-bit1 (Rep-bit1 x mod int CARD(′a bit1)) = x

14

by (metis Rep-bit1-inverse bit1 .Rep-mod)
show ∀ y::int. y ∈ {0 ::int..<int CARD(′a bit1)}
−→ Rep-bit1 ((Abs-bit1 ::int => ′a bit1) (y mod int CARD(′a bit1))) = y

by (metis bit1 .Abs-inverse bit1 .Rep-mod)
qed
show strict-mono (Rep:: ′a bit0 => int) unfolding strict-mono-def

by (metis Rep-bit0-def less-bit0-def)
show strict-mono (Rep:: ′a bit1 => int) unfolding strict-mono-def

by (metis Rep-bit1-def less-bit1-def)
qed
end

end

3 Miscellaneous
theory Miscellaneous

imports
HOL−Analysis.Determinants
Mod-Type
HOL−Library.Function-Algebras

begin

context Vector-Spaces.linear begin
sublocale vector-space-pair by unfold-locales— TODO: (re)move?
end

hide-const (open) Real-Vector-Spaces.linear
abbreviation linear ≡ Vector-Spaces.linear

In this file, we present some basic definitions and lemmas about linear alge-
bra and matrices.

3.1 Definitions of number of rows and columns of a matrix
definition nrows :: ′a^ ′columns^ ′rows => nat

where nrows A = CARD(′rows)

definition ncols :: ′a^ ′columns^ ′rows => nat
where ncols A = CARD(′columns)

definition matrix-scalar-mult :: ′a::ab-semigroup-mult => ′a ^ ′n^ ′m => ′a ^ ′n^ ′m
(infixl ‹∗k› 70)

where k ∗k A ≡ (χ i j. k ∗ A $ i $ j)

3.2 Basic properties about matrices
lemma nrows-not-0 [simp]:

shows 0 6= nrows A unfolding nrows-def by simp

15

lemma ncols-not-0 [simp]:
shows 0 6= ncols A unfolding ncols-def by simp

lemma nrows-transpose: nrows (transpose A) = ncols A
unfolding nrows-def ncols-def ..

lemma ncols-transpose: ncols (transpose A) = nrows A
unfolding nrows-def ncols-def ..

lemma finite-rows: finite (rows A)
using finite-Atleast-Atmost-nat[of λi. row i A] unfolding rows-def .

lemma finite-columns: finite (columns A)
using finite-Atleast-Atmost-nat[of λi. column i A] unfolding columns-def .

lemma transpose-vector : x v∗ A = transpose A ∗v (x:: ′a::comm-semiring-1^ ′m)
by simp

lemma transpose-zero[simp]: (transpose A = 0) = (A = 0)
unfolding transpose-def zero-vec-def vec-eq-iff by auto

3.3 Theorems obtained from the AFP

The following theorems and definitions have been obtained from the AFP
http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_
Algebra2.html. I have removed some restrictions over the type classes.
lemma vector-scalar-matrix-ac:

fixes k :: ′a::{field} and x :: ′a::{field}^ ′n and A :: ′a^ ′m^ ′n
shows x v∗ (k ∗k A) = k ∗s (x v∗ A)
using scalar-vector-matrix-assoc
unfolding vector-matrix-mult-def matrix-scalar-mult-def vec-eq-iff
by (simp add: sum-distrib-left vector-space-over-itself .scale-scale)
(simp add: mult.commute)

lemma transpose-scalar : transpose (k ∗k A) = k ∗k transpose A
unfolding transpose-def
by (vector , simp add: matrix-scalar-mult-def)

lemma scalar-matrix-vector-assoc:
fixes A :: ′a::{field}^ ′m^ ′n
shows k ∗s (A ∗v v) = k ∗k A ∗v v
by (metis transpose-scalar vector-scalar-matrix-ac vector-transpose-matrix)

lemma matrix-scalar-vector-ac:
fixes A :: ′a::{field}^ ′m^ ′n
shows A ∗v (k ∗s v) = k ∗k A ∗v v
by (simp add: Miscellaneous.scalar-matrix-vector-assoc vec.scale)

16

http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html
http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html

definition
is-basis :: (′a::{field}^ ′n) set => bool where
is-basis S ≡ vec.independent S ∧ vec.span S = UNIV

lemma card-finite:
assumes card S = CARD(′n::finite)
shows finite S

proof −
from ‹card S = CARD(′n)› have card S 6= 0 by simp
with card-eq-0-iff [of S] show finite S by simp

qed

lemma independent-is-basis:
fixes B :: (′a::{field}^ ′n) set
shows vec.independent B ∧ card B = CARD(′n) ←→ is-basis B

proof
assume vec.independent B ∧ card B = CARD(′n)
hence vec.independent B and card B = CARD(′n) by simp+
from card-finite [of B, where ′n = ′n] and ‹card B = CARD(′n)›
have finite B by simp
from ‹card B = CARD(′n)›
have card B = vec.dim (UNIV :: ((′a^ ′n) set)) unfolding vec-dim-card .
with vec.card-eq-dim [of B UNIV] and ‹finite B› and ‹vec.independent B›
have vec.span B = UNIV by auto
with ‹vec.independent B› show is-basis B unfolding is-basis-def ..

next
assume is-basis B
hence vec.independent B unfolding is-basis-def ..
moreover have card B = CARD(′n)
proof −

have B ⊆ UNIV by simp
moreover
{ from ‹is-basis B› have UNIV ⊆ vec.span B and vec.independent B

unfolding is-basis-def
by simp+ }

ultimately have card B = vec.dim (UNIV ::((real^ ′n) set))
using vec.basis-card-eq-dim [of B UNIV]
unfolding vec-dim-card
by simp

then show card B = CARD(′n)
by (metis vec-dim-card)

qed
ultimately show vec.independent B ∧ card B = CARD(′n) ..

qed

lemma basis-finite:
fixes B :: (′a::{field}^ ′n) set
assumes is-basis B

17

shows finite B
proof −

from independent-is-basis [of B] and ‹is-basis B› have card B = CARD(′n)
by simp

with card-finite [of B, where ′n = ′n] show finite B by simp
qed

Here ends the statements obtained from AFP: http://isa-afp.org/browser_
info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html which have been
generalized.

3.4 Basic properties involving span, linearity and dimensions
context finite-dimensional-vector-space
begin

This theorem is the reciprocal theorem of local.independent ?B =⇒ finite
?B ∧ card ?B = local.dim (local.span ?B)

lemma card-eq-dim-span-indep:
assumes dim (span A) = card A and finite A
shows independent A
by (metis assms card-le-dim-spanning dim-subset equalityE span-superset)

lemma dim-zero-eq:
assumes dim-A: dim A = 0
shows A = {} ∨ A = {0}
using dim-A local.card-ge-dim-independent local.independent-empty by force

lemma dim-zero-eq ′:
assumes A: A = {} ∨ A = {0}
shows dim A = 0

using assms local.dim-span local.indep-card-eq-dim-span local.independent-empty
by fastforce

lemma dim-zero-subspace-eq:
assumes subs-A: subspace A
shows (dim A = 0) = (A = {0})
by (metis dim-zero-eq dim-zero-eq ′ subspace-0 [OF subs-A] empty-iff)

lemma span-0-imp-set-empty-or-0 :
assumes span A = {0}
shows A = {} ∨ A = {0} by (metis assms span-superset subset-singletonD)

end

context Vector-Spaces.linear
begin

lemma linear-injective-ker-0 :

18

http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html
http://isa-afp.org/browser_info/current/HOL/Tarskis_Geometry/Linear_Algebra2.html

shows inj f = ({x. f x = 0} = {0})
using inj-iff-eq-0 by auto

end

lemma snd-if-conv:
shows snd (if P then (A,B) else (C ,D))=(if P then B else D) by simp

3.5 Basic properties about matrix multiplication
lemma row-matrix-matrix-mult:

fixes A:: ′a::{comm-ring-1}^ ′n^ ′m
shows (P $ i) v∗ A = (P ∗∗ A) $ i
unfolding vec-eq-iff
unfolding vector-matrix-mult-def unfolding matrix-matrix-mult-def
by (auto intro!: sum.cong)

corollary row-matrix-matrix-mult ′:
fixes A:: ′a::{comm-ring-1}^ ′n^ ′m
shows (row i P) v∗ A = row i (P ∗∗ A)
using row-matrix-matrix-mult unfolding row-def vec-nth-inverse .

lemma column-matrix-matrix-mult:
shows column i (P∗∗A) = P ∗v (column i A)
unfolding column-def matrix-vector-mult-def matrix-matrix-mult-def by fastforce

lemma matrix-matrix-mult-inner-mult:
shows (A ∗∗ B) $ i $ j = row i A · column j B
unfolding inner-vec-def matrix-matrix-mult-def row-def column-def by auto

lemma matrix-vmult-column-sum:
fixes A:: ′a::{field}^ ′n^ ′m
shows ∃ f . A ∗v x = sum (λy. f y ∗s y) (columns A)

proof (rule exI [of - λy. sum (λi. x $ i) {i. y = column i A}])
let ?f=λy. sum (λi. x $ i) {i. y = column i A}
let ?g=(λy. {i. y=column i (A)})
have inj: inj-on ?g (columns (A)) unfolding inj-on-def unfolding columns-def

by auto
have union-univ:

⋃
(?g‘(columns (A))) = UNIV unfolding columns-def by

auto
have A ∗v x = (

∑
i∈UNIV . x $ i ∗s column i A) unfolding matrix-mult-sum

..
also have ... = sum (λi. x $ i ∗s column i A) (

⋃
(?g‘(columns A))) unfolding

union-univ ..
also have ... = sum (sum ((λi. x $ i ∗s column i A))) (?g‘(columns A))

by (rule sum.Union-disjoint[unfolded o-def], auto)
also have ... = sum ((sum ((λi. x $ i ∗s column i A))) ◦ ?g) (columns A)

by (rule sum.reindex, simp add: inj)

19

also have ... = sum (λy. ?f y ∗s y) (columns A)
proof (rule sum.cong, unfold o-def)

fix xa
have sum (λi. x $ i ∗s column i A) {i. xa = column i A}
= sum (λi. x $ i ∗s xa) {i. xa = column i A} by simp

also have ... = sum (λi. x $ i) {i. xa = column i A} ∗s xa
using vec.scale-sum-left[of (λi. x $ i) {i. xa = column i A} xa] ..

finally show (
∑

i | xa = column i A. x $ i ∗s column i A) = (
∑

i | xa =
column i A. x $ i) ∗s xa .

qed rule
finally show A ∗v x = (

∑
y∈columns A. (

∑
i | y = column i A. x $ i) ∗s y) .

qed

3.6 Properties about invertibility
lemma matrix-inv:

assumes invertible M
shows matrix-inv-left: matrix-inv M ∗∗ M = mat 1

and matrix-inv-right: M ∗∗ matrix-inv M = mat 1
using ‹invertible M › and someI-ex [of λ N . M ∗∗ N = mat 1 ∧ N ∗∗ M = mat

1]
unfolding invertible-def and matrix-inv-def
by simp-all

In the library, matrix-inv ?A = (SOME A ′. ?A ∗∗ A ′ = mat 1 ∧ A ′ ∗∗ ?A
= mat 1) allows the use of non squary matrices. The following lemma can
be also proved fixing A
lemma matrix-inv-unique:

fixes A:: ′a::{semiring-1}^ ′n^ ′n
assumes AB: A ∗∗ B = mat 1 and BA: B ∗∗ A = mat 1
shows matrix-inv A = B
by (metis AB BA invertible-def matrix-inv-right matrix-mul-assoc matrix-mul-lid)

lemma matrix-vector-mult-zero-eq:
assumes P: invertible P
shows ((P∗∗A)∗v x = 0) = (A ∗v x = 0)

proof (rule iffI)
assume P ∗∗ A ∗v x = 0
hence matrix-inv P ∗v (P ∗∗ A ∗v x) = matrix-inv P ∗v 0 by simp
hence matrix-inv P ∗v (P ∗∗ A ∗v x) = 0 by (metis matrix-vector-mult-0-right)
hence (matrix-inv P ∗∗ P ∗∗ A) ∗v x = 0 by (metis matrix-vector-mul-assoc)
thus A ∗v x = 0 by (metis assms matrix-inv-left matrix-mul-lid)

next
assume A ∗v x = 0
thus P ∗∗ A ∗v x = 0 by (metis matrix-vector-mul-assoc matrix-vector-mult-0-right)

qed

20

lemma independent-image-matrix-vector-mult:
fixes P:: ′a::{field}^ ′n^ ′m
assumes ind-B: vec.independent B and inv-P: invertible P
shows vec.independent (((∗v) P)‘ B)

proof (rule vec.independent-injective-image)
show vec.independent B using ind-B .
show inj-on ((∗v) P) (vec.span B)

using inj-matrix-vector-mult[OF inv-P] unfolding inj-on-def by simp
qed

lemma independent-preimage-matrix-vector-mult:
fixes P:: ′a::{field}^ ′n^ ′n
assumes ind-B: vec.independent (((∗v) P)‘ B) and inv-P: invertible P
shows vec.independent B
proof −
have vec.independent (((∗v) (matrix-inv P))‘ (((∗v) P)‘ B))

proof (rule independent-image-matrix-vector-mult)
show vec.independent ((∗v) P ‘ B) using ind-B .
show invertible (matrix-inv P)

by (metis matrix-inv-left matrix-inv-right inv-P invertible-def)
qed

moreover have ((∗v) (matrix-inv P))‘ (((∗v) P)‘ B) = B
proof (auto)

fix x assume x: x ∈ B show matrix-inv P ∗v (P ∗v x) ∈ B
by (metis (full-types) x inv-P matrix-inv-left matrix-vector-mul-assoc ma-

trix-vector-mul-lid)
thus x ∈ (∗v) (matrix-inv P) ‘ (∗v) P ‘ B
unfolding image-def

by (auto, metis inv-P matrix-inv-left matrix-vector-mul-assoc matrix-vector-mul-lid)
qed

ultimately show ?thesis by simp
qed

3.7 Properties about the dimension of vectors
lemma dimension-vector [code-unfold]: vec.dimension TYPE(′a::{field}) TYPE(′rows::{mod-type})=CARD(′rows)
proof −
let ?f=λx. axis (from-nat x) 1 :: ′a^ ′rows::{mod-type}
have vec.dimension TYPE(′a::{field}) TYPE(′rows::{mod-type}) = card (cart-basis::(′a^ ′rows::{mod-type})
set)

unfolding vec.dimension-def ..
also have ... = card{..<CARD(′rows)} unfolding cart-basis-def

proof (rule bij-betw-same-card[symmetric, of ?f], unfold bij-betw-def , unfold
inj-on-def axis-eq-axis, auto)

fix x y assume x: x < CARD(′rows) and y: y < CARD(′rows) and eq:
from-nat x = (from-nat y:: ′rows)

show x = y using from-nat-eq-imp-eq[OF eq x y] .
next
fix i show axis i 1 ∈ (λx. axis (from-nat x:: ′rows) 1) ‘ {..<CARD(′rows)}

21

unfolding image-def
by (auto, metis lessThan-iff to-nat-from-nat to-nat-less-card)

qed
also have ... = CARD(′rows) by (metis card-lessThan)
finally show ?thesis .
qed

3.8 Instantiations and interpretations

Functions between two real vector spaces form a real vector
instantiation fun :: (real-vector , real-vector) real-vector
begin

definition scaleR-fun a f = (λi. a ∗R f i)

instance
by (intro-classes, auto simp add: fun-eq-iff scaleR-fun-def scaleR-left.add scaleR-right.add)

end

instantiation vec :: (type, finite) equal
begin
definition equal-vec :: (′a, ′b::finite) vec => (′a, ′b::finite) vec => bool

where equal-vec x y = (∀ i. x$i = y$i)
instance
proof (intro-classes)

fix x y::(′a, ′b::finite) vec
show equal-class.equal x y = (x = y) unfolding equal-vec-def using vec-eq-iff

by auto
qed
end

interpretation matrix: vector-space ((∗k)):: ′a::{field}=> ′a^ ′cols^ ′rows=> ′a^ ′cols^ ′rows
proof (unfold-locales)
fix a:: ′a and x y:: ′a^ ′cols^ ′rows
show a ∗k (x + y) = a ∗k x + a ∗k y

unfolding matrix-scalar-mult-def vec-eq-iff
by (simp add: vector-space-over-itself .scale-right-distrib)

next
fix a b:: ′a and x:: ′a^ ′cols^ ′rows
show (a + b) ∗k x = a ∗k x + b ∗k x
unfolding matrix-scalar-mult-def vec-eq-iff

by (simp add: comm-semiring-class.distrib)
show a ∗k (b ∗k x) = a ∗ b ∗k x

unfolding matrix-scalar-mult-def vec-eq-iff by auto
show1 ∗k x = x unfolding matrix-scalar-mult-def vec-eq-iff by auto
qed

end

22

4 Fundamental Subspaces
theory Fundamental-Subspaces
imports

Miscellaneous
begin

4.1 The fundamental subspaces of a matrix
4.1.1 Definitions
definition left-null-space :: ′a::{semiring-1}^ ′n^ ′m => (′a^ ′m) set

where left-null-space A = {x. x v∗ A = 0}

definition null-space :: ′a::{semiring-1}^ ′n^ ′m => (′a^ ′n) set
where null-space A = {x. A ∗v x = 0}

definition row-space :: ′a::{field}^ ′n^ ′m=>(′a^ ′n) set
where row-space A = vec.span (rows A)

definition col-space :: ′a::{field}^ ′n^ ′m=>(′a^ ′m) set
where col-space A = vec.span (columns A)

4.1.2 Relationships among them
lemma left-null-space-eq-null-space-transpose:

left-null-space (A:: ′a::{comm-semiring-1}^ ′n^ ′m) = null-space (transpose A)
unfolding null-space-def left-null-space-def transpose-vector ..

lemma null-space-eq-left-null-space-transpose:
null-space (A:: ′a::{comm-semiring-1}^ ′n^ ′m) = left-null-space (transpose A)
using left-null-space-eq-null-space-transpose[of transpose A]
unfolding transpose-transpose ..

lemma row-space-eq-col-space-transpose:
fixes A:: ′a::{field}^ ′columns^ ′rows
shows row-space A = col-space (transpose A)
unfolding col-space-def row-space-def columns-transpose[of A] ..

lemma col-space-eq-row-space-transpose:
fixes A:: ′a::{field}^ ′n^ ′m
shows col-space A = row-space (transpose A)
unfolding col-space-def row-space-def unfolding rows-transpose[of A] ..

4.2 Proving that they are subspaces
lemma subspace-null-space:

fixes A:: ′a::{field}^ ′n^ ′m
shows vec.subspace (null-space A)
by (auto simp: vec.subspace-def null-space-def vec.scale vec.add)

23

lemma subspace-left-null-space:
fixes A:: ′a::{field}^ ′n^ ′m
shows vec.subspace (left-null-space A)
unfolding left-null-space-eq-null-space-transpose using subspace-null-space .

lemma subspace-row-space:
shows vec.subspace (row-space A) by (metis row-space-def vec.subspace-span)

lemma subspace-col-space:
shows vec.subspace (col-space A) by (metis col-space-def vec.subspace-span)

4.3 More useful properties and equivalences
lemma col-space-eq:

fixes A:: ′a::{field}^ ′m::{finite, wellorder}^ ′n
shows col-space A = {y. ∃ x. A ∗v x = y}

proof (unfold col-space-def vec.span-finite[OF finite-columns], auto)
fix x
show A ∗v x ∈ range (λu.

∑
v∈columns A. u v ∗s v) using matrix-vmult-column-sum[of

A x] by auto
next

fix u::(′a, ′n) vec ⇒ ′a
let ?g=λy. {i. y=column i A}
let ?x=(χ i. if i=(LEAST a. a ∈ ?g (column i A)) then u (column i A) else 0)
show ∃ x. A ∗v x = (

∑
v∈columns A. u v ∗s v)

proof (unfold matrix-mult-sum, rule exI [of - ?x], auto)
have inj: inj-on ?g (columns A) unfolding inj-on-def unfolding columns-def

by auto
have union-univ:

⋃
(?g‘(columns A)) = UNIV unfolding columns-def by auto

have sum (λi.(if i = (LEAST a. column i A = column a A) then u (column i
A) else 0) ∗s column i A) UNIV

= sum (λi. (if i = (LEAST a. column i A = column a A) then u (column i
A) else 0) ∗s column i A) (

⋃
(?g‘(columns A)))

unfolding union-univ ..
also have ... = sum (sum (λi.(if i = (LEAST a. column i A = column a A)

then u (column i A) else 0) ∗s column i A)) (?g‘(columns A))
by (rule sum.Union-disjoint[unfolded o-def], auto)

also have ... = sum ((sum (λi.(if i = (LEAST a. column i A = column a A)
then u (column i A) else 0) ∗s column i A)) ◦ ?g)

(columns A) by (rule sum.reindex, simp add: inj)
also have ... = sum (λy. u y ∗s y) (columns A)
proof (rule sum.cong, auto)

fix x
assume x-in-cols: x ∈ columns A
obtain b where b: x=column b A using x-in-cols unfolding columns-def by

blast
let ?f=(λi. (if i = (LEAST a. column i A = column a A) then u (column i

24

A) else 0) ∗s column i A)
have sum-rw: sum ?f ({i. x = column i A} − {LEAST a. x = column a A})

= 0
by (rule sum.neutral, auto)

have sum ?f {i. x = column i A} = ?f (LEAST a. x = column a A) + sum
?f ({i. x = column i A} − {LEAST a. x = column a A})

apply (rule sum.remove, auto, rule LeastI-ex)
using x-in-cols unfolding columns-def by auto

also have ... = ?f (LEAST a. x = column a A) unfolding sum-rw by simp
also have ... = u x ∗s x
proof (auto, rule LeastI2)

show x = column b A using b .
fix xa
assume x: x = column xa A
show u (column xa A) ∗s column xa A = u x ∗s x unfolding x ..

next
assume (LEAST a. x = column a A) 6= (LEAST a. column (LEAST c. x

= column c A) A = column a A)
moreover have (LEAST a. x = column a A) = (LEAST a. column (LEAST

c. x = column c A) A = column a A)
by (rule Least-equality[symmetric], rule LeastI2 , simp-all add: b, rule

Least-le, metis (lifting, full-types) LeastI)
ultimately show u x = 0 by contradiction

qed
finally show (

∑
i | x = column i A. (if i = (LEAST a. column i A = column

a A) then u (column i A) else 0) ∗s column i A) = u x ∗s x .
qed
finally show (

∑
i∈UNIV . (if i = (LEAST a. column i A = column a A) then

u (column i A) else 0) ∗s column i A) = (
∑

y∈columns A. u y ∗s y) .
qed

qed

corollary col-space-eq ′:
fixes A:: ′a::{field}^ ′m::{finite, wellorder}^ ′n
shows col-space A = range (λx. A ∗v x)
unfolding col-space-eq by auto

lemma row-space-eq:
fixes A:: ′a::{field}^ ′m^ ′n::{finite, wellorder}
shows row-space A = {w. ∃ y. (transpose A) ∗v y = w}
unfolding row-space-eq-col-space-transpose col-space-eq ..

lemma null-space-eq-ker :
fixes f ::(′a::field^ ′n) => (′a^ ′m)
assumes lf : Vector-Spaces.linear (∗s) (∗s) f
shows null-space (matrix f) = {x. f x = 0}
unfolding null-space-def using matrix-works [OF lf] by auto

25

lemma col-space-eq-range:
fixes f ::(′a::field^ ′n::{finite, wellorder}) ⇒ (′a^ ′m)
assumes lf : Vector-Spaces.linear (∗s) (∗s) f
shows col-space (matrix f) = range f
unfolding col-space-eq unfolding matrix-works[OF lf] by blast

lemma null-space-is-preserved:
fixes A:: ′a::{field}^ ′cols^ ′rows
assumes P: invertible P
shows null-space (P∗∗A) = null-space A
unfolding null-space-def
using P matrix-inv-left matrix-left-invertible-ker matrix-vector-mul-assoc ma-

trix-vector-mult-0-right
by metis

lemma row-space-is-preserved:
fixes A:: ′a::{field}^ ′cols^ ′rows::{finite, wellorder}

and P:: ′a::{field}^ ′rows::{finite, wellorder}^ ′rows::{finite, wellorder}
assumes P: invertible P
shows row-space (P∗∗A) = row-space A

proof (auto)
fix w
assume w: w ∈ row-space (P∗∗A)
from this obtain y where w-By: w=(transpose (P∗∗A)) ∗v y

unfolding row-space-eq[of P ∗∗ A] by fast
have w = (transpose (P∗∗A)) ∗v y using w-By .
also have ... = ((transpose A) ∗∗ (transpose P)) ∗v y unfolding matrix-transpose-mul

..
also have ... = (transpose A) ∗v ((transpose P) ∗v y) unfolding matrix-vector-mul-assoc

..
finally show w ∈ row-space A unfolding row-space-eq by blast

next
fix w
assume w: w ∈ row-space A
from this obtain y where w-Ay: w=(transpose A) ∗v y unfolding row-space-eq

by fast
have w = (transpose A) ∗v y using w-Ay .
also have ... = (transpose ((matrix-inv P) ∗∗ (P∗∗A))) ∗v y

by (metis P matrix-inv-left matrix-mul-assoc matrix-mul-lid)
also have ... = (transpose (P∗∗A) ∗∗ (transpose (matrix-inv P))) ∗v y

unfolding matrix-transpose-mul ..
also have ... = transpose (P∗∗A) ∗v (transpose (matrix-inv P) ∗v y)

unfolding matrix-vector-mul-assoc ..
finally show w ∈ row-space (P∗∗A) unfolding row-space-eq by blast

qed
end

26

5 Rank Nullity Theorem of Linear Algebra
theory Dim-Formula

imports Fundamental-Subspaces
begin

context vector-space
begin

5.1 Previous results

Linear dependency is a monotone property, based on the monotonocity of
linear independence:
lemma dependent-mono:

assumes d:dependent A
and A-in-B: A ⊆ B
shows dependent B
using independent-mono [OF - A-in-B] d by auto

Given a finite independent set, a linear combination of its elements equal to
zero is possible only if every coefficient is zero:
lemma scalars-zero-if-independent:

assumes fin-A: finite A
and ind: independent A
and sum: (

∑
x∈A. scale (f x) x) = 0

shows ∀ x ∈ A. f x = 0
using fin-A ind local.dependent-finite sum by blast

end

context finite-dimensional-vector-space
begin

In an finite dimensional vector space, every independent set is finite, and
thus

[[finite A; local.independent A; (
∑

x∈A. f x ∗s x) = 0]] =⇒ ∀ x∈A. f x = 0

holds:
corollary scalars-zero-if-independent-euclidean:

assumes ind: independent A
and sum: (

∑
x∈A. scale (f x) x) = 0

shows ∀ x ∈ A. f x = 0
using finiteI-independent ind scalars-zero-if-independent sum by blast

end

The following lemma states that every linear form is injective over the ele-
ments which define the basis of the range of the linear form. This property

27

is applied later over the elements of an arbitrary basis which are not in the
basis of the nullifier or kernel set (i.e., the candidates to be the basis of the
range space of the linear form).

Thanks to this result, it can be concluded that the cardinal of the elements
of a basis which do not belong to the kernel of a linear form f is equal to
the cardinal of the set obtained when applying f to such elements.

The application of this lemma is not usually found in the pencil and paper
proofs of the “rank nullity theorem”, but will be crucial to know that, being
f a linear form from a finite dimensional vector space V to a vector space
V ′, and given a basis B of ker f, when B is completed up to a basis of V
with a set W, the cardinal of this set is equal to the cardinal of its range set:
context vector-space
begin

lemma inj-on-extended:
assumes lf : Vector-Spaces.linear scaleB scaleC f
and f : finite C
and ind-C : independent C
and C-eq: C = B ∪ W
and disj-set: B ∩ W = {}
and span-B: {x. f x = 0} ⊆ span B
shows inj-on f W
— The proof is carried out by reductio ad absurdum

proof (unfold inj-on-def , rule+, rule ccontr)
interpret lf : Vector-Spaces.linear scaleB scaleC f using lf by simp
— Some previous consequences of the premises that are used later:
have fin-B: finite B using finite-subset [OF - f] C-eq by simp
have ind-B: independent B and ind-W : independent W

using independent-mono[OF ind-C] C-eq by simp-all
— The proof starts here; we assume that there exist two different elements
— with the same image:
fix x:: ′b and y:: ′b
assume x: x ∈ W and y: y ∈ W and f-eq: f x = f y and x-not-y: x 6= y
have fin-yB: finite (insert y B) using fin-B by simp
have f (x − y) = 0 by (metis diff-self f-eq lf .diff)
hence x − y ∈ {x. f x = 0} by simp
hence ∃ g. (

∑
v∈B. scale (g v) v) = (x − y) using span-B

unfolding span-finite [OF fin-B] by force
then obtain g where sum: (

∑
v∈B. scale (g v) v) = (x − y) by blast

— We define one of the elements as a linear combination of the second element
and the ones in B

define h :: ′b ⇒ ′a where h a = (if a = y then 1 else g a) for a
have x = y + (

∑
v∈B. scale (g v) v) using sum by auto

also have ... = scale (h y) y + (
∑

v∈B. scale (g v) v) unfolding h-def by simp
also have ... = scale (h y) y + (

∑
v∈B. scale (h v) v)

apply (unfold add-left-cancel, rule sum.cong)
using y h-def empty-iff disj-set by auto

28

also have ... = (
∑

v∈(insert y B). scale (h v) v)
by (rule sum.insert[symmetric], rule fin-B)

(metis (lifting) IntI disj-set empty-iff y)
finally have x-in-span-yB: x ∈ span (insert y B)

unfolding span-finite[OF fin-yB] by auto
— We have that a subset of elements of C is linearly dependent
have dep: dependent (insert x (insert y B))

by (unfold dependent-def , rule bexI [of - x])
(metis Diff-insert-absorb Int-iff disj-set empty-iff insert-iff

x x-in-span-yB x-not-y, simp)
— Therefore, the set C is also dependent:
hence dependent C using C-eq x y

by (metis Un-commute Un-upper2 dependent-mono insert-absorb insert-subset)
— This yields the contradiction, since C is independent:
thus False using ind-C by contradiction

qed
end

5.2 The proof

Now the rank nullity theorem can be proved; given any linear form f, the sum
of the dimensions of its kernel and range subspaces is equal to the dimension
of the source vector space.

The statement of the “rank nullity theorem for linear algebra”, as well as
its proof, follow the ones on [1]. The proof is the traditional one found in
the literature. The theorem is also named “fundamental theorem of linear
algebra” in some texts (for instance, in [2]).
context finite-dimensional-vector-space
begin

theorem rank-nullity-theorem:
assumes l: Vector-Spaces.linear scale scaleC f
shows dimension = dim {x. f x = 0} + vector-space.dim scaleC (range f)

proof −
— For convenience we define abbreviations for the universe set, V , and the kernel

of f
interpret l: Vector-Spaces.linear scale scaleC f by fact
define V :: ′b set where V = UNIV
define ker-f where ker-f = {x. f x = 0}
— The kernel is a proper subspace:
have sub-ker : subspace {x. f x = 0} using l.subspace-kernel .
— The kernel has its proper basis, B:
obtain B where B-in-ker : B ⊆ {x. f x = 0}

and independent-B: independent B
and ker-in-span:{x. f x = 0} ⊆ span B
and card-B: card B = dim {x. f x = 0} using basis-exists by blast

— The space V has a (finite dimensional) basis, C:

29

obtain C where B-in-C : B ⊆ C and C-in-V : C ⊆ V
and independent-C : independent C
and span-C : V = span C
unfolding V-def

by (metis independent-B extend-basis-superset independent-extend-basis span-extend-basis
span-superset)

— The basis of V , C, can be decomposed in the disjoint union of the basis of the
kernel, B, and its complementary set, C −B

have C-eq: C = B ∪ (C − B) by (rule Diff-partition [OF B-in-C , symmetric])
have eq-fC : f ‘ C = f ‘ B ∪ f ‘ (C − B)

by (subst C-eq, unfold image-Un, simp)
— The basis C, and its image, are finite, since V is finite-dimensional
have finite-C : finite C

using finiteI-independent[OF independent-C] .
have finite-fC : finite (f ‘ C) by (rule finite-imageI [OF finite-C])
— The basis B of the kernel of f , and its image, are also finite
have finite-B: finite B by (rule rev-finite-subset [OF finite-C B-in-C])
have finite-fB: finite (f ‘ B) by (rule finite-imageI [OF finite-B])
— The set C −B is also finite
have finite-CB: finite (C − B) by (rule finite-Diff [OF finite-C , of B])
have dim-ker-le-dim-V :dim (ker-f) ≤ dim V

using dim-subset [of ker-f V] unfolding V-def by simp
— Here it starts the proof of the theorem: the sets B and C −B must be proven

to be bases, respectively, of the kernel of f and its range
show ?thesis
proof −

have dimension = dim V unfolding V-def dim-UNIV dimension-def
by (metis basis-card-eq-dim dimension-def independent-Basis span-Basis

top-greatest)
also have dim V = dim C unfolding span-C dim-span ..
also have ... = card C

using basis-card-eq-dim [of C C , OF - span-superset independent-C] by simp
also have ... = card (B ∪ (C − B)) using C-eq by simp
also have ... = card B + card (C−B)

by (rule card-Un-disjoint[OF finite-B finite-CB], fast)
also have ... = dim ker-f + card (C−B) unfolding ker-f-def card-B ..
— Now it has to be proved that the elements of C −B are a basis of the range

of f
also have ... = dim ker-f + l.vs2 .dim (range f)
proof (unfold add-left-cancel)

define W where W = C − B
have finite-W : finite W unfolding W-def using finite-CB .
have finite-fW : finite (f ‘ W) using finite-imageI [OF finite-W] .
have card W = card (f ‘ W)

by (rule card-image [symmetric], rule inj-on-extended[OF l, of C B], rule
finite-C)

(rule independent-C ,unfold W-def , subst C-eq, rule refl, simp, rule
ker-in-span)

also have ... = l.vs2 .dim (range f)

30

— The image set of W is independent and its span contains the range of f ,
so it is a basis of the range:

proof (rule l.vs2 .basis-card-eq-dim)
— 1. The image set of W generates the range of f :
show range f ⊆ l.vs2 .span (f ‘ W)
proof (unfold l.vs2 .span-finite [OF finite-fW], auto)

— Given any element v in V , its image can be expressed as a linear
combination of elements of the image by f of C:

fix v :: ′b
have fV-span: f ‘ V ⊆ l.vs2 .span (f ‘ C)

by (simp add: span-C l.span-image)
have ∃ g. (

∑
x∈f‘C . scaleC (g x) x) = f v

using fV-span unfolding V-def
using l.vs2 .span-finite[OF finite-fC]
by (metis (no-types, lifting) V-def rangeE rangeI span-C l.span-image)

then obtain g where fv: f v = (
∑

x∈f ‘ C . scaleC (g x) x) by metis
— We recall that C is equal to B union (C −B), and B is the basis of

the kernel; thus, the image of the elements of B will be equal to zero:
have zero-fB: (

∑
x∈f ‘ B. scaleC (g x) x) = 0

using B-in-ker by (auto intro!: sum.neutral)
have zero-inter : (

∑
x∈(f ‘ B ∩ f ‘ W). scaleC (g x) x) = 0

using B-in-ker by (auto intro!: sum.neutral)
have f v = (

∑
x∈f ‘ C . scaleC (g x) x) using fv .

also have ... = (
∑

x∈(f ‘ B ∪ f ‘ W). scaleC (g x) x)
using eq-fC W-def by simp

also have ... =
(
∑

x∈f ‘ B. scaleC (g x) x) + (
∑

x∈f ‘ W . scaleC (g x) x)
− (

∑
x∈(f ‘ B ∩ f ‘ W). scaleC (g x) x)

using sum-Un [OF finite-fB finite-fW] by simp
also have ... = (

∑
x∈f ‘ W . scaleC (g x) x)

unfolding zero-fB zero-inter by simp
— We have proved that the image set of W is a generating set of the

range of f
finally show f v ∈ range (λu.

∑
v∈f ‘ W . scaleC (u v) v) by auto

qed
— 2. The image set of W is linearly independent:

show l.vs2 .independent (f ‘ W)
using finite-fW

proof (rule l.vs2 .independent-if-scalars-zero)
— Every linear combination (given by gx) of the elements of the image set

of W equal to zero, requires every coefficient to be zero:
fix g :: ′c => ′a and w :: ′c
assume sum: (

∑
x∈f ‘ W . scaleC (g x) x) = 0 and w: w ∈ f ‘ W

have 0 = (
∑

x∈f ‘ W . scaleC (g x) x) using sum by simp
also have ... = sum ((λx. scaleC (g x) x) ◦ f) W

by (rule sum.reindex, rule inj-on-extended[OF l, of C B])
(unfold W-def , rule finite-C , rule independent-C , rule C-eq, simp,

rule ker-in-span)
also have ... = (

∑
x∈W . scaleC ((g ◦ f) x) (f x)) unfolding o-def ..

31

also have ... = f (
∑

x∈W . scale ((g ◦ f) x) x)
unfolding l.sum[symmetric] l.scale[symmetric] by simp

finally have f-sum-zero:f (
∑

x∈W . scale ((g ◦ f) x) x) = 0 by (rule sym)
hence (

∑
x∈W . scale ((g ◦ f) x) x) ∈ ker-f unfolding ker-f-def by simp

hence ∃ h. (
∑

v∈B. scale (h v) v) = (
∑

x∈W . scale ((g ◦ f) x) x)
using span-finite[OF finite-B] using ker-in-span
unfolding ker-f-def by force

then obtain h where
sum-h: (

∑
v∈B. scale (h v) v) = (

∑
x∈W . scale ((g ◦ f) x) x) by blast

define t where t a = (if a ∈ B then h a else − ((g ◦ f) a)) for a
have 0 = (

∑
v∈B. scale (h v) v) + − (

∑
x∈W . scale ((g ◦ f) x) x)

using sum-h by simp
also have ... = (

∑
v∈B. scale (h v) v) + (

∑
x∈W . − (scale ((g ◦ f) x)

x))
unfolding sum-negf ..

also have ... = (
∑

v∈B. scale (t v) v) + (
∑

x∈W . −(scale((g ◦ f) x) x))
unfolding add-right-cancel unfolding t-def by simp

also have ... = (
∑

v∈B. scale (t v) v) + (
∑

x∈W . scale (t x) x)
by (unfold add-left-cancel t-def W-def , rule sum.cong) simp+

also have ... = (
∑

v∈B ∪ W . scale (t v) v)
by (rule sum.union-inter-neutral [symmetric], rule finite-B, rule finite-W)

(simp add: W-def)
finally have (

∑
v∈B ∪ W . scale (t v) v) = 0 by simp

hence coef-zero: ∀ x∈B ∪ W . t x = 0
using C-eq scalars-zero-if-independent [OF finite-C independent-C]
unfolding W-def by simp

obtain y where w-fy: w = f y and y-in-W : y ∈ W using w by fast
have − g w = t y

unfolding t-def w-fy using y-in-W unfolding W-def by simp
also have ... = 0 using coef-zero y-in-W unfolding W-def by simp
finally show g w = 0 by simp

qed
qed auto
finally show card (C − B) = l.vs2 .dim (range f) unfolding W-def .

qed
finally show ?thesis unfolding V-def ker-f-def unfolding dim-UNIV .

qed
qed

end

5.3 The rank nullity theorem for matrices

The proof of the theorem for matrices is direct, as a consequence of the
“rank nullity theorem”.
lemma rank-nullity-theorem-matrices:

fixes A:: ′a::{field}^ ′cols::{finite, wellorder}^ ′rows
shows ncols A = vec.dim (null-space A) + vec.dim (col-space A)

32

using vec.rank-nullity-theorem[OF matrix-vector-mul-linear-gen, of A]
apply (subst (2 3) matrix-of-matrix-vector-mul [of A, symmetric])
unfolding null-space-eq-ker [OF matrix-vector-mul-linear-gen]
unfolding col-space-eq-range [OF matrix-vector-mul-linear-gen]
unfolding vec.dimension-def ncols-def card-cart-basis
by simp

end

References

[1] S. Axler. Linear Algebra Done Right. Springer, 2nd edition, 1997.

[2] M. S. Gockenbach. Finite Dimensional Linear Algebra. CRC Press, 2010.

33

	Dual Order
	Interpretation of dual wellorder based on wellorder
	Properties of the Greatest operator

	Class for modular arithmetic
	Definition and properties
	Conversion between a modular class and the subset of natural numbers associated.
	Instantiations

	Miscellaneous
	Definitions of number of rows and columns of a matrix
	Basic properties about matrices
	Theorems obtained from the AFP
	Basic properties involving span, linearity and dimensions
	Basic properties about matrix multiplication
	Properties about invertibility
	Properties about the dimension of vectors
	Instantiations and interpretations

	Fundamental Subspaces
	The fundamental subspaces of a matrix
	Definitions
	Relationships among them

	Proving that they are subspaces
	More useful properties and equivalences

	Rank Nullity Theorem of Linear Algebra
	Previous results
	The proof
	The rank nullity theorem for matrices

