
Cost Analysis of QuickSort

Manuel Eberl

March 17, 2025

Abstract

We give a formal proof of the well-known results about the num-
ber of comparisons performed by two variants of QuickSort: first,
the expected number of comparisons of randomised QuickSort (i. e.
QuickSort with random pivot choice) is 2(n + 1)Hn − 4n, which is
asymptotically equivalent to 2n lnn; second, the number of compar-
isons performed by the classic non-randomised QuickSort has the same
distribution in the average case as the randomised one.

Contents
1 Randomised QuickSort 2

1.1 Deletion by index . 2
1.2 Definition . 3
1.3 Correctness proof . 4
1.4 Cost analysis . 5
1.5 Expected cost . 7
1.6 Version for lists with repeated elements 12

2 Average case analysis of deterministic QuickSort 17
2.1 Definition of deterministic QuickSort 17
2.2 Analysis . 18

1

1 Randomised QuickSort
theory Randomised-Quick-Sort

imports
HOL−Probability.Probability
Landau-Symbols.Landau-More
Comparison-Sort-Lower-Bound.Linorder-Relations

begin

1.1 Deletion by index

The following function deletes the n-th element of a list.
fun delete-index :: nat ⇒ ′a list ⇒ ′a list where

delete-index - [] = []
| delete-index 0 (x # xs) = xs
| delete-index (Suc n) (x # xs) = x # delete-index n xs

lemma delete-index-altdef : delete-index n xs = take n xs @ drop (Suc n) xs
by (induction n xs rule: delete-index.induct) simp-all

lemma delete-index-ge-length: n ≥ length xs =⇒ delete-index n xs = xs
by (simp add: delete-index-altdef)

lemma length-delete-index [simp]: n < length xs =⇒ length (delete-index n xs) =
length xs − 1

by (simp add: delete-index-altdef)

lemma delete-index-Cons:
delete-index n (x # xs) = (if n = 0 then xs else x # delete-index (n − 1) xs)
by (cases n) simp-all

lemma insert-set-delete-index:
n < length xs =⇒ insert (xs ! n) (set (delete-index n xs)) = set xs
by (induction n xs rule: delete-index.induct) auto

lemma add-mset-delete-index:
i < length xs =⇒ add-mset (xs ! i) (mset (delete-index i xs)) = mset xs
by (induction i xs rule: delete-index.induct) simp-all

lemma nth-delete-index:
i < length xs =⇒ n < length xs =⇒

delete-index n xs ! i = (if i < n then xs ! i else xs ! Suc i)
by (auto simp: delete-index-altdef nth-append min-def)

lemma set-delete-index-distinct:
assumes distinct xs n < length xs
shows set (delete-index n xs) = set xs − {xs ! n}
using assms by (induction n xs rule: delete-index.induct) fastforce+

2

lemma distinct-delete-index [simp, intro]:
assumes distinct xs
shows distinct (delete-index n xs)

proof (cases n < length xs)
case True
with assms show ?thesis
by (induction n xs rule: delete-index.induct) (auto simp: set-delete-index-distinct)

qed (simp-all add: delete-index-ge-length assms)

lemma mset-delete-index [simp]:
i < length xs =⇒ mset (delete-index i xs) = mset xs − {# xs!i #}
by (induction i xs rule: delete-index.induct) simp-all

1.2 Definition

The following is a functional randomised version of QuickSort that also
records the number of comparisons that were made. The randomisation is
in the selection of the pivot element: In each step, the next pivot is chosen
uniformly at random from all remaining list elements.
The function takes the ordering relation to use as a first argument in the
form of a set of pairs.
function rquicksort :: (′a × ′a) set ⇒ ′a list ⇒ (′a list × nat) pmf where

rquicksort R xs =
(if xs = [] then

return-pmf ([], 0)
else

do {
i ← pmf-of-set {..<length xs};
let x = xs ! i;
case partition (λy. (y,x) ∈ R) (delete-index i xs) of
(ls, rs) ⇒ do {
(ls, n1) ← rquicksort R ls;
(rs, n2) ← rquicksort R rs;
return-pmf (ls @ [x] @ rs, length xs − 1 + n1 + n2)
}

})
by auto

termination proof (relation Wellfounded.measure (length ◦ snd), goal-cases)
show wf (Wellfounded.measure (length ◦ snd)) by simp

qed (subst (asm) set-pmf-of-set; force intro!: le-less-trans[OF length-filter-le])+

declare rquicksort.simps [simp del]

lemma rquicksort-Nil [simp]: rquicksort R [] = return-pmf ([], 0)
by (simp add: rquicksort.simps)

3

1.3 Correctness proof
lemma set-pmf-of-set-lessThan-length [simp]:

xs 6= [] =⇒ set-pmf (pmf-of-set {..<length xs}) = {..<length xs}
by (subst set-pmf-of-set) auto

We can now prove that any list that can be returned by QuickSort is sorted
w. r. t. the given relation. (as long as that relation is reflexive, transitive,
and total)
theorem rquicksort-correct:

assumes trans R and total-on (set xs) R and ∀ x∈set xs. (x,x) ∈ R
assumes (ys, n) ∈ set-pmf (rquicksort R xs)
shows sorted-wrt R ys ∧ mset ys = mset xs
using assms(2−)

proof (induction xs arbitrary: ys n rule: length-induct)
case (1 xs)
have IH : sorted-wrt R zs mset zs = mset ys

if (zs, n) ∈ set-pmf (rquicksort R ys) length ys < length xs set ys ⊆ set xs for
zs ys n

using that 1 .IH total-on-subset[OF 1 .prems(1) that(3)] 1 .prems(2) by blast+
show ?case
proof (cases xs = [])

case False
with 1 .prems obtain ls rs n1 n2 i where ∗:

i < length xs (ls, n1) ∈ set-pmf (rquicksort R [y←delete-index i xs. (y, xs !
i) ∈ R])

(rs, n2) ∈ set-pmf (rquicksort R [y←delete-index i xs. (y, xs ! i) /∈ R])
ys = ls @ [xs ! i] @ rs

by (subst (asm) rquicksort.simps[of - xs]) (auto simp: Let-def o-def)
note ys = ‹ys = ls @ [xs ! i] @ rs›
define ls ′ where ls ′ = [y←delete-index i xs. (y, xs ! i) ∈ R]
define rs ′ where rs ′ = [y←delete-index i xs. (y, xs ! i) /∈ R]
from ‹i < length xs› have less: length ls ′ < length xs length rs ′ < length xs

unfolding ls ′-def rs ′-def by (intro le-less-trans[OF length-filter-le]; force)+
have ls: (ls, n1) ∈ set-pmf (rquicksort R ls ′) and rs: (rs, n2) ∈ set-pmf

(rquicksort R rs ′)
using ∗ unfolding ls ′-def rs ′-def by blast+

have subset: set ls ′ ⊆ set xs set rs ′ ⊆ set xs
using insert-set-delete-index[of i xs] ‹i < length xs›
by (auto simp: ls ′-def rs ′-def)

have sorted: sorted-wrt R ls sorted-wrt R rs
and mset: mset ls = mset ls ′ mset rs = mset rs ′

by (rule IH [of ls n1 ls ′] IH [of rs n2 rs ′] less ls rs subset)+

have ls-le: (x, xs ! i) ∈ R if x ∈ set ls for x
proof −

from that have x ∈# mset ls by simp
also note mset(1)
finally show ?thesis by (simp add: ls ′-def)

4

qed
have rs-ge: (x, xs ! i) /∈ R (xs ! i, x) ∈ R if x ∈ set rs for x
proof −

from that have x ∈# mset rs by simp
also note mset(2)
finally have x: x ∈ set rs ′ by simp
thus (x, xs ! i) /∈ R by (simp-all add: rs ′-def)
from x and subset and ‹i < length xs› have x ∈ set xs xs ! i ∈ set xs by

auto
with 1 .prems and ‹(x, xs ! i) /∈ R› show (xs ! i, x) ∈ R

unfolding total-on-def by (cases xs ! i = x) auto
qed

have sorted-wrt R ys unfolding ys
by (intro sorted-wrt-append ‹trans R› sorted-wrt-singleton sorted)

(auto intro: rs-ge ls-le transD[OF ‹trans R›, of - xs!i])
moreover have mset ys = mset xs unfolding ys using ‹i < length xs›

by (simp add: mset ls ′-def rs ′-def add-mset-delete-index)
ultimately show ?thesis ..

qed (insert 1 .prems, simp-all)
qed

1.4 Cost analysis

The following distribution describes the number of comparisons made by
randomised QuickSort in terms of the list length. (This is only valid if all
list elements are distinct)
A succinct explanation of this cost analysis is given by Jacek Cichoń [1].
fun rqs-cost :: nat ⇒ nat pmf where

rqs-cost 0 = return-pmf 0
| rqs-cost (Suc n) =

do {i ← pmf-of-set {..n}; a ← rqs-cost i; b ← rqs-cost (n − i); return-pmf (n
+ a + b)}

lemma finite-set-pmf-rqs-cost [intro!]: finite (set-pmf (rqs-cost n))
by (induction n rule: rqs-cost.induct) simp-all

We connect the rqs-cost function to the rquicksort function by showing that
projecting out the number of comparisons from a run of rquicksort on a list
with distinct elements yields the same distribution as rqs-cost for the length
of that list.
theorem snd-rquicksort:

assumes linorder-on A R and set xs ⊆ A and distinct xs
shows map-pmf snd (rquicksort R xs) = rqs-cost (length xs)
using assms(2−)

proof (induction xs rule: length-induct)
case (1 xs)
have IH : map-pmf snd (rquicksort R ys) = rqs-cost (length ys)

5

if length ys < length xs mset ys ⊆# mset xs for ys
proof −

from set-mset-mono[OF that(2)] have set ys ⊆ set xs by simp
also note ‹set xs ⊆ A›
finally have set ys ⊆ A .
moreover from ‹distinct xs› and that(2) have distinct ys

by (rule distinct-mset-mono)
ultimately show ?thesis using that and 1 .IH by blast

qed
define n where n = length xs
define cnt where cnt = (λi. length [y←delete-index i xs. (y, xs ! i) ∈ R])
have cnt-altdef : cnt i = linorder-rank R (set xs) (xs ! i) if i: i < n for i
proof −
have cnt i = length [y←delete-index i xs. (y, xs ! i) ∈ R] by (simp add: cnt-def)
also have . . . = card (set [y←delete-index i xs. (y, xs ! i) ∈ R])
by (intro distinct-card [symmetric] distinct-filter distinct-delete-index 1 .prems)

also have set [y←delete-index i xs. (y, xs ! i) ∈ R] =
{x ∈ set xs−{xs!i}. (x, xs ! i) ∈ R}

using 1 .prems and i by (simp add: set-delete-index-distinct n-def)
also have card . . . = linorder-rank R (set xs) (xs ! i) by (simp add: linorder-rank-def)
finally show ?thesis .

qed

from 1 .prems have bij-betw ((!) xs) {..<n} (set xs)
by (intro bij-betw-byWitness[where f ′ = index xs]) (auto simp: n-def in-

dex-nth-id)
moreover have bij-betw (linorder-rank R (set xs)) (set xs) {..<card (set xs)}

using assms(1) by (rule bij-betw-linorder-rank) (insert 1 .prems, auto)
ultimately have bij-betw (linorder-rank R (set xs) ◦ (λi. xs ! i)) {..<n} {..<card

(set xs)}
by (rule bij-betw-trans)

hence bij: bij-betw (λi. linorder-rank R (set xs) (xs ! i)) {..<n} {..<n}
using 1 .prems by (simp add: n-def o-def distinct-card)

show ?case
proof (cases xs = [])

case False
hence n > 0 by (simp add: n-def)
hence [simp]: n 6= 0 by (intro notI) auto
from False have map-pmf snd (rquicksort R xs) =

pmf-of-set {..<length xs} >>=
(λi. map-pmf (λz. length xs − 1 + fst z + snd z)
(pair-pmf (map-pmf snd (rquicksort R [y←delete-index i xs. (y, xs !

i) ∈ R]))
(map-pmf snd (rquicksort R [y←delete-index i xs. (y, xs ! i)

/∈ R]))))
by (subst rquicksort.simps)

(simp add: map-bind-pmf bind-map-pmf Let-def case-prod-unfold o-def
pair-pmf-def)

6

also have . . . = pmf-of-set {..<length xs} >>=
(λi. map-pmf (λz. n − 1 + fst z + snd z)

(pair-pmf (rqs-cost (cnt i)) (rqs-cost (n − 1 − cnt i))))
proof (intro bind-pmf-cong refl, goal-cases)

case (1 i)
with ‹xs 6= []› have i: i < length xs by auto
from i have map-pmf snd (rquicksort R [y←delete-index i xs. (y, xs ! i) /∈

R]) =
rqs-cost (length [y←delete-index i xs. (y, xs ! i) /∈ R])

by (intro IH)
(auto intro!: le-less-trans[OF length-filter-le]

intro: subset-mset.trans multiset-filter-subset diff-subset-eq-self)
also have length [y←delete-index i xs. (y, xs ! i) /∈ R] = n − 1 − cnt i

unfolding n-def cnt-def
using sum-length-filter-compl[of λy. (y, xs ! i) ∈ R delete-index i xs] i by

simp
finally have map-pmf snd (rquicksort R [y←delete-index i xs. (y, xs ! i) /∈

R]) =
rqs-cost (n − 1 − cnt i) .

moreover have map-pmf snd (rquicksort R [y←delete-index i xs. (y, xs ! i)
∈ R]) =

rqs-cost (cnt i) unfolding cnt-def using i
by (intro IH)

(auto intro!: le-less-trans[OF length-filter-le]
intro: subset-mset.trans multiset-filter-subset diff-subset-eq-self)

ultimately show ?case by (simp only: n-def)
qed
also have . . . = map-pmf cnt (pmf-of-set {..<n}) >>=

(λi. map-pmf (λz. n − 1 + fst z + snd z) (pair-pmf (rqs-cost i) (rqs-cost
(n − 1 − i))))

(is - = bind-pmf - ?f) by (simp add: bind-map-pmf n-def)
also have map-pmf cnt (pmf-of-set {..<n}) =

map-pmf (λi. linorder-rank R (set xs) (xs ! i)) (pmf-of-set {..<n})
using ‹n > 0 › by (intro map-pmf-cong refl, subst (asm) set-pmf-of-set) (auto

simp: cnt-altdef)
also from ‹n > 0 › have . . . = pmf-of-set {..<n} by (intro map-pmf-of-set-bij-betw

bij) auto
also have pmf-of-set {..<n} >>= ?f = rqs-cost n
by (cases n) (simp-all add: lessThan-Suc-atMost bind-map-pmf map-bind-pmf

pair-pmf-def)
finally show ?thesis by (simp add: n-def)

qed simp-all
qed

1.5 Expected cost

It is relatively straightforward to see that the following recursive function
(sometimes called the ‘QuickSort equation’) describes the expectation of
rqs-cost, i.e. the expected number of comparisons of QuickSort when run on

7

a list with distinct elements.
fun rqs-cost-exp :: nat ⇒ real where

rqs-cost-exp 0 = 0
| rqs-cost-exp (Suc n) = real n + (

∑
i≤n. rqs-cost-exp i + rqs-cost-exp (n − i)) /

real (Suc n)

lemmas rqs-cost-exp-0 = rqs-cost-exp.simps(1)
lemmas rqs-cost-exp-Suc [simp del] = rqs-cost-exp.simps(2)
lemma rqs-cost-exp-Suc-0 [simp]: rqs-cost-exp (Suc 0) = 0 by (simp add: rqs-cost-exp-Suc)

The following theorem shows that rqs-cost-exp is indeed the expectation of
rqs-cost.
theorem expectation-rqs-cost: measure-pmf .expectation (rqs-cost n) real = rqs-cost-exp
n
proof (induction n rule: rqs-cost.induct)

case (2 n)
note IH = 2 .IH
have measure-pmf .expectation (rqs-cost (Suc n)) real =

(
∑

a≤n. inverse (real (Suc n)) ∗
measure-pmf .expectation (rqs-cost a >>= (λaa. rqs-cost (n − a) >>=

(λb. return-pmf (n + aa + b)))) real)
unfolding rqs-cost.simps by (subst pmf-expectation-bind-pmf-of-set) auto

also have . . . = (
∑

i≤n. inverse (real (Suc n)) ∗ (real n + rqs-cost-exp i +
rqs-cost-exp (n − i)))

proof (intro sum.cong refl, goal-cases)
case (1 i)
have rqs-cost i >>= (λa. rqs-cost (n − i) >>= (λb. return-pmf (n + a + b))) =

map-pmf (λ(a,b). n + a + b) (pair-pmf (rqs-cost i) (rqs-cost (n − i)))
by (simp add: pair-pmf-def map-bind-pmf)

also have measure-pmf .expectation . . . real =
measure-pmf .expectation (pair-pmf (rqs-cost i) (rqs-cost (n − i)))
(λz. real n + (real (fst z) + real (snd z)))

by (subst integral-map-pmf) (simp add: case-prod-unfold add-ac)
also have . . . = real n + measure-pmf .expectation (pair-pmf (rqs-cost i)

(rqs-cost (n − i)))
(λz. real (fst z) + real (snd z)) (is - = - + ?A)

by (subst Bochner-Integration.integral-add) (auto intro!: integrable-measure-pmf-finite)
also have ?A = measure-pmf .expectation (map-pmf fst (pair-pmf (rqs-cost i)

(rqs-cost (n − i)))) real +
measure-pmf .expectation (map-pmf snd (pair-pmf (rqs-cost i)

(rqs-cost (n − i)))) real
unfolding integral-map-pmf

by (subst Bochner-Integration.integral-add) (auto intro!: integrable-measure-pmf-finite)
also have . . . = measure-pmf .expectation (rqs-cost i) real +

measure-pmf .expectation (rqs-cost (n − i)) real
unfolding map-fst-pair-pmf map-snd-pair-pmf ..

also from 1 have . . . = rqs-cost-exp i + rqs-cost-exp (n − i) by (simp-all add:
IH)

finally show ?case by simp

8

qed
also have . . . = (

∑
i≤n. inverse (real (Suc n)) ∗ real n) +

(
∑

i≤n. rqs-cost-exp i + rqs-cost-exp (n − i)) / real (Suc n)
by (simp add: sum.distrib field-simps sum-distrib-left sum-distrib-right

sum-divide-distrib [symmetric] del: of-nat-Suc)
also have (

∑
i≤n. inverse (real (Suc n)) ∗ real n) = real n by simp

also have . . . + (
∑

i≤n. rqs-cost-exp i + rqs-cost-exp (n − i)) / real (Suc n) =
rqs-cost-exp (Suc n)

by (simp add: rqs-cost-exp-Suc)
finally show ?case .

qed simp-all

We will now obtain a closed-form solution for rqs-cost-exp. First of all, we
can reindex the right-most sum in the recursion step and obtain:
lemma rqs-cost-exp-Suc ′:

rqs-cost-exp (Suc n) = real n + 2 / real (Suc n) ∗ (
∑

i≤n. rqs-cost-exp i)
proof −

have rqs-cost-exp (Suc n) = real n + (
∑

i≤n. rqs-cost-exp i + rqs-cost-exp (n −
i)) / real (Suc n)

by (rule rqs-cost-exp-Suc)
also have (

∑
i≤n. rqs-cost-exp i + rqs-cost-exp (n − i)) = (

∑
i≤n. rqs-cost-exp

i) + (
∑

i≤n. rqs-cost-exp (n − i))
by (simp add: sum.distrib)

also have (
∑

i≤n. rqs-cost-exp (n − i)) = (
∑

i≤n. rqs-cost-exp i)
by (intro sum.reindex-bij-witness[of - λi. n − i λi. n − i]) auto

also have . . . + . . . = 2 ∗ . . . by simp
also have . . . / real (Suc n) = 2 / real (Suc n) ∗ (

∑
i≤n. rqs-cost-exp i) by

simp
finally show ?thesis .

qed

Next, we can apply some standard techniques to transform this equation
into a simple linear recurrence, which we can then solve easily in terms of
harmonic numbers:
theorem rqs-cost-exp-eq [code]: rqs-cost-exp n = 2 ∗ real (n + 1) ∗ harm n − 4
∗ real n
proof −

define F where F = (λn. rqs-cost-exp n / (real n + 1))
have [simp]: F 0 = 0 F (Suc 0) = 0 by (simp-all add: F-def)
have F-Suc: F (Suc m) = F m + real (2∗m) / (real ((m+1)∗(m+2))) if m >

0 for m
proof (cases m)

case (Suc n)
have A: rqs-cost-exp (Suc (Suc n)) ∗ real (Suc (Suc n)) =

real ((n+1)∗(n+2)) + 2 ∗ (
∑

i≤n. rqs-cost-exp i) + 2 ∗ rqs-cost-exp
(Suc n)

by (subst rqs-cost-exp-Suc ′) (simp-all add: field-simps)
have B: rqs-cost-exp (Suc n) ∗ real (Suc n) = real (n∗(n+1)) + 2 ∗ (

∑
i≤n.

rqs-cost-exp i)

9

by (subst rqs-cost-exp-Suc ′) (simp-all add: field-simps)
have rqs-cost-exp (Suc (Suc n)) ∗ real (Suc (Suc n)) − rqs-cost-exp (Suc n) ∗

real (Suc n) =
real ((n+1)∗(n+2)) − real (n∗(n+1)) + 2 ∗ rqs-cost-exp (Suc n)

by (subst A, subst B) simp-all
also have real ((n+1)∗(n+2)) − real (n∗(n+1)) = real (2∗(n+1)) by simp
finally have rqs-cost-exp (Suc (Suc n)) ∗ real (n+2) = rqs-cost-exp (Suc n) ∗

real (n+3) + real (2∗(n+1))
by (simp add: algebra-simps)

hence rqs-cost-exp (Suc (Suc n)) / real (n+3) =
rqs-cost-exp (Suc n) / real (n+2) + real (2∗(n+1)) / (real (n+2)∗real

(n+3))
by (simp add: divide-simps del: of-nat-Suc of-nat-add)

thus ?thesis by (simp add: F-def algebra-simps Suc)
qed simp-all

have F-eq: F n = 2 ∗ (
∑

k=1 ..n. real (k − 1) / real (k ∗ (k + 1))) for n
proof (cases n ≥ 1)

case True
thus ?thesis by (induction n rule: dec-induct) (simp-all add: F-Suc alge-

bra-simps)
qed (simp-all add: not-le)

have F n = 2 ∗ (
∑

k=1 ..n. real (k − 1) / real (k ∗ (k + 1))) (is - = 2 ∗ ?S)
by (fact F-eq)

also have ?S = (
∑

k=1 ..n. 2 / real (Suc k) − 1 / real k)
by (intro sum.cong) (simp-all add: field-simps of-nat-diff)

also have . . . = 2 ∗ (
∑

k=1 ..n. inverse (real (Suc k))) − harm n
by (subst sum-subtractf) (simp add: harm-def sum.distrib sum-distrib-left di-

vide-simps)
also have (

∑
k=1 ..n. inverse (real (Suc k))) = (

∑
k=Suc 1 ..Suc n. inverse (real

k))
by (intro sum.reindex-bij-witness[of - λx. x − 1 Suc]) auto

also have . . . = harm (Suc n) − 1 unfolding harm-def by (subst (2) sum.atLeast-Suc-atMost)
simp-all

finally have F n = 2 ∗ harm n + 4 ∗ (1 / (n + 1) − 1) by (simp add: harm-Suc
field-simps)

also have . . . ∗ real (n + 1) = 2 ∗ real (n + 1) ∗ harm n − 4 ∗ real n
by (simp add: field-simps)

also have F n ∗ real (n + 1) = rqs-cost-exp n by (simp add: F-def add-ac)
finally show ?thesis .

qed

lemma asymp-equiv-harm [asymp-equiv-intros]: harm ∼[at-top] (λn. ln (real n))
proof −

have (λn. harm n − ln (real n)) ∈ O(λ-. 1) using euler-mascheroni-LIMSEQ
by (intro bigoI-tendsto[where c = euler-mascheroni]) simp-all

also have (λ-. 1) ∈ o(λn. ln (real n)) by auto

10

finally have (λn. ln (real n) + (harm n − ln (real n))) ∼[at-top] (λn. ln (real
n))

by (subst asymp-equiv-add-right) simp-all
thus ?thesis by simp

qed

corollary rqs-cost-exp-asymp-equiv: rqs-cost-exp ∼[at-top] (λn. 2 ∗ n ∗ ln n)
proof −

have rqs-cost-exp = (λn. 2 ∗ real (n + 1) ∗ harm n − 4 ∗ real n) using
rqs-cost-exp-eq ..

also have . . . = (λn. 2 ∗ real n ∗ harm n + (2 ∗ harm n − 4 ∗ real n))
by (simp add: algebra-simps)

finally have rqs-cost-exp ∼[at-top] . . . by simp
also have . . . ∼[at-top] (λn. 2 ∗ real n ∗ harm n)
proof (subst asymp-equiv-add-right)

have (λx. 1 ∗ harm x) ∈ o(λx. real x ∗ harm x)
by (intro landau-o.small-big-mult smallo-real-nat-transfer) simp-all

moreover have harm ∈ ω(λ-. 1 :: real)
by (intro smallomegaI-filterlim-at-top-norm) (auto simp: harm-at-top)

hence (λx. real x ∗ 1) ∈ o(λx. real x ∗ harm x)
by (intro landau-o.big-small-mult) (simp-all add: smallomega-iff-smallo)

ultimately show (λn. 2 ∗ harm n − 4 ∗ real n) ∈ o(λn. 2 ∗ real n ∗ harm n)
by (intro sum-in-smallo) simp-all

qed simp-all
also have . . . ∼[at-top] (λn. 2 ∗ real n ∗ ln (real n)) by (intro asymp-equiv-intros)
finally show ?thesis .

qed

lemma harm-mono: m ≤ n =⇒ harm m ≤ (harm n :: real)
unfolding harm-def by (intro sum-mono2) auto

lemma harm-Suc-0 [simp]: harm (Suc 0) = 1
by (simp add: harm-def)

lemma harm-ge-1 : n > 0 =⇒ harm n ≥ (1 ::real)
using harm-mono[of 1 n] by simp

lemma mono-rqs-cost-exp: mono rqs-cost-exp
proof (rule incseq-SucI)

fix n show rqs-cost-exp n ≤ rqs-cost-exp (Suc n)
proof (cases n = 0)

case False
have 0 < (1 ∗ 2 ∗ (real n + 1) − 2 ∗ real n) / (real n + 1) by simp
also have . . . ≤ (harm n ∗ 2 ∗ (real n + 1) − 2 ∗ real n) / (real n + 1) using

False
by (intro divide-right-mono diff-right-mono mult-right-mono) (auto simp:

harm-ge-1)
also have . . . = rqs-cost-exp (Suc n) − rqs-cost-exp n

by (simp add: rqs-cost-exp-eq harm-Suc field-simps)

11

finally show ?thesis by simp
qed auto

qed

lemma rqs-cost-exp-leI : m ≤ n =⇒ rqs-cost-exp m ≤ rqs-cost-exp n
using mono-rqs-cost-exp by (simp add: mono-def)

1.6 Version for lists with repeated elements
definition threeway-partition where

threeway-partition x R xs =
(filter (λy. (y,x) ∈ R ∧ (x,y) /∈ R) xs,
filter (λy. (x,y) ∈ R ∧ (y,x) ∈ R) xs,
filter (λy. (x,y) ∈ R ∧ (y,x) /∈ R) xs)

The following version of randomised Quicksort uses a three-way partitioning
function in order to also achieve expected logarithmic running time on lists
with repeated elements.
function rquicksort ′ :: (′a × ′a) set ⇒ ′a list ⇒ (′a list × nat) pmf where

rquicksort ′ R xs =
(if xs = [] then

return-pmf ([], 0)
else

do {
i ← pmf-of-set {..<length xs};
let x = xs ! i;
case threeway-partition x R (delete-index i xs) of
(ls, es, rs) ⇒ do {
(ls, n1) ← rquicksort ′ R ls;
(rs, n2) ← rquicksort ′ R rs;
return-pmf (ls @ x # es @ rs, length xs − 1 + n1 + n2)
}

})
by auto

termination proof (relation Wellfounded.measure (length ◦ snd), goal-cases)
show wf (Wellfounded.measure (length ◦ snd)) by simp

qed (subst (asm) set-pmf-of-set;
force intro!: le-less-trans[OF length-filter-le] simp: threeway-partition-def)+

declare rquicksort ′.simps [simp del]

lemma rquicksort ′-Nil [simp]: rquicksort ′ R [] = return-pmf ([], 0)
by (simp add: rquicksort ′.simps)

context
begin

qualified definition lesss :: (′a × ′a) set ⇒ ′a ⇒ ′a list ⇒ ′a list where
lesss R x xs = filter (λy. (y, x) ∈ R ∧ (x, y) /∈ R) xs

12

qualified definition greaters :: (′a × ′a) set ⇒ ′a ⇒ ′a list ⇒ ′a list where
greaters R x xs = filter (λy. (x, y) ∈ R ∧ (y, x) /∈ R) xs

qualified lemma lesss-Cons:
lesss R x (y # ys) =

(if (y, x) ∈ R ∧ (x, y) /∈ R then y # lesss R x ys else lesss R x ys)
by (simp add: lesss-def)

qualified lemma length-lesss-le [intro]: length (lesss R x xs) ≤ length xs
by (simp add: lesss-def)

qualified lemma length-lesss-less [intro]:
assumes x ∈ set xs
shows length (lesss R x xs) < length xs
using assms by (induction xs) (auto simp: lesss-Cons intro: le-less-trans)

qualified lemma greaters-Cons:
greaters R x (y # ys) =

(if (x, y) ∈ R ∧ (y, x) /∈ R then y # greaters R x ys else greaters R x ys)
by (simp add: greaters-def)

qualified lemma length-greaters-le [intro]: length (greaters R x xs) ≤ length xs
by (simp add: greaters-def)

qualified lemma length-greaters-less [intro]:
assumes x ∈ set xs
shows length (greaters R x xs) < length xs
using assms by (induction xs) (auto simp: greaters-Cons intro: le-less-trans)

The following function counts the comparisons made by the modified ran-
domised Quicksort.
function rqs ′-cost :: (′a × ′a) set ⇒ ′a list ⇒ nat pmf where

rqs ′-cost R xs =
(if xs = [] then

return-pmf 0
else

do {
i ← pmf-of-set {..<length xs};
let x = xs ! i;
map-pmf (λ(n1 ,n2). length xs − 1 + n1 + n2)
(pair-pmf (rqs ′-cost R (lesss R x xs)) (rqs ′-cost R (greaters R x xs)))

})
by auto

termination by (relation Wellfounded.measure (length ◦ snd)) auto

declare rqs ′-cost.simps [simp del]

lemma rqs ′-cost-nonempty:

13

xs 6= [] =⇒ rqs ′-cost R xs =
do {

i ← pmf-of-set {..<length xs};
let x = xs ! i;
n1 ← rqs ′-cost R (lesss R x xs);
n2 ← rqs ′-cost R (greaters R x xs);
return-pmf (length xs − 1 + n1 + n2)
}

by (subst rqs ′-cost.simps) (auto simp: pair-pmf-def Let-def map-bind-pmf)

lemma finite-set-pmf-rqs ′-cost [simp, intro]:
finite (set-pmf (rqs ′-cost R xs))
by (induction R xs rule: rqs ′-cost.induct) (auto simp: rqs ′-cost.simps Let-def)

lemma expectation-pair-pmf-fst [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (fst x)) = measure-pmf .expectation

p f
proof −

have measure-pmf .expectation (pair-pmf p q) (λx. f (fst x)) =
measure-pmf .expectation (map-pmf fst (pair-pmf p q)) f by simp

also have map-pmf fst (pair-pmf p q) = p
by (simp add: map-fst-pair-pmf)

finally show ?thesis .
qed

lemma expectation-pair-pmf-snd [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (snd x)) = measure-pmf .expectation

q f
proof −

have measure-pmf .expectation (pair-pmf p q) (λx. f (snd x)) =
measure-pmf .expectation (map-pmf snd (pair-pmf p q)) f by simp

also have map-pmf snd (pair-pmf p q) = q
by (simp add: map-snd-pair-pmf)

finally show ?thesis .
qed

qualified lemma length-lesss-le-sorted:
assumes sorted-wrt R xs i < length xs
shows length (lesss R (xs ! i) xs) ≤ i
using assms by (induction arbitrary: i rule: sorted-wrt.induct)

(force simp: lesss-def nth-Cons le-Suc-eq split: nat.splits)+

qualified lemma length-greaters-le-sorted:
assumes sorted-wrt R xs i < length xs
shows length (greaters R (xs ! i) xs) ≤ length xs − i − 1
using assms

14

by (induction arbitrary: i rule: sorted-wrt.induct)
(force simp: greaters-def nth-Cons le-Suc-eq split: nat.splits)+

qualified lemma length-lesss-le ′:
assumes i < length xs linorder-on A R set xs ⊆ A
shows length (lesss R (insort-wrt R xs ! i) xs) ≤ i

proof −
define x where x = insort-wrt R xs ! i
define less where less = (λx y. (x,y) ∈ R ∧ (y,x) /∈ R)
have length (lesss R x xs) = size {# y ∈# mset xs. less y x #}

by (simp add: lesss-def size-mset [symmetric] less-def mset-filter del: size-mset)
also have mset xs = mset (insort-wrt R xs) by simp
also have size {#y ∈# mset (insort-wrt R xs). less y x#} =

length (lesss R x (insort-wrt R xs))
by (simp only: mset-filter [symmetric] size-mset lesss-def less-def)

also have . . . ≤ i unfolding x-def by (rule length-lesss-le-sorted) (use assms
in auto)

finally show ?thesis unfolding x-def .
qed

qualified lemma length-greaters-le ′:
assumes i < length xs linorder-on A R set xs ⊆ A
shows length (greaters R (insort-wrt R xs ! i) xs) ≤ length xs − i − 1

proof −
define x where x = insort-wrt R xs ! i
define less where less = (λx y. (x,y) ∈ R ∧ (y,x) /∈ R)
have length (greaters R x xs) = size {# y ∈# mset xs. less x y #}
by (simp add: greaters-def size-mset [symmetric] less-def mset-filter del: size-mset)

also have mset xs = mset (insort-wrt R xs) by simp
also have size {#y ∈# mset (insort-wrt R xs). less x y#} =

length (greaters R x (insort-wrt R xs))
by (simp only: mset-filter [symmetric] size-mset greaters-def less-def)

also have . . . ≤ length (insort-wrt R xs) − i − 1 unfolding x-def
by (rule length-greaters-le-sorted) (use assms in auto)

finally show ?thesis unfolding x-def by simp
qed

We can show quite easily that the expected number of comparisons in this
modified QuickSort is bounded above by the expected number of compar-
isons on a list of the same length with no repeated elements.
theorem rqs ′-cost-expectation-le:

assumes linorder-on A R set xs ⊆ A
shows measure-pmf .expectation (rqs ′-cost R xs) real ≤ rqs-cost-exp (length xs)
using assms

proof (induction R xs rule: rqs ′-cost.induct)
case (1 R xs)
show ?case
proof (cases xs = [])

case False

15

define n where n = length xs − 1
have length-eq: length xs = Suc n using False by (simp add: n-def)
define E where E = (λxs. measure-pmf .expectation (rqs ′-cost R xs) real)
define f where f = (λx. rqs-cost-exp (length (lesss R x xs)) +

rqs-cost-exp (length (greaters R x xs)))
have rqs ′-cost R xs =

do {
i ← pmf-of-set {..<length xs};
map-pmf (λ(n1 , y). length xs − Suc 0 + n1 + y)
(pair-pmf (rqs ′-cost R (lesss R (xs ! i) xs))

(rqs ′-cost R (greaters R (xs ! i) xs)))
}

using False by (subst rqs ′-cost.simps) (simp-all add: Let-def)
also have measure-pmf .expectation . . . real = real n +

(
∑

k<length xs. E (lesss R (xs ! k) xs) + E (greaters R (xs ! k) xs)) /
real (length xs)

using False
by (subst pmf-expectation-bind-pmf-of-set)

(auto intro!: finite-imageI finite-cartesian-product simp: case-prod-unfold
integrable-measure-pmf-finite sum-divide-distrib [symmetric] field-simps
length-eq sum.distrib E-def)

also have . . . ≤ real n + (
∑

k<length xs. f (xs ! k)) / real (length xs)
unfolding E-def f-def using False 1 .prems
by (intro add-mono order .refl divide-right-mono sum-mono 1 .IH [OF - - refl]

False)
(auto simp: lesss-def greaters-def)

also have (
∑

k<length xs. f (xs ! k)) = (
∑

x∈#mset xs. f x)
by (simp only: mset-map [symmetric] sum-mset-sum-list sum-list-sum-nth)

(simp-all add: atLeast0LessThan)
also have mset xs = mset (insort-wrt R xs)

by simp
also have (

∑
x∈#. . . . f x) = (

∑
i<length xs. f (insort-wrt R xs ! i))

by (simp only: mset-map [symmetric] sum-mset-sum-list sum-list-sum-nth)
(simp-all add: atLeast0LessThan)

also have . . . ≤ (
∑

i<length xs. rqs-cost-exp i + rqs-cost-exp (length xs − i −
1))

unfolding f-def
proof (intro sum-mono add-mono rqs-cost-exp-leI)

fix i assume i: i ∈ {..<length xs}
show length (lesss R (insort-wrt R xs ! i) xs) ≤ i

using i 1 .prems by (intro length-lesss-le ′[where A = A]) auto
show length (greaters R (insort-wrt R xs ! i) xs) ≤ length xs − i − 1

using i 1 .prems by (intro length-greaters-le ′[where A = A]) auto
qed
also have . . . = (

∑
i≤n. rqs-cost-exp i + rqs-cost-exp (n − i))

by (intro sum.cong) (auto simp: length-eq)
also have real n + . . . / real (length xs) = rqs-cost-exp (length xs)

by (simp add: length-eq rqs-cost-exp.simps(2))
finally show ?thesis by (simp add: divide-right-mono)

16

qed (auto simp: rqs ′-cost.simps)
qed

end
end

2 Average case analysis of deterministic QuickSort
theory Quick-Sort-Average-Case

imports Randomised-Quick-Sort
begin

2.1 Definition of deterministic QuickSort

This is the functional description of the standard variant of deterministic
QuickSort that always chooses the first list element as the pivot as given by
Hoare in 1962 [2]. For a list that is already sorted, this leads to n(n − 1)
comparisons, but as is well known, the average case is not that bad.
fun quicksort :: (′a × ′a) set ⇒ ′a list ⇒ ′a list where

quicksort - [] = []
| quicksort R (x # xs) =

quicksort R (filter (λy. (y,x) ∈ R) xs) @ [x] @ quicksort R (filter (λy. (y,x) /∈
R) xs)

We can easily show that this QuickSort is correct:
theorem mset-quicksort [simp]: mset (quicksort R xs) = mset xs

by (induction R xs rule: quicksort.induct) (simp-all)

corollary set-quicksort [simp]: set (quicksort R xs) = set xs
by (induction R xs rule: quicksort.induct) auto

theorem sorted-wrt-quicksort:
assumes trans R and total-on (set xs) R and

∧
x. x ∈ set xs =⇒ (x, x) ∈ R

shows sorted-wrt R (quicksort R xs)
using assms
proof (induction R xs rule: quicksort.induct)

case (2 R x xs)
have total: (a, b) ∈ R if (b, a) /∈ R a ∈ set (x#xs) b ∈ set (x#xs) for a b

using 2 .prems that unfolding total-on-def by (cases a = b) auto

have ∗: sorted-wrt R (quicksort R (filter (λy. (y,x) ∈ R) xs))
sorted-wrt R (quicksort R (filter (λy. (y,x) /∈ R) xs))

by ((rule 2 total-on-subset[OF ‹total-on (set (x#xs)) R›]) | force)+
show ?case

by (auto intro!: sorted-wrt-append sorted-wrt.intros ‹trans R› ∗
intro: transD[OF ‹trans R›] dest!: total simp: total-on-def)

qed auto

17

corollary sorted-wrt-quicksort ′:
assumes linorder-on A R and set xs ⊆ A
shows sorted-wrt R (quicksort R xs)
by (rule sorted-wrt-quicksort)

(insert assms, auto simp: linorder-on-def refl-on-def dest: total-on-subset)

We now define another version of QuickSort that is identical to the previous
one but also counts the number of comparisons that were made.
fun quicksort ′ :: (′a × ′a) set ⇒ ′a list ⇒ ′a list × nat where

quicksort ′ - [] = ([], 0)
| quicksort ′ R (x # xs) = (

let (ls, rs) = partition (λy. (y,x) ∈ R) xs;
(ls ′, n1) = quicksort ′ R ls;
(rs ′, n2) = quicksort ′ R rs

in
(ls ′ @ [x] @ rs ′, length xs + n1 + n2))

For convenience, we also define a function that computes only the number
of comparisons that were made and not the result list.
fun qs-cost :: (′a × ′a) set ⇒ ′a list ⇒ nat where

qs-cost - [] = 0
| qs-cost R (x # xs) =

length xs + qs-cost R (filter (λy. (y,x)∈R) xs) + qs-cost R (filter (λy. (y,x)/∈R)
xs)

It is obvious that the original QuickSort and the cost function are the pro-
jections of the cost-counting QuickSort.
lemma fst-quicksort ′ [simp]: fst (quicksort ′ R xs) = quicksort R xs

by (induction R xs rule: quicksort.induct) (simp-all add: case-prod-unfold Let-def
o-def)

lemma snd-quicksort ′ [simp]: snd (quicksort ′ R xs) = qs-cost R xs
by (induction R xs rule: quicksort.induct) (simp-all add: case-prod-unfold Let-def

o-def)

2.2 Analysis

We will reduce the average-case analysis to showing that it is essentially
equivalent to the randomised QuickSort we analysed earlier. Similar, but
more direct analyses are given by Hoare [2] and Sedgewick [3].
The proof is relatively straightforward – but still a bit messy. We show that
the cost distribution of QuickSort run on a random permutation of a set of
size n is exactly the same as that of randomised QuickSort being run on any
fixed list of size n (which we analysed before):
theorem qs-cost-average-conv-rqs-cost:

assumes finite A and linorder-on B R and A ⊆ B

18

shows map-pmf (qs-cost R) (pmf-of-set (permutations-of-set A)) = rqs-cost
(card A)
using assms(1 ,3)
proof (induction A rule: finite-psubset-induct)

case (psubset A)
show ?case
proof (cases A = {})

case True
thus ?thesis by (simp add: pmf-of-set-singleton)

next
case False
note A = ‹finite A› ‹A 6= {}›
define n where n = card A − 1
from A have pmf-of-set (permutations-of-set A) =

do {x ← pmf-of-set A; xs ← pmf-of-set (permutations-of-set (A − {x}));
return-pmf (x#xs)}

by (rule random-permutation-of-set)
also have map-pmf (qs-cost R) . . . =

do {
x ← pmf-of-set A;
xs ← pmf-of-set (permutations-of-set (A − {x}));

return-pmf (length xs + qs-cost R [y←xs. (y,x)∈R] + qs-cost R
[y←xs. (y,x)/∈R])

} by (simp add: map-bind-pmf)
also have . . . = map-pmf (λm. n + m) (

do {
x ← pmf-of-set A;
xs ← pmf-of-set (permutations-of-set (A − {x}));
return-pmf (qs-cost R [y←xs. (y,x)∈R] + qs-cost R [y←xs. (y,x)/∈R])
}) (is - = map-pmf - ?X) using A unfolding n-def map-bind-pmf

by (intro bind-pmf-cong map-pmf-cong refl) (auto simp: length-finite-permutations-of-set)
also have ?X = do {

x ← pmf-of-set A;
(ls,rs) ← map-pmf (partition (λy. (y,x)∈R))

(pmf-of-set (permutations-of-set (A − {x})));
return-pmf (qs-cost R ls + qs-cost R rs)
} by (simp add: bind-map-pmf o-def)

also have . . . = do {
x ← pmf-of-set A;
(n1 , n2) ← pair-pmf
(rqs-cost (linorder-rank R A x)) (rqs-cost (n − linorder-rank R

A x));
return-pmf (n1 + n2)}

proof (intro bind-pmf-cong refl, goal-cases)
case (1 x)
have map-pmf (partition (λy. (y,x)∈R)) (pmf-of-set (permutations-of-set (A

− {x})))
>>= (λ(ls, rs). return-pmf (qs-cost R ls + qs-cost R rs)) =

map-pmf (λ(n1 , n2). n1 + n2) (pair-pmf

19

(map-pmf (qs-cost R) (pmf-of-set (permutations-of-set {xa ∈ A − {x}.
(xa, x) ∈ R})))

(map-pmf (qs-cost R) (pmf-of-set (permutations-of-set {xa ∈ A − {x}.
(xa, x) /∈ R}))))

(is - = map-pmf - (pair-pmf ?X ?Y))
by (subst partition-random-permutations)
(simp-all add: map-pmf-def case-prod-unfold bind-return-pmf bind-assoc-pmf

pair-pmf-def A)
also {

have {xa ∈ A − {x}. (xa, x) ∈ R} ⊆ A − {x} by blast
also have . . . ⊂ A using 1 A by auto
finally have subset: {xa ∈ A − {x}. (xa, x) ∈ R} ⊂ A .
also have . . . ⊆ B by fact
finally have ?X = rqs-cost (card {xa ∈ A − {x}. (xa, x) ∈ R}) using

subset
by (intro psubset.IH) auto

also have card {xa ∈ A − {x}. (xa, x) ∈ R} = linorder-rank R A x
by (simp add: linorder-rank-def)

finally have ?X = rqs-cost
}
also {

have {xa ∈ A − {x}. (xa, x) /∈ R} ⊆ A − {x} by blast
also have . . . ⊂ A using 1 A by auto
finally have subset: {xa ∈ A − {x}. (xa, x) /∈ R} ⊂ A .
also have . . . ⊆ B by fact
finally have ?Y = rqs-cost (card {xa ∈ A − {x}. (xa, x) /∈ R}) using

subset
by (intro psubset.IH) auto

also {
have card ({y∈A−{x}. (y,x)∈R} ∪ {y∈A−{x}. (y,x)/∈R}) =

linorder-rank R A x + card {xa ∈ A − {x}. (xa, x) /∈ R}
unfolding linorder-rank-def using A by (intro card-Un-disjoint) auto

also have {y∈A−{x}. (y,x)∈R} ∪ {y∈A−{x}. (y,x)/∈R} = A − {x} by
blast

also have card . . . = n using A 1 by (simp add: n-def)
finally have card {xa ∈ A − {x}. (xa, x) /∈ R} = n − linorder-rank R A

x by simp
}
finally have ?Y = rqs-cost (n − linorder-rank R A x) .

}
finally show ?case by (simp add: case-prod-unfold map-pmf-def)

qed
also have . . . = do {

i ← map-pmf (linorder-rank R A) (pmf-of-set A);
(n1 , n2) ← pair-pmf (rqs-cost i) (rqs-cost (n − i));
return-pmf (n1 + n2)
} by (simp add: bind-map-pmf)

also have map-pmf (linorder-rank R A) (pmf-of-set A) = pmf-of-set {..<card
A}

20

by (intro map-pmf-of-set-bij-betw bij-betw-linorder-rank[OF assms(2)] A psub-
set.prems)

also from A have card A > 0 by (intro Nat.gr0I) auto
hence {..<card A} = {..n} by (auto simp: n-def)
also have map-pmf (λm. n + m) (

do {
i ← pmf-of-set {..n};
(n1 , n2) ← pair-pmf (rqs-cost i) (rqs-cost (n − i));
return-pmf (n1 + n2)
}) = rqs-cost (Suc n)

by (simp add: pair-pmf-def map-bind-pmf case-prod-unfold
bind-assoc-pmf bind-return-pmf add-ac)

also from A have card A > 0 by (intro Nat.gr0I) auto
hence Suc n = card A by (simp add: n-def)
finally show ?thesis .

qed
qed

We therefore have the same expectation as well. (Note that we showed
rqs-cost-exp n = 2 ∗ real (n + 1) ∗ harm n − 4 ∗ real n and rqs-cost-exp
∼[sequentially] (λx. 2 ∗ real x ∗ ln (real x)) before.
corollary expectation-qs-cost:

assumes finite A and linorder-on B R and A ⊆ B
defines random-list ≡ pmf-of-set (permutations-of-set A)
shows measure-pmf .expectation (map-pmf (qs-cost R) random-list) real =

rqs-cost-exp (card A)
unfolding random-list-def
by (subst qs-cost-average-conv-rqs-cost[OF assms(1−3)]) (simp add: expecta-

tion-rqs-cost)

end

References

[1] J. Cichoń. Quick Sort – average complexity.

[2] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10, 1962.

[3] R. Sedgewick. The analysis of Quicksort programs. Acta Inf.,
7(4):327–355, Dec. 1977.

21

	Randomised QuickSort
	Deletion by index
	Definition
	Correctness proof
	Cost analysis
	Expected cost
	Version for lists with repeated elements

	Average case analysis of deterministic QuickSort
	Definition of deterministic QuickSort
	Analysis

