
Properties of Random Graphs – Subgraph
Containment

Lars Hupel

March 17, 2025

Abstract

Random graphs are graphs with a fixed number of vertices, where
each edge is present with a fixed probability. We are interested in the
probability that a random graph contains a certain pattern, for ex-
ample a cycle or a clique. A very high edge probability gives rise to
perhaps too many edges (which degrades performance for many algo-
rithms), whereas a low edge probability might result in a disconnected
graph. We prove a theorem about a threshold probability such that
a higher edge probability will asymptotically almost surely produce a
random graph with the desired subgraph.

Contents
1 Introduction 2

2 Miscellaneous and contributed lemmas 2

3 Lemmas about probabilities 11
3.1 Indicator variables and valid probability values 11
3.2 Expectation and variance . 12
3.3 Sets of indicator variables . 14

4 Lemmas about undirected graphs 18
4.1 Subgraphs . 19
4.2 Induced subgraphs . 21
4.3 Graph isomorphism . 22
4.4 Isomorphic subgraphs . 26
4.5 Density . 28
4.6 Fixed selectors . 31

5 Classes and properties of graphs 32

6 The subgraph threshold theorem 33

1

1 Introduction

Random graphs have been introduced by Erdős and Rényi in [2]. They de-
scribe a probability space where, for a fixed number of vertices, each possible
edge is present with a certain probability independent from other edges, but
with the same probability for each edge. They study what properties emerge
when increasing the number of vertices, or as they call it, “the evolution of
such a random graph”. The theorem which we will prove here is a slightly
different version from that in the first section of that paper.
Here, we are interested in the probability that a random graph contains a
certain pattern, for example a cycle or a clique. A very high edge probabil-
ity gives rise to perhaps too many edges, which is usually undesired since it
degrades the performance of many algorithms, whereas a low edge probabil-
ity might result in a disconnected graph. The central theorem determines a
threshold probability such that a higher edge probability will asymptotically
almost surely produce a random graph with the desired subgraph.
The proof is outlined in [1, § 11.4] and [3, § 3]. The work is based on the
comprehensive formalization of probability theory in Isabelle/HOL and on a
previous definition of graphs in a work by Noschinski [4]. There, Noschinski
formalized the proof that graphs with arbitrarily large girth and chromatic
number exist. While the proof in this paper uses a different approach, the
definition of a probability space on edges turned out to be quite useful.

2 Miscellaneous and contributed lemmas
theory Ugraph-Misc
imports

HOL−Probability.Probability
Girth-Chromatic.Girth-Chromatic-Misc

begin

lemma sum-square:
fixes a :: ′i ⇒ ′a :: {monoid-mult, semiring-0}
shows (

∑
i ∈ I . a i)^2 = (

∑
i ∈ I .

∑
j ∈ I . a i ∗ a j)

by (simp only: sum-product power2-eq-square)

lemma sum-split:
finite I =⇒
(
∑

i ∈ I . if p i then f i else g i) = (
∑

i | i ∈ I ∧ p i. f i) + (
∑

i | i ∈ I ∧ ¬p
i. g i)

by (simp add: sum.If-cases Int-def)

lemma sum-split2 :
assumes finite I
shows (

∑
i | i ∈ I ∧ P i. if Q i then f i else g i) = (

∑
i | i ∈ I ∧ P i ∧ Q i. f

i) + (
∑

i | i ∈ I ∧ P i ∧ ¬Q i. g i)

2

proof (subst sum.If-cases)
show finite {i ∈ I . P i}

using assms by simp

have {i ∈ I . P i} ∩ Collect Q = {i ∈ I . P i ∧ Q i} {i ∈ I . P i} ∩ − Collect Q
= {i ∈ I . P i ∧ ¬ Q i}

by auto
thus sum f ({i ∈ I . P i} ∩ Collect Q) + sum g ({i ∈ I . P i} ∩ − Collect Q) =

sum f {i ∈ I . P i ∧ Q i} + sum g {i ∈ I . P i ∧ ¬ Q i}
by presburger

qed

lemma sum-upper :
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I

∧
i. i ∈ I =⇒ 0 ≤ f i

shows (
∑

i | i ∈ I ∧ P i. f i) ≤ sum f I
proof −

have sum f I = (
∑

i ∈ I . if P i then f i else f i)
by simp

hence sum f I = (
∑

i | i ∈ I ∧ P i. f i) + (
∑

i | i ∈ I ∧ ¬P i. f i)
by (simp only: sum-split[OF ‹finite I ›])

moreover have 0 ≤ (
∑

i | i ∈ I ∧ ¬P i. f i)
by (rule sum-nonneg) (simp add: assms)

ultimately show ?thesis
by (metis (full-types) add.comm-neutral add-left-mono)

qed

lemma sum-lower :
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I i ∈ I

∧
i. i ∈ I =⇒ 0 ≤ f i x < f i

shows x < sum f I
proof −

have x < f i by fact
also have . . . ≤ sum f I

using sum-mono2 [OF ‹finite I ›, of {i} f] assms by auto
finally show ?thesis .

qed

lemma sum-lower-or-eq:
fixes f :: ′i ⇒ ′a :: ordered-comm-monoid-add
assumes finite I i ∈ I

∧
i. i ∈ I =⇒ 0 ≤ f i x ≤ f i

shows x ≤ sum f I
proof −

have x ≤ f i by fact
also have . . . ≤ sum f I

using sum-mono2 [OF ‹finite I ›, of {i} f] assms by auto
finally show ?thesis .

qed

3

lemma sum-left-div-distrib:
fixes f :: ′i ⇒ real
shows (

∑
i ∈ I . f i / x) = sum f I / x

proof −
have (

∑
i ∈ I . f i / x) = (

∑
i ∈ I . f i ∗ (1 / x))

by simp
also have . . . = sum f I ∗ (1 / x)

by (rule sum-distrib-right[symmetric])
also have . . . = sum f I / x

by simp
finally show ?thesis

.
qed

lemma powr-mono3 :
fixes x::real
assumes 0 < x x < 1 b ≤ a
shows x powr a ≤ x powr b

proof −
have x powr a = 1 / x powr −a

by (simp add: powr-minus-divide)
also have . . . = (1 / x) powr −a

using assms by (simp add: powr-divide)
also have . . . ≤ (1 / x) powr −b

using assms by (simp add: powr-mono)
also have . . . = 1 / x powr −b

using assms by (simp add: powr-divide)
also have . . . = x powr b

by (simp add: powr-minus-divide)
finally show ?thesis

.
qed

lemma card-union: finite A =⇒ finite B =⇒ card (A ∪ B) = card A + card B −
card (A ∩ B)
by (metis card-Un-Int[symmetric] diff-add-inverse2)

lemma card-1-element:
assumes card E = 1
shows ∃ a. E = {a}

proof −
from assms obtain a where a ∈ E

by force
let ?E ′ = E − {a}

have finite ?E ′

using assms card-ge-0-finite by force
hence card (insert a ?E ′) = 1 + card ?E ′

using card.insert-remove by fastforce

4

moreover have E = insert a ?E ′

using ‹a ∈ E› by blast
ultimately have card E = 1 + card ?E ′

by simp
hence card ?E ′ = 0

using assms by simp
hence ?E ′ = {}

using ‹finite ?E ′› by simp
thus ?thesis

using ‹a ∈ E› by blast
qed

lemma card-2-elements:
assumes card E = 2
shows ∃ a b. E = {a, b} ∧ a 6= b

proof −
from assms obtain a where a ∈ E

by force
let ?E ′ = E − {a}

have finite ?E ′

using assms card-ge-0-finite by force
hence card (insert a ?E ′) = 1 + card ?E ′

using card.insert-remove by fastforce
moreover have E = insert a ?E ′

using ‹a ∈ E› by blast
ultimately have card E = 1 + card ?E ′

by simp
hence card ?E ′ = 1

using assms by simp
then obtain b where ?E ′ = {b}

using card-1-element by blast
hence E = {a, b}

using ‹a ∈ E› by blast
moreover have a 6= b

using ‹?E ′ = {b}› by blast
ultimately show ?thesis

by blast
qed

lemma bij-lift:
assumes bij-betw f A B
shows bij-betw (λe. f ‘ e) (Pow A) (Pow B)

proof −
have f : inj-on f A f ‘ A = B

using assms unfolding bij-betw-def by simp-all
have inj-on (λe. f ‘ e) (Pow A)

unfolding inj-on-def by clarify (metis f (1) inv-into-image-cancel)
moreover have (λe. f ‘ e) ‘ (Pow A) = (Pow B)

5

by (metis f (2) image-Pow-surj)
ultimately show ?thesis

unfolding bij-betw-def by simp
qed

lemma card-inj-subs: inj-on f A =⇒ B ⊆ A =⇒ card (f ‘ B) = card B
by (metis card-image subset-inj-on)

lemma image-comp-cong: (
∧

a. a ∈ A =⇒ f a = f (g a)) =⇒ f ‘ A = f ‘ (g ‘ A)
by auto

abbreviation less-fun :: (nat ⇒ real) ⇒ (nat ⇒ real) ⇒ bool (infix ‹�› 50)
where
f � g ≡ (λn. f n / g n) −−−−→ 0

context
fixes f :: nat ⇒ real

begin

lemma LIMSEQ-power-zero: f −−−−→ 0 =⇒ 0 < n =⇒ (λx. f x ^ n :: real)
−−−−→ 0

by (metis power-eq-0-iff tendsto-power)

lemma LIMSEQ-cong:
assumes f −−−−→ x ∀∞n. f n = g n
shows g −−−−→ x

by (rule real-tendsto-sandwich[where f = f and h = f , OF eventually-mono[OF
assms(2)] eventually-mono[OF assms(2)]]) (auto simp: assms(1))

print-statement Lim-transform-eventually

lemma LIMSEQ-le-zero:
assumes g −−−−→ 0 ∀∞n. 0 ≤ f n ∀∞n. f n ≤ g n
shows f −−−−→ 0

by (rule real-tendsto-sandwich[OF assms(2) assms(3) tendsto-const assms(1)])

lemma LIMSEQ-const-mult:
assumes f −−−−→ a
shows (λx. c ∗ f x) −−−−→ c ∗ a

by (rule tendsto-mult[OF tendsto-const[where k = c] assms])

lemma LIMSEQ-const-div:
assumes f −−−−→ a c 6= 0
shows (λx. f x / c) −−−−→ a / c

using LIMSEQ-const-mult[where c = 1/c] assms by simp

end

lemma quot-bounds:

6

fixes x :: ′a :: linordered-field
assumes x ≤ x ′ y ′ ≤ y 0 < y 0 ≤ x 0 < y ′

shows x / y ≤ x ′ / y ′

proof (rule order-trans)
have 0 ≤ y

using assms by simp
thus x / y ≤ x ′ / y

using assms by (simp add: divide-right-mono)
next

have 0 ≤ x ′

using assms by simp
moreover have 0 < y ∗ y ′

using assms by simp
ultimately show x ′ / y ≤ x ′ / y ′

using assms by (simp add: divide-left-mono)
qed

lemma less-fun-bounds:
assumes f ′� g ′ ∀∞n. f n ≤ f ′ n ∀∞n. g ′ n ≤ g n ∀∞n. 0 ≤ f n ∀∞n. 0 < g

n ∀∞n. 0 < g ′ n
shows f � g

proof (rule real-tendsto-sandwich)
show ∀∞n. 0 ≤ f n / g n

using assms(4 ,5) by eventually-elim simp
next

show ∀∞n. f n / g n ≤ f ′ n / g ′ n
using assms(2−) by eventually-elim (simp only: quot-bounds)

qed (auto intro: assms(1))

lemma less-fun-const-quot:
assumes f � g c 6= 0
shows (λn. b ∗ f n) � (λn. c ∗ g n)

proof −
have (λn. (b ∗ (f n / g n)) / c) −−−−→ (b ∗ 0) / c

using assms by (rule LIMSEQ-const-div[OF LIMSEQ-const-mult])
hence (λn. (b ∗ (f n / g n)) / c) −−−−→ 0

by simp
with eventually-sequentiallyI show ?thesis

by (fastforce intro: Lim-transform-eventually)
qed

lemma partition-set-of-intersecting-sets-by-card:
assumes finite A
shows {B. A ∩ B 6= {}} = (

⋃
n ∈ {1 ..card A}. {B. card (A ∩ B) = n})

proof (rule set-eqI , rule iffI)
fix B
assume B ∈ {B. A ∩ B 6= {}}
hence 0 < card (A ∩ B)

using assms by auto

7

moreover have card (A ∩ B) ≤ card A
using assms by (simp add: card-mono)

ultimately have card (A ∩ B) ∈ {1 ..card A}
by simp

thus B ∈ (
⋃

n ∈ {1 ..card A}. {B. card (A ∩ B) = n})
by blast

qed force

lemma card-set-of-intersecting-sets-by-card:
assumes A ⊆ I finite I k ≤ n n ≤ card I k ≤ card A
shows card {B. B ⊆ I ∧ card B = n ∧ card (A ∩ B) = k} = (card A choose k)
∗ ((card I − card A) choose (n − k))
proof −

note finite-A = finite-subset[OF assms(1 ,2)]

have card {B. B ⊆ I ∧ card B = n ∧ card (A ∩ B) = k} = card ({K . K ⊆ A ∧
card K = k} × {B ′. B ′ ⊆ I − A ∧ card B ′ = n − k}) (is card ?lhs = card ?rhs)

proof (rule bij-betw-same-card[symmetric])
let ?f = λ(K , B ′). K ∪ B ′

have inj-on ?f ?rhs
by (blast intro: inj-onI)

moreover have ?f ‘ ?rhs = ?lhs
proof (rule set-eqI , rule iffI)

fix B
assume B ∈ ?f ‘ ?rhs
then obtain K B ′ where K : K ⊆ A card K = k B ′ ⊆ I − A card B ′ =

n − k K ∪ B ′ = B
by blast

show B ∈ ?lhs
proof safe

fix x assume x ∈ B thus x ∈ I
using K ‹A ⊆ I › by blast

next
have card B = card K + card B ′ − card (K ∩ B ′)
using K assms by (metis card-union finite-A finite-subset finite-Diff)

moreover have K ∩ B ′ = {}
using K assms by blast

ultimately show card B = n
using K assms by simp

next
have A ∩ B = K

using K assms(1) by blast
thus card (A ∩ B) = k

using K by simp
qed

next
fix B
assume B ∈ ?lhs
hence B: B ⊆ I card B = n card (A ∩ B) = k

8

by auto
let ?K = A ∩ B
let ?B ′ = B − A
have ?K ⊆ A card ?K = k ?B ′ ⊆ I − A

using B by auto
moreover have card ?B ′ = n − k

using B finite-A assms(1) by (metis Int-commute card-Diff-subset-Int
finite-Un inf .left-idem le-iff-inf sup-absorb2)

ultimately have (?K , ?B ′) ∈ ?rhs
by blast

moreover have B = ?f (?K , ?B ′)
by auto

ultimately show B ∈ ?f ‘ ?rhs
by blast

qed
ultimately show bij-betw ?f ?rhs ?lhs

unfolding bij-betw-def ..
qed

also have . . . = (
∑

K | K ⊆ A ∧ card K = k. card {B ′. B ′ ⊆ I − A ∧ card B ′

= n − k})
proof (rule card-SigmaI , safe)

show finite {K . K ⊆ A ∧ card K = k}
by (blast intro: finite-subset[where B = Pow A] finite-A)

next
fix K
assume K ⊆ A
thus finite {B ′. B ′ ⊆ I − A ∧ card B ′ = n − card K}

using assms by auto
qed

also have . . . = card {K . K ⊆ A ∧ card K = k} ∗ card {B ′. B ′ ⊆ I − A ∧ card
B ′ = n − k}

by simp
also have . . . = (card A choose k) ∗ (card (I − A) choose (n − k))

by (simp only: n-subsets[OF finite-A] n-subsets[OF finite-Diff [OF assms(2)]])
also have . . . = (card A choose k) ∗ ((card I − card A) choose (n − k))

by (simp only: card-Diff-subset[OF finite-A assms(1)])
finally show ?thesis

.
qed

lemma card-dep-pair-set:
assumes finite A

∧
a. a ⊆ A =⇒ finite (f a)

shows card {(a, b). a ⊆ A ∧ card a = n ∧ b ⊆ f a ∧ card b = g a} = (
∑

a | a
⊆ A ∧ card a = n. card (f a) choose g a) (is card ?S = ?C)
proof −

have S : ?S = Sigma {a. a ⊆ A ∧ card a = n} (λa. {b. b ⊆ f a ∧ card b = g a})
(is - = Sigma ?A ?B)

by auto

9

have card (Sigma ?A ?B) = (
∑

a ∈ {a. a ⊆ A ∧ card a = n}. card (?B a))
proof (rule card-SigmaI , safe)

show finite ?A
by (rule finite-subset[OF - finite-Collect-subsets[OF assms(1)]]) blast

next
fix a
assume a ⊆ A
hence finite (f a)

by (fact assms(2))
thus finite (?B a)

by (rule finite-subset[rotated, OF finite-Collect-subsets]) blast
qed

also have . . . = ?C
proof (rule sum.cong)

fix a
assume a ∈ {a. a ⊆ A ∧ card a = n}
hence finite (f a)

using assms(2) by blast
thus card (?B a) = card (f a) choose g a

by (fact n-subsets)
qed simp

finally have card (Sigma ?A ?B) = ?C
.

thus ?thesis
by (subst S)

qed

lemma prod-cancel-nat:
— Contributed by Manuel Eberl
fixes f :: ′a ⇒ nat
assumes B ⊆ A and finite A and ∀ x∈B. f x 6= 0
shows prod f A / prod f B = prod f (A − B) (is ?A / ?B = ?C)

proof−
from prod.subset-diff [OF assms(1 ,2)] have ?A = ?C ∗ ?B by auto
moreover have ?B 6= 0 using assms by (simp add: finite-subset)
ultimately show ?thesis by simp

qed

lemma prod-id-cancel-nat:
— Contributed by Manuel Eberl
fixes A::nat set
assumes B ⊆ A and finite A and 0 /∈ B
shows

∏
A /

∏
B =

∏
(A−B)

using assms(1−2) by (rule prod-cancel-nat) (metis assms(3))

lemma (in prob-space) integrable-squareD:
— Contributed by Johannes Hölzl
fixes X :: - ⇒ real

10

assumes integrable M (λx. (X x)^2) X ∈ borel-measurable M
shows integrable M X

proof −
have integrable M (λx. max 1 ((X x)^2))

using assms by auto
then show integrable M X
proof (rule Bochner-Integration.integrable-bound[OF - - always-eventually[OF

allI]])
fix x show norm (X x) ≤ norm (max 1 ((X x)^2))

using abs-le-square-iff [of 1 X x] power-increasing[of 1 2 abs (X x)]
by (auto split: split-max)

qed fact
qed

end
theory Prob-Lemmas
imports

HOL−Probability.Probability
Girth-Chromatic.Girth-Chromatic
Ugraph-Misc

begin

3 Lemmas about probabilities

In this section, auxiliary lemmas for computing bounds on expectation and
probabilites of random variables are set up.

3.1 Indicator variables and valid probability values
abbreviation rind :: ′a set ⇒ ′a ⇒ real where
rind ≡ indicator

lemma product-indicator :
rind A x ∗ rind B x = rind (A ∩ B) x

unfolding indicator-def
by auto

We call a real number ‘valid’ iff it is in the range 0 to 1, inclusively, and
additionally ‘nonzero’ iff it is neither 0 nor 1.
abbreviation valid-prob (p :: real) ≡ 0 ≤ p ∧ p ≤ 1
abbreviation nonzero-prob (p :: real) ≡ 0 < p ∧ p < 1

A function ′a ⇒ real is a ‘valid probability function’ iff each value in the
image is valid, and similarly for ‘nonzero’.
abbreviation valid-prob-fun f ≡ (∀n. valid-prob (f n))
abbreviation nonzero-prob-fun f ≡ (∀n. nonzero-prob (f n))

11

lemma nonzero-fun-is-valid-fun: nonzero-prob-fun f =⇒ valid-prob-fun f
by (simp add: less-imp-le)

3.2 Expectation and variance
context prob-space
begin

Note that there is already a notion of independent sets (see indep-set), but
we use the following – simpler – definition:
definition indep A B ←→ prob (A ∩ B) = prob A ∗ prob B

The probability of an indicator variable is equal to its expectation:
lemma expectation-indicator :

A ∈ events =⇒ expectation (rind A) = prob A
by simp

For a non-negative random variable X, the Markov inequality gives the fol-
lowing upper bound:

Pr[X ≥ a] ≤ E[X]

a

lemma markov-inequality:
assumes

∧
a. 0 ≤ X a and integrable M X 0 < t

shows prob {a ∈ space M . t ≤ X a} ≤ expectation X / t
proof −

— proof adapted from edge-space.Markov-inequality, but generalized to arbitrary
prob-spaces

have (
∫

+ x. ennreal (X x) ∂M) = (
∫

x. X x ∂M)
using assms by (intro nn-integral-eq-integral) auto

thus ?thesis
using assms nn-integral-Markov-inequality[of X space M M 1 / t]

by (auto cong: nn-integral-cong simp: emeasure-eq-measure ennreal-mult[symmetric])
qed

Var[X] = E[X2]− E[X]2

lemma variance-expectation:
fixes X :: ′a ⇒ real
assumes integrable M (λx. (X x)^2) and X ∈ borel-measurable M
shows

integrable M (λx. (X x − expectation X)^2) (is ?integrable)
variance X = expectation (λx. (X x)^2) − (expectation X)^2 (is ?variance)

proof −
have int: integrable M X

using integrable-squareD[OF assms] by simp

have (λx. (X x − expectation X)^2) = (λx. (X x)^2 + (expectation X)^2 − (2
∗ X x ∗ expectation X))

by (simp only: power2-diff)

12

hence
variance X = expectation (λx. (X x)^2) + (expectation X)^2 + expectation

(λx. − (2 ∗ X x ∗ expectation X))
?integrable
using integral-add by (simp add: int assms prob-space)+

thus ?variance ?integrable
by (simp add: int power2-eq-square)+

qed

A corollary from the Markov inequality is Chebyshev’s inequality, which
gives an upper bound for the deviation of a random variable from its expec-
tation:

Pr[|Y − E[Y]| ≥ s] ≤ Var[X]

a2

lemma chebyshev-inequality:
fixes Y :: ′a ⇒ real
assumes Y-int: integrable M (λy. (Y y)^2)
assumes Y-borel: Y ∈ borel-measurable M
fixes s :: real
assumes s-pos: 0 < s
shows prob {a ∈ space M . s ≤ |Y a − expectation Y |} ≤ variance Y / s^2

proof −
let ?X = λa. (Y a − expectation Y)^2
let ?t = s^2

have 0 < ?t
using s-pos by simp

hence prob {a ∈ space M . ?t ≤ ?X a} ≤ variance Y / s^2
using markov-inequality variance-expectation[OF Y-int Y-borel] by (simp add:

field-simps)
moreover have {a ∈ space M . ?t ≤ ?X a} = {a ∈ space M . s ≤ |Y a −

expectation Y |}
using abs-le-square-iff s-pos by force

ultimately show ?thesis
by simp

qed

Hence, we can derive an upper bound for the probability that a random
variable is 0.
corollary chebyshev-prob-zero:

fixes Y :: ′a ⇒ real
assumes Y-int: integrable M (λy. (Y y)^2)
assumes Y-borel: Y ∈ borel-measurable M
assumes µ-pos: expectation Y > 0
shows prob {a ∈ space M . Y a = 0} ≤ expectation (λy. (Y y)^2) / (expectation

Y)^2 − 1
proof −

13

let ?s = expectation Y

have prob {a ∈ space M . Y a = 0} ≤ prob {a ∈ space M . ?s ≤ |Y a − ?s|}
using Y-borel by (auto intro!: finite-measure-mono borel-measurable-diff borel-measurable-abs

borel-measurable-le)
also have . . . ≤ variance Y / ?s^2

using assms by (fact chebyshev-inequality)
also have . . . = (expectation (λy. (Y y)^2) − ?s^2) / ?s^2

using Y-int Y-borel by (simp add: variance-expectation)
also have . . . = expectation (λy. (Y y)^2) / ?s^2 − 1

using µ-pos by (simp add: field-simps)
finally show ?thesis .

qed

end

3.3 Sets of indicator variables

This section introduces some inequalities about expectation and other values
related to the sum of a set of random indicators.
locale prob-space-with-indicators = prob-space +

fixes I :: ′i set
assumes finite-I : finite I

fixes A :: ′i ⇒ ′a set
assumes A: A ‘ I ⊆ events

assumes prob-non-zero: ∃ i ∈ I . 0 < prob (A i)
begin

We call the underlying sets A i for each i ∈ I, and the corresponding in-
dicator variables X i. The sum is denoted by Y, and its expectation by
µ.
definition X i = rind (A i)
definition Y x = (

∑
i ∈ I . X i x)

definition µ = expectation Y

In the lecture notes, the following two relations are called ∼ and �, respec-
tively. Note that they are not the opposite of each other.
abbreviation ineq-indep :: ′i ⇒ ′i ⇒ bool where
ineq-indep i j ≡ (i 6= j ∧ indep (A i) (A j))

abbreviation ineq-dep :: ′i ⇒ ′i ⇒ bool where
ineq-dep i j ≡ (i 6= j ∧ ¬indep (A i) (A j))

definition ∆a = (
∑

i ∈ I .
∑

j | j ∈ I ∧ i 6= j. prob (A i ∩ A j))
definition ∆d = (

∑
i ∈ I .

∑
j | j ∈ I ∧ ineq-dep i j. prob (A i ∩ A j))

14

lemma ∆-zero:
assumes

∧
i j. i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ indep (A i) (A j)

shows ∆d = 0
proof −

{
fix i
assume i ∈ I
hence {j. j ∈ I ∧ ineq-dep i j} = {}

using assms by auto
hence (

∑
j | j ∈ I ∧ ineq-dep i j. prob (A i ∩ A j)) = 0

using sum.empty by metis
}
hence ∆d = (0 :: real) ∗ card I

unfolding ∆d-def by simp
thus ?thesis

by simp
qed

lemma A-events[measurable]: i ∈ I =⇒ A i ∈ events
using A by auto

lemma expectation-X-Y : µ = (
∑

i∈I . expectation (X i))
unfolding µ-def Y-def [abs-def] X-def
by (simp add: less-top[symmetric])

lemma expectation-X-non-zero: ∃ i ∈ I . 0 < expectation (X i)
unfolding X-def using prob-non-zero expectation-indicator by simp

corollary µ-non-zero[simp]: 0 < µ
unfolding expectation-X-Y
using expectation-X-non-zero
by (auto intro!: sum-lower finite-I

simp add: expectation-indicator X-def)

lemma ∆d-nonneg: 0 ≤ ∆d

unfolding ∆d-def
by (simp add: sum-nonneg)

corollary µ-sq-non-zero[simp]: 0 < µ^2
by (rule zero-less-power) simp

lemma Y-square-unfold: (λx. (Y x)^2) = (λx.
∑

i ∈ I .
∑

j ∈ I . rind (A i ∩ A
j) x)
unfolding fun-eq-iff Y-def X-def
by (auto simp: sum-square product-indicator)

lemma integrable-Y-sq[simp]: integrable M (λy. (Y y)^2)
unfolding Y-square-unfold

15

by (simp add: sets.Int less-top[symmetric])

lemma measurable-Y [measurable]: Y ∈ borel-measurable M
unfolding Y-def [abs-def] X-def by simp

lemma expectation-Y-∆: expectation (λx. (Y x)^2) = µ + ∆a

proof −
let ?ei = λi j. expectation (rind (A i ∩ A j))

have expectation (λx. (Y x)^2) = (
∑

i ∈ I .
∑

j ∈ I . ?ei i j)
unfolding Y-square-unfold by (simp add: less-top[symmetric])

also have . . . = (
∑

i ∈ I .
∑

j ∈ I . if i = j then ?ei i j else ?ei i j)
by simp

also have . . . = (
∑

i ∈ I . (
∑

j | j ∈ I ∧ i = j. ?ei i j) + (
∑

j | j ∈ I ∧ i 6= j.
?ei i j))

by (simp only: sum-split[OF finite-I])
also have . . . = (

∑
i ∈ I .

∑
j | j ∈ I ∧ i = j. ?ei i j) + (

∑
i ∈ I .

∑
j | j ∈ I

∧ i 6= j. ?ei i j) (is - = ?lhs + ?rhs)
by (fact sum.distrib)

also have . . . = µ + ∆a

proof −
have ?lhs = µ

proof −
{

fix i
assume i: i ∈ I
have (

∑
j | j ∈ I ∧ i = j. ?ei i j) = (

∑
j | j ∈ I ∧ i = j. ?ei i i)

by simp
also have . . . = (

∑
j | i = j. ?ei i i)

using i by metis
also have . . . = expectation (rind (A i))

by auto
finally have (

∑
j | j ∈ I ∧ i = j. ?ei i j) =

}
hence ?lhs = (

∑
i∈I . expectation (rind (A i)))

by force
also have . . . = µ

unfolding expectation-X-Y X-def ..
finally show ?lhs = µ .

qed
moreover have ?rhs = ∆a

proof −
{

fix i j
assume i ∈ I j ∈ I
with A have A i ∩ A j ∈ events by blast
hence ?ei i j = prob (A i ∩ A j)

by (fact expectation-indicator)
}

16

thus ?thesis
unfolding ∆a-def by simp

qed
ultimately show ?lhs + ?rhs = µ + ∆a

by simp
qed

finally show ?thesis .
qed

lemma ∆-expectation-X : ∆a ≤ µ^2 + ∆d

proof −
let ?p = λi j. prob (A i ∩ A j)
let ?p ′ = λi j. prob (A i) ∗ prob (A j)
let ?ie = λi j. indep (A i) (A j)

have ∆a = (
∑

i ∈ I .
∑

j | j ∈ I ∧ i 6= j. if ?ie i j then ?p i j else ?p i j)
unfolding ∆a-def by simp

also have . . . = (
∑

i ∈ I . (
∑

j | j ∈ I ∧ ineq-indep i j. ?p i j) + (
∑

j | j ∈ I
∧ ineq-dep i j. ?p i j))

by (simp only: sum-split2 [OF finite-I])
also have . . . = (

∑
i ∈ I .

∑
j | j ∈ I ∧ ineq-indep i j. ?p i j) + ∆d (is - = ?lhs

+ -)
unfolding ∆d-def by (fact sum.distrib)

also have . . . ≤ µ^2 + ∆d

proof (rule add-right-mono)
have (

∑
i∈I .

∑
j | j ∈ I ∧ ineq-indep i j. ?p i j) = (

∑
i ∈ I .

∑
j | j ∈ I ∧

ineq-indep i j. ?p ′ i j)
unfolding indep-def by simp

also have . . . ≤ (
∑

i ∈ I .
∑

j ∈ I . ?p ′ i j)
proof (rule sum-mono)

fix i
assume i ∈ I
show (

∑
j | j ∈ I ∧ ineq-indep i j. ?p ′ i j) ≤ (

∑
j∈I . ?p ′ i j)

by (rule sum-upper [OF finite-I]) (simp add: zero-le-mult-iff)
qed

also have . . . = (
∑

i ∈ I . prob (A i))^2
by (fact sum-square[symmetric])

also have . . . = (
∑

i ∈ I . expectation (X i))^2
unfolding X-def using expectation-indicator A by simp

also have . . . = µ^2
using expectation-X-Y [symmetric] by simp

finally show ?lhs ≤ µ^2 .
qed

finally show ?thesis .
qed

lemma prob-µ-∆a: prob {a ∈ space M . Y a = 0} ≤ 1 / µ + ∆a / µ^2 − 1
proof −

have prob {a ∈ space M . Y a = 0} ≤ expectation (λy. (Y y)^2) / µ^2 − 1

17

unfolding µ-def by (rule chebyshev-prob-zero) (simp add: µ-def [symmetric])+
also have . . . = (µ + ∆a) / µ^2 − 1

using expectation-Y-∆ by simp
also have . . . = 1 / µ + ∆a / µ^2 − 1

unfolding power2-eq-square by (simp add: field-simps add-divide-distrib)
finally show ?thesis .

qed

lemma prob-µ-∆d: prob {a ∈ space M . Y a = 0} ≤ 1/µ + ∆d/µ^2
proof −

have prob {a ∈ space M . Y a = 0} ≤ 1/µ + ∆a/µ^2 − 1
by (fact prob-µ-∆a)

also have . . . = (1/µ − 1) + ∆a/µ^2
by simp

also have . . . ≤ (1/µ − 1) + (µ^2 + ∆d)/µ^2
using divide-right-mono[OF ∆-expectation-X] by simp

also have . . . = 1/µ + ∆d/µ^2
using µ-sq-non-zero by (simp add: field-simps)

finally show ?thesis .
qed

end

end

4 Lemmas about undirected graphs
theory Ugraph-Lemmas
imports

Prob-Lemmas
Girth-Chromatic.Girth-Chromatic

begin

The complete graph is a graph where all possible edges are present. It is
wellformed by definition.
definition complete :: nat set ⇒ ugraph where

complete V = (V , all-edges V)

lemma complete-wellformed: uwellformed (complete V)
unfolding complete-def uwellformed-def all-edges-def
by simp

If the set of vertices is finite, the set of edges in the complete graph is finite.
lemma all-edges-finite: finite V =⇒ finite (all-edges V)

unfolding all-edges-def
by simp

corollary complete-finite-edges: finite V =⇒ finite (uedges (complete V))

18

unfolding complete-def using all-edges-finite
by simp

The sets of possible edges of disjoint sets of vertices are disjoint.
lemma all-edges-disjoint: S ∩ T = {} =⇒ all-edges S ∩ all-edges T = {}

unfolding all-edges-def
by force

A graph is called ‘finite’ if its set of edges and its set of vertices are finite.
definition finite-graph G ≡ finite (uverts G) ∧ finite (uedges G)

The complete graph is finite.
corollary complete-finite: finite V =⇒ finite-graph (complete V)

using complete-finite-edges unfolding finite-graph-def complete-def
by simp

A graph is called ‘nonempty’ if it contains at least one vertex and at least
one edge.
definition nonempty-graph G ≡ uverts G 6= {} ∧ uedges G 6= {}

A random graph is both wellformed and finite.
lemma (in edge-space) wellformed-and-finite:

assumes E ∈ Pow S-edges
shows finite-graph (edge-ugraph E) uwellformed (edge-ugraph E)

unfolding finite-graph-def
proof

show finite (uverts (edge-ugraph E))
unfolding edge-ugraph-def S-verts-def by simp

next
show finite (uedges (edge-ugraph E))
using assms unfolding edge-ugraph-def S-edges-def by (auto intro: all-edges-finite)

next
show uwellformed (edge-ugraph E)
using complete-wellformed unfolding edge-ugraph-def S-edges-def complete-def

uwellformed-def by force
qed

The probability for a random graph to have e edges is pe.
lemma (in edge-space) cylinder-empty-prob:

A ⊆ S-edges =⇒ prob (cylinder S-edges A {}) = p ^ (card A)
using cylinder-prob by auto

4.1 Subgraphs
definition subgraph :: ugraph ⇒ ugraph ⇒ bool where

subgraph G ′ G ≡ uverts G ′ ⊆ uverts G ∧ uedges G ′ ⊆ uedges G

lemma subgraph-refl: subgraph G G

19

unfolding subgraph-def
by simp

lemma subgraph-trans: subgraph G ′′ G ′ =⇒ subgraph G ′ G =⇒ subgraph G ′′ G
unfolding subgraph-def
by auto

lemma subgraph-antisym: subgraph G G ′ =⇒ subgraph G ′ G =⇒ G = G ′

unfolding subgraph-def
by (auto simp add: Product-Type.prod-eqI)

lemma subgraph-complete:
assumes uwellformed G
shows subgraph G (complete (uverts G))

proof −
{

fix e
assume e ∈ uedges G
with assms have card e = 2 and u:

∧
u. u ∈ e =⇒ u ∈ uverts G

unfolding uwellformed-def by auto
moreover then obtain u v where e = {u, v} u 6= v

by (metis card-2-elements)
ultimately have e = mk-uedge (u, v) u ∈ uverts G v ∈ uverts G

by auto
hence e ∈ all-edges (uverts G)

unfolding all-edges-def using ‹u 6= v› by fastforce
}
thus ?thesis

unfolding complete-def subgraph-def by auto
qed

corollary wellformed-all-edges: uwellformed G =⇒ uedges G ⊆ all-edges (uverts
G)

using subgraph-complete subgraph-def complete-def by simp

corollary max-edges-graph:
assumes uwellformed G finite (uverts G)
shows card (uedges G) ≤ (card (uverts G))^2

proof −
have card (uedges G) ≤ card (uverts G) choose 2

by (metis all-edges-finite assms card-all-edges card-mono wellformed-all-edges)
thus ?thesis

by (metis binomial-le-pow le0 neq0-conv order .trans zero-less-binomial-iff)
qed

lemma subgraph-finite: [[finite-graph G; subgraph G ′ G]] =⇒ finite-graph G ′

unfolding finite-graph-def subgraph-def
by (metis rev-finite-subset)

20

corollary wellformed-finite:
assumes finite (uverts G) and uwellformed G
shows finite-graph G

proof (rule subgraph-finite[where G = complete (uverts G)])
show subgraph G (complete (uverts G))

using assms by (simp add: subgraph-complete)
next

have finite (uedges (complete (uverts G)))
using complete-finite-edges[OF assms(1)] .

thus finite-graph (complete (uverts G))
unfolding finite-graph-def complete-def using assms(1) by auto

qed

definition subgraphs :: ugraph ⇒ ugraph set where
subgraphs G = {G ′. subgraph G ′ G}

definition nonempty-subgraphs :: ugraph ⇒ ugraph set where
nonempty-subgraphs G = {G ′. uwellformed G ′ ∧ subgraph G ′ G ∧ nonempty-graph
G ′}

lemma subgraphs-finite:
assumes finite-graph G
shows finite (subgraphs G)

proof −
have subgraphs G = {(V ′, E ′). V ′ ⊆ uverts G ∧ E ′ ⊆ uedges G}

unfolding subgraphs-def subgraph-def by force
moreover have finite (uverts G) finite (uedges G)

using assms unfolding finite-graph-def by auto
ultimately show ?thesis

by simp
qed

corollary nonempty-subgraphs-finite: finite-graph G =⇒ finite (nonempty-subgraphs
G)
using subgraphs-finite
unfolding nonempty-subgraphs-def subgraphs-def
by auto

4.2 Induced subgraphs
definition induced-subgraph :: uvert set ⇒ ugraph ⇒ ugraph where
induced-subgraph V G = (V , uedges G ∩ all-edges V)

lemma induced-is-subgraph:
V ⊆ uverts G =⇒ subgraph (induced-subgraph V G) G
V ⊆ uverts G =⇒ subgraph (induced-subgraph V G) (complete V)

unfolding subgraph-def induced-subgraph-def complete-def
by simp+

21

lemma induced-wellformed: uwellformed G =⇒ V ⊆ uverts G =⇒ uwellformed
(induced-subgraph V G)
unfolding uwellformed-def induced-subgraph-def all-edges-def
by force

lemma subgraph-union-induced:
assumes uverts H 1 ⊆ S and uverts H 2 ⊆ T
assumes uwellformed H 1 and uwellformed H 2

shows subgraph H 1 (induced-subgraph S G) ∧ subgraph H 2 (induced-subgraph T
G) ←→

subgraph (uverts H 1 ∪ uverts H 2, uedges H 1 ∪ uedges H 2) (induced-subgraph
(S ∪ T) G)
unfolding induced-subgraph-def subgraph-def
apply auto
using all-edges-mono apply blast
using all-edges-mono apply blast
using assms(1 ,2) wellformed-all-edges[OF assms(3)] wellformed-all-edges[OF assms(4)]
all-edges-mono[OF assms(1)] all-edges-mono[OF assms(2)]
apply auto
done

lemma (in edge-space) induced-subgraph-prob:
assumes uverts H ⊆ V and uwellformed H and V ⊆ S-verts
shows prob {es ∈ space P. subgraph H (induced-subgraph V (edge-ugraph es))}

= p ^ card (uedges H) (is prob ?A = -)
proof −

have prob ?A = prob (cylinder S-edges (uedges H) {})
unfolding cylinder-def space-eq subgraph-def induced-subgraph-def edge-ugraph-def

S-edges-def
by (rule arg-cong[OF Collect-cong]) (metis (no-types) assms(1 ,2) Pow-iff all-edges-mono

fst-conv inf-absorb1 inf-bot-left le-inf-iff snd-conv wellformed-all-edges)
also have . . . = p ^ card (uedges H)

proof (rule cylinder-empty-prob)
have uedges H ⊆ all-edges (uverts H)

by (rule wellformed-all-edges[OF assms(2)])
also have all-edges (uverts H) ⊆ all-edges S-verts

using assms by (auto simp: all-edges-mono[OF subset-trans])
finally show uedges H ⊆ S-edges

unfolding S-edges-def .
qed

finally show ?thesis
.

qed

4.3 Graph isomorphism

We define graph isomorphism slightly different than in the literature. The
usual definition is that two graphs are isomorphic iff there exists a bijec-
tion between the vertex sets which preserves the adjacency. However, this

22

complicates many proofs.
Instead, we define the intuitive mapping operation on graphs. An isomor-
phism between two graphs arises if there is a suitable mapping function
from the first to the second graph. Later, we show that this operation can
be inverted.
fun map-ugraph :: (nat ⇒ nat) ⇒ ugraph ⇒ ugraph where
map-ugraph f (V , E) = (f ‘ V , (λe. f ‘ e) ‘ E)

definition isomorphism :: ugraph ⇒ ugraph ⇒ (nat ⇒ nat) ⇒ bool where
isomorphism G1 G2 f ≡ bij-betw f (uverts G1) (uverts G2) ∧ G2 = map-ugraph f
G1

abbreviation isomorphic :: ugraph ⇒ ugraph ⇒ bool (‹- ' -›) where
G1 ' G2 ≡ uwellformed G1 ∧ uwellformed G2 ∧ (∃ f . isomorphism G1 G2 f)

lemma map-ugraph-id: map-ugraph id = id
unfolding fun-eq-iff
by simp

lemma map-ugraph-trans: map-ugraph (g ◦ f) = (map-ugraph g) ◦ (map-ugraph
f)

by (simp add: fun-eq-iff image-image)

lemma map-ugraph-wellformed:
assumes uwellformed G and inj-on f (uverts G)
shows uwellformed (map-ugraph f G)

unfolding uwellformed-def
proof safe

fix e ′

assume e ′ ∈ uedges (map-ugraph f G)
hence e ′ ∈ (λe. f ‘ e) ‘ (uedges G)

by (metis map-ugraph.simps snd-conv surjective-pairing)
then obtain e where e: e ′ = f ‘ e e ∈ uedges G

by blast
hence card e = 2 e ⊆ uverts G

using assms(1) unfolding uwellformed-def by blast+
thus card e ′ = 2

using e(1) by (simp add: card-inj-subs[OF assms(2)])

fix u ′

assume u ′ ∈ e ′

hence u ′ ∈ f ‘ e
using e by force

then obtain u where u: u ′ = f u u ∈ e
by blast

hence u ∈ uverts G
using assms(1) e(2) unfolding uwellformed-def by blast

hence u ′ ∈ f ‘ uverts G

23

using u(1) by simp
thus u ′ ∈ uverts (map-ugraph f G)

by (metis map-ugraph.simps fst-conv surjective-pairing)
qed

lemma map-ugraph-finite: finite-graph G =⇒ finite-graph (map-ugraph f G)
unfolding finite-graph-def
by (metis finite-imageI fst-conv map-ugraph.simps snd-conv surjective-pairing)

lemma map-ugraph-preserves-sub:
assumes subgraph G1 G2

shows subgraph (map-ugraph f G1) (map-ugraph f G2)
proof −

have f ‘ uverts G1 ⊆ f ‘ uverts G2 (λe. f ‘ e) ‘ uedges G1 ⊆ (λe. f ‘ e) ‘ uedges
G2

using assms(1) unfolding subgraph-def by auto
thus ?thesis

unfolding subgraph-def by (metis map-ugraph.simps fst-conv snd-conv surjec-
tive-pairing)
qed

lemma isomorphic-refl: uwellformed G =⇒ G ' G
unfolding isomorphism-def
by (metis bij-betw-id id-def map-ugraph-id)

lemma isomorphic-trans:
assumes G1 ' G2 and G2 ' G3

shows G1 ' G3

proof −
from assms obtain f 1 f 2 where

bij: bij-betw f 1 (uverts G1) (uverts G2) bij-betw f 2 (uverts G2) (uverts G3) and
map: G2 = map-ugraph f 1 G1 G3 = map-ugraph f 2 G2

unfolding isomorphism-def by blast

let ?f = f 2 ◦ f 1
have bij-betw ?f (uverts G1) (uverts G3)

using bij by (simp add: bij-betw-comp-iff)
moreover have G3 = map-ugraph ?f G1

using map by (simp add: map-ugraph-trans)
moreover have uwellformed G1 uwellformed G3

using assms unfolding isomorphism-def by simp+
ultimately show G1 ' G3

unfolding isomorphism-def by blast
qed

lemma isomorphic-sym:
assumes G1 ' G2

shows G2 ' G1

proof safe

24

from assms obtain f where isomorphism G1 G2 f
by blast

hence bij: bij-betw f (uverts G1) (uverts G2) and map: G2 = map-ugraph f G1

unfolding isomorphism-def by auto

let ?f ′ = inv-into (uverts G1) f
have bij ′: bij-betw ?f ′ (uverts G2) (uverts G1)

by (rule bij-betw-inv-into) fact
moreover have uverts G1 = ?f ′ ‘ uverts G2

using bij ′ unfolding bij-betw-def by force
moreover have uedges G1 = (λe. ?f ′ ‘ e) ‘ uedges G2

proof −
have uedges G1 = id ‘ uedges G1

by simp
also have . . . = (λe. ?f ′ ‘ (f ‘ e)) ‘ uedges G1

proof (rule image-cong)
fix a
assume a ∈ uedges G1

hence a ⊆ uverts G1

using assms unfolding isomorphism-def uwellformed-def by blast
thus id a = inv-into (uverts G1) f ‘ f ‘ a
by (metis (full-types) id-def bij bij-betw-imp-inj-on inv-into-image-cancel)

qed simp
also have . . . = (λe. ?f ′ ‘ e) ‘ ((λe. f ‘ e) ‘ uedges G1)

by (rule image-image[symmetric])
also have . . . = (λe. ?f ′ ‘ e) ‘ uedges G2

using bij map by (metis map-ugraph.simps prod.collapse snd-eqD)
finally show ?thesis

.
qed

ultimately have isomorphism G2 G1 ?f ′

unfolding isomorphism-def by (metis map-ugraph.simps split-pairs)
thus ∃ f . isomorphism G2 G1 f

by blast
qed (auto simp: assms)

lemma isomorphic-cards:
assumes G1 ' G2

shows
card (uverts G1) = card (uverts G2) (is ?V)
card (uedges G1) = card (uedges G2) (is ?E)

proof −
from assms obtain f where

bij: bij-betw f (uverts G1) (uverts G2) and
map: G2 = map-ugraph f G1

unfolding isomorphism-def by blast
from assms have wellformed: uwellformed G1 uwellformed G2

by simp+

25

show ?V
by (rule bij-betw-same-card[OF bij])

let ?g = λe. f ‘ e
have bij-betw ?g (Pow (uverts G1)) (Pow (uverts G2))

by (rule bij-lift[OF bij])
moreover have uedges G1 ⊆ Pow (uverts G1)

using wellformed(1) unfolding uwellformed-def by blast
ultimately have card (?g ‘ uedges G1) = card (uedges G1)

unfolding bij-betw-def by (metis card-inj-subs)
thus ?E

by (metis map map-ugraph.simps snd-conv surjective-pairing)
qed

4.4 Isomorphic subgraphs

The somewhat sloppy term ‘isomorphic subgraph’ denotes a subgraph which
is isomorphic to a fixed other graph. For example, saying that a graph
contains a triangle usually means that it contains any triangle, not the
specific triangle with the nodes 1, 2 and 3. Hence, such a graph would have
a triangle as an isomorphic subgraph.
definition subgraph-isomorphic :: ugraph ⇒ ugraph ⇒ bool (‹- v -›) where
G ′ v G ≡ uwellformed G ∧ (∃G ′′. G ′ ' G ′′ ∧ subgraph G ′′ G)

lemma subgraph-is-subgraph-isomorphic: [[uwellformed G ′; uwellformed G; sub-
graph G ′ G]] =⇒ G ′ v G
unfolding subgraph-isomorphic-def
by (metis isomorphic-refl)

lemma isomorphic-is-subgraph-isomorphic: G1 ' G2 =⇒ G1 v G2

unfolding subgraph-isomorphic-def
by (metis subgraph-refl)

lemma subgraph-isomorphic-refl: uwellformed G =⇒ G v G
unfolding subgraph-isomorphic-def
by (metis isomorphic-refl subgraph-refl)

lemma subgraph-isomorphic-pre-iso-closed:
assumes G1 ' G2 and G2 v G3

shows G1 v G3

unfolding subgraph-isomorphic-def
proof

show uwellformed G3

using assms unfolding subgraph-isomorphic-def by blast
next

from assms(2) obtain G2
′ where G2 ' G2

′ subgraph G2
′ G3

unfolding subgraph-isomorphic-def by blast
moreover with assms(1) have G1 ' G2

′

26

by (metis isomorphic-trans)
ultimately show ∃G ′′. G1 ' G ′′ ∧ subgraph G ′′ G3

by blast
qed

lemma subgraph-isomorphic-pre-subgraph-closed:
assumes uwellformed G1 and subgraph G1 G2 and G2 v G3

shows G1 v G3

unfolding subgraph-isomorphic-def
proof

show uwellformed G3

using assms unfolding subgraph-isomorphic-def by blast
next

from assms(3) obtain G2
′ where G2 ' G2

′ subgraph G2
′ G3

unfolding subgraph-isomorphic-def by blast
then obtain f where bij: bij-betw f (uverts G2) (uverts G2

′) G2
′ = map-ugraph

f G2

unfolding isomorphism-def by blast
let ?G1

′ = map-ugraph f G1

have bij-betw f (uverts G1) (f ‘ uverts G1)
using bij(1) assms(2) unfolding subgraph-def by (auto intro: bij-betw-subset)

moreover hence uwellformed ?G1
′

using map-ugraph-wellformed[OF assms(1)] unfolding bij-betw-def ..
ultimately have G1 ' ?G1

′

using assms(1) unfolding isomorphism-def by (metis map-ugraph.simps
fst-conv surjective-pairing)

moreover have subgraph ?G1
′ G3

using subgraph-trans[OF map-ugraph-preserves-sub[OF assms(2)]] bij(2) ‹sub-
graph G2

′ G3› by simp
ultimately show ∃G ′′. G1 ' G ′′ ∧ subgraph G ′′ G3

by blast
qed

lemmas subgraph-isomorphic-pre-closed = subgraph-isomorphic-pre-subgraph-closed
subgraph-isomorphic-pre-iso-closed

lemma subgraph-isomorphic-trans[trans]:
assumes G1 v G2 and G2 v G3

shows G1 v G3

proof −
from assms(1) obtain G where G1 ' G subgraph G G2

unfolding subgraph-isomorphic-def by blast
thus ?thesis

using assms(2) by (metis subgraph-isomorphic-pre-closed)
qed

lemma subgraph-isomorphic-post-iso-closed: [[H v G; G ' G ′]] =⇒ H v G ′

using isomorphic-is-subgraph-isomorphic subgraph-isomorphic-trans

27

by blast

lemmas subgraph-isomorphic-post-closed = subgraph-isomorphic-post-iso-closed

lemmas subgraph-isomorphic-closed = subgraph-isomorphic-pre-closed subgraph-isomorphic-post-closed

4.5 Density

The density of a graph is the quotient of the number of edges and the number
of vertices of a graph.
definition density :: ugraph ⇒ real where
density G = card (uedges G) / card (uverts G)

The maximum density of a graph is the density of its densest nonempty
subgraph.
definition max-density :: ugraph ⇒ real where
max-density G = Lattices-Big.Max (density ‘ nonempty-subgraphs G)

We prove some obvious results about the maximum density, such as that
there is a subgraph which has the maximum density and that the (maximum)
density is preserved by isomorphisms. The proofs are a bit complicated by
the fact that most facts about Max require non-emptiness of the target set,
but we need that anyway to get a value out of it.
lemma subgraph-has-max-density:

assumes finite-graph G and nonempty-graph G and uwellformed G
shows ∃G ′. density G ′ = max-density G ∧ subgraph G ′ G ∧ nonempty-graph G ′

∧ finite-graph G ′ ∧ uwellformed G ′

proof −
have G ∈ nonempty-subgraphs G

unfolding nonempty-subgraphs-def using subgraph-refl assms by simp
hence density G ∈ density ‘ nonempty-subgraphs G

by simp
hence (density ‘ nonempty-subgraphs G) 6= {}

by fast
hence max-density G ∈ (density ‘ nonempty-subgraphs G)

unfolding max-density-def by (auto simp add: nonempty-subgraphs-finite[OF
assms(1)] Max.closed)

thus ?thesis
unfolding nonempty-subgraphs-def using subgraph-finite[OF assms(1)] by

force
qed

lemma max-density-is-max:
assumes finite-graph G and finite-graph G ′ and nonempty-graph G ′ and uwell-

formed G ′ and subgraph G ′ G
shows density G ′ ≤ max-density G

unfolding max-density-def

28

proof (rule Max-ge)
show finite (density ‘ nonempty-subgraphs G)

using assms(1) by (simp add: nonempty-subgraphs-finite)
next

show density G ′ ∈ density ‘ nonempty-subgraphs G
unfolding nonempty-subgraphs-def using assms by blast

qed

lemma max-density-gr-zero:
assumes finite-graph G and nonempty-graph G and uwellformed G
shows 0 < max-density G

proof −
have 0 < card (uverts G) 0 < card (uedges G)

using assms unfolding finite-graph-def nonempty-graph-def by auto
hence 0 < density G

unfolding density-def by simp
also have density G ≤ max-density G

using assms by (simp add: max-density-is-max subgraph-refl)
finally show ?thesis

.
qed

lemma isomorphic-density:
assumes G1 ' G2

shows density G1 = density G2

unfolding density-def
using isomorphic-cards[OF assms]
by simp

lemma isomorphic-max-density:
assumes G1 ' G2 and nonempty-graph G1 and nonempty-graph G2 and fi-

nite-graph G1 and finite-graph G2

shows max-density G1 = max-density G2

proof −
— The proof strategy is not completely straightforward. We first show that if

two graphs are isomorphic, the maximum density of one graph is less or equal than
the maximum density of the other graph. The reason is that this proof is quite
long and the desired result directly follows from the symmetry of the isomorphism
relation.1

{
fix A B
assume A: nonempty-graph A finite-graph A
assume iso: A ' B

then obtain f where f : B = map-ugraph f A bij-betw f (uverts A) (uverts B)
unfolding isomorphism-def by blast

1Some famous mathematician once said that if you prove that a ≤ b and b ≤ a, you
know that these numbers are equal, but not why. Since many proofs in this work are
mostly opaque to me, I can live with that.

29

have wellformed: uwellformed A
using iso unfolding isomorphism-def by simp

— We observe that the set of densities of the subgraphs does not change if we
map the subgraphs first.

have density ‘ nonempty-subgraphs A = density ‘ (map-ugraph f ‘ nonempty-subgraphs
A)

proof (rule image-comp-cong)
fix G
assume G ∈ nonempty-subgraphs A
hence uverts G ⊆ uverts A uwellformed G

unfolding nonempty-subgraphs-def subgraph-def by simp+
hence inj-on f (uverts G)

using f (2) unfolding bij-betw-def by (metis subset-inj-on)
hence G ' map-ugraph f G

unfolding isomorphism-def bij-betw-def
by (metis map-ugraph.simps fst-conv surjective-pairing map-ugraph-wellformed

‹uwellformed G›)
thus density G = density (map-ugraph f G)

by (fact isomorphic-density)
qed

— Additionally, we show that the operations nonempty-subgraphs and map-ugraph
can be swapped without changing the densities. This is an obvious result, because
map-ugraph does not change the structure of a graph. Still, the proof is a bit
hairy, which is why we only show inclusion in one direction and use symmetry of
isomorphism later.

also have . . . ⊆ density ‘ nonempty-subgraphs (map-ugraph f A)
proof (rule image-mono, rule subsetI)

fix G ′′

assume G ′′ ∈ map-ugraph f ‘ nonempty-subgraphs A
then obtain G ′ where G-subst: G ′′= map-ugraph f G ′ G ′∈ nonempty-subgraphs

A
by blast

hence G ′: subgraph G ′ A nonempty-graph G ′ uwellformed G ′

unfolding nonempty-subgraphs-def by auto
hence inj-on f (uverts G ′)

using f unfolding bij-betw-def subgraph-def by (metis subset-inj-on)
hence uwellformed G ′′

using map-ugraph-wellformed G ′ G-subst by simp
moreover have nonempty-graph G ′′

using G ′ G-subst unfolding nonempty-graph-def by (metis map-ugraph.simps
fst-conv snd-conv surjective-pairing empty-is-image)

moreover have subgraph G ′′ (map-ugraph f A)
using map-ugraph-preserves-sub G ′ G-subst by simp

ultimately show G ′′ ∈ nonempty-subgraphs (map-ugraph f A)
unfolding nonempty-subgraphs-def by simp

qed
finally have density ‘ nonempty-subgraphs A ⊆ density ‘ nonempty-subgraphs

(map-ugraph f A)
.

30

hence max-density A ≤ max-density (map-ugraph f A)
unfolding max-density-def
proof (rule Max-mono)

have A ∈ nonempty-subgraphs A
using A iso unfolding nonempty-subgraphs-def by (simp add: subgraph-refl)
thus density ‘ nonempty-subgraphs A 6= {}

by blast
next

have finite (nonempty-subgraphs (map-ugraph f A))
by (rule nonempty-subgraphs-finite[OF map-ugraph-finite[OF A(2)]])

thus finite (density ‘ nonempty-subgraphs (map-ugraph f A))
by blast

qed
hence max-density A ≤ max-density B

by (subst f)
}
then show ?thesis

by (meson assms isomorphic-sym order-antisym-conv)
qed

4.6 Fixed selectors

In the proof of the main theorem in the lecture notes, the concept of a “fixed
copy” of a graph is fundamental.
Let H be a fixed graph. A ‘fixed selector’ is basically a function mapping
a set with the same size as the vertex set of H to a new graph which is
isomorphic to H and its vertex set is the same as the input set.2

definition is-fixed-selector H f = (∀V . finite V ∧ card (uverts H) = card V −→
H ' f V ∧ uverts (f V) = V)

Obviously, there may be many possible fixed selectors for a given graph.
First, we show that there is always at least one. This is sufficient, because
we can always obtain that one and use its properties without knowing exactly
which one we chose.
lemma ex-fixed-selector :

assumes uwellformed H and finite-graph H
obtains f where is-fixed-selector H f

proof
— I guess this is the only place in the whole work where we make use of a nifty

little HOL feature called SOME, which is basically Hilbert’s choice operator. The
reason is that any bijection between the the vertex set of H and the input set gives
rise to a fixed selector function. In the lecture notes, a specific bijection was defined,
but this is shorter and more elegant.

let ?bij = λV . SOME g. bij-betw g (uverts H) V
let ?f = λV . map-ugraph (?bij V) H
{

2We call such a selector fixed because its result is deterministic.

31

fix V :: uvert set
assume finite V card (uverts H) = card V
moreover have finite (uverts H)

using assms unfolding finite-graph-def by simp
ultimately have bij-betw (?bij V) (uverts H) V

by (metis finite-same-card-bij someI-ex)
moreover hence ∗: uverts (?f V) = V ∧ uwellformed (?f V)

using map-ugraph-wellformed[OF assms(1)]
by (metis bij-betw-def map-ugraph.simps fst-conv surjective-pairing)

ultimately have ∗∗: H ' ?f V
unfolding isomorphism-def using assms(1) by auto

note ∗ ∗∗
}
thus is-fixed-selector H ?f

unfolding is-fixed-selector-def by blast
qed

lemma fixed-selector-induced-subgraph:
assumes is-fixed-selector H f and card (uverts H) = card V and finite V
assumes sub: subgraph (f V) (induced-subgraph V G) and V : V ⊆ uverts G and

G: uwellformed G
shows H v G
by (meson G V assms induced-is-subgraph(1) is-fixed-selector-def sub subgraph-isomorphic-def

subgraph-trans)

end

5 Classes and properties of graphs
theory Ugraph-Properties
imports

Ugraph-Lemmas
Girth-Chromatic.Girth-Chromatic

begin

A “graph property” is a set of graphs which is closed under isomorphism.
type-synonym ugraph-class = ugraph set

definition ugraph-property :: ugraph-class ⇒ bool where
ugraph-property C ≡ ∀G ∈ C . ∀G ′. G ' G ′ −→ G ′ ∈ C

abbreviation prob-in-class :: (nat ⇒ real) ⇒ ugraph-class ⇒ nat ⇒ real where
prob-in-class p c n ≡ probGn p n (λes. edge-space.edge-ugraph n es ∈ c)

From now on, we consider random graphs not with fixed edge probabilities
but rather with a probability function depending on the number of vertices.
Such a function is called a “threshold” for a graph property iff

• for asymptotically larger probability functions, the probability that a

32

random graph is an element of that class tends to 1 (“1-statement”),
and

• for asymptotically smaller probability functions, the probability that
a random graph is an element of that class tends to 0 (“0-statement”).

definition is-threshold :: ugraph-class ⇒ (nat ⇒ real) ⇒ bool where
is-threshold c t ≡ ugraph-property c ∧ (∀ p. nonzero-prob-fun p −→
(p � t −→ prob-in-class p c −−−−→ 0) ∧
(t � p −→ prob-in-class p c −−−−→ 1))

lemma is-thresholdI [intro]:
assumes ugraph-property c
assumes

∧
p. [[nonzero-prob-fun p; p � t]] =⇒ prob-in-class p c −−−−→ 0

assumes
∧

p. [[nonzero-prob-fun p; t � p]] =⇒ prob-in-class p c −−−−→ 1
shows is-threshold c t

using assms unfolding is-threshold-def by blast

end

6 The subgraph threshold theorem
theory Subgraph-Threshold
imports

Ugraph-Properties
begin

lemma (in edge-space) measurable-pred[measurable]: Measurable.pred P Q
by (simp add: P-def sets-point-measure space-point-measure subset-eq)

This section contains the main theorem. For a fixed nonempty graph H, we
consider the graph property of ‘containing an isomorphic subgraph of H’.
This is obviously a valid property, since it is closed under isomorphism.
The corresponding threshold function is

t(n) = n
− 1

ρ′(H) ,

where ρ′ denotes max-density.
definition subgraph-threshold :: ugraph ⇒ nat ⇒ real where
subgraph-threshold H n = n powr (−(1 / max-density H))

theorem
assumes nonempty: nonempty-graph H and finite: finite-graph H and well-

formed: uwellformed H
shows is-threshold {G. H v G} (subgraph-threshold H)

proof
show ugraph-property {G. H v G}

33

unfolding ugraph-property-def using subgraph-isomorphic-closed by blast
next

— To prove the 0-statement, we introduce the subgraph with the maximum
density as H0. Note that ρ(H0) = ρ′(H).

fix p :: nat ⇒ real

obtain H 0 where H 0: density H 0 = max-density H subgraph H 0 H nonempty-graph
H 0 finite-graph H 0 uwellformed H 0

using subgraph-has-max-density assms by blast
hence card: 0 < card (uverts H 0) 0 < card (uedges H 0)

unfolding nonempty-graph-def finite-graph-def by auto

let ?v = card (uverts H 0)
let ?e = card (uedges H 0)

assume p-nz: nonzero-prob-fun p
hence p: valid-prob-fun p

by (fact nonzero-fun-is-valid-fun)

— Firstly, we follow from the assumption that p is asympotically less than the
threshold function that the product

p(n)|E(H0)| · n|V (H0)|

tends to 0.

assume p � subgraph-threshold H
moreover
{

fix n
have p n / n powr (−(1 / max-density H)) = p n ∗ n powr (1 / max-density

H)
by (simp add: powr-minus-divide)

also have . . . = p n ∗ n powr (1 / density H 0)
using H 0 by simp

also have . . . = p n ∗ n powr (?v / ?e)
using card unfolding density-def by simp

finally have p n / n powr (−(1 / max-density H)) = . . .
.

}
ultimately have (λn. p n ∗ n powr (?v / ?e)) −−−−→ 0

unfolding subgraph-threshold-def by simp
moreover have

∧
n. 1 ≤ n =⇒ 0 < p n ∗ n powr (?v / ?e)

by (auto simp: p-nz)
ultimately have (λn. (p n ∗ n powr (?v / ?e)) powr ?e) −−−−→ 0

using card(2) p by (force intro: tendsto-zero-powrI)
hence limit: (λn. p n powr ?e ∗ n powr ?v) −−−−→ 0

by (rule LIMSEQ-cong[OF - eventually-sequentiallyI [where c = 1]])

34

(auto simp: p card p-nz powr-powr powr-mult)

{
fix n
assume n: ?v ≤ n

interpret ES : edge-space n (p n)
by unfold-locales (auto simp: p)

let ?graph-of = ES .edge-ugraph

— After fixing an n, we define a family of random variables X indexed by a
set of vertices v and a set of edges e. Each X is an indicator for the event that
(v, e) is isomorphic to H0 and a subgraph of a random graph. The sum of all these
variables is denoted by Y and counts the total number of copies of H0 in a random
graph.

let ?X = λH 0
′. rind {es ∈ space ES .P. subgraph H 0

′ (?graph-of es) ∧ H 0 '
H 0

′}
let ?I = {(v, e). v ⊆ {1 ..n} ∧ card v = ?v ∧ e ⊆ all-edges v ∧ card e = ?e}
let ?Y = λes.

∑
H 0

′ ∈ ?I . ?X H 0
′ es

— Now we prove an upper bound for the probability that a random graph
contains a copy of H. Observe that in that case, Y takes a value greater or equal
than 1.

have prob-in-class p {G. H v G} n = probGn p n (λes. H v ?graph-of es)
by simp

also have . . . ≤ probGn p n (λes. 1 ≤ ?Y es)
proof (rule ES .finite-measure-mono, safe)

fix es
assume es: es ∈ space (MGn p n)

assume H v ?graph-of es
hence H 0 v ?graph-of es — since H 0 is a subgraph of H

using H 0 by (fast intro: subgraph-isomorphic-pre-subgraph-closed)
then obtain H 0

′ where H 0
′: subgraph H 0

′ (?graph-of es) H 0 ' H 0
′

unfolding subgraph-isomorphic-def
by blast

show 1 ≤ ?Y es
proof (rule sum-lower-or-eq)

— The only relevant step here is to provide the specific instance of (v, e)
such that X(v,e) takes a value greater or equal than 1. This is trivial, as we already
obtained that one above (i.e. H 0

′). The remainder of the proof is just bookkeeping.
show 1 ≤ ?X H 0

′ es — by definition of X
using H 0

′ es by simp
next

have uverts H 0
′ ⊆ {1 ..n} uedges H 0

′ ⊆ es

35

using H 0
′(1) unfolding subgraph-def ES .edge-ugraph-def ES .S-verts-def

ES .S-edges-def by simp+
moreover have card (uverts H 0

′) = ?v card (uedges H 0
′) = ?e

by (simp add: isomorphic-cards[OF ‹H 0 ' H 0
′›])+

moreover have uedges H 0
′ ⊆ all-edges (uverts H 0

′)
using H 0

′ by (simp add: wellformed-all-edges)
ultimately show H 0

′ ∈ ?I
by auto

next
have ?I ⊆ subgraphs (complete {1 ..n})
unfolding complete-def subgraphs-def subgraph-def using all-edges-mono

by auto blast
moreover have finite (subgraphs (complete {1 ..n}))

by (simp add: complete-finite subgraphs-finite)
ultimately show finite ?I

by (fact finite-subset)
qed simp

qed simp

— Applying Markov’s inequality leaves us with estimating the expectation of
Y , which is the sum of the individual X.

also have . . . ≤ ES .expectation ?Y / 1
by (rule prob-space.markov-inequality) (auto simp: ES .prob-space-P sum-nonneg)
also have . . . = ES .expectation ?Y

by simp
also have . . . = (

∑
H 0

′ ∈ ?I . ES .expectation (?X H 0
′))

by (rule Bochner-Integration.integral-sum(1)) simp

— Each expectation is bound by p(n)|E(H0)|. For the proof, we ignore the fact
that the corresponding graph has to be isomorphic to H 0, which only increases the
probability and thus the expectation. This only leaves us to compute the probability
that all edges are present, which is given by edge-space.cylinder-prob.

also have . . . ≤ (
∑

H 0
′ ∈ ?I . p n ^ ?e)

proof (rule sum-mono)
fix H 0

′

assume H 0
′: H 0

′ ∈ ?I
have ES .expectation (?X H 0

′) = ES .prob {es ∈ space ES .P. subgraph H 0
′

(?graph-of es) ∧ H 0 ' H 0
′}

by (rule ES .expectation-indicator) (auto simp: ES .sets-eq ES .space-eq)
also have . . . ≤ ES .prob {es ∈ space ES .P. uedges H 0

′ ⊆ es}
unfolding subgraph-def by (rule ES .finite-measure-mono) (auto simp:

ES .sets-eq ES .space-eq)
also have . . . = ES .prob (cylinder ES .S-edges (uedges H 0

′) {})
unfolding cylinder-def ES .space-eq by simp

also have . . . = p n ^ card (uedges H 0
′)

proof (rule ES .cylinder-empty-prob)
have uverts H 0

′ ⊆ {1 ..n} uedges H 0
′ ⊆ all-edges (uverts H 0

′)
using H 0

′ by auto
hence uedges H 0

′ ⊆ all-edges {1 ..n}

36

using all-edges-mono by blast
thus uedges H 0

′ ⊆ ES .S-edges
unfolding ES .S-edges-def ES .S-verts-def by simp

qed
also have . . . = p n ^ ?e

using H 0
′ by fastforce

finally show ES .expectation (?X H 0
′) ≤ . . .

.
qed

— Since we have a sum of constant summands, we can rewrite it as a product.
also have . . . = card ?I ∗ p n ^ ?e

by (rule sum-constant)

— We have to count the number of possible pairs (v, e). From the definition of
the index set, note that we first choose |V (H0)| elements out of a set of n vertices
and then |E(H0)| elements out of all possible edges over these vertices.

also have . . . = ((n choose ?v) ∗ ((?v choose 2) choose ?e)) ∗ p n ^ ?e
proof (rule arg-cong[where x = card ?I])

have card ?I = (
∑

v | v ⊆ {1 ..n} ∧ card v = ?v. card (all-edges v) choose
?e)

by (rule card-dep-pair-set[where A = {1 ..n} and n = ?v and f =
all-edges])

(auto simp: finite-subset all-edges-finite)
also have . . . = (

∑
v | v ⊆ {1 ..n} ∧ card v = ?v. (?v choose 2) choose ?e)

proof (rule sum.cong)
fix v
assume v ∈ {v. v ⊆ {1 ..n} ∧ card v = ?v}
hence v ⊆ {1 ..n} card v = ?v

by auto
thus card (all-edges v) choose ?e = (?v choose 2) choose ?e

by (simp add: card-all-edges finite-subset)
qed rule

also have . . . = card ({v. v ⊆ {1 ..n} ∧ card v = ?v}) ∗ ((?v choose 2)
choose ?e)

by simp
also have . . . = (n choose ?v) ∗ ((?v choose 2) choose ?e)

by (simp add: n-subsets)
finally show card ?I = . . .

.
qed

also have . . . = (n choose ?v) ∗ (((?v choose 2) choose ?e) ∗ p n ^ ?e)
by simp

— Here, we use nk as an upper bound for
(
n
k

)
.

also have . . . ≤ (n ^ ?v) ∗ (((?v choose 2) choose ?e) ∗ p n ^ ?e) (is - ≤ - ∗
?r)

proof (rule mult-right-mono)
have n choose ?v ≤ n ^ ?v

37

by (rule binomial-le-pow) (rule n)
thus real (n choose ?v) ≤ real (n ^ ?v)

by (metis of-nat-le-iff)
next

show 0 ≤ ?r using p by simp
qed

also have . . . ≤ ((?v choose 2) choose ?e) ∗ (p n ^ ?e ∗ n ^ ?v) (is - ≤ ?factor
∗ -)

by simp
also have . . . = ?factor ∗ (p n powr ?e ∗ n powr ?v)

using n card(1) ‹nonzero-prob-fun p› by (simp add: powr-realpow)

finally have prob-in-class p {G. H v G} n ≤ ?factor ∗ (p n powr ?e ∗ n powr
?v)

.
}

— The final upper bound is a multiple of the expression which we have proven to
tend to 0 in the beginning.

thus prob-in-class p {G. H v G} −−−−→ 0
by (rule LIMSEQ-le-zero[OF tendsto-mult-right-zero[OF limit] eventually-sequentiallyI [OF

measure-nonneg] eventually-sequentiallyI])
next

fix p :: nat ⇒ real
assume p-threshold: subgraph-threshold H � p

— To prove the 1-statement, we obtain a fixed selector f as defined in section 4.6.
from assms obtain f where f : is-fixed-selector H f

using ex-fixed-selector by blast

let ?v = card (uverts H)
let ?e = card (uedges H)

— We observe that several terms involving |V (H)| are positive.
have v-e-nz: 0 < real ?v 0 < real ?e

using nonempty finite unfolding nonempty-graph-def finite-graph-def by auto
hence 0 < real ?v ^ ?v by simp
hence vpowv-inv-gr-z: 0 < 1 / ?v ^ ?v by simp

— For a given n, let A be a family of events indexed by a set S. Each A contains
the graphs whose induced subgraphs over S contain the selected copy of H by f
over S.
let ?A = λn. λS . {es ∈ space (edge-space.P n (p n)). subgraph (f S) (induced-subgraph

S (edge-space.edge-ugraph n es))}
let ?I = λn. {S . S ⊆ {1 ..n} ∧ card S = ?v}

assume p-nz: nonzero-prob-fun p
hence p: valid-prob-fun p

by (fact nonzero-fun-is-valid-fun)

38

{
fix n
— At this point, we can assume almost anything about n: We only have to show

that a function converges, hence the necessary properties are allowed to be violated
for small values of n.

assume n-2v: 2 ∗ ?v ≤ n
hence n: ?v ≤ n

by simp

have is-es: edge-space (p n)
by unfold-locales (auto simp: p)

then interpret edge-space n p n
.

let ?A = ?A n
let ?I = ?I n

— A nice potpourri with some technical facts about S.
{

fix S
assume S ∈ ?I
hence 0 : S ⊆ {1 ..n} ?v = card S finite S

by (auto intro: finite-subset)
hence 1 : H ' f S uverts (f S) = S

using f wellformed-finite unfolding finite-graph-def is-fixed-selector-def by
auto

have 2 : finite-graph (f S)
using 0 (3) 1 (1 ,2) by (metis wellformed-finite)

have 3 : nonempty-graph (f S)
using 0 (2) 1 (1 ,2) by (metis card-eq-0-iff finite finite-graph-def isomor-

phic-cards(2) nonempty nonempty-graph-def prod.collapse snd-conv)
note 0 1 2 3

}
note I = this

— In the following two blocks, we prove the probabilities of the events A and
the probability of the intersection of two events A. For both cases, we employ the
auxiliary lemma edge-space.induced-subgraph-prob which is not very interesting. For
the latter however, the tricky part is to argue that such an intersection is equivalent
to the union of the desired copies of H to be contained in the union of the induced
subgraphs.

{
fix S
assume S : S ∈ ?I
note S ′ = I [OF S]
have prob (?A S) = p n ^ ?e

using isomorphic-cards(2)[OF S ′(4)] S ′ by (simp add: S-verts-def in-
duced-subgraph-prob)

39

}
note prob-A = this

{
fix S T
assume S ∈ ?I note S = I [OF this]
assume T ∈ ?I note T = I [OF this]
— Note that we do not restrict S and T to be disjoint, since we need the

general case later to determine when two events are independent. Additionally, it
would be unneeded at this point.

have prob (?A S ∩ ?A T) = prob {es ∈ space P. subgraph (S ∪ T , uedges
(f S) ∪ uedges (f T)) (induced-subgraph (S ∪ T) (edge-ugraph es))} (is - = prob
?M)

proof (rule arg-cong[where f = prob])
have ?A S ∩ ?A T = {es ∈ space P. subgraph (f S) (induced-subgraph S

(edge-ugraph es)) ∧ subgraph (f T) (induced-subgraph T (edge-ugraph es))}
by blast

also have . . . = ?M
using S T by (auto simp: subgraph-union-induced)

finally show ?A S ∩ ?A T = . . .
.

qed
also have . . . = p n ^ card (uedges (S ∪ T , uedges (f S) ∪ uedges (f T)))

proof (rule induced-subgraph-prob)
show uwellformed (S ∪ T , uedges (f S) ∪ uedges (f T))

using S(4 ,5) T (4 ,5) unfolding uwellformed-def by auto
next

show S ∪ T ⊆ S-verts
using S(1) T (1) unfolding S-verts-def by simp

qed simp
also have . . . = p n ^ card (uedges (f S) ∪ uedges (f T))

by simp

finally have prob (?A S ∩ ?A T) = p n ^ card (uedges (f S) ∪ uedges (f T))
.

}
note prob-A-intersect = this

— Another technical detail is that our family of events A are a valid instantiation
for the “∆ lemmas” from section 3.3.

have is-psi: prob-space-with-indicators P ?I ?A
proof

show finite ?I
by (rule finite-subset[where B = Pow {1 ..n}]) auto

next
show ?A ‘ ?I ⊆ sets P

unfolding sets-eq space-eq by blast
next

40

let ?V = {1 ..?v}
have 0 < prob (?A ?V)

by (simp add: prob-A n p-nz)
moreover have ?V ∈ ?I

using n by force
ultimately show ∃ i ∈ ?I . 0 < prob (?A i)

by blast
qed

then interpret prob-space-with-indicators P ?I ?A
.

— We proceed by reducing the claim of the 1-statement that the probability
tends to 1 to showing that the expectation that the sum of all indicators of the
respective events A tends to 0. (The actual reduction is done at the end of the
proof, we merely collect the facts here.)

have compl-prob: 1 − prob {es ∈ space P. ¬ H v edge-ugraph es} = prob-in-class
p {G. H v G} n

by (subst prob-compl[symmetric]) (auto simp: space-eq sets-eq intro: arg-cong[where
f = prob])

have prob {es ∈ space P. ¬ H v edge-ugraph es} ≤ prob {es ∈ space P. Y es
= 0} (is ?compl ≤ -)

proof (rule finite-measure-mono, safe)
fix es
assume es ∈ space P
hence es: uwellformed (edge-ugraph es)

unfolding space-eq by (rule wellformed-and-finite(2))
assume H : ¬ H v edge-ugraph es
{

fix S
assume S ⊆ {1 ..n} card S = ?v
moreover hence finite S S ⊆ uverts (edge-ugraph es)

unfolding uverts-edge-ugraph S-verts-def by (auto intro: finite-subset)
ultimately have ¬ subgraph (f S) (induced-subgraph S (edge-ugraph es))

using H es by (metis fixed-selector-induced-subgraph[OF f])
hence X S es = 0

unfolding X-def by simp
}
thus Y es = 0

unfolding Y-def by simp
qed simp

— By applying the ∆ lemma, we obtain our central inequality. The rest of the
proof gives bounds for µ, ∆d and quotients which occur on the right hand side.

hence compl-upper : ?compl ≤ 1 / µ + ∆d / µ^2
by (rule order-trans) (fact prob-µ-∆d)

— Lower bound for the expectation. We use
(
n
k

)k as lower bound for
(
n
k

)
.

41

have 1 / ?v ^ ?v ∗ (real n ^ ?v ∗ p n ^ ?e) = (n / ?v) ^ ?v ∗ p n ^ ?e
by (simp add: power-divide)

also have . . . ≤ (n choose ?v) ∗ p n ^ ?e
proof (rule mult-right-mono, rule binomial-ge-n-over-k-pow-k)

show ?v ≤ n
using n .

show 0 ≤ p n ^ ?e
using p by simp

qed
also have . . . = (

∑
S ∈ ?I . p n ^ ?e)

by (simp add: n-subsets)
also have . . . = (

∑
S ∈ ?I . prob (?A S))

by (simp add: prob-A)
also have . . . = µ

unfolding expectation-X-Y X-def using expectation-indicator by force
finally have ex-lower : 1 / (?v ^ ?v) ∗ (real n ^ ?v ∗ p n ^ ?e) ≤ µ

.

— Upper bound for the inverse expectation. Follows trivially from above.
have ex-lower-pos: 0 < 1 / ?v ^ ?v ∗ (real n ^ ?v ∗ p n ^ ?e)

proof (rule mult-pos-pos[OF vpowv-inv-gr-z mult-pos-pos])
have 0 < real n

using n nonempty finite unfolding nonempty-graph-def finite-graph-def
by auto

thus 0 < real n ^ ?v
by simp

next
show 0 < p n ^ card (uedges H)

using p-nz by simp
qed

hence 1 / µ ≤ 1 / (1 / ?v ^ ?v ∗ (real n ^ ?v ∗ p n ^ ?e))
by (rule divide-left-mono[OF ex-lower zero-le-one mult-pos-pos[OF µ-non-zero]])
hence inv-ex-upper : 1 / µ ≤ ?v ^ ?v ∗ (1 / (real n ^ ?v ∗ p n ^ ?e))

by simp

— Recall the definition of ∆d:

∆d =
∑

S∈I, T∈I
S 6=T

AS , AT not independent

Pr[AS ∩AT]

We are going to prove an upper bound for that sum, so we can safely augment the
index set by replacing it with a neccessary condition.
The idea is that if the two sets S and T are not independent, their intersection is
not empty. We prove that by contraposition, i.e. if the intersection is empty, then
they are independent. This in turn can be shown using some basic properties of f.

{
fix S T
assume S ∈ ?I T ∈ ?I
hence ∗: prob (?A S) ∗ prob (?A T) = p n ^ (2 ∗ ?e)

42

using prob-A by (simp add: power-even-eq power2-eq-square)

note S = I [OF ‹S ∈ ?I ›]
note T = I [OF ‹T ∈ ?I ›]
assume disj: S ∩ T = {}

have prob (?A S ∩ ?A T) = p n ^ card (uedges (f S) ∪ uedges (f T))
using ‹S ∈ ?I › ‹T ∈ ?I › by (fact prob-A-intersect)

also have . . . = p n ^ (card (uedges (f S)) + card (uedges (f T)))
proof (rule arg-cong[OF card-Un-disjoint])

have finite-graph (f S) finite-graph (f T)
using S T by (auto simp: wellformed-finite)

thus finite (uedges (f S)) finite (uedges (f T))
unfolding finite-graph-def by auto

next
have uedges (f S) ⊆ all-edges S uedges (f T) ⊆ all-edges T

using S(4 ,5) T (4 ,5) by (metis wellformed-all-edges)+
moreover have all-edges S ∩ all-edges T = {}

by (fact all-edges-disjoint[OF disj])
ultimately show uedges (f S) ∩ uedges (f T) = {}

by blast
qed

also have . . . = p n ^ (2 ∗ ?e)
using isomorphic-cards(2)[OF isomorphic-sym[OF S(4)]] isomorphic-cards(2)[OF

isomorphic-sym[OF T (4)]] by (simp add: mult-2)
finally have ∗∗: prob (?A S ∩ ?A T) = . . .

.

from ∗ ∗∗ have indep (?A S) (?A T)
unfolding indep-def by force

}
note indep = this

— Now we prove an upper bound for ∆d.
have ∆d = (

∑
S ∈ ?I .

∑
T | T ∈ ?I ∧ ineq-dep S T . prob (?A S ∩ ?A T))

unfolding ∆d-def ..

— Augmenting the index set as described above.
also have . . . ≤ (

∑
S ∈ ?I .

∑
T | T ∈ ?I ∧ S ∩ T 6= {}. prob (?A S ∩ ?A

T))
by (rule sum-mono[OF sum-mono2]) (auto simp: indep measure-nonneg)

— So far, we are adding the intersection probabilities over pairs of sets which
have a nonempty intersection. Since we know that these intersections have at least
one element (as they are nonempty) and at most |V (H)| elements (by definition of
I). In this step, we will partition this sum by cardinality of the intersections.

also have . . . = (
∑

S ∈ ?I .
∑

T ∈ (
⋃

k ∈ {1 ..?v}. {T ∈ ?I . card (S ∩ T) =
k}). prob (?A S ∩ ?A T))

proof (rule sum.cong, rule refl, rule sum.cong)

43

fix S
assume S ∈ ?I
note I (2 ,3)[OF this]
hence {T . S ∩ T 6= {}} = (

⋃
k ∈ {1 ..?v}. {T . card (S ∩ T) = k})

by (simp add: partition-set-of-intersecting-sets-by-card)
thus {T ∈ ?I . S ∩ T 6= {}} = (

⋃
k∈{1 ..?v}. {T ∈ ?I . card (S ∩ T) = k})

by blast
qed simp

also have . . . = (
∑

S ∈ ?I .
∑

k = 1 ..?v.
∑

T | T ∈ ?I ∧ card (S ∩ T) = k.
prob (?A S ∩ ?A T))

by (rule sum.cong, rule refl, rule sum.UNION-disjoint) auto
also have . . . = (

∑
k = 1 ..?v.

∑
S ∈ ?I .

∑
T | T ∈ ?I ∧ card (S ∩ T) = k.

prob (?A S ∩ ?A T))
by (rule sum.swap)

— In this step, we compute an upper bound for the intersection probability and
argue that it only depends on the cardinality of the intersection.

also have . . . ≤ (
∑

k = 1 ..?v.
∑

S ∈ ?I .
∑

T | T ∈ ?I ∧ card (S ∩ T) = k.
p n powr (2 ∗ ?e − max-density H ∗ k))

proof (rule sum-mono)+
fix k
assume k: k ∈ {1 ..?v}
fix S T
assume S ∈ ?I T ∈ {T . T ∈ ?I ∧ card (S ∩ T) = k}
hence T ∈ ?I and ST-k: card (S ∩ T) = k

by auto
note S = I [OF ‹S ∈ ?I ›]
note T = I [OF ‹T ∈ ?I ›]

let ?cST = card (uedges (f S) ∩ uedges (f T))

— We already know the intersection probability.
have prob (?A S ∩ ?A T) = p n ^ card (uedges (f S) ∪ uedges (f T))

using ‹S ∈ ?I › ‹T ∈ ?I › by (fact prob-A-intersect)

— Now, we consider the number of edges shared by the copies of H over S
and T.

also have . . . = p n ^ (card (uedges (f S)) + card (uedges (f T)) − ?cST)
using S T unfolding finite-graph-def by (simp add: card-union)

also have . . . = p n ^ (?e + ?e − ?cST)
by (metis isomorphic-cards(2)[OF S(4)] isomorphic-cards(2)[OF T (4)])

also have . . . = p n ^ (2 ∗ ?e − ?cST)
by (simp add: mult-2)

also have . . . = p n powr (2 ∗ ?e − ?cST)
using p-nz by (simp add: powr-realpow)

also have . . . = p n powr (real (2 ∗ ?e) − real ?cST)
using isomorphic-cards[OF S(4)] S(6) by (metis of-nat-diff card-mono

finite-graph-def inf-le1 mult-le-mono mult-numeral-1 numeral-One one-le-numeral)

44

— Since the intersection graph is also an isomorphic subgraph of H, we know
that its density has to be less than or equal to the maximum density of H. The
proof is quite technical.

also have . . . ≤ p n powr (2 ∗ ?e − max-density H ∗ k)
proof (rule powr-mono3)

have ?cST = density (S ∩ T , uedges (f S) ∩ uedges (f T)) ∗ k
unfolding density-def using k ST-k by simp

also have . . . ≤ max-density (f S) ∗ k
proof (rule mult-right-mono, cases uedges (f S) ∩ uedges (f T) = {})

case True
hence density (S ∩ T , uedges (f S) ∩ uedges (f T)) = 0

unfolding density-def by simp
also have 0 ≤ density (f S)

unfolding density-def by simp
also have density (f S) ≤ max-density (f S)

using S by (simp add: max-density-is-max subgraph-refl)
finally show density (S ∩ T , uedges (f S) ∩ uedges (f T)) ≤

max-density (f S)
.

next
case False
show density (S ∩ T , uedges (f S) ∩ uedges (f T)) ≤ max-density (f

S)
proof (rule max-density-is-max)

show finite-graph (S ∩ T , uedges (f S) ∩ uedges (f T))
using T (3 ,6) by (metis finite-Int finite-graph-def fst-eqD snd-conv)

show nonempty-graph (S ∩ T , uedges (f S) ∩ uedges (f T))
unfolding nonempty-graph-def using k ST-k False by force

show uwellformed (S ∩ T , uedges (f S) ∩ uedges (f T))
using S(4 ,5) T (4 ,5) unfolding uwellformed-def by (metis

Int-iff fst-eqD snd-eqD)
show subgraph (S ∩ T , uedges (f S) ∩ uedges (f T)) (f S)

using S(5) by (metis fst-eqD inf-sup-ord(1) snd-conv subgraph-def)
qed (simp add: S)

qed simp
also have . . . = max-density H ∗ k

using assms S by (simp add: isomorphic-max-density[where G1 = H
and G2 = f S])

finally have ?cST ≤ max-density H ∗ k
.

thus 2 ∗ ?e − max-density H ∗ k ≤ 2 ∗ ?e − real ?cST
by linarith

qed (auto simp: p-nz)
finally show prob (?A S ∩ ?A T) ≤ . . .

.
qed

— Further rewriting the index sets.
also have . . . = (

∑
k = 1 ..?v.

∑
(S , T) ∈ (SIGMA S : ?I . {T ∈ ?I . card (S

45

∩ T) = k}). p n powr (2 ∗ ?e − max-density H ∗ k))
by (rule sum.cong, rule refl, rule sum.Sigma) auto

also have . . . = (
∑

k = 1 ..?v. card (SIGMA S : ?I . {T ∈ ?I . card (S ∩ T)
= k}) ∗ p n powr (2 ∗ ?e − max-density H ∗ k))

by (rule sum.cong) auto

— Here, we compute the cardinality of the index sets and use the same upper
bounds for the binomial coefficients as for the 0-statement.

also have . . . ≤ (
∑

k = 1 ..?v. ?v ^ k ∗ (real n ^ (2 ∗ ?v − k) ∗ p n powr (2
∗ ?e − max-density H ∗ k)))

proof (rule sum-mono)
fix k
assume k: k ∈ {1 ..?v}
let ?p = p n powr (2 ∗ ?e − max-density H ∗ k)

have card (SIGMA S : ?I . {T ∈ ?I . card (S ∩ T) = k}) = (
∑

S ∈ ?I .
card {T ∈ ?I . card (S ∩ T) = k}) (is ?lhs = -)

by simp
also have . . . = (

∑
S ∈ ?I . (?v choose k) ∗ ((n − ?v) choose (?v − k)))

using n k by (fastforce simp: card-set-of-intersecting-sets-by-card)
also have . . . = (n choose ?v) ∗ ((?v choose k) ∗ ((n − ?v) choose (?v −

k)))
by (auto simp: n-subsets)

also have . . . ≤ n ^ ?v ∗ ((?v choose k) ∗ ((n − ?v) choose (?v − k)))
using n by (simp add: binomial-le-pow)

also have . . . ≤ n ^ ?v ∗ ?v ^ k ∗ ((n − ?v) choose (?v − k))
using k by (simp add: binomial-le-pow)

also have . . . ≤ n ^ ?v ∗ ?v ^ k ∗ (n − ?v) ^ (?v − k)
using n-2v by (simp add: binomial-le-pow)

also have . . . ≤ n ^ ?v ∗ ?v ^ k ∗ n ^ (?v − k)
by (simp add: power-mono)

also have . . . = ?v ^ k ∗ (n ^ (?v + (?v − k)))
by (simp add: power-add)

also have . . . = ?v ^ k ∗ n ^ (2 ∗ ?v − k) (is - = ?rhs)
using k by (simp add: mult-2)

finally have ?lhs ≤ ?rhs .
hence real ?lhs ≤ real ?rhs

using of-nat-le-iff by blast
moreover have 0 ≤ ?p

by simp
ultimately have ?lhs ∗ ?p ≤ ?rhs ∗ ?p

by (rule mult-right-mono)
also have . . . = ?v ^ k ∗ (real n ^ (2 ∗ ?v − k) ∗ ?p)

by simp
finally show ?lhs ∗ ?p ≤ . . .

.
qed

finally have delta-upper : ∆d ≤ (
∑

k = 1 ..?v. ?v ^ k ∗ (real n ^ (2 ∗ ?v − k)
∗ p n powr (2 ∗ ?e − max-density H ∗ k)))

46

.

— At this point, we have established all neccessary bounds.
note is-es is-psi compl-prob compl-upper ex-lower ex-lower-pos inv-ex-upper

delta-upper
}
note facts = this

— Recall our central inequality. We now prove that both summands tend to
0. This is mainly an exercise in bookkeeping and real arithmetics as no intelligent
ideas are involved.

have (λn. 1 / prob-space-with-indicators.µ (MGn p n) (?I n) (?A n)) −−−−→ 0
proof (rule LIMSEQ-le-zero)

have (λn. 1 / (real n ^ ?v ∗ p n ^ ?e)) −−−−→ 0
proof (rule LIMSEQ-le-zero[OF - eventually-sequentiallyI eventually-sequentiallyI])

fix n
show 0 ≤ 1 / (real n ^ ?v ∗ p n ^ ?e)

using p by simp

assume n: 1 ≤ n
have 1 / (real n ^ ?v ∗ p n ^ ?e) = 1 / (real n powr ?v ∗ p n powr ?e)

using n p-nz by (simp add: powr-realpow[symmetric])
also have . . . = real n powr −real ?v ∗ p n powr −real ?e

by (simp add: powr-minus-divide)
also have . . . = (real n powr −(?v / ?e)) powr ?e ∗ (p n powr −1) powr

?e
using v-e-nz
by (metis mult-minus1 nonzero-eq-divide-eq powr-powr order .irrefl)

also have . . . = (real n powr −(?v / ?e) ∗ p n powr −1) powr ?e
using powr-mult by presburger

also have . . . = (real n powr −(1 / (?e / ?v)) ∗ p n powr −1) powr ?e
by simp

also have . . . ≤ (real n powr −(1 / max-density H) ∗ p n powr −1) powr
?e

apply (rule powr-mono2 [OF - - mult-right-mono[OF powr-mono[OF
le-imp-neg-le[OF divide-left-mono]]]])

using n v-e-nz p p-nz
by (auto simp:

max-density-is-max[unfolded density-def , OF finite finite nonempty
wellformed subgraph-refl]

max-density-gr-zero[OF finite nonempty wellformed])
also have . . . = (real n powr −(1 / max-density H) ∗ (1 / p n powr 1))

powr ?e
by (simp add: powr-minus-divide[symmetric])

also have . . . = (real n powr −(1 / max-density H) / p n) powr ?e
using p p-nz by simp

also have . . . = (subgraph-threshold H n / p n) powr ?e
unfolding subgraph-threshold-def ..

finally show 1 / (real n ^ ?v ∗ p n ^ ?e) ≤ (subgraph-threshold H n / p

47

n) powr ?e .
next

show (λn. (subgraph-threshold H n / p n) powr real (card (uedges H)))
−−−−→ 0

using p-threshold p-nz v-e-nz
by (auto simp: subgraph-threshold-def divide-nonneg-pos intro!: tend-

sto-zero-powrI)
qed

hence (λn. ?v ^ ?v ∗ (1 / (real n ^ ?v ∗ p n ^ ?e))) −−−−→ real (?v ^ ?v) ∗
0

by (rule LIMSEQ-const-mult)
thus (λn. ?v ^ ?v ∗ (1 / (real n ^ ?v ∗ p n ^ ?e))) −−−−→ 0

by simp
next

show ∀∞n. 0 ≤ 1 / prob-space-with-indicators.µ (MGn p n) (?I n) (?A n)
by (rule eventually-sequentiallyI [OF less-imp-le[OF divide-pos-pos[OF -

prob-space-with-indicators.µ-non-zero[OF facts(2)]]]]) simp+
next

show ∀∞n. 1 / prob-space-with-indicators.µ (MGn p n) (?I n) (?A n) ≤ ?v
^ ?v ∗ (1 / (real n ^ ?v ∗ p n ^ ?e))

using facts(7) by (rule eventually-sequentiallyI)
qed

moreover have (λn. prob-space-with-indicators.∆d (MGn p n) (?I n) (?A n))
� (λn. (prob-space-with-indicators.µ (MGn p n) (?I n) (?A n))^2)

proof (rule less-fun-bounds)
let ?num = λn k. ?v ^ k ∗ (real n ^ (2 ∗ ?v − k) ∗ p n powr (2 ∗ ?e −

max-density H ∗ k))
let ?den = λn. ((1 / ?v ^ ?v) ∗ (real n ^ ?v ∗ p n ^ ?e))^2

— We have to show that a sum is asymptotically smaller than a constant
term. We do that by showing that each summand is asymptotically smaller than
the term.

{
fix k
assume k: k ∈ {1 ..?v}
let ?den ′ = λn. (1 / ?v ^ ?v)^2 ∗ (real n ^ (2 ∗ ?v) ∗ p n ^ (2 ∗ ?e))
have den ′: ?den ′ = ?den
by (subst power-mult-distrib) (simp add: power-mult-distrib power-even-eq)

have (λn. ?num n k) � ?den ′

proof (rule less-fun-const-quot)
have (λn. (subgraph-threshold H n / p n) powr (max-density H ∗ k))

−−−−→ 0
using p-threshold mult-pos-pos[OF max-density-gr-zero[OF finite

nonempty wellformed]] p-nz k
by (auto simp: subgraph-threshold-def divide-nonneg-pos intro!:

tendsto-zero-powrI)
thus (λn. (real n ^ (2 ∗ ?v − k) ∗ p n powr (2 ∗ ?e − max-density H ∗

k)) / (real n ^ (2 ∗ ?v) ∗ p n ^ (2 ∗ ?e))) −−−−→ 0

48

proof (rule LIMSEQ-cong[OF - eventually-sequentiallyI])
fix n :: nat
assume n: 1 ≤ n
have (real n ^ (2 ∗ ?v − k) ∗ p n powr (2 ∗ ?e − max-density H ∗

k)) / (real n ^ (2 ∗ ?v) ∗ p n ^ (2 ∗ ?e)) =
(n powr (2 ∗ ?v − k) ∗ p n powr (2 ∗ ?e − max-density H ∗ k))

/ (n powr (2 ∗ ?v) ∗ p n powr (2 ∗ ?e)) (is ?lhs = -)
using n p-nz by (simp add: powr-realpow[symmetric])
also have . . . = (n powr (2 ∗ ?v − k) / n powr (2 ∗ ?v)) ∗ (p n

powr (2 ∗ ?e − max-density H ∗ k) / (p n powr (2 ∗ ?e)))
by simp

also have . . . = (n powr (real (2 ∗ ?v − k) − 2 ∗ ?v)) ∗ p n powr
((2 ∗ ?e − max-density H ∗ k) − (2 ∗ ?e))

by (simp add: powr-diff [symmetric])
also have . . . = n powr −real k ∗ p n powr ((2 ∗ ?e − max-density

H ∗ k) − (2 ∗ ?e))
apply (rule arg-cong[where y = − real k])
using k by fastforce

also have . . . = n powr −real k ∗ p n powr − (max-density H ∗ k)
by simp

also have . . . = (n powr −(1 / max-density H)) powr (max-density
H ∗ k) ∗ p n powr − (max-density H ∗ k)

using max-density-gr-zero[OF finite nonempty wellformed] by (simp
add: powr-powr)

also have . . . = (n powr −(1 / max-density H)) powr (max-density
H ∗ k) ∗ (p n powr −1) powr (max-density H ∗ k)

by (metis mult-minus1 powr-powr)
also have . . . = (n powr −(1 / max-density H) ∗ p n powr −1) powr

(max-density H ∗ k)
using powr-mult by presburger

also have . . . = (n powr −(1 / max-density H) ∗ (1 / p n powr 1))
powr (max-density H ∗ k)

by (simp add: powr-minus-divide[symmetric])
also have . . . = (n powr −(1 / max-density H) / p n) powr

(max-density H ∗ k)
by (simp add: p p-nz)

also have . . . = (subgraph-threshold H n / p n) powr (max-density
H ∗ k) (is - = ?rhs)

unfolding subgraph-threshold-def ..
finally have ?lhs = ?rhs

.
thus ?rhs = ?lhs

by simp
qed

next
show (1 / ?v ^ ?v)^2 6= 0

using vpowv-inv-gr-z by auto
qed

49

hence (λn. ?num n k) � ?den
by (rule subst[OF den ′])

}
hence (λn.

∑
k = 1 ..?v. ?num n k / ?den n) −−−−→ (

∑
k = 1 ..?v. 0)

by (rule tendsto-sum)
hence (λn.

∑
k = 1 ..?v. ?num n k / ?den n) −−−−→ 0

by simp
moreover have (λn.

∑
k = 1 ..?v. ?num n k / ?den n) = (λn. (

∑
k = 1 ..?v.

?num n k) / ?den n)
by (simp add: sum-left-div-distrib)

ultimately show (λn.
∑

k = 1 ..?v. ?num n k) � ?den
by metis

show ∀∞n. prob-space-with-indicators.∆d (MGn p n) (?I n) (?A n) ≤ (
∑

k
= 1 ..?v. ?num n k)

using facts(8) by (rule eventually-sequentiallyI)

show ∀∞n. ?den n ≤ (prob-space-with-indicators.µ (MGn p n) (?I n) (?A
n))^2

using facts(5) facts(6) by (rule eventually-sequentiallyI [OF power-mono[OF
- less-imp-le]])

show ∀∞n. 0 ≤ prob-space-with-indicators.∆d (MGn p n) (?I n) (?A n)
using facts(2) by (rule eventually-sequentiallyI [OF prob-space-with-indicators.∆d-nonneg])

show ∀∞n. 0 < (prob-space-with-indicators.µ (MGn p n) (?I n) (?A n))^2
using facts(2) by (rule eventually-sequentiallyI [OF prob-space-with-indicators.µ-sq-non-zero])

show ∀∞n. 0 < ?den n
using facts(6) by (rule eventually-sequentiallyI [OF zero-less-power])

qed
ultimately have (λn.

1 / prob-space-with-indicators.µ (MGn p n) (?I n) (?A n) +
prob-space-with-indicators.∆d (MGn p n) (?I n) (?A n) / (prob-space-with-indicators.µ

(MGn p n) (?I n) (?A n))^2
) −−−−→ 0
by (subst add-0-left[where a = 0 , symmetric]) (rule tendsto-add)

— By now, we can actually perform the reduction mentioned above.
hence (λn. probGn p n (λes. ¬ H v edge-space.edge-ugraph n es)) −−−−→ 0

proof (rule LIMSEQ-le-zero)
show ∀∞n. 0 ≤ probGn p n (λes. ¬ H v edge-space.edge-ugraph n es)

by (rule eventually-sequentiallyI) (rule measure-nonneg)
next

show ∀∞n.
probGn p n (λes. ¬ H v edge-space.edge-ugraph n es) ≤

1 / prob-space-with-indicators.µ (MGn p n) (?I n) (?A n) +
prob-space-with-indicators.∆d (MGn p n) (?I n) (?A n) / (prob-space-with-indicators.µ

(MGn p n) (?I n) (?A n))^2

50

by (rule eventually-sequentiallyI [OF facts(4)])
qed

hence (λn. 1 − probGn p n (λes. ¬ H v edge-space.edge-ugraph n es)) −−−−→
1

using tendsto-diff [OF tendsto-const] by fastforce
thus prob-in-class p {G. H v G} −−−−→ 1

by (rule LIMSEQ-cong[OF - eventually-sequentiallyI [OF facts(3)]])
qed

end

References

[1] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[2] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar
Tud. Akad. Mat. Kutató Int. Közl, 5:17–61, 1960.

[3] S. Janson, T. Luczak, and A. Rucinski. Random graphs. John Wiley &
Sons, 2011.

[4] L. Noschinski. A probabilistic proof of the girth-chromatic number the-
orem. Archive of Formal Proofs, Feb. 2012. http://isa-afp.org/entries/
Girth_Chromatic.shtml, Formal proof development.

51

http://isa-afp.org/entries/Girth_Chromatic.shtml
http://isa-afp.org/entries/Girth_Chromatic.shtml

	Introduction
	Miscellaneous and contributed lemmas
	Lemmas about probabilities
	Indicator variables and valid probability values
	Expectation and variance
	Sets of indicator variables

	Lemmas about undirected graphs
	Subgraphs
	Induced subgraphs
	Graph isomorphism
	Isomorphic subgraphs
	Density
	Fixed selectors

	Classes and properties of graphs
	The subgraph threshold theorem

