
Randomised Social Choice

Manuel Eberl

March 19, 2025

Abstract

This work contains a formalisation of basic Randomised Social
Choice, including Stochastic Dominance and Social Decision Schemes
(SDSs) along with some of their most important properties (Anonymity,
Neutrality, SD-Efficiency, SD-Strategy-Proofness) and two particular
SDSs – Random Dictatorship and Random Serial Dictatorship (with
proofs of the properties that they satisfy). Many important properties
of these concepts are also proven – such as the two equivalent charac-
terisations of Stochastic Dominance and the fact that SD-efficiency of
a lottery only depends on the support.

The entry also provides convenient commands to define Preference
Profiles, prove their well-formedness, and automatically derive restric-
tions that sufficiently nice SDSs need to satisfy on the defined profiles.
(cf. [1])

Currently, the formalisation focuses on weak preferences and Stochas-
tic Dominance (SD), but it should be easy to extend it to other do-
mains – such as strict preferences – or other lottery extensions – such
as Bilinear Dominance or Pairwise Comparison.

Contents
1 Order Relations as Binary Predicates 4

1.1 Basic Operations on Relations 4
1.2 Preorders . 4
1.3 Total preorders . 5
1.4 Orders . 6
1.5 Maximal elements . 6
1.6 Weak rankings . 8
1.7 Rankings . 16

2 Preference Profiles 17
2.1 Pareto dominance . 19
2.2 Preferred alternatives . 20
2.3 Favourite alternatives . 20
2.4 Anonymous profiles . 21

1

2.5 Preference profiles from lists 22
2.6 Automatic evaluation of preference profiles 23

3 Auxiliary facts about PMFs 26
3.1 Definition of von Neumann–Morgenstern utility functions . . 27

4 Stochastic Dominance 28
4.1 Definition of Stochastic Dominance 28
4.2 Stochastic Dominance for preference profiles 30
4.3 SD efficient lotteries . 31
4.4 Equivalence proof . 32
4.5 Existence of SD-efficient lotteries 34

5 Social Decision Schemes 35
5.1 Basic Social Choice definitions 36
5.2 Social Decision Schemes . 36
5.3 Anonymity . 36
5.4 Neutrality . 37
5.5 Ex-post efficiency . 38
5.6 SD efficiency . 39
5.7 Weak strategyproofness . 39
5.8 Strong strategyproofness . 40

6 Lowering Social Decision Schemes 41

7 Random Dictatorship 46
7.1 Anonymity . 47
7.2 Neutrality . 47
7.3 Strong strategyproofness . 48

8 Random Serial Dictatorship 48
8.1 Auxiliary facts about RSD . 50

8.1.1 Pareto-equivalence classes 50
8.1.2 Facts about RSD winners 51

8.2 Proofs of properties . 53
8.2.1 Well-definedness . 53
8.2.2 RD extension . 53
8.2.3 Anonymity . 53
8.2.4 Neutrality . 54
8.2.5 Ex-post efficiency . 54
8.2.6 Strong strategy-proofness 54

9 Automatic definition of Preference Profiles 55
9.1 Automatic definition of preference profiles from tables 55

2

10 Automatic Fact Gathering for Social Decision Schemes 57

3

1 Order Relations as Binary Predicates
theory Order-Predicates
imports

Main
HOL−Library.Disjoint-Sets
HOL−Combinatorics.Permutations
List−Index.List-Index

begin

1.1 Basic Operations on Relations

The type of binary relations
type-synonym ′a relation = ′a ⇒ ′a ⇒ bool

definition map-relation :: (′a ⇒ ′b) ⇒ ′b relation ⇒ ′a relation where
map-relation f R = (λx y. R (f x) (f y))

definition restrict-relation :: ′a set ⇒ ′a relation ⇒ ′a relation where
restrict-relation A R = (λx y. x ∈ A ∧ y ∈ A ∧ R x y)

lemma restrict-relation-restrict-relation [simp]:
restrict-relation A (restrict-relation B R) = restrict-relation (A ∩ B) R
〈proof 〉

lemma restrict-relation-empty [simp]: restrict-relation {} R = (λ- -. False)
〈proof 〉

lemma restrict-relation-UNIV [simp]: restrict-relation UNIV R = R
〈proof 〉

1.2 Preorders

Preorders are reflexive and transitive binary relations.
locale preorder-on =

fixes carrier :: ′a set
fixes le :: ′a relation
assumes not-outside: le x y =⇒ x ∈ carrier le x y =⇒ y ∈ carrier
assumes refl: x ∈ carrier =⇒ le x x
assumes trans: le x y =⇒ le y z =⇒ le x z

begin

lemma carrier-eq: carrier = {x. le x x}
〈proof 〉

lemma preorder-on-map:
preorder-on (f −‘ carrier) (map-relation f le)
〈proof 〉

4

lemma preorder-on-restrict:
preorder-on (carrier ∩ A) (restrict-relation A le)
〈proof 〉

lemma preorder-on-restrict-subset:
A ⊆ carrier =⇒ preorder-on A (restrict-relation A le)
〈proof 〉

lemma restrict-relation-carrier [simp]:
restrict-relation carrier le = le
〈proof 〉

end

1.3 Total preorders

Total preorders are preorders where any two elements are comparable.
locale total-preorder-on = preorder-on +

assumes total: x ∈ carrier =⇒ y ∈ carrier =⇒ le x y ∨ le y x
begin

lemma total ′: ¬le x y =⇒ x ∈ carrier =⇒ y ∈ carrier =⇒ le y x
〈proof 〉

lemma total-preorder-on-map:
total-preorder-on (f −‘ carrier) (map-relation f le)
〈proof 〉

lemma total-preorder-on-restrict:
total-preorder-on (carrier ∩ A) (restrict-relation A le)
〈proof 〉

lemma total-preorder-on-restrict-subset:
A ⊆ carrier =⇒ total-preorder-on A (restrict-relation A le)
〈proof 〉

end

Some fancy notation for order relations
abbreviation (input) weakly-preferred :: ′a ⇒ ′a relation ⇒ ′a ⇒ bool

(‹- �[-] -› [51 ,10 ,51] 60) where
a �[R] b ≡ R a b

definition strongly-preferred (‹- ≺[-] -› [51 ,10 ,51] 60) where
a ≺[R] b ≡ (a �[R] b) ∧ ¬(b �[R] a)

definition indifferent (‹- ∼[-] -› [51 ,10 ,51] 60) where
a ∼[R] b ≡ (a �[R] b) ∧ (b �[R] a)

5

abbreviation (input) weakly-not-preferred (‹- �[-] -› [51 ,10 ,51] 60) where
a �[R] b ≡ b �[R] a
term a �[R] b ←→ b �[R] a

abbreviation (input) strongly-not-preferred (‹- �[-] -› [51 ,10 ,51] 60) where
a �[R] b ≡ b ≺[R] a

context preorder-on
begin

lemma strict-trans: a ≺[le] b =⇒ b ≺[le] c =⇒ a ≺[le] c
〈proof 〉

lemma weak-strict-trans: a �[le] b =⇒ b ≺[le] c =⇒ a ≺[le] c
〈proof 〉

lemma strict-weak-trans: a ≺[le] b =⇒ b �[le] c =⇒ a ≺[le] c
〈proof 〉

end

lemma (in total-preorder-on) not-weakly-preferred-iff :
a ∈ carrier =⇒ b ∈ carrier =⇒ ¬a �[le] b ←→ b ≺[le] a
〈proof 〉

lemma (in total-preorder-on) not-strongly-preferred-iff :
a ∈ carrier =⇒ b ∈ carrier =⇒ ¬a ≺[le] b ←→ b �[le] a
〈proof 〉

1.4 Orders
locale order-on = preorder-on +

assumes antisymmetric: le x y =⇒ le y x =⇒ x = y

locale linorder-on = order-on carrier le + total-preorder-on carrier le for carrier
le

1.5 Maximal elements

Maximal elements are elements in a preorder for which there exists no
strictly greater element.
definition Max-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a set where

Max-wrt-among R A = {x∈A. R x x ∧ (∀ y∈A. R x y −→ R y x)}

lemma Max-wrt-among-cong:
assumes restrict-relation A R = restrict-relation A R ′

shows Max-wrt-among R A = Max-wrt-among R ′ A
〈proof 〉

6

definition Max-wrt :: ′a relation ⇒ ′a set where
Max-wrt R = Max-wrt-among R UNIV

lemma Max-wrt-altdef : Max-wrt R = {x. R x x ∧ (∀ y. R x y −→ R y x)}
〈proof 〉

context preorder-on
begin

lemma Max-wrt-among-preorder :
Max-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le x y −→ le y x}
〈proof 〉

lemma Max-wrt-preorder :
Max-wrt le = {x∈carrier . ∀ y∈carrier . le x y −→ le y x}
〈proof 〉

lemma Max-wrt-among-subset:
Max-wrt-among le A ⊆ carrier Max-wrt-among le A ⊆ A
〈proof 〉

lemma Max-wrt-subset:
Max-wrt le ⊆ carrier
〈proof 〉

lemma Max-wrt-among-nonempty:
assumes B ∩ carrier 6= {} finite (B ∩ carrier)
shows Max-wrt-among le B 6= {}
〈proof 〉

lemma Max-wrt-nonempty:
carrier 6= {} =⇒ finite carrier =⇒ Max-wrt le 6= {}
〈proof 〉

lemma Max-wrt-among-map-relation-vimage:
f −‘ Max-wrt-among le A ⊆ Max-wrt-among (map-relation f le) (f −‘ A)
〈proof 〉

lemma Max-wrt-map-relation-vimage:
f −‘ Max-wrt le ⊆ Max-wrt (map-relation f le)
〈proof 〉

lemma image-subset-vimage-the-inv-into:
assumes inj-on f A B ⊆ A
shows f ‘ B ⊆ the-inv-into A f −‘ B
〈proof 〉

lemma Max-wrt-among-map-relation-bij-subset:

7

assumes bij (f :: ′a ⇒ ′b)
shows f ‘ Max-wrt-among le A ⊆

Max-wrt-among (map-relation (inv f) le) (f ‘ A)
〈proof 〉

lemma Max-wrt-among-map-relation-bij:
assumes bij f
shows f ‘ Max-wrt-among le A = Max-wrt-among (map-relation (inv f) le) (f

‘ A)
〈proof 〉

lemma Max-wrt-map-relation-bij:
bij f =⇒ f ‘ Max-wrt le = Max-wrt (map-relation (inv f) le)
〈proof 〉

lemma Max-wrt-among-mono:
le x y =⇒ x ∈ Max-wrt-among le A =⇒ y ∈ A =⇒ y ∈ Max-wrt-among le A
〈proof 〉

lemma Max-wrt-mono:
le x y =⇒ x ∈ Max-wrt le =⇒ y ∈ Max-wrt le
〈proof 〉

end

context total-preorder-on
begin

lemma Max-wrt-among-total-preorder :
Max-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le y x}
〈proof 〉

lemma Max-wrt-total-preorder :
Max-wrt le = {x∈carrier . ∀ y∈carrier . le y x}
〈proof 〉

lemma decompose-Max:
assumes A: A ⊆ carrier
defines M ≡ Max-wrt-among le A
shows restrict-relation A le = (λx y. x ∈ A ∧ y ∈ M ∨ (y /∈ M ∧ restrict-relation

(A − M) le x y))
〈proof 〉

end

1.6 Weak rankings
inductive of-weak-ranking :: ′alt set list ⇒ ′alt relation where

8

i ≤ j =⇒ i < length xs =⇒ j < length xs =⇒ x ∈ xs ! i =⇒ y ∈ xs ! j =⇒
x �[of-weak-ranking xs] y

lemma of-weak-ranking-Nil [simp]: of-weak-ranking [] = (λ- -. False)
〈proof 〉

lemma of-weak-ranking-Nil ′ [code]: of-weak-ranking [] x y = False
〈proof 〉

lemma of-weak-ranking-Cons [code]:
x �[of-weak-ranking (z#zs)] y ←→ x ∈ z ∧ y ∈

⋃
(set (z#zs)) ∨ x �[of-weak-ranking

zs] y
(is ?lhs ←→ ?rhs)

〈proof 〉

lemma of-weak-ranking-indifference:
assumes A ∈ set xs x ∈ A y ∈ A
shows x �[of-weak-ranking xs] y
〈proof 〉

lemma of-weak-ranking-map:
map-relation f (of-weak-ranking xs) = of-weak-ranking (map ((−‘) f) xs)
〈proof 〉

lemma of-weak-ranking-permute ′:
assumes f permutes (

⋃
(set xs))

shows map-relation f (of-weak-ranking xs) = of-weak-ranking (map ((‘) (inv
f)) xs)
〈proof 〉

lemma of-weak-ranking-permute:
assumes f permutes (

⋃
(set xs))

shows of-weak-ranking (map ((‘) f) xs) = map-relation (inv f) (of-weak-ranking
xs)
〈proof 〉

definition is-weak-ranking where
is-weak-ranking xs ←→ ({} /∈ set xs) ∧

(∀ i j. i < length xs ∧ j < length xs ∧ i 6= j −→ xs ! i ∩ xs ! j = {})

definition is-finite-weak-ranking where
is-finite-weak-ranking xs ←→ is-weak-ranking xs ∧ (∀ x∈set xs. finite x)

definition weak-ranking :: ′alt relation ⇒ ′alt set list where
weak-ranking R = (SOME xs. is-weak-ranking xs ∧ R = of-weak-ranking xs)

lemma is-weak-rankingI [intro?]:
assumes {} /∈ set xs

∧
i j. i < length xs =⇒ j < length xs =⇒ i 6= j =⇒ xs ! i

9

∩ xs ! j = {}
shows is-weak-ranking xs
〈proof 〉

lemma is-weak-ranking-nonempty: is-weak-ranking xs =⇒ {} /∈ set xs
〈proof 〉

lemma is-weak-rankingD:
assumes is-weak-ranking xs i < length xs j < length xs i 6= j
shows xs ! i ∩ xs ! j = {}
〈proof 〉

lemma is-weak-ranking-iff :
is-weak-ranking xs ←→ distinct xs ∧ disjoint (set xs) ∧ {} /∈ set xs
〈proof 〉

lemma is-weak-ranking-rev [simp]: is-weak-ranking (rev xs) ←→ is-weak-ranking
xs
〈proof 〉

lemma is-weak-ranking-map-inj:
assumes is-weak-ranking xs inj-on f (

⋃
(set xs))

shows is-weak-ranking (map ((‘) f) xs)
〈proof 〉

lemma of-weak-ranking-rev [simp]:
of-weak-ranking (rev xs) (x:: ′a) y ←→ of-weak-ranking xs y x
〈proof 〉

lemma is-weak-ranking-Nil [simp, code]: is-weak-ranking []
〈proof 〉

lemma is-finite-weak-ranking-Nil [simp, code]: is-finite-weak-ranking []
〈proof 〉

lemma is-weak-ranking-Cons-empty [simp]:
¬is-weak-ranking ({} # xs) 〈proof 〉

lemma is-finite-weak-ranking-Cons-empty [simp]:
¬is-finite-weak-ranking ({} # xs) 〈proof 〉

lemma is-weak-ranking-singleton [simp]:
is-weak-ranking [x] ←→ x 6= {}
〈proof 〉

lemma is-finite-weak-ranking-singleton [simp]:
is-finite-weak-ranking [x] ←→ x 6= {} ∧ finite x
〈proof 〉

10

lemma is-weak-ranking-append:
is-weak-ranking (xs @ ys) ←→

is-weak-ranking xs ∧ is-weak-ranking ys ∧
(set xs ∩ set ys = {} ∧

⋃
(set xs) ∩

⋃
(set ys) = {})

〈proof 〉

lemma is-weak-ranking-Cons [code]:
is-weak-ranking (x # xs) ←→

x 6= {} ∧ is-weak-ranking xs ∧ x ∩
⋃
(set xs) = {}

〈proof 〉

lemma is-finite-weak-ranking-Cons [code]:
is-finite-weak-ranking (x # xs) ←→

x 6= {} ∧ finite x ∧ is-finite-weak-ranking xs ∧ x ∩
⋃

(set xs) = {}
〈proof 〉

primrec is-weak-ranking-aux where
is-weak-ranking-aux A [] ←→ True
| is-weak-ranking-aux A (x#xs) ←→ x 6= {} ∧

A ∩ x = {} ∧ is-weak-ranking-aux (A ∪ x) xs

lemma is-weak-ranking-aux:
is-weak-ranking-aux A xs ←→ A ∩

⋃
(set xs) = {} ∧ is-weak-ranking xs

〈proof 〉

lemma is-weak-ranking-code [code]:
is-weak-ranking xs ←→ is-weak-ranking-aux {} xs
〈proof 〉

lemma of-weak-ranking-altdef :
assumes is-weak-ranking xs x ∈

⋃
(set xs) y ∈

⋃
(set xs)

shows of-weak-ranking xs x y ←→
find-index ((∈) x) xs ≥ find-index ((∈) y) xs

〈proof 〉

lemma total-preorder-of-weak-ranking:
assumes

⋃
(set xs) = A

assumes is-weak-ranking xs
shows total-preorder-on A (of-weak-ranking xs)
〈proof 〉

lemma restrict-relation-of-weak-ranking-Cons:
assumes is-weak-ranking (A # As)
shows restrict-relation (

⋃
(set As)) (of-weak-ranking (A # As)) = of-weak-ranking

As
〈proof 〉

11

lemmas of-weak-ranking-wf =
total-preorder-of-weak-ranking is-weak-ranking-code insert-commute

lemma total-preorder-on {1 ,2 ,3 ,4 ::nat} (of-weak-ranking [{1 ,3},{2},{4}])
〈proof 〉

context
fixes x :: ′alt set and xs :: ′alt set list
assumes wf : is-weak-ranking (x#xs)

begin

interpretation R: total-preorder-on
⋃
(set (x#xs)) of-weak-ranking (x#xs)

〈proof 〉

lemma of-weak-ranking-imp-in-set:
assumes of-weak-ranking xs a b
shows a ∈

⋃
(set xs) b ∈

⋃
(set xs)

〈proof 〉

lemma of-weak-ranking-Cons ′:
assumes a ∈

⋃
(set (x#xs)) b ∈

⋃
(set (x#xs))

shows of-weak-ranking (x#xs) a b ←→ b ∈ x ∨ (a /∈ x ∧ of-weak-ranking xs a
b)
〈proof 〉

lemma Max-wrt-among-of-weak-ranking-Cons1 :
assumes x ∩ A = {}
shows Max-wrt-among (of-weak-ranking (x#xs)) A = Max-wrt-among (of-weak-ranking

xs) A
〈proof 〉

lemma Max-wrt-among-of-weak-ranking-Cons2 :
assumes x ∩ A 6= {}
shows Max-wrt-among (of-weak-ranking (x#xs)) A = x ∩ A
〈proof 〉

lemma Max-wrt-among-of-weak-ranking-Cons:
Max-wrt-among (of-weak-ranking (x#xs)) A =

(if x ∩ A = {} then Max-wrt-among (of-weak-ranking xs) A else x ∩ A)
〈proof 〉

lemma Max-wrt-of-weak-ranking-Cons:

12

Max-wrt (of-weak-ranking (x#xs)) = x
〈proof 〉

end

lemma Max-wrt-of-weak-ranking:
assumes is-weak-ranking xs
shows Max-wrt (of-weak-ranking xs) = (if xs = [] then {} else hd xs)
〈proof 〉

locale finite-total-preorder-on = total-preorder-on +
assumes finite-carrier [intro]: finite carrier

begin

lemma finite-total-preorder-on-map:
assumes finite (f −‘ carrier)
shows finite-total-preorder-on (f −‘ carrier) (map-relation f le)
〈proof 〉

function weak-ranking-aux :: ′a set ⇒ ′a set list where
weak-ranking-aux {} = []
| A 6= {} =⇒ A ⊆ carrier =⇒ weak-ranking-aux A =

Max-wrt-among le A # weak-ranking-aux (A − Max-wrt-among le A)
| ¬(A ⊆ carrier) =⇒ weak-ranking-aux A = undefined
〈proof 〉
termination 〈proof 〉

lemma weak-ranking-aux-Union:
A ⊆ carrier =⇒

⋃
(set (weak-ranking-aux A)) = A

〈proof 〉

lemma weak-ranking-aux-wf :
A ⊆ carrier =⇒ is-weak-ranking (weak-ranking-aux A)
〈proof 〉

lemma of-weak-ranking-weak-ranking-aux ′:
assumes A ⊆ carrier x ∈ A y ∈ A
shows of-weak-ranking (weak-ranking-aux A) x y ←→ restrict-relation A le x y
〈proof 〉

lemma of-weak-ranking-weak-ranking-aux:
of-weak-ranking (weak-ranking-aux carrier) = le
〈proof 〉

lemma weak-ranking-aux-unique ′:
assumes

⋃
(set As) ⊆ carrier is-weak-ranking As

of-weak-ranking As = restrict-relation (
⋃

(set As)) le
shows As = weak-ranking-aux (

⋃
(set As))

13

〈proof 〉

lemma weak-ranking-aux-unique:
assumes is-weak-ranking As of-weak-ranking As = le
shows As = weak-ranking-aux carrier
〈proof 〉

lemma weak-ranking-total-preorder :
is-weak-ranking (weak-ranking le) of-weak-ranking (weak-ranking le) = le
〈proof 〉

lemma weak-ranking-altdef :
weak-ranking le = weak-ranking-aux carrier
〈proof 〉

lemma weak-ranking-Union:
⋃
(set (weak-ranking le)) = carrier

〈proof 〉

lemma weak-ranking-unique:
assumes is-weak-ranking As of-weak-ranking As = le
shows As = weak-ranking le
〈proof 〉

lemma weak-ranking-permute:
assumes f permutes carrier
shows weak-ranking (map-relation (inv f) le) = map ((‘) f) (weak-ranking le)
〈proof 〉

lemma weak-ranking-index-unique:
assumes is-weak-ranking xs i < length xs j < length xs x ∈ xs ! i x ∈ xs ! j
shows i = j
〈proof 〉

lemma weak-ranking-index-unique ′:
assumes is-weak-ranking xs i < length xs x ∈ xs ! i
shows i = find-index ((∈) x) xs
〈proof 〉

lemma weak-ranking-eqclass1 :
assumes A ∈ set (weak-ranking le) x ∈ A y ∈ A
shows le x y
〈proof 〉

lemma weak-ranking-eqclass2 :
assumes A: A ∈ set (weak-ranking le) x ∈ A and le: le x y le y x
shows y ∈ A
〈proof 〉

lemma hd-weak-ranking:

14

assumes x ∈ hd (weak-ranking le) y ∈ carrier
shows le y x
〈proof 〉

lemma last-weak-ranking:
assumes x ∈ last (weak-ranking le) y ∈ carrier
shows le x y
〈proof 〉

The index in weak ranking of a given alternative. An element with index 0
is first-ranked; larger indices correspond to less-preferred alternatives.
definition weak-ranking-index :: ′a ⇒ nat where

weak-ranking-index x = find-index (λA. x ∈ A) (weak-ranking le)

lemma nth-weak-ranking-index:
assumes x ∈ carrier
shows weak-ranking-index x < length (weak-ranking le)

x ∈ weak-ranking le ! weak-ranking-index x
〈proof 〉

lemma ranking-index-eqI :
i < length (weak-ranking le) =⇒ x ∈ weak-ranking le ! i =⇒ weak-ranking-index

x = i
〈proof 〉

lemma ranking-index-le-iff [simp]:
assumes x ∈ carrier y ∈ carrier
shows weak-ranking-index x ≥ weak-ranking-index y ←→ le x y
〈proof 〉

end

lemma weak-ranking-False [simp]: weak-ranking (λ- -. False) = []
〈proof 〉

lemmas of-weak-ranking-weak-ranking =
finite-total-preorder-on.weak-ranking-total-preorder(2)

lemma finite-total-preorder-on-iff :
finite-total-preorder-on A R ←→ total-preorder-on A R ∧ finite A
〈proof 〉

lemma finite-total-preorder-of-weak-ranking:
assumes

⋃
(set xs) = A is-finite-weak-ranking xs

shows finite-total-preorder-on A (of-weak-ranking xs)
〈proof 〉

lemma weak-ranking-of-weak-ranking:
assumes is-finite-weak-ranking xs

15

shows weak-ranking (of-weak-ranking xs) = xs
〈proof 〉

lemma weak-ranking-eqD:
assumes finite-total-preorder-on alts R1
assumes finite-total-preorder-on alts R2
assumes weak-ranking R1 = weak-ranking R2
shows R1 = R2
〈proof 〉

lemma weak-ranking-eq-iff :
assumes finite-total-preorder-on alts R1
assumes finite-total-preorder-on alts R2
shows weak-ranking R1 = weak-ranking R2 ←→ R1 = R2
〈proof 〉

definition preferred-alts :: ′alt relation ⇒ ′alt ⇒ ′alt set where
preferred-alts R x = {y. y �[R] x}

lemma (in preorder-on) preferred-alts-refl [simp]: x ∈ carrier =⇒ x ∈ preferred-alts
le x
〈proof 〉

lemma (in preorder-on) preferred-alts-altdef :
preferred-alts le x = {y∈carrier . y �[le] x}
〈proof 〉

lemma (in preorder-on) preferred-alts-subset: preferred-alts le x ⊆ carrier
〈proof 〉

1.7 Rankings
definition ranking :: ′a relation ⇒ ′a list where

ranking R = map the-elem (weak-ranking R)

locale finite-linorder-on = linorder-on +
assumes finite-carrier [intro]: finite carrier

begin

sublocale finite-total-preorder-on carrier le
〈proof 〉

lemma singleton-weak-ranking:
assumes A ∈ set (weak-ranking le)
shows is-singleton A
〈proof 〉

16

lemma weak-ranking-ranking: weak-ranking le = map (λx. {x}) (ranking le)
〈proof 〉

end

end

2 Preference Profiles
theory Preference-Profiles
imports

Main
Order-Predicates
HOL−Library.Multiset
HOL−Library.Disjoint-Sets

begin

The type of preference profiles
type-synonym (′agent, ′alt) pref-profile = ′agent ⇒ ′alt relation

locale preorder-family =
fixes dom :: ′a set and carrier :: ′b set and R :: ′a ⇒ ′b relation
assumes nonempty-dom: dom 6= {}
assumes in-dom [simp]: i ∈ dom =⇒ preorder-on carrier (R i)
assumes not-in-dom [simp]: i /∈ dom =⇒ ¬R i x y

begin

lemma not-in-dom ′: i /∈ dom =⇒ R i = (λ- -. False)
〈proof 〉

end

locale pref-profile-wf =
fixes agents :: ′agent set and alts :: ′alt set and R :: (′agent, ′alt) pref-profile
assumes nonempty-agents [simp]: agents 6= {} and nonempty-alts [simp]: alts 6=
{}

assumes prefs-wf [simp]: i ∈ agents =⇒ finite-total-preorder-on alts (R i)
assumes prefs-undefined [simp]: i /∈ agents =⇒ ¬R i x y

begin

lemma finite-alts [simp]: finite alts
〈proof 〉

lemma prefs-wf ′ [simp]:
i ∈ agents =⇒ total-preorder-on alts (R i) i ∈ agents =⇒ preorder-on alts (R i)
〈proof 〉

lemma not-outside:

17

assumes x �[R i] y
shows i ∈ agents x ∈ alts y ∈ alts
〈proof 〉

sublocale preorder-family agents alts R
〈proof 〉

lemmas prefs-undefined ′ = not-in-dom ′

lemma wf-update:
assumes i ∈ agents total-preorder-on alts Ri ′
shows pref-profile-wf agents alts (R(i := Ri ′))
〈proof 〉

lemma wf-permute-agents:
assumes σ permutes agents
shows pref-profile-wf agents alts (R ◦ σ)
〈proof 〉

lemma (in −) pref-profile-eqI :
assumes pref-profile-wf agents alts R1 pref-profile-wf agents alts R2
assumes

∧
x. x ∈ agents =⇒ R1 x = R2 x

shows R1 = R2
〈proof 〉

end

Permutes a preference profile w.r.t. alternatives in the way described in the
paper. This is needed for the definition of neutrality.
definition permute-profile where

permute-profile σ R = (λi x y. R i (inv σ x) (inv σ y))

lemma permute-profile-map-relation:
permute-profile σ R = (λi. map-relation (inv σ) (R i))
〈proof 〉

lemma permute-profile-compose [simp]:
permute-profile σ (R ◦ π) = permute-profile σ R ◦ π
〈proof 〉

lemma permute-profile-id [simp]: permute-profile id R = R
〈proof 〉

lemma permute-profile-o:
assumes bij f bij g
shows permute-profile f (permute-profile g R) = permute-profile (f ◦ g) R
〈proof 〉

lemma (in pref-profile-wf) wf-permute-alts:

18

assumes σ permutes alts
shows pref-profile-wf agents alts (permute-profile σ R)
〈proof 〉

This shows that the above definition is equivalent to that in the paper.
lemma permute-profile-iff [simp]:

fixes R :: (′agent, ′alt) pref-profile
assumes σ permutes alts x ∈ alts y ∈ alts
defines R ′ ≡ permute-profile σ R
shows σ x �[R ′ i] σ y ←→ x �[R i] y
〈proof 〉

2.1 Pareto dominance
definition Pareto :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where

x �[Pareto(R)] y ←→ (∃ j. x �[R j] x) ∧ (∀ i. x �[R i] x −→ x �[R i] y)

A Pareto loser is an alternative that is Pareto-dominated by some other
alternative.
definition pareto-losers :: (′agent, ′alt) pref-profile ⇒ ′alt set where

pareto-losers R = {x. ∃ y. y �[Pareto(R)] x}

lemma pareto-losersI [intro?, simp]: y �[Pareto(R)] x =⇒ x ∈ pareto-losers R
〈proof 〉

context preorder-family
begin

lemma Pareto-iff :
x �[Pareto(R)] y ←→ (∀ i∈dom. x �[R i] y)
〈proof 〉

lemma Pareto-strict-iff :
x ≺[Pareto(R)] y ←→ (∀ i∈dom. x �[R i] y) ∧ (∃ i∈dom. x ≺[R i] y)
〈proof 〉

lemma Pareto-strictI :
assumes

∧
i. i ∈ dom =⇒ x �[R i] y i ∈ dom x ≺[R i] y

shows x ≺[Pareto(R)] y
〈proof 〉

lemma Pareto-strictI ′:
assumes

∧
i. i ∈ dom =⇒ x �[R i] y i ∈ dom ¬x �[R i] y

shows x ≺[Pareto(R)] y
〈proof 〉

sublocale Pareto: preorder-on carrier Pareto(R)
〈proof 〉

19

lemma pareto-loser-in-alts:
assumes x ∈ pareto-losers R
shows x ∈ carrier
〈proof 〉

lemma pareto-losersE :
assumes x ∈ pareto-losers R
obtains y where y ∈ carrier y �[Pareto(R)] x
〈proof 〉

end

2.2 Preferred alternatives
context pref-profile-wf
begin

lemma preferred-alts-subset-alts: preferred-alts (R i) x ⊆ alts (is ?A)
and finite-preferred-alts [simp,intro!]: finite (preferred-alts (R i) x) (is ?B)
〈proof 〉

lemma preferred-alts-altdef :
i ∈ agents =⇒ preferred-alts (R i) x = {y∈alts. y �[R i] x}
〈proof 〉

end

2.3 Favourite alternatives
definition favorites :: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt set where

favorites R i = Max-wrt (R i)

definition favorite :: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt where
favorite R i = the-elem (favorites R i)

definition has-unique-favorites :: (′agent, ′alt) pref-profile ⇒ bool where
has-unique-favorites R ←→ (∀ i. favorites R i = {} ∨ is-singleton (favorites R

i))

context pref-profile-wf
begin

lemma favorites-altdef :
favorites R i = Max-wrt-among (R i) alts
〈proof 〉

lemma favorites-no-agent [simp]: i /∈ agents =⇒ favorites R i = {}
〈proof 〉

20

lemma favorites-altdef ′:
favorites R i = {x∈alts. ∀ y∈alts. x �[R i] y}
〈proof 〉

lemma favorites-subset-alts: favorites R i ⊆ alts
〈proof 〉

lemma finite-favorites [simp, intro]: finite (favorites R i)
〈proof 〉

lemma favorites-nonempty: i ∈ agents =⇒ favorites R i 6= {}
〈proof 〉

lemma favorites-permute:
assumes i: i ∈ agents and perm: σ permutes alts
shows favorites (permute-profile σ R) i = σ ‘ favorites R i
〈proof 〉

lemma has-unique-favorites-altdef :
has-unique-favorites R ←→ (∀ i∈agents. is-singleton (favorites R i))
〈proof 〉

end

locale pref-profile-unique-favorites = pref-profile-wf agents alts R
for agents :: ′agent set and alts :: ′alt set and R +
assumes unique-favorites ′: has-unique-favorites R

begin

lemma unique-favorites: i ∈ agents =⇒ favorites R i = {favorite R i}
〈proof 〉

lemma favorite-in-alts: i ∈ agents =⇒ favorite R i ∈ alts
〈proof 〉

end

2.4 Anonymous profiles
type-synonym (′agent, ′alt) apref-profile = ′alt set list multiset

definition anonymous-profile :: (′agent, ′alt) pref-profile⇒ (′agent, ′alt) apref-profile

where anonymous-profile-auxdef :
anonymous-profile R = image-mset (weak-ranking ◦ R) (mset-set {i. R i 6= (λ-

-. False)})

lemma (in pref-profile-wf) agents-eq:

21

agents = {i. R i 6= (λ- -. False)}
〈proof 〉

lemma (in pref-profile-wf) anonymous-profile-def :
anonymous-profile R = image-mset (weak-ranking ◦ R) (mset-set agents)
〈proof 〉

lemma (in pref-profile-wf) anonymous-profile-permute:
assumes σ permutes alts finite agents
shows anonymous-profile (permute-profile σ R) =

image-mset (map ((‘) σ)) (anonymous-profile R)
〈proof 〉

lemma (in pref-profile-wf) anonymous-profile-update:
assumes i: i ∈ agents and fin [simp]: finite agents and total-preorder-on alts

Ri ′
shows anonymous-profile (R(i := Ri ′)) =

anonymous-profile R − {#weak-ranking (R i)#} + {#weak-ranking
Ri ′#}
〈proof 〉

2.5 Preference profiles from lists
definition prefs-from-table :: (′agent × ′alt set list) list ⇒ (′agent, ′alt) pref-profile
where

prefs-from-table xss = (λi. case-option (λ- -. False) of-weak-ranking (map-of xss
i))

definition prefs-from-table-wf where
prefs-from-table-wf agents alts xss ←→ agents 6= {} ∧ alts 6= {} ∧ distinct (map

fst xss) ∧
set (map fst xss) = agents ∧ (∀ xs∈set (map snd xss).

⋃
(set xs) = alts ∧

is-finite-weak-ranking xs)

lemma prefs-from-table-wfI :
assumes agents 6= {} alts 6= {} distinct (map fst xss)
assumes set (map fst xss) = agents
assumes

∧
xs. xs ∈ set (map snd xss) =⇒

⋃
(set xs) = alts

assumes
∧

xs. xs ∈ set (map snd xss) =⇒ is-finite-weak-ranking xs
shows prefs-from-table-wf agents alts xss
〈proof 〉

lemma prefs-from-table-wfD:
assumes prefs-from-table-wf agents alts xss
shows agents 6= {} alts 6= {} distinct (map fst xss)

and set (map fst xss) = agents
and

∧
xs. xs ∈ set (map snd xss) =⇒

⋃
(set xs) = alts

and
∧

xs. xs ∈ set (map snd xss) =⇒ is-finite-weak-ranking xs
〈proof 〉

22

lemma pref-profile-from-tableI :
prefs-from-table-wf agents alts xss =⇒ pref-profile-wf agents alts (prefs-from-table

xss)
〈proof 〉

lemma prefs-from-table-eqI :
assumes distinct (map fst xs) distinct (map fst ys) set xs = set ys
shows prefs-from-table xs = prefs-from-table ys
〈proof 〉

lemma prefs-from-table-undef :
assumes prefs-from-table-wf agents alts xss i /∈ agents
shows prefs-from-table xss i = (λ- -. False)
〈proof 〉

lemma prefs-from-table-map-of :
assumes prefs-from-table-wf agents alts xss i ∈ agents
shows prefs-from-table xss i = of-weak-ranking (the (map-of xss i))
〈proof 〉

lemma prefs-from-table-update:
fixes x xs
assumes i ∈ set (map fst xs)
defines xs ′ ≡ map (λ(j,y). if j = i then (j, x) else (j, y)) xs
shows (prefs-from-table xs)(i := of-weak-ranking x) =

prefs-from-table xs ′ (is ?lhs = ?rhs)
〈proof 〉

lemma prefs-from-table-swap:
x 6= y =⇒ prefs-from-table ((x,x ′)#(y,y ′)#xs) = prefs-from-table ((y,y ′)#(x,x ′)#xs)
〈proof 〉

lemma permute-prefs-from-table:
assumes σ permutes fst ‘ set xs
shows prefs-from-table xs ◦ σ = prefs-from-table (map (λ(x,y). (inv σ x, y))

xs)
〈proof 〉

lemma permute-profile-from-table:
assumes wf : prefs-from-table-wf agents alts xss
assumes perm: σ permutes alts
shows permute-profile σ (prefs-from-table xss) =

prefs-from-table (map (λ(x,y). (x, map ((‘) σ) y)) xss) (is ?f = ?g)
〈proof 〉

2.6 Automatic evaluation of preference profiles
lemma eval-prefs-from-table [simp]:

23

prefs-from-table []i = (λ- -. False)
prefs-from-table ((i, y) # xs) i = of-weak-ranking y
i 6= j =⇒ prefs-from-table ((j, y) # xs) i = prefs-from-table xs i
〈proof 〉

lemma eval-of-weak-ranking [simp]:
a /∈

⋃
(set xs) =⇒ ¬of-weak-ranking xs a b

b ∈ x =⇒ a ∈
⋃
(set (x#xs)) =⇒ of-weak-ranking (x # xs) a b

b /∈ x =⇒ of-weak-ranking (x # xs) a b ←→ of-weak-ranking xs a b
〈proof 〉

lemma prefs-from-table-cong [cong]:
assumes prefs-from-table xs = prefs-from-table ys
shows prefs-from-table (x#xs) = prefs-from-table (x#ys)
〈proof 〉

definition of-weak-ranking-Collect-ge where
of-weak-ranking-Collect-ge xs x = {y. of-weak-ranking xs y x}

lemma eval-Collect-of-weak-ranking:
Collect (of-weak-ranking xs x) = of-weak-ranking-Collect-ge (rev xs) x
〈proof 〉

lemma of-weak-ranking-Collect-ge-empty [simp]:
of-weak-ranking-Collect-ge [] x = {}
〈proof 〉

lemma of-weak-ranking-Collect-ge-Cons [simp]:
y ∈ x =⇒ of-weak-ranking-Collect-ge (x#xs) y =

⋃
(set (x#xs))

y /∈ x =⇒ of-weak-ranking-Collect-ge (x#xs) y = of-weak-ranking-Collect-ge xs y
〈proof 〉

lemma of-weak-ranking-Collect-ge-Cons ′:
of-weak-ranking-Collect-ge (x#xs) = (λy.

(if y ∈ x then
⋃
(set (x#xs)) else of-weak-ranking-Collect-ge xs y))

〈proof 〉

lemma anonymise-prefs-from-table:
assumes prefs-from-table-wf agents alts xs
shows anonymous-profile (prefs-from-table xs) = mset (map snd xs)
〈proof 〉

lemma prefs-from-table-agent-permutation:
assumes wf : prefs-from-table-wf agents alts xs prefs-from-table-wf agents alts ys
assumes mset-eq: mset (map snd xs) = mset (map snd ys)
obtains π where π permutes agents prefs-from-table xs ◦ π = prefs-from-table

ys
〈proof 〉

24

lemma permute-list-distinct:
assumes f ‘ {..<length xs} ⊆ {..<length xs} distinct xs
shows permute-list f xs = map (λx. xs ! f (index xs x)) xs
〈proof 〉

lemma image-mset-eq-permutation:
assumes {#f x. x ∈# mset-set A#} = {#g x. x ∈# mset-set A#} finite A
obtains π where π permutes A

∧
x. x ∈ A =⇒ g (π x) = f x

〈proof 〉

lemma anonymous-profile-agent-permutation:
assumes eq: anonymous-profile R1 = anonymous-profile R2
assumes wf : pref-profile-wf agents alts R1 pref-profile-wf agents alts R2
assumes fin: finite agents
obtains π where π permutes agents R2 ◦ π = R1
〈proof 〉

end
theory Elections
imports Preference-Profiles
begin

An election consists of a finite set of agents and a finite non-empty set of
alternatives.
locale election =

fixes agents :: ′agent set and alts :: ′alt set
assumes finite-agents [simp, intro]: finite agents
assumes finite-alts [simp, intro]: finite alts
assumes nonempty-agents [simp]: agents 6= {}
assumes nonempty-alts [simp]: alts 6= {}

begin

abbreviation is-pref-profile ≡ pref-profile-wf agents alts

lemma finite-total-preorder-on-iff ′ [simp]:
finite-total-preorder-on alts R ←→ total-preorder-on alts R
〈proof 〉

lemma pref-profile-wfI ′ [intro?]:
(
∧

i. i ∈ agents =⇒ total-preorder-on alts (R i)) =⇒
(
∧

i. i /∈ agents =⇒ R i = (λ- -. False)) =⇒ is-pref-profile R
〈proof 〉

lemma is-pref-profile-update [simp,intro]:
assumes is-pref-profile R total-preorder-on alts Ri ′ i ∈ agents
shows is-pref-profile (R(i := Ri ′))
〈proof 〉

lemma election [simp,intro]: election agents alts

25

〈proof 〉

context
fixes R assumes R: total-preorder-on alts R

begin

interpretation R: total-preorder-on alts R 〈proof 〉

lemma Max-wrt-prefs-finite: finite (Max-wrt R)
〈proof 〉

lemma Max-wrt-prefs-nonempty: Max-wrt R 6= {}
〈proof 〉

lemma maximal-imp-preferred:
x ∈ alts =⇒ Max-wrt R ⊆ preferred-alts R x
〈proof 〉

end

end

end

3 Auxiliary facts about PMFs
theory Lotteries

imports Complex-Main HOL−Probability.Probability
begin

The type of lotteries (a probability mass function)
type-synonym ′alt lottery = ′alt pmf

definition lotteries-on :: ′a set ⇒ ′a lottery set where
lotteries-on A = {p. set-pmf p ⊆ A}

lemma pmf-of-set-lottery:
A 6= {} =⇒ finite A =⇒ A ⊆ B =⇒ pmf-of-set A ∈ lotteries-on B
〈proof 〉

lemma pmf-of-list-lottery:
pmf-of-list-wf xs =⇒ set (map fst xs) ⊆ A =⇒ pmf-of-list xs ∈ lotteries-on A
〈proof 〉

lemma return-pmf-in-lotteries-on [simp,intro]:
x ∈ A =⇒ return-pmf x ∈ lotteries-on A
〈proof 〉

26

end
theory Utility-Functions
imports

Complex-Main
HOL−Probability.Probability
Lotteries
Preference-Profiles

begin

3.1 Definition of von Neumann–Morgenstern utility func-
tions

locale vnm-utility = finite-total-preorder-on +
fixes u :: ′a ⇒ real
assumes utility-le-iff : x ∈ carrier =⇒ y ∈ carrier =⇒ u x ≤ u y ←→ x �[le] y

begin

lemma utility-le: x �[le] y =⇒ u x ≤ u y
〈proof 〉

lemma utility-less-iff :
x ∈ carrier =⇒ y ∈ carrier =⇒ u x < u y ←→ x ≺[le] y
〈proof 〉

lemma utility-less: x ≺[le] y =⇒ u x < u y
〈proof 〉

The following lemma allows us to compute the expected utility by summing
over all indifference classes, using the fact that alternatives in the same
indifference class must have the same utility.
lemma expected-utility-weak-ranking:

assumes p ∈ lotteries-on carrier
shows measure-pmf .expectation p u =

(
∑

A←weak-ranking le. u (SOME x. x ∈ A) ∗ measure-pmf .prob p A)
〈proof 〉

lemma scaled: c > 0 =⇒ vnm-utility carrier le (λx. c ∗ u x)
〈proof 〉

lemma add-right:
assumes

∧
x y. le x y =⇒ f x ≤ f y

shows vnm-utility carrier le (λx. u x + f x)
〈proof 〉

lemma add-left:
(
∧

x y. le x y =⇒ f x ≤ f y) =⇒ vnm-utility carrier le (λx. f x + u x)
〈proof 〉

Given a consistent utility function, any function that assigns equal values to

27

equivalent alternatives can be added to it (scaled with a sufficiently small
ε), again yielding a consistent utility function.
lemma add-epsilon:

assumes A:
∧

x y. le x y =⇒ le y x =⇒ f x = f y
shows ∃ ε>0 . vnm-utility carrier le (λx. u x + ε ∗ f x)
〈proof 〉

lemma diff-epsilon:
assumes

∧
x y. le x y =⇒ le y x =⇒ f x = f y

shows ∃ ε>0 . vnm-utility carrier le (λx. u x − ε ∗ f x)
〈proof 〉

end

end

4 Stochastic Dominance
theory Stochastic-Dominance
imports

Complex-Main
HOL−Probability.Probability
Lotteries
Preference-Profiles
Utility-Functions

begin

4.1 Definition of Stochastic Dominance

This is the definition of stochastic dominance. It lifts a preference relation
on alternatives to the stochastic dominance ordering on lotteries.
definition SD :: ′alt relation ⇒ ′alt lottery relation where

p �[SD(R)] q ←→ p ∈ lotteries-on {x. R x x} ∧ q ∈ lotteries-on {x. R x x} ∧
(∀ x. R x x −→ measure-pmf .prob p {y. y �[R] x} ≥

measure-pmf .prob q {y. y �[R] x})

lemma SD-empty [simp]: SD (λ- -. False) = (λ- -. False)
〈proof 〉

Stochastic dominance over any relation is a preorder.
lemma SD-refl: p �[SD(R)] p ←→ p ∈ lotteries-on {x. R x x}
〈proof 〉

lemma SD-trans [simp, trans]: p �[SD(R)] q =⇒ q �[SD(R)] r =⇒ p �[SD(R)]
r
〈proof 〉

28

lemma SD-is-preorder : preorder-on (lotteries-on {x. R x x}) (SD R)
〈proof 〉

context preorder-on
begin

lemma SD-preorder :
p �[SD(le)] q ←→ p ∈ lotteries-on carrier ∧ q ∈ lotteries-on carrier ∧

(∀ x∈carrier . measure-pmf .prob p (preferred-alts le x) ≥
measure-pmf .prob q (preferred-alts le x))

〈proof 〉

lemma SD-preorderI [intro?]:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
assumes

∧
x. x ∈ carrier =⇒

measure-pmf .prob p (preferred-alts le x) ≥ measure-pmf .prob q
(preferred-alts le x)

shows p �[SD(le)] q
〈proof 〉

lemma SD-preorderD:
assumes p �[SD(le)] q
shows p ∈ lotteries-on carrier q ∈ lotteries-on carrier
and

∧
x. x ∈ carrier =⇒

measure-pmf .prob p (preferred-alts le x) ≥ measure-pmf .prob q
(preferred-alts le x)
〈proof 〉

lemma SD-refl ′ [simp]: p �[SD(le)] p ←→ p ∈ lotteries-on carrier
〈proof 〉

lemma SD-is-preorder ′: preorder-on (lotteries-on carrier) (SD(le))
〈proof 〉

lemma SD-singleton-left:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows return-pmf x �[SD(le)] q ←→ (∀ y∈set-pmf q. x �[le] y)
〈proof 〉

lemma SD-singleton-right:
assumes x: x ∈ carrier and q: q ∈ lotteries-on carrier
shows q �[SD(le)] return-pmf x ←→ (∀ y∈set-pmf q. y �[le] x)
〈proof 〉

lemma SD-strict-singleton-left:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows return-pmf x ≺[SD(le)] q ←→ (∀ y∈set-pmf q. x �[le] y) ∧ (∃ y∈set-pmf

q. (x ≺[le] y))
〈proof 〉

29

lemma SD-strict-singleton-right:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows q ≺[SD(le)] return-pmf x ←→ (∀ y∈set-pmf q. y �[le] x) ∧ (∃ y∈set-pmf

q. (y ≺[le] x))
〈proof 〉

lemma SD-singleton [simp]:
x ∈ carrier =⇒ y ∈ carrier =⇒ return-pmf x �[SD(le)] return-pmf y ←→ x �[le]

y
〈proof 〉

lemma SD-strict-singleton [simp]:
x ∈ carrier =⇒ y ∈ carrier =⇒ return-pmf x ≺[SD(le)] return-pmf y ←→ x ≺[le]

y
〈proof 〉

end

context pref-profile-wf
begin

context
fixes i assumes i: i ∈ agents
begin

interpretation Ri: preorder-on alts R i 〈proof 〉

lemmas SD-singleton-left = Ri.SD-singleton-left
lemmas SD-singleton-right = Ri.SD-singleton-right
lemmas SD-strict-singleton-left = Ri.SD-strict-singleton-left
lemmas SD-strict-singleton-right = Ri.SD-strict-singleton-right
lemmas SD-singleton = Ri.SD-singleton
lemmas SD-strict-singleton = Ri.SD-strict-singleton

end
end

lemmas (in pref-profile-wf) [simp] = SD-singleton SD-strict-singleton

4.2 Stochastic Dominance for preference profiles
context pref-profile-wf
begin

lemma SD-pref-profile:
assumes i ∈ agents
shows p �[SD(R i)] q ←→ p ∈ lotteries-on alts ∧ q ∈ lotteries-on alts ∧

(∀ x∈alts. measure-pmf .prob p (preferred-alts (R i) x) ≥

30

measure-pmf .prob q (preferred-alts (R i) x))
〈proof 〉

lemma SD-pref-profileI [intro?]:
assumes i ∈ agents p ∈ lotteries-on alts q ∈ lotteries-on alts
assumes

∧
x. x ∈ alts =⇒

measure-pmf .prob p (preferred-alts (R i) x) ≥
measure-pmf .prob q (preferred-alts (R i) x)

shows p �[SD(R i)] q
〈proof 〉

lemma SD-pref-profileD:
assumes i ∈ agents p �[SD(R i)] q
shows p ∈ lotteries-on alts q ∈ lotteries-on alts
and

∧
x. x ∈ alts =⇒

measure-pmf .prob p (preferred-alts (R i) x) ≥
measure-pmf .prob q (preferred-alts (R i) x)

〈proof 〉

end

4.3 SD efficient lotteries
definition SD-efficient :: (′agent, ′alt) pref-profile ⇒ ′alt lottery ⇒ bool where

SD-efficient-auxdef :
SD-efficient R p ←→ ¬(∃ q∈lotteries-on {x. ∃ i. R i x x}. q �[Pareto (SD ◦ R)]

p)

context pref-profile-wf
begin

sublocale SD: preorder-family agents lotteries-on alts SD ◦ R 〈proof 〉

A lottery is considered SD-efficient if there is no other lottery such that all
agents weakly prefer the other lottery (w.r.t. stochastic dominance) and at
least one agent strongly prefers the other lottery.
lemma SD-efficient-def :

SD-efficient R p ←→ ¬(∃ q∈lotteries-on alts. q �[Pareto (SD ◦ R)] p)
〈proof 〉

lemma SD-efficient-def ′:
SD-efficient R p ←→
¬(∃ q∈lotteries-on alts. (∀ i∈agents. q �[SD(R i)] p) ∧ (∃ i∈agents. q �[SD(R

i)] p))
〈proof 〉

lemma SD-inefficientI :
assumes q ∈ lotteries-on alts

∧
i. i ∈ agents =⇒ q �[SD(R i)] p

31

i ∈ agents q �[SD(R i)] p
shows ¬SD-efficient R p
〈proof 〉

lemma SD-inefficientI ′:
assumes q ∈ lotteries-on alts

∧
i. i ∈ agents =⇒ q �[SD(R i)] p

∃ i ∈ agents. q �[SD(R i)] p
shows ¬SD-efficient R p
〈proof 〉

lemma SD-inefficientE :
assumes ¬SD-efficient R p
obtains q i where

q ∈ lotteries-on alts
∧

i. i ∈ agents =⇒ q �[SD(R i)] p
i ∈ agents q �[SD(R i)] p
〈proof 〉

lemma SD-efficientD:
assumes SD-efficient R p q ∈ lotteries-on alts

and
∧

i. i ∈ agents =⇒ q �[SD(R i)] p ∃ i∈agents. ¬(q �[SD(R i)] p)
shows False
〈proof 〉

lemma SD-efficient-singleton-iff :
assumes [simp]: x ∈ alts
shows SD-efficient R (return-pmf x) ←→ x /∈ pareto-losers R
〈proof 〉

end

4.4 Equivalence proof

We now show that a lottery is preferred w.r.t. Stochastic Dominance iff it
yields more expected utility for all compatible utility functions.
context finite-total-preorder-on
begin

abbreviation is-vnm-utility ≡ vnm-utility carrier le

lemma utility-weak-ranking-index:
is-vnm-utility (λx. real (length (weak-ranking le) − weak-ranking-index x))
〈proof 〉

lemma SD-iff-expected-utilities-le:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows p �[SD(le)] q ←→

(∀ u. is-vnm-utility u −→ measure-pmf .expectation p u ≤ mea-
sure-pmf .expectation q u)

32

〈proof 〉

lemma not-strict-SD-iff :
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows ¬(p ≺[SD(le)] q) ←→

(∃ u. is-vnm-utility u ∧ measure-pmf .expectation q u ≤ measure-pmf .expectation
p u)
〈proof 〉

lemma strict-SD-iff :
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows (p ≺[SD(le)] q) ←→

(∀ u. is-vnm-utility u −→ measure-pmf .expectation p u < mea-
sure-pmf .expectation q u)
〈proof 〉

end

end

theory SD-Efficiency
imports Complex-Main Preference-Profiles Lotteries Stochastic-Dominance
begin

context pref-profile-wf
begin

lemma SD-inefficient-support-subset:
assumes inefficient: ¬SD-efficient R p ′

assumes support: set-pmf p ′ ⊆ set-pmf p
assumes lotteries: p ∈ lotteries-on alts
shows ¬SD-efficient R p
〈proof 〉

lemma SD-efficient-support-subset:
assumes SD-efficient R p set-pmf p ′ ⊆ set-pmf p p ∈ lotteries-on alts
shows SD-efficient R p ′

〈proof 〉

lemma SD-efficient-same-support:
assumes set-pmf p = set-pmf p ′ p ∈ lotteries-on alts
shows SD-efficient R p ←→ SD-efficient R p ′

〈proof 〉

lemma SD-efficient-iff :
assumes p ∈ lotteries-on alts

33

shows SD-efficient R p ←→ SD-efficient R (pmf-of-set (set-pmf p))
〈proof 〉

lemma SD-efficient-no-pareto-loser :
assumes efficient: SD-efficient R p and p-wf : p ∈ lotteries-on alts
shows set-pmf p ∩ pareto-losers R = {}
〈proof 〉

Given two lotteries with the same support where one is strictly Pareto-
SD-preferred to the other, one can construct a third lottery that is weakly
Pareto-SD-preferred to the better lottery (and therefore strictly Pareto-SD-
preferred to the worse lottery) and whose support is a strict subset of the
original supports.
lemma improve-lottery-support-subset:

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts q �[Pareto(SD ◦ R)] p
set-pmf p = set-pmf q

obtains r where r ∈ lotteries-on alts r �[Pareto(SD ◦ R)] q set-pmf r ⊂ set-pmf
p
〈proof 〉

4.5 Existence of SD-efficient lotteries

In this section, we will show that any lottery can be ‘improved’ to an SD-
efficient lottery, i.e. for any lottery, there exists an SD-efficient lottery that
is weakly SD-preferred to the original one by all agents.
context

fixes p :: ′alt lottery
assumes lott: p ∈ lotteries-on alts

begin

private definition improve-lottery :: ′alt lottery ⇒ ′alt lottery where
improve-lottery q = (let A = {r∈lotteries-on alts. r �[Pareto(SD◦R)] q} in

(SOME r . r ∈ A ∧ ¬(∃ r ′∈A. set-pmf r ′ ⊂ set-pmf r)))

private lemma improve-lottery:
assumes ¬SD-efficient R q
defines r ≡ improve-lottery q
shows r ∈ lotteries-on alts r �[Pareto(SD◦R)] q∧

r ′. r ′ ∈ lotteries-on alts =⇒ r ′ �[Pareto(SD◦R)] q =⇒ ¬(set-pmf r ′ ⊂
set-pmf r)
〈proof 〉 fun sd-chain :: nat ⇒ ′alt lottery option where

sd-chain 0 = Some p
| sd-chain (Suc n) =

(case sd-chain n of
None ⇒ None
| Some p ⇒ if SD-efficient R p then None else Some (improve-lottery p))

private lemma sd-chain-None-propagate:

34

m ≥ n =⇒ sd-chain n = None =⇒ sd-chain m = None
〈proof 〉 lemma sd-chain-Some-propagate:
m ≥ n =⇒ sd-chain m = Some q =⇒ ∃ q ′. sd-chain n = Some q ′

〈proof 〉 lemma sd-chain-NoneD:
sd-chain n = None =⇒ ∃n p. sd-chain n = Some p ∧ SD-efficient R p
〈proof 〉 lemma sd-chain-lottery: sd-chain n = Some q =⇒ q ∈ lotteries-on alts
〈proof 〉 lemma sd-chain-Suc:
assumes sd-chain m = Some q
assumes sd-chain (Suc m) = Some r
shows q ≺[Pareto(SD◦R)] r
〈proof 〉 lemma sd-chain-strictly-preferred:
assumes m < n
assumes sd-chain m = Some q
assumes sd-chain n = Some s
shows q ≺[Pareto(SD◦R)] s
〈proof 〉 lemma sd-chain-preferred:
assumes m ≤ n
assumes sd-chain m = Some q
assumes sd-chain n = Some s
shows q �[Pareto(SD◦R)] s
〈proof 〉

lemma SD-efficient-lottery-exists:
obtains q where q ∈ lotteries-on alts q �[Pareto(SD◦R)] p SD-efficient R q
〈proof 〉

end

lemma
assumes p ∈ lotteries-on alts
shows ∃ q∈lotteries-on alts. q �[Pareto(SD◦R)] p ∧ SD-efficient R q
〈proof 〉

end

end

5 Social Decision Schemes
theory Social-Decision-Schemes
imports

Complex-Main
HOL−Probability.Probability
Preference-Profiles
Elections
Order-Predicates
Stochastic-Dominance
SD-Efficiency

begin

35

5.1 Basic Social Choice definitions
context election
begin

The set of lotteries, i.e. the probability mass functions on the type ′alt whose
support is a subset of the alternative set.
abbreviation lotteries where

lotteries ≡ lotteries-on alts

The probability that a lottery returns an alternative that is in the given set
abbreviation lottery-prob :: ′alt lottery ⇒ ′alt set ⇒ real where

lottery-prob ≡ measure-pmf .prob

lemma lottery-prob-alts-superset:
assumes p ∈ lotteries alts ⊆ A
shows lottery-prob p A = 1
〈proof 〉

lemma lottery-prob-alts: p ∈ lotteries =⇒ lottery-prob p alts = 1
〈proof 〉

end

In the context of an election, a preference profile is a function that assigns
to each agent her preference relation (which is a total preorder)

5.2 Social Decision Schemes

In the context of an election, a Social Decision Scheme (SDS) is a function
that maps preference profiles to lotteries on the alternatives.
locale social-decision-scheme = election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes sds :: (′agent, ′alt) pref-profile ⇒ ′alt lottery
assumes sds-wf : is-pref-profile R =⇒ sds R ∈ lotteries

5.3 Anonymity

An SDS is anonymous if permuting the agents in the input does not change
the result.
locale anonymous-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes anonymous: π permutes agents =⇒ is-pref-profile R =⇒ sds (R ◦ π) =

sds R
begin

lemma anonymity-prefs-from-table:

36

assumes prefs-from-table-wf agents alts xs prefs-from-table-wf agents alts ys
assumes mset (map snd xs) = mset (map snd ys)
shows sds (prefs-from-table xs) = sds (prefs-from-table ys)
〈proof 〉

context
begin
qualified lemma anonymity-prefs-from-table-aux:

assumes R1 = prefs-from-table xs prefs-from-table-wf agents alts xs
assumes R2 = prefs-from-table ys prefs-from-table-wf agents alts ys
assumes mset (map snd xs) = mset (map snd ys)
shows sds R1 = sds R2 〈proof 〉

end

end

5.4 Neutrality

An SDS is neutral if permuting the alternatives in the input does not change
the result, modulo the equivalent permutation in the output lottery.
locale neutral-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes neutral: σ permutes alts =⇒ is-pref-profile R =⇒

sds (permute-profile σ R) = map-pmf σ (sds R)
begin

Alternative formulation of neutrality that shows that our definition is equiv-
alent to that in the paper.
lemma neutral ′:

assumes σ permutes alts
assumes is-pref-profile R
assumes a ∈ alts
shows pmf (sds (permute-profile σ R)) (σ a) = pmf (sds R) a
〈proof 〉

end

locale an-sds =
anonymous-sds agents alts sds + neutral-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds

begin

lemma sds-anonymous-neutral:
assumes perm: σ permutes alts and wf : is-pref-profile R1 is-pref-profile R2
assumes eq: anonymous-profile R1 =

image-mset (map ((‘) σ)) (anonymous-profile R2)
shows sds R1 = map-pmf σ (sds R2)

37

〈proof 〉

lemma sds-anonymous-neutral ′:
assumes perm: σ permutes alts and wf : is-pref-profile R1 is-pref-profile R2
assumes eq: anonymous-profile R1 =

image-mset (map ((‘) σ)) (anonymous-profile R2)
shows pmf (sds R1) (σ x) = pmf (sds R2) x
〈proof 〉

lemma sds-automorphism:
assumes perm: σ permutes alts and wf : is-pref-profile R
assumes eq: image-mset (map ((‘) σ)) (anonymous-profile R) = anonymous-profile

R
shows map-pmf σ (sds R) = sds R
〈proof 〉

end

lemma an-sds-automorphism-aux:
assumes wf : prefs-from-table-wf agents alts yss R ≡ prefs-from-table yss
assumes an: an-sds agents alts sds
assumes eq: mset (map ((map ((‘) (permutation-of-list xs))) ◦ snd) yss) = mset

(map snd yss)
assumes perm: set (map fst xs) ⊆ alts set (map snd xs) = set (map fst xs)

distinct (map fst xs)
and x: x ∈ alts y = permutation-of-list xs x

shows pmf (sds R) x = pmf (sds R) y
〈proof 〉

5.5 Ex-post efficiency
locale ex-post-efficient-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes ex-post-efficient:

is-pref-profile R =⇒ set-pmf (sds R) ∩ pareto-losers R = {}
begin

lemma ex-post-efficient ′:
assumes is-pref-profile R y �[Pareto(R)] x
shows pmf (sds R) x = 0
〈proof 〉

lemma ex-post-efficient ′′:
assumes is-pref-profile R i ∈ agents ∀ i∈agents. y �[R i] x ¬y �[R i] x
shows pmf (sds R) x = 0
〈proof 〉

end

38

5.6 SD efficiency

An SDS is SD-efficient if it returns an SD-efficient lottery for every preference
profile, i.e. if the SDS outputs a lottery, it is never the case that there is
another lottery that is weakly preferred by all agents an strictly preferred
by at least one agent.
locale sd-efficient-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes SD-efficient: is-pref-profile R =⇒ SD-efficient R (sds R)

begin

An alternative formulation of SD-efficiency that is somewhat more conve-
nient to use.
lemma SD-efficient ′:

assumes is-pref-profile R q ∈ lotteries
assumes

∧
i. i ∈ agents =⇒ q �[SD(R i)] sds R i ∈ agents q �[SD(R i)] sds R

shows P
〈proof 〉

Any SD-efficient SDS is also ex-post efficient.
sublocale ex-post-efficient-sds
〈proof 〉

The following rule can be used to derive facts from inefficient supports: If a
set of alternatives is an inefficient support, at least one of the alternatives
in it must receive probability 0.
lemma SD-inefficient-support:

assumes A: A 6= {} A ⊆ alts and inefficient: ¬SD-efficient R (pmf-of-set A)
assumes wf : is-pref-profile R
shows ∃ x∈A. pmf (sds R) x = 0
〈proof 〉

lemma SD-inefficient-support ′:
assumes wf : is-pref-profile R
assumes A: A 6= {} A ⊆ alts and

wit: p ∈ lotteries ∀ i∈agents. p �[SD(R i)] pmf-of-set A i ∈ agents
¬p �[SD(R i)] pmf-of-set A

shows ∃ x∈A. pmf (sds R) x = 0
〈proof 〉

end

5.7 Weak strategyproofness
context social-decision-scheme
begin

The SDS is said to be manipulable for a particular preference profile, a
particular agent, and a particular alternative preference ordering for that

39

agent if the lottery obtained if the agent submits the alternative preferences
strictly SD-dominates that obtained if the original preferences are submit-
ted. (SD-dominated w.r.t. the original preferences)
definition manipulable-profile

:: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt relation ⇒ bool where
manipulable-profile R i Ri ′←→ sds (R(i := Ri ′)) �[SD (R i)] sds R

end

An SDS is weakly strategyproof (or just strategyproof) if it is not manip-
ulable for any combination of preference profiles, agents, and alternative
preference relations.
locale strategyproof-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ total-preorder-on alts Ri ′ =⇒
¬manipulable-profile R i Ri ′

5.8 Strong strategyproofness
context social-decision-scheme
begin

The SDS is said to be strongly strategyproof for a particular preference
profile, a particular agent, and a particular alternative preference ordering
for that agent if the lottery obtained if the agent submits the alternative
preferences is SD-dominated by the one obtained if the original preferences
are submitted. (SD-dominated w.r.t. the original preferences)
In other words: the SDS is strategyproof w.r.t the preference profile R and
the agent i and the alternative preference relation R′

i if the lottery for ob-
tained for R is at least as good for i as the lottery obtained when i misrep-
resents her preferences as R′

i.
definition strongly-strategyproof-profile

:: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt relation ⇒ bool where
strongly-strategyproof-profile R i Ri ′←→ sds R �[SD (R i)] sds (R(i := Ri ′))

lemma strongly-strategyproof-profileI [intro]:
assumes is-pref-profile R total-preorder-on alts Ri ′ i ∈ agents
assumes

∧
x. x ∈ alts =⇒ lottery-prob (sds (R(i := Ri ′))) (preferred-alts (R i)

x)
≤ lottery-prob (sds R) (preferred-alts (R i) x)

shows strongly-strategyproof-profile R i Ri ′
〈proof 〉

lemma strongly-strategyproof-imp-not-manipulable:
assumes strongly-strategyproof-profile R i Ri ′
shows ¬manipulable-profile R i Ri ′

40

〈proof 〉

end

An SDS is strongly strategyproof if it is strongly strategyproof for all com-
binations of preference profiles, agents, and alternative preference relations.
locale strongly-strategyproof-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes strongly-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ total-preorder-on alts Ri ′ =⇒
strongly-strategyproof-profile R i Ri ′

begin

Any SDS that is strongly strategyproof is also weakly strategyproof.
sublocale strategyproof-sds
〈proof 〉

end

locale strategyproof-an-sds =
strategyproof-sds agents alts sds + an-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds

end

6 Lowering Social Decision Schemes
theory SDS-Lowering
imports Social-Decision-Schemes
begin

definition lift-pref-profile ::
′agent set ⇒ ′alt set ⇒ ′agent set ⇒ ′alt set ⇒
(′agent, ′alt) pref-profile ⇒ (′agent, ′alt) pref-profile where

lift-pref-profile agents alts agents ′ alts ′ R = (λi x y.
x ∈ alts ′ ∧ y ∈ alts ′ ∧ i ∈ agents ′ ∧
(x = y ∨ x /∈ alts ∨ i /∈ agents ∨ (y ∈ alts ∧ R i x y)))

lemma lift-pref-profile-wf :
assumes pref-profile-wf agents alts R
assumes agents ⊆ agents ′ alts ⊆ alts ′ finite alts ′

defines R ′ ≡ lift-pref-profile agents alts agents ′ alts ′ R
shows pref-profile-wf agents ′ alts ′ R ′

〈proof 〉

lemma lift-pref-profile-permute-agents:
assumes π permutes agents agents ⊆ agents ′

41

shows lift-pref-profile agents alts agents ′ alts ′ (R ◦ π) =
lift-pref-profile agents alts agents ′ alts ′ R ◦ π

〈proof 〉

lemma lift-pref-profile-permute-alts:
assumes σ permutes alts alts ⊆ alts ′

shows lift-pref-profile agents alts agents ′ alts ′ (permute-profile σ R) =
permute-profile σ (lift-pref-profile agents alts agents ′ alts ′ R)

〈proof 〉

lemma lotteries-on-subset: A ⊆ B =⇒ p ∈ lotteries-on A =⇒ p ∈ lotteries-on B
〈proof 〉

lemma lottery-prob-carrier : p ∈ lotteries-on A =⇒ measure-pmf .prob p A = 1
〈proof 〉

context
fixes agents alts R agents ′ alts ′ R ′

assumes R-wf : pref-profile-wf agents alts R
assumes election: agents ⊆ agents ′ alts ⊆ alts ′ alts 6= {} agents 6= {} finite alts ′

defines R ′ ≡ lift-pref-profile agents alts agents ′ alts ′ R
begin

interpretation R: pref-profile-wf agents alts R 〈proof 〉
interpretation R ′: pref-profile-wf agents ′ alts ′ R ′

〈proof 〉

lemma lift-pref-profile-strict-iff :
x ≺[lift-pref-profile agents alts agents ′ alts ′ R i] y ←→

i ∈ agents ∧ ((y ∈ alts ∧ x ∈ alts ′ − alts) ∨ x ≺[R i] y)
〈proof 〉

lemma preferred-alts-lift-pref-profile:
assumes i: i ∈ agents ′ and x: x ∈ alts ′

shows preferred-alts (R ′ i) x =
(if i ∈ agents ∧ x ∈ alts then preferred-alts (R i) x else alts ′)

〈proof 〉

lemma lift-pref-profile-Pareto-iff :
x �[Pareto(R ′)] y ←→ x ∈ alts ′ ∧ y ∈ alts ′ ∧ (x /∈ alts ∨ x �[Pareto(R)] y)
〈proof 〉

lemma lift-pref-profile-Pareto-strict-iff :
x ≺[Pareto(R ′)] y ←→ x ∈ alts ′ ∧ y ∈ alts ′ ∧ (x /∈ alts ∧ y ∈ alts ∨ x ≺[Pareto(R)]

y)
〈proof 〉

lemma pareto-losers-lift-pref-profile:

42

shows pareto-losers R ′ = pareto-losers R ∪ (alts ′ − alts)
〈proof 〉

context
begin
private lemma lift-SD-iff-agent:

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents
shows p �[SD(R ′ i)] q ←→ p �[SD(R i)] q
〈proof 〉 lemma lift-SD-iff-nonagent:

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents ′ − agents
shows p �[SD(R ′ i)] q
〈proof 〉

lemmas lift-SD-iff = lift-SD-iff-agent lift-SD-iff-nonagent

lemma lift-SD-iff ′:
p ∈ lotteries-on alts =⇒ q ∈ lotteries-on alts =⇒ i ∈ agents ′ =⇒

p �[SD(R ′ i)] q ←→ i /∈ agents ∨ p �[SD(R i)] q
〈proof 〉

end

lemma lift-SD-strict-iff :
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents
shows p ≺[SD(R ′ i)] q ←→ p ≺[SD(R i)] q
〈proof 〉

lemma lift-Pareto-SD-iff :
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts
shows p �[Pareto(SD ◦ R ′)] q ←→ p �[Pareto(SD ◦ R)] q
〈proof 〉

lemma lift-Pareto-SD-strict-iff :
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts
shows p ≺[Pareto(SD ◦ R ′)] q ←→ p ≺[Pareto(SD ◦ R)] q
〈proof 〉

lemma lift-SD-efficient-iff :
assumes p: p ∈ lotteries-on alts
shows SD-efficient R ′ p ←→ SD-efficient R p
〈proof 〉

end

locale sds-lowering =
ex-post-efficient-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds +
fixes agents ′ alts ′

43

assumes agents ′-subset: agents ′ ⊆ agents and alts ′-subset: alts ′ ⊆ alts
and agents ′-nonempty [simp]: agents ′ 6= {} and alts ′-nonempty [simp]: alts ′

6= {}
begin

lemma finite-agents ′ [simp]: finite agents ′

〈proof 〉

lemma finite-alts ′ [simp]: finite alts ′

〈proof 〉

abbreviation lift :: (′agent, ′alt) pref-profile ⇒ (′agent, ′alt) pref-profile where
lift ≡ lift-pref-profile agents ′ alts ′ agents alts

definition lowered :: (′agent, ′alt) pref-profile ⇒ ′alt lottery where
lowered = sds ◦ lift

lemma lift-wf [simp, intro]:
pref-profile-wf agents ′ alts ′ R =⇒ is-pref-profile (lift R)
〈proof 〉

sublocale lowered: election agents ′ alts ′

〈proof 〉

lemma preferred-alts-lift:
lowered.is-pref-profile R =⇒ i ∈ agents =⇒ x ∈ alts =⇒

preferred-alts (lift R i) x =
(if i ∈ agents ′ ∧ x ∈ alts ′ then preferred-alts (R i) x else alts)

〈proof 〉

lemma pareto-losers-lift:
lowered.is-pref-profile R =⇒ pareto-losers (lift R) = pareto-losers R ∪ (alts −

alts ′)
〈proof 〉

lemma lowered-lotteries: lowered.lotteries ⊆ lotteries
〈proof 〉

sublocale lowered: social-decision-scheme agents ′ alts ′ lowered
〈proof 〉

sublocale ex-post-efficient-sds agents ′ alts ′ lowered
〈proof 〉

lemma lowered-in-lotteries [simp]: lowered.is-pref-profile R =⇒ lowered R ∈ lot-
teries
〈proof 〉

end

44

locale sds-lowering-anonymous =
anonymous-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale lowered: anonymous-sds agents ′ alts ′ lowered
〈proof 〉

end

locale sds-lowering-neutral =
neutral-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale lowered: neutral-sds agents ′ alts ′ lowered
〈proof 〉

end

locale sds-lowering-sd-efficient =
sd-efficient-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale sd-efficient-sds agents ′ alts ′ lowered
〈proof 〉

end

locale sds-lowering-strategyproof =
strategyproof-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale strategyproof-sds agents ′ alts ′ lowered
〈proof 〉

end

45

locale sds-lowering-anonymous-neutral-sdeff-stratproof =
sds-lowering-anonymous + sds-lowering-neutral +
sds-lowering-sd-efficient + sds-lowering-strategyproof

end

7 Random Dictatorship
theory Random-Dictatorship
imports

Complex-Main
Social-Decision-Schemes

begin

We define Random Dictatorship as a social decision scheme on total pre-
orders (i.e. agents are allowed to have ties in their rankings) by first se-
lecting an agent uniformly at random and then selecting one of that agents’
most preferred alternatives uniformly at random. Note that this definition
also works for weak preferences.
definition random-dictatorship :: ′agent set ⇒ ′alt set ⇒ (′agent, ′alt) pref-profile
⇒ ′alt lottery where

random-dictatorship-auxdef :
random-dictatorship agents alts R =

do {
i ← pmf-of-set agents;
pmf-of-set (Max-wrt-among (R i) alts)
}

context election
begin

abbreviation RD :: (′agent, ′alt) pref-profile ⇒ ′alt lottery where
RD ≡ random-dictatorship agents alts

lemma random-dictatorship-def :
assumes is-pref-profile R
shows RD R =

do {
i ← pmf-of-set agents;
pmf-of-set (favorites R i)
}

〈proof 〉

lemma random-dictatorship-unique-favorites:
assumes is-pref-profile R has-unique-favorites R
shows RD R = map-pmf (favorite R) (pmf-of-set agents)
〈proof 〉

46

lemma random-dictatorship-unique-favorites ′:
assumes is-pref-profile R has-unique-favorites R
shows RD R = pmf-of-multiset (image-mset (favorite R) (mset-set agents))
〈proof 〉

lemma pmf-random-dictatorship:
assumes is-pref-profile R
shows pmf (RD R) x =

(
∑

i∈agents. indicator (favorites R i) x /
real (card (favorites R i))) / real (card agents)

〈proof 〉

sublocale RD: social-decision-scheme agents alts RD
〈proof 〉

We now show that Random Dictatorship fulfils anonymity, neutrality, and
strong strategyproofness. At the very least, this shows that the definitions
of these notions are consistent.

7.1 Anonymity

The following proof is essentially the following: In Random Dictatorship,
permuting the agents in the preference profile is the same as applying the
permutation to the agent that was picked uniformly at random in the first
step. However, uniform distributions are invariant under permutation, there-
fore the outcome is totally unchanged.
sublocale RD: anonymous-sds agents alts RD
〈proof 〉

7.2 Neutrality

The proof of neutrality is similar to that of anonymity. We have proven
elsewhere that the most preferred alternatives of an agent in a profile with
permuted alternatives are simply the image of the originally preferred alter-
natives. Since we pick one alternative from the most preferred alternatives of
the selected agent uniformly at random, this means that we effectively pick
an agent, then pick on of her most preferred alternatives, and then apply
the permutation to that alternative, which is simply Random Dictatorship
transformed with the permutation.
sublocale RD: neutral-sds agents alts RD
〈proof 〉

47

7.3 Strong strategyproofness

The argument for strategyproofness is quite simple: Since the preferences
submitted by an agent i only influence the outcome when that agent is
picked in the first process, it suffices to focus on this case. When the agent i
submits her true preferences, the probability of obtaining a result at least as
good as x (for any alternative x) is 1, since the outcome will always be one of
her most-preferred alternatives. Obviously, the probability of obtaining such
a result cannot exceed 1 no matter what preferences she submits instead,
and thus, RD is strategyproof.
sublocale RD: strongly-strategyproof-sds agents alts RD
〈proof 〉

end

end

8 Random Serial Dictatorship
theory Random-Serial-Dictatorship
imports

Complex-Main
Social-Decision-Schemes
Random-Dictatorship

begin

Random Serial Dictatorship is an anonymous, neutral, strongly strategy-
proof, and ex-post efficient Social Decision Scheme that extends Random
Dictatorship to the domain of weak preferences.
We define RSD using a fold over a random permutation. Effectively, we
choose a random order of the agents (in the form of a list) and then tra-
verse that list from left to right, where each agent in turn removes all the
alternatives that are not top-ranked among the remaining ones.
definition random-serial-dictatorship ::

′agent set ⇒ ′alt set ⇒ (′agent, ′alt) pref-profile ⇒ ′alt lottery where
random-serial-dictatorship agents alts R =

fold-bind-random-permutation (λi alts. Max-wrt-among (R i) alts) pmf-of-set
alts agents

The following two facts correspond give an alternative recursive definition
to the above definition, which uses random permutations and list folding.
lemma random-serial-dictatorship-empty [simp]:

random-serial-dictatorship {} alts R = pmf-of-set alts
〈proof 〉

48

lemma random-serial-dictatorship-nonempty:
finite agents =⇒ agents 6= {} =⇒

random-serial-dictatorship agents alts R =
do {

i ← pmf-of-set agents;
random-serial-dictatorship (agents − {i}) (Max-wrt-among (R i) alts) R
}

〈proof 〉

We define the RSD winners w.r.t. a given set of alternatives and a fixed
permutation (i.e. list) of agents. In contrast to the above definition, the RSD
winners are determined by traversing the list of agents from right to left.
This may seem strange, but it makes induction much easier, since induction
over foldr does not require generalisation over the set of alternatives and is
therefore much easier than over foldl.
definition rsd-winners where

rsd-winners R alts agents = foldr (λi alts. Max-wrt-among (R i) alts) agents alts

lemma rsd-winners-empty [simp]: rsd-winners R alts [] = alts
〈proof 〉

lemma rsd-winners-Cons [simp]:
rsd-winners R alts (i # agents) = Max-wrt-among (R i) (rsd-winners R alts

agents)
〈proof 〉

lemma rsd-winners-map [simp]:
rsd-winners R alts (map f agents) = rsd-winners (R ◦ f) alts agents
〈proof 〉

There is now another alternative definition of RSD in terms of the RSD
winners. This will mostly be used for induction.
lemma random-serial-dictatorship-altdef :

assumes finite agents
shows random-serial-dictatorship agents alts R =

do {
agents ′← pmf-of-set (permutations-of-set agents);
pmf-of-set (rsd-winners R alts agents ′)
}

〈proof 〉

The following lemma shows that folding from left to right yields the same
distribution. This is probably the most commonly used definition in the
literature, along with the recursive one.
lemma random-serial-dictatorship-foldl:

assumes finite agents
shows random-serial-dictatorship agents alts R =

do {

49

agents ′← pmf-of-set (permutations-of-set agents);
pmf-of-set (foldl (λalts i. Max-wrt-among (R i) alts) alts agents ′)
}

〈proof 〉

8.1 Auxiliary facts about RSD
8.1.1 Pareto-equivalence classes

First of all, we introduce the auxiliary notion of a Pareto-equivalence class.
A non-empty set of alternatives is a Pareto equivalence class if all agents
are indifferent between all alternatives in it, and if some alternative x is
contained in the set, any other alternative y is contained in it if and only if,
to all agents, y is at least as good as x. The importance of this notion lies
in the fact that the set of RSD winners is always a Pareto-equivalence class,
which we will later use to show ex-post efficiency and strategy-proofness.
definition RSD-pareto-eqclass where

RSD-pareto-eqclass agents alts R A ←→
A 6= {} ∧ A ⊆ alts ∧ (∀ x∈A. ∀ y∈alts. y ∈ A ←→ (∀ i∈agents. R i x y))

lemma RSD-pareto-eqclassI :
assumes A 6= {} A ⊆ alts

∧
x y. x ∈ A =⇒ y ∈ alts =⇒ y ∈ A ←→ (∀ i∈agents.

R i x y)
shows RSD-pareto-eqclass agents alts R A
〈proof 〉

lemma RSD-pareto-eqclassD:
assumes RSD-pareto-eqclass agents alts R A
shows A 6= {} A ⊆ alts

∧
x y. x ∈ A =⇒ y ∈ alts =⇒ y ∈ A ←→ (∀ i∈agents.

R i x y)
〈proof 〉

lemma RSD-pareto-eqclass-indiff-set:
assumes RSD-pareto-eqclass agents alts R A i ∈ agents x ∈ A y ∈ A
shows R i x y
〈proof 〉

lemma RSD-pareto-eqclass-empty [simp, intro!]:
alts 6= {} =⇒ RSD-pareto-eqclass {} alts R alts
〈proof 〉

lemma (in pref-profile-wf) RSD-pareto-eqclass-insert:
assumes RSD-pareto-eqclass agents ′ alts R A finite alts

i ∈ agents agents ′ ⊆ agents
shows RSD-pareto-eqclass (insert i agents ′) alts R (Max-wrt-among (R i) A)
〈proof 〉

50

8.1.2 Facts about RSD winners
context pref-profile-wf
begin

Any RSD winner is a valid alternative.
lemma rsd-winners-subset:

assumes set agents ′ ⊆ agents
shows rsd-winners R alts ′ agents ′ ⊆ alts ′

〈proof 〉

There is always at least one RSD winner.
lemma rsd-winners-nonempty:

assumes finite: finite alts and alts ′ 6= {} set agents ′ ⊆ agents alts ′ ⊆ alts
shows rsd-winners R alts ′ agents ′ 6= {}
〈proof 〉

Obviously, the set of RSD winners is always finite.
lemma rsd-winners-finite:

assumes set agents ′ ⊆ agents finite alts alts ′ ⊆ alts
shows finite (rsd-winners R alts ′ agents ′)
〈proof 〉

lemmas rsd-winners-wf =
rsd-winners-subset rsd-winners-nonempty rsd-winners-finite

The set of RSD winners is a Pareto-equivalence class.
lemma RSD-pareto-eqclass-rsd-winners-aux:

assumes finite: finite alts and alts 6= {} and set agents ′ ⊆ agents
shows RSD-pareto-eqclass (set agents ′) alts R (rsd-winners R alts agents ′)
〈proof 〉

lemma RSD-pareto-eqclass-rsd-winners:
assumes finite: finite alts and alts 6= {} and set agents ′ = agents
shows RSD-pareto-eqclass agents alts R (rsd-winners R alts agents ′)
〈proof 〉

For the proof of strategy-proofness, we need to define indifference sets and
lift preference relations to sets in a specific way.
context
begin

An indifference set for a given preference relation is a non-empty set of
alternatives such that the agent is indifferent over all of them.
private definition indiff-set where

indiff-set S A ←→ A 6= {} ∧ (∀ x∈A. ∀ y∈A. S x y)

51

private lemma indiff-set-mono: indiff-set S A =⇒ B ⊆ A =⇒ B 6= {} =⇒ in-
diff-set S B
〈proof 〉

Given an arbitrary set of alternatives A and an indifference set B, we say
that B is set-preferred over A w.r.t. the preference relation R if all (or,
equivalently, any) of the alternatives in B are preferred over all alternatives
in A.
private definition RSD-set-rel where

RSD-set-rel S A B ←→ indiff-set S B ∧ (∀ x∈A. ∀ y∈B. S x y)

The most-preferred alternatives (w.r.t. R) among any non-empty set of
alternatives form an indifference set w.r.t. R.
private lemma indiff-set-Max-wrt-among:

assumes finite carrier A ⊆ carrier A 6= {} total-preorder-on carrier S
shows indiff-set S (Max-wrt-among S A)
〈proof 〉

We now consider the set of RSD winners in the setting of a preference profile
R and a manipulated profile R(i := Ri ′). This theorem shows that the set
of RSD winners in the outcome is either the same in both cases or the
outcome for the truthful profile is an indifference set that is set-preferred
over the outcome for the manipulated profile.
lemma rsd-winners-manipulation-aux:

assumes wf : total-preorder-on alts Ri ′
and i: i ∈ agents and set agents ′ ⊆ agents finite agents
and finite: finite alts and alts 6= {}

defines [simp]: w ′ ≡ rsd-winners (R(i := Ri ′)) alts and [simp]: w ≡ rsd-winners
R alts

shows w ′ agents ′ = w agents ′ ∨ RSD-set-rel (R i) (w ′ agents ′) (w agents ′)
〈proof 〉

The following variant of the previous theorem is slightly easier to use. We
eliminate the case where the two outcomes are the same by observing that
the original outcome is then also set-preferred to the manipulated one. In
essence, this means that no matter what manipulation is done, the original
outcome is always set-preferred to the manipulated one.
lemma rsd-winners-manipulation:

assumes wf : total-preorder-on alts Ri ′
and i: i ∈ agents and set agents ′ = agents finite agents
and finite: finite alts and alts 6= {}

defines [simp]: w ′ ≡ rsd-winners (R(i := Ri ′)) alts and [simp]: w ≡ rsd-winners
R alts

shows ∀ x∈w ′ agents ′. ∀ y∈w agents ′. x �[R i] y
〈proof 〉

end

52

The lottery that RSD yields is well-defined.
lemma random-serial-dictatorship-support:

assumes finite agents finite alts agents ′ ⊆ agents alts ′ 6= {} alts ′ ⊆ alts
shows set-pmf (random-serial-dictatorship agents ′ alts ′ R) ⊆ alts ′

〈proof 〉

Permutation of alternatives commutes with RSD winners.
lemma rsd-winners-permute-profile:

assumes perm: σ permutes alts and set agents ′ ⊆ agents
shows rsd-winners (permute-profile σ R) alts agents ′ = σ ‘ rsd-winners R alts

agents ′

〈proof 〉

lemma random-serial-dictatorship-singleton:
assumes finite agents finite alts agents ′ ⊆ agents x ∈ alts
shows random-serial-dictatorship agents ′ {x} R = return-pmf x (is ?d = -)
〈proof 〉

end

8.2 Proofs of properties

With all the facts that we have proven about the RSD winners, the hard
work is mostly done. We can now simply fix some arbitrary order of the
agents, apply the theorems about the RSD winners, and show the properties
we want to show without doing much reasoning about probabilities.
context election
begin

abbreviation RSD ≡ random-serial-dictatorship agents alts

8.2.1 Well-definedness
sublocale RSD: social-decision-scheme agents alts RSD
〈proof 〉

8.2.2 RD extension
lemma RSD-extends-RD:

assumes wf : is-pref-profile R and unique: has-unique-favorites R
shows RSD R = RD R
〈proof 〉

8.2.3 Anonymity

Anonymity is a direct consequence of the fact that we randomise over all
permutations in a uniform way.

53

sublocale RSD: anonymous-sds agents alts RSD
〈proof 〉

8.2.4 Neutrality

Neutrality follows from the fact that the RSD winners of a permuted profile
are simply the image of the original RSD winners under the permutation.
sublocale RSD: neutral-sds agents alts RSD
〈proof 〉

8.2.5 Ex-post efficiency

Ex-post efficiency follows from the fact that the set of RSD winners is a
Pareto-equivalence class.
sublocale RSD: ex-post-efficient-sds agents alts RSD
〈proof 〉

8.2.6 Strong strategy-proofness

Strong strategy-proofness is slightly more difficult to show. We have al-
ready shown that the set of RSD winners for the truthful profile is always
set-preferred (by the manipulating agent) to the RSD winners for the ma-
nipulated profile. This can now be used to show strategy-proofness: We
recall that the set of RSD winners is always an indifference class. Therefore,
given any fixed alternative x and considering a fixed order of the agents,
either all of the RSD winners in the original profile are at least as good as x
or none of them are, and, since the original RSD winners are set-preferred
to the manipulated ones, none of the RSD winners in the manipulated case
are at least as good than x either in that case. This means that for a fixed
order of agents, either the probability that the original outcome is at least
as good as x is 1 or the probability that the manipulated outcome is at least
as good as x is 0. Therefore, the original lottery is clearly SD-preferred to
the manipulated one.
sublocale RSD: strongly-strategyproof-sds agents alts RSD
〈proof 〉

end

end
theory Randomised-Social-Choice
imports

Complex-Main
SDS-Lowering
Random-Dictatorship
Random-Serial-Dictatorship

begin

54

end

9 Automatic definition of Preference Profiles
theory Preference-Profile-Cmd
imports

Complex-Main
../Elections

keywords
preference-profile :: thy-goal

begin

〈ML〉

context election
begin

lemma preferred-alts-prefs-from-table:
assumes prefs-from-table-wf agents alts xs i ∈ set (map fst xs)
shows preferred-alts (prefs-from-table xs i) x =

of-weak-ranking-Collect-ge (rev (the (map-of xs i))) x
〈proof 〉

lemma favorites-prefs-from-table:
assumes wf : prefs-from-table-wf agents alts xs and i: i ∈ agents
shows favorites (prefs-from-table xs) i = hd (the (map-of xs i))
〈proof 〉

lemma has-unique-favorites-prefs-from-table:
assumes wf : prefs-from-table-wf agents alts xs
shows has-unique-favorites (prefs-from-table xs) =

list-all (λz. is-singleton (hd (snd z))) xs
〈proof 〉

end

9.1 Automatic definition of preference profiles from tables
function favorites-prefs-from-table where

i = j =⇒ favorites-prefs-from-table ((j,x)#xs) i = hd x
| i 6= j =⇒ favorites-prefs-from-table ((j,x)#xs) i =

favorites-prefs-from-table xs i
| favorites-prefs-from-table [] i = {}
〈proof 〉

termination 〈proof 〉

lemma (in election) eval-favorites-prefs-from-table:

55

assumes prefs-from-table-wf agents alts xs
shows favorites-prefs-from-table xs i =

favorites (prefs-from-table xs) i
〈proof 〉

function weak-ranking-prefs-from-table where
i 6= j =⇒ weak-ranking-prefs-from-table ((i,x)#xs) j = weak-ranking-prefs-from-table

xs j
| i = j =⇒ weak-ranking-prefs-from-table ((i,x)#xs) j = x
| weak-ranking-prefs-from-table [] j = []
〈proof 〉

termination 〈proof 〉

lemma eval-weak-ranking-prefs-from-table:
assumes prefs-from-table-wf agents alts xs
shows weak-ranking-prefs-from-table xs i = weak-ranking (prefs-from-table xs

i)
〈proof 〉

lemma eval-prefs-from-table-aux:
assumes R ≡ prefs-from-table xs prefs-from-table-wf agents alts xs
shows R i a b ←→ prefs-from-table xs i a b

a ≺[R i] b ←→ prefs-from-table xs i a b ∧ ¬prefs-from-table xs i b a
anonymous-profile R = mset (map snd xs)
election agents alts =⇒ i ∈ set (map fst xs) =⇒

preferred-alts (R i) x =
of-weak-ranking-Collect-ge (rev (the (map-of xs i))) x

election agents alts =⇒ i ∈ set (map fst xs) =⇒
favorites R i = favorites-prefs-from-table xs i

election agents alts =⇒ i ∈ set (map fst xs) =⇒
weak-ranking (R i) = weak-ranking-prefs-from-table xs i

election agents alts =⇒ i ∈ set (map fst xs) =⇒
favorite R i = the-elem (favorites-prefs-from-table xs i)

election agents alts =⇒
has-unique-favorites R ←→ list-all (λz. is-singleton (hd (snd z))) xs

〈proof 〉

lemma pref-profile-from-tableI ′:
assumes R1 ≡ prefs-from-table xss prefs-from-table-wf agents alts xss
shows pref-profile-wf agents alts R1
〈proof 〉

〈ML〉

end
theory QSOpt-Exact
imports Complex-Main
begin

56

〈ML〉

end

10 Automatic Fact Gathering for Social Decision
Schemes

theory SDS-Automation
imports

Preference-Profile-Cmd
QSOpt-Exact
../Social-Decision-Schemes

keywords
derive-orbit-equations
derive-support-conditions
derive-ex-post-conditions
find-inefficient-supports
prove-inefficient-supports
derive-strategyproofness-conditions :: thy-goal

begin

We now provide the following commands to automatically derive restrictions
on the results of Social Decision Schemes satisfying Anonymity, Neutrality,
Efficiency, or Strategy-Proofness:

derive-orbit-equations to derive equalities arising from automorphisms
of the given profiles due to Anonymity and Neutrality

derive-ex-post-conditions to find all Pareto losers and the given profiles
and derive the facts that they must be assigned probability 0 by any
ex-post-efficient SDS

find-inefficient-supports to use Linear Programming to find all minimal
SD-inefficient (but not ex-post-inefficient) supports in the given profiles
and output a corresponding witness lottery for each of them

prove-inefficient-supports to prove a specified set of support conditions
arising from ex-post- or SD-Efficiency. For conditions arising from SD-
Efficiency, a witness lottery must be specified (e. g. as computed by
derive-orbit-equations).

derive-support-conditions to automatically find and prove all support
conditions arising from ex-post- and SD-Efficiency

57

derive-strategyproofness-conditions to automatically derive all condi-
tions arising from weak Strategy-Proofness and any manipulations be-
tween the given preference profiles. An optional maximum manipula-
tion size can be specified.

All commands except find-inefficient-supports open a proof state and
leave behind proof obligations for the user to discharge. This should al-
ways be possible using the Simplifier, possibly with a few additional rules,
depending on the context.
lemma disj-False-right: P ∨ False ←→ P 〈proof 〉

lemmas multiset-add-ac = add-ac[where ? ′a = ′a multiset]

lemma less-or-eq-real:
(x::real) < y ∨ x = y ←→ x ≤ y x < y ∨ y = x ←→ x ≤ y 〈proof 〉

lemma multiset-Diff-single-normalize:
fixes a c assumes a 6= c
shows ({#a#} + B) − {#c#} = {#a#} + (B − {#c#})
〈proof 〉

lemma ex-post-efficient-aux:
assumes prefs-from-table-wf agents alts xss R ≡ prefs-from-table xss
assumes i ∈ agents ∀ i∈agents. y �[prefs-from-table xss i] x ¬y �[prefs-from-table

xss i] x
shows ex-post-efficient-sds agents alts sds −→ pmf (sds R) x = 0
〈proof 〉

lemma SD-inefficient-support-aux:
assumes R: prefs-from-table-wf agents alts xss R ≡ prefs-from-table xss
assumes as: as 6= [] set as ⊆ alts distinct as A = set as
assumes ys: ∀ x∈set (map snd ys). 0 ≤ x sum-list (map snd ys) = 1 set (map

fst ys) ⊆ alts
assumes i: i ∈ agents
assumes SD1 : ∀ i∈agents. ∀ x∈alts.

sum-list (map snd (filter (λy. prefs-from-table xss i x (fst y)) ys)) ≥
real (length (filter (prefs-from-table xss i x) as)) / real (length as)

assumes SD2 : ∃ x∈alts. sum-list (map snd (filter (λy. prefs-from-table xss i x
(fst y)) ys)) >

real (length (filter (prefs-from-table xss i x) as)) / real (length
as)

shows sd-efficient-sds agents alts sds −→ (∃ x∈A. pmf (sds R) x = 0)
〈proof 〉

definition pref-classes where
pref-classes alts le = preferred-alts le ‘ alts − {alts}

58

primrec pref-classes-lists where
pref-classes-lists [] = {}
| pref-classes-lists (xs#xss) = insert (

⋃
(set (xs#xss))) (pref-classes-lists xss)

fun pref-classes-lists-aux where
pref-classes-lists-aux acc [] = {}
| pref-classes-lists-aux acc (xs#xss) = insert acc (pref-classes-lists-aux (acc ∪ xs)
xss)

lemma pref-classes-lists-append:
pref-classes-lists (xs @ ys) = (∪) (

⋃
(set ys)) ‘ pref-classes-lists xs ∪ pref-classes-lists

ys
〈proof 〉

lemma pref-classes-lists-aux:
assumes is-weak-ranking xss acc ∩ (

⋃
(set xss)) = {}

shows pref-classes-lists-aux acc xss =
(insert acc ((λA. A ∪ acc) ‘ pref-classes-lists (rev xss)) − {acc ∪

⋃
(set

xss)})
〈proof 〉

lemma pref-classes-list-aux-hd-tl:
assumes is-weak-ranking xss xss 6= []
shows pref-classes-lists-aux (hd xss) (tl xss) = pref-classes-lists (rev xss) −
{
⋃

(set xss)}
〈proof 〉

lemma pref-classes-of-weak-ranking-aux:
assumes is-weak-ranking xss
shows of-weak-ranking-Collect-ge xss ‘ (

⋃
(set xss)) = pref-classes-lists xss

〈proof 〉

lemma eval-pref-classes-of-weak-ranking:
assumes

⋃
(set xss) = alts is-weak-ranking xss alts 6= {}

shows pref-classes alts (of-weak-ranking xss) = pref-classes-lists-aux (hd xss)
(tl xss)
〈proof 〉

context preorder-on
begin

lemma SD-iff-pref-classes:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows p �[SD(le)] q ←→

(∀A∈pref-classes carrier le. measure-pmf .prob p A ≤ measure-pmf .prob
q A)
〈proof 〉

59

end

lemma (in strategyproof-an-sds) strategyproof ′:
assumes wf : is-pref-profile R total-preorder-on alts Ri ′ and i: i ∈ agents
shows (∃A∈pref-classes alts (R i). lottery-prob (sds (R(i := Ri ′))) A <

lottery-prob (sds R) A) ∨
(∀A∈pref-classes alts (R i). lottery-prob (sds (R(i := Ri ′))) A =

lottery-prob (sds R) A)
〈proof 〉

lemma pref-classes-lists-aux-finite:
A ∈ pref-classes-lists-aux acc xss =⇒ finite acc =⇒ (

∧
A. A ∈ set xss =⇒ finite

A)
=⇒ finite A

〈proof 〉

lemma strategyproof-aux:
assumes wf : prefs-from-table-wf agents alts xss1 R1 = prefs-from-table xss1

prefs-from-table-wf agents alts xss2 R2 = prefs-from-table xss2
assumes sds: strategyproof-an-sds agents alts sds and i: i ∈ agents and j: j ∈

agents
assumes eq: R1 (i := R2 j) = R2 the (map-of xss1 i) = xs

pref-classes-lists-aux (hd xs) (tl xs) = ps
shows (∃A∈ps. (

∑
x∈A. pmf (sds R2) x) < (

∑
x∈A. pmf (sds R1) x)) ∨

(∀A∈ps. (
∑

x∈A. pmf (sds R2) x) = (
∑

x∈A. pmf (sds R1) x))
〈proof 〉

lemma strategyproof-aux ′:
assumes wf : prefs-from-table-wf agents alts xss1 R1 ≡ prefs-from-table xss1

prefs-from-table-wf agents alts xss2 R2 ≡ prefs-from-table xss2
assumes sds: strategyproof-an-sds agents alts sds and i: i ∈ agents and j: j ∈

agents
assumes perm: list-permutes ys alts
defines σ ≡ permutation-of-list ys and σ ′ ≡ inverse-permutation-of-list ys
defines xs ≡ the (map-of xss1 i)
defines xs ′: xs ′ ≡ map ((‘) σ) (the (map-of xss2 j))
defines Ri ′ ≡ of-weak-ranking xs ′

assumes distinct-ps: ∀A∈ps. distinct A
assumes eq: mset (map snd xss1) − {#the (map-of xss1 i)#} + {#xs ′#} =

mset (map (map ((‘) σ) ◦ snd) xss2)
pref-classes-lists-aux (hd xs) (tl xs) = set ‘ ps

shows list-permutes ys alts ∧
((∃A∈ps. (

∑
x←A. pmf (sds R2) (σ ′ x)) < (

∑
x←A. pmf (sds R1) x))

∨
(∀A∈ps. (

∑
x←A. pmf (sds R2) (σ ′ x)) = (

∑
x←A. pmf (sds R1)

x)))
(is - ∧ ?th)

〈proof 〉

60

〈ML〉

end

References

[1] F. Brandl, F. Brandt, and C. Geist. Proving the incompatibility of
Efficiency and Strategyproofness via SMT solving. Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI),
2016. Forthcoming.

61

	Order Relations as Binary Predicates
	Basic Operations on Relations
	Preorders
	Total preorders
	Orders
	Maximal elements
	Weak rankings
	Rankings

	Preference Profiles
	Pareto dominance
	Preferred alternatives
	Favourite alternatives
	Anonymous profiles
	Preference profiles from lists
	Automatic evaluation of preference profiles

	Auxiliary facts about PMFs
	Definition of von Neumann–Morgenstern utility functions

	Stochastic Dominance
	Definition of Stochastic Dominance
	Stochastic Dominance for preference profiles
	SD efficient lotteries
	Equivalence proof
	Existence of SD-efficient lotteries

	Social Decision Schemes
	Basic Social Choice definitions
	Social Decision Schemes
	Anonymity
	Neutrality
	Ex-post efficiency
	SD efficiency
	Weak strategyproofness
	Strong strategyproofness

	Lowering Social Decision Schemes
	Random Dictatorship
	Anonymity
	Neutrality
	Strong strategyproofness

	Random Serial Dictatorship
	Auxiliary facts about RSD
	Pareto-equivalence classes
	Facts about RSD winners

	Proofs of properties
	Well-definedness
	RD extension
	Anonymity
	Neutrality
	Ex-post efficiency
	Strong strategy-proofness

	Automatic definition of Preference Profiles
	Automatic definition of preference profiles from tables

	Automatic Fact Gathering for Social Decision Schemes

