
Expected Shape of Random Binary Search Trees

Manuel Eberl

March 17, 2025

Abstract

This entry contains proofs for the textbook results about the distri-
butions of the height and internal path length of random binary search
trees (BSTs), i. e. BSTs that are formed by taking an empty BST and
inserting elements from a fixed set in random order.

In particular, we prove a logarithmic upper bound on the expected
height and the Θ(n log n) closed-form solution for the expected internal
path length in terms of the harmonic numbers. We also show how the
internal path length relates to the average-case cost of a lookup in a
BST.

Contents
1 Expected shape of random Binary Search Trees 2

1.1 Auxiliary lemmas . 2
1.2 Creating a BST from a list 2
1.3 Random BSTs . 4
1.4 Expected height . 5
1.5 Lookup costs . 7
1.6 Average Path Length . 8

1

1 Expected shape of random Binary Search Trees
theory Random-BSTs

imports
Complex-Main
HOL−Probability.Random-Permutations
HOL−Data-Structures.Tree-Set
Quick-Sort-Cost.Quick-Sort-Average-Case

begin

hide-const (open) Tree-Set.insert

1.1 Auxiliary lemmas
lemma linorder-on-linorder-class [intro]:

linorder-on UNIV {(x, y). x ≤ (y :: ′a :: linorder)}
〈proof 〉

lemma Nil-in-permutations-of-set-iff [simp]: [] ∈ permutations-of-set A ←→ A =
{}
〈proof 〉

lemma max-power-distrib-right:
fixes a :: ′a :: linordered-semidom
shows a > 1 =⇒ max (a ^ b) (a ^ c) = a ^ max b c
〈proof 〉

lemma set-tree-empty-iff [simp]: set-tree t = {} ←→ t = Leaf
〈proof 〉

lemma card-set-tree-bst: bst t =⇒ card (set-tree t) = size t
〈proof 〉

lemma pair-pmf-cong:
p = p ′ =⇒ q = q ′ =⇒ pair-pmf p q = pair-pmf p ′ q ′

〈proof 〉

lemma expectation-add-pair-pmf :
fixes f :: ′a ⇒ ′c::{banach, second-countable-topology}
assumes finite (set-pmf p) and finite (set-pmf q)
shows measure-pmf .expectation (pair-pmf p q) (λ(x,y). f x + g y) =

measure-pmf .expectation p f + measure-pmf .expectation q g
〈proof 〉

1.2 Creating a BST from a list

The following recursive function creates a binary search tree from a given list
of elements by inserting them into an initially empty BST from left to right.

2

We will prove that this is the case later, but the recursive definition has the
advantage of giving us a useful induction rule, so we chose that definition
and prove the alternative definitions later.
This recursion, which already almost looks like QuickSort, will be key in
analysing the shape distributions of random BSTs.
fun bst-of-list :: ′a :: linorder list ⇒ ′a tree where

bst-of-list [] = Leaf
| bst-of-list (x # xs) =

Node (bst-of-list [y ← xs. y < x]) x (bst-of-list [y ← xs. y > x])

lemma bst-of-list-eq-Leaf-iff [simp]: bst-of-list xs = Leaf ←→ xs = []
〈proof 〉

lemma bst-of-list-snoc [simp]:
bst-of-list (xs @ [y]) = Tree-Set.insert y (bst-of-list xs)
〈proof 〉

lemma bst-of-list-append:
bst-of-list (xs @ ys) = fold Tree-Set.insert ys (bst-of-list xs)
〈proof 〉

The following now shows that the recursive function indeed corresponds to
the notion of inserting the elements from the list from left to right.
lemma bst-of-list-altdef : bst-of-list xs = fold Tree-Set.insert xs Leaf
〈proof 〉

lemma size-bst-insert: x /∈ set-tree t =⇒ size (Tree-Set.insert x t) = Suc (size t)
〈proof 〉

lemma set-bst-insert [simp]: set-tree (Tree-Set.insert x t) = insert x (set-tree t)
〈proof 〉

lemma set-bst-of-list [simp]: set-tree (bst-of-list xs) = set xs
〈proof 〉

lemma size-bst-of-list-distinct [simp]:
assumes distinct xs
shows size (bst-of-list xs) = length xs
〈proof 〉

lemma strict-mono-on-imp-less-iff :
assumes strict-mono-on A f x ∈ A y ∈ A
shows f x < (f y :: ′b :: linorder) ←→ x < (y :: ′a :: linorder)
〈proof 〉

lemma bst-of-list-map:
fixes f :: ′a :: linorder ⇒ ′b :: linorder
assumes strict-mono-on A f set xs ⊆ A

3

shows bst-of-list (map f xs) = map-tree f (bst-of-list xs)
〈proof 〉

1.3 Random BSTs

Analogously to the previous section, we can now view the concept of a
random BST (i. e. a BST obtained by inserting a given set of elements in
random order) in two different ways.
We again start with the recursive variant:
function random-bst :: ′a :: linorder set ⇒ ′a tree pmf where

random-bst A =
(if ¬finite A ∨ A = {} then

return-pmf Leaf
else do {

x ← pmf-of-set A;
l ← random-bst {y ∈ A. y < x};
r ← random-bst {y ∈ A. y > x};
return-pmf (Node l x r)

})
〈proof 〉

termination 〈proof 〉

declare random-bst.simps [simp del]

lemma random-bst-empty [simp]: random-bst {} = return-pmf Leaf
〈proof 〉

lemma set-pmf-random-permutation [simp]:
finite A =⇒ set-pmf (pmf-of-set (permutations-of-set A)) = {xs. distinct xs ∧ set

xs = A}
〈proof 〉

The alternative characterisation is the more intuitive one where we simply
pick a random permutation of the set elements uniformly at random and
insert them into an empty tree from left to right:
lemma random-bst-altdef :

assumes finite A
shows random-bst A = map-pmf bst-of-list (pmf-of-set (permutations-of-set A))
〈proof 〉

lemma finite-set-random-bst [simp, intro]:
finite A =⇒ finite (set-pmf (random-bst A))
〈proof 〉

lemma random-bst-code [code]:
random-bst (set xs) = map-pmf bst-of-list (pmf-of-set (permutations-of-set (set

xs)))
〈proof 〉

4

lemma random-bst-singleton [simp]: random-bst {x} = return-pmf (Node Leaf x
Leaf)
〈proof 〉

lemma size-random-bst:
assumes t ∈ set-pmf (random-bst A) finite A
shows size t = card A
〈proof 〉

lemma random-bst-image:
assumes finite A strict-mono-on A f
shows random-bst (f ‘ A) = map-pmf (map-tree f) (random-bst A)
〈proof 〉

We can also re-phrase the non-recursive definition using the fold-random-permutation
combinator from the HOL-Probability library, which folds over a given set
in random order.
lemma random-bst-altdef ′:

assumes finite A
shows random-bst A = fold-random-permutation Tree-Set.insert Leaf A
〈proof 〉

1.4 Expected height

For the purposes of the analysis of the expected height, we define the fol-
lowing notion of ‘expected height’, which is essentially two to the power of
the height (as defined by Cormen et al.) with a special treatment for the
empty tree, which has exponential height 0.
Note that the height defined by Cormen et al. differs from the height function
here in Isabelle in that for them, the height of the empty tree is undefined
and the height of a singleton tree is 0 etc., whereas in Isabelle, the height of
the empty tree is 0 and the height of a singleton tree is 1.
definition eheight :: ′a tree ⇒ nat where

eheight t = (if t = Leaf then 0 else 2 ^ (height t − 1))

lemma eheight-Leaf [simp]: eheight Leaf = 0
〈proof 〉

lemma eheight-Node-singleton [simp]: eheight (Node Leaf x Leaf) = 1
〈proof 〉

lemma eheight-Node:
l 6= Leaf ∨ r 6= Leaf =⇒ eheight (Node l x r) = 2 ∗ max (eheight l) (eheight r)
〈proof 〉

5

fun eheight-rbst :: nat ⇒ nat pmf where
eheight-rbst 0 = return-pmf 0
| eheight-rbst (Suc 0) = return-pmf 1
| eheight-rbst (Suc n) =

do {
k ← pmf-of-set {..n};
h1 ← eheight-rbst k;
h2 ← eheight-rbst (n − k);
return-pmf (2 ∗ max h1 h2)}

definition eheight-exp :: nat ⇒ real where
eheight-exp n = measure-pmf .expectation (eheight-rbst n) real

lemma eheight-rbst-reduce:
assumes n > 1
shows eheight-rbst n =

do {k ← pmf-of-set {..<n}; h1 ← eheight-rbst k; h2 ← eheight-rbst (n
− k − 1);

return-pmf (2 ∗ max h1 h2)}
〈proof 〉

lemma Leaf-in-set-random-bst-iff :
assumes finite A
shows Leaf ∈ set-pmf (random-bst A) ←→ A = {}
〈proof 〉

lemma eheight-rbst:
assumes finite A
shows eheight-rbst (card A) = map-pmf eheight (random-bst A)
〈proof 〉

lemma finite-pmf-set-eheight-rbst [simp, intro]: finite (set-pmf (eheight-rbst n))
〈proof 〉

lemma eheight-exp-0 [simp]: eheight-exp 0 = 0
〈proof 〉

lemma eheight-exp-1 [simp]: eheight-exp (Suc 0) = 1
〈proof 〉

lemma eheight-exp-reduce-bound:
assumes n > 1
shows eheight-exp n ≤ 4 / n ∗ (

∑
k<n. eheight-exp k)

〈proof 〉

We now define the following upper bound on the expected exponential height
due to Cormen et al. [2]:
lemma eheight-exp-bound: eheight-exp n ≤ real ((n + 3) choose 3) / 4
〈proof 〉

6

We then show that this is indeed an upper bound on the expected exponen-
tial height by induction over the set of elements. This proof mostly follows
that by Cormen et al. [2], and partially an answer on the Computer Science
Stack Exchange [1].

Since the function λx. 2x is convex, we can then easily derive a bound on
the actual height using Jensen’s inequality:
definition height-exp-approx :: nat ⇒ real where

height-exp-approx n = log 2 (real ((n + 3) choose 3) / 4) + 1

theorem height-expectation-bound:
assumes finite A A 6= {}
shows measure-pmf .expectation (random-bst A) height

≤ height-exp-approx (card A)
〈proof 〉

This upper bound is asymptotically equivalent to c lnn with c = 3
ln 2 ≈ 4.328.

This is actually a relatively tight upper bound, since the exact asymptotics
of the expected height of a random BST is c lnn with c ≈ 4.311. [3] However,
the proof of these precise asymptotics is very intricate and we will therefore
be content with the upper bound.
In particular, we can now show that the expected height is O(log n).
lemma ln-sum-bigo-ln: (λx::real. ln (x + c)) ∈ O(ln)
〈proof 〉

corollary height-expectation-bigo: height-exp-approx ∈ O(ln)
〈proof 〉

1.5 Lookup costs

The following function describes the cost incurred when looking up a specific
element in a specific BST. The cost corresponds to the number of edges
traversed in the lookup.
primrec lookup-cost :: ′a :: linorder ⇒ ′a tree ⇒ nat where

lookup-cost x Leaf = 0
| lookup-cost x (Node l y r) =

(if x = y then 0
else if x < y then Suc (lookup-cost x l)
else Suc (lookup-cost x r))

Some of the literature defines these costs as 1 in the case that the current
node is the correct one, i. e. their costs are our costs plus 1. These alternative
costs are exactly the number of comparisons performed in the lookup. Our
cost function has the advantage of precisely summing up to the internal path
length and therefore gives us slightly nicer results, and since the difference
is only a + 1 in the end, this variant seemed more reasonable.

7

It can be shown with a simple induction that The sum of all lookup costs
in a tree is the internal path length of the tree.
theorem sum-lookup-costs:

fixes t :: ′a :: linorder tree
assumes bst t
shows (

∑
x∈set-tree t. lookup-cost x t) = ipl t

〈proof 〉

This allows us to easily show that the expected cost of looking up a random
element in a fixed tree is the internal path length divided by the number of
elements.
theorem expected-lookup-cost:

assumes bst t t 6= Leaf
shows measure-pmf .expectation (pmf-of-set (set-tree t)) (λx. lookup-cost x t) =

ipl t / size t
〈proof 〉

Therefore, we will now turn to analysing the internal path length of a random
BST. This then clearly related to the expected lookup costs of a random
element in a random BST by the above result.

1.6 Average Path Length

The internal path length satisfies the recursive equation ipl 〈l, x, r〉 = ipl l
+ size l + ipl r + size r. This is quite similar to the number of comparisons
performed by QuickSort, and indeed, we can reduce the internal path length
of a random BST to the number of comparisons performed by QuickSort on
a randomly-ordered list relatively easily:
theorem map-pmf-random-bst-eq-rqs-cost:

assumes finite A
shows map-pmf ipl (random-bst A) = rqs-cost (card A)
〈proof 〉

In particular, this means that the expected values are the same:
corollary expected-ipl-random-bst-eq:

assumes finite A
shows measure-pmf .expectation (random-bst A) ipl = rqs-cost-exp (card A)
〈proof 〉

Therefore, the results about the expected number of comparisons of Quick-
Sort carry over to the expected internal path length:
corollary expected-ipl-random-bst-eq ′:

assumes finite A
shows measure-pmf .expectation (random-bst A) ipl =

2 ∗ real (card A + 1) ∗ harm (card A) − 4 ∗ real (card A)
〈proof 〉

8

end

References

[1] Proof that a randomly built binary search tree has logarithmic height.
Computer Science Stack Exchange.
URL: http://cs.stackexchange.com/q/6356.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[3] B. Reed. The height of a random binary search tree. J. ACM,
50(3):306–332, May 2003.

9

http://cs.stackexchange.com/q/6356

	Expected shape of random Binary Search Trees
	Auxiliary lemmas
	Creating a BST from a list
	Random BSTs
	Expected height
	Lookup costs
	Average Path Length

