Rely-Guarantee Extensions and Locks

Robert J. Colvin, Scott Heiner, Peter Höfner, Roger C. SuNovember 21, 2025

Abstract

We enhance rely-guarantee verification in Isabelle/HOL by extending the 2003 built-in library with flexible syntax, data-invariant support, and new tactics. We demonstrate our enhanced library by applying it to the examples attached to the original library. We also apply our library to three queue locks: the Abstract Queue Lock, the Ticket Lock, and the Circular Buffer Lock.

Contents

1	Inti	roduction	2	
2	Rel	y-Guarantee (RG) Syntax Extensions	2	
	2.1	Lifting of Invariants	3	
	2.2	RG Sentences	3	
	2.3	RG Subgoal-Generating Methods	4	
		2.3.1 Basic	4	
		2.3.2 Looping constructs	5	
		2.3.3 Conditionals	7	
	2.4	Parallel Compositions	8	
		2.4.1 Binary Parallel	8	
		2.4.2 Multi-Parallel	10	
	2.5	Syntax of Record-Updates		
3	Anı	notated Commands	12	
•	3.1	Annotated Quintuples		
	3.2	Structured Tactics for Annotated Commands		
	3.3	Binary Parallel	17	
	3.4	Helpers: Index Offsets		
	3.5	Multi-Parallel		
	3.6	The Main Tactics		
4	T	lee Demonleed	23	
4		amples Reworked		
	4.1	Setting Elements of an Array to Zero		
	4.2	Incrementing a Variable in Parallel		
	4.3	FindP	26	
5	Abs	stract Queue Lock	27	

6	Tic	ket Lock	29
	6.1	Helpers: Inj, Surj and Bij	29
		6.1.1 Inj-Related	
		6.1.2 Surj-Related	30
		6.1.3 Bij and Inv	31
	6.2	Helpers: Multi-Updates on Functions	33
		6.2.1 Ordering of Updates	34
		6.2.2 Surjective	35
		6.2.3 Injective	36
		6.2.4 Set- and List-Intervals	38
	6.3	Basic Definitions	39
	6.4	RG Theorems	41
7	Cir	cular-Buffer Queue-Lock	44
	7.1	Invariant	46
		7.1.1 Invariant Methods	
		7.1.2 Invariant Lemmas	
	7.2	Contract	51
	7.3	RG Lemmas	
	7.4		58

1 Introduction

The content of this entry has been presented as [1]. The original built-in library is [2].

2 Rely-Guarantee (RG) Syntax Extensions

The core extensions to the built-in RG library: improved syntax of RG sentences in the quintupleand keyword-styles, with data-invariants.

Also: subgoal-generating methods for RG inference-rules that work with the structured proof-language, Isar.

theory RG_Syntax_Extensions

imports

```
"HOL-Hoare_Parallel.RG_Syntax"
"HOL-Eisbach.Eisbach"
```

begin

We begin with some basic notions that are used later on.

Notation for forward function-composition: defined in the built-in Fun.thy but disabled at the end of that theory. This operator is useful for modelling atomic primitives such as Swap and Fetch-And-Increment, and also useful when coupling concrete- and auxiliary-variable instructions.

```
notation fcomp (infixl "o>" 60)
lemmas definitions [simp] =
```

stable_def Pre_def Rely_def Guar_def Post_def Com_def

In applications, guarantee-relations often stipulates that Thread i should "preserve the relyrelations of all other threads". This pattern is supported by the following higher-order function, where j ranges through all the threads that are not i.

```
abbreviation for_others :: "('index \Rightarrow 'state rel) \Rightarrow 'index \Rightarrow 'state rel" where "for_others R i \equiv \bigcap j \in -{i}. R j"
```

Relies and guarantees often state that certain variables remain unchanged. We support this pattern with the following syntactic sugars.

```
abbreviation record_id :: "('record ⇒ 'field) ⇒ 'record rel"

("id'(_')" [75] 74) where

"id(c) ≡ { ac = oc }"

abbreviation record_ids :: "('record ⇒ 'field) set ⇒ 'record rel"

("ids'(_')" [75] 74) where

"ids(cs) ≡ ∩ c ∈ cs. id(c)"

abbreviation record_id_indexed ::

"('record ⇒ 'index ⇒ 'field) ⇒ 'index ⇒ 'record rel"

("id'(_ @ _ ')") where

"id(c @ self) ≡ { oc self = ac self }"

abbreviation record_ids_indexed ::

"('record ⇒ 'index ⇒ 'field) set ⇒ 'index ⇒ 'record rel"

("ids'(_ @ _ ')") where

"ids(cs @ self) ≡ ∩ c ∈ cs. id(c @ self)"
```

The following simple method performs an optional simplification-step, and then tries to apply one of the RG rules, before attempting to discharge each subgoal using force. This method works well on simple RG sentences.

```
method method_rg_try_each =
  (clarsimp | simp)?,
  ( rule Basic | rule Seq | rule Cond | rule While
  | rule Await | rule Conseq | rule Parallel);
  force+
```

2.1 Lifting of Invariants

There are different ways to combine the invariant with the rely or guarantee, as long as the invariant is preserved. Here, a rely- or guarantee-relation R is combined with the invariant I into $\{(s, s'). (s \in I \longrightarrow s' \in I) \land R\}$.

```
definition pred_to_rel :: "'a set ⇒ 'a rel" where
   "pred_to_rel P ≡ {(s,s') . s ∈ P → s' ∈ P}"

definition invar_and_guar :: "'a set ⇒ 'a rel ⇒ 'a rel" where
   "invar_and_guar I G ≡ G ∩ pred_to_rel I"

lemmas simp_defs [simp] = pred_to_rel_def invar_and_guar_def
```

2.2 RG Sentences

The quintuple-style of RG sentences.

```
abbreviation rg_quint :: "'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool" ("{_,_}} _ {_,_}") where "{P, R} C {G, Q} \equiv \vdash C sat [P, R, G, Q]"
```

Quintuples with invariants.

```
abbreviation rg_quint_invar ::
```

```
"'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a set \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
  "{P, R} C /\!\!/ I {G, Q} \equiv \vdash C sat [
    P \cap I,
    R \cap pred_to_rel I,
     invar_and_guar I G,
     Q ∩ I]"
The keyword-style of RG sentences.
abbreviation rg_keyword ::
  "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a com \Rightarrow 'a set \Rightarrow bool"
  ("rely:_ guar:_ code: {_} _ {_}") where
  "rg_keyword R G P C Q \equiv \vdash C sat [P, R, G, Q]"
Keyword-style RG sentences with invariants.
abbreviation rg_keyword_invar ::
  "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'a com \Rightarrow 'a set \Rightarrow bool"
  ("rely:_ guar:_ inv:_ code: {_} _ {_}") where
  "rg keyword invar R G I P C Q \equiv \vdash C sat [
    P \cap I,
    R ∩ pred_to_rel I,
```

2.3 RG Subgoal-Generating Methods

As in Floyd-Hoare logic, in RG we can strengthen (make smaller) the precondition and weaken (make larger) the postcondition without affecting the validity of an RG sentence.

```
theorem strengthen_pre:

assumes "P' ⊆ P"

and "⊢ c sat [P, R, G, Q]"

shows "⊢ c sat [P', R, G, Q]"

using assms Conseq by blast

theorem weaken_post:

assumes "Q ⊆ Q'"

and "⊢ c sat [P, R, G, Q]"

shows "⊢ c sat [P, R, G, Q']"

using assms Conseq by blast
```

invar_and_guar I G,

 $Q \cap I]$ "

We then develop subgoal-generating methods for various instruction types and patterns, to be used in conjunction with the Isar proof-language.

2.3.1 Basic

A Basic instruction wraps a state-transformation function.

```
theorem rg_basic_named[intro]: assumes "stable P R" and "stable Q R" and "\forall s. s \in P \longrightarrow (s, s) \in G" and "\forall s. s \in P \longrightarrow (s, f s) \in G" and "P \subseteq { 'f \in Q }" shows "{P, R} Basic f {G, Q}" using assms apply - by (rule Basic; fastforce)
```

```
method method_basic =
  rule rg_basic_named,
  goal_cases stable_pre stable_post guar_id establish_guar establish_post
The skip command is a Basic instruction whose function is the identity.
theorem rg_skip_named:
  assumes "stable P R"
       and "stable Q R"
       \mathbf{and} \ \texttt{"Id} \subseteq \texttt{G"}
       and "P \subseteq Q"
     shows "{P, R} SKIP {G, Q}"
  using assms by force
method method_skip =
  rule rg_skip_named,
  goal_cases stab_pre stab_post guar_id est_post
An alternative version with an invariant subgoal.
theorem rg_basic_inv[intro]:
  assumes "stable (P \cap I) (R \cap pred_to_rel I)"
       and "stable (Q \cap I) (R \cap pred_to_rel I)"
       and "\foralls. s \in P \cap I \longrightarrow (s, s) \in G"
       and "\forall \, \mathtt{s.} \, \, \mathtt{s} \, \in \, \mathtt{P} \, \cap \, \mathtt{I} \, \longrightarrow \, \mathtt{f} \, \, \mathtt{s} \, \in \, \mathtt{I}"
       and "\forall \, \mathtt{s.} \, \, \mathtt{s} \, \in \, \mathtt{P} \, \cap \, \mathtt{I} \, \longrightarrow \, \mathtt{f} \, \, \mathtt{s} \, \in \, \mathtt{Q}"
       and "\foralls. s \in P \cap I \longrightarrow (s, f s) \in G"
    shows "⊢ (Basic f) sat [
       P \cap I,
       R \cap pred_to_rel I,
       invar_and_guar I G,
       Q \cap I]"
  using assms apply -
  by (method_basic; fastforce)
method method basic inv = rule rg basic inv,
  goal_cases stab_pre stab_post id_guar est_inv est_post est_guar
2.3.2 Looping constructs
theorem rg_general_loop_named[intro]:
  assumes "stable P R"
       and "stable Q R"
       and "Id \subseteq G"
       and "P \cap -b \subseteq Q"
       and "\{P \cap b, R\} c \{G, P\}"
    shows "{P, R} While b c {G, Q}"
  using assms apply -
  by (rule While; fastforce)
method method loop =
  rule rg_general_loop_named,
  goal_cases stable_pre stable_post id_guar loop_exit loop_body
A similar version but with the loop_body subgoal having a weakend precondition.
theorem rg_general_loop_no_guard[intro]:
  assumes "stable P R"
       and "stable Q R"
       and "Id \subseteq G"
       and "P \cap -b \subseteq Q"
```

```
and "{P, R} c {G, P}"
    shows "{P, R} While b c {G, Q}"
 apply(rule rg_general_loop_named)
 by (fastforce intro!: assms Int_lower1 intro: strengthen_pre)+
method method_loop_no_guard =
 rule rg_general_loop_no_guard,
 goal_cases stab_pre stab_post guar_id loop_exit loop_body
A spinloop is a loop with an empty body. Such a loop repeatedly checks a property, and is a
key construct in mutual exclusion algorithms.
theorem rg_spinloop_named[intro]:
  assumes "stable P R"
      and "stable Q R"
      and "Id \subseteq G"
      and "P \cap -b \subseteq Q"
    shows "{P, R} While b SKIP {G, Q}"
  using assms
 by (fastforce simp: rg_general_loop_no_guard rg_skip_named)
method method_spinloop =
 rule rg_spinloop_named,
 goal_cases stable_pre stable_post guar_id est_post
theorem rg_infinite_loop:
 assumes "stable P R"
     and "Id \subseteq G"
      and "{P, R} C {G, P}"
    shows "{P, R} While UNIV C {G, Q}"
 have "{P, R} While UNIV C {G, {}}"
    using assms by (fastforce simp: rg_general_loop_no_guard)
  thus ?thesis
    using weaken_post by fastforce
qed
method method_infinite_loop =
 rule rg_infinite_loop,
 goal_cases stable_pre guar_id loop_body,
  clarsimp+
theorem rg_infinite_loop_syntax:
 assumes "stable P R"
     and "Id \subseteq G"
      and "{P, R} C {G, P}"
    shows "{P, R} WHILE True DO C OD {G, Q}"
  using assms by (fastforce simp: rg_infinite_loop)
method method_infinite_loop_syntax =
 rule rg_infinite_loop_syntax,
 goal_cases stable_pre guar_id loop_body
A repeat-loop encodes the pattern where the loop body is executed before the first evaluation
of the guard.
theorem rg_repeat_loop[intro]:
 assumes "stable P R"
      and "stable Q R"
```

```
and "Id \subseteq G"
      and "P \cap b \subseteq Q"
      and loop_body: "{P, R} C {G, P}"
    shows "{P, R} C ;; While (-b) C {G, Q}"
  using assms apply -
  apply (rule Seq)
   apply (force intro: loop_body)
  by (method_loop_no_guard; fastforce)
method method_repeat_loop =
  rule rg_repeat_loop,
  goal_cases stab_pre stab_post guar_id loop_exit loop_body
When reasoning about repeat-loops, we may need information from P to determine whether
we reach the postcondition. In this case we can use the following form, which introduces a
mid-state.
theorem rg_repeat_loop_mid[intro]:
  assumes stab_pre: "stable (P \cap M) R"
      and stab_post: "stable Q R"
                     "Id \subseteq G"
      and guar id:
      and loop_exit: "P \cap M \cap b \subseteq Q"
      and loop_body: "\{P, R\} C \{G, P \cap M\}"
    shows "{P, R} C ;; While (-b) C {G, Q}"
 using assms apply -
  apply (rule Seq)
   apply (fast intro: loop_body)
  by (method_loop_no_guard; fast intro: loop_body strengthen_pre)
method method_repeat_loop_mid =
  rule rg_repeat_loop_mid,
  goal_cases stab_pre stab_post guar_id loop_exit loop_body
We define dedicated syntax for the repeat-loop pattern.
definition Repeat :: "'a com \Rightarrow 'a bexp \Rightarrow 'a com" where
  "Repeat c b \equiv c ;; While (-b) c"
syntax "Repeat" :: "'a com \Rightarrow 'a bexp \Rightarrow 'a com" ("(OREPEAT _ /UNTIL _ /END)" [0, 0]
translations "REPEAT c UNTIL b END" → "CONST Repeat c {b}"
theorem rg_repeat_loop_def[intro]:
  assumes stab_pre: "stable P R"
      and stab_post: "stable Q R"
                     "Id \subseteq G"
      and guar_id:
      and loop_exit: "P \cap b \subseteq Q"
      and loop_body: "{P, R} C {G, P}"
    shows "{P, R} Repeat C b {G, Q}"
  using assms
  by (fastforce simp: Repeat_def rg_repeat_loop)
method method_repeat_loop_def =
```

2.3.3 Conditionals

rule rg_repeat_loop_def,

We first cover conditional-statements with or without the else-branch.

goal_cases stab_pre stab_post guar_id loop_exit loop_body

```
theorem rg_cond_named[intro]:
  assumes stab_pre: "stable P R"
      and stab_post: "stable Q R"
      and guar_id:
                      \texttt{"Id} \subseteq \texttt{G"}
      and then_br:
                      "{P \cap b, R} c1 {G, Q}"
                    "{P \cap -b, R} c2 {G, Q}"
      and else_br:
    shows "{P, R} Cond b c1 c2 {G, Q}"
  using assms apply -
 by (rule Cond; fastforce)
theorem rg_cond2_named[intro]:
  assumes stab_pre: "stable P R"
      and stab_post: "stable Q R"
      and guar_id: "Id \subseteq G"
      and then_br: "\{P \cap b, R\} c1 \{G, Q\}"
      and else_br: "P \cap -b \subseteq Q"
    shows "{P, R} Cond b c1 SKIP {G, Q}"
  using assms apply -
 by (rule rg_cond_named; fastforce simp: rg_skip_named strengthen_pre)
method method_cond =
  (rule rg_cond2_named | rule rg_cond_named),
  goal_cases stab_pre stab_post guar_id then_br else_br
Variants without the stable-post subgoal.
theorem rg_cond_no_post[intro]:
  assumes stable_pre: "stable P R"
      and guar_id: "Id ⊆ G"
      and then_br: "{P \cap b, R} c1 {G, Q}"
      and else_br: "{P \cap -b, R} c2 {G, Q}"
    shows "{P, R} Cond b c1 c2 {G, Q}"
  using assms by (fastforce simp: Cond subset_iff)
theorem rg_cond_no_guard_no_post[intro]:
  assumes stable_pre: "stable P R"
      and guar id: "Id ⊂ G"
      and then_br: "{P, R} c1 {G, Q}"
      and else_br: "{P, R} c2 {G, Q}"
    shows "{P, R} Cond b c1 c2 {G, Q}"
  using assms apply -
 by (rule Cond; fastforce intro: strengthen_pre)
method method_cond_no_post =
  (rule rg_cond_no_post | rule rg_cond_no_guard_no_post),
 goal_cases stab_pre guar_id then_br else_br
```

2.4 Parallel Compositions

We now turn to the parallel composition, and cover several variants, from the *binary* parallel composition of two commands, to the *multi-parallel* composition of an indexed list of commands. For each variant, we define the syntax and devise the subgoal-generating methods.

2.4.1 Binary Parallel

The syntax of binary parallel composition, without and with invariant.

```
abbreviation binary_parallel ::
```

```
"'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
 "{P, R} C1 \parallel C2 {G, Q} \equiv
    \exists P1 P2 R1 R2 G1 G2 Q1 Q2.
      ⊢ COBEGIN
           (C1, P1, R1, G1, Q1)
           (C2, P2, R2, G2, Q2)
      COEND SAT [P, R, G, Q]"
abbreviation binary_parallel_invar ::
  "'a set \Rightarrow 'a rel \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a set \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
 ("{_, _} _ || _ // _ {_, _}") where "{P, R} C1 || C2 // I {G, Q} \equiv
    \exists P1 P2 R1 R2 G1 G2 Q1 Q2.
      ⊢ COBEGIN
           (C1, P1, R1, G1, Q1)
           (C2, P2, R2, G2, Q2)
      COEND SAT [P \cap I, R \cap pred_to_rel I, invar_and_guar I G, Q \cap I]"
Some helper lemmas for later.
lemma simp_all_2:
  "(\forall i < Suc (Suc 0). P i) \longleftrightarrow P 0 \land P 1"
  \mathbf{b}\mathbf{y} (fastforce simp: less_Suc_eq)
lemma simp_gen_Un_2:
  by (fastforce simp: less_Suc_eq)
lemma simp_gen_Un_2_not0:
  "([] x \in \{ (suc 0) \mid x \in (suc 0) \}. S x) = S 0"
  by (fastforce simp: less_Suc_eq)
lemma simp_gen_Int_2:
  "(\bigcap x \in {'(<) (Suc (Suc 0)) }. S x) = S 0 \bigcap S 1"
  by (fastforce simp: less_Suc_eq)
theorem rg_binary_parallel:
  assumes "{P1, R1} (C1::'a com) {G1, Q1}"
      and "{P2, R2} (C2::'a com) {G2, Q2}"
      and "G1 \subseteq R2"
      and "G2 \subseteq R1"
      and "P \subseteq P1 \cap P2"
      and "R \subseteq R1 \cap R2"
      and "G1 \cup G2 \subseteq G"
      and "Q1 \cap Q2 \subseteq Q"
    shows "⊢ COBEGIN
       (C1, P1, R1, G1, Q1)
       (C2, P2, R2, G2, Q2)
      COEND SAT [P, R, G, Q]"
  using assms apply -
  apply (rule Parallel)
  by (simp_all add: simp_all_2 simp_gen_Un_2 simp_gen_Int_2 simp_gen_Un_2_not0)
theorem rg_binary_parallel_exists:
  assumes "{P1, R1} (C1::'a com) {G1, Q1}"
```

```
and "R \subseteq R1 \cap R2"
        and "G1 \cup G2 \subseteq G"
        and "Q1 \cap Q2 \subseteq Q"
     shows "{P, R} C1 \parallel C2 {G, Q}"
  by (metis assms rg_binary_parallel)
theorem rg_binary_parallel_invar_conseq:
  assumes C1: "{P1, R1} (C1::'a com) / I {G1, Q1}"
        and C2: "{P2, R2} (C2::'a com) // I {G2, Q2}"
        and "G1 \subseteq R2"
        and "G2 \subseteq R1"
        and "P \subseteq P1 \cap P2"
        and "R \subseteq R1 \cap R2"
        and "Q1 \cap Q2 \subseteq Q"
        and "G1 \cup G2 \subseteq G"
     shows "{P, R} C1 \parallel C2 \# I {G, Q}"
  using assms apply -
  apply (rule rg_binary_parallel_exists)
  by force+
2.4.2 Multi-Parallel
The syntax of multi-parallel, without and with invariants.
syntax multi_parallel ::
  "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow
    (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{set}) \Rightarrow (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{rel}) \Rightarrow
    (nat \Rightarrow 'a com) \Rightarrow
    (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{rel}) \Rightarrow (\mathtt{nat} \Rightarrow \mathtt{'a} \ \mathtt{set}) \Rightarrow
    'a rel \Rightarrow 'a set \Rightarrow bool"
   ("global'_init: _ global'_rely: _ \| _ < _ @ {_,_} _ {_,_} global'_guar: _ global'_post:
_")
translations
  "global_init: Init global_rely: RR | i < N @
   {P,R} c {G,Q} global_guar: GG global_post: QQ"
  \rightharpoonup "\vdash COBEGIN SCHEME [0 \leq i < N] (c, P, R, G, Q) COEND
       SAT [Init, RR, GG, QQ]"
syntax multi_parallel_inv ::
  "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow
    (nat \Rightarrow 'a set) \Rightarrow (nat \Rightarrow 'a rel) \Rightarrow
    (nat \Rightarrow 'a com) \Rightarrow (nat \Rightarrow 'a set) \Rightarrow
    (nat \Rightarrow 'a rel) \Rightarrow (nat \Rightarrow 'a set) \Rightarrow
    'a rel \Rightarrow 'a set \Rightarrow bool"
   ("global'_init: _ global'_rely: _ \| _ < _ @ {_,_} _ // _ {_,_} global'_guar: _ global'_post:
_")
translations
   "global init: Init global rely: RR ∥ i < N @
   {P, R} c // I {G, Q} global_guar: GG global_post: QQ"
  \rightharpoonup "\vdash COBEGIN SCHEME [0 \leq i < N] (c,
             P \cap I,
             R ∩ CONST pred_to_rel I,
             CONST invar_and_guar I G,
```

and "{P2, R2} (C2::'a com) {G2, Q2}"

and "G1 \subseteq R2" and "G2 \subseteq R1" and "P \subseteq P1 \cap P2"

```
) COEND
      SAT [Init, RR, GG, QQ]"
The subgoal-generating method for multi-parallel.
theorem rg_multi_parallel_subgoals:
  \mathbf{assumes} \ \mathbf{assm\_guar\_rely:} \ \texttt{"} \forall \ \mathsf{i} \ \mathsf{j}. \ \mathsf{i} \, \neq \, \mathsf{j} \, \longrightarrow \, \mathsf{i} \, \lessdot \, \mathtt{N} \, \longrightarrow \, \mathsf{j} \, \lessdot \, \mathtt{N} \, \longrightarrow \, \mathtt{G} \, \, \mathsf{j} \, \subseteq \, \mathtt{R} \, \, \mathsf{i} \, \texttt{"}
       and assm_pre: "\forall i < N. P' \subseteq P i"
       and assm_rely: "\forall i < N. R' \subseteq R i"
       and assm_guar: "\forall i < N. G i \subseteq G'"
       and assm_post: "(\bigcap i \in { i. i < N }. Q i) \subseteq Q'"
       and assm_local: "\forall i<N. \vdash C i sat [P i, R i, G i, Q i]"
     shows "\vdash COBEGIN SCHEME [0 \leq i < (N::nat)]
              (C i, P i, R i, G i, Q i)
              COEND SAT [P', R', G', Q']"
proof (rule Parallel, goal_cases)
  case 1 show ?case using assm_rely assm_guar_rely by (simp add: SUP_le_iff)
  case 2 show ?case using assm_guar by force
  case 3 show ?case using assm_pre
                                                by force
  case 4 show ?case using assm_post by force
  case 5 show ?case using assm_local by force
qed
method method_multi_parallel = rule rg_multi_parallel_subgoals,
  goal_cases guar_rely pre rely guar post body
theorem rg_multi_parallel_nobound_subgoals:
  assumes assm_guar_rely: "\forall i j. i \neq j \longrightarrow G j \subseteq R i"
       and assm_pre: "\forall i. P' \subseteq Pi"
       and assm_rely: "\forall i. R' \subseteq R i"
       and assm_guar: "\forall i. G i \subseteq G'"
       and assm_post: "(\bigcap i \in { i. i < N }. Q i) \subseteq Q'"
       and assm_local: "∀ i. ⊢ C i sat [P i, R i, G i, Q i]"
     shows "\vdash COBEGIN SCHEME [0 \leq i < (N::nat)]
              (C i, P i, R i, G i, Q i)
              COEND SAT [P', R', G', Q']"
  using assms apply -
  apply (rule Parallel)
  by (simp_all add: SUP_le_iff INT_greatest)
method method_multi_parallel_nobound =
  rule rg_multi_parallel_nobound_subgoals,
  goal_cases guar_rely pre rely guar post body
```

2.5 Syntax of Record-Updates

 ${\tt Q} \, \cap \, {\tt I}$

This section contains syntactic sugars for updating a field of a record. As we use records to model the states of a program, these record-update operations correspond to the variable-assignments.

The type idt denotes a field of a record. The first syntactic sugar expresses a Basic command (of type <'a com>) that updates a record-field x that is a function; often x models an array. After the update, the new value of <x i> becomes a.

```
syntax "_record_array_assign" ::
    "idt \Rightarrow 'index \Rightarrow 'expr \Rightarrow 'state com" ("(´_[_] :=/__)" [70, 65, 64] 61)
    translations "´x[i] := a"
    \rightarrow "CONST Basic \ll `(_update_name x (\lambda_. `x(i:= a)))\gg"
```

The next two syntactic sugars express a state-transformation function (rather than a command)

that updates record-fields. The first one simply updates an entire variable x, while the second updates an array $\langle x \ i \rangle$.

```
updates an array <x i>.
syntax "_record_update_field" ::
  "idt \Rightarrow 'expr \Rightarrow ('a \Rightarrow 'a)" ("'_ \leftarrow/ _" [70] 61)
translations ~\texttt{"`x} \leftarrow \texttt{a"}
  \rightleftharpoons "«´(_update_name x (\lambda_. a))»"
syntax " record update array" ::
  "idt \Rightarrow 'expr \Rightarrow 'expr \Rightarrow ('a \Rightarrow 'a)" ("'_[_] \leftarrow/ _" [70, 71] 61)
translations "'x[i] \leftarrow a"
  \rightharpoonup "«´(_update_name x (\lambda_. ´x(i:= a)))»"
Syntactic sugars for incrementing variables.
syntax "_inc_fn" :: "idt <math>\Rightarrow 'c \Rightarrow 'c" ("('_.++)" 61)
translations "'x.++" \rightarrow
  " \ll (_update_name x (\lambda_. 'x + 1))\gg"
syntax "inc" :: "idt \Rightarrow 'c com" ("(´++)" 61)
translations "^*x++" \rightarrow
  "CONST Basic ('x.++)"
end
3
     Annotated Commands
theory RG_Annotated_Commands
imports RG_Syntax_Extensions "HOL-Hoare.Hoare_Tac"
begin
datatype 'a anncom =
    NoAnno
                  "'a com"
                  "'a \Rightarrow 'a"
  | BasicAnno
                                                                ("{_} _" [65,61] 61)
  | WeakPre
                  "'a set"
                                  "'a anncom"
  | StrongPost "'a anncom" "'a set"
                                                                ("_ {_}" [61,65] 61)
                  "'a anncom" "'a set"
                                                 "'a anncom"
  | SeqAnno
```

```
"'a bexp"
                         "'a anncom" "'a anncom"
  | CondAnno
  | WhileAnno "'a bexp"
                         "'a set"
                                    "'a anncom"
  | AwaitAnno "'a bexp"
                         "'a anncom"
fun anncom_to_com :: "'a anncom \Rightarrow 'a com" where
   "anncom to com (NoAnno c) = c"
  | "anncom_to_com (BasicAnno f) = Basic f"
  | "anncom_to_com (WeakPre b c) = anncom_to_com c"
  | "anncom_to_com (StrongPost c b) = anncom_to_com c"
  | "anncom_to_com (SeqAnno c1 mid c2) = Seq
                                           (anncom_to_com c1) (anncom_to_com c2)"
  | "anncom_to_com (CondAnno b c1 c2) = Cond b (anncom_to_com c1) (anncom_to_com c2)"
  | "anncom_to_com (WhileAnno b b' c) = While b (anncom_to_com c)"
  | "anncom_to_com (AwaitAnno b c)
                                   = Await b (anncom_to_com c)"
fun add_invar :: "'a set \Rightarrow 'a anncom \Rightarrow 'a anncom" where
   "add_invar I (NoAnno c) = NoAnno c"
  | "add_invar I (StrongPost c b) = StrongPost
                                                 (add_invar\ I\ c)\ (b\cap I)"
```

```
| "add_invar I (SeqAnno c1 mid c2) = SeqAnno
                                                                    (add_invar \ I \ c1) \ (mid \ \cap \ I) \ (add_invar
I c2)"
  | "add_invar I (CondAnno b c1 c2) = CondAnno b
                                                                    (add_invar I c1) (add_invar I c2)"
  | "add_invar I (WhileAnno b b' c) = WhileAnno b b'
                                                                    (add_invar I c)"
  | "add_invar I (AwaitAnno b c)
                                         = AwaitAnno b
                                                                    (add_invar I c)"
syntax
  "_CondAnno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom \Rightarrow 'a anncom"
     ("(OIFa _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
  "_Cond2Anno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom"
     ("(OIFa _ THEN _ FI)" [0,0] 56)
  "_WhileAnno" :: "'a bexp \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a anncom"
     ("(OWHILEa _ /DO {stable'_guard: _ } _ /OD)" [0, 0] 61)
  "_WhileAnno_simple_b" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom" ("(OWHILEa _ /DO _ /OD)" [0, 0] 61)
  "_AwaitAnno" :: "'a bexp \Rightarrow 'a anncom \Rightarrow 'a anncom"
     ("(OAWAITa _ /THEN /_ /END)" [0,0] 61)
  " AtomAnno" :: "'a com \Rightarrow 'a anncom"
     ("(\langle _{a} \ranglea)" 61)
  "_WaitAnno" :: "'a bexp \Rightarrow 'a anncom"
     ("(OWAITa _ END)" 61)
  "_CondAnno_NoAnnoions" :: "'a bexp \Rightarrow 'a com \Rightarrow 'a com \Rightarrow 'a anncom"
     ("(OIF. _/ THEN _/ ELSE _/FI)" [0, 0, 0] 61)
translations
  "IFa b THEN c1 ELSE c2 FI" → "CONST CondAnno {b} c1 c2"
  "IFa b THEN c FI" \rightleftharpoons "IFa b THEN c ELSE SKIP FI"
  "IF. b THEN c1 ELSE c2 FI" → "CONST CondAnno {b} (CONST NoAnno c1) (CONST NoAnno c2)"
  "WHILEa b DO {stable_guard: b'} c OD" \rightharpoonup "CONST WhileAnno {b} b' c"
  "WHILEa b DO c OD" \rightharpoonup "CONST WhileAnno \{b\} \{b\} c"
  "AWAITa b THEN c END" \rightleftharpoons "CONST AwaitAnno \{b\} c"
  "\langle c \rangle a" \rightleftharpoons "AWAITa CONST True THEN c END"
  "WAITa b END" \rightleftharpoons "AWAITa b THEN SKIP END"
abbreviation no assertions semicolon ::
  "'a anncom \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a anncom"
 ("_ .; {_} _" [60,60,61] 60) where
  "c1 .; {m} c2 \equiv SeqAnno c1 m c2"
```

Below is a special syntax for Basic commands (type "com") encoded inside NoAnno annotated commands (type "annoom").

This allows us to keep our syntactic sugars for Basic commands, which are mostly assignments (":="), without having to redo them all for BasicAnno annotated commands.

Hence, we wrap Basic commands with this helper function, which is only defined for Basic commands.

```
fun basic_to_basic_anno_syntax:: "'a com ⇒ 'a anncom" ("'(_')-") where
   "basic_to_basic_anno_syntax (Basic f) = BasicAnno f"
| "basic_to_basic_anno_syntax c = NoAnno c"
```

The following function defines what it means for an annotated command to satisfy the given specification components. The soundness of this definition will be proved later.

```
fun anncom_spec_valid :: "'a set \Rightarrow 'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow bool" where "anncom_spec_valid pre rely guar post (NoAnno c) = (\vdash c sat [pre, rely, guar, post])"
```

```
| "anncom_spec_valid pre rely guar post (BasicAnno f)
    = (stable pre rely \wedge
        stable post rely \wedge
        (\forall s. s \in pre \longrightarrow (s, s) \in guar) \land
        (\forall \mathtt{s.} \ \mathtt{s} \in \mathtt{pre} \longrightarrow (\mathtt{s, f s}) \in \mathtt{guar}) \ \land
       pre \subseteq \{ f \in post \}"
  | "anncom_spec_valid pre rely guar post (WeakPre p' ac)
    = ((pre ⊆ p') ∧
        (anncom_spec_valid p' rely guar post ac))"
  | "anncom_spec_valid pre rely guar post (StrongPost ac q')
    = ((q' \subseteq post) \land
        (anncom spec valid pre rely guar q' ac))"
  | "anncom_spec_valid pre rely guar post (SeqAnno ac1 mid ac2)
    = ((anncom spec valid pre rely guar mid ac1) ∧
        (anncom_spec_valid mid rely guar post ac2))"
  | "anncom_spec_valid pre rely guar post (CondAnno b ac1 ac2)
    = ((stable pre rely) ∧
        (Id \subseteq guar) \land
        (anncom_spec_valid (pre \cap b) rely guar post ac1) \wedge
        (anncom_spec_valid (pre ∩ -b) rely guar post ac2))"
  | "anncom_spec_valid pre rely guar post (WhileAnno b b' ac)
    = ((stable pre rely) ∧
        (stable post rely) \wedge
        (Id \subseteq guar) \land
        (pre \cap -b \subseteq post) \wedge
        (pre \cap b \subseteq b') \wedge
        (anncom_spec_valid (pre ∩ b') rely guar pre ac))"
  | "anncom_spec_valid pre rely guar post (AwaitAnno b ac)
    = ((stable pre rely) ∧
        (stable post rely) ∧
        (\forall s. anncom_spec_valid (pre \cap b \cap {s}) Id UNIV ({s'. (s, s') \in guar} \cap post) ac))"
The following theorem establishes the soundness of the definition above.
theorem anncom_spec_valid_sound:
  "anncom_spec_valid pre rely guar post ac ⇒ ⊢ anncom_to_com ac sat [pre, rely, guar,
post]"
proof (induction ac arbitrary: pre rely guar post)
  case (NoAnno x)
  thus ?case
    by (cases x; fastforce)
  case (BasicAnno x)
  thus ?case
    by (fastforce simp: rg_basic_named)
\mathbf{next}
  case (WeakPre pre' ac)
  thus ?case
    by (fastforce dest: Conseq)
next
  case (StrongPost ac x2)
  thus ?case
```

```
by (fastforce simp: weaken_post)
next
 case (SeqAnno ac1 x2 ac2)
 thus ?case
   by (fastforce simp: Seq)
 case (CondAnno x1a ac1 ac2)
  thus ?case
   by (fastforce simp: Cond subset_iff)
 case (WhileAnno x1a x2 ac)
 thus ?case
   apply clarsimp
   apply (rule While, simp_all)
     apply (metis le_inf_iff Int_lower1 strengthen_pre)
   by fastforce
next
 case (AwaitAnno x1a ac)
  thus ?case
   apply clarsimp
   apply (rule Await, simp_all)
   by (smt (verit, best) Conseq IdI case_prodE mem_Collect_eq subset_iff)
qed
```

3.1 Annotated Quintuples

For convenience, we define the following datatype, which collects an annotated command with its specification components.

```
datatype 'a annquin = AnnQuin "'a set" "'a rel" "'a anncom" "'a rel" "'a set"
  ("{_,_} _ {_,_}" )
abbreviation annquin_invar ::
  "'a set \Rightarrow 'a rel \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a annquin"
  ("{\_,\_} _ // _ {\_,\_}") where
  "annquin_invar pre rely ac I guar post \equiv AnnQuin
    (pre \cap I) (rely \cap pred_to_rel I)
    (add_invar I ac)
    (invar_and_guar I guar) (post ∩ I)"
Helper functions for extracting the individual components of an <'a annquin'.
fun preOf :: "'a annquin \Rightarrow 'a set"
  where "preOf (AnnQuin pre rely ac guar post) = pre"
fun relyOf :: "'a annquin <math>\Rightarrow 'a rel"
  where "relyOf (AnnQuin pre rely ac guar post) = rely"
fun \ \ \text{cmdOf} :: "'a annquin \Rightarrow 'a anncom"
  where "cmdOf (AnnQuin pre rely ac guar post) = ac"
fun guarOf :: "'a annquin <math>\Rightarrow 'a rel"
  where "guarOf (AnnQuin pre rely ac guar post) = guar"
fun postOf :: "'a annquin \Rightarrow 'a set"
  where "postOf (AnnQuin pre rely ac guar post) = post"
```

Validity of <'a annquin' is the same as the validity of the "quintuples" when written out separately.

```
abbreviation annquin_valid :: "'a annquin \Rightarrow bool" where
  "annquin_valid rgac \equiv case rgac of (AnnQuin pre rely ac guar post) \Rightarrow
   anncom_spec_valid pre rely guar post ac"
lemma annquin_simp[simp]:
  "annquin_valid (AnnQuin p r c g q) = anncom_spec_valid p r g q c"
  by fastforce
Syntax for expressing a valid <'a annouin' in terms of its components.
syntax
  "_valid_annquin"
     :: "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow bool"
     ("rely: guar: anno' code: { } { }")
  " valid annquin invar"
     :: "'a rel \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow 'a set \Rightarrow 'a anncom \Rightarrow 'a set \Rightarrow bool"
     ("rely:_ guar:_ inv:_ anno'_code: {_} _ {_}")
translations
  "rely: R guar: G anno_code: {P} ac {Q}"

ightharpoonup "CONST annquin_valid (CONST AnnQuin P R ac G Q)"
  "rely: R guar: G inv: I anno_code: {P} ac {Q}"

→ "CONST annquin_valid (CONST AnnQuin
          (P \cap I) (R \cap CONST \text{ pred to rel } I)
          (CONST add_invar I ac)
          (CONST invar_and_guar I G) (Q \cap I))"
      Structured Tactics for Annotated Commands
lemma anncom_subgoals_no:
  "\vdash c sat [pre, rely, guar, post] \Longrightarrow anncom_spec_valid pre rely guar post (NoAnno c)"
  by fastforce
lemma anncom_subgoals_invar_no:
  assumes "\vdash c sat [pre \cap I, rely \cap pred to rel I, invar and guar I guar, post \cap I]"
  shows "anncom spec valid (pre \cap I) (rely \cap pred to rel I) (invar and guar I guar)
                                (post ∩ I) (add_invar I (NoAnno c))"
  using assms by fastforce
lemma anncom_subgoals_basicanno_invar:
                             "stable (pre \cap I) (rely \cap pred_to_rel I)"
  assumes stable_pre:
                              "stable (post \cap I) (rely \cap pred_to_rel I)"
       and stable_post:
                             "\forall \, \mathtt{s.} \; \mathtt{s} \in (\mathtt{pre} \, \cap \, \mathtt{I}) \, \longrightarrow \, (\mathtt{s,} \; \mathtt{s}) \in (\mathtt{invar\_and\_guar} \; \mathtt{I} \; \mathtt{guar})"
       and guar_id:
       and establish_guar: "\forall s.\ s \in (\texttt{pre}\ \cap\ \texttt{I}) \ \longrightarrow \ (\texttt{s},\ \texttt{f}\ \texttt{s}) \in (\texttt{invar\_and\_guar}\ \texttt{I}\ \texttt{guar})"
       and establish_post: "(pre \cap I) \subseteq { 'f \in (post \cap I) }"
  shows "rely: rely guar: guar inv: I anno_code: {pre} (BasicAnno f) {post}"
  using assms by fastforce
method method_annquin_basicanno =
  rule anncom_subgoals_basicanno_invar,
  goal_cases stable_pre stable_post guar_id est_guar est_post
lemma anncom_subgoals_seq:
  assumes "anncom_spec_valid pre rely guar mid c1"
       and "anncom_spec_valid mid rely guar post c2"
    shows "anncom_spec_valid pre rely guar post (SeqAnno c1 mid c2)"
  using assms by fastforce
lemma anncom_subgoals_invar_seq:
```

```
assumes "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                              (mid \cap I) (add_invar I c1)"
      and "anncom_spec_valid (mid ∩ I) (rely ∩ pred_to_rel I) (invar_and_guar I guar)
                              (post ∩ I) (add_invar I c2)"
    shows "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                              (post ∩ I) (add_invar I (SeqAnno c1 mid c2))"
  using Seq assms by fastforce
lemma anncom_subgoals_invar_seq_abbrev:
  assumes "anncom_spec_valid (pre \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                              (mid \cap I) (add_invar I c1)"
      and "anncom_spec_valid (mid \cap I) (rely \cap pred_to_rel I) (invar_and_guar I guar)
                              (post \cap I) (add_invar I c2)"
    shows "rely: (rely) guar: guar inv: I anno_code: {pre} (c1 .; {mid} c2) {post}"
  using Seq assms by fastforce
method method_annquin_seq =
  (rule anncom_subgoals_invar_seq | rule anncom_subgoals_invar_seq_abbrev),
 goal_cases c1 c2
lemma anncom_subgoals_while:
  assumes "stable pre rely"
      and "stable post rely"
      and "Id \subseteq guar"
      and "pre \cap -b \subseteq post"
      and "pre \cap b \subseteq b'"
      and "anncom_spec_valid (pre \cap b') rely guar pre ac"
    shows "anncom_spec_valid pre rely guar post (WhileAnno b b' ac)"
  using assms by fastforce
lemma add_invar_while:
 assumes "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                              (q ∩ I) (WhileAnno b b' (add_invar I ac))"
    shows "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                              (q \cap I) (add_invar I (WhileAnno b b' ac))"
  using assms by fastforce
lemma anncom_subgoals_invar_while_abbrev:
 assumes "anncom_spec_valid (p \cap I) (R \cap pred_to_rel I) (invar_and_guar I G)
                              (q \cap I) (add_invar I (WhileAnno b b' ac))"
    shows "rely: R guar: G inv: I anno_code: {p} (WhileAnno b b' ac) {q}"
  using assms by fastforce
method method_annquin_while =
 rule anncom_subgoals_invar_while_abbrev,
 rule add_invar_while,
 rule anncom_subgoals_while,
 goal_cases stable_pre stable_post guar_id neg_guard guard body
```

3.3 Binary Parallel

This section contains inference rules for two annotated commands running in parallel. For convenience, we first define a datatype that encapsulates the components.

The next function sets out the proof obligations of binary parallel, using the datatype <'a

binary_par_quin > above. It is then followed by the theorem that establishes the soundness of the inference rule encoded by the function binary_parallel_valid.

```
fun binary_parallel_valid:: "'a binary_par_quin \Rightarrow bool" where
 "binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
  = ( annquin_valid (AnnQuin p1 r1 c1 g1 q1)
    \land annquin_valid (AnnQuin p2 r2 c2 g2 q2)
          init \subseteq p1 \cap p2
            gr \subseteq r1 \cap r2
    \wedge
            g1 \subseteq r2
    Λ
            g2 \subseteq r1
    \wedge
    \land \ \mathtt{g1} \ \cup \ \mathtt{g2} \subseteq \ \mathtt{gg}
    \land q1 \cap q2 \subseteq final)"
theorem valid_binary_parallel:
 "binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
 \implies \( \tag{COBEGIN} \) (anncom_to_com c1, p1, r1, g1, q1) \( \begin{array}{c} \tag{(anncom_to_com c2, p2, r2, g2)} \end{array} \)
        COEND SAT [init, gr, gg, final]"
  by (rule Parallel; force intro:anncom_spec_valid_sound simp: less_Suc_eq)
Variants of the theorem above.
theorem valid_binary_parallel_exists:
 "binary_parallel_valid (ParCode init gr (AnnQuin p1 r1 c1 g1 q1) (AnnQuin p2 r2 c2 g2 q2)
gg final)
 ⇒ {init, gr} anncom_to_com c1 || anncom_to_com c2 {gg, final}"
  by (fast dest: valid_binary_parallel)
theorem valid binary parallel exists annotated:
  assumes "binary_parallel_valid (ParCode
            init gr
            (AnnQuin p1 r1 c1' g1 q1) (AnnQuin p2 r2 c2' g2 q2)
            gg final)"
      and "anncom_to_com c1' = c1"
      and "anncom_to_com c2' = c2"
    shows "{init, gr} c1 | c2 {gg, final}"
  using assms
  by (fast dest: valid_binary_parallel)
```

3.4 Helpers: Index Offsets

Before moving on to multi-parallel programs, we first prepare some lemmas that help reason about offsets and indices.

```
abbreviation nat_range_set_neq_i :: "nat \Rightarrow nat \Rightarrow nat \Rightarrow nat set" ("{_...<_{\neq}}") where "nat_range_set_neq_i lo hi x \equiv {lo...<hi} - {x}" lemma all_set_range_to_offset: "(\forall i \in {lo...<hi::nat}. P (f i)) \longleftrightarrow (\forall i \in {lo... P (f (lo + i)))" by (metis add.commute atLeastLessThan_iff less_diff_conv nat_le_iff_add) lemma Int_set_range_to_offset: "(\bigcap i \in {lo...<hi::nat}. f i) = (\bigcap i \in {hi-lo}. f (lo + i))" by (fastforce simp: le_iff_add) lemma Un_set_range_to_offset: "(\bigcup i \in {lo...<hi::nat}. g (f i)) = (\bigcup i \in {hi-lo}. g (f (lo + i)))"
```

```
apply standard
            apply clarsimp
            apply (metis add_diff_cancel_left' diff_less_mono lessThan_iff nat_le_iff_add)
       by fastforce
lemma Int_set_range_neq_to_offset: "i = lo + ii
        \implies (\bigcap j \in \{lo.. < hi \neq i\}. \ f j) = (\bigcap j \in \{0.. < (hi-lo) \neq ii\}. \ f (lo + j))"
       unfolding Ball_def Bex_def image_def
       apply clarsimp
       by (metis (lifting) diff_add_inverse diff_less_mono less_diff_conv nat_le_iff_add)
lemma Int_set_range_neq_to_offset2: "ii< (hi - lo)</pre>
            \Rightarrow (\bigcap j \in {lo..<hi \neq (lo + ii)}. f j) = (\bigcap j \in {0..<(hi-lo)\neq ii}. f (lo + j))"
       unfolding Ball_def Bex_def image_def
       apply clarsimp
       by (metis (lifting) add.commute add_left_imp_eq less_diff_conv nat_le_iff_add)
lemma forall range to offset:
        "(\forall i\in{lo..<(hi::nat)}. P i) \longleftrightarrow (\forall i\in{0..<(hi - lo)}. P (lo + i))"
        unfolding Ball_def
       apply clarsimp
       by (metis add.commute le_add1 le_add_diff_inverse less_diff_conv)
lemma SCHEME_map_domain:
         "map (\lambdai. rgac i) [lo ..< (N::nat)] = map (\lambdai. rgac (lo + i)) [0..<(N-lo)]"
       by (induct N arbitrary: lo; simp add: Suc_diff_le)
\mathbf{lemma} \ \mathsf{offset\_P} \colon \texttt{"}(\forall \mathtt{i.} \ \mathsf{lo} \leq \mathtt{i} \ \land \ \mathtt{i} \ \lessdot (\mathtt{N}::\mathtt{nat}) \ \longrightarrow \ \mathsf{P} \ \mathtt{i}) \ \Longrightarrow \ \mathsf{lo} \leq \mathtt{N} \ \Longrightarrow \ (\forall \mathtt{i.} \ \mathtt{i} \ \lessdot (\mathtt{N}-\mathtt{lo}) \ \longrightarrow \ \mathsf{N} \ \Longrightarrow \ \mathsf{lo} \ \bowtie \ \mathsf{N} \ \Longrightarrow \ \mathsf{N} \ \bowtie \ \mathsf{N} \ 
P (lo + i))"
       by fastforce
lemma INTER_offset:
       shows "(\bigcap x < ((N::nat) - lo). p (lo + x)) = (\bigcap x \in \{lo.. < N\}. p x)"
       by (simp add: Ball_def Int_set_range_to_offset)
lemma LT offset: "(\forall i. lo < i \land i < (N::nat) \longrightarrow P i) \longleftrightarrow (\forall i < N - lo. P (lo + i))"
       by (metis add.commute le add1 le add diff inverse2 less diff conv)
```

3.5 Multi-Parallel

This section contains inference rules for multiple annotated commands running in parallel. Again, for convenience we first define a datatype that encapsulates the components:

- 1. Global precondition
- 2. Global rely
- 3. The lower index
- 4. The upper index
- 5. Sequential programs (each an annotated quintuple), indexed by the natural numbers
- 6. Global guarantee
- 7. Global postcondition

datatype 'a multi_par_quin = MultiParCode

```
"'a set"
  "'a rel"
   nat nat
   "nat \Rightarrow 'a annquin"
   "'a rel"
  "'a set"
Using the datatype above, the inference rules are set out as the following two functions.
fun multipar_valid :: "'a multi_par_quin \Rightarrow bool" where
   "multipar_valid (MultiParCode init RR lo N iac gg final) =
    ( (\forall i\in{lo..<N}. annquin_valid (iac i)) \land
        init \subseteq (\bigcap i \in \{lo..<\mathbb{N}\}. preOf (iac i)) \land
        RR \subseteq (\bigcap i \in \{lo... < N\}. relyOf (iac i)) \land
        (\forall\, i{\in}\{\texttt{lo..}{<}\texttt{N}\}.\ \texttt{guarOf}\ (\texttt{iac}\ i)\ \subseteq\ (\bigcap\, j{\in}\{\texttt{lo..}{<}\texttt{N}{\neq}i\}.\ \texttt{relyOf}\ (\texttt{iac}\ j)))\ \land\\
        (\bigcup \mathtt{i} \in \{\mathtt{lo..} < \mathtt{N}\}. \ \mathtt{guar0f} \ (\mathtt{iac} \ \mathtt{i})) \ \subseteq \ \mathtt{gg} \ \land
        (\bigcap i \in \{lo... < N\}. postOf (iac i)) \subseteq final )"
fun multipar_valid_offset:: "'a multi_par_quin \Rightarrow bool" where
   "multipar_valid_offset (MultiParCode init RR lo N iac gg final) =
    ( (\forall i<(N-lo). annquin_valid (iac (lo + i))) \land
        \mathtt{init} \,\subseteq\, (\bigcap \mathtt{i} \mathord{<} (\mathtt{N} \mathtt{-lo}) \,. \quad \mathtt{preOf} \,\, (\mathtt{iac} \,\, (\mathtt{lo} \,\, + \,\, \mathtt{i}))) \,\, \wedge \,\,
        RR \subseteq (\bigcap i < (N-lo). relyOf (iac (lo + i))) \land
        (\forall i < (N-lo). \text{ guarOf (iac (lo + i))} \subseteq (\bigcap j \in \{0... < (N-lo) \neq i\}. \text{ relyOf (iac (lo + j)))})
        ([ ]i<(N-lo). guarOf (iac (lo + i))) \subseteq gg \land
        (\bigcap i < (N-lo). postOf (iac (lo + i))) \subseteq final)"
Alternative syntax that encodes the validity of multi-parallel statements.
syntax
  "_multi_parallel_anno"
     :: "'a set \Rightarrow 'a rel \Rightarrow idt \Rightarrow nat \Rightarrow 'a annquin \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
     ("annotated global'_init: _ global'_rely: _ \| _ < _ @ _ global'_guar: _ global'_post:
_")
  "_multi_parallel_anno_lo_hi"
     :: "'a set \Rightarrow 'a rel \Rightarrow nat \Rightarrow idt \Rightarrow nat \Rightarrow 'a annquin \Rightarrow 'a rel \Rightarrow 'a set \Rightarrow bool"
     ("annotated global'_init: _ global'_rely: _ | _ < _ < _ @ _ global'_guar: _ global'_post:
_")
translations
  "annotated global_init: Init global_rely: RR | i < N @ rgac global_guar: GG global_post:

ightharpoonup "CONST multipar valid (CONST MultiParCode Init RR 0 N (\lambdai. rgac) GG QQ)"
  "annotated global_init: Init global_rely: RR | lo \le i < hi @ rgac global_guar: GG global_post:
QQ"

ightharpoonup "CONST multipar_valid_offset (CONST MultiParCode Init RR lo hi (\lambdai. rgac) GG QQ)"
The soundness of the inference rules, in multiple variants.
lemma multipar valid offset equiv:
   "multipar valid
                                  (MultiParCode init RR lo hi iac gg final) \longleftrightarrow
   multipar_valid_offset (MultiParCode init RR lo hi iac gg final)"
  apply clarsimp
  apply (intro conjI iffI)
                  apply fastforce
                apply fastforce
               apply fastforce
             apply fastforce
            apply fastforce
```

```
apply (fastforce simp: Int_set_range_to_offset)
       apply (metis (lifting) atLeastLessThan_iff diff_less_mono le_add_diff_inverse)
      apply (metis (no_types, lifting) ext INTER_offset)
      apply (metis (no_types, lifting) ext INTER_offset)
    apply (simp add: Ball_def)
    apply (smt (verit, ccfv_threshold) Int_set_range_neq_to_offset Sup.SUP_cong le_add_diff_inverse
                                          le_add_diff_inverse2 less_diff_conv)
   apply (metis Un_set_range_to_offset)
  by (fastforce simp: Int_set_range_to_offset)
theorem valid_multipar:
  "multipar_valid (MultiParCode Init RR lo N rgac GG QQ) \Longrightarrow
  \vdash COBEGIN SCHEME [lo \leq i < N] (
         CONST anncom_to_com (cmdOf (rgac i)),
          preOf (rgac i),
          relyOf (rgac i),
          guarOf (rgac i) ,
          postOf (rgac i)
        ) COEND
     SAT [Init, RR , GG, QQ]"
  apply (rule Parallel)
       apply (simp add: subset_iff)
      apply (metis Diff_iff add.commute add_left_cancel atLeastLessThan_iff empty_iff insert_iff
                    le_add1 less_diff_conv nth_upt)
     apply (fastforce intro: Ball_def simp: subset_iff)
    apply (fastforce simp: subset_iff)
   apply (simp add: subset_iff )
   apply (metis atLeastLessThan_iff diff_less_mono le_add_diff_inverse)
  apply (simp add: subset_iff)
  by (metis (lifting) ext add.commute anncom_spec_valid_sound annquin_simp atLeastLessThan_iff
                        cmdOf.simps guarOf.simps le_add1 less_diff_conv postOf.elims preOf.simps
                        relyOf.simps)
theorem valid_multipar_with_internal_rg:
  "multipar_valid (MultiParCode Init RR lo N (\lambdai. AnnQuin (p i) (r i) (ac i) (g i) (q i))
GG QQ) \Longrightarrow
  (\forall i. anncom\_to\_com (ac i) = c i) \Longrightarrow
  \vdash COBEGIN SCHEME [lo \leq i < N] ((c i), p i, r i, g i, q i) COEND
    SAT [Init, RR , GG, QQ]"
  unfolding Ball_def
  apply (rule Parallel, simp_all add: subset_iff)
     apply (metis Diff_iff add.commute atLeastLessThan_iff diff_add_inverse less_diff_conv
                   nat le iff add nth upt singletonD)
    apply (metis add.commute atLeastLessThan iff le add1 less diff conv)
   apply (metis add.commute atLeastLessThan_iff less_diff_conv nat_le_iff_add)
  by (metis add.commute anncom_spec_valid_sound atLeastLessThan_iff le_add1 less_diff_conv)
theorem valid_multipar_explicit:
  assumes
    local_sat: "\Lambdai. lo \leq i \wedge i \prec N \Longrightarrow annquin_valid (iac i)" and
    pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq preOf (iac i)" and
    rely: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow RR \subseteq relyOf (iac i)" and
```

```
guar_imp_rely: "\bigwedgei j. lo \leq i \land i\ltN \Longrightarrow lo \leq j \land j \lt N \Longrightarrow i \neq j
                            \implies guarOf (iac i) \subseteq relyOf (iac j)" and
     guar: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow guarOf (iac i) \subseteq gg" and
     post: "(\bigcap i \in \{lo.. < N\}. postOf (iac i)) \subseteq final"
  shows "multipar_valid (MultiParCode init RR lo N iac gg final)"
  using assms by fastforce
theorem\ {\tt valid\_multipar\_offset\_explicit:}
  assumes
     local_sat: "\wedgei. lo \leq i \wedge i < N \Longrightarrow annquin_valid (iac i)" and
     pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq preOf (iac i)" and
     rely: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow RR \subseteq relyOf (iac i)" and
     guar_imp_rely: "\landi j. lo \le i \land i\ltN \Longrightarrow lo \le j \land j \lt N \Longrightarrow i \ne j
                            \implies guarOf (iac i) \subseteq relyOf (iac j)" and
     guar: "\bigwedgei. lo \leq i \wedge i \prec N \Longrightarrow guarOf (iac i) \subseteq gg" and
     post: "(\bigcap i \in \{lo..<\mathbb{N}\}. postOf (iac i)) \subseteq final"
  shows "multipar_valid_offset (MultiParCode init RR lo N iac gg final)"
  apply clarsimp
  apply (intro conjI, simp_all add: le_INF_iff assms)
     apply (simp add: guar_imp_rely less_diff_conv)
    apply (simp add: SUP_le_iff guar)
  using post by (fastforce simp: nat_le_iff_add SUP_le_iff guar)
theorem valid_multipar_explicit2:
  assumes
     local_sat: "\landi. lo \le i \land i < N \Longrightarrow annquin_valid {p i,r i} c i {g i ,q i}" and
     pre: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow init \subseteq p i" and
     rely: "\bigwedgei. lo \leq i \wedge i < N \Longrightarrow RR \subseteq r i" and
     \texttt{guar\_imp\_rely: "} \land \texttt{i } \texttt{lo} \leq \texttt{i} \ \land \ \texttt{i} < \texttt{N} \implies \texttt{lo} \leq \texttt{j} \ \land \ \texttt{j} < \texttt{N} \implies \texttt{i} \neq \texttt{j} \implies \texttt{g} \ \texttt{i} \subseteq \texttt{r} \ \texttt{j"} \ \texttt{and}
     guar: "\bigwedgei. lo \leq i \land i \lessdot N \Longrightarrow g i \subseteq gg" and
     post: "(\bigcap i \in \{lo..<N\}. q i) \subseteq final"
     shows "multipar_valid (MultiParCode init RR lo N (\lambdai. {p i,r i} c i {g i ,q i}) gg
final)"
  using assms
  by (force simp: subset_iff)
theorem valid_multipar_explicit_with_invariant:
  assumes
     local_sat: "\landi. i < N \Longrightarrow annquin_valid {p i,r i} c i // Inv {g i ,q i}" and
     pre: "\bigwedgei. i < N \Longrightarrow init \subseteq p i \cap Inv" and
     rely: "\bigwedgei. i \lt N \Longrightarrow RR \subseteq r i \cap pred_to_rel Inv" and
     \texttt{guar\_imp\_rely: "} \land \texttt{i} \ \texttt{i} \cdot \texttt{N} \implies \texttt{j} \ \lessdot \texttt{N} \implies \texttt{i} \neq \texttt{j}
                            \implies invar_and_guar Inv (g i) \subseteq r j \cap pred_to_rel Inv" and
     guar: "\bigwedgei. i < N \Longrightarrow invar_and_guar Inv (g i) \subseteq gg" and
     post: "(\bigcap i \le N. q i \cap Inv) \subseteq final"
  shows "multipar_valid (MultiParCode init RR 0 N (\lambdai. {p i,r i} c i // Inv {g i ,q i})
gg final)"
  apply (rule valid multipar explicit2)
  using lessThan_atLeastO assms by presburger+
method method_annquin_multi_parallel =
  rule valid_multipar_explicit2,
  goal_cases local_sat pre rely guar_imp_rely guar post
```

3.6 The Main Tactics

lemmas rg_syntax_simps_collection =

```
multipar_valid.simps
multipar_valid_offset.simps
add_invar.simps
basic_to_basic_anno_syntax.simps
postOf.simps preOf.simps relyOf.simps guarOf.simps
annquin_simp
anncom_spec_valid.simps

method rg_proof_expand = (auto simp only: rg_syntax_simps_collection ; simp?)

method method_anno_ultimate =
    method_annquin_basicanno
| method_annquin_seq+
| method_annquin_while
| method_annquin_multi_parallel
| rg_proof_expand
```

end

4 Examples Reworked

The examples in the original library [2], expressed using our new syntax, and proved using our new tactics.

```
theory RG_Examples_Reworked
imports RG_Annotated_Commands
begin
declare [[syntax_ambiguity_warning = false]]
```

4.1 Setting Elements of an Array to Zero

```
record Example1 =
  A :: "nat list"
theorem Example1:
   "global_init: { n < length ^A }
    global_rely: id(A)
     || i < n @
       \{ \{ i < length `A \}, \}
          \{ length ^{\circ}A = length ^{a}A \wedge ^{\circ}A ! i = ^{a}A ! i \} \}
     ^A := ^A[i := 0]
       { \{ \text{ length } {}^{\circ}A = \text{ length } {}^{a}A \land (\forall j < n. i \neq j \longrightarrow {}^{\circ}A ! j = {}^{a}A ! j) \},
          { A ! i = 0 } }
    global_guar: { True }
    global_post: \{ \forall i < n. `A ! i = 0 \}"
   \mathbf{by} \ \mathtt{method\_rg\_try\_each}
theorem Example1'':
   "annotated global_init: { length 'A = N } global_rely: { ^{a}A = {^{o}A} }
    \parallel i < N @
    { { True },
       { length {}^{a}A = length {}^{o}A \wedge {}^{a}A ! i = {}^{o}A ! i} }
       ('A := 'A [i := f i])- // {length 'A = N }
     \{ \ \{ \ \text{length} \ ^a \texttt{A} \ \text{= length} \ ^o \texttt{A} \ \land \ (\forall \, \texttt{j}. \ \texttt{i} \ \neq \ \texttt{j} \ \longrightarrow \ \ ^a \texttt{A} \ ! \ \texttt{j} \ \text{=} \ ^o \texttt{A} \ ! \ \texttt{j} \ ) \ \}, 
       global_guar: { length aA = length A}
```

```
global_post: { take N 'A = map f [0 ..< N] }"
apply rg_proof_expand
by (fastforce split: if_splits simp: map_upt_eqI)</pre>
```

```
Incrementing a Variable in Parallel
Two Components
record Example2 =
     x :: nat
     c_0 :: nat
     c_1 :: nat
lemma ex2_leftside:
     "{ \{ c_0 = 0 \}, id(c_0) \}
             Basic ((x \leftarrow x + 1) \Rightarrow (c_0 \leftarrow 1))
       /\!\!/ \left\{ x = c_0 + c_1 \right\}  { id(c<sub>1</sub>), \left\{ c_0 = 1 \right\}"
     by method_rg_try_each
lemma ex2_rightside:
     "{ \{ c_1 = 0 \}, id(c_1) \}
            Basic (('x \leftarrow 'x + 1) \circ> ('c_1 \leftarrow 1))
        /\!\!/ \{ x = c_0 + c_1 \}
        { id(c_0), { c_1 = 1 }}"
     by method_rg_try_each
theorem Example2b:
     "{ \{ c_0 = 0 \land c_1 = 0 \}, ids(\{c_0, c_1\}) \}
        (Basic (('x \leftarrow 'x + 1) \circ> ('c_0 \leftarrow 1))) || (Basic (('x \leftarrow 'x + 1) \circ> ('c_1 \leftarrow 1)))
        /\!\!/ \{ x = c_0 + c_1 \}
        { UNIV, { True } }"
     using ex2_leftside ex2_rightside
     by (rule rg_binary_parallel_invar_conseq; blast)
Parameterised
lemma sum_split:
     "(j::nat) < (n::nat)
     \implies sum a \{0...<n\} = sum a \{0...<j\} + a j + sum a \{j+1...<n\}"
      by \ (\texttt{metis Suc\_eq\_plus1 bot\_nat\_0.extremum group\_cancel.add1 le\_eq\_less\_or\_eq sum.atLeastLessThan\_cancel.add1 le\_eq\_less\_or_eq sum.atLeastLessThan\_cancel.add1 le_eq\_less\_or_eq sum.atLeastLessThan\_cancel.add1 le_eq\_less\_or_eq sum.atLeastLessThan_cancel.add1 le_eq\_less\_or_eq sum.atLeastLessThan_cancel.add1 le_eq\_less\_or_eq sum.atLeastLessThan_cancel.add1 le_eq\_less\_or_eq su
sum.atLeast_Suc_lessThan)
Intuition of the lemma above: Consider the sum of a function b k with k ranging from 0 to n -
1. Let j be an index in this range, and assume b j = 0. Then, replacing b j with 1 in the sum,
the result is the same as adding 1 to the original sum.
lemma Example2_lemma2_replace:
     assumes "(j::nat) < n"
                and "b' = b(j:=xx::nat)"
          shows "(\sum i = 0 ... < n. b' i) = (\sum i = 0 ... < n. b i) - b j + xx"
     apply (subst sum_split, rule assms(1))
     apply (subst sum_split, rule assms(1))
     using assms(2) by clarsimp
lemma Example2_lemma2_Suc0[simp]:
     assumes "(j::nat) < n"
               and "b j = 0"
                and "b' = b(j:=1)"
```

shows "Suc (\sum i::nat = 0 ..< n. b i) = (\sum i = 0 ..< n. b' i)"

```
using assms Example2_lemma2_replace
  by fastforce
record Example2_param =
  y :: nat
  \tt C :: "nat \Rightarrow nat"
lemma Example2_local:
  \texttt{"i}\,\, \mathrel{<}\, \mathtt{n} \implies
  \{ \{ Ci = 0 \},
     id(C @ i) }
    Basic (('y \leftarrow 'y + 1) \circ> ('C \leftarrow 'C(i:=1)))
    /\!\!/ \{ y = (\sum k : nat = 0 .. < n. `C k) \}
   \{ \{ \{ j \in n. \ i \neq j \longrightarrow {}^{o}C \ j = {}^{a}C \ j \} \}, \}
      { 'C i = 1 } }"
  by method_rg_try_each
theorem Example2_param:
  assumes "0 < n" shows
  "global_init: \{ y = 0 \land sum C \{0 ... < n\} = 0 \}
   global_rely: id(C) \cap id(y)
    || i < n @
   id(C @ i) }
     Basic (('y \leftarrow 'y + 1) \circ> ('C \leftarrow 'C(i:=1)))
     // { y = sum 'C {0 ..< n} }
   \{\ \{\ \forall\ j\ <\ n.\ i\ 
eq\ j\ \longrightarrow\ {}^{\Omega}C\ j\ =\ {}^{a}C\ j\ \}
      { 'C i = 1 } }
   global_guar: { True }
   proof method_multi_parallel
  case post
  then show ?case
     using assms by (clarsimp, fastforce)
  case body
  then show ?case
     by method_rg_try_each
qed (fastforce+)
As above, but using an explicit annotation and a different method.
theorem Example2_param_with_expansion:
  assumes "0 < n" shows "annotated
  global_init: \{ y = 0 \land sum C \{0 ... < n\} = 0 \}
  {\tt global\_rely: id(C) } \cap {\tt id(y)}
    || i < n @
  \{ \{ Ci = 0 \},
     id(C @ i) }
     (Basic (('y \leftarrow 'y + 1) \circ> ('C \leftarrow 'C(i:=1))))-
     // { 'y = sum 'C {0 ..< n} }</pre>
  { { { } \forall j < n. i \neq j \longrightarrow {}^{\circ}C j = {}^{\circ}C j },
     { C i = 1 } }
  global_guar: { True }
  global_post: { 'y = n }"
  apply rg_proof_expand
  using assms by (fastforce split: if_splits)
```

4.3 FindP

Titled "Find Least Element" in the original [2], the "findP" problem assumes that n divides m, and runs n threads in parallel to search through a length-m array B for an element that satisfies a predicate P. The indices of the array B are partitioned into the congruence-classes modulo n, where Thread i searches through the indices that are congruent to i mod n.

In the program, X i is the next index to be checked by Thread i. Meanwhile, Y i is either the out-of-bound default m + i if Thread i has not found a P-element, or the index of the first P-element found by Thread i.

The first helper lemma: an equivalent version of mod_aux found in the original.

```
lemma mod_aux :
  "a mod (n::nat) = i \implies a < j \land j < a + n \implies j \mod n \neq i"
  using mod_eq_dvd_iff_nat nat_dvd_not_less by force
record Example3 =
  X :: "nat \Rightarrow nat"
  Y :: "nat \Rightarrow nat"
lemma Example3:
  assumes "m mod n=0" shows "annotated
  global_init: \{\forall i < n. \ X \ i = i \land Y \ i = m + i \}
  global_rely: \{ {}^{\circ}X = {}^{a}X \wedge {}^{\circ}Y = {}^{a}Y \}
    || i < n @
  i \leq m+i),
     \{(\forall j \le n. i \ne j \longrightarrow {}^aY j \le {}^oY j) \land {}^oX i = {}^aX i \land {}^oY i = {}^aY i\} \}
    WHILEa (\forall j < n. 'X i < 'Y j) DO
       {stable_guard: { 'X i < 'Y i}}
       IFa P(B!('X i)) THEN
          ('Y[i] := 'X i)-
       ELSE
          ( X[i] := X i + n) -
       FΙ
    ΠD
  \{ \{ (\forall j \le n. i \ne j \longrightarrow {}^{\circ}X j = {}^{a}X j \land {}^{\circ}Y j = {}^{a}Y j) \land {}^{a}Y i \le {}^{\circ}Y i \}, \}
      \{ \text{ (`X i) mod n = i } \land \text{ (} \forall \text{ j<`X i. j mod n=i} \longrightarrow \neg P(B!j)) \} 
    \land ('Y i<m \longrightarrow P(B!('Y i)) \land 'Y i\le m+i)
    \land (\exists j < n. Y j \leq X i) } }
  global_guar: {True}
  global_post: { ∀ i < n. (´X i) mod n=i</pre>
                   \land (\forall j < X i. j mod n=i \longrightarrow \neg P(B!j))
                   \land ('Y i<m \longrightarrow P(B!('Y i)) \land Y i \le m+i)
                   \land (\exists j<n. 'Y j \leq 'X i) \}"
  apply rg_proof_expand
              apply fastforce+
    apply (metis linorder_neqE_nat mod_aux)
   apply (metis antisym_conv3 mod_aux)
  by (metis leD mod_less_eq_dividend)
```

Below is the original version of the theorem, and is immediately derivable from the above. We include some formatting changes (such as line breaks) for better readability.

```
lemma Example3_original: "m mod n=0 ⇒
```

```
\vdash COBEGIN SCHEME [0\leqi<n]
    (WHILE (\forall j < n. 'X i < 'Y j) DO
          IF P(B!(`X i)) THEN `Y:=`Y (i:=`X i) ELSE `X:=`X (i:=(`X i)+ n) FI
      OD,
   \{(`X\ i)\ \mathsf{mod}\ \mathsf{n} = \mathsf{i}\ \land\ (\forall\,\mathsf{j} < `X\ i.\ \mathsf{j}\ \mathsf{mod}\ \mathsf{n} = \mathsf{i}\ \longrightarrow\ \neg\mathsf{P}(\mathsf{B}!\,\mathsf{j}))\ \land\ (`Y\ \mathsf{i} < \mathsf{m}\ \longrightarrow\ \mathsf{P}(\mathsf{B}!\,(`Y\ \mathsf{i}))\ \land\ `Y\ \mathsf{i} < \mathsf{m}\ ) \} 
m+i)},
  \{(\forall j \leq n. i \neq j \longrightarrow {}^{a}Y j \leq {}^{o}Y j) \land {}^{o}X i = {}^{a}X i \land {}^{o}Y i = {}^{a}Y i\},
  \{(\forall j \leq n. i \neq j \longrightarrow {}^{\circ}X j = {}^{a}X j \wedge {}^{\circ}Y j = {}^{a}Y j) \wedge {}^{a}Y i \leq {}^{\circ}Y i\},
   \{(\texttt{`X i)} \ \mathsf{mod} \ \mathsf{n=i} \ \land \ (\forall \, \mathsf{j<\^{X} i.} \ \mathsf{j} \ \mathsf{mod} \ \mathsf{n=i} \ \longrightarrow \ \neg P(\mathsf{B!j})) \ \land \ (\texttt{`Y i<\!m} \ \longrightarrow \ P(\mathsf{B!(`Y i)}) \ \land \ \texttt{`Y i<\!m} \ ) 
m+i) \land (\exists j < n. \ Y j \leq X i) 
 COEND
 SAT [
      \{ \forall i < n. \ X i = i \land Y i = m+i \},
      \{ ^{\circ}X = ^{a}X \wedge ^{\circ}Y = ^{a}Y \}
      {True},
      \{\forall i < n. (`X i) \mod n=i \land \}
                          (\forall j < `X i. j mod n=i \longrightarrow \neg P(B!j)) \land
                          ('Y i<m \longrightarrow P(B!('Y i)) \land 'Y i\le m+i) \land
                          (\exists j < n. \ Y j \leq X i)
   by (rule valid_multipar_with_internal_rg[OF Example3]; simp)
```

5 Abstract Queue Lock

theory Lock_Abstract_Queue

imports

end

RG_Annotated_Commands

begin

We identify each thread by a natural number.

```
type_synonym thread_id = nat
```

The state of the Abstract Queue Lock consists of one single field, which is the list of threads.

```
record queue_lock = queue :: "thread_id list"
```

The following abbreviation describes when an object is at the head of a list. Note that both clauses are needed to characterise the predicate faithfully, because the term x = hd xs (i.e. x is the head of xs) does not imply that $x \in set xs$.

```
abbreviation at_head :: "'a \Rightarrow 'a list \Rightarrow bool" where "at_head x xs \equiv xs \neq [] \wedge x = hd xs"
```

The contract of the Abstract Queue Lock consists of two clauses. The first states that a thread cannot be added to or removed from the queue by its environment. The second states that the head of the queue remains at the head after any environment-step.

```
abbreviation queue_contract :: "thread_id \Rightarrow queue_lock rel" where "queue_contract i \equiv { (i \in set ^{o}queue \longleftrightarrow i \in set ^{a}queue) \land (at_head i ^{o}queue \longrightarrow at_head i ^{a}queue) }"
```

The RG sentence of the Release procedure is made into a separate lemma below.

```
lemma qlock_rel:
 "rely: queue_contract t
                           guar: for_others queue_contract t
 inv: { distinct 'queue }
                           code:
   { { at_head t 'queue } }
  queue := tl queue
   proof method_basic_inv
 case est_guar
 then show ?case
   apply clarsimp
   by (metis hd_Cons_tl in_set_member member_rec(1))
 case est_post
 then show ?case
   apply clarsimp
   by (metis distinct.simps(2) list.collapse)
qed (simp_all add: distinct_tl)
```

The correctness of the Abstract Queue Lock is expressed by the following RG sentence, which describes a closed system of n threads, each repeatedly calls Acquire and then Release in an infinite loop. We omit the critical section between Acquire and Release, as it does not access the lock.

The Acquire procedure consists of two steps: enqueuing and spinning. The Release procedure consists of only the dequeuing step.

Each thread can only be in the queue at most once, so the invariant requires the queue to be distinct.

The queue is initially empty; hence the global precondition. Being a closed system, there is no external actor, so the rely is the identity relation, and the guarantee is the universal relation. The system executes continuously, as the outer infinite loop never terminates; hence, the global postcondition is the empty set.

```
theorem qlock_global:
```

```
assumes "0 < n"
shows "annotated
|| i < n @
{ { i ∉ set 'queue }, queue_contract i }
WHILEa True DO
  {stable_guard: \{ i \notin set \  (queue ) \} \}
  NoAnno ('queue := 'queue @ [i]) .;
  \{ \{ i \in set \  (queue \} \} \}
 NoAnno (WHILE hd 'queue \neq i DO SKIP OD) .;
  { { at_head i 'queue }}
  NoAnno ('queue := tl 'queue)
# { distinct 'queue } { for_others queue_contract i, {} }
global_guar: UNIV global_post: {}"
apply rg_proof_expand
   apply (method_basic; fastforce)
```

```
apply (method_spinloop; fastforce) using qlock_rel apply fastforce using assms by fastforce
```

end

6 Ticket Lock

theory Function_Supplementary

imports Main

begin

This theory contains some function-related definitions and associated lemmas that are not included in the built-in library. They are grouped into two sections:

- 1. Predicates that describe functions that are injective or surjective when restricted to subsets of their domains or images.
- 2. A higher-order function that performs a list of updates on a function.

The content of this theory was conceived during a project on formal program verification of locks (i.e. mutexes). The new definitions and lemmas arose from the proof of data refinement from an abstract queue-lock to a ticket-lock.

Inspired by the theories *List Index* (Nipkow 2010) and *Fixed-Length Vectors* (Hupel 2023) on the Archive of Formal Proofs, we hope that these new definitions and lemmas may also be of help to others.

6.1 Helpers: Inj, Surj and Bij

It is sometimes useful to describe a function that is not injective in itself, but is injective when its image is restricted to a subset.

For example, consider the function $\{a \mapsto 1, b \mapsto 2, c \mapsto 2\}$. This function is not injective, but if its image is restricted to $\{1\}$, the new function $\{a \mapsto 1\}$ becomes injective.

This motivates the following definition.

```
definition inj_img :: "('a \Rightarrow 'b) \Rightarrow 'b set \Rightarrow bool" where "inj_img f B \equiv \forall x1 x2. f x1 = f x2 \land f x1 \in B \longrightarrow x1 = x2"
```

Similarly, the next definition describes a function that becomes surjective when its codomain is restricted to a subset.

In other words, "surj_codom f B" means that every element in B is mapped to by f.

For example, consider the function that maps from the domain $\{a,b\}$ to the codomain $\{1,2\}$ with the graph $\{a\mapsto 1,b\mapsto 1\}$. This function is not surjective, but if its codomain is restricted to $\{1\}$, then the new function becomes surjective.

```
definition surj_codom :: "('a \Rightarrow 'b) \Rightarrow 'b set \Rightarrow bool" where "surj_codom f B \equiv \forall y \in B. (\exists x. f x = y)"
```

We can also describe a function that remains surjective on a subset of its domain.

In other words, "surj_on f A" means that mappings that originate from A already span the entire codomain.

Note that this is a notion stronger than plain surjectivity, which will be shown in the later subsection "Surj-Related".

```
definition surj_on :: "('a \Rightarrow 'b) \Rightarrow 'a set \Rightarrow bool" where
   "surj_on f A \equiv \forall y. (\exists x \in A. f x = y)"
```

Note that all three definitions above are most likely not included in the built-in library, as suggested by the outputs of the following search-commands.

```
find_consts name:"inj"
find_consts name: "surj"
```

6.1.1 Inj-Related

```
lemma inj_implies_inj_on: "inj f \Longrightarrow inj_on f A"
  using inj_on_subset by blast
lemma inj_implies_inj_img: "inj f ⇒ inj_img f B"
  by (simp add: injD inj_img_def)
lemma inj_img_empty: "inj_img f {}"
  by (fastforce simp: inj_img_def)
lemma inj_img_singleton: "\forall x. f x \neq b \Longrightarrow inj_img f {b}"
  by (fastforce simp: inj_img_def)
lemma inj_img_subset:
  "[ inj_img f B ; B' \subseteq B ] \Longrightarrow inj_img f B'"
  by (fastforce simp: inj_img_def)
lemma inj_img_superset:
  "[ inj_img f B ; \forall x. f x \notin B' - B [ \Longrightarrow inj_img f B'"
  by (fastforce simp: inj_img_def)
lemma inj_img_not_mapped_to: "\forall x. f x \notin B \Longrightarrow inj_img f B"
  by (fastforce simp: inj_img_def)
lemma inj_img_add_one_extra:
  "[ inj_img f B ; \forall x. f x \neq b ] \Longrightarrow inj_img f (B \cup {b})"
  by (fastforce simp: inj_img_def)
lemma inj_img_union_1:
  "[ inj_img f B1 ; inj_img f B2 ] \Longrightarrow inj_img f (B1 \cup B2)"
  by (fastforce simp: inj_img_def)
lemma inj_img_union_2:
  "[ inj_img f B1 ; \forall x. f x \notin B2 ] \Longrightarrow inj_img f (B1 \cup B2)"
  by (simp add: inj_img_not_mapped_to inj_img_union_1)
lemma inj_img_fun_upd_notin:
  "\llbracket inj_img f B ; \forall x. f x \neq b \rrbracket \Longrightarrow inj_img (fun_upd f a b) B"
  by (fastforce simp: inj_img_def)
lemma inj_img_fun_upd_singleton:
  "\forall x. f x \neq b \imp inj_img (fun_upd f a b) {b}"
  by (simp add: inj_img_fun_upd_notin inj_img_singleton)
```

6.1.2 Surj-Related

```
Lemmas related to "surj codom".
```

```
lemma surj_implies_surj_codom: "surj f ⇒ surj_codom f B"
```

```
by (metis surjD surj_codom_def)
lemma surj_codom_triv: "surj_codom f (f ' A)"
  by (fastforce simp: surj_codom_def)
lemma surj_codom_univ: "surj_codom f UNIV = surj f"
  by (metis surj_codom_def surj_def UNIV_I)
lemma surj_codom_empty: "surj_codom f {}"
  by (fastforce simp: surj_codom_def)
lemma \ surj\_codom\_singleton: "b \in range \ f \implies surj\_codom \ f \ \{b\}"
  by (fastforce simp: surj_codom_def)
lemma surj codom subset:
  "\llbracket \text{ surj\_codom f B ; B'} \subseteq \text{B } \rrbracket \Longrightarrow \text{surj\_codom f B'} \rrbracket
  by (fastforce simp: surj_codom_def)
lemma surj_codom_union:
  "[ surj_codom f B1 ; surj_codom f B2 ] \Longrightarrow surj_codom f (B1 \cup B2)"
  by (fastforce simp: surj_codom_def)
Lemmas related to "surj on".
lemma surj_on_implies_surj: "surj_on f A ⇒ surj f"
  by (metis surj_def surj_on_def)
lemma surj_on_univ: "surj_on f UNIV = surj f"
  by (metis UNIV_I surjD surj_on_def surj_on_implies_surj)
lemma surj_on_never_emptyset: "¬ surj_on f {}"
  by (fastforce simp: surj_on_def)
lemma surj_on_superset:
  "\llbracket surj_on f A ; A \subseteq A' \rrbracket \Longrightarrow surj_on f A'"
  by (fastforce simp: surj_on_def)
lemma surj_on_union:
  "[\![ surj_on f A1 ; surj_on f A2 ]\!] \Longrightarrow surj_on f (A1 \cup A2)"
  by (fastforce simp: surj_on_superset)
6.1.3 Bij and Inv
This section relates the new definitions to the existing "bijective between" and "inverse" defi-
nitions.
lemma bij_betw_implies_inj_img: "bij_betw f UNIV B ⇒ inj_img f B"
  by (fastforce simp: bij_betw_def inj_implies_inj_img)
lemma bij_betw_implies_surj_codom: "bij_betw f A B ⇒ surj_codom f B"
  by (fastforce intro: f_the_inv_into_f_bij_betw simp: surj_codom_def)
lemma bij_betw_implies_surj_on: "bij_betw f A UNIV ⇒ surj_on f A"
   by \ ({\tt meson} \ {\tt UNIV\_I} \ {\tt bij\_betw\_iff\_bijections} \ {\tt surj\_on\_def}) \\
Other lemmas
lemma bij_extension:
  assumes "a ∉ A"
      and "b \notin B"
```

```
and "bij_betw f A B"
    shows "bij_betw (fun_upd f a b) (A \cup {a}) (B \cup {b})"
  by (metis assms bij_betw_combine bij_betw_cong bij_betw_singleton_iff disjoint_insert(1)
            fun_upd_other fun_upd_same inf_bot_right)
lemma bij_remove_one:
  assumes "a \in A"
      and "bij_betw f A B"
    shows "bij_betw f (A - {a}) (B - {f a})"
  using assms by (fastforce simp: bij_betwE bij_betw_DiffI)
lemma set_remove_one_element:
  assumes "x \notin B"
      and "B \subseteq A"
      and "A - \{x\} \subseteq B"
    shows "A - \{x\} = B"
  using assms by blast
lemma inv_image_restrict_inj:
  assumes "bij_betw f A B"
      and "inj_img f B"
      and "f a \in B"
    shows "a \in inv f 'B"
  using assms by (fastforce simp: f_inv_into_f inj_img_def rev_image_eqI)
lemma inv_image_restrict:
  assumes "inj_on f A"
      and "f a \in B"
      and "\forall x. (f x \in B \longrightarrow x \in A)"
    shows "a \in inv f 'B"
  using assms by (fastforce simp: f_inv_into_f inj_onD rev_image_eqI)
lemma inv_image_restrict_neg:
  assumes "bij_betw f A B"
      and "f a \notin B"
      and "\forall x. (f x \in B \longrightarrow x \in A)"
    shows "a \notin inv f 'B"
  using assms apply clarsimp
  by (metis (mono_tags, lifting) f_inv_into_f f_the_inv_into_f_bij_betw range_eqI)
lemma inv_image_restrict_neg':
  assumes "surj_codom f B"
      and "f a \notin B"
      and "\forall x. (f x \in B \longrightarrow x \in A)"
    shows "a ∉ inv f 'B"
  using assms
  by (fastforce simp: surj_codom_def f_inv_into_f rangeI)
lemma bij_betw_inv1:
  assumes "bij_betw f A B"
      and "inj_img f B"
      and "f a \in B"
    shows "inv f (f a) = a"
  using assms by (fastforce simp: f_inv_into_f inj_img_def)
lemma bij_betw_inv2:
  assumes "bij_betw f A B"
      and "b \in B"
```

```
shows "f (inv f b) = b"
 by (metis assms bij_betw_imp_surj_on f_inv_into_f rangeI)
lemma surj_codom_inj_on_vimage_bij_betw:
  " surj_codom f B; inj_on f (vimage f B) > bij_betw f (vimage f B) B"
  apply (rule bij_betwI')
 by (fastforce simp: inj_onD surj_codom_def)+
     Helpers: Multi-Updates on Functions
fun fun_upd_list :: "('a \Rightarrow 'b) \Rightarrow ('a \times 'b) list \Rightarrow ('a \Rightarrow 'b)" where
  "fun_upd_list f [] = f"
| "fun_upd_list f (xy # xys) = fun_upd (fun_upd_list f xys) (fst xy) (snd xy)"
This notion can also be defined following the fold pattern, although this alternative form is
not used.
fun fun_upd_list_l :: "('a \Rightarrow 'b) \Rightarrow ('a \times 'b) list \Rightarrow ('a \Rightarrow 'b)" where
  "fun upd list l f [] = f"
| "fun_upd_list_l f (xy # xys) = fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys"
Examples of the two definitions above.
value "fun upd list
                      (\lambda x.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
value "fun_upd_list_l (\lambdax.0::nat) [(1::nat,1),(4,3),(6,6),(4,4)] 4"
Both definitions above resemble "folds" with some un-currying, as shown by the following two
lemmas.
lemma fun upd list is foldr:
  "fun_upd_list f0 pairs = foldr (\lambda pair f. fun_upd f (fst pair) (snd pair)) pairs f0"
 by (induct pairs; fastforce)
lemma fun_upd_list_l_is_foldl:
  "fun_upd_list_l f0 pairs = foldl (\lambda f pair. f(fst pair := snd pair)) f0 pairs"
 by (induct pairs arbitrary: f0; force)
These two definitions are equivalent when every domain-value is updated at most once.
lemma fun_upd_list_l_distinct_rewrite:
  "distinct (map fst (xy # xys))
   ⇒ fun_upd_list_l (fun_upd f (fst xy) (snd xy)) xys
                                                      (fst xy) (snd xy)"
     = fun_upd
                       (fun_upd_list_l f xys)
proof (induct xys arbitrary: xy f)
 case (Cons xy2 xys2)
  thus ?case
    by (metis (no_types, lifting) distinct_length_2_or_more fun_upd_list_1.simps(2) fun_upd_twist
list.simps(9))
ged (fastforce)
lemma fun_upd_list_defs_distinct_equiv:
  "distinct (map fst pairs) \Longrightarrow fun_upd_list f pairs = fun_upd_list_l f pairs"
proof (induct pairs)
 case (Cons xy xys)
 thus ?case
    by (fastforce simp: fun_upd_list_l_distinct_rewrite)
qed (fastforce)
Smaller propositions
lemma fun_upd_list_distinct_rewrite:
```

"distinct (map fst (xy # xys))

```
\implies fun_upd_list (fun_upd f (fst xy) (snd xy)) xys
                     (fun_upd_list f xys)
                                                   (fst xy) (snd xy)"
     = fun_upd
  by (simp add: fun_upd_list_defs_distinct_equiv fun_upd_list_l_distinct_rewrite)
lemma fun_upd_list_hd_1:
  "fun_upd_list f (zip (x \# xs) (y \# ys)) x = y"
  by simp
lemma fun_upd_list_hd_2:
  "\llbracket xs \neq \llbracket \rrbracket 
brace; ys \neq \llbracket \rrbracket 
brace fun_upd_list f (zip xs ys) (hd xs) = hd ys"
  by (metis fun_upd_list_hd_1 list.collapse)
lemma fun_upd_list_not_hd:
  assumes "a \neq x"
  shows "fun_upd_list f (zip (x # xs) (y # ys)) a = fun_upd_list f (zip xs ys) a"
  using assms by simp
lemma fun upd list not updated map:
  assumes "a ∉ set (map fst xys)"
    shows "fun_upd_list f xys a = f a"
  using assms by (induction xys, simp_all)
lemma fun_upd_list_not_updated_zip:
  assumes "a \notin set xs"
    shows "fun_upd_list f (zip xs ys) a = f a"
  by (metis assms fun_upd_list_not_updated_map in_set_take) map_fst_zip_take)
```

6.2.1 Ordering of Updates

The next two lemmas shows that the ordering of the updates does not matter, as long as the updates are distinct.

```
lemma fun_upd_list_distinct_reorder:
 assumes "distinct (map fst pairs)"
     and "ab \in set pairs"
   shows "fun_upd_list f pairs
          = (fun_upd_list f (remove1 ab pairs)) (fst ab := snd ab)"
using assms
proof (induct pairs)
 case (Cons xy xys)
  thus ?case
 proof (cases "ab = xy")
    case True
    thus ?thesis by simp
 next
   case False
   hence "(fun_upd_list f (remove1 ab (xy # xys))) (fst ab := snd ab)
              = fun_upd_list f (xy # xys)"
      using Cons.hyps Cons.prems by fastforce
   thus ?thesis by fastforce
ged (fastforce)
lemma fun_upd_list_distinct_reorder_general:
  assumes "distinct (map fst pairs1)"
      and "distinct (map fst pairs2)"
      and "set pairs1 = set pairs2"
```

```
shows "fun_upd_list f pairs1 = fun_upd_list f pairs2"
using assms
proof (induct pairs1 arbitrary: pairs2)
  case (Cons xy xys)
 hence "fun_upd_list f pairs2
          = (fun_upd_list f (remove1 xy pairs2))(fst xy := snd xy)"
    by (metis list.set_intros(1) fun_upd_list_distinct_reorder Cons.prems(2,3))
 also have "... = (fun_upd_list f xys)(fst xy := snd xy)"
    by (metis (mono_tags, lifting) Cons.hyps Cons.prems distinct_map distinct_remove1 list.simps(9)
                                   remove1.simps(2) set_remove1_eq)
 also have "... = fun_upd_list f (xy # xys)"
    by simp
  ultimately show ?case
    by presburger
qed (fastforce)
6.2.2 Surjective
lemma helper_surj_zip_1:
 assumes "a \in set xs"
      and "length xs = length ys"
   shows "fun_upd_list f (zip xs ys) a ∈ set ys"
using assms
proof (induction xs arbitrary: ys)
 case (Cons x xs)
  thus ?case
   apply (cases "x = a")
     apply (metis Cons.prems(2) fun_upd_list_hd_1 length_0_conv list.distinct(1) list.exhaust_sel
                  list.set_intros(1))
    by (metis Cons.IH Cons.prems(1,2) fun_upd_list_not_hd length_Suc_conv list.set_intros(2)
set_ConsD)
qed (fastforce)
lemma fun_upd_list_surj_zip_1:
 assumes "length xs = length ys"
    shows "fun_upd_list f (zip xs ys) ' set xs \subseteq set ys"
 using assms helper_surj_zip_1 by force
lemma fun_upd_list_surj_map_1:
  "(fun_upd_list f xys) ' set (map fst xys) \subseteq set (map snd xys)"
 by (metis fun_upd_list_surj_zip_1 length_map zip_map_fst_snd)
lemma fun_upd_list_surj_map_2:
  assumes "distinct (map fst xys)"
   shows "set (map snd xys) \subseteq (fun_upd_list f xys) 'set (map fst xys)"
using assms proof (induct xys)
 case (Cons xy tail)
  { fix b assume assms_b: "b \in set (map snd (xy # tail))"
    hence "∃ a ∈ set (map fst (xy # tail)). (fun_upd_list f (xy # tail)) a = b"
    proof (cases "b = snd xy")
      case True
      show ?thesis using True by simp
   next
      hence 2: "\exists a \in set (map fst tail). (fun_upd_list f tail) a = b"
        using Cons assms_b by fastforce
```

```
\{ \text{ fix aa assume 3: "aa} \in \text{set (map fst tail)} \land (\text{fun_upd_list f tail) aa = b"} \}
        from 3 have 5: "(fun_upd_list f (xy # tail)) aa = b"
          using fun_upd_list_not_hd Cons.prems
          by (metis (no_types, lifting) distinct.simps(2) list.simps(9) zip_map_fst_snd)
        from 5 have ?thesis
          by (metis 3 list.set_intros(2) list.simps(9))
      thus ?thesis using 2 by blast
    qed }
  thus ?case by blast
qed (fastforce)
6.2.3 Injective
lemma helper_inj_head:
 assumes f_def: "f = fun_upd_list f0 (zip xs ys)"
      and distinct_ys: "distinct ys"
      and length_equal: "length xs = length ys"
      and non_empty: "xs \neq []"
      and 0: "a \in set xs \wedge b \in set xs \wedge a \neq b"
      and 1: "a = hd xs \land b \in set (tl xs)"
    shows "f a \neq f b"
  using assms
  by (metis distinct.simps(2) fun_upd_list_hd_1 fun_upd_list_not_hd helper_surj_zip_1 length_0_conv
            length_tl list.collapse)
lemma helper_inj_tail:
  assumes "distinct xs"
      and "distinct ys"
      and "length xs = length ys"
      and "a \in set (tl xs)"
      and "b \in set (tl xs)"
      and "a \neq b"
    shows "fun_upd_list f (zip xs ys) a \neq fun_upd_list f (zip xs ys) b"
using assms proof (induct xs arbitrary: ys)
  case (Cons x xs)
 have a_elem: "a \in set (tl (x # xs))" using Cons.prems(4) by simp
 have b_{elem}: "b \in set (tl (x # xs))" using Cons.prems(5) by simp
 have a_not_hd: "a \neq x" using Cons.prems(1) Cons.prems(4) by force
 have b_not_hd: "b \neq x" using Cons.prems(1) Cons.prems(5) by force
 have a: "fun_upd_list f (zip (x # xs) ys) a = fun_upd_list f (zip xs (tl ys)) a"
    using a_not_hd fun_upd_list_not_hd
    by (metis Cons.prems(3) length_0_conv list.collapse list.distinct(1))
 have uneq: "fun_upd_list f (zip xs (tl ys)) a \neq fun_upd_list f (zip xs (tl ys)) b"
    by (metis (no_types, lifting) a_elem b_elem helper_inj_head
        Cons.hyps Cons.prems(1) Cons.prems(2) Cons.prems(3) Cons.prems(6)
        distinct_tl length_tl list.collapse list.sel(2) list.sel(3) set_ConsD)
  have b: "fun_upd_list f (zip xs (tl ys)) b = fun_upd_list f (zip (x # xs) ys) b"
    using b_not_hd fun_upd_list_not_hd
    by (metis Cons.prems(3) length_0_conv list.collapse list.distinct(1))
```

```
from a uneq b show ?case by simp
qed (simp)
theorem fun_upd_list_inj_zip:
 assumes "distinct xs"
      and "distinct ys"
      and "length xs = length ys"
      and "xs \neq []"
    shows "inj_on (fun_upd_list f (zip xs ys)) (set xs)"
proof-
{ fix a b assume 0: "a \in set xs \land b \in set xs \land a \neq b"
 hence "(a = hd xs \land b \in set (tl xs)) \lor
        (b = hd xs \land a \in set (tl xs)) \lor
        (a \in set (tl xs) \land b \in set (tl xs))"
    using assms(4) by (metis list.collapse set_ConsD)
  moreover
  { assume "a = hd xs \land b \in set (tl xs)"
    hence "(fun_upd_list f (zip xs ys)) a \neq (fun_upd_list f (zip xs ys)) b"
      using 0 assms helper_inj_head by metis }
  moreover
  { assume "b = hd xs \land a \in set (tl xs)"
    hence "(fun_upd_list f (zip xs ys)) a \neq (fun_upd_list f (zip xs ys)) b"
      using 0 assms helper_inj_head by metis }
  moreover
  { assume "a \in set (tl xs) \land b \in set (tl xs)"
    hence "fun_upd_list f (zip xs ys) a \neq fun_upd_list f (zip xs ys) b"
      using helper_inj_tail by (metis 0 assms(1) assms(2) assms(3)) }
  ultimately have "(fun_upd_list f (zip xs ys)) a \( \neq \) (fun_upd_list f (zip xs ys)) b"
    by force }
 thus ?thesis by (meson inj_onI)
qed
theorem fun_upd_list_surj_zip:
 assumes "f = fun_upd_list f0 (zip xs ys)"
      and "distinct xs"
      and "length xs = length ys"
    {f shows} "f ' set xs = set ys"
 by (metis assms fun_upd_list_surj_map_2 fun_upd_list_surj_zip_1
            inf.absorb_iff2 inf.order_iff zip_eq_conv)
theorem fun_upd_list_bij_betw_zip:
  assumes "distinct xs"
      and "distinct ys"
      and "length xs = length ys"
      and "xs \neq []"
    shows "bij_betw (fun_upd_list f (zip xs ys)) (set xs) (set ys)"
  using assms
  by (fastforce simp add: bij_betw_def fun_upd_list_inj_zip fun_upd_list_surj_zip)
lemma fun_upd_list_distinct:
 assumes "distinct (map snd (xy # xys))"
      and "f x \notin set (map snd (xy # xys))"
    shows "fun_upd_list f xys x \neq snd xy"
  by (metis assms fun_upd_list_not_updated_map fun_upd_list_surj_map_1
            distinct.simps(2) image_eqI list.set_intros(1) list.simps(9) subsetD)
theorem inj_img_fun_upd_list_map:
```

```
assumes "distinct (map snd xys)"
      and "\forall x. f x \notin set (map snd xys)"
    shows "inj_img (fun_upd_list f xys) (set (map snd xys))"
using assms proof (induct xys)
  case (Cons xy xys)
  hence"inj_img (fun_upd_list f xys) ({snd xy} ∪ set (map snd xys))"
    by (fastforce simp: fun_upd_list_distinct inj_img_def)
  thus ?case
    unfolding inj_img_def apply clarsimp
    by (metis Cons.prems(1,2) fun_upd_list_distinct)
qed (fastforce simp: inj_img_not_mapped_to)
theorem inj_img_fun_upd_list_zip:
  assumes "distinct ys"
      and "length xs = length ys"
      and "\forall x. f x \notin set ys"
    shows "inj_img (fun_upd_list f (zip xs ys)) (set ys)"
  by (metis assms inj_img_fun_upd_list_map map_snd_zip)
6.2.4 Set- and List-Intervals
lemma fun_upd_list_new_interval:
  assumes "length xs = length ys"
  shows "fun_upd_list f (zip xs ys) i \in \{f \ i\} \cup set \ ys"
  apply (cases "i \in set xs")
  apply (fastforce simp: assms intro: helper_surj_zip_1)
  by (fastforce intro: fun_upd_list_not_updated_zip)
lemma helper_interval_length:
  "length [1 ..< length xs + 1] = length xs"
  apply (subst length_upt)
  by fastforce
lemma helper_interval_union:
  "\{0::nat\} \cup \{1 ... < n + 1\} = \{0 ... < n + 1\}"
  by force
lemma fun_upd_list_interval:
  "fun upd list (\lambda x.0) (zip xs [1 ..< length xs + 1]) z \in {0 ..< length xs + 1}"
  apply (cases "z \in set xs")
   apply (metis Un_iff set_upt helper_interval_union helper_interval_length helper_surj_zip_1)
  by (metis fun_upd_list_not_updated_zip add.commute atLeastLessThan_iff less_numeral_extra(1)
            trans_less_add1 zero_le)
theorem fun_upd_list_interval_bij:
  assumes "f = fun_upd_list (\lambdax.0) (zip xs [1 ..< length xs + 1])"
      and "distinct xs"
    shows "bij_betw f {i. 1 \le f i} {1 ..< length xs + 1}"
  have set_xs : "set [1 ..< length xs + 1] = {1 ..< length xs + 1}"
    by force
  have "set xs = \{i. 1 \le f i\}"
  proof (rule antisym)
    \mathbf{show} \ \texttt{"set} \ \mathtt{xs} \subseteq \{\mathtt{i.} \ \mathtt{1} \leq \mathtt{f} \ \mathtt{i}\} \texttt{"}
      by (metis One_nat_def assms(1) atLeastLessThan_iff helper_interval_length helper_surj_zip_1
```

```
set_xs mem_Collect_eq subset_code(1))
show "{i. 1 \leq f i} \subseteq set xs"
    by (metis assms(1) fun_upd_list_not_updated_zip CollectD not_one_le_zero subsetI)

qed
thus ?thesis
by (metis (mono_tags, lifting) assms(1,2) fun_upd_list_bij_betw_zip helper_interval_length
    One_nat_def add.right_neutral add_Suc_right bij_betwI' distinct_upt
    empty_iff empty_set le_numeral_extra(4) list.size(3)
    set_xs upt_eq_Nil_conv)

qed
end
```

6.3 Basic Definitions

```
theory Lock_Ticket
```

${\bf imports}$

RG_Annotated_Commands Function_Supplementary

begin

```
type_synonym thread_id = nat
```

```
definition positive_nats :: "nat set" where "positive_nats \equiv { n. 0 < n }"
```

The state of the Ticket Lock consists of three fields.

```
record tktlock_state =
  now_serving :: "nat"
  next_ticket :: "nat"
  myticket :: "thread id \(Rightarrow\) nat"
```

Every thread locally stores a ticket number, and this collection of local variables is modelled globally by the myticket function.

When Thread i joins the queue, it sets myticket i to be the value next_ticket, and atomically increments next_ticket; this corresponds to the atomic Fetch-And-Add instruction, which is supported on most computer systems. Thread i then waits until the now_serving value becomes equal to its own ticket number myticket i. When Thread i leaves the queue, it increments now_serving.

These steps correspond to the following code for Acquire and Release. Note that we use forward function composition to model the Fetch-And-Add instruction.

Conceptually, Thread i is in the queue if and only if now_serving \leq myticket i and is at the head if and only if now_serving = myticket i.

Now, in the initial state, every thread holds the number 0 as its ticket, and both now_serving and next_ticket are set to 1.

```
abbreviation tktlock_init :: "tktlock_state set" where "tktlock_init \equiv { 'myticket = (\lambdaj. 0) \wedge 'now_serving = 1 \wedge 'next_ticket = 1 }"
```

We further define a shorthand for describing the set of ticket in use; i.e. those numbers from now_serving up to, but not including next_ticket. This shorthand will later be used in the invariant.

```
abbreviation \  \, tktlock\_contending\_set :: "tktlock\_state \Rightarrow thread\_id \  \, set" \  \, where \\ "tktlock\_contending\_set \  \, s \equiv \{ \  \, j. \  \, now\_serving \  \, s \leq \  \, myticket \  \, s \  \, j \  \, \}"
```

We now formalise the invariant of the Ticket Lock.

The first three clauses are basic inequalities.

The penultimate clause stipulates that the function myticket of every valid state is bijective between the set of queuing/contending threads (those threads whose tickets are not smaller than now_serving) and .

The final clause ensures that the function myticket is injective when 0 is excluded from its codomain. In other words, all threads, whose tickets are non-zero, hold unique tickets.

As for the contract, the first clause ensures that the local variable myticket i does not change. Meanwhile, the global variables next_ticket and now_serving must not decrease, as stipulated by the second and third clauses of the contract.

The last two clauses of the contract correspond to the two clauses of the contract of the Abstract Queue Lock, where $i \in set$ queue and at_head i queue under the Abstract Queue Lock respectively translate to now_serving \leq myticket i and now_serving = myticket i under the Ticket Lock.

```
abbreviation tktlock_contract :: "thread_id \Rightarrow tktlock_state rel" where
  "tktlock_contract i \equiv { omyticket i = amyticket i \land
     ^{	ext{O}}next ticket < ^{	ext{a}}next ticket \wedge
     ^{	ext{o}}now_serving \leq ^{	ext{a}}now_serving \wedge
     (^{\circ}\text{now\_serving} \leq ^{\circ}\text{myticket i} \longleftrightarrow ^{a}\text{now\_serving} \leq ^{a}\text{myticket i}) \land
     (^{\circ}now_serving = ^{\circ}myticket i \longrightarrow ^{a}now_serving = ^{a}myticket i) \| \| \| \|
We further state and prove some helper lemmas that will be used later.
lemma tktlock contending set rewrite:
  "tktlock_contending_set s \cup \{i\} = \{i \neq i \rightarrow now\_serving \ s \leq i \neq s\}"
  by fastforce
lemma tktlock_used_tickets_rewrite:
  assumes "now_serving s \leq next_ticket s"
    shows "{now_serving s ..< next_ticket s} ∪ {next_ticket s}
           = {now_serving s ..< Suc (next_ticket s)}"
  by (fastforce simp: assms atLeastLessThanSuc)
lemma tktlock_enqueue_bij:
  assumes "myticket s i < now_serving s"
```

```
and "bij_betw (myticket s) (tktlock_contending_set s) {now_serving s .. < next_ticket
s}"
    shows "bij_betw ( (myticket s)(i := next_ticket s) )
                     ( tktlock_contending_set s \cup {i} )
                     ( {now_serving s ..< next_ticket s} ∪ {next_ticket s} )"
  apply (rule bij_extension)
  using assms by fastforce+
lemma tktlock_enqueue_inj:
 assumes "s ∈ tktlock_inv"
 shows "inj_img ((myticket s)(i := next_ticket s)) positive_nats"
 apply(subst inj_img_fun_upd_notin)
 using assms by (fastforce simp: nat_less_le)+
method clarsimp_seq = clarsimp, standard, clarsimp
     RG Theorems
6.4
The RG sentence of the first instruction of Acquire.
lemma tktlock_acq1:
  "rely: tktlock_contract i guar: for_others tktlock_contract i
   inv: tktlock_inv
                      {\tt anno\_code}:
   { { myticket i < 'now_serving } }
     BasicAnno (('myticket[i] \( \) 'next_ticket) \( \) >
                 ('next_ticket \( 'next_ticket + 1))
   { \{ \text{ now\_serving } \leq \text{ myticket i } \} }"
proof method_anno_ultimate
 case est_guar
  thus ?case
    apply clarsimp_seq
     apply (fastforce simp: less_Suc_eq)
    using tktlock_contending_set_rewrite tktlock_enqueue_bij
    by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)
next
 case est_post
 thus ?case
    apply clarsimp_seq
     apply (fastforce simp: less_Suc_eq)
    using tktlock_contending_set_rewrite tktlock_enqueue_bij
    by (fastforce simp: atLeastLessThanSuc tktlock_enqueue_inj)
qed (fastforce)+
A helper lemma for the Release procedure.
lemma tktlock_rel_helper:
 assumes inv1: "now_serving s = myticket s i"
      and inv2: "myticket s i < next_ticket s"
      and inv3: "Suc 0 \le myticket s i"
      and inv4: "\dagger j. myticket s j < next_ticket s"
      and bij_old: "bij_betw (myticket s)
                              \{myticket s i \leq (myticket s)\}
                              {myticket s i ..< next_ticket s}"</pre>
    shows "bij_betw (myticket s)
                     \{ \texttt{Suc (myticket s i)} \leq \texttt{`(myticket s)} \}
                     {Suc (myticket s i) .. < next_ticket s}"
proof -
 have thread_rewrite:
    "\{ Suc (myticket s i) \leq '(myticket s)\} = \{j. myticket s i \leq myticket s j\} - \{i\}"
```

```
apply (subst set_remove_one_element[where B="{j. Suc (myticket s i) \le myticket s j}"];
clarsimp)
   by(metis CollectI Suc_leI assms(5) bij_betw_def inj_onD order_le_imp_less_or_eq)
 have ticket_rewrite:
    "{Suc (myticket s i) .. < next_ticket s} = {myticket s i .. < next_ticket s} - {myticket
s i}"
    by fastforce
 have "bij_betw (myticket s)
                ( \{j. \text{ myticket s } i \leq \text{myticket s } j\} - \{i\} )
                 ( {myticket s i .. < next_ticket s} - {myticket s i} )"
   by (rule bij_remove_one; clarsimp simp: bij_old)
 thus ?thesis
    by (clarsimp simp: thread_rewrite ticket_rewrite)
The RG sentence for the Release procedure.
lemma tktlock rel:
  "rely: tktlock_contract i
  guar: for_others tktlock_contract i
  inv: tktlock_inv
  'now_serving := 'now_serving + 1
        { { myticket i < 'now_serving } }"
proof method_basic_inv
 case est_inv
 thus ?case
   by (clarsimp, fastforce simp: Suc_le_eq intro!: tktlock_rel_helper)
 case est_guar
 thus ?case
    by (clarsimp, fastforce simp: less_eq_Suc_le nat_less_le positive_nats_def inj_img_def)
qed (fastforce)+
The RG sentence for a thread that performs Acquire and then Release.
lemma tktlock_local:
 "rely: tktlock_contract i guar: for_others tktlock_contract i
 inv: tktlock_inv
                      anno_code:
  { { myticket i < 'now_serving } }
  BasicAnno (('myticket[i] \( \) 'next_ticket) \( \) >
              ('next ticket ← 'next ticket + 1)) .;
  NoAnno (WHILE 'now_serving \neq 'myticket i DO SKIP OD) .;
  { | 'now_serving = 'myticket i | }
  NoAnno ('now_serving := 'now_serving + 1)
  { { myticket i < 'now_serving } }"
 apply (method_anno_ultimate, goal_cases)
   using tktlock_acq1 apply fastforce
  apply (clarsimp, method_spinloop; fastforce)
 using tktlock_rel by fastforce
The RG sentence for a thread that repeatedly performs Acquire and then Release in an infinite
loop.
lemma tktlock_local_loop:
"rely: tktlock_contract i guar: for_others tktlock_contract i
 inv: tktlock_inv
                      anno_code:
```

```
{ { myticket i < 'now_serving } }
  WHILEa True DO
   {stable_guard: { 'myticket i < 'now_serving } }
    BasicAnno (('myticket[i] \( \) 'next_ticket) o>
               ('next_ticket ← 'next_ticket + 1)) .;
    { { now_serving \le myticket i } }
    NoAnno (WHILE 'now_serving \neq 'myticket i DO SKIP OD) .;
    NoAnno ('now_serving := 'now_serving + 1)
  proof method_anno_ultimate
 case body
 thus ?case
   using tktlock_local by (fastforce simp: Int_commute)
ged (fastforce)+
The global RG sentence for a set of threads, each of which repeatedly performs Acquire and
then Release in an infinite loop.
theorem tktlock_global:
 assumes "0 < n"
   shows "annotated
 global_init: \{ \text{ `now\_serving = 1 } \land \text{ `next\_ticket = 1 } \land \text{ `myticket = ($\lambda_{\dagger}$. 0) } \}
 global_rely: Id
   || i < n @
 WHILEa True DO
   {stable_guard: { 'myticket i < 'now_serving } }
   ('next_ticket \( 'next_ticket + 1)) .;
   { | 'now_serving \le 'myticket i | } }
   NoAnno (WHILE 'now_serving \neq 'myticket i DO SKIP OD) .;
   { { now_serving = 'myticket i } }
   NoAnno ('now_serving := 'now_serving + 1)
 UD
 // tktlock_inv { for_others tktlock_contract i, {} }
 global_guar: UNIV
 global_post: {}"
proof method anno ultimate
 case (local_sat i)
 thus ?case using tktlock_local_loop by fastforce
next
 case (pre i)
 thus ?case
   using bij_betwI' inj_img_def positive_nats_def by fastforce
 case (guar_imp_rely i j)
 thus ?case
   by auto[1]
qed (fastforce simp: assms)+
end
```

7 Circular-Buffer Queue-Lock

This theory imports Annotated Commands to access the rely-guarantee library extensions, and also imports the Abstract Queue Lock to access the definitions of the type-synonym thread_id and the abbreviation at_head.

```
theory Lock_Circular_Buffer
```

imports

```
RG_Annotated_Commands
Lock_Abstract_Queue
```

begin

```
type_synonym index = nat
```

```
datatype flag_status = Pending | Granted
```

We assume a fixed number of threads, and the size of the circular array is 1 larger the number of threads.

```
consts NumThreads :: nat
abbreviation ArraySize :: "nat" where
   "ArraySize = NumThreads + 1"
```

The state of the Circular Buffer Lock consists of the following fields:

- myindex: a function that maps each thread to an array-index (where the array is modelled by flag_mapping below).
- flag_mapping: an array of size ArraySize that stores values of type flag_status.
- tail: an index representing the tail of the queue, used when a thread enqueues.
- aux_head: an auxiliary variable that stores the index used by the thread at the head of the queue; the head of the queue spins on the flag flag_mapping aux_head.
- aux_queue: the auxiliary queue of threads.
- aux_mid_release: an auxiliary variable that signals if a thread has executed the first instruction of release, but not the second.

```
record cblock_state =
  myindex :: "thread_id ⇒ index"
  flag_mapping :: "index ⇒ flag_status"
  tail :: index
  aux_head :: index
  aux_queue :: "thread_id list"
  aux_mid_release :: "thread_id option"
```

We initialise the array of flags (flag_mapping) with Granted in the zeroth entry and Pending in all other entries. The indices tail and aux_head are initialised to 0. The queue is initially empty, and no thread is in the middle of release. (See the conference article for an example.)

```
`aux_queue = [] \
`aux_head = 0 \
`aux_mid_release = None \}"
```

Similar to the Abstract Queue Lock, the acquire procedure of the Circular Buffer Lock consists of two conceptual steps, and corresponds to the pseudocode below. (1) To join the queue, Thread i stores the global index tail locally as myindex i, and atomically increments tail modulo the array size. (2) Thread i then spins on its flag, which is the entry in the array at index myindex i. When this flag changes from Pending to Granted, the thread has reached the head of the queue.

When Thread i releases the lock, it sets its flag to Pending. Then it sets the flag of the next thread to Granted, which corresponds to the 'next' entry in the array, modulo the array size. This is encoded as the pseudocode below.

```
release = flag_mapping[myindex i] := Pending ;
    flag_mapping[(myindex i + 1) mod ArraySize] := Granted
```

Auxiliary Variables. The release procedure consists of the single conceptual step of exiting the queue, but is implemented here as two separate instructions. Hence, the auxiliary variable aux_mid_release indicates when a thread is between the two lines of release, and allows us to express the assertion there.

The other two auxiliary variables, aux_head (the head-index) and aux_queue, store information that can in principle be inferred from the concrete variables (i.e. the non-auxiliary variables). However, explicitly recording this information as auxiliary variables greatly simplifies the verification process.

In the code, these auxiliary variables need to be updated atomically with the relevant instructions. Below is the code of release with the auxiliary variables included. (Auxiliary variables are added to acquire in a similar way.)

Recall that we assume a fixed number of threads. This constant is furthermore assumed positive, which we enforce with the use of the following locale.

```
locale numthreads_positive =
   assumes assm_locale: "0 < NumThreads"
begin</pre>
```

7.1 Invariant

A notion that helps us state the queue-clause of the invariant. The list of indices use by the queuing threads is a contiguous list of integers modulo ArraySize. Note the possibility of "wrapping around", which is covered by the "else" clause in the definition.

```
definition used_indices :: "cblock_state ⇒ index list" where
  "used_indices s ≡ (if aux_head s ≤ tail s
        then [aux_head s ..< tail s]
        else [aux_head s ..< ArraySize] @ [0 ..< tail s])"

lemma distinct_used_indices: "distinct (used_indices s)"
   using used_indices_def by fastforce

lemma length_used_indices:
   "length (used_indices s) = (if aux_head s ≤ tail s
        then tail s - aux_head s
        else ArraySize - aux_head s + tail s)"
   using used_indices_def by force</pre>
```

The invariant of the Circular Buffer Lock is stated as separate parts below. The first definition invar_flag relates flag_mapping with the head-index aux_head, and consists of two clauses. (1) At every index that is not the head-index, the flag must be Pending. (2) As for the head-index itself, there are two possibilities. When the thread at the head of the queue invoked release but has only executed its first instruction, aux_mid_release becomes set to Some i; in this case, the flag at the head-index is set to Pending, but the thread remains in the queue. In all other cases, aux_mid_release = None, and the flag at the head-index is always Granted.

```
definition invar_flag :: "cblock_state set" where
  "invar_flag = {
      (∀ i ≠ ´aux_head. ´flag_mapping i = Pending) ∧
      (´flag_mapping ´aux_head = Pending ←→ ´aux_mid_release ≠ None) }"
```

The next clause invar_queue describes the relationship between the auxiliary queue and the other variables, including the set used_indices. The clause involving map further implies a number of properties, such as the distinctness of aux_queue (which mirrors the invariant of the Abstract Queue Lock), and the injectivity of myindex (i.e. each queuing thread has a unique index).

```
definition invar_queue :: "cblock_state set" where
  "invar_queue \equiv {
    (\forall i. i \in set 'aux_queue \longrightarrow i < NumThreads) \land
    (map 'myindex 'aux_queue = 'used_indices) \}"
```

The overall invariant, cblock_invar, is the conjunction of invar_flag and invar_queue above, with additional inequalities concerning tail, aux_head, and NumThreads.

```
invar_queue_def
used_indices_def
```

7.1.1 Invariant Methods

We set up methods that generate structured proofs with named subgoals, to help us prove the clauses of the invariant.

```
theorem thm_method_invar_flag:
  assumes "\forall i \neq aux_head s. flag_mapping s i = Pending"
      and "flag_mapping s (aux_head s) = Pending
            \longleftrightarrow aux_mid_release s \neq None"
    shows "s ∈ invar_flag"
  using assms invar_flag_def by force
method method_invar_flag =
  cases rule:thm_method_invar_flag,
  goal_cases non_head_pending head_maybe_granted
theorem thm_method_invar_queue:
  \mathbf{assumes} \ \texttt{"} \forall \ \texttt{i. i} \in \texttt{set (aux\_queue s)} \longrightarrow \texttt{i} \blacktriangleleft \texttt{NumThreads"}
      and "map (myindex s) (aux_queue s) = (used_indices s)"
    shows "s \in invar_queue"
  using assms invar_queue_def by force
method method_invar_queue =
  cases rule:thm_method_invar_queue,
  goal_cases bound_thread_id map_used_indices
theorem thm_method_invar:
  assumes flag: "s ∈ invar_flag"
      and bound: "s \in invar_bounds \wedge i < NumThreads"
      and queue: "s \in invar\_queue"
    shows "s \in cblock_invar i"
  using assms by fastforce
method method_cblock_invar =
  cases rule:thm_method_invar,
  goal_cases flag bound queue
```

7.1.2 Invariant Lemmas

The initial state satisfies the invariant.

```
lemma cblock_init_invar:
    assumes assm_init: "s ∈ cblock_init"
        and assm_bound: "i < NumThreads"
        shows "s ∈ cblock_invar i"

proof method_cblock_invar
    case flag
    thus ?case
        using assms
        by (method_invar_flag; force simp: cblock_init_def)
next
    case bound
    thus ?case
        using assms
        by (force simp: assm_locale cblock_init_def invar_bounds_def)
next.</pre>
```

```
case queue
thus ?case
using assms
by (method_invar_queue; force simp: cblock_init_def used_indices_def)
qed
```

In a state that satisfies the flag-invariant, a thread is the head of the queue if its flag is Granted. (If the flag of a thread is Pending, the thread may still be at the head of the queue. In this case, the thread must be between the two instructions in release.)

```
lemma only_head_is_granted:
   assumes "s ∈ invar_flag"
   and "flag_mapping s i = Granted"
   shows "i = aux_head s"
   using assms by (force simp: invar_flag_def)
```

Let s be a state that satisfies the bounds-invariant, with n queuing threads. If we start from the aux_head index, and "advance" n steps (with potential wrap-around), then we reach the global tail index.

```
lemma head_tail_mod:
    "s ∈ invar_bounds ⇒
    tail s = (aux_head s + length (used_indices s)) mod (ArraySize)"
    by (fastforce simp: mod_if used_indices_def invar_bounds_def)
```

If a state satisfies the queue-invariant (namely the clause with the map function, then the myindex function is injective on the set of queuing threads. In other words, every queuing thread has a unique index in a state that satisfies the queue-invariant.

```
lemma invar_map_inj_on:
    "s ∈ invar_queue ⇒ inj_on (myindex s) (set (aux_queue s))"
    using distinct_map
    by (fastforce simp: invar queue def distinct used indices)
```

In a state that satisfies the queue-invariant, the length of the queue is equal to the length of the list of used indices.

```
lemma used_indices_map_queue:
    "s ∈ invar_queue ⇒ used_indices s = map (myindex s) (aux_queue s)"
    unfolding used_indices_def invar_queue_def used_indices_def
    by clarsimp
lemma length_used_indices_queue:
    "s ∈ invar_queue ⇒ length (used_indices s) = length (aux_queue s)"
    by (fastforce simp: used_indices_map_queue)
```

In a state that fully satisfies the invariant, if there is a thread that is not in the queue, then the length of the queue must be smaller than the total number of threads.

```
lemma queue_bounded:
    assumes "s ∈ cblock_invar i"
        and "i ∉ set (aux_queue s)"
        shows "length (aux_queue s) < NumThreads"
proof-
    have "length (used_indices s) ≤ NumThreads"
        using assms(1)
        by (fastforce simp: invar_bounds_def length_used_indices )
    hence "card (set (aux_queue s)) ≤ NumThreads"
        using assms(1)
        by (fastforce intro: le_trans intro!: card_length simp: length_used_indices_queue)
    moreover have "card (set (aux_queue s)) = 0 ←→ aux_queue s = []"</pre>
```

```
by fastforce
  moreover have "finite (set (aux_queue s))"
    using calculation by fastforce
  moreover have "card (set (aux_queue s)) = NumThreads
                  \longleftrightarrow (\forall j < NumThreads. j \in set (aux_queue s))"
  proof-
    { assume "card (set (aux_queue s)) = NumThreads"
      hence "set (aux_queue s) = {j. j < NumThreads}"</pre>
        using assms by (force simp add: invar_queue_def card_subset_eq subsetI)
      hence "\forall j < NumThreads. j \in set (aux_queue s)"
        by blast }
    moreover
    { assume "\forall j < NumThreads. j \in set (aux_queue s)"
      hence "card (set (aux_queue s)) = NumThreads"
        using assms by fastforce }
    ultimately
      show ?thesis by blast
  qed
  ultimately have "card (set (aux_queue s)) < NumThreads"
    using assms nat_less_le by blast
  thus ?thesis
    using assms
    by (metis used_indices_map_queue Int_iff distinct_card distinct_map distinct_used_indices)
If a state that satisfies the bound- and queue-invariants, and if the queue is non-empty, then
the index held by the head of the queue must be the same as aux_head.
lemma head_and_head_index:
  assumes \ \texttt{"s} \in \texttt{invar\_bounds} \ \cap \ \texttt{invar\_queue"}
      and "aux_queue s \neq []"
    shows "myindex s (hd (aux_queue s)) = aux_head s"
proof-
  have "myindex s (hd (aux_queue s)) = hd (used_indices s)"
    using assms
    by (simp add: used_indices_map_queue hd_map)
  also have "... = aux_head s"
    using assms
    by (fastforce simp: invar_queue_def invar_bounds_def upt_rec used_indices_def)
  ultimately show ?thesis
    by fastforce
qed
In a state that satisfies the full invariant, if no thread is half-way through release and Thread
i is at the head of the queue, then the flag of Thread i must be Granted.
lemma head_is_granted:
  assumes \ \texttt{"s} \in \texttt{cblock\_invar} \ \texttt{i"}
      and "aux_mid_release s = None"
      and "i = hd (aux_queue s)"
      and "aux_queue s \neq []"
    shows "flag_mapping s (myindex s i) = Granted"
  have "myindex s i = aux head s"
    using assms by (fastforce intro: head_and_head_index)
  thus ?thesis
    using assms
    by (fastforce intro: flag_status.exhaust simp: invar_flag_def)
```

qed

In a state that satisfies the queue-invariant, the global index tail is never held by a thread. Indeed, tail is meant to be "free" for the next thread that joins the queue. Note that when a thread is not in the queue, its index i becomes outdated, and tail may cycle back and coincide with i.

```
lemma tail_never_used:
   assumes "s ∈ invar_queue"
     shows "∀ j ∈ set (aux_queue s). myindex s j ≠ tail s"
proof-
   have "tail s ∉ set (used_indices s)"
     unfolding used_indices_def by clarsimp
   thus ?thesis
     unfolding invar_queue_def
     by (fastforce simp: assms used_indices_map_queue rev_image_eqI)
qed
```

In a state that satisfies the full invariant, if the tail index is right before the aux_head index, then it must be the case that every thread is in the queue.

Conversely, if not every thread is in the queue, then the tail index is not right before the aux_head index.

```
lemma space_available:
   assumes assm_invar: "s ∈ cblock_invar i"
        and assm_q: "i ∉ set (aux_queue s)"
        shows "(tail s + 1) mod ArraySize ≠ aux_head s"
        using assms queue_bounded length_used_indices_queue
   by (fastforce simp: used_indices_full)
```

The next lemma relates the *append* operation on the aux_head and tail indices to the *append* operation on the list of used_indices. (The second and the last assumptions are the most crucial ones. The rest are side-condition checks.)

```
lemma used_indices_append:
    assumes "s ∈ cblock_invar i"
        and "aux_head s' = aux_head s"
        and "length (used_indices s) < NumThreads"
        and "(tail s + 1) mod ArraySize ≠ aux_head s"
        and "tail s' = (tail s + 1) mod ArraySize"
        shows "used_indices s' = used_indices s @ [tail s]"
proof (cases "aux_head s' ≤ tail s'")
    case True
    hence ln1: "tail s' = (tail s + 1)"
        using assms apply clarsimp
        by (metis Suc_eq_plus1 bot_nat_0.extremum_unique head_tail_mod mod_Suc mod_mod_trivial)</pre>
```

```
thus ?thesis
    using assms used_indices_def ln1 by fastforce
 case False
 hence a: "\neg aux_head s' \leq tail s'".
  thus ?thesis
  proof (cases "tail s' = 0")
    case True
    thus ?thesis
      using assms apply clarsimp
      by (metis (no_types, lifting) Suc_eq_plus1 Suc_lessI Zero_not_Suc append.right_neutral
                assms(5) invar_bounds_def linorder_not_le mem_Collect_eq mod_less upt_Suc
                upt eq Nil conv used indices def)
 next
    case False
    thus ?thesis
    proof -
      have "tail s < tail s'"
        using assms(1) assms(5) apply clarsimp
        by (metis False Suc_eq_plus1 head_tail_mod lessI mod_Suc mod_mod_trivial)
      thus ?thesis
        by (metis a used_indices_def assms(2,5) Suc_eq_plus1 append.assoc less_Suc_eq_le
                  mod_less_eq_dividend not_less_eq order_less_le upt_Suc_append zero_less_Suc)
    qed
 \mathbf{qed}
qed
```

7.2 Contract

The contract of the Circular Buffer Lock is devised along three observations: (1) local variables do not change; (2) global variables may change; and (3) auxiliary variables change similarly as in the Abstract Queue Lock.

The first two areas are covered by contract_raw. The only local variable myindex i does not change. The global variable tail may change, but is not included in the contract, as changes to tail are not restricted. However, the other global variable flag_mapping is allowed to change only in specific ways. As flag_mapping stores information about the head of the conceptual queue, its allowed changes naturally relate to the head stays the head property. Under the Circular Buffer Lock, Thread i is at the head of the queue when flag_mapping (myindex i) = Granted. Meanwhile, note that myindex i can become outdated if Thread i is not in the queue. Hence, we need the premise $i \in set$ oaux_queue before the head stays the head statement in the final clause of contract_raw.

```
\begin{array}{lll} \textbf{definition} & \texttt{contract\_raw} :: \texttt{"thread\_id} \Rightarrow \texttt{cblock\_state} \texttt{ rel"} \texttt{ where} \\ \texttt{"contract\_raw} & \texttt{i} \equiv \{ \\ & \texttt{(i} \in \texttt{set} \ ^{\texttt{o}}\texttt{aux\_queue} \\ & \longrightarrow \ ^{\texttt{o}}\texttt{flag\_mapping} \ (^{\texttt{o}}\texttt{myindex} \ \texttt{i}) = \texttt{Granted} \\ & \longrightarrow \ ^{\texttt{a}}\texttt{flag\_mapping} \ (^{\texttt{a}}\texttt{myindex} \ \texttt{i}) = \texttt{Granted}) \ \land \\ & \texttt{(}^{\texttt{o}}\texttt{myindex} \ \texttt{i} = \ ^{\texttt{a}}\texttt{myindex} \ \texttt{i}) \ \} " \end{array}
```

For the auxiliary variable aux_queue we require the same two clauses as in the contract of the Abstract Queue Lock. As for aux_mid_release, only the head of the queue can invoke release and hence modify aux_mid_release. Therefore, the second clause of contract_aux has the extra equality in the consequent.

```
definition contract_aux :: "thread_id ⇒ cblock_state rel" where
  "contract_aux i \equiv {
    (i \in set \ ^{\circ}aux\_queue \longleftrightarrow i \in set \ ^{a}aux\_queue) \ \land
    (at\_head i ^\circ aux\_queue \longrightarrow at\_head i ^\circ aux\_queue \wedge ^\circ aux\_mid\_release = ^\circ aux\_mid\_release)
The two definitions above combine into the overall contract.
abbreviation cblock_contract :: "thread_id ⇒ cblock_state rel" where
  "cblock_contract t \equiv contract_raw t \cap contract_aux t"
lemmas cblock_contracts[simp] = contract_raw_def contract_aux_def
      RG Lemmas
7.3
abbreviation acq line1 :: "thread id \Rightarrow cblock state \Rightarrow cblock state" where
  "acq line1 i \equiv
    (\text{'myindex[i]} \leftarrow \text{'tail}) \circ >
    ('tail ← ('tail + 1) mod ArraySize) ∘>
    ('aux_queue ← 'aux_queue @ [i])"
lemma acq_1_invar:
  assumes \ assm\_old \colon \texttt{"s} \in \texttt{cblock\_invar} \ \texttt{i"}
      and assm_new: "s' = acq_line1 i s"
      and assm_pre: "i \notin set (aux_queue s)"
    shows "s' \in cblock_invar i"
proof method_cblock_invar
  case flag
  have "(\forall j \neq aux_head s. flag_mapping s j = Pending) \land
         (flag_mapping s (aux_head s) = Pending \longleftrightarrow aux_mid_release s \neq None)"
    using assm_old by (fastforce simp: invar_flag_def)
  hence "(\forall j \neq aux_head s'. flag_mapping s' j = Pending) \land
          (flag_mapping s' (aux_head s') = Pending \longleftrightarrow aux_mid_release s' \neq None)"
    using assm_new by fastforce
  thus ?case
    by (fastforce simp: invar_flag_def)
next
  case bound
  have "aux head s' < ArraySize"
    using assm_old assm_new by (fastforce simp: invar_bounds_def)
  moreover have "tail s' < ArraySize"
    using assm_new by fastforce
  ultimately show ?case
    using assm_old assm_new by (fastforce simp: invar_bounds_def)
next
  case queue show ?case
  proof method_invar_queue
    case bound_thread_id
    have "\forall j. j \in set (aux_queue s) \longrightarrow j \prec NumThreads"
      using assm_old assm_new by (fastforce simp: invar_queue_def)
    moreover have "set (aux_queue s') = set (aux_queue s) \cup {i}"
      using assm_new by fastforce
    moreover have "i < NumThreads"
      using assm_old assm_new by fastforce
    ultimately show ?case
      by fastforce
  next
    case map used indices
    have "map (myindex s') (aux_queue s') = map (myindex s) (aux_queue s) @ [myindex s'
```

```
il"
      using assm_new assm_pre by fastforce
    also have ln1: "... = used_indices s @ [myindex s' i]"
      using assm_old by (fastforce simp: used_indices_def invar_queue_def)
    also have "... = used_indices s @ [tail s]"
      using assm_new by fastforce
    also have "... = used_indices s'"
    proof-
      have ahead: "aux_head s = aux_head s'"
        using assms by fastforce
      have "length (used_indices s) < NumThreads"
        using assm_pre assm_old
        by (fastforce simp: length_used_indices_queue queue_bounded)
      moreover have "(tail s + 1) mod ArraySize \neq aux_head s"
        using assm_old assm_pre space_available by fastforce
      moreover have "tail s' = (tail s + 1) mod (ArraySize)"
        using assm_new by simp
      ultimately show ?thesis
        by (metis ahead assm_old used_indices_append)
    ultimately show ?case by fastforce
  qed
qed
theorem cblock_acq1:
 "rely: cblock_contract i
                               guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    { { i ∉ set 'aux_queue } }
  BasicAnno (acq_line1 i)
    { \{ i \in set 'aux_queue \} }"
  apply method_anno_ultimate
    using acq_1_invar by fastforce+
theorem cblock_acq2:
 "rely: cblock_contract i
                               guar: for_others cblock_contract i
  inv: cblock_invar i
                               code:
    \{ \{ i \in set `aux queue \} \}
  WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD
    { { at_head i `aux_queue \ `aux_mid_release = None } }"
proof method_spinloop
  case est_post
  thus ?case
  proof-
    \{ 	ext{ fix s assume assm_s: "s} \in 	ext{cblock_invar i } \cap \{ 	ext{ i} \in 	ext{set `aux_queue } \} \cap \{ 	ext{ fix s assume assm_s: "s} \in \mathbb{R} \}
                              { \{ \text{ flag_mapping (`myindex i)} \neq \text{Pending } \} ''}
      hence ln1: "aux_queue s \neq []"
        by force
      have ln2: "flag_mapping s (aux_head s) \neq Pending"
        using assm s invar flag def by force
      hence ln3: "myindex s i = aux_head s"
        using assm_s invar_flag_def
        by (metis (mono_tags, lifting) IntE mem_Collect_eq)
      have "i = hd (aux_queue s) \land s \in { 'aux_mid_release = None }"
        apply (intro conjI)
         using ln1 ln3 assm_s
         apply (metis (lifting) Int_Collect head_and_head_index inf_commute inj_onD invar_bounds_def
                                  invar_flag_def invar_map_inj_on invar_queue_def list.set_sel(1))
```

```
using ln2 ln3 assm_s
        by (fastforce simp: invar_flag_def flag_status.exhaust)
    thus ?thesis by fastforce
  ged
qed (fastforce+)
abbreviation rel_line1 :: "thread_id \Rightarrow cblock_state \Rightarrow cblock_state" where
  "rel_line1 i ≡ ('flag_mapping['myindex i] ← Pending) ∘>
                   ( aux mid release ← Some i)"
lemma rel_1_same:
  "s' = rel_line1 i s \Longrightarrow
    (myindex s = myindex s') \wedge
    (\forall j \neq myindex s i. flag_mapping s j = flag_mapping s' j) \land
    (tail s = tail s') \land
    (aux head s = aux head s') \wedge
    (aux_queue s = aux_queue s')"
  by simp
lemma rel_1_invar:
  assumes \ assm\_old \colon \texttt{"s} \in \texttt{cblock\_invar} \ \texttt{i"}
      and assm_new: "s' = rel_line1 i s"
      and assm_pre: "at_head i (aux_queue s) \land aux_mid_release s = None"
    shows "s' \in cblock invar i"
{\bf proof} \ {\tt method\_cblock\_invar}
  case flag show ?case
    apply method_invar_flag
     using assm_new assm_old assm_pre
     by (fastforce simp: invar_flag_def head_and_head_index)+
next
  case bound
  thus ?case
    using assm_old invar_bounds_def assm_new
    by (metis (no_types, lifting) rel_1_same Int_iff mem_Collect_eq)
  case queue show ?case
    apply (method_invar_queue)
    using assm_old assm_new apply (fastforce simp: invar_queue_def)
    by (metis (lifting) assm_old assm_new used_indices_map_queue used_indices_def rel_1_same
IntE)
qed
lemma rel_1_est_guar:
  assumes "s \in { 'aux_queue \neq [] \land
                   hd aux_queue = i \land
                   faux_mid_release = None }
                ∩ cblock invar i"
      and "s' = rel line1 i s"
    shows "(s, s') ∈ for_others cblock_contract i
                  ∩ pred_to_rel (cblock_invar i)"
proof-
  { fix j assume assm_u_t: "j \neq i"
    have "j \in set (aux\_queue s)

→ flag_mapping s (myindex s j) = Granted

→ flag_mapping s' (myindex s' j) = Granted"

      using assms assm_u_t
```

```
by (fastforce intro: simp: head_and_head_index inj_onD dest: invar_map_inj_on)
    moreover have "myindex s j = myindex s' j"
      using assms by (fastforce intro: rel_1_same)
    ultimately have "(s, s') ∈ contract_raw j"
      by fastforce }
  moreover
  { fix j assume "j \neq i"
    hence "hd (aux_queue s) \neq j"
      using assms(1) by simp
    moreover have "j \in set (aux_queue s) \longleftrightarrow j \in set (aux_queue s')"
      using rel 1 same assms(2) by simp
    ultimately have "(s, s') ∈ contract_aux j"
      by fastforce }
  moreover have "(s, s') \in pred_to_rel (cblock_invar i)"
    using assms rel_1_invar by fastforce
  ultimately show ?thesis
    by fastforce
qed
theorem cblock_rel1:
                              guar: for_others cblock_contract i
 "rely: cblock_contract i
  inv: cblock_invar i anno_code:
    { { at_head i `aux_queue \ `aux_mid_release = None } }
  BasicAnno (rel_line1 i)
    { | at_head i 'aux_queue / 'aux_mid_release = Some i | }"
{f proof} method_anno_ultimate
  case est_guar
  thus ?case
    using rel_1_invar
    by (fastforce dest: invar_map_inj_on simp: inj_on_contraD)
  case est_post
  thus ?case
    using rel_1_est_guar by fastforce
qed (fastforce+)
abbreviation rel line2 :: "thread id \Rightarrow cblock state \Rightarrow cblock state" where
  "rel line2 i ≡
    ('flag_mapping[(('myindex i + 1) mod ArraySize)] ← Granted) ○>
    ('aux_queue \( \taux_queue \) o>
    ('aux_head ← ('aux_head + 1) mod ArraySize) ○>
    ('aux_mid_release ← None)"
lemma rel_2_same:
  "s' = rel_line2 i s \Longrightarrow
    myindex s = myindex s' \wedge
       tail s = tail s' \wedge
    (\forall j \neq (myindex s i + 1) mod ArraySize.
    flag_mapping s j = flag_mapping s' j)"
  by fastforce
lemma rel_2_invar:
  assumes \ assm\_old \colon \ \texttt{"s} \in \texttt{cblock\_invar} \ \texttt{i"}
      and assm_pre: "at_head i (aux_queue s) \( \) aux_mid_release s = Some i"
      and assm_new: "s' = rel_line2 i s"
    shows "s' ∈ cblock_invar i"
proof method_cblock_invar
  case flag show ?case
```

```
apply (method_invar_flag)
      using assm_new assm_old assm_pre
      by (force simp: head_and_head_index invar_flag_def)+
next
 case bound
 have "tail s' < ArraySize"
    using assm_new assm_old
    by (fastforce simp: invar_bounds_def)
 moreover have "aux_head s' < ArraySize"
    using assms
    by fastforce
 moreover have "i < NumThreads"
    using assm_old assm_new by fastforce
  ultimately show ?case
    using invar bounds def by blast
next
  case queue show ?case
 proof method invar queue
    case bound_thread_id
    show ?case
      using assm_new assm_old assm_pre
      by (fastforce simp: invar_queue_def list.set_sel(2))
 next
    case map_used_indices
   have same: "tail s = tail s' \wedge
             myindex s = myindex s'"
      using assm_new by (fastforce intro: rel_2_same)
   have "aux_queue s \neq []"
      using assm_pre by fastforce
    hence d: "aux head s \neq tail s"
      using assm_old head_and_head_index tail_never_used by force
   have t: "aux_queue s' = tl (aux_queue s)"
      using assm_new by fastforce
   have m: "map (myindex s) (aux_queue s) = used_indices s"
      using assm_old invar_queue_def by fastforce
   have "used_indices s' = tl (used_indices s)"
    proof-
      { assume a: "aux_head s \le tail s"
        hence 1: "aux_head s + 1 < ArraySize"
          using d assm_old invar_bounds_def by force
        hence 2: "aux_head s' = aux_head s + 1"
          using assm_new mod_less by force
        hence 3: "aux_head s' \le tail s'"
          using a d 2 same by fastforce
        have "used_indices s = [aux_head s ..< tail s]"</pre>
          using a used_indices_def by simp
        also have "... = aux_head s # [aux_head s + 1 ..< tail s]"
          using a d upt eq Cons conv by fastforce
        also have "... = aux_head s # [aux_head s' ..< tail s]"
          using 2 by fastforce
        also have "... = aux_head s # [aux_head s' ..< tail s']"
          using assm_new rel_2_same by fastforce
        also have "... = aux_head s # used_indices s'"
          using 3 used_indices_def by fastforce
        ultimately have ?thesis
          by simp }
```

```
moreover
      { assume a: "aux_head s > tail s \lambda aux_head s = ArraySize - 1"
        have "aux_head s' = (aux_head s + 1) mod ArraySize"
          using assm_new by simp
        also have "... = 0"
          using a Suc_eq_plus1 diff_Suc_1 by presburger
        also have "... \leq tail s'"
          by simp
        ultimately have b: "used_indices s' = [0 ..< tail s']"
          using used_indices_def by presburger
        from a have "used_indices s = aux_head s # [0 ..< tail s]"</pre>
          using used_indices_def by fastforce
        also have "... = aux_head s # used_indices s'"
          using same b by simp
        ultimately have ?thesis by simp }
      moreover
      \{ \text{ assume a: "tail s < aux head s} \land \text{ aux head s} \neq \text{ArraySize - 1"} 
        hence b: "aux_head s < ArraySize - 1"</pre>
          using assm_old invar_bounds_def by force
        hence "aux_head s + 1 = (aux_head s + 1) mod ArraySize"
          by simp
        also have "... = aux_head s'"
          using assm_new by simp
        ultimately have c: "tail s' < aux_head s' \( \taux_head s + 1 = aux_head s'' \)
          using a same by simp
        hence d: "used_indices s' = [aux_head s' ..< ArraySize] @ [0 ..< tail s']"
          using used_indices_def by simp
        from a have "used_indices s = [aux_head s ..< ArraySize] @ [0 ..< tail s]"
          using used_indices_def by simp
        also have "... = aux_head s # [aux_head s' ..< ArraySize] @ [0 ..< tail s]"
          using a b c upt_rec by force
        also have "... = aux_head s # used_indices s'"
          using same d by simp
        ultimately have ?thesis by simp }
      ultimately show ?thesis by force
    qed
    hence "map (myindex s) (aux_queue s') = used_indices s'"
      by (simp add: t m map_tl)
    thus ?case using same by (simp add: invar_queue_def)
  qed
lemma rel 2 est guar:
 assumes assm old : "s \in cblock invar i"
      and assm_pre : "at_head i (aux_queue s) \( \Lambda\) aux_mid_release s = Some i"
      and assm_new : "s' = rel_line2 i s"
    shows "(s, s') ∈ for_others cblock_contract i
                   ∩ pred_to_rel (cblock_invar i)"
proof-
  { fix j assume u: "j \neq i"
    hence "(s, s') ∈ contract_raw j"
      have "myindex s j = myindex s' j"
```

qed

```
using assms rel_2_same by presburger
      moreover
      \{ \text{ assume "j} \in \text{set (aux\_queue s)} \land \text{flag\_mapping s (myindex s j)} = \text{Granted"} \}
        hence "flag_mapping s' (myindex s j) = Granted"
          using assms by simp
        hence "flag_mapping s' (myindex s' j) = Granted"
          using assms rel_2_same by (metis (no_types, lifting)) }
      ultimately show ?thesis by simp
    qed
    moreover have "(s, s') ∈ contract_aux j"
      have s: "tl (aux_queue s) = aux_queue s' \land
               hd (aux_queue s) = i \land
               i \neq j"
        using assm_new assm_pre u by simp
      hence "j \in set (aux_queue s) \longleftrightarrow j \in set (aux_queue s')"
        by (metis RG_Tran.nth_tl hd_conv_nth list.sel(2) list.set_sel(2) set_ConsD)
      thus ?thesis using s by simp
    ultimately have "(s, s') ∈ cblock_contract j"
      by simp }
  moreover have "(s, s') \in pred_to_rel (cblock_invar i)"
    using assms rel_2_invar by force
  ultimately show ?thesis by simp
qed
theorem cblock_rel2:
 "rely: cblock_contract i
                           guar: for_others cblock_contract i
 inv: cblock_invar i anno_code:
    { { at_head i `aux_queue ∧ `aux_mid_release = Some i } }
 BasicAnno (rel_line2 i)
    { { i ∉ set 'aux_queue } }"
proof method_anno_ultimate
 case est_guar
 thus ?case
    using rel_2_est_guar by fastforce
 case est_post
 thus ?case
    using rel_2_invar apply clarsimp
    by (metis (mono_tags, lifting) distinct.simps(2) distinct_map distinct_used_indices
                                    invar_queue_def list.collapse mem_Collect_eq)
qed (fastforce+)
     RG Theorems
theorem cblock acq:
 "rely: cblock_contract i
                           guar: for_others cblock_contract i
 inv: cblock_invar i anno_code:
    { { i ∉ set 'aux queue } }
 BasicAnno (acq_line1 i) .;
    \{ \{ i \in set `aux_queue \} \}
  NoAnno (WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD)
    { { at_head i `aux_queue \ `aux_mid_release = None } }"
  apply method_anno_ultimate
  using cblock_acq1 cblock_acq2 by fastforce+
```

```
theorem cblock_rel:
 "rely: cblock_contract i
                             guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    { | at_head i 'aux_queue / 'aux_mid_release = None | }
 BasicAnno (rel_line1 i) .;
    { | at_head i 'aux_queue / 'aux_mid_release = Some i | }
 BasicAnno (rel_line2 i)
    { { i ∉ set 'aux_queue } }"
 apply method_anno_ultimate
  using cblock_rel1 cblock_rel2 annquin_simp by blast+
theorem cblock_local:
                             guar: for_others cblock_contract i
 "rely: cblock_contract i
  inv: cblock_invar i anno_code:
    { { i ∉ set 'aux_queue } }
 BasicAnno (acq_line1 i) .;
    \{ \{ i \in set `aux_queue \} \}
 NoAnno (WHILE 'flag mapping ('myindex i) = Pending DO SKIP OD) .;
    { | at_head i 'aux_queue / 'aux_mid_release = None | }
 BasicAnno (rel_line1 i) .;
    { { at_head i `aux_queue \ `aux_mid_release = Some i } }
  BasicAnno (rel_line2 i)
    \{ \{ i \notin set `aux_queue \} \}"
 apply (method_anno_ultimate)
     using cblock_acq1 annquin_simp apply blast
    using cblock_acq2 annquin_simp apply force
   using cblock_rel1 annquin_simp apply blast
  using cblock_rel2 annquin_simp by blast
```

When Sledgehammer is applied directly to one of the subgoals of the next theorem cblock_local_loop, several solvers do find proofs but do not report back. However, when that subgoal is explicitly copied into a separate lemma below, sledgehammer does find an SMT proof.

```
lemma lma_tmp:
```

```
assumes
"rely: cblock_contract t ∩ pred_to_rel (cblock_invar t)
 guar: invar_and_guar (cblock_invar t) (for_others cblock_contract t)
 anno code:
   \{\{t \notin set `aux_queue\} \cap cblock_invar t\}
 add_invar (cblock_invar t) (BasicAnno (acq_line1 t) .;
   {\{t \in set `aux_queue\}}
 NoAnno (WHILE 'flag_mapping ('myindex t) = Pending DO SKIP OD) .;
   {\at_head t 'aux_queue \ 'aux_mid_release = None\}
 BasicAnno (rel_line1 t) .;
   {{at_head t 'aux_queue \ 'aux_mid_release = Some t}}
 BasicAnno (rel_line2 t))
   {\{t \notin set `aux\_queue\} \cap cblock\_invar t\}}"
shows
"anncom_spec_valid
  \{t \notin \text{set 'aux_queue}\} \cap \text{cblock_invar t} \cap \{t \notin \text{set 'aux_queue}\}
  (cblock_contract t \cap pred_to_rel (cblock_invar t))
  (invar_and_guar (cblock_invar t) (for_others cblock_contract t))
  (\{\![t \notin \texttt{set `aux\_queue}\} \ \cap \ \texttt{cblock\_invar t})
  (add_invar (cblock_invar t)
   (BasicAnno (acq_line1 t) .;
    {\{t \in set `aux_queue\}}
    NoAnno (WHILE 'flag_mapping ('myindex t) = Pending DO SKIP OD) .;
    {\{ \text{at head t 'aux queue } \land \text{ 'aux mid release = None} \} \}
    BasicAnno (rel_line1 t) .;
```

```
\{\{at\_head\ t\ \texttt{`aux\_queue}\ \land\ \texttt{`aux\_mid\_release}\ =\ Some\ t\}\}
      BasicAnno (rel_line2 t)))"
  using assms annquin_simp
 by (smt (verit) Int_absorb inf_assoc inf_commute)
theorem cblock_local_loop:
 "rely: cblock_contract i
                             guar: for_others cblock_contract i
  inv: cblock_invar i anno_code:
    \{ \{ i \notin set `aux_queue \} \}
 WhileAnno UNIV
      ( { i ∉ set 'aux_queue } )
  ( BasicAnno (acq_line1 i) .;
    { \{ i \in set \  \  \, aux\_queue \} \}
NoAnno (WHILE flag_mapping (fmyindex i) = Pending DO SKIP OD) .;
      { | at_head i 'aux_queue \ 'aux_mid_release = None | }
    BasicAnno (rel_line1 i) .;
      { { at_head i `aux_queue ∧ `aux_mid_release = Some i } }
    BasicAnno (rel line2 i) )
  { {}}"
proof method_anno_ultimate
 case body
  thus ?case
    by (rule lma_tmp, rule cblock_local)
qed (fastforce+)
The overall theorem expressing the correctness of the Circular Buffer Lock.
theorem cblock_global:
  "annotated global_init: cblock_init global_rely: Id
    || i < NumThreads @
  { { i ∉ set 'aux_queue }, cblock_contract i }
  WhileAnno UNIV
      (\{i \notin set `aux_queue \})
  ( BasicAnno (acq_line1 i) .;
      \{ \{ i \in set `aux_queue \} \}
    NoAnno (WHILE 'flag_mapping ('myindex i) = Pending DO SKIP OD) .;
      BasicAnno (rel_line1 i) .;
      { { at_head i `aux_queue \ `aux_mid_release = Some i } }
    BasicAnno (rel_line2 i) )
  // cblock_invar i { for_others cblock_contract i, {} }
 global_guar: UNIV global_post: {}"
 apply (method_anno_ultimate)
       apply (fastforce intro!: cblock_local_loop)
      using cblock_init_def cblock_init_invar apply force
     using cblock_contracts cblock_invariants apply fastforce
 by (fastforce simp: assm_locale)+
end
End of locale
end
End of theory
```

Acknowledgement

This work was funded by the Department of Defence, and administered through the Advanced Strategic Capabilities Accelerator.

References

- [1] R. J. Colvin, S. Heiner, P. Höfner, and R. C. Su. Rely-guarantee concurrency verification of queued locks in Isabelle/HOL. In *Verified Software: Theories, Tools, and Experiments (VSTTE)*, 2025.
- [2] L. Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In *Programming Languages and Systems (ESOP)*, pages 348–362, 2003.