Verification of Query Optimization Algorithms

Bernhard Stockl

March 17, 2025

Abstract

This formalization includes a general framework for query opti-
mization consisting of the definitions of selectivities, query graphs, join
trees, and cost functions. Furthermore, it implements the join ordering
algorithm IKKBZ using these definitions. It verifies the correctness of
these definitions and proves that IKKBZ produces an optimal solution
within a restricted solution space.
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theory Selectivities
imports Complex-Main HOL— Library. Multiset
begin

1 Selectivities

type-synonym ’a selectivity = 'a = 'a = real

definition sel-symm :: 'a selectivity = bool where
sel-symm sel = (Vz y. sel x y = sel y x)

definition sel-reasonable :: 'a selectivity = bool where
sel-reasonable sel = Vzy. selzy < 1 A selzy > 0)

1.1 Selectivity Functions

fun list-sel-auz :: 'a selectivity = 'a = 'a list = real where
list-sel-aux sel x [| = 1
| list-sel-aux sel © (y#ys) = sel z y x list-sel-auz sel x ys



fun list-sel :: 'a selectivity = 'a list = 'a list = real where
list-sel sel || y = 1
| list-sel sel (z#xs) y = list-sel-auz sel x y * list-sel sel zs y

fun list-sel-auz’ :: 'a selectivity = 'a list = 'a = real where
list-sel-aux’ sel [| y = 1
| list-sel-aux’ sel (x#xs) y = sel x y * list-sel-auz’ sel xs y

fun list-sel’:: 'a selectivity = 'a list = 'a list = real where
list-sel’ sel x || = 1
| list-sel’ sel x (y#ys) = list-sel-auz’ sel x y * list-sel’ sel x ys

definition set-sel-auz :: 'a selectivity = 'a = 'a set = real where
set-sel-auz sel x Y = ([[y € Y. sel z y)

definition set-sel :: 'a selectivity = 'a set = 'a set = real where
set-sel sel X Y = ([[z € X. set-sel-aux sel z V)

definition set-sel-auz’ :: ‘a selectivity = 'a set = 'a = real where
set-sel-auzr’ sel X y = ([[z € X. sel z y)

definition set-sel’ :: 'a selectivity = 'a set = 'a set = real where
set-sel’ sel X Y = ([ly € Y. set-sel-auz’ sel X y)

fun ldeep-s :: 'a selectivity = 'a list = ’'a = real where
ldeep-s f [| = (A-. 1)
| ldeep-s | (z#txs) = (Na. if a=x then list-sel-auz’ f zs a else ldeep-s f xs a)

1.2 Proofs

lemma distinct-alt: (Vz€# mset xs. count (mset zs) x = 1) <— distinct xs
by (induction xs) auto

lemma mset-y-eq-list-sel-auz-eq: mset y = mset z = list-sel-aux f x y = list-sel-aux
fxz
proof (induction length y arbitrary: y z)
case ()
then show ?case by simp
next
case (Suc n)
then have length y > 0 by auto
then obtain y’ ys where y-def[simp|: y=y'#ys using list.ezhaust-sel by blast
have length z > 0 using Suc by auto
then obtain z’ zs where z-def[simp|: z=2z'#zs using list.ezhaust-sel by blast
then have length zs = n using Suc by (metis length-Cons mset-eq-length nat.inject)
then show ?case
proof(cases y'=2")
case True
then show ?thesis using Suc by simp



next
case Fulse
have y’ €# mset y by simp
moreover have 2’ €# mset y using Suc by simp
ultimately have 3 c. mset y = mset (y'#z'#c)
using Fulse ex-mset in-set-member multi-member-split set-mset-mset
by (metis (mono-tags, opaque-lifting) member-rec(1) mset.simps(2))
then obtain ¢ where c-def[simp]: mset y = mset (y'#z'#c) by blast
then have 0: mset ys = mset (z'#c) by simp
then have 1: mset zs = mset (y'#c) using Suc.prems by simp
have list-sel-auz f x y = list-sel-aux f x (y' # ys) by simp

also have ... = fz y’ * list-sel-auz f z ys by simp

also have ... = fx y’ x list-sel-auz f x (2'#c) using Suc.hyps 0 by fastforce
also have ... = fx 2" x list-sel-auz f z (y'#c) by simp

also have ... = fx 2/ x list-sel-auz f x zs

using 1 Suc.hyps(1) <length zs = ny by presburger
finally show ?thesis by simp
qed
qed

lemma mset-y-eq-list-sel-eq: mset y = mset y' = list-sel f x y = list-sel fz y’
apply(induction z)
apply (auto)[2]
using mset-y-eq-list-sel-auz-eq by fast

lemma mset-z-eq-list-sel-eq: mset © = mset z = list-sel fx y = list-sel f z y
proof (induction length © arbitrary: = z)
case ()
then show ?case by simp
next
case (Suc n)
then have length x > 0 by auto
then obtain z’ xs where y-def[simp|: r=x'#xs using list.ezhaust-sel by blast
have length z > 0 using Suc by auto
then obtain z’ zs where z-def[simp|: z=2z'#zs using list.ezhaust-sel by blast
then have length zs = n using Suc by (metis length-Cons mset-eq-length nat.inject)
then show ?case
proof(cases x'=2")
case True
then show ?thesis using Suc by simp
next
case Fulse
have z’ €# mset x by simp
moreover have 2z’ €# mset x using Suc by simp
ultimately have 3 c. mset z = mset (z'#z'#c¢)
using Fualse ex-mset in-set-member multi-member-split set-mset-mset
by (metis (mono-tags, opaque-lifting) member-rec(1) mset.simps(2))
then obtain ¢ where c-def[simp]: mset x = mset (z'#z'#c) by blast
then have 0: mset xs = mset (2'#c) by simp



then have 1: mset zs = mset (z'#c) using Suc.prems by simp
have list-sel f x y = list-sel f (x'#xs) y by simp

also have ... = list-sel-auz f ' y * list-sel f xs y by simp

also have ... = list-sel-aux f ' y * list-sel f (2'#c¢) y using Suc.hyps 0 by
fastforce

also have ... = list-sel-auzx f 2’ y * list-sel f (z'#c) y by simp

also have ... = list-sel-auz f 2z’ y * list-sel f zs y

using 1 Suc.hyps(1) <length zs = ny by presburger
finally show ?thesis by simp
qged
qged

lemma list-sel-empty: list-sel fz [| = 1
by (induction ) auto

lemma list-sel’-empty: list-sel’ f [ y = 1
by (induction y) auto

lemma list-sel-symm-app:
sel-symm f = list-sel-auzx f x y * list-sel fy xs = list-sel fy (¢ # xs)
by (induction y) (auto simp: sel-symm-def)

lemma list-sel-symm: sel-symm f = list-sel f x y = list-sel fy z
by (induction z) (auto simp: sel-symm-def list-sel-empty list-sel-symm-app)

lemma list-sel-symm-auz-eq’: sel-symm f = list-sel-aux f x y = list-sel-aux’ [y
x
by (induction y) (auto simp: sel-symm-def)

lemma list-sel-sing-auz’: list-sel f x [y] = list-sel-auz’ fz y
by (induction ) auto

lemma list-sel-sing-aux: list-sel f [z] y = list-sel-auz f x y
by (induction y) auto

lemma list-sel’-sing-auz’: list-sel’ f x [y] = list-sel-auz’ fz y
by (induction ) auto

lemma list-sel’-sing-aux: list-sel’ f [z] y = list-sel-aux fz y
by (induction y) auto

lemma list-sel’-split-auz: list-sel’ f (z#xs) y = list-sel-auzx f x y * list-sel’ f xs y
by (induction y) auto

lemma list-sel-eq’: list-sel f z y = list-sel’ fz y
by (induction ) (auto simp: list-sel’-empty list-sel’-split-aux)

lemma mset-1-eq-list-sel-auzx’-eq: mset x = mset z = list-sel-auz’ f z y = list-sel-auz’
fzy



using list-sel-sing-auz’ mset-z-eq-list-sel-eq by metis

lemma foldl-acc-extr: foldl (Aa b. a x fz b) zy = z % foldl (Aa b. a * fz D)
(1:real) y
proof (induction y arbitrary: z)
case Nil
then show ?case by simp
next
case (Cons y ys)
have foldl (Aa b. a * fx b) z (y # ys) = foldl (Aa b. a x fzb) (z* fzy) ys by
simp
also have ... = (z % fz y) * foldl (Aa b. a x fz b) I ys using Cons by blast
also have ... = z x foldl (Aa b. a * fz b) 1 (y#ys)
by (smt (verit, ccfv-SIG) Cons.IH foldl-Cons mult.assoc mult.left-commute)
finally show ?case .
qed

lemma list-sel-aux-eq-foldl: list-sel-aux f x y = foldl (Aa b. a x fz b) 1y
apply (induction y)
apply (auto)[2]
using foldl-acc-extr by metis

lemma list-sel-eq-foldl: list-sel f x y = foldl (Aa b. a * list-sel-auz fb y) 1 x
apply (induction z)
apply (auto)[2]
using foldl-acc-extr by metis

corollary list-sel-eq-foldl2: list-sel f x y = foldl (Aa z. a * foldl (Aa b. a * fx b)
1y 1z
by (simp add: list-sel-auz-eq-foldl list-sel-eq-foldl)

lemma list-sel-aux-eq-foldr: list-sel-aux fx y = foldr (Ab a. a x fz b) y 1
by (induction y) auto

lemma sel-foldl-eq-foldr:
foldl (Aa b. a * fzb) 1y = foldr (\b a. a % (f::'a selectivity) © b) y 1
using list-sel-aux-eq-foldl list-sel-aux-eq-foldr by metis

lemma list-sel-eq-foldr: list-sel fx y = foldr (\b a. a x list-sel-aux f b y) = 1
by (induction ) auto

lemma list-sel-eq-foldr2: list-sel f x y = foldr (Az a. a * foldr (A\b a. a x fz b) y
1)zt
by (simp add: list-sel-aux-eq-foldr list-sel-eq-foldr)

lemma list-sel-auz-reasonable:
sel-reasonable f = list-sel-aux fx y < 1 A list-sel-aux fzy > 0
by (induction y) (auto simp: sel-reasonable-def mult-le-one)



lemma list-sel-auz’-reasonable:
sel-reasonable f = list-sel-aux’ fzy < 1 A list-sel-auz’ fxy > 0
by (induction z) (auto simp: sel-reasonable-def mult-le-one)

lemma list-sel-reasonable: sel-reasonable f = list-sel fxy < 1 A list-sel fx y >
0
by (induction x) (auto simp: sel-reasonable-def mult-le-one list-sel-auz-reasonable)

lemma list-sel’-reasonable: sel-reasonable f = list-sel’ fzy < 1 A list-sel’ fzy
> 0
using list-sel-eq’ list-sel-reasonable by metis

lemma list-sel-auz-eq-set-sel-aux:
distinct ys = list-sel-auz f © ys = set-sel-aux f x (set ys)
by (induction ys) (auto simp: set-sel-aux-def)

lemma list-sel-eq-set-sel:
[distinct xs; distinct ys] = list-sel f xs ys = set-sel f (set zs) (set ys)
by (induction zs) (auto simp: set-sel-def list-sel-aux-eq-set-sel-auz list-sel-empty)

lemma list-sel’-eqg-set-sel:
[distinct xs; distinct ys] = list-sel’ f xs ys = set-sel f (set xs) (set ys)
by (auto simp add: list-sel-eq’ dest: list-sel-eg-set-sel)

lemma set-sel-symm-if-finite: [finite X; finite Y; sel-symm f] = set-sel f X Y =
set-sel f Y X
using finite-distinct-list list-sel-symm list-sel-eq-set-sel by metis

lemma set-sel-auz-1-if-notfin: —finite Y —> set-sel-aux fz Y = 1
unfolding set-sel-auz-def by simp

lemma set-sel-1-if-notfinl: —finite X = set-sel fX Y = 1
unfolding set-sel-def set-sel-aux-def by simp

lemma set-sel-1-if-notfin2: —finite Y = set-sel f X Y = 1
unfolding set-sel-def set-sel-aux-def by simp

lemma set-sel-symm: sel-symm f = set-sel f X Y = set-sel f Y X
using set-sel-symm-if-finite[of X Y]
by (fastforce simp: set-sel-1-if-notfinl set-sel-1-if-notfin2)

lemma list-sel-auzs’-eq-set-sel-auz'”:
distinct xs = list-sel-auz’ f xs © = set-sel-aux’ f (set zs) x
by (induction zs) (auto simp: set-sel-auz’-def)

lemma list-sel’-eq-set-sel”:
[distinct xs; distinct ys] = list-sel’ f xs ys = set-sel’ f (set xs) (set ys)
by (induction ys) (auto simp: set-sel’-def list-sel-aux’-eq-set-sel-auzx’ list-sel-empty)



lemma list-sel-eq-set-sel’:
[distinct xs; distinct ys] = list-sel f xs ys = set-sel’ f (set xs) (set ys)
by (simp add: list-sel’-eq-set-sel’ list-sel-eq’)

lemma set-sel’-symm-if-finite: [finite X; finite Y; sel-symm f] = set-sel’ f X YV
= set-sel' f Y X
using finite-distinct-list list-sel-symm list-sel-eq-set-sel’ by metis

lemma set-sel-auz’-1-if-notfin: —finite X = set-sel-auz’ f X y = 1
unfolding set-sel-auz’-def by simp

lemma set-sel’-1-if-notfinl: —finite X = set-sel’ f X Y = 1
unfolding set-sel’-def set-sel-auz’-def by simp

lemma set-sel’-1-if-notfin2: —finite Y = set-sel’ f X Y = 1
unfolding set-sel’-def set-sel-auz’-def by simp

lemma set-sel’-symm: sel-symm [ = set-sel’ f X Y = set-sel’ f Y X
using set-sel’-symm-if-finite[of X Y]
by (fastforce simp: set-sel’-1-if-notfinl set-sel’-1-if-notfin2)

lemma set-sel’-eq-set-sel: set-sel’ f X Y = set-sel f X Y
unfolding set-sel-def set-sel-auz-def set-sel’-def set-sel-auz’-def using prod.swap
by fast

lemma set-sel-auz-reasonable-fin:
[finite y; sel-reasonable f] = set-sel-aux fxy < 1 A set-sel-aux fxy > 0
unfolding set-sel-auz-def
by (induction y rule: finite-induct) (auto simp: sel-reasonable-def mult-le-one)

lemma set-sel-auz-reasonable:
sel-reasonable f = set-sel-aux fxy < 1 A set-sel-aux fxy > 0
by (cases finite y) (auto simp: set-sel-auz-reasonable-fin set-sel-auz-1-if-notfin)

lemma set-sel-auz’-reasonable-fin:
[finite x; sel-reasonable f] = set-sel-aux’ fzy < 1 A set-sel-aux’ fz y > 0
unfolding set-sel-auz’-def
by (induction = rule: finite-induct) (auto simp: sel-reasonable-def mult-le-one)

lemma set-sel-aux’-reasonable:
sel-reasonable f = set-sel-auz’ fzy < 1 A set-sel-auz’ fzy > 0
by (cases finite z) (auto simp: set-sel-aux’-reasonable-fin set-sel-auz’-1-if-notfin)

lemma set-sel-reasonable-fin:
[finite x; sel-reasonable f] = set-sel fzy < 1 A set-sel fzy > 0
unfolding set-sel-def
apply (induction x rule: finite-induct)
using set-sel-aux’-reasonable-fin apply (simp)
by (smt (verit) prod-le-1 prod-pos set-sel-auz-reasonable)



lemma set-sel-reasonable: sel-reasonable f = set-sel fxy < 1 A set-sel fxy >
0
by(cases finite z) (auto simp: set-sel-reasonable-fin set-sel-1-if-notfinl)

lemma set-sel’-reasonable-fin:
[finite y; sel-reasonable f] = set-sel’ foxy < 1 A set-sel’ fzy > 0
unfolding set-sel’-def
apply (induction y rule: finite-induct)
using set-sel-auz’-reasonable-fin apply(simp)
by (smt (verit) prod-le-1 prod-pos set-sel-auz’-reasonable)

lemma set-sel’-reasonable: sel-reasonable f = set-sel’ fxy < 1 A set-sel’ fzy
> 0
by (cases finite y) (auto simp: set-sel’-reasonable-fin set-sel’-1-if-notfin2)

lemma ldeep-s-pos: sel-reasonable f = ldeep-s fxs x > 0
by (induction xs) (auto simp: list-sel-auz’-reasonable)

lemma distinct-app-trans-r: distinct (ysQuxs) = distinct xs
by simp

lemma distinct-app-trans-l: distinct (ysQuxs) = distinct ys
by simp

lemma [deep-s-reasonable: sel-reasonable f = ldeep-s fxs y < 1 A ldeep-s fzs y
> 0
by (induction zs) (auto simp: list-sel-auz’-reasonable)

lemma ldeep-s-eq-list-sel-auz’-split:
y € set 1s = Jas bs. as Q y # bs = xs A\ ldeep-s sel xs y = list-sel-aux’ sel bs y
proof (induction xs)
case (Cons z zs)
then show ?case
proof(cases © = y)
case False
then obtain as bs where as-def: as Q y # bs = zs ldeep-s sel xs y = list-sel-aux
sel bs y
using Cons by auto
then have (z#as) Q y # bs = z#uxs by simp
then show ?thesis using False as-def(2) by fastforce
qged(auto)
qed(simp)

/

lemma distinct-ldeep-s-eq-aux:

distinct s = Jxs’. 1s'Qytys=xs = ldeep-s [ xs y = list-sel-auz’ f ys y
proof (induction xs arbitrary: ys)

case (Cons z xs)

then show ?case
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proof(cases z=y N ys=xs)
case True
then show ?thesis using Cons.prems by simp
next
case Fulse
then have Juxs’. zs'Qy#ys=x#xs N xs’ # || using Cons.prems by auto
then have 0: Jas". v#as”Qy#ys=xftxs by (metis list.sel(3) tl-append2)
have 1: distinct zs using Cons.prems(1) by fastforce
then show ?thesis
proof(cases z=y)
case True
then have count (mset (z#xs)) © > 2 using 0 by auto
then show ?thesis using Cons.prems by simp
next
case Fulse
then have Ildeep-s f (z # zs) y
= (Aa. if a=x then list-sel-auz’ f xs a else ldeep-s f xs a) y by simp

also have ... = ldeep-s f s y using Fulse by simp
finally show ?thesis using Cons.IH 0 1 by simp
qed
qged
qed(simp)

lemma distinct-ldeep-s-eq-aux’:
[distinct xs; as Q y # bs = zs] = ldeep-s sel xs y = list-sel-auz’ sel bs y
using distinct-ldeep-s-eq-aur by fast

lemma Ildeep-s-last1-if-distinct: distinct xs = ldeep-s sel zs (last xs) = 1
by (induction zs) auto

lemma ldeep-s-revhd1-if-distinct: distinct xs = ldeep-s sel (rev xs) (hd xs) = 1
using ldeep-s-last1-if-distinct[of rev zs] by (simp add: last-rev)

lemma ldeep-s-1-if-nelem: © ¢ set s = ldeep-s sel xs v = 1
by (induction zs) auto

lemma distinct-zs-not-ys: distinct (zsQys) = x € set xs = x ¢ set ys
by auto

lemma distinct-ys-not-zs: distinct (zsQys) = x € set ys = z ¢ set xs
by auto

lemma distinct-change-order-first-eq-nempty:
assumes distinct (zsQysQzsQrs)
and ys # ]
and zs # ||
and take 1 (xsQysQzsQrs) = take 1 (zsQzsQysQrs)
shows zs # ||
proof

11



assume zs = ||
then have take 1 (ysQzsQrs) = take 1 (2sQysQrs) using assms(4) by simp
then have Jr rsi rs2. ysQzsQrs = r#trsl N zsQysQrs = r#rs2
by (metis append-Cons append-take-drop-id assms(8) neq-Nil-conv take-eq-Nil
zero-neq-one)
then obtain r rs! rs2 where r-def: ysQzsQrs = r#rsi N\ zsQysQrs = r#rs2
by blast
then have 0: r € set ys A r € set zs
using assms(2,3) by (metis Cons-eq-append-conv list.set-intros(1))
then show Fulse using 0 assms(1) by auto
qged

lemma distinct-change-order-first-elem:
[distinct (xsQysQzsQrs); ys # [|; 2s # [|; take 1 (zsQysQzsQrs) = take 1
(2sQzsQysQrs)]
= take 1 (zsQysQzsQrs) = take 1 xs
by (cases xs) (fastforce dest!: distinct-change-order-first-eq-nempty)+

lemma takel-singleton-app: take 1 xs = [r] = take 1 (zsQys) = [r]
by (induction xs) (auto)

lemma hd-eq-takel: take 1 s = [r] = hd zs = r
using hd-take[of 1 xzs] by simp

lemma takel-eqg-hd: [zs # [); hd zs = r] = take 1 xs = [r]
by (simp add: take-Suc)

lemma nempty-if-takel: take 1 zs = [r] = zs # ||
by force

end
theory JoinTree

imports Complex-Main HOL— Library. Multiset Selectivities
begin

2 Join Tree

Relations have an identifier and cardinalities. Joins have two children and
a result cardinality. The datatype only represents the structure while car-
dinalities are given by a separate function.

datatype (relations:'a) joinTree = Relation 'a | Join 'a joinTree 'a joinTree

type-synonym ’a card = 'a = real

12



2.1 Functions

2.1.1 Functions for Information Retrieval

fun inorder :: 'a joinTree = 'a list where
inorder (Relation rel) = [rel]
| inorder (Join I r) = inorder | @Q inorder r

fun revorder :: 'a joinTree = 'a list where
revorder (Relation rel) = [rel]
| revorder (Join I 1) = revorder r Q revorder

fun relations-mset :: 'a joinTree = 'a multiset where
relations-mset (Relation rel) = {#rel#}
| relations-mset (Join I 1) = relations-mset | + relations-mset r

fun card :: 'a card = 'a selectivity = 'a joinTree = real where
card cf f (Relation rel) = cf rel
| card cf f (Join lT) =
list-sel f (inorder 1) (inorder r) x card ¢f f1 x card cf f r

fun cards-list :: 'a card = 'a joinTree = (‘axreal) list where
cards-list cf (Relation rel) = [(rel,cf rel)]
| cards-list cf (Join I 1) = cards-list cf | Q cards-list cf r

fun height :: 'a joinTree = nat where
height (Relation -) = 0
| height (Join 1 r) = max (height 1) (height r) + 1

fun num-relations :: 'a joinTree = nat where
num-relations (Relation -) = 1
| num-relations (Join I r) = num-relations | + num-relations r

fun first-node :: 'a joinTree = 'a where
first-node (Relation r) = r
| first-node (Join | -) = first-node 1

2.1.2 Functions for Correctness Checks

Cardinalities must be positive and selectivities need to be € (0,1].

fun reasonable-cards :: 'a card = 'a selectivity = 'a joinTree = bool where
reasonable-cards cf f (Relation rel) = (cf rel > 0)
| reasonable-cards cf f (Join I 1) = (let ¢ = card cf f (Join I 1) in
c<card cfflx card cffr N c > 0 A reasonable-cards cf f I N reasonable-cards

of fr)

definition pos-rel-cards :: 'a card = 'a joinTree = bool where
pos-rel-cards cf t = (¥ (-,c)€set (cards-list cf t). ¢ > 0)

definition pos-list-cards :: 'a card = 'a list = bool where
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pos-list-cards cf zs = (Vaz€set zs. ¢f z > 0)

Each node should have a unique identifier.

definition distinct-relations :: 'a joinTree = bool where
distinct-relations t = distinct (inorder t)

2.1.3 Functions for Modifications

fun mirror :: ‘a joinTree = 'a joinTree where
mirror (Relation rel) = Relation rel
| mirror (Join I r) = Join (mirror r) (mirror l)

fun create-rdeep :: 'a list = 'a joinTree where
create-rdeep [| = undefined

| create-rdeep [x] = Relation x

| create-rdeep (z#xs) = Join (Relation x) (create-rdeep xs)

fun create-ldeep-rev :: 'a list = 'a joinTree where
create-ldeep-rev [| = undefined

| create-ldeep-rev [x] = Relation

| create-ldeep-rev (z#xs) = Join (create-ldeep-rev xs) (Relation x)

definition create-ldeep :: 'a list = ’a joinTree where
create-ldeep xs = create-ldeep-rev (rev xs)

2.1.4 Additional properties

fun left-deep :: 'a joinTree = bool where
left-deep (Relation -) = True

| left-deep (Join | (Relation -)) = left-deep 1

| left-deep - = False

fun right-deep :: 'a joinTree = bool where
right-deep (Relation -) = True

| right-deep (Join (Relation -) r) = right-deep r

| right-deep - = False

fun zig-zag :: 'a joinTree = bool where
zig-zag (Relation -) = True

| zig-zag (Join | (Relation -)) = zig-zag |

| zig-zag (Join (Relation -) r) = zig-zag r

| zig-zag - = False

2.1.5 Cardinality Calculations for Left-deep Trees

Expects a reversed list of relations rs and calculates the cardinality of a
left-deep tree.

fun ldeep-n :: 'a selectivity = 'a card = 'a list = real where
ldeep-n fef || = 1
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| ldeep-n f cf (r#rs) = cf r * (list-sel-auz’ f rs r) * ldeep-n f cf rs

definition ldeep-T :: (‘a = real) = 'a card = 'a list = real where
ldeep-T sf c¢f xs = foldl (Aa b. a * cf b = sf b) 1 xs

fun ldeep-T' :: ('a = real) = 'a card = 'a list = real where
ldeep-T' fcf [|] = 1
| Ideep-T' f cf (r#rs) = cf r* fr « ldeep-T' f cf rs

2.2 Proofs

lemma ldeep-eq-rdeep: left-deep t = right-deep (mirror t)
by (induction t rule: left-deep.induct) (auto)

lemma mirror-twice-id[simpl|: mirror (mirror t) = t
by (induction t) auto

lemma rdeep-eq-ldeep: right-deep t = left-deep (mirror t)
apply(induction t rule: right-deep.induct)
by (auto)

lemma mirror-zig-zag-preserv: zig-zag (mirror t) = zig-zag t
apply (induction t rule: zig-zag.induct)
using zig-zag.elims(2) by fastforce+

lemma ldeep-zig-zag: left-deep t =—> zig-zag t
by (induction t rule: zig-zag.induct) auto

lemma rdeep-zig-zag: right-deep t = zig-zag t
using rdeep-eg-ldeep ldeep-zig-zag mirror-zig-zag-preserv by blast

lemma relations-nempty: relations t # {}
by (induction t) auto

lemma set-implies-mset: © € relations t = x €# relations-mset t
by (induction t) (auto)

lemma mset-implies-set: © €# relations-mset t = x € relations t
by (induction t) (auto)

lemma inorder-eq-mset: mset (inorder t) = relations-mset t
by (induction t) (auto)

lemma relations-set-eq-mset: set-mset (relations-mset t) = relations t
using mset-implies-set set-implies-mset by fast

lemma inorder-eg-set: set (inorder t) = relations t
by (induction t) (auto)
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lemma revorder-eq-mset: mset (revorder t) = relations-mset t
by (induction t) (auto)

lemma revorder-eg-set: set (revorder t) = relations ¢
by (induction t) (auto)

lemma revorder-eq-rev-inorder: revorder t = rev (inorder t)
by (induction t) (auto)

lemma inorder-eq-rev-revorder: inorder t = rev (revorder t)
by (induction t) (auto)

lemma mirror-mset-eq|simp): relations-mset (mirror t) = relations-mset t
by (induction t) auto

lemma distinct-rels-alt: distinct-relations t <— distinct (revorder t)
unfolding distinct-relations-def inorder-eq-rev-revorder by simp

lemma distinct-rels-alt’:

distinct-relations t «— (let multi=relations-mset t in ¥ x€# multi. count multi
z=1)

using distinct-relations-def inorder-eq-mset distinct-alt by metis

lemma inorder-nempty: inorder t # ||
by (induction t) auto

lemma revorder-nempty: revorder t # [|
by (induction t) auto

lemma mirror-distinct: distinct-relations t = distinct-relations (mirror t)
by (simp add: distinct-rels-alt”)

lemma mirror-set-eq[simp|: relations (mirror t) = relations t
by (induction t) auto

lemma mirror-inorder-rev: inorder (mirror t) = rev (inorder t)
by (induction t) auto

lemma mirror-revorder-rev: revorder (mirror t) = rev (revorder t)
by (induction t) auto

corollary mirror-revorder-inorder: revorder (mirror t) = inorder t
unfolding mirror-revorder-rev inorder-eq-rev-revorder by simp

corollary mirror-inorder-revorder: inorder (mirror t) = revorder t
unfolding mirror-inorder-rev revorder-eq-rev-inorder by simp

lemma mirror-card-eq[simp]: sel-symm f = card cf f (mirror t) = card cf f t
proof (induction t)
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case (Join I r)
let ¢r = mirror r and 2l = mirror [
have 0: mset (inorder ?r) = mset (inorder r) by (simp add: inorder-eg-mset)
have 1: mset (inorder ?1) = mset (inorder 1) by (simp add: inorder-eq-mset)
have card cf f (mirror (Join 1 1)) = card cf f (Join (mirror r) (mirror )) by
stmp
also have ... = list-sel f (inorder ?r) (inorder ?1) x card cf f r x card cf f1
using Join by simp
also have ... = list-sel f (inorder r) (inorder ?1) x card cf f r * card cf 1
using 0 mset-z-eq-list-sel-eq by auto
also have ... = list-sel f (inorder r) (inorder 1) * card c¢f fr * card ¢f f1
using 1 mset-y-eq-list-sel-eq by auto
finally show ?case using list-sel-symm Join.prems by auto
qed(simp)

lemma mirror-reasonable-cards:
[sel-symm f; reasonable-cards cf f t] = reasonable-cards cf f (mirror t)
proof (induction t)
case (Join [ r)
let 9r = mirror r and ?l = mirror |
let ?c = card cf f (mirror (Join I 1))
let ?¢’ = card cf f (Join I 1)
have reasonable-cards cf f (mirror (Join I 1))
= reasonable-cards cf f (Join (mirror r) (mirror 1)) by simp
also have ... = (%c < card cf f ?r * card cf f 2L N 2¢>0
A reasonable-cards cf f 21 N\ reasonable-cards cf f ?r)
by (auto simp: Let-def)
also have ... = (?c < card cf f ?r % card cf f 2L N\ 2¢>0)
using Join by fastforce
also have ... = (¢’ < card ¢f fr x card ¢f f1 N\ 2¢">0)
using mirror-card-eq Join.prems by metis
also have ... = (?c’ < card ¢f fr * card ¢f f1 N 9c'>0
A reasonable-cards cf f 1 N reasonable-cards cf f )
using Join.prems by auto
also have ... = (¢’ < card ¢f f 1 % card cf f r N\ ?¢">0
A reasonable-cards cf f I A\ reasonable-cards cf f )
by argo
finally show ?case using Join.prems by force
qed(simp)

lemma joinTree-cases: (3r. t=(Relation r)) V (31 rr. t=(Join | (Relation rr)))
vV (3l rr. t=(Join I (Join Ir rr)))

apply/(cases t)
apply (auto)[2]
by (meson joinTree.exhaust)

lemma joinTree-cases-ldeep: left-deep t

= (I r. t=(Relation r)) V (31 rr. t=(Join | (Relation rr)))
apply/(cases t)
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apply (auto)[2]
using joinTree-cases by fastforce

lemma ldeep-trans: left-deep (Join | r) = left-deep 1
by (cases r) auto

lemma subtree-elem-count-I:

assumes YV z€# (relations-mset (Join I r)). count (relations-mset (Join I 1)) x
=1

and z €# relations-mset |
shows count (relations-mset 1) x = 1

proof —

have 0: count (relations-mset 1) x > 1 using assms by auto

have count (relations-mset [) < 1 using assms by force

then show ?thesis using 0 by linarith
qed

lemma subtree-elem-count-r:

assumes YV z€# (relations-mset (Join 1 r)). count (relations-mset (Join 1)) x
=1

and z €# relations-mset r
shows count (relations-mset r) x = 1

proof —

have 0: count (relations-mset r) © > 1 using assms by auto

have count (relations-mset r) x < 1 using assms by force

then show ?thesis using 0 by linarith
qged

lemma first-node-first-inorder: 3 xs. inorder t = first-node t # ws
by (induction t) auto

lemma first-node-last-revorder: 3 xs. revorder t = xs Q [first-node t]
by (induction t) auto

lemma first-node-eq-hd: first-node t = hd (inorder t)
using first-node-first-inorder|of t] by auto

lemma distinct-elem-right-not-left:
assumes distinct-relations (Join I r)
and z € relations r
shows z ¢ relations |
proof
assume z € relations |
then have z €4 relations-mset | using set-implies-mset by fast
then have 0: count (relations-mset 1) x > 1 by simp
have z €# relations-mset r using set-implies-mset assms(2) by fast
then have count (relations-mset r) z > 1 by simp
moreover have count (relations-mset | + relations-mset r) z
= count (relations-mset 1) x + count (relations-mset r) z by simp
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ultimately have count (relations-mset | + relations-mset r) x > 2 using 0 by
linarith

then have count (relations-mset (Join I r)) x > 2 by simp

then have 1: count (relations-mset (Join I 1)) z # 1 by simp

let ?multi = (relations-mset (Join 1 1))

have distinct-relations (Join I r) = (Y yE# ?multi. count ?multi y = 1)

by (simp add: distinct-rels-alt’)

then show Fulse using 1 assms set-implies-mset by fastforce

qed

lemma distinct-elem-left-not-right:
assumes distinct-relations (Join I r)
and z € relations [
shows z ¢ relations r
using distinct-elem-right-not-left assms by fast

lemma distinct-relations-disjoint: distinct-relations (Join | r) = relations | N
relations r = {}
using distinct-elem-right-not-left by fast

lemma distinct-trans-l: distinct-relations (Join | r) = distinct-relations |
using subtree-elem-count-1 by (fastforce simp: distinct-rels-alt)

lemma distinct-trans-r: distinct-relations (Join | r) = distinct-relations r
using subtree-elem-count-r by (fastforce simp: distinct-rels-alt)

lemma distinct-and-disjoint-impl-count1:
assumes distinct-relations |
and distinct-relations r
and relations | N relations r = {}
and z €# relations-mset (Join | 1)
shows count (relations-mset (Join I 1)) x = 1
proof —
show ?thesis
proof(cases ze€relations 1)
case True
then have z€# relations-mset | using set-implies-mset by fast
then have 0: count (relations-mset 1) z = 1 using assms(1) distinct-rels-alt’
by metis
have z¢# relations-mset r using True assms(3) disjoint-iff mset-implies-set
by fast
then have count (relations-mset r) x = 0 by (simp add: count-eq-zero-iff)
then show ?thesis using 0 by simp
next
case Fulse
have z€# relations-mset r using False assms(4) using mset-implies-set by
force
then have 0: count (relations-mset r) x = 1 using assms(2) distinct-rels-alt’
by metis
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have z¢# relations-mset | using False assms(3) disjoint-iff mset-implies-set
by fast
then have count (relations-mset I) x = 0 by (simp add: count-eq-zero-iff)
then show #thesis using 0 by simp
qged
qed

lemma distinct-and-disjoint-impl-distinct:
[distinct-relations I; distinct-relations r; relations | N relations r = {}]
= distinct-relations (Join [ 1)
using distinct-and-disjoint-impl-count1 distinct-rels-alt’ by fastforce

lemma reasonable-trans:

reasonable-cards cf f (Join | ) = reasonable-cards cf f 1 A reasonable-cards cf f
r

by (simp add: Let-def)

lemma mirror-height-eq: height (mirror t) = height t
by (induction t) auto

lemma height-0-rel: height t = 0 = 3r. t = Relation r
by (cases t) auto

lemma height-gt-0-join: height t > 0 = 3lr. t = Joinlr
by(cases t) auto

lemma height-decr-1: height (Join 1 r) > height
by simp

lemma height-decr-r: height (Join [ r) > height r
by simp

lemma mirror-num-relations-eq: num-relations (mirror t) = num-relations t
by (induction t) auto

lemma zig-zag-num-relations-height: zig-zag t = num-relations t = height t + 1
by (induction t rule: zig-zag.induct) auto

lemma ldeep-num-relations-height: left-deep t = num-relations t = height t + 1
by (simp add: zig-zag-num-relations-height ldeep-zig-zag)

lemma rdeep-num-relations-height: right-deep t = num-relations t = height t +
1
by (simp add: zig-zag-num-relations-height rdeep-zig-zag)

lemma num-relations-eg-length: num-relations t = length (inorder t)
by (induction t) auto

lemma reasonable-impl-pos: reasonable-cards cf f t = pos-rel-cards cf t
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by (induction t) (auto simp: pos-rel-cards-def Let-def)

lemma cards-list-eq-inorder: map (A(a,-). a) (cards-list cf t) = inorder t
by (induction t) auto

lemma cards-list-eq-relations: (A a,-). a) * set (cards-list cf t) = relations t
by (simp add: cards-list-eq-inorder image-set inorder-eq-set)

lemma cards-eg-c: (rel,c)€set(cards-list c¢f t) = cf rel = ¢
by (induction t) auto

lemma finite-trans: finite (relations (Join | r)) = finite (relations 1) A finite
(relations r)
by simp

lemma distinct-impl-card-eq-length:
finite (relations t) = height t < n = distinct-relations t
= Finite-Set.card (relations t) = length (inorder t)
proof (induction n arbitrary: t)
case (
then obtain r where Relation r = t using height-0-rel by auto
then show ?case using distinct-relations-def by force
next
case (Suc n)
then show ?case
proof(cases height t = Suc n)
case True
then have 0 < height t by simp
then obtain [ r where join[simp]|: Join | r = t using height-gt-0-join by blast
then have 0: finite (relations 1) A finite (relations 1)
using Suc.prems(1) finite-trans by blast
have 1: height | < n using True join by (metis height-decr-1 less-Suc-eg-le)
have 2: height r < n using True join by (metis height-decr-r less-Suc-eq-le)
have Finite-Set.card (relations t) + Finite-Set.card (relations | N relations 1)
= Flinite-Set.card (relations ) + Finite-Set.card (relations r)
using card-Un-Int join 0 by (metis JoinTree.joinTree.simps(16))
then have Finite-Set.card (relations t)
= Flinite-Set.card (relations 1) + Finite-Set.card (relations r)
by (simp add: local.Suc.prems(3) distinct-relations-disjoint)
moreover have length (inorder t)
= length (inorder 1) + length (inorder r)
by (metis JoinTree.inorder.simps(2) join length-append)
moreover have Finite-Set.card (relations 1) = length (inorder 1)
using Suc.IH Suc.prems(8) distinct-trans-1 0 1 join by blast
moreover have Finite-Set.card (relations r) = length (inorder r)
using Suc.IH Suc.prems(8) distinct-trans-r 0 2 join by blast
ultimately show ¢thesis by simp
next
case Fulse
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then show ?thesis using Suc by simp
qed
qed

lemma card-le-length: Finite-Set.card (relations t) < length (inorder t)
apply (induction t)
apply(auto)[2]
by (meson add-mono card-Un-le le-trans)

lemma card-eq-length-impl-disjunct:
assumes finite (relations (Join 1 1))
and Finite-Set.card (relations (Join I 1)) = length (inorder (Join I 1))
shows relations | N relations r = {}
proof (rule ccontr)
assume 0: relations | N relations r # {}
have 1: finite (relations 1) A finite (relations r) using assms(1) by simp
then have 2: Finite-Set.card (relations (Join 1 1)) + Finite-Set.card (relations
I N relations r)
= Finite-Set.card (relations l) + Finite-Set.card (relations r)
using card-Un-Int by (metis JoinTree.joinTree.simps(16))
moreover have Finite-Set.card (relations | N relations r) > 0 using 0 1 by
auto
ultimately have Finite-Set.card (relations (Join I 1))
< Finite-Set.card (relations l) + Finite-Set.card (relations r) by simp
also have ... < length (inorder l) + Finite-Set.card (relations )
by (simp add: card-le-length)
also have ... < length (inorder 1) + length (inorder r)
by (simp add: card-le-length)
finally have Finite-Set.card (relations (Join [ r)) < length (inorder (Join I 1))
by simp
then show False using assms(2) by simp
qed

lemma card-eq-length-trans-I:
assumes finite (relations (Join 1 1))
and Finite-Set.card (relations (Join I 1)) = length (inorder (Join I 1))
shows Finite-Set.card (relations 1) = length (inorder 1)
proof (rule ccontr)
assume 0: Finite-Set.card (relations 1) # length (inorder 1)
have Finite-Set.card (relations (Join [ 1))
= length (inorder 1) + length (inorder r)
using assms(2) by simp
have finite (relations 1) A finite (relations r) using assms(1) by simp
then have Finite-Set.card (relations (Join 1 r)) + Finite-Set.card (relations [ N
relations )
= Finite-Set.card (relations 1) + Finite-Set.card (relations r)
using card-Un-Int by (metis JoinTree.joinTree.simps(16))
then have Finite-Set.card (relations (Join I r))
= Finite-Set.card (relations 1) + Finite-Set.card (relations r)

22



using assms by (simp add: card-eg-length-impl-disjunct)
moreover have Finite-Set.card (relations 1) < length (inorder l)
using 0 card-le-length le-imp-less-or-eq by blast
ultimately have Finite-Set.card (relations (Join 1))
< length (inorder l) + Finite-Set.card (relations r)
by simp
also have ... < length (inorder 1) + length (inorder r)
by (simp add: card-le-length)
finally have Finite-Set.card (relations (Join 1 r)) < length (inorder (Join I 1))
by simp
then show Fulse using assms(2) by simp
qed

lemma card-eq-length-trans-r:
assumes finite (relations (Join I 1))
and Finite-Set.card (relations (Join 1 r)) = length (inorder (Join I 1))
shows Finite-Set.card (relations r) = length (inorder r)
using assms card-eq-length-trans-l mirror-set-eq
by (metis JoinTree.mirror.simps(2) mirror-num-relations-eq num-relations-eq-length)

lemma card-eq-length-impl-distinct:
[finite (relations t); height t < n; Finite-Set.card (relations t) = length (inorder
)]
= distinct-relations t
proof (induction n arbitrary: t)
case 0
then obtain r where Relation r = t using height-0-rel by auto
then show ?case using distinct-relations-def by force
next
case (Suc n)
then show ?case
proof(cases height t = Suc n)
case True
then have 0 < height t by simp
then obtain [ r where join[simp]: Join | r = t using height-gt-0-join by blast
then have 0: finite (relations 1) A finite (relations r)
using Suc.prems(1) finite-trans by blast
have 1: height | < n using True join by (metis height-decr-1 less-Suc-eq-le)
have 2: height r < n using True join by (metis height-decr-r less-Suc-eq-le)
have Finite-Set.card (relations t) + Finite-Set.card (relations | N relations 1)
= Flinite-Set.card (relations 1) + Finite-Set.card (relations r)
using card-Un-Int join 0 by (metis JoinTree.joinTree.simps(16))
then have Finite-Set.card (relations t)
= Flinite-Set.card (relations ) + Finite-Set.card (relations r)
using Suc.prems(1,3) by (simp add: card-eq-length-impl-disjunct)

have Finite-Set.card (relations 1) = length (inorder [)

using Suc.prems(1,3) card-eq-length-trans-1 join by blast
then have 3: distinct-relations | using Suc.IH 0 1 by blast
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have Finite-Set.card (relations r) = length (inorder r)
using Suc.IH Suc.prems(1,3) card-eg-length-trans-r join by blast
then have /: distinct-relations r using Suc.IH 0 2 by blast
have relations | N relations r = {}
using card-eq-length-impl-disjunct join Suc.prems(1,3) by blast
then show ?thesis using 8 J distinct-and-disjoint-impl-distinct by fastforce
next
case Fulse
then show %thesis using Suc by simp
qged
qged

lemma list-sel-revorder-eq-inorder-z: list-sel f (revorder 1) ys = list-sel f (inorder
) ys
unfolding revorder-eq-rev-inorder using mset-z-eq-list-sel-eq mset-rev by blast

lemma list-sel-revorder-eq-inorder-y: list-sel f xs (revorder r) = list-sel f xs (inorder
r)

unfolding revorder-eq-rev-inorder using mset-y-eq-list-sel-eq mset-rev by blast

lemma list-sel-revorder-eq-inorder:
list-sel f (revorder 1) (revorder r) = list-sel f (inorder 1) (inorder r)
unfolding list-sel-revorder-eq-inorder-x list-sel-revorder-eq-inorder-y by simp

lemma card-join-alt:

card cf f (Join I r) = list-sel f (revorder 1) (revorder r) x card cf f1 x card cf fr
unfolding list-sel-revorder-eq-inorder by simp

lemma distinct-alt:
finite (relations t)
= distinct-relations t «— Finite-Set.card (relations t) = length (inorder t)
using card-eg-length-impl-distinct distinct-impl-card-eq-length by auto

lemma distinct-alt2:
distinct-relations (Join I 1)
+— distinct-relations | A\ distinct-relations r A relations I N relations r = {}
using distinct-relations-disjoint distinct-trans-l distinct-trans-r
by (auto elim: distinct-and-disjoint-impl-distinct)

lemma pos-rel-cards-subtrees:
pos-rel-cards cf (Join I 1) = (pos-rel-cards cf | \ pos-rel-cards cf r)
proof —
have pos-rel-cards cf (Join I r) = (¥ (-,c)€set (cards-list ¢f (Join lT)). ¢>0)
by (simp add: pos-rel-cards-def)

also have ... = (V(-,c)€set (cards-list cf | Q cards-list ¢f r). ¢>0) by simp
also have ... = ((V(-,¢)eset (cards-list c¢f ). ¢>0) N (V¥ (-,c)€set (cards-list cf
r). ¢>0))
by auto
also have ... = (pos-rel-cards cf | N\ pos-rel-cards cf r)
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by (simp add: pos-rel-cards-def)
finally show ?thesis by simp
qed

lemma pos-rel-cards-eq-pos-list-cards:
pos-rel-cards cf t «— pos-list-cards cf (inorder t)
by (induction t) (auto simp: pos-rel-cards-def pos-list-cards-def)

lemma pos-list-cards-split:
pos-list-cards cf (xsQys) «— pos-list-cards cf xs N pos-list-cards cf ys
by (induction xs) (auto simp: pos-list-cards-def)

lemma pos-sel-reason-impl-reason:
[pos-rel-cards cf t; sel-reasonable sel] = reasonable-cards cf sel t
proof (induction t)
case (Join I r)
then have pos-rel-cards cf I A pos-rel-cards cf r using pos-rel-cards-subtrees by
blast
then have 0: reasonable-cards cf sel | A reasonable-cards cf sel r using Join by
stmp
have list-sel sel (inorder 1) (inorder r) < 1
using Join.prems(2) sel-reasonable-def list-sel-reasonable by fast
obtain ¢ where 1:
list-sel sel (inorder 1) (inorder r) * card cf sel | x card cf sel r = ¢
by simp
then have ¢ = list-sel sel (inorder 1) (inorder r) * card cf sel | % card cf sel r
by simp
then have 2: ¢ < I % card cf sel | x card cf sel r
using Join.prems(2) list-sel-reasonable 0 mult-left-le-one-le mult-right-less-imp-less
by (smt (verit, ccfv-SIG) card.simps(1) card.simps(2) reasonable-cards.elims(2))
from 1 have ¢ > 0 * card cf sel | x card cf sel r
using Join.prems(2) list-sel-reasonable 0 mult-pos-pos
by (metis card.simps(1) card.simps(2) mult-eq-0-iff reasonable-cards.elims(2))
then show ?case using 0 1 2 by simp
qed(simp add: pos-rel-cards-def)

lemma create-rdeep-order: zs # [| = inorder (create-rdeep xs) = s
proof (induction xs)

case (Cons z zs)

then show ?case by(cases zs) auto
qed(simp)

lemma create-ldeep-rev-order: xs # [| = inorder (create-ldeep-rev xs) = rev s
proof (induction xs)

case (Cons z zs)

then show ?case by(cases zs) auto
qed(simp)

lemma create-ldeep-order: xs # [| = inorder (create-ldeep xs) = xs
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by (simp add: create-ldeep-def create-ldeep-rev-order)

lemma create-rdeep-rdeep: xs # [| = right-deep (create-rdeep xs)
proof (induction xs)

case (Cons z xs)

then show ?case by(cases zs) auto
qed(simp)

lemma create-ldeep-rev-ldeep: xs # [| = left-deep (create-ldeep-rev xs)
proof (induction xs)

case (Cons z zs)

then show ?case by(cases zs) auto
qed(simp)

lemma create-ldeep-ldeep: xs # [| = left-deep (create-ldeep xs)
by (simp add: create-ldeep-rev-ldeep create-ldeep-def)

lemma create-ldeep-rev-relations: xs # [| = relations (create-ldeep-rev zs) = set
xs
using create-ldeep-rev-order|of xs] inorder-eq-set by force

lemma create-ldeep-relations: xs # [| = relations (create-ldeep zs) = set s
by (simp add: create-ldeep-rev-relations create-ldeep-def)

lemma create-ldeep-rev-Cons:
zs # [| = create-ldeep-rev (x#axs) = Join (create-ldeep-rev xs) (Relation x)
using create-ldeep-rev.simps(3) neq-Nil-conv by metis

lemma create-ldeep-snoc: zs # [| = create-ldeep (xsQ[z]) = Join (create-ldeep
xs) (Relation x)
by (simp add: create-ldeep-rev-Cons create-ldeep-def)

lemma create-ldeep-inorder|[simp|: left-deep t = create-ldeep (inorder t) =t
apply(induction t)
apply (simp add: create-ldeep-def)
by (metis Nil-is-append-conv create-ldeep-snoc inorder.simps
ldeep-trans left-deep.simps(3) not-Cons-self2 relations-mset.cases)

lemma create-rdeep-inorder|simp|: right-deep t = create-rdeep (inorder t) = t
apply(induction t)
apply simp
by (metis create-rdeep.simps(3) create-rdeep-order first-node-first-inorder
joinTree.distinct(1) joinTree.inject(2) neq-Nil-conv right-deep.elims(2))

lemma ldeep-div-eq-sel:
assumes reasonable-cards cf f (Join | (Relation rel))
and ¢ = card cf f (Join | (Relation rel))
and cr = card cf f (Relation rel)
shows ¢ / (card cf f1 % cr) = list-sel f (inorder I) [rel]
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using assms by auto

lemma ldeep-n-eq-card:

[distinct-relations t; left-deep t] = ldeep-n f cf (revorder t) = card cf f ¢
proof (induction t arbitrary: cf rule: left-deep.induct)

case (21 rr)

let ?rev = revorder (Join | (Relation rr))

have ?rev = rr # revorder | by simp

have ldeep-n f cf ?rev = ldeep-n f ¢f (rr#trevorder 1) by simp

also have ... = list-sel-auz’ f (revorder 1) rr
x cf rr x ldeep-n f cf (revorder 1) by simp
also have ... = list-sel-auz’ f (inorder 1) rr x cf rr

x ldeep-n [ cf (revorder l)

using mset-z-eq-list-sel-auz’-eq mset-rev by (fastforce simp: revorder-eq-rev-inorder)
also have ... = list-sel-aux’ f (inorder 1) rr x cf rr * card cf f1

using 2 distinct-trans-l by auto
finally show ?case

using list-sel-sing-auz’ card.simps mult.commute

by (metis ab-semigroup-mult-class.mult-ac(1) inorder.simps(1))
qed(auto)

lemma ldeep-n-eq-card-subtree:
[distinct-relations (Join t v'); left-deep t] = ldeep-n f ¢f (revorder t) = card cf
ft

using ldeep-n-eq-card distinct-trans-l1 by blast

lemma distinct-ldeep- T '-prepend:
distinct (ysQxs) = ldeep-T' (Ideep-s [ (ysQus)) cf zs = ldeep-T' (ldeep-s f xs)
cf xs
proof (induction xs arbitrary: ys)
case (Cons z zs)
then have 0: distinct (z#txzs) by simp
have ldeep-T' (ldeep-s [ (ysQuz#as)) cf (x#xs)
= of  * (ldeep-s [ (ysQu#as)) z * ldeep-T’ (ldeep-s f (ysQua#txs)) cf zs

by simp

also have ... = ¢f z * (ldeep-s f (ysQz#tzs)) x = ldeep-T' (ldeep-s f xs) cf xs
using Cons.IH|[of ysQ[z]] Cons.prems by simp

also have ... = c¢f © * list-sel-auz’ f s x * ldeep-T' (ldeep-s f xs) cf xs
using distinct-ldeep-s-eq-auz|OF Cons.prems| by simp

also have ... = ¢f z * (ldeep-s f (z#txs)) x = ldeep-T' (ldeep-s f xs) cf xs
using distinct-ldeep-s-eq-aux Cons.prems by simp

also have ... = ¢f © * (ldeep-s f (x#xs)) x = ldeep-T' (ldeep-s [ (z#xs)) cf xs

using Cons.IH[of [z]] 0 by simp
finally show ?Zcase by simp
qed(simp)

lemma ldeep-T'-eq-ldeep-n: distinct xs = ldeep-T' (ldeep-s f xs) cf s = ldeep-n
fecfus
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proof (induction xs)
case (Cons z zs)
then have 0: distinct xs by simp
have Ildeep-T' (ldeep-s f (z # xs)) cf (z # xs)
= cf x * (ldeep-s [ (z # xs)) z * ldeep-T' (ldeep-s f (x # xs)) cf zs by

simp
also have ... = ¢f © x list-sel-auz’ f xs x * ldeep-T' (ldeep-s f (x # xs)) cf xs
by simp
also have ... = ¢f z * list-sel-auz’ f xs x * ldeep-T' (ldeep-s f xs) cf zs
using distinct-ldeep-T'-prepend|of [z]] Cons.prems by simp
also have ... = c¢f z * list-sel-aux’ f zs x * ldeep-n f cf zs

using Cons.IH 0 by simp
finally show ?Zcase by simp
qed(simp)

lemma ldeep-T'-eq-foldl: acc * ldeep-T' f c¢f xs = foldl (Aa b. a x ¢f b x fb) acc xs
proof (induction zs arbitrary: acc)

case (Cons z zs)

have acc x ldeep-T' f ¢f (z # xzs) = acc x ¢f © * f x x ldeep-T’ f ¢f xs by simp

also have ... = foldl (Aa b. a x ¢f b * fb) (acc * ¢f x x fz) xs using Cons by
stmp

finally show ?case by simp
qed(simp)

lemma distinct-ldeep-T-prepend:

distinct (ysQus) = ldeep-T (ldeep-s f (ysQuxs)) cf xs = ldeep-T (ldeep-s f xzs) cf
xs

using ldeep-T'-eq-foldl[of 1 ldeep-s [ (ysQuxs) cf xs]

by (simp add: distinct-ldeep-T'-prepend ldeep-T-def ldeep-T'-eq-foldl)

lemma ldeep-T-eq-ldeep-T'-auz: ldeep-T sf cf vs = ldeep-T' sf cf s
using ldeep-T'-eq-foldl[of 1 sf] ldeep-T-def by fastforce

lemma Ideep-T-eq-ldeep-T": ldeep-T = ldeep-T"'
using ldeep-T-eq-ldeep-T'-auz by blast

lemma ldeep-T-eq-ldeep-n: distinct xs = ldeep-T (ldeep-s f xs) cf s = ldeep-n f
cf xs
by (simp add: ldeep-T-eq-ldeep-T' ldeep-T'-eq-ldeep-n)

lemma ldeep-T-app: ldeep-T f cf (xsQys) = ldeep-T f cf xs x ldeep-T f cf ys
using ldeep-T-def foldl-append ldeep-T'-eq-foldl

by (metis (mono-tags, lifting) monoid.left-neutral mult.monoid-axioms)

lemma ldeep-T-empty: ldeep-T fcf [| = 1
by (simp add: ldeep-T-def)

lemma ldeep-T-eq-if-cf-eq: Vx € set zs. fx = g v = ldeep-T sf f xs = ldeep-T sf
g s
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unfolding ldeep-T-eq-ldeep-T' by (induction xs) auto

lemma ldeep-n-pos: [pos-list-cards cf xs; sel-reasonable f]| = ldeep-n f cf xs > 0
proof (induction xs)
case Nil
then show Zcase by simp
next
case (Cons z zs)
then show ?case
using list-sel-auzx’-reasonable pos-list-cards-def mult-pos-pos set-subset-Cons
by (metis list.set-intros(1) ldeep-n.simps(2) subset-code(1))
qed

lemma Ideep-T-eq-card:
[distinct-relations t; left-deep t]
= ldeep-T (ldeep-s f (revorder t)) cf (revorder t) = card c¢f f t
using ldeep-T-eg-ldeep-n[of revorder t| ldeep-n-eq-card distinct-rels-alt by fast-
force

lemma Ideep-T-pos’:

[distinct xs; pos-list-cards cf xs; sel-reasonable ] = ldeep-T (ldeep-s f xs) cf xs
> 0

by (simp add: ldeep-T-eq-ldeep-n ldeep-n-pos)

lemma ldeep-T-pos: [V z€ set ys. cf © > 0; sel-reasonable f] = ldeep-T (ldeep-s
fas) cfys >0

apply(induction ys arbitrary: xs)

apply(auto simp: ldeep-T-def)[2]

by (metis Groups.comm-monoid-mult-class.mult-1 Ildeep-T'-eq-foldl ldeep-s-pos
zero-less-mult-iff)

end

theory CostFunctions
imports Complex-Main JoinTree Selectivities
begin

3 Cost Functions

3.1 General Cost Functions

fun c-out :: 'a card = 'a selectivity = 'a joinTree = real where
c-out - - (Relation -) = 0
| c-out ¢f f (Join lr) = card cf f (Join I 1) + c-out ¢f f1 + c-out cf fr

fun c-nlj :: 'a card = 'a selectivity = 'a joinTree = real where

c-nlj - - (Relation -) = 0
| e-nlj cf f (Join I 1) = card ¢f fl x card cf fr + cnlj cf f1 + cnlj cf fr
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fun c-hj :: ‘a card = 'a selectivity = 'a joinTree = real where
c-hj - - (Relation -) = 0
| c-hjeff (Joinlr)=1.2%cardcf fl+ c-hjcffl+ chjcffr

fun c-smj :: 'a card = 'a selectivity = 'a joinTree = real where
c-smj - - (Relation -) = 0
| c-smj cf f (Join 1) = card c¢f f1 % log 2 (card cf f1) + card cf fr * log 2 (card
of )
+ c-smjcffl+ c-smjeffr

3.2 Cost functions that are considered by IKKBZ.

fun ¢-IKKBZ :: ('a = real = real) = 'a card = 'a selectivity = 'a joinTree =
real where

c¢-IKKBZ - - - (Relation -) = 0
| ¢-IKKBZ h cf f (Join | (Relation rel)) = card cf f 1 % (h rel (cf rel)) + ¢-IKKBZ

heffl
| ¢-IKKBZ - - - (Join | r) = undefined

A list of relations defines a unique left-deep tree. This functions computes
a cost function given by such a list representation of a tree according to
the formula ) ;=2" ng1,2,. -1} hi(ni) where ng12, -1y = JoinTree.card
subtree = ldeep-n f cf (list subtree) The input list is expected to be in
reversed order for easier recursive processing i.e. the first element in xs is
the rightmost element of the left-deep tree

fun c-list’ :: 'a selectivity = 'a card = ('a list = 'a = real) = 'a list = real
where
clist' ---[]=0
| e-list’ - - -[z] = 0
| c-list’ f cf b (z#xs) = ldeep-n f cf xs x h xs x + c-list’ f ¢f h xs

Equivalent definition which allows splitting the list at any point.

fun c-list :: ('a = real) = 'a card = (a = real) = 'a = 'a list = real where
clist----[]=0

| c-list - - b r [z] = (if x=r then 0 else h x)

| c-list sf cf h r (x#xs) = c-list sf ¢f h r s + ldeep-T sf cf xs x c-list sf ¢f h r [z]

Maps the h function to a static version that doesn’t require an input list.

fun create-h-list :: (‘a list = 'a = real) = 'a list = 'a = real where
create-h-list - [| = (A-. 1)

| create-h-list h (z#xs) = (Aa. if a=x then h xs x else create-h-list h xs a)

3.3 Properties of Cost Functions

definition symmetric :: (‘a joinTree = real) = bool where
symmetric f = Vz y. f (Join z y) = [ (Join y z))
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definition symmetric’ :: ('a card = 'a selectivity = 'a joinTree = real) = bool
where

symmetric’ f = (Vx y cf sf. sel-symm sf — (f ¢f sf (Joinxy) = f cf sf (Join y
z)))

Uses reversed lists since the last joined relation should only appear once.
Therefore, it should be the head of the list and by inductive reasoning the
list should be reversed. Furthermore, the root must be the first relation in
the sequence (last in the reverse) or it must not be contained at all.

definition asi’ :: ‘a = (‘a list = real) = bool where
asi’ r ¢ = (3rank :: (‘a list = real).
(VA UV B. distinct (AQUQV@QB) AU # [ AV # ]
A (r ¢ set (AQUQVQB) V (take 1 (AQUQVQB) = [r] A take 1 (AQVQUQB)
=[)
— (¢ (rev (AQUQ@QV@B)) < ¢ (rev (AQVQUQB)) +— rank (rev U) <
rank (rev V))))

definition asi :: (‘a list = real) = 'a = ('a list = real) = bool where
asi rank r ¢ = (VA U V B. distinct (AQUQVQ@QB) AU £[| AV #£ ]
A (r ¢ set (AQUQV@B) V (take 1 (AQUQVQB) = [r] A take 1 (AQVQUQB)
=1[r))
— (¢ (rev (AQUQV@B)) < ¢ (rev (AQVQUQB)) +— rank (rev U) <
rank (rev V)))

definition asi” :: (‘a list = real) = 'a = ('a list = real) = bool where
asi’” rank r ¢ = (VA U V B. distinct (AQUQV@QB) AU £[|AV A AU #

[r] AV #[r]
— (¢ (rev (AQUQ@QV@B)) < ¢ (rev (AQVQUQB)) +— rank (rev U) < rank

(rev V))))

3.4 Proofs

lemma c-out-symm: sel-symm [ = symmetric (c-out cf f)
by (simp add: symmetric-def list-sel-symm)

lemma c-nlj-symm: symmetric (c-nlj cf f)
by (simp add: symmetric-def)

lemma c-smj-symm: symmetric (c-smj cf f)
by (simp add: symmetric-def)

3.4.1 Equivalence Proofs

theorem c-nlj-IKKBZ: left-deep t = c-nlj ¢f ft = ¢-IKKBZ (A-. id) cf ft
proof (induction t)

case (Join I r)

then show ?case by(cases 1) auto
qed(simp)
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theorem c-hj-IKKBZ: left-deep t = c-hj cf ft = ¢-IKKBZ (M- -. 1.2) cf ft
proof (induction t)

case ind: (Join I 1)

then show Zcase by(cases r) auto
qed(simp)

lemma change-fun-order: y#rel
= (Ma b. if a=rel then g a b else (Ac d. if c=y then h ¢ d else f ¢ d) a b)
= (Aa b. if a=y then h a b else (Ac d. if c=rel then g c d else f ¢ d) a b)
by fastforce

lemma c-IKKBZ-fun-notelem:
assumes left-deep t
and distinct-relations t
and y ¢ relations t
and f' = (Aa b. if a=y then z b else f a b)
shows c-IKKBZ f' cf sf t = c-IKKBZ f cf sf t
using assms proof (induction t arbitrary: ' f z rule: left-deep.induct)
case (21 rel)
then have 0: rel # y by auto
have ¢-IKKBZ f' ¢f sf (Join | (Relation rel))
= card cf sf L = (f' rel (¢f rel)) + ¢-IKKBZ [’ cf sf | by simp

also have ... = card cf sf | x (f' rel (c¢f rel)) + ¢-IKKBZ f cf sf
using ldeep-trans distinct-trans-1 2 by fastforce
also have ... = card ¢f sf | x (f rel (¢f rel)) + c-IKKBZ f cf sf |
using 2.prems(3,4) by fastforce
also have ... = ¢-IKKBZ f cf sf (Join | (Relation rel)) using 2.prems(1) by
stmp
finally show ?Zcase .
qed (auto)

lemma distinct-c-IKKBZ-ldeep-s-prepend:
[distinct(ysQrevorder t); left-deep t]
= ¢-IKKBZ (Aa b. ldeep-s [ (ysQrevorder t) a = b) cf ft
= ¢-IKKBZ (Xa b. ldeep-s | (revorder t) a x b) c¢f ft
proof (induction t arbitrary: ys rule: left-deep.induct)
case (21 rr)
let ?ylr = ys Q revorder (Join | (Relation rr))
let ?lr = revorder (Join | (Relation rr))
let ?h = (Aa. (%) (Ideep-s f ?ylr a))
let ?h' = (Aa. (%) (ldeep-s f ?lr a))
let b = (A\a. (x) (ldeep-s [ (revorder 1) a))
have ?lr = [rr]Qrevorder | by simp
have 0: distinct ?lr using 2.prems(1) by simp
have ¢-IKKBZ ?h cf f (Join | (Relation rr))
= card cf f 1 x ((ldeep-s f 2ylr rr) * (cf rr)) + c-IKKBZ ?h cf f 1
by simp
also have ... = card cf f 1 * ((list-sel-auz’ f (revorder 1) rr) * (cf rr))
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+ ¢-IKKBZ ?h cf f |
using 2.prems(1) by (fastforce simp: distinct-ldeep-s-eq-aux)

also have ... = card ¢f f 1 x (?h' rr (¢f 1)) + ¢-IKKBZ ?h ¢f f 1 by simp
also have ... = card ¢f f 1« (?h' rr (¢f rr)) + ¢-IKKBZ ?h" ¢f f1

using 2.1H|of ysQ[rr]] 2.prems by simp
also have ... = card ¢f f1 x (¢h" rr (c¢f rr)) + c-IKKBZ ?h' ¢f f 1

using 2.1H|of [rr]] 2.prems(2) 0 by simp
finally show ?Zcase by simp
qed (auto)

lemma distinct-c-IKKBZ-ldeep-s-subtree:
assumes distinct-relations (Join | (Relation rel))
and left-deep (Join | (Relation rel))
shows ¢-IKKBZ (\a b. ldeep-s f (revorder (Join I (Relation rel))) a * b) cf f1
= ¢-IKKBZ (\a b. ldeep-s | (revorder 1) a * b) cf f1
proof —
have distinct (revorder (Join I (Relation rel)))
using assms(1) by (simp add: distinct-rels-alt inorder-eg-mset)
then have distinct ([rel|@revorder 1) by simp
then show ?thesis using distinct-c-IKKBZ-ldeep-s-prepend|of [rel] 1] assms(2)
by simp
qged

theorem c-out-IKKBZ:
[distinct-relations t; reasonable-cards cf f t; left-deep t]
= ¢-IKKBZ (M\a b. ldeep-s f (revorder t) a * b) cf ft = c-out cf f ¢
proof (induction t)
case ind: (Join I 1)
then show ?case
proof(cases )
case (Relation rel)
let ?s = (Aa b. ldeep-s [ (revorder (Join I r)) a x b)
let %s’ = (A\a b. ldeep-s f (revorder 1) a x b)
have c-IKKBZ ?s c¢f f1 = ¢c-IKKBZ ?s' cf f 1
using ind.prems distinct-c-IKKBZ-ldeep-s-subtree Relation by fast
then have 0: ¢-IKKBZ ?s c¢f fl = c-out cf f
using ind ldeep-trans distinct-trans-l reasonable-trans by metis
have c-IKKBZ ?s cf f (Join I 1) = card cf f 1 * (?s rel (cf rel)) + c-IKKBZ ?s
of fl
using Relation by simp
also have ... = card ¢f f 1 * ((list-sel-auz’ f (revorder 1) rel) x (cf rel))
+ ¢-IKKBZ ?s cf f 1
using Relation by simp
also have ... = card ¢f f 1 = ((list-sel f (revorder 1) [rel]) * (cf rel))
+ -IKKBZ %5 ¢f f |
by (simp add: list-sel-sing-auz’)
also have ... = card cf f1 x ((list-sel f (inorder 1) [rel]) = (cf rel))
+ ¢-IKKBZ %?s cf f 1
using mset-z-eq-list-sel-eq[of revorder 1] by (simp add: revorder-eg-rev-inorder)
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also have ... = card ¢f f (Join l 1) + ¢-IKKBZ %s' ¢f f1
using distinct-c-IKKBZ-ldeep-s-subtree ind.prems Relation by fastforce
also have ... = card ¢f f (Join I ) + c-out cf f1
using ind reasonable-trans distinct-trans-l ldeep-trans by metis
finally show ?thesis using Relation by simp
next
case (Join Ir rr)
then show ?thesis using ind by simp
qed
qed(simp)

theorem c-out-eq-c-list”:
[distinct-relations t; reasonable-cards cf f t; left-deep t]
= c-list' f ¢f (Azs x. (list-sel-auz’ f xs x) * cf x) (revorder t) = c-out ¢f ft
proof (induction t rule: left-deep.induct)
case (21 rr)
let ?h = Azs x. list-sel-aux’ fxs x * cf x
let 21l = revorder 1
have 1: distinct-relations | using 2.prems distinct-trans-l by simp
have 2: reasonable-cards cf f | using 2.prems reasonable-trans by blast
have 3: left-deep | using 2.prems by simp
have revorder (Join | (Relation rr)) = rr # 21l by simp
then have c-list’ f ¢f ?h (revorder (Join | (Relation rr)))
= Ideep-n f cf ?ll x ?h 2ll rr + c-list’ f cf 2h 2]
using joinTree-cases-ldeep| OF 3] by auto

also have ... = card cf f1 * ?h 2ll rr + c-list’ f cf ?h 21l
using ldeep-n-eq-card-subtree 2.prems by auto
also have ... = card ¢f f | x (list-sel-auz’ f 21l rr) * cf rr + c-list’ f cf ?h 21l
using mset-1-eq-list-sel-auz’-eq mset-rev by fastforce
also have ... = card ¢f f (Join I (Relation rr)) + c-list’ f ¢f ?h 211
unfolding card-join-alt by (simp add: list-sel-sing-aux’)
also have ... = card ¢f f (Join | (Relation 7)) + c-out ¢f fl using 2.I1H 1 2 3
by simp
finally show ?case by simp
qed (auto)

lemma rev-first-last-elem: (rev (z#z'#xs’)) = (r#rs) = © €# mset rs
using in-multiset-in-set last-in-set last-snoc rev-singleton-conv
by (metis List.last.simps List.list.discI List.list.inject List.rev.simps(2))

lemma distinct-first-uneg-last: distinct (z#x'#as’) = rev (x#x'#1s’) = r#rs
= r#z

using rev-first-last-elem mset-rev set-mset-mset

by (metis List.distinct.simps(2) count-eg-zero-iff distinct-count-atmost-1)

lemma distinct-create-eq-app:

[distinct (ysQus); x €# mset xs] = create-h-list h xs x = create-h-list h (ysQuxs)
T

by (induction ys) auto
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lemma c-list-single-h-list-not-elem-prepend:

z ¢ set ys

= c-list f ¢f (create-h-list h (ysQu#xs)) r [z] = c-list f ¢f (create-h-list h (z#xs))
r [z]

by (induction ys) auto

lemma c-list-single-f-list-not-elem-prepend:
z ¢ set ys
= c-list (ldeep-s [ (ysQu#xs)) cf h r [x] = c-list (Ideep-s [ (x#xs)) cf h r [z]
by (induction ys) auto

lemma c-list-prepend-h-disjunct:
assumes distinct (ysQuxs)
shows c-list f cf (create-h-list h (ysQuxs)) r xs = c-list f ¢f (create-h-list h zs) r
xs
using assms proof (induction zs arbitrary: ys)
case (Cons z zs)
then have 0: distinct (ys @ [z] @ zs) by simp
then have 1: distinct ([z] @ zs) by simp
let ?h = create-h-list h (ys Q = # xs)
let ?h’ = create-h-list h xs
let ?h"" = create-h-list h (x#xs)
have 2: z ¢ set ys using Cons.prems by simp
show ?Zcase
proof(cases zs=|])
case True
then show ?thesis
using Cons distinct-create-eq-app in-multiset-in-set
by (metis CostFunctions.c-list.simps(2) List.list.set-intros(1))
next
case Fulse
then obtain z’ zs’ where z'-def [simp]: xs = z'#xs’ using List.list.exhaust-sel
by auto
then have c-list f ¢f ?h r (z # xs)
= c-list f ¢f ?h r xs + ldeep-T f cf xs * c-list f ¢f ?h r [z] by simp
also have ... = c-list f ¢f ?h' r xs + ldeep-T f cf xs x c-list f ¢f ?h r [x]
using Cons.IH|[of ysQ[z]] 0 by simp
also have ... = c-list f ¢f ?h"" r xs + ldeep-T f cf xs x c-list f ¢f ?h r [z]
using Cons.IH[of [z]] 1 by simp
also have ... = c-list f ¢f 20" r xs + ldeep-T f cf xs * c-list f ¢f ?h"" r [x]
using c-list-single-h-list-not-elem-prepend 2 by metis
finally show ?thesis by simp
qed
qed(simp)

lemma c-list-prepend-f-disjunct:

assumes distinct (ysQzxs)
shows c-list (ldeep-s f (ysQxs)) cf h r xs = c-list (ldeep-s f xs) c¢f h r xs
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using assms proof (induction zs arbitrary: ys)
case (Cons z zs)
then have 0: distinct(ys Q [z] @ xs) by simp
then have [: distinct ([x] @ xs) by simp
let ?f = ldeep-s f (ys Q@ x # xs)
let 2f' = ldeep-s f xs
let 2f" = ldeep-s f (z#xs)
have 2: z ¢ set ys using Cons.prems by simp
show ?Zcase
proof(cases zs=|])
case Fulse
then obtain z’ zs’ where z'-def [simp]: xs = z'#xs’ using List.list.exhaust-sel
by auto
have Ideep-T ?f cf vs = ldeep-T ?f' cf xs
using distinct-ldeep-T-prepend|of ysQlz] xs f ¢f] Cons.prems by simp
then have 3: ldeep-T ?f cf zs = ldeep-T ?f" cf xs
using distinct-ldeep-T-prepend|of [x] xs f ¢f] Cons.prems 1 by simp
have c-list ?f ¢f h v (x # zs)
= c-list ?f ¢f h v xs + ldeep-T ?f cf xs x c-list 2f cf h r [2]

by simp

also have ... = c-list ?f' ¢f h r xs + ldeep-T ?f"" cf xs * c-list ?f cf h r [z]
using Cons.IH[of ysQ[z]] 0 3 by simp

also have ... = c-list 2f"" ¢f h r s + ldeep-T 2f" cf xs = c-list ?f ¢f h r [2]
using Cons.IH[of [z]] 1 by simp

also have ... = c-list ?f" ¢f h r xs + ldeep-T ?f"" cf xs * c-list 2f" cf h r [x]

using c-list-single-f-list-not-elem-prepend 2 by metis
finally show ?thesis by simp
qed(simp)
qed(simp)

lemma c-list’-eq-c-list:
assumes distinct s
and revxs = r # rs
shows c-list (ldeep-s f xs) cf (create-h-list h xs) r zs = c-list' f ¢f h xs
using assms proof (induction s arbitrary: rs)
case (Cons z zs)
then show ?case
proof (cases s=[])
case Fulse
then obtain z’ xs’ where z’-def [simp]: s = z'#xs’ using List.list.exhaust-sel
by auto
then have 0: x # r using distinct-first-uneg-last Cons by fast
have 1: distinct xs using Cons.prems(1) by simp
have Jrs’. revzs = r # rs’
using Cons.prems Nil-is-append-conv butlast-append
by (metis List.append.right-neutral List.butlast.simps(2) List.list.distinct(1)
List.rev.simps(2) <\thesis. (Nz' xzs’. xs = ' # xs’ = thesis) = thesis))
then obtain rs’ where 2: rev s = r # rs’ by blast
let ?h = create-h-list h (x # x' # xs’)
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let ?h' = create-h-list h (z' # xs’)

let ?f = ldeep-s f (x'#xs")

let ?f' = ldeep-s [ (z#tz'#xs’)

have c-list (ldeep-s f (x#xs)) cf (create-h-list h (x # xs)) r (x # xs)
= c-list ?f" cf ?hr (z # x' # xs')

by simp
also have ... = c-list ?f" ¢f h r (z' # xs’)
+ ldeep-T ?f' cf (z' # xs8’) x c-list 2f' cf ?h r |x]
by simp
also have ... = c-list 2f' cf ?hr (x' # xs’) + ldeep-T 2f' cf (' # xs’) = h (2’
# xs’) x
using 0 by simp
also have ... = c-list 2f' ¢f ?h r (z' # zs’) + ldeep-T ?f cf (x' # zs’) x h (2’
# xs’) x
using distinct-ldeep-T-prepend|of [z] x'#xs’| Cons.prems(1) by simp
also have ... = c-list ?f' ¢f ?h r (' # xs’) + ldeep-n f cf (x' # xs’) = h (2’
# xs’) x
using ldeep-T-eq-ldeep-n 1 by fastforce
also have ... = c-list 9f ¢f ?h r (z' # xzs’) + ldeep-n f cf (z' # xs') * h (z' #
xs) x
using c-list-prepend-f-disjunct]of [z] x'#xs’] Cons.prems(1) by simp
also have ... = c-list 7f ¢f ?h' r (x' # xs’) + ldeep-n f cf (z' # xs") * h (¢' #
xs')
using c-list-prepend-h-disjunct|of [z] z'#xs’] Cons.prems by simp
also have ... = c-list’ f¢f h (z' # xs’) + ldeep-n f cf (x' # xs’) * h (¢’ # zs’)
x
using Cons.IH 1 2 by simp
also have ... = c-list’ f ¢f h (z#z’ # zs”)
using Cons.prems z'-def 1 2 by simp
finally show ?thesis by simp
qed(simp)
qed(simp)

lemma clist-eq-if-cf-eq:
V. set © C set s — Ideep-T sf c¢f' x = ldeep-T sf cf =
= c-list sf ¢f " h rxs = c-list sf ¢f h r s
by (induction sf cf’ h r xs rule: c-list.induct) (auto simp: subset-insertI2)

lemma Ideep-s-h-eq-list-sel-auz’-h:
[distinct xs; ysQu#zs = 8]
= (Ma. ldeep-s fxs a * c¢f a) x = (Aws x. (list-sel-auz’ fas z) * ¢f x) 25
by (fastforce simp: distinct-ldeep-s-eq-aux)

corollary ldeep-s-h-eq-list-sel-auz’-h’:
[distinct-relations t; ysQzftzs = revorder t]
= (Aa. ldeep-s [ (revorder t) a * cf a) x = (Axzs x. (list-sel-auz’ f xs z) * cf
x) 28
by (fastforce simp: distinct-rels-alt ldeep-s-h-eq-list-sel-aux’-h)
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lemma create-h-list-distinct-simp: [distinct xs; ysQur#zs = xs] = create-h-list h
zsc =hzszx
by (induction zs arbitrary: ys) (force simp: append-eq-Cons-conv)+

lemma ldeep-s-h-eq-create-h-list:
[distinct xs; ysQu#Hzs = xs]
= (Aa. ldeep-s f xs a * cf a) © = create-h-list (\zs x. (list-sel-aux’ f zs x) * cf
x) xS T
by (simp add: distinct-relations-def create-h-list-distinct-simp ldeep-s-h-eq-list-sel-aux’-h)

lemma Ideep-s-h-eq-create-h-list’:
[distinct-relations t; ysQx#zs = revorder t]
= (A\a. ldeep-s f (revorder t) a * cf a)
= create-h-list (A\xs x. (list-sel-auz’ f zs x) * cf z) (revorder t) x
by (simp add: distinct-rels-alt ldeep-s-h-eq-create-h-list)

corollary ldeep-s-h-eq-create-h-list'":
distinct-relations t => Y ys ¢ zs. ysQux#zs = revorder t
— (Aa. ldeep-s f (revorder t) a x cf a) «
= create-h-list (A\ws x. (list-sel-auz’ f xs z) = cf z) (revorder t) x
using ldeep-s-h-eq-create-h-list’ by fast

lemma Ideep-s-h-eq-create-h-list’"”:
[distinct-relations t; x € relations t]
= (\a. ldeep-s f (revorder t) a * cf a) x
= create-h-list (Axs x. (list-sel-auz’ f xs x) = cf z) (revorder t) x
using ldeep-s-eq-list-sel-auz’-split revorder-eq-set
by (fastforce simp add: distinct-rels-alt ldeep-s-h-eq-create-h-list)

lemma cons2-if-2elems: [z € set xs; y € set xs; x # y] = Iy zz2s. as =y # z

# 2zs

using last.simps list.set-cases neq-Nil-conv by metis

theorem c-IKKBZ-eq-c-list:
fixes ¢
defines s = revorder t
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
and Vz € relations t. h1 z (¢fz) = h2 x
shows ¢-IKKBZ h1 cf f t = c-list (ldeep-s f xs) cf h2 (first-node t) zs
using assms proof (induction t arbitrary: zs rule: left-deep.induct)
case (21r)
let ?r = first-node (Join | (Relation 1))
let ?zs = revorder (Join | (Relation r))
let ?ys = revorder |
let ?sf = ldeep-s f ?xs
have hi1-h2-l1: Vz € relations I. h1 x (c¢f x) = h2 z using 2.prems(4) by simp
have ¢-IKKBZ hi cf f (Join | (Relation r)) = card cf f1 * (h1 r (¢f r)) +
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c-IKKBZ hi cf f1
by simp
then have ¢-IKKBZ hi cf f (Join | (Relation 1))
= card c¢f f1 * (h1 v (cfr)) + c-list (Ideep-s f Pys) cf h2 2r 2ys
using 2.hyps 2.prems(2—38) distinct-trans-l[OF 2.prems(1)] h1-h2-1 by force
then have ind: ¢-IKKBZ hi cf f (Join | (Relation r))
= card c¢f flx (hl T (cfr)) + c-list 2sf cf h2 ?r ?ys
using c-list-prepend-f-disjunct 2.prems(1) unfolding distinct-rels-alt
by (metis revorder.simps(2))
have 0: ?r € set ?zs using first-node-last-revorder|of l] by force
moreover have 1: r € set ?zs by simp
moreover have distinct ?zs using 2.prems(1) distinct-rels-alt by force
ultimately have ?r # r using first-node-last-revorder|of [| by auto
then obtain z zs where z-def: %zs = r # z # zs using cons2-if-2elems[OF 0
1] by auto
then have c-list ?sf cf h2 r ?xs
= c-list ?sf ¢f h2 2r 2ys + ldeep-T ?sf cf ?ys x c-list ?sf cf h2 ?r [r]
by simp

also have ... = c-list ?sf ¢f h2 ?r %ys + ldeep-T ?sf cf ?ys x (h1 r (cf 1))
using «?r # r 2.prems(4) by fastforce
also have ... = c-list ?sf ¢f h2 ?r %ys + card c¢f f1 % (h1 1 (cf 1))

using 2.prems(1,3) ldeep-T-eq-card distinct-rels-alt distinct-ldeep-T-prepend
by (metis revorder.simps(2) ldeep-trans distinct-trans-1)
finally show ?case using ind by simp
qed(auto)

lemma c-IKKBZ-eq-c-list-cout:
fixes fcf t
defines s = revorder t
defines h = (\a. ldeep-s fzs a % cf a)
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
shows ¢-IKKBZ (Aa b. ldeep-s f xs a = b) cf ft = c-list (ldeep-s f xs) cf h
(first-node t) zs
using assms c-IKKBZ-eq-c-list by fast

lemma c-IKKBZ-eq-c-list-cout-hlist:
fixes fcf t
defines h = (\zs z. (list-sel-auz’ f xs ) * cf x)
defines s = revorder t
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
shows ¢-IKKBZ (Aa b. ldeep-s fxs a x b) c¢f f
= c-list (ldeep-s f xs) cf (create-h-list h zs) (first-node t) xs
using assms c-IKKBZ-eq-c-list ldeep-s-h-eq-create-h-list""'|OF assms(3)] by fast-
force
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theorem c-out-eq-c-list:
fixes fcf t
defines s = revorder t
defines h = (\a. ldeep-s f xs a * cf a)
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
shows c-list (ldeep-s f xs) cf h (first-node t) xs = c-out cf f
using c¢-IKKBZ-eq-c-list-cout c-out-IKKBZ assms by fastforce

theorem c-out-eq-c-list-hlist:

fixes fcf t
defines h = (\zs z. (list-sel-auz’ f xs z) * cf )
defines s = revorder t
assumes distinct-relations t

and reasonable-cards cf ft

and left-deep t

shows c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs = c-out cf ft

using c¢-IKKBZ-eq-c-list-cout-hlist c-out-IKKBZ assms by fastforce

lemma c-out-eq-c-list-altproof:
fixes fcf t
defines h = (\xs z. (list-sel-auz’ f xs z) * cf x)
defines zs = revorder t
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
shows c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs = c-out cf ft
proof —
obtain 7s where rs-def[simp]: rev (revorder t) = (first-node t) # rs
unfolding revorder-eq-rev-inorder using first-node-first-inorder by auto
have 0: distinct (revorder t) using assms(3) distinct-rels-alt by auto
then have c-list (Ideep-s f xs) cf (create-h-list h zs) (first-node t) xs
= c-list’ f ¢f h (revorder t)
using rs-def c-list’-eq-c-list zs-def by fast
then show ?thesis using assms c-out-eq-c-list’ by auto
qged

Similarly, we can derive the equivalence for other cost functions like c-nlj
and c-hj by using the equivalence of c-IKKBZ and c-list.

lemma c-IKKBZ-eq-c-list-hj:
fixes fcf t
defines zs = revorder t
assumes distinct-relations t
and reasonable-cards cf ft
and left-deep t
shows ¢-IKKBZ (A- -. 1.2) cf ft = c-list (ldeep-s f xs) cf (A-. 1.2) (first-node
t) xs
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using c¢-IKKBZ-eq-c-list assms by fast

corollary c-hj-eq-c-list:

fixes fcft
defines zs = revorder t
assumes distinct-relations t

and reasonable-cards cf f t

and left-deep t

shows c-list (ldeep-s f xs) ¢f (A-. 1.2) (first-node t) xs = c-hj cf f 1

using c¢-IKKBZ-eq-c-list-hj c-hj-IKKBZ assms by fastforce

lemma c-IKKBZ-eq-c-list-nlj:

fixes fcf t
defines s = revorder t
assumes distinct-relations t

and reasonable-cards cf ft

and left-deep t

shows ¢-IKKBZ (\-. id) cf ft = c-list (Ideep-s f xs) cf cf (first-node t) s

using c¢-IKKBZ-eq-c-list assms by fastforce

corollary c-nlj-eq-c-list:

fixes fcft
defines zs = revorder t
assumes distinct-relations t

and reasonable-cards cf ft

and left-deep t

shows c-list (ldeep-s f xs) cf cf (first-node t) xs = c-nlj cf f ¢

using c-IKKBZ-eq-c-list-nlj c-nlj-IKKBZ assms by fastforce

lemma c-list-app:
c-list f ¢f h r (ysQus) = c-list f cf h r s + ldeep-T f cf xs = c-list f ¢f h r ys
proof (induction ys)
case (Cons y ys)
then show ?case
proof(cases zs=[))
case True
then show ?thesis using ldeep-T-empty by auto
next
case Fulse
then obtain z’ xs’ where z’-def [simp]: s = z'#xs’ using List.list.exhaust-sel
by blast
then have c-list f ¢f h r (y#ys Q xs)
= c-list f cf h r (ysQzxs) + ldeep-T f cf (ysQuxs) x c-list f cf h r [y]
by (metis CostFunctions.c-list.simps(8) Nil-is-append-conv neg-Nil-conv)
also have ... = c-list f c¢f h r xs + ldeep-T f cf xs * c-list f cf h r ys
+ ldeep-T f cf (ysQus) * c-list f ¢f h r [y]
using Cons.IH by simp
also have ... = c-list f cf h r xs + ldeep-T f cf xs x c-list f ¢f h r ys
+ ldeep-T f cf ys = ldeep-T f cf xs * c-list f ¢f h r [y]
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using Ildeep-T-app by auto

also have ... = c-list f ¢f h v xs + ldeep-T f cf xs x (c-list f ¢f h r ys
+ ldeep-T f cf ys x c-list f cf h r [y])
by argo
also have ... = c-list f ¢f h r xs + ldeep-T f cf xs = (c-list f cf h r (y # ys))

using False neq-Nil-conv List.append.left-neutral
by (metis CostFunctions.c-list.simps(3) calculation)
finally show ?thesis by simp
qed
qged(simp)

lemma create-h-list-pos:
[sel-reasonable sf; ¥z € set xs. ¢f z > 0]
= (create-h-list (Azs x. (list-sel-auz’ sf xs x) * ¢f ) xs) © > 0
by (induction xs) (auto simp: list-sel-auz’-reasonable)

lemma c-list-not-neg:
assumes sel-reasonable sf
and Vz € set ys. ¢fz > 0
and h = (\a. ldeep-s sf zs a * cf a)
shows c-list (ldeep-s sf xs) cfh rys > 0
using assms proof (induction ys arbitrary: xs)
case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?Zcase
proof(cases ys)
case Nil
then show ?thesis using ind.prems by (simp add: ldeep-s-pos order-less-imp-le)
next
case (Cons y' ys’)
show ?thesis
proof(cases y=r)
case True
then show ?thesis using Cons ind by simp
next
case Fulse
have c-list ?sf cf h r (y # ys) = c-list ?sf c¢f h r ys + ldeep-T ?sf c¢f ys * h y
using Cons Fulse by simp
then have c-list ?sf c¢f h r (y # ys) > ldeep-T ?sf ¢f ys x h y
using ind by simp
moreover have ldeep-T ?sf cf ys x hy > 0
using ind.prems by (simp add: ldeep-T-pos ldeep-s-pos)
ultimately show ?thesis by simp
qed
qed
qed(simp)

lemma c-list-not-neg-hlist:
assumes sel-reasonable sf
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and Vz € set zs. ¢cfz > 0
and Vz € set ys. ¢fz > 0
and h = create-h-list (Axs z. (list-sel-auz’ sf xs ©) * cf x) xs
shows c-list (ldeep-s sf xs) ¢cfh rys > 0
using assms proof (induction ys arbitrary: xs)
case ind: (Cons y ys)
let ?sf = Ildeep-s sf xs
show ?Zcase
proof (cases ys)
case Nil
then show ?thesis
using ind.prems by(cases y=r)(auto simp: create-h-list-pos less-eq-real-def)
next
case (Cons y’ ys')
show ?thesis
proof(cases y=r)
case True
then show ?thesis using Cons ind by simp
next
case Fulse
have c-list ?sf cf h r (y # ys) = c-list ?sf c¢f h r ys + ldeep-T ?sf c¢f ys * h y
using Cons Fulse by simp
then have c-list ?sf c¢f h r (y # ys) > ldeep-T ?sf c¢f ys x h y
using ind by simp
moreover have ldeep-T ?sf cf ys x hy > 0
using create-h-list-pos|of sf xs cf y] ind.prems by (simp add: ldeep-T-pos)
ultimately show ?thesis by simp
qed
qed
qed(simp)

lemma c-list-pos-if-h-pos:
[sel-reasonable sf; Vx € set xs. cfx > 0;Vx € set xs. hx > 0; r ¢ set zs; 15 #
1]
= c-list (Ideep-s sf ys) ¢f hras > 0
proof (induction ldeep-s sf ys cf h r xs rule: c-list.induct)
case (3 ¢fhryxuxs)
have ldeep-T (ldeep-s sf ys) cf (z#xs) > 0 using ldeep-T-pos|of x#xs] 3.prems(1,2)
by simp
then have ldeep-T (ldeep-s sf ys) cf (xftxs) = c-list (Ideep-s sf ys) ¢fhr [y] > 0
using 3 by auto
moreover have c-list (Ideep-s sf ys) c¢f h r (x#txs) > 0 using 3 by auto
ultimately show ?case by simp
qed(auto)

lemma c-list-pos-r-not-elem:
assumes sel-reasonable sf
and Vz € set ys. cfz > 0

and ys # |
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and r ¢ set ys
and h = (\a. ldeep-s sf s a * cf a)
shows c-list (ldeep-s sf xs) c¢f h rys > 0
using c-list-pos-if-h-pos ldeep-s-pos assms by fastforce

lemma c-list-pos-r-not-elem-hlist:
assumes sel-reasonable sf
and Vz € setzs. ¢fz > 0
and Vz € set ys. ¢fz > 0
and ys # ]
and r ¢ set ys
and h = create-h-list (A\zs x. (list-sel-auz’ sf xs x) * cf x) xs
shows c-list (ldeep-s sf xs) c¢f h rys > 0
using c-list-pos-if-h-pos create-h-list-pos|OF assms(1)] assms by fastforce

lemma c-list-pos-not-root:
assumes sel-reasonable sf
and Vz € set ys. ¢cfx > 0
and ys # ]
and ys # [r]
and distinct ys
and h = (\a. ldeep-s sf s a * cf a)
shows c-list (ldeep-s sf xs) c¢f h rys > 0
using assms proof (induction ys arbitrary: xs)
case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?Zcase
proof(cases ys)
case Nil
then have c-list ?sf ¢f h r (y # ys) = h y using ind.prems(4) by simp
then show ?thesis using ind.prems(1,2,6) by (simp add: ldeep-s-pos)
next
case (Cons y’ ys')
show ?thesis
proof (cases y=r)
case True
then have 0: r ¢ set ys using ind.prems(5) by simp
have c-list ?sf c¢f h v (y # ys) = c-list ?sf ¢f h r ys
using Cons True by simp
then show ?%thesis using ind.prems(1,2,4,6) 0 True by (fastforce intro:
c-list-pos-r-not-elem)
next
case Fulse
have c-list ?sf c¢f h v (y # ys) = c-list 2sf ¢f h r ys + ldeep-T ?sf ¢f ys x h y
using Cons False by simp
then have c-list ?sf cf h r (y # ys) > ldeep-T ?sf ¢f ys x h y
using c-list-not-neg ind.prems(1,2,3,6) by fastforce
moreover have ldeep-T ?sf ¢f ys x hy > 0
using ind.prems(1,2,6) by (simp add: ldeep-T-pos ldeep-s-pos)
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ultimately show ¢thesis by simp
qed
qed
qed(simp)

lemma c-list-pos-not-root-hlist:
assumes sel-reasonable sf
and Vz € setzs. ¢fz > 0
and Vz € set ys. ¢fz > 0
and ys # ]
and ys # [r]
and distinct ys
and h = create-h-list (Axs z. (list-sel-auz’ sf xs ©) * ¢f x) zs
shows c-list (ldeep-s sf xs) c¢f h rys > 0
using assms proof (induction ys arbitrary: xs)
case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?Zcase
proof(cases ys)
case Nil
then have c-list ?sf ¢f h r (y # ys) = h y using ind.prems(5) by simp
then show %thesis using create-h-list-pos ind.prems(1,2,7) by fastforce
next
case (Cons y’ ys’)
show ?thesis
proof (cases y=r)
case True
then have 0: r ¢ set ys using ind.prems(6) by simp
have c-list ?sf c¢f h v (y # ys) = c-list ?sf ¢f h r ys
using Cons True by simp
then show ?Zthesis
using c-list-pos-r-not-elem-hlist[of sf xs cf ys r h] 0 ind.prems(1,2,3,7) Cons
by auto
next
case Fulse
have c-list ?sf cf h r (y # ys) = c-list ?sf ¢f h r ys + ldeep-T ?sf c¢f ys « h y
using Cons Fualse by simp
then have c-list ?sf ¢f h r (y # ys) > ldeep-T ?sf c¢f ys x h y
using c-list-not-neg-hlist ind.prems(1,2,3,7) by fastforce
moreover have ldeep-T ?sf cf ys x hy > 0
using ind.prems(1,2,3,7) by (simp add: ldeep-T-pos create-h-list-pos)
ultimately show ?thesis by simp
qed
qed
qed(simp)

lemma c-list-split-four:

assumes 1 = ldeep-T f cf
and C = c-list fcfhr
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shows C (rev (AQ U @ V @ B)) = C (rev A) + T (rev A) x C (rev U)
+ T (rev A) « T (rev U) x C (rev V)
+ T (revA) « T (rev U) = T (rev V) x C (rev B)
proof —
let 2T = ldeep-T f cf
let ¢C = c-list fcfhr
have ?C (rev (A Q U Q V @ B))
= 2C (rev A) + ?T (rev A) x 2C (rev (U @ V @ B))
using c-list-app[where ys=rev (UQV@B)] by simp
also have ... = 2C (rev A) + ?T (rev A) = (2C (rev U)
+ ¢T (rev U) x 2C (rev (V@B)))
using c-list-app|where ys=rev (VQB)] by simp

also have ... = ?2C (rev A) + ?T (rev A) x ?C (rev U)
+ 2T (rev A) = 2T (rev U) % 2C (rev (V@B))
by argo
also have ... = 2C (rev A) + ?T (rev A) x 2C (rev U)

+ 2T (rev A) * 2T (rev U) * (2C (rev V)
+ T (rev V) x 2C (rev B))
using c-list-app by force
finally have 0: ?C (rev (A Q U @ V @ B))
= 2C (rev A) + ?T (rev A) % 2C (rev U)
+ 2T (rev A) * 2T (rev U) * 2C (rev V)
+ T (rev A) x 2T (rev U) x ¢T (rev V) * 2C (rev B)
by argo
then show “thesis using assms by simp
qged

lemma c-list-A-pos-asi:
assumes c-list f cf b r (rev U) > 0
and c-list fcfhr (rev V) > 0
and ldeep-T f cf (rev A) > 0
shows c-list fcfhr (rev (A@Q U @V QB)) <clistfcfhr (rev(AQ TV Q@
U @ B))
> ((Ideep-T fcf (rev U) — 1) / c-list fcf b r (rev U)
< (ldeep-T f cf (rev V) — 1) / c-list fcf hr (rev V)
proof —
let ?T = ldeep-T f cf
let 9C = c-listfcfhr
let Zrank = (M. (?T1— 1)/ ?2C1)
have 0: ?C (rev (AQ U @ V @Q B))
= 2C (rev A) + 2T (rev A) * 2C (rev U)
+ 2T (rev A) * 2T (rev U) * 2C (rev V)
+ 2T (rev A) * 2T (rev U) * 2T (rev V) * 2C (rev B)
using c-list-split-four by fastforce
have ?C (rev (A Q V @ U @ B))
= 2C (rev A) + ?T (rev A) % 2C (rev V)
+ 2T (rev A) * 2T (rev V) x 2C (rev U)
+ 2T (rev A) * 2T (rev V) * 2T (rev U) * 2C (rev B)
using c-list-split-four by fastforce
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then have ?C (rev (AQUQV@B)) — ?C (rev (AQVQUQRB))
= 2T (rev A) % (2C (rev V) % (2T (rev U) — 1) — 2C (rev U) % (2T (rev

V) - 1))
using 0 by argo
also have ... = 2T (rev A) x

(2C (rev V) % (T (rev U) — 1) % (2C (rev U) / 2C (rev U))
— 2C (rev U) % (9T (rev V) — 1) x (¢C (rev V) / 2C (rev V)))
using assms
by (metis Groups.monoid-mult-class.mult.right-neutral divide-self-if less-numeral-extra(3))
also have ... = ?T (rev A) * ?C (rev U) % 2C (rev V) * (?rank (rev U) —
2rank (rev V))
by argo
finally have 1: ?C (rev (AQUQV@B)) — ?C (rev (AQVQUQB))
= ?T (rev A) = 2C (rev U) * 2C (rev V) x (?rank (rev U) — %rank
(rev V).
then show ?thesis
proof(cases ?C (rev (AQUQV@B)) < ?2C (rev (AQVQUQB)))
case True
then show %thesis by (smt (verit) assms 1 mult-pos-pos)
next
case Fulse
then show %thesis by (smt (23) 1 assms mult-pos-pos zero-less-mult-pos)
qed
qed

lemma c-list-asi-auz:
assumes sel-reasonable sf
and Vz. ¢cfx > 0
and ¢ = c-list fcfhr
and f = (ldeep-s sf xs)
and Vys. (ys £ [ Ar ¢ setys) — cys > 0
and distinct (AQUQV@B)
and U # ||
and V # [|
and rank = (Al (Ideep-T fcfl — 1)/ cl)
and r ¢ set (AQUQV@B) V (take 1 (AQUQVQB) = [r] A take 1 (AQVQUQB)
=[r])
shows (¢ (rev (AQUQ@QV@B)) < ¢ (rev (AQVQUQB)) «— rank (rev U) <
rank (rev V))
proof (cases r ¢ set (AQUQV@RB))
case True
have 0: ldeep-T f cf (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r ¢ set (rev U) using True by simp
then have 1: c-list fcf hr (rev U) > 0
using c-list-pos-r-not-elem assms(1—5,7) by fastforce
have r ¢ set (rev V) using True by simp
then have c-list f ¢f hr (rev V) > 0
using c-list-pos-r-not-elem assms(1—5,8) by fastforce
then show %thesis using c-list-A-pos-asi 0 1 assms(3,9) by fast
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next
case Fulse
have 0: ldeep-T f cf (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r-first: take 1 (AQUQV@QB) = [r] A take 1 (AQVQUQB) = [r]
using assms(10) False by blast
then have take 1 A = [r] using assms(6—38) distinct-change-order-first-elem by
metis
then have r € set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1: r ¢ set (UQV@QB) using assms(6) by auto
then have r ¢ set (rev U) by simp
then have 2: c-list fc¢fh r (rev U) > 0
using c-list-pos-r-not-elem assms(1—5,7) by fastforce
have r ¢ set (rev V) using I by simp
then have c-list fcfhr (rev V) > 0
using c-list-pos-r-not-elem assms(1—5,8) by fastforce
then show ?%thesis using c-list-A-pos-asi 0 2 assms(3,9) by fast
qed

lemma c-list-pos-asi:
fixes sf ¢f h r xs
defines f = ldeep-s sf s
defines rank = (M. (Ideep-T fcf 1l — 1) / c-list fcf h rl)
assumes sel-reasonable sf
and Vz. cfz > 0
and Vys. (ys £ [] A r & set ys) — c-list fefhrys > 0
shows asi rank r (c-list f ¢f h r)
unfolding asi-def using c-list-asi-auz|OF assms(3,4)] assms(1,2,5) by simp

theorem c-list-asi:
fixes sf ¢f h r xs
defines f = ldeep-s sf s
defines rank = (M. (Ideep-T fcf 1 — 1) / c-list fc¢f h r )
assumes sel-reasonable sf
and Vz. cfz > 0
and Vz. hz > 0
shows asi rank r (c-list f ¢f h r)
using c-list-pos-asi assms c-list-pos-if-h-pos|OF assms(3)] by fastforce

corollary c-out-asi:
fixes sf cf r xs
defines f = ldeep-s sf s
defines h = (\a. ldeep-s sf xs a * cf a)
defines rank = (M. (Ideep-T fcf 1l — 1) / c-list fc¢f h r )
assumes sel-reasonable sf
and Vz. cfz > 0
shows asi rank v (c-list f c¢f h 1)
using c-list-asi ldeep-s-pos assms by fastforce
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lemma c-out-asi-auz:
assumes sel-reasonable sf
and Vz. ¢cfz > 0
and ¢ = c-list fcfhr
and [ = (ldeep-s sf xs)
and h = (\a. ldeep-s sf zs a * cf a)
and distinct (AQUQV@QB)
and U # |]
and V # [|
and rank = (. (ldeep-T fcfl — 1)/ cl)
and r ¢ set (AQUQV@B) V (take 1 (AQUQVQB) = [r] A take 1 (AQVQUQB)
= [r])
shows (¢ (rev (AQUQV@B)) < ¢ (rev (AQVQU@B)) <— rank (rev U) <
rank (rev V))
proof (cases r ¢ set (AQUQV@BRB))
case True
have 0: ldeep-T f ¢f (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r ¢ set (rev U) using True by simp
then have 1: c-list fcf hr (rev U) > 0
using c-list-pos-r-not-elem assms(1,2,4,5,7) by fastforce
have r ¢ set (rev V) using True by simp
then have c-list fcf hr (rev V) > 0
using c-list-pos-r-not-elem assms(1,2,4,5,8) by fastforce
then show %thesis using c-list-A-pos-asi 0 1 assms(3,9) by fast
next
case Fulse
have 0: ldeep-T f ¢f (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r-first: take 1 (AQUQV@QB) = [r] A take 1 (AQVQUQB) = [r]
using assms(10) False by blast
then have take 1 A = [r] using assms(6—38) distinct-change-order-first-elem by
metis
then have r € set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1: r ¢ set (UQV@QB) using assms(6) by auto
then have r ¢ set (rev U) by simp
then have 2: c-list f cf h r (rev U) > 0
using c-list-pos-r-not-elem assms(1,2,4,5,7) by fastforce
have r ¢ set (rev V) using I by simp
then have c-list fcf hr (rev V) > 0
using c-list-pos-r-not-elem assms(1,2,4,5,8) by fastforce
then show %thesis using c-list-A-pos-asi 0 2 assms(3,9) by fast
qed

lemma c-out-asi-aux-hlist:
assumes sel-reasonable sf
and Vz. cfz > 0
and ¢ = c-list fcfhr
and f = (ldeep-s sf xs)
and h = create-h-list (Axs z. (list-sel-auz’ sf xs ©) * cf x) xs
and distinct (AQUQVQB)
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and U # ||
and V # [|
and rank = (Al. (Ideep-T fcfl — 1)/ cl)
and r ¢ set (AQUQV@QB) V (take 1 (AQUQVQB) = [r] A take 1 (AQVQUQB)
=[r])
shows (¢ (rev (AQUQ@QV@B)) < ¢ (rev (AQVQUQB)) «— rank (rev U) <
rank (rev V))
proof (cases r ¢ set (AQUQV@RB))
case True
have 0: ldeep-T f cf (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r ¢ set (rev U) using True by simp
then have 1: c-list fcf hr (rev U) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,7) by fastforce
have r ¢ set (rev V) using True by simp
then have c-list f ¢f h r (rev V) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,8) by fastforce
then show %thesis using c-list-A-pos-asi 0 1 assms(3,9) by fast
next
case Fulse
have 0: ldeep-T f cf (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r-first: take 1 (AQUQV@QB) = [r] A take 1 (AQVQUQB) = [r]
using assms(10) False by blast
then have take 1 A = [r] using assms(6—38) distinct-change-order-first-elem by
metis
then have r € set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1: r ¢ set (UQV@QB) using assms(6) by auto
then have r ¢ set (rev U) by simp
then have 2: c-list f ¢f h r (rev U) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,7) by fastforce
have r ¢ set (rev V) using 1 by simp
then have c-list f ¢f hr (rev V) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,8) by fastforce
then show %thesis using c-list-A-pos-asi 0 2 assms(3,9) by fast
qed

theorem c-out-asi-altproof:
assumes sel-reasonable sf
and Vz. cfx > 0
and ¢ = c-list fcfhr
and [ = (ldeep-s sf xs)
and h = (Ma. ldeep-s sf zs a * cf a)
shows asi (Al. (Ideep-T fcfl — 1)/ cl) r (c-list fef h 1)
unfolding asi-def using c-out-asi-auz[OF assms] assms(3) by blast

theorem c-out-asi-hlist:
assumes sel-reasonable sf
and Vz. cfz > 0
and ¢ = c-list fcfhr
and f = (ldeep-s sf xs)
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and h = create-h-list (Aws z. (list-sel-auz’ sf xs ©) * cf x) xs
shows asi (Al. (ldeep-T fcfl — 1)/ cl) r (clist fcfhr)
unfolding asi-def using c-out-asi-auz-hlist|OF assms| assms(3) by blast

lemma asi-if-asi”: asi rank r ¢ = asi’ r c
unfolding asi’-def asi-def by auto

corollary c-out-asi”:
assumes sel-reasonable sf
and Vz. cfz > 0
and [ = (ldeep-s sf s)
and h = (\a. ldeep-s sf s a * cf a)
shows asi’ r (c-list f ¢f h 1)
using asi-if-asi’ c-out-asi|OF assms(1,2)] assms(3,4) by fast

corollary c-out-asi’-hlist:
assumes sel-reasonable sf
and Vz. cfz > 0
and [ = (ldeep-s sf xs)
and h = create-h-list (Axs z. (list-sel-auz’ sf xs ©) * cf x) xs
shows asi’ r (c-list f cf h r)
using asi-if-asi’ c-out-asi-hlist|OF assms(1,2)] assms(3,4) by fast

lemma c-out-asi’’-auz:
assumes sel-reasonable sf
and Vz. cfz > 0
and ¢ = c-list fcfhr
and [ = (ldeep-s sf xs)
and h = create-h-list (Axs z. (list-sel-auz’ sf xs z) * ¢f x) zs
and distinct (AQUQVQB)
and U # ||
and V # ||
and rank = (A (ldeep-T fcfl — 1)/ cl)
and U # [r]
and V # [r]
shows (¢ (rev (AQUQV@B)) < ¢ (rev (AQVQU@B)) «— rank (rev U) <
rank (rev V))
proof (cases r ¢ set (AQUQV@B))
case True
have 0: ldeep-T f cf (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have r ¢ set (rev U) using True by simp
then have 1: c¢-list fc¢fhr (rev U) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,7) by fastforce
have r ¢ set (rev V) using True by simp
then have c-list fcfhr (rev V) > 0
using c-list-pos-r-not-elem-hlist assms(1,2,4,5,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 1 assms(3,9) by fast
next
case Fulse
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have 0: ldeep-T f ¢f (rev A) > 0 using assms(1,2,4) ldeep-T-pos by fast
have 2: c-list fcfhr (rev U) > 0
using c-list-pos-not-root-hlist assms(1,2,4—"7,10) by fastforce
have c-list fcf h r (rev V) > 0
using c-list-pos-not-root-hlist assms(1,2,4—6,8,11) by fastforce
then show %thesis using c-list-A-pos-asi 0 2 assms(3,9) by fast
qed

theorem c-out-asi’"
assumes sel-reasonable sf
and Vz. cfzx > 0
and ¢ = c-list fcfhr
and [ = (ldeep-s sf xs)
and h = create-h-list (Axs z. (list-sel-auz’ sf xs ©) * cf x) xs
shows asi” (Al. (ldeep-T fefl — 1)/ cl) r (clistfefhr)
unfolding asi”’-def using c-out-asi”-auz[OF assms] assms(3) by blast

3.4.2 Additional ASI Proofs

lemma asi-le-iff-notr:
[asi rank r cost; U # [|; V £ [|; r ¢ set (AQ U @ V @ B); distinct (A Q U Q
V @ B)]
= rank (rev U) < rank (rev V) <— cost (rev (AQUQV@QB)) < cost (rev
(A@vaUuaB))
unfolding asi-def by blast

lemma asi-le-iff-rfst:
lasi rank v cost; U # [|; V # [|;
take 1 (AQ U @V @Q B) = [r]; take 1 (A Q V @Q U @ B) = [r]; distinct (A
QU @V aB)
= rank (rev U) < rank (rev V) «— cost (rev (AQUQV@B)) < cost (rev
(AQVQUQ@B))
unfolding asi-def by blast

lemma asi-le-notr:
[asi rank r cost; rank (rev U) < rank (rev V); U#[); V#[;
distinct (AQUQV@B); r ¢ set (AQUQVQAB)]
= cost (rev (AQUQV@B)) < cost (rev (AQVQUQB))
unfolding asi-def by blast

lemma asi-le-rfst:
[asi rank r cost; rank (rev U) < rank (rev V); U#[]; V#[); distinct (AQUQV@QB);
take 1 (AQ U QV @B)=1Ir];take 1 (AQ V QU @ B) =[r]
= cost (rev (AQUQV@B)) < cost (rev (AQVQUQB))
unfolding asi-def by blast

lemma asi-eq-notr:

assumes asi rank r cost
and rank (rev U) = rank (rev V)
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and U # |]
and V # [|
and r ¢ set (AQUQV@B)
and distinct (A Q U @Q V @ B)
shows cost (rev (AQUQV@QB)) = cost (rev (AQVQUQB))
proof —
have 0: distinct (AQVQUQB) using assms(6) by auto
have 1: r ¢ set (AQVQU@B) using assms(5) by auto
then show ?thesis
using asi-le-iff-notr[OF assms(1,8—6)] asi-le-iff-notr|OF assms(1,4,3) 1 0]
assms(2) by simp
qed

lemma asi-eq-notr’:
assumes asi rank r cost
and cost (rev (AQUQ@QV@B)) = cost (rev (AQVQUQB))
and U # |]
and V # [|
and r ¢ set (AQUQV@B)
and distinct (A Q@ U @Q V @ B)
shows rank (rev U) = rank (rev V)
proof —
have 0: distinct (AQVQUQB) using assms(6) by auto
have 1: r ¢ set (AQVQU@B) using assms(5) by auto
show ?thesis
using asi-le-iff-notr[OF assms(1,8—6)] asi-le-iff-notr|OF assms(1,4,3) 1 0]
assms(2) by simp
qed

lemma asi-eg-iff-notr:
[asi rank r cost; U # [|; V # [|; r ¢ set (AQUQV@B); distinct (AQUQV@QB)]
= rank (rev U) = rank (rev V) <— cost (rev (AQUQV@B)) = cost (rev
(A@VQ@QUaB))
using asi-eg-notr|of rank r cost] asi-eg-notr’|of rank r cost] by blast

lemma asi-eq-rfst:
assumes asi rank r cost
and rank (rev U) = rank (rev V)
and U # |]
and V # ||
and take 1 (A@Q U Q@ V @Q B) = [r]
and take 1 (A@Q V Q U Q B) = [r]
and distinct (A @Q U @ V @Q B)
shows cost (rev (AQUQV@QB)) = cost (rev (AQVQUQB))
proof —
have 0: distinct (AQVQUQB) using assms(7) by auto
show ?thesis
using asi-le-iff-rfst[OF assms(1,3—7)] asi-le-iff-rfst|OF assms(1,4,3,6,5) 0]
assms(2) by simp
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qed

lemma asi-eq-rfst”:
assumes asi rank r cost
and cost (rev (AQUQV@B)) = cost (rev (AQVQUQB))
and U # |]
and V # [|
and take 1 (AQ U
and take 1 (AQ V
and distinct (A Q U @Q V @Q B)
shows rank (rev U) = rank (rev V)
proof —
have 0: distinct (AQVQUQB) using assms(7) by auto
show ?thesis
using asi-le-iff-rfst|OF assms(1,3—7)] asi-le-iff-rfst|OF assms(1,4,3,6,5) 0]
assms(2) by simp
qed

lemma asi-eqg-iff-rfst:
[asi rank r cost; U £ []; V # [|;
take 1 (AQ U @V @ B) =[r]; take 1 (AQ V @Q U @Q B) = [r]; distinct (A
@U@V aBhB)
= rank (rev U) = rank (rev V) <— cost (rev (AQUQV@QB)) = cost (rev
(A@vaQUaQnB))
using asi-eg-rfst[of rank r cost| asi-eq-rfst’[of rank r cost] by blast

lemma asi-lt-iff-notr:
assumes asi rank r cost
and U # [ and V # ||
and r ¢ set (AQ U Q V @ B)
and distinct (A Q U @Q V @ B)
shows rank (rev U) < rank (rev V) <— cost (rev (AQUQV@B)) < cost (rev
(A@VQ@QUaB))
using asi-le-iff-notr[OF assms| asi-eq-iff-notr[OF assms| by auto

lemma asi-lt-iff-rfst:
assumes asi rank r cost
and U # [ and V # ||
and take 1 (AQ U Q@ V @Q B) = [r]
and take I (AQ V @Q U @ B) = [r]
and distinct (A Q U @ V @ B)
shows rank (rev U) < rank (rev V) <— cost (rev (AQUQV@B)) < cost (rev
(AQvaQUaB))
using asi-le-iff-rfst|OF assms] asi-eq-iff-rfst{OF assms| by auto

lemma asi-lt-notr:
lasi rank r cost; rank (rev U) < rank (rev V); U#[]; V#[;
distinct (AQUQV@DB); r ¢ set (AQUQV@AB)]
= cost (rev (AQUQV@B)) < cost (rev (AQVQUQB))
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using asi-lt-iff-notr by fastforce

lemma asi-lt-rfst:

[asi rank r cost; rank (rev U) < rank (rev V); U#|]; V#]]; distinct (AQUQVQB);
take 1 (AQ U QV @B)=1Ir];take 1 (AQ V QU @ B) =[r]
= cost (rev (AQUQV@B)) < cost (rev (AQVQUQB))

using asi-lt-iff-rfst by fastforce

lemma asi’’-simp-iff:

[asi" rank v cost; U £ [; V£ [|; U # [r]; V # [r]; distinct (A @Q U Q V @ B)]
= rank (rev U) < rank (rev V) <— cost (rev (AQUQ@QV@B)) < cost (rev

(AQvQUaQB))

unfolding asi'’-def by blast

lemma asi’’-simp:
[asi" rank r cost; rank (rev U) < rank (rev V); U#[); V#][]; distinct (AQUQVQB);
U VA]
= cost (rev (AQUQV@B)) < cost (rev (AQVQUQB))
unfolding asi'’-def by blast

end

theory Graph-Additions
imports Complez-Main Graph-Theory.Graph-Theory Shortest-Path-Tree
begin

lemma two-elems-card-ge-2: finite s => © € xs \ y € xs \ x#£y => Finite-Set.card
s > 2
using card-gt-0-iff mk-disjoint-insert not-less-eq-eq by fastforce

4 Graph Extensions

context wf-digraph
begin

lemma awalk-dom-if-uneq: [u#v; awalk v p v] = Iz. . —g v
using reachable-awalk|of u v] awalk-ends[of u p v] converse-reachable-induct by
blast

lemma awalk-verts-dom-if-uneq: [u#v; awalk v p v] = Jz. 2 =g v A z € set
(awalk-verts u p)

proof (induction p arbitrary: u)

case Nil

then show ?case using awalk-def by simp

next

case (Cons p ps)

then show ?case

using awalk-Cons-iff [of u p ps v| awalk-verts.simps(2)[of u p ps] awalk-verts-non-Nil
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by (metis in-arcs-imp-in-arcs-ends list.sel(1) list.set-intros(2) list.set-sel(1))
qed

lemma awalk-verts-append-distinct:

[Zv. awalk r (p1Qp2) v; distinct (awalk-verts r (p1 Qp2))] = distinct (awalk-verts
rpl)

using awalk-verts-append by auto

lemma not-distinct-if-head-eq-tail:
assumes tail G p = v and head G e = u and awalk r (psQ[p]|Qe#p2) v
shows —(distinct (awalk-verts r (psQ[p]|Qe#p2)))
using assms proof (induction ps arbitrary: r)
case Nil
then have u € set (awalk-verts (head G p) (e#p2))
by (metis append.left-neutral append-Cons awalk-Cons-iff awalk-verts-arc2 list.set-intros(1))
then show ?Zcase by (simp add: Nil(1))
next
case (Cons p ps)
then show ?case using awalk-Cons-iff by auto
qed

lemma awalk-verts-subset-if-p-sub:
[awalk u p1 v; awalk u p2 v; set pI C set p2]
= set (awalk-verts u p1) C set (awalk-verts u p2)
using awalk-verts-conv by fastforce

lemma awalk-to-apath-verts-subset:
awalk uw p v => set (awalk-verts u (awalk-to-apath p)) C set (awalk-verts u p)
using awalk-verts-subset-if-p-sub awalk-to-apath-subset apath-awalk-to-apath awalkI-apath
by blast

lemma unique-apath-verts-in-awalk:
[x € set (awalk-verts u p1); apath u p1 v; awalk u p2 v; I!p. apath u p v]
= 1z € set (awalk-verts u p2)
using apath-awalk-to-apath awalk-to-apath-verts-subset by blast

lemma unique-apath-verts-sub-awalk:

lapath uw p v; awalk u q v; Ip. apath u p v] = set (awalk-verts u p) C set
(awalk-verts u q)

using unique-apath-verts-in-awalk by blast

lemma awalk-verts-append3:

[awalk v (pQe#q) r; awalk v ¢ r] = awalk-verts u (pQe#q) = awalk-verts u p
@ awalk-verts v q

using awalk-verts-conv by fastforce

lemma verts-reachable-connected:

verts G # {} = (Vzcverts G. Y ycverts G. x —* y) = connected G
by (simp add: connected-def strongly-connected-def reachable-mk-symmetricl)
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lemma out-degree-0-no-arcs:

assumes out-degree G v = 0 and finite (arcs G)

shows Vy. (v,y) ¢ arcs-ends G
proof (rule ccontr)

assume —(Vy. (v,y) ¢ arcs-ends G)

then obtain y where y-def: (v,y) € arcs-ends G by blast

then obtain a where a-def: a € arcs G A tail G a = v A head G a = y by auto

then have a € {e € arcs G. tail G e = v} by simp

then have Finite-Set.card {e € arcs G. tail G e = v} > 0 using assms(2)
card-gt-0-iff by force

then show Fulse using assms(1) by (metis less-nat-zero-code out-arcs-def out-degree-def)
qed

lemma out-degree-0-only-self: finite (arcs G) = out-degree G v =0 = v =* x
==
using converse-reachable-cases out-degree-0-no-arcs by force

lemma not-elem-no-out-arcs: v ¢ verts G = out-arcs G v = {}
by auto

lemma not-elem-no-in-arcs: v ¢ verts G = in-arcs G v = {}
by auto

lemma not-elem-out-0: v ¢ verts G = out-degree G v = 0
unfolding out-degree-def using not-elem-no-out-arcs by simp

lemma not-elem-in-0: v ¢ verts G = in-degree G v = 0
unfolding in-degree-def using not-elem-no-in-arcs by simp

lemma new-vert-only-no-arcs:
assumes G = (verts = V U {v}, arcs = A, tail = t, head = h)
and G’ = (verts = V, arcs = A, tail = t, head = h|)
and wf-digraph G’
and v ¢ V
and finite (arcs G)
shows YV u. (v,u) ¢ arcs-ends G
proof —
have out-degree G’ v = 0 using assms(2—4) wf-digraph.not-elem-out-0 by fast-
force
then have out-degree G v = 0 unfolding out-degree-def out-arcs-def using
assms(1,2) by simp
then show ?%thesis using assms(5) out-degree-0-no-arcs by blast
qed

lemma new-leaf-out-sets-eq:
assumes G = (verts = V U {v}, ares = A U {a}, tail = t(a := u), head = h(a

=)
and G’ = (verts = V, arcs = A, tail = t, head = h|)
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and v € V
and v ¢ V
and a ¢ A
shows {e € arcs G. tail G e = v} = {e € arcs G'. tail G' e = v}
using assms by auto

lemma new-leaf-out-0:
assumes G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
=)
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
and u € V
and v ¢ V
and a ¢ A
shows out-degree G v = 0
proof —
have tail G a = u using assms(1) by simp
then have 0: {e € arcs G. tail G e = v} = {e € arcs G'. tail G' e = v}
using new-leaf-out-sets-eq assms(1,2,4/—6) by blast
have out-degree G’ v = 0 using assms(2,3,5) wf-digraph.not-elem-out-0 by
fastforce
then show ?thesis unfolding out-degree-def out-arcs-def using 0 by simp
qed

lemma new-leaf-no-arcs:
assumes G = (verts = V U {v}, ares = A U {a}, tail = t(a := u), head = h(a
=)
and G’ = (verts = V, arcs = A, tail = t, head = h|)
and wf-digraph G’
and u € V
and v ¢ V
and a ¢ A
and finite (arcs G)
shows YV u. (v,u) ¢ arcs-ends G
using new-leaf-out-0 assms out-degree-0-no-arcs by presburger

lemma tail-and-head-eq-impl-cas:
assumes cas T p y
and Vz € set p. tail G x = tail G' x
and Vz € set p. head G z = head G’ z
shows pre-digraph.cas G’ z p y
using assms proof (induction p arbitrary:  y)
case Nil
show ?case using pre-digraph.cas.simps(1) Nil(1) by fastforce
next
case (Cons p ps)
have 0: tail G' p = z using Cons.prems(1,2) by simp
have cas (head G p) ps y using Cons.prems(1) by simp
then have pre-digraph.cas G' (head G’ p) ps y using Cons.IH Cons.prems(2,3)
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by simp
then show ?case using 0 by (simp add: pre-digraph.cas.simps(2))
qed

lemma new-leaf-same-reachables-orig:
assumes T —* ¢ Y
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= 0))
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
and z € V
and u € V
and v ¢ V
and y # v
and a ¢ A
and finite (arcs G)
shows z ="/ y
proof —
obtain p where p-def: awalk © p y using reachable-awalk assms(1) by auto
then have 0: set p C arcs G by blast
have v-0: out-degree G v = 0 using new-leaf-out-0 assms by presburger
have a-notin-p: a ¢ set p
proof
assume asm: a € set p
have head G a = v using assms(2) by simp
then have Jp’ p”. p’Qp''=p A awalk x p’ v
using asm awalk-decomp awalk-verts-arc2 p-def by metis
then obtain p’ p’’ where p’-def: p’Qp''=p A awalk z p’ v by blast
then have awalk v p’ y using p-def by auto
then have v —* y using reachable-awalk by auto
then have v = y using out-degree-0-only-self assms(10) v-0 by blast
then show Fulse using assms(8) by simp
qed
then have 1: set p C arcs G’ using assms(2,3) 0 by auto
have Vz € set p. tail G © = tail G' z using assms(2,3) a-notin-p by simp
moreover have Vz € set p. head G = head G' z using assms(2,3) a-notin-p
by simp
ultimately have pre-digraph.cas G’ x p y using tail-and-head-eq-impl-cas p-def
by blast
then have pre-digraph.awalk G’ z p y unfolding pre-digraph.awalk-def using
assms(3,5) 1 by simp
then show ?thesis using assms(4) wf-digraph.reachable-awalkI by fast
qed

lemma new-leaf-same-reachables-new:
assumes r —* s y
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= )
and G’ = (verts = V, arcs = A, tail = t, head = h|)
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and wf-digraph G’
and z € V
and u € V
and v ¢ V
and y # v
and a ¢ A
shows z =% y
proof —
obtain p where p-def: pre-digraph.awalk G' = p y
using wf-digraph.reachable-awalk assms(1,4) by fast
then have 0: set p C arcs G' by (meson pre-digraph.awalk-def)
then have a-notin-p: a ¢ set p using assms(3,9) by auto
have 1: set p C arcs G using assms(2,3) 0 by auto
have Vz € set p. tail G © = tail G' z using assms(2,8) a-notin-p by simp
moreover have Vz € set p. head G = head G' z using assms(2,3) a-notin-p
by simp
moreover have pre-digraph.cas G' = p y using p-def pre-digraph.awalk-def by
fast
ultimately have cas = p y using assms(4) wf-digraph.tail-and-head-eq-impl-cas
by fastforce
then have awalk = p y unfolding awalk-def using assms(2,5) 1 by simp
then show ?thesis using reachable-awalkl by simp
qed

lemma new-leaf-reach-impl-parent:
assumes y —* v
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
=)
and G’ = (verts = V, arcs = A, tail = t, head = hl
and wf-digraph G’
and y € V
and v ¢ V
shows y —* u
proof —
haveVa € A. ha# v
using assms(3,4,6) wf-digraph.head-in-verts by (metis pre-digraph.select-convs(1,2,4))
then have 0: Vz. (z,0) € arcs-ends G — = = u using assms(2) by fastforce
have v # y using assms(5,6) by blast
then have y —T v using assms(1) by blast
then have dz. y ="z Az =5 v
by (meson reachablel-in-verts(1) reachable-conv’ tranclD2)
then obtain z where y —* z A z — ¢ v by blast
then show ?thesis using 0 by blast
qed

end
context graph

begin
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abbreviation min-degree :: ‘a set = 'a = bool where
min-degree zs © = x€xs N (VY y€xs. oul-degree G © < out-degree G y)

lemma graph-del-vert-sym: sym (arcs-ends (del-vert x))
by (smt (23) wf-digraph-del-vert mem-Collect-eq reachableE sym-digraph-axioms-def
arcs-del-vert
symmetric-conv syml wf-digraph.in-arcs-imp-in-arcs-ends head-del-vert sym-arcs
tail-del-vert)

lemma graph-del-vert: graph (del-vert x)
apply(standard)
by (auto simp: arcs-del-vert2 tail-del-vert head-del-vert verts-del-vert
no-loops ends-del-vert no-multi-arcs symmetric-def graph-del-vert-sym)

lemma connected-iff-reachable:
connected G +— ((Vx€verts G. YV ycverts G. z —* y) A verts G # {})
using symmetric-connected-imp-strongly-connected strongly-connected-def verts-reachable-connected
by (blast)

end

context nomulti-digraph
begin

lemma no-multi-alt:

[el € arcs G; e2 € arcs G; el # e2] = head G el # head G e2 V tail G el
# tail G e2

using no-multi-arcs by (auto simp: arc-to-ends-def)

end

4.1 Vertices with Multiple Outgoing Arcs

context wf-digraph
begin

definition branching-points :: 'a set where
branching-points = {x. Jy€arcs G. Fz€arcs G. y£z A tail Gy = z A tail G z

:g;}

definition is-chain :: bool where
is-chain = (branching-points = {})

definition last-branching-points :: 'a set where
last-branching-points = {x. (x€branching-points A\ =(3y € branching-points. y£x
Az =" y))}

lemma branch-in-verts: © € branching-points = = € verts G
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unfolding branching-points-def by auto

lemma last-branch-is-branch:
(yE€last-branching-points = y<branching-points)
unfolding last-branching-points-def by blast

lemma last-branch-alt: © € last-branching-points = (Vz. © =* z A\ 241 — 2 ¢
branching-points)
unfolding last-branching-points-def by blast

lemma braching-points-alt:

assumes finite (arcs G)

shows z € branching-points <— oul-degree G © > 2 (is 7P <— ?Q))
proof

assume ?P

then obtain a! a2 where al€arcs G N a2€arcs G N al#a2 A tail G al =
A tail G a2 =z

using branching-points-def by auto

then have 0: al € out-arcs G z A a2 € out-arcs G © A al#a2 by simp

have finite (out-arcs G x) by (simp add: assms out-arcs-def)

then show ?@Q unfolding out-degree-def using 0 two-elems-card-ge-2 by fast
next

assume 0: ?Q

have finite (out-arcs G x) by (simp add: assms out-arcs-def)

then have Jal a2. al € (out-arcs G z) A a2 € (out-arcs G z) N al#a2

using 0 out-degree-def by (metis Suc-n-not-le-n card-le-Suc0-iff-eq le-trans

numeral-2-eq-2)

then show ?P unfolding branching-points-def by auto
qed

lemma branch-in-supergraph:
assumes subgraph C G
and z € wf-digraph.branching-points C
shows z € branching-points
proof —
have 0: wf-digraph C using assms(1) Digraph-Component.subgraph-def sub-
graph.sub-G by auto
have 1: wf-digraph G using assms(1) subgraph.sub-G by auto
obtain y z where arcs-C: ycarcs C N z€arcs C N y#z A tail Cy = z A tail C
z==x
using assms(2) wf-digraph.branching-points-def 0 by blast
then have ycarcs G N z€arcs G N y#z AN taill Cy=2x AN tail Cz ==z
using assms(1) subgraph.sub-G by blast
then have ycarcs G A z€arcs G N y#£z AN tail Gy =x AN tail Gz =z
using assms(1) subgraph.sub-G compatible-def by force
then show %thesis using branching-points-def assms(1) subgraph.sub-G by blast
qed

lemma subgraph-no-branch-chain:
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assumes subgraph C G
and verts C C verts G — {z. Iy€branching-points. © —* 7 y}
shows wf-digraph.is-chain C
proof (rule ccontr)
assume asm: —wf-digraph.is-chain C
let ?rem = {z. 3 ycbranching-points. © —* ¢ y}
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G
by auto
then obtain z where a-def[simp|: © € wf-digraph.branching-points C
using wf-digraph.is-chain-def asm by blast
then have z € branching-points using assms(1) branch-in-supergraph by simp
moreover from this have = € verts G using branch-in-verts by simp
moreover from this have v —* 7 = by simp
ultimately have z € %rem by blast
then show Fulse using assms(2) <wf-digraph C» subsetD wf-digraph.branch-in-verts
by fastforce
qed

lemma branch-if-leaf-added:
assumes zcwjf-digraph.branching-points G'
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= )
and G’ = (verts = V, arcs = A, tail = t, head = h|)
and wf-digraph G’
and a ¢ A
shows x € branching-points
proof —
obtain al a2 where a12: al€carcs G' N a2€arcs G' N\ al#a2 A tail G’ al =
z A tail G' a2 =z
using wf-digraph.branching-points-def assms(1,4) by blast
then have al # a A a2 # a using assms(3,5) by auto
then have 0: tail G al = tail G’ al A tail G a2 = tail G’ a2 using assms(2,3)
by simp
have al€arcs G N a2€arcs G N al#a2 A al#a2 A tail G' al = z A tail G’
a2 =z
using assms(2,3) al12 by simp
then have alcarcs G A a2€arcs G N\ al#a2 A tail G al = x A tail G a2 =z
using 0 by simp
then show ?thesis unfolding branching-points-def by blast
qed

lemma new-leaf-no-branch:
assumes G = (verts = V U {v}, ares = A U {a}, tail = t(a := u), head = h(a
= 1))
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
and u € V
and v ¢ V
and a ¢ A
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shows v ¢ branching-points
proof —
have v # u using assms(4,5) by fast
have Vacarcs G'. tail G' a # v
using assms(2,3,5) pre-digraph.select-convs(1) wf-digraph-def by fast
moreover have Vz € arcs G'. tail G x = tail G’ x using assms(1,2,6) by simp
ultimately have V acarcs G'. tail G a # v by simp
then have Vacarcs G. tail G a # v
using assms(1,2,6) Un-iff pre-digraph.select-convs(2) singletonD v # u» by
simp
then show ?thesis unfolding branching-points-def by blast
qed

lemma new-leaf-not-reach-last-branch:
assumes ycwjf-digraph.last-branching-points G’
and -y =»* u
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= )
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
and y ¢ V
and v e V
and v ¢ V
and a ¢ A
and finite (arcs G)
shows —(3z € branching-points. z£y N y —* z)
proof
assume 3z € branching-points. z£y N y —* z
then obtain z where z-def: z € branching-points A z£y N y —* z by blast
then have z # u using assms(2) by blast
then obtain al a2 where al12: al€arcs G N\ a2€arcs G N al#a2 A tail G al
=2z A tail G a2 = z
using branching-points-def z-def by blast
then have 0: al # a A a2 # a using assms(3) <z£w> by fastforce
then have I: tail G al = tail G’ al A tail G a2 = tail G' a2 using assms(3,4)
by simp
have alc€arcs G' N\ a2€arcs G' A al#a2 A tail G al = z A tail G a2 = z
using assms(3,4) al2 0 by simp
then have al€arcs G' A a2€arcs G' N al#a2 A tail G' al = z A tail G’ a2
=z
using 1 by simp
then have 2: z € wf-digraph.branching-points G’
using wf-digraph.branching-points-def assms(5) by auto
have 2 # v using assms(2,3,4,5,6,8) z-def new-leaf-reach-impl-parent by blast
then have y ="/ z using new-leaf-same-reachables-orig z-def assms by blast
then have 3 zewf-digraph.branching-points G'. 2y N y =" z using 2 z-def
by blast
then have y ¢ wf-digraph.last-branching-points G’
using wf-digraph.last-branching-points-def assms(5) by blast
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then show Fulse using assms(1) by simp
qed

lemma new-leaf-parent-nbranch-in-orig:
assumes yebranching-points
and y # u
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= v))
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
shows ycwf-digraph.branching-points G’
proof —
obtain al a2 where al12: al€arcs G N a2€arcs G N al#a2 A tail G al =y
Atail G a2 =y
using branching-points-def assms(1) by blast
then have 0: al # a A a2 # a using assms(2,3) by fastforce
then have I: tail G al = tail G’ al A tail G a2 = tail G’ a2 using assms(3,4)
by simp
have al€arcs G' A a2€arcs G' A al#a2 A tail G al = y A tail G a2 =y
using assms(3,4) a12 0 by auto
then have al€arcs G' A a2€arcs G’ N al#a2 A tail G' al = y A tail G’ a2
=Y
using 1 by simp
then show %thesis using assms(5) wf-digraph.branching-points-def by auto
qed

lemma new-leaf-last-branch-ezists-preseruv:
assumes ycwf-digraph.last-branching-points G’
and z —* y
and G = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= 1)
and G’ = (verts = V, arcs = A, tail = t, head = h)
and wf-digraph G’
and y € V
and u € V
and v ¢ V
and a ¢ A
and finite (arcs G)
and Vz. y - 2 — y#z
obtains y’ where y'clast-branching-points N x —* y'
proof (cases y —* u)
case True
have y € wf-digraph.branching-points G'
using assms(1,5) wf-digraph.last-branch-is-branch by fast
then have y-branch: y € branching-points using branch-if-leaf-added assms(3—5,9)
by blast
have v-nbranch: v ¢ branching-points using new-leaf-no-branch assms(8—5,7—9)
by blast
then show ?thesis
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proof(cases u € branching-points)
case True
have —(3z € branching-points. z#u N\ u —* 2)
proof
assume 3z € branching-points. z#u N u —* z
then obtain z where z-def: z € branching-points N\ z£u N\ u —* z by blast
then have z # v using v-nbranch by blast
then have u =" 4/ 2
using new-leaf-same-reachables-orig assms(8—5,7—10) z-def by blast
moreover have y ="~/ u
using new-leaf-same-reachables-orig <y —* w assms(3—10) by blast
ultimately have 0: y ="/ 2
using assms(5) wf-digraph.reachable-trans by fast
have y —T z
using <y —* w» z-def reachable-reachablel-trans reachable-neg-reachablel by
blast
then have y # 2 using assms(11) by simp
have z € wf-digraph.branching-points G’
using z-def new-leaf-parent-nbranch-in-orig assms(3—5) by blast
then have y ¢ wf-digraph.last-branching-points G’
using 0 assms(5) wf-digraph.last-branch-alt <y # 2> by fast
then show Fulse using assms(1) by simp
qed
then have u € last-branching-points unfolding last-branching-points-def using
True by blast
then show ?thesis using assms(2) <y —* w> reachable-trans that by blast
next
case Fulse
have —(3 2z € branching-points. z£y N y —* z)
proof
assume 3z € branching-points. z#y N\ y =% z
then obtain z where z-def: z € branching-points A z#y N y —* z by blast
then have z # v using v-nbranch by blast
then have 0: y ="/ 2
using new-leaf-same-reachables-orig assms(3—10) z-def by blast
have z # u using Fulse z-def by blast
then have z € wf-digraph.branching-points G’
using z-def new-leaf-parent-nbranch-in-orig assms(3—5) by blast
then have y ¢ wf-digraph.last-branching-points G’
using 0 z-def assms(5) wf-digraph.last-branch-alt by fast
then show False using assms(1) by simp
qed
then have y € last-branching-points using last-branching-points-def y-branch
by simp
then show ?thesis using assms(2) that by blast
qed
next
case Fulse
have y € wf-digraph.branching-points G’
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using assms(1,5) wf-digraph.last-branch-is-branch by fast
then have y € branching-points using branch-if-leaf-added assms(3—5,9) by
blast
moreover have —(3z € branching-points. z£y N y —* 2)
using new-leaf-not-reach-last-branch assms(1,3—10) False by blast
ultimately have y € last-branching-points unfolding last-branching-points-def
by blast
then show ?thesis using assms(2) that by blast
qed

end

4.2 Vertices with Multiple Incoming Arcs

context wf-digraph
begin

definition merging-points :: 'a set where
merging-points = {x. Jyc€arcs G. Iz€arcs G. y#z N head G y = x A head G z

= 17}

definition is-chain’ :: bool where
is-chain’ = (merging-points = {})

definition last-merging-points :: 'a set where
last-merging-points = {x. (z€merging-points A —(Iy € merging-points. y#x N x
=% y)}

lemma merge-in-verts: © € merging-points =—> ¢ € verts G
unfolding merging-points-def by auto

lemma last-merge-is-merge:
(y€last-merging-points = yEmerging-points)
unfolding last-merging-points-def by blast

lemma last-merge-alt: © € last-merging-points = (Vz. © =* 2 N 2£z — 2 ¢
merging-points)
unfolding last-merging-points-def using reachable-in-verts(2) by blast

lemma merge-in-supergraph:

assumes subgraph C G

and z € wf-digraph.merging-points C
shows z € merging-points

proof —

have 0: wf-digraph C using assms(1) Digraph-Component.subgraph-def sub-
graph.sub-G by auto

have 1: wf-digraph G using assms(1) subgraph.sub-G by auto

obtain y z where arcs-C: ycarcs C N z€arcs C N y#z A head C y = x N\ head
Cz=z
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using assms(2) wf-digraph.merging-points-def 0 by blast
then have ycarcs G A z€arcs G N y#2z A head Cy = x A head C z =z
using assms(1) subgraph.sub-G by blast
then have ycarcs G N z€arcs G N\ y#z N head Gy =z A head G z = ¢
using assms(1) subgraph.sub-G compatible-def by force
then show %thesis using merging-points-def assms(1) subgraph.sub-G by blast
qed

lemma subgraph-no-merge-chain:
assumes subgraph C G
and verts C' C verts G — {z. 3y€merging-points. x —* ¢ y}
shows wf-digraph.is-chain’ C
proof (rule ccontr)
assume asm: ~wf-digraph.is-chain’ C
let ?rem = {z. 3yemerging-points. x —* 7 y}
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G
by auto
then obtain z where z-def[simp|: © € wf-digraph.merging-points C
using wf-digraph.is-chain’-def asm by blast
then have z € merging-points using assms(1) merge-in-supergraph by simp
moreover from this have = € verts G using merge-in-verts by simp
moreover from this have z —* 5 = by simp
ultimately have z € %rem by blast
then show Fulse using assms(2) «wf-digraph C» subsetD wf-digraph.merge-in-verts
by fastforce
qged

end

end

theory QueryGraph
imports Complex-Main Graph-Additions Selectivities JoinTree
begin

5 Query Graphs

locale query-graph = graph +
fixes sel :: 'b weight-fun
fixes ¢f :: 'a = real
assumes sel-sym: [tail G e; = head G ez; head G e1 = tail G es] = sel e; =
sel es
and not-arc-sel-1: e ¢ arcs G = sel e = 1
and sel-pos: sel e > 0
and sel-leg-1: sel e < 1
and pos-cards: © € verts G = c¢fz > 0

begin
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5.1 Function for Join Trees and Selectivities

definition matching-sel :: 'a selectivity = bool where
matching-sel f = (Vx y.
(Je. (tail Ge) =z A (head G e) =y A fay = sel e)
V (e (tail Ge) =z A (head G e) = y) A fzy = 1))

definition match-sel :: 'a selectivity where
match-sel Ty =
(if Je € arcs G. (tail G e) =z A (head G e) =y
then sel (THE e. e € arcs G A (tail G e) = © A (head G €) = y) else 1)

definition matching-rels :: 'a joinTree = bool where
matching-rels t = (relations t C verts G)

definition remove-sel :: 'a = 'b weight-fun where
remove-sel © = (Ab. if be{a € arcs G. tail G a = z V head G a = z} then 1 else
sel b)

definition valid-tree :: 'a joinTree = bool where
valid-tree t = (relations t = verts G N\ distinct-relations t)

fun no-cross-products :: 'a joinTree = bool where
no-cross-products (Relation rel) = True
| no-cross-products (Join 1 r) = ((3zerelations I. Iyecrelations r. © — ¢ y)
A no-cross-products I A\ no-cross-products r)

5.2 Proofs

Proofs that a query graph satisifies basic properties of join trees and selec-
tivities.
lemma sel-less-arc: sel z < 1 = x € arcs G

using not-arc-sel-1 by force

lemma joinTree-card-pos: matching-rels t => pos-rel-cards cf t
by (induction t) (auto simp: pos-cards pos-rel-cards-def matching-rels-def)

lemma symmetric-arcs: x€arcs G = Jy. head G x = tail G y A tail G x = head
Gy
using sym-arcs symmetric-conv by fast

lemma arc-ends-eq-impl-sel-eq: head G © = head G y = tail G z = tail G y =
sel x = sel y
using sel-sym symmetric-arcs not-arc-sel-1 by metis

lemma arc-ends-eq-impl-arc-eq:

[el € arcs G; e2 € arcs G; head G el = head G e2; tail G el = tail G e2] =
el = e?2

using no-multi-alt by blast
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lemma matching-sel-simp-if-not1:

[matching-sel sf; sf x y # 1] = Je € arcs G. tail G e = x A head G e =y A
sfry=sele

using not-arc-sel-1 unfolding matching-sel-def by fastforce

lemma matching-sel-simp-if-arc:
[matching-sel sf; e € arcs G] = sf (tail G e) (head G e) = sel e
unfolding matching-sel-def by (metis arc-ends-eq-impl-sel-eq)

lemma matching-sell-if-no-arc: matching-sel sf = —~(zr =gy VvV y —qgz) = sf
cy =1

using not-arc-sel-1 unfolding arcs-ends-def arc-to-ends-def matching-sel-def im-
age-iff by metis

lemma matching-sel-alt-aux?:
matching-sel f
= (Vzy. (e € arcs G. (tail Ge) = x A (head Ge) =y A fay = sel e)
V (e e€arcs GA (tail Ge) =a A (head Ge) =y) A fry=1))
by (metis matching-sel-def arc-ends-eg-impl-sel-eq not-arc-sel-1)

lemma matching-sel-alt-aux2:
(Vzy.(Fe € arcs G. (tail G e) =x A (head Ge) =y A fzy = sele)
V (fe. e € arcs GA (tail Ge) = x A (head Ge) =y) A fry=1))
= matching-sel f
by (fastforce simp: not-arc-sel-1 matching-sel-def)

lemma matching-sel-alt:
matching-sel f
=WVzy (e€arcs G. (tail Ge) =z A (head Ge) =y A fzy = sele)
V ((fe. e € arcs GA (tail Ge) =z A (head Ge) =y) A fry=1))
using matching-sel-alt-aurl matching-sel-alt-aux2 by blast

lemma matching-sel-symm:
assumes matching-sel f
shows sel-symm f
unfolding sel-symm-def
proof (standard, standard)
fix x y
show fzy=fyzx
proof(cases Jecarcs G. (head G e) = z A (tail G e) = y)
case True
then show ?thesis using assms symmetric-arcs sel-sym unfolding match-
ing-sel-def by metis
next
case Fulse
then show ?thesis by (metis assms symmetric-arcs matching-sel-def not-arc-sel-1
sel-sym)
qed
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qed

lemma matching-sel-reasonable: matching-sel f = sel-reasonable f
using sel-reasonable-def matching-sel-def sel-pos sel-leq-1
by (metis le-numeral-extra(4) less-numeral-extra(1))

lemma matching-reasonable-cards:
[matching-sel f; matching-rels t] = reasonable-cards cf f t
by (simp add: joinTree-card-pos matching-sel-reasonable pos-sel-reason-impl-reason)

lemma matching-sel-unique-aux:

assumes matching-sel f matching-sel g

shows fzy=gzy
proof(cases Je. tail G e = z A head G e = y)

case True

then show ?thesis

using assms arc-ends-eq-impl-sel-eq unfolding matching-sel-def by metis

next

case Fulse

then show “thesis using assms unfolding matching-sel-def by fastforce
qed

lemma matching-sel-unique: [matching-sel f; matching-sel g = f = g
using matching-sel-unique-aux by blast

lemma match-sel-matching[intro]: matching-sel match-sel
unfolding matching-sel-alt
proof (standard,standard)
fix x y
show (Jecarcs G. tail G e = x A head G e = y N\ match-sel v y = sel €) V
(Fe. e € arcs G A tail Ge=z A head G e = y) A match-sel zy = 1)
proof(cases e € arcs G. tail G e = x A head G e = y)
case True
then obtain e where e-def: e € arcs G tail G e = = head G e = y by blast
then have match-sel vy = sel (THE e. e € arcs G A tail G e = z A head G
e=y)
unfolding match-sel-def by auto
moreover have (THE e. ¢ € arcs G A tail G e =z A head Ge=y) = e
using e-def arc-ends-eq-impl-arc-eq by blast
ultimately show ?thesis using e-def by blast
next
case False
then show ?thesis unfolding match-sel-def by auto
qed
qed

corollary match-sel-unique: matching-sel f = f = match-sel
using matching-sel-unique by blast
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corollary match-sell-if-no-arc: =(z —-g y V y =g ) = match-sel z y = 1
using matching-sell-if-no-arc by blast

corollary match-sel-symm]introl: sel-symm match-sel
using matching-sel-symm by blast

corollary match-sel-reasonable[intro|: sel-reasonable match-sel
using matching-sel-reasonable by blast

corollary match-reasonable-cards: matching-rels t => reasonable-cards cf match-sel
t
using matching-reasonable-cards by blast

lemma matching-rels-trans: matching-rels (Join I r) = (matching-rels | A match-
ing-rels r)
using matching-rels-def by simp

lemma first-node-in-verts-if-rels-eq-verts: relations t = verts G = first-node t €
verts G

unfolding first-node-eq-hd using inorder-eq-set hd-in-set| OF inorder-nempty| by
fast

lemma first-node-in-verts-if-valid: valid-tree t = first-node t € verts G
using first-node-in-verts-if-rels-eq-verts valid-tree-def by simp

lemma dominates-sym: (z =g y) «— (y =g )
using graph-symmetric by blast

lemma no-cross-mirror-eq: no-cross-products (mirror t) = no-cross-products t
using graph-symmetric by (induction t) auto

lemma no-cross-create-ldeep-rev-app:
[ys#[); no-cross-products (create-ldeep-rev (zsQys))] = no-cross-products (create-ldeep-rev
ys)
proof (induction zsQys arbitrary: zs rule: create-ldeep-rev.induct)
case (2 x)
then show ?Zcase by (metis append-eq-Cons-conv append-is-Nil-conv)
next
case (3 y 2s)
then show ?case
proof(cases xs)
case Nil
then show ?thesis using 3.prems(2) by simp
next
case (Cons z’ 1s’)
have no-cross-products (Join (create-ldeep-rev (y#2s)) (Relation 1))
using 3.hyps(2) 3.prems(2) create-ldeep-rev.simps(3)[of x y zs] by simp
then have no-cross-products (create-ldeep-rev (y#zs)) by simp
then show %thesis using 3.hyps 3.prems(1) Cons by simp
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qed
qed(simp)

lemma no-cross-create-ldeep-app:

[xs#[]; no-cross-products (create-ldeep (zsQys))] = no-cross-products (create-ldeep
xs)

by (simp add: create-ldeep-def no-cross-create-ldeep-rev-app)

lemma matching-rels-if-no-cross: [Vr. t # Relation r; no-cross-products t] =
matching-rels t
unfolding matching-rels-def by (induction t) fastforce+

lemma no-cross-awalk:
[matching-rels t; no-cross-products t; x € relations t; y € relations t]
= Jp. awalk z p y A set (awalk-verts z p) C relations t
proof (induction t arbitrary: z y)
case (Relation rel)
then have x € verts G using matching-rels-def by blast
then have awalk z [| z by (simp add: awalk-Nil-iff)
then show ?case using Relation(3,4) by force
next
case (Join I r)
then consider = € relations [ y € relations | | x € relations r y € relations |
| z € relations | y € relations r | © € relations ry € relations r
by force
then show ?case
proof(cases)
case I
then show ?thesis using Join.IH(1)[of x y| Join.prems(1,2) matching-rels-trans
by auto
next
case 2
then obtain z’ y’ e where e-def:
x' € relations r y' € relations | tail G e = y' head G e = 2’ e € arcs G
using Join.prems(2) by auto
then obtain ¢2 where e2-def: tail G e2 = z’ head G e2 = y' €2 € arcs G
using symmetric-conv by force
obtain p! where pI-def: awalk y' p1 y A set (awalk-verts y’ p1) C relations |
using Join.IH(1) Join.prems(1,2) 2(2) matching-rels-trans e-def(2) by
fastforce
obtain p2 where p2-def: awalk x p2 z' A set (awalk-verts © p2) C relations r
using Join.IH(2) Join.prems(1,2) 2(1) matching-rels-trans e-def(1) by
fastforce
have awalk © (p2Q[e2]Qpl) y
using e2-def p1-def p2-def awalk-appendl arc-implies-awalk by blast
moreover from this have set (awalk-verts z (p2Q[e2]@Qp1)) C relations (Join
Ir)
using pl-def p2-def awalk-verts-append3 by auto
ultimately show ?thesis by blast
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next
case 3
then obtain z’ y’ e where e-def:
x’ € relations 1 y' € relations r tail G e = 2’ head G e = y' ¢ € arcs G
using Join.prems(2) by auto
obtain p! where pl-def: awalk y' pl y A set (awalk-verts y' p1) C relations r
using Join.IH(2) Join.prems(1,2) 3(2) matching-rels-trans e-def(2) by
fastforce
obtain p2 where p2-def: awalk x p2 ' N\ set (awalk-verts x p2) C relations [
using Join.IH(1) Join.prems(1,2) 3(1) matching-rels-trans e-def(1) by
fastforce
have awalk © (p2Q[e]@Qpl1) y
using e-def(3—5) pl-def p2-def awalk-appendl arc-implies-awalk by blast
moreover from this have set (awalk-verts x (p2Qle]@p1)) C relations (Join
Ir)
using pl-def p2-def awalk-verts-append3 by auto
ultimately show ¢thesis by blast
next
case 4
then show ?thesis using Join.IH(2)[of x y| Join.prems(1,2) matching-rels-trans
by auto
qed
qed

lemma no-cross-apath:
[matching-rels t; no-cross-products t; x € relations t; y € relations t]
= dp. apath z p y A set (awalk-verts x p) C relations t
using no-cross-awalk apath-awalk-to-apath awalk-to-apath-verts-subset by blast

lemma no-cross-reachable:
[matching-rels t; no-cross-products t; x € relations t; y € relations t] = z —* y
using no-cross-awalk reachable-awalk by blast

corollary reachable-if-no-cross:

[3t. relations t = verts G A no-cross-products t; x € verts G; y € verts G] =
xr—*y

using no-cross-reachable matching-rels-def by blast

lemma remowve-sel-sym:

[tail G e1 = head G ea; head G e1 = tail G ea] = (remove-sel z) e; = (remove-sel
z) eg

by (metis (no-types, lifting) mem-Collect-eq not-arc-sel-1 remove-sel-def sel-sym)+

lemma remove-sel-1: e ¢ arcs G = (remove-sel z) e = 1
apply(cases ec{a € arcs G. taill G a = z V head G a = z})

by (auto simp: not-arc-sel-1 sel-sym remove-sel-def)

lemma del-vert-remove-sel-1:
assumes e ¢ arcs ((del-vert x))
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shows (remove-sel z) e = 1
proof(cases ec{a € arcs G. tail G a = z V head G a = z})
case True
then show ?thesis by (simp add: remove-sel-def)
next
case Fulse
then have e ¢ arcs G using assms arcs-del-vert by simp
then show ?thesis using remove-sel-def not-arc-sel-1 by simp
qed

lemma remove-sel-pos: remove-sel x e > 0
by(cases e€{a € arcs G. tail G a =z V head G a = z}) (auto simp: remove-sel-def
sel-pos)

lemma remove-sel-leq-1: remove-sel z e < 1
by(cases e€{a € arcs G. tail G a = = V head G a = z}) (auto simp: remove-sel-def
sel-leg-1)

lemma del-vert-pos-cards: x € verts (del-vert y) = cfz > 0
by(cases z=y) (auto simp: remove-sel-def del-vert-def pos-cards)

lemma del-vert-remove-sel-query-graph:
query-graph G sel ¢f = query-graph (del-vert ) (remove-sel ) cf
by (simp add: del-vert-pos-cards del-vert-remove-sel-1 graph-del-vert remove-sel-sym
remove-sel-leq-1 remove-sel-pos query-graph.intro graph-azioms head-del-vert
query-graph-azioms-def tail-del-vert)

lemma finite-nempty-set-min:
assumes zs # {} and finite zs
shows Jz. min-degree zs x
proof —
have finite xs using assms(2) by simp
then show ?thesis
using assms proof (induction zs rule: finite-induct)
case empty
then show ?case by simp
next
case ind: (insert x xs)
then show ?case
proof (cases xs)
case emptyl
then show ?thesis by (metis order-refl singletonD singletonI)
next
case (insertl zs’ x”)
then have da. min-degree zs a using ind by simp
then show ?thesis
using ind by (metis order-trans insert-iff le-cases)
qed
qed
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qed

lemma no-cross-reachable-graph’”:
[3t. relations t = verts G A no-cross-products t; x€verts G; ycverts G

= %*mk-symmetric GY
by (simp add: reachable-mk-symmetricl reachable-if-no-cross)

lemma verts-nempty-if-tree: 3t. relations t C verts G = verts G # {}
using relations-nempty by fast

lemma connected-if-tree: 3 t. relations t = verts G A no-cross-products t = con-
nected G
using no-cross-reachable-graph’ connected-def strongly-connected-def verts-nempty-if-tree
by fastforce

end

locale nempty-query-graph = query-graph +
assumes non-empty: verts G # {}

5.3 Pair Query Graph

Alternative definition based on pair graphs

locale pair-query-graph = pair-graph +
fixes sel :: ("a x 'a) weight-fun
fixes ¢f :: 'a = real
assumes sel-sym: [tail G e; = head G eg; head G e; = tail G es] = sel e; =
sel ey
and not-arc-sel-1: e ¢ parcs G = sel e = 1
and sel-pos: sel e > 0
and sel-leg-1: sel e < 1
and pos-cards: © € pverts G = cfxz > 0

sublocale pair-query-graph C query-graph
by (unfold-locales) (auto simp: sel-sym not-arc-sel-1 sel-pos sel-leq-1 pos-cards)

context pair-query-graph
begin

lemma matching-sel f +— (Vz y. sel (z,y) = fzy)
using matching-sel-def sel-sym by fastforce

end

end

theory Directed-Tree-Additions
imports Graph-Additions Shortest-Path-Tree
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begin

6 Directed Tree Additions

context directed-tree
begin

lemma reachablel-not-reverse: t - py = —~y -t pz
by (metis awalk- Nil-iff reachable1-awalk reachablel-in-verts(2) trancl-trans unique-awalk-All)

lemma in-arcs-root: in-arcs T root = {}
using in-degree-root-zero by (auto simp: in-degree-def in-arcs-finite root-in-T)

lemma dominated-not-root: w = v = v # root
using adj-in-verts(1) reachablel-not-reverse reachable-from-root by blast

lemma dominated-notin-awalk: [u —p v; awalk r p u] = v ¢ set (awalk-verts r

p)
using awalk-verts-reachable-to reachable1-not-reverse by blast

lemma apath-if-awalk: awalk r p v = apath r p v
using apath-def awalk-cyc-decompE’ closed-w-imp-cycle cycle-free by blast

lemma awalk-verts-arcl-app: tail T e € set (awalk-verts r (p1Qe#p2))
using awalk-verts-arcl by auto

lemma apath-over-inarc-if-dominated:

assumes u =7 v

shows Jp. apath root p v A u € set (awalk-verts root p)
proof —

obtain p where p-def: awalk root p u using assms unique-awalk by force

obtain e where e-def: e € arcs T tail T e = u head T e = v using assms by
blast

then have awalk root (pQ|e]) v using p-def arc-implies-awalk by auto

then show ?thesis using apath-if-awalk e-def(2) awalk-verts-arc1l-app by blast
qed

end

locale finite-directed-tree = directed-tree + fin-digraph T

Undirected, connected graphs are acyclic iff the number of edges is |verts| -
1. Since undirected graphs are modelled as bidirected graphs the number of
edges is doubled.

locale undirected-tree = graph +
assumes connected: connected G
and acyclic: card (arcs G) < 2 x (card (verts G) — 1)
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6.1 Directed Trees of Connected Trees
6.1.1 Tranformation using BFS

Assumes existence of a conversion function (like BFS) that contains all reach-
able vertices.

locale bfs-tree = directed-tree T root + subgraph T G for G T root +
assumes root-in-G: root € verts G
and all-reachables: verts T = {v. root —* 7 v}
begin

lemma dom-in-G: v =7 v = u =g v
by (simp add: G.adj-mono sub-Q)

lemma tailT-eq-tailG: tail T = tail G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma headT-eq-headG: head T = head G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma verts-T-subset-G: verts T C verts G
by (metis awalk-sub-imp-awalk G.awalk-last-in-verts subset] unique-awalk)

lemma reachable-verts-G-subset-T':
Vzecverts G. root =% v = verts T 2 verts G
using all-reachables by (simp add: subset-eq)

lemma reachable-verts-G-eq-T: ¥V x€verts G. root —* o x = verts T = verts G
by (simp add: reachable-verts-G-subset-T set-eq-subset verts-T-subset-G)

lemma connected-verts-G-eq-T"

assumes graph G and connected G

shows verts T = verts G
proof —

have root € verts G using root-in-G by fast

then have V zcverts G. root —* = using graph.connected-iff-reachable assms(1,2)
by blast

then show ?thesis using reachable-verts-G-eq-T by blast
qed

lemma Suc-card-if-fin: fin-digraph G = I n. Suc n = card (verts Q)
using root-in-G card-0-eq not0-implies-Suc|of card (verts Q)] fin-digraph.finite-verts
by force

corollary Suc-card-if-graph: graph G = In. Suc n = card (verts G)
using Suc-card-if-fin graph.azioms(1) digraph.azioms(1) by blast

lemma con-Suc-card-arcs-eq-card-verts:
[graph G; connected G] = Suc (card (arcs T)) = card (verts G)
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using Suc-card-arcs-eq-card-verts connected-verts-G-eq-T Suc-card-if-graph by
fastforce

lemma reverse-arc-in-G:

assumes graph G and el € arcs T

shows Je2 € arcs G. head G e2 = tail G el A head G el = tail G e2
proof —

interpret graph G using assms(1) .

have el € arcs G using assms(2) sub-G by blast

then show ?thesis using sym-arcs symmetric-conv by fastforce
qged

lemma reverse-arc-notin-T"
assumes el € arcs T and head G e2 = tail G el and head G el = tail G €2
shows e2 ¢ arcs T
proof
assume asm: e2 € arcs T
then have tail T e2 —p head T e2 by (simp add: in-arcs-imp-in-arcs-ends)
then have head G el —p tail G el
using assms(2,3) sub-G by(simp add: Digraph-Component.subgraph-def com-
patible-def)
moreover have tail G el — 7 head G el
using assms(1) sub-G
by (simp add: Digraph-Component.subgraph-def compatible-def in-arcs-imp-in-arcs-ends)
ultimately show Fulse using reachablel-not-reverse by blast
qged

lemma reverse-arc-in-G-only:

assumes graph G and el € arcs T

shows Je2 € arcs G. head G e2 = tail G el A head G el = tail G e2 N e2 ¢
arcs T

using reverse-arc-in-G reverse-arc-notin-T assms by blast

lemma no-multi-T-G:
assumes el € arcs T and e2 € arcs T and el # e2
shows head G el # head G e2 V tail G el # tail G e2
using nomulti.no-multi-arcs assms sub-G
by (auto simp: Digraph-Component.subgraph-def compatible-def arc-to-ends-def)

lemma T-arcs-compl-fin:

assumes fin-digraph G and es C arcs T

shows finite {e2€ arcs G. (Jel € es. head G e2 = tail G el A head G el =
tail G e2)}

using assms fin-digraph.finite-arcs by fastforce

corollary T-arcs-compl-fin':

assumes graph G and es C arcs T

shows finite {e2€ arcs G. (Jel € es. head G e2 = tail G el A head G el =
tail G e2)}
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using assms T-arcs-compl-fin graph.azioms(1) digraph.axioms(1) by blast

lemma fin-verts-T: fin-digraph G = finite (verts T)
using fin-digraph.finite-verts finite-subset verts-T-subset-G by auto

corollary fin-verts-T". graph G = finite (verts T)
using fin-verts-T graph.azioms(1) digraph.azioms(1) by blast

lemma fin-arcs-T: fin-digraph G = finite (arcs T)
using fin-verts-T verts-finite-imp-arcs-finite by auto

corollary fin-arcs-T": graph G = finite (arcs T)
using fin-arcs-T graph.azioms(1) digraph.azioms(1) by blast

lemma T-arcs-compl-card-eq:

assumes graph G and es C arcs T

shows card {e2€ arcs G. (el € es. head G e2 = tail G el N head G el = tail
G e2)} = card es

using finite-subset|OF assms(2) fin-arcs-T'|OF assms(1)]] assms
proof (induction es rule: finite-induct)

case (insert el es)

let Zees = {2 € arcs G. Fel€insert el es. head G e2 = tail G el A head G el

= tail G e2}
let %es = {€2 € arcs G. Jel€es. head G e2 = tail G el N head G el = tail G
e2}

obtain e2 where e2-def: e2 € arcs G head G e2 = tail G el head G el = tail
G e2
using reverse-arc-in-G-only insert.prems by blast
then have e2-notin: e2 ¢ {e2 € arcs G. el €es. head G €2 = tail G el A head
G el = tail G e2}
using insert.hyps(2) insert.prems(2) no-multi-T-G by fastforce
have Ve3 € arcs G. e2 = e8 V head G e3 # head G e2 V tail G e8 # tail G e2
using e2-def (1) nomulti-digraph.no-multi-alt digraph.azioms(3) graph.azioms(1)
insert.prems(1)
by fast
then have %ees = insert e2 ?es using e2-def by auto
moreover have finite ?es using insert.prems T-arcs-compl-fin’ by simp
ultimately have card ?ees = Suc (card ?es) using e2-notin by simp
then show ?case using insert by force
qed(simp)

lemma arcs-graph-G-ge-2vertsT:

assumes graph G

shows card (arcs G) > 2 x (card (verts T) — 1)
proof —

let ?compl = {e2€ arcs G. (el € arcs T. head G e2 = tail G el A head G el
= tail G e2)}

interpret graph G by (rule assms)

have Vel € arcs T. Je2 € arcs G. head G €2 = tail G el N head G el = tail
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G e2
using reverse-arc-in-G-only assms by blast
have finl: finite ?compl by simp
have Zcompl N arcs T = {} using reverse-arc-notin-T by blast
then have card (?compl U arcs T) = card ?compl + card (arcs T)
using card-Un-disjoint|OF finl fin-arcs-T'] by blast
moreover have ?compl U arcs T C arcs G using sub-G by blast
moreover have finite (arcs G) by simp
ultimately have card ?compl + card (arcs T) < card (arcs G)
using card-mono|of arcs G 2compl U arcs T| by presburger
moreover have card (arcs T) = (card (verts T) — 1)
using Suc-card-arcs-eq-card-verts assms by (simp add: fin-verts-T")
ultimately show ?thesis using T-arcs-compl-card-eq by fastforce
qed

lemma arcs-graph-G-ge-2vertsG:
[graph G; connected G] = card (arcs G) > 2 * (card (verts G) — 1)
using arcs-graph-G-ge-2vertsT connected-verts-G-eq-T by simp

lemma arcs-undir-G-eq-2vertsG:
[undirected-tree G] = card (arcs G) = 2 * (card (verts G) — 1)
using arcs-graph-G-ge-2vertsG undirected-tree.acyclic undirected-tree.axioms(1)
undirected-tree.connected by fastforce

lemma undir-arcs-compl-un-eg-arcs:
assumes undirected-tree G
shows {e2¢€ arcs G. (el € arcs T. head G e2 = tail G el A head G el = tail
Ge2)} Uares T
= arcs G
proof —
let Zcompl = {e2€ arcs G. (Jel € arcs T. head G e2 = tail G el A head G el
= tail G e2)}
interpret undirected-tree G using assms(1) undirected-tree.axioms(1) by fast
have ?compl N arcs T = {} using reverse-arc-notin-T by blast
then have 0: card (?compl U arcs T) = card ¢compl + card (arcs T)
by (simp add: card-Un-disjoint fin-arcs-T' graph-azioms)
have card (arcs T) = (card (verts T) — 1)
using Suc-card-arcs-eq-card-verts by (simp add: fin-verts-T' graph-axioms)
then have card ?compl + card (arcs T) = 2 * (card (verts G) — 1)
using T-arcs-compl-card-eq connected-verts-G-eq-T connected by fastforce
moreover have card (arcs G) = 2 * (card (verts G) — 1)
using assms arcs-undir-G-eq-2vertsG by blast
moreover have ?compl U arcs T C arcs G using sub-G by blast
ultimately show %thesis by (simp add: 0 card-subset-eq)
qed

lemma split-fst-nonelem:

[-set zs C X; set xs C Y] = Jz ys zs. ysQa#zs=zs Na ¢ X Nz € Y A set
ys C X
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proof (induction xs)
case (Cons z zs)
then show ?case
proof(cases r € X)
case True
then obtain 2 ys zs where ys-def: ysQz#zs=xs 2 ¢ X 2z € Y set ys C X using
Cons by auto
then have set (z#ys) C X using True by simp
then show ?thesis using ys-def(1—3) append-Cons by fast
next
case Fulse
then show ?¢thesis using Cons.prems(2) by fastforce
qed
qed(simp)

lemma source-no-inarc-T: head G e = root = e ¢ arcs T
using in-arcs-root sub-G by (auto simp: Digraph-Component.subgraph-def com-
patible-def)

lemma source-all-outarcs-T:
[undirected-tree G; tail G e = root; e € arcs G| = e € ares T
using source-no-inarc-T undir-arcs-compl-un-eq-arcs by blast

lemma cas-G-T: G.cas = cas
using sub-G compatible-cas by fastforce

lemma awalk-G-T: u € verts T = set p C arcs T — G.awalk v p = awalk u p
using cas-G-T awalk-def G.awalk-def sub-G by fastforce

corollary awalk-G-T-root: set p C arcs T =—> G.awalk root p = awalk root p
using awalk-G-T root-in-T by blast

lemma awalk-verts-G-T: G.awalk-verts = awalk-verts
using sub-G compatible-awalk-verts by blast

lemma apath-sub-imp-apath: apath v p v = G.apath v p v
by (simp add: G.apath-def apath-def awalk-sub-imp-awalk awalk-verts-G-T)

lemma outarc-inT-if-head-not-inarc:

assumes undirected-tree G

and tail G e2 = v and e2 € arcs G and head G e2 # vand v =7 v
shows e2 € arcs T

proof (rule ccontr)

let Zcompl = {e2€ arcs G. (3 el € arcs T. head G e2 = tail G el A head G el
= tail G e2)}

assume e2 ¢ arcs T

then have e2 € ?compl using assms(3) undir-arcs-compl-un-eq-arcs|OF assms(1)]
by blast

then obtain el where el-def: el € arcs T head G €2 = tail T el head T el
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=
using sub-G assms(2) by (auto simp: Digraph-Component.subgraph-def com-
patible-def)
obtain e where e € arcs T tail T e = u head T e = v using assms(5) by blast
then show Fulse using two-in-arcs-contr el-def assms(4) by blast
qed

corollary reverse-arc-if-out-arc-undir:

[undirected-tree G; tail G e2 = v; e2 € arcs G; e2 ¢ arcs T; u —p v] = head
Ge2=u

using outarc-inT-if-head-not-inarc by blast

lemma undir-path-in-dir:
assumes undirected-tree G G.apath root p v
shows set p C arcs T
proof (rule ccontr)
assume asm: —set p C arcs T
have set p C arcs G using assms(2) G.apath-def G.awalk-def by fast
then obtain e p! p2 where e-def: pI Q e # p2 =pe ¢ arcs T e € arcs G set
pl Carcs T
using split-fst-nonelem|OF asm, of arcs G] by auto
show Fulse
proof(cases p1=[])
case True
then have tail G e = root using assms(2) e-def(1) G.apath-Cons-iff by auto
then show ?thesis using source-all-outarcs-T[OF assms(1)] e-def(2,3) by
blast
next
case Fulse
then have awalk-G: G.awalk root (p1 @ e # p2) v
using assms(2) pre-digraph.apath-def e-def(1) by fast
then have G.awalk root p1 (tail G €) by force
then have awalk-p1T: awalk root p1 (tail T e)
using e-def(4) sub-G cas-G-T root-in-T
by (simp add: Digraph-Component.subgraph-def pre-digraph.awalk-def com-
patible-def)
then have root —% p tail T e using False reachablel-awalkI by auto
then obtain u where u-def: u — 7 tail T e using tranclD2 by metis
have tail T e = tail G e
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
then have hd-e-u: head G e = u
using reverse-arc-if-out-arc-undir|OF assms(1)] u-def e-def(2,3) by simp
have head T (last p1) = tail T e using False awalk-p1T awalk-verts-conv by
fastforce
then have tail T (last p1) = u
using Fualse u-def e-def(4) two-in-arcs-contr last-in-set by fastforce
then have 0: tail G (last p1) = u
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
obtain ps where ps @ [last p1] = pl using False append-butlast-last-id by
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auto
then have ps-def: ps @Q [last p1] Q@ e # p2 = p using e-def by auto
then have awalk-G: G.awalk root (ps Q [last p1] @ e # p2) v
using assms(2) by (simp add: pre-digraph.apath-def)
have —(distinct (G.awalk-verts root p))
using G.not-distinct-if-head-eq-tail[OF 0 hd-e-u awalk-G] ps-def by simp
then show ?thesis using assms(2) G.apath-def by blast
qed
qed

lemma source-reach-all: [graph G; connected G; v € verts G] = root —* g v
by (simp add: graph.connected-iff-reachable root-in-Q)

lemma apath-if-in-verts: [graph G; connected G; v € verts G] = Ip. G.apath
00t P v
using G.reachable-apath by (simp add: graph.connected-iff-reachable root-in-Q)

lemma undir-unique-awalk: [undirected-tree G; v € verts G] = 3p. G.apath root
P
using undir-path-in-dir apath-if-in-verts awalk-G-T-root Suc-card-if-graph
by (metis G.awalkI-apath unique-awalk-All undirected-tree.axioms(1) undirected-tree.connected)

lemma apath-in-dir-if-apath-G:

assumes undirected-tree G G.apath oot p v

shows apath root p v

using undir-path-in-dir[OF assms] assms(2) G.awalkI-apath apath-if-awalk awalk-G-T-root
by force

end

locale bfs-locale =

fixes bfs :: (‘a, 'b) pre-digraph = 'a = ('a, 'b) pre-digraph

assumes bfs-correct: [wf-digraph G; r € verts G; bfs G r = T| = bfs-tree G T
r

locale undir-tree-todir = undirected-tree G + bfs-locale bfs
for G :: (“a, 'b) pre-digraph
and bfs :: (‘a, 'b) pre-digraph = 'a = ('a, 'b) pre-digraph
begin
abbreviation dir-tree-r :: '
dir-tree-r = bfs G

a = ('a, 'b) pre-digraph where

lemma directed-tree-r: r € verts G = directed-tree (dir-tree-r r) r
using bfs-correct bfs-tree.axioms(1) wf-digraph-azioms by fast

lemma bfs-dir-tree-r: r € verts G = bfs-tree G (dir-tree-r r) r
using bfs-correct wf-digraph-axioms by blast
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lemma dir-tree-r-dom-in-G: r € verts G = U — gjp_tree-r r V = U =G V
using bfs-dir-tree-r bfs-tree.dom-in-G by fast

lemma verts-nempty: verts G # {}
using connected connected-iff-reachable by auto

lemma card-gt0: card (verts G) > 0
using verts-nempty by auto

lemma Suc-card-1-eq-card[intro]: Suc (card (verts G) — 1) = card (verts G)
using card-gt0 by simp

lemma verts-dir-tree-r-eq[simp|: r € verts G = verts (dir-tree-r r) = verts G
using bfs-tree.connected-verts-G-eq-T[OF bfs-dir-tree-r graph-azioms connected)
by blast

lemma tail-dir-tree-r-eq: r € verts G = tail (dir-tree-r r) e = tail G e
using bfs-tree.tailT-eq-tail G{OF bfs-dir-tree-r] by simp

lemma head-dir-tree-r-eq: v € verts G = head (dir-tree-r r) e = head G e
using bfs-tree.headT-eq-head G[OF bfs-dir-tree-r] by simp

lemma awalk-verts-G-T: r € verts G = awalk-verts = pre-digraph.awalk-verts
(dir-tree-r 1)
using bfs-tree.awalk-verts-G-T bfs-dir-tree-r by fastforce

lemma dir-tree-r-all-reach: [r € verts G; v € verts G] = r —=* gir_tree-r 1 ¥
using directed-tree.reachable-from-root directed-tree-r verts-dir-tree-r-eq by fast

lemma fin-verts-dir-tree-r-eq: v € verts G = finite (verts (dir-tree-r r))
using verts-dir-tree-r-eq by auto

lemma fin-arcs-dir-tree-r-eq: r € verts G = finite (arcs (dir-tree-r r))
using fin-verts-dir-tree-r-eq directed-tree.verts-finite-imp-arcs-finite directed-tree-r
by fast

lemma fin-directed-tree-r: r € verts G = finite-directed-tree (dir-tree-r r) r
unfolding finite-directed-tree-def fin-digraph-def fin-digraph-azioms-def
using directed-tree.axioms(1) directed-tree-r fin-arcs-dir-tree-r-eq verts-dir-tree-r-eq
by force

lemma arcs-eq-2verts: card (arcs G) = 2 * (card (verts G) — 1)

using bfs-tree.arcs-undir-G-eq-2vertsG[OF bfs-dir-tree-r undirected-tree-axioms
card-gt0

by fastforce

lemma arcs-compl-un-eq-arcs:

r € verts G =
{€2 € arcs G. Fel€arcs (dir-tree-r r). head G e2 = tail G el A head G el =
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tail G e2}
U arcs (dir-tree-r r) = arcs G
using bfs-tree.undir-arcs-compl-un-eq-arcs| OF bfs-dir-tree-r undirected-tree-axioms]
by blast

lemma unique-apath: Ju € verts G; v € verts G] = 3!p. apath u p v
using bfs-tree.undir-unique-awalk[OF bfs-dir-tree-r undirected-tree-axioms] by
blast

lemma apath-in-dir-if-apath-G: apath r p v = pre-digraph.apath (dir-tree-r r) r

P v
using bfs-tree.apath-in-dir-if-apath- G bfs-dir-tree-r undirected-tree-axioms awalkI-apath
by fast

lemma apath-verts-sub-awalk:
[apath u p1 v; awalk u p2 v] = set (awalk-verts u p1) C set (awalk-verts u p2)
using unique-apath-verts-sub-awalk unique-apath by blast

lemma dir-tree-arcl-in-apath:
assumes U — gir_iree-r r ¥ and r € verts G
shows Jp. apath r p v A u € set (awalk-verts r p)
using directed-tree.apath-over-inarc-if-dominated| OF directed-tree-r[OF assms(2)]
assms(1)]
bfs-tree.apath-sub-imp-apath bfs-dir-tree-r[OF assms(2)] bfs-tree.awalk-verts-G-T
by fastforce

lemma dir-tree-arc1-in-awalk:
(v = gir-tree-r r v; T € verts G; awalk r p v] = u € set (awalk-verts r p)
using dir-tree-arc1-in-apath apath-verts-sub-awalk by blast

end

6.1.2 Tranformation using PSP-Trees

Assumes existence of a conversion function that contains the n nearest nodes.
This sections proves that such a generated tree contains all vertices in a
connected graph.

locale find-psp-tree-locale =

fixes find-psp-tree :: ('a, 'b) pre-digraph = (b = real) = 'a = nat = ('a, 'b)
pre-digraph

assumes find-psp-tree: [r € verts G; find-psp-tree G wrn = T] = psp-tree G
Twrn

context psp-tree
begin

lemma dom-in-G: v =7 v = u =g v
by (simp add: G.adj-mono sub-Q)
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lemma tailT-eq-tailG: tail T = tail G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma headT-eq-headG: head T = head G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma verts-T-subset-G: verts T C verts G
by (metis awalk-sub-imp-awalk G.awalk-last-in-verts subset] unique-awalk)

lemma reachable-verts-G-subset-T":
assumes fin-digraph G
and Vzcverts G. source =* g «
and Suc n = card (verts G)
shows verts T D wverts G
proof(cases card (verts G))
case (
have finite (verts G) using fin-digraph.finite-verts graph-def assms(1) by blast
then show %thesis using assms(3) 0 by simp
next
case (Suc n)
then have r-in-G: source € verts G using source-in-G assms by blast
show ?thesis
proof(cases n=0)
case True
then have card (verts G) = 1 using assms(3) Suc by auto
then have verts G = {source} using mem-cardl-singleton r-in-G by fast
then show ?thesis
using ex-sp-eq-dia in-sccs-verts-conv-reachable insert-not-empty G.reachable-in-verts(1)
by (metis G.reachable-mono non-empty reachable-refl sccs-verts-subsets sin-
gleton-iff sub-Q)
next
case Fulse
then obtain n’ where n'-def[simp]: n’ = n — 1 A n # n’ by simp
show ?thesis
proof (rule ccontr)
assume —(verts T 2 verts Q)
then have strict-sub: verts T C verts G using psp-tree-axioms verts-T-subset-G
by fast
then obtain = where 2-def: z ¢ verts T A z € verts G by blast
then have z-reach: source =* 5 = using assms(2) by simp
have finite (verts G) using fin-digraph.finite-verts graph-def assms(1) by
blast
with strict-sub have T-lt-G: card (verts T) < card (verts G) by (simp add:
psubset-card-mono)
then have T-le-n: card (verts T) < n using Suc assms(3) by simp
have G.n-nearest-verts w source n (verts T')
using Suc assms(3) partial by simp
then have 1: G.n-nearest-verts w source (Suc n') (verts T) using n’-def by
simp
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then obtain U where U-def[simp]: U C verts T A G.n-nearest-verts w
source n' U
using Zero-not-Suc diff-Suc-1 equalityFE G.nnvs-ind-cases subset-insert] by
metis
then show Fulse
proof (cases G.unvisited-verts source U # {})
case True
then have card U > Suc n’ using U-def fin-digraph.nnvs-card-ge-n assms(1)
by fast
then have U-Suc-n": card U = Suc n’ using 1 U-def G.nnvs-card-le-n by
force
have G.nearest-vert w source U € G.unvisited-verts source U
using True assms(1) by (simp add: fin-digraph.nearest-vert-unvis)
then have G.nearest-vert w source U ¢ U using G.unwvisited-verts-def by
stmp
then have U-ins-Suc2-n": card (insert (G.nearest-vert w source U) U) =
Suc (Suc n')
using U-Suc-n’ card-Suc-eq by blast
have card (verts T) < Suc n’ using T-le-n by simp
moreover have card U < card (verts T) by (simp add: card-mono)
ultimately have T-Suc-n’: card (verts T) = Suc n' using U-Suc-n’ by
stmp
then have U-e¢-T: U = verts T by (simp add: U-Suc-n' card-seteq)
have card (insert (G.nearest-vert w source U) U) = card (verts T)
using True U-eq-T U-ins-Suc2-n’ 1 by (metis fin-digraph.nnvs-card-eg-n
assms(1))
then show %thesis using T-Suc-n’ U-ins-Suc2-n’ by linarith
next
case Fulse
have z ¢ U using z-def U-def by blast
then have G.unvisited-verts source U # {}
using G.unvisited-verts-def z-def xz-reach by blast
then show ?thesis using Fulse by simp
qed
qed
qed
qed

lemma reachable-verts-G-eq-T:

[fin-digraph G; ¥ z€verts G. source —* ; z; Suc n = card (verts G)] = wverts
T = verts G

by (simp add: reachable-verts-G-subset-T set-eq-subset verts-T-subset-G)

lemma connected-verts-G-eq-T"
assumes graph G
and connected G
and Suc n = card (verts G)
shows verts T = verts G
proof —
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have 0: fin-digraph G using assms(1) graph.azioms(1) digraph.azioms(1) by
blast

have source € verts G using source-in-G by fast

then have V zcverts G. source —* ¢y x using graph.connected-iff-reachable assms(1,2)
by blast

then show %thesis using assms(3) reachable-verts-G-eq-T 0 by blast
qed

lemma con-Suc-card-arcs-eq-card-verts:
assumes graph G
and connected G
and Suc n = card (verts G)
shows Suc (card (arcs T)) = card (verts G)
using Suc-card-arcs-eq-card-verts connected-verts-G-eq-T assms by fastforce

lemma reverse-arc-in-G:

assumes graph G and el € arcs T

shows Je2 € arcs G. head G e2 = tail G el A head G el = tail G e2
proof —

interpret graph G using assms(1) .

have el € arcs G using assms(2) sub-G by blast

then show ?thesis using sym-arcs symmetric-conv by fastforce
qed

lemma reverse-arc-notin-T"
assumes el € arcs T and head G e2 = tail G el and head G el = tail G €2
shows e2 ¢ arcs T
proof
assume asm: e2 € arcs T
then have tail T e2 — head T e2 by (simp add: in-arcs-imp-in-arcs-ends)
then have head G el — 1 tail G el
using assms(2,3) sub-G by(simp add: Digraph-Component.subgraph-def com-
patible-def)
moreover have tail G el — 7 head G el
using assms(1) sub-G
by (simp add: Digraph-Component.subgraph-def compatible-def in-arcs-imp-in-arcs-ends)
ultimately show Fulse using reachablel-not-reverse by blast
qged

lemma reverse-arc-in-G-only:

assumes graph G and el € arcs T

shows Je2 € arcs G. head G e2 = tail G el A head G el = tail G e2 N e2 ¢
arcs T

using reverse-arc-in-G reverse-arc-notin-T assms by blast

lemma no-multi-T-G:
assumes el € arcs T and e2 € arcs T and el # e2
shows head G el # head G e2 V tail G el # tail G e2

using nomulti.no-multi-arcs assms sub-G
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by (auto simp: Digraph-Component.subgraph-def compatible-def arc-to-ends-def)

lemma T-arcs-compl-fin:

assumes fin-digraph G and es C arcs T

shows finite {e2€ arcs G. (Jel € es. head G e2 = tail G el A head G el =
tail G e2)}

using assms fin-digraph.finite-arcs by fastforce

corollary T-arcs-compl-fin':

assumes graph G and es C arcs T

shows finite {e2€ arcs G. (Jel € es. head G €2 = tail G el A head G el =
tail G e2)}

using assms T-arcs-compl-fin graph.azioms(1) digraph.axioms(1) by blast

lemma T-arcs-compl-card-eq:

assumes graph G and es C arcs T

shows card {e2€ arcs G. (el € es. head G e2 = tail G el N head G el = tail
G e2)} = card es
using finite-subset|OF assms(2) finite-arcs] assms proof (induction es rule: fi-
nite-induct)

case (insert el es)

let Zees = {2 € arcs G. Fel€insert el es. head G e2 = tail G el A head G el

= tail G e2}
let %es = {€2 € arcs G. Jel€es. head G e2 = tail G el N head G el = tail G
e2}

obtain e2 where e2-def: e2 € arcs G head G e2 = tail G el head G el = tail
G e2
using reverse-arc-in-G-only insert.prems by blast
then have e2-notin: e2 ¢ {e2 € arcs G. el €es. head G €2 = tail G el A head
G el = tail G e2}
using insert.hyps(2) insert.prems(2) no-multi-T-G by fastforce
have Ve3 € arcs G. e2 = e8 V head G e3 # head G e2 V tail G e8 # tail G e2
using e2-def (1) nomulti-digraph.no-multi-alt digraph.azioms(3) graph.azioms(1)
insert.prems(1)
by fast
then have %ees = insert e2 ?es using e2-def by auto
moreover have finite ?es using insert.prems T-arcs-compl-fin’ by simp
ultimately have card ?ees = Suc (card ?es) using e2-notin by simp
then show ?case using insert by force
qed(simp)

lemma arcs-graph-G-ge-2vertsT:

assumes graph G

shows card (arcs G) > 2 x (card (verts T) — 1)
proof —

let ?compl = {e2€ arcs G. (el € arcs T. head G e2 = tail G el A head G el
= tail G e2)}

interpret graph G by (rule assms)

have Vel € arcs T. Je2 € arcs G. head G €2 = tail G el N head G el = tail
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G e2
using reverse-arc-in-G-only assms by blast
have ?compl N arcs T = {} using reverse-arc-notin-T by blast
then have card (?compl U arcs T) = card ?compl + card (arcs T) by (simp
add: card-Un-disjoint)
moreover have ?compl U arcs T C arcs G using sub-G by blast
moreover have finite (arcs G) by simp
ultimately have card ?compl + card (arcs T') < card (arcs G)
using card-mono|of arcs G ?compl U arcs T| by presburger
moreover have card (arcs T) = (card (verts T) — 1)
using Suc-card-arcs-eq-card-verts assms by fastforce
ultimately show ?thesis using T-arcs-compl-card-eq by fastforce
qed

lemma arcs-graph-G-ge-2vertsG:

[graph G; connected G; Suc n = card (verts G)] = card (arcs G) > 2 * (card
(verts G) — 1)

using arcs-graph-G-ge-2vertsT connected-verts-G-eq-T by simp

lemma arcs-undir-G-eq-2vertsG:
[undirected-tree G; Suc n = card (verts G)] = card (arcs G) = 2 * (card (verts
G)—-1)
using arcs-graph-G-ge-2vertsG undirected-tree.acyclic undirected-tree.axzioms(1)
undirected-tree.connected by fastforce

lemma undir-arcs-compl-un-eg-arcs:
assumes undirected-tree G and Suc n = card (verts Q)
shows {e2¢€ arcs G. (Jel € arcs T. head G e2 = tail G el A head G el = tail
Ge2)yUares T
= arcs G
proof —
let ?compl = {e2¢€ arcs G. (el € arcs T. head G e2 = tail G el A head G el
= tail G e2)}
interpret undirected-tree G using assms(1) undirected-tree.axioms(1) by fast
have ?compl N arcs T = {} using reverse-arc-notin-T by blast
then have 0: card (?compl U arcs T) = card ?compl + card (arcs T)
by (simp add: card-Un-disjoint)
have card (arcs T) = (card (verts T) — 1) using Suc-card-arcs-eq-card-verts
assms by fastforce
then have card ?compl + card (arcs T) = 2 * (card (verts G) — 1)
using T-arcs-compl-card-eq connected-verts-G-eq-T connected assms(2) by fast-
force
moreover have card (arcs G) = 2 * (card (verts G) — 1)
using assms arcs-undir-G-eq-2vertsG by blast
moreover have ?compl U arcs T C arcs G using sub-G by blast
ultimately show %thesis by (simp add: 0 card-subset-eq)
qed

lemma split-fst-nonelem:
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[-set zs C X; set s C Y] = Jz ys zs. ysQaHzs=zs N\a ¢ X Nz € Y A set
ys € X
proof (induction zs)
case (Cons z xs)
then show ?case
proof(cases z € X)
case True
then obtain z ys zs where ys-def: ysQz#zs=zs z ¢ X z € Y set ys C X using
Cons by auto
then have set (z#ys) C X using True by simp
then show ?thesis using ys-def(1—3) append-Cons by fast
next
case Fulse
then show %thesis using Cons.prems(2) by fastforce
qed
qed(simp)

lemma source-no-inarc-T: head G e = source => e ¢ arcs T
using in-arcs-root sub-G by (auto simp: Digraph-Component.subgraph-def com-
patible-def)

lemma source-all-outarcs-T:

[undirected-tree G; Suc n = card (verts G); tail G e = source; e € arcs G| =
e € arcs T

using source-no-inarc-T undir-arcs-compl-un-eq-arcs by blast

lemma cas-G-T: G.cas = cas
using sub-G compatible-cas by fastforce

lemma awalk-G-T: u € verts T = set p C arcs T = G.awalk u p = awalk u p
using cas-G-T awalk-def G.awalk-def sub-G by fastforce

corollary awalk-G-T-root: set p C arcs T — G.awalk source p = awalk source p
using awalk-G-T root-in-T by blast

lemma awalk-verts-G-T: G.awalk-verts = awalk-verts
using sub-G compatible-awalk-verts by blast

lemma apath-sub-imp-apath: apath v p v = G.apath v p v
by (simp add: G.apath-def apath-def awalk-sub-imp-awalk awalk-verts-G-T')

lemma outarc-inT-if-head-not-inarc:

assumes undirected-tree G and Suc n = card (verts Q)

and tail G e2 = v and e2 € arcs G and head G e2 # vand v =7 v
shows e2 € arcs T

proof (rule ccontr)

let Zcompl = {e2€ arcs G. (el € arcs T. head G e2 = tail G el A head G el
= tail G e2)}

assume e2 ¢ arcs T
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then have e2 € ?compl using assms(4) undir-arcs-compl-un-eq-arcs| OF assms(1—2)]
by blast

then obtain el where el-def: el € arcs T head G €2 = tail T el head T el
=

using sub-G assms(3) by (auto simp: Digraph-Component.subgraph-def com-

patible-def)

obtain e where e € arcs T tail T e = u head T e = v using assms(6) by blast

then show Fulse using two-in-arcs-contr el-def assms(5) by blast
qed

corollary reverse-arc-if-out-arc-undir:
[undirected-tree G; Suc n = card (verts G); tail G e2 = v; e2 € arcs G; e2 ¢
arcs T; u —p v]
= head G e2 = u
using outarc-inT-if-head-not-inarc by blast

lemma undir-path-in-dir:
assumes undirected-tree G Suc n = card (verts G) G.apath source p v
shows set p C arcs T
proof (rule ccontr)
assume asm: —set p C arcs T
have set p C arcs G using assms(3) G.apath-def G.awalk-def by fast
then obtain e p! p2 where e-def: pI Qe # p2 =pe ¢ arcs T e € arcs G set
pl C arcs T
using split-fst-nonelem|OF asm, of arcs G] by auto
show Fulse
proof (cases p1=]])
case True
then have tail G e = source using assms(3) e-def(1) G.apath-Cons-iff by
auto
then show ?thesis using source-all-outarcs-T[OF assms(1—2)] e-def(2,3) by
blast
next
case Fulse
then have awalk-G: G.awalk source (p1 @ e # p2) v
using assms(3) pre-digraph.apath-def e-def(1) by fast
then have G.awalk source p1 (tail G e) by force
then have awalk-p1T: awalk source p1 (tail T e)
using e-def(4) sub-G cas-G-T root-in-T
by (simp add: Digraph-Component.subgraph-def pre-digraph.awalk-def com-
patible-def)
then have source —* p tail T e using False reachablel-awalkI by auto
then obtain u where u-def: u — 7 tail T e using tranclD2 by metis
have tail T e = tail G e
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
then have hd-e-u: head G e = u
using reverse-arc-if-out-arc-undir| OF assms(1—2)] u-def e-def(2,3) by simp
have head T (last p1) = tail T e using Fualse awalk-p1T awalk-verts-conv by
fastforce
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then have tail T (last p1) =
using False u-def e-def(4) two-in-arcs-contr last-in-set by fastforce
then have 0: tail G (last p1) = u
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
obtain ps where ps @ [last pI] = pl using Fualse append-butlast-last-id by
auto
then have ps-def: ps @Q [last p1] Q@ e # p2 = p using e-def by auto
then have awalk-G: G.awalk source (ps Q [last p1] @ e # p2) v
using assms(3) by (simp add: pre-digraph.apath-def)
have —(distinct (G.awalk-verts source p))
using G.not-distinct-if-head-eq-tail|OF 0 hd-e-u awalk-G] ps-def by simp
then show ?thesis using assms(3) G.apath-def by blast
qed
qed

lemma source-reach-all: [graph G; connected G; v € verts G] = source —* v
by (simp add: graph.connected-iff-reachable source-in-G)

lemma apath-if-in-verts: [graph G; connected G; v € verts G] = Ip. G.apath
source p v
using G.reachable-apath by (simp add: graph.connected-iff-reachable source-in-G)

lemma undir-unique-awalk:
[undirected-tree G; Suc n = card (verts G); v € verts G] = 3!p. G.apath source
p v
using undir-path-in-dir apath-if-in-verts awalk-G-T-root
by (metis G.awalkI-apath unique-awalk-All undirected-tree.axioms(1) undirected-tree.connected)

lemma apath-in-dir-if-apath-G:

assumes undirected-tree G Suc n = card (verts G) G.apath source p v

shows apath source p v

using undir-path-in-dir[OF assms] assms(3) G.awalkI-apath apath-if-awalk awalk-G-T-root
by force

end

locale undir-tree-todir-psp = undirected-tree G + find-psp-tree-locale to-psp

for G :: ('a, 'b) pre-digraph

and to-psp :: ('a, 'b) pre-digraph = ('b = real) = 'a = nat = ('a, 'b) pre-digraph
begin
abbreviation dir-tree-r :: 'a = (‘a, 'b) pre-digraph where
dir-tree-r r = to-psp G (A-. 1) r (szte Set.card (verts G) — 1)

lemma directed-tree-r: r € verts G = directed-tree (dir-tree-r r) r
using find-psp-tree psp-tree.axioms(1) by fast

lemma psp-dir-tree-r:
r € verts G = psp-tree G (dir-tree-r r) (A-. 1) r (Finite-Set.card (verts G) —
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1)

using find-psp-tree by blast

lemma dir-tree-r-dom-in-G: v € verts G = U = giptree-p r V = U =G U
using psp-tree.dom-in-G psp-dir-tree-r by fast

lemma verts-nempty: verts G # {}
using connected connected-iff-reachable by auto

lemma card-gt0: card (verts G) > 0
using verts-nempty by auto

lemma Suc-card-1-eq-card[intro]: Suc (card (verts G) — 1) = card (verts G)
using card-gt0 by simp

lemma verts-dir-tree-r-eq[simp: r € verts G = wverts (dir-tree-r r) = verts G
using psp-tree.connected-verts-G-eq-T[OF psp-dir-tree-r graph-azxioms connected)
by blast

lemma tail-dir-tree-r-eq: r € verts G = tail (dir-tree-r r) e = tail G e
using psp-tree.tailT-eq-tail G{OF psp-dir-tree-r| by simp

lemma head-dir-tree-r-eq: v € verts G = head (dir-tree-r r) e = head G e
using psp-tree.head T-eq-headG|[OF psp-dir-tree-r] by simp

lemma awalk-verts-G-T: r € verts G = awalk-verts = pre-digraph.awalk-verts
(dir-tree-r r)
using psp-tree.awalk-verts-G-T psp-dir-tree-r by fastforce

lemma dir-tree-r-all-reach: [r € verts G; v € verts G| = r =" gir_tree-r ¥
using directed-tree.reachable-from-root directed-tree-r verts-dir-tree-r-eq by fast

lemma fin-verts-dir-tree-r-eq: v € verts G = finite (verts (dir-tree-r r))
using verts-dir-tree-r-eq by auto

lemma fin-arcs-dir-tree-r-eq: r € verts G = finite (arcs (dir-tree-r r))
using fin-verts-dir-tree-r-eq directed-tree.verts-finite-imp-arcs-finite directed-tree-r
by fast

lemma fin-directed-tree-r: r € verts G = finite-directed-tree (dir-tree-r r) r
unfolding finite-directed-tree-def fin-digraph-def fin-digraph-azioms-def
using directed-tree.axioms(1) directed-tree-r fin-arcs-dir-tree-r-eq verts-dir-tree-r-eq
by force

lemma arcs-eq-2verts: card (arcs G) = 2 * (card (verts G) — 1)

using psp-tree.arcs-undir-G-eq-2verts G| OF psp-dir-tree-r undirected-tree-axioms
card-gt0

by fastforce
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lemma arcs-compl-un-eq-arcs:
r € verts G =
{e2 € arcs G. Jel€arcs (dir-tree-r r). head G e2 = tail G el N head G el =
tail G e2}
U ares (dir-tree-r ) = arcs G
using psp-tree.undir-arcs-compl-un-eq-arcs| OF psp-dir-tree-r undirected-tree-azioms)
by blast

lemma unique-apath: [u € verts G; v € verts G] = 3!p. apath u p v
using psp-tree.undir-unique-awalk|OF psp-dir-tree-r undirected-tree-axioms] by
blast

lemma apath-in-dir-if-apath-G: apath r p v = pre-digraph.apath (dir-tree-r r) r

pv
using psp-tree.apath-in-dir-if-apath- G psp-dir-tree-r undirected-tree-azioms awalkI-apath
by fast

lemma apath-verts-sub-awalk:
lapath w p1 v; awalk u p2 v] = set (awalk-verts u p1) C set (awalk-verts u p2)
using unique-apath-verts-sub-awalk unique-apath by blast

lemma dir-tree-arcl-in-apath:
assumes U — g tree-r ¥ and r € verts G
shows Jp. apath r p v A u € set (awalk-verts r p)
using directed-tree.apath-over-inarc-if-dominated| OF directed-tree-r[OF assms(2))
assms(1)]
psp-tree.apath-sub-imp-apath psp-dir-tree-r[OF assms(2)] psp-tree.awalk-verts-G-T
by fastforce

lemma dir-tree-arci-in-awalk:
(v = gir-tree-r r v; T € verts G; awalk v p v] = u € set (awalk-verts r p)
using dir-tree-arc1-in-apath apath-verts-sub-awalk by blast

end

6.2 Additions for Induction on Directed Trees
lemma fin-dir-tree-single:

finite-directed-tree (verts = {r}, arcs = {}, tail = t, head = h)) r
by unfold-locales (fastforce simp: pre-digraph.cas.simps(1) pre-digraph.awalk-def )+

corollary dir-tree-single: directed-tree (verts = {r}, arcs = {}, tail = t, head =
h) r
by (simp add: fin-dir-tree-single finite-directed-tree.axioms(1))

lemma split-list-not-last: [y € set zs; y # last xs] = Jas bs. as Q y # bs = xs

A bs # |
using split-list by fastforce
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lemma split-last-eq: Jas @ y # bs = zs; bs # []] = last bs = last zs
by auto

lemma split-list-last-sep: [y € set zs; y # last xs] = Jas bs. as Q y # bs Q [last
xs] = xs
using split-list-not-last[of y xs] split-last-eq append-butlast-last-id by metis

context directed-tree
begin

lemma root-if-all-reach: Vv € verts T. v —*p v = z = 100t
proof (rule ccontr)
assume assms: Vv € verts T. £ =" p v # root
then have z —* p root by (simp add: root-in-T)
then have 3z.  —  root using assms(2) by (auto elim: trancl.cases)
then show Fulse using dominated-not-root by blast
qed

lemma add-leaf-cas-preserv:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and set p C arcs T and cas z p y
shows pre-digraph.cas T' z p y
using assms proof (induction p arbitrary: z)
case (Cons p ps)
then have tail T' p = z by auto
moreover have pre-digraph.cas T’ (head T’ p) ps y using Cons by force
ultimately show ?case using pre-digraph.cas.simps(2) by fast
qed(simp add: pre-digraph.cas.simps(1))

lemma add-leaf-awalk-preserv:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and awalk z p y
shows pre-digraph.awalk T' = p y
using assms add-leaf-cas-preserv unfolding pre-digraph.awalk-def by auto

lemma add-leaf-awalk-T:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and z € verts T
shows 3 p. pre-digraph.awalk T' root p x
using add-leaf-awalk-preserv assms unique-awalk[of x] by blast

lemma (in pre-digraph) cas-append-if:
[cas x ps w; tail G p = u; head G p = v] = cas z (psQ[p]) v
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using cas-append-iff[of x ps] by (metis append.right-neutral cas.simps)

lemma add-leaf-awalk-T-new:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and u € verts T
shows 3 p. pre-digraph.awalk T' root p v
proof —
obtain ps where ps-def: root € verts T' set ps C arcs T' pre-digraph.cas T'
root ps u
using add-leaf-awalk-T assms unfolding pre-digraph.awalk-def by blast
have pre-digraph.cas T' root (psQ[a]) v
using pre-digraph.cas-append-if|[OF ps-def(3)] assms(1) by simp
moreover have set (psQ[a]) C arcs T’ using ps-def(2) assms(1) by simp
ultimately show ?thesis using ps-def(1) unfolding pre-digraph.awalk-def by
blast
qed

lemma add-leaf-cas-orig:
fixes u v a
defines T’ = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and set p C arcs T and pre-digraph.cas T' z p y
shows cas z p y
using assms proof (induction p arbitrary: x)
case (Cons p ps)
then have tail T' p = z using pre-digraph.cas.simps(2) by fast
then have tail T p = z using Cons.prems(1,2) Cons.hyps(2) by auto
moreover have head T' p = head T p using Cons.prems(1,2) Cons.hyps(2)
by auto
moreover have pre-digraph.cas T' (head T’ p) ps y
using Cons.prems(3) pre-digraph.cas.simps(2) by fast
ultimately show ?case using Cons by simp
qed(simp add: pre-digraph.cas.simps(1))

lemma add-leaf-awalk-orig-aux:

fixes u v a

defines T' = (verts = verts T U {v}, arcs = arcs T U {a},

tail = (tail T)(a := u), head = (head T)(a := v))

assumes a ¢ arcs T and z € verts T and set p C arcs T and pre-digraph.awalk
T'zpy

shows awalk z p y

using assms add-leaf-cas-orig unfolding pre-digraph.awalk-def by blast

lemma add-leaf-cas-zT-if-yT":
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a = u), head = (head T)(a := v))

98



assumes u € verts T and y € verts T and set p C arcs T' and pre-digraph.cas
T'zpy

shows z € verts T

using assms by (induction p arbitrary: x) (auto simp: pre-digraph.cas.simps)

lemma add-leaf-cas-xT-arcsT-if-yT:

fixes u v a

defines T' = (verts = verts T U {v}, arcs = arcs T U {a},

tail = (tail T)(a := u), head = (head T)(a := v))

assumes v ¢ verts T and y € verts T and set p C arcs T' and pre-digraph.cas
T'zpy

shows set p C arcs T and z € verts T

using assms by (induction p arbitrary: ) (auto simp: pre-digraph.cas.simps)

lemma add-leaf-awalk-orig:
fixes u v a
defines T’ = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes a ¢ arcs T and v ¢ verts T and y € verts T and pre-digraph.awalk
T'zpy
shows awalk z p y
proof —
have 0: z € verts T set p C arcs T
using assms add-leaf-cas-xT-arcsT-if-yT unfolding pre-digraph.awalk-def by
blast+
then show ?thesis using add-leaf-awalk-orig-auz assms by blast
qged

lemma add-leaf-awalk-orig-unique:

fixes u v a

defines T' = (verts = verts T U {v}, arcs = arcs T U {a},

tail = (tail T)(a := u), head = (head T)(a := v)|
assumes a ¢ arcs T and v ¢ verts T and y € verts T
and pre-digraph.awalk T' root ps y and pre-digraph.awalk T' root es y
shows es = ps

using add-leaf-awalk-orig| OF assms(2,3)] assms(1,4,5,6) unique-awalk by fast-

force

lemma add-leaf-awalk-new-split’:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v)|
assumes v ¢ verts T and p # [ and pre-digraph.awalk T x p v
shows Jas. as Q [a] = p
using assms proof (induction p arbitrary: x)
case (Cons p ps)
then show ?case
proof (cases ps = |[])
case True
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then have head T' p = v
using Cons.prems(3) by (simp add: pre-digraph.awalk-def pre-digraph. cas.simps)
then have head T'p = v V p = a using Cons.hyps(2) by auto
moreover have p € arcs TV p = a
using Cons.hyps(2) Cons.prems(3) by (auto simp: pre-digraph.awalk-def)
ultimately show ?thesis using Cons.prems(1) head-in-verts True by blast
next
case Fulse
then have pre-digraph.cas T' (head T' p) ps v
using Cons.prems(3) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have pre-digraph.awalk T' (head T' p) ps v
using Cons.hyps(2) Cons.prems(3) unfolding pre-digraph.awalk-def by auto
then obtain as where as Q [a] = ps using Cons Fulse by blast
then show ?thesis by auto
qed
qed(simp)

lemma add-leaf-awalk-new-split:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v)|
assumes v ¢ verts T and u € verts T and p # [| and pre-digraph.awalk T' x
p v
shows Jas. as @ [a] = p A pre-digraph.awalk T' z as u
using assms proof (induction p arbitrary: z)
case (Cons p ps)
then show ?case
proof(cases ps = [])
case True
then have head T' p = v
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have head T p = v V p = a using Cons.hyps(2) by auto
moreover have p € arcs TV p = a
using Cons.hyps(2) Cons.prems(4) by (auto simp: pre-digraph.awalk-def)
ultimately have p = a using Cons.prems(1) by auto
then have [| Q [a] = p # ps using True by auto
have tail T' p = u using Cons.hyps(2) <p = a> by simp
then have v = =
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps(2))
then have pre-digraph.awalk T' z [| u
using Cons.hyps(2) Cons.prems(2) by (simp add: pre-digraph.awalk-def
pre-digraph. cas.simps)
then show ?thesis using <[] Q [a] = p # ps> by blast
next
case Fulse
then have pre-digraph.cas T' (head T' p) ps v
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have pre-digraph.awalk T' (head T' p) ps v
using Cons.hyps(2) Cons.prems(4) unfolding pre-digraph.awalk-def by auto

100



then obtain as where as-def: as @ [a] = ps pre-digraph.awalk T' (head T' p)

as u
using Cons Fulse by blast

then have z € verts T' set (p#as) C arcs T' tall T' p = x

using Cons.prems(4) by (auto simp: pre-digraph.awalk-def pre-digraph.cas.simps)

then have pre-digraph.cas T' x (p#as) u

using as-def(2) pre-digraph.cas.simps(2) unfolding pre-digraph.awalk-def

by fast

then have pre-digraph.awalk T' z (p#as) u

using «x € verts T ¢<set (p#as) C arcs T" by (simp add: pre-digraph.awalk-def)

then show ?thesis using as-def(1) by auto

qed

qed(simp)

lemma add-leaf-awalk-new-unique:
fixes u v a
defines T’ = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v))
assumes ¢ ¢ arcs T and u € verts T and v ¢ verts T
and pre-digraph.awalk T' root ps v and pre-digraph.awalk T’ root es v
shows es = ps
proof —
have root # v using v ¢ verts T» root-in-T by blast
then have ps # [] es # []
using assms(5,6) root-in-T pre-digraph.awalk-def pre-digraph.cas.simps(1) by
fast+
then obtain as where as-def: as Q [a] = ps pre-digraph.awalk T' root as u
using add-leaf-awalk-new-split assms(1,3—5) by blast
obtain bs where bs-def: bs @Q [a] = es pre-digraph.awalk T’ root bs u
using <es # [» add-leaf-awalk-new-split assms(1,3,4,6) by blast
then show ?thesis using as-def assms(1—4) add-leaf-awalk-orig-unique by blast
qed

lemma add-leaf-awalk-unique:
fixes u v a
defines T' = (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v)|
assumes a ¢ arcs T and v € verts T and v ¢ verts T and z € verts T’
shows 3!p. pre-digraph.awalk T' root p x
using assms add-leaf-awalk-T add-leaf-awalk-T-new
by (auto simp: add-leaf-awalk-new-unique add-leaf-awalk-orig-unique)

lemma add-leaf-dir-tree:
[a & arcs T; u € verts T; v ¢ verts T
= directed-tree (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v)|) root
using add-leaf-awalk-unique by unfold-locales (auto simp: root-in-T)

lemma add-leaf-dom-preserv:
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[a & arcs T; x —p y]

= T (verts = verts T U {v}, arcs = arcs T U {a}, tail = (tail T)(a := u), head = (head T)(a := v
Y
unfolding arcs-ends-def arc-to-ends-def by force

end

6.3 Branching Points in Directed Trees

Proofs that show the existence of a last branching point given it is not a
chain.

context directed-tree
begin

lemma add-leaf-is-leaf:
assumes 7' = (verts = V, arcs = A, tail = t, head = h|)
and T = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
=)
and v € V
and v ¢ V
and a ¢ A
and directed-tree T root’
shows leaf v
proof —
have 0: wf-digraph T by (simp add: wf-digraph-azioms)
have 1: wf-digraph T' using assms(6) directed-tree.axioms(1) by fast
then have Vacares T. tail T a # v
by (metis Un-insert-right assms(1—4) fun-upd-apply insert-iff
pre-digraph.select-convs(1—38) sup-bot-right wf-digraph.tail-in-verts)
then have out-arcs T v = {} using in-out-arcs-conv by fast
moreover have v € verts T using assms(2) by simp
ultimately show ?thesis by (simp add: leaf-def)
qed

lemma reachable-via-child-impl-same:
assumes z »*pvand y +*pvand u »pzrzand v =7y
shows z = y
proof (rule ccontr)
assume asm: © # y
obtain p! where pI-def: awalk z p1 v using assms(1) reachable-awalk by auto
then obtain el where el-def: awalk u (el#p1) v using assms(3) awalk-Cons-iff
by blast
obtain p2 where p2-def: awalk y p2 v using assms(2) reachable-awalk by auto
then obtain e2 where e2-def: awalk u (e24#p2) v using assms(4) awalk-Cons-iff
by blast
then have el#pl # e24#p2 using asm awalk-ends p1-def p2-def by blast
then show Fulse using el-def e2-def unique-awalk-All by auto
qed
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lemma new-leaf-last-in-orig-if-arcs-in-orig:
assumes z =¥y
and T = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a
= 1))
and T’ = (verts = V, arcs = A, tail = t, head = h)
and z € V
and y € V
and u € V
and v ¢ V
and a ¢ A
and al€arcs T' A a2€arcs T' N al#a2 ANtal =yANta2 =y
and finite (arcs T)
and [3 acwf-digraph.branching-points T'. x —* 11 a; directed-tree T' 1]
= 3 acwf-digraph.last-branching-points T'. x = pra
and directed-tree T' r
shows 3y’e last-branching-points. © —*p y’
proof —
have 1: wf-digraph T' using directed-tree.azioms(1) assms(12) by fast
have alcarcs T' A a2€arcs T' N al#a2 A tail T' al = y A tail T' a2 =y
using assms(3,9) by simp
then have branching-point: y € wf-digraph.branching-points T’
using wf-digraph.branching-points-def 1 by blast
then have v —* p/ y using assms(1—8,10) 1 new-leaf-same-reachables-orig by
blast
then have 3 a € wf-digraph.branching-points T'. x —* 7 a using branching-point
by blast
then obtain a where a-def[simp]: a€wf-digraph.last-branching-points T' A z
—* T G
using assms(11,12) by blast
then have 2: acwf-digraph.last-branching-points T' N x —*p a
using new-leaf-same-reachables-new assms(2—4,6—8) 1
by (metis branch-if-leaf-added new-leaf-no-branch wf-digraph.last-branch-is-branch)
have 3: Vy. a - 7 y — a##y using reachablel-not-reverse by blast
have a € verts T’
using a-def 1 by (simp add: wf-digraph.branch-in-verts wf-digraph.last-branch-is-branch)
then show ?thesis
using new-leaf-last-branch-exists-preserv 1 2 3 assms(2,3,6—8,10)
by (metis pre-digraph.select-convs(1,2))
qed

lemma finite-branch-impl-last-branch:
assumes finite (verts T')
and 3 yebranching-points. z =" 7y
and directed-tree T r
shows 3 z€last-branching-points. © —* 7 2
using assms proof (induction arbitrary: v rule: finite-directed-tree-induct)
case (single-vert t h root)
let ?T = (verts = {root}, arcs = {}, tail = t, head = h|)
have directed-tree ¢T r using single-vert by simp
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then have 0: wf-digraph ?T using directed-tree.azioms(1) by fast
obtain y where y-def[simp|: y € wf-digraph.branching-points ?T N © —*op y
using single-vert by blast
have y = root
by (metis y-def empty-iff insert-iff pre-digraph.select-convs(1) reachable-in-vertsE)
then have —~(3z € verts ?T. z#y) by simp
then have —~(3z € wf-digraph.branching-points ¢?T. x#y)
using 0 wf-digraph.branch-in-verts by fast
then have y € wf-digraph.last-branching-points ?T
using wf-digraph.last-branching-points-def 0 by fastforce
then show ?case by force
next
case (add-leaf T' V A t h u root a v)
let ?T = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head = h(a :=
v))
have 0: wf-digraph ?T using add-leaf.prems(2) directed-tree.axioms(1) by fast
have 1: wf-digraph T' using add-leaf.hyps(3) directed-tree.axioms(1) by fast
have 2: finite (arcs ?T)
using directed-tree.verts-finite-imp-arcs-finite add-leaf.hyps(1—3) by fastforce
obtain y where y-def[simp]: y € wf-digraph.branching-points ?T N © —*op y
using add-leaf.prems by blast
then obtain al a2 where a12: al€arcs ?T N a2€arcs ?T N al#a2 A tail 2T
al =y A tail ?T a2 =y
using wf-digraph.branching-points-def 0 by blast
then have y-not-v: y # v
using Un-insert-right add-leaf .hyps(1,3,5) directed-tree.azioms(1) fun-upd-apply
insert-iff
by (metis pre-digraph.select-convs(1—38) sup-bot-right wf-digraph.tail-in-verts)
have y € verts ¢T
using y-def wf-digraph.branch-in-verts 0 by fast
then have y-in-T: y € verts T' using y-not-v add-leaf .hyps(1) by simp
have z € verts ?T using add-leaf.prems(1) reachable-in-vertsE by force
have leaf-v: pre-digraph.leaf ¢?T v
using directed-tree.add-leaf-is-leaf|of ?T] add-leaf .hyps(1,3—6) add-leaf.prems(2)
by blast
then have out-degree ?T v = 0
using add-leaf .prems(2) directed-tree.leaf-out-degree-zero by fast
then have z # v
using y-not-v y-def 0 Diff-empty add-leaf directed-tree.verts-finite-imp-arcs-finite
select-convs(1) wf-digraph.out-degree-0-only-self by fastforce
then have z-in-T": © € verts T' using «z € verts ¢T» add-leaf .hyps(1) by auto
show ?Zcase
proof(cases al=a V a2=a)
case True
then have y = w using a12 by fastforce
show ?thesis
proof (cases 3y'cwf-digraph.branching-points ?T. y # y' ANy =*op y')
case True
then obtain y’ where y’-def: y'c€wf-digraph.branching-points ?T N y # y’
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ANy —="ory’
by blast
then obtain a! a2 where al12: al€arcs ?T N a2€arcs 7T N al#a2 N tail
2T al = y' A tail ?T a2 = y'
using wf-digraph.branching-points-def 0 by blast
then have y’ # u using <y=u> y’-def by blast
moreover have tail ?T a = u by simp
ultimately have al#a A a2+#a using (y=u> al2 by fastforce
then have 3: al€arcs T' N a2€arcs T' N al#a2 ANtal =y ANta2 =1y’
using a12 add-leaf.hyps(1) by simp
then have branching-point: y' € wf-digraph.branching-points T’
using wf-digraph.branching-points-def 1 add-leaf .hyps(1) by fastforce
have y’-in-T: y' € verts T' by (simp add: 1 branching-point wf-digraph.branch-in-verts)
have z —* o y’ using y-def y'-def wf-digraph.reachable-trans 0 by fast
then show ?thesis
using directed-tree.new-leaf-last-in-orig-if-arcs-in-origlof ¢T r x y’]
add-leaf.prems(2) 2 3 add-leaf . IH add-leaf hyps(1,83—6) z-in-T' y'-in-T
by simp
next
case Fulse
then show ?%thesis using wf-digraph.last-branching-points-def y-def 0 by fast
qed
next
case Fulse
then have alcarcs ?T N a2€arcs 7T N al#a2 Ntal = yANta2 =y
using al2 by simp
then have 3: alcarcs T' A a2€arcs T' N al#a2 ANtal =yANta2 =1y
using False a12 add-leaf.hyps(1) by auto
have z —* o7 y using y-def by simp
then show ?thesis
using directed-tree.new-leaf-last-in-orig-if-arcs-in-origlof ¢?T r x y]
add-leaf.prems(2) 2 8 add-leaf.IH add-leaf.hyps(1,3—6) z-in-T' y-in-T by
stmp
qed
qed

lemma subgraph-no-last-branch-chain:
assumes subgraph C T
and finite (verts T)
and verts C C verts T — {z. Jy€last-branching-points. © —*p y}
shows wf-digraph.is-chain C
using assms finite-branch-impl-last-branch subgraph-no-branch-chain last-branch-is-branch
by (smt (verit, ccfo-SIG) Collect-cong directed-tree-azioms)

lemma reach-from-last-in-chain:

assumes 3y € last-branching-points. y =+ p x

shows z € verts T — {z. y€last-branching-points. x —* 1 y}

using assms last-branch-alt reachablel-not-reverse reachablel-reachable reach-
ablel-reachable-trans
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by (smt (verit, del-insts) Diff-iff last-branch-is-branch mem-Collect-eq reach-
ablel-in-verts(2))

Directed Trees don’t have merging points.

lemma merging-empty: merging-points = {}
using two-in-arcs-contr merging-points-def by auto

lemma subgraph-no-last-merge-chain:
assumes subgraph C T
shows wf-digraph.is-chain’ C
proof (rule ccontr)
assume asm: ~wf-digraph.is-chain’ C
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G
by auto
then obtain z where z-def: © € wf-digraph.merging-points C
using wf-digraph.is-chain’-def asm by blast
then have z € merging-points using assms(1) merge-in-supergraph by simp
then show Fualse using merging-empty by simp
qed

6.4 Converting to Trees of Lists

definition to-list-tree :: ('a list, 'b) pre-digraph where
to-list-tree =
(verts = (Az. [z]) ‘wverts T, arcs = arcs T, tail = (Az. [tail T z]), head = (Ax.
[head T z])))

lemma to-list-tree-union-verts-eq: | (set ¢ verts to-list-tree) = verts T
using to-list-tree-def by simp

lemma to-list-tree-cas: cas u p v <— pre-digraph.cas to-list-tree [u] p [v]
by (induction p arbitrary: u) (auto simp: Arc-Walk.pre-digraph.cas.simps to-list-tree-def)

lemma to-list-tree-awalk: awalk u p v <— pre-digraph.awalk to-list-tree [u] p [v]
unfolding pre-digraph.awalk-def using to-list-tree-cas to-list-tree-def by auto

lemma to-list-tree-awalk-if-in-verts:
assumes v € verts to-list-tree
shows 3 p. pre-digraph.awalk to-list-tree [root] p v
proof —
have root € verts T using root-in-T by blast
obtain v’/ where 0: v = [v'] using to-list-tree-def assms(1) by auto
then have v’ € verts T using assms to-list-tree-def by auto
then obtain p’ where awalk root p’ v’ using unique-awalk by blast
then show ?thesis using to-list-tree-awalk 0 by auto
qed

lemma to-list-tree-root-awalk-unique:
assumes v € verts to-list-tree
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and pre-digraph.awalk to-list-tree [root] p v
and pre-digraph.awalk to-list-tree [root] y v
shows p =y
proof (rule ccontr)
assume p # y
obtain v’ where v'-def: v = [v/] using to-list-tree-def assms(1) by auto
then have v’ € verts T using assms(1) to-list-tree-def by auto
show False using to-list-tree-awalk assms <p # y> assms(2,3) unique-awalk v’-def
by blast
qged

lemma to-list-tree-directed-tree: directed-tree to-list-tree [root]
apply(unfold-locales)
apply (auto simp: to-list-tree-def root-in-T)[3]
by (auto intro: to-list-tree-awalk-if-in-verts to-list-tree-root-awalk-unique)

lemma to-list-tree-disjoint-verts:
[u € verts to-list-tree; v € verts to-list-tree; u#v] = set u N set v = {}
unfolding to-list-tree-def by auto

lemma to-list-tree-nempty: v € verts to-list-tree = v # ||
unfolding to-list-tree-def by auto

lemma to-list-tree-single: v € verts to-list-tree = Jz. v = [z] A © € verts T
unfolding to-list-tree-def by auto

lemma to-list-tree-dom-iff: x — 7 y <— [2] = 4o-list-tree Y]
unfolding to-list-tree-def arcs-ends-def arc-to-ends-def by auto

end

locale fin-list-directed-tree = finite-directed-tree T for T :: ('a list,’d) pre-digraph
_|_
assumes disjoint-verts: [u € verts T; v € verts T; u # v] = set u N set v =

{

and nempty-verts: v € verts T = v # ||

context finite-directed-tree
begin

lemma to-list-tree-fin-digraph: fin-digraph to-list-tree
by (unfold-locales) (auto simp: to-list-tree-def)

lemma to-list-tree-finite-directed-tree: finite-directed-tree to-list-tree [root]
by (simp add: finite-directed-tree-def to-list-tree-fin-digraph to-list-tree-directed-tree)

lemma to-list-tree-fin-list-directed-tree: fin-list-directed-tree [root] to-list-tree

apply(simp add: fin-list-directed-tree-def to-list-tree-finite-directed-tree)
apply(unfold-locales)
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by (auto simp: to-list-tree-disjoint-verts to-list-tree-nempty)
end

end

theory Dtree
imports Complez-Main Directed-Tree-Additions HOL— Library.FSet
begin

7 Algebraic Type for Directed Trees

datatype (dverts:'a, darcs: 'b) dtree = Node (root: 'a) (sucs: (('a,’d) dtree x 'b)
fset)

7.1 Termination Proofs

lemma fset-sum-ge-elem: finite s = = € xs = (D>_ u€ws. (f::'a = nat) u) > f
T
by (simp add: sum-nonneg-leg-bound)

lemma dtree-size-decr-aux:
assumes (z,y) € fset xs
shows size z < size (Node r xs)
proof —
have 0: ((z,size x),y) € (map-prod (Au. (u, size u)) (Au. u))  fset xs using
assms by fast
have size © < Suc (size-prod snd (A-. 0) ((x,size z),y)) by simp
also have
oo < OC ue(map-prod (Az. (z, size z)) (Ay. y)) ‘ fset zs. Suc (size-prod snd
(M. 0) w) + 1
using fset-sum-ge-elem 0 finite-fset finite-imagel
by (metis (mono-tags, lifting) add-increasing2 zero-le-one)
finally show ?thesis by simp
qged

lemma dtree-size-decr-aux’: t1 € fst © fset s = size t1 < size (Node 1 xs)
using dtree-size-decr-aux by fastforce

lemma diree-size-decr|[termination-simp):

assumes (z, y) € fset (xs:: ((“a, 'b) dtree x 'b) fset)

shows size z < Suc (Y u€map-prod (Az. (z, size )) (Ay. y)  fset zs. Suc (Suc
(snd (fst u))))

proof —
let %zs = (map-prod (Az. (z, size z)) (Ay. y)) * fset xs
have size z < (> u€ ?xs. Suc (size-prod snd (A-. 0) u)) + 1
using dtree-size-decr-auzx assms by fastforce
also have ... = Suc (> u€ ?xs. Suc (Suc (snd (fst u)))) by (simp add: size-prod-simp)
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finally show ?thesis by blast
qed

7.2 Dtree Basic Functions

fun darcs-mset :: (‘a,’d) diree = 'b multiset where
darcs-mset (Node r xs) = (> (t,e) € fset xs. {#e#} + darcs-mset t)

fun dverts-mset :: ('a,’b) dtree = 'a multiset where
dverts-mset (Node r xzs) = {#r#} + O_ (t,e) € fset xs. dverts-mset t)

abbreviation disjoint-darcs :: ((‘a,’d) dtree x 'b) fset = bool where
disjoint-darcs xs = (V (z,el) € fset xs. el ¢ darcs x N (V (y,e2) € fset xs.
(darcs x U {e1}) N (darcs y U {e2}) = {} V (z,el)=(y,e2)))

fun wf-darcs’ :: (‘a,’d) diree = bool where
wf-darcs’ (Node r zs) = (disjoint-darcs xzs N\ (V¥ (z,e) € fset zs. wf-darcs’ x))

definition wf-darcs :: (‘a,’d) dtree = bool where
wf-darcs t = (Y& €# darcs-mset t. count (darcs-mset t) x = 1)

fun wf-dverts’ :: (‘a,’d) dtree = bool where
wf-dverts’ (Node r xs) = (VY (z,el) € fset xs.
r & dverts x A (V(y,e2) € fset xs. (dverts x N dverts y = {} V (z,el)=(y,e2)))
A wf-dverts’ )

definition wf-dverts :: ('a,’b) diree = bool where
wf-dverts t = (Vx €# dverts-mset t. count (dverts-mset t) z = 1)

fun dtail :: (‘a,’d) diree = (b = 'a) = 'b = 'a where
dtail (Node r zs) def = (Xe. if e € snd ‘ fset zs then r
else (ffold (A(z,e2) b.
if (z,e2) ¢ fset sV e ¢ darcs x V —wf-darcs (Node r xs)
then b else dtail x def) def xs) e)

fun dhead :: ('a,’d) dtree = ('b = 'a) = 'b = 'a where
dhead (Node r xs) def = (Ae. (ffold (A(z,e2) b.
if (x,e2) ¢ fset xs V e & (darcs x U {e2}) V —wf-darcs (Node r xs)
then b else if e=e2 then root x else dhead x def e) (def e) xs))

abbreviation from-dtree :: (‘b = ‘a) = (b = 'a) = (‘a,’b) dtree = ('a,’d)
pre-digraph where
from-dtree deft defh t =
(verts = dverts t, arcs = darcs t, tail = dtail t deft, head = dhead t defh)

abbreviation from-dtree’ :: ('a,’d) diree = ('a,’d) pre-digraph where
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from-dtree’ t = from-dtree (A-. root t) (A-. root t) ¢

fun is-subtree :: ('a,’d) dtree = (a,’d) dtree = bool where
is-subtree x (Node r xs) =
(z = Node r zs V (3 (y,e) € fset xs. is-subtree x y))

definition strict-subtree :: (‘a,’d) dtree = ('a,’b) dtree = bool where
strict-subtree t1 t2 <— is-subtree t1 t2 N t1 # t2

fun num-leaves :: ('a,’d) dtree = nat where
num-leaves (Node r xs) = (if zs = {||} then 1 else (3 (t,e)€ fset xs. num-leaves

t))

7.3 Dtree Basic Proofs

lemma finite-dverts: finite (dverts t)
by (induction t) auto

lemma finite-darcs: finite (darcs t)
by (induction t) auto

lemma dverts-child-subseteq: © € fst ‘ fset xs = dverts x C dverts (Node r xs)
by fastforce

lemma dverts-suc-subseteq: x € fst * fset (sucs t) = dverts x C dverts t
using dverts-child-subseteq|of = sucs t root t] by simp

lemma dverts-root-or-child: v € dverts (Node r xs) = v =1 V v € (U (t,e) €
fset xs. dverts t)
by auto

lemma dverts-root-or-suc: v € dverts t = v = root t V (3 (t,e) € fset (sucs t).v
€ dverts t)
using dverts-root-or-child[of v root t sucs t] by auto

lemma dverts-child-if-not-root:
[v € dverts (Node r xs); v # r] = Jt€fst ‘ fset xs. v € dverts ¢
by force

lemma dverts-suc-if-not-root:
[v € dverts t; v # root t] = Jt€fst ¢ fset (sucs t). v € dverts t

using dverts-root-or-suc by force

lemma darcs-child-subseteq: © € fst  fset xs => darcs x C darcs (Node r xs)
by force

lemma mset-sum-elem: © €# (D y € fset Y. fy) = Jy € fset Y.z €# fy
by (induction Y) auto
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lemma mset-sum-elem-iff: v €# (> y € fset Y. fy) «— (Jy € fset Y. z €# f

0)
by (induction Y) auto

lemma mset-sum-eleml: [y € fset Yz €# fy] = v €# O y € fset Y. fy)
by (induction Y) auto

lemma darcs-mset-elem:
z €# darcs-mset (Node r xs) = 3(t,e) € fset xs. © €# darcs-mset t V x = e
using mset-sum-elem by fastforce

lemma darcs-mset-if-nsnd:

[z €# darcs-mset (Node r xs); x ¢ snd ‘ fset xs] = 3 (t1,el) € fset zs. © €H#
darcs-mset t1

using darcs-mset-elem[of x r zs] by force

lemma darcs-mset-suc-if-nsnd:

[z €# darcs-mset t; x ¢ snd * fset (sucs t)] = 3 (t1,el) € fset (sucs t). x €#
darcs-mset t1

using darcs-mset-if-nsnd[of x root t sucs t] by simp

lemma darcs-mset-if-nchild:
[z €# darcs-mset (Node r xs); Bt1 el. (t1,el) € fset s A x €4 darcs-mset t1]
= x € snd ‘ fset s
using mset-sum-elem by force

lemma darcs-mset-if-nsuc:
[z €# darcs-mset t; Bt1 el. (t1,el) € fset (sucs t) A © €4 darcs-mset 1]
= 1 € snd ‘ fset (sucs t)
using darcs-mset-if-nchild[of z root t sucs t] by simp

lemma darcs-mset-if-snd[intro]: © € snd ‘ fset xs => x €# darcs-mset (Node T
xs)
by (induction zs) auto

lemma darcs-mset-suc-if-snd[intro]: x € snd  fset (sucs t) = = €# darcs-mset t
using darcs-mset-if-snd[of x sucs t root t] by simp

lemma darcs-mset-if-child[introl:
[(t1,e1) € fset xs; © €# darcs-mset t1] = © €# darcs-mset (Node r xs)
by (induction xs) auto

lemma darcs-mset-if-suc[intro):
[(t1,el) € fset (sucs t); v €# darcs-mset t1] = = €# darcs-mset t
using darcs-mset-if-child[of t1 el sucs t x root t| by simp

lemma darcs-mset-sub-darcs: set-mset (darcs-mset t) C dares t

proof(standard, induction t rule: darcs-mset.induct)
case (1 r zs)
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then show ?case

proof(cases x € snd ‘ fset xs)
case Fulse
then obtain ¢! el where (t1,el) € fset xs A x €# darcs-mset t1

using 1.prems darcs-mset-if-nsnd[of z r] by blast

then show ?thesis using 1.IH by force

qed(force)

qed

lemma darcs-sub-darcs-mset: darcs t C set-mset (darcs-mset t)
proof (standard, induction t rule: darcs-mset.induct)
case (1 r zs)
then show ?case
proof(cases x € snd ‘ fset xs)
case Fulse
then obtain tI el where (t1,el) € fset xs A z € darcs t1
using 1.prems by force
then show ¢thesis using 1.IH by blast
qed(blast)
qed

lemma darcs-mset-eq-darcs[simp): set-mset (darcs-mset t) = darcs t
using darcs-mset-sub-darcs darcs-sub-darcs-mset by force

lemma dverts-mset-elem:

r €# dverts-mset (Node r zs) = (3 (t,e) € fset xs. © €# dverts-mset t) V x =
r

using mset-sum-elem by fastforce

lemma dverts-mset-if-nroot:

[x €# dverts-mset (Node r xs); x # r] = 3(t1,el) € fset xs. x €# dverts-mset
t1

using dverts-mset-elem[of z r zs] by blast

lemma dverts-mset-suc-if-nroot:

[x €# dverts-mset t; © # root t] = 3 (t1,el) € fset (sucs t). © €# dverts-mset
t1

using dverts-mset-if-nroot|of x root t sucs t] by simp

lemma dverts-mset-if-nchild:

[z €4 dverts-mset (Node r xs); Bt1 el. (t1,el) € fset xs A x €E# dverts-mset 1]
= z=r

using mset-sum-elem by force

lemma dverts-mset-if-nsuc:

[z €4 dverts-mset t; Bt1 el. (t1,e1) € fset (sucs t) A x €# dverts-mset t1] =
T = root t

using dverts-mset-if-nchild[of x root t sucs t] by simp
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lemma dverts-mset-if-root[intro]: © = r => x €# dverts-mset (Node r zs)
by simp

lemma dverts-mset-suc-if-rootlintro): = root t = x €# dverts-mset ¢
using dverts-mset-if-root|of © root t sucs t] by simp

lemma dverts-mset-if-child[intro]:
[(t1,e1) € fset xs; x €# dverts-mset t1] = x €# dverts-mset (Node r xs)
by (induction xs) auto

lemma dverts-mset-if-suclintro]:
[(t1,e1) € fset (sucs t); © €# dverts-mset t1] = x €# dverts-mset t
using dverts-mset-if-child[of t1 el sucs t x root t] by simp

lemma dverts-mset-sub-dverts: set-mset (dverts-mset t) C dverts t
proof (standard, induction t)
case (Node 1 zs)
then show ?case
proof(cases x = r)
case Fulse
then obtain ¢t/ el where (t1,el) € fset xs A x €4 dverts-mset t1
using Node.prems dverts-mset-if-nroot by fast
then show ?thesis using Node.IH by fastforce
qed(simp)
qed

lemma dverts-sub-dverts-mset: dverts t C set-mset (dverts-mset t)
proof (standard, induction t rule: dverts-mset.induct)
case (I 1 zs)
then show ?case
proof(cases x = r)
case Fulse
then obtain ¢I el where (t1,el) € fset zs A x € dverts t1
using 1.prems by force
then show ?thesis using 1.IH by blast
qged(simp)
qed

lemma dverts-mset-eg-dverts[simpl: set-mset (dverts-mset t) = dverts t
using dverts-mset-sub-dverts dverts-sub-dverts-mset by force

lemma mset-sum-count-le: y € fset Y = count (fy) ¢ < count (D y € fset Y.

fy)z
by (induction Y) auto

lemma darcs-mset-alt:

darcs-mset (Node r xzs) = (D (t,e) € fset zs. {#e#}) + (O (t,e) € fset zs.
darcs-mset t)
by (induction xs) auto
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lemma darcs-mset-ge-child:
t1 € fst ¢ fset s = count (darcs-mset t1) © < count (darcs-mset (Node 1 xs)) =
by (induction xs) force+

lemma darcs-mset-ge-suc:
t1 € fst ‘ fset (sucs t) = count (darcs-mset t1) x < count (darcs-mset t) x
using darcs-mset-ge-child[of t1 sucs t = root t] by simp

lemma darcs-mset-count-sum-auz:
(- (t1,e1) € fset xs. count (darcs-mset t1) z) = count ((>_ (t,e) € fset wxs.
darcs-mset t)) x
by (smt (verit, ccfv-SIG) count-add-mset count-sum multi-self-add-other-not-self
prod.case prod.case-distrib split-cong sum.cong)

lemma darcs-mset-count-sum-aux0:
z ¢ snd ‘ fset s = count ((3 (t, e)Efset xs. {#e#})) x =0
by (induction zs) auto

lemma darcs-mset-count-sum-eq:
x & snd ‘ fset xs
= (D (tl,el) € fset xs. count (darcs-mset t1) x) = count (darcs-mset (Node
ras)) ©
unfolding darcs-mset-alt using darcs-mset-count-sum-auz darcs-mset-count-sum-auz0
by fastforce

lemma darcs-mset-count-sum-ge:

(>-(t1,el) € fset xs. count (darcs-mset t1) x) < count (darcs-mset (Node r zs))
T

by (induction zs) (auto split: prod.splits)

lemma wf-darcs-alt: wf-darcs t +— (Vz. count (darcs-mset t) x < 1)
unfolding wf-darcs-def by (metis count-greater-eq-one-iff dual-order.eq-iff linorder-le-cases)

lemma disjoint-darcs-simp:
[(t1,el) € fset xs; (t2,e2) € fset xs; (t1,el) # (t2,e2); disjoint-darcs xs]
= (dares t1 U {e1}) N (dares t2 U {e2}) = {}
by fast

lemma disjoint-darcs-single: e ¢ darcs t «— disjoint-darcs {|(t,e)|}
by simp

lemma disjoint-darcs-insert: disjoint-darcs (finsert x xs) = disjoint-darcs xs
by simp fast

lemma wf-darcs-rec|dest]:
assumes wf-darcs (Node r zs) and t1 € fst * fset xs
shows wf-darcs t1

unfolding wf-darcs-def proof (rule ccontr)
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assume asm: - (Yz €# darcs-mset t1. count (darcs-mset t1) x = 1)
then obtain z where z-def: © €# darcs-mset t1 count (darcs-mset t1) © # 1
by blast
then have count (darcs-mset t1) x > 1 by (simp add: order-le-neg-trans)
then have count (darcs-mset (Node r xs)) © > 1
using assms(2) darcs-mset-ge-child[of t1 xzs x] by simp
moreover have © €# (darcs-mset (Node r 1s))
using z-def(1) assms(2) by fastforce
ultimately show Fulse using assms(1) unfolding wf-darcs-def by simp
qged

lemma disjoint-darcs-if-wf-auzl: [wf-darcs (Node r xs); (t1,el) € fset zs] = el
¢ darcs t1

apply (induction zs)

apply(auto simp: wf-darcs-def split: if-splits prod.splits)[2]

by (metis UnlI2 add-is-1 count-eq-zero-iff)

lemma fset-sum-ge-elem?2:
[refset Xsyefset X5y = (f::'a=nat)z+fy< Oz € fset X. f
x)

by (induction X) (auto simp: fset-sum-ge-elem)

lemma darcs-children-count-ge2-auz:
assumes (t1,el) € fset s and (t2,e2) € fset xs and (t1,el) # (12,e2)
and e € darcs t1 and e € darcs t2
shows (3 (t1, el )Efset xs. count (darcs-mset t1) e) > 2
proof —
have 2 < 1 + count (darcs-mset t2) e
using assms(2,5) by simp
also have ... < count (darcs-mset t1) e + count (darcs-mset t2) e
using assms(1,4) by simp
finally show ?thesis
using fset-sum-ge-elem2[OF assms(1—3), of A(t1,el). count (darcs-mset t1)
e] by simp
qed

lemma darcs-children-count-ge2:
assumes (t1,el) € fset s and (t2,e2) € fset xs and (t1,el) # (t2,e2)
and e € darcs t1 and e € darcs t2
shows count (darcs-mset (Node r zs)) e > 2
using darcs-children-count-ge2-auz|OF assms] darcs-mset-count-sum-ge dual-order.trans
by fast

lemma darcs-children-count-not1:
[(t1,e1) € fset xs; (t2,e2) € fset xs; (t1,el) # (12,e2); e € darcs t1; e € darcs
t2]
= count (darcs-mset (Node r xs)) e # 1
using darcs-children-count-ge2 by fastforce
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lemma disjoint-darcs-if-wf-auz2:

assumes wf-darcs (Node r xs)

and (t1,el) € fset zs and (t2,e2) € fset xs and (t1,el) # (12,e2)
shows darcs t1 N dares t2 = {}

proof (rule ccontr)

assume darcs t1 N dares t2 # {}

then obtain e where e-def: e € darcs t1 e € darcs t2 by blast

then have e € darcs (Node r zs) using assms(2) by force

then have e €# darcs-mset (Node r xs) using darcs-mset-eq-darcs by fast

then show Fulse

using darcs-children-count-ge2|OF assms(2—4) e-def] assms(1) unfolding

wf-darcs-def by simp
qed

lemma darcs-child-count-gel:

[(t1,el) € fset xs; e2 € darcs t1] = count (> (t, e)Efset xs. darcs-mset t) e2
> 1

by (simp add: mset-sum-eleml)

lemma darcs-snd-count-gel:
(t2,e2) € fset xs = count (>_ (t, e)Efset xs. {#He#}) e2 > 1
by (simp add: mset-sum-elemlI)

lemma darcs-child-count-ge2:
[(t1,e1) € fset xs; (t2,e2) € fset xs; e2 € darcs t1] = count (darcs-mset (Node
ras)) e2 > 2
unfolding darcs-mset-alt
by (metis darcs-child-count-gel darcs-snd-count-gel add-mono count-union one-add-one)

lemma disjoint-darcs-if-wf-auz3:
assumes wf-darcs (Node r zs) and (t1,el) € fset zs and (t2,e2) € fset xs
shows e2 ¢ darcs t1
proof
assume asm: e2 € darcs t1
then have e2 € darcs (Node r zs) using assms(2) by force
then have e2 €# darcs-mset (Node r xs) using darcs-mset-eq-darcs by fast
then show Fulse using darcs-child-count-ge2 asm assms(1—3) unfolding wf-darcs-def
by fastforce
qed

lemma darcs-snds-count-ge2-aux:

assumes (t1,el) € fset xs and (t2,e2) € fset xs and (t1,el) # (t2,e2) and el
=e2

shows count (> (t, e)€fset xs. {#e#}) e2 > 2
using assms proof (induction zs)

case (insert z xs)

then consider z = (t1,el) | x = (t2,e2) | (t1,el) € fset xs (t2,e2) € fset xs
by auto

then show “case
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proof(cases)
case I
then have count (3 (¢, e)Efset xs. {#e#}) e2 > 1
using insert.prems(2,3) darcs-snd-count-gel by auto
then show ?thesis using insert.prems(4) insert.hyps 1 by auto
next
case 2
then have count (3 (¢, e)Efset zs. {#e#}) e2 > 1
using insert.prems(1,3,4) darcs-snd-count-gel by auto
then show ?thesis using insert.prems(4) insert.hyps 2 by auto
next
case 3
then show ?%thesis using insert.IH insert.prems(3,4) insert.hyps by auto
qed
qed(simp)

lemma darcs-snds-count-ge2:
[(t1,e1) € fset as; (t2,e2) € fset xs; (t1,e1) # (12,e2); el = e2]
= count (darcs-mset (Node r xs)) e2 > 2
using darcs-snds-count-ge2-auz unfolding darcs-mset-alt by fastforce

lemma disjoint-darcs-if-wf-auzs:
assumes wf-darcs (Node r xs)
and (t1,el) € fset zs
and (t2,e2) € fset xs
and (t1,el) # (t2,e2)
shows el # e2
proof
assume asm: el = e2
have e2 €# darcs-mset (Node r zs) using assms(3) darcs-mset-if-snd by fast-
force
then show Fulse
using assms(1) darcs-snds-count-ge2[OF assms(2—4) asm] unfolding wf-darcs-def
by simp
qed

lemma disjoint-darcs-if-wf-auzs:
[wf-darcs (Node r xs); (t1,el) € fset xs; (12,e2) € fset xs; (t1,el) # (12,e2)]
= (darcs t1 U {el}) N (dares t2 U {e2}) = {}
by (auto dest: disjoint-darcs-if-wf-auz4 disjoint-darcs-if-wf-auz3 disjoint-darcs-if-wf-auz2)

lemma disjoint-darcs-if-wf-zs: wf-darcs (Node r xs) = disjoint-darcs xs
by (auto dest: disjoint-darcs-if-wf-auzl disjoint-darcs-if-wf-auzd)

lemma disjoint-darcs-if-wf: wf-darcs t = disjoint-darcs (sucs t)
using disjoint-darcs-if-wf-zs[of root t sucs t] by simp

lemma wf-darcs’-if-darcs: wf-darcs t = wf-darcs’ t
proof (induction t)
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case (Node 1 zs)
then show ?case using disjoint-darcs-if-wf-xs|OF Node.prems] by fastforce
qed

lemma wf-darcs-if-darcs’-auz:
[V (z,e) € fset xs. wf-darcs x; disjoint-darcs xs] = wf-darcs (Node r xs)
apply(simp split: prod.splits)
apply(induction zs)
apply(auto simp: wf-darcs-def count-eq-zero-iff )[2]
by (fastforce dest: mset-sum-elem)+

lemma wf-darcs-if-darcs’”: wf-darcs’ t = wf-darcs t
proof (induction t)

case (Node 1 zs)

then show ?Zcase using wf-darcs-if-darcs’-auz|of zs] by fastforce
qed

corollary wf-darcs-iff-darcs’: wf-darcs t <— wf-darcs’ t
using wf-darcs-if-darcs’ wf-darcs’-if-darcs by blast

lemma disjoint-darcs-subset:

assumes zs |C| ys and disjoint-darcs ys

shows disjoint-darcs xs
proof (rule ccontr)

assume - disjoint-darcs xs

then obtain z el y e2 where 2-def: (z,el) € fset xs (y,e2) € fset zs

el € darcs x V (dares x U {el}) N (darcs y U {e2}) # {} N (z,e1)#(y,e2)
by blast

have (z,e1) € fset ys (y,e2) € fset ys using z-def(1,2) assms(1) less-eq-fset.rep-eq
by fast+

then show Fulse using assms(2) z-def(3) by fast
qed

lemma disjoint-darcs-img:
assumes disjoint-darcs xs and V (t,e) € fset zs. darcs (ft) C dares t
shows disjoint-darcs ((A(t,e). (f t,e)) | xs) (is disjoint-darcs ?xs)
proof (rule ccontr)
assume — disjoint-darcs ?xs
then obtain z1 el yI e2 where asm: (z1,el) € fset %xs (y1,e2) € fset xs
el € darcsx1 V (darcs 1 U{el}) N (darcs yl U{e2}) # {} A (z1,e1)#(yl,e2)
by blast
then obtain 22 where z2-def: f 22 = x1 (z2,el) € fset zs by auto
obtain y2 where y2-def: fy2 = y1 (y2,e2) € fset zs using asm(2) by auto
have darcs 1 C darcs 2 using assms(2) z2-def by fast
moreover have darcs yI C darcs y2 using assms(2) y2-def by fast
ultimately have - disjoint-darcs zs using asm(3) z2-def y2-def by fast
then show Fulse using assms(1) by blast
qed
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lemma dverts-mset-count-sum-ge:

(O-(t1,el) € fset zs. count (dverts-mset t1) x) < count (dverts-mset (Node r
xs)) ©

by (induction xs) auto

lemma dverts-children-count-ge2-aux:
assumes (t1,el) € fset s and (12,e2) € fset xs and (t1,el) # (12,e2)
and z € dverts t1 and z € dverts t2
shows (> (t1, el )Efset xs. count (dverts-mset t1) x) > 2

proof —
have 2 < count (dverts-mset t1) z + 1 using assms(4) by simp
also have ... < count (dverts-mset t1) x + count (dverts-mset t2) z using

assms(5) by simp
finally show ?thesis
using fset-sum-ge-elem2[OF assms(1—38), of A(t1,el). count (dverts-mset t1)
z] by simp
qed

lemma dverts-children-count-ge2:
assumes (t1,el) € fset zs and (t2,e2) € fset zs and (t1,el) # (t2,e2)
and z € dverts t1 and z € dverts t2
shows count (dverts-mset (Node r xs)) x > 2
using dverts-children-count-ge2-auz[OF assms] dverts-mset-count-sum-ge le-trans
by fast

lemma disjoint-dverts-if-wf-auz:
assumes wf-dverts (Node 1 xs)
and (t1,el) € fset xs and (12,e2) € fset zs and (t1,el) # (t2,e2)
shows dverts t1 N dverts t2 = {}
proof (rule ccontr)
assume dverts t1 N dverts t2 # {}
then obtain z where z-def: © € dverts t1 x € dverts t2 by blast
then have 2 < count (dverts-mset (Node 1 xs))
using dverts-children-count-ge2[OF assms(2—4)] by blast
moreover have z €# (dverts-mset (Node r xs)) using assms(2) z-def(1) by
fastforce
ultimately show Fulse using assms(1) unfolding wf-dverts-def by fastforce
qged

lemma disjoint-dverts-if-wf:
wf-dverts (Node r xs)
= V(z,el) € fset xs. ¥ (y,e2) € fset xs. (dverts x N dverts y = {} V
('T’el):(yveg))
using disjoint-dverts-if-wf-aux by fast

lemma disjoint-dverts-if-wf-sucs:
wf-dverts t
= VY (z,el) € fset (sucs t). V(y,e2) € fset (sucs t).
(dverts z N dverts y = {} V (z,el)=(y,e2))
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using disjoint-dverts-if-wf[of root t sucs t] by simp

lemma dverts-child-count-gel:

[(t1,el) € fset xs; x € dverts t1] = count (> (t, e)Efset xs. dverts-mset t) x
> 1

by (simp add: mset-sum-elemlI)

lemma root-not-child-if-wf-dverts: [wf-dverts (Node r xs); (t1,el) € fset zs] = r
¢ dverts t1
by (fastforce dest: dverts-child-count-gel simp: wf-dverts-def)

lemma root-not-child-if-wf-dverts”. wf-dverts (Node r xs) = V (t1,el) € fset xs.
r & dverts t1
by (fastforce dest: dverts-child-count-gel simp: wf-dverts-def)

lemma dverts-mset-ge-child:

t1 € fst ¢ fset xs => count (dverts-mset t1) x < count (dverts-mset (Node r xs))
T

by (induction zs) force+

lemma wf-dverts-rec[dest]:
assumes wf-dverts (Node r xs) and t1 € fst © fset xs
shows wf-dverts t1
unfolding wf-dverts-def proof (rule ccontr)
assume asm: - (Vz €# dverts-mset t1. count (dverts-mset t1) © = 1)
then obtain z where z-def: © €# dverts-mset t1 count (dverts-mset t1) © # 1
by blast
then have count (dverts-mset t1) © > 1 by (simp add: order-le-neg-trans)
then have count (dverts-mset (Node r xs)) > 1
using assms(2) dverts-mset-ge-child[of t1 xs x r] by simp
moreover have © €# (dverts-mset (Node r xs))
using z-def (1) assms(2) by fastforce
ultimately show Fualse using assms(1) unfolding wf-dverts-def by fastforce
qed

lemma wf-dverts’-if-dverts: wf-dverts t = wf-dverts’ t
proof (induction t)
case (Node r xs)
then have V (z,el)€fset zs. wf-dverts’ x by auto
then show ?case
using disjoint-dverts-if-wf[OF Node.prems| root-not-child-if-wf-dverts’|OF Node.prems]
by fastforce
qged

lemma wf-dverts-if-dverts’-auz:
IV (z,e) € fset xs. wf-dverts x;
Y (z,el) € fset xs. v ¢ dverts x A\ (¥ (y,e2) € fset xs.
(dverts x N dverts y = {} V (z,e1)=(y,e2)))]
= wf-dverts (Node 1 xs)
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apply(simp split: prod.splits)

apply(induction xs)

apply(auto simp: wf-dverts-def count-eg-zero-iff)[2]
by (fastforce dest: mset-sum-elem)+

lemma wf-dverts-if-dverts”. wf-dverts’ t = wf-dverts t
proof (induction t)

case (Node 1 zs)

then show ?case using wf-dverts-if-dverts’-auz|of zs] by fastforce
qed

corollary wf-dverts-iff-dverts’: wf-dverts t +— wf-dverts’ t
using wf-dverts-if-dverts’ wf-dverts’-if-dverts by blast

lemma wf-dverts-sub:
assumes zs |C| ys and wf-dverts (Node r ys)
shows wf-dverts (Node r xs)
proof —
have ys |U| zs = ys using assms(1) by blast
then have wf-dverts (Node r (ys |U| xs)) using assms(2) by simp
then show ?thesis unfolding wf-dverts-iff-dverts’ by fastforce
qged

lemma count-subset-le:
zs |C] ys = count (3 z € fset zs. fz) a < count (3 x € fset ys. fz) a
proof (induction ys arbitrary: xs)
case (insert y ys)
then show ?case
proof(cases y |€| xs)
case True
then obtain zs’ where zs’-def: finsert y xs’ = zs y |¢| xs’
by blast
then have zs’ |C| ys using insert.prems by blast
have count (3. z € fset xs. fz) a = count (>, z € fset zs’. fx) a + count (fy)

a
using zs’-def by auto
also have ... < count (>_z € fset ys. fz) a + count (fy) a
using «xs’ |C| ys» insert.IH by simp
also have ... = count (> z € fset (finsert y ys). fz) a
using insert.hyps by auto
finally show ?thesis .
next
case Fulse
then have count (> x € fset xs. fz) a < count (D x € fset ys. fz) a
using insert.prems insert.IH by blast
then show f?thesis using insert.hyps by auto
qed
qed(simp)
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lemma darcs-mset-count-le-subset:

zs |C| ys = count (darcs-mset (Node r' xs)) = < count (darcs-mset (Node r
ys))

using count-subset-le by fastforce

lemma wf-darcs-sub: [zs |C| ys; wf-darcs (Node v’ ys)] = wf-darcs (Node r zs)
unfolding wf-darcs-def using darcs-mset-count-le-subset
by (smt (verit, best) count-greater-eq-one-iff le-trans verit-la-disequality)

lemma wf-darcs-sucs: [wf-dares t; x € fset (sucs t)] = wf-darcs (Node r {|z|})
using wf-darcs-sublof {|z|} sucs t root t] by (simp add: less-eq-fset.rep-eq)

lemma size-fset-alt:
size-fset (size-prod snd (A-. 0)) (map-prod (At. (t, size t)) (Az. z) | zs)
= (3" (z,y)€ fset xs. size x + 2)
proof —
have size-fset (size-prod snd (A-. 0)) (map-prod (At. (t, size t)) (Az. z) || zs)
= O ue(A(z,y). ((z,size ), y)) * fset xs. snd (fst u) + 2)
by (simp add: size-prod-simp map-prod-def)
also have ... = (3 (z,y) € fset xs. size x + 2)
using case-prod-beta’ comm-monoid-add-class.sum.eq-general
by (smt (verit, del-insts) Pair-inject fstl imageE imagel prod-eql snd-conv)
finally show ?thesis .
qed

lemma diree-size-alt: size (Node r zs) = (3. (z,y)€ fset xs. size x + 2) + 1
using size-fset-alt by auto

lemma diree-size-eq-root: size (Node r xs) = size (Node 1’ xs)
by auto

lemma size-combine-decr: size (Node (rQroot t1) (sucs t1)) < size (Node r {|(t1,

el)[})

using dtree-size-eq-root[of rQroot t1 sucs t1 root t1] by simp

lemma size-le-if-child-subset: xs |C| ys = size (Node r zs) < size (Node v ys)
unfolding dtree-size-alt by (simp add: dtree-size-alt less-eq-fset.rep-eq sum.subset-diff)

lemma size-le-if-sucs-subset: sucs t1 |C| sucs t2 = size t1 < size 12
using size-le-if-child-subset[of sucs t1 sucs t2 root t1 root t2] by simp

lemma combine-uneq: Node r {|(t1, el)|} # Node (rQroot t1) (sucs t1)
using size-combine-decr|[of r t1 el] by fastforce

lemma child-uneq: t € fst © fset xs => Node r xs #
using dtree-size-decr-auz’ by fastforce

lemma suc-uneq: t1 € fst * fset (sucs t) = t # t1
using child-uneqlof t1 sucs t root t] by simp
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lemma singleton-uneq: Node r {|(t,e)|} # t
using child-uneg|of t] by simp

lemma child-uneq” t € fst ¢ fset s = Node r zs # Node v (sucs t)
using dtree-size-decr-auz'[of t] diree-size-eq-root[of root t sucs t] by auto

lemma suc-uneq” t1 € fst * fset (sucs t) = t # Node v (sucs t1)
using child-uneq’[of t1 sucs t root t] by simp

lemma singleton-uneq” Node r {|(t,e)|} # Node v (sucs t)
using child-uneq’of t] by simp

lemma singleton-suc: ¢ € fst  fset (sucs (Node r {|(t,€)|}))
by simp

lemma fcard-image-le: feard (f | xs) < feard zs
by (simp add: FSet.fcard.rep-eq card-image-le)

lemma sum-img-le:
assumes Vit € fst ¢ fset xs. (g::'a = nat) (ft) <
shows (> (z,y)€ fset (A(t,e). (ft, e) || zs). g
using assms proof (induction zs)
case (insert z xs)
obtain ¢ e where t-def: © = (t,e) by fastforce
then show ?case
proof(cases (f t,e) ¢ fset (A(t,e). (ft, e)) | xs))
case True
then have (3 (z,y)€ fset (A(t,e). (ft, €)) | (finsert z xs)). g x)
— g (F1) + (X (zy)e fset (A(te). (Ft, ) |1 25). g 2)
using t-def by auto
also have ... < gt + (3 (z,y)€ fset (M(t,e). (ft, e))|] xs). g x)
using insert.prems t-def by auto
also have ... < gt + (O  (z,y)€ fset zs. g x) using insert by simp
finally show ?thesis using insert.hyps t-def by fastforce
next
case Fulse
then have (3 (z,y)€ fset (A(t,e). (ft, €)) | (finsert z zs)). g x)
= (S (@)e foet (Mbe). (1, €)) | 25). g 2)
by (metis (no-types, lifting) t-def fimage-finsert finsert-absorb prod.case)
also have ... < (3 (z,y)€ fset zs. g z) using insert by simp
finally show ?thesis using insert.hyps t-def by fastforce
qed
qed (simp)

gt
z) < O (w,y)€ fset xs. g x)

lemma dtree-size-img-le:
assumes Vit € fst ¢ fset xs. size (ft) < size t
shows size (Node r ((A(t,e). (ft, €)) | xs)) < size (Node r xs)
using sum-img-le[of xs Ax. size x + 2] dtree-size-alt assms
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by (metis (mono-tags, lifting) add-right-mono)

lemma sum-img-It:
assumes Vit € fst ¢ fset xs. (¢::'a = nat) (ft) < gt
and 3t € fst ‘fsetxs. g (ft) < gt
and Vit € fst ‘ fset xs. gt > 0
shows (3 (5,9)€ foet (A(te)- (F1, €)) |1 35). g 2) < (5 (2.9)€ fset 5. g o)
using assms proof (induction zs)
case (insert z xs)
obtain ¢ e where t-def: © = (t,e) by fastforce
then show ?case
proof(cases (f t,e) ¢ fset (A(t,e). (ft, e)) | xs))
case f-notin-zs: True
show ?thesis
proof(cases g (ft) < gt)
case True
have (3 (z,y)€ fset (A(t,e). (ft, €)) || (finsert z zs)). g x)
2 () + (5 (mg)e foet (A(Ee)- (F1, ) 1 29). g 2)
using t-def f-notin-zs by auto
also have ... < gt + (O (z,y)e fset (M(t,e). (ft, e)) | zs). g x)
using True by simp
also have ... < gt + (3. (z,y)€ fset zs. g x) using sum-img-le insert.prems(1)
by auto
finally show ?thesis using insert.hyps t-def by fastforce
next
case Fulse
then have 0: 3¢ € fst “ fset xs. g (ft) < g t using insert.prems(2) t-def by
stmp
have (3 (z,y)€ fset (A(t,e). (ft, €)) | (finsert z zs)). g x)
=g (ft) + (X (my)e fset (A(te). (ft, €)) | zs). g )
using t-def f-notin-zs by auto
also have ... < gt + (3 (z,y)€ fset (M(t,e). (ft, e))|] zs). g x)
using t¢-def insert.prems(1) by simp
also have ... < gt + (3 (z,y)€ fset xs. g x) using insert.IH insert.prems(1,3)
0 by simp
finally show ?thesis using insert.hyps t-def by fastforce
qged
next
case Fulse
then have (3 (z,y)€ fset (M(t,e). (ft, e) | (finsert z xs)). g )
— (3 (ww)€ foet (A(te). (P, ) |1 25). g 0)
by (metis (no-types, lifting) t-def fimage-finsert finsert-absorb prod.case)
also have ... < (3 (z,y)€ fset zs. g x) using sum-img-le insert.prems(1) by
auto
also have ... < gt + (3. (z,y)€ fset xs. g x) using insert.prems(3) t-def by
stmp
finally show ?thesis using insert.hyps t-def by fastforce
qged
qed (simp)
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lemma dtree-size-img-lt:

assumes Vi € fst ¢ fset zs. size (ft) < size t

and 3t € fst ‘ fset xs. size (ft) < size t
shows size (Node r (A(t,e). (ft, €)) | xs)) < size (Node 1 xs)

proof —

have 0: Vit € fst * fset zs. size (ft) + 2 < size t + 2 using assms(1) by simp

have Vitefst ¢ fset xs. 0 < size t + 2 by simp

then show ?thesis using sum-img-lt[|OF 0] dtree-size-alt assms(2) by (smt (23)
add-less-monol)
qged

lemma sum-img-eq:
assumes Vit € fst ¢ fset xs. (¢::'a = nat) (ft) =gt
and feard ((A(t,e). (ft, €)) | xs) = feard xs
shows (> (z,y)€ fset (A(t,e). (ft, €)) | xs). gz) = O (z,y)€ fset xs. g x)
using assms proof (induction xs)
case (insert z xs)
obtain t e where t-def: z = (t,e) by fastforce
then have 0: (fte) ¢ fset (A(t,e). (ft, €)) | xs)
using insert.prems(2) insert.hyps fecard-finsert-if fcard-image-le
by (metis (mono-tags, lifting) case-prod-conv fimage-finsert leD lessI)
then have 1: fcard ((\(t,e). (ft, €)) | xs) = feard zs
using insert.prems(2) insert.hyps t-def Suc-inject
by (metis (mono-tags, lifting) feard-finsert-if fimage-finsert old.prod.case)
have (3 (z,y)€ fset ((A(t,e). (ft, €)) | (finsert z xs)). g x)
=g (f1) + X (zy)e fset (A(t.e). (f1, €)) |] zs). g 7)
using t-def 0 by auto

also have ... = gt + (3 (z,y)€ fset (A(t,e). (ft, €)) | xs). g x)
using insert.prems t-def by auto
also have ... =gt + (3 (x,y)€ fset xs. g x) using insert.IH 1 insert.prems(1)
by simp
finally show ?case using insert.hyps t-def by fastforce
qed (simp)

lemma elem-neq-if-fset-neq:
((A(t,e). (ft,e) | xs) # xs = Tt € fst ‘fsetas. ft #1t
by (smt (verit, ccfv-threshold) case-prod-eta case-prod-eta fimage.rep-eq fset-inject
fst-conv
image-cong image-ident image-subset-iff old.prod.case prod.case-distrib split-cong
subsetl)

lemma ffold-commute-supset:
[zs IC] ys; P ys; Nys xs. [as |C| ys; P ys] = P ws;
Nzs. comp-fun-commute (Aa b. if a ¢ fset xs V = Q a bV —P zs then b else R
a b)]
= ffold (Ma b. if a & fset ysV = Q a bV —P ys then b else R a b) acc xs
= ffold (Aa b. if a & fset zs V =Q a bV =P zs then b else R a b) acc s
proof (induction xs arbitrary: ys)
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case empty
show ?Zcase
unfolding empty.prems(4)[THEN comp-fun-commute.[fold-empty)
by simp
next
case (insert © zs)
let 2%f = Xab.ifa ¢ fset ysV =Q a bV —P ys then b else R a'b
let ?f'=Xab. if a ¢ fsetxsV ~Q a bV —P xs then b else R a b
let 2f1 = Xa b. if a ¢ fset (finsert x xs) V = Q a b V =P (finsert x xs) then b else
Rabd
have 0: P (finsert = xzs) using insert.prems by simp
have 1: zs |C| (finsert x xs) by blast
have 2: comp-fun-commute ?f1 using insert.prems(4) by blast
have 3: z € fset ys using insert.prems(1) by fastforce
have ffold ?f acc (finsert x xs) = 2f x (ffold ?f acc xs)
using comp-fun-commute.ffold-finsert[of ?f] insert.prems(4) insert.hyps by
blast

also have ... = ?f z (ffold ?f' acc zs) using insert.IH[of ys] insert.prems by
fastforce

also have ... = ?fz (ffold ?f1 acc xs) using insert. [H[OF 1 0] insert.prems(3,4)
by presburger

also have ... = 2f1 x (ffold ?f1 acc xs) using 0 & insert.prems(2) by fastforce

also have ... = ffold ?f1 acc (finsert z xs)

using comp-fun-commute.ffold-finsert[of ?f1 x xs| 2 insert.hyps by presburger
finally show ?Zcase .
qged

lemma ffold-eq-fold: [finite xs; f = g] = ffold f acc (Abs-fset xs) = Finite-Set.fold
g acc T8
unfolding ffold-def by (simp add: Abs-fset-inverse)

lemma Abs-fset-sub-if-sub:
assumes finite ys and zs C ys
shows Abs-fset xs |C| Abs-fset ys

proof (rule ccontr)
assume —(Abs-fset zs |C| Abs-fset ys)
then obtain = where z-def: x |€| Abs-fset xs z |¢| Abs-fset ys by blast
then have = € fset (Abs-fset xs) A z & fset (Abs-fset ys) by fast
moreover have finite s using assms finite-subset by auto
ultimately show Fulse using assms Abs-fset-inverse by blast

qed

lemma fold-commute-supset:
assumes finite ys and xs C ys and P ys and Ays zs. [zs C ys; P ys] = P s
and Azs. comp-fun-commute (Aa b. if a ¢ zsV =Q a bV =P zs then b else
R ab)
shows Finite-Set.fold (Aa b. if a ¢ ysV = Q a bV —P ys then b else R a b) acc
xs
= Finite-Set.fold (Aa b. if a ¢ sV = Q a bV =P zs then b else R a b) acc
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xs
proof —

let f = Xab. ifa ¢ ysV ~Q abV —P ys then belse R ab

let f'=Xab. ifag¢g zsV -QabV -Puasthenbelse Rab

let 7P = A\zs. P (fset xs)

let 2g = Xa b. if a & fset (Abs-fset ys) V —Q a bV —(?P (Abs-fset ys)) then b
else R a b

let 29’ = Xa b. if a ¢ fset (Abs-fset zs) V =Q a bV —(?P (Abs-fset xs)) then b
else R ab

have 0: finite xs using assms(1,2) finite-subset by auto

then have 1: Abs-fset s |C| (Abs-fset ys) using Abs-fset-sub-if-sub| OF assms(1,2)]
by blast

have 2: ?P (Abs-fset ys) by (simp add: Abs-fset-inverse assms(1,3))

have 3: Ays zs. [zs |C| ys; 2P ys] = 7P xs by (simp add: assms(4) less-eq-fset.rep-eq)

have 4: Axs. comp-fun-commute (Aa b. if a ¢ fset xs V = Q a bV (7P xs) then
b else R a b)

using assms(5) by (simp add: less-eq-fset.rep-eq)

have ?f' = ?¢’ by (simp add: Abs-fset-inverse 0)

have ?f = ?g by (simp add: Abs-fset-inverse assms(1))

then have Finite-Set.fold (Aa b. if a ¢ ysV =Q a bV —P ys then b else R a b)
acc xs

= ffold ?g acc (Abs-fset xs) by (simp add: 0 ffold-eq-fold)
also have ... = ffold %" acc (Abs-fset xs)
using ffold-commute-supset|OF 1, of ?P, OF 2 8 /] by simp

finally show ?thesis using <?f' = ?¢"» by (simp add: 0 ffold-eq-fold)

qged

lemma dtail-commute-aux:
fixes r zs e def
defines f = (A\(z,e2) b. if (z,e2) ¢ fset xs V e ¢ darcs x V —wf-darcs (Node r
xs)
then b else dtail © def)
shows (fyo fz) z=(fzo fy) 2
proof —
obtain y! y2 where y-def: y = (y1,y2) by fastforce
obtain z! 22 where z-def: © = (z1,22) by fastforce
show ?thesis
proof(cases (z1,22) € fset zs A (y1,y2) € fset xs)
case 0: True
then show ?thesis
proof(cases e € darcs ©1 A e € darcs yl)
case True
then have 1: 21 = yI V ~wf-darcs (Node r zs) using 0 disjoint-darcs-if-wf-auz2
by fast
then show %thesis using assms by (cases z1=yl)(auto simp: z-def y-def)
next
case Fulse
then show ?thesis using assms by (simp add: x-def y-def)
qed
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next
case Fulse
then show %thesis using assms by (simp add: z-def y-def)
qed
qed

lemma dtail-commute:
comp-fun-commute (N(z,e2) b. if (z,e2) ¢ fset xs V e ¢ darcs x V —~wf-darcs
(Node r zs)
then b else dtail z def)
using dtail-commute-aux|of xs] by unfold-locales blast

lemma dtail-f-alt:

assumes P = (A\zs. wf-darcs (Node 1 zs))
and Q = (A(t1,el) b. e € darcs t1)
and R = (\(t1,el) b. dtail t1 def)

shows (\(t1,e1) b. if (t1,el) ¢ fset s V e ¢ darcs t1V —wf-darcs (Node r xs)
then b else dtail t1 def)
=(Aab. ifad fsetasV - QabV - Puasthenbelse R ab)
using assms by fast

lemma dtail-f-alt-commute:
assumes P = (A\zs. wf-darcs (Node r zs))
and @ = (A(t1,el) b. e € darcs t1)
and R = (\(t1,el) b. dtail t1 def)
shows comp-fun-commute (Aa b. if a ¢ fset xsV = Q a bV — P zs then b else
R ab)
using dtail-commute|of zs e r def] dtail-f-alt[OF assms| by simp

lemma dtail-ffold-supset:
assumes zs |C| ys and wf-darcs (Node r ys)
shows ffold (A\(z,e2) b. if (x,e2) ¢ fset ys V e & darcs x NV —wf-darcs (Node r
ys)
then b else dtail x def) def s
= ffold (A(z,e2) b. if (z,e2) ¢ fset xs V e ¢ darcs x V —wf-darcs (Node r zs)
then b else dtail x def) def xs
proof —
let 2P = Azs. wf-darcs (Node r xs)
let 2Q = A\(t1,el) b. e € darcs t1
let ?R = X\(t1,el) b. dtail t1 def
have 0: Azs. comp-fun-commute (Aa b. if a & fset sV = 2Q a bV — 2P zs then
b else ?R a b)
using dtail-f-alt-commute by fast
have ffold (Aa b. if a ¢ fset ysV = 2Q a bV — 2P ys then b else ?R a b) def xs
= ffold (Aa b. if a ¢ fset zsV — 2Q a bV — ?P xs then b else ?R a b) def xs
using ffold-commute-supset| OF assms(1),of ?P ?Q ?R,OF assms(2) wf-darcs-sub
0] by simp
then show ?thesis using dtail-f-alt[of ?P r Q) e ?R] by simp
qed
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lemma dtail-in-child-eq-child-ffold:
assumes (t,el) € fset zs and e € darcs t and wf-darcs (Node 1 xs)
shows ffold (A(z,e2) b. if (z,e2) ¢ fset xs V e ¢ darcs © V —~wf-darcs (Node r
xs)
then b else dtail © def) def s
= dtail t def
using assms proof (induction zs)
case (insert ©' xs)
let 2f = (A(z,e2) b.
if (x,e2) ¢ fset (finsert x' zs) V e ¢ darcs x V —wf-darcs (Node r
(finsert ' xs))
then b else dtail © def)
let 2f' = (A(z,e2) b. if (z,e2) & fset xs V e & darcs z V —wf-darcs (Node r xs)
then b else dtail x def)
obtain z e3 where z-def: x’' = (z,e3) by fastforce
show Zcase
proof(cases x=t)
case True
have ffold ?f def (finsert x’ xs) = (?f «’ (ffold ?f def xs))
using comp-fun-commute.ffold-finsert[of 2f x' xs def] dtail-commute insert.hyps
by fast

also have ... = (?f (z,e3) (ffold ?f def zs)) using z-def by blast
also have ... = dtail z def using z-def insert.prems(2,3) True by fastforce
finally show ?thesis using True by blast
next
case Fulse

then have 0: (t,el) € fset xs using insert.prems(1) z-def by simp
have 1: wf-darcs (Node r zs) using wf-darcs-sub| OF fsubset-finsert] insert.prems(3)]

have 2: xs |C| (finsert «’ xs) by blast

have (z,e3) € fset (finsert z' xs) using z-def by simp

have 3: e ¢ darcs x using insert.prems(1—23) disjoint-darcs-if-wf z-def False
by fastforce

have ffold ?f def (finsert x’ zs) = (?f z’ (ffold ?f def xs))

using comp-fun-commute.ffold-finsert[of ?f z' xs def] dtail-commute insert.hyps
by fast

also have ... = (?f (z,e3) (ffold ?f def zs)) using z-def by blast
also have ... = (ffold ?f def zs) using 3 by fastforce
also have ... = (ffold ?f' def zs)
using dtail-ffold-supset|[of zs finsert z’ zs] insert.prems(3) 2 by simp
also have ... = dtail t def using insert.IH 0 1 insert.prems(2) by fast
finally show ?%thesis .
qed
qed(simp)

lemma dtail-in-child-eq-child:
assumes (t,el) € fset zs and e € darcs t and wf-darcs (Node 1 xs)
shows dtail (Node r xs) def e = dtail t def e
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using assms dtail-in-child-eq-child-ffold[OF assms] disjoint-darcs-if-wf-auz3 by
fastforce

lemma dtail-ffold-notelem-eq-def:
assumes V (t,el) € fset xs. e ¢ darcs t
shows ffold (A(z,e2) b. if (x,e2) ¢ fset ys V e ¢ darcs x V —wf-darcs (Node r
ys)
then b else dtail « def) def zs = def
using assms proof (induction xs)
case empty
show Zcase
unfolding dtail-commute| THEN comp-fun-commute.ffold-empty|
by simp
next
case (insert ©' xs)
obtain z e3 where z-def: x’' = (z,e3) by fastforce
let 2f = (A(z,e2) b. if (z,e2) ¢ fset ys V e ¢ darcs x V —wf-darcs (Node r ys)
then b else dtail z def)
have ffold ?f def (finsert x’ xs) = 2f x' (ffold ?f def zs)
using comp-fun-commute.ffold-finsert[of ?f x’ xs] dtail-commute insert.hyps by
fast

also have ... = (ffold ?f def zs) using insert.prems by auto
also have ... = def using insert.IH insert.prems by simp
finally show ?Zcase .

qed

lemma dtail-notelem-eq-def:
assumes ¢ ¢ darcs t
shows dtail t def e = def e
proof —
obtain 7 xs where zs-def[simp]: t = Node r zs using dtree.exhaust by auto
let 2f = (A(z,e2) b. if (z,e2) ¢ fset xs V e & darcs x V —wf-darcs (Node 1 xs)
then b else dtail © def)
have 0: V (¢, el)€fset xs. e ¢ darcs t using assms by auto
have dtail (Node 1 zs) def e = ffold ?f def zs e using assms by auto
then show ?thesis using dtail-ffold-notelem-eq-def 0 by fastforce
qed

lemma dhead-commute-aux:
fixes r xs e def
defines f = (\(2,e2) b. if (x,e2) ¢ fset s V e & (darcs © U {e2}) V —wf-darcs
(Node r xs)
then b else if e=e2 then root x else dhead x def €)
shows (fyofz) z=(fzofy) 2z
proof —
obtain zI 22 where z-def: © = (z1,22) by fastforce
obtain yI y2 where y-def: y = (y1,y2) by fastforce
show ?thesis
proof(cases (z1,22) € fset xs A (y1,y2) € fset xs)
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case 0: True
then show ?thesis
proof(cases e € darcs ©1 A e € darcs y1)
case True
then have 1: (21,22) = (y1,y2) V —wf-darcs (Node r xs)
using 0 disjoint-darcs-if-wf-auz2 by fast
then show ?thesis using assms z-def y-def by (smt (28) case-prod-conv
comp-apply)
next
case False
then show ?thesis
proof(cases r2=c¢)
case True
then show ?thesis using assms z-def y-def disjoint-darcs-if-wf by force
next
case Fulse
then show %thesis using assms z-def y-def disjoint-darcs-if-wf by fastforce
qed
qed
next
case Fulse
then show %thesis using assms by (simp add: z-def y-def)
qed
qed

lemma dhead-commute:
comp-fun-commute (N(x,e2) b. if (xz,e2) ¢ fset xs V e ¢ (darcs © U {e2}) V
—wf-darcs (Node r xs)
then b else if e=e2 then root x else dhead x def e)
using dhead-commute-auz|of zs] by unfold-locales blast

lemma dhead-ffold-f-alt:

assumes P = (Azs. wf-darcs (Node r zs)) and Q = (A(z,e2) -. e € (darcs z U
{e2}))

and R = (A\(z,e2) -. if e=e2 then root = else dhead x def €)
shows (A(z,e2) b. if (x,e2) ¢ fset xs V e ¢ (darcs x U {e2}) V —wf-darcs (Node
r xzs) then b
else if e=e2 then root z else dhead z def e)
=(Aab. ifad fsetasV - QabV - Puasthenbelse R ab)
using assms by fast

lemma dhead-ffold-f-alt-commute:
assumes P = (Azs. wf-darcs (Node r zs)) and Q = (A(z,e2) -. e € (darcs z U
{e2}))
and R = (A\(z,e2) -. if e=e2 then root = else dhead x def €)
shows comp-fun-commute (Aa b. if a ¢ fset xs V = Q a bV — P zs then b else
R ab)
using dhead-commute[of zs e r def] dhead-ffold-f-alt[OF assms] by simp
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lemma dhead-ffold-supset:
assumes zs |C| ys and wf-darcs (Node r ys)
shows ffold (A(z,e2) b. if (z,e2) ¢ fset ys V e & (darcs x U {e2}) V —wf-darcs
(Node r ys) then b
else if e=e2 then root x else dhead x def €) (def €) xs
= ffold (A(z,e2) b. if (x,e2) ¢ fset xs V e ¢ (darcs x U {e2}) V —wf-darcs
(Node r xs) then b
else if e=e2 then root = else dhead x def €) (def e) s
(is ffold ?f - - = ffold %g - -)
proof —
let 7P = Azs. wf-darcs (Node r xs)
let 7Q = A\(z,e2) -. e € (darcs © U {e2})
let R = A(z,e2) -. if e=e2 then root z else dhead x def e
have 0: Azs. comp-fun-commute (Aa b. if a & fset zs V = 2Q a bV — 2P zs then
b else ?R a b)
using dhead-ffold-f-alt-commute by fast
have ffold (Aa b. if a & fset ysV = 2Q a bV = 2P ys then b else YR a b) (def e)
s
= ffold (Aa b. if a & fset xzs V = 2Q a bV — 2P xs then b else 7R a b) (def )
xs
using ffold-commute-supset| OF assms(1), of P 2Q ?R, OF assms(2) wf-darcs-sub
0] by simp
moreover have ?f = (Aa b. if a & fset ys V = 2Q a bV — 2P ys then b else ?R
a b) by fast
moreover have ?g = (Aa b. if a ¢ fset xs V = 2Q a bV — 7P xs then b else ?R
a b) by fast
ultimately show ¢thesis by argo
qed

lemma dhead-in-child-eq-child-ffold:
assumes (t,el) € fset zs and e € darcs t and wf-darcs (Node r xs)
shows ffold (A(z,e2) b. if (x,e2) ¢ fset xs V e ¢ (darcs x U {e2}) V —wf-darcs
(Node r xs)
then b else if e=e2 then root x else dhead x def e) (def e) xs
= dhead t def e
using assms proof (induction xs)
case (insert z' s)
let 2f = (A(z,e2) b. if (x,e2) ¢ fset (finsert ' xs) V e & (darcs x U {e2})
V —wf-darcs (Node 1 (finsert '’ xs))
then b else if e=e2 then root x else dhead x def e)
let 2/ = (A\(z,e2) b. if (z,e2) & fset zs V e ¢ (darcs z U {e2}) V —wf-darcs
(Node r xs) then b
else if e=e2 then root z else dhead z def e)
obtain z e8 where z-def: z’ = (z,e3) by fastforce
show Zcase
proof(cases x=t)
case True
have ffold ?f (def e) (finsert ' xs) = (2f z' (ffold ?f (def e) zs))

using comp-fun-commute.ffold-finsert[of ?f x' xs def e] dhead-commute in-
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sert.hyps by fast
also have ... = (?f (z,e3) (ffold ?f (def e) zs)) using z-def by blast
also have ... = dhead = def e
using z-def insert.prems(2,3) True disjoint-darcs-if-wf by fastforce
finally show ?thesis using True by blast
next
case Fulse
then have 0: ({,el) € fset xs using insert.prems(1) z-def by simp
have 1: wf-darcs (Node r zs) using wf-darcs-sub| OF fsubset-finsertl insert.prems(3)]

have 2: xs |C| (finsert z’ xs) by blast
have 3: e3 # e e ¢ darcs x
using insert.prems(1—3) disjoint-darcs-if-wf z-def False by fastforce+
have ffold ?f (def e) (finsert x’ xs) = (2f z' (ffold ?f (def e) zs))
using comp-fun-commute.ffold-finsert[of ?f «' xs def e] dhead-commute in-
sert.hyps by fast

also have ... = (?f (z,e3) (ffold ?f (def e) zs)) using z-def by blast
also have ... = (ffold ?f (def e) zs) using & by simp
also have ... = (ffold ?f' (def e) zs)
using dhead-ffold-supset|of xs finsert x' xs] insert.prems(3) 2 by simp
also have ... = dhead t def e using insert.IH 0 1 insert.prems(2) by fast
finally show ?%thesis .
qed
qed(simp)

lemma dhead-in-child-eq-child:
assumes (t,el) € fset xs and e € darcs t and wf-darcs (Node r xs)
shows dhead (Node r xs) def e = dhead t def e
using assms dhead-in-child-eq-child-ffold|of t] by simp

lemma dhead-ffold-notelem-eq-def:
assumes Y (t,el) € fset xs. e ¢ darcs t N\ e # el
shows ffold (A(z,e2) b. if (z,e2) ¢ fset ys V e ¢ (darcs x U {e2}) V —wf-darcs
(Node r ys) then b
else if e=e2 then root z else dhead z def e) (def €) xs = def e
using assms proof (induction xs)
case empty
show ?Zcase
apply (rule comp-fun-commute.ffold-empty)
using dhead-commute by force
next
case (insert ¢’ xs)
obtain z e3 where z-def: x’' = (z,e3) by fastforce
let 2f = (A(z,e2) b. if (z,e2) & fset ys V e ¢ (darcs z U {e2}) V —wf-darcs
(Node r ys)
then b else if e=e2 then root x else dhead x def e)
have ffold ?f (def e) (finsert «’ xs) = 2f ' (ffold ?f (def €) xs)
using comp-fun-commute.ffold-finsert[of ?f x’ xs| dhead-commute insert.hyps
by fast
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also have ... = (ffold ?f (def e) zs) using insert.prems by auto

also have ... = def e using insert.IH insert.prems by simp
finally show ?Zcase .
qed

lemma dhead-notelem-eq-def:
assumes ¢ ¢ darcs t
shows dhead t def e = def e
proof —
obtain 7 xs where zs-def[simp]: t = Node r zs using dtree.exhaust by auto
let 2f = (A(z,e2) b. if (z,e2) ¢ fset xs V e ¢ (darcs x U {e2}) V —wf-darcs
(Node r xs)
then b else if e=e2 then root x else dhead z def e)
have 0: V (t, el )€fset zs. e ¢ darcs t \ el#e using assms by auto
have dhead (Node r xs) def e = ffold ?f (def €) xs by simp
then show ?thesis using dhead-ffold-notelem-eq-def 0 by fastforce
qed

lemma dhead-in-set-eq-root-ffold:
assumes (t,e) € fset zs and wf-darcs (Node r xs)
shows ffold (A(z,e2) b. if (x,e2) ¢ fset xs V e ¢ (darcs x U {e2}) V —wf-darcs
(Node r xs)
then b else if e=e2 then root x else dhead © def e) (def e) xs
= root t (is ffold ?f' - - = -)
using assms proof (induction xs)
case (insert z' s)
let 2f = (A(z,e2) b. if (z,e2) ¢ fset (finsert z’ zs) V e ¢ (darcs x U {e2})
V —wf-darcs (Node 1 (finsert ' xs))
then b else if e=e2 then root x else dhead z def e)
let 2f' = (A(z,e2) b. if (z,e2) ¢ fset xs V e ¢ (darcs © U {e2}) V —wf-darcs
(Node r xs) then b
else if e=e2 then root z else dhead z def e)
obtain z e3 where z-def: x’' = (z,e3) by fastforce
show ?case
proof(cases e3=e)
case True
then have z=t using insert.prems(1,2) z-def disjoint-darcs-if-wf by fastforce
have ffold ?f (def e) (finsert x’ xs) = (2f ' (ffold ?f (def €) zs))
using comp-fun-commute.ffold-finsert[of ?f x’ xs def e] dhead-commute in-
sert.hyps by fast

also have ... = (?f (z,e3) (ffold ?f (def e) zs)) using z-def by blast
also have ... = root = using z-def insert.prems(1,2) True by simp
finally show ?thesis using True <x=t> by blast

next
case Fulse

then have 0: (t,e) € fset zs using insert.prems(1) z-def by simp
have 1: wf-darcs (Node r zs) using wf-darcs-sub| OF fsubset-finsertl insert.prems(2)]

have 2: xs |C| (finsert z’ xs) by blast
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have 3: e3 # e using insert.prems(2) False by simp
have 4: e ¢ (darcs © U {e3})
using insert.prems(1—2) False z-def disjoint-darcs-if-wf by fastforce
have ffold ?f (def e) (finsert «’ xs) = (2f z' (ffold ?f (def e) zs))
using comp-fun-commute.ffold-finsert[of ?f «' xs def e] dhead-commute in-
sert.hyps by fast

also have ... = (?f (z,e3) (ffold ?f (def e) zs)) using z-def by blast
also have ... = (ffold ?f (def e) xs) using 4 by auto
also have ... = (ffold ?f' (def e) xs)
using dhead-ffold-supset|of xs finsert x' xs] insert.prems(2) 2 by simp
also have ... = root t using insert.IH 0 1 insert.prems(2) by blast
finally show ?thesis .
qed
qed(simp)

lemma dhead-in-set-eq-root:
[(t,e) € fset xs; wf-darcs (Node r xs)] = dhead (Node r zs) def e = root t
using dhead-in-set-eq-root-ffold|of t| by simp

lemma self-subtree: is-subtree t t
using is-subtree.elims(3) by blast

lemma subtree-trans: is-subtree x y =—> is-subtree y z = is-subtree x z
by (induction z) fastforce+

lemma subtree-trans’: transp is-subtree
using subtree-trans transpl by auto

lemma subtree-if-child: x € fst ‘ fset xs = is-subtree x (Node 1 xs)
using is-subtree.elims(3) by force

lemma subtree-if-suc: t1 € fst  fset (sucs t2) = is-subtree t1 t2
using subtree-if-child[of t1 sucs t2 root t2] by simp

lemma child-sub-if-strict-subtree:
[strict-subtree t1 (Node r zs)] = 3t8 € fst * fset xs. is-subtree t1 t3
unfolding strict-subtree-def by force

lemma suc-sub-if-strict-subtree:
strict-subtree t1 t2 = 3t3 € fst * fset (sucs t2). is-subtree t1 t3
using child-sub-if-strict-subtree[of t1 root t2] by simp

lemma subtree-size-decr: [is-subtree t1 t2; t1 # t2] = size t1 < size t2
using dtree-size-decr-auz by (induction t2) fastforce

lemma subtree-size-decr’: strict-subtree t1 t2 = size t1 < size t2
unfolding strict-subtree-def using dtree-size-decr-auz by (induction t2) fastforce

lemma subtree-size-le: is-subtree t1 t2 —> size t1 < size t2
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using subtree-size-decr by fastforce

lemma subtree-antisym: [is-subtree t1 t2; is-subtree t2 t1] = t1 = t2
using subtree-size-le subtree-size-decr by fastforce

lemma subtree-antisym’: antisymp is-subtree
using antisympl subtree-antisym by blast

corollary subtree-eq-if-trans-eql: [is-subtree t1 t2; is-subtree t2 t3; t1 = t3] =
t1 = t2
using subtree-antisym by blast

corollary subtree-eq-if-trans-eq2: [is-subtree t1 t2; is-subtree t2 t3; t1 = t3] =
t2 = t3
using subtree-antisym by blast

lemma subtree-partial-ord: class.order is-subtree strict-subtree
by standard (auto simp: self-subtree subtree-antisym strict-subtree-def intro: sub-
tree-trans)

lemma finite-subtrees: finite {x. is-subtree z t}
by (induction t) auto

lemma subtrees-insert-union:

{z. is-subtree x (Node r xzs)} = insert (Node r zs) (|Jt1 € fst * fset xs. {z.
is-subtree © t1})

by fastforce

lemma subtrees-insert-union-suc:
{z. is-subtree x t} = insert t (Jt1 € fst * fset (sucs t). {z. is-subtree x t1})
using subtrees-insert-union[of root t sucs t] by simp

lemma darcs-subtree-subset: is-subtree x y = darcs x C darcs y
by (induction y) force

lemma dverts-subtree-subset: is-subtree x y = dverts x C dverts y
by (induction y) force

lemma single-subtree-root-dverts:
is-subtree (Node v2 {|(t2, e2)|}) t1 = v2 € dverts t1
by (fastforce dest: dverts-subtree-subset)

lemma single-subtree-child-root-dverts:
is-subtree (Node v2 {|(t2, e2)|}) t1 = root t2 € dverts t1
by (fastforce simp: dtree.set-sel(1) dest: dverts-subtree-subset)

lemma subtree-root-if-dverts: x € dverts t = Jxs. is-subtree (Node z xs) 1
by (induction t) fastforce
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lemma subtree-child-if-strict-subtree:
strict-subtree t1 t2 = I r xs. is-subtree (Node 1 xs) t2 A t1 € fst * fset xs
proof (induction t2)
case (Node r xs)
then obtain ¢ ¢ where t-def: (t,e) € fset xs is-subtree t1 t
unfolding strict-subtree-def by auto
show ?Zcase
proof(cases t1 = t)
case True
then show %thesis using t-def by force
next
case Fulse
then show ?thesis using Node. IH[OF t-def(1)] t-def unfolding strict-subtree-def
by auto
qed
qed

lemma subtree-child-if-dvert-notroot:

assumes v # r and v € dverts (Node 1 xs)

shows 31’ ys zs. is-subtree (Node r' ys) (Node r xs) A Node v zs € fst * fset ys
proof —

obtain zs where sub: is-subtree (Node v zs) (Node 1 xs)

using assms(2) subtree-root-if-dverts by fast

then show %thesis using subtree-child-if-strict-subtree strict-subtree-def assms(1)
by fast
qged

lemma subtree-child-if-dvert-notelem:

[v # root t; v € dverts t] = 31’ ys zs. is-subtree (Node v’ ys) t A Node v zs €
fst ¢ fset ys

using subtree-child-if-dvert-notroot|of v root t sucs t] by simp

lemma strict-subtree-subset:
assumes strict-subtree t (Node r zs) and zs |C| ys
shows strict-subtree t (Node 1 ys)
proof —
obtain t1 el where t1-def: (t1,el) € fset xs is-subtree t t1
using assms(1) unfolding strict-subtree-def by auto
have size t < size (Node r xs) using subtree-size-decr’'|OF assms(1)] by blast
then have size t < size (Node r ys) using size-le-if-child-subset| OF assms(2)]
by simp
moreover have is-subtree t (Node r ys) using assms(2) t1-def by auto
ultimately show %thesis unfolding strict-subtree-def by blast
qed

lemma strict-subtree-singleton:
[strict-subtree t (Node r {|z|}); x |€| 3]
= strict-subtree t (Node r s)
using strict-subtree-subset by fast
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7.3.1 Finite Directed Trees to Dtree

context finite-directed-tree
begin

lemma child-subtree:
assumes e € out-arcs T'r
shows {z. (head T e) =*p 2} C {z. r =% p z}
proof —
have r —*p (head T e) using assms in-arcs-imp-in-arcs-ends by auto
then show %thesis by (metis Collect-mono reachable-trans)
qed

lemma child-strict-subtree:
assumes e € out-arcs T r
shows {z. (head T e) =*p 2z} C {z. r =% p z}

proof —
have r — (head T e) using assms in-arcs-imp-in-arcs-ends by auto
then have — ((head T e) —* 7 r) using reachablel-not-reverse by blast
then show “thesis using child-subtree assms by auto

qed

lemma child-card-decr:
assumes e € out-arcs T r
shows Finite-Set.card {z. (head T e) —*p x} < Finite-Set.card {z. r —* p z}
using assms child-strict-subtree by (meson psubset-card-mono reachable-verts-finite)

function to-dtree-auz :: 'a = (’a,’b) dtree where
to-dtree-aux r = Node r (Abs-fset {(z,e).
(if e € out-arcs T r then & = to-dtree-aux (head T e) else False)})
by auto
termination
by (relation measure (Ar. Finite-Set.card {x. r —*p x})) (auto simp: child-card-decr)

definition to-dtree :: (‘a,’b) dtree where
to-dtree = to-dtree-aux root

abbreviation from-dtree :: ('a,’b) dtree = (‘a,’d) pre-digraph where
from-dtree t = Dtree.from-dtree (tail T) (head T) t

lemma to-dtree-root-eq-root[simp|: Dtree.root to-dtree = root
unfolding to-dtree-def by simp

lemma verts-fset-id: fset (Abs-fset (verts T)) = verts T
by (simp add: Abs-fset-inverse)

lemma arcs-fset-id: fset (Abs-fset (arcs T)) = arcs T
by (simp add: Abs-fset-inverse)

lemma dtree-leaf-child-empty:
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leaf r = {(z,€). (if e € out-arcs T r then x = to-diree-aux (head T e) else

False)} = {}
unfolding leaf-def by simp

lemma dtree-leaf-no-children: leaf r = to-dtree-aux v = Node r {||}
using dtree-leaf-child-empty by (simp add: bot-fset.abs-eq)

lemma dtree-children-alt:
{(z,e). (if e € out-arcs T r then x = to-dtree-aux (head T €) else False)}
= {(z,e). e € out-arcs T r A © = to-dtree-aux (head T e)}
by metis

lemma dtree-children-img-alt:
(Xe. (to-dtree-aux (head T e€),e)) ‘ (out-arcs T r)
= {(z,e). (if e € out-arcs T r then x = to-dtree-auz (head T e) else False)}
using dtree-children-alt by blast

lemma dtree-children-fin:
finite {(z,e). (if e € out-arcs T r then x = to-diree-auz (head T e) else False)}
using finite-imagel [of out-arcs T r (Xe. (to-dtree-aux (head T e),e))]
dtree-children-img-alt finite-out-arcs by fastforce

lemma dtree-children-fset-id:
assumes to-dtree-auxz r = Node r zs
shows fset s = {(z,e). (if e € out-arcs T r then x = to-dtree-aux (head T e)
else False)}
proof —
let ?zs = {(xz,e). (if e € out-arcs T r then x = to-dtree-aux (head T e) else False)}
have finite ?xs using dtree-children-fin by simp
then have fset (Abs-fset %xs) = ?zs using Abs-fset-inverse by blast
then show ?thesis using assms Abs-fset-inverse by simp
qed

lemma to-dtree-aux-empty-if-notT:
assumes r ¢ verts T
shows to-dtree-auz r = Node r {||}
proof (rule ccontr)
assume asm: to-diree-auz v # Node r {||}
then obtain zs where xs-def: Node r xs = to-dtree-aux r by simp
then have zs # {||} using asm by simp
then obtain z e where z-def: (z,e) € fset xs by fast
then have e € out-arcs T r using zs-def dtree-children-fset-id[of r] by (auto
split: if-splits)
then show Fulse using assms by auto
qed

lemma to-dtree-auz-root: Dtree.root (to-dtree-aux r) = r
by simp
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lemma out-arc-if-child:
assumes z € (fst ‘ {(z,e). (if e € out-arcs T r then x = to-dtree-auz (head T e)
else False)})
shows Je. e € out-arcs T r A\ z = to-dtree-aux (head T e)
proof —
let 2zs = {(z,e). (if e € out-arcs T r then x = to-dtree-aux (head T e) else False)}
have Jy. y € %xs A fst y = x using assms by blast
then show %thesis by (smt (verit, best) case-prodE fst-conv mem-Collect-eq)
qed

lemma dominated-if-child-aux:

assumes z € (fst ‘ {(z,e). (if e € out-arcs T r then x = to-dtree-auz (head T e)
else False)})

shows r — p (Dtree.root x)
proof —

obtain e where e € out-arcs T r A\ © = to-dtree-aux (head T e)

using assms out-arc-if-child by blast

then show ?thesis using in-arcs-imp-in-arcs-ends by force

qed

lemma dominated-if-child:
[to-dtree-aux r = Node r xs; x € fst  fset xs] = r — p (Dtree.root )
using dominated-if-child-aux dtree-children-fset-id by simp

lemma image-add-snd-snd-id: snd ¢ ((Xe. (to-dtree-auz (head T e)ye)) ‘z) = x
by (intro equalityl subsetl) (force simp: image-iff )+

lemma to-dtree-aux-child-in-verts:
assumes Node 1’ zs = to-diree-auz r and z € fst  fset xs
shows Dtree.root © € verts T

proof —
have r — 7 Dtree.root x using assms dominated-if-child by auto
then show ?thesis using adj-in-verts(2) by auto

qed

lemma to-dtree-aux-parent-in-verts:
assumes Node r’ zs = to-dtree-auz r and z € fst * fset xs
shows r € verts T

proof —
have r — p Dtree.root x using assms dominated-if-child by auto
then show ?thesis using adj-in-verts(2) by auto

qged

lemma dtree-out-arcs:
snd ‘{(z,e). (if e € out-arcs T r then © = to-diree-aux (head T e) else False)} =
out-arcs T r

using dtree-children-img-alt by (metis image-add-snd-snd-id)

lemma dtree-out-arcs-eq-snd:

140



assumes to-dtree-aux r = Node r zs
shows (snd ‘ (fset xs)) = out-arcs T r
using assms dtree-out-arcs dtree-children-fset-id by blast

lemma dtree-auz-fst-head-snd-aux:

assumes z € {(z,e). (if e € out-arcs T r then x = to-dtree-aux (head T e) else
False)}

shows Diree.root (fst ) = (head T (snd x))

using assms by (metis (mono-tags, lifting) Collect-case-prodD to-dtree-auz-root)

lemma dtree-auz-fst-head-snd:
assumes to-dtree-aux v = Node r s and = € fset xs
shows Diree.root (fst ) = (head T (snd x))
using assms dtree-children-fset-id dtree-auz-fst-head-snd-auz by simp

lemma child-if-dominated-aux:
assumes 1 = T
shows 3y € (fst “ {(x,e). (if e € out-arcs T r then © = to-dtree-aux (head T e)
else False)}).
Dtree.root y = x
proof —
let 2zs = {(z,e). (if e € out-arcs T r then x = to-dtree-aux (head T e) else False)}
obtain e where e-def: e € out-arcs T r N\ head T e = x using assms by auto
then have e € snd © %zs using dtree-out-arcs by auto
then obtain y where y-def: y € ?zs A snd y = e by blast
then have Dtree.root (fst y) = head T e using dtree-auz-fst-head-snd-auz by
blast
then show ?thesis using e-def y-def by blast
qed

lemma child-if-dominated:
assumes to-dtree-qur r = Node r zs and r —p z
shows Jy € (fst ‘ (fset xs)). Dtree.root y = x
using assms child-if-dominated-aux dtree-children-fset-id by presburger

lemma to-dtree-auz-reach-in-dverts: [t = to-dtree-aux r; v —*p x] = x € dverts
t
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 1’ zs)
then have r = r’/ by simp
then show ?case
proof(cases r=z)
case True
then show ?thesis using «r = r’> by simp
next
case Fulse
then have r —* 7 z using 1.prems(2) by blast
then have 3r’. r —pr' A7/ =*pz
by (metis False converse-reachable-cases reachablel-reachable)
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then obtain z’ where z'-def: r —p 2’ A &' =% z by blast
then obtain y where y-def: y € fst ¢ fset zs A Diree.root y = x’
using 1.prems(1) child-if-dominated by fastforce
then obtain yp where yp-def: fst yp = y A yp € fset xs using y-def by blast
from y-def have y = to-diree-auzx z’
using 1.prems(1) dtree-children-fset-id <r=r"
by (metis (no-types, lifting) out-arc-if-child to-dtree-auz-root)
then have z € dverts y using 1.IH prod.ezhaust-sel yp-def z’-def by metis
then show ?thesis using diree.set-intros(2) y-def by auto
qged
qged

lemma to-dtree-auzx-dverts-reachable:
[t = to-dtree-auz r; x € dverts t; r € verts T| = r =" p x
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 r’ xs)
then have r = r’/ by simp
then show ?case
proof(cases r=z)
case True
then show ?thesis using 1.prems(3) by auto
next
case Fulse
then obtain y where y-def: y € fst ‘ fset s N\ x € dverts y
using 1.prems(2) <r = v’y by fastforce
then have 0: r — p Diree.root y using 1.prems(1) «<r = r’y dominated-if-child
by simp
then have 2: Diree.root y € verts T using adj-in-verts(2) by auto
obtain yp where yp-def: fst yp = y A\ yp € fset xs using y-def by blast
have dyr. y = to-dtree-aux yr
using 1.prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) <r = r’s out-arc-if-child)
then have Ditree.root y —* 7
using 1.IH 2 y-def yp-def surjective-pairing to-dtree-aux-root by metis
then show ?thesis using 0 adj-reachable-trans by auto
qed
qed

lemma dverts-eq-reachable: r € verts T = dverts (to-dtree-auz r) = {z. r ="

2}

using to-dtree-auz-reach-in-dverts to-dtree-auz-dverts-reachable by blast

lemma dverts-eq-reachable’: [r € verts T; t = to-dtree-aux r] = dverts t = {z.
r —*pa}
using dverts-eq-reachable by blast

lemma dverts-eq-verts: dverts to-dtree = verts T

unfolding to-dtree-def using dverts-eq-reachable reachable-from-root reachable-in-verts(2)
by (metis mem-Collect-eq root-in-T subsetl subset-antisym)
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lemma arc-out-arc: e € arcs T —> v € verts T. e € out-arcs T v
by simp

lemma darcs-in-out-arcs: t = to-dtree-aux 1 = e € darcs t => Jvcdverts t. e
€ out-arcs T v
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 r’ xs)
then show ?case
proof(cases e € snd * fset xs)
case True
then show ?thesis
using 1.prems(1) diree-out-arcs-eq-snd to-dtree-aux-root
by (metis dtree.set-intros(1) diree.sel(1))
next
case Fulse
then have Jy € fst  fset zs. e € darcs y using 1.prems(2) by force
then obtain y where y-def: y € fst ‘ fset xs A e € darcs y by blast
obtain yp where yp-def: fst yp = y A\ yp € fset xs using y-def by blast
have 0: (y, snd yp) = yp using yp-def by auto
have Jyr. y = to-dtree-aux yr
using 1.prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) dtree.sel(1) out-arc-if-child to-dtree-auz-root)
then have Jvedverts y. e € out-arcs T v using 1.IH 0 y-def yp-def by blast
then obtain v where v € dverts y A\ e € out-arcs T v by blast
then show %thesis using y-def by auto
qed
qed

lemma darcs-in-arcs: e € darcs to-dtree =—> e € arcs T
using darcs-in-out-arcs out-arcs-in-arcs to-dtree-def by fast

lemma out-arcs-in-darcs: t = to-dtree-aux r = Jvedverts t. e € out-arcs T v
= e € darcs t
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 r’ xs)
then have r’ = r by simp
then obtain v where v-def: v€dverts (Node r xs) A e € out-arcs T v using
1.prems(2) by blast
then show ?case
proof(cases e € snd * fset xs)
case True
then show ?thesis by force
next
case Fulse
then have e ¢ out-arcs T r using 1.prems(1) <r’ = r dtree-out-arcs-eq-snd
by metis
then have v # r using v-def by blast
then obtain y where y-def: y € fst ‘ fset xs A v € dverts y using v-def by

143



force
then obtain yp where yp-def: fst yp = y A yp € fset zs by blast
have 0: (y, snd yp) = yp using yp-def by auto
have dyr. y = to-dtree-aux yr
using 1.prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) dtree.sel(1) out-arc-if-child to-dtree-auz-root)
then have e € darcs y using 1.1H 0 v-def y-def yp-def by blast
then show f?thesis using y-def by force
qed
qed

lemma arcs-in-darcs: e € arcs T = e € darcs to-dtree
using arc-out-arc out-arcs-in-darcs dverts-eq-verts to-dtree-def by fast

lemma darcs-eq-arcs: darcs to-dtree = arcs T
using arcs-in-darcs darcs-in-arcs by blast

lemma to-dtree-aux-self:

assumes Node r xs = to-dtree-auz r and (y,e) € fset zs

shows y = to-dtree-auzx (Dtree.root y)
proof —

have 3y’ y = to-dtree-auz y'

using assms dtree-children-fset-id by (metis (mono-tags, lifting) case-prodD

mem-Collect-eq)

then obtain y’ where y = to-dtree-auz y’ by blast

then show ?thesis by simp
qged

lemma to-dtree-aux-self-subtree:
[t1 = to-dtree-aux r; is-subtree t2 t1] = t2 = to-dtree-aux (Dtree.root t2)
proof (induction t1 arbitrary: r)
case (Node r' s)
then show ?case
proof(cases Node v’ zs = t2)
case True
then show ?thesis using Node.prems(1) by force
next
case Fulse
then obtain ¢ e where t-def: (t,e) € fset xs is-subtree t2 t using Node.prems(2)
by auto
then have t = to-dtree-auz (Dtree.root t) using Node.prems(1) to-dtree-auz-self
by simp
then show ?2thesis using Node.IH[of (t,e) t Dtree.root ] t-def by simp
qed
qed

lemma to-dtree-self-subtree: is-subtree t to-dtree = t = to-dtree-aux (Dtree.root

t)

unfolding to-dtree-def using to-dtree-aux-self-subtree by blast
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lemma to-dtree-self-subtree”: is-subtree (Node 1 xs) to-dtree => (Node r xs) =
to-dtree-auz
using to-dtree-self-subtree[of Node r xzs] by simp

lemma child-if-dominated-to-dtree:

[is-subtree (Node r xs) to-dtree; r —p v] = 3t. t € fst * fset s A\ Dtree.root t
=

using child-if-dominated|of r] to-dtree-self-subtree’ by simp

lemma child-if-dominated-to-dtree’:
[is-subtree (Node r xs) to-dtree; r —p v] = Jys. Node v ys € fst * fset xs
using child-if-dominated-to-dtree dtree.exhaust dtree.sel(1) by metis

lemma child-darc-tail-parent:

assumes Node r xs = to-dtree-auz r and (z,e) € fset xs

shows tail T e = r
proof —

have e € out-arcs T r

using assms dtree-children-fset-id by (metis (no-types, lifting) case-prodD

mem-Collect-eq)

then show ?thesis by simp
qed

lemma child-darc-head-root:
[Node r zs = to-dtree-auz r; (t,e) € fset xs] = head T e = Dtree.root t
using dtree-auz-fst-head-snd by force

lemma child-darc-in-arcs:

assumes Node r xs = to-dtree-auz r and (z,e) € fset xs

shows e € arcs T
proof —

have e € out-arcs T r

using assms dtree-children-fset-id by (metis (no-types, lifting) case-prodD

mem-Collect-eq)

then show ?thesis by simp
qed

lemma darcs-neqg-if-dtrees-neq:
[Node r zs = to-dtree-auz r; (z,el) € fset xs; (y,e2) € fset zs; z#y] = el # e2
using dtree-children-fset-id by (metis (mono-tags, lifting) case-prodD mem-Collect-eq)

lemma dtrees-neq-if-darcs-neg:
[Node r zs = to-dtree-aux r; (x,el) € fset zs; (y,e2) € fset xs; el#e2] = x # y
using dtree-children-fset-id case-prodD dtree-auz-fst-head-snd fst-conv
by (metis (no-types, lifting) mem-Collect-eq out-arcs-in-arcs snd-conv two-in-arcs-contr)

lemma dverts-disjoint:
assumes Node r xs = to-dtree-auz r and (z,el) € fset zs and (y,e2) € fset zs
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and (z,el)#(y,e2)

shows dverts x N dverts y = {}
proof (rule ccontr)

assume dverts x N dverts y # {}

then obtain v where v-def: v € dverts © A v € dverts y by blast

have z # y using dtrees-neqg-if-darcs-neq assms by blast

have 0: © = to-dtree-aux (Dtree.root x) using to-dtree-auz-self assms(1,2) by
blast

have 1: r — p Dtree.root x

using assms(1,2) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv
image-iff)

then have 2: Diree.root x € verts T using adj-in-verts(2) by simp

have 3: y = to-dtree-aux (Dtree.root y) using to-diree-auz-self assms(1,3) by
blast

have /: r — p Dtree.root y

using assms(1,3) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv
image-iff)

then have 5: Diree.root y € verts T using adj-in-verts(2) by simp

have Dtree.root © —* p v using 0 2 to-dtree-auz-dverts-reachable v-def by blast

moreover have Dtree.root y —* 7 v using 3 5 to-dtree-auz-dverts-reachable v-def
by blast

moreover have Diree.root x # Dtree.root y using 0 3 assms(4) <x#y> by auto

ultimately show Fulse using 1 4 reachable-via-child-impl-same by simp
qed

lemma wf-dverts-to-dtree-auxl: r ¢ verts T —> wf-dverts (to-dtree-auz r)
using to-dtree-auz-empty-if-notT unfolding wf-dverts-iff-dverts’ by simp

lemma wf-dverts-to-dtree-auz2: r € verts T = t = to-dtree-aur r —> wf-dverts
t
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 r’ xs)
then have r = r’ by simp
have V (z,e) € fset xs. wf-dverts x A r ¢ dverts ©
proof (standard, standard, standard)
fix zp x e
assume asm: zp € fset xs xp = (z,¢€)
then have 0: x = to-dtree-auz (Dtree.root x) using to-dtree-auz-self 1.prems(2)
by simp
have 2: r —p Ditree.root © using asm 1.prems «r = r’»
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)
then have 3: Dtree.root x € verts T using adj-in-verts(2) by simp
then show wf-dverts  using 1.IH asm 0 by blast
show r ¢ dverts x
proof
assume r € dverts ¢
then have Ditree.root x —* 7 r using 0 3 to-dtree-auz-dverts-reachable by
blast
then have r —* p r using 2 by auto
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then show Fulse using reachablel-not-reverse by blast
qed
qed
then show ?Zcase using dverts-disjoint <r=r" 1.prems(1,2) unfolding wf-dverts-iff-dverts’
by (smt (verit, del-insts) wf-dverts’.simps case-prodI2 case-prod-conv)
qed

lemma wf-dverts-to-diree-auz: wf-dverts (to-dtree-aux 1)
using wf-dverts-to-dtree-auzl wf-dverts-to-dtree-auzr2 by blast

lemma wf-dverts-to-diree-auz’. t = to-dtree-aux r = wf-dverts t
using wf-dverts-to-dtree-aux by blast

lemma wf-dverts-to-dtree: wf-dverts to-dtree
using to-dtree-def wf-dverts-to-dtree-aux by simp

lemma darcs-not-in-subtree:

assumes Node r xs = to-dtree-auz r and (z,e) € fset s and (y,e2) € fset zs

shows e ¢ darcs y
proof

assume asm: e € darcs y

have 0: y = to-dtree-aux (Dtree.root y) using to-diree-auz-self assms(1,3) by
blast

then obtain v where v-def: v € dverts y A\ e € out-arcs T v using darcs-in-out-arcs
asm by blast

have 1: r —p Dtree.root y

using assms(1,3) by (metis (no-types, opaque-lifting) dominated-if-child fst-conv
image-iff)

then have Diree.root y € verts T using adj-in-verts(2) by auto

then have Dtree.root y —* p v using to-dtree-auz-dverts-reachable 0 v-def by
blast

then have r —* p v using 1 by auto

then have r # v using reachablel-not-reverse two-in-arcs-contr by blast

moreover have tail T e = v using v-def by simp

moreover have tail T e = r using assms(1,2) child-darc-tail-parent by blast

ultimately show False by blast
qed

lemma darcs-disjoint:
assumes Node r xs = to-dtree-auz v and r € verts T
and (z,el) € fset zs and (y,e2) € fset zs and (z,el)#(y,e2)
shows (darcs © U {e1}) N (dares y U {e2}) = {}
proof (rule ccontr)
assume (darcs © U {el}) N (dares y U {e2}) # {}
moreover have el ¢ darcs y using darcs-not-in-subtree assms(1—4) by blast
moreover have e2 ¢ darcs ¢ using darcs-not-in-subtree assms(1—4) by blast
moreover have el # e2 using darcs-neq-if-dtrees-neq assms by blast
ultimately have darcs x N darcs y # {} by blast
then obtain e where e-def: e € darcs x N\ e € darcs y by blast
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have z = to-diree-aux (Dtree.root x) using to-dtree-auz-self assms(1,3) by blast
then obtain v! where vi-def: v1 € dverts x A e € out-arcs T vl
using darcs-in-out-arcs e-def by blast
have y = to-dtree-aux (Dtree.root y) using to-dtree-auz-self assms(1,4) by blast
then obtain v2 where v2-def: v2 € dverts y A e € out-arcs T v2
using darcs-in-out-arcs e-def by blast
then have v2 # v! using vI-def v2-def dverts-disjoint assms dtrees-neq-if-darcs-neq
by blast
then show Fulse using vi-def v2-def by simp
qed

lemma wf-darcs-to-dtree-auzl: r ¢ verts T = wf-darcs (to-dtree-auzx r)
using to-dtree-auz-empty-if-notT unfolding wf-darcs-def by simp

lemma wf-darcs-to-dtree-auz2: r € verts T = t = to-dtree-auxr r = wf-darcs t
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 1’ zs)
then have r = r’ by simp
have V (z,e) € fset zs. wf-darcs
proof (standard, standard)
fix zp x e
assume asm: zp € fset xs zp = (z,¢€)
then have 0: © = to-dtree-aux (Diree.root x) using to-dtree-auz-self 1.prems(2)
by simp
have r — p Dtree.root x using asm I.prems <r = r’
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)
then have Diree.root x € verts T using adj-in-verts(2) by simp
then show wf-darcs x using 1.IH asm 0 by blast
qed
moreover have V (z,el) € fset zs. (V(y,e2) € fset zs.
(dares z U {el}) N (dares y U {e2}) = {} V (z,e1)=(y,e2))
using darcs-disjoint 1.prems <r = r’s by blast
ultimately show ?case using darcs-not-in-subtree 1.prems <r = r’»
by (smt (verit) case-prodD case-prodl2 wf-darcs-if-darcs’-auz)
qed

lemma wf-darcs-to-dtree-auz: wf-darcs (to-dtree-auz r)
using wf-darcs-to-dtree-auxl wf-darcs-to-dtree-aux? by blast

lemma wf-darcs-to-dtree-auz’: t = to-diree-aux r = wf-darcs t
using wf-darcs-to-dtree-aux by blast

lemma wf-darcs-to-dtree: wf-darcs to-dtree
using to-dtree-def wf-darcs-to-dtree-auzr by simp

lemma dtail-auzx-elem-eq-tail:

t = to-dtree-aux r = e € darcs t = dtail t def e = tail T e
proof (induction t arbitrary: r rule: darcs-mset.induct)

case (1 r’ xs)
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then have r = r’/ by simp
let 2f = (A(z,e2) b. if (z,e2) ¢ fset xs V e ¢ darcs x V —disjoint-darcs s
then b else dtail © def)
show ?Zcase
proof(cases e € snd * fset xs)
case True
then have 0: dtail (Node r' xs) def e = r using «r=r"» by simp
have e € out-arcs T r using ditree-out-arcs-eq-snd 1.prems(1) True by simp
then have tail T e = r by simp
then show %thesis using 0 by blast
next
case Fulse
then obtain z el where z-def: (z,e1) € fset zs A e € darcs x using 1.prems(2)
by force
then have z = to-dtree-auz (Dtree.root x) using 1.prems(1) «r = r’s to-dtree-auz-self
by blast
then have 0: dtail x def e = tail T e using 1.IH z-def by blast
have wf-darcs (Node r xs) using 1.prems(1) wf-darcs-to-dtree-auz by simp
then have dtail (Node r' zs) def e = dtail x def e
using dtail-in-child-eq-child[of z] x-def 1.prems by force
then show ?thesis using 0 by simp
qed
qed

lemma dtail-elem-eqg-tail: e € darcs to-dtree = dtail to-dtree def e = tail T e
using dtail-auz-elem-eq-tail to-dtree-def by blast

lemma to-dtree-dtail-eq-tail-auz: dtail to-dtree (tail T) e = tail T e
using dtail-notelem-eq-def dtail-elem-eq-tail by metis

lemma to-diree-dtail-eq-tail: dtail to-dtree (tail T) = tail T
using to-dtree-dtail-eq-tail-auz by blast

lemma dhead-auz-elem-eq-head:
t = to-dtree-aur 1 => e € darcs t = dhead t def e = head T e
proof (induction t arbitrary: r rule: darcs-mset.induct)
case (1 r’ xs)
then have r = r’ by simp
let 2f = (A(z,e2) b. if (z,e2) & fset xs V e & (darcs © U {e2}) V —disjoint-darcs
xs
then b else if e=e2 then Dtree.root z else dhead x def €)
obtain child where child € fset xzs using I.prems(2) by auto
then have wf: wf-darcs (Node r xs) using 1.prems(1) wf-darcs-to-diree-auz by
stmp
show ?Zcase
proof(cases e € snd * fset xs)
case True
then obtain z where z-def: (z,e) € fset xs by force
then have 0: dhead (Node r' zs) def e = Dtree.root
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using dhead-in-set-eq-root wf <r=r'"s by fast
have e € out-arcs T r using dtree-out-arcs-eq-snd 1.prems(1) True by simp
then have head T e = Diree.root © using z-def 1.prems(1) dtree-auz-fst-head-snd
by force
then show ?thesis using 0 by simp
next
case Fulse
then obtain z el where z-def: (z,e1) € fset zs A e € darcs x using 1.prems(2)
by force
then have z = to-dtree-auz (Dtree.root x) using 1.prems(1) «r = r’s to-dtree-auz-self
by blast
then have 0: dhead = def e = head T e using 1.IH z-def by blast
have dhead (Node r' zs) def e = dhead z def e
using dhead-in-child-eq-child[of z] z-def wf <r=r"y by blast
then show %thesis using 0 by simp
qged
qed

lemma dhead-elem-eq-head: e € darcs to-dtree => dhead to-dtree def e = head T
e
using dhead-auz-elem-eq-head to-dtree-def by blast

lemma to-dtree-dhead-eq-head-auz: dhead to-diree (head T) e = head T e
using dhead-notelem-eq-def dhead-elem-eq-head by metis

lemma to-dtree-dhead-eq-head: dhead to-diree (head T) = head T
using to-dtree-dhead-eq-head-aux by blast

lemma from-to-dtree-eq-orig: from-dtree (to-dtree) = T
using to-dtree-dhead-eq-head to-dtree-dtail-eq-tail darcs-eq-arcs dverts-eq-verts by
simp

lemma subtree-darc-tail-parent:
[is-subtree (Node r xs) to-diree; (t,e) € fset as] = tail T e = r
using child-darc-tail-parent to-dtree-self-subtree’ by blast

lemma subtree-darc-head-root:
[is-subtree (Node r xs) to-dtree; (t,e) € fset xs] = head T e = Dtree.root t
using child-darc-head-root to-dtree-self-subtree’ by blast

lemma subtree-darc-in-arcs:
[is-subtree (Node r xs) to-dtree; (t,e) € fset xs] = e € arcs T
using to-dtree-self-subtree’ child-darc-in-arcs by blast

lemma subtree-child-dom: [is-subtree (Node 1 xs) to-diree; (t,e) € fset xs] = r
— 7 Dtree.root t
using subtree-darc-tail-parent subtree-darc-head-root subtree-darc-in-arcs
in-arcs-imp-in-arcs-ends by fastforce
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end

7.3.2 Well-Formed Dtrees

locale wf-dtree =
fixes ¢ :: ('a,’d) dtree
assumes wf-arcs: wf-darcs t
and wf-verts: wf-dverts t

begin

lemma wf-dtree-rec: Node r zs = t = (x,€) € fset s = wf-dtree
using wf-arcs wf-verts by (unfold-locales) auto

lemma wf-dtree-sub: is-subtree x t = wf-dtree x
using wf-dtree-axioms proof (induction t rule: darcs-mset.induct)
case (I zs)
then interpret wf-dtree Node r xs by blast
show ?Zcase
proof(cases x = Node r xs)
case True
then show ?%thesis by (simp add: wf-dtree-axioms)
next
case Fulse
then show ?thesis using 1.IH wf-dtree-rec 1.prems(1) by auto
qed
qed

lemma root-not-subtree: [(Node r xs) = t; x € fst * fset xs] = r ¢ dverts x
using wf-verts root-not-child-if-wf-dverts by fastforce

lemma dverts-child-subset: [(Node r xs) = t; x € fst ‘ fset zs] = dverts x C
dverts t

using root-not-subtree by fastforce

lemma child-arc-not-subtree: [(Node r xs) = t; (z,el) € fset xs] = el ¢ darcs x
using wf-arcs disjoint-darcs-if-wf-auz3 by fast

lemma darcs-child-subset: [(Node r zs) = ¢; z € fst * fset as] = darcs x C darcs
t

using child-arc-not-subtree by force

lemma dtail-in-dverts: e € darcs t => dtail t def e € dverts t
using wf-arcs proof (induction t rule: darcs-mset.induct)
case (I 1 zs)
show ?Zcase
proof(cases e € snd * fset xs)
case Fulse
then obtain x el where z-def: (z,e1) € fset zs A e € darcs x using 1.prems(1)
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by force
then have wf-darcs = using 1.prems(2) by auto
then have dtail x def e € dverts x using 1.IH z-def by blast
then have 0: dtail x def e € dverts (Node r xs)
using z-def by (auto simp: dverts-child-subseteq)
have dtail (Node 1 zs) def e = dtail x def e
using dtail-in-child-eq-child|of z] z-def 1.prems(2) by blast
then show ?thesis using 0 by argo
qged (simp)
qed

lemma dtail-in-childverts:
assumes ¢ € darcs z and (z,e’) € fset xs and Node r zs = t
shows dtail t def e € dverts x
proof —
interpret X: wf-dtree x using assms(2,3) wf-diree-rec by blast
have dtail ¢t def e = dtail x def e
using dtail-in-child-eq-child|of z] assms wf-arcs by force
then show ?thesis using assms(1) X.dtail-in-dverts by simp
qed

lemma dhead-in-dverts: e € darcs t = dhead t def e € dverts t
using wf-arcs proof (induction t rule: darcs-mset.induct)
case (I 1 zs)
show ?Zcase
proof(cases e € snd * fset xs)
case True
then obtain z where 2-def: (z,e) € fset xs by force
then have dhead (Node r zs) def e = root x
using dhead-in-set-eq-root|of z] 1.prems(2) by blast
then show ?thesis using dtree.set-sel(1) z-def by fastforce
next
case Fulse
then obtain z el where z-def: (z,e1) € fset zs A e € darcs x using 1.prems(1)
by force
then have wf-darcs x using 1.prems(2) by auto
then have dhead x def e € dverts x using 1.IH z-def by blast
then have 0: dhead z def e € dverts (Node r xs)
using z-def by (auto simp: dverts-child-subseteq)
have dhead (Node r zs) def e = dhead x def e
using dhead-in-child-eq-child|of x| z-def 1.prems(2) by force
then show ?thesis using 0 by argo
qed
qed

lemma dhead-in-childverts:
assumes ¢ € darcs z and (z,¢’) € fset xs and Node r zs = t
shows dhead t def e € dverts x

proof —
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interpret X: wf-dtree x using wf-arcs wf-verts assms(2,3) by(unfold-locales)
auto
have dhead t def e = dhead x def e
using dhead-in-child-eq-child[of x| assms wf-arcs by auto
then show ?thesis using assms(1) X.dhead-in-dverts by simp
qed

lemma dhead-in-dverts-no-root: e € darcs t = dhead t def e € (dverts t — {root
t})
using wf-arcs wf-verts proof (induction t rule: darcs-mset.induct)
case (1 r zs)
interpret wf-dtree Node r xs using 1.prems(2,3) by (unfold-locales) auto
show ?Zcase
proof(cases e € snd * fset xs)
case True
then obtain z where z-def: (z,e) € fset xs by force
then have dhead (Node r zs) def e = root x
using dhead-in-set-eq-root|of x| 1.prems(2) by simp
then show ?thesis using dtree.set-sel(1) z-def 1.prems(3) wf-dverts-iff-dverts’
by fastforce
next
case Fulse
then obtain z el where z-def: (z,e1) € fset zs A e € darcs x using 1.prems(1)
by force
then have wf-darcs z using 1.prems(2) by auto
then have dhead z def e € dverts x using 1.1H z-def 1.prems(3) by auto
moreover have r ¢ dverts x using root-not-subtree x-def by fastforce
ultimately have 0: dhead = def e € dverts (Node r zs) — {root (Node r xs)}
using z-def dverts-child-subseteq by fastforce
have dhead (Node r zs) def e = dhead z def e
using dhead-in-child-eq-child[of x] z-def 1.prems(2) by force
then show ?thesis using 0 by argo
qed
qed

lemma dhead-in-childverts-no-root:

assumes e € darcs ¢ and (z,e’) € fset zs and Node r xs = t

shows dhead t def e € (dverts x — {root z})
proof —

interpret X: wf-dtree x using assms(2,3) wf-dtree-rec by blast

have dhead t def e = dhead z def e

using dhead-in-child-eq-child[of x] assms wf-arcs by auto

then show ?thesis using assms(1) X.dhead-in-dverts-no-root by simp

qed

lemma dtree-cas-iff-subtree:
assumes (z,el) € fset zs and Node r zs = t and set p C darcs x
shows pre-digraph.cas (from-dtree dt dh ) w p v
+— pre-digraph.cas (from-dtree dt dh t) v p v
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(is pre-digraph.cas ?X - - - «— pre-digraph.cas ¢T - - -)

using assms proof (induction p arbitrary: u)

case Nil

then show ?case by(simp add: pre-digraph.cas.simps(1))
next

case (Cons p ps)

note pre-digraph.cas.simps|simp]

have pre-digraph.cas ?T u (p # ps) v = (tail ?T p = u A pre-digraph.cas ?T
(head ?T p) ps v)

by simp

also have ... = (tail ?T p = u A pre-digraph.cas ?X (head ?T p) ps v)
using Cons.IH Cons.prems by simp

also have ... = (tail X p = u A pre-digraph.cas ?X (head ?T p) ps v)
using dtail-in-child-eq-child[of ] Cons.prems(1—23) wf-arcs by force

also have ... = (tail ?X p = u A pre-digraph.cas ?X (head ?X p) ps v)

using dhead-in-child-eq-child[of ] Cons.prems(1—3) wf-arcs by force
finally show ?case by simp
qed

lemma dtree-cas-exists:
v € dverts t => I p. set p C darcs t A\ pre-digraph.cas (from-dtree dt dh t) (root
t)puo
using wf-dtree-axioms proof (induction t)
case (Node r zs)
then show ?case
proof(cases r=v)
case True
then have pre-digraph.cas (from-diree dt dh (Node r xs)) (root (Node 1 xs)) []

by (simp add: pre-digraph.cas.simps(1))
then show #“thesis by force
next
case Fulse
then obtain z e where z-def: (z,e) € fset zs A v € dverts x using Node.prems
by auto
let T = from-dtree dt dh (Node r xs)
let ?X = from-dtree dt dh z
interpret wf-dtree Node r xs by (rule Node.prems(2))
have wf-dtree x using z-def wf-dtree-rec by blast
then obtain p where p-def: set p C darcs © A pre-digraph.cas X (root x) p v
using Node.IH z-def by fastforce
then have pre-digraph.cas ?T (root z) p v
using diree-cas-iff-subtree z-def Node.prems(2) by blast
moreover have head ¢T e = root x
using z-def dhead-in-set-eq-root|of x| wf-arcs by simp
moreover have tail ?T e = r using z-def by force
ultimately have pre-digraph.cas ¢?T (root (Node r xs)) (e#p) v
by (simp add: pre-digraph.cas.simps(2))
moreover have set (e#p) C darcs (Node r xs) using p-def z-def by force

154



ultimately show ¢thesis by blast
qed
qed

lemma dtree-awalk-exists:

assumes v € dverts t

shows 3 p. pre-digraph.awalk (from-dtree dt dh t) (root t) p v
unfolding pre-digraph.awalk-def using diree-cas-exists assms ditree.set-sel(1) by
fastforce

lemma subtree-root-not-root: t = Node r xs = (z,€) € fset s = root x # r
using dtree.set-sel(1) root-not-subtree by fastforce

lemma dhead-not-root:
assumes e € darcs t
shows dhead t def e # root t
proof —
obtain r xs where xs-def[simp]: t = Node r zs using dtree.ezhaust by auto
show ?thesis
proof(cases e € snd * fset xs)
case True
then obtain z where 2-def: (z,e) € fset xs by force
then have dhead (Node r zs) def e = root x
using dhead-in-set-eq-root|of z] wf-arcs by simp
then show ?%thesis using z-def subtree-root-not-root by simp
next
case Fulse
then obtain z el where z-def: (z,el) € fset zs N\ e € darcs x using assms
by force
then interpret X: wf-dtree x using wf-dtree-rec by auto
have dhead z def e € dverts x using z-def X.dhead-in-dverts by blast
moreover have dhead (Node r zs) def e = dhead x def e
using z-def dhead-in-child-eq-child[of z] wf-arcs by force
ultimately show ?thesis using z-def root-not-subtree by fastforce
qed
qed

lemma nohead-cas-no-arc-in-subset:
[V ecdarcs t. dhead t dh e # v; p#[]; pre-digraph.cas (from-dtree dt dh t) u p v]
= —set p C darcs t
by (induction p arbitrary: u) (fastforce simp: pre-digraph.cas.simps)+

lemma dtail-root-in-set:

assumes e € darcs t and t = Node r zs and dtail t dt e = r

shows e € snd ¢ fset xs
proof (rule ccontr)

assume e ¢ snd ‘ fset zs

then obtain z el where z-def: (z,el) € fset xs A e € darcs z using assms(1,2)
by force
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interpret X: wf-dtree x using assms(2) z-def wf-dtree-rec by blast
have dtail t dt e = dtail x dt e
using dtail-in-child-eq-child|of =] wf-arcs assms(2) x-def by force
then have dtail t dt e € dverts © using X.dtail-in-dverts z-def by simp
then show Fulse using assms(2,3) wf-verts z-def unfolding wf-dverts-iff-dverts’
by auto
qed

lemma dhead-notin-subtree-wo-root:
assumes (z,e) € fset xs and p ¢ darcs x and p € darcs t and t = Node r zs
shows dhead t dh p ¢ (dverts © — {root z})
proof(cases p € snd * fset xs)
case True
then obtain z’ where z’-def: (z',p) € fset xs by auto
then have 0: dhead t dh p = root z’
using dhead-in-set-eq-root[of ©'] wf-arcs assms(4) by auto
have root 2’ ¢ (dverts x — {root z})
proof(cases z'=x)
case True
then show %thesis by blast
next
case Fulse
have root ¢’ € dverts z’ by (simp add: diree.set-sel(1))
then show ?thesis using wf-verts z’-def assms(1,4) unfolding wf-dverts-iff-dverts’
by fastforce
qged
then show ?thesis using 0 by simp
next
case Fulse
then obtain 2’ el where x'-def: (z',el) € fset s N p € darcs z’ using
assms(3,4) by force
then have 0: dhead t dh p = dhead ' dh p
using dhead-in-child-eq-child[of z']| wf-arcs assms(4) by auto
interpret X: wf-dtree 2’ using assms(4) z'-def wf-dtree-rec by blast
have 1: dhead 2’ dh p € dverts z’ using X.dhead-in-dverts x’-def by blast
moreover have dverts z’ N dverts x = {}
using wf-verts x’-def assms(1,2,4) unfolding wf-dverts-iff-dverts’ by fastforce
ultimately show ?thesis using 0 by auto
qed

lemma subtree-uneq-if-arc-uneq:
[(x1,e1) € fset xs; (£2,e2) € fset xs; el#e2; Node r xs = t] = x1 # 22
using dtree.set-sel(1) wf-verts disjoint-dverts-if-wf-aux by fast

lemma arc-uneg-if-subtree-uneq:
[(z1,e1) € fset xs; (x2,e2) € fset xs; x1F#x2; Node r zs = t] = el # e2
using disjoint-darcs-if-wf[OF wf-arcs] by fastforce

lemma dhead-unique: e € darcs t = p € darcs t = e # p = dhead t dh e #

156



dhead t dh p
using wf-dtree-axzioms proof (induction t rule: darcs-mset.induct)
case ind: (1 r xs)
then interpret wf-dtree Node r zs by blast
show Zcase
proof(cases Az € fst * fset zs. e € darcs x A p € darcs x)
case True
then obtain z el where z-def: (z,el) € fset xs A e € darcs x N\ p € darcs
by force
then have wf-dtree x using ind.prems(4) wf-dtree-rec by blast
then have dhead = dh e # dhead = dh p using ind z-def by blast
then show %thesis using True dhead-in-child-eq-child|of x| wf-arcs z-def by
force
next
case False
then consider Jx € fst * fset zs. e € darcs x | Az € fst * fset xs. p € darcs x
| e € snd * fset xs A\ p € snd * fset s
using ind.prems(1,2) by force
then show ?thesis
proof (cases)
case I
then obtain z el where z-def: (z,el) € fset xs A e € darcs x A p ¢ darcs x
using Fualse by force
then interpret X: wf-dtree x using wf-dtree-rec by blast
have dhead © dh e € (dverts x — {root z}) using X.dhead-in-dverts-no-root
z-def by blast
then have dhead (Node r xs) dh e € (dverts x — {root z})
using dhead-in-child-eq-child[of z| wf-arcs z-def by force
moreover have dhead (Node r zs) dh p ¢ (dverts x — {root z})
using z-def dhead-notin-subtree-wo-root ind.prems(2) by blast
ultimately show ?thesis by auto
next
case 2
then obtain z el where a-def: (z,el) € fset xs A p € darcs z N e ¢ darcs x
using Fualse by force
then interpret X: wf-dtree x using wf-dtree-rec by blast
have dhead = dh p € (dverts x — {root z}) using X.dhead-in-dverts-no-root
z-def by blast
then have dhead (Node r xs) dh p € (dverts © — {root x})
using dhead-in-child-eq-child[of x| wf-arcs z-def by force
moreover have dhead (Node r zs) dh e ¢ (dverts x — {root z})
using z-def dhead-notin-subtree-wo-root ind.prems(1) by blast
ultimately show %thesis by auto
next
case 3
then obtain z! z2 where z-def: (z1,p) € fset zs N\ (z2,e) € fset zs by force
then have 0: dhead (Node r zs) dh p = root 1 N dhead (Node r xzs) dh e =
root =2
using dhead-in-set-eq-root[of 1] dhead-in-set-eq-root|of ©2] wf-arcs by simp
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have z1 # z2 using subtree-uneg-if-arc-uneq z-def ind.prems(3) by blast
then have root ©1 # root z2
using wf-verts a-def dtree.set-sel(1) unfolding wf-dverts-iff-dverts’ by

fastforce

then show ?thesis using 0 by argo

qed
qed

qed

lemma arc-in-subtree-if-tail-in-subtree:
assumes dtail t dt p € dverts x
and p € darcs t
and ¢t = Node r zs
and (z,e) € fset xs
shows p € darcs x
proof (rule ccontr)
assume asm: p ¢ darcs x
show Fulse
proof(cases p € snd ¢ fset xs)
case True
then have dtail t dt p = r using assms(2,3) by simp
then show ?thesis using assms(1,3,4) root-not-subtree by force
next
case Fulse
then obtain z’ el where z’-def: (z',el) € fset s N\ p € darcs z' using
assms(2,3) by force
then have z # 2’ using asm by blast
interpret X: wf-dtree z’ using z’-def assms(3) wf-dtree-rec by blast
have dtail t dt p = dtail ' dt p
using dtail-in-child-eq-child[of z'] z'-def wf-arcs assms(3) by force
then have dtail t dt p € dverts ' using X.dtail-in-dverts by (simp add: x'-def)
then have dtail t dt p ¢ dverts
using <z#£z" wf-verts assms(3,4) z'-def unfolding wf-dverts-iff-dverts’ by
fastforce
then show %thesis using assms(1) by blast
qed
qed

lemma dhead-in-verts-if-dtail:
assumes dtail t dt p € dverts x
and p € darcs t
and ¢t = Node r zs
and (z,e) € fset xs
shows dhead t dh p € dverts z
proof —
interpret X: wf-dtree x using assms(3,4) wf-dtree-rec by blast
have 0: p € darcs x using assms arc-in-subtree-if-tail-in-subtree by blast
then have dhead t dh p = dhead x dh p
using dhead-in-child-eq-child[of x| assms(3,4) wf-arcs by simp
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then show ?thesis using X.dhead-in-dverts 0 by simp
qed

lemma cas-darcs-in-subtree:
assumes pre-digraph.cas (from-dtree dt dh t) u ps v
and set ps C darcs t
and ¢t = Node r xs
and (z,e) € fset xs
and u € dverts
shows set ps C darcs x
using assms proof (induction ps arbitrary: u)
case Nil
then show ?case by simp
next
case (Cons p ps)
note pre-digraph.cas.simps|simp]
then have u-p: dtail t dt p = u using Cons.prems(1) by simp
have p € darcs t using Cons.prems(2) by simp
then have 0: p € darcs z using arc-in-subtree-if-tail-in-subtree Cons.prems(3—15)
u-p by blast
have 1: dhead t dh p € dverts x using dhead-in-verts-if-dtail Cons.prems(2—35)
u-p by force
have set ps C darcs t using Cons.prems(2) by simp
have pre-digraph.cas (from-dtree dt dh t) (dhead t dh p) ps v using Cons.prems(1)
by simp
then have set ps C darcs © using Cons.IH Cons.prems(2,3,4) 1 by simp
then show ?case using 0 by simp
qed

lemma dtree-cas-in-subtree:
assumes pre-digraph.cas (from-dtree dt dh t) u ps v
and set ps C darcs t
and t = Node r zs
and (z,e) € fset xs
and u € dverts x
shows pre-digraph.cas (from-dtree dt dh x) u ps v
using assms cas-darcs-in-subtree dtree-cas-iff-subtree by fast

lemma cas-to-end-subtree:

assumes set (p#ps) C darcs t and pre-digraph.cas (from-dtree dt dh t) (root t)
(p#ps) v

and t = Node r s and (z,e) € fset zs and v € dverts z
shows p = ¢

proof (rule ccontr)

assume asm: p # e

note pre-digraph.cas.simps|simp]

have dtail t dt p = r using assms(2,3) by simp

then have p € snd ‘ fset xs using dtail-root-in-set assms(1,3) list.set-intros(1)
by fast
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then obtain z’ where z'-def: (z',p) € fset xs by force
show Fulse
proof(cases ps=[])
case True
then have root 2/ = v
using dhead-in-set-eq-root|of x'] x'-def assms(2,3) wf-arcs by simp
then have z = z’
using wf-verts z’-def assms(3,4,5) diree.set-sel(1) by (fastforce simp: wf-dverts-iff-dverts”)
then show ?thesis using asm assms(3,4) subtree-uneg-if-arc-uneq z’-def by
blast
next
case Fulse
interpret X: wf-dtree ' using wf-dtree-rec x’-def assms(3) by blast
have z’ # z using asm assms(3,4) subtree-uneg-if-arc-uneq z'-def by blast
then have z'-no-v: V e€darcs z'. dhead z' dh e # v
using X.dhead-in-dverts assms(3,4,5) x'-def wf-verts
by (fastforce simp: wf-dverts-iff-dverts’)
have 0: pre-digraph.cas (from-dtree dt dh t) (dhead t dh p) ps v using assms(2)
by simp
have 1: dhead t dh p € dverts z’
using dhead-in-set-eq-root|of ©'] x'-def assms(3) dtree.set-sel(1) wf-arcs by
auto
then have pre-digraph.cas (from-ditree dt dh x’) (dhead t dh p) ps v
using dtree-cas-in-subtree z’-def assms(1,3) 0 by force
then have — set ps C darcs x’ using X.nohead-cas-no-arc-in-subset z'-no-v
Fulse by blast
moreover have set ps C darcs x’ using cas-darcs-in-subtree assms(1,3) x'-def
0 1 by simp
ultimately show ¢thesis by blast
qed
qed

lemma cas-unique-in-darcs: [v € dverts t; pre-digraph.cas (from-dtree dt dh t) (root
t) ps v
pre-digraph.cas (from-dtree dt dh t) (root t) es v]
= ps = es V —set ps C darcs t V —set es C darcs t
using wf-dtree-axioms proof (induction t arbitrary: ps es rule: darcs-mset.induct)
case ind: (1 r zs)
interpret wf-dtree Node r xs by (rule ind.prems(4))
show ?Zcase
proof(cases r=v)
case True
have 0:V e € darcs (Node r xs). dhead (Node r xs) dh e # r using dhead-not-root
by force

consider ps =[| Aes =1 | ps # [| | es # [] by blast
then show ?thesis
proof (cases)

case I

then show ?thesis by blast
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next
case 2
then show ?%thesis using nohead-cas-no-arc-in-subset 0 ind.prems(2) True
by blast
next
case 3
then show ?thesis using nohead-cas-no-arc-in-subset 0 ind.prems(3) True
by blast
qed
next
case Fulse
then obtain z e where z-def: (z,e) € fset xs v € dverts z using ind.prems
by auto
then have wf-z: wf-dtree x using wf-dtree-rec by blast
note pre-digraph.cas.simps|simp]
have nempty: ps # [] A es # [| using ind.prems(2,3) False by force
then obtain p ps’ where p-def: ps = p # ps’ using list.exzhaust-sel by auto
obtain ¢’ es’ where e’-def: es = ¢’ # es’ using list.exhaust-sel nempty by
auto
show ?thesis
proof (rule ccontr)
assume —(ps = es V —set ps C darcs (Node 1 zs) V —set es C darcs (Node r
25))

then have asm: ps # es A set ps C darcs (Node r xs) A set es C darcs (Node
r zs) by blast
then have p = e using cas-to-end-subtree p-def ind.prems(2) z-def by blast
moreover have ¢’ = e using cas-to-end-subtree e’-def ind.prems(3) z-def
asm by blast
ultimately have p = ¢’ by blast
have dhead (Node r xs) dh p = root =
using dhead-in-set-eq-root|of z] z-def(1) <p=e> wf-arcs by simp
then have cas-p-r: pre-digraph.cas (from-dtree dt dh (Node r xs)) (root x) ps’

using ind.prems(2) p-def by fastforce
moreover have 0: root x € dverts x using diree.set-sel(1) by blast
ultimately have cas-ps: pre-digraph.cas (from-dtree dt dh x) (root x) ps’ v
using dtree-cas-in-subtree asm x-def (1) p-def diree.set-sel(1) by force
have dhead (Node r zs) dh e’ = root x
using dhead-in-set-eq-root|of x] x-def <e'=e» wf-arcs by simp
then have cas-e-r: pre-digraph.cas (from-dtree dt dh (Node r zs)) (root z) es’

using ind.prems(3) e’-def by fastforce
then have pre-digraph.cas (from-dtree dt dh x) (root x) es’ v
using diree-cas-in-subtree asm x-def(1) e’-def 0 by force
then have ps’ = es’ V = set ps’ C darcs z V — set es’ C darcs x
using ind.IH cas-ps z-def wf-x by blast
moreover have set ps’ C darcs
using cas-darcs-in-subtree cas-p-r z-def (1) asm p-def 0 set-subset-Cons by
fast
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moreover have set es’ C darcs
using cas-darcs-in-subtree cas-e-r z-def (1) asm e’-def 0 set-subset-Cons by

fast
ultimately have ps’ = es’ by blast
then show Fulse using asm p-def e’-def (p=e’> by blast
qed
qed
qed

lemma dtree-awalk-unique:
[v € dverts t; pre-digraph.awalk (from-dtree dt dh t) (root t) ps v;
pre-digraph.awalk (from-dtree dt dh t) (root t) es v]
= ps = es
unfolding pre-digraph.awalk-def using cas-unique-in-darcs by fastforce

lemma dtree-unique-awalk-exists:
assumes v € dverts t
shows 31p. pre-digraph.awalk (from-dtree dt dh t) (root t) p v
using dtree-awalk-exists dtree-awalk-unique assms by blast

lemma from-dtree-directed: directed-tree (from-dtree dt dh t) (root t)
apply(unfold-locales)
by (auto simp: dtail-in-dverts dhead-in-dverts diree.set-sel(1) dtree-unique-awalk-exists)

theorem from-dtree-fin-directed: finite-directed-tree (from-dtree dt dh t) (root t)
apply (unfold-locales)
by (auto simp: dtail-in-dverts dhead-in-dverts diree.set-sel(1) dtree-unique-awalk-exists
finite-dverts finite-darcs)

7.3.3 Identity of Transformation Operations

lemma dhead-img-eq-root-img:
Node rxs =t
= (Xe. ((dhead (Node 1 xs) dh e), e)) ‘ snd ‘ fset xs = (A(z,e). (root z, €)) ¢
fset xs
using dhead-in-set-eq-root wf-arcs snd-conv image-image disjoint-darcs-if-wf-xs
by (smt (verit) case-prodE case-prod-conv image-cong)

lemma childarcs-in-out-arcs:
[Node r zs = t; e € snd ‘ fset xs] = e € out-arcs (from-diree dt dh t) r
by force

lemma out-arcs-in-childarcs:
assumes Node r zs = t and e € out-arcs (from-dtree dt dh t) r
shows e € snd ¢ fset xs
proof (rule ccontr)
assume asm: e ¢ snd ‘ fset xs
have ¢ € darcs t using assms(2) by simp
then obtain z e/ where z-def: (z,el) € fset xs A e € darcs x using assms(1)
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asm by force
then have ditail ¢t dt e € dverts x using assms(1) dtail-in-childverts by blast
moreover have r ¢ dverts x using assms(1) wf-verts z-def by (auto simp:
wf-dverts-iff-dverts’)
ultimately show Fulse using assms(2) by simp
qed

lemma childarcs-eq-out-arcs:
Node s = t = snd ‘ fset s = out-arcs (from-dtree dt dh t) r
using childarcs-in-out-arcs out-arcs-in-childarcs by fast

lemma dtail-in-subtree-eq-subtree:
[is-subtree t1 t; e € darcs t1] = dtail ¢ def e = dtail t1 def e
using wf-arcs proof (induction t rule: darcs-mset.induct)
case (I r zs)
show ?Zcase
proof(cases Node r zs=t1)
case Fulse
then obtain z el where z-def: (z,el) € fset xs A is-subtree t1 x using
1.prems(1) by auto
then have e € darcs z using 1.prems(2) darcs-subtree-subset by blast
then have dtail (Node r xs) def e = dtail  def e
using dtail-in-child-eq-child|of z] z-def 1.prems(3) by blast
then show ?%thesis using 1.1H z-def 1.prems(2—3) by fastforce
qged (simp)
qged

lemma dtail-in-subdverts:
assumes e € darcs x and is-subtree x t
shows dtail t def e € dverts x
proof —
interpret X: wf-dtree x by (simp add: assms(2) wf-dtree-sub)
have dtail t def e = dtail z def e using dtail-in-subtree-eq-subtree assms(1,2) by
blast
then show %thesis using assms(1) X.dtail-in-dverts by simp
qed

lemma dhead-in-subtree-eq-subtree:
[is-subtree t1 t; e € darcs t1] = dhead t def e = dhead t1 def e
using wf-arcs proof (induction t)
case (Node 1 zs)
show Zcase
proof(cases Node r zs=t1)
case Fulse
then obtain z el where z-def: (z,el) € fset xs A is-subtree t1 x using
Node.prems(1) by auto
then have e € darcs © using Node.prems(2) darcs-subtree-subset by blast
then have dhead (Node r zs) def e = dhead x def e
using dhead-in-child-eq-child[of z] z-def Node.prems(3) by force
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then show %thesis using Node.IH z-def Node.prems(2—3) by fastforce
qed (simp)
qed

lemma subarcs-in-out-arcs:

assumes is-subtree (Node r xs) t and e € snd ‘ fset xs

shows e € out-arcs (from-dtree dt dh t) r
proof —

have e € darcs (Node r xs) using assms(2) by force

then have tail (from-dtree dt dh t) e = r

using dtail-in-subtree-eq-subtree assms(1,2) by auto

then show %thesis using darcs-subtree-subset assms(1,2) by fastforce

qed

lemma darc-in-sub-if-dtail-in-sub:
assumes dtail t dt e = v and e € darcs t and (z,el) € fset xs
and is-subtree t1 x and Node r zs = t and v € dverts t1
shows e € darcs
proof (rule ccontr)
assume asm: e ¢ darcs
have e ¢ snd ‘ fset zs
using assms(1—6) asm arc-in-subtree-if-tail-in-subtree dverts-subtree-subset
by (metis subset-eq)
then obtain z2 e2 where z2-def: (22,e2) € fset s N e € darcs z2 using
assms(2,5) by force
then have v € dverts © using assms(4,6) dverts-subtree-subset by fastforce
then have v ¢ dverts x2 using assms(1—3,5) arc-in-subtree-if-tail-in-subtree
asm by blast
then have dtail 22 dt e # v using assms(1,5) dtail-in-childverts z2-def by fast
then have dtail t dt e = dtail 22 dt e
using assms(1,5) z2-def v ¢ dverts x2> dtail-in-childverts by blast
then show Fulse using assms(1) «dtail 2 dt e # v» by simp
qed

lemma out-arcs-in-subarcs-auz:
assumes is-subtree (Node r xs) t and dtail t dt e = r and e € darcs t
shows e € snd ¢ fset xs
using assms wf-dtree-azioms proof (induction t)
case (Node v ys)
then interpret wf-dtree Node v ys by blast
show Zcase
proof(cases Node v ys = Node r zs)
case True
then show %thesis using dtail-root-in-set Node.prems(2,3) by blast
next
case Fulse
then obtain z el where z-def: (z,el) € fset ys A is-subtree (Node r xs)
using Node.prems(1) by auto
then have e € darcs
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using darc-in-sub-if-dtail-in-sub Node.prems(2,3) dtree.set-intros(1) by fast
moreover from this have dtail v dt e = r
using dtail-in-child-eq-child|of z] x-def Node.prems(2) wf-arcs by force
moreover from this have wf-dtree x using wf-verts wf-arcs z-def by (unfold-locales)
auto
ultimately show #thesis using Node.IH z-def by force
qed
qed

lemma out-arcs-in-subarcs:
assumes is-subtree (Node r xs) t and e € out-arcs (from-diree dt dh t) r
shows e € snd ‘ fset s
using assms out-arcs-in-subarcs-auxr by auto

lemma subarcs-eq-out-arcs:
is-subtree (Node r zs) t => snd * fset zs = out-arcs (from-dtree dt dh t) r
using subarcs-in-out-arcs out-arcs-in-subarcs by fast

lemma dhead-sub-img-eq-root-img:
is-subtree (Node v ys) t
= (Xe. ((dhead t dh e), €)) ‘ snd * fset ys = (A(z,e). (root z, €)) * fset ys
using wf-dtree-axioms proof (induction t)
case (Node 1 zs)
then interpret wf-dtree Node r xs by blast
show ?Zcase
proof(cases Node v ys = Node r zs)
case True
then show ?thesis using dhead-img-eq-root-img by simp
next
case Fulse
then obtain z e where z-def: (z,e) € fset xs N is-subtree (Node v ys) x
using Node.prems(1) by auto
then interpret X: wf-dtree x using wf-verts wf-arcs by (unfold-locales) auto
have Va € snd ‘ fset ys. (Ae. ((dhead (Node r zs) dh e), €)) a = (Ae. ((dhead
z dh e), €)) a
proof
fix a
assume asm: a € snd ‘ fset ys
then have a € darcs = using z-def darcs-subtree-subset by fastforce
then show (Ae. ((dhead (Node r xs) dh e), €)) a = (Xe. ((dhead z dh e), €)) a
using dhead-in-child-eq-child|of z] z-def wf-arcs by auto
qed
then have (\e. ((dhead (Node r xs) dh e), €)) ‘ snd ‘ fset ys
= (Xe. ((dhead z dh €), €)) ‘ snd ‘ fset ys
by (meson image-cong)
then show ?thesis using Node.IH x-def X.wf-dtree-axioms by force
qed
qed
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lemma subtree-to-dtree-auz-eq:
assumes is-subtree x t and v € dverts z
shows finite-directed-tree.to-dtree-auzx (from-dtree dt dh t) v
= finite-directed-tree.to-dtree-auzx (from-dtree dt dh x) v
A finite-directed-tree.to-dtree-aux (from-dtree dt dh z) (root ©) = z
using assms wf-dtree-azioms proof (induction x arbitrary: t v rule: darcs-mset.induct)
case ind: (1 r zs)
then interpret wf-dtree t by blast
obtain r’ xs’ where r’-def: t = Node v’ zs’ using dtree.ezhaust by auto
interpret R-zs: wf-dtree Node r xs using ind.prems(1,3) wf-dtree-sub by simp
let %todt = finite-directed-tree.to-dtree-aur
let 2T = (from-dtree dt dh t)
let ?X = (from-dtree dt dh (Node r xs))
interpret DT: finite-directed-tree ?T root t using from-dtree-fin-directed by blast
interpret XT: finite-directed-tree ?X root (Node 1 xs)
using R-zs.from-dtree-fin-directed by blast

have ih: Vy € fset zs. (A(z,e). (XT.to-dtree-auz (root x), €)) y =y
proof
fix y
assume asm: y € fset zs
obtain z e where z-def: y = (z,e) by fastforce
then have is-subtree © (Node r zs) using subtree-if-child asm
by (metis image-iff prod.sel(1))
then have ?todt (from-dtree dt dh z) (root z) = x
A XT.to-dtree-auzx (root ) = ?todt (from-diree dt dh z) (root x)
using ind.JTH R-xs.wf-dtree-azioms asm x-def dtree.set-sel(1) by blast
then have XT.to-dtree-aux (root x) = z by simp
then show (\(z,e). (XT.to-dtree-auz (root ), e)) y = y using z-def by fast
qed
let 2f = A(z,e). (XT.to-dtree-aux z, €)
let ?2g = Ae. ((dhead (Node r xs) dh e), e)
obtain ys where ys-def: XT.to-dtree-auz (root (Node r xs)) = Node r ys
using diree.ezhaust diree.sel(1) XT .to-dtree-auz-root by metis
then have fset ys = (Ae. (XT.to-dtree-auz (head ?X e), e)) ¢ out-arcs ?X r
using XT.dtree-children-img-alt XT.dtree-children-fset-id ditree.sel(1) by (smt
(verit))

also have ... = (\e. (XT.to-dtree-auz (dhead (Node r xs) dh e), €)) ¢ (snd ‘ fset

xs)
using R-zs.childarcs-eq-out-arcs by simp

also have ... = ?f * %g ‘ (snd ‘ fset xs) by fast

also have ... = 2f “(A\(z,e). (root x, €))  fset xs using R-xs.dhead-img-eq-root-img
by simp

also have ... = (A(z,e). (XT.to-dtree-aux (root x), e)) * fset xs by fast

also have ... = fset zs using ih by simp

finally have g2: ys = xs by (simp add: fset-inject)

show ?case
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proof(cases v = )
case True

have 0: Vy € fset zs. (A(z,e). (DT .to-dtree-auz (root ), e)) y =y
proof
fix y
assume asm: y € fset s
obtain z e where z-def: y = (z,e) by fastforce
then have is-subtree  (Node r xs) using subtree-if-child asm
by (metis image-iff prod.sel(1))
then have is-subtree © t using asm subtree-trans ind.prems(1) by blast
then have %todt (from-dtree dt dh ) (root z) = x
A DT .to-dtree-auz (root x) = %todt (from-dtree dt dh x) (root x)
using ind.IH wf-dtree-azioms asm z-def dtree.set-sel(1) by blast
then have DT.to-dtree-auzx (root x) = x by simp
then show (A(z,e). (DT.to-dtree-aux (root x), e)) y = y using z-def by fast
qed
let 2f = A(x,e). (DT.to-dtree-auz x, e)
let ?g = Ae. ((dhead (Node r’ xs’) dh e), e)
obtain zs where zs-def: DT.to-dtree-auz v = Node v zs
using dtree.ezhaust by simp
then have fset zs = (Ae. (DT.to-dtree-auzr (head ?T e), €)) ¢ out-arcs ?T r
using DT.dtree-children-img-alt DT .dtree-children-fset-id True by presburger

also have ... = (\e. (DT.to-dtree-aux (dhead t dh e), e)) ¢ (snd ‘ fset xs)
using ind.prems(1) subarcs-eq-out-arcs by force
also have ... = 2f * 2g ‘ (snd ‘ fset xs) using r’-def by fast
also have ... = 2f “ (\(z,e). (root z, €)) * fset zs
using dhead-sub-img-eg-root-img ind.prems(1) r'-def by blast
also have ... = (A(z,e). (DT.to-dtree-auz (root x), e)) * fset xs by fast
also have ... = fset xs using 0 by simp

finally have g1: zs = zs by (simp add: fset-inject)

then show ?thesis using zs-def True g2 ys-def by simp
next

case Fulse

then obtain z1 el where a-def: (z1,el) € fset xs v € dverts z1 using
ind.prems(2) by auto
then have is-subtree 1 (Node r xs) using subtree-if-child
by (metis image-iff prod.sel(1))
moreover from this have is-subtree z1 t using ind.prems(1) subtree-trans by
blast
ultimately have g1: DT.to-dtree-aux v = XT.to-dtree-auzx v
using ind.TH z-def by (metis R-xs.wf-dtree-azioms wf-dtree-axioms)
then show ?thesis using g1 g2 ys-def by blast
qed
qed

interpretation T': finite-directed-tree from-dtree dt dh t root t
using from-dtree-fin-directed by simp
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lemma to-from-dtree-aux-id: T.to-dtree-auz dt dh (root t) =t
using subtree-to-diree-aux-eq diree.set-sel(1) self-subtree by blast

theorem to-from-dtree-id: T.to-dtree dt dh = t
using to-from-dtree-aux-id T.to-dtree-def by simp

end

context finite-directed-tree
begin

lemma wf-to-dtree-auz: wf-dtree (to-dtree-aux )
unfolding wf-dtree-def using wf-dverts-to-dtree-aux wf-darcs-to-dtree-aux by
blast

theorem wf-to-dtree: wf-dtree to-dtree
unfolding to-dtree-def using wf-to-dtree-auzx by blast

end

7.4 Degrees of Nodes

fun maz-deg :: (‘a,’d) ditree = nat where
maz-deg (Node r zs) = (if s = {||} then 0 else max (Maz (maz-deg * fst * fset
xs)) (feard xs))

lemma mdeg-eq-feard-if-empty: s = {||} = maz-deg (Node r xs) = feard zs
by simp

lemma mdeg0-if-fcardQ: feard xs = 0 = maz-deg (Node r zs) = 0
by simp

lemma mdeg0-iff-fcard0: fecard xs = 0 <— maz-deg (Node r xs) = 0
by simp

lemma nempty-if-mdeg-gt-fecard: max-deg (Node r xs) > fecard s — zs # {||}
by auto

lemma mdeg-img-nempty: maz-deg (Node 1 xs) > feard s = max-deg * fst * fset

zs # {}

using nempty-if-mdeg-gt-fecard[of zs| by fast

lemma mdeg-img-fin: finite (maz-deg * fst © fset xs)
by simp

lemma mdeg-Max-if-gt-feard:

maz-deg (Node r xs) > feard xs = maz-deg (Node 1 xs) = Mazx (maz-deg * fst ¢
fset xs)
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by (auto split: if-splits)

lemma mdeg-child-if-gt-fecard:

maz-deg (Node r xs) > feard xs = 3t € fst * fset xs. maz-deg t = maz-deg (Node
T I8)

unfolding mdeg- Maz-if-gt-fcard using Max-in[OF mdeg-img-fin mdeg-img-nempty]
by force

lemma mdeg-child-if-wedge:
[maz-deg (Node r xs) > n; feard xs < n vV (¥t € fst  fset xs. maz-deg t < n)]
= dt € fst ‘ fset xs. maz-deg t > n
using mdeg-child-if-gt-fecard|of zs] by force

lemma mazif-eq-Max: finite X = (if X # {} then maz z (Maz X) else ) = Max
(insert z X)
by simp

lemma mdeg-img-empty-iff: maz-deg ‘ fst < fset xs = {} +— zs = {||}
by fast

lemma mdeg-alt: maz-deg (Node r xs) = Maz (insert (fecard zs) (maz-deg * fst ¢
fset xs))
using mazxif-eq-Maz|OF mdeg-img-fin, of xs fecard xs| mdeg-img-empty-iff [of xs
by (auto split: if-splits)

lemma finite-fMaz-union: finite Y = finite ((JyeY. {Maz (f y)})
by blast

lemma Maz-union-Maz-out:
assumes finite Y and Vy € Y. finite (fy) andVy € Y. fy # {} and YV # {}
shows Maz (JyeY. {Maz (fy)}) = Maz (JyeY. fy) (is ?M1=-)
proof —
haveVy € Y.Vz € fy. Maz (f y) > x using assms(2) by simp
moreover have Vz € (JyeY. {Maz (fy)}). ?M1 > z using assms(1) by simp
moreover have M1-in: ?M1 € (JyeY. {Maz (fy)})
using assms(1,4) Maz-in|OF finite-fMax-union] by auto
ultimately have Vy € Y. Vz € fy. M1 > x by force
then have Vz € (|JyeY. fy). M1 > z by blast
moreover have ?M1 € (JyeY. (fy)) using M1-in assms(2—4) by force
ultimately show ?thesis using assms(1,2) Maz-eql finite-UN-I by metis
qed

lemma Maz-union-Max-out-insert:

[finite Y;Vy € Y. finite (fy);Vy e Y. fy# {1 Y # {}]
= Maz (insert  (JyeY. {Maz (fy)})) = Max (insert  (JUyeY. fy))
using Maz-union-Maz-out[of Y f] by simp

lemma mdeg-alt2: max-deg t = Maz {fcard (sucs z)|z. is-subtree x t}
proof (induction t rule: maz-deg.induct)
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case (1 zs)
then show ?case
proof(cases zs = {||})
case Fulse
let ?f = (At1. {feard (sucs z)|z. is-subtree x t1})
let 2f' = (At1. (A\z. feard (sucs x)) ‘ {x. is-subtree x t1})
have fin: finite (fst ‘ fset xs) by simp
have f-eql: ?f = ?f' by blast
then have f-eq: Vyefst ‘ fset xs. (?f y = ?f' y) by blast
moreover have V yefst ¢ fset zs. finite (?f’ y) using finite-subtrees by blast
ultimately have fin”: Vyefst ¢ fset zs. finite (?f y) by simp
have nempty: Y yefst ¢ fset xs. {fecard (sucs z) |x. is-subtree z y} # {}
using self-subtree by blast
have maz-deg * fst ¢ fset xs = (|Jt1€fst * fset xs. {Mazx (?f t1)})
using 1.IH[OF Fulse] by auto
then have maz-deg (Node r zs) = Mazx (insert (feard xs) ((Jt1E€fst ¢ fset xs.
{Maz (7 11)}))
using mdeg-alt[of r xs| by simp
also have ... = Mazx (insert (fcard xs) (|Jt1€fst * fset xs. 2f t1))
using Maz-union-Max-out-insert[OF fin fin’ nempty] by fastforce
also have ... = Maz (insert (feard zs) (U t1€fst ¢ fset xs. 2f' t1)))
using f-eq by simp
also have ...
= Max (insert (feard zs) ((\Jt1€fst ¢ fset xs. feard ¢ sucs ‘ {x. is-subtree
zt1})))

using image-image by metis
also have ...

= Mazx (insert (fcard xzs) (feard ‘ sucs ‘ (|Jt1E€fst ¢ fset xs. {x. is-subtree
 t1})))

by (metis image-UN)

also have ...
= Maz (feard * sucs ‘ (insert (Node r xs) (|Jt1€fst ¢ fset xs. {x. is-subtree
z t1})))
by force
also have ... = Maz (feard  sucs ‘ {z. is-subtree z (Node r zs)})

unfolding subtrees-insert-union by blast
finally show ?thesis using f-eql image-image by metis
qed(simp)
qed

lemma mdeg-singleton: maz-deg (Node r {|(t1,e1)|}) = maz (maz-deg t1) (feard
{I(t1en)]})

by simp
lemma mdeg-ge-child-aux: (t1,e1) € fset zs = maz-deg t1 < Maz (maz-deg *
fst ¢ fset xs)

using Maz-ge| OF mdeg-img-fin] by fastforce

lemma mdeg-ge-child: (t1,el) € fset s = maz-deg t1 < maz-deg (Node r xs)
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using mdeg-ge-child-auz by fastforce

lemma mdeg-ge-child”: t1 € fst  fset xs = maz-deg t1 < maz-deg (Node r zs)
using mdeg-ge-child[of t1] by force

lemma mdeg-ge-sub: is-subtree t1 t2 =—> maz-deg t1 < maz-deg t2
proof (induction t2)
case (Node 1 zs)
show ?Zcase
proof(cases Node r xs=t1)
case Fulse
then obtain z el where a-def: (z,e1) € fset xs is-subtree t1 z using Node.prems(1)
by auto
then have maz-deg t1 < maz-deg x using Node.IH by force
then show ?thesis using mdeg-ge-child[OF z-def(1)] by simp
qed(simp)
qed

lemma mdeg-gt-0-if-nempty: zs # {||} = max-deg (Node r zs) > 0
using fcard-fempty by auto

corollary empty-if-mdeg-0: maz-deg (Node r zs) = 0 = xs = {||}
using mdeg-gt-0-if-nempty by (metis less-numeral-extra(3))

lemma nempty-if-mdeg-n0: maz-deg (Node r zs) # 0 = zs # {||}
by auto

corollary empty-iff-mdeg-0: maz-deg (Node r zs) = 0 <— xs = {||}
using nempty-if-mdeg-n0 empty-if-mdeg-0 by auto

lemma mdeg-root: max-deg (Node r xs) = max-deg (Node v xs)
by simp

lemma mdeg-ge-fecard: feard xs < maz-deg (Node 1 xs)
by simp

lemma mdeg-fcard-if-fecard-ge-child:
Y (t,e) € fset zs. maz-deg t < feard xs => maz-deg (Node r xs) = feard xs
using mdeg-child-if-gt-fecard|of xs r| mdeg-ge-fecard|of zs r] by fastforce

lemma mdeg-fcard-if-fcard-ge-child:
Vit e fst‘ fset xs. maz-deg t < fecard xs = max-deg (Node r xs) = fcard s
using mdeg-feard-if-fcard-ge-child[of zs r] by fastforce

lemma fcard-single-1: feard {|z|} = 1
by (simp add: fcard-finsert)

lemma feard-single-1-iff: feard zs = 1 +— (z. zs = {|z|})
by (metis all-not-fin-conv bot.extremum fecard-seteq fcard-single-1
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finsert-fsubset le-numeral-extra(4))

lemma feard-not0-if-elem: Jzx. x € fset s = feard xs # 0
by auto

lemma feardi-if-lel-elem: [feard xs < 1; z € fset xs] = feard xs = 1
using fcard-not0-if-elem|of xzs] by fastforce

lemma singleton-if-feard-lel-elem: [feard zs < 1; z € fset xs] = zs = {|z|}
using feard-single-1-iff[of zs] feard1-if-lel-elem by fastforce

lemma singleton-if-mdeg-lel-elem: [maz-deg (Node r xzs) < 1; x € fset xs] = xs

= {l=l}

using singleton-if-fcard-lel-elem|of xs] mdeg-ge-fecard|of xs] by simp

lemma singleton-if-mdeg-le1-elem-suc: [maz-deg t < 1; x € fset (sucs t)] = sucs

t = {|=[}

using singleton-if-mdeg-le1-elem[of root t sucs t] by simp

lemma feard0-if-lel-not-singleton: [V x. xs # {|z|}; feard xs < 1] = feard xs =
0
using fcard-single-1-iff[of xs] by fastforce

lemma empty-fset-if-feard-lel-not-singleton: [V x. zs # {|z|}; feard s < 1] = xs

={ll}

using fcard0-if-lel-not-singleton by auto

lemma feard0-if-mdeg-lel-not-single: [V x. xs # {|z|}; maz-deg (Node r zs) < 1]
= feard xs = 0
using feard0-if-le1-not-singleton|of xs] mdeg-ge-fecard|of xs] by simp

lemma empty-fset-if-mdeg-lel-not-single: [V z. xs # {|z|}; maz-deg (Node r zs) <
1] = zs = A{ll}
using fecard0-if-mdeg-lel-not-single by auto

lemma fcard0-if-mdeg-le1-not-single-suc:
V. sucs t # {|z|}; maz-deg t < 1] = feard (sucs t) = 0
using fecard0-if-mdeg-le1-not-single[of sucs t root t] by simp

lemma empty-fset-if-mdeg-lel-not-single-suc: [V z. sucs t # {|z|}; maz-deg t < 1]
= sucs t = {||}
using fcard0-if-mdeg-lel-not-single-suc by auto

lemma mdeg-1-singleton:
assumes maz-deg (Node r zs) = 1
shows Jz. zs = {|z|}
proof —
obtain z where z-def: z |€| zs
using assms by (metis all-not-fin-conv empty-iff-mdeg-0 zero-neq-one)
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moreover have fcard xs < 1 using assms mdeg-ge-fcard by metis
ultimately have zs = {|z|}
by (metis order-bot-class.bot.not-eq-extremum diff-Suc-1 diff-is-0-eq’ feard-finsert-disjoint
less-nat-zero-code mk-disjoint-finsert pfsubset-fcard-mono)
then show ?thesis by simp
qed

lemma subtree-child-if-dvert-notr-mdeg-lel :
assumes maz-deg (Node r zs) < 1 and v # r and v € dverts (Node r xs)
shows 31’ e zs. is-subtree (Node r' {|(Node v zs,e)|}) (Node r xs)
proof —
obtain r’ ys zs where zs-def: is-subtree (Node 1’ ys) (Node r zs) Node v zs €
fst ¢ fset ys
using subtree-child-if-dvert-notroot| OF assms(2,3)] by blast
have 0: maxz-deg (Node r' ys) < 1 using mdeg-ge-sub|OF zs-def(1)] assms(1)
by simp
obtain e where {|(Node v zs,e)|} = ys
using singleton-if-mdeg-le1-elem[OF 0] zs-def(2) by fastforce
then show %thesis using zs-def(1) by blast
qed

lemma subtree-child-if-dvert-notroot-mdeg-lel :
[maz-deg t < 1; v # root t; v € dverts t]
= 31’ e zs. is-subtree (Node r' {|(Node v zs,e)|}) t
using subtree-child-if-dvert-notr-mdeg-lel [of oot t sucs t] by simp

lemma mdeg-child-sucs-eq-if-gt1:
assumes maz-deg (Node r {|(t,€)|}) > 1
shows max-deg (Node r {|(t,e)|}) = maz-deg (Node v (sucs t))
proof —
have feard {|(t,e)|} = 1 using feard-single-1 by fast
then have maz-deg (Node r {|(t,e)|}) = maz-deg t using assms by simp
then show ?thesis using mdeg-root[of root t sucs t v] dtree.exhaust-sel[of t] by
argo
qed

lemma mdeg-child-sucs-le: maz-deg (Node v (sucs t)) < max-deg (Node r {|(t,e)|})
using mdeg-root[of v sucs t root t] by simp

lemma mdeg-eq-child-if-singleton-gt1:

maz-deg (Node r {|(t1,e1)|}) > 1 = max-deg (Node r {|(t1,el)|}) = maz-deg
t1

using mdeg-singleton[of r t1] by (auto simp: feard-single-1 max-def)

lemma fcard-gt1-if-mdeg-gt-child:

assumes maz-deg (Node r zs) > n and t1 € fst ‘ fset s and maz-deg t1 < n
and n#0

shows feard s > 1
proof(rule ccontr)
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assume —fcard xs > 1

then have fcard xs < 1 by simp

then have Jel. xs = {|(t1,el)|} using assms(2) singleton-if-feard-lel-elem by
fastforce

then show Fulse using mdeg-singleton[of r t1] assms(1,3,4) by (auto simp:
feard-single-1)
qed

lemma fcard-gti-if-mdeg-gt-suc:

[maz-deg t2 > n; t1 € fst ¢ fset (sucs t2); max-deg t1 < n; n#0] = feard (sucs
t2) > 1

using fcard-gt1-if-mdeg-gt-child[of n root t2 sucs t2] by simp

lemma fcard-gt1-if-mdeg-gt-child1:
[maz-deg (Node r xs) > 1; t1 € fst * fset xs; maz-deg t1 < 1] = feard zs > 1
using fcard-gt1-if-mdeg-gt-child by auto

lemma fcard-gt1-if-mdeg-gt-sucl:

[max-deg t2 > 1; t1 € fst ¢ fset (sucs t2); max-deg t1 < 1] = feard (sucs t2)
> 1

using fcard-gt1-if-mdeg-gt-suc by blast

lemma fecard-lt-non-inj-f:
[fa=fb; a€ fset xs; b € fset xs; a£b] = feard (f | xs) < feard zs
proof (induction xs)
case (insert z xs)
then consider a € fset xs b € fset zs | a =z b € fset xs | a € fset xs b =z
by auto
then show ?case
proof (cases)
case I
then show ?thesis
using insert.IH insert.prems(1,4) by (simp add: fcard-finsert-if)
next
case 2
then show ?thesis
proof(cases feard (f || zs) = feard xs)
case True
then show ?thesis
using 2 insert.hyps insert.prems(1)
by (metis fecard-finsert-disjoint fimage-finsert finsert-fimage lessI)
next
case Fulse
then have fcard (f | zs) < fecard zs using feard-image-le by auto
then have fcard (f | zs) < fcard zs using False by simp
then show ?thesis
using 2 insert.prems(1) feard-image-le fcard-mono fimage-finsert less-le-not-le
by (metis order-class.order.not-eq-order-implies-strict finsert-fimage fsub-
set-finsertl)
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qed
next
case 3
then show ?thesis
proof (cases feard (f || zs) = feard xs)
case True
then show ?thesis
using 3 insert.hyps insert.prems(1)
by (metis feard-finsert-disjoint fimage-finsert finsert-fimage lessI)
next
case Fulse
then have fcard (f | zs) < fecard zs using feard-image-le by auto
then have fcard (f | zs) < fcard zs using False by simp
then show ?thesis
using 3 insert.prems(1) feard-image-le fcard-mono fimage-finsert less-le-not-le
by (metis order-class.order.not-eq-order-implies-strict finsert-fimage fsub-
set-finsertl)
qed
qed
qed (simp)

lemma mdeg-img-le:
assumes V (t,e) € fset xs. maz-deg (fst (f (t,e))) < maz-deg t
shows maz-deg (Node r (f | xs)) < maz-deg (Node r xs)
proof(cases maz-deg (Node v (f || zs)) = feard (f | xs))
case True
then show ?thesis using feard-image-le[of f xs] by auto
next
case Fulse
then have maz-deg (Node v (f | xs)) > feard (f | xs)
using mdeg-ge-feard[of f | xs] by simp
then obtain ¢! el where tI-def:
(t1,e1) € fset (f | xs) maz-deg t1 = maz-deg (Node r (f || zs))
using mdeg-child-if-gt-feard[of f | zs r]
by (metis (no-types, opaque-lifting) fst-conv imageFE surj-pair)
then obtain ¢2 e2 where t2-def: (12,e2) € fset xs f (t2,e2) = (t1,el) by auto
then have maz-deg t2 > maz-deg (Node r (f || zs)) using t1-def(2) assms by
fastforce
then show %thesis using mdeg-ge-child[OF t2-def(1)] by simp
qed

lemma mdeg-img-le’:
assumes Y (t,e) € fset xs. maz-deg (f t) < maz-deg t
shows max-deg (Node r ((A(t,e). (ft, €)) || z3)) < maz-deg (Node r xs)
using mdeg-img-le[of s A(t,e). (f t, e)] assms by simp

lemma mdeg-le-if-feard-and-child-le:

[V (t,e) € fset xs. maz-deg t < m; feard xs < m] = maz-deg (Node r zs) < m
using mdeg-ge-fcard mdeg-child-if-gt-fcard|of zs r] by fastforce
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lemma mdeg-child-if-child-mazx:
[V (t,e) € fset xs. maz-deg t < maz-deg t1; feard xs < max-deg t1; (t1,el) € fset
xs]
= maz-deg (Node r zs) = maz-deg t1
using mdeg-le-if-fecard-and-child-le[of zs maz-deg t1] mdeg-ge-child[of t1 el xs]
by simp

corollary mdeg-child-if-child-maz’:
[V (t,e) € fset xs. maz-deg t < maz-deg t1; feard xs < maz-deg t1; t1 € fst * fset
xs]
= maz-deg (Node r zs) = maz-deg t1
using mdeg-child-if-child-maz[of xs t1] by force

lemma mdeg-img-eq:
assumes Y (t,e) € fset xs. maz-deg (fst (f (t,e))) = maz-deg t
and feard (f | zs) = feard zs
shows maz-deg (Node r (f || xs)) = maz-deg (Node r xs)
proof(cases maz-deg (Node r (f || xs)) = feard (f |1 xs))
case True
then have V (t,e) € fset (f | zs). maz-deg t < feard (f | xs)
using mdeg-ge-child
by (metis (mono-tags, lifting) case-prodI2)
then have V (t,e) € fset xs. maz-deg t < fcard zs using assms by fastforce
then have maz-deg (Node r zs) = feard zs using mdeg-feard-if-fcard-ge-child by
fast
then show ?thesis using True assms(2) by simp
next
case Fulse
then have maz-deg (Node v (f | xs)) > feard (f | xs)
using mdeg-ge-feard[of f | xs] by simp
then obtain ¢! el where tI-def:
(t1,e1) € fset (f | xs) maz-deg t1 = maz-deg (Node r (f || zs))
using mdeg-child-if-gt-feard[of f | zs r]
by (metis (no-types, opaque-lifting) fst-conv imageE old.prod.exhaust)
then obtain ¢2 e2 where t2-def: (12,e2) € fset xs f (t2,e2) = (t1,el) by auto
then have mdeg-t21: maz-deg t2 = maz-deg t1 using assms(1) by auto
have V (t3,e3) € fset (f || zs). maz-deg t3 < maz-deg t1
using t1-def(2) mdeg-ge-child[where zs=f | s]
by (metis (no-types, lifting) case-prodI2)
then have V (t3,e3) € fset zs. max-deg (fst (f (t3,e8))) < maa-deg t1 by auto
then have V (t5,e3) € fset xs. max-deg t3 < maz-deg t2 using assms(1) mdeg-t21
by fastforce
moreover have maz-deg t2 > feard xs using t1-def(2) assms(2) mdeg-t21 by
stmp
ultimately have maz-deg (Node r zs) = maz-deg t2
using t2-def(1) mdeg-child-if-child-max by metis
then show ?thesis using t1-def(2) mdeg-t21 by simp
qed
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lemma num-leaves-1-if-mdeg-1: maz-deg t < 1 = num-leaves t = 1
proof (induction t)
case (Node r xs)
then show ?case
proof(cases maz-deg (Node r xs) = 0)
case True
then show ?thesis using empty-iff-mdeg-0 by auto
next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where t-def: xs = {|(t,€)|} (t,e) € fset zs
using mdeg-1-singleton by fastforce
then have maz-deg t < 1 using Node.prems mdeg-ge-child by fastforce
then show ?thesis using Node.IH t-def(1) by simp
qged
qed

lemma num-leaves-gel: num-leaves t > 1
proof (induction t)
case (Node r zs)
show ?Zcase
proof(cases zs = {||})
case Fulse
then obtain ¢ e where t-def: (t,e) € fset xs by fast
then have 1 < num-leaves t using Node by simp
then show ?thesis
using fset-sum-ge-elem|[OF finite-fset|of xs| t-def, of A(t,e). num-leaves t] by
auto
qed (simp)
qed

lemma num-leaves-ge-card: num-leaves (Node 1 xs) > fecard xs
proof(cases zs = {||})
case Fulse
have feard zs = (> z€ fset xs. 1) using feard.rep-eq by auto
also have ... < (3 z€ fset zs. num-leaves (fst z)) using num-leaves-gel sum-mono
by metis
finally show ?thesis using False by (simp add: fst-def prod.case-distrib)
qed (simp add: feard-fempty)

lemma num-leaves-root: num-leaves (Node r xs) = num-leaves (Node 1’ xs)
by simp

lemma num-leaves-singleton: num-leaves (Node r {|(t,e)|}) = num-leaves t
by simp
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7.5 List Conversions

function diree-to-list :: ('a,’d) diree = (‘ax’b) list where
dtree-to-list (Node r {|(t,e)|}) = (root t,e) # dtree-to-list t
| V. zs # {|z|} = dtree-to-list (Node r xs) = |]
by (metis darcs-mset.cases surj-pair) auto
termination by lexicographic-order

fun dtree-from-list :: 'a = ('ax’'b) list = ('a,’d) dtree where
dtree-from-list r [| = Node r {||}
| dtree-from-list r ((v,e)#xs) = Node r {|(dtree-from-list v xs, e)|}

fun wf-list-arcs :: (‘ax’b) list = bool where
wf-list-arcs [| = True
| wf-list-arcs ((v,e)#as) = (e & snd ‘ set xs N wf-list-arcs xs)

fun wf-list-verts :: ("ax’b) list = bool where
wf-list-verts [| = True
| wf-list-verts ((v,e)#xs) = (v & fst ¢ set xs A wf-list-verts xs)

lemma dtree-to-list-sub-dverts-ins:
insert (root t) (fst ¢ set (dtree-to-list t)) C dverts t
proof (induction t)
case (Node 1 zs)
show ?Zcase
proof(cases V. zs # {|z|})
case Fulse
then obtain t e where t-def: zs = {|(t,e)|}
using mdeg-1-singleton by fastforce
then show ?thesis using Node.IH by fastforce
qged (auto)
qed

lemma dtree-to-list-eq-dverts-ins:
maz-deg t < 1 = insert (root t) (fst ‘ set (dtree-to-list t)) = dverts t
proof (induction t)
case (Node r xs)
show Zcase
proof(cases maz-deg (Node 1 xzs) = 0)
case True
then have zs = {||} using empty-iff-mdeg-0 by auto
moreover from this have Vz. zs # {|z|} by blast
ultimately show ?thesis by simp
next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where t-def: xs = {|(t,€)|} (t,e) € fset xs
using mdeg-1-singleton by fastforce
then have max-deg t < 1 using Node.prems mdeg-ge-child by fastforce
then have insert (root t) (fst ¢ set (dtree-to-list t)) = dverts t
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using Node.IH t-def(2) by auto
then show %thesis using Node.prems(1) t-def(1) by simp
qed
qed

lemma dtree-to-list-eq-dverts-sucs:
maz-deg t < 1 = fst ‘ set (diree-to-list t) = (Jz € fset (sucs t). dverts (fst x))
proof (induction t)
case (Node 1 zs)
show ?Zcase
proof(cases maz-deg (Node r xs) = 0)
case True
then have zs = {||} using empty-iff-mdeg-0 by auto
moreover from this have Vz. zs # {|z|} by blast
ultimately show ¢thesis by simp
next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where t-def: zs = {|(t,e)|} (t,e) € fset xs
using mdeg-1-singleton by fastforce
then have maz-deg t < 1 using Node.prems mdeg-ge-child by fastforce
then have fst ‘ set (dtree-to-list t) = (| Jz € fset (sucs t). dverts (fst x))
using Node.IH t-def(2) by auto
moreover from this have dverts t = insert (root t) (|Jz € fset (sucs t). dverts
(fst )
using <maz-deg t < 1) dtree-to-list-eq-dverts-ins by fastforce
ultimately show ?thesis using Node.prems(1) t-def(1) by force
qed
qed

lemma dtree-to-list-sub-dverts:
wf-dverts t = fst  set (dtree-to-list t) C dverts t — {root t}
proof (induction t)
case (Node 1 zs)
show ?Zcase
proof(cases V. zs # {|z|})
case False
then obtain ¢t e where t-def: xs = {|(t,e)|}
using mdeg-1-singleton by fastforce
then have wf-dverts t using Node.prems mdeg-ge-child by fastforce
then have fst ‘ set (dtree-to-list t) C dverts t — {root t} using Node.IH t-def (1)
by auto
then have fst ‘ set (diree-to-list (Node r xzs)) C dverts t
using t-def(1) diree.set-sel(1) by auto
then show ?thesis using Node.prems(1) t-def(1) by (simp add: wf-dverts-iff-dverts’)
qed (auto)
qed

lemma dtree-to-list-eq-dverts:
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[wf-dverts t; maz-deg t < 1] = fst ‘ set (dtree-to-list t) = dverts t — {root t}
proof (induction t)
case (Node 1 zs)
show ?Zcase
proof(cases maz-deg (Node r xzs) = 0)
case True
then have zs = {||} using empty-iff-mdeg-0 by auto
moreover from this have Vz. zs # {|z|} by blast
ultimately show ?thesis by simp
next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where ¢-def: xs = {|(¢,€)|} (t,e) € fset zs
using mdeg-1-singleton by fastforce
then have maz-deg t < 1 A wf-dverts t using Node.prems mdeg-ge-child by
fastforce
then have fst ‘ set (dtree-to-list t) = dverts t — {root t} using Node.IH t-def(2)
by auto
then have fst ¢ set (diree-to-list (Node 1 zs)) = dverts t
using t-def(1) dtree.set-sel(1) by auto
then show ?thesis using Node.prems(1) t-def(1) by (simp add: wf-dverts-iff-dverts’)
qed
qed

lemma dtree-to-list-eq-dverts-single:

[maz-deg t < 1; sucs t = {|(t1,e1)|}] = fst ‘ set (dtree-to-list t) = dverts t1
by (simp add: diree-to-list-eq-dverts-sucs)

lemma diree-to-list-sub-darcs: snd  set (dtree-to-list t) C darcs t
proof (induction t)
case (Node r xs)
show ?case
proof(cases V. zs # {|z|})
case Fulse
then obtain ¢ e where zs = {|(¢,e)|}
using mdeg-1-singleton by fastforce
then show ?thesis using Node.IH by fastforce
qed (auto)
qed

lemma diree-to-list-eq-darcs: maz-deg t < 1 = snd * set (dtree-to-list t) = darcs
t

proof (induction t)
case (Node 1 zs)
show Zcase
proof(cases maz-deg (Node 1 xs) = 0)
case True
then have zs = {||} using empty-iff-mdeg-0 by auto
moreover from this have Vz. zs # {|z|} by blast
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ultimately show ¢thesis by simp

next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where t-def: xs = {|(t,€)|} (t,e) € fset xs

using mdeg-1-singleton by fastforce

then have maz-deg t < 1 using Node.prems mdeg-ge-child by fastforce
then have snd ‘ set (dtree-to-list t) = darcs t using Node.IH t-def(2) by auto
then show ?thesis using t-def(1) by simp

qged

qged

lemma dtree-from-list-eq-dverts: dverts (dtree-from-list r zs) = insert r (fst ¢ set
xs)
by (induction s arbitrary: r) force+

lemma ditree-from-list-eq-darcs: darcs (dtree-from-list r xs) = snd © set s
by (induction zs arbitrary: r) force+

lemma dtree-from-list-root-r[simpl: root (dtree-from-list r zs) = r
using ditree.sel(1) diree-from-list.elims by metis

lemma dtree-from-list-v-eq-r:
Node r xs = dtree-from-list v ys = r = v
using dtree.sel(1)[of r xs| by simp

lemma dtree-from-list-fecard0-empty: fecard (sucs (dtree-from-list r [])) = 0
by simp

lemma dtree-from-list-fcard0-iff-empty: feard (sucs (dtree-from-list r zs)) = 0 <—
s = ]
by (induction xs) auto

lemma dtree-from-list-fecard1-iff-nempty: feard (sucs (dtree-from-list r xzs)) = 1
+—— x5 £ ]
by (induction xs) (auto simp: feard-single-1 fecard-fempty)

lemma dtree-from-list-feard-lel: fcard (sucs (dtree-from-list r zs)) < 1
by (induction zs) (auto simp: feard-single-1 fcard-fempty)

lemma dtree-from-empty-deg-0: maz-deg (dtree-from-list r [|) = 0
by simp

lemma ditree-from-list-deg-le-1: maz-deg (dtree-from-list r xs) < 1
proof (induction zs arbitrary: r)

case Nil

have maz-deg (dtree-from-list r [|) = 0 by simp

also have ... < 1 by blast

finally show ?case by blast
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next
case (Cons z zs)
obtain v e where v-def: z = (v,e) by force
let ?zs = {|(dtree-from-list v s, e)|}
have dtree-from-list r (z#xs) = Node r ?zs by (simp add: v-def)
moreover have maz-deg (dtree-from-list v zs) < 1 using Cons by simp
moreover have maz-deg (Node r ?zs) = mazx (max-deg (dtree-from-list v xs))
(feard ?xs)
using mdeg-singleton by fast
ultimately show ?case by (simp add: fecard-finsert-if max-def)
qged

lemma diree-from-list-deg-1: xs # [| <— maz-deg (dtree-from-list r zs) = 1
proof (cases xs)

case (Cons z xs)

obtain v e where v-def: z = (v,e) by force

let %zs = {|(dtree-from-list v zs, e)|}

have dtree-from-list r (z#xs) = Node r ?zs by (simp add: v-def)

moreover have maz-deg (dtree-from-list v zs) < 1 using diree-from-list-deg-le-1
by fast

moreover have maz-deg (Node r ?xs) = mazx (max-deg (dtree-from-list v xs))
(feard ?xs)

using mdeg-singleton by fast

ultimately show ?thesis using Cons by (simp add: fcard-finsert-if maz-def)

qed (metis dtree-from-empty-deg-0 zero-neq-one)

lemma dtree-from-list-singleton: zs # [] = 3t e. dtree-from-list r xs = Node r

{I(ze)l}

using dtree-from-list.elims|of r xs] by fastforce

lemma dtree-from-to-list-id: maz-deg t < 1 = dtree-from-list (root t) (dtree-to-list
)=t
proof (induction t)
case (Node 1 zs)
then show ?case
proof(cases maz-deg (Node r xs) = 0)
case True
then have zs = {||} using empty-iff-mdeg-0 by auto
moreover from this have Vz. zs # {|z|} by blast
ultimately show ?thesis using Node.prems by simp
next
case Fulse
then have maz-deg (Node r zs) = 1 using Node.prems by simp
then obtain ¢ e where t-def: xs = {|(t,€)|} (t,e) € fset zs
using mdeg-1-singleton by fastforce
then have maz-deg t < 1 using Node.prems mdeg-ge-child by fastforce
then show ?thesis using Node.IH t-def(1) by simp
qged
qed
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lemma diree-to-from-list-id: dtree-to-list (dtree-from-list r xs) = xs
proof (induction zs arbitrary: r)
case Nil
then show Zcase
using dtree-from-list-deg-1 dtree-from-list-deg-le-1 dtree-from-to-list-id by metis
next
case (Cons z zs)
obtain v e where v-def: © = (v,e) by force
then have dtree-to-list (dtree-from-list r (z#txs)) = (v,e)# dtree-to-list (dtree-from-list
v xS)
by (metis dtree-from-list.elims dtree-to-list.simps(1) dtree.sel(1) diree-from-list.simps(2))
then show ?case by (simp add: v-def Cons)
qed

lemma dtree-from-list-eq-singleton-hd:
Node 10 {|(t0,e0)|} = dtree-from-list vl ys => (Jxs. (root t0, e0) # xs = ys)
using dtree-to-list.simps(1)[of r0 t0 e0] dtree-to-from-list-id[of v1 ys] by simp

lemma dtree-from-list-eq-singleton:

Node r0 {|(t0,e0)|} = dtree-from-list v1 ys = r0 = v1 A (Fas. (root t0, e0) #
xs = ys)

using dtree-from-list-eq-singleton-hd by fastforce

lemma dtree-from-list-uneg-sequence:
[és-subtree (Node r0 {|(t0,e0)|}) (dtree-from-list v1 ys);
Node r0 {|(t0,e0)|} # dtree-from-list v1 ys]
= e as bs. as Q (r0,e) # (root t0, e0) # bs = ys
proof (induction vl ys rule: dtree-from-list.induct)
case (271 v e xs)
then show ?case
proof(cases Node r0 {|(t0,e0)|} = dtree-from-list v xs)
case True
then show %thesis using dtree-from-list-eq-singleton by fast
next
case False
then obtain el as bs where as Q (70, el) # (root t0, e0) # bs = zs using
2 by auto
then have ((v,e)#as) @ (r0, el) # (root t0, e0) # bs = (v, €) # xs by simp
then show ?thesis by blast
qed
qed(simp)

lemma dtree-from-list-sequence:
[is-subtree (Node r0 {|(t0,e0)|}) (dtree-from-list v1 ys)]
= Je as bs. as Q (r0,e) # (root t0, e0) # bs = ((v1,el)F#ys)
using dtree-from-list-uneg-sequencelof r0 t0 e0] dtree-from-list-eq-singleton ap-
pend-Cons by fast
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lemma dtree-from-list-eq-empty:
Node r {||} = dtree-from-list v ys = r = v A ys = ||
using dtree-to-from-list-id dtree-from-list-v-eq-r dtree-from-list.simps(1) by metis

lemma dtree-from-list-sucs-cases:

Node r zs = dtree-from-list v ys = xs = {||} V (z. zs = {|z|})

using diree.inject diree-from-list.simps(1) dtree-to-from-list-id dtree-to-list.simps(2)
by metis

lemma dtree-from-list-uneq-sequence-zs:
strict-subtree (Node 10 zs0) (dtree-from-list vl ys)
= Je as bs. as @ (r0,e) # bs = ys A Node r0 zs0 = dtree-from-list r0 bs
proof (induction vl ys rule: dtree-from-list.induct)
case (271 v e xs)
then show ?case
proof(cases Node r0 xs0 = dtree-from-list v xs)
case True
then show %thesis using diree-from-list-root-r dtree.sel(1)[of r0 zs0] by fast-
force
next
case Fulse
then obtain e as bs where 0: as Q (r0,el) # bs = xs Node 0 zs0 =
dtree-from-list r0 bs
using 2 unfolding strict-subtree-def by auto
then have ((v,e)#as) @ (r0,el) # bs = (v,e) # zs by simp
then show ?thesis using 0(2) by blast
qed
qed(simp add: strict-subtree-def)

lemma dtree-from-list-sequence-xs:
[és-subtree (Node r xs) (dtree-from-list v1 ys)]
= e as bs. as Q (r,e) # bs = ((vl,el)#ys) A Node r xs = diree-from-list r
bs
using diree-from-list-uneq-sequence-xs|of r xs| dtree-from-list-v-eq-r strict-subtree-def
by (fast intro!: append-Cons)

lemma dtree-from-list-sequence-dverts:
[is-subtree (Node r xs) (dtree-from-list v1 ys)]
= Jeas bs. as Q (r,e) # bs = ((v1,el)#ys) A dverts (Node r zs) = insert r
(fst ¢ set bs)
using dtree-from-list-sequence-zs[of r xs vl ys el] diree-from-list-eq-dverts by
metis

lemma dtree-from-list-dverts-subset-set:
set bs C set ds = dverts (dtree-from-list r bs) C dverts (dtree-from-list r ds)
by (auto simp: dtree-from-list-eq-dverts)

lemma wf-darcs’-iff-wf-list-arcs: wf-list-arcs xs <— wf-darcs’ (dtree-from-list r xs)

by (induction zs arbitrary: r rule: wf-list-arcs.induct) (auto simp: dtree-from-list-eq-darcs)
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lemma wf-darcs-iff-wf-list-arcs: wf-list-arcs xs «— wf-darcs (dtree-from-list r xs)
using wf-darcs’-iff-wf-list-arcs wf-darcs-iff-darcs’ by fast

lemma wf-dverts-iff-wf-list-verts:
r & fst ‘set xs N\ wf-list-verts xs <— wf-dverts (dtree-from-list r xs)
by (induction zs arbitrary: r rule: wf-list-verts.induct)
(auto simp: dtree-from-list-eq-dverts wf-dverts-iff-dverts’)

theorem wf-dtree-iff-wf-list:

wf-list-arcs xs N r & fst ¢ set xs N wf-list-verts xs «— wf-dtree (dtree-from-list r
xs)

using wf-darcs-iff-wf-list-arcs wf-dverts-iff-wf-list-verts unfolding wf-dtree-def
by fast

lemma wf-list-arcs-if-wf-darcs: wf-darcs t = wf-list-arcs (dtree-to-list t)
proof (induction t)
case (Node 1 zs)
then show ?case
proof(cases V. zs # {|z|})
case True
then show %thesis using dtree-to-list.simps(2) by simp
next
case Fulse
then obtain tI el where zs = {|(¢1,el)|} by auto
then show ?thesis
using Node ditree-to-list-sub-darcs unfolding wf-darcs-iff-darcs’ by fastforce
qed
qed

lemma wf-list-verts-if-wf-dverts: wf-dverts t = wf-list-verts (dtree-to-list t)
proof (induction t)
case (Node r zs)
then show ?case
proof(cases V. zs # {|z|})
case True
then show ?thesis using dtree-to-list.simps(2) by simp
next
case Fulse
then obtain ¢! el where zs = {|(t1,el)|} by auto
then show ?thesis using Node dtree-to-list-sub-dverts by (fastforce simp:
wf-dverts-iff-dverts”)
qed
qed

lemma distinct-if-wf-list-arcs: wf-list-arcs xs = distinct xs
by (induction xs) force+

lemma distinct-if-wf-list-verts: wf-list-verts s = distinct xs
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by (induction xs) force+

lemma wf-list-arcs-alt: wf-list-arcs xs <— distinct (map snd xs)
by (induction xs) force+

lemma wf-list-verts-alt: wf-list-verts xs «— distinct (map fst xs)
by (induction zs) force+

lemma subtree-from-list-split-eq-if-wfverts:
assumes wf-list-verts (asQ(r,e)#bs)
and v ¢ fst ‘ set (asQ(r,e)#bs)
and is-subtree (Node 1 zs) (dtree-from-list v (asQ(r,e)#bs))
shows Node r s = dtree-from-list r bs
proof —
have 0: wf-list-verts ((v,e)#asQ(r,e)#bs) using assms(1,2) by simp
obtain as’ ¢’ bs’ where as’-def:
as'Q(r,e\#bs’ = (v,e)#asQ(r,e)#bs Node r xs = dtree-from-list v bs’
using assms(3) dtree-from-list-sequence-zs[of r xs] by blast
then have 0: wf-list-verts (as’Q(r,e")#bs’) using assms(1,2) by simp
have r-as”: r ¢ fst ‘ set as’ using 0 unfolding wjf-list-verts-alt by simp
moreover have r-bs": r ¢ fst ¢ set bs’ using 0 unfolding wf-list-verts-alt by
stmp
moreover have (r,e) € set (as’Q(r,e’)#bs’) using as’-def(1) by simp
ultimately have (r,e’)= (r,e) by force
then show ?thesis
using r-as’ r-bs’ as’-def append-Cons-eq-iff[of (r,e) as’ bs’ (v,e)#as bs] by
force
qed

lemma subtree-from-list-split-eq-if-wfdverts:
[wf-dverts (dtree-from-list v (asQ(r,e)#bs));
is-subtree (Node r xs) (dtree-from-list v (asQ(r,e)#bs))]
= Node r xs = dtree-from-list r bs
using subtree-from-list-split-eq-if-wfverts wf-dverts-iff-wf-list-verts by fast

lemma dtree-from-list-dverts-subset-wfdverts:
assumes set bs C set ds
and wf-dverts (dtree-from-list v (asQ(r,el)#bs))
and wf-dverts (dtree-from-list v (csQ(r,e2)#ds))
and is-subtree (Node 1 zs) (dtree-from-list v (asQ(r,el)#bs))
and is-subtree (Node r ys) (dtree-from-list v (csQ(r,e2)#ds))
shows dverts (Node r zs) C dverts (Node r ys)
using dtree-from-list-dverts-subset-set[ OF assms(1)]
subtree-from-list-split-eq-if-wfdverts| OF assms(2,4)]
subtree-from-list-split-eq-if-wfdverts| OF assms(3,5)]
by simp

lemma dtree-from-list-dverts-subset-wfdverts':
assumes wf-dverts (dtree-from-list v as)
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and wf-dverts (dtree-from-list v cs)
and is-subtree (Node 1 zs) (dtree-from-list v as)
and is-subtree (Node 1 ys) (dtree-from-list v cs)
and Jas’ el bs cs’ €2 ds. as’Q(r,el)#bs = as N cs’'Q(r,e2)#ds = cs N set
bs C set ds
shows dverts (Node r zs) C dverts (Node 1 ys)
using dtree-from-list-dverts-subset-wfdverts assms by metis

lemma dtree-to-list-sequence-subtree:
[maz-deg t < 1; strict-subtree (Node r xs) t]
= Jas e bs. diree-to-list t = asQ(r,e)#bs A Node r xs = dtree-from-list r bs
by (metis dtree-from-list-uneq-sequence-xs dtree-from-to-list-id)

lemma dtree-to-list-sequence-subtree’:
[maz-deg t < 1; strict-subtree (Node r xs) t]
= Jas e bs. diree-to-list t = asQ(r,e)#bs A dtree-to-list (Node r xs) = bs
using dtree-to-from-list-id[of r] dtree-to-list-sequence-subtree[of t r xs| by fast-
force

lemma dtree-to-list-subtree-dverts-eq-fsts:
[maz-deg t < 1; strict-subtree (Node r xs) t]
= Jas e bs. diree-to-list t = asQ(r,e)#bs A insert r (fst ‘ set bs) = dverts
(Node r xs)
by (metis dtree-from-list-eq-dverts dtree-to-list-sequence-subtree)

lemma dtree-to-list-subtree-dverts-eq-fsts’:
[maz-deg t < 1; strict-subtree (Node 1 xs) t]
= Jas e bs. dtree-to-list t = asQ(r,e)#bs N (fst ¢ set ((r,e)#bs)) = dverts
(Node r xs)
using dtree-to-list-subtree-dverts-eq-fsts by fastforce

lemma dtree-to-list-split-subtree:
assumes asQ(r,e)#bs = dtree-to-list t
shows Jus. strict-subtree (Node r xs) t A dtree-to-list (Node r zs) = bs
using assms proof (induction t arbitrary: as rule: dtree-to-list.induct)
case (1 r1tl el)
show Zcase
proof(cases as)
case Nil
then have dtree-to-list (Node r (sucs t1)) = bs using 1.prems by auto
moreover have is-subtree (Node r (sucs t1)) (Node r1 {|(t1, e1)|})
using subtree-if-child[of t1 {|(t1, el)|}] I.prems Nil by simp
moreover have Node r1 {|(t1, el)|} # (Node r (sucs t1)) by (blast intro!:
singleton-uneq’)
ultimately show ?thesis unfolding strict-subtree-def by blast
next
case (Cons a as’)
then show ?thesis using 1 unfolding strict-subtree-def by fastforce
qed
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qed(simp)

lemma dtree-to-list-split-subtree-dverts-eq-fsts:
assumes maz-deg t < 1 and asQ(r,e)#bs = dtree-to-list t
shows Jzs. strict-subtree (Node r xzs) t A dverts (Node r xs) = insert r (fst‘set
bs)
proof —
obtain zs where zs-def:
is-subtree (Node r zs) t Node r xs # t dtree-to-list (Node r xs) = bs
using dtree-to-list-split-subtree] OF assms(2)] unfolding strict-subtree-def by
blast
have maz-deg (Node r xs) < 1 using mdeg-ge-sub[OF xs-def(1)] assms(1) by
stmp
then show ?thesis
using dtree-to-list-eq-dverts-ins[of Node r xs] xs-def strict-subtree-def by auto
qed

lemma dtree-to-list-split-subtree-dverts-eq-fsts':
assumes maz-deg t < 1 and asQ(r,e)#bs = dtree-to-list t
shows Jzs. strict-subtree (Node r xs) t A\ dverts (Node r zs) = (fst ‘ set ((r,e)#bs))
using dtree-to-list-split-subtree-dverts-eq-fsts|OF assms| by simp

lemma dtree-from-list-dverts-subset-wfdverts1:
assumes dverts t1 C fst ‘ set ((r,e2)#bs)
and wf-dverts (dtree-from-list v (asQ(r,e2)#bs))
and is-subtree (Node r ys) (dtree-from-list v (asQ(r,e2)#bs))
shows dverts t1 C dverts (Node 1 ys)
using subtree-from-list-split-eq-if-wfdverts| OF assms(2,3)] assms(1) dtree-from-list-eq-dverts
by fastforce

lemma dtree-from-list-dverts-subset-wfdverts1’:
assumes wf-dverts (dtree-from-list v cs)
and is-subtree (Node 1 ys) (dtree-from-list v cs)
and Jas e bs. asQ(r,e)#bs = cs A dverts t1 C fst “ set ((r,e)#bs)
shows dverts t1 C dverts (Node 1 ys)
using dtree-from-list-dverts-subset-wfdverts1 assms by fast

lemma dtree-from-list-1-leaf: num-leaves (dtree-from-list r xs) = 1
using num-leaves-1-if-mdeg-1 dtree-from-list-deg-le-1 by fast

7.6 Inserting in Dtrees

abbreviation insert-before ::
‘a = 'b="a = (('a,’b) diree x 'b) fset = (('a,’d) dtree x 'b) fset where
insert-before v e y xs = ffold (A\(t1,el).
finsert (if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,e1))) {||} xs

fun insert-between :: 'a = 'b = 'a = 'a = ('a,’d) diree = ('a,’b) diree where
insert-between v e T y (Node r xs) = (if x=r A (3t. t € fst * fset zs A root t = y)
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then Node r (insert-before v e y xs)

else if x=r then Node r (finsert (Node v {||},e) xs)
else Node r ((A(t,el). (insert-between v e z y t,el)) | xs))

lemma insert-between-id-if-notin: © ¢ dverts t = insert-between v ez yt =1
proof (induction t)
case (Node 1 zs)
have V (t,e) € fset xs. x ¢ dverts t using Node.prems by force
then have V (t,el) € fset zs. (A\(t,el). (insert-between v e z y t,el)) (t,el) =
(t,el)
using Node.IH by auto
then have ((A(t,el). (insert-between v e x y tel)) || xs) = xs
by (smt (verit, ccfo-threshold) fset.map-cong0 case-prodE fimage-ident)
then show ?case using Node.prems by simp
qed

context wf-dtree
begin

lemma insert-before-commute-aux:
assumes [ = (\(t1,el). finsert (if root t1 = y1 then (Node v {|(t1,el)|},e) else
(t1,e1)))
shows (fyofz) z=(fzo fy) 2
proof —
obtain ¢/ el where y-def: y = (t1, el) by fastforce
obtain t2 e2 where z = (12, e2) by fastforce
then show ?thesis using assms y-def by auto
qed

lemma insert-before-commute:

comp-fun-commaute (A(t1,el). finsert (if root t1 = y1 then (Node v {|(t1,e1)|},e)
else (t1,el)))

using comp-fun-commute-def insert-before-commute-aux by fastforce

interpretation Comm:

comp-fun-commute A(t1,el). finsert (if root t1 = y then (Node v {|(t1,e1)|},e)
else (t1,el))

by (rule insert-before-commute)

lemma root-not-new-in-orig:
[(t1,e1) € fset (insert-before v e y xs); root t1 # v] = (t1,el) € fset xs
proof (induction xs)
case empty
then show Zcase by simp
next
case (insert z xs)
let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (¢1,el))
show ?case
proof(cases (t1,el) € fset (insert-before v e y xs))
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case True
then show %thesis using insert.IH insert.prems(2) by simp

next
case Fualse
have insert-before v e y (finsert x xs) = finsert (?f z) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)

then have ?fz = (t1,el) using False insert.prems(1) by force
then have z = (¢1,el)
by (smt (23) insert.prems(2) ditree.sel(1) old.prod.exhaust prod.inject case-prod-conv)
then show ?thesis by simp

qed

qed

lemma root-not-y-in-new:
[(t1,el) € fset xs; root t1 # y] = (t1,el) € fset (insert-before v e y xs)
proof (induction xs)
case empty
then show ?case by simp
next
case (insert  xs)
let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
show ?Zcase
proof(cases (t1,el) = x)
case True
then show %thesis using insert by auto
next
case Fulse
have insert-before v e y (finsert x xs) = finsert (?f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then show ?thesis using insert.IH insert.prems by force
qed
qed

lemma root-noty-if-in-insert-before:
[(t1,e1) € fset (insert-before v e y xs); v#y] = root t1 # y
proof (induction xs)
case empty
then show Zcase by simp
next
case (insert z xs)
let ?f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
show ?Zcase
proof(cases (t1,el) € fset (insert-before v e y xs))
case True
then show ?thesis using insert.IH insert.prems(2) by fast
next
case Fulse
have insert-before v e y (finsert x xs) = finsert (?f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
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then have 0: ?f z = (¢1,el) using insert.prems False by simp
then show ?thesis
proof (cases root t1 = v)
case True
then show ?thesis using insert.prems(2) by simp
next
case Fulse
then show ?%thesis by (smt (23) ditree.sel(1) old.prod.ezhaust prod.inject 0
case-prod-conv)
qed
qed
qed

lemma in-insert-before-child-in-orig:
[(t1,el) € fset (insert-before v e y xs); (t1,el) ¢ fset xs]
= 3 (t2,e2) € fset zs. (Node v {|(t2,e2)|}) = t1 A root t2 = y A el=e
proof (induction xs)
case empty
then show ?case by simp
next
case (insert z xs)
let 2f = (\(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
show ?Zcase
proof(cases (t1,el) € fset (insert-before v e y xs))
case True
then show ?thesis using insert.IH insert.prems(2) by simp
next
case Fulse
have insert-before v e y (finsert x xs) = finsert (?f ) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then show ?thesis
by (smt (23) False Pair-inject old.prod.case case-prodI2 finsert-iff insert.prems)
qed
qed

lemma insert-before-not-y-id:
—(3t. t € fst ¢ fset xs A root t = y) = insert-before v e y xs = xs
proof (induction xs)
case (insert z xs)
let 2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
have insert-before v e y (finsert © zs) = finsert (?f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = finsert x (insert-before v e y xs)
using insert.prems
by (smt (23) old.prod.exhaust case-prod-conv finsertCI fst-conv image-eql)
moreover have —(3¢t. t € fst ‘ fset zs A root t = y) using insert.prems by auto
ultimately show ?case using insert.IH by blast
qed (simp)
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lemma insert-before-alt:
insert-before v e y xs
= (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el)) | zs
by (induction zs) (auto simp: Product-Type.prod.case-distrib)

lemma dverts-insert-before-auz:
dt. t € fst ‘ fset xs N root t =y
= (Jz€fset (insert-before v e y xs). |J (dverts ‘ Basic-BNFs.fsts x))
= insert v (| Jz€fset xs. |J (dverts * Basic-BNFs.fsts 1))
proof (induction xs)
case empty
then show Zcase by simp
next
case (insert z xs)
let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
obtain t1 el where t1-def: x = (t1,el) by fastforce
then show ?case
proof(cases root t1 = y)
case True
then have insert-before v e y (finsert © xs) = finsert (?f x) (insert-before v e y
zs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs)
= finsert (Node v {|(t1,e1)|},e) (insert-before v e y xs)
using t1-def True by simp
then have 0: (|Jz€fset (insert-before v e y (finsert z xs)). |J (dverts ¢ Ba-
sic-BNFs.fsts 1))
= insert v (dverts t1) U (|JzE€fset (insert-before v e y xs). |J (dverts
Basic-BNFs.fsts x))
using t1-def by simp
have 1: dverts (Node v {|(t1,el)|}) = insert v (dverts t1) by simp
show ?thesis
proof(cases At. t € fst * fset xs A root t = y)
case True
then show ?thesis using ti-def 0 insert.IH by simp
next
case Fulse
then show ?thesis using ti-def 0 insert-before-not-y-id by force
qed
next
case Fulse
then have 0: 3t. t € fst © fset xs A\ root t = y using insert.prems t1-def by
force
have insert-before v e y (finsert x xs) = finsert (?f ) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert z xs) = finsert z (insert-before v e y xs)
by (simp add: False t1-def)
then show ?thesis using insert.IH insert.prems 0 by simp
qed
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qed

lemma insert-between-add-v-if-z-in:
T € dverts t = dverts (insert-between v e x y t) = insert v (dverts t)
using wf-verts proof (induction t)
case (Node r xs)
show ?Zcase
proof(cases z=r)
case Fulse
then obtain ¢ el where t-def: (t,el) € fset xs x € dverts t using Node.prems(1)
by auto
then have Y (12,e2) € fset zs. (t,el) # (12,e2) — x ¢ dverts t2
using Node.prems(2) by (fastforce simp: wf-dverts-iff-dverts’)
then have V (t2,e2) € fset zs. (t,el) = (t2,e2) V (insert-between v e x y t2)
=12
using insert-between-id-if-notin by fast
moreover have (insert-between v e z y t,el)
€ fset ((A(t,el). (insert-between v e x y t,el)) || xs) using t-def(1) by force
moreover have dverts (insert-between v e x y t) = insert v (dverts t)
using Node.IH Node.prems(2) t-def by auto
ultimately show ¢thesis using Fulse by force
qed (auto simp: dverts-insert-before-aux)
qed

lemma insert-before-onlyl-new:
assumes V(z,el) € fset xs. V(y,e2) € fset xs. (dverts x N dverts y = {} V
(13’61 ):(y762))
and (t1,el) # (t2,e2)
and (t1,el) € fset (insert-before v e y xs)
and (t2,e2) € fset (insert-before v e y xs)
shows (t1,el) € fset xs V (12,e2) € fset xs
proof (rule ccontr)
assume —((t1,el) € fset s V (t2,e2) € fset xs)
then have asm: (t1,e1) ¢ fset zs (t2,e2) ¢ fset s by auto
obtain ¢35 e3 where t3-def: (13, e3)€fset xs Node v {|(t3, e3)|} = tI root t3 =
y el=e
using in-insert-before-child-in-orig assms(3) asm(1) by fast
obtain ¢4 e4 where t{-def: (t4, e )Efset xs Node v {|(t4, e4)|} = t2 root t4 =
y el=e
using in-insert-before-child-in-orig assms(4) asm(2) by fast
then have dverts t3 N dverts t4 # {} using t3-def(3) dtree.set-sel(1) by force
then have (t3,e3) = (t4,e4) using assms(1) t3-def(1) t4-def(1) by fast
then show Fulse using assms(2) t3-def(2,4) t4-def(2,4) by fast
qed

lemma disjoint-dverts-auxl:
assumes V (t1,el) € fset zs. V(12,e2) € fset xs. (dverts t1 N dverts t2 = {} V
(t1,e1)=(t2,e2))
and v ¢ dverts (Node r xs)
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and (t1,el) € fset (insert-before v e y xs)
and (t2,e2) € fset (insert-before v e y xs)
and (t1,el) # (t2,e2)
shows dverts t1 N dverts t2 = {}
proof —
consider (t1,el) € fset xs (12,e2) € fset zs
| (t1,e1) ¢ fset xs (t2,e2) € fset zs
| (t1,e1) € fset xs (12,e2) ¢ fset xs
using insert-before-onlyl-new assms(1,3—5) by fast
then show ?thesis
proof(cases)
case I
then show ?%thesis using assms(1,5) by fast
next
case 2
obtain t3 e3 where t3-def: (t3, e3)Efset xs Node v {|(t3, e3)|} = tI root t3
=yel=e
using in-insert-before-child-in-orig assms(8) 2 by fast
then have y#v using assms(2) dtree.set-sel(1) by force
then have (t3,e3) # (t2,e2) using assms(4) t3-def (3) root-noty-if-in-insert-before
by fast
then have dverts t3 N dverts t2 = {} using assms(1) 2(2) t3-def(1) by fast
then show ?thesis using assms(1,2) t3-def(1,2) 2(2) by force
next
case 3
obtain t3 e3 where t3-def: (t3, e8)efset xs Node v {|(t3, e3)|} = t2 root t3
=y el=e
using in-insert-before-child-in-orig assms(4) 3 by fast
then have y#v using assms(2) dtree.set-sel(1) by force
then have (t3,e8) # (t1,el) using assms(3) t3-def(3) root-noty-if-in-insert-before
by fast
then have dverts t3 N dverts t1 = {} using assms(1) 3(1) t3-def(1) by fast
then show ?2thesis using assms(2) t3-def(2) 3(1) by force
qed
qed

lemma disjoint-dverts-auzl’:
assumes wf-dverts (Node r zs) and v ¢ dverts (Node r xs)
shows V (z,e1) € fset (insert-before v e y xs). V (y,e2) € fset (insert-before v e y
xs).
dverts x N dverts y = {} V (z,el) = (y,e2)
using assms disjoint-dverts-auzl disjoint-dverts-if-wf unfolding wf-dverts-iff-dverts
by fast

!

lemma insert-before-wf-dverts:
[V (t,el) € fset xs. wf-dverts t; v ¢ dverts(Node r xs); (t1,el) € fset (insert-before

vey s
= wf-dverts t1
proof (induction xs)
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case (insert z xs)
let 2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
show ?Zcase
proof(cases (t1,el) € fset (insert-before v e y xs))
case in-zs: True
then show ?thesis
proof(cases ?f x = (t1,el))
case True
have insert-before v e y (finsert x xs) = finsert (?f ) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = insert-before v e y xs
using True in-zs by fastforce
then show ?thesis using insert.IH insert.prems by simp
next
case Fulse
then show %thesis using in-zs insert.IH insert.prems(1,2) by auto
qed
next
case Fulse
have insert-before v e y (finsert « xs) = finsert (?f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have ?fz = (t1,el) using False insert.prems(3) by fastforce
then show ?thesis
proof (cases root t1 = v)
case True
then have (t1,e1) ¢ fset (finsert © xs) using insert.prems(2) dtree.set-sel(1)
by force
then obtain t2 e2 where
t2-def: (12, e2)efset (finsert x xs) Node v {|(12, e2)|} = t1 root t2 = y el =e
using in-insert-before-child-in-orig|of t1] insert.prems(3) by blast
then show ?thesis using insert.prems(1,2) by (fastforce simp: wf-dverts-iff-dverts’)
next
case Fulse
then have (tl,el) =z
using insert.prems(1) dtree.sel(1) <?f x = (t1,el)»
by (smt (verit, ccfv-SIG) Pair-inject old.prod.case case-prodE finsertll)
then show ?thesis using insert.prems(1) by auto
qed
qed
qed (simp)

lemma insert-before-root-nin-verts:

[V (t,el)efset xs. v ¢ dverts t; v ¢ dverts (Node r xs); (t1,el) € fset (insert-before
veyzs)

= 1 ¢ dverts t1

proof (induction zs)

case (insert © xs)

let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))

show ?Zcase
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proof(cases (t1,el) € fset (insert-before v e y xs))
case in-rs: True
then show ?thesis
proof(cases ?f x = (t1,el))
case True
have insert-before v e y (finsert x xs) = finsert (2f x) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = insert-before v e y xs
using True in-xzs by fastforce
then show ?thesis using insert.IH insert.prems by simp
next
case Fulse
then show %thesis using in-zs insert.IH insert.prems(1,2) by auto
qed
next
case Fulse
have insert-before v e y (finsert x xs) = finsert (?f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have ?fz = (t1,el) using False insert.prems(3) by fastforce
then show ?thesis
proof (cases root t1 = v)
case True
then have (t1,e1) ¢ fset (finsert x xs) using insert.prems(2) dtree.set-sel(1)
by force
then obtain t2 e2 where
t2-def: (12, e2)€efset (finsert x xs) Node v {|(t2, e2)|} = t1 root t2 = y el=e
using in-insert-before-child-in-orig|of t1] insert.prems(3) by blast
then show ?thesis using insert.prems(1,2) by fastforce
next
case Fulse
then have (t1,el) =z
using insert.prems(1) dtree.sel(1) <?f x = (t1,el)»
by (smt (verit, ccfv-SIG) Pair-inject old.prod.case case-prodE finsertll)
then show %thesis using insert.prems(1) by auto
qed
qed
qed (simp)

lemma disjoint-dverts-auz2:
assumes wf-dverts (Node r zs) and v ¢ dverts (Node r xs)
shows V (z,el) € fset (finsert (Node v {||},e) xs). V (y,e2) € fset (finsert (Node
v{ll};e) zs).
dverts x N dverts y = {} V (z,el) = (y,e2)
using assms by (fastforce simp: wf-dverts-iff-dverts’)

lemma disjoint-dverts-auz3:
assumes (t2,e2) € (A(t1,el). (insert-between v e x y t1, el)) * fset xs
and (t3,e3) € (A(t1,el). (insert-between v e x y t1, el)) * fset xs
and (12,e2)#£(t3,e3)
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and (t,el) € fset xs
and z € dverts t
and wf-dverts (Node r xs)
and v ¢ dverts (Node r xs)
shows dverts t2 N dverts t3 = {}
proof —
have V (12,e2) € fset xs. (t,e1)=(t2,e2) V x ¢ dverts t2
using assms(4—6) by (fastforce simp: wf-dverts-iff-dverts’)
then have ntl-id: V (t2,e2) € fset zs. (t,el) = (t2,e2) V insert-between v e x y
t2 =12
using insert-between-id-if-notin by fastforce
have dverts-t1: dverts (insert-between v e x y t) = insert v (dverts t)
using assms(5—6) by (simp add: insert-between-add-v-if-z-in)
have t1-disj: V (t2,e2) € fset zs. (t,el) = (t2,e2) V dverts t2 N insert v (dverts
t) = {}
using assms(4—7) by (fastforce simp: wf-dverts-iff-dverts’)
consider (t2,e2) = (insert-between v e x y t,el)
| (t3,e3) = (insert-between v e x y t,el)
| (£2,e2) # (insert-between v e x y t,el) (t3,e3) # (insert-between v e x y
t,el)
by fast
then show ?thesis
proof (cases)
case I
then have (t3,e3) € fset xs using assms(2,3) ntl-id by fastforce
moreover have (t3,e3) # (t,el) using assms(2,3) 1 nt1-id by fastforce
ultimately show #thesis using 1 t1-disj dverts-t1 by fastforce
next
case 2
then have (¢2,e2) € fset xs using assms(1,3) ntl-id by fastforce
moreover have (t2,e2) # (t,el) using assms(1,3) 2 nt1-id by auto
ultimately show #thesis using 2 t1-disj dverts-t1 by fastforce
next
case 3
then have (12,e2) € fset zs using assms(1) nti-id by fastforce
moreover have (t3,e3) € fset s using assms(2) 3(2) nt1-id by auto
ultimately show ?thesis using assms(3,6) by (fastforce simp: wf-dverts-iff-dverts’)
qed
qed

lemma insert-between-wf-dverts: v ¢ dverts t = wjf-dverts (insert-between v e x
yt)
using wf-dtree-axioms proof (induction t)

case (Node 1 zs)

then interpret wf-dtree Node r xs by blast

consider x=r 3t. t € fst * fset xs N\ root t = y

| z=r =(3t. t € fst ‘ fset s A root t = y) | z#r by fast
then show ?Zcase
proof(cases)
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case I
then have insert-between v e  y (Node r xs) = Node r (insert-before v e y xs)
by simp
moreover have V (z,el) € fset (insert-before v e y xs). r ¢ dverts x
using insert-before-root-nin-verts wf-verts Node.prems(1)
by (fastforce simp: wf-dverts-iff-dverts’)
moreover have V (z,el) € fset (insert-before v e y xs). wf-dverts x
using insert-before-wf-dverts Node.prems(1) wf-verts by fastforce
moreover have Y (z, el )€fset (insert-before v e y xs).
Y (y, e2)€efset (insert-before v e y xs). dverts x N dverts y = {} V (z, el)
= (y, e2)
using disjoint-dverts-auxl’ Node.prems(1) wf-verts unfolding wf-dverts-iff-dverts’
by fast
ultimately show ?thesis by (fastforce simp: wf-dverts-iff-dverts’)
next
case 2
then have insert-between v e x y (Node r xs) = Node r (finsert (Node v {||},e)
xs) by simp
then show ?thesis
using disjoint-dverts-auz2[of r xs v] Node.prems(1) wf-verts
by (fastforce simp: wf-dverts-iff-dverts’)
next
case 3
let 2f = A(t1,el). (insert-between v e x y t1, el)
show ?thesis
proof(cases 3 (t1,el) € fset xs. x € dverts t1)
case True
then obtain t! el where t1-def: (t1,e1) € fset xs = € dverts t1 by blast
then interpret T: wf-dtree t1 using wf-dtree-rec by blast
have V (t2,e2) € 2f * fset xs. ¥V (t3,e3) € ?f ¢ fset ws.
(t2,e2) = (t3,e3) V dverts t2 N dverts t3 = {}
using T'.disjoint-dverts-aux3 Node.prems(1) t1-def wf-verts by blast
moreover have A\t2 e2. (t2,e2) € ?f * fset xs — r ¢ dverts t2 N wf-dverts
t2
proof
fix t2 e2
assume asm: (t2,e2) € ?f ¢ fset s
then show r ¢ dverts t2 A wf-dverts t2
proof(cases (t2,e2) = (insert-between v e x y t1,el))
case True
then have wf-dverts (insert-between v e z y t1)
using Node.IH Node.prems(1) T.wf-dtree-azioms t1-def(1) by auto
then show ?thesis
using Node.prems(1) wf-verts True T.insert-between-add-v-if-z-in t1-def
by (auto simp: wf-dverts-iff-dverts’)
next
case Fualse
have V (t2,e2) € fset xs. (t1,e1)=(t2,e2) V z ¢ dverts t2
using wf-verts t1-def by (fastforce simp: wf-dverts-iff-dverts’)
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then have V (12,e2) € fset xs. (t1,el) = (12,e2) V insert-between v e T y
t2 = t2
using insert-between-id-if-notin by fastforce
then show ?thesis using wf-verts asm False by (fastforce simp: wf-dverts-iff-dverts’)
qged
qed
ultimately show ?thesis using 3 by (fastforce simp: wf-dverts-iff-dverts’)
next
case Fulse
then show ?thesis
using wf-verts 8 insert-between-id-if-notin fst-conv
by (smt (verit, ccfv-threshold) fsts.cases dtree.inject dtree.set-cases(1)
case-prodl2)
qed
qed
qed

lemma darcs-insert-before-aux:
Jt. t € fst “fsetxs N roott =y
= (Jx€fset (insert-before v e y xzs). |J (darcs ¢ Basic-BNFs.fsts x) U Ba-
sic-BNF's.snds x)
= insert e ((Jz€fset zs. |J (darcs ¢ Basic-BNFs.fsts x) U Basic-BNF's.snds
x)

proof (induction zs)
case (insert z xs)
let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
let %xzs = insert-before v e y (finsert x xs)
obtain t1 el where ti-def: x = (t1,el) by fastforce
then show ?case
proof(cases root t1 = y)
case True
then have ?zs = finsert (¢f z) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have %zs = finsert (Node v {|(t1,el)|},e) (insert-before v e y xs)
using t1-def True by simp
then have 0: (| z€fset ?xs. |J (darcs ¢ Basic-BNFs.fsts x) U Basic-BNFs.snds
z)
= (U (darcs ‘ {Node v {|(t1,e1)|}}) U {e})
U (Uzefset (insert-before v e y xs). |J (darcs ¢ Basic-BNFs.fsts z) U
Basic-BNF's.snds x)
using t1-def by simp
have 1: dverts (Node v {|(t1,el)|}) = insert v (dverts t1) by simp
show ?thesis
proof(cases At. t € fst ¢ fset xs A root t = y)
case True
then show ?thesis using ti-def 0 insert.IH by simp
next
case Fulse
then show ?thesis using tI1-def 0 insert-before-not-y-id by force

199



qed
next
case Fulse
then have 0: 3t. t € fst © fset xs A\ root t = y using insert.prems t1-def by
force
have insert-before v e y (finsert x xs) = finsert (?f ) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = finsert « (insert-before v e y xs)
by (simp add: False t1-def)
then show %thesis using insert.IH insert.prems 0 by simp
qed
qed (simp)

lemma insert-between-add-e-if-z-in:
z € dverts t = darcs (insert-between v e x y t) = insert e (darcs t)
using wf-verts proof (induction t)
case (Node 1 zs)
show Zcase
proof(cases z=r)
case Fulse
then obtain ¢ el where t-def: (t,el) € fset xs x € dverts t using Node.prems(1)
by auto
then have V (12,e2) € fset zs. (t,el) # (12,e2) — © ¢ dverts t2
using Node.prems(2) by (fastforce simp: wf-dverts-iff-dverts’)
then have V (t2,e2) € fset zs. (t,el) = (t2,e2) V (insert-between v e x y t2)
=12
using insert-between-id-if-notin by fast
moreover have (insert-between v e z y t,el)
€ fset ((A(t,el). (insert-between v e x y t,el)) || xs) using t-def(1) by force
moreover have darcs (insert-between v e z y t) = insert e (darcs t)
using Node.IH Node.prems(2) t-def by auto
ultimately show #thesis using Fualse by force
qed (auto simp: darcs-insert-before-auz)
qed

lemma disjoint-darcs-auzri-auzrl:
assumes disjoint-darcs s
and wf-dverts (Node r xs)
and v ¢ dverts (Node r xs)
and e ¢ darcs (Node 1 xs)
and (t1,el) € fset (insert-before v e y xs)
and (t2,e2) € fset (insert-before v e y xs)
and (t1,el) # (t2,e2)
shows (darcs t1 U {e1}) N (darcs t2 U {e2}) = {}
proof —
consider (t1,el) € fset zs (t2,e2) € fset xs
| (t1,e1) ¢ fset xs (t2,e2) € fset xs
| (t1,e1) € fset xs (12,e2) ¢ fset xs
using insert-before-onlyl-new assms(2,5—"7) by (fastforce simp: wf-dverts-iff-dverts’)
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then show ?thesis
proof (cases)
case I
then show ?thesis using assms(1,7) by fast
next
case 2
obtain t3 e3 where t3-def: (t3, e3)Efset xs Node v {|(t3, e3)|} = t1 root t3
=y el=e
using in-insert-before-child-in-orig assms(5) 2 by fast
then have v#y using assms(3) dtree.set-sel(1) by force
then have (t3,e3) # (t2,e2) using assms(6) t3-def(3) root-noty-if-in-insert-before
by fast
then have (darcs t3 U {e3}) N (darcs t2 U {e2}) = {} using assms(1) 2(2)
t3-def(1) by fast
then show ?thesis using assms(4) t3-def(4) 2(2) t3-def(2) by force
next
case 3
obtain t3 e3 where t3-def: (t3, e3)Efset xs Node v {|(t3, e3)|} = t2 root t3
=y el=e
using in-insert-before-child-in-orig assms(6) 8 by fast
then have v#y using assms(3) dtree.set-sel(1) by force
then have (t3,e3) # (t1,el) using assms(5) t3-def(3) root-noty-if-in-insert-before
by fast
then have (darcs t3 U {e3}) N (darcs t1 U {el}) = {} using assms(1) 3(1)
t3-def(1) by fast
then show ?thesis using assms(4) t3-def(4) 3(1) t3-def(2) by force
qed
qed

lemma disjoint-darcs-auzri-auz?2:
assumes disjoint-darcs xs
and e ¢ darcs (Node 1 xs)
and (t1,el) € fset (insert-before v e y xs)
shows el ¢ darcs t1
proof(cases (t1,el) € fset xs)
case True
then show ?thesis using assms(1) by fast
next
case Fulse
then obtain ¢35 e3 where (13, e3)€fset zs Node v {|(t3, e3)|} = t1 el=e
using in-insert-before-child-in-orig assms(3) by fast
then show ?thesis using assms(2) by auto
qed

lemma disjoint-darcs-auzl:
assumes wf-dverts (Node r zs) and v ¢ dverts (Node r xs)
and wf-darcs (Node r zs) and e ¢ darcs (Node 1 xs)
shows disjoint-darcs (insert-before v e y xzs) (is disjoint-darcs ?xs)
proof —
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have 0: disjoint-darcs xs using assms(3) disjoint-darcs-if-wf-zs by simp
then have V (t1,el) € fset %xs. el ¢ darcs t1
using disjoint-darcs-auzl-aux2|of zs] assms(4) by fast
moreover have V (t1,el) € fset %xs. V(t2,e2) € fset ?zs.
(darecs t1 U {e1}) N (dares t2 U {e2}) = {} V (t1,el) = (12,e2)
using disjoint-darcs-auzi-auzl[of zs] assms(1,2,4) 0 by blast
ultimately show ?thesis by fast
qed

lemma insert-before-wf-darcs:
[wf-darcs (Node r zs); e ¢ darcs (Node r xs); (t1,el) € fset (insert-before v e y
)]
= wf-darcs t1
proof (induction zs)
case (insert  xs)
let ?2f = (A(t1,el). if root t1 = y then (Node v {|(t1,e1)|},e) else (t1,el))
show ?Zcase
proof(cases (t1,el) € fset (insert-before v e y xs))
case in-zs: True
then show ?thesis
proof(cases ?f x = (t1,el))
case True
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert z xs) = insert-before v e y xs
using True in-xs by fastforce
moreover have disjoint-darcs zs
using disjoint-darcs-insert| OF disjoint-darcs-if-wf-xs[OF insert.prems(1)]] .
ultimately show ?thesis
using insert.IH insert.prems unfolding wf-darcs-iff-darcs’ by force
next
case Fulse
have disjoint-darcs xs
using disjoint-darcs-insert|OF disjoint-darcs-if-wf-xs|OF insert.prems(1)]] .
then show ?thesis
using in-zs False insert.TH insert.prems(1,2) by (simp add: wf-darcs-iff-darcs’)
qged
next
case Fulse
have insert-before v e y (finsert x xs) = finsert (?f ) (insert-before v e y xs)
by (simp add: insert.hyps prod.case-distrib)
then have 0: ?f x = (¢1,el) using Fulse insert.prems(3) by fastforce
then show ?thesis
proof(cases el=e)
case True
then have (t1,e1) ¢ fset (finsert © xs) using insert.prems(2) dtree.set-sel(1)
by force
then obtain t2 e2 where
t2-def: (12, e2)€fset (finsert z xs) Node v {|(12, e2)|} = t1 root t2 = y el =e
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using in-insert-before-child-in-origlof t1] insert.prems(3) by blast
then show ?thesis
using insert.prems(1) t2-def by (fastforce simp: wf-darcs-iff-darcs’)
next
case Fulse
then have (t1,el) =z
by (smt (28) 0 old.prod.exhaust prod.inject case-prod-Pair-iden case-prod-conv)
then show %thesis using insert.prems(1) by auto
qed
qged
qed (simp)

lemma disjoint-darcs-auz2:
assumes wf-darcs (Node r xs) and e ¢ darcs (Node r xs)
shows disjoint-darcs (finsert (Node v {||},e) xs)
using assms unfolding wf-darcs-iff-darcs’ by fastforce

lemma disjoint-darcs-auz3-auzrl:
assumes (t,el) € fset xs
and z € dverts ¢
and wf-darcs (Node r xs)
and e ¢ darcs (Node 1 xs)
and (t2,e2) € (A(t1,el). (insert-between v e x y t1, el)) * fset xs
and (t3,e3) € (A(t1,el). (insert-between v e x y t1, el)) * fset zs
and (t2,e2)#£(t3,e3)
and wf-dverts (Node r xs)
shows (darcs t2 U {e2}) N (darcs t3 U {e3}) = {}
proof —
have V (t2,e2) € fset xs. (t,e1)=(t2,e2) V x ¢ dverts t2
using assms(1,2,8) by (fastforce simp: wf-dverts-iff-dverts’)
then have ntl-id: V (t2,e2) € fset zs. (t,el) = (t2,e2) V insert-between v e x y
2 =1t2
using insert-between-id-if-notin by fastforce
have darcs-t: darcs (insert-between v e x y t) = insert e (darcs t)
using assms(2,3) by (simp add: insert-between-add-e-if-z-in)
consider (t2,e2) = (insert-between v e x y t,el)
| (t3,e3) = (insert-between v e z y t,el)
| (t2,e2) # (insert-between v e x y t,el) (t3,e3) # (insert-between v e = y
t,el)
by fast
then show ?thesis
proof (cases)
case I
then have (t3,e8) € fset xs using assms(6,7) nt1-id by fastforce
moreover have (t3,e3) # (t,el) using assms(6,7) 1 nt1-id by fastforce
ultimately have (darcs t U {el,e}) N (darcs t3 U {e3}) = {}
using assms(1,3,4) unfolding wf-dares-iff-darcs’ by fastforce
then show ?thesis using 1 darcs-t by auto
next
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case 2
then have (12,e2) € fset zs using assms(5,7) nt1-id by fastforce
moreover have (t2,e2) # (t,el) using assms(5,7) 2 nt1-id by auto
ultimately have (darcs t U {el,e}) N (darcs t2 U {e2}) = {}
using assms(1,3,4) unfolding wf-darcs-iff-darcs’ by fastforce
then show ?thesis using 2 darcs-t by force
next
case 3
then have (t2,e2) € fset xs using assms(5) ntl-id by fastforce
moreover have (t3,e3) € fset xs using assms(6) 3(2) nt1-id by auto
ultimately show ?thesis using assms(3,7) unfolding wf-darcs-iff-darcs’ by
fastforce
qed
qed

lemma disjoint-darcs-auz3-auz2:
assumes (t,el) € fset xs
and z € dverts t
and wf-darcs (Node r xs)
and e ¢ darcs (Node 1 xs)
and (t2,e2) € (A(t1,el). (insert-between v e x y t1, el)) * fset xs
and wf-dverts (Node r xs)
shows e2 ¢ darcs t2
proof(cases (t2,e2) € fset xs)
case True
then show ?thesis using assms(3) unfolding wf-darcs-iff-darcs’ by auto
next
case Fulse
obtain t1 where t1-def: insert-between v e x y t1 = t2 (t1,e2) € fset xs
using assms(5) by fast
then have x € dverts t1 using insert-between-id-if-notin False by fastforce
then have ¢ = t1 using assms(1,2,6) ti-def(2) by (fastforce simp: wf-dverts-iff-dverts’)
then have darcs-t: darcs t2 = insert e (darcs t1)
using insert-between-add-e-if-z-in assms(2) t1-def(1) by force
then show ?thesis using assms(3,4) t1-def(2) unfolding wf-darcs-iff-darcs’ by
fastforce
qed

lemma disjoint-darcs-auzs:
assumes (t,el) € fset xs
and z € dverts ¢
and wf-darcs (Node r xs)
and e ¢ darcs (Node 1 xs)
and wf-dverts (Node r xs)
shows disjoint-darcs ((A(t1,el). (insert-between v e x y t1, el)) | zs)
proof —
let ?2zs = (A(t1,el). (insert-between v e z y t1, el)) || zs
let %zs’ = (\(t1,el). (insert-between v e x y t1, el)) * fset xs
have 0: fset ?zs = ?zs’ by simp
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then have V (t1,el) € fset %xs. el ¢ darcs t1
using disjoint-darcs-auz3-auz? assms by blast
moreover have V (t1,el) € %zs’. ¥V (12,e2) € %xs’.
(dares t1 U {e1}) N (dares t2 U {e2}) = {} V (t1,el) = (12,e2)
using disjoint-darcs-auz3-auxl assms by blast
ultimately show %thesis using 0 by fastforce
qed

lemma insert-between-wf-darcs:
[e ¢ darcs t; v ¢ dverts t | = wf-darcs (insert-between v e x y t)
using wf-dtree-axioms proof (induction t)
case (Node r zs)
then interpret wf-dtree Node r xs by blast
consider z=r Jt. t € fst ‘ fset xs A\ root t = y
| z=r =(3t. t € fst ‘ fset s A root t = y) | z#r by fast
then show ?case
proof (cases)
case I
then have insert-between v e ¢ y (Node r xs) = Node r (insert-before v e y xs)
by simp
moreover have V (z,el) € fset (insert-before v e y xs). wf-darcs
using insert-before-wf-darcs Node.prems(1) wf-arcs by fast
moreover have disjoint-darcs (insert-before v e y xs)
using disjoint-darcs-auzl [OF wf-verts Node.prems(2) wf-arcs Node.prems(1)]

ultimately show ?thesis by (simp add: wf-darcs-if-darcs’-auz)
next
case 2
then have insert-between v e z y (Node r xs) = Node r (finsert (Node v {||},e)
xs) by simp
then show ?thesis
using disjoint-darcs-auz2 Node.prems(1) wf-arcs by (simp add: wf-darcs-iff-darcs’)
next
case 3
let 2f = A(t1,el). (insert-between v e x y t1, el)
show ?thesis
proof(cases 3 (t1,el) € fset xs. x € dverts t1)
case True
then obtain t! el where t1-def: (t1,e1) € fset xs = € dverts t1 by blast
then interpret T: wf-dtree t1 using wf-dtree-rec by blast
have At2 e2. (¢2,e2) € fset (?f || xs) — wf-darcs t2
proof
fix t2 e2
assume asm: (12,e2) € fset (2f || zs)
then show wf-darcs t2
proof(cases (t2,e2) = (insert-between v e x y t1,el))
case True
then have wf-darcs (insert-between v e x y t1)
using Node t1-def(1) T.wf-dtree-axioms

205



by (metis dtree.set-intros(2) diree.set-intros(3) insertI1 prod-set-simps(1))
then show ?thesis using True by blast
next
case Fulse
have V (t2,e2) € fset xs. (t1,e1)=(t2,e2) V z ¢ dverts t2
using wf-verts t1-def by (fastforce simp: wf-dverts-iff-dverts’)
then have V (12,e2) € fset xs. (t1,el) = (t2,e2) V insert-between v e T y
2 =12
using insert-between-id-if-notin by fastforce
then show “thesis using wf-arcs asm Fualse by fastforce
ged
qed
moreover have disjoint-darcs (?f | xs)
using T'.disjoint-darcs-auz3 Node.prems(1) t1-def wf-arcs wf-verts by pres-
burger
ultimately show ?thesis using 3 by (fastforce simp: wf-darcs-iff-darcs’)
next
case Fulse
then show ?thesis
using wf-arcs 8 insert-between-id-if-notin fst-conv
by (smt (verit, ccfu-threshold) fsts.cases dtree.inject dtree.set-cases(1)
case-prodl2)
qed
qed
qed

theorem insert-between-wf-dtree:
[e ¢ darcs t; v ¢ dverts t | = wf-dtree (insert-between v e © y t)
by (simp add: insert-between-wf-dverts insert-between-wf-darcs wf-dtree-def)

lemma snds-neg-card-eq-card-snd:
Y (t,e) € fset xs. V (12,e2) € fset xs. e£e2 V (t,e) = (12,e2) = feard xs = feard
(snd | zs)
proof (induction zs)
case empty
then have (snd || {||}) = {||} by blast
then show ?case by (simp add: feard-fempty)
next
case (insert z xs)
have feard xs = feard (snd || xs) using insert.IH insert.prems by fastforce
moreover have snd z |¢| snd || zs
proof
assume asm: snd z |€] snd | xs
then obtain ¢t e where t-def: z = (t,e) by fastforce
then obtain 2 where ¢2-def: (12,e) |€| zs using asm by auto
then have (t,e)#(t2,e) using insert.hyps t-def by blast
moreover have (t,e) € fset (finsert « zs) using t-def by simp
moreover have (t2,e) € fset (finsert x xs) using t2-def by fastforce
ultimately show Fulse using insert.prems by fast
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qed
ultimately show ?case by (simp add: fcard-finsert-disjoint local.insert.hyps)
qed

lemma snds-neq-img-snds-neq:
assumes V (t,e) € fset xs. V (12,e2) € fset xs. e£e2 V (t,e) = (12,e2)
shows V (t1,el) € fset ((A(t1,el). (ft1, el)) | zs).
V (t2,e2) € fset (M(tl,el). (ft1, el)) | xs). el#e2 V (t1,el) = (12,e2)
using assms by auto

lemma snds-neg-if-disjoint-darcs:
assumes disjoint-darcs xs
shows V (t,e) € fset xs. V (12,e2) € fset xs. e£e2 V (t,e) = (t2,e2)
using assms by fast

lemma snds-neq-img-card-eq:
assumes V (t,e) € fset xs. V (12,e2) € fset xs. e£e2 V (t,e) = (12,e2)
shows fecard ((A(t1,el). (f t1, el)) || xs) = feard xs
proof —
let 2f = A(t1,el). (ft1, el)
have V (t,e) € fset (?f || zs). V (t2,e2) € fset (?f | zs). e£e2 V (t,e) = (t2,e2)
using assms snds-neq-img-snds-neq by auto
then have fcard (¢f || zs) = feard (snd || (?f || zs))
using snds-neq-card-eq-card-snd by blast
moreover have snd || (?f | xs) = snd || xs by force
moreover have feard zs = feard (snd || xs) using snds-neg-card-eq-card-snd
assms by blast
ultimately show ?thesis by simp
qed

lemma fst-neq-img-card-eq:
assumes V (t,e) € fset xs. V (12,e2) € fset xs. ft # ft2 V (t,e) = (12,e2)
shows fecard (A(t1,el). (ft1, el)) | xs) = feard s
using assms proof (induction zs)
case empty
then have (snd || {||}) = {||} by blast
then show ?case by (simp add: feard-fempty)
next
case (insert z xs)
have feard zs = feard ((A(t1,el). (ft1, el)) || zs) using insert by fastforce
moreover have (\(t1,el). (ft1, el)) z |¢| (A(t1,el). (ft1, el)) |] zs
proof
assume asm: (A(t1,el). (ft1, el)) xz |€| (A(t1,el). (ft1, el)) | xs
then obtain ¢t e where t-def: z = (t,e) by fastforce
then obtain t2 e2 where t2-def:
(t2,e2) €| ws (A(t1,el). (ft1, el)) (t2,e2) = (A(tl,el). (ft1, el)) (t,e)
using asm by auto
then have (¢,e)#(12,e) using insert.hyps t-def by fast
moreover have (t,e) € fset (finsert « zs) using t-def by simp
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moreover have (t2,e2) € fset (finsert x zs) using t2-def(1) by fastforce
ultimately show Fulse using insert.prems t2-def(2) by fast
qed
ultimately show ?case by (simp add: fecard-finsert-disjoint local.insert.hyps)
qed

lemma x-notin-insert-before:
assumes z |¢| zs and wf-dverts (Node r (finsert © xs))
shows (A(t1,el). if root t1 = y then (Node v {|(t1,el)|},e) else (t1,el)) x
|¢| (insert-before v e y xs) (is 2f x |¢]-)
proof (cases root (fst ) = y)
case True
then obtain t1 el where ti-def: © = (t1,el) root t1 = y by fastforce
then have 0: V(t2,e2) € fset zs. dverts t1 N dverts t2 = {}
using assms disjoint-dverts-if-wf-auzx by fastforce
then have V (t2,e2) € fset xs. root t2 # y
by (smt (verit, del-insts) dtree.set-sel(1) t1-def(2) case-prodD case-prodI2 dis-
joint-iff)
hence #At. t € fst  fset xs A dtree.root t = y
by fastforce
then have 1: (insert-before v e y xs) = zs using insert-before-not-y-id by fast-
force
have ?fz = (Node v {|(t1,e1)|},e) using ti-def by simp
then have V (12,e2) € fset zs. (fst (?f x)) # t2 using 0 dtree.set-sel(1) by
fastforce
then have V (t2,e2) € fset (insert-before v e y xs). ?f x # (t2,e2) using 1 by
fastforce
then show ?thesis by fast
next
case Fulse
then have z-id: ?f z = x by (smt (verit) old.prod.ezhaust case-prod-conv fst-conv)
then show ?thesis
proof(cases It1. t1 € fst * fset xs A root t1 = y)
case True
then obtain t! el where t1-def: (t1,el) € fset zs root t1 = y by force
then have (t1,el) € fset (finsert z xs) by auto
then have 0: V(t2,e2) € fset (finsert x xs). (t1,el) = (t2,e2) V dverts t1 N
dverts t2 = {}
using assms(2) disjoint-dverts-if-wf-auz by fast
then have V (12,e2) € fset (finsert x xs). (t1,el) = (t2,e2) V root t2 # y
using dtree.set-sel(1) t1-def(2) insert-not-empty
by (smt (verit, ccfo-threshold) Int-insert-right-if1 prod.case-eq-if insert-absorb)
then have Bt. t € fst * fset (zs |—| {|(t1,e1)|}) A root t = y by fastforce
then have 1: 7f |1 (zs || {I(tt,e1)|}) = (a5 || {(t1.e1)[})
using insert-before-not-y-id[of xs |—| {|(t1,e1)|}] by (simp add: insert-before-alt)
have ?f (t1,e1) = (Node v {|(¢1,el)|},e) using t1-def by simp
then have ?f | zs = finsert (Node v {|(t1,e1)|},e) (7f |1 (zs |—| {|(t1,e1)|}))
using t1-def(1) by (metis (no-types, lifting) fimage-finsert finsert-fminus)
then have ?f | xs = finsert (Node v {|(t1,el)|},e) (zs |—| {|(t1,e1)|})
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using 1 by simp
then have 2: insert-before v e y xs = finsert (Node v {|(t1,el)|},e) (xs |—|
{I(t1,e1)[})
by (simp add: insert-before-alt)
have dverts t1 N dverts (fst ) = {} using 0 assms(1) t1-def(1) by fastforce
then have (Node v {|(t1,e1)|},e) # = using dtree.set-sel(1) by fastforce
then show ?thesis using 2 assms(1) z-id by auto
next
case Fulse
then have (insert-before v e y xs) = xs using insert-before-not-y-id by fastforce
then show %thesis using assms(1) z-id by simp
qed
qed

end

end

theory List-Dtree
imports Complex-Main Graph-Additions Dtree
begin

8 Dtrees of Lists

8.1 Functions

abbreviation remove-child :: 'a = (('a,’d) dtree x 'b) fset = (('a,’d) dtree x 'b)
fset where
remove-child x xs = ffilter (\(t,e). root t # x) s

abbreviation child?2 ::

‘a = (("a,’d) diree x 'b) fset = ((‘a,’d) dtree x 'b) fset = (('a,’d) dtree x 'b)
fset where

child2 x zs xs = ffold (\(t,-) b. case t of Node r ys = if r = x then ys |U| b else
b) zs xs

Combine children sets to a single set and append element to list.

fun combine :: 'a list = 'a list = ('a list,’d) dtree = ('a list,’b) dtree where
combine x y (Node r xs) = (if z=r A (3t. t € fst ‘ fset xs A root t = y)
then Node (rQy) (child2 y (remove-child y xs) xs)
else Node r ((A\(t,e). (combine z y t.e)) || zs))

Basic wf-dverts property is not strong enough to be preserved in combine
operation.

fun dlverts :: ('a list,’b) dtree = 'a set where
dlverts (Node 1 xs) = set v U (|J zEfset xs. dlverts (fst x))

abbreviation disjoint-dlverts :: (('a list, 'b) dtree x 'b) fset = bool where
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disjoint-dlverts xs =
(V(z,el) € fset xs. ¥ (y,e2) € fset xs. dlverts x N dlverts y = {} V (z,el)=(y,e2))

fun wf-dlverts :: (‘a list,’d) dtree = bool where
wf-dlverts (Node 1 zs) =
(r 21 AN (V(z,el) € fset zs. set r N dlverts x = {} N wf-dlverts ) A dis-
joint-dlverts xs)

definition wf-dlverts’ :: (‘a list,’d) dtree = bool where
wf-dlverts’ t +—
wf-dverts t A [| ¢ dverts t A (Y vl€dverts t. ¥V v2&dverts t. set v1 N set v2 =
{} V v1=0v2)

fun wf-list-lverts :: (‘a listx'd) list = bool where
wf-list-lverts [| = True
| wf-list-lverts ((v,e)#xs) =
(v£] AN (Vv2 € fst ‘set xs. set v N set v2 = {}) N wf-list-lverts xs)

8.2 List Dtrees as Well-Formed Dtrees

lemma list-in-verts-if-lverts: © € dlverts t = (Jv € dverts t. x € set v)
by (induction t) fastforce

lemma list-in-verts-iff-lverts: x € dlverts t «— (3v € dverts t. © € set v)
by (induction t) fastforce

lemma lverts-if-in-verts: [v € dverts t; x € set v] = z € dlverts t
by (induction t) fastforce

lemma nempty-inter-notin-dverts: [v # []; set v N dlverts t = {}] = v ¢ dverts
t
using lverts-if-in-verts disjoint-iff-not-equal equalsOI set-empty by metis

lemma empty-notin-wf-dlverts: wf-dlverts t = || ¢ dverts t
by (induction t) auto

lemma wf-dlverts’-rec: Jwf-dlverts’ (Node r xzs); t1 € fst * fset zs] = wf-dlverts’
t1

unfolding wf-dlverts’-def using wf-dverts-rec[of r xs t1] dverts-child-subseteq|of
t1 zs] by blast

lemma wf-dlverts’-suc: [wf-dlverts’ t; t1 € fst * fset (sucs t)] = wf-dlverts’ t1
using wf-dlverts’-rec|of root t sucs t] by simp

lemma wf-dlverts-suc: [wf-dlverts t; t1 € fst  fset (sucs t)] = wf-dlverts t1
using wf-dlverts.simps|of root t sucs t] by auto

lemma wf-dlverts-subtree: [wf-dlverts t; is-subtree t1 t] = wf-dlverts t1
by (induction t) auto
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lemma dlverts-eq-dverts-union: dlverts t = |J (set ‘ dverts t)
by (induction t) fastforce

lemma dlverts-eg-dverts-union’: dlverts t = (|Jz€ dverts t. set 1)
using dlverts-eq-dverts-union by simp

lemma dverts-nempty: dverts t # {}
using dtree.set(1)[of root t sucs t] by simp

lemma dlverts-nempty-auz: || ¢ dverts t = dlverts t # {}
using dverts-nempty dlverts-eq-dverts-union[of t] by fastforce

lemma dlverts-nempty-if-wf: wf-dlverts t = dlverts t # {}
using dlverts-nempty-auz empty-notin-wf-dlverts by blast

lemma nempty-root-in-lverts: root t # [| = hd (root t) € dlverts t
using dtree.set-sel(1) list-in-verts-iff-lverts by fastforce

lemma roothd-in-lverts-if-wf: wf-dlverts t = hd (root t) € dlverts t
using wf-dlverts.simps|of root t sucs t] nempty-root-in-lverts by auto

lemma hd-in-lverts-if-wf: [wf-dlverts t; v € dverts t] = hd v € dlverts t
using empty-notin-wf-dlverts hd-in-set[of v] lverts-if-in-verts by fast

lemma dlverts-notin-root-sucs:
[wf-dlverts t; t1 € fst * fset (sucs t); © € dlverts t1] = x ¢ set (root t)
using wf-dlverts.simps|of root t sucs t] by fastforce

lemma dverts-inter-empty-if-verts-inter:

assumes dlverts © N dlverts y = {} and wf-dlverts x

shows dverts z N dverts y = {}
proof (rule ccontr)

assume asm: dverts x N dverts y # {}

then obtain r where r-def: r € dverts © r € dverts y by blast

then have r # [| using assms(2) by(auto simp: empty-notin-wf-dlverts)

then obtain v where v-def: v € set r by fastforce

then show Fulse using r-def assms(1) lverts-if-in-verts by (metis Intl all-not-in-conv)
qed

lemma disjoint-dlverts-if-wf: wf-dlverts t = disjoint-dlverts (sucs t)
using wf-dlverts.simps|of root t sucs t] by simp

lemma disjoint-dlverts-subset:
assumes zs |C| ys and disjoint-dlverts ys
shows disjoint-dlverts s
proof (rule ccontr)
assume - disjoint-dlverts s
then obtain z el y e2 where z-def: (z,el) € fset zs (y,e2) € fset xs
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dlverts © N dlverts y # {} A (z,el)#(y,e2)
by blast
have (z,e1) € fset ys (y,e2) € fset ys using z-def(1,2) assms(1) less-eq-fset.rep-eq
by fast+
then show Fulse using assms(2) z-def(3) by fast
qed

lemma root-empty-inter-subset:
assumes zs |C| ys and V (z,el) € fset ys. set r N dlverts z = {}
shows V (z,el) € fset zs. set r N dlverts z = {}
using assms less-eq-fset.rep-eq by force

lemma wf-dlverts-sub:

assumes zs |C| ys and wf-dlverts (Node r ys)

shows wf-dlverts (Node r xs)
proof (rule ccontr)

assume asm: ~wf-dlverts (Node r xs)

have disjoint-dlverts s using assms(2) disjoint-dlverts-subset|OF assms(1)] by
stmp

moreover have r # [| using assms(2) by simp

moreover have (V(z,el) € fset zs. set r N dlverts x = {})

using assms(2) root-empty-inter-subset|OF assms(1)] by fastforce

ultimately obtain z ¢ where z-def: (z,e) € fset xs —wf-dlverts © using asm
by auto

then have (z,e) € fset ys using assms(1) fin-mono by metis

then show Fulse using assms(2) z-def(2) by fastforce
qged

lemma wf-dlverts-sucs: [wf-dlverts t; x € fset (sucs t)] = wf-dlverts (Node (root

t) {l=]})

using wf-dlverts-sublof {|z|} sucs t root t] by (simp add: less-eq-fset.rep-eq)

lemma wf-dverts-if-wf-dlverts: wf-dlverts t = wf-dverts t
proof (induction t)
case (Node 1 zs)
then have V (z,e) € fset xs. wf-dverts x by auto
moreover have V (z,e) € fset zs. r ¢ dverts ©
using nempty-inter-notin-dverts Node.prems by fastforce
ultimately show ?case
using Node.prems dverts-inter-empty-if-verts-inter wf-dverts-iff-dverts’
by (smt (verit, del-insts) wf-dlverts.simps wf-dverts’.simps case-prodD case-prodI2)
qged

lemma notin-dlverts-child-if-wf-in-root:
[wf-dlverts (Node r xzs); x € set r; t € fst * fset as] = z ¢ dlverts ¢
by fastforce

lemma notin-dlverts-suc-if-wf-in-root:
[wf-dlverts t1; x € set (root t1); t2 € fst * fset (sucs t1)] = z ¢ dlverts t2
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using notin-dlverts-child-if-wf-in-root|of root t1 sucs t1] by simp

lemma root-if-same-lvert-wf:
[wf-dlverts (Node r xzs); x € set r; v € dverts (Node r zs); © € set v] = v =r
by (fastforce simp: lverts-if-in-verts dverts-child-if-not-root notin-dlverts-child-if-wf-in-root)

lemma dverts-same-if-set-wf:
[wf-dlverts t; v1 € dverts t; v2 € dverts t; € set v1; z € set V2] = vl = v2
proof (induction t)
case (Node r xs)
then show ?case
proof(cases x € set 1)
case True
then show ?thesis using Node.prems(2,3,4,5) root-if-same-lvert-wf[OF Node.prems(1)]
by blast
next
case Fulse
then obtain t2 e2 where t2-def: (t2,e2) € fset s x € dlverts t2
using Node.prems(2,4) lverts-if-in-verts by fastforce
then have V (t3,e3)€fset xs. (t3,e3) = (t2,e2) V z ¢ dlverts t3
using Node.prems(1) by fastforce
then have v! € dverts t2 N v2 € dverts t2
using Node.prems(2—5) lverts-if-in-verts False by force
then show ?thesis using Node.IH t2-def(1) Node.prems(1,4,5) by auto
qed
qged

lemma dtree-from-list-empty-inter-iff:
(Vv e fst “set (v, €) # xs). set v N set v = {})
— (V(z,el) € fset {|(dtree-from-list v zs,e)|}. set r N dlverts z = {}) (is ?P
— 7Q)
proof
assume asm: ?P
have dverts (dtree-from-list v xs) = fst ‘ set ((v,e)#xs)
by (simp add: dtree-from-list-eq-dverts)
then show ?Q using list-in-verts-if-lverts asm by fastforce
next
assume asm: 2@
have dverts (dtree-from-list v xs) = fst ‘ set ((v,e)#xs)
by (simp add: dtree-from-list-eq-dverts)
moreover have (dtree-from-list v zs,e) € fset {|(dtree-from-list v s, e)|} by
simp
ultimately show ?P using asm lverts-if-in-verts by fast
qed

lemma wf-dlverts-iff-wf-list-lverts:
(Vv € fst “setas. set r N setv={}) Ar#][ A wflist-lverts xs
«—— wf-dlverts (dtree-from-list r xs)
proof (induction xs arbitrary: r rule: wf-list-lverts.induct)

213



case (2 v e 1s)
then show ?case using diree-from-list-empty-inter-iff [of v €] by auto
qed (simp)

lemma vert-disjoint-if-not-root:
assumes wf-dlverts t
and v € dverts t — {root t}
shows set (root t) N set v = {}
proof —
obtain ¢1 el where t1-def: (t1,el) € fset (sucs t) v € dverts t1
using assms(2) dtree.set-cases(1) by force
then show ?thesis using assms(1) wf-dlverts.simps|of root t] lverts-if-in-verts
by fastforce
qed

lemma vert-disjoint-if-to-list:
[wf-dlverts (Node v {|(t1,e1)|}); v € fst ‘ set (dtree-to-list t1)]
= set (root t1) N set v = {}
using vert-disjoint-if-not-root dtree-to-list-sub-dverts wf-dverts-if-wf-dlverts by
fastforce

lemma wf-list-lverts-if-wf-dlverts: wf-dlverts t = wf-list-lverts (dtree-to-list t)
proof (induction t)
case (Node r zs)
then show ?case
proof(cases V. zs # {|z|})
case True
then show %thesis using dtree-to-list.simps(2) by simp
next
case Fulse
then obtain ¢! el where t1-def: zs = {|(t1,el)|} by auto
then have wf-dlverts t1 using Node.prems by simp
then have root t1 # || using wf-dlverts.simps|of root t1 sucs t1] by simp
then show ?thesis using Node vert-disjoint-if-to-list t1-def by fastforce
qed
qed

lemma child-in-dlverts: (t1,e) € fset xs = dlverts t1 C dlverts (Node r xs)
by force

lemma suc-in-dlverts: (t1,e) € fset (sucs t2) = dlverts t1 C dlverts t2
using child-in-dlvertsof t1 e sucs t2 root t2] by auto

lemma suc-in-dlverts”: t1 € fst ‘ fset (sucs t2) = dlverts t1 C dlverts t2
using suc-in-dlverts by fastforce

lemma subtree-in-dlverts: is-subtree t1 t2 — dlverts t1 C dlverts t2
by (induction t2) fastforce
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lemma subtree-root-if-dlverts: © € dlverts t => I r xs. is-subtree (Node r xs) t A
T € setr
using subtree-root-if-dverts list-in-verts-if-lverts by fast

lemma z-not-root-strict-subtree:

assumes z € dlverts t and = ¢ set (root t)

shows 37 xs t1. is-subtree (Node 7 xs) t A t1 € fst ‘ fset xs A x € set (root t1)
proof —

obtain 7 xs where r-def: is-subtree (Node r xs) t © € set r

using subtree-root-if-dlverts|OF assms(1)] by fast

then have sub: strict-subtree (Node r xs) t using assms(2) strict-subtree-def by
fastforce

then show ?thesis using assms(2) subtree-child-if-strict-subtree[ OF sub] r-def (2)
by force
qed

lemma dverts-disj-if-wf-dlverts:
[wf-dlverts t; v1 € dverts t; v2 € dverts t; vl # v2] = set vI N set v2 = {}
using dverts-same-if-set-wf by fast

thm empty-notin-wf-dlverts

lemma wf-dlverts’-if-dlverts: wf-dlverts t = wf-dlverts’ t
using wf-dlverts’-def empty-notin-wf-dlverts dverts-disj-if-wf-dlverts wf-dverts-if-wf-dlverts
by blast

lemma disjoint-dlverts-if-wf’-aux:
assumes wf-dlverts’ (Node r xs)
and (t1,el) € fset xs
and (t2,e2) € fset zs
and (t1,el) # (t2,e2)
shows dlverts t1 N dlverts t2 = {}
proof (rule ccontr)
assume dlverts t1 N dlverts t2 # {}
then obtain z y where z-def: © € dverts t1 y € dverts t2 set x N set y # {}
using dlverts-eq-dverts-union[of t1] dlverts-eq-dverts-union[of t2] by auto
then have z € dverts (Node r xs) y € dverts (Node r xs)
using dverts-child-subseteq assms(2,3) by auto
moreover have z # y
using assms(1) disjoint-dverts-if-wf-auz|rotated, OF assms(2—4)] z-def(1,2)
unfolding wf-dlverts’-def by blast
ultimately show Fulse using assms(1) a-def(3) unfolding wf-dlverts’-def by
blast
qed

lemma disjoint-dlverts-if-wf’:. wf-dlverts’ (Node r xs) = disjoint-dlverts xs
using disjoint-dlverts-if-wf’-aux by fast

lemma root-nempty-if-wf’ wf-dlverts’ (Node r xs) = r # ]

215



unfolding wf-dlverts’-def by fastforce

lemma disjoint-root-if-wf’-auz:
assumes wf-dlverts’ (Node r xs)
and (t1,el) € fset xs
shows set r N dlverts t1 = {}
proof (rule ccontr)
assume set r N dlverts t1 # {}
then obtain z where 2-def: © € dverts t1 set x N set r # {}
using dlverts-eq-dverts-union by fast
then have z € dverts (Node r xs) using dverts-child-subseteq assms(2) by auto
moreover have r € dverts (Node r zs) by simp
moreover have z # r
using assms a-def (1) root-not-child-if-wf-dverts unfolding wf-dlverts’-def by
fast
ultimately show Fulse using assms(1) z-def(2) unfolding wf-dlverts’-def by
blast
qed

lemma disjoint-root-if-wf’:
wf-dlverts’ (Node r xs) = ¥ (t1,el) € fset zs. set r N dlverts t1 = {}
using disjoint-root-if-wf’-aux by fast

lemma wf-dlverts-if-dlverts”. wf-dlverts’ t = wf-dlverts t
proof (induction t)
case (Node r xs)
then have V (t1,el) € fset zs. set r N dlverts t1 = {}
using disjoint-root-if-wf’ by blast
moreover have r # [| A disjoint-dlverts s
using disjoint-dlverts-if-wf’ Node.prems root-nempty-if-wf’ by fast
moreover have V (t1,el) € fset xs. wf-dlverts t1
using Node wf-dlverts’-rec by fastforce
ultimately show ?case by auto
qed

lemma wf-dlverts-iff-dlverts’: wf-dlverts t +— wf-dlverts’ t
using wf-dlverts-if-dlverts’ wf-dlverts’-if-dlverts by blast

locale list-dtree =
fixes t :: (‘a list,’d) diree
assumes wf-arcs: wf-darcs t
and wf-lverts: wf-dlverts t

sublocale list-dtree C wf-dtree
using wf-arcs wf-lverts wf-dverts-if-wf-dlverts by (unfold-locales) auto

theorem list-dtree-iff-wf-list:

wf-list-arcs xs A (Vv € fst ‘ set xs. set r N set v = {}) A r # [| A wf-list-lverts xs
«— list-dtree (dtree-from-list r xs)
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using wf-darcs-iff-wf-list-arcs wf-dlverts-iff-wf-list-lverts list-dtree-def by metis

lemma list-dtree-subset:
assumes s |C| ys and list-dtree (Node r ys)
shows list-dtree (Node r xs)
using wf-dlverts-sub[OF assms(1)] wf-darcs-sub]OF assms(1)] assms(2)
by (unfold-locales) (fast dest: list-dtree.wf-lverts list-dtree.wf-arcs)+

context fin-list-directed-tree
begin

lemma dlverts-disjoint:
assumes 1 € verts T and (Node r zs) = to-dtree-auz r
and (z,el) € fset zs and (y,e2) € fset xs and (z,el)#(y,e2)
shows dlverts x N dlverts y = {}
proof (rule ccontr)
assume dlverts x N dlverts y # {}
then obtain v where v-def[simp]: v € dlverts x v € dlverts y by blast
obtain z! where zi-def: v € set 1 x1 € dverts x using list-in-verts-if-lverts
by force
obtain yi where yl-def: v € set yl yl € dverts y using list-in-verts-if-lverts
by force
have 0: y = to-dtree-aux (Dtree.root y) using to-diree-auz-self assms(2,4) by
blast
have r — p Dtree.root y
using assms(2,4) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv
image-iff)
then have 1: Diree.root y € verts T using adj-in-verts(2) by simp
have r — p Dtree.root
using assms(2,3) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv
image-iff)
then have Dtree.root x € verts T using adj-in-verts(2) by simp
moreover have z = to-dtree-aux (Dtree.root x) using to-dtree-auz-self assms(2,3)
by blast
ultimately have Dtree.root v —* 7 x1 using to-dtree-aus-dverts-reachable x1-def(2)
by blast
moreover have Dtree.root y —*p yl using 0 1 to-dtree-auz-dverts-reachable
y1-def(2) by blast
ultimately have 21 = yI using disjoint-verts reachable-in-verts(2) xz1-def(1)
y1-def(1) by auto
then show False using dverts-disjoint]| OF assms(2—5)] z1-def(2) y1-def(2) by
blast
qed

lemma wf-dlverts-to-dtree-aux: [r € verts T; t = to-diree-auz r] = wf-dlverts t
proof (induction t arbitrary: r rule: darcs-mset.induct)

case (1 r’ xs)

then have r = r’ by simp

have V (z,e) € fset zs. wf-dlverts x A set r N dlverts © = {}
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proof (standard, standard, standard)
fix zp x e
assume asm: zp € fset zs zp = (z,e)
then have 0: © = to-dtree-aux (Dtree.root x) using to-dtree-auz-self 1.prems(2)
by simp
have 2: r —p Dtree.root x using asm 1.prems <r = 1
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)
then have 3: Diree.root x € verts T using adj-in-verts(2) by simp
then show wf-dlverts x using 1.IH asm 0 by blast
have r ¢ dverts
proof
assume r € dverts x
then have Dtree.root x —* 7 r using 0 3 to-dtree-auz-dverts-reachable by
blast
then have r —* p r using 2 by auto
then show Fulse using reachablel-not-reverse by blast
qed
then show set r N dlverts x = {}
using 0 1.prems(1) 3 disjoint-iff-not-equal disjoint-verts list-in-verts-if-lverts
by (metis reachable-in-verts(2) to-dtree-aux-dverts-reachable)
qged
moreover have disjoint-dlverts zs using dlverts-disjoint 1.prems by fastforce
ultimately show ?case using «r = ') by (auto simp add: 1.prems(1) nempty-verts)
qed

lemma wf-dlverts-to-dtree: wf-dlverts to-dtree
using to-dtree-def wf-dlverts-to-dtree-aux root-in-T by blast

theorem list-dtree-to-dtree: list-dtree to-dtree
using list-dtree-def wf-dlverts-to-dtree wf-darcs-to-dtree by blast

end

context [list-dtree
begin

lemma list-dtree-rec: [Node r zs = t; (z,e) € fset xs] = list-dtree x
using wf-arcs wf-lverts by (unfold-locales) auto

lemma list-dtree-rec-suc: (z,e) € fset (sucs t) = list-dtree
using list-dtree-rec|of root t] by force

lemma list-dtree-sub: is-subtree x t = list-dtree z
using list-dtree-axioms proof (induction t rule: darcs-mset.induct)
case (I rzs)
then interpret list-dtree Node r xs by blast
show ?Zcase
proof(cases x = Node r zs)
case True
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then show %thesis by (simp add: 1.prems)
next
case Fulse
then show ?thesis using 1.IH list-dtree-rec 1.prems(1) by auto
qed
qed

theorem from-dtree-fin-list-dir: fin-list-directed-tree (root t) (from-dtree dt dh t)
unfolding fin-list-directed-tree-def fin-list-directed-tree-azioms-def
by (auto simp: from-dtree-fin-directed empty-notin-wf-dlverts|OF wf-lverts]
intro: wf-lverts dverts-same-if-set-wf)

8.3 Combining Preserves Well-Formedness

lemma remove-child-sub: remove-child x zs |C| s
by auto

lemma child2-commute-aux:
assumes [ = (A(t,-) b. case t of Node r ys = if r = a then ys |U| b else b)
shows (fyofz) z=(fzofy) 2
proof —
obtain 71 ysI el where y-def: y = (Node r1 ysl, el) by (metis diree.ezhaust
eq-snd-iff)
obtain 72 ys2 e2 where z = (Node 12 ys2, e2) by (metis dtree.exhaust eq-snd-iff)
then show %thesis by (simp add: assms funion-left-commute y-def)
qed

lemma child2-commute:
comp-fun-commute (A(t,-) b. case t of Node r ys = if r = x then ys |U| b else b)
using comp-fun-commute-def child2-commute-auz by fastforce

interpretation Comm:
comp-fun-commute \(t,-) b. case t of Node r ys = if r = x then ys |U| b else b
by (rule child2-commute)

lemma input-in-child2:
zs |C| child2 x zs ys
proof (induction ys)
case empty
then show ?case using Comm.ffold-empty by simp
next
case (insert y ys)
then obtain r zs e where r-def: (Node r xzs,e) = y by (metis dtree.exhaust
surj-pair)
let ?f = (A(t,-) b. case t of Node r ys = if r = x then ys |U| b else b)
show ?Zcase
proof(cases r=1)
case True
then have ffold ?f zs (finsert y ys) = xs |U| (ffold ?f zs ys)
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using r-def insert.hyps by force
then show ?thesis using insert.IH by blast
next
case Fualse
then have ffold ?f zs (finsert y ys) = (ffold ?f zs ys) using r-def insert.hyps
by force
then show ?thesis using insert.IH by blast
qed
qed

lemma child2-subset-if-inputl:
28" |C| zs = child2 x zs' ys |C| child2 x zs ys
proof (induction ys)
case (insert y ys)
obtain r s e where r-def: (Node r zs, e) = y by (metis dtree.exzhaust surj-pair)
let 2f = (A(t,-) b. case t of Node r ys = if r = x then ys |U| b else b)
show ?Zcase
proof(cases r=1)
case True
then have ffold ?f zs (finsert y ys) = xs |U| (ffold ?f zs ys)
using 7-def insert.hyps by force
moreover have ffold ?f zs' (finsert y ys) = xzs |U| (ffold ?f zs' ys)
using r-def insert.hyps True by force
ultimately show ?thesis using insert by blast
next
case Fulse
then have ffold ?f zs (finsert y ys) = (ffold ?f zs ys) using r-def insert.hyps
by force
moreover have ffold ?f zs’ (finsert y ys) = (ffold ?f zs’ ys)
using r-def insert.hyps False by force
ultimately show ?thesis using insert by blast
qed
qed (simp)

lemma child2-subset-if-input2:
ys" |C| ys = child2 = xs ys' |C| child2 = xs ys
proof (induction fecard ys arbitrary: ys)
case (Suc n)
show ?Zcase
proof(cases ys' = ys)
case Fulse
then obtain z where z-def: z |€] ys A z |¢| ys’ using Suc.prems by blast
then obtain zs where zs-def: finsert z zs = ys A\ z |¢| zs by blast
then have ys’ |C| zs A feard zs = n
using Suc.prems(1) Suc.hyps(2) z-def fecard-finsert-disjoint by fastforce
then have 0: child2 z zs ys' |C| child2 x zs zs using Suc.hyps(1) by blast
obtain r rs e where r-def: (Node r rs, ) = z by (metis dtree.exhaust surj-pair)
then show ?thesis using 0 zs-def by force
qed (simp)
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qed (simp)

lemma darcs-split: darcs (Node r (zs|U|ys)) = darcs (Node 1 xs) U darcs (Node

ys)
by simp

lemma darcs-sub-if-children-sub: xs |C| ys = darcs (Node r zs) C darcs (Node v
ys)
proof (induction fcard ys arbitrary: ys)
case (Suc n)
then show Zcase
proof(cases ys = xs)
case Fulse
then obtain z where z-def: z |€| ys A z |¢| s using Suc.prems by blast
then obtain zs where zs-def: finsert z zs = ys A z |¢| zs by blast
then have zs |C| zs A feard zs = n
using Suc.prems(1) Suc.hyps(2) z-def fecard-finsert-disjoint by fastforce
then have darcs (Node r xs) C darcs (Node v zs) using Suc.hyps(1) by blast
then show ?thesis using zs-def darcs-split[of v {|z|} zs] by auto
qged (simp)
qed (simp)

lemma darc-in-child2-snd-if-nin-fst:
e € darcs (Node z (child2 a xs ys)) = e ¢ darcs (Node v ys) = e € darcs
(Node r zs)
proof (induction ys)
case (insert y ys)
obtain r rs el where r-def: (Node r rs, el)
surj-pair)
then have e-not-rs: e ¢ darcs (Node z rs) using insert.prems(2) by fastforce
show Zcase
proof(cases r = a)
case True
then have darcs (Node x (child2 a zs (finsert y ys)))
= darcs (Node x (rs |U| (child2 a xs ys)))
using r-def insert.hyps(1) by force
moreover have ... = darcs (Node z rs) U darcs (Node z (child2 a xs ys)) by
stmp
ultimately have e € darcs (Node x (child2 a xs ys)) using insert.prems(1)
e-not-rs by blast
then show %thesis using insert.IH insert.prems(2) by simp
next
case Fulse
then have darcs (Node x (child2 a zs (finsert y ys))) = darcs (Node x (child2
a zs ys))
using r-def insert.hyps(1) by force
then show %thesis using insert.IH insert.prems by simp
qged
qed (simp)

y by (metis diree.ezhaust
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lemma darc-in-child2-fst-if-nin-snd:

e € darcs (Node z (child2 a xs ys)) = e ¢ darcs (Node v xs) => e € darcs
(Node r ys)

using darc-in-child2-snd-if-nin-fst by fast

lemma darcs-child2-sub: darcs (Node x (child2 y xs ys)) C darcs (Node 1 xs) U
darcs (Node ' ys)
using darc-in-child2-snd-if-nin-fst by fast

lemma darcs-combine-sub-orig: darcs (combine x y t1) C darcs t1
proof (induction t1)
case ind: (Node r xs)
show Zcase
proof(cases z=r A (It. t € fst ‘ fset xs A root t = y))
case True
then have darcs (combine x y (Node 1 zs))
= darcs (Node (xQy) (child2 y (remove-child y zs) xs)) by simp
also have ... C darcs (Node x (child2 y zs xs))
using darcs-sub-if-children-sublof child2 y (remove-child y xs) xzs child2 y xs
xs]
child2-subset-if-inputl [of remove-child y xs xs] remove-child-sub by fast
finally show %thesis using darcs-child2-sub by fast
next
case Fulse
then have darcs (combine z y (Node r zs))
= darcs (Node v ((A(t,e). (combine z y t,e)) || zs))
by auto
also have ... C (| (t,e)efset xs. U (darcs < {t}) U {e})
using ind.IH wf-dtree-rec by fastforce
finally show ?thesis by force
qed
qed

lemma child2-in-child:
[b € fset (child2 a ys xs); b |¢| ys] = Irs e. (Node a rs, e) € fset xs A b |€| rs
proof (induction xs)
case (insert z zs)
obtain r rs el where r-def: (Node r rs, el) = x by (metis diree.ezhaust
surj-pair)
show Zcase
proof(cases r = a)
case ra: True
then have 0: child2 a ys (finsert x xs) = rs |U| (child2 a ys xs)
using r-def insert.hyps(1) by force
show ?thesis
proof (cases b |€| T3)
case True
then show ?thesis using r-def ra by auto
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next
case Fulse
then have b € fset (child2 a ys zs) using insert.prems(1) 0 by force
then show ?thesis using insert.IH insert.prems(2) by auto
qed
next
case Fulse
then show ?thesis using insert r-def by force
qed
qed simp

lemma child-in-darcs: (y,e2) € fset xs = darcs y U {e2} C darcs (Node r xs)
by force

lemma disjoint-darcs-child2:

assumes wf-darcs (Node r xs)

shows disjoint-darcs (child2 a (remove-child a xs) xs) (is disjoint-darcs ?P)
proof (rule ccontr)

assume - disjoint-darcs ¢P

then obtain = el y e2 where asm: (z,el) € fset ?P (y,e2) € fset 7P (el €
dares T V

((darcs x U {e1}) N (darcs y U {e2}) # {} N (z,el)#(y,e2))) by blast
note wf-darcs-iff-darcs’[simp)
consider (z,el) € fset (remove-child a zs) el € darcs x
| (z,el) € fset (remove-child a zs) el ¢ darcs z (y,e2) € fset (remove-child a

zs)

| (z,e1) € fset (remove-child a xzs) el ¢ darcs x (y,e2) |¢| (remove-child a xs)
| (z,e1) |¢| (remove-child a xs) el € darcs x
| (z,el) |¢| (remove-child a zs) el ¢ darcs x (y,e2) € fset (remove-child a xs)
| (z,el) |¢| (remove-child a xs) el & darcs x (y,e2) |&| (remove-child a xs)
by auto

then show Fulse

proof(cases)
case ]
then show ?thesis using assms by auto

next
case 2
then show %thesis using assms asm(3) by fastforce

next
case 3

then have z-zs: (z,el) € fset zs by simp
obtain rs2 re2 where r2-def: (Node a 152, re2) € fset xs (y,e2) |€| rs2
using child2-in-child asm(2) 3(3) by fast

then have darcs y U {e2} C darcs (Node a rs2) using child-in-darcs by fast

then have (darcs x U {e1}) N (darcs (Node a rs2) U {re2}) # {} using 3(2)
asm(3) by blast

moreover have (z,e1)#(Node a rs2, re2) using 3(1) by force

ultimately have — disjoint-darcs xs using r2-def (1) z-zs by fast

then show ?thesis using assms by simp
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next
case 4
then obtain rs! rel where ri-def: (Node a 151, rel) € fset s (z,el) |€| rsl
using child2-in-child asm(1) by fast
then have —disjoint-darcs rs1 using 4(2) by fast
then show ?thesis using assms r1-def(1) by fastforce
next
case 5
then obtain rs! rel where ri-def: (Node a rs1, rel) € fset s (z,el) |€| rsl
using child2-in-child asm(1) by fast
have 1: (darcs (Node a rs1) U {re1}) N (darcs y U {e2}) # {}
using r1-def(2) asm(3) 5(2) child-in-darcs by fast
have y-zs: (y,e2) € fset zs using 5(3) by simp
then have (Node a rs1, rel)#(y,e2) using 5(3) by force
then have — disjoint-darcs zs using ri-def(1) y-zs 1 by fast
then show ?thesis using assms by simp
next
case 0
then obtain rs! rel where ri-def: (Node a 151, rel) € fset s (z,el) |€| rsl
using child2-in-child asm(1) by fast
then have 1: (darcs (Node a 1s1) U {rel}) N (darcs y U {e2}) # {}
using asm(3) 6(2) child-in-darcs by fast
obtain 752 re2 where r2-def: (Node a 152, re2) € fset zs (y,e2) |€| rs2
using child2-in-child asm(2) 6(3) by fast
then have darcs y U {e2} C darcs (Node a rs2) using child-in-darcs by fast
then have 1: (darcs (Node a rs1) U {re1}) N (darcs (Node a rs2) U {re2}) #
{
using 1 asm(8) 6(2) child-in-darcs by blast
then show ?thesis
proof(cases (Node a rsl, rel) = (Node a 152, re2))
case True
then have (z,el) € fset rs1 A (y,e2) € fset rsl
using r1-def(2) r2-def(2) by fast
then show %thesis using assms r1-def asm(3) 6(2) by fastforce
next
case Fulse
then have — disjoint-darcs zs using ri-def(1) r2-def(1) 1 by fast
then show ?thesis using assms by simp
qed
qed
qed

lemma wf-darcs-child2:
assumes wf-darcs (Node r zs) and (z,e) € fset (child2 a (remove-child a xs) xs)
shows wf-darcs
proof(cases (z,e) |€| remove-child a xs)
case True
then show ?thesis using assms(1) by (fastforce simp: wf-darcs-iff-darcs’)
next
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case Fulse
then obtain r s el where (Node r s, el) € fset zs A (z,€) |€] rs A r = a
using child2-in-child assms(2) by fast
then show ?thesis using assms by (fastforce simp: wf-darcs-iff-darcs’)
qed

lemma disjoint-darcs-combine:

assumes Node r zs = t

shows disjoint-darcs ((A(t,e). (combine x y t,e)) || zs)
proof —

have disjoint-darcs xs using wf-arcs assms by (fastforce simp: wf-darcs-iff-darcs’)

then show ?thesis

using disjoint-darcs-img|of xs combine x y] by (simp add: darcs-combine-sub-orig)
qed

lemma wf-darcs-combine: wf-darcs (combine x y t)
using list-dtree-axioms proof (induction t)
case ind: (Node r zs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?Zcase
proof(cases x=r A (3t. t € fst ‘ fset xs A root t = y))
case True
have disjoint-darcs (child2 y (remove-child y xs) xs)
using disjoint-darcs-child2[OF wf-arcs] by simp
moreover have V (z,e) € fset (child2 y (remove-child y xs) xs). wf-darcs ©
using wf-darcs-child2 wf-arcs by fast
ultimately show ?thesis using True by (simp add: wf-darcs-iff-darcs’)
next
case Fulse
have disjoint-darcs ((A(t,e). (combine z y t, €)) | xs)
using disjoint-darcs-combine ind.prems by simp
moreover have V (z,e) € fset zs. list-dtree x using list-diree-rec by blast
ultimately show ?thesis using False ind.IH ind.prems by (auto simp: wf-darcs-iff-darcs’)
qed
qed

lemma v-in-dlverts-if-in-comb: v € dlverts (combine x y t) = v € dlverts t
using list-dtree-axioms proof (induction t)
case ind: (Node r zs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?Zcase
proof(cases z=r A (It. t € fst ‘ fset xs A root t = y))
case z-and-y: True
show ?thesis
proof(cases v € set U set y)
case True
then show ?thesis using z-and-y dtree.set-sel(1) lverts-if-in-verts by fastforce
next
case Fulse
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then obtain ¢ e where t-def: (t,e) € fset (child2 y (remove-child y xs) zs) v
€ dlverts t
using z-and-y ind.prems by auto
then show ?thesis
proof(cases (t,e) |€| (remove-child y xs))
case True
then have (t¢,e) € fset (remove-child y xs) by fast
then show ?%thesis using t-def(2) by force
next
case Fulse
then obtain r! rsi rel where ri-def: (Node r1 rsi, rel) € fset xs (t,e)
le| rst
using child2-in-child t-def(1) by fast
have is-subtree t (Node r1 rs1) using subtree-if-child r1-def(2)
by (metis image-iff prod.sel(1))
moreover have is-subtree (Node r1 rs1) (Node r xs)
using subtree-if-child r1-def(1) by fastforce
ultimately have is-subtree t (Node r xs) using subtree-trans by blast
then show %thesis using t-def(2) subtree-in-dlverts by blast
qed
qed
next
case rec: Fualse
then show ?thesis
proof(cases v € set r)
case Fulse
then have 3 (t,e) € fset zs. v € dlverts (combine x y t)
using ind.prems list-dtree-rec rec by force
then show ?thesis using ind.IH list-dtree-rec by fastforce
qged (simp)
qed
qed

lemma ez-subtree-if-in-lverts: v € dlverts t1 = 3t2. is-subtree t2 t1 N v € set
(root t2)

apply (induction t1)

apply(cases)

apply simp

by fastforce

lemma child’-in-child2:
assumes (Node y rs1,el) € fset xs and (t2,e2) € fset rsi
shows (12,e2) € fset (child2 y ys xs)
using assms proof (induction zs)
case (insert z xs)
obtain 7 rs re where r-def: (Node r rs, re) = x by (metis dtree.exhaust surj-pair)
show Zcase
proof(cases r = y)
case ry: True
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then have 0: child2 y ys (finsert © zs) = rs |U| (child2 y ys xs)
using r-def insert.hyps(1) by force

then show ?thesis using insert by fastforce

next
case Fulse
then show ?thesis using insert r-def by force

qed

qed (simp)

lemma v-in-comb-if-in-dlverts: v € dlverts t = v € dlverts (combine = y t)
using list-dtree-axioms proof (induction t)
case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?Zcase
proof(cases z=r A (It. t € fst ‘ fset xs A root t = y))
case z-and-y: True
then have 0: combine z y (Node 1 zs) = Node (xQy) (child2 y (remove-child
y xs) zs) by simp
show ?thesis
proof(cases v € set x U set y)
case True
then show ?thesis using z-and-y dtree.set-sel(1) lverts-if-in-verts by fastforce
next
case Fualse
obtain ¢ where t-def: is-subtree t (Node r zs) v € set (root t)
using ez-subtree-if-in-lverts ind.prems by fast
then have Node r xs # t using Fualse z-and-y by fastforce
then obtain t! el where t1-def: is-subtree t t1 (t1,el) € fset xs
using t-def(1) by force
then show ?thesis
proof(cases root t1 = y)
case True
then have t1 # ¢ using Fulse t-def(2) by blast
then obtain rs1 where rsi-def: t1 = Node y rs1 using True dtree.exhaust-sel
by blast
then obtain t2 e2 where t2-def: is-subtree t t2 (t2,e2) € fset rsl
using «t1#t t1-def(1) by auto
have (t2,e2) € fset (child2 y (remove-child y xs) xs)
using t2-def(2) rsi-def t1-def(2) child’-in-child2 by fast
then have is-subtree t2 (combine x y (Node 1 xs)) using subtree-if-child 0
using self-subtree by fastforce
then have is-subtree ¢t (combine x y (Node r xs)) using subtree-trans
t2-def (1) by blast
then show ?thesis
using t-def(2) t2-def(1) subtree-in-dlverts dtree.set-sel(1) lverts-if-in-verts
by fast
next
case Fulse
then have (t1,el) € fset (remove-child y xs) using t1-def(2) by simp
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then have (t1,el) € fset (child2 y (remove-child y xs) xs)
using less-eq-fset.rep-eq input-in-child2 by fast
then have is-subtree ¢t (combine z y (Node 1 zs))
using 0 subtree-if-child subtree-trans t1-def(1) by auto
then show ?%thesis
using t-def(2) subtree-in-dlverts dtree.set-sel(1) lverts-if-in-verts by fast
qed
qed
next
case rec: False
then show ?thesis
proof(cases v € set r)
case Fulse
then obtain t e where t-def: (t,e) € fset s v € dlverts t using ind.prems
by auto
then have v € dlverts (combine x y t) using ind.IH list-dtree-rec by auto
then show %thesis using rec t-def(1) by force
qed (simp)
qed
qed

lemma dlverts-comb-id[simp|: dlverts (combine z y t) = dlverts t
using v-in-comb-if-in-dlverts v-in-dlverts-if-in-comb by blast

lemma wf-dlverts-comb-auz:
assumes V (t,e) € fset xs. dlverts (combine x y t) = dlverts t
and VY (t1,el) € fset zs. YV (12,e2) € fset xs. dlverts t1 N dlverts t2 = {} V
(t1,e1)=(t2,e2)
and (t1,el) € fset ((A(t,e). (combine x y t, €)) || zs)
and (t2,e2) € fset ((A(t,e). (combine z y t, e)) | xs)
shows dlverts t1 N dlverts t2 = {} V (t1,e1)=(t2,e2)
proof —
obtain ¢1' where t1-def: combine x y t1' = t1 (t1',el) € fset xs using assms(3)
by auto
obtain 2’ where t2-def: combine x y t2' = t2 (12',e2) € fset xs using assms(4)
by auto
show ?thesis
proof(cases dlverts t1' N dlverts t2' = {})
case True
then show %thesis using assms(1) t1-def t2-def by blast
next
case False
then show ?thesis using assms(2) t1-def t2-def by fast
qed
qed

lemma wf-dlverts-child2:

assumes (t1,e) € fset (child2 y (remove-child y xs) xs)
and V (t,e) € fset xs. wf-dlverts t

228



shows wf-dlverts t1
proof(cases (t1,e) |€| (remove-child y xs))
case True
then show ?thesis using assms(2) by fastforce
next
case Fulse
then obtain rs re where r-def: (Node y rs, re) € fset xs (t1,e)|€| rs
using child2-in-child assms(1) by fast
then show ?thesis using assms(2) by fastforce
qed

lemma wf-dlverts-child2-aux1:
assumes (t1,el) € fset (child2 y (remove-child y xs) xs)
and Jt. ¢t € fst ‘ fset xs A\ root t = y
and wf-dlverts (Node r xs)
shows set (rQy) N dlverts t1 = {}
proof(cases (t1,el) |€| (remove-child y xs))
case True
then have t1-def: root t1 # y (t1,el) € fset xs by fastforce+
obtain ¢ et where t-def: (t,et) € fset s root t = y using assms(2) by force
have Vy'e set y. y' ¢ dlverts t1
proof
fix y’
assume y' € set y
then have asm: y’ € dlverts t using t-def(2) dtree.set-sel(1) lverts-if-in-verts
by fastforce
have dlverts t1 N dlverts t = {} using assms(3) t1-def t-def by fastforce
then show y’ ¢ dlverts t1 using asm by blast
qed
then show ?thesis using assms(3) t1-def(2) by auto
next
case Fulse
then obtain rs! rel where r-def: (Node y rs1, rel) € fset zs (t1,el)|€| rsi
using child2-in-child assms(1) by fast
have Vy’c set y. y' ¢ dlverts t1 using assms(3) r-def by fastforce
then show ?thesis using assms(3) r-def by fastforce
qed

lemma wf-dlverts-child2-auz2:
assumes V (t1,el) € fset xs. ¥V (12,e2) € fset xs. dlverts t1 N dlverts t2 = {} V
(t1,e1)=(t2,e2)
and V (t,e) € fset xs. wf-dlverts t
and (t1,el) € fset (child2 y (remove-child y xs) xs)
and (t2,e2) € fset (child2 y (remove-child y xs) xs)
and (t1,el)#(t2,e2)
shows dlverts t1 N dlverts t2 = {}
proof(cases (t1,el) |€| (remove-child y xs))
case ti-r: True
then show “thesis
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proof(cases (t2,e2) |€| (remove-child y xs))
case True

then show ?thesis
by (smt (verit, ccfv-threshold) t1-r assms(1,5) Int-iff case-prodD filter-fset)
next
case Fulse

then obtain rs2 re2 where r-def: (Node y 152, re2) € fset zs (12,e2)|€]| rs2
using child2-in-child assms(4) by fast
then show ?thesis

using t1-r assms(1) ffmember-filter inf-assoc inf-bot-right inf-commute

by (smt (verit) dtree.sel(1) semilattice-inf-class.inf.absorb-iff2 case-prodD
child-in-dlverts)

qed
next

case Fulse

then obtain rs! rel where ri-def: (Node y rsi, rel) € fset xs (t1,el)|€| rsl
using child2-in-child assms(3) by fast

show ?thesis

proof(cases (t2,e2) || (remove-child y xs))
case True
then show ?thesis

using r1-def assms(1) ffmember-filter inf-assoc inf-bot-right inf-commute

by (smt (verit) diree.sel(1) semilattice-inf-class.inf.absorb-iff2 case-prodD
child-in-dlverts)

next
case False
then obtain rs2 re2 where r2-def: (Node y rs2, re2) € fset xs (t2,e2) |€| rs2
using child2-in-child assms(4) by fast
then show ?thesis
proof(cases rs1=rs2)
case True
have V (t1,el) € fset rs1.V (t2,e2) € fset rsl.
dlverts t1 N dlverts t2 = {} V (t1,e1)=(t2,e2)
using r1-def(1) assms(2) by fastforce
then show ?thesis
using r1-def(2) r2-def(2) assms(5) True

by (metis (mono-tags, lifting) case-prodD)
next

case Fulse

then have diverts (Node y rs1) N dlverts (Node y rs2) = {}
using assms(1) ri-def(1) r2-def(1) by fast

then show ?thesis
using r1-def(2) r2-def(2) child-in-dlverts

by (metis order-bot-class.bot.extremum-uniquel inf-mono)
qed

qed
qed

lemma wf-dlverts-combine: wf-dlverts (combine x y t)
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using list-dtree-axioms proof (induction t)
case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?Zcase
proof(cases z=r A (It. t € fst ‘ fset xs A root t = y))
case True
let ?zs = child2 y (remove-child y xs) xs
have V (t1,el) € fset xs. ¥V (12,e2) € fset zs.
dlverts t1 N dlverts t2 = {} V (t1,el)=(t2,e2) using wf-lverts by fastforce
moreover have V (t1,el) € fset xs. wf-dlverts t1 using wf-lverts by fastforce
ultimately have V (t1,e1) € fset ?zs. ¥V (t2,e2) € fset ?xs.
dlverts t1 N dlverts t2 = {} V (t1,el)=(t2,e2)
using wf-dlverts-child2-auz2]of zs] by blast
moreover have V (z,e) € fset ?zs. wf-dlverts x using wf-dlverts-child2 wf-lverts
by fastforce
moreover have (zQy) # [| using True wf-lverts by simp
moreover have V (t1,el) € fset ?xs. set (xQy) N dlverts t1 = {}
using wf-dlverts-child2-auxl wf-lverts True by fast
ultimately have wf-dlverts (Node (zQy) ?zs) by fastforce
moreover have combine x y (Node r xs) = Node (zQy) ?zs using True by
stmp
ultimately show %thesis by argo
next
case Fulse
let ?zs = (\(t,e). (combine z y t, €)) | zs
have 0: V (t,e) € fset xs. dlverts (combine x y t) = dlverts t
using list-dtree.dlverts-comb-id list-dtree-rec by fast
have 1:V(t,e) € fset ?xs. wf-dlverts t using ind.IH list-dtree-rec by auto
have 2: V (t,e) € fset %xs. set v N dlverts t = {} using 0 wf-lverts by fastforce
have V (t1,el) € fset xs. V (t2,e2) € fset xs.
dlverts t1 N dlverts t2 = {} V (t1,e1)=(t2,e2) using wf-lverts by fastforce
then have 3: V (t1,el) € fset ?xs. V(t2,e2) € fset ?us.
dlverts t1 N dlverts t2 = {} V (t1,e1)=(t2,e2)
using 0 wf-dlverts-comb-auz|of xs] by blast
have 4: combine x y (Node r zs) = Node r ?zs using False by auto
have r # [| using wf-lverts by simp
then show %thesis using 1 2 8 4 by fastforce
qed
qed

theorem list-dtree-comb: list-dtree (combine z y t)
by (unfold-locales) (auto simp: wf-darcs-combine wf-dlverts-combine)

end

end

theory IKKBZ
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imports Complex-Main CostFunctions QueryGraph List-Dtree HOL— Library.Sorting-Algorithms
begin

9 IKKBZ

9.1 Additional Proofs for Merging Lists

lemma merge-comm-if-not-equiv: ¥ x € set xs. Vy € set ys. compare cmp x y %
Equiv =
Sorting-Algorithms.merge cmp zs ys = Sorting-Algorithms.merge cmp ys xs
apply (induction xs ys rule: Sorting-Algorithms.merge.induct)
by (auto intro: compare.quasisym-not-greater simp: compare.asym-greater)

lemma set-merge: set xs U set ys = set (Sorting-Algorithms.merge cmp xs ys)
using mset-merge set-mset-mset set-mset-union by metis

lemma input-empty-if-merge-empty: Sorting-Algorithms.merge cmp zs ys = [| =
zs =[] Ays =]
using Un-empty set-empty2 set-merge by metis

lemma merge-assoc:
Sorting-Algorithms.merge cmp s (Sorting-Algorithms.merge cmp ys zs)
= Sorting-Algorithms.merge cmp (Sorting-Algorithms.merge cmp xs ys) zs
(is ?merge - xs (?merge cmp - 28) = -)
proof (induction zs ¢merge cmp ys zs arbitrary: ys zs taking: cmp rule: Sort-
ing-Algorithms.merge.induct)
case (2 cmp v vs)
show ?case using input-empty-if-merge-empty[OF 2][symmetric]] by simp
next
case ind: (3 z xs r rs)
then show ?case
proof (induction ys zs taking: cmp rule: Sorting-Algorithms.merge.induct)
case (3 y ys z 28)
then show ?case
using ind compare.asym-greater
by (smt (verit, best) compare.trans-not-greater list.inject merge.simps(3))
qged (auto)
qed (simp)

lemma merge-comp-commute:
assumes Vz € set zs. Vy € set ys. compare cmp x y # Equiv
shows Sorting-Algorithms.merge cmp xzs (Sorting-Algorithms.merge cmp ys zs)
= Sorting-Algorithms.merge cmp ys (Sorting-Algorithms.merge cmp s zs)
using assms merge-assoc merge-comm-if-not-equiv by metis

lemma wf-list-arcs-merge:
[wf-list-arcs xs; wf-list-arcs ys; snd ‘ set s N snd * set ys = {}]
= wf-list-arcs (Sorting-Algorithms.merge cmp xs ys)
proof (induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)
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case (3 xs y ys)
obtain v! el where vi-def[simp|: x = (vl,el) by force
obtain v2 e2 where v2-def[simp]: y = (v2,e2) by force
show ?Zcase
proof(cases compare cmp x y = Greater)
case True
have e2 ¢ snd ‘ set (z#xs) using 3.prems(3) by auto
moreover have e2 ¢ snd ‘ set ys using 3.prems(2) by simp
ultimately have e2 ¢ snd ‘ set (Sorting-Algorithms.merge cmp (z#1s) ys)
using set-merge by fast
then show ?thesis using True 8 by force
next
case Fulse
have el ¢ snd ‘set (y#ys) using 3.prems(3) by auto
moreover have el ¢ snd ‘ set zs using 3.prems(1) by simp
ultimately have el ¢ snd ‘set (Sorting-Algorithms.merge cmp xs (y#ys))
using set-merge by fast
then show ?thesis using False 3 by force
qed
qed (auto)

lemma wf-list-lverts-merge:
[wf-list-lverts xs; wf-list-lverts ys;
Vol € fst “set xs. Vv2 € fst “ set ys. set vl N set v2 = {}]
= wf-list-lverts (Sorting-Algorithms.merge cmp xs ys)
proof (induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)
case (3 z s y ys)
obtain vl el where vI-def[simp]: x = (vl,el) by force
obtain v2 e2 where v2-def[simp]: y = (v2,e2) by force
show ?Zcase
proof(cases compare cmp x y = Greater)
case True
have Vv € fst ‘ set (x#xs). set v2 N set v = {} using 3.prems(3) by auto
moreover have Vv € fst ‘ set ys. set v2 N set v = {} using 3.prems(2) by
stmp
ultimately have Vv € fst ‘ set (Sorting-Algorithms.merge cmp (z#xs) ys). set
v2 N set v = {}
using set-merge[of z#zs] by blast
then show ?thesis using True 8 by force
next
case Fulse
have Vv € fst “ set (y#ys). set vl N set v = {} using 3.prems(3) by auto
moreover have Vv € fst ‘ set zs. set vI N set v = {} using 3.prems(1) by
stmp
ultimately have Vv € fst ¢ set (Sorting-Algorithms.merge cmp zs (y#ys)). set
vl N setv={}
using set-merge[of zs] by auto
then show ?thesis using False 3 by force
qed
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qed (auto)

lemma merge-hd-exists-preserv:
[3(t1,el) € fset xs. hd as = (root t1,el); I(t1,el) € fset xs. hd bs = (root t1,el)]
= J(t1,el) € fset zs. hd (Sorting-Algorithms.merge cmp as bs) = (root t1,el)
by (induction as bs rule: Sorting-Algorithms.merge.induct) auto

lemma merge-split-supset:
assumes asQr#bs = (Sorting-Algorithms.merge cmp s ys)
shows s’ as’. set bs’ C set bs A (as’Qr#bs’ = zs V as’Qr#bs’ = ys)
using assms proof (induction zs ys arbitrary: as taking: cmp rule: Sorting-Algorithms.merge.induct)
case (3 xs y ys)
let ?merge = Sorting-Algorithms.merge cmp
show ?Zcase
proof(cases compare cmp x y = Greater)
case True
then show ?thesis
proof(cases as)
case Nil
have set ys C set (?merge (z#xs) ys) using set-merge by fast
then show ?thesis using Nil True 3.prems by auto
next
case (Cons c cs)
then have csQr#bs = ?merge (x#xs) ys using True 3.prems by simp
then obtain as’ bs’ where as-def: set bs’ C set bs as'Qr#bs’ = x#zs V
as'Qr#bs’ = ys
using 3.IH(1)[OF True] by blast
have as'Qr#bs’ = z#as V (y#as')Qr#bs' = y#ys using as-def(2) by simp
then show ?thesis using as-def(1) by blast
qed
next
case Fulse
then show ?thesis
proof(cases as)
case Nil
have set zs C set (?merge xs (y#ys)) using set-merge by fast
then show ?thesis using Nil False 8.prems by auto
next
case (Cons c cs)
then have csQr#bs = ?merge xs (y#ys) using False 3.prems by simp
then obtain as’ bs’ where as-def: set bs’ C set bs as’Qr#bs’ = zs V
as'Qr#bs’ = y#ys
using 3.IH(2)[OF Fulse] by blast
have (z#as"Qr#bs’ = z#xs V as’Qr#bs’ = y#ys using as-def(2) by simp
then show ?thesis using as-def(1) by blast
qed
qed
qed(auto)
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lemma merge-split-supset-fst:
assumes asQ(r,e)#bs = (Sorting-Algorithms.merge cmp xs ys)
shows Jas’ bs’. set bs’ C set bs A (as’Q(r,e)#bs’ = xs V as'Q(r,e)#bs’ = ys)
using merge-split-supset| OF assms] by blast

lemma merge-split-supset’:
assumes r € set (Sorting-Algorithms.merge cmp xs ys)
shows Jas bs as’ bs’. asQr#bs = (Sorting-Algorithms.merge cmp s ys)
A set bs’ C set bs A (as’@Qr#bs’ = xs V as’Qr#bs’ = ys)
using merge-split-supset split-listf OF assms] by metis

lemma merge-split-supset-fst:
assumes 1 € fst ¢ set (Sorting-Algorithms.merge cmp xs ys)
shows Jas e bs as’ bs’. asQ(r,e)#bs = (Sorting-Algorithms.merge cmp xs ys)
A set bs’ C set bs A (as’Q(r,e)#bs’ = xs V as’Q(r,e)#bs’ = ys)
proof —
obtain e where (r,e) € set (Sorting-Algorithms.merge cmp s ys) using assms
by auto
then show ?thesis using merge-split-supset’[of (r,e)] by blast
qed

lemma merge-split-supset-subtree:
assumes Y as bs. asQ(r,e)#bs = s —
(3 zs. is-subtree (Node 1 zs) t A dverts (Node 1 zs) C fst “ set ((r,e)#bs))
and Vas bs. asQ(r,e)#bs = ys —
(3 zs. is-subtree (Node r zs) t A dverts (Node r zs) C fst “ set ((r,e)#bs))
and asQ(r,e)#bs = (Sorting-Algorithms.merge cmp s ys)
shows 3 zs. is-subtree (Node r zs) t A dverts (Node r zs) C (fst ‘ set ((r,e)#bs))
proof —
obtain as’ bs’ where bs’-def: set bs’ C set bs as’Q(r,e)#bs’ = zs V as’Q(r,e)#bs’
using merge-split-supset| OF assms(3)] by blast
obtain zs where zs-def: is-subtree (Node r zs) t dverts (Node r zs) C fst * set
(rye)bs)
using assms(1,2) bs’-def(2) by blast
then have dverts (Node r zs) C fst “ set ((r,e)#bs) using bs’-def(1) by auto
then show ?thesis using zs-def(1) by blast
qged

lemma merge-split-supset-strict-subtree:
assumes Y as bs. asQ(r,e)#bs = xs —> (I zs. strict-subtree (Node r zs) t
A dverts (Node 1 zs) C fst ‘ set ((r,e)#bs))
and V as bs. asQ(r,e)#bs = ys — (I zs. strict-subtree (Node r 2s) t
A dverts (Node r zs) C fst ¢ set ((r,e)#bs))
and asQ(r,e)#bs = (Sorting-Algorithms.merge cmp s ys)
shows 3 zs. strict-subtree (Node 1 zs) t
A dverts (Node r zs) C (fst “ set ((r,e)#bs))
proof —
obtain as’ bs’ where bs’-def: set bs’ C set bs as'Q(r,e)#bs’ = xzs V as’Q(r,e)#bs’
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using merge-split-supset| OF assms(3)] by blast
obtain zs where zs-def:
strict-subtree (Node r zs) t dverts (Node r zs) C fst * set ((r,e)#bs’)
using assms(1,2) bs’-def(2) by blast
then have dverts (Node r zs) C fst ‘ set ((r,e)#bs) using bs’-def(1) by auto
then show %thesis using zs-def(1,2) by blast
qed

lemma sorted-app-l: sorted cmp (xsQys) = sorted cmp xs
by (induction zs rule: sorted.induct) auto

lemma sorted-app-r: sorted cmp (xsQys) = sorted cmp ys
by (induction zs) (auto simp: sorted-Cons-imp-sorted)

9.2 Merging Subtrees of Ranked Dtrees

locale ranked-dtree = list-dtree ¢ for t :: (‘a list,’b) dtree +
fixes rank :: 'a list = real
fixes cmp :: (Ya listx'b) comparator
assumes cmp-antisym:
[vl # []; v2 # [}; compare ecmp (vl,el) (v2,e2) = Equiv] = set vl N set v2

#{} Vel=e2
begin

lemma ranked-dtree-rec: [Node r zs = t; (z,e) € fset xs] = ranked-dtree x cmp
using wf-arcs wf-lverts by (unfold-locales) (auto dest: cmp-antisym)

lemma ranked-dtree-rec-suc: (x,e) € fset (sucs t) = ranked-dtree x cmp
using ranked-dtree-rec|of root t] by force

lemma ranked-dtree-subtree: is-subtree x t = ranked-dtree © cmp
using ranked-dtree-azioms proof (induction t)

case (Node r xs)

then interpret ranked-dtree Node r zs by blast

show ?Zcase using Node ranked-dtree-rec by (cases © = Node r xs) auto
qed

9.2.1 Definitions

lift-definition c¢mp’ :: (“a listx'b) comparator is
Az y. if rank (rev (fst x)) < rank (rev (fst y)) then Less
else if rank (rev (fst x)) > rank (rev (fst y)) then Greater
else compare cmp x )
by (smt (28) comp.distinct(3) compare.less-iff-sym-greater compare.refl com-
pare.trans-equiv
compare.trans-less comparator-def)

abbreviation disjoint-sets :: (('a list, 'b) dtree x 'b) fset = bool where
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disjoint-sets xs = disjoint-darcs xs A disjoint-dlverts xzs N (¥ (t,e) € fset xs. [| ¢
dverts t)

abbreviation merge-f :: ‘a list = (('a list, 'b) dtree x 'b) fset
= (a list, 'b) dtree x 'b = ('a list x 'b) list = ('a list x 'b) list where
merge-f  xs = A(t,e) b. if (t,e) € fset xs A list-dtree (Node 1 xs)
A (V(v,e’) € set b. set v N dlvertst = {} ANv# ][] A e’ ¢ darest U {e})
then Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|(t,e)|})) b else b

definition merge :: (‘a list,’b) dtree = ('a list,’b) dtree where
merge t1 = dtree-from-list (root t1) (ffold (merge-f (root t1) (sucs t1)) [| (sucs

t1))

9.2.2 Commutativity Proofs

lemma cmp-sets-not-dsjnt-if-equiv:

[vl # [J; v2 # []] = compare ecmp’ (v1,el) (v2,e2) = Equiv = set vl N set
v2 #{} V el=e2

by (auto simp: cmp’.rep-eq dest: emp-antisym split: if-splits)

lemma dtree-to-list-z-in-dverts:
z € fst ¢ set (dtree-to-list (Node r {|(t1,e1)|})) = = € dverts t1
using dtree-to-list-sub-dverts-ins by auto

lemma dtree-to-list-z-in-dlverts:
z € fst ‘ set (dtree-to-list (Node r {|(t1,e1)|})) = set x C dlverts t1
using dtree-to-list-z-in-dverts lverts-if-in-verts by fast

lemma dtree-to-list-x1-disjoint:
dlverts t1 N dlverts t2 = {}
= Val € fst ¢ set (dtree-to-list (Node r {|(t1,e1)|})). set x1 N dlverts t2 =
{

using dtree-to-list-z-in-dlverts by fast

lemma dtree-to-list-xs-disjoint:
dlverts t1 N dlverts t2 = {}
= Vi € fst ‘set (dtree-to-list (Node r {|(t1,e1)|})).
Va2 € fst ‘ set (dtree-to-list (Node v’ {|(t2,e2)|})). set z1 N set 22 = {}
using dtree-to-list-z-in-dlverts by (metis inf-mono subset-empty)

lemma dtree-to-list-e-in-darcs:
e € snd ‘ set (dtree-to-list (Node r {|(t1,el)|})) = e € darcs t1 U {el}
using dtree-to-list-sub-darcs by fastforce

lemma dtree-to-list-e-disjoint:
(dares t1 U {el}) N (dares t2 U {e2}) = {}
= Ve € snd ‘ set (dtree-to-list (Node r {|(t1,e1)|})). e ¢ darcs t2 U {e2}
using dtree-to-list-e-in-darcs by fast
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lemma dtree-to-list-es-disjoint:
(dares t1 U {el}) N (dares t2 U {e2}) = {}
= Ve3 € snd ‘ set (diree-to-list (Node r {|(t1,el)|})).
Ve € snd ‘ set (dtree-to-list (Node r' {|(t2,e2)|})). e3 # e4
using dtree-to-list-e-disjoint dtree-to-list-e-in-darcs by fast

lemma dtree-to-list-rs-not-equiv:
assumes dlverts t1 N dlverts t2 = {}
and (darcs t1 U {e3}) N (dares t2 U {e4}) = {}
and (z1,el) € set (dtree-to-list (Node r {|(t1,e3)|})) and z1 # |]
and (22,e2) € set (dtree-to-list (Node r' {|(t2,e4)|})) and z2 # ||
shows compare ecmp’ (x1,el) (22,e2) # Equiv
using dtree-to-list-xs-disjoint|OF assms(1)] cmp-sets-not-dsjnt-if-equiv|of 1 z2
el e2]
ditree-to-list-es-disjoint| OF assms(2)] assms(8—6) by fastforce

lemma merge-dtree1-not-equiv:
assumes dlverts t1 N dlverts t2 = {}
and (darcs t1 U {el}) N (dares t2 U {e2}) = {}
and [| ¢ dverts t1
and [| ¢ dverts t2
and xs = dtree-to-list (Node r {|(t1,e1)|})
and ys = dtree-to-list (Node r' {|(12,e2)|})
shows V (z1,el)€set xs. V(z2,e2)€Eset ys. compare cmp’ (x1,el) (22,e2) #
Equiv
proof —
have V (z1,el)€set xs. z1 # ||
using assms(3,5) diree-to-list-z-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imagel surj-pair)
moreover have V (z1,el)€set ys. z1 # ||
using assms(4,6) diree-to-list-z-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imagel surj-pair)
ultimately show ?thesis using dtree-to-list-zs-not-equiv|of t1 t2] assms(1,2,5,6)
by fast
qed

lemma merge-commute-auz1:
assumes dlverts t1 N dlverts t2 = {}
and (darcs t1 U {el}) N (darcs t2 U {e2}) = {}
and [| ¢ dverts t1
and [| ¢ dverts t2
and xs = dtree-to-list (Node r {|(t1,e1)|})
and ys = dtree-to-list (Node r' {|(t2,e2)|})
shows Sorting-Algorithms.merge cmp’ xs ys = Sorting-Algorithms.merge cmp’
yYSs xS
using merge-dtreel-not-equiv merge-comme-if-not-equiv assms by fast

lemma dtree-to-list-z1-list-disjoint:
set 2 N dlverts t1 = {}
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= Vi € fst ‘set (dtree-to-list (Node r {|(t1,e1)|})). set z1 N set 22 = {}
using dtree-to-list-z-in-dlverts by fast

lemma dtree-to-list-e1-list-disjoint’:
set 2 N darcs t1 U {el} = {}
= VI € snd ‘ set (dtree-to-list (Node r {|(t1,e1)|})). x1 ¢ set x2
using dtree-to-list-e-in-darcs by blast

lemma dtree-to-list-e1-list-disjoint:
e2 ¢ darcs t1 U {el}
= VI € snd ‘ set (dtree-to-list (Node r {|(t1,e1)|})). z1 # e2
using dtree-to-list-e-in-darcs by fast

lemma dtree-to-list-rs-list-not-equiv:
assumes (z1,el) € set (dtree-to-list (Node r {|(t1,e3)|}))
and z1 # ||
and V (v,e) € set ys. set v N dlverts t1 = {} A v # [| A e & darcs t1 U {e3}
and (z2,e2) € set ys
shows compare cmp’ (z1,el) (22,e2) # Equiv
proof —
have set z1 N set 2 = {} using dtree-to-list-x1-list-disjoint assms(1,3,4) by
fastforce
moreover have el # e2 using diree-to-list-el-list-disjoint assms(1,3,4) by
fastforce
ultimately show ?thesis using cmp-sets-not-dsjnt-if-equiv assms(2—4) by auto
qged

lemma merge-commute-aux2:
assumes [| ¢ dverts t1
and xs = dtree-to-list (Node r {|(t1,e1)|})
and V (v,e) € set ys. set v N dlverts t1 = {} A v#£[] A e ¢ darcs t1 U {el}
shows Sorting-Algorithms.merge cmp’ zs ys = Sorting-Algorithms.merge cmp’
Ys T8
proof —
have V (z1,el)€set zs. 1 # |]
using assms(1,2) dtree-to-list-z-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imagel surj-pair)
then have V (z1,el)€set xs. V (x2,e2)€Eset ys. compare cmp’ (x1,el) (22,e2) #
FEquiv
using assms(2,3) diree-to-list-zs-list-not-equiv by force
then show “thesis using merge-comm-if-not-equiv by fast
qged

lemma merge-inter-preserv’”:
assumes f = (merge-f r xs)
and —(V (v,-) € set z. set v N dlverts t1 = {})
shows —(V (v,-) € set (f (t2,e2) z). set v N dlverts t1 = {})
proof(cases f (12,e2) z = z2)
case Fulse
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then have f (t2,e2) z = Sorting-Algorithms.merge cmp’ (dtree-to-list (Node
{(t2.e2)}) »
by (simp add: assms(1)) meson
then show ?thesis using assms(2) set-merge by force
qed (simp add: assms(2))

lemma merge-inter-preseru:
assumes f = (merge-f r xs)
and —(V (v,e) € set z. set v N dlverts t1 = {} N e ¢ darcs t1 U {el})
shows —(V (v,e) € set (f (¢2,e2) z). set v N dlverts t1 = {} A e ¢ darcs t1 U
fei})
proof(cases f (t2,e2) z = z)
case True
then show ?thesis using assms(2) by simp
next
case Fulse
then have f (t2,e2) z = Sorting-Algorithms.merge cmp’ (dtree-to-list (Node
{(2.e2)})) 2
by (simp add: assms(1)) meson
then show ?thesis
using assms(2) set-merge[of dtree-to-list (Node r {|(t2,e2)|})] by simp blast
qged

lemma merge-f-eq-z-if-inter”:
—(V (v,-) € set z. set v N dlverts t1 = {}) = (merge-f r zs) (t1,el) z = z
by auto

lemma merge-f-eq-z-if-inter:
(Y (v,e) € set z. set v N dlverts t1 = {} A e ¢ darcs t1 U {el})
= (merge-f r as) (t1,el) z = z
by auto

lemma merge-empty-inter-preserv-aux:
assumes f = (merge-f r xs)
and (t2,e2) € fset zs
and V (v,e) € set z. set v N dlverts t2 = {} N v£[] A e & dares t2 U {e2}
and list-dtree (Node r xs)
and (t1,el) € fset zs
and (t1,el) # (t2,e2)
and Y (v,e) € set z. set v N dlverts t1 = {} N v£[]| A e & dares t1 U {el}
shows V (v,e) € set (f (¢2,e2) z). set v N dlverts t1 = {} N v#£[] A e ¢ dares
t1 U {el}
proof —
have 0: f (t2,e2) z = Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r
{(2.e2)D) -
using assms(1—6) by simp
let ?ys = ditree-to-list (Node r {|(t2,e2)|})
interpret list-dtree Node r zs using assms(4) .
have disjoint-dlverts xs using wf-lverts by simp
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then have Y vefst ‘ set ?ys. set v N dlverts t1 = {}
using diree-to-list-z1-disjoint assms(2,5,6) by fast
then have [: YV vefst ‘ set (Sorting-Algorithms.merge cmp’ ?ys z). set v N dlverts
= {}
using assms(7) set-merge[of ?ys|] by fastforce
have disjoint-darcs xs using disjoint-darcs-if-wf-zs[OF wf-arcs] .
then have 2: (darcs t2 U {e2}) N (darcs t1 U {el}) = {} using assms(2,5,6)
by fast
have V ecsnd ‘ set ?ys. e ¢ darcs t1 U {el} using dtree-to-list-e-disjoint[ OF 2]
by blast
then have 2: Vecsnd ‘ set (Sorting-Algorithms.merge cmp’ ?ys z). e ¢ darcs t1
U {el}
using assms(7) set-merge[of ?ys] by fastforce
have [| ¢ dverts t2 using assms(2) empty-notin-wf-dlverts wf-lverts by fastforce
then have Vvegfst “ set 2ys. v # [ by (metis dtree-to-list-z-in-dverts)
then have Vvefst ‘ set (Sorting-Algorithms.merge cmp’ ?ys z). v # ||
using assms(7) set-merge[of ?ys] by fastforce
then show ?thesis using 0 1 2 by fastforce
qed

lemma merge-empty-inter-preseruv:
assumes [ = (merge-f  xs)
and V(v,e) € set z. set v N dlverts t1 = {} N v#[] A e & dares t1 U {el}
and (t1,el) € fset zs
and (t1,el) # (t2,e2)
shows V (v,e) € set (f (¢2,e2) z). set v N dlverts t1 = {} N v#£[] A e ¢ dares
t1 U {el}
proof(cases f (t2,e2) z = z)
case True
then show ?thesis using assms(2) by simp
next
case Fulse
have (12,e2) € fset xs using False assms(1) by simp argo
moreover have list-dtree (Node r zs) using Fualse assms(1) by simp argo
moreover have V (v,e) € set z. set v N dlverts t2 = {} N v#£[] A e ¢ dares t2 U
{e2}
using Fualse assms(1) by simp argo
ultimately show ?thesis using merge-empty-inter-preserv-aux assms by pres-
burger
qed

lemma merge-commute-auz3:
assumes f = (merge-f r xs)
and list-dtree (Node r xs)
and (t1,el) # (t2,e2)
and (V(v,e) € set z. set v N dlverts t1 = {} ANv#[| A e¢ darcs tl1 U{el})
and (V(v,e) € set z. set v N dlverts t2 = {} A v #[| A e & darcs t2 U {e2})
and (t1,el) € fset zs
and (t2,e2) € fset xs
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shows (f (t2, e2) o f (t1, el)) z = (f (t1, el) o f (12, €2)) 2
proof —
let ?merge = Sorting-Algorithms.merge
let %zs = dtree-to-list (Node r {|(t1, el)|})
let ?ys = dtree-to-list (Node r {|(t2, e2)|})
interpret list-dtree Node r zs using assms(2) .
have disj: dlverts t1 N dlverts t2 = {} [| ¢ dverts t1 [| ¢ dverts t2
using assms(3,6,7) disjoint-dlverts-if-wf[OF wf-lverts] empty-notin-wf-dlverts| OF
wf-lverts]
by fastforce+
have disj2: (dares t1 U {el}) N (dares t2 U {e2}) = {}
using assms(2,3,6,7) disjoint-darcs-if-wf-auz5[OF wf-arcs] by blast
have f (2, e2) z = Sorting-Algorithms.merge cmp’ ?ys z using assms(1,2,5,7)
by simp
moreover have V (v,e)eset (f (12,e2) z). set v N dlverts t1 = {} Av# [ A e
¢ darcs t1 U {el}
using merge-empty-inter-preserv[OF assms(1)] assms(3,4,6) by simp
ultimately have 2: (f (¢1, el) o f (t2, e2)) z = ?merge cmp’ ?zs (?merge cmp’
2ys z)
using assms(1—2,6) by auto
have f (t1, el) z = Sorting-Algorithms.merge cmp’ ?zs z using assms(1—2,4,6)
by simp
moreover have V (v,e)€set (f (t1, el) 2). set v N dlverts t2 = {} N v£]| N e ¢
dares t2 U {e2}
using merge-empty-inter-preserv|OF assms(1)] assms(3,5,7) by presburger
ultimately have 3: (f (t2, e2) o f (t1,el)) z = ?merge cmp’ 2ys (?merge cmp’
%rs 2)
using assms(1—2,7) by simp
have V z€set ?zs. Vyeset ?ys. compare cmp’ © y # Equiv
using merge-dtreel-not-equiv|OF disj(1) disj2] disj(2,3) by fast
then have ?merge cmp’ ?xs (?merge ecmp’ ?ys z) = ?merge cmp’ ?ys (?merge
cmp’ ?xs 2)
using merge-comp-commute by blast
then show ?thesis using 2 3 by simp
qed

lemma merge-commute-auz:
assumes [ = (merge-f r s)
shows (fyo fz) z=(fzofy) 2
proof —
obtain ¢1 el where y-def[simp]: © = (t1, el) by fastforce
obtain ¢2 e2 where z-def[simp]: y = (2, e2) by fastforce
show ?thesis
proof(cases (t1,el) € fset xs N (12,e2) € fset xs)
case True
then consider list-dtree (Node 1 xs) (t1,e1) # (t2,e2)
(V(v,e) € set z. set v N dlverts t1 = {} ANv# [ A eé darcstl U {el})
(V(v,e) € set z. set v N dlverts t2 = {} ANv# [ A e ¢ darcs t2 U {e2})
| (¢1,e1) = (12,e2)
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| —list-dtree (Node r xs)
| =(V (v,e) € set z. set v N dlverts t1 = {} N\ e ¢ darcs t1 U {el})
| =(V (v,e) € set z. set v N dlverts t2 = {} N e ¢ darcs t2 U {e2})
| =(V (v,-) € set z. v #[])
by fast

then show ?thesis

proof (cases)
case I
then show ?thesis using merge-commute-aux3|[OF assms] True by simp

next
case 4
then have fz z = z by(auto simp: assms)
then have 0: (fy o fz) 2z = fy z by simp
have —(V (v,e) € set (fy 2). set v N dlverts t1 = {} A e ¢ darcs t1 U {el})

using merge-inter-preserv|OF assms 4] by simp

then have (fz o fy) 2 = [y z using assms merge-f-eq-z-if-inter by auto
then show ?thesis using 0 by simp

next
case 5
then have fy z = z by(auto simp: assms)
then have 0: (fr o fy) z = fz 2z by simp
have —(V (v,e) € set (f x z). set v N dlverts t2 = {} N e & darcs t2 U {e2})

using merge-inter-preserv[OF assms 5] by simp

then have (fy o fz) z = f z z using assms merge-f-eq-z-if-inter by simp
then show ?thesis using 0 by simp

next
case 6
then have (fz o fy) 2 = z by(auto simp: assms)
also have z = (fy o fz) z using 6 by(auto simp: assms)
finally show ?thesis by simp

qged(auto simp: assms)

next

case Fulse

then have (Vz. foz 2z =2) V (V2. fy 2z = z) by(auto simp: assms)

then show ?thesis by force

qed
qed

lemma merge-commute: comp-fun-commute (merge-f r xs)
using comp-fun-commute-def merge-commute-auz by blast

interpretation Comm: comp-fun-commute merge-f r zs by (rule merge-commute)

9.2.3 Merging Preserves Arcs and Verts

lemma empty-list-valid-merge:
(V(v,e) € set []. set v N dlvertst1 = {} ANv#][ A e¢ darcs t1 U {el})
by simp
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lemma disjoint-sets-sucs: disjoint-sets (sucs t)
using empty-notin-wf-dlverts list-dtree.wf-lverts list-dtree-rec dtree.collapse
disjoint-dlverts-if-wf[OF wf-lverts] disjoint-darcs-if-wf[OF wf-arcs] by blast

lemma empty-not-elem-subset:
[zs |C| ys; YV (t,e) € fset ys. [| ¢ dverts t] = V (t,e) € fset xs. || ¢ dverts t
by (meson less-eq-fset.rep-eq subset-iff)

lemma disjoint-sets-subset:
assumes zs |C| ys and disjoint-sets ys
shows disjoint-sets xs
using disjoint-darcs-subset|OF assms(1)] disjoint-dlverts-subset|OF assms(1)]
empty-not-elem-subset| OF assms(1)] assms by fast

lemma merge-mdeg-le-1: maz-deg (merge t1) < 1
unfolding merge-def by (rule diree-from-list-deg-le-1)

lemma merge-mdeg-le1-sub: is-subtree t1 (merge t2) =—> maz-deg t1 < 1
using merge-mdeg-le-1 le-trans mdeg-ge-sub by fast

lemma merge-feard-lel: fecard (sucs (merge t1)) < 1
unfolding merge-def by (rule diree-from-list-feard-lel)

lemma merge-fecard-lel-sub: is-subtree t1 (merge t2) = feard (sucs t1) < 1
using merge-mdeg-le1-sub mdeg-ge-feard|of sucs t1 root t1] by force

lemma merge-f-alt:
assumes P = (\zs. list-diree (Node r xs))
and Q = (A\(t,e) b. (V(v,e’) € set b. set v N dlverts t = {} N v£]] AN e' &
dares t U {e}))
and R = (A(t,e) b. Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r
(e b
shows merge-f rzs = (Aa b. if a & fset xs V = Q a bV — P xs then b else R a
0
using assms by force

lemma merge-f-alt-commute:
assumes P = (\zs. list-diree (Node r xs))
and @ = (A(t,e) b. (V(v,e’) € set b. set v dlvertst ={} Nv#[ ANe' ¢
dares t U {e}))
and R = (A(t,e) b. Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r
{I(t.e)[})) b)
shows comp-fun-commute (Aa b. if a & fset xs V = Q a bV — P zs then b else
R ab)
proof —
have comp-fun-commute (merge-f r xs) using merge-commute by fast
then show ?thesis using merge-f-alt[OF assms] by simp
qed
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lemma merge-ffold-supset:

assumes zs |C| ys and list-dtree (Node r ys)

shows ffold (merge-f r ys) acc xs = ffold (merge-f r xs) acc xs
proof —

let 2P = Aus. list-dtree (Node r xs)

let 2Q = A(t,e) b. (V(v,e’) € set b. set v N dlverts t = {} AN v#[| A e’ ¢ darcs
tU {e})

let ?R = A(¢,e) b. Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|(t,e)|}))
b

have 0: Azs. comp-fun-commute (Aa b. if a ¢ fset xzs V = 2Q a bV — 2P zs then
b else ?R a b)

using merge-f-alt-commute by blast
have ffold (Aa b. if a & fset ys V = 2Q a bV — 2P ys then b else YR a b) acc zs
= ffold (Aa b. if a & fset xs V = 2Q a bV — ?P xs then b else ?R a b) acc s

using ffold-commute-supset| OF assms(1), of 2P ?Q ?R, OF assms(2) list-dtree-subset
0] by auto

then show ?thesis using merge-f-alt by presburger
qed

lemma merge-f-merge-if-not-snd:

merge-f r xs (t1,el) z # 2 =

merge-f r xs (t1,el) z = Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r
{I(t1,e1)[})) =

by (simp) meson

lemma merge-f-merge-if-conds:
[list-dtree (Node r xs); V (v,e) € set z. set v N dlverts t1 = {} AN v#£[] A e & darcs
t1 U {el};
(t1,e1) € fset xs]
= merge-f r xs (t1,el) z = Sorting-Algorithms.merge cmp’ (dtree-to-list (Node
r {|(t1,e1)[})) =
by force

lemma merge-f-merge-if-conds-empty:
[list-dtree (Node r xs); (t1,el) € fset xs]
= merge-f r as (t1,el) ||
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|(t1,e1)|})) |]
using merge-f-merge-if-conds by simp

lemma merge-ffold-empty-inter-preseruv:
[list-dtree (Node r ys); xs |C| ys;
YV (v,e) € set z. set v N dlverts t1 = {} AN vZ£[] A e & darcs t1 U {el};
(t1,e1) € fset ys; (t1,el) ¢ fset zs; (v,e) € set (ffold (merge-f r xs) z xs)]
= setv N dlverts t1 = {} Nv# [ A e ¢ darcs t1 U {el}
proof (induction zs)
case (insert z xs)
let ?f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
let ?merge = Sorting-Algorithms.merge
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interpret list-dtree Node r ys using insert.prems(1) .
have 0: list-dtree (Node r (finsert x xs)) using list-dtree-subset insert.prems(1,2)
by blast
show ?Zcase
proof(cases ffold ?f z (finsert x xs) = ffold ?f' z xs)
case True
then have (v,e) € set (ffold ?f' z xs) using insert.prems(6) by argo
then show ?thesis using insert.IH insert.prems by force
next
case not-right: False
obtain ¢2 e2 where t2-def[simp]: x = (t2,e2) by fastforce
show ?thesis
proof(cases (v,e) € set (dtree-to-list (Node r {|(12,e2)|})))
case True
have uneq: (t2,e2) # (t1,el) using insert.prems(5) t2-def by fastforce
moreover have 1: (12,e2) € fset ys using insert.prems(2) by fastforce
ultimately have dlverts t1 N dlverts t2 = {} using insert.prems(4) wf-lverts
by fastforce
then have 2: VzIefst ¢ set (diree-to-list (Node r {|(t2, €2)|})). set x1 N
dlverts t1 = {}
using dtree-to-list-x1-disjoint by fast
have (darcs t1 U {el}) N (darcs t2 U {e2}) = {}
using insert.prems(4) uneq 1 disjoint-darcs-if-wf-auz5 wf-arcs by fast
then have 3: Veecsnd ‘ set (dtree-to-list (Node v {|(t2, e2)|})). e ¢ darcs t1
U {el}
using dtree-to-list-e-disjoint by fast
have [| ¢ dverts t2 using I wf-lverts empty-notin-wf-dlverts by auto
then have VzI€fst © set (dtree-to-list (Node r {|(t2, e2)|})). z1 # |]
using 1 dtree-to-list-z-in-dverts by metis
then show ?thesis using True 2 3 by fastforce
next
case Fulse
have zs |C| finsert x zs by blast
then have f-xs: ffold ?f z xs = ffold ?f' z xs
using merge-ffold-supset 0 by presburger
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)
using Comm.[fold-finsert[OF insert.hyps] by blast
then have 0: ffold ?f z (finsert z xs) = ?f x (ffold ?f' z xs) using f-zs by
argo
then have ?f x (ffold ?f' z xs) # ffold ?f' z xs using not-right by argo
then have ?f (t2,e2) (ffold ?f' z xs)
= ?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold ?f' z xs)
using merge-f-merge-if-not-snd t2-def by blast
then have ffold ?f z (finsert = xs)
= ?merge cmp’ (dtree-to-list (Node r {|(¢2,e2)|})) (ffold ?f' z xs)
using 0 t2-def by argo
then have (v,e) € set (?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold
2f' 2 x8))

using insert.prems(6) by argo
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then have (v,e) € set (ffold ?f' z xs) using set-merge False by fast
then show ?thesis using insert.IH insert.prems by force
qed
qed
qed (auto simp: ffold.rep-eq)

lemma merge-ffold-empty-inter-preserv’:
[list-dtree (Node r (finsert x xs));
YV (v,e) € set z. set v N dlverts t1 = {} N vZ£[] A e & dares t1 U {el };
(t1,e1) € fset (finsert x xs); (t1,el) & fset xs; (v,e) € set (ffold (merge-f r xs)
= set v N dlverts t1 = {} ANv# [ A e¢ darcs tl U {el}
using merge-ffold-empty-inter-preserv|of r finsert x xs xs z t1 el v e] by fast

lemma merge-ffold-set-sub-union:
list-dtree (Node 1 xs)
= set (ffold (merge-f r xs) [| xs) C (JzEfset xs. set (dtree-to-list (Node r
{I2l})
proof (induction zs)
case (insert  xs)
obtain t1 el where t1-def[simp]: x = (t1,el) by fastforce
let ?f = merge-f r (finsert x xs)
let 2’ = merge-f r zs
have (1, el) € fset (finsert x xs) by simp
moreover have (t1, el) ¢ fset zs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold 2f'[] zs). set v N dlverts t1 = {} AN v #[] A e & dares t1
U {el})
using merge-ffold-empty-inter-preserv’|OF insert.prems empty-list-valid-merge]
by blast
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems by blast
have ffold ?f [| (finsert x xs) = 2f x (ffold ?f || xs)
using Comm.[ffold-finsert| OF insert.hyps] by blast
also have ... = ?f x (ffold ?f' ]| zs)
using merge-ffold-supset|of xs finsert x zs r [|] insert.prems by fastforce
finally have ffold ?f || (finsert x xs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold
o 1] ws)
using merge-f-merge-if-conds| OF insert.prems xs-val] by simp
then have set (ffold ?f [| (finsert z xs))
= set (Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold ?f’
(| zs))
by argo
then have set (ffold ?f [| (finsert z xs))
= (set (dtree-to-list (Node r {|z|})) U set (ffold 2f'[] xs)) using set-merge
by fast
then show ?case using 0 insert.IH insert.prems by auto
qed (simp add: ffold.rep-eq)
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lemma merge-ffold-nempty:
[list-dtree (Node r zs); zs # {||}] = ffold (merge-f r xs) || xs # ||
proof (induction zs)
case (insert  xs)
define f where f = merge-f r (finsert x xs)
define f’ where [’ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp’
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def[simp]: © = (t2,e2) by fastforce
have (12, e2) € fset (finsert © zs) by simp
moreover have (12, e2) ¢ fset xs using insert.hyps by fastforce
ultimately have zs-val:
(V(v,e) € set (ffold f'[] xs). set v N dlverts t2 = {} ANv £ [] A e ¢ darcs t2 U
{e2})
using merge-ffold-empty-inter-preserv’| OF insert.prems(1) empty-list-valid-merge]
f'-def
by blast
have ffold f [| (finsert x zs) = fz (ffold f [] zs)
using Comm.ffold-finsert|OF insert.hyps| f-def by blast
also have ... = fa (ffold '] zs)
using merge-ffold-supset|of xs finsert x xs r [|] insert.prems(1) f-def f'-def by
fastforce
finally have ffold f [] (finsert z zs) = ?merge (dtree-to-list (Node r {|z|})) (ffold
f1 )
using zs-val insert.prems f-def by simp
then have merge: ffold f || (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2,e2)|})) (ffold f']] xs)
using t2-def by blast
then show ?case
using input-empty-if-merge-emptylof cmp’ dtree-to-list (Node r {|(t2,e2)|})]
f-def by auto
qed(simp)

lemma merge-f-ndisjoint-sets-aux:
—disjoint-sets xs
= —((t,e) € fset xzs A disjoint-sets zs N (V (v,-) € set b. set v N dlverts t = {}

Aw# )
by blast

lemma merge-f-not-list-diree: —list-dtree (Node r zs) = (merge-fr xs) a b =5
using merge-f-alt by simp

lemma merge-ffold-empty-if-nwf: —list-diree (Node r ys) = ffold (merge-f r ys)
)25 =
proof (induction zs)

case (insert z xs)

define f where f = merge-f r ys

let ?f = merge-f r ys

let ?merge = Sorting-Algorithms.merge cmp’
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obtain t2 e2 where t2-def[simp]: © = (t2,e2) by fastforce
have ffold f || (finsert x xs) = ?f x (ffold f || zs)
using Comm.ffold-finsert|OF insert.hyps| f-def by blast
then have ffold f [ (finsert x xs) = ffold f || xs
using insert.prems merge-f-not-list-dtree by force
then show ?case using insert f-def by argo
qed (simp add: ffold.rep-eq)

lemma merge-empty-if-nwf: —list-dtree (Node r 1s) = merge (Node r zs) = Node

r A}

unfolding merge-def using merge-ffold-empty-if-nwf by simp

lemma merge-empty-if-nwf-sucs: —list-dtree t1 = merge t1 = Node (root t1) {||}
using merge-empty-if-nwf|of root t1 sucs t1] by simp

lemma merge-empty: merge (Node r {||}) = Node r {||}
proof —
have comp-fun-commute (A(t, e) b. b)
by (simp add: comp-fun-commute-const cond-case-prod-eta)
hence dtree-from-list v (ffold (A(t, e) b. b) [] {||}) = Node r {||}
using comp-fun-commute.ffold-empty
by (smt (verit, best) diree-from-list.simps(1))
thus ?thesis
unfolding merge-def by simp
qed

lemma merge-empty-sucs:
assumes sucs t1 = {||}
shows merge t1 = Node (root t1) {||}
proof —
have dtree-from-list (dtree.root t1) (ffold (A(¢, e) b. b) [] {||}) = Node (dtree.root
1) {1}
by (simp add: ffold.rep-eq)
with assms show ?thesis
unfolding merge-def by simp
qed

lemma merge-singleton-sucs:

assumes list-dtree (Node (root t1) (sucs t1)) and sucs t1 # {||}

shows 3t e. merge t1 = Node (root t1) {|(t,e)|}

unfolding merge-def using merge-ffold-nempty[OF assms| dtree-from-list-singleton
by fast

lemma merge-singleton:
assumes list-dtree (Node r zs) and zs # {||}
shows 3t e. merge (Node r zs) = Node r {|(t,e)|}
unfolding merge-def dtree.sel(1) using merge-ffold-nempty[OF assms| dtree-from-list-singleton
by fastforce

249



lemma merge-cases: 3t e. merge (Node r xs) = Node r {|(t,e)|} V merge (Node r
xs) = Node r {||}
using merge-singleton merge-empty-if-nwf merge-empty by blast

lemma merge-cases-sucs:
3t e. merge t1 = Node (root t1) {|(t,e)|} V merge t1 = Node (root t1) {||}
using merge-singleton-sucs|[of t1] merge-empty-if-nwf-sucs merge-empty-sucs by
auto

lemma merge-single-root:
(t2,e2) € fset (sucs (merge (Node r zs))) = merge (Node r xs) = Node r

{I(22,e2)[}

using merge-cases|of r xs] by fastforce

lemma merge-single-root-sucs:
(t2,e2) € fset (sucs (merge t1)) = merge t1 = Node (root t1) {|(t2,e2)|}
using merge-cases-sucs[of t1] by auto

lemma merge-single-root1:
t2 € fst ‘ fset (sucs (merge (Node r xs))) = Je2. merge (Node r xs) = Node r

{I(22,e2)[}

using merge-single-root by fastforce

lemma merge-single-root1-sucs:
t2 € fst ¢ fset (sucs (merge t1)) = e2. merge t1 = Node (root t1) {|(t2,e2)|}
using merge-single-root-sucs by fastforce

lemma merge-nempty-sucs: [list-dtree t1; sucs t1 # {||}] = sucs (merge t1) #

{1y

using merge-singleton-sucs by fastforce

lemma merge-nempty: [list-dtree (Node r zs); zs # {||}] = sucs (merge (Node r

ws)) # {1}

using merge-singleton by fastforce

lemma merge-zs: merge (Node r zs) = dtree-from-list v (ffold (merge-f r zs) [] xs)
unfolding merge-def dtree.sel(1) ditree.sel(2) by blast

lemma merge-root-eq[simp|: Toot (merge t1) = root t1
unfolding merge-def by simp

lemma merge-ffold-fsts-in-childverts:
[list-dtree (Node r xzs); y € fst ‘ set (ffold (merge-f r xs) [| zs)]
= Jtl € fst ° fset xs. y € dverts t1
proof (induction zs)
case (insert z xs)
obtain ¢1 el where t1-def[simp]: x = (t1,el) by fastforce
let ?f = merge-f r (finsert x xs)
let 2f' = merge-f r xs
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have (t1, el) € fset (finsert x xs) by simp
moreover have (i1, el) ¢ fset zs using insert.hyps by fastforce

ultimately have zs-val:
(V(v,e) € set (ffold 2f'[] zs). set v N dlverts t1 = {} N v #[] N e & dares t1
U {el})
using merge-ffold-empty-inter-preserv’|OF insert.prems(1) empty-list-valid-merge]
by blast
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
then show ?case
proof(cases y € fst “ set (ffold (merge-f r zs) [] xs))
case True
then show ?%thesis using insert.IH[OF 0] by simp
next
case Fulse
have ffold ?f [] (finsert x xs) = 2f x (ffold 2f || xs)
using Comm.ffold-finsert[OF insert.hyps] by blast
also have ... = ?f x (ffold ?f'[] xs)
using merge-ffold-supset|[of zs finsert x xs r [|] insert.prems(1) by fastforce
finally have ffold ?f [| (finsert x zs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold
o1 ws)
using zs-val insert.prems by simp
then have set (ffold ?f || (finsert z xs))
= set (Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold
IED)
by argo
then have set (ffold ?f [| (finsert « zs))
= (set (dtree-to-list (Node r {|z|})) U set (ffold ?2f' ] zs))
using set-merge by fast
then have y € fst ¢ set (dtree-to-list (Node r {|z|})) using False insert.prems
by fast
then show %thesis by (simp add: dtree-to-list-z-in-dverts)
qed
qed (simp add: ffold.rep-eq)

lemma verts-child-if-merge-child:
assumes t1 € fst ‘ fset (sucs (merge t0)) and x € dverts t1
shows 3t2 € fst * fset (sucs t0). x € dverts t2
proof —
have 0: list-dtree 10 using assms(1) merge-empty-if-nwf-sucs by fastforce
have merge t0 # Node (root t0) {||} using assms(1) by force
then obtain el where el-def: merge t0 = Node (root t0) {|(t1,e1)|}
using assms(1) merge-single-root1-sucs by blast
then obtain ys where ys-def:
(root t1, el) # ys = ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)
unfolding merge-def by (metis (no-types, lifting) dtree-to-list.simps(1) dtree-to-from-list-id)
then have merge t0 = dtree-from-list (root t0) ((root t1, el) # ys) unfolding
merge-def by simp
then have t1 = dtree-from-list (root t1) ys using el-def by simp
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then have dverts t1 = (fst ‘ set ((root t1, el) # ys))
using diree-from-list-eq-dverts|of root t1 ys| by simp
then have z € fst ‘ set (ffold (merge-f (root t0) (sucs t0)) [| (sucs t0))
using assms(2) ys-def by simp
then show ?thesis using merge-ffold-fsts-in-childverts|of root t0] 0 by simp
qed

lemma sucs-dverts-eq-dtree-list:
assumes (t1,el) € fset (sucs t) and maz-deg t1 < 1
shows dverts (Node (root t) {|(t1,el)|}) — {root t}
= fst ‘ set (dtree-to-list (Node (root t) {|(t1,e1)|}))
proof —
have {|(t1,e1)|} |C| sucs t using assms(1) by fast
then have wf: wf-dverts (Node (root t) {|(t1,e1)|})
using wf-verts wf-dverts-sub by (metis dtree.exhaust-sel)
have V (t1,el) € fset (sucs t) . feard {|(t1,e1)|} = 1 using fcard-single-1 by
fast
moreover have maz-deg (Node (root t) {|(t1,e1)|}) = maz (max-deg t1) (feard
{I(¢1,e1)[})
using mdeg-singleton by fast
ultimately have maz-deg (Node (root t) {|(t1,e1)|}) < 1
using assms by fastforce
then show %thesis using dtree-to-list-eq-dverts|OF wf] by simp
qed

lemma merge-ffold-set-eq-union:
list-dtree (Node 1 xs)
= set (ffold (merge-f r xs) [| xs) = (JzEfset xs. set (dtree-to-list (Node r
{I2l})
proof (induction zs)
case (insert  xs)
obtain ¢! el where t1-def[simp]: x = (t1,el) by fastforce
let 2f = merge-f r (finsert x xs)
let ?f' = merge-f r zs
have (t1, el) € fset (finsert x xs) by simp
moreover have (t1, el) ¢ fset zs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold 2f'[] zs). set v N dlverts t1 = {} N v #[] A e & dares t1
U {et})
using merge-ffold-empty-inter-preserv’|OF insert.prems(1) empty-list-valid-merge]
by blast
have 1: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
have ffold ?f [| (finsert x xs) = 2f x (ffold ?f || xs)
using Comm.ffold-finsert| OF insert.hyps] by blast
also have ... = ?f x (ffold ?f' ] zs)
using merge-ffold-supset|of xs finsert x zs r [|] insert.prems(1) by fastforce
finally have ffold ?f || (finsert x xs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold

o0 ws)
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using zs-val insert.prems by simp
then have set (ffold ?f [| (finsert z xs))
= set (Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold 2f’
[ zs))
by argo
then have set (ffold ?f [| (finsert z xs))
= (set (dtree-to-list (Node r {|z|})) U set (ffold ?f' [ xs)) using set-merge
by fast
then show ?case using 1 insert.IH by simp
qged (simp add: ffold.rep-eq)

lemma sucs-dverts-no-root:

(t1,e1) € fset (sucs t) = dverts (Node (root t) {|(t1,el)|}) — {root t} = dverts
t1

using wf-verts wf-dverts’.simps unfolding wf-dverts-iff-dverts’ by fastforce

lemma dverts-merge-sub:
assumes Vit € fst ¢ fset (sucs t0). maz-deg t < 1
shows dverts (merge t0) C dverts t0
proof
fix z
assume asm: ¢ € dverts (merge t0)
show z € dverts t0
proof(cases x = root (merge t0))
case True
then show ?thesis by (simp add: dtree.set-sel(1))
next
case Fulse
then obtain ¢ el where t1-def: merge t0 = Node (root t0) ({|(t1,e1)|})
using merge-cases-sucs asm by fastforce
then have 0: list-dtree (Node (root t0) (sucs t0))
using merge-empty-if-nwf-sucs by fastforce
have z € fst  set (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0))
using tI1-def unfolding merge-def using Fualse asm t1-def
dtree-from-list-eq-dverts|of root t0 ffold (merge-f (root t0) (sucs t0)) [] (sucs
t0)]
by auto
then obtain t2 e2 where t2-def:
(t2,e2) € fset (sucs t0) x € fst ‘ set (dtree-to-list (Node (root t0) {|(t2,e2)|}))
using merge-ffold-set-sub-union[OF 0] by fast
then have z© € dverts t2 by (simp add: dtree-to-list-z-in-dverts)
then show ?thesis using t2-def(1) dtree.set-sel(2) by fastforce
qed
qed

lemma dverts-merge-eq[simp):
assumes Vit € fst ¢ fset (sucs t). maz-deg t < 1
shows dverts (merge t) = dverts t

proof —
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have V (t1,e1) € fset (sucs t). dverts (Node (root t) {|(t1,e1)|}) — {root t}
= fst ¢ set (dtree-to-list (Node (root t) {|(t1,el)|}))
using sucs-dverts-eq-dtree-list assms
by (smt (verit, ccfv-threshold) case-prodI2 fst-conv image-iff)
then have V (t1,e1) € fset (sucs t). dverts t1
= fst ¢ set (dtree-to-list (Node (root t) {|(t1,e1)|}))
by (metis (mono-tags, lifting) sucs-dverts-no-root case-prodD case-prodI2)
then have (|Jz€fset (sucs t). U (dverts * Basic-BNFs.fsts x))
= (Jz€efset (sucs t). fst * set (dtree-to-list (Node (root t) {|z|})))
by force
then have dverts t
= insert (root t) (|Jz€fset (sucs t). fst ¢ set (dtree-to-list (Node (root t)
{21

using dtree.simps(6)[of root t sucs t] by auto
also have ... = insert (root t) (fst ¢ set (ffold (merge-f (root t) (sucs t)) [] (sucs
t))
using merge-ffold-set-eq-union[of root t sucs t] list-diree-axioms by auto
also have ... = dverts (dtree-from-list (root t) (ffold (merge-f (root t) (sucs t))
) (sucs 1))
using dtree-from-list-eq-dverts|of root t] by blast
finally show ?thesis unfolding merge-def by blast
qged

lemma dlverts-merge-eq[simp):
assumes Vit € fst ¢ fset (sucs t). maz-deg t < 1
shows dlverts (merge t) = dlverts t
using dverts-merge-eq[OF assms] by (simp add: dlverts-eg-dverts-union)

lemma sucs-darcs-eq-dtree-list:
assumes (t1,el) € fset (sucs t) and maz-deg t1 < 1
shows darcs (Node (root t) {|(t1,e1)|}) = snd ‘ set (dtree-to-list (Node (root t)
)
proof —
have V (t1,el) € fset (sucs t) . feard {|(t1,e1)|} = 1 using fcard-single-1 by
fast
moreover have max-deg (Node (root t) {|(t1,e1)|}) = maz (maz-deg t1) (feard
{(tren)]})
using mdeg-singleton by fast
ultimately have maz-deg (Node (root t) {|(t1,e1)|}) < 1
using assms by fastforce
then show “thesis using dtree-to-list-eq-darcs by blast
qged

lemma darcs-merge-eq[simp]:
assumes Vi € fst ¢ fset (sucs t). max-deg t < 1
shows darcs (merge t) = darcs t
proof —
have 0: list-dtree (Node (root t) (sucs t)) using list-dtree-azioms by simp
have V (t1,el) € fset (sucs t). darcs (Node (root t) {|(t1,e1)|})
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= snd ‘ set (dtree-to-list (Node (root t) {|(t1,e1)|}))

using sucs-darcs-eq-dtree-list assms

by (smt (verit, ccfu-threshold) case-prodI?2 fst-conv image-iff)
then have V (t1,el) € fset (sucs t). darcs t1 U {el}

= snd ‘ set (dtree-to-list (Node (root t) {|(t1,e1)|}))

by simp
moreover have darcs t = (|J (t1,el)€fset (sucs t). darcs t1 U {el})

using dtree.simps(7)[of root t sucs t] by force
ultimately have darcs t

= (U (¢1,el)efset (sucs t). snd  set (dtree-to-list (Node (root t)
{(t1.e1)1))

by (smt (verit, best) Sup.SUP-cong case-prodE case-prod-conv)

also have ... = (snd ‘ set (ffold (merge-f (root t) (sucs t)) [| (sucs t)))
using merge-ffold-set-eq-union| OF 0] by blast
also have ... = darcs (dtree-from-list (root t) (ffold (merge-f (root t) (sucs t))

[} (sucs 1))
using ditree-from-list-eq-darcs[of root t] by fast
finally show ?thesis unfolding merge-def by blast
qed

9.2.4 Merging Preserves Well-Formedness

lemma dtree-to-list-z-in-darcs:
z € snd ‘ set (dtree-to-list (Node r {|(t1,e1)|})) = z € (darcs t1 U {el})
using dtree-to-list-sub-darcs by fastforce

lemma dtree-to-list-snds-disjoint:
(dares t1 U {el}) N (dares t2 U {e2}) = {}
= snd ‘ set (dtree-to-list (Node r {|(t1,e1)|})) N (dares t2 U {e2}) = {}
using dtree-to-list-z-in-darcs by fast

lemma dtree-to-list-snds-disjoint2:
(dares t1 U {el}) N (dares t2 U {e2}) = {}
= snd ‘ set (dtree-to-list (Node r {|(t1,e1)|}))
N snd * set (dtree-to-list (Node r {|(¢2,e2)|})) = {}
using disjoint-iff dtree-to-list-z-in-darcs by metis

lemma merge-ffold-arc-inter-preseruv:
[list-dtree (Node r ys); xs |C| ys; (darcs t1 U {el}) N (snd ‘ set z) = {};
(t1,e1) € fset ys; (t1,e1) & fset xs]
= (dares t1 U {el}) N (snd * set (ffold (merge-f r xs) z xs)) = {}
proof (induction xs)
case (insert © zs)
let ?f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
let ?merge = Sorting-Algorithms.merge
show ?Zcase
proof(cases ffold ?f z (finsert x zs) = ffold 2f' z xs)

case True
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then show ?thesis using insert.IH insert.prems by auto
next

case Fulse

obtain ¢2 e2 where t2-def[simp]: x = (t2,e2) by fastforce

have 0: list-dtree (Node r (finsert x xs)) using list-dtree-subset insert.prems(1,2)
by blast
have (t2,e2) # (t1,el) using insert.prems(5) t2-def by fastforce
moreover have (12,e2) € fset ys using insert.prems(2) by fastforce
moreover have disjoint-darcs ys

using disjoint-darcs-if-wf|OF list-dtree.wf-arcs [OF insert.prems(1)]] by simp
ultimately have (darcs t1 U {el}) N (darcs t2 U {e2}) = {}

using insert.prems(4) by fast
then have 1: (darcs t1 U {el}) N snd ‘ set (dtree-to-list (Node r {|(t2, €2)|}))

={
using dtree-to-list-snds-disjoint by fast
have 2: (darcs t1 U {el}) N snd * set (ffold ?f' z xs) = {}
using insert.IH insert.prems by simp
have zs |C| finsert © xs by blast
then have f-zs: ffold ?f z zs = ffold ?f' z xs
using merge-ffold-supset 0 by presburger
have ffold ?f z (finsert z xs) = ?f « (ffold ?f z xs)
using Comm.ffold-finsert|OF insert.hyps] by blast
then have 0: ffold ?f z (finsert x xs) = ?f x (ffold ?f' z xs) using f-zs by argo
then have ?f z (ffold ?f' z zs) # ffold ?f’ z zs using Fualse by argo
then have ?f (t2,e2) (ffold ?f' z xs)
= ?merge cmp’ (dtree-to-list (Node v {|(t2,e2)|})) (ffold ?f' z xs)
using merge-f-merge-if-not-snd t2-def by blast
then have ffold ?f z (finsert x xs)
= ?merge cmp’ (dtree-to-list (Node r {|(¢2,e2)|})) (ffold ?f' z xs)
using 0 t2-def by argo
then have set (ffold ?f z (finsert x xs))
= set (dtree-to-list (Node r {|(t2,e2)|})) U set (ffold ?f' z xs)
using set-merge[of dtree-to-list (Node r {|(12,e2)|})] by presburger
then show ?thesis using 1 2 by fast
qed
qed (auto simp: ffold.rep-eq)

lemma merge-ffold-wf-list-arcs:
[Az. = € fset xs = wf-darcs (Node r {|z|}); list-dtree (Node 1 xs)]
= wf-list-arcs (ffold (merge-f r xs) [| xs)
proof (induction xs)
case (insert  xs)
obtain ¢I el where t1-def[simp]: x = (t1,el) by fastforce
let 2f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
have 0: (t1, el) € fset (finsert  xs) by simp
moreover have t1-not-zs: (t1, el) ¢ fset zs using insert.hyps by fastforce

ultimately have zs-val:
(V (v,e) € set (ffold 2f'[] zs). set v N dlverts t1 = {} AN v #[] A e & dares t1
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U {et})
using merge-ffold-empty-inter-preserv’| OF insert.prems(2) empty-list-valid-merge]
by blast
have I: wf-list-arcs (dtree-to-list (Node r {|z|}))
using insert.prems(1) 0 t1-def wf-list-arcs-if-wf-darcs by fast
have list-dtree (Node r zs) using list-dtree-subset insert.prems(2) by blast
then have 2: wf-list-arcs (ffold ?f' || zs) using insert.IH insert.prems by auto
have darcs (Node r {|z|}) N snd * set (ffold ?f' [] zs) = {}
using merge-ffold-arc-inter-preserv| OF insert.prems(2), of xs t1 el []] t1-not-zs
by auto
then have 3: snd ¢ set (dtree-to-list (Node r {|z|})) N snd * set (ffold 2f' || xs)
={}
using dtree-to-list-sub-darcs by fast
have ffold ?f [| (finsert x xs) = 2f z (ffold ?f || zs)
using Comm.ffold-finsert|OF insert.hyps] by blast
also have ... = ?f x (ffold ?f' ] xs)
using merge-ffold-supset|of xs finsert x xs r []] insert.prems(2) by fastforce
finally have ffold ?f || (finsert z zs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold
9" 1] ws)
using zs-val insert.prems by simp
then show ?case using wf-list-arcs-merge[OF 1 2 3] by presburger
qed (simp add: ffold.rep-eq)

lemma merge-wf-darcs: wf-darcs (merge t)
proof —
have wf-list-arcs (ffold (merge-f (root t) (sucs t)) [] (sucs t))
using merge-ffold-wf-list-arcs| OF wf-darcs-sucs|OF wf-arcs]| list-dtree-azxioms
by simp
then show ?thesis using wf-darcs-iff-wf-list-arcs merge-def by fastforce
qed

lemma merge-ffold-wf-list-lverts:
[Az. z € fset zs = wf-dlverts (Node r {|z|}); list-diree (Node r zs)]
= wf-list-lverts (ffold (merge-f r zs) [] xs)
proof (induction xs)
case (insert z xs)
obtain ¢! el where t1-def[simp]: x = (t1,el) by fastforce
let 2f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
have 0: (t1, el) € fset (finsert z xs) by simp
moreover have (t1, el) ¢ fset zs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold 2f' || zs). set v N dlverts t1 = {} N v #[] A e & dares t1
U {et})
using merge-ffold-empty-inter-preserv’| OF insert.prems(2) empty-list-valid-merge]
by blast
have 1: wf-list-lverts (dtree-to-list (Node r {|z|}))
using insert.prems(1) 0 t1-def wf-list-lverts-if-wf-dlverts by fast
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have list-dtree (Node r zs) using list-dtree-subset insert.prems(2) by blast
then have 2: wf-list-lverts (ffold ?f' || xs) using insert.IH insert.prems by auto
have Vv2¢efst ‘ set (ffold 2f'[] xs). set v2 N dlverts t1 = {}

using zs-val by fastforce
then have 3: Vvl €fst ‘ set (diree-to-list (Node r {|z|})). Vv2€fst ¢ set (ffold ?f’

[} zs).
set vl N set v2 = {}
using dtree-to-list-x1-list-disjoint t1-def by fast
have ffold ?f [| (finsert x xs) = 2f z (ffold ?f || xs)
using Comm.ffold-finsert|OF insert.hyps] by blast
also have ... = ?f x (ffold ?f' ] xs)
using merge-ffold-supset[of zs finsert x xs r [|] insert.prems(2) by fastforce
finally have ffold ?f || (finsert z xs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold
o 1] ws)
using zs-val insert.prems by simp
then show ?case using wf-list-lverts-merge[OF 1 2 3] by presburger
qed (simp add: ffold.rep-eq)

lemma merge-ffold-root-inter-preseru:
[list-dtree (Node r zs); Y t1 € fst * fset xs. set v’ N dlverts t1 = {};
Yol € fst “set z. set v’/ N set vl = {}; (v,e) € set (ffold (merge-f r xs) z xs)]
= set r' N set v = {}
proof (induction zs)
case (insert z xs)
let ?f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
let ?merge = Sorting-Algorithms.merge
have 0: list-dtree (Node r xs) using insert.prems(1) list-dtree-subset by blast
show ?Zcase
proof(cases ffold ?f z (finsert x xs) = ffold ?f' z xs)
case True
then show %thesis using insert. IH[OF 0] insert.prems(2—4) by simp
next
case not-right: False
obtain ¢2 e2 where t2-def[simp]: x = (t2,e2) by fastforce
show ?thesis
proof(cases (v,e) € set (dtree-to-list (Node r {|(t2,e2)|})))
case True
then show ?%thesis using dtree-to-list-z1-list-disjoint insert.prems(2) by
fastforce
next
case Fulse
have zs |C| finsert x zs by blast
then have f-zs: ffold ?f z zs = ffold ?f' z xs
using merge-ffold-supset|of xs finsert x xs] insert.prems(1) by blast
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)
using Comm.ffold-finsert[OF insert.hyps] by blast
then have 1: ffold ?f z (finsert z xs) = ?f x (ffold ?f' z xs) using f-zs by
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argo
then have ?f z (ffold ?f' z zs) # ffold ?f' z xs using not-right by argo
then have ?f (¢2,e2) (ffold ?f' z xs)
= ?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold ?f' z xs)
using merge-f-merge-if-not-snd t2-def by blast
then have ffold ?f z (finsert = xs)
= ?merge cmp’ (dtree-to-list (Node r {|(12,e2)|})) (ffold ?2f" z xs)
using 1 t2-def by argo
then have (v,e) € set (?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold
2f' z xs))
using insert.prems(4) by argo
then have (v,e) € set (ffold ?f' z xs) using set-merge False by fast
then show ?thesis using insert.IH insert.prems(2—3) 0 by auto
qed
qed
qed (fastforce simp: ffold.rep-eq)

lemma merge-wf-dlverts: wf-dlverts (merge t)
proof —
have 0: list-dtree (Node (root t) (sucs t)) using list-dtree-azioms by simp
have 1: Vit1€fst ¢ fset (sucs t). set (root t) N diverts t1 = {}
using wf-lverts wf-dlverts.simps|of root t] by fastforce
have YV vefst ‘ set (ffold (merge-f (root t) (sucs t)) [| (sucs t)). set (root t) N set
0=}
using wf-lverts merge-ffold-root-inter-preserv|OF 0 1] by force
moreover have wf-list-lverts (ffold (merge-f (root t) (sucs t)) [] (sucs t))
using merge-ffold-wf-list-lverts| OF wf-dlverts-sucs|OF wf-lverts] 0] by simp
moreover have root t # [| using wf-lverts wf-dlverts.elims(2) by fastforce
ultimately show ?thesis unfolding merge-def using wf-dlverts-iff-wf-list-lverts
by blast
qed

theorem merge-list-dtree: list-dtree (merge t)
using merge-wf-dlverts merge-wf-darcs list-dtree-def by blast

corollary merge-ranked-dtree: ranked-dtree (merge t) cmp
using merge-list-dtree ranked-dtree-def ranked-dtree-axioms by auto

9.2.5 Additional Merging Properties

lemma merge-ffold-distinct:

[list-dtree (Node r xs); ¥V t1 € fst ‘ fset xs. ¥ vEdverts t1. distinct v;
Yol € fst “ set z. distinct v1; v € fst ‘ set (ffold (merge-f r xs) z xs)]
= distinct v

proof (induction zs)

case (insert z xs)

let ?f = merge-f r (finsert x xs)

let ?f' = merge-f r xs

let ?merge = Sorting-Algorithms.merge
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have 0: list-dtree (Node r xs) using insert.prems(1) list-dtree-subset by blast
show ?Zcase
proof(cases ffold ?f z (finsert x xs) = ffold ?f' z xs)
case True
then show ?thesis using insert. IH[OF 0] insert.prems(2—4) by simp
next
case not-right: False
obtain ¢2 e2 where t2-def[simp|: z = (t2,e2) by fastforce
show ?thesis
proof (cases v € fst ¢ set (dtree-to-list (Node r {|(t2,e2)|})))
case True
have V vedverts t2. distinct v using insert.prems(2) by simp
then have 2: Vvefst ‘ set (dtree-to-list (Node r {|(t2,e2)|})). distinct v
by (simp add: dtree-to-list-z-in-dverts)
then show ?thesis using True by auto
next
case Fulse
have zs |C| finsert x zs by blast
then have f-zs: ffold ?f z zs = ffold ?f’ z xs
using merge-ffold-supset insert.prems(1) by presburger
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)
using Comm.ffold-finsert|OF insert.hyps|] by blast
then have 1: ffold ?f z (finsert x xs) = ?f x (ffold ?f' z xzs) using f-zs by
argo
then have ?f x (ffold ?f' z xs) # ffold ?f' z xs using not-right by argo
then have ?f (t2,e2) (ffold ?f' z xs)
= ?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold ?f' z xs)
using merge-f-merge-if-not-snd t2-def by blast
then have ffold ?f z (finsert = xs)
= ?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold ?f' z xs)
using 1 t2-def by argo
then have v € fst ‘ set (?merge cmp’ (dtree-to-list (Node r {|(t2,e2)|})) (ffold
2f' 2 xs))
using insert.prems(4) by argo
then have v € fst “ set (ffold ?f' z zs) using set-merge False by fast
then show ?thesis using insert.IH[OF 0] insert.prems(2—3) by simp
qged
qed
qed (fastforce simp: ffold.rep-eq)

lemma distinct-merge:
assumes Y ve€dverts t. distinct v and vedverts (merge t)
shows distinct v
proof(cases v = root t)
case True
then show %thesis by (simp add: dtree.set-sel(1) assms(1))
next
case Fulse
then have 0: v € fst ‘ set (ffold (merge-f (root t) (sucs t)) [] (sucs t))

260



using merge-def assms(2) dtree-from-list-eq-dverts[of root t] by auto
moreover have Vit1€fst ¢ fset (sucs t). Vvedverts t1. distinct v
using assms(1) dverts-child-subset|of root t sucs t] by auto
moreover have Vvl €fst ‘ set [|. distinct vl by simp
moreover have 0: list-dtree (Node (root t) (sucs t)) using list-dtree-azioms by
stmp
ultimately show ?thesis using merge-ffold-distinct by fast
qed

lemma merge-hd-root-eq[simp]: hd (root (merge t1)) = hd (root t1)
unfolding merge-def by auto

lemma merge-ffold-hd-is-child:
[list-dtree (Node r xzs); xs # {||}]
= 3(t1,el) € fset xs. hd (ffold (merge-f r zs) [| xs) = (root t1,el)
proof (induction xs)
case (insert z xs)
interpret Comm: comp-fun-commute merge-f r (finsert « xs) by (rule merge-commute)
define f where f = merge-f r (finsert z xs)
define f’ where f’ = merge-f r zs
let ?merge = Sorting-Algorithms.merge cmp’
have 0: list-dtree (Node r zs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def[simp]: © = (t2,e2) by fastforce
have i1: 3(t1, el)efset (finsert x zs). hd (dtree-to-list (Node r {|(12,e2)|})) =
(root t1, el)
by simp
have (12, e2) € fset (finsert x xs) by simp
moreover have (t2, e2) ¢ fset xs using insert.hyps by fastforce
ultimately have zs-val:
(V(v,e) € set (ffold f'[] xs). set v N dlverts t2 = {} ANv # ][] A e ¢ darcs t2 U
{e2})
using merge-ffold-empty-inter-preserv’| OF insert.prems(1) empty-list-valid-merge]
f'-def
by blast
have ffold f [ (finsert z xs) = fz (ffold f [] xs)
using Comm.ffold-finsert|OF insert.hyps| f-def by blast
also have ... = fx (ffold '] zs)
using merge-ffold-supset|of xs finsert x xs r [|] insert.prems(1) f-def f’-def by
fastforce
finally have ffold f [] (finsert z zs) = ?merge (dtree-to-list (Node r {|z|})) (ffold
f1 s)
using zs-val insert.prems f-def by simp
then have merge: ffold f || (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2,e2)|})) (ffold f']] xs)
using t2-def by blast
show ?Zcase
proof(cases zs = {||})
case True

then show ?thesis using merge il f-def by (auto simp: ffold.rep-eq)
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next
case Fulse
then have i2: 3(t1,el) € fset (finsert x xs). hd (ffold f'[] xs) = (root t1,el)
using insert. IH[OF 0] f’-def by simp
show ?thesis using merge-hd-exists-preserv[OF i1 i2] merge f-def by simp
qed
qed(simp)

lemma merge-ffold-nempty-if-child:
assumes (t1,el) € fset (sucs (merge t0))
shows ffold (merge-f (root t0) (sucs t0)) [] (sucs t0) # []
using assms unfolding merge-def by auto

lemma merge-ffold-hd-eq-child:
assumes (t1,el) € fset (sucs (merge t0))
shows hd (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)) = (root t1,el)
proof —
have merge t0 = (dtree-from-list (root t0) (ffold (merge-f (root t0) (sucs t0)) ||
(sucs t0)))
unfolding merge-def by blast
have merge t0 = (Node (root t0) {|(t1,el)|}) using merge-cases-sucs|of t0]
assms by auto
have 0: (Node (root t0) {|(t1,e1)|})
= (dtree-from-list (root t0) (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)))
using merge-cases-sucs|[of t0] assms unfolding merge-def by fastforce
then obtain ys where (root t1, el) # ys = ffold (merge-f (root t0) (sucs t0))
[ (sucs t0)
using diree-from-list-eq-singleton| OF 0] by blast
then show %thesis using list.sel(1)[of (root t1, el) ys| by simp
qed

lemma merge-child-in-orig:
assumes (t1,el) € fset (sucs (merge t0))
shows 3(t2,e2) € fset (sucs t0). (root t2,e2) = (root t1,el)
proof —
have 0: list-dtree (Node (root t0) (sucs t0)) using assms merge-empty-if-nwf-sucs
by fastforce
have sucs t0 # {||} using assms merge-empty-sucs by fastforce
then obtain ¢2 e2 where t2-def: (12,e2) € fset (sucs t0)
hd (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)) = (root t2,e2)
using merge-ffold-hd-is-child|OF 0] by blast
then show ?thesis using merge-ffold-hd-eq-child[OF assms| by auto
qed

lemma ffold-singleton: comp-fun-commute f = ffold f z {|z|} = fz 2
using comp-fun-commute.ffold-finsert

by (metis comp-fun-commute.ffold-empty finsert-absorb finsert-not-fempty)

lemma ffold-singleton1:
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[comp-fun-commute (Aa b. if P a b then Q a b else R a b); P x 7]
= ffold (Aa b. if Pabthen Qabelse Rab)z{|z|]} =Qzz
using ffold-singleton by fastforce

lemma ffold-singleton2:
[comp-fun-commute (Aa b. if P a b then Q a b else R a b); =P x Z]
= ffold (Aa b. if Pabthen Qabelse Rab)z{|z|]} =Ruzz
using ffold-singleton by fastforce

lemma merge-ffold-singleton-if-wf:

assumes list-dtree (Node r {|(t1,e1)|})

shows ffold (merge-fr {|(t1,e1)|}) [] {|(¢1,el)|} = dtree-to-list (Node r {|(t1,e1)|})
proof —

interpret Comm: comp-fun-commute merge-f r {|(t1,el)|} by (rule merge-commute)

define f where f = merge-f r {|(t1,e1)|}

have ffold f [| {|(t1,e1)|} = f (t1.e1) (fold £ [ {II}

using Comm.ffold-finsert f-def by blast

then show %thesis using f-def assms by (simp add: ffold.rep-eq)

qed

lemma merge-singleton-if-wf:
assumes list-dtree (Node r {|(t1,el)|}
shows merge (Node r {|(t1,e1)|}) = dtree-from-list r (dtree-to-list (Node r

{I(t1,e1)1}))

using merge-ffold-singleton-if-wf[ OF assms|] merge-xs by simp

lemma merge-disjoint-if-child:
merge (Node r {|(t1,e1)|}) = Node r {|(t2,e2)|} = list-dtree (Node r {|(t1,e1)|})
using merge-empty-if-nwf by fastforce

lemma merge-root-child-eq:
merge (Node r {|(t1,e1)|}) = Node r {|(t2,e2)|} = root t1 = root t2
using merge-singleton-if-wf[OF merge-disjoint-if-child] by fastforce

lemma merge-ffold-split-subtree:
[Vt € fst ‘ fset xs. max-deg t < 1; list-dtree (Node r xs);
as@(v,e)#bs = ffold (merge-f r xs) [| xs]
= Jys. strict-subtree (Node v ys) (Node r zs) N dverts (Node v ys) C (fst
set ((v,e)#bs))
proof (induction zs arbitrary: as bs)
case (insert z xs)
obtain t1 el where t1-def[simp]: x = (t1,el) by fastforce
define f’ where [’ = merge-f r xs
let 2f = merge-f r (finsert x xs)
let ?f' = merge-f r xs
have (t1, el) € fset (finsert x xs) by simp
moreover have (t1, el) ¢ fset xs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold 2f'[] xs). set v N dlverts t1 = {} A v # ][] A e ¢ dares t1
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U {et})
using merge-ffold-empty-inter-preserv’| OF insert.prems(2) empty-list-valid-merge]
by blast
have 0: Vit € fst ¢ fset xs. maz-deg t < 1 using insert.prems(1) by simp
have 1: list-dtree (Node r xs) using list-dtree-subset insert.prems(2) by blast
have ffold ?f || (finsert x zs) = ?f x (ffold ?f || xs)
using Comm.ffold-finsert| OF insert.hyps] by blast
also have ... = ?f x (ffold ?f' ] zs)
using merge-ffold-supset|of xs finsert x zs r []] insert.prems(2) by fastforce
finally have ind: ffold ?f || (finsert x xs)
= Sorting-Algorithms.merge cmp’ (dtree-to-list (Node r {|z|})) (ffold f’
] 25)
using insert.prems(2) zs-val f'-def by simp
have maz-deg (fst ) < 1 using insert.prems(1) by simp
then have maz-deg (Node r {|z|}) < 1
using mdeg-child-sucs-eq-if-gt1[of v fst x snd x root (fst x)] by fastforce
then have Y as bs. asQ(v,e)#bs = dtree-to-list (Node r {|z|}) —
(3 zs. strict-subtree (Node v zs) (Node r {|z|})
A dverts (Node v zs) C fst ‘ set ((v,e)#bs))
using dtree-to-list-split-subtree-dverts-eq-fsts' by fast
then have left: V as bs. asQ(v,e)#bs = dtree-to-list (Node r {|z|}) —
(3 zs. strict-subtree (Node v zs) (Node r (finsert x xs))
A dverts (Node v zs) C fst “ set ((v,e)#bs))
using strict-subtree-singleton[where zs=finsert x zs| by blast
have V as bs. asQ(v,e)#bs = ffold ' [ zs —
(3 zs. strict-subtree (Node v zs) (Node 1 xs)
A dverts (Node v zs) C fst “ set ((v,e)#bs))
using insert. [H[OF 0 1] f’-def by blast
then have right: V as bs. asQ(v,e)#bs = ffold f' [] xs —
(3 zs. strict-subtree (Node v zs) (Node r (finsert z xs))
A dverts (Node v zs) C fst < set ((v,e)#bs))
using strict-subtree-subset[where r=r and zs=zs and ys=finsert x xs] by fast
then show ?case using merge-split-supset-strict-subtree[OF left right] ind in-
sert.prems(3) by simp
qed (simp add: ffold.rep-eq)

lemma merge-strict-subtree-dverts-sup:
assumes Vit € fst ¢ fset (sucs t). max-deg t < 1
and strict-subtree (Node r xs) (merge t)
shows Jys. is-subtree (Node r ys) t A\ dverts (Node r ys) C dverts (Node r xs)
proof —
have 0: list-dtree (Node (root t) (sucs t)) using list-dtree-azioms by simp
have Vas r e bs. asQ(r,e)#bs = ffold (merge-f (root t) (sucs t)) [] (sucs t)
— (ys. strict-subtree (Node r ys) (Node (root t) (sucs t))
A dverts (Node r ys) C fst ¢ set ((r,e)#bs))
using merge-ffold-split-subtree| OF assms(1) 0] by blast
then have Vas r e bs. asQ(r,e)#bs = ffold (merge-f (root t) (sucs t)) [] (sucs
t) —
(Fys. strict-subtree (Node r ys) t A dverts (Node r ys) C fst ‘ set ((r,e)#bs))
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by simp
obtain as e bs where bs-def: asQ(r,e)#bs = ffold (merge-f (root t) (sucs t)) []
(sucs t)
using assms(2) dtree-from-list-uneq-sequence-zs[of r] unfolding merge-def by
blast
have wf-dverts (merge t) by (simp add: merge-wf-dlverts wf-dverts-if-wf-dlverts)
then have wf: wf-dverts (dtree-from-list (root t) (asQ(r,e)#bs))
unfolding merge-def bs-def .
moreover obtain ys where
strict-subtree (Node r ys) t dverts (Node r ys) C fst ‘ set ((r,e)#bs)
using merge-ffold-split-subtree[ OF assms(1) 0 bs-def] by auto
moreover have strict-subtree (Node r xs) (dtree-from-list (root t) (asQ(r,e)#bs))
using assms(2) unfolding bs-def merge-def .
ultimately show ?thesis
using dtree-from-list-dverts-subset-wfdverts! unfolding strict-subtree-def by
fast
qed

lemma merge-subtree-dverts-supset:

assumes Y tefst ¢ fset (sucs t). maz-deg t < 1 and is-subtree (Node r xs) (merge
t)

shows Jys. is-subtree (Node r ys) t A dverts (Node r ys) C dverts (Node 1 xs)
proof(cases Node r xs = merge t)

case True

then obtain ys where t = Node r ys using merge-root-eq dtree.exhaust-sel
dtree.sel(1) by metis

then show ?thesis using dverts-merge-eq[OF assms(1)] True by auto
next

case Fulse

then show ?thesis using merge-strict-subtree-dverts-sup assms strict-subtree-def
by blast
qed

lemma merge-subtree-dlverts-supset:

assumes Y tefst ¢ fset (sucs t). maz-deg t < 1 and is-subtree (Node r zs) (merge
t)

shows Jys. is-subtree (Node r ys) t A dlverts (Node r ys) C dlverts (Node r xs)
proof —

obtain ys where is-subtree (Node 1 ys) t dverts (Node r ys) C dverts (Node r
xs)

using merge-subtree-dverts-supset| OF assms| by blast

then show ?thesis using dlverts-eq-dverts-union|of Node r ys| dlverts-eq-dverts-union
by fast
qed

end
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9.3 Normalizing Dtrees

context ranked-dtree
begin

9.3.1 Definitions

function normalizel :: (‘a list,’d) dtree = (’a list,’b) diree where
normalizel (Node r {|(t1,e)|}) =
(if rank (rev (root t1)) < rank (rev r) then Node (rQroot t1) (sucs t1)
else Node r {|(normalizel t1,e)|})
| V. zs # {|z|} = normalizel (Node r xs) = Node r ((A(t,e). (normalizel t,e))
14 2s)
by (metis darcs-mset.cases old.prod.ezhaust) fast+
termination by lexicographic-order

lemma normalizel-size-decr[termination-simp):
normalizel t1 # t1 = size (normalizel t1) < size t1
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case
proof(cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis using diree-size-eq-root|of root t sucs t] by simp
next
case Fulse
then show ?thesis using dtree-size-img-le 1 by auto
qed
next
case (2 zs r)
then have 0: Vit € fst ‘ fset xs. size (normalizel t) < size t by fastforce
moreover have 3t € fst  fset xzs. size (normalizel t) < size t
using elem-neg-if-fset-neqlof normalizel zs] 2 by fastforce
ultimately show ?case using dtree-size-img-lt 2.hyps by auto
qed

lemma normalizel-size-le: size (normalizel t1) < size t1
by (cases normalizel t1=t1) (auto dest: normalizel-size-decr)

fun normalize :: ('a list,’d) dtree = ('a list,’b) dtree where
normalize t1 = (let t2 = normalizel t1 in if t1 = t2 then t2 else normalize 12)

9.3.2 Basic Proofs

lemma root-normalizel-eql:

—rank (rev (root t1)) < rank (rev r) = root (normalizel (Node r {|(t1,e1)|}))
=r

by simp

lemma root-normalizel-eql ":
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—rank (rev (root t1)) < rank (rev r) = root (normalizel (Node r {|(t1,e1)|}))
=r
by simp

lemma root-normalizel-eq2: ¥ z. xs # {|x|} = root (normalizel (Node r zs)) =
r
by simp

lemma fset-img-eq: Vo € fset xs. fo =z = [ |] s = xs
using fset-inject[of zs f || xs] by simp

lemma fset-img-uneq: f | xs # zs = Jx € fset zs. fzx # x
using fset-img-eq by fastforce

lemma fset-img-uneq-prod: (A(t,e). (ft, e)) || zs # xs = I (t,e) € fset xs. ft #
t
using fset-img-uneg[of A(t,e). (f ¢, €) xs] by auto

lemma contr-if-normalizel-uneq:

normalizel t1 # t1

= Ju t2 e2. is-subtree (Node v {|(t2,e2)|}) t1 A rank (rev (root t2)) < rank

(rev v)
proof (induction t1 rule: normalizel .induct)

case (2 s r)

then show ?case using fset-img-uneq-prod|of normalizel xs] by fastforce
qed(fastforce)

lemma contr-before-normalizel :
[is-subtree (Node v {|(t1,e1)|}) (normalizel t3); rank (rev (root t1)) < rank (rev
v)l
= Jv’ t2 e2. is-subtree (Node v’ {|(t2,e2)|}) t3 A rank (rev (root t2)) < rank
(rev v')
using contr-if-normalizel-uneq by force

9.3.3 Normalizing Preserves Well-Formedness

lemma normalizel-darcs-sub: darcs (normalizel t1) C darcs t1
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case
proof (cases rank (rev (root t)) < rank (rev r))
case True
then have darcs (normalizel (Node r {|(t,e)|})) = darcs (Node (rQroot t)
(sucs t)) by simp

also have ... = darcs (Node (root t) (sucs t)) using darcs-sub-if-children-sub
by fast
finally show ?thesis by auto
next
case Fulse
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then show ¢thesis using 1 by auto
qed
qed (fastforce)

lemma disjoint-darcs-normalizel :
wf-dares t1 = disjoint-darcs ((A(t,e). (normalizel t.e)) | (sucs t1))
using disjoint-darcs-img|OF disjoint-darcs-if-wf, of t1 normalizel]
by (simp add: normalizel-darcs-sub)

lemma wf-darcs-normalizel : wf-darcs t1 = wf-darcs (normalizel t1)
proof (induction t1 rule: normalizel .induct)
case (I rte)
show ?Zcase
proof (cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis
using 1.prems dtree.collapse singletonl finsert.rep-eq case-prodD
unfolding wf-darcs-iff-darcs’
by (metis (no-types, lifting) wf-darcs’.simps bot-fset.rep-eq normalizel .simps(1))
next
case Fulse
have disjoint-darcs {|(normalizel t,e)|}
using normalizel-darcs-sub disjoint-darcs-if-wf-zs[OF 1.prems] by auto
then show ?thesis using 1 False unfolding wf-darcs-iff-darcs’ by force
qed
next
case (2 zs 1)
then show ?case
using disjoint-darcs-normalizel [OF 2.prems]
by (fastforce simp: wf-darcs-iff-darcs’)
qed

lemma normalizel-dlverts-eq[simp: dlverts (normalizel t1) = dlverts t1
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case
proof (cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis using dlverts.simps[of root t sucs t| by force
next
case Fulse
then show %thesis using I by auto
qed
qed (fastforce)

lemma normalizel-dverts-contr-subtree:
[v € dverts (normalizel t1); v ¢ dverts t1]
= Jv2 t2 e2. is-subtree (Node v2 {|(t2,e2)|}) t1
A v2 Q root t2 = v A rank (rev (root t2)) < rank (rev v2)
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proof (induction t1 rule: normalizel .induct)
case (I rte)
show ?Zcase
proof (cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis using 1.prems dverts-suc-subseteq by fastforce
next
case Fulse
then show %thesis using 1 by auto
qged
qed(fastforce)

lemma normalizel-dverts-app-contr:
[v € dverts (normalizel t1); v ¢ dverts t1]
= JwlEdverts t1. Jv2€&dverts t1. vl Q v2 = v A rank (rev v2) < rank (rev
vl)
using normalizel-dverts-contr-subtree
by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts)

lemma disjoint-dlverts-img:
assumes disjoint-dlverts zs and V (t,e) € fset xs. dlverts (f t) C dlverts t
shows disjoint-dlverts (A(t,e). (f t,e)) | zs) (is disjoint-dlverts ?xs)
proof (rule ccontr)
assume - disjoint-dlverts ?xs
then obtain z1 el yI e2 where asm: (z1,el) € fset ?xs (yl,e2) € fset %xs
dlverts x1 N dlverts y1 # {} A (x1,e1)#(yl,e2) by blast
then obtain z2 where z2-def: f 22 = z1 (22,el) € fset xs by auto
obtain y2 where y2-def: fy2 = yl (y2,e2) € fset zs using asm(2) by auto
have dlverts 1 C dlverts 2 using assms(2) z2-def by fast
moreover have dlverts yl C dlverts y2 using assms(2) y2-def by fast
ultimately have — disjoint-dlverts zs using asm(3) z2-def y2-def by blast
then show Fulse using assms(1) by blast
qed

lemma disjoint-dlverts-normalizel :
disjoint-dlverts xs = disjoint-dlverts ((A(t,e). (normalizel t,e)) | xs)
using disjoint-dlverts-imglof xs| by simp

lemma disjoint-dlverts-normalizel-sucs:
disjoint-dlverts (sucs t1) = disjoint-dlverts ((A(t,e). (normalizel t,e)) || (sucs

t1))

using disjoint-dlverts-imglof sucs t1] by simp

lemma disjoint-dlverts-normalizel-wf:
wf-dlverts t1 = disjoint-dlverts (A(t,e). (normalizel t.e)) | (sucs t1))
using disjoint-dlverts-img|OF disjoint-dlverts-if-wf, of t1] by simp

lemma disjoint-dlverts-normalizel-wf":
wf-dlverts (Node r zs) = disjoint-dlverts ((A(t,e). (normalizel t,e)) || xs)
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using disjoint-dlverts-img[OF disjoint-dlverts-if-wf, of Node r xs| by simp

lemma root-empty-inter-dlverts-normalizel :

assumes wf-dlverts t1 and (z1,el) € fset ((A(t,e). (normalizel t,e)) |9 (sucs
t1))

shows set (root t1) N dlverts z1 = {}
proof (rule ccontr)

assume asm: set (root t1) N dlverts 1 # {}

obtain 22 where x2-def: normalizel 22 = z1 (22,el) € fset (sucs t1) using
assms(2) by auto

have set (root t1) N dlverts 2 # {} using z2-def(1) asm by force

then show Fulse using z2-def(2) assms(1) wf-dlverts.simps|of root t1 sucs t1]
by auto
qed

lemma wf-dlverts-normalizel: wf-dlverts t1 = wf-dlverts (normalizel t1)
proof (induction t1 rule: normalizel .induct)
case (I rte)
show ?Zcase
proof (cases rank (rev (root t)) < rank (rev r))
case True
have 0: V (t1,el) € fset (sucs t). wf-dlverts t1
using [.prems wf-dlverts.simps|of root t sucs t] by auto
have V (t1,el) € fset (sucs t). set (root t) N dlverts t1 = {}
using 1.prems wf-dlverts.simps|of root t] by fastforce
then have V (t1,e1) € fset (sucs t). set (r@Qroot t) N dlverts t1 = {}
using suc-in-dlverts 1.prems by fastforce
then show ?thesis using True 0 disjoint-dlverts-if-wf|of t| 1.prems by auto
next
case Fulse
then show ?thesis
using root-empty-inter-dlverts-normalizel [OF 1.prems] disjoint-dlverts-normalizel
1 by auto
qed
next
case (2 zs r)
have V (t1,el) € fset (A(t, €). (normalizel t, €)) || zs). set r N dlverts t1 = {}
using root-empty-inter-dlverts-normalizel [OF 2.prems] by force
then show ?case using disjoint-dlverts-normalizel 2 by auto
qed

corollary list-dtree-normalizel: list-dtree (normalizel t)
using wf-dlverts-normalizel [ OF wf-lverts] wf-darcs-normalize1|OF wf-arcs] list-dtree-def

by blast

corollary ranked-dtree-normalizel: ranked-dtree (normalizel t) cmp
using list-dtree-normalizel ranked-dtree-def ranked-dtree-azioms by blast

lemma normalize-darcs-sub: darcs (normalize t1) C dares t1
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apply(induction t1 rule: normalize.induct)
by (smt (verit) normalizel-darcs-sub normalize.simps subset-trans)

lemma normalize-dlverts-eq: dlverts (normalize t1) = dlverts t1
by (induction t1 rule: normalize.induct) (metis (full-types) normalize.elims nor-
malizel-dlverts-eq)

theorem ranked-diree-normalize: ranked-dtree (normalize t) cmp
using ranked-dtree-axzioms apply(induction t rule: normalize.induct)
by (smt (verit) ranked-dtree.normalize.elims ranked-dtree.ranked-dtree-normalizel )

9.3.4 Distinctness and hd preserved

lemma distinct-normalizel: [V v€dverts t. distinct v; v€dverts (normalizel t)] =
distinct v
using ranked-dtree-azioms proof (induction t rule: normalizel .induct)
case (I rte)
then interpret R: ranked-dtree Node v {|(t, e)|} rank by blast
show ?Zcase
proof (cases rank (rev (root t)) < rank (rev r))
case True
interpret T: ranked-dtree t rank using R.ranked-dtree-rec by auto
have set r N set (root t) = {}
using R.wjf-lverts dlverts.simps|of oot t sucs t] by auto
then have distinct (rQroot t) by (auto simp: dtree.set-sel(1) 1.prems(1))
moreover have Vv € (|J (¢, e)€fset (sucs t). dverts t). distinct v
using 1.prems(1) ditree.set(1)[of root t sucs t] by fastforce
ultimately show ?thesis using dverts-root-or-child 1.prems(2) True by auto
next
case Fualse
then show %thesis using R.ranked-dtree-rec 1 by auto
qed
next
case (2 zs r)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case using R.ranked-dtree-rec 2 by fastforce
qed

lemma distinct-normalize: ¥ vEdverts t. distinct v = YV vEdverts (normalize t).
distinct v
using ranked-dtree-azioms proof (induction t rule: normalize.induct)

case (11t)

then interpret T'1: ranked-dtree t rank by blast

interpret T2: ranked-dtree normalizel t rank by (simp add: T1.ranked-dtree-normalizel)

show ?case

by (smt (verit, del-insts) 1 T1.distinct-normalizel T2.ranked-dtree-axioms nor-

malize.simps)
qged
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lemma normalizel-hd-root-eq[simpl:

assumes root t1 # ||

shows hd (root (normalizel t1)) = hd (root t1)
proof(cases V. sucs t1 # {|z|})

case True

then show %thesis using normalizel .simps(2)[of sucs t1 oot t1] by simp
next

case Fulse

then obtain ¢ e where {|(t, €)|} = sucs t1 by auto

then show ?thesis using normalizel.simps(1)[of root t1 t €] assms by simp
qged

corollary normalizel-hd-root-eq':
wf-dlverts t1 = hd (root (normalizel t1)) = hd (root t1)
using normalizel-hd-root-eq[of t1] wf-dlverts.simps|of root t1 sucs t1] by simp

lemma normalizel-root-nempty:

assumes root t1 # ||

shows root (normalizel t1) # []
proof(cases V. sucs t1 # {|z|})

case True

then show ?thesis using normalizel.simps(2)[of sucs t1 root t1] assms by simp
next

case Fulse

then obtain ¢ e where {|(¢, €)|} = sucs t1 by auto

then show ?thesis using normalizel.simps(1)[of root t1 t €] assms by simp
qged

lemma normalize-hd-root-eq[simp]: Toot t1 # [| = hd (root (normalize t1)) = hd
(root t1)
using ranked-dtree-azioms proof (induction t1 rule: normalize.induct)
case (11t)
then show “case
proof(cases t = normalizel t)
case Fulse
then have normalize t = normalize (normalizel t) by (simp add: Let-def)
then show %thesis using I normalizel-root-nempty by force
qed(simp)
qed

corollary normalize-hd-root-eq'[simp|: wf-dlverts t1 = hd (root (normalize t1))
= hd (root t1)
using normalize-hd-root-eq wf-dlverts.simps|of root t1 sucs t1] by simp

9.3.5 Normalize and Sorting

lemma normalizel-uneq-if-contr:
[is-subtree (Node r1 {|(t1,el)|}) t2; rank (rev (root t1)) < rank (rev r1); wf-darcs
t2]
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= t2 # normalizel t2
proof (induction t2 rule: normalizel .induct)
case (I rte)
then show ?case
proof (cases rank (rev (root t)) < rank (rev r))
case True
then show ¢thesis using combine-uneq by fastforce
next
case Fulse
then show %thesis using I by auto
qed
next
case (2 zs r)
then obtain t e where ¢-def: (t,e) € fset xs is-subtree (Node r1 {|(t1,el)|}) t
by auto
then have t # normalizel t using 2 by fastforce
then have (normalizel t, e) ¢ fset xs
using 2.prems(3) t-def(1) by (auto simp: wf-darcs-iff-darcs’)
moreover have (normalizel t, €) € fset ((A(t,e). (normalizel t,e)) || zs)
using t-def(1) by auto
ultimately have (A(t,e). (normalizel t,e)) | zs # xs using t-def (1) by fastforce
then show ?case using 2.hyps by simp
qed

lemma sorted-ranks-if-normalizel-eq:
[wf-dares t2; is-subtree (Node r1 {|(t1,e1)|}) t2; t2 = normalizel t2]
= rank (rev r1) < rank (rev (root t1))
using normalizel-uneq-if-contr by fastforce

lemma normalize-sorted-ranks:
[és-subtree (Node r {|(t1,e1)|}) (normalize t)] = rank (rev r) < rank (rev (root
t1))
using ranked-dtree-azioms proof (induction t rule: normalize.induct)
case (1 t)
then interpret T': ranked-dtree t by blast
show ?Zcase
using 1 sorted-ranks-if-normalizel-eqOF T.wf-arcs]
by (smt (verit, ccfo-SIG) T.ranked-dtree-normalizel normalize.simps)
qed

lift-definition cmp’’ :: (‘a listx'b) comparator is
(Az y. if rank (rev (fst z)) < rank (rev (fst y)) then Less
else if rank (rev (fst x)) > rank (rev (fst y)) then Greater
else Equiv)
by (simp add: comparator-def)

lemma dtree-to-list-sorted-if-no-contr:

[Arl t1 el. is-subtree (Node r1 {|(t1,e1)|}) t2 = rank (rev r1) < rank (rev
(root t1))]
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= sorted cmp'’ (dtree-to-list (Node r {|(t2,e2)|}))
proof (induction cmp'’ diree-to-list (Node r {|(t2,e2)|}) arbitrary: r t2 e2 rule:
sorted.induct)
case (2 x)
then show ?case using sorted-single[of cmp’’ x| by simp
next
case (3 y x xs)
then obtain 71 t1 el where ri-def: t2 = Node r1 {|(t1,el)|}
using dtree-to-list.elims[of t2] by fastforce
have y = (root t2,e2) using 3.hyps(2) ri-def by simp
moreover have z = (root t1,el) using 3.hyps(2) r1-def by simp
moreover have rank (rev (root t2)) < rank (rev (root t1)) using 3.prems ri-def
by auto
ultimately have compare cmp’ y x # Greater using cmp'’.rep-eq by simp
moreover have sorted cmp’’ (dtree-to-list t2) using 3 ri-def by auto
ultimately show ?case using 3 ri-def by simp
qed(simp)

lemma dtree-to-list-sorted-if-no-contr’:
[Arl t1 el. is-subtree (Node r1 {|(t1,e1)|}) t2 = rank (rev r1) < rank (rev
(root t1))]
= sorted cmp'’ (dtree-to-list t2)
using dtree-to-list-sorted-if-no-contr|of t2] sorted-Cons-imp-sorted by fastforce

lemma dtree-to-list-sorted-if-subtree:
[és-subtree t1 t2;
Arl t1 el. is-subtree (Node r1 {|(t1,e1)|}) t2 = rank (rev r1) < rank (rev
(root t1))]
= sorted cmp’’ (diree-to-list (Node r {|(¢1,e1)|}))
using dtree-to-list-sorted-if-no-contr subtree-trans by blast

lemma dtree-to-list-sorted-if-subtree’:
[is-subtree t1 t2;
Arl t1 el. is-subtree (Node r1 {|(t1,e1)|}) t2 = rank (rev r1) < rank (rev
(root t1))]
= sorted cmp'’ (dtree-to-list t1)
using diree-to-list-sorted-if-no-contr’ subtree-trans by blast

lemma normalize-dtree-to-list-sorted:
is-subtree t1 (normalize t) = sorted cmp’’ (dtree-to-list (Node v {|(t1,e1)|}))
using dtree-to-list-sorted-if-subtree normalize-sorted-ranks by blast

lemma normalize-diree-to-list-sorted:
is-subtree t1 (normalize t) = sorted cmp'’ (dtree-to-list t1)
using dtree-to-list-sorted-if-subtree’ normalize-sorted-ranks by blast

lemma gt-if-rank-contr: rank (rev r0) < rank (rev r) = compare cmp'’ (r, e)

(r0, e0) = Greater
by (auto simp: cmp'.rep-eq)
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lemma rank-le-if-ngt: compare cmp' (r, €) (r0, e0) # Greater => rank (rev r)
< rank (rev r0)
using gt-if-rank-contr by force

lemma rank-le-if-sorted-from-list:

assumes sorted cmp’’ ((v1,el)#ys) and is-subtree (Node 10 {|(t0,e0)|}) (dtree-from-list
vl ys)

shows rank (rev r0) < rank (rev (root t0))
proof —

obtain e as bs where e-def: as @ (10, €) # (root t0, e0) # bs = ((v1,el)Fys)

using dtree-from-list-sequence| OF assms(2)] by blast

then have sorted cmp’’ (as @ (r0, e) # (root t0, e0) # bs) using assms(1) by
stmp

then have sorted cmp’’ ((r0, e) # (root t0, e0) # bs) using sorted-app-r by
blast

then show ?thesis using rank-le-if-ngt by auto
qed

lemma cmp’-gt-if-cmp'’-gt: compare cmp’’ x y = Greater = compare cmp’ z y
= Greater
by (auto simp: cmp’.rep-eq cmp’’.rep-eq split: if-splits)

lemma cmp’-lt-if-cmp’’-lt: compare cmp’' © y = Less = compare cmp’ x y = Less
by (auto simp: cmp’.rep-eq cmp’’.rep-eq)

lemma cmp'’-ge-if-cmp’-gt:

compare cmp’ © y = Greater = compare cmp’’ z y = Greater V compare cmp'’
zy = Equiv

by (auto simp: cmp’.rep-eq cmp’’.rep-eq split: if-splits)

lemma cmp'’-nlt-if-cmp’-gt: compare cmp’ z y = Greater = compare cmp'' y
# Greater
by (auto simp: cmp’.rep-eq cmp’’.rep-eq)

interpretation Comm: comp-fun-commute merge-f r zs by (rule merge-commute)

lemma sorted-cmp’’-merge:
[sorted emp' xs; sorted cmp’ ys] = sorted ecmp’’ (Sorting-Algorithms.merge
cmp’ xs ys)
proof (induction xs ys taking: cmp’ rule: Sorting-Algorithms.merge.induct)
case (3 x5 y ys)
let ?merge = Sorting-Algorithms.merge cmp’
show ?Zcase
proof(cases compare cmp’ x y = Greater)
case True
have ?merge (x # xs) (y#ys) = y # (9merge (z # xs) ys) using True by
simp
moreover have sorted cmp’’ (?merge (x # xs) ys) using 3 True sorted-Cons-imp-sorted
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by fast
ultimately show ¢thesis
using cmp’’-nlt-if-cmp’-gt|OF True] 3.prems sorted-rec[of cmp’’ y]
merge.elims[of cmp’ x#xs ys merge (x # x3) ys]
by metis
next
case Fulse
have ?merge (x#xs) (y#ys) = x # (¢merge zs (y#vys)) using False by simp
moreover have sorted cmp’’ (?merge xs (y#ys)) using 3 False sorted-Cons-imp-sorted
by fast
ultimately show #thesis
using cmp’-gt-if-cmp’’-gt False 3.prems sorted-rec|of cmp’’ x]
merge.elims[of cmp’ xs y#ys merge xs (y#ys))
by metis
qed
qed(auto)

lemma merge-ffold-sorted:
[list-dtree (Node r xzs); A\t2 r1 t1 el. [t2 € fst © fset xs; is-subtree (Node rl
{I(¢1,e1)[}) t2]
= rank (rev r1) < rank (rev (root t1))]
= sorted cmp'’ (ffold (merge-f r zs) || zs)
proof (induction xs)
case (insert z xs)
interpret Comm: comp-fun-commute merge-f r (finsert z zs) by (rule merge-commute)
define f where f = merge-f r (finsert x xs)
define f’ where [’ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp’
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain ¢2 e2 where t2-def[simp]: © = (t2,e2) by fastforce
have ind1: sorted cmp'’ (dtree-to-list (Node r {|(t2,e2)|}))
using dtree-to-list-sorted-if-no-contr insert.prems(2) by fastforce
have At2 r1 t1 el. [t2 € fst ‘ fset xs; is-subtree (Node r1 {|(t1, el)|}) t2]
= rank (rev r1) < rank (rev (root t1))
using insert.prems(2) by fastforce
then have ind2: sorted cmp” (ffold f' [ zs) using insert. IH[OF 0] f’-def by
blast
have (12, e2) € fset (finsert x xs) by simp
moreover have (12, e2) ¢ fset xs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold f'[] xs). set v N dlverts t2 = {} AN v #£ | A e & dares t2 U
{e2})
using merge-ffold-empty-inter-preserv’| OF insert.prems(1) empty-list-valid-merge]
f'-def
by blast
have ffold f [] (finsert x xs) = fz (ffold f [] xs)
using Comm.ffold-finsert|OF insert.hyps] f-def by blast
also have ... = fx (ffold '] zs)
using merge-ffold-supset|of xs finsert x xs r [|] insert.prems(1) f-def f’-def by
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fastforce
finally have ffold f [] (finsert z zs) = ?merge (dtree-to-list (Node r {|z|})) (ffold
f1 s)
using zs-val insert.prems f-def by simp
then have merge: ffold f || (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2,e2)|})) (ffold f]] xs)
using t2-def by blast
then show ?case using sorted-cmp’’-merge|OF indl ind2] f-def by auto
qed (simp add: ffold.rep-eq)

lemma not-single-subtree-if-nwf:
—list-dtree (Node r xs) = —is-subtree (Node 1 {|(t1,e1)|}) (merge (Node r xs))
using merge-empty-if-nwf by simp

lemma not-single-subtree-if-nwf-sucs:
—list-dtree t2 = —is-subtree (Node r1 {|(t1,el)|}) (merge t2)
using merge-empty-if-nwf-sucs by simp

lemma merge-strict-subtree-nocontr:
assumes A2 rl t1 el. [t2 € fst * fset xs; is-subtree (Node r1 {|(t1,e1)|}) t2]
= rank (rev r1) < rank (rev (root t1))
and strict-subtree (Node r1 {|(t1,e1)|}) (merge (Node r xs))
shows rank (rev r1) < rank (rev (root t1))
proof (cases list-dtree (Node r xs))
case True
obtain e as bs where e-def: as Q (r1, e) # (root t1, el) # bs = ffold (merge-f
ras) || xs
using dtree-from-list-uneg-sequence assms(2) unfolding merge-def dtree.sel
strict-subtree-def
by fast
have sorted cmp” (ffold (merge-f r xs) [| xs)
using merge-ffold-sorted|OF True assms(1)] by simp
then have sorted cmp’ ((r1, €) # (root t1, el) # bs)
using e-def sorted-app-r{of ecmp'’ as (r1, e) # (root t1, el) # bs| by simp
then show ?thesis using rank-le-if-sorted-from-list by fastforce
next
case Fulse
then show ?thesis using not-single-subtree-if-nwf assms(2) by (simp add: strict-subtree-def)
qed

lemma merge-strict-subtree-nocontr2:
assumes Ari t1 el. is-subtree (Node r1 {|(t1,e1)|}) (Node r xs)
= rank (rev r1) < rank (rev (root t1))
and strict-subtree (Node r1 {|(t1,e1)|}) (merge (Node r xs))
shows rank (rev r1) < rank (rev (root t1))
using merge-strict-subtree-nocontr[OF assms| by fastforce

lemma merge-strict-subtree-nocontr-sucs:
assumes At2 r1 tl el. [t2 € fst ‘ fset (sucs t0); is-subtree (Node r1 {|(t1,el)|})
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t2]
= rank (rev r1) < rank (rev (root t1))
and strict-subtree (Node r1 {|(t1,e1)|}) (merge t0)
shows rank (rev r1) < rank (rev (root t1))
using merge-strict-subtree-nocontr|of sucs t0 r1 t1 el root t0] assms by simp

lemma merge-strict-subtree-nocontr-sucs2:
assumes Ar! t1 el. is-subtree (Node r1 {|(t1,e1)|}) t2 = rank (rev r1) <
rank (rev (root t1))
and strict-subtree (Node r1 {|(t1,e1)|}) (merge t2)
shows rank (rev r1) < rank (rev (root t1))
using merge-strict-subtree-nocontr2|of root t2 sucs t2] assms by auto

lemma no-contr-imp-parent:
[is-subtree (Node r1 {|(t1,e1)|}) (Node r xs) = rank (rev r1) < rank (rev (root
t1));
12 € fst ¢ fset xs; is-subtree (Node r1 {|(t1,e1)|}) t2]
= rank (rev r1) < rank (rev (root t1))
using subtree-if-child subtree-trans by fast

lemma no-contr-imp-subtree:
[At2 r1 t1 el. [t2 € fst ‘ fset xs; is-subtree (Node r1 {|(t1,e1)|}) t2]
= rank (rev r1) < rank (rev (root t1));
is-subtree (Node r1 {|(t1,e1)|}) (Node r zs); Vz. xs # {|z|}]
= rank (rev r1) < rank (rev (root t1))
by fastforce

lemma no-contr-imp-subtree-fecard:
[At2 r1 t1 el. [t2 € fst  fset xs; is-subtree (Node r1 {|(t1,e1)|}) t2]
= rank (rev r1) < rank (rev (root t1));
is-subtree (Node r1 {|(t1,e1)|}) (Node r xs); feard xs # 1]
= rank (rev r1) < rank (rev (root t1))
using fcard-single-1-iff[of xs] by fastforce

end

9.4 Removing Wedges

context ranked-dtree
begin

fun merge! :: ('a list,’d) dtree = ('a list,’b) diree where
mergel (Node r zs) = (
if feard zs > 1 N\ (Vt € fst * fset xs. maz-deg t < 1) then merge (Node r zs)
else Node r ((\(t,e). (mergel tye)) | xs))

lemma mergel-dverts-eq[simp]: dverts (mergel t) = dverts t

using ranked-dtree-azioms proof (induction t)
case (Node 1 zs)
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then interpret R: ranked-dtree Node r xs rank by blast
show ?Zcase
proof(cases fecard xs > 1 N (Vt € fst © fset xs. maz-deg t < 1))
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis using Node.IH R.ranked-dtree-rec by auto
qed
qed

lemma mergel-dlverts-eq[simp]: dlverts (mergel t) = dlverts t
using ranked-dtree-azioms proof (induction t)
case (Node 1 zs)
then interpret R: ranked-dtree Node r xs rank by blast
show Zcase
proof(cases fecard zs > 1 N (Vt € fst * fset xs. maz-deg t < 1))
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis using Node.IH R.ranked-dtree-rec by auto
qed
qed

lemma dverts-mergel-img-sub:
YV (t2,e2) € fset xs. dverts (mergel t2) C dverts t2
= dverts (Node r ((A(t,e). (mergel t,e)) || xs)) C dverts (Node 1 xs)
by fastforce

lemma mergel-dverts-sub: dverts (mergel t1) C dverts t1
proof (induction t1)
case (Node r zs)
show ?Zcase
proof(cases fcard xs > 1 N (VL € fst © fset xs. maz-deg t < 1))
case True
then show ?thesis using dverts-merge-sub by force
next
case Fulse
then have V (t2,e2) € fset zs. dverts (mergel t2) C dverts t2 using Node by
fastforce
then show %thesis using Fulse dverts-mergel-img-sub by auto
qed
qed

lemma disjoint-dlverts-mergel: disjoint-dlverts (\(t,e). (mergel t,e)) | (sucs t))
proof —
have V (¢, e)Efset (sucs t). dlverts (mergel t) C dlverts t
using ranked-dtree.mergel-dlverts-eq ranked-dtree-rec[of root t| by force
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then show ?Zthesis using disjoint-dlverts-img|OF disjoint-dlverts-if-wf[OF wf-lverts]]
by simp
qed

lemma root-empty-inter-dlverts-mergel :

assumes (z1,el) € fset ((A(t,e). (mergel tye)) || (sucs t))

shows set (root t) N dlverts 1 = {}
proof (rule ccontr)

assume asm: set (root t) N dlverts x1 # {}

obtain 22 where z2-def: mergel 22 = z1 (22,el) € fset (sucs t) using assms
by auto

then interpret X: ranked-dtree 2 using ranked-dtree-rec dtree.collapse by blast

have set (root t) N diverts x2 # {} using X.mergel-dlverts-eq z2-def(1) asm
by argo

then show Fulse using x2-def(2) wf-lverts wf-dlverts.simps|of root t sucs t] by
auto
qed

lemma wf-dlverts-mergel: wf-dlverts (mergel t)
using ranked-dtree-azioms proof (induction t)
case (Node r zs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?Zcase
proof(cases fecard xs > 1 N (Vt € fst © fset xs. maz-deg t < 1))
case True
then show %thesis using R.merge-wf-dlverts by simp
next
case Fulse
have (V(t,e) € fset ((A(t,e). (mergel t.e)) |9 xs). set r N dlverts t = {} A
wf-dlverts t)
using R.ranked-dtree-rec Node.IH R.root-empty-inter-dlverts-mergel by fast-
force
then show ?thesis using R.disjoint-dlverts-mergel R.wf-lverts False by auto
qed
qed

lemma mergel-darcs-eq[simpl: darcs (mergel t) = darcs ¢
using ranked-dtree-axioms proof (induction t)

case (Node r zs)

then interpret R: ranked-dtree Node r xs rank by blast

show ?case using Node.IH R.ranked-dtree-rec by auto
qged

lemma disjoint-darcs-mergel: disjoint-darcs ((A(t,e). (mergel t,e)) | (sucs t))
proof —
have V (¢, e)€fset (sucs t). darcs (mergel t) C dares t
using ranked-dtree.mergel-darcs-eq ranked-dtree-rec|of root t] by force
then show ?thesis using disjoint-darcs-img|OF disjoint-darcs-if-wf[OF wf-arcs]]
by simp
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qed

lemma wf-darcs-mergel: wf-darcs (mergel t)
using ranked-dtree-axioms proof (induction t)
case (Node r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?Zcase
proof(cases fcard xs > 1 N (Vt € fst * fset xs. maz-deg t < 1))
case True
then show %thesis using R.merge-wf-darcs by simp
next
case Fulse
then show ?thesis
using R.disjoint-darcs-mergel R.ranked-dtree-rec Node.IH
by (auto simp: wf-darcs-iff-darcs’)
qged
qed

theorem ranked-diree-mergel: ranked-dtree (mergel t) cmp
by (unfold-locales) (auto simp: wf-darcs-mergel wf-dlverts-mergel dest: ecmp-antisym)

lemma distinct-mergel:
[V vedverts t. distinct v; vEdverts (mergel t)] = distinct v
using ranked-dtree-azioms proof (induction t arbitrary: v rule: mergel .induct)
case (I 1 zs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?Zcase
proof(cases fecard xs > 1 N (Vt € fst ‘ fset xs. max-deg t < 1))
case True
then show ?thesis using R.distinct-merge[OF 1.prems(1)] 1.prems(2) by simp
next
case ind: Fulse
then show ?thesis
proof(cases v = )
case Fulse
have vedverts (mergel (Node r xs)) <— v € dverts (Node r ((A(t,e). (mergel
t,e)) [ zs))
using ind by auto
then obtain ¢ e where t-def: (t,e) € fset s v € dverts (mergel t)
using False 1.prems(2) by auto
then have Vvedverts t. distinct v using I.prems(1) by force
then show ?thesis using 1.IH[OF ind] t-def R.ranked-dtree-rec by fast
qed(simp add: 1.prems(1))
qed
qed

lemma mergel-root-eq[simpl: root (mergel t1) = root t1
by (induction t1) simp
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lemma mergel-hd-root-eq[simp|: hd (root (mergel t1)) = hd (root t1)
by simp

lemma mergel-mdeg-le: maz-deg (mergel t1) < maz-deg t1
proof (induction t1)
case (Node r xs)
then show ?case
proof(cases fcard xs > 1 N (Vt € fst * fset xs. maz-deg t < 1))
case True
then have maz-deg (mergel (Node r xs)) < 1 using merge-mdeg-le-1 by simp
then show ?thesis using mdeg-ge-fecard|of xs] True by simp
next
case Fulse
have 0:V (t,e) € fset xs. max-deg (mergel t) < maz-deg t using Node by force
have mergel (Node r zs) = (Node r ((A(t, €). (mergel t, €)) | xs))
using Fulse by auto
then show ?thesis using mdeg-img-le’[OF 0] by simp
qed
qed

lemma mergel-childdeg-gt1-if-feard-gt1:

feard (sucs (mergel t1)) > 1 = 3t € fst ¢ fset (sucs t1). maz-deg t > 1
proof (induction t1)

case (Node r zs)

have 0: —(fecard zs > 1 N (Yt € fst ¢ fset xs. maz-deg t < 1))

using merge-fcard-le1[of Node r zs] Node.prems(1) by fastforce

then have fcard (sucs (mergel (Node r xs))) < fcard zs using fcard-image-le
by auto

then show ?case using 0 Node.prems(1) by fastforce
qed

lemma mergel-feard-le: fecard (sucs (mergel (Node r xs))) < feard xs
using fcard-image-le merge-fecard-lel [of Node r xs] by auto

lemma mergel-subtree-if-fecard-gt1:
[és-subtree (Node r xzs) (mergel t1); feard xs > 1]
= Jys. mergel (Node r ys) = Node 1 xzs A is-subtree (Node r ys) t1 A fecard
zs < feard ys
proof (induction t1)
case (Node r1 zs1)
have 0: —(fecard zs1 > 1 N (Yt € fst * fset xs1. maz-deg t < 1))
using merge-fcard-lel-sub Node.prems by fastforce
then have eq: mergel (Node r1 xs1) = Node r1 ((A(t,e). (mergel t,e)) | zsl)
by auto
show ?Zcase
proof(cases Node r xs = mergel (Node 11 zs1))
case True
moreover have r = r{ using True eq by auto
moreover have fcard xs < fecard xs1 using mergel-feard-le True dtree.sel(2)[of
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r zs] by auto
ultimately show ?thesis using self-subtree Node.prems(2) by auto
next
case Fualse
then obtain t2 e2 where (t2,e2) € fset xs1 is-subtree (Node r xs) (mergel t2)
using eq Node.prems(1) by auto
then show ?thesis using Node.IH[of (t2,e2) t2] Node.prems(2) by fastforce
qed
qed

lemma mergel-childdeg-gt1-if-feard-gt1-sub:
[is-subtree (Node r xzs) (mergel t1); feard xs > 1]
= Jys. mergel (Node r ys) = Node r zs A is-subtree (Node r ys) t1
A (Tt € fst ¢ fset ys. maz-deg t > 1)
using mergel-subtree-if-fcard-gt1 mergel-childdeg-gt1-if-fecard-gt1 dtree.sel(2) by
metis

lemma mergel-img-eq: V (12,e2) € fset xs. mergel 12 = t2 = ((A(t,e). (mergel
t,e)) || zs) = xs
using fset-img-eq[of zs A(t,e). (mergel t,e)] by force

lemma mergel-wedge-if-uneq:
mergel t1 # t1
= Jras. is-subtree (Node r xs) t1 A feard zs > 1 N (VL € fst ‘ fset xs. maz-deg
t<1)
proof (induction t1)
case (Node r xs)
show ?Zcase
proof(cases fecard xs > 1 N (Vt € fst © fset xs. max-deg t < 1))
case True
then show %thesis by auto
next
case Fulse
then have mergel (Node r xs) = Node r ((A(t,e). (mergel t,e)) || zs) by auto
then obtain t2 e2 where (t2,e2) € fset xs mergel t2 # 12
using Node.prems mergel-img-eq|of xs] by auto
then show ?thesis using Node.IH[of (t2,e2)] by auto
qed
qed

lemma mergel-mdeg-gt1-if-uneq:

assumes mergel t1 # t1

shows max-deg t1 > 1
proof —

obtain 7 zs where r-def: is-subtree (Node r xs) t1 1 < feard xs

using mergel-wedge-if-uneq| OF assms| by fast

then show ?thesis using mdeg-ge-feard|of xs] mdeg-ge-sub by force

qed
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corollary mergel-eq-if-mdeg-lel: max-deg t1 < 1 = mergel t1 = t1
using mergel-mdeg-gtl-if-uneq by fastforce

lemma mergel-not-merge-if-fcard-gt1:

[mergel (Node r ys) = Node r xs; feard xs > 1] = merge (Node r ys) # Node
r s

using merge-feard-lel[of Node r ys] by auto

lemma mergel-img-if-not-merge:
mergel (Node r xs) # merge (Node 1 xs)
= mergel (Node r zs) = Node r ((A(t,e). (mergel t,e)) || xs)
by auto

lemma mergel-img-if-fcard-gt1:
[mergel (Node r ys) = Node r zs; feard zs > 1]
= mergel (Node r ys) = Node r ((A(t,e). (mergel t.e)) | ys)
using mergel-img-if-not-merge mergel-not-merge-if-feard-gt1[of r ys| by simp

lemma mergel-elem-in-img-if-feard-gt1:
[mergel (Node r ys) = Node r xs; fecard zs > 1; (t2,e2) € fset xs]
= 3¢1. (t1,e2) € fset ys A\ mergel t1 = 2
using mergel-img-if-fcard-gt1 by fastforce

lemma child-mdeg-gt1-if-sub-fcard-gt1:
[és-subtree (Node r zs) (Node v ys); Node r xs # Node v ys; feard xs > 1]
= Jt1 e2. (t1,e2) € fset ys A maz-deg t1 > 1
using mdeg-ge-feard[of zs| mdeg-ge-sub by force

lemma mergel-subtree-if-mdeg-gt1:
[is-subtree (Node r xs) (mergel t1); maz-deg (Node r zs) > 1]
= Jys. mergel (Node r ys) = Node r xs A is-subtree (Node r ys) t1
proof (induction t1)
case (Node r1 zs1)
then have 0: —=(fcard zs1 > 1 A (Yt € fst * fset xs1. maz-deg t < 1))
using merge-mdeg-lel-sub by fastforce
then have eq: mergel (Node r1 xs1) = Node r1 ((A\(t,e). (mergel t.e)) || zsl)
by auto
show ?case
proof(cases Node r xs = mergel (Node r1 zs1))
case True
moreover have r = r! using True eq by auto
moreover have feard xs < fecard zs1 using mergel-feard-le True diree.sel(2)]of
r zs] by auto
ultimately show ?thesis using self-subtree Node.prems(2) by auto
next
case Fulse
then obtain t2 e2 where (t2,e2) € fset xs1 is-subtree (Node r xs) (mergel t2)
using eq Node.prems(1) by auto
then show ?thesis using Node.IH[of (t2,e2) t2] Node.prems(2) by fastforce
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qed
qed

lemma mergel-child-in-orig:
assumes mergel (Node r ys) = Node r zs and (t1,el) € fset xs
shows 3t2. (t2,el) € fset ys A root t2 = root t1
proof(cases feard ys > 1 N (Yt € fst ‘ fset ys. maz-deg t < 1))
case True
then show ?thesis using merge-child-in-orig[of t1 el Node r ys| assms by auto
next
case Fulse
then have mergel (Node r ys) = Node r ((A(t,e). (mergel t,e)) |1 ys) by auto
then show ?thesis using assms by fastforce
qed

lemma dverts-if-subtree-mergel :
is-subtree (Node r zs) (mergel t1) = r € dverts t1
using mergel-dverts-sub dverts-subtree-subset by fastforce

lemma subtree-mergel-orig:
is-subtree (Node r xs) (mergel t1) = Jys. is-subtree (Node r ys) t1
using dverts-if-subtree-mergel subtree-root-if-dverts by fast

lemma mergel-subtree-dlverts-supset:
is-subtree (Node r xs) (mergel t)
= Jys. is-subtree (Node r ys) t A dlverts (Node r ys) C dlverts (Node r xs)
using ranked-dtree-arioms proof (induction t)
case (Node r1 zs1)
then interpret R: ranked-dtree Node r1 zs1 by simp
show Zcase
proof(cases Node r xs = mergel (Node r1 xzs1))
case True
then have diverts (Node r1 zs1) C dlverts (Node r zs) using R.mergel-dlverts-eq
by simp
moreover have r = r! using True dtree.sel(1)[of r zs] by auto
ultimately show ?thesis by auto
next
case uneq: False
show ?thesis
proof(cases fecard xs1 > 1 N (Nt € fst ‘ fset xsl. maz-deg t < 1))
case True
then show ?thesis using R.merge-subtree-dlverts-supset Node.prems by simp
next
case Fulse
then have eq: mergel (Node r1 xzs1) = Node r1 ((A(t,e). (mergel tye)) |
xzs1) by auto
then obtain t2 e2 where (t2,e2) € fset xsl is-subtree (Node r xs) (mergel
t2)
using Node.prems(1) uneq by auto
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then show ?thesis using Node.IH[of (t2,e2)] R.ranked-dtree-rec by auto
qed
qed
qed

end

9.5 IKKBZ-Sub

function denormalize :: ('a list, 'b) dtree = 'a list where
denormalize (Node r {|(t,e)|}) = r @ denormalize t

| Va. xs # {|z|} = denormalize (Node r zs) = r
using dtree-to-list.cases by blast+

termination by lexicographic-order

lemma denormalize-set-eq-dlverts: maz-deg t1 < 1 = set (denormalize t1) =
dlverts t1
proof (induction t1 rule: denormalize.induct)
case (I rte)
then show ?case using mdeg-ge-child[of t e {|(t, €)|}] by force
next
case (2 s r)
then have maz-deg (Node r zs) = 0 using mdeg-1-singleton|of r zs] by fastforce
then have zs = {||} by (auto introl: empty-if-mdeg-0)
then show ?case using 2 by auto
qed

lemma denormalize-set-sub-dlverts: set (denormalize t1) C dlverts t1
by (induction t1 rule: denormalize.induct) auto

lemma denormalize-distinct:

Vv € dverts t1. distinct v; wf-dlverts t1] = distinct (denormalize t1)
proof (induction t1 rule: denormalize.induct)

case (I rte)

then have set r N set (denormalize t) = {} using denormalize-set-sub-dlverts
by fastforce

then show ?case using 1 by auto
next

case (2 zs r)

then show ?case by simp
qged

lemma denormalize-hd-root:

assumes root t # [|

shows hd (denormalize t) = hd (root t)
proof(cases Vz. sucs t # {|z|})

case True

then show %thesis using denormalize.simps(2)[of sucs t root t] by simp
next
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case Fulse

then obtain ¢! e where {|(t1, e)|} = sucs t by auto

then show ?thesis using denormalize.simps(1)[of root t t1 e] assms by simp
qed

lemma denormalize-hd-root-wf: wf-dlverts t = hd (denormalize t) = hd (root t)
using denormalize-hd-root empty-notin-wf-dlverts dtree.set-sel(1)[of t] by force

lemma denormalize-nempty-if-wf: wf-dlverts t = denormalize t # ||
by (induction t rule: denormalize.induct) auto

context ranked-dtree
begin

lemma fcard-normalize-img-if-disjoint:
disjoint-darcs xs = feard ((A(t,e). (normalizel t.e)) || zs) = feard s
using snds-neq-img-card-eq|of zs] by fast

lemma fcard-mergel-img-if-disjoint:
disjoint-darcs xs = feard ((A(t,e). (mergel t,e)) || zs) = feard xs
using snds-neg-img-card-eq[of zs] by fast

lemma fsts-uneq-if-disjoint-lverts-nempty:
[disjoint-dlverts xs; V (t, e)Efset zs. dlverts t # {}]
= V(t, e)Efset xs. V (12, e2)Efset xs. t # t2 V (t, e) = (2, e2)
by fast

lemma normalizel-dlverts-nempty:
Y (t, e)Efset xs. dlverts t # {}
= V (¢, e)efset (A(t, e). (normalizel t, e)) | xs). dlverts t # {}
by auto

lemma normalizel-fsts-uneq:

assumes disjoint-dlverts s and V (t, e)€fset xs. dlverts t # {}

shows V (t, e)efset zs. V (12, e2)Efset xs. normalizel t # normalizel t2 V (t,e)
= (t2,e2)

by (smt (verit) assms Int-absorb case-prodD case-prodI2 normalizel-dlverts-eq)

lemma fcard-normalize-img-if-disjoint-lverts:
[disjoint-dlverts xs; V (t, e)Efset zs. dlverts t # {}]
= feard ((A\(t,e). (normalizel tye)) |9 xzs) = feard s
using fst-neq-img-card-eq[of xs normalizel] normalizel-fsts-uneq by auto

lemma feard-normalize-img-if-wf-dlverts:
wf-dlverts (Node r zs) = fecard ((A(t,e). (normalizel t,e)) || zs) = feard xs

using dlverts-nempty-if-wf feard-normalize-img-if-disjoint-lverts|of xs] by force

lemma feard-normalize-img-if-wf-dlverts-sucs:
wf-dlverts t1 = feard ((A(t,e). (normalizel t,e)) || (sucs t1)) = feard (sucs t1)
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using fcard-normalize-img-if-wf-dlverts|of root t1 sucs t1] by simp

lemma singleton-normalizel :

assumes disjoint-darcs xs and V. zs # {|z|}

shows V. (A(t,e). (normalizel t,e)) |9 zs # {|z|}
proof (rule ccontr)

assume —(Vz. (A(t,e). (normalizel t,e)) || zs # {|z|})

then obtain z where (A(,e). (normalizel t,e)) || zs = {|z|} by blast

then have fecard ((A(t,e). (normalizel tye)) |9 zs) = 1 using fcard-single-1 by
force

then have fcard xs = 1 using fcard-normalize-img-if-disjoint[ OF assms(1)] by
stmp

then have Jz. xs = {|z|} using fcard-single-1-iff by fast

then show Fulse using assms(2) by simp
qed

lemma num-leaves-normalizel-eq[simp|: wf-darcs t1 = num-leaves (normalizel
t1) = num-leaves t1
proof (induction t1)
case (Node r xs)
then show ?case
proof(cases Vz. zs # {|z|})
case True
have feard ((\(t,e). (normalizel tye)) || xs) = feard xs
using fcard-normalize-img-if-disjoint Node.prems
by (auto simp: wf-darcs-iff-darcs’)
moreover have Vt€fst ‘ fset xs. num-leaves (normalizel t) = num-leaves t
using Node by fastforce
ultimately show ?thesis using Node sum-img-eq|of zs] True by force
next
case False
then obtain ¢ e where t-def: zs = {|(t,e)|} by auto
show ?thesis
proof(cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis
using t-def num-leaves-singleton num-leaves-root|of root t sucs t] by simp
next
case Fulse
then show ?thesis
using num-leaves-singleton t-def Node by (simp add: wf-darcs-iff-darcs’)
qed
qed
qed

lemma num-leaves-normalize-eq[simp): wf-darcs t1 = num-leaves (normalize t1)
= num-leaves t1
proof (induction t1 rule: normalize.induct)

case (1t)
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then have num-leaves (normalizel t) = num-leaves t using num-leaves-normalizel-eq
by blast

then show ?case using 1 wf-darcs-normalizel by (smt (verit, best) normal-
ize.simps)
qed

lemma num-leaves-normalizel-le: num-leaves (normalizel t1) < num-leaves t1
proof (induction t1)
case (Node 1 zs)
then show “case
proof(cases V. zs # {|z|})
case True
have fecard-le: feard ((A(t,e). (normalizel tye)) || xs) < feard zs
by (simp add: fcard-image-le)
moreover have zs-le: Vt€fst ‘ fset xs. num-leaves (normalizel t) < num-leaves

t
using Node by fastforce
ultimately show ?thesis using Node sum-img-le[of xs] xs-le NV z. zs # {|z|}»
by simp
next
case Fulse
then obtain t e where t-def: xs = {|(t,e)|} by auto
show ?thesis
proof(cases rank (rev (root t)) < rank (rev r))
case True
then show ?thesis
using t-def num-leaves-singleton num-leaves-root|of root t sucs t] by simp
next
case Fulse
then show ?thesis using num-leaves-singleton t-def Node by simp
qed
qed
qed

lemma num-leaves-normalize-le: num-leaves (normalize t1) < num-leaves t1
proof (induction t1 rule: normalize.induct)
case (11t)
then have num-leaves (normalizel t) < num-leaves t using num-leaves-normalizel-le
by blast
then show ?case using 1 by (smt (verit) le-trans normalize.simps)
qed

lemma num-leaves-mergel-le: num-leaves (mergel t1) < num-leaves t1
proof (induction t1)
case (Node r zs)
then show ?case
proof(cases fecard zs > 1 N (Vt € fst * fset xs. maz-deg t < 1))
case True
then have mergel (Node r xzs) = merge (Node r xs) by simp
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then have num-leaves (mergel (Node r xs)) = 1
unfolding merge-def using dtree-from-list-1-leaf by fastforce

also have ... < fcard zs using True by blast
also have ... < num-leaves (Node r xs) using num-leaves-ge-card by fast
finally show ?thesis by simp
next
case Fulse

have Vit € fst ¢ fset xs. num-leaves (mergel t) < num-leaves t using Node by
force
then show ?thesis using sum-img-le False by auto
qed
qed

lemma num-leaves-mergel-lt: maz-deg t1 > 1 = num-leaves (mergel t1) <
num-leaves t1
proof (induction t1)
case (Node 1 zs)
show ?Zcase
proof(cases fecard xs > 1 N (VL € fst © fset xs. maz-deg t < 1))
case True
then have mergel (Node r xs) = merge (Node r xs) by simp
then have num-leaves (mergel (Node r xs)) = 1
unfolding merge-def using dtree-from-list-1-leaf by fastforce

also have ... < fcard zs using True by blast

finally show ?thesis using num-leaves-ge-card less-le-trans by fast
next

case Fulse

have 0: zs # {||} using Node.prems by (metis nempty-if-mdeg-n0 not-one-less-zero)
have 1: Vt € fst  fset zs. num-leaves (mergel t) < num-leaves t
using num-leaves-mergel-le by blast
have 3t € fst ‘ fset xs. mazx-deg t > 1 using Node.prems False mdeg-child-if-wedge
by auto
then have 2: 3¢ € fst ‘ fset xs. num-leaves (mergel t) < num-leaves t using
Node.IH by force
have 3: Viefst  fset zs. 0 < num-leaves t
using num-leaves-gel by (metis neq0-conv not-one-le-zero)
from False have mergel (Node r zs) = Node v ((A(t,e). (mergel t,e)) | zs)
by auto
then have num-leaves (mergel (Node r xs))
= (3 (t,e)e fset ((A(t,e). (mergel t,e)) || xs). num-leaves t) using 0 by
auto
then show ?thesis using 0 sum-img-lt[OF 1 2 3] by simp
qed
qed

lemma 7kkbz-num-leaves-decr:
maz-deg t1 > 1 = num-leaves (mergel (normalize t1)) < num-leaves t1
using num-leaves-mergel-It num-leaves-normalize-le num-leaves-1-if-mdeg-1 num-leaves-gel
by (metis antisym-conv2 dual-order.antisym dual-order.trans not-le-imp-less num-leaves-mergel-le)
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function ikkbz-sub :: (‘a list,’d) dtree = ('a list,’b) diree where
tkkbz-sub t1 = (if maz-deg t1 < 1 then t1 else ikkbz-sub (mergel (normalize t1)))
by auto
termination using ikkbz-num-leaves-decr by (relation measure (\t. num-leaves t))
auto

lemma ikkbz-sub-darcs-sub: darcs (ikkbz-sub t) C dares t
using ranked-dtree-azioms proof (induction t rule: ikkbz-sub.induct)
case (11t)
show Zcase
proof(cases maz-deg t < 1)
case Fulse
have darcs (mergel (normalize t)) = darcs (normalize t)
using ranked-dtree.merge1-darcs-eq ranked-dtree.ranked-dtree-normalize 1.prems
by blast
moreover have ranked-diree (mergel (normalize t)) cmp
using ranked-dtree.ranked-dtree-normalize 1.prems ranked-dtree.ranked-dtree-mergel
by blast
moreover have - (maz-deg t < 1 V — list-dtree t) using False ranked-dtree-def
1.prems by blast
ultimately show #%thesis using 1.IH normalize-darcs-sub by force
qed(simp)
qed

lemma ikkbz-sub-dlverts-eqsimp: dlverts (ikkbz-sub t) = dlverts t
using ranked-dtree-azioms proof (induction t rule: ikkbz-sub.induct)
case (1t)
show ?Zcase
proof(cases maz-deg t < 1)
case True
then show ?thesis by simp
next
case Fulse
then show ?thesis
using 1 ranked-dtree.mergel-dlverts-eq|of normalize t] normalize-dlverts-eq
ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-mergel ikkbz-sub.elims
by metis
qed
qed

lemma ikkbz-sub-wf-darcs: wf-darcs (ikkbz-sub t)
using ranked-dtree-azioms proof (induction t rule: ikkbz-sub.induct)
case (1t)
then show ?case
proof(cases maz-deg t < 1)
case True
then show ?thesis using 1.prems list-dtree-def ranked-dtree-def by auto
next
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case Fulse
then show ?thesis
using 1 ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-mergel
by (metis ikkbz-sub.simps)
qged
qed

lemma ikkbz-sub-wf-dlverts: wf-dlverts (ikkbz-sub t)
using ranked-dtree-azioms proof (induction t rule: ikkbz-sub.induct)
case (11t)
then show ?case
proof(cases maz-deg t < 1)
case True
then show %thesis using 1.prems list-dtree-def ranked-dtree-def by auto
next
case Fulse
then show ?thesis
using 1 ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-mergel
by (metis ikkbz-sub.simps)
qed
qed

theorem ikkbz-sub-list-dtree: list-dtree (ikkbz-sub t)
using ikkbz-sub-wf-darcs ikkbz-sub-wf-dlverts list-dtree-def by blast

corollary ikkbz-sub-ranked-dtree: ranked-dtree (ikkbz-sub t) cmp
using ikkbz-sub-list-dtree ranked-dtree-def ranked-dtree-axioms by blast

lemma ikkbz-sub-mdeg-le1: max-deg (ikkbz-sub t1) < 1
by (induction t1 rule: ikkbz-sub.induct) simp

corollary denormalize-ikkbz-eq-dlverts: set (denormalize (ikkbz-sub t)) = dlverts t
using denormalize-set-eq-dlverts ikkbz-sub-mdeg-lel ikkbz-sub-dlverts-eq by blast

lemma distinct-ikkbz-sub: [V vEdverts t. distinct v; vedverts (ikkbz-sub t)] =
distinct v
using list-dtree-azioms proof (induction t arbitrary: v rule: ikkbz-sub.induct)
case (1t)
then interpret T'71: ranked-dtree t rank cmp
using ranked-dtree-azioms by (simp add: ranked-dtree-def)
show ?Zcase
using 1 T'1.ranked-dtree-normalize T1.distinct-normalize ranked-dtree.mergel-dverts-eq
ranked-dtree.wf-dlverts-mergel ranked-dtree.wf-darcs-mergel
by (metis ikkbz-sub.elims list-dtree-def)
qed

corollary distinct-denormalize-ikkbz-sub:

YV vedverts t. distinct v = distinct (denormalize (ikkbz-sub t))
using distinct-ikkbz-sub ikkbz-sub-wf-dlverts denormalize-distinct by blast
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lemma ikkbz-sub-hd-root[simp]: hd (root (ikkbz-sub t)) = hd (root t)
using list-diree-axioms proof (induction t rule: ikkbz-sub.induct)

case (1 t)

then interpret T1: ranked-dtree t rank cmp

using ranked-dtree-azioms by (simp add: ranked-dtree-def)

show ?Zcase

using 1 mergel-hd-root-eq ranked-dtree.axioms(1) ranked-dtree.ranked-dtree-mergel

by (metis T1.ranked-dtree-normalize T1.wf-lverts ikkbz-sub.simps normalize-hd-root-eq”)
qged

corollary denormalize-ikkbz-sub-hd-root[simp|: hd (denormalize (ikkbz-sub t)) =
hd (root t)

using ikkbz-sub-hd-root denormalize-hd-root

by (metis dtree.set-sel(1) empty-notin-wf-dlverts ikkbz-sub-wf-dlverts)

end

locale precedence-graph = finite-directed-tree +
fixes rank :: 'a list = real
fixes cost :: 'a list = real
fixes cmp :: (“a listx'b) comparator
assumes asi-rank: asi rank root cost
and cmp-antisym:
[vl # []; v2 # [); compare cmp (vl,el) (v2,e2) = Equiv] = set vl N set v2

#{} Vel=e2
begin

definition to-list-diree :: ('a list, 'b) dtree where
to-list-dtree = finite-directed-tree.to-dtree to-list-tree [root]

lemma to-list-dtree-single: v € dverts to-list-dtree = Ix. v = [z] A © € verts T
unfolding to-list-dtree-def using to-list-tree-single
by (simp add: finite-directed-tree.dverts-eq-verts to-list-tree-finite-directed-tree)

lemma to-list-dtree-wf-dverts: wf-dverts to-list-dtree
using finite-directed-tree.wf-dverts-to-dtree| OF to-list-tree-finite-directed-tree]
by (simp add: to-list-dtree-def)

lemma to-list-dtree-wf-dlverts: wf-dlverts to-list-dtree
unfolding to-list-dtree-def
by (simp add: to-list-tree-fin-list-directed-tree fin-list-directed-tree.wf-dlverts-to-dtree)

lemma to-list-dtree-wf-darcs: wf-darcs to-list-dtree
using finite-directed-tree. wf-darcs-to-dtree[ OF to-list-tree-finite-directed-tree]
by (simp add: to-list-dtree-def)

lemma to-list-dtree-list-dtree: list-dtree to-list-dtree

by (simp add: list-dtree-def to-list-dtree-wf-dlverts to-list-dtree-wf-darcs)
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lemma to-list-dtree-ranked-dtree: ranked-dtree to-list-dtree cmp
by (auto simp: ranked-dtree-def to-list-dtree-list-dtree ranked-dtree-axioms-def dest:
cmp-antisym)

interpretation t: ranked-dtree to-list-dtree by (rule to-list-dtree-ranked-dtree)

definition ikkbz-sub :: 'a list where
ikkbz-sub = denormalize (t.ikkbz-sub to-list-dtree)

lemma dverts-eq-verts-to-list-tree: dverts to-list-dtree = pre-digraph.verts to-list-tree
unfolding to-list-dtree-def
by (simp add: finite-directed-tree.dverts-eq-verts to-list-tree-finite-directed-tree)

lemma dverts-eq-verts-img: dverts to-list-dtree = (Az. [z]) ‘ verts T
by (simp add: dverts-eq-verts-to-list-tree to-list-tree-def)

lemma dlverts-eq-verts: dlverts to-list-dtree = verts T
by (simp add: dverts-eq-verts-img dlverts-eq-dverts-union)

theorem ikkbz-set-eq-verts: set ikkbz-sub = verts T
using dlverts-eq-verts ikkbz-sub-def t.denormalize-ikkbz-eq-dlverts by simp

lemma distinct-to-list-tree: ¥V v€wverts to-list-tree. distinct v
unfolding to-list-tree-def by simp

lemma distinct-to-list-dtree: ¥V vedverts to-list-dtree. distinct v
using distinct-to-list-tree dverts-eq-verts-to-list-tree by blast

theorem distinct-ikkbz-sub: distinct ikkbz-sub
unfolding ikkbz-sub-def
using distinct-to-list-dtree t.distinct-denormalize-ikkbz-sub by blast
lemma to-list-dtree-root-eq-root: Diree.root (to-list-dtree) = [root]
unfolding to-list-dtree-def
by (simp add: finite-directed-tree.to-dtree-root-eq-root to-list-tree-finite-directed-tree)

lemma to-list-dtree-hd-root-eq-root[simp|: hd (Dtree.root to-list-dtree) = root
by (simp add: to-list-dtree-root-eq-root)

theorem ikkbz-sub-hd-eq-root[simp|: hd ikkbz-sub = root

unfolding ikkbz-sub-def using t.denormalize-ikkbz-sub-hd-root to-list-dtree-root-eq-root
by simp
end

9.6 Full IKKBZ
locale tree-query-graph = undir-tree-todir G + query-graph G for G
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locale cmp-tree-query-graph = tree-query-graph +
fixes cmp :: (“a listx'b) comparator
assumes cmp-antisym:
[vl # []; v2 # []; compare cmp (vl,el) (v2,e2) = Equiv] = set vl N set v2
#{} V el=e2

locale ikkbz-query-graph = cmp-tree-query-graph +

fixes cost :: 'a joinTree = real

fixes cost-r :: 'a = (‘a list = real)

fixes rank-r :: 'a = ('a list = real)

assumes asi-rank: r € verts G = ast (rank-r ) r (cost-r r)

and cost-correct:
[valid-tree t; no-cross-products t; left-deep t]
= cost-r (first-node t) (revorder t) = cost t

begin

abbreviation ikkbz-sub :: ‘a = 'a list where
ikkbz-sub r = precedence-graph.ikkbz-sub (dir-tree-r r) r (rank-r r) cmp

abbreviation cost-1 :: ‘a list = real where
cost-l xs = cost (create-ldeep xs)

lemma precedence-graph-r:
r € verts G = precedence-graph (dir-tree-r v) r (rank-r r) (cost-r r) cmp
using fin-directed-tree-r cmp-antisym
by (simp add: precedence-graph-def precedence-graph-azioms-def asi-rank)

lemma nempty-if-set-eq-verts: set xs = verts G = xs # ||
using verts-nempty by force

lemma revorder-if-set-eq-verts: set xs = verts G = revorder (create-ldeep xs) =
rev s

using nempty-if-set-eq-verts create-ldeep-order unfolding revorder-eq-rev-inorder
by blast

lemma cost-correct’:
[set xs = werts G; distinct xs; no-cross-products (create-ldeep zs)]
= cost-r (hd zs) (rev zs) = cost-l zs
using cost-correct|of create-ldeep xs| revorder-if-set-eq-verts create-ldeep-ldeep|of
xs]
unfolding valid-tree-def distinct-relations-def
by (simp add: create-ldeep-order create-ldeep-relations first-node-eq-hd nempty-if-set-eq-verts)

lemma ikkbz-sub-verts-eq: r € verts G = set (ikkbz-sub r) = verts G
using precedence-graph.ikkbz-set-eq-verts precedence-graph-r verts-dir-tree-r-eq by

fast

lemma ikkbz-sub-distinct: r € verts G = distinct (ikkbz-sub r)
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using precedence-graph.distinct-ikkbz-sub precedence-graph-r by fast

lemma ikkbz-sub-hd-eq-root: r € verts G = hd (ikkbz-sub r) = r
using precedence-graph.ikkbz-sub-hd-eq-root precedence-graph-r by fast

definition ikkbz :: 'a list where
ikkbz = arg-min-on cost-l {ikkbz-sub r|r. r € verts G}

lemma ikkbz-sub-set-fin: finite {ikkbz-sub r|r. r € verts G}
by simp

lemma ikkbz-sub-set-nempty: {ikkbz-sub r|r. r € verts G} # {}
by (simp add: verts-nempty)

lemma ikkbz-in-ikkbz-sub-set: ikkbz € {ikkbz-sub r|r. r € verts G}
unfolding ikkbz-def using ikkbz-sub-set-fin ikkbz-sub-set-nempty arg-min-if-finite
by blast

lemma ikkbz-eq-ikkbz-sub: 31 € verts G. ikkbz = ikkbz-sub r
using tkkbz-in-ikkbz-sub-set by blast

lemma ikkbz-min-ikkbz-sub: r € verts G = cost-1 ikkbz < cost-1 (ikkbz-sub r)
unfolding ikkbz-def using ikkbz-sub-set-fin arg-min-least by fast

lemma ikkbz-distinct: distinct ikkbz
using ikkbz-eq-ikkbz-sub ikkbz-sub-distinct by fastforce

lemma ikkbz-set-eq-verts: set ikkbz = verts G
using ikkbz-eq-ikkbz-sub ikkbz-sub-verts-eq by force

lemma ikkbz-nempty: ikkbz # ||
using ikkbz-set-eq-verts verts-nempty by fastforce

lemma ikkbz-hd-in-verts: hd ikkbz € verts G
using tkkbz-nempty ikkbz-set-eq-verts by fastforce

lemma inorder-ikkbz: inorder (create-ldeep ikkbz) = ikkbz
using create-ldeep-order ikkbz-nempty by blast

lemma inorder-ikkbz-distinct: distinct (inorder (create-ldeep ikkbz))
using ikkbz-distinct inorder-ikkbz by simp

lemma inorder-relations-eg-verts: relations (create-ldeep ikkbz) = verts G
using ikkbz-set-eq-verts create-ldeep-relations ikkbz-nempty by blast

theorem ikkbz-valid-tree: valid-tree (create-ldeep ikkbz)

unfolding valid-tree-def distinct-relations-def
using inorder-ikkbz-distinct inorder-relations-eq-verts by blast
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end

locale old = list-dtree t for t :: (‘a list,’d) dtree +
fixes rank :: 'a list = real
begin

function find-pos-auz :: ‘a list = 'a list = (‘a list,’d) diree = ('a list x 'a list)
where
find-pos-aux v p (Node v {|(t1,-)|}) =
(if rank (rev v) < rank (rev r) then (p,r) else find-pos-aux v r t1)
| V. zs # {|z|} = find-pos-auz v p (Node r zs) =
(if rank (rev v) < rank (rev r) then (p,r) else (r,r))
by (metis combine.cases old.prod.exhaust) auto
termination by lexicographic-order

function find-pos :: 'a list = (‘a list,’d) ditree = ('a list x 'a list) where
find-pos v (Node r {|(t1,-)|}) = find-pos-auz v r t1

| Va. xs # {|z|} = find-pos v (Node r xs) = (r,r)
by (metis dtree.exhaust surj-pair) auto

termination by lexicographic-order

abbreviation insert-chain :: ('a listx'b) list = ('a list,’d) dtree = (a list,’d) diree
where
insert-chain zs t1 =
foldr (A(v,e) t2. case find-pos v t2 of (z,y) = insert-between v e x y t2) xs t1

fun merge :: (‘a list,’b) diree = (a list,’d) diree where
merge (Node r xs) = ffold (A(t,e) b. case b of Node r xs =
if xs = {||} then Node r {|(t,e)|} else insert-chain (dtree-to-list t) b)
(Node r {||}) s

lemma ffold-if-False-eq-acc:
[Va. =P a; comp-fun-commute (Aa b. if =P a then b else Q a b)]
= ffold (Aa b. if =P a then b else Q a b) acc xs = acc
proof (induction xs)
case (insert z zs)
let 2f = Xa b. if =P a then b else Q a b
have ffold ?f acc (finsert x xs) = ?f x (ffold ?f acc xs)
using insert.hyps by (simp add: comp-fun-commute. ffold-finsert insert.prems(2))
then have ffold ?f acc (finsert x zs) = ffold ?f acc zs using insert.prems by
stmp
then show ?case using insert.IH insert.prems by simp
qed(simp add: comp-fun-commute.ffold-empty)

lemma find-pos-rank-less: rank (rev v) < rank (rev r) = find-pos-auz v p (Node

rxs) = (p,r)
by(cases Jx. zs = {|z|}) auto
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lemma find-pos-y-in-dverts: (z,y) = find-pos-auzx v p t1 = y € dverts t1
proof (induction t1 arbitrary: p)
case (Node r xs)
then show ?case
proof(cases rank (rev v) < rank (rev r))
case True
then show ?thesis using Node.prems by (cases Iz. zs = {|z|}) auto
next
case False
then show ?thesis using Node by(cases Jx. xs = {|z|}) fastforce+
qed
qed

lemma find-pos-z-in-dverts: (z,y) = find-pos-auz v p t1 = z € dverts t1 V p=z
proof (induction t1 arbitrary: p)
case (Node 1 zs)
then show ?case
proof(cases rank (rev v) < rank (rev r))
case True
then show ?thesis using Node.prems by (cases Iz. zs = {|z|}) auto
next
case Fulse
then show ?thesis using Node by(cases z. xs = {|z|}) fastforce+
qed
qed

end
end
theory IKKBZ-Optimality

imports Complex-Main CostFunctions QueryGraph IKKBZ HOL— Library.Sublist
begin

10 Optimality of IKKBZ

context directed-tree

begin

fun forward-arcs :: 'a list = bool where
forward-arcs || = True

| forward-arcs [x] = True

| forward-arcs (z#xs) = ((3y € set zs. y —p ) A forward-arcs xs)
fun no-back-arcs :: 'a list = bool where

no-back-arcs [| = True
| no-back-arcs (z#xs) = ((By. y € set as A y —p x) A no-back-arcs xs)
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definition forward :: 'a list = bool where
forward xs = (Vi € {1..(length xs — 1)}. 3§ < 4. zslj —p xsli)

definition no-back :: 'a list = bool where
no-back xs = (Bij. i < j A j < length xs A zs\j —p xsli)

definition seg-conform :: 'a list = bool where
seq-conform xs = forward-arcs (rev xs) A no-back-arcs s

definition before :: ‘a list = 'a list = bool where
before s1 s2 = seq-conform s1 A seg-conform s2 A set s1 N set s2 = {}
ATz € setsl. Ty € set s2. ¢ —p y)

definition before2 :: ‘a list = 'a list = bool where
before2 sl s2 = seq-conform s1 A seg-conform s2 A set s1 N set s2 = {}
A Bz € setsl.Jy € set s2. x —py)
ANNVx € setsl. Vv € verts T — set s1 — set s2. =& —p v)

lemma before-alt!:
(34 < length s1. 35 < length s2. s1li —p s21j) «— (3z € set s1. Jy € set s2.

T —=7Y)
using in-set-conv-nth by metis

lemma before-alt2:
(Vi < length s1.Yv € verts T — set s1 — set s2. = s1li = v)
—— (Vz € set s1.Vv € verts T — set s1 — set s2. = x —p v)
using in-set-conv-nth by metis

lemma no-back-alt-aux: (Vi j. ¢ > jV j > length xs V =(aslj —p zsli)) =
no-back xs
using less-le-not-le no-back-def by auto

lemma no-back-alt: (Vij. i > jV j> length zs V =(aslj —p xsli)) «— no-back
xs
using no-back-alt-auz by (auto simp: no-back-def)

lemma no-back-arcs-alt-auzl: [no-back-arcs xs; i < j; j < length xs] = —(aslj
— o xsl4)
proof (induction zs arbitrary: i j)
case (Cons z zs)
then show ?case
proof(cases i = 0)
case True
then show ?thesis using Cons.prems by simp
next
case Fulse
then show #thesis using Cons by auto
qged
qed(simp)
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lemma no-back-insert-auz:
(Vij.i>jVj> length (x#xs) V =((aftzs)lj —p (x#xs)lD))
= (Vij. i >jVj> length xs V —=(zslj —p xsli))
by force

lemma no-back-insert: no-back (z#xs) = no-back xs
using no-back-alt no-back-insert-aux by blast

lemma no-arc-fst-if-no-back:
assumes no-back (z#zs) and y € set zs
shows -y =7 2
proof —
have 0: (z#xs)!0 = = by simp
obtain j where zslj = y j < length xs using assms(2) by (auto simp: in-set-conv-nth)
then have (z#xs)!(Suc j) = y A Suc j < length (z#zs) by simp
then show ?thesis using assms(1) 0 by (metis no-back-def zero-less-Suc)
qed

lemma no-back-arcs-alt-aux2: no-back rs = no-back-arcs xs
by (induction zs) (auto simp: no-back-insert no-arc-fst-if-no-back)

lemma no-back-arcs-alt: no-back xrs <— no-back-arcs s
using no-back-arcs-alt-auzxl no-back-arcs-alt-auz2 no-back-alt by fastforce

lemma forward-arcs-alt-auzl:
[forward-arcs zs; i € {1..(length (rev xs) — 1)}] = 3j < i. (rev xs)lj = (rev
xs)Vi
proof (induction zs rule: forward-arcs.induct)
case (3 z z' xs)
then show ?case
proof(cases i = length (rev (x#x'#xs)) — 1)
case True
then have i: (rev (z#z'#xs))li = = by (simp add: nth-append)
then obtain y where y-def: yeset (z'#xs) y — 7 « using 3.prems by auto
then obtain j where j-def: rev (z'#xs)lj = y j < length (rev (z'#xs))
using in-set-conv-nth[of y] by fastforce
then have rev (z#x'#xs)!j = y by (auto simp: nth-append)
then show ?%thesis using y-def(2) i j-def(2) True by auto
next
case Fulse
then obtain j where j-def: j < i rev (z' # xs)lj —p rev (z’ # xs)!i using 3
by auto
then have rev (z#z'#xs)!j = rev (z'#xs)!j using 8.prems(2) by (auto simp:
nth-append)
moreover have rev (v#z'#1s)li = rev (z'#xs)li
using 3.prems(2) False by (auto simp: nth-append)
ultimately show ?thesis using j-def by auto
qed
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qed(auto)

lemma forward-split-auz:
assumes forward (xsQys) and i€{1..length xs — 1}
shows 3 j<i. xslj — 7 xsli
proof —
obtain j where j < i A (zsQys)!j —p (2sQys)!i using assms forward-def by
force
moreover have i < length zs using assms(2) by auto
ultimately show ?thesis by (auto simp: nth-append)
qged

lemma forward-split: forward (xsQys) = forward zs
using forward-split-aux forward-def by blast

lemma forward-cons:
forward (rev (z#xs)) = forward (rev zs)
using forward-split by simp

lemma arc-to-Ist-if-forward:
assumes forward (rev (z#tzs)) and zs = y#ys
shows Jy € setzs. y = x
proof —
have (z#xs)!0 = = by simp
have (rev sQ[x])!(length xs) = (zsQ[z])!(length xs) by (metis length-rev nth-append-length)
then have i: rev (z#xs)!(length xs) = x by simp
have length zs € {1..(length (rev (z#zs)) — 1)} using assms(2) by simp
then obtain j where j-def: j < length zs A (rev (x#xs))lj — 7 (rev (x#xs))length
xs
using assms(1) forward-def|[of rev (z#xs)] by blast
then have rev xs!j € set xs using length-rev nth-mem set-rev by metis
then have rev (z#xs)!j € set zs by (auto simp: j-def nth-append)
then show ?thesis using i j-def by auto
qed

lemma forward-arcs-alt-aux2: forward (rev xs) = forward-arcs xs
proof (induction xs rule: forward-arcs.induct)

case (3 z y xs)

then have forward-arcs (y # zs) using forward-cons by blast

then show ?case using arc-to-lst-if-forward 3.prems by simp
qed(auto)

lemma forward-arcs-alt: forward zs <— forward-arcs (rev xs)
using forward-arcs-alt-aux! forward-arcs-alt-aux2 forward-def by fastforce

corollary forward-arcs-alt’: forward (rev zs) +— forward-arcs xs
using forward-arcs-alt by simp

corollary forward-arcs-split: forward-arcs (ysQzs) = forward-arcs s
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using forward-split[of rev zs rev ys| forward-arcs-alt by simp

lemma seq-conform-alt: seq-conform xs <— forward xs N no-back s
using forward-arcs-alt no-back-arcs-alt seq-conform-def by simp

lemma forward-app-auz:
assumes forward s1 forward s2 Jx€set s1. x —p hd s2 i€{1..length (s1@s2) —
1}
shows 3j<i. (s1@s2)lj —p (s1@s2)li
proof —
consider ic{1..length s1 — 1} | i = length s1 | i€{length s1 + 1..length s1 +
length s2 — 1}
using assms(4) by fastforce
then show ?thesis
proof (cases)
case I
then obtain j where j-def: j < i s1!j —p s1!i using assms(1) forward-def
by blast
moreover have (s1@s2)!i = s1!i using 1 by (auto simp: nth-append)
moreover have (s1@s2)!j = s1!j using 1 j-def (1) by (auto simp: nth-append)
ultimately show ?thesis by auto
next
case 2
then have s2 # [] using assms(4) by force
then have (s1@Qs2)!i = hd s2 using 2 assms(4) by (simp add: hd-conv-nth
nth-append)
then obtain z where z-def: z€set s1 x —p (s1@s2)!i using assms(3) by
force
then obtain j where s1!j = z j < length s1 by (auto simp: in-set-conv-nth)
then show %thesis using z-def(2) 2 by (auto simp: nth-append)
next
case 4
then have i—length s1 € {1..length s2 — 1} by fastforce
then obtain j where j-def: j < (i—length s1) s2!j —p s2!(i—length s1)
using assms(2) forward-def by blast
moreover have (s1@Qs2)!i = s2!(i—length s1) using 3 by (auto simp: nth-append)
moreover have (s1@s2)!(j+length s1) = s2!j using 3 j-def(1) by (auto simp:
nth-append)
ultimately have (j+length s1) < i A (s1@s2)!(j+length s1) —p (s1@s2)!4
by force
then show %thesis by blast
qed
qed

lemma forward-app: [forward s1; forward s2; Az€set s1. © — p hd s2] = forward
(s1@s2)
by (simp add: forward-def forward-app-auz)

lemma before-conforml1lI: before s1 s2 = seq-conform s1
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unfolding before-def by blast

lemma before-forward1I: before s1 s2 = forward s1
unfolding before-def seq-conform-alt by blast

lemma before-no-back1l: before s1 s2 = no-back s1
unfolding before-def seq-conform-alt by blast

lemma before-Arcl: before s1 s2 = Iz € set s1. Jy € set s2. ¢ =7y
unfolding before-def by blast

lemma before-conform2I: before s1 s2 = seq-conform s2
unfolding before-def by blast

lemma before-forward2l: before s1 s2 = forward s2
unfolding before-def seq-conform-alt by blast

lemma before-no-back2I: before s1 s2 = no-back s2
unfolding before-def seq-conform-alt by blast

lemma hd-reach-all-forward-arcs:
[hd (rev zs) € verts T; forward-arcs xs; x € set xs] = hd (rev zs) =*p z
proof (induction s arbitrary: x rule: forward-arcs.induct)
case (3 2y ys)
then have 0: (3y € set (y#ys). y — 2z) forward-arcs (y#ys) by auto
have hd-eq: hd (rev (z # y # ys)) = hd (rev (y # ys))
using hd-rev[of y#ys] by (auto simp: last-ConsR)
then show ?case
proof(cases x = 2)
case True
then obtain z’ where z'-def: z’ € set (y#ys) ' — p = using 8.prems(2) by
auto
then have hd (rev (z # y # ys)) —=*p z' using 3 hd-eq by simp
then show ?thesis using z'-def(2) reachable-adj-trans by blast
next
case False
then show “thesis using 3 hd-eq by simp
qed
qed(auto)

lemma hd-reach-all-forward:
[hd zs € verts T; forward xs; x € set xs] = hd xs =*p

using hd-reach-all-forward-arcs|of rev zs| by (simp add: forward-arcs-alt)

lemma hd-in-verts-if-forward: forward (z#y#xs) = hd (z#y#as) € verts T
unfolding forward-def by fastforce

lemma two-elems-if-length-gt1: length xs > 1 = Jx y ys. s#Hy#Hys=zs
by (metis create-ldeep-rev.cases list.size(3) One-nat-def length-Cons less-asym
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zero-less-Suc)

lemma hd-in-verts-if-forward”: [length xs > 1; forward zs] = hd zs € verts T
using two-elems-if-length-gt1 hd-in-verts-if-forward by blast

lemma hd-reach-all-forward’:
[length zs > 1; forward zs; x € set xs] = hd zs =" p z
by (simp add: hd-in-verts-if-forward’ hd-reach-all-forward)

lemma hd-reach-all-forward’"

[forward (z#y#xs); z € set (z#y#xs)] = hd (z#HyH#zs) =% 2
using hd-in-verts-if-forward hd-reach-all-forward by blast

lemma no-back-if-distinct-forward: [forward zs; distinct 1s] = no-back s
unfolding no-back-def proof
assume 37 j. ¢ < j A j < length s A zslj — 7 xs!i and assms: forward xs distinct
xs
then obtain ¢ j where i-def: ¢ < jj < length xs zs!j — zsli by blast
show Fulse
proof(cases i=0)
case True
then have zs!i = hd zs using i-def(1,2) hd-conv-nth|of xs| by fastforce
then have zsli —* p xslj using i-def(1,2) assms(1) hd-reach-all-forward’ by
stmp
then have zs!i —*  xs!j using reachable-neg-reachable! i-def(3) by force
then show ?thesis using i-def(3) reachablel-not-reverse by blast
next
case Fulse
then have ¢ € {1 .. length xs — 1} using i-def(1,2) by simp
then obtain j’ where j'-def: j' < i xslj’ —p xsli
using assms(1) unfolding forward-def by blast
have zs!j’ = zs!j using i-def(3) j’-def(2) two-in-arcs-contr by fastforce
moreover have zs!j’ # xslj
using j'-def(1) i-def(1,2) assms(2) nth-eq-iff-indez-eq by fastforce
ultimately show ?thesis by blast
qed
qed

corollary seq-conform-if-dstnct-fwd: [forward zs; distinct zs] = seg-conform xs
using no-back-if-distinct-forward seq-conform-def forward-arcs-alt no-back-arcs-alt

by blast

lemma forward-arcs-single: forward-arcs [z]
by simp

lemma forward-single: forward [x]
unfolding forward-def by simp

lemma no-back-arcs-single: no-back-arcs []
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by simp

lemma no-back-single: no-back [z]
unfolding no-back-def by simp

lemma seg-conform-single: seq-conform [x]
unfolding seq-conform-def by simp

lemma forward-arc-to-head’:

assumes forward ys and = ¢ set ys and y € set ysand z —p y

shows y = hd ys
proof (rule ccontr)

assume asm: y # hd ys

obtain i where i-def: i < length ys ysli = y using assms(3) by (auto simp:
in-set-conv-nth)

then have i # 0 using asm by (metis drop0 hd-drop-conv-nth)

then have i € {1..(length ys — 1)} using i-def(1) by simp

then obtain j where j-def: j < ¢ yslj —p ysli

using assms(1) forward-def by blast

then show Fulse using assms(4,2) j-def(2) i-def two-in-arcs-contr by fastforce

qed

corollary forward-arc-to-head:
[forward ys; set xs N set ys = {}; x € set zs; y € set ys; x =T ]
= y = hd ys
using forward-arc-to-head’ by blast

lemma forward-app’:
[forward s1; forward s2; set s1 N set s2 = {}; Jx€set s1. Jy€set s2. x = Y]
= forward (s1Qs2)
using forward-applof s1 s2] forward-arc-to-head by blast

lemma reachablel-from-outside-dom:
[z =Ty z ¢ setys; y € setys] = Ja’. Fy' € set ys. 2’ ¢ set ys ANz’ =y
by (induction z y rule: trancl.induct) auto

/

lemma hd-reachablel-from-outside’:
[z =F 7 y; forward ys; x ¢ set ys; y € set ys] = Jy’ € set ys. © =+ p hd ys
apply(induction © y rule: trancl.induct)
using forward-arc-to-head’ by force+

lemma hd-reachablel-from-outside:
[z =F 7 y; forward ys; set zs N set ys = {}; z € set xs; y € set ys]
= Jy’ € set ys. z > 7 hd ys
using hd-reachablel-from-outside’ by blast

lemma reachablel-append-old-if-arc:

assumes Jzcset zs. Jycset ys. ¢ =7y
and z ¢ set xs
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and forward xs
and yeset (zs Q ys)
and z >y
shows Jyeset ys. z >t py
proof(cases y € set ys)
case True
then show ?thesis using assms(5) by blast
next
case Fulse
then have y € set zs using assms(4) by simp
then have 0: z —»%  hd zs using hd-reachablel-from-outside’|OF assms(5,3,2)]
by blast
then have 1: hd xs € verts T using reachablel-in-verts(2) by auto
obtain z y where z-def: z€set xs yEset ys x —p y using assms(1) by blast
then have hd zs —* p z using hd-reach-all-forward[OF 1 assms(3)] by simp
then have hd zs —* p y using z-def(3) by force
then show ?thesis using reachablel-reachable-trans|OF 0] z-def(2) by blast
qed

lemma reachablel-append-old-if-arcU:
[Bzeset xs. Jyeset ys. © —p y; set U N set xs = {}; z € set U;
forward zs; yeset (zs Q ys); z =T p y]
= Jyeset ys. z =Ty
using reachablel-append-old-if-arc|of zs ys| by auto

lemma before-arc-to-hd: before xs ys = Iz € set xs. x = hd ys
using forward-arc-to-head before-def seq-conform-alt by auto

lemma no-back-backarc-appl:
[7 < length (zsQys); j > length xs; i < j; no-back ys; (xsQys)lj —p (zsQys)!i]
= 1 < length zs
by (rule ccontr) (auto simp add: no-back-def nth-append)

lemma no-back-backarc-app2: [no-back zs; i < j; (zsQys)lj —p (zsQys)li] = j
> length xs
by (rule ccontr) (auto simp add: no-back-def nth-append)

lemma no-back-backarc-i-in-zs:
[no-back ys; j < length (xsQys); i < j; (xsQys)lj — 7 (zsQys)!4]
= zsli € set xs A (xsQys)li = zsli
by (auto simp add: no-back-def nth-append)

lemma no-back-backarc-j-in-ys:
[no-back zs; j < length (xsQys); i < 7; (xzsQys)lj —p (zsQys)!i]
= ysl(j—length xs) € set ys A\ (zsQys)!j = ys!(j—length xs)
by (auto simp add: no-back-def nth-append)

lemma no-back-backarc-difsets:
assumes no-back zs and no-back ys
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and 7 < jand j < length (zs @ ys) and (zs Q ys) ! j —p (zs Q ys) ! ¢
shows Jz € set xs. Jy € set ys. y =7 @
using no-back-backarc-i-in-zs|OF assms(2,4,3)] no-back-backarc-j-in-ys|OF assms(1,4,5)]
assms(5)
by auto

lemma no-back-backarc-difsets’:
[no-back zs; no-back ys; 3i j. i < j A j < length (zsQys) A (xsQys)lj —p
(zsQys)!i]
= dz € setxs.dJy € setys.y >z
using no-back-backarc-difsets by blast

lemma no-back-before-aux:
assumes seg-conform zs and seq-conform ys
and set zs N set ys = {} and (Fzeset zs. Jye€set ys. ¢ =7 y)
shows no-back (zs Q ys)
unfolding no-back-def by (metis assms adj-in-verts(2) forward-arc-to-head hd-reach-all-forward
inf-commute reachablel-not-reverse reachable-rtrancll rtrancl-into-trancll seq-conform-alt
no-back-backarc-difsets’)

lemma no-back-before: before xs ys = no-back (zsQys)
using before-def no-back-before-auzr by simp

lemma seg-conform-if-before: before xs ys = seg-conform (zsQys)
using no-back-before before-def seq-conform-alt forward-app before-arc-to-hd by
stmp

lemma no-back-arc-if-fwd-dstct:
assumes forward (asQbs) and distinct (asQbs)
shows —~(Jz€set bs. Jyeset as. x =7 y)
proof
assume Jz€set bs. Jycset as. ¢ =y
then obtain z y where z-def: z€set bs yeset as x —p y by blast
then obtain ¢ where i-def: asli = y i < length as by (auto simp: in-set-conv-nth)
obtain j where j-def: bslj = z j < length bs using a-def(1) by (auto simp:
in-set-conv-nth)
then have (asQbs)!(j+length as) = x by (simp add: nth-append)
moreover have (asQbs)!i = y using i-def by (simp add: nth-append)
moreover have i < (j+length as) using i-def(2) by simp
moreover have (j+length as) < length (as @ bs) using j-def by simp
ultimately show Fulse
using no-back-if-distinct-forward[OF assms] z-def(3) unfolding no-back-def
by blast
qed

lemma no-back-reachl-if-fwd-dstct:
assumes forward (asQbs) and distinct (asQbs)
shows —(Fz€set bs. Jyeset as. z -1 p y)
proof
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assume Jz€set bs. Jyeset as. © >y
then obtain z y where z-def: z€set bs yEset as = —T p y by blast
have fwd-as: forward as using forward-split[OF assms(1)] by blast
have z-as: © ¢ set as using z-def(1) assms(2) by auto
show Fulse
using assms(1) z-def append.assoc list.distinct(1) Nil-is-append-conv append-Nil2|[of
as@bs]
append-eq-append-conv2[of asQbs asQbs bs as] forward-arc-to-head’ hd-append2
hd-reach-all-forward hd-reachablel-from-outside’|OF z-def(8) fwd-as z-as
z-def (2)]
in-set-conv-decomp-first[of y as] in-set-conv-decomp-last reachable1-from-outside-dom
reachablel-in-verts(2) reachablel-not-reverse reachablel-reachable-trans
by metis
qed

lemma split-length-i: i < length bs = Jxs ys. xsQys = bs A length xs = i
using length-take append-take-drop-id min-absorb2 by metis

lemma split-length-i-prefiz:
assumes length as < i i < length (asQbs)
shows Jzs ys. zsQys = bs A length (asQus) = i
proof —
obtain n where n-def: n + length as =
using assms(1) ab-semigroup-add-class.add.commute le-Suc-ex by blast
then have n < length bs using assms(2) by simp
then show ?thesis using split-length-i n-def by fastforce
qged

lemma forward-alt-auzl:

assumes i € {I..length zs — 1} and j<i and zslj — zsli

shows Jas bs. asQbs = xs A length as = i A (3z € set as. © —p xsli)
proof —

obtain as bs where asQbs = xs A length as = i

using assms(1) atLeastAtMost-iff diff-le-self le-trans split-length-i[of © zs] by

metis

then show ?thesis using assms(2,3) nth-append|of as bs j] by force
qed

lemma forward-alt-auzl’:
forward xs
= Vie {Il.length zs — 1}. Jas bs. asQbs = zs A length as = i A (3z € set
as. x —p xsli)
using forward-alt-auzl unfolding forward-def by fastforce

lemma forward-alt-auz2:
[as@bs = zs; length as = 4; Fz € set as. x —p xsli] = Fj<i. xslj —p asli
by (auto simp add: nth-append in-set-conv-nth)

lemma forward-alt-aux2":
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Vi€ {1.length s — 1}. as bs. asQbs = zs A length as = i A (3z € set as. x
— 514)
= forward xs
using forward-alt-auz2 unfolding forward-def by blast

corollary forward-alt:
Vi€ {1.length s — 1}. as bs. asQbs = zs A length as = i A (3z € set as.
—  514)
+— forward zs
using forward-alt-auxl |of zs] forward-alt-auz2’ by blast

lemma move-mid-forward-if-noarc-aux:
assumes as # ||
and ~(3z € set U. Jy € set bs. x =7 y)
and forward (asQU@QbsQcs)
and i € {1..length (asQbs@QU@Qcs) — 1}
shows 3j<i. (as@QbsQUQcs) ! j = (as@QbsQUQcs) ! ¢
proof —
have 0: i € {I..length (asQU@bsQcs) — 1} using assms(4) by auto
consider i < length as | i € {length as..length (asQbs) — 1}
| i € {length (asQbs)..length (as@QbsQU) — 1}
| i > length (as@Qbs@QU)
by fastforce
then show ?thesis
proof (cases)

case ]
then have (asQU@QbsQcs)!i = (as@QbsQUQcs)!i by (simp add: nth-append)

then obtain j where j-def: j<i (asQUQbsQcs)!j — p ((asQbs)@QUQcs)!i
using assms(3) 0 unfolding forward-def by fastforce
then have (asQU@QbsQcs)!j = ((as@bs)@QUQcs)!j using 1 by (simp add:
nth-append)
then show ?thesis using j-def by auto
next
case 2
have ((as@Qbs)QU@Qcs)li = bs!(i — length as)
using 2 assms(4) nth-append root-in-T directed-tree-axioms in-degree-root-zero
by (metis directed-tree.in-deg-one-imp-not-root atLeastAtMost-iff diff-diff-cancel
diff-is-0-eq diff-le-self diff-less-mono neq0-conv zero-less-diff)
then have i-in-bs: ((asQbs)QU@Qcs)!i € set bs using assms(4) 2 by auto
have (i — length as) < length bs using 2 assms(4) by force
then have ((as@Qbs)@QU@Qcs)!i = (asQU@QbsQcs)!(i + length U)
using 2 by (auto simp: nth-append)
moreover have (i + length U) € {1.. length (asQU@QbsQcs) — 1} using 2 0
by force
ultimately obtain j where j-def:
Jj < (i + length U) (asQU@bsQcs)lj —p ((as@Qbs)@QUQcs)!4
using assms(3) unfolding forward-def by fastforce
have i < length (as@Qbs) using i — length as < length bs)» by force
moreover have length as < i using 2 by simp
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ultimately obtain xs ys where zs-def: bs = xzsQys length (asQzxs) = ¢
using split-length-i-prefiz by blast
then have j < (length (asQUQus)) using 2 j-def(1) by simp
then have (asQUQbsQcs)!j € set (asQUQus) by (auto simp: zs-def(1)
nth-append)
then have (as@QU@QbsQcs)!j € set (asQus) using assms(2) j-def(2) i-in-bs by
auto
then obtain j’ where j’-def: j' < length (asQuxs) (asQuxs)!j’ = (asQUQbsQcs)!j
using in-set-conv-nth[of (asQU@QbsQcs)!j] nth-append by blast
then have ((asQbs)@QU@cs)!j’ = (asQUQbsQcs)!j
using nth-append|of asQzs] xs-def(1) by simp
then show %thesis using j-def(2) j’-def(1) zs-def(2) by force
next
case 3
then have i-len-U: ¢ — length (asQbs) < length U using assms(4) by fastforce
have i-len-asU: i — length bs < length (asQU) using 3 assms(4) by force
have ((as@Qbs)@QUQcs)li = (UQes)!(i — length (asQbs))
using 3 by (auto simp: nth-append)

also have ... = (asQU)!(i — length bs)
using 3 i-len-U by (auto simp: ab-semigroup-add-class.add.commute nth-append)
also have ... = (asQU@QbsQcs)!(i — length bs)

using i-len-asU nth-append|of asQU] by simp
finally have 1: ((as@Qbs)@QUQcs)!i = (asQU@QbsQcs)!(i — length bs) .
have (i — length bs) > length as using 3 by auto
then have (i — length bs) > 1 using assms(1) length-0-conv|of as] by force
then have (i — length bs) € {1.. length (asQU@QbsQcs) — 1} using 0 by auto
then obtain j where j-def: j < (i — length bs) (asQU@QbsQcs)!j — 7 ((asQbs)QUQcs)!4
using assms(3) 1 unfolding forward-def by fastforce
have length as < (i — length bs) using 3 by auto
then obtain zs ys where zs-def: U = xzsQys length (asQzs) = (i — length bs)
using split-length-i-prefix]of as] i-len-asU by blast
then have j < (length (asQuxs)) using 3 j-def(1) by simp
then have (asQU@bsQcs)!j € set (asQbsQuzs) by (auto simp: zs-def(1)
nth-append)
then obtain j’' where j'-def: j' < length (asQbsQzs) (as@QbsQzs)!j’ = (as@QUQbsQcs)!j
using in-set-conv-nth[of (asQU@QbsQcs)!j] by blast
then have ((asQbs)@QU@Qcs)!j’ = (asQUQbsQcs)!j
using nth-append|of asQbsQus] xs-def (1) by simp
moreover have j’' < i using j’-def(1) zs-def(2) 8 by auto
ultimately show ?thesis using j-def(2) by force
next
case /
have len-eq: length (asQU@bs) = length (as@QbsQU) by simp
have ((as@Qbs)@QUQcs)!i = c¢sl(i — length (as@QbsQU))
using / nth-append|of asQbsQU] by simp
also have ... = csl(i — length (asQU@Qbs)) using len-eq by argo
finally have ((as@Qbs)@QU@cs)!i = ((asQU@Qbs)Qcs)!i using 4 nth-append|of
as@QUQbs| by simp
then obtain j where j-def: j < i (asQU@QbsQcs)lj — 7 ((asQbs)@UQcs)li
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using assms(3) 0 unfolding forward-def by fastforce
have length (asQU@Qbs) < i using 4 by auto
moreover have i < length ((asQU@bs)Qcs) using 0 by auto
ultimately obtain zs ys where zs-def: zsQys = cs length ((asQU@Qbs) Q xs)
=i
using split-length-i-prefiz|of asQUQbs i] by blast
then have j < (length (asQU@QbsQuzs)) using 4 j-def(1) by simp
then have (asQU@QbsQcs)!j € set (asQbsQUQzs) by (auto simp: zs-def (1)[symmetric]
nth-append)
then obtain j’ where j'-def: j' < length (asQbsQU@Qzs) (as@QbsQUQus)!j’ =
(as@QU@bsQcs)!j
using in-set-conv-nth[of (asQUQbsQcs)!j] by blast
then have ((asQbs)@QUQcs)!j’ = (as@QUQbsQcs)!j
using nth-append|of asQbsQUQus| zs-def (1)[symmetric] by simp
moreover have j' < i using j'-def(1) zs-def(2) 4 by auto
ultimately show ?thesis using j-def(2) by auto
qed
qed

lemma move-mid-forward-if-noarc:
las # [J; ~(3z € set U. Jy € set bs. x — 7 y); forward (asQUQbsQcs)]
= forward (asQbs@QUQcs)
using move-mid-forward-if-noarc-aur unfolding forward-def by blast

lemma move-mid-backward-if-noarc-auz:
assumes Jzcset U. x —p hd V
and forward V
and forward (asQU@QbsQ V@Qcs)
and 7 € {1..length (asQUQVQbsQcs) — 1}
shows 3j<i. (asQUQV@QbsQcs) | j — 7 (asQUQVQbsQcs) ! ¢
proof —
have 0: i € {1..length (asQUQbsQV@Qcs) — 1} using assms(4) by auto
consider i < length (asQU) | i = length (asQU) i < length (asQUQV) — 1
| i € {length (asQU) + 1..length (asQUQV) — 1}
| i € {length (asQUQYV)..length (asQUQV@bs) — 1}
| i > length (asQUQV@bs)
by fastforce
then show ?thesis
proof(cases)
case ]
then have (asQUQbsQ V@Qcs)!i = (asQUQV@QbsQcs)!i by (simp add: nth-append)
then obtain j where j-def: j<i (asQUQbsQ VQcs)!lj —p (asQUQVQbsQces)!i
using assms(3) 0 unfolding forward-def by fastforce
then have (asQUQV@QbsQcs)!lj = (asQUQbsQVQcs)!lj using 1 by (simp
add: nth-append)
then show f?thesis using j-def by auto
next
case 2
have (asQUQV@QbsQcs)li = (V@QbsQcs)!0 using 2(1) by (auto simp: nth-append)
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then have (asQUQV@bsQcs)!i = hd V
using 2 assms(4) hd-append hd-conv-nth Suc-n-not-le-n atLeastAtMost-iff
le-diff-conv?2
by (metis ab-semigroup-add-class.add.commute append.right-neutral Suc-eq-plus1-left)
then obtain z where z-def: € set Uz —p (asQUQV@QbsQcs)!i using
assms(1) by auto
then obtain j where j-def: (asQU)!j = z j < i using in-set-conv-nth|of x] 2
by fastforce
then have (asQUQV@bsQcs)!j = x using 2(1) by (auto simp: nth-append)
then show ?thesis using j-def(2) z-def(2) by blast
next
case 3
have i — length (asQU) € {1 .. length V — 1} using 8 by force
then obtain j where j-def: j < (i — length (asQU)) VIj —p VI(i — length
(as@QU))
using assms(2) unfolding forward-def by blast
then have (asQUQV@bsQcs)!(j+length (asQU)) = VIj
using 3 nth-append|of asQU] nth-append[of V] by auto
moreover have (asQUQVQbsQcs)li = VI(i — length (asQU))
using 3 nth-append|of asQU] nth-append|of V| by auto
moreover have j+length (asQU) < ¢ using j-def(1) by simp
ultimately show ?thesis using j-def(2) by auto
next
case 4
have (asQUQV@bsQces)li = (bsQes)!(i — length (asQUQV)) using 4 nth-append|of
as@QUQV] by simp

also have ... = bs!(i — length (asQU@QYV)) using 4 assms(4) by (auto simp:
nth-append)

also have ... = (asQU@bs)!(¢ — length (asQUQV) + length (asQU)) by
(simp add: nth-append)

also have ... = (as@QUQbs)!(i — length V) using 4 by simp

finally have 1: (asQUQV@bsQcs)!i = (asQUQbsQVQecs)!(i — length V)
using / assms(4) nth-append[of asQUQbs] by auto
have (i — length V) > length (asQU) using 4 by auto
then have (¢ — length V) > 1 using assms(1) length-0-conv by fastforce
then have (i — length V) € {I.. length (asQU@QbsQV@cs) — I} using 0 by
auto
then obtain j where j-def: j < ¢ — length V (asQU@QbsQV@Qcs)!lj —p
(asQUQVQbsQcs)!i
using assms(3) 1 unfolding forward-def by fastforce
have length (asQU) < (i — length V) using 4 by fastforce
moreover have (i — length V) < length ((asQU)Qbs) using 4 assms(4) by
auto
ultimately obtain zs ys where zs-def: zsQys = bs length ((asQU)Q zs) = 4
— length V
using split-length-i-prefiz[of asQU] by blast
then have j < (length (asQUQus)) using 4 j-def(1) by simp
then have (asQUQbsQV@Qcs)!j € set (asQUQ VQzs) by (auto simp: zs-def (1)[symmetric]
nth-append)
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then obtain j’ where j'-def: j' < length (asQUQV@Quzxs) (asQUQVQuxs)!j’ =
(as@QUQ@bsQ VQcs)!j
using in-set-conv-nth[of (asQUQbsQVQcs)!j] by blast
then have (asQUQV@bsQcs)!j’ = (asQUQbsQ VQcs)!j
using nth-append|of asQUQV Qus] zs-def(1) by auto
moreover have j’' < i using j’-def(1) zs-def(2) 4 by auto
ultimately show ?thesis using j-def(2) by auto
next
case $
have len-eq: length (asQU@QbsQV) = length (asQUQV@Qbs) by simp
have (asQUQ@V@bsQcs)!i = cs!(i — length (asQUQ V@Qbs))
using 5 nth-append|of asQUQVQbs| by auto
also have ... = c¢sl(i — length (as@QU®@bsQV)) using len-eq by argo
finally have (asQUQV@Qbs@cs)!i = ((asQUQbsQV)@Qcs)!4
using 5 nth-append|of asQU@QbsQ V] by simp
then obtain j where j-def: j < i (asQUQbsQV@Qcs)lj — 7 (asQUQVQbsQcs)!4
using assms(3) 0 unfolding forward-def by fastforce
have length (asQU@QbsQV) < ¢ using 5 by auto
moreover have i < length ((asQU@QbsQV)Qcs) using 0 by auto
ultimately obtain zs ys where zs-def: zsQys = cs length ((asQU@QbsQV) Q
xs) = i
using split-length-i-prefiz[of asQUQbsQV i| by blast
then have j < (length (asQU@QbsQ V@Quzs)) using 5 j-def(1) by simp
then have (asQU@bsQV@Qcs)lj € set (asQUQVQbsQxs)
by (auto simp: xs-def(1)[symmetric] nth-append)
then obtain j' where j'-def: j' < length (asQUQV@QbsQzs) (asQUQ VQbsQus)!j’
= (asQUQbs@V@cs)!j
using in-set-conv-nth[of (asQUQbsQVQcs)!j] by blast
then have (asQUQV@QbsQcs)!j’ = (asQUQbsQ VQcs)!j
using nth-append|of asQUQVQbsQuxs] zs-def (1) by force
moreover have j’ < i using j'-def(1) zs-def(2) 5 by auto
ultimately show ?thesis using j-def(2) by auto
qed
qed

lemma move-mid-backward-if-noarc:
[before U V; forward (asQU@Qbs@QV@Qcs)] = forward (asQUQVQbsQcs)
using before-forward2l
by (simp add: forward-def before-arc-to-hd move-mid-backward-if-noarc-aux)

lemma move-mid-backward-if-noarc’:
[Bzeset U. Jyeset V. x —p y; forward V; set U N set V = {}; forward
(as@QUQbsQV@Qcs)]
= forward (asQUQV@QbsQcs)
using move-mid-backward-if-noarc-auz[of U V as bs cs| forward-arc-to-head|of V
U] forward-def
by blast

end
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10.1 Sublist Additions

lemma fst-sublist-if-not-snd-sublist:
[xsQys=AQB; — sublist B ys] = Jas bs. as Q bs = zs A bs @ ys = B
by (metis suffiz-append suffiz-def suffiz-imp-sublist)

lemma sublist-before-if-mid:

assumes sublist U (AQV)and A Q V @ B = zs and set U N set V = {} and
U#]

shows Jas bs cs. as @ U Q bs Q@ V Q ¢s = xs
proof —

obtain C' D where C-def: (C @ U) @ D = A @Q V using assms(1) by (auto
stmp: sublist-def)

have sublist V D

using assms(8,4) fst-sublist-if-not-snd-sublist| OF C-def] disjoint-iff-not-equal

last-appendR

by (metis Int-iff Un-Int-eq(1) append-Nil2 append-self-conv2 set-append last-in-set
sublist-def)

then show %thesis using assms(2) C-def sublist-def append.assoc by metis
qed

lemma list-empty-if-subset-dsjnt: [set xs C set ys; set s N set ys = {}] = zs =

[

using semilattice-inf-class.inf.orderE by fastforce

lemma empty-if-sublist-dsjnt: [sublist xs ys; set xs N set ys = {}] = zs = |]
using set-mono-sublist list-empty-if-subset-dsjnt by fast

lemma sublist-snd-if-fst-dsjnt:
assumes sublist U (V@B) and set U N set V = {}
shows sublist U B
proof —
consider sublist U V | sublist U B | (Jxsl zs2. U = xs1Qus2 A suffix zs1 V A
prefiz zs2 B)
using assms(1) sublist-append by blast
then show ?thesis
proof (cases)
case I
then show ?%thesis using assms(2) empty-if-sublist-dsjnt by blast
next
case 2
then show ?thesis by simp
next
case 3
then obtain zs ys where xs-def: U = zsQys suffix zs V prefiz ys B by blast
then have set zs C set V by (simp add: set-mono-suffix)

then have zs = [| using zs-def(1) assms(2) list-empty-if-subset-dsjnt by
fastforce
then show ?%thesis using zs-def(1,3) by simp
qed
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qed

lemma sublist-fst-if-snd-dsjnt:
assumes sublist U (BQV) and set U N set V = {}
shows sublist U B
proof —
consider sublist U V' | sublist U B | (3asl xs2. U = xs1Quxs2 A suffix zs1 B A
prefiz xs2 V)
using assms(1) sublist-append by blast
then show ?thesis
proof(cases)
case I
then show ?thesis using assms(2) empty-if-sublist-dsjnt by blast
next
case 2
then show ?thesis by simp
next
case 3
then obtain zs ys where xs-def: U = zsQys suffix s B prefix ys V by blast
then have set ys C set V by (simp add: set-mono-prefix)

then have ys = [| using zs-def(1) assms(2) list-empty-if-subset-dsjnt by
fastforce
then show ?thesis using zs-def(1,2) by simp
qed

qed

lemma sublist-app: sublist (A @ B) C = sublist A C' N\ sublist B C
using sublist-order.dual-order.trans by blast

lemma sublist-Cons: sublist (A # B) C' = sublist [A] C A sublist B C
using sublist-app[of [A]] by simp

lemma sublist-set-elem: [sublist xs (AQB); z € set as] = = € set AV z € set B
using set-mono-sublist by fastforce

lemma subset-snd-if-hd-notin-fst:
assumes sublist ys (V Q B) and hd ys ¢ set V and ys # |]
shows set ys C set B
proof —
have — sublist ys V using assms(2,3) by(auto simp: sublist-def)
then consider sublist ys B | (Fxsl xs2. ys = xs1Qus2 A suffiz xs1 V A prefix
xs2 B)
using assms(1) sublist-append by blast
then show ?thesis
proof (cases)
case I
then show %thesis using set-mono-sublist by blast
next
case 2
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then obtain zs zs where zs-def: ys = xsQzs suffiz s V prefiz zs B by blast
then have set s C set V by (simp add: set-mono-suffix)
then have zs = [| using zs-def (1) assms(2,3) hd-append hd-in-set subsetD by
fastforce
then show ?thesis using zs-def(1,3) by (simp add: set-mono-prefiz)
qed
qed

lemma suffiz-ndjsnt-snd-if-nempty: [suffix zs (AQV); V £ [|; zs # [|]] = set xs
N set V #{}

using empty-if-sublist-dsjnt disjoint-iff

by (metis sublist-append-left] suffiz-append suffix-imp-sublist)

lemma sublist-not-mid:
assumes sublist U (A Q V) @Q B) and set U N set V = {} and V # [|
shows sublist U A V sublist U B
proof —
consider sublist U A | sublist U V| (3asl xs2. U = xs1Qus2 A suffix xs1 A A
prefiz xs2 V)
| sublist U B | (3xsl xs2. U = xs1Qus2 A suffix zs1 (AQV) A prefiz xs2 B)
using assms(1) sublist-append by metis
then show ?thesis
proof (cases)
case 2
then show “thesis using assms(2) empty-if-sublist-dsjnt by blast
next
case 3
then show ?thesis using assms(2) sublist-append sublist-fst-if-snd-dsjnt by
blast
next
case $
then obtain xs ys where xs-def: U = xsQys suffiz xs (AQV) prefiz ys B by
blast
then have set zs N set V # {} V xs = || using suffiz-ndjsnt-snd-if-nempty
assms(3) by blast
then have zs = || using zs-def(1) assms(2) by auto
then show ?thesis using zs-def(1,3) by simp
qed(auto)
qed

lemma sublist-Y-cases-UV:
assumes Vas € Y. Vys € Y. zs = ys V set zs N set ys = {}
and U € Y
and V €Y
and U # |]
and V # ||
and (Vs € Y. sublist zs (asQUQbsQVQcs))
and zs € Y
shows sublist s as V sublist xs bs V sublist xs csV U =xzsV V = xs
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using assms append-assoc sublist-not-mid by metis

lemma sublist-behind-if-nbefore:
assumes sublist U xs sublist V zs Basbscs. as@ U Q bs Q@ V Q ¢s = s set U

Nset V={}
shows Jas bs cs. as @ V @Q bs @ U @Q ¢cs = zs
proof —

have V # [| using assms(1,3) unfolding sublist-def by blast
obtain A B where A-def: A @ V @ B = zs using assms(2) by (auto simp:
sublist-def)
then have —sublist U A unfolding sublist-def using assms(3) by fastforce
moreover have sublist U (A Q V) @ B) using assms(1) A-def by simp
ultimately have sublist U B using assms(4) sublist-not-mid <« V#[]> by blast
then show ?thesis unfolding sublist-def using A-def by blast
qed

lemma sublists-preserv-move-U:
[set zs N set U = {}; set s N set V = {}; V#[]; sublist zs (asQUQbsQVQcs)]
= sublist zs (asQbsQUQ VQcs)
using append-assoc self-append-conv?2 sublist-def sublist-not-mid by metis

lemma sublists-preserv-move-UY:
[Vzse Y. Vys€ Y. azs =ysV setasNsetys={};zs € Y; U e Y; Vev;
V # [|; sublist zs (asQU@QbsQ V@cs)]
= sublist xs (asQbsQUQ VQcs)
using sublists-preserv-move-U append-assoc sublist-appendl by metis

lemma sublists-preserv-move-UY-all:
[Vzs e Y. Vyse€ Y.azs=ysV setasNsetys={}; U Y; Ve Y;
V #[;Vas € Y. sublist zs (asQUQbsQ VQcs)]
= Vas € Y. sublist zs (asQbsQUQVQcs)
using sublists-preserv-move-UY [of Y] by simp

lemma sublists-preserv-move-V:
[set zs N set U = {}; set s N set V = {}; U#]]; sublist xs (asQUQbsQ V@Qcs)]
= sublist xs (asQUQVQbsQcs)
using append-assoc self-append-conv?2 sublist-def sublist-not-mid by metis

lemma sublists-preserv-move-VY:
[Vase Y.Vyse Y.as=ysV setasNsetys={};zse€ Y; UeY; Vevy;
U # []; sublist s (asQU@QbsQ VQcs)]
= sublist xs (asQUQVQbsQcs)
using sublists-preserv-move-V append-assoc sublist-appendl by metis

lemma sublists-preserv-move-VY-all:
[Vase Y. Vyse Y.as=ysVsetasNsetys={}; UeY; Ve,
U#|; Vas € Y. sublist zs (asQUQbsQ VQcs)]
= Vs € Y. sublist zs (asQUQVQbsQcs)
using sublists-preserv-move-VY[of Y] by simp
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lemma distinct-sublist-first:
[sublist as (x#xs); distinct (z#xs); © € set as] = take (length as) (x#xs) = as
unfolding sublist-def using distinct-app-trans-l distinct-ys-not-xs hd-in-set

by (metis list.sel(1) append-assoc append-eq-conv-conj append-self-conv2 hd-append2)

lemma distinct-sublist-first-remainder:

[sublist as (xftxs); distinct (x#xs); x € set as] = as @ drop (length as) (z#xs)
= x#uxs

using distinct-sublist-first append-take-drop-id|[of length as x#xs| by fastforce

lemma distinct-set-diff: distinct (zsQys) = set ys = set (zsQys) — set xs
by auto

lemma list-of-sublist-concat-eq:
assumes Vas € Y. Vbs € Y. as = bs V set as N set bs = {}
and Vas € Y. sublist as xs
and distinct s
and set zs = |J(set © Y)
and finite Y
shows Jys. set ys = Y A concat ys = zs A distinct ys
using assms proof (induction Finite-Set.card Y arbitrary: Y xs)
case (Suc n)
show Zcase
proof(cases xs)
case Nil
then have Y = {[]} V Y = {} using Suc.prems(4) by auto
then have set [[|] = Y A concat [[]] = zs A distinct [[]] using Nil Suc.hyps(2)
by auto
then show ?thesis by blast
next
case (Cons z zs')
then obtain as where as-def: = € set as as € Y using Suc.prems(4) by auto
then have 0: as @ (drop (length as) zs) = xs
using Suc.prems(2,3) distinct-sublist-first-remainder Cons by fast
then have Vbs € (Y — {as}). sublist bs (drop (length as) xs)
using Suc.prems(1,2) as-def(2) by (metis DiffE insertll sublist-snd-if-fst-dsjnt)
moreover have Vcs € (Y — {as}). Vbs € (Y — {as}). cs = bs V set cs N set
bs = {}
using Suc.prems(1) by simp
moreover have distinct (drop (length as) zs) using Suc.prems(8) by simp
moreover have set (drop (length as) zs) = J (set ‘ (Y—{as}))
using Suc.prems(1,3,4) distinct-set-diff[of as drop (length as) xs] as-def(2)
0 by auto
moreover have n = Finite-Set.card (Y —{as}) using Suc.hyps(2) as-def(2)
Suc.prems(5) by simp
ultimately obtain ys where ys-def:
set ys = (Y—{as}) concat ys = drop (length as) xs distinct ys
using Suc.hyps(1) Suc.prems(5) by blast
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then have set (as#ys) = Y A concat (as#ys) = zs A distinct (as#ys) using
0 as-def(2) by auto
then show %thesis by blast
qed
qed(auto)

lemma extract-length-decr|[termination-simp:
List.extract P s = Some (as,z,bs) = length bs < length xs
by (simp add: extract-Some-iff)

fun separate-P :: (a = bool) = 'a list = 'a list = 'a list x 'a list where
separate-P P acc xs = (case List.extract P zs of
None = (acc,zs)
| Some (as,x,bs) = (case separate-P P (x#tacc) bs of (acc’,xs’) = (acc’,
asQzs’)))

lemma separate-not-P-snd: separate-P P acc s = (as,bs) = Yz € set bs. =Pz
proof (induction P acc xs arbitrary: as bs rule: separate-P.induct)
case (I P acc zs)
then show ?case
proof(cases List.extract P xs)
case None
then have bs = zs using 1.prems by simp
then show %thesis using None by (simp add: extract-None-iff)
next
case (Some a)
then obtain cs = ds where z-def[simp]: a = (c¢s,z,ds) by(cases a) auto
then obtain acc’ zs’ where acc’-def: separate-P P (z#tacc) ds = (acc’,zs’) by
fastforce
then have (acc’, csQus’) = (as,bs) using 1.prems Some by simp
moreover have Vz € set zs’. =P x using 1.IH acc’-def Some z-def by blast
ultimately show ?thesis using Some by (auto simp: extract-Some-iff)
qed
qed

lemma separate-input-impl-none: separate-P P acc xs = (acc,zs) => List.extract
P zs = None
using extract-None-iff separate-not-P-snd by fast

lemma separate-input-iff-none: List.extract P xs = None <— separate-P P acc s
= (acc,xs)
using separate-input-impl-none by auto

lemma separate-P-fst-acc:

separate-P P acc zs = (as,bs) = Jas’. as = as’Qacc N (Vz € set as’. P x)
proof (induction P acc xs arbitrary: as bs rule: separate-P.induct)

case (1 P acc xs)

then show ?case

proof(cases List.extract P xs)
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case None
then show ?thesis using 1.prems by simp
next
case (Some a)
then obtain cs = ds where z-def[simp]: a = (c¢s,z,ds) by(cases a) auto
then obtain acc’ zs’ where acc’-def: separate-P P (z#tacc) ds = (acc’,zs’) by
fastforce
then have (acc’, ¢sQuzs’) = (as,bs) using 1.prems Some by simp
then have Jas’. as = as’@Q(z#acc) AN (Vz € set as’. P x)
using 1.IH acc’-def Some z-def by blast
then show %thesis using Some by (auto simp: extract-Some-iff)
qed
qed

lemma separate-P-fst: separate-P P [| xs = (as,bs) = V& € set as. P«
using separate-P-fst-acc by fastforce

10.2 Optimal Solution for Lists of Fixed Sets

lemma distinct-seteq-set-length-eq:
z € {ys. set ys = xs A distinct ys} = length x = Finite-Set.card xs
using distinct-card by fastforce

lemma distinct-seteq-set-Cons:
[Finite-Set.card s = Suc n; x € {ys. set ys = xs A distinct ys}]
= Jy ys. y # ys = x A length ys = n A distinct ys A\ finite (set ys)
using distinct-seteq-set-length-eqof =] Suc-length-conv]of n x] by force

lemma distinct-seteq-set-Cons':
[Finite-Set.card xs = Suc n; x € {ys. set ys = xs A distinct ys}]
= dy ys zs. y # ys = x A\ Finite-Set.card zs = n A distinct ys N\ set ys = zs
using distinct-seteq-set-length-eq|of x| Suc-length-conv|of n z] by force

lemma distinct-seteq-set-Cons'":
[Finite-Set.card xs = Suc n; x € {ys. set ys = xs A distinct ys}]
= dyyszs. y# ys=x Ny € xs
A set ys = zs N Finite-Set.card zs = n N\ distinct ys A finite zs
using distinct-seteq-set-Cons by fastforce

lemma distinct-seteqg-set-Cons-in-set:
[Finite-Set.card s = Suc n; x € {ys. set ys = xs A distinct ys}]
= Jy ys zs. y#ys = x N y € xs A Finite-Set.card zs = n N ys€{ys. set ys =
zs A distinct ys}
using distinct-seteq-set-Cons'’ by auto

lemma distinct-seteq-set-Cons-in-set”:
[Finite-Set.card s = Suc n; x € {ys. set ys = xs A distinct ys}]
= Jy ys. ¢ = y#ys N\ y € zs N ys€{ys. set ys = (zs — {y}) A distinct ys}
using distinct-seteq-set-Cons'' by fastforce
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lemma distinct-seteg-eq-set-union:
Finite-Set.card s = Suc n
= {ys. set ys = xs A distinct ys}
={y# ys|yys. y € as A ys € {as. set as = (zs — {y}) A distinct as}}
using distinct-seteq-set-Cons-in-set’ by force

lemma distinct-seteq-sub-set-union:
Finite-Set.card zs = Suc n
= {ys. set ys = xs A distinct ys}
Cly# yslyys. y€axs A ys € {as. Ja € xs. set as = (vs — {a}) N distinct

as}}

using distinct-seteq-set-Cons-in-set’ by fast

lemma finite-set-union: [finite ys; Vy € ys. finite y] = finite (Jy € ys. y)
by simp

lemma Cons-set-eq-union-set:
{z#vylzyy . zcashyey ny eyst={a#vylzy zeashyec Uy

€ ys. y)}
by blast

lemma finite-set-Cons-union-finite:
[finite xs; finite ys; Vy € ys. finite y]
= finite{z # y|zy z€axshye UyeEys vy}
by (simp add: finite-image-set2)

lemma finite-set-Cons-finite:
[finite xs; finite ys; Vy € ys. finite y]
= finite{z # y|lzyy. zc€asNnyecy ANy €ys}
using Cons-set-eq-union-set[of zs] by (simp add: finite-image-set2)

lemma finite-set-Cons-finite":
[finite xs; finite ys] = finite {z # y |z y. x € zs A y € ys}
by (auto simp add: finite-image-set2)

lemma Cons-set-alt: {z # y|lzy.x €axs Ny € yst ={zs. Jzy. s # y=2s\zx
€ xs Ay € ys}
by blast

lemma Cons-set-sub:
assumes Finite-Set.card ts = Suc n
shows {ys. set ys = xs A distinct ys}
Clz#ylryzecasNhye Uy €< xs. {as. set as = xs — {y} A distinct as})}
using distinct-seteq-eq-set-union| OF assms] by auto

lemma distinct-seteq-finite: finite xs = finite {ys. set ys = xs A distinct ys}
by (blast intro: rev-finite-subset| OF finite-subset-distinct])
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lemma distinct-setsub-split:

{ys. set ys C xs A distinct ys}

= {ys. set ys = xs A distinct ys} U (Jy € zs. {ys. set ys C (xzs—{y}) N distinct
ys})

by blast

lemma valid-UV-lists-finite:
finite s = finite {z. Fas bs cs. asQUQbsQVQcs = z A set © = xs A distinct
z}

using distinct-seteq-finite by force

lemma valid-UV-lists-r-subset:
{z. Jas bs cs. asQUQbsQVQcs = z A set x = xs A distinct x A take 1 © = [r]}
C {z. Jas bs cs. asQUQbsQVQcs = z A set x = zs A distinct z}
by blast

lemma valid-UV-lists-r-finite:

finite xs = finite {z. Fas bs cs. asQUQbsQVQcs = x A set x = xzs A distinct
z A take 1 z = [r]}

using valid-UV-lists-finite finite-subset|OF wvalid-UV-lists-r-subset] by fast

lemma valid-UV-lists-arg-min-ex-auzx:
[finite ys; ys # {}; ys = {z. Tas bs cs. asQUQbsQVQcs = z A set z = x5 A
distinct x}]
= Jyecys. Vzeys. (f:'alist = real) y < fz
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma valid-UV-lists-arg-min-ex:
[finite zs; ys # {}; ys = {x. Tas bs cs. asQUQbsQVQcs = z A set © = x5 A
distinct x}]
= dyecys. Vze ys. (f::'alist = real) y < fz
using valid-UV-lists-finite valid-UV-lists-arg-min-ez-auz|of ys] by blast

lemma valid-UV-lists-arg-min-r-ez-auz:
[finite ys; ys # {};
ys = {z. Fas bs cs. asQUQbsQVQcs = z A set x = xs A distinct © A take 1 x
= [r}]
= dye€ys. Vz e ys. (f::'alist = real) y < fz
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma valid-UV-lists-arg-min-r-ex:
Lfinite zs; ys # {}:
ys = {z. Jas bs cs. asQUQbsQVQcs = z A set x = xs A distinct x A take 1 x
= [r]}]
= Jyecys.Vzeys (f::'alist = real) y < f2
using valid- UV-lists-r-finite|of xs] valid-UV-lists-arg-min-r-ez-auz|of ys] by blast

lemma valid-UV-lists-nemipy:
assumes finite xs set (UQV) C zs distinct (UQV)
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shows {z. Jas bs cs. asQUQbsQVQcs = z A set x = xs A distinct ©} # {}
proof —

obtain cs where set ¢s = xs — set (UQV) A distinct cs

using assms(1) finite-distinct-list[of xs — set (UQYV)] by blast

then have [[QUQ[@QV@Qcs = UQVQcs set (UQVQcs) = zs distinct (UQVQes)
using assms by auto

then show ?thesis by blast
qed

lemma valid- UV-lists-nemtpy’:
[finite xs; set U N set V = {}; set U C xs; set V C as; distinct U; distinct V]
= {z. Jas bs cs. asQUQbsQVQcs = x A set © = xs A distinct x} # {}
using valid-UV-lists-nemipy|of xs| by simp

lemma valid-UV-lists-nemtpy-r:
assumes finite zs and set (UQV) C zs and distinct (UQV)
and take 1 U =[r] V r ¢ set U U set V and r € zs
shows {z. (Fas bs ¢s. asQUQbsQVQcs = ) A set x = xs A distinct © N\ take 1
z=[r]} # {}
proof(cases take 1 U = [r])
case True
obtain cs where set ¢cs = zs — set (UQV) A distinct cs
using assms(1) finite-distinct-list by auto
then have [[QUQ[[QVQcs = UQV@cs set (UQVQcs) = xs distinct (UQVQcs)
using assms by auto
then show ?thesis using True takel-singleton-app by fast
next
case Fulse
obtain cs where cs-def: set cs = zs — ({r} U set (UQV)) A distinct cs
using assms(1) finite-distinct-list by auto
then have [r|QUQ[[QV@Qcs = [r|QUQVQcs set ([r]QUQVQcs) = zs distinct
([rf@U@Vacs)
take 1 ([r]QUQVQcs) = [r]
using assms Fulse by auto
then show %thesis by (smt (verit, del-insts) empty-Collect-eq)
qed

lemma valid-UV-lists-nemtpy-r":
[finite zs; set U N set V = {}; set U C xzs; set V C xs; distinct U; distinct V;
take 1 U = [r] V r ¢ set U U set V; r € zs]
= {z. Jas bs cs. asQUQIsQVQcs = z A set © = xs A distinct x A take 1 z

=y #{

using valid-UV-lists-nemtpy-r|of zs] by simp

lemma valid-UV-lists-arg-min-ex”:
[finite xs; set U N set V = {}; set U C xs; set V C as; distinct U; distinct V;
ys = {z. (as bs cs. asQUQbsQVQcs = x) A set & = xs A\ distinct ©}]
= dyecys.Vze ys. (f::'alist = real) y < fz
using valid-UV-lists-arg-min-ex|of zs] valid-UV-lists-nemipy’[of zs] by simp
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lemma valid- UV-lists-arg-min-r-ex’:
[finite xs; set U N set V = {}; set U C xs; set V C as; distinct U; distinct V;
take 1 U =[r]V r ¢ set UU set V; r € axs;
ys = {z. (Jas bs cs. asQUQbsQVQcs = z) A set x = xs A distinct x A take 1
v = )]
= Jyecys. Vze ys. (f:'alist = real) y < fz
using valid-UV-lists-arg-min-r-ex[of zs| valid-UV-lists-nemtpy-r'[of xs| by simp

lemma valid-UV-lists-alt:
assumes P = (\z. (Fas bs cs. asQUQbsQVQcs = z) A set © = zs A distinct x)
shows {z. (Fas bs cs. asQUQbsQVQcs = x) A set © = xs N\ distinct } = {ys.
P ys}
using assms by simp

lemma valid-UV-lists-argmin-ex:
fixes cost :: 'a list = real
assumes P = (Az. (Fas bs cs. asQUQbsQVQcs = z) A set © = zs A distinct x)
and finite xs
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
shows Jas’ bs’ cs’. P (as’@QUQbs'QVQcs") A
(Vas bs cs. P (asQU@Qbs@QV@Qcs) — cost (as'@QUQbs'QV@Qcs’) < cost
(as@QUQbs@ V@cs))
proof —
obtain y where y € {ys. P ys} A (Vz € {ys. P ys}. cost y < cost z)
using valid-UV-lists-arg-min-ex'|OF assms(2—7)] assms(1) by fastforce
then show ?thesis using assms(1) by blast
qged

lemma valid-UV-lists-argmin-ex-noP:
fixes cost :: 'a list = real
assumes finite xs
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
shows Jas’ bs’ ¢s’. set (as’ @ U @Q bs' @ V Q cs’) = zs A distinct (as’ Q@ U
@ bs’@ V Q@ cs')
A (Vas bs cs. set (as @ U Q bs @ V @ ¢s) = zs A distinct (as @ U Q bs Q V
@ cs)
— cost (as’ @ U Q@ bs’ @ V @ ¢s') < cost (as @ U Q bs @ V Q@ cs))
using valid-UV-lists-argmin-ex| OF refl assms] by metis

lemma valid-UV-lists-argmin-r-ex:
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fixes cost :: 'a list = real
assumes P = (Az. (Fas bs ¢s. asQUQbsQVQcs = z) A set © = xs A distinct ©
A take 1 x = [r])
and finite xs
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
and take 1 U =1[r]V r ¢ set UU set V
and r € s
shows Jas’ bs’ cs’. P (as’QUQbs'QVQcs") A
(Vas bs cs. P (asQU@QbsQV@cs) — cost (as@UQbs'@VQcs’) < cost
(as@QU@bs@ VQcs))
proof —
obtain y where y € {ys. P ys} A (Vz € {ys. P ys}. cost y < cost z)
using valid-UV-lists-arg-min-r-ex’|OF assms(2—29)] assms(1) by fastforce
then show %thesis using assms(1) by blast
qed

lemma valid-UV-lists-argmin-r-ez-noP:
fixes cost :: 'a list = real
assumes finite s
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
and take 1 U =[r]V r ¢ set UU set V
and r € zs
shows Jas’ bs’ c¢s'. set (as’' @ U @ bs' @ V Q c¢s’) = s
A distinct (as’ @ U @Q bs' Q V @ ¢s’) A take I (as’ @ U @Q bs' Q@ V Q@ ¢s’) =
[]
A (Vas bs cs. set (as @ U @ bs @ V Q cs) = zs
A distinct (as @ U @Q bs @ V @ ¢s) A take 1 (as@Q U Q@ bs @Q V Q@ ¢s) = [r]
— cost (as’ @ U Q bs' @ V @ ¢s’) < cost (as@ U Q bs @ V Q@ ¢s))
using valid-UV-lists-argmin-r-ex[OF refl assms] by metis

lemma valid-UV-lists-argmin-r-ex-noP":

fixes cost :: 'a list = real

assumes finite xs
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
and take 1 U =1[r] V r ¢ set UU set V
and r € zs

shows Jas’ bs’ cs'. set (as’ @ U @ bs' Q@ V Q c¢s’) = s
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A distinct (as’ @ U @Q bs' Q@ V @ ¢s’) A take 1 (as’Q U Q bs’ @ V Q ¢s') =
[]
A (Vas bs cs. set (as@ U Q bs @ V @ ¢s) = us
A distinct (as @ U Q bs @ V Q ¢s) A take 1 (as@Q U Q bs @Q V Q ¢s) = [r]
— cost (rev (as’ @ U @Q bs’ @ V @ ¢s’)) < cost (rev (as @Q U Q bs Q V
Q c¢s)))

using valid-UV-lists-argmin-r-ez-noP[OF assms] by meson

lemma takel-split-nempty: ys # [| = take 1 (zsQysQzs) = take 1 (xsQys)
by (metis append.assoc append-Nil2 gr-zerol length-0-conv less-one same-append-eq
take-append take-eq-Nil zero-less-diff)

lemma takel-elem: [take 1 (zsQys) = [r]; r € set zs] = take 1 xs = [r]
using in-set-conv-decomp-last|of r zs] by auto

lemma takel-nelem: [take 1 (xsQys) = [r]; r ¢ set ys] = take 1 zs = [r]
using takel-elem[of zs ys r] append-self-conv2|of xs] hd-in-set[of ys]
by (fastforce dest: hd-eq-takel)

lemma takel-split-nelem-nempty: [take 1 (zsQysQzs) = [r]; ys £ []; r ¢ set ys]
= take 1 zs = [r]
using takel-split-nempty takel-nelem by fastforce

lemma takel-empty-if-nelem: [take 1 (asQbsQcs) = [r]; r ¢ set as] = as = |]
using takel-split-nelem-nempty[of [] as bsQcs] by auto

lemma takel-empty-if-mid: [take 1 (asQbsQcs) = [r]; r € set bs; distinct (asQbsQcs)]
= as =[]
using takel-empty-if-nelem by fastforce

lemma takel-mid-if-elem:
[take 1 (asQbsQcs) = [r]; r € set bs; distinct (asQbsQcs)] = take 1 bs = [r]
using takel-empty-if-mid[of as bs cs] by (fastforce intro: takel-elem)

lemma contr-optimal-nogap-no-r:

assumes asi rank r cost
and rank (rev V) < rank (rev U)
and finite xs
and set U N set V = {}
and set U C zs
and set V C zs
and distinct U
and distinct V
and r ¢ set U U set V
and r € zs

shows Jas’ c¢s’. distinct (as’ @ U Q V @ ¢s') A take 1 (as’ @ U @ V @ cs)

[r]

A set (as’ @ U @V @ cs’) =xs A (Vas bs cs. set (as @ U Q bs Q@ V @ cs)

= I$s
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A distinct (as @ U Q bs Q V Q ¢s) A take 1 (as @ U Q bs Q V Q ¢s) =
[]

cs)))

proof —
define P where P ys = set ys = xs A distinct ys A take 1 ys = [r] for ys
obtain as’ bs’ cs’ where bs’-def:
set (as’QUQbs'QVQcs’) = zs distinct (as'QUQbs'QVQcs’) take 1 (as'/QUQbs'QVQcs’)
= [r]
Vasbscs. P(as@ U @QbsQ V Q ¢s) —
cost (rev (as' @ U @ bs’ @ V @ c¢s’)) < cost (rev (as @ U @ bs @Q V @

— cost (rev (as’' @ U Q V Q ¢s’)) < cost (rev (as @ U @ bs @ V @

s))
using valid-UV-lists-argmin-r-ex-noP'|OF assms(3—38)] assms(9,10) unfold-
ing P-def by blast
then consider U =[] | V=[ V bs'=|
| rank (rev bs") < rank (rev U) U # [] bs' # |]
| rank (rev U) < rank (rev bs") U #[| V #
by fastforce
then show ?thesis
proof (cases)
case I
then have Vas bs cs. P (as@Q U @ bs @ V @ ¢s) —
cost (rev ((as’'@Qbs"YQUQVQcs’)) < cost (rev (as @ U Q bs @ V @ cs))
using bs’-def(4) by simp
moreover have set ((as'Qbs\QUQVQcs’) = zs using bs’-def(1) by auto
moreover have distinct ((as’@Qbs)QUQV@Qcs’) using bs’-def(2) by auto
moreover have take 1 ((as’Qbs’)QUQV@Qcs’) = [r] using bs’-def(3) 1 by
auto
ultimately show ¢thesis unfolding P-def by blast
next
case 2
then have Vas bs cs. P (as@Q U @ bs @ V @ ¢s) —>
cost (rev (as’QUQV@Qbs"Qcs’)) < cost (rev (as @ U Q bs @ V Q c¢s))
using bs’-def(4) by auto
moreover have set (as’QUQV@Qbs'Qcs’) = zs using bs’-def(1) by auto
moreover have distinct (as’QUQV@Qbs'Qcs’) using bs’-def(2) by auto
moreover have take 1 (as’/QUQV@Qbs'Qcs’) = [r] using bs’-def(3) 2 by auto
ultimately show #thesis unfolding P-def by blast
next
case §
have 0: distinct (as’Qbs’QUQV@Qcs’) using bs’-def(2) by auto
have 1: take 1 (as’Qbs’@QUQV@cs’) = [r]
using bs’-def(3) assms(9) 3(2) takel-split-nelem-nempty|of as’ U bs'QV@Qcs’]
by simp
then have cost (rev (as’@Qbs’@QUQV@Qcs’)) < cost (rev (as’@UQbs'QVQcs’))
using asi-le-rfst[OF assms(1) 3(1,8,2) 0] bs’-def(3) by blast
then have Vas bs cs. P (as @ U @ bs @ V Q ¢s) —
cost (rev ((as’Qbs"YQUQVQcs’)) < cost (rev (as @ U Q bs @ V Q@ ¢s))

using bs’-def(4) by fastforce
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moreover have set ((as'Qbs\QUQVQcs’) = zs using bs’-def(1) by auto
moreover have distinct ((as'@Qbs"\QUQ VQcs’) using 0 by simp
moreover have take I ((as’Qbs\QU@QV@Qcs’) = [r] using I by simp
ultimately show ?thesis using P-def by blast
next
case 4
then have 3: rank (rev V) < rank (rev bs’) using assms(2) by simp
have 0: distinct ((as’QU)QV@Qbs'Qcs’) using bs’-def(2) by auto
have 1: take 1 (as’QUQV@Qbs'Qcs’) = [r]
using bs’-def(3) assms(9) 4(2) takel-split-nelem-nempty|of as’ U bs’'QV@Qcs’]
by simp
then have cost (rev (as’/QUQV@bs'Qcs’)) < cost (rev ((as@QU)Qbs'QVQcs'))
using asi-le-rfst[OF assms(1) 3 4(3,4) 0] bs’-def(3) by simp
then have Vas bs cs. P (as@Q U @ bs @ V @ ¢s) —»
cost (rev (as’QUQVQbs'Qcs”)) < cost (rev (as @ U Q bs Q@ V @ cs))
using bs’-def(4) by fastforce
moreover have set (as’QUQVQbs'Qcs’) = zs using bs’-def(1) by auto
moreover have distinct (as’/QUQV@Qbs'Qcs’) using 0 by simp
ultimately show ¢thesis using P-def 1 by blast
qed
qed

fun combine-lists-P :: ('a list = bool) = 'a list = 'a list list = 'a list list where
combine-lists-P - y [| = [y]

| combine-lists-P Py (x#xs) = (if P (xQy) then combine-lists-P P (zQy) zs else

(zQy)#s)

fun make-list-P :: ('a list = bool) = 'a list list = 'a list list = 'a list list where
make-list-P P acc xs = (case List.extract P zs of
None = rev acc @ xs
| Some (as,y,bs) = make-list-P P (combine-lists-P P y (rev as @Q acc)) bs)

lemma combine-lists-concat-rev-eq: concat (rev (combine-lists-P P y xs)) = concat
(rev zs) @ y
by (induction P y zs rule: combine-lists-P.induct) auto

lemma make-list-concat-rev-eq: concat (make-list-P P acc xs) = concat (rev acc)
Q concat xs
proof (induction P acc zs rule: make-list-P.induct)
case (1 P acc zs)
then show ?case
proof(cases List.extract P xs)
case (Some a)
then obtain as z bs where z-def|[simp]: a = (as,z,bs) by(cases a) auto
then have concat (make-list-P P acc xs)
= concat (rev (combine-lists-P P z (rev as @ acc))) @ concat bs
using 1 Some by simp
also have ... = concat (rev acc) @ concat (asQz#bs)
using combine-lists-concat-rev-eqlof P] by simp
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finally show ?%thesis using Some extract-SomeE by force
qed(simp)
qed

lemma combine-lists-sublists:
Jz € {y} U set zs. sublist as x => Tz € set (combine-lists-P P y xs). sublist as
x
proof (induction P y xs rule: combine-lists-P.induct)
case (2 Py z xs)
then show ?case
proof(cases sublist as x \V sublist as y)
case True
then have sublist as (xQy) using sublist-order.dual-order.trans by blast
then show ?thesis using 2 by force
next
case Fulse
then show ?thesis using 2 by simp
qed
qed(simp)

lemma make-list-sublists:
Jx € set acc U set xs. sublist cs x = Jx € set (make-list-P P acc xs). sublist
cs
proof (induction P acc s rule: make-list-P.induct)
case (1 P acc xs)
then show “case
proof(cases List.extract P xs)
case (Some a)
then obtain as z bs where z-def[simp|: a = (as,z,bs) by(cases a) auto
then have make-list-P P acc xs = make-list-P P (combine-lists-P P z (rev as
@ acc)) bs
using Some by simp
then have Ja € set (combine-lists-P P x (rev as @ acc)) U set bs. sublist ¢s a
using Some combine-lists-sublists|of x rev as Q acc cs| 1.prems
by (auto simp: extract-Some-iff)
then show %thesis using 1 Some by simp
qged(simp)
qged

lemma combine-lists-nempty: [[| ¢ set xs; y # [|] = [] ¢ set (combine-lists-P P
y xs)
by (induction P y xs rule: combine-lists-P.induct) auto

lemma make-list-nempty:

[ & set acc; || ¢ set as] =[] ¢ set (make-list-P P acc zs)
proof (induction P acc zs rule: make-list-P.induct)

case (1 P acc xs)

show ?case

proof(cases List.extract P xs)
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case None
then show %thesis using 1 by simp
next
case (Some a)
then show ?thesis using 1 by (auto simp: extract-Some-iff combine-lists-nempty)
qed
qed

lemma combine-lists-notP:

YV z€set xs. Pz = (Fx. combine-lists-P P y xs = [z]) V (V zE€set (combine-lists-P
Py zs). =P 1)

by (induction P y xzs rule: combine-lists-P.induct) auto

lemma combine-lists-single: xs = [t] = combine-lists-P P y zs = [tQy]
by auto

lemma combine-lists-lastP:
P (last xs) = (3z. combine-lists-P P y xs = [z]) V (P (last (combine-lists-P P

y 5)))

by (induction P y s rule: combine-lists-P.induct) auto

lemma make-list-notP:
[((Vz € set acc. =P ) V P (last acc)]
= (Vzeset (make-list-P P acc zs). =P z) V (3y ys. make-list-P P acc xs = y
# ys A Py)
proof (induction P acc s rule: make-list-P.induct)
case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)
case None
then show ?thesis
proof(cases Vz € set acc. =P x)
case True
from None have Vz € set zs. = P x by (simp add: extract-None-iff)
then show ?thesis using True 1.prems None by auto
next
case Fulse
then have acc # [| by auto
then have make-list-P P acc zs = last acc # rev (butlast acc) @ xs using
None by simp
then show ?thesis using Fulse 1.prems by blast
qed
next
case (Some a)
then obtain as z bs where z-def[simp]: a = (as,z,bs) by(cases a) auto
show ?thesis
proof(cases Vx € set acc. P 1)
case True
then have Vz € set (rev as Q acc). =P z using Some by (auto simp:
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extract-Some-iff )
then have (Vzeset (combine-lists-P P z (rev as @ acc)). = P x)
V P (last (combine-lists-P P x (rev as @ acc)))
using combine-lists-notP|of rev as @ acc P] by force
then show ?thesis using 1.IH Some by simp
next
case Fulse
then have P (last acc) A acc # [] using 1.prems by auto
then have P (last (rev as @ acc)) using 1.prems by simp
then have (Vz€set (combine-lists-P P z (rev as @ acc)). - P x)
V P (last (combine-lists-P P x (rev as @ acc)))
using combine-lists-lastP[of P| by force
then show ?thesis using 1.IH Some by simp
qed
qed
qed

corollary make-list-notP-empty-acc:
(Vzeset (make-list-P P [| xs). =P x) V (3y ys. make-list-P P [| zs = y # ys A

Py)
using make-list-notP[of []] by auto

definition unique-set-r :: 'a = 'a list set = 'a list = bool where
unique-set-r r 'Y ys «— set ys = |J (set © Y) A distinct ys A take 1 ys = [r]

context directed-tree
begin

definition fwd-sub :: 'a = 'a list set = 'a list = bool where
fwd-sub v Y ys <— unique-set-r v Y ys A forward ys A (Vas € Y. sublist zs ys)

lemma distinct-mid-uniquel: [distinct (zsQUQys); U#[]; 1sQUQys = asQUQbs]
= as = IS

using distinct-app-trans-r distinct-ys-not-zs[of xs UQys] hd-append2|of U] ap-
pend-is-Nil-conv|of U]

by (metis append-Cons-eq-iff distinct.simps(2) list.exhaust-sel list.set-sel(1))

lemma distinct-mid-unique2: [distinct (zsQUQys); U#[]; zsQUQys = asQUQbs]
—> ys = bs

using distinct-mid-uniquel by blast

lemma concat-all-sublist: ¥z € set zs. sublist  (concat zs)
using split-list by force

lemma concat-all-sublist-rev: Vo € set xs. sublist x (concat (rev xs))
using split-list by force

lemma concat-all-sublist1:
assumes distinct (asQUQbs)
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and concat cs @ U Q concat ds = asQUQbs
and U # |]
and set (csQU#ds) = Y
shows 3X. X C Y A set as = |J(set * X) A (Vas € X. sublist xs as)
proof —
have eq: concat cs = as
using distinct-mid-uniquel [of concat c¢s U concat ds] assms(1—38) by simp
then have Vs € set cs. sublist xs as using concat-all-sublist by blast
then show ?thesis using eq assms(4) by fastforce
qed

lemma concat-all-sublist2:
assumes distinct (asQU@Qbs)
and concat ¢s @ U @ concat ds = asQUQbs
and U # ||
and set (csQU#ds) = YV
shows 3X. X C YV A set bs = J(set * X) A (Vas € X. sublist zs bs)
proof —
have eq: concat ds = bs
using distinct-mid-uniquel [of concat cs U concat ds] assms(1—3) by simp
then have Vs € set ds. sublist xs bs using concat-all-sublist by blast
then show ?thesis using eq assms(4) by fastforce
qed

lemma concat-split-mad:
assumes Vas € Y. Vys € Y. zs = ys V set zs N set ys = {}
and finite Y
and U € Y
and distinct (asQU@Qbs)
and set (asQUQ@bs) = |J(set ° Y)
and Vs € Y. sublist xs (asQUQbs)
and U # |]
shows Jc¢s ds. concat cs = as A concat ds = bs A set (¢csQU#ds) = Y A
distinct (csQUHds)
proof —
obtain ys where ys-def: set ys = Y concat ys = asQUQbs distinct ys
using list-of-sublist-concat-eq(OF assms(1,6,4,5,2)] by blast
then obtain cs ds where cs-def: csQU#ds = ys
using assms(3) in-set-conv-decomp-first[of U ys| by blast
then have List.extract ((=) U) ys = Some (c¢s,U,ds)
using extract-Some-iff [of (=) U] ys-def(3) by auto
then have concat ¢s @ U Q concat ds = asQUQbs using ys-def(2) cs-def by
auto
then have concat cs = as A concat ds = bs
using distinct-mid-uniquel [of concat cs U] assms(4,7) by auto
then show %thesis using ys-def(1,3) cs-def by blast
qed

lemma mid-all-sublists-setl:
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assumes Vs € Y. Vys € Y. zs = ys V set zs N set ys = {}
and finite Y
and U € Y
and distinct (asQU@bs)
and set (asQU@Qbs) = |J(set © Y)
and Vs € Y. sublist xs (asQUQbs)
and U # |]
shows 3X. X C Y A set as = |J(set * X) A (Vas € X. sublist xs as)
proof —
obtain ys where ys-def: set ys = Y concat ys = asQUQbs distinct ys
using list-of-sublist-concat-eq|OF assms(1,6,4,5,2)] by blast
then obtain cs ds where cs-def: csQU#ds = ys
using assms(3) in-set-conv-decomp-first[of U ys| by blast
then have List.extract ((=) U) ys = Some (c¢s,U,ds)
using extract-Some-iff [of (=) U] ys-def(3) by auto
then have concat ¢cs @ U @Q concat ds = as@QU@Qbs using ys-def(2) cs-def by
auto
then show ?thesis using cs-def ys-def (1) concat-all-sublist1 [OF assms(4)] assms(7)
by force
qed

lemma mid-all-sublists-set2:
assumes Vs € Y. Vys € Y. zs = ys V set zs N set ys = {}
and finite Y
and U € Y
and distinct (asQU@bs)
and set (asQU@Qbs) = |J(set © Y)
and Vs € Y. sublist xs (asQUQbs)
and U # |]
shows 3X. X C Y A set bs = (set “ X) A (Vas € X. sublist xs bs)
proof —
obtain ys where ys-def: set ys = Y concat ys = asQUQbs distinct ys
using list-of-sublist-concat-eq| OF assms(1,6,4,5,2)] by blast
then obtain cs ds where cs-def: csQU#ds = ys
using assms(3) in-set-conv-decomp-first[of U ys|] by blast
then have List.extract ((=) U) ys = Some (c¢s,U,ds)
using extract-Some-iff [of (=) U] ys-def(3) by auto
then have concat ¢cs @ U @Q concat ds = as@QU@Qbs using ys-def(2) cs-def by
auto
then show ?2thesis using cs-def ys-def (1) concat-all-sublist2[OF assms(4 )] assms(7)
by force
qged

lemma nonempty-notin-distinct-prefix:
assumes distinct (asQbs@QV@cs) and concat as’ = as and V # [|
shows V ¢ set as’
proof
assume V € set as’
then have set V C set as using assms(2) by auto
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then have set as N set V # {} using assms(3) by (simp add: Int-absorbl)
then show Fulse using assms(1) by auto
qed

lemma concat-split-UV':
assumes Vs € Y. Vys € Y. zs = ys V set zs N set ys = {}
and finite Y
and U € Y
and V € Y
and distinct (asQUQbsQ VQcs)
and set (asQU@Qbs@QV@Qcs) = |J(set ‘' Y)
and Vs € Y. sublist xs (asQUQbsQ V@Qcs)
and U # |]
and V # [|
shows Jas’ bs’ ¢cs’. concat as’ = as N concat bs’ = bs A\ concat cs’ = cs
A set (as’QUH#bs'QV#ces’) = YV A distinct (as’QU#bs'QV#cs’)
proof —
obtain as’ ds where as’-def:
concat as’ = as concat ds = bsQVQcs set (as'QUH#ds) = Y distinct (as'QU#ds)
using concat-split-mid[OF assms(1—3,5—8)] by auto
have 0: distinct (bsQV@cs) using assms(5) by simp
have V ¢ set as’
using assms(5,9) as’-def(1) nonempty-notin-distinct-prefix[of as UQbs| by
auto
moreover have V # U using assms(5,8,9) empty-if-sublist-dsjnt[of U] by auto
ultimately have V € set ds using as’-def(3) assms(4) by auto
then show ?thesis
using as’-def 0 assms(9) concat-append distinct-mid-uniquel
by (metis concat.simps(2) distinct-mid-unique2 split-list)
qed

lemma cost-decr-if-noarc-lessrank:
assumes asi rank r cost
and b # ||
and r ¢ set U
and U # ||
and set (asQU@bsQcs) = |J(set © Y)
and distinct (as@QU@QbsQcs)
and take 1 (asQU@QbsQcs) = [r]
and forward (asQU@QbsQcs)
and concat (b#bs’) = bs
and (Vs € Y. sublist xs as V sublist xs U
V (Fz € set (b#bs'). sublist zs x) V sublist xs cs)
and —(3z € set U. Jy € set b. z =7 y)
and rank (rev b) < rank (rev U)
shows fwd-sub r Y (as@Qb@QUQconcat bs'Qcs)
A cost (rev (as@QbQUQconcat bs'Qcs)) < cost (rev (asQUQbsQcs))
proof —
have rank-yU: rank (rev b) < rank (rev U) using assms(12) by simp
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have 0: take 1 (as@QbQUQconcat bs'Qcs) = [r]
using takel-singleton-app takel-split-nelem-nempty|OF assms(7,4,3)] by fast
have 1: distinct (asQbQUQ concat bs'Qcs) using assms(6,9) by force
have take 1 (asQU@QbQconcat bs'Qcs) = [r] using assms(7,9) by force
then have cost-lt: cost (rev (asQbQ UQconcat bs'Qcs)) < cost (rev (asQU@QbsQcs))
using asi-lt-rfst[OF assms(1) rank-yU assms(2,4) 1 0] assms(9) by fastforce
have P: set (as@QbQU@Qconcat bs'Qcs) = |J(set © Y) using assms(5,9) by
fastforce
then have P: unique-set-r r Y (as@QbQUQconcat bs'@Qcs)
using 0 I unfolding unique-set-r-def by blast
have (Vs € Y. sublist zs as V sublist s U V sublist zs b
V sublist zs (concat bs’) V sublist xs cs)
using assms(10) concat-all-sublist[of bs’]
sublist-order.dual-order.trans[where a = concat bs'] by auto
then have all-sub: Vas € Y. sublist xs (asQbQUQconcat bs'Qcs)
by (metis sublist-order.order.trans sublist-append-leftl sublist-append-right)
have as # [| using takel-split-nelem-nempty| OF assms(7,4,3)] by force
then have forward (as@QbQU@concat bs'@cs)
using move-mid-forward-if-noarc assms(8,9,11) by auto
then show ?thesis using assms(12) P all-sub cost-lt fwd-sub-def by blast
qed

lemma cost-decr-if-noarc-lessrank’:
assumes asi rank r cost
and b # ||
and r ¢ set U
and U # |]
and set (asQU@QbsQcs) = |J(set © Y)
and distinct (asQU@QbsQcs)
and take I (asQU@QbsQcs) = [r]
and forward (asQU@QbsQcs)
and concat (b#bs') = bs
and (Vs € Y. sublist zs as V sublist xzs U
V (3z € set (b#bs’). sublist xs z) V sublist xs cs)
and —~(3z € set U. 3y € set b. ¢ =7 y)
and rank (rev b) < rank (rev V)
and rank (rev V) < rank (rev U)
shows fwd-sub r Y (as@bQ U®Q@concat bs'Qcs)
A cost (rev (as@QbQUQconcat bs'Qcs)) < cost (rev (asQUQbsQcs))
using cost-decr-if-noarc-lessrank|OF assms(1—11)] assms(12,18) by simp

lemma sublist-exists-append:
Jaeset ((x # xs) Q [b]). sublist ys a = Jacset(xs Q [zQb]). sublist ys a
using sublist-order.dual-order.trans by auto

lemma sublist-set-concat-cases:

Jacset ((x # xs) Q [b]). sublist ys a = sublist ys (concat (rev xs)) V sublist ys
z V sublist ys b

using sublist-order.dual-order.trans concat-all-sublist-rev]of xs] by auto
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lemma sublist-set-concat-or-cases-auzl:
sublist ys as V sublist ys U V sublist ys cs
= sublist ys (as Q@ U Q concat (rev zs)) V sublist ys cs
using sublist-order.dual-order.trans by blast

lemma sublist-set-concat-or-cases-auz2:
Jaeset ((z # xs) Q [b]). sublist ys a
= sublist ys (as Q@ U @ concat (rev zs)) V sublist ys x V sublist ys b
using sublist-set-concat-cases|of x xs b ys| sublist-order.dual-order.trans by blast

lemma sublist-set-concat-or-cases:

sublist ys as V sublist ys U V (Facset ((z#xs) Q [b]). sublist ys a) V sublist ys
cs =

sublist ys (asQUQ concat (rev zs)) V sublist ys x V (3 a€set [b]. sublist ys a) V

sublist ys cs

using sublist-set-concat-or-cases-auzl [of ys as U cs] sublist-set-concat-or-cases-auz2|of
x s b ys]

by auto

corollary not-reachablel-append-if-not-old:
[ (3zeset U. Jyeset b. z =+ py); set U N set x = {}; forward =;
Jzeset x. Jyeset b. z = Y]
= = (Fz€set U. Jyeset (zQb). z =T 1 y)
using reachablel-append-old-if-arcUlof z b U] by auto

lemma combine-lists-notP:
assumes asi rank r cost
and b # ||
and r ¢ set U
and U # ||
and set (asQU@bsQcs) = |J(set © Y)
and distinct (asQUQbsQcs)
and take 1 (asQU@QbsQcs) = [r]
and forward (asQU@QbsQcs)
and concat (rev ys Q [b]) = bs
and (Vs € Y. sublist xs as V sublist xs U
V 3z € set (ys Q [b]). sublist s x) V sublist zs cs)
and rank (rev V) < rank (rev U)
and ~(3z € set U. Jy € set b. x =T p y)
and rank (rev b) < rank (rev V)
and P = (Az. rank (rev z) < rank (rev V))
and Vzeset ys. P x
and Vzs. fwd-sub r Y xs — cost (rev (asQU@QbsQcs)) < cost (rev zs)
and Vz € set ys. © # []
and Vz € set ys. forward z
and forward b
shows V z€set (combine-lists-P P b ys). =P x A forward x
using assms proof (induction P b ys rule: combine-lists-P.induct)
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case (I Pb)
have 0: concat (b#]]) = bs using 1.prems(9) by simp
have 2: (Vs € Y. sublist zs as V sublist xs U
V (Fz € set ([b]). sublist zs x) V sublist zs cs) using I.prems(10) by simp

have 3: = (3z€set U. Jyeset b. x —p y) using 1.prems(12) by blast
show ?case

using cost-decr-if-noarc-lessrank/|OF 1(1—-8) 0 2 8 1(13,11)] 1(16) by auto

next

case (2 P b x xs)
have take 1 as = [r] using 2.prems(3,4,7) takel-split-nelem-nempty by fast
then have r € set as using in-set-takeD[of r 1] by simp
then have r ¢ set z using 2.prems(6,9) by force
then have z # [] using 2.prems(17) by simp

Arc between x and b otherwise not optimal.

have 4: asQU@QbsQcs = (as@QUQconcat (revxs)) Q x Q b @Q ¢s using 2.prems(9)
by simp
have set: set ((asQU@Qconcat (rev xs)) @z Q b Q ¢s) = |J (set ° Y)
using 2.prems(5) 4 by simp
have dst: distinct ((asQUQconcat (rev zs)) Q x @ b @Q cs) using 2.prems(6) 4
by simp
have tk1: take 1 ((asQU@Qconcat (rev xs)) @ £ @ b @ cs) = [r] using 2.prems(7)
4 by simp
have fwd: forward ((asQU@concat (rev zs)) @ z @ b @ ¢s) using 2.prems(8) 4
by simp
have cnct: concat (b # []) = b by simp
have sbist: Vs’ € Y. sublist xs’ (as @ U Q concat (rev xs)) V sublist s’ x
V (Facset [b]. sublist xs’ a) V sublist xs’ cs
using 2.prems(10) sublist-set-concat-or-cases[where as = as] by simp
have rank (rev b) < rank (rev x) using 2.prems(13—15) by simp
then have arc-zb: 3z€set x. Jycset b. z =y
using 2.prems(16) 4
cost-decr-if-noarc-lessrank|OF 2(2,3) «ré¢set xy <x#[]» set dst tk1 fwd cnct
sblst]
by fastforce
have set z N set b = {} using dst by auto
then have fwd: forward (zQ@Qb) using forward-app’ arc-zb 2.prems(18,19) by
stmp
show ?case
proof(cases P (z Q b))
case True
have 0: z @ b # [] using 2.prems(2) by blast
have 1: concat (rev zs Q [z Q b]) = bs using 2.prems(9) by simp
have 3: Vas' € Y. sublist zs’ as V sublist xzs’ U
V (Faeset (zs Q [z @Q b)). sublist zs’ a) V sublist xs’ cs
using 2.prems(10) sublist-exists-append by fast
have set U N set = {} using 4 2.prems(6) by force
then have /: = (3z€set U. Jyeset (z Q b). z =T 7 y)
using not-reachablel-append-if-not-old[OF 2.prems(12)] 2.prems(18) arc-zb
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by simp
have 5: rank (rev (z @ b)) < rank (rev V) using True 2.prems(14) by simp
show ?thesis
using 2.IH[OF True 2(2) 0 2(4—9) 1 8 2(12) 4 5 2(15)] 2(16—19) fuwd by
auto
next
case Fulse
then show %thesis using 2.prems(15,18) fwd by simp
qed
qged

lemma sublist-app-l: sublist ys cs = sublist ys (zs Q cs)
using sublist-order.dual-order.trans by blast

lemma sublist-split-concat:
assumes a € set (acc Q (asQz#bs)) and sublist ys a
shows (Fa€set (rev acc @ as Q [z]). sublist ys a) V sublist ys (concat bs Q cs)
proof(cases a € set (rev acc Q as @Q [z]))
case True
then show ?thesis using assms(2) by blast
next
case Fulse
then have a € set bs using assms(1) by simp
then show ?thesis
using assms(2) concat-all-sublist[of bs]
sublist-order.dual-order.trans[where ¢ = ys, where b = concat bs]
by fastforce
qed

lemma sublist-split-concat’:
Ja € set (acc Q (asQz#bs)). sublist ys a V sublist ys cs
= (Jacset (rev acc Q as Q [z]). sublist ys a) V sublist ys (concat bs Q cs)
using sublist-split-concat sublist-app-l[of ys cs] by blast

lemma make-list-notP:
assumes asi rank r cost

and r ¢ set U

and U # |]

and set (asQU@QbsQcs) = |J(set © Y)

and distinct (asQU@QbsQcs)

and take 1 (asQU@Qbs@Qcs) = [r]

and forward (asQU@QbsQcs)

and concat (rev acc @Q ys) = bs

and (Vs € Y. sublist zs as V sublist zs U
V (Fz € set (acc Q ys). sublist xs x) V sublist zs cs)

and rank (rev V) < rank (rev U)

and Azs. [zs € set ys; z € set U. Jy € set zs. =T p y]
= rank (rev V) < rank (rev xs)

and P = (A\z. rank (rev z) < rank (rev V))
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and Vzs. fwd-sub r Y xs — cost (rev (asQU@QbsQcs)) < cost (rev xs)
and Vz € set ys. © # []
and Vz € set ys. forward z
and Vz € set acc. © # ||
and Vz € set acc. forward x
and Vz € set acc. -P x
shows V z€set (make-list-P P acc ys). =P x
using assms proof (induction P acc ys rule: make-list-P.induct)
case (1 P acc xs)
then show “case
proof(cases List.extract P xs)
case None
then have Vz € set zs. = P x by (simp add: extract-None-iff)
then show %thesis using I.prems(18) None by auto
next
case (Some a)
then obtain as’ x bs’ where z-def[simp]: a = (as’,z,bs’) by(cases a) auto
then have z: Vz € set (rev as’ Q acc). =P ¢ xs = as'Qa#bs’ rank (rev z) <
rank (rev V)
using Some 1.prems(12,18) by (auto simp: extract-Some-iff)
have z # [| using 1.prems(14) Some by (simp add: extract-Some-iff)
have eq: asQU@QbsQcs = as@QUQ(concat (rev acc @ as’ @ [z])) @ (concat bs’
@ cs)
using 1.prems(8) Some by (simp add: extract-Some-iff)
then have 0: set (asQUQ(concat (rev acc @ as’ Q [z])) @Q (concat bs’ @ cs))
= (set °Y)
using 1.prems(4) by argo
have 2: distinct (asQU@Q(concat (rev acc Q as’ Q [z])) @ (concat bs’ Q cs))
using I.prems(5) eq by argo
have 3: take 1 (asQU@Q(concat (rev acc @ as’ @ [z])) @Q (concat bs’ Q ¢s)) =
[r]
using 1.prems(6) eq by argo
have 4: forward (asQUQ(concat (rev acc @ as’ Q [z])) @ (concat bs’ Q cs))
using [.prems(7) eq by argo
have 5: concat (rev (rev as’ @ acc) Q [z]) = concat (rev acc @ as’ Q [z]) by
stmp
have 6: VaseY. sublist s as V sublist xs U
V (Fzeset ((rev as’ Q acc) Q [z]). sublist xs x) V sublist xs (concat bs’ Q
cs
)
using 1.prems(9) x(2) sublist-split-concat’|of acc as’ x bs’, where cs = cs]
by auto
have 7: = (z'€set U. yecset x. z' =1 p y) using 1.prems(11) z(2,3) by
fastforce
have 8: Vuzs. fwd-sub r Y zs
— cost (rev (as@QU@Qconcat(rev accQas'Q[z])Qconcat bs'Qcs)) < cost
(rev xs)
using 1.prems(13) eq by simp
have notP: V z€set (combine-lists-P P z (rev as’ @Q acc)). = Pz A forward x
using 1.prems(14—17) xz(2)
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combine-lists-notP[OF 1(2) «x#[)> 1(3,4) 023 456 1(11) 7xz(3) 1(13)
z(1) 8]
by auto
have cnct: concat (rev (combine-lists-P P z (rev as’ Q acc)) Q bs’) = bs
using 1.prems(8) combine-lists-concat-rev-eqlof P] z(2) by simp
have sbist: VzseY. sublist zs as V sublist xs U
V (Faeset (combine-lists-P P x (rev as’ @Q acc) Q bs’). sublist xs a) V sublist
z$ cs
using 1.prems(9) x(2) combine-lists-sublists[of = rev as'@acc, where P=P]
by auto
have V zeset (combine-lists-P P z (rev as’ Q acc)). x # ||
using combine-lists-nempty[of rev as’ Q acc| 1.prems(14,16) z(2) by auto
then have Vz€set (make-list-P P (combine-lists-P P x (rev as’ @ acc)) bs').
- Pz
using 1.JH[OF Some x-def[symmetric] refl 1(2—8) cnct sblst 1(11—14)]
notP z(2) 1(15,16)
by simp
then show ?thesis using Some by simp
qed
qed

lemma no-back-reachl-if-fwd-dstct-bs:
[forward (as@concat bsQVQcs); distinct (asQconcat bsQVQcs); xs € set bs]
= —(Jz'eset V. Jyeset xs. ' =T p y)
using no-back-reachl-if-fwd-dstct[of asQconcat bs VQcs] by auto

lemma mid-ranks-ge-if-reachl:
assumes [| ¢ Y
and U € Y
and distinct (asQU@QbsQ VQcs)
and forward (as@QU@QbsQ VQcs)
and concat bs’ = bs
and concat cs’ = cs
and set (as’/QU#bs'QV#cs') = Y
and Azs. [zs € YV; Jyeset zs. =(Fa'eset V. z' =T p y) A (Jz€set U. z
St y)s 3 # U]
= rank (rev V) < rank (rev xs)
shows Vzs € set bs’. (Jzeset U. Fyeset zs. x =1 py) — rank (rev V) <
rank (rev xs)
proof —
have Vs € set bs'. VyEset xs. ~(Jz€set V. z =T 1 y)
using assms(3—06) no-back-reachl-if-fwd-dstct-bs|of asQU] by fastforce
then have 0: Vs € set bs’. (Jy€set zs. Jz€set U. z =T p y)
— (Jyeset zs. Jz€set U. = (Fz'e€set V. z' >FTpy) ANz =T py)
by blast
have Vs € set bs’. xs # U
using assms(1—3,5) concat-all-sublist empty-if-sublist-dsjnt[of U U] by fast-
force
then have Azs. [zs € set bs; Jycset zs. Jz€set U. z =T p y]
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= 1zs # U A (y€set zs. Jx€set U. -~ (Jz'eset V. 2/ =T py) Az =T y)
ANzse€ Y
using 0 assms(7) by auto
then show ?thesis using assms(8) by blast
qed

lemma bs-ranks-only-ge:
assumes asi rank r cost
and Vzs € Y. forward s
and [| ¢ YV
and r ¢ set U
and U € Y
and set (asQU@Qbs@QV@cs) = |J(set ‘' Y)
and distinct (asQU@QbsQ VQcs)
and take 1 (asQU@QbsQVQcs) = [r]
and forward (asQU@Qbs@QV@cs)
and concat as’ = as
and concat bs’ = bs
and concat c¢s’ = cs
and set (as’‘QU#bs'QV#ecs) = Y
and rank (rev V) < rank (rev U)
and V zs. fwd-sub r Y zs — cost (rev (asQU@bsQV@Qcs)) < cost (rev 2s)
and Azs. [zs € YV; Jyeset zs. =(Fz'eset V. z' =T p y) A (Jz€set U. z
=t y); as # U]
= rank (rev V) < rank (rev zs)
shows 3 zs. concat zs = bs N (Vz € set zs. rank (rev V) < rank (rev z)) A ||
¢ set zs
proof —
let ?P = Az. rank (rev ) < rank (rev V)
have U # [| using assms(8,5) by blast
have cnct: concat (rev [| @ bs") = bs using assms(11) by simp
have Vase Y. sublist xzs as V 2s = U V s =V
V (Fzeset ([| Q bs’). sublist xs z) V sublist xs cs
using assms(10,12,18) concat-all-sublist by auto
then have sblst:
VaseY. sublist xs as V sublist xs U V (Fz€set ([| Q bs'). sublist xs z) V sublist
xs (VQcs)
using sublist-app-l by fast
have 0: Azs. [zs € set bs’; Jz€set U. Jyeset xs. x =1 p y] = rank (rev V)
< rank (rev xs)
using mid-ranks-ge-if-reachl [OF assms(8,5,7,9,11—13)] assms(16) by blast
have Vz€set bs'. © # [| using assms(8,13) by auto
moreover have 2: Vx€set bs'. forward x using assms(2,13) by auto
ultimately have (¥ z€set (make-list-P ?P [] bs’). rank (rev V) < rank (rev z))
using assms(15)
make-list-notP|OF assms(1,4) <U#[) assms(6—9) cnct sblst assms(14) 0
refl]
by fastforce
then show “thesis
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using assms(3,11,13) make-list-concat-rev-eq[of ?P [|] make-list-nempty[of ]
bs'] by auto
qed

lemma cost-ge-if-all-bs-ge:
assumes asi rank r cost
and V # [|
and distinct (asQdsQconcat bsQVQcs)
and take 1 as = [r]
and forward V
and V z€set bs. rank (rev V) < rank (rev z)
and [| ¢ set bs
shows cost (rev (asQdsQ V@Qconcat bsQcs)) < cost (rev (asQdsQconcat bsQV@Qcs))
using assms proof (induction bs arbitrary: ds)
case (Cons b bs)
have 0: distinct (asQ(ds@Qb)Qconcat bsQV@Qcs) using Cons.prems(3) by simp
have r-b: rank (rev V) < rank (rev b) using Cons.prems(6) by simp
have b # [] using Cons.prems(7) by auto
have dst: distinct ((as@Qds)@QV@QbQconcat bsQcs) using Cons.prems(3) by auto
have take 1 ((asQds)@QV@bQconcat bsQcs) = [r]
using Cons.prems(4) takel-singleton-app by metis
moreover have take 1 ((as@Qds)@QbQ V@Qconcat bsQcs) = [r]
using Cons.prems(4) takel-singleton-app by metis
ultimately have cost (rev (asQdsQ V@QbQconcat bsQcs)) < cost (rev (as@QdsQbQ VQconcat
bsQcs))
using asi-le-rfst{OF Cons.prems(1) r-b Cons.prems(2) <b#[]» dst] by simp
then show ?case using Cons.IH[OF Cons.prems(1,2) 0] Cons.prems(4—7) by
stmp
qed(simp)

lemma bs-ge-if-all-ge:
assumes asi rank r cost
and V # [|
and distinct (asQbsQVQcs)
and take 1 as = [r]
and forward V
and concat bs’ = bs
and V z€set bs’. rank (rev V) < rank (rev z2)
and [| ¢ set bs’
and bs # [|
shows rank (rev V) < rank (rev bs)
proof —
have dst: distinct (asQ[|Qconcat bs'QV@Qcs) using assms(3,6) by simp
then have cost-le: cost (rev (asQV@bsQcs)) < cost (rev (as@bsQV@Qcs))
using cost-ge-if-all-bs-ge[OF assms(1,2) dst] assms(3—9) by simp
have tk1: take 1 ((as)@bsQV@cs) = [r] using assms(4) takel-singleton-app by
metis
have tk1'" take 1 ((as)QVQbsQcs) = [r] using assms(4) takel-singleton-app by
metis
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have dst: distinct ((as)@QV@QbsQcs) using assms(3) by auto
show ?thesis using asi-le-iff-rfst[OF assms(1,2,9) tk1' tk1 dst] cost-le by simp
qed

lemma bs-ge-if-optimal:
assumes asi rank r cost
andVas € Y. Vys € Y. zs = ys V set xs N set ys = {}
and Vzs € Y. forward xzs
and | ¢ YV
and finite Y
and r ¢ set U
and U € Y
and V€Y
and distinct (asQU@QbsQ VQcs)
and set (asQU@Qbs@QV@Qces) = |J(set  Y)
and Vs € Y. sublist xs (asQUQbsQ VQcs)
and take 1 (asQU@QbsQVQcs) = [r]
and forward (asQU@QbsQ V@cs)
and bs # [|
and rank (rev V) < rank (rev U)
and V zs. fwd-sub r Y zs — cost (rev (asQU@QbsQV@Qcs)) < cost (rev zs)
and Auws. [zs € Y; Jyeset zs. ~(Fz'eset V. 2’ =T p y) A (z€set U. z
Sty s # U]
= rank (rev V) < rank (rev xs)
shows rank (rev V) < rank (rev bs)
proof —
obtain as’ bs’ cs’ where bs’-def: concat as’ = as concat bs' = bs concat cs’ = cs
set (as’QU#bs'QVH#cs’) = Y
using concat-split-UV[OF assms(2,5,7—11)] assms(4,7,8) by blast
obtain bs2 where bs2-def:
concat bs2 = bs (Y z€set bs2. rank (rev V) < rank (rev 2)) [] ¢ set bs2
using bs-ranks-only-ge[OF assms(1,3,4,6,7,10,9,12,13) bs'-def assms(15—17)]
by blast
have V # [| using assms(4,8) by blast
have take I as = [r] using takel-split-nelem-nempty|OF assms(12)] assms(4,6,7)
by blast
then have take 1 (asQU) = [r] using takel-singleton-app by fast
then show ?thesis
using bs-ge-if-all-ge[OF assms(1) «V#[], of asQU] bs2-def assms(3,8,9,14)
by auto
qed

lemma bs-ranks-only-ge-r:
assumes [| ¢ Y
and distinct (asQUQbsQ V@Qcs)
and forward (asQU@QbsQ V@cs)
and as = ||
and concat bs’ = bs
and concat ¢s’ = cs
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and set (U#bs'QV#cs') =Y
and Azs. [zs € YV; Jyeset zs. =(Fa'eset V. z' =T p y) A (Jz€set U. z
=1 y); as # U]
= rank (rev V) < rank (rev xs)
shows V z € set bs'. rank (rev V) < rank (rev z)
proof —
have U € Y using assms(7) by auto
then have U # [| using assms(1) by blast
have V # [| using assms(1,7) by auto
have 0: \zs. [zs € set bs’; z€set U. Fyeset xs. x =T p y| = rank (rev V)
< rank (rev xs)
using mid-ranks-ge-if-reachl [OF assms(1) <U€Y) assms(2,3,5,6), of [|] assms(7,8)
by auto
have dz y ys. s#y#Hys= asQUQbsQVQcs
using «U#[) «V#[]» append-Cons append.left-neutral list.exhaust by metis
then have hd-T: hd (asQU@Qbs@QV@Qcs) € verts T using hd-in-verts-if-forward
assms(3) by metis
moreover have Vz€set bs’. V yEset z. y € set (asQUQbsQ VQcs) using assms(5)
by auto
ultimately have Vzeset bs’. Vyeset . hd (UQbsQVQcs) —*p y
using hd-reach-all-forward assms(3,4) by auto
then have 1: Vzeset bs’. Vyeset . hd U —* p y using assms(1,7) by auto
have Vz€set bs’. VyeEset x. y ¢ set U using assms(2,5) by auto
then have Vz€set bs’. Vycset z. y # hd U using assms(1,7) by fastforce
then have Vz€set bs’. Vyeset . hd U =T ¢ y using 1 by blast
then have Vz€set bs’. y€set x. hd U =T p y using assms(1,7) by auto
then show ?thesis using 0 «U # [|» hd-in-set by blast
qed

lemma bs-ge-if-rU:
assumes asi rank r cost
and Vzs € Y. Vys € Y. as = ys V set zs N set ys = {}
and Vzs € Y. forward s
and [| ¢ YV
and finite Y
and r € set U
and U € Y
and V €Y
and distinct (asQUQbsQ V@Qcs)
and set (asQUQbs@QV@cs) = |J(set ° Y)
and Vs € Y. sublist xs (asQUQbs@Q VQcs)
and take 1 (asQU@QbsQVQcs) = [r]
and forward (asQU@Qbs@QV@cs)
and bs # []
and Azs. [zs € YV; Jyeset zs. =(Fa'eset V. z' =T p y) A (Jz€set U. z
=t y);as # U]
= rank (rev V) < rank (rev xs)
shows rank (rev V) < rank (rev bs)
proof —
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obtain as’ bs’ cs’ where bs’-def: concat as’ = as concat bs' = bs concat cs’ = cs
set (as’QU#bs'QV#cs) = Y
using concat-split-UV[OF assms(2,5,7—11)] assms(4,7,8) by blast
have take 1 U = [r] using takel-mid-if-elem[OF assms(12,6,9)] .
moreover have as = [| using takel-empty-if-mid[OF assms(12,6,9)] .
ultimately have tk1: take 1 (asQU) = [r] by simp
then have set (U#bs'QV#cs’) = Y using bs’-def(1,4) assms(4) <as=[]) by
auto
then have 0: (V z€set bs’. rank (rev V) < rank (rev z))
using bs-ranks-only-ge-r[OF assms(4,9,13) <as=[]» bs’-def(2,3)] assms(15) by
blast
have V # [| using assms(4,8) by blast
have [| ¢ set bs’ using assms(4) bs’-def(2,4) by auto
then show ?thesis
using bs-ge-if-all-ge]| OF assms(1) <VZ[], of asQU] 0 bs’-def (2) tk1 assms(3,8,9,14)
by auto
qed

lemma sublist-before-if-before:
assumes hd xs = root and forward zs and distinct s
and sublist U zs and sublist V xs and before U V
shows Jas bs cs. as @Q U Q bs Q V Q ¢s = wxs
proof (rule ccontr)
assume flas bscs. as Q U Q bs Q V @ ¢s = zs
then obtain as bs cs where V-bf-U: zs = as @ V @Q bs @ U Q cs
using sublist-behind-if-nbefore[ OF assms(4,5)] assms(6) before-def by blast
obtain z y where z-def: z € set Uy € set Vo —py
using assms(6) before-def by auto
then obtain i where i-def: Vi =y i < length V by (auto simp: in-set-conv-nth)
then have i-xs: (asQV@QbsQUQcs)!(i + length as) = y by (simp add: nth-append)
have root # y using 2-def(3) dominated-not-root by auto
then have i + length as > 0 using i-def (2) i-zs assms(1,5) V-bf-U hd-conv-nth[of
xs] by force
then have i + length as > 1 by linarith
then have i + length as € {I..length (asQV@QbsQUQcs) — 1} using i-def(2)
by simp
then obtain j where j-def: j < i + length as (asQV@QbsQUQcs)!lj = y
using assms(2) V-bf-U i-zs unfolding forward-def by blast
then have (asQV@QbsQUQcs)lj = (as@QV)!j using i-def(2) by (auto simp:
nth-append)
then have (as@QVQbsQUQcs)!j € set (asQV) using i-def (2) j-def (1) nth-mem|of
j asQV] by simp
then have (asQV@Qbs@QUQcs)!j # x using assms(3) V-bf-U z-def(1) by auto
then show Fulse using j-def(2) z-def(3) two-in-arcs-contr by fastforce
qed

lemma forward-UV-lists-subset:
{z. set x = X A distinct x A take 1 © = [r] A forward x N (Yas € Y. sublist xs

)}
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C {z. set x = X A distinct x}
by blast

lemma forward-UV-lists-finite:
finite xs
= finite {z. set x = xs A distinct © A take 1 x = [r] A forward z N (Vs €
Y. sublist zs x)}
using distinct-seteq-finite finite-subset| OF forward-UV-lists-subset] by auto

lemma forward-UV-lists-arg-min-ez-aux:
[finite ys; ys # {};
ys = {x. set x = zs A distinct © A take 1 x = [r] A forward z N (Vas € Y.
sublist zs z)}]
= Jyecys. Vzeys (f:'alist = real) y < fz
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma forward-UV-lists-arg-min-ex:
[finite zs; ys # {};
ys = {x. set & = xs A distinct x A take 1 x = [r] A forward x N Vas € Y.
sublist zs z)}]
= dye€ys.Vz e ys. (f::'alist = real) y < fz
using forward-UV-lists-finite forward-UV-lists-arg-min-ex-auz by auto

lemma forward-UV-lists-argmin-ex”:
fixes f :: 'a list = real
assumes P = (\x. set © = X A distinct z A\ take 1 z = [r])
and Q = (Ays. P ys A forward ys N (Vxs € Y. sublist xs ys))
and dz. Q
shows Jzs. @ zs A (Vas. Q as — fzs < fas)
using forward-UV-lists-arg-min-ex[of X {z. Q x}] using assms by fastforce

lemma forward-UV-lists-argmin-ex:

fixes [ :: 'a list = real

assumes 3. fwd-sub r Y x

shows Jzs. fwd-sub r Y zs A (Vas. fwd-subr Y as — fzs < f as)

using forward-UV-lists-argmin-ex’ assms unfolding fwd-sub-def unique-set-r-def
by simp

lemma no-gap-if-contr-seq-fwd:
assumes asi rank root cost

andVzs € Y. Vys € Y. xs = ys V set zs N set ys = {}
and Vs € Y. forward zs
and | ¢ YV
and finite Y
and U € Y
and V € Y
and before U V
and rank (rev V) < rank (rev U)
and Auzs. [zs € Y; Jyeset zs. ~(Fz'eset V. 2’ =T p y) A (z€set U. z
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=T y); s # U]
= rank (rev V) < rank (rev zs)
and Jz. fwd-sub root Y x
shows 3 zs. fwd-sub root Y zs A sublist (UQV) zs
A (Vas. fwd-sub root Y as — cost (rev zs) < cost (rev as))
proof —
obtain zs where zs-def:
set zs = |J (set © Y) distinct zs take 1 zs = [root] forward zs
(Vas € Y. sublist xs zs) (¥ as. fwd-sub root Y as — cost (rev zs) < cost (rev
as))
using forward-UV-lists-argmin-ex[OF assms(11), of Axs. cost (rev zs)]
unfolding unique-set-r-def fwd-sub-def by blast
then have hd zs = root using hd-eq-takel by fast
then obtain as bs cs where bs-def: as @ U @Q bs @Q V @ ¢s = zs
using sublist-before-if-before zs-def(2,4,5) assms(6—8) by blast
then have bs-prems: distinct (asQU@Qbs@Q VQcs) set (asQUQbsQVQces) = | (set
¢ Y)
VaseY. sublist zs (asQUQbsQVQcs) take 1 (asQUQbsQVQcs) = [root] for-
ward (asQU@bsQ VQcs)
using zs-def(1—5) by auto
show ?thesis
proof(cases bs = [])
case True
then have sublist (UQV) zs using bs-def sublist-def by force
then show ?thesis using zs-def unfolding unique-set-r-def fwd-sub-def by
blast
next
case bs-nempty: False
then have rank-le: rank (rev V) < rank (rev bs)
proof(cases root € set U)
case True
then show ?thesis
using bs-ge-if-rU[OF assms(1—5) True assms(6,7) bs-prems bs-nempty
assms(10)]
by blast
next
case Fulse
have V zs. fwd-sub root Y zs — cost (rev (asQU@QbsQ V@Qcs)) < cost (rev zs)
using zs-def(6) bs-def by blast
then show ?thesis

using bs-ge-if-optimal| OF assms(1—25)] bs-nempty bs-prems False assms(6,7,9,10)

by blast

qed
have 0: distinct ((asQU)QV@QbsQcs) using bs-def zs-def(2) by auto
have take 1 (asQU) = [root]

using bs-def assms(4,6) takel-split-nempty[of U as| zs-def(3) by fastforce
then have 1: take 1 (asQUQV@QbsQcs) = [root]

using takel-singleton-app|of asQU root VQbsQcs] by simp
have 2: Vase Y. sublist xs (asQUQV@QbsQcs)
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using zs-def(5) bs-def sublists-preserv-move-VY-all[OF assms(2,6,7)] assms(4,6)
by blast
have V # [| using assms(4,7) by blast
have cost (rev (asQUQV@bsQcs)) < cost (rev zs)
using asi-le-rfst|OF assms(1) rank-le <V#£[]> bs-nempty 0] 1 zs-def(3) bs-def
by simp
then have cost-le: ¥ ys. fwd-sub root Y ys — cost (rev (asQUQ V@bsQcs))
< cost (rev ys)
using zs-def(6) by fastforce
have forward (asQUQV@QbsQcs)
using move-mid-backward-if-noarc assms(8) zs-def(4) bs-def by blast
moreover have set (asQUQV@QbsQcs) = | (set © Y)
unfolding zs-def(1)[symmetric] bs-def [symmetric] by force
ultimately have fwd-sub root Y (asQUQ V@bsQcs)
unfolding unique-set-r-def fwd-sub-def using 0 1 2 by fastforce
moreover have sublist (UQV) (asQUQV@bsQcs) unfolding sublist-def by
fastforce
ultimately show ¢thesis using cost-le by blast
qed
qed

lemma combine-union-sets-alt:
fixes X Y
defines Z =X U {z. 2 € Y Asetz N J(set * X) = {}}
assumes Vas € Y. Vys € Y. zs = ys V set zs N set ys = {}
and Vs € X.Vys € X. xs = ys V set zs N set ys = {}
shows Z = X U (Y — {z. set z N J(set ‘* X) # {}})
unfolding assms(1) using assms(2,3) by fast

lemma combine-union-sets-disjoint:
fixes X Y
defines Z=XU{z. 2 € Y AsetznJ(set ‘ X) ={}}
assumes Vs € Y. Vys € Y. zs = ys V set zs N set ys = {}
and Vas € X.Vys € X. zs = ys V set xs N set ys = {}
shows Vs € Z.Vys € Z. xzs = ys V set zs N set ys = {}
unfolding Z-def using assms(2,3) by force

lemma combine-union-sets-set-subl-aux:
assumes Vzs € Y. Vys € Y. zs = ys V set zs N set ys = {}
andVys € X.3U € V.3V € Y. UQV = ys
and z € J(set ° Y)
shows z € J(set ‘(X U{z. 2z € Y AsetznNU(set ‘X)={}})
proof —
let 2Z =X U{z.z€ Y AsetxnJ(set‘X)={}}
obtain ys where ys-def: z € set ys ys € Y using assms(3) by blast
then show ?thesis
proof(cases ys € {z. x € Y A set x N Y (set ‘ X) = {}})
case True
then show ?thesis using ys-def(1) by auto
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next
case Fulse
then obtain U V where U-def: U € YV € YUQV € X set ys N set (UQV)
#{}
using ys-def(2) assms(2) by fast
then consider set ys N set U # {} | set ys N set V # {} by fastforce
then show ?thesis
proof (cases)
case I
then have U = ys using assms(1) U-def(1) ys-def(2) by blast
then show %thesis using ys-def(1) U-def(3) by fastforce
next
case 2
then have V = ys using assms(1) U-def(2) ys-def(2) by blast
then show ?thesis using ys-def(1) U-def(3) by fastforce
qed
qed
qed

lemma combine-union-sets-set-subl:
assumes Vas € Y. Vys € Y. zs = ys V set zs N set ys = {}
andVys € X.3U € Y. 3V e Y. UQV = ys
shows |J(set ‘YY) C U(set ‘(X U{z. 2z € Y AsetznJ(set ‘X)={}})
using combine-union-sets-set-subl-auz[OF assms] by blast

lemma combine-union-sets-set-sub2:
assumes Vys € X. 30U € Y. 3V € Y. UQV = ys
shows |J(set “ (X U{z.z € Y Asetx N J(set ‘X)={}})) CU(set ‘Y)
using assms by fastforce

lemma combine-union-sets-set-eq:
assumes Vas € V. Vys € Y. zs = ys V set zs N set ys = {}
andVys € X.3U € Y. 3V e Y. UQV = ys
shows |J(set ‘(X U{z.z € Y AsetznNJ(set ‘X)={}})) =U(set °Y)
using combine-union-sets-set-subl[OF assms] combine-union-sets-set-sub2[OF
assms(2)] by blast

lemma combine-union-sets-sublists:
assumes sublist x ys
andVazs € X U{z. 2 € Y Asetz N J(set * X) = {}}. sublist zs ys
and zs € insert t X U {zs. zs € Y A set zs N |J (set * (insert z X)) = {}}
shows sublist xs ys
using assms by auto

lemma combine-union-sets-optimal-cost:
assumes asi rank root cost
and Vzs € Y. Vys € Y. xs = ys V set zs N set ys = {}
and Vs € Y. forward zs
and [| ¢ YV
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and finite Y
and Jz. fwd-sub root Y x
andVys e X.3U € Y. 3V € Y. UQV = ys A before UV A rank (rev V)
< rank (rev U)
AN (Vas € Y. (Jyeset zs. ~(Fz'eset V. z' =T py) A (Sz€set U. z =T p
y) A as # U)
— rank (rev V) < rank (rev xs))
and Vzs € X.Vys € X. xs = ys V set zs N set ys = {}
and Vs € X. Vys € X. zs = ys V ~(FzE€set xs. yeset ys. z =T p y)
and finite X
shows Jzs. fwd-sub root (X U{z. z € Y A setz N J(set ‘ X) ={}}) zs
A (Yas. fwd-sub root Y as — cost (rev zs) < cost (rev as))
using assms(10,1—29) proof (induction X rule: finite-induct)
case empty
then show ?case using forward-UV-lists-argmin-ex by simp
next
case (insert z X)
let 2Y = X U{zs.zs € Y A set s N |J(set * X) = {}}
let ?X = insert £ X U {zs. zs € Y A set zs N |J(set * (insert z X)) = {}}
obtain zs where zs-def:
fwd-sub root ?Y zs (¥ as. fwd-sub root Y as — cost (rev zs) < cost (rev as))
using insert. [H[OF insert(4—9)] insert.prems(7,8,9) by auto
obtain U V where U-def: U € YV € Y UQV = z before U V rank (rev V)
< rank (rev U)
Vas € Y. (3yeset zs. ~(Fa'eset V. z' =T py) A (zeset U. z =T py) A as
£ U)
— rank (rev V) < rank (rev zs)
using insert.prems(7) by auto
then have U: U € ?Y using insert.prems(2,8) insert.hyps(2) by fastforce
have V: V € ?Y using U-def(2,3) insert.prems(8) insert.hyps(2) by fastforce
have disj: Vas € ?Y.Vys € ?Y. xs = ys V set xs N set ys = {}
using combine-union-sets-disjoint[of Y X| insert.prems(2,8) by blast
have fwd: Vzs € ?Y. forward zs
using insert.prems(3,7) seq-conform-alt seq-conform-if-before by fastforce
have nempty: [| ¢ ?Y using insert.prems(4,7) by blast
have fin: finite ?Y using insert.prems(5) insert.hyps(1) by simp
have 0: Azs. [zs € ?Y; Jycset xs. = (Jz'eset V. z’ =T py) A (Jz€set U. x
=t py);as £ U]
= rank (rev V) < rank (rev zs)
using U-def(3,6) insert.prems(9) insert.hyps(2) by auto
then have 3 zs. fwd-sub root ?Y zs A sublist (UQV) zs
A (Yas. fwd-sub root ?Y as — cost (rev zs) < cost (rev as))
using no-gap-if-contr-seq-fwd[OF insert.prems(1) disj fwd nempty fin U V
U-def(4,5)] zs-def(1)
unfolding fwd-sub-def unique-set-r-def by blast
then obtain zs where zs-def:
fwd-sub root ?Y xs sublist (UQV) xs
(V as. fwd-sub root ?Y as — cost (rev zs) < cost (rev as))
by blast
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then have cost: (Vas. fwd-sub root Y as — cost (rev xs) < cost (rev as))
using zs-def by fastforce
have 0:Vys € (insertz X).3U € Y. 3V € Y. UQV = ys using insert.prems(7)
by fastforce
then have Vys € X. 3U € Y. 3V € Y. UQV = ys by simp
then have |J(set ‘ ?Y) = [ (set ‘ Y)
using combine-union-sets-set-eq[OF insert.prems(2)] by simp
then have J(set ¢ 2X) = J(set * ?Y)
using combine-union-sets-set-eq[ OF insert.prems(2) 0] by simp
then have P-eq: unique-set-r root ?X = unique-set-r root ?Y unfolding unique-set-r-def
by simp
have Ays. [sublist (UQV) ys; (Vas € ?Y. sublist xs ys)] = (Vas € ?X. sublist
xs ys)
using combine-union-sets-sublists[of z, where Y=Y and X=X]| U-def(3) by
blast
then have Ays. [sublist (UQV) ys; fwd-sub root ?Y ys] = fwd-sub root ?X ys
unfolding P-eq fwd-sub-def by blast
then show ?case using zs-def(1,2) cost by blast
qed

lemma bs-ge-if-geV:
assumes asi rank r cost
andVas € Y. Vys € Y. zs = ys V set xs N set ys = {}
and Vzs € Y. forward s
and | ¢ YV
and finite Y
and U € YV
and V €Y
and distinct (asQUQbsQ V@Qcs)
and set (asQUQ@QbsQV@Qcs) = |J(set © Y)
and Vs € Y. sublist xs (asQUQbsQV@Qcs)
and take 1 (asQU@QbsQVQcs) = [r]
and bs # []
and Vzs € Y. zs # U — rank (rev V) < rank (rev xs)
shows rank (rev V) < rank (rev bs)
proof —
obtain as’ bs’ cs’ where bs’-def: concat as’ = as concat bs' = bs concat cs’ = cs
set (as’QU#bs'QV#tcs') = Y
using concat-split-UV[OF assms(2,5—10)] assms(4,6,7) by blast
have tk1: take 1 (asQU) = [r]
using takel-split-nemptylof U as] assms(4,6,11) by force
have V z€set bs’. 2 # U
using bs’-def(2) assms(4,6,8) concat-all-sublist by (fastforce dest!: empty-if-sublist-dsjnt)
then have 0: V z€set bs’. rank (rev V) < rank (rev z)
using assms(13) bs’-def(4) by auto
have V # [| using assms(4,7) by blast
have [| ¢ set bs’ using assms(4) bs’-def(2,4) by auto
then show ?%thesis
using bs-ge-if-all-ge[OF assms(1) <V£[], of asQU] 0 bs’-def(2) tk1 assms(3,7,8,12)
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by auto
qed

lemma no-gap-if-geV:
assumes asi rank root cost
andVas € Y. Vys € Y. zs = ys V set xs N set ys = {}
and Vas € Y. forward xs
and | ¢ YV
and finite Y
and U € Y
and V €Y
and before U V
and Vzs € Y. zs # U — rank (rev V) < rank (rev xs)
and Jz. fwd-sub root Y x
shows 3 zs. fwd-sub root Y zs A sublist (UQV) zs
A (Vas. fwd-sub root Y as — cost (rev zs) < cost (rev as))
proof —
obtain zs where zs-def:
set zs = |J (set © Y) distinct zs take 1 zs = [root] forward zs
(Vas € Y. sublist xs zs) (V as. fwd-sub root Y as — cost (rev zs) < cost (rev
as))
using forward-UV-lists-argmin-ez[OF assms(10), of Ax. cost (rev x)]
unfolding fwd-sub-def unique-set-r-def by blast
then have hd zs = root using hd-eq-takel by fast
then obtain as bs cs where bs-def: as @ U @Q bs @ V @ ¢s = zs
using sublist-before-if-before zs-def(2,4,5) assms(6—8) by blast
then have bs-prems: distinct (asQU@Qbs@Q VQcs) set (asQUQbsQVQces) = | (set
¢ Y)
VaseY. sublist s (asQUQbsQVQcs) take 1 (asQU@QbsQVQcs) = [root]
using zs-def(1—5) by auto
show ?thesis
proof(cases bs = [])
case True
then have sublist (UQV) zs using bs-def sublist-def by force
then show ?thesis using zs-def unfolding fwd-sub-def unique-set-r-def by
blast
next
case Fulse
then have rank-le: rank (rev V) < rank (rev bs)
using bs-ge-if-geV[OF assms(1—7) bs-prems False assms(9)] by blast
have 0: distinct ((asQU)QV@QbsQcs) using bs-def zs-def(2) by auto
have take 1 (asQU) = [root]
using bs-def assms(4,6) takel-split-nempty[of U as| zs-def(3) by fastforce
then have 1: take 1 (asQUQV@QbsQcs) = [root]
using takel-singleton-applof asQU root VQbsQcs| by simp
have 2: VaseY. sublist zs (asQUQVQbsQcs)
using zs-def(5) bs-def sublists-preserv-move-VY-all[OF assms(2,6,7)] assms(4,6)
by blast
have V # [] using assms(4,7) by blast
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have cost (rev (asQUQV@bsQcs)) < cost (rev zs)
using asi-le-rfst[OF assms(1) rank-le <V#[]» False 0] 1 zs-def(3) bs-def by
simp
then have cost-le: V ys. fwd-sub root Y ys — cost (rev (asQUQ V@bsQcs))
< cost (rev ys)
using zs-def(6) by fastforce
have forward (asQUQV@QbsQcs)
using move-mid-backward-if-noarc assms(8) zs-def(4) bs-def by blast
moreover have set (asQUQV@bsQcs) = |J(set “ V) using bs-def zs-def(1)
by fastforce
ultimately have fwd-sub root Y (asQUQ V@bsQcs)
unfolding fwd-sub-def unique-set-r-def using 0 1 2 by auto
moreover have sublist (UQV) (asQUQV@QbsQcs) unfolding sublist-def by
fastforce
ultimately show ?thesis using cost-le by blast
qged
qed

lemma app-UV-set-optimal-cost:
assumes asi rank root cost
and Vzs € Y. Vys € Y. xs = ys V set zs N set ys = {}
and Vs € Y. forward xs
and [| ¢ YV
and finite Y
and U € Y
and Ve Y
and before U V
and Vzs € Y. zs # U — rank (rev V) < rank (rev xs)
and Jz. fwd-sub root Y x
shows Jzs. fwd-sub root ({UQV}YU{z.z€ YAz #UANz# V}) zs
A (Vas. fwd-sub root Y as — cost (rev zs) < cost (rev as))
proof —
have P-eq: unique-set-r root Y = unique-set-r root ({UQV}I U {z.z € Y Nz #
UNz#V})
unfolding unique-set-r-def using assms(6,7) by auto
have 3 zs. fwd-sub root Y zs A sublist (UQV) zs
A (Vas. fwd-sub root Y as — cost (rev zs) < cost (rev as))
using no-gap-if-geV[OF assms(1—10)] by blast
then show ?thesis unfolding P-eq fwd-sub-def by blast
qed

end

context tree-query-graph
begin

lemma no-cross-ldeep-rev-if-forward:

assumes zs # [| and r € verts G and directed-tree.forward (dir-tree-r r) (rev
zs)
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shows no-cross-products (create-ldeep-rev xs)
using assms proof (induction zs rule: create-ldeep-rev.induct)
case (3 z y ys)
then interpret T: directed-tree dir-tree-r r r using directed-tree-r by blast
have split: create-ldeep-rev (x#y#tys) = Join (create-ldeep-rev (y#ys)) (Relation
x) by simp
have rev (z#y#vys) ! (length (y#ys)) = z using nth-append-lengthlof rev (y#ys)]
by simp
moreover have length (y#ys) € {1..length (rev (x#y#ys)) — 1} by simp
ultimately obtain j where j-def: j < (length (y#ys)) rev (c#y#Ys)\J = gir-tree-r r
x
using 3.prems(3) unfolding T.forward-def by fastforce
then have rev (x#y#ys)lj € set (y#ys)
using nth-mem[of j rev (y#ys)] by (auto simp add: nth-append)
then have 3 z'erelations (create-ldeep-rev (y#ys)). ' = gir-tree-r r ©
using j-def(2) create-ldeep-rev-relations|of y#ys] by blast
then have 1: 3z’crelations (create-ldeep-rev (y#ys)). ' —qx
using assms(2) dir-tree-r-dom-in-G by blast
have T.forward (rev (y#ys)) using 3.prems(3) T.forward-cons by blast
then show ?case using 1 3 by simp
qed(auto)

lemma no-cross-ldeep-if-forward:
[xs # [|; r € verts G; directed-tree.forward (dir-tree-r r) xs]
= no-cross-products (create-ldeep xs)
unfolding create-ldeep-def using no-cross-ldeep-rev-if-forward by simp

lemma no-cross-ldeep-if-forward’:
[set s = verts G; r € verts G; directed-tree.forward (dir-tree-r r) xs]
= no-cross-products (create-ldeep xs)
using no-cross-ldeep-if-forward|of xs] by fastforce

lemma forward-if-ldeep-rev-no-cross:

assumes r € verts G and no-cross-products (create-ldeep-rev xs)

and hd (rev zs) = r and distinct xs
shows directed-tree.forward-arcs (dir-tree-r r) s

using assms proof (induction zs rule: create-ldeep-rev.induct)

case I

then show ?Zcase using directed-tree-r directed-tree.forward-arcs.simps(1) by
fast
next

case (2 x)

then show ?Zcase using directed-tree-r directed-tree.forward-arcs.simps(2) by
fast
next

case (3 z y ys)

then interpret T: directed-tree dir-tree-r r r using directed-tree-r by blast

have hd (rev (y # ys)) = r using 3.prems(3) hd-append2|of rev (y#ys) [z]] by
simp
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then have ind: T.forward-arcs (y#ys) using 3 by fastforce
have matching: matching-rels (create-ldeep-rev (z#y#ys))
using matching-rels-if-no-cross 8.prems(2) by simp
have r € relations (create-ldeep-rev (z#y#ys)) using 3.prems(3)
using create-ldeep-rev-relations|of x#y#ys| hd-rev]of z#y#ys] by simp
then obtain p’ where p’-def:
awalk v p" x A set (awalk-verts v p’) C relations (create-ldeep-rev (x#y#ys))
using no-cross-awalk|OF matching 3.prems(2)] by force
then obtain p where p-def:
apath r p z set (awalk-verts r p) C relations (create-ldeep-rev (z#y#ys))
using apath-awalk-to-apath awalk-to-apath-verts-subset by blast
then have pre-digraph.apath (dir-tree-r v) r p x using apath-in-dir-if-apath-G
by blast
moreover have r # z
using 3.prems(3,4) T.no-back-arcs.cases|of rev (x#y#ys)] distinct-first-uneg-last|of
7]
by fastforce
ultimately obtain v where u-def:
U = gir-tree-r + £ U € set (pre-digraph.awalk-verts (dir-tree-r r) r p)
using p-def(2) T.awalk-verts-dom-if-uneq T.awalkIl-apath by blast
then have u € relations (create-ldeep-rev (z#y#ys))
using awalk-verts-G-T 3.prems(1) p-def(2) by auto
then have u € set (z#y#ys) by (simp add: create-ldeep-rev-relations)
then show ?case using u-def(1) ind T.forward-arcs.simps(3) T .loopfree.adj-not-same
by auto
qged

lemma forward-if-ldeep-no-cross:
[r € verts G; no-cross-products (create-ldeep xs); hd xs = r; distinct xs|
= directed-tree.forward (dir-tree-r r) xs
using forward-if-ldeep-rev-no-cross directed-tree.forward-arcs-alt directed-tree-r
by (fastforce simp: create-ldeep-def)

lemma no-cross-ldeep-iff-forward:
[xs # [|; v € verts G; hd zs = r; distinct xs]
= no-cross-products (create-ldeep zs) «— directed-tree.forward (dir-tree-r r)
zs
using forward-if-ldeep-no-cross no-cross-ldeep-if-forward by blast

lemma no-cross-if-fwd-ldeep:
[r € verts G; left-deep t; directed-tree.forward (dir-tree-r r) (inorder t)]
= no-cross-products t
using no-cross-ldeep-if-forward| OF inorder-nempty] by fastforce

lemma forward-if-ldeep-no-cross’:
[first-node t € verts G; distinct-relations t; left-deep t; no-cross-products t]
= directed-tree.forward (dir-tree-r (first-node t)) (inorder t)
using forward-if-ldeep-no-cross by (simp add: first-node-eq-hd distinct-relations-def)
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lemma no-cross-iff-forward-ldeep:
[first-node t € verts G; distinct-relations t; left-deep 1]
= no-cross-products t <— directed-tree.forward (dir-tree-r (first-node t))
(inorder t)
using no-cross-if-fwd-ldeep forward-if-ldeep-no-cross’ by blast

lemma sublist-before-if-before:

assumes hd zs = r and no-cross-products (create-ldeep zs) and r € verts G and
distinct zs

and sublist U zs and sublist V zs and directed-tree.before (dir-tree-r r) U V
shows Jas bs cs. as @Q U @Q bs Q V Q ¢s = wxs

using directed-tree.sublist-before-if-before| OF directed-tree-r| forward-if-ldeep-no-cross
assms

by blast

lemma nocross-UV-lists-subset:
{z. set x = X A distinct x A take 1 x = [r]
A no-cross-products (create-ldeep x) N (Vs € Y. sublist zs z)}
C {z. set x = X A distinct z}
by blast

lemma nocross-UV-lists-finite:
finite s
= finite {z. set x = xs A distinct A take 1 z = [r]
A no-cross-products (create-ldeep x) N (Vs € Y. sublist xs x)}
using distinct-seteq-finite finite-subset| OF nocross-UV-lists-subset] by auto

lemma nocross-UV-lists-arg-min-ex-auz:
[finite ys; ys # {};
ys = {z. set x = xzs A distinct x A take 1 x = [r]
A no-cross-products (create-ldeep ©) A (Vxs € Y. sublist zs )}]
= dy € ys.Vz e ys. (f:: 'alist = real) y < f 2
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma nocross-UV-lists-arg-min-ex:
[finite s; ys # {}:
ys = {x. set & = xzs A distinct © A take 1 x = [r]
A no-cross-products (create-ldeep ©) N (Vs € Y. sublist zs x)}]
= Jye€ys. Vz e ys. (f::'alist = real) y < fz
using nocross-UV-lists-finite nocross-UV-lists-arg-min-ex-auz by auto

lemma nocross-UV-lists-argmin-ex:
fixes [ :: 'a list = real
assumes P = (A\z. set © = X A distinct © A take 1 z = [r])
and @ = (Ays. P ys A no-cross-products (create-ldeep ys) N (Vas € Y. sublist
75 y5))
and Jz. Q z
shows Jzs. Q zs A (Vas. Q as — fzs < fas)
using nocross-UV-lists-arg-min-ex[of X {z. Q z}] using assms by fastforce
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lemma no-gap-if-contr-seq:
fixes Y r
defines X = J(set ‘ Y)
defines P = (Ays. set ys = X A distinct ys A take 1 ys = [r])
defines Q = (A\ys. P ys A no-cross-products (create-ldeep ys) A (Vxs € Y. sublist
75 y5))
assumes asi rank r ¢
andVzs € Y. Vys € Y. xs = ys V set zs N set ys = {}
and Vs € Y. directed-tree.forward (dir-tree-r r) xs
and | ¢ Y
and finite Y
and U € Y
and V € Y
and r € verts G
and directed-tree.before (dir-tree-r r) UV
and rank (rev V) < rank (rev U)
and Azs. [zs € YV; Jyeset zs. ~(Iz'eset V. 2" =T girpreer r Y)
A (Bzeset U. 2 =7 girpreer r Y); @8 # U]
= rank (rev V) < rank (rev xs)
and dz. Q z
shows Jzs. Q zs A sublist (UQV) zs A (Vas. Q as — ¢ (rev zs) < ¢ (rev as))
proof —
interpret T: directed-tree dir-tree-r r r using assms(11) directed-tree-r by auto
let 7Q = (A\ys. P ys A T.forward ys N (Vxs € Y. sublist zs ys))
have 7Q = @
using no-cross-ldeep-iff-forward assms(11,2,3) hd-eq-takel nempty-if-takel [where
r=r| by fast
then show ?thesis
using T.no-gap-if-contr-seq-fwd[OF assms(4—10,12—14)] assms(15,1,2)
unfolding T'.fwd-sub-def unique-set-r-def by auto
qed

end

10.3 Arc Invariants

function path-lverts :: ('a list,’b) diree = 'a = 'a set where
path-lverts (Node r {|(t,e)|}) © = (if © € set r then {} else set r U path-lverts t
z)
| V. xs # {|z|} = path-lverts (Node r xs) x = (if © € set r then {} else set 1)
by (metis darcs-mset.cases old.prod.ezhaust) fast+
termination by lexicographic-order

definition path-lverts-list :: (‘a list x 'b) list = 'a = 'a set where
path-lverts-list zs © = (| (t,e)€ set (takeWhile (A(t,e). z ¢ set t) xs). set t)

definition dom-children :: ('a list,’d) dtree = ('a,’b) pre-digraph = bool where
dom-children t1 T = (Vt € fst * fset (sucs t1). YV € dverts t.
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Ir € set (root t1) U path-lverts ¢t (hd ). 1 — 7 hd x)

abbreviation children-degl :: (('a,’d) diree x 'b) fset = (('a,’d) diree x 'b) set
where
children-degl zs = {(t,e). (t,e) € fset xs A\ max-deg t < 1}

lemma path-lverts-subset-dlverts: path-lverts t x C dlverts t
by (induction t z rule: path-lverts.induct) auto

lemma path-lverts-to-list-eq:
path-lverts t © = path-lverts-list (dtree-to-list (Node 0 {|(t,e)|})) =
by (induction t rule: dtree-to-list.induct) (auto simp: path-lverts-list-def)

lemma path-lverts-from-list-eq:
path-lverts (dtree-from-list 0 ys) x = path-lverts-list ((r0,e0)#ys) x
unfolding path-lverts-list-def using path-lverts.simps(2)[of {||}]
by (induction ys rule: dtree-from-list.induct) (force, cases x € set 10, auto)

lemma path-lverts-child-union-root-sub:
assumes t2 € fst ¢ fset (sucs t1)
shows path-lverts t1 x C set (root t1) U path-lverts t2
proof(cases V x. sucs t1 # {|z|})
case True
then show ?thesis using path-lverts.simps(2)[of sucs t1 root t1] by simp
next
case Fulse
then obtain e2 where sucs t1 = {|(¢2,e2)|} using assms by fastforce
then show ?thesis
using path-lverts.simps(1)[of root t1 t2 e2] dtree.collapse[of t1]
by(cases © € set (root t1)) fastforce+
qed

lemma path-lverts-simps1-sucs:
[z ¢ set (root t1); sucs t1 = {|(t2,e2)|}]
= set (root t1) U path-lverts t2 © = path-lverts t1
using path-lverts.simps(1)[of root t1 t2 e2 x| diree.exhaust-sel[of t1] by argo

lemma subtree-path-lverts-sub:
[wf-dlverts t1; max-deg t1 < 1; is-subtree (Node r xs) t1; t2 € fst * fset xs; xEset
(root t2)]
= set r C path-lverts t1 «
proof (induction t1)
case (Node r1 xsl)
then have zs1 # {||} by force
then have maz-deg (Node r1 zs1) = 1
using Node.prems(2) empty-if-mdeg-0|[of r1 zs1] by fastforce
then obtain ¢t e where t-def: zs1 = {|(t,e)|} using mdeg-1-singleton by fastforce
have z-t2: z € dlverts t2 using Node.prems(5) lverts-if-in-verts dtree.set-sel(1)
by fast
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show ?Zcase
proof(cases Node r1 xs1 = Node r xs)
case True
then show %thesis using Node.prems(1,4) z-t2 t-def by force
next
case Fulse
then have 0: is-subtree (Node r zs) t using t-def Node.prems(3) by force
moreover have maz-deg t < 1 using t-def Node.prems(2) mdeg-ge-child[of t
e zs1] by simp
moreover have z ¢ set r! using t-def 2-t2 Node.prems(1,4) 0 subtree-in-dlverts
by force
ultimately show ?thesis using Node.IH t-def Node.prems(1,4,5) by auto
qed
qed

lemma path-lverts-empty-if-roothd:

assumes root t # [|

shows path-lverts t (hd (root t)) = {}
proof(cases Vz. sucs t # {|z|})

case True

then show ?thesis using path-lverts.simps(2)[of sucs t root t] by force
next

case Fulse

then obtain ¢! el where t1-def: sucs t = {|(t1, el)|} by auto

then have path-lverts t (hd (root t)) =

(if hd (root t) € set (root t) then {} else set (root t) U path-lverts t1 (hd (root

using path-lverts.simps(1) dtree.collapse by metis
then show ?thesis using assms by simp
qed

lemma path-lverts-subset-root-if-childhd:
assumes t1 € fst ¢ fset (sucs t) and root t1 # []
shows path-lverts t (hd (root t1)) C set (root t)
proof(cases Vz. sucs t # {|z|})
case True
then show ?thesis using path-lverts.simps(2)[of sucs t root t] by simp
next
case Fulse
then obtain el where sucs t = {|(t1, el)|} using assms(1) by fastforce
then have path-lverts t (hd (root t1)) =
(if hd (root t1) € set (root t) then {} else set (root t) U path-lverts t1 (hd (root
1))
using path-lverts.simps(1) dtree.collapse by metis
then show %thesis using path-lverts-empty-if-roothd| OF assms(2)] by auto
qed

lemma path-lverts-list-merge-supset-xs-notin:
Yo € fst “set ys. a ¢ setv
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= path-lverts-list xs a C path-lverts-list (Sorting-Algorithms.merge cmp xs ys)

a
proof (induction zs ys taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 x5 y ys)

obtain v! el where vi-def[simp]: © = (vi,el) by force

obtain v2 e¢2 where y = (v2,e2) by force

then show ?case using 3 by (auto simp: path-lverts-list-def)
qed (auto simp: path-lverts-list-def)

lemma path-lverts-list-merge-supset-ys-notin:

Vo € fst “setxs. a ¢ setv

= path-lverts-list ys a C path-lverts-list (Sorting-Algorithms.merge cmp xs ys)

a
proof (induction s ys taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 x5 y ys)

obtain v! el where vi-def[simp]: © = (vi,el) by force

obtain v2 e¢2 where y = (v2,e2) by force

then show ?case using 3 by (auto simp: path-lverts-list-def)
qed (auto simp: path-lverts-list-def)

lemma path-lverts-list-merge-supset-xs:
[Bv € fst ‘setas. a € set v; Yol € fst ‘ set xs. V2 € fst “ set ys. set vl N set
02 = ]
= path-lverts-list xs a C path-lverts-list (Sorting-Algorithms.merge cmp xs ys)
a
using path-lverts-list-merge-supset-rs-notin by fast

lemma path-lverts-list-merge-supset-ys:
[Fv e fst ‘setys. a € set v; Vol € fst ‘ set zs. Vv2 € fst “ set ys. set vl N set
v2 = {}]
= path-lverts-list ys a C path-lverts-list (Sorting-Algorithms.merge cmp s ys)
a
using path-lverts-list-merge-supset-ys-notin by fast

lemma dom-children-if-all-singletons:

V (t1,el) € fset xs. dom-children (Node r {|(t1, e1)|}) T = dom-children (Node
ras) T

by (auto simp: dom-children-def)

lemma dom-children-all-singletons:
[dom-children (Node r xs) T; (t1,el) € fset xs] = dom-children (Node r {|(t1,

el)[}) T

by (auto simp: dom-children-def)

lemma dom-children-all-singletons':
[dom-children (Node r zs) T; t1€ fst * fset xs] = dom-children (Node r {|(¢1,

el)[}) T

by (auto simp: dom-children-def)
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lemma root-arc-if-dom-root-child-nempty:
[dom-children (Node r zs) T; t1 € fst * fset xs; Toot t1 # [|]
= Juzeset r. Jyeset (root t1). x —py
unfolding dom-children-def using dtree.set-sel(1) path-lverts-empty-if-roothd|of
t1]
by fastforce

lemma root-arc-if-dom-root-child-wfdlverts:
[dom-children (Node r xs) T; t1 € fst * fset xs; wf-dlverts ¢1]
= Jx€set r. Jyeset (root t1). ¢ -y
using root-arc-if-dom-root-child-nempty dtree.set-sel(1)[of t1] empty-notin-wf-dlverts
by fastforce

lemma root-arc-if-dom-wfdlverts:
[dom-children (Node r zs) T; t1 € fst ¢ fset xs; wf-dlverts (Node r xs)]
= Jz€set r. Jycset (root tl). ¢ -y
using root-arc-if-dom-root-child-wfdlverts|of r xs T t1] by fastforce

lemma children-degl-sub-zs: {(t,e). (t,e) € fset xs A maz-deg t < 1} C (fset xs)
by blast

lemma finite-children-degl: finite {(t,e). (t,e) € fset xs N max-deg t < 1}
using children-deg1-sub-zs[of xs] by (simp add: finite-subset)

lemma finite-children-deg1”. {(t,e). (t,e) € fset xs A maz-deg t < 1} € {A. finite
A}
using finite-children-degl by blast

lemma children-deg1-fset-id[simp]: fset (Abs-fset (children-degl xs)) = children-degl
xs
using Abs-fset-inverse|OF finite-children-degl’] by auto

lemma zs-sub-children-degl: Yt € fst ‘ fset xs. max-deg t < 1 = (fset zs) C
children-degl ws
by auto

lemma children-deg1-full:
Vit e fst‘ fset xs. max-deg t < 1 = (Abs-fset (children-degl xs)) = xs
using zs-sub-children-deg1|of xs] children-degl-sub-zs[of zs] by (simp add: fset-inverse)

locale ranked-dtree-with-orig = ranked-dtree t rank cmp + directed-tree T root
for t :: ('a list, 'b) dtree and rank cost cmp and T :: (‘a, 'b) pre-digraph and
root +
assumes asi-rank: asi rank root cost
and dom-mdeg-gt1:
[is-subtree (Node r xs) t; t1 € fst ¢ fset xs; maz-deg (Node r xs) > 1]
= Jv € set r. v = hd (Dtree.root t1)
and dom-sub-contr:
[is-subtree (Node 1 xs) t; t1 € fst * fset xs;
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Ju t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r zs) A rank (rev (Dtree.root
t2)) < rank (rev v)]
= Jwv € set r. v = hd (Dtree.root t1)
and dom-contr:
[is-subtree (Node r {|(t1,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r);
maz-deg (Node r {|(t1,e1)|}) = 1]
= dom-children (Node r {|(t1,el)|}) T
and dom-wedge:
[is-subtree (Node r xs) t; feard xs > 1]
= dom-children (Node r (Abs-fset (children-degl zs))) T
and arc-in-dlverts:
[is-subtree (Node r zs) t; x € set r; © —p y] = y € dlverts (Node r zs)
and wverts-conform: v € dverts t => seq-conform v
and verts-distinct: v € dverts t = distinct v
begin

lemma dom-contr”:
[is-subtree (Node r {|(t1,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r);
maz-deg (Node r {|(t1,e1)|}) < 1]
= dom-children (Node r {|(t1,el)|}) T
using dom-contr mdeg-ge-sub mdeg-singleton[of r t1] by (simp add: fcard-single-1)

lemma dom-self-contr:
[is-subtree (Node r {|(t1,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r)]
= Jv € set r. v = hd (Dtree.root t1)
using dom-sub-contr by fastforce

lemma dom-wedge-full:
[és-subtree (Node r xs) t; feard xs > 1; V't € fst * fset xs. maz-deg t < 1]
= dom-children (Node r zs) T
using dom-wedge children-deg1-full by fastforce

lemma dom-wedge-singleton:
[is-subtree (Node 1 xs) t; feard xs > 1; t1 € fst * fset zs; maz-deg t1 < 1]
= dom-children (Node r {|(t1,el)|}) T
using dom-children-all-singletons’ dom-wedge children-degl-fset-id by fastforce

lemma arc-to-dverts-in-subtree:
[is-subtree (Node r zs) t; x € set r; x = y; y € set v; v € dverts 1]
= v € dverts (Node 1 xs)
using list-in-verts-if-lverts| OF arc-in-dlverts] dverts-same-if-set-wf[OF wf-lverts]
dverts-subtree-subset by blast

lemma dlverts-arc-in-dlverts:

[is-subtree t1 t; x —p y; x € dlverts t1] = y € dlverts t1
proof (induction t1)

case (Node r xs)

then show ?case

proof(cases x € set r)
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case True
then show ?%thesis using arc-in-dlverts Node.prems(1,2) by blast
next
case Fualse
then obtain t2 e2 where t2-def: (t2,e2) € fset s x € dlverts t2
using Node.prems(3) by auto
then have is-subtree t2 (Node r zs) using subtree-if-child
by (metis image-iff prod.sel(1))
then have is-subtree t2 ¢t using Node.prems(1) subtree-trans by blast
then show ?thesis using Node.IH Node.prems(2) t2-def by fastforce
qed
qed

lemma dverts-arc-in-dlverts:
[is-subtree t1 t; v1 € dverts t1; x € set vi; x —p y] = y € dlverts t1
using dlverts-arc-in-dlverts by (simp add: lverts-if-in-verts)

lemma dverts-arc-in-dverts:
assumes is-subtree t1 t
and v! € dverts t1
and z € set vl
and z =7y
and y € set v2
and v2 € dverts t
shows v2 € dverts t1
proof —
have z € dlverts t1 using assms(2,3) lerts-if-in-verts by fast
then obtain v where v-def: vEdverts t1 y € set v
using list-in-verts-if-lverts| OF dlverts-arc-in-dlverts| assms(1—4) lverts-if-in-verts
by blast
then show ?thesis
using dverts-same-if-set-wf[OF wf-lverts| assms(1,5,6) dverts-subtree-subset
by blast
qed

lemma dlverts-reachl-in-dlverts:
[z =F py; is-subtree t1 t; x € dlverts t1] = y € dlverts t1
by (induction x y rule: trancl.induct) (auto simp: dlverts-arc-in-dlverts)

lemma dlverts-reach-in-dlverts:
[z =*p y; is-subtree t1 t; x € dlverts t1] = y € dlverts t1
using dlverts-reachi1-in-dlverts by blast

lemma dverts-reachl-in-dlverts:
[is-subtree t1 t; vl € dverts t1; x € set vl; © =1 py] = y € dlverts t1

using dlverts-reachl-in-dlverts by (simp add: lverts-if-in-verts)

lemma dverts-reach-in-dlverts:
[is-subtree t1 t; vl € dverts t1; x € set vl; x —*p y] = y € dlverts t1
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using list-in-verts-iff-lverts dverts-reachl-in-dlverts by (cases x=y,fastforce,blast)

lemma dverts-reachl-in-dverts:
[is-subtree t1 t; v1 € dverts t1; x € set vi; x =T py; y € set v2; v2 € dverts {]
= v2 € dverts t1
by (meson dverts-reachl-in-dlverts dverts-arc-in-dverts list-in-verts-if-lverts tran-
clE)

lemma dverts-same-if-set-subtree:

[is-subtree t1 t; vl € dverts t1; x € set vl; x € set v2; v2 € dverts t] = vl =
v2

using dverts-same-if-set-wf[OF wf-lverts] dverts-subtree-subset by blast

lemma dverts-reach-in-dverts:
[is-subtree t1 t; vl € dverts t1; x € set vl; x —*p y; y € set v2; v2 € dverts t]
= v2 € dverts t1
using dverts-same-if-set-subtree dverts-reachl-in-dverts by blast

lemma dverts-reachl-in-dverts-root:
[is-subtree t1 t; v € dverts t; 3xcset (Dtree.root t1). Jyeset v. © =1 p y]
= v € dverts t1
using dverts-reachl-in-dverts dtree.set-sel(1) by blast

lemma dverts-reachl-in-dverts-r:
[is-subtree (Node r xs) t; v € dverts t; Jz€set r. Jyeset v. © =1 p ]
= v € dverts (Node r xs)
using dverts-reach1-in-dverts[of Node r xzs] by (auto intro: dtree.set-intros(1))

lemma dom-mdeg-gt1-subtree:
[is-subtree tn t; is-subtree (Node 1 xs) tn; t1 € fst * fset xs; maz-deg (Node r xs)
> 1]
= v € set r. v = hd (Dtree.root t1)
using dom-mdeg-gt1 subtree-trans by blast

lemma dom-sub-contr-subtree:
[is-subtree tn t; is-subtree (Node r xs) tn; t1 € fst  fset xs;
Jou t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r zs) A rank (rev (Dtree.root
t2)) < rank (rev v)]
= Jwv € set r. v = hd (Dtree.root t1)
using dom-sub-contr subtree-trans by blast

lemma dom-contr-subtree:
[is-subtree tn t; is-subtree (Node r {|(t1,e1)|}) tn; rank (rev (Dtree.root t1)) <
rank (rev r);
maz-deg (Node r {|(t1,e1)|}) = 1]
= dom-children (Node r {|(t1,el)|}) T
using dom-contr subtree-trans by blast

lemma dom-wedge-subtree:
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[is-subtree tn t; is-subtree (Node 1 xs) tn; fecard xs > 1]
= dom-children (Node r (Abs-fset (children-degl zs))) T
using dom-wedge subtree-trans by blast

corollary dom-wedge-subtree’:
is-subtree tn t =V r xs. is-subtree (Node r xs) tn — feard xs > 1
— dom-children (Node r (Abs-fset {(t, e). (t, €) € fset xs N maz-deg t < Suc

0})) T

by (auto simp only: dom-wedge-subtree One-nat-def|[symmetric])

lemma dom-wedge-full-subtree:
[is-subtree tn t; is-subtree (Node r xs) tn; fcard xs > 1; V't € fst ¢ fset xs. maz-deg
t < 1]
= dom-children (Node r zs) T
using dom-wedge-full subtree-trans by fast

lemma arc-in-dlverts-subtree:

[is-subtree tn t; is-subtree (Node r xs) tn; x € set r; ¢ —p y] = y € dlverts
(Node r xs)

using arc-in-dlverts subtree-trans by blast

corollary arc-in-dlverts-subtree’:
is-subtree tn t => V1 xs. is-subtree (Node r zs) tn — (V. © € set r
— Vy.z =gy — y € setrV (Fcefset xs. y € dlverts (fst c))))
using arc-in-dlverts-subtree by simp

lemma verts-conform-subtree: [is-subtree tn t; v € dverts tn] = seg-conform v
using verts-conform dverts-subtree-subset by blast

lemma verts-distinct-subtree: [is-subtree tn t; v € dverts tn] = distinct v
using verts-distinct dverts-subtree-subset by blast

lemma ranked-dtree-orig-subtree: is-subtree r t => ranked-dtree-with-orig x rank
cost cmp T root
unfolding ranked-dtree-with-orig-def ranked-dtree-with-orig-azioms-def
by (simp add: ranked-dtree-subtree directed-tree-axioms dom-mdeg-gtl-subtree
dom-contr-subtree
dom-sub-contr-subtree dom-wedge-subtree’ arc-in-dlverts-subtree’
verts-conform-subtree verts-distinct-subtree asi-rank)

corollary ranked-dtree-orig-rec:
[Node r zs = t; (z,e) € fset xs] = ranked-dtree-with-orig x rank cost cmp T root
using ranked-dtree-orig-subtree|of x| subtree-if-child[of x xzs] by force

lemma child-disjoint-root:
[is-subtree (Node r xs) t; t1 € fst ¢ fset xzs] = set r N set (Dtree.root t1) = {}
using wf-dlverts-subtree| OF wf-lverts] dlverts-eq-dverts-union dtree.set-sel(1) by
fastforce
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lemma distint-verts-subtree:

assumes is-subtree (Node r zs) t and t1 € fst * fset zs

shows distinct (r @ Diree.root t1)
proof —

have (Dtree.root t1) € dverts t using dtree.set-sel(1) assms dverts-subtree-subset
by fastforce

then show ?thesis

using verts-distinct assms(1) dverts-subtree-subset child-disjoint-root| OF assms]
by force
qed

corollary distint-verts-singleton-subtree:
is-subtree (Node r {|(t1,e1)|}) t = distinct (r @ Dtree.root t1)
using distint-verts-subtree by simp

lemma dom-between-child-roots:
assumes is-subtree (Node r {|(t1,e1)|}) t and rank (rev (Dtree.root t1)) < rank
(rev )
shows Jze€set r. 3yeset (Dtree.root t1). x =7y
using dom-self-contr[OF assms| wf-dlverts-subtree[ OF wf-lverts assms(1)]
hd-in-set[of Dtree.root t1] ditree.set-sel(1)[of t1] empty-notin-wf-dlverts[of t1]
by fastforce

lemma contr-before:

assumes is-subtree (Node r {|(t1,e1)|}) t and rank (rev (Dtree.root t1)) < rank
(rev )

shows before r (Dtree.root t1)
proof —

have (Dtree.root t1) € dverts t using diree.set-sel(1) assms(1) dverts-subtree-subset
by fastforce

then have seq-conform (Dtree.root t1) using verts-conform by simp

moreover have seg-conform r using verts-conform assms(1) dverts-subtree-subset
by force

ultimately show ?thesis

using before-def dom-between-child-roots| OF assms] child-disjoint-root|OF assms(1)]
by auto
qed

lemma contr-forward:

assumes is-subtree (Node r {|(t1,e1)|}) t and rank (rev (Dtree.root t1)) < rank
(rev )

shows forward (r@Dtree.root t1)
proof —

have (Dtree.root t1) € dverts t using diree.set-sel(1) assms(1) dverts-subtree-subset
by fastforce

then have seg-conform (Dtree.root t1) using verts-conform by simp

moreover have seq-conform r using verts-conform assms(1) dverts-subtree-subset
by force

ultimately show %thesis
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using seg-conform-def forward-arcs-alt dom-self-contr assms forward-app by
stmp
qed

lemma contr-seq-conform:
[is-subtree (Node r {|(t1,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev )]
= seg-conform (r @Q Diree.root t1)
using seqg-conform-if-before contr-before by simp

lemma verts-forward: ¥ v € dverts t. forward v
using seg-conform-alt verts-conform by simp

lemma dverts-reachablel-if-dom-children-aux-root:
assumes YV vedverts (Node r xs). Jz€set r0 U X U path-lverts (Node r xs) (hd
v). z —phdv
and VyeX. Jze€set r0. z —»Fpy
and forward r
shows Vyeset r. Jz€set 0. z - p y
proof(cases r = [])
case Fulse
then have path-lverts (Node r xs) (hd r) = {}
using path-lverts-empty-if-roothd[of Node r zs] by simp
then obtain z where z-def: z€set 70 U X x — p hd r using assms(1) by auto
then have hd r € verts T using adj-in-verts(2) by auto
then have Vycset r. z =T py
using hd-reach-all-forward x-def(2) assms(3) reachablel-reachable-trans by
blast
moreover obtain y where y € set r0 y —*p z using assms(2) z-def by auto
ultimately show ?thesis using reachable-reachablel-trans by blast
qed(simp)

lemma dverts-reachablel-if-dom-children-aux:
[V vedverts t1. Jz€set r0 U X U path-lverts t1 (hd v). z —p hd v;
VyeX. Fxeset r0. x =T p y; Vuedverts t1. forward v; vEdverts t1]
= Vycset v. Jz€set 0. z - py
proof (induction t1 arbitrary: X rule: dtree-to-list.induct)
case (I rte)
have r-reachablel: Vyeset r. Jzcset r0. v -+ py
using dverts-reachable1-if-dom-children-auz-root|OF 1.prems(1,2)] 1.prems(3)
by simp
then show ?case
proof(cases r = v)
case True
then show ?thesis using r-reachablel by simp
next
case Fulse
have r-reachl: Yy€set r U X. Jz€set r0. x =1 p y using 1.prems(2)
r-reachable! by blast
have V z. path-lverts (Node r {|(t, €)|}) = C set r U path-lverts t x
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by simp
then have 0: VY vedverts t. 3x€set r0 U (set v U X) U (path-lverts t (hd v)).
z =7 hdwv
using 1.prems(1) by fastforce
then show ?thesis using 1.IH[OF 0 r-reachl] 1.prems(3,4) False by simp
qed
next
case (2 s r)
then show ?case
proof(cases Izeset r0 U X. x —p hd v)
case True
then obtain z where z-def: z€set 70 U X ¥ —p hd v using 2.prems(1,4)
by blast
then have hd v € verts T using z-def(2) adj-in-verts(2) by auto
moreover have forward v using 2.prems(3,4) by blast
ultimately have v-reachl: Vyeset v. x =T p y
using hd-reach-all-forward z-def(2) reachablel-reachable-trans by blast
then show ?%thesis using 2.prems(2) z-def(1) reachable-reachablel-trans by
blast
next
case Fulse
then obtain z where z-def: z € path-lverts (Node r xs) (hd v) x —p hd v
using 2.prems(1,4) by blast
then have z € set r using path-lverts.simps(2)[OF 2.hyps] empty-iff by metis
then obtain z’ where z'-def: z'€set r0 z' =T p x
using dverts-reachable1-if-dom-children-aux-root| OF 2.prems(1,2)] 2.prems(3)
by auto
then have z’-v: ' =1 7 hd v using z-def(2) by simp
then have hd v € verts T using z-def(2) adj-in-verts(2) by auto
moreover have forward v using 2.prems(3,4) by blast
ultimately have v-reachl: Vycset v. ' - py
using hd-reach-all-forward x'-v reachable1-reachable-trans by blast
then show %thesis using z’-def(1) by blast
qed
qed

lemma dlverts-reachablel-if-dom-children-auz:
[V vedverts t1. 3zcset r U X U path-lverts t1 (hd v). x —p hd v;
VyeX. Jxeset r. x =T p y; Yoedverts t1. forward v; yEdlverts t1]
= Jzesetr.z >t py
using dverts-reachable1-if-dom-children-aux list-in-verts-iff-lverts[of y t1] by blast

lemma dverts-reachable1-if-dom-children:
assumes dom-children t1 T and v € dverts t1 and v # Dtree.root t1 and
Y vEdverts t1. forward v
shows V yeset v. z€set (Dtree.root t1). z =T py
proof —
obtain ¢2 where t2-def: t2 € fst  fset (sucs t1) v € dverts t2
using assms(2,8) dverts-root-or-suc by force
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then have 0: Vvedverts t2. Ix€set (Diree.root t1) U {} U path-lverts t2 (hd v).

z =7 hdv
using assms(1) unfolding dom-children-def by blast

moreover have V vedverts t2. forward v using assms(4) t2-def (1) dverts-suc-subseteq
by blast

ultimately show ?thesis using dverts-reachablel-if-dom-children-auz t2-def(2)
by blast
qed

lemma subtree-dverts-reachablel-if-mdeg-gt1:
[is-subtree t1 t; maz-deg t1 > 1; v € dverts t1; v # Dtree.root t1]
= Vy€Eset v. Jz€set (Dtree.root t1). z =T py
proof (induction t1)
case (Node 1 zs)
then obtain t2 e2 where t2-def: (12,e2) € fset xs v € dverts t2 by auto
then obtain = where z-def: z€set r x —p hd (Dtree.root t2)
using dom-mdeg-gt1 Node.prems(1,2) by fastforce
then have ¢2-T: hd (Dtree.root t2) € verts T using adj-in-verts(2) by simp
have is-subtree t2 (Node r xs) using subtree-if-child[of 2 zs r] t2-def (1) by force
then have subt2: is-subtree t2 t using subtree-trans Node.prems(1) by blast
have Dtree.root t2 € dverts t
using subt2 dverts-subtree-subset by (fastforce simp: dtree.set-sel(1))
then have fwd-t2: forward (Dtree.root t2) by (simp add: verts-forward)
then have t2-reachl: V yeset (Dtree.root t2). z =T py
using hd-reach-all-forward[OF t2-T fwd-t2] z-def(2) reachablel-reachable-trans
by blast
then consider Dtree.root t2 = v | Diree.root t2 # v maz-deg t2 > 1 | Dtree.root
t2 # v maz-deg t2 < 1
by fastforce
then show ?case
proof (cases)
case I
then show ?thesis using t2-reachl z-def(1) by auto
next
case 2
then have V yc€set v. Jz€set (Dtree.root t2). x — p y using Node.IH subt2
t2-def by simp
then show ?thesis
using t2-reachl z-def(1) reachablel-reachable reachablel-reachable-trans
unfolding diree.sel(1) by blast
next
case 3
then have fcard zs > 1 using Node.prems(2) t2-def (1) feard-gt1-if-mdeg-gt-child1
by fastforce
then have dom: dom-children (Node r {|(12,e2)|}) T
using dom-wedge-singleton|OF Node.prems(1)] t2-def(1) 8(2) by fastforce
have Vv € dverts (Node r xs). forward v
using Node.prems(1) seg-conform-alt verts-conform-subtree by blast
then have Vv € dverts (Node r {|(t2, e2)|}). forward v using t2-def(1) by
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stmp
then show ?thesis
using dverts-reachablel-if-dom-children|OF dom) t2-def(2) Node.prems(4)
unfolding dtree.sel(1) by simp
qed
qed

lemma subtree-dverts-reachablel-if-mdeg-gt1-singleton:
assumes is-subtree (Node r {|(t1,el)|}) t
and maz-deg (Node r {|(t1,e1)|}) > 1
and v € dverts t1
and v # Dtree.root t1
shows V yeset v. Jz€set (Dtree.root t1). z =Ty
proof —
have is-subtree t1 t using subtree-trans|OF subtree-if-child assms(1)] by simp
then show ?thesis
using assms(2—4) mdeg-eq-child-if-singleton-gt1[OF assms(2)]
subtree-dverts-reachable1-if-mdeg-gt1 by simp
qed

lemma subtree-dverts-reachablel-if-mdeg-lel-subcontr:
[is-subtree t1 t; maz-deg t1 < 1; is-subtree (Node v2 {|(t2,e2)|}) t1;
rank (rev (Dtree.root t2)) < rank (rev v2); v € dverts t1; v # Diree.root t1]
= Vy€eset v. Jz€set (Dtree.root t1). & =T py
proof (induction t1)
case (Node r xs)
then show Zcase
proof(cases Node v2 {|(t2,e2)|} = Node r zs)
case True
then have dom-children (Node r zs) T using dom-contr’ Node.prems(1,2,4)
by blast
moreover have Vv € dverts (Node r xs). forward v
using Node.prems(1) seq-conform-alt verts-conform-subtree by blast
ultimately show ?thesis using dverts-reachablel-if-dom-children Node.prems(5,6)
by blast
next
case False
then obtain t3 e3 where t3-def: (t3,e3) € fset xs is-subtree (Node v2 {|(t2,e2)|})
3
using Node.prems(3) by auto
then have t3-zs: zs = {|(13,e3)|}
using Node.prems(2) by (simp add: singleton-if-mdeg-lel-elem)
then have v-t3: v € dverts t3 using Node.prems(5,6) by simp
then have t3-dom: z€set r. x —p hd (Diree.root t3)
using dom-sub-contr Node.prems(1,3,4) t3-zs by fastforce
then have t3-T: hd (Dtree.root t3) € verts T using adj-in-verts(2) by blast
have is-subtree t3 (Node r xs) using subtree-if-child|[of t3 xs] t3-zs by simp
then have sub-t3: is-subtree t3 t using subtree-trans Node.prems(1) by blast
then have Diree.root t3 € dverts t
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using dverts-subtree-subset by (fastforce simp: dtree.set-sel(1))
then have forward (Dtree.root t3) by (simp add: verts-forward)
then have t3-reachl: 3z€set r. V yeset(Dtree.root t3). z =T py
using hd-reach-all-forward[OF t3-T] t3-dom reachablel-reachable-trans by
blast
show ?thesis
proof(cases v = Diree.root 13)
case True
then show ?thesis using t3-reachl by auto
next
case Fulse
moreover have maz-deg t3 < 1 using Node.prems(2) t3-def (1) mdeg-ge-child
by fastforce
ultimately have V y€set v. 3a€set (Diree.root t3). x =Ty
using Node.IH sub-t3 t3-def Node.prems(4) v-t3 by simp
then show ?thesis
using t3-reachl reachablel-reachable-trans reachablel-reachable unfolding
dtree.sel(1)
by blast
qed
qged
qged

lemma subtree-y-reach-if-mdeg-gt1-notroot-reach:
assumes is-subtree (Node r {|(t1,e1)|}) t
and maz-deg (Node r {|(t1,e1)|}) > 1
and v # r
and v € dverts t
and v # Dtree.root t1
and y € set v
and Jz€set .z =Ty
shows Jz’eset (Dtree.root t1). ' =t py
proof —
have v € dverts (Node r {|(t1,e1)|}) using dverts-reach1-in-dverts-r assms(1,4,6,7)
by blast
then show ?thesis using subtree-dverts-reachablel-if-mdeg-gt1-singleton assms(1—3,5,6)
by simp
qged

lemma subtree-eqroot-if-mdeg-gt1-reach:
[is-subtree (Node r {|(t1,e1)|}) t; max-deg (Node r {|(t1,el)|}) > 1; v € dverts
t;
Jyeset v. ~(Fz'€set (Dtree.root t1). z' =T py) A (Sa€set r. z =1 py); v #
4l
= Dtree.root t1 = v
using subtree-y-reach-if-mdeg-gt1-notroot-reach by blast

lemma subtree-rank-ge-if-mdeg-gt1-reach:
[is-subtree (Node r {|(t1,e1)|}) t; maz-deg (Node v {|(t1,e1)|}) > 1; v € dverts
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4
Jyeset v. ~(Fz'€set (Dtree.root t1). z' =T py) A (Jz€set r. x =T p y); v #
4l
= rank (rev (Dtree.root t1)) < rank (rev v)
using subtree-eqroot-if-mdeg-gt1-reach by blast

lemma subtree-y-reach-if-mdeg-le1-notroot-subcontr:
assumes is-subtree (Node r {|(t1,e1)|}) ¢
and maz-deg (Node r {|(t1,e1)|}) < 1
and is-subtree (Node v2 {|(t2,e2)|}) t1
and rank (rev (Dtree.root t2)) < rank (rev v2)
and v # r
and v € dverts t
and v # Diree.root t1
and y € set v
and Jzeset .z =T py
shows Jz’eset (Dtree.root t1). ' =ty
proof —
have 0: is-subtree t1 (Node r {|(t1,e1)|}) using subtree-if-child[of t1 {|(t1,el)|}]
by simp
then have subtl: is-subtree t1 t using assms(1) subtree-trans by blast
have v € dverts (Node r {|(t1,e1)|})
using dverts-reach1-in-dverts-r assms(1,6,8,9) by blast
then have v € dverts t1 using assms(5) by simp
moreover have maz-deg t1 < 1 using assms(2) mdeg-ge-sub|OF 0] by simp
ultimately show “thesis
using subtree-dverts-reachable1-if-mdeg-le1-subcontr[OF subtl] assms(3,4,7,8)
by blast
qed

lemma rank-ge-if-mdeg-lel-dvert-nocontr:
assumes maz-deg t1 < 1
and A v2 t2 e2. is-subtree (Node v2 {|(12,e2)|}) t1 A rank (rev (Dtree.root
t2)) < rank (rev v2)
and v € dverts t1
shows rank (rev (Dtree.root t1)) < rank (rev v)
using assms proof (induction t1)
case (Node r xs)
then show ?case
proof(cases v = 1)
case Fulse
then obtain t2 e2 where t2-def: zs = {|(t2,e2)|} v € dverts t2
using Node.prems(1,3) singleton-if-mdeg-le1-elem by fastforce
have maz-deg t2 < 1 using Node.prems(1) mdeg-ge-child[of t2 e2 xs] t2-def(1)
by simp
then have rank (rev (Dtree.root t2)) < rank (rev v)
using Node.IH t2-def Node.prems(2) by fastforce
then show ?thesis using Node.prems(2) t2-def(1) by fastforce
qed(simp)
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qed

lemma subtree-rank-ge-if-mdeg-le1-nocontr:
assumes is-subtree (Node r {|(t1,e1)|}) ¢
and maz-deg (Node r {|(t1,e1)|}) < 1
and B v2 t2 e2. is-subtree (Node v2 {|(t2,e2)|}) t1 A rank (rev (Dtree.root
t2)) < rank (rev v2)
and v # r
and v € dverts t
and y € setv
and Jz€set .z =T py
shows rank (rev (Dtree.root t1)) < rank (rev v)
proof —
have 0: is-subtree t1 (Node r {|(t1,e1)|}) using subtree-if-child[of t1 {|(t1,e1)|}]
by simp
then have 0: maz-deg t1 < 1 using assms(2) mdeg-ge-sub|OF 0] by simp
have v € dverts (Node r {|(t1,el)|}) using dverts-reachl-in-dverts-r assms(1,5—7)
by blast
then have v € dverts t1 using assms(4) by simp
then show ?thesis using rank-ge-if-mdeg-le1-dvert-nocontr 0 assms(3) by blast
qed

lemma subtree-rank-ge-if-mdeg-lel "
[is-subtree (Node r {|(t1,e1)|}) t; max-deg (Node r {|(t1,e1)|}) < 1; v # 5
v € dverts t; y € set v; Jz€set r. & = py; 7(Fz'Eset (Dtree.root t1). z' =T p
vl
= rank (rev (Dtree.root t1)) < rank (rev v)
using subtree-y-reach-if-mdeg-le1-notroot-subcontr subtree-rank-ge-if-mdeg-le1-nocontr
apply(cases Jv2 t2 e2. is-subtree (Node v2 {|(12,e2)|}) t1 A rank (rev (Dtree.root
t2))<rank (rev v2))
by blast+

lemma subtree-rank-ge-if-mdeg-lel:
[is-subtree (Node v {|(t1,e1)|}) t; maz-deg (Node r {|(t1,e1)|}) < 1; v # 13
v € dverts t; Jy € set v. ~(Ix'€set (Dtree.root t1). ' =+ p y) A (FzEset r.
z =Tyl
= rank (rev (Dtree.root t1)) < rank (rev v)
using subtree-y-reach-if-mdeg-le1-notroot-subcontr subtree-rank-ge-if-mdeg-le1-nocontr
apply(cases Jv2 t2 e2. is-subtree (Node v2 {|(t2,e2)|}) t1 A rank (rev (Dtree.root
t2))<rank (rev v2))
by blast+

lemma subtree-rank-ge-if-reach:
[is-subtree (Node r {|(t1,e1)|}) t; v # r; v € dverts t;
Jy € set v. ~(Fx'eset (Dtree.root t1). z' =+ py) A (Jzeset r. z =1 7 y)]
= rank (rev (Dtree.root t1)) < rank (rev v)
using subtree-rank-ge-if-mdeg-lel subtree-rank-ge-if-mdeg-gt1-reach
by (cases maz-deg (Node r {|(t1,e1)|}) < 1) (auto simp del: maz-deg.simps)
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lemma subtree-rank-ge-if-reach’:
is-subtree (Node r {|(t1,e1)|}) t = Y v € dverts t.
(yeset v. = (z'eset (Dtree.root t1). ' =T py) A (Jz€set r. z =T p y) A
v #E7r)
— rank (rev (Dtree.root t1)) < rank (rev v)
using subtree-rank-ge-if-reach by blast

10.3.1 Normalizing preserves Arc Invariants

lemma normalizel-mdeg-le: maz-deg (normalizel t1) < maz-deg t1
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case
proof (cases rank (rev (Dtree.root t)) < rank (rev r))
case True
then show ?thesis using mdeg-child-sucs-le by fastforce
next
case Fulse
then have maz-deg (normalizel (Node r {|(t, €)|}))
= maz (maz-deg (normalizel t)) (feard {|(normalizel t, €)|})
using mdeg-singleton by force
then show ?thesis using mdeg-singleton|of r t] 1 False by (simp add: fcard-single-1)
qed
next
case (2 zs r)
then have 0: V (t,e) € fset xs. maz-deg (normalizel t) < maz-deg t by fastforce
have maz-deg (normalizel (Node r xzs)) = maz-deg (Node r (A(,€). (normalizel
te)) |1 2s))
using 2.hyps by simp
then show ?case using mdeg-img-le’|OF 0] by simp
qed

lemma normalizel-mdeg-eq:
wf-dares t1
= maaz-deg (normalizel t1) = maz-deg t1 V (maz-deg (normalizel t1) = 0 A
maz-deg t1 = 1)
proof (induction t1 rule: normalizel .induct)
case ind: (1 rte)
then have 0: maz-deg (Node r {|(t, e)|}) > 1
using mdeg-ge-fcard[of {|(t, €)|}] by (simp add: fcard-single-1)
then consider rank (rev (Dtree.root t)) < rank (rev r)
| =rank (rev (Dtree.root t)) < rank (rev r) maz-deg (normalizel t) < 1
| ~rank (rev (Dtree.root t)) < rank (rev r) maz-deg (normalizel t) > 1 by
linarith
then show ?case
proof (cases)
case ]
then show ?thesis
using mdeg-singleton mdeg-root fcard-single-1
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by (metis maz-def nle-le diree.exhaust-sel lel less-one normalizel .simps(1))
next
case 2
then have maz-deg (normalizel (Node r {|(t, €)|})) = 1
using mdeg-singleton[of r normalizel t] by (auto simp: fecard-single-1)
moreover have maz-deg (Node r {|(t, €)|}) = 1
using mdeg-singleton[of r t] ind 2
by (auto simp: fecard-single-1 wf-darcs-iff-darcs’)
ultimately show ?thesis by simp
next
case 3
then show ?thesis
using mdeg-singleton[of r t] mdeg-singleton[of r normalizel t] ind
by (auto simp: fecard-single-1)
qed
next
case ind: (2 zs r)
then consider maz-deg (Node r zs) < 1
| maz-deg (Node r xs) > 1 maz-deg (Node r zs) = feard xs
| maz-deg (Node r xs) > 1 feard xs < max-deg (Node r xs)
using mdeg-ge-feard|of xs] by fastforce
then show ?case
proof (cases)
case I
then show ?thesis using normalizel-mdeg-le[of Node r xs] by fastforce
next
case 2
then have max-deg (Node r zs) < maz-deg (normalizel (Node r xs))
using mdeg-ge-fecard[of (A(t, €). (normalizel t, €)) || zs] ind
by (simp add: feard-normalize-img-if-disjoint wf-darcs-iff-darcs’)
then show ?thesis using normalizel-mdeg-le[of Node r xs] by simp
next
case 3
then obtain ¢ e where t-def: (t,e) € fset s max-deg (Node r xs) = maz-deg t
using mdeg-child-if-gt-fcard by fastforce
have maz-deg (normalizel t) < maz-deg (Node r ((A(t,e). (normalizel t,e)) ||

zs))
using mdeg-ge-child[of normalizel t e (A\(t,e). (normalizel t,e)) |9 s 7]
t-def(1)
by fastforce
then have maz-deg (Node r zs) < maz-deg (normalizel (Node r xs))
using ind.hyps ind IH|[OF t-def(1) refl] ind.prems 3(1) t-def
by (fastforce simp: wf-darcs-iff-darcs’)
then show %thesis using normalizel-mdeg-le[of Node r xs| by simp
qed
qed

lemma normalizel-mdeg-eq’:
wf-dlverts t1
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= maz-deg (normalizel t1) = maz-deg t1 V (max-deg (normalizel t1) = 0 A
maz-deg t1 = 1)
proof (induction t1 rule: normalizel .induct)
case ind: (1 rte)
then have 0: maz-deg (Node r {|(t, e)|}) > 1
using mdeg-ge-feard|of {|(t, €)|}] by (simp add: feard-single-1)
then consider rank (rev (Dtree.root t)) < rank (rev r)
| =rank (rev (Dtree.root t)) < rank (rev r) maz-deg (normalizel t) < 1
| —rank (rev (Dtree.root t)) < rank (rev r) maz-deg (normalizel t) > 1 by
linarith
then show Zcase
proof (cases)
case I
then show ?thesis
using mdeg-singleton[of r t] mdeg-root|of Dtree.root t sucs t]
by (auto simp: fcard-single-1 simp del: maz-deg.simps)
next
case 2
then have maz-deg (normalizel (Node r {|(t, €)|})) = 1
using mdeg-singleton[of r normalizel t] by (auto simp: fecard-single-1)
moreover have maz-deg (Node r {|(t, €)|}) = 1
using mdeg-singleton[of r t] ind 2 by (auto simp: fcard-single-1)
ultimately show ¢thesis by simp
next
case 3
then show ?thesis
using mdeg-singleton[of r t| mdeg-singleton[of r normalizel t| ind
by (auto simp: fcard-single-1)
qed
next
case ind: (2 zs r)
consider max-deg (Node r xs) < 1
| maz-deg (Node r xs) > 1 maz-deg (Node r zs) = feard xs
| maz-deg (Node r xs) > 1 feard xs < maxz-deg (Node r xs)
using mdeg-ge-fcard|of xs] by fastforce
then show ?case
proof (cases)
case I
then show ?2thesis using normalizel-mdeg-le[of Node r zs] by (auto simp del:
maz-deg.simps)
next
case 2
have 0: V (t, e)€fset xs. dlverts t # {} using dlverts-nempty-if-wf ind.prems
by auto
then have max-deg (Node r zs) < maz-deg (normalizel (Node r xs))
using mdeg-ge-fecard[of (A(t, e). (normalizel t, €)) | zs] ind 2
by (simp add: feard-normalize-img-if-disjoint-lverts)
then show ?thesis using normalizel-mdeg-le[of Node r xs] by simp
next
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case 3
then obtain ¢ e where t-def: (t,e) € fset s max-deg (Node r xs) = maz-deg t
using mdeg-child-if-gt-fcard by fastforce
have maz-deg (normalizel t) < maz-deg (Node r ((A(t,e). (normalizel t,e)) ||
xs))
using mdeg-ge-child[of normalizel t e (\(t,e). (normalizel t,e)) || xs] t-def(1)
by (force simp del: maz-deg.simps)
then have max-deg (Node r zs) < maz-deg (normalizel (Node r xs))
using ind 3(1) t-def by (fastforce simp del: maz-deg.simps)
then show ?thesis using normalizel-mdeg-le[of Node r xs] by simp
qed
qed

lemma normalizel-dom-mdeg-gt1:
[is-subtree (Node r zs) (normalizel t); t1 € fst * fset xs; maz-deg (Node r xs) >
1]
= Jwv € set r. v —p hd (Dtree.root t1)
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case (I rlte)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
have sub-t: is-subtree t (Node r1 {|(t,e)|}) using subtree-if-child[of t {|(t,e)|}]
by simp
show Zcase
proof(cases Node r xs = normalizel (Node r1 {|(t,e)|}))
case eq: True
then have 0: maz-deg (Node r1 {|(t,e)|}) > 1
by (metis normalizel-mdeg-le 1.prems(3) less-le-trans)
then have max-t: maz-deg t > 1 by (metis dtree.exhaust-sel mdeg-child-sucs-eq-if-gt1)
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have eq: Node r xs = Node (r1@Dtree.root t) (sucs t) using eq by simp
then have t1 € fst ¢ fset (sucs t) using 1.prems(2) by simp
then obtain v where v € set (Dtree.root t) v — hd (Dtree.root t1)
using R.dom-mdeg-gt1[of Dtree.root t sucs t| sub-t maz-t by auto
then show ?thesis using eq by auto
next
case Fulse
obtain v where v-def: v € set r1 v —p hd (Dtree.root t)
using maz-t R.dom-mdeg-gt1[of 1 {|(¢, e)|}] 0 by auto
interpret T: ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have eq: Node r xs = Node r1 {|(normalizel t, e)|} using False eq by simp
then have t1 = normalizel t using 1.prems(2) by simp
moreover have Diree.root t # ||
using empty-notin-wf-dlverts| OF T .wf-lverts| dtree.set-sel(1)[of t] by auto
ultimately have hd (Dtree.root t1) = hd (Dtree.root t) using normal-
izel-hd-root-eq by blast
then show ?thesis using v-def eq by auto
qed
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next
case uneq: False
show ?thesis
proof (cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have normalizel (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)
by simp
then obtain t2 where t2-def: 12 € fst ‘ fset (sucs t) is-subtree (Node r xs)
t2
using uneq 1.prems(1) by fastforce
then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node r zs) (Node r1 {|(t,e)|})
using subtree-trans subtree-if-suc t2-def(2) by auto
then show ?thesis using R.dom-mdeg-gtl 1.prems by blast
next
case Fulse
then have normalizel (Node r1 {|(t,e)|}) = Node r1 {|(normalizel t, e)|}
by simp
then have is-subtree (Node r zs) (normalizel t) using uneq 1.prems(1) by
auto
then show ?thesis using 1.IH False 1.prems(2,3) R.ranked-dtree-orig-rec by
stmp
qed
qed
next
case (2 zsl rl)
then interpret R: ranked-dtree-with-orig Node r1 xs1 by blast
show ?Zcase
proof(cases Node r xs = normalizel (Node 11 zs1))
case True
then have 0: maz-deg (Node r1 zs1) > 1
using normalizel-mdeg-le 2.prems(3) less-le-trans by (fastforce simp del:
maz-deg.simps)
then obtain ¢t where t-def: t € fst ‘ fset xs1 normalizel t = t1
using 2.prems(2) 2.hyps True by fastforce
then have sub-t: is-subtree t (Node r1 xs1) using subtree-if-child by fast
then obtain v where v-def: v € set r1 v —p hd (Dtree.root t)
using R.dom-mdeg-gt1[of r1] t-def(1) 0 by auto
interpret T: ranked-dtree-with-orig t using R.ranked-dtree-orig-rec t-def(1)
by force
have Dtree.root t # ||
using empty-notin-wf-dlverts| OF T.wf-lverts] dtree.set-sel(1)[of t] by auto
then have hd (Dtree.root t1) = hd (Dtree.root t) using normalizel-hd-root-eq
t-def(2) by blast
then show ?thesis using v-def 2.hyps True by auto
next
case Fulse
then show ?thesis using 2 R.ranked-dtree-orig-rec by auto
qed
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qed

lemma child-contr-if-new-contr:
assumes —rank (rev (Dtree.root t1)) < rank (rev r)
and rank (rev (Dtree.root (normalizel t1))) < rank (rev r)
shows 312 e2. sucs t1 = {|(t2,e2)|} N rank (rev (Diree.root t2)) < rank (rev
(Dtree.root t1))
proof —
obtain ¢2 e2 where ¢2-def: sucs t1 = {|(t2,e2)|}
using root-normalizel-eq2[of sucs t1 Dtree.root t1] assms by fastforce
then show ?thesis
using root-normalizel-eql [of t2 Dtree.root t1 e2] assms dtree.collapse|of t1] by
fastforce
qed

lemma sub-contr-if-new-contr:
assumes —rank (rev (Dtree.root t1)) < rank (rev r)
and rank (rev (Diree.root (normalizel t1))) < rank (rev r)
shows Jv 12 e2. is-subtree (Node v {|(t2,e2)|}) t1 A rank (rev (Dtree.root t2))
< rank (rev v)
proof —
obtain ¢2 e2 where t2-def: sucs t1 = {|(t2,e2)|} rank (rev (Dtree.root t2)) <
rank (rev (Dtree.root t1))
using child-contr-if-new-contr[OF assms] by blast
then have is-subtree (Node (Dtree.root t1) {|(t2,e2)|}) ¢1
using is-subtree.simps|of Node (Dtree.root t1) {|(t2,e2)|} Dtree.root t1 sucs t1]
by fastforce
then show ?thesis using t2-def(2) by blast
qed

lemma normalizel-subtree-same-hd:
[és-subtree (Node v {|(t1,e1)|}) (normalizel t)]
= 3t3 e3. (is-subtree (Node v {|(t3,e3)|}) t A hd (Dtree.root t1) = hd
(Dtree.root t3))
V (Fv2. v = v2 Q Diree.root t3 N sucs t8 = {|(t1,el)|}
A is-subtree (Node v2 {|(t3,e3)|}) t A rank (rev (Dtree.root t3)) < rank (rev
v2))
using wf-lverts wf-arcs proof (induction t rule: normalizel .induct)
case (I rte)
show ?case
proof(cases Node v {|(t1,e1)|} = normalizel (Node r {|(t,e)|}))
case eq: True
then show “thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev 1))
case True
then show ?thesis using 1 eq by auto
next
case Fulse
then have eq: Node v {|(t1,e1)|} = Node r {|(normalizel t,e)|} using eq by
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simp
then show ?thesis using normalizel-hd-root-eq’ 1.prems(2) by auto
qed
next
case uneq: False
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev 1))
case True
then obtain ¢2 e2 where (¢2,e2) € fset (sucs t) is-subtree (Node v {|(¢1,e1)|})
t2
using 1.prems(1) uneq by auto
then show ?thesis using is-subtree.simps|of Node v {|(t1,e1)|} Dtree.root t
sucs t] by auto
next
case Fulse
then have is-subtree (Node v {|(t1,e1)|}) (normalizel t) using I.prems(1)
uneq by auto
then show ?thesis
using 1.IH 1.prems(2,3) False by (auto simp: wf-darcs-iff-darcs’)
qed
qged
next
case (2 zs r)
then have Vz. ((A(t,e). (normalizel t,e)) || xs) # {|z|}
using singleton-normalizel by (simp add: wf-darcs-iff-darcs’)
then have Node v {|(t1,el)|} # Node r ((A(t,e). (normalizel tye)) | zs) by
auto
then obtain t2 e2 where (t2,e2) € fset xs A is-subtree (Node v {|(t1,el)|})
(normalizel t2)
using 2.prems(1) 2.hyps by auto
then show ?Zcase using 2.1H 2.prems(2,8) by (fastforce simp: wf-darcs-iff-darcs’)
qed

lemma normalizel-dom-sub-contr:
[is-subtree (Node r zs) (normalizel t); t1 € fst * fset xs;
Jo t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r zs) A rank (rev (Dtree.root
t2)) < rank (rev v)]
= v € set r. v = hd (Dtree.root t1)
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case (I rlte)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
interpret T': ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})
using subtree-if-child[of t {|(t,e)|}] by simp
obtain v t2 e2 where v-def:
is-subtree (Node v {|(t2,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)
using 1.prems(3) by blast
show ?Zcase
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proof(cases Node r xs = normalizel (Node r1 {|(t,e)|}))
case eq: True
then show ?thesis
proof (cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have eq: Node r xs = Node (r1@Dtree.root t) (sucs t) using eq by simp
then consider Node r xs = Node v {|(12,e2)|} maz-deg (Node r zs) < 1
| Node r zs # Node v {|(t2,e2)|} | maz-deg (Node r zs) > 1
by linarith
then show ?thesis
proof (cases)
case 1
then have maz-deg (Node (r1@Dlree.root t) (sucs t)) < 1 using eq by
blast
then have maz-deg t < 1 using mdeg-root|of Dtree.root t sucs t] by simp
then have maz-deg (Node r1 {|(t,e)|}) = 1
using mdeg-singleton[of r1 t] by (simp add: fcard-single-1)
then have dom: dom-children (Node r1 {|(t, e)|}) T using R.dom-contr
True by auto
have 0: t1 € fst ‘ fset (sucs t) using eq I.prems(2) by blast
then have Dtree.root t1 € dverts t
using dtree.set-sel(1) T.dverts-child-subset diree.exhaust-sel psubsetD by
metis
then obtain 72 where r2-def:
r2 € set r1 U path-lverts t (hd (Dtree.root t1)) r2 —p (hd (Dtree.root
1))
using dom unfolding dom-children-def by auto
have Dtree.root t1 # [
using empty-notin-wf-dlverts T.wf-lverts 0 T.dverts-child-subset
by (metis diree.ezhaust-sel ditree.set-sel(1) psubsetD)
then have 72 € set r1 U set (Dtree.root t)
using path-lverts-subset-root-if-childhd[OF 0] r2-def(1) by fast
then show ?thesis using r2-def(2) eq by auto
next
case 2
then obtain t3 e3 where t3-def:
(t3,e3) € fset (sucs t) is-subtree (Node v {|(t2,e2)|}) t3
using eq v-def(1) by auto
have is-subtree t3 t using t3-def(1) subtree-if-suc by fastforce
then have is-subtree (Node v {|(t2,e2)|}) (Node (Dtree.root t) (sucs t))
using t3-def(2) subtree-trans by auto
moreover have t1 € fst ‘ fset (sucs t) using eq 1.prems(2) by blast
ultimately obtain v where v-def: v € set (Dtree.root t) A v —p hd
(Dtree.root t1)
using R.dom-sub-contr[OF sub-t] v-def(2) eq by blast
then show ?thesis using eq by auto
next
case 3
then show ?thesis using R.normalizel-dom-mdeg-gt1 1.prems(1,2) by blast
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qed
next
case Fulse
then have eq: Node r xs = Node r1 {|(normalizel t, )|} using eq by simp
have hd: hd (Dtree.root (normalizel t)) = hd (Dtree.root t)
using normalizel-hd-root-eq’ T.wf-lverts by blast
have Jv 12 e2. is-subtree (Node v {|(t2,e2)|}) t A rank (rev (Dtree.root t2))
< rank (rev v)
using contr-before-normalizel eq v-def sub-contr-if-new-contr False by auto
then show ?thesis using R.dom-sub-contr[of r1 {|(t,e)|}] eq 1.prems(2) hd
by auto
qed
next
case uneq: False
show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have normalize! (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)
by simp
then obtain t2 where t2-def: t2 € fst * fset (sucs t) is-subtree (Node r xs)
t2
using uneq 1.prems(1) by fastforce
then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node 1 zs) (Node r1 {|(t,e)|})
using subtree-trans subtree-if-child t2-def(2) by auto
then show ?thesis using R.dom-sub-contr 1.prems(2,3) by fast
next
case Fulse
then have normalizel (Node r1 {|(t,e)|}) = Node r1 {|(normalizel t, e)|}
by simp
then have is-subtree (Node r xzs) (normalizel t) using uneq 1.prems(1) by
auto
then show ?thesis using 1.1H False 1.prems(2,3) R.ranked-dtree-orig-rec by
stmp
qed
qed
next
case (2 zsl rl)
then interpret R: ranked-dtree-with-orig Node r1 xs1 by blast
show ?case
proof(cases Node r xs = normalizel (Node r1 zs1))
case True
then have eq: Node r zs = Node r1 ((A(t,e). (normalizel t,e)) | zs1) using
2.hyps by simp
obtain v t2 e2 where v-def:
is-subtree (Node v {|(t2,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)
using 2.prems(3) by blast
obtain ¢ where t-def: t € fst ‘ fset xsl normalizel t = t1 using 2.prems(2)
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eq by force
then interpret T: ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by
force
have Jv t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r1 zs1)
A rank (rev (Dtree.root t2)) < rank (rev v)
using True contr-before-normalizel v-def by presburger
moreover have hd (Dtree.root t1) = hd (Dtree.root t)
using normalizel-hd-root-eq’ T.wf-lverts t-def(2) by blast
ultimately show ?thesis using R.dom-sub-contr[of r1 xs1] t-def(1) eq by
auto
next
case Fulse
then obtain t e where (t,e) € fset xs1 A is-subtree (Node r zs) (normalizel t)
using 2.prems(1) 2.hyps by auto
then show ?thesis using 2.IH 2.prems(2,3) R.ranked-dtree-orig-rec by fast
qged
qed

lemma dom-children-combine-aux:
assumes dom-children (Node r {|(t1, el)|}) T
and t2 € fst ‘ fset (sucs t1)
and z € dverts t2
shows v € set (r Q@ Diree.root t1) U path-lverts t2 (hd z). v —p (hd )
using path-lverts-child-union-root-sub[OF assms(2)] assms diree.set-sel(2)
unfolding dom-children-def by fastforce

lemma dom-children-combine:

dom-children (Node r {|(t1, el)|}) T = dom-children (Node (rQDtree.root t1)
(sucs t1)) T

using dom-children-combine-auz by (simp add: dom-children-def)

lemma path-lverts-normalizel-sub:
[wf-dlverts t1; x € dverts (normalizel t1); max-deg (normalizel t1) < 1]
= path-lverts t1 (hd x) C path-lverts (normalizel t1) (hd z)
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show Zcase
proof(cases rank (rev (Dtree.root t)) < rank (rev r))
case True
then have eq: normalizel (Node r {|(¢, €)|}) = Node (rQDtree.root t) (sucs t)
by simp
then show ?thesis
proof(cases x = rQDtree.root t)
case True
then show ?thesis using 1 by auto
next
case Fulse
then obtain t! el where ti-def: (t1,el) € fset (sucs t) x € dverts t1
using I.prems(2) eq by auto
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then have 0: hd x € dlverts t1
using hd-in-lverts-if-wf 1.prems(1) wf-dlverts-sucs by force
then have hd z € dlverts ¢t using t1-def(1) suc-in-dlverts by fast
then have 2: hd z ¢ set r using 1.prems(1) by auto
have wf-dlverts t using 1.prems(1) by simp
then have hd z ¢ set (Dtree.root t) using 0 t1-def(1) wf-dlverts.simps|of
Dtree.root t] by fastforce
then have hd-nin: hd x ¢ set (r @Q Dtree.root t) using 2 by auto
then obtain t2 e2 where sucs t = {|(t2,e2)|}
using 1.prems(3) <hd © € dlverts t» <hd x ¢ set (Dtree.root t)» mdeg-root eq
by (metis dtree.collapse denormalize.simps(2) denormalize-set-eq-dlverts
surj-pair)
then show ?thesis using eq hd-nin path-lverts-simpsi-sucs by fastforce
qed
next
case uneq: False
then have normalizel (Node r {|(t, €)|}) = Node r {|(normalizel t, e)|} by
stmp
then have maz-deg (normalizel t) < 1
using 1.prems(3) mdeg-singleton[of r normalizel t] feard-single-1 max-def by
auto
then show ?thesis using uneq 1 by auto
qed
next
case (2 zs r)
then have maz-deg (normalizel (Node r xs)) = max-deg (Node r zs) V max-deg
(Node r xs) = 1
using normalizel-mdeg-eq’ by blast
then have maz-deg (Node r zs) < 1 using 2.prems(3) by (auto simp del:
maz-deg.simps)
then have fcard zs = 0
using mdeg-ge-feard[of xs r] feard-single-1-iff [of zs] 2.hyps by fastforce
then show ?case using 2 by simp
qed

lemma dom-children-normalizel-aux-1:
assumes dom-children (Node r {|(t1, el)|}) T
and sucs t1 = {|(t2,e2)|}
and wf-dlverts t1
and normalizel t1 = Node (Dtree.root t1 @ Dtree.root t2) (sucs t2)
and maz-deg t1 = 1
and z € dverts (normalizel t1)
shows Jv € set r U path-lverts (normalizel t1) (hd z). v =7 (hd )
proof(cases x = Dtree.root t1 @ Dtree.root t2)
case True
then have 0: hd x = hd (Dtree.root t1) using assms(3,4) normalizel-hd-root-eq
by fastforce
then obtain v where v-def: v € set r U path-lverts t1 (hd z) v —p (hd x)
using assms(1) dtree.set-sel(1) unfolding dom-children-def by auto

/
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have Dtree.root t1 # [| using assms(3) wf-dlverts.simps|of Dtree.root t1 sucs t1]
by simp
then show ?thesis using v-def 0 path-lverts-empty-if-roothd by auto
next
case Fulse
then obtain t3 e3 where t3-def: (13,e3) € fset (sucs t2) x € dverts t3
using assms(2,4,6) by auto
then have z € dverts t2 using dtree.set(1)[of Dtree.root t2 sucs t2] by fastforce
then have z € dverts (Node (Dtree.root t1) {|(t2,e2)|}) by auto
then have z € dverts t1 using assms(2) ditree.exhaust-sel by metis
then obtain v where v-def: v € set r U path-lverts t1 (hd z) v =7 (hd z)
using assms(1) dtree.set-sel(1) unfolding dom-children-def by auto
have path-lverts t1 (hd x) C path-lverts (Node (Dtree.root t1 @Q Dtree.root t2)
(sucs t2)) (hd x)
using assms(3—6) normalizel-mdeg-le path-lverts-normalizel-sub by metis
then show ?thesis using v-def assms(4) by auto
qed

lemma dom-children-normalizel-1:
[dom-children (Node r {|(t1, e1)|}) T; sucs t1 = {|(t2,e2)|}; wf-dlverts t1;
normalizel t1 = Node (Dtree.root t1 @ Dtree.root t2) (sucs t2); maz-deg t1 =
1]
= dom-children (Node r {|(normalizel t1, el)|}) T
using dom-children-normalizel-auz-1 by (simp add: dom-children-def)

lemma dom-children-normalizel-auz:
assumes Vz€dverts t1. Jv € set 0 U path-lverts t1 (hd ). v —p hd
and wf-dlverts t1
and maz-deg t1 < 1
and z € dverts (normalizel t1)
shows Jv € set r0 U path-lverts (normalizel t1) (hd z). v = (hd )
using assms proof (induction t1 arbitrary: r0 rule: normalizel .induct)
case (I rte)
have degl: maz-deg (Node r {|(t, €)|}) = 1
using 1.prems(3) mdeg-ge-feard[of {|(t, )|}] by (simp add: feard-single-1)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))
case True
have 0: dom-children (Node r0 {|(Node r {|(, €)|}, e)|}) T
using I.prems(1) unfolding dom-children-def by simp
show ?thesis using dom-children-normalizel-auz-1[OF 0] 1.prems(1,2,4) degl
True by auto
next
case ncontr: False
show ?thesis
proof(cases x = 1)
case True
then show ?thesis using 1.prems(1,2) by auto
next
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case Fulse
have wf-dlverts (normalizel t) using 1.prems(2) wf-dlverts-normalizel by
auto
then have hd z € dlverts (normalizel t)
using hd-in-lverts-if-wf False ncontr 1.prems(1,4) by fastforce
then have hd: hd z ¢ set r using 1.prems(2) ncontr wf-dlverts-normalizel
by fastforce
then have eq: path-lverts (Node r {|(t, €)|}) (hd z) = set r U path-lverts t
(hd ) by simp
then have eql: path-lverts (Node r {|(normalizel t, €)|}) (hd z)
= set r U path-lverts (normalizel t) (hd x) by auto
have V z€dverts t. path-lverts (Node v {|(t, e)|}) (hd z) C set r U path-lverts
t (hd z)
using path-lverts-child-union-root-sub by simp
then have 2: Vzedverts t. veset (r0Qr) U path-lverts ¢t (hd ). v —p hd
using 1.prems(1) by fastforce
have maz-deg t < 1 using 1.prems(3) mdeg-ge-child[of t e {|(t, €)|}] by simp
then show ?thesis using 1.IH[OF ncontr 2] 1.prems(2,4) ncontr hd by auto
qed
qed
next
case (2 zs 1)
then have fcard zs < 1 using mdeg-ge-fcard[of xs] by simp
then have fcard xs = 0 using 2.hyps fcard-single-1-iff[of zs] by fastforce
then show ?case using 2 by auto
qged

lemma dom-children-normalizel :
[dom-children (Node r0 {|(t1,e1)|}) T; wf-dlverts t1; maz-deg t1 < 1]
= dom-children (Node r0 {|(normalizel t1,e1)|}) T
using dom-children-normalizel-aux by (simp add: dom-children-def)

lemma dom-children-child-self-auz:
assumes dom-children t1 T
and sucs t1 = {|(t2, e2)|}
and rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t1))
and ¢ = Node r {|(t1, el)|}
and z € dverts t1
shows v € set r U path-lverts t1 (hd z). v = hd x
proof(cases x = Dtree.root t1)
case True
have is-subtree (Node (Dtree.root t1) {|(t2, e2)|}) (Node r {|(t1, e1)|})
using subtree-if-child[of t1 {|(t1, el)|}] assms(2) dtree.collapse[of t1] by simp
then show ?thesis using dom-sub-contr|of r {|(t1, el)|}] assms(3,4) True by
auto
next
case Fulse
then have z € (|Jy<fset (sucs t1). |J (dverts * Basic-BNFs.fsts y))
using assms(5) dtree.set(1)[of Dtree.root t1 sucs t1] by auto
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then have z € dverts t2 using assms(2) by auto
then obtain v where v-def: v € set (Diree.root t1) U path-lverts t2 (hd x) v
using assms(1,2) dtree.set-sel(1) unfolding dom-children-def by auto
interpret T1: list-dtree t1 using list-dtree-rec assms(4) by simp
interpret T2: list-diree t2 using T1.list-dtree-rec-suc assms(2) by simp
have hd xz € dlverts t2 using <z € dverts t2) by (simp add: hd-in-lverts-if-wf
T2 .wf-lverts)
then have hd z ¢ set (Dtree.root t1)
using T1.wf-lverts wf-dlverts.simps[of Dtree.root t1 sucs t1] assms(2) by fast-
force
then have path-lverts t1 (hd ) = set (Dtree.root t1) U path-lverts t2 (hd z)
using assms(2) by (simp add: path-lverts-simps1-sucs)
then show ?thesis using v-def by auto
qed

lemma dom-children-child-self:
assumes dom-children t1 T
and sucs t1 = {|(t2, e2)|}
and rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t1))
and ¢ = Node r {|(t1, el)|}
shows dom-children (Node r {|(t1, e1)|}) T
using dom-children-child-self-auz[OF assms] by (simp add: dom-children-def)

lemma normalizel-dom-contr:
[is-subtree (Node r {|(t1,e1)|}) (normalizel t); rank (rev (Dtree.root t1)) < rank
(rev r);
max-deg (Node r {|(t1,e1)|}) = 1]
= dom-children (Node r {|(t1,el)|}) T
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case (1 rlte)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
interpret T': ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})
using subtree-if-child[of ¢ {|(t,e)|}] by simp
show Zcase
proof(cases Node r {|(t1,e1)|} = normalizel (Node r1 {|(t,e)|}))
case eq: True
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have eq: Node r {|(t1,el)|} = Node (r1@QDtree.root t) (sucs t) using
eq by simp
then have maz-deg t = 1 using mdeg-root[of Diree.root t sucs t| 1 by simp
then have maa-deg (Node r1 {|(t,e)|}) = 1
using mdeg-singleton[of r1 t] by (simp add: fecard-single-1)
then have dom-children (Node r1 {|(t, e)|}) T using R.dom-contr|of r1 t €]
True by simp
then show ?thesis using dom-children-combine eq by simp
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next
case Fulse
then have eq: Node r {|(t1,el)|} = Node r1 {|(normalizel t, €)|} using eq
by simp
then obtain t2 e2 where t2-def:
sucs t = {|(t2, e2)|} rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t))
using child-contr-if-new-contr False 1.prems(2) by blast
then have is-subtree (Node (Dtree.root t) {|(t2, e2)|}) (Node r1 {|(¢, €)|})
using sub-t by simp
have mazx-deg t = 1
using 1.prems(8) eq mdeg-singleton mdeg-root t2-def
by (metis dtree.collapse feard-single-1 normalizel .simps(1))
then have maz-deg (Node (Dtree.root t) {|(t2, e2)|}) = 1
using t2-def(1) dtree.collapse[of t] by simp
then have dom-children (Node (Dtree.root t) (sucs t)) T
using R.dom-contr sub-t t2-def 1.prems(8) by simp
then have dom-children t T using dtree.exhaust-sel by simp
then have dom-children (Node r1 {|(t,e)|}) T
using R.dom-children-child-self t2-def by simp
then show ?thesis using dom-children-normalizel <mazx-deg t = 1> T.wf-lverts
eq by auto
qed
next
case uneq: False
show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))
case True
then have normalizel (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)
by simp
then obtain ¢2 where t2-def: 12 € fst ‘ fset (sucs t) is-subtree (Node r
{I(t1,e1)[}) t2
using uneq 1.prems(1) by fastforce
then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node r {|(t1,e1)|}) (Node r1 {|(t,e)|})
using subtree-trans subtree-if-child t2-def(2) by auto
then show ?thesis using R.dom-contr 1.prems(2,3) by blast
next
case Fulse
then have normalizel (Node r1 {|(t,e)|}) = Node r1 {|(normalizel t, e)|}
by simp
then have is-subtree (Node r {|(t1,el)|}) (normalizel t) using uneq 1.prems(1)
by auto
then show ?thesis using 1.1H False 1.prems(2,3) R.ranked-dtree-orig-rec by
stmp
qed
qed
next
case (2 zs rl)
then have eq: normalizel (Node r1 xs) = Node r1 ((A(t,€). (normalizel t,e)) |
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xs)
using 2.hyps by simp
interpret R: ranked-diree-with-orig Node r1 xs using 2.prems(4) by blast
have Vz. ((A(t,e). (normalizel t,e)) || zs) # {|z|}
using singleton-normalizel 2.hyps disjoint-darcs-if-wf-xs|OF R.wf-arcs] by auto
then have Node r {|(t1,el)|} # Node r1 ((A(t,e). (normalizel tye)) | zs) by
auto
then obtain t3 e3 where t3-def:
(t3,e8) € fset xs is-subtree (Node r {|(t1, el)|}) (normalizel t3)
using 2.prems(1) eq by auto
then show Zcase using 2.IH 2.prems(2,3) R.ranked-dtree-orig-rec by simp
qed

lemma dom-children-normalizel-img-full:
assumes dom-children (Node r xs) T
and V(t1,el) € fset xs. wf-dlverts t1
and V (t1,el) € fset xs. maz-deg t1 < 1
shows dom-children (Node v ((\(t1,el). (normalizel t1,e1)) || zs)) T
proof —
have V (t1, el) € fset xs. dom-children (Node r {|(t1, el)|}) T
using dom-children-all-singletons|OF assms(1)] by blast
then have V (¢1, el) € fset xs. dom-children (Node r {|(normalizel t1, e1)|}) T
using dom-children-normalizel assms(2,3) by fast
then show ?thesis
using dom-children-if-all-singletons|of (A(¢1,el). (normalizel t1,el)) || xs] by
fastforce
qged

lemma children-degl-normalizel-sub:
(\(t1,el). (normalizel t1,el)) ¢ children-degl zs
C children-degl ((A\(t1,el). (normalizel t1,e1)) | xs)
using normalizel-mdeg-le order-trans by auto

lemma normalizel-children-deg1-sub-if-wfarcs:
V (t1,el)€efset xs. wf-darcs t1
= children-degl ((A(t1,el). (normalizel t1,el)) || xs)
C (A(t1,el). (normalizel t1,el)) ¢ children-degl xs
using normalizel-mdeg-eq by fastforce

lemma normalizel-children-deg1-eq-if-wfarcs:
V (t1,el)€efset xs. wf-darcs t1
= (\(t1,el). (normalizel t1,el)) ¢ children-degl xs
= children-degl ((A\(t1,el). (normalizel t1,el)) | xs)
using children-deg1-normalizel-sub normalizel-children-deg1-sub-if-wfarcs
by (meson subset-antisym)

lemma normalizel-children-deg1-sub-if-wflverts:

Y (t1,el)Efset xs. wf-dlverts t1
= children-degl ((A(t1,el). (normalizel t1,e1)) | xs)
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C (A(t1,el). (normalizel t1,el))  children-degl xs
using normalizel-mdeg-eq’ by fastforce

lemma normalizel-children-deg1-eq-if-wflverts:
Y (t1,el)Efset xs. wf-dlverts t1
= (\(t1,el). (normalizel t1,el)) * children-degl xs
= children-degl ((A\(t1,el). (normalizel t1,e1)) || zs)
using children-deg1-normalizel-sub normalizel-children-deg1-sub-if-wflverts
by (meson subset-antisym)

lemma dom-children-normalizel-img:
assumes dom-children (Node r (Abs-fset (children-degl zs))) T
and V (t1,el) € fset xs. wf-dlverts t1
shows dom-children (Node r (Abs-fset (children-degl ((A(t1,el). (normalizel
t1,e1)) [ 2s)))) T
proof —
have V (t1, el) € children-degl xzs. dom-children (Node r {|(t1, el)|}) T
using dom-children-all-singletons| OF assms(1)] children-deg1-fset-id by blast
then have V (12, e2) € (A\(t1,el). (normalizel t1,e1)) ‘ children-degl xs.
dom-children (Node r {|(t2, e2)|}) T
using dom-children-normalizel assms(2) by fast
then have V (2, e2) € children-degl ((\(t1,el). (normalizel t1,el)) || xs).
dom-children (Node r {|(t2, e2)|}) T
using normalizel-children-deg1-eq-if-wflverts[of xs] assms(2) by blast
then show ?thesis using dom-children-if-all-singletons children-degl-fset-id
proof —
have V f as p. I pa. (dom-children (Node (as::'a list) f) p V pa |€] f) A (= (case
pa of (d, b::'b) = dom-children (Node as {|(d, b)|}) p) V dom-children (Node as
f) p)
using dom-children-if-all-singletons by blast
then obtain pp :: ((‘a list, 'b) Dtree.dtree x 'b) fset = 'a list = (‘a, 'b)
pre-digraph = (‘a list, 'b) Dtree.dtree x 'b where
f1: Nas f p. (dom-children (Node as f) p vV pp fas p |€] f) A (= (case pp f as
p of (d, b) = dom-children (Node as {|(d, b)|}) p) V dom-children (Node as f) p)
by metis
moreover
{ assume — (case pp (Abs-fset (children-degl ((A(d, y). (normalizel d, y)) |
xs))) r T of (d, b) = dom-children (Node r {|(d, b)|}) T)
then have pp (Abs-fset (children-degl ((A(d, y). (normalizel d, y)) || xs)))
r T & children-degl ((A(d, y). (normalizel d, y)) | xs)
by (smt (28) «V(t2, e2) €children-degl ((A(t1, el). (normalizel t1, el))
|| zs). dom-children (Node r {|(t2, e2)|}) T")
then have pp (Abs-fset (children-degl ((A(d, y). (normalizel d, y)) || xs)))
r T |¢| Abs-fset (children-degl ((A(d, y). (normalizel d, y)) || xs))
by (metis (no-types) children-deg1-fset-id)
then have ?thesis
using f1 by blast }
ultimately show %thesis
by meson
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qed
qed

lemma normalizel-dom-wedge:
[és-subtree (Node r zs) (normalizel t); feard s > 1]
= dom-children (Node r (Abs-fset (children-degl zs))) T
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case (I rlte)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})
using subtree-if-child[of ¢t {|(t,e)|}] by simp
show ?Zcase
proof(cases rank (rev (Dtree.root t)) < rank (rev 1))
case True
then have eq: normalizel (Node r1 {|(t,e)|}) = Node (r1@QDtree.root t) (sucs
t) by simp
then show ?thesis
proof(cases Node r xs = normalizel (Node r1 {|(t,e)|}))
case True
then have Node r s = Node (r1QDtree.root t) (sucs t) using eq by simp
then show ?%thesis using R.dom-wedge[OF sub-t] 1.prems(2) unfolding
dom-children-def by auto
next
case Fulse
then obtain ¢2 e2 where t2-def: (12,e2) € fset (sucs t) is-subtree (Node r
xs) 12
using 1.prems(1) eq by auto
then have is-subtree (Node r zs) t using subtree-if-suc subtree-trans by
fastforce
then show %thesis using R.dom-wedge sub-t 1.prems(2) by simp
qed
next
case Fulse
then show ?thesis using 1 R.ranked-dtree-orig-rec by (auto simp: feard-single-1)
qed
next
case (2 zsl rl)
then have eq: normalizel (Node r1 xs1) = Node r1 ((A(t,e). (normalizel t,e))
14 as1)
using 2.hyps by simp
interpret R: ranked-dtree-with-orig Node r1 zs1 using 2.prems(3) by blast
have Vz. ((A(t,e). (normalizel t,e)) || zs1) # {|z|}
using singleton-normalizel 2.hyps disjoint-darcs-if-wf-zs|OF R.wf-arcs] by auto
then show ?case
proof(cases Node r xs = normalizel (Node 11 zs1))
case True
then have 1 < feard zs1 using eq 2.prems(2) fecard-image-le less-le-trans by
fastforce
then have dom-children (Node r1 (Abs-fset (children-degl zs1))) T using
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R.dom-wedge by simp
then show ?thesis using dom-children-normalizel-img eq R.wf-lverts True by
fastforce
next
case Fulse
then show ?thesis using 2 R.ranked-dtree-orig-rec by fastforce
qed
qed

corollary normalizel-dom-wedge’:
Y r zs. is-subtree (Node r zs) (normalizel t) — feard xs > 1
— dom-children (Node r (Abs-fset {(t, €). (t, €) € fset zs N maz-deg t < Suc

0}) T

by (auto simp only: normalizel-dom-wedge One-nat-def[symmetric])

lemma normalizel-verts-conform: v € dverts (normalizel t) = seq-conform v
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case ind: (1 rte)
then interpret R: ranked-diree-with-orig Node v {|(t, €)|} by blast
consider rank (rev (Dtree.root t)) < rank (rev r) v = rQDtree.root t
| rank (rev (Dtree.root t)) < rank (rev r) v # r@Dtree.root t
| =rank (rev (Dtree.root t)) < rank (rev r)
by blast
then show ?case
proof (cases)
case ]
then show ?thesis using R.contr-seq-conform by auto
next
case 2
then have v € dverts (Node r {|(¢, e)|}) using dverts-suc-subseteq ind.prems
by fastforce
then show ?thesis using R.verts-conform by blast
next
case 3
then show ?thesis using R.verts-conform ind R.ranked-dtree-orig-rec by auto
qed
next
case (2 zs 1)
then interpret R: ranked-dtree-with-orig Node r zs by blast
show ?Zcase using R.verts-conform 2 R.ranked-dtree-orig-rec by auto
qed

corollary normalizel-verts-distinct: v € dverts (normalizel t) = distinct v
using distinct-normalizel verts-distinct by auto

lemma dom-mdeg-lel-aux:
assumes max-deg t < 1
and is-subtree (Node v {|(t2, e2)|}) t
and rank (rev (Dtree.root 12)) < rank (rev v)
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and t1 € fst ‘ fset (sucs t)
and z € dverts t1
shows Jreset (Dtree.root t) U path-lverts t1 (hd z). 1 —p hd x
using assms ranked-dtree-with-orig-azioms proof (induction t arbitrary: t1)
case (Node r xs)
then interpret R: ranked-dtree-with-orig Node r zs by blast
interpret T1: ranked-dtree-with-orig t1 using Node.prems(4) R.ranked-dtree-orig-rec
by force
have feard zs > 0 using Node.prems(4) feard-seteq by fastforce
then have feard zs = 1 using mdeg-ge-fecard|of zs] Node.prems(1) by simp
then obtain el where el-def: zs = {|(t1,el)|}
using Node.prems(4) feard-single-1-iff[of xs] by auto
have mdeg!: maz-deg (Node r xs) = 1
using Node.prems(1) mdeg-ge-fcard|of xs] «fecard zs = 1> by simp
show ?Zcase
proof(cases Node v {|(t2, e2)|} = Node r xs)
case True
then have dom-children (Node r zs) T
using mdeg! Node.prems(2,3) R.dom-contr-subtree by blast
then show ?thesis unfolding dom-children-def using el-def Node.prems(5)
by simp
next
case Fulse
then have sub-t1: is-subtree (Node v {|(t2, e2)|}) t1
using Node.prems(2) el-def is-subtree.simps[of Node v {|(t2, e2)|}] by force
show ?thesis
proof(cases x = Dtree.root t1)
case True
then show ?%thesis using R.dom-sub-contr[OF self-subtree] Node.prems(3)
el-def sub-t1 by auto
next
case Fulse
then obtain t3 where t3-def: t3 € fst ‘ fset (sucs t1) x € dverts t3
using Node.prems(5) dverts-root-or-child[of © Dtree.root t1 sucs t1] by
fastforce
have mdeg-t1: maz-deg t1 < 1 using mdeg-ge-child[of t1 el zs| el-def mdegl
by simp
moreover have fcard (sucs t1) > 0 using t3-def feard-seteq by fastforce
ultimately have fcard (sucs t1) = 1 using mdeg-ge-fcard[of sucs t1 Dtree.root
t1] by simp
then obtain ef where e3-def: sucs t1 = {|(t3, e3)|}
using t3-def feard-single-1-iff[of sucs t1] by fastforce
have ind: 3reset (Diree.root t1) U path-lverts t3 (hd z). r —p hd x
using Node.IH mdeg-t1 el-def sub-t1 Node.prems(3) t3-def T1.ranked-dtree-with-orig-azioms
by auto
have hd z € dlverts t3 using t3-def hd-in-lverts-if-wf T1.wf-lverts wf-dlverts-suc
by blast
then have hd z ¢ set (Dtree.root t1)
using t3-def dlverts-notin-root-sucs|OF T1.wf-lverts] by blast
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then have path-lverts t1 (hd z) = set (Dtree.root t1) U path-lverts t3 (hd z)
using path-lverts-simps1-sucs e3-def by fastforce
then show ?thesis using ind by blast
qed
qed
qed

lemma dom-mdeg-lel:
assumes max-deg t < 1
and is-subtree (Node v {|(t2, e2)|}) t
and rank (rev (Dtree.root t2)) < rank (rev v)
shows dom-children t T
using dom-mdeg-lel-auz[OF assms| unfolding dom-children-def by blast

lemma dom-children-normalizel-preserv:
assumes max-deg (normalizel t1) < 1 and dom-children t1 T and wf-dlverts
t1
shows dom-children (normalizel t1) T
using assms proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))
case True
then show ?thesis using 1 dom-children-combine by force
next
case Fulse
then have mazx-deg (normalizel t) < 1
using 1.prems(1) mdeg-ge-child[of normalizel t e {|(normalizel t,e)|}] by
stmp
then have maz-deg t < I using normalizel-mdeg-eq’ 1.prems(3) by fastforce
then show ?thesis using dom-children-normalizel False 1.prems(2,3) by simp
qed
next
case (2 zs r)
have maz-deg (Node r zs) < 1
using normalizel-mdeg-eq'|OF 2.prems(3)] 2.prems(1) by fastforce
then have feard xs < 1 using mdeg-ge-fcard|of xs] by simp
then have fcard xs = 0 using fcard-single-1-iff[of zs] 2.hyps by fastforce
then have normalizel (Node r zs) = Node r xs using 2.hyps by simp
then show ?case using 2.prems(2) by simp
qed

lemma dom-mdeg-lel-normalizel:
assumes maz-deg (normalizel t) < 1
shows dom-children (normalizel t) T
proof —
obtain v t2 e2 where is-subtree (Node v {|(t2, e2)|}) t rank (rev (Dtree.root
t2)) < rank (rev v)
using contr-if-normalizel-uneq assms(2) by blast

and normalizel t # t
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moreover have maz-deg t < 1 using assms(1) normalizel-mdeg-eq wf-arcs by
fastforce
ultimately show ?thesis
using dom-mdeg-lel dom-children-normalizel-preserv assms(1) wf-lverts by
blast
qed

lemma normalize-mdeg-eq:
wf-dares t1
= maz-deg (normalize t1) = maz-deg t1 V (maz-deg (normalize t1) = 0 A
maz-deg t1 = 1)
apply (induction t1 rule: normalize.induct)
by (smt (verit, ccfv-threshold) normalizel-mdeg-eq wf-darcs-normalizel normal-
ize.simps)

lemma normalize-mdeg-eq:
wf-dlverts t1
= maz-deg (normalize t1) = maz-deg t1 V (maz-deg (normalize t1) = 0 A
maz-deg t1 = 1)
apply (induction t1 rule: normalize.induct)
by (smt (verit, ccfv-threshold) normalizel-mdeg-eq’ wf-dlverts-normalizel nor-
malize.simps)

corollary mdeg-lel-normalize:
[max-deg (normalize t1) < 1; wf-dlverts t1] = maz-deg t1 < 1
using normalize-mdeg-eq’ by fastforce

lemma dom-children-normalize-preserv:
assumes maz-deg (normalize t1) < 1 and dom-children t1 T and wf-dlverts t1
shows dom-children (normalize t1) T
using assms proof (induction t1 rule: normalize.induct)
case (1 t1)
then show ?case
proof(cases t1 = normalizel t1)
case True
then show %thesis using I.prems dom-children-normalizel-preserv by simp
next
case Fulse
have maz-deg t1 < 1 using mdeg-lel-normalize 1.prems(1,3) by blast
then have maz-deg (normalizel t1) < 1
using normalizel-mdeg-eq’ 1.prems(3) by fastforce
then have dom-children (normalizel t1) T
using dom-children-normalizel-preserv 1.prems(2,3) by blast
then show ?thesis using 1 False by (simp add: Let-def wf-dlverts-normalizel)
qed
qed

lemma dom-mdeg-lel-normalize:
assumes maz-deg (normalize t) < 1 and normalize t # t

395



shows dom-children (normalize t) T
using assms ranked-diree-with-orig-axioms proof (induction t rule: normalize.induct)

case (1 t)

then interpret T: ranked-dtree-with-orig t by blast

show Zcase

using 1 T.dom-mdeg-lel-normalizel T.wf-lverts wf-dlverts-normalizel

by (smt (verit) dom-children-normalize-preserv normalize.elims mdeg-le1-normalize)

qed

lemma normalizel-arc-in-dlverts:
[is-subtree (Node v ys) (normalizel t); x € set v; ¢ —p y] = y € dlverts (Node
v ys)
using ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case ind: (1 rte)
then interpret R: ranked-dtree-with-orig Node r {|(t, e)|} by blast
show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev 1))
case True
then have eq: normalizel (Node r {|(t, e)|}) = Node (rQDtree.root t) (sucs t)
by simp
then show “thesis
proof(cases Node v ys = Node (r@Dtree.root t) (sucs t))
case True
then consider z € set r | x € set (Dtree.root t) using ind.prems(2) by auto
then show ?thesis
proof (cases)
case I
then have y € dlverts (Node r {|(t, €)|})
using R.arc-in-dlverts ind.prems(3) by fastforce
then show ?thesis using eq normalizel-dlverts-eq[of Node r {|(t, e)|}] True
by simp
next
case 2
then have y € dlverts t
using R.arc-in-dlverts[of Dtree.root t sucs t] ind.prems(3)
subtree-if-child[of t {|(t, e)|}] by simp
then show ?thesis using eq normalizel-dlverts-eq[of Node r {|(t, e)|}] True
by simp

qed
next
case Fulse
then obtain t2 where t2-def: t2 € fst ¢ fset (sucs t) is-subtree (Node v ys)
t2
using ind.prems(1) eq by force
then have is-subtree (Node v ys) (Node r {|(t, e)|})
using subtree-trans|OF t2-def(2)] subtree-if-suc by auto
then show ?thesis using R.arc-in-dlverts ind.prems(2,3) by blast
qed
next
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case nocontr: False
then show ?thesis
proof(cases Node v ys = Node r {|(normalizel t, e)|})
case True
then have y € dlverts (Node r {|(t, €)|})
using R.arc-in-dlverts ind.prems(2,3) by fastforce
then show ?thesis using nocontr True by simp
next
case Fulse
then have is-subtree (Node v ys) (normalizel t) using ind.prems(1) nocontr
by auto
then show ?thesis using ind.IH|[OF nocontr| ind.prems(2,3) R.ranked-dtree-orig-rec
by simp
qed
qed
next
case (2 zs r)
then interpret R: ranked-dtree-with-orig Node r zs by blast
have eq: normalizel (Node r xs) = Node r ((A(t,e). (normalizel t,e)) | zs)
using 2.hyps by simp
show Zcase
proof(cases Node v ys = normalizel (Node r xs))
case True
then have y € dlverts (Node r xs) using R.arc-in-dlverts 2.hyps 2.prems(2,3)
by simp
then show ?thesis using True by simp
next
case Fulse
then obtain t2 e2 where 2-def: (12,e2) € fset xs is-subtree (Node v ys)
(normalizel t2)
using 2.hyps 2.prems(1) by auto
then show %thesis using 2.IH 2.prems(2,3) R.ranked-dtree-orig-rec by simp
qed
qed

lemma normalizel-arc-in-dlverts”.
YV r xs. is-subtree (Node r xs) (normalizel t) — (Vz. x € set r
— Vy. 2 =7y — y € setrV (Jzcfset zs. y € dlverts (fst z))))
using normalizel-arc-in-dlverts by simp

theorem ranked-dtree-orig-normalizel: ranked-dtree-with-orig (normalizel t) rank
cost cmp T root
by (simp add: ranked-dtree-with-orig-def ranked-dtree-with-orig-axioms-def asi-rank
normalizel-dom-contr normalizel-dom-mdeg-gt1 normalizel-dom-sub-contr
normalizel-dom-wedge’ directed-tree-axioms normalizel-arc-in-dlverts’
ranked-dtree-normalizel normalizel-verts-conform normalizel-verts-distinct)

theorem ranked-dtree-orig-normalize: ranked-dtree-with-orig (normalize t) rank
cost cmp T root
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using ranked-dtree-with-orig-azioms proof (induction t rule: normalize.induct)
case (1t)
then interpret T': ranked-dtree-with-orig t by blast
show ?case using 1.TH T.ranked-dtree-orig-normalizel by (auto simp: Let-def)
qed

10.3.2 Merging preserves Arc Invariants

interpretation Comm: comp-fun-commute merge-f r zs by (rule merge-commute)

lemma path-lverts-supset-z:
[list-dtree (Node r zs); Vi1 € fst ‘ fset xs. a ¢ dlverts t1]
= path-lverts-list z a C path-lverts-list (ffold (merge-f r xs) z zs) a
proof (induction xs)
case (insert z xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert z xs)
define f’ where f’ = merge-f r zs
let ?merge = Sorting-Algorithms.merge cmp’
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
show ?Zcase
proof(cases ffold f z (finsert x xs) = ffold [’ z xs)
case True
then show ?thesis using insert.IH 0 insert.prems(2) f-def f’-def by auto
next
case Fulse
obtain t2 e2 where t2-def[simp|: © = (t2,e2) by fastforce
have 1: Vovefst ¢ set (dtree-to-list (Node v {|(12, e2)|})). a ¢ set v
using insert.prems(2) dtree-to-list-z-in-dlverts by auto
have zs |C| finsert z xs by blast
then have f-zs: ffold f z xs = [fold ' z xs
using merge-ffold-supset insert.prems(1) f-def f’-def by presburger
have ffold f z (finsert x zs) = fz (ffold f z xs)
using Comm.ffold-finsert[OF insert.hyps] f-def by blast
then have 2: ffold f z (finsert z xs) = fx (ffold f' z zs) using f-xs by argo
then have f x (ffold f' z xs) # ffold f" z xs using Fualse f-def f’-def by argo
then have f (t2,e2) (ffold ' z xs)
= ?merge (dtree-to-list (Node r {|(12,e2)|})) (ffold f' z xs)
using merge-f-merge-if-not-snd t2-def f-def by blast
then have ffold f z (finsert © xs)
= ?merge (dtree-to-list (Node r {|(t2,e2)|})) (ffold f' z xs)
using 2 t2-def by argo
then have path-lverts-list (ffold f' z xs) a C path-lverts-list (ffold f z (finsert =
xs)) a
using path-lverts-list-merge-supset-ys-notin| OF 1] by presburger
then show ?thesis using insert.IH 0 insert.prems(2) f-def f’-def by auto
qged
qed (simp add: ffold.rep-eq)
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lemma path-lverts-merge-ffold-sup:
[list-dtree (Node r xs); t1 € fst * fset xs; a € dlverts t1]
= path-lverts t1 a C path-lverts-list (ffold (merge-f r zs) [| xs) a
proof (induction xs)
case (insert z xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert z xs)
define f’ where f’ = merge-f r zs
let ?merge = Sorting-Algorithms.merge cmp’
have 0: list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain ¢2 e2 where t2-def[simp]: x = (t2,e2) by fastforce
have (t2, e2) € fset (finsert x xs) by simp
moreover have (12, e2) ¢ fset zs using insert.hyps by fastforce
ultimately have zs-val:
(V (v,e) € set (ffold f'[] ws). set v N dlverts t2 = {} AN v #£ ][] A e & dares t2 U
{e2})
using merge-ffold-empty-inter-preserv’|OF insert.prems(1) empty-list-valid-merge]
f'-def
by blast
have ffold f [ (finsert x xs) = fz (ffold f [] xs)
using Comm.ffold-finsert|OF insert.hyps] f-def by blast

also have ... = fx (ffold f' ] zs)
using merge-ffold-supset[of xs finsert x xs r [|] insert.prems(1) f-def f’-def by
fastforce
finally have ffold f [] (finsert x xs) = ?merge (dtree-to-list (Node r {|z|})) (ffold
fH )

using merge-f-merge-if-conds ws-val insert.prems f-def by simp
then have merge: ffold f [ (finsert x xs)
= ?merge (diree-to-list (Node r {|(t2,e2)]})) (ffold f']] zs)
using t2-def by blast
show ?Zcase
proof(cases t1 = t2)
case True
then have Vvefst ‘ set (ffold f'[] zs). a ¢ set v
using insert.prems(3) zs-val by fastforce
then have path-lverts-list (dtree-to-list (Node r {|(t2,e2)|})) a
C path-lverts-list (ffold f [| (finsert z zs)) a
using merge path-lverts-list-merge-supset-zs-notin by fastforce
then show ?thesis using True f-def path-lverts-to-list-eq by force
next
case Fulse
then have a ¢ dlverts t2 using insert.prems list-dtree.wf-lverts by fastforce
then have 1: Vvefst ‘ set (dtree-to-list (Node r {|(t2, e2)|})). a ¢ set v
using dtree-to-list-xz-in-dlverts by fast
have path-lverts t1 a C path-lverts-list (ffold f'[] zs) a
using insert. IH[OF 0] insert.prems(2,3) False f’-def by simp
then show ?thesis using f-def merge path-lverts-list-merge-supset-ys-notin| OF
1] by auto
qed
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qed(simp)

lemma path-lverts-merge-sup-aux:

assumes list-dtree (Node r xs) and t1 € fst ¢ fset xs and a € dlverts t1

and ffold (merge-f r zs) [| xs = (v1, el) # ys

shows path-lverts t1 a C path-lverts (dtree-from-list vl ys) a
proof —

have zs # {||} using assms(2) by auto

have path-lverts t1 a C path-lverts-list (ffold (merge-f r xs) [| zs) a

using path-lverts-merge-ffold-sup| OF assms(1—3)] .

then show %thesis using path-lverts-from-list-eq assms(4) by fastforce

qed

lemma path-lverts-merge-sup:
assumes list-dtree (Node r xs) and t1 € fst ¢ fset xs and a € dlverts t1
shows 3t2 e2. merge (Node r zs) = Node r {|(t2,e2)|}
A path-lverts t1 a C path-lverts t2 a
proof —
have zs # {||} using assms(2) by auto
then obtain t2 e2 where t2-def: merge (Node r xs) = Node r {|(t2,e2)|}
using merge-singleton|OF assms(1)] by blast
obtain y ys where y-def: ffold (merge-f r xs) [| xs = y # ys
using merge-ffold-nempty| OF assms(1) <xs # {||p] list.exhaust-sel by blast
obtain v! el where y = (v1,el) by fastforce
then show ?thesis using merge-zs path-lverts-merge-sup-aux|OF assms| t2-def
y-def by fastforce
qged

lemma path-lverts-merge-sup-sucs:
assumes list-diree t0 and t1 € fst © fset (sucs t0) and o € dlverts t1
shows 3t2 e2. merge t0 = Node (Dtree.root t0) {|(t2,e2)|}
A path-lverts t1 a C path-lverts t2 a
using path-lverts-merge-sup|of Ditree.root t0 sucs t0] assms by simp

lemma merge-dom-children-aux:
assumes list-dtree t0
and Y zedverts t1. v € set (Dtree.root t0) U path-lverts t1 (hd z). v —p hd

and t1 € fst  fset (sucs t0)
and wf-dlverts t1
and z € dverts t1
shows 31t2 € fst ‘ fset (sucs (merge t0)).
Jv € set (Dtree.root (merge t0)) U path-lverts t2 (hd z). v — (hd )
proof —
have hd z € dlverts t1 using assms(4,5) by (simp add: hd-in-lverts-if-wf)
then obtain t2 e2 where t2-def:
merge t0 = Node (Dtree.root t0) {|(t2,e2)|} path-lverts t1 (hd z) C path-lverts
t2 (hd z)
using path-lverts-merge-sup-sucs|OF assms(1,3)] by blast
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then show %thesis using assms(2,5) by force
qed

lemma merge-dom-children-auz’:
assumes dom-children t0 T
and Vi1 € fst ¢ fset (sucs t0). wf-dlverts t1
and t2 € fst ‘ fset (sucs (merge t0))
and z € dverts t2
shows Jveset (Diree.root (merge t0)) U path-lverts t2 (hd z). v —p hd x
proof —
have disj: list-dtree t0
using assms(3) merge-empty-if-nwf-sucs|of t0] by fastforce
obtain t1 where ti-def: t1 € fst  fset (sucs t0) z € dverts t1
using verts-child-if-merge-child|OF assms(3,4)] by blast
then have 0: Vae€dverts t1. Jveset (Diree.root t0) U path-lverts t1 (hd ). v
—T hd x
using assms(1) unfolding dom-children-def by blast
then have wf-dlverts t1 using t1-def(1) assms(2) by blast
then obtain 3 where t3-def: t3 € fst  fset (sucs (merge t0))
(veset (Dtree.root (merge t0)) U path-lverts t3 (hd x). v —p hd z)
using merge-dom-children-aux|OF disj 0] t1-def by blast
then have t3 = t2 using assms(8) merge-single-root1-sucs by fastforce
then show ?thesis using t3-def(2) by blast
qed

lemma merge-dom-children-sucs:
assumes dom-children t0 T and Vt1 € fst ‘ fset (sucs t0). wf-dlverts t1
shows dom-children (merge t0) T
using merge-dom-children-auz'|OF assms] dom-children-def by fast

lemma merge-dom-children:

[dom-children (Node r zs) T; Vt1 € fst ¢ fset zs. wf-dlverts t1]
= dom-children (merge (Node r xs)) T
using merge-dom-children-sucs by auto

lemma merge-dom-children-if-ndisjoint:
—list-dtree (Node r xs) = dom-children (merge (Node 1 xs)) T
using merge-empty-if-nwf unfolding dom-children-def by simp

lemma merge-subtree-feard-lel: is-subtree (Node r xs) (merge t1) = feard xs <
1
using merge-mdeg-lel-sub le-trans mdeg-ge-fcard by fast

lemma merge-dom-mdeg-gt1:
[is-subtree (Node r xzs) (merge t2); t1 € fst * fset xs; max-deg (Node r zs) > 1]
= Jwv € set r. v = hd (Dtree.root t1)

using merge-mdeg-lel-sub by fastforce

lemma merge-root-if-contr:
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[Ar1 t2 e2. is-subtree (Node r1 {|(12,e2)|}) t1 = rank (rev r1) < rank (rev
(Dtree.root t2));
is-subtree (Node v {|(¢2,e2)|}) (merge t1); rank (rev (Dtree.root t2)) < rank
(rev v)]
= Node v {|(t2,e2)|} = merge t1
using merge-strict-subtree-nocontr-sucs2|of t1 v| strict-subtree-def by fastforce

lemma merge-new-contr-feard-gt1:
assumes Arl t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t1 = rank (rev r1) <
rank (rev (Dtree.root t2))
and Node v {|(t2,e2)|} = (merge t1)
and rank (rev (Dtree.root t2)) < rank (rev v)
shows feard (sucs t1) > 1
proof —
have t-v: Dtree.root t1 = v using assms(2) dtree.sel(1)[of v {|(t2,e2)|}] by simp
have V2 e2. Node v {|(t2,e2)|} # t1
using assms merge-root-child-eq self-subtree less-le-not-le by metis
then have Vz. sucs t1 # {|z|} using t-v dtree.collapse[of t1] by force
moreover have sucs t1 # {||} using assms(2) merge-empty-sucs by force
ultimately show ?thesis using feard-single-1-iff [of sucs t1] feard-0-eq[of sucs
t1] by force
qged

lemma merge-dom-sub-contr-if-nocontr:
assumes Arl t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t = rank (rev rl) < rank
(rev (Dtree.root t2))
and is-subtree (Node r xzs) (merge t)
and t1 € fst ‘ fset zs
and Jv t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r s)
A rank (rev (Dtree.root t2)) < rank (rev v)
shows Jv € set r. v —p hd (Dtree.root t1)
proof —
obtain v t2 e2 where t2-def:
is-subtree (Node v {|(12,e2)|}) (Node 1 xs) rank (rev (Dtree.root t2)) < rank
(rev v)
using assms(4) by blast
then have is-subtree (Node v {|(t2,e2)|}) (merge t) using assms(2) subtree-trans
by blast
then have eq: Node v {|(12,e2)|} = merge t using merge-root-if-contr assms(1)
t2-def(2) by blast
then have t-v: Diree.root t = v using dtree.sel(1)[of v {|(t2,e2)|}] by simp
have eq2: Node v {|(t2,e2)|} = Node r zs
using eq assms(2) t2-def(1) subtree-antisym|of Node v {|(t2, e2)|}] by simp
have feard (sucs t) > 1 using merge-new-contr-feard-gt1[OF assms(1) eq t2-def(2)]
by simp
then have mdeg: maz-deg t > 1 using mdeg-ge-fcard|of sucs t Dtree.root t] by
simp
have sub: is-subtree (Node (Dtree.root t) (sucs t)) t using self-subtree[of t] by
simp
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obtain el where el-def: (t1, el)Efset (sucs (merge t))
using assms(3) eq eq2 dtree.sel(2)[of T xs] by force
then obtain ¢3 where t3-def: (t3, el)€fset (sucs t) Dtree.root t3 = Dtree.root
t1
using merge-child-in-orig| OF el-def] by blast
then have 3 veset (Diree.root t). v — hd (Dtree.root t1) using dom-mdeg-gt1
sub mdeg by fastforce
then show ?thesis using t-v eq2 by blast
qed

lemma merge-dom-contr-if-nocontr-mdeg-lel :
assumes A1l t2 e2. is-subtree (Node 1 {|(t2,e2)|}) t = rank (rev r1) < rank
(rev (Dtree.root t2))
and is-subtree (Node r {|(t1,e1)|}) (merge t)
and rank (rev (Dtree.root t1)) < rank (rev r)
and Vit € fst ‘ fset (sucs t). maz-deg t < 1
shows dom-children (Node r {|(t1,e1)|}) T
proof —
have eq: Node r {|(t1,e1)|} = merge ¢t using merge-root-if-contr[OF assms(1—3)]

have 0: Vti€fst ¢ fset (sucs t). wf-dlverts t1 using wf-lverts wf-dlverts-suc by
auto

have feard (sucs t) > 1 using merge-new-contr-feard-gt1[OF assms(1) eq assms(3)]
by simp

then have dom-children t T using dom-wedge-full[of Dtree.root t] assms(4)
self-subtree by force

then show ?thesis using merge-dom-children-sucs 0 eq by simp
qed

lemma merge-dom-wedge:
[is-subtree (Node r xs) (merge t1); feard xs > 1; V't € fst * fset xs. maz-deg t <

1]
= dom-children (Node r zs) T
using merge-subtree-fcard-lel by fastforce

10.3.3 Mergel preserves Arc Invariants

lemma mergel-dom-mdeg-gt1:
assumes is-subtree (Node r xzs) (mergel t) and t1 € fst * fset s and maz-deg
(Node 1 xs) > 1
shows 3v € set r. v —p hd (Dtree.root t1)
proof —
obtain ys where ys-def: mergel (Node r ys) = Node r xs is-subtree (Node r ys)
t
using mergel-subtree-if-mdeg-gt1[OF assms(1,3)] by blast
then obtain t3 where t3-def: t3 € fst ‘ fset ys Dtree.root t3 = Dtree.root t1
using assms(2) mergel-child-in-orig by fastforce
have maz-deg (Node r ys) > 1 using mergel-mdeg-le[of Node r ys| ys-def(1)
assms(3) by simp
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then show ?thesis using dom-mdeg-gt1[OF ys-def(2) t3-def(1)] t3-def by simp
qed

lemma maz-deg1-gt-1-if-new-contr:
assumes Ar! t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t0 = rank (rev rl)
rank (rev (Dtree.root t2))
and is-subtree (Node r {|(t1,e1)|}) (mergel t0)
and rank (rev (Dtree.root t1)) < rank (rev 1)
shows max-deg t0 > 1
using assms mergel-mdeg-gt1-if-uneq by force

IN

lemma mergel-subtree-if-new-contr:
assumes Ar! t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t0 = rank (rev r1)
rank (rev (Dtree.root t2))
and is-subtree (Node r xs) (mergel t0)
and is-subtree (Node v {|(t1,e1)|}) (Node r xs)
and rank (rev (Dtree.root t1)) < rank (rev v)
shows Jys. is-subtree (Node r ys) t0 A mergel (Node r ys) = Node r zs
using assms proof (induction t0)
case (Node r' ys)
then consider fcard ys > 1 (Vt € fst * fset ys. maz-deg t < 1)
| =(feard ys > 1 N (Vt € fst * fset ys. maz-deg t < 1)) Node r xs = mergel
(Node r' ys)
| =(feard ys > 1 N (Vt € fst * fset ys. maz-deg t < 1)) Node r xs # mergel
(Node 1’ ys)
by blast
then show Zcase
proof(cases)
case I
then have is-subtree (Node v {|(t1, el)|}) (merge (Node r' ys))
using subtree-trans|OF Node.prems(3,2)] by force
then have Node v {|(t1, e1)|} = merge (Node r' ys)
using merge-root-if-contr Node.prems(1,4) by blast
then have Node r zs = mergel (Node r’ ys)
using Node.prems(2,3) 1 subtree-eq-if-trans-eql by fastforce
then show ?thesis using 1 dtree.sel(1)[of r zs] by auto
next
case 2
then have r = r’ using dtree.sel(1)[of r xs] by force
then show ?thesis using 2(2) by auto
next
case J
then have mergel (Node r' ys) = Node r' ((A(t,e). (mergel t,e)) | ys) by
auto
then obtain t2 e2 where t2-def: (t2,e2) € fset ys is-subtree (Node r xs)
(mergel t2)
using Node.prems(2) 3(2) by auto
then have subt2: is-subtree t2 (Node r' ys) using subtree-if-child
by (metis fstI image-eql)

IN
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then have Ar! t3 e3. is-subtree (Node r1 {|(t3, e3)|}) t2
= rank (rev r1) < rank (rev (Dtree.root t3))
using Node.prems(1) subtree-trans by blast
then obtain ys’ where ys-def: is-subtree (Node r ys') t2 mergel (Node r ys’)
= Node r zs
using Node.IH[OF t2-def(1)] Node.prems(3,4) t2-def(2) by auto
then show ?thesis using subtree-trans subt2 by blast
qed
qed

lemma mergel-dom-sub-contr:
assumes A1l t2 e2. is-subtree (Node 1 {|(t2,e2)|}) t = rank (rev r1) < rank
(rev (Dtree.root t2))
and is-subtree (Node r xs) (mergel t)
and t1 € fst ¢ fset zs
and Jv t2 e2. is-subtree (Node v {|(t2,e2)|}) (Node r zs)Arank (rev (Dtree.root
t2))<rank (rev v)
shows Jv € set r. v —p hd (Dtree.root t1)
proof —
obtain ys where ys-def: is-subtree (Node r ys) t mergel (Node r ys) = Node r
xs
using mergel-subtree-if-new-contr assms(1,2,4) by blast
then interpret R: ranked-dtree-with-orig Node r ys using ranked-dtree-orig-subtree
by blast
obtain v t2 e2 where v-def:
is-subtree (Node v {|(t2,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)
using assms(4) by blast
then have is-subtree (Node v {|(t2,e2)|}) (mergel (Node r ys)) using ys-def by
stmp
then have mdeg-gt1: maz-deg (Node r ys) > 1
using maz-deg1-gt-1-if-new-contr assms(1) v-def(2) subtree-trans ys-def (1) by
blast
obtain t3 where t3-def: t3 € fst ‘ fset ys Dtree.root t3 = Dtree.root t1
using ys-def(2) assms(83) mergel-child-in-orig by fastforce
then show ?thesis using R.dom-mdeg-gt1[OF self-subtree] mdeg-gt1 by fastforce
qed

lemma mergel-merge-point-if-new-contr:
assumes Ar! t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t0 = rank (rev r1) <
rank (rev (Dtree.root t2))
and wf-darcs t0
and is-subtree (Node r {|(t1,e1)|}) (mergel t0)
and rank (rev (Dtree.root t1)) < rank (rev r)
shows Jys. is-subtree (Node r ys) t0 A feard ys > 1 N (Vi€ fst ‘ fset ys.
maz-deg t < 1)
A mergel (Node r ys) = Node r {|(t1,e1)|}
using assms proof (induction t0)
case (Node v zs)
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then consider fcard zs > 1 (Vt € fst * fset xs. max-deg t < 1)
| feard zs < 1 | feard xs > 1 —~(Vt € fst ‘ fset xs. max-deg t < 1)
by linarith
then show “case
proof (cases)
case I
then have is-subtree (Node r {|(t1, e1)|}) (merge (Node v xs)) using Node.prems(3)
by simp
then have Node r {|(t1, el)|} = merge (Node v zs)
using merge-root-if-contr Node.prems(1,4) by blast
then show ?thesis using 1 dtree.sel(1)[of r {|(t1, e1)|}] by auto
next
case 2
then have mergel (Node v zs) = Node v ((A(t,e). (mergel tye)) | zs) by auto
then have zs # {||} using Node.prems(3) by force
then have fcard xs = 1 using 2 le-Suc-eq by auto
then obtain 2 e2 where t2-def: s = {|(t2,e2)|} using fcard-single-1-iff[of
xs] by fast
then have Node r {|(t1, el)|} # mergel (Node v {|(t2,e2)|}) using Node.prems(1,4)
2 by force
then have is-subtree (Node r {|(t1, el)|}) (mergel t2) using Node.prems(3)
t2-def 2 by auto
moreover have A\rl t3 e3. is-subtree (Node r1 {|(t3, e3)|}) t2
= rank (rev r1) < rank (rev (Dtree.root t3))
using Node.prems(1) t2-def by fastforce
ultimately show ?thesis using Node.IH[of (t2,e2)] Node.prems(2,4) t2-def
by fastforce
next
case §
then have feard ((A(t,e). (mergel t,e)) | zs) > 1
using feard-mergel-img-if-disjoint disjoint-darcs-if-wf-zs[OF Node.prems(2)]
by simp
then have Node r {|(t1,e1)|} # mergel (Node v xs)
using feard-single-1-iff[of (A(t,e). (mergel t,e)) || zs] 3(2) by auto
moreover have mergel (Node v zs) = Node v ((A(t,e). (mergel t,e)) | zs)
using 3(2) by auto
ultimately obtain t2 ¢2 where t2-def:
(t2,e2) € fset s is-subtree (Node r {|(t1, e1)|}) (mergel t2)
using Node.prems(3) by auto
then have is-subtree t2 (Node v xs) using subtree-if-child
by (metis fst-conv image-eql)
then have Ar! t3 e3. is-subtree (Node r1 {|(t3, e3)|}) t2
= rank (rev r1) < rank (rev (Dtree.root t3))
using Node.prems(1) subtree-trans by blast
then obtain ys where ys-def: is-subtree (Node r ys) t2 1 < fecard ys
(Vtefst ¢ fset ys. max-deg t < 1) mergel (Node r ys) = Node r {|(t1, el)|}
using Node.IH[OF t2-def(1)] Node.prems(2,4) t2-def by fastforce
then show %thesis using t2-def(1) by auto
qed
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qed

lemma mergel-dom-contr:
assumes A1l t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t = rank (rev r1) < rank
(rev (Dtree.root t2))
and is-subtree (Node r {|(t1,e1)|}) (mergel t)
and rank (rev (Dtree.root 1)) < rank (rev )
and maz-deg (Node r {|(t1,e1)|}) = 1
shows dom-children (Node r {|(t1,e1)|}) T
proof —
obtain ys where ys-def: is-subtree (Node r ys) t feard ys > 1
Viefst ¢ fset ys. maz-deg t < 1 mergel (Node r ys) = Node r {|(t1,e1)|}
using mergel-merge-point-if-new-contr wf-arcs assms(1—3) by blast
have Vtiefst ¢ fset ys. wf-dlverts t1
using ys-def (1) list-dtree.wf-lverts list-dtree-sub by fastforce
then show ?%thesis using merge-dom-children-sucs|OF dom-wedge-full] ys-def
by fastforce
qed

lemma mergel-dom-children-merge-sub-aux:
assumes mergel t = t2
and is-subtree (Node v’ xzs’) t
and feard zs’ > 1
and (Vtefst  fset xs’. maz-deg t < 1)
and maz-deg t2 < 1
and z € dverts t2
and z # Dtree.root t2
shows v € path-lverts t2 (hd x). v = hd
using assms ranked-dtree-with-orig-azioms proof (induction t arbitrary: t2)
case (Node 1 zs)
then interpret R: ranked-dtree-with-orig Node r xs by blast
obtain t1 el where t1-def: (t1,el) € fset (sucs t2) x € dverts t1
by (metis Node.prems(6,7) fsts.simps dtree.sel dtree.set-cases(1) fst-conv surj-pair)
then have t2-sucs: sucs t2 = {|(t1,el)|}
using Node.prems(5) empty-iff-mdeg-0]of Dtree.root t2 sucs t2]
mdeg-1-singleton]of Dtree.root t2 sucs t2] by auto
have wf-t2: wf-dlverts t2 using Node.prems(1) R.wf-dlverts-mergel by blast
then have wf-dlverts t1 using t1-def(1) wf-dlverts-suc by fastforce
then have hd z € dlverts t1 using t1-def(2) hd-in-lverts-if-wf by blast
then have hd x ¢ set (Dtree.root t2) using dlverts-notin-root-sucs|OF wf-t2]
t1-def(1) by fastforce
then have path-t2: path-lverts t2 (hd z) = set (Dtree.root t2) U path-lverts t1
(hd z)
using path-lverts-simps1-sucs t2-sucs by fastforce
show ?Zcase
proof(cases Node r xs = Node r' xs’)
case True
then have merge (Node v’ zs’) = t2 using Node.prems(1,3,4) by simp
then have dom-children t2 T
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using R.dom-wedge-full|OF Node.prems(2—4)] merge-dom-children R.wf-lverts
True by fastforce
then have Jveset (Dtree.root t2) U path-lverts t1 (hd x). v =7 hd =
using t1-def unfolding dom-children-def by auto
then show ?thesis using path-t2 by blast
next
case Fulse
then have —(fcard zs > 1 N (Vt € fst * fset xs. maz-deg t < 1))
using Node.prems(3,4) child-mdeg-gt1-if-sub-feard-gt1[OF Node.prems(2)] by
force
then have eq: mergel (Node r xs) = Node r ((A(t,e). (mergel t,e)) | zs) by
auto
then obtain ¢3 e3 where t3-def: (t3,e3) € fset as is-subtree (Node v’ xs’) 138
using Node.prems(2) False by auto
have feard ((A(t,e). (mergel tye)) | xs) = 1
using Node.prems(1) eq t2-sucs feard-single-1 by fastforce
then have feard xs = 1
using fcard-mergel-img-if-disjoint disjoint-darcs-if-wf-xzs|OF R.wf-arcs| by
stmp
then have zs = {|(¢3,e3)|} using fcard-single-1-iff [of xs] t3-def(1) by auto
then have t13: mergel t3 = t1 using t2-sucs eq Node.prems(1) by force
then have mdegt3: maz-deg t1 < 1
using Node.prems(5) mdeg-ge-child|of t1 el sucs t2 Diree.root t2] t2-sucs by
fastforce
have mdeg-gt1: maz-deg (Node r zs) > 1
using mdeg-ge-feard|of xs’ r'] Node.prems(2,3) mdeg-ge-sublof Node r' xs’
Node r zs]
by simp
show ?thesis
proof(cases x = Ditree.root t1)
case True
then have Jveset r. v = hd z
using R.dom-mdeg-gt1[of v xs] t3-def (1) mdeg-gt1 t13 by fastforce
then show ?thesis using path-t2 Node.prems(1) by auto
next
case Fulse
then have 3vepath-lverts t1 (hd x). v —p hd
using Node.IH t1-def(2) t3-def t13 assms(3,4) mdegt3 R.ranked-dtree-orig-rec
by simp
then show ?thesis using path-t2 by blast
qed
qed
qed

lemma mergel-dom-children-fcard-gt1-aux:
assumes dom-children (Node r (Abs-fset (children-degl ys))) T
and is-subtree (Node 1 ys) t
and mergel (Node r ys) = Node r xs
and fcard zs > 1
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and maz-deg t2 < 1
and t2 € fst ¢ fset xs
and z € dverts t2
shows Jveset r U path-lverts t2 (hd z). v —p hd x
proof —
obtain ¢! where ti-def: t1 € fst ¢ fset ys mergel t1 = t2
using mergel-elem-in-img-if-fcard-gt1[OF assms(3,4)] assms(6) by fastforce
then have z-t: ¢ € dverts t1 using mergel-dverts-sub assms(7) by blast
show ?thesis
proof(cases maz-deg t1 < 1)
case True
then have t1 € fst ¢ fset (sucs (Node r (Abs-fset (children-degl ys))))
using t1-def(1) children-degl-fset-id by force
then have Jveset r U path-lverts t1 (hd x). v —p hd
using assms(1) z-t unfolding dom-children-def by auto
then show ?thesis using t1-def(2) mergel-mdeg-gtl-if-uneq[of t1] True by
force
next
case Fulse
then obtain r’ zs’ where r’-def:
is-subtree (Node r' zs’) t1 1 < feard xs’ (VtE€fst  fset xs’. maz-deg t < 1)
using mergel-wedge-if-uneq[of t1] assms(5) t1-def(2) by fastforce
interpret R: ranked-dtree-with-orig Node r ys using ranked-dtree-orig-subtree
assms(2) .
interpret T: ranked-dtree-with-orig t1 using R.ranked-dtree-orig-rec t1-def(1)
by force
have maz-deg (Node r ys) > 1
using assms(3,4) mergel-feard-le[of r ys| mdeg-ge-fcard|of ys] by simp
show ?thesis
proof (cases © = Dtree.root t2)
case True
have maz-deg (Node 1 ys) > 1
using assms(3,4) mergel-feard-le[of r ys] mdeg-ge-fecard|of ys] by simp
then show ?thesis using dom-mdeg-gt1[OF assms(2) t1-def(1)] True t1-def(2)
by auto
next
case Fulse
then show ?thesis
using T.mergel-dom-children-merge-sub-auz|OF t1-def (2) r'-def assms(5,7)]
by blast
qed
qed
qed

lemma mergel-dom-children-fcard-gt1:
assumes dom-children (Node r (Abs-fset (children-degl ys))) T
and is-subtree (Node 1 ys) t
and mergel (Node r ys) = Node r xs
and fcard zs > 1
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shows dom-children (Node r (Abs-fset (children-degl zs))) T
unfolding dom-children-def
using mergel-dom-children-fecard-gt1-aux|OF assms| children-degl-fset-id[of x|
by fastforce

lemma mergel-dom-wedge:
assumes is-subtree (Node 1 xs) (mergel t) and feard zs > 1
shows dom-children (Node r (Abs-fset (children-degl xs))) T
proof —
obtain ys where ys-def:
mergel (Node r ys) = Node r s is-subtree (Node r ys) t feard xs < fcard ys
using mergel-subtree-if-fecard-gt1 [OF assms] by blast
have dom-children (Node r (Abs-fset (children-degl ys))) T
using dom-wedge ys-def(2,3) assms(2) by simp
then show ?thesis using mergel-dom-children-feard-gt1 ys-def(2,1) assms(2)
by blast
qed

corollary mergel-dom-wedge’:
YV r xs. is-subtree (Node r xs) (mergel t) — feard xs > 1
— dom-children (Node r (Abs-fset {(t, e). (t, €) € fset xs N maz-deg t < Suc

0}) T

by (auto simp only: mergel-dom-wedge One-nat-def[symmetric])

corollary mergel-verts-conform: v € dverts (mergel t) = seq-conform v
by (simp add: verts-conform)

corollary mergel-verts-distinct: [v € dverts (mergel t)] = distinct v
using distinct-mergel verts-distinct by auto

lemma mergel-mdeg-lel-wedge-if-fcard-gt1:
assumes maz-deg (mergel t1) < 1
and wf-darcs t1
and is-subtree (Node v ys) t1
and fcard ys > 1
shows (Vt € fst * fset ys. maz-deg t < 1)
using assms proof (induction t1 rule: mergel .induct)
case (1 r zs)
then show ?case
proof(cases fcard xs > 1 N (Vt € fst © fset xs. maz-deg t < 1))
case True
then have Node v ys = Node r s
using 1.prems(3,4) mdeg-ge-sub mdeg-ge-fcard|of ys| by fastforce
then show ?thesis using True by simp
next
case Fulse
then have eq: mergel (Node r zs) = Node r ((A(t, e). (mergel t, e)) | zs) by
auto
have feard ((A(t, e). (mergel t, €)) | xs) = feard s
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using fcard-mergel-img-if-disjoint disjoint-darcs-if-wf-zs[OF 1.prems(2)] by
stmp
then have fcard zs < 1
by (metis 1.prems(1) False mergel.simps num-leaves-1-if-mdeg-1 num-leaves-ge-card)
then have Node v ys # Node r xs using 1.prems(4) by auto
then obtain t2 e2 where t2-def: (12,e2) € fset zs is-subtree (Node v ys) t2
using 1.prems(3) by auto
then have maz-deg (mergel t2) < 1
using 1.prems(1) False eq
mdeg-ge-child[of mergel t2 e2 (A(t, e). (mergel t, e)) || xs]
by fastforce
then show ?thesis using 1.IH[OF False t2-def(1) refl] t2-def 1.prems(2,4)
by fastforce
qed
qed

lemma dom-mdeg-lel-mergel-auz:
assumes maz-deg (mergel t) < 1
and mergel t # t
and t1 € fst  fset (sucs (mergel t))
and z € dverts t1
shows 3 reset (Dtree.root (mergel t)) U path-lverts t1 (hd x). 7 —p hd ©
using assms ranked-dtree-with-orig-azioms proof (induction t arbitrary: t1 rule:
mergel .induct)
case (I 1 zs)
then interpret R: ranked-dtree-with-orig Node r zs by blast
show ?Zcase
proof(cases feard xs > 1)
case True
then have 0: (V¢ € fst © fset zs. max-deg t < 1)
using mergel-mdeg-le1-wedge-if-fecard-gt1[OF 1.prems(1) R.wf-arcs] by auto
then have dom-children (merge (Node r xs)) T
using True merge-dom-children-sucs R.dom-wedge-full R.wf-lverts self-subtree
wf-dlverts-suc
by fast
then show ?thesis unfolding dom-children-def using 1.prems(3,4) 0 True
by auto
next
case Fulse
then have rec: —(fcard s > 1 N (Yt € fst ‘ fset zs. max-deg t < 1)) by simp
then have eq: mergel (Node r xs) = Node r ((A(t,e). (mergel t,e)) |1 zs) by
auto
obtain ¢2 e2 where t2-def: xs = {|(12,e2)|} mergel t2 = t1
using 1.prems(3) False singleton-if-fecard-le1-elem|[of xs| by fastforce
show ?thesis
proof(cases x = Ditree.root t1)
case True
have maz-deg (Node r xs) > 1 using mergel-mdeg-gt1-if-uneq 1.prems(2)
by blast
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then show %thesis using True R.dom-mdeg-gt1[OF self-subtree] t2-def by
auto

next

case Fulse

then obtain t3 where t3-def: t3 € fst  fset (sucs (mergel t2)) x € dverts
t3

using 1.prems(4) t2-def(2) dverts-root-or-suc by fastforce
have mdegl: maz-deg (mergel t2) < 1
using 1.prems(1) mdeg-ge-child[of t1 e2 (A(t,e). (mergel t.e)) | xs] eq

t2-def

by simp
then have 0: 3 reset (Dtree.root (mergel t2)) U path-lverts t3 (hd x). v —
hd x
using 1.IH rec mdegl t3-def 1.prems(2) eq t2-def R.ranked-dtree-orig-rec
by auto
obtain e? where e3-def: sucs t1 = {|(¢3, e3)|}
using t3-def singleton-if-mdeg-le1-elem-suc mdegl t2-def(2) by fastforce
have wf-dlverts t1 using wf-dlverts-suc 1.prems(3) R.wf-dlverts-mergel by
blast
then have hd z € dlverts t3
using t3-def (2) 1.prems(4) list-in-verts-iff-lverts hd-in-set|of x] empty-notin-wf-dlverts
by fast
then have hd z ¢ set (Dtree.root t1)
using t3-def(1) dlverts-notin-root-sucs|OF <wf-dlverts t15] t2-def(2) by
blast
then show ?thesis using 0 path-lverts-simps1-sucs[of hd z t1] e3-def t2-def(2)
by blast
qed
qed
qed

lemma dom-mdeg-lel-mergel:
[maz-deg (mergel t) < 1; mergel t # t] = dom-children (mergel t) T
unfolding dom-children-def using dom-mdeg-lel-mergel-auzx by blast

lemma mergel-arc-in-dlverts:

[is-subtree (Node 1 xs) (mergel t); x € set r; © —p y] = y € dlverts (Node r
xs)

using mergel-subtree-dlverts-supset arc-in-dlverts by blast

theorem mergel-ranked-dtree-orig:
assumes Arl t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t = rank (rev r1) < rank
(rev (Dtree.root t2))
shows ranked-dtree-with-orig (mergel t) rank cost cmp T root
using assms mergel-arc-in-dlverts
unfolding ranked-dtree-with-orig-def ranked-dtree-with-orig-azioms-def
by (simp add: directed-tree-axioms ranked-dtree-mergel mergel-verts-distinct mergel-verts-conform
mergel-dom-mdeg-gt1 mergel-dom-contr mergel-dom-sub-contr mergel-dom-wedge’
asi-rank)

412



theorem mergel-normalize-ranked-dtree-orig:
ranked-dtree-with-orig (mergel (normalize t)) rank cost cmp T root
using ranked-dtree-with-orig.merge-ranked-dtree-orig| OF ranked-dtree-orig-normalize]
by (simp add: normalize-sorted-ranks)

theorem ikkbz-sub-ranked-dtree-orig: ranked-dtree-with-orig (ikkbz-sub t) rank cost
cmp T root
using ranked-dtree-with-orig-axioms proof (induction t rule: ikkbz-sub.induct)
case (11t)
then show ?case
proof(cases maz-deg t < 1)
case True
then show ?thesis using 1.prems by auto
next
case Fulse
then show ?thesis
by (metis 1 ranked-dtree-with-orig.mergel-normalize-ranked-dtree-orig ikkbz-sub.simps)
qed
qed

10.4 Optimality of IKKBZ-Sub result constrained to Invari-
ants

lemma dtree-size-skip-decr|termination-simp|: size (Node r (sucs t1)) < size (Node

v {|(t1,e1)[})

using dtree-size-eq-root[of Dtree.root t1 sucs t1] by auto

lemma dtree-size-skip-decrl: size (Node (r @ Dtree.root t1) (sucs t1)) < size
(Node r {|(t1,e1)[})
using dtree-size-skip-decr by auto

function normalize-full :: (‘a list,’d) dtree = ('a list,’d) dtree where
normalize-full (Node r {|(t1,e1)|}) = normalize-full (Node (rQDtree.root t1)
(sucs t1))
| V. zs # {|z|} = normalize-full (Node r xs) = Node r xs
using dtree-to-list.cases by blast+
termination using dtree-size-skip-decr termination in-measure wf-measure by
metis

10.4.1 Result fulfills the requirements

lemma ikkbz-sub-eq-if-mdeg-lel: maz-deg t1 < 1 = ikkbz-sub t1 = t1
by simp

lemma ikkbz-sub-eq-iff-mdeg-lel: maz-deg t1 < 1 <— ikkbz-sub t1 = t1
using kkbz-sub-mdeg-lel[of t1] by fastforce

lemma dom-mdeg-lel-ikkbz-sub: ikkbz-sub t # t = dom-children (ikkbz-sub t) T
using ranked-dtree-with-orig-azioms proof (induction t rule: ikkbz-sub.induct)

413



case (1t)
then interpret T: ranked-dtree-with-orig t by simp
interpret NT': ranked-dtree-with-orig normalize t
using T.ranked-dtree-orig-normalize by blast
interpret MT: ranked-dtree-with-orig mergel (normalize t)
using T.mergel-normalize-ranked-dtree-orig by blast
show ?Zcase
proof(cases maz-deg t < 1)
case True
then show %thesis using I.prems by auto
next
case Fulse
then show ?thesis
proof (cases max-deg (mergel (normalize t)) < 1)
case True
then show ?thesis
using NT.dom-mdeg-lel-mergel T.dom-mdeg-le1-normalize T .list-dtree-azioms
False
by force
next
case Fulse
then have ikkbz-sub (mergel (normalize t)) # (mergel (normalize t))
using ikkbz-sub-mdeg-le1[of mergel (normalize t)] by force
then show ?thesis using 1 MT.ranked-dtree-with-orig-axioms by auto
qed
qged
qged

lemma combine-denormalize-eq:
denormalize (Node r {|(t1,el)|}) = denormalize (Node (r@QDtree.root t1) (sucs

t1))

by (induction t1 rule: denormalize.induct) auto

lemma normalizel-denormalize-eq: wf-dlverts t1 = denormalize (normalizel t1)
= denormalize t1
proof (induction t1 rule: normalizel .induct)
case (I rte)
then show ?case using combine-denormalize-eq|of r t] by simp
next
case (2 s r)
then show ?case
using feard-single-1-iff[of (A(t,e). (normalizel t.e)) || xs] feard-single-1-iff[of
xs]
by (auto simp: fcard-normalize-img-if-wf-dlverts)
qed

lemma normalizel-denormalize-eq’: wf-darcs t1 = denormalize (normalizel t1)

= denormalize t1
proof (induction t1 rule: normalizel .induct)
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case (I rte)
then show ?case using combine-denormalize-eq|of r t] by (auto simp: wf-darcs-iff-darcs’)
next
case (2 zs r)
then show ?case
using fcard-single-1-iff [of (A(t,e). (normalizel t,e)) || xs] feard-single-1-iff [of
x|
by (auto simp: feard-normalize-img-if-disjoint wf-darcs-iff-darcs’)
qed

lemma normalize-denormalize-eq: wf-dlverts t1 = denormalize (normalize t1) =
denormalize t1

apply (induction t1 rule: normalize.induct)

by (smt (verit) normalizel-denormalize-eq normalize.simps wf-dlverts-normalizel )

lemma normalize-denormalize-eq’: wf-darcs t1 => denormalize (normalize t1) =
denormalize t1

apply (induction t1 rule: normalize.induct)

by (smt (verit) normalizel-denormalize-eq’ normalize.simps wf-darcs-normalizel )

lemma normalize-full-denormalize-eq[simp): denormalize (normalize-full t1) = de-
normalize t1
proof (induction t1 rule: normalize-full.induct)
case (I rte)
then show ?case using combine-denormalize-eq|of r t] by simp
qed(simp)

lemma combine-dlverts-eq: dlverts (Node r {|(t1,e1)|}) = dlverts (Node (rQ Dtree.root
t1) (sucs t1))
using dlverts.simps|of Dtree.root t1 sucs t1] by auto

lemma normalize-full-dlverts-eq[simp]: dlverts (normalize-full t1) = dlverts t1
using combine-dlverts-eq by (induction t1 rule: normalize-full.induct) fastforce+

lemma combine-darcs-sub: darcs (Node (r@QDtree.root t1) (sucs t1)) C darcs (Node

r{I(t1,e1)[})

using dtree.set(2)[of Dtree.root t1 sucs t1] by auto

lemma normalize-full-darcs-sub: darcs (normalize-full t1) C darcs t1
using combine-darcs-sub by (induction t1 rule: normalize-full.induct) fastforce+

lemma combine-nempty-if-wf-dlverts: wf-dlverts (Node r {|(t1,e1)|}) = r @ Dtree.root

i A
by simp

lemma combine-empty-inter-if-wf-dlverts:

assumes wf-dlverts (Node r {|(t1,e1)|})

shows V (z, el)€fset (sucs t1). set (r Q Dtree.root t1) N dlverts z = {} A
wf-dlverts
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proof —

have V (z, el)€fset (sucs t1). set r N dlverts x = {} using suc-in-dlverts assms
by fastforce

then show ?%thesis using wf-dlverts.simps|of Dtree.root t1 sucs t1] assms by
auto
qed

lemma combine-disjoint-if-wf-dlverts:
wf-dlverts (Node r {|(t1,e1)|}) = disjoint-dlverts (sucs t1)
using wf-dlverts.simps[of Dtree.root t1 sucs t1] by simp

lemma combine-wf-dlverts:
wf-dlverts (Node r {|(t1,e1)|}) = wf-dlverts (Node (r@QDtree.root t1) (sucs t1))
using combine-empty-inter-if-wf-dlverts|of r t1] wf-dlverts.simps|of Dtree.root t1
sucs t1]
by force

lemma combine-distinct:
assumes Vv € dverts (Node v {|(t1,el)|}). distinct v
and wf-dlverts (Node r {|(t1,e1)|})
and v € dverts (Node (r@QDtree.root t1) (sucs t1))
shows distinct v
proof(cases v = r @ Dtree.root t1)
case True
have (Dtree.root t1) € dverts t1 by (simp add: diree.set-sel(1))
moreover from this have set r N set (Dtree.root t1) = {}
using assms(2) lverts-if-in-verts by fastforce
ultimately show ?thesis using True assms(1) by simp
next
case Fulse
then show ?thesis using assms(1,3) dverts-suc-subseteq by fastforce
qed

lemma normalize-full-wfdlverts: wf-dlverts t1 = wf-dlverts (normalize-full t1)
proof (induction t1 rule: normalize-full.induct)

case (1 rtlel)

then show ?Zcase using combine-wf-dlverts[of r t1] by simp
qed(simp)

corollary normalize-full-wfdverts: wf-dlverts t1 = wf-dverts (normalize-full t1)
using normalize-full-wfdlverts by (simp add: wf-dverts-if-wf-dlverts)

lemma combine-wf-arcs: wf-darcs (Node r {|(t1,e1)|}) = wf-darcs (Node (r@Dtree.root
t1) (sucs t1))
using wf-darcs’.simps|of Dtree.root t1 sucs t1] by (simp add: wf-darcs-iff-darcs’)

lemma normalize-full-wfdarcs: wf-darcs t1 = wf-darcs (normalize-full t1)
using combine-wf-arcs by (induction t1 rule: normalize-full.induct) fastforce+
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lemma normalize-full-dom-preserv: dom-children t1 T = dom-children (normalize-full
t1) T
by (induction t1 rule: normalize-full.induct) (auto simp: dom-children-combine)

lemma combine-forward:
assumes dom-children (Node r {|(t1,e1)|}) T
and Vv € dverts (Node r {|(t1,e1)|}). forward v
and wf-dlverts (Node r {|(t1,e1)|})
and v € dverts (Node (r@Dtree.root t1) (sucs t1))
shows forward v
proof(cases v = r @ Dtree.root t1)
case True
have 0: (Dtree.root t1) € dverts t1 by (simp add: diree.set-sel(1))
then have fwd-t1: forward (Dtree.root t1) using assms(2) by simp
moreover have set r N set (Dtree.root t1) = {} using assms(3) 0 lverts-if-in-verts
by fastforce
moreover have Jzcset r. Jycset (Diree.root t1). x —py
using assms(1,3) root-arc-if-dom-wfdlverts by fastforce
ultimately have Jz€set r. © — p hd (Dtree.root t1) using forward-arc-to-head
by blast
moreover have fwd-r: forward r using assms(2) by simp
ultimately show %thesis using forward-app fwd-t1 True by simp
next
case Fulse
then show ?thesis using assms(2,/) dverts-suc-subseteq by fastforce
qged

lemma normalize-full-forward:
[dom-children t1 T; Y v € dverts t1. forward v; wf-dlverts t1]
= Vv € dverts (normalize-full t1). forward v
proof (induction t1 rule: normalize-full.induct)
case (I rte)
have Vv € dverts (Node (rQDtree.root t) (sucs t)). forward v
using combine-forward[OF 1.prems(1,2,3)] by blast
moreover have dom-children (Node (rQDtree.root t) (sucs t)) T
using dom-children-combine 1.prems(1) by simp
ultimately show ?Zcase using 1.IH 1.prems(3) combine-wf-dlverts[of r t e] by
fastforce
qed(auto)

lemma normalize-full-maz-deg0: maz-deg t1 < 1 = maxz-deg (normalize-full t1)
=0
proof (induction t1 rule: normalize-full.induct)

case (I rte)

then show ?case using mdeg-child-sucs-le by (fastforce dest: order-trans)
next

case (2 zs r)

then show ?case using empty-fset-if-mdeg-lel-not-single by auto
qed
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lemma normalize-full-mdeg-eq: maz-deg t1 > 1 = maz-deg (normalize-full t1)
= maz-deg t1
proof (induction t1 rule: normalize-full.induct)
case (I rte)
then show ?case using mdeg-child-sucs-eq-if-gt1 by force
qed(auto)

lemma normalize-full-empty-sucs: maz-deg t1 < 1 = Ir. normalize-full t1 =
Node r {||}
proof (induction t1 rule: normalize-full.induct)

case (I rte)

then show ?case using mdeg-child-sucs-le by (fastforce dest: order-trans)
next

case (2 zs r)

then show ?case using empty-fset-if-mdeg-lel-not-single by auto
qed

lemma normalize-full-forward-singleton:
[maz-deg t1 < 1; dom-children t1 T; Vv € dverts t1. forward v; wf-dlverts t1]
= Jr. normalize-full t1 = Node r {||} N forward r
using normalize-full-empty-sucs normalize-full-forward by fastforce

lemma denormalize-empty-sucs-simp: denormalize (Node v {||}) = r
using denormalize.simps(2) by blast

lemma normalize-full-dverts-eq-denormalize:
assumes maz-deg t1 < 1
shows dverts (normalize-full t1) = {denormalize t1}
proof —
obtain r where r-def[simp]: normalize-full t1 = Node r {||}
using assms normalize-full-empty-sucs by blast
then have denormalize (normalize-full t1) = r by (simp add: denormalize-empty-sucs-simp)
then have r = denormalize t1 using normalize-full-denormalize-eq by blast
then show ?thesis by simp
qed

lemma normalize-full-normalize-dverts-eq-denormalize:
assumes wf-dlverts t1 and mazx-deg t1 < 1
shows dverts (normalize-full (normalize t1)) = {denormalize t1}
proof —
have maz-deg (normalize t1) < 1 using assms normalize-mdeg-eq’ by fastforce
then show ?thesis
using normalize-full-dverts-eq-denormalize normalize-denormalize-eq assms(1)
by simp
qed

lemma normalize-full-normalize-dverts-eq-denormalize’:
assumes wf-darcs t1 and maz-deg t1 < 1
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shows dverts (normalize-full (normalize t1)) = {denormalize t1}
proof —
have maz-deg (normalize t1) < 1 using assms normalize-mdeg-eq by fastforce
then show ?thesis
using normalize-full-dverts-eq-denormalize normalize-denormalize-eq’ assms(1)
by simp
qed

lemma denormalize-full-forward:
[maz-deg t1 < 1; dom-children t1 T; Vv € dverts t1. forward v; wf-dlverts t1]
= forward (denormalize (normalize-full t1))
by (metis denormalize-empty-sucs-simp normalize-full-forward-singleton)

lemma denormalize-forward:
[maz-deg t1 < 1; dom-children t1 T; Vv € dverts t1. forward v; wf-dlverts t1]
= forward (denormalize t1)
using denormalize-full-forward by simp

lemma ikkbz-sub-forward-if-uneq: ikkbz-sub t # t = forward (denormalize (ikkbz-sub
t))
using denormalize-forward ikkbz-sub-mdeg-le1 dom-mdeg-lel-ikkbz-sub ikkbz-sub-wf-dlverts
ranked-dtree-with-orig.verts-forward ikkbz-sub-ranked-dtree-orig
by fast

theorem ikkbz-sub-forward:
[maz-deg t < 1 = dom-children t T] = forward (denormalize (ikkbz-sub t))
using kkbz-sub-forward-if-uneq ikkbz-sub-eq-iff-mdeg-lel [of ]
by (fastforce simp: verts-forward wf-lverts denormalize-forward)

lemma root-arc-singleton:
assumes dom-children (Node r {|(t1,e1)|}) T and wf-dlverts (Node r {|(t1,e1)|})
shows Jz€set r. Jyeset (Diree.root t1). x — 7 y
using root-arc-if-dom-wfdlverts assms by fastforce

lemma before-if-dom-children-wf-conform:
assumes dom-children (Node r {|(t1,e1)|}) T
and Vv € dverts (Node r {|(t1,e1)|}). seq-conform v
and wf-dlverts (Node r {|(t1,e1)|})
shows before r (Dtree.root t1)
proof —
have seq-conform (Dtree.root t1) using dtree.set-sel(1) assms(2) by auto
moreover have seq-conform r using assms(2) by auto
moreover have set r N set (Diree.root t1) = {}
using assms(3) dlverts-eq-dverts-union diree.set-sel(1) by fastforce
ultimately show ?thesis unfolding before-def using root-arc-singleton assms(1,3)
by blast
qed

lemma root-arc-singleton’:
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assumes Node r {|(t1,e1)|} = t and dom-children t T
shows Jzeset r. yeset (Dtree.root t1). x =7y
using assms root-arc-singleton wf-lverts by blast

lemma root-before-if-dom:
assumes Node r {|(t1,e1)|} = t and dom-children t T
shows before r (Dtree.root t1)
proof —
have (Dtree.root t1) € dverts t using dtree.set-sel(1) assms(1) by fastforce
then have seq-conform (Dtree.root t1) using verts-conform by simp
moreover have seq-conform r using verts-conform assms(1) by auto
ultimately show ?thesis
using before-def child-disjoint-root root-arc-singleton’ assms by fastforce
qed

lemma combine-conform:
[dom-children (Node r {|(t1,e1)|}) T;V v € dverts (Node r {|(t1,e1)|}). seq-conform
v;
wf-dlverts (Node r {|(t1,e1)|}); v € dverts (Node (r@Dtree.root t1) (sucs t1))]
= seq-conform v
apply(cases v = r@QDtree.root t1)
using before-if-dom-children-wf-conform seq-conform-if-before apply fastforce
using dverts-suc-subseteq by fastforce

lemma denormalize-full-set-eq-dlverts:
maz-deg t1 < 1 = set (denormalize (normalize-full t1)) = dlverts t1
using denormalize-set-eq-dlverts by auto

lemma denormalize-full-set-eq-dverts-union:
maz-deg t1 < 1 = set (denormalize (normalize-full t1)) = J (set * dverts t1)
using denormalize-full-set-eq-dlverts dlverts-eq-dverts-union by fastforce

corollary hd-eq-denormalize-full:
wf-dlverts t1 = hd (denormalize (normalize-full t1)) = hd (Dtree.root t1)
using denormalize-hd-root-wf by auto

corollary denormalize-full-nempty-if-wf:
wf-dlverts t1 = denormalize (normalize-full t1) # |]
using denormalize-nempty-if-wf by auto

lemma takel-eq-denormalize-full:
wf-dlverts t1 = take 1 (denormalize (normalize-full t1)) = [hd (Dtree.root t1)]
using hd-eq-denormalize-full takel-eq-hd denormalize-full-nempty-if-wf by fast

lemma P-denormalize-full:
assumes wf-dlverts t1
and Vv € dverts t1. distinct v
and hd (Dtree.root t1) = root
and maz-deg t1 < 1
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shows unique-set-r root (dverts t1) (denormalize (normalize-full t1))
using assms unique-set-r-def denormalize-full-set-eq-dverts-union

denormalize-distinct normalize-full-wfdlverts takel-eq-denormalize-full
by fastforce

lemma P-denormalize:

fixes t1 :: (a list,’d) dtree
assumes wf-dlverts t1

and Vv € dverts t1. distinct v

and hd (Dtree.root t1) = root

and maz-deg t1 < 1

shows unique-set-r root (dverts t1) (denormalize t1)

using assms P-denormalize-full by auto

lemma denormalize-full-fwd:
assumes wf-dlverts t1
and maz-deg t1 < 1
and Vzs € (dverts t1). seq-conform zs
and dom-children t1 T
shows forward (denormalize (normalize-full t1))
using assms denormalize-forward forward-arcs-alt seq-conform-def by auto

lemma normalize-full-verts-sublist:
v € dverts t1 = 302 € dverts (normalize-full t1). sublist v v2
proof (induction t1 arbitrary: v rule: normalize-full.induct)
case ind: (1 rte)
then consider v = r V v = Diree.root t | At1 € fst * fset (sucs t). v € dverts t1
using dverts-root-or-suc by fastforce
then show ?case
proof (cases)
case I
have Jacdverts (normalize-full (Node (r @ Dtree.root t) (sucs t))). sublist
(r@QDtree.root t) a
using ind.IH by simp
moreover have sublist v (r@Dtree.root t) using 1 by blast
ultimately show ?thesis using sublist-order.dual-order.trans by auto
next
case 2
then show %thesis using ind.IH [of v] by fastforce
qed
next
case (2 s r)
then show ?case by fastforce
qed

lemma normalize-full-sublist-preseruv:

[sublist xs v; v € dverts t1] = Jv2 € dverts (normalize-full t1). sublist xs v2
using normalize-full-verts-sublist sublist-order.dual-order.trans by fast
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lemma denormalize-full-sublist-preserv:
assumes sublist s v and v € dverts t1 and max-deg t1 < 1
shows sublist zs (denormalize (normalize-full 1))
proof —
obtain r where r-def[simp]: normalize-full t1 = Node r {||}
using assms(3) normalize-full-empty-sucs by blast
have sublist xs r using normalize-full-sublist-preserv[OF assms(1,2)] by simp
then show %thesis by (simp add: denormalize-empty-sucs-simp)
qed

corollary denormalize-sublist-preseruv:
[sublist zs v; v € dverts (t1::('a list,’b) diree); maz-deg t1 < 1]
= sublist xs (denormalize t1)
using denormalize-full-sublist-preserv by simp

lemma Q-denormalize-full:
assumes wf-dlverts t1
and Vv € dverts t1. distinct v
and hd (Dtree.root t1) = root
and maz-deg t1 < 1
and Vs € (dverts t1). seq-conform xs
and dom-children t1 T
shows fwd-sub root (dverts t1) (denormalize (normalize-full t1))
using P-denormalize-full|OF assms(1—4)] assms(1,4—6) denormalize-full-sublist-preserv
by (auto dest: denormalize-full-fwd simp: fwd-sub-def)

corollary Q-denormalize:
assumes wf-dlverts t1
and Vv € dverts t1. distinct v
and hd (Dtree.root t1) = root
and maz-deg t1 < 1
and Vs € (dverts t1). seq-conform s
and dom-children t1 T
shows fwd-sub root (dverts t1) (denormalize t1)
using Q-denormalize-full assms by simp

corollary Q-denormalize-t:
assumes hd (Dtree.root t) = root
and maz-deg t < 1
and dom-children t T
shows fwd-sub root (dverts t) (denormalize t)
using Q-denormalize wf-lverts assms verts-conform verts-distinct by blast

lemma P-denormalize-ikkbz-sub:

assumes hd (Dtree.root t) = root

shows unique-set-r root (dverts t) (denormalize (ikkbz-sub t))
proof —

interpret T: ranked-dtree-with-orig ikkbz-sub t using ikkbz-sub-ranked-dtree-orig
by auto
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have V vedverts (ikkbz-sub t). distinct v using T.verts-distinct by simp
then show ?thesis
using P-denormalize T .wf-lverts ikkbz-sub-mdeg-lel assms ikkbz-sub-hd-root
unfolding unique-set-r-def denormalize-ikkbz-eq-dlverts dlverts-eq-dverts-union
by blast
qed

lemma mergel-sublist-preserv:
[sublist xs v; v € dverts t] = Jv2 € dverts (mergel t). sublist xs v2
using sublist-order.dual-order.trans by auto

lemma normalizel-verts-sublist: v € dverts t1 = Jv2 € dverts (normalizel t1).
sublist v v2
proof (induction t1 arbitrary: v rule: normalizel .induct)
case ind: (1 rte)
show Zcase
proof(cases rank (rev (Dtree.root t)) < rank (rev 1))
case True
consider v = r V v = Dtree.root t | 3t1 € fst ‘ fset (sucs t). v € dverts t1
using dverts-root-or-suc using ind.prems by fastforce
then show ?thesis
proof (cases)
case I
then show ?thesis using True by auto
next
case 2
then show ?thesis using True by fastforce
qed
next
case Fulse
then show %thesis using ind by auto
qed
next
case (2 zs r)
then show ?case by fastforce
qed

lemma normalizel-sublist-preserv:
[sublist zs v; v € dverts t1] => Jv2 € dverts (normalizel t1). sublist zs v2
using normalizel-verts-sublist sublist-order.dual-order.trans by fast

lemma normalize-verts-sublist: v € dverts t1 = Jv2 € dverts (normalize t1).
sublist v v2
proof (induction t1 arbitrary: v rule: normalize.induct)
case (1 t1)
then show “case
proof(cases t1 = normalizel t1)
case True
then show ?thesis using 1.prems by auto

423



next
case Fulse
then have eq: normalize (normalizel t1) = normalize t1 by (auto simp:
Let-def)
then obtain v2 where v2-def: v2 € dverts (normalizel t1) sublist v v2
using normalizel-verts-sublist 1.prems by blast
then show ?thesis
using 1.IH[OF refl False v2-def(1)] eq sublist-order.dual-order.trans by auto
qed
qed

lemma normalize-sublist-preserv:
[sublist xs v; v € dverts t1] = Jv2 € dverts (normalize t1). sublist zs v2
using normalize-verts-sublist sublist-order.dual-order.trans by fast

lemma ikkbz-sub-verts-sublist: v € dverts t = Jv2 € dverts (ikkbz-sub t). sublist
v v2
using ranked-dtree-with-orig-azioms proof (induction t arbitrary: v rule: ikkbz-sub.induct)
case (1 t)
then interpret T: ranked-dtree-with-orig t by simp
interpret NT: ranked-dtree-with-orig normalize t
using T.ranked-dtree-orig-normalize by blast
show ?Zcase
proof(cases maz-deg t < 1)
case True
then show ?thesis using I.prems(1) by auto
next
case Fulse
then have 0: = (maz-deg t < 1 V — list-dtree t) using T'.list-dtree-azioms by
auto
obtain v! where vI-def: v1 € dverts (normalize t) sublist v vl
using normalize-verts-sublist 1.prems(1) by blast
then have vl € dverts (mergel (normalize t)) using NT.mergel-dverts-eq by
blast
then obtain v2 where v2-def: v2 € dverts (ikkbz-sub t) sublist v1 v2
using 1 0 T.mergel-normalize-ranked-dtree-orig by force
then show ?thesis using vI-def(2) sublist-order.dual-order.trans by blast
qed
qed

lemma ikkbz-sub-sublist-preserv:
[sublist xs v; v € dverts t] = Jv2 € dverts (ikkbz-sub t). sublist zs v2
using ikkbz-sub-verts-sublist sublist-order.dual-order.trans by fast

lemma denormalize-ikkbz-sub-verts-sublist:

Vs € (dverts t). sublist xs (denormalize (ikkbz-sub t))

using ikkbz-sub-verts-sublist denormalize-sublist-preserv ikkbz-sub-mdeg-lel by
blast
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lemma denormalize-ikkbz-sub-sublist-preserv:
[sublist xs v; v € dverts t] = sublist zs (denormalize (ikkbz-sub t))
using denormalize-ikkbz-sub-verts-sublist sublist-order.dual-order.trans by blast

lemma @Q-denormalize-ikkbz-sub:
[hd (Dtree.root t) = root; maz-deg t < 1 => dom-children t T
= fwd-sub root (dverts t) (denormalize (ikkbz-sub t))
using P-denormalize-ikkbz-sub ikkbz-sub-forward denormalize-ikkbz-sub-verts-sublist
fwd-sub-def
by blast

10.4.2 Minimal Cost of the result

lemma normalizel-dverts-app-before-contr:
[v € dverts (normalizel t); v ¢ dverts t]
= Jul€Edverts t. Av2€dverts t. vI Q v2 = v A before v1 v2 A rank (rev v2)
< rank (rev vl)
by (fastforce dest: normalizel-dverts-contr-subtree
simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalizel-dverts-app-bfr-cntr-rnks:
assumes v € dverts (normalizel t) and v ¢ dverts t
shows 3 Ucdverts t. 3 Vedvertst. U Q V = v A before UV A rank (rev V) <
rank (rev U)
A (Vas € dverts t. (Jy€set xs. = (Fz'€set V. x' =T py) A (Jz€set U. z
Stpy) Aas £ U)
— rank (rev V) < rank (rev xs))
using normalizel-dverts-contr-subtree| OF assms| subtree-rank-ge-if-reach’
by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalizel-dverts-app-bfr-cntr-rnks’:
assumes v € dverts (normalizel t) and v ¢ dverts t
shows 3 Ucdverts t. 3 Vedvertst. U Q V = v A before UV A rank (rev V) <
rank (rev U)
A (Vas € dverts t. (Jy€set xs. = (Fz'€set V. 2’ =T p y) A (Ja€set U. z
St y) A s £ U)
— rank (rev V) < rank (rev xs))
using normalizel-dverts-contr-subtree[ OF assms| subtree-rank-ge-if-reach’
by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalizel-dverts-split:

dverts (normalizel t1)

= {v € dverts (normalizel t1). v ¢ dverts t1} U {v € dverts (normalizel t1). v
€ dverts t1}

by blast

lemma normalizel-dlverts-split:
dlverts (normalizel t1)
= U (set ‘{v € dverts (normalizel t1). v ¢ dverts t1})
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U U (set “ {v € dverts (normalizel t1). v € dverts t1})
using dlverts-eq-dverts-union by fastforce

lemma normalizel-dsjnt-in-dverts:
assumes wf-dlverts t1
and v € dverts t1
and set v N Y (set ‘ {v € dverts (normalizel t1). v ¢ dverts t1}) = {}
shows v € dverts (normalizel t1)
proof —
have set v C dlverts (normalizel t1) using assms(2) lverts-if-in-verts by fast-
force
then have sub: set v C |J(set ‘ {v € dverts (normalizel t1). v € dverts t1})
using normalizel-dlverts-split assms(8) by auto
have v # || using assms(1,2) empty-notin-wf-dlverts by auto
then obtain x where z-def: © € set v by fastforce
then show ?thesis using dverts-same-if-set-wf[OF assms(1,2)] z-def sub by
blast
qed

lemma normalizel-dsjnt-subset-split1:

fixes t1

defines X = {v € dverts (normalizel t1). v ¢ dverts t1}

assumes wf-dlverts t1

shows {z. zedverts t1 A set x N |J(set ‘ X) = {}} C {v € dverts (normalizel
t1). v € dverts t1}

using assms normalizel-dsjnt-in-dverts by blast

lemma normalizel-dsjnt-subset-split2:

fixes t1

defines X = {v € dverts (normalizel t1). v ¢ dverts t1}

assumes wf-dlverts t1

shows {v € dverts (normalizel t1). v € dverts t1} C {z. z€dverts t1 A set x N
U (set * X) = {}}

using dverts-same-if-set-wf[OF wf-dlverts-normalizel]| assms by blast

lemma normalizel-dsjnt-subset-eq-split:

fixes t1

defines X = {v € dverts (normalizel t1). v ¢ dverts t1}

assumes wf-dlverts t1

shows {v € dverts (normalizel t1). v € dverts t1} = {z. z€dverts t1 N set x N
U (set * X) = {}}

using normalizel-dsjnt-subset-splitl normalizel-dsjnt-subset-split2 assms

by blast

lemma normalizel-dverts-split2:
fixes t1
defines X = {v € dverts (normalizel t1). v ¢ dverts t1}
assumes wf-dlverts t1
shows X U {z. z € dverts t1 A set x N |J(set * X) = {}} = dverts (normalizel
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t1)
unfolding assms(1) using normalizel-dsjnt-subset-eq-split{OF assms(2)] by
blast

lemma set-subset-if-normalizel-vert: vi € dverts (normalizel t1) = set vl C
dlverts t1
using lverts-if-in-verts by fastforce

lemma normalizel-new-verts-not-reachl:
assumes vl € dverts (normalizel t) and vl ¢ dverts t
and v2 € dverts (normalizel t) and v2 ¢ dverts t
and vl # v2
shows —(Jz€set v1. Jyeset v2. z =T 7 y)
using assms ranked-dtree-with-orig-azioms proof (induction t rule: normalizel .induct)
case (I rte)
then interpret R: ranked-dtree-with-orig Node r {|(t, e)|} by blast
show ?Zcase
proof(cases rank (rev (Dtree.root t)) < rank (rev r))
case True
then have eq: normalizel (Node r {|(t, e)|}) = Node (rQDtree.root t) (sucs t)
by simp
have v! = r @ Dtree.root t
using 1.prems(1,2) dverts-suc-subseteq unfolding eq by fastforce
moreover have v2 = r @Q Dtree.root t
using 1.prems(3,4) dverts-suc-subseteq unfolding eq by fastforce
ultimately show ?thesis using I.prems(5) by simp
next
case Fulse
then show ?thesis using 1 R.ranked-dtree-orig-rec by simp
qed
next
case (2 zs 1)
then interpret R: ranked-dtree-with-orig Node r zs by blast
have eq: normalizel (Node r xs) = Node r ((A(t,e). (normalizel t,e)) | xs)
using 2.hyps by simp
obtain ¢/ el where t1-def: (t1,el) € fset xs vl € dverts (normalizel t1)
using 2.hyps 2.prems(1,2) by auto
obtain t2 e2 where t2-def: (12,e2) € fset xs v2 € dverts (normalizel t2)
using 2.hyps 2.prems(3,4) by auto
show ?Zcase
proof(cases t1 = t2)
case True
have vl ¢ dverts t1 A v2 ¢ dverts t2
using 2.hyps 2.prems(2,4) t1-def(1) t2-def(1) by simp
then show ?thesis using 2.1H t1-def t2-def True 2.prems(5) R.ranked-dtree-orig-rec
by simp
next
case Fulse
have sub: is-subtree t1 (Node r xs) using t1-def(1) subtree-if-child[of t1 zs r]
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by force
have set v1 C dlverts t1 using set-subset-if-normalizel-vert t1-def(2) by simp
then have reach-t1: Vi € set v1.Vy. x =T py — y € dlverts t1
using R.dlverts-reachl-in-dlverts sub by blast
have dlverts t1 N dlverts t2 = {}
using R.wf-lverts t2-def (1) t1-def(1) wf-dlverts.simps|of r| False by fast
then have set v2 N dlverts t1 = {} using set-subset-if-normalizel-vert t2-def(2)
by auto
then show ?thesis using reach-t1 by blast
qged
qged

lemma normalizel-dverts-split-optimal:
defines X = {v € dverts (normalizel t). v ¢ dverts t}
assumes Jz. fwd-sub root (dverts t) x
shows Jzs. fwd-sub root (X U {z. z € dverts t A set x N |J(set * X) = {}}) zs
A (Yas. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
proof —
let ?Y = dverts t
have dsjt: Vas € ?Y. Vys € ?Y. xs = ys V set xs N set ys = {}
using dverts-same-if-set-wf[OF wf-lverts] by blast
have fwd: Vs € ?Y. forward xs by (simp add: verts-forward)
have nempty: [| ¢ ?Y by (simp add: empty-notin-wf-dlverts wf-lverts)
have fin: finite ?Y by (simp add: finite-dverts)
have Vys € X. 3U € ?Y. 3V € 2Y. UQV = ys A before U V A rank (rev V)
< rank (rev U)
AN (Vas € 2Y. (yeset zs. ~(Fz'€set V. z’ =T py) A (Jzeset U. z =T p
y) A zs # U)
— rank (rev V) < rank (rev xs))
unfolding X-def using normalizel-dverts-app-bfr-cntr-rnks’ by blast
moreover have Vis € X.Vys € X. xs = ys V set zs N set ys = {}
unfolding X-def using dverts-same-if-set-wf | OF wf-dlverts-normalizel] wf-lverts
by blast
moreover have Vis € X. Vys € X. zs = ys V =(FzE€set zs. Jy€set ys. v =T p
Y)
unfolding X-def using normalizel-new-verts-not-reachl by blast
moreover have finite X by (simp add: X-def finite-dverts)
ultimately show %thesis
using combine-union-sets-optimal-cost| OF asi-rank dsjt fwd nempty fin assms(2)]
by simp
qed

corollary normalizel-dverts-optimal:
assumes 3 z. fwd-sub root (dverts t) x
shows 3 zs. fwd-sub root (dverts (normalizel t)) zs
A (Vas. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using normalizel-dverts-split-optimal assms normalizel-dverts-split2] OF wf-lverts]
by simp
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lemma normalize-dverts-optimal:
assumes Jz. fwd-sub root (dverts t) x
shows 3 zs. fwd-sub root (dverts (normalize t)) zs
A (Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using assms ranked-dtree-with-orig-axioms proof (induction t rule: normalize.induct)
case (11)
then interpret T': ranked-dtree-with-orig t by blast
obtain zs where zs-def:
fwd-sub root (dverts (normalizel t)) zs
Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as)
using 1.prems T.normalizel-dverts-optimal by auto
show ?Zcase
proof(cases t = normalizel t)
case True
then show %thesis using zs-def by auto
next
case Fulse
then have eq: normalize (normalizel t) = normalize t by (auto simp: Let-def)
have 3 zs. fwd-sub root (dverts (normalize (normalizel t))) zs
A (Vas. fwd-sub root (dverts (normalizel t)) as — cost (rev zs) < cost
(rev as))
using 1.IH False zs-def(1) T.ranked-dtree-orig-normalizel by blast
then show ?thesis using zs-def eq by force
qed
qed

lemma mergel-dverts-optimal:
assumes Jz. fwd-sub root (dverts t) x
shows 3 zs. fwd-sub root (dverts (mergel t)) zs
A (Vas. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using assms forward-UV-lists-argmin-ex by simp

theorem ikkbz-sub-dverts-optimal:
assumes Jz. fwd-sub root (dverts t) x
shows 3 zs. fwd-sub root (dverts (ikkbz-sub t)) zs
A (Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using assms ranked-dtree-with-orig-azioms proof (induction t rule: ikkbz-sub.induct)
case (1t)
then interpret T ranked-dtree-with-orig t by simp
interpret NT': ranked-dtree-with-orig normalize t
using T.ranked-dtree-orig-normalize by blast
show ?Zcase
proof(cases maz-deg t < 1)
case True
then show %thesis using 1.prems(1) forward-UV-lists-argmin-ex by auto
next
case Fulse
then have 0: — (maz-deg t < 1 V = list-dtree t) using T'.list-dtree-azioms by
auto
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obtain zs where zs-def: fwd-sub root (dverts (mergel (normalize t))) zs
Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as)
using 1.prems T.normalize-dverts-optimal NT.mergel-dverts-eq by auto
have 3 zs. fwd-sub root (dverts (ikkbz-sub (mergel (normalize t)))) zs
A (Vas. fwd-sub root (dverts (mergel (normalize t))) as — cost (rev zs)
< cost (rev as))
using 1.IH 0 zs-def(1) T.mergel-normalize-ranked-dtree-orig by blast
then show ?thesis using zs-def 0 by force
qed
qged

lemma ikkbz-sub-dverts-optimal:
assumes hd (Dtree.root t) = root and maz-deg t < 1 = dom-children t T
shows 3 zs. fwd-sub root (dverts (ikkbz-sub t)) zs
A (Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using ikkbz-sub-dverts-optimal Q-denormalize-ikkbz-sub assms by blast

lemma combine-strict-subtree-orig:
assumes strict-subtree (Node r1 {|(12,e2)|}) (Node (r@Dtree.root t1) (sucs t1))
shows is-subtree (Node r1 {|(t2,e2)|}) (Node r {|(t1,e1)|})
proof —
obtain t& where t3-def: t3 € fst ‘ fset (sucs t1) is-subtree (Node r1 {|(t2,e2)|})
t3
using assms unfolding strict-subtree-def by force
then show ?thesis using subtree-trans subtree-if-suc[OF t3-def(1)] by auto
qged

lemma combine-subtree-orig-uneq:
assumes is-subtree (Node r1 {|(t2,e2)|}) (Node (r@Dtree.root t1) (sucs t1))
shows Node r1 {|(t2,e2)|} # Node r {|(t1,e1)|}
proof —
have size (Node r1 {|(t2,e2)|}) < size (Node (r@Dtree.root t1) (sucs t1))
using assms(1) subtree-size-le by blast
also have size (Node (r@QDtree.root t1) (sucs t1)) < size (Node r {|(t1,e1)|})
using dtree-size-skip-decrl by fast
finally show ?thesis by blast
qed

lemma combine-strict-subtree-ranks-le:
assumes A1l t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) (Node r {|(t1,el)|})
= rank (rev r1) < rank (rev (Dtree.root t2))
and strict-subtree (Node r1 {|(t2,e2)|}) (Node (r@QDtree.root t1) (sucs t1))
shows rank (rev r1) < rank (rev (Dtree.root t2))
using combine-strict-subtree-orig assms unfolding strict-subtree-def
by (fast intro!: combine-subtree-orig-uneq )

lemma subtree-child-uneq:

[is-subtree t1 t2; t2 € fst * fset xs] = t1 # Node r xs
using child-uneq subtree-antisym subtree-if-child by fast
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lemma subtree-singleton-child-uneq:
is-subtree t1 t2 = t1 # Node r {|(12,e2)|}
using subtree-child-uneq[of t1] by simp

lemma child-subtree-ranks-le-if-strict-subtree:
assumes Arl t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) (Node r {|(t1,el)|})
= rank (rev r1) < rank (rev (Dtree.root t2))
and is-subtree (Node r1 {|(t2,e2)|}) tI
shows rank (rev r1) < rank (rev (Dtree.root t2))
using assms subtree-trans subtree-singleton-child-uneq unfolding strict-subtree-def
by fastforce

lemma verts-ge-child-if-sorted:
assumes Arl t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) (Node r {|(t1,el)|})
= rank (rev r1) < rank (rev (Dtree.root t2))
and max-deg (Node r {|(t1,e1)|}) < 1
and v € dverts t1
shows rank (rev (Dtree.root t1)) < rank (rev v)
proof —
have Ar! t2 e2. is-subtree (Node r1 {|(t2,e2)|}) t1 = rank (rev r1) < rank
(rev (Dtree.root t2))
using child-subtree-ranks-le-if-strict-subtree[ OF assms(1)] by simp
moreover have maz-deg t1 < 1 using mdeg-ge-child[of t1 el {|(t1,e1)|}]
assms(2) by simp
ultimately show ?thesis using rank-ge-if-mdeg-le1-dvert-nocontr assms(3) by
fastforce
qed

lemma verts-ge-child-if-sorted’:
assumes Arl t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) (Node r {|(t1,el)|})
= rank (rev r1) < rank (rev (Dtree.root t2))
and max-deg (Node r {|(t1,e1)|}) < 1
and v € dverts (Node r {|(t1,e1)|})
and v # r
shows rank (rev (Dtree.root t1)) < rank (rev v)
using verts-ge-child-if-sorted[OF assms(1,2)] assms(3,4) by simp

lemma not-combined-sub-dverts-combine:
{rQ@QDtree.root t1} U {z. = € dverts (Node r {|(t1,el)|}) A z # r A x # Dtree.root
t1}
C dverts (Node (r @ Dtree.root t1) (sucs t1))
using dverts-suc-subseteq dverts-root-or-suc by fastforce

lemma dverts-combine-orig-not-combined:

assumes wf-dlverts (Node r {|(t1,el)|}) and z € dverts (Node (r @ Dtree.root
t1) (sucs t1)) and x # rQDtree.root t1

shows = € dverts (Node r {|(t1,e1)|}) A x # r A © # Dtree.root t1
proof —
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obtain 2 where t2-def: t2 € fst * fset (sucs t1) x € dverts t2 using assms(2,3)
by fastforce
have set r N dlverts t2 = {} using assms(1) suc-in-dlverts’|OF t2-def(1)] by
auto
then have z # r using assms(1) t2-def(2) nempty-inter-notin-dverts by auto
have Dtree.root t1 # ||
using assms(1) empty-notin-wf-dlverts single-subtree-child-root-dverts| OF self-subtree,
of t1]
by force
moreover have set (Dtree.root t1) N dlverts t2 = {}
using assms(1) t2-def(1) notin-dlverts-suc-if-wf-in-root by fastforce
ultimately have = # Dtree.root t1 using nempty-inter-notin-dverts t2-def(2)
by blast
then show ?thesis using «x # 1> t2-def dverts-suc-subseteq by auto
qed

lemma dverts-combine-sub-not-combined:
wf-dlverts (Node r {|(t1,el)|}) = dverts (Node (r @ Dtree.root t1) (sucs t1))
C {rQ@Dtree.root t1} U {z. z € dverts (Node r {|(t1,el)|}) Nz # r N x #
Dtree.root t1}
using dverts-combine-orig-not-combined by fast

lemma dverts-combine-eq-not-combined:
wf-dlverts (Node r {|(t1,el)|}) = dverts (Node (r @ Dtree.root t1) (sucs t1))
= {r@Dtree.root t1} U {x. x € dverts (Node r {|(t1,el)|}) Nz # r N x #
Dtree.root t1}
using dverts-combine-sub-not-combined not-combined-sub-dverts-combine by fast

lemma normalize-full-dverts-optimal-if-sorted:

assumes asi rank root cost

and wf-dlverts t1

and Vs € (dverts t1). distinct xs

and Vzs € (dverts t1). seq-conform s

and Ar1 t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) t1

= rank (rev r1) < rank (rev (Dtree.root t2))

and maz-deg t1 < 1

and hd (Dtree.root t1) = root

and dom-children t1 T

shows 3 zs. fwd-sub root (dverts (normalize-full t1)) zs
A (Y as. fwd-sub root (dverts t1) as — cost (rev zs) < cost (rev as))
using assms proof (induction t1 rule: normalize-full.induct)
case (I rte)
let ?Y = dverts (Node r {|(t,e)|})
have dsjt: Vas € Y. Vys € 2Y. xs = ys V set xs N set ys = {}
using dverts-same-if-set-wf[OF 1.prems(2)] by blast

have fwd: Vzs € ?Y. forward zs using 1.prems(4) seq-conform-alt by blast
have nempty: [| ¢ ?Y using empty-notin-wf-dlverts 1.prems(2) by blast
have fin: finite ?Y by (simp add: finite-dverts)
have U: r € dverts (Node r {|(t, €)|}) by simp
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have V: Dtree.root t € dverts (Node r {|(t, €)|})
using single-subtree-child-root-dverts self-subtree by fast
have ge: Vas€dverts (Node v {|(t, €)|}). zs # r — rank (rev (Diree.root t)) <
rank (rev xs)
using verts-ge-child-if-sorted'|OF 1.prems(5,6)] by fast
moreover have bfr: before r (Dtree.root t)
using before-if-dom-children-wf-conform|[OF 1.prems(8,4,2)].
moreover have Fz: 3 z. fud-sub root ?Y © using Q-denormalize-full 1.prems(1—8)
by blast
ultimately obtain zs where zs-def:
fwd-sub root ({r@QDtree.root t} U {z. x € ?Y A x # r A & # Dtree.root t}) zs
(V as. fwd-sub root ?Y as — cost (rev zs) < cost (rev as))
using app-UV-set-optimal-cost[OF 1.prems(1) dsjt fwd nempty fin U V] by
blast
have wf: wf-dlverts (Node (r @ Dtree.root t) (sucs t)) using 1.prems(2) com-
bine-wf-dlverts by fast
moreover have dst: ¥V vedverts (Node (r @ Diree.root t) (sucs t)). distinct v
using 1.prems(2,3) combine-distinct by fast
moreover have seq: VY vedverts (Node (r Q Ditree.root t) (sucs t)). seq-conform
v
using 1.prems(2,4,8) combine-conform by blast
moreover have rk: Arl t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) (Node (r @
Dtree.root t) (sucs t))
= rank (rev r1) < rank (rev (Dtree.root t2))
using combine-strict-subtree-ranks-le[OF 1.prems(5)] by simp
moreover have mdeg: maz-deg (Node (r @ Dtree.root t) (sucs t)) < 1
using 1.prems(6) mdeg-child-sucs-le
by (fastforce dest: order-trans simp del: maz-deg.simps)
moreover have hd: hd (Dtree.root (Node (r @ Diree.root t) (sucs t))) = root
using 1.prems(2,7) by simp
moreover have dom: dom-children (Node (r @ Dtree.root t) (sucs t)) T
using 1.prems(8) dom-children-combine by auto
ultimately obtain zs where zs-def:
fwd-sub root (dverts (normalize-full (Node (r @ Dtree.root t) (sucs t)))) xs
(Y as. fwd-sub root (dverts (Node (r @ Dtree.root t) (sucs t))) as
— cost (rev zs) < cost (rev as))
using 1.IH 1.prems(1) by blast
then show ?case using dverts-combine-eq-not-combined|OF 1.prems(2)] zs-def
by force
next
case (2 zs r)
have Ex: Jz. fwd-sub root (dverts (Node r xs)) «
using @-denormalize-full 2.prems(1—8) by blast
then show ?case using 2.hyps(1) forward-UV-lists-argmin-ex by simp
qed

corollary normalize-full-dverts-optimal-if-sorted:

assumes maz-deg t < 1
and hd (Dtree.root t) = root
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and dom-children t T
and Ar1 t2 e2. strict-subtree (Node r1 {|(t2,e2)|}) t
= rank (rev r1) < rank (rev (Dtree.root t2))
shows 3 zs. fwd-sub root (dverts (normalize-full t)) zs
A (Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
using normalize-full-dverts-optimal-if-sorted asi-rank wf-lverts assms
by (blast intro: verts-distinct verts-conform)

lemma normalize-full-normalize-dverts-optimal:
assumes max-deg t < 1
and hd (Dtree.root t) = root
and dom-children t T
shows 3 zs. fwd-sub root (dverts (normalize-full (normalize t))) zs
A (Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
proof —
interpret NT: ranked-dtree-with-orig normalize t
using ranked-dtree-orig-normalize by auto
have mdeg: maz-deg (normalize t) < 1 using assms(1) normalize-mdeg-eq wf-arcs
by fastforce
moreover from this have dom: dom-children (normalize t) T
using assms(3) dom-mdeg-le1-normalize by fastforce
moreover have hd: hd (Dtree.root (normalize t)) = root
using assms(2) normalize-hd-root-eq” wf-lverts by blast
moreover have Arl t2 e2. [is-subtree (Node r1 {|(t2,e2)|}) (normalize t)]
= rank (rev r1) < rank (rev (Dtree.root t2))
by (simp add: normalize-sorted-ranks)
ultimately obtain zs where zs-def: fwd-sub root (dverts (normalize-full (normalize
) z
(Y as. fwd-sub root (dverts (normalize t)) as — cost (rev zs) < cost (rev as))
using NT.normalize-full-dverts-optimal-if-sorted’ strict-subtree-def by blast
obtain zs where zs-def: fwd-sub root (dverts (normalize t)) zs
(Y as. fwd-sub root (dverts t) as —» cost (rev zs) < cost (rev as))
using normalize-dverts-optimal Q-denormalize-t assms by blast
then show ?thesis using xs-def by force
qed

lemma single-set-distinct-sublist: [set ys = set x; distinct ys; sublist ¢ ys] = =
unfolding sublist-def
by (metis Diff D2 append.assoc append.left-neutral append.right-neutral list.set-intros(1)
append-Cons distinct-set-diff neq-Nil-conv distinct-app-trans-l)

lemma denormalize-optimal-if-mdeg-lel:
assumes maz-deg t < 1 and hd (Dtree.root t) = root and dom-children t T
shows VY as. fwd-sub root (dverts t) as — cost (rev (denormalize t)) < cost (rev
as)
proof —
obtain zs where zs-def: fwd-sub root (dverts (normalize-full (normalize t))) zs
(V as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as))
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using normalize-full-normalize-dverts-optimal assms by blast
have dverts (normalize-full (normalize t)) = {denormalize t}
using normalize-full-normalize-dverts-eq-denormalize wf-lverts assms(1) by
blast
then show ?%thesis
using zs-def single-set-distinct-sublist by (auto simp: fwd-sub-def unique-set-r-def)
qed

theorem denormalize-ikkbz-sub-optimal:
assumes hd (Dtree.root t) = root and maz-deg t < 1 = dom-children t T
shows (V as. fwd-sub root (dverts t) as
— cost (rev (denormalize (ikkbz-sub t))) < cost (rev as))
proof —
obtain zs where zs-def: fwd-sub root (dverts (ikkbz-sub t)) zs
Y as. fwd-sub root (dverts t) as — cost (rev zs) < cost (rev as)
using ikkbz-sub-dverts-optimal’ assms by blast
interpret T': ranked-dtree-with-orig ikkbz-sub t using ikkbz-sub-ranked-dtree-orig
by simp
have maz-deg (ikkbz-sub t) < 1 using ikkbz-sub-mdeg-lel by auto
have hd (Dtree.root (ikkbz-sub t)) = root using assms(1) ikkbz-sub-hd-root by
auto
moreover have dom-children (ikkbz-sub t) T
using assms(2) dom-mdeg-le1-ikkbz-sub ikkbz-sub-eq-iff-mdeg-lel by auto
ultimately have V as. fwd-sub root (dverts (ikkbz-sub t)) as
— cost (rev (denormalize (ikkbz-sub t))) < cost (rev as)
using T.denormalize-optimal-if-mdeg-le1[OF ikkbz-sub-mdeg-lel] by blast
then show ?thesis using zs-def order-trans by blast
qed

end

10.5 Arc Invariants hold for Conversion to Dtree

context precedence-graph
begin

interpretation t: ranked-dtree to-list-dtree by (rule to-list-dtree-ranked-dtree)

lemma subtree-to-list-dtree-tree-dom:

[is-subtree (Node 1 xs) to-list-dtree; t € fst ‘ fset xs] = 1 —4,_list-tree Ditree.root
t

unfolding to-list-dtree-def

using finite-directed-tree. subtree-child-dom to-list-tree-finite-directed-tree by fast-
force

lemma subtree-to-list-dtree-dom:
assumes is-subtree (Node r xs) to-list-dtree and t € fst * fset xs
shows hd r —p hd (Dtree.root t)

proof —
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interpret T: directed-tree to-list-tree [root] by (rule to-list-tree-directed-tree)

have 0: 1 —;,_list-tree Dtree.root t using subtree-to-list-dtree-tree-dom assms by
blast

then obtain z where 2-def: r = [z] A & € verts T using to-list-tree-single by
force

obtain y where Diree.root t = [y] using 0 to-list-tree-single T.adj-in-verts(2)
by blast

then show ?thesis using 0 to-list-tree-def z-def(1) in-arcs-imp-in-arcs-ends by
force
qed

lemma to-list-dtree-nempty-root: is-subtree (Node r xs) to-list-diree = r # |]
using list-dtree.list-dtree-sub list-dtree.wf-lverts to-list-dtree-list-dtree by force

lemma dom-children-aux:
assumes is-subtree (Node r xs) to-list-dtree
and maz-deg t1 < 1
and (t1,el) € fset xs
and z € dlverts t1
shows Jv € set r U path-lverts t1 x. v =7 x
proof(cases x € set (Dtree.root t1))
case True
have Dtree.root t1 € dverts to-list-dtree
using assms(1,3) dverts-subtree-subset diree.set-sel(1) by fastforce
then have Diree.root t1 = [z] using to-list-diree-single True by fastforce
then have 0: hd r — p © using subtree-to-list-dtree-dom assms(1,3) by fastforce
have r € dverts to-list-dtree using assms(1) dverts-subtree-subset by force
then have r = [hd r| using to-list-dtree-single True by fastforce
then have hd r € set r using hd-in-set[of r] by blast
then show ?thesis using 0 by blast
next
case Fulse
obtain t2 where t2-def: is-subtree t2 t1 © € set (Dtree.root t2)
using assms(4) subtree-root-if-dlverts by fastforce
then obtain r! zs! where r1-def: is-subtree (Node r1 zs1) t1 t2 € fst ‘ fset zs1
using subtree-child-if-strict-subtree t2-def False unfolding strict-subtree-def by
blast
have is-subtree (Node r1 zs1) (Node r zs) using r1-def(1) assms(3) by auto
then have sub-r1: is-subtree (Node r1 zsl) to-list-dtree using assms(1) sub-
tree-trans by blast
have sub-t1-r: is-subtree t1 (Node r xs)
using subtree-if-child[of t1 zs] assms(3) by force
then have is-subtree t2 to-list-dtree using assms(1) subtree-trans t2-def(1) by
blast
then have Dtree.root t2 € dverts to-list-dtree
using assms(1) dverts-subtree-subset dtree.set-sel(1) by fastforce
then have Dtree.root t2 = [z] using to-list-dtree-single t2-def(2) by force
then have 0: hd r1 — p z using subtree-to-list-dtree-dom[OF sub-r1] ri-def(2)
by fastforce
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have sub-t1-to: is-subtree t1 to-list-dtree using sub-t1-r assms(1) subtree-trans
by blast
then have wf-dlverts t1 using t.wf-lverts list-dtree-def t.list-dtree-sub by blast
moreover have maz-deg t1 < 1 using assms(2) sub-t1-r le-trans mdeg-ge-sub
by blast
ultimately have set r1 C path-lverts t1 x
using subtree-path-lverts-sub ri-def t2-def(2) by fast
then show ?thesis
using 0 sub-r1 dverts-subtree-subset hd-in-set[of 1] to-list-dtree-single by force
qged

lemma hd-dverts-in-dlverts:
[is-subtree (Node r xs) to-list-diree; (t1,el) € fset xs; x € dverts t1] = hd z €
dlverts t1
using list-dtree.list-dtree-rec list-dtree.wf-lverts hd-in-lverts-if-wf t.list-dtree-sub
by fastforce

lemma dom-children-auz2:
[is-subtree (Node 1 xs) to-list-diree; maz-deg t1 < 1; (t1,el) € fset xs; x € dverts
t1]
= Jv € set r U path-lverts t1 (hd z). v =7 (hd 1)
using dom-children-auz hd-dverts-in-dlverts by blast

lemma dom-children-full:
[is-subtree (Node r xs) to-list-dtree; ¥Vt € fst ¢ fset xs. maz-deg t < 1]
= dom-children (Node r xs) T
unfolding dom-children-def using dom-children-auz2 by auto

lemma dom-children:
assumes is-subtree (Node r xs) to-list-dtree
shows dom-children (Node r (Abs-fset (children-degl xs))) T
unfolding dom-children-def dtree.sel children-degl1-fset-id
using dom-children-auz2|OF assms(1)] by fastforce

lemma dom-children-maxdeg-1:
[is-subtree (Node r xs) to-list-dtree; max-deg (Node r xs) < 1]
= dom-children (Node r xs) T
proof (elim dom-children-full)
show maz-deg (Node r zs) < 1 = Vi€fst * fset xs. maz-deg t < 1
using mdeg-ge-child by fastforce
qed

lemma dom-child-subtree:

[is-subtree (Node r xs) to-list-dtree; t € fst * fset xs] = Jve€set r. v —p hd
(Dtree.root t)

using subtree-to-list-dtree-dom hd-in-set to-list-dtree-nempty-root by blast

lemma dom-children-mazdeg-1-self:
max-deg to-list-dtree < 1 = dom-children to-list-dtree T
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using dom-children-mazxdeg-1[of Dtree.root to-list-dtree sucs to-list-dtree| self-subtree
by auto

lemma seq-conform-list-tree: ¥ v€verts to-list-tree. seq-conform v
by (simp add: to-list-tree-def seq-conform-single)

lemma conform-list-dtree: ¥V vedverts to-list-dtree. seq-conform v
using seq-conform-list-tree dverts-eq-verts-to-list-tree by blast

lemma to-list-dtree-vert-single: [v € dverts to-list-diree; x € set v] = v = [z] A
z € verts T
using to-list-dtree-single by fastforce

lemma to-list-dtree-vert-single-sub:
[és-subtree (Node r xs) to-list-dtree; x € set r] = r = [z] A x € verts T
using to-list-dtree-vert-single dverts-subtree-subset by fastforce

lemma to-list-dtree-child-if-to-list-tree-arc:
[is-subtree (Node r xs) to-list-dtree; r — i tist-tree V] == Fys. (Node v ys) € fst

¢ fset xs

using finite-directed-tree. child-if-dominated-to-dtree’| OF to-list-tree-finite-directed-tree]
unfolding to-list-dtree-def by simp

lemma to-list-dtree-child-if-arc:
[is-subtree (Node r xs) to-list-dtree; © € set r; x — 7 Y]
= Jys. Node [y] ys € fst ‘ fset xs
using to-list-dtree-child-if-to-list-tree-arc to-list-tree-dom-iff to-list-dtree-vert-single-sub
by auto

lemma to-list-dtree-dverts-if-arc:

[is-subtree (Node r xs) to-list-dtree; x € set r; x —p y| = [y] € dverts (Node r
xs)

using to-list-dtree-child-if-arclof v xs x y] by fastforce

lemma to-list-dtree-dlverts-if-arc:

[is-subtree (Node r xs) to-list-dtree; © € set r; x —p y] = y € dlverts (Node r
zs)

using to-list-dtree-child-if-arc[of r zs z y] by fastforce

theorem to-list-dtree-ranked-orig: ranked-dtree-with-orig to-list-dtree rank cost cmp
T root
using dom-children’ to-list-dtree-dlverts-if-arc asi-rank apply(unfold-locales)
by (auto simp: dom-children-mazdeg-1 dom-child-subtree distinct-to-list-dtree con-
form-list-dtree)

interpretation ¢: ranked-dtree-with-orig to-list-dtree by (rule to-list-dtree-ranked-orig)
lemma forward-ikkbz-sub: forward ikkbz-sub

using ikkbz-sub-def dom-children-mazdeg-1-self t.ikkbz-sub-forward by simp
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10.6 Optimality of IKKBZ-Sub

lemma kkbz-sub-optimal-Q):
(V as. fwd-sub root (verts to-list-tree) as — cost (rev ikkbz-sub) < cost (rev as))
using t¢.denormalize-ikkbz-sub-optimal to-list-dtree-hd-root-eq-root dom-children-mazxdeg-1-self
unfolding dverts-eq-verts-to-list-tree ikkbz-sub-def by blast

lemma to-list-tree-sublist-if-set-eq:

assumes set ys = |J (set ‘ verts to-list-tree) and zs € verts to-list-tree

shows sublist xs ys
proof —

obtain z where z-def: zs = [z] © € verts T using to-list-tree-single assms(2)
by blast

then have z € set ys using assms(1) to-list-tree-def by simp

then show ?thesis using z-def (1) split-list[of © ys] sublist-Cons sublist-append-left]
by fast
qed

lemma hd-eq-tk1-if-set-eq-verts: set xs = verts T = hd xs = root <— take 1 zs
= [root]
using hd-eq-takel takel-eq-hd[of xs] non-empty by fastforce

lemma ikkbz-sub-optimal:
[set xs = verts T; distinct zs; forward zs; hd zs = root]
= cost (rev ikkbz-sub) < cost (rev xs)
using ikkbz-sub-optimal-Q to-list-tree-sublist-if-set-eq
by (simp add: hd-eq-tk1-if-set-eq-verts to-list-tree-union-verts-eq fwd-sub-def unique-set-r-def)

end

10.7 Optimality of IKKBZ

context ikkbz-query-graph
begin

Optimality only with respect to valid solutions (i.e. contain every relation
exactly once). Furthermore, only join trees without cross products are con-
sidered.

lemma ikkbz-sub-optimal-cost-r:
[set zs = wverts G; distinct zs; no-cross-products (create-ldeep xs); hd xs = r; r €
verts G|
= cost-r 1 (rev (ikkbz-sub 1)) < cost-r r (rev xs)
using precedence-graph.ikkbz-sub-optimal verts-dir-tree-r-eq
by (fast intro: forward-if-ldeep-no-cross precedence-graph-r)

lemma ikkbz-sub-no-cross: r € verts G = no-cross-products (create-ldeep (ikkbz-sub

7))
using precedence-graph.forward-ikkbz-sub ikkbz-sub-verts-eq
by (fastforce intro: no-cross-ldeep-if-forward’ precedence-graph-r)
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lemma ikkbz-sub-cost-r-eq-cost:
r € verts G = cost-r v (rev (ikkbz-sub r)) = cost-l (ikkbz-sub 1)
using ikkbz-sub-verts-eq ikkbz-sub-distinct ikkbz-sub-no-cross ikkbz-sub-hd-eq-root
by (fastforce dest: cost-correct’)

corollary ikkbz-sub-optimal:
[set xs = verts G; distinct xs; no-cross-products (create-ldeep xs); hd xs = r; r €
verts GJ
= cost-l (ikkbz-sub r) < cost-l zs
using ikkbz-sub-optimal-cost-r cost-correct’ ikkbz-sub-cost-r-eq-cost by fastforce

lemma ikkbz-no-cross: no-cross-products (create-ldeep ikkbz)
using ikkbz-eq-ikkbz-sub ikkbz-sub-no-cross by force

lemma hd-in-verts-if-set-eq: set xs = verts G = hd zs € verts G
using verts-nempty set-empty2|of zs] by force

lemma ikkbz-optimal:
[set s = verts G; distinct xs; no-cross-products (create-ldeep xs)]
— cost-l ikkbz < cost-l zs
using ikkbz-min-ikkbz-sub ikkbz-sub-optimal by (fastforce intro: hd-in-verts-if-set-eq)

theorem ikkbz-optimal-tree:

[valid-tree t; no-cross-products t; left-deep t] = cost (create-ldeep ikkbz) < cost
tusing ikkbz-optimal inorder-eg-set by (fastforce simp: distinct-relations-def valid-tree-def)
end
end
theory IKKBZ-FExamples

imports IKKBZ-Optimality
begin

11 Examples of Applying IKKBZ

11.1 Computing Contributing Selectivity without Lists

context directed-tree
begin

definition contr-sel :: 'a selectivity = 'a = real where
contr-sel sel y = (if 3z. x —p y then sel (THE . © —p y) y else 1)

definition tree-sel :: 'a selectivity = bool where
tree-sel sel = Vzy. =(z »pyVy—pz) — selzy=1)
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lemma contr-sel-gt0: sel-reasonable sf = contr-sel sf x > 0
unfolding contr-sel-def sel-reasonable-def by simp

lemma contr-sel-lel: sel-reasonable sf = contr-sel sf x < 1
unfolding contr-sel-def sel-reasonable-def by simp

lemma nempty-if-not-fwd-conc: —forward-arcs (y#Hxs) = xs # ||
by auto

lemma len-gt1-if-not-fwd-conc: —forward-arcs (y#xs) = length (y#xs) > 1
by auto

lemma two-elems-if-not-fwd-conc: —forward-arcs (y#xs) = Ja b cs. a # b # cs

= y#uxs
by (metis forward-arcs.cases forward-arcs.simps(2))

lemma hd-reach-all-if-nfwd-app-fwd:
[—forward-arcs (y#xs); forward-arcs (y#ysQuxs); z € set (y#ysQzs)]
= hd (rev (y#ysQzs)) =" 7
using hd-reach-all-forward’[of rev (y#ysQus)] len-gt1-if-not-fwd-conc forward-arcs-alt
by auto

lemma hd-not-y-if-if-nfwd-app-fwd:
assumes —forward-arcs (y#xs) and forward-arcs (y#ysQus)
shows hd (rev (y#ysQus)) # y
proof —
obtain a where a-def: a € set (ysQzs) a -y
by (metis assms Nil-is-append-conv forward-arcs.simps(3) neg-Nil-conv)
then have hd (rev (y#ysQzs)) —* a using hd-reach-all-if-nfwd-app-fwd[ OF
assms| by simp
then show ?thesis
using a-def(2) reachablel-not-reverse
by (metis loopfree.adj-not-same reachable-adjl reachable-neq-reachablel)
qed

lemma hd-reachl-y-if-nfwd-app-fwd:
[=forward-arcs (y#xs); forward-arcs (y#ysQus)] = hd (rev (y#ysQus)) = p

Y
using hd-not-y-if-if-nfwd-app-fwd hd-reach-all-if-nfwd-app-fwd by auto

lemma not-fwd-if-skip1:

[ forward-arcs (y#a#x'#1s); forward-arcs (x#z'#1s)] = — forward-arcs
(y#x'#xs)

by auto

lemma fwd-arcs-conc-nlast-elem:
assumes forward-arcs s and y € set xs and y # last s
shows forward-arcs (y#wxs)

proof —
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obtain as bs where as-def: as Q y # bs = xs bs # ||
using split-list-not-last|OF assms(2,3)] by blast
then have forward-arcs (y#bs) using assms(1) forward-arcs-split by blast
then obtain z where z-def: v € set bsz =7y
using as-def(2) by (force intro: list.exhaust)
then have z € set xs using as-def(1) by auto
then show ?thesis using assms(1) x-def(2) forward-arcs.elims(3) by blast
qed

lemma fwd-app-nhead-elem: [forward xs; y € set xs; y # hd xzs] = forward
(zsQ[y])

using fwd-arcs-conc-nlast-elem forward-arcs-alt by (simp add: last-rev)

lemma hd-last-not-fwd-arcs: —forward-arcs (z#xsQ[z])
proof
assume asm: forward-arcs (x#xsQ[z])
then obtain y where y-def: y € set (zsQz]) y =7z
by (metis append-is-Nil-conv forward-arcs.simps(3) no-back-arcs.cases)
then have hd-in-verts: hd (rev (zs @ [z])) € verts T by auto
have forward-arcs (xsQ[z]) using asm forward-arcs-split[of [z] zsQ[z]] by simp
then have v —* p y using hd-reach-all-forward[OF hd-in-verts] y-def forward-arcs-alt
by simp
then show Fulse using y-def(2) reachablel-not-reverse by auto
qed

lemma hd-not-fwd-arcs: —forward-arcs (ysQr#rsQ|x])
using hd-last-not-fwd-arcs forward-arcs-split by blast

lemma hd-last-not-fwd: —forward (z#xsQz])
using hd-last-not-fwd-arcs forward-arcs-alt by simp

lemma hd-not-fwd: —~forward (z#xsQ[z]Qys)
using hd-not-fwd-arcs forward-arcs-alt by simp

lemma y-not-dom-if-nfwd-app-fwd:
[—forward-arcs (y#xs); forward-arcs (y#ysQuxs); x € setxs] = -z =7y
using forward-arcs-split[of y#ys xs] two-elems-if-not-fwd-conc by force

lemma not-y-dom-if-nfwd-app-fwd:
[—forward-arcs (y#as); forward-arcs (y#ysQus); x € set xs] = —y > ¢
by (smt (verit, ccfv-threshold) append-is-Nil-conv forward-arcs-alt’ forward-arcs-split
forward-cons fwd-app-nhead-elem hd-append hd-reachl-y-if-nfwd-app-fwd
hd-reachablel-from-outside’ list.distinct(1) reachablel-not-reverse reachable-adjl
reachable-neg-reachablel rev.simps(2) rev-append set-rev split-list)

lemma list-sel-auzx'1-if-tree-sel-nfwd:
[tree-sel sel; —forward-arcs (y#as); forward-arcs (y#ysQxs)]
= list-sel-auz’ sel zs y = 1
proof (induction s arbitrary: ys rule: forward-arcs.induct)
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case (2 1)
then show ?case using not-y-dom-if-nfwd-app-fud[OF 2(2,3)] by (auto simp:
tree-sel-def)
next
case (3 z z’ xs)
then have forward-arcs (z # x' # xs)
using forward-arcs-split[of y#ys z#x'#xs] by simp
then have — forward-arcs (y # =’ # xs) using not-fwd-if-skip1 3.prems(2) by
blast
moreover have forward-arcs (y # (ysQ[z]) @ =’ # xs) using 3 by simp
ultimately have list-sel-auz’ sel (z' # xs) y = 1 using 3.IH[OF 3.prems(1)]
by blast
then show ?case
using 3.prems(1) y-not-dom-if-nfwd-app-fwd|OF 3.prems(2,3)]
not-y-dom-if-nfwd-app-fwd| OF 8.prems(2,3)]
by (simp add: tree-sel-def)
qed(simp)

lemma contr-sel-eq-list-sel-auz'-if-tree-sel:
[tree-sel sel; distinct (y#xs); forward-arcs (y#xs); xs # [|]
= contr-sel sel y = list-sel-auzx’ sel zs y
proof (induction zs rule: forward-arcs.induct)
case (2 1)
then have z — 7 y by simp
then have (THE z. x —p y) = x using two-in-arcs-contr by blast
then show ?case using <z —p y> unfolding contr-sel-def by auto
next
case (3 z z' zs)
then show ?case
proof(cases x — 7 y)
case True
then have (THE z. x — y) = x using two-in-arcs-contr by blast
then have contr-sel: contr-sel sel y = sel z y using True unfolding contr-sel-def
by auto
have —forward-arcs (y#x'#xs) using True 3.prems(2) two-in-arcs-contr by
auto
then have list-sel-aux’ sel (v'#xs) y = 1
using list-sel-auz'1-if-tree-sel-nfwd[of sel y x'#xs [z]] 3.prems(1,3) by auto
then show ?thesis using contr-sel by simp
next
case Fulse
have -y -7z
using 3.prems(2,3) forward-arcs-alt’ no-back-arc-if-fwd-dstct
by (metis distinct-rev list.set-intros(1) rev.simps(2) set-rev)
then have sel z y = 1 using 3.prems(1) False unfolding tree-sel-def by blast
then show ?thesis using 3 Fualse by simp
qed
qed(simp)
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corollary contr-sel-eq-list-sel-auz'-if-tree-sel’:
[tree-sel sel; distinct (zsQly]); forward (zsQly]); zs # []]
= contr-sel sel y = list-sel-auz’ sel (rev xs) y
by (simp add: contr-sel-eq-list-sel-auz'-if-tree-sel forward-arcs-alt)

corollary contr-sel-eq-list-sel-auz'-if-tree-sel’”:
[tree-sel sel; distinct (zsQ[y]); forward (zsQly]); zs # []]
= contr-sel sel y = list-sel-auzx’ sel xs y
by (simp add: contr-sel-eg-list-sel-auz'-if-tree-sel’ mset-a-eq-list-sel-auz’-eq|of rev
zs])

lemma contr-sel-root[simp]: contr-sel sel root = 1
by (auto simp: contr-sel-def dest: dominated-not-root)

lemma contr-sel-notvert[simp): v ¢ verts T = contr-sel sel v = 1
by (auto simp: contr-sel-def)

lemma hd-reach-all-forward-verts:
[forward zs; set xs = verts T; v € verts T] = hd s —=*p v
using hd-reach-all-forward list.set-sel(1)[of zs] by force

lemma hd-eg-root-if-forward-verts: [forward xs; set xs = verts T] = hd xs = root
using hd-reach-all-forward-verts root-if-all-reach by simp

lemma contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts:
assumes tree-sel sel and distinct s and forward zs and set xs = verts T
shows contr-sel sel y = ldeep-s sel (rev zs) y
proof —
have hd-root: hd zs = root using hd-eq-root-if-forward-verts assms(3,4) by blast
consider y € set zs y = root | y € set xs y # root | y ¢ set xs by blast
then show ?thesis
proof(cases)
case I
then show %thesis using hd-root ldeep-s-revhd1-if-distinct assms(2) by auto
next
case 2
then obtain as bs where as-def: as Q y # bs = zs using split-list[of y] by
fastforce
then have forward (asQ[y]) using assms(3) forward-splitjof asQ[y]] by auto
moreover have distinct (asQ[y]) using assms(2) as-def by auto
moreover have as # [| using 2 hd-root as-def by fastforce
ultimately have contr-sel sel y = list-sel-auz’ sel (rev as) y
using contr-sel-eq-list-sel-auz’-if-tree-sel | OF assms(1)] by blast
then show ?thesis using as-def distinct-ldeep-s-eq-auz'[of rev xs] assms(2) by
auto
next
case 3
then have contr-sel sel y = 1 using assms(4) by simp
then show ?thesis using 3 ldeep-s-1-if-nelem set-rev by fastforce
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qed
qed

corollary contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts’:
[tree-sel sel; distinct xs; forward xs; set xs = verts T
= contr-sel sel = ldeep-s sel (rev xs)
using contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts by blast

lemma add-leaf-forward-arcs-preseruv:

[a & arcs T; u € verts T; v ¢ verts T; forward-arcs xs]

= directed-tree.forward-arcs (verts = verts T U {v}, arcs = arcs T U {a},
tail = (tail T)(a := u), head = (head T)(a := v)) xs

proof (induction zs rule: forward-arcs.induct)

case I

then show ?case using directed-tree.forward-arcs.simps(1) add-leaf-dir-tree by
fast
next

case (2 1)

then show ?case using directed-tree. forward-arcs.simps(2) add-leaf-dir-tree by
fast
next

case (3 z y xs)

let ?T = (verts = verts T U {v}, arcs = arcs T U {a},

tail = (tail T)(a := u), head = (head T)(a := v))

interpret T': directed-tree ?T root using add-leaf-dir-tree[OF 3.prems(1—23)] by
blast

have T.forward-arcs (y # xzs) using 3 by fastforce

then show ?case

using T forward-arcs.simps(3)[of z y xs] add-leaf-dom-preserv 3.prems(1,4) by
fastforce
qed

end

11.2 Contributing Selectivity Satisfies ASI Property

context finite-directed-tree
begin

lemma dst-fwd-arcs-all-verts-ex: A xs. forward-arcs s N distinct s A\ set s = verts
T
using finite-verts proof (induction rule: finite-directed-tree-induct)

case (single-vert t h root)

then show ?case using directed-tree.forward-arcs.simps(2)[OF dir-tree-single]
by fastforce
next

case (add-leaf T' VA t h u root a v)

define T where T = (verts = V U {v}, arcs = A U {a}, tail = t(a := u), head
= h(a = v))
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interpret T': directed-tree T' root using add-leaf.hyps(3) by blast
interpret T directed-tree T root using add-leaf .hyps(1,4—6) T'.add-leaf-dir-tree
T-def by simp
obtain zs where zs-def: T'.forward-arcs xs distinct zs set xs = verts T'
using add-leaf .IH by blast
then have T.forward-arcs xs
using T'.add-leaf-forward-arcs-preserv add-leaf .hyps(1,4,5,6) T-def by simp
moreover have Jycset zs. y —p v
using add-leaf .hyps(1,4) T-def zs-def (3) unfolding arcs-ends-def arc-to-ends-def
by force
ultimately have T'.forward-arcs (v#xs) using T.forward-arcs.elims(3) by blast
then show ?case using zs-def(2,3) add-leaf .hyps(1,5) T-def by auto
qed

lemma dst-fwd-all-verts-ex: I xs. forward s A distinct xs N\ set xs = verts T
using dst-fwd-arcs-all-verts-ex forward-arcs-alt’[symmetric] by auto

lemma c-list-asi-if-tree-sel:
fixes sfcfhr
defines rank = (M. (ldeep-T (contr-sel sf) ¢f | — 1) / c-list (contr-sel sf) cf h
rl)
assumes tree-sel sf
and sel-reasonable sf
and Vz. cfz > 0
and Vz. hz > 0
shows asi rank r (c-list (contr-sel sf) c¢f hr)
using c-list-asi assms contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts’ dst-fwd-all-verts-ex
by fastforce

end

context tree-query-graph
begin

abbreviation sel-r :: ‘a = 'a = real where
sel-r r = directed-tree.contr-sel (dir-tree-r r) match-sel

Since cf is only required to be positive for verts of G, we map all others to
1.

definition ¢f’ :: 'a = real where
of " x = (if x € verts G then ¢f x else 1)

definition c-list-r :: (‘a = real) = 'a = ’a list = real where
c-list-r h r = c-list (sel-rr) ¢f " hr

definition rank-r :: (a = real) = 'a = 'a list = real where
rank-r h r s = (ldeep-T (sel-r r) ¢f ' xs — 1) | c-list-r h r xs

lemma dom-in-dir-tree-r:
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assumes r € verts G and ¢ = y
shows z —dir-tree-r r Y VY —dir-tree-r v T
proof —
obtain el where el-def: el € arcs G tail G el = x head G el =y
using assms(2) unfolding arcs-ends-def arc-to-ends-def by blast
then show ?thesis
proof(cases el € arcs (dir-tree-r r))
case True
moreover have tail (dir-tree-r r) el =z
using el-def(2) tail-dir-tree-r-eq[OF assms(1)] by blast
moreover have head (dir-tree-r r) el =y
using el-def(3) head-dir-tree-r-eq[OF assms(1)] by blast
ultimately show ?thesis using el-def(1) unfolding arcs-ends-def arc-to-ends-def
by blast
next
case Fulse
then obtain e2 where e2-def: e2 € arcs (dir-tree-r r) tail G e2 = y head G
e2 =z
using arcs-compl-un-eg-arcs|OF assms(1)] el-def by force
have tail (dir-tree-r 1) e2 =y
using e2-def(2) tail-dir-tree-r-eq[OF assms(1)] by blast
moreover have head (dir-tree-r r) e2 = x
using e2-def(3) head-dir-tree-r-eq[OF assms(1)] by blast
ultimately show ?thesis using e2-def(1) unfolding arcs-ends-def arc-to-ends-def
by blast
qged
qged

lemma dom-in-dir-tree-r-iff-aux:
r € verts G = (T = girtree-r r Y V Y — dir-tree-r r T) < (z —GqYVvVy—qg )
using dir-tree-r-dom-in-G dom-in-dir-tree-r by blast

lemma dom-in-dir-tree-r-iff:
r € verts G = (T = gir-tree-r + Y V Y “dir-tree-r r T) <> T >q Y
using dom-in-dir-tree-r-iff-auz dominates-sym by blast

lemma dir-tree-sel[intro: r € verts G = directed-tree.tree-sel (dir-tree-r r) match-sel
unfolding directed-tree.tree-sel-def [ OF directed-tree-r]
using match-sell-if-no-arc dom-in-dir-tree-r-iff by blast

lemma pos-cards’[introl]: Vz. cf © > 0
unfolding cf’-def using pos-cards by simp

theorem c-list-asi: [r € verts G; Vz. h x > 0] = asi (rank-r h r) r (c-list-r h
")

using finite-directed-tree. c-list-asi-if-tree-sel| OF fin-directed-tree-r]

unfolding c-list-r-def rank-r-def by blast
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11.3 Applying IKKBZ

lemma cf’-simp: x € verts G = ¢f' © = ¢f x
unfolding cf’-def by simp

lemma ldeep-T-cf'-eq: set s C verts G = ldeep-T sf ¢f’ xs = ldeep-T sf cf xs
using ldeep-T-eq-if-cf-eq[of xs] cf’-simp by blast

lemma clist-cf’-eq: set xs C verts G = c-list sf ¢f’ h r xs = c-list sf ¢f h r xs
by (simp add: clist-eq-if-cf-eq ldeep-T-cf'-eq)

lemma card-cf’-eq: matching-rels t = card ¢f’ ft = card cf [ t
by (induction cf’ f t rule: card.induct) (auto simp: matching-rels-def cf’-simp)

lemma c-IKKBZ-cf’-eq: matching-rels t = c-IKKBZ h cf’ sf t = c-IKKBZ h cf
sft

by (induction h cf’ sf t rule: c-IKKBZ.induct) (auto simp: card-cf’-eq cf'-simp
matching-rels-def)

lemma c-IKKBZ-cf’-eq": valid-tree t = c-IKKBZ h cf’ sf t = c-IKKBZ h cf sf t
by (simp add: c-IKKBZ-cf'-eq matching-rels-def valid-tree-def)

lemma c-out-cf’-eq: matching-rels t = c-out cf’ sf t = c-out cf sf t
by (induction cf’ sf t rule: c-out.induct) (auto simp: card-cf’-eq cf’-simp match-
ing-rels-def)

lemma c-out-cf’-eq”: valid-tree t = c-out cf’ sf t = c-out cf sf t
by (simp add: c-out-cf’-eq matching-rels-def valid-tree-def)

lemma joinTree-card’-pos|intro]: pos-rel-cards cf’ t
by (induction t) (auto simp: pos-cards’ pos-rel-cards-def)

lemma match-reasonable-cards’lintro]: reasonable-cards cf’ match-sel t
using pos-sel-reason-impl-reason by blast

lemma sel-r-gt0: r € verts G = sel-rrz > 0
using directed-tree.contr-sel-gt0[OF directed-tree-r] by blast

lemma sel-r-lel: r € verts G = sel-rrz < 1
using directed-tree.contr-sel-lel [OF directed-tree-r| by blast

lemma sel-r-eq-ldeep-s-if-dst-fwd-verts:
[r € verts G; distinct xs; directed-tree.forward (dir-tree-r r) xs; set xs = verts GJ
= sel-r r = ldeep-s match-sel (rev xs)
using directed-tree. contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts'|OF directed-tree-r)
verts-dir-tree-r-eq
by blast

lemma sel-r-eq-ldeep-s-if-valid-fwd:
[r € verts G; valid-tree t; directed-tree.forward (dir-tree-r r) (inorder t)]
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= sel-r r = ldeep-s match-sel (revorder t)
unfolding valid-tree-def distinct-relations-def inorder-eq-set[symmetric] revorder-eg-rev-inorder
using sel-r-eq-ldeep-s-if-dst-fwd-verts by blast

lemma sel-r-eq-ldeep-s-if-valid-no-cross:
[valid-tree t; no-cross-products t; left-deep t]
= sel-r (first-node t) = ldeep-s match-sel (revorder t)
using sel-r-eq-ldeep-s-if-valid-fwd forward-if-ldeep-no-cross’
valid-tree-def first-node-in-verts-if-valid
by blast

lemma c-list-ldeep-s-eq-c-list-r-if-valid-no-cross:
[valid-tree t; no-cross-products t; left-deep t]
= c-list (Ideep-s match-sel (revorder t)) cf' h (first-node t) s
= c-list-r h (first-node t) xs
using sel-r-eq-ldeep-s-if-valid-no-cross c-list-r-def by simp

lemma c-IKKBZ-list-correct-if-simple-h:
assumes valid-tree t and no-cross-products t and left-deep ¢
shows c-list-r (Az. h = (¢f" x)) (first-node t) (revorder t) = ¢-IKKBZ h cf
match-sel t
proof —
have (At. ¢-IKKBZ h cf’ match-sel t) t
= c-list (ldeep-s match-sel (revorder t)) c¢f’ (Az. h z (¢f’ z)) (first-node t)
(revorder t)
using ¢-IKKBZ-eq-c-list assms(1,3) valid-tree-def by fast
then show ?thesis
using c-list-ldeep-s-eq-c-list-r-if-valid-no-cross assms by (simp add: c-IKKBZ-cf'-eq’)
qed

end

11.3.1 Applying IKKBZ on Simple Cost Functions

For simple cost functions like c-nlj and c-hj that do not depend on the con-
tributing selectivies as c-out does, the h function does not change. Therefore,
we can apply it directly using c-IKKBZ and c-list.

context cmp-tree-query-graph
begin

context
fixes h :: 'a = real = real
assumes h-pos: Vz. hz (¢f' z) > 0
begin

theorem ikkbz-query-graph-if-simple-h:
defines cost = c-IKKBZ h cf match-sel
defines h' = (Az. h z (¢f' 1))
shows ikkbz-query-graph bfs sel ¢f G emp cost (c-list-r h') (rank-r h")
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unfolding ikkbz-query-graph-def ikkbz-query-graph-azioms-def assms
by (auto simp: cmp-tree-query-graph-azioms c-list-asi c-IKKBZ-list-correct-if-simple-h
h-pos)

interpretation ikkbz-query-graph bfs sel c¢f G cmp
c¢-IKKBZ h cf match-sel c-list-r (Az. h z (¢f’ x)) rank-r (Az. h z (c¢f’ x))
by (fact ikkbz-query-graph-if-simple-h)

corollary ikkbz-simple-h-nempty: ikkbz # ||
by (rule ikkbz-nempty)

corollary ikkbz-simple-h-valid-tree: valid-tree (create-ldeep ikkbz)
by (rule ikkbz-valid-tree)

corollary kkbz-simple-h-no-cross:
no-cross-products (create-ldeep ikkbz)
by (rule ikkbz-no-cross)

theorem ikkbz-simple-h-optimal:
[valid-tree t; no-cross-products t; left-deep t]
= ¢-IKKBZ h cf match-sel (create-ldeep ikkbz) < ¢-IKKBZ h cf match-sel t
by (rule ikkbz-optimal-tree)

abbreviation ikkbz-simple-h :: 'a list where
ikkbz-stmple-h = ikkbz
end

We can now apply these results directly to valid cost functions like ¢-nlj and
c-hj.

lemma id-cf’-gt0: Vz. id (¢f’ ) > 0
by auto

corollary ikkbz-nempty-nlj: ikkbz-simple-h (A-. id) # ||
using ikkbz-simple-h-nempty[of A-. id, OF id-cf’-gt0] by blast

corollary ikkbz-valid-tree-nlj: valid-tree (create-ldeep (ikkbz-simple-h (A-. id)))
using ikkbz-simple-h-valid-tree[of A-. id, OF id-cf’-gt0] by blast

corollary ikkbz-no-cross-nlj: no-cross-products (create-ldeep (ikkbz-simple-h (A-.

id)))
using ikkbz-simple-h-no-cross[of A-. id, OF id-cf’-gt0] by blast

corollary ikkbz-optimal-nlj:

[valid-tree t; no-cross-products t; left-deep t]

= c¢-nlj ¢f match-sel (create-ldeep (ikkbz-simple-h (A-. id))) < c-nlj cf match-sel
t

using ikkbz-simple-h-optimal[of A-. id, OF id-cf’-gt0] ikkbz-nempty-nlj

by (fastforce simp: c-nlj-IKKBZ create-ldeep-ldeep)
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corollary ikkbz-nempty-hj: ikkbz-simple-h (A- -. 1.2) # ||
using ikkbz-simple-h-nempty by force

corollary ikkbz-valid-tree-hj: valid-tree (create-ldeep (ikkbz-simple-h (A- -. 1.2)))
using ikkbz-simple-h-valid-tree by force

corollary ikkbz-no-cross-hj: no-cross-products (create-ldeep (ikkbz-simple-h (A- -.

1.2)))

using ikkbz-simple-h-no-cross by force

corollary ikkbz-optimal-hj:
[valid-tree t; no-cross-products t; left-deep t]
= c-hj ¢f match-sel (create-ldeep (ikkbz-simple-h (M- -. 1.2))) < c-hj f
match-sel t
using ikkbz-simple-h-optimal[of A- -. 1.2] ikkbz-nempty-hj
by (fastforce simp: c-hj-IKKBZ create-ldeep-ldeep)

end

11.3.2 Applying IKKBZ on C_ out

Since c-out uses the contributing selectivity as part of its h, we can not use
the general approach we used for the "simple" cost functions. Instead, we
show the applicability directly.

context tree-query-graph
begin

definition c-out-list-r :: 'a = 'a list = real where
c-out-list-r r = c-list-r (Aa. sel-r r a x ¢f a) r

definition c-out-rank-r :: 'a = 'a list = real where
c-out-rank-r r = rank-r (Aa. sel-r r a * ¢f' a) r

lemma c-out-eq-c-list-cf":
fixes ¢
defines zs = revorder t
defines h = (\a. ldeep-s match-sel zs a * ¢f’ a)
assumes distinct-relations t and left-deep t
shows c-list (ldeep-s match-sel xs) cf’ h (first-node t) xs = c-out cf’ match-sel t
using c-out-eq-c-list assms by blast

lemma c-out-list-correct-cf":
fixes ¢
defines h = (\a. sel-r (first-node t) a * cf’ a)
assumes valid-tree t and no-cross-products t and left-deep t
shows c-list-r h (first-node t) (revorder t) = c-out ¢f’ match-sel t
using c-out-eq-c-list-cf’ assms sel-r-eq-ldeep-s-if-valid-no-cross
by (fastforce simp: valid-tree-def c-list-ldeep-s-eq-c-list-r-if-valid-no-cross)

451



lemma c-out-list-correct-cf:
fixes ¢
defines h = (\a. sel-r (first-node t) a * cf’ a)
assumes valid-tree t and no-cross-products t and left-deep ¢
shows c-list-r h (first-node t) (revorder t) = c-out cf match-sel t
using c-out-list-correct-cf’ c-out-cf’-eq’ assms by simp

lemma c-out-list-correct:
[valid-tree t; no-cross-products t; left-deep t]
= c-out-list-r (first-node t) (revorder t) = c-out cf match-sel t
using c-out-list-correct-cf c-out-list-r-def by simp

lemma c-out-h-gt0: r € verts G = (Aa. sel-rra x ¢f a) x > 0
using sel-r-gt0 by (simp add: pos-cards’)

lemma c-out-r-asi: v € verts G = asi (c-out-rank-r r) r (c-out-list-r r)
using c-out-h-gt0 by (simp add: c-list-asi c-out-list-r-def c-out-rank-r-def)

end

context cmp-tree-query-graph
begin

theorem ikkbz-query-graph-c-out:
ikkbz-query-graph bfs sel cf G ecmp (c-out ¢f match-sel) c-out-list-r c-out-rank-r
unfolding ikkbz-query-graph-def ikkbz-query-graph-azxioms-def
by (auto simp: cmp-tree-query-graph-azioms c-out-r-asi c-out-list-correct)

interpretation QG,q;:
tkkbz-query-graph bfs sel ¢f G cmp c-out cf match-sel c-out-list-r c-out-rank-r
by (rule ikkbz-query-graph-c-out)

corollary ikkbz-nempty-cout: QG puy.ikkbz # |]
using QG,q¢.ikkbz-nempty .

corollary ikkbz-valid-tree-cout: valid-tree (create-ldeep QG oy :.ikkbz)
using QG ,y¢.ikkbz-valid-tree .

corollary ikkbz-no-cross-cout: no-cross-products (create-ldeep QG y¢.ikkbz)
using QG ;.ikkbz-no-cross .

corollary ikkbz-optimal-cout:
[valid-tree t; no-cross-products t; left-deep t]
= c-out ¢f match-sel (create-ldeep QG oyr.ikkbz) < c-out cf match-sel t
using QG .. tkkbz-optimal-tree .

end

452



11.4 Instantiating Comparators with Linorders

locale alin-tree-query-graph = tree-query-graph bfs sel cf G
for bfs sel and cf :: 'a :: linorder = real and G
begin

lift-definition cmp :: (‘a listx'b) comparator is
Az y. if hd (fst x) < hd (fst y) then Less
else if hd (fst ) > hd (fst y) then Greater else Equiv)
by (unfold-locales) (auto split: if-splits)

lemma cmp-hd-eg-if-equiv: compare ecmp (v1,el) (v2,e2) = Equiv = hd vl = hd
v2
by (auto simp: cmp.rep-eq split: if-splits)

lemma cmp-sets-not-dsjnt-if-equiv:
[vl # [J; v2 # []; compare cmp (vl,el) (v2,e2) = Equiv] = set vl N set v2 #

using cmp-hd-eq-if-equiv disjoint-iff-not-equal hd-in-set[of v1] by auto

lemma cmp-tree-qg: cmp-tree-query-graph bfs sel c¢f G cmp
by standard (simp add: cmp-sets-not-dsjni-if-equiv)

interpretation cmp-tree-query-graph bfs sel c¢f G cmp
by (rule cmp-tree-qg)
thm kkbz-optimal-hj ikkbz-optimal-cout
end
locale blin-tree-query-graph = tree-query-graph bfs sel c¢f G
for bfs and sel :: 'b :: linorder = real and cf G
begin
lift-definition cmp :: (“a listx'b) comparator is
(Az y. if snd x < snd y then Less
else if snd © > snd y then Greater else Equiv)

by (unfold-locales) (auto split: if-splits)

lemma cmp-arcs-eq-if-equiv: compare cmp (vl,el) (v2,e2) = Equiv — el = e2
by (auto simp: cmp.rep-eq split: if-splits)

lemma cmp-tree-qqg: cmp-tree-query-graph bfs sel ¢f G cmp
by standard (simp add: emp-arcs-eq-if-equiv)

interpretation cmp-tree-query-graph bfs sel c¢f G cmp
by (rule cmp-tree-qg)

453



thm ikkbz-optimal-hj ikkbz-optimal-cout

end

end
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