Rely-Guarantee Extensions and Locks

Robert J. Colvin, Scott Heiner, Peter Höfner, Roger C. SuNovember 21, 2025

Abstract

We enhance rely-guarantee verification in Isabelle/HOL by extending the 2003 built-in library with flexible syntax, data-invariant support, and new tactics. We demonstrate our enhanced library by applying it to the examples attached to the original library. We also apply our library to three queue locks: the Abstract Queue Lock, the Ticket Lock, and the Circular Buffer Lock.

Contents

1	Inti	roduction	2		
2	Rel	y-Guarantee (RG) Syntax Extensions	2		
	2.1	Lifting of Invariants	3		
	2.2	RG Sentences	3		
	2.3	RG Subgoal-Generating Methods			
		2.3.1 Basic			
		2.3.2 Looping constructs			
		2.3.3 Conditionals			
	2.4	Parallel Compositions			
		2.4.1 Binary Parallel	8		
		2.4.2 Multi-Parallel	10		
	2.5	Syntax of Record-Updates			
3	Anı	notated Commands	11		
	3.1	Annotated Quintuples	14		
	3.2	Structured Tactics for Annotated Commands			
	3.3	Binary Parallel			
	3.4	Helpers: Index Offsets			
	3.5	Multi-Parallel			
	3.6	The Main Tactics			
4	Exa	amples Reworked	21		
	4.1	Setting Elements of an Array to Zero	21		
	4.2	Incrementing a Variable in Parallel			
	4.3	FindP			
5	Abs	stract Queue Lock	2 5		

6	Ticl	ket Lock	26
	6.1	Helpers: Inj, Surj and Bij	26
		6.1.1 Inj-Related	27
		6.1.2 Surj-Related	28
		6.1.3 Bij and Inv	29
	6.2	Helpers: Multi-Updates on Functions	30
		6.2.1 Ordering of Updates	31
		6.2.2 Surjective	32
		6.2.3 Injective	32
		6.2.4 Set- and List-Intervals	33
	6.3	Basic Definitions	33
	6.4	RG Theorems	35
7	Circ	cular-Buffer Queue-Lock	37
	7.1	Invariant	39
			40
		7.1.2 Invariant Lemmas	41
	7.2	Contract	43
	7.3		43
	7.4		45

1 Introduction

The content of this entry has been presented as [1]. The original built-in library is [2].

2 Rely-Guarantee (RG) Syntax Extensions

The core extensions to the built-in RG library: improved syntax of RG sentences in the quintupleand keyword-styles, with data-invariants.

Also: subgoal-generating methods for RG inference-rules that work with the structured proof-language, Isar.

theory RG_Syntax_Extensions

imports

```
"HOL-Hoare_Parallel.RG_Syntax"
"HOL-Eisbach.Eisbach"
```

begin

We begin with some basic notions that are used later on.

Notation for forward function-composition: defined in the built-in Fun.thy but disabled at the end of that theory. This operator is useful for modelling atomic primitives such as Swap and Fetch-And-Increment, and also useful when coupling concrete- and auxiliary-variable instructions.

```
notation fcomp (infixl "o>" 60)
lemmas definitions [simp] =
   stable_def Pre_def Rely_def Guar_def Post_def Com_def
```

In applications, guarantee-relations often stipulates that Thread i should "preserve the relyrelations of all other threads". This pattern is supported by the following higher-order function, where j ranges through all the threads that are not i.

```
abbreviation for_others :: "('index \Rightarrow 'state rel) \Rightarrow 'index \Rightarrow 'state rel" where "for_others R i \equiv \bigcap j \in -{i}. R j"
```

Relies and guarantees often state that certain variables remain unchanged. We support this pattern with the following syntactic sugars.

```
abbreviation record_id :: "('record ⇒ 'field) ⇒ 'record rel"

("id'(_')" [75] 74) where

"id(c) ≡ { ac = oc }"

abbreviation record_ids :: "('record ⇒ 'field) set ⇒ 'record rel"

("ids'(_')" [75] 74) where

"ids(cs) ≡ ∩ c ∈ cs. id(c)"

abbreviation record_id_indexed ::

"('record ⇒ 'index ⇒ 'field) ⇒ 'index ⇒ 'record rel"

("id'(_ @ _ ')") where

"id(c @ self) ≡ { oc self = ac self }"

abbreviation record_ids_indexed ::

"('record ⇒ 'index ⇒ 'field) set ⇒ 'index ⇒ 'record rel"

("ids'(_ @ _ ')") where

"ids(cs @ self) ≡ ∩ c ∈ cs. id(c @ self)"
```

The following simple method performs an optional simplification-step, and then tries to apply one of the RG rules, before attempting to discharge each subgoal using force. This method works well on simple RG sentences.

```
method method_rg_try_each =
  (clarsimp | simp)?,
  ( rule Basic | rule Seq | rule Cond | rule While
  | rule Await | rule Conseq | rule Parallel);
  force+
```

2.1 Lifting of Invariants

There are different ways to combine the invariant with the rely or guarantee, as long as the invariant is preserved. Here, a rely- or guarantee-relation R is combined with the invariant I into $\{(s, s'). (s \in I \longrightarrow s' \in I) \land R\}$.

```
definition pred_to_rel :: "'a set ⇒ 'a rel" where
   "pred_to_rel P ≡ {(s,s') . s ∈ P → s' ∈ P}"

definition invar_and_guar :: "'a set ⇒ 'a rel ⇒ 'a rel" where
   "invar_and_guar I G ≡ G ∩ pred_to_rel I"

lemmas simp_defs [simp] = pred_to_rel_def invar_and_guar_def
```

2.2 RG Sentences

The quintuple-style of RG sentences.

```
abbreviation rg_quint :: "'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool" ("{_,_} _ _ {_,_}") where "{P, R} C {G, Q} \equiv \vdash C sat [P, R, G, Q]"
```

Quintuples with invariants.

```
abbreviation rg_quint_invar ::
```

```
"'a set ⇒ 'a rel ⇒ 'a com ⇒ 'a set ⇒ 'a rel ⇒ 'a set ⇒ bool"
("{_,_}} _ // _ {_,_}") where
"{P, R} C // I {G, Q} ≡ ⊢ C sat [
P ∩ I,
R ∩ pred_to_rel I,
invar_and_guar I G,
Q ∩ I]"

The keyword-style of RG sentences.

abbreviation rg_keyword ::
"'a rel ⇒ 'a rel ⇒ 'a set ⇒ 'a com ⇒ 'a set ⇒ bool"
("rely:_ guar:_ code: {_} - {_}}") where
"rg_keyword R G P C Q ≡ ⊢ C sat [P, R, G, Q]"

Keyword-style RG sentences with invariants.

abbreviation rg_keyword_invar ::
"'a rel ⇒ 'a rel ⇒ 'a set ⇒ 'a set ⇒ 'a com ⇒ 'a set ⇒ bool"
```

Q ∩ I]"

("rely:_ guar:_ inv:_ code: {_} _ {_}") where "rg keyword invar R G I P C Q \equiv \vdash C sat [

2.3 RG Subgoal-Generating Methods

As in Floyd-Hoare logic, in RG we can strengthen (make smaller) the precondition and weaken (make larger) the postcondition without affecting the validity of an RG sentence.

```
theorem strengthen_pre: assumes "P' \subseteq P" and "\vdash c sat [P, R, G, Q]" shows "\vdash c sat [P', R, G, Q]" \langle proof \rangle theorem weaken_post: assumes "Q \subseteq Q'" and "\vdash c sat [P, R, G, Q]" shows "\vdash c sat [P, R, G, Q']" \langle proof \rangle
```

We then develop subgoal-generating methods for various instruction types and patterns, to be used in conjunction with the Isar proof-language.

2.3.1 Basic

 $P \cap I$,

R ∩ pred_to_rel I, invar_and_guar I G,

A Basic instruction wraps a state-transformation function.

```
theorem rg_basic_named[intro]: assumes "stable P R" and "stable Q R" and "\forall s. s \in P \longrightarrow (s, s) \in G" and "\forall s. s \in P \longrightarrow (s, f s) \in G" and "P \subseteq { 'f \in Q }" shows "{P, R} Basic f {G, Q}" \langle proof \rangle
```

method method_basic =

```
rule rg_basic_named,
  goal_cases stable_pre stable_post guar_id establish_guar establish_post
The skip command is a Basic instruction whose function is the identity.
theorem rg_skip_named:
  assumes "stable P R"
        and "stable Q R"
        and "Id \subseteq G"
        and "P \subseteq Q"
     shows "{P, R} SKIP {G, Q}"
  \langle proof \rangle
method method_skip =
  rule rg_skip_named,
  goal_cases stab_pre stab_post guar_id est_post
An alternative version with an invariant subgoal.
theorem rg_basic_inv[intro]:
  assumes "stable (P \cap I) (R \cap pred_to_rel I)"
        and "stable (Q \cap I) (R \cap pred_to_rel I)"
        and "\foralls. s \in P \cap I \longrightarrow (s, s) \in G"
        and "\forall \, \mathtt{s.} \, \, \mathtt{s} \, \in \, \mathtt{P} \, \cap \, \mathtt{I} \, \longrightarrow \, \mathtt{f} \, \, \mathtt{s} \, \in \, \mathtt{I}"
        and "\forall \, \mathtt{s.} \, \, \mathtt{s} \, \in \, \mathtt{P} \, \cap \, \mathtt{I} \, \longrightarrow \, \mathtt{f} \, \, \mathtt{s} \, \in \, \mathtt{Q}"
        and "\foralls. s \in P \cap I \longrightarrow (s, f s) \in G"
     shows "⊢ (Basic f) sat [
       P \cap I,
       R ∩ pred_to_rel I,
        invar_and_guar I G,
        Q \cap I]"
  \langle proof \rangle
method method_basic_inv = rule rg_basic_inv,
  goal_cases stab_pre stab_post id_guar est_inv est_post est_guar
2.3.2 Looping constructs
theorem rg_general_loop_named[intro]:
  assumes "stable P R"
        and "stable Q R"
        \mathbf{and} \ \texttt{"Id} \subseteq \texttt{G"}
        and "P \cap -b \subseteq Q"
        and "\{P \cap b, R\} c \{G, P\}"
     shows "{P, R} While b c {G, Q}"
  \langle proof \rangle
method method loop =
  rule rg_general_loop_named,
  goal_cases stable_pre stable_post id_guar loop_exit loop_body
A similar version but with the loop_body subgoal having a weakend precondition.
theorem rg_general_loop_no_guard[intro]:
  assumes "stable P R"
       and "stable Q R"
        \mathbf{and} \ \texttt{"Id} \subseteq \texttt{G"}
       and "P \cap -b \subseteq Q"
       and "{P, R} c {G, P}"
     shows "{P, R} While b c {G, Q}"
  \langle proof \rangle
```

```
method method_loop_no_guard =
  rule rg_general_loop_no_guard,
  goal_cases stab_pre stab_post guar_id loop_exit loop_body
A spinloop is a loop with an empty body. Such a loop repeatedly checks a property, and is a
key construct in mutual exclusion algorithms.
theorem rg_spinloop_named[intro]:
  assumes "stable P R"
      and "stable Q R"
      and "Id \subseteq G"
      and "P \cap -b \subseteq Q"
    shows "{P, R} While b SKIP {G, Q}"
  \langle proof \rangle
method method_spinloop =
  rule rg_spinloop_named,
  goal_cases stable_pre stable_post guar_id est_post
theorem rg_infinite_loop:
  assumes "stable P R"
      and "Id \subseteq G"
      and "\{P, R\} C \{G, P\}"
    shows "{P, R} While UNIV C {G, Q}"
\langle proof \rangle
method method_infinite_loop =
  rule rg_infinite_loop,
  goal_cases stable_pre guar_id loop_body,
  clarsimp+
theorem rg_infinite_loop_syntax:
  assumes "stable P R"
      and "Id \subseteq G"
      and "{P, R} C {G, P}"
    shows "{P, R} WHILE True DO C OD {G, Q}"
  \langle proof \rangle
method method_infinite_loop_syntax =
  rule rg_infinite_loop_syntax,
  goal_cases stable_pre guar_id loop_body
A repeat-loop encodes the pattern where the loop body is executed before the first evaluation
of the guard.
theorem rg_repeat_loop[intro]:
  assumes "stable P R"
      and "stable Q R"
      and "Id \subseteq G"
      and "P \cap b \subseteq Q"
      and loop_body: "{P, R} C {G, P}"
    shows "{P, R} C ;; While (-b) C {G, Q}"
  \langle proof \rangle
method method_repeat_loop =
  rule rg_repeat_loop,
```

goal_cases stab_pre stab_post guar_id loop_exit loop_body

When reasoning about repeat-loops, we may need information from P to determine whether we reach the postcondition. In this case we can use the following form, which introduces a mid-state.

```
theorem rg_repeat_loop_mid[intro]:
  assumes stab_pre: "stable (P \cap M) R"
      and stab_post: "stable Q R"
      and guar id:
                        \texttt{"Id} \, \subseteq \, \texttt{G"}
      and loop_exit: "P \cap M \cap b \subseteq Q"
      and loop_body: "{P, R} C {G, P \cap M}"
    shows "{P, R} C ;; While (-b) C {G, Q}"
 \langle proof \rangle
method method_repeat_loop_mid =
  rule rg_repeat_loop_mid,
  goal_cases stab_pre stab_post guar_id loop_exit loop_body
We define dedicated syntax for the repeat-loop pattern.
definition Repeat :: "'a com \Rightarrow 'a bexp \Rightarrow 'a com" where
  "Repeat c b \equiv c ;; While (-b) c"
syntax "_Repeat" :: "'a com \Rightarrow 'a bexp \Rightarrow 'a com" ("(OREPEAT _ /UNTIL _ /END)" [0, 0]
61)
translations "REPEAT c UNTIL b END" → "CONST Repeat c {b}"
theorem rg_repeat_loop_def[intro]:
  assumes stab_pre: "stable P R"
      and stab_post: "stable Q R"
                        "Id \subseteq G"
      and guar_id:
      and loop_exit: "P \cap b \subseteq Q"
      and loop_body: "{P, R} C {G, P}"
    shows "{P, R} Repeat C b {G, Q}"
  \langle proof \rangle
method method_repeat_loop_def =
  rule rg_repeat_loop_def,
  goal_cases stab_pre stab_post guar_id loop_exit loop_body
2.3.3 Conditionals
We first cover conditional-statements with or without the else-branch.
```

```
theorem rg cond named[intro]:
  assumes stab pre: "stable P R"
       and stab_post: "stable Q R"
       and guar_id:
                        \texttt{"Id} \subseteq \texttt{G"}
                        "\{P \cap b, R\} c1 \{G, Q\}"
       and then_br:
       and else_br: "\{P \cap -b, R\} c2 \{G, Q\}"
    shows "{P, R} Cond b c1 c2 {G, Q}"
  \langle proof \rangle
theorem rg_cond2_named[intro]:
  assumes stab_pre: "stable P R"
      and stab post: "stable Q R"
       and guar id:
                        "Id \subseteq G"
      and then_br:
                        "{P ∩ b, R} c1 {G, Q}"
      and else_br: "P \cap -b \subseteq Q"
    shows "{P, R} Cond b c1 SKIP {G, Q}"
  \langle proof \rangle
```

```
method method_cond =
  (rule rg_cond2_named | rule rg_cond_named),
  goal_cases stab_pre stab_post guar_id then_br else_br
Variants without the stable-post subgoal.
theorem rg_cond_no_post[intro]:
  assumes stable_pre: "stable P R"
      and guar_id: "Id \subseteq G"
      and then_br: "{P \cap b, R} c1 {G, Q}"
      and else_br: "\{P \cap -b, R\} c2 \{G, Q\}"
    shows "{P, R} Cond b c1 c2 {G, Q}"
  \langle proof \rangle
theorem rg_cond_no_guard_no_post[intro]:
  assumes stable_pre: "stable P R"
      and guar_id: "Id \subseteq G"
      and then_br: "{P, R} c1 {G, Q}"
      and else_br: "{P, R} c2 {G, Q}"
    shows "\{P, R\} Cond b c1 c2 \{G, Q\}"
  \langle proof \rangle
method method_cond_no_post =
  (rule rg_cond_no_post | rule rg_cond_no_guard_no_post),
  goal_cases stab_pre guar_id then_br else_br
```

2.4 Parallel Compositions

We now turn to the parallel composition, and cover several variants, from the *binary* parallel composition of two commands, to the *multi-parallel* composition of an indexed list of commands. For each variant, we define the syntax and devise the subgoal-generating methods.

2.4.1 Binary Parallel

The syntax of binary parallel composition, without and with invariant.

```
abbreviation binary parallel ::
  "'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
 ("{_, _} _ \| _ {_, _}") where
  "{P, R} C1 \parallel C2 {G, Q} \equiv
     \exists P1 P2 R1 R2 G1 G2 Q1 Q2.
       ⊢ COBEGIN
              (C1, P1, R1, G1, Q1)
              (C2, P2, R2, G2, Q2)
        COEND SAT [P, R, G, Q]"
abbreviation binary_parallel_invar ::
  "'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a set \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
 ("{_, _} _ || _ // _ {_, _}") where "{P, R} C1 || C2 // I {G, Q} \equiv
     \exists P1 P2 R1 R2 G1 G2 Q1 Q2.
       ⊢ COBEGIN
              (C1, P1, R1, G1, Q1)
              (C2, P2, R2, G2, Q2)
        COEND SAT [P \cap I, R \cap pred_to_rel I, invar_and_guar I G, Q \cap I]"
```

```
Some helper lemmas for later.
lemma simp_all_2:
  "(\forall i < Suc (Suc 0). P i) \longleftrightarrow P 0 \land P 1"
  \langle proof \rangle
lemma simp_gen_Un_2:
  "(\bigcup x \in \{ (suc (Suc (Suc 0)) \}. S x) = S 0 \cup S 1"
  \langle proof \rangle
lemma simp gen Un 2 not0:
  \langle proof \rangle
lemma simp_gen_Int_2:
  "(\bigcap x \in { ´(<) (Suc (Suc 0)) }. S x) = S 0 \cap S 1"
  \langle proof \rangle
theorem rg_binary_parallel:
  assumes "{P1, R1} (C1::'a com) {G1, Q1}"
       and "{P2, R2} (C2::'a com) {G2, Q2}"
       and "G1 \subseteq R2"
       and "G2 \subseteq R1"
       and "P \subseteq P1 \cap P2"
       and "R \subseteq R1 \cap R2"
       and "G1 \cup G2 \subseteq G"
       and "Q1 \cap Q2 \subseteq Q"
    \mathbf{shows} \ \texttt{"} \vdash \ \texttt{COBEGIN}
       (C1, P1, R1, G1, Q1)
        (C2, P2, R2, G2, Q2)
       COEND SAT [P, R, G, Q]"
  \langle proof \rangle
theorem rg_binary_parallel_exists:
  assumes "{P1, R1} (C1::'a com) {G1, Q1}"
       and "{P2, R2} (C2::'a com) {G2, Q2}"
       and "G1 \subseteq R2"
       and "G2 \subseteq R1"
       and "P \subseteq P1 \cap P2"
       and "R \subseteq R1 \cap R2"
       and "G1 \cup G2 \subseteq G"
       and "Q1 \cap Q2 \subseteq Q"
    shows "{P, R} C1 || C2 {G, Q}"
  \langle proof \rangle
theorem rg_binary_parallel_invar_conseq:
  assumes C1: "{P1, R1} (C1::'a com) / I {G1, Q1}"
       and C2: "{P2, R2} (C2::'a com) / I {G2, Q2}"
       and "G1 \subseteq R2"
       and "G2 \subseteq R1"
       and "P \subseteq P1 \cap P2"
       and "R \subseteq R1 \cap R2"
       and "Q1 \cap Q2 \subseteq Q"
```

and "G1 \cup G2 \subseteq G"

 $\langle proof \rangle$

shows "{P, R} C1 \parallel C2 # I {G, Q}"

2.4.2 Multi-Parallel

```
The syntax of multi-parallel, without and with invariants.
```

```
syntax multi_parallel ::
  "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow
    (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{set}) \Rightarrow (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{rel}) \Rightarrow
    (nat \Rightarrow 'a com) \Rightarrow
    (nat \Rightarrow 'a rel) \Rightarrow (nat \Rightarrow 'a set) \Rightarrow
    'a rel \Rightarrow 'a set \Rightarrow bool"
   ("global'_init: _ global'_rely: _ \| _ < _ @ {_,_} _ {_,_} global'_guar: _ global'_post:
translations
  "global_init: Init global_rely: RR | i < N @
   {P,R} c {G,Q} global_guar: GG global_post: QQ"

ightharpoonup "
ightharpoonup COBEGIN SCHEME [0 \leq i < N] (c, P, R, G, Q) COEND
       SAT [Init, RR, GG, QQ]"
syntax multi_parallel_inv ::
  "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow
    (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{set}) \Rightarrow (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{rel}) \Rightarrow
    (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{com}) \Rightarrow (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{set}) \Rightarrow
    (nat \Rightarrow 'a rel) \Rightarrow (nat \Rightarrow 'a set) \Rightarrow
    'a rel \Rightarrow 'a set \Rightarrow bool"
   ("global'_init: _ global'_rely: _ \| _ < _ @ {_,_} _ // _ {_,_} global'_guar: _ global'_post:
_")
translations
  "global_init: Init global_rely: RR ∥ i < N @
   {P, R} c // I {G, Q} global_guar: GG global_post: QQ"
  \rightharpoonup "\vdash COBEGIN SCHEME [0 \leq i < N] (c,
              P \cap I,
              R \cap CONST pred_to_rel I,
              CONST invar_and_guar I G,
              Q \cap I
           ) COEND
       SAT [Init, RR, GG, QQ]"
The subgoal-generating method for multi-parallel.
theorem rg_multi_parallel_subgoals:
  assumes assm_guar_rely: "\forall i j. i \neq j \longrightarrow i < N \longrightarrow j < N \longrightarrow G j \subseteq R i"
        and assm pre: "\forall i < N. P' \subseteq P i"
        and assm_rely: "\forall i < N. R' \subseteq R i"
        and assm_guar: "\forall i < N. G i \subseteq G'"
        and assm_post: "(\bigcap i \in { i. i < N }. Q i) \subseteq Q'"
        and assm_local: "∀ i<N. ⊢ C i sat [P i, R i, G i, Q i]"
     shows "\vdash COBEGIN SCHEME [0 \leq i < (N::nat)]
               (C i, P i, R i, G i, Q i)
               COEND SAT [P', R', G', Q']"
\langle proof \rangle
method method_multi_parallel = rule rg_multi_parallel_subgoals,
  goal_cases guar_rely pre rely guar post body
theorem rg_multi_parallel_nobound_subgoals:
  assumes assm_guar_rely: "\forall i j. i \neq j \longrightarrow G j \subseteq R i"
        and assm_pre: "\forall i. P' \subseteq P i"
        and assm_rely: "\forall i. R' \subseteq R i"
```

2.5 Syntax of Record-Updates

This section contains syntactic sugars for updating a field of a record. As we use records to model the states of a program, these record-update operations correspond to the variable-assignments. The type idt denotes a field of a record. The first syntactic sugar expresses a Basic command (of type <'a com>) that updates a record-field x that is a function; often x models an array. After the update, the new value of <x i> becomes a.

The next two syntactic sugars express a state-transformation function (rather than a command) that updates record-fields. The first one simply updates an entire variable x, while the second updates an array $\langle x \ i \rangle$.

```
syntax "_record_update_field" ::

"idt \Rightarrow 'expr \Rightarrow ('a \Rightarrow 'a)" ("´_ \leftarrow/ _" [70] 61)

translations "´x \leftarrow a"

\Rightarrow "«´(_update_name x (\lambda_. a))»"

syntax "_record_update_array" ::

"idt \Rightarrow 'expr \Rightarrow 'expr \Rightarrow ('a \Rightarrow 'a)" ("´_[_] \leftarrow/ _" [70, 71] 61)

translations "´x[i] \leftarrow a"

\Rightarrow "«´(_update_name x (\lambda_. ´x(i:= a)))»"

Syntactic sugars for incrementing variables.

syntax "_inc_fn" :: "idt \Rightarrow 'c \Rightarrow 'c" ("(´_.++)" 61)

translations "´x.++ " \Rightarrow

" «´(_update_name x (\lambda_. ´x + 1))»"

syntax "_inc" :: "idt \Rightarrow 'c com" ("(´_+++)" 61)

translations "´x++ " \Rightarrow

"CONST Basic (´x.++)"
```

end

3 Annotated Commands

```
theory RG_Annotated_Commands
imports RG_Syntax_Extensions "HOL-Hoare.Hoare_Tac"
begin
```

```
datatype 'a anncom =
    NoAnno
                "'a com"
                "'a \Rightarrow 'a"
  | BasicAnno
  | WeakPre
                "'a set"
                             "'a anncom"
                                                        ("{_} _" [65,61] 61)
                                                        ("_ {_}" [61,65] 61)
  | StrongPost "'a anncom" "'a set"
                "'a anncom" "'a set"
                                           "'a anncom"
  | SeqAnno
                             "'a anncom" "'a anncom"
  | CondAnno
                "'a bexp"
               "'a bexp"
  | WhileAnno
                             "'a set"
                                           "'a anncom"
  | AwaitAnno "'a bexp"
                             "'a anncom"
fun anncom_to_com :: "'a anncom \Rightarrow 'a com" where
    "anncom_to_com (NoAnno c)
                                 = c"
  | "anncom_to_com (BasicAnno f) = Basic f"
  | "anncom to com (WeakPre b c) = anncom to com c"
  | "anncom_to_com (StrongPost c b) = anncom_to_com c"
  | "anncom_to_com (SeqAnno c1 mid c2) = Seq
                                                    (anncom_to_com c1) (anncom_to_com c2)"
  | "anncom to com (CondAnno b c1 c2) = Cond b (anncom to com c1) (anncom to com c2)"
  | "anncom_to_com (WhileAnno b b' c) = While b (anncom_to_com c)"
  | "anncom_to_com (AwaitAnno b c)
                                       = Await b (anncom_to_com c)"
fun add_invar :: "'a set \Rightarrow 'a anncom \Rightarrow 'a anncom" where
                                  = NoAnno c"
    "add_invar I (NoAnno c)
  | "add_invar I (BasicAnno f)
                                       = BasicAnno f"
  | "add_invar I (WeakPre b c)
                                      = WeakPre (b ∩ I) (add_invar I c)"
  | "add invar I (StrongPost c b) = StrongPost
                                                            (add invar I c) (b \cap I)"
                                                            (add_invar I c1) (mid \cap I) (add_invar
  | "add_invar I (SeqAnno c1 mid c2) = SeqAnno
I c2)"
  | "add_invar I (CondAnno b c1 c2) = CondAnno b
                                                            (add_invar I c1) (add_invar I c2)"
  | "add_invar I (WhileAnno b b' c) = WhileAnno b b'
                                                            (add invar I c)"
  | "add_invar I (AwaitAnno b c)
                                      = AwaitAnno b
                                                            (add_invar I c)"
syntax
  "_CondAnno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom \Rightarrow 'a anncom"
    ("(OIFa _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
  " Cond2Anno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom"
    ("(0IFa _ THEN _ FI)" [0,0] 56)
  "_WhileAnno" :: "'a bexp \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a anncom"
    ("(OWHILEa _ /DO {stable'_guard: _ } _ /OD)" [0, 0] 61)
  "_WhileAnno_simple_b" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom"
    ("(OWHILEa _ /DO _ /OD)" [0, 0] 61)
  "_AwaitAnno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom"
    ("(OAWAITa _ /THEN /_ /END)" [0,0] 61)
  "_AtomAnno" :: "'a com \Rightarrow 'a anncom"
    ("(\langle \_ \ranglea)" 61)
  "_WaitAnno" :: "'a bexp \Rightarrow 'a anncom"
    ("(OWAITa _ END)" 61)
  "_CondAnno_NoAnnoions" :: "'a bexp \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a anncom"
    ("(OIF. / THEN / ELSE /FI)" [0, 0, 0] 61)
translations
  "IFa b THEN c1 ELSE c2 FI" → "CONST CondAnno {b} c1 c2"
  "IFa b THEN c FI" \rightleftharpoons "IFa b THEN c ELSE SKIP FI"
  "IF. b THEN c1 ELSE c2 FI" → "CONST CondAnno {b} (CONST NoAnno c1) (CONST NoAnno c2)"
  "WHILEa b DO {stable_guard: b'} c OD" \rightharpoonup "CONST WhileAnno {b} b' c"
  "WHILEa b DO c OD" \rightharpoonup "CONST WhileAnno \{b\} \{b\} c"
```

```
"AWAITa b THEN c END" \rightleftharpoons "CONST AwaitAnno \{b\} c" "\langle c \ranglea" \rightleftharpoons "AWAITa CONST True THEN c END" "WAITa b END" \rightleftharpoons "AWAITa b THEN SKIP END" abbreviation no_assertions_semicolon :: "'a anncom \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a anncom" ("_ .; {_} _" [60,60,61] 60) where "c1 .; {m} c2 \equiv SeqAnno c1 m c2"
```

Below is a special syntax for Basic commands (type "com") encoded inside NoAnno annotated commands (type "annoom").

This allows us to keep our syntactic sugars for Basic commands, which are mostly assignments (":="), without having to redo them all for BasicAnno annotated commands.

Hence, we wrap Basic commands with this helper function, which is only defined for Basic commands.

```
fun basic_to_basic_anno_syntax:: "'a com ⇒ 'a anncom" ("'(_')-") where
   "basic_to_basic_anno_syntax (Basic f) = BasicAnno f"
| "basic_to_basic_anno_syntax c = NoAnno c"
```

The following function defines what it means for an annotated command to satisfy the given specification components. The soundness of this definition will be proved later.

```
fun anncom_spec_valid :: "'a set \Rightarrow 'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow bool" where
     "anncom_spec_valid pre rely guar post (NoAnno c)
     = (⊢ c sat [pre, rely, guar, post])"
  | "anncom_spec_valid pre rely guar post (BasicAnno f)
     = (stable pre rely \wedge
         stable post rely \wedge
         (\forall \mathtt{s.} \ \mathtt{s} \in \mathtt{pre} \longrightarrow (\mathtt{s, s}) \in \mathtt{guar}) \ \land
         (\forall \, \mathtt{s.} \ \mathtt{s} \, \in \, \mathtt{pre} \, \longrightarrow \, (\mathtt{s, f s}) \, \in \, \mathtt{guar}) \ \land
        pre \subseteq \{ f \in post \}"
  | "anncom_spec_valid pre rely guar post (WeakPre p' ac)
     = ((pre ⊆ p') ∧
         (anncom_spec_valid p' rely guar post ac))"
  | "anncom_spec_valid pre rely guar post (StrongPost ac q')
     = ((q' \subseteq post) \land
         (anncom_spec_valid pre rely guar q' ac))"
  | "anncom_spec_valid pre rely guar post (SeqAnno ac1 mid ac2)
     = ((anncom_spec_valid pre rely guar mid ac1) \land \text{
         (anncom_spec_valid mid rely guar post ac2))"
  | "anncom_spec_valid pre rely guar post (CondAnno b ac1 ac2)
     = ((stable pre rely) ∧
         (Id \subseteq guar) \land
         (anncom_spec_valid (pre \cap b) rely guar post ac1) \wedge
         (anncom\_spec\_valid (pre \cap -b) rely guar post ac2))"
  | "anncom spec valid pre rely guar post (WhileAnno b b' ac)
     = ((stable pre rely) ∧
         (stable post rely) \wedge
         (Id \subseteq guar) \land
         (pre \cap -b \subseteq post) \wedge
```

(pre \cap b \subseteq b') \wedge

```
(anncom_spec_valid (pre ∩ b') rely guar pre ac))"
  | "anncom_spec_valid pre rely guar post (AwaitAnno b ac)
    = ((stable pre rely) ∧
       (stable post rely) \wedge
       (∀ s. anncom\_spec\_valid (pre ∩ b ∩ {s}) Id UNIV ({s'. (s, s') ∈ guar} ∩ post) ac))"
The following theorem establishes the soundness of the definition above.
theorem anncom_spec_valid_sound:
  "anncom_spec_valid pre rely guar post ac ⇒ ⊢ anncom_to_com ac sat [pre, rely, guar,
post]"
\langle proof \rangle
     Annotated Quintuples
3.1
For convenience, we define the following datatype, which collects an annotated command with
its specification components.
datatype 'a annquin = AnnQuin "'a set" "'a rel" "'a anncom" "'a rel" "'a set"
  ("{_,_} _ {_,_}" )
abbreviation annquin_invar ::
  "'a set \Rightarrow 'a rel \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a annquin"
  "annquin_invar pre rely ac I guar post \equiv AnnQuin
    (pre \cap I) (rely \cap pred_to_rel I)
    (add invar I ac)
    (invar_and_guar I guar) (post ∩ I)"
Helper functions for extracting the individual components of an <'a annquin'.
fun preOf :: "'a annquin <math>\Rightarrow 'a set"
  where "preOf (AnnQuin pre rely ac guar post) = pre"
fun relyOf :: "'a annquin \Rightarrow 'a rel"
  where "relyOf (AnnQuin pre rely ac guar post) = rely"
fun \ \ cmdOf :: "'a annquin <math>\Rightarrow 'a anncom"
  where "cmdOf (AnnQuin pre rely ac guar post) = ac"
fun guarOf :: "'a annquin <math>\Rightarrow 'a rel"
  where "guarOf (AnnQuin pre rely ac guar post) = guar"
fun postOf :: "'a annquin \Rightarrow 'a set"
  where "postOf (AnnQuin pre rely ac guar post) = post"
Validity of <'a annum's is the same as the validity of the "quintuples" when written out
separately.
abbreviation annquin_valid :: "'a annquin \Rightarrow bool" where
  "annquin_valid rgac \equiv case rgac of (AnnQuin pre rely ac guar post) \Rightarrow
   anncom_spec_valid pre rely guar post ac"
lemma annquin_simp[simp]:
  "annquin_valid (AnnQuin p r c g q) = anncom_spec_valid p r g q c"
  \langle proof \rangle
Syntax for expressing a valid <'a annouin' in terms of its components.
```

syntax

```
"_valid_annquin"
    :: "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow bool"
    ("rely:_ guar:_ anno'_code: {_} _ {_}")
  "_valid_annquin_invar"
    :: "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow bool"
    ("rely:_ guar:_ inv:_ anno'_code: {_} _ {_}")
translations
  "rely: R guar: G anno_code: {P} ac {Q}"

ightharpoonup "CONST annquin_valid (CONST AnnQuin P R ac G Q)"
  "rely: R guar: G inv: I anno code: {P} ac {Q}"

ightharpoonup "CONST annquin_valid (CONST AnnQuin
         (P \cap I) (R \cap CONST pred_to_rel I)
         (CONST add_invar I ac)
         (CONST invar and guar I G) (Q \cap I)"
      Structured Tactics for Annotated Commands
3.2
lemma anncom_subgoals_no:
  "⊢ c sat [pre, rely, guar, post] ⇒ anncom_spec_valid pre rely guar post (NoAnno c)"
  \langle proof \rangle
lemma anncom_subgoals_invar_no:
  assumes "⊢ c sat [pre ∩ I, rely ∩ pred_to_rel I, invar_and_guar I guar, post ∩ I]"
  shows "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                                (post \cap I) (add_invar I (NoAnno c))"
  \langle proof \rangle
lemma anncom_subgoals_basicanno_invar:
                               "stable (pre \cap I) (rely \cap pred_to_rel I)"
  assumes stable_pre:
                               "stable (post \cap I) (rely \cap pred_to_rel I)"
       and stable_post:
       and guar id:
                               "\forall \, s. \ s \in (\text{pre} \, \cap \, I) \, \longrightarrow \, (s, \, s) \in (\text{invar\_and\_guar} \, I \, \text{guar})"
       and establish_guar: "\forall \, s. \, s \in (\text{pre} \, \cap \, I) \, \longrightarrow \, (s, \, f \, s) \in (\text{invar\_and\_guar} \, I \, \text{guar})"
      and establish_post: "(pre \cap I) \subseteq { 'f \in (post \cap I) }"
  shows "rely: rely guar: guar inv: I anno_code: {pre} (BasicAnno f) {post}"
  \langle proof \rangle
method method_annquin_basicanno =
  rule anncom_subgoals_basicanno_invar,
  goal_cases stable_pre stable_post guar_id est_guar est_post
lemma anncom_subgoals_seq:
  assumes "anncom_spec_valid pre rely guar mid c1"
       and "anncom_spec_valid mid rely guar post c2"
    shows "anncom_spec_valid pre rely guar post (SeqAnno c1 mid c2)"
  \langle proof \rangle
lemma anncom_subgoals_invar_seq:
  assumes "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                                  (mid ∩ I) (add_invar I c1)"
       and "anncom_spec_valid (mid ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
                                  (post ∩ I) (add_invar I c2)"
    shows "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                                  (post \cap I) (add_invar I (SeqAnno c1 mid c2))"
  \langle proof \rangle
lemma anncom_subgoals_invar_seq_abbrev:
  assumes "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
```

```
(mid \cap I) (add_invar I c1)"
      and "anncom_spec_valid (mid ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
                                 (post \cap I) (add_invar I c2)"
    shows "rely: (rely) guar: guar inv: I anno_code: {pre} (c1 .; {mid} c2) {post}"
  \langle proof \rangle
method method_annquin_seq =
  (rule anncom_subgoals_invar_seq | rule anncom_subgoals_invar_seq_abbrev),
  goal_cases c1 c2
lemma anncom_subgoals_while:
  assumes "stable pre rely"
      and "stable post rely"
      and "Id \subseteq guar"
      \mathbf{and} \ \texttt{"pre} \ \cap \ \texttt{-b} \ \subseteq \ \texttt{post"}
      and "pre \cap b \subseteq b'"
      and "anncom_spec_valid (pre ∩ b') rely guar pre ac"
    shows "anncom spec valid pre rely guar post (WhileAnno b b' ac)"
  \langle proof \rangle
lemma add_invar_while:
  assumes "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                                 (q \cap I) (WhileAnno b b' (add_invar I ac))"
    shows "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                                (q \cap I) (add_invar I (WhileAnno b b' ac))"
  \langle proof \rangle
lemma anncom_subgoals_invar_while_abbrev:
  assumes "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                                (q \cap I) (add_invar I (WhileAnno b b' ac))"
    shows "rely: R guar: G inv: I anno_code: {p} (WhileAnno b b' ac) {q}"
  \langle proof \rangle
method method annouin while =
  rule anncom_subgoals_invar_while_abbrev,
  rule add invar while,
  rule anncom subgoals while,
  goal_cases stable_pre stable_post guar_id neg_guard guard body
```

3.3 Binary Parallel

This section contains inference rules for two annotated commands running in parallel. For convenience, we first define a datatype that encapsulates the components.

The next function sets out the proof obligations of binary parallel, using the datatype <'a binary_par_quin'> above. It is then followed by the theorem that establishes the soundness of the inference rule encoded by the function binary_parallel_valid.

```
g1 \subseteq r2
    \wedge
             g2 \subseteq r1
    \land \ \mathtt{g1} \ \cup \ \mathtt{g2} \subseteq \ \mathtt{gg}
    \land q1 \cap q2 \subseteq final)"
theorem valid_binary_parallel:
 "binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
 \implies \( \tag{COBEGIN} \) (anncom_to_com c1, p1, r1, g1, q1) \( \| \) (anncom_to_com c2, p2, r2, g2, q2)
        COEND SAT [init, gr, gg, final]"
  \langle proof \rangle
Variants of the theorem above.
theorem valid_binary_parallel_exists:
 "binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
 ⇒ {init, gr} anncom_to_com c1 || anncom_to_com c2 {gg, final}"
  \langle proof \rangle
theorem valid_binary_parallel_exists_annotated:
  assumes "binary_parallel_valid (ParCode
             init gr
             (AnnQuin p1 r1 c1' g1 q1) (AnnQuin p2 r2 c2' g2 q2)
             gg final)"
       and "anncom_to_com c1' = c1"
       and "anncom_to_com c2' = c2"
    shows "{init, gr} c1 | c2 {gg, final}"
  \langle proof \rangle
```

3.4 Helpers: Index Offsets

Before moving on to multi-parallel programs, we first prepare some lemmas that help reason about offsets and indices.

```
abbreviation nat_range_set_neq_i :: "nat \Rightarrow nat \Rightarrow nat \Rightarrow nat set"
   ("\{\_...<_{\neq}\}") where
  "nat_range_set_neq_i lo hi x \equiv \{lo..\langle hi\} - \{x\}"
lemma all_set_range_to_offset:
  "(\forall i \in {lo..<hi::nat}. P (f i)) \longleftrightarrow (\forall i < (hi-lo). P (f (lo + i)))"
   \langle proof \rangle
lemma Int_set_range_to_offset:
  "(\bigcap i \in \{lo.. < hi::nat\}. f i) = (\bigcap i < (hi-lo). f (lo + i))"
  \langle proof \rangle
lemma Un_set_range_to_offset:
  "(\bigcup i \in \{lo.. < hi::nat\}. g (f i)) = (\bigcup i < (hi-lo). g (f (lo + i)))"
  \langle proof \rangle
lemma Int_set_range_neq_to_offset: "i = lo + ii
  \implies (\bigcap j \in \{lo..\langle hi \neq i\}\}. \quad f \ j) = (\bigcap j \in \{0..\langle (hi-lo) \neq ii\}\}. \quad f \ (lo + j))"
  \langle proof \rangle
lemma Int_set_range_neq_to_offset2: "ii< (hi - lo)</pre>
  \implies (\bigcap j \in \{lo..\langle hi \neq (lo + ii)\}. \ f j) = (\bigcap j \in \{0..\langle (hi-lo) \neq ii\}. \ f (lo + j))"
   \langle proof \rangle
```

```
lemma forall_range_to_offset:

"(\forall i \in {lo..<(hi::nat)}. P i) \longleftrightarrow (\forall i \in {0..<(hi - lo)}. P (lo + i))"

\langle proof \rangle

lemma SCHEME_map_domain:

"map (\lambdai. rgac i) [lo ..< (N::nat)] = map (\lambdai. rgac (lo + i)) [0..<(N-lo)]"

\langle proof \rangle

lemma offset_P: "(\forall i. lo \leq i \wedge i < (N::nat) \longrightarrow P i) \Longrightarrow lo \leq N \Longrightarrow (\forall i. i < (N-lo) \longrightarrow P (lo + i))"

\langle proof \rangle

lemma INTER_offset:

shows "(\bigcap x<((N::nat) - lo). p (lo + x)) = (\bigcap x \in {lo..<N}. p x)"

\langle proof \rangle

lemma LT_offset: "(\forall i. lo \leq i \wedge i < (N::nat) \longrightarrow P i) \longleftrightarrow (\forall i < N - lo. P (lo + i))"

\langle proof \rangle
```

3.5 Multi-Parallel

This section contains inference rules for multiple annotated commands running in parallel. Again, for convenience we first define a datatype that encapsulates the components:

- 1. Global precondition
- 2. Global rely
- 3. The lower index
- 4. The upper index
- 5. Sequential programs (each an annotated quintuple), indexed by the natural numbers
- 6. Global guarantee
- 7. Global postcondition

```
datatype 'a multi_par_quin = MultiParCode
  "'a set"
  "'a rel"
   nat nat
  "nat ⇒ 'a annquin"
  "'a rel"
  "'a set"
```

Using the datatype above, the inference rules are set out as the following two functions.

```
fun multipar_valid :: "'a multi_par_quin ⇒ bool" where
   "multipar_valid (MultiParCode init RR lo N iac gg final) =
   ( (∀i∈{lo..<N}. annquin_valid (iac i)) ∧
        init ⊆ (∩i∈{lo..<N}. preOf (iac i)) ∧
        RR ⊆ (∩i∈{lo..<N}. relyOf (iac i)) ∧
        (∀i∈{lo..<N}. guarOf (iac i) ⊆ (∩j∈{lo..<N≠i}. relyOf (iac j))) ∧
        (∪i∈{lo..<N}. guarOf (iac i)) ⊆ gg ∧
        (∩i∈{lo..<N}. postOf (iac i)) ⊆ final )"

fun multipar_valid_offset:: "'a multi_par_quin ⇒ bool" where
    "multipar_valid_offset (MultiParCode init RR lo N iac gg final) =</pre>
```

```
( (\forall i<(N-lo). annquin_valid (iac (lo + i))) \land
       init \subseteq (\bigcap i < (N-lo). preOf (iac (lo + i))) \land
       RR \subseteq (\bigcap i < (N-lo). relyOf (iac (lo + i))) \land
       (\forall i < (N-lo). \text{ guarOf (iac (lo + i))} \subseteq (\bigcap j \in \{0... < (N-lo) \neq i\}. \text{ relyOf (iac (lo + j)))})
\wedge
       ([]i<(N-lo). guarOf (iac (lo + i))) \subseteq gg \land
       (\bigcap i < (N-lo). postOf (iac (lo + i))) \subseteq final)"
Alternative syntax that encodes the validity of multi-parallel statements.
syntax
  "_multi_parallel_anno"
    :: "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow 'a annquin \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
     ("annotated global'_init: _ global'_rely: _ || _ < _ @ _ global'_guar: _ global'_post:
_")
  "_multi_parallel_anno_lo_hi"
     :: "'a set \Rightarrow 'a rel \Rightarrow nat \Rightarrow idt \Rightarrow nat \Rightarrow 'a annquin \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
     ("annotated global'_init: _ global'_rely: _ | _ < _ < _ @ _ global'_guar: _ global'_post:
_")
translations
  "annotated global_init: Init global_rely: RR | i < N @ rgac global_guar: GG global_post:

ightharpoonup "CONST multipar valid (CONST MultiParCode Init RR O N (\lambdai. rgac) GG QQ)"
  "annotated global_init: Init global_rely: RR | lo \le i < hi @ rgac global_guar: GG global_post:

ightharpoonup "CONST multipar valid offset (CONST MultiParCode Init RR lo hi (\lambdai. rgac) GG QQ)"
The soundness of the inference rules, in multiple variants.
lemma multipar_valid_offset_equiv:
                         (MultiParCode init RR lo hi iac gg final) \longleftrightarrow
  "multipar_valid
   multipar_valid_offset (MultiParCode init RR lo hi iac gg final)"
  \langle proof \rangle
theorem valid multipar:
  "multipar_valid (MultiParCode Init RR lo N rgac GG QQ) \Longrightarrow
  \vdash COBEGIN SCHEME [lo \leq i < N] (
           CONST anncom_to_com (cmdOf (rgac i)),
            preOf (rgac i),
            relyOf (rgac i),
            guarOf (rgac i) ,
            postOf (rgac i)
         ) COEND
      SAT [Init, RR, GG, QQ]"
  \langle proof \rangle
theorem valid_multipar_with_internal_rg:
  "multipar_valid (MultiParCode Init RR lo N (\lambdai. AnnQuin (p i) (r i) (ac i) (g i) (q i))
GG QQ) \Longrightarrow
  (\forall i. anncom\_to\_com (ac i) = c i) \Longrightarrow
  \vdash COBEGIN SCHEME [lo \leq i < N] ((c i), p i, r i, g i, q i) COEND
     SAT [Init, RR, GG, QQ]"
  \langle proof \rangle
theorem valid_multipar_explicit:
  assumes
     local_sat: "\bigwedgei. lo \leq i \wedge i \prec N \Longrightarrow annouin_valid (iac i)" and
    pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq preOf (iac i)" and
```

```
rely: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow RR \subseteq relyOf (iac i)" and
      guar_imp_rely: "\landi j. lo \le i \land i\ltN \Longrightarrow lo \le j \land j \lt N \Longrightarrow i \ne j
                             \implies guarOf (iac i) \subseteq relyOf (iac j)" and
     guar: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow guarOf (iac i) \subseteq gg" and
     post: "(\bigcap i \in \{lo..<N\}. postOf (iac i)) \subseteq final"
  shows "multipar_valid (MultiParCode init RR lo N iac gg final)"
   \langle proof \rangle
theorem valid_multipar_offset_explicit:
  assumes
     local_sat: "\bigwedgei. lo \leq i \wedge i \prec N \Longrightarrow annquin_valid (iac i)" and
     pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq preOf (iac i)" and
     rely: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow RR \subseteq relyOf (iac i)" and
     guar_imp_rely: "\landi j. lo \le i \land i\ltN \Longrightarrow lo \le j \land j \lt N \Longrightarrow i \ne j
                            \implies guarOf (iac i) \subseteq relyOf (iac j)" and
     guar: "\bigwedgei. lo \leq i \wedge i \prec N \Longrightarrow guarOf (iac i) \subseteq gg" and
     post: "(\bigcap i \in \{lo... < N\}. postOf (iac i)) \subseteq final"
  shows "multipar_valid_offset (MultiParCode init RR lo N iac gg final)"
   \langle proof \rangle
theorem valid_multipar_explicit2:
      local_sat: "\bigwedgei. lo \leq i \land i \prec N \Longrightarrow annquin_valid {p i,r i} c i {g i ,q i}" and
     pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq p i" and
     rely: "\bigwedgei. lo \leq i \wedge i \leq N \Longrightarrow RR \subseteq r i" and
     \texttt{guar\_imp\_rely: "$\bigwedge$i j. lo $\le$ i $\wedge$ i < N $\Longrightarrow$ lo $\le$ j $\wedge$ j < N $\Longrightarrow$ i $\ne$ j $\Longrightarrow$ g i $\subseteq$ r j" and}
     guar: "\landi. lo \le i \land i \lt N \Longrightarrow g i \subseteq gg" and
     post: "(\bigcap i \in \{lo... < N\}. q i) \subseteq final"
     shows "multipar_valid (MultiParCode init RR lo N (\lambdai. {p i,r i} c i {g i ,q i}) gg
final)"
   \langle proof \rangle
theorem valid_multipar_explicit_with_invariant:
  assumes
      local_sat: "\landi. i < N \Longrightarrow annquin_valid {p i,r i} c i // Inv {g i ,q i}" and
     \texttt{pre: "} \big / \texttt{i. i < N} \implies \texttt{init} \subseteq \texttt{ p i } \cap \texttt{Inv"} \texttt{ and }
     rely: "\bigwedgei. i \lt N \Longrightarrow RR \subseteq r i \cap pred_to_rel Inv" and
     \texttt{guar\_imp\_rely: "} \land \texttt{i} \ \texttt{i} \cdot \texttt{N} \implies \texttt{j} \ \lessdot \texttt{N} \implies \texttt{i} \neq \texttt{j}
                             \implies invar_and_guar Inv (g i) \subseteq r j \cap pred_to_rel Inv" and
     guar: "\landi. i < N \Longrightarrow invar_and_guar Inv (g i) \subseteq gg" and
     post: "(\bigcap i<N. q i \cap Inv) \subseteq final"
  shows "multipar_valid (MultiParCode init RR 0 N (\lambdai. {p i,r i} c i \# Inv {g i ,q i})
gg final)"
  \langle proof \rangle
method method_annquin_multi_parallel =
  rule valid_multipar_explicit2,
  goal_cases local_sat pre rely guar_imp_rely guar post
        The Main Tactics
3.6
lemmas rg_syntax_simps_collection =
  multipar_valid.simps
  multipar_valid_offset.simps
  add_invar.simps
  basic_to_basic_anno_syntax.simps
  postOf.simps preOf.simps relyOf.simps guarOf.simps
```

```
annquin_simp
anncom_spec_valid.simps

method rg_proof_expand = (auto simp only: rg_syntax_simps_collection ; simp?)

method method_anno_ultimate =
    method_annquin_basicanno
| method_annquin_seq+
| method_annquin_while
| method_annquin_multi_parallel
| rg_proof_expand
```

4 Examples Reworked

end

The examples in the original library [2], expressed using our new syntax, and proved using our new tactics.

```
theory RG_Examples_Reworked
imports RG_Annotated_Commands
begin
declare [[syntax_ambiguity_warning = false]]
```

4.1 Setting Elements of an Array to Zero

```
record Example1 =
  A :: "nat list"
theorem Example1:
   "global_init: { n < length 'A }
    global_rely: id(A)
     || i < n @
       \{ \{ i < length `A \}, \}
          \{ length ^{\circ}A = length ^{a}A \wedge ^{\circ}A ! i = ^{a}A ! i \} \}
     'A := 'A[i := 0]
        \{ \text{ } \{ \text{ length } {}^{o}A \text{ } = \text{ length } {}^{a}A \text{ } \land \text{ } (\forall \text{ } j \text{ } < \text{ } n. \text{ } i \neq \text{ } j \longrightarrow {}^{o}A \text{ } ! \text{ } j \text{ } = {}^{a}A \text{ } ! \text{ } j) \text{ } \}, 
          { A ! i = 0 } }
    global_guar: { True }
    global post: \{ \forall i < n. \land ! i = 0 \}"
   \langle proof \rangle
theorem Example1'':
   "annotated global_init: \{ length `A = N \} global_rely: \{ ^aA = ^oA \} \}
    || i < N @
    { | True |},
       \{ length {}^{a}A = length {}^{o}A \wedge {}^{a}A ! i = {}^{o}A ! i\} \}
       (´A := ´A [i := f i])- /\!\!/ {length ´A = N }
    { { length $^a$A = length $^o$A $\land$ ($\forall j$. i $\neq$ j $\longrightarrow$ $^a$A ! j = $^o$A ! j ) },
       global_guar: { length aA = length A}
    global_post: { take N ^A = map f [0 ..< N] }"</pre>
   \langle proof \rangle
```

4.2 Incrementing a Variable in Parallel

```
Two Components
record Example2 =
     :: nat
  c_0 :: nat
  c_1 :: nat
lemma ex2_leftside:
  "{ \{ c_0 = 0 \}, id(c_0) \}
     Basic (('x \leftarrow 'x + 1) \circ> ('c_0 \leftarrow 1))
   /\!/ \{ x = c_0 + c_1 \}
   { id(c_1), { c_0 = 1 }}"
  \langle proof \rangle
lemma ex2_rightside:
  "{ \{ c_1 = 0 \}, id(c_1) \}
     Basic (('x \leftarrow 'x + 1) \circ> ('c_1 \leftarrow 1))
   /\!\!/ \{ x = c_0 + c_1 \}
   { id(c_0), { c_1 = 1 }}"
  \langle proof \rangle
theorem Example2b:
  "{ \{ c_0 = 0 \land c_1 = 0 \}, ids(\{c_0, c_1\}) \}
   (Basic (('x \leftarrow 'x + 1) \circ> ('c_0 \leftarrow 1))) \parallel (Basic (('x \leftarrow 'x + 1) \circ> ('c_1 \leftarrow 1)))
   /\!\!/ \{ x = c_0 + c_1 \}
   { UNIV, { True } }"
  \langle proof \rangle
Parameterised
lemma sum_split:
  "(j::nat) < (n::nat)
  \implies sum a \{0...<n\} = sum a \{0...<j\} + a j + sum a \{j+1...<n\}"
Intuition of the lemma above: Consider the sum of a function b k with k ranging from 0 to n -
1. Let j be an index in this range, and assume b j = 0. Then, replacing b j with 1 in the sum,
the result is the same as adding 1 to the original sum.
lemma Example2_lemma2_replace:
  assumes "(j::nat) < n"
      and "b' = b(j:=xx::nat)"
    shows "(\sum i = 0 ..< n. b' i) = (\sum i = 0 ..< n. b i) - b j + xx"
lemma Example2_lemma2_Suc0[simp]:
  assumes "(j::nat) < n"
      and "b j = 0"
       and "b' = b(j:=1)"
    shows "Suc (\sum i::nat = 0 ..< n. b i) = (\sum i = 0 ..< n. b' i)"
record Example2_param =
  y :: nat
  C :: "nat \Rightarrow nat"
lemma Example2_local:
  "i < n \Longrightarrow
```

```
\{ \{ C i = 0 \}, \}
       id(C @ i) }
     Basic (('y \leftarrow 'y + 1) \circ> ('C \leftarrow 'C(i:=1)))
     /\!\!/ \{ y = (\sum k :: nat = 0 ... < n. `C k) \}
     \{ \ \{ \ \forall \ j \ < \ n. \ i \ \neq \ j \ \longrightarrow \ ^{\circ}\!C \ j \ = \ ^{a}\!C \ j \ \}, 
       { 'C i = 1 } }"
   \langle proof \rangle
theorem Example2 param:
  assumes "0 < n" shows
   "global_init: \{ y = 0 \land sum C \{0 ... < n\} = 0 \}
    global_rely: id(C) \cap id(y)
     || i < n @
    { \{ \{ C i = 0 \}, \}}
       id(C @ i) }
       Basic (('y \leftarrow 'y + 1) \circ> ('C \leftarrow 'C(i:=1)))
       /\!\!/ \  { 'y = sum 'C {0 ..< n} }
    { { \forall j < n. i \neq j \longrightarrow {}^{\circ}C j = {}^{a}C j },
       { 'C i = 1 } }
    global_guar: { True }
    global_post: \{ y = n \}"
\langle proof \rangle
```

As above, but using an explicit annotation and a different method.

```
theorem Example2_param_with_expansion:
```

4.3 FindP

Titled "Find Least Element" in the original [2], the "findP" problem assumes that n divides m, and runs n threads in parallel to search through a length-m array B for an element that satisfies a predicate P. The indices of the array B are partitioned into the congruence-classes modulo n, where Thread i searches through the indices that are congruent to i mod n.

In the program, X i is the next index to be checked by Thread i. Meanwhile, Y i is either the out-of-bound default m + i if Thread i has not found a P-element, or the index of the first P-element found by Thread i.

The first helper lemma: an equivalent version of mod_aux found in the original.

```
\begin{array}{l} \textbf{lemma mod\_aux} : \\ \texttt{"a mod (n::nat)} = \texttt{i} \implies \texttt{a < j \land j < a + n} \implies \texttt{j mod n} \neq \texttt{i"} \\ & \langle \textit{proof} \rangle \\ \\ \textbf{record Example3} = \end{array}
```

```
X :: "nat \Rightarrow nat"
   Y :: "nat \Rightarrow nat"
lemma Example3:
   assumes "m mod n=0" shows "annotated
   global_init: \{\forall i < n. \ X \ i = i \land \ Y \ i = m + i \}
   global_rely: \{ {}^{\circ}X = {}^{a}X \wedge {}^{\circ}Y = {}^{a}Y \}
       || i < n @
    \{ \text{ } \{ \text{ } (\text{`X i}) \text{ mod } \text{n=i } \wedge \text{ } (\forall \text{ } \text{j} \text{< `X i. } \text{ } \text{j mod } \text{n=i } \longrightarrow \neg P(B!\text{j})) \wedge \text{ } (\text{`Y i} \text{< m} \longrightarrow P(B!\text{(`Y i)) } \wedge \text{ `Y } \text{)} \} 
i \leq m+i),
       \{(\forall j \le n. i \ne j \longrightarrow {}^aY j \le {}^oY j) \land {}^oX i = {}^aX i \land {}^oY i = {}^aY i\} \}
      WHILEa (\forall j < n. 'X i < 'Y j) DO
          {stable_guard: { 'X i < 'Y i}}
          IFa P(B!('X i)) THEN
              ('Y[i] := 'X i)-
          ELSE
              ( X[i] := X i + n) -
          FΙ
      OD
    \{ \ \{ (\forall \ j \le n. \ i \neq j \ \longrightarrow \ ^{o}X \ j \ = \ ^{a}X \ j \ \wedge \ ^{o}Y \ j \ = \ ^{a}Y \ j) \ \wedge \ ^{a}Y \ i \ \le \ ^{o}Y \ i \}, 
        \{ \text{ (`X i) mod n = i } \land \text{ (} \forall \text{ j<`X i. j mod n=i} \longrightarrow \neg P(B!j)) \} 
       \land ('Y i<m \longrightarrow P(B!('Y i)) \land 'Y i\le m+i)
      \land (\exists j<n. 'Y j \leq 'X i) \} }
   global_guar: {True}
   global_post: { ∀ i < n. (´X i) mod n=i</pre>
                          \land \ (\forall \ j < `X \ i. \ j \ mod \ n=i \ \longrightarrow \ \neg P(B!j))
                          \land ('Y i<m \longrightarrow P(B!('Y i)) \land Y i\le m+i)
                          \land (\exists j<n. 'Y j \leq 'X i) \}"
   \langle proof \rangle
```

Below is the original version of the theorem, and is immediately derivable from the above. We include some formatting changes (such as line breaks) for better readability.

```
 \begin{aligned} & \{ \text{True} \} \,, \\ & \{ \forall \ i < n. \ ( \ `X \ i) \ \text{mod} \ n = i \ \land \\ & ( \forall \ j < \ `X \ i. \ j \ \text{mod} \ n = i \ \longrightarrow \ \neg P(B! j)) \ \land \\ & ( \ `Y \ i < m \ \longrightarrow \ P(B! ( \ `Y \ i)) \ \land \ `Y \ i \le \ m + i) \ \land \\ & ( \exists \ j < n. \ \ `Y \ j \ \le \ \ `X \ i) \ \} \} " \end{aligned}
```

end

5 Abstract Queue Lock

```
theory Lock_Abstract_Queue
```

imports

RG_Annotated_Commands

begin

We identify each thread by a natural number.

```
type_synonym thread_id = nat
```

The state of the Abstract Queue Lock consists of one single field, which is the list of threads.

```
record queue_lock = queue :: "thread_id list"
```

The following abbreviation describes when an object is at the head of a list. Note that both clauses are needed to characterise the predicate faithfully, because the term x = hd xs (i.e. x is the head of xs) does not imply that $x \in set xs$.

```
abbreviation at_head :: "'a \Rightarrow 'a list \Rightarrow bool" where "at_head x xs \equiv xs \neq [] \wedge x = hd xs"
```

The contract of the Abstract Queue Lock consists of two clauses. The first states that a thread cannot be added to or removed from the queue by its environment. The second states that the head of the queue remains at the head after any environment-step.

```
abbreviation queue_contract :: "thread_id \Rightarrow queue_lock rel" where "queue_contract i \equiv { (i \in set ^oqueue \longleftrightarrow i \in set ^aqueue) \land (at_head i ^oqueue \longrightarrow at_head i ^aqueue) }"
```

The RG sentence of the Release procedure is made into a separate lemma below.

lemma qlock_rel:

The correctness of the Abstract Queue Lock is expressed by the following RG sentence, which describes a closed system of n threads, each repeatedly calls Acquire and then Release in an infinite loop. We omit the critical section between Acquire and Release, as it does not access the lock.

The Acquire procedure consists of two steps: enqueuing and spinning. The Release procedure consists of only the dequeuing step.

Each thread can only be in the queue at most once, so the invariant requires the queue to be distinct.

The queue is initially empty; hence the global precondition. Being a closed system, there is no external actor, so the rely is the identity relation, and the guarantee is the universal relation. The system executes continuously, as the outer infinite loop never terminates; hence, the global postcondition is the empty set.

```
theorem qlock_global:
 assumes "0 < n"
 shows "annotated
 global_init: { 'queue = [] } global_rely: Id
    || i < n @
  { { i ∉ set 'queue }, queue_contract i }
  WHILEa True DO
    {stable_guard: { i ∉ set 'queue } }
    NoAnno ('queue := 'queue @ [i]) .;
    \{ \{ i \in set `queue \} \}
    NoAnno (WHILE hd 'queue \neq i DO SKIP OD) .;
    { { at_head i 'queue }}
    NoAnno ('queue := tl 'queue)
 OD
  # { distinct 'queue } { for_others queue_contract i, {} }
 global_guar: UNIV global_post: {}"
  \langle proof \rangle
```

6 Ticket Lock

theory Function_Supplementary

imports Main

begin

end

This theory contains some function-related definitions and associated lemmas that are not included in the built-in library. They are grouped into two sections:

- 1. Predicates that describe functions that are injective or surjective when restricted to subsets of their domains or images.
- 2. A higher-order function that performs a list of updates on a function.

The content of this theory was conceived during a project on formal program verification of locks (i.e. mutexes). The new definitions and lemmas arose from the proof of data refinement from an abstract queue-lock to a ticket-lock.

Inspired by the theories *List Index* (Nipkow 2010) and *Fixed-Length Vectors* (Hupel 2023) on the Archive of Formal Proofs, we hope that these new definitions and lemmas may also be of help to others.

6.1 Helpers: Inj, Surj and Bij

It is sometimes useful to describe a function that is not injective in itself, but is injective when its image is restricted to a subset.

For example, consider the function $\{a \mapsto 1, b \mapsto 2, c \mapsto 2\}$. This function is not injective, but if its image is restricted to $\{1\}$, the new function $\{a \mapsto 1\}$ becomes injective.

This motivates the following definition.

```
definition inj_img :: "('a \Rightarrow 'b) \Rightarrow 'b set \Rightarrow bool" where "inj_img f B \equiv \forall x1 x2. f x1 = f x2 \land f x1 \in B \longrightarrow x1 = x2"
```

Similarly, the next definition describes a function that becomes surjective when its codomain is restricted to a subset.

In other words, "surj_codom f B" means that every element in B is mapped to by f.

For example, consider the function that maps from the domain $\{a,b\}$ to the codomain $\{1,2\}$ with the graph $\{a\mapsto 1,b\mapsto 1\}$. This function is not surjective, but if its codomain is restricted to $\{1\}$, then the new function becomes surjective.

```
definition surj_codom :: "('a \Rightarrow 'b) \Rightarrow 'b set \Rightarrow bool" where "surj_codom f B \equiv \forall y \in B. (\exists x. f x = y)"
```

We can also describe a function that remains surjective on a subset of its domain.

In other words, "surj_on f A" means that mappings that originate from A already span the entire codomain.

Note that this is a notion stronger than plain surjectivity, which will be shown in the later subsection "Surj-Related".

```
definition surj_on :: "('a \Rightarrow 'b) \Rightarrow 'a set \Rightarrow bool" where "surj_on f A \equiv \forall y. (\exists x \in A. f x = y)"
```

Note that all three definitions above are most likely not included in the built-in library, as suggested by the outputs of the following search-commands.

```
find_consts name:"inj"
find_consts name:"surj"
```

lemma inj_img_add_one_extra:

6.1.1 Inj-Related

```
lemma inj_implies_inj_on: "inj f \Longrightarrow inj_on f A"
  \langle proof \rangle
lemma inj_implies_inj_img: "inj f <math>\Longrightarrow inj_img f B"
  \langle proof \rangle
lemma inj_img_empty: "inj_img f {}"
   \langle proof \rangle
lemma inj_img_singleton: "\forall x. f x \neq b \Longrightarrow inj_img f {b}"
   \langle proof \rangle
lemma inj_img_subset:
  "[ inj_img f B ; B' \subseteq B ] \Longrightarrow inj_img f B'"
  \langle proof \rangle
lemma inj_img_superset:
  "[ inj_img f B ; \forall x. f x \notin B' - B [ \Longrightarrow inj_img f B'"
   \langle proof \rangle
lemma inj_img_not_mapped_to: "∀x. f x ∉ B ⇒ inj_img f B"
   \langle proof \rangle
```

```
"[ inj_img f B ; \forall x. f x \neq b [ \Longrightarrow inj_img f (B \cup {b})"
  \langle proof \rangle
lemma inj_img_union_1:
  "[ inj_img f B1 ; inj_img f B2 ] \Longrightarrow inj_img f (B1 \cup B2)"
  \langle proof \rangle
lemma inj_img_union_2:
  "[ inj_img f B1 ; \forall x. f x \notin B2 ] \Longrightarrow inj_img f (B1 \cup B2)"
  \langle proof \rangle
lemma inj_img_fun_upd_notin:
   "[ inj_img f B ; \forall x. f x \neq b ] \Longrightarrow inj_img (fun_upd f a b) B"
   \langle proof \rangle
lemma inj_img_fun_upd_singleton:
  "\forall x. f x \neq b \imprimes inj_img (fun_upd f a b) {b}"
  \langle proof \rangle
6.1.2 Surj-Related
Lemmas related to "surj codom".
lemma surj_implies_surj_codom: "surj f ⇒ surj_codom f B"
   \langle proof \rangle
lemma surj_codom_triv: "surj_codom f (f ' A)"
  \langle proof \rangle
lemma surj_codom_univ: "surj_codom f UNIV = surj f"
lemma surj_codom_empty: "surj_codom f {}"
  \langle proof \rangle
lemma \  \, surj\_codom\_singleton \colon \, "b \, \in \, range \, \, f \, \Longrightarrow \, surj\_codom \, \, f \, \, \{b\}"
  \langle proof \rangle
lemma surj_codom_subset:
   "[\![ surj\_codom \ f \ B \ ; \ B' \subseteq B \ ]\!] \implies surj\_codom \ f \ B'"
  \langle proof \rangle
lemma surj_codom_union:
  "[surj\_codom f B1 ; surj\_codom f B2]] \Longrightarrow surj\_codom f (B1 <math>\cup B2)"
  \langle proof \rangle
Lemmas related to "surj on".
lemma surj_on_implies_surj: "surj_on f A ⇒ surj f"
  \langle proof \rangle
lemma surj_on_univ: "surj_on f UNIV = surj f"
  \langle proof \rangle
lemma surj_on_never_emptyset: "¬ surj_on f {}"
   \langle proof \rangle
lemma surj_on_superset:
  "\llbracket surj_on f A ; A \subseteq A' \rrbracket \Longrightarrow surj_on f A'"
```

```
\langle proof \rangle

lemma surj_on_union:

"[ surj_on f A1 ; surj_on f A2 ] ⇒ surj_on f (A1 ∪ A2)"

\langle proof \rangle
```

6.1.3 Bij and Inv

This section relates the new definitions to the existing "bijective between" and "inverse" defi-

```
nitions.
lemma \ bij\_betw\_implies\_inj\_img: "bij\_betw f UNIV B \Longrightarrow inj\_img f B"
lemma \ \texttt{bij\_betw\_implies\_surj\_codom} \colon \texttt{"bij\_betw} \ \texttt{f} \ \texttt{A} \ \texttt{B} \Longrightarrow \texttt{surj\_codom} \ \texttt{f} \ \texttt{B"}
  \langle proof \rangle
lemma bij_betw_implies_surj_on: "bij_betw f A UNIV ⇒ surj_on f A"
  \langle proof \rangle
Other lemmas
lemma bij_extension:
  assumes "a ∉ A"
        and "b \notin B"
        and "bij_betw f A B"
     shows "bij_betw (fun_upd f a b) (A \cup {a}) (B \cup {b})"
lemma bij_remove_one:
  \mathbf{assumes} \ \texttt{"a} \in \texttt{A"}
        and "bij_betw f A B"
     shows "bij_betw f (A - \{a\}) (B - \{f a\})"
  \langle proof \rangle
lemma set_remove_one_element:
  assumes "x \notin B"
        and "B \subseteq A"
        and "A - \{x\} \subseteq B"
     shows "A - \{x\} = B"
   \langle proof \rangle
lemma inv_image_restrict_inj:
  assumes "bij_betw f A B"
        and "inj_img f B"
        and "f a \in B"
     shows "a \in inv f 'B"
  \langle proof \rangle
lemma inv_image_restrict:
  assumes "inj_on f A"
        and "f a \in B"
        and "\forall \, x. \, (f \, x \in B \longrightarrow x \in A)"
     shows "a \in inv f 'B"
  \langle proof \rangle
lemma inv_image_restrict_neg:
  assumes "bij_betw f A B"
        and "f a \notin B"
```

```
and "\forall x. (f x \in B \longrightarrow x \in A)"
    shows "a ∉ inv f 'B"
  \langle proof \rangle
lemma inv_image_restrict_neg':
  assumes "surj_codom f B"
      and "f a \notin B"
      and "\forall x. (f x \in B \longrightarrow x \in A)"
    shows "a \notin inv f 'B"
  \langle proof \rangle
lemma bij_betw_inv1:
  assumes "bij_betw f A B"
      and "inj_img f B"
      and "f a \in B"
    shows "inv f (f a) = a"
  \langle proof \rangle
lemma bij_betw_inv2:
  assumes "bij_betw f A B"
      and "b \in B"
    shows "f (inv f b) = b"
  \langle proof \rangle
lemma surj_codom_inj_on_vimage_bij_betw:
  \langle proof \rangle
      Helpers: Multi-Updates on Functions
fun fun_upd_list :: "('a \Rightarrow 'b) \Rightarrow ('a \times 'b) list \Rightarrow ('a \Rightarrow 'b)" where
  "fun upd list f [] = f"
| "fun_upd_list f (xy # xys) = fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"
This notion can also be defined following the fold pattern, although this alternative form is
not used.
fun fun_upd_list_l :: "('a \Rightarrow 'b) \Rightarrow ('a \times 'b) list \Rightarrow ('a \Rightarrow 'b)" where
  "fun_upd_list_l f [] = f"
| "fun_upd_list_l f (xy # xys) = fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys"
Examples of the two definitions above.
value "fun upd list
                       (\lambda x.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
value "fun_upd_list_1 (\lambdax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
Both definitions above resemble "folds" with some un-currying, as shown by the following two
lemmas.
lemma fun_upd_list_is_foldr:
  "fun_upd_list f0 pairs = foldr (\lambda pair f. fun_upd f (fst pair) (snd pair)) pairs f0"
  \langle proof \rangle
lemma fun_upd_list_l_is_foldl:
  "fun_upd_list_l f0 pairs = foldl (\lambda f pair. f(fst pair := snd pair)) f0 pairs"
  \langle proof \rangle
These two definitions are equivalent when every domain-value is updated at most once.
lemma fun_upd_list_l_distinct_rewrite:
  "distinct (map fst (xy # xys))
```

```
⇒ fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys
                          (fun_upd_list_l f xys)
                                                            (fst xy) (snd xy)"
     = fun_upd
\langle proof \rangle
lemma fun_upd_list_defs_distinct_equiv:
  "distinct (map fst pairs) \Longrightarrow fun_upd_list f pairs = fun_upd_list_l f pairs"
\langle proof \rangle
Smaller propositions
lemma fun_upd_list_distinct_rewrite:
  "distinct (map fst (xy # xys))
   ⇒ fun_upd_list (fun_upd f (fst xy) (snd xy)) xys
     = fun upd
                       (fun_upd_list f xys)
                                                        (fst xy) (snd xy)"
  \langle proof \rangle
lemma fun_upd_list_hd_1:
  "fun_upd_list f (zip (x # xs) (y # ys)) x = y"
  \langle proof \rangle
lemma fun_upd_list_hd_2:
  "\llbracket xs \neq [] ; ys \neq [] \rrbracket \Longrightarrow fun_upd_list f (zip xs ys) (hd xs) = hd ys"
  \langle proof \rangle
lemma fun_upd_list_not_hd:
  assumes "a \neq x"
  shows "fun_upd_list f (zip (x # xs) (y # ys)) a = fun_upd_list f (zip xs ys) a"
  \langle proof \rangle
lemma fun_upd_list_not_updated_map:
  assumes "a ∉ set (map fst xys)"
    shows "fun_upd_list f xys a = f a"
  \langle proof \rangle
lemma fun_upd_list_not_updated_zip:
  assumes "a \notin set xs"
    shows "fun_upd_list f (zip xs ys) a = f a"
  \langle proof \rangle
```

6.2.1 Ordering of Updates

The next two lemmas shows that the ordering of the updates does not matter, as long as the updates are distinct.

6.2.2 Surjective

```
lemma helper_surj_zip_1:
  assumes "a \in set xs"
      and "length xs = length ys"
    shows "fun_upd_list f (zip xs ys) a ∈ set ys"
\langle proof \rangle
lemma fun_upd_list_surj_zip_1:
  assumes "length xs = length ys"
    shows "fun_upd_list f (zip xs ys) ' set xs \subseteq set ys"
  \langle proof \rangle
lemma fun_upd_list_surj_map_1:
  "(fun_upd_list f xys) ' set (map fst xys) \subseteq set (map snd xys)"
  \langle proof \rangle
lemma fun_upd_list_surj_map_2:
  assumes "distinct (map fst xys)"
    shows "set (map snd xys) \subseteq (fun_upd_list f xys) ' set (map fst xys)"
\langle proof \rangle
6.2.3 Injective
lemma helper_inj_head:
  assumes f_def: "f = fun_upd_list f0 (zip xs ys)"
      and distinct_ys: "distinct ys"
       and length_equal: "length xs = length ys"
      and non_empty: "xs \neq []"
      and 0: "a \in set xs \wedge b \in set xs \wedge a \neq b"
      and 1: "a = hd xs \land b \in set (tl xs)"
    shows "f a \neq f b"
  \langle proof \rangle
lemma helper_inj_tail:
  assumes "distinct xs"
      and "distinct ys"
       and "length xs = length ys"
      and "a \in set (tl xs)"
      and "b \in set (tl xs)"
       and "a \neq b"
    shows "fun_upd_list f (zip xs ys) a \neq fun_upd_list f (zip xs ys) b"
\langle proof \rangle
theorem fun_upd_list_inj_zip:
  assumes "distinct xs"
       and "distinct ys"
       and "length xs = length ys"
       and "xs \neq []"
    shows "inj_on (fun_upd_list f (zip xs ys)) (set xs)"
\langle proof \rangle
theorem fun_upd_list_surj_zip:
  assumes "f = fun upd list f0 (zip xs ys)"
      and "distinct xs"
       and "length xs = length ys"
    shows "f ' set xs = set ys"
  \langle proof \rangle
```

```
theorem fun_upd_list_bij_betw_zip:
  assumes "distinct xs"
      and "distinct ys"
      and "length xs = length ys"
      and "xs \neq []"
    shows "bij_betw (fun_upd_list f (zip xs ys)) (set xs) (set ys)"
  \langle proof \rangle
lemma fun_upd_list_distinct:
  assumes "distinct (map snd (xy # xys))"
      and "f x \notin set (map snd (xy # xys))"
    shows "fun_upd_list f xys x \neq snd xy"
  \langle proof \rangle
theorem inj_img_fun_upd_list_map:
  assumes "distinct (map snd xys)"
      and "\forall x. f x \notin set (map snd xys)"
    shows "inj_img (fun_upd_list f xys) (set (map snd xys))"
\langle proof \rangle
theorem inj_img_fun_upd_list_zip:
  assumes "distinct ys"
      and "length xs = length ys"
      and "\forall x. f x \notin set ys"
    shows "inj_img (fun_upd_list f (zip xs ys)) (set ys)"
  \langle proof \rangle
6.2.4 Set- and List-Intervals
lemma fun_upd_list_new_interval:
  assumes "length xs = length ys"
  shows "fun_upd_list f (zip xs ys) i \in {f i} \cup set ys"
  \langle proof \rangle
lemma helper_interval_length:
  "length [1 ..< length xs + 1] = length xs"
  \langle proof \rangle
lemma helper interval union:
  "{0::nat} \cup {1 ..< n + 1} = {0 ..< n + 1}"
  \langle proof \rangle
lemma fun upd list interval:
  "fun_upd_list (\lambdax.0) (zip xs [1 ..< length xs + 1]) z \in {0 ..< length xs + 1}"
  \langle proof \rangle
theorem fun_upd_list_interval_bij:
  assumes "f = fun_upd_list (\lambdax.0) (zip xs [1 ..< length xs + 1])"
      and "distinct xs"
    shows "bij_betw f {i. 1 \le f i} {1 ..< length xs + 1}"
\langle proof \rangle
\mathbf{end}
```

6.3 Basic Definitions

theory Lock_Ticket

imports

```
RG_Annotated_Commands
Function_Supplementary
```

begin

```
type_synonym thread_id = nat
definition positive_nats :: "nat set" where
   "positive_nats = { n. 0 < n }"</pre>
```

The state of the Ticket Lock consists of three fields.

```
record tktlock_state =
  now_serving :: "nat"
  next_ticket :: "nat"
  myticket :: "thread_id \Rightarrow nat"
```

Every thread locally stores a ticket number, and this collection of local variables is modelled globally by the myticket function.

When Thread i joins the queue, it sets myticket i to be the value next_ticket, and atomically increments next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is supported on most computer systems. Thread i then waits until the now_serving value becomes equal to its own ticket number myticket i. When Thread i leaves the queue, it increments now_serving.

These steps correspond to the following code for Acquire and Release. Note that we use forward function composition to model the Fetch-And-Add instruction.

Conceptually, Thread i is in the queue if and only if now_serving \leq myticket i and is at the head if and only if now_serving = myticket i.

Now, in the initial state, every thread holds the number 0 as its ticket, and both now_serving and next_ticket are set to 1.

```
abbreviation tktlock_init :: "tktlock_state set" where "tktlock_init \equiv { 'myticket = (\lambdaj. 0) \wedge 'now_serving = 1 \wedge 'next_ticket = 1 }"
```

We further define a shorthand for describing the set of ticket in use; i.e. those numbers from now_serving up to, but not including next_ticket. This shorthand will later be used in the invariant.

```
abbreviation tktlock_contending_set :: "tktlock_state \Rightarrow thread_id set" where "tktlock_contending_set s \equiv { j. now_serving s \leq myticket s j }"
```

We now formalise the invariant of the Ticket Lock.

```
abbreviation tktlock_inv :: "tktlock_state set" where "tktlock_inv \equiv { 'now_serving \leq 'next_ticket \wedge 1 \leq 'now_serving \wedge
```

```
(\forall j. 'myticket j < 'next_ticket) \land bij_betw 'myticket 'tktlock_contending_set { 'now_serving ..< 'next_ticket} \land inj_img 'myticket positive_nats \"
```

The first three clauses are basic inequalities.

The penultimate clause stipulates that the function myticket of every valid state is bijective between the set of queuing/contending threads (those threads whose tickets are not smaller than now_serving) and .

The final clause ensures that the function myticket is injective when 0 is excluded from its codomain. In other words, all threads, whose tickets are non-zero, hold unique tickets.

As for the contract, the first clause ensures that the local variable myticket i does not change. Meanwhile, the global variables next_ticket and now_serving must not decrease, as stipulated by the second and third clauses of the contract.

The last two clauses of the contract correspond to the two clauses of the contract of the Abstract Queue Lock, where $i \in set$ queue and at_head i queue under the Abstract Queue Lock respectively translate to now_serving \leq myticket i and now_serving = myticket i under the Ticket Lock.

```
abbreviation tktlock_contract :: "thread_id \Rightarrow tktlock_state rel" where
  "tktlock_contract i \equiv { omyticket i = amyticket i \land
     ^{	ext{O}}next ticket < ^{	ext{a}}next ticket \wedge
     ^{	ext{O}}now_serving \leq ^{	ext{a}}now_serving \wedge
     (^{\circ}\text{now\_serving} \leq ^{\circ}\text{myticket i} \longleftrightarrow ^{a}\text{now\_serving} \leq ^{a}\text{myticket i}) \land
     (^{\circ}\text{now\_serving} = ^{\circ}\text{myticket i} \longrightarrow ^{a}\text{now\_serving} = ^{a}\text{myticket i})  \|\|\|\|\|\|
We further state and prove some helper lemmas that will be used later.
lemma tktlock_contending_set_rewrite:
  "tktlock_contending_set s \cup \{i\} = \{i \neq i \rightarrow now\_serving \ s \leq i \}"
  \langle proof \rangle
lemma tktlock_used_tickets_rewrite:
  assumes "now_serving s \leq next_ticket s"
    shows "{now_serving s ..< next_ticket s} \cup {next_ticket s}
           = {now_serving s ..< Suc (next_ticket s)}"
  \langle proof \rangle
lemma tktlock_enqueue_bij:
  assumes "myticket s i < now_serving s"
       and "bij betw (myticket s) (tktlock contending set s) {now serving s .. < next ticket
ร}"
    shows "bij_betw ( (myticket s)(i := next_ticket s) )
                         ( tktlock contending set s \cup \{i\} )
                         ( {now_serving s ..< next_ticket s} ∪ {next_ticket s} )"
  \langle proof \rangle
lemma tktlock_enqueue_inj:
  assumes \ "s \in \texttt{tktlock\_inv"}
  shows "inj_img ((myticket s)(i := next_ticket s)) positive_nats"
method clarsimp_seq = clarsimp, standard, clarsimp
```

6.4 RG Theorems

The RG sentence of the first instruction of Acquire.

```
lemma tktlock_acq1:
  "rely: tktlock_contract i guar: for_others tktlock_contract i
   inv: tktlock_inv anno_code:
   BasicAnno (('myticket[i] \( \) 'next_ticket) \( \) >
                ('next_ticket ← 'next_ticket + 1))
   { { now_serving \le myticket i } }"
\langle proof \rangle
A helper lemma for the Release procedure.
lemma tktlock_rel_helper:
  assumes inv1: "now_serving s = myticket s i"
      and inv2: "myticket s i < next_ticket s"
      and inv3: "Suc 0 \le myticket s i"
      and inv4: "∀j. myticket s j < next_ticket s"
      and bij_old: "bij_betw (myticket s)
                             \{myticket s i \leq (myticket s)\}
                             {myticket s i ..< next_ticket s}"</pre>
   shows "bij_betw (myticket s)
                    \{Suc\ (myticket\ s\ i) \le `(myticket\ s)\}
                    {Suc (myticket s i) .. < next_ticket s}"
\langle proof \rangle
The RG sentence for the Release procedure.
lemma tktlock_rel:
  "rely: tktlock_contract i
  guar: for_others tktlock_contract i
   inv: tktlock_inv
   'now_serving := 'now_serving + 1
         { { myticket i < 'now_serving } }"
\langle proof \rangle
The RG sentence for a thread that performs Acquire and then Release.
lemma tktlock_local:
 "rely: tktlock_contract i guar: for_others tktlock_contract i
  inv: tktlock_inv
                       anno_code:
   { { myticket i < 'now_serving } }
   \texttt{BasicAnno} \ ((\texttt{`myticket[i]} \leftarrow \texttt{`next\_ticket}) \ \circ \gt
              ('next_ticket \( 'next_ticket + 1)) .;
   { { now_serving \le myticket i } }
   NoAnno (WHILE 'now_serving \neq 'myticket i DO SKIP OD) .;
   NoAnno ('now_serving := 'now_serving + 1)
   { | myticket i < now_serving | }"
  \langle proof \rangle
The RG sentence for a thread that repeatedly performs Acquire and then Release in an infinite
loop.
lemma tktlock local loop:
 "rely: tktlock_contract i guar: for_others tktlock_contract i
 inv: tktlock_inv
                       anno_code:
   { | myticket i < now_serving | }
   WHILEa True DO
```

The global RG sentence for a set of threads, each of which repeatedly performs Acquire and then Release in an infinite loop.

```
theorem tktlock_global:
 assumes "0 < n"
    shows "annotated
 global_init: \{ \text{ `now\_serving = 1 } \land \text{ `next\_ticket = 1 } \land \text{ `myticket = ($\lambda_{\dagger}$. 0) } \}
 global_rely: Id
   || i < n @
 WHILEa True DO
    {stable_guard: { 'myticket i < 'now_serving } }
   BasicAnno (('myticket[i] \( \) 'next_ticket) o>
              ('next_ticket \( 'next_ticket + 1)) .;
    NoAnno (WHILE 'now_serving \neq 'myticket i DO SKIP OD) .;
   { { now_serving = 'myticket i } }
   NoAnno ('now_serving := 'now_serving + 1)
 OD
  // tktlock_inv { for_others tktlock_contract i, {} }
 global_guar: UNIV
 global_post: {}"
\langle proof \rangle
```

7 Circular-Buffer Queue-Lock

end

This theory imports Annotated Commands to access the rely-guarantee library extensions, and also imports the Abstract Queue Lock to access the definitions of the type-synonym thread_id and the abbreviation at_head.

```
theory Lock_Circular_Buffer
imports
   RG_Annotated_Commands
   Lock_Abstract_Queue
begin
type_synonym index = nat
datatype flag_status = Pending | Granted
```

We assume a fixed number of threads, and the size of the circular array is 1 larger the number of threads.

```
consts NumThreads :: nat
```

```
abbreviation ArraySize :: "nat" where 
"ArraySize ≡ NumThreads + 1"
```

The state of the Circular Buffer Lock consists of the following fields:

- myindex: a function that maps each thread to an array-index (where the array is modelled by flag_mapping below).
- flag_mapping: an array of size ArraySize that stores values of type flag_status.
- tail: an index representing the tail of the queue, used when a thread enqueues.
- aux_head: an auxiliary variable that stores the index used by the thread at the head of the queue; the head of the queue spins on the flag flag_mapping aux_head.
- aux_queue: the auxiliary queue of threads.
- aux_mid_release: an auxiliary variable that signals if a thread has executed the first instruction of release, but not the second.

```
record cblock_state =
  myindex :: "thread_id ⇒ index"
  flag_mapping :: "index ⇒ flag_status"
  tail :: index
  aux_head :: index
  aux_queue :: "thread_id list"
  aux_mid_release :: "thread_id option"
```

We initialise the array of flags (flag_mapping) with Granted in the zeroth entry and Pending in all other entries. The indices tail and aux_head are initialised to 0. The queue is initially empty, and no thread is in the middle of release. (See the conference article for an example.)

Similar to the Abstract Queue Lock, the acquire procedure of the Circular Buffer Lock consists of two conceptual steps, and corresponds to the pseudocode below. (1) To join the queue, Thread i stores the global index tail locally as myindex i, and atomically increments tail modulo the array size. (2) Thread i then spins on its flag, which is the entry in the array at index myindex i. When this flag changes from Pending to Granted, the thread has reached the head of the queue.

When Thread i releases the lock, it sets its flag to Pending. Then it sets the flag of the next thread to Granted, which corresponds to the 'next' entry in the array, modulo the array size. This is encoded as the pseudocode below.

```
release = flag_mapping[myindex i] := Pending ;
    flag_mapping[(myindex i + 1) mod ArraySize] := Granted
```

Auxiliary Variables. The release procedure consists of the single conceptual step of exiting the queue, but is implemented here as two separate instructions. Hence, the auxiliary variable aux_mid_release indicates when a thread is between the two lines of release, and allows us to express the assertion there.

The other two auxiliary variables, aux_head (the head-index) and aux_queue, store information that can in principle be inferred from the concrete variables (i.e. the non-auxiliary variables). However, explicitly recording this information as auxiliary variables greatly simplifies the verification process.

In the code, these auxiliary variables need to be updated atomically with the relevant instructions. Below is the code of release with the auxiliary variables included. (Auxiliary variables are added to acquire in a similar way.)

Recall that we assume a fixed number of threads. This constant is furthermore assumed positive, which we enforce with the use of the following locale.

```
locale numthreads_positive =
   assumes assm_locale: "0 < NumThreads"
begin</pre>
```

7.1 Invariant

A notion that helps us state the queue-clause of the invariant. The list of indices use by the queuing threads is a contiguous list of integers modulo ArraySize. Note the possibility of "wrapping around", which is covered by the "else" clause in the definition.

```
definition used_indices :: "cblock_state ⇒ index list" where
  "used_indices s ≡ (if aux_head s ≤ tail s
        then [aux_head s ..< tail s]
        else [aux_head s ..< ArraySize] @ [0 ..< tail s])"

lemma distinct_used_indices: "distinct (used_indices s)"
        ⟨proof⟩

lemma length_used_indices:
    "length (used_indices s) = (if aux_head s ≤ tail s
        then tail s - aux_head s
        else ArraySize - aux_head s + tail s)"
        ⟨proof⟩</pre>
```

The invariant of the Circular Buffer Lock is stated as separate parts below. The first definition invar_flag relates flag_mapping with the head-index aux_head, and consists of two clauses. (1) At every index that is not the head-index, the flag must be Pending. (2) As for the head-index itself, there are two possibilities. When the thread at the head of the queue invoked release but has only executed its first instruction, aux_mid_release becomes set to Some i; in this case, the flag at the head-index is set to Pending, but the thread remains in the queue. In all other cases, aux_mid_release = None, and the flag at the head-index is always Granted.

```
definition invar_flag :: "cblock_state set" where
```

```
"invar_flag \equiv { (\forall i \neq 'aux_head. 'flag_mapping i = Pending) \land ('flag_mapping 'aux_head = Pending \longleftrightarrow 'aux_mid_release \neq None) }"
```

The next clause invar_queue describes the relationship between the auxiliary queue and the other variables, including the set used_indices. The clause involving map further implies a number of properties, such as the distinctness of aux_queue (which mirrors the invariant of the Abstract Queue Lock), and the injectivity of myindex (i.e. each queuing thread has a unique index).

```
definition invar_queue :: "cblock_state set" where "invar_queue \equiv { (\forall i. i \in set `aux_queue \longrightarrow i < NumThreads) <math>\land (map `myindex `aux_queue = `used_indices) }"
```

The overall invariant, cblock_invar, is the conjunction of invar_flag and invar_queue above, with additional inequalities concerning tail, aux_head, and NumThreads.

7.1.1 Invariant Methods

We set up methods that generate structured proofs with named subgoals, to help us prove the clauses of the invariant.

```
theorem thm_method_invar_flag:
  assumes "\forall i \neq aux_head s. flag_mapping s i = Pending"
      and "flag_mapping s (aux_head s) = Pending
            \longleftrightarrow aux_mid_release s \neq None"
    shows "s ∈ invar_flag"
  \langle proof \rangle
method method_invar_flag =
  cases rule:thm_method_invar_flag,
  goal cases non head pending head maybe granted
theorem thm_method_invar_queue:
  assumes " \forall i. i \in set (aux\_queue s) \longrightarrow i < NumThreads"
      and "map (myindex s) (aux_queue s) = (used_indices s)"
    shows "s \in invar_queue"
  \langle proof \rangle
method method_invar_queue =
  cases rule:thm_method_invar_queue,
  goal_cases bound_thread_id map_used_indices
```

```
theorem thm_method_invar:
   assumes flag: "s ∈ invar_flag"
      and bound: "s ∈ invar_bounds ∧ i < NumThreads"
      and queue: "s ∈ invar_queue"
      shows "s ∈ cblock_invar i"
      ⟨proof⟩

method method_cblock_invar =
   cases rule:thm_method_invar,
   goal_cases flag bound queue</pre>
```

7.1.2 Invariant Lemmas

The initial state satisfies the invariant.

```
lemma cblock_init_invar:
   assumes assm_init: "s ∈ cblock_init"
   and assm_bound: "i < NumThreads"
   shows "s ∈ cblock_invar i"
   ⟨proof⟩</pre>
```

In a state that satisfies the flag-invariant, a thread is the head of the queue if its flag is Granted. (If the flag of a thread is Pending, the thread may still be at the head of the queue. In this case, the thread must be between the two instructions in release.)

```
lemma only_head_is_granted:
   assumes "s ∈ invar_flag"
   and "flag_mapping s i = Granted"
   shows "i = aux_head s"
   ⟨proof⟩
```

Let s be a state that satisfies the bounds-invariant, with n queuing threads. If we start from the aux_head index, and "advance" n steps (with potential wrap-around), then we reach the global tail index.

```
 \begin{tabular}{ll} lemma & head_tail_mod: \\ "s \in invar_bounds &\Longrightarrow \\ tail & s = (aux_head s + length (used_indices s)) mod (ArraySize)" \\ & \langle proof \rangle \end{tabular}
```

If a state satisfies the queue-invariant (namely the clause with the map function, then the myindex function is injective on the set of queuing threads. In other words, every queuing thread has a unique index in a state that satisfies the queue-invariant.

```
lemma invar_map_inj_on:    "s \in invar_queue \Longrightarrow inj_on (myindex s) (set (aux_queue s))" \langle proof \rangle
```

In a state that satisfies the queue-invariant, the length of the queue is equal to the length of the list of used indices.

```
\begin{array}{l} \textbf{lemma used\_indices\_map\_queue:} \\ \textbf{"s} \in \textbf{invar\_queue} \implies \textbf{used\_indices s = map (myindex s) (aux\_queue s)"} \\ & \langle proof \rangle \\ \\ \textbf{lemma length\_used\_indices\_queue:} \\ \textbf{"s} \in \textbf{invar\_queue} \implies \textbf{length (used\_indices s) = length (aux\_queue s)"} \\ & \langle proof \rangle \\ \end{array}
```

In a state that fully satisfies the invariant, if there is a thread that is not in the queue, then the length of the queue must be smaller than the total number of threads.

```
lemma queue_bounded:
   assumes "s ∈ cblock_invar i"
      and "i ∉ set (aux_queue s)"
      shows "length (aux_queue s) < NumThreads"
⟨proof⟩</pre>
```

If a state that satisfies the bound- and queue-invariants, and if the queue is non-empty, then the index held by the head of the queue must be the same as aux_head.

```
lemma head_and_head_index: assumes "s \in invar_bounds \cap invar_queue" and "aux_queue s \neq []" shows "myindex s (hd (aux_queue s)) = aux_head s" \langle proof \rangle
```

In a state that satisfies the full invariant, if no thread is half-way through *release* and Thread i is at the head of the queue, then the flag of Thread i must be Granted.

```
lemma head_is_granted:
```

```
assumes "s ∈ cblock_invar i"
    and "aux_mid_release s = None"
    and "i = hd (aux_queue s)"
    and "aux_queue s ≠ []"
    shows "flag_mapping s (myindex s i) = Granted"
⟨proof⟩
```

In a state that satisfies the queue-invariant, the global index tail is never held by a thread. Indeed, tail is meant to be "free" for the next thread that joins the queue. Note that when a thread is not in the queue, its index i becomes outdated, and tail may cycle back and coincide with i.

```
lemma tail_never_used: assumes "s \in invar_queue" shows "\forall j \in set (aux_queue s). myindex s j \neq tail s" \langle proof \rangle
```

In a state that satisfies the full invariant, if the tail index is right before the aux_head index, then it must be the case that every thread is in the queue.

```
lemma used_indices_full:
   assumes "s ∈ cblock_invar i"
      and "(tail s + 1) mod ArraySize = aux_head s"
      shows "length (used_indices s) = NumThreads"
      ⟨proof⟩
```

Conversely, if not every thread is in the queue, then the tail index is not right before the aux_head index.

```
lemma space_available:
```

```
assumes assm_invar: "s \in cblock_invar i" and assm_q: "i \notin set (aux_queue s)" shows "(tail s + 1) mod ArraySize \neq aux_head s" \langle proof \rangle
```

The next lemma relates the *append* operation on the aux_head and tail indices to the *append* operation on the list of used_indices. (The second and the last assumptions are the most crucial ones. The rest are side-condition checks.)

```
lemma used_indices_append:
  assumes "s ∈ cblock_invar i"
  and "aux_head s' = aux_head s"
```

```
and "length (used_indices s) < NumThreads"
and "(tail s + 1) mod ArraySize ≠ aux_head s"
and "tail s' = (tail s + 1) mod ArraySize"
shows "used_indices s' = used_indices s @ [tail s]"
⟨proof⟩</pre>
```

7.2 Contract

The contract of the Circular Buffer Lock is devised along three observations: (1) local variables do not change; (2) global variables may change; and (3) auxiliary variables change similarly as in the Abstract Queue Lock.

The first two areas are covered by contract_raw. The only local variable myindex i does not change. The global variable tail may change, but is not included in the contract, as changes to tail are not restricted. However, the other global variable flag_mapping is allowed to change only in specific ways. As flag_mapping stores information about the head of the conceptual queue, its allowed changes naturally relate to the head stays the head property. Under the Circular Buffer Lock, Thread i is at the head of the queue when flag_mapping (myindex i) = Granted. Meanwhile, note that myindex i can become outdated if Thread i is not in the queue. Hence, we need the premise $i \in set$ oaux_queue before the head stays the head statement in the final clause of contract_raw.

For the auxiliary variable aux_queue we require the same two clauses as in the contract of the Abstract Queue Lock. As for aux_mid_release, only the head of the queue can invoke release and hence modify aux_mid_release. Therefore, the second clause of contract_aux has the extra equality in the consequent.

```
\begin{array}{lll} \textbf{definition} & \texttt{contract\_aux} & :: \text{"thread\_id} \Rightarrow \texttt{cblock\_state} & \texttt{rel"} & \textbf{where} \\ \text{"contract\_aux} & \texttt{i} & \texttt
```

The two definitions above combine into the overall contract.

```
abbreviation cblock_contract :: "thread_id \Rightarrow cblock_state rel" where "cblock_contract t \equiv contract_raw t \cap contract_aux t"
```

lemmas cblock_contracts[simp] = contract_raw_def contract_aux_def

7.3 RG Lemmas

```
abbreviation acq_line1 :: "thread_id ⇒ cblock_state ⇒ cblock_state" where
  "acq_line1 i ≡
        (´myindex[i] ← ´tail) ∘>
        (´tail ← (´tail + 1) mod ArraySize) ∘>
        (´aux_queue ← ´aux_queue @ [i])"

lemma acq_1_invar:
    assumes assm_old: "s ∈ cblock_invar i"
        and assm_new: "s' = acq_line1 i s"
        and assm_pre: "i ∉ set (aux_queue s)"
```

```
shows "s' \in cblock_invar i"
\langle proof \rangle
theorem cblock_acq1:
 "rely: cblock_contract i
                                guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    \{ \{ i \notin set `aux_queue \} \}
  BasicAnno (acq_line1 i)
    { \{ i \in set `aux_queue \} \}"
  \langle proof \rangle
theorem cblock_acq2:
 "rely: cblock_contract i
                                guar: for_others cblock_contract i
  inv: cblock_invar i
                                code:
    { \{ \{ i \in set `aux\_queue \} \} }
  WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD
    \langle proof \rangle
abbreviation rel_line1 :: "thread_id \Rightarrow cblock_state \Rightarrow cblock_state" where
  "rel_line1 i ≡ ('flag_mapping['myindex i] ← Pending) ∘>
                    ('aux_mid_release ← Some i)"
lemma rel_1_same:
  "s' = rel line1 i s \Longrightarrow
    (myindex s = myindex s') \wedge
    (\forall j \neq myindex s i. flag_mapping s j = flag_mapping s' j) \land
    (tail s = tail s') \wedge
    (aux\_head s = aux\_head s') \land
    (aux_queue s = aux_queue s')"
  \langle proof \rangle
lemma rel_1_invar:
  assumes \ assm\_old \colon \ \texttt{"s} \ \in \ \texttt{cblock\_invar} \ \texttt{i"}
      and assm_new: "s' = rel_line1 i s"
      and assm pre: "at head i (aux queue s) \wedge aux mid release s = None"
    shows "s' \in cblock invar i"
\langle proof \rangle
lemma rel_1_est_guar:
  assumes "s \in { 'aux_queue \neq [] \land
                   hd aux_queue = i \land
                   'aux_mid_release = None |}
                ∩ cblock_invar i"
      and "s' = rel_line1 i s"
    shows "(s, s') \in for_others cblock_contract i
                  ∩ pred_to_rel (cblock_invar i)"
\langle proof \rangle
theorem cblock_rel1:
                              guar: for_others cblock_contract i
 "rely: cblock_contract i
  inv: cblock_invar i anno_code:
    { { at_head i `aux_queue \ `aux_mid_release = None } }
  BasicAnno (rel_line1 i)
    { { at_head i `aux_queue \ `aux_mid_release = Some i } }"
\langle proof \rangle
```

```
abbreviation rel_line2 :: "thread_id \Rightarrow cblock_state \Rightarrow cblock_state" where
  "rel_line2 i \equiv
    ('flag_mapping[(('myindex i + 1) mod ArraySize)] ← Granted) ○>
    ('aux_queue \( \taux_queue ) \( \taux_queue ) \)
    ('aux_head ← ('aux_head + 1) mod ArraySize) ○>
    ('aux_mid_release ← None)"
lemma rel_2_same:
  "s' = rel_line2 i s \Longrightarrow
    myindex s = myindex s' \land
       tail s = tail s' \wedge
    (\forall j \neq (myindex s i + 1) mod ArraySize.
    flag_mapping s j = flag_mapping s' j)"
  \langle proof \rangle
lemma rel_2_invar:
  assumes \ assm\_old \colon \ \texttt{"s} \in \texttt{cblock\_invar} \ \texttt{i"}
      and assm_pre: "at_head i (aux_queue s) \land aux_mid_release s = Some i"
      and assm_new: "s' = rel_line2 i s"
    shows "s' \in cblock_invar i"
\langle proof \rangle
lemma rel_2_est_guar:
  assumes \ assm\_old : "s \in cblock\_invar i"
      and assm_pre : "at_head i (aux_queue s) \land aux_mid_release s = Some i"
      and assm_new : "s' = rel_line2 i s"
    shows "(s, s') \in for_others cblock_contract i
                    ∩ pred_to_rel (cblock_invar i)"
\langle proof \rangle
theorem cblock_rel2:
 "rely: cblock_contract i
                               guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    { { at_head i 'aux_queue ∧ 'aux_mid_release = Some i } }
  BasicAnno (rel_line2 i)
    \{ \{ i \notin set `aux_queue \} \}"
\langle proof \rangle
7.4 RG Theorems
theorem cblock_acq:
 "rely: cblock_contract i
                            guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    { { i ∉ set 'aux_queue } }
  BasicAnno (acq_line1 i) .;
    \{ \{ i \in set `aux\_queue \} \}
  NoAnno (WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD)
    { | at_head i 'aux_queue / 'aux_mid_release = None | }"
  \langle proof \rangle
theorem cblock rel:
 "rely: cblock_contract i
                               guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    BasicAnno (rel_line1 i) .;
    { { at_head i `aux_queue \ `aux_mid_release = Some i } }
  BasicAnno (rel_line2 i)
    { { i ∉ set 'aux_queue } }"
```

```
\langle proof \rangle
```

When Sledgehammer is applied directly to one of the subgoals of the next theorem cblock_local_loop, several solvers do find proofs but do not report back. However, when that subgoal is explicitly copied into a separate lemma below, sledgehammer does find an SMT proof.

```
lemma lma_tmp:
```

```
assumes
  "rely: cblock contract t ∩ pred to rel (cblock invar t)
   guar: invar_and_guar (cblock_invar t) (for_others cblock_contract t)
   anno code:
     \{\{t \notin set `aux_queue\} \cap cblock_invar t\}
   add_invar (cblock_invar t) (BasicAnno (acq_line1 t) .;
     {\{t \in set `aux_queue\}}
   NoAnno (WHILE 'flag_mapping ('myindex t) = Pending DO SKIP OD) .;
     {\{at\_head t `aux\_queue \land `aux\_mid\_release = None\}}
   BasicAnno (rel_line1 t) .;
     {{at_head t 'aux_queue \ 'aux_mid_release = Some t|}}
   BasicAnno (rel_line2 t))
     {{t ∉ set 'aux_queue}} ∩ cblock_invar t}"
  shows
  "anncom_spec_valid
    (\{t \notin set `aux_queue\} \cap cblock_invar t \cap \{t \notin set `aux_queue\})
    (cblock_contract t ∩ pred_to_rel (cblock_invar t))
    (invar_and_guar (cblock_invar t) (for_others cblock_contract t))
    (\{t \notin set `aux_queue\} \cap cblock_invar t)
    (add_invar (cblock_invar t)
     (BasicAnno (acq_line1 t) .;
      {\{t \in set `aux queue\}}
      NoAnno (WHILE 'flag_mapping ('myindex t) = Pending DO SKIP OD) .;
      {{at_head t 'aux_queue \ 'aux_mid_release = None}}
      BasicAnno (rel_line1 t) .;
{{at_head t 'aux_queue \ 'aux_mid_release = Some t}}
      BasicAnno (rel_line2 t)))"
  \langle proof \rangle
theorem cblock_local_loop:
 "rely: cblock_contract i
                               guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    \{ \{ i \notin set `aux_queue \} \}
  WhileAnno UNIV
      ( { i ∉ set 'aux_queue } )
  ( BasicAnno (acq_line1 i) .;
      \{ \{ i \in set `aux\_queue \} \}
    NoAnno (WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD) .;
```

```
{ \{ at\_head i `aux\_queue \land `aux\_mid\_release = None \} }
    BasicAnno (rel_line1 i) .;
      { { at_head i `aux_queue \ `aux_mid_release = Some i } }
    BasicAnno (rel_line2 i) )
  { {} }"
\langle proof \rangle
The overall theorem expressing the correctness of the Circular Buffer Lock.
theorem cblock_global:
  "annotated global_init: cblock_init global_rely: Id
    || i < NumThreads @
  { { i ∉ set 'aux_queue }, cblock_contract i }
  WhileAnno UNIV
      (\{i \notin set `aux_queue \})
  ( BasicAnno (acq_line1 i) .;
      \{ \{ i \in set `aux\_queue \} \}
    NoAnno (WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD) .;
      { { at_head i `aux_queue \ `aux_mid_release = None } }
    BasicAnno (rel_line1 i) .;
      { | at_head i 'aux_queue \ 'aux_mid_release = Some i | }
    BasicAnno (rel_line2 i) )
  // cblock_invar i { for_others cblock_contract i, {} }
  global_guar: UNIV global_post: {}"
  \langle proof \rangle
end
End of locale
end
End of theory
```

Acknowledgement

This work was funded by the Department of Defence, and administered through the Advanced Strategic Capabilities Accelerator.

References

- [1] R. J. Colvin, S. Heiner, P. Höfner, and R. C. Su. Rely-guarantee concurrency verification of queued locks in Isabelle/HOL. In *Verified Software: Theories, Tools, and Experiments (VSTTE)*, 2025.
- [2] L. Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In *Programming Languages* and Systems (ESOP), pages 348–362, 2003.