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Abstract

Random graphs are graphs with a fixed number of vertices, where
each edge is present with a fixed probability. We are interested in the
probability that a random graph contains a certain pattern, for ex-
ample a cycle or a clique. A very high edge probability gives rise to
perhaps too many edges (which degrades performance for many algo-
rithms), whereas a low edge probability might result in a disconnected
graph. We prove a theorem about a threshold probability such that
a higher edge probability will asymptotically almost surely produce a
random graph with the desired subgraph.
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1 Introduction

Random graphs have been introduced by Erdős and Rényi in [2]. They de-
scribe a probability space where, for a fixed number of vertices, each possible
edge is present with a certain probability independent from other edges, but
with the same probability for each edge. They study what properties emerge
when increasing the number of vertices, or as they call it, “the evolution of
such a random graph”. The theorem which we will prove here is a slightly
different version from that in the first section of that paper.
Here, we are interested in the probability that a random graph contains a
certain pattern, for example a cycle or a clique. A very high edge probabil-
ity gives rise to perhaps too many edges, which is usually undesired since it
degrades the performance of many algorithms, whereas a low edge probabil-
ity might result in a disconnected graph. The central theorem determines a
threshold probability such that a higher edge probability will asymptotically
almost surely produce a random graph with the desired subgraph.
The proof is outlined in [1, § 11.4] and [3, § 3]. The work is based on the
comprehensive formalization of probability theory in Isabelle/HOL and on a
previous definition of graphs in a work by Noschinski [4]. There, Noschinski
formalized the proof that graphs with arbitrarily large girth and chromatic
number exist. While the proof in this paper uses a different approach, the
definition of a probability space on edges turned out to be quite useful.

2 Miscellaneous and contributed lemmas
theory Ugraph-Misc
imports

HOL−Probability.Probability
Girth-Chromatic.Girth-Chromatic-Misc

begin

lemma sum-square:
fixes a :: ′i ⇒ ′a :: {monoid-mult, semiring-0}
shows (

∑
i ∈ I . a i)^2 = (

∑
i ∈ I .

∑
j ∈ I . a i ∗ a j)

〈proof 〉

lemma sum-split:
finite I =⇒
(
∑

i ∈ I . if p i then f i else g i) = (
∑

i | i ∈ I ∧ p i. f i) + (
∑

i | i ∈ I ∧ ¬p
i. g i)
〈proof 〉

lemma sum-split2 :
assumes finite I
shows (

∑
i | i ∈ I ∧ P i. if Q i then f i else g i) = (

∑
i | i ∈ I ∧ P i ∧ Q i. f

i) + (
∑

i | i ∈ I ∧ P i ∧ ¬Q i. g i)
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〈proof 〉

lemma sum-upper :
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I

∧
i. i ∈ I =⇒ 0 ≤ f i

shows (
∑

i | i ∈ I ∧ P i. f i) ≤ sum f I
〈proof 〉

lemma sum-lower :
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I i ∈ I

∧
i. i ∈ I =⇒ 0 ≤ f i x < f i

shows x < sum f I
〈proof 〉

lemma sum-lower-or-eq:
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I i ∈ I

∧
i. i ∈ I =⇒ 0 ≤ f i x ≤ f i

shows x ≤ sum f I
〈proof 〉

lemma sum-left-div-distrib:
fixes f :: ′i ⇒ real
shows (

∑
i ∈ I . f i / x) = sum f I / x

〈proof 〉

lemma powr-mono3 :
fixes x::real
assumes 0 < x x < 1 b ≤ a
shows x powr a ≤ x powr b
〈proof 〉

lemma card-union: finite A =⇒ finite B =⇒ card (A ∪ B) = card A + card B −
card (A ∩ B)
〈proof 〉

lemma card-1-element:
assumes card E = 1
shows ∃ a. E = {a}
〈proof 〉

lemma card-2-elements:
assumes card E = 2
shows ∃ a b. E = {a, b} ∧ a 6= b
〈proof 〉

lemma bij-lift:
assumes bij-betw f A B
shows bij-betw (λe. f ‘ e) (Pow A) (Pow B)
〈proof 〉
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lemma card-inj-subs: inj-on f A =⇒ B ⊆ A =⇒ card (f ‘ B) = card B
〈proof 〉

lemma image-comp-cong: (
∧

a. a ∈ A =⇒ f a = f (g a)) =⇒ f ‘ A = f ‘ (g ‘ A)
〈proof 〉

abbreviation less-fun :: (nat ⇒ real) ⇒ (nat ⇒ real) ⇒ bool (infix ‹�› 50 )
where
f � g ≡ (λn. f n / g n) −−−−→ 0

context
fixes f :: nat ⇒ real

begin

lemma LIMSEQ-power-zero: f −−−−→ 0 =⇒ 0 < n =⇒ (λx. f x ^ n :: real)
−−−−→ 0
〈proof 〉

lemma LIMSEQ-cong:
assumes f −−−−→ x ∀∞n. f n = g n
shows g −−−−→ x
〈proof 〉
print-statement Lim-transform-eventually

lemma LIMSEQ-le-zero:
assumes g −−−−→ 0 ∀∞n. 0 ≤ f n ∀∞n. f n ≤ g n
shows f −−−−→ 0
〈proof 〉

lemma LIMSEQ-const-mult:
assumes f −−−−→ a
shows (λx. c ∗ f x) −−−−→ c ∗ a
〈proof 〉

lemma LIMSEQ-const-div:
assumes f −−−−→ a c 6= 0
shows (λx. f x / c) −−−−→ a / c
〈proof 〉

end

lemma quot-bounds:
fixes x :: ′a :: linordered-field
assumes x ≤ x ′ y ′ ≤ y 0 < y 0 ≤ x 0 < y ′

shows x / y ≤ x ′ / y ′

〈proof 〉
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lemma less-fun-bounds:
assumes f ′� g ′ ∀∞n. f n ≤ f ′ n ∀∞n. g ′ n ≤ g n ∀∞n. 0 ≤ f n ∀∞n. 0 < g

n ∀∞n. 0 < g ′ n
shows f � g
〈proof 〉

lemma less-fun-const-quot:
assumes f � g c 6= 0
shows (λn. b ∗ f n) � (λn. c ∗ g n)
〈proof 〉

lemma partition-set-of-intersecting-sets-by-card:
assumes finite A
shows {B. A ∩ B 6= {}} = (

⋃
n ∈ {1 ..card A}. {B. card (A ∩ B) = n})

〈proof 〉

lemma card-set-of-intersecting-sets-by-card:
assumes A ⊆ I finite I k ≤ n n ≤ card I k ≤ card A
shows card {B. B ⊆ I ∧ card B = n ∧ card (A ∩ B) = k} = (card A choose k)
∗ ((card I − card A) choose (n − k))
〈proof 〉

lemma card-dep-pair-set:
assumes finite A

∧
a. a ⊆ A =⇒ finite (f a)

shows card {(a, b). a ⊆ A ∧ card a = n ∧ b ⊆ f a ∧ card b = g a} = (
∑

a | a
⊆ A ∧ card a = n. card (f a) choose g a) (is card ?S = ?C )
〈proof 〉

lemma prod-cancel-nat:
— Contributed by Manuel Eberl
fixes f :: ′a ⇒ nat
assumes B ⊆ A and finite A and ∀ x∈B. f x 6= 0
shows prod f A / prod f B = prod f (A − B) (is ?A / ?B = ?C )
〈proof 〉

lemma prod-id-cancel-nat:
— Contributed by Manuel Eberl
fixes A::nat set
assumes B ⊆ A and finite A and 0 /∈ B
shows

∏
A /

∏
B =

∏
(A−B)

〈proof 〉

lemma (in prob-space) integrable-squareD:
— Contributed by Johannes Hölzl
fixes X :: - ⇒ real
assumes integrable M (λx. (X x)^2 ) X ∈ borel-measurable M
shows integrable M X
〈proof 〉
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end
theory Prob-Lemmas
imports

HOL−Probability.Probability
Girth-Chromatic.Girth-Chromatic
Ugraph-Misc

begin

3 Lemmas about probabilities

In this section, auxiliary lemmas for computing bounds on expectation and
probabilites of random variables are set up.

3.1 Indicator variables and valid probability values
abbreviation rind :: ′a set ⇒ ′a ⇒ real where
rind ≡ indicator

lemma product-indicator :
rind A x ∗ rind B x = rind (A ∩ B) x
〈proof 〉

We call a real number ‘valid’ iff it is in the range 0 to 1, inclusively, and
additionally ‘nonzero’ iff it is neither 0 nor 1.
abbreviation valid-prob (p :: real) ≡ 0 ≤ p ∧ p ≤ 1
abbreviation nonzero-prob (p :: real) ≡ 0 < p ∧ p < 1

A function ′a ⇒ real is a ‘valid probability function’ iff each value in the
image is valid, and similarly for ‘nonzero’.
abbreviation valid-prob-fun f ≡ (∀n. valid-prob (f n))
abbreviation nonzero-prob-fun f ≡ (∀n. nonzero-prob (f n))

lemma nonzero-fun-is-valid-fun: nonzero-prob-fun f =⇒ valid-prob-fun f
〈proof 〉

3.2 Expectation and variance
context prob-space
begin

Note that there is already a notion of independent sets (see indep-set), but
we use the following – simpler – definition:
definition indep A B ←→ prob (A ∩ B) = prob A ∗ prob B

The probability of an indicator variable is equal to its expectation:
lemma expectation-indicator :

A ∈ events =⇒ expectation (rind A) = prob A
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〈proof 〉

For a non-negative random variable X, the Markov inequality gives the fol-
lowing upper bound:

Pr[X ≥ a] ≤ E[X]

a

lemma markov-inequality:
assumes

∧
a. 0 ≤ X a and integrable M X 0 < t

shows prob {a ∈ space M . t ≤ X a} ≤ expectation X / t
〈proof 〉

Var[X] = E[X2]− E[X]2

lemma variance-expectation:
fixes X :: ′a ⇒ real
assumes integrable M (λx. (X x)^2 ) and X ∈ borel-measurable M
shows

integrable M (λx. (X x − expectation X)^2 ) (is ?integrable)
variance X = expectation (λx. (X x)^2 ) − (expectation X)^2 (is ?variance)

〈proof 〉

A corollary from the Markov inequality is Chebyshev’s inequality, which
gives an upper bound for the deviation of a random variable from its expec-
tation:

Pr[|Y − E[Y ]| ≥ s] ≤ Var[X]

a2

lemma chebyshev-inequality:
fixes Y :: ′a ⇒ real
assumes Y-int: integrable M (λy. (Y y)^2 )
assumes Y-borel: Y ∈ borel-measurable M
fixes s :: real
assumes s-pos: 0 < s
shows prob {a ∈ space M . s ≤ |Y a − expectation Y |} ≤ variance Y / s^2
〈proof 〉

Hence, we can derive an upper bound for the probability that a random
variable is 0.
corollary chebyshev-prob-zero:

fixes Y :: ′a ⇒ real
assumes Y-int: integrable M (λy. (Y y)^2 )
assumes Y-borel: Y ∈ borel-measurable M
assumes µ-pos: expectation Y > 0
shows prob {a ∈ space M . Y a = 0} ≤ expectation (λy. (Y y)^2 ) / (expectation

Y )^2 − 1
〈proof 〉

end
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3.3 Sets of indicator variables

This section introduces some inequalities about expectation and other values
related to the sum of a set of random indicators.
locale prob-space-with-indicators = prob-space +

fixes I :: ′i set
assumes finite-I : finite I

fixes A :: ′i ⇒ ′a set
assumes A: A ‘ I ⊆ events

assumes prob-non-zero: ∃ i ∈ I . 0 < prob (A i)
begin

We call the underlying sets A i for each i ∈ I, and the corresponding in-
dicator variables X i. The sum is denoted by Y, and its expectation by
µ.
definition X i = rind (A i)
definition Y x = (

∑
i ∈ I . X i x)

definition µ = expectation Y

In the lecture notes, the following two relations are called ∼ and �, respec-
tively. Note that they are not the opposite of each other.
abbreviation ineq-indep :: ′i ⇒ ′i ⇒ bool where
ineq-indep i j ≡ (i 6= j ∧ indep (A i) (A j))

abbreviation ineq-dep :: ′i ⇒ ′i ⇒ bool where
ineq-dep i j ≡ (i 6= j ∧ ¬indep (A i) (A j))

definition ∆a = (
∑

i ∈ I .
∑

j | j ∈ I ∧ i 6= j. prob (A i ∩ A j))
definition ∆d = (

∑
i ∈ I .

∑
j | j ∈ I ∧ ineq-dep i j. prob (A i ∩ A j))

lemma ∆-zero:
assumes

∧
i j. i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ indep (A i) (A j)

shows ∆d = 0
〈proof 〉

lemma A-events[measurable]: i ∈ I =⇒ A i ∈ events
〈proof 〉

lemma expectation-X-Y : µ = (
∑

i∈I . expectation (X i))
〈proof 〉

lemma expectation-X-non-zero: ∃ i ∈ I . 0 < expectation (X i)
〈proof 〉

corollary µ-non-zero[simp]: 0 < µ
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〈proof 〉

lemma ∆d-nonneg: 0 ≤ ∆d

〈proof 〉

corollary µ-sq-non-zero[simp]: 0 < µ^2
〈proof 〉

lemma Y-square-unfold: (λx. (Y x)^2 ) = (λx.
∑

i ∈ I .
∑

j ∈ I . rind (A i ∩ A
j) x)
〈proof 〉

lemma integrable-Y-sq[simp]: integrable M (λy. (Y y)^2 )
〈proof 〉

lemma measurable-Y [measurable]: Y ∈ borel-measurable M
〈proof 〉

lemma expectation-Y-∆: expectation (λx. (Y x)^2 ) = µ + ∆a

〈proof 〉

lemma ∆-expectation-X : ∆a ≤ µ^2 + ∆d

〈proof 〉

lemma prob-µ-∆a: prob {a ∈ space M . Y a = 0} ≤ 1 / µ + ∆a / µ^2 − 1
〈proof 〉

lemma prob-µ-∆d: prob {a ∈ space M . Y a = 0} ≤ 1/µ + ∆d/µ^2
〈proof 〉

end

end

4 Lemmas about undirected graphs
theory Ugraph-Lemmas
imports

Prob-Lemmas
Girth-Chromatic.Girth-Chromatic

begin

The complete graph is a graph where all possible edges are present. It is
wellformed by definition.
definition complete :: nat set ⇒ ugraph where

complete V = (V , all-edges V )

lemma complete-wellformed: uwellformed (complete V )
〈proof 〉
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If the set of vertices is finite, the set of edges in the complete graph is finite.
lemma all-edges-finite: finite V =⇒ finite (all-edges V )
〈proof 〉

corollary complete-finite-edges: finite V =⇒ finite (uedges (complete V ))
〈proof 〉

The sets of possible edges of disjoint sets of vertices are disjoint.
lemma all-edges-disjoint: S ∩ T = {} =⇒ all-edges S ∩ all-edges T = {}
〈proof 〉

A graph is called ‘finite’ if its set of edges and its set of vertices are finite.
definition finite-graph G ≡ finite (uverts G) ∧ finite (uedges G)

The complete graph is finite.
corollary complete-finite: finite V =⇒ finite-graph (complete V )
〈proof 〉

A graph is called ‘nonempty’ if it contains at least one vertex and at least
one edge.
definition nonempty-graph G ≡ uverts G 6= {} ∧ uedges G 6= {}

A random graph is both wellformed and finite.
lemma (in edge-space) wellformed-and-finite:

assumes E ∈ Pow S-edges
shows finite-graph (edge-ugraph E) uwellformed (edge-ugraph E)
〈proof 〉

The probability for a random graph to have e edges is pe.
lemma (in edge-space) cylinder-empty-prob:

A ⊆ S-edges =⇒ prob (cylinder S-edges A {}) = p ^ (card A)
〈proof 〉

4.1 Subgraphs
definition subgraph :: ugraph ⇒ ugraph ⇒ bool where

subgraph G ′ G ≡ uverts G ′ ⊆ uverts G ∧ uedges G ′ ⊆ uedges G

lemma subgraph-refl: subgraph G G
〈proof 〉

lemma subgraph-trans: subgraph G ′′ G ′ =⇒ subgraph G ′ G =⇒ subgraph G ′′ G
〈proof 〉

lemma subgraph-antisym: subgraph G G ′ =⇒ subgraph G ′ G =⇒ G = G ′

〈proof 〉
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lemma subgraph-complete:
assumes uwellformed G
shows subgraph G (complete (uverts G))
〈proof 〉

corollary wellformed-all-edges: uwellformed G =⇒ uedges G ⊆ all-edges (uverts
G)
〈proof 〉

corollary max-edges-graph:
assumes uwellformed G finite (uverts G)
shows card (uedges G) ≤ (card (uverts G))^2
〈proof 〉

lemma subgraph-finite: [[ finite-graph G; subgraph G ′ G ]] =⇒ finite-graph G ′

〈proof 〉

corollary wellformed-finite:
assumes finite (uverts G) and uwellformed G
shows finite-graph G
〈proof 〉

definition subgraphs :: ugraph ⇒ ugraph set where
subgraphs G = {G ′. subgraph G ′ G}

definition nonempty-subgraphs :: ugraph ⇒ ugraph set where
nonempty-subgraphs G = {G ′. uwellformed G ′ ∧ subgraph G ′ G ∧ nonempty-graph
G ′}

lemma subgraphs-finite:
assumes finite-graph G
shows finite (subgraphs G)
〈proof 〉

corollary nonempty-subgraphs-finite: finite-graph G =⇒ finite (nonempty-subgraphs
G)
〈proof 〉

4.2 Induced subgraphs
definition induced-subgraph :: uvert set ⇒ ugraph ⇒ ugraph where
induced-subgraph V G = (V , uedges G ∩ all-edges V )

lemma induced-is-subgraph:
V ⊆ uverts G =⇒ subgraph (induced-subgraph V G) G
V ⊆ uverts G =⇒ subgraph (induced-subgraph V G) (complete V )
〈proof 〉

lemma induced-wellformed: uwellformed G =⇒ V ⊆ uverts G =⇒ uwellformed
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(induced-subgraph V G)
〈proof 〉

lemma subgraph-union-induced:
assumes uverts H 1 ⊆ S and uverts H 2 ⊆ T
assumes uwellformed H 1 and uwellformed H 2

shows subgraph H 1 (induced-subgraph S G) ∧ subgraph H 2 (induced-subgraph T
G) ←→

subgraph (uverts H 1 ∪ uverts H 2, uedges H 1 ∪ uedges H 2) (induced-subgraph
(S ∪ T ) G)
〈proof 〉

lemma (in edge-space) induced-subgraph-prob:
assumes uverts H ⊆ V and uwellformed H and V ⊆ S-verts
shows prob {es ∈ space P. subgraph H (induced-subgraph V (edge-ugraph es))}

= p ^ card (uedges H ) (is prob ?A = -)
〈proof 〉

4.3 Graph isomorphism

We define graph isomorphism slightly different than in the literature. The
usual definition is that two graphs are isomorphic iff there exists a bijec-
tion between the vertex sets which preserves the adjacency. However, this
complicates many proofs.
Instead, we define the intuitive mapping operation on graphs. An isomor-
phism between two graphs arises if there is a suitable mapping function
from the first to the second graph. Later, we show that this operation can
be inverted.
fun map-ugraph :: (nat ⇒ nat) ⇒ ugraph ⇒ ugraph where
map-ugraph f (V , E) = (f ‘ V , (λe. f ‘ e) ‘ E)

definition isomorphism :: ugraph ⇒ ugraph ⇒ (nat ⇒ nat) ⇒ bool where
isomorphism G1 G2 f ≡ bij-betw f (uverts G1) (uverts G2) ∧ G2 = map-ugraph f
G1

abbreviation isomorphic :: ugraph ⇒ ugraph ⇒ bool (‹- ' -›) where
G1 ' G2 ≡ uwellformed G1 ∧ uwellformed G2 ∧ (∃ f . isomorphism G1 G2 f )

lemma map-ugraph-id: map-ugraph id = id
〈proof 〉

lemma map-ugraph-trans: map-ugraph (g ◦ f ) = (map-ugraph g) ◦ (map-ugraph
f )
〈proof 〉

lemma map-ugraph-wellformed:
assumes uwellformed G and inj-on f (uverts G)
shows uwellformed (map-ugraph f G)
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〈proof 〉

lemma map-ugraph-finite: finite-graph G =⇒ finite-graph (map-ugraph f G)
〈proof 〉

lemma map-ugraph-preserves-sub:
assumes subgraph G1 G2

shows subgraph (map-ugraph f G1) (map-ugraph f G2)
〈proof 〉

lemma isomorphic-refl: uwellformed G =⇒ G ' G
〈proof 〉

lemma isomorphic-trans:
assumes G1 ' G2 and G2 ' G3

shows G1 ' G3

〈proof 〉

lemma isomorphic-sym:
assumes G1 ' G2

shows G2 ' G1

〈proof 〉

lemma isomorphic-cards:
assumes G1 ' G2

shows
card (uverts G1) = card (uverts G2) (is ?V )
card (uedges G1) = card (uedges G2) (is ?E)

〈proof 〉

4.4 Isomorphic subgraphs

The somewhat sloppy term ‘isomorphic subgraph’ denotes a subgraph which
is isomorphic to a fixed other graph. For example, saying that a graph
contains a triangle usually means that it contains any triangle, not the
specific triangle with the nodes 1, 2 and 3. Hence, such a graph would have
a triangle as an isomorphic subgraph.
definition subgraph-isomorphic :: ugraph ⇒ ugraph ⇒ bool (‹- v -›) where
G ′ v G ≡ uwellformed G ∧ (∃G ′′. G ′ ' G ′′ ∧ subgraph G ′′ G)

lemma subgraph-is-subgraph-isomorphic: [[ uwellformed G ′; uwellformed G; sub-
graph G ′ G ]] =⇒ G ′ v G
〈proof 〉

lemma isomorphic-is-subgraph-isomorphic: G1 ' G2 =⇒ G1 v G2

〈proof 〉

lemma subgraph-isomorphic-refl: uwellformed G =⇒ G v G
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〈proof 〉

lemma subgraph-isomorphic-pre-iso-closed:
assumes G1 ' G2 and G2 v G3

shows G1 v G3

〈proof 〉

lemma subgraph-isomorphic-pre-subgraph-closed:
assumes uwellformed G1 and subgraph G1 G2 and G2 v G3

shows G1 v G3

〈proof 〉

lemmas subgraph-isomorphic-pre-closed = subgraph-isomorphic-pre-subgraph-closed
subgraph-isomorphic-pre-iso-closed

lemma subgraph-isomorphic-trans[trans]:
assumes G1 v G2 and G2 v G3

shows G1 v G3

〈proof 〉

lemma subgraph-isomorphic-post-iso-closed: [[ H v G; G ' G ′ ]] =⇒ H v G ′

〈proof 〉

lemmas subgraph-isomorphic-post-closed = subgraph-isomorphic-post-iso-closed

lemmas subgraph-isomorphic-closed = subgraph-isomorphic-pre-closed subgraph-isomorphic-post-closed

4.5 Density

The density of a graph is the quotient of the number of edges and the number
of vertices of a graph.
definition density :: ugraph ⇒ real where
density G = card (uedges G) / card (uverts G)

The maximum density of a graph is the density of its densest nonempty
subgraph.
definition max-density :: ugraph ⇒ real where
max-density G = Lattices-Big.Max (density ‘ nonempty-subgraphs G)

We prove some obvious results about the maximum density, such as that
there is a subgraph which has the maximum density and that the (maximum)
density is preserved by isomorphisms. The proofs are a bit complicated by
the fact that most facts about Max require non-emptiness of the target set,
but we need that anyway to get a value out of it.
lemma subgraph-has-max-density:

assumes finite-graph G and nonempty-graph G and uwellformed G
shows ∃G ′. density G ′ = max-density G ∧ subgraph G ′ G ∧ nonempty-graph G ′

∧ finite-graph G ′ ∧ uwellformed G ′
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〈proof 〉

lemma max-density-is-max:
assumes finite-graph G and finite-graph G ′ and nonempty-graph G ′ and uwell-

formed G ′ and subgraph G ′ G
shows density G ′ ≤ max-density G
〈proof 〉

lemma max-density-gr-zero:
assumes finite-graph G and nonempty-graph G and uwellformed G
shows 0 < max-density G
〈proof 〉

lemma isomorphic-density:
assumes G1 ' G2

shows density G1 = density G2

〈proof 〉

lemma isomorphic-max-density:
assumes G1 ' G2 and nonempty-graph G1 and nonempty-graph G2 and fi-

nite-graph G1 and finite-graph G2

shows max-density G1 = max-density G2

〈proof 〉

4.6 Fixed selectors

In the proof of the main theorem in the lecture notes, the concept of a “fixed
copy” of a graph is fundamental.
Let H be a fixed graph. A ‘fixed selector’ is basically a function mapping
a set with the same size as the vertex set of H to a new graph which is
isomorphic to H and its vertex set is the same as the input set.1

definition is-fixed-selector H f = (∀V . finite V ∧ card (uverts H ) = card V −→
H ' f V ∧ uverts (f V ) = V )

Obviously, there may be many possible fixed selectors for a given graph.
First, we show that there is always at least one. This is sufficient, because
we can always obtain that one and use its properties without knowing exactly
which one we chose.
lemma ex-fixed-selector :

assumes uwellformed H and finite-graph H
obtains f where is-fixed-selector H f
〈proof 〉

lemma fixed-selector-induced-subgraph:
assumes is-fixed-selector H f and card (uverts H ) = card V and finite V

1We call such a selector fixed because its result is deterministic.
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assumes sub: subgraph (f V ) (induced-subgraph V G) and V : V ⊆ uverts G and
G: uwellformed G

shows H v G
〈proof 〉

end

5 Classes and properties of graphs
theory Ugraph-Properties
imports

Ugraph-Lemmas
Girth-Chromatic.Girth-Chromatic

begin

A “graph property” is a set of graphs which is closed under isomorphism.
type-synonym ugraph-class = ugraph set

definition ugraph-property :: ugraph-class ⇒ bool where
ugraph-property C ≡ ∀G ∈ C . ∀G ′. G ' G ′ −→ G ′ ∈ C

abbreviation prob-in-class :: (nat ⇒ real) ⇒ ugraph-class ⇒ nat ⇒ real where
prob-in-class p c n ≡ probGn p n (λes. edge-space.edge-ugraph n es ∈ c)

From now on, we consider random graphs not with fixed edge probabilities
but rather with a probability function depending on the number of vertices.
Such a function is called a “threshold” for a graph property iff

• for asymptotically larger probability functions, the probability that a
random graph is an element of that class tends to 1 (“1-statement”),
and

• for asymptotically smaller probability functions, the probability that
a random graph is an element of that class tends to 0 (“0-statement”).

definition is-threshold :: ugraph-class ⇒ (nat ⇒ real) ⇒ bool where
is-threshold c t ≡ ugraph-property c ∧ (∀ p. nonzero-prob-fun p −→
(p � t −→ prob-in-class p c −−−−→ 0 ) ∧
(t � p −→ prob-in-class p c −−−−→ 1 ))

lemma is-thresholdI [intro]:
assumes ugraph-property c
assumes

∧
p. [[ nonzero-prob-fun p; p � t ]] =⇒ prob-in-class p c −−−−→ 0

assumes
∧

p. [[ nonzero-prob-fun p; t � p ]] =⇒ prob-in-class p c −−−−→ 1
shows is-threshold c t
〈proof 〉

end
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6 The subgraph threshold theorem
theory Subgraph-Threshold
imports

Ugraph-Properties
begin

lemma (in edge-space) measurable-pred[measurable]: Measurable.pred P Q
〈proof 〉

This section contains the main theorem. For a fixed nonempty graph H, we
consider the graph property of ‘containing an isomorphic subgraph of H’.
This is obviously a valid property, since it is closed under isomorphism.
The corresponding threshold function is

t(n) = n
− 1

ρ′(H) ,

where ρ′ denotes max-density.
definition subgraph-threshold :: ugraph ⇒ nat ⇒ real where
subgraph-threshold H n = n powr (−(1 / max-density H ))

theorem
assumes nonempty: nonempty-graph H and finite: finite-graph H and well-

formed: uwellformed H
shows is-threshold {G. H v G} (subgraph-threshold H )
〈proof 〉

end
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