
Randomised Social Choice

Manuel Eberl

March 19, 2025

Abstract

This work contains a formalisation of basic Randomised Social
Choice, including Stochastic Dominance and Social Decision Schemes
(SDSs) along with some of their most important properties (Anonymity,
Neutrality, SD-Efficiency, SD-Strategy-Proofness) and two particular
SDSs – Random Dictatorship and Random Serial Dictatorship (with
proofs of the properties that they satisfy). Many important properties
of these concepts are also proven – such as the two equivalent charac-
terisations of Stochastic Dominance and the fact that SD-efficiency of
a lottery only depends on the support.

The entry also provides convenient commands to define Preference
Profiles, prove their well-formedness, and automatically derive restric-
tions that sufficiently nice SDSs need to satisfy on the defined profiles.
(cf. [1])

Currently, the formalisation focuses on weak preferences and Stochas-
tic Dominance (SD), but it should be easy to extend it to other do-
mains – such as strict preferences – or other lottery extensions – such
as Bilinear Dominance or Pairwise Comparison.

Contents
1 Order Relations as Binary Predicates 4

1.1 Basic Operations on Relations 4
1.2 Preorders . 4
1.3 Total preorders . 5
1.4 Orders . 6
1.5 Maximal elements . 7
1.6 Weak rankings . 9
1.7 Rankings . 25

2 Preference Profiles 26
2.1 Pareto dominance . 29
2.2 Preferred alternatives . 31
2.3 Favourite alternatives . 31
2.4 Anonymous profiles . 33

1

2.5 Preference profiles from lists 35
2.6 Automatic evaluation of preference profiles 39

3 Auxiliary facts about PMFs 44
3.1 Definition of von Neumann–Morgenstern utility functions . . 45

4 Stochastic Dominance 48
4.1 Definition of Stochastic Dominance 48
4.2 Stochastic Dominance for preference profiles 51
4.3 SD efficient lotteries . 52
4.4 Equivalence proof . 54
4.5 Existence of SD-efficient lotteries 64

5 Social Decision Schemes 67
5.1 Basic Social Choice definitions 68
5.2 Social Decision Schemes . 68
5.3 Anonymity . 69
5.4 Neutrality . 69
5.5 Ex-post efficiency . 72
5.6 SD efficiency . 72
5.7 Weak strategyproofness . 73
5.8 Strong strategyproofness . 74

6 Lowering Social Decision Schemes 75

7 Random Dictatorship 84
7.1 Anonymity . 85
7.2 Neutrality . 86
7.3 Strong strategyproofness . 86

8 Random Serial Dictatorship 87
8.1 Auxiliary facts about RSD . 89

8.1.1 Pareto-equivalence classes 89
8.1.2 Facts about RSD winners 90

8.2 Proofs of properties . 95
8.2.1 Well-definedness . 95
8.2.2 RD extension . 95
8.2.3 Anonymity . 96
8.2.4 Neutrality . 96
8.2.5 Ex-post efficiency . 96
8.2.6 Strong strategy-proofness 97

9 Automatic definition of Preference Profiles 99
9.1 Automatic definition of preference profiles from tables 100

2

10 Automatic Fact Gathering for Social Decision Schemes 115

3

1 Order Relations as Binary Predicates
theory Order-Predicates
imports

Main
HOL−Library.Disjoint-Sets
HOL−Combinatorics.Permutations
List−Index.List-Index

begin

1.1 Basic Operations on Relations

The type of binary relations
type-synonym ′a relation = ′a ⇒ ′a ⇒ bool

definition map-relation :: (′a ⇒ ′b) ⇒ ′b relation ⇒ ′a relation where
map-relation f R = (λx y. R (f x) (f y))

definition restrict-relation :: ′a set ⇒ ′a relation ⇒ ′a relation where
restrict-relation A R = (λx y. x ∈ A ∧ y ∈ A ∧ R x y)

lemma restrict-relation-restrict-relation [simp]:
restrict-relation A (restrict-relation B R) = restrict-relation (A ∩ B) R
by (intro ext) (auto simp add: restrict-relation-def)

lemma restrict-relation-empty [simp]: restrict-relation {} R = (λ- -. False)
by (simp add: restrict-relation-def)

lemma restrict-relation-UNIV [simp]: restrict-relation UNIV R = R
by (simp add: restrict-relation-def)

1.2 Preorders

Preorders are reflexive and transitive binary relations.
locale preorder-on =

fixes carrier :: ′a set
fixes le :: ′a relation
assumes not-outside: le x y =⇒ x ∈ carrier le x y =⇒ y ∈ carrier
assumes refl: x ∈ carrier =⇒ le x x
assumes trans: le x y =⇒ le y z =⇒ le x z

begin

lemma carrier-eq: carrier = {x. le x x}
using not-outside refl by auto

lemma preorder-on-map:
preorder-on (f −‘ carrier) (map-relation f le)
by unfold-locales (auto dest: not-outside simp: map-relation-def refl elim: trans)

4

lemma preorder-on-restrict:
preorder-on (carrier ∩ A) (restrict-relation A le)
by unfold-locales (auto simp: restrict-relation-def refl intro: trans not-outside)

lemma preorder-on-restrict-subset:
A ⊆ carrier =⇒ preorder-on A (restrict-relation A le)
using preorder-on-restrict[of A] by (simp add: Int-absorb1)

lemma restrict-relation-carrier [simp]:
restrict-relation carrier le = le
using not-outside by (intro ext) (auto simp add: restrict-relation-def)

end

1.3 Total preorders

Total preorders are preorders where any two elements are comparable.
locale total-preorder-on = preorder-on +

assumes total: x ∈ carrier =⇒ y ∈ carrier =⇒ le x y ∨ le y x
begin

lemma total ′: ¬le x y =⇒ x ∈ carrier =⇒ y ∈ carrier =⇒ le y x
using total[of x y] by blast

lemma total-preorder-on-map:
total-preorder-on (f −‘ carrier) (map-relation f le)

proof −
interpret R ′: preorder-on f −‘ carrier map-relation f le

using preorder-on-map[of f] .
show ?thesis by unfold-locales (simp add: map-relation-def total)

qed

lemma total-preorder-on-restrict:
total-preorder-on (carrier ∩ A) (restrict-relation A le)

proof −
interpret R ′: preorder-on carrier ∩ A restrict-relation A le

by (rule preorder-on-restrict)
from total show ?thesis

by unfold-locales (auto simp: restrict-relation-def)
qed

lemma total-preorder-on-restrict-subset:
A ⊆ carrier =⇒ total-preorder-on A (restrict-relation A le)
using total-preorder-on-restrict[of A] by (simp add: Int-absorb1)

end

Some fancy notation for order relations

5

abbreviation (input) weakly-preferred :: ′a ⇒ ′a relation ⇒ ′a ⇒ bool
(‹- �[-] -› [51 ,10 ,51] 60) where

a �[R] b ≡ R a b

definition strongly-preferred (‹- ≺[-] -› [51 ,10 ,51] 60) where
a ≺[R] b ≡ (a �[R] b) ∧ ¬(b �[R] a)

definition indifferent (‹- ∼[-] -› [51 ,10 ,51] 60) where
a ∼[R] b ≡ (a �[R] b) ∧ (b �[R] a)

abbreviation (input) weakly-not-preferred (‹- �[-] -› [51 ,10 ,51] 60) where
a �[R] b ≡ b �[R] a
term a �[R] b ←→ b �[R] a

abbreviation (input) strongly-not-preferred (‹- �[-] -› [51 ,10 ,51] 60) where
a �[R] b ≡ b ≺[R] a

context preorder-on
begin

lemma strict-trans: a ≺[le] b =⇒ b ≺[le] c =⇒ a ≺[le] c
unfolding strongly-preferred-def by (blast intro: trans)

lemma weak-strict-trans: a �[le] b =⇒ b ≺[le] c =⇒ a ≺[le] c
unfolding strongly-preferred-def by (blast intro: trans)

lemma strict-weak-trans: a ≺[le] b =⇒ b �[le] c =⇒ a ≺[le] c
unfolding strongly-preferred-def by (blast intro: trans)

end

lemma (in total-preorder-on) not-weakly-preferred-iff :
a ∈ carrier =⇒ b ∈ carrier =⇒ ¬a �[le] b ←→ b ≺[le] a
using total[of a b] by (auto simp: strongly-preferred-def)

lemma (in total-preorder-on) not-strongly-preferred-iff :
a ∈ carrier =⇒ b ∈ carrier =⇒ ¬a ≺[le] b ←→ b �[le] a
using total[of a b] by (auto simp: strongly-preferred-def)

1.4 Orders
locale order-on = preorder-on +

assumes antisymmetric: le x y =⇒ le y x =⇒ x = y

locale linorder-on = order-on carrier le + total-preorder-on carrier le for carrier
le

6

1.5 Maximal elements

Maximal elements are elements in a preorder for which there exists no
strictly greater element.
definition Max-wrt-among :: ′a relation ⇒ ′a set ⇒ ′a set where

Max-wrt-among R A = {x∈A. R x x ∧ (∀ y∈A. R x y −→ R y x)}

lemma Max-wrt-among-cong:
assumes restrict-relation A R = restrict-relation A R ′

shows Max-wrt-among R A = Max-wrt-among R ′ A
proof −

from assms have R x y ←→ R ′ x y if x ∈ A y ∈ A for x y
using that by (auto simp: restrict-relation-def fun-eq-iff)

thus ?thesis unfolding Max-wrt-among-def by blast
qed

definition Max-wrt :: ′a relation ⇒ ′a set where
Max-wrt R = Max-wrt-among R UNIV

lemma Max-wrt-altdef : Max-wrt R = {x. R x x ∧ (∀ y. R x y −→ R y x)}
unfolding Max-wrt-def Max-wrt-among-def by simp

context preorder-on
begin

lemma Max-wrt-among-preorder :
Max-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le x y −→ le y x}
unfolding Max-wrt-among-def using not-outside refl by blast

lemma Max-wrt-preorder :
Max-wrt le = {x∈carrier . ∀ y∈carrier . le x y −→ le y x}
unfolding Max-wrt-altdef using not-outside refl by blast

lemma Max-wrt-among-subset:
Max-wrt-among le A ⊆ carrier Max-wrt-among le A ⊆ A
unfolding Max-wrt-among-preorder by auto

lemma Max-wrt-subset:
Max-wrt le ⊆ carrier
unfolding Max-wrt-preorder by auto

lemma Max-wrt-among-nonempty:
assumes B ∩ carrier 6= {} finite (B ∩ carrier)
shows Max-wrt-among le B 6= {}

proof −
define A where A = B ∩ carrier
have A ⊆ carrier by (simp add: A-def)
from assms(2 ,1)[folded A-def] this have {x∈A. (∀ y∈A. le x y −→ le y x)} 6=
{}

7

proof (induction A rule: finite-ne-induct)
case (singleton x)
thus ?case by (auto simp: refl)

next
case (insert x A)
then obtain y where y: y ∈ A

∧
z. z ∈ A =⇒ le y z =⇒ le z y by blast

thus ?case using insert.prems
by (cases le y x) (blast intro: trans)+

qed
thus ?thesis by (simp add: A-def Max-wrt-among-preorder Int-commute)

qed

lemma Max-wrt-nonempty:
carrier 6= {} =⇒ finite carrier =⇒ Max-wrt le 6= {}
using Max-wrt-among-nonempty[of UNIV] by (simp add: Max-wrt-def)

lemma Max-wrt-among-map-relation-vimage:
f −‘ Max-wrt-among le A ⊆ Max-wrt-among (map-relation f le) (f −‘ A)
by (auto simp: Max-wrt-among-def map-relation-def)

lemma Max-wrt-map-relation-vimage:
f −‘ Max-wrt le ⊆ Max-wrt (map-relation f le)
by (auto simp: Max-wrt-altdef map-relation-def)

lemma image-subset-vimage-the-inv-into:
assumes inj-on f A B ⊆ A
shows f ‘ B ⊆ the-inv-into A f −‘ B
using assms by (auto simp: the-inv-into-f-f)

lemma Max-wrt-among-map-relation-bij-subset:
assumes bij (f :: ′a ⇒ ′b)
shows f ‘ Max-wrt-among le A ⊆

Max-wrt-among (map-relation (inv f) le) (f ‘ A)
using assms Max-wrt-among-map-relation-vimage[of inv f A]
by (simp add: bij-imp-bij-inv inv-inv-eq bij-vimage-eq-inv-image)

lemma Max-wrt-among-map-relation-bij:
assumes bij f
shows f ‘ Max-wrt-among le A = Max-wrt-among (map-relation (inv f) le) (f

‘ A)
proof (intro equalityI Max-wrt-among-map-relation-bij-subset assms)

interpret R: preorder-on f ‘ carrier map-relation (inv f) le
using preorder-on-map[of inv f] assms

by (simp add: bij-imp-bij-inv bij-vimage-eq-inv-image inv-inv-eq)
show Max-wrt-among (map-relation (inv f) le) (f ‘ A) ⊆ f ‘ Max-wrt-among le

A
unfolding Max-wrt-among-preorder R.Max-wrt-among-preorder
using assms bij-is-inj[OF assms]
by (auto simp: map-relation-def inv-f-f image-Int [symmetric])

8

qed

lemma Max-wrt-map-relation-bij:
bij f =⇒ f ‘ Max-wrt le = Max-wrt (map-relation (inv f) le)

proof −
assume bij: bij f
interpret R: preorder-on f ‘ carrier map-relation (inv f) le

using preorder-on-map[of inv f] bij
by (simp add: bij-imp-bij-inv bij-vimage-eq-inv-image inv-inv-eq)

from bij show ?thesis
unfolding R.Max-wrt-preorder Max-wrt-preorder
by (auto simp: map-relation-def inv-f-f bij-is-inj)

qed

lemma Max-wrt-among-mono:
le x y =⇒ x ∈ Max-wrt-among le A =⇒ y ∈ A =⇒ y ∈ Max-wrt-among le A
using not-outside by (auto simp: Max-wrt-among-preorder intro: trans)

lemma Max-wrt-mono:
le x y =⇒ x ∈ Max-wrt le =⇒ y ∈ Max-wrt le
unfolding Max-wrt-def using Max-wrt-among-mono[of x y UNIV] by blast

end

context total-preorder-on
begin

lemma Max-wrt-among-total-preorder :
Max-wrt-among le A = {x∈carrier ∩ A. ∀ y∈carrier ∩ A. le y x}
unfolding Max-wrt-among-preorder using total by blast

lemma Max-wrt-total-preorder :
Max-wrt le = {x∈carrier . ∀ y∈carrier . le y x}
unfolding Max-wrt-preorder using total by blast

lemma decompose-Max:
assumes A: A ⊆ carrier
defines M ≡ Max-wrt-among le A
shows restrict-relation A le = (λx y. x ∈ A ∧ y ∈ M ∨ (y /∈ M ∧ restrict-relation

(A − M) le x y))
using A by (intro ext) (auto simp: M-def Max-wrt-among-total-preorder

restrict-relation-def Int-absorb1 intro: trans)

end

1.6 Weak rankings
inductive of-weak-ranking :: ′alt set list ⇒ ′alt relation where

9

i ≤ j =⇒ i < length xs =⇒ j < length xs =⇒ x ∈ xs ! i =⇒ y ∈ xs ! j =⇒
x �[of-weak-ranking xs] y

lemma of-weak-ranking-Nil [simp]: of-weak-ranking [] = (λ- -. False)
by (intro ext) (simp add: of-weak-ranking.simps)

lemma of-weak-ranking-Nil ′ [code]: of-weak-ranking [] x y = False
by simp

lemma of-weak-ranking-Cons [code]:
x �[of-weak-ranking (z#zs)] y ←→ x ∈ z ∧ y ∈

⋃
(set (z#zs)) ∨ x �[of-weak-ranking

zs] y
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
then obtain i j

where ij: i < length (z#zs) j < length (z#zs) i ≤ j x ∈ (z#zs) ! i y ∈ (z#zs)
! j

by (blast elim: of-weak-ranking.cases)
thus ?rhs by (cases i; cases j) (force intro: of-weak-ranking.intros)+

next
assume ?rhs
thus ?lhs
proof (elim disjE conjE)

assume x ∈ z y ∈
⋃
(set (z # zs))

then obtain j where j < length (z # zs) y ∈ (z # zs) ! j
by (subst (asm) set-conv-nth) auto

with ‹x ∈ z› show of-weak-ranking (z # zs) y x
by (intro of-weak-ranking.intros[of 0 j]) auto

next
assume of-weak-ranking zs y x
then obtain i j where i < length zs j < length zs i ≤ j x ∈ zs ! i y ∈ zs ! j

by (blast elim: of-weak-ranking.cases)
thus of-weak-ranking (z # zs) y x

by (intro of-weak-ranking.intros[of Suc i Suc j]) auto
qed

qed

lemma of-weak-ranking-indifference:
assumes A ∈ set xs x ∈ A y ∈ A
shows x �[of-weak-ranking xs] y
using assms by (induction xs) (auto simp: of-weak-ranking-Cons)

lemma of-weak-ranking-map:
map-relation f (of-weak-ranking xs) = of-weak-ranking (map ((−‘) f) xs)
by (intro ext, induction xs)

(simp-all add: map-relation-def of-weak-ranking-Cons)

10

lemma of-weak-ranking-permute ′:
assumes f permutes (

⋃
(set xs))

shows map-relation f (of-weak-ranking xs) = of-weak-ranking (map ((‘) (inv
f)) xs)
proof −

have map-relation f (of-weak-ranking xs) = of-weak-ranking (map ((−‘) f) xs)
by (rule of-weak-ranking-map)

also from assms have map ((−‘) f) xs = map ((‘) (inv f)) xs
by (intro map-cong refl) (simp-all add: bij-vimage-eq-inv-image permutes-bij)

finally show ?thesis .
qed

lemma of-weak-ranking-permute:
assumes f permutes (

⋃
(set xs))

shows of-weak-ranking (map ((‘) f) xs) = map-relation (inv f) (of-weak-ranking
xs)

using of-weak-ranking-permute ′[OF permutes-inv[OF assms]] assms
by (simp add: inv-inv-eq permutes-bij)

definition is-weak-ranking where
is-weak-ranking xs ←→ ({} /∈ set xs) ∧

(∀ i j. i < length xs ∧ j < length xs ∧ i 6= j −→ xs ! i ∩ xs ! j = {})

definition is-finite-weak-ranking where
is-finite-weak-ranking xs ←→ is-weak-ranking xs ∧ (∀ x∈set xs. finite x)

definition weak-ranking :: ′alt relation ⇒ ′alt set list where
weak-ranking R = (SOME xs. is-weak-ranking xs ∧ R = of-weak-ranking xs)

lemma is-weak-rankingI [intro?]:
assumes {} /∈ set xs

∧
i j. i < length xs =⇒ j < length xs =⇒ i 6= j =⇒ xs ! i

∩ xs ! j = {}
shows is-weak-ranking xs
using assms by (auto simp add: is-weak-ranking-def)

lemma is-weak-ranking-nonempty: is-weak-ranking xs =⇒ {} /∈ set xs
by (simp add: is-weak-ranking-def)

lemma is-weak-rankingD:
assumes is-weak-ranking xs i < length xs j < length xs i 6= j
shows xs ! i ∩ xs ! j = {}
using assms by (simp add: is-weak-ranking-def)

lemma is-weak-ranking-iff :
is-weak-ranking xs ←→ distinct xs ∧ disjoint (set xs) ∧ {} /∈ set xs

proof safe
assume wf : is-weak-ranking xs
from wf show disjoint (set xs)

by (auto simp: disjoint-def is-weak-ranking-def set-conv-nth)

11

show distinct xs
proof (subst distinct-conv-nth, safe)

fix i j assume ij: i < length xs j < length xs i 6= j xs ! i = xs ! j
then have xs ! i ∩ xs ! j = {} by (intro is-weak-rankingD wf)
with ij have xs ! i = {} by simp
with ij have {} ∈ set xs by (auto simp: set-conv-nth)
moreover from wf ij have {} /∈ set xs by (intro is-weak-ranking-nonempty

wf)
ultimately show False by contradiction

qed
next

assume A: distinct xs disjoint (set xs) {} /∈ set xs
thus is-weak-ranking xs

by (intro is-weak-rankingI) (auto simp: disjoint-def distinct-conv-nth)
qed (simp-all add: is-weak-ranking-nonempty)

lemma is-weak-ranking-rev [simp]: is-weak-ranking (rev xs) ←→ is-weak-ranking
xs

by (simp add: is-weak-ranking-iff)

lemma is-weak-ranking-map-inj:
assumes is-weak-ranking xs inj-on f (

⋃
(set xs))

shows is-weak-ranking (map ((‘) f) xs)
using assms by (auto simp: is-weak-ranking-iff distinct-map inj-on-image dis-

joint-image)

lemma of-weak-ranking-rev [simp]:
of-weak-ranking (rev xs) (x:: ′a) y ←→ of-weak-ranking xs y x

proof −
have of-weak-ranking (rev xs) y x if of-weak-ranking xs x y for xs and x y :: ′a
proof −

from that obtain i j where i < length xs j < length xs x ∈ xs ! i y ∈ xs ! j i
≥ j

by (elim of-weak-ranking.cases) simp-all
thus ?thesis

by (intro of-weak-ranking.intros[of length xs − i − 1 length xs − j − 1]
diff-le-mono2)

(auto simp: diff-le-mono2 rev-nth)
qed
from this[of xs y x] this[of rev xs x y] show ?thesis by (intro iffI) simp-all

qed

lemma is-weak-ranking-Nil [simp, code]: is-weak-ranking []
by (auto simp: is-weak-ranking-def)

lemma is-finite-weak-ranking-Nil [simp, code]: is-finite-weak-ranking []
by (auto simp: is-finite-weak-ranking-def)

12

lemma is-weak-ranking-Cons-empty [simp]:
¬is-weak-ranking ({} # xs) by (simp add: is-weak-ranking-def)

lemma is-finite-weak-ranking-Cons-empty [simp]:
¬is-finite-weak-ranking ({} # xs) by (simp add: is-finite-weak-ranking-def)

lemma is-weak-ranking-singleton [simp]:
is-weak-ranking [x] ←→ x 6= {}
by (auto simp add: is-weak-ranking-def)

lemma is-finite-weak-ranking-singleton [simp]:
is-finite-weak-ranking [x] ←→ x 6= {} ∧ finite x
by (auto simp add: is-finite-weak-ranking-def)

lemma is-weak-ranking-append:
is-weak-ranking (xs @ ys) ←→

is-weak-ranking xs ∧ is-weak-ranking ys ∧
(set xs ∩ set ys = {} ∧

⋃
(set xs) ∩

⋃
(set ys) = {})

by (simp only: is-weak-ranking-iff)
(auto dest: disjointD disjoint-unionD1 disjoint-unionD2 intro: disjoint-union)

lemma is-weak-ranking-Cons [code]:
is-weak-ranking (x # xs) ←→

x 6= {} ∧ is-weak-ranking xs ∧ x ∩
⋃
(set xs) = {}

using is-weak-ranking-append[of [x] xs] by auto

lemma is-finite-weak-ranking-Cons [code]:
is-finite-weak-ranking (x # xs) ←→

x 6= {} ∧ finite x ∧ is-finite-weak-ranking xs ∧ x ∩
⋃

(set xs) = {}
by (auto simp add: is-finite-weak-ranking-def is-weak-ranking-Cons)

primrec is-weak-ranking-aux where
is-weak-ranking-aux A [] ←→ True
| is-weak-ranking-aux A (x#xs) ←→ x 6= {} ∧

A ∩ x = {} ∧ is-weak-ranking-aux (A ∪ x) xs

lemma is-weak-ranking-aux:
is-weak-ranking-aux A xs ←→ A ∩

⋃
(set xs) = {} ∧ is-weak-ranking xs

by (induction xs arbitrary: A) (auto simp: is-weak-ranking-Cons)

lemma is-weak-ranking-code [code]:
is-weak-ranking xs ←→ is-weak-ranking-aux {} xs
by (subst is-weak-ranking-aux) auto

lemma of-weak-ranking-altdef :
assumes is-weak-ranking xs x ∈

⋃
(set xs) y ∈

⋃
(set xs)

shows of-weak-ranking xs x y ←→
find-index ((∈) x) xs ≥ find-index ((∈) y) xs

13

proof −
from assms

have A: find-index ((∈) x) xs < length xs find-index ((∈) y) xs < length xs
by (simp-all add: find-index-less-size-conv)

from this[THEN nth-find-index]
have B: x ∈ xs ! find-index ((∈) x) xs y ∈ xs ! find-index ((∈) y) xs .

show ?thesis
proof

assume of-weak-ranking xs x y
then obtain i j where ij: j ≤ i i < length xs j < length xs x ∈ xs ! i y ∈ xs !j

by (cases rule: of-weak-ranking.cases) simp-all
with A B have i = find-index ((∈) x) xs j = find-index ((∈) y) xs

using assms(1) unfolding is-weak-ranking-def by blast+
with ij show find-index ((∈) x) xs ≥ find-index ((∈) y) xs by simp

next
assume find-index ((∈) x) xs ≥ find-index ((∈) y) xs
from this A(2 ,1) B(2 ,1) show of-weak-ranking xs x y

by (rule of-weak-ranking.intros)
qed

qed

lemma total-preorder-of-weak-ranking:
assumes

⋃
(set xs) = A

assumes is-weak-ranking xs
shows total-preorder-on A (of-weak-ranking xs)

proof
fix x y assume x �[of-weak-ranking xs] y
with assms show x ∈ A y ∈ A

by (auto elim!: of-weak-ranking.cases)
next

fix x assume x ∈ A
with assms(1) obtain i where i < length xs x ∈ xs ! i

by (auto simp: set-conv-nth)
thus x �[of-weak-ranking xs] x by (auto intro: of-weak-ranking.intros)

next
fix x y assume x ∈ A y ∈ A
with assms(1) obtain i j where ij: i < length xs j < length xs x ∈ xs ! i y ∈

xs ! j
by (auto simp: set-conv-nth)

consider i ≤ j | j ≤ i by force
thus x �[of-weak-ranking xs] y ∨ y �[of-weak-ranking xs] x

by cases (insert ij, (blast intro: of-weak-ranking.intros)+)
next

fix x y z
assume A: x �[of-weak-ranking xs] y and B: y �[of-weak-ranking xs] z
from A obtain i j

where ij: i ≥ j i < length xs j < length xs x ∈ xs ! i y ∈ xs ! j
by (auto elim!: of-weak-ranking.cases)

14

moreover from B obtain j ′ k
where j ′k: j ′ ≥ k j ′ < length xs k < length xs y ∈ xs ! j ′ z ∈ xs ! k
by (auto elim!: of-weak-ranking.cases)

moreover from ij j ′k is-weak-rankingD[OF assms(2), of j j ′]
have j = j ′ by blast

ultimately show x �[of-weak-ranking xs] z by (auto intro: of-weak-ranking.intros[of
k i])
qed

lemma restrict-relation-of-weak-ranking-Cons:
assumes is-weak-ranking (A # As)
shows restrict-relation (

⋃
(set As)) (of-weak-ranking (A # As)) = of-weak-ranking

As
proof −

from assms interpret R: total-preorder-on
⋃

(set As) of-weak-ranking As
by (intro total-preorder-of-weak-ranking)

(simp-all add: is-weak-ranking-Cons)
from assms show ?thesis using R.not-outside

by (intro ext) (auto simp: restrict-relation-def of-weak-ranking-Cons
is-weak-ranking-Cons)

qed

lemmas of-weak-ranking-wf =
total-preorder-of-weak-ranking is-weak-ranking-code insert-commute

lemma total-preorder-on {1 ,2 ,3 ,4 ::nat} (of-weak-ranking [{1 ,3},{2},{4}])
by (simp add: of-weak-ranking-wf)

context
fixes x :: ′alt set and xs :: ′alt set list
assumes wf : is-weak-ranking (x#xs)

begin

interpretation R: total-preorder-on
⋃
(set (x#xs)) of-weak-ranking (x#xs)

by (intro total-preorder-of-weak-ranking) (simp-all add: wf)

lemma of-weak-ranking-imp-in-set:
assumes of-weak-ranking xs a b
shows a ∈

⋃
(set xs) b ∈

⋃
(set xs)

using assms by (fastforce elim!: of-weak-ranking.cases)+

lemma of-weak-ranking-Cons ′:
assumes a ∈

⋃
(set (x#xs)) b ∈

⋃
(set (x#xs))

15

shows of-weak-ranking (x#xs) a b ←→ b ∈ x ∨ (a /∈ x ∧ of-weak-ranking xs a
b)
proof

assume of-weak-ranking (x # xs) a b
with wf of-weak-ranking-imp-in-set[of a b]

show (b ∈ x ∨ a /∈ x ∧ of-weak-ranking xs a b)
by (auto simp: is-weak-ranking-Cons of-weak-ranking-Cons)

next
assume b ∈ x ∨ a /∈ x ∧ of-weak-ranking xs a b
with assms show of-weak-ranking (x#xs) a b

by (fastforce simp: of-weak-ranking-Cons)
qed

lemma Max-wrt-among-of-weak-ranking-Cons1 :
assumes x ∩ A = {}
shows Max-wrt-among (of-weak-ranking (x#xs)) A = Max-wrt-among (of-weak-ranking

xs) A
proof −

from wf interpret R ′: total-preorder-on
⋃
(set xs) of-weak-ranking xs

by (intro total-preorder-of-weak-ranking) (simp-all add: is-weak-ranking-Cons)
from assms show ?thesis

by (auto simp: R.Max-wrt-among-total-preorder
R ′.Max-wrt-among-total-preorder of-weak-ranking-Cons)

qed

lemma Max-wrt-among-of-weak-ranking-Cons2 :
assumes x ∩ A 6= {}
shows Max-wrt-among (of-weak-ranking (x#xs)) A = x ∩ A

proof −
from wf interpret R ′: total-preorder-on

⋃
(set xs) of-weak-ranking xs

by (intro total-preorder-of-weak-ranking) (simp-all add: is-weak-ranking-Cons)
from assms obtain a where a ∈ x ∩ A by blast
with wf R ′.not-outside(1)[of a] show ?thesis

by (auto simp: R.Max-wrt-among-total-preorder is-weak-ranking-Cons
R ′.Max-wrt-among-total-preorder of-weak-ranking-Cons)

qed

lemma Max-wrt-among-of-weak-ranking-Cons:
Max-wrt-among (of-weak-ranking (x#xs)) A =

(if x ∩ A = {} then Max-wrt-among (of-weak-ranking xs) A else x ∩ A)
using Max-wrt-among-of-weak-ranking-Cons1 Max-wrt-among-of-weak-ranking-Cons2

by simp

lemma Max-wrt-of-weak-ranking-Cons:
Max-wrt (of-weak-ranking (x#xs)) = x
using wf by (simp add: is-weak-ranking-Cons Max-wrt-def Max-wrt-among-of-weak-ranking-Cons)

end

16

lemma Max-wrt-of-weak-ranking:
assumes is-weak-ranking xs
shows Max-wrt (of-weak-ranking xs) = (if xs = [] then {} else hd xs)

proof (cases xs)
case Nil
hence of-weak-ranking xs = (λ- -. False) by (intro ext) simp-all
with Nil show ?thesis by (simp add: Max-wrt-def Max-wrt-among-def)

next
case (Cons x xs ′)
with assms show ?thesis by (simp add: Max-wrt-of-weak-ranking-Cons)

qed

locale finite-total-preorder-on = total-preorder-on +
assumes finite-carrier [intro]: finite carrier

begin

lemma finite-total-preorder-on-map:
assumes finite (f −‘ carrier)
shows finite-total-preorder-on (f −‘ carrier) (map-relation f le)

proof −
interpret R ′: total-preorder-on f −‘ carrier map-relation f le

using total-preorder-on-map[of f] .
from assms show ?thesis by unfold-locales simp

qed

function weak-ranking-aux :: ′a set ⇒ ′a set list where
weak-ranking-aux {} = []
| A 6= {} =⇒ A ⊆ carrier =⇒ weak-ranking-aux A =

Max-wrt-among le A # weak-ranking-aux (A − Max-wrt-among le A)
| ¬(A ⊆ carrier) =⇒ weak-ranking-aux A = undefined
by blast simp-all
termination proof (relation Wellfounded.measure card)

fix A
let ?B = Max-wrt-among le A
assume A: A 6= {} A ⊆ carrier
moreover from A(2) have finite A by (rule finite-subset) blast
moreover from A have ?B 6= {} ?B ⊆ A

by (intro Max-wrt-among-nonempty Max-wrt-among-subset; force)+
ultimately have card (A − ?B) < card A

by (intro psubset-card-mono) auto
thus (A − ?B, A) ∈ measure card by simp

qed simp-all

lemma weak-ranking-aux-Union:
A ⊆ carrier =⇒

⋃
(set (weak-ranking-aux A)) = A

proof (induction A rule: weak-ranking-aux.induct [case-names empty nonempty])
case (nonempty A)
with Max-wrt-among-subset[of A] show ?case by auto

17

qed simp-all

lemma weak-ranking-aux-wf :
A ⊆ carrier =⇒ is-weak-ranking (weak-ranking-aux A)

proof (induction A rule: weak-ranking-aux.induct [case-names empty nonempty])
case (nonempty A)
have is-weak-ranking (Max-wrt-among le A # weak-ranking-aux (A −Max-wrt-among

le A))
unfolding is-weak-ranking-Cons

proof (intro conjI)
from nonempty.prems nonempty.hyps show Max-wrt-among le A 6= {}

by (intro Max-wrt-among-nonempty) auto
next
from nonempty.prems show is-weak-ranking (weak-ranking-aux (A −Max-wrt-among

le A))
by (intro nonempty.IH) blast

next
from nonempty.prems nonempty.hyps have Max-wrt-among le A 6= {}

by (intro Max-wrt-among-nonempty) auto
moreover from nonempty.prems
have

⋃
(set (weak-ranking-aux (A −Max-wrt-among le A))) = A −Max-wrt-among

le A
by (intro weak-ranking-aux-Union) auto
ultimately show Max-wrt-among le A ∩

⋃
(set (weak-ranking-aux (A −

Max-wrt-among le A))) = {}
by blast+

qed
with nonempty.prems nonempty.hyps show ?case by simp

qed simp-all

lemma of-weak-ranking-weak-ranking-aux ′:
assumes A ⊆ carrier x ∈ A y ∈ A
shows of-weak-ranking (weak-ranking-aux A) x y ←→ restrict-relation A le x y

using assms
proof (induction A rule: weak-ranking-aux.induct [case-names empty nonempty])

case (nonempty A)
define M where M = Max-wrt-among le A
from nonempty.prems nonempty.hyps have M : M ⊆ A unfolding M-def

by (intro Max-wrt-among-subset)
from nonempty.prems have in-MD: le x y if x ∈ A y ∈ M for x y

using that unfolding M-def Max-wrt-among-total-preorder
by (auto simp: Int-absorb1)

from nonempty.prems have in-MI : x ∈ M if y ∈ M x ∈ A le y x for x y
using that unfolding M-def Max-wrt-among-total-preorder
by (auto simp: Int-absorb1 intro: trans)

from nonempty.prems nonempty.hyps
have IH : of-weak-ranking (weak-ranking-aux (A − M)) x y =

restrict-relation (A − M) le x y if x /∈ M y /∈ M

18

using that unfolding M-def by (intro nonempty.IH) auto
from nonempty.prems

interpret R ′: total-preorder-on A − M of-weak-ranking (weak-ranking-aux (A
− M))

by (intro total-preorder-of-weak-ranking weak-ranking-aux-wf weak-ranking-aux-Union)
auto

from nonempty.prems nonempty.hyps M weak-ranking-aux-Union[of A] R ′.not-outside[of
x y]

show ?case
by (cases x ∈ M ; cases y ∈ M)

(auto simp: restrict-relation-def of-weak-ranking-Cons IH M-def [symmetric]
intro: in-MD dest: in-MI)

qed simp-all

lemma of-weak-ranking-weak-ranking-aux:
of-weak-ranking (weak-ranking-aux carrier) = le

proof (intro ext)
fix x y
have is-weak-ranking (weak-ranking-aux carrier) by (rule weak-ranking-aux-wf)

simp
then interpret R: total-preorder-on carrier of-weak-ranking (weak-ranking-aux

carrier)
by (intro total-preorder-of-weak-ranking weak-ranking-aux-wf weak-ranking-aux-Union)

(simp-all add: weak-ranking-aux-Union)

show of-weak-ranking (weak-ranking-aux carrier) x y = le x y
proof (cases x ∈ carrier ∧ y ∈ carrier)

case True
thus ?thesis

using of-weak-ranking-weak-ranking-aux ′[of carrier x y] by simp
next

case False
with R.not-outside have of-weak-ranking (weak-ranking-aux carrier) x y =

False
by auto

also from not-outside False have . . . = le x y by auto
finally show ?thesis .

qed
qed

lemma weak-ranking-aux-unique ′:
assumes

⋃
(set As) ⊆ carrier is-weak-ranking As

of-weak-ranking As = restrict-relation (
⋃

(set As)) le
shows As = weak-ranking-aux (

⋃
(set As))

using assms
proof (induction As)

case (Cons A As)
have restrict-relation (

⋃
(set As)) (of-weak-ranking (A # As)) = of-weak-ranking

19

As
by (intro restrict-relation-of-weak-ranking-Cons Cons.prems)

also have eq1 : of-weak-ranking (A # As) = restrict-relation (
⋃
(set (A # As)))

le by fact
finally have eq: of-weak-ranking As = restrict-relation (

⋃
(set As)) le

by (simp add: Int-absorb2)
with Cons.prems have eq2 : weak-ranking-aux (

⋃
(set As)) = As

by (intro sym [OF Cons.IH]) (auto simp: is-weak-ranking-Cons)

from eq1 have
Max-wrt-among le (

⋃
(set (A # As))) =

Max-wrt-among (of-weak-ranking (A#As)) (
⋃
(set (A#As)))

by (intro Max-wrt-among-cong) simp-all
also from Cons.prems have . . . = A

by (subst Max-wrt-among-of-weak-ranking-Cons2)
(simp-all add: is-weak-ranking-Cons)

finally have Max: Max-wrt-among le (
⋃
(set (A # As))) = A .

moreover from Cons.prems have A 6= {} by (simp add: is-weak-ranking-Cons)
ultimately have weak-ranking-aux (

⋃
(set (A # As))) = A # weak-ranking-aux

(A ∪
⋃
(set As) − A)

using Cons.prems by simp
also from Cons.prems have A ∪

⋃
(set As) − A =

⋃
(set As)

by (auto simp: is-weak-ranking-Cons)
also from eq2 have weak-ranking-aux . . . = As .
finally show ?case ..

qed simp-all

lemma weak-ranking-aux-unique:
assumes is-weak-ranking As of-weak-ranking As = le
shows As = weak-ranking-aux carrier

proof −
interpret R: total-preorder-on

⋃
(set As) of-weak-ranking As

by (intro total-preorder-of-weak-ranking assms) simp-all
from assms have x ∈

⋃
(set As) ←→ x ∈ carrier for x

using R.not-outside not-outside R.refl[of x] refl[of x]
by blast

hence eq:
⋃
(set As) = carrier by blast

from assms eq have As = weak-ranking-aux (
⋃
(set As))

by (intro weak-ranking-aux-unique ′) simp-all
with eq show ?thesis by simp

qed

lemma weak-ranking-total-preorder :
is-weak-ranking (weak-ranking le) of-weak-ranking (weak-ranking le) = le

proof −
from weak-ranking-aux-wf [of carrier] of-weak-ranking-weak-ranking-aux

have ∃ x. is-weak-ranking x ∧ le = of-weak-ranking x by auto
hence is-weak-ranking (weak-ranking le) ∧ le = of-weak-ranking (weak-ranking

20

le)
unfolding weak-ranking-def by (rule someI-ex)

thus is-weak-ranking (weak-ranking le) of-weak-ranking (weak-ranking le) = le
by simp-all

qed

lemma weak-ranking-altdef :
weak-ranking le = weak-ranking-aux carrier
by (intro weak-ranking-aux-unique weak-ranking-total-preorder)

lemma weak-ranking-Union:
⋃
(set (weak-ranking le)) = carrier

by (simp add: weak-ranking-altdef weak-ranking-aux-Union)

lemma weak-ranking-unique:
assumes is-weak-ranking As of-weak-ranking As = le
shows As = weak-ranking le
using assms unfolding weak-ranking-altdef by (rule weak-ranking-aux-unique)

lemma weak-ranking-permute:
assumes f permutes carrier
shows weak-ranking (map-relation (inv f) le) = map ((‘) f) (weak-ranking le)

proof −
from assms have inv f −‘ carrier = carrier

by (simp add: permutes-vimage permutes-inv)
then interpret R: finite-total-preorder-on inv f −‘ carrier map-relation (inv f)

le
by (intro finite-total-preorder-on-map) (simp-all add: finite-carrier)

from assms have is-weak-ranking (map ((‘) f) (weak-ranking le))
by (intro is-weak-ranking-map-inj)

(simp-all add: weak-ranking-total-preorder permutes-inj-on)
with assms show ?thesis

by (intro sym[OF R.weak-ranking-unique])
(simp-all add: of-weak-ranking-permute weak-ranking-Union weak-ranking-total-preorder)

qed

lemma weak-ranking-index-unique:
assumes is-weak-ranking xs i < length xs j < length xs x ∈ xs ! i x ∈ xs ! j
shows i = j
using assms unfolding is-weak-ranking-def by auto

lemma weak-ranking-index-unique ′:
assumes is-weak-ranking xs i < length xs x ∈ xs ! i
shows i = find-index ((∈) x) xs
using assms find-index-less-size-conv nth-mem
by (intro weak-ranking-index-unique[OF assms(1 ,2) - assms(3)]

nth-find-index[of (∈) x]) blast+

lemma weak-ranking-eqclass1 :
assumes A ∈ set (weak-ranking le) x ∈ A y ∈ A

21

shows le x y
proof −

from assms obtain i where weak-ranking le ! i = A i < length (weak-ranking
le)

by (auto simp: set-conv-nth)
with assms have of-weak-ranking (weak-ranking le) x y

by (intro of-weak-ranking.intros[of i i]) auto
thus ?thesis by (simp add: weak-ranking-total-preorder)

qed

lemma weak-ranking-eqclass2 :
assumes A: A ∈ set (weak-ranking le) x ∈ A and le: le x y le y x
shows y ∈ A

proof −
define xs where xs = weak-ranking le
have wf : is-weak-ranking xs by (simp add: xs-def weak-ranking-total-preorder)
let ?le ′ = of-weak-ranking xs
from le have le ′: ?le ′ x y ?le ′ y x by (simp-all add: weak-ranking-total-preorder

xs-def)
from le ′(1) obtain i j

where ij: j ≤ i i < length xs j < length xs x ∈ xs ! i y ∈ xs ! j
by (cases rule: of-weak-ranking.cases)

from le ′(2) obtain i ′ j ′
where i ′j ′: j ′ ≤ i ′ i ′ < length xs j ′ < length xs x ∈ xs ! j ′ y ∈ xs ! i ′
by (cases rule: of-weak-ranking.cases)

from ij i ′j ′ have eq: i = j ′ j = i ′
by (intro weak-ranking-index-unique[OF wf]; simp)+

moreover from A obtain k where k: k < length xs A = xs ! k
by (auto simp: xs-def set-conv-nth)

ultimately have k = i using ij i ′j ′ A
by (intro weak-ranking-index-unique[OF wf , of - - x]) auto

with ij i ′j ′ k eq show ?thesis by (auto simp: xs-def)
qed

lemma hd-weak-ranking:
assumes x ∈ hd (weak-ranking le) y ∈ carrier
shows le y x

proof −
from weak-ranking-Union assms obtain i

where i < length (weak-ranking le) y ∈ weak-ranking le ! i
by (auto simp: set-conv-nth)

moreover from assms(2) weak-ranking-Union have weak-ranking le 6= [] by
auto

ultimately have of-weak-ranking (weak-ranking le) y x using assms(1)
by (intro of-weak-ranking.intros[of 0 i]) (auto simp: hd-conv-nth)

thus ?thesis by (simp add: weak-ranking-total-preorder)
qed

lemma last-weak-ranking:

22

assumes x ∈ last (weak-ranking le) y ∈ carrier
shows le x y

proof −
from weak-ranking-Union assms obtain i

where i < length (weak-ranking le) y ∈ weak-ranking le ! i
by (auto simp: set-conv-nth)

moreover from assms(2) weak-ranking-Union have weak-ranking le 6= [] by
auto

ultimately have of-weak-ranking (weak-ranking le) x y using assms(1)
by (intro of-weak-ranking.intros[of i length (weak-ranking le) − 1])

(auto simp: last-conv-nth)
thus ?thesis by (simp add: weak-ranking-total-preorder)

qed

The index in weak ranking of a given alternative. An element with index 0
is first-ranked; larger indices correspond to less-preferred alternatives.
definition weak-ranking-index :: ′a ⇒ nat where

weak-ranking-index x = find-index (λA. x ∈ A) (weak-ranking le)

lemma nth-weak-ranking-index:
assumes x ∈ carrier
shows weak-ranking-index x < length (weak-ranking le)

x ∈ weak-ranking le ! weak-ranking-index x
proof −
from assms weak-ranking-Union show weak-ranking-index x < length (weak-ranking

le)
unfolding weak-ranking-index-def by (auto simp add: find-index-less-size-conv)

thus x ∈ weak-ranking le ! weak-ranking-index x unfolding weak-ranking-index-def
by (rule nth-find-index)

qed

lemma ranking-index-eqI :
i < length (weak-ranking le) =⇒ x ∈ weak-ranking le ! i =⇒ weak-ranking-index

x = i
using weak-ranking-index-unique ′[of weak-ranking le i x]
by (simp add: weak-ranking-index-def weak-ranking-total-preorder)

lemma ranking-index-le-iff [simp]:
assumes x ∈ carrier y ∈ carrier
shows weak-ranking-index x ≥ weak-ranking-index y ←→ le x y

proof −
have le x y ←→ of-weak-ranking (weak-ranking le) x y

by (simp add: weak-ranking-total-preorder)
also have . . . ←→ weak-ranking-index x ≥ weak-ranking-index y
proof

assume weak-ranking-index x ≥ weak-ranking-index y
thus of-weak-ranking (weak-ranking le) x y
by (rule of-weak-ranking.intros) (simp-all add: nth-weak-ranking-index assms)

next

23

assume of-weak-ranking (weak-ranking le) x y
then obtain i j where

i ≤ j i < length (weak-ranking le) j < length (weak-ranking le)
x ∈ weak-ranking le ! j y ∈ weak-ranking le ! i
by (elim of-weak-ranking.cases) blast

with ranking-index-eqI [of i] ranking-index-eqI [of j]
show weak-ranking-index x ≥ weak-ranking-index y by simp

qed
finally show ?thesis ..

qed

end

lemma weak-ranking-False [simp]: weak-ranking (λ- -. False) = []
proof −

interpret finite-total-preorder-on {} λ- -. False
by unfold-locales simp-all

have [] = weak-ranking (λ- -. False) by (rule weak-ranking-unique) simp-all
thus ?thesis ..

qed

lemmas of-weak-ranking-weak-ranking =
finite-total-preorder-on.weak-ranking-total-preorder(2)

lemma finite-total-preorder-on-iff :
finite-total-preorder-on A R ←→ total-preorder-on A R ∧ finite A
by (simp add: finite-total-preorder-on-def finite-total-preorder-on-axioms-def)

lemma finite-total-preorder-of-weak-ranking:
assumes

⋃
(set xs) = A is-finite-weak-ranking xs

shows finite-total-preorder-on A (of-weak-ranking xs)
proof −
from assms(2) have is-weak-ranking xs by (simp add: is-finite-weak-ranking-def)
from assms(1) and this interpret total-preorder-on A of-weak-ranking xs

by (rule total-preorder-of-weak-ranking)
from assms(2) show ?thesis

by unfold-locales (simp add: assms(1)[symmetric] is-finite-weak-ranking-def)
qed

lemma weak-ranking-of-weak-ranking:
assumes is-finite-weak-ranking xs
shows weak-ranking (of-weak-ranking xs) = xs

proof −
from assms interpret finite-total-preorder-on

⋃
(set xs) of-weak-ranking xs

by (intro finite-total-preorder-of-weak-ranking) simp-all
from assms show ?thesis
by (intro sym[OF weak-ranking-unique]) (simp-all add: is-finite-weak-ranking-def)

qed

24

lemma weak-ranking-eqD:
assumes finite-total-preorder-on alts R1
assumes finite-total-preorder-on alts R2
assumes weak-ranking R1 = weak-ranking R2
shows R1 = R2

proof −
from assms have of-weak-ranking (weak-ranking R1) = of-weak-ranking (weak-ranking

R2) by simp
with assms(1 ,2) show ?thesis by (simp add: of-weak-ranking-weak-ranking)

qed

lemma weak-ranking-eq-iff :
assumes finite-total-preorder-on alts R1
assumes finite-total-preorder-on alts R2
shows weak-ranking R1 = weak-ranking R2 ←→ R1 = R2
using assms weak-ranking-eqD by auto

definition preferred-alts :: ′alt relation ⇒ ′alt ⇒ ′alt set where
preferred-alts R x = {y. y �[R] x}

lemma (in preorder-on) preferred-alts-refl [simp]: x ∈ carrier =⇒ x ∈ preferred-alts
le x

by (simp add: preferred-alts-def refl)

lemma (in preorder-on) preferred-alts-altdef :
preferred-alts le x = {y∈carrier . y �[le] x}
by (auto simp: preferred-alts-def intro: not-outside)

lemma (in preorder-on) preferred-alts-subset: preferred-alts le x ⊆ carrier
unfolding preferred-alts-def using not-outside by blast

1.7 Rankings
definition ranking :: ′a relation ⇒ ′a list where

ranking R = map the-elem (weak-ranking R)

locale finite-linorder-on = linorder-on +
assumes finite-carrier [intro]: finite carrier

begin

sublocale finite-total-preorder-on carrier le
by unfold-locales (fact finite-carrier)

lemma singleton-weak-ranking:
assumes A ∈ set (weak-ranking le)
shows is-singleton A

proof (rule is-singletonI ′)

25

from assms show A 6= {}
using weak-ranking-total-preorder(1) is-weak-ranking-iff by auto

next
fix x y assume x ∈ A y ∈ A
with assms
have x �[of-weak-ranking (weak-ranking le)] y y �[of-weak-ranking (weak-ranking

le)] x
by (auto intro!: of-weak-ranking-indifference)

with weak-ranking-total-preorder(2)
show x = y by (intro antisymmetric) simp-all

qed

lemma weak-ranking-ranking: weak-ranking le = map (λx. {x}) (ranking le)
unfolding ranking-def map-map o-def

proof (rule sym, rule map-idI)
fix A assume A ∈ set (weak-ranking le)
hence is-singleton A by (rule singleton-weak-ranking)
thus {the-elem A} = A by (auto elim: is-singletonE)

qed

end

end

2 Preference Profiles
theory Preference-Profiles
imports

Main
Order-Predicates
HOL−Library.Multiset
HOL−Library.Disjoint-Sets

begin

The type of preference profiles
type-synonym (′agent, ′alt) pref-profile = ′agent ⇒ ′alt relation

locale preorder-family =
fixes dom :: ′a set and carrier :: ′b set and R :: ′a ⇒ ′b relation
assumes nonempty-dom: dom 6= {}
assumes in-dom [simp]: i ∈ dom =⇒ preorder-on carrier (R i)
assumes not-in-dom [simp]: i /∈ dom =⇒ ¬R i x y

begin

lemma not-in-dom ′: i /∈ dom =⇒ R i = (λ- -. False)
by (simp add: fun-eq-iff)

end

26

locale pref-profile-wf =
fixes agents :: ′agent set and alts :: ′alt set and R :: (′agent, ′alt) pref-profile
assumes nonempty-agents [simp]: agents 6= {} and nonempty-alts [simp]: alts 6=
{}

assumes prefs-wf [simp]: i ∈ agents =⇒ finite-total-preorder-on alts (R i)
assumes prefs-undefined [simp]: i /∈ agents =⇒ ¬R i x y

begin

lemma finite-alts [simp]: finite alts
proof −

from nonempty-agents obtain i where i ∈ agents by blast
then interpret finite-total-preorder-on alts R i by simp
show ?thesis by (rule finite-carrier)

qed

lemma prefs-wf ′ [simp]:
i ∈ agents =⇒ total-preorder-on alts (R i) i ∈ agents =⇒ preorder-on alts (R i)
using prefs-wf [of i]
by (simp-all add: finite-total-preorder-on-def total-preorder-on-def del: prefs-wf)

lemma not-outside:
assumes x �[R i] y
shows i ∈ agents x ∈ alts y ∈ alts

proof −
from assms show i ∈ agents by (cases i ∈ agents) auto
then interpret preorder-on alts R i by simp
from assms show x ∈ alts y ∈ alts by (simp-all add: not-outside)

qed

sublocale preorder-family agents alts R
by (intro preorder-family.intro) simp-all

lemmas prefs-undefined ′ = not-in-dom ′

lemma wf-update:
assumes i ∈ agents total-preorder-on alts Ri ′
shows pref-profile-wf agents alts (R(i := Ri ′))

proof −
interpret total-preorder-on alts Ri ′ by fact
from finite-alts have finite-total-preorder-on alts Ri ′ by unfold-locales
with assms show ?thesis

by (auto intro!: pref-profile-wf .intro split: if-splits)
qed

lemma wf-permute-agents:
assumes σ permutes agents
shows pref-profile-wf agents alts (R ◦ σ)
unfolding o-def using permutes-in-image[OF assms(1)]

27

by (intro pref-profile-wf .intro prefs-wf) simp-all

lemma (in −) pref-profile-eqI :
assumes pref-profile-wf agents alts R1 pref-profile-wf agents alts R2
assumes

∧
x. x ∈ agents =⇒ R1 x = R2 x

shows R1 = R2
proof

interpret R1 : pref-profile-wf agents alts R1 by fact
interpret R2 : pref-profile-wf agents alts R2 by fact
fix x show R1 x = R2 x

by (cases x ∈ agents; intro ext) (simp-all add: assms(3))
qed

end

Permutes a preference profile w.r.t. alternatives in the way described in the
paper. This is needed for the definition of neutrality.
definition permute-profile where

permute-profile σ R = (λi x y. R i (inv σ x) (inv σ y))

lemma permute-profile-map-relation:
permute-profile σ R = (λi. map-relation (inv σ) (R i))
by (simp add: permute-profile-def map-relation-def)

lemma permute-profile-compose [simp]:
permute-profile σ (R ◦ π) = permute-profile σ R ◦ π
by (auto simp: fun-eq-iff permute-profile-def o-def)

lemma permute-profile-id [simp]: permute-profile id R = R
by (simp add: permute-profile-def)

lemma permute-profile-o:
assumes bij f bij g
shows permute-profile f (permute-profile g R) = permute-profile (f ◦ g) R
using assms by (simp add: permute-profile-def o-inv-distrib)

lemma (in pref-profile-wf) wf-permute-alts:
assumes σ permutes alts
shows pref-profile-wf agents alts (permute-profile σ R)

proof (rule pref-profile-wf .intro)
fix i assume i ∈ agents
with assms interpret R: finite-total-preorder-on alts R i by simp

from assms have [simp]: inv σ x ∈ alts ←→ x ∈ alts for x
by (simp add: permutes-in-image permutes-inv)

show finite-total-preorder-on alts (permute-profile σ R i)
proof

fix x y assume permute-profile σ R i x y

28

thus x ∈ alts y ∈ alts
using R.not-outside[of inv σ x inv σ y]
by (auto simp: permute-profile-def)

next
fix x y z assume permute-profile σ R i x y permute-profile σ R i y z
thus permute-profile σ R i x z

using R.trans[of inv σ x inv σ y inv σ z]
by (simp-all add: permute-profile-def)

qed (insert R.total R.refl R.finite-carrier , simp-all add: permute-profile-def)
qed (insert assms, simp-all add: permute-profile-def pref-profile-wf-def)

This shows that the above definition is equivalent to that in the paper.
lemma permute-profile-iff [simp]:

fixes R :: (′agent, ′alt) pref-profile
assumes σ permutes alts x ∈ alts y ∈ alts
defines R ′ ≡ permute-profile σ R
shows σ x �[R ′ i] σ y ←→ x �[R i] y
using assms by (simp add: permute-profile-def permutes-inverses)

2.1 Pareto dominance
definition Pareto :: (′agent ⇒ ′alt relation) ⇒ ′alt relation where

x �[Pareto(R)] y ←→ (∃ j. x �[R j] x) ∧ (∀ i. x �[R i] x −→ x �[R i] y)

A Pareto loser is an alternative that is Pareto-dominated by some other
alternative.
definition pareto-losers :: (′agent, ′alt) pref-profile ⇒ ′alt set where

pareto-losers R = {x. ∃ y. y �[Pareto(R)] x}

lemma pareto-losersI [intro?, simp]: y �[Pareto(R)] x =⇒ x ∈ pareto-losers R
by (auto simp: pareto-losers-def)

context preorder-family
begin

lemma Pareto-iff :
x �[Pareto(R)] y ←→ (∀ i∈dom. x �[R i] y)

proof
assume A: x �[Pareto(R)] y
then obtain j where j: x �[R j] x by (auto simp: Pareto-def)
hence j ′: j ∈ dom by (cases j ∈ dom) auto
then interpret preorder-on carrier R j by simp
from j have x ∈ carrier by (auto simp: carrier-eq)
with A preorder-on.refl[OF in-dom]

show (∀ i∈dom. x �[R i] y) by (auto simp: Pareto-def)
next

assume A: (∀ i∈dom. x �[R i] y)
from nonempty-dom obtain j where j: j ∈ dom by blast
then interpret preorder-on carrier R j by simp

29

from j A have x �[R j] y by simp
hence x �[R j] x using not-outside refl by blast
with A show x �[Pareto(R)] y by (auto simp: Pareto-def)

qed

lemma Pareto-strict-iff :
x ≺[Pareto(R)] y ←→ (∀ i∈dom. x �[R i] y) ∧ (∃ i∈dom. x ≺[R i] y)
by (auto simp: strongly-preferred-def Pareto-iff nonempty-dom)

lemma Pareto-strictI :
assumes

∧
i. i ∈ dom =⇒ x �[R i] y i ∈ dom x ≺[R i] y

shows x ≺[Pareto(R)] y
using assms by (auto simp: Pareto-strict-iff)

lemma Pareto-strictI ′:
assumes

∧
i. i ∈ dom =⇒ x �[R i] y i ∈ dom ¬x �[R i] y

shows x ≺[Pareto(R)] y
proof −

from assms interpret preorder-on carrier R i by simp
from assms have x ≺[R i] y by (simp add: strongly-preferred-def)
with assms show ?thesis by (auto simp: Pareto-strict-iff)

qed

sublocale Pareto: preorder-on carrier Pareto(R)
proof −

have preorder-on carrier (R i) if i ∈ dom for i using that by simp-all
note A = preorder-on.not-outside[OF this(1)] preorder-on.refl[OF this(1)]

preorder-on.trans[OF this(1)]
from nonempty-dom obtain i where i: i ∈ dom by blast
show preorder-on carrier (Pareto R)
proof

fix x y assume x �[Pareto(R)] y
with A(1 ,2)[OF i] i show x ∈ carrier y ∈ carrier by (auto simp: Pareto-iff)

qed (auto simp: Pareto-iff intro: A)
qed

lemma pareto-loser-in-alts:
assumes x ∈ pareto-losers R
shows x ∈ carrier

proof −
from assms obtain y i where i ∈ dom x ≺[R i] y

by (auto simp: pareto-losers-def Pareto-strict-iff)
then interpret preorder-on carrier R i by simp
from ‹x ≺[R i] y› have x �[R i] y by (simp add: strongly-preferred-def)
thus x ∈ carrier using not-outside by simp

qed

lemma pareto-losersE :

30

assumes x ∈ pareto-losers R
obtains y where y ∈ carrier y �[Pareto(R)] x

proof −
from assms obtain y where y: y �[Pareto(R)] x unfolding pareto-losers-def

by blast
with Pareto.not-outside[of x y] have y ∈ carrier

by (simp add: strongly-preferred-def)
with y show ?thesis using that by blast

qed

end

2.2 Preferred alternatives
context pref-profile-wf
begin

lemma preferred-alts-subset-alts: preferred-alts (R i) x ⊆ alts (is ?A)
and finite-preferred-alts [simp,intro!]: finite (preferred-alts (R i) x) (is ?B)

proof −
have ?A ∧ ?B
proof (cases i ∈ agents)

assume i ∈ agents
then interpret total-preorder-on alts R i by simp
have preferred-alts (R i) x ⊆ alts using not-outside

by (auto simp: preferred-alts-def)
thus ?thesis by (auto dest: finite-subset)

qed (auto simp: preferred-alts-def)
thus ?A ?B by blast+

qed

lemma preferred-alts-altdef :
i ∈ agents =⇒ preferred-alts (R i) x = {y∈alts. y �[R i] x}
by (simp add: preorder-on.preferred-alts-altdef)

end

2.3 Favourite alternatives
definition favorites :: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt set where

favorites R i = Max-wrt (R i)

definition favorite :: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt where
favorite R i = the-elem (favorites R i)

definition has-unique-favorites :: (′agent, ′alt) pref-profile ⇒ bool where
has-unique-favorites R ←→ (∀ i. favorites R i = {} ∨ is-singleton (favorites R

i))

context pref-profile-wf

31

begin

lemma favorites-altdef :
favorites R i = Max-wrt-among (R i) alts

proof (cases i ∈ agents)
assume i ∈ agents
then interpret total-preorder-on alts R i by simp
show ?thesis
by (simp add: favorites-def Max-wrt-total-preorder Max-wrt-among-total-preorder)

qed (simp-all add: favorites-def Max-wrt-def Max-wrt-among-def pref-profile-wf-def)

lemma favorites-no-agent [simp]: i /∈ agents =⇒ favorites R i = {}
by (auto simp: favorites-def Max-wrt-def Max-wrt-among-def)

lemma favorites-altdef ′:
favorites R i = {x∈alts. ∀ y∈alts. x �[R i] y}

proof (cases i ∈ agents)
assume i ∈ agents
then interpret finite-total-preorder-on alts R i by simp
show ?thesis using Max-wrt-among-nonempty[of alts] Max-wrt-among-subset[of

alts]
by (auto simp: favorites-altdef Max-wrt-among-total-preorder)

qed simp-all

lemma favorites-subset-alts: favorites R i ⊆ alts
by (auto simp: favorites-altdef ′)

lemma finite-favorites [simp, intro]: finite (favorites R i)
using favorites-subset-alts finite-alts by (rule finite-subset)

lemma favorites-nonempty: i ∈ agents =⇒ favorites R i 6= {}
proof −

assume i ∈ agents
then interpret finite-total-preorder-on alts R i by simp
show ?thesis unfolding favorites-def by (intro Max-wrt-nonempty) simp-all

qed

lemma favorites-permute:
assumes i: i ∈ agents and perm: σ permutes alts
shows favorites (permute-profile σ R) i = σ ‘ favorites R i

proof −
from i interpret finite-total-preorder-on alts R i by simp
from perm show ?thesis
unfolding favorites-def

by (subst Max-wrt-map-relation-bij)
(simp-all add: permute-profile-def map-relation-def permutes-bij)

qed

lemma has-unique-favorites-altdef :

32

has-unique-favorites R ←→ (∀ i∈agents. is-singleton (favorites R i))
proof safe

fix i assume has-unique-favorites R i ∈ agents
thus is-singleton (favorites R i) using favorites-nonempty[of i]

by (auto simp: has-unique-favorites-def)
next

assume ∀ i∈agents. is-singleton (favorites R i)
hence is-singleton (favorites R i) ∨ favorites R i = {} for i
by (cases i ∈ agents) (simp add: favorites-nonempty, simp add: favorites-altdef ′)

thus has-unique-favorites R by (auto simp: has-unique-favorites-def)
qed

end

locale pref-profile-unique-favorites = pref-profile-wf agents alts R
for agents :: ′agent set and alts :: ′alt set and R +
assumes unique-favorites ′: has-unique-favorites R

begin

lemma unique-favorites: i ∈ agents =⇒ favorites R i = {favorite R i}
using unique-favorites ′

by (auto simp: favorite-def has-unique-favorites-altdef is-singleton-the-elem)

lemma favorite-in-alts: i ∈ agents =⇒ favorite R i ∈ alts
using favorites-subset-alts[of i] by (simp add: unique-favorites)

end

2.4 Anonymous profiles
type-synonym (′agent, ′alt) apref-profile = ′alt set list multiset

definition anonymous-profile :: (′agent, ′alt) pref-profile⇒ (′agent, ′alt) apref-profile

where anonymous-profile-auxdef :
anonymous-profile R = image-mset (weak-ranking ◦ R) (mset-set {i. R i 6= (λ-

-. False)})

lemma (in pref-profile-wf) agents-eq:
agents = {i. R i 6= (λ- -. False)}

proof safe
fix i assume i: i ∈ agents and Ri: R i = (λ- -. False)
from i interpret preorder-on alts R i by simp
from carrier-eq Ri nonempty-alts show False by simp

next
fix i assume R i 6= (λ- -. False)
thus i ∈ agents using prefs-undefined ′[of i] by (cases i ∈ agents) auto

qed

33

lemma (in pref-profile-wf) anonymous-profile-def :
anonymous-profile R = image-mset (weak-ranking ◦ R) (mset-set agents)
by (simp only: agents-eq anonymous-profile-auxdef)

lemma (in pref-profile-wf) anonymous-profile-permute:
assumes σ permutes alts finite agents
shows anonymous-profile (permute-profile σ R) =

image-mset (map ((‘) σ)) (anonymous-profile R)
proof −

from assms(1) interpret R ′: pref-profile-wf agents alts permute-profile σ R
by (rule wf-permute-alts)

have anonymous-profile (permute-profile σ R) =
{#weak-ranking (map-relation (inv σ) (R x)). x ∈# mset-set agents#}

unfolding R ′.anonymous-profile-def
by (simp add: multiset.map-comp permute-profile-map-relation o-def)

also from assms have . . . = {#map ((‘) σ) (weak-ranking (R x)). x ∈# mset-set
agents#}

by (intro image-mset-cong)
(simp add: finite-total-preorder-on.weak-ranking-permute[of alts])

also have . . . = image-mset (map ((‘) σ)) (anonymous-profile R)
by (simp add: anonymous-profile-def multiset.map-comp o-def)

finally show ?thesis .
qed

lemma (in pref-profile-wf) anonymous-profile-update:
assumes i: i ∈ agents and fin [simp]: finite agents and total-preorder-on alts

Ri ′
shows anonymous-profile (R(i := Ri ′)) =

anonymous-profile R − {#weak-ranking (R i)#} + {#weak-ranking
Ri ′#}
proof −

from assms interpret R ′: pref-profile-wf agents alts R(i := Ri ′)
by (simp add: finite-total-preorder-on-iff wf-update)

have anonymous-profile (R(i := Ri ′)) =
{#weak-ranking (if x = i then Ri ′ else R x). x ∈# mset-set agents#}

by (simp add: R ′.anonymous-profile-def o-def)
also have . . . = {#if x = i then weak-ranking Ri ′ else weak-ranking (R x). x ∈#

mset-set agents#}
by (intro image-mset-cong) simp-all

also have . . . = {#weak-ranking Ri ′. x ∈# mset-set {x ∈ agents. x = i}#} +
{#weak-ranking (R x). x ∈# mset-set {x ∈ agents. x 6= i}#}

by (subst image-mset-If) ((subst filter-mset-mset-set, simp)+, rule refl)
also from i have {x ∈ agents. x = i} = {i} by auto
also have {x ∈ agents. x 6= i} = agents − {i} by auto
also have {#weak-ranking Ri ′. x ∈# mset-set {i}#} = {#weak-ranking Ri ′#}

by simp
also from i have mset-set (agents − {i}) = mset-set agents − {#i#}

by (simp add: mset-set-Diff)

34

also from i
have {#weak-ranking (R x). x ∈# . . .#} =

{#weak-ranking (R x). x ∈# mset-set agents#} − {#weak-ranking (R
i)#}

by (subst image-mset-Diff) (simp-all add: in-multiset-in-set mset-subset-eq-single)
also have {#weak-ranking Ri ′#} + . . . =

anonymous-profile R − {#weak-ranking (R i)#} + {#weak-ranking
Ri ′#}

by (simp add: anonymous-profile-def add-ac o-def)
finally show ?thesis .

qed

2.5 Preference profiles from lists
definition prefs-from-table :: (′agent × ′alt set list) list ⇒ (′agent, ′alt) pref-profile
where

prefs-from-table xss = (λi. case-option (λ- -. False) of-weak-ranking (map-of xss
i))

definition prefs-from-table-wf where
prefs-from-table-wf agents alts xss ←→ agents 6= {} ∧ alts 6= {} ∧ distinct (map

fst xss) ∧
set (map fst xss) = agents ∧ (∀ xs∈set (map snd xss).

⋃
(set xs) = alts ∧

is-finite-weak-ranking xs)

lemma prefs-from-table-wfI :
assumes agents 6= {} alts 6= {} distinct (map fst xss)
assumes set (map fst xss) = agents
assumes

∧
xs. xs ∈ set (map snd xss) =⇒

⋃
(set xs) = alts

assumes
∧

xs. xs ∈ set (map snd xss) =⇒ is-finite-weak-ranking xs
shows prefs-from-table-wf agents alts xss
using assms unfolding prefs-from-table-wf-def by auto

lemma prefs-from-table-wfD:
assumes prefs-from-table-wf agents alts xss
shows agents 6= {} alts 6= {} distinct (map fst xss)

and set (map fst xss) = agents
and

∧
xs. xs ∈ set (map snd xss) =⇒

⋃
(set xs) = alts

and
∧

xs. xs ∈ set (map snd xss) =⇒ is-finite-weak-ranking xs
using assms unfolding prefs-from-table-wf-def by auto

lemma pref-profile-from-tableI :
prefs-from-table-wf agents alts xss =⇒ pref-profile-wf agents alts (prefs-from-table

xss)
proof (intro pref-profile-wf .intro)

assume wf : prefs-from-table-wf agents alts xss
fix i assume i: i ∈ agents
with wf have i ∈ set (map fst xss) by (simp add: prefs-from-table-wf-def)
then obtain xs where xs: xs ∈ set (map snd xss) prefs-from-table xss i =

35

of-weak-ranking xs
by (cases map-of xss i)
(fastforce dest: map-of-SomeD simp: prefs-from-table-def map-of-eq-None-iff)+

with wf show finite-total-preorder-on alts (prefs-from-table xss i)
by (auto simp: prefs-from-table-wf-def intro!: finite-total-preorder-of-weak-ranking)

next
assume wf : prefs-from-table-wf agents alts xss
fix i x y assume i: i /∈ agents
with wf have i /∈ set (map fst xss) by (simp add: prefs-from-table-wf-def)
hence map-of xss i = None by (simp add: map-of-eq-None-iff)
thus ¬prefs-from-table xss i x y by (simp add: prefs-from-table-def)

qed (simp-all add: prefs-from-table-wf-def)

lemma prefs-from-table-eqI :
assumes distinct (map fst xs) distinct (map fst ys) set xs = set ys
shows prefs-from-table xs = prefs-from-table ys

proof −
from assms have map-of xs = map-of ys by (subst map-of-inject-set) simp-all
thus ?thesis by (simp add: prefs-from-table-def)

qed

lemma prefs-from-table-undef :
assumes prefs-from-table-wf agents alts xss i /∈ agents
shows prefs-from-table xss i = (λ- -. False)

proof −
from assms have i /∈ fst ‘ set xss

by (simp add: prefs-from-table-wf-def)
hence map-of xss i = None by (simp add: map-of-eq-None-iff)
thus ?thesis by (simp add: prefs-from-table-def)

qed

lemma prefs-from-table-map-of :
assumes prefs-from-table-wf agents alts xss i ∈ agents
shows prefs-from-table xss i = of-weak-ranking (the (map-of xss i))
using assms
by (auto simp: prefs-from-table-def map-of-eq-None-iff prefs-from-table-wf-def

split: option.splits)

lemma prefs-from-table-update:
fixes x xs
assumes i ∈ set (map fst xs)
defines xs ′ ≡ map (λ(j,y). if j = i then (j, x) else (j, y)) xs
shows (prefs-from-table xs)(i := of-weak-ranking x) =

prefs-from-table xs ′ (is ?lhs = ?rhs)
proof

have xs ′: set (map fst xs ′) = set (map fst xs) by (force simp: xs ′-def)
fix k
consider k = i | k /∈ set (map fst xs) | k 6= i k ∈ set (map fst xs) by blast
thus ?lhs k = ?rhs k

36

proof cases
assume k: k = i
moreover from k have y = x if (i, y) ∈ set xs ′ for y

using that by (auto simp: xs ′-def split: if-splits)
ultimately show ?thesis using assms(1) k xs ′

by (auto simp add: prefs-from-table-def map-of-eq-None-iff
dest!: map-of-SomeD split: option.splits)

next
assume k: k /∈ set (map fst xs)
with assms(1) have k ′: k 6= i by auto
with k xs ′ have map-of xs k = None map-of xs ′ k = None

by (simp-all add: map-of-eq-None-iff)
thus ?thesis by (simp add: prefs-from-table-def k ′)

next
assume k: k 6= i k ∈ set (map fst xs)
with k(1) have map-of xs k = map-of xs ′ k unfolding xs ′-def

by (induction xs) fastforce+
with k show ?thesis by (simp add: prefs-from-table-def)

qed
qed

lemma prefs-from-table-swap:
x 6= y =⇒ prefs-from-table ((x,x ′)#(y,y ′)#xs) = prefs-from-table ((y,y ′)#(x,x ′)#xs)
by (intro ext) (auto simp: prefs-from-table-def)

lemma permute-prefs-from-table:
assumes σ permutes fst ‘ set xs
shows prefs-from-table xs ◦ σ = prefs-from-table (map (λ(x,y). (inv σ x, y))

xs)
proof

fix i
have (prefs-from-table xs ◦ σ) i =

(case map-of xs (σ i) of
None ⇒ λ- -. False
| Some x ⇒ of-weak-ranking x)

by (simp add: prefs-from-table-def o-def)
also have map-of xs (σ i) = map-of (map (λ(x,y). (inv σ x, y)) xs) i

using map-of-permute[OF assms] by (simp add: o-def fun-eq-iff)
finally show (prefs-from-table xs ◦ σ) i = prefs-from-table (map (λ(x,y). (inv σ

x, y)) xs) i
by (simp only: prefs-from-table-def)

qed

lemma permute-profile-from-table:
assumes wf : prefs-from-table-wf agents alts xss
assumes perm: σ permutes alts
shows permute-profile σ (prefs-from-table xss) =

prefs-from-table (map (λ(x,y). (x, map ((‘) σ) y)) xss) (is ?f = ?g)
proof

37

fix i
have wf ′: prefs-from-table-wf agents alts (map (λ(x, y). (x, map ((‘) σ) y)) xss)
proof (intro prefs-from-table-wfI , goal-cases)

case (5 xs)
then obtain y where y ∈ set xss xs = map ((‘) σ) (snd y)

by (auto simp add: o-def case-prod-unfold)
with assms show ?case
by (simp add: image-Union [symmetric] prefs-from-table-wf-def permutes-image

o-def case-prod-unfold)
next

case (6 xs)
then obtain y where y ∈ set xss xs = map ((‘) σ) (snd y)

by (auto simp add: o-def case-prod-unfold)
with assms show ?case
by (auto simp: is-finite-weak-ranking-def is-weak-ranking-iff prefs-from-table-wf-def

distinct-map permutes-inj-on inj-on-image intro!: disjoint-image)
qed (insert assms, simp-all add: image-Union [symmetric] prefs-from-table-wf-def

permutes-image o-def case-prod-unfold)
show ?f i = ?g i
proof (cases i ∈ agents)

assume i /∈ agents
with assms wf ′ show ?thesis

by (simp add: permute-profile-def prefs-from-table-undef)
next

assume i: i ∈ agents
define xs where xs = the (map-of xss i)
from i wf have xs: map-of xss i = Some xs

by (cases map-of xss i) (auto simp: prefs-from-table-wf-def xs-def)
have xs-in-xss: xs ∈ snd ‘ set xss

using xs by (force dest!: map-of-SomeD)
with wf have set-xs:

⋃
(set xs) = alts

by (simp add: prefs-from-table-wfD)

from i have prefs-from-table (map (λ(x,y). (x, map ((‘) σ) y)) xss) i =
of-weak-ranking (the (map-of (map (λ(x,y). (x, map ((‘) σ) y)) xss)

i))
using wf ′ by (intro prefs-from-table-map-of) simp-all

also have . . . = of-weak-ranking (map ((‘) σ) xs)
by (subst map-of-map) (simp add: xs)

also have . . . = (λa b. of-weak-ranking xs (inv σ a) (inv σ b))
by (intro ext) (simp add: of-weak-ranking-permute map-relation-def set-xs

perm)
also have . . . = permute-profile σ (prefs-from-table xss) i

by (simp add: prefs-from-table-def xs permute-profile-def)
finally show ?thesis ..

qed
qed

38

2.6 Automatic evaluation of preference profiles
lemma eval-prefs-from-table [simp]:

prefs-from-table []i = (λ- -. False)
prefs-from-table ((i, y) # xs) i = of-weak-ranking y
i 6= j =⇒ prefs-from-table ((j, y) # xs) i = prefs-from-table xs i
by (simp-all add: prefs-from-table-def)

lemma eval-of-weak-ranking [simp]:
a /∈

⋃
(set xs) =⇒ ¬of-weak-ranking xs a b

b ∈ x =⇒ a ∈
⋃
(set (x#xs)) =⇒ of-weak-ranking (x # xs) a b

b /∈ x =⇒ of-weak-ranking (x # xs) a b ←→ of-weak-ranking xs a b
by (induction xs) (simp-all add: of-weak-ranking-Cons)

lemma prefs-from-table-cong [cong]:
assumes prefs-from-table xs = prefs-from-table ys
shows prefs-from-table (x#xs) = prefs-from-table (x#ys)

proof
fix i
show prefs-from-table (x # xs) i = prefs-from-table (x # ys) i

using assms by (cases x, cases i = fst x) simp-all
qed

definition of-weak-ranking-Collect-ge where
of-weak-ranking-Collect-ge xs x = {y. of-weak-ranking xs y x}

lemma eval-Collect-of-weak-ranking:
Collect (of-weak-ranking xs x) = of-weak-ranking-Collect-ge (rev xs) x
by (simp add: of-weak-ranking-Collect-ge-def)

lemma of-weak-ranking-Collect-ge-empty [simp]:
of-weak-ranking-Collect-ge [] x = {}
by (simp add: of-weak-ranking-Collect-ge-def)

lemma of-weak-ranking-Collect-ge-Cons [simp]:
y ∈ x =⇒ of-weak-ranking-Collect-ge (x#xs) y =

⋃
(set (x#xs))

y /∈ x =⇒ of-weak-ranking-Collect-ge (x#xs) y = of-weak-ranking-Collect-ge xs y
by (auto simp: of-weak-ranking-Cons of-weak-ranking-Collect-ge-def)

lemma of-weak-ranking-Collect-ge-Cons ′:
of-weak-ranking-Collect-ge (x#xs) = (λy.

(if y ∈ x then
⋃
(set (x#xs)) else of-weak-ranking-Collect-ge xs y))

by (auto simp: of-weak-ranking-Cons of-weak-ranking-Collect-ge-def fun-eq-iff)

lemma anonymise-prefs-from-table:
assumes prefs-from-table-wf agents alts xs
shows anonymous-profile (prefs-from-table xs) = mset (map snd xs)

proof −
from assms interpret pref-profile-wf agents alts prefs-from-table xs

by (simp add: pref-profile-from-tableI)

39

from assms have agents: agents = fst ‘ set xs
by (simp add: prefs-from-table-wf-def)

hence [simp]: finite agents by auto
have anonymous-profile (prefs-from-table xs) =

{#weak-ranking (prefs-from-table xs x). x ∈# mset-set agents#}
by (simp add: o-def anonymous-profile-def)

also from assms have . . . = {#the (map-of xs i). i ∈# mset-set agents#}
proof (intro image-mset-cong)

fix i assume i: i ∈# mset-set agents
from i assms

have weak-ranking (prefs-from-table xs i) =
weak-ranking (of-weak-ranking (the (map-of xs i)))

by (simp add: prefs-from-table-map-of)
also from assms i have . . . = the (map-of xs i)

by (intro weak-ranking-of-weak-ranking)
(auto simp: prefs-from-table-wf-def)

finally show weak-ranking (prefs-from-table xs i) = the (map-of xs i) .
qed
also from agents have mset-set agents = mset-set (set (map fst xs)) by simp
also from assms have . . . = mset (map fst xs)

by (intro mset-set-set) (simp-all add: prefs-from-table-wf-def)
also from assms have {#the (map-of xs i). i ∈# mset (map fst xs)#} = mset

(map snd xs)
by (intro image-mset-map-of) (simp-all add: prefs-from-table-wf-def)

finally show ?thesis .
qed

lemma prefs-from-table-agent-permutation:
assumes wf : prefs-from-table-wf agents alts xs prefs-from-table-wf agents alts ys
assumes mset-eq: mset (map snd xs) = mset (map snd ys)
obtains π where π permutes agents prefs-from-table xs ◦ π = prefs-from-table

ys
proof −

from wf (1) have agents: agents = set (map fst xs)
by (simp-all add: prefs-from-table-wf-def)

from wf (2) have agents ′: agents = set (map fst ys)
by (simp-all add: prefs-from-table-wf-def)

from agents agents ′ wf (1) wf (2) have mset (map fst xs) = mset (map fst ys)
by (subst set-eq-iff-mset-eq-distinct [symmetric]) (simp-all add: prefs-from-table-wfD)

hence same-length: length xs = length ys by (auto dest: mset-eq-length simp del:
mset-map)

from ‹mset (map fst xs) = mset (map fst ys)›
obtain g where g: g permutes {..<length ys} permute-list g (map fst ys) =

map fst xs
by (auto elim: mset-eq-permutation simp: same-length simp del: mset-map)

from mset-eq g
have mset (map snd ys) = mset (permute-list g (map snd ys)) by simp

40

with mset-eq obtain f
where f : f permutes {..<length xs}

permute-list f (permute-list g (map snd ys)) = map snd xs
by (auto elim: mset-eq-permutation simp: same-length simp del: mset-map)

from permutes-in-image[OF f (1)]
have [simp]: f x < length xs ←→ x < length xs

f x < length ys ←→ x < length ys for x by (simp-all add: same-length)

define idx unidx where idx = index (map fst xs) and unidx i = map fst xs ! i
for i

from wf (1) have bij-betw idx agents {0 ..<length xs} unfolding idx-def
by (intro bij-betw-index) (simp-all add: prefs-from-table-wf-def)

hence bij-betw-idx: bij-betw idx agents {..<length xs} by (simp add: atLeast0LessThan)
have [simp]: idx x < length xs if x ∈ agents for x

using that by (simp add: idx-def agents)
have [simp]: unidx i ∈ agents if i < length xs for i

using that by (simp add: agents unidx-def)

have unidx-idx: unidx (idx x) = x if x: x ∈ agents for x
using x unfolding idx-def unidx-def using nth-index[of x map fst xs]
by (simp add: agents set-map [symmetric] nth-map [symmetric] del: set-map)

have idx-unidx: idx (unidx i) = i if i: i < length xs for i
unfolding idx-def unidx-def using wf (1) index-nth-id[of map fst xs i] i
by (simp add: prefs-from-table-wfD(3))

define π where π x = (if x ∈ agents then (unidx ◦ f ◦ idx) x else x) for x
define π ′ where π ′ x = (if x ∈ agents then (unidx ◦ inv f ◦ idx) x else x) for x
have bij-betw (unidx ◦ f ◦ idx) agents agents (is ?P) unfolding unidx-def

by (rule bij-betw-trans bij-betw-idx permutes-imp-bij f g bij-betw-nth)+
(insert wf (1) g, simp-all add: prefs-from-table-wf-def same-length)

also have ?P ←→ bij-betw π agents agents
by (intro bij-betw-cong) (simp add: π-def)

finally have perm: π permutes agents
by (intro bij-imp-permutes) (simp-all add: π-def)

define h where h = g ◦ f
from f g have h: h permutes {..<length ys} unfolding h-def

by (intro permutes-compose) (simp-all add: same-length)

have inv-π: inv π = π ′

proof (rule permutes-invI [OF perm])
fix x assume x ∈ agents
with f (1) show π ′ (π x) = x

by (simp add: π-def π ′-def idx-unidx unidx-idx inv-f-f permutes-inj)
qed (simp add: π-def π ′-def)
with perm have inv-π ′: inv π ′ = π by (auto simp: inv-inv-eq permutes-bij)

from wf h have prefs-from-table ys = prefs-from-table (permute-list h ys)
by (intro prefs-from-table-eqI)

41

(simp-all add: prefs-from-table-wfD permute-list-map [symmetric])
also have permute-list h ys = permute-list h (zip (map fst ys) (map snd ys))

by (simp add: zip-map-fst-snd)
also from same-length f g

have permute-list h (zip (map fst ys) (map snd ys)) =
zip (permute-list f (map fst xs)) (map snd xs)

by (subst permute-list-zip[OF h]) (simp-all add: h-def permute-list-compose)
also {

fix i assume i: i < length xs
from i have permute-list f (map fst xs) ! i = unidx (f i)

using permutes-in-image[OF f (1)] f (1)
by (subst permute-list-nth) (simp-all add: same-length unidx-def)

also from i have . . . = π (unidx i) by (simp add: π-def idx-unidx)
also from i have . . . = map π (map fst xs) ! i by (simp add: unidx-def)
finally have permute-list f (map fst xs) ! i = map π (map fst xs) ! i .

}
hence permute-list f (map fst xs) = map π (map fst xs)

by (intro nth-equalityI) simp-all
also have zip (map π (map fst xs)) (map snd xs) = map (λ(x,y). (inv π ′ x, y))

xs
by (induction xs) (simp-all add: case-prod-unfold inv-π ′)

also from permutes-inv[OF perm] inv-π have prefs-from-table . . . = prefs-from-table
xs ◦ π ′

by (intro permute-prefs-from-table [symmetric]) (simp-all add: agents)
finally have prefs-from-table xs ◦ π ′ = prefs-from-table ys ..
with that[of π ′] permutes-inv[OF perm] inv-π show ?thesis by auto

qed

lemma permute-list-distinct:
assumes f ‘ {..<length xs} ⊆ {..<length xs} distinct xs
shows permute-list f xs = map (λx. xs ! f (index xs x)) xs
using assms by (intro nth-equalityI) (auto simp: index-nth-id permute-list-def)

lemma image-mset-eq-permutation:
assumes {#f x. x ∈# mset-set A#} = {#g x. x ∈# mset-set A#} finite A
obtains π where π permutes A

∧
x. x ∈ A =⇒ g (π x) = f x

proof −
from assms(2) obtain xs where xs: A = set xs distinct xs

using finite-distinct-list by blast
with assms have mset (map f xs) = mset (map g xs)

by (simp add: mset-set-set)
from mset-eq-permutation[OF this] obtain π where
π: π permutes {0 ..<length xs} permute-list π (map g xs) = map f xs
by (auto simp: atLeast0LessThan)

define π ′ where π ′ x = (if x ∈ A then ((!) xs ◦ π ◦ index xs) x else x) for x
have bij-betw ((!) xs ◦ π ◦ index xs) A A (is ?P)

by (rule bij-betw-trans bij-betw-index xs refl permutes-imp-bij π bij-betw-nth)+
(simp-all add: atLeast0LessThan xs)

also have ?P ←→ bij-betw π ′ A A

42

by (intro bij-betw-cong) (simp-all add: π ′-def)
finally have π ′ permutes A

by (rule bij-imp-permutes) (simp-all add: π ′-def)
moreover from π xs(1)[symmetric] xs(2) have g (π ′ x) = f x if x ∈ A for x

by (simp add: permute-list-map permute-list-distinct
permutes-image π ′-def that atLeast0LessThan)

ultimately show ?thesis by (rule that)
qed

lemma anonymous-profile-agent-permutation:
assumes eq: anonymous-profile R1 = anonymous-profile R2
assumes wf : pref-profile-wf agents alts R1 pref-profile-wf agents alts R2
assumes fin: finite agents
obtains π where π permutes agents R2 ◦ π = R1

proof −
interpret R1 : pref-profile-wf agents alts R1 by fact
interpret R2 : pref-profile-wf agents alts R2 by fact

from eq have {#weak-ranking (R1 x). x ∈# mset-set agents#} =
{#weak-ranking (R2 x). x ∈# mset-set agents#}

by (simp add: R1 .anonymous-profile-def R2 .anonymous-profile-def o-def)
from image-mset-eq-permutation[OF this fin] obtain π

where π: π permutes agents∧
x. x ∈ agents =⇒ weak-ranking (R2 (π x)) = weak-ranking (R1 x) by auto

from π have wf ′: pref-profile-wf agents alts (R2 ◦ π)
by (intro R2 .wf-permute-agents)

then interpret R2 ′: pref-profile-wf agents alts R2 ◦ π .
have R2 ◦ π = R1
proof (intro pref-profile-eqI [OF wf ′ wf (1)])

fix x assume x: x ∈ agents
with π have weak-ranking ((R2 o π) x) = weak-ranking (R1 x) by simp
with wf ′ wf (1) x show (R2 ◦ π) x = R1 x

by (intro weak-ranking-eqD[of alts] R2 ′.prefs-wf) simp-all
qed
from π(1) and this show ?thesis by (rule that)

qed

end
theory Elections
imports Preference-Profiles
begin

An election consists of a finite set of agents and a finite non-empty set of
alternatives.
locale election =

fixes agents :: ′agent set and alts :: ′alt set
assumes finite-agents [simp, intro]: finite agents
assumes finite-alts [simp, intro]: finite alts
assumes nonempty-agents [simp]: agents 6= {}

43

assumes nonempty-alts [simp]: alts 6= {}
begin

abbreviation is-pref-profile ≡ pref-profile-wf agents alts

lemma finite-total-preorder-on-iff ′ [simp]:
finite-total-preorder-on alts R ←→ total-preorder-on alts R
by (simp add: finite-total-preorder-on-iff)

lemma pref-profile-wfI ′ [intro?]:
(
∧

i. i ∈ agents =⇒ total-preorder-on alts (R i)) =⇒
(
∧

i. i /∈ agents =⇒ R i = (λ- -. False)) =⇒ is-pref-profile R
by (simp add: pref-profile-wf-def)

lemma is-pref-profile-update [simp,intro]:
assumes is-pref-profile R total-preorder-on alts Ri ′ i ∈ agents
shows is-pref-profile (R(i := Ri ′))
using assms by (auto intro!: pref-profile-wf .wf-update)

lemma election [simp,intro]: election agents alts
by (rule election-axioms)

context
fixes R assumes R: total-preorder-on alts R

begin

interpretation R: total-preorder-on alts R by fact

lemma Max-wrt-prefs-finite: finite (Max-wrt R)
unfolding R.Max-wrt-preorder by simp

lemma Max-wrt-prefs-nonempty: Max-wrt R 6= {}
using R.Max-wrt-nonempty by simp

lemma maximal-imp-preferred:
x ∈ alts =⇒ Max-wrt R ⊆ preferred-alts R x
using R.total
by (auto simp: R.Max-wrt-total-preorder preferred-alts-def strongly-preferred-def)

end

end

end

3 Auxiliary facts about PMFs
theory Lotteries

44

imports Complex-Main HOL−Probability.Probability
begin

The type of lotteries (a probability mass function)
type-synonym ′alt lottery = ′alt pmf

definition lotteries-on :: ′a set ⇒ ′a lottery set where
lotteries-on A = {p. set-pmf p ⊆ A}

lemma pmf-of-set-lottery:
A 6= {} =⇒ finite A =⇒ A ⊆ B =⇒ pmf-of-set A ∈ lotteries-on B
unfolding lotteries-on-def by auto

lemma pmf-of-list-lottery:
pmf-of-list-wf xs =⇒ set (map fst xs) ⊆ A =⇒ pmf-of-list xs ∈ lotteries-on A
using set-pmf-of-list[of xs] by (auto simp: lotteries-on-def)

lemma return-pmf-in-lotteries-on [simp,intro]:
x ∈ A =⇒ return-pmf x ∈ lotteries-on A
by (simp add: lotteries-on-def)

end
theory Utility-Functions
imports

Complex-Main
HOL−Probability.Probability
Lotteries
Preference-Profiles

begin

3.1 Definition of von Neumann–Morgenstern utility func-
tions

locale vnm-utility = finite-total-preorder-on +
fixes u :: ′a ⇒ real
assumes utility-le-iff : x ∈ carrier =⇒ y ∈ carrier =⇒ u x ≤ u y ←→ x �[le] y

begin

lemma utility-le: x �[le] y =⇒ u x ≤ u y
using not-outside[of x y] utility-le-iff by simp

lemma utility-less-iff :
x ∈ carrier =⇒ y ∈ carrier =⇒ u x < u y ←→ x ≺[le] y
using utility-le-iff [of x y] utility-le-iff [of y x]
by (auto simp: strongly-preferred-def)

lemma utility-less: x ≺[le] y =⇒ u x < u y
using not-outside[of x y] utility-less-iff by (simp add: strongly-preferred-def)

The following lemma allows us to compute the expected utility by summing

45

over all indifference classes, using the fact that alternatives in the same
indifference class must have the same utility.
lemma expected-utility-weak-ranking:

assumes p ∈ lotteries-on carrier
shows measure-pmf .expectation p u =

(
∑

A←weak-ranking le. u (SOME x. x ∈ A) ∗ measure-pmf .prob p A)
proof −

from assms have measure-pmf .expectation p u = (
∑

a∈carrier . u a ∗ pmf p a)
by (subst integral-measure-pmf [OF finite-carrier])

(auto simp: lotteries-on-def ac-simps)
also have carrier : carrier =

⋃
(set (weak-ranking le)) by (simp add: weak-ranking-Union)

also from carrier have finite: finite A if A ∈ set (weak-ranking le) for A
using that by (blast intro!: finite-subset[OF - finite-carrier , of A])

hence (
∑

a∈
⋃
(set (weak-ranking le)). u a ∗ pmf p a) =

(
∑

A←weak-ranking le.
∑

a∈A. u a ∗ pmf p a) (is - = sum-list ?xs)
using weak-ranking-total-preorder
by (subst sum.Union-disjoint)

(auto simp: is-weak-ranking-iff disjoint-def sum.distinct-set-conv-list)
also have ?xs = map (λA.

∑
a∈A. u (SOME a. a∈A) ∗ pmf p a) (weak-ranking

le)
proof (intro map-cong HOL.refl sum.cong)

fix x A assume x: x ∈ A and A: A ∈ set (weak-ranking le)
have (SOME x. x ∈ A) ∈ A by (rule someI-ex) (insert x, blast)
from weak-ranking-eqclass1 [OF A x this] weak-ranking-eqclass1 [OF A this x] x

this A
have u x = u (SOME x. x ∈ A)
by (intro antisym; subst utility-le-iff) (auto simp: carrier)

thus u x ∗ pmf p x = u (SOME x. x ∈ A) ∗ pmf p x by simp
qed
also have . . . = map (λA. u (SOME a. a ∈ A) ∗ measure-pmf .prob p A)

(weak-ranking le)
using finite by (intro map-cong HOL.refl)

(auto simp: sum-distrib-left measure-measure-pmf-finite)
finally show ?thesis .

qed

lemma scaled: c > 0 =⇒ vnm-utility carrier le (λx. c ∗ u x)
by unfold-locales (insert utility-le-iff , auto)

lemma add-right:
assumes

∧
x y. le x y =⇒ f x ≤ f y

shows vnm-utility carrier le (λx. u x + f x)
proof

fix x y assume xy: x ∈ carrier y ∈ carrier
from assms[of x y] utility-le-iff [OF xy] assms[of y x] utility-le-iff [OF xy(2 ,1)]

show (u x + f x ≤ u y + f y) = le x y by auto
qed

lemma add-left:

46

(
∧

x y. le x y =⇒ f x ≤ f y) =⇒ vnm-utility carrier le (λx. f x + u x)
by (subst add.commute) (rule add-right)

Given a consistent utility function, any function that assigns equal values to
equivalent alternatives can be added to it (scaled with a sufficiently small
ε), again yielding a consistent utility function.
lemma add-epsilon:

assumes A:
∧

x y. le x y =⇒ le y x =⇒ f x = f y
shows ∃ ε>0 . vnm-utility carrier le (λx. u x + ε ∗ f x)

proof −
let ?A = {(u y − u x) / (f x − f y) |x y. x ≺[le] y ∧ f x > f y}
have ?A = (λ(x,y). (u y − u x) / (f x − f y)) ‘ {(x,y) |x y. x ≺[le] y ∧ f x > f

y} by auto
also have finite {(x,y) |x y. x ≺[le] y ∧ f x > f y}

by (rule finite-subset[of - carrier × carrier])
(insert not-outside, auto simp: strongly-preferred-def)

hence finite ((λ(x,y). (u y − u x) / (f x − f y)) ‘ {(x,y) |x y. x ≺[le] y ∧ f x >
f y})

by simp
finally have finite: finite ?A .

define ε where ε = Min (insert 1 ?A) / 2
from finite have Min (insert 1 ?A) > 0

by (auto intro!: divide-pos-pos simp: utility-less)
hence ε: ε > 0 unfolding ε-def by simp

have mono: u x + ε ∗ f x < u y + ε ∗ f y if xy: x ≺[le] y for x y
proof (cases f x > f y)

assume less: f x > f y
from ε have ε < Min (insert 1 ?A) unfolding ε-def by linarith
also from less xy finite have Min (insert 1 ?A) ≤ (u y − u x) / (f x − f y)

unfolding ε-def
by (intro Min-le) auto

finally show ?thesis using less by (simp add: field-simps)
next

assume ¬f x > f y
with utility-less[OF xy] ε show ?thesis

by (simp add: algebra-simps not-less add-less-le-mono)
qed
have eq: u x + ε ∗ f x = u y + ε ∗ f y if xy: x �[le] y y �[le] x for x y

using xy[THEN utility-le] A[OF xy] by simp
have vnm-utility carrier le (λx. u x + ε ∗ f x)
proof

fix x y assume xy: x ∈ carrier y ∈ carrier
show (u x + ε ∗ f x ≤ u y + ε ∗ f y) ←→ le x y

using total[OF xy] mono[of x y] mono[of y x] eq[of x y]
by (cases le x y; cases le y x) (auto simp: strongly-preferred-def)

qed
from ε this show ?thesis by blast

47

qed

lemma diff-epsilon:
assumes

∧
x y. le x y =⇒ le y x =⇒ f x = f y

shows ∃ ε>0 . vnm-utility carrier le (λx. u x − ε ∗ f x)
proof −

from assms have ∃ ε>0 . vnm-utility carrier le (λx. u x + ε ∗ −f x)
by (intro add-epsilon) (subst neg-equal-iff-equal)

thus ?thesis by simp
qed

end

end

4 Stochastic Dominance
theory Stochastic-Dominance
imports

Complex-Main
HOL−Probability.Probability
Lotteries
Preference-Profiles
Utility-Functions

begin

4.1 Definition of Stochastic Dominance

This is the definition of stochastic dominance. It lifts a preference relation
on alternatives to the stochastic dominance ordering on lotteries.
definition SD :: ′alt relation ⇒ ′alt lottery relation where

p �[SD(R)] q ←→ p ∈ lotteries-on {x. R x x} ∧ q ∈ lotteries-on {x. R x x} ∧
(∀ x. R x x −→ measure-pmf .prob p {y. y �[R] x} ≥

measure-pmf .prob q {y. y �[R] x})

lemma SD-empty [simp]: SD (λ- -. False) = (λ- -. False)
by (auto simp: fun-eq-iff SD-def lotteries-on-def set-pmf-not-empty)

Stochastic dominance over any relation is a preorder.
lemma SD-refl: p �[SD(R)] p ←→ p ∈ lotteries-on {x. R x x}

by (simp add: SD-def)

lemma SD-trans [simp, trans]: p �[SD(R)] q =⇒ q �[SD(R)] r =⇒ p �[SD(R)]
r

unfolding SD-def by (auto intro: order .trans)

lemma SD-is-preorder : preorder-on (lotteries-on {x. R x x}) (SD R)
by unfold-locales (auto simp: SD-def intro: order .trans)

48

context preorder-on
begin

lemma SD-preorder :
p �[SD(le)] q ←→ p ∈ lotteries-on carrier ∧ q ∈ lotteries-on carrier ∧

(∀ x∈carrier . measure-pmf .prob p (preferred-alts le x) ≥
measure-pmf .prob q (preferred-alts le x))

by (simp add: SD-def preferred-alts-def carrier-eq)

lemma SD-preorderI [intro?]:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
assumes

∧
x. x ∈ carrier =⇒

measure-pmf .prob p (preferred-alts le x) ≥ measure-pmf .prob q
(preferred-alts le x)

shows p �[SD(le)] q
using assms by (simp add: SD-preorder)

lemma SD-preorderD:
assumes p �[SD(le)] q
shows p ∈ lotteries-on carrier q ∈ lotteries-on carrier
and

∧
x. x ∈ carrier =⇒

measure-pmf .prob p (preferred-alts le x) ≥ measure-pmf .prob q
(preferred-alts le x)

using assms unfolding SD-preorder by simp-all

lemma SD-refl ′ [simp]: p �[SD(le)] p ←→ p ∈ lotteries-on carrier
by (simp add: SD-def carrier-eq)

lemma SD-is-preorder ′: preorder-on (lotteries-on carrier) (SD(le))
using SD-is-preorder [of le] by (simp add: carrier-eq)

lemma SD-singleton-left:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows return-pmf x �[SD(le)] q ←→ (∀ y∈set-pmf q. x �[le] y)

proof
assume SD: return-pmf x �[SD(le)] q
from assms SD-preorderD(3)[OF SD, of x]

have measure-pmf .prob (return-pmf x) (preferred-alts le x) ≤
measure-pmf .prob q (preferred-alts le x) by simp

also from assms have measure-pmf .prob (return-pmf x) (preferred-alts le x) =
1

by (simp add: indicator-def)
finally have AE y in q. y �[le] x
by (simp add: measure-pmf .measure-ge-1-iff measure-pmf .prob-eq-1 preferred-alts-def)

thus ∀ y∈set-pmf q. y �[le] x by (simp add: AE-measure-pmf-iff)
next

assume A: ∀ y∈set-pmf q. x �[le] y
show return-pmf x �[SD(le)] q

49

proof (rule SD-preorderI)
fix y assume y: y ∈ carrier
show measure-pmf .prob (return-pmf x) (preferred-alts le y)

≤ measure-pmf .prob q (preferred-alts le y)
proof (cases y �[le] x)

case True
from True A have measure-pmf .prob q (preferred-alts le y) = 1
by (auto simp: AE-measure-pmf-iff measure-pmf .prob-eq-1 preferred-alts-def

intro: trans)
thus ?thesis by simp

qed (simp-all add: preferred-alts-def indicator-def measure-nonneg)
qed (insert assms, simp-all add: lotteries-on-def)

qed

lemma SD-singleton-right:
assumes x: x ∈ carrier and q: q ∈ lotteries-on carrier
shows q �[SD(le)] return-pmf x ←→ (∀ y∈set-pmf q. y �[le] x)

proof safe
fix y assume SD: q �[SD(le)] return-pmf x and y: y ∈ set-pmf q
from y assms have [simp]: y ∈ carrier by (auto simp: lotteries-on-def)

from y have 0 < measure-pmf .prob q (preferred-alts le y)
by (rule measure-pmf-posI) simp-all

also have . . . ≤ measure-pmf .prob (return-pmf x) (preferred-alts le y)
by (rule SD-preorderD(3)[OF SD]) simp-all

finally show y �[le] x
by (auto simp: indicator-def preferred-alts-def split: if-splits)

next
assume A: ∀ y∈set-pmf q. y �[le] x
show q �[SD(le)] return-pmf x
proof (rule SD-preorderI)

fix y assume y: y ∈ carrier
show measure-pmf .prob q (preferred-alts le y) ≤

measure-pmf .prob (return-pmf x) (preferred-alts le y)
proof (cases y �[le] x)

case False
with A show ?thesis

by (auto simp: preferred-alts-def indicator-def measure-le-0-iff
measure-pmf .prob-eq-0 AE-measure-pmf-iff intro: trans)

qed (simp-all add: indicator-def preferred-alts-def)
qed (insert assms, simp-all add: lotteries-on-def)

qed

lemma SD-strict-singleton-left:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows return-pmf x ≺[SD(le)] q ←→ (∀ y∈set-pmf q. x �[le] y) ∧ (∃ y∈set-pmf

q. (x ≺[le] y))
using assms by (auto simp add: strongly-preferred-def SD-singleton-left SD-singleton-right)

50

lemma SD-strict-singleton-right:
assumes x ∈ carrier q ∈ lotteries-on carrier
shows q ≺[SD(le)] return-pmf x ←→ (∀ y∈set-pmf q. y �[le] x) ∧ (∃ y∈set-pmf

q. (y ≺[le] x))
using assms by (auto simp add: strongly-preferred-def SD-singleton-left SD-singleton-right)

lemma SD-singleton [simp]:
x ∈ carrier =⇒ y ∈ carrier =⇒ return-pmf x �[SD(le)] return-pmf y ←→ x �[le]

y
by (subst SD-singleton-left) (simp-all add: lotteries-on-def)

lemma SD-strict-singleton [simp]:
x ∈ carrier =⇒ y ∈ carrier =⇒ return-pmf x ≺[SD(le)] return-pmf y ←→ x ≺[le]

y
by (simp add: strongly-preferred-def)

end

context pref-profile-wf
begin

context
fixes i assumes i: i ∈ agents
begin

interpretation Ri: preorder-on alts R i by (simp add: i)

lemmas SD-singleton-left = Ri.SD-singleton-left
lemmas SD-singleton-right = Ri.SD-singleton-right
lemmas SD-strict-singleton-left = Ri.SD-strict-singleton-left
lemmas SD-strict-singleton-right = Ri.SD-strict-singleton-right
lemmas SD-singleton = Ri.SD-singleton
lemmas SD-strict-singleton = Ri.SD-strict-singleton

end
end

lemmas (in pref-profile-wf) [simp] = SD-singleton SD-strict-singleton

4.2 Stochastic Dominance for preference profiles
context pref-profile-wf
begin

lemma SD-pref-profile:
assumes i ∈ agents
shows p �[SD(R i)] q ←→ p ∈ lotteries-on alts ∧ q ∈ lotteries-on alts ∧

(∀ x∈alts. measure-pmf .prob p (preferred-alts (R i) x) ≥
measure-pmf .prob q (preferred-alts (R i) x))

51

proof −
from assms interpret total-preorder-on alts R i by simp
have preferred-alts (R i) x = {y. y �[R i] x} for x using not-outside

by (auto simp: preferred-alts-def)
thus ?thesis by (simp add: SD-preorder preferred-alts-def)

qed

lemma SD-pref-profileI [intro?]:
assumes i ∈ agents p ∈ lotteries-on alts q ∈ lotteries-on alts
assumes

∧
x. x ∈ alts =⇒

measure-pmf .prob p (preferred-alts (R i) x) ≥
measure-pmf .prob q (preferred-alts (R i) x)

shows p �[SD(R i)] q
using assms by (simp add: SD-pref-profile)

lemma SD-pref-profileD:
assumes i ∈ agents p �[SD(R i)] q
shows p ∈ lotteries-on alts q ∈ lotteries-on alts
and

∧
x. x ∈ alts =⇒

measure-pmf .prob p (preferred-alts (R i) x) ≥
measure-pmf .prob q (preferred-alts (R i) x)

using assms by (simp-all add: SD-pref-profile)

end

4.3 SD efficient lotteries
definition SD-efficient :: (′agent, ′alt) pref-profile ⇒ ′alt lottery ⇒ bool where

SD-efficient-auxdef :
SD-efficient R p ←→ ¬(∃ q∈lotteries-on {x. ∃ i. R i x x}. q �[Pareto (SD ◦ R)]

p)

context pref-profile-wf
begin

sublocale SD: preorder-family agents lotteries-on alts SD ◦ R unfolding o-def
by (intro preorder-family.intro SD-is-preorder)

(simp-all add: preorder-on.SD-is-preorder ′ prefs-undefined ′)

A lottery is considered SD-efficient if there is no other lottery such that all
agents weakly prefer the other lottery (w.r.t. stochastic dominance) and at
least one agent strongly prefers the other lottery.
lemma SD-efficient-def :

SD-efficient R p ←→ ¬(∃ q∈lotteries-on alts. q �[Pareto (SD ◦ R)] p)
proof −

have SD-efficient R p ←→ ¬(∃ q∈lotteries-on {x. ∃ i. R i x x}. q �[Pareto (SD
◦ R)] p)

unfolding SD-efficient-auxdef ..
also from nonempty-agents obtain i where i: i ∈ agents by blast

52

with preorder-on.refl[of alts R i]
have {x. ∃ i. R i x x} = alts by (auto intro!: exI [of - i] not-outside)

finally show ?thesis .
qed

lemma SD-efficient-def ′:
SD-efficient R p ←→
¬(∃ q∈lotteries-on alts. (∀ i∈agents. q �[SD(R i)] p) ∧ (∃ i∈agents. q �[SD(R

i)] p))
unfolding SD-efficient-def SD.Pareto-iff strongly-preferred-def [abs-def] by auto

lemma SD-inefficientI :
assumes q ∈ lotteries-on alts

∧
i. i ∈ agents =⇒ q �[SD(R i)] p

i ∈ agents q �[SD(R i)] p
shows ¬SD-efficient R p
using assms unfolding SD-efficient-def ′ by blast

lemma SD-inefficientI ′:
assumes q ∈ lotteries-on alts

∧
i. i ∈ agents =⇒ q �[SD(R i)] p

∃ i ∈ agents. q �[SD(R i)] p
shows ¬SD-efficient R p
using assms unfolding SD-efficient-def ′ by blast

lemma SD-inefficientE :
assumes ¬SD-efficient R p
obtains q i where

q ∈ lotteries-on alts
∧

i. i ∈ agents =⇒ q �[SD(R i)] p
i ∈ agents q �[SD(R i)] p

using assms unfolding SD-efficient-def ′ by blast

lemma SD-efficientD:
assumes SD-efficient R p q ∈ lotteries-on alts

and
∧

i. i ∈ agents =⇒ q �[SD(R i)] p ∃ i∈agents. ¬(q �[SD(R i)] p)
shows False
using assms unfolding SD-efficient-def ′ strongly-preferred-def by blast

lemma SD-efficient-singleton-iff :
assumes [simp]: x ∈ alts
shows SD-efficient R (return-pmf x) ←→ x /∈ pareto-losers R

proof −
{

assume x ∈ pareto-losers R
then obtain y where y ∈ alts x ≺[Pareto R] y

by (rule pareto-losersE)
then have ¬SD-efficient R (return-pmf x)

by (intro SD-inefficientI ′[of return-pmf y]) (force simp: Pareto-strict-iff)+
} moreover {

assume ¬SD-efficient R (return-pmf x)

53

from SD-inefficientE [OF this] obtain q i
where q:

q ∈ lotteries-on alts∧
i. i ∈ agents =⇒ SD (R i) (return-pmf x) q

i ∈ agents
return-pmf x ≺[SD (R i)] q

by blast
from q obtain y where y ∈ set-pmf q y �[R i] x

by (auto simp: SD-strict-singleton-left)
with q have y �[Pareto(R)] x

by (fastforce simp: Pareto-strict-iff SD-singleton-left)
hence x ∈ pareto-losers R by simp

}
ultimately show ?thesis by blast

qed

end

4.4 Equivalence proof

We now show that a lottery is preferred w.r.t. Stochastic Dominance iff it
yields more expected utility for all compatible utility functions.
context finite-total-preorder-on
begin

abbreviation is-vnm-utility ≡ vnm-utility carrier le

lemma utility-weak-ranking-index:
is-vnm-utility (λx. real (length (weak-ranking le) − weak-ranking-index x))

proof
fix x y assume xy: x ∈ carrier y ∈ carrier
with this[THEN nth-weak-ranking-index(1)] this[THEN nth-weak-ranking-index(2)]

show (real (length (weak-ranking le) − weak-ranking-index x)
≤ real (length (weak-ranking le) − weak-ranking-index y)) ←→ le x y

by (simp add: le-diff-iff ′)
qed

lemma SD-iff-expected-utilities-le:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows p �[SD(le)] q ←→

(∀ u. is-vnm-utility u −→ measure-pmf .expectation p u ≤ mea-
sure-pmf .expectation q u)
proof safe

fix u assume SD: p �[SD(le)] q and is-utility: is-vnm-utility u
from is-utility interpret vnm-utility carrier le u .
define xs where xs = weak-ranking le
have le: is-weak-ranking xs le = of-weak-ranking xs

by (simp-all add: xs-def weak-ranking-total-preorder)

54

let ?pref = λp x. measure-pmf .prob p {y. x �[le] y} and
?pref ′ = λp x. measure-pmf .prob p {y. x ≺[le] y}

define f where f i = (SOME x. x ∈ xs ! i) for i
have xs-wf : is-weak-ranking xs

by (simp add: xs-def weak-ranking-total-preorder)
hence f : f i ∈ xs ! i if i < length xs for i

using that unfolding f-def is-weak-ranking-def
by (intro someI-ex[of λx. x ∈ xs ! i]) (auto simp: set-conv-nth)

have f ′: f i ∈ carrier if i < length xs for i
using that f weak-ranking-Union unfolding xs-def by (auto simp: set-conv-nth)

define n where n = length xs − 1
from assms weak-ranking-Union have carrier-nonempty: carrier 6= {} and xs 6=

[]
by (auto simp: xs-def lotteries-on-def set-pmf-not-empty)

hence n: length xs = Suc n and xs-nonempty: xs 6= [] by (auto simp add: n-def)
have SD ′: ?pref p (f i) ≤ ?pref q (f i) if i < length xs for i

using f ′[OF that] SD by (auto simp: SD-preorder preferred-alts-def)
have f-le: le (f i) (f j) ←→ i ≥ j if i < length xs j < length xs for i j

using that weak-ranking-index-unique[OF xs-wf that(1) - f]
weak-ranking-index-unique[OF xs-wf that(2) - f]

by (auto simp add: le intro: f elim!: of-weak-ranking.cases intro!: of-weak-ranking.intros)

have measure-pmf .expectation p u =
(
∑

i<n. (u (f i) − u (f (Suc i))) ∗ ?pref p (f i)) + u (f n)
if p: p ∈ lotteries-on carrier for p

proof −
from p have measure-pmf .expectation p u =

(
∑

i<length xs. u (f i) ∗ measure-pmf .prob p (xs ! i))
by (simp add: f-def expected-utility-weak-ranking xs-def sum-list-sum-nth

atLeast0LessThan)
also have . . . = (

∑
i<length xs. u (f i) ∗ (?pref p (f i) − ?pref ′ p (f i)))

proof (intro sum.cong HOL.refl)
fix i assume i: i ∈ {..<length xs}
have ?pref p (f i) − ?pref ′ p (f i) =

measure-pmf .prob p ({y. f i �[le] y} − {y. f i ≺[le] y})
by (subst measure-pmf .finite-measure-Diff [symmetric])

(auto simp: strongly-preferred-def)
also have {y. f i �[le] y} − {y. f i ≺[le] y} =

{y. f i �[le] y ∧ y �[le] f i} (is - = ?A)
by (auto simp: strongly-preferred-def)

also have . . . = xs ! i
proof safe

fix x assume le: le (f i) x le x (f i)
from i f show x ∈ xs ! i

by (intro weak-ranking-eqclass2 [OF - - le]) (auto simp: xs-def)
next

fix x assume x ∈ xs ! i
from weak-ranking-eqclass1 [OF - this f] weak-ranking-eqclass1 [OF - f this] i

55

show le x (f i) le (f i) x by (simp-all add: xs-def)
qed
finally show u (f i) ∗ measure-pmf .prob p (xs ! i) =

u (f i) ∗ (?pref p (f i) − ?pref ′ p (f i)) by simp
qed
also have . . . = (

∑
i<length xs. u (f i) ∗ ?pref p (f i)) −

(
∑

i<length xs. u (f i) ∗ ?pref ′ p (f i))
by (simp add: sum-subtractf ring-distribs)

also have (
∑

i<length xs. u (f i) ∗ ?pref p (f i)) =
(
∑

i<n. u (f i) ∗ ?pref p (f i)) + u (f n) ∗ ?pref p (f n) (is - = ?sum)
by (simp add: n)

also have (
∑

i<length xs. u (f i) ∗ ?pref ′ p (f i)) =
(
∑

i<n. u (f (Suc i)) ∗ ?pref ′ p (f (Suc i))) + u (f 0) ∗ ?pref ′ p (f
0)

unfolding n sum.lessThan-Suc-shift by simp
also have (

∑
i<n. u (f (Suc i)) ∗ ?pref ′ p (f (Suc i))) =

(
∑

i<n. u (f (Suc i)) ∗ ?pref p (f i))
proof (intro sum.cong HOL.refl)

fix i assume i: i ∈ {..<n}
have f (Suc i) ≺[le] y ←→ f i �[le] y for y
proof (cases y ∈ carrier)

assume y ∈ carrier
with weak-ranking-Union obtain j where j: j < length xs y ∈ xs ! j

by (auto simp: set-conv-nth xs-def)
with weak-ranking-eqclass1 [OF - f j(2)] weak-ranking-eqclass1 [OF - j(2) f]

have iff : le y z ←→ le (f j) z le z y ←→ le z (f j) for z
by (auto intro: trans simp: xs-def)

thus ?thesis using i j unfolding n-def
by (auto simp: iff f-le strongly-preferred-def)

qed (insert not-outside, auto simp: strongly-preferred-def)
thus u (f (Suc i)) ∗ ?pref ′ p (f (Suc i)) = u (f (Suc i)) ∗ ?pref p (f i) by

simp
qed
also have ?sum − (. . . + u (f 0) ∗ ?pref ′ p (f 0)) =
(
∑

i<n. (u (f i) − u (f (Suc i))) ∗ ?pref p (f i)) −
u (f 0) ∗ ?pref ′ p (f 0) + u (f n) ∗ ?pref p (f n)

by (simp add: ring-distribs sum-subtractf)
also have {y. f 0 ≺[le] y} = {}

using hd-weak-ranking[of f 0] xs-nonempty f not-outside
by (auto simp: hd-conv-nth xs-def strongly-preferred-def)

also have {y. le (f n) y} = carrier
using last-weak-ranking[of f n] xs-nonempty f not-outside
by (auto simp: last-conv-nth xs-def n-def)

also from p have measure-pmf .prob p carrier = 1
by (subst measure-pmf .prob-eq-1)

(auto simp: AE-measure-pmf-iff lotteries-on-def)
finally show ?thesis by simp

qed

56

from assms[THEN this] show measure-pmf .expectation p u ≤ measure-pmf .expectation
q u

unfolding SD-preorder n-def using f ′

by (auto intro!: sum-mono mult-left-mono SD ′ simp: utility-le-iff f-le)

next
assume ∀ u. is-vnm-utility u −→ measure-pmf .expectation p u ≤ measure-pmf .expectation

q u
hence expected-utility-le: measure-pmf .expectation p u ≤ measure-pmf .expectation

q u
if is-vnm-utility u for u using that by blast

define xs where xs = weak-ranking le
have le: le = of-weak-ranking xs and [simp]: is-weak-ranking xs

by (simp-all add: xs-def weak-ranking-total-preorder)
have carrier : carrier =

⋃
(set xs)

by (simp add: xs-def weak-ranking-Union)
from assms have carrier-nonempty: carrier 6= {}

by (auto simp: lotteries-on-def set-pmf-not-empty)

{
fix x assume x: x ∈ carrier
let ?idx = λy. length xs − weak-ranking-index y
have preferred-subset-carrier : {y. le x y} ⊆ carrier

using not-outside x by auto
have measure-pmf .prob p {y. le x y} / real (length xs) ≤

measure-pmf .prob q {y. le x y} / real (length xs)
proof (rule field-le-epsilon)

fix ε :: real assume ε: ε > 0
define u where u y = indicator {y. y �[le] x} y + ε ∗ ?idx y for y
have is-utility: is-vnm-utility u unfolding u-def xs-def
proof (intro vnm-utility.add-left vnm-utility.scaled utility-weak-ranking-index)

fix y z assume le y z
thus indicator {y. y �[le] x} y ≤ (indicator {y. y �[le] x} z :: real)

by (auto intro: trans simp: indicator-def split: if-splits)
qed fact+

have (
∑

y|le x y. pmf p y) ≤
(
∑

y|le x y. pmf p y) + ε ∗ (
∑

y∈carrier . ?idx y ∗ pmf p y)
using ε by (auto intro!: mult-nonneg-nonneg sum-nonneg pmf-nonneg)

also from expected-utility-le is-utility have
measure-pmf .expectation p u ≤ measure-pmf .expectation q u .

with assms
have (

∑
a∈carrier . u a ∗ pmf p a) ≤ (

∑
a∈carrier . u a ∗ pmf q a)

by (subst (asm) (1 2) integral-measure-pmf [OF finite-carrier])
(auto simp: lotteries-on-def set-pmf-eq ac-simps)

hence (
∑

y|le x y. pmf p y) + ε ∗ (
∑

y∈carrier . ?idx y ∗ pmf p y) ≤
(
∑

y|le x y. pmf q y) + ε ∗ (
∑

y∈carrier . ?idx y ∗ pmf q y)
using x preferred-subset-carrier not-outside
by (simp add: u-def sum.distrib finite-carrier algebra-simps sum-distrib-left

57

Int-absorb1 cong: rev-conj-cong)
also have (

∑
y∈carrier . ?idx y ∗ pmf q y) ≤ (

∑
y∈carrier . length xs ∗ pmf

q y)
by (intro sum-mono mult-right-mono) (simp-all add: pmf-nonneg)

also have . . . = measure-pmf .expectation q (λ-. length xs)
using assms by (subst integral-measure-pmf [OF finite-carrier])

(auto simp: lotteries-on-def set-pmf-eq ac-simps)
also have . . . = length xs by simp
also have (

∑
y | le x y. pmf p y) = measure-pmf .prob p {y. le x y}

using finite-subset[OF preferred-subset-carrier finite-carrier]
by (simp add: measure-measure-pmf-finite)

also have (
∑

y | le x y. pmf q y) = measure-pmf .prob q {y. le x y}
using finite-subset[OF preferred-subset-carrier finite-carrier]
by (simp add: measure-measure-pmf-finite)

finally show measure-pmf .prob p {y. le x y} / length xs ≤
measure-pmf .prob q {y. le x y} / length xs + ε

using ε by (simp add: divide-simps)
qed
moreover from carrier-nonempty carrier have xs 6= [] by auto
ultimately have measure-pmf .prob p {y. le x y} ≤

measure-pmf .prob q {y. le x y}
by (simp add: field-simps)

}
with assms show p �[SD(le)] q unfolding SD-preorder preferred-alts-def by

blast
qed

lemma not-strict-SD-iff :
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows ¬(p ≺[SD(le)] q) ←→

(∃ u. is-vnm-utility u ∧ measure-pmf .expectation q u ≤ measure-pmf .expectation
p u)
proof

let ?E = measure-pmf .expectation :: ′a pmf ⇒ - ⇒ real
assume ∃ u. is-vnm-utility u ∧ ?E p u ≥ ?E q u
then obtain u where u: is-vnm-utility u ?E p u ≥ ?E q u by blast
interpret u: vnm-utility carrier le u by fact

show ¬ p ≺[SD le] q
proof

assume less: p ≺[SD le] q
with assms have pq: ?E p u ≤ ?E q u if is-vnm-utility u for u

using that by (auto simp: SD-iff-expected-utilities-le strongly-preferred-def)
with u have u-eq: ?E p u = ?E q u by (intro antisym) simp-all
from less assms obtain u ′ where u ′: is-vnm-utility u ′ ?E p u ′ < ?E q u ′

by (auto simp: SD-iff-expected-utilities-le strongly-preferred-def not-le)
interpret u ′: vnm-utility carrier le u ′ by fact

have ∃ ε>0 . is-vnm-utility (λx. u x − ε ∗ u ′ x)

58

by (intro u.diff-epsilon antisym u ′.utility-le)
then obtain ε where ε: ε > 0 is-vnm-utility (λx. u x − ε ∗ u ′ x) by auto
define u ′′ where u ′′ x = u x − ε ∗ u ′ x for x
interpret u ′′: vnm-utility carrier le u ′′ unfolding u ′′-def by fact
have exp-u ′′: ?E p u ′′ = ?E p u − ε ∗ ?E p u ′ if p ∈ lotteries-on carrier for p

using that
by (subst (1 2 3) integral-measure-pmf [of carrier])
(auto simp: lotteries-on-def u ′′-def algebra-simps sum-subtractf sum-distrib-left)

from assms ε have ?E p u ′′ > ?E q u ′′

by (simp-all add: exp-u ′′ algebra-simps u-eq u ′)
with pq[OF u ′′.vnm-utility-axioms] show False by simp

qed
qed (insert assms utility-weak-ranking-index,

auto simp: strongly-preferred-def SD-iff-expected-utilities-le not-le not-less intro:
antisym)

lemma strict-SD-iff :
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows (p ≺[SD(le)] q) ←→

(∀ u. is-vnm-utility u −→ measure-pmf .expectation p u < mea-
sure-pmf .expectation q u)

using not-strict-SD-iff [OF assms] by auto

end

end

theory SD-Efficiency
imports Complex-Main Preference-Profiles Lotteries Stochastic-Dominance
begin

context pref-profile-wf
begin

lemma SD-inefficient-support-subset:
assumes inefficient: ¬SD-efficient R p ′

assumes support: set-pmf p ′ ⊆ set-pmf p
assumes lotteries: p ∈ lotteries-on alts
shows ¬SD-efficient R p

proof −
from assms have p ′-wf : p ′ ∈ lotteries-on alts by (simp add: lotteries-on-def)
from inefficient obtain q ′ i where q ′: q ′ ∈ lotteries-on alts i ∈ agents∧

i. i ∈ agents =⇒ q ′ �[SD(R i)] p ′ q ′ �[SD(R i)] p ′

unfolding SD-efficient-def ′ by blast

have subset: {x. pmf p ′ x > pmf q ′ x} ⊆ set-pmf p ′ by (auto simp: set-pmf-eq)

59

also have . . . ⊆ set-pmf p by fact
also have . . . ⊆ alts using lotteries by (simp add: lotteries-on-def)
finally have finite: finite {x. pmf p ′ x > pmf q ′ x}

using finite-alts by (rule finite-subset)

define ε where ε = Min (insert 1 {pmf p x / (pmf p ′ x − pmf q ′ x) |x. pmf p ′

x > pmf q ′ x})
define supp where supp = set-pmf p ∪ set-pmf q ′

from lotteries finite-alts q ′(1) have finite-supp: finite supp
by (auto simp: lotteries-on-def supp-def dest: finite-subset)

from support have [simp]: pmf p x = 0 pmf p ′ x = 0 pmf q ′ x = 0 if x /∈ supp
for x

using that by (auto simp: supp-def set-pmf-eq)

from finite support subset have ε: ε > 0 unfolding ε-def
by (auto simp: field-simps set-pmf-eq ′)

have nonneg: pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x) ≥ 0 for x
proof (cases pmf p ′ x > pmf q ′ x)

case True
with finite have ε ≤ pmf p x / (pmf p ′ x − pmf q ′ x)

unfolding ε-def by (intro Min-le) auto
with True show ?thesis by (simp add: field-simps)

next
case False
with pmf-nonneg[of p x] ε show ?thesis by simp

qed

define q where q = embed-pmf (λx. pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x))
have (

∫
+ x. ennreal (pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x)) ∂count-space UNIV)

= 1
proof (subst nn-integral-count-space ′)

have (
∑

x∈supp. ennreal (pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x))) =
ennreal ((

∑
x∈supp. pmf p x) + ε ∗ ((

∑
x∈supp. pmf q ′ x) − (

∑
x∈supp.

pmf p ′ x)))
by (subst sum-ennreal[OF nonneg], rule ennreal-cong)

(auto simp: sum-subtractf ring-distribs sum.distrib sum-distrib-left)
also from finite-supp support have . . . = 1

by (subst (1 2 3) sum-pmf-eq-1) (auto simp: supp-def)
finally show (

∑
x∈supp. ennreal (pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x))) = 1

.
qed (insert nonneg finite-supp, simp-all)
with nonneg have pmf-q: pmf q x = pmf p x + ε ∗ (pmf q ′ x − pmf p ′ x) for x

unfolding q-def by (intro pmf-embed-pmf) simp-all
with support have support-q: set-pmf q ⊆ supp

unfolding supp-def by (auto simp: set-pmf-eq)
with lotteries support q ′(1) have q-wf : q ∈ lotteries-on alts

by (auto simp add: lotteries-on-def supp-def)

from support-q support have expected-utility:

60

measure-pmf .expectation q u = measure-pmf .expectation p u +
ε ∗ (measure-pmf .expectation q ′ u − measure-pmf .expectation p ′ u) for u

by (subst (1 2 3 4) integral-measure-pmf [OF finite-supp])
(auto simp: pmf-q supp-def sum.distrib sum-distrib-left

sum-distrib-right sum-subtractf algebra-simps)

have q �[SD(R i)] p if i: i ∈ agents for i
proof −

from i interpret finite-total-preorder-on alts R i by simp
from i lotteries q ′(1) q ′(3)[OF i] q-wf p ′-wf ε show ?thesis

by (fastforce simp: SD-iff-expected-utilities-le expected-utility)
qed
moreover from ‹i ∈ agents› interpret finite-total-preorder-on alts R i by simp

from lotteries q ′(1 ,4) q-wf p ′-wf ε have q �[SD(R i)] p
by (force simp: SD-iff-expected-utilities-le expected-utility not-le strongly-preferred-def)
ultimately show ?thesis using q-wf ‹i ∈ agents› unfolding SD-efficient-def ′

by blast
qed

lemma SD-efficient-support-subset:
assumes SD-efficient R p set-pmf p ′ ⊆ set-pmf p p ∈ lotteries-on alts
shows SD-efficient R p ′

using SD-inefficient-support-subset[OF - assms(2 ,3)] assms(1) by blast

lemma SD-efficient-same-support:
assumes set-pmf p = set-pmf p ′ p ∈ lotteries-on alts
shows SD-efficient R p ←→ SD-efficient R p ′

using SD-inefficient-support-subset[of p p ′] SD-inefficient-support-subset[of p ′ p]
assms

by (auto simp: lotteries-on-def)

lemma SD-efficient-iff :
assumes p ∈ lotteries-on alts
shows SD-efficient R p ←→ SD-efficient R (pmf-of-set (set-pmf p))
using assms finite-alts
by (intro SD-efficient-same-support)

(simp, subst set-pmf-of-set,
auto simp: set-pmf-not-empty lotteries-on-def intro: finite-subset[OF - fi-

nite-alts])

lemma SD-efficient-no-pareto-loser :
assumes efficient: SD-efficient R p and p-wf : p ∈ lotteries-on alts
shows set-pmf p ∩ pareto-losers R = {}

proof −
have x /∈ pareto-losers R if x: x ∈ set-pmf p for x
proof −

from x have set-pmf (return-pmf x) ⊆ set-pmf p by auto
from efficient this p-wf have SD-efficient R (return-pmf x)

by (rule SD-efficient-support-subset)

61

moreover from assms x have x ∈ alts by (auto simp: lotteries-on-def)
ultimately show x /∈ pareto-losers R by (simp add: SD-efficient-singleton-iff)

qed
thus ?thesis by blast

qed

Given two lotteries with the same support where one is strictly Pareto-
SD-preferred to the other, one can construct a third lottery that is weakly
Pareto-SD-preferred to the better lottery (and therefore strictly Pareto-SD-
preferred to the worse lottery) and whose support is a strict subset of the
original supports.
lemma improve-lottery-support-subset:

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts q �[Pareto(SD ◦ R)] p
set-pmf p = set-pmf q

obtains r where r ∈ lotteries-on alts r �[Pareto(SD ◦ R)] q set-pmf r ⊂ set-pmf
p
proof −

have subset: {x. pmf p x > pmf q x} ⊆ set-pmf p by (auto simp: set-pmf-eq)
also have . . . ⊆ alts using assms by (simp add: lotteries-on-def)
finally have finite: finite {x. pmf p x > pmf q x}

using finite-alts by (rule finite-subset)

from assms have q 6= p by (auto simp: strongly-preferred-def)
hence ex-less: ∃ x. pmf p x > pmf q x by (rule pmf-neq-exists-less)

define ε where ε = Min {pmf p x / (pmf p x − pmf q x) |x. pmf p x > pmf q
x}

define supp where supp = set-pmf p
from assms finite-alts have finite-supp: finite supp

by (auto simp: lotteries-on-def supp-def dest: finite-subset)
from assms have [simp]: pmf p x = 0 pmf q x = 0 if x /∈ supp for x

using that by (auto simp: supp-def set-pmf-eq)

from finite subset ex-less have ε: ε ≥ 1 unfolding ε-def
by (intro Min.boundedI) (auto simp: field-simps pmf-nonneg)

have nonneg: pmf p x + ε ∗ (pmf q x − pmf p x) ≥ 0 for x
proof (cases pmf p x > pmf q x)

case True
with finite have ε ≤ pmf p x / (pmf p x − pmf q x)

unfolding ε-def by (intro Min-le) auto
with True show ?thesis by (simp add: field-simps)

next
case False
with pmf-nonneg[of p x] ε show ?thesis by simp

qed

define r where r = embed-pmf (λx. pmf p x + ε ∗ (pmf q x − pmf p x))
have (

∫
+ x. ennreal (pmf p x + ε ∗ (pmf q x − pmf p x)) ∂count-space UNIV)

= 1

62

proof (subst nn-integral-count-space ′)
have (

∑
x∈supp. ennreal (pmf p x + ε ∗ (pmf q x − pmf p x))) =

ennreal ((
∑

x∈supp. pmf p x) + ε ∗ ((
∑

x∈supp. pmf q x) − (
∑

x∈supp.
pmf p x)))

by (subst sum-ennreal[OF nonneg], rule ennreal-cong)
(auto simp: sum-subtractf ring-distribs sum.distrib sum-distrib-left)

also from finite-supp have . . . = 1
by (subst (1 2 3) sum-pmf-eq-1) (auto simp: supp-def assms)

finally show (
∑

x∈supp. ennreal (pmf p x + ε ∗ (pmf q x − pmf p x))) = 1 .
qed (insert nonneg finite-supp, simp-all)
with nonneg have pmf-r : pmf r x = pmf p x + ε ∗ (pmf q x − pmf p x) for x

unfolding r-def by (intro pmf-embed-pmf) simp-all

with assms have set-pmf r ⊆ supp
unfolding supp-def by (auto simp: set-pmf-eq)

from finite ex-less have ε ∈ {pmf p x / (pmf p x − pmf q x) |x. pmf p x > pmf
q x}

unfolding ε-def by (intro Min-in) auto
then obtain x where ε = pmf p x / (pmf p x − pmf q x) pmf p x > pmf q x

by blast
hence pmf r x = 0 by (simp add: pmf-r field-simps)
moreover from ‹pmf p x > pmf q x› pmf-nonneg[of q x]

have pmf p x > 0 by linarith
ultimately have x ∈ set-pmf p − set-pmf r by (auto simp: set-pmf-iff)
with ‹set-pmf r ⊆ supp› have support-r : set-pmf r ⊂ set-pmf p unfolding

supp-def by blast
from this assms have r-wf : r ∈ lotteries-on alts by (simp add: lotteries-on-def)

have r �[Pareto(SD◦R)] q unfolding SD.Pareto-iff unfolding o-def
proof

fix i assume i: i ∈ agents
then interpret finite-total-preorder-on alts R i by simp
show r �[SD(R i)] q
proof (subst SD-iff-expected-utilities-le; safe?)

fix u assume u: is-vnm-utility u
from support-r have expected-utility-r :

measure-pmf .expectation r u = measure-pmf .expectation p u +
ε ∗ (measure-pmf .expectation q u − measure-pmf .expectation p u)

by (subst (1 2 3 4) integral-measure-pmf [OF finite-supp])
(auto simp: supp-def assms pmf-r sum.distrib sum-distrib-left
sum-distrib-right sum-subtractf algebra-simps)

from assms i have q �[SD(R i)] p by (simp add: SD.Pareto-strict-iff)
with assms u have measure-pmf .expectation q u ≥ measure-pmf .expectation

p u
by (simp add: SD-iff-expected-utilities-le r-wf)

hence (ε − 1) ∗ measure-pmf .expectation p u ≤ (ε − 1) ∗ measure-pmf .expectation
q u

using ε by (intro mult-left-mono) simp-all
thus measure-pmf .expectation q u ≤ measure-pmf .expectation r u

63

by (simp add: algebra-simps expected-utility-r)
qed fact+

qed
from that[OF r-wf this support-r] show ?thesis .

qed

4.5 Existence of SD-efficient lotteries

In this section, we will show that any lottery can be ‘improved’ to an SD-
efficient lottery, i.e. for any lottery, there exists an SD-efficient lottery that
is weakly SD-preferred to the original one by all agents.
context

fixes p :: ′alt lottery
assumes lott: p ∈ lotteries-on alts

begin

private definition improve-lottery :: ′alt lottery ⇒ ′alt lottery where
improve-lottery q = (let A = {r∈lotteries-on alts. r �[Pareto(SD◦R)] q} in

(SOME r . r ∈ A ∧ ¬(∃ r ′∈A. set-pmf r ′ ⊂ set-pmf r)))

private lemma improve-lottery:
assumes ¬SD-efficient R q
defines r ≡ improve-lottery q
shows r ∈ lotteries-on alts r �[Pareto(SD◦R)] q∧

r ′. r ′ ∈ lotteries-on alts =⇒ r ′ �[Pareto(SD◦R)] q =⇒ ¬(set-pmf r ′ ⊂
set-pmf r)
proof −

define A where A = {r∈lotteries-on alts. r �[Pareto(SD◦R)] q}
have subset-alts: X ⊆ alts if X ∈ set-pmf‘A for X using that

by (auto simp: A-def lotteries-on-def)
have r-altdef : r = (SOME r . r ∈ A ∧ ¬(∃ r ′∈A. set-pmf r ′ ⊂ set-pmf r))

unfolding r-def improve-lottery-def Let-def A-def by simp
from assms have nonempty: A 6= {} by (auto simp: A-def SD-efficient-def)
hence nonempty ′: set-pmf‘A 6= {} by simp
have set-pmf ‘ A ⊆ Pow alts by (auto simp: A-def lotteries-on-def)

from finite-alts have wf : wf {(X ,Y). X ⊂ Y ∧ Y ⊆ alts}
by (rule finite-subset-wf)

obtain X
where X ∈ set-pmf‘A

∧
Y . Y ⊂ X ∧ X ⊆ alts =⇒ Y /∈ set-pmf ‘ A

by (rule wfE-min ′[OF wf nonempty ′]) simp-all
hence ∃ r . r ∈ A ∧ ¬(∃ r ′∈A. set-pmf r ′ ⊂ set-pmf r)

by (auto simp: subset-alts[of X])
from someI-ex[OF this, folded r-altdef]

show r ∈ lotteries-on alts r �[Pareto(SD◦R)] q∧
r ′. r ′ ∈ lotteries-on alts =⇒ r ′ �[Pareto(SD◦R)] q =⇒ ¬(set-pmf r ′ ⊂

set-pmf r)
unfolding A-def by blast+

qed

64

private fun sd-chain :: nat ⇒ ′alt lottery option where
sd-chain 0 = Some p
| sd-chain (Suc n) =

(case sd-chain n of
None ⇒ None
| Some p ⇒ if SD-efficient R p then None else Some (improve-lottery p))

private lemma sd-chain-None-propagate:
m ≥ n =⇒ sd-chain n = None =⇒ sd-chain m = None
by (induction rule: inc-induct) simp-all

private lemma sd-chain-Some-propagate:
m ≥ n =⇒ sd-chain m = Some q =⇒ ∃ q ′. sd-chain n = Some q ′

by (cases sd-chain n) (auto simp: sd-chain-None-propagate)

private lemma sd-chain-NoneD:
sd-chain n = None =⇒ ∃n p. sd-chain n = Some p ∧ SD-efficient R p
by (induction n) (auto split: option.splits if-splits)

private lemma sd-chain-lottery: sd-chain n = Some q =⇒ q ∈ lotteries-on alts
by (induction n) (insert lott, auto split: option.splits if-splits simp: improve-lottery)

private lemma sd-chain-Suc:
assumes sd-chain m = Some q
assumes sd-chain (Suc m) = Some r
shows q ≺[Pareto(SD◦R)] r
using assms by (auto split: if-splits simp: improve-lottery)

private lemma sd-chain-strictly-preferred:
assumes m < n
assumes sd-chain m = Some q
assumes sd-chain n = Some s
shows q ≺[Pareto(SD◦R)] s
using assms

proof (induction arbitrary: q rule: strict-inc-induct)
case (base k q)
with sd-chain-Suc[of k q s] show ?case by (simp del: sd-chain.simps add: o-def)

next
case (step k q)
from step.hyps have Suc k ≤ n by simp
from sd-chain-Some-propagate[OF this, of s] step.prems obtain r

where r : sd-chain (Suc k) = Some r by (auto simp del: sd-chain.simps)
with step.prems have q ≺[Pareto (SD ◦ R)] r by (intro sd-chain-Suc)
moreover from r step.prems have r ≺[Pareto (SD ◦ R)] s by (intro step.IH)

simp-all
ultimately show ?case by (rule SD.Pareto.strict-trans)

qed

65

private lemma sd-chain-preferred:
assumes m ≤ n
assumes sd-chain m = Some q
assumes sd-chain n = Some s
shows q �[Pareto(SD◦R)] s

proof (cases m < n)
case True
from sd-chain-strictly-preferred[OF this assms(2 ,3)] show ?thesis

by (simp add: strongly-preferred-def)
next

case False
with assms show ?thesis by (auto intro: SD.Pareto.refl sd-chain-lottery)

qed

lemma SD-efficient-lottery-exists:
obtains q where q ∈ lotteries-on alts q �[Pareto(SD◦R)] p SD-efficient R q

proof −
consider ∃n. sd-chain n = None | ∀n. ∃ q. sd-chain n = Some q

using option.exhaust by metis
thus ?thesis
proof cases

case 1
define m where m = (LEAST m. sd-chain m = None)
define k where k = m − 1
from LeastI-ex[OF 1] have m: sd-chain m = None by (simp add: m-def)
from m have nz: m 6= 0 by (intro notI) simp-all
from nz have m-altdef : m = Suc k by (simp add: k-def)
from nz Least-le[of λm. sd-chain m = None m − 1 , folded m-def]

obtain q where q: sd-chain k = Some q by (cases sd-chain (m − 1)) (auto
simp: k-def)

from sd-chain-preferred[OF - sd-chain.simps(1) this] have q �[Pareto(SD◦R)]
p by simp

moreover from q have q ∈ lotteries-on alts by (simp add: sd-chain-lottery)
moreover from q m have SD-efficient R q by (auto split: if-splits simp:

m-altdef)
ultimately show ?thesis using that[of q] by blast

next
case 2
have range (set-pmf ◦ the ◦ sd-chain) ⊆ Pow alts unfolding o-def
proof safe

fix n x assume A: x ∈ set-pmf (the (sd-chain n))
from 2 obtain q where sd-chain n = Some q by auto
with sd-chain-lottery[of n q] have set-pmf (the (sd-chain n)) ⊆ alts

by (simp add: lotteries-on-def)
with A show x ∈ alts by blast

qed
hence finite (range (set-pmf ◦ the ◦ sd-chain)) by (rule finite-subset) simp-all
from pigeonhole-infinite[OF infinite-UNIV-nat this]

obtain m where infinite {n. set-pmf (the (sd-chain n)) = set-pmf (the

66

(sd-chain m))}
by auto

hence infinite ({n. set-pmf (the (sd-chain n)) = set-pmf (the (sd-chain m))}
− {k. ¬(k > m)})

by (simp add: not-less)
hence ({n. set-pmf (the (sd-chain n)) = set-pmf (the (sd-chain m))} − {k.

¬(k > m)}) 6= {}
by (intro notI) simp-all

then obtain n where mn: n > m set-pmf (the (sd-chain n)) = set-pmf (the
(sd-chain m))

by blast
from 2 obtain p q where pq: sd-chain m = Some p sd-chain n = Some q by

blast
from mn pq have supp-eq: set-pmf p = set-pmf q by simp

from mn(1) pq have less: p ≺[Pareto(SD◦R)] q by (rule sd-chain-strictly-preferred)

from ‹m < n› have n > 0 by simp
with ‹sd-chain n = Some q› sd-chain.simps(2)[of n − 1]

obtain r where r : ¬SD-efficient R r q = improve-lottery r
by (auto simp del: sd-chain.simps split: if-splits option.splits)

from pq have p ∈ lotteries-on alts q ∈ lotteries-on alts
by (simp-all add: sd-chain-lottery)

from improve-lottery-support-subset[OF this less supp-eq]
obtain s where s: s ∈ lotteries-on alts Pareto (SD ◦ R) q s set-pmf s ⊂ set-pmf

p .
from improve-lottery(2)[of r] r s have s �[Pareto(SD◦R)] r

by (auto intro: SD.Pareto.strict-weak-trans)
from improve-lottery(3)[OF r(1) s(1) this] supp-eq r

have ¬set-pmf s ⊂ set-pmf p by simp
with s(3) show ?thesis by contradiction

qed
qed

end

lemma
assumes p ∈ lotteries-on alts
shows ∃ q∈lotteries-on alts. q �[Pareto(SD◦R)] p ∧ SD-efficient R q
using SD-efficient-lottery-exists[OF assms] by blast

end

end

5 Social Decision Schemes
theory Social-Decision-Schemes
imports

67

Complex-Main
HOL−Probability.Probability
Preference-Profiles
Elections
Order-Predicates
Stochastic-Dominance
SD-Efficiency

begin

5.1 Basic Social Choice definitions
context election
begin

The set of lotteries, i.e. the probability mass functions on the type ′alt whose
support is a subset of the alternative set.
abbreviation lotteries where

lotteries ≡ lotteries-on alts

The probability that a lottery returns an alternative that is in the given set
abbreviation lottery-prob :: ′alt lottery ⇒ ′alt set ⇒ real where

lottery-prob ≡ measure-pmf .prob

lemma lottery-prob-alts-superset:
assumes p ∈ lotteries alts ⊆ A
shows lottery-prob p A = 1
using assms by (subst measure-pmf .prob-eq-1) (auto simp: AE-measure-pmf-iff

lotteries-on-def)

lemma lottery-prob-alts: p ∈ lotteries =⇒ lottery-prob p alts = 1
by (rule lottery-prob-alts-superset) simp-all

end

In the context of an election, a preference profile is a function that assigns
to each agent her preference relation (which is a total preorder)

5.2 Social Decision Schemes

In the context of an election, a Social Decision Scheme (SDS) is a function
that maps preference profiles to lotteries on the alternatives.
locale social-decision-scheme = election agents alts

for agents :: ′agent set and alts :: ′alt set +
fixes sds :: (′agent, ′alt) pref-profile ⇒ ′alt lottery
assumes sds-wf : is-pref-profile R =⇒ sds R ∈ lotteries

68

5.3 Anonymity

An SDS is anonymous if permuting the agents in the input does not change
the result.
locale anonymous-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes anonymous: π permutes agents =⇒ is-pref-profile R =⇒ sds (R ◦ π) =

sds R
begin

lemma anonymity-prefs-from-table:
assumes prefs-from-table-wf agents alts xs prefs-from-table-wf agents alts ys
assumes mset (map snd xs) = mset (map snd ys)
shows sds (prefs-from-table xs) = sds (prefs-from-table ys)

proof −
from assms obtain π where π permutes agents prefs-from-table xs ◦ π =

prefs-from-table ys
by (rule prefs-from-table-agent-permutation)

with anonymous[of π, of prefs-from-table xs] assms(1) show ?thesis
by (simp add: pref-profile-from-tableI)

qed

context
begin
qualified lemma anonymity-prefs-from-table-aux:

assumes R1 = prefs-from-table xs prefs-from-table-wf agents alts xs
assumes R2 = prefs-from-table ys prefs-from-table-wf agents alts ys
assumes mset (map snd xs) = mset (map snd ys)
shows sds R1 = sds R2 unfolding assms(1 ,3)
by (rule anonymity-prefs-from-table) (simp-all add: assms del: mset-map)

end

end

5.4 Neutrality

An SDS is neutral if permuting the alternatives in the input does not change
the result, modulo the equivalent permutation in the output lottery.
locale neutral-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes neutral: σ permutes alts =⇒ is-pref-profile R =⇒

sds (permute-profile σ R) = map-pmf σ (sds R)
begin

Alternative formulation of neutrality that shows that our definition is equiv-
alent to that in the paper.
lemma neutral ′:

assumes σ permutes alts

69

assumes is-pref-profile R
assumes a ∈ alts
shows pmf (sds (permute-profile σ R)) (σ a) = pmf (sds R) a

proof −
from assms have A: set-pmf (sds R) ⊆ alts using sds-wf

by (simp add: lotteries-on-def)
from assms(1 ,2) have pmf (sds (permute-profile σ R)) (σ a) = pmf (map-pmf

σ (sds R)) (σ a)
by (subst neutral) simp-all

also from assms have . . . = pmf (sds R) a
by (intro pmf-map-inj ′) (simp-all add: permutes-inj)

finally show ?thesis .
qed

end

locale an-sds =
anonymous-sds agents alts sds + neutral-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds

begin

lemma sds-anonymous-neutral:
assumes perm: σ permutes alts and wf : is-pref-profile R1 is-pref-profile R2
assumes eq: anonymous-profile R1 =

image-mset (map ((‘) σ)) (anonymous-profile R2)
shows sds R1 = map-pmf σ (sds R2)

proof −
interpret R1 : pref-profile-wf agents alts R1 by fact
interpret R2 : pref-profile-wf agents alts R2 by fact
from perm have wf ′: is-pref-profile (permute-profile σ R2)

by (rule R2 .wf-permute-alts)
from eq perm have anonymous-profile R1 = anonymous-profile (permute-profile

σ R2)
by (simp add: R2 .anonymous-profile-permute)

from anonymous-profile-agent-permutation[OF this wf (1) wf ′]
obtain π where π permutes agents permute-profile σ R2 ◦ π = R1 by auto

have sds (permute-profile σ R2 ◦ π) = sds (permute-profile σ R2)
by (rule anonymous) fact+

also have . . . = map-pmf σ (sds R2)
by (rule neutral) fact+

also have permute-profile σ R2 ◦ π = R1 by fact
finally show ?thesis .

qed

lemma sds-anonymous-neutral ′:
assumes perm: σ permutes alts and wf : is-pref-profile R1 is-pref-profile R2
assumes eq: anonymous-profile R1 =

70

image-mset (map ((‘) σ)) (anonymous-profile R2)
shows pmf (sds R1) (σ x) = pmf (sds R2) x

proof −
have sds R1 = map-pmf σ (sds R2) by (intro sds-anonymous-neutral) fact+
also have pmf . . . (σ x) = pmf (sds R2) x by (intro pmf-map-inj ′ permutes-inj[OF

perm])
finally show ?thesis .

qed

lemma sds-automorphism:
assumes perm: σ permutes alts and wf : is-pref-profile R
assumes eq: image-mset (map ((‘) σ)) (anonymous-profile R) = anonymous-profile

R
shows map-pmf σ (sds R) = sds R
using sds-anonymous-neutral[OF perm wf wf eq [symmetric]] ..

end

lemma an-sds-automorphism-aux:
assumes wf : prefs-from-table-wf agents alts yss R ≡ prefs-from-table yss
assumes an: an-sds agents alts sds
assumes eq: mset (map ((map ((‘) (permutation-of-list xs))) ◦ snd) yss) = mset

(map snd yss)
assumes perm: set (map fst xs) ⊆ alts set (map snd xs) = set (map fst xs)

distinct (map fst xs)
and x: x ∈ alts y = permutation-of-list xs x

shows pmf (sds R) x = pmf (sds R) y
proof −

note perm = list-permutesI [OF perm]
let ?σ = permutation-of-list xs
note perm ′ = permutation-of-list-permutes [OF perm]
from wf have wf ′: pref-profile-wf agents alts R by (simp add: pref-profile-from-tableI)
then interpret R: pref-profile-wf agents alts R .
from perm ′ interpret R ′: pref-profile-wf agents alts permute-profile ?σ R

by (simp add: R.wf-permute-alts)
from an interpret an-sds agents alts sds .

from eq wf have eq ′: image-mset (map ((‘) ?σ)) (anonymous-profile R) = anony-
mous-profile R

by (simp add: anonymise-prefs-from-table mset-map multiset.map-comp)
from perm ′ x have pmf (sds R) x = pmf (map-pmf ?σ (sds R)) (?σ x)

by (simp add: pmf-map-inj ′ permutes-inj)
also from eq ′ x wf ′ perm ′ have map-pmf ?σ (sds R) = sds R

by (intro sds-automorphism)
(simp-all add: R.anonymous-profile-permute pref-profile-from-tableI)

finally show ?thesis using x by simp
qed

71

5.5 Ex-post efficiency
locale ex-post-efficient-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes ex-post-efficient:

is-pref-profile R =⇒ set-pmf (sds R) ∩ pareto-losers R = {}
begin

lemma ex-post-efficient ′:
assumes is-pref-profile R y �[Pareto(R)] x
shows pmf (sds R) x = 0
using ex-post-efficient[of R] assms
by (auto simp: set-pmf-eq pareto-losers-def)

lemma ex-post-efficient ′′:
assumes is-pref-profile R i ∈ agents ∀ i∈agents. y �[R i] x ¬y �[R i] x
shows pmf (sds R) x = 0

proof −
from assms(1) interpret pref-profile-wf agents alts R .
from assms(2−) show ?thesis

by (intro ex-post-efficient ′[OF assms(1), of - y])
(auto simp: Pareto-iff strongly-preferred-def)

qed

end

5.6 SD efficiency

An SDS is SD-efficient if it returns an SD-efficient lottery for every preference
profile, i.e. if the SDS outputs a lottery, it is never the case that there is
another lottery that is weakly preferred by all agents an strictly preferred
by at least one agent.
locale sd-efficient-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes SD-efficient: is-pref-profile R =⇒ SD-efficient R (sds R)

begin

An alternative formulation of SD-efficiency that is somewhat more conve-
nient to use.
lemma SD-efficient ′:

assumes is-pref-profile R q ∈ lotteries
assumes

∧
i. i ∈ agents =⇒ q �[SD(R i)] sds R i ∈ agents q �[SD(R i)] sds R

shows P
proof −

interpret pref-profile-wf agents alts R by fact
show ?thesis
using SD-efficient[of R] sds-wf [OF assms(1)] assms unfolding SD-efficient-def ′

by blast

72

qed

Any SD-efficient SDS is also ex-post efficient.
sublocale ex-post-efficient-sds
proof unfold-locales

fix R :: (′agent, ′alt) pref-profile assume R-wf : is-pref-profile R
interpret pref-profile-wf agents alts R by fact
from R-wf show set-pmf (sds R) ∩ pareto-losers R = {}

by (intro SD-efficient-no-pareto-loser SD-efficient sds-wf)
qed

The following rule can be used to derive facts from inefficient supports: If a
set of alternatives is an inefficient support, at least one of the alternatives
in it must receive probability 0.
lemma SD-inefficient-support:

assumes A: A 6= {} A ⊆ alts and inefficient: ¬SD-efficient R (pmf-of-set A)
assumes wf : is-pref-profile R
shows ∃ x∈A. pmf (sds R) x = 0

proof (rule ccontr)
interpret pref-profile-wf agents alts R by fact
assume ¬(∃ x∈A. pmf (sds R) x = 0)
with A have set-pmf (pmf-of-set A) ⊆ set-pmf (sds R)

by (subst set-pmf-of-set) (auto simp: set-pmf-eq intro: finite-subset[OF - fi-
nite-alts])

from inefficient and this have ¬SD-efficient R (sds R)
by (rule SD-inefficient-support-subset) (simp add: wf sds-wf)

moreover from SD-efficient wf have SD-efficient R (sds R) .
ultimately show False by contradiction

qed

lemma SD-inefficient-support ′:
assumes wf : is-pref-profile R
assumes A: A 6= {} A ⊆ alts and

wit: p ∈ lotteries ∀ i∈agents. p �[SD(R i)] pmf-of-set A i ∈ agents
¬p �[SD(R i)] pmf-of-set A

shows ∃ x∈A. pmf (sds R) x = 0
proof (rule SD-inefficient-support)

from wf interpret pref-profile-wf agents alts R .
from wit show ¬SD-efficient R (pmf-of-set A)
by (intro SD-inefficientI ′) (auto intro!: bexI [of - i] simp: strongly-preferred-def)

qed fact+

end

5.7 Weak strategyproofness
context social-decision-scheme
begin

73

The SDS is said to be manipulable for a particular preference profile, a
particular agent, and a particular alternative preference ordering for that
agent if the lottery obtained if the agent submits the alternative preferences
strictly SD-dominates that obtained if the original preferences are submit-
ted. (SD-dominated w.r.t. the original preferences)
definition manipulable-profile

:: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt relation ⇒ bool where
manipulable-profile R i Ri ′←→ sds (R(i := Ri ′)) �[SD (R i)] sds R

end

An SDS is weakly strategyproof (or just strategyproof) if it is not manip-
ulable for any combination of preference profiles, agents, and alternative
preference relations.
locale strategyproof-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ total-preorder-on alts Ri ′ =⇒
¬manipulable-profile R i Ri ′

5.8 Strong strategyproofness
context social-decision-scheme
begin

The SDS is said to be strongly strategyproof for a particular preference
profile, a particular agent, and a particular alternative preference ordering
for that agent if the lottery obtained if the agent submits the alternative
preferences is SD-dominated by the one obtained if the original preferences
are submitted. (SD-dominated w.r.t. the original preferences)
In other words: the SDS is strategyproof w.r.t the preference profile R and
the agent i and the alternative preference relation R′

i if the lottery for ob-
tained for R is at least as good for i as the lottery obtained when i misrep-
resents her preferences as R′

i.
definition strongly-strategyproof-profile

:: (′agent, ′alt) pref-profile ⇒ ′agent ⇒ ′alt relation ⇒ bool where
strongly-strategyproof-profile R i Ri ′←→ sds R �[SD (R i)] sds (R(i := Ri ′))

lemma strongly-strategyproof-profileI [intro]:
assumes is-pref-profile R total-preorder-on alts Ri ′ i ∈ agents
assumes

∧
x. x ∈ alts =⇒ lottery-prob (sds (R(i := Ri ′))) (preferred-alts (R i)

x)
≤ lottery-prob (sds R) (preferred-alts (R i) x)

shows strongly-strategyproof-profile R i Ri ′
proof −

interpret pref-profile-wf agents alts R by fact
show ?thesis

74

unfolding strongly-strategyproof-profile-def
by rule (auto intro!: sds-wf assms pref-profile-wf .wf-update)

qed

lemma strongly-strategyproof-imp-not-manipulable:
assumes strongly-strategyproof-profile R i Ri ′
shows ¬manipulable-profile R i Ri ′
using assms unfolding strongly-strategyproof-profile-def manipulable-profile-def
by (auto simp: strongly-preferred-def)

end

An SDS is strongly strategyproof if it is strongly strategyproof for all com-
binations of preference profiles, agents, and alternative preference relations.
locale strongly-strategyproof-sds = social-decision-scheme agents alts sds

for agents :: ′agent set and alts :: ′alt set and sds +
assumes strongly-strategyproof :

is-pref-profile R =⇒ i ∈ agents =⇒ total-preorder-on alts Ri ′ =⇒
strongly-strategyproof-profile R i Ri ′

begin

Any SDS that is strongly strategyproof is also weakly strategyproof.
sublocale strategyproof-sds

by unfold-locales
(simp add: strongly-strategyproof-imp-not-manipulable strongly-strategyproof)

end

locale strategyproof-an-sds =
strategyproof-sds agents alts sds + an-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds

end

6 Lowering Social Decision Schemes
theory SDS-Lowering
imports Social-Decision-Schemes
begin

definition lift-pref-profile ::
′agent set ⇒ ′alt set ⇒ ′agent set ⇒ ′alt set ⇒
(′agent, ′alt) pref-profile ⇒ (′agent, ′alt) pref-profile where

lift-pref-profile agents alts agents ′ alts ′ R = (λi x y.
x ∈ alts ′ ∧ y ∈ alts ′ ∧ i ∈ agents ′ ∧
(x = y ∨ x /∈ alts ∨ i /∈ agents ∨ (y ∈ alts ∧ R i x y)))

75

lemma lift-pref-profile-wf :
assumes pref-profile-wf agents alts R
assumes agents ⊆ agents ′ alts ⊆ alts ′ finite alts ′

defines R ′ ≡ lift-pref-profile agents alts agents ′ alts ′ R
shows pref-profile-wf agents ′ alts ′ R ′

proof −
from assms interpret R: pref-profile-wf agents alts by simp
have finite-total-preorder-on alts ′ (R ′ i)

if i: i ∈ agents ′ for i
proof (cases i ∈ agents)

case True
then interpret finite-total-preorder-on alts R i by simp
from True assms show ?thesis

by unfold-locales (auto simp: lift-pref-profile-def dest: total intro: trans)
next

case False
with assms i show ?thesis

by unfold-locales (simp-all add: lift-pref-profile-def)
qed
moreover have R ′ i = (λ- -. False) if i /∈ agents ′ for i

unfolding lift-pref-profile-def R ′-def using that by simp
ultimately show ?thesis unfolding pref-profile-wf-def using assms by auto

qed

lemma lift-pref-profile-permute-agents:
assumes π permutes agents agents ⊆ agents ′

shows lift-pref-profile agents alts agents ′ alts ′ (R ◦ π) =
lift-pref-profile agents alts agents ′ alts ′ R ◦ π

using assms permutes-subset[OF assms]
by (auto simp add: lift-pref-profile-def o-def permutes-in-image)

lemma lift-pref-profile-permute-alts:
assumes σ permutes alts alts ⊆ alts ′

shows lift-pref-profile agents alts agents ′ alts ′ (permute-profile σ R) =
permute-profile σ (lift-pref-profile agents alts agents ′ alts ′ R)

proof −
from assms have inv: inv σ permutes alts by (intro permutes-inv)
from this assms(2) have inv σ permutes alts ′ by (rule permutes-subset)
with inv show ?thesis using assms permutes-inj[OF ‹inv σ permutes alts›]

by (fastforce simp add: lift-pref-profile-def permutes-in-image
permute-profile-def fun-eq-iff dest: injD)

qed

lemma lotteries-on-subset: A ⊆ B =⇒ p ∈ lotteries-on A =⇒ p ∈ lotteries-on B
unfolding lotteries-on-def by blast

lemma lottery-prob-carrier : p ∈ lotteries-on A =⇒ measure-pmf .prob p A = 1
by (auto simp: measure-pmf .prob-eq-1 lotteries-on-def AE-measure-pmf-iff)

76

context
fixes agents alts R agents ′ alts ′ R ′

assumes R-wf : pref-profile-wf agents alts R
assumes election: agents ⊆ agents ′ alts ⊆ alts ′ alts 6= {} agents 6= {} finite alts ′

defines R ′ ≡ lift-pref-profile agents alts agents ′ alts ′ R
begin

interpretation R: pref-profile-wf agents alts R by fact
interpretation R ′: pref-profile-wf agents ′ alts ′ R ′

using election R-wf by (simp add: R ′-def lift-pref-profile-wf)

lemma lift-pref-profile-strict-iff :
x ≺[lift-pref-profile agents alts agents ′ alts ′ R i] y ←→

i ∈ agents ∧ ((y ∈ alts ∧ x ∈ alts ′ − alts) ∨ x ≺[R i] y)
proof (cases i ∈ agents)

case True
then interpret total-preorder-on alts R i by simp
show ?thesis using not-outside election

by (auto simp: lift-pref-profile-def strongly-preferred-def)
qed (simp-all add: lift-pref-profile-def strongly-preferred-def)

lemma preferred-alts-lift-pref-profile:
assumes i: i ∈ agents ′ and x: x ∈ alts ′

shows preferred-alts (R ′ i) x =
(if i ∈ agents ∧ x ∈ alts then preferred-alts (R i) x else alts ′)

proof (cases i ∈ agents)
assume i: i ∈ agents
then interpret Ri: total-preorder-on alts R i by simp
show ?thesis
using i x election Ri.not-outside

by (auto simp: preferred-alts-def R ′-def lift-pref-profile-def Ri.refl)
qed (auto simp: preferred-alts-def R ′-def lift-pref-profile-def i x)

lemma lift-pref-profile-Pareto-iff :
x �[Pareto(R ′)] y ←→ x ∈ alts ′ ∧ y ∈ alts ′ ∧ (x /∈ alts ∨ x �[Pareto(R)] y)

proof −
from R.nonempty-agents obtain i where i: i ∈ agents by blast
then interpret Ri: finite-total-preorder-on alts R i by simp
show ?thesis unfolding R ′.Pareto-iff R.Pareto-iff unfolding R ′-def lift-pref-profile-def

using election i by (auto simp: preorder-on.refl[OF R.in-dom]
simp del: R.nonempty-alts R.nonempty-agents intro: Ri.not-outside)

qed

lemma lift-pref-profile-Pareto-strict-iff :
x ≺[Pareto(R ′)] y ←→ x ∈ alts ′ ∧ y ∈ alts ′ ∧ (x /∈ alts ∧ y ∈ alts ∨ x ≺[Pareto(R)]

y)
by (auto simp: strongly-preferred-def lift-pref-profile-Pareto-iff R.Pareto.not-outside)

77

lemma pareto-losers-lift-pref-profile:
shows pareto-losers R ′ = pareto-losers R ∪ (alts ′ − alts)

proof −
have A: x ∈ alts y ∈ alts if x ≺[Pareto(R)] y for x y

using that R.Pareto.not-outside unfolding strongly-preferred-def by auto
have B: x ∈ alts ′ if x ∈ alts for x using election that by blast
from R.nonempty-alts obtain x where x: x ∈ alts by blast
thus ?thesis unfolding pareto-losers-def lift-pref-profile-Pareto-strict-iff [abs-def]

by (auto dest: A B)
qed

context
begin
private lemma lift-SD-iff-agent:

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents
shows p �[SD(R ′ i)] q ←→ p �[SD(R i)] q

proof −
from i interpret Ri: preorder-on alts R i by simp
from i election have i ′: i ∈ agents ′ by blast
then interpret R ′i: preorder-on alts ′ R ′ i by simp
from assms election have p ∈ lotteries-on alts ′ q ∈ lotteries-on alts ′

by (auto intro: lotteries-on-subset)
with assms election i ′ show ?thesis

by (auto simp: Ri.SD-preorder R ′i.SD-preorder
preferred-alts-lift-pref-profile lottery-prob-carrier)

qed

private lemma lift-SD-iff-nonagent:
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents ′ − agents
shows p �[SD(R ′ i)] q

proof −
from i election have i ′: i ∈ agents ′ by blast
then interpret R ′i: preorder-on alts ′ R ′ i by simp
from assms election have p ∈ lotteries-on alts ′ q ∈ lotteries-on alts ′

by (auto intro: lotteries-on-subset)
with assms election i ′ show ?thesis
by (auto simp: R ′i.SD-preorder preferred-alts-lift-pref-profile lottery-prob-carrier)

qed

lemmas lift-SD-iff = lift-SD-iff-agent lift-SD-iff-nonagent

lemma lift-SD-iff ′:
p ∈ lotteries-on alts =⇒ q ∈ lotteries-on alts =⇒ i ∈ agents ′ =⇒

p �[SD(R ′ i)] q ←→ i /∈ agents ∨ p �[SD(R i)] q
by (cases i ∈ agents) (simp-all add: lift-SD-iff)

end

lemma lift-SD-strict-iff :

78

assumes p ∈ lotteries-on alts q ∈ lotteries-on alts and i: i ∈ agents
shows p ≺[SD(R ′ i)] q ←→ p ≺[SD(R i)] q
using assms by (simp add: strongly-preferred-def lift-SD-iff)

lemma lift-Pareto-SD-iff :
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts
shows p �[Pareto(SD ◦ R ′)] q ←→ p �[Pareto(SD ◦ R)] q
using assms election by (auto simp: R.SD.Pareto-iff R ′.SD.Pareto-iff lift-SD-iff ′)

lemma lift-Pareto-SD-strict-iff :
assumes p ∈ lotteries-on alts q ∈ lotteries-on alts
shows p ≺[Pareto(SD ◦ R ′)] q ←→ p ≺[Pareto(SD ◦ R)] q
using assms by (simp add: strongly-preferred-def lift-Pareto-SD-iff)

lemma lift-SD-efficient-iff :
assumes p: p ∈ lotteries-on alts
shows SD-efficient R ′ p ←→ SD-efficient R p

proof
assume eff : SD-efficient R ′ p
have ¬(q �[Pareto(SD ◦ R)] p) if q: q ∈ lotteries-on alts for q
proof −
from q election have q ′: q ∈ lotteries-on alts ′ by (blast intro: lotteries-on-subset)
with eff have ¬(q �[Pareto(SD ◦ R ′)] p) by (simp add: R ′.SD-efficient-def)
with p q show ?thesis by (simp add: lift-Pareto-SD-strict-iff)

qed
thus SD-efficient R p by (simp add: R.SD-efficient-def)

next
assume eff : SD-efficient R p
have ¬(q �[Pareto(SD ◦ R ′)] p) if q: q ∈ lotteries-on alts ′ for q
proof

assume less: q �[Pareto(SD ◦ R ′)] p
from R ′.SD-efficient-lottery-exists[OF q]
obtain q ′ where q ′: q ′ ∈ lotteries-on alts ′ Pareto (SD ◦ R ′) q q ′ SD-efficient

R ′ q ′ .
have x /∈ set-pmf q ′ if x: x ∈ alts ′ − alts for x
proof −
from x have x ∈ pareto-losers R ′ by (simp add: pareto-losers-lift-pref-profile)

with R ′.SD-efficient-no-pareto-loser [OF q ′(3 ,1)] show x /∈ set-pmf q ′ by
blast

qed
with q ′ have q ′ ∈ lotteries-on alts by (auto simp: lotteries-on-def)
moreover from q ′ less have q ′ �[Pareto(SD ◦ R ′)] p

by (auto intro: R ′.SD.Pareto.strict-weak-trans)
with ‹q ′ ∈ lotteries-on alts› p have q ′ �[Pareto(SD ◦ R)] p

by (subst (asm) lift-Pareto-SD-strict-iff)
ultimately have ¬SD-efficient R p by (auto simp: R.SD-efficient-def)
with eff show False by contradiction

qed
thus SD-efficient R ′ p by (simp add: R ′.SD-efficient-def)

79

qed

end

locale sds-lowering =
ex-post-efficient-sds agents alts sds
for agents :: ′agent set and alts :: ′alt set and sds +
fixes agents ′ alts ′

assumes agents ′-subset: agents ′ ⊆ agents and alts ′-subset: alts ′ ⊆ alts
and agents ′-nonempty [simp]: agents ′ 6= {} and alts ′-nonempty [simp]: alts ′

6= {}
begin

lemma finite-agents ′ [simp]: finite agents ′

using agents ′-subset finite-agents by (rule finite-subset)

lemma finite-alts ′ [simp]: finite alts ′

using alts ′-subset finite-alts by (rule finite-subset)

abbreviation lift :: (′agent, ′alt) pref-profile ⇒ (′agent, ′alt) pref-profile where
lift ≡ lift-pref-profile agents ′ alts ′ agents alts

definition lowered :: (′agent, ′alt) pref-profile ⇒ ′alt lottery where
lowered = sds ◦ lift

lemma lift-wf [simp, intro]:
pref-profile-wf agents ′ alts ′ R =⇒ is-pref-profile (lift R)
using alts ′-subset agents ′-subset by (intro lift-pref-profile-wf) simp-all

sublocale lowered: election agents ′ alts ′

by unfold-locales simp-all

lemma preferred-alts-lift:
lowered.is-pref-profile R =⇒ i ∈ agents =⇒ x ∈ alts =⇒

preferred-alts (lift R i) x =
(if i ∈ agents ′ ∧ x ∈ alts ′ then preferred-alts (R i) x else alts)

using alts ′-subset agents ′-subset
by (intro preferred-alts-lift-pref-profile) simp-all

lemma pareto-losers-lift:
lowered.is-pref-profile R =⇒ pareto-losers (lift R) = pareto-losers R ∪ (alts −

alts ′)
using agents ′-subset alts ′-subset by (intro pareto-losers-lift-pref-profile) simp-all

lemma lowered-lotteries: lowered.lotteries ⊆ lotteries
unfolding lotteries-on-def using alts ′-subset by blast

sublocale lowered: social-decision-scheme agents ′ alts ′ lowered

80

proof
fix R assume R-wf : pref-profile-wf agents ′ alts ′ R
from R-wf have R ′-wf : pref-profile-wf agents alts (lift R) by (rule lift-wf)
show lowered R ∈ lowered.lotteries unfolding lotteries-on-def
proof safe

fix x assume x ∈ set-pmf (lowered R)
hence x: x ∈ set-pmf (sds (lift R)) by (simp add: lowered-def)
with ex-post-efficient[OF R ′-wf]

have x /∈ pareto-losers (lift R) by blast
with pareto-losers-lift[OF R-wf]

have x /∈ alts − alts ′ by blast
moreover from x have x ∈ alts using sds-wf [OF R ′-wf]

by (auto simp: lotteries-on-def)
ultimately show x ∈ alts ′ by simp

qed
qed

sublocale ex-post-efficient-sds agents ′ alts ′ lowered
proof

fix R assume R-wf : lowered.is-pref-profile R
hence is-pref-profile (lift R) by simp
have set-pmf (lowered R) ∩ pareto-losers (lift R) = {}

unfolding lowered-def o-def by (intro ex-post-efficient lift-wf R-wf)
also have pareto-losers (lift R) = pareto-losers R ∪ (alts − alts ′)

by (intro pareto-losers-lift R-wf)
finally show set-pmf (lowered R) ∩ pareto-losers R = {} by blast

qed

lemma lowered-in-lotteries [simp]: lowered.is-pref-profile R =⇒ lowered R ∈ lot-
teries

using lowered.sds-wf [of R] lowered-lotteries by blast

end

locale sds-lowering-anonymous =
anonymous-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale lowered: anonymous-sds agents ′ alts ′ lowered
proof

fix π R assume perm: π permutes agents ′ and R-wf : lowered.is-pref-profile R
from perm have lift (R ◦ π) = lift R ◦ π

using agents ′-subset by (rule lift-pref-profile-permute-agents)
hence sds (lift (R ◦ π)) = sds (lift R ◦ π) by simp
also from perm R-wf have π permutes agents is-pref-profile (lift R)

81

using agents ′-subset by (auto dest: permutes-subset)
from anonymous[OF this] have sds (lift R ◦ π) = sds (lift R)

by (simp add: lowered-def)
finally show lowered (R ◦ π) = lowered R unfolding lowered-def o-def .

qed

end

locale sds-lowering-neutral =
neutral-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale lowered: neutral-sds agents ′ alts ′ lowered
proof

fix σ R assume perm: σ permutes alts ′ and R-wf : lowered.is-pref-profile R
from perm alts ′-subset

have lift (permute-profile σ R) = permute-profile σ (lift R)
by (rule lift-pref-profile-permute-alts)

hence sds (lift (permute-profile σ R)) = sds (permute-profile σ (lift R)) by simp
also from R-wf perm have is-pref-profile (lift R) by simp
with perm alts ′-subset

have sds (permute-profile σ (lift R)) = map-pmf σ (sds (lift R))
by (intro neutral) (auto intro: permutes-subset)

finally show lowered (permute-profile σ R) = map-pmf σ (lowered R)
by (simp add: lowered-def o-def)

qed

end

locale sds-lowering-sd-efficient =
sd-efficient-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale sd-efficient-sds agents ′ alts ′ lowered
proof

fix R assume R-wf : lowered.is-pref-profile R
interpret R: pref-profile-wf agents ′ alts ′ R by fact
from R-wf agents ′-subset alts ′-subset show SD-efficient R (lowered R)

unfolding lowered-def o-def
by (subst lift-SD-efficient-iff [symmetric])

(insert SD-efficient R-wf lowered.sds-wf [OF R-wf], auto simp: lowered-def)
qed

end

82

locale sds-lowering-strategyproof =
strategyproof-sds agents alts sds +
sds-lowering agents alts sds agents ′ alts ′

for agents :: ′agent set and alts :: ′alt set and sds agents ′ alts ′

begin

sublocale strategyproof-sds agents ′ alts ′ lowered
proof (unfold-locales, safe)

fix R i Ri ′
assume R-wf : lowered.is-pref-profile R and i: i ∈ agents ′

assume Ri ′: total-preorder-on alts ′ Ri ′
assume manipulable: lowered.manipulable-profile R i Ri ′
from i agents ′-subset have i ′: i ∈ agents by blast
interpret R: pref-profile-wf agents ′ alts ′ R by fact
from R-wf interpret liftR: pref-profile-wf agents alts lift R by simp

define lift-Ri ′
where lift-Ri ′ x y ←→ x ∈ alts ∧ y ∈ alts ∧ (x = y ∨ x /∈ alts ′ ∨ (y ∈ alts ′ ∧

Ri ′ x y))
for x y

define S where S = (lift R)(i := lift-Ri ′)
from Ri ′ interpret Ri ′: total-preorder-on alts ′ Ri ′ .
have wf-lift-Ri ′: total-preorder-on alts lift-Ri ′ using Ri ′.total

by unfold-locales (auto simp: lift-Ri ′-def intro: Ri ′.trans)
from agents ′-subset i have S-altdef : S = lift (R(i := Ri ′))

by (auto simp: fun-eq-iff lift-pref-profile-def lift-Ri ′-def S-def)
have lowered (R(i := Ri ′)) ∈ lowered.lotteries

by (intro lowered.sds-wf R.wf-update i Ri ′)
hence sds-S-wf : sds S ∈ lowered.lotteries by (simp add: S-altdef lowered-def)

from manipulable have lowered R ≺[SD (R i)] sds (lift (R(i := Ri ′)))
unfolding lowered.manipulable-profile-def by (simp add: lowered-def)

also note S-altdef [symmetric]
finally have lowered R ≺[SD (lift R i)] sds S

using R-wf i lowered.sds-wf [OF R-wf] sds-S-wf
by (subst lift-SD-strict-iff) (simp-all add: agents ′-subset alts ′-subset)

hence manipulable-profile (lift R) i lift-Ri ′
by (simp add: manipulable-profile-def lowered-def S-def)

with strategyproof [OF lift-wf [OF R-wf] i ′ wf-lift-Ri ′] show False by contradic-
tion
qed

end

locale sds-lowering-anonymous-neutral-sdeff-stratproof =
sds-lowering-anonymous + sds-lowering-neutral +
sds-lowering-sd-efficient + sds-lowering-strategyproof

83

end

7 Random Dictatorship
theory Random-Dictatorship
imports

Complex-Main
Social-Decision-Schemes

begin

We define Random Dictatorship as a social decision scheme on total pre-
orders (i.e. agents are allowed to have ties in their rankings) by first se-
lecting an agent uniformly at random and then selecting one of that agents’
most preferred alternatives uniformly at random. Note that this definition
also works for weak preferences.
definition random-dictatorship :: ′agent set ⇒ ′alt set ⇒ (′agent, ′alt) pref-profile
⇒ ′alt lottery where

random-dictatorship-auxdef :
random-dictatorship agents alts R =

do {
i ← pmf-of-set agents;
pmf-of-set (Max-wrt-among (R i) alts)
}

context election
begin

abbreviation RD :: (′agent, ′alt) pref-profile ⇒ ′alt lottery where
RD ≡ random-dictatorship agents alts

lemma random-dictatorship-def :
assumes is-pref-profile R
shows RD R =

do {
i ← pmf-of-set agents;
pmf-of-set (favorites R i)
}

proof −
from assms interpret pref-profile-wf agents alts R .
show ?thesis by (simp add: random-dictatorship-auxdef favorites-altdef)

qed

lemma random-dictatorship-unique-favorites:
assumes is-pref-profile R has-unique-favorites R
shows RD R = map-pmf (favorite R) (pmf-of-set agents)

proof −
from assms(1) interpret pref-profile-wf agents alts R .

84

from assms(2) interpret pref-profile-unique-favorites agents alts R by unfold-locales
show ?thesis unfolding random-dictatorship-def [OF assms(1)] map-pmf-def

by (intro bind-pmf-cong) (auto simp: unique-favorites pmf-of-set-singleton)
qed

lemma random-dictatorship-unique-favorites ′:
assumes is-pref-profile R has-unique-favorites R
shows RD R = pmf-of-multiset (image-mset (favorite R) (mset-set agents))
using assms by (simp add: random-dictatorship-unique-favorites map-pmf-of-set)

lemma pmf-random-dictatorship:
assumes is-pref-profile R
shows pmf (RD R) x =

(
∑

i∈agents. indicator (favorites R i) x /
real (card (favorites R i))) / real (card agents)

proof −
from assms(1) interpret pref-profile-wf agents alts R .
from nonempty-dom have card agents > 0 by (auto simp del: nonempty-agents)
hence ennreal (pmf (RD R) x) =

ennreal ((
∑

i∈agents. pmf (pmf-of-set (favorites R i)) x) / real (card
agents))

(is - = ennreal (?p / -)) unfolding random-dictatorship-def [OF assms]
by (simp-all add: ennreal-pmf-bind nn-integral-pmf-of-set max-def

divide-ennreal [symmetric] ennreal-of-nat-eq-real-of-nat sum-nonneg)
also have ?p = (

∑
i∈agents. indicator (favorites R i) x / real (card (favorites

R i)))
by (intro sum.cong) (simp-all add: favorites-nonempty)

finally show ?thesis
by (subst (asm) ennreal-inj) (auto intro!: sum-nonneg divide-nonneg-nonneg)

qed

sublocale RD: social-decision-scheme agents alts RD
proof

fix R assume R-wf : is-pref-profile R
then interpret pref-profile-wf agents alts R .
from R-wf show RD R ∈ lotteries

using favorites-subset-alts favorites-nonempty
by (auto simp: lotteries-on-def random-dictatorship-def)

qed

We now show that Random Dictatorship fulfils anonymity, neutrality, and
strong strategyproofness. At the very least, this shows that the definitions
of these notions are consistent.

7.1 Anonymity

The following proof is essentially the following: In Random Dictatorship,
permuting the agents in the preference profile is the same as applying the

85

permutation to the agent that was picked uniformly at random in the first
step. However, uniform distributions are invariant under permutation, there-
fore the outcome is totally unchanged.
sublocale RD: anonymous-sds agents alts RD
proof

fix R π assume wf : is-pref-profile R and perm: π permutes agents
interpret pref-profile-wf agents alts R by fact
from wf-permute-agents[OF perm]
have RD (R ◦ π) = map-pmf π (pmf-of-set agents) >>= (λi. pmf-of-set (favorites

R i))
by (simp add: bind-map-pmf random-dictatorship-def o-def favorites-def)

also from perm wf have . . . = RD R
by (simp add: map-pmf-of-set-inj permutes-inj-on permutes-image random-dictatorship-def)

finally show RD (R ◦ π) = RD R .
qed

7.2 Neutrality

The proof of neutrality is similar to that of anonymity. We have proven
elsewhere that the most preferred alternatives of an agent in a profile with
permuted alternatives are simply the image of the originally preferred alter-
natives. Since we pick one alternative from the most preferred alternatives of
the selected agent uniformly at random, this means that we effectively pick
an agent, then pick on of her most preferred alternatives, and then apply
the permutation to that alternative, which is simply Random Dictatorship
transformed with the permutation.
sublocale RD: neutral-sds agents alts RD
proof

fix σ R
assume perm: σ permutes alts and R-wf : is-pref-profile R
from R-wf interpret pref-profile-wf agents alts R .
from wf-permute-alts[OF perm] R-wf perm show RD (permute-profile σ R) =

map-pmf σ (RD R)
by (subst random-dictatorship-def)

(auto intro!: bind-pmf-cong simp: random-dictatorship-def map-bind-pmf
favorites-permute map-pmf-of-set-inj permutes-inj-on favorites-nonempty)

qed

7.3 Strong strategyproofness

The argument for strategyproofness is quite simple: Since the preferences
submitted by an agent i only influence the outcome when that agent is
picked in the first process, it suffices to focus on this case. When the agent i
submits her true preferences, the probability of obtaining a result at least as
good as x (for any alternative x) is 1, since the outcome will always be one of
her most-preferred alternatives. Obviously, the probability of obtaining such

86

a result cannot exceed 1 no matter what preferences she submits instead,
and thus, RD is strategyproof.
sublocale RD: strongly-strategyproof-sds agents alts RD
proof (unfold-locales, unfold RD.strongly-strategyproof-profile-def)

fix R i Ri ′ assume R-wf : is-pref-profile R and i: i ∈ agents
and Ri ′-wf : total-preorder-on alts Ri ′

interpret R: pref-profile-wf agents alts R by fact
from R-wf Ri ′-wf i have R ′-wf : is-pref-profile (R(i := Ri ′))

by (simp add: R.wf-update)
interpret R ′: pref-profile-wf agents alts R(i := Ri ′) by fact

show SD (R i) (RD (R(i := Ri ′))) (RD R)
proof (rule R.SD-pref-profileI)

fix x assume x ∈ alts
hence emeasure (measure-pmf (RD (R(i := Ri ′)))) (preferred-alts (R i) x)

≤ emeasure (measure-pmf (RD R)) (preferred-alts (R i) x)
using Ri ′-wf maximal-imp-preferred[of R i x]
by (auto intro!: card-mono nn-integral-mono-AE

simp: random-dictatorship-def R-wf R ′-wf AE-measure-pmf-iff
Max-wrt-prefs-finite

emeasure-pmf-of-set Int-absorb2 favorites-def
Max-wrt-prefs-nonempty card-gt-0-iff)

thus lottery-prob (RD (R(i := Ri ′))) (preferred-alts (R i) x)
≤ lottery-prob (RD R) (preferred-alts (R i) x)

by (simp add: measure-pmf .emeasure-eq-measure)
qed (insert R-wf R ′-wf , simp-all add: RD.sds-wf i)

qed

end

end

8 Random Serial Dictatorship
theory Random-Serial-Dictatorship
imports

Complex-Main
Social-Decision-Schemes
Random-Dictatorship

begin

Random Serial Dictatorship is an anonymous, neutral, strongly strategy-
proof, and ex-post efficient Social Decision Scheme that extends Random
Dictatorship to the domain of weak preferences.
We define RSD using a fold over a random permutation. Effectively, we
choose a random order of the agents (in the form of a list) and then tra-
verse that list from left to right, where each agent in turn removes all the

87

alternatives that are not top-ranked among the remaining ones.
definition random-serial-dictatorship ::

′agent set ⇒ ′alt set ⇒ (′agent, ′alt) pref-profile ⇒ ′alt lottery where
random-serial-dictatorship agents alts R =

fold-bind-random-permutation (λi alts. Max-wrt-among (R i) alts) pmf-of-set
alts agents

The following two facts correspond give an alternative recursive definition
to the above definition, which uses random permutations and list folding.
lemma random-serial-dictatorship-empty [simp]:

random-serial-dictatorship {} alts R = pmf-of-set alts
by (simp add: random-serial-dictatorship-def)

lemma random-serial-dictatorship-nonempty:
finite agents =⇒ agents 6= {} =⇒

random-serial-dictatorship agents alts R =
do {

i ← pmf-of-set agents;
random-serial-dictatorship (agents − {i}) (Max-wrt-among (R i) alts) R
}

by (simp add: random-serial-dictatorship-def)

We define the RSD winners w.r.t. a given set of alternatives and a fixed
permutation (i.e. list) of agents. In contrast to the above definition, the RSD
winners are determined by traversing the list of agents from right to left.
This may seem strange, but it makes induction much easier, since induction
over foldr does not require generalisation over the set of alternatives and is
therefore much easier than over foldl.
definition rsd-winners where

rsd-winners R alts agents = foldr (λi alts. Max-wrt-among (R i) alts) agents alts

lemma rsd-winners-empty [simp]: rsd-winners R alts [] = alts
by (simp add: rsd-winners-def)

lemma rsd-winners-Cons [simp]:
rsd-winners R alts (i # agents) = Max-wrt-among (R i) (rsd-winners R alts

agents)
by (simp add: rsd-winners-def)

lemma rsd-winners-map [simp]:
rsd-winners R alts (map f agents) = rsd-winners (R ◦ f) alts agents
by (simp add: rsd-winners-def foldr-map o-def)

There is now another alternative definition of RSD in terms of the RSD
winners. This will mostly be used for induction.
lemma random-serial-dictatorship-altdef :

assumes finite agents

88

shows random-serial-dictatorship agents alts R =
do {

agents ′← pmf-of-set (permutations-of-set agents);
pmf-of-set (rsd-winners R alts agents ′)
}

by (simp add: random-serial-dictatorship-def
fold-bind-random-permutation-foldr assms rsd-winners-def)

The following lemma shows that folding from left to right yields the same
distribution. This is probably the most commonly used definition in the
literature, along with the recursive one.
lemma random-serial-dictatorship-foldl:

assumes finite agents
shows random-serial-dictatorship agents alts R =

do {
agents ′← pmf-of-set (permutations-of-set agents);
pmf-of-set (foldl (λalts i. Max-wrt-among (R i) alts) alts agents ′)
}

by (simp add: random-serial-dictatorship-def fold-bind-random-permutation-foldl
assms)

8.1 Auxiliary facts about RSD
8.1.1 Pareto-equivalence classes

First of all, we introduce the auxiliary notion of a Pareto-equivalence class.
A non-empty set of alternatives is a Pareto equivalence class if all agents
are indifferent between all alternatives in it, and if some alternative x is
contained in the set, any other alternative y is contained in it if and only if,
to all agents, y is at least as good as x. The importance of this notion lies
in the fact that the set of RSD winners is always a Pareto-equivalence class,
which we will later use to show ex-post efficiency and strategy-proofness.
definition RSD-pareto-eqclass where

RSD-pareto-eqclass agents alts R A ←→
A 6= {} ∧ A ⊆ alts ∧ (∀ x∈A. ∀ y∈alts. y ∈ A ←→ (∀ i∈agents. R i x y))

lemma RSD-pareto-eqclassI :
assumes A 6= {} A ⊆ alts

∧
x y. x ∈ A =⇒ y ∈ alts =⇒ y ∈ A ←→ (∀ i∈agents.

R i x y)
shows RSD-pareto-eqclass agents alts R A
using assms unfolding RSD-pareto-eqclass-def by simp-all

lemma RSD-pareto-eqclassD:
assumes RSD-pareto-eqclass agents alts R A
shows A 6= {} A ⊆ alts

∧
x y. x ∈ A =⇒ y ∈ alts =⇒ y ∈ A ←→ (∀ i∈agents.

R i x y)
using assms unfolding RSD-pareto-eqclass-def by simp-all

89

lemma RSD-pareto-eqclass-indiff-set:
assumes RSD-pareto-eqclass agents alts R A i ∈ agents x ∈ A y ∈ A
shows R i x y
using assms unfolding RSD-pareto-eqclass-def by blast

lemma RSD-pareto-eqclass-empty [simp, intro!]:
alts 6= {} =⇒ RSD-pareto-eqclass {} alts R alts
by (auto intro!: RSD-pareto-eqclassI)

lemma (in pref-profile-wf) RSD-pareto-eqclass-insert:
assumes RSD-pareto-eqclass agents ′ alts R A finite alts

i ∈ agents agents ′ ⊆ agents
shows RSD-pareto-eqclass (insert i agents ′) alts R (Max-wrt-among (R i) A)

proof −
from assms interpret total-preorder-on alts R i by simp
show ?thesis
proof (intro RSD-pareto-eqclassI Max-wrt-among-nonempty Max-wrt-among-subset,

goal-cases)
case (3 x y)
with RSD-pareto-eqclassD[OF assms(1)]

show ?case unfolding Max-wrt-among-total-preorder
by (blast intro: trans)

qed (insert RSD-pareto-eqclassD[OF assms(1)] assms(2),
simp-all add: Int-absorb1 Int-absorb2 finite-subset)[2]

qed

8.1.2 Facts about RSD winners
context pref-profile-wf
begin

Any RSD winner is a valid alternative.
lemma rsd-winners-subset:

assumes set agents ′ ⊆ agents
shows rsd-winners R alts ′ agents ′ ⊆ alts ′

proof −
{

fix i assume i ∈ agents
then interpret total-preorder-on alts R i by simp
have Max-wrt-among (R i) A ⊆ A for A

using Max-wrt-among-subset by blast
} note A = this

from ‹set agents ′ ⊆ agents› show rsd-winners R alts ′ agents ′ ⊆ alts ′

using A by (induction agents ′) auto
qed

There is always at least one RSD winner.
lemma rsd-winners-nonempty:

90

assumes finite: finite alts and alts ′ 6= {} set agents ′ ⊆ agents alts ′ ⊆ alts
shows rsd-winners R alts ′ agents ′ 6= {}

proof −
{

fix i assume i ∈ agents
then interpret total-preorder-on alts R i by simp
have Max-wrt-among (R i) A 6= {} if A ⊆ alts A 6= {} for A
using that assms by (intro Max-wrt-among-nonempty) (auto simp: Int-absorb)

} note B = this

with ‹set agents ′ ⊆ agents› ‹alts ′ ⊆ alts› ‹alts ′ 6= {}›
show rsd-winners R alts ′ agents ′ 6= {}

proof (induction agents ′)
case (Cons i agents ′)
with B[of i rsd-winners R alts ′ agents ′] rsd-winners-subset[of agents ′ alts ′] finite

wf
show ?case by auto

qed simp
qed

Obviously, the set of RSD winners is always finite.
lemma rsd-winners-finite:

assumes set agents ′ ⊆ agents finite alts alts ′ ⊆ alts
shows finite (rsd-winners R alts ′ agents ′)
by (rule finite-subset[OF subset-trans[OF rsd-winners-subset]]) fact+

lemmas rsd-winners-wf =
rsd-winners-subset rsd-winners-nonempty rsd-winners-finite

The set of RSD winners is a Pareto-equivalence class.
lemma RSD-pareto-eqclass-rsd-winners-aux:

assumes finite: finite alts and alts 6= {} and set agents ′ ⊆ agents
shows RSD-pareto-eqclass (set agents ′) alts R (rsd-winners R alts agents ′)
using ‹set agents ′ ⊆ agents›

proof (induction agents ′)
case (Cons i agents ′)
from Cons.prems show ?case

by (simp only: set-simps rsd-winners-Cons,
intro RSD-pareto-eqclass-insert[OF Cons.IH finite]) simp-all

qed (insert assms, simp-all)

lemma RSD-pareto-eqclass-rsd-winners:
assumes finite: finite alts and alts 6= {} and set agents ′ = agents
shows RSD-pareto-eqclass agents alts R (rsd-winners R alts agents ′)
using RSD-pareto-eqclass-rsd-winners-aux[of agents ′] assms by simp

For the proof of strategy-proofness, we need to define indifference sets and
lift preference relations to sets in a specific way.
context

91

begin

An indifference set for a given preference relation is a non-empty set of
alternatives such that the agent is indifferent over all of them.
private definition indiff-set where

indiff-set S A ←→ A 6= {} ∧ (∀ x∈A. ∀ y∈A. S x y)

private lemma indiff-set-mono: indiff-set S A =⇒ B ⊆ A =⇒ B 6= {} =⇒ in-
diff-set S B

unfolding indiff-set-def by blast

Given an arbitrary set of alternatives A and an indifference set B, we say
that B is set-preferred over A w.r.t. the preference relation R if all (or,
equivalently, any) of the alternatives in B are preferred over all alternatives
in A.
private definition RSD-set-rel where

RSD-set-rel S A B ←→ indiff-set S B ∧ (∀ x∈A. ∀ y∈B. S x y)

The most-preferred alternatives (w.r.t. R) among any non-empty set of
alternatives form an indifference set w.r.t. R.
private lemma indiff-set-Max-wrt-among:

assumes finite carrier A ⊆ carrier A 6= {} total-preorder-on carrier S
shows indiff-set S (Max-wrt-among S A)
unfolding indiff-set-def

proof
from assms(4) interpret total-preorder-on carrier S .
from assms(1−3)

show Max-wrt-among S A 6= {} by (intro Max-wrt-among-nonempty) auto
from assms(1−3) show ∀ x∈Max-wrt-among S A. ∀ y∈Max-wrt-among S A. S x

y
by (auto simp: indiff-set-def Max-wrt-among-total-preorder)

qed

We now consider the set of RSD winners in the setting of a preference profile
R and a manipulated profile R(i := Ri ′). This theorem shows that the set
of RSD winners in the outcome is either the same in both cases or the
outcome for the truthful profile is an indifference set that is set-preferred
over the outcome for the manipulated profile.
lemma rsd-winners-manipulation-aux:

assumes wf : total-preorder-on alts Ri ′
and i: i ∈ agents and set agents ′ ⊆ agents finite agents
and finite: finite alts and alts 6= {}

defines [simp]: w ′ ≡ rsd-winners (R(i := Ri ′)) alts and [simp]: w ≡ rsd-winners
R alts

shows w ′ agents ′ = w agents ′ ∨ RSD-set-rel (R i) (w ′ agents ′) (w agents ′)
using ‹set agents ′ ⊆ agents›
proof (induction agents ′)

92

case (Cons j agents ′)
from wf i interpret Ri: total-preorder-on alts R i by simp
from wf Cons.prems interpret Rj: total-preorder-on alts R j by simp
from wf interpret Ri ′: total-preorder-on alts Ri ′ .
from wf assms Cons.prems

have indiff-set: indiff-set (R i) (Max-wrt-among (R i) (rsd-winners R alts
agents ′))

by (intro indiff-set-Max-wrt-among[OF finite] rsd-winners-wf) simp-all

show ?case
proof (cases j = i)

assume j [simp]: j = i
from indiff-set Cons have RSD-set-rel (R i) (w ′ (j # agents ′)) (w (j # agents ′))

unfolding RSD-set-rel-def
by (auto simp: Ri.Max-wrt-among-total-preorder Ri ′.Max-wrt-among-total-preorder)
thus ?case ..

next
assume j [simp]: j 6= i
from Cons have w ′ agents ′ = w agents ′ ∨ RSD-set-rel (R i) (w ′ agents ′) (w

agents ′) by simp
thus ?case
proof

assume rel: RSD-set-rel (R i) (w ′ agents ′) (w agents ′)
hence indiff-set: indiff-set (R i) (w agents ′) by (simp add: RSD-set-rel-def)
moreover from Cons.prems finite ‹alts 6= {}›

have w agents ′ ⊆ alts w agents ′ 6= {} unfolding w-def
by (intro rsd-winners-wf ; simp)+

with finite have Max-wrt-among (R j) (w agents ′) 6= {}
by (intro Rj.Max-wrt-among-nonempty) auto

ultimately have indiff-set (R i) (w (j # agents ′))
by (intro indiff-set-mono[OF indiff-set] Rj.Max-wrt-among-subset)

(simp-all add: Rj.Max-wrt-among-subset)
moreover from rel have ∀ x∈w ′ (j # agents ′). ∀ y∈w (j # agents ′). R i x y

by (auto simp: RSD-set-rel-def Rj.Max-wrt-among-total-preorder)
ultimately have RSD-set-rel (R i) (w ′ (j # agents ′)) (w (j # agents ′))

unfolding RSD-set-rel-def ..
thus ?case ..

qed simp-all
qed

qed simp-all

The following variant of the previous theorem is slightly easier to use. We
eliminate the case where the two outcomes are the same by observing that
the original outcome is then also set-preferred to the manipulated one. In
essence, this means that no matter what manipulation is done, the original
outcome is always set-preferred to the manipulated one.
lemma rsd-winners-manipulation:

assumes wf : total-preorder-on alts Ri ′
and i: i ∈ agents and set agents ′ = agents finite agents

93

and finite: finite alts and alts 6= {}
defines [simp]: w ′ ≡ rsd-winners (R(i := Ri ′)) alts and [simp]: w ≡ rsd-winners

R alts
shows ∀ x∈w ′ agents ′. ∀ y∈w agents ′. x �[R i] y

proof −
have w ′ agents ′ = w agents ′ ∨ RSD-set-rel (R i) (w ′ agents ′) (w agents ′)

using rsd-winners-manipulation-aux[OF assms(1−2) - assms(4−6)] assms(3)
by simp

thus ?thesis
proof

assume eq: w ′ agents ′ = w agents ′

from assms have RSD-pareto-eqclass (set agents ′) alts R (w agents ′) unfolding
w-def

by (intro RSD-pareto-eqclass-rsd-winners-aux) simp-all
from RSD-pareto-eqclass-indiff-set[OF this, of i] i eq assms(3) show ?thesis

by auto
qed (auto simp: RSD-set-rel-def)

qed

end

The lottery that RSD yields is well-defined.
lemma random-serial-dictatorship-support:

assumes finite agents finite alts agents ′ ⊆ agents alts ′ 6= {} alts ′ ⊆ alts
shows set-pmf (random-serial-dictatorship agents ′ alts ′ R) ⊆ alts ′

proof −
from assms have [simp]: finite agents ′ by (auto intro: finite-subset)
have A: set-pmf (pmf-of-set (rsd-winners R alts ′ agents ′′)) ⊆ alts ′

if agents ′′ ∈ permutations-of-set agents ′ for agents ′′

using that assms rsd-winners-wf [where alts ′ = alts ′ and agents ′ = agents ′′]
by (auto simp: permutations-of-set-def)

from assms show ?thesis
by (auto dest!: A simp add: random-serial-dictatorship-altdef)

qed

Permutation of alternatives commutes with RSD winners.
lemma rsd-winners-permute-profile:

assumes perm: σ permutes alts and set agents ′ ⊆ agents
shows rsd-winners (permute-profile σ R) alts agents ′ = σ ‘ rsd-winners R alts

agents ′

using ‹set agents ′ ⊆ agents›
proof (induction agents ′)

case Nil
from perm show ?case by (simp add: permutes-image)

next
case (Cons i agents ′)
from wf Cons interpret total-preorder-on alts R i by simp
from perm Cons show ?case

by (simp add: permute-profile-map-relation Max-wrt-among-map-relation-bij

94

permutes-bij)
qed

lemma random-serial-dictatorship-singleton:
assumes finite agents finite alts agents ′ ⊆ agents x ∈ alts
shows random-serial-dictatorship agents ′ {x} R = return-pmf x (is ?d = -)

proof −
from assms have set-pmf ?d ⊆ {x}

by (intro random-serial-dictatorship-support) simp-all
thus ?thesis by (simp add: set-pmf-subset-singleton)

qed

end

8.2 Proofs of properties

With all the facts that we have proven about the RSD winners, the hard
work is mostly done. We can now simply fix some arbitrary order of the
agents, apply the theorems about the RSD winners, and show the properties
we want to show without doing much reasoning about probabilities.
context election
begin

abbreviation RSD ≡ random-serial-dictatorship agents alts

8.2.1 Well-definedness
sublocale RSD: social-decision-scheme agents alts RSD

using pref-profile-wf .random-serial-dictatorship-support[of agents alts]
by unfold-locales (simp-all add: lotteries-on-def)

8.2.2 RD extension
lemma RSD-extends-RD:

assumes wf : is-pref-profile R and unique: has-unique-favorites R
shows RSD R = RD R

proof −
from wf interpret pref-profile-wf agents alts R .
from unique interpret pref-profile-unique-favorites by unfold-locales
have RSD R = pmf-of-set agents >>=

(λi. random-serial-dictatorship (agents − {i}) (favorites R i) R)
by (simp add: random-serial-dictatorship-nonempty favorites-altdef Max-wrt-def)
also from assms have . . . = pmf-of-set agents >>= (λi. return-pmf (favorite R

i))
by (intro bind-pmf-cong refl, subst random-serial-dictatorship-singleton [symmetric])

(auto simp: unique-favorites favorite-in-alts)
also from assms have . . . = RD R

by (simp add: random-dictatorship-unique-favorites map-pmf-def)
finally show ?thesis .

95

qed

8.2.3 Anonymity

Anonymity is a direct consequence of the fact that we randomise over all
permutations in a uniform way.
sublocale RSD: anonymous-sds agents alts RSD
proof

fix π R assume perm: π permutes agents and wf : is-pref-profile R
let ?f = λagents ′. pmf-of-set (rsd-winners R alts agents ′)
from perm wf have RSD (R ◦ π) = map-pmf (map π) (pmf-of-set (permutations-of-set

agents)) >>= ?f
by (simp add: random-serial-dictatorship-altdef bind-map-pmf)

also from perm have . . . = RSD R
by (simp add: map-pmf-of-set-inj permutes-inj-on inj-on-mapI

permutations-of-set-image-permutes random-serial-dictatorship-altdef)
finally show RSD (R ◦ π) = RSD R .

qed

8.2.4 Neutrality

Neutrality follows from the fact that the RSD winners of a permuted profile
are simply the image of the original RSD winners under the permutation.
sublocale RSD: neutral-sds agents alts RSD
proof

fix σ R assume perm: σ permutes alts and wf : is-pref-profile R
from wf interpret pref-profile-wf agents alts R .
from perm show RSD (permute-profile σ R) = map-pmf σ (RSD R)

by (auto intro!: bind-pmf-cong dest!: permutations-of-setD(1)
simp: random-serial-dictatorship-altdef rsd-winners-permute-profile

map-bind-pmf map-pmf-of-set-inj permutes-inj-on rsd-winners-wf)
qed

8.2.5 Ex-post efficiency

Ex-post efficiency follows from the fact that the set of RSD winners is a
Pareto-equivalence class.
sublocale RSD: ex-post-efficient-sds agents alts RSD
proof

fix R assume wf : is-pref-profile R
then interpret pref-profile-wf agents alts R .
{

fix x assume x: x ∈ set-pmf (RSD R) x ∈ pareto-losers R
from x(2) obtain y where [simp]: y ∈ alts and pareto: y �[Pareto(R)] x

by (cases rule: pareto-losersE)
from x have [simp]: x ∈ alts using pareto-loser-in-alts by simp

96

from x(1) obtain agents ′ where agents ′: set agents ′ = agents and
x ∈ set-pmf (pmf-of-set (rsd-winners R alts agents ′))

by (auto simp: random-serial-dictatorship-altdef dest: permutations-of-setD)
with wf have x ′: x ∈ rsd-winners R alts agents ′

using rsd-winners-wf [where alts ′ = alts and agents ′ = agents ′]
by (subst (asm) set-pmf-of-set) (auto simp: permutations-of-setD)

from wf agents ′

have RSD-pareto-eqclass agents alts R (rsd-winners R alts agents ′)
by (intro RSD-pareto-eqclass-rsd-winners) simp-all

hence winner-iff : y ∈ rsd-winners R alts agents ′←→ (∀ i∈agents. x �[R i] y)
if x ∈ rsd-winners R alts agents ′ y ∈ alts for x y
using that unfolding RSD-pareto-eqclass-def by blast

from x ′ pareto winner-iff [of x y] winner-iff [of y x] have False
by (force simp: strongly-preferred-def Pareto-iff)

}
thus set-pmf (RSD R) ∩ pareto-losers R = {} by blast

qed

8.2.6 Strong strategy-proofness

Strong strategy-proofness is slightly more difficult to show. We have al-
ready shown that the set of RSD winners for the truthful profile is always
set-preferred (by the manipulating agent) to the RSD winners for the ma-
nipulated profile. This can now be used to show strategy-proofness: We
recall that the set of RSD winners is always an indifference class. Therefore,
given any fixed alternative x and considering a fixed order of the agents,
either all of the RSD winners in the original profile are at least as good as x
or none of them are, and, since the original RSD winners are set-preferred
to the manipulated ones, none of the RSD winners in the manipulated case
are at least as good than x either in that case. This means that for a fixed
order of agents, either the probability that the original outcome is at least
as good as x is 1 or the probability that the manipulated outcome is at least
as good as x is 0. Therefore, the original lottery is clearly SD-preferred to
the manipulated one.
sublocale RSD: strongly-strategyproof-sds agents alts RSD
proof (unfold-locales, rule)

fix R i Ri ′ x
assume wf : is-pref-profile R and i [simp]: i ∈ agents and x: x ∈ alts and

wf ′: total-preorder-on alts Ri ′
interpret R: pref-profile-wf agents alts R by fact
define R ′ where R ′ = R (i := Ri ′)
from wf wf ′ have is-pref-profile R ′ by (simp add: R ′-def R.wf-update)
then interpret R ′: pref-profile-wf agents alts R ′ .
note wf = wf wf ′

let ?A = preferred-alts (R i) x
from wf interpret Ri: total-preorder-on alts R i by simp

97

{
fix agents ′ assume agents ′: agents ′ ∈ permutations-of-set agents
from agents ′ have [simp]: set agents ′ = agents

by (simp add: permutations-of-set-def)

let ?W = rsd-winners R alts agents ′ and ?W ′ = rsd-winners R ′ alts agents ′

have indiff-set: RSD-pareto-eqclass agents alts R ?W
by (rule R.RSD-pareto-eqclass-rsd-winners; simp add: wf)+

from R.rsd-winners-wf R ′.rsd-winners-wf
have winners: ?W ⊆ alts ?W 6= {} finite ?W ?W ′ ⊆ alts ?W ′ 6= {} finite

?W ′

by simp-all

from ‹?W 6= {}› obtain y where y: y ∈ ?W by blast
with winners have [simp]: y ∈ alts by blast
from wf ′ i have mono: ∀ x∈?W ′. ∀ y∈?W . R i x y unfolding R ′-def

by (intro R.rsd-winners-manipulation) simp-all

have lottery-prob (pmf-of-set ?W) ?A ≥ lottery-prob (pmf-of-set ?W ′) ?A
proof (cases y �[R i] x)

case True
with y RSD-pareto-eqclass-indiff-set[OF indiff-set(1), of i] winners

have ?W ⊆ preferred-alts (R i) x
by (auto intro: Ri.trans simp: preferred-alts-def)

with winners show ?thesis
by (subst (2) measure-pmf-of-set) (simp-all add: Int-absorb2)

next
case False
with y mono have ?W ′ ∩ preferred-alts (R i) x = {}

by (auto intro: Ri.trans simp: preferred-alts-def)
with winners show ?thesis

by (subst (1) measure-pmf-of-set)
(simp-all add: Int-absorb2 one-ereal-def measure-nonneg)

qed
hence emeasure (measure-pmf (pmf-of-set ?W)) ?A ≥ emeasure (measure-pmf

(pmf-of-set ?W ′)) ?A
by (simp add: measure-pmf .emeasure-eq-measure)

}
hence emeasure (measure-pmf (RSD R)) ?A ≥ emeasure (measure-pmf (RSD

R ′)) ?A
by (auto simp: random-serial-dictatorship-altdef AE-measure-pmf-iff

intro!: nn-integral-mono-AE)
thus lottery-prob (RSD R) ?A ≥ lottery-prob (RSD R ′) ?A

by (simp add: measure-pmf .emeasure-eq-measure)
qed

end

98

end
theory Randomised-Social-Choice
imports

Complex-Main
SDS-Lowering
Random-Dictatorship
Random-Serial-Dictatorship

begin

end

9 Automatic definition of Preference Profiles
theory Preference-Profile-Cmd
imports

Complex-Main
../Elections

keywords
preference-profile :: thy-goal

begin

ML-file ‹preference-profiles.ML›

context election
begin

lemma preferred-alts-prefs-from-table:
assumes prefs-from-table-wf agents alts xs i ∈ set (map fst xs)
shows preferred-alts (prefs-from-table xs i) x =

of-weak-ranking-Collect-ge (rev (the (map-of xs i))) x
proof −

interpret pref-profile-wf agents alts prefs-from-table xs
by (intro pref-profile-from-tableI assms)

from assms have [simp]: i ∈ agents by (auto simp: prefs-from-table-wf-def)
have of-weak-ranking-Collect-ge (rev (the (map-of xs i))) x =

Collect (of-weak-ranking (the (map-of xs i)) x)
by (rule eval-Collect-of-weak-ranking [symmetric])

also from assms(2) have the (map-of xs i) ∈ set (map snd xs)
by (cases map-of xs i) (force simp: map-of-eq-None-iff dest: map-of-SomeD)+

from prefs-from-table-wfD(5)[OF assms(1) this]
have Collect (of-weak-ranking (the (map-of xs i)) x) =

{y∈alts. of-weak-ranking (the (map-of xs i)) x y}
by safe (force elim!: of-weak-ranking.cases)

also from assms
have of-weak-ranking (the (map-of xs i)) = prefs-from-table xs i
by (subst prefs-from-table-map-of [OF assms(1)])

(auto simp: prefs-from-table-wf-def)
finally show ?thesis by (simp add: of-weak-ranking-Collect-ge-def preferred-alts-altdef)

99

qed

lemma favorites-prefs-from-table:
assumes wf : prefs-from-table-wf agents alts xs and i: i ∈ agents
shows favorites (prefs-from-table xs) i = hd (the (map-of xs i))

proof (cases map-of xs i)
case None
with assms show ?thesis

by (auto simp: map-of-eq-None-iff prefs-from-table-wf-def)
next

case (Some y)
with assms have is-finite-weak-ranking y y 6= []

by (auto simp: prefs-from-table-wf-def)
with Some show ?thesis

unfolding favorites-def using assms
by (simp add: prefs-from-table-def is-finite-weak-ranking-def

Max-wrt-of-weak-ranking prefs-from-table-wfD)
qed

lemma has-unique-favorites-prefs-from-table:
assumes wf : prefs-from-table-wf agents alts xs
shows has-unique-favorites (prefs-from-table xs) =

list-all (λz. is-singleton (hd (snd z))) xs
proof −

interpret pref-profile-wf agents alts prefs-from-table xs
by (intro pref-profile-from-tableI assms)

from wf have agents = set (map fst xs) distinct (map fst xs)
by (auto simp: prefs-from-table-wf-def)

thus ?thesis
unfolding has-unique-favorites-altdef using assms
by (auto simp: favorites-prefs-from-table list-all-iff)

qed

end

9.1 Automatic definition of preference profiles from tables
function favorites-prefs-from-table where

i = j =⇒ favorites-prefs-from-table ((j,x)#xs) i = hd x
| i 6= j =⇒ favorites-prefs-from-table ((j,x)#xs) i =

favorites-prefs-from-table xs i
| favorites-prefs-from-table [] i = {}

by (metis list.exhaust old.prod.exhaust) auto
termination by lexicographic-order

lemma (in election) eval-favorites-prefs-from-table:
assumes prefs-from-table-wf agents alts xs
shows favorites-prefs-from-table xs i =

favorites (prefs-from-table xs) i

100

proof (cases i ∈ agents)
assume i: i ∈ agents
with assms have favorites (prefs-from-table xs) i = hd (the (map-of xs i))

by (simp add: favorites-prefs-from-table)
also from assms i have i ∈ set (map fst xs)

by (auto simp: prefs-from-table-wf-def)
hence hd (the (map-of xs i)) = favorites-prefs-from-table xs i

by (induction xs i rule: favorites-prefs-from-table.induct) simp-all
finally show ?thesis ..

next
assume i: i /∈ agents
with assms have i ′: i /∈ set (map fst xs)

by (simp add: prefs-from-table-wf-def)
hence map-of xs i = None

by (simp add: map-of-eq-None-iff)
hence prefs-from-table xs i = (λ- -. False)

by (intro ext) (auto simp: prefs-from-table-def)
hence favorites (prefs-from-table xs) i = {}

by (simp add: favorites-def Max-wrt-altdef)
also from i ′ have . . . = favorites-prefs-from-table xs i

by (induction xs i rule: favorites-prefs-from-table.induct) simp-all
finally show ?thesis ..

qed

function weak-ranking-prefs-from-table where
i 6= j =⇒ weak-ranking-prefs-from-table ((i,x)#xs) j = weak-ranking-prefs-from-table

xs j
| i = j =⇒ weak-ranking-prefs-from-table ((i,x)#xs) j = x
| weak-ranking-prefs-from-table [] j = []

by (metis list.exhaust old.prod.exhaust) auto
termination by lexicographic-order

lemma eval-weak-ranking-prefs-from-table:
assumes prefs-from-table-wf agents alts xs
shows weak-ranking-prefs-from-table xs i = weak-ranking (prefs-from-table xs

i)
proof (cases i ∈ agents)

assume i: i ∈ agents
with assms have weak-ranking (prefs-from-table xs i) = the (map-of xs i)
by (auto simp: prefs-from-table-def prefs-from-table-wf-def weak-ranking-of-weak-ranking

split: option.splits)
also from assms i have i ∈ set (map fst xs)

by (auto simp: prefs-from-table-wf-def)
hence the (map-of xs i) = weak-ranking-prefs-from-table xs i

by (induction xs i rule: weak-ranking-prefs-from-table.induct) simp-all
finally show ?thesis ..

next
assume i: i /∈ agents
with assms have i ′: i /∈ set (map fst xs)

101

by (simp add: prefs-from-table-wf-def)
hence map-of xs i = None

by (simp add: map-of-eq-None-iff)
hence prefs-from-table xs i = (λ- -. False)

by (intro ext) (auto simp: prefs-from-table-def)
hence weak-ranking (prefs-from-table xs i) = [] by simp
also from i ′ have . . . = weak-ranking-prefs-from-table xs i

by (induction xs i rule: weak-ranking-prefs-from-table.induct) simp-all
finally show ?thesis ..

qed

lemma eval-prefs-from-table-aux:
assumes R ≡ prefs-from-table xs prefs-from-table-wf agents alts xs
shows R i a b ←→ prefs-from-table xs i a b

a ≺[R i] b ←→ prefs-from-table xs i a b ∧ ¬prefs-from-table xs i b a
anonymous-profile R = mset (map snd xs)
election agents alts =⇒ i ∈ set (map fst xs) =⇒

preferred-alts (R i) x =
of-weak-ranking-Collect-ge (rev (the (map-of xs i))) x

election agents alts =⇒ i ∈ set (map fst xs) =⇒
favorites R i = favorites-prefs-from-table xs i

election agents alts =⇒ i ∈ set (map fst xs) =⇒
weak-ranking (R i) = weak-ranking-prefs-from-table xs i

election agents alts =⇒ i ∈ set (map fst xs) =⇒
favorite R i = the-elem (favorites-prefs-from-table xs i)

election agents alts =⇒
has-unique-favorites R ←→ list-all (λz. is-singleton (hd (snd z))) xs

using assms prefs-from-table-wfD[OF assms(2)]
by (simp-all add: strongly-preferred-def favorite-def anonymise-prefs-from-table

election.preferred-alts-prefs-from-table election.eval-favorites-prefs-from-table
election.has-unique-favorites-prefs-from-table eval-weak-ranking-prefs-from-table)

lemma pref-profile-from-tableI ′:
assumes R1 ≡ prefs-from-table xss prefs-from-table-wf agents alts xss
shows pref-profile-wf agents alts R1
using assms by (simp add: pref-profile-from-tableI)

ML ‹

signature PREFERENCE-PROFILES-CMD =
sig

type info

val preference-profile :
(term ∗ term) ∗ ((binding ∗ (term ∗ term list list) list) list) −> Proof .context
−> Proof .state

102

val preference-profile-cmd :
(string ∗ string) ∗ ((binding ∗ (string ∗ string list list) list) list) −>

Proof .context −> Proof .state

val get-info : term −> Proof .context −> info
val add-info : term −> info −> Context.generic −> Context.generic
val transform-info : info −> morphism −> info

end

structure Preference-Profiles-Cmd : PREFERENCE-PROFILES-CMD =
struct

open Preference-Profiles

type info =
{ term : term, def-thm : thm, wf-thm : thm, wf-raw-thm : thm, binding : binding,

raw : (term ∗ term list list) list, eval-thms : thm list }

fun transform-info ({term = t, binding, def-thm, wf-thm, wf-raw-thm, raw, eval-thms}
: info) phi =

let
val thm = Morphism.thm phi
val fact = Morphism.fact phi
val term = Morphism.term phi
val bdg = Morphism.binding phi

in
{ term = term t, binding = bdg binding, def-thm = thm def-thm, wf-thm =

thm wf-thm,
wf-raw-thm = thm wf-raw-thm, raw = map (fn (a, bss) => (term a, map

(map term) bss)) raw,
eval-thms = fact eval-thms }

end

structure Data = Generic-Data
(

type T = (term ∗ info) Item-Net.T
val empty = Item-Net.init (op aconv o apply2 fst) (single o fst)
val merge = Item-Net.merge

);

fun get-info term lthy =
Item-Net.retrieve (Data.get (Context.Proof lthy)) term |> the-single |> snd

fun add-info term info lthy =
Data.map (Item-Net.update (term, info)) lthy

fun add-infos infos lthy =

103

Data.map (fold Item-Net.update infos) lthy

fun preference-profile-aux agents alts (binding, args) lthy =
let

val dest-Type ′ = Term.dest-Type #> snd #> hd
val (agentT , altT) = apply2 (dest-Type ′ o fastype-of) (agents, alts)
val alt-setT = HOLogic.mk-setT altT
fun define t =

Local-Theory.define ((binding, NoSyn),
((Binding.suffix-name -def binding, @{attributes [code]}), t)) lthy

val ty = HOLogic.mk-prodT (agentT , HOLogic.listT (HOLogic.mk-setT altT))
val args ′ =

args |> map (fn x => x ||> map (HOLogic.mk-set altT) ||> HOLogic.mk-list
alt-setT)

val t-raw =
args ′

|> map HOLogic.mk-prod
|> HOLogic.mk-list ty

val t = Const (@{const-name prefs-from-table},
HOLogic.listT ty −−> pref-profileT agentT altT) $ t-raw

val ((prefs, prefs-def), lthy) = define t
val prefs-from-table-wf-const =

Const (@{const-name prefs-from-table-wf }, HOLogic.mk-setT agentT −−>
HOLogic.mk-setT altT −−>

HOLogic.listT (HOLogic.mk-prodT (agentT , HOLogic.listT (HOLogic.mk-setT
altT))) −−>

HOLogic.boolT)
val wf-prop = (prefs-from-table-wf-const $ agents $ alts $ t-raw) |> HO-

Logic.mk-Trueprop

in
((prefs, wf-prop, prefs-def), lthy)

end

fun fold-accum f xs s =
let

fun fold-accum-aux - [] s acc = (rev acc, s)
| fold-accum-aux f (x::xs) s acc =

case f x s of (y, s ′) => fold-accum-aux f xs s ′ (y::acc)
in

fold-accum-aux f xs s []
end

fun preference-profile ((agents, alts), args) lthy =
let
fun qualify pref suff = Binding.qualify true (Binding.name-of pref) (Binding.name

suff)
val (results, lthy) = fold-accum (preference-profile-aux agents alts) args lthy
val prefs-terms = map #1 results

104

val wf-props = map #2 results
val defs = map (snd o #3) results
val raws = map snd args
val bindings = map fst args

fun tac lthy =
let

val lthy ′ = put-simpset HOL-ss lthy addsimps
@{thms list.set Union-insert Un-insert-left insert-not-empty Int-empty-left

Int-empty-right
insert-commute Un-empty-left Un-empty-right insert-absorb2 Union-empty

is-weak-ranking-Cons is-weak-ranking-Nil finite-insert finite.emptyI
Set.singleton-iff Set.empty-iff Set.ball-simps}

in
Local-Defs.unfold-tac lthy defs

THEN ALLGOALS (resolve-tac lthy [@{thm prefs-from-table-wfI}])
THEN Local-Defs.unfold-tac lthy @{thms is-finite-weak-ranking-def list.set

insert-iff
empty-iff simp-thms list.map snd-conv fst-conv}
THEN ALLGOALS (TRY o REPEAT-ALL-NEW (eresolve-tac lthy

@{thms disjE}))
THEN ALLGOALS (TRY o Hypsubst.hyp-subst-tac lthy)
THEN ALLGOALS (Simplifier .asm-full-simp-tac lthy ′)

THEN ALLGOALS (TRY o REPEAT-ALL-NEW (resolve-tac lthy
@{thms conjI}))

THEN distinct-subgoals-tac
end

fun after-qed [wf-thms-raw] lthy =
let

fun prep-thms attrs suffix (thms : thm list) binding =
(((qualify binding suffix, attrs), [(thms,[])]))
fun prep-thmss simp suffix thmss = map2 (prep-thms simp suffix) thmss

bindings
fun notes thmss suffix attrs lthy =

Local-Theory.notes (prep-thmss attrs suffix thmss) lthy |> snd
fun note thms suffix attrs lthy = notes (map single thms) suffix attrs lthy
val eval-thmss = map2 (fn def => fn wf =>

map (fn thm => thm OF [def , wf]) @{thms eval-prefs-from-table-aux})
defs wf-thms-raw

val wf-thms = map2 (fn def => fn wf =>
@{thm pref-profile-from-tableI ′} OF [def , wf]) defs wf-thms-raw

val mk-infos =
let

fun aux acc (bdg::bdgs) (t::ts) (r ::raws) (def ::def-thms) (wf ::wf-thms)
(wf-raw::wf-raw-thms) (evals::eval-thmss) =

aux ((t, {binding = bdg, term = t, raw = r , def-thm = def , wf-thm =
wf ,

wf-raw-thm = wf-raw, eval-thms = evals}) :: acc)

105

bdgs ts raws def-thms wf-thms wf-raw-thms eval-thmss
| aux acc [] - - - - - - = (acc : (term ∗ info) list)
| aux - - - - - - - - = raise Match

in
aux []

end
val infos = mk-infos bindings prefs-terms raws defs wf-thms wf-thms-raw

eval-thmss
in

lthy
|> note wf-thms-raw wf-raw []
|> note wf-thms wf @{attributes [simp]}
|> notes eval-thmss eval []
|> Local-Theory.declaration {syntax = false, pervasive = false, pos = here }
(fn m => add-infos (map (fn (t,i) => (Morphism.term m t, transform-info

i m)) infos))
end
| after-qed - - = raise Match

in
Proof .theorem NONE after-qed [map (fn prop => (prop, [])) wf-props] lthy
|> Proof .refine-singleton (Method.Basic (SIMPLE-METHOD o tac))

end

fun preference-profile-cmd ((agents, alts), argss) lthy =
let

val read = Syntax.read-term lthy
fun read ′ ty t = Syntax.parse-term lthy t |> Type.constraint ty |> Syntax.check-term

lthy
val agents ′ = read agents
val alts ′ = read alts
val agentT = agents ′ |> fastype-of |> dest-Type |> snd |> hd
val altT = alts ′ |> fastype-of |> dest-Type |> snd |> hd
fun read-pref-elem ts = map (read ′ altT) ts
fun read-prefs prefs = map read-pref-elem prefs
fun prep (binding, args) =
(binding, map (fn (agent, prefs) => (read ′ agentT agent, read-prefs prefs))

args)
in

preference-profile ((agents ′, alts ′), map prep argss) lthy
end

val parse-prefs =
let

val parse-pref-elem =
(Args.bracks (Parse.list1 Parse.term)) ||
Parse.term >> single

in
Parse.list1 parse-pref-elem

106

end

val parse-pref-profile =
Parse.binding −−| Args.$$$ = −− Scan.repeat1 (Parse.term −−| Args.colon −−

parse-prefs)

val - =
Outer-Syntax.local-theory-to-proof @{command-keyword preference-profile}

construct preference profiles from a table
(Args.$$$ agents |−− Args.colon |−− Parse.term −−| Args.$$$ alts −−|

Args.colon
−− Parse.term −−| Args.$$$ where −−

Parse.and-list1 parse-pref-profile >> preference-profile-cmd);

end
›

end
theory QSOpt-Exact
imports Complex-Main
begin

ML ‹

signature RAT-UTILS =
sig

val rat-to-string : Rat.rat −> string
val pretty-rat : Rat.rat −> string
val string-to-rat : string −> Rat.rat option
val mk-rat-number : typ −> Rat.rat −> term
val dest-rat-number : term −> Rat.rat

end

structure Rat-Utils : RAT-UTILS =
struct

fun rat-to-string r =
case Rat.dest r of
(a, 1) => Int.toString a
| (a, b) => (if a < 0 then ∼ else) ^ Int.toString (abs a) ^ / ^ Int.toString b

fun pretty-rat r =
case Rat.dest r of
(a, 1) => (if a < 0 then − else) ^ Int.toString a
| (a, b) => (if a < 0 then − else) ^ Int.toString (abs a) ^ / ^ Int.toString b

fun string-to-rat s =

107

let
val (s1 , s2 ′) = s |> Substring.full |> Substring.splitl (fn x => x <> #/)
val (s1 , s2) = (s1 , s2 ′) |> apsnd (Substring.triml 1) |> apply2 Substring.string

in
if Substring.isEmpty s2 ′ then

Option.map Rat.of-int (Int.fromString s1)
else

Option.mapPartial (fn x => Option.map (fn y => Rat.make (x, y))
(Int.fromString s2)) (Int.fromString s1)

end

fun dest-num x =
case x of

Const (@{const-name Code-Numeral.int-of-integer}, -) $ x => dest-num x
| - => HOLogic.dest-number x

fun dest-rat-number t =
case t of
(Const (@{const-name Rings.divide-class.divide},-)) $ a $ b
=> Rat.make (snd (dest-num a), snd (dest-num b))

| (Const (@{const-name Groups.uminus-class.uminus},-)) $ a
=> ∼ (dest-rat-number a)

| (Const (@{const-name Rat.field-char-0-class.of-rat},-)) $ a => dest-rat-number
a
| (Const (@{const-name Rat.Frct}, -) $ (Const (@{const-name Product-Type.Pair},

-) $ a $ b))
=> Rat.make (snd (dest-num a), snd (dest-num b))

| - => Rat.of-int (snd (dest-num t));

fun mk-rat-number ty r =
case Rat.dest r of
(a, 1) => HOLogic.mk-number ty a
| (a, b) =>

Const (@{const-name Rings.divide-class.divide}, ty −−> ty −−> ty) $
HOLogic.mk-number ty a $ HOLogic.mk-number ty b

end

›

ML ‹

signature LP-PARAMS =
sig

type T
val print : T −> string
val read : string −> T option
val compare : (T ∗ T) −> General.order

108

val negate : T −> T
val from-int : int −> T

end;

signature LINEAR-PROGRAM-COMMON =
sig

exception QSOpt-Parse
datatype ′a infty = Finite of ′a | Pos-Infty | Neg-Infty;
datatype comparison = LEQ | EQ | GEQ
datatype optimization-mode = MAXIMIZE | MINIMIZE
datatype ′a result = Optimal of ′a ∗ (string ∗ ′a) list | Unbounded | Infeasible |

Unknown
type var = string
type ′a bound = ′a infty ∗ var ∗ ′a infty
type ′a linterm = (′a ∗ var) list
type ′a constraint = ′a linterm ∗ comparison ∗ ′a
type ′a prog = optimization-mode ∗ ′a linterm ∗ ′a constraint list ∗ ′a bound list

val is-finite : ′a infty −> bool
val map-infty : (′a −> ′b) −> ′a infty −> ′b infty

val print-infty : (′a −> string) −> ′a infty −> string
val print-comparison : comparison −> string
val print-optimization-mode : optimization-mode −> string

val gen-print-bound : (′a −> string) −> ′a bound −> string
val gen-print-linterm :
((′a ∗ ′a −> General.order) ∗ (int −> ′a) ∗ (′a −> string) ∗ (′a −> ′a)) −>
′a linterm −> string

val gen-print-constraint :
((′a ∗ ′a −> General.order) ∗ (int −> ′a) ∗ (′a −> string) ∗ (′a −> ′a)) −>
′a constraint −> string

val gen-print-program :
((′a ∗ ′a −> General.order) ∗ (int −> ′a) ∗ (′a −> string) ∗ (′a −> ′a)) −>
′a prog −> string

val gen-read-result : (string −> ′a option) −> string −> ′a result

end;

signature LINEAR-PROGRAM =
sig
include LINEAR-PROGRAM-COMMON
type T

val print-bound : T bound −> string
val print-linterm : T linterm −> string
val print-constraint : T constraint −> string
val print-program : T prog −> string

109

val save-program : Path.T −> T prog −> unit
val solve-program : T prog −> T result
val read-result : string −> T result

end;

structure Linear-Program-Common : LINEAR-PROGRAM-COMMON =
struct

exception QSOpt-Parse
datatype ′a infty = Finite of ′a | Pos-Infty | Neg-Infty;
datatype comparison = LEQ | EQ | GEQ
datatype optimization-mode = MAXIMIZE | MINIMIZE
datatype ′a result = Optimal of ′a ∗ (string ∗ ′a) list | Unbounded | Infeasible |
Unknown
type var = string

type ′a bound = ′a infty ∗ var ∗ ′a infty
type ′a linterm = (′a ∗ var) list
type ′a constraint = ′a linterm ∗ comparison ∗ ′a
type ′a prog = optimization-mode ∗ ′a linterm ∗ ′a constraint list ∗ ′a bound list

fun is-finite (Finite -) = true
| is-finite - = false

fun map-infty f (Finite x) = Finite (f x)
| map-infty - Pos-Infty = Pos-Infty
| map-infty - Neg-Infty = Neg-Infty

fun print-infty - Neg-Infty = −INF
| print-infty - Pos-Infty = INF
| print-infty f (Finite x) = f x

fun print-comparison LEQ = <=
| print-comparison EQ = =
| print-comparison GEQ = >=

fun print-optimization-mode MINIMIZE = MINIMIZE
| print-optimization-mode MAXIMIZE = MAXIMIZE

fun gen-print-bound - (Neg-Infty, v, Pos-Infty) = v ^ free
| gen-print-bound f (Neg-Infty, v, u) = v ^ <= ^ print-infty f u
| gen-print-bound f (l, v, Pos-Infty) = print-infty f l ^ <= ^ v
| gen-print-bound f (l, v, u) = print-infty f l ^ <= ^ v ^ <= ^ print-infty f u

fun gen-print-summand (cmp, from-int, print, negate) first c v =
let

110

val neg = (cmp (c, from-int 0) = LESS)
fun eq x = (cmp (c, x) = EQUAL)
val one = eq (from-int 1)
val mone = eq (from-int (∼1))
val c ′ =

if first andalso one then
else if first andalso mone then −
else if first then print c ^
else if mone then −
else if one then +
else if neg then − ^ print (negate c) ^
else + ^ print c ^

in
c ′ ^ v

end

fun gen-print-linterm ops t =
let

val n = length t
val print-summand = gen-print-summand ops
fun go (c, v) (i, acc) = (i+1 , print-summand (i = n) c v ^ acc)

in
snd (fold go (rev t) (1 ,))

end

fun gen-print-constraint (ops as (-, -, print, -)) (lhs, cmp, rhs) =
gen-print-linterm ops lhs ^ ^ print-comparison cmp ^ ^ print rhs

fun gen-print-program (ops as (-, -, print, -)) (mode, obj, constrs, bnds) =
let

val padding = replicate-string 4
fun mk-block s f xs = (s :: map (prefix padding o f) xs)
fun mk-block ′ s f xs = if null xs then [] else mk-block s f xs
val lines =

mk-block (print-optimization-mode mode) (gen-print-linterm ops) [obj] @
mk-block ′ ST (gen-print-constraint ops) constrs @
mk-block ′ BOUNDS (gen-print-bound print) bnds @ [END,]

in
cat-lines lines

end

exception QSOpt-Parse

fun read-status x =
if String.isPrefix status x andalso not (String.isPrefix status = x) then

let
val statuses = [OPTIMAL, INFEASIBLE, UNBOUNDED]

111

in
case find-first (fn s => String.isPrefix (status ^ s) x) statuses of

NONE => SOME UNKNOWN
| SOME y => SOME y

end
else

NONE

fun apply - - [] = NONE
| apply abort f (x :: xs) =

if abort x then
NONE

else case f x of
NONE => apply abort f xs
| SOME y => SOME (y, xs)

fun apply-repeat abort (f : string −> ′a option) : string list −> ′a list ∗ string list
=

let
fun go acc xs =

case apply abort f xs of
NONE => (rev acc, xs)
| SOME (y,xs) => go (y :: acc) xs

in
go []

end

fun the-apply f xs =
case apply (K false) f xs of

NONE => raise QSOpt-Parse
| SOME y => y

fun apply-unit p xs =
case apply (not o p) (K (SOME ())) xs of

NONE => raise QSOpt-Parse
| SOME (-, xs) => xs

fun gen-read-value read x =
let

val x = unprefix Value = x
in

read x
end

handle Fail - => NONE

val trim =
let

fun chop [] = []
| chop (l as (x::xs)) = if Char .isSpace x then chop xs else l

112

in
String.implode o chop o rev o chop o rev o String.explode

end

fun gen-read-assignment read x : (string ∗ ′a) option =
x |> try (

Substring.full
#> Substring.splitl (fn x => x <> #=)
#> apply2 Substring.string
#> apsnd (unprefix =)
#> apply2 trim)
|> Option.mapPartial (fn (x,y) => Option.map (fn y => (x, y)) (read y))

fun gen-read-result read s =
let

val s = s |> split-lines |> map trim
val (status, s) = the-apply read-status s
val (result, -) =

if status = OPTIMAL then
let

val (value, s) = the-apply (gen-read-value read) s
val s = apply-unit (fn x => x = VARS :) s

val (vars, s) = apply-repeat (String.isSuffix :) (gen-read-assignment read) s
in
(Optimal (value, vars), s)

end
else if status = INFEASIBLE then
(Infeasible, s)

else if status = UNBOUNDED then
(Unbounded, s)

else
(Unknown, s)

in
result

end

end;

functor Linear-Program(LP-Params : LP-PARAMS) : LINEAR-PROGRAM =
struct

open Linear-Program-Common;

local
open LP-Params;
val ops = (compare, from-int, print, negate)

in
type T = T

113

val print-bound = gen-print-bound print
val print-linterm = gen-print-linterm ops
val print-constraint = gen-print-constraint ops
val print-program = gen-print-program ops

end

fun save-program filename prog =
File.write filename (print-program prog)

val read-result = gen-read-result LP-Params.read

fun solve-program prog =
Isabelle-System.with-tmp-file prog lp (fn lpname =>

Isabelle-System.with-tmp-file prog sol (fn resultname =>
let

val - = save-program lpname prog
val esolver-path = getenv QSOPT-EXACT-PATH
val esolver = if esolver-path = then esolver else esolver-path
val command = Bash.string esolver ^ −O ^ File.bash-path resultname ^

^ File.bash-path lpname
val res = Isabelle-System.bash-process (Bash.script command)
in

if not (Process-Result.ok res) then
raise Fail (QSopt-exact returned with an error (return code ^

Int.toString (Process-Result.rc res) ^):\n ^ Process-Result.err res)
else read-result (File.read resultname)

end))

end

structure Rat-Linear-Program = Linear-Program(
struct

type T = Rat.rat

val print = Rat-Utils.rat-to-string
val read = Rat-Utils.string-to-rat
val compare = Rat.ord
val from-int = Rat.of-int
val negate = Rat.neg

end)

›

114

end

10 Automatic Fact Gathering for Social Decision
Schemes

theory SDS-Automation
imports

Preference-Profile-Cmd
QSOpt-Exact
../Social-Decision-Schemes

keywords
derive-orbit-equations
derive-support-conditions
derive-ex-post-conditions
find-inefficient-supports
prove-inefficient-supports
derive-strategyproofness-conditions :: thy-goal

begin

We now provide the following commands to automatically derive restrictions
on the results of Social Decision Schemes satisfying Anonymity, Neutrality,
Efficiency, or Strategy-Proofness:

derive-orbit-equations to derive equalities arising from automorphisms
of the given profiles due to Anonymity and Neutrality

derive-ex-post-conditions to find all Pareto losers and the given profiles
and derive the facts that they must be assigned probability 0 by any
ex-post-efficient SDS

find-inefficient-supports to use Linear Programming to find all minimal
SD-inefficient (but not ex-post-inefficient) supports in the given profiles
and output a corresponding witness lottery for each of them

prove-inefficient-supports to prove a specified set of support conditions
arising from ex-post- or SD-Efficiency. For conditions arising from SD-
Efficiency, a witness lottery must be specified (e. g. as computed by
derive-orbit-equations).

derive-support-conditions to automatically find and prove all support
conditions arising from ex-post- and SD-Efficiency

derive-strategyproofness-conditions to automatically derive all condi-
tions arising from weak Strategy-Proofness and any manipulations be-
tween the given preference profiles. An optional maximum manipula-
tion size can be specified.

115

All commands except find-inefficient-supports open a proof state and
leave behind proof obligations for the user to discharge. This should al-
ways be possible using the Simplifier, possibly with a few additional rules,
depending on the context.
lemma disj-False-right: P ∨ False ←→ P by simp

lemmas multiset-add-ac = add-ac[where ? ′a = ′a multiset]

lemma less-or-eq-real:
(x::real) < y ∨ x = y ←→ x ≤ y x < y ∨ y = x ←→ x ≤ y by linarith+

lemma multiset-Diff-single-normalize:
fixes a c assumes a 6= c
shows ({#a#} + B) − {#c#} = {#a#} + (B − {#c#})
using assms by auto

lemma ex-post-efficient-aux:
assumes prefs-from-table-wf agents alts xss R ≡ prefs-from-table xss
assumes i ∈ agents ∀ i∈agents. y �[prefs-from-table xss i] x ¬y �[prefs-from-table

xss i] x
shows ex-post-efficient-sds agents alts sds −→ pmf (sds R) x = 0

proof
assume ex-post: ex-post-efficient-sds agents alts sds
from assms(1 ,2) have wf : pref-profile-wf agents alts R

by (simp add: pref-profile-from-tableI ′)
from ex-post interpret ex-post-efficient-sds agents alts sds .
from assms(2−) show pmf (sds R) x = 0

by (intro ex-post-efficient ′′[OF wf , of i x y]) simp-all
qed

lemma SD-inefficient-support-aux:
assumes R: prefs-from-table-wf agents alts xss R ≡ prefs-from-table xss
assumes as: as 6= [] set as ⊆ alts distinct as A = set as
assumes ys: ∀ x∈set (map snd ys). 0 ≤ x sum-list (map snd ys) = 1 set (map

fst ys) ⊆ alts
assumes i: i ∈ agents
assumes SD1 : ∀ i∈agents. ∀ x∈alts.

sum-list (map snd (filter (λy. prefs-from-table xss i x (fst y)) ys)) ≥
real (length (filter (prefs-from-table xss i x) as)) / real (length as)

assumes SD2 : ∃ x∈alts. sum-list (map snd (filter (λy. prefs-from-table xss i x
(fst y)) ys)) >

real (length (filter (prefs-from-table xss i x) as)) / real (length
as)

shows sd-efficient-sds agents alts sds −→ (∃ x∈A. pmf (sds R) x = 0)
proof

assume sd-efficient-sds agents alts sds
from R have wf : pref-profile-wf agents alts R

by (simp add: pref-profile-from-tableI ′)
then interpret pref-profile-wf agents alts R .

116

interpret sd-efficient-sds agents alts sds by fact
from ys have ys ′: pmf-of-list-wf ys by (intro pmf-of-list-wfI) auto

{
fix i x assume x ∈ alts i ∈ agents
with ys ′ have lottery-prob (pmf-of-list ys) (preferred-alts (R i) x) =

sum-list (map snd (filter (λy. prefs-from-table xss i x (fst y)) ys))
by (subst measure-pmf-of-list) (simp-all add: preferred-alts-def R)

} note A = this
{

fix i x assume x ∈ alts i ∈ agents
with as have lottery-prob (pmf-of-set (set as)) (preferred-alts (R i) x) =

real (card (set as ∩ preferred-alts (R i) x)) / real (card (set as))
by (subst measure-pmf-of-set) simp-all

also have set as ∩ preferred-alts (R i) x = set (filter (λy. R i x y) as)
by (auto simp add: preferred-alts-def)

also have card . . . = length (filter (λy. R i x y) as)
by (intro distinct-card distinct-filter assms)

also have card (set as) = length as by (intro distinct-card assms)
finally have lottery-prob (pmf-of-set (set as)) (preferred-alts (R i) x) =

real (length (filter (prefs-from-table xss i x) as)) / real (length as)
by (simp add: R)

} note B = this

from wf show ∃ x∈A. pmf (sds R) x = 0
proof (rule SD-inefficient-support ′)
from ys ys ′ show lottery1 : pmf-of-list ys ∈ lotteries by (intro pmf-of-list-lottery)
show i: i ∈ agents by fact
from as have lottery2 : pmf-of-set (set as) ∈ lotteries

by (intro pmf-of-set-lottery) simp-all
from i as SD2 lottery1 lottery2 show ¬SD (R i) (pmf-of-list ys) (pmf-of-set

A)
by (subst preorder-on.SD-preorder [of alts]) (auto simp: A B not-le)

from as SD1 lottery1 lottery2
show ∀ i∈agents. SD (R i) (pmf-of-set A) (pmf-of-list ys)

by safe (auto simp: preorder-on.SD-preorder [of alts] A B)
qed (insert as, simp-all)

qed

definition pref-classes where
pref-classes alts le = preferred-alts le ‘ alts − {alts}

primrec pref-classes-lists where
pref-classes-lists [] = {}
| pref-classes-lists (xs#xss) = insert (

⋃
(set (xs#xss))) (pref-classes-lists xss)

fun pref-classes-lists-aux where

117

pref-classes-lists-aux acc [] = {}
| pref-classes-lists-aux acc (xs#xss) = insert acc (pref-classes-lists-aux (acc ∪ xs)
xss)

lemma pref-classes-lists-append:
pref-classes-lists (xs @ ys) = (∪) (

⋃
(set ys)) ‘ pref-classes-lists xs ∪ pref-classes-lists

ys
by (induction xs) auto

lemma pref-classes-lists-aux:
assumes is-weak-ranking xss acc ∩ (

⋃
(set xss)) = {}

shows pref-classes-lists-aux acc xss =
(insert acc ((λA. A ∪ acc) ‘ pref-classes-lists (rev xss)) − {acc ∪

⋃
(set

xss)})
using assms
proof (induction acc xss rule: pref-classes-lists-aux.induct [case-names Nil Cons])

case (Cons acc xs xss)
from Cons.prems have A: acc ∩ (xs ∪

⋃
(set xss)) = {} xs 6= {}

by (simp-all add: is-weak-ranking-Cons)
from Cons.prems have pref-classes-lists-aux (acc ∪ xs) xss =

insert (acc ∪ xs) ((λA. A ∪ (acc ∪ xs)) ‘pref-classes-lists (rev
xss)) −

{acc ∪ xs ∪
⋃
(set xss)}

by (intro Cons.IH) (auto simp: is-weak-ranking-Cons)
with Cons.prems have pref-classes-lists-aux acc (xs # xss) =

insert acc (insert (acc ∪ xs) ((λA. A ∪ (acc ∪ xs)) ‘ pref-classes-lists (rev
xss)) −

{acc ∪ (xs ∪
⋃
(set xss))})

by (simp-all add: is-weak-ranking-Cons pref-classes-lists-append image-image
Un-ac)

also from A have . . . = insert acc (insert (acc ∪ xs) ((λx. x ∪ (acc ∪ xs)) ‘
pref-classes-lists (rev xss))) − {acc ∪ (xs ∪

⋃
(set xss))}

by blast
finally show ?case

by (simp-all add: pref-classes-lists-append image-image Un-ac)
qed simp-all

lemma pref-classes-list-aux-hd-tl:
assumes is-weak-ranking xss xss 6= []
shows pref-classes-lists-aux (hd xss) (tl xss) = pref-classes-lists (rev xss) −
{
⋃

(set xss)}
proof −

from assms have A: xss = hd xss # tl xss by simp
from assms have hd xss ∩

⋃
(set (tl xss)) = {} ∧ is-weak-ranking (tl xss)

by (subst (asm) A, subst (asm) is-weak-ranking-Cons) simp-all
hence pref-classes-lists-aux (hd xss) (tl xss) =

insert (hd xss) ((λA. A ∪ hd xss) ‘ pref-classes-lists (rev (tl xss))) −
{hd xss ∪

⋃
(set (tl xss))} by (intro pref-classes-lists-aux) simp-all

118

also have hd xss ∪
⋃
(set (tl xss)) =

⋃
(set xss) by (subst (3) A, subst set-simps)

simp-all
also have insert (hd xss) ((λA. A ∪ hd xss) ‘ pref-classes-lists (rev (tl xss))) =

pref-classes-lists (rev (tl xss) @ [hd xss])
by (subst pref-classes-lists-append) auto

also have rev (tl xss) @ [hd xss] = rev xss by (subst (3) A) (simp only: rev.simps)
finally show ?thesis .

qed

lemma pref-classes-of-weak-ranking-aux:
assumes is-weak-ranking xss
shows of-weak-ranking-Collect-ge xss ‘ (

⋃
(set xss)) = pref-classes-lists xss

proof safe
fix X x assume x ∈ X X ∈ set xss
with assms show of-weak-ranking-Collect-ge xss x ∈ pref-classes-lists xss
by (induction xss) (auto simp: is-weak-ranking-Cons of-weak-ranking-Collect-ge-Cons ′)

next
fix x assume x ∈ pref-classes-lists xss
with assms show x ∈ of-weak-ranking-Collect-ge xss ‘

⋃
(set xss)

proof (induction xss)
case (Cons xs xss)
from Cons.prems consider x = xs ∪

⋃
(set xss) | x ∈ pref-classes-lists xss by

auto
thus ?case
proof cases

assume x = xs ∪
⋃
(set xss)

with Cons.prems show ?thesis
by (auto simp: is-weak-ranking-Cons of-weak-ranking-Collect-ge-Cons ′)

next
assume x: x ∈ pref-classes-lists xss
from Cons.prems x have x ∈ of-weak-ranking-Collect-ge xss ‘

⋃
(set xss)

by (intro Cons.IH) (simp-all add: is-weak-ranking-Cons)
moreover from Cons.prems have xs ∩

⋃
(set xss) = {}

by (simp add: is-weak-ranking-Cons)
ultimately have x ∈ of-weak-ranking-Collect-ge xss ‘

((xs ∪
⋃
(set xss)) ∩ {x. x /∈ xs}) by blast

thus ?thesis by (simp add: of-weak-ranking-Collect-ge-Cons ′)
qed

qed simp-all
qed

lemma eval-pref-classes-of-weak-ranking:
assumes

⋃
(set xss) = alts is-weak-ranking xss alts 6= {}

shows pref-classes alts (of-weak-ranking xss) = pref-classes-lists-aux (hd xss)
(tl xss)
proof −

have pref-classes alts (of-weak-ranking xss) =
preferred-alts (of-weak-ranking xss) ‘ (

⋃
(set (rev xss))) − {

⋃
(set xss)}

by (simp add: pref-classes-def assms)

119

also {
have of-weak-ranking-Collect-ge (rev xss) ‘ (

⋃
(set (rev xss))) = pref-classes-lists

(rev xss)
using assms by (intro pref-classes-of-weak-ranking-aux) simp-all

also have of-weak-ranking-Collect-ge (rev xss) = preferred-alts (of-weak-ranking
xss)

by (intro ext) (simp-all add: of-weak-ranking-Collect-ge-def preferred-alts-def)
finally have preferred-alts (of-weak-ranking xss) ‘ (

⋃
(set (rev xss))) =

pref-classes-lists (rev xss) .
}
also from assms have pref-classes-lists (rev xss) − {

⋃
(set xss)} =

pref-classes-lists-aux (hd xss) (tl xss)
by (intro pref-classes-list-aux-hd-tl [symmetric]) auto

finally show ?thesis by simp
qed

context preorder-on
begin

lemma SD-iff-pref-classes:
assumes p ∈ lotteries-on carrier q ∈ lotteries-on carrier
shows p �[SD(le)] q ←→

(∀A∈pref-classes carrier le. measure-pmf .prob p A ≤ measure-pmf .prob
q A)
proof safe

fix A assume p �[SD(le)] q A ∈ pref-classes carrier le
thus measure-pmf .prob p A ≤ measure-pmf .prob q A

by (auto simp: SD-preorder pref-classes-def)
next
assume A: ∀A∈pref-classes carrier le. measure-pmf .prob p A ≤ measure-pmf .prob

q A
show p �[SD(le)] q
proof (rule SD-preorderI)

fix x assume x: x ∈ carrier
show measure-pmf .prob p (preferred-alts le x)

≤ measure-pmf .prob q (preferred-alts le x)
proof (cases preferred-alts le x = carrier)

case False
with x have preferred-alts le x ∈ pref-classes carrier le

unfolding pref-classes-def by (intro DiffI imageI) simp-all
with A show ?thesis by simp

next
case True

from assms have measure-pmf .prob p carrier = 1 measure-pmf .prob q carrier
= 1

by (auto simp: measure-pmf .prob-eq-1 lotteries-on-def AE-measure-pmf-iff)
with True show ?thesis by simp

qed

120

qed (insert assms, simp-all)
qed

end

lemma (in strategyproof-an-sds) strategyproof ′:
assumes wf : is-pref-profile R total-preorder-on alts Ri ′ and i: i ∈ agents
shows (∃A∈pref-classes alts (R i). lottery-prob (sds (R(i := Ri ′))) A <

lottery-prob (sds R) A) ∨
(∀A∈pref-classes alts (R i). lottery-prob (sds (R(i := Ri ′))) A =

lottery-prob (sds R) A)
proof −

from wf (1) interpret R: pref-profile-wf agents alts R .
from i interpret total-preorder-on alts R i by simp
from assms have ¬ manipulable-profile R i Ri ′ by (intro strategyproof)
moreover from wf i have sds R ∈ lotteries sds (R(i := Ri ′)) ∈ lotteries

by (simp-all add: sds-wf)
ultimately show ?thesis

by (fastforce simp: manipulable-profile-def strongly-preferred-def
SD-iff-pref-classes not-le not-less)

qed

lemma pref-classes-lists-aux-finite:
A ∈ pref-classes-lists-aux acc xss =⇒ finite acc =⇒ (

∧
A. A ∈ set xss =⇒ finite

A)
=⇒ finite A

by (induction acc xss rule: pref-classes-lists-aux.induct) auto

lemma strategyproof-aux:
assumes wf : prefs-from-table-wf agents alts xss1 R1 = prefs-from-table xss1

prefs-from-table-wf agents alts xss2 R2 = prefs-from-table xss2
assumes sds: strategyproof-an-sds agents alts sds and i: i ∈ agents and j: j ∈

agents
assumes eq: R1 (i := R2 j) = R2 the (map-of xss1 i) = xs

pref-classes-lists-aux (hd xs) (tl xs) = ps
shows (∃A∈ps. (

∑
x∈A. pmf (sds R2) x) < (

∑
x∈A. pmf (sds R1) x)) ∨

(∀A∈ps. (
∑

x∈A. pmf (sds R2) x) = (
∑

x∈A. pmf (sds R1) x))
proof −

from sds interpret strategyproof-an-sds agents alts sds .
let ?Ri ′ = R2 j
from wf j have wf ′: is-pref-profile R1 total-preorder-on alts ?Ri ′

by (auto intro: pref-profile-from-tableI pref-profile-wf .prefs-wf ′(1))

from wf (1) i have i ∈ set (map fst xss1) by (simp add: prefs-from-table-wf-def)
with prefs-from-table-wfD(3)[OF wf (1)] eq

have xs ∈ set (map snd xss1) by force
note xs = prefs-from-table-wfD(2)[OF wf (1)] prefs-from-table-wfD(5 ,6)[OF wf (1)

this]

121

{
fix p A assume A: A ∈ pref-classes-lists-aux (hd xs) (tl xs)
from xs have xs 6= [] by auto
with xs have finite A

by (intro pref-classes-lists-aux-finite[OF A])
(auto simp: is-finite-weak-ranking-def list.set-sel)

hence lottery-prob p A = (
∑

x∈A. pmf p x)
by (rule measure-measure-pmf-finite)

} note A = this

from strategyproof ′[OF wf ′ i] eq have
(∃A∈pref-classes alts (R1 i). lottery-prob (sds R2) A < lottery-prob (sds R1)

A) ∨
(∀A∈pref-classes alts (R1 i). lottery-prob (sds R2) A = lottery-prob (sds R1)

A)
by simp

also from wf eq i have R1 i = of-weak-ranking xs
by (simp add: prefs-from-table-map-of)

also from xs have pref-classes alts (of-weak-ranking xs) = pref-classes-lists-aux
(hd xs) (tl xs)

unfolding is-finite-weak-ranking-def by (intro eval-pref-classes-of-weak-ranking)
simp-all

finally show ?thesis by (simp add: A eq)
qed

lemma strategyproof-aux ′:
assumes wf : prefs-from-table-wf agents alts xss1 R1 ≡ prefs-from-table xss1

prefs-from-table-wf agents alts xss2 R2 ≡ prefs-from-table xss2
assumes sds: strategyproof-an-sds agents alts sds and i: i ∈ agents and j: j ∈

agents
assumes perm: list-permutes ys alts
defines σ ≡ permutation-of-list ys and σ ′ ≡ inverse-permutation-of-list ys
defines xs ≡ the (map-of xss1 i)
defines xs ′: xs ′ ≡ map ((‘) σ) (the (map-of xss2 j))
defines Ri ′ ≡ of-weak-ranking xs ′

assumes distinct-ps: ∀A∈ps. distinct A
assumes eq: mset (map snd xss1) − {#the (map-of xss1 i)#} + {#xs ′#} =

mset (map (map ((‘) σ) ◦ snd) xss2)
pref-classes-lists-aux (hd xs) (tl xs) = set ‘ ps

shows list-permutes ys alts ∧
((∃A∈ps. (

∑
x←A. pmf (sds R2) (σ ′ x)) < (

∑
x←A. pmf (sds R1) x))

∨
(∀A∈ps. (

∑
x←A. pmf (sds R2) (σ ′ x)) = (

∑
x←A. pmf (sds R1)

x)))
(is - ∧ ?th)

proof
from perm have perm ′: σ permutes alts by (simp add: σ-def)
from sds interpret strategyproof-an-sds agents alts sds .
from wf (3) j have j ∈ set (map fst xss2) by (simp add: prefs-from-table-wf-def)

122

with prefs-from-table-wfD(3)[OF wf (3)]
have xs ′-aux: the (map-of xss2 j) ∈ set (map snd xss2) by force

with wf (3) have xs ′-aux ′: is-finite-weak-ranking (the (map-of xss2 j))
by (auto simp: prefs-from-table-wf-def)

hence ∗: is-weak-ranking xs ′ unfolding xs ′

by (intro is-weak-ranking-map-inj permutes-inj-on[OF perm ′])
(auto simp add: is-finite-weak-ranking-def)

moreover from ∗ xs ′-aux ′ have is-finite-weak-ranking xs ′

by (auto simp: xs ′ is-finite-weak-ranking-def)
moreover from prefs-from-table-wfD(5)[OF wf (3) xs ′-aux]

have
⋃
(set xs ′) = alts unfolding xs ′

by (simp add: image-Union [symmetric] permutes-image[OF perm ′])
ultimately have wf-xs ′: is-weak-ranking xs ′ is-finite-weak-ranking xs ′ ⋃ (set xs ′)

= alts
by (simp-all add: is-finite-weak-ranking-def)

from this wf j have wf ′: is-pref-profile R1 total-preorder-on alts Ri ′
is-pref-profile R2 finite-total-preorder-on alts Ri ′

unfolding Ri ′-def by (auto intro: pref-profile-from-tableI pref-profile-wf .prefs-wf ′(1)
total-preorder-of-weak-ranking)

interpret R1 : pref-profile-wf agents alts R1 by fact
interpret R2 : pref-profile-wf agents alts R2 by fact

from wf (1) i have i ∈ set (map fst xss1) by (simp add: prefs-from-table-wf-def)
with prefs-from-table-wfD(3)[OF wf (1)] eq(2)

have xs ∈ set (map snd xss1) unfolding xs-def by force
note xs = prefs-from-table-wfD(2)[OF wf (1)] prefs-from-table-wfD(5 ,6)[OF wf (1)

this]

from wf i wf ′ wf-xs ′ xs eq
have eq ′: anonymous-profile (R1 (i := Ri ′)) = image-mset (map ((‘) σ))

(anonymous-profile R2)
by (subst R1 .anonymous-profile-update)
(simp-all add: Ri ′-def weak-ranking-of-weak-ranking mset-map multiset.map-comp

xs-def
anonymise-prefs-from-table prefs-from-table-map-of)

{
fix p A assume A: A ∈ pref-classes-lists-aux (hd xs) (tl xs)
from xs have xs 6= [] by auto
with xs have finite A

by (intro pref-classes-lists-aux-finite[OF A])
(auto simp: is-finite-weak-ranking-def list.set-sel)

hence lottery-prob p A = (
∑

x∈A. pmf p x)
by (rule measure-measure-pmf-finite)

} note A = this

from strategyproof ′[OF wf ′(1 ,2) i] eq ′ have
(∃A∈pref-classes alts (R1 i). lottery-prob (sds (R1 (i := Ri ′))) A < lottery-prob

123

(sds R1) A) ∨
(∀A∈pref-classes alts (R1 i). lottery-prob (sds (R1 (i := Ri ′))) A = lottery-prob

(sds R1) A)
by simp

also from eq ′ i have sds (R1 (i := Ri ′)) = map-pmf σ (sds R2)
unfolding σ-def by (intro sds-anonymous-neutral permutation-of-list-permutes

perm wf ′

pref-profile-wf .wf-update eq)
also from wf eq i have R1 i = of-weak-ranking xs

by (simp add: prefs-from-table-map-of xs-def)
also from xs have pref-classes alts (of-weak-ranking xs) = pref-classes-lists-aux

(hd xs) (tl xs)
unfolding is-finite-weak-ranking-def by (intro eval-pref-classes-of-weak-ranking)

simp-all
finally have (∃A∈ps. (

∑
x←A. pmf (map-pmf σ (sds R2)) x) < (

∑
x←A. pmf

(sds R1) x)) ∨
(∀A∈ps. (

∑
x←A. pmf (map-pmf σ (sds R2)) x) = (

∑
x←A. pmf

(sds R1) x))
using distinct-ps
by (simp add: A eq sum.distinct-set-conv-list del: measure-map-pmf)

also from perm ′ have pmf (map-pmf σ (sds R2)) = (λx. pmf (sds R2) (inv σ
x))

using pmf-map-inj ′[of σ - inv σ x for x]
by (simp add: fun-eq-iff permutes-inj permutes-inverses)

also from perm have inv σ = σ ′ unfolding σ-def σ ′-def
by (rule inverse-permutation-of-list-correct [symmetric])

finally show ?th .
qed fact+

ML-file ‹randomised-social-choice.ML›
ML-file ‹sds-automation.ML›

end

References

[1] F. Brandl, F. Brandt, and C. Geist. Proving the incompatibility of
Efficiency and Strategyproofness via SMT solving. Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI),
2016. Forthcoming.

124

	Order Relations as Binary Predicates
	Basic Operations on Relations
	Preorders
	Total preorders
	Orders
	Maximal elements
	Weak rankings
	Rankings

	Preference Profiles
	Pareto dominance
	Preferred alternatives
	Favourite alternatives
	Anonymous profiles
	Preference profiles from lists
	Automatic evaluation of preference profiles

	Auxiliary facts about PMFs
	Definition of von Neumann–Morgenstern utility functions

	Stochastic Dominance
	Definition of Stochastic Dominance
	Stochastic Dominance for preference profiles
	SD efficient lotteries
	Equivalence proof
	Existence of SD-efficient lotteries

	Social Decision Schemes
	Basic Social Choice definitions
	Social Decision Schemes
	Anonymity
	Neutrality
	Ex-post efficiency
	SD efficiency
	Weak strategyproofness
	Strong strategyproofness

	Lowering Social Decision Schemes
	Random Dictatorship
	Anonymity
	Neutrality
	Strong strategyproofness

	Random Serial Dictatorship
	Auxiliary facts about RSD
	Pareto-equivalence classes
	Facts about RSD winners

	Proofs of properties
	Well-definedness
	RD extension
	Anonymity
	Neutrality
	Ex-post efficiency
	Strong strategy-proofness

	Automatic definition of Preference Profiles
	Automatic definition of preference profiles from tables

	Automatic Fact Gathering for Social Decision Schemes

