Rely-Guarantee Extensions and Locks

Robert J. Colvin, Scott Heiner, Peter Hofner, Roger C. Su

November 21, 2025

Abstract

We enhance rely-guarantee verification in Isabelle/HOL by extending the 2003 built-in
library with flexible syntax, data-invariant support, and new tactics. We demonstrate our
enhanced library by applying it to the examples attached to the original library. We also
apply our library to three queue locks: the Abstract Queue Lock, the Ticket Lock, and the
Circular Buffer Lock.

Contents

1

2

Introduction

Rely-Guarantee (RG) Syntax Extensions

2.1 Lifting of Invariants

2.2 RG Sentences L

2.3 RG Subgoal-Generating Methods
2.3.1 Basic.
2.3.2 Looping constructs
2.3.3 Conditionals

2.4 Parallel Compositions
2.4.1 Binary Parallel
2.4.2 Multi-Parallelo

2.5 Syntax of Record-Updates

Annotated Commands

3.1 Annotated Quintuples
3.2 Structured Tactics for Annotated Commands
3.3 Binary Parallel
3.4 Helpers: Index Offsets
3.5 Multi-Parallel
3.6 The Main Tactics e e e e e e e

Examples Reworked

4.1 Setting Elements of an Array to Zero
4.2 Incrementing a Variable in Parallel 000 0.
4.3 FindP e

Abstract Queue Lock

11
14
15
16
17
18
20

21
21
22
23

25

6

1

Ticket Lock 26

6.1 Helpers: Inj, Surjand Bij 26
6.1.1 Inj-Related 27
6.1.2 Surj-Related 28
6.1.3 BijandInv 29

6.2 Helpers: Multi-Updates on Functions 30
6.2.1 Ordering of Updates 31
6.2.2 Surjective 32
6.2.3 Injective L 32
6.2.4 Set- and List-Intervals 33

6.3 Basic Definitions 33

6.4 RG Theorems e 35

Circular-Buffer Queue-Lock 37

7.1 Invariant e e e e 39
7.1.1 Invariant Methods 40
7.1.2 Invariant Lemmas 41

7.2 Contract e e 43

7.3 RGLemmas e e 43

7.4 RG Theorems e e 45

Introduction

The content of this entry has been presented as [1]. The original built-in library is [2].

2

Rely-Guarantee (RG) Syntax Extensions

The core extensions to the built-in RG library: improved syntax of RG sentences in the quintuple-
and keyword-styles, with data-invariants.

Also: subgoal-generating methods for RG inference-rules that work with the structured proof-
language, Isar.

theory RG_Syntax_Extensions

imports

"HOL-Hoare_Parallel.RG_Syntax"
"HOL-Eisbach.Eisbach"

begin

We begin with some basic notions that are used later on.

Notation for forward function-composition: defined in the built-in Fun.thy but disabled at the
end of that theory. This operator is useful for modelling atomic primitives such as Swap and
Fetch-And-Increment, and also useful when coupling concrete- and auxiliary-variable instruc-

tions.

notation fcomp (infixl "o>" 60)

lemmas definitions [simp] =

stable_def Pre_def Rely_def Guar_def Post_def Com_def

In applications, guarantee-relations often stipulates that Thread i should “preserve the rely-
relations of all other threads”. This pattern is supported by the following higher-order function,
where j ranges through all the threads that are not i.

abbreviation for_others :: "(’index = ’state rel) = ’index = ’state rel" where
"for_others R i =) j € -{i}. R j"

Relies and guarantees often state that certain variables remain unchanged. We support this
pattern with the following syntactic sugars.

abbreviation record_id :: "(’record = ’field) = ’record rel"
("id’ (_’)" [75] 74) where
"id(c) = { %c = % |}"

abbreviation record_ids :: "(’record = ’field) set = ’record rel"
("ids’ (_’)" [75] 74) where
"ids(cs) = [) ¢ € cs. id(c)"

abbreviation record_id_indexed ::
"(’record = ’index = ’field) = ’index = ’record rel"
("id’(_ @ _ ’)") where
"id(c @ self) = { % self = %c self [}"

abbreviation record_ids_indexed ::
"(’record = ’index = ’field) set = ’index = ’record rel"
("ids’(_ @ _ ’)") where
"ids(cs @ self) = (] ¢ € cs. id(c @ self)"

The following simple method performs an optional simplification-step, and then tries to apply
one of the RG rules, before attempting to discharge each subgoal using force. This method
works well on simple RG sentences.

method method_rg_try_each =
(clarsimp | simp)?,
(rule Basic | rule Seq | rule Cond | rule While
| rule Await | rule Conseq | rule Parallel);
force+

2.1 Lifting of Invariants

There are different ways to combine the invariant with the rely or guarantee, as long as the
invariant is preserved. Here, a rely- or guarantee-relation R is combined with the invariant I
into {(s, s8’). (s € I — s’ € I) A R}.

definition pred_to_rel :: "’a set = ’a rel" where

"pred_to_rel P = {(s,s’) . s € P — s’ € P}"

definition invar_and_guar :: "’a set = ’a rel = ’a rel" where
"invar_and_guar I G = G N pred_to_rel I"

lemmas simp_defs [simp] = pred_to_rel_def invar_and_guar_def

2.2 RG Sentences

The quintuple-style of RG sentences.

abbreviation rg_quint ::
"’a set = ’arel = ’a com = ’a rel = ’a set = bool"
M{_,_Y _ {_,_3") where
"{P, R} C {G, Qy =+ C sat [P, R, G, Q]"

Quintuples with invariants.

abbreviation rg_quint_invar ::

"’a set = ’a rel = ’a com = ’a set = ’a rel = ’a set = bool"
M{_,. Y _ J _A_,_¥") where
"{P, R} C / I 4{G, Q} =F Csat [

PNI,

R N pred_to_rel I,

invar_and_guar I G,

QN I]"

The keyword-style of RG sentences.

abbreviation rg_keyword ::
"’a rel = ’arel = ’a set = ’a com = ’a set = bool"
("rely:_ guar:_ code: {_} _ {_}") where
"rg_keyword RGP C Q=+ C sat [P, R, G, Q"

Keyword-style RG sentences with invariants.

abbreviation rg_keyword_invar ::
"’a rel = ’a rel = ’a set = ’a set = ’a com = ’a set = bool"
("rely:_ guar:_ inv:_ code: {_} _ {_}") where
"rg_keyword_invar RG I P CQ =F C sat [
PN I,
R N pred_to_rel I,
invar_and_guar I G,
QN I]"

2.3 RG Subgoal-Generating Methods

As in Floyd-Hoare logic, in RG we can strengthen (make smaller) the precondition and weaken
(make larger) the postcondition without affecting the validity of an RG sentence.

theorem strengthen_pre:
assumes "P’ C P"
and " ¢ sat [P, R, G, Q]"
shows " ¢ sat [P’, R, G, QI"

(proof)

theorem weaken_post:
assumes "Q C Q’"
and "F c sat [P, R, G, Q 1"
shows "F ¢ sat [P, R, G, Q’1"
(proof)

We then develop subgoal-generating methods for various instruction types and patterns, to be
used in conjunction with the Isar proof-language.

2.3.1 Basic

A Basic instruction wraps a state-transformation function.

theorem rg_basic_named[intro]:
assumes "stable P R"
and "stable Q R"
and "Vs. s € P — (s, s) € G"
and "Vs. s €¢ P — (s, £ 8) € G"
and "P C {| "f € Q "
shows "{P, R} Basic f {G, Q}"
(proof)

method method_basic =

rule rg_basic_named,
goal_cases stable_pre stable_post guar_id establish_guar establish_post

The skip command is a Basic instruction whose function is the identity.

theorem rg_skip_named:

assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P C Q"
shows "{P, R} SKIP {G, Q}"
(proof)

method method_skip =
rule rg_skip_named,
goal_cases stab_pre stab_post guar_id est_post

An alternative version with an invariant subgoal.

theorem rg_basic_inv[intro]:

"stable (P N I) (R N pred_to_rel I)"

assumes
and "stable (Q N I) (R N pred_to_rel I)"
and "Vs. s e PN I — (s, 8) € G"
and "Vs. s e PNI — fs € I"
and "Vs. s e PNI — fs € Q"
and "Vs. s e PN I — (s, fs) € G"
shows "F (Basic f) sat [
PNI,
R N pred_to_rel I,

invar_and_guar I G,

QN
{proof)

method method_basic_inv

I] n

rule rg_basic_inv,

goal_cases stab_pre stab_post id_guar est_inv est_post est_guar

2.3.2 Looping constructs
theorem rg_general_loop_named[intro]:
assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P N -b C Q"
and "{P N b, R} ¢ {G, P}"
shows "{P, R} While b c¢ {G, Q}"
(proof)

method method_loop =

rule rg_

general_loop_named,

goal_cases stable_pre stable_post id_guar loop_exit loop_body

A similar version but with the loop_body subgoal having a weakend precondition.

theorem rg_general_loop_no_guard[intro]:

assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P N -b C Q"
and "{P, R} c {G, P}"
shows "{P, R} While b c {G, Q}"
(proof)

method method_loop_no_guard =
rule rg_general_loop_no_guard,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

A spinloop is a loop with an empty body. Such a loop repeatedly checks a property, and is a
key construct in mutual exclusion algorithms.

theorem rg_spinloop_named[intro]:
assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P N -b C Q"
shows "{P, R} While b SKIP {G, Q}"

(proof)

method method_spinloop =
rule rg_spinloop_named,
goal_cases stable_pre stable_post guar_id est_post

theorem rg_infinite_loop:
assumes "stable P R"
and "Id C G"
and "{P, R} C {G, P}"
shows "{P, R} While UNIV C {G, Q}"

(proof)

method method_infinite_loop =
rule rg_infinite_loop,
goal_cases stable_pre guar_id loop_body,
clarsimp+

theorem rg_infinite_loop_syntax:
assumes "stable P R"
and "Id C G"
and "{P, R} C {G, P}"
shows "{P, R} WHILE True DO C OD {G, Q}"

(proof)

method method_infinite_loop_syntax =
rule rg_infinite_loop_syntax,
goal_cases stable_pre guar_id loop_body

A repeat-loop encodes the pattern where the loop body is executed before the first evaluation

of the guard.

theorem rg_repeat_loopl[intro]:
assumes "stable P R"
and "stable Q R"
and "Id C G"
and "P N b C Q"
and loop_body: "{P, R} C {G, P}"
shows "{P, R} C ;; While (-b) C {G, Q}"

(proof)

method method_repeat_loop =
rule rg_repeat_loop,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

When reasoning about repeat-loops, we may need information from P to determine whether
we reach the postcondition. In this case we can use the following form, which introduces a

mid-state.
theorem rg_repeat_loop_mid[intro]:
assumes stab_pre: ‘"stable (P N M) R"
and stab_post: "stable Q R"
and guar_id: "Id C G"

and loop_exit: "P N M N b C Q"
and loop_body: "{P, R} C {G, P N M}"
shows "{P, R} C ;; While (-b) C {G, Q}"

{proof)

method method_repeat_loop_mid =
rule rg_repeat_loop_mid,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

We define dedicated syntax for the repeat-loop pattern.

definition Repeat :: "’a com = ’a bexp = ’a com" where
"Repeat ¢ b = ¢ ;; While (-b) c"

syntax "_Repeat" :: "’a com = ’a bexp = ’a com" ("(OREPEAT _ /UNTIL

61)
translations "REPEAT ¢ UNTIL b END" — "CONST Repeat c {b["

theorem rg_repeat_loop_def [intro]:

assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"

and loop_exit: "P N b C Q"
and loop_body: "{P, R} C {G, P}"
shows "{P, R} Repeat C b {G, Q}"

(proof)
method method_repeat_loop_def =

rule rg_repeat_loop_def,
goal_cases stab_pre stab_post guar_id loop_exit loop_body

2.3.3 Conditionals

We first cover conditional-statements with or without the else-branch.

theorem rg_cond_named[intro]:

assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "{P N -b, R} c2 {G, Q}"
shows "{P, R} Cond b c1 c2 {G, Q}"
(proof)
theorem rg_cond2_named[intro]:
assumes stab_pre: '"stable P R"
and stab_post: "stable Q R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "P N -b C Q"
shows "{P, R} Cond b c1 SKIP {G, Q}"
(proof)

_ /END)" [0, O]

method method_cond =
(rule rg_cond2_named | rule rg_cond_named),
goal_cases stab_pre stab_post guar_id then_br else_br

Variants without the stable-post subgoal.

theorem rg_cond_no_post[intro]:
assumes stable_pre: "stable P R"
and guar_id: "Id C G"
and then_br: "{P N b, R} c1 {G, Q}"
and else_br: "{P N -b, R} c2 {G, Q"
shows "{P, R} Cond b c1 c2 {G, Q}"

{proof)

theorem rg_cond_no_guard_no_post[intro]:
assumes stable_pre: "stable P R"
and guar_id: "Id C G"
and then_br: "{P, R} c1 {G, Q}"
and else_br: "{P, R} c2 {G, Q}"
shows "{P, R} Cond b c1 c2 {G, Q}"

(proof)

method method_cond_no_post =
(rule rg_cond_no_post | rule rg_cond_no_guard_no_post),
goal_cases stab_pre guar_id then_br else_br

2.4 Parallel Compositions

We now turn to the parallel composition, and cover several variants, from the binary parallel
composition of two commands, to the multi-parallel composition of an indexed list of commands.
For each variant, we define the syntax and devise the subgoal-generating methods.

2.4.1 Binary Parallel

The syntax of binary parallel composition, without and with invariant.

abbreviation binary_parallel
"’a set = ’arel = ’a com = ’a com = ’a rel = ’a set = bool"
{_, Y _ | - A, _¥") where
"{P, R} C1 || c2 {G, Q} =
4 P1 P2 R1 R2 G1 G2 Q1 Q2.
F COBEGIN
(C1, P1, R1, G1, Q1)
[
(C2, P2, R2, G2, Q2)
COEND SAT [P, R, G, Q1"

abbreviation binary_parallel_invar ::
"’a set = ’arel = ’a com = ’a com = ’a set = ’a rel = ’a set = bool"
ML, Y _ I _/J _4A_, _¥) where
"{P, R} C1 || c2 / I {G, Q} =
d P1 P2 R1 R2 G1 G2 Q1 Q2.
F COBEGIN
(C1, P1, R1, G1, QL)
|
(C2, P2, R2, G2, Q2)
COEND SAT [P N I, R N pred_to_rel I, invar_and_guar I G, Q N I]"

Some helper lemmas for later.

lemma simp_all_2:
"(V i < Suc (Suc 0). P i) «— P O A P 1"

(proof)

lemma simp_gen_Un_2:
"(U x € {7(<) (Suc (Suc 0))). Sx) =S 0US 1"
(proof)

lemma simp_gen _Un_2_notO:
"(U x € { (<) (Suc (Suc 0)) A "(#£) (Suc 0) }. S x) = s 0"
(proof)

lemma simp_gen_Int_2:
"(N x€ {"(<) (Suc (Suc 0)) }. Sx) =85S 0N S 1"
(proof)

theorem rg_binary_parallel:
assumes "{P1, R1} (C1l::’a com) {G1, Q1}"
and "{P2, R2} (C2::’a com) {G2, Q2}"
and "G1 C R2"
and "G2 C R1"
and "P C P1 N P2"
and "R C R1 N R2"
and "G1 U G2 C G"
and "Q1 N Q2 C Q"
shows "k COBEGIN
(C1, P1, R1, G1, Q1)
|
(c2, P2, R2, G2, Q2)
COEND SAT [P, R, G, Q1"
(proof)

theorem rg_binary_parallel_exists:

assumes "{P1, R1} (C1l::’a com) {G1, Q1}"
and "{P2, R2} (C2::’a com) {G2, Q2}"
and "G1 C R2"
and "G2 C R1"
and "P C P1 N pP2"
and "R C R1 N R2"
and "Gl U G2 C G"
and "Q1 N Q2 € Q"

shows "{P, R} C1 | €2 {G, Q}"
(proof)

theorem rg_binary_parallel_invar_conseq:

assumes Cl: "{P1, R1} (Cl::’a com) J/ I {G1, Q1}"
and C2: "{P2, R2} (C2::’a com) J I {G2, Q2}"
and "G1 C R2"
and "G2 C R1"
and "P C P1 N P2"
and "R C R1 N R2"
and "Q1 N Q2 C Q"
and "G1 U G2 C G"

shows "{P, R} C1 || ¢2 / I {G, Q}"
(proof)

2.4.2 Multi-Parallel

The syntax of multi-parallel, without and with invariants.

syntax multi_parallel ::

"’a set = ’a rel = idt = nat =
(nat = ’a set) = (nat = ’a rel) =
(nat = ’a com) =
(nat = ’a rel) = (nat = ’a set) =
’a rel = ’a set = bool"

("global’_init: _ global’_rely: _ || <_@{_, Y _{_,_} global’_guar: _ global’_post:

_u)

translations
"global_init: Init global_rely: RR || i < N @
{P,R} ¢ {G,Q} global_guar: GG global_post: QQ"
—~ " COBEGIN SCHEME [0 < i < N] (c, P, R, G, Q) COEND
SAT [Init, RR , GG, QQI"

syntax multi_parallel_inv ::
"’a set = ’a rel = idt = nat =
(nat = ’a set) = (nat = ’a rel) =
(nat = ’a com) = (nat = ’a set) =
(nat = ’a rel) = (nat = ’a set) =
’a rel = ’a set = bool"

("global’_init: _ global’_rely: _ || <_@e{_,.}y_ /) _A_,_Y global’_guar:

_II)

translations
"global_init: Init global_rely: RR || i < N @
{P, R} ¢ / I {G, Q} global_guar: GG global_post: QQ"
— " COBEGIN SCHEME [0 < i < N] (c,
PNI,
R N CONST pred_to_rel I,
CONST invar_and_guar I G,
QNI
) COEND
SAT [Init, RR , GG, QQI"

The subgoal-generating method for multi-parallel.

theorem rg_multi_parallel_subgoals
assumes assm_guar_rely: "V i j.
and assm_pre: "V i < N. P’
and assm_rely: "V i < N. R’
and assm_guar: "V i < N. Gi C G’"
and assm_post: "(() i€ {i. i <N} Qi) C Q"
and assm_local: "V i<N. - C i sat [P i, R i, G i, Q i]"
shows "F COBEGIN SCHEME [0 < i < (N::nat)]
(Ci, Pi, Ri, G i, Q i)
COEND SAT [P’, R’, G’, Q’1"

— i <N -— j<N-—GjCRIi"

i A
P
R

NN e

J
i
i

(proof)

method method_multi_parallel = rule rg_multi_parallel_subgoals,
goal_cases guar_rely pre rely guar post body

theorem rg_multi_parallel_nobound_subgoals:
assumes assm_guar_rely: "V i j. i ;é j—GjCRi"
and assm_pre: "V i. P’ C P i"
and assm_rely: "V i. R> C R i"

10

_ global’_post:

and assm_guar: "V i. G i C G*"
and assm_post: "((J i e{i. i<N} Qi) C Q"
and assm_local: "V i. - C i sat [P i, Ri, G i, Q i]"
shows "F COBEGIN SCHEME [0 < i < (N::mat)]
(Ci, Pi, Ri, G i, Q i)
COEND SAT [P’, R’, G, Q’]1"
(proof)

method method_multi_parallel_nobound =
rule rg_multi_parallel_nobound_subgoals,
goal_cases guar_rely pre rely guar post body

2.5 Syntax of Record-Updates

This section contains syntactic sugars for updating a field of a record. As we use records to model
the states of a program, these record-update operations correspond to the variable-assignments.

The type idt denotes a field of a record. The first syntactic sugar expresses a Basic command
(of type <’a com>) that updates a record-field x that is a function; often x models an array.
After the update, the new value of <x i> becomes a.

syntax "_record_array_assign"

"idt = ’index = ’expr = ’state com" ("(°_[_]1 :=/ _)" [70, 65, 64] 61)
translations " “x[i] := a"

— "CONST Basic « ~(_update_name x (A_. “x(i:= a)))»"

The next two syntactic sugars express a state-transformation function (rather than a command)
that updates record-fields. The first one simply updates an entire variable x, while the second
updates an array <x i>.

syntax "_record_update_field"

"idt = ’expr = (a = ’a)" (""_ «/ _" [70] 61)
translations " “x < a"

= "« "(_update_name x (A_. a))»"

syntax "_record_update_array"

"idt = ’expr = ’expr = (Ca = ‘a)" (""_[_]1 </ _" [70, 71] 61)
translations " "x[i] + a"

— "« " (_update_name x (A_. “x(i:= a)))»"

Syntactic sugars for incrementing variables.

syntax "_inc_fn" :: "idt = ’c = ’c" ("(_.++)" 61)
translations " “x.++ " —

" « " (_update_name x (A_. “x + 1))»"
syntax "_inc" :: "idt = ’c com" ("(_++)" 61)

translations " “x++ " —
"CONST Basic (“x.++)"

end

3 Annotated Commands

theory RG_Annotated_Commands
imports RG_Syntax_Extensions "HOL-Hoare.Hoare_Tac"

begin

11

datatype ’a anncom =

While b (anncom_to_com c)"
Await b (anncom_to_com c)"

"anncom_to_com (WhileAnno b b’ c¢)
"anncom_to_com (AwaitAnno b c)

NoAnno "’a com"
| BasicAnno "’a = ’a"
| WeakPre "’a set" "’a anncom" (m{_¥ _" [65,61] 61)
| StrongPost "’a anncom" "’a set" (m_ {_}" [61,65] 61)
| SegAnno "’a anncom" "’a set" "’a anncom"
| CondAnno "’a bexp" "’a anncom" "’a anncom"
| WhileAnno "’a bexp" "’a set" "’a anncom"
| AwaitAnno "’a bexp" "’a anncom"
fun anncom_to_com :: "’a anncom = ’a com" where
"anncom_to_com (NoAnno c) = c"
| "anncom_to_com (BasicAnno f) = Basic f"
anncom_to_com (WeakPre b ¢ = anncom_to_com ¢
[" t (WeakPre b ¢) t "
anncom_to_com rongPost ¢ = anncom_to_com ¢
[" t (StrongPost ¢ b) t "
| "anncom_to_com (SegAnno cl mid c2) = Seq (anncom_to_com c1) (anncom_to_com c2)"
| "anncom_to_com (CondAnno b cl1 c2) = Cond b (anncom_to_com c1) (anncom_to_com c2)"
I
I

fun add_invar :: "’a set = ’a anncom = ’a anncom" where
"add_invar I (NoAnno c) = NoAnno c"
| "add_invar I (BasicAnno f) = BasicAnno f"
| "add_invar I (WeakPre b c) = WeakPre (b N I) (add_invar I c)"
| "add_invar I (StrongPost c b) = StrongPost (add_invar T ¢c) (b N I)"
| "add_invar I (SegAnno cl mid c2) = SegAnno (add_invar I c1) (mid N I) (add_invar
I c2)"
| "add_invar I (CondAnno b cl1 c2) = CondAnno b (add_invar I c1) (add_invar I c2)"
| "add_invar I (WhileAnno b b’ ¢) = WhileAnno b b’ (add_invar I c)"
| "add_invar I (AwaitAnno b c) = AwaitAnno b (add_invar I c)"
syntax
"_CondAnno" :: "’a bexp = ’a anncom = ’a anncom = ’a anncom"
("(0IFa _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
"_Cond2Anno" :: "’a bexp = ’a anncom = ’a anncom"
("(0IFa _ THEN _ FI)" [0,0] 56)
"_WhileAnno" :: "’a bexp = ’a set = ’a anncom = ’a anncom"
("(OWHILEa _ /DO {stable’_guard: _ } _ /0D)" [0, 0] 61)
"_WhileAnno_simple_b" :: "’a bexp = ’a anncom = ’a anncom"
("(OWHILEa _ /DO _ /O0D)" [0, O] 61)
" _AwaitAnno" :: "’a bexp => ’a anncom = ’a anncom"
(" (OAWAITa _ /THEN /_ /END)" [0,0] 61)
"_AtomAnno" :: "’a com = ’a anncom"
(M"((_)a)" 61)
"_WaitAnno" :: "’a bexp = ’a anncom"
("(OWAITa _ END)" 61)
"_CondAnno_NoAnnoions" :: "’a bexp = ’a com = ’a com = ’a anncom"

("(OIF. _/ THEN _/ ELSE _/FI)" [0, O, 0] 61)

translations
"IFa b THEN c1 ELSE c2 FI" — "CONST CondAnno {b[} cl c2"
"IFa b THEN ¢ FI" = "IFa b THEN c¢ ELSE SKIP FI"
"IF. b THEN c1 ELSE c2 FI" — "CONST CondAnno ﬂbﬂ (CONST NoAnno c1) (CONST NoAnno c2)"

"WHILEa b DO {stable_guard: b’} c OD" — "CONST WhileAnno {b} b’ c"
"WHILEa b DO ¢ OD" — "CONST WhileAnno {b} {b[} c"

12

"AWAITa b THEN c END" <= "CONST AwaitAnno {bf} c"
"(c)a" = "AWAITa CONST True THEN c END"
"WAITa b END" = "AWAITa b THEN SKIP END"

abbreviation no_assertions_semicolon ::
"’a anncom = ’a set = ’a anncom = ’a anncom"
(m_ .; {.}y _" [60,60,61] 60) where
"¢l .; {m} c2 = SeqAnno cl m c2"

Below is a special syntax for Basic commands (type “com”) encoded inside NoAnno annotated
commands (type “anncom”).

This allows us to keep our syntactic sugars for Basic commands, which are mostly assignments
(":="), without having to redo them all for BasicAnno annotated commands.

Hence, we wrap Basic commands with this helper function, which is only defined for Basic
commands.

fun basic_to_basic_anno_syntax:: "’a com = ’a anncom" ("’(_’)-") where
"basic_to_basic_anno_syntax (Basic f) = BasicAnno f"
| "basic_to_basic_anno_syntax ¢ = NoAnno c"

The following function defines what it means for an annotated command to satisfy the given
specification components. The soundness of this definition will be proved later.

fun anncom_spec_valid :: "’a set = ’a rel = ’a rel = ’a set = ’a anncom = bool" where

"anncom_spec_valid pre rely guar post (NoAnno c)
= (F c sat [pre, rely, guar, post])"

| "anncom_spec_valid pre rely guar post (BasicAnno f)
= (stable pre rely A
stable post rely A
(Vs. s € pre — (s, s) € guar) A
(Vs. s € pre — (s, f 8) € guar) A
pre C { "f € post)"

| "anncom_spec_valid pre rely guar post (WeakPre p’ ac)
= ((pre C p’) A
(anncom_spec_valid p’ rely guar post ac))"

| "anncom_spec_valid pre rely guar post (StrongPost ac q’)
= ((@” C post) A
(anncom_spec_valid pre rely guar q’ ac))"

| "anncom_spec_valid pre rely guar post (SegAnno acl mid ac2)
= ((anncom_spec_valid pre rely guar mid acl) A
(anncom_spec_valid mid rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (CondAnno b acl ac2)
= ((stable pre rely) A
(Id C guar) A
(anncom_spec_valid (pre N b) rely guar post acl) A
(anncom_spec_valid (pre N -b) rely guar post ac2))"

| "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)
= ((stable pre rely) A
(stable post rely) A
(Id C guar) A
(pre N -b C post) A
(pre N b C b)) A

13

(anncom_spec_valid (pre N b’) rely guar pre ac))"

| "anncom_spec_valid pre rely guar post (AwaitAnno b ac)
= ((stable pre rely) A
(stable post rely) A
(V s. anncom_spec_valid (pre N b N {s}) Id UNIV ({s’. (s, s’) € guar} N post) ac))"

The following theorem establishes the soundness of the definition above.

theorem anncom_spec_valid_sound:
"anncom_spec_valid pre rely guar post ac = F anncom_to_com ac sat [pre, rely, guar,
post]"

(proof)

3.1 Annotated Quintuples

For convenience, we define the following datatype, which collects an annotated command with
its specification components.

datatype ’a annquin = AnnQuin "’a set" "’a rel" "’a anncom" "’a rel" "’a set"

(GE S S G L

abbreviation annquin_invar ::
"’a set = ’a rel = ’a anncom = ’a set = ’a rel = ’a set = ’a annquin"
M{_,. Y _ J _4_,_}¥") where
"annquin_invar pre rely ac I guar post = AnnQuin
(pre N I) (rely N pred_to_rel I)
(add_invar I ac)
(invar_and_guar I guar) (post N I)"

Helper functions for extracting the individual components of an <’a annquin>.
fun pre0f :: "’a annquin = ’a set"

where "preOf (AnnQuin pre rely ac guar post) = pre"

fun rely0f :: "’a annquin = ’a rel"
where "rely0f (AnnQuin pre rely ac guar post) = rely"

fun cmd0Of :: "’a annquin = ’a anncom"
where "cmd0f (AnnQuin pre rely ac guar post) = ac"

fun guar0f :: "’a annquin = ’a rel"
where "guar0Of (AnnQuin pre rely ac guar post) = guar"

fun postOf :: "’a annquin = ’a set"
where "post0f (AnnQuin pre rely ac guar post) = post"

Validity of <’a annquin> is the same as the validity of the “quintuples” when written out
separately.

abbreviation annquin_valid :: "’a annquin = bool" where
"annquin_valid rgac = case rgac of (AnnQuin pre rely ac guar post) =
anncom_spec_valid pre rely guar post ac"

lemma annquin_simp[simp] :
"annquin_valid (AnnQuin p r ¢ g q) = anncom_spec_valid p r g q c"
(proof)

Syntax for expressing a valid <’a annquin> in terms of its components.

syntax

14

"_valid_annquin"

"’a rel = ’a rel = ’a set = ’a anncom = ’a set = bool"
("rely:_ guar:_ anno’_code: {_} _ {_}")
_valid_annquin_invar"

"’a rel = ’a rel = ’a set = ’a set = ’a anncom = ’a set = bool"
("rely:_ guar:_ inv:_ anno’_code: {_} _ {_}")

translations
"rely: R guar: G anno_code: {P} ac {Q}"
— "CONST annquin_valid (CONST AnnQuin P R ac G Q"
"rely: R guar: G inv: I anno_code: {P} ac {Q}"
— "CONST annquin_valid (CONST AnnQuin
(P N I) (RN CONST pred_to_rel I)
(CONST add_invar I ac)
(CONST invar_and_guar I G) (Q N I))"

3.2 Structured Tactics for Annotated Commands

lemma anncom_subgoals_no:
" ¢ sat [pre, rely, guar, post] = anncom_spec_valid pre rely guar post (NoAnno c)"

{proof)

lemma anncom_subgoals_invar_no:
assumes " c sat [pre N I, rely N pred_to_rel I, invar_and_guar I guar, post N I]"
shows "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I (NoAnno c))"

(proof)
lemma anncom_subgoals_basicanno_invar:
assumes stable_pre: "stable (pre N I) (rely N pred_to_rel I)"
and stable_post: "stable (post N I) (rely N pred_to_rel I)"
and guar_id: "Vs. s € (pre N I) — (s, s) € (invar_and_guar I guar)"

and establish_guar: "Vs. s € (pre N I) — (s, f s) € (invar_and_guar I guar)"
and establish_post: "(pre N I) C { "f € (post N I) |"
shows "rely: rely guar: guar inv: I anno_code: {pre} (BasicAmnno f) {post}"

{proof)

method method_annquin_basicanno =
rule anncom_subgoals_basicanno_invar,
goal_cases stable_pre stable_post guar_id est_guar est_post

lemma anncom_subgoals_seq:
assumes "anncom_spec_valid pre rely guar mid cl1"
and "anncom_spec_valid mid rely guar post c2"
shows "anncom_spec_valid pre rely guar post (SegAnno cl mid c2)"

(proof)

lemma anncom_subgoals_invar_seq:
assumes "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(mid N I) (add_invar I c1)"
and "anncom_spec_valid (mid N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I c2)"
shows "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I (SeqAnno cl mid c¢2))"

(proof)

lemma anncom_subgoals_invar_seq_abbrev:
assumes "anncom_spec_valid (pre N I) (rely N pred_to_rel I) (invar_and_guar I guar)

15

(mid N I) (add_invar I c1)"
and "anncom_spec_valid (mid N I) (rely N pred_to_rel I) (invar_and_guar I guar)
(post N I) (add_invar I c2)"
shows "rely: (rely) guar: guar inv: I anno_code: {pre} (cil .; {mid} c2) {postl}"

{proof)

method method_annquin_seq =
(rule anncom_subgoals_invar_seq | rule anncom_subgoals_invar_seq_abbrev),
goal_cases cl c2

lemma anncom_subgoals_while:
assumes '"stable pre rely"
and "stable post rely"
and "Id C guar"
and "pre N -b C post"
and "pre N b C b’"
and "anncom_spec_valid (pre N b’) rely guar pre ac"
shows "anncom_spec_valid pre rely guar post (WhileAnno b b’ ac)"

(proof)

lemma add_invar_while:
assumes "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(g N I) (WhileAnno b b’ (add_invar I ac))"
shows "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(g N I) (add_invar I (WhileAnno b b’ ac))"
(proof)

lemma anncom_subgoals_invar_while_abbrev:
assumes "anncom_spec_valid (p N I) (R N pred_to_rel I) (invar_and_guar I G)
(@ N I) (add_invar I (WhileAnno b b’ ac))"
shows "rely: R guar: G inv: I anno_code: {p} (WhileAnno b b’ ac) {q}"
(proof)

method method_annquin_while =
rule anncom_subgoals_invar_while_abbrev,
rule add_invar_while,
rule anncom_subgoals_while,
goal_cases stable_pre stable_post guar_id neg_guard guard body

3.3 Binary Parallel

This section contains inference rules for two annotated commands running in parallel. For
convenience, we first define a datatype that encapsulates the components.

datatype ’a binary_par_quin = ParCode
n)a setll n)a I.e:l-ll n)a a~I111(1.L11I1ll "o a annqllln" no a relll n)a setll

Gk SEPSEN S |- W G L)

The next function sets out the proof obligations of binary parallel, using the datatype <’a
binary_par_quin> above. It is then followed by the theorem that establishes the soundness of
the inference rule encoded by the function binary_parallel_valid.

fun binary_parallel_valid:: "’a binary_par_quin = bool" where
"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
= (annquin_valid (AnnQuin pl rl c1 gl ql)
A annquin_valid (AnnQuin p2 r2 c2 g2 q2)
A init € pl1 N p2
A gr CrlNr2

16

A gl C r2
A g2 Cril
NglUg2Cgg
A ql N g2 C final)"

theorem valid_binary_parallel:

"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)

=—> I COBEGIN (anncom_to_com cl, pl, rl, gil, ql1) || (anncom_to_com c2, p2, r2, g2, q2)
COEND SAT [init, gr, gg, finall"

{proof)

Variants of the theorem above.

theorem valid_binary_parallel_exists:

"binary_parallel_valid (ParCode init gr (AnnQuin pl rl cl gl q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)

— {init, gr} anncom_to_com cl || anncom_to_com c2 {gg, final}"

{proof)

theorem valid_binary_parallel_exists_annotated:
assumes "binary_parallel_valid (ParCode

init gr
(AnnQuin pl rl1 c1’ gl q1) (AnnQuin p2 r2 c2’ g2 q2)
gg final)"
and "anncom_to_com c1’ = c1"
and "anncom_to_com c2’ = c2"
shows "{init, gr} cl || ¢2 {gg, final}"

(proof)

3.4 Helpers: Index Offsets

Before moving on to multi-parallel programs, we first prepare some lemmas that help reason
about offsets and indices.

abbreviation nat_range_set_neq_i :: "nat = nat = nat = nat set"
("{_..<_#_}") where
"nat_range_set_neq_i lo hi x = {lo..<hi} - {x}"

lemma all_set_range_to_offset:

"(Vie{lo..<hi::nat}. P (f i)) +— (Vi<(hi-lo). P (f (1o + i)))"
(proof)

lemma Int_set_range_to_offset:
"((i€{lo..<hi::nat}. £ i) = ((i<(hi-lo). £ (lo + i))"
(proof)

lemma Un_set_range_to_offset:

"(|IJi€{lo..<hi::nat}. g (f 1)) = (Ui<thi-lo). g (£ (Lo + L))"
{proof)

lemma Int_set_range_neq_to_offset: "i = lo + ii

= (N je{lo..<hi#i}. £ j) = (je{0..<(hi-lo)# ii}. £ (Lo +)"
(proof)

lemma Int_set_range_neq_to_offset2: "ii< (hi - lo)

= ((Nje{lo..<hi# Qo + i1)}. £ j) = (je{0..<(hi-1lo)# ii}. £ (1o + j))"
(proof)

17

lemma forall_range_to_offset:
"(Vie{lo..<(hi::nat)}. P i) +— (Vi€{0..<(hi - 10)}. P (1o + i))"
(proof)

lemma SCHEME_map_domain:
"map (Ai. rgac i) [lo ..< (N::nat)] = map (Ai. rgac (lo + i)) [0..<(N-1lo)]"
(proof)

lemma offset P: "(Vi. lo < i A i < (N::nat) — P i) =— 1lo < N — (Vi. i <(N-lo) —
P (lo + i))"
(proof)

lemma INTER_offset:
shows "(((x<((N::nat) - lo). p (o + x)) = ([)x€{lo..<N}. p x)"
(proof)

lemma LT _offset: "(Vi. lo < i A i < (N::nat) — P i) «— (Vi<N - lo. P (lo + i))"

{proof)

3.5 Multi-Parallel

This section contains inference rules for multiple annotated commands running in parallel.
Again, for convenience we first define a datatype that encapsulates the components:

1. Global precondition

2. Global rely

3. The lower index

4. The upper index

5. Sequential programs (each an annotated quintuple), indexed by the natural numbers
6. Global guarantee

7. Global postcondition

datatype ’a multi_par_quin = MultiParCode

no a set n
no a rel n
nat nat
"nat = ’a annquin"
no a I‘elll
no a set n

Using the datatype above, the inference rules are set out as the following two functions.

fun multipar_valid :: "’a multi_par_quin = bool" where

"multipar_valid (MultiParCode init RR lo N iac gg final) =

((Vie{lo..<N}. annquin_valid (iac i)) A
init C (()i€{lo..<N}. pre0f (iac i)) A
RR C ((Ni€{lo..<N}. rely0f (iac i)) A
(Vie{lo..<N}. guarOf (iac i) C ([)j€{lo..<N#i}. rely0f (iac j))) A
(Uie{lo..<N}. guarOf (iac i)) C gg A
(N i€{lo..<N}. postOf (iac i)) C final)"

fun multipar_valid_offset:: "’a multi_par_quin = bool" where
"multipar_valid_offset (MultiParCode init RR lo N iac gg final) =

18

((Vi<(N-lo). annquin_valid (iac (lo + i))) A
init C ([)i<(N-lo). pre0f (iac (lo + i))) A
RR C ((i<(N-lo). relyOf (iac (lo + i))) A
(Vi<(N-lo). guar0Of (iac (lo + i)) C ([1j€{0..<(N-lo)#i}. rely0f (iac (1o + j))))

(Ji<(N-lo). guar0f (iac (lo + 1))) C gg A
(N i<(N-lo). post0f (iac (lo + i))) C final)"

Alternative syntax that encodes the validity of multi-parallel statements.

syntax
"_multi_parallel_anno"
"’a set = ’a rel = idt = nat = ’a annquin = ’a rel = ’a set = bool"

("annotated global’_init: _ global’_rely: _ || _ < _ @ _ global’_guar: _ global’_post:
n
"
" _multi_parallel_anno_lo_hi"
"’a set = ’a rel = nat = idt = nat = ’a annquin = ’a rel = ’a set = bool"
("annotated global’_init: _ global’_rely: _ || _ < _ < _ @ _ global’_guar: _ global’_post:
_ll)
translations

"annotated global_init: Init global_rely: RR || i < N @ rgac global_guar: GG global_post:
QQ"

— "CONST multipar_valid (CONST MultiParCode Init RR O N (Ai. rgac) GG QQ)"

"annotated global_init: Init global_rely: RR || lo < i < hi @ rgac global_guar: GG global_post:
QQII

— "CONST multipar_valid_offset (CONST MultiParCode Init RR lo hi (Ai. rgac) GG QQ)"

The soundness of the inference rules, in multiple variants.

lemma multipar_valid_offset_equiv:

"multipar_valid (MultiParCode init RR lo hi iac gg final) +—
multipar_valid_offset (MultiParCode init RR lo hi iac gg final)"
{proof)

theorem valid_multipar:
"multipar_valid (MultiParCode Init RR lo N rgac GG QQ) —
- COBEGIN SCHEME [lo < i < NI (
CONST anncom_to_com (cmd0Of (rgac i)),
pre0f (rgac i),
rely0f (rgac i),
guar0f (rgac i) ,
post0f (rgac i)
) COEND
SAT [Init, RR , GG, QQ1"
(proof)

theorem valid _multipar_with_internal rg:
"multipar_valid (MultiParCode Init RR lo N (Ai. AnnQuin (p i) (r i) (ac i) (g i) (q 1))
GG QQ) =
(Vi. anncom_to_com (ac i) = ¢ i) —
F COBEGIN SCHEME [lo < i < N] ((c i), p i, r i, g i, q i) COEND
SAT [Init, RR , GG, QQI"
(proof)

theorem valid_multipar_explicit:
assumes
local_sat: "Ai. lo < i A i < N = annquin_valid (iac i)" and
pre: "Ai. lo < i A i <N = init C pre0f (iac i)" and

19

rely: "Ai. 1o < i A i < N = RR C rely0f (iac i)" and
guar_imp_rely: "Ai j. lo < i Ai<kN = 1o < j A j <N =1 #j
=— guar0f (iac i) C rely0f (iac j)" and
guar: "Ai. lo < i A i < N = guar0f (iac i) C gg" and
post: "([)i€{lo..<N}. postOf (iac i)) C final"
shows "multipar_valid (MultiParCode init RR lo N iac gg final)"

{proof)

theorem valid_multipar_offset_explicit:

assumes
local_sat: "Ai. lo < i A i < N = annquin_valid (iac i)" and
pre: "Ai. lo < i A i <N = init C pre0f (iac i)" and
rely: "Ai. 1o < i A'i < N = RR C rely0f (iac i)" and
guar_imp_rely: "Ai j. lo < i A i<kN = 1o < j A j <N =1 #j

—> guar0f (iac i) C rely0f (iac j)" and

guar: "Ai. lo < i A i < N = guar0f (iac i) C gg" and
post: "([)i€{lo..<N}. postOf (iac i)) C final"

shows "multipar_valid_offset (MultiParCode init RR lo N iac gg final)"

(proof)

theorem valid_multipar_explicit2:
assumes
local_sat: "Ai. lo < i A i < N = annquin_valid {p i,r i} ¢ i {g i ,q i}" and
pre: "Ai. lo < i A i <N = init C p i" and
rely: "Ai. 1o < i Ai <N = RR C r i" and
guar_imp_rely: "Ai j. lo < i A i<N = lo < jA j<N =i # j= giCr j" and

guar: "Ai. lo < i A i <N = gi C gg" and
post: "([)i€{lo..<N}. q i) C final"
shows "multipar_valid (MultiParCode init RR lo N (Ai. {p i,r i} ¢ i {g i ,q i}) gg
final)"
(proof)

theorem valid_multipar_explicit_with_invariant:
assumes
local_sat: "Ai. i < N = annquin_valid {p i,r i} ¢ i J/ Inv {g i ,q i}" and
pre: "Ai. i < N = init € p i N Inv" and
rely: "Ai. i <N = RR C r i N pred_to_rel Inv" and
guar_imp_rely: "Ai j. i<N = j < N = 1 # j
— invar_and_guar Inv (g i) C r j N pred_to_rel Inv" and
guar: "Ai. i < N = invar_and_guar Inv (g i) C gg" and
post: "(()i<N. q i N Inv) C final"
shows "multipar_valid (MultiParCode init RR O N (Ai. {p i,r i} ¢ i J/ Inv {g i ,q i}
gg final)"
{proof)

method method_annquin_multi_parallel =
rule valid_multipar_explicit2,
goal_cases local_sat pre rely guar_imp_rely guar post

3.6 The Main Tactics

lemmas rg_syntax_simps_collection =
multipar_valid.simps
multipar_valid_offset.simps
add_invar.simps
basic_to_basic_anno_syntax.simps
postOf .simps preOf.simps relyO0f.simps guarOf.simps

20

annquin_simp
anncom_spec_valid.simps

method rg_proof_expand = (auto simp only: rg_syntax_simps_collection ; simp?)

method method_anno_ultimate =
method_annquin_basicanno
| method_annquin_seq+
| method_annquin_while
| method_annquin_multi_parallel
| rg_proof_expand

4 Examples Reworked

The examples in the original library [2], expressed using our new syntax, and proved using our
new tactics.

theory RG_Examples_Reworked
imports RG_Annotated_Commands

begin
declare [[syntax_ambiguity_warning = false]]

4.1 Setting Elements of an Array to Zero

record Examplel =
A :: "nat list"

theorem Examplel:
"global_init: { n < length “A |}
global_rely: id(A)
| i<n e
{{ i< length "A |},
{ length °A = length A A %A ! i =2A 1 i |}
“A = “A[i := 0]
{ { length °A = length *A A (Vj <n. i # j — %! j=2173 |},
{-Aari=o0]7}
global_guar: { True [}
global post: { Vi <n. "A ! i =20 ["
{proof)

=

theorem Examplel’’:
"annotated global_init: { length A = N |} global rely: { 2A = °A |}

| i<Ne@

{ { True [,
{ 1length 2A = length °A A 2A ! i = °A ! i} }
("A := "A[i :=f i])- / {length "A =N}

{ { length 2A = length °A A (Vj. i #j — 2A ' j=°2"3) |,
J Avi=fil}

global_guar: { length 2A = length °A}

global_post: { take N "A = map f [0 ..< N] "

(proof)

21

4.2 Incrementing a Variable in Parallel

Two Components

record Example2 =

X :: nat
c_0 :: nat
c_1 :: nat

lemma ex2 leftside:
"{ { "c.0o=0], id(c_0) }
Basic (("x « “x + 1) o> (“c_0 « 1))
J{ x= "c 0+ "c_1}
{ id(c_1), { "c_0 =1 3"
(proof)

lemma ex2_rightside:
"{{ "c_.1=0], id(c_1) }
Basic (("x + “x + 1) o> (“c_1 «+ 1))
J 4 x= "cO0+ "c1]
{ id(c_0), { “c_1 =1 [}"
(proof)

theorem Example2b:
"{{ c0=0A "c1=07], ids({c_0, c_1}) }
(Basic (("x < "x + 1) o> ("c_0 « 1))) || (Basic (("x < "x + 1) o> (“c_1 « 1))
J 4 x= "cO0+ "c1]
{ UNIV, { True |} }"
(proof)

Parameterised

lemma sum_split:
"(j::nat) < (n::nat)
— sum a {0..<n} = sum a {0..<j} + a j + sum a {j+1..<n}"

(proof)

Intuition of the lemma above: Consider the sum of a function b k with k ranging from 0 to n -
1. Let j be an index in this range, and assume b j = 0. Then, replacing b j with 1 in the sum,
the result is the same as adding 1 to the original sum.

lemma Example2_lemma2_replace:
assumes "(j::nat) < n"
and "b’ = b(j:=xx::nat)"
shows "(3>0 i =0 ..<n. b> i) =(. i=0..<n.bi)-bj+ xx"
(proof)

lemma Example2_lemma2_SucO[simp]:
assumes "(j::nat) < n"
and "b j = 0"
and "b’ = b(j:=1)"
shows "Suc () i::nat =0 ..<n. bi)=(i=0..<n. b i)"
(proof)
record Example2_param =
y :: nat
C :: "nat = nat"

lemma Example2_local:
"i <n—

22

{4 ci=ol},
id(C @ i) }

Basic ((y « "y + 1) o> ("C «+ "C(i:=1)))
/{1 vy=C kitnat =0 ..<n. "Ck) |

{{Vj<n i#j—°%j =273},
§ ci=1F]23»
(proof)

theorem Example2_param:
assumes "0 < n" shows
"global_init: { "y = 0 A sum "C {0 ..< n} =0 |
global_rely: id(C) N id(y)

| i <n o
{{ ci=0}],
id(C @ i) }

Basic (("y < "y + 1) o> (°C « “C(i:=1)))
J{ y=sum "CA{0 ..<n} |
{{Vj<n i#j—°°Cj=2j],
§ ci=1}73
global_guar: { True |}
global_post: { "y =n ["
(proof)

As above, but using an explicit annotation and a different method.

theorem Example2_param_with_expansion:
assumes "0 < n" shows "annotated
global_init: { "y = 0 A sum "C {0 ..< n} =0 |
global_rely: id(C) N id(y)
[i<ne
{{ ci=o01},
id(C @ i) }
(Basic (("y < "y + 1) o> ("C < “C(i:=1))))-
J{ y=sum "CA{0 ..<n} |}
{{Vij<n i#j—°Cj=27j],
{ ci=1}1%
global_guar: { True |}
global_post: { "y =n ["
{proof)

4.3 FindP

Titled “Find Least Element” in the original [2], the "findP" problem assumes that n divides m,
and runs n threads in parallel to search through a length-m array B for an element that satisfies
a predicate P. The indices of the array B are partitioned into the congruence-classes modulo n,
where Thread i searches through the indices that are congruent to i mod n.

In the program, X i is the next index to be checked by Thread i. Meanwhile, Y i is either
the out-of-bound default m + i if Thread i has not found a P-element, or the index of the first
P-element found by Thread i.

The first helper lemma: an equivalent version of mod_aux found in the original.

lemma mod_aux :
"a mod (n::mat) =i = a<jAj<a+n=— jmodn # i"

(proof)

record Example3 =

23

X :: "nat = nat"
Y :: "nat = nat"

lemma Example3:
assumes "m mod n=0" shows "annotated
global_init: {Vi <n. Xi=1A Yi=m+1il]
global_rely: { °X = 2X A °Y = 2Y}
| i<ne

{ {(°X i) mod n=i A (Vj< X i. j mod n=i — —P(B!j)) A (Y i<m — P(B!("Y 1)) A 7Y
i< m+i)f,
{(Vj<n. i#j — 2¥ j <°%Y j) A°X i=2X1iA°i=2 i} }

WHILEa (Y j <n. "X i < “Y j) DO
{stable_guard: { "X i < Y i}}}
IFa P(B!("X 1)) THEN

("Y[i] := "X 1)-
ELSE

("X[i] := "X i + n)-
FI

0D

{ {(Vji<n. i#j — °X j = 2X F A°Y j =2Y j) A 2Y i < °V i},
{ ("X i) mod n =i A (Vj<“X i. j mod n=i — —P(B'j))
A (7Y i<m — P(B!' (7Y 1)) A 7Y i< m+i)
A (Fj<n. Y 3 < Xi) |}

global_guar: {Truel

global _post: { V i < n. ("X i) mod n=i
A (Vj<"X i. j mod n=i — —P(B!j))
A (7Y i<m — PB!'("Y i)) ATY i< m+i)
A (Jj<n. Y j < "X i) v

(proof)

Below is the original version of the theorem, and is immediately derivable from the above. We
include some formatting changes (such as line breaks) for better readability.

lemma Example3_original: "m mod n=0 —
F COBEGIN SCHEME [0<i<n]

(WHILE (¥ j <n. "X i< "Y j) DO
IF P(B! ("X i)) THEN "Y:=-Y (i:="X i) ELSE "X:= "X (i:=("X i)+ n) FI
oD,

{C°X 1) mod n=i A (Vj<"X i. j mod n=i — —-P(B!j)) A (Y i<m — P(B!("Y i)) A "Y i<
m+i) |},

{(Vj<n. i#j — 2Y j < °¥ §) A °X i =X i A °Y i = ?Y i},
{(Vji<n. i#j — °X § = 2K j A °Y j =Y j) A ®Y i < °Y i},

{C°X i) mod n=i A (Vj<"X i. j mod n=i —» —P(B!j)) A (Y i<m —» P(BI("Y i)) A “Y i<
m+i) A (Jj<n. Y j < X i) P

COEND
SAT [
{Vi<n, "Xi=iA "Yi-=mntl],

{ox=2X A °Y=2Y]},

24

{True},

{v i <n. ("X i) mod n=i A
(Vj< X i. j mod n=i — —P(B!j)) A
(7Y i<m — P(B! (7Y 1)) A7Y i< m+i) A
Jj<n. Y j < "X D"

(proof)

end

5 Abstract Queue Lock

theory Lock_Abstract_Queue

imports
RG_Annotated_Commands

begin

We identify each thread by a natural number.

type__synonym thread_id = nat

The state of the Abstract Queue Lock consists of one single field, which is the list of threads.

record queue_lock = queue :: "thread_id list"

The following abbreviation describes when an object is at the head of a list. Note that both
clauses are needed to characterise the predicate faithfully, because the term x = hd xs (i.e. x is
the head of xs) does not imply that x € set xs.

abbreviation at_head :: "’a = ’a list = bool" where
"at_head x xs = xs # [A x = hd xs"

The contract of the Abstract Queue Lock consists of two clauses. The first states that a thread
cannot be added to or removed from the queue by its environment. The second states that the
head of the queue remains at the head after any environment-step.

abbreviation queue_contract :: "thread_id = queue_lock rel" where
"queue_contract i = {
(i € set °queue <— i € set %queue) A
(at_head i °queue — at_head i “queue) [}"

The RG sentence of the Release procedure is made into a separate lemma below.

lemma qlock_rel:
"rely: queue_contract t guar: for_others queue_contract t
inv: { distinct “queue |} code:
{ { at_head t “queue |} }

“queue :_= tl “queue
{{ t ¢ set "queue |} }"
(proof)

The correctness of the Abstract Queue Lock is expressed by the following RG sentence, which
describes a closed system of n threads, each repeatedly calls Acquire and then Release in an
infinite loop. We omit the critical section between Acquire and Release, as it does not access
the lock.

The Acquire procedure consists of two steps: enqueuing and spinning. The Release procedure
consists of only the dequeuing step.

25

Each thread can only be in the queue at most once, so the invariant requires the queue to be
distinct.

The queue is initially empty; hence the global precondition. Being a closed system, there is no
external actor, so the rely is the identity relation, and the guarantee is the universal relation.
The system executes continuously, as the outer infinite loop never terminates; hence, the global
postcondition is the empty set.

theorem qlock_global:
assumes "0 < n"
shows "annotated
global_init: { “queue = [] | global_rely: Id
| i<n e
{{ i ¢ set "queue [}, queue_contract i }

WHILEa True DO
{stable_guard: { i ¢ set “queue |} }
NoAnno (“queue := “queue @ [i]) .;
{{ i€ set "queue |} }
NoAnno (WHILE hd “queue # i DO SKIP 0OD) .;
{ { at_head i “queue [}
NoAnno (“queue := tl “queue)

0D

/ { distinct “queue |} { for_others queue_contract i, {} }
global_guar: UNIV global_post: {}"

(proof)

end

6 Ticket Lock

theory Function_Supplementary
imports Main
begin

This theory contains some function-related definitions and associated lemmas that are not
included in the built-in library. They are grouped into two sections:

1. Predicates that describe functions that are injective or surjective when restricted to subsets
of their domains or images.

2. A higher-order function that performs a list of updates on a function.

The content of this theory was conceived during a project on formal program verification of
locks (i.e. mutexes). The new definitions and lemmas arose from the proof of data refinement
from an abstract queue-lock to a ticket-lock.

Inspired by the theories List Index (Nipkow 2010) and Fized-Length Vectors (Hupel 2023) on
the Archive of Formal Proofs, we hope that these new definitions and lemmas may also be of
help to others.

6.1 Helpers: Inj, Surj and Bij

It is sometimes useful to describe a function that is not injective in itself, but is injective when
its image is restricted to a subset.

26

For example, consider the function {a + 1,b+ 2, ¢+ 2}. This function is not injective, but if
its image is restricted to {1}, the new function {a — 1} becomes injective.

This motivates the following definition.

definition inj_img :: "(’a = ’b) = ’b set = bool" where
"inj_img £f B =V x1 x2. f x1 = f x2 A f x1 € B — x1 = x2"

Similarly, the next definition describes a function that becomes surjective when its codomain is
restricted to a subset.

In other words, “surj__codom f B” means that every element in B is mapped to by f.

For example, consider the function that maps from the domain {a,b} to the codomain {1,2}
with the graph {a — 1,b+ 1}. This function is not surjective, but if its codomain is restricted
to {1}, then the new function becomes surjective.

definition surj_codom :: "(’a = ’b) = ’b set = bool" where
"surj_codom f B=V y € B. (4 x. f x=7y)"
We can also describe a function that remains surjective on a subset of its domain.

In other words, “surj_on f A” means that mappings that originate from A already span the
entire codomain.

Note that this is a notion stronger than plain surjectivity, which will be shown in the later
subsection “Surj-Related”.

definition surj_on :: "(’a = ’b) = ’a set = bool" where
"surj on f A=V y. (3 x€ A fx=y)"

Note that all three definitions above are most likely not included in the built-in library, as
suggested by the outputs of the following search-commands.

find_ consts name:"inj"
find_ consts name:"surj"

6.1.1 Inj-Related

lemma inj_implies_inj_on: "inj f = inj_on f A"

{proof)

lemma inj_implies_inj_img: "inj f = inj_img f B"
(proof)

lemma inj_img_empty: "inj_img £ {}"

{proof)

lemma inj_img_singleton: "V x. f x # b = inj_img f {b}"

{proof)

lemma inj_img_subset:
"[inj_img £ B ; B> C B | = inj_img £ B’"
(proof)
lemma inj_img_superset:
"[inj_img £ B ; V x. £ x ¢ B> - B | = inj_img £ B’"
{proof)

lemma inj_img_not_mapped_to: "Vx. f x ¢ B = inj_img f B"
{proof)

lemma inj_img_add_one_extra:

27

"[inj_img £ B ; V x. £ x # b | = inj_img £ (B U {p})"
(proof)

lemma inj_img_union_1:
"[inj_img £ Bl ; inj_img f B2 | = inj_img f (B1 U B2)"
(proof)

lemma inj_img_union_2:

"[inj_img £ Bl ; V x. f x ¢ B2 | = inj_img £ (B1 U B2)"
(proof)

lemma inj_img_fun_upd_notin:
"[inj_img £ B ; V x. £ x # b] = inj_img (fun_upd f a b) B"
(proof)

lemma inj_img_fun_upd_singleton:
"W x. f x # b = inj_img (fun_upd f a b) {b}"
{proof)

6.1.2 Surj-Related

Lemmas related to “surj codom”.
lemma surj_implies_surj_codom: "surj f = surj_codom f B"

{proof)

lemma surj_codom_triv: "surj_codom f (f ¢ A)"

(proof)

lemma surj_codom_univ: "surj_codom f UNIV = surj f"

{proof)

lemma surj_codom_empty: "surj_codom f {}"

(proof)

lemma surj_codom_singleton: "b € range f — surj_codom f {b}"

(proof)

lemma surj_codom_subset:
"[surj_codom £ B ; B> C B | = surj_codom f B’"

{proof)

lemma surj_codom_union:
"[surj_codom f Bl ; surj_codom f B2 | = surj_codom f (B1 U B2)"

{proof)

Lemmas related to “surj on”.

lemma surj_on_implies_surj: "surj_on f A = surj f"

{proof)

lemma surj_on_univ: "surj_on f UNIV = surj f"

{proof)

lemma surj_on_never_emptyset: "— surj_on f {}"
{proof)

lemma surj_on_superset:
"[surj_on £f A ; A C A’ | = surj_on f A"

28

(proof)
lemma surj_on_union:

"[surj_on f Al ; surj_on f A2 | = surj_on f (A1 U A2)"

(proo)

6.1.3 Bij and Inv

This section relates the new definitions to the existing “bijective between” and “inverse” defi-
nitions.
lemma bij_betw_implies_inj_img: "bij_betw f UNIV B = inj_img f B"

(proof)

lemma bij_betw_implies_surj_codom: "bij_betw f A B = surj_codom f B"

{proof)

lemma bij_betw_implies_surj_on: "bij_betw f A UNIV — surj_on f A"

(proof)

Other lemmas

lemma bij_extension:
assumes "a ¢ A"
and "b ¢ B"
and "bij_betw f A B"
shows "bij_betw (fun_upd f a b) (A U {a}) (B U {b})"

(proof)

lemma bij_remove_one:
assumes "a € A"
and "bij_betw f A B"
shows "bij_betw f (A - {a}) (B - {f a})"

(proof)

lemma set_remove_one_element:
assumes "x ¢ B"

and "B C A"
and "A - {x} C B"
shows "A - {x} = B"
(proof)

lemma inv_image_restrict_inj:
assumes "bij_betw f A B"
and "inj_img f B"
and "f a € B"
shows "a € inv f ¢ B"

{proof)

lemma inv_image_restrict:
assumes "inj_on f A"
and "f a € B"
and "Vx. (f x € B — x € A"
shows "a € inv f ¢ B"

(proof)
lemma inv_image_restrict_neg:

assumes "bij_betw f A B"
and "f a ¢ B"

29

and "Vx. (f x € B — x € A)"
shows "a ¢ inv f ¢ B"

(proof)

lemma inv_image_restrict_neg’:
assumes "surj_codom f B"
and "f a ¢ B"
and "Vx. (f x € B — x € A)"
shows "a ¢ inv £ ¢ B"

(proof)

lemma bij_betw_invi:
assumes "bij_betw f A B"
and "inj_img f B"
and "f a € B"
shows "inv f (f a) = a"

(proof)

lemma bij_betw_inv2:
assumes "bij_betw f A B"

and "b € B"
shows "f (inv f b) = b"
(proof)

lemma surj_codom_inj_on_vimage_bij_betw:
"[surj_codom f B ; inj_on f (vimage f B) | = bij_betw f (vimage f B) B"
{proof)

6.2 Helpers: Multi-Updates on Functions

fun fun_upd_list :: "(’a = ’b) = (’a X ’b) list = (’a = ’b)" where
"fun_upd_list f [] = £"
| "fun_upd_list f (xy # xys) = fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"

This notion can also be defined following the foldl pattern, although this alternative form is
not used.

fun fun_upd_list_1 :: "(’a = ’b) = (a X ’b) list = (’a = ’b)" where
"fun_upd_list_1 £ [] = £"
| "fun_upd_list_1 f (xy # xys) = fun_upd_list_1 (fun_upd f (fst xy) (snd xy)) xys"

Examples of the two definitions above.

value "fun_upd_list (Ax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
value "fun_upd_list_1 (Ax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"

Both definitions above resemble "folds" with some un-currying, as shown by the following two
lemmas.

lemma fun_upd_list_is_foldr:
"fun_upd_list fO pairs = foldr (A pair f. fun_upd f (fst pair) (snd pair)) pairs f0"
{proof)

lemma fun_upd_list_1_is_foldl:
"fun_upd_list_1 fO pairs = foldl (A f pair. f(fst pair := snd pair)) fO0 pairs"

(proof)

These two definitions are equivalent when every domain-value is updated at most once.

lemma fun_upd_list_1_distinct_rewrite:
"distinct (map fst (xy # xys))

30

— fun_upd_list_1 (fun_upd f (fst xy) (snd xy)) xys
= fun_upd (fun_upd_list_1 f xys) (fst xy) (snd xy)"
(proof)

lemma fun_upd_list_defs_distinct_equiv:
"distinct (map fst pairs) = fun_upd_list f pairs = fun_upd_list_1 f pairs"
(proof)

Smaller propositions

lemma fun_upd_list_distinct_rewrite:
"distinct (map fst (xy # xys))
—> fun_upd_list (fun_upd f (fst xy) (snd xy)) xys
= fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"
(proof)

lemma fun_upd_list_hd_1:
"fun_upd_list f (zip (x # xs) (y # ys)) x =y
(proof)

lemma fun_upd_list_hd_2:
" xs # [1 ; ys # [1 | = fun_upd_list f (zip xs ys) (hd xs) = hd ys"
(proof)

lemma fun_upd_list_not_hd:
assumes "a #* x"
shows "fun_upd_list f (zip (x # xs) (y # ys)) a = fun_upd_list f (zip xs ys) a"

(proof)

lemma fun_upd_list_not_updated_map:
assumes "a ¢ set (map fst xys)"
shows "fun_upd_list f xys a = f a"

(proof)

lemma fun_upd_list_not_updated_zip:
assumes "a ¢ set xs"
shows "fun_upd_list f (zip xs ys) a = f a"

(proof)

6.2.1 Ordering of Updates

The next two lemmas shows that the ordering of the updates does not matter, as long as the
updates are distinct.

lemma fun_upd_list_distinct_reorder:
assumes "distinct (map fst pairs)"
and "ab € set pairs"
shows "fun_upd_list f pairs
= (fun_upd_list f (removel ab pairs)) (fst ab := snd ab)"

(proof)

lemma fun_upd_list_distinct_reorder_general:
assumes "distinct (map fst pairsi)"
and "distinct (map fst pairs2)"
and "set pairsl = set pairs2"
shows "fun_upd_list f pairsl = fun_upd_list f pairs2"

(proof)

31

6.2.2 Surjective

lemma helper_surj_zip_1:
assumes "a € set xs"
and "length xs = length ys"
shows "fun_upd_list f (zip xs ys) a € set ys"
(proof)

lemma fun_upd_list_surj_zip_1:
assumes "length xs = length ys"
shows "fun_upd_list f (zip xs ys)

{proof)

[4

set xs C set ys"

lemma fun_upd_list_surj_map_1:
"(fun_upd_list f xys) ¢ set (map fst xys) C set (map snd xys)"
{proof)

lemma fun_upd_list_surj_map_2:
assumes "distinct (map fst xys)"
shows "set (map snd xys) C (fun_upd_list f xys)

(proof)

4

set (map fst xys)"

6.2.3 Injective

lemma helper_inj_head:
assumes f_def: "f = fun_upd_list fO (zip xs ys)"
and distinct_ys: "distinct ys"
and length_equal: "length xs = length ys"
and non_empty: "xs # []"
and 0: "a € set xs A b € set xs A a # b"
and 1: "a = hd xs A b € set (tl xs)"
shows "f a # f b"

{proof)

lemma helper_inj_tail:
assumes "distinct xs"
and "distinct ys"
and "length xs = length ys"
and "a € set (tl xs)"
and "b € set (tl xs)"
and "a #* b"
shows "fun_upd_list f (zip xs ys) a # fun_upd_list f (zip xs ys) b"
(proof)

theorem fun_upd_list_inj_zip:
assumes "distinct xs"
and "distinct ys"
and "length xs = length ys"
and "xs # [1"
shows "inj_on (fun_upd_list f (zip xs ys)) (set xs)"

(proof)

theorem fun_upd_list_surj_zip:
assumes "f = fun_upd_list fO (zip xs ys)"
and "distinct xs"
and "length xs = length ys"
shows "f ¢ set xs = set ys"

{proof)

32

theorem fun_upd_list_bij_betw_zip:
assumes "distinct xs"
and "distinct ys"
and "length xs = length ys"
and "xs # [1"
shows "bij_betw (fun_upd_list f (zip xs ys)) (set xs) (set ys)"

{proof)

lemma fun_upd_list_distinct:
assumes "distinct (map snd (xy # xys))"
and "f x ¢ set (map snd (xy # xys))"
shows "fun_upd_list f xys x # snd xy"
(proof)

theorem inj_img_fun_upd_list_map:
assumes "distinct (map snd xys)"
and "V x. f x ¢ set (map snd xys)"
shows "inj_img (fun_upd_list f xys) (set (map snd xys))"

(proof)

theorem inj_img_ fun_upd_list_zip:
assumes '"distinct ys"
and "length xs = length ys"
and "V x. f x ¢ set ys"
shows "inj_img (fun_upd_list f (zip xs ys)) (set ys)"

{proof)

6.2.4 Set- and List-Intervals

lemma fun_upd_list_new_interval:
assumes "length xs = length ys"
shows "fun_upd_list f (zip xs ys) i € {f i} U set ys"

{proof)

lemma helper_interval_length:
"length [1 ..< length xs + 1] = length xs"
{proof)

lemma helper_interval_union:
"{O::nat} U {1 ..<n+ 1} ={0 ..<n + 1}"
(proof)

lemma fun_upd_list_interval:
"fun_upd_list (Ax.0) (zip xs [1 ..< length xs + 1]) z € {0 ..< length xs + 1}"

(proof)

theorem fun_upd_list_interval_bij:
assumes "f = fun_upd_list (Ax.0) (zip xs [1 ..< length xs + 1])"
and "distinct xs"
shows "bij_betw f {i. 1 < f i} {1 ..< length xs + 1}"

(proof)

end

6.3 Basic Definitions
theory Lock_Ticket

33

imports
RG_Annotated_Commands
Function_Supplementary

begin
type__synonym thread_id = nat

definition positive_nats :: "nat set" where
"positive_nats = { n. 0 < n }"

The state of the Ticket Lock consists of three fields.

record tktlock_state =

now_serving :: "nat"
next_ticket :: "nat"
myticket :: "thread_id = nat"

Every thread locally stores a ticket number, and this collection of local variables is modelled
globally by the myticket function.

When Thread i joins the queue, it sets myticket i to be the value next_ticket, and atomically
increments next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is
supported on most computer systems. Thread i then waits until the now_serving value becomes
equal to its own ticket number myticket i. When Thread i leaves the queue, it increments
now_serving.

These steps correspond to the following code for Acquire and Release. Note that we use forward
function composition to model the Fetch-And-Add instruction.

acquire = ((myticket i := next_ticket) o>
(next_ticket := next_ticket + 1));
WHILE now_serving # myticket i DO SKIP 0D)

release = now_serving := now_serving + 1

Conceptually, Thread i is in the queue if and only if now_serving < myticket i and is at the
head if and only if now_serving = myticket i.

Now, in the initial state, every thread holds the number 0 as its ticket, and both now_serving
and next_ticket are set to 1.

abbreviation tktlock_init :: "tktlock_state set" where
"tktlock_init = { “myticket = (A\j. 0) A
“now_serving = 1 A “next_ticket = 1 ["

We further define a shorthand for describing the set of ticket in use; i.e. those numbers from
now_serving up to, but not including next_ticket. This shorthand will later be used in the
invariant.

abbreviation tktlock_contending set :: "tktlock_state = thread_id set" where
"tktlock_contending _set s = { j. now_serving s < myticket s j }"

We now formalise the invariant of the Ticket Lock.

abbreviation tktlock_inv :: "tktlock_state set" where
"tktlock_inv = ﬂ “now_serving < “next_ticket A
1 < “now_serving A

34

(V j. “myticket j < “next_ticket) A
bij_betw “myticket “tktlock_contending_set { “now_serving ..< “next_ticket} A
inj_img “myticket positive_nats [}"

The first three clauses are basic inequalities.

The penultimate clause stipulates that the function myticket of every valid state is bijective
between the set of queuing/contending threads (those threads whose tickets are not smaller
than now_serving) and .

The final clause ensures that the function myticket is injective when 0 is excluded from its
codomain. In other words, all threads, whose tickets are non-zero, hold unique tickets.

As for the contract, the first clause ensures that the local variable myticket i does not change.
Meanwhile, the global variables next_ticket and now_serving must not decrease, as stipulated
by the second and third clauses of the contract.

The last two clauses of the contract correspond to the two clauses of the contract of the Ab-
stract Queue Lock, where i € set queue and at_head i queue under the Abstract Queue Lock
respectively translate to now_serving < myticket i and now_serving = myticket i under the
Ticket Lock.

abbreviation tktlock_contract :: "thread_id = tktlock_state rel" where
"tktlock_contract i = { °myticket i = ®myticket i A
°next_ticket < ®next_ticket A
°now_serving < ®now_serving A
(®°now_serving < °myticket i ¢— ®now_serving < Zmyticket i) A
(°now_serving = °myticket i — ®now_serving = ®myticket i) [}"

We further state and prove some helper lemmas that will be used later.

lemma tktlock_contending_set_rewrite:
"tktlock_contending_set s U {i} = { (#) i — now_serving s < ~(myticket s)["

(proof)

lemma tktlock_used_tickets_rewrite:
assumes "now_serving s < next_ticket s"
shows "{now_serving s ..< next_ticket s} U {next_ticket s}
= {now_serving s ..< Suc (next_ticket s)}"

(proof)

lemma tktlock_enqueue_bij:
assumes "myticket s i < now_serving s"
and "bij_betw (myticket s) (tktlock_contending_set s) {now_serving s ..< next_ticket
S}"
shows "bij_betw ((myticket s) (i := next_ticket s))
(tktlock_contending set s U {i})
({now_serving s ..< next_ticket s} U {next_ticket s})"

(proof)
lemma tktlock_enqueue_inj:
assumes "s € tktlock_inv"
shows "inj_img ((myticket s) (i := next_ticket s)) positive_nats"

{proof)

method clarsimp_seq = clarsimp, standard, clarsimp

6.4 RG Theorems

The RG sentence of the first instruction of Acquire.

35

lemma tktlock_acql:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:
{ { "myticket i < “now_serving | }
BasicAnno ((‘myticket[i] < “next_ticket) o>
("next_ticket + “next_ticket + 1))
{ { "now_serving < “myticket i [}"
(proof)

A helper lemma for the Release procedure.

lemma tktlock_rel_helper:
assumes invl: "now_serving s = myticket s i"
and inv2: "myticket s i < next_ticket s"
and inv3: "Suc 0 < myticket s i"
and inv4: "V j. myticket s j < next_ticket s"
and bij_old: "bij_betw (myticket s)
{myticket s i < ~(myticket s)|
{myticket s i ..< next_ticket s}"
shows "bij_betw (myticket s)
{Suc (myticket s i) < ~(myticket s)|
{Suc (myticket s i) ..< next_ticket s}"

(proof)

The RG sentence for the Release procedure.

lemma tktlock_rel:
"rely: tktlock_contract i
guar: for_others tktlock_contract i
inv: tktlock_inv

code: { { “now_serving = “myticket i [}
“now_serving := "now_serving + 1
{ { “myticket i < “now_serving | }"

(proof)

The RG sentence for a thread that performs Acquire and then Release.

lemma tktlock_local:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

{ { “myticket i < “now_serving |} }

BasicAnno ((‘myticket[i] < “next_ticket) o>
(“next_ticket <« “mext_ticket + 1)) .;

{ { "now_serving < “myticket i [} }

NoAnno (WHILE “now_serving # “myticket i DO SKIP OD) .;

{ { "now_serving = “myticket i [} }
NoAnno (“now_serving := “now_serving + 1)
{ { “myticket i < “now_serving [} }"
(proof)

The RG sentence for a thread that repeatedly performs Acquire and then Release in an infinite
loop.

lemma tktlock_local_loop:
"rely: tktlock_contract i guar: for_others tktlock_contract i
inv: tktlock_inv anno_code:

{ { “myticket i < “now_serving |} }
WHILEa True DO

36

{stable_guard: { “myticket i < “now_serving |} }
BasicAnno ((‘myticket[i] < “next_ticket) o>
("next_ticket <« “mext_ticket + 1)) .;
{ { "now_serving < “myticket i | }
NoAnno (WHILE “now_serving # “myticket i DO SKIP 0D) .;
{ { "now_serving = “myticket i [} }
NoAnno (“now_serving := “now_serving + 1)
0D
{ { "myticket i < “now_serving | }"

(proof)

The global RG sentence for a set of threads, each of which repeatedly performs Acquire and
then Release in an infinite loop.

theorem tktlock_global:
assumes "0 < n"
shows "annotated
global_init: { “now_serving = 1 A “next_ticket = 1 A “myticket = (A\j. 0) |}
global _rely: Id
| i<neo

{ { "myticket i < “now_serving [}, tktlock_contract i }
WHILEa True DO
{stable_guard: { “myticket i < “now_serving |} }
BasicAnno ((‘myticket[i] < “next_ticket) o>
("next_ticket < “mnext_ticket + 1)) .;
{ { "now_serving < “myticket i |} }
NoAnno (WHILE “now_serving # “myticket i DO SKIP OD) .;
{ { "now_serving = “myticket i |} }
NoAnno (“now_serving := “now_serving + 1)
0D

// tktlock_inv { for_others tktlock_contract i, {} }
global_guar: UNIV
global_post: {}"

(proof)

end

7 Circular-Buffer Queue-Lock

This theory imports Annotated Commands to access the rely-guarantee library extensions, and
also imports the Abstract Queue Lock to access the definitions of the type-synonym thread_id
and the abbreviation at_head.

theory Lock_Circular_Buffer
imports
RG_Annotated_Commands

Lock_Abstract_Queue

begin

type__synonym index = nat

datatype flag_status = Pending | Granted

We assume a fixed number of threads, and the size of the circular array is 1 larger the number
of threads.

37

consts NumThreads :: nat

abbreviation ArraySize :: "nat" where
"ArraySize = NumThreads + 1"

The state of the Circular Buffer Lock consists of the following fields:

e myindex: a function that maps each thread to an array-index (where the array is modelled
by flag_mapping below).

e flag _mapping: an array of size ArraySize that stores values of type flag_status.
e tail: an index representing the tail of the queue, used when a thread enqueues.

e aux_head: an auxiliary variable that stores the index used by the thread at the head of
the queue; the head of the queue spins on the flag flag_mapping aux_head.

e aux_queue: the auxiliary queue of threads.

e aux_mid_release: an auxiliary variable that signals if a thread has executed the first in-
struction of release, but not the second.

record cblock_state =
myindex :: "thread_id = index"
flag_mapping :: "index = flag_status"
tail :: index
aux_head :: index
aux_queue :: "thread_id list"
aux_mid_release :: "thread_id option"

We initialise the array of flags (flag_mapping) with Granted in the zeroth entry and Pending
in all other entries. The indices tail and aux_head are initialised to 0. The queue is initially
empty, and no thread is in the middle of release. (See the conference article for an example.)
definition cblock_init :: "cblock_state set" where
"cblock_init = {

“flag_mapping = (A _. Pending) (0 := Granted) A

“tail = 0 A

“aux_queue = [] A

“aux_head = 0 A

“aux_mid_release = None ﬂ"

Similar to the Abstract Queue Lock, the acquire procedure of the Circular Buffer Lock consists
of two conceptual steps, and corresponds to the pseudocode below. (1) To join the queue,
Thread i stores the global index tail locally as myindex i, and atomically increments tail
modulo the array size. (2) Thread i then spins on its flag, which is the entry in the array at
index myindex i. When this flag changes from Pending to Granted, the thread has reached the
head of the queue.

acquire = ((myindex i := tail) o>
(tail := (tail + 1) mod ArraySize));
WHILE flag_mapping (myindex i) = Pending DO SKIP 0D

When Thread i releases the lock, it sets its flag to Pending. Then it sets the flag of the next
thread to Granted, which corresponds to the ‘next’ entry in the array, modulo the array size.
This is encoded as the pseudocode below.

release = flag_mapping[myindex i] := Pending ;
flag mapping[(myindex i + 1) mod ArraySize] := Granted

38

Auxiliary Variables. The release procedure consists of the single conceptual step of exiting
the queue, but is implemented here as two separate instructions. Hence, the auxiliary variable
aux_mid_release indicates when a thread is between the two lines of release, and allows us to
express the assertion there.

The other two auxiliary variables, aux_head (the head-index) and aux_queue, store information
that can in principle be inferred from the concrete variables (i.e. the non-auxiliary variables).
However, explicitly recording this information as auxiliary variables greatly simplifies the veri-
fication process.

In the code, these auxiliary variables need to be updated atomically with the relevant instruc-
tions. Below is the code of release with the auxiliary variables included. (Auxiliary variables
are added to acquire in a similar way.)

release = (flag_mapping[myindex i] := Pending o>
aux_mid_release := Some i) ;
(flag_mapping[(myindex i + 1) mod ArraySizel] := Granted o>
aux_queue := tl aux_queue o>
aux_head := (aux_head + 1) mod ArraySize o>
aux_mid_release := None)

Recall that we assume a fixed number of threads. This constant is furthermore assumed positive,
which we enforce with the use of the following locale.

locale numthreads_positive =
assumes assm_locale: "O < NumThreads"
begin

7.1 Invariant

A notion that helps us state the queue-clause of the invariant. The list of indices use by
the queuing threads is a contiguous list of integers modulo ArraySize. Note the possibility of
“wrapping around”, which is covered by the “else” clause in the definition.

definition used_indices :: "cblock_state = index list" where
"used_indices s = (if aux_head s < tail s
then [aux_head s ..< tail s]
else [aux_head s ..< ArraySize] @ [0 ..< tail s])"

lemma distinct_used_indices: "distinct (used_indices s)"

{proof)

lemma length_used_indices:
"length (used_indices s) = (if aux_head s < tail s
then tail s - aux_head s
else ArraySize - aux_head s + tail s)"

{proof)

The invariant of the Circular Buffer Lock is stated as separate parts below. The first definition
invar_flag relates flag_mapping with the head-index aux_head, and consists of two clauses. (1)
At every index that is not the head-index, the flag must be Pending. (2) As for the head-index
itself, there are two possibilities. When the thread at the head of the queue invoked release
but has only executed its first instruction, aux_mid_release becomes set to Some i; in this case,
the flag at the head-index is set to Pending, but the thread remains in the queue. In all other
cases, aux_mid_release = None, and the flag at the head-index is always Granted.

definition invar_flag :: "cblock_state set" where

39

"invar_flag = {
(V i # “aux_head. “flag mapping i = Pending) A
(“flag_mapping ~“aux_head = Pending <— “aux_mid_release # None) [}"

The next clause invar_queue describes the relationship between the auxiliary queue and the
other variables, including the set used_indices. The clause involving map further implies a
number of properties, such as the distinctness of aux_queue (which mirrors the invariant of the
Abstract Queue Lock), and the injectivity of myindex (i.e. each queuing thread has a unique
index).

definition invar_queue :: "cblock_state set" where
"invar_queue = {
(V i. 1 € set “aux_queue — i < NumThreads) A
(map “myindex “aux_queue = “used_indices) [}"

The overall invariant, cblock_invar, is the conjunction of invar_flag and invar_queue above,
with additional inequalities concerning tail, aux_head, and NumThreads.

definition invar_bounds :: "cblock_state set" where
"invar_bounds = {
“tail < ArraySize A
“aux_head < ArraySize [}"

abbreviation cblock_invar :: "thread_id = cblock_state set" where
"cblock_invar i =
invar_flag N invar_bounds N invar_queue N { i < NumThreads [}"

lemmas cblock_invariants =
invar_flag_def
invar_bounds_def
invar_queue_def
used_indices_def

7.1.1 Invariant Methods

We set up methods that generate structured proofs with named subgoals, to help us prove the
clauses of the invariant.

theorem thm_method_invar_flag:
assumes "V i # aux_head s. flag_mapping s i = Pending"
and "flag mapping s (aux_head s) = Pending
+— aux_mid_release s #* None"
shows "s € invar_flag"

(proof)

method method_invar_flag =
cases rule:thm_method_invar_flag,
goal_cases non_head_pending head_maybe_granted

theorem thm_method_invar_queue:
assumes "V i. i € set (aux_queue s) — i < NumThreads"
and "map (myindex s) (aux_queue s) = (used_indices s)"
shows "s € invar_queue"

(proof)

method method_invar_queue =
cases rule:thm_method_invar_queue,
goal_cases bound_thread_id map_used_indices

40

theorem thm_method_invar:
assumes flag: "s € invar_flag"
and bound: "s € invar_bounds A i < NumThreads"
and queue: "s € invar_queue"
shows "s € cblock_invar i"

(proof)

method method_cblock_invar =
cases rule:thm _method_invar,
goal_cases flag bound queue

7.1.2 Invariant Lemmas

The initial state satisfies the invariant.

lemma cblock_init_invar:
assumes assm_init: "s € cblock_init"
and assm_bound: "i < NumThreads"
shows "s € cblock_invar i"

(proof)

In a state that satisfies the flag-invariant, a thread is the head of the queue if its flag is Granted.
(If the flag of a thread is Pending, the thread may still be at the head of the queue. In this
case, the thread must be between the two instructions in release.)
lemma only_head_is_granted:
assumes "s € invar_flag"
and "flag_mapping s i = Granted"
shows "i = aux_head s"

{proof)

Let s be a state that satisfies the bounds-invariant, with n queuing threads. If we start from the
aux_head index, and “advance” n steps (with potential wrap-around), then we reach the global
tail index.

lemma head_tail_mod:

"s € invar_bounds —
tail s = (aux_head s + length (used_indices s)) mod (ArraySize)"

(proof)

If a state satisfies the queue-invariant (namely the clause with the map function, then the myindex
function is injective on the set of queuing threads. In other words, every queuing thread has a
unique index in a state that satisfies the queue-invariant.

lemma invar_map_inj_on:

"s € invar_queue — inj_on (myindex s) (set (aux_queue s))"

(proof)

In a state that satisfies the queue-invariant, the length of the queue is equal to the length of
the list of used indices.

lemma used_indices_map_queue:
"s € invar_queue — used_indices s = map (myindex s) (aux_queue s)"

(proof)

lemma length_used_indices_queue:
"s € invar_queue = length (used_indices s) = length (aux_queue s)"

(proof)

In a state that fully satisfies the invariant, if there is a thread that is not in the queue, then the
length of the queue must be smaller than the total number of threads.

41

lemma queue_bounded:
assumes "s € cblock_invar i"
and "i ¢ set (aux_queue s)"
shows "length (aux_queue s) < NumThreads"

(proof)

If a state that satisfies the bound- and queue-invariants, and if the queue is non-empty, then
the index held by the head of the queue must be the same as aux_head.

lemma head_and_head_index:
assumes "s € invar_bounds M invar_queue"
and "aux_queue s #* []"
shows "myindex s (hd (aux_queue s)) = aux_head s"

(proof)

In a state that satisfies the full invariant, if no thread is half-way through release and Thread
i is at the head of the queue, then the flag of Thread i must be Granted.

lemma head_is_granted:
assumes "s € cblock_invar i"
and "aux_mid_release s = None"
and "i = hd (aux_queue s)"
and "aux_queue s #* []"
shows "flag mapping s (myindex s i) = Granted"
(proof)

In a state that satisfies the queue-invariant, the global index tail is never held by a thread.
Indeed, tail is meant to be “free” for the next thread that joins the queue. Note that when a
thread is not in the queue, its index i becomes outdated, and tail may cycle back and coincide
with i.

lemma tail_never_used:

assumes "s € invar_queue"
shows "V j € set (aux_queue s). myindex s j # tail s"

(proof)

In a state that satisfies the full invariant, if the tail index is right before the aux_head index,
then it must be the case that every thread is in the queue.

lemma used_indices_full:
assumes "s € cblock_invar i"
and "(tail s + 1) mod ArraySize = aux_head s"
shows "length (used_indices s) = NumThreads"

(proof)

Conversely, if not every thread is in the queue, then the tail index is not right before the
aux_head index.

lemma space_available:
assumes assm_invar: "s € cblock_invar i"
and assm_q: "i ¢ set (aux_queue s)"
shows "(tail s + 1) mod ArraySize # aux_head s"

{proof)

The next lemma relates the append operation on the aux_head and tail indices to the append
operation on the list of used_indices. (The second and the last assumptions are the most crucial
ones. The rest are side-condition checks.)

lemma used_indices_append:

assumes "s € cblock_invar i"
and "aux_head s’ = aux_head s"

42

and "length (used_indices s) < NumThreads"
and "(tail s + 1) mod ArraySize # aux_head s"
and "tail s’ = (tail s + 1) mod ArraySize"

shows "used_indices s’ = used_indices s @ [tail s]"

(proof)

7.2 Contract

The contract of the Circular Buffer Lock is devised along three observations: (1) local variables
do not change; (2) global variables may change; and (3) auxiliary variables change similarly as
in the Abstract Queue Lock.

The first two areas are covered by contract_raw. The only local variable myindex i does not
change. The global variable tail may change, but is not included in the contract, as changes to
tail are not restricted. However, the other global variable flag_mapping is allowed to change
only in specific ways. As flag_mapping stores information about the head of the conceptual
queue, its allowed changes naturally relate to the head stays the head property. Under the
Circular Buffer Lock, Thread i is at the head of the queue when flag mapping (myindex i) =
Granted. Meanwhile, note that myindex i can become outdated if Thread i is not in the queue.
Hence, we need the premise i € set %aux_queue before the head stays the head statement in
the final clause of contract_raw.

definition contract_raw :: "thread_id = cblock_state rel" where
"contract_raw i = {
(i € set “aux_queue
— °flag _mapping (°myindex i) = Granted
— ?2flag_mapping (®myindex i) = Granted) A
(°myindex i = “myindex i) [}"

For the auxiliary variable aux_queue we require the same two clauses as in the contract of the
Abstract Queue Lock. As for aux_mid_release, only the head of the queue can invoke release
and hence modify aux_mid_release. Therefore, the second clause of contract_aux has the extra
equality in the consequent.

definition contract_aux :: "thread_id = cblock_state rel" where
"contract_aux i = {
(i € set ®aux_queue <— i € set ®aux_queue) A

(at_head i “aux_queue — at_head i Paux_queue A °aux_mid_release = %aux_mid_release)

I}u
The two definitions above combine into the overall contract.

abbreviation cblock_contract :: "thread_id = cblock_state rel" where
"cblock_contract t = contract_raw t N contract_aux t"

lemmas cblock_contracts[simp] = contract_raw_def contract_aux_def

7.3 RG Lemmas

abbreviation acq_linel :: "thread_id = cblock_state = cblock_state" where
"acq_linel i =
(‘myindex[i] <+ ~“tail) o>
(“tail < ("tail + 1) mod ArraySize) o>
(“aux_queue ¢« “aux_queue @ [i])"

lemma acq_1_invar:
assumes assm_old: "s € cblock_invar i"
and assm_new: "s’ = acq_linel i s"
and assm_pre: "i ¢ set (aux_queue s)"

43

shows "s’ € cblock_invar i"
(proof)

theorem cblock_acql:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{ i ¢ set "aux_queue | }
BasicAnno (acq_linel i)
{ { i € set "aux_queue | }"

(proof)

theorem cblock_acq2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i code:

{{ i € set "aux_queue | }
WHILE “flag mapping (“myindex i) = Pending DO SKIP 0D
{ { at_head i ~“aux_queue A ~“aux_mid_release = None [} }"
(proof)

abbreviation rel_linel :: "thread_id = cblock_state = cblock_state" where

"rel_linel i = (flag mapping[“myindex i] < Pending) o>
(“aux_mid_release <+ Some i)"

lemma rel_1_same:
"s’ = rel_linel i s =
(myindex s = myindex s’) A
(V j # myindex s i. flag mapping s j = flag_mapping s’ j) A
(tail s = tail s’) A
(aux_head s = aux_head s’) A
(aux_queue s = aux_queue s’)"

(proof)

lemma rel_1_invar:
assumes assm_old: "s € cblock_invar i"
and assm_new: "s’ = rel_linel i s"
and assm_pre: "at_head i (aux_queue s) A aux_mid_release s = None"
shows "s’ € cblock_invar i"

(proof)

lemma rel_1_est_guar:

assumes "s € { “aux_queue # [] A
hd “aux_queue = i A

“aux_mid_release =

M cblock_invar i"
and "s’ = rel_linel i s"

shows "(s, s’) € for_others cblock_contract i

N pred_to_rel (cblock_invar i)"

(proof)

theorem cblock_rell:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{ { at_head i ~“aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i)
{ { at_head i ~“aux_queue A ~“aux_mid_release = Some i [} }"

(proof)

44

abbreviation rel_line2 :: "thread_id = cblock_state = cblock_state" where
"rel line2 i =
(“flag_mapping[((“myindex i + 1) mod ArraySize)] < Granted) o>
(“aux_queue <+ tl “aux_queue) o>
(“aux_head < (“aux_head + 1) mod ArraySize) o>
(“aux_mid_release < None)"

lemma rel_2_same:
"s’ = rel_line2 i s —
myindex s = myindex s’ A
tail s = tail s’ A
(Y j # (myindex s i + 1) mod ArraySize.
flag _mapping s j = flag_mapping s’ j)"
(proof)

lemma rel_2_invar:
assumes assm_old: "s € cblock_invar i"
and assm_pre: "at_head i (aux_queue s) A aux_mid_release s = Some i"

and assm_new: "s’ = rel_line2 i s"
shows "s’ € cblock_invar i"
(proof)
lemma rel_2_est_guar:
assumes assm_old : "s € cblock_invar i"
and assm_pre : "at_head i (aux_queue s) A aux_mid_release s = Some i"
and assm_new : "s’ = rel_line2 i s"

shows "(s, s’) € for_others cblock_contract i
N pred_to_rel (cblock_invar i)"

(proof)

theorem cblock_rel2:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{ { at_head i ~“aux_queue A “aux_mid_release = Some i [} }
BasicAnno (rel_line2 i)
{{ i ¢ set "aux_queue | }"

(proof)

7.4 RG Theorems

theorem cblock_acq:

"rely: cblock_contract i guar: for_others cblock_contract i

inv: cblock_invar i anno_code:
{{ i ¢ set "aux_queue | }

BasicAnno (acq_linel i) .;
{{1i € set "aux_queue |} }

NoAnno (WHILE “flag mapping (‘myindex i) = Pending DO SKIP 0D)
{ { at_head i ~“aux_queue A ~“aux_mid_release = None [} }"

(proof)

theorem cblock_rel:

"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:

{ { at_head i ~“aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i) .;

{ { at_head i ~“aux_queue A “aux_mid_release = Some i [} }
BasicAnno (rel_line2 i)

{{ i ¢ set "aux_queue | }"

45

{proof)

theorem cblock_local:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{i¢ set "aux_queue | }
BasicAnno (acq_linel i) .;
{{ i€ set "aux_queue | }
NoAnno (WHILE “flag_mapping (“myindex i) = Pending DO SKIP OD) .;
{ { at_head i “aux_queue A “aux_mid_release = None [} }
BasicAnno (rel_linel i) .;
{ { at_head i ~“aux_queue A ~“aux_mid_release = Some i [}
BasicAnno (rel_line2 i)
{{ i ¢ set "aux_queue | }"

(proof)

When Sledgehammer is applied directly to one of the subgoals of the next theorem cblock_local_loop,
several solvers do find proofs but do not report back. However, when that subgoal is explicitly
copied into a separate lemma below, sledgehammer does find an SMT proof.

lemma lma_tmp:
assumes
"rely: cblock_contract t N pred_to_rel (cblock_invar t)
guar: invar_and_guar (cblock_invar t) (for_others cblock_contract t)
anno_code:
{{t ¢ set “aux_queuel} N cblock_invar t}
add_invar (cblock_invar t) (BasicAnno (acq_linel t) .;
{{t € set “aux_queuel}
NoAnno (WHILE “flag_mapping (“myindex t) = Pending DO SKIP QD) .;
{{at_head t “aux_queue A “aux_mid_release = Nonel}
BasicAnno (rel_linel t) .;
{{at_head t “aux_queue A “aux_mid_release = Some t[}
BasicAnno (rel_line2 t))
{{t ¢ set “aux_queuel} N cblock_invar t}"
shows
"anncom_spec_valid
({t ¢ set “aux_queue}} N cblock_invar t N {t ¢ set ~“aux_queuel)
(cblock_contract t N pred_to_rel (cblock_invar t))
(invar_and_guar (cblock_invar t) (for_others cblock_contract t))
({t ¢ set “aux_queue} N cblock_invar t)
(add_invar (cblock_invar t)
(BasicAnno (acq_linel t) .;
{{t € set ~aux_queuel}
NoAnno (WHILE “flag mapping (“myindex t) = Pending DO SKIP (D) .;
{{at_head t “aux_queue A “aux_mid_release = Nonel}
BasicAnno (rel_linel t) .;
{{at_head t “aux_queue A “aux_mid_release = Some t]l}
BasicAnno (rel_line2 t)))"

(proof)

theorem cblock_local_loop:
"rely: cblock_contract i guar: for_others cblock_contract i
inv: cblock_invar i anno_code:
{{ i ¢ set "aux_queue | }
WhileAnno UNIV
({ i ¢ set “aux_queue [)
(BasicAnno (acq_linel i) .;
{{ i€ set "aux_queue |} }
NoAnno (WHILE “flag mapping (“myindex i) = Pending DO SKIP 0D) .;

46

{ { at_head i ~“aux_queue A “aux_mid_release = None |} }
BasicAnno (rel_linel i) .;
{ { at_head i “aux_queue A “aux_mid_release = Some i [}
BasicAnno (rel_line2 i))
{3
(proof)

The overall theorem expressing the correctness of the Circular Buffer Lock.

theorem cblock_global:
"annotated global_init: cblock_init global_rely: Id
| i < NumThreads @

{ { i ¢ set “aux_queue [}, cblock_contract i }
WhileAnno UNIV
({ i ¢ set “aux_queue [)
(BasicAnno (acq_linel i) .;
{{ i€ set "aux_queue |} }
NoAnno (WHILE “flag mapping (“myindex i) = Pending DO SKIP 0OD) .;
{ { at_head i “aux_queue A “aux_mid_release = None |} }
BasicAnno (rel_linel i) .;
{ { at_head i “aux_queue A “aux_mid_release = Some i [}
BasicAnno (rel_line2 i))

// cblock_invar i { for_others cblock_contract i, {} }
global_guar: UNIV global_post: {}"

(proof)
end

End of locale

end

End of theory

Acknowledgement

This work was funded by the Department of Defence, and administered through the Advanced
Strategic Capabilities Accelerator.

References

[1] R. J. Colvin, S. Heiner, P. Hofner, and R. C. Su. Rely-guarantee concurrency verification
of queued locks in Isabelle/HOL. In Verified Software: Theories, Tools, and Ezperiments
(VSTTE), 2025.

[2] L. Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In Programming Languages
and Systems (ESOP), pages 348-362, 2003.

47

	Introduction
	Rely-Guarantee (RG) Syntax Extensions
	Lifting of Invariants
	RG Sentences
	RG Subgoal-Generating Methods
	Basic
	Looping constructs
	Conditionals

	Parallel Compositions
	Binary Parallel
	Multi-Parallel

	Syntax of Record-Updates

	Annotated Commands
	Annotated Quintuples
	Structured Tactics for Annotated Commands
	Binary Parallel
	Helpers: Index Offsets
	Multi-Parallel
	The Main Tactics

	Examples Reworked
	Setting Elements of an Array to Zero
	Incrementing a Variable in Parallel
	FindP

	Abstract Queue Lock
	Ticket Lock
	Helpers: Inj, Surj and Bij
	Inj-Related
	Surj-Related
	Bij and Inv

	Helpers: Multi-Updates on Functions
	Ordering of Updates
	Surjective
	Injective
	Set- and List-Intervals

	Basic Definitions
	RG Theorems

	Circular-Buffer Queue-Lock
	Invariant
	Invariant Methods
	Invariant Lemmas

	Contract
	RG Lemmas
	RG Theorems

