Abstract

This entry contains proofs for the textbook results about the distributions of the height and internal path length of random binary search trees (BSTs), i.e. BSTs that are formed by taking an empty BST and inserting elements from a fixed set in random order.

In particular, we prove a logarithmic upper bound on the expected height and the $\Theta(n \log n)$ closed-form solution for the expected internal path length in terms of the harmonic numbers. We also show how the internal path length relates to the average-case cost of a lookup in a BST.

Contents

1 Expected shape of random Binary Search Trees 2
 1.1 Auxiliary lemmas 2
 1.2 Creating a BST from a list 3
 1.3 Random BSTs 4
 1.4 Expected height 8
 1.5 Lookup costs 15
 1.6 Average Path Length 16
1 Expected shape of random Binary Search Trees

theory Random-BSTs
 imports
 Complex-Main
 HOL-Probability.Random-Permutations
 HOL-Data-Structures.Tree-Set
 Quick-Sort-Cost.Quick-Sort-Average-Case
begin

hide-const (open) Tree-Set.insert

1.1 Auxiliary lemmas

lemma linorder-on-linorder-class [intro]:
 linorder-on UNIV {(x, y). x ≤ (y :: 'a :: linorder)}
 by (auto simp: linorder-on-def refl-on-def antisym-def trans-def total-on-def)

lemma Nil-in-permutations-of-set-iff [simp]:
 {} ∈ permutations-of-set A ←→ A = {}
 by (auto simp: permutations-of-set-def)

lemma max-power-distrib-right:
 fixes a :: 'a :: linordered-semidom
 shows a > 1 =⇒ max (a ^ b) (a ^ c) = a ^ max b c
 by (auto simp: max-def)

lemma set-tree-empty-iff [simp]: set-tree t = {} ←→ t = Leaf
 by (cases t) auto

lemma card-set-tree-bst: bst t =⇒ card (set-tree t) = size t
proof (induction t)
 case (Node l x r)
 have set-tree (l, x, r) = insert x (set-tree l ∪ set-tree r) by simp
 also from Node.prems have card . . . = Suc (card (set-tree l ∪ set-tree r))
 by (intro card-insert-disjoint) auto
 also from Node have card (set-tree l ∪ set-tree r) = size l + size r
 by (subst card-Un-disjoint) force+
 finally show ?case by simp
qed simp-all

lemma pair-pmf-cong:
 p = p' =⇒ q = q' =⇒ pair-pmf p q = pair-pmf p' q'
 by simp

lemma expectation-add-pair-pmf:
 fixes f :: 'a ⇒ 'c::{banach, second-countable-topology}
 assumes finite (set-pmf p) and finite (set-pmf q)
 shows measure-pmf.expectation (pair-pmf p q) (λ(x,y). f x + g y) =
measure-pmf.expectation p f + measure-pmf.expectation q g

proof –

have measure-pmf.expectation (pair-pmf p q) (λ(x,y). f x + g y) =
 measure-pmf.expectation (pair-pmf p q) (λz. f (fst z) + g (snd z))
 by (simp add: case-prod-unfold)
also have . . . = measure-pmf.expectation (pair-pmf p q) (λz. f (fst z)) +
 measure-pmf.expectation (pair-pmf p q) (λz. g (snd z))
 by (intro Bochner-Integration.integral-add integrable-measure-pmf-finite) (auto
 intro: assms)
also have measure-pmf.expectation (pair-pmf p q) (λz. f (fst z)) =
 measure-pmf.expectation (map-pmf fst (pair-pmf p q)) f
 by simp
also have measure-pmf.expectation (pair-pmf p q) (λz. g (snd z)) =
 measure-pmf.expectation (map-pmf snd (pair-pmf p q)) g
 by simp
also have map-pmf snd (pair-pmf p q) = q by (rule map-snd-pair-pmf)
finally show ?thesis .

qed

1.2 Creating a BST from a list

The following recursive function creates a binary search tree from a given list
of elements by inserting them into an initially empty BST from left to right.
We will prove that this is the case later, but the recursive definition has the
advantage of giving us a useful induction rule, so we chose that definition
and prove the alternative definitions later.

This recursion, which already almost looks like QuickSort, will be key in
analysing the shape distributions of random BSTs.

fun bst-of-list :: 'a :: linorder list ⇒ 'a tree where
| bst-of-list [] = Leaf
| bst-of-list (x # xs) =
 Node (bst-of-list [y ← xs. y < x]) x (bst-of-list [y ← xs. y > x])

lemma bst-of-list-eq-Leaf-iff [simp]: bst-of-list xs = Leaf ↔ xs = []
 by (induction xs) auto

lemma bst-of-list-snoc [simp]:
 bst-of-list (xs @ [y]) = Tree-Set.insert y (bst-of-list xs)
 by (induction xs rule: bst-of-list.induct) auto

lemma bst-of-list-append:
 bst-of-list (xs @ ys) = fold Tree-Set.insert ys (bst-of-list xs)
proof (induction ys arbitrary: xs)
 case (Cons y ys)
 have bst-of-list (xs @ (y # ys)) = bst-of-list ((xs @ [y]) @ ys) by simp
 also have . . . = fold Tree-Set.insert ys (bst-of-list (xs @ [y]))
 by (rule Cons.IH)
finally show ?case by simp
qed simp-all
The following now shows that the recursive function indeed corresponds to
the notion of inserting the elements from the list from left to right.

lemma bst-of-list-altdef: bst-of-list xs = fold Tree-Set.insert xs Leaf
 using bst-of-list-append[of [] xs] by simp

lemma size-bst-insert; x \notin set t \implies size (Tree-Set.insert x t) = Suc (size t)
 by (induction t) auto

lemma set-bst-insert [simp]: set-tree (bst-of-list xs) = set xs
 by (induction xs rule: rev-induct) simp-all

lemma size-bst-of-list-distinct [simp]:
 assumes distinct xs
 shows size (bst-of-list xs) = length xs
 using assms by (induction xs rule: rev-induct) (auto simp: size-bst-insert)

lemma strict-mono-on-imp-less-iff:
 assumes strict-mono-on f A x ∈ A y ∈ A
 shows f x < (f y :: 'b :: linorder) \iff x < (y :: 'a :: linorder)
 using assms by (cases x y rule: linorder-cases; force simp: strict-mono-on-def)+

lemma bst-of-list-map:
 fixes f :: 'a :: linorder \Rightarrow 'b :: linorder
 assumes strict-mono-on f A set xs ⊆ A
 shows bst-of-list (map f xs) = map-tree f (bst-of-list xs)
 using assms proof (induction xs rule: bst-of-list.induct)
 case (2 x xs)
 have [xa≤xs . f xa < f x] = [xa≤xs . xa < x] and [xa≤xs . f xa > f x] = [xa≤xs . xa > x]
 using 2.prems by (auto simp: strict-mono-on-imp-less-iff intro: filter-cong)
 with 2 show ?case by (auto simp: filter-map o-def)
 qed auto

1.3 Random BSTs

Analogously to the previous section, we can now view the concept of a
random BST (i.e. a BST obtained by inserting a given set of elements in
random order) in two different ways.

We again start with the recursive variant:

function random-bst :: 'a :: linorder set \Rightarrow 'a tree pmf where
 random-bst A =
 (if ¬finite A \lor A = {} then
 return-pmf Leaf
 else do {
\[
x \leftarrow \text{pmf-of-set } A;
\]
\[
l \leftarrow \text{random-bst } \{ y \in A. y < x \};
\]
\[
r \leftarrow \text{random-bst } \{ y \in A. y > x \};
\]
\[
\text{return-pmf } (\text{Node } l \ x \ r)
\]
\[
\}
\]
\text{by auto}

termination by (relation finite-psubset) auto

declare random-bst.simps [simp del]

lemma random-bst-empty [simp]: random-bst \{\} = return-pmf Leaf
\text{by (simp add: random-bst.simps)}

lemma set-pmf-random-permutation [simp]:
\[
\text{finite } A \implies \text{set-pmf } (\text{pmf-of-set } (\text{permutations-of-set } A)) = \{ \text{xs, distinct } \text{xs} \land \text{set} \text{xs} = A \}
\]
\text{by (subst set-pmf-of-set) (auto dest: permutations-of-setD) }

The alternative characterisation is the more intuitive one where we simply pick a random permutation of the set elements uniformly at random and insert them into an empty tree from left to right:

lemma random-bst-altdef:
\text{assumes finite } A
\text{shows random-bst } A = \text{map-pmf bst-of-list } (\text{pmf-of-set } (\text{permutations-of-set } A))

using assms

proof (induction A rule: finite-psubset-induct)
\text{case } (\text{psubset } A)
\text{define } L R \text{ where } L = (\lambda x. \{ y \in A. y < x \}) \text{ and } R = (\lambda x. \{ y \in A. y > x \})
\{
\text{fix } x \text{ assume } x: x \in A
\text{hence } \ast: L x \subset A R x \subset A \text{ by (auto simp: L-def R-def) }
\text{note this [THEN psubset.IH]}
\} note IH = this
\}
\text{show } \text{?case}
\text{proof (cases } A = \{\})
\text{case False}
\text{note } A = (\text{finite } A) \langle A \neq \{\}\rangle
\text{have random-bst } A =
\text{do }
\{
\text{x } \leftarrow \text{pmf-of-set } A;
\text{(l, r) } \leftarrow \text{pair-pmf } (\text{random-bst } (L x)) (\text{random-bst } (R x));
\text{return-pmf } (\text{Node } l \ x \ r)
\}
\text{using } A \text{ unfolding } \text{pair-pmf-def L-def R-def}
\text{by (subst random-bst.simps) (simp add: bind-return-pmf bind-assoc-pmf) }
\text{also have } \ldots = \text{do }
\{
\text{x } \leftarrow \text{pmf-of-set } A;
\text{(l, r) } \leftarrow \text{pair-pmf }
\text{(map-pmf bst-of-list } (\text{pmf-of-set } (\text{permutations-of-set } (L x))))
\}
\]
(map-pmf bst-of-list (pmf-of-set (permutations-of-set (R x))));
return-pmf (Node l x r)
}

using A by (intro bind-pmf-cong refl) (simp-all : IH)
also have \ldots = do {
 x ← pmf-of-set A;
 (ls, rs) ← pair-pmf (pmf-of-set (permutations-of-set (L x)));
 (pmf-of-set (permutations-of-set (R x)));
 return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
} unfolding map-pair \[symmetric\]
by (simp add: map-pmf-def case-prod-unfold bind-return-pmf bind-assoc-pmf)
also have \ldots = do {
 y ≤ x));
 return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
} =
 do {
 x ← pmf-of-set A;
 (ls, rs) ← pmf-of-set (permutations-of-set \{y ∈ A\ − \{x\}. y ≤ x \}
 \{y ∈ A\ − \{x\}. ¬ y ≤ x \});
 return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
} using \{finite A\}
by (intro bind-pmf-cong refl partition-random-permutations \[symmetric\]) auto
also have \ldots = do {
 x ← pmf-of-set A;
 (ls, rs) ← map-pmf (λy. y < x)
 (pmf-of-set (permutations-of-set (A − \{x\})));
 return-pmf (Node (bst-of-list ls) x (bst-of-list rs))
} using A
by (intro bind-pmf-cong refl map-pmf-cong)
(auto intro!: filter-cong dest: permutations-of-setD simp: order.strict-iff-order)
also have \ldots = map-pmf bst-of-list (pmf-of-set (permutations-of-set A))
using A by (subt random-permutation-of-set[of A])
(auto simp: map-pmf-def bind-return-pmf o-def bind-assoc-pmf not-le)
finally show \?thesis ,
qed (simp-all add: pmf-of-set-singleton)

\begin{lemma}
finite-set-random-bst \[simp, intro\]:
finite A \implies finite (set-pmf (random-bst A))
by (simp add: random-bst-altdef)
\end{lemma}

\begin{lemma}
random-bst-code \[code\]:
random-bst (set xs) = map-pmf bst-of-list (pmf-of-set (permutations-of-set (set
lemma random-bst-singleton [simp]: random-bst {x} = return-pmf (Node Leaf x Leaf)
 by (simp add: random-bst-altdef pmf-of-set-singleton)

lemma size-random-bst:
 assumes t ∈ set-pmf (random-bst A) finite A
 shows size t = card A
proof –
 from assms obtain xs where distinct xs A = set xs t = bst-of-list xs
 by (auto simp: random-bst-altdef dest: permutations-of-setD)
 thus ?thesis using ⟨finite A⟩ by (simp add: distinct-card)
qed

lemma random-bst-image:
 assumes finite A strict-mono-on f A
 shows random-bst (f ' A) = map-pmf (map-tree f) (random-bst A)
proof –
 from assms have inj: inj-on f A by (rule strict-mono-on-imp-inj-on)
 with assms have inj-on (map f) (permutations-of-set A)
 by (intro inj-on-mapI auto)
 with assms inj have random-bst (f ' A) = map-pmf (λx. bst-of-list (map f x)) (pmf-of-set (permutations-of-set A))
 also have . . . = map-pmf (map-tree f) (random-bst A)
 unfolding random-bst-altdef[OF ⟨finite A⟩] pmf.map-comp o-def using assms
 by (intro map-pmf-cong refl bst-of-list-map[of f A]) (auto dest: permutations-of-setD)
 finally show ?thesis .
qed

We can also re-phrase the non-recursive definition using the fold-random-permutation combinator from the HOL-Probability library, which folds over a given set in random order.

lemma random-bst-altdef':
 assumes finite A
 shows random-bst A = fold-random-permutation Tree-Set.insert Leaf A
proof –
 have random-bst A = map-pmf bst-of-list (pmf-of-set (permutations-of-set A))
 using assms by (simp add: random-bst-altdef)
 also have . . . = map-pmf (λxs. fold Tree-Set.insert xs Leaf) (pmf-of-set (permutations-of-set A))
 using assms by (intro map-pmf-cong refl) (auto simp: bst-of-list-altdef)
 also from assms have . . . = fold-random-permutation Tree-Set.insert Leaf A
by (simp add: fold-random-permutation-fold)
finally show thesis.
qed

1.4 Expected height

For the purposes of the analysis of the expected height, we define the following notion of ‘expected height’, which is essentially two to the power of the height (as defined by Cormen et al.) with a special treatment for the empty tree, which has exponential height 0.

Note that the height defined by Cormen et al. differs from the height function here in Isabelle in that for them, the height of the empty tree is undefined and the height of a singleton tree is 0 etc., whereas in Isabelle, the height of the empty tree is 0 and the height of a singleton tree is 1.

definition eheight :: 'a tree ⇒ nat
where
eheight t = (if t = Leaf then 0 else 2 ^ (height t − 1))

lemma eheight-Leaf [simp]: eheight Leaf = 0
by (simp add: eheight-def)

lemma eheight-Node-singleton [simp]: eheight (Node Leaf x Leaf) = 1
by (simp add: eheight-def)

lemma eheight-Node:
 l ≠ Leaf ∨ r ≠ Leaf ⇒ eheight (Node l x r) = 2 * max (eheight l) (eheight r)
by (cases l; cases r) (simp-all add: eheight-def max-power-distrib-right)

fun eheight-rbst :: nat ⇒ nat pmf
where
eheight-rbst 0 = return-pmf 0
| eheight-rbst (Suc 0) = return-pmf 1
| eheight-rbst (Suc n) =
 do {k ← pmf-of-set {..n};
 h1 ← eheight-rbst k;
 h2 ← eheight-rbst (n − k);
 return-pmf (2 * max h1 h2)}

definition eheight-exp :: nat ⇒ real
where
eheight-exp n = measure-pmf.expectation (eheight-rbst n) real

lemma eheight-rbst-reduce:
 assumes n > 1
 shows eheight-rbst n =
 do {k ← pmf-of-set {..<n}; h1 ← eheight-rbst k; h2 ← eheight-rbst (n − k − 1);
 return-pmf (2 * max h1 h2)}
using assms by (cases n rule: eheight-rbst.cases) (simp-all add: lessThan-Suc-atMost)
lemma Leaf-in-set-random-bst-iff:
 assumes finite A
 shows Leaf ∈ set-pmf (random-bst A) ⟷ A = {}
proof
 assume Leaf ∈ set-pmf (random-bst A)
 from size-random-bst [OF this] and assms show A = {} by auto
qed auto

lemma eheight-rbst:
 assumes finite A
 shows eheight-rbst (card A) = map-pmf eheight (random-bst A)
using assms
proof (induction A rule: finite-psubset-induct)
case (psubset A)
define rank where rank = linorder-rank \{(x,y). x ≤ y\} A
from (finite A) have A = {} ∨ is-singleton A ∨ card A > 1
 by (auto simp: not-less le-Suc-eq is-singleton-altdef)
then consider A = {} | is-singleton A | card A > 1 by blast
thus ?case
proof cases
 case 3
 hence nonempty: A ≠ {} by auto
 from 3 have ¬is-singleton A by (auto simp: is-singleton-def)
 hence exists-other: ∃ y ∈ A. y ≠ x for x using A ≠ {} by (force simp: is-singleton-def)
 hence map-pmf eheight (random-bst A) =
 do { x ← pmf-of-set A;
 l ← random-bst \{ y ∈ A. y < x\};
 r ← random-bst \{ y ∈ A. y > x\};
 return-pmf (eheight (Node l x r))
 }
 using (finite A) by (subts random-bst.simps) (auto simp: map-bind-pmf)
also have ... = do {
 x ← pmf-of-set A;
 l ← random-bst \{ y ∈ A. y < x\};
 r ← random-bst \{ y ∈ A. y > x\};
 return-pmf (2 * max (eheight l) (eheight r))
 }
 using (finite A) exists-other
 by (intro bind-pmf-cong refl, subts eheight-Node)
 (force simp: Leaf-in-set-random-bst-iff not-less nonempty eheight-Node)+
also have ... = do {
 x ← pmf-of-set A;
 h1 ← map-pmf eheight (random-bst \{ y ∈ A. y < x\});
 h2 ← map-pmf eheight (random-bst \{ y ∈ A. y > x\});
 return-pmf (2 * max h1 h2)
 }
by (simp add: bind-map-pmf)
also have
 \(\ldots = \) do
 \(x \leftarrow \text{pmf-of-set} \ A; \)
 \(h1 \leftarrow \text{eheight-rbst} \ (\card \ \{ y \in A. \ y < x \}); \)
 \(h2 \leftarrow \text{eheight-rbst} \ (\card \ \{ y \in A. \ y > x \}); \)
 return-pmf \((2 \ast \max h1 \ h2) \)
\}

using \(\{ A \neq \} \), \(\text{finite} \ A \) by (intro bind-pmf-cong psubset.IH [symmetric] refl)
also have
 \(\ldots = \) do
 \(k \leftarrow \text{map-pmf \ rank} \ (\text{pmf-of-set} \ A); \)
 \(h1 \leftarrow \text{eheight-rbst} \ k; \)
 \(h2 \leftarrow \text{eheight-rbst} \ (\card A - k - 1); \)
 return-pmf \((2 \ast \max h1 \ h2) \)
\}

unfolding bind-map-pmf
proof (intro bind-pmf-cong refl, goal-cases)
 case (1 \(x \))
 have \(\text{rank} \ x = \card \ \{ y \in A - \{ x \}. \ y \leq x \} \) by (simp add: rank-def linorder-rank-def)
 also have \(\{ y \in A - \{ x \}. \ y \leq x \} = \{ y \in A. \ y < x \} \) by auto
 finally show \(\?\)case by simp
next
 case (2 \(x \))
 have \(A - \{ x \} = \{ y \in A - \{ x \}. \ y \leq x \} \cup \{ y \in A. \ y > x \} \) by auto
 also have \(\card A - \{ x \} = \card A - \text{rank} \ x - 1 \)
 using \(2 \) \(\text{finite} \ A : A \neq \) \(\} \) by simp
 thus \(\?\)case by simp
qed
also have \(\text{map-pmf \ rank} \ (\text{pmf-of-set} \ A) = \text{pmf-of-set} \ \{ ..< \text{card} \ A \} \)
using \(A \neq \) \(\} \), \(\text{finite} \ A \) unfolding rank-def
by (intro map-pmf-of-set-bij-betw bij-betw-linorder-rank[of UNIV]) auto
also have do
 \(k \leftarrow \text{pmf-of-set} \ \{ ..< \text{card} \ A \}; \)
 \(h1 \leftarrow \text{eheight-rbst} \ k; \)
 \(h2 \leftarrow \text{eheight-rbst} \ (\card A - k - 1); \)
 return-pmf \((2 \ast \max h1 \ h2) \)
\} = \text{eheight-rbst} \ (\card A)
by (rule eheight-rbst-reduce [symmetric]) fact+
finally show \(?\)thesis ..
qed (auto simp: is-singleton-def)

lemma \(\text{finite-pmf-set-eheight-rbst} \) simp, intro]: \(\text{finite} \ (\text{set-pmf} \ (\text{eheight-rbst} \ n)) \)
proof
 have \(\text{eheight-rbst} \ n = \text{map-pmf} \ \text{eheight} \ (\text{random-bst} \ \{ ..< n \}) \)
 by (subst eheight-rbst [symmetric]) auto
also have finite (set-pmf ...) by simp
finally show ?thesis.
qed

lemma eheight-exp-0 [simp]: eheight-exp 0 = 0
by (simp add: eheight-exp-def)

lemma eheight-exp-1 [simp]: eheight-exp (Suc 0) = 1
by (simp add: eheight-exp-def lessThan-Suc)

lemma eheight-exp-reduce-bound:
assumes n > 1
shows eheight-exp n ≤ 4 / n * (\(\sum k<n.\) eheight-exp k)
proof
have [simp]: real (max a b) = max (real a) (real b) for a b
by (simp add: max-def)
let \(f = \lambda(h1,h2).\) max h1 h2
let \(\rho = \lambda k.\) pair-pmf (eheight-rbst k) (eheight-rbst (n - Suc k))
have eheight-exp n = measure-pmf.expectation (eheight-rbst n) real
by (simp add: eheight-exp-def)
also have \(= 1 / real n * (\sum k<n.\) measure-pmf.expectation (map-pmf \(\lambda h1 h2.\) \(2 * max h1 h2\) \(\rho k\)) real)
(is - = - * ?S) unfolding pair-pmf-def map-bind-pmf
by (subth eheight-rbst-reduce [OF assms], subst pmf-expectation-bind-pmf-of-set)
(insert assms, auto simp: sum-distribute divide-simps
also have \(= (\sum k<n.\) measure-pmf.expectation (map-pmf \(\lambda \rho k.\) (map-pmf \(\lambda h1 h2.\) \(\rho k\)) real)
(is - = - * ?S')
by (simp only: pmf_map_comp o_def case_prod-unfold)
also have \(= 2 * (\sum k<n.\) measure-pmf.expectation (map-pmf \(\rho k\) (map-pmf \(\lambda h1 h2.\) \(\rho k\)) real)
(is - = - * ?S')
by (simp only: integral-map-pmf)
also have \(\leq (\sum k<n.\) measure-pmf.expectation (map-pmf \(\rho k\) (\(\lambda h1 h2.\) real h1 + real h2)))
by (simp add: case_prod-unfold)
unfolding integral-map-pmf case_prod-unfold
by (intro sum-mono Bochner-Integration.integral-mono integrable-measure-pmf-finite)
auto
also have \(= (\sum k<n.\) eheight-exp k) + (\sum k<n.\) eheight-exp (n - Suc k))
by (subth expectation-add-pair-pmf) (auto simp: sum-distrib eheight-exp-def)
also have (\(\sum k<n.\) eheight-exp (n - Suc k)) = (\(\sum k<n.\) eheight-exp k)
by (intro sum.reindex-bij-witness[of \(\lambda k.\) n - Suc k \(\lambda k.\) n - Suc k])
also have \(= 4 / real n * (2 * (\ldots + \ldots)) = 4 / real n * \ldots\)
by simp
finally show ?thesis using assms by (simp add: mult-left mono divide-right mono)
qed

We now define the following upper bound on the expected exponential height
due to Cormen et al. [2]:

11
lemma eheight-exp-bound: eheight-exp n ≤ real ((n + 3) choose 3) / 4

proof (induction n rule: less-induct)
 case (less n)
 consider n = 0 | n = 1 | n > 1 by force
 thus ?case
 proof cases
 case 3
 hence eheight-exp n ≤ 4 / n * (∑k<n. eheight-exp k)
 by (rule eheight-exp-reduce-bound)
 also have (∑k<n. eheight-exp k) ≤ (∑k<n. real ((k + 3) choose 3) / 4)
 by (intro sum-mono less.IH) auto
 also have ... = real (∑k<n. ((k + 3) choose 3)) / 4
 by (simp add: sum-divide-distrib)
 also have (∑k<n. ((k + 3) choose 3)) = (∑k≤n − 1. ((k + 3) choose 3))
 using n > 1 by (intro sum_cong) auto
 also have ... = ((n + 3) choose 4)
 using choose-rising-sum[of 3 n] unfolding choose.n_def
 also have (λt. 2 powr real (height t − 1)) = (λt. 2 ^ (height t − 1))
 using Suc3-eq-add-3
 qed

We then show that this is indeed an upper bound on the expected exponential height by induction over the set of elements. This proof mostly follows that by Cormen et al. [2], and partially an answer on the Computer Science Stack Exchange [1].

Since the function λx. 2^x is convex, we can then easily derive a bound on the actual height using Jensen’s inequality:

definition height-exp-approx :: nat ⇒ real where
 height-exp-approx n = log 2 (real ((n + 3) choose 3) / 4) + 1

theorem height-expectation-bound:
 assumes finite A A ≠ {} shows measure-pmf.expectation (random-bst A) height
 ≤ height-exp-approx (card A)

proof –
 have convex-on UNIV ((powr 2)
 by (intro convex-on-real[of f′ = λx. ln 2 * 2 powr x])
 (auto intro!: derivative-eq-intros DERIV-powr simp: powr_def [abs_def])
 hence 2 powr measure-pmf.expectation (random-bst A) (λt. real (height t − 1))
 ≤ measure-pmf.expectation (random-bst A) (λt. 2 powr real (height t − 1))
 using assms
 by (intro measure-pmf.jensens-inequality[of I = UNIV])
 (auto intro!: integrable_measure_pmf_finite)
 also have (λt. 2 powr real (height t − 1)) = (λt. 2 ^ (height t − 1))
by (simp add: powr-realpow)
also have measure-pmf.expectation (random-bst A) (λt. 2 ^ \text{height } t) = measure-pmf.expectation (random-bst A) (λt. real (\text{height } t))
using assms
by (intro integral-cong-AE)
(auto simp: AE-measure-pmf-iff random-bst-altdef eheight-def)
also have \ldots = measure-pmf.expectation (map-pmf eheight (random-bst A)) real
by simp
also have \text{map-pmf } eheight (random-bst A) = eheight-rbst (card A)
by (rule eheight-rbst [symmetric])
also have \text{measure-pmf.exp.} \ldots \text{real } = \text{eheight-exp } \text{card A}
by (simp add: eheight-exp-def)
also have \ldots \leq \text{real } ((\text{card A } + 3) \text{ choose 3 }) / 4 \text{ by (rule eheight-exp-bound)}
also have measure-pmf.expectation (random-bst A) (λt. \text{real } (\text{height } t - 1)) = measure-pmf.expectation (random-bst A) (λt. \text{real } (\text{height } t - 1))
proof (intro integral-cong-AE AE-pmfI, goal-cases)
case (3 t)
with ⟨A \neq \text{0}⟩ and assms show ?case
by (subst of-nat-diff) (auto simp: Suc-le-eq random-bst-altdef)
qed auto
finally have 2 powr measure-pmf.expectation (random-bst A) (λt. \text{real } (\text{height } t) - 1)
\leq \text{real } ((\text{card A } + 3) \text{ choose 3 }) / 4 .
hence \log (2 powr measure-pmf.expectation (random-bst A) (λt. \text{real } (\text{height } t) - 1)) \leq \log (2 real ((\text{card A } + 3) \text{ choose 3 }) / 4) \text{ is } \text{lhs } \leq \text{rhs}
by (rule log-le-cancel-iff) (auto simp:)
also have \text{lhs } = \text{measure-pmf.exp.} \text{random-bst A} (λt. \text{real } (\text{height } t) - 1)
by simp
also have \ldots = measure-pmf.expectation (random-bst A) (λt. \text{real } (\text{height } t)) - 1
using assms
by (subst Bochner-Integration.integral-diff) (auto intro: integrable-measure-pmf-finite)
finally show ?thesis by (simp add: height-exp-approx-def)
qed

This upper bound is asymptotically equivalent to c \ln n with c = \frac{3}{\ln 2} \approx 4.328. This is actually a relatively tight upper bound, since the exact asymptotics of the expected height of a random BST is \ln n with c \approx 4.311. [3] However, the proof of these precise asymptotics is very intricate and we will therefore be content with the upper bound.
In particular, we can now show that the expected height is \text{O}(\ln n).

lemma ln-sum-bigo-ln: (λx::real. \ln (x + c)) ∈ O(\ln)
proof (rule bigoI-tendsto)
from eventually-gt-at-top[of t::real] show eventually (λx::real. \ln x \neq 0) at-top
by eventually-elim simp-all
next
show \((\lambda x. \ln (x + c) / \ln x) \longrightarrow 1\) at-top

proof (rule lhospital-at-top-at-top)
 show eventually \((\lambda x. \ln (x + c))\) has-real-derivative inverse \((x + c)\) \((at x)\)
 using eventually-gt-at-top[of \(-c\)]
 by eventually-elim (auto intro!: derivative-eq-intros simp: field-simps)
 show eventually \((\lambda x. ((\lambda x. \ln x))\) has-real-derivative inverse \((x + c)\) \((at x)\)
 using eventually-gt-at-top[of \(0\)]
 by eventually-elim (auto intro!: derivative-eq-intros simp: field-simps)
 show \((\lambda x. \text{inverse} (x + c) / \text{inverse} x) \longrightarrow 1\) at-top
 proof (rule Lim-transform-eventually)
 show eventually \((\lambda x. \text{inverse} (1 + c / x) = \text{inverse} (x + c) / \text{inverse} x)\) at-top
 using eventually-gt-at-top[of \(0::\text{real}\)] eventually-gt-at-top[of \(-c\)]
 by eventually-elim (simp add: field-simps)
 have \(((\lambda x. \text{inverse} (1 + c / x)) \longrightarrow \text{inverse} (1 + 0))\) at-top
 by (intro tendsto-inverse tendsto-add tendsto-const
 real-tendsto-divide-at-top[of tendsto-const]\ filterlim-ident) simp-all
 thus \(((\lambda x. \text{inverse} (1 + c / x)) \longrightarrow 1\) at-top by simp
 qed
 qed (auto simp: ln-at-top eventually-at-top-not-equal)
 qed

corollary height-expectation-bigO: height-exp-approx \in O(ln)
 proof
 let \(?T = \lambda x::\text{real}. \log 2 (x + 1) + \log 2 (x + 2) + \log 2 (x + 3) + (1 - \log 2 24)\)
 have eventually \((\lambda n. \text{height-exp-approx} n = \log 2 (\text{real} n + 1) + \log 2 (\text{real} n + 2) + \log 2 (\text{real} n + 3) + (1 - \log 2 24))\) at-top
 (is eventually \((\lambda n. - = \?T n)\) at-top) using eventually-gt-at-top[of \(0::\text{nat}\)]
 proof eventually-elim
 case (elim \(n\))
 have height-exp-approx \(n = \log 2 (\text{real} (n + 3 \text{ choose } 3)) / 4\) + 1
 by (simp add: height-exp-approx-def log-divide)
 also have \((\text{real} (n + 3) \text{ choose } 3) = \text{real} (n + 3) \text{ \text{choose} } 3\)
 by (simp add: binomial-gbinomial)
 also have \((\text{choose} 3) / 4 = (\text{real} n + 1) \ast (\text{real} n + 2) \ast (\text{real} n + 3) / 24\)
 by (simp add: gbinomial-pochhammer4\ numeral-3-ew3-pochhammer-Suc add-ac)
 also have \((\log 2 (\text{real} n + 1) + \log 2 (\text{real} n + 2) + \log 2 (\text{real} n + 3) - \log 2 24)\)
 by (simp add: log-divide log-mult)
 finally show \(?\text{case by simp}\)
 qed
 hence height-exp-approx \(\in \bigTheta (?T)\) by (rule bigthetaI-cong)
 also have \(*: (\lambda x. \ln (x + c) / \ln 2) \in O(ln)\) for \(c::\text{real}\)
 by (subst landan-o-big.cdiv-in-iff) (auto intro!: ln-sum-bigO-ln)
 have \(?T \in O(ln. \ln (\text{real} n))\) unfolding log-def
 by (intro bigo-real-nat-transfer sum-in-bigo \ln-sum-bigO-ln *) simp-all
 finally show \(?\text{thesis}\).
 end

14
1.5 Lookup costs

The following function describes the cost incurred when looking up a specific element in a specific BST. The cost corresponds to the number of edges traversed in the lookup.

```plaintext
primrec lookup-cost :: 'a :: linorder ⇒ 'a tree ⇒ nat where
  lookup-cost x Leaf = 0
| lookup-cost x (Node l y r) =
    (if x = y then 0
     else if x < y then Suc (lookup-cost x l)
     else Suc (lookup-cost x r))
```

Some of the literature defines these costs as 1 in the case that the current node is the correct one, i.e. their costs are our costs plus 1. These alternative costs are exactly the number of comparisons performed in the lookup. Our cost function has the advantage of precisely summing up to the internal path length and therefore gives us slightly nicer results, and since the difference is only $a + 1$ in the end, this variant seemed more reasonable.

It can be shown with a simple induction that The sum of all lookup costs in a tree is the internal path length of the tree.

```plaintext
theorem sum-lookup-costs:
  fixes t :: 'a :: linorder tree
  assumes bst t
  shows (∑ x∈set-tree t. lookup-cost x t) = ipl t
using assms
proof (induction t)
  case (Node l x r)
  from Node.prems
  have disj: x ∉ set-tree l x ∉ set-tree r set-tree l ∩ set-tree r = {} by force+
  have set-tree (Node l x r) = insert x (set-tree l ∪ set-tree r) by simp
  also have (∑ y∈⋯. lookup-cost y (Node l x r)) = lookup-cost x (l, x, r) +
     (∑ y∈set-tree l. lookup-cost y (l, x, r)) + (∑ y∈set-tree r. lookup-cost y (l, x, r))
     using disj by (simp add: sum.union-disjoint)
  also have (∑ y∈set-tree l. lookup-cost y (l, x, r)) = (∑ y∈set-tree l. 1 +
     lookup-cost y l)
     using disj and Node by (intro sum.cong refl) auto
  also have ⋯ = size l + ipl l using Node
     by (subst sum.distrib) (simp-all add: card-set-tree-bst)
  also have (∑ y∈set-tree r. lookup-cost y (l, x, r)) = (∑ y∈set-tree r. 1 +
     lookup-cost y r)
     using disj and Node by (intro sum.cong refl) auto
  also have ⋯ = size r + ipl r using Node
     by (subst sum.distrib) (simp-all add: card-set-tree-bst)
  finally show ?case by simp
```

qed
This allows us to easily show that the expected cost of looking up a random element in a fixed tree is the internal path length divided by the number of elements.

Theorem \(\text{expected-lookup-cost} :\)

\[
\begin{align*}
\text{assumes} & \quad \text{bst} ~ t \\
\text{shows} & \quad \text{measure-pmf, expectation} \left(\text{pmf-of-set} \left(\text{set-tree} ~ t\right)\right) \left(\lambda x. \text{lookup-cost} ~ x ~ t\right) = \\
\text{using} & \quad \text{assms by} \quad (\text{subst integral-pmf-of-set}) \\
& \quad \left(\text{simp-all add: sum-lookup-costs of-nat-sum [symmetric] card-set-tree-bst}\right)
\end{align*}
\]

Therefore, we will now turn to analyzing the internal path length of a random BST. This then clearly related to the expected lookup costs of a random element in a random BST by the above result.

1.6 Average Path Length

The internal path length satisfies the recursive equation \(\text{ipl} \left(l, x, r\right) = \text{ipl} \left(l\right) + \text{size} \left(l\right) + \text{ipl} \left(r\right) + \text{size} \left(r\right)\). This is quite similar to the number of comparisons performed by QuickSort, and indeed, we can reduce the internal path length of a random BST to the number of comparisons performed by QuickSort on a randomly-ordered list relatively easily:

Theorem \(\text{map-pmf-random-bst-eq-rqs-cost} :\)

\[
\begin{align*}
\text{assumes} & \quad \text{finite} ~ A \\
\text{shows} & \quad \text{map-pmf} \text{ ipl} \left(\text{random-bst} ~ A\right) = \\
\text{using} & \quad \text{assms} \\
\text{proof} (\text{induction} ~ A \text{ rule: finite-psubset-induct}) \\
\text{case} & \quad \text{(psubset} ~ A) \\
\text{show} & \quad \text{?case} \\
\text{proof} (\text{cases} ~ A = \{\}) \\
\text{case} & \quad \text{False} \\
\text{note} & \quad A = \text{finite} ~ A; ~ A \neq \{\}; \\
\text{define} & \quad n \text{ where} ~ n = \text{card} ~ A - 1 \\
\text{define} & \quad \text{rank} :: ~ 'a \Rightarrow \text{nat} ~ \text{where} \quad \text{rank} = \text{linorder-rank} \left\{(x, y). ~ x \leq y\right\} ~ A \\
\text{from} & \quad \text{A have} \quad \text{card: card} ~ A = \ Suc ~ n \text{ by} \quad (\text{cases} ~ \text{card} ~ A) \quad (\text{auto simp: n-def}) \\
\text{from} & \quad \text{A have} \quad \text{map-pmf} \text{ ipl} \left(\text{random-bst} ~ A\right) = \\
& \quad \text{do} \{ \\
&\quad x \leftarrow \text{pmf-of-set} ~ A; \\
&\quad (l, r) \leftarrow \text{pair-pmf} \left(\text{random-bst} \left\{y \in A. ~ y < x\right\}\right) \left(\text{random-bst} \left\{y \in A. ~ y > x\right\}\right); \\
&\quad \text{return-pmf} \left(\text{ipl} \left(\text{Node} ~ l ~ x ~ r\right)\right) \\
&\quad \} \\
& \quad \text{by} \quad (\text{subst random-bst.simps}) \\
& \quad \left(\text{simp-all add: pair-pmf-def card map-pmf-def bind-assoc-pmf bind-return-pmf}\right) \\
& \quad \text{also have} \quad \ldots = \text{do} \{ \\
&\quad x \leftarrow \text{pmf-of-set} ~ A; \\
\end{align*}
\]
\((l, r) \leftarrow \text{pair-pmf} \ (\text{random-bst} \ \{ y \in A. \ y < x \}) \ (\text{random-bst} \ \{ y \in A. \ y > x \}) \);
\(\text{return-pmf} \ (n + \text{ipl} \ l + \text{ipl} \ r) \)

\textbf{proof (intro bind-pmf-cong refl, clarify, goal-cases)}

\textbf{case} \((1 \ x \ l \ r) \)

\textbf{from} \(1 \ \text{and} \ A \ \text{have} \ n = \text{card} \ (A - \{x\}) \) \text{ by} \ (\text{simp add: n-def})
\textbf{also have} \(A - \{x\} = \{ y \in A. \ y < x \} \cup \{ y \in A. \ y > x \} \) \text{ by} \ \text{auto}
\textbf{also have} \(\text{card} \ldots = \text{card} \ (y \in A. \ y < x) + \text{card} \ (y \in A. \ y > x) \)

\textbf{using} \ (\text{finite A} \ \text{by} \ (\text{intro card-Un-disjoint}) \ \text{auto})
\textbf{also from} \(1 \ \text{and} \ A \ \text{have} \ \text{card} \ (y \in A. \ y < x) = \text{size} \ l \ \text{by} \ (\text{auto dest: size-random-bst})
\textbf{also from} \(1 \ \text{and} \ A \ \text{have} \ \text{card} \ (y \in A. \ y > x) = \text{size} \ r \ \text{by} \ (\text{auto dest: size-random-bst})
\textbf{finally show} \ ?\text{case} \ \text{by simp}
\textbf{qed}

\textbf{also have ... = do} \{
\textbf{let} \ x \leftarrow \text{pmf-of-set} \ A;
\textbf{let} \ (l, r) \leftarrow \text{pair-pmf} \ (\text{map-pmf} \ \text{ipl} \ (\text{random-bst} \ \{ y \in A. \ y < x \}))
\text{\qquad (map-pmf} \ \text{ipl} \ (\text{random-bst} \ \{ y \in A. \ y > x \}));
\text{\qquad return-pmf} \ (n + \text{ipl} \ l + \text{ipl} \ r)
\}\ \text{by} \ (\text{simp add: map-pair [symmetric] case-prod-unfold bind-map-pmf})
\textbf{also have ... = do} \{
\textbf{let} \ i \leftarrow \text{map-pmf rank} \ (\text{pmf-of-set} \ A);
\textbf{let} \ (l, r) \leftarrow \text{pair-pmf} \ (\text{rqs-cost} \ i) \ (\text{rqs-cost} \ (n - i));
\text{\qquad return-pmf} \ (n + \text{ipl} \ l + \text{ipl} \ r)
\}\ \text{(is - = bind-pmf - iff) unfolding bind-map-pmf}
\textbf{proof (intro bind-pmf-cong refl pair-pmf-cong, goal-cases)}
\textbf{case} \((1 \ x) \)
\textbf{have} \ \text{map-pmf} \ \text{ipl} \ (\text{random-bst} \ \{ y \in A. \ y < x \}) = \text{rqs-cost} \ (\text{card} \ \{ y \in A. \ y < x \})
\text{using} \ 1 \ \text{and} \ A \ \text{by} \ (\text{intro psubset.IH}) \ \text{auto}
\textbf{also have} \ \{ y \in A. \ y < x \} = \{ y \in A - \{x\}. \ y \leq x \} \ \text{by} \ \text{auto}
\textbf{hence} \ \text{card} \ \{ y \in A. \ y < x \} = \text{rank} \ x \ \text{by} \ (\text{simp add: rank-def linorder-rank-def})
\textbf{finally show} \ ?\text{case} \ .
\textbf{next}
\textbf{case} \((2 \ x) \)
\textbf{have} \ \text{map-pmf} \ \text{ipl} \ (\text{random-bst} \ \{ y \in A. \ y > x \}) = \text{rqs-cost} \ (\text{card} \ \{ y \in A. \ y > x \})
\text{using} \ 2 \ \text{and} \ A \ \text{by} \ (\text{intro psubset.IH}) \ \text{auto}
\textbf{also have} \ \{ y \in A. \ y > x \} = A - \{x\} - \{ y \in A - \{x\}. \ y \leq x \} \ \text{by} \ \text{auto}
\textbf{hence} \ \text{card} \ \{ y \in A. \ y > x \} = \text{card} \ldots \ \text{by} \ (\text{simp only:})
\textbf{also from} \ 2 \ \text{and} \ A \ \text{have} \ldots = n - \text{rank} \ x
\text{by} \ (\text{subt card-Diff-subset}) \ (\text{auto simp: rank-def linorder-rank-def n-def})
\textbf{finally show} \ ?\text{case} \ .
\textbf{qed}

\textbf{also from} \ A \ \text{have} \ \text{map-pmf rank} \ (\text{pmf-of-set} \ A) = \text{pmf-of-set} \ \{ \ldots < \text{card} \ A \}
\text{unfolding rank-def \ by} \ (\text{intro map-pmf-of-set-bij-betw bij-betw-linorder-rank[of UNIV]} \) \ \text{auto}
also have \(\{..<\text{card } A\} = \{..n\} \) by (auto simp: card)
also have pmf-of-set \(\ldots \Rightarrow f = \text{rqs-cost} \) (card A)
 by (simp add: pair-pmf-def bind-assoc-pmf bind-return-pmf card)

finally show \(\?\text{thesis} \).

qed simp-all

qed

In particular, this means that the expected values are the same:

corollary expected-ipl-random-bst-eq:
 assumes finite A
 shows measure-pmf.expectation (random-bst A) ipl = \text{rqs-cost-exp} \) (card A)
proof –
 have measure-pmf.expectation (random-bst A) ipl =
 measure-pmf.expectation (map-pmf ipl (random-bst A)) real by simp
 also from assms have map-pmf ipl (random-bst A) = \text{rqs-cost} \) (card A)
 by (rule map-pmf-random-bst-eq-rqs-cost)
 also have measure-pmf.expectation \(\ldots \) real = \text{rqs-cost-exp} \) (card A)
 by (rule expectation-rqs-cost)
 finally show \(\?\text{thesis} \).

qed

Therefore, the results about the expected number of comparisons of Quick-
Sort carry over to the expected internal path length:

corollary expected-ipl-random-bst-eq’:
 assumes finite A
 shows measure-pmf.expectation (random-bst A) ipl =
 \(2 \) * real \(\text{card } A + 1 \) * harm (card A) \(- 4 \) * real (card A)
 by (simp add: expected-ipl-random-bst-eq rqs-cost-exp-eq assms)

end

References

[1] Proof that a randomly built binary search tree has logarithmic height.
 Computer Science Stack Exchange.
 URL: http://cs.stackexchange.com/q/6356.

[3] B. Reed. The height of a random binary search tree. J. ACM,