
Rabin’s Closest Pair of Points Algorithm

Emin Karayel Zixuan Fan

March 17, 2025

Abstract

This entry formalizes Rabin’s randomized algorithm for the closest
pair of points problem with expected linear running time. Remarkable
is that the best-known deterministic algorithms have super-linear run-
ning times. Hence this algorithm is one of the first known examples of
randomized algorithms that outperform deterministic algorithms.

The formalization also introduces a probabilistic time monad, which
builds on the existing deterministic time monad.

Contents
1 Introduction 1

1.1 Preliminary Algorithms in the Time Monad 3
1.2 Probabilistic Time Monad . 4
1.3 Randomized Closest Points Algorithm 7

2 Correctness 8

3 Growth of Close Points 17

4 Speed 25

1 Introduction

This entry formalizes Rabin’s randomized closest points algorithm [6], with
expected linear run-time.
Given a sequence of points in euclidean space, the algorithm finds the pair
of points with the smallest distance between them.
Remarkable is that the best known deterministic algorithm for this problem
has running time O(n log n) for n points [1, Section 1]. Some of them have
been formalized in Isabelle by Rau and Nipkow [7, 8].
The algorithm starts by choosing a grid-distance d, and storing the points
in a square-grid whose cells have that side-length.

1

Then it traverses the points, computing the distance of each with the points
in the same (or neighboring) cells in the square grid. (Two cells are consid-
ered neighboring, if they share an edge or a vertex.)
The fundamental dilemma of the algorithm is the correct choice of d. If it is
too small, then it could happen that the two closest points of the sequence
are not in neighboring cells. This means d must be chosen larger or equal to
the closest-point distance of the sequence. On the other hand, if d is chosen
too large, it may cause too many points ending up in the same cell, which
increases the running time.
The original algorithm by Rabin, chooses d by sampling n2/3 points and
using the minimum distance of those points. This can be computed using
recursion (or a sub-quadratic deterministic algorithm.)
An improvement to the algorithm, has been observed in a blog-post by
Richard Lipton [5]. Instead of obtaining a sub-sample of the points in the
first step to chose d, he observes that it is possible to sample n independent
point pairs and computing the minimum distance of the pairs. The refined
algorithm is considerably simpler, avoiding the need for recursion. Similarly,
the running time proof is simpler. (This entry formalizes this later version.)
In either case, the algorithm always returns the correct result with expected
linear running time.
Note that, as far as I can tell, the proof of this new version has not been
published. As such this entry contains an informal proof for the results in
each section.
Something that should be noted is that we assume a hypothetical data struc-
ture for the square-grid, i.e., a mapping from a pair of integers identifying
the cell to the points located in the cell, that can be initialized in time O(n)
and access time proportional to the count of points in the cell (or O(1) if
the cell is empty.) A naive implementation of such a data structure would
however have unbounded intialization time, if some points are really far
apart.
The above was a discussion point that was raised by Fortune and Hopcroft [3].
Later Dietzfelbinger [2] resolved the issue by providing a concrete implemen-
tation of the data structure using a hash table, with a hash function chosen
randomly from a pair-wise independent family, to guarantee the presumed
costs of the hypothetical data structure in expectation. However, for the
sake of simplicity and consistency with Rabin’s paper, we omit this imple-
mentation detail, and pretend the hypothetical data structure exists.
Note also that, even with the hash table, it would not be possible to imple-
ment the algorithm in linear time in Isabelle directly as it requires random-
access arrays.
The following introduces a few primitive algorithms for the time monad,
which will be followed by the construction of the probabilistic time monad,

2

which is necessary for the verification of the expected running time. After
which the algorithm will be formalized. Its properties will be verified in the
following sections.

Related Work: Closely related is a recursive meshing based approach
developed by Khuller and Matias [4] in 1995. Banyassady and Mulzer have
given a new analysis of the expected running time [1] of Rabin’s algorithm
in 2007. However, this work follows Rabin’s original paper.
theory Randomized-Closest-Pair

imports
HOL−Probability.Probability-Mass-Function
Root-Balanced-Tree.Time-Monad
Karatsuba.Main-TM
Closest-Pair-Points.Common

begin

hide-const (open) Giry-Monad.return

1.1 Preliminary Algorithms in the Time Monad

Time Monad version of min-list.
fun min-list-tm :: ′a::ord list ⇒ ′a tm where

min-list-tm (x # y # zs) =1
do {

r ← min-list-tm (y#zs);
Time-Monad.return (min x r)
} |
min-list-tm (x#[]) =1 Time-Monad.return x |
min-list-tm [] =1 undefined

lemma val-min-list: xs 6= [] =⇒ val (min-list-tm xs) = min-list xs
by (induction xs rule:induct-list012) auto

lemma time-min-list: xs 6= [] =⇒ time (min-list-tm xs) = length xs
by (induction xs rule:induct-list012) (simp-all)

Time Monad version of remove1.
fun remove1-tm :: ′a ⇒ ′a list ⇒ ′a list tm

where
remove1-tm x (y#ys) =1 (

if x = y then
return ys

else
remove1-tm x ys >>= (λr . return (y#r))

) |
remove1-tm x [] =1 return []

3

lemma val-remove1 : val (remove1-tm x ys) = remove1 x ys
by (induction ys) simp+

lemma time-remove1 : time (remove1-tm x ys) ≤ 1 + length ys
by (induction ys) (simp-all)

The following is a substitute for accounting for operations, where it was
not possible to do directly. One reason for this is that we abstract away
the data structure of the grid (an infinite 2D-table), which properly im-
plemented, would required the use of a hash table and 2-independent hash
functions. A second reason is that we need to transfer the resource usage
in the bind operation of the probabilistic time monad (See below in the
definition bind-tpmf).
fun custom-tick :: nat ⇒ unit tm

where
custom-tick (Suc n) =1 custom-tick n |
custom-tick 0 = return ()

lemma time-custom-tick: time (custom-tick n) = n by (induction n) auto

1.2 Probabilistic Time Monad

The following defines the probabilistic time monad using the type ′a tm
pmf, i.e., the algorithm returns a probability space of pairs of values and
time-consumptions.
Note that the alternative type ′a pmf tm, i.e., a constant time consumption
with a value-distribution does not work since the running time may depend
on random choices.
type-synonym ′a tpmf = ′a tm pmf

definition bind-tpmf :: ′a tpmf ⇒ (′a ⇒ ′b tpmf) ⇒ ′b tpmf
where bind-tpmf m f =

do {
x ← m;
r ← f (val x);
return-pmf (custom-tick (time x) >>= (λ-. r))
}

definition return-tpmf :: ′a ⇒ ′a tpmf
where return-tpmf x = return-pmf (return x)

The following allows the lifting of a deterministic algorithm in the time
monad into the probabilistic time monad.
definition lift-tm :: ′a tm ⇒ ′a tpmf

where lift-tm x = return-pmf x

4

The following allows the lifting of a randomized algorithm into the proba-
bilisitc time monad. Note this should only be done, for primitive cases, as
it requires accounting of the time usage.
definition lift-pmf :: nat ⇒ ′a pmf ⇒ ′a tpmf

where lift-pmf k m = map-pmf (λx. custom-tick k >>= (λ-. return x)) m

adhoc-overloading Monad-Syntax.bind
 bind-tpmf

lemma val-bind-tpmf :
map-pmf val (bind-tpmf m f) = map-pmf val m >>= (λx. map-pmf val (f x))
(is ?L = ?R)

proof −
have map-pmf val (bind-tpmf m f) = m >>= (λx. f (val x) >>= (λx. return-pmf

(val x)))
unfolding bind-tpmf-def map-bind-pmf by simp

also have ... = ?R unfolding bind-map-pmf by (simp add: map-pmf-def)
finally show ?thesis by simp

qed

lemma val-return-tpmf :
map-pmf val (return-tpmf x) = return-pmf x
unfolding return-tpmf-def by simp

lemma val-lift-tpmf : map-pmf val (lift-pmf k x) = x
unfolding lift-pmf-def val-bind-tpmf map-pmf-comp by simp

lemma val-lift-tm:
map-pmf val (lift-tm x) = return-pmf (val x)
unfolding lift-tm-def by simp

lemmas val-tpmf-simps = val-bind-tpmf val-lift-tpmf val-return-tpmf val-lift-tm

lemma time-return-tpmf : map-pmf time (return-tpmf x) = return-pmf 0
unfolding return-tpmf-def by simp

lemma time-lift-pmf : map-pmf time (lift-pmf x p) = return-pmf x
unfolding lift-pmf-def map-pmf-comp by (simp add: time-custom-tick)

lemma time-bind-tpmf : map-pmf time (bind-tpmf m f) =
do {

x ← m;
y ← f (val x);
return-pmf (time x + time y)
}
unfolding bind-tpmf-def map-bind-pmf by (simp add:time-custom-tick)

lemma bind-return-tm: bind-tm (Time-Monad.return x) f = f x
by (simp add:tm-simps tm.case-eq-if)

5

lemma bind-return-tpmf : bind-tpmf (return-tpmf x) f = (f x)
unfolding bind-tpmf-def return-tpmf-def
by (simp add:bind-return-pmf bind-return-tm bind-return-pmf ′)

Version of replicate-pmf for the probabilistic time monad.
fun replicate-tpmf :: nat ⇒ ′a tpmf ⇒ ′a list tpmf

where
replicate-tpmf 0 p = return-tpmf [] |
replicate-tpmf (Suc n) p =

do {
x ← p;
y ← replicate-tpmf n p;
return-tpmf (x#y)
}

lemma time-replicate-tpmf :
map-pmf time (replicate-tpmf n p) = map-pmf sum-list (replicate-pmf n (map-pmf

time p))
proof (induction n)

case 0 thus ?case by (simp add:time-return-tpmf)
next

case (Suc n)
have map-pmf time (replicate-tpmf (Suc n) p) =

p >>= (λx. replicate-tpmf n p >>= (λy. return-pmf (time x + time y)))
by (simp add: time-bind-tpmf return-tpmf-def)
(simp add: bind-tpmf-def bind-assoc-pmf bind-return-pmf time-custom-tick)

also have . . . = map-pmf time p >>=
(λx. map-pmf time (replicate-tpmf n p) >>= (λy. return-pmf (x + y)))
unfolding map-pmf-def by (simp add:bind-assoc-pmf bind-return-pmf)

also have . . . = map-pmf time p >>= (λx. replicate-pmf n (map-pmf time p) >>=
(λy. return-pmf (x + sum-list y)))
by (subst Suc) (metis (no-types, lifting) bind-map-pmf bind-pmf-cong)

also have . . . = map-pmf sum-list (replicate-pmf (Suc n) (map-pmf time p))
by (simp add:map-bind-pmf)

finally show ?case by simp
qed

lemma val-replicate-tpmf :
map-pmf val (replicate-tpmf n x) = replicate-pmf n (map-pmf val x)
by (induction n) (simp-all add:val-tpmf-simps)

lemma set-val-replicate-tpmf :
assumes xs ∈ set-pmf (replicate-tpmf n p)
shows length (val xs) = n set (val xs) ⊆ val ‘ set-pmf p

proof −
have val xs ∈ set-pmf (map-pmf val (replicate-tpmf n p)) using assms by simp
thus length (val xs) = n set (val xs) ⊆ val ‘ set-pmf p

unfolding val-replicate-tpmf set-replicate-pmf by auto

6

qed

lemma replicate-return-pmf [simp]: replicate-pmf n (return-pmf x) = return-pmf
(replicate n x)

by (induction n) (simp-all add:bind-return-pmf)

1.3 Randomized Closest Points Algorithm

Using the above we can express the randomized closests points algorithm in
the probabilistic time monad.
type-synonym point = real^2

record grid =
g-dist :: real
g-lookup :: int ∗ int ⇒ point list tm

definition to-grid :: real ⇒ point ⇒ int ∗ int
where to-grid d x = (bx $ 1/dc,bx $ 2/dc)

This represents the grid data-structure mentioned before. We assume the
build time is linear to the number of points stored and the access time is at
least O(1) and proportional to the number of points in the cell. (In practice
this would be implemented using hash functions.)
definition build-grid :: point list ⇒ real ⇒ grid tm where

build-grid xs d =
do {

- ← custom-tick (length xs);
return (|

g-dist = d,
g-lookup = (λq. map-tm return (filter (λx. to-grid d x = q) xs))
|)
}

definition sample-distance :: point list ⇒ real tpmf where
sample-distance ps = do {

i ← lift-pmf 1 (pmf-of-set {i. fst i < snd i ∧ snd i < length ps});
return-tpmf (dist (ps ! (fst i)) (ps ! (snd i)))
}

lemma val-sample-distance:
map-pmf val (sample-distance ps) = map-pmf (λi. dist (ps ! (fst i)) (ps ! (snd

i)))
(pmf-of-set {i. fst i < snd i ∧ snd i < length ps})
unfolding sample-distance-def by (simp add:val-tpmf-simps) (simp add:map-pmf-def)

definition first-phase :: point list ⇒ real tpmf where
first-phase ps = do {

ds ← replicate-tpmf (length ps) (sample-distance ps);

7

lift-tm (min-list-tm ds)
}

definition lookup-neighborhood :: grid ⇒ point ⇒ point list tm
where lookup-neighborhood grid p =

do {
d ← tick (g-dist grid);
q ← tick (to-grid d p);
cs ← map-tm (λx. tick (x + q)) [(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)];
map-tm (g-lookup grid) cs >>= concat-tm >>= remove1-tm p
}

This function collects all points in the cell of the given point and those
from the neighboring cells. Here it is relevant to note that only half of the
neighboring cells are taken. This is because of symmetry, i.e., if point p is
north-east of point q, then q is south-west of point q. Since all points are
being traversed it is enough to restrict the neighbor set.
definition calc-dists-neighborhood :: grid ⇒ point ⇒ real list tm

where calc-dists-neighborhood grid p =
do {

ns ← lookup-neighborhood grid p;
map-tm (tick ◦ dist p) ns
}

definition second-phase :: real ⇒ point list ⇒ real tm where
second-phase d ps = do {

grid ← build-grid ps d;
ns ← map-tm (calc-dists-neighborhood grid) ps;
concat-tm ns >>= min-list-tm
}

definition closest-pair :: point list ⇒ real tpmf where
closest-pair ps = do {

d ← first-phase ps;
if d = 0 then

lift-tm (tick 0)
else

lift-tm (second-phase d ps)
}

end

2 Correctness

This section verifies that the algorithm always returns the correct result.
Because the algorithm checks every pair of points in the same or in neigh-
boring cells. It is enough to establish that the grid distance is at least the

8

distance of the closest pair.
The latter is true by construction, because the grid distance is chosen as a
minimum of actually occurring point distances.
theory Randomized-Closest-Pair-Correct

imports Randomized-Closest-Pair
begin

definition min-dist :: (′a::metric-space) list ⇒ real
where min-dist xs = Min {dist x y|x y. {# x, y#} ⊆# mset xs}

For a list with length at least two, the result is the minimum distance be-
tween the points of any two elements of the list. This means that min-dist
xs = 0, if and only if the same point occurs twice in the list.
Note that this means, we won’t assume the distinctness of the input list,
and show the correctness of the algorithm in the above sense.
lemma image-conv-2 : {f x y|x y. p x y} = (case-prod f) ‘ {(x,y). p x y} by auto

lemma min-dist-set-fin: finite {dist x y|x y. {#x, y#} ⊆# mset xs}
proof −

have a:finite (set xs × set xs) by simp
have x ∈# mset xs ∧ y ∈# mset xs if {#x, y#} ⊆# mset xs for x y

using that by (meson insert-union-subset-iff mset-subset-eq-insertD)
thus ?thesis unfolding image-conv-2 by (intro finite-imageI finite-subset[OF -

a]) auto
qed

lemma min-dist-ne: length xs ≥ 2 ←→ {dist x y|x y. {# x,y#} ⊆# mset xs} 6=
{} (is ?L ←→ ?R)
proof

assume ?L
then obtain xh1 xh2 xt where xs:xs=xh1#xh2#xt by (metis Suc-le-length-iff

numerals(2))
hence {#xh1 ,xh2#} ⊆# mset xs unfolding xs by simp
thus ?R by auto

next
assume ?R
then obtain x y where xy: {#x,y#} ⊆# mset xs by auto
have 2 ≤ size {#x, y#} by simp
also have ... ≤ size (mset xs) by (intro size-mset-mono xy)
finally have 2 ≤ size (mset xs) by simp
thus ?L by simp

qed
lemmas min-dist-neI = iffD1 [OF min-dist-ne]

lemma min-dist-nonneg:
assumes length xs ≥ 2
shows min-dist xs ≥ 0

9

unfolding min-dist-def by (intro Min.boundedI min-dist-set-fin assms iffD1 [OF
min-dist-ne]) auto

lemma min-dist-pos-iff :
assumes length xs ≥ 2
shows distinct xs ←→ 0 < min-dist xs

proof −
have ¬(distinct xs) ←→ (∃ x. count (mset xs) x 6= of-bool (x ∈ set xs))

unfolding of-bool-def distinct-count-atmost-1 by fastforce
also have ... ←→ (∃ x. count (mset xs) x /∈ {0 ,1})

using count-mset-0-iff by (intro ex-cong1) simp
also have ... ←→ (∃ x. count (mset xs) x ≥ count {#x, x#} x)
by (intro ex-cong1) (simp add:numeral-eq-Suc Suc-le-eq dual-order .strict-iff-order)
also have ... ←→ (∃ x. {#x, x#} ⊆# mset xs) by (intro ex-cong1) (simp add:

subseteq-mset-def)
also have ... ←→ 0 ∈ {dist x y |x y. {#x, y#} ⊆# mset xs} by auto
also have ... ←→ min-dist xs = 0 (is ?L ←→ ?R)
proof

assume ?L
hence min-dist xs ≤ 0 unfolding min-dist-def by (intro Min-le min-dist-set-fin)
thus min-dist xs = 0 using min-dist-nonneg[OF assms] by auto

next
assume ?R
thus 0 ∈ {dist x y |x y. {#x, y#} ⊆# mset xs}

unfolding min-dist-def using Min-in[OF min-dist-set-fin min-dist-neI [OF
assms]] by simp

qed
finally have ¬(distinct xs) ←→ min-dist xs = 0 by simp
thus ?thesis using min-dist-nonneg[OF assms] by auto

qed

lemma multiset-filter-mono-2 :
assumes

∧
x. x ∈ set-mset xs =⇒ P x =⇒ Q x

shows filter-mset P xs ⊆# filter-mset Q xs (is ?L ⊆# ?R)
proof −

have ?L = filter-mset (λx. Q x ∧ P x) xs using assms by (intro filter-mset-cong)
auto

also have ... = filter-mset P (filter-mset Q xs) by (simp add:filter-filter-mset)
also have ... ⊆# ?R by simp
finally show ?thesis by simp

qed

lemma filter-mset-disj:
filter-mset (λx. p x ∨ q x) xs = filter-mset (λx. p x ∧ ¬ q x) xs + filter-mset q xs
by (induction xs) auto

lemma size-filter-mset-decompose:
assumes finite T
shows size (filter-mset (λx. f x ∈ T) xs) = (

∑
t ∈ T . size (filter-mset (λx. f x

10

= t) xs))
using assms

proof (induction T)
case empty thus ?case by simp

next
case (insert x F) thus ?case by (simp add:filter-mset-disj) metis

qed

lemma size-filter-mset-decompose ′:
size (filter-mset (λx. f x ∈ T) xs) = sum ′ (λt. size (filter-mset (λx. f x = t) xs))

T
(is ?L = ?R)

proof −
let ?T = f ‘ set-mset xs ∩ T
have ?L = size (filter-mset (λx. f x ∈ ?T) xs)

by (intro arg-cong[where f=size] filter-mset-cong) auto
also have ... = (

∑
t ∈ ?T . size (filter-mset (λx. f x = t) xs))

by (intro size-filter-mset-decompose) auto
also have ... = sum ′ (λt. size (filter-mset (λx. f x = t) xs)) ?T

by (intro sum.eq-sum[symmetric]) auto
also have ... = ?R by (intro sum.mono-neutral-left ′) auto
finally show ?thesis by simp

qed

lemma filter-product:
filter (λx. P (fst x)∧Q (snd x)) (List.product xs ys) = List.product (filter P xs)

(filter Q ys)
proof (induction xs)

case Nil thus ?case by simp
next

case (Cons xh xt) thus ?case by (simp add:filter-map comp-def)
qed

lemma floor-diff-bound: |bxc−byc| ≤ d|x − (y::real)|e by linarith

lemma power2-strict-mono:
fixes x y :: ′a :: linordered-idom
assumes |x| < |y|
shows x^2 < y^2
using assms unfolding power2-eq-square
by (metis abs-mult-less abs-mult-self-eq)

definition grid ps d = (| g-dist = d, g-lookup = (λq. map-tm return (filter (λx.
to-grid d x = q) ps)) |)

lemma build-grid-val: val (build-grid ps d) = grid ps d
unfolding build-grid-def grid-def by simp

11

lemma lookup-neighborhood:
mset (val (lookup-neighborhood (grid ps d) p)) =
filter-mset (λx. to-grid d x − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)})

(mset ps) − {#p#}
proof −

define ls where ls = [(0 ::int,0 ::int),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)]
define g where g = grid ps d
define cs where cs = map ((+) (to-grid (g-dist g) p)) ([(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)])

have distinct-ls: distinct ls unfolding ls-def by (simp add: upto.simps)

have mset (concat (map (λx. val (g-lookup g (x + to-grid (g-dist g) p))) ls)) =
mset (concat (map (λx. filter (λq. to-grid d q − to-grid d p = x) ps) ls))
by (simp add:grid-def filter-eq-val-filter-tm cs-def comp-def algebra-simps ls-def

g-def)
also have ... = {# q ∈# mset ps. to-grid d q − to-grid d p ∈ set ls #}

using distinct-ls by (induction ls) (simp-all add:filter-mset-disj, metis)
also have ... = {#x ∈# mset ps. to-grid d x − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}#}

unfolding ls-def by simp
finally have a:

mset (concat (map (λx. val (g-lookup g (x + to-grid (g-dist g) p))) ls)) =
{#x ∈# mset ps. to-grid d x − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}#}

by simp

thus ?thesis
unfolding g-def [symmetric] lookup-neighborhood-def ls-def [symmetric]
by (simp add:val-remove1 comp-def)

qed

lemma fin-nat-pairs: finite {(i, j). i < j ∧ j < (n::nat)}
by (rule finite-subset[where B={..<n }×{..<n}]) auto

lemma mset-list-subset:
assumes distinct ys set ys ⊆ {..<length xs}
shows mset (map ((!) xs) ys) ⊆# mset xs (is ?L ⊆# ?R)

proof −
have mset ys ⊆# mset [0 ..<length xs] using assms
by (metis finite-lessThan mset-set-set mset-set-upto-eq-mset-upto subset-imp-msubset-mset-set)

hence image-mset ((!) xs) (mset ys) ⊆# image-mset ((!) xs) (mset ([0 ..<length
xs]))

by (intro image-mset-subseteq-mono)
moreover have image-mset ((!) xs) (mset ([0 ..<length xs])) = mset xs by (metis

map-nth mset-map)
ultimately show ?thesis by simp

qed

lemma sample-distance:
assumes length ps ≥ 2
shows AE d in map-pmf val (sample-distance ps). min-dist ps ≤ d

12

proof −
let ?S = {i. fst i < snd i ∧ snd i < length ps}
let ?p = pmf-of-set ?S

have (0 ,1) ∈ ?S using assms by auto
hence a:finite ?S ?S 6= {}

using fin-nat-pairs[where n=length ps] by (auto simp:case-prod-beta ′)

have min-dist ps ≤ dist (ps ! (fst x)) (ps ! (snd x)) if x ∈ ?S for x
proof −

have mset (map ((!) ps) [fst x, snd x]) ⊆# mset ps
using that by (intro mset-list-subset) auto

hence {#ps ! fst x, ps ! snd x#} ⊆# mset ps by simp
hence (λ(x, y). dist x y) (ps ! (fst x), ps ! (snd x)) ∈ {dist x y |x y. {#x, y#}

⊆# mset ps}
unfolding image-conv-2 by (intro imageI) simp

thus ?thesis unfolding min-dist-def by (intro Min-le min-dist-set-fin) simp
qed
thus ?thesis
using a unfolding sample-distance-def map-pmf-def [symmetric] val-tpmf-simps
by (intro AE-pmfI) (auto)

qed

lemma first-phase:
assumes length ps ≥ 2
shows AE d in map-pmf val (first-phase ps). min-dist ps ≤ d

proof −
have min-dist ps ≤ val (min-list-tm ds)
if ds-range:set ds⊆set-pmf (map-pmf val (sample-distance ps)) and length ds=length

ps for ds
proof −

have ds-ne: ds 6= [] using assms that(2) by auto

have min-dist ps ≤ a if a ∈ set ds for a
proof −
have a ∈ set-pmf (map-pmf val (sample-distance ps)) using ds-range that by

auto
thus ?thesis using sample-distance[OF assms] by (auto simp add: AE-measure-pmf-iff)
qed
hence min-dist ps ≤ Min (set ds) using ds-ne by (intro Min.boundedI) auto
also have ... = min-list ds unfolding min-list-Min[OF ds-ne] by simp
also have ... = val (min-list-tm ds) by (intro val-min-list[symmetric] ds-ne)
finally show ?thesis by simp

qed

thus ?thesis
unfolding first-phase-def val-tpmf-simps val-replicate-tpmf
by (intro AE-pmfI) (auto simp:set-replicate-pmf)

qed

13

definition grid-lex-ord :: int ∗ int ⇒ int ∗ int ⇒ bool
where grid-lex-ord x y = (fst x < fst y ∨ (fst x = fst y ∧ snd x ≤ snd y))

lemma grid-lex-order-antisym: grid-lex-ord x y ∨ grid-lex-ord y x
unfolding grid-lex-ord-def by auto

lemma grid-dist:
fixes p q :: point
assumes d > 0
shows |bp $ k/dc − bq $ k/dc| ≤ ddist p q/de

proof −
have |p$k − q$k| = sqrt ((p$k − q$k)^2) by simp
also have ... = sqrt (

∑
j∈UNIV . of-bool(j=k)∗(p$j − q$j)^2) by simp

also have ... ≤ dist p q unfolding dist-vec-def L2-set-def
by (intro real-sqrt-le-mono sum-mono) (auto simp:dist-real-def)

finally have |p$k − q$k| ≤ dist p q by simp
hence 0 :|p$k /d − q$k /d|≤ dist p q /d using assms by (simp add:field-simps)
have |bp$k/dc − bq$k/dc| ≤ d|p$k /d − q$k /d|e by (intro floor-diff-bound)
also have ... ≤ ddist p q/de by (intro ceiling-mono 0)
finally show ?thesis by simp

qed

lemma grid-dist-2 :
fixes p q :: point
assumes d > 0
assumes ddist p q/de ≤ s
shows to-grid d p − to-grid d q ∈ {−s..s}×{−s..s}

proof −
have f (to-grid d p) − f (to-grid d q) ∈ {−s..s} if f = fst ∨ f = snd for f
proof −

have |f (to-grid d p) − f (to-grid d q)| ≤ ddist p q/de
using that grid-dist[OF assms(1)] unfolding to-grid-def by auto

also have ... ≤ s by (intro assms(2))
finally have |f (to-grid d p) − f (to-grid d q)| ≤ s by simp
thus ?thesis by auto

qed
thus ?thesis by (simp add:mem-Times-iff)

qed

lemma grid-dist-3 :
fixes p q :: point
assumes d > 0
assumes ddist q p/de ≤ 1 grid-lex-ord (to-grid d p) (to-grid d q)
shows to-grid d q − to-grid d p ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}

proof −
have a:{−1 ..1} = {−1 ,0 ,1 ::int} by auto
let ?r = to-grid d q − to-grid d p
have ?r ∈ {−1 ..1}×{−1 ..1} by (intro grid-dist-2 assms(1−2))

14

moreover have ?r /∈ {(−1 ,0),(−1 ,−1),(−1 ,1),(0 ,−1)} using assms(3)
unfolding grid-lex-ord-def insert-iff de-Morgan-disj
by (intro conjI notI) (simp-all add:algebra-simps)

ultimately show ?thesis unfolding a by simp
qed

lemma second-phase-aux:
assumes d > 0 min-dist ps ≤ d length ps ≥ 2
obtains u v where

min-dist ps = dist u v
{#u, v#} ⊆# mset ps
grid-lex-ord (to-grid d u) (to-grid d v)
u ∈ set ps v ∈ set (val (lookup-neighborhood (grid ps d) u))

proof −
have ∃ u v. min-dist ps = dist u v ∧ {#u, v#} ⊆# mset ps

unfolding min-dist-def using Min-in[OF min-dist-set-fin min-dist-neI [OF
assms(3)]] by auto

then obtain u v where uv:
min-dist ps = dist u v {#u, v#} ⊆# mset ps
grid-lex-ord (to-grid d u) (to-grid d v)

using add-mset-commute dist-commute grid-lex-order-antisym by (metis (no-types,
lifting))

have u-range: u ∈ set ps using uv(2) set-mset-mono by fastforce

have to-grid d v − to-grid d u ∈ {(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}
using assms(1 ,2) uv(1 ,3) by (intro grid-dist-3) (simp-all add:dist-commute)

hence v ∈# mset (val (lookup-neighborhood (grid ps d) u))
using uv(2) unfolding lookup-neighborhood by (simp add: in-diff-count in-

sert-subset-eq-iff)

thus ?thesis using that u-range uv by simp
qed

lemma second-phase:
assumes d > 0 min-dist ps ≤ d length ps ≥ 2
shows val (second-phase d ps) = min-dist ps (is ?L = ?R)

proof −
let ?g = grid ps d

have ∃ u v. min-dist ps = dist u v ∧ {#u, v#} ⊆# mset ps
unfolding min-dist-def using Min-in[OF min-dist-set-fin min-dist-neI [OF

assms(3)]] by auto

then obtain u v where uv:
min-dist ps = dist u v {#u, v#} ⊆# mset ps
grid-lex-ord (to-grid d u) (to-grid d v)

15

and u-range: u ∈ set ps
and v-range: v ∈ set (val (lookup-neighborhood (grid ps d) u))
using second-phase-aux[OF assms] by auto

hence a: val (lookup-neighborhood (grid ps d) u) 6= [] by auto

have ∃ x∈set ps. min-dist ps ∈ dist x ‘ set (val (lookup-neighborhood (grid ps d)
x))

using v-range uv(1) by (intro bexI [where x=u] u-range) simp

hence b: Min (
⋃

x∈set ps. dist x ‘ set (val (lookup-neighborhood (grid ps d) x)))
≤ min-dist ps

by (intro Min.coboundedI finite-UN-I) simp-all

have {# x, y#} ⊆# mset ps
if x ∈ set ps y ∈ set (val (lookup-neighborhood (grid ps d) x)) for x y

proof −
have y ∈# mset (val (lookup-neighborhood (grid ps d) x)) using that by simp
moreover have mset (val (lookup-neighborhood (grid ps d) x)) ⊆# mset ps

− {#x#}
using that(1) unfolding lookup-neighborhood subset-eq-diff-conv by simp

ultimately have y ∈# mset ps − {#x#} by (metis mset-subset-eqD)
moreover have x ∈# mset ps using that(1) by simp
ultimately show {#x, y#} ⊆# mset ps by (simp add: insert-subset-eq-iff)

qed
hence c: min-dist ps ≤ Min (

⋃
x∈set ps. dist x ‘ set (val (lookup-neighborhood

(grid ps d) x)))
unfolding min-dist-def using a u-range by (intro Min-antimono min-dist-set-fin)

auto

have ?L = val (min-list-tm (concat (map (λx. map (dist x) (val (lookup-neighborhood
?g x))) ps)))

unfolding second-phase-def by (simp add:calc-dists-neighborhood-def build-grid-val)
also have ... = min-list (concat (map (λx. map (dist x) (val (lookup-neighborhood

?g x))) ps))
using assms(3) a u-range by (intro val-min-list) auto

also have ... = Min (
⋃

x∈set ps. dist x ‘ set (val (lookup-neighborhood ?g x)))
using a u-range by (subst min-list-Min) auto

also have ... = min-dist ps using b c by simp
finally show ?thesis by simp

qed

Main result of this section:
theorem closest-pair-correct:

assumes length ps ≥ 2
shows AE r in map-pmf val (closest-pair ps). r = min-dist ps

proof −
define fp where fp = map-pmf val (first-phase ps)

16

have r = min-dist ps if
d ∈ fp
r = (if d = 0 then 0 else val (second-phase d ps)) for r d

proof −
have d-ge: d ≥ min-dist ps
using that(1) first-phase[OF assms] unfolding AE-measure-pmf-iff fp-def [symmetric]

by simp
show ?thesis
proof (cases d > 0)

case True
thus ?thesis using second-phase[OF True d-ge assms] that(2)

by (simp add: AE-measure-pmf-iff)
next

case False
hence d = 0 min-dist ps = 0 using d-ge min-dist-nonneg[OF assms] by auto
then show ?thesis using that(2) by auto

qed
qed
thus ?thesis unfolding closest-pair-def val-tpmf-simps fp-def [symmetric] if-distrib

by (intro AE-pmfI) (auto simp:if-distrib)
qed

end

3 Growth of Close Points

This section verifies a result similar to (but more general than) Lemma 2
by Rabin [6]. Let N(d) denote the number of pairs from the point sequence
p1, . . . , pn, with distance less than d:

N(d) := |{(i, j)|d(pi, pj) < d ∧ 1 ≤ i, j ≤ n}|

Obviously, N(d) is monotone. It is possible to show that the growth of N(d)
is bounded.
In particular:

N(ad) ≤ (2a
√
2 + 3)2N(d)

for all a > 0, d > 0. As far as we can tell the proof below is new.
Proof: Consider a 2D-grid with size α := d√

2
and let us denote by G(x, y)

the number of points that fall in the cell (x, y) ∈ Z× Z, i.e.:

G(x, y) :=
∣∣∣{i∣∣∣ ⌊pi,1

α

⌋
= x ∧

⌊pi,2
α

⌋
= x

}∣∣∣ ,

where pi,1 (resp. pi,2) denote the first (resp. second) component of point p.
Let also s := da

√
2e.

17

Then we can observe that

N(ad) ≤
∑

(x,y)∈Z×Z

s∑
i=−s

s∑
j=−s

G(x, y)G(x+ i, y + j)

=
s∑

i=−s

s∑
j=−s

∑
(x,y)∈Z×Z

G(x, y)G(x+ i, y + j)

≤
s∑

i=−s

s∑
j=−s

 ∑
(x,y)∈Z×Z

G(x, y)2

 ∑
(x,y)∈Z×Z

G(x+ i, y + j)2

1/2

≤
s∑

i=−s

s∑
j=−s

 ∑
(x,y)∈Z×Z

G(x, y)2

 ∑
(x,y)∈Z×Z

G(x, y)2

1/2

≤ (2s+ 1)2
∑

(x,y)∈Z×Z

G(x, y)2

≤ (2a
√
(2) + 3)2

∑
(x,y)∈Z×Z

G(x, y)2

≤ (2a
√
(2) + 3)2N(d)

The first inequality follows from the fact that if two points are ad close, their
x-coordinates and y-coordinates will differ by at most ad. I.e. their grid
coordinates will differ at most by s. This means the pair will be accounted
for in the right hand side of the inequality.
The third inequality is an application of the Cauchy–Schwarz inequality.
The last inequality follows from the fact that the largest possible distance
of two points in the same grid cell is d.
theory Randomized-Closest-Pair-Growth

imports
HOL−Library.Sublist
Randomized-Closest-Pair-Correct

begin

lemma inj-translate:
fixes a b :: int
shows inj (λx. (fst x + a, snd x + b))

proof −
have 0 :(λx. (fst x + a, snd x + b)) = (λx. x + (a,b)) by auto
show ?thesis unfolding 0 by simp

qed

lemma of-nat-sum ′:
(of-nat (sum ′ f S) :: (′a :: {semiring-char-0})) = sum ′ (λx. of-nat (f x)) S
unfolding sum.G-def by simp

18

lemma sum ′-nonneg:
fixes f :: ′a ⇒ ′b :: {ordered-comm-monoid-add}
assumes

∧
x. x ∈ S =⇒ f x ≥ 0

shows sum ′ f S ≥ 0
proof −

have 0 ≤ sum f {x ∈ S . f x 6= 0} using assms by (intro sum-nonneg) auto
thus ?thesis unfolding sum.G-def by simp

qed

lemma sum ′-mono:
fixes f :: ′a ⇒ ′b :: {ordered-comm-monoid-add}
assumes

∧
x. x ∈ S =⇒ f x ≤ g x

assumes finite {x ∈ S . f x 6= 0}
assumes finite {x ∈ S . g x 6= 0}
shows sum ′ f S ≤ sum ′ g S (is ?L ≤ ?R)

proof −
let ?S = {i ∈ S . f i 6= 0} ∪ {i ∈ S . g i 6= 0}

have ?L = sum ′ f ?S by (intro sum.mono-neutral-right ′) auto
also have ... = (

∑
i ∈ ?S . f i) using assms by (intro sum.eq-sum) auto

also have ... ≤ (
∑

i ∈ ?S . g i) using assms by (intro sum-mono) auto
also have ... = sum ′ g ?S using assms by (intro sum.eq-sum[symmetric]) auto
also have ... = ?R by (intro sum.mono-neutral-left ′) auto
finally show ?thesis by simp

qed

lemma cauchy-schwarz ′:
assumes finite {i ∈ S . f i 6= 0}
assumes finite {i ∈ S . g i 6= 0}
shows sum ′ (λi. f i ∗ g i) S ≤ sqrt (sum ′ (λi. f i^2) S) ∗ sqrt (sum ′ (λi. g i^2)

S)
(is ?L ≤ ?R)

proof −
let ?S = {i ∈ S . f i 6= 0} ∪ {i ∈ S . g i 6= 0}

have ?L = sum ′ (λi. f i ∗ g i) ?S by (intro sum.mono-neutral-right ′) auto
also have ... = (

∑
i ∈ ?S . f i ∗ g i) using assms by (intro sum.eq-sum) auto

also have ... ≤ (
∑

i ∈ ?S . |f i| ∗ |g i|) by (intro sum-mono) (metis abs-ge-self
abs-mult)

also have ... ≤ L2-set f ?S ∗ L2-set g ?S by (rule L2-set-mult-ineq)
also have ... = sqrt (sum ′ (λi. f i^2) ?S) ∗ sqrt (sum ′ (λi. g i^2) ?S)

unfolding L2-set-def using assms sum.eq-sum by simp
also have ... = ?R

by (intro arg-cong2 [where f=(λx y. sqrt x ∗ sqrt y)] sum.mono-neutral-left ′)
auto

finally show ?thesis by simp
qed

19

context comm-monoid-set
begin

lemma reindex-bij-betw ′:
assumes bij-betw h S T
shows G (λx. g (h x)) S = G g T

proof −
have h ‘ {x ∈ S . g (h x) 6= 1} = {x ∈ T . g x 6= 1}

using bij-betw-imp-surj-on[OF assms] by auto
hence 0 : bij-betw h {x ∈ S . g (h x) 6= 1} {x ∈ T . g x 6= 1}

by (intro bij-betw-subset[OF assms]) auto
hence finite {x ∈ S . g (h x) 6= 1} = finite {x ∈ T . g x 6= 1}

using bij-betw-finite by auto
thus ?thesis unfolding G-def using reindex-bij-betw[OF 0] by simp

qed

end

definition close-point-size xs d = length (filter (λ(p,q). dist p q < d) (List.product
xs xs))

lemma grid-dist-upper :
fixes p q :: point
assumes d > 0
shows dist p q < sqrt (

∑
i∈UNIV .(d∗(|bp$i/dc−bq$i/dc|+1))^2)

(is ?L < ?R)
proof −

have a:|x − y| < |d ∗ real-of-int (|bx/dc − by/dc| + 1)| for x y :: real
proof −

have |x − y| = d ∗ |x/d − y/d|
using assms by (simp add: abs-mult-pos ′ right-diff-distrib)

also have ... < d ∗ real-of-int (|bx/dc − by/dc| + 1)
by (intro mult-strict-left-mono assms) linarith

also have ... = |d ∗ real-of-int (|bx/dc − by/dc| + 1)|
using assms by simp

finally show ?thesis by simp
qed
have ?L = sqrt (

∑
i∈UNIV . (p $ i − q $ i)2)

unfolding dist-vec-def dist-real-def L2-set-def by simp
also have ... < ?R

using assms by (intro real-sqrt-less-mono sum-strict-mono power2-strict-mono
a) auto

finally show ?thesis by simp
qed

lemma grid-dist-upperI :
fixes p q :: point
fixes d :: real

20

assumes d > 0
assumes

∧
k. |bp$k/dc−bq$k/dc| ≤ s

shows dist p q < d ∗ (s+1) ∗ sqrt 2
proof −

have s-ge-0 : s ≥ 0 using assms(2)[where k=0] by simp
have dist p q < sqrt (

∑
i ∈ UNIV . (d∗(|bp$i/dc−bq$i/dc|+1))^2)

by (intro grid-dist-upper assms)
also have ... ≤ sqrt (

∑
i ∈ (UNIV ::2 set). (d∗(s+1))^2)

using assms
by (intro real-sqrt-le-mono sum-mono power-mono mult-left-mono iffD2 [OF

of-int-le-iff]) auto
also have ... = sqrt (2 ∗ (d∗(s+1))^2) by simp
also have ... = sqrt 2 ∗ sqrt ((d∗(s+1))^2) by (simp add:real-sqrt-mult)
also have ... = sqrt 2 ∗ (d ∗ (s+1)) using assms s-ge-0 by simp
also have ... = d ∗ (s+1) ∗ sqrt 2 by simp
finally show ?thesis by simp

qed

lemma close-point-approx-upper :
fixes xs :: point list
fixes G :: int × int ⇒ real
assumes d > 0 e > 0
defines s ≡ dd / ee
defines G ≡ (λx. real (length (filter (λp. to-grid e p = x) xs)))
shows close-point-size xs d ≤ (

∑
i ∈ {−s..s}×{−s..s}. sum ′ (λx. G x ∗ G (x+i))

UNIV)
(is ?L ≤ ?R)

proof −
let ?f = to-grid e
let ?pairs = mset (List.product xs xs)

define T where T = {−s..s} × {−s..s}

have s ≥ 1 unfolding s-def using assms by simp
hence s-ge-0 : s ≥ 0 by simp

have 0 : finite T unfolding T-def by simp

have a: size {#p ∈# ?pairs. ?f (fst p)−?f (snd p) = i #} = sum ′ (λx. G x ∗
G (x+i)) UNIV

(is ?L1 = ?R1) for i
proof −

have ?L1 = size {#p ∈# ?pairs. (?f (fst p),?f (snd p)) ∈ {(x,y). x − y = i}
#}

by simp
also have ... = sum ′ (λq. size {# p ∈# ?pairs. (?f (fst p), ?f (snd p))= q #}

) {(x,y). x−y=i}
unfolding size-filter-mset-decompose ′ by simp

also have ... = sum ′ (λq. size {# p ∈# ?pairs. (?f (fst p), ?f (snd p)) =

21

(q+i,q) #}) UNIV
by (intro arg-cong[where f=real] sum.reindex-bij-betw ′[symmetric] bij-betwI [where

g=snd])
auto

also have ... =
sum ′ (λq. length (filter (λp. ?f (fst p) = q+i ∧ ?f (snd p) = q) (List.product

xs xs))) UNIV
by (simp flip: size-mset mset-filter conj-commute)

also have ... = sum ′ (λx. G (x+i) ∗ G x) UNIV
by (subst filter-product)
(simp add:G-def build-grid-def of-nat-sum ′ case-prod-beta ′ prod-eq-iff)

finally show ?thesis by (simp add:algebra-simps)
qed

have b:f (?f p) − f (?f q) ∈ {−s..s} if f = fst ∨ f = snd dist p q < d for p q f
proof −

have |f (?f p) − f (?f q)| ≤ ddist p q/ee
using grid-dist[OF assms(2), where p=p and q=q] that(1) unfolding

to-grid-def by auto
also have ... ≤ s

unfolding s-def using that(2) assms(1 ,2)
by (simp add: ceiling-mono divide-le-cancel)

finally have |f (?f p) − f (?f q)| ≤ s by simp
thus ?thesis using s-ge-0 by auto

qed

have c:?f p − ?f q ∈ T if dist p q < d for p q
unfolding T-def using b[OF - that] unfolding mem-Times-iff by simp

have ?L = size (filter-mset (λ(p,q). dist p q < d) ?pairs)
unfolding close-point-size-def by (metis mset-filter size-mset)

also have ... ≤ size (filter-mset (λp. ?f (fst p) − ?f (snd p) ∈ T) ?pairs)
using c by (intro size-mset-mono of-nat-mono multiset-filter-mono-2) auto

also have ... = (
∑

i ∈ T . size (filter-mset (λp. ?f (fst p) − ?f (snd p) = i)
?pairs))

by (intro size-filter-mset-decompose arg-cong[where f=of-nat] 0)
also have ... = (

∑
i ∈ T . sum ′ (λx. G x ∗ G (x+i)) UNIV)

unfolding of-nat-sum by (intro sum.cong a refl)
also have ... = ?R unfolding T-def by simp
finally show ?thesis by simp

qed

lemma close-point-approx-lower :
fixes xs :: point list
fixes G :: int × int ⇒ real
fixes d :: real
assumes d > 0
defines G ≡ (λx. real (length (filter (λp. to-grid d p = x) xs)))
shows sum ′ (λx. G x ^ 2) UNIV ≤ close-point-size xs (d ∗ sqrt 2)

22

(is ?L ≤ ?R)
proof −

let ?f = to-grid d
let ?pairs = mset (List.product xs xs)

have ?L = sum ′ (λx. length (filter (λp. ?f p = x) xs)^2) UNIV
unfolding build-grid-def G-def by (simp add:of-nat-sum ′ prod-eq-iff case-prod-beta ′)

also have ... = sum ′(λx. length(List.product (filter(λp. ?f p=x)xs) (filter(λp. ?f
p=x)xs)))UNIV

unfolding length-product by (simp add:power2-eq-square)
also have ... = sum ′ (λx. length (filter(λp. ?f (fst p)=x∧?f (snd p)=x)(List.product

xs xs))) UNIV
by (subst filter-product) simp

also have ... = sum ′ (λx. size {# p ∈# ?pairs. ?f (fst p) = x ∧ ?f (snd p) = x
#}) UNIV

by (intro arg-cong2 [where f=sum ′] arg-cong[where f=real] refl ext)
(metis (no-types, lifting) mset-filter size-mset)

also have ... = sum ′ (λx. size {# p ∈#{# p∈#?pairs. ?f (fst p)=?f (snd p) #}.
?f (fst p)=x #}) UNIV

unfolding filter-filter-mset
by (intro sum.cong ′ arg-cong[where f=real] arg-cong[where f=size] filter-mset-cong)

auto
also have ... = size {# p ∈# {# p ∈# ?pairs. ?f (fst p) = ?f (snd p) #}. ?f

(fst p) ∈ UNIV #}
by (intro arg-cong[where f=real] size-filter-mset-decompose ′[symmetric])

also have ... ≤ size {# p ∈# ?pairs. ?f (fst p) = ?f (snd p) #} by simp
also have ... = size {# p ∈# ?pairs. ∀ k. bfst p $ k/dc = bsnd p $ k/dc #}

unfolding to-grid-def prod.inject
by (intro arg-cong[where f=size] arg-cong[where f=of-nat] filter-mset-cong

refl)
(metis (full-types) exhaust-2 one-neq-zero)

also have ... ≤ size {# p ∈# ?pairs. dist (fst p) (snd p) < d ∗ of-int (0+1) ∗
sqrt 2 #}

by (intro of-nat-mono size-mset-mono multiset-filter-mono-2 grid-dist-upperI [OF
assms(1)]) simp

also have ... = ?R unfolding close-point-size-def
by (simp add:case-prod-beta ′) (metis (no-types, lifting) mset-filter size-mset)

finally show ?thesis by simp
qed

lemma build-grid-finite:
assumes inj f
shows finite {x. filter (λp. to-grid d p = f x) xs 6= []}

proof −
have 0 :finite (to-grid d ‘ set xs) by (intro finite-imageI) auto
have finite {x. filter (λp. to-grid d p = x) xs 6= []}

unfolding filter-empty-conv by (intro finite-subset[OF - 0]) blast
hence finite (f −‘ {x. filter (λp. to-grid d p = x) xs 6= []}) by (intro finite-vimageI

assms)

23

thus ?thesis by (simp add:vimage-def)
qed

Main result of this section:
lemma growth-lemma:

fixes xs :: point list
assumes a > 0 d > 0
shows close-point-size xs (a ∗ d) ≤ (2 ∗ sqrt 2 ∗ a + 3)^2 ∗ close-point-size xs

d
(is ?L ≤ ?R)

proof −
let ?s = da ∗ sqrt 2 e
let ?G = (λx. real (length (filter (λp. to-grid (d/sqrt 2) p = x) xs)))
let ?I = {−?s..?s}×{−?s..?s}

have ?s ≥ 1 using assms by auto
hence s-ge-0 : ?s ≥ 0 by simp

have a: ?s = da ∗ d / (d / sqrt 2)e using assms by simp

have ?L ≤ (
∑

i∈{−?s..?s}×{−?s..?s}. sum ′ (λx. ?G x ∗ ?G (x+i)) UNIV)
using assms unfolding a by (intro close-point-approx-upper) auto

also have ... ≤ (
∑

i∈?I . sqrt (sum ′ (λx. ?G x^2) UNIV) ∗ sqrt (sum ′ (λx. ?G
(x+i)^2) UNIV))

by (intro sum-mono cauchy-schwarz ′) (auto intro: inj-translate build-grid-finite)
also have ... = (

∑
i∈?I . sqrt (sum ′ (λx. ?G x^2) UNIV) ∗ sqrt (sum ′ (λx. ?G

x^2) UNIV))
by (intro arg-cong2 [where f=(λx y. sqrt x ∗ sqrt y)] sum.cong refl

sum.reindex-bij-betw ′ bij-plus-right)
also have ... = (

∑
i∈?I . |sum ′ (λx. ?G x^2) UNIV |) by simp

also have ... = (2∗ ?s + 1)^2 ∗ |sum ′ (λx. ?G x^2) UNIV |
using s-ge-0 by (auto simp: power2-eq-square)

also have ... = (2∗ ?s + 1)^2 ∗ sum ′ (λx. ?G x^2) UNIV
by (intro arg-cong2 [where f=(∗)] refl abs-of-nonneg sum ′-nonneg) auto

also have ... ≤ (2∗?s+1)^2 ∗ real (close-point-size xs ((d/sqrt 2)∗ sqrt 2))
using assms by (intro mult-left-mono close-point-approx-lower) auto

also have ... = (2 ∗ of-int ?s+1)^2 ∗ real (close-point-size xs d) by simp
also have ... ≤ (2 ∗ (a ∗ sqrt 2 + 1) + 1)^2 ∗ real (close-point-size xs d)
using s-ge-0 by (intro mult-right-mono power-mono add-mono mult-left-mono)

auto
also have ... = ?R by (auto simp:algebra-simps)
finally show ?thesis by simp

qed

end

24

4 Speed

In this section, we verify that the running time of the algorithm is linear
with respect to the length of the point sequence p1, . . . , pn.
Proof: It is easy to see that the first phase and construction of the grid
requires time proportional to n. It is also easy to see that the number of
point-comparisons is a bound for the number of operations in the second
phase. It is also possible to observe that the algorithm never compares a
point pair if they are in non-adjacent cells, i.e., if their distance is at least
2d
√
2.

This means we need to show that the expectation of N(2d
√
2) is proportional

to n when d is chosen according to the algorithm in the first phase. Because
of the observation from the last section, i.e., N(2d

√
2) ≤ 112N(d), it is

enough to verify that the expectation of N(d) is linear.
Let us consider all pair distances: d1 := d(p1, p2), d2 := d(p1, p3), . . . , dm :=

d(pn−1, pn) where m = n(n−1)
2 .

Then we can find a permutation σ : {1, . . . ,m} → {1, . . . ,m}, s.t., the
distances are ordered, i.e., dσ(i) ≤ dσ(j) if 1 ≤ i ≤ j ≤ m.
The key observation is that N(dσ(i)) ≤ i−1, because N counts the number of
point pairs which are closer than dσ(i), which can only be those corresponding
to dσ(1), dσ(2), . . . , dσ(i−1).
On the other hand the algorithm chooses the smallest of n random samples
from d1, . . . , dm. So the problem reduces to the computation of the expec-
tation of the smallest element from n random samples from 1, . . . ,m. The
mean of this can be estimated to be m+1

n+1 which is in O(n).
theory Randomized-Closest-Pair-Time

imports
Randomized-Closest-Pair-Growth
Approximate-Model-Counting.ApproxMCAnalysis
Distributed-Distinct-Elements.Distributed-Distinct-Elements-Balls-and-Bins

begin

lemma time-sample-distance: map-pmf time (sample-distance ps) = return-pmf 1
unfolding sample-distance-def time-bind-tpmf
by (simp add:return-tpmf-def bind-return-pmf) (simp add:map-pmf-def [symmetric]

time-lift-pmf)

lemma time-first-phase:
assumes length ps ≥ 2
shows map-pmf time (first-phase ps) = return-pmf (2∗length ps) (is ?L = ?R)

proof −
let ?m = replicate-tpmf (length ps) (sample-distance ps)

have ps-ne: ps 6= [] using assms by auto

25

have ?L = bind-pmf ?m (λx. lift-tm (min-list-tm (val x)) >>= (λy. return-pmf
(time x + time y)))

unfolding first-phase-def time-bind-tpmf by simp
also have . . . = bind-pmf ?m (λx. return-pmf (time x + time (min-list-tm (val

x))))
unfolding lift-tm-def bind-return-pmf by simp

also have . . . = bind-pmf ?m (λx. return-pmf (time x + length (val x)))
using ps-ne set-val-replicate-tpmf (1) by (intro bind-pmf-cong refl

arg-cong[where f=return-pmf] arg-cong2 [where f=(+)] time-min-list)
fastforce

also have . . . = bind-pmf ?m (λx. return-pmf (time x + length ps))
using set-val-replicate-tpmf (1)
by (intro bind-pmf-cong refl arg-cong[where f=return-pmf] arg-cong2 [where

f=(+)]) auto
also have . . . = map-pmf (λx. x + length ps) (map-pmf time ?m)

unfolding map-pmf-def [symmetric] map-pmf-comp by simp
also have . . . = return-pmf (2 ∗ length ps)
unfolding time-replicate-tpmf time-sample-distance by (simp add:sum-list-replicate)

finally show ?thesis by simp
qed

lemma time-build-grid: time (build-grid ps d) = length ps
unfolding build-grid-def by (simp add:time-custom-tick)

lemma time-lookup-neighborhood:
time (lookup-neighborhood (grid ps d) p) ≤ 39+3∗(length(val(lookup-neighborhood

(grid ps d) p)))
(is ?L ≤ ?R)

proof −
define s where s = [(0 , 0), (0 , 1), (1 , − 1), (1 , 0), (1 ::int, 1 ::int)]
define t where t = concat (map (λx. filter (λy. to-grid d y = x + to-grid d p)

ps) s)
define u where u = time (remove1-tm p t)

have t-eq: length t+length s=(
∑

x←s. Suc (length (filter (λy. to-grid d y=x+to-grid
d p) ps)))

unfolding t-def by (induction s) auto

have a:u ≤ 1 + length t unfolding u-def using time-remove1 by auto

have ?L = 5+5∗length s + length t + (length t + length s) + u
unfolding lookup-neighborhood-def s-def [symmetric] t-eq u-def
by (simp add:time-map-tm comp-def grid-def sum-list-triv t-def)

also have . . . = 5+6∗length s + 2∗length t + u by simp
also have . . . ≤ 5+6∗length s + 2∗length t + (1+length t) using a by simp
also have . . . = 36 + 3∗length t unfolding s-def by simp
also have . . . ≤ 36 + 3 ∗ (1+length (remove1 p t))

by (intro add-mono mult-left-mono) (auto simp:length-remove1)
also have . . . = 39 + 3∗(length (val (lookup-neighborhood (grid ps d) p)))

26

unfolding lookup-neighborhood-def s-def [symmetric] t-def
by (simp add:val-remove1 comp-def grid-def)

finally show ?thesis by simp
qed

lemma time-calc-dists-neighborhood:
time (calc-dists-neighborhood (grid ps d) p) ≤
40 + 5 ∗ (length (val (lookup-neighborhood (grid ps d) p))) (is ?L ≤ ?R)

proof −
let ?g = grid ps d
have ?L = 2∗ (length (val (lookup-neighborhood ?g p))) + 1 + time (lookup-neighborhood

?g p)
unfolding calc-dists-neighborhood-def by (simp add:time-map-tm sum-list-triv)

also have . . . ≤ 2∗ (length (val (lookup-neighborhood ?g p))) +1 +
(39 + 3∗ (length (val (lookup-neighborhood ?g p))))
by (intro add-mono mult-right-mono time-lookup-neighborhood) auto

also have . . . = 40 + 5 ∗ (length (val (lookup-neighborhood ?g p))) by simp
finally show ?thesis by simp

qed

lemma time-second-phase:
fixes ps :: point list
assumes d > 0 min-dist ps ≤ d length ps ≥ 2
shows time (second-phase d ps) ≤ 2 + 44 ∗ length ps + 7 ∗ close-point-size ps

(2 ∗ sqrt 2 ∗ d)
(is ?L ≤ ?R)

proof −
define s where s = concat (map (λx. val (calc-dists-neighborhood (val (build-grid

ps d)) x)) ps)

have len-s: length s = (
∑

x←ps. length (val (lookup-neighborhood (grid ps d)
x)))

unfolding s-def by (simp add:calc-dists-neighborhood-def build-grid-val length-concat
comp-def)

also have . . . = (
∑

x←ps. size (mset (val (lookup-neighborhood (grid ps d) x))))
by simp

also have . . . ≤
(
∑

x←ps. size({#y∈# mset ps. to-grid d y−to-grid d x∈{(0 ,0),(0 ,1),(1 ,−1),(1 ,0),(1 ,1)}#}))
unfolding lookup-neighborhood by (intro sum-list-mono size-mset-mono) simp

also have . . . ≤ (
∑

x←ps. size({#y∈# mset ps. ∀ k∈{1 ,2}. |by$k/dc−bx$k/dc|≤1
#}))

unfolding to-grid-def by (intro sum-list-mono size-mset-mono multiset-filter-mono-2)
auto

also have . . . ≤ (
∑

x←ps. size({#y∈# mset ps. dist y x < d ∗ real-of-int (1 +
1) ∗ sqrt 2#}))

using exhaust-2
by (intro sum-list-mono size-mset-mono multiset-filter-mono-2 grid-dist-upperI [OF

assms(1)])
blast

27

also have . . . = (
∑

x←ps. length (filter (λy. dist x y < 2 ∗ sqrt 2 ∗ d) ps))
by (simp add:dist-commute ac-simps) (metis mset-filter size-mset)

also have . . . = close-point-size ps ((2∗ sqrt 2)∗d)
unfolding close-point-size-def product-concat-map filter-concat length-concat
by (simp add:comp-def)

finally have len-s-bound: length s ≤ close-point-size ps (2∗ sqrt 2∗d) by simp

obtain u v where u ∈ set ps v ∈ set (val (lookup-neighborhood (grid ps d) u))
using second-phase-aux[OF assms] that by metis

hence False if length s = 0
using that unfolding len-s sum-list-eq-0-iff by simp

hence s-ne: s 6= [] by auto

have ?L = 2 + 4∗length ps + (length s + time (min-list-tm s)) +
(
∑

i←ps. time (calc-dists-neighborhood (val (build-grid ps d)) i))
unfolding second-phase-def by (simp add:time-map-tm s-def [symmetric] time-build-grid)

also have . . . ≤ 2 + 4∗length ps + (length s + time (min-list-tm s)) +
(
∑

i←ps. 40+5∗ length (val (lookup-neighborhood (grid ps d) i)))
unfolding build-grid-val by (intro add-mono sum-list-mono time-calc-dists-neighborhood)

auto
also have . . . = 2 + 44∗length ps + (length s + time (min-list-tm s)) +
(
∑

i←ps. 5∗ length (val (lookup-neighborhood (grid ps d) i)))
by (simp add:sum-list-addf sum-list-triv)

also have . . . = 2 + 44∗length ps + 7∗(length s)
unfolding time-min-list[OF s-ne] len-s by (simp add:sum-list-const-mult)

also have . . . ≤ 2 + 44∗ length ps + 7 ∗ close-point-size ps (2∗ sqrt 2∗d)
by (intro add-mono mult-left-mono len-s-bound) auto

finally show ?thesis by simp
qed

lemma mono-close-point-size: mono (close-point-size ps)
unfolding close-point-size-def by (intro monoI length-filter-P-impl-Q) auto

lemma close-point-size-bound: close-point-size ps x ≤ length ps^2
unfolding close-point-size-def power2-eq-square using length-filter-le length-product

by metis

lemma map-product: map (map-prod f g) (List.product xs ys) = List.product (map
f xs) (map g ys)

unfolding product-concat-map by (simp add:map-concat comp-def)

lemma close-point-size-bound-2 :
close-point-size ps d ≤ length ps + 2 ∗ card {(u,v). dist (ps!u) (ps!v)<d ∧ u<v
∧ v<length ps}
(is ?L ≤ ?R)

proof −
let ?n = length ps
let ?h = λx. dist (ps ! fst x) (ps ! snd x) < d
have e : List.product ps ps = map (map-prod ((!)ps) ((!) ps)) (List.product

28

[0 ..<?n] [0 ..<?n])
unfolding map-product by (simp add:map-nth)

have ?L = length (filter (λx. dist (ps ! fst x) (ps ! snd x) < d) (List.product[0 ..<?n][0 ..<?n]))
unfolding close-point-size-def e by (simp add:comp-def case-prod-beta ′)

also have . . . = card {x. ?h x ∧ fst x < ?n ∧ snd x < ?n}
by (subst distinct-length-filter) (simp-all add:distinct-product Int-def mem-Times-iff)
also have . . . = card ({x. ?h x∧fst x<?n∧snd x<?n∧fst x 6= snd x}∪{x. ?h

x∧fst x=snd x∧snd x<?n})
by (intro arg-cong[where f=card]) auto

also have . . . ≤ card{x. ?h x∧fst x<?n∧snd x<?n∧fst x 6= snd x}+card{x. ?h
x∧fst x=snd x∧snd x<?n}

by (intro card-Un-le)
also have . . . ≤ card{x. ?h x∧fst x<?n∧snd x<?n∧fst x 6= snd x}+card((λx.

(x,x))‘{k. k<?n})
by (intro add-mono order .refl card-mono finite-imageI) auto

also have . . . ≤ card{x. ?h x∧fst x<?n∧snd x<?n∧fst x 6= snd x}+?n
by (subst card-image) (auto intro:inj-onI)

also have . . . =card ({x. ?h x∧fst x<snd x∧snd x<?n}∪{x. ?h x∧snd x<fst
x∧fst x<?n})+?n

by (intro arg-cong2 [where f=(+)] arg-cong[where f=card]) auto
also have . . . ≤ (card {x. ?h x∧fst x<snd x∧snd x<?n} + card {x. ?h x∧snd

x<fst x∧fst x<?n})+?n
by (intro add-mono card-Un-le order .refl)

also have
. . .=(card{x. ?h x∧fst x<snd x∧snd x<?n}+card (prod.swap‘{x. ?h x∧snd

x<fst x∧fst x<?n}))+?n
by (subst card-image) auto

also have . . . = (card{x. ?h x∧fst x<snd x∧snd x<?n}+card ({x. ?h x∧fst
x<snd x∧snd x<?n}))+?n

by (intro arg-cong2 [where f=(+)] arg-cong[where f=card]) (auto simp:dist-commute)
also have . . . = ?R by (simp add:case-prod-beta ′)
finally show ?thesis by simp

qed

lemma card-card-estimate:
fixes f :: ′a ⇒ (′b :: linorder)
assumes finite S
shows card {x ∈ S . a ≤ card {y ∈ S . f y < f x }} ≤ card S − a (is ?L ≤ ?R)

proof −
define T where T = {x ∈ S . card {y ∈ S . f y < f x} < a}

have T-range: T ⊆ S unfolding T-def by auto
hence fin-T : finite T using assms finite-subset by auto

have d:a ≤ card T ∨ T= S
proof (rule ccontr)

define x where x = arg-min-on f (S−T)

29

assume a:¬(a ≤ card T ∨ T=S)
hence c:S − T 6= {} using T-range by auto
hence b:x ∈ S−T using assms unfolding x-def by (intro arg-min-if-finite)

auto

have False if y ∈ S−T f y < f x for y
using arg-min-if-finite[OF - c] that assms unfolding x-def by auto

hence card {y ∈ S . f y < f x} ≤ card T by (intro card-mono fin-T) auto
also have . . . < a using a by simp
finally have card {y ∈ S . f y < f x} < a by simp
thus False using b unfolding T-def by simp

qed
have ?L = card (S − T) unfolding T-def by (intro arg-cong[where f=card])

auto
also have . . . = card S − card T using fin-T T-range by (intro card-Diff-subset)

auto
also have . . . ≤ card S − a using d by auto
finally show ?thesis by simp

qed

lemma finite-map-pmf :
assumes finite (set-pmf S)
shows finite (set-pmf (map-pmf f S))
using assms by simp

lemma finite-replicate-pmf :
assumes finite (set-pmf S)
shows finite (set-pmf (replicate-pmf n S))
using assms unfolding set-replicate-pmf lists-eq-set
by (simp add:finite-lists-length-eq)

lemma power-sum-approx: (
∑

k<m. (real k)^n) ≤ m^(n+1)/real (n+1)
proof (induction m)

case 0 thus ?case by simp
next

case (Suc m)
have (

∑
k<Suc m. real k ^ n) = (

∑
k<m. real k ^ n) + real m ^ n by simp

also have ... ≤ real m ^ (n+1) / real (n+1) + real m^n by (intro add-mono
Suc order .refl)
also have ... = (real m^(n+1)+(real (m+1)−m)∗real (n+1)∗real m^((n+1)−1))

/ real (n+1)
by (simp add:field-simps)

also have . . . ≤ (real m^(n+1)+(real (m+1)^(n+1)−real m^(n+1))) / real
(n+1)

by (intro divide-right-mono add-mono order .refl power-diff-est-2) simp-all
also have . . . = real (Suc m) ^ (n + 1) / real (n + 1) by simp
finally show ?case by simp

qed

30

lemma exp-close-point-size:
assumes length ps ≥ 2
shows (

∫
d. real (close-point-size ps d) ∂(map-pmf val (first-phase ps))) ≤ 2∗

real (length ps)
(is ?L ≤ ?R)

proof −
let ?n = length ps
define T where T = {i. fst i<snd i∧snd i<?n}
let ?I = {..<?n}
let ?dpmf = map-pmf (λi. dist (ps!fst i) (ps!snd i)) (pmf-of-set T)
let ?q = prod-pmf {..<?n} (λ-. ?dpmf)
let ?h = λx. dist (ps ! fst x) (ps ! snd x)
let ?cps = λd. card {(u,v). dist (ps!u) (ps!v)<d ∧ u<v ∧ v<length ps}
let ?m = ?n ∗ (?n − 1) div 2

have card-T : card T = ?m
proof −

have 2 ∗ card T = 2 ∗ card {(x,y) ∈ {..<?n}×{..<?n}. x < y}
unfolding T-def by (intro arg-cong[where f=card] arg-cong2 [where f=(∗)])

auto
also have . . . = card {..<?n} ∗ (card {..<?n}−1) by (intro card-ordered-pairs)

simp
also have . . . = ?n ∗ (?n−1) by simp
finally have 2 ∗ card T= ?n ∗ (?n−1) by simp
thus ?thesis by simp

qed

have 2 ∗ 1 ≤ ?n ∗ (?n−1) using assms by (intro mult-mono) auto
hence card T > 0 unfolding card-T using assms by (intro div-2-gt-zero) simp
hence T-fin-ne: finite T T 6= {} by (auto simp: card-ge-0-finite)

have x-neI :x 6= [] if x ∈ set-pmf (replicate-pmf ?n ?dpmf) for x
using that assms by (auto simp:set-replicate-pmf)

have a:map-pmf val (first-phase ps) = map-pmf min-list (replicate-pmf ?n ?dpmf)
unfolding first-phase-def val-tpmf-simps val-replicate-tpmf val-sample-distance
T-def [symmetric] map-pmf-def [symmetric] by (intro map-pmf-cong val-min-list

x-neI) auto

hence b: {x. t < ?cps x} = {} if t /∈ {..<?m} for t
proof −

have ?cps x ≤ card T for x
using T-fin-ne(1) unfolding T-def by (intro card-mono) auto

moreover have card T ≤ t using that unfolding card-T by (simp add:not-less)
ultimately have ?cps x ≤ t for x using order .trans by auto
thus ?thesis using not-less by auto

qed

have d: {y. t< ?cps (min-list (map y [0 ..<?n]))} = {..<?n}→{y. t < ?cps y}

31

(is ?L2=?R2) for t
proof (rule Set.set-eqI)

fix x
have x ∈ ?L2 ←→ (t < ?cps (min-list (map x [0 ..<?n]))) by simp
also have . . . ←→ (t < ?cps (Min (x ‘ {0 ..<?n})))

using assms by (subst min-list-Min) auto
also have . . . ←→ (t < Min (?cps ‘ x ‘ {0 ..<?n}))

using assms by (intro arg-cong2 [where f=(<)] mono-Min-commute refl
finite-imageI monoI

card-mono finite-subset[OF - T-fin-ne(1)]) (auto simp:T-def)
also have . . . ←→ (∀ i∈{0 ..<?n}. t < ?cps (x i))

using assms by (subst Min-gr-iff) auto
also have . . . ←→ x ∈ ?R2 by auto
finally show x ∈ ?L2 ←→ x ∈ ?R2 by simp

qed

have c: measure (replicate-pmf ?n ?dpmf) {x. t<?cps(min-list x)}≤(real (?m−(t+1))/real
?m)^?n

(is ?L1 ≤ ?R1) for t
proof −

have ?L1 = measure(replicate-pmf (length [0 ..<?n]) ?dpmf) {x. t < ?cps
(min-list x)}

by simp
also have . . . = measure (map-pmf (λf . map f [0 ..<?n]) (prod-pmf (set[0 ..<?n])(λ-.?dpmf)))
{x. t<?cps(min-list x)}

by (intro arg-cong2 [where f=λx. measure (measure-pmf x)] replicate-pmf-Pi-pmf)
auto

also have . . . = measure ?q {y. t < ?cps (min-list (map y [0 ..<?n]))}
by (simp add:atLeast0LessThan)

also have . . . = measure (prod-pmf {..<?n} (λ-. ?dpmf)) ({..<?n} → {y. t <
?cps y})

unfolding d by simp
also have . . . = measure ?dpmf {y. t < ?cps y}^?n

by (subst measure-Pi-pmf-Pi) simp-all
also have . . . = measure ?dpmf {y. t+1 ≤ ?cps y}^?n

by (intro measure-pmf-cong arg-cong2 [where f=(λx y. x^y)] refl) auto
also have . . . ≤ measure (pmf-of-set T) {y. t+1≤ card {x ∈ T . ?h x<?h

y}}^?n
unfolding T-def by (auto simp:case-prod-beta ′ conj-commute)

also have . . . = (real (card {y∈T . t+1≤ card {x ∈ T . ?h x<?h y}})/real
(card T))^?n

unfolding measure-pmf-of-set[OF T-fin-ne(2 ,1)] Int-def by simp
also have . . . ≤ (real (card T − (t+1))/real (card T))^?n

by (intro power-mono divide-right-mono of-nat-mono card-card-estimate
T-fin-ne) auto

also have ... = (real (?m − (t+1))/real ?m)^?n
unfolding card-T by auto

finally show ?thesis by simp
qed

32

have ennreal ?L = (
∫

ds. real (close-point-size ps (min-list ds)) ∂replicate-pmf
?n ?dpmf)

unfolding a by simp
also have . . . ≤ (

∫
ds. real (?n + 2∗?cps (min-list ds)) ∂replicate-pmf ?n ?dpmf)

using T-fin-ne
by (intro integral-mono-AE ennreal-leI AE-pmfI close-point-size-bound-2 of-nat-mono

integrable-measure-pmf-finite finite-replicate-pmf) auto
also have . . . = ennreal ?n + 2∗ennreal(

∫
ds. real (?cps (min-list ds)) ∂replicate-pmf

?n ?dpmf)
by (simp add:ennreal-mult ′ integrable-measure-pmf-finite finite-replicate-pmf

T-fin-ne)
also have . . . = ennreal ?n + 2∗

∫
+ x. ennreal (real (?cps (min-list x)))

∂replicate-pmf ?n ?dpmf
by (intro arg-cong2 [where f=(+)] arg-cong2 [where f=(∗)] finite-replicate-pmf

nn-integral-eq-integral[symmetric] integrable-measure-pmf-finite) (auto simp:T-fin-ne)
also have . . . = ennreal ?n +2∗

∫
+ x. ennreal-of-enat (?cps (min-list x)) ∂replicate-pmf

?n ?dpmf
by (intro nn-integral-cong arg-cong2 [where f=(+)] arg-cong2 [where f=(∗)]

refl)
(simp add: ennreal-of-nat-eq-real-of-nat)

also have . . . = ennreal ?n +2∗(
∑

t. emeasure (replicate-pmf ?n ?dpmf) {x.
t<?cps (min-list x)})

by (subst nn-integral-enat-function) simp-all
also have . . . =ennreal ?n+2∗(

∑
t<?m. emeasure(replicate-pmf ?n ?dpmf){x.

t<?cps (min-list x)})
using b by (intro arg-cong2 [where f=(+)] arg-cong2 [where f=(∗)] sum-

inf-finite) auto
also have . . . =ennreal ?n+2∗ennreal(

∑
t<?m. measure(replicate-pmf ?n ?dpmf){x.

t<?cps(min-list x)})
unfolding measure-pmf .emeasure-eq-measure by simp

also have . . . ≤ ennreal ?n+2∗ennreal (
∑

t<?m. (real (?m − (t+1))/real
?m)^?n)

by (intro add-mono order .refl iffD2 [OF ennreal-mult-le-mult-iff] ennreal-leI
sum-mono c) auto

also have . . . = ennreal ?n+ennreal (2∗(
∑

t<?m. (real (?m − (t+1))^?n/real
?m^?n)))

using ennreal-mult ′ by (auto simp:algebra-simps power-divide)
also have . . . = ennreal (real ?n + (2∗(

∑
t<?m. (real (?m − (t+1))^?n/real

?m^?n))))
by (intro ennreal-plus[symmetric] mult-nonneg-nonneg sum-nonneg) simp-all

also have . . . = ennreal (real ?n + (2∗(
∑

t<?m. (real (?m − (t+1))^?n))/real
?m^?n))

by (simp add:sum-divide-distrib[symmetric])
also have . . . = ennreal (real ?n + (2∗(

∑
t<?m. (real t^?n))/real ?m^?n))

by (intro arg-cong[where f=ennreal] arg-cong2 [where f=(+)] arg-cong2 [where
f=(∗)]

arg-cong2 [where f=(/)] refl sum.reindex-bij-betw bij-betwI [where g=λx.
?m − (x+1)])

33

auto
also have . . . ≤ ennreal (real ?n + (2 ∗ (real ?m^(?n+1)/real (?n +1)))/real

?m^?n)
by (intro ennreal-leI add-mono divide-right-mono mult-left-mono power-sum-approx)

auto
also have . . . = ennreal (real ?n + (2 ∗ (real ?m^(?n+1)/real ?m^?n)/ real (?n

+1)))
by simp

also have . . . = ennreal (real ?n + ((2 ∗ ?m)/ real (?n+1))) by (simp add:field-simps)
also have . . . = ennreal (real ?n + (?n∗(?n−1)/ real (?n+1)))
by (metis even-mult-iff even-numeral even-two-times-div-two odd-two-times-div-two-nat)
also have . . . = ennreal ((real ?n∗(real ?n+1) +real ?n ∗ (real ?n−real 1)) /

real (?n+1))
using assms by (subst of-nat-diff [symmetric]) (auto simp:field-simps)

also have . . . = ennreal (2∗real ?n ∗ real ?n / real (?n+1))
using assms by (simp add:field-simps)

also have . . . ≤ ennreal (2∗real ?n ∗ real ?n / real ?n)
using assms by (intro ennreal-leI mult-right-mono divide-left-mono mult-pos-pos)

auto
also have . . . = ennreal (2∗real ?n) by simp
finally have ennreal ?L ≤ ennreal (2∗real ?n) by simp
thus ?L ≤ 2∗real ?n by simp

qed

definition time-closest-pair :: real ⇒ real
where time-closest-pair n = 2 + 1740 ∗ n

Main results of this section:
theorem time-closest-pair :

assumes length ps ≥ 2
shows (

∫
x. real (time x) ∂closest-pair ps) ≤ time-closest-pair (length ps) (is ?L

≤ ?R)
proof −

let ?n = length ps
let ?cps = close-point-size ps
let ?p = map-pmf val (first-phase ps)

have (0 ,1) ∈ {i. fst i < snd i ∧ snd i < length ps} using assms by auto
hence a:finite {i. fst i < snd i ∧ snd i < length ps} {i. fst i<snd i ∧ snd i<length

ps} 6= {}
using fin-nat-pairs[where n=length ps] by (auto simp:case-prod-beta ′)

have finite (set-pmf (map-pmf val (sample-distance ps)))
unfolding sample-distance-def val-tpmf-simps map-pmf-def [symmetric] using

a
by (intro finite-map-pmf) auto

hence int[simp]: integrable (measure-pmf (map-pmf val (first-phase ps))) f for f
:: real ⇒ real

34

unfolding first-phase-def val-tpmf-simps val-replicate-tpmf unfolding map-pmf-def [symmetric]
by (metis integrable-measure-pmf-finite finite-replicate-pmf finite-map-pmf)

have map-pmf time (closest-pair ps) = first-phase ps >>=
(λx. return-pmf (if val x = 0 then (tick 0) else second-phase (val x) ps) >>=
(λy. return-pmf (time x + time y)))
using time-first-phase[OF assms]
unfolding closest-pair-def time-bind-tpmf lift-tm-def if-distrib if-distribR by

simp
also have ... = map-pmf (λx. time x + (if val x = 0 then 1 else time (second-phase

(val x) ps)))
(first-phase ps)
unfolding bind-return-pmf map-pmf-def by (simp cong:if-cong)

also have ... = map-pmf (λx. 2∗length ps +
(if val x = 0 then 1 else time (second-phase (val x) ps))) (first-phase ps)
using time-first-phase[OF assms] unfolding map-pmf-eq-return-pmf-iff
by (intro map-pmf-cong refl arg-cong2 [where f=(+)]) simp

also have ... = map-pmf (λx. 2∗length ps + (if x=0 then 1 else time (second-phase
x ps))) ?p

unfolding map-pmf-comp by simp
finally have a:map-pmf time (closest-pair ps) =

map-pmf (λx. 2∗length ps + (if x=0 then 1 else time (second-phase x ps))) ?p
by simp

have (
∫

x. real (time x) ∂closest-pair ps) = (
∫

x. real x ∂map-pmf time (closest-pair
ps))

by simp
also have . . . = (

∫
d. 2 ∗ real ?n + (if d=0 then 1 else time (second-phase d

ps)) ∂?p)
unfolding a by simp

also have . . . ≤ (
∫

d. 2 ∗ real ?n + (if d≤0 then 1 else 2+44∗?n+7∗?cps ((2∗
sqrt 2)∗d)) ∂?p)

using first-phase[OF assms] min-dist-nonneg[OF assms] order .trans unfolding
AE-measure-pmf-iff

by (intro integral-mono-AE int AE-pmfI of-nat-mono mono-intros
time-second-phase[OF - - assms(1)] refl dual-order .not-eq-order-implies-strict)

auto
also have . . . = (

∫
d. 2∗real ?n+(if d≤0 then 1 else 2+44∗real ?n+7∗real(?cps

((2∗ sqrt 2)∗d))) ∂?p)
by (intro integral-cong-AE) simp-all

also have . . . ≤ (
∫

d. 2 ∗ real ?n +
(if d≤0 then 1 else 2+44∗real ?n+7∗((2∗ sqrt 2 ∗ (2∗ sqrt 2)+3)^2 ∗ real

(?cps d))) ∂?p)
using growth-lemma[where a=2∗ sqrt 2]
by (intro integral-mono-AE int AE-pmfI mono-intros mult-right-mono) auto

also have . . . ≤
(
∫

d. 2 ∗ real ?n + (2+44∗real ?n+7∗((2∗ sqrt 2 ∗ (2∗ sqrt 2)+3)^2 ∗ real
(?cps d))) ∂?p)

by (intro integral-mono-AE int AE-pmfI mono-intros mult-right-mono) simp

35

also have . . . = (
∫

d. (2+46∗real ?n)+847 ∗ real (?cps d) ∂?p) by (simp
add:algebra-simps)

also have . . . = (
∫

d. 2+46∗real ?n ∂?p)+(
∫

d. 847∗ real (?cps d) ∂?p)
by (intro Bochner-Integration.integral-add int)

also have . . . = (2+46∗real ?n)+847∗(
∫

d. real (?cps d) ∂?p)
by (intro arg-cong2 [where f=(+)]) simp-all

also have . . . ≤ (2+46∗real ?n)+847∗(2 ∗ real ?n)
by (intro mono-intros mult-left-mono exp-close-point-size assms) simp

also have . . . = 2+1740∗ real ?n by simp
finally show ?thesis unfolding time-closest-pair-def by simp

qed

theorem asymptotic-time-closest-pair :
time-closest-pair ∈ O(λx. x)
unfolding time-closest-pair-def by simp

end

References

[1] B. Banyassady and W. Mulzer. A simple analysis of rabins algorithm for
finding closest pairs. In European Workshop on Computational Geometry
(EuroCG), 2007.

[2] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of
Algorithms, 25(1):19–51, 1997.

[3] S. Fortune and J. Hopcroft. A note on rabin’s nearest-neighbor algo-
rithm. Information Processing Letters, 8(1):20–23, 1979.

[4] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the
closest-pair problem. Information and Computation, 118(1):34–37, 1995.

[5] R. Lipton. Rabin flips a coin. https://rjlipton.com/2009/03/01/
rabin-flips-a-coin/, 2009. Accessed: 2024-08-31.

[6] M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity:
New Directions and Recent Results, pages 21–39, USA, 1976. Academic
Press, Inc.

[7] M. Rau and T. Nipkow. Closest pair of points algorithms. Archive
of Formal Proofs, January 2020. https://isa-afp.org/entries/Closest_
Pair_Points.html, Formal proof development.

[8] M. Rau and T. Nipkow. Verification of closest pair of points algorithms.
In N. Peltier and V. Sofronie-Stokkermans, editors, Automated Reason-
ing, pages 341–357, Cham, 2020. Springer International Publishing.

36

https://rjlipton.com/2009/03/01/rabin-flips-a-coin/
https://rjlipton.com/2009/03/01/rabin-flips-a-coin/
https://isa-afp.org/entries/Closest_Pair_Points.html
https://isa-afp.org/entries/Closest_Pair_Points.html

	Introduction
	Preliminary Algorithms in the Time Monad
	Probabilistic Time Monad
	Randomized Closest Points Algorithm

	Correctness
	Growth of Close Points
	Speed

