Expected Shape of Random Binary Search Trees

Manuel Eberl

September 13, 2023

Abstract

This entry contains proofs for the textbook results about the distributions of the height and internal path length of random binary search trees (BSTs), i. e. BSTs that are formed by taking an empty BST and inserting elements from a fixed set in random order.

In particular, we prove a logarithmic upper bound on the expected height and the $\Theta(n \log n)$ closed-form solution for the expected internal path length in terms of the harmonic numbers. We also show how the internal path length relates to the average-case cost of a lookup in a BST.

Contents

1 Expected shape of random Binary Search Trees 2
1.1 Auxiliary lemmas 2
1.2 Creating a BST from a list 3
1.3 Random BSTs 4
1.4 Expected height 8
1.5 Lookup costs 15
1.6 Average Path Length 16

1 Expected shape of random Binary Search Trees

theory Random-BSTs
imports
Complex-Main
HOL-Probability.Random-Permutations
HOL-Data-Structures.Tree-Set
Quick-Sort-Cost.Quick-Sort-Average-Case
begin

hide-const (open) Tree-Set.insert

1.1 Auxiliary lemmas

```
lemma linorder-on-linorder-class [intro]:
    linorder-on UNIV {(x,y). x\leq (y :: 'a :: linorder )}
    by (auto simp: linorder-on-def refl-on-def antisym-def trans-def total-on-def)
```

lemma Nil-in-permutations-of-set-iff [simp]: [] \in permutations-of-set $A \longleftrightarrow A=$
\{\}
by (auto simp: permutations-of-set-def)
lemma max-power-distrib-right:
fixes a :: ' a :: linordered-semidom
shows $a>1 \Longrightarrow \max \left(a^{\wedge} b\right)\left(a^{\wedge} c\right)=a^{\wedge} \max b c$
by (auto simp: max-def)
lemma set-tree-empty-iff [simp]: set-tree $t=\{ \} \longleftrightarrow t=$ Leaf
by (cases t) auto
lemma card-set-tree-bst: bst $t \Longrightarrow$ card (set-tree t) $=$ size t
proof (induction t)
case (Node l x r)
have set-tree $\langle l, x, r\rangle=$ insert x (set-tree $l \cup$ set-tree r) by simp
also from Node.prems have card $\ldots=$ Suc (card (set-tree $l \cup$ set-tree r))
by (intro card-insert-disjoint) auto
also from Node have card (set-tree $l \cup$ set-tree $r)=$ size $l+$ size r
by (subst card-Un-disjoint) force+
finally show? case by simp
qed simp-all
lemma pair-pmf-cong:
$p=p^{\prime} \Longrightarrow q=q^{\prime} \Longrightarrow$ pair-pmf $p q=$ pair-pmf $p^{\prime} q^{\prime}$
by simp
lemma expectation-add-pair-pmf:
fixes $f::{ }^{\prime} a \Rightarrow{ }^{\prime} c::\{b a n a c h$, second-countable-topology $\}$
assumes finite (set-pmf p) and finite (set-pmf q)
shows measure-pmf.expectation (pair-pmf p q) $(\lambda(x, y) . f x+g y)=$

```
    measure-pmf.expectation pf + measure-pmf.expectation q g
proof -
    have measure-pmf.expectation (pair-pmf p q) (\lambda(x,y).fx+gy)=
                measure-pmf.expectation (pair-pmf p q) (\lambdaz.f(fstz) +g(sndz))
    by (simp add: case-prod-unfold)
    also have ... = measure-pmf.expectation (pair-pmf p q) (\lambdaz.f (fst z)) +
                        measure-pmf.expectation (pair-pmf p q) (\lambdaz.g(snd z))
    by (intro Bochner-Integration.integral-add integrable-measure-pmf-finite) (auto
intro: assms)
    also have measure-pmf.expectation (pair-pmf p q) (\lambdaz.f (fstz)) =
                measure-pmf.expectation (map-pmf fst (pair-pmf p q)) f by simp
    also have map-pmf fst (pair-pmf p q) = p by (rule map-fst-pair-pmf)
    also have measure-pmf.expectation (pair-pmf p q) (\lambdaz.g(snd z))}
                measure-pmf.expectation (map-pmf snd (pair-pmf p q)) g by simp
    also have map-pmf snd (pair-pmf p q) =q by (rule map-snd-pair-pmf)
    finally show ?thesis.
qed
```


1.2 Creating a BST from a list

The following recursive function creates a binary search tree from a given list of elements by inserting them into an initially empty BST from left to right. We will prove that this is the case later, but the recursive definition has the advantage of giving us a useful induction rule, so we chose that definition and prove the alternative definitions later.
This recursion, which already almost looks like QuickSort, will be key in analysing the shape distributions of random BSTs.

```
fun bst-of-list :: ' \(a\) :: linorder list \(\Rightarrow\) ' \(a\) tree where
    bst-of-list [] \(=\) Leaf
| bst-of-list \((x \# x s)=\)
    Node (bst-of-list \([y \leftarrow x s . y<x]) x(b s t-o f-l i s t[y \leftarrow x s . y>x])\)
lemma bst-of-list-eq-Leaf-iff \([s i m p]:\) bst-of-list \(x s=\) Leaf \(\longleftrightarrow x s=[]\)
    by (induction xs) auto
lemma bst-of-list-snoc [simp]:
    bst-of-list \((x s @[y])=\) Tree-Set.insert y (bst-of-list xs)
    by (induction xs rule: bst-of-list.induct) auto
lemma bst-of-list-append:
    bst-of-list \((x s\) @ ys) = fold Tree-Set.insert ys (bst-of-list xs)
proof (induction ys arbitrary: xs)
    case (Cons y ys)
    have bst-of-list \((x s\) @ \((y \# y s))=\) bst-of-list \(((x s\) @ \([y]) @ y s)\) by simp
    also have \(\ldots=\) fold Tree-Set.insert ys (bst-of-list (xs @ [y]))
        by (rule Cons.IH)
    finally show? case by simp
qed simp-all
```

The following now shows that the recursive function indeed corresponds to the notion of inserting the elements from the list from left to right.

```
lemma bst-of-list-altdef: bst-of-list xs = fold Tree-Set.insert xs Leaf
    using bst-of-list-append[of [] xs] by simp
lemma size-bst-insert: \(x \notin\) set-tree \(t \Longrightarrow\) size (Tree-Set.insert \(x t\) ) \(=\) Suc (size \(t\) )
    by (induction \(t\) ) auto
lemma set-bst-insert [simp]: set-tree (Tree-Set.insert \(x t)=\) insert \(x(\) set-tree \(t)\)
    by (induction \(t\) ) auto
lemma set-bst-of-list \([\) simp \(]\) : set-tree (bst-of-list xs) \(=\) set xs
    by (induction xs rule: rev-induct) simp-all
lemma size-bst-of-list-distinct [simp]:
    assumes distinct xs
    shows size (bst-of-list xs) = length xs
    using assms by (induction xs rule: rev-induct) (auto simp: size-bst-insert)
lemma strict-mono-on-imp-less-iff:
    assumes strict-mono-on \(A\) f \(x \in A y \in A\)
    shows \(\quad f x<(f y:: ' b::\) linorder \() \longleftrightarrow x<(y::\) ' \(a::\) linorder \()\)
    using assms by (cases \(x\) y rule: linorder-cases; force simp: strict-mono-on-def)+
lemma bst-of-list-map:
    fixes \(f::\) ' \(a\) :: linorder \(\Rightarrow\) ' \(b\) :: linorder
    assumes strict-mono-on \(A f\) set xs \(\subseteq A\)
    shows bst-of-list (map fxs) \(=\) map-tree \(f(\) bst-of-list xs)
    using assms
proof (induction xs rule: bst-of-list.induct)
    case (2 \(x x s\) )
    have \([x a \leftarrow x s . f x a<f x]=[x a \leftarrow x s . x a<x]\) and \([x a \leftarrow x s . f x a>f x]=[x a \leftarrow x s\)
    \(x a>x]\)
            using 2.prems by (auto simp: strict-mono-on-imp-less-iff intro!: filter-cong)
    with 2 show ? case by (auto simp: filter-map o-def)
qed auto
```


1.3 Random BSTs

Analogously to the previous section, we can now view the concept of a random BST (i.e. a BST obtained by inserting a given set of elements in random order) in two different ways.
We again start with the recursive variant:
function random-bst :: ' a :: linorder set \Rightarrow ' a tree pmf where
random-bst $A=$ (if \neg finite $A \vee A=\{ \}$ then return-pmf Leaf else do \{

```
    x}\leftarrowpmf-of-set A
    l\leftarrow random-bst {y\inA.y<x};
    r\leftarrow random-bst {y\inA.y>x};
    return-pmf (Node l x r)
    })
    by auto
termination by (relation finite-psubset) auto
declare random-bst.simps [simp del]
lemma random-bst-empty [simp]: random-bst {} = return-pmf Leaf
    by (simp add: random-bst.simps)
lemma set-pmf-random-permutation [simp]:
    finite }A\Longrightarrow\mathrm{ set-pmf (pmf-of-set (permutations-of-set A))}={xs.distinct xs ^ set
xs=A}
    by (subst set-pmf-of-set) (auto dest: permutations-of-setD)
```

The alternative characterisation is the more intuitive one where we simply pick a random permutation of the set elements uniformly at random and insert them into an empty tree from left to right:

```
lemma random-bst-altdef:
    assumes finite \(A\)
    shows random-bst \(A=\) map-pmf bst-of-list (pmf-of-set (permutations-of-set \(A\) ))
using assms
proof (induction A rule: finite-psubset-induct)
    case (psubset A)
    define \(L R\) where \(L=(\lambda x .\{y \in A . y<x\})\) and \(R=(\lambda x .\{y \in A . y>x\})\)
    \{
        fix \(x\) assume \(x: x \in A\)
        hence \(*: L x \subset A R x \subset A\) by (auto simp: L-def \(R\)-def)
        note this [THEN psubset.IH]
    \} note \(I H=t h i s\)
    show ?case
    proof (cases \(A=\{ \}\) )
    case False
    note \(A=\langle\) finite \(A\rangle\langle A \neq\{ \}\rangle\)
    have random-bst \(A=\)
                do \{
                \(x \leftarrow p m f\)-of-set \(A\);
                \((l, r) \leftarrow\) pair-pmf (random-bst \((L x))\) (random-bst \((R x)\) );
                return-pmf (Node l x r)
            \} using \(A\) unfolding pair-pmf-def L-def \(R\)-def
        by (subst random-bst.simps) (simp add: bind-return-pmf bind-assoc-pmf)
    also have \(\ldots=d o\{\)
                                    \(x \leftarrow p m f\)-of-set \(A\);
                                    \((l, r) \leftarrow\) pair-pmf
                                    (map-pmf bst-of-list (pmf-of-set (permutations-of-set (L x))))
```

```
                    (map-pmf bst-of-list (pmf-of-set (permutations-of-set (R x))));
            return-pmf (Node l x r)
            }
    using A by (intro bind-pmf-cong refl) (simp-all add: IH)
    also have ... = do {
        x}\leftarrowpmf-of-set A
        (ls,rs)}\leftarrow\mathrm{ pair-pmf (pmf-of-set (permutations-of-set (L x)))
                        (pmf-of-set (permutations-of-set (R x)));
        return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
            } unfolding map-pair [symmetric]
        by (simp add: map-pmf-def case-prod-unfold bind-return-pmf bind-assoc-pmf)
    also have L}=(\lambdax.{y\inA-{x}.y\leqx}) by (auto simp:L-def
    also have }R=(\lambdax.{y\inA-{x}.\negy\leqx}) by (auto simp: R-def)
    also have do {
        x}\leftarrowpmf-of-set A
            (ls,rs)}\leftarrow\mathrm{ pair-pmf (pmf-of-set (permutations-of-set {y }\inA-{x}
y \leqx}))
                                    (pmf-of-set (permutations-of-set {y\inA-{x}.\negy
\leq x}));
            return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
            } =
                do {
                    x\leftarrowpmf-of-set A;
                    (ls,rs)}\leftarrow\mathrm{ map-pmf (partition ( }\lambday.y\leqx)
                            (pmf-of-set (permutations-of-set (A-{x})));
                        return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
                } using <finite A>
    by (intro bind-pmf-cong refl partition-random-permutations [symmetric]) auto
    also have ... = do {
                            x}\leftarrowpmf-of-set A;
                        (ls,rs)}\leftarrowmap-pmf (\lambdaxs. ([y\leftarrowxs.y<x],[y\leftarrowxs.y>x])
                                    (pmf-of-set (permutations-of-set (A-{x})));
                    return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
                    } using }
        by (intro bind-pmf-cong refl map-pmf-cong)
            (auto intro!: filter-cong dest: permutations-of-setD simp: order.strict-iff-order)
        also have ... = map-pmf bst-of-list (pmf-of-set (permutations-of-set A))
            using A by (subst random-permutation-of-set[of A])
                (auto simp: map-pmf-def bind-return-pmf o-def bind-assoc-pmf not-le)
    finally show ?thesis .
    qed (simp-all add: pmf-of-set-singleton)
qed
lemma finite-set-random-bst [simp, intro]:
    finite A\Longrightarrow finite (set-pmf (random-bst A))
    by (simp add: random-bst-altdef)
lemma random-bst-code [code]:
    random-bst (set xs) = map-pmf bst-of-list (pmf-of-set (permutations-of-set (set
```

```
xs)))
    by (rule random-bst-altdef) simp-all
lemma random-bst-singleton [simp]: random-bst {x} = return-pmf (Node Leaf x
Leaf)
    by (simp add: random-bst-altdef pmf-of-set-singleton)
lemma size-random-bst:
    assumes }t\in\mathrm{ set-pmf (random-bst A) finite A
    shows size t=\operatorname{card}A
proof -
    from assms obtain xs where distinct xs A = set xs t=bst-of-list xs
        by (auto simp: random-bst-altdef dest: permutations-of-setD)
    thus ?thesis using <finite A〉 by (simp add: distinct-card)
qed
lemma random-bst-image:
    assumes finite A strict-mono-on A f
    shows random-bst (f'A) = map-pmf (map-tree f)(random-bst A)
proof -
    from assms(2) have inj: inj-on f A by (rule strict-mono-on-imp-inj-on)
    with assms have inj-on (map f) (permutations-of-set A)
        by (intro inj-on-mapI) auto
    with assms inj have random-bst (f'A) =
                        map-pmf ( }\lambdax\mathrm{ . bst-of-list (map fx)) (pmf-of-set (permutations-of-set
A))
    by (simp add: random-bst-altdef permutations-of-set-image-inj map-pmf-of-set-inj
[symmetric]
                        pmf.map-comp o-def)
    also have ... = map-pmf (map-tree f) (random-bst A)
        unfolding random-bst-altdef[OF<finite A〉] pmf.map-comp o-def using assms
    by (intro map-pmf-cong refl bst-of-list-map[of A f]) (auto dest: permutations-of-setD)
    finally show ?thesis.
qed
```

We can also re-phrase the non-recursive definition using the fold-random-permutation combinator from the HOL-Probability library, which folds over a given set in random order.
lemma random-bst-altdef ':
assumes finite A
shows random-bst $A=$ fold-random-permutation Tree-Set.insert Leaf A
proof -
have random-bst $A=$ map-pmf bst-of-list (pmf-of-set (permutations-of-set A))
using assms by (simp add: random-bst-altdef)
also have $\ldots=$ map-pmf (λ xs. fold Tree-Set.insert xs Leaf) (pmf-of-set (permutations-of-set A))
using assms by (intro map-pmf-cong refl) (auto simp: bst-of-list-altdef)
also from assms have ... = fold-random-permutation Tree-Set.insert Leaf A
by (simp add: fold-random-permutation-fold)
finally show ?thesis.
qed

1.4 Expected height

For the purposes of the analysis of the expected height, we define the following notion of 'expected height', which is essentially two to the power of the height (as defined by Cormen et al.) with a special treatment for the empty tree, which has exponential height 0 .
Note that the height defined by Cormen et al. differs from the height function here in Isabelle in that for them, the height of the empty tree is undefined and the height of a singleton tree is 0 etc., whereas in Isabelle, the height of the empty tree is 0 and the height of a singleton tree is 1 .

```
definition eheight :: 'a tree \(\Rightarrow\) nat where
    eheight \(t=\left(\right.\) if \(t=\) Leaf then 0 else 2 \({ }^{\wedge}(\) height \(\left.t-1)\right)\)
```

lemma eheight-Leaf [simp]: eheight Leaf $=0$
by (simp add: eheight-def)
lemma eheight-Node-singleton $[$ simp $]$: eheight (Node Leaf x Leaf $)=1$
by (simp add: eheight-def)
lemma eheight-Node:
$l \neq$ Leaf $\vee r \neq$ Leaf \Longrightarrow eheight (Node $l x r)=2 * \max$ (eheight l) (eheight r)
by (cases l; cases r) (simp-all add: eheight-def max-power-distrib-right)

```
fun eheight-rbst :: nat \(\Rightarrow\) nat pmf where
    eheight-rbst \(0=\) return-pmf 0
| eheight-rbst (Suc 0) \(=\) return-pmf 1
| eheight-rbst (Suc n) =
        do \{
            \(k \leftarrow p m f-o f-s e t\{. . n\} ;\)
            \(h 1 \leftarrow\) eheight-rbst \(k\);
            \(h 2 \leftarrow\) eheight-rbst \((n-k)\);
            return-pmf \((2 * \max h 1 h 2)\}\)
```

definition eheight-exp :: nat \Rightarrow real where
eheight-exp $n=$ measure-pmf.expectation (eheight-rbst n) real
lemma eheight-rbst-reduce:
assumes $n>1$
shows eheight-rbst $n=$
$d o\{k \leftarrow$ pmf-of-set $\{. .<n\} ; h 1 \leftarrow$ eheight-rbst $k ; h 2 \leftarrow$ eheight-rbst $(n$
$-k-1$);
return-pmf $(2 * \max h 1 h 2)\}$
using assms by (cases n rule: eheight-rbst.cases) (simp-all add: lessThan-Suc-atMost)

```
lemma Leaf-in-set-random-bst-iff:
    assumes finite A
    shows Leaf }\in\mathrm{ set-pmf (random-bst A)}\longleftrightarrow4={
proof
    assume Leaf \in set-pmf (random-bst A)
    from size-random-bst[OF this] and assms show }A={}\mathrm{ by auto
qed auto
lemma eheight-rbst:
    assumes finite A
    shows eheight-rbst (card A) = map-pmf eheight (random-bst A)
using assms
proof (induction A rule: finite-psubset-induct)
    case (psubset A)
define rank where rank = linorder-rank {(x,y). x \leq y} A
    from 〈finite }A\rangle\mathrm{ have }A={}\vee is-singleton A\vee card A>
        by (auto simp: not-less le-Suc-eq is-singleton-altdef)
    then consider A={}| is-singleton A | card A>1 by blast
    thus ?case
    proof cases
        case 3
        hence nonempty: }A\not={}\mathrm{ by auto
    from 3 have \negis-singleton A by (auto simp: is-singleton-def)
        hence exists-other: }\existsy\inA.y\not=x\mathrm{ for }x\mathrm{ using }\langleA\not={}> by (force simp
is-singleton-def)
    hence map-pmf eheight (random-bst A) =
        do {
                        x}\leftarrowpmf-of-set A
                    l\leftarrow random-bst {y\inA.y<x};
                    r\leftarrow random-bst {y\inA.y>x};
                    return-pmf (eheight (Node l x r))
                }
            using <finite A〉 by (subst random-bst.simps) (auto simp: map-bind-pmf)
        also have ... = do {
                            x}\leftarrowpmf-of-set A
                            l\leftarrow random-bst {y\inA.y<x};
                            \leftarrow\leftarrow random-bst {y\inA.y>x};
                            return-pmf (2 * max (eheight l) (eheight r))
                    }
using 3<finite A〉 exists-other
by (intro bind-pmf-cong refl, subst eheight-Node)
            (force simp: Leaf-in-set-random-bst-iff not-less nonempty eheight-Node)+
    also have ... = do {
    x}\leftarrowpmf-of-set A
    h1\leftarrow map-pmf eheight (random-bst {y\inA.y<x});
    h2 }\leftarrow\mathrm{ map-pmf eheight (random-bst {y GA.y>x});
    return-pmf (2 * max h1 h2)
}
```

```
        by (simp add: bind-map-pmf)
    also have ... = do {
                        x}\leftarrowpmf-of-set A
                        h1\leftarrow eheight-rbst (card {y\inA. y<x});
                        h2 }\leftarrow\mathrm{ eheight-rbst (card {y A A. y>x});
                        return-pmf (2 * max h1 h2)
                }
            using〈A\not={}><finite A> by (intro bind-pmf-cong psubset.IH [symmetric]
refl) auto
    also have ... = do {
                        k\leftarrow map-pmf rank (pmf-of-set A);
                        h1 \leftarrow eheight-rbst k;
                        h2 }\leftarrow\mathrm{ eheight-rbst (card A-k-1);
                        return-pmf (2 * max h1 h2)
            }
        unfolding bind-map-pmf
    proof (intro bind-pmf-cong refl, goal-cases)
        case (1 x)
    have rank x = card {y\inA-{x}. y\leqx} by (simp add: rank-def linorder-rank-def)
        also have }{y\inA-{x}.y\leqx}={y\inA.y<x} by aut
        finally show ?case by simp
    next
        case (2 x)
        have A-{x}={y\inA-{x}.y\leqx}\cup{y\inA.y>x} by auto
        also have card \ldots.= rank x + card {y\inA.y>x}
        using 〈finite A〉 by (subst card-Un-disjoint) (auto simp: rank-def linorder-rank-def)
        finally have card {y\inA.y>x} = card A - rank x-1
            using 2<finite A\rangle\langleA\not={}> by simp
            thus ?case by simp
    qed
    also have map-pmf rank (pmf-of-set A) = pmf-of-set {..<card A}
        using <A # {}><finite A> unfolding rank-def
        by (intro map-pmf-of-set-bij-betw bij-betw-linorder-rank[of UNIV]) auto
    also have do {
                k\leftarrowpmf-of-set {..<card A};
                h1 \leftarrow eheight-rbst k;
                h2 \leftarrow eheight-rbst (card A - k - 1);
                return-pmf (2 * max h1 h2)
                } = eheight-rbst (card A)
    by (rule eheight-rbst-reduce [symmetric]) fact+
    finally show ?thesis ..
    qed (auto simp: is-singleton-def)
qed
lemma finite-pmf-set-eheight-rbst [simp, intro]: finite (set-pmf (eheight-rbst n))
proof -
    have eheight-rbst n = map-pmf eheight (random-bst {..<n})
        by (subst eheight-rbst [symmetric]) auto
    also have finite (set-pmf ...) by simp
```

```
    finally show ?thesis.
qed
lemma eheight-exp-0 [simp]: eheight-\operatorname{exp 0 = 0}
    by (simp add: eheight-exp-def)
lemma eheight-exp-1 [simp]: eheight-exp (Suc 0) = 1
    by (simp add: eheight-exp-def lessThan-Suc)
lemma eheight-exp-reduce-bound:
    assumes n>1
    shows eheight-exp n\leq4/n*(\sumk<n. eheight-exp k)
proof -
    have [simp]: real (max a b)= max (real a) (real b) for a b
        by (simp add: max-def)
    let ?f = \lambda(h1,h2). max h1 h2
    let ?p = \lambdak. pair-pmf (eheight-rbst k) (eheight-rbst ( }n-Suck)
    have eheight-exp n= measure-pmf.expectation (eheight-rbst n) real
    by (simp add: eheight-exp-def)
    also have ... = 1 / real n * (\sumk<n. measure-pmf.expectation
                                    (map-pmf (\lambda(h1,h2). 2 * max h1 h2) (?p k)) real)
    (is - = - * ?S) unfolding pair-pmf-def map-bind-pmf
    by (subst eheight-rbst-reduce [OF assms], subst pmf-expectation-bind-pmf-of-set)
            (insert assms, auto simp: sum-divide-distrib divide-simps)
    also have ?S = (\sumk<n. measure-pmf.expectation (map-pmf (\lambdax. 2 * ) (map-pmf
    ?f (?p k))) real)
        by (simp only: pmf.map-comp o-def case-prod-unfold)
    also have \ldots=2 * (\sumk<n. measure-pmf.expectation (map-pmf ?f (?p k))
real) (is - = - * ?S')
    by (subst integral-map-pmf) (simp add: sum-distrib-left)
    also have ?S'}=(\sumk<n.measure-pmf.expectation (?p k) (\lambda(h1,h2). max (real
h1) (real h2)))
    by (simp add: case-prod-unfold)
    also have ... \leq (\sumk<n. measure-pmf.expectation (?p k) ( }\lambda(h1,h2). real h1 +
real h2))
            unfolding integral-map-pmf case-prod-unfold
    by (intro sum-mono Bochner-Integration.integral-mono integrable-measure-pmf-finite)
auto
    also have ... = (\sumk<n. eheight-exp k) +(\sumk<n. eheight-exp ( n - Suc k))
            by (subst expectation-add-pair-pmf) (auto simp: sum.distrib eheight-exp-def)
    also have ( }\sumk<n.\mathrm{ eheight-exp ( }n-Suck))=(\sumk<n. eheight-exp k
            by (intro sum.reindex-bij-witness[of - \lambdak.n - Suc k \lambdak.n - Suc k]) auto
    also have 1 / real n*(2* (\ldots.+..)) = 4 / real n * ... by simp
    finally show ?thesis using assms by (simp-all add: mult-left-mono divide-right-mono)
qed
```

We now define the following upper bound on the expected exponential height due to Cormen et al. [2]:
lemma eheight-exp-bound: eheight-exp $n \leq$ real $((n+3)$ choose 3$) / 4$

```
proof (induction \(n\) rule: less-induct)
    case (less \(n\) )
    consider \(n=0|n=1| n>1\) by force
    thus ?case
    proof cases
        case 3
    hence eheight-exp \(n \leq 4 / n *\left(\sum k<n\right.\). eheight-exp \(\left.k\right)\)
        by (rule eheight-exp-reduce-bound)
    also have \(\left(\sum k<n\right.\). eheight-exp \(\left.k\right) \leq\left(\sum k<n\right.\). real \(((k+3)\) choose 3) / 4)
        by (intro sum-mono less.IH) auto
    also have \(\ldots=\operatorname{real}\left(\sum k<n .((k+3)\right.\) choose 3) \() / 4\)
        by (simp add: sum-divide-distrib)
    also have \(\left(\sum k<n .((k+3)\right.\) choose 3 \(\left.)\right)=\left(\sum k \leq n-1 .((k+3)\right.\) choose 3 \(\left.)\right)\)
        using \(\langle n>1\rangle\) by (intro sum.cong) auto
    also have \(\ldots=((n+3)\) choose 4)
        using choose-rising-sum(1)[of \(3 n-1]\) and \(\langle n>1\rangle\) by (simp add: add-ac
Suc3-eq-add-3)
    also have \(4 /\) real \(n *(\ldots / 4)=\) real \(((n+3)\) choose 3\() / 4 \mathbf{u s i n g}\langle n>1\rangle\)
        by (cases \(n\) ) (simp-all add: binomial-fact fact-numeral divide-simps)
    finally show?thesis using \(\langle n>1\rangle\) by (simp add: mult-left-mono divide-right-mono)
    qed (auto simp: eval-nat-numeral)
qed
```

We then show that this is indeed an upper bound on the expected exponential height by induction over the set of elements. This proof mostly follows that by Cormen et al. [2], and partially an answer on the Computer Science Stack Exchange [1].

Since the function $\lambda x .2^{x}$ is convex, we can then easily derive a bound on the actual height using Jensen's inequality:

```
definition height-exp-approx :: nat \(\Rightarrow\) real where
    height-exp-approx \(n=\log 2(\) real \(((n+3)\) choose 3\() / 4)+1\)
theorem height-expectation-bound:
    assumes finite \(A A \neq\{ \}\)
    shows measure-pmf.expectation (random-bst A) height
            \(\leq\) height-exp-approx (card A)
proof -
    have convex-on UNIV ((powr) 2)
        by (intro convex-on-realI \(\left[\right.\) where \(f^{\prime}=\lambda x\). \(\ln 2 * 2\) powr \(\left.\left.x\right]\right)\)
            (auto intro!: derivative-eq-intros DERIV-powr simp: powr-def [abs-def])
    hence 2 powr measure-pmf.expectation (random-bst A) \((\lambda t\). real (height \(t-1)\) )
\(\leq\)
            measure-pmf.expectation (random-bst A) ( \(\lambda\) t. 2 powr real (height \(t-1\) ))
    using assms
    by (intro measure-pmf.jensens-inequality[where \(I=\) UNIV])
                (auto intro!: integrable-measure-pmf-finite)
    also have \((\lambda t\). 2 powr real (height \(t-1))=\left(\lambda t\right.\). \(\mathcal{2}^{\wedge}(\) height \(\left.t-1)\right)\)
    by (simp add: powr-realpow)
```

also have measure-pmf.expectation (random-bst $A)\left(\lambda t .2^{\wedge}(\right.$ height $\left.t-1)\right)=$ measure-pmf.expectation (random-bst $A)(\lambda t$. real (eheight $t)$)
using assms
by (intro integral-cong-AE)
(auto simp: AE-measure-pmf-iff random-bst-altdef eheight-def)
also have $\ldots=$ measure-pmf.expectation (map-pmf eheight (random-bst A)) real by simp
also have map-pmf eheight (random-bst A) $=$ eheight-rbst (card A)
by (rule eheight-rbst [symmetric]) fact+
also have measure-pmf.expectation ... real $=$ eheight-exp $(\operatorname{card} A)$
by (simp add: eheight-exp-def)
also have $\ldots \leq \operatorname{real}((\operatorname{card} A+3)$ choose 3$) / 4$ by (rule eheight-exp-bound)
also have measure-pmf.expectation (random-bst $A)(\lambda t$. real $($ height $t-1))=$ measure-pmf.expectation (random-bst A) $(\lambda t$. real (height $t)-1)$
proof (intro integral-cong-AE AE-pmfI, goal-cases)
case (3 t)
with $\langle A \neq\{ \}\rangle$ and assms show ?case
by (subst of-nat-diff) (auto simp: Suc-le-eq random-bst-altdef)
qed auto
finally have 2 powr measure-pmf.expectation (random-bst A) (λt. real (height t) -1)

$$
\leq \operatorname{real}((\text { card } A+3) \text { choose } 3) / 4
$$

hence log 2 (2 powr measure-pmf.expectation (random-bst A) (λt. real (height t)
$-1)) \leq$

$$
\log 2(\text { real }((\text { card } A+3) \text { choose } 3) / 4)(\text { is ?lhs } \leq \text { ?rhs })
$$

by (subst log-le-cancel-iff) auto
also have ?lhs $=$ measure-pmf.expectation $($ random-bst $A)(\lambda t$. real (height $t)-$ 1)
by simp
also have $\ldots=$ measure-pmf.expectation (random-bst $A)(\lambda t$. real (height $t)$) 1
using assms
by (subst Bochner-Integration.integral-diff) (auto intro!: integrable-measure-pmf-finite)
finally show ?thesis by (simp add: height-exp-approx-def)
qed
This upper bound is asymptotically equivalent to $c \ln n$ with $c=\frac{3}{\ln 2} \approx 4.328$. This is actually a relatively tight upper bound, since the exact asymptotics of the expected height of a random BST is $c \ln n$ with $c \approx 4.311$. [3] However, the proof of these precise asymptotics is very intricate and we will therefore be content with the upper bound.
In particular, we can now show that the expected height is $O(\log n)$.

```
lemma ln-sum-bigo-ln: \((\lambda x::\) real. \(\ln (x+c)) \in O(\ln )\)
proof (rule bigoI-tendsto)
    from eventually-gt-at-top[of \(1::\) real \(]\) show eventually \((\lambda x::\) real. \(\ln x \neq 0)\) at-top
        by eventually-elim simp-all
next
    show \(((\lambda x \cdot \ln (x+c) / \ln x) \longrightarrow 1)\) at-top
```

```
    proof (rule lhospital-at-top-at-top)
    show eventually ( }\lambdax.((\lambdax.ln(x+c))\mathrm{ has-real-derivative inverse (x+c)) (at
x)) at-top
        using eventually-gt-at-top[of -c]
        by eventually-elim (auto intro!: derivative-eq-intros simp: field-simps)
    show eventually ( }\lambdax.((\lambdax.\operatorname{ln}x)\mathrm{ has-real-derivative inverse x) (at x)) at-top
        using eventually-gt-at-top[of 0]
        by eventually-elim (auto intro!: derivative-eq-intros simp: field-simps)
    show }((\lambdax\mathrm{ . inverse }(x+c)/\mathrm{ inverse }x)\longrightarrow1)\mathrm{ at-top
    proof (rule Lim-transform-eventually)
        show eventually ( }\lambdax\mathrm{ . inverse (1 +c/x)= inverse (x+c)/ inverse x)
at-top
            using eventually-gt-at-top[of 0::real] eventually-gt-at-top[of -c]
            by eventually-elim (simp add: field-simps)
        have ((\lambdax. inverse (1 + c/ x)) \longrightarrow inverse (1 + 0)) at-top
            by (intro tendsto-inverse tendsto-add tendsto-const
                real-tendsto-divide-at-top[OF tendsto-const] filterlim-ident) simp-all
        thus}((\lambdax\mathrm{ . inverse }(1+c/x))\longrightarrow1) at-top by simp
    qed
    qed (auto simp: ln-at-top eventually-at-top-not-equal)
qed
corollary height-expectation-bigo: height-exp-approx }\inO(ln
proof -
    let ?T = \lambdax::real. log 2 (x+1) + log 2 (x+2) + log 2 }(x+3)+(1-\operatorname{log}
24)
    have eventually ( }\lambdan\mathrm{ . height-exp-approx }n
                log2 (real n + 1) + log 2 (real n + 2) + log 2 (real n + 3) + (1-log 2
24)) at-top
            (is eventually (\lambdan. - = ?T n) at-top) using eventually-gt-at-top[of 0::nat]
    proof eventually-elim
    case (elim n)
    have height-exp-approx n= log 2 (real (n+3 choose 3)/4) + 1
            by (simp add: height-exp-approx-def log-divide)
    also have real ((n+3) choose 3) = real (n+3) gchoose 3
        by (simp add: binomial-gbinomial)
    also have .../4 = (real n + 1)*(real n + 2) * (real n + 3) / 24
    by (simp add: gbinomial-pochhammer' numeral-3-eq-3 pochhammer-Suc add-ac)
    also have log 2 .. = log 2 (real n + 1) + log 2 (real n + 2) + log 2 (real n
+ 3) - log 2 24
            by (simp add: log-divide log-mult)
    finally show ?case by simp
qed
hence height-exp-approx }\in\Theta(?T) by (rule bigthetaI-cong
also have *:}(\lambdax.\operatorname{ln}(x+c)/\operatorname{ln}2)\inO(\operatorname{ln})\mathrm{ for c :: real
    by (subst landau-o.big.cdiv-in-iff ') (auto intro!: ln-sum-bigo-ln)
have ?T }\inO(\lambdan.ln (real n)) unfolding log-def
    by (intro bigo-real-nat-transfer sum-in-bigo ln-sum-bigo-ln *) simp-all
finally show ?thesis.
```


qed

1.5 Lookup costs

The following function describes the cost incurred when looking up a specific element in a specific BST. The cost corresponds to the number of edges traversed in the lookup.

```
primrec lookup-cost :: 'a :: linorder }=>\mp@subsup{}{}{\prime}'a tree => nat where
    lookup-cost x Leaf = 0
| lookup-cost x (Node l y r) =
        (if }x=y\mathrm{ then 0
        else if x<y then Suc (lookup-cost x l)
        else Suc (lookup-cost x r))
```

Some of the literature defines these costs as 1 in the case that the current node is the correct one, i. e. their costs are our costs plus 1. These alternative costs are exactly the number of comparisons performed in the lookup. Our cost function has the advantage of precisely summing up to the internal path length and therefore gives us slightly nicer results, and since the difference is only $\mathrm{a}+1$ in the end, this variant seemed more reasonable.

It can be shown with a simple induction that The sum of all lookup costs in a tree is the internal path length of the tree.

```
theorem sum-lookup-costs:
    fixes \(t::\) ' \(a\) :: linorder tree
    assumes bst \(t\)
    shows \(\left(\sum x \in\right.\) set-tree \(t\). lookup-cost \(\left.x t\right)=i p l t\)
using assms
proof (induction \(t\) )
    case (Node l x r)
    from Node.prems
        have disj: \(x \notin\) set-tree \(l x \notin\) set-tree \(r\) set-tree \(l \cap\) set-tree \(r=\{ \}\) by force +
    have set-tree (Node lx \(x\) ) \(=\) insert \(x(\) set-tree \(l \cup\) set-tree \(r)\) by simp
    also have \(\left(\sum y \in \ldots\right.\) lookup-cost \(y(\) Node \(\left.l x r)\right)=\) lookup-cost \(x\langle l, x, r\rangle+\)
                                    \(\left(\sum y \in\right.\) set-tree l. lookup-cost \(\left.y\langle l, x, r\rangle\right)+\left(\sum y \in\right.\) set-tree \(r\). lookup-cost
\(y\langle l, x, r\rangle)\)
    using disj by (simp add: sum.union-disjoint)
    also have \(\left(\sum y \in\right.\) set-tree l. lookup-cost \(\left.y\langle l, x, r\rangle\right)=\left(\sum y \in\right.\) set-tree l. \(1+\)
lookup-cost y l)
    using disj and Node by (intro sum.cong refl) auto
    also have \(\ldots=\) size \(l+i p l l\) using Node
        by (subst sum.distrib) (simp-all add: card-set-tree-bst)
    also have \(\left(\sum y \in\right.\) set-tree \(r\). lookup-cost \(\left.y\langle l, x, r\rangle\right)=\left(\sum y \in\right.\) set-tree r. \(1+\)
lookup-cost y \(r\) )
    using disj and Node by (intro sum.cong refl) auto
    also have \(\ldots=\) size \(r+i p l r\) using Node
    by (subst sum.distrib) (simp-all add: card-set-tree-bst)
    finally show? case by simp
```

qed simp-all
This allows us to easily show that the expected cost of looking up a random element in a fixed tree is the internal path length divided by the number of elements.

```
theorem expected-lookup-cost:
    assumes bst \(t t \neq\) Leaf
    shows measure-pmf.expectation \((p m f\)-of-set \((\) set-tree \(t))(\lambda x\). lookup-cost \(x t)=\)
        ipl \(t\) / size \(t\)
    using assms by (subst integral-pmf-of-set)
    (simp-all add: sum-lookup-costs of-nat-sum [symmetric] card-set-tree-bst)
```

Therefore, we will now turn to analysing the internal path length of a random BST. This then clearly related to the expected lookup costs of a random element in a random BST by the above result.

1.6 Average Path Length

The internal path length satisfies the recursive equation $i p l\langle l, x, r\rangle=i p l l$ + size $l+i p l r+$ size r. This is quite similar to the number of comparisons performed by QuickSort, and indeed, we can reduce the internal path length of a random BST to the number of comparisons performed by QuickSort on a randomly-ordered list relatively easily:

```
theorem map-pmf-random-bst-eq-rqs-cost:
    assumes finite \(A\)
    shows map-pmfipl \((\) random-bst \(A)=\) rqs-cost \((\operatorname{card} A)\)
using assms
proof (induction A rule: finite-psubset-induct)
    case (psubset A)
    show ?case
    proof (cases \(A=\{ \}\) )
    case False
    note \(A=\langle\) finite \(A\rangle\langle A \neq\{ \}\rangle\)
    define \(n\) where \(n=\operatorname{card} A-1\)
    define rank \(::\) ' \(a \Rightarrow\) nat where rank \(=\) linorder-rank \(\{(x, y) . x \leq y\} A\)
    from \(A\) have card: card \(A=\) Suc \(n\) by (cases card \(A\) ) (auto simp: \(n\)-def)
    from \(A\) have map-pmf ipl (random-bst \(A\) ) =
                                    do \{
                                    \(x \leftarrow p m f\)-of-set \(A\);
                                    \((l, r) \leftarrow\) pair-pmf (random-bst \(\{y \in A . y<x\})\) (random-bst \(\{y \in\)
A. \(y>x\})\);
                return-pmf (ipl (Node lx r))
                    \}
        by (subst random-bst.simps)
        (simp-all add: pair-pmf-def card map-pmf-def bind-assoc-pmf bind-return-pmf)
    also have \(\ldots=d o\{\)
                            \(x \leftarrow p m f\)-of-set \(A ;\)
```

```
                        (l,r)\leftarrow pair-pmf (random-bst {y\inA.y<x}) (random-bst {y
\inA. y>x});
                    return-pmf ( n +ipl l + ipl r)
                    }
    proof (intro bind-pmf-cong refl, clarify, goal-cases)
    case (1 x l r)
    from 1 and A have n=card (A-{x}) by (simp add: n-def)
    also have }A-{x}={y\inA.y<x}\cup{y\inA.y>x} by aut
    also have card \ldots= card {y\inA. y<x} + card {y\inA. y>x}
        using <finite A〉 by (intro card-Un-disjoint) auto
        also from 1 and A have card {y\inA.y<x} = size l by (auto dest:
size-random-bst)
            also from 1 and A have card {y\inA. y>x}= size r by (auto dest:
size-random-bst)
    finally show ?case by simp
    qed
    also have ... = do {
                    x}\leftarrowpmf-of-set A
                    (l,r)\leftarrow pair-pmf (map-pmf ipl (random-bst {y\inA.y<x}))
                                    (map-pmf ipl (random-bst {y\inA.y>x}));
                            return-pmf ( }n+l+r
                } by (simp add: map-pair [symmetric] case-prod-unfold bind-map-pmf)
    also have ... = do {
                    i\leftarrow map-pmf rank (pmf-of-set A);
                    (l,r)}\leftarrow\mathrm{ pair-pmf (rqs-cost i) (rqs-cost ( }n-i))
                    return-pmf ( }n+l+r
                    } (is - = bind-pmf - ?f) unfolding bind-map-pmf
    proof (intro bind-pmf-cong refl pair-pmf-cong, goal-cases)
        case (1 x)
        have map-pmf ipl (random-bst {y\inA.y<x})=rqs-cost (card {y\inA.y
< x})
            using 1 and A by (intro psubset.IH) auto
            also have {y\inA.y<x}={y\inA-{x}.y\leqx} by auto
            hence card {y\inA.y<x}=rank x by (simp add: rank-def linorder-rank-def)
            finally show ?case.
    next
    case (2 x)
        have map-pmf ipl (random-bst {y\inA. y>x}) = rqs-cost (card {y\inA.y
> x})
            using 2 and A by (intro psubset.IH) auto
            also have {y\inA. y>x}=A-{x}-{y\inA-{x}. y\leqx} by auto
            hence card {y\inA. y>x} = card ... by (simp only:)
            also from 2 and A have .. = n- rank x
                by (subst card-Diff-subset) (auto simp: rank-def linorder-rank-def n-def)
            finally show ?case.
    qed
    also from A have map-pmf rank (pmf-of-set A) = pmf-of-set {..<card A}
    unfolding rank-def by (intro map-pmf-of-set-bij-betw bij-betw-linorder-rank[of
UNIV]) auto
```

```
    also have {..<card A} ={..n} by (auto simp:card)
    also have pmf-of-set ...>> ?f = rqs-cost (card A)
    by (simp add: pair-pmf-def bind-assoc-pmf bind-return-pmf card)
    finally show ?thesis.
    qed simp-all
qed
```

In particular, this means that the expected values are the same:

```
corollary expected-ipl-random-bst-eq:
    assumes finite A
    shows measure-pmf.expectation (random-bst A) ipl =rqs-cost-exp (card A)
proof -
    have measure-pmf.expectation (random-bst A) ipl =
                measure-pmf.expectation (map-pmf ipl (random-bst A)) real by simp
    also from assms have map-pmf ipl (random-bst A) =rqs-cost (card A)
        by (rule map-pmf-random-bst-eq-rqs-cost)
    also have measure-pmf.expectation ... real =rqs-cost-exp (card A)
    by (rule expectation-rqs-cost)
    finally show ?thesis.
qed
```

Therefore, the results about the expected number of comparisons of QuickSort carry over to the expected internal path length:

```
corollary expected-ipl-random-bst-eq':
    assumes finite A
    shows measure-pmf.expectation (random-bst A) ipl=
        2* real (card A + 1)* harm (card A) - 4* real (card A)
    by (simp add: expected-ipl-random-bst-eq rqs-cost-exp-eq assms)
end
```


References

[1] Proof that a randomly built binary search tree has logarithmic height. Computer Science Stack Exchange. URL: http://cs.stackexchange.com/q/6356.
[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
[3] B. Reed. The height of a random binary search tree. J. ACM, 50(3):306-332, May 2003.

