
Verification of Query Optimization Algorithms

Bernhard Stöckl

March 17, 2025

Abstract

This formalization includes a general framework for query opti-
mization consisting of the definitions of selectivities, query graphs, join
trees, and cost functions. Furthermore, it implements the join ordering
algorithm IKKBZ using these definitions. It verifies the correctness of
these definitions and proves that IKKBZ produces an optimal solution
within a restricted solution space.

Contents
1 Selectivities 3

1.1 Selectivity Functions . 3
1.2 Proofs . 4

2 Join Tree 12
2.1 Functions . 13

2.1.1 Functions for Information Retrieval 13
2.1.2 Functions for Correctness Checks 13
2.1.3 Functions for Modifications 14
2.1.4 Additional properties 14
2.1.5 Cardinality Calculations for Left-deep Trees 14

2.2 Proofs . 15

3 Cost Functions 29
3.1 General Cost Functions . 29
3.2 Cost functions that are considered by IKKBZ. 30
3.3 Properties of Cost Functions 30
3.4 Proofs . 31

3.4.1 Equivalence Proofs . 31
3.4.2 Additional ASI Proofs 52

4 Graph Extensions 55
4.1 Vertices with Multiple Outgoing Arcs 61
4.2 Vertices with Multiple Incoming Arcs 67

1

5 Query Graphs 68
5.1 Function for Join Trees and Selectivities 69
5.2 Proofs . 69
5.3 Pair Query Graph . 76

6 Directed Tree Additions 77
6.1 Directed Trees of Connected Trees 78

6.1.1 Tranformation using BFS 78
6.1.2 Tranformation using PSP-Trees 86

6.2 Additions for Induction on Directed Trees 96
6.3 Branching Points in Directed Trees 102
6.4 Converting to Trees of Lists 106

7 Algebraic Type for Directed Trees 108
7.1 Termination Proofs . 108
7.2 Dtree Basic Functions . 109
7.3 Dtree Basic Proofs . 110

7.3.1 Finite Directed Trees to Dtree 138
7.3.2 Well-Formed Dtrees 151
7.3.3 Identity of Transformation Operations 162

7.4 Degrees of Nodes . 168
7.5 List Conversions . 178
7.6 Inserting in Dtrees . 188

8 Dtrees of Lists 209
8.1 Functions . 209
8.2 List Dtrees as Well-Formed Dtrees 210
8.3 Combining Preserves Well-Formedness 219

9 IKKBZ 232
9.1 Additional Proofs for Merging Lists 232
9.2 Merging Subtrees of Ranked Dtrees 236

9.2.1 Definitions . 236
9.2.2 Commutativity Proofs 237
9.2.3 Merging Preserves Arcs and Verts 243
9.2.4 Merging Preserves Well-Formedness 255
9.2.5 Additional Merging Properties 259

9.3 Normalizing Dtrees . 266
9.3.1 Definitions . 266
9.3.2 Basic Proofs . 266
9.3.3 Normalizing Preserves Well-Formedness 267
9.3.4 Distinctness and hd preserved 271
9.3.5 Normalize and Sorting 272

9.4 Removing Wedges . 278

2

9.5 IKKBZ-Sub . 286
9.6 Full IKKBZ . 294

10 Optimality of IKKBZ 298
10.1 Sublist Additions . 314
10.2 Optimal Solution for Lists of Fixed Sets 320
10.3 Arc Invariants . 357

10.3.1 Normalizing preserves Arc Invariants 374
10.3.2 Merging preserves Arc Invariants 398
10.3.3 Merge1 preserves Arc Invariants 403

10.4 Optimality of IKKBZ-Sub result constrained to Invariants . . 413
10.4.1 Result fulfills the requirements 413
10.4.2 Minimal Cost of the result 425

10.5 Arc Invariants hold for Conversion to Dtree 435
10.6 Optimality of IKKBZ-Sub . 439
10.7 Optimality of IKKBZ . 439

11 Examples of Applying IKKBZ 440
11.1 Computing Contributing Selectivity without Lists 440
11.2 Contributing Selectivity Satisfies ASI Property 445
11.3 Applying IKKBZ . 448

11.3.1 Applying IKKBZ on Simple Cost Functions 449
11.3.2 Applying IKKBZ on C_out 451

11.4 Instantiating Comparators with Linorders 453

theory Selectivities
imports Complex-Main HOL−Library.Multiset

begin

1 Selectivities
type-synonym ′a selectivity = ′a ⇒ ′a ⇒ real

definition sel-symm :: ′a selectivity ⇒ bool where
sel-symm sel = (∀ x y. sel x y = sel y x)

definition sel-reasonable :: ′a selectivity ⇒ bool where
sel-reasonable sel = (∀ x y. sel x y ≤ 1 ∧ sel x y > 0)

1.1 Selectivity Functions
fun list-sel-aux :: ′a selectivity ⇒ ′a ⇒ ′a list ⇒ real where

list-sel-aux sel x [] = 1
| list-sel-aux sel x (y#ys) = sel x y ∗ list-sel-aux sel x ys

3

fun list-sel :: ′a selectivity ⇒ ′a list ⇒ ′a list ⇒ real where
list-sel sel [] y = 1
| list-sel sel (x#xs) y = list-sel-aux sel x y ∗ list-sel sel xs y

fun list-sel-aux ′ :: ′a selectivity ⇒ ′a list ⇒ ′a ⇒ real where
list-sel-aux ′ sel [] y = 1
| list-sel-aux ′ sel (x#xs) y = sel x y ∗ list-sel-aux ′ sel xs y

fun list-sel ′:: ′a selectivity ⇒ ′a list ⇒ ′a list ⇒ real where
list-sel ′ sel x [] = 1
| list-sel ′ sel x (y#ys) = list-sel-aux ′ sel x y ∗ list-sel ′ sel x ys

definition set-sel-aux :: ′a selectivity ⇒ ′a ⇒ ′a set ⇒ real where
set-sel-aux sel x Y = (

∏
y ∈ Y . sel x y)

definition set-sel :: ′a selectivity ⇒ ′a set ⇒ ′a set ⇒ real where
set-sel sel X Y = (

∏
x ∈ X . set-sel-aux sel x Y)

definition set-sel-aux ′ :: ′a selectivity ⇒ ′a set ⇒ ′a ⇒ real where
set-sel-aux ′ sel X y = (

∏
x ∈ X . sel x y)

definition set-sel ′ :: ′a selectivity ⇒ ′a set ⇒ ′a set ⇒ real where
set-sel ′ sel X Y = (

∏
y ∈ Y . set-sel-aux ′ sel X y)

fun ldeep-s :: ′a selectivity ⇒ ′a list ⇒ ′a ⇒ real where
ldeep-s f [] = (λ-. 1)
| ldeep-s f (x#xs) = (λa. if a=x then list-sel-aux ′ f xs a else ldeep-s f xs a)

1.2 Proofs
lemma distinct-alt: (∀ x∈# mset xs. count (mset xs) x = 1) ←→ distinct xs

by(induction xs) auto

lemma mset-y-eq-list-sel-aux-eq: mset y = mset z =⇒ list-sel-aux f x y = list-sel-aux
f x z
proof(induction length y arbitrary: y z)

case 0
then show ?case by simp

next
case (Suc n)
then have length y > 0 by auto
then obtain y ′ ys where y-def [simp]: y=y ′#ys using list.exhaust-sel by blast
have length z > 0 using Suc by auto
then obtain z ′ zs where z-def [simp]: z=z ′#zs using list.exhaust-sel by blast
then have length zs = n using Suc by (metis length-Cons mset-eq-length nat.inject)
then show ?case
proof(cases y ′=z ′)

case True
then show ?thesis using Suc by simp

4

next
case False
have y ′ ∈# mset y by simp
moreover have z ′ ∈# mset y using Suc by simp
ultimately have ∃ c. mset y = mset (y ′#z ′#c)

using False ex-mset in-set-member multi-member-split set-mset-mset
by (metis (mono-tags, opaque-lifting) member-rec(1) mset.simps(2))

then obtain c where c-def [simp]: mset y = mset (y ′#z ′#c) by blast
then have 0 : mset ys = mset (z ′#c) by simp
then have 1 : mset zs = mset (y ′#c) using Suc.prems by simp
have list-sel-aux f x y = list-sel-aux f x (y ′ # ys) by simp
also have . . . = f x y ′ ∗ list-sel-aux f x ys by simp
also have . . . = f x y ′ ∗ list-sel-aux f x (z ′#c) using Suc.hyps 0 by fastforce
also have . . . = f x z ′ ∗ list-sel-aux f x (y ′#c) by simp
also have . . . = f x z ′ ∗ list-sel-aux f x zs

using 1 Suc.hyps(1) ‹length zs = n› by presburger
finally show ?thesis by simp

qed
qed

lemma mset-y-eq-list-sel-eq: mset y = mset y ′ =⇒ list-sel f x y = list-sel f x y ′

apply(induction x)
apply(auto)[2]

using mset-y-eq-list-sel-aux-eq by fast

lemma mset-x-eq-list-sel-eq: mset x = mset z =⇒ list-sel f x y = list-sel f z y
proof(induction length x arbitrary: x z)

case 0
then show ?case by simp

next
case (Suc n)
then have length x > 0 by auto
then obtain x ′ xs where y-def [simp]: x=x ′#xs using list.exhaust-sel by blast
have length z > 0 using Suc by auto
then obtain z ′ zs where z-def [simp]: z=z ′#zs using list.exhaust-sel by blast
then have length zs = n using Suc by (metis length-Cons mset-eq-length nat.inject)
then show ?case
proof(cases x ′=z ′)

case True
then show ?thesis using Suc by simp

next
case False
have x ′ ∈# mset x by simp
moreover have z ′ ∈# mset x using Suc by simp
ultimately have ∃ c. mset x = mset (x ′#z ′#c)

using False ex-mset in-set-member multi-member-split set-mset-mset
by (metis (mono-tags, opaque-lifting) member-rec(1) mset.simps(2))

then obtain c where c-def [simp]: mset x = mset (x ′#z ′#c) by blast
then have 0 : mset xs = mset (z ′#c) by simp

5

then have 1 : mset zs = mset (x ′#c) using Suc.prems by simp
have list-sel f x y = list-sel f (x ′#xs) y by simp
also have . . . = list-sel-aux f x ′ y ∗ list-sel f xs y by simp
also have . . . = list-sel-aux f x ′ y ∗ list-sel f (z ′#c) y using Suc.hyps 0 by

fastforce
also have . . . = list-sel-aux f z ′ y ∗ list-sel f (x ′#c) y by simp
also have . . . = list-sel-aux f z ′ y ∗ list-sel f zs y

using 1 Suc.hyps(1) ‹length zs = n› by presburger
finally show ?thesis by simp

qed
qed

lemma list-sel-empty: list-sel f x [] = 1
by(induction x) auto

lemma list-sel ′-empty: list-sel ′ f [] y = 1
by(induction y) auto

lemma list-sel-symm-app:
sel-symm f =⇒ list-sel-aux f x y ∗ list-sel f y xs = list-sel f y (x # xs)

by(induction y) (auto simp: sel-symm-def)

lemma list-sel-symm: sel-symm f =⇒ list-sel f x y = list-sel f y x
by(induction x) (auto simp: sel-symm-def list-sel-empty list-sel-symm-app)

lemma list-sel-symm-aux-eq ′: sel-symm f =⇒ list-sel-aux f x y = list-sel-aux ′ f y
x

by(induction y) (auto simp: sel-symm-def)

lemma list-sel-sing-aux ′: list-sel f x [y] = list-sel-aux ′ f x y
by(induction x) auto

lemma list-sel-sing-aux: list-sel f [x] y = list-sel-aux f x y
by(induction y) auto

lemma list-sel ′-sing-aux ′: list-sel ′ f x [y] = list-sel-aux ′ f x y
by(induction x) auto

lemma list-sel ′-sing-aux: list-sel ′ f [x] y = list-sel-aux f x y
by(induction y) auto

lemma list-sel ′-split-aux: list-sel ′ f (x#xs) y = list-sel-aux f x y ∗ list-sel ′ f xs y
by(induction y) auto

lemma list-sel-eq ′: list-sel f x y = list-sel ′ f x y
by(induction x) (auto simp: list-sel ′-empty list-sel ′-split-aux)

lemma mset-x-eq-list-sel-aux ′-eq: mset x = mset z =⇒ list-sel-aux ′ f x y = list-sel-aux ′

f z y

6

using list-sel-sing-aux ′ mset-x-eq-list-sel-eq by metis

lemma foldl-acc-extr : foldl (λa b. a ∗ f x b) z y = z ∗ foldl (λa b. a ∗ f x b)
(1 ::real) y
proof(induction y arbitrary: z)

case Nil
then show ?case by simp

next
case (Cons y ys)
have foldl (λa b. a ∗ f x b) z (y # ys) = foldl (λa b. a ∗ f x b) (z ∗ f x y) ys by

simp
also have . . . = (z ∗ f x y) ∗ foldl (λa b. a ∗ f x b) 1 ys using Cons by blast
also have . . . = z ∗ foldl (λa b. a ∗ f x b) 1 (y#ys)

by (smt (verit, ccfv-SIG) Cons.IH foldl-Cons mult.assoc mult.left-commute)
finally show ?case .

qed

lemma list-sel-aux-eq-foldl: list-sel-aux f x y = foldl (λa b. a ∗ f x b) 1 y
apply(induction y)
apply(auto)[2]

using foldl-acc-extr by metis

lemma list-sel-eq-foldl: list-sel f x y = foldl (λa b. a ∗ list-sel-aux f b y) 1 x
apply(induction x)
apply(auto)[2]

using foldl-acc-extr by metis

corollary list-sel-eq-foldl2 : list-sel f x y = foldl (λa x. a ∗ foldl (λa b. a ∗ f x b)
1 y) 1 x

by (simp add: list-sel-aux-eq-foldl list-sel-eq-foldl)

lemma list-sel-aux-eq-foldr : list-sel-aux f x y = foldr (λb a. a ∗ f x b) y 1
by(induction y) auto

lemma sel-foldl-eq-foldr :
foldl (λa b. a ∗ f x b) 1 y = foldr (λb a. a ∗ (f :: ′a selectivity) x b) y 1
using list-sel-aux-eq-foldl list-sel-aux-eq-foldr by metis

lemma list-sel-eq-foldr : list-sel f x y = foldr (λb a. a ∗ list-sel-aux f b y) x 1
by(induction x) auto

lemma list-sel-eq-foldr2 : list-sel f x y = foldr (λx a. a ∗ foldr (λb a. a ∗ f x b) y
1) x 1

by (simp add: list-sel-aux-eq-foldr list-sel-eq-foldr)

lemma list-sel-aux-reasonable:
sel-reasonable f =⇒ list-sel-aux f x y ≤ 1 ∧ list-sel-aux f x y > 0

by(induction y) (auto simp: sel-reasonable-def mult-le-one)

7

lemma list-sel-aux ′-reasonable:
sel-reasonable f =⇒ list-sel-aux ′ f x y ≤ 1 ∧ list-sel-aux ′ f x y > 0

by(induction x) (auto simp: sel-reasonable-def mult-le-one)

lemma list-sel-reasonable: sel-reasonable f =⇒ list-sel f x y ≤ 1 ∧ list-sel f x y >
0

by(induction x) (auto simp: sel-reasonable-def mult-le-one list-sel-aux-reasonable)

lemma list-sel ′-reasonable: sel-reasonable f =⇒ list-sel ′ f x y ≤ 1 ∧ list-sel ′ f x y
> 0

using list-sel-eq ′ list-sel-reasonable by metis

lemma list-sel-aux-eq-set-sel-aux:
distinct ys =⇒ list-sel-aux f x ys = set-sel-aux f x (set ys)
by(induction ys) (auto simp: set-sel-aux-def)

lemma list-sel-eq-set-sel:
[[distinct xs; distinct ys]] =⇒ list-sel f xs ys = set-sel f (set xs) (set ys)
by(induction xs) (auto simp: set-sel-def list-sel-aux-eq-set-sel-aux list-sel-empty)

lemma list-sel ′-eq-set-sel:
[[distinct xs; distinct ys]] =⇒ list-sel ′ f xs ys = set-sel f (set xs) (set ys)
by (auto simp add: list-sel-eq ′ dest: list-sel-eq-set-sel)

lemma set-sel-symm-if-finite: [[finite X ; finite Y ; sel-symm f]] =⇒ set-sel f X Y =
set-sel f Y X

using finite-distinct-list list-sel-symm list-sel-eq-set-sel by metis

lemma set-sel-aux-1-if-notfin: ¬finite Y =⇒ set-sel-aux f x Y = 1
unfolding set-sel-aux-def by simp

lemma set-sel-1-if-notfin1 : ¬finite X =⇒ set-sel f X Y = 1
unfolding set-sel-def set-sel-aux-def by simp

lemma set-sel-1-if-notfin2 : ¬finite Y =⇒ set-sel f X Y = 1
unfolding set-sel-def set-sel-aux-def by simp

lemma set-sel-symm: sel-symm f =⇒ set-sel f X Y = set-sel f Y X
using set-sel-symm-if-finite[of X Y]
by (fastforce simp: set-sel-1-if-notfin1 set-sel-1-if-notfin2)

lemma list-sel-aux ′-eq-set-sel-aux ′:
distinct xs =⇒ list-sel-aux ′ f xs x = set-sel-aux ′ f (set xs) x
by(induction xs) (auto simp: set-sel-aux ′-def)

lemma list-sel ′-eq-set-sel ′:
[[distinct xs; distinct ys]] =⇒ list-sel ′ f xs ys = set-sel ′ f (set xs) (set ys)
by(induction ys) (auto simp: set-sel ′-def list-sel-aux ′-eq-set-sel-aux ′ list-sel-empty)

8

lemma list-sel-eq-set-sel ′:
[[distinct xs; distinct ys]] =⇒ list-sel f xs ys = set-sel ′ f (set xs) (set ys)
by (simp add: list-sel ′-eq-set-sel ′ list-sel-eq ′)

lemma set-sel ′-symm-if-finite: [[finite X ; finite Y ; sel-symm f]] =⇒ set-sel ′ f X Y
= set-sel ′ f Y X

using finite-distinct-list list-sel-symm list-sel-eq-set-sel ′ by metis

lemma set-sel-aux ′-1-if-notfin: ¬finite X =⇒ set-sel-aux ′ f X y = 1
unfolding set-sel-aux ′-def by simp

lemma set-sel ′-1-if-notfin1 : ¬finite X =⇒ set-sel ′ f X Y = 1
unfolding set-sel ′-def set-sel-aux ′-def by simp

lemma set-sel ′-1-if-notfin2 : ¬finite Y =⇒ set-sel ′ f X Y = 1
unfolding set-sel ′-def set-sel-aux ′-def by simp

lemma set-sel ′-symm: sel-symm f =⇒ set-sel ′ f X Y = set-sel ′ f Y X
using set-sel ′-symm-if-finite[of X Y]
by (fastforce simp: set-sel ′-1-if-notfin1 set-sel ′-1-if-notfin2)

lemma set-sel ′-eq-set-sel: set-sel ′ f X Y = set-sel f X Y
unfolding set-sel-def set-sel-aux-def set-sel ′-def set-sel-aux ′-def using prod.swap

by fast

lemma set-sel-aux-reasonable-fin:
[[finite y; sel-reasonable f]] =⇒ set-sel-aux f x y ≤ 1 ∧ set-sel-aux f x y > 0
unfolding set-sel-aux-def
by(induction y rule: finite-induct) (auto simp: sel-reasonable-def mult-le-one)

lemma set-sel-aux-reasonable:
sel-reasonable f =⇒ set-sel-aux f x y ≤ 1 ∧ set-sel-aux f x y > 0
by(cases finite y) (auto simp: set-sel-aux-reasonable-fin set-sel-aux-1-if-notfin)

lemma set-sel-aux ′-reasonable-fin:
[[finite x; sel-reasonable f]] =⇒ set-sel-aux ′ f x y ≤ 1 ∧ set-sel-aux ′ f x y > 0
unfolding set-sel-aux ′-def
by(induction x rule: finite-induct) (auto simp: sel-reasonable-def mult-le-one)

lemma set-sel-aux ′-reasonable:
sel-reasonable f =⇒ set-sel-aux ′ f x y ≤ 1 ∧ set-sel-aux ′ f x y > 0
by(cases finite x) (auto simp: set-sel-aux ′-reasonable-fin set-sel-aux ′-1-if-notfin)

lemma set-sel-reasonable-fin:
[[finite x; sel-reasonable f]] =⇒ set-sel f x y ≤ 1 ∧ set-sel f x y > 0
unfolding set-sel-def
apply(induction x rule: finite-induct)
using set-sel-aux ′-reasonable-fin apply(simp)

by (smt (verit) prod-le-1 prod-pos set-sel-aux-reasonable)

9

lemma set-sel-reasonable: sel-reasonable f =⇒ set-sel f x y ≤ 1 ∧ set-sel f x y >
0

by(cases finite x) (auto simp: set-sel-reasonable-fin set-sel-1-if-notfin1)

lemma set-sel ′-reasonable-fin:
[[finite y; sel-reasonable f]] =⇒ set-sel ′ f x y ≤ 1 ∧ set-sel ′ f x y > 0
unfolding set-sel ′-def
apply(induction y rule: finite-induct)
using set-sel-aux ′-reasonable-fin apply(simp)

by (smt (verit) prod-le-1 prod-pos set-sel-aux ′-reasonable)

lemma set-sel ′-reasonable: sel-reasonable f =⇒ set-sel ′ f x y ≤ 1 ∧ set-sel ′ f x y
> 0

by (cases finite y) (auto simp: set-sel ′-reasonable-fin set-sel ′-1-if-notfin2)

lemma ldeep-s-pos: sel-reasonable f =⇒ ldeep-s f xs x > 0
by (induction xs) (auto simp: list-sel-aux ′-reasonable)

lemma distinct-app-trans-r : distinct (ys@xs) =⇒ distinct xs
by simp

lemma distinct-app-trans-l: distinct (ys@xs) =⇒ distinct ys
by simp

lemma ldeep-s-reasonable: sel-reasonable f =⇒ ldeep-s f xs y ≤ 1 ∧ ldeep-s f xs y
> 0

by (induction xs) (auto simp: list-sel-aux ′-reasonable)

lemma ldeep-s-eq-list-sel-aux ′-split:
y ∈ set xs =⇒ ∃ as bs. as @ y # bs = xs ∧ ldeep-s sel xs y = list-sel-aux ′ sel bs y

proof(induction xs)
case (Cons x xs)
then show ?case
proof(cases x = y)

case False
then obtain as bs where as-def : as @ y # bs = xs ldeep-s sel xs y = list-sel-aux ′

sel bs y
using Cons by auto

then have (x#as) @ y # bs = x#xs by simp
then show ?thesis using False as-def (2) by fastforce

qed(auto)
qed(simp)

lemma distinct-ldeep-s-eq-aux:
distinct xs =⇒ ∃ xs ′. xs ′@y#ys=xs =⇒ ldeep-s f xs y = list-sel-aux ′ f ys y

proof(induction xs arbitrary: ys)
case (Cons x xs)
then show ?case

10

proof(cases x=y ∧ ys=xs)
case True
then show ?thesis using Cons.prems by simp

next
case False
then have ∃ xs ′. xs ′@y#ys=x#xs ∧ xs ′ 6= [] using Cons.prems by auto
then have 0 : ∃ xs ′′. x#xs ′′@y#ys=x#xs by (metis list.sel(3) tl-append2)
have 1 : distinct xs using Cons.prems(1) by fastforce
then show ?thesis
proof(cases x=y)

case True
then have count (mset (x#xs)) x ≥ 2 using 0 by auto
then show ?thesis using Cons.prems by simp

next
case False
then have ldeep-s f (x # xs) y

= (λa. if a=x then list-sel-aux ′ f xs a else ldeep-s f xs a) y by simp
also have . . . = ldeep-s f xs y using False by simp
finally show ?thesis using Cons.IH 0 1 by simp

qed
qed

qed(simp)

lemma distinct-ldeep-s-eq-aux ′:
[[distinct xs; as @ y # bs = xs]] =⇒ ldeep-s sel xs y = list-sel-aux ′ sel bs y
using distinct-ldeep-s-eq-aux by fast

lemma ldeep-s-last1-if-distinct: distinct xs =⇒ ldeep-s sel xs (last xs) = 1
by (induction xs) auto

lemma ldeep-s-revhd1-if-distinct: distinct xs =⇒ ldeep-s sel (rev xs) (hd xs) = 1
using ldeep-s-last1-if-distinct[of rev xs] by (simp add: last-rev)

lemma ldeep-s-1-if-nelem: x /∈ set xs =⇒ ldeep-s sel xs x = 1
by (induction xs) auto

lemma distinct-xs-not-ys: distinct (xs@ys) =⇒ x ∈ set xs =⇒ x /∈ set ys
by auto

lemma distinct-ys-not-xs: distinct (xs@ys) =⇒ x ∈ set ys =⇒ x /∈ set xs
by auto

lemma distinct-change-order-first-eq-nempty:
assumes distinct (xs@ys@zs@rs)

and ys 6= []
and zs 6= []
and take 1 (xs@ys@zs@rs) = take 1 (xs@zs@ys@rs)

shows xs 6= []
proof

11

assume xs = []
then have take 1 (ys@zs@rs) = take 1 (zs@ys@rs) using assms(4) by simp
then have ∃ r rs1 rs2 . ys@zs@rs = r#rs1 ∧ zs@ys@rs = r#rs2

by (metis append-Cons append-take-drop-id assms(3) neq-Nil-conv take-eq-Nil
zero-neq-one)

then obtain r rs1 rs2 where r-def : ys@zs@rs = r#rs1 ∧ zs@ys@rs = r#rs2
by blast

then have 0 : r ∈ set ys ∧ r ∈ set zs
using assms(2 ,3) by (metis Cons-eq-append-conv list.set-intros(1))

then show False using 0 assms(1) by auto
qed

lemma distinct-change-order-first-elem:
[[distinct (xs@ys@zs@rs); ys 6= []; zs 6= []; take 1 (xs@ys@zs@rs) = take 1

(xs@zs@ys@rs)]]
=⇒ take 1 (xs@ys@zs@rs) = take 1 xs

by (cases xs) (fastforce dest!: distinct-change-order-first-eq-nempty)+

lemma take1-singleton-app: take 1 xs = [r] =⇒ take 1 (xs@ys) = [r]
by (induction xs) (auto)

lemma hd-eq-take1 : take 1 xs = [r] =⇒ hd xs = r
using hd-take[of 1 xs] by simp

lemma take1-eq-hd: [[xs 6= []; hd xs = r]] =⇒ take 1 xs = [r]
by (simp add: take-Suc)

lemma nempty-if-take1 : take 1 xs = [r] =⇒ xs 6= []
by force

end

theory JoinTree
imports Complex-Main HOL−Library.Multiset Selectivities

begin

2 Join Tree

Relations have an identifier and cardinalities. Joins have two children and
a result cardinality. The datatype only represents the structure while car-
dinalities are given by a separate function.
datatype (relations: ′a) joinTree = Relation ′a | Join ′a joinTree ′a joinTree

type-synonym ′a card = ′a ⇒ real

12

2.1 Functions
2.1.1 Functions for Information Retrieval
fun inorder :: ′a joinTree ⇒ ′a list where

inorder (Relation rel) = [rel]
| inorder (Join l r) = inorder l @ inorder r

fun revorder :: ′a joinTree ⇒ ′a list where
revorder (Relation rel) = [rel]
| revorder (Join l r) = revorder r @ revorder l

fun relations-mset :: ′a joinTree ⇒ ′a multiset where
relations-mset (Relation rel) = {#rel#}
| relations-mset (Join l r) = relations-mset l + relations-mset r

fun card :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real where
card cf f (Relation rel) = cf rel
| card cf f (Join l r) =

list-sel f (inorder l) (inorder r) ∗ card cf f l ∗ card cf f r

fun cards-list :: ′a card ⇒ ′a joinTree ⇒ (′a×real) list where
cards-list cf (Relation rel) = [(rel,cf rel)]
| cards-list cf (Join l r) = cards-list cf l @ cards-list cf r

fun height :: ′a joinTree ⇒ nat where
height (Relation -) = 0
| height (Join l r) = max (height l) (height r) + 1

fun num-relations :: ′a joinTree ⇒ nat where
num-relations (Relation -) = 1
| num-relations (Join l r) = num-relations l + num-relations r

fun first-node :: ′a joinTree ⇒ ′a where
first-node (Relation r) = r
| first-node (Join l -) = first-node l

2.1.2 Functions for Correctness Checks

Cardinalities must be positive and selectivities need to be ∈ (0 ,1].
fun reasonable-cards :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ bool where

reasonable-cards cf f (Relation rel) = (cf rel > 0)
| reasonable-cards cf f (Join l r) = (let c = card cf f (Join l r) in

c ≤ card cf f l ∗ card cf f r ∧ c > 0 ∧ reasonable-cards cf f l ∧ reasonable-cards
cf f r)

definition pos-rel-cards :: ′a card ⇒ ′a joinTree ⇒ bool where
pos-rel-cards cf t = (∀ (-,c)∈set (cards-list cf t). c > 0)

definition pos-list-cards :: ′a card ⇒ ′a list ⇒ bool where

13

pos-list-cards cf xs = (∀ x∈set xs. cf x > 0)

Each node should have a unique identifier.
definition distinct-relations :: ′a joinTree ⇒ bool where

distinct-relations t = distinct (inorder t)

2.1.3 Functions for Modifications
fun mirror :: ′a joinTree ⇒ ′a joinTree where

mirror (Relation rel) = Relation rel
| mirror (Join l r) = Join (mirror r) (mirror l)

fun create-rdeep :: ′a list ⇒ ′a joinTree where
create-rdeep [] = undefined
| create-rdeep [x] = Relation x
| create-rdeep (x#xs) = Join (Relation x) (create-rdeep xs)

fun create-ldeep-rev :: ′a list ⇒ ′a joinTree where
create-ldeep-rev [] = undefined
| create-ldeep-rev [x] = Relation x
| create-ldeep-rev (x#xs) = Join (create-ldeep-rev xs) (Relation x)

definition create-ldeep :: ′a list ⇒ ′a joinTree where
create-ldeep xs = create-ldeep-rev (rev xs)

2.1.4 Additional properties
fun left-deep :: ′a joinTree ⇒ bool where

left-deep (Relation -) = True
| left-deep (Join l (Relation -)) = left-deep l
| left-deep - = False

fun right-deep :: ′a joinTree ⇒ bool where
right-deep (Relation -) = True
| right-deep (Join (Relation -) r) = right-deep r
| right-deep - = False

fun zig-zag :: ′a joinTree ⇒ bool where
zig-zag (Relation -) = True
| zig-zag (Join l (Relation -)) = zig-zag l
| zig-zag (Join (Relation -) r) = zig-zag r
| zig-zag - = False

2.1.5 Cardinality Calculations for Left-deep Trees

Expects a reversed list of relations rs and calculates the cardinality of a
left-deep tree.
fun ldeep-n :: ′a selectivity ⇒ ′a card ⇒ ′a list ⇒ real where

ldeep-n f cf [] = 1

14

| ldeep-n f cf (r#rs) = cf r ∗ (list-sel-aux ′ f rs r) ∗ ldeep-n f cf rs

definition ldeep-T :: (′a ⇒ real) ⇒ ′a card ⇒ ′a list ⇒ real where
ldeep-T sf cf xs = foldl (λa b. a ∗ cf b ∗ sf b) 1 xs

fun ldeep-T ′ :: (′a ⇒ real) ⇒ ′a card ⇒ ′a list ⇒ real where
ldeep-T ′ f cf [] = 1
| ldeep-T ′ f cf (r#rs) = cf r ∗ f r ∗ ldeep-T ′ f cf rs

2.2 Proofs
lemma ldeep-eq-rdeep: left-deep t = right-deep (mirror t)

by(induction t rule: left-deep.induct) (auto)

lemma mirror-twice-id[simp]: mirror (mirror t) = t
by(induction t) auto

lemma rdeep-eq-ldeep: right-deep t = left-deep (mirror t)
apply(induction t rule: right-deep.induct)
by(auto)

lemma mirror-zig-zag-preserv: zig-zag (mirror t) = zig-zag t
apply(induction t rule: zig-zag.induct)
using zig-zag.elims(2) by fastforce+

lemma ldeep-zig-zag: left-deep t =⇒ zig-zag t
by(induction t rule: zig-zag.induct) auto

lemma rdeep-zig-zag: right-deep t =⇒ zig-zag t
using rdeep-eq-ldeep ldeep-zig-zag mirror-zig-zag-preserv by blast

lemma relations-nempty: relations t 6= {}
by (induction t) auto

lemma set-implies-mset: x ∈ relations t =⇒ x ∈# relations-mset t
by(induction t) (auto)

lemma mset-implies-set: x ∈# relations-mset t =⇒ x ∈ relations t
by(induction t) (auto)

lemma inorder-eq-mset: mset (inorder t) = relations-mset t
by(induction t) (auto)

lemma relations-set-eq-mset: set-mset (relations-mset t) = relations t
using mset-implies-set set-implies-mset by fast

lemma inorder-eq-set: set (inorder t) = relations t
by(induction t) (auto)

15

lemma revorder-eq-mset: mset (revorder t) = relations-mset t
by(induction t) (auto)

lemma revorder-eq-set: set (revorder t) = relations t
by(induction t) (auto)

lemma revorder-eq-rev-inorder : revorder t = rev (inorder t)
by(induction t) (auto)

lemma inorder-eq-rev-revorder : inorder t = rev (revorder t)
by(induction t) (auto)

lemma mirror-mset-eq[simp]: relations-mset (mirror t) = relations-mset t
by(induction t) auto

lemma distinct-rels-alt: distinct-relations t ←→ distinct (revorder t)
unfolding distinct-relations-def inorder-eq-rev-revorder by simp

lemma distinct-rels-alt ′:
distinct-relations t ←→ (let multi=relations-mset t in ∀ x∈# multi. count multi

x = 1)
using distinct-relations-def inorder-eq-mset distinct-alt by metis

lemma inorder-nempty: inorder t 6= []
by (induction t) auto

lemma revorder-nempty: revorder t 6= []
by (induction t) auto

lemma mirror-distinct: distinct-relations t =⇒ distinct-relations (mirror t)
by(simp add: distinct-rels-alt ′)

lemma mirror-set-eq[simp]: relations (mirror t) = relations t
by(induction t) auto

lemma mirror-inorder-rev: inorder (mirror t) = rev (inorder t)
by(induction t) auto

lemma mirror-revorder-rev: revorder (mirror t) = rev (revorder t)
by(induction t) auto

corollary mirror-revorder-inorder : revorder (mirror t) = inorder t
unfolding mirror-revorder-rev inorder-eq-rev-revorder by simp

corollary mirror-inorder-revorder : inorder (mirror t) = revorder t
unfolding mirror-inorder-rev revorder-eq-rev-inorder by simp

lemma mirror-card-eq[simp]: sel-symm f =⇒ card cf f (mirror t) = card cf f t
proof(induction t)

16

case (Join l r)
let ?r = mirror r and ?l = mirror l
have 0 : mset (inorder ?r) = mset (inorder r) by (simp add: inorder-eq-mset)
have 1 : mset (inorder ?l) = mset (inorder l) by (simp add: inorder-eq-mset)
have card cf f (mirror (Join l r)) = card cf f (Join (mirror r) (mirror l)) by

simp
also have . . . = list-sel f (inorder ?r) (inorder ?l) ∗ card cf f r ∗ card cf f l

using Join by simp
also have . . . = list-sel f (inorder r) (inorder ?l) ∗ card cf f r ∗ card cf f l

using 0 mset-x-eq-list-sel-eq by auto
also have . . . = list-sel f (inorder r) (inorder l) ∗ card cf f r ∗ card cf f l

using 1 mset-y-eq-list-sel-eq by auto
finally show ?case using list-sel-symm Join.prems by auto

qed(simp)

lemma mirror-reasonable-cards:
[[sel-symm f ; reasonable-cards cf f t]] =⇒ reasonable-cards cf f (mirror t)

proof(induction t)
case (Join l r)
let ?r = mirror r and ?l = mirror l
let ?c = card cf f (mirror (Join l r))
let ?c ′ = card cf f (Join l r)
have reasonable-cards cf f (mirror (Join l r))

= reasonable-cards cf f (Join (mirror r) (mirror l)) by simp
also have . . . = (?c ≤ card cf f ?r ∗ card cf f ?l ∧ ?c>0

∧ reasonable-cards cf f ?l ∧ reasonable-cards cf f ?r)
by (auto simp: Let-def)

also have . . . = (?c ≤ card cf f ?r ∗ card cf f ?l ∧ ?c>0)
using Join by fastforce

also have . . . = (?c ′ ≤ card cf f r ∗ card cf f l ∧ ?c ′>0)
using mirror-card-eq Join.prems by metis

also have . . . = (?c ′ ≤ card cf f r ∗ card cf f l ∧ ?c ′>0
∧ reasonable-cards cf f l ∧ reasonable-cards cf f r)

using Join.prems by auto
also have . . . = (?c ′ ≤ card cf f l ∗ card cf f r ∧ ?c ′>0

∧ reasonable-cards cf f l ∧ reasonable-cards cf f r)
by argo

finally show ?case using Join.prems by force
qed(simp)

lemma joinTree-cases: (∃ r . t=(Relation r)) ∨ (∃ l rr . t=(Join l (Relation rr)))
∨ (∃ l lr rr . t=(Join l (Join lr rr)))

apply(cases t)
apply(auto)[2]

by (meson joinTree.exhaust)

lemma joinTree-cases-ldeep: left-deep t
=⇒ (∃ r . t=(Relation r)) ∨ (∃ l rr . t=(Join l (Relation rr)))

apply(cases t)

17

apply(auto)[2]
using joinTree-cases by fastforce

lemma ldeep-trans: left-deep (Join l r) =⇒ left-deep l
by(cases r) auto

lemma subtree-elem-count-l:
assumes ∀ x∈# (relations-mset (Join l r)). count (relations-mset (Join l r)) x

= 1
and x ∈# relations-mset l

shows count (relations-mset l) x = 1
proof −

have 0 : count (relations-mset l) x ≥ 1 using assms by auto
have count (relations-mset l) x ≤ 1 using assms by force
then show ?thesis using 0 by linarith

qed

lemma subtree-elem-count-r :
assumes ∀ x∈# (relations-mset (Join l r)). count (relations-mset (Join l r)) x

= 1
and x ∈# relations-mset r

shows count (relations-mset r) x = 1
proof −

have 0 : count (relations-mset r) x ≥ 1 using assms by auto
have count (relations-mset r) x ≤ 1 using assms by force
then show ?thesis using 0 by linarith

qed

lemma first-node-first-inorder : ∃ xs. inorder t = first-node t # xs
by(induction t) auto

lemma first-node-last-revorder : ∃ xs. revorder t = xs @ [first-node t]
by(induction t) auto

lemma first-node-eq-hd: first-node t = hd (inorder t)
using first-node-first-inorder [of t] by auto

lemma distinct-elem-right-not-left:
assumes distinct-relations (Join l r)

and x ∈ relations r
shows x /∈ relations l

proof
assume x ∈ relations l
then have x ∈# relations-mset l using set-implies-mset by fast
then have 0 : count (relations-mset l) x ≥ 1 by simp
have x ∈# relations-mset r using set-implies-mset assms(2) by fast
then have count (relations-mset r) x ≥ 1 by simp
moreover have count (relations-mset l + relations-mset r) x

= count (relations-mset l) x + count (relations-mset r) x by simp

18

ultimately have count (relations-mset l + relations-mset r) x ≥ 2 using 0 by
linarith

then have count (relations-mset (Join l r)) x ≥ 2 by simp
then have 1 : count (relations-mset (Join l r)) x 6= 1 by simp
let ?multi = (relations-mset (Join l r))
have distinct-relations (Join l r) = (∀ y∈# ?multi. count ?multi y = 1)

by (simp add: distinct-rels-alt ′)
then show False using 1 assms set-implies-mset by fastforce

qed

lemma distinct-elem-left-not-right:
assumes distinct-relations (Join l r)

and x ∈ relations l
shows x /∈ relations r

using distinct-elem-right-not-left assms by fast

lemma distinct-relations-disjoint: distinct-relations (Join l r) =⇒ relations l ∩
relations r = {}

using distinct-elem-right-not-left by fast

lemma distinct-trans-l: distinct-relations (Join l r) =⇒ distinct-relations l
using subtree-elem-count-l by (fastforce simp: distinct-rels-alt)

lemma distinct-trans-r : distinct-relations (Join l r) =⇒ distinct-relations r
using subtree-elem-count-r by (fastforce simp: distinct-rels-alt)

lemma distinct-and-disjoint-impl-count1 :
assumes distinct-relations l

and distinct-relations r
and relations l ∩ relations r = {}
and x ∈# relations-mset (Join l r)

shows count (relations-mset (Join l r)) x = 1
proof −

show ?thesis
proof(cases x∈relations l)

case True
then have x∈# relations-mset l using set-implies-mset by fast
then have 0 : count (relations-mset l) x = 1 using assms(1) distinct-rels-alt ′

by metis
have x /∈# relations-mset r using True assms(3) disjoint-iff mset-implies-set

by fast
then have count (relations-mset r) x = 0 by (simp add: count-eq-zero-iff)
then show ?thesis using 0 by simp

next
case False
have x∈# relations-mset r using False assms(4) using mset-implies-set by

force
then have 0 : count (relations-mset r) x = 1 using assms(2) distinct-rels-alt ′

by metis

19

have x /∈# relations-mset l using False assms(3) disjoint-iff mset-implies-set
by fast

then have count (relations-mset l) x = 0 by (simp add: count-eq-zero-iff)
then show ?thesis using 0 by simp

qed
qed

lemma distinct-and-disjoint-impl-distinct:
[[distinct-relations l; distinct-relations r ; relations l ∩ relations r = {}]]
=⇒ distinct-relations (Join l r)

using distinct-and-disjoint-impl-count1 distinct-rels-alt ′ by fastforce

lemma reasonable-trans:
reasonable-cards cf f (Join l r) =⇒ reasonable-cards cf f l ∧ reasonable-cards cf f

r
by (simp add: Let-def)

lemma mirror-height-eq: height (mirror t) = height t
by(induction t) auto

lemma height-0-rel: height t = 0 =⇒ ∃ r . t = Relation r
by(cases t) auto

lemma height-gt-0-join: height t > 0 =⇒ ∃ l r . t = Join l r
by(cases t) auto

lemma height-decr-l: height (Join l r) > height l
by simp

lemma height-decr-r : height (Join l r) > height r
by simp

lemma mirror-num-relations-eq: num-relations (mirror t) = num-relations t
by(induction t) auto

lemma zig-zag-num-relations-height: zig-zag t =⇒ num-relations t = height t + 1
by(induction t rule: zig-zag.induct) auto

lemma ldeep-num-relations-height: left-deep t =⇒ num-relations t = height t + 1
by (simp add: zig-zag-num-relations-height ldeep-zig-zag)

lemma rdeep-num-relations-height: right-deep t =⇒ num-relations t = height t +
1

by (simp add: zig-zag-num-relations-height rdeep-zig-zag)

lemma num-relations-eq-length: num-relations t = length (inorder t)
by(induction t) auto

lemma reasonable-impl-pos: reasonable-cards cf f t =⇒ pos-rel-cards cf t

20

by(induction t) (auto simp: pos-rel-cards-def Let-def)

lemma cards-list-eq-inorder : map (λ(a,-). a) (cards-list cf t) = inorder t
by(induction t) auto

lemma cards-list-eq-relations: (λ(a,-). a) ‘ set (cards-list cf t) = relations t
by (simp add: cards-list-eq-inorder image-set inorder-eq-set)

lemma cards-eq-c: (rel,c)∈set(cards-list cf t) =⇒ cf rel = c
by(induction t) auto

lemma finite-trans: finite (relations (Join l r)) =⇒ finite (relations l) ∧ finite
(relations r)

by simp

lemma distinct-impl-card-eq-length:
finite (relations t) =⇒ height t ≤ n =⇒ distinct-relations t
=⇒ Finite-Set.card (relations t) = length (inorder t)

proof(induction n arbitrary: t)
case 0
then obtain r where Relation r = t using height-0-rel by auto
then show ?case using distinct-relations-def by force

next
case (Suc n)
then show ?case
proof(cases height t = Suc n)

case True
then have 0 < height t by simp
then obtain l r where join[simp]: Join l r = t using height-gt-0-join by blast
then have 0 : finite (relations l) ∧ finite (relations r)

using Suc.prems(1) finite-trans by blast
have 1 : height l ≤ n using True join by (metis height-decr-l less-Suc-eq-le)
have 2 : height r ≤ n using True join by (metis height-decr-r less-Suc-eq-le)
have Finite-Set.card (relations t) + Finite-Set.card (relations l ∩ relations r)

= Finite-Set.card (relations l) + Finite-Set.card (relations r)
using card-Un-Int join 0 by (metis JoinTree.joinTree.simps(16))

then have Finite-Set.card (relations t)
= Finite-Set.card (relations l) + Finite-Set.card (relations r)

by (simp add: local.Suc.prems(3) distinct-relations-disjoint)
moreover have length (inorder t)

= length (inorder l) + length (inorder r)
by (metis JoinTree.inorder .simps(2) join length-append)

moreover have Finite-Set.card (relations l) = length (inorder l)
using Suc.IH Suc.prems(3) distinct-trans-l 0 1 join by blast

moreover have Finite-Set.card (relations r) = length (inorder r)
using Suc.IH Suc.prems(3) distinct-trans-r 0 2 join by blast

ultimately show ?thesis by simp
next

case False

21

then show ?thesis using Suc by simp
qed

qed

lemma card-le-length: Finite-Set.card (relations t) ≤ length (inorder t)
apply(induction t)
apply(auto)[2]

by (meson add-mono card-Un-le le-trans)

lemma card-eq-length-impl-disjunct:
assumes finite (relations (Join l r))

and Finite-Set.card (relations (Join l r)) = length (inorder (Join l r))
shows relations l ∩ relations r = {}

proof (rule ccontr)
assume 0 : relations l ∩ relations r 6= {}
have 1 : finite (relations l) ∧ finite (relations r) using assms(1) by simp
then have 2 : Finite-Set.card (relations (Join l r)) + Finite-Set.card (relations

l ∩ relations r)
= Finite-Set.card (relations l) + Finite-Set.card (relations r)

using card-Un-Int by (metis JoinTree.joinTree.simps(16))
moreover have Finite-Set.card (relations l ∩ relations r) > 0 using 0 1 by

auto
ultimately have Finite-Set.card (relations (Join l r))

< Finite-Set.card (relations l) + Finite-Set.card (relations r) by simp
also have . . . ≤ length (inorder l) + Finite-Set.card (relations r)

by (simp add: card-le-length)
also have . . . ≤ length (inorder l) + length (inorder r)

by (simp add: card-le-length)
finally have Finite-Set.card (relations (Join l r)) < length (inorder (Join l r))

by simp
then show False using assms(2) by simp

qed

lemma card-eq-length-trans-l:
assumes finite (relations (Join l r))

and Finite-Set.card (relations (Join l r)) = length (inorder (Join l r))
shows Finite-Set.card (relations l) = length (inorder l)

proof (rule ccontr)
assume 0 : Finite-Set.card (relations l) 6= length (inorder l)
have Finite-Set.card (relations (Join l r))

= length (inorder l) + length (inorder r)
using assms(2) by simp

have finite (relations l) ∧ finite (relations r) using assms(1) by simp
then have Finite-Set.card (relations (Join l r)) + Finite-Set.card (relations l ∩

relations r)
= Finite-Set.card (relations l) + Finite-Set.card (relations r)

using card-Un-Int by (metis JoinTree.joinTree.simps(16))
then have Finite-Set.card (relations (Join l r))

= Finite-Set.card (relations l) + Finite-Set.card (relations r)

22

using assms by (simp add: card-eq-length-impl-disjunct)
moreover have Finite-Set.card (relations l) < length (inorder l)

using 0 card-le-length le-imp-less-or-eq by blast
ultimately have Finite-Set.card (relations (Join l r))

< length (inorder l) + Finite-Set.card (relations r)
by simp

also have . . . ≤ length (inorder l) + length (inorder r)
by (simp add: card-le-length)

finally have Finite-Set.card (relations (Join l r)) < length (inorder (Join l r))
by simp

then show False using assms(2) by simp
qed

lemma card-eq-length-trans-r :
assumes finite (relations (Join l r))

and Finite-Set.card (relations (Join l r)) = length (inorder (Join l r))
shows Finite-Set.card (relations r) = length (inorder r)

using assms card-eq-length-trans-l mirror-set-eq
by (metis JoinTree.mirror .simps(2) mirror-num-relations-eq num-relations-eq-length)

lemma card-eq-length-impl-distinct:
[[finite (relations t); height t ≤ n; Finite-Set.card (relations t) = length (inorder

t)]]
=⇒ distinct-relations t

proof(induction n arbitrary: t)
case 0
then obtain r where Relation r = t using height-0-rel by auto
then show ?case using distinct-relations-def by force

next
case (Suc n)
then show ?case
proof(cases height t = Suc n)

case True
then have 0 < height t by simp
then obtain l r where join[simp]: Join l r = t using height-gt-0-join by blast
then have 0 : finite (relations l) ∧ finite (relations r)

using Suc.prems(1) finite-trans by blast
have 1 : height l ≤ n using True join by (metis height-decr-l less-Suc-eq-le)
have 2 : height r ≤ n using True join by (metis height-decr-r less-Suc-eq-le)
have Finite-Set.card (relations t) + Finite-Set.card (relations l ∩ relations r)

= Finite-Set.card (relations l) + Finite-Set.card (relations r)
using card-Un-Int join 0 by (metis JoinTree.joinTree.simps(16))

then have Finite-Set.card (relations t)
= Finite-Set.card (relations l) + Finite-Set.card (relations r)

using Suc.prems(1 ,3) by (simp add: card-eq-length-impl-disjunct)

have Finite-Set.card (relations l) = length (inorder l)
using Suc.prems(1 ,3) card-eq-length-trans-l join by blast

then have 3 : distinct-relations l using Suc.IH 0 1 by blast

23

have Finite-Set.card (relations r) = length (inorder r)
using Suc.IH Suc.prems(1 ,3) card-eq-length-trans-r join by blast

then have 4 : distinct-relations r using Suc.IH 0 2 by blast
have relations l ∩ relations r = {}

using card-eq-length-impl-disjunct join Suc.prems(1 ,3) by blast
then show ?thesis using 3 4 distinct-and-disjoint-impl-distinct by fastforce

next
case False
then show ?thesis using Suc by simp

qed
qed

lemma list-sel-revorder-eq-inorder-x: list-sel f (revorder l) ys = list-sel f (inorder
l) ys

unfolding revorder-eq-rev-inorder using mset-x-eq-list-sel-eq mset-rev by blast

lemma list-sel-revorder-eq-inorder-y: list-sel f xs (revorder r) = list-sel f xs (inorder
r)

unfolding revorder-eq-rev-inorder using mset-y-eq-list-sel-eq mset-rev by blast

lemma list-sel-revorder-eq-inorder :
list-sel f (revorder l) (revorder r) = list-sel f (inorder l) (inorder r)
unfolding list-sel-revorder-eq-inorder-x list-sel-revorder-eq-inorder-y by simp

lemma card-join-alt:
card cf f (Join l r) = list-sel f (revorder l) (revorder r) ∗ card cf f l ∗ card cf f r
unfolding list-sel-revorder-eq-inorder by simp

lemma distinct-alt:
finite (relations t)
=⇒ distinct-relations t ←→ Finite-Set.card (relations t) = length (inorder t)

using card-eq-length-impl-distinct distinct-impl-card-eq-length by auto

lemma distinct-alt2 :
distinct-relations (Join l r)
←→ distinct-relations l ∧ distinct-relations r ∧ relations l ∩ relations r = {}

using distinct-relations-disjoint distinct-trans-l distinct-trans-r
by (auto elim: distinct-and-disjoint-impl-distinct)

lemma pos-rel-cards-subtrees:
pos-rel-cards cf (Join l r) = (pos-rel-cards cf l ∧ pos-rel-cards cf r)

proof −
have pos-rel-cards cf (Join l r) = (∀ (-,c)∈set (cards-list cf (Join l r)). c>0)

by (simp add: pos-rel-cards-def)
also have . . . = (∀ (-,c)∈set (cards-list cf l @ cards-list cf r). c>0) by simp
also have . . . = ((∀ (-,c)∈set (cards-list cf l). c>0) ∧ (∀ (-,c)∈set (cards-list cf

r). c>0))
by auto

also have . . . = (pos-rel-cards cf l ∧ pos-rel-cards cf r)

24

by (simp add: pos-rel-cards-def)
finally show ?thesis by simp

qed

lemma pos-rel-cards-eq-pos-list-cards:
pos-rel-cards cf t ←→ pos-list-cards cf (inorder t)
by(induction t) (auto simp: pos-rel-cards-def pos-list-cards-def)

lemma pos-list-cards-split:
pos-list-cards cf (xs@ys) ←→ pos-list-cards cf xs ∧ pos-list-cards cf ys
by(induction xs) (auto simp: pos-list-cards-def)

lemma pos-sel-reason-impl-reason:
[[pos-rel-cards cf t; sel-reasonable sel]] =⇒ reasonable-cards cf sel t

proof(induction t)
case (Join l r)
then have pos-rel-cards cf l ∧ pos-rel-cards cf r using pos-rel-cards-subtrees by

blast
then have 0 : reasonable-cards cf sel l ∧ reasonable-cards cf sel r using Join by

simp
have list-sel sel (inorder l) (inorder r) ≤ 1

using Join.prems(2) sel-reasonable-def list-sel-reasonable by fast
obtain c where 1 :

list-sel sel (inorder l) (inorder r) ∗ card cf sel l ∗ card cf sel r = c
by simp

then have c = list-sel sel (inorder l) (inorder r) ∗ card cf sel l ∗ card cf sel r
by simp

then have 2 : c ≤ 1 ∗ card cf sel l ∗ card cf sel r
using Join.prems(2) list-sel-reasonable 0 mult-left-le-one-le mult-right-less-imp-less
by (smt (verit, ccfv-SIG) card.simps(1) card.simps(2) reasonable-cards.elims(2))

from 1 have c > 0 ∗ card cf sel l ∗ card cf sel r
using Join.prems(2) list-sel-reasonable 0 mult-pos-pos
by (metis card.simps(1) card.simps(2) mult-eq-0-iff reasonable-cards.elims(2))

then show ?case using 0 1 2 by simp
qed(simp add: pos-rel-cards-def)

lemma create-rdeep-order : xs 6= [] =⇒ inorder (create-rdeep xs) = xs
proof(induction xs)

case (Cons x xs)
then show ?case by(cases xs) auto

qed(simp)

lemma create-ldeep-rev-order : xs 6= [] =⇒ inorder (create-ldeep-rev xs) = rev xs
proof(induction xs)

case (Cons x xs)
then show ?case by(cases xs) auto

qed(simp)

lemma create-ldeep-order : xs 6= [] =⇒ inorder (create-ldeep xs) = xs

25

by (simp add: create-ldeep-def create-ldeep-rev-order)

lemma create-rdeep-rdeep: xs 6= [] =⇒ right-deep (create-rdeep xs)
proof(induction xs)

case (Cons x xs)
then show ?case by(cases xs) auto

qed(simp)

lemma create-ldeep-rev-ldeep: xs 6= [] =⇒ left-deep (create-ldeep-rev xs)
proof(induction xs)

case (Cons x xs)
then show ?case by(cases xs) auto

qed(simp)

lemma create-ldeep-ldeep: xs 6= [] =⇒ left-deep (create-ldeep xs)
by (simp add: create-ldeep-rev-ldeep create-ldeep-def)

lemma create-ldeep-rev-relations: xs 6= [] =⇒ relations (create-ldeep-rev xs) = set
xs

using create-ldeep-rev-order [of xs] inorder-eq-set by force

lemma create-ldeep-relations: xs 6= [] =⇒ relations (create-ldeep xs) = set xs
by (simp add: create-ldeep-rev-relations create-ldeep-def)

lemma create-ldeep-rev-Cons:
xs 6= [] =⇒ create-ldeep-rev (x#xs) = Join (create-ldeep-rev xs) (Relation x)
using create-ldeep-rev.simps(3) neq-Nil-conv by metis

lemma create-ldeep-snoc: xs 6= [] =⇒ create-ldeep (xs@[x]) = Join (create-ldeep
xs) (Relation x)

by (simp add: create-ldeep-rev-Cons create-ldeep-def)

lemma create-ldeep-inorder [simp]: left-deep t =⇒ create-ldeep (inorder t) = t
apply(induction t)
apply (simp add: create-ldeep-def)

by (metis Nil-is-append-conv create-ldeep-snoc inorder .simps
ldeep-trans left-deep.simps(3) not-Cons-self2 relations-mset.cases)

lemma create-rdeep-inorder [simp]: right-deep t =⇒ create-rdeep (inorder t) = t
apply(induction t)
apply simp

by (metis create-rdeep.simps(3) create-rdeep-order first-node-first-inorder
joinTree.distinct(1) joinTree.inject(2) neq-Nil-conv right-deep.elims(2))

lemma ldeep-div-eq-sel:
assumes reasonable-cards cf f (Join l (Relation rel))

and c = card cf f (Join l (Relation rel))
and cr = card cf f (Relation rel)

shows c / (card cf f l ∗ cr) = list-sel f (inorder l) [rel]

26

using assms by auto

lemma ldeep-n-eq-card:
[[distinct-relations t; left-deep t]] =⇒ ldeep-n f cf (revorder t) = card cf f t

proof(induction t arbitrary: cf rule: left-deep.induct)
case (2 l rr)
let ?rev = revorder (Join l (Relation rr))
have ?rev = rr # revorder l by simp
have ldeep-n f cf ?rev = ldeep-n f cf (rr#revorder l) by simp
also have . . . = list-sel-aux ′ f (revorder l) rr
∗ cf rr ∗ ldeep-n f cf (revorder l) by simp

also have . . . = list-sel-aux ′ f (inorder l) rr ∗ cf rr
∗ ldeep-n f cf (revorder l)

using mset-x-eq-list-sel-aux ′-eq mset-rev by (fastforce simp: revorder-eq-rev-inorder)
also have . . . = list-sel-aux ′ f (inorder l) rr ∗ cf rr ∗ card cf f l

using 2 distinct-trans-l by auto
finally show ?case

using list-sel-sing-aux ′ card.simps mult.commute
by (metis ab-semigroup-mult-class.mult-ac(1) inorder .simps(1))

qed(auto)

lemma ldeep-n-eq-card-subtree:
[[distinct-relations (Join t r ′); left-deep t]] =⇒ ldeep-n f cf (revorder t) = card cf

f t
using ldeep-n-eq-card distinct-trans-l by blast

lemma distinct-ldeep-T ′-prepend:
distinct (ys@xs) =⇒ ldeep-T ′ (ldeep-s f (ys@xs)) cf xs = ldeep-T ′ (ldeep-s f xs)

cf xs
proof(induction xs arbitrary: ys)

case (Cons x xs)
then have 0 : distinct (x#xs) by simp
have ldeep-T ′ (ldeep-s f (ys@x#xs)) cf (x#xs)

= cf x ∗ (ldeep-s f (ys@x#xs)) x ∗ ldeep-T ′ (ldeep-s f (ys@x#xs)) cf xs
by simp

also have . . . = cf x ∗ (ldeep-s f (ys@x#xs)) x ∗ ldeep-T ′ (ldeep-s f xs) cf xs
using Cons.IH [of ys@[x]] Cons.prems by simp

also have . . . = cf x ∗ list-sel-aux ′ f xs x ∗ ldeep-T ′ (ldeep-s f xs) cf xs
using distinct-ldeep-s-eq-aux[OF Cons.prems] by simp

also have . . . = cf x ∗ (ldeep-s f (x#xs)) x ∗ ldeep-T ′ (ldeep-s f xs) cf xs
using distinct-ldeep-s-eq-aux Cons.prems by simp

also have . . . = cf x ∗ (ldeep-s f (x#xs)) x ∗ ldeep-T ′ (ldeep-s f (x#xs)) cf xs
using Cons.IH [of [x]] 0 by simp

finally show ?case by simp
qed(simp)

lemma ldeep-T ′-eq-ldeep-n: distinct xs =⇒ ldeep-T ′ (ldeep-s f xs) cf xs = ldeep-n
f cf xs

27

proof(induction xs)
case (Cons x xs)
then have 0 : distinct xs by simp
have ldeep-T ′ (ldeep-s f (x # xs)) cf (x # xs)

= cf x ∗ (ldeep-s f (x # xs)) x ∗ ldeep-T ′ (ldeep-s f (x # xs)) cf xs by
simp

also have . . . = cf x ∗ list-sel-aux ′ f xs x ∗ ldeep-T ′ (ldeep-s f (x # xs)) cf xs
by simp

also have . . . = cf x ∗ list-sel-aux ′ f xs x ∗ ldeep-T ′ (ldeep-s f xs) cf xs
using distinct-ldeep-T ′-prepend[of [x]] Cons.prems by simp

also have . . . = cf x ∗ list-sel-aux ′ f xs x ∗ ldeep-n f cf xs
using Cons.IH 0 by simp

finally show ?case by simp
qed(simp)

lemma ldeep-T ′-eq-foldl: acc ∗ ldeep-T ′ f cf xs = foldl (λa b. a ∗ cf b ∗ f b) acc xs
proof(induction xs arbitrary: acc)

case (Cons x xs)
have acc ∗ ldeep-T ′ f cf (x # xs) = acc ∗ cf x ∗ f x ∗ ldeep-T ′ f cf xs by simp
also have . . . = foldl (λa b. a ∗ cf b ∗ f b) (acc ∗ cf x ∗ f x) xs using Cons by

simp
finally show ?case by simp

qed(simp)

lemma distinct-ldeep-T-prepend:
distinct (ys@xs) =⇒ ldeep-T (ldeep-s f (ys@xs)) cf xs = ldeep-T (ldeep-s f xs) cf

xs
using ldeep-T ′-eq-foldl[of 1 ldeep-s f (ys@xs) cf xs]
by (simp add: distinct-ldeep-T ′-prepend ldeep-T-def ldeep-T ′-eq-foldl)

lemma ldeep-T-eq-ldeep-T ′-aux: ldeep-T sf cf xs = ldeep-T ′ sf cf xs
using ldeep-T ′-eq-foldl[of 1 sf] ldeep-T-def by fastforce

lemma ldeep-T-eq-ldeep-T ′: ldeep-T = ldeep-T ′

using ldeep-T-eq-ldeep-T ′-aux by blast

lemma ldeep-T-eq-ldeep-n: distinct xs =⇒ ldeep-T (ldeep-s f xs) cf xs = ldeep-n f
cf xs

by (simp add: ldeep-T-eq-ldeep-T ′ ldeep-T ′-eq-ldeep-n)

lemma ldeep-T-app: ldeep-T f cf (xs@ys) = ldeep-T f cf xs ∗ ldeep-T f cf ys
using ldeep-T-def foldl-append ldeep-T ′-eq-foldl
by (metis (mono-tags, lifting) monoid.left-neutral mult.monoid-axioms)

lemma ldeep-T-empty: ldeep-T f cf [] = 1
by (simp add: ldeep-T-def)

lemma ldeep-T-eq-if-cf-eq: ∀ x ∈ set xs. f x = g x =⇒ ldeep-T sf f xs = ldeep-T sf
g xs

28

unfolding ldeep-T-eq-ldeep-T ′ by (induction xs) auto

lemma ldeep-n-pos: [[pos-list-cards cf xs; sel-reasonable f]] =⇒ ldeep-n f cf xs > 0
proof(induction xs)

case Nil
then show ?case by simp

next
case (Cons x xs)
then show ?case

using list-sel-aux ′-reasonable pos-list-cards-def mult-pos-pos set-subset-Cons
by (metis list.set-intros(1) ldeep-n.simps(2) subset-code(1))

qed

lemma ldeep-T-eq-card:
[[distinct-relations t; left-deep t]]
=⇒ ldeep-T (ldeep-s f (revorder t)) cf (revorder t) = card cf f t

using ldeep-T-eq-ldeep-n[of revorder t] ldeep-n-eq-card distinct-rels-alt by fast-
force

lemma ldeep-T-pos ′:
[[distinct xs; pos-list-cards cf xs; sel-reasonable f]] =⇒ ldeep-T (ldeep-s f xs) cf xs

> 0
by (simp add: ldeep-T-eq-ldeep-n ldeep-n-pos)

lemma ldeep-T-pos: [[∀ x∈ set ys. cf x > 0 ; sel-reasonable f]] =⇒ ldeep-T (ldeep-s
f xs) cf ys > 0

apply(induction ys arbitrary: xs)
apply(auto simp: ldeep-T-def)[2]
by (metis Groups.comm-monoid-mult-class.mult-1 ldeep-T ′-eq-foldl ldeep-s-pos

zero-less-mult-iff)

end

theory CostFunctions
imports Complex-Main JoinTree Selectivities

begin

3 Cost Functions
3.1 General Cost Functions
fun c-out :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real where

c-out - - (Relation -) = 0
| c-out cf f (Join l r) = card cf f (Join l r) + c-out cf f l + c-out cf f r

fun c-nlj :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real where
c-nlj - - (Relation -) = 0
| c-nlj cf f (Join l r) = card cf f l ∗ card cf f r + c-nlj cf f l + c-nlj cf f r

29

fun c-hj :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real where
c-hj - - (Relation -) = 0
| c-hj cf f (Join l r) = 1 .2 ∗ card cf f l + c-hj cf f l + c-hj cf f r

fun c-smj :: ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real where
c-smj - - (Relation -) = 0
| c-smj cf f (Join l r) = card cf f l ∗ log 2 (card cf f l) + card cf f r ∗ log 2 (card
cf f r)

+ c-smj cf f l + c-smj cf f r

3.2 Cost functions that are considered by IKKBZ.
fun c-IKKBZ :: (′a ⇒ real ⇒ real) ⇒ ′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒
real where

c-IKKBZ - - - (Relation -) = 0
| c-IKKBZ h cf f (Join l (Relation rel)) = card cf f l ∗ (h rel (cf rel)) + c-IKKBZ
h cf f l
| c-IKKBZ - - - (Join l r) = undefined

A list of relations defines a unique left-deep tree. This functions computes
a cost function given by such a list representation of a tree according to
the formula

∑
i=2

n n{1,2,...i−1} hi(ni) where n{1,2,...i−1} = JoinTree.card
subtree = ldeep-n f cf (list subtree) The input list is expected to be in
reversed order for easier recursive processing i.e. the first element in xs is
the rightmost element of the left-deep tree
fun c-list ′ :: ′a selectivity ⇒ ′a card ⇒ (′a list ⇒ ′a ⇒ real) ⇒ ′a list ⇒ real
where

c-list ′ - - - [] = 0
| c-list ′ - - - [x] = 0
| c-list ′ f cf h (x#xs) = ldeep-n f cf xs ∗ h xs x + c-list ′ f cf h xs

Equivalent definition which allows splitting the list at any point.
fun c-list :: (′a ⇒ real) ⇒ ′a card ⇒ (′a ⇒ real) ⇒ ′a ⇒ ′a list ⇒ real where

c-list - - - - [] = 0
| c-list - - h r [x] = (if x=r then 0 else h x)
| c-list sf cf h r (x#xs) = c-list sf cf h r xs + ldeep-T sf cf xs ∗ c-list sf cf h r [x]

Maps the h function to a static version that doesn’t require an input list.
fun create-h-list :: (′a list ⇒ ′a ⇒ real) ⇒ ′a list ⇒ ′a ⇒ real where

create-h-list - [] = (λ-. 1)
| create-h-list h (x#xs) = (λa. if a=x then h xs x else create-h-list h xs a)

3.3 Properties of Cost Functions
definition symmetric :: (′a joinTree ⇒ real) ⇒ bool where

symmetric f = (∀ x y. f (Join x y) = f (Join y x))

30

definition symmetric ′ :: (′a card ⇒ ′a selectivity ⇒ ′a joinTree ⇒ real) ⇒ bool
where

symmetric ′ f = (∀ x y cf sf . sel-symm sf −→ (f cf sf (Join x y) = f cf sf (Join y
x)))

Uses reversed lists since the last joined relation should only appear once.
Therefore, it should be the head of the list and by inductive reasoning the
list should be reversed. Furthermore, the root must be the first relation in
the sequence (last in the reverse) or it must not be contained at all.
definition asi ′ :: ′a ⇒ (′a list ⇒ real) ⇒ bool where

asi ′ r c = (∃ rank :: (′a list ⇒ real).
(∀A U V B. distinct (A@U@V@B) ∧ U 6= [] ∧ V 6= []
∧ (r /∈ set (A@U@V@B) ∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B)

= [r]))
−→ (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤

rank (rev V))))

definition asi :: (′a list ⇒ real) ⇒ ′a ⇒ (′a list ⇒ real) ⇒ bool where
asi rank r c = (∀A U V B. distinct (A@U@V@B) ∧ U 6= [] ∧ V 6= []
∧ (r /∈ set (A@U@V@B) ∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B)

= [r]))
−→ (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤

rank (rev V)))

definition asi ′′ :: (′a list ⇒ real) ⇒ ′a ⇒ (′a list ⇒ real) ⇒ bool where
asi ′′ rank r c = ((∀A U V B. distinct (A@U@V@B) ∧ U 6= [] ∧ V 6= [] ∧ U 6=

[r] ∧ V 6= [r]
−→ (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤ rank

(rev V))))

3.4 Proofs
lemma c-out-symm: sel-symm f =⇒ symmetric (c-out cf f)

by (simp add: symmetric-def list-sel-symm)

lemma c-nlj-symm: symmetric (c-nlj cf f)
by (simp add: symmetric-def)

lemma c-smj-symm: symmetric (c-smj cf f)
by (simp add: symmetric-def)

3.4.1 Equivalence Proofs
theorem c-nlj-IKKBZ : left-deep t =⇒ c-nlj cf f t = c-IKKBZ (λ-. id) cf f t
proof(induction t)

case (Join l r)
then show ?case by(cases r) auto

qed(simp)

31

theorem c-hj-IKKBZ : left-deep t =⇒ c-hj cf f t = c-IKKBZ (λ- -. 1 .2) cf f t
proof(induction t)

case ind: (Join l r)
then show ?case by(cases r) auto

qed(simp)

lemma change-fun-order : y 6=rel
=⇒ (λa b. if a=rel then g a b else (λc d. if c=y then h c d else f c d) a b)
= (λa b. if a=y then h a b else (λc d. if c=rel then g c d else f c d) a b)

by fastforce

lemma c-IKKBZ-fun-notelem:
assumes left-deep t

and distinct-relations t
and y /∈ relations t
and f ′ = (λa b. if a=y then z b else f a b)

shows c-IKKBZ f ′ cf sf t = c-IKKBZ f cf sf t
using assms proof(induction t arbitrary: f ′ f z rule: left-deep.induct)

case (2 l rel)
then have 0 : rel 6= y by auto
have c-IKKBZ f ′ cf sf (Join l (Relation rel))

= card cf sf l ∗ (f ′ rel (cf rel)) + c-IKKBZ f ′ cf sf l by simp
also have . . . = card cf sf l ∗ (f ′ rel (cf rel)) + c-IKKBZ f cf sf l

using ldeep-trans distinct-trans-l 2 by fastforce
also have . . . = card cf sf l ∗ (f rel (cf rel)) + c-IKKBZ f cf sf l

using 2 .prems(3 ,4) by fastforce
also have . . . = c-IKKBZ f cf sf (Join l (Relation rel)) using 2 .prems(1) by

simp
finally show ?case .

qed (auto)

lemma distinct-c-IKKBZ-ldeep-s-prepend:
[[distinct(ys@revorder t); left-deep t]]
=⇒ c-IKKBZ (λa b. ldeep-s f (ys@revorder t) a ∗ b) cf f t
= c-IKKBZ (λa b. ldeep-s f (revorder t) a ∗ b) cf f t

proof(induction t arbitrary: ys rule: left-deep.induct)
case (2 l rr)
let ?ylr = ys @ revorder (Join l (Relation rr))
let ?lr = revorder (Join l (Relation rr))
let ?h = (λa. (∗) (ldeep-s f ?ylr a))
let ?h ′ = (λa. (∗) (ldeep-s f ?lr a))
let ?h ′′ = (λa. (∗) (ldeep-s f (revorder l) a))
have ?lr = [rr]@revorder l by simp
have 0 : distinct ?lr using 2 .prems(1) by simp
have c-IKKBZ ?h cf f (Join l (Relation rr))

= card cf f l ∗ ((ldeep-s f ?ylr rr) ∗ (cf rr)) + c-IKKBZ ?h cf f l
by simp

also have . . . = card cf f l ∗ ((list-sel-aux ′ f (revorder l) rr) ∗ (cf rr))

32

+ c-IKKBZ ?h cf f l
using 2 .prems(1) by (fastforce simp: distinct-ldeep-s-eq-aux)

also have . . . = card cf f l ∗ (?h ′ rr (cf rr)) + c-IKKBZ ?h cf f l by simp
also have . . . = card cf f l ∗ (?h ′ rr (cf rr)) + c-IKKBZ ?h ′′ cf f l

using 2 .IH [of ys@[rr]] 2 .prems by simp
also have . . . = card cf f l ∗ (?h ′ rr (cf rr)) + c-IKKBZ ?h ′ cf f l

using 2 .IH [of [rr]] 2 .prems(2) 0 by simp
finally show ?case by simp

qed (auto)

lemma distinct-c-IKKBZ-ldeep-s-subtree:
assumes distinct-relations (Join l (Relation rel))

and left-deep (Join l (Relation rel))
shows c-IKKBZ (λa b. ldeep-s f (revorder (Join l (Relation rel))) a ∗ b) cf f l

= c-IKKBZ (λa b. ldeep-s f (revorder l) a ∗ b) cf f l
proof −

have distinct (revorder (Join l (Relation rel)))
using assms(1) by (simp add: distinct-rels-alt inorder-eq-mset)

then have distinct ([rel]@revorder l) by simp
then show ?thesis using distinct-c-IKKBZ-ldeep-s-prepend[of [rel] l] assms(2)

by simp
qed

theorem c-out-IKKBZ :
[[distinct-relations t; reasonable-cards cf f t; left-deep t]]
=⇒ c-IKKBZ (λa b. ldeep-s f (revorder t) a ∗ b) cf f t = c-out cf f t

proof(induction t)
case ind: (Join l r)
then show ?case
proof(cases r)

case (Relation rel)
let ?s = (λa b. ldeep-s f (revorder (Join l r)) a ∗ b)
let ?s ′ = (λa b. ldeep-s f (revorder l) a ∗ b)
have c-IKKBZ ?s cf f l = c-IKKBZ ?s ′ cf f l

using ind.prems distinct-c-IKKBZ-ldeep-s-subtree Relation by fast
then have 0 : c-IKKBZ ?s cf f l = c-out cf f l

using ind ldeep-trans distinct-trans-l reasonable-trans by metis
have c-IKKBZ ?s cf f (Join l r) = card cf f l ∗ (?s rel (cf rel)) + c-IKKBZ ?s

cf f l
using Relation by simp

also have . . . = card cf f l ∗ ((list-sel-aux ′ f (revorder l) rel) ∗ (cf rel))
+ c-IKKBZ ?s cf f l

using Relation by simp
also have . . . = card cf f l ∗ ((list-sel f (revorder l) [rel]) ∗ (cf rel))

+ c-IKKBZ ?s cf f l
by (simp add: list-sel-sing-aux ′)

also have . . . = card cf f l ∗ ((list-sel f (inorder l) [rel]) ∗ (cf rel))
+ c-IKKBZ ?s cf f l

using mset-x-eq-list-sel-eq[of revorder l] by (simp add: revorder-eq-rev-inorder)

33

also have . . . = card cf f (Join l r) + c-IKKBZ ?s ′ cf f l
using distinct-c-IKKBZ-ldeep-s-subtree ind.prems Relation by fastforce

also have . . . = card cf f (Join l r) + c-out cf f l
using ind reasonable-trans distinct-trans-l ldeep-trans by metis

finally show ?thesis using Relation by simp
next

case (Join lr rr)
then show ?thesis using ind by simp

qed
qed(simp)

theorem c-out-eq-c-list ′:
[[distinct-relations t; reasonable-cards cf f t; left-deep t]]
=⇒ c-list ′ f cf (λxs x. (list-sel-aux ′ f xs x) ∗ cf x) (revorder t) = c-out cf f t

proof(induction t rule: left-deep.induct)
case (2 l rr)
let ?h = λxs x. list-sel-aux ′ f xs x ∗ cf x
let ?ll = revorder l
have 1 : distinct-relations l using 2 .prems distinct-trans-l by simp
have 2 : reasonable-cards cf f l using 2 .prems reasonable-trans by blast
have 3 : left-deep l using 2 .prems by simp
have revorder (Join l (Relation rr)) = rr # ?ll by simp
then have c-list ′ f cf ?h (revorder (Join l (Relation rr)))

= ldeep-n f cf ?ll ∗ ?h ?ll rr + c-list ′ f cf ?h ?ll
using joinTree-cases-ldeep[OF 3] by auto

also have . . . = card cf f l ∗ ?h ?ll rr + c-list ′ f cf ?h ?ll
using ldeep-n-eq-card-subtree 2 .prems by auto

also have . . . = card cf f l ∗ (list-sel-aux ′ f ?ll rr) ∗ cf rr + c-list ′ f cf ?h ?ll
using mset-x-eq-list-sel-aux ′-eq mset-rev by fastforce

also have . . . = card cf f (Join l (Relation rr)) + c-list ′ f cf ?h ?ll
unfolding card-join-alt by (simp add: list-sel-sing-aux ′)

also have . . . = card cf f (Join l (Relation rr)) + c-out cf f l using 2 .IH 1 2 3
by simp

finally show ?case by simp
qed (auto)

lemma rev-first-last-elem: (rev (x#x ′#xs ′)) = (r#rs) =⇒ x ∈# mset rs
using in-multiset-in-set last-in-set last-snoc rev-singleton-conv
by (metis List.last.simps List.list.discI List.list.inject List.rev.simps(2))

lemma distinct-first-uneq-last: distinct (x#x ′#xs ′) =⇒ rev (x#x ′#xs ′) = r#rs
=⇒ r 6= x

using rev-first-last-elem mset-rev set-mset-mset
by (metis List.distinct.simps(2) count-eq-zero-iff distinct-count-atmost-1)

lemma distinct-create-eq-app:
[[distinct (ys@xs); x ∈# mset xs]] =⇒ create-h-list h xs x = create-h-list h (ys@xs)

x
by(induction ys) auto

34

lemma c-list-single-h-list-not-elem-prepend:
x /∈ set ys
=⇒ c-list f cf (create-h-list h (ys@x#xs)) r [x] = c-list f cf (create-h-list h (x#xs))

r [x]
by(induction ys) auto

lemma c-list-single-f-list-not-elem-prepend:
x /∈ set ys
=⇒ c-list (ldeep-s f (ys@x#xs)) cf h r [x] = c-list (ldeep-s f (x#xs)) cf h r [x]
by(induction ys) auto

lemma c-list-prepend-h-disjunct:
assumes distinct (ys@xs)
shows c-list f cf (create-h-list h (ys@xs)) r xs = c-list f cf (create-h-list h xs) r

xs
using assms proof(induction xs arbitrary: ys)

case (Cons x xs)
then have 0 : distinct (ys @ [x] @ xs) by simp
then have 1 : distinct ([x] @ xs) by simp
let ?h = create-h-list h (ys @ x # xs)
let ?h ′ = create-h-list h xs
let ?h ′′ = create-h-list h (x#xs)
have 2 : x /∈ set ys using Cons.prems by simp
show ?case
proof(cases xs=[])

case True
then show ?thesis

using Cons distinct-create-eq-app in-multiset-in-set
by (metis CostFunctions.c-list.simps(2) List.list.set-intros(1))

next
case False
then obtain x ′ xs ′ where x ′-def [simp]: xs = x ′#xs ′ using List.list.exhaust-sel

by auto
then have c-list f cf ?h r (x # xs)

= c-list f cf ?h r xs + ldeep-T f cf xs ∗ c-list f cf ?h r [x] by simp
also have . . . = c-list f cf ?h ′ r xs + ldeep-T f cf xs ∗ c-list f cf ?h r [x]

using Cons.IH [of ys@[x]] 0 by simp
also have . . . = c-list f cf ?h ′′ r xs + ldeep-T f cf xs ∗ c-list f cf ?h r [x]

using Cons.IH [of [x]] 1 by simp
also have . . . = c-list f cf ?h ′′ r xs + ldeep-T f cf xs ∗ c-list f cf ?h ′′ r [x]

using c-list-single-h-list-not-elem-prepend 2 by metis
finally show ?thesis by simp

qed
qed(simp)

lemma c-list-prepend-f-disjunct:
assumes distinct (ys@xs)
shows c-list (ldeep-s f (ys@xs)) cf h r xs = c-list (ldeep-s f xs) cf h r xs

35

using assms proof(induction xs arbitrary: ys)
case (Cons x xs)
then have 0 : distinct(ys @ [x] @ xs) by simp
then have 1 : distinct ([x] @ xs) by simp
let ?f = ldeep-s f (ys @ x # xs)
let ?f ′ = ldeep-s f xs
let ?f ′′ = ldeep-s f (x#xs)
have 2 : x /∈ set ys using Cons.prems by simp
show ?case
proof(cases xs=[])

case False
then obtain x ′ xs ′ where x ′-def [simp]: xs = x ′#xs ′ using List.list.exhaust-sel

by auto
have ldeep-T ?f cf xs = ldeep-T ?f ′ cf xs

using distinct-ldeep-T-prepend[of ys@[x] xs f cf] Cons.prems by simp
then have 3 : ldeep-T ?f cf xs = ldeep-T ?f ′′ cf xs

using distinct-ldeep-T-prepend[of [x] xs f cf] Cons.prems 1 by simp
have c-list ?f cf h r (x # xs)

= c-list ?f cf h r xs + ldeep-T ?f cf xs ∗ c-list ?f cf h r [x]
by simp

also have . . . = c-list ?f ′ cf h r xs + ldeep-T ?f ′′ cf xs ∗ c-list ?f cf h r [x]
using Cons.IH [of ys@[x]] 0 3 by simp

also have . . . = c-list ?f ′′ cf h r xs + ldeep-T ?f ′′ cf xs ∗ c-list ?f cf h r [x]
using Cons.IH [of [x]] 1 by simp

also have . . . = c-list ?f ′′ cf h r xs + ldeep-T ?f ′′ cf xs ∗ c-list ?f ′′ cf h r [x]
using c-list-single-f-list-not-elem-prepend 2 by metis

finally show ?thesis by simp
qed(simp)

qed(simp)

lemma c-list ′-eq-c-list:
assumes distinct xs

and rev xs = r # rs
shows c-list (ldeep-s f xs) cf (create-h-list h xs) r xs = c-list ′ f cf h xs

using assms proof(induction xs arbitrary: rs)
case (Cons x xs)
then show ?case
proof(cases xs=[])

case False
then obtain x ′ xs ′ where x ′-def [simp]: xs = x ′#xs ′ using List.list.exhaust-sel

by auto
then have 0 : x 6= r using distinct-first-uneq-last Cons by fast
have 1 : distinct xs using Cons.prems(1) by simp
have ∃ rs ′. rev xs = r # rs ′

using Cons.prems Nil-is-append-conv butlast-append
by (metis List.append.right-neutral List.butlast.simps(2) List.list.distinct(1)

List.rev.simps(2) ‹
∧

thesis. (
∧

x ′ xs ′. xs = x ′ # xs ′ =⇒ thesis) =⇒ thesis›)
then obtain rs ′ where 2 : rev xs = r # rs ′ by blast
let ?h = create-h-list h (x # x ′ # xs ′)

36

let ?h ′ = create-h-list h (x ′ # xs ′)
let ?f = ldeep-s f (x ′#xs ′)
let ?f ′ = ldeep-s f (x#x ′#xs ′)
have c-list (ldeep-s f (x#xs)) cf (create-h-list h (x # xs)) r (x # xs)

= c-list ?f ′ cf ?h r (x # x ′ # xs ′)
by simp

also have . . . = c-list ?f ′ cf ?h r (x ′ # xs ′)
+ ldeep-T ?f ′ cf (x ′ # xs ′) ∗ c-list ?f ′ cf ?h r [x]

by simp
also have . . . = c-list ?f ′ cf ?h r (x ′ # xs ′) + ldeep-T ?f ′ cf (x ′ # xs ′) ∗ h (x ′

xs ′) x
using 0 by simp

also have . . . = c-list ?f ′ cf ?h r (x ′ # xs ′) + ldeep-T ?f cf (x ′ # xs ′) ∗ h (x ′

xs ′) x
using distinct-ldeep-T-prepend[of [x] x ′#xs ′] Cons.prems(1) by simp

also have . . . = c-list ?f ′ cf ?h r (x ′ # xs ′) + ldeep-n f cf (x ′ # xs ′) ∗ h (x ′

xs ′) x
using ldeep-T-eq-ldeep-n 1 by fastforce

also have . . . = c-list ?f cf ?h r (x ′ # xs ′) + ldeep-n f cf (x ′ # xs ′) ∗ h (x ′ #
xs ′) x

using c-list-prepend-f-disjunct[of [x] x ′#xs ′] Cons.prems(1) by simp
also have . . . = c-list ?f cf ?h ′ r (x ′ # xs ′) + ldeep-n f cf (x ′ # xs ′) ∗ h (x ′ #

xs ′) x
using c-list-prepend-h-disjunct[of [x] x ′#xs ′] Cons.prems by simp

also have . . . = c-list ′ f cf h (x ′ # xs ′) + ldeep-n f cf (x ′ # xs ′) ∗ h (x ′ # xs ′)
x

using Cons.IH 1 2 by simp
also have . . . = c-list ′ f cf h (x#x ′ # xs ′)

using Cons.prems x ′-def 1 2 by simp
finally show ?thesis by simp

qed(simp)
qed(simp)

lemma clist-eq-if-cf-eq:
∀ x. set x ⊆ set xs −→ ldeep-T sf cf ′ x = ldeep-T sf cf x
=⇒ c-list sf cf ′ h r xs = c-list sf cf h r xs

by (induction sf cf ′ h r xs rule: c-list.induct) (auto simp: subset-insertI2)

lemma ldeep-s-h-eq-list-sel-aux ′-h:
[[distinct xs; ys@x#zs = xs]]
=⇒ (λa. ldeep-s f xs a ∗ cf a) x = (λxs x. (list-sel-aux ′ f xs x) ∗ cf x) zs x

by (fastforce simp: distinct-ldeep-s-eq-aux)

corollary ldeep-s-h-eq-list-sel-aux ′-h ′:
[[distinct-relations t; ys@x#zs = revorder t]]
=⇒ (λa. ldeep-s f (revorder t) a ∗ cf a) x = (λxs x. (list-sel-aux ′ f xs x) ∗ cf

x) zs x
by (fastforce simp: distinct-rels-alt ldeep-s-h-eq-list-sel-aux ′-h)

37

lemma create-h-list-distinct-simp: [[distinct xs; ys@x#zs = xs]] =⇒ create-h-list h
xs x = h zs x

by (induction xs arbitrary: ys) (force simp: append-eq-Cons-conv)+

lemma ldeep-s-h-eq-create-h-list:
[[distinct xs; ys@x#zs = xs]]
=⇒ (λa. ldeep-s f xs a ∗ cf a) x = create-h-list (λxs x. (list-sel-aux ′ f xs x) ∗ cf

x) xs x
by (simp add: distinct-relations-def create-h-list-distinct-simp ldeep-s-h-eq-list-sel-aux ′-h)

lemma ldeep-s-h-eq-create-h-list ′:
[[distinct-relations t; ys@x#zs = revorder t]]
=⇒ (λa. ldeep-s f (revorder t) a ∗ cf a) x
= create-h-list (λxs x. (list-sel-aux ′ f xs x) ∗ cf x) (revorder t) x

by (simp add: distinct-rels-alt ldeep-s-h-eq-create-h-list)

corollary ldeep-s-h-eq-create-h-list ′′:
distinct-relations t =⇒ ∀ ys x zs. ys@x#zs = revorder t
−→ (λa. ldeep-s f (revorder t) a ∗ cf a) x
= create-h-list (λxs x. (list-sel-aux ′ f xs x) ∗ cf x) (revorder t) x

using ldeep-s-h-eq-create-h-list ′ by fast

lemma ldeep-s-h-eq-create-h-list ′′′:
[[distinct-relations t; x ∈ relations t]]
=⇒ (λa. ldeep-s f (revorder t) a ∗ cf a) x
= create-h-list (λxs x. (list-sel-aux ′ f xs x) ∗ cf x) (revorder t) x

using ldeep-s-eq-list-sel-aux ′-split revorder-eq-set
by (fastforce simp add: distinct-rels-alt ldeep-s-h-eq-create-h-list)

lemma cons2-if-2elems: [[x ∈ set xs; y ∈ set xs; x 6= y]] =⇒ ∃ y z zs. xs = y # z
zs

using last.simps list.set-cases neq-Nil-conv by metis

theorem c-IKKBZ-eq-c-list:
fixes t
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t
and ∀ x ∈ relations t. h1 x (cf x) = h2 x

shows c-IKKBZ h1 cf f t = c-list (ldeep-s f xs) cf h2 (first-node t) xs
using assms proof(induction t arbitrary: xs rule: left-deep.induct)

case (2 l r)
let ?r = first-node (Join l (Relation r))
let ?xs = revorder (Join l (Relation r))
let ?ys = revorder l
let ?sf = ldeep-s f ?xs
have h1-h2-l: ∀ x ∈ relations l. h1 x (cf x) = h2 x using 2 .prems(4) by simp
have c-IKKBZ h1 cf f (Join l (Relation r)) = card cf f l ∗ (h1 r (cf r)) +

38

c-IKKBZ h1 cf f l
by simp

then have c-IKKBZ h1 cf f (Join l (Relation r))
= card cf f l ∗ (h1 r (cf r)) + c-list (ldeep-s f ?ys) cf h2 ?r ?ys

using 2 .hyps 2 .prems(2−3) distinct-trans-l[OF 2 .prems(1)] h1-h2-l by force
then have ind: c-IKKBZ h1 cf f (Join l (Relation r))

= card cf f l ∗ (h1 r (cf r)) + c-list ?sf cf h2 ?r ?ys
using c-list-prepend-f-disjunct 2 .prems(1) unfolding distinct-rels-alt
by (metis revorder .simps(2))

have 0 : ?r ∈ set ?xs using first-node-last-revorder [of l] by force
moreover have 1 : r ∈ set ?xs by simp
moreover have distinct ?xs using 2 .prems(1) distinct-rels-alt by force
ultimately have ?r 6= r using first-node-last-revorder [of l] by auto
then obtain z zs where z-def : ?xs = r # z # zs using cons2-if-2elems[OF 0

1] by auto
then have c-list ?sf cf h2 ?r ?xs

= c-list ?sf cf h2 ?r ?ys + ldeep-T ?sf cf ?ys ∗ c-list ?sf cf h2 ?r [r]
by simp

also have . . . = c-list ?sf cf h2 ?r ?ys + ldeep-T ?sf cf ?ys ∗ (h1 r (cf r))
using ‹?r 6= r› 2 .prems(4) by fastforce

also have . . . = c-list ?sf cf h2 ?r ?ys + card cf f l ∗ (h1 r (cf r))
using 2 .prems(1 ,3) ldeep-T-eq-card distinct-rels-alt distinct-ldeep-T-prepend
by (metis revorder .simps(2) ldeep-trans distinct-trans-l)

finally show ?case using ind by simp
qed(auto)

lemma c-IKKBZ-eq-c-list-cout:
fixes f cf t
defines xs ≡ revorder t
defines h ≡ (λa. ldeep-s f xs a ∗ cf a)
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-IKKBZ (λa b. ldeep-s f xs a ∗ b) cf f t = c-list (ldeep-s f xs) cf h
(first-node t) xs

using assms c-IKKBZ-eq-c-list by fast

lemma c-IKKBZ-eq-c-list-cout-hlist:
fixes f cf t
defines h ≡ (λxs x. (list-sel-aux ′ f xs x) ∗ cf x)
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-IKKBZ (λa b. ldeep-s f xs a ∗ b) cf f t
= c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs

using assms c-IKKBZ-eq-c-list ldeep-s-h-eq-create-h-list ′′′[OF assms(3)] by fast-
force

39

theorem c-out-eq-c-list:
fixes f cf t
defines xs ≡ revorder t
defines h ≡ (λa. ldeep-s f xs a ∗ cf a)
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-list (ldeep-s f xs) cf h (first-node t) xs = c-out cf f t
using c-IKKBZ-eq-c-list-cout c-out-IKKBZ assms by fastforce

theorem c-out-eq-c-list-hlist:
fixes f cf t
defines h ≡ (λxs x. (list-sel-aux ′ f xs x) ∗ cf x)
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs = c-out cf f t
using c-IKKBZ-eq-c-list-cout-hlist c-out-IKKBZ assms by fastforce

lemma c-out-eq-c-list-altproof :
fixes f cf t
defines h ≡ (λxs x. (list-sel-aux ′ f xs x) ∗ cf x)
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs = c-out cf f t
proof −

obtain rs where rs-def [simp]: rev (revorder t) = (first-node t) # rs
unfolding revorder-eq-rev-inorder using first-node-first-inorder by auto

have 0 : distinct (revorder t) using assms(3) distinct-rels-alt by auto
then have c-list (ldeep-s f xs) cf (create-h-list h xs) (first-node t) xs

= c-list ′ f cf h (revorder t)
using rs-def c-list ′-eq-c-list xs-def by fast

then show ?thesis using assms c-out-eq-c-list ′ by auto
qed

Similarly, we can derive the equivalence for other cost functions like c-nlj
and c-hj by using the equivalence of c-IKKBZ and c-list.
lemma c-IKKBZ-eq-c-list-hj:

fixes f cf t
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-IKKBZ (λ- -. 1 .2) cf f t = c-list (ldeep-s f xs) cf (λ-. 1 .2) (first-node
t) xs

40

using c-IKKBZ-eq-c-list assms by fast

corollary c-hj-eq-c-list:
fixes f cf t
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-list (ldeep-s f xs) cf (λ-. 1 .2) (first-node t) xs = c-hj cf f t
using c-IKKBZ-eq-c-list-hj c-hj-IKKBZ assms by fastforce

lemma c-IKKBZ-eq-c-list-nlj:
fixes f cf t
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-IKKBZ (λ-. id) cf f t = c-list (ldeep-s f xs) cf cf (first-node t) xs
using c-IKKBZ-eq-c-list assms by fastforce

corollary c-nlj-eq-c-list:
fixes f cf t
defines xs ≡ revorder t
assumes distinct-relations t

and reasonable-cards cf f t
and left-deep t

shows c-list (ldeep-s f xs) cf cf (first-node t) xs = c-nlj cf f t
using c-IKKBZ-eq-c-list-nlj c-nlj-IKKBZ assms by fastforce

lemma c-list-app:
c-list f cf h r (ys@xs) = c-list f cf h r xs + ldeep-T f cf xs ∗ c-list f cf h r ys

proof(induction ys)
case (Cons y ys)
then show ?case
proof(cases xs=[])

case True
then show ?thesis using ldeep-T-empty by auto

next
case False
then obtain x ′ xs ′ where x ′-def [simp]: xs = x ′#xs ′ using List.list.exhaust-sel

by blast
then have c-list f cf h r (y#ys @ xs)

= c-list f cf h r (ys@xs) + ldeep-T f cf (ys@xs) ∗ c-list f cf h r [y]
by (metis CostFunctions.c-list.simps(3) Nil-is-append-conv neq-Nil-conv)

also have . . . = c-list f cf h r xs + ldeep-T f cf xs ∗ c-list f cf h r ys
+ ldeep-T f cf (ys@xs) ∗ c-list f cf h r [y]

using Cons.IH by simp
also have . . . = c-list f cf h r xs + ldeep-T f cf xs ∗ c-list f cf h r ys

+ ldeep-T f cf ys ∗ ldeep-T f cf xs ∗ c-list f cf h r [y]

41

using ldeep-T-app by auto
also have . . . = c-list f cf h r xs + ldeep-T f cf xs ∗ (c-list f cf h r ys

+ ldeep-T f cf ys ∗ c-list f cf h r [y])
by argo

also have . . . = c-list f cf h r xs + ldeep-T f cf xs ∗ (c-list f cf h r (y # ys))
using False neq-Nil-conv List.append.left-neutral
by (metis CostFunctions.c-list.simps(3) calculation)

finally show ?thesis by simp
qed

qed(simp)

lemma create-h-list-pos:
[[sel-reasonable sf ; ∀ x ∈ set xs. cf x > 0]]
=⇒ (create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs) x > 0

by (induction xs) (auto simp: list-sel-aux ′-reasonable)

lemma c-list-not-neg:
assumes sel-reasonable sf

and ∀ x ∈ set ys. cf x > 0
and h = (λa. ldeep-s sf xs a ∗ cf a)

shows c-list (ldeep-s sf xs) cf h r ys ≥ 0
using assms proof(induction ys arbitrary: xs)

case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?case
proof(cases ys)

case Nil
then show ?thesis using ind.prems by (simp add: ldeep-s-pos order-less-imp-le)

next
case (Cons y ′ ys ′)
show ?thesis
proof(cases y=r)

case True
then show ?thesis using Cons ind by simp

next
case False
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys + ldeep-T ?sf cf ys ∗ h y

using Cons False by simp
then have c-list ?sf cf h r (y # ys) ≥ ldeep-T ?sf cf ys ∗ h y

using ind by simp
moreover have ldeep-T ?sf cf ys ∗ h y > 0

using ind.prems by (simp add: ldeep-T-pos ldeep-s-pos)
ultimately show ?thesis by simp

qed
qed

qed(simp)

lemma c-list-not-neg-hlist:
assumes sel-reasonable sf

42

and ∀ x ∈ set xs. cf x > 0
and ∀ x ∈ set ys. cf x > 0
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs

shows c-list (ldeep-s sf xs) cf h r ys ≥ 0
using assms proof(induction ys arbitrary: xs)

case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?case
proof(cases ys)

case Nil
then show ?thesis

using ind.prems by(cases y=r)(auto simp: create-h-list-pos less-eq-real-def)
next

case (Cons y ′ ys ′)
show ?thesis
proof(cases y=r)

case True
then show ?thesis using Cons ind by simp

next
case False
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys + ldeep-T ?sf cf ys ∗ h y

using Cons False by simp
then have c-list ?sf cf h r (y # ys) ≥ ldeep-T ?sf cf ys ∗ h y

using ind by simp
moreover have ldeep-T ?sf cf ys ∗ h y > 0

using create-h-list-pos[of sf xs cf y] ind.prems by (simp add: ldeep-T-pos)
ultimately show ?thesis by simp

qed
qed

qed(simp)

lemma c-list-pos-if-h-pos:
[[sel-reasonable sf ; ∀ x ∈ set xs. cf x > 0 ; ∀ x ∈ set xs. h x > 0 ; r /∈ set xs; xs 6=

[]]]
=⇒ c-list (ldeep-s sf ys) cf h r xs > 0

proof(induction ldeep-s sf ys cf h r xs rule: c-list.induct)
case (3 cf h r y x xs)
have ldeep-T (ldeep-s sf ys) cf (x#xs) > 0 using ldeep-T-pos[of x#xs] 3 .prems(1 ,2)

by simp
then have ldeep-T (ldeep-s sf ys) cf (x#xs) ∗ c-list (ldeep-s sf ys) cf h r [y] > 0

using 3 by auto
moreover have c-list (ldeep-s sf ys) cf h r (x#xs) > 0 using 3 by auto
ultimately show ?case by simp

qed(auto)

lemma c-list-pos-r-not-elem:
assumes sel-reasonable sf

and ∀ x ∈ set ys. cf x > 0
and ys 6= []

43

and r /∈ set ys
and h = (λa. ldeep-s sf xs a ∗ cf a)

shows c-list (ldeep-s sf xs) cf h r ys > 0
using c-list-pos-if-h-pos ldeep-s-pos assms by fastforce

lemma c-list-pos-r-not-elem-hlist:
assumes sel-reasonable sf

and ∀ x ∈ set xs. cf x > 0
and ∀ x ∈ set ys. cf x > 0
and ys 6= []
and r /∈ set ys
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs

shows c-list (ldeep-s sf xs) cf h r ys > 0
using c-list-pos-if-h-pos create-h-list-pos[OF assms(1)] assms by fastforce

lemma c-list-pos-not-root:
assumes sel-reasonable sf

and ∀ x ∈ set ys. cf x > 0
and ys 6= []
and ys 6= [r]
and distinct ys
and h = (λa. ldeep-s sf xs a ∗ cf a)

shows c-list (ldeep-s sf xs) cf h r ys > 0
using assms proof(induction ys arbitrary: xs)

case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?case
proof(cases ys)

case Nil
then have c-list ?sf cf h r (y # ys) = h y using ind.prems(4) by simp
then show ?thesis using ind.prems(1 ,2 ,6) by (simp add: ldeep-s-pos)

next
case (Cons y ′ ys ′)
show ?thesis
proof(cases y=r)

case True
then have 0 : r /∈ set ys using ind.prems(5) by simp
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys

using Cons True by simp
then show ?thesis using ind.prems(1 ,2 ,4 ,6) 0 True by (fastforce intro:

c-list-pos-r-not-elem)
next

case False
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys + ldeep-T ?sf cf ys ∗ h y

using Cons False by simp
then have c-list ?sf cf h r (y # ys) ≥ ldeep-T ?sf cf ys ∗ h y

using c-list-not-neg ind.prems(1 ,2 ,3 ,6) by fastforce
moreover have ldeep-T ?sf cf ys ∗ h y > 0

using ind.prems(1 ,2 ,6) by (simp add: ldeep-T-pos ldeep-s-pos)

44

ultimately show ?thesis by simp
qed

qed
qed(simp)

lemma c-list-pos-not-root-hlist:
assumes sel-reasonable sf

and ∀ x ∈ set xs. cf x > 0
and ∀ x ∈ set ys. cf x > 0
and ys 6= []
and ys 6= [r]
and distinct ys
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs

shows c-list (ldeep-s sf xs) cf h r ys > 0
using assms proof(induction ys arbitrary: xs)

case ind: (Cons y ys)
let ?sf = ldeep-s sf xs
show ?case
proof(cases ys)

case Nil
then have c-list ?sf cf h r (y # ys) = h y using ind.prems(5) by simp
then show ?thesis using create-h-list-pos ind.prems(1 ,2 ,7) by fastforce

next
case (Cons y ′ ys ′)
show ?thesis
proof(cases y=r)

case True
then have 0 : r /∈ set ys using ind.prems(6) by simp
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys

using Cons True by simp
then show ?thesis
using c-list-pos-r-not-elem-hlist[of sf xs cf ys r h] 0 ind.prems(1 ,2 ,3 ,7) Cons

by auto
next

case False
have c-list ?sf cf h r (y # ys) = c-list ?sf cf h r ys + ldeep-T ?sf cf ys ∗ h y

using Cons False by simp
then have c-list ?sf cf h r (y # ys) ≥ ldeep-T ?sf cf ys ∗ h y

using c-list-not-neg-hlist ind.prems(1 ,2 ,3 ,7) by fastforce
moreover have ldeep-T ?sf cf ys ∗ h y > 0

using ind.prems(1 ,2 ,3 ,7) by (simp add: ldeep-T-pos create-h-list-pos)
ultimately show ?thesis by simp

qed
qed

qed(simp)

lemma c-list-split-four :
assumes T = ldeep-T f cf

and C = c-list f cf h r

45

shows C (rev (A @ U @ V @ B)) = C (rev A) + T (rev A) ∗ C (rev U)
+ T (rev A) ∗ T (rev U) ∗ C (rev V)
+ T (rev A) ∗ T (rev U) ∗ T (rev V) ∗ C (rev B)

proof −
let ?T = ldeep-T f cf
let ?C = c-list f cf h r
have ?C (rev (A @ U @ V @ B))

= ?C (rev A) + ?T (rev A) ∗ ?C (rev (U @ V @ B))
using c-list-app[where ys=rev (U@V@B)] by simp

also have . . . = ?C (rev A) + ?T (rev A) ∗ (?C (rev U)
+ ?T (rev U) ∗ ?C (rev (V@B)))

using c-list-app[where ys=rev (V@B)] by simp
also have . . . = ?C (rev A) + ?T (rev A) ∗ ?C (rev U)

+ ?T (rev A) ∗ ?T (rev U) ∗ ?C (rev (V@B))
by argo

also have . . . = ?C (rev A) + ?T (rev A) ∗ ?C (rev U)
+ ?T (rev A) ∗ ?T (rev U) ∗ (?C (rev V)
+ ?T (rev V) ∗ ?C (rev B))

using c-list-app by force
finally have 0 : ?C (rev (A @ U @ V @ B))

= ?C (rev A) + ?T (rev A) ∗ ?C (rev U)
+ ?T (rev A) ∗ ?T (rev U) ∗ ?C (rev V)
+ ?T (rev A) ∗ ?T (rev U) ∗ ?T (rev V) ∗ ?C (rev B)

by argo
then show ?thesis using assms by simp

qed

lemma c-list-A-pos-asi:
assumes c-list f cf h r (rev U) > 0

and c-list f cf h r (rev V) > 0
and ldeep-T f cf (rev A) > 0

shows c-list f cf h r (rev (A @ U @ V @ B)) ≤ c-list f cf h r (rev (A @ V @
U @ B))

←→ ((ldeep-T f cf (rev U) − 1) / c-list f cf h r (rev U)
≤ (ldeep-T f cf (rev V) − 1) / c-list f cf h r (rev V))

proof −
let ?T = ldeep-T f cf
let ?C = c-list f cf h r
let ?rank = (λl. (?T l − 1) / ?C l)
have 0 : ?C (rev (A @ U @ V @ B))

= ?C (rev A) + ?T (rev A) ∗ ?C (rev U)
+ ?T (rev A) ∗ ?T (rev U) ∗ ?C (rev V)
+ ?T (rev A) ∗ ?T (rev U) ∗ ?T (rev V) ∗ ?C (rev B)

using c-list-split-four by fastforce
have ?C (rev (A @ V @ U @ B))

= ?C (rev A) + ?T (rev A) ∗ ?C (rev V)
+ ?T (rev A) ∗ ?T (rev V) ∗ ?C (rev U)
+ ?T (rev A) ∗ ?T (rev V) ∗ ?T (rev U) ∗ ?C (rev B)

using c-list-split-four by fastforce

46

then have ?C (rev (A@U@V@B)) − ?C (rev (A@V@U@B))
= ?T (rev A) ∗ (?C (rev V) ∗ (?T (rev U) − 1) − ?C (rev U) ∗ (?T (rev

V) − 1))
using 0 by argo

also have . . . = ?T (rev A) ∗
(?C (rev V) ∗ (?T (rev U) − 1) ∗ (?C (rev U) / ?C (rev U))
− ?C (rev U) ∗ (?T (rev V) − 1) ∗ (?C (rev V) / ?C (rev V)))

using assms
by (metis Groups.monoid-mult-class.mult.right-neutral divide-self-if less-numeral-extra(3))
also have . . . = ?T (rev A) ∗ ?C (rev U) ∗ ?C (rev V) ∗ (?rank (rev U) −

?rank (rev V))
by argo

finally have 1 : ?C (rev (A@U@V@B)) − ?C (rev (A@V@U@B))
= ?T (rev A) ∗ ?C (rev U) ∗ ?C (rev V) ∗ (?rank (rev U) − ?rank

(rev V)).
then show ?thesis
proof(cases ?C (rev (A@U@V@B)) ≤ ?C (rev (A@V@U@B)))

case True
then show ?thesis by (smt (verit) assms 1 mult-pos-pos)

next
case False
then show ?thesis by (smt (z3) 1 assms mult-pos-pos zero-less-mult-pos)

qed
qed

lemma c-list-asi-aux:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and ∀ ys. (ys 6= [] ∧ r /∈ set ys) −→ c ys > 0
and distinct (A@U@V@B)
and U 6= []
and V 6= []
and rank = (λl. (ldeep-T f cf l − 1) / c l)

and r /∈ set (A@U@V@B) ∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B)
= [r])

shows (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤
rank (rev V))
proof (cases r /∈ set (A@U@V@B))

case True
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r /∈ set (rev U) using True by simp
then have 1 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem assms(1−5 ,7) by fastforce
have r /∈ set (rev V) using True by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem assms(1−5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 1 assms(3 ,9) by fast

47

next
case False
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r-first: take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B) = [r]

using assms(10) False by blast
then have take 1 A = [r] using assms(6−8) distinct-change-order-first-elem by

metis
then have r ∈ set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1 : r /∈ set (U@V@B) using assms(6) by auto
then have r /∈ set (rev U) by simp
then have 2 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem assms(1−5 ,7) by fastforce
have r /∈ set (rev V) using 1 by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem assms(1−5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 2 assms(3 ,9) by fast

qed

lemma c-list-pos-asi:
fixes sf cf h r xs
defines f ≡ ldeep-s sf xs
defines rank ≡ (λl. (ldeep-T f cf l − 1) / c-list f cf h r l)
assumes sel-reasonable sf

and ∀ x. cf x > 0
and ∀ ys. (ys 6= [] ∧ r /∈ set ys) −→ c-list f cf h r ys > 0

shows asi rank r (c-list f cf h r)
unfolding asi-def using c-list-asi-aux[OF assms(3 ,4)] assms(1 ,2 ,5) by simp

theorem c-list-asi:
fixes sf cf h r xs
defines f ≡ ldeep-s sf xs
defines rank ≡ (λl. (ldeep-T f cf l − 1) / c-list f cf h r l)
assumes sel-reasonable sf

and ∀ x. cf x > 0
and ∀ x. h x > 0

shows asi rank r (c-list f cf h r)
using c-list-pos-asi assms c-list-pos-if-h-pos[OF assms(3)] by fastforce

corollary c-out-asi:
fixes sf cf r xs
defines f ≡ ldeep-s sf xs
defines h ≡ (λa. ldeep-s sf xs a ∗ cf a)
defines rank ≡ (λl. (ldeep-T f cf l − 1) / c-list f cf h r l)
assumes sel-reasonable sf

and ∀ x. cf x > 0
shows asi rank r (c-list f cf h r)
using c-list-asi ldeep-s-pos assms by fastforce

48

lemma c-out-asi-aux:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and h = (λa. ldeep-s sf xs a ∗ cf a)
and distinct (A@U@V@B)
and U 6= []
and V 6= []
and rank = (λl. (ldeep-T f cf l − 1) / c l)

and r /∈ set (A@U@V@B) ∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B)
= [r])

shows (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤
rank (rev V))
proof (cases r /∈ set (A@U@V@B))

case True
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r /∈ set (rev U) using True by simp
then have 1 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem assms(1 ,2 ,4 ,5 ,7) by fastforce
have r /∈ set (rev V) using True by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem assms(1 ,2 ,4 ,5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 1 assms(3 ,9) by fast

next
case False
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r-first: take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B) = [r]

using assms(10) False by blast
then have take 1 A = [r] using assms(6−8) distinct-change-order-first-elem by

metis
then have r ∈ set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1 : r /∈ set (U@V@B) using assms(6) by auto
then have r /∈ set (rev U) by simp
then have 2 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem assms(1 ,2 ,4 ,5 ,7) by fastforce
have r /∈ set (rev V) using 1 by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem assms(1 ,2 ,4 ,5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 2 assms(3 ,9) by fast

qed

lemma c-out-asi-aux-hlist:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs
and distinct (A@U@V@B)

49

and U 6= []
and V 6= []
and rank = (λl. (ldeep-T f cf l − 1) / c l)

and r /∈ set (A@U@V@B) ∨ (take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B)
= [r])

shows (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤
rank (rev V))
proof (cases r /∈ set (A@U@V@B))

case True
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r /∈ set (rev U) using True by simp
then have 1 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,7) by fastforce
have r /∈ set (rev V) using True by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 1 assms(3 ,9) by fast

next
case False
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r-first: take 1 (A@U@V@B) = [r] ∧ take 1 (A@V@U@B) = [r]

using assms(10) False by blast
then have take 1 A = [r] using assms(6−8) distinct-change-order-first-elem by

metis
then have r ∈ set A by (metis List.list.set-intros(1) in-set-takeD)
then have 1 : r /∈ set (U@V@B) using assms(6) by auto
then have r /∈ set (rev U) by simp
then have 2 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,7) by fastforce
have r /∈ set (rev V) using 1 by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 2 assms(3 ,9) by fast

qed

theorem c-out-asi-altproof :
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and h = (λa. ldeep-s sf xs a ∗ cf a)

shows asi (λl. (ldeep-T f cf l − 1) / c l) r (c-list f cf h r)
unfolding asi-def using c-out-asi-aux[OF assms] assms(3) by blast

theorem c-out-asi-hlist:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)

50

and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs
shows asi (λl. (ldeep-T f cf l − 1) / c l) r (c-list f cf h r)

unfolding asi-def using c-out-asi-aux-hlist[OF assms] assms(3) by blast

lemma asi-if-asi ′: asi rank r c =⇒ asi ′ r c
unfolding asi ′-def asi-def by auto

corollary c-out-asi ′:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and f = (ldeep-s sf xs)
and h = (λa. ldeep-s sf xs a ∗ cf a)

shows asi ′ r (c-list f cf h r)
using asi-if-asi ′ c-out-asi[OF assms(1 ,2)] assms(3 ,4) by fast

corollary c-out-asi ′-hlist:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and f = (ldeep-s sf xs)
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs

shows asi ′ r (c-list f cf h r)
using asi-if-asi ′ c-out-asi-hlist[OF assms(1 ,2)] assms(3 ,4) by fast

lemma c-out-asi ′′-aux:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs
and distinct (A@U@V@B)
and U 6= []
and V 6= []
and rank = (λl. (ldeep-T f cf l − 1) / c l)
and U 6= [r]
and V 6= [r]

shows (c (rev (A@U@V@B)) ≤ c (rev (A@V@U@B)) ←→ rank (rev U) ≤
rank (rev V))
proof (cases r /∈ set (A@U@V@B))

case True
have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have r /∈ set (rev U) using True by simp
then have 1 : c-list f cf h r (rev U) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,7) by fastforce
have r /∈ set (rev V) using True by simp
then have c-list f cf h r (rev V) > 0

using c-list-pos-r-not-elem-hlist assms(1 ,2 ,4 ,5 ,8) by fastforce
then show ?thesis using c-list-A-pos-asi 0 1 assms(3 ,9) by fast

next
case False

51

have 0 : ldeep-T f cf (rev A) > 0 using assms(1 ,2 ,4) ldeep-T-pos by fast
have 2 : c-list f cf h r (rev U) > 0

using c-list-pos-not-root-hlist assms(1 ,2 ,4−7 ,10) by fastforce
have c-list f cf h r (rev V) > 0

using c-list-pos-not-root-hlist assms(1 ,2 ,4−6 ,8 ,11) by fastforce
then show ?thesis using c-list-A-pos-asi 0 2 assms(3 ,9) by fast

qed

theorem c-out-asi ′′:
assumes sel-reasonable sf

and ∀ x. cf x > 0
and c = c-list f cf h r
and f = (ldeep-s sf xs)
and h = create-h-list (λxs x. (list-sel-aux ′ sf xs x) ∗ cf x) xs

shows asi ′′ (λl. (ldeep-T f cf l − 1) / c l) r (c-list f cf h r)
unfolding asi ′′-def using c-out-asi ′′-aux[OF assms] assms(3) by blast

3.4.2 Additional ASI Proofs
lemma asi-le-iff-notr :
[[asi rank r cost; U 6= []; V 6= []; r /∈ set (A @ U @ V @ B); distinct (A @ U @

V @ B)]]
=⇒ rank (rev U) ≤ rank (rev V) ←→ cost (rev (A@U@V@B)) ≤ cost (rev

(A@V@U@B))
unfolding asi-def by blast

lemma asi-le-iff-rfst:
[[asi rank r cost; U 6= []; V 6= [];

take 1 (A @ U @ V @ B) = [r]; take 1 (A @ V @ U @ B) = [r]; distinct (A
@ U @ V @ B)]]

=⇒ rank (rev U) ≤ rank (rev V) ←→ cost (rev (A@U@V@B)) ≤ cost (rev
(A@V@U@B))

unfolding asi-def by blast

lemma asi-le-notr :
[[asi rank r cost; rank (rev U) ≤ rank (rev V); U 6=[]; V 6=[];

distinct (A@U@V@B); r /∈ set (A@U@V@B)]]
=⇒ cost (rev (A@U@V@B)) ≤ cost (rev (A@V@U@B))

unfolding asi-def by blast

lemma asi-le-rfst:
[[asi rank r cost; rank (rev U) ≤ rank (rev V); U 6=[]; V 6=[]; distinct (A@U@V@B);

take 1 (A @ U @ V @ B) = [r]; take 1 (A @ V @ U @ B) = [r]]]
=⇒ cost (rev (A@U@V@B)) ≤ cost (rev (A@V@U@B))

unfolding asi-def by blast

lemma asi-eq-notr :
assumes asi rank r cost

and rank (rev U) = rank (rev V)

52

and U 6= []
and V 6= []
and r /∈ set (A@U@V@B)
and distinct (A @ U @ V @ B)

shows cost (rev (A@U@V@B)) = cost (rev (A@V@U@B))
proof −

have 0 : distinct (A@V@U@B) using assms(6) by auto
have 1 : r /∈ set (A@V@U@B) using assms(5) by auto
then show ?thesis

using asi-le-iff-notr [OF assms(1 ,3−6)] asi-le-iff-notr [OF assms(1 ,4 ,3) 1 0]
assms(2) by simp
qed

lemma asi-eq-notr ′:
assumes asi rank r cost

and cost (rev (A@U@V@B)) = cost (rev (A@V@U@B))
and U 6= []
and V 6= []
and r /∈ set (A@U@V@B)
and distinct (A @ U @ V @ B)

shows rank (rev U) = rank (rev V)
proof −

have 0 : distinct (A@V@U@B) using assms(6) by auto
have 1 : r /∈ set (A@V@U@B) using assms(5) by auto
show ?thesis

using asi-le-iff-notr [OF assms(1 ,3−6)] asi-le-iff-notr [OF assms(1 ,4 ,3) 1 0]
assms(2) by simp
qed

lemma asi-eq-iff-notr :
[[asi rank r cost; U 6= []; V 6= []; r /∈ set (A@U@V@B); distinct (A@U@V@B)]]
=⇒ rank (rev U) = rank (rev V) ←→ cost (rev (A@U@V@B)) = cost (rev

(A@V@U@B))
using asi-eq-notr [of rank r cost] asi-eq-notr ′[of rank r cost] by blast

lemma asi-eq-rfst:
assumes asi rank r cost

and rank (rev U) = rank (rev V)
and U 6= []
and V 6= []
and take 1 (A @ U @ V @ B) = [r]
and take 1 (A @ V @ U @ B) = [r]
and distinct (A @ U @ V @ B)

shows cost (rev (A@U@V@B)) = cost (rev (A@V@U@B))
proof −

have 0 : distinct (A@V@U@B) using assms(7) by auto
show ?thesis

using asi-le-iff-rfst[OF assms(1 ,3−7)] asi-le-iff-rfst[OF assms(1 ,4 ,3 ,6 ,5) 0]
assms(2) by simp

53

qed

lemma asi-eq-rfst ′:
assumes asi rank r cost

and cost (rev (A@U@V@B)) = cost (rev (A@V@U@B))
and U 6= []
and V 6= []
and take 1 (A @ U @ V @ B) = [r]
and take 1 (A @ V @ U @ B) = [r]
and distinct (A @ U @ V @ B)

shows rank (rev U) = rank (rev V)
proof −

have 0 : distinct (A@V@U@B) using assms(7) by auto
show ?thesis

using asi-le-iff-rfst[OF assms(1 ,3−7)] asi-le-iff-rfst[OF assms(1 ,4 ,3 ,6 ,5) 0]
assms(2) by simp
qed

lemma asi-eq-iff-rfst:
[[asi rank r cost; U 6= []; V 6= [];

take 1 (A @ U @ V @ B) = [r]; take 1 (A @ V @ U @ B) = [r]; distinct (A
@ U @ V @ B)]]

=⇒ rank (rev U) = rank (rev V) ←→ cost (rev (A@U@V@B)) = cost (rev
(A@V@U@B))

using asi-eq-rfst[of rank r cost] asi-eq-rfst ′[of rank r cost] by blast

lemma asi-lt-iff-notr :
assumes asi rank r cost

and U 6= [] and V 6= []
and r /∈ set (A @ U @ V @ B)
and distinct (A @ U @ V @ B)

shows rank (rev U) < rank (rev V) ←→ cost (rev (A@U@V@B)) < cost (rev
(A@V@U@B))

using asi-le-iff-notr [OF assms] asi-eq-iff-notr [OF assms] by auto

lemma asi-lt-iff-rfst:
assumes asi rank r cost

and U 6= [] and V 6= []
and take 1 (A @ U @ V @ B) = [r]
and take 1 (A @ V @ U @ B) = [r]
and distinct (A @ U @ V @ B)

shows rank (rev U) < rank (rev V) ←→ cost (rev (A@U@V@B)) < cost (rev
(A@V@U@B))

using asi-le-iff-rfst[OF assms] asi-eq-iff-rfst[OF assms] by auto

lemma asi-lt-notr :
[[asi rank r cost; rank (rev U) < rank (rev V); U 6=[]; V 6=[];

distinct (A@U@V@B); r /∈ set (A@U@V@B)]]
=⇒ cost (rev (A@U@V@B)) < cost (rev (A@V@U@B))

54

using asi-lt-iff-notr by fastforce

lemma asi-lt-rfst:
[[asi rank r cost; rank (rev U) < rank (rev V); U 6=[]; V 6=[]; distinct (A@U@V@B);

take 1 (A @ U @ V @ B) = [r]; take 1 (A @ V @ U @ B) = [r]]]
=⇒ cost (rev (A@U@V@B)) < cost (rev (A@V@U@B))

using asi-lt-iff-rfst by fastforce

lemma asi ′′-simp-iff :
[[asi ′′ rank r cost; U 6= []; V 6= []; U 6= [r]; V 6= [r]; distinct (A @ U @ V @ B)]]
=⇒ rank (rev U) ≤ rank (rev V) ←→ cost (rev (A@U@V@B)) ≤ cost (rev

(A@V@U@B))
unfolding asi ′′-def by blast

lemma asi ′′-simp:
[[asi ′′ rank r cost; rank (rev U) ≤ rank (rev V); U 6=[]; V 6=[]; distinct (A@U@V@B);

U 6=[r]; V 6=[r]]]
=⇒ cost (rev (A@U@V@B)) ≤ cost (rev (A@V@U@B))

unfolding asi ′′-def by blast

end

theory Graph-Additions
imports Complex-Main Graph-Theory.Graph-Theory Shortest-Path-Tree

begin

lemma two-elems-card-ge-2 : finite xs =⇒ x ∈ xs ∧ y ∈ xs ∧ x 6=y =⇒ Finite-Set.card
xs ≥ 2

using card-gt-0-iff mk-disjoint-insert not-less-eq-eq by fastforce

4 Graph Extensions
context wf-digraph
begin

lemma awalk-dom-if-uneq: [[u 6=v; awalk u p v]] =⇒ ∃ x. x →G v
using reachable-awalk[of u v] awalk-ends[of u p v] converse-reachable-induct by

blast

lemma awalk-verts-dom-if-uneq: [[u 6=v; awalk u p v]] =⇒ ∃ x. x →G v ∧ x ∈ set
(awalk-verts u p)
proof(induction p arbitrary: u)
case Nil
then show ?case using awalk-def by simp

next
case (Cons p ps)
then show ?case
using awalk-Cons-iff [of u p ps v] awalk-verts.simps(2)[of u p ps] awalk-verts-non-Nil

55

by (metis in-arcs-imp-in-arcs-ends list.sel(1) list.set-intros(2) list.set-sel(1))
qed

lemma awalk-verts-append-distinct:
[[∃ v. awalk r (p1@p2) v; distinct (awalk-verts r (p1@p2))]] =⇒ distinct (awalk-verts

r p1)
using awalk-verts-append by auto

lemma not-distinct-if-head-eq-tail:
assumes tail G p = u and head G e = u and awalk r (ps@[p]@e#p2) v
shows ¬(distinct (awalk-verts r (ps@[p]@e#p2)))

using assms proof(induction ps arbitrary: r)
case Nil
then have u ∈ set (awalk-verts (head G p) (e#p2))
by (metis append.left-neutral append-Cons awalk-Cons-iff awalk-verts-arc2 list.set-intros(1))

then show ?case by (simp add: Nil(1))
next

case (Cons p ps)
then show ?case using awalk-Cons-iff by auto

qed

lemma awalk-verts-subset-if-p-sub:
[[awalk u p1 v; awalk u p2 v; set p1 ⊆ set p2]]
=⇒ set (awalk-verts u p1) ⊆ set (awalk-verts u p2)

using awalk-verts-conv by fastforce

lemma awalk-to-apath-verts-subset:
awalk u p v =⇒ set (awalk-verts u (awalk-to-apath p)) ⊆ set (awalk-verts u p)
using awalk-verts-subset-if-p-sub awalk-to-apath-subset apath-awalk-to-apath awalkI-apath
by blast

lemma unique-apath-verts-in-awalk:
[[x ∈ set (awalk-verts u p1); apath u p1 v; awalk u p2 v; ∃ !p. apath u p v]]
=⇒ x ∈ set (awalk-verts u p2)

using apath-awalk-to-apath awalk-to-apath-verts-subset by blast

lemma unique-apath-verts-sub-awalk:
[[apath u p v; awalk u q v; ∃ !p. apath u p v]] =⇒ set (awalk-verts u p) ⊆ set

(awalk-verts u q)
using unique-apath-verts-in-awalk by blast

lemma awalk-verts-append3 :
[[awalk u (p@e#q) r ; awalk v q r]] =⇒ awalk-verts u (p@e#q) = awalk-verts u p

@ awalk-verts v q
using awalk-verts-conv by fastforce

lemma verts-reachable-connected:
verts G 6= {} =⇒ (∀ x∈verts G. ∀ y∈verts G. x →∗ y) =⇒ connected G
by (simp add: connected-def strongly-connected-def reachable-mk-symmetricI)

56

lemma out-degree-0-no-arcs:
assumes out-degree G v = 0 and finite (arcs G)
shows ∀ y. (v,y) /∈ arcs-ends G

proof (rule ccontr)
assume ¬(∀ y. (v,y) /∈ arcs-ends G)
then obtain y where y-def : (v,y) ∈ arcs-ends G by blast
then obtain a where a-def : a ∈ arcs G ∧ tail G a = v ∧ head G a = y by auto
then have a ∈ {e ∈ arcs G. tail G e = v} by simp
then have Finite-Set.card {e ∈ arcs G. tail G e = v} > 0 using assms(2)

card-gt-0-iff by force
then show False using assms(1) by (metis less-nat-zero-code out-arcs-def out-degree-def)

qed

lemma out-degree-0-only-self : finite (arcs G) =⇒ out-degree G v = 0 =⇒ v →∗ x
=⇒ x = v

using converse-reachable-cases out-degree-0-no-arcs by force

lemma not-elem-no-out-arcs: v /∈ verts G =⇒ out-arcs G v = {}
by auto

lemma not-elem-no-in-arcs: v /∈ verts G =⇒ in-arcs G v = {}
by auto

lemma not-elem-out-0 : v /∈ verts G =⇒ out-degree G v = 0
unfolding out-degree-def using not-elem-no-out-arcs by simp

lemma not-elem-in-0 : v /∈ verts G =⇒ in-degree G v = 0
unfolding in-degree-def using not-elem-no-in-arcs by simp

lemma new-vert-only-no-arcs:
assumes G = (|verts = V ∪ {v}, arcs = A, tail = t, head = h|)

and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and v /∈ V
and finite (arcs G)

shows ∀ u. (v,u) /∈ arcs-ends G
proof −

have out-degree G ′ v = 0 using assms(2−4) wf-digraph.not-elem-out-0 by fast-
force

then have out-degree G v = 0 unfolding out-degree-def out-arcs-def using
assms(1 ,2) by simp

then show ?thesis using assms(5) out-degree-0-no-arcs by blast
qed

lemma new-leaf-out-sets-eq:
assumes G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)

57

and u ∈ V
and v /∈ V
and a /∈ A

shows {e ∈ arcs G. tail G e = v} = {e ∈ arcs G ′. tail G ′ e = v}
using assms by auto

lemma new-leaf-out-0 :
assumes G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and u ∈ V
and v /∈ V
and a /∈ A

shows out-degree G v = 0
proof −

have tail G a = u using assms(1) by simp
then have 0 : {e ∈ arcs G. tail G e = v} = {e ∈ arcs G ′. tail G ′ e = v}

using new-leaf-out-sets-eq assms(1 ,2 ,4−6) by blast
have out-degree G ′ v = 0 using assms(2 ,3 ,5) wf-digraph.not-elem-out-0 by

fastforce
then show ?thesis unfolding out-degree-def out-arcs-def using 0 by simp

qed

lemma new-leaf-no-arcs:
assumes G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and u ∈ V
and v /∈ V
and a /∈ A
and finite (arcs G)

shows ∀ u. (v,u) /∈ arcs-ends G
using new-leaf-out-0 assms out-degree-0-no-arcs by presburger

lemma tail-and-head-eq-impl-cas:
assumes cas x p y

and ∀ x ∈ set p. tail G x = tail G ′ x
and ∀ x ∈ set p. head G x = head G ′ x

shows pre-digraph.cas G ′ x p y
using assms proof(induction p arbitrary: x y)

case Nil
show ?case using pre-digraph.cas.simps(1) Nil(1) by fastforce

next
case (Cons p ps)
have 0 : tail G ′ p = x using Cons.prems(1 ,2) by simp
have cas (head G p) ps y using Cons.prems(1) by simp
then have pre-digraph.cas G ′ (head G ′ p) ps y using Cons.IH Cons.prems(2 ,3)

58

by simp
then show ?case using 0 by (simp add: pre-digraph.cas.simps(2))

qed

lemma new-leaf-same-reachables-orig:
assumes x →∗

G y
and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and x ∈ V
and u ∈ V
and v /∈ V
and y 6= v
and a /∈ A
and finite (arcs G)

shows x →∗
G ′ y

proof −
obtain p where p-def : awalk x p y using reachable-awalk assms(1) by auto
then have 0 : set p ⊆ arcs G by blast
have v-0 : out-degree G v = 0 using new-leaf-out-0 assms by presburger
have a-notin-p: a /∈ set p
proof

assume asm: a ∈ set p
have head G a = v using assms(2) by simp
then have ∃ p ′ p ′′. p ′@p ′′=p ∧ awalk x p ′ v

using asm awalk-decomp awalk-verts-arc2 p-def by metis
then obtain p ′ p ′′ where p ′-def : p ′@p ′′=p ∧ awalk x p ′ v by blast
then have awalk v p ′′ y using p-def by auto
then have v →∗ y using reachable-awalk by auto
then have v = y using out-degree-0-only-self assms(10) v-0 by blast
then show False using assms(8) by simp

qed
then have 1 : set p ⊆ arcs G ′ using assms(2 ,3) 0 by auto
have ∀ x ∈ set p. tail G x = tail G ′ x using assms(2 ,3) a-notin-p by simp
moreover have ∀ x ∈ set p. head G x = head G ′ x using assms(2 ,3) a-notin-p

by simp
ultimately have pre-digraph.cas G ′ x p y using tail-and-head-eq-impl-cas p-def

by blast
then have pre-digraph.awalk G ′ x p y unfolding pre-digraph.awalk-def using

assms(3 ,5) 1 by simp
then show ?thesis using assms(4) wf-digraph.reachable-awalkI by fast

qed

lemma new-leaf-same-reachables-new:
assumes x →∗

G ′ y
and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)

59

and wf-digraph G ′

and x ∈ V
and u ∈ V
and v /∈ V
and y 6= v
and a /∈ A

shows x →∗
G y

proof −
obtain p where p-def : pre-digraph.awalk G ′ x p y

using wf-digraph.reachable-awalk assms(1 ,4) by fast
then have 0 : set p ⊆ arcs G ′ by (meson pre-digraph.awalk-def)
then have a-notin-p: a /∈ set p using assms(3 ,9) by auto
have 1 : set p ⊆ arcs G using assms(2 ,3) 0 by auto
have ∀ x ∈ set p. tail G x = tail G ′ x using assms(2 ,3) a-notin-p by simp
moreover have ∀ x ∈ set p. head G x = head G ′ x using assms(2 ,3) a-notin-p

by simp
moreover have pre-digraph.cas G ′ x p y using p-def pre-digraph.awalk-def by

fast
ultimately have cas x p y using assms(4) wf-digraph.tail-and-head-eq-impl-cas

by fastforce
then have awalk x p y unfolding awalk-def using assms(2 ,5) 1 by simp
then show ?thesis using reachable-awalkI by simp

qed

lemma new-leaf-reach-impl-parent:
assumes y →∗ v

and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a
:= v)|)

and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and y ∈ V
and v /∈ V

shows y →∗ u
proof −

have ∀ a ∈ A. h a 6= v
using assms(3 ,4 ,6) wf-digraph.head-in-verts by (metis pre-digraph.select-convs(1 ,2 ,4))

then have 0 : ∀ x. (x,v) ∈ arcs-ends G −→ x = u using assms(2) by fastforce
have v 6= y using assms(5 ,6) by blast
then have y →+ v using assms(1) by blast
then have ∃ x. y →∗x ∧ x →G v

by (meson reachable1-in-verts(1) reachable-conv ′ tranclD2)
then obtain x where y →∗ x ∧ x →G v by blast
then show ?thesis using 0 by blast

qed

end

context graph
begin

60

abbreviation min-degree :: ′a set ⇒ ′a ⇒ bool where
min-degree xs x ≡ x∈xs ∧ (∀ y∈xs. out-degree G x ≤ out-degree G y)

lemma graph-del-vert-sym: sym (arcs-ends (del-vert x))
by (smt (z3) wf-digraph-del-vert mem-Collect-eq reachableE sym-digraph-axioms-def

arcs-del-vert
symmetric-conv symI wf-digraph.in-arcs-imp-in-arcs-ends head-del-vert sym-arcs

tail-del-vert)

lemma graph-del-vert: graph (del-vert x)
apply(standard)
by (auto simp: arcs-del-vert2 tail-del-vert head-del-vert verts-del-vert

no-loops ends-del-vert no-multi-arcs symmetric-def graph-del-vert-sym)

lemma connected-iff-reachable:
connected G ←→ ((∀ x∈verts G. ∀ y∈verts G. x →∗ y) ∧ verts G 6= {})
using symmetric-connected-imp-strongly-connected strongly-connected-def verts-reachable-connected
by(blast)

end

context nomulti-digraph
begin

lemma no-multi-alt:
[[e1 ∈ arcs G; e2 ∈ arcs G; e1 6= e2]] =⇒ head G e1 6= head G e2 ∨ tail G e1
6= tail G e2

using no-multi-arcs by(auto simp: arc-to-ends-def)

end

4.1 Vertices with Multiple Outgoing Arcs
context wf-digraph
begin

definition branching-points :: ′a set where
branching-points = {x. ∃ y∈arcs G. ∃ z∈arcs G. y 6=z ∧ tail G y = x ∧ tail G z

= x}

definition is-chain :: bool where
is-chain = (branching-points = {})

definition last-branching-points :: ′a set where
last-branching-points = {x. (x∈branching-points ∧ ¬(∃ y ∈ branching-points. y 6=x
∧ x →∗ y))}

lemma branch-in-verts: x ∈ branching-points =⇒ x ∈ verts G

61

unfolding branching-points-def by auto

lemma last-branch-is-branch:
(y∈last-branching-points =⇒ y∈branching-points)
unfolding last-branching-points-def by blast

lemma last-branch-alt: x ∈ last-branching-points =⇒ (∀ z. x →∗ z ∧ z 6=x −→ z /∈
branching-points)

unfolding last-branching-points-def by blast

lemma braching-points-alt:
assumes finite (arcs G)
shows x ∈ branching-points ←→ out-degree G x ≥ 2 (is ?P ←→ ?Q)

proof
assume ?P
then obtain a1 a2 where a1∈arcs G ∧ a2∈arcs G ∧ a1 6=a2 ∧ tail G a1 = x
∧ tail G a2 = x

using branching-points-def by auto
then have 0 : a1 ∈ out-arcs G x ∧ a2 ∈ out-arcs G x ∧ a1 6=a2 by simp
have finite (out-arcs G x) by (simp add: assms out-arcs-def)
then show ?Q unfolding out-degree-def using 0 two-elems-card-ge-2 by fast

next
assume 0 : ?Q
have finite (out-arcs G x) by (simp add: assms out-arcs-def)
then have ∃ a1 a2 . a1 ∈ (out-arcs G x) ∧ a2 ∈ (out-arcs G x) ∧ a1 6=a2

using 0 out-degree-def by (metis Suc-n-not-le-n card-le-Suc0-iff-eq le-trans
numeral-2-eq-2)

then show ?P unfolding branching-points-def by auto
qed

lemma branch-in-supergraph:
assumes subgraph C G

and x ∈ wf-digraph.branching-points C
shows x ∈ branching-points

proof −
have 0 : wf-digraph C using assms(1) Digraph-Component.subgraph-def sub-

graph.sub-G by auto
have 1 : wf-digraph G using assms(1) subgraph.sub-G by auto
obtain y z where arcs-C : y∈arcs C ∧ z∈arcs C ∧ y 6=z ∧ tail C y = x ∧ tail C

z = x
using assms(2) wf-digraph.branching-points-def 0 by blast

then have y∈arcs G ∧ z∈arcs G ∧ y 6=z ∧ tail C y = x ∧ tail C z = x
using assms(1) subgraph.sub-G by blast

then have y∈arcs G ∧ z∈arcs G ∧ y 6=z ∧ tail G y = x ∧ tail G z = x
using assms(1) subgraph.sub-G compatible-def by force

then show ?thesis using branching-points-def assms(1) subgraph.sub-G by blast
qed

lemma subgraph-no-branch-chain:

62

assumes subgraph C G
and verts C ⊆ verts G − {x. ∃ y∈branching-points. x →∗

G y}
shows wf-digraph.is-chain C

proof (rule ccontr)
assume asm: ¬wf-digraph.is-chain C
let ?rem = {x. ∃ y∈branching-points. x →∗

G y}
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G

by auto
then obtain x where x-def [simp]: x ∈ wf-digraph.branching-points C

using wf-digraph.is-chain-def asm by blast
then have x ∈ branching-points using assms(1) branch-in-supergraph by simp
moreover from this have x ∈ verts G using branch-in-verts by simp
moreover from this have x →∗

G x by simp
ultimately have x ∈ ?rem by blast
then show False using assms(2) ‹wf-digraph C › subsetD wf-digraph.branch-in-verts

by fastforce
qed

lemma branch-if-leaf-added:
assumes x∈wf-digraph.branching-points G ′

and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a
:= v)|)

and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and a /∈ A
shows x ∈ branching-points

proof −
obtain a1 a2 where a12 : a1∈arcs G ′ ∧ a2∈arcs G ′ ∧ a1 6=a2 ∧ tail G ′ a1 =

x ∧ tail G ′ a2 = x
using wf-digraph.branching-points-def assms(1 ,4) by blast

then have a1 6= a ∧ a2 6= a using assms(3 ,5) by auto
then have 0 : tail G a1 = tail G ′ a1 ∧ tail G a2 = tail G ′ a2 using assms(2 ,3)

by simp
have a1∈arcs G ∧ a2∈arcs G ∧ a1 6=a2 ∧ a1 6=a2 ∧ tail G ′ a1 = x ∧ tail G ′

a2 = x
using assms(2 ,3) a12 by simp

then have a1∈arcs G ∧ a2∈arcs G ∧ a1 6=a2 ∧ tail G a1 = x ∧ tail G a2 = x
using 0 by simp

then show ?thesis unfolding branching-points-def by blast
qed

lemma new-leaf-no-branch:
assumes G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and u ∈ V
and v /∈ V
and a /∈ A

63

shows v /∈ branching-points
proof −

have v 6= u using assms(4 ,5) by fast
have ∀ a∈arcs G ′. tail G ′ a 6= v

using assms(2 ,3 ,5) pre-digraph.select-convs(1) wf-digraph-def by fast
moreover have ∀ x ∈ arcs G ′. tail G x = tail G ′ x using assms(1 ,2 ,6) by simp
ultimately have ∀ a∈arcs G ′. tail G a 6= v by simp
then have ∀ a∈arcs G. tail G a 6= v

using assms(1 ,2 ,6) Un-iff pre-digraph.select-convs(2) singletonD ‹v 6= u› by
simp

then show ?thesis unfolding branching-points-def by blast
qed

lemma new-leaf-not-reach-last-branch:
assumes y∈wf-digraph.last-branching-points G ′

and ¬ y →∗ u
and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and y ∈ V
and u ∈ V
and v /∈ V
and a /∈ A
and finite (arcs G)

shows ¬(∃ z ∈ branching-points. z 6=y ∧ y →∗ z)
proof

assume ∃ z ∈ branching-points. z 6=y ∧ y →∗ z
then obtain z where z-def : z ∈ branching-points ∧ z 6=y ∧ y →∗ z by blast
then have z 6= u using assms(2) by blast
then obtain a1 a2 where a12 : a1∈arcs G ∧ a2∈arcs G ∧ a1 6=a2 ∧ tail G a1

= z ∧ tail G a2 = z
using branching-points-def z-def by blast

then have 0 : a1 6= a ∧ a2 6= a using assms(3) ‹z 6=u› by fastforce
then have 1 : tail G a1 = tail G ′ a1 ∧ tail G a2 = tail G ′ a2 using assms(3 ,4)

by simp
have a1∈arcs G ′ ∧ a2∈arcs G ′ ∧ a1 6=a2 ∧ tail G a1 = z ∧ tail G a2 = z

using assms(3 ,4) a12 0 by simp
then have a1∈arcs G ′ ∧ a2∈arcs G ′ ∧ a1 6=a2 ∧ tail G ′ a1 = z ∧ tail G ′ a2

= z
using 1 by simp

then have 2 : z ∈ wf-digraph.branching-points G ′

using wf-digraph.branching-points-def assms(5) by auto
have z 6= v using assms(2 ,3 ,4 ,5 ,6 ,8) z-def new-leaf-reach-impl-parent by blast
then have y →∗

G ′ z using new-leaf-same-reachables-orig z-def assms by blast
then have ∃ z∈wf-digraph.branching-points G ′. z 6=y ∧ y →∗

G ′ z using 2 z-def
by blast

then have y /∈ wf-digraph.last-branching-points G ′

using wf-digraph.last-branching-points-def assms(5) by blast

64

then show False using assms(1) by simp
qed

lemma new-leaf-parent-nbranch-in-orig:
assumes y∈branching-points

and y 6= u
and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

shows y∈wf-digraph.branching-points G ′

proof −
obtain a1 a2 where a12 : a1∈arcs G ∧ a2∈arcs G ∧ a1 6=a2 ∧ tail G a1 = y
∧ tail G a2 = y

using branching-points-def assms(1) by blast
then have 0 : a1 6= a ∧ a2 6= a using assms(2 ,3) by fastforce
then have 1 : tail G a1 = tail G ′ a1 ∧ tail G a2 = tail G ′ a2 using assms(3 ,4)

by simp
have a1∈arcs G ′ ∧ a2∈arcs G ′ ∧ a1 6=a2 ∧ tail G a1 = y ∧ tail G a2 = y

using assms(3 ,4) a12 0 by auto
then have a1∈arcs G ′ ∧ a2∈arcs G ′ ∧ a1 6=a2 ∧ tail G ′ a1 = y ∧ tail G ′ a2

= y
using 1 by simp

then show ?thesis using assms(5) wf-digraph.branching-points-def by auto
qed

lemma new-leaf-last-branch-exists-preserv:
assumes y∈wf-digraph.last-branching-points G ′

and x →∗ y
and G = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and G ′ = (|verts = V , arcs = A, tail = t, head = h|)
and wf-digraph G ′

and y ∈ V
and u ∈ V
and v /∈ V
and a /∈ A
and finite (arcs G)
and ∀ x. y →+ x −→ y 6=x

obtains y ′ where y ′∈last-branching-points ∧ x →∗ y ′

proof (cases y →∗ u)
case True
have y ∈ wf-digraph.branching-points G ′

using assms(1 ,5) wf-digraph.last-branch-is-branch by fast
then have y-branch: y ∈ branching-points using branch-if-leaf-added assms(3−5 ,9)

by blast
have v-nbranch: v /∈ branching-points using new-leaf-no-branch assms(3−5 ,7−9)

by blast
then show ?thesis

65

proof(cases u ∈ branching-points)
case True
have ¬(∃ z ∈ branching-points. z 6=u ∧ u →∗ z)
proof

assume ∃ z ∈ branching-points. z 6=u ∧ u →∗ z
then obtain z where z-def : z ∈ branching-points ∧ z 6=u ∧ u →∗ z by blast
then have z 6= v using v-nbranch by blast
then have u →∗

G ′ z
using new-leaf-same-reachables-orig assms(3−5 ,7−10) z-def by blast

moreover have y →∗
G ′ u

using new-leaf-same-reachables-orig ‹y →∗ u› assms(3−10) by blast
ultimately have 0 : y →∗

G ′ z
using assms(5) wf-digraph.reachable-trans by fast

have y →+ z
using ‹y →∗ u› z-def reachable-reachable1-trans reachable-neq-reachable1 by

blast
then have y 6= z using assms(11) by simp
have z ∈ wf-digraph.branching-points G ′

using z-def new-leaf-parent-nbranch-in-orig assms(3−5) by blast
then have y /∈ wf-digraph.last-branching-points G ′

using 0 assms(5) wf-digraph.last-branch-alt ‹y 6= z› by fast
then show False using assms(1) by simp

qed
then have u ∈ last-branching-points unfolding last-branching-points-def using

True by blast
then show ?thesis using assms(2) ‹y →∗ u› reachable-trans that by blast

next
case False
have ¬(∃ z ∈ branching-points. z 6=y ∧ y →∗ z)
proof

assume ∃ z ∈ branching-points. z 6=y ∧ y →∗ z
then obtain z where z-def : z ∈ branching-points ∧ z 6=y ∧ y →∗ z by blast
then have z 6= v using v-nbranch by blast
then have 0 : y →∗

G ′ z
using new-leaf-same-reachables-orig assms(3−10) z-def by blast

have z 6= u using False z-def by blast
then have z ∈ wf-digraph.branching-points G ′

using z-def new-leaf-parent-nbranch-in-orig assms(3−5) by blast
then have y /∈ wf-digraph.last-branching-points G ′

using 0 z-def assms(5) wf-digraph.last-branch-alt by fast
then show False using assms(1) by simp

qed
then have y ∈ last-branching-points using last-branching-points-def y-branch

by simp
then show ?thesis using assms(2) that by blast

qed
next

case False
have y ∈ wf-digraph.branching-points G ′

66

using assms(1 ,5) wf-digraph.last-branch-is-branch by fast
then have y ∈ branching-points using branch-if-leaf-added assms(3−5 ,9) by

blast
moreover have ¬(∃ z ∈ branching-points. z 6=y ∧ y →∗ z)

using new-leaf-not-reach-last-branch assms(1 ,3−10) False by blast
ultimately have y ∈ last-branching-points unfolding last-branching-points-def

by blast
then show ?thesis using assms(2) that by blast

qed

end

4.2 Vertices with Multiple Incoming Arcs
context wf-digraph
begin

definition merging-points :: ′a set where
merging-points = {x. ∃ y∈arcs G. ∃ z∈arcs G. y 6=z ∧ head G y = x ∧ head G z

= x}

definition is-chain ′ :: bool where
is-chain ′ = (merging-points = {})

definition last-merging-points :: ′a set where
last-merging-points = {x. (x∈merging-points ∧ ¬(∃ y ∈ merging-points. y 6=x ∧ x
→∗ y))}

lemma merge-in-verts: x ∈ merging-points =⇒ x ∈ verts G
unfolding merging-points-def by auto

lemma last-merge-is-merge:
(y∈last-merging-points =⇒ y∈merging-points)
unfolding last-merging-points-def by blast

lemma last-merge-alt: x ∈ last-merging-points =⇒ (∀ z. x →∗ z ∧ z 6=x −→ z /∈
merging-points)

unfolding last-merging-points-def using reachable-in-verts(2) by blast

lemma merge-in-supergraph:
assumes subgraph C G

and x ∈ wf-digraph.merging-points C
shows x ∈ merging-points

proof −
have 0 : wf-digraph C using assms(1) Digraph-Component.subgraph-def sub-

graph.sub-G by auto
have 1 : wf-digraph G using assms(1) subgraph.sub-G by auto
obtain y z where arcs-C : y∈arcs C ∧ z∈arcs C ∧ y 6=z ∧ head C y = x ∧ head

C z = x

67

using assms(2) wf-digraph.merging-points-def 0 by blast
then have y∈arcs G ∧ z∈arcs G ∧ y 6=z ∧ head C y = x ∧ head C z = x

using assms(1) subgraph.sub-G by blast
then have y∈arcs G ∧ z∈arcs G ∧ y 6=z ∧ head G y = x ∧ head G z = x

using assms(1) subgraph.sub-G compatible-def by force
then show ?thesis using merging-points-def assms(1) subgraph.sub-G by blast

qed

lemma subgraph-no-merge-chain:
assumes subgraph C G

and verts C ⊆ verts G − {x. ∃ y∈merging-points. x →∗
G y}

shows wf-digraph.is-chain ′ C
proof (rule ccontr)

assume asm: ¬wf-digraph.is-chain ′ C
let ?rem = {x. ∃ y∈merging-points. x →∗

G y}
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G

by auto
then obtain x where x-def [simp]: x ∈ wf-digraph.merging-points C

using wf-digraph.is-chain ′-def asm by blast
then have x ∈ merging-points using assms(1) merge-in-supergraph by simp
moreover from this have x ∈ verts G using merge-in-verts by simp
moreover from this have x →∗

G x by simp
ultimately have x ∈ ?rem by blast
then show False using assms(2) ‹wf-digraph C › subsetD wf-digraph.merge-in-verts

by fastforce
qed

end

end

theory QueryGraph
imports Complex-Main Graph-Additions Selectivities JoinTree

begin

5 Query Graphs
locale query-graph = graph +

fixes sel :: ′b weight-fun
fixes cf :: ′a ⇒ real
assumes sel-sym: [[tail G e1 = head G e2; head G e1 = tail G e2]] =⇒ sel e1 =

sel e2
and not-arc-sel-1 : e /∈ arcs G =⇒ sel e = 1
and sel-pos: sel e > 0
and sel-leq-1 : sel e ≤ 1
and pos-cards: x ∈ verts G =⇒ cf x > 0

begin

68

5.1 Function for Join Trees and Selectivities
definition matching-sel :: ′a selectivity ⇒ bool where

matching-sel f = (∀ x y.
(∃ e. (tail G e) = x ∧ (head G e) = y ∧ f x y = sel e)
∨ ((@ e. (tail G e) = x ∧ (head G e) = y) ∧ f x y = 1))

definition match-sel :: ′a selectivity where
match-sel x y =
(if ∃ e ∈ arcs G. (tail G e) = x ∧ (head G e) = y
then sel (THE e. e ∈ arcs G ∧ (tail G e) = x ∧ (head G e) = y) else 1)

definition matching-rels :: ′a joinTree ⇒ bool where
matching-rels t = (relations t ⊆ verts G)

definition remove-sel :: ′a ⇒ ′b weight-fun where
remove-sel x = (λb. if b∈{a ∈ arcs G. tail G a = x ∨ head G a = x} then 1 else

sel b)

definition valid-tree :: ′a joinTree ⇒ bool where
valid-tree t = (relations t = verts G ∧ distinct-relations t)

fun no-cross-products :: ′a joinTree ⇒ bool where
no-cross-products (Relation rel) = True
| no-cross-products (Join l r) = ((∃ x∈relations l. ∃ y∈relations r . x →G y)
∧ no-cross-products l ∧ no-cross-products r)

5.2 Proofs

Proofs that a query graph satisifies basic properties of join trees and selec-
tivities.
lemma sel-less-arc: sel x < 1 =⇒ x ∈ arcs G

using not-arc-sel-1 by force

lemma joinTree-card-pos: matching-rels t =⇒ pos-rel-cards cf t
by(induction t) (auto simp: pos-cards pos-rel-cards-def matching-rels-def)

lemma symmetric-arcs: x∈arcs G =⇒ ∃ y. head G x = tail G y ∧ tail G x = head
G y

using sym-arcs symmetric-conv by fast

lemma arc-ends-eq-impl-sel-eq: head G x = head G y =⇒ tail G x = tail G y =⇒
sel x = sel y

using sel-sym symmetric-arcs not-arc-sel-1 by metis

lemma arc-ends-eq-impl-arc-eq:
[[e1 ∈ arcs G; e2 ∈ arcs G; head G e1 = head G e2 ; tail G e1 = tail G e2]] =⇒

e1 = e2
using no-multi-alt by blast

69

lemma matching-sel-simp-if-not1 :
[[matching-sel sf ; sf x y 6= 1]] =⇒ ∃ e ∈ arcs G. tail G e = x ∧ head G e = y ∧

sf x y = sel e
using not-arc-sel-1 unfolding matching-sel-def by fastforce

lemma matching-sel-simp-if-arc:
[[matching-sel sf ; e ∈ arcs G]] =⇒ sf (tail G e) (head G e) = sel e
unfolding matching-sel-def by (metis arc-ends-eq-impl-sel-eq)

lemma matching-sel1-if-no-arc: matching-sel sf =⇒ ¬(x →G y ∨ y →G x) =⇒ sf
x y = 1

using not-arc-sel-1 unfolding arcs-ends-def arc-to-ends-def matching-sel-def im-
age-iff by metis

lemma matching-sel-alt-aux1 :
matching-sel f
=⇒ (∀ x y. (∃ e ∈ arcs G. (tail G e) = x ∧ (head G e) = y ∧ f x y = sel e)

∨ ((@ e. e ∈ arcs G ∧ (tail G e) = x ∧ (head G e) = y) ∧ f x y = 1))
by (metis matching-sel-def arc-ends-eq-impl-sel-eq not-arc-sel-1)

lemma matching-sel-alt-aux2 :
(∀ x y.(∃ e ∈ arcs G. (tail G e) = x ∧ (head G e) = y ∧ f x y = sel e)
∨ ((@ e. e ∈ arcs G ∧ (tail G e) = x ∧ (head G e) = y) ∧ f x y = 1))

=⇒ matching-sel f
by (fastforce simp: not-arc-sel-1 matching-sel-def)

lemma matching-sel-alt:
matching-sel f
= (∀ x y. (∃ e ∈ arcs G. (tail G e) = x ∧ (head G e) = y ∧ f x y = sel e)

∨ ((@ e. e ∈ arcs G ∧ (tail G e) = x ∧ (head G e) = y) ∧ f x y = 1))
using matching-sel-alt-aux1 matching-sel-alt-aux2 by blast

lemma matching-sel-symm:
assumes matching-sel f
shows sel-symm f
unfolding sel-symm-def

proof (standard, standard)
fix x y
show f x y = f y x
proof(cases ∃ e∈arcs G. (head G e) = x ∧ (tail G e) = y)

case True
then show ?thesis using assms symmetric-arcs sel-sym unfolding match-

ing-sel-def by metis
next

case False
then show ?thesis by (metis assms symmetric-arcs matching-sel-def not-arc-sel-1

sel-sym)
qed

70

qed

lemma matching-sel-reasonable: matching-sel f =⇒ sel-reasonable f
using sel-reasonable-def matching-sel-def sel-pos sel-leq-1
by (metis le-numeral-extra(4) less-numeral-extra(1))

lemma matching-reasonable-cards:
[[matching-sel f ; matching-rels t]] =⇒ reasonable-cards cf f t
by (simp add: joinTree-card-pos matching-sel-reasonable pos-sel-reason-impl-reason)

lemma matching-sel-unique-aux:
assumes matching-sel f matching-sel g
shows f x y = g x y

proof(cases ∃ e. tail G e = x ∧ head G e = y)
case True
then show ?thesis

using assms arc-ends-eq-impl-sel-eq unfolding matching-sel-def by metis
next

case False
then show ?thesis using assms unfolding matching-sel-def by fastforce

qed

lemma matching-sel-unique: [[matching-sel f ; matching-sel g]] =⇒ f = g
using matching-sel-unique-aux by blast

lemma match-sel-matching[intro]: matching-sel match-sel
unfolding matching-sel-alt

proof(standard,standard)
fix x y
show (∃ e∈arcs G. tail G e = x ∧ head G e = y ∧ match-sel x y = sel e) ∨

((@ e. e ∈ arcs G ∧ tail G e = x ∧ head G e = y) ∧ match-sel x y = 1)
proof(cases ∃ e ∈ arcs G. tail G e = x ∧ head G e = y)

case True
then obtain e where e-def : e ∈ arcs G tail G e = x head G e = y by blast
then have match-sel x y = sel (THE e. e ∈ arcs G ∧ tail G e = x ∧ head G

e = y)
unfolding match-sel-def by auto

moreover have (THE e. e ∈ arcs G ∧ tail G e = x ∧ head G e = y) = e
using e-def arc-ends-eq-impl-arc-eq by blast

ultimately show ?thesis using e-def by blast
next

case False
then show ?thesis unfolding match-sel-def by auto

qed
qed

corollary match-sel-unique: matching-sel f =⇒ f = match-sel
using matching-sel-unique by blast

71

corollary match-sel1-if-no-arc: ¬(x →G y ∨ y →G x) =⇒ match-sel x y = 1
using matching-sel1-if-no-arc by blast

corollary match-sel-symm[intro]: sel-symm match-sel
using matching-sel-symm by blast

corollary match-sel-reasonable[intro]: sel-reasonable match-sel
using matching-sel-reasonable by blast

corollary match-reasonable-cards: matching-rels t =⇒ reasonable-cards cf match-sel
t

using matching-reasonable-cards by blast

lemma matching-rels-trans: matching-rels (Join l r) = (matching-rels l ∧ match-
ing-rels r)

using matching-rels-def by simp

lemma first-node-in-verts-if-rels-eq-verts: relations t = verts G =⇒ first-node t ∈
verts G
unfolding first-node-eq-hd using inorder-eq-set hd-in-set[OF inorder-nempty] by

fast

lemma first-node-in-verts-if-valid: valid-tree t =⇒ first-node t ∈ verts G
using first-node-in-verts-if-rels-eq-verts valid-tree-def by simp

lemma dominates-sym: (x →G y) ←→ (y →G x)
using graph-symmetric by blast

lemma no-cross-mirror-eq: no-cross-products (mirror t) = no-cross-products t
using graph-symmetric by(induction t) auto

lemma no-cross-create-ldeep-rev-app:
[[ys 6=[]; no-cross-products (create-ldeep-rev (xs@ys))]] =⇒ no-cross-products (create-ldeep-rev

ys)
proof(induction xs@ys arbitrary: xs rule: create-ldeep-rev.induct)

case (2 x)
then show ?case by (metis append-eq-Cons-conv append-is-Nil-conv)

next
case (3 x y zs)
then show ?case
proof(cases xs)

case Nil
then show ?thesis using 3 .prems(2) by simp

next
case (Cons x ′ xs ′)
have no-cross-products (Join (create-ldeep-rev (y#zs)) (Relation x))

using 3 .hyps(2) 3 .prems(2) create-ldeep-rev.simps(3)[of x y zs] by simp
then have no-cross-products (create-ldeep-rev (y#zs)) by simp
then show ?thesis using 3 .hyps 3 .prems(1) Cons by simp

72

qed
qed(simp)

lemma no-cross-create-ldeep-app:
[[xs 6=[]; no-cross-products (create-ldeep (xs@ys))]] =⇒ no-cross-products (create-ldeep

xs)
by (simp add: create-ldeep-def no-cross-create-ldeep-rev-app)

lemma matching-rels-if-no-cross: [[∀ r . t 6= Relation r ; no-cross-products t]] =⇒
matching-rels t

unfolding matching-rels-def by(induction t) fastforce+

lemma no-cross-awalk:
[[matching-rels t; no-cross-products t; x ∈ relations t; y ∈ relations t]]
=⇒ ∃ p. awalk x p y ∧ set (awalk-verts x p) ⊆ relations t

proof(induction t arbitrary: x y)
case (Relation rel)
then have x ∈ verts G using matching-rels-def by blast
then have awalk x [] x by (simp add: awalk-Nil-iff)
then show ?case using Relation(3 ,4) by force

next
case (Join l r)
then consider x ∈ relations l y ∈ relations l | x ∈ relations r y ∈ relations l
| x ∈ relations l y ∈ relations r | x ∈ relations r y ∈ relations r
by force

then show ?case
proof(cases)

case 1
then show ?thesis using Join.IH (1)[of x y] Join.prems(1 ,2) matching-rels-trans

by auto
next

case 2
then obtain x ′ y ′ e where e-def :

x ′ ∈ relations r y ′ ∈ relations l tail G e = y ′ head G e = x ′ e ∈ arcs G
using Join.prems(2) by auto

then obtain e2 where e2-def : tail G e2 = x ′ head G e2 = y ′ e2 ∈ arcs G
using symmetric-conv by force

obtain p1 where p1-def : awalk y ′ p1 y ∧ set (awalk-verts y ′ p1) ⊆ relations l
using Join.IH (1) Join.prems(1 ,2) 2 (2) matching-rels-trans e-def (2) by

fastforce
obtain p2 where p2-def : awalk x p2 x ′ ∧ set (awalk-verts x p2) ⊆ relations r

using Join.IH (2) Join.prems(1 ,2) 2 (1) matching-rels-trans e-def (1) by
fastforce

have awalk x (p2@[e2]@p1) y
using e2-def p1-def p2-def awalk-appendI arc-implies-awalk by blast

moreover from this have set (awalk-verts x (p2@[e2]@p1)) ⊆ relations (Join
l r)

using p1-def p2-def awalk-verts-append3 by auto
ultimately show ?thesis by blast

73

next
case 3
then obtain x ′ y ′ e where e-def :

x ′ ∈ relations l y ′ ∈ relations r tail G e = x ′ head G e = y ′ e ∈ arcs G
using Join.prems(2) by auto

obtain p1 where p1-def : awalk y ′ p1 y ∧ set (awalk-verts y ′ p1) ⊆ relations r
using Join.IH (2) Join.prems(1 ,2) 3 (2) matching-rels-trans e-def (2) by

fastforce
obtain p2 where p2-def : awalk x p2 x ′ ∧ set (awalk-verts x p2) ⊆ relations l

using Join.IH (1) Join.prems(1 ,2) 3 (1) matching-rels-trans e-def (1) by
fastforce

have awalk x (p2@[e]@p1) y
using e-def (3−5) p1-def p2-def awalk-appendI arc-implies-awalk by blast

moreover from this have set (awalk-verts x (p2@[e]@p1)) ⊆ relations (Join
l r)

using p1-def p2-def awalk-verts-append3 by auto
ultimately show ?thesis by blast

next
case 4

then show ?thesis using Join.IH (2)[of x y] Join.prems(1 ,2) matching-rels-trans
by auto

qed
qed

lemma no-cross-apath:
[[matching-rels t; no-cross-products t; x ∈ relations t; y ∈ relations t]]
=⇒ ∃ p. apath x p y ∧ set (awalk-verts x p) ⊆ relations t

using no-cross-awalk apath-awalk-to-apath awalk-to-apath-verts-subset by blast

lemma no-cross-reachable:
[[matching-rels t; no-cross-products t; x ∈ relations t; y ∈ relations t]] =⇒ x →∗ y
using no-cross-awalk reachable-awalk by blast

corollary reachable-if-no-cross:
[[∃ t. relations t = verts G ∧ no-cross-products t; x ∈ verts G; y ∈ verts G]] =⇒

x →∗ y
using no-cross-reachable matching-rels-def by blast

lemma remove-sel-sym:
[[tail G e1 = head G e2; head G e1 = tail G e2]] =⇒ (remove-sel x) e1 = (remove-sel

x) e2
by(metis (no-types, lifting) mem-Collect-eq not-arc-sel-1 remove-sel-def sel-sym)+

lemma remove-sel-1 : e /∈ arcs G =⇒ (remove-sel x) e = 1
apply(cases e∈{a ∈ arcs G. tail G a = x ∨ head G a = x})
by(auto simp: not-arc-sel-1 sel-sym remove-sel-def)

lemma del-vert-remove-sel-1 :
assumes e /∈ arcs ((del-vert x))

74

shows (remove-sel x) e = 1
proof(cases e∈{a ∈ arcs G. tail G a = x ∨ head G a = x})

case True
then show ?thesis by (simp add: remove-sel-def)

next
case False
then have e /∈ arcs G using assms arcs-del-vert by simp
then show ?thesis using remove-sel-def not-arc-sel-1 by simp

qed

lemma remove-sel-pos: remove-sel x e > 0
by(cases e∈{a ∈ arcs G. tail G a = x ∨ head G a = x}) (auto simp: remove-sel-def

sel-pos)

lemma remove-sel-leq-1 : remove-sel x e ≤ 1
by(cases e∈{a ∈ arcs G. tail G a = x ∨ head G a = x}) (auto simp: remove-sel-def

sel-leq-1)

lemma del-vert-pos-cards: x ∈ verts (del-vert y) =⇒ cf x > 0
by(cases x=y) (auto simp: remove-sel-def del-vert-def pos-cards)

lemma del-vert-remove-sel-query-graph:
query-graph G sel cf =⇒ query-graph (del-vert x) (remove-sel x) cf
by (simp add: del-vert-pos-cards del-vert-remove-sel-1 graph-del-vert remove-sel-sym

remove-sel-leq-1 remove-sel-pos query-graph.intro graph-axioms head-del-vert
query-graph-axioms-def tail-del-vert)

lemma finite-nempty-set-min:
assumes xs 6= {} and finite xs
shows ∃ x. min-degree xs x

proof −
have finite xs using assms(2) by simp
then show ?thesis
using assms proof (induction xs rule: finite-induct)

case empty
then show ?case by simp

next
case ind: (insert x xs)
then show ?case
proof(cases xs)

case emptyI
then show ?thesis by (metis order-refl singletonD singletonI)

next
case (insertI xs ′ x ′)
then have ∃ a. min-degree xs a using ind by simp
then show ?thesis

using ind by (metis order-trans insert-iff le-cases)
qed

qed

75

qed

lemma no-cross-reachable-graph ′:
[[∃ t. relations t = verts G ∧ no-cross-products t; x∈verts G; y∈verts G]]
=⇒ x →∗

mk-symmetric G y
by (simp add: reachable-mk-symmetricI reachable-if-no-cross)

lemma verts-nempty-if-tree: ∃ t. relations t ⊆ verts G =⇒ verts G 6= {}
using relations-nempty by fast

lemma connected-if-tree: ∃ t. relations t = verts G ∧ no-cross-products t =⇒ con-
nected G
using no-cross-reachable-graph ′ connected-def strongly-connected-def verts-nempty-if-tree
by fastforce

end

locale nempty-query-graph = query-graph +
assumes non-empty: verts G 6= {}

5.3 Pair Query Graph

Alternative definition based on pair graphs
locale pair-query-graph = pair-graph +

fixes sel :: (′a × ′a) weight-fun
fixes cf :: ′a ⇒ real
assumes sel-sym: [[tail G e1 = head G e2; head G e1 = tail G e2]] =⇒ sel e1 =

sel e2
and not-arc-sel-1 : e /∈ parcs G =⇒ sel e = 1
and sel-pos: sel e > 0
and sel-leq-1 : sel e ≤ 1
and pos-cards: x ∈ pverts G =⇒ cf x > 0

sublocale pair-query-graph ⊆ query-graph
by(unfold-locales) (auto simp: sel-sym not-arc-sel-1 sel-pos sel-leq-1 pos-cards)

context pair-query-graph
begin

lemma matching-sel f ←→ (∀ x y. sel (x,y) = f x y)
using matching-sel-def sel-sym by fastforce

end

end

theory Directed-Tree-Additions
imports Graph-Additions Shortest-Path-Tree

76

begin

6 Directed Tree Additions
context directed-tree
begin

lemma reachable1-not-reverse: x →+
T y =⇒ ¬ y →+

T x
by (metis awalk-Nil-iff reachable1-awalk reachable1-in-verts(2) trancl-trans unique-awalk-All)

lemma in-arcs-root: in-arcs T root = {}
using in-degree-root-zero by (auto simp: in-degree-def in-arcs-finite root-in-T)

lemma dominated-not-root: u →T v =⇒ v 6= root
using adj-in-verts(1) reachable1-not-reverse reachable-from-root by blast

lemma dominated-notin-awalk: [[u →T v; awalk r p u]] =⇒ v /∈ set (awalk-verts r
p)

using awalk-verts-reachable-to reachable1-not-reverse by blast

lemma apath-if-awalk: awalk r p v =⇒ apath r p v
using apath-def awalk-cyc-decompE ′ closed-w-imp-cycle cycle-free by blast

lemma awalk-verts-arc1-app: tail T e ∈ set (awalk-verts r (p1@e#p2))
using awalk-verts-arc1 by auto

lemma apath-over-inarc-if-dominated:
assumes u →T v
shows ∃ p. apath root p v ∧ u ∈ set (awalk-verts root p)

proof −
obtain p where p-def : awalk root p u using assms unique-awalk by force
obtain e where e-def : e ∈ arcs T tail T e = u head T e = v using assms by

blast
then have awalk root (p@[e]) v using p-def arc-implies-awalk by auto
then show ?thesis using apath-if-awalk e-def (2) awalk-verts-arc1-app by blast

qed

end

locale finite-directed-tree = directed-tree + fin-digraph T

Undirected, connected graphs are acyclic iff the number of edges is |verts| -
1. Since undirected graphs are modelled as bidirected graphs the number of
edges is doubled.
locale undirected-tree = graph +

assumes connected: connected G
and acyclic: card (arcs G) ≤ 2 ∗ (card (verts G) − 1)

77

6.1 Directed Trees of Connected Trees
6.1.1 Tranformation using BFS

Assumes existence of a conversion function (like BFS) that contains all reach-
able vertices.
locale bfs-tree = directed-tree T root + subgraph T G for G T root +

assumes root-in-G: root ∈ verts G
and all-reachables: verts T = {v. root →∗

G v}
begin

lemma dom-in-G: u →T v =⇒ u →G v
by (simp add: G.adj-mono sub-G)

lemma tailT-eq-tailG: tail T = tail G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma headT-eq-headG: head T = head G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma verts-T-subset-G: verts T ⊆ verts G
by (metis awalk-sub-imp-awalk G.awalk-last-in-verts subsetI unique-awalk)

lemma reachable-verts-G-subset-T :
∀ x∈verts G. root →∗

G x =⇒ verts T ⊇ verts G
using all-reachables by (simp add: subset-eq)

lemma reachable-verts-G-eq-T : ∀ x∈verts G. root →∗
G x =⇒ verts T = verts G

by (simp add: reachable-verts-G-subset-T set-eq-subset verts-T-subset-G)

lemma connected-verts-G-eq-T :
assumes graph G and connected G
shows verts T = verts G

proof −
have root ∈ verts G using root-in-G by fast
then have ∀ x∈verts G. root →∗

G x using graph.connected-iff-reachable assms(1 ,2)
by blast

then show ?thesis using reachable-verts-G-eq-T by blast
qed

lemma Suc-card-if-fin: fin-digraph G =⇒ ∃n. Suc n = card (verts G)
using root-in-G card-0-eq not0-implies-Suc[of card (verts G)] fin-digraph.finite-verts

by force

corollary Suc-card-if-graph: graph G =⇒ ∃n. Suc n = card (verts G)
using Suc-card-if-fin graph.axioms(1) digraph.axioms(1) by blast

lemma con-Suc-card-arcs-eq-card-verts:
[[graph G; connected G]] =⇒ Suc (card (arcs T)) = card (verts G)

78

using Suc-card-arcs-eq-card-verts connected-verts-G-eq-T Suc-card-if-graph by
fastforce

lemma reverse-arc-in-G:
assumes graph G and e1 ∈ arcs T
shows ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail G e2

proof −
interpret graph G using assms(1) .
have e1 ∈ arcs G using assms(2) sub-G by blast
then show ?thesis using sym-arcs symmetric-conv by fastforce

qed

lemma reverse-arc-notin-T :
assumes e1 ∈ arcs T and head G e2 = tail G e1 and head G e1 = tail G e2
shows e2 /∈ arcs T

proof
assume asm: e2 ∈ arcs T
then have tail T e2 →T head T e2 by (simp add: in-arcs-imp-in-arcs-ends)
then have head G e1 →T tail G e1

using assms(2 ,3) sub-G by(simp add: Digraph-Component.subgraph-def com-
patible-def)

moreover have tail G e1 →T head G e1
using assms(1) sub-G

by(simp add: Digraph-Component.subgraph-def compatible-def in-arcs-imp-in-arcs-ends)
ultimately show False using reachable1-not-reverse by blast

qed

lemma reverse-arc-in-G-only:
assumes graph G and e1 ∈ arcs T
shows ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail G e2 ∧ e2 /∈

arcs T
using reverse-arc-in-G reverse-arc-notin-T assms by blast

lemma no-multi-T-G:
assumes e1 ∈ arcs T and e2 ∈ arcs T and e1 6= e2
shows head G e1 6= head G e2 ∨ tail G e1 6= tail G e2
using nomulti.no-multi-arcs assms sub-G
by(auto simp: Digraph-Component.subgraph-def compatible-def arc-to-ends-def)

lemma T-arcs-compl-fin:
assumes fin-digraph G and es ⊆ arcs T
shows finite {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 =

tail G e2)}
using assms fin-digraph.finite-arcs by fastforce

corollary T-arcs-compl-fin ′:
assumes graph G and es ⊆ arcs T
shows finite {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 =

tail G e2)}

79

using assms T-arcs-compl-fin graph.axioms(1) digraph.axioms(1) by blast

lemma fin-verts-T : fin-digraph G =⇒ finite (verts T)
using fin-digraph.finite-verts finite-subset verts-T-subset-G by auto

corollary fin-verts-T ′: graph G =⇒ finite (verts T)
using fin-verts-T graph.axioms(1) digraph.axioms(1) by blast

lemma fin-arcs-T : fin-digraph G =⇒ finite (arcs T)
using fin-verts-T verts-finite-imp-arcs-finite by auto

corollary fin-arcs-T ′: graph G =⇒ finite (arcs T)
using fin-arcs-T graph.axioms(1) digraph.axioms(1) by blast

lemma T-arcs-compl-card-eq:
assumes graph G and es ⊆ arcs T
shows card {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 = tail

G e2)} = card es
using finite-subset[OF assms(2) fin-arcs-T ′[OF assms(1)]] assms

proof(induction es rule: finite-induct)
case (insert e1 es)
let ?ees = {e2 ∈ arcs G. ∃ e1∈insert e1 es. head G e2 = tail G e1 ∧ head G e1

= tail G e2}
let ?es = {e2 ∈ arcs G. ∃ e1∈es. head G e2 = tail G e1 ∧ head G e1 = tail G

e2}
obtain e2 where e2-def : e2 ∈ arcs G head G e2 = tail G e1 head G e1 = tail

G e2
using reverse-arc-in-G-only insert.prems by blast

then have e2-notin: e2 /∈ {e2 ∈ arcs G. ∃ e1∈es. head G e2 = tail G e1 ∧ head
G e1 = tail G e2}

using insert.hyps(2) insert.prems(2) no-multi-T-G by fastforce
have ∀ e3 ∈ arcs G. e2 = e3 ∨ head G e3 6= head G e2 ∨ tail G e3 6= tail G e2
using e2-def (1) nomulti-digraph.no-multi-alt digraph.axioms(3) graph.axioms(1)

insert.prems(1)
by fast

then have ?ees = insert e2 ?es using e2-def by auto
moreover have finite ?es using insert.prems T-arcs-compl-fin ′ by simp
ultimately have card ?ees = Suc (card ?es) using e2-notin by simp
then show ?case using insert by force

qed(simp)

lemma arcs-graph-G-ge-2vertsT :
assumes graph G
shows card (arcs G) ≥ 2 ∗ (card (verts T) − 1)

proof −
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
interpret graph G by (rule assms)
have ∀ e1 ∈ arcs T . ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail

80

G e2
using reverse-arc-in-G-only assms by blast

have fin1 : finite ?compl by simp
have ?compl ∩ arcs T = {} using reverse-arc-notin-T by blast
then have card (?compl ∪ arcs T) = card ?compl + card (arcs T)

using card-Un-disjoint[OF fin1 fin-arcs-T ′] by blast
moreover have ?compl ∪ arcs T ⊆ arcs G using sub-G by blast
moreover have finite (arcs G) by simp
ultimately have card ?compl + card (arcs T) ≤ card (arcs G)

using card-mono[of arcs G ?compl ∪ arcs T] by presburger
moreover have card (arcs T) = (card (verts T) − 1)

using Suc-card-arcs-eq-card-verts assms by (simp add: fin-verts-T ′)
ultimately show ?thesis using T-arcs-compl-card-eq by fastforce

qed

lemma arcs-graph-G-ge-2vertsG:
[[graph G; connected G]] =⇒ card (arcs G) ≥ 2 ∗ (card (verts G) − 1)
using arcs-graph-G-ge-2vertsT connected-verts-G-eq-T by simp

lemma arcs-undir-G-eq-2vertsG:
[[undirected-tree G]] =⇒ card (arcs G) = 2 ∗ (card (verts G) − 1)
using arcs-graph-G-ge-2vertsG undirected-tree.acyclic undirected-tree.axioms(1)

undirected-tree.connected by fastforce

lemma undir-arcs-compl-un-eq-arcs:
assumes undirected-tree G
shows {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1 = tail

G e2)} ∪ arcs T
= arcs G

proof −
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
interpret undirected-tree G using assms(1) undirected-tree.axioms(1) by fast
have ?compl ∩ arcs T = {} using reverse-arc-notin-T by blast
then have 0 : card (?compl ∪ arcs T) = card ?compl + card (arcs T)

by (simp add: card-Un-disjoint fin-arcs-T ′ graph-axioms)
have card (arcs T) = (card (verts T) − 1)

using Suc-card-arcs-eq-card-verts by (simp add: fin-verts-T ′ graph-axioms)
then have card ?compl + card (arcs T) = 2 ∗ (card (verts G) − 1)

using T-arcs-compl-card-eq connected-verts-G-eq-T connected by fastforce
moreover have card (arcs G) = 2 ∗ (card (verts G) − 1)

using assms arcs-undir-G-eq-2vertsG by blast
moreover have ?compl ∪ arcs T ⊆ arcs G using sub-G by blast
ultimately show ?thesis by (simp add: 0 card-subset-eq)

qed

lemma split-fst-nonelem:
[[¬set xs ⊆ X ; set xs ⊆ Y]] =⇒ ∃ x ys zs. ys@x#zs=xs ∧ x /∈ X ∧ x ∈ Y ∧ set

ys ⊆ X

81

proof(induction xs)
case (Cons x xs)
then show ?case
proof(cases x ∈ X)

case True
then obtain z ys zs where ys-def : ys@z#zs=xs z /∈ X z ∈ Y set ys ⊆ X using

Cons by auto
then have set (x#ys) ⊆ X using True by simp
then show ?thesis using ys-def (1−3) append-Cons by fast

next
case False
then show ?thesis using Cons.prems(2) by fastforce

qed
qed(simp)

lemma source-no-inarc-T : head G e = root =⇒ e /∈ arcs T
using in-arcs-root sub-G by (auto simp: Digraph-Component.subgraph-def com-

patible-def)

lemma source-all-outarcs-T :
[[undirected-tree G; tail G e = root; e ∈ arcs G]] =⇒ e ∈ arcs T
using source-no-inarc-T undir-arcs-compl-un-eq-arcs by blast

lemma cas-G-T : G.cas = cas
using sub-G compatible-cas by fastforce

lemma awalk-G-T : u ∈ verts T =⇒ set p ⊆ arcs T =⇒ G.awalk u p = awalk u p
using cas-G-T awalk-def G.awalk-def sub-G by fastforce

corollary awalk-G-T-root: set p ⊆ arcs T =⇒ G.awalk root p = awalk root p
using awalk-G-T root-in-T by blast

lemma awalk-verts-G-T : G.awalk-verts = awalk-verts
using sub-G compatible-awalk-verts by blast

lemma apath-sub-imp-apath: apath u p v =⇒ G.apath u p v
by (simp add: G.apath-def apath-def awalk-sub-imp-awalk awalk-verts-G-T)

lemma outarc-inT-if-head-not-inarc:
assumes undirected-tree G

and tail G e2 = v and e2 ∈ arcs G and head G e2 6= u and u →T v
shows e2 ∈ arcs T

proof (rule ccontr)
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
assume e2 /∈ arcs T
then have e2 ∈ ?compl using assms(3) undir-arcs-compl-un-eq-arcs[OF assms(1)]

by blast
then obtain e1 where e1-def : e1 ∈ arcs T head G e2 = tail T e1 head T e1

82

= v
using sub-G assms(2) by (auto simp: Digraph-Component.subgraph-def com-

patible-def)
obtain e where e ∈ arcs T tail T e = u head T e = v using assms(5) by blast
then show False using two-in-arcs-contr e1-def assms(4) by blast

qed

corollary reverse-arc-if-out-arc-undir :
[[undirected-tree G; tail G e2 = v; e2 ∈ arcs G; e2 /∈ arcs T ; u →T v]] =⇒ head

G e2 = u
using outarc-inT-if-head-not-inarc by blast

lemma undir-path-in-dir :
assumes undirected-tree G G.apath root p v
shows set p ⊆ arcs T

proof (rule ccontr)
assume asm: ¬set p ⊆ arcs T
have set p ⊆ arcs G using assms(2) G.apath-def G.awalk-def by fast
then obtain e p1 p2 where e-def : p1 @ e # p2 = p e /∈ arcs T e ∈ arcs G set

p1 ⊆ arcs T
using split-fst-nonelem[OF asm, of arcs G] by auto

show False
proof(cases p1=[])

case True
then have tail G e = root using assms(2) e-def (1) G.apath-Cons-iff by auto
then show ?thesis using source-all-outarcs-T [OF assms(1)] e-def (2 ,3) by

blast
next

case False
then have awalk-G: G.awalk root (p1 @ e # p2) v

using assms(2) pre-digraph.apath-def e-def (1) by fast
then have G.awalk root p1 (tail G e) by force
then have awalk-p1T : awalk root p1 (tail T e)

using e-def (4) sub-G cas-G-T root-in-T
by (simp add: Digraph-Component.subgraph-def pre-digraph.awalk-def com-

patible-def)
then have root →+

T tail T e using False reachable1-awalkI by auto
then obtain u where u-def : u →T tail T e using tranclD2 by metis
have tail T e = tail G e

using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
then have hd-e-u: head G e = u

using reverse-arc-if-out-arc-undir [OF assms(1)] u-def e-def (2 ,3) by simp
have head T (last p1) = tail T e using False awalk-p1T awalk-verts-conv by

fastforce
then have tail T (last p1) = u

using False u-def e-def (4) two-in-arcs-contr last-in-set by fastforce
then have 0 : tail G (last p1) = u

using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
obtain ps where ps @ [last p1] = p1 using False append-butlast-last-id by

83

auto
then have ps-def : ps @ [last p1] @ e # p2 = p using e-def by auto
then have awalk-G: G.awalk root (ps @ [last p1] @ e # p2) v

using assms(2) by (simp add: pre-digraph.apath-def)
have ¬(distinct (G.awalk-verts root p))

using G.not-distinct-if-head-eq-tail[OF 0 hd-e-u awalk-G] ps-def by simp
then show ?thesis using assms(2) G.apath-def by blast

qed
qed

lemma source-reach-all: [[graph G; connected G; v ∈ verts G]] =⇒ root →∗
G v

by (simp add: graph.connected-iff-reachable root-in-G)

lemma apath-if-in-verts: [[graph G; connected G; v ∈ verts G]] =⇒ ∃ p. G.apath
root p v

using G.reachable-apath by (simp add: graph.connected-iff-reachable root-in-G)

lemma undir-unique-awalk: [[undirected-tree G; v ∈ verts G]] =⇒ ∃ !p. G.apath root
p v

using undir-path-in-dir apath-if-in-verts awalk-G-T-root Suc-card-if-graph
by (metis G.awalkI-apath unique-awalk-All undirected-tree.axioms(1) undirected-tree.connected)

lemma apath-in-dir-if-apath-G:
assumes undirected-tree G G.apath root p v
shows apath root p v
using undir-path-in-dir [OF assms] assms(2) G.awalkI-apath apath-if-awalk awalk-G-T-root

by force

end

locale bfs-locale =
fixes bfs :: (′a, ′b) pre-digraph ⇒ ′a ⇒ (′a, ′b) pre-digraph
assumes bfs-correct: [[wf-digraph G; r ∈ verts G; bfs G r = T]] =⇒ bfs-tree G T

r

locale undir-tree-todir = undirected-tree G + bfs-locale bfs
for G :: (′a, ′b) pre-digraph
and bfs :: (′a, ′b) pre-digraph ⇒ ′a ⇒ (′a, ′b) pre-digraph

begin

abbreviation dir-tree-r :: ′a ⇒ (′a, ′b) pre-digraph where
dir-tree-r ≡ bfs G

lemma directed-tree-r : r ∈ verts G =⇒ directed-tree (dir-tree-r r) r
using bfs-correct bfs-tree.axioms(1) wf-digraph-axioms by fast

lemma bfs-dir-tree-r : r ∈ verts G =⇒ bfs-tree G (dir-tree-r r) r
using bfs-correct wf-digraph-axioms by blast

84

lemma dir-tree-r-dom-in-G: r ∈ verts G =⇒ u →dir-tree-r r v =⇒ u →G v
using bfs-dir-tree-r bfs-tree.dom-in-G by fast

lemma verts-nempty: verts G 6= {}
using connected connected-iff-reachable by auto

lemma card-gt0 : card (verts G) > 0
using verts-nempty by auto

lemma Suc-card-1-eq-card[intro]: Suc (card (verts G) − 1) = card (verts G)
using card-gt0 by simp

lemma verts-dir-tree-r-eq[simp]: r ∈ verts G =⇒ verts (dir-tree-r r) = verts G
using bfs-tree.connected-verts-G-eq-T [OF bfs-dir-tree-r graph-axioms connected]

by blast

lemma tail-dir-tree-r-eq: r ∈ verts G =⇒ tail (dir-tree-r r) e = tail G e
using bfs-tree.tailT-eq-tailG[OF bfs-dir-tree-r] by simp

lemma head-dir-tree-r-eq: r ∈ verts G =⇒ head (dir-tree-r r) e = head G e
using bfs-tree.headT-eq-headG[OF bfs-dir-tree-r] by simp

lemma awalk-verts-G-T : r ∈ verts G =⇒ awalk-verts = pre-digraph.awalk-verts
(dir-tree-r r)

using bfs-tree.awalk-verts-G-T bfs-dir-tree-r by fastforce

lemma dir-tree-r-all-reach: [[r ∈ verts G; v ∈ verts G]] =⇒ r →∗
dir-tree-r r v

using directed-tree.reachable-from-root directed-tree-r verts-dir-tree-r-eq by fast

lemma fin-verts-dir-tree-r-eq: r ∈ verts G =⇒ finite (verts (dir-tree-r r))
using verts-dir-tree-r-eq by auto

lemma fin-arcs-dir-tree-r-eq: r ∈ verts G =⇒ finite (arcs (dir-tree-r r))
using fin-verts-dir-tree-r-eq directed-tree.verts-finite-imp-arcs-finite directed-tree-r
by fast

lemma fin-directed-tree-r : r ∈ verts G =⇒ finite-directed-tree (dir-tree-r r) r
unfolding finite-directed-tree-def fin-digraph-def fin-digraph-axioms-def
using directed-tree.axioms(1) directed-tree-r fin-arcs-dir-tree-r-eq verts-dir-tree-r-eq
by force

lemma arcs-eq-2verts: card (arcs G) = 2 ∗ (card (verts G) − 1)
using bfs-tree.arcs-undir-G-eq-2vertsG[OF bfs-dir-tree-r undirected-tree-axioms]

card-gt0
by fastforce

lemma arcs-compl-un-eq-arcs:
r ∈ verts G =⇒
{e2 ∈ arcs G. ∃ e1∈arcs (dir-tree-r r). head G e2 = tail G e1 ∧ head G e1 =

85

tail G e2}
∪ arcs (dir-tree-r r) = arcs G

using bfs-tree.undir-arcs-compl-un-eq-arcs[OF bfs-dir-tree-r undirected-tree-axioms]
by blast

lemma unique-apath: [[u ∈ verts G; v ∈ verts G]] =⇒ ∃ !p. apath u p v
using bfs-tree.undir-unique-awalk[OF bfs-dir-tree-r undirected-tree-axioms] by

blast

lemma apath-in-dir-if-apath-G: apath r p v =⇒ pre-digraph.apath (dir-tree-r r) r
p v
using bfs-tree.apath-in-dir-if-apath-G bfs-dir-tree-r undirected-tree-axioms awalkI-apath
by fast

lemma apath-verts-sub-awalk:
[[apath u p1 v; awalk u p2 v]] =⇒ set (awalk-verts u p1) ⊆ set (awalk-verts u p2)
using unique-apath-verts-sub-awalk unique-apath by blast

lemma dir-tree-arc1-in-apath:
assumes u →dir-tree-r r v and r ∈ verts G
shows ∃ p. apath r p v ∧ u ∈ set (awalk-verts r p)
using directed-tree.apath-over-inarc-if-dominated[OF directed-tree-r [OF assms(2)]

assms(1)]
bfs-tree.apath-sub-imp-apath bfs-dir-tree-r [OF assms(2)] bfs-tree.awalk-verts-G-T

by fastforce

lemma dir-tree-arc1-in-awalk:
[[u →dir-tree-r r v; r ∈ verts G; awalk r p v]] =⇒ u ∈ set (awalk-verts r p)
using dir-tree-arc1-in-apath apath-verts-sub-awalk by blast

end

6.1.2 Tranformation using PSP-Trees

Assumes existence of a conversion function that contains the n nearest nodes.
This sections proves that such a generated tree contains all vertices in a
connected graph.
locale find-psp-tree-locale =

fixes find-psp-tree :: (′a, ′b) pre-digraph ⇒ (′b ⇒ real) ⇒ ′a ⇒ nat ⇒ (′a, ′b)
pre-digraph

assumes find-psp-tree: [[r ∈ verts G; find-psp-tree G w r n = T]] =⇒ psp-tree G
T w r n

context psp-tree
begin

lemma dom-in-G: u →T v =⇒ u →G v
by (simp add: G.adj-mono sub-G)

86

lemma tailT-eq-tailG: tail T = tail G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma headT-eq-headG: head T = head G
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

lemma verts-T-subset-G: verts T ⊆ verts G
by (metis awalk-sub-imp-awalk G.awalk-last-in-verts subsetI unique-awalk)

lemma reachable-verts-G-subset-T :
assumes fin-digraph G

and ∀ x∈verts G. source →∗
G x

and Suc n = card (verts G)
shows verts T ⊇ verts G

proof(cases card (verts G))
case 0
have finite (verts G) using fin-digraph.finite-verts graph-def assms(1) by blast
then show ?thesis using assms(3) 0 by simp

next
case (Suc n)
then have r-in-G: source ∈ verts G using source-in-G assms by blast
show ?thesis
proof(cases n=0)

case True
then have card (verts G) = 1 using assms(3) Suc by auto
then have verts G = {source} using mem-card1-singleton r-in-G by fast
then show ?thesis
using ex-sp-eq-dia in-sccs-verts-conv-reachable insert-not-empty G.reachable-in-verts(1)

by (metis G.reachable-mono non-empty reachable-refl sccs-verts-subsets sin-
gleton-iff sub-G)

next
case False
then obtain n ′ where n ′-def [simp]: n ′ = n − 1 ∧ n 6= n ′ by simp
show ?thesis
proof(rule ccontr)

assume ¬(verts T ⊇ verts G)
then have strict-sub: verts T ⊂ verts G using psp-tree-axioms verts-T-subset-G

by fast
then obtain x where x-def : x /∈ verts T ∧ x ∈ verts G by blast
then have x-reach: source →∗

G x using assms(2) by simp
have finite (verts G) using fin-digraph.finite-verts graph-def assms(1) by

blast
with strict-sub have T-lt-G: card (verts T) < card (verts G) by (simp add:

psubset-card-mono)
then have T-le-n: card (verts T) ≤ n using Suc assms(3) by simp
have G.n-nearest-verts w source n (verts T)

using Suc assms(3) partial by simp
then have 1 : G.n-nearest-verts w source (Suc n ′) (verts T) using n ′-def by

simp

87

then obtain U where U-def [simp]: U ⊆ verts T ∧ G.n-nearest-verts w
source n ′ U

using Zero-not-Suc diff-Suc-1 equalityE G.nnvs-ind-cases subset-insertI by
metis

then show False
proof(cases G.unvisited-verts source U 6= {})

case True
then have card U ≥ Suc n ′ using U-def fin-digraph.nnvs-card-ge-n assms(1)

by fast
then have U-Suc-n ′: card U = Suc n ′ using 1 U-def G.nnvs-card-le-n by

force
have G.nearest-vert w source U ∈ G.unvisited-verts source U

using True assms(1) by (simp add: fin-digraph.nearest-vert-unvis)
then have G.nearest-vert w source U /∈ U using G.unvisited-verts-def by

simp
then have U-ins-Suc2-n ′: card (insert (G.nearest-vert w source U) U) =

Suc (Suc n ′)
using U-Suc-n ′ card-Suc-eq by blast

have card (verts T) ≤ Suc n ′ using T-le-n by simp
moreover have card U ≤ card (verts T) by (simp add: card-mono)
ultimately have T-Suc-n ′: card (verts T) = Suc n ′ using U-Suc-n ′ by

simp
then have U-eq-T : U = verts T by (simp add: U-Suc-n ′ card-seteq)
have card (insert (G.nearest-vert w source U) U) = card (verts T)

using True U-eq-T U-ins-Suc2-n ′ 1 by (metis fin-digraph.nnvs-card-eq-n
assms(1))

then show ?thesis using T-Suc-n ′ U-ins-Suc2-n ′ by linarith
next

case False
have x /∈ U using x-def U-def by blast
then have G.unvisited-verts source U 6= {}

using G.unvisited-verts-def x-def x-reach by blast
then show ?thesis using False by simp

qed
qed

qed
qed

lemma reachable-verts-G-eq-T :
[[fin-digraph G; ∀ x∈verts G. source →∗

G x; Suc n = card (verts G)]] =⇒ verts
T = verts G

by (simp add: reachable-verts-G-subset-T set-eq-subset verts-T-subset-G)

lemma connected-verts-G-eq-T :
assumes graph G

and connected G
and Suc n = card (verts G)

shows verts T = verts G
proof −

88

have 0 : fin-digraph G using assms(1) graph.axioms(1) digraph.axioms(1) by
blast

have source ∈ verts G using source-in-G by fast
then have ∀ x∈verts G. source→∗

G x using graph.connected-iff-reachable assms(1 ,2)
by blast

then show ?thesis using assms(3) reachable-verts-G-eq-T 0 by blast
qed

lemma con-Suc-card-arcs-eq-card-verts:
assumes graph G

and connected G
and Suc n = card (verts G)

shows Suc (card (arcs T)) = card (verts G)
using Suc-card-arcs-eq-card-verts connected-verts-G-eq-T assms by fastforce

lemma reverse-arc-in-G:
assumes graph G and e1 ∈ arcs T
shows ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail G e2

proof −
interpret graph G using assms(1) .
have e1 ∈ arcs G using assms(2) sub-G by blast
then show ?thesis using sym-arcs symmetric-conv by fastforce

qed

lemma reverse-arc-notin-T :
assumes e1 ∈ arcs T and head G e2 = tail G e1 and head G e1 = tail G e2
shows e2 /∈ arcs T

proof
assume asm: e2 ∈ arcs T
then have tail T e2 →T head T e2 by (simp add: in-arcs-imp-in-arcs-ends)
then have head G e1 →T tail G e1

using assms(2 ,3) sub-G by(simp add: Digraph-Component.subgraph-def com-
patible-def)

moreover have tail G e1 →T head G e1
using assms(1) sub-G

by(simp add: Digraph-Component.subgraph-def compatible-def in-arcs-imp-in-arcs-ends)
ultimately show False using reachable1-not-reverse by blast

qed

lemma reverse-arc-in-G-only:
assumes graph G and e1 ∈ arcs T
shows ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail G e2 ∧ e2 /∈

arcs T
using reverse-arc-in-G reverse-arc-notin-T assms by blast

lemma no-multi-T-G:
assumes e1 ∈ arcs T and e2 ∈ arcs T and e1 6= e2
shows head G e1 6= head G e2 ∨ tail G e1 6= tail G e2
using nomulti.no-multi-arcs assms sub-G

89

by(auto simp: Digraph-Component.subgraph-def compatible-def arc-to-ends-def)

lemma T-arcs-compl-fin:
assumes fin-digraph G and es ⊆ arcs T
shows finite {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 =

tail G e2)}
using assms fin-digraph.finite-arcs by fastforce

corollary T-arcs-compl-fin ′:
assumes graph G and es ⊆ arcs T
shows finite {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 =

tail G e2)}
using assms T-arcs-compl-fin graph.axioms(1) digraph.axioms(1) by blast

lemma T-arcs-compl-card-eq:
assumes graph G and es ⊆ arcs T
shows card {e2∈ arcs G. (∃ e1 ∈ es. head G e2 = tail G e1 ∧ head G e1 = tail

G e2)} = card es
using finite-subset[OF assms(2) finite-arcs] assms proof(induction es rule: fi-
nite-induct)

case (insert e1 es)
let ?ees = {e2 ∈ arcs G. ∃ e1∈insert e1 es. head G e2 = tail G e1 ∧ head G e1

= tail G e2}
let ?es = {e2 ∈ arcs G. ∃ e1∈es. head G e2 = tail G e1 ∧ head G e1 = tail G

e2}
obtain e2 where e2-def : e2 ∈ arcs G head G e2 = tail G e1 head G e1 = tail

G e2
using reverse-arc-in-G-only insert.prems by blast

then have e2-notin: e2 /∈ {e2 ∈ arcs G. ∃ e1∈es. head G e2 = tail G e1 ∧ head
G e1 = tail G e2}

using insert.hyps(2) insert.prems(2) no-multi-T-G by fastforce
have ∀ e3 ∈ arcs G. e2 = e3 ∨ head G e3 6= head G e2 ∨ tail G e3 6= tail G e2
using e2-def (1) nomulti-digraph.no-multi-alt digraph.axioms(3) graph.axioms(1)

insert.prems(1)
by fast

then have ?ees = insert e2 ?es using e2-def by auto
moreover have finite ?es using insert.prems T-arcs-compl-fin ′ by simp
ultimately have card ?ees = Suc (card ?es) using e2-notin by simp
then show ?case using insert by force

qed(simp)

lemma arcs-graph-G-ge-2vertsT :
assumes graph G
shows card (arcs G) ≥ 2 ∗ (card (verts T) − 1)

proof −
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
interpret graph G by (rule assms)
have ∀ e1 ∈ arcs T . ∃ e2 ∈ arcs G. head G e2 = tail G e1 ∧ head G e1 = tail

90

G e2
using reverse-arc-in-G-only assms by blast

have ?compl ∩ arcs T = {} using reverse-arc-notin-T by blast
then have card (?compl ∪ arcs T) = card ?compl + card (arcs T) by (simp

add: card-Un-disjoint)
moreover have ?compl ∪ arcs T ⊆ arcs G using sub-G by blast
moreover have finite (arcs G) by simp
ultimately have card ?compl + card (arcs T) ≤ card (arcs G)

using card-mono[of arcs G ?compl ∪ arcs T] by presburger
moreover have card (arcs T) = (card (verts T) − 1)

using Suc-card-arcs-eq-card-verts assms by fastforce
ultimately show ?thesis using T-arcs-compl-card-eq by fastforce

qed

lemma arcs-graph-G-ge-2vertsG:
[[graph G; connected G; Suc n = card (verts G)]] =⇒ card (arcs G) ≥ 2 ∗ (card

(verts G) − 1)
using arcs-graph-G-ge-2vertsT connected-verts-G-eq-T by simp

lemma arcs-undir-G-eq-2vertsG:
[[undirected-tree G; Suc n = card (verts G)]] =⇒ card (arcs G) = 2 ∗ (card (verts

G) − 1)
using arcs-graph-G-ge-2vertsG undirected-tree.acyclic undirected-tree.axioms(1)

undirected-tree.connected by fastforce

lemma undir-arcs-compl-un-eq-arcs:
assumes undirected-tree G and Suc n = card (verts G)
shows {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1 = tail

G e2)} ∪ arcs T
= arcs G

proof −
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
interpret undirected-tree G using assms(1) undirected-tree.axioms(1) by fast
have ?compl ∩ arcs T = {} using reverse-arc-notin-T by blast
then have 0 : card (?compl ∪ arcs T) = card ?compl + card (arcs T)

by (simp add: card-Un-disjoint)
have card (arcs T) = (card (verts T) − 1) using Suc-card-arcs-eq-card-verts

assms by fastforce
then have card ?compl + card (arcs T) = 2 ∗ (card (verts G) − 1)
using T-arcs-compl-card-eq connected-verts-G-eq-T connected assms(2) by fast-

force
moreover have card (arcs G) = 2 ∗ (card (verts G) − 1)

using assms arcs-undir-G-eq-2vertsG by blast
moreover have ?compl ∪ arcs T ⊆ arcs G using sub-G by blast
ultimately show ?thesis by (simp add: 0 card-subset-eq)

qed

lemma split-fst-nonelem:

91

[[¬set xs ⊆ X ; set xs ⊆ Y]] =⇒ ∃ x ys zs. ys@x#zs=xs ∧ x /∈ X ∧ x ∈ Y ∧ set
ys ⊆ X
proof(induction xs)

case (Cons x xs)
then show ?case
proof(cases x ∈ X)

case True
then obtain z ys zs where ys-def : ys@z#zs=xs z /∈ X z ∈ Y set ys ⊆ X using

Cons by auto
then have set (x#ys) ⊆ X using True by simp
then show ?thesis using ys-def (1−3) append-Cons by fast

next
case False
then show ?thesis using Cons.prems(2) by fastforce

qed
qed(simp)

lemma source-no-inarc-T : head G e = source =⇒ e /∈ arcs T
using in-arcs-root sub-G by (auto simp: Digraph-Component.subgraph-def com-

patible-def)

lemma source-all-outarcs-T :
[[undirected-tree G; Suc n = card (verts G); tail G e = source; e ∈ arcs G]] =⇒

e ∈ arcs T
using source-no-inarc-T undir-arcs-compl-un-eq-arcs by blast

lemma cas-G-T : G.cas = cas
using sub-G compatible-cas by fastforce

lemma awalk-G-T : u ∈ verts T =⇒ set p ⊆ arcs T =⇒ G.awalk u p = awalk u p
using cas-G-T awalk-def G.awalk-def sub-G by fastforce

corollary awalk-G-T-root: set p ⊆ arcs T =⇒ G.awalk source p = awalk source p
using awalk-G-T root-in-T by blast

lemma awalk-verts-G-T : G.awalk-verts = awalk-verts
using sub-G compatible-awalk-verts by blast

lemma apath-sub-imp-apath: apath u p v =⇒ G.apath u p v
by (simp add: G.apath-def apath-def awalk-sub-imp-awalk awalk-verts-G-T)

lemma outarc-inT-if-head-not-inarc:
assumes undirected-tree G and Suc n = card (verts G)

and tail G e2 = v and e2 ∈ arcs G and head G e2 6= u and u →T v
shows e2 ∈ arcs T

proof (rule ccontr)
let ?compl = {e2∈ arcs G. (∃ e1 ∈ arcs T . head G e2 = tail G e1 ∧ head G e1

= tail G e2)}
assume e2 /∈ arcs T

92

then have e2 ∈ ?compl using assms(4) undir-arcs-compl-un-eq-arcs[OF assms(1−2)]
by blast

then obtain e1 where e1-def : e1 ∈ arcs T head G e2 = tail T e1 head T e1
= v

using sub-G assms(3) by (auto simp: Digraph-Component.subgraph-def com-
patible-def)

obtain e where e ∈ arcs T tail T e = u head T e = v using assms(6) by blast
then show False using two-in-arcs-contr e1-def assms(5) by blast

qed

corollary reverse-arc-if-out-arc-undir :
[[undirected-tree G; Suc n = card (verts G); tail G e2 = v; e2 ∈ arcs G; e2 /∈

arcs T ; u →T v]]
=⇒ head G e2 = u

using outarc-inT-if-head-not-inarc by blast

lemma undir-path-in-dir :
assumes undirected-tree G Suc n = card (verts G) G.apath source p v
shows set p ⊆ arcs T

proof (rule ccontr)
assume asm: ¬set p ⊆ arcs T
have set p ⊆ arcs G using assms(3) G.apath-def G.awalk-def by fast
then obtain e p1 p2 where e-def : p1 @ e # p2 = p e /∈ arcs T e ∈ arcs G set

p1 ⊆ arcs T
using split-fst-nonelem[OF asm, of arcs G] by auto

show False
proof(cases p1=[])

case True
then have tail G e = source using assms(3) e-def (1) G.apath-Cons-iff by

auto
then show ?thesis using source-all-outarcs-T [OF assms(1−2)] e-def (2 ,3) by

blast
next

case False
then have awalk-G: G.awalk source (p1 @ e # p2) v

using assms(3) pre-digraph.apath-def e-def (1) by fast
then have G.awalk source p1 (tail G e) by force
then have awalk-p1T : awalk source p1 (tail T e)

using e-def (4) sub-G cas-G-T root-in-T
by (simp add: Digraph-Component.subgraph-def pre-digraph.awalk-def com-

patible-def)
then have source →+

T tail T e using False reachable1-awalkI by auto
then obtain u where u-def : u →T tail T e using tranclD2 by metis
have tail T e = tail G e

using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)
then have hd-e-u: head G e = u
using reverse-arc-if-out-arc-undir [OF assms(1−2)] u-def e-def (2 ,3) by simp

have head T (last p1) = tail T e using False awalk-p1T awalk-verts-conv by
fastforce

93

then have tail T (last p1) = u
using False u-def e-def (4) two-in-arcs-contr last-in-set by fastforce

then have 0 : tail G (last p1) = u
using sub-G by (simp add: Digraph-Component.subgraph-def compatible-def)

obtain ps where ps @ [last p1] = p1 using False append-butlast-last-id by
auto

then have ps-def : ps @ [last p1] @ e # p2 = p using e-def by auto
then have awalk-G: G.awalk source (ps @ [last p1] @ e # p2) v

using assms(3) by (simp add: pre-digraph.apath-def)
have ¬(distinct (G.awalk-verts source p))

using G.not-distinct-if-head-eq-tail[OF 0 hd-e-u awalk-G] ps-def by simp
then show ?thesis using assms(3) G.apath-def by blast

qed
qed

lemma source-reach-all: [[graph G; connected G; v ∈ verts G]] =⇒ source →∗
G v

by (simp add: graph.connected-iff-reachable source-in-G)

lemma apath-if-in-verts: [[graph G; connected G; v ∈ verts G]] =⇒ ∃ p. G.apath
source p v
using G.reachable-apath by (simp add: graph.connected-iff-reachable source-in-G)

lemma undir-unique-awalk:
[[undirected-tree G; Suc n = card (verts G); v ∈ verts G]] =⇒ ∃ !p. G.apath source

p v
using undir-path-in-dir apath-if-in-verts awalk-G-T-root
by (metis G.awalkI-apath unique-awalk-All undirected-tree.axioms(1) undirected-tree.connected)

lemma apath-in-dir-if-apath-G:
assumes undirected-tree G Suc n = card (verts G) G.apath source p v
shows apath source p v
using undir-path-in-dir [OF assms] assms(3) G.awalkI-apath apath-if-awalk awalk-G-T-root

by force

end

locale undir-tree-todir-psp = undirected-tree G + find-psp-tree-locale to-psp
for G :: (′a, ′b) pre-digraph
and to-psp :: (′a, ′b) pre-digraph ⇒ (′b ⇒ real)⇒ ′a ⇒ nat ⇒ (′a, ′b) pre-digraph

begin

abbreviation dir-tree-r :: ′a ⇒ (′a, ′b) pre-digraph where
dir-tree-r r ≡ to-psp G (λ-. 1) r (Finite-Set.card (verts G) − 1)

lemma directed-tree-r : r ∈ verts G =⇒ directed-tree (dir-tree-r r) r
using find-psp-tree psp-tree.axioms(1) by fast

lemma psp-dir-tree-r :
r ∈ verts G =⇒ psp-tree G (dir-tree-r r) (λ-. 1) r (Finite-Set.card (verts G) −

94

1)
using find-psp-tree by blast

lemma dir-tree-r-dom-in-G: r ∈ verts G =⇒ u →dir-tree-r r v =⇒ u →G v
using psp-tree.dom-in-G psp-dir-tree-r by fast

lemma verts-nempty: verts G 6= {}
using connected connected-iff-reachable by auto

lemma card-gt0 : card (verts G) > 0
using verts-nempty by auto

lemma Suc-card-1-eq-card[intro]: Suc (card (verts G) − 1) = card (verts G)
using card-gt0 by simp

lemma verts-dir-tree-r-eq[simp]: r ∈ verts G =⇒ verts (dir-tree-r r) = verts G
using psp-tree.connected-verts-G-eq-T [OF psp-dir-tree-r graph-axioms connected]

by blast

lemma tail-dir-tree-r-eq: r ∈ verts G =⇒ tail (dir-tree-r r) e = tail G e
using psp-tree.tailT-eq-tailG[OF psp-dir-tree-r] by simp

lemma head-dir-tree-r-eq: r ∈ verts G =⇒ head (dir-tree-r r) e = head G e
using psp-tree.headT-eq-headG[OF psp-dir-tree-r] by simp

lemma awalk-verts-G-T : r ∈ verts G =⇒ awalk-verts = pre-digraph.awalk-verts
(dir-tree-r r)

using psp-tree.awalk-verts-G-T psp-dir-tree-r by fastforce

lemma dir-tree-r-all-reach: [[r ∈ verts G; v ∈ verts G]] =⇒ r →∗
dir-tree-r r v

using directed-tree.reachable-from-root directed-tree-r verts-dir-tree-r-eq by fast

lemma fin-verts-dir-tree-r-eq: r ∈ verts G =⇒ finite (verts (dir-tree-r r))
using verts-dir-tree-r-eq by auto

lemma fin-arcs-dir-tree-r-eq: r ∈ verts G =⇒ finite (arcs (dir-tree-r r))
using fin-verts-dir-tree-r-eq directed-tree.verts-finite-imp-arcs-finite directed-tree-r
by fast

lemma fin-directed-tree-r : r ∈ verts G =⇒ finite-directed-tree (dir-tree-r r) r
unfolding finite-directed-tree-def fin-digraph-def fin-digraph-axioms-def
using directed-tree.axioms(1) directed-tree-r fin-arcs-dir-tree-r-eq verts-dir-tree-r-eq
by force

lemma arcs-eq-2verts: card (arcs G) = 2 ∗ (card (verts G) − 1)
using psp-tree.arcs-undir-G-eq-2vertsG[OF psp-dir-tree-r undirected-tree-axioms]

card-gt0
by fastforce

95

lemma arcs-compl-un-eq-arcs:
r ∈ verts G =⇒
{e2 ∈ arcs G. ∃ e1∈arcs (dir-tree-r r). head G e2 = tail G e1 ∧ head G e1 =

tail G e2}
∪ arcs (dir-tree-r r) = arcs G

using psp-tree.undir-arcs-compl-un-eq-arcs[OF psp-dir-tree-r undirected-tree-axioms]
by blast

lemma unique-apath: [[u ∈ verts G; v ∈ verts G]] =⇒ ∃ !p. apath u p v
using psp-tree.undir-unique-awalk[OF psp-dir-tree-r undirected-tree-axioms] by

blast

lemma apath-in-dir-if-apath-G: apath r p v =⇒ pre-digraph.apath (dir-tree-r r) r
p v
using psp-tree.apath-in-dir-if-apath-G psp-dir-tree-r undirected-tree-axioms awalkI-apath
by fast

lemma apath-verts-sub-awalk:
[[apath u p1 v; awalk u p2 v]] =⇒ set (awalk-verts u p1) ⊆ set (awalk-verts u p2)
using unique-apath-verts-sub-awalk unique-apath by blast

lemma dir-tree-arc1-in-apath:
assumes u →dir-tree-r r v and r ∈ verts G
shows ∃ p. apath r p v ∧ u ∈ set (awalk-verts r p)
using directed-tree.apath-over-inarc-if-dominated[OF directed-tree-r [OF assms(2)]

assms(1)]
psp-tree.apath-sub-imp-apath psp-dir-tree-r [OF assms(2)] psp-tree.awalk-verts-G-T

by fastforce

lemma dir-tree-arc1-in-awalk:
[[u →dir-tree-r r v; r ∈ verts G; awalk r p v]] =⇒ u ∈ set (awalk-verts r p)
using dir-tree-arc1-in-apath apath-verts-sub-awalk by blast

end

6.2 Additions for Induction on Directed Trees
lemma fin-dir-tree-single:

finite-directed-tree (|verts = {r}, arcs = {}, tail = t, head = h|) r
by unfold-locales (fastforce simp: pre-digraph.cas.simps(1) pre-digraph.awalk-def)+

corollary dir-tree-single: directed-tree (|verts = {r}, arcs = {}, tail = t, head =
h|) r

by (simp add: fin-dir-tree-single finite-directed-tree.axioms(1))

lemma split-list-not-last: [[y ∈ set xs; y 6= last xs]] =⇒ ∃ as bs. as @ y # bs = xs
∧ bs 6= []

using split-list by fastforce

96

lemma split-last-eq: [[as @ y # bs = xs; bs 6= []]] =⇒ last bs = last xs
by auto

lemma split-list-last-sep: [[y ∈ set xs; y 6= last xs]] =⇒ ∃ as bs. as @ y # bs @ [last
xs] = xs

using split-list-not-last[of y xs] split-last-eq append-butlast-last-id by metis

context directed-tree
begin

lemma root-if-all-reach: ∀ v ∈ verts T . x →∗
T v =⇒ x = root

proof(rule ccontr)
assume assms: ∀ v ∈ verts T . x →∗

T v x 6= root
then have x →∗

T root by (simp add: root-in-T)
then have ∃ x. x →T root using assms(2) by (auto elim: trancl.cases)
then show False using dominated-not-root by blast

qed

lemma add-leaf-cas-preserv:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and set p ⊆ arcs T and cas x p y
shows pre-digraph.cas T ′ x p y

using assms proof(induction p arbitrary: x)
case (Cons p ps)
then have tail T ′ p = x by auto
moreover have pre-digraph.cas T ′ (head T ′ p) ps y using Cons by force
ultimately show ?case using pre-digraph.cas.simps(2) by fast

qed(simp add: pre-digraph.cas.simps(1))

lemma add-leaf-awalk-preserv:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and awalk x p y
shows pre-digraph.awalk T ′ x p y
using assms add-leaf-cas-preserv unfolding pre-digraph.awalk-def by auto

lemma add-leaf-awalk-T :
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and x ∈ verts T
shows ∃ p. pre-digraph.awalk T ′ root p x
using add-leaf-awalk-preserv assms unique-awalk[of x] by blast

lemma (in pre-digraph) cas-append-if :
[[cas x ps u; tail G p = u; head G p = v]] =⇒ cas x (ps@[p]) v

97

using cas-append-iff [of x ps] by (metis append.right-neutral cas.simps)

lemma add-leaf-awalk-T-new:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and u ∈ verts T
shows ∃ p. pre-digraph.awalk T ′ root p v

proof −
obtain ps where ps-def : root ∈ verts T ′ set ps ⊆ arcs T ′ pre-digraph.cas T ′

root ps u
using add-leaf-awalk-T assms unfolding pre-digraph.awalk-def by blast

have pre-digraph.cas T ′ root (ps@[a]) v
using pre-digraph.cas-append-if [OF ps-def (3)] assms(1) by simp

moreover have set (ps@[a]) ⊆ arcs T ′ using ps-def (2) assms(1) by simp
ultimately show ?thesis using ps-def (1) unfolding pre-digraph.awalk-def by

blast
qed

lemma add-leaf-cas-orig:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and set p ⊆ arcs T and pre-digraph.cas T ′ x p y
shows cas x p y

using assms proof(induction p arbitrary: x)
case (Cons p ps)
then have tail T ′ p = x using pre-digraph.cas.simps(2) by fast
then have tail T p = x using Cons.prems(1 ,2) Cons.hyps(2) by auto
moreover have head T ′ p = head T p using Cons.prems(1 ,2) Cons.hyps(2)

by auto
moreover have pre-digraph.cas T ′ (head T ′ p) ps y

using Cons.prems(3) pre-digraph.cas.simps(2) by fast
ultimately show ?case using Cons by simp

qed(simp add: pre-digraph.cas.simps(1))

lemma add-leaf-awalk-orig-aux:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and x ∈ verts T and set p ⊆ arcs T and pre-digraph.awalk

T ′ x p y
shows awalk x p y
using assms add-leaf-cas-orig unfolding pre-digraph.awalk-def by blast

lemma add-leaf-cas-xT-if-yT :
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)

98

assumes u ∈ verts T and y ∈ verts T and set p ⊆ arcs T ′ and pre-digraph.cas
T ′ x p y

shows x ∈ verts T
using assms by (induction p arbitrary: x) (auto simp: pre-digraph.cas.simps)

lemma add-leaf-cas-xT-arcsT-if-yT :
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes v /∈ verts T and y ∈ verts T and set p ⊆ arcs T ′ and pre-digraph.cas

T ′ x p y
shows set p ⊆ arcs T and x ∈ verts T
using assms by (induction p arbitrary: x) (auto simp: pre-digraph.cas.simps)

lemma add-leaf-awalk-orig:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and v /∈ verts T and y ∈ verts T and pre-digraph.awalk

T ′ x p y
shows awalk x p y

proof −
have 0 : x ∈ verts T set p ⊆ arcs T

using assms add-leaf-cas-xT-arcsT-if-yT unfolding pre-digraph.awalk-def by
blast+

then show ?thesis using add-leaf-awalk-orig-aux assms by blast
qed

lemma add-leaf-awalk-orig-unique:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and v /∈ verts T and y ∈ verts T

and pre-digraph.awalk T ′ root ps y and pre-digraph.awalk T ′ root es y
shows es = ps

using add-leaf-awalk-orig[OF assms(2 ,3)] assms(1 ,4 ,5 ,6) unique-awalk by fast-
force

lemma add-leaf-awalk-new-split ′:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes v /∈ verts T and p 6= [] and pre-digraph.awalk T ′ x p v
shows ∃ as. as @ [a] = p

using assms proof(induction p arbitrary: x)
case (Cons p ps)
then show ?case
proof(cases ps = [])

case True

99

then have head T ′ p = v
using Cons.prems(3) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have head T p = v ∨ p = a using Cons.hyps(2) by auto
moreover have p ∈ arcs T ∨ p = a

using Cons.hyps(2) Cons.prems(3) by (auto simp: pre-digraph.awalk-def)
ultimately show ?thesis using Cons.prems(1) head-in-verts True by blast

next
case False
then have pre-digraph.cas T ′ (head T ′ p) ps v
using Cons.prems(3) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have pre-digraph.awalk T ′ (head T ′ p) ps v
using Cons.hyps(2) Cons.prems(3) unfolding pre-digraph.awalk-def by auto

then obtain as where as @ [a] = ps using Cons False by blast
then show ?thesis by auto

qed
qed(simp)

lemma add-leaf-awalk-new-split:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes v /∈ verts T and u ∈ verts T and p 6= [] and pre-digraph.awalk T ′ x

p v
shows ∃ as. as @ [a] = p ∧ pre-digraph.awalk T ′ x as u

using assms proof(induction p arbitrary: x)
case (Cons p ps)
then show ?case
proof(cases ps = [])

case True
then have head T ′ p = v
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have head T p = v ∨ p = a using Cons.hyps(2) by auto
moreover have p ∈ arcs T ∨ p = a

using Cons.hyps(2) Cons.prems(4) by (auto simp: pre-digraph.awalk-def)
ultimately have p = a using Cons.prems(1) by auto
then have [] @ [a] = p # ps using True by auto
have tail T ′ p = u using Cons.hyps(2) ‹p = a› by simp
then have u = x
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps(2))
then have pre-digraph.awalk T ′ x [] u

using Cons.hyps(2) Cons.prems(2) by (simp add: pre-digraph.awalk-def
pre-digraph.cas.simps)

then show ?thesis using ‹[] @ [a] = p # ps› by blast
next

case False
then have pre-digraph.cas T ′ (head T ′ p) ps v
using Cons.prems(4) by (simp add: pre-digraph.awalk-def pre-digraph.cas.simps)
then have pre-digraph.awalk T ′ (head T ′ p) ps v
using Cons.hyps(2) Cons.prems(4) unfolding pre-digraph.awalk-def by auto

100

then obtain as where as-def : as @ [a] = ps pre-digraph.awalk T ′ (head T ′ p)
as u

using Cons False by blast
then have x ∈ verts T ′ set (p#as) ⊆ arcs T ′ tail T ′ p = x
using Cons.prems(4) by (auto simp: pre-digraph.awalk-def pre-digraph.cas.simps)
then have pre-digraph.cas T ′ x (p#as) u

using as-def (2) pre-digraph.cas.simps(2) unfolding pre-digraph.awalk-def
by fast

then have pre-digraph.awalk T ′ x (p#as) u
using ‹x ∈ verts T ′› ‹set (p#as) ⊆ arcs T ′› by (simp add: pre-digraph.awalk-def)
then show ?thesis using as-def (1) by auto

qed
qed(simp)

lemma add-leaf-awalk-new-unique:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and u ∈ verts T and v /∈ verts T

and pre-digraph.awalk T ′ root ps v and pre-digraph.awalk T ′ root es v
shows es = ps

proof −
have root 6= v using ‹v /∈ verts T › root-in-T by blast
then have ps 6= [] es 6= []

using assms(5 ,6) root-in-T pre-digraph.awalk-def pre-digraph.cas.simps(1) by
fast+

then obtain as where as-def : as @ [a] = ps pre-digraph.awalk T ′ root as u
using add-leaf-awalk-new-split assms(1 ,3−5) by blast

obtain bs where bs-def : bs @ [a] = es pre-digraph.awalk T ′ root bs u
using ‹es 6= []› add-leaf-awalk-new-split assms(1 ,3 ,4 ,6) by blast

then show ?thesis using as-def assms(1−4) add-leaf-awalk-orig-unique by blast
qed

lemma add-leaf-awalk-unique:
fixes u v a
defines T ′ ≡ (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
assumes a /∈ arcs T and u ∈ verts T and v /∈ verts T and x ∈ verts T ′

shows ∃ !p. pre-digraph.awalk T ′ root p x
using assms add-leaf-awalk-T add-leaf-awalk-T-new
by (auto simp: add-leaf-awalk-new-unique add-leaf-awalk-orig-unique)

lemma add-leaf-dir-tree:
[[a /∈ arcs T ; u ∈ verts T ; v /∈ verts T]]
=⇒ directed-tree (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|) root
using add-leaf-awalk-unique by unfold-locales (auto simp: root-in-T)

lemma add-leaf-dom-preserv:

101

[[a /∈ arcs T ; x →T y]]
=⇒ x →(|verts = verts T ∪ {v}, arcs = arcs T ∪ {a}, tail = (tail T)(a := u), head = (head T)(a := v)|)

y
unfolding arcs-ends-def arc-to-ends-def by force

end

6.3 Branching Points in Directed Trees

Proofs that show the existence of a last branching point given it is not a
chain.
context directed-tree
begin

lemma add-leaf-is-leaf :
assumes T ′ = (|verts = V , arcs = A, tail = t, head = h|)

and T = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a
:= v)|)

and u ∈ V
and v /∈ V
and a /∈ A
and directed-tree T ′ root ′

shows leaf v
proof −

have 0 : wf-digraph T by (simp add: wf-digraph-axioms)
have 1 : wf-digraph T ′ using assms(6) directed-tree.axioms(1) by fast
then have ∀ a∈arcs T . tail T a 6= v

by (metis Un-insert-right assms(1−4) fun-upd-apply insert-iff
pre-digraph.select-convs(1−3) sup-bot-right wf-digraph.tail-in-verts)

then have out-arcs T v = {} using in-out-arcs-conv by fast
moreover have v ∈ verts T using assms(2) by simp
ultimately show ?thesis by (simp add: leaf-def)

qed

lemma reachable-via-child-impl-same:
assumes x →∗

T v and y →∗
T v and u →T x and u →T y

shows x = y
proof (rule ccontr)

assume asm: x 6= y
obtain p1 where p1-def : awalk x p1 v using assms(1) reachable-awalk by auto
then obtain e1 where e1-def : awalk u (e1#p1) v using assms(3) awalk-Cons-iff

by blast
obtain p2 where p2-def : awalk y p2 v using assms(2) reachable-awalk by auto
then obtain e2 where e2-def : awalk u (e2#p2) v using assms(4) awalk-Cons-iff

by blast
then have e1#p1 6= e2#p2 using asm awalk-ends p1-def p2-def by blast
then show False using e1-def e2-def unique-awalk-All by auto

qed

102

lemma new-leaf-last-in-orig-if-arcs-in-orig:
assumes x →∗

T y
and T = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a

:= v)|)
and T ′ = (|verts = V , arcs = A, tail = t, head = h|)
and x ∈ V
and y ∈ V
and u ∈ V
and v /∈ V
and a /∈ A
and a1∈arcs T ′ ∧ a2∈arcs T ′ ∧ a1 6=a2 ∧ t a1 = y ∧ t a2 = y
and finite (arcs T)
and [[∃ a∈wf-digraph.branching-points T ′. x →∗

T ′ a; directed-tree T ′ r]]
=⇒ ∃ a∈wf-digraph.last-branching-points T ′. x →∗

T ′ a
and directed-tree T ′ r

shows ∃ y ′∈ last-branching-points. x →∗
T y ′

proof −
have 1 : wf-digraph T ′ using directed-tree.axioms(1) assms(12) by fast
have a1∈arcs T ′ ∧ a2∈arcs T ′ ∧ a1 6=a2 ∧ tail T ′ a1 = y ∧ tail T ′ a2 = y

using assms(3 ,9) by simp
then have branching-point: y ∈ wf-digraph.branching-points T ′

using wf-digraph.branching-points-def 1 by blast
then have x →∗

T ′ y using assms(1−8 ,10) 1 new-leaf-same-reachables-orig by
blast
then have ∃ a ∈ wf-digraph.branching-points T ′. x →∗

T ′ a using branching-point
by blast

then obtain a where a-def [simp]: a∈wf-digraph.last-branching-points T ′ ∧ x
→∗

T ′ a
using assms(11 ,12) by blast

then have 2 : a∈wf-digraph.last-branching-points T ′ ∧ x →∗
T a

using new-leaf-same-reachables-new assms(2−4 ,6−8) 1
by (metis branch-if-leaf-added new-leaf-no-branch wf-digraph.last-branch-is-branch)

have 3 : ∀ y. a →+
T y −→ a 6=y using reachable1-not-reverse by blast

have a ∈ verts T ′

using a-def 1 by (simp add: wf-digraph.branch-in-verts wf-digraph.last-branch-is-branch)
then show ?thesis

using new-leaf-last-branch-exists-preserv 1 2 3 assms(2 ,3 ,6−8 ,10)
by (metis pre-digraph.select-convs(1 ,2))

qed

lemma finite-branch-impl-last-branch:
assumes finite (verts T)

and ∃ y∈branching-points. x →∗
T y

and directed-tree T r
shows ∃ z∈last-branching-points. x →∗

T z
using assms proof(induction arbitrary: r rule: finite-directed-tree-induct)

case (single-vert t h root)
let ?T = (|verts = {root}, arcs = {}, tail = t, head = h|)
have directed-tree ?T r using single-vert by simp

103

then have 0 : wf-digraph ?T using directed-tree.axioms(1) by fast
obtain y where y-def [simp]: y ∈ wf-digraph.branching-points ?T ∧ x →∗

?T y
using single-vert by blast

have y = root
by (metis y-def empty-iff insert-iff pre-digraph.select-convs(1) reachable-in-vertsE)

then have ¬(∃ x ∈ verts ?T . x 6=y) by simp
then have ¬(∃ x ∈ wf-digraph.branching-points ?T . x 6=y)

using 0 wf-digraph.branch-in-verts by fast
then have y ∈ wf-digraph.last-branching-points ?T

using wf-digraph.last-branching-points-def 0 by fastforce
then show ?case by force

next
case (add-leaf T ′ V A t h u root a v)
let ?T = (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head = h(a :=

v)|)
have 0 : wf-digraph ?T using add-leaf .prems(2) directed-tree.axioms(1) by fast
have 1 : wf-digraph T ′ using add-leaf .hyps(3) directed-tree.axioms(1) by fast
have 2 : finite (arcs ?T)

using directed-tree.verts-finite-imp-arcs-finite add-leaf .hyps(1−3) by fastforce
obtain y where y-def [simp]: y ∈ wf-digraph.branching-points ?T ∧ x →∗

?T y
using add-leaf .prems by blast

then obtain a1 a2 where a12 : a1∈arcs ?T ∧ a2∈arcs ?T ∧ a1 6=a2 ∧ tail ?T
a1 = y ∧ tail ?T a2 = y

using wf-digraph.branching-points-def 0 by blast
then have y-not-v: y 6= v
using Un-insert-right add-leaf .hyps(1 ,3 ,5) directed-tree.axioms(1) fun-upd-apply

insert-iff
by (metis pre-digraph.select-convs(1−3) sup-bot-right wf-digraph.tail-in-verts)

have y ∈ verts ?T
using y-def wf-digraph.branch-in-verts 0 by fast

then have y-in-T : y ∈ verts T ′ using y-not-v add-leaf .hyps(1) by simp
have x ∈ verts ?T using add-leaf .prems(1) reachable-in-vertsE by force
have leaf-v: pre-digraph.leaf ?T v
using directed-tree.add-leaf-is-leaf [of ?T] add-leaf .hyps(1 ,3−6) add-leaf .prems(2)

by blast
then have out-degree ?T v = 0

using add-leaf .prems(2) directed-tree.leaf-out-degree-zero by fast
then have x 6= v
using y-not-v y-def 0 Diff-empty add-leaf directed-tree.verts-finite-imp-arcs-finite

select-convs(1) wf-digraph.out-degree-0-only-self by fastforce
then have x-in-T ′: x ∈ verts T ′ using ‹x ∈ verts ?T › add-leaf .hyps(1) by auto
show ?case
proof(cases a1=a ∨ a2=a)

case True
then have y = u using a12 by fastforce
show ?thesis
proof(cases ∃ y ′∈wf-digraph.branching-points ?T . y 6= y ′ ∧ y →∗

?T y ′)
case True
then obtain y ′ where y ′-def : y ′∈wf-digraph.branching-points ?T ∧ y 6= y ′

104

∧ y →∗
?T y ′

by blast
then obtain a1 a2 where a12 : a1∈arcs ?T ∧ a2∈arcs ?T ∧ a1 6=a2 ∧ tail

?T a1 = y ′ ∧ tail ?T a2 = y ′

using wf-digraph.branching-points-def 0 by blast
then have y ′ 6= u using ‹y=u› y ′-def by blast
moreover have tail ?T a = u by simp
ultimately have a1 6=a ∧ a2 6=a using ‹y=u› a12 by fastforce
then have 3 : a1∈arcs T ′ ∧ a2∈arcs T ′ ∧ a1 6=a2 ∧ t a1 = y ′ ∧ t a2 = y ′

using a12 add-leaf .hyps(1) by simp
then have branching-point: y ′ ∈ wf-digraph.branching-points T ′

using wf-digraph.branching-points-def 1 add-leaf .hyps(1) by fastforce
have y ′-in-T : y ′∈ verts T ′ by (simp add: 1 branching-point wf-digraph.branch-in-verts)

have x →∗
?T y ′ using y-def y ′-def wf-digraph.reachable-trans 0 by fast

then show ?thesis
using directed-tree.new-leaf-last-in-orig-if-arcs-in-orig[of ?T r x y ′]

add-leaf .prems(2) 2 3 add-leaf .IH add-leaf .hyps(1 ,3−6) x-in-T ′ y ′-in-T
by simp

next
case False
then show ?thesis using wf-digraph.last-branching-points-def y-def 0 by fast

qed
next

case False
then have a1∈arcs ?T ∧ a2∈arcs ?T ∧ a1 6=a2 ∧ t a1 = y ∧ t a2 = y

using a12 by simp
then have 3 : a1∈arcs T ′ ∧ a2∈arcs T ′ ∧ a1 6=a2 ∧ t a1 = y ∧ t a2 = y

using False a12 add-leaf .hyps(1) by auto
have x →∗

?T y using y-def by simp
then show ?thesis

using directed-tree.new-leaf-last-in-orig-if-arcs-in-orig[of ?T r x y]
add-leaf .prems(2) 2 3 add-leaf .IH add-leaf .hyps(1 ,3−6) x-in-T ′ y-in-T by

simp
qed

qed

lemma subgraph-no-last-branch-chain:
assumes subgraph C T

and finite (verts T)
and verts C ⊆ verts T − {x. ∃ y∈last-branching-points. x →∗

T y}
shows wf-digraph.is-chain C

using assms finite-branch-impl-last-branch subgraph-no-branch-chain last-branch-is-branch
by (smt (verit, ccfv-SIG) Collect-cong directed-tree-axioms)

lemma reach-from-last-in-chain:
assumes ∃ y ∈ last-branching-points. y →+

T x
shows x ∈ verts T − {x. ∃ y∈last-branching-points. x →∗

T y}
using assms last-branch-alt reachable1-not-reverse reachable1-reachable reach-

able1-reachable-trans

105

by (smt (verit, del-insts) Diff-iff last-branch-is-branch mem-Collect-eq reach-
able1-in-verts(2))

Directed Trees don’t have merging points.
lemma merging-empty: merging-points = {}

using two-in-arcs-contr merging-points-def by auto

lemma subgraph-no-last-merge-chain:
assumes subgraph C T
shows wf-digraph.is-chain ′ C

proof (rule ccontr)
assume asm: ¬wf-digraph.is-chain ′ C
have wf-digraph C using assms(1) Digraph-Component.subgraph-def subgraph.sub-G

by auto
then obtain x where x-def : x ∈ wf-digraph.merging-points C

using wf-digraph.is-chain ′-def asm by blast
then have x ∈ merging-points using assms(1) merge-in-supergraph by simp
then show False using merging-empty by simp

qed

6.4 Converting to Trees of Lists
definition to-list-tree :: (′a list, ′b) pre-digraph where

to-list-tree =
(|verts = (λx. [x]) ‘ verts T , arcs = arcs T , tail = (λx. [tail T x]), head = (λx.

[head T x])|)

lemma to-list-tree-union-verts-eq:
⋃

(set ‘ verts to-list-tree) = verts T
using to-list-tree-def by simp

lemma to-list-tree-cas: cas u p v ←→ pre-digraph.cas to-list-tree [u] p [v]
by(induction p arbitrary: u) (auto simp: Arc-Walk.pre-digraph.cas.simps to-list-tree-def)

lemma to-list-tree-awalk: awalk u p v ←→ pre-digraph.awalk to-list-tree [u] p [v]
unfolding pre-digraph.awalk-def using to-list-tree-cas to-list-tree-def by auto

lemma to-list-tree-awalk-if-in-verts:
assumes v ∈ verts to-list-tree
shows ∃ p. pre-digraph.awalk to-list-tree [root] p v

proof −
have root ∈ verts T using root-in-T by blast
obtain v ′ where 0 : v = [v ′] using to-list-tree-def assms(1) by auto
then have v ′ ∈ verts T using assms to-list-tree-def by auto
then obtain p ′ where awalk root p ′ v ′ using unique-awalk by blast
then show ?thesis using to-list-tree-awalk 0 by auto

qed

lemma to-list-tree-root-awalk-unique:
assumes v ∈ verts to-list-tree

106

and pre-digraph.awalk to-list-tree [root] p v
and pre-digraph.awalk to-list-tree [root] y v

shows p = y
proof (rule ccontr)

assume p 6= y
obtain v ′ where v ′-def : v = [v ′] using to-list-tree-def assms(1) by auto
then have v ′ ∈ verts T using assms(1) to-list-tree-def by auto
show False using to-list-tree-awalk assms ‹p 6= y› assms(2 ,3) unique-awalk v ′-def

by blast
qed

lemma to-list-tree-directed-tree: directed-tree to-list-tree [root]
apply(unfold-locales)

apply(auto simp: to-list-tree-def root-in-T)[3]
by(auto intro: to-list-tree-awalk-if-in-verts to-list-tree-root-awalk-unique)

lemma to-list-tree-disjoint-verts:
[[u ∈ verts to-list-tree; v ∈ verts to-list-tree; u 6=v]] =⇒ set u ∩ set v = {}
unfolding to-list-tree-def by auto

lemma to-list-tree-nempty: v ∈ verts to-list-tree =⇒ v 6= []
unfolding to-list-tree-def by auto

lemma to-list-tree-single: v ∈ verts to-list-tree =⇒ ∃ x. v = [x] ∧ x ∈ verts T
unfolding to-list-tree-def by auto

lemma to-list-tree-dom-iff : x →T y ←→ [x] →to-list-tree [y]
unfolding to-list-tree-def arcs-ends-def arc-to-ends-def by auto

end

locale fin-list-directed-tree = finite-directed-tree T for T :: (′a list, ′b) pre-digraph
+

assumes disjoint-verts: [[u ∈ verts T ; v ∈ verts T ; u 6= v]] =⇒ set u ∩ set v =
{}

and nempty-verts: v ∈ verts T =⇒ v 6= []

context finite-directed-tree
begin

lemma to-list-tree-fin-digraph: fin-digraph to-list-tree
by (unfold-locales) (auto simp: to-list-tree-def)

lemma to-list-tree-finite-directed-tree: finite-directed-tree to-list-tree [root]
by (simp add: finite-directed-tree-def to-list-tree-fin-digraph to-list-tree-directed-tree)

lemma to-list-tree-fin-list-directed-tree: fin-list-directed-tree [root] to-list-tree
apply(simp add: fin-list-directed-tree-def to-list-tree-finite-directed-tree)
apply(unfold-locales)

107

by (auto simp: to-list-tree-disjoint-verts to-list-tree-nempty)

end

end

theory Dtree
imports Complex-Main Directed-Tree-Additions HOL−Library.FSet

begin

7 Algebraic Type for Directed Trees
datatype (dverts: ′a, darcs: ′b) dtree = Node (root: ′a) (sucs: ((′a, ′b) dtree × ′b)
fset)

7.1 Termination Proofs
lemma fset-sum-ge-elem: finite xs =⇒ x ∈ xs =⇒ (

∑
u∈xs. (f :: ′a ⇒ nat) u) ≥ f

x
by (simp add: sum-nonneg-leq-bound)

lemma dtree-size-decr-aux:
assumes (x,y) ∈ fset xs
shows size x < size (Node r xs)

proof −
have 0 : ((x,size x),y) ∈ (map-prod (λu. (u, size u)) (λu. u)) ‘ fset xs using

assms by fast
have size x < Suc (size-prod snd (λ-. 0) ((x,size x),y)) by simp
also have
. . . ≤ (

∑
u∈(map-prod (λx. (x, size x)) (λy. y)) ‘ fset xs. Suc (size-prod snd

(λ-. 0) u)) + 1
using fset-sum-ge-elem 0 finite-fset finite-imageI
by (metis (mono-tags, lifting) add-increasing2 zero-le-one)

finally show ?thesis by simp
qed

lemma dtree-size-decr-aux ′: t1 ∈ fst ‘ fset xs =⇒ size t1 < size (Node r xs)
using dtree-size-decr-aux by fastforce

lemma dtree-size-decr [termination-simp]:
assumes (x, y) ∈ fset (xs:: ((′a, ′b) dtree × ′b) fset)
shows size x < Suc (

∑
u∈map-prod (λx. (x, size x)) (λy. y) ‘ fset xs. Suc (Suc

(snd (fst u))))
proof −

let ?xs = (map-prod (λx. (x, size x)) (λy. y)) ‘ fset xs
have size x < (

∑
u∈?xs. Suc (size-prod snd (λ-. 0) u)) + 1

using dtree-size-decr-aux assms by fastforce
also have . . . = Suc (

∑
u∈?xs. Suc (Suc (snd (fst u)))) by (simp add: size-prod-simp)

108

finally show ?thesis by blast
qed

7.2 Dtree Basic Functions
fun darcs-mset :: (′a, ′b) dtree ⇒ ′b multiset where

darcs-mset (Node r xs) = (
∑

(t,e) ∈ fset xs. {#e#} + darcs-mset t)

fun dverts-mset :: (′a, ′b) dtree ⇒ ′a multiset where
dverts-mset (Node r xs) = {#r#} + (

∑
(t,e) ∈ fset xs. dverts-mset t)

abbreviation disjoint-darcs :: ((′a, ′b) dtree × ′b) fset ⇒ bool where
disjoint-darcs xs ≡ (∀ (x,e1) ∈ fset xs. e1 /∈ darcs x ∧ (∀ (y,e2) ∈ fset xs.
(darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) = {} ∨ (x,e1)=(y,e2)))

fun wf-darcs ′ :: (′a, ′b) dtree ⇒ bool where
wf-darcs ′ (Node r xs) = (disjoint-darcs xs ∧ (∀ (x,e) ∈ fset xs. wf-darcs ′ x))

definition wf-darcs :: (′a, ′b) dtree ⇒ bool where
wf-darcs t = (∀ x ∈# darcs-mset t. count (darcs-mset t) x = 1)

fun wf-dverts ′ :: (′a, ′b) dtree ⇒ bool where
wf-dverts ′ (Node r xs) = (∀ (x,e1) ∈ fset xs.

r /∈ dverts x ∧ (∀ (y,e2) ∈ fset xs. (dverts x ∩ dverts y = {} ∨ (x,e1)=(y,e2)))
∧ wf-dverts ′ x)

definition wf-dverts :: (′a, ′b) dtree ⇒ bool where
wf-dverts t = (∀ x ∈# dverts-mset t. count (dverts-mset t) x = 1)

fun dtail :: (′a, ′b) dtree ⇒ (′b ⇒ ′a) ⇒ ′b ⇒ ′a where
dtail (Node r xs) def = (λe. if e ∈ snd ‘ fset xs then r

else (ffold (λ(x,e2) b.
if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r xs)
then b else dtail x def) def xs) e)

fun dhead :: (′a, ′b) dtree ⇒ (′b ⇒ ′a) ⇒ ′b ⇒ ′a where
dhead (Node r xs) def = (λe. (ffold (λ(x,e2) b.

if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs (Node r xs)
then b else if e=e2 then root x else dhead x def e) (def e) xs))

abbreviation from-dtree :: (′b ⇒ ′a) ⇒ (′b ⇒ ′a) ⇒ (′a, ′b) dtree ⇒ (′a, ′b)
pre-digraph where

from-dtree deft defh t ≡
(|verts = dverts t, arcs = darcs t, tail = dtail t deft, head = dhead t defh|)

abbreviation from-dtree ′ :: (′a, ′b) dtree ⇒ (′a, ′b) pre-digraph where

109

from-dtree ′ t ≡ from-dtree (λ-. root t) (λ-. root t) t

fun is-subtree :: (′a, ′b) dtree ⇒ (′a, ′b) dtree ⇒ bool where
is-subtree x (Node r xs) =
(x = Node r xs ∨ (∃ (y,e) ∈ fset xs. is-subtree x y))

definition strict-subtree :: (′a, ′b) dtree ⇒ (′a, ′b) dtree ⇒ bool where
strict-subtree t1 t2 ←→ is-subtree t1 t2 ∧ t1 6= t2

fun num-leaves :: (′a, ′b) dtree ⇒ nat where
num-leaves (Node r xs) = (if xs = {||} then 1 else (

∑
(t,e)∈ fset xs. num-leaves

t))

7.3 Dtree Basic Proofs
lemma finite-dverts: finite (dverts t)

by(induction t) auto

lemma finite-darcs: finite (darcs t)
by(induction t) auto

lemma dverts-child-subseteq: x ∈ fst ‘ fset xs =⇒ dverts x ⊆ dverts (Node r xs)
by fastforce

lemma dverts-suc-subseteq: x ∈ fst ‘ fset (sucs t) =⇒ dverts x ⊆ dverts t
using dverts-child-subseteq[of x sucs t root t] by simp

lemma dverts-root-or-child: v ∈ dverts (Node r xs) =⇒ v = r ∨ v ∈ (
⋃
(t,e) ∈

fset xs. dverts t)
by auto

lemma dverts-root-or-suc: v ∈ dverts t =⇒ v = root t ∨ (∃ (t,e) ∈ fset (sucs t).v
∈ dverts t)

using dverts-root-or-child[of v root t sucs t] by auto

lemma dverts-child-if-not-root:
[[v ∈ dverts (Node r xs); v 6= r]] =⇒ ∃ t∈fst ‘ fset xs. v ∈ dverts t
by force

lemma dverts-suc-if-not-root:
[[v ∈ dverts t; v 6= root t]] =⇒ ∃ t∈fst ‘ fset (sucs t). v ∈ dverts t
using dverts-root-or-suc by force

lemma darcs-child-subseteq: x ∈ fst ‘ fset xs =⇒ darcs x ⊆ darcs (Node r xs)
by force

lemma mset-sum-elem: x ∈# (
∑

y ∈ fset Y . f y) =⇒ ∃ y ∈ fset Y . x ∈# f y
by (induction Y) auto

110

lemma mset-sum-elem-iff : x ∈# (
∑

y ∈ fset Y . f y) ←→ (∃ y ∈ fset Y . x ∈# f
y)

by (induction Y) auto

lemma mset-sum-elemI : [[y ∈ fset Y ; x ∈# f y]] =⇒ x ∈# (
∑

y ∈ fset Y . f y)
by (induction Y) auto

lemma darcs-mset-elem:
x ∈# darcs-mset (Node r xs) =⇒ ∃ (t,e) ∈ fset xs. x ∈# darcs-mset t ∨ x = e
using mset-sum-elem by fastforce

lemma darcs-mset-if-nsnd:
[[x ∈# darcs-mset (Node r xs); x /∈ snd ‘ fset xs]] =⇒ ∃ (t1 ,e1) ∈ fset xs. x ∈#

darcs-mset t1
using darcs-mset-elem[of x r xs] by force

lemma darcs-mset-suc-if-nsnd:
[[x ∈# darcs-mset t; x /∈ snd ‘ fset (sucs t)]] =⇒ ∃ (t1 ,e1) ∈ fset (sucs t). x ∈#

darcs-mset t1
using darcs-mset-if-nsnd[of x root t sucs t] by simp

lemma darcs-mset-if-nchild:
[[x ∈# darcs-mset (Node r xs); @ t1 e1 . (t1 ,e1) ∈ fset xs ∧ x ∈# darcs-mset t1]]
=⇒ x ∈ snd ‘ fset xs

using mset-sum-elem by force

lemma darcs-mset-if-nsuc:
[[x ∈# darcs-mset t; @ t1 e1 . (t1 ,e1) ∈ fset (sucs t) ∧ x ∈# darcs-mset t1]]
=⇒ x ∈ snd ‘ fset (sucs t)

using darcs-mset-if-nchild[of x root t sucs t] by simp

lemma darcs-mset-if-snd[intro]: x ∈ snd ‘ fset xs =⇒ x ∈# darcs-mset (Node r
xs)

by (induction xs) auto

lemma darcs-mset-suc-if-snd[intro]: x ∈ snd ‘ fset (sucs t) =⇒ x ∈# darcs-mset t
using darcs-mset-if-snd[of x sucs t root t] by simp

lemma darcs-mset-if-child[intro]:
[[(t1 ,e1) ∈ fset xs; x ∈# darcs-mset t1]] =⇒ x ∈# darcs-mset (Node r xs)
by (induction xs) auto

lemma darcs-mset-if-suc[intro]:
[[(t1 ,e1) ∈ fset (sucs t); x ∈# darcs-mset t1]] =⇒ x ∈# darcs-mset t
using darcs-mset-if-child[of t1 e1 sucs t x root t] by simp

lemma darcs-mset-sub-darcs: set-mset (darcs-mset t) ⊆ darcs t
proof(standard, induction t rule: darcs-mset.induct)

case (1 r xs)

111

then show ?case
proof(cases x ∈ snd ‘ fset xs)

case False
then obtain t1 e1 where (t1 ,e1) ∈ fset xs ∧ x ∈# darcs-mset t1

using 1 .prems darcs-mset-if-nsnd[of x r] by blast
then show ?thesis using 1 .IH by force

qed(force)
qed

lemma darcs-sub-darcs-mset: darcs t ⊆ set-mset (darcs-mset t)
proof(standard, induction t rule: darcs-mset.induct)

case (1 r xs)
then show ?case
proof(cases x ∈ snd ‘ fset xs)

case False
then obtain t1 e1 where (t1 ,e1) ∈ fset xs ∧ x ∈ darcs t1

using 1 .prems by force
then show ?thesis using 1 .IH by blast

qed(blast)
qed

lemma darcs-mset-eq-darcs[simp]: set-mset (darcs-mset t) = darcs t
using darcs-mset-sub-darcs darcs-sub-darcs-mset by force

lemma dverts-mset-elem:
x ∈# dverts-mset (Node r xs) =⇒ (∃ (t,e) ∈ fset xs. x ∈# dverts-mset t) ∨ x =

r
using mset-sum-elem by fastforce

lemma dverts-mset-if-nroot:
[[x ∈# dverts-mset (Node r xs); x 6= r]] =⇒ ∃ (t1 ,e1) ∈ fset xs. x ∈# dverts-mset

t1
using dverts-mset-elem[of x r xs] by blast

lemma dverts-mset-suc-if-nroot:
[[x ∈# dverts-mset t; x 6= root t]] =⇒ ∃ (t1 ,e1) ∈ fset (sucs t). x ∈# dverts-mset

t1
using dverts-mset-if-nroot[of x root t sucs t] by simp

lemma dverts-mset-if-nchild:
[[x ∈# dverts-mset (Node r xs); @ t1 e1 . (t1 ,e1) ∈ fset xs ∧ x ∈# dverts-mset t1]]

=⇒ x = r
using mset-sum-elem by force

lemma dverts-mset-if-nsuc:
[[x ∈# dverts-mset t; @ t1 e1 . (t1 ,e1) ∈ fset (sucs t) ∧ x ∈# dverts-mset t1]] =⇒

x = root t
using dverts-mset-if-nchild[of x root t sucs t] by simp

112

lemma dverts-mset-if-root[intro]: x = r =⇒ x ∈# dverts-mset (Node r xs)
by simp

lemma dverts-mset-suc-if-root[intro]: x = root t =⇒ x ∈# dverts-mset t
using dverts-mset-if-root[of x root t sucs t] by simp

lemma dverts-mset-if-child[intro]:
[[(t1 ,e1) ∈ fset xs; x ∈# dverts-mset t1]] =⇒ x ∈# dverts-mset (Node r xs)
by (induction xs) auto

lemma dverts-mset-if-suc[intro]:
[[(t1 ,e1) ∈ fset (sucs t); x ∈# dverts-mset t1]] =⇒ x ∈# dverts-mset t
using dverts-mset-if-child[of t1 e1 sucs t x root t] by simp

lemma dverts-mset-sub-dverts: set-mset (dverts-mset t) ⊆ dverts t
proof(standard, induction t)

case (Node r xs)
then show ?case
proof(cases x = r)

case False
then obtain t1 e1 where (t1 ,e1) ∈ fset xs ∧ x ∈# dverts-mset t1

using Node.prems dverts-mset-if-nroot by fast
then show ?thesis using Node.IH by fastforce

qed(simp)
qed

lemma dverts-sub-dverts-mset: dverts t ⊆ set-mset (dverts-mset t)
proof(standard, induction t rule: dverts-mset.induct)

case (1 r xs)
then show ?case
proof(cases x = r)

case False
then obtain t1 e1 where (t1 ,e1) ∈ fset xs ∧ x ∈ dverts t1

using 1 .prems by force
then show ?thesis using 1 .IH by blast

qed(simp)
qed

lemma dverts-mset-eq-dverts[simp]: set-mset (dverts-mset t) = dverts t
using dverts-mset-sub-dverts dverts-sub-dverts-mset by force

lemma mset-sum-count-le: y ∈ fset Y =⇒ count (f y) x ≤ count (
∑

y ∈ fset Y .
f y) x

by (induction Y) auto

lemma darcs-mset-alt:
darcs-mset (Node r xs) = (

∑
(t,e) ∈ fset xs. {#e#}) + (

∑
(t,e) ∈ fset xs.

darcs-mset t)
by (induction xs) auto

113

lemma darcs-mset-ge-child:
t1 ∈ fst ‘ fset xs =⇒ count (darcs-mset t1) x ≤ count (darcs-mset (Node r xs)) x
by (induction xs) force+

lemma darcs-mset-ge-suc:
t1 ∈ fst ‘ fset (sucs t) =⇒ count (darcs-mset t1) x ≤ count (darcs-mset t) x
using darcs-mset-ge-child[of t1 sucs t x root t] by simp

lemma darcs-mset-count-sum-aux:
(
∑

(t1 ,e1) ∈ fset xs. count (darcs-mset t1) x) = count ((
∑

(t,e) ∈ fset xs.
darcs-mset t)) x

by (smt (verit, ccfv-SIG) count-add-mset count-sum multi-self-add-other-not-self
prod.case prod.case-distrib split-cong sum.cong)

lemma darcs-mset-count-sum-aux0 :
x /∈ snd ‘ fset xs =⇒ count ((

∑
(t, e)∈fset xs. {#e#})) x = 0

by (induction xs) auto

lemma darcs-mset-count-sum-eq:
x /∈ snd ‘ fset xs
=⇒ (

∑
(t1 ,e1) ∈ fset xs. count (darcs-mset t1) x) = count (darcs-mset (Node

r xs)) x
unfolding darcs-mset-alt using darcs-mset-count-sum-aux darcs-mset-count-sum-aux0

by fastforce

lemma darcs-mset-count-sum-ge:
(
∑

(t1 ,e1) ∈ fset xs. count (darcs-mset t1) x) ≤ count (darcs-mset (Node r xs))
x

by (induction xs) (auto split: prod.splits)

lemma wf-darcs-alt: wf-darcs t ←→ (∀ x. count (darcs-mset t) x ≤ 1)
unfolding wf-darcs-def by (metis count-greater-eq-one-iff dual-order .eq-iff linorder-le-cases)

lemma disjoint-darcs-simp:
[[(t1 ,e1) ∈ fset xs; (t2 ,e2) ∈ fset xs; (t1 ,e1) 6= (t2 ,e2); disjoint-darcs xs]]
=⇒ (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}

by fast

lemma disjoint-darcs-single: e /∈ darcs t ←→ disjoint-darcs {|(t,e)|}
by simp

lemma disjoint-darcs-insert: disjoint-darcs (finsert x xs) =⇒ disjoint-darcs xs
by simp fast

lemma wf-darcs-rec[dest]:
assumes wf-darcs (Node r xs) and t1 ∈ fst ‘ fset xs
shows wf-darcs t1

unfolding wf-darcs-def proof (rule ccontr)

114

assume asm: ¬ (∀ x ∈# darcs-mset t1 . count (darcs-mset t1) x = 1)
then obtain x where x-def : x ∈# darcs-mset t1 count (darcs-mset t1) x 6= 1

by blast
then have count (darcs-mset t1) x > 1 by (simp add: order-le-neq-trans)
then have count (darcs-mset (Node r xs)) x > 1

using assms(2) darcs-mset-ge-child[of t1 xs x] by simp
moreover have x ∈# (darcs-mset (Node r xs))

using x-def (1) assms(2) by fastforce
ultimately show False using assms(1) unfolding wf-darcs-def by simp

qed

lemma disjoint-darcs-if-wf-aux1 : [[wf-darcs (Node r xs); (t1 ,e1) ∈ fset xs]] =⇒ e1
/∈ darcs t1

apply (induction xs)
apply(auto simp: wf-darcs-def split: if-splits prod.splits)[2]

by (metis UnI2 add-is-1 count-eq-zero-iff)

lemma fset-sum-ge-elem2 :
[[x ∈ fset X ; y ∈ fset X ; x 6= y]] =⇒ (f :: ′a ⇒ nat) x + f y ≤ (

∑
x ∈ fset X . f

x)
by (induction X) (auto simp: fset-sum-ge-elem)

lemma darcs-children-count-ge2-aux:
assumes (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)

and e ∈ darcs t1 and e ∈ darcs t2
shows (

∑
(t1 , e1)∈fset xs. count (darcs-mset t1) e) ≥ 2

proof −
have 2 ≤ 1 + count (darcs-mset t2) e

using assms(2 ,5) by simp
also have . . . ≤ count (darcs-mset t1) e + count (darcs-mset t2) e

using assms(1 ,4) by simp
finally show ?thesis

using fset-sum-ge-elem2 [OF assms(1−3), of λ(t1 ,e1). count (darcs-mset t1)
e] by simp
qed

lemma darcs-children-count-ge2 :
assumes (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)

and e ∈ darcs t1 and e ∈ darcs t2
shows count (darcs-mset (Node r xs)) e ≥ 2

using darcs-children-count-ge2-aux[OF assms] darcs-mset-count-sum-ge dual-order .trans
by fast

lemma darcs-children-count-not1 :
[[(t1 ,e1) ∈ fset xs; (t2 ,e2) ∈ fset xs; (t1 ,e1) 6= (t2 ,e2); e ∈ darcs t1 ; e ∈ darcs

t2]]
=⇒ count (darcs-mset (Node r xs)) e 6= 1

using darcs-children-count-ge2 by fastforce

115

lemma disjoint-darcs-if-wf-aux2 :
assumes wf-darcs (Node r xs)

and (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)
shows darcs t1 ∩ darcs t2 = {}

proof(rule ccontr)
assume darcs t1 ∩ darcs t2 6= {}
then obtain e where e-def : e ∈ darcs t1 e ∈ darcs t2 by blast
then have e ∈ darcs (Node r xs) using assms(2) by force
then have e ∈# darcs-mset (Node r xs) using darcs-mset-eq-darcs by fast
then show False

using darcs-children-count-ge2 [OF assms(2−4) e-def] assms(1) unfolding
wf-darcs-def by simp
qed

lemma darcs-child-count-ge1 :
[[(t1 ,e1) ∈ fset xs; e2 ∈ darcs t1]] =⇒ count (

∑
(t, e)∈fset xs. darcs-mset t) e2

≥ 1
by (simp add: mset-sum-elemI)

lemma darcs-snd-count-ge1 :
(t2 ,e2) ∈ fset xs =⇒ count (

∑
(t, e)∈fset xs. {#e#}) e2 ≥ 1

by (simp add: mset-sum-elemI)

lemma darcs-child-count-ge2 :
[[(t1 ,e1) ∈ fset xs; (t2 ,e2) ∈ fset xs; e2 ∈ darcs t1]] =⇒ count (darcs-mset (Node

r xs)) e2 ≥ 2
unfolding darcs-mset-alt
by (metis darcs-child-count-ge1 darcs-snd-count-ge1 add-mono count-union one-add-one)

lemma disjoint-darcs-if-wf-aux3 :
assumes wf-darcs (Node r xs) and (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs
shows e2 /∈ darcs t1

proof
assume asm: e2 ∈ darcs t1
then have e2 ∈ darcs (Node r xs) using assms(2) by force
then have e2 ∈# darcs-mset (Node r xs) using darcs-mset-eq-darcs by fast
then show False using darcs-child-count-ge2 asm assms(1−3) unfolding wf-darcs-def

by fastforce
qed

lemma darcs-snds-count-ge2-aux:
assumes (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2) and e1

= e2
shows count (

∑
(t, e)∈fset xs. {#e#}) e2 ≥ 2

using assms proof(induction xs)
case (insert x xs)
then consider x = (t1 ,e1) | x = (t2 ,e2) | (t1 ,e1) ∈ fset xs (t2 ,e2) ∈ fset xs

by auto
then show ?case

116

proof(cases)
case 1
then have count (

∑
(t, e)∈fset xs. {#e#}) e2 ≥ 1

using insert.prems(2 ,3) darcs-snd-count-ge1 by auto
then show ?thesis using insert.prems(4) insert.hyps 1 by auto

next
case 2
then have count (

∑
(t, e)∈fset xs. {#e#}) e2 ≥ 1

using insert.prems(1 ,3 ,4) darcs-snd-count-ge1 by auto
then show ?thesis using insert.prems(4) insert.hyps 2 by auto

next
case 3
then show ?thesis using insert.IH insert.prems(3 ,4) insert.hyps by auto

qed
qed(simp)

lemma darcs-snds-count-ge2 :
[[(t1 ,e1) ∈ fset xs; (t2 ,e2) ∈ fset xs; (t1 ,e1) 6= (t2 ,e2); e1 = e2]]
=⇒ count (darcs-mset (Node r xs)) e2 ≥ 2

using darcs-snds-count-ge2-aux unfolding darcs-mset-alt by fastforce

lemma disjoint-darcs-if-wf-aux4 :
assumes wf-darcs (Node r xs)

and (t1 ,e1) ∈ fset xs
and (t2 ,e2) ∈ fset xs
and (t1 ,e1) 6= (t2 ,e2)

shows e1 6= e2
proof

assume asm: e1 = e2
have e2 ∈# darcs-mset (Node r xs) using assms(3) darcs-mset-if-snd by fast-

force
then show False
using assms(1) darcs-snds-count-ge2 [OF assms(2−4) asm] unfolding wf-darcs-def

by simp
qed

lemma disjoint-darcs-if-wf-aux5 :
[[wf-darcs (Node r xs); (t1 ,e1) ∈ fset xs; (t2 ,e2) ∈ fset xs; (t1 ,e1) 6= (t2 ,e2)]]
=⇒(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}

by (auto dest: disjoint-darcs-if-wf-aux4 disjoint-darcs-if-wf-aux3 disjoint-darcs-if-wf-aux2)

lemma disjoint-darcs-if-wf-xs: wf-darcs (Node r xs) =⇒ disjoint-darcs xs
by (auto dest: disjoint-darcs-if-wf-aux1 disjoint-darcs-if-wf-aux5)

lemma disjoint-darcs-if-wf : wf-darcs t =⇒ disjoint-darcs (sucs t)
using disjoint-darcs-if-wf-xs[of root t sucs t] by simp

lemma wf-darcs ′-if-darcs: wf-darcs t =⇒ wf-darcs ′ t
proof(induction t)

117

case (Node r xs)
then show ?case using disjoint-darcs-if-wf-xs[OF Node.prems] by fastforce

qed

lemma wf-darcs-if-darcs ′-aux:
[[∀ (x,e) ∈ fset xs. wf-darcs x; disjoint-darcs xs]] =⇒ wf-darcs (Node r xs)
apply(simp split: prod.splits)
apply(induction xs)
apply(auto simp: wf-darcs-def count-eq-zero-iff)[2]

by (fastforce dest: mset-sum-elem)+

lemma wf-darcs-if-darcs ′: wf-darcs ′ t =⇒ wf-darcs t
proof(induction t)

case (Node r xs)
then show ?case using wf-darcs-if-darcs ′-aux[of xs] by fastforce

qed

corollary wf-darcs-iff-darcs ′: wf-darcs t ←→ wf-darcs ′ t
using wf-darcs-if-darcs ′ wf-darcs ′-if-darcs by blast

lemma disjoint-darcs-subset:
assumes xs |⊆| ys and disjoint-darcs ys
shows disjoint-darcs xs

proof (rule ccontr)
assume ¬ disjoint-darcs xs
then obtain x e1 y e2 where x-def : (x,e1) ∈ fset xs (y,e2) ∈ fset xs

e1 ∈ darcs x ∨ (darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) 6= {} ∧ (x,e1) 6=(y,e2)
by blast

have (x,e1) ∈ fset ys (y,e2) ∈ fset ys using x-def (1 ,2) assms(1) less-eq-fset.rep-eq
by fast+

then show False using assms(2) x-def (3) by fast
qed

lemma disjoint-darcs-img:
assumes disjoint-darcs xs and ∀ (t,e) ∈ fset xs. darcs (f t) ⊆ darcs t
shows disjoint-darcs ((λ(t,e). (f t,e)) |‘| xs) (is disjoint-darcs ?xs)

proof (rule ccontr)
assume ¬ disjoint-darcs ?xs
then obtain x1 e1 y1 e2 where asm: (x1 ,e1) ∈ fset ?xs (y1 ,e2) ∈ fset ?xs

e1 ∈ darcs x1 ∨ (darcs x1 ∪ {e1}) ∩ (darcs y1 ∪ {e2}) 6= {} ∧ (x1 ,e1) 6=(y1 ,e2)
by blast

then obtain x2 where x2-def : f x2 = x1 (x2 ,e1) ∈ fset xs by auto
obtain y2 where y2-def : f y2 = y1 (y2 ,e2) ∈ fset xs using asm(2) by auto
have darcs x1 ⊆ darcs x2 using assms(2) x2-def by fast
moreover have darcs y1 ⊆ darcs y2 using assms(2) y2-def by fast
ultimately have ¬ disjoint-darcs xs using asm(3) x2-def y2-def by fast
then show False using assms(1) by blast

qed

118

lemma dverts-mset-count-sum-ge:
(
∑

(t1 ,e1) ∈ fset xs. count (dverts-mset t1) x) ≤ count (dverts-mset (Node r
xs)) x

by (induction xs) auto

lemma dverts-children-count-ge2-aux:
assumes (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)

and x ∈ dverts t1 and x ∈ dverts t2
shows (

∑
(t1 , e1)∈fset xs. count (dverts-mset t1) x) ≥ 2

proof −
have 2 ≤ count (dverts-mset t1) x + 1 using assms(4) by simp
also have . . . ≤ count (dverts-mset t1) x + count (dverts-mset t2) x using

assms(5) by simp
finally show ?thesis

using fset-sum-ge-elem2 [OF assms(1−3), of λ(t1 ,e1). count (dverts-mset t1)
x] by simp
qed

lemma dverts-children-count-ge2 :
assumes (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)

and x ∈ dverts t1 and x ∈ dverts t2
shows count (dverts-mset (Node r xs)) x ≥ 2

using dverts-children-count-ge2-aux[OF assms] dverts-mset-count-sum-ge le-trans
by fast

lemma disjoint-dverts-if-wf-aux:
assumes wf-dverts (Node r xs)

and (t1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset xs and (t1 ,e1) 6= (t2 ,e2)
shows dverts t1 ∩ dverts t2 = {}

proof (rule ccontr)
assume dverts t1 ∩ dverts t2 6= {}
then obtain x where x-def : x ∈ dverts t1 x ∈ dverts t2 by blast
then have 2 ≤ count (dverts-mset (Node r xs)) x

using dverts-children-count-ge2 [OF assms(2−4)] by blast
moreover have x ∈# (dverts-mset (Node r xs)) using assms(2) x-def (1) by

fastforce
ultimately show False using assms(1) unfolding wf-dverts-def by fastforce

qed

lemma disjoint-dverts-if-wf :
wf-dverts (Node r xs)

=⇒ ∀ (x,e1) ∈ fset xs. ∀ (y,e2) ∈ fset xs. (dverts x ∩ dverts y = {} ∨
(x,e1)=(y,e2))

using disjoint-dverts-if-wf-aux by fast

lemma disjoint-dverts-if-wf-sucs:
wf-dverts t
=⇒ ∀ (x,e1) ∈ fset (sucs t). ∀ (y,e2) ∈ fset (sucs t).

(dverts x ∩ dverts y = {} ∨ (x,e1)=(y,e2))

119

using disjoint-dverts-if-wf [of root t sucs t] by simp

lemma dverts-child-count-ge1 :
[[(t1 ,e1) ∈ fset xs; x ∈ dverts t1]] =⇒ count (

∑
(t, e)∈fset xs. dverts-mset t) x

≥ 1
by (simp add: mset-sum-elemI)

lemma root-not-child-if-wf-dverts: [[wf-dverts (Node r xs); (t1 ,e1) ∈ fset xs]] =⇒ r
/∈ dverts t1

by (fastforce dest: dverts-child-count-ge1 simp: wf-dverts-def)

lemma root-not-child-if-wf-dverts ′: wf-dverts (Node r xs) =⇒ ∀ (t1 ,e1) ∈ fset xs.
r /∈ dverts t1

by (fastforce dest: dverts-child-count-ge1 simp: wf-dverts-def)

lemma dverts-mset-ge-child:
t1 ∈ fst ‘ fset xs =⇒ count (dverts-mset t1) x ≤ count (dverts-mset (Node r xs))

x
by (induction xs) force+

lemma wf-dverts-rec[dest]:
assumes wf-dverts (Node r xs) and t1 ∈ fst ‘ fset xs
shows wf-dverts t1

unfolding wf-dverts-def proof (rule ccontr)
assume asm: ¬ (∀ x ∈# dverts-mset t1 . count (dverts-mset t1) x = 1)
then obtain x where x-def : x ∈# dverts-mset t1 count (dverts-mset t1) x 6= 1

by blast
then have count (dverts-mset t1) x > 1 by (simp add: order-le-neq-trans)
then have count (dverts-mset (Node r xs)) x > 1

using assms(2) dverts-mset-ge-child[of t1 xs x r] by simp
moreover have x ∈# (dverts-mset (Node r xs))

using x-def (1) assms(2) by fastforce
ultimately show False using assms(1) unfolding wf-dverts-def by fastforce

qed

lemma wf-dverts ′-if-dverts: wf-dverts t =⇒ wf-dverts ′ t
proof(induction t)

case (Node r xs)
then have ∀ (x,e1)∈fset xs. wf-dverts ′ x by auto
then show ?case
using disjoint-dverts-if-wf [OF Node.prems] root-not-child-if-wf-dverts ′[OF Node.prems]
by fastforce

qed

lemma wf-dverts-if-dverts ′-aux:
[[∀ (x,e) ∈ fset xs. wf-dverts x;
∀ (x,e1) ∈ fset xs. r /∈ dverts x ∧ (∀ (y,e2) ∈ fset xs.
(dverts x ∩ dverts y = {} ∨ (x,e1)=(y,e2)))]]

=⇒ wf-dverts (Node r xs)

120

apply(simp split: prod.splits)
apply(induction xs)
apply(auto simp: wf-dverts-def count-eq-zero-iff)[2]

by (fastforce dest: mset-sum-elem)+

lemma wf-dverts-if-dverts ′: wf-dverts ′ t =⇒ wf-dverts t
proof(induction t)

case (Node r xs)
then show ?case using wf-dverts-if-dverts ′-aux[of xs] by fastforce

qed

corollary wf-dverts-iff-dverts ′: wf-dverts t ←→ wf-dverts ′ t
using wf-dverts-if-dverts ′ wf-dverts ′-if-dverts by blast

lemma wf-dverts-sub:
assumes xs |⊆| ys and wf-dverts (Node r ys)
shows wf-dverts (Node r xs)

proof −
have ys |∪| xs = ys using assms(1) by blast
then have wf-dverts (Node r (ys |∪| xs)) using assms(2) by simp
then show ?thesis unfolding wf-dverts-iff-dverts ′ by fastforce

qed

lemma count-subset-le:
xs |⊆| ys =⇒ count (

∑
x ∈ fset xs. f x) a ≤ count (

∑
x ∈ fset ys. f x) a

proof(induction ys arbitrary: xs)
case (insert y ys)
then show ?case
proof(cases y |∈| xs)

case True
then obtain xs ′ where xs ′-def : finsert y xs ′ = xs y |/∈| xs ′

by blast
then have xs ′ |⊆| ys using insert.prems by blast
have count (

∑
x ∈ fset xs. f x) a = count (

∑
x ∈ fset xs ′. f x) a + count (f y)

a
using xs ′-def by auto

also have . . . ≤ count (
∑

x ∈ fset ys. f x) a + count (f y) a
using ‹xs ′ |⊆| ys› insert.IH by simp

also have . . . = count (
∑

x ∈ fset (finsert y ys). f x) a
using insert.hyps by auto

finally show ?thesis .
next

case False
then have count (

∑
x ∈ fset xs. f x) a ≤ count (

∑
x ∈ fset ys. f x) a

using insert.prems insert.IH by blast
then show ?thesis using insert.hyps by auto

qed
qed(simp)

121

lemma darcs-mset-count-le-subset:
xs |⊆| ys =⇒ count (darcs-mset (Node r ′ xs)) x ≤ count (darcs-mset (Node r

ys)) x
using count-subset-le by fastforce

lemma wf-darcs-sub: [[xs |⊆| ys; wf-darcs (Node r ′ ys)]] =⇒ wf-darcs (Node r xs)
unfolding wf-darcs-def using darcs-mset-count-le-subset
by (smt (verit, best) count-greater-eq-one-iff le-trans verit-la-disequality)

lemma wf-darcs-sucs: [[wf-darcs t; x ∈ fset (sucs t)]] =⇒ wf-darcs (Node r {|x|})
using wf-darcs-sub[of {|x|} sucs t root t] by (simp add: less-eq-fset.rep-eq)

lemma size-fset-alt:
size-fset (size-prod snd (λ-. 0)) (map-prod (λt. (t, size t)) (λx. x) |‘| xs)
= (

∑
(x,y)∈ fset xs. size x + 2)

proof −
have size-fset (size-prod snd (λ-. 0)) (map-prod (λt. (t, size t)) (λx. x) |‘| xs)

= (
∑

u∈(λ(x,y). ((x,size x), y)) ‘ fset xs. snd (fst u) + 2)
by (simp add: size-prod-simp map-prod-def)

also have . . . = (
∑

(x,y) ∈ fset xs. size x + 2)
using case-prod-beta ′ comm-monoid-add-class.sum.eq-general
by (smt (verit, del-insts) Pair-inject fstI imageE imageI prod-eqI snd-conv)

finally show ?thesis .
qed

lemma dtree-size-alt: size (Node r xs) = (
∑

(x,y)∈ fset xs. size x + 2) + 1
using size-fset-alt by auto

lemma dtree-size-eq-root: size (Node r xs) = size (Node r ′ xs)
by auto

lemma size-combine-decr : size (Node (r@root t1) (sucs t1)) < size (Node r {|(t1 ,
e1)|})

using dtree-size-eq-root[of r@root t1 sucs t1 root t1] by simp

lemma size-le-if-child-subset: xs |⊆| ys =⇒ size (Node r xs) ≤ size (Node v ys)
unfolding dtree-size-alt by (simp add: dtree-size-alt less-eq-fset.rep-eq sum.subset-diff)

lemma size-le-if-sucs-subset: sucs t1 |⊆| sucs t2 =⇒ size t1 ≤ size t2
using size-le-if-child-subset[of sucs t1 sucs t2 root t1 root t2] by simp

lemma combine-uneq: Node r {|(t1 , e1)|} 6= Node (r@root t1) (sucs t1)
using size-combine-decr [of r t1 e1] by fastforce

lemma child-uneq: t ∈ fst ‘ fset xs =⇒ Node r xs 6= t
using dtree-size-decr-aux ′ by fastforce

lemma suc-uneq: t1 ∈ fst ‘ fset (sucs t) =⇒ t 6= t1
using child-uneq[of t1 sucs t root t] by simp

122

lemma singleton-uneq: Node r {|(t,e)|} 6= t
using child-uneq[of t] by simp

lemma child-uneq ′: t ∈ fst ‘ fset xs =⇒ Node r xs 6= Node v (sucs t)
using dtree-size-decr-aux ′[of t] dtree-size-eq-root[of root t sucs t] by auto

lemma suc-uneq ′: t1 ∈ fst ‘ fset (sucs t) =⇒ t 6= Node v (sucs t1)
using child-uneq ′[of t1 sucs t root t] by simp

lemma singleton-uneq ′: Node r {|(t,e)|} 6= Node v (sucs t)
using child-uneq ′[of t] by simp

lemma singleton-suc: t ∈ fst ‘ fset (sucs (Node r {|(t,e)|}))
by simp

lemma fcard-image-le: fcard (f |‘| xs) ≤ fcard xs
by (simp add: FSet.fcard.rep-eq card-image-le)

lemma sum-img-le:
assumes ∀ t ∈ fst ‘ fset xs. (g:: ′a ⇒ nat) (f t) ≤ g t
shows (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x) ≤ (

∑
(x,y)∈ fset xs. g x)

using assms proof(induction xs)
case (insert x xs)
obtain t e where t-def : x = (t,e) by fastforce
then show ?case
proof(cases (f t,e) /∈ fset ((λ(t,e). (f t, e)) |‘| xs))

case True
then have (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)

= g (f t) + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using t-def by auto

also have . . . ≤ g t + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using insert.prems t-def by auto

also have . . . ≤ g t + (
∑

(x,y)∈ fset xs. g x) using insert by simp
finally show ?thesis using insert.hyps t-def by fastforce

next
case False
then have (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)

= (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
by (metis (no-types, lifting) t-def fimage-finsert finsert-absorb prod.case)

also have . . . ≤ (
∑

(x,y)∈ fset xs. g x) using insert by simp
finally show ?thesis using insert.hyps t-def by fastforce

qed
qed (simp)

lemma dtree-size-img-le:
assumes ∀ t ∈ fst ‘ fset xs. size (f t) ≤ size t
shows size (Node r ((λ(t,e). (f t, e)) |‘| xs)) ≤ size (Node r xs)
using sum-img-le[of xs λx. size x + 2] dtree-size-alt assms

123

by (metis (mono-tags, lifting) add-right-mono)

lemma sum-img-lt:
assumes ∀ t ∈ fst ‘ fset xs. (g:: ′a ⇒ nat) (f t) ≤ g t

and ∃ t ∈ fst ‘ fset xs. g (f t) < g t
and ∀ t ∈ fst ‘ fset xs. g t > 0

shows (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x) < (
∑

(x,y)∈ fset xs. g x)
using assms proof(induction xs)

case (insert x xs)
obtain t e where t-def : x = (t,e) by fastforce
then show ?case
proof(cases (f t,e) /∈ fset ((λ(t,e). (f t, e)) |‘| xs))

case f-notin-xs: True
show ?thesis
proof(cases g (f t) < g t)

case True
have (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)

= g (f t) + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using t-def f-notin-xs by auto

also have . . . < g t + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using True by simp

also have . . . ≤ g t + (
∑

(x,y)∈ fset xs. g x) using sum-img-le insert.prems(1)
by auto

finally show ?thesis using insert.hyps t-def by fastforce
next

case False
then have 0 : ∃ t ∈ fst ‘ fset xs. g (f t) < g t using insert.prems(2) t-def by

simp
have (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)

= g (f t) + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using t-def f-notin-xs by auto

also have . . . ≤ g t + (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
using t-def insert.prems(1) by simp

also have . . . < g t + (
∑

(x,y)∈ fset xs. g x) using insert.IH insert.prems(1 ,3)
0 by simp

finally show ?thesis using insert.hyps t-def by fastforce
qed

next
case False
then have (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)

= (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)
by (metis (no-types, lifting) t-def fimage-finsert finsert-absorb prod.case)

also have . . . ≤ (
∑

(x,y)∈ fset xs. g x) using sum-img-le insert.prems(1) by
auto

also have . . . < g t + (
∑

(x,y)∈ fset xs. g x) using insert.prems(3) t-def by
simp

finally show ?thesis using insert.hyps t-def by fastforce
qed

qed (simp)

124

lemma dtree-size-img-lt:
assumes ∀ t ∈ fst ‘ fset xs. size (f t) ≤ size t

and ∃ t ∈ fst ‘ fset xs. size (f t) < size t
shows size (Node r ((λ(t,e). (f t, e)) |‘| xs)) < size (Node r xs)

proof −
have 0 : ∀ t ∈ fst ‘ fset xs. size (f t) + 2 ≤ size t + 2 using assms(1) by simp
have ∀ t∈fst ‘ fset xs. 0 < size t + 2 by simp
then show ?thesis using sum-img-lt[OF 0] dtree-size-alt assms(2) by (smt (z3)

add-less-mono1)
qed

lemma sum-img-eq:
assumes ∀ t ∈ fst ‘ fset xs. (g:: ′a ⇒ nat) (f t) = g t

and fcard ((λ(t,e). (f t, e)) |‘| xs) = fcard xs
shows (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x) = (

∑
(x,y)∈ fset xs. g x)

using assms proof(induction xs)
case (insert x xs)
obtain t e where t-def : x = (t,e) by fastforce
then have 0 : (f t,e) /∈ fset ((λ(t,e). (f t, e)) |‘| xs)

using insert.prems(2) insert.hyps fcard-finsert-if fcard-image-le
by (metis (mono-tags, lifting) case-prod-conv fimage-finsert leD lessI)

then have 1 : fcard ((λ(t,e). (f t, e)) |‘| xs) = fcard xs
using insert.prems(2) insert.hyps t-def Suc-inject
by (metis (mono-tags, lifting) fcard-finsert-if fimage-finsert old.prod.case)

have (
∑

(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| (finsert x xs)). g x)
= g (f t) + (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)

using t-def 0 by auto
also have . . . = g t + (

∑
(x,y)∈ fset ((λ(t,e). (f t, e)) |‘| xs). g x)

using insert.prems t-def by auto
also have . . . = g t + (

∑
(x,y)∈ fset xs. g x) using insert.IH 1 insert.prems(1)

by simp
finally show ?case using insert.hyps t-def by fastforce

qed (simp)

lemma elem-neq-if-fset-neq:
((λ(t,e). (f t, e)) |‘| xs) 6= xs =⇒ ∃ t ∈ fst ‘ fset xs. f t 6= t
by (smt (verit, ccfv-threshold) case-prod-eta case-prod-eta fimage.rep-eq fset-inject

fst-conv
image-cong image-ident image-subset-iff old.prod.case prod.case-distrib split-cong

subsetI)

lemma ffold-commute-supset:
[[xs |⊆| ys; P ys;

∧
ys xs. [[xs |⊆| ys; P ys]] =⇒ P xs;∧

xs. comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬Q a b ∨ ¬P xs then b else R
a b)]]
=⇒ ffold (λa b. if a /∈ fset ys ∨ ¬Q a b ∨ ¬P ys then b else R a b) acc xs
= ffold (λa b. if a /∈ fset xs ∨ ¬Q a b ∨ ¬P xs then b else R a b) acc xs

proof(induction xs arbitrary: ys)

125

case empty
show ?case

unfolding empty.prems(4)[THEN comp-fun-commute.ffold-empty]
by simp

next
case (insert x xs)
let ?f = λa b. if a /∈ fset ys ∨ ¬Q a b ∨ ¬P ys then b else R a b
let ?f ′ = λa b. if a /∈ fset xs ∨ ¬Q a b ∨ ¬P xs then b else R a b
let ?f1 = λa b. if a /∈ fset (finsert x xs) ∨ ¬Q a b ∨ ¬P (finsert x xs) then b else

R a b
have 0 : P (finsert x xs) using insert.prems by simp
have 1 : xs |⊆| (finsert x xs) by blast
have 2 : comp-fun-commute ?f1 using insert.prems(4) by blast
have 3 : x ∈ fset ys using insert.prems(1) by fastforce
have ffold ?f acc (finsert x xs) = ?f x (ffold ?f acc xs)

using comp-fun-commute.ffold-finsert[of ?f] insert.prems(4) insert.hyps by
blast

also have . . . = ?f x (ffold ?f ′ acc xs) using insert.IH [of ys] insert.prems by
fastforce

also have . . . = ?f x (ffold ?f1 acc xs) using insert.IH [OF 1 0] insert.prems(3 ,4)
by presburger

also have . . . = ?f1 x (ffold ?f1 acc xs) using 0 3 insert.prems(2) by fastforce
also have . . . = ffold ?f1 acc (finsert x xs)

using comp-fun-commute.ffold-finsert[of ?f1 x xs] 2 insert.hyps by presburger
finally show ?case .

qed

lemma ffold-eq-fold: [[finite xs; f = g]] =⇒ ffold f acc (Abs-fset xs) = Finite-Set.fold
g acc xs

unfolding ffold-def by (simp add: Abs-fset-inverse)

lemma Abs-fset-sub-if-sub:
assumes finite ys and xs ⊆ ys
shows Abs-fset xs |⊆| Abs-fset ys

proof (rule ccontr)
assume ¬(Abs-fset xs |⊆| Abs-fset ys)
then obtain x where x-def : x |∈| Abs-fset xs x |/∈| Abs-fset ys by blast
then have x ∈ fset (Abs-fset xs) ∧ x /∈ fset (Abs-fset ys) by fast
moreover have finite xs using assms finite-subset by auto
ultimately show False using assms Abs-fset-inverse by blast

qed

lemma fold-commute-supset:
assumes finite ys and xs ⊆ ys and P ys and

∧
ys xs. [[xs ⊆ ys; P ys]] =⇒ P xs

and
∧

xs. comp-fun-commute (λa b. if a /∈ xs ∨ ¬Q a b ∨ ¬P xs then b else
R a b)

shows Finite-Set.fold (λa b. if a /∈ ys ∨ ¬Q a b ∨ ¬P ys then b else R a b) acc
xs

= Finite-Set.fold (λa b. if a /∈ xs ∨ ¬Q a b ∨ ¬P xs then b else R a b) acc

126

xs
proof −

let ?f = λa b. if a /∈ ys ∨ ¬Q a b ∨ ¬P ys then b else R a b
let ?f ′ = λa b. if a /∈ xs ∨ ¬Q a b ∨ ¬P xs then b else R a b
let ?P = λxs. P (fset xs)
let ?g = λa b. if a /∈ fset (Abs-fset ys) ∨ ¬Q a b ∨ ¬(?P (Abs-fset ys)) then b

else R a b
let ?g ′ = λa b. if a /∈ fset (Abs-fset xs) ∨ ¬Q a b ∨ ¬(?P (Abs-fset xs)) then b

else R a b
have 0 : finite xs using assms(1 ,2) finite-subset by auto
then have 1 : Abs-fset xs |⊆| (Abs-fset ys) using Abs-fset-sub-if-sub[OF assms(1 ,2)]

by blast
have 2 : ?P (Abs-fset ys) by (simp add: Abs-fset-inverse assms(1 ,3))
have 3 :

∧
ys xs. [[xs |⊆| ys; ?P ys]] =⇒ ?P xs by (simp add: assms(4) less-eq-fset.rep-eq)

have 4 :
∧

xs. comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬Q a b ∨ ¬(?P xs) then
b else R a b)

using assms(5) by (simp add: less-eq-fset.rep-eq)
have ?f ′ = ?g ′ by (simp add: Abs-fset-inverse 0)
have ?f = ?g by (simp add: Abs-fset-inverse assms(1))
then have Finite-Set.fold (λa b. if a /∈ ys ∨ ¬Q a b ∨ ¬P ys then b else R a b)

acc xs
= ffold ?g acc (Abs-fset xs) by (simp add: 0 ffold-eq-fold)

also have . . . = ffold ?g ′ acc (Abs-fset xs)
using ffold-commute-supset[OF 1 , of ?P, OF 2 3 4] by simp

finally show ?thesis using ‹?f ′ = ?g ′› by (simp add: 0 ffold-eq-fold)
qed

lemma dtail-commute-aux:
fixes r xs e def
defines f ≡ (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r

xs)
then b else dtail x def)

shows (f y ◦ f x) z = (f x ◦ f y) z
proof −

obtain y1 y2 where y-def : y = (y1 ,y2) by fastforce
obtain x1 x2 where x-def : x = (x1 ,x2) by fastforce
show ?thesis
proof(cases (x1 ,x2) ∈ fset xs ∧ (y1 ,y2) ∈ fset xs)

case 0 : True
then show ?thesis
proof(cases e ∈ darcs x1 ∧ e ∈ darcs y1)

case True
then have 1 : x1 = y1 ∨ ¬wf-darcs (Node r xs) using 0 disjoint-darcs-if-wf-aux2

by fast
then show ?thesis using assms by (cases x1=y1)(auto simp: x-def y-def)

next
case False
then show ?thesis using assms by (simp add: x-def y-def)

qed

127

next
case False
then show ?thesis using assms by (simp add: x-def y-def)

qed
qed

lemma dtail-commute:
comp-fun-commute (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs

(Node r xs)
then b else dtail x def)

using dtail-commute-aux[of xs] by unfold-locales blast

lemma dtail-f-alt:
assumes P = (λxs. wf-darcs (Node r xs))

and Q = (λ(t1 ,e1) b. e ∈ darcs t1)
and R = (λ(t1 ,e1) b. dtail t1 def)

shows (λ(t1 ,e1) b. if (t1 ,e1) /∈ fset xs ∨ e /∈ darcs t1∨ ¬wf-darcs (Node r xs)
then b else dtail t1 def)

= (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else R a b)
using assms by fast

lemma dtail-f-alt-commute:
assumes P = (λxs. wf-darcs (Node r xs))

and Q = (λ(t1 ,e1) b. e ∈ darcs t1)
and R = (λ(t1 ,e1) b. dtail t1 def)

shows comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else
R a b)

using dtail-commute[of xs e r def] dtail-f-alt[OF assms] by simp

lemma dtail-ffold-supset:
assumes xs |⊆| ys and wf-darcs (Node r ys)
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r

ys)
then b else dtail x def) def xs

= ffold (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r xs)
then b else dtail x def) def xs

proof −
let ?P = λxs. wf-darcs (Node r xs)
let ?Q = λ(t1 ,e1) b. e ∈ darcs t1
let ?R = λ(t1 ,e1) b. dtail t1 def
have 0 :

∧
xs. comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then

b else ?R a b)
using dtail-f-alt-commute by fast

have ffold (λa b. if a /∈ fset ys ∨ ¬ ?Q a b ∨ ¬ ?P ys then b else ?R a b) def xs
= ffold (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then b else ?R a b) def xs

using ffold-commute-supset[OF assms(1),of ?P ?Q ?R,OF assms(2) wf-darcs-sub
0] by simp

then show ?thesis using dtail-f-alt[of ?P r ?Q e ?R] by simp
qed

128

lemma dtail-in-child-eq-child-ffold:
assumes (t,e1) ∈ fset xs and e ∈ darcs t and wf-darcs (Node r xs)

shows ffold (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r
xs)

then b else dtail x def) def xs
= dtail t def

using assms proof(induction xs)
case (insert x ′ xs)
let ?f = (λ(x,e2) b.

if (x,e2) /∈ fset (finsert x ′ xs) ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r
(finsert x ′ xs))

then b else dtail x def)
let ?f ′ = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r xs)

then b else dtail x def)
obtain x e3 where x-def : x ′ = (x,e3) by fastforce
show ?case
proof(cases x=t)

case True
have ffold ?f def (finsert x ′ xs) = (?f x ′ (ffold ?f def xs))
using comp-fun-commute.ffold-finsert[of ?f x ′ xs def] dtail-commute insert.hyps

by fast
also have . . . = (?f (x,e3) (ffold ?f def xs)) using x-def by blast
also have . . . = dtail x def using x-def insert.prems(2 ,3) True by fastforce
finally show ?thesis using True by blast

next
case False
then have 0 : (t,e1) ∈ fset xs using insert.prems(1) x-def by simp

have 1 : wf-darcs (Node r xs) using wf-darcs-sub[OF fsubset-finsertI insert.prems(3)]
.

have 2 : xs |⊆| (finsert x ′ xs) by blast
have (x,e3) ∈ fset (finsert x ′ xs) using x-def by simp
have 3 : e /∈ darcs x using insert.prems(1−3) disjoint-darcs-if-wf x-def False

by fastforce
have ffold ?f def (finsert x ′ xs) = (?f x ′ (ffold ?f def xs))
using comp-fun-commute.ffold-finsert[of ?f x ′ xs def] dtail-commute insert.hyps

by fast
also have . . . = (?f (x,e3) (ffold ?f def xs)) using x-def by blast
also have . . . = (ffold ?f def xs) using 3 by fastforce
also have . . . = (ffold ?f ′ def xs)

using dtail-ffold-supset[of xs finsert x ′ xs] insert.prems(3) 2 by simp
also have . . . = dtail t def using insert.IH 0 1 insert.prems(2) by fast
finally show ?thesis .

qed
qed(simp)

lemma dtail-in-child-eq-child:
assumes (t,e1) ∈ fset xs and e ∈ darcs t and wf-darcs (Node r xs)
shows dtail (Node r xs) def e = dtail t def e

129

using assms dtail-in-child-eq-child-ffold[OF assms] disjoint-darcs-if-wf-aux3 by
fastforce

lemma dtail-ffold-notelem-eq-def :
assumes ∀ (t,e1) ∈ fset xs. e /∈ darcs t
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r

ys)
then b else dtail x def) def xs = def

using assms proof(induction xs)
case empty
show ?case

unfolding dtail-commute[THEN comp-fun-commute.ffold-empty]
by simp

next
case (insert x ′ xs)
obtain x e3 where x-def : x ′ = (x,e3) by fastforce
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r ys)

then b else dtail x def)
have ffold ?f def (finsert x ′ xs) = ?f x ′ (ffold ?f def xs)

using comp-fun-commute.ffold-finsert[of ?f x ′ xs] dtail-commute insert.hyps by
fast

also have . . . = (ffold ?f def xs) using insert.prems by auto
also have . . . = def using insert.IH insert.prems by simp
finally show ?case .

qed

lemma dtail-notelem-eq-def :
assumes e /∈ darcs t
shows dtail t def e = def e

proof −
obtain r xs where xs-def [simp]: t = Node r xs using dtree.exhaust by auto
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬wf-darcs (Node r xs)

then b else dtail x def)
have 0 : ∀ (t, e1)∈fset xs. e /∈ darcs t using assms by auto
have dtail (Node r xs) def e = ffold ?f def xs e using assms by auto
then show ?thesis using dtail-ffold-notelem-eq-def 0 by fastforce

qed

lemma dhead-commute-aux:
fixes r xs e def
defines f ≡ (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r xs)
then b else if e=e2 then root x else dhead x def e)

shows (f y ◦ f x) z = (f x ◦ f y) z
proof −

obtain x1 x2 where x-def : x = (x1 ,x2) by fastforce
obtain y1 y2 where y-def : y = (y1 ,y2) by fastforce
show ?thesis
proof(cases (x1 ,x2) ∈ fset xs ∧ (y1 ,y2) ∈ fset xs)

130

case 0 : True
then show ?thesis
proof(cases e ∈ darcs x1 ∧ e ∈ darcs y1)

case True
then have 1 : (x1 ,x2) = (y1 ,y2) ∨ ¬wf-darcs (Node r xs)

using 0 disjoint-darcs-if-wf-aux2 by fast
then show ?thesis using assms x-def y-def by (smt (z3) case-prod-conv

comp-apply)
next

case False
then show ?thesis
proof(cases x2=e)

case True
then show ?thesis using assms x-def y-def disjoint-darcs-if-wf by force

next
case False
then show ?thesis using assms x-def y-def disjoint-darcs-if-wf by fastforce

qed
qed

next
case False
then show ?thesis using assms by (simp add: x-def y-def)

qed
qed

lemma dhead-commute:
comp-fun-commute (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨
¬wf-darcs (Node r xs)

then b else if e=e2 then root x else dhead x def e)
using dhead-commute-aux[of xs] by unfold-locales blast

lemma dhead-ffold-f-alt:
assumes P = (λxs. wf-darcs (Node r xs)) and Q = (λ(x,e2) -. e ∈ (darcs x ∪
{e2}))

and R = (λ(x,e2) -. if e=e2 then root x else dhead x def e)
shows (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs (Node

r xs) then b
else if e=e2 then root x else dhead x def e)

= (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else R a b)
using assms by fast

lemma dhead-ffold-f-alt-commute:
assumes P = (λxs. wf-darcs (Node r xs)) and Q = (λ(x,e2) -. e ∈ (darcs x ∪
{e2}))

and R = (λ(x,e2) -. if e=e2 then root x else dhead x def e)
shows comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else

R a b)
using dhead-commute[of xs e r def] dhead-ffold-f-alt[OF assms] by simp

131

lemma dhead-ffold-supset:
assumes xs |⊆| ys and wf-darcs (Node r ys)
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r ys) then b
else if e=e2 then root x else dhead x def e) (def e) xs

= ffold (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs
(Node r xs) then b

else if e=e2 then root x else dhead x def e) (def e) xs
(is ffold ?f - - = ffold ?g - -)

proof −
let ?P = λxs. wf-darcs (Node r xs)
let ?Q = λ(x,e2) -. e ∈ (darcs x ∪ {e2})
let ?R = λ(x,e2) -. if e=e2 then root x else dhead x def e
have 0 :

∧
xs. comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then

b else ?R a b)
using dhead-ffold-f-alt-commute by fast

have ffold (λa b. if a /∈ fset ys ∨ ¬ ?Q a b ∨ ¬ ?P ys then b else ?R a b) (def e)
xs

= ffold (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then b else ?R a b) (def e)
xs

using ffold-commute-supset[OF assms(1), of ?P ?Q ?R, OF assms(2) wf-darcs-sub
0] by simp

moreover have ?f = (λa b. if a /∈ fset ys ∨ ¬ ?Q a b ∨ ¬ ?P ys then b else ?R
a b) by fast

moreover have ?g = (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then b else ?R
a b) by fast

ultimately show ?thesis by argo
qed

lemma dhead-in-child-eq-child-ffold:
assumes (t,e1) ∈ fset xs and e ∈ darcs t and wf-darcs (Node r xs)
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r xs)
then b else if e=e2 then root x else dhead x def e) (def e) xs
= dhead t def e

using assms proof(induction xs)
case (insert x ′ xs)
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset (finsert x ′ xs) ∨ e /∈ (darcs x ∪ {e2})

∨ ¬wf-darcs (Node r (finsert x ′ xs))
then b else if e=e2 then root x else dhead x def e)

let ?f ′ = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs
(Node r xs) then b

else if e=e2 then root x else dhead x def e)
obtain x e3 where x-def : x ′ = (x,e3) by fastforce
show ?case
proof(cases x=t)

case True
have ffold ?f (def e) (finsert x ′ xs) = (?f x ′ (ffold ?f (def e) xs))

using comp-fun-commute.ffold-finsert[of ?f x ′ xs def e] dhead-commute in-

132

sert.hyps by fast
also have . . . = (?f (x,e3) (ffold ?f (def e) xs)) using x-def by blast
also have . . . = dhead x def e

using x-def insert.prems(2 ,3) True disjoint-darcs-if-wf by fastforce
finally show ?thesis using True by blast

next
case False
then have 0 : (t,e1) ∈ fset xs using insert.prems(1) x-def by simp

have 1 : wf-darcs (Node r xs) using wf-darcs-sub[OF fsubset-finsertI insert.prems(3)]
.

have 2 : xs |⊆| (finsert x ′ xs) by blast
have 3 : e3 6= e e /∈ darcs x

using insert.prems(1−3) disjoint-darcs-if-wf x-def False by fastforce+
have ffold ?f (def e) (finsert x ′ xs) = (?f x ′ (ffold ?f (def e) xs))

using comp-fun-commute.ffold-finsert[of ?f x ′ xs def e] dhead-commute in-
sert.hyps by fast

also have . . . = (?f (x,e3) (ffold ?f (def e) xs)) using x-def by blast
also have . . . = (ffold ?f (def e) xs) using 3 by simp
also have . . . = (ffold ?f ′ (def e) xs)

using dhead-ffold-supset[of xs finsert x ′ xs] insert.prems(3) 2 by simp
also have . . . = dhead t def e using insert.IH 0 1 insert.prems(2) by fast
finally show ?thesis .

qed
qed(simp)

lemma dhead-in-child-eq-child:
assumes (t,e1) ∈ fset xs and e ∈ darcs t and wf-darcs (Node r xs)

shows dhead (Node r xs) def e = dhead t def e
using assms dhead-in-child-eq-child-ffold[of t] by simp

lemma dhead-ffold-notelem-eq-def :
assumes ∀ (t,e1) ∈ fset xs. e /∈ darcs t ∧ e 6= e1
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r ys) then b
else if e=e2 then root x else dhead x def e) (def e) xs = def e

using assms proof(induction xs)
case empty
show ?case

apply (rule comp-fun-commute.ffold-empty)
using dhead-commute by force

next
case (insert x ′ xs)
obtain x e3 where x-def : x ′ = (x,e3) by fastforce
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset ys ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r ys)
then b else if e=e2 then root x else dhead x def e)

have ffold ?f (def e) (finsert x ′ xs) = ?f x ′ (ffold ?f (def e) xs)
using comp-fun-commute.ffold-finsert[of ?f x ′ xs] dhead-commute insert.hyps

by fast

133

also have . . . = (ffold ?f (def e) xs) using insert.prems by auto
also have . . . = def e using insert.IH insert.prems by simp
finally show ?case .

qed

lemma dhead-notelem-eq-def :
assumes e /∈ darcs t
shows dhead t def e = def e

proof −
obtain r xs where xs-def [simp]: t = Node r xs using dtree.exhaust by auto
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r xs)
then b else if e=e2 then root x else dhead x def e)

have 0 : ∀ (t, e1)∈fset xs. e /∈ darcs t ∧ e1 6=e using assms by auto
have dhead (Node r xs) def e = ffold ?f (def e) xs by simp
then show ?thesis using dhead-ffold-notelem-eq-def 0 by fastforce

qed

lemma dhead-in-set-eq-root-ffold:
assumes (t,e) ∈ fset xs and wf-darcs (Node r xs)
shows ffold (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs

(Node r xs)
then b else if e=e2 then root x else dhead x def e) (def e) xs

= root t (is ffold ?f ′ - - = -)
using assms proof(induction xs)

case (insert x ′ xs)
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset (finsert x ′ xs) ∨ e /∈ (darcs x ∪ {e2})

∨ ¬wf-darcs (Node r (finsert x ′ xs))
then b else if e=e2 then root x else dhead x def e)

let ?f ′ = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬wf-darcs
(Node r xs) then b

else if e=e2 then root x else dhead x def e)
obtain x e3 where x-def : x ′ = (x,e3) by fastforce
show ?case
proof(cases e3=e)

case True
then have x=t using insert.prems(1 ,2) x-def disjoint-darcs-if-wf by fastforce
have ffold ?f (def e) (finsert x ′ xs) = (?f x ′ (ffold ?f (def e) xs))

using comp-fun-commute.ffold-finsert[of ?f x ′ xs def e] dhead-commute in-
sert.hyps by fast

also have . . . = (?f (x,e3) (ffold ?f (def e) xs)) using x-def by blast
also have . . . = root x using x-def insert.prems(1 ,2) True by simp
finally show ?thesis using True ‹x=t› by blast

next
case False
then have 0 : (t,e) ∈ fset xs using insert.prems(1) x-def by simp

have 1 : wf-darcs (Node r xs) using wf-darcs-sub[OF fsubset-finsertI insert.prems(2)]
.

have 2 : xs |⊆| (finsert x ′ xs) by blast

134

have 3 : e3 6= e using insert.prems(2) False by simp
have 4 : e /∈ (darcs x ∪ {e3})

using insert.prems(1−2) False x-def disjoint-darcs-if-wf by fastforce
have ffold ?f (def e) (finsert x ′ xs) = (?f x ′ (ffold ?f (def e) xs))

using comp-fun-commute.ffold-finsert[of ?f x ′ xs def e] dhead-commute in-
sert.hyps by fast

also have . . . = (?f (x,e3) (ffold ?f (def e) xs)) using x-def by blast
also have . . . = (ffold ?f (def e) xs) using 4 by auto
also have . . . = (ffold ?f ′ (def e) xs)

using dhead-ffold-supset[of xs finsert x ′ xs] insert.prems(2) 2 by simp
also have . . . = root t using insert.IH 0 1 insert.prems(2) by blast
finally show ?thesis .

qed
qed(simp)

lemma dhead-in-set-eq-root:
[[(t,e) ∈ fset xs; wf-darcs (Node r xs)]] =⇒ dhead (Node r xs) def e = root t
using dhead-in-set-eq-root-ffold[of t] by simp

lemma self-subtree: is-subtree t t
using is-subtree.elims(3) by blast

lemma subtree-trans: is-subtree x y =⇒ is-subtree y z =⇒ is-subtree x z
by (induction z) fastforce+

lemma subtree-trans ′: transp is-subtree
using subtree-trans transpI by auto

lemma subtree-if-child: x ∈ fst ‘ fset xs =⇒ is-subtree x (Node r xs)
using is-subtree.elims(3) by force

lemma subtree-if-suc: t1 ∈ fst ‘ fset (sucs t2) =⇒ is-subtree t1 t2
using subtree-if-child[of t1 sucs t2 root t2] by simp

lemma child-sub-if-strict-subtree:
[[strict-subtree t1 (Node r xs)]] =⇒ ∃ t3 ∈ fst ‘ fset xs. is-subtree t1 t3
unfolding strict-subtree-def by force

lemma suc-sub-if-strict-subtree:
strict-subtree t1 t2 =⇒ ∃ t3 ∈ fst ‘ fset (sucs t2). is-subtree t1 t3
using child-sub-if-strict-subtree[of t1 root t2] by simp

lemma subtree-size-decr : [[is-subtree t1 t2 ; t1 6= t2]] =⇒ size t1 < size t2
using dtree-size-decr-aux by(induction t2) fastforce

lemma subtree-size-decr ′: strict-subtree t1 t2 =⇒ size t1 < size t2
unfolding strict-subtree-def using dtree-size-decr-aux by(induction t2) fastforce

lemma subtree-size-le: is-subtree t1 t2 =⇒ size t1 ≤ size t2

135

using subtree-size-decr by fastforce

lemma subtree-antisym: [[is-subtree t1 t2 ; is-subtree t2 t1]] =⇒ t1 = t2
using subtree-size-le subtree-size-decr by fastforce

lemma subtree-antisym ′: antisymp is-subtree
using antisympI subtree-antisym by blast

corollary subtree-eq-if-trans-eq1 : [[is-subtree t1 t2 ; is-subtree t2 t3 ; t1 = t3]] =⇒
t1 = t2

using subtree-antisym by blast

corollary subtree-eq-if-trans-eq2 : [[is-subtree t1 t2 ; is-subtree t2 t3 ; t1 = t3]] =⇒
t2 = t3

using subtree-antisym by blast

lemma subtree-partial-ord: class.order is-subtree strict-subtree
by standard (auto simp: self-subtree subtree-antisym strict-subtree-def intro: sub-

tree-trans)

lemma finite-subtrees: finite {x. is-subtree x t}
by (induction t) auto

lemma subtrees-insert-union:
{x. is-subtree x (Node r xs)} = insert (Node r xs) (

⋃
t1 ∈ fst ‘ fset xs. {x.

is-subtree x t1})
by fastforce

lemma subtrees-insert-union-suc:
{x. is-subtree x t} = insert t (

⋃
t1 ∈ fst ‘ fset (sucs t). {x. is-subtree x t1})

using subtrees-insert-union[of root t sucs t] by simp

lemma darcs-subtree-subset: is-subtree x y =⇒ darcs x ⊆ darcs y
by(induction y) force

lemma dverts-subtree-subset: is-subtree x y =⇒ dverts x ⊆ dverts y
by(induction y) force

lemma single-subtree-root-dverts:
is-subtree (Node v2 {|(t2 , e2)|}) t1 =⇒ v2 ∈ dverts t1
by (fastforce dest: dverts-subtree-subset)

lemma single-subtree-child-root-dverts:
is-subtree (Node v2 {|(t2 , e2)|}) t1 =⇒ root t2 ∈ dverts t1
by (fastforce simp: dtree.set-sel(1) dest: dverts-subtree-subset)

lemma subtree-root-if-dverts: x ∈ dverts t =⇒ ∃ xs. is-subtree (Node x xs) t
by(induction t) fastforce

136

lemma subtree-child-if-strict-subtree:
strict-subtree t1 t2 =⇒ ∃ r xs. is-subtree (Node r xs) t2 ∧ t1 ∈ fst ‘ fset xs

proof(induction t2)
case (Node r xs)
then obtain t e where t-def : (t,e) ∈ fset xs is-subtree t1 t

unfolding strict-subtree-def by auto
show ?case
proof(cases t1 = t)

case True
then show ?thesis using t-def by force

next
case False

then show ?thesis using Node.IH [OF t-def (1)] t-def unfolding strict-subtree-def
by auto

qed
qed

lemma subtree-child-if-dvert-notroot:
assumes v 6= r and v ∈ dverts (Node r xs)
shows ∃ r ′ ys zs. is-subtree (Node r ′ ys) (Node r xs) ∧ Node v zs ∈ fst ‘ fset ys

proof −
obtain zs where sub: is-subtree (Node v zs) (Node r xs)

using assms(2) subtree-root-if-dverts by fast
then show ?thesis using subtree-child-if-strict-subtree strict-subtree-def assms(1)

by fast
qed

lemma subtree-child-if-dvert-notelem:
[[v 6= root t; v ∈ dverts t]] =⇒ ∃ r ′ ys zs. is-subtree (Node r ′ ys) t ∧ Node v zs ∈

fst ‘ fset ys
using subtree-child-if-dvert-notroot[of v root t sucs t] by simp

lemma strict-subtree-subset:
assumes strict-subtree t (Node r xs) and xs |⊆| ys
shows strict-subtree t (Node r ys)

proof −
obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset xs is-subtree t t1

using assms(1) unfolding strict-subtree-def by auto
have size t < size (Node r xs) using subtree-size-decr ′[OF assms(1)] by blast
then have size t < size (Node r ys) using size-le-if-child-subset[OF assms(2)]

by simp
moreover have is-subtree t (Node r ys) using assms(2) t1-def by auto
ultimately show ?thesis unfolding strict-subtree-def by blast

qed

lemma strict-subtree-singleton:
[[strict-subtree t (Node r {|x|}); x |∈| xs]]
=⇒ strict-subtree t (Node r xs)

using strict-subtree-subset by fast

137

7.3.1 Finite Directed Trees to Dtree
context finite-directed-tree
begin

lemma child-subtree:
assumes e ∈ out-arcs T r
shows {x. (head T e) →∗

T x} ⊆ {x. r →∗
T x}

proof −
have r →∗

T (head T e) using assms in-arcs-imp-in-arcs-ends by auto
then show ?thesis by (metis Collect-mono reachable-trans)

qed

lemma child-strict-subtree:
assumes e ∈ out-arcs T r
shows {x. (head T e) →∗

T x} ⊂ {x. r →∗
T x}

proof −
have r →T (head T e) using assms in-arcs-imp-in-arcs-ends by auto
then have ¬ ((head T e) →∗

T r) using reachable1-not-reverse by blast
then show ?thesis using child-subtree assms by auto

qed

lemma child-card-decr :
assumes e ∈ out-arcs T r
shows Finite-Set.card {x. (head T e) →∗

T x} < Finite-Set.card {x. r →∗
T x}

using assms child-strict-subtree by (meson psubset-card-mono reachable-verts-finite)

function to-dtree-aux :: ′a ⇒ (′a, ′b) dtree where
to-dtree-aux r = Node r (Abs-fset {(x,e).
(if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)})

by auto
termination
by(relation measure (λr . Finite-Set.card {x. r →∗

T x})) (auto simp: child-card-decr)

definition to-dtree :: (′a, ′b) dtree where
to-dtree = to-dtree-aux root

abbreviation from-dtree :: (′a, ′b) dtree ⇒ (′a, ′b) pre-digraph where
from-dtree t ≡ Dtree.from-dtree (tail T) (head T) t

lemma to-dtree-root-eq-root[simp]: Dtree.root to-dtree = root
unfolding to-dtree-def by simp

lemma verts-fset-id: fset (Abs-fset (verts T)) = verts T
by (simp add: Abs-fset-inverse)

lemma arcs-fset-id: fset (Abs-fset (arcs T)) = arcs T
by (simp add: Abs-fset-inverse)

lemma dtree-leaf-child-empty:

138

leaf r =⇒ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else
False)} = {}

unfolding leaf-def by simp

lemma dtree-leaf-no-children: leaf r =⇒ to-dtree-aux r = Node r {||}
using dtree-leaf-child-empty by (simp add: bot-fset.abs-eq)

lemma dtree-children-alt:
{(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
= {(x,e). e ∈ out-arcs T r ∧ x = to-dtree-aux (head T e)}

by metis

lemma dtree-children-img-alt:
(λe. (to-dtree-aux (head T e),e)) ‘ (out-arcs T r)
= {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
using dtree-children-alt by blast

lemma dtree-children-fin:
finite {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
using finite-imageI [of out-arcs T r (λe. (to-dtree-aux (head T e),e))]

dtree-children-img-alt finite-out-arcs by fastforce

lemma dtree-children-fset-id:
assumes to-dtree-aux r = Node r xs

shows fset xs = {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e)
else False)}
proof −

let ?xs = {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
have finite ?xs using dtree-children-fin by simp
then have fset (Abs-fset ?xs) = ?xs using Abs-fset-inverse by blast
then show ?thesis using assms Abs-fset-inverse by simp

qed

lemma to-dtree-aux-empty-if-notT :
assumes r /∈ verts T
shows to-dtree-aux r = Node r {||}

proof(rule ccontr)
assume asm: to-dtree-aux r 6= Node r {||}
then obtain xs where xs-def : Node r xs = to-dtree-aux r by simp
then have xs 6= {||} using asm by simp
then obtain x e where x-def : (x,e) ∈ fset xs by fast
then have e ∈ out-arcs T r using xs-def dtree-children-fset-id[of r] by (auto

split: if-splits)
then show False using assms by auto

qed

lemma to-dtree-aux-root: Dtree.root (to-dtree-aux r) = r
by simp

139

lemma out-arc-if-child:
assumes x ∈ (fst ‘ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e)

else False)})
shows ∃ e. e ∈ out-arcs T r ∧ x = to-dtree-aux (head T e)

proof −
let ?xs = {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
have ∃ y. y ∈ ?xs ∧ fst y = x using assms by blast
then show ?thesis by (smt (verit, best) case-prodE fst-conv mem-Collect-eq)

qed

lemma dominated-if-child-aux:
assumes x ∈ (fst ‘ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e)

else False)})
shows r →T (Dtree.root x)

proof −
obtain e where e ∈ out-arcs T r ∧ x = to-dtree-aux (head T e)

using assms out-arc-if-child by blast
then show ?thesis using in-arcs-imp-in-arcs-ends by force

qed

lemma dominated-if-child:
[[to-dtree-aux r = Node r xs; x ∈ fst ‘ fset xs]] =⇒ r →T (Dtree.root x)
using dominated-if-child-aux dtree-children-fset-id by simp

lemma image-add-snd-snd-id: snd ‘ ((λe. (to-dtree-aux (head T e),e)) ‘ x) = x
by (intro equalityI subsetI) (force simp: image-iff)+

lemma to-dtree-aux-child-in-verts:
assumes Node r ′ xs = to-dtree-aux r and x ∈ fst ‘ fset xs
shows Dtree.root x ∈ verts T

proof −
have r →T Dtree.root x using assms dominated-if-child by auto
then show ?thesis using adj-in-verts(2) by auto

qed

lemma to-dtree-aux-parent-in-verts:
assumes Node r ′ xs = to-dtree-aux r and x ∈ fst ‘ fset xs
shows r ∈ verts T

proof −
have r →T Dtree.root x using assms dominated-if-child by auto
then show ?thesis using adj-in-verts(2) by auto

qed

lemma dtree-out-arcs:
snd ‘ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)} =

out-arcs T r
using dtree-children-img-alt by (metis image-add-snd-snd-id)

lemma dtree-out-arcs-eq-snd:

140

assumes to-dtree-aux r = Node r xs
shows (snd ‘ (fset xs)) = out-arcs T r
using assms dtree-out-arcs dtree-children-fset-id by blast

lemma dtree-aux-fst-head-snd-aux:
assumes x ∈ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else

False)}
shows Dtree.root (fst x) = (head T (snd x))
using assms by (metis (mono-tags, lifting) Collect-case-prodD to-dtree-aux-root)

lemma dtree-aux-fst-head-snd:
assumes to-dtree-aux r = Node r xs and x ∈ fset xs
shows Dtree.root (fst x) = (head T (snd x))
using assms dtree-children-fset-id dtree-aux-fst-head-snd-aux by simp

lemma child-if-dominated-aux:
assumes r →T x
shows ∃ y ∈ (fst ‘ {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e)

else False)}).
Dtree.root y = x

proof −
let ?xs = {(x,e). (if e ∈ out-arcs T r then x = to-dtree-aux (head T e) else False)}
obtain e where e-def : e ∈ out-arcs T r ∧ head T e = x using assms by auto
then have e ∈ snd ‘ ?xs using dtree-out-arcs by auto
then obtain y where y-def : y ∈ ?xs ∧ snd y = e by blast
then have Dtree.root (fst y) = head T e using dtree-aux-fst-head-snd-aux by

blast
then show ?thesis using e-def y-def by blast

qed

lemma child-if-dominated:
assumes to-dtree-aux r = Node r xs and r →T x
shows ∃ y ∈ (fst ‘ (fset xs)). Dtree.root y = x
using assms child-if-dominated-aux dtree-children-fset-id by presburger

lemma to-dtree-aux-reach-in-dverts: [[t = to-dtree-aux r ; r →∗
T x]] =⇒ x ∈ dverts

t
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r = r ′ by simp
then show ?case
proof(cases r=x)

case True
then show ?thesis using ‹r = r ′› by simp

next
case False
then have r →+

T x using 1 .prems(2) by blast
then have ∃ r ′. r →T r ′ ∧ r ′→∗

T x
by (metis False converse-reachable-cases reachable1-reachable)

141

then obtain x ′ where x ′-def : r →T x ′ ∧ x ′→∗
T x by blast

then obtain y where y-def : y ∈ fst ‘ fset xs ∧ Dtree.root y = x ′

using 1 .prems(1) child-if-dominated by fastforce
then obtain yp where yp-def : fst yp = y ∧ yp ∈ fset xs using y-def by blast
from y-def have y = to-dtree-aux x ′

using 1 .prems(1) dtree-children-fset-id ‹r=r ′›
by (metis (no-types, lifting) out-arc-if-child to-dtree-aux-root)

then have x ∈ dverts y using 1 .IH prod.exhaust-sel yp-def x ′-def by metis
then show ?thesis using dtree.set-intros(2) y-def by auto

qed
qed

lemma to-dtree-aux-dverts-reachable:
[[t = to-dtree-aux r ; x ∈ dverts t; r ∈ verts T]] =⇒ r →∗

T x
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r = r ′ by simp
then show ?case
proof(cases r=x)

case True
then show ?thesis using 1 .prems(3) by auto

next
case False
then obtain y where y-def : y ∈ fst ‘ fset xs ∧ x ∈ dverts y

using 1 .prems(2) ‹r = r ′› by fastforce
then have 0 : r →T Dtree.root y using 1 .prems(1) ‹r = r ′› dominated-if-child

by simp
then have 2 : Dtree.root y ∈ verts T using adj-in-verts(2) by auto
obtain yp where yp-def : fst yp = y ∧ yp ∈ fset xs using y-def by blast
have ∃ yr . y = to-dtree-aux yr

using 1 .prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) ‹r = r ′› out-arc-if-child)

then have Dtree.root y →∗
T x

using 1 .IH 2 y-def yp-def surjective-pairing to-dtree-aux-root by metis
then show ?thesis using 0 adj-reachable-trans by auto

qed
qed

lemma dverts-eq-reachable: r ∈ verts T =⇒ dverts (to-dtree-aux r) = {x. r →∗
T

x}
using to-dtree-aux-reach-in-dverts to-dtree-aux-dverts-reachable by blast

lemma dverts-eq-reachable ′: [[r ∈ verts T ; t = to-dtree-aux r]] =⇒ dverts t = {x.
r →∗

T x}
using dverts-eq-reachable by blast

lemma dverts-eq-verts: dverts to-dtree = verts T
unfolding to-dtree-def using dverts-eq-reachable reachable-from-root reachable-in-verts(2)
by (metis mem-Collect-eq root-in-T subsetI subset-antisym)

142

lemma arc-out-arc: e ∈ arcs T =⇒ ∃ v ∈ verts T . e ∈ out-arcs T v
by simp

lemma darcs-in-out-arcs: t = to-dtree-aux r =⇒ e ∈ darcs t =⇒ ∃ v∈dverts t. e
∈ out-arcs T v
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then show ?thesis

using 1 .prems(1) dtree-out-arcs-eq-snd to-dtree-aux-root
by (metis dtree.set-intros(1) dtree.sel(1))

next
case False
then have ∃ y ∈ fst ‘ fset xs. e ∈ darcs y using 1 .prems(2) by force
then obtain y where y-def : y ∈ fst ‘ fset xs ∧ e ∈ darcs y by blast
obtain yp where yp-def : fst yp = y ∧ yp ∈ fset xs using y-def by blast
have 0 : (y, snd yp) = yp using yp-def by auto
have ∃ yr . y = to-dtree-aux yr

using 1 .prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) dtree.sel(1) out-arc-if-child to-dtree-aux-root)

then have ∃ v∈dverts y. e ∈ out-arcs T v using 1 .IH 0 y-def yp-def by blast
then obtain v where v ∈ dverts y ∧ e ∈ out-arcs T v by blast
then show ?thesis using y-def by auto

qed
qed

lemma darcs-in-arcs: e ∈ darcs to-dtree =⇒ e ∈ arcs T
using darcs-in-out-arcs out-arcs-in-arcs to-dtree-def by fast

lemma out-arcs-in-darcs: t = to-dtree-aux r =⇒ ∃ v∈dverts t. e ∈ out-arcs T v
=⇒ e ∈ darcs t
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r ′ = r by simp
then obtain v where v-def : v∈dverts (Node r xs) ∧ e ∈ out-arcs T v using

1 .prems(2) by blast
then show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then show ?thesis by force

next
case False
then have e /∈ out-arcs T r using 1 .prems(1) ‹r ′ = r› dtree-out-arcs-eq-snd

by metis
then have v 6= r using v-def by blast
then obtain y where y-def : y ∈ fst ‘ fset xs ∧ v ∈ dverts y using v-def by

143

force
then obtain yp where yp-def : fst yp = y ∧ yp ∈ fset xs by blast
have 0 : (y, snd yp) = yp using yp-def by auto
have ∃ yr . y = to-dtree-aux yr

using 1 .prems(1) y-def dtree-children-fset-id
by (metis (no-types, lifting) dtree.sel(1) out-arc-if-child to-dtree-aux-root)

then have e ∈ darcs y using 1 .IH 0 v-def y-def yp-def by blast
then show ?thesis using y-def by force

qed
qed

lemma arcs-in-darcs: e ∈ arcs T =⇒ e ∈ darcs to-dtree
using arc-out-arc out-arcs-in-darcs dverts-eq-verts to-dtree-def by fast

lemma darcs-eq-arcs: darcs to-dtree = arcs T
using arcs-in-darcs darcs-in-arcs by blast

lemma to-dtree-aux-self :
assumes Node r xs = to-dtree-aux r and (y,e) ∈ fset xs
shows y = to-dtree-aux (Dtree.root y)

proof −
have ∃ y ′. y = to-dtree-aux y ′

using assms dtree-children-fset-id by (metis (mono-tags, lifting) case-prodD
mem-Collect-eq)

then obtain y ′ where y = to-dtree-aux y ′ by blast
then show ?thesis by simp

qed

lemma to-dtree-aux-self-subtree:
[[t1 = to-dtree-aux r ; is-subtree t2 t1]] =⇒ t2 = to-dtree-aux (Dtree.root t2)

proof(induction t1 arbitrary: r)
case (Node r ′ xs)
then show ?case
proof(cases Node r ′ xs = t2)

case True
then show ?thesis using Node.prems(1) by force

next
case False

then obtain t e where t-def : (t,e) ∈ fset xs is-subtree t2 t using Node.prems(2)
by auto

then have t = to-dtree-aux (Dtree.root t) using Node.prems(1) to-dtree-aux-self
by simp

then show ?thesis using Node.IH [of (t,e) t Dtree.root t] t-def by simp
qed

qed

lemma to-dtree-self-subtree: is-subtree t to-dtree =⇒ t = to-dtree-aux (Dtree.root
t)

unfolding to-dtree-def using to-dtree-aux-self-subtree by blast

144

lemma to-dtree-self-subtree ′: is-subtree (Node r xs) to-dtree =⇒ (Node r xs) =
to-dtree-aux r

using to-dtree-self-subtree[of Node r xs] by simp

lemma child-if-dominated-to-dtree:
[[is-subtree (Node r xs) to-dtree; r →T v]] =⇒ ∃ t. t ∈ fst ‘ fset xs ∧ Dtree.root t

= v
using child-if-dominated[of r] to-dtree-self-subtree ′ by simp

lemma child-if-dominated-to-dtree ′:
[[is-subtree (Node r xs) to-dtree; r →T v]] =⇒ ∃ ys. Node v ys ∈ fst ‘ fset xs
using child-if-dominated-to-dtree dtree.exhaust dtree.sel(1) by metis

lemma child-darc-tail-parent:
assumes Node r xs = to-dtree-aux r and (x,e) ∈ fset xs
shows tail T e = r

proof −
have e ∈ out-arcs T r

using assms dtree-children-fset-id by (metis (no-types, lifting) case-prodD
mem-Collect-eq)

then show ?thesis by simp
qed

lemma child-darc-head-root:
[[Node r xs = to-dtree-aux r ; (t,e) ∈ fset xs]] =⇒ head T e = Dtree.root t
using dtree-aux-fst-head-snd by force

lemma child-darc-in-arcs:
assumes Node r xs = to-dtree-aux r and (x,e) ∈ fset xs
shows e ∈ arcs T

proof −
have e ∈ out-arcs T r

using assms dtree-children-fset-id by (metis (no-types, lifting) case-prodD
mem-Collect-eq)

then show ?thesis by simp
qed

lemma darcs-neq-if-dtrees-neq:
[[Node r xs = to-dtree-aux r ; (x,e1) ∈ fset xs; (y,e2) ∈ fset xs; x 6=y]] =⇒ e1 6= e2
using dtree-children-fset-id by (metis (mono-tags, lifting) case-prodD mem-Collect-eq)

lemma dtrees-neq-if-darcs-neq:
[[Node r xs = to-dtree-aux r ; (x,e1) ∈ fset xs; (y,e2) ∈ fset xs; e1 6=e2]] =⇒ x 6= y
using dtree-children-fset-id case-prodD dtree-aux-fst-head-snd fst-conv
by (metis (no-types, lifting) mem-Collect-eq out-arcs-in-arcs snd-conv two-in-arcs-contr)

lemma dverts-disjoint:
assumes Node r xs = to-dtree-aux r and (x,e1) ∈ fset xs and (y,e2) ∈ fset xs

145

and (x,e1)6=(y,e2)
shows dverts x ∩ dverts y = {}

proof (rule ccontr)
assume dverts x ∩ dverts y 6= {}
then obtain v where v-def : v ∈ dverts x ∧ v ∈ dverts y by blast
have x 6= y using dtrees-neq-if-darcs-neq assms by blast
have 0 : x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self assms(1 ,2) by

blast
have 1 : r →T Dtree.root x
using assms(1 ,2) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv

image-iff)
then have 2 : Dtree.root x ∈ verts T using adj-in-verts(2) by simp
have 3 : y = to-dtree-aux (Dtree.root y) using to-dtree-aux-self assms(1 ,3) by

blast
have 4 : r →T Dtree.root y
using assms(1 ,3) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv

image-iff)
then have 5 : Dtree.root y ∈ verts T using adj-in-verts(2) by simp
have Dtree.root x →∗

T v using 0 2 to-dtree-aux-dverts-reachable v-def by blast
moreover have Dtree.root y →∗

T v using 3 5 to-dtree-aux-dverts-reachable v-def
by blast

moreover have Dtree.root x 6= Dtree.root y using 0 3 assms(4) ‹x 6=y› by auto
ultimately show False using 1 4 reachable-via-child-impl-same by simp

qed

lemma wf-dverts-to-dtree-aux1 : r /∈ verts T =⇒ wf-dverts (to-dtree-aux r)
using to-dtree-aux-empty-if-notT unfolding wf-dverts-iff-dverts ′ by simp

lemma wf-dverts-to-dtree-aux2 : r ∈ verts T =⇒ t = to-dtree-aux r =⇒ wf-dverts
t
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r = r ′ by simp
have ∀ (x,e) ∈ fset xs. wf-dverts x ∧ r /∈ dverts x
proof (standard, standard, standard)

fix xp x e
assume asm: xp ∈ fset xs xp = (x,e)

then have 0 : x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self 1 .prems(2)
by simp

have 2 : r →T Dtree.root x using asm 1 .prems ‹r = r ′›
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)

then have 3 : Dtree.root x ∈ verts T using adj-in-verts(2) by simp
then show wf-dverts x using 1 .IH asm 0 by blast
show r /∈ dverts x
proof

assume r ∈ dverts x
then have Dtree.root x →∗

T r using 0 3 to-dtree-aux-dverts-reachable by
blast

then have r →+
T r using 2 by auto

146

then show False using reachable1-not-reverse by blast
qed

qed
then show ?case using dverts-disjoint ‹r=r ′› 1 .prems(1 ,2) unfolding wf-dverts-iff-dverts ′

by (smt (verit, del-insts) wf-dverts ′.simps case-prodI2 case-prod-conv)
qed

lemma wf-dverts-to-dtree-aux: wf-dverts (to-dtree-aux r)
using wf-dverts-to-dtree-aux1 wf-dverts-to-dtree-aux2 by blast

lemma wf-dverts-to-dtree-aux ′: t = to-dtree-aux r =⇒ wf-dverts t
using wf-dverts-to-dtree-aux by blast

lemma wf-dverts-to-dtree: wf-dverts to-dtree
using to-dtree-def wf-dverts-to-dtree-aux by simp

lemma darcs-not-in-subtree:
assumes Node r xs = to-dtree-aux r and (x,e) ∈ fset xs and (y,e2) ∈ fset xs
shows e /∈ darcs y

proof
assume asm: e ∈ darcs y
have 0 : y = to-dtree-aux (Dtree.root y) using to-dtree-aux-self assms(1 ,3) by

blast
then obtain v where v-def : v ∈ dverts y ∧ e ∈ out-arcs T v using darcs-in-out-arcs

asm by blast
have 1 : r →T Dtree.root y
using assms(1 ,3) by (metis (no-types, opaque-lifting) dominated-if-child fst-conv

image-iff)
then have Dtree.root y ∈ verts T using adj-in-verts(2) by auto
then have Dtree.root y →∗

T v using to-dtree-aux-dverts-reachable 0 v-def by
blast

then have r →+
T v using 1 by auto

then have r 6= v using reachable1-not-reverse two-in-arcs-contr by blast
moreover have tail T e = v using v-def by simp
moreover have tail T e = r using assms(1 ,2) child-darc-tail-parent by blast
ultimately show False by blast

qed

lemma darcs-disjoint:
assumes Node r xs = to-dtree-aux r and r ∈ verts T

and (x,e1) ∈ fset xs and (y,e2) ∈ fset xs and (x,e1) 6=(y,e2)
shows (darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) = {}

proof (rule ccontr)
assume (darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) 6= {}
moreover have e1 /∈ darcs y using darcs-not-in-subtree assms(1−4) by blast
moreover have e2 /∈ darcs x using darcs-not-in-subtree assms(1−4) by blast
moreover have e1 6= e2 using darcs-neq-if-dtrees-neq assms by blast
ultimately have darcs x ∩ darcs y 6= {} by blast
then obtain e where e-def : e ∈ darcs x ∧ e ∈ darcs y by blast

147

have x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self assms(1 ,3) by blast
then obtain v1 where v1-def : v1 ∈ dverts x ∧ e ∈ out-arcs T v1

using darcs-in-out-arcs e-def by blast
have y = to-dtree-aux (Dtree.root y) using to-dtree-aux-self assms(1 ,4) by blast
then obtain v2 where v2-def : v2 ∈ dverts y ∧ e ∈ out-arcs T v2

using darcs-in-out-arcs e-def by blast
then have v2 6= v1 using v1-def v2-def dverts-disjoint assms dtrees-neq-if-darcs-neq

by blast
then show False using v1-def v2-def by simp

qed

lemma wf-darcs-to-dtree-aux1 : r /∈ verts T =⇒ wf-darcs (to-dtree-aux r)
using to-dtree-aux-empty-if-notT unfolding wf-darcs-def by simp

lemma wf-darcs-to-dtree-aux2 : r ∈ verts T =⇒ t = to-dtree-aux r =⇒ wf-darcs t
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r = r ′ by simp
have ∀ (x,e) ∈ fset xs. wf-darcs x
proof (standard, standard)

fix xp x e
assume asm: xp ∈ fset xs xp = (x,e)

then have 0 : x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self 1 .prems(2)
by simp

have r →T Dtree.root x using asm 1 .prems ‹r = r ′›
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)

then have Dtree.root x ∈ verts T using adj-in-verts(2) by simp
then show wf-darcs x using 1 .IH asm 0 by blast

qed
moreover have ∀ (x,e1) ∈ fset xs. (∀ (y,e2) ∈ fset xs.
(darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) = {} ∨ (x,e1)=(y,e2))
using darcs-disjoint 1 .prems ‹r = r ′› by blast

ultimately show ?case using darcs-not-in-subtree 1 .prems ‹r = r ′›
by (smt (verit) case-prodD case-prodI2 wf-darcs-if-darcs ′-aux)

qed

lemma wf-darcs-to-dtree-aux: wf-darcs (to-dtree-aux r)
using wf-darcs-to-dtree-aux1 wf-darcs-to-dtree-aux2 by blast

lemma wf-darcs-to-dtree-aux ′: t = to-dtree-aux r =⇒ wf-darcs t
using wf-darcs-to-dtree-aux by blast

lemma wf-darcs-to-dtree: wf-darcs to-dtree
using to-dtree-def wf-darcs-to-dtree-aux by simp

lemma dtail-aux-elem-eq-tail:
t = to-dtree-aux r =⇒ e ∈ darcs t =⇒ dtail t def e = tail T e

proof(induction t arbitrary: r rule: darcs-mset.induct)
case (1 r ′ xs)

148

then have r = r ′ by simp
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ darcs x ∨ ¬disjoint-darcs xs

then b else dtail x def)
show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then have 0 : dtail (Node r ′ xs) def e = r using ‹r=r ′› by simp
have e ∈ out-arcs T r using dtree-out-arcs-eq-snd 1 .prems(1) True by simp
then have tail T e = r by simp
then show ?thesis using 0 by blast

next
case False

then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using 1 .prems(2)
by force

then have x = to-dtree-aux (Dtree.root x) using 1 .prems(1) ‹r = r ′› to-dtree-aux-self
by blast

then have 0 : dtail x def e = tail T e using 1 .IH x-def by blast
have wf-darcs (Node r xs) using 1 .prems(1) wf-darcs-to-dtree-aux by simp
then have dtail (Node r ′ xs) def e = dtail x def e

using dtail-in-child-eq-child[of x] x-def 1 .prems by force
then show ?thesis using 0 by simp

qed
qed

lemma dtail-elem-eq-tail: e ∈ darcs to-dtree =⇒ dtail to-dtree def e = tail T e
using dtail-aux-elem-eq-tail to-dtree-def by blast

lemma to-dtree-dtail-eq-tail-aux: dtail to-dtree (tail T) e = tail T e
using dtail-notelem-eq-def dtail-elem-eq-tail by metis

lemma to-dtree-dtail-eq-tail: dtail to-dtree (tail T) = tail T
using to-dtree-dtail-eq-tail-aux by blast

lemma dhead-aux-elem-eq-head:
t = to-dtree-aux r =⇒ e ∈ darcs t =⇒ dhead t def e = head T e

proof(induction t arbitrary: r rule: darcs-mset.induct)
case (1 r ′ xs)
then have r = r ′ by simp
let ?f = (λ(x,e2) b. if (x,e2) /∈ fset xs ∨ e /∈ (darcs x ∪ {e2}) ∨ ¬disjoint-darcs

xs
then b else if e=e2 then Dtree.root x else dhead x def e)

obtain child where child ∈ fset xs using 1 .prems(2) by auto
then have wf : wf-darcs (Node r xs) using 1 .prems(1) wf-darcs-to-dtree-aux by

simp
show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then obtain x where x-def : (x,e) ∈ fset xs by force
then have 0 : dhead (Node r ′ xs) def e = Dtree.root x

149

using dhead-in-set-eq-root wf ‹r=r ′› by fast
have e ∈ out-arcs T r using dtree-out-arcs-eq-snd 1 .prems(1) True by simp

then have head T e = Dtree.root x using x-def 1 .prems(1) dtree-aux-fst-head-snd
by force

then show ?thesis using 0 by simp
next

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using 1 .prems(2)

by force
then have x = to-dtree-aux (Dtree.root x) using 1 .prems(1) ‹r = r ′› to-dtree-aux-self

by blast
then have 0 : dhead x def e = head T e using 1 .IH x-def by blast
have dhead (Node r ′ xs) def e = dhead x def e

using dhead-in-child-eq-child[of x] x-def wf ‹r=r ′› by blast
then show ?thesis using 0 by simp

qed
qed

lemma dhead-elem-eq-head: e ∈ darcs to-dtree =⇒ dhead to-dtree def e = head T
e

using dhead-aux-elem-eq-head to-dtree-def by blast

lemma to-dtree-dhead-eq-head-aux: dhead to-dtree (head T) e = head T e
using dhead-notelem-eq-def dhead-elem-eq-head by metis

lemma to-dtree-dhead-eq-head: dhead to-dtree (head T) = head T
using to-dtree-dhead-eq-head-aux by blast

lemma from-to-dtree-eq-orig: from-dtree (to-dtree) = T
using to-dtree-dhead-eq-head to-dtree-dtail-eq-tail darcs-eq-arcs dverts-eq-verts by

simp

lemma subtree-darc-tail-parent:
[[is-subtree (Node r xs) to-dtree; (t,e) ∈ fset xs]] =⇒ tail T e = r
using child-darc-tail-parent to-dtree-self-subtree ′ by blast

lemma subtree-darc-head-root:
[[is-subtree (Node r xs) to-dtree; (t,e) ∈ fset xs]] =⇒ head T e = Dtree.root t
using child-darc-head-root to-dtree-self-subtree ′ by blast

lemma subtree-darc-in-arcs:
[[is-subtree (Node r xs) to-dtree; (t,e) ∈ fset xs]] =⇒ e ∈ arcs T
using to-dtree-self-subtree ′ child-darc-in-arcs by blast

lemma subtree-child-dom: [[is-subtree (Node r xs) to-dtree; (t,e) ∈ fset xs]] =⇒ r
→T Dtree.root t

using subtree-darc-tail-parent subtree-darc-head-root subtree-darc-in-arcs
in-arcs-imp-in-arcs-ends by fastforce

150

end

7.3.2 Well-Formed Dtrees
locale wf-dtree =

fixes t :: (′a, ′b) dtree
assumes wf-arcs: wf-darcs t

and wf-verts: wf-dverts t

begin

lemma wf-dtree-rec: Node r xs = t =⇒ (x,e) ∈ fset xs =⇒ wf-dtree x
using wf-arcs wf-verts by (unfold-locales) auto

lemma wf-dtree-sub: is-subtree x t =⇒ wf-dtree x
using wf-dtree-axioms proof(induction t rule: darcs-mset.induct)

case (1 r xs)
then interpret wf-dtree Node r xs by blast
show ?case
proof(cases x = Node r xs)

case True
then show ?thesis by (simp add: wf-dtree-axioms)

next
case False
then show ?thesis using 1 .IH wf-dtree-rec 1 .prems(1) by auto

qed
qed

lemma root-not-subtree: [[(Node r xs) = t; x ∈ fst ‘ fset xs]] =⇒ r /∈ dverts x
using wf-verts root-not-child-if-wf-dverts by fastforce

lemma dverts-child-subset: [[(Node r xs) = t; x ∈ fst ‘ fset xs]] =⇒ dverts x ⊂
dverts t

using root-not-subtree by fastforce

lemma child-arc-not-subtree: [[(Node r xs) = t; (x,e1) ∈ fset xs]] =⇒ e1 /∈ darcs x
using wf-arcs disjoint-darcs-if-wf-aux3 by fast

lemma darcs-child-subset: [[(Node r xs) = t; x ∈ fst ‘ fset xs]] =⇒ darcs x ⊂ darcs
t

using child-arc-not-subtree by force

lemma dtail-in-dverts: e ∈ darcs t =⇒ dtail t def e ∈ dverts t
using wf-arcs proof(induction t rule: darcs-mset.induct)

case (1 r xs)
show ?case
proof(cases e ∈ snd ‘ fset xs)

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using 1 .prems(1)

151

by force
then have wf-darcs x using 1 .prems(2) by auto
then have dtail x def e ∈ dverts x using 1 .IH x-def by blast
then have 0 : dtail x def e ∈ dverts (Node r xs)

using x-def by (auto simp: dverts-child-subseteq)
have dtail (Node r xs) def e = dtail x def e

using dtail-in-child-eq-child[of x] x-def 1 .prems(2) by blast
then show ?thesis using 0 by argo

qed (simp)
qed

lemma dtail-in-childverts:
assumes e ∈ darcs x and (x,e ′) ∈ fset xs and Node r xs = t
shows dtail t def e ∈ dverts x

proof −
interpret X : wf-dtree x using assms(2 ,3) wf-dtree-rec by blast
have dtail t def e = dtail x def e

using dtail-in-child-eq-child[of x] assms wf-arcs by force
then show ?thesis using assms(1) X .dtail-in-dverts by simp

qed

lemma dhead-in-dverts: e ∈ darcs t =⇒ dhead t def e ∈ dverts t
using wf-arcs proof(induction t rule: darcs-mset.induct)

case (1 r xs)
show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then obtain x where x-def : (x,e) ∈ fset xs by force
then have dhead (Node r xs) def e = root x

using dhead-in-set-eq-root[of x] 1 .prems(2) by blast
then show ?thesis using dtree.set-sel(1) x-def by fastforce

next
case False

then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using 1 .prems(1)
by force

then have wf-darcs x using 1 .prems(2) by auto
then have dhead x def e ∈ dverts x using 1 .IH x-def by blast
then have 0 : dhead x def e ∈ dverts (Node r xs)

using x-def by (auto simp: dverts-child-subseteq)
have dhead (Node r xs) def e = dhead x def e

using dhead-in-child-eq-child[of x] x-def 1 .prems(2) by force
then show ?thesis using 0 by argo

qed
qed

lemma dhead-in-childverts:
assumes e ∈ darcs x and (x,e ′) ∈ fset xs and Node r xs = t
shows dhead t def e ∈ dverts x

proof −

152

interpret X : wf-dtree x using wf-arcs wf-verts assms(2 ,3) by(unfold-locales)
auto

have dhead t def e = dhead x def e
using dhead-in-child-eq-child[of x] assms wf-arcs by auto

then show ?thesis using assms(1) X .dhead-in-dverts by simp
qed

lemma dhead-in-dverts-no-root: e ∈ darcs t =⇒ dhead t def e ∈ (dverts t − {root
t})
using wf-arcs wf-verts proof(induction t rule: darcs-mset.induct)

case (1 r xs)
interpret wf-dtree Node r xs using 1 .prems(2 ,3) by (unfold-locales) auto
show ?case
proof(cases e ∈ snd ‘ fset xs)

case True
then obtain x where x-def : (x,e) ∈ fset xs by force
then have dhead (Node r xs) def e = root x

using dhead-in-set-eq-root[of x] 1 .prems(2) by simp
then show ?thesis using dtree.set-sel(1) x-def 1 .prems(3) wf-dverts-iff-dverts ′

by fastforce
next

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using 1 .prems(1)

by force
then have wf-darcs x using 1 .prems(2) by auto
then have dhead x def e ∈ dverts x using 1 .IH x-def 1 .prems(3) by auto
moreover have r /∈ dverts x using root-not-subtree x-def by fastforce
ultimately have 0 : dhead x def e ∈ dverts (Node r xs) − {root (Node r xs)}

using x-def dverts-child-subseteq by fastforce
have dhead (Node r xs) def e = dhead x def e

using dhead-in-child-eq-child[of x] x-def 1 .prems(2) by force
then show ?thesis using 0 by argo

qed
qed

lemma dhead-in-childverts-no-root:
assumes e ∈ darcs x and (x,e ′) ∈ fset xs and Node r xs = t
shows dhead t def e ∈ (dverts x − {root x})

proof −
interpret X : wf-dtree x using assms(2 ,3) wf-dtree-rec by blast
have dhead t def e = dhead x def e

using dhead-in-child-eq-child[of x] assms wf-arcs by auto
then show ?thesis using assms(1) X .dhead-in-dverts-no-root by simp

qed

lemma dtree-cas-iff-subtree:
assumes (x,e1) ∈ fset xs and Node r xs = t and set p ⊆ darcs x

shows pre-digraph.cas (from-dtree dt dh x) u p v
←→ pre-digraph.cas (from-dtree dt dh t) u p v

153

(is pre-digraph.cas ?X - - - ←→ pre-digraph.cas ?T - - -)
using assms proof(induction p arbitrary: u)

case Nil
then show ?case by(simp add: pre-digraph.cas.simps(1))

next
case (Cons p ps)
note pre-digraph.cas.simps[simp]
have pre-digraph.cas ?T u (p # ps) v = (tail ?T p = u ∧ pre-digraph.cas ?T

(head ?T p) ps v)
by simp

also have . . . = (tail ?T p = u ∧ pre-digraph.cas ?X (head ?T p) ps v)
using Cons.IH Cons.prems by simp

also have . . . = (tail ?X p = u ∧ pre-digraph.cas ?X (head ?T p) ps v)
using dtail-in-child-eq-child[of x] Cons.prems(1−3) wf-arcs by force

also have . . . = (tail ?X p = u ∧ pre-digraph.cas ?X (head ?X p) ps v)
using dhead-in-child-eq-child[of x] Cons.prems(1−3) wf-arcs by force

finally show ?case by simp
qed

lemma dtree-cas-exists:
v ∈ dverts t =⇒ ∃ p. set p ⊆ darcs t ∧ pre-digraph.cas (from-dtree dt dh t) (root

t) p v
using wf-dtree-axioms proof(induction t)

case (Node r xs)
then show ?case
proof(cases r=v)

case True
then have pre-digraph.cas (from-dtree dt dh (Node r xs)) (root (Node r xs)) []

v
by (simp add: pre-digraph.cas.simps(1))

then show ?thesis by force
next

case False
then obtain x e where x-def : (x,e) ∈ fset xs ∧ v ∈ dverts x using Node.prems

by auto
let ?T = from-dtree dt dh (Node r xs)
let ?X = from-dtree dt dh x
interpret wf-dtree Node r xs by (rule Node.prems(2))
have wf-dtree x using x-def wf-dtree-rec by blast
then obtain p where p-def : set p ⊆ darcs x ∧ pre-digraph.cas ?X (root x) p v

using Node.IH x-def by fastforce
then have pre-digraph.cas ?T (root x) p v

using dtree-cas-iff-subtree x-def Node.prems(2) by blast
moreover have head ?T e = root x

using x-def dhead-in-set-eq-root[of x] wf-arcs by simp
moreover have tail ?T e = r using x-def by force
ultimately have pre-digraph.cas ?T (root (Node r xs)) (e#p) v

by (simp add: pre-digraph.cas.simps(2))
moreover have set (e#p) ⊆ darcs (Node r xs) using p-def x-def by force

154

ultimately show ?thesis by blast
qed

qed

lemma dtree-awalk-exists:
assumes v ∈ dverts t
shows ∃ p. pre-digraph.awalk (from-dtree dt dh t) (root t) p v

unfolding pre-digraph.awalk-def using dtree-cas-exists assms dtree.set-sel(1) by
fastforce

lemma subtree-root-not-root: t = Node r xs =⇒ (x,e) ∈ fset xs =⇒ root x 6= r
using dtree.set-sel(1) root-not-subtree by fastforce

lemma dhead-not-root:
assumes e ∈ darcs t
shows dhead t def e 6= root t

proof −
obtain r xs where xs-def [simp]: t = Node r xs using dtree.exhaust by auto
show ?thesis
proof(cases e ∈ snd ‘ fset xs)

case True
then obtain x where x-def : (x,e) ∈ fset xs by force
then have dhead (Node r xs) def e = root x

using dhead-in-set-eq-root[of x] wf-arcs by simp
then show ?thesis using x-def subtree-root-not-root by simp

next
case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using assms

by force
then interpret X : wf-dtree x using wf-dtree-rec by auto
have dhead x def e ∈ dverts x using x-def X .dhead-in-dverts by blast
moreover have dhead (Node r xs) def e = dhead x def e

using x-def dhead-in-child-eq-child[of x] wf-arcs by force
ultimately show ?thesis using x-def root-not-subtree by fastforce

qed
qed

lemma nohead-cas-no-arc-in-subset:
[[∀ e∈darcs t. dhead t dh e 6= v; p 6=[]; pre-digraph.cas (from-dtree dt dh t) u p v]]
=⇒ ¬set p ⊆ darcs t

by(induction p arbitrary: u) (fastforce simp: pre-digraph.cas.simps)+

lemma dtail-root-in-set:
assumes e ∈ darcs t and t = Node r xs and dtail t dt e = r
shows e ∈ snd ‘ fset xs

proof (rule ccontr)
assume e /∈ snd ‘ fset xs
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using assms(1 ,2)

by force

155

interpret X : wf-dtree x using assms(2) x-def wf-dtree-rec by blast
have dtail t dt e = dtail x dt e

using dtail-in-child-eq-child[of x] wf-arcs assms(2) x-def by force
then have dtail t dt e ∈ dverts x using X .dtail-in-dverts x-def by simp
then show False using assms(2 ,3) wf-verts x-def unfolding wf-dverts-iff-dverts ′

by auto
qed

lemma dhead-notin-subtree-wo-root:
assumes (x,e) ∈ fset xs and p /∈ darcs x and p ∈ darcs t and t = Node r xs
shows dhead t dh p /∈ (dverts x − {root x})

proof(cases p ∈ snd ‘ fset xs)
case True
then obtain x ′ where x ′-def : (x ′,p) ∈ fset xs by auto
then have 0 : dhead t dh p = root x ′

using dhead-in-set-eq-root[of x ′] wf-arcs assms(4) by auto
have root x ′ /∈ (dverts x − {root x})
proof(cases x ′=x)

case True
then show ?thesis by blast

next
case False
have root x ′ ∈ dverts x ′ by (simp add: dtree.set-sel(1))

then show ?thesis using wf-verts x ′-def assms(1 ,4) unfolding wf-dverts-iff-dverts ′

by fastforce
qed
then show ?thesis using 0 by simp

next
case False
then obtain x ′ e1 where x ′-def : (x ′,e1) ∈ fset xs ∧ p ∈ darcs x ′ using

assms(3 ,4) by force
then have 0 : dhead t dh p = dhead x ′ dh p

using dhead-in-child-eq-child[of x ′] wf-arcs assms(4) by auto
interpret X : wf-dtree x ′ using assms(4) x ′-def wf-dtree-rec by blast
have 1 : dhead x ′ dh p ∈ dverts x ′ using X .dhead-in-dverts x ′-def by blast
moreover have dverts x ′ ∩ dverts x = {}

using wf-verts x ′-def assms(1 ,2 ,4) unfolding wf-dverts-iff-dverts ′ by fastforce
ultimately show ?thesis using 0 by auto

qed

lemma subtree-uneq-if-arc-uneq:
[[(x1 ,e1) ∈ fset xs; (x2 ,e2) ∈ fset xs; e1 6=e2 ; Node r xs = t]] =⇒ x1 6= x2
using dtree.set-sel(1) wf-verts disjoint-dverts-if-wf-aux by fast

lemma arc-uneq-if-subtree-uneq:
[[(x1 ,e1) ∈ fset xs; (x2 ,e2) ∈ fset xs; x1 6=x2 ; Node r xs = t]] =⇒ e1 6= e2
using disjoint-darcs-if-wf [OF wf-arcs] by fastforce

lemma dhead-unique: e ∈ darcs t =⇒ p ∈ darcs t =⇒ e 6= p =⇒ dhead t dh e 6=

156

dhead t dh p
using wf-dtree-axioms proof(induction t rule: darcs-mset.induct)

case ind: (1 r xs)
then interpret wf-dtree Node r xs by blast
show ?case
proof(cases ∃ x ∈ fst ‘ fset xs. e ∈ darcs x ∧ p ∈ darcs x)

case True
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x ∧ p ∈ darcs x

by force
then have wf-dtree x using ind.prems(4) wf-dtree-rec by blast
then have dhead x dh e 6= dhead x dh p using ind x-def by blast
then show ?thesis using True dhead-in-child-eq-child[of x] wf-arcs x-def by

force
next

case False
then consider ∃ x ∈ fst ‘ fset xs. e ∈ darcs x | ∃ x ∈ fst ‘ fset xs. p ∈ darcs x
| e ∈ snd ‘ fset xs ∧ p ∈ snd ‘ fset xs
using ind.prems(1 ,2) by force

then show ?thesis
proof(cases)

case 1
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x ∧ p /∈ darcs x

using False by force
then interpret X : wf-dtree x using wf-dtree-rec by blast
have dhead x dh e ∈ (dverts x − {root x}) using X .dhead-in-dverts-no-root

x-def by blast
then have dhead (Node r xs) dh e ∈ (dverts x − {root x})

using dhead-in-child-eq-child[of x] wf-arcs x-def by force
moreover have dhead (Node r xs) dh p /∈ (dverts x − {root x})

using x-def dhead-notin-subtree-wo-root ind.prems(2) by blast
ultimately show ?thesis by auto

next
case 2
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ p ∈ darcs x ∧ e /∈ darcs x

using False by force
then interpret X : wf-dtree x using wf-dtree-rec by blast
have dhead x dh p ∈ (dverts x − {root x}) using X .dhead-in-dverts-no-root

x-def by blast
then have dhead (Node r xs) dh p ∈ (dverts x − {root x})

using dhead-in-child-eq-child[of x] wf-arcs x-def by force
moreover have dhead (Node r xs) dh e /∈ (dverts x − {root x})

using x-def dhead-notin-subtree-wo-root ind.prems(1) by blast
ultimately show ?thesis by auto

next
case 3
then obtain x1 x2 where x-def : (x1 ,p) ∈ fset xs ∧ (x2 ,e) ∈ fset xs by force
then have 0 : dhead (Node r xs) dh p = root x1 ∧ dhead (Node r xs) dh e =

root x2
using dhead-in-set-eq-root[of x1] dhead-in-set-eq-root[of x2] wf-arcs by simp

157

have x1 6= x2 using subtree-uneq-if-arc-uneq x-def ind.prems(3) by blast
then have root x1 6= root x2

using wf-verts x-def dtree.set-sel(1) unfolding wf-dverts-iff-dverts ′ by
fastforce

then show ?thesis using 0 by argo
qed

qed
qed

lemma arc-in-subtree-if-tail-in-subtree:
assumes dtail t dt p ∈ dverts x

and p ∈ darcs t
and t = Node r xs
and (x,e) ∈ fset xs

shows p ∈ darcs x
proof (rule ccontr)

assume asm: p /∈ darcs x
show False
proof(cases p ∈ snd ‘ fset xs)

case True
then have dtail t dt p = r using assms(2 ,3) by simp
then show ?thesis using assms(1 ,3 ,4) root-not-subtree by force

next
case False
then obtain x ′ e1 where x ′-def : (x ′,e1) ∈ fset xs ∧ p ∈ darcs x ′ using

assms(2 ,3) by force
then have x 6= x ′ using asm by blast
interpret X : wf-dtree x ′ using x ′-def assms(3) wf-dtree-rec by blast
have dtail t dt p = dtail x ′ dt p

using dtail-in-child-eq-child[of x ′] x ′-def wf-arcs assms(3) by force
then have dtail t dt p ∈ dverts x ′ using X .dtail-in-dverts by (simp add: x ′-def)
then have dtail t dt p /∈ dverts x

using ‹x 6=x ′› wf-verts assms(3 ,4) x ′-def unfolding wf-dverts-iff-dverts ′ by
fastforce

then show ?thesis using assms(1) by blast
qed

qed

lemma dhead-in-verts-if-dtail:
assumes dtail t dt p ∈ dverts x

and p ∈ darcs t
and t = Node r xs
and (x,e) ∈ fset xs

shows dhead t dh p ∈ dverts x
proof −

interpret X : wf-dtree x using assms(3 ,4) wf-dtree-rec by blast
have 0 : p ∈ darcs x using assms arc-in-subtree-if-tail-in-subtree by blast
then have dhead t dh p = dhead x dh p

using dhead-in-child-eq-child[of x] assms(3 ,4) wf-arcs by simp

158

then show ?thesis using X .dhead-in-dverts 0 by simp
qed

lemma cas-darcs-in-subtree:
assumes pre-digraph.cas (from-dtree dt dh t) u ps v

and set ps ⊆ darcs t
and t = Node r xs
and (x,e) ∈ fset xs
and u ∈ dverts x

shows set ps ⊆ darcs x
using assms proof(induction ps arbitrary: u)

case Nil
then show ?case by simp

next
case (Cons p ps)
note pre-digraph.cas.simps[simp]
then have u-p: dtail t dt p = u using Cons.prems(1) by simp
have p ∈ darcs t using Cons.prems(2) by simp
then have 0 : p ∈ darcs x using arc-in-subtree-if-tail-in-subtree Cons.prems(3−5)

u-p by blast
have 1 : dhead t dh p ∈ dverts x using dhead-in-verts-if-dtail Cons.prems(2−5)

u-p by force
have set ps ⊆ darcs t using Cons.prems(2) by simp
have pre-digraph.cas (from-dtree dt dh t) (dhead t dh p) ps v using Cons.prems(1)

by simp
then have set ps ⊆ darcs x using Cons.IH Cons.prems(2 ,3 ,4) 1 by simp
then show ?case using 0 by simp

qed

lemma dtree-cas-in-subtree:
assumes pre-digraph.cas (from-dtree dt dh t) u ps v

and set ps ⊆ darcs t
and t = Node r xs
and (x,e) ∈ fset xs
and u ∈ dverts x

shows pre-digraph.cas (from-dtree dt dh x) u ps v
using assms cas-darcs-in-subtree dtree-cas-iff-subtree by fast

lemma cas-to-end-subtree:
assumes set (p#ps) ⊆ darcs t and pre-digraph.cas (from-dtree dt dh t) (root t)

(p#ps) v
and t = Node r xs and (x,e) ∈ fset xs and v ∈ dverts x

shows p = e
proof (rule ccontr)

assume asm: p 6= e
note pre-digraph.cas.simps[simp]
have dtail t dt p = r using assms(2 ,3) by simp
then have p ∈ snd ‘ fset xs using dtail-root-in-set assms(1 ,3) list.set-intros(1)

by fast

159

then obtain x ′ where x ′-def : (x ′,p) ∈ fset xs by force
show False
proof(cases ps=[])

case True
then have root x ′ = v

using dhead-in-set-eq-root[of x ′] x ′-def assms(2 ,3) wf-arcs by simp
then have x = x ′

using wf-verts x ′-def assms(3 ,4 ,5) dtree.set-sel(1) by (fastforce simp: wf-dverts-iff-dverts ′)
then show ?thesis using asm assms(3 ,4) subtree-uneq-if-arc-uneq x ′-def by

blast
next

case False
interpret X : wf-dtree x ′ using wf-dtree-rec x ′-def assms(3) by blast
have x ′ 6= x using asm assms(3 ,4) subtree-uneq-if-arc-uneq x ′-def by blast
then have x ′-no-v: ∀ e∈darcs x ′. dhead x ′ dh e 6= v

using X .dhead-in-dverts assms(3 ,4 ,5) x ′-def wf-verts
by (fastforce simp: wf-dverts-iff-dverts ′)

have 0 : pre-digraph.cas (from-dtree dt dh t) (dhead t dh p) ps v using assms(2)
by simp

have 1 : dhead t dh p ∈ dverts x ′

using dhead-in-set-eq-root[of x ′] x ′-def assms(3) dtree.set-sel(1) wf-arcs by
auto

then have pre-digraph.cas (from-dtree dt dh x ′) (dhead t dh p) ps v
using dtree-cas-in-subtree x ′-def assms(1 ,3) 0 by force

then have ¬ set ps ⊆ darcs x ′ using X .nohead-cas-no-arc-in-subset x ′-no-v
False by blast

moreover have set ps ⊆ darcs x ′ using cas-darcs-in-subtree assms(1 ,3) x ′-def
0 1 by simp

ultimately show ?thesis by blast
qed

qed

lemma cas-unique-in-darcs: [[v ∈ dverts t; pre-digraph.cas (from-dtree dt dh t) (root
t) ps v;

pre-digraph.cas (from-dtree dt dh t) (root t) es v]]
=⇒ ps = es ∨ ¬set ps ⊆ darcs t ∨ ¬set es ⊆ darcs t

using wf-dtree-axioms proof(induction t arbitrary: ps es rule: darcs-mset.induct)
case ind: (1 r xs)
interpret wf-dtree Node r xs by (rule ind.prems(4))
show ?case
proof(cases r=v)

case True
have 0 : ∀ e ∈ darcs (Node r xs). dhead (Node r xs) dh e 6= r using dhead-not-root

by force
consider ps = [] ∧ es = [] | ps 6= [] | es 6= [] by blast
then show ?thesis
proof(cases)

case 1
then show ?thesis by blast

160

next
case 2
then show ?thesis using nohead-cas-no-arc-in-subset 0 ind.prems(2) True

by blast
next

case 3
then show ?thesis using nohead-cas-no-arc-in-subset 0 ind.prems(3) True

by blast
qed

next
case False
then obtain x e where x-def : (x,e) ∈ fset xs v ∈ dverts x using ind.prems

by auto
then have wf-x: wf-dtree x using wf-dtree-rec by blast
note pre-digraph.cas.simps[simp]
have nempty: ps 6= [] ∧ es 6= [] using ind.prems(2 ,3) False by force
then obtain p ps ′ where p-def : ps = p # ps ′ using list.exhaust-sel by auto
obtain e ′ es ′ where e ′-def : es = e ′ # es ′ using list.exhaust-sel nempty by

auto
show ?thesis
proof (rule ccontr)

assume ¬(ps = es ∨ ¬set ps ⊆ darcs (Node r xs) ∨ ¬set es ⊆ darcs (Node r
xs))

then have asm: ps 6= es ∧ set ps ⊆ darcs (Node r xs) ∧ set es ⊆ darcs (Node
r xs) by blast

then have p = e using cas-to-end-subtree p-def ind.prems(2) x-def by blast
moreover have e ′ = e using cas-to-end-subtree e ′-def ind.prems(3) x-def

asm by blast
ultimately have p = e ′ by blast
have dhead (Node r xs) dh p = root x

using dhead-in-set-eq-root[of x] x-def (1) ‹p=e› wf-arcs by simp
then have cas-p-r : pre-digraph.cas (from-dtree dt dh (Node r xs)) (root x) ps ′

v
using ind.prems(2) p-def by fastforce

moreover have 0 : root x ∈ dverts x using dtree.set-sel(1) by blast
ultimately have cas-ps: pre-digraph.cas (from-dtree dt dh x) (root x) ps ′ v

using dtree-cas-in-subtree asm x-def (1) p-def dtree.set-sel(1) by force
have dhead (Node r xs) dh e ′ = root x

using dhead-in-set-eq-root[of x] x-def ‹e ′=e› wf-arcs by simp
then have cas-e-r : pre-digraph.cas (from-dtree dt dh (Node r xs)) (root x) es ′

v
using ind.prems(3) e ′-def by fastforce

then have pre-digraph.cas (from-dtree dt dh x) (root x) es ′ v
using dtree-cas-in-subtree asm x-def (1) e ′-def 0 by force

then have ps ′ = es ′ ∨ ¬ set ps ′ ⊆ darcs x ∨ ¬ set es ′ ⊆ darcs x
using ind.IH cas-ps x-def wf-x by blast

moreover have set ps ′ ⊆ darcs x
using cas-darcs-in-subtree cas-p-r x-def (1) asm p-def 0 set-subset-Cons by

fast

161

moreover have set es ′ ⊆ darcs x
using cas-darcs-in-subtree cas-e-r x-def (1) asm e ′-def 0 set-subset-Cons by

fast
ultimately have ps ′ = es ′ by blast
then show False using asm p-def e ′-def ‹p=e ′› by blast

qed
qed

qed

lemma dtree-awalk-unique:
[[v ∈ dverts t; pre-digraph.awalk (from-dtree dt dh t) (root t) ps v;

pre-digraph.awalk (from-dtree dt dh t) (root t) es v]]
=⇒ ps = es

unfolding pre-digraph.awalk-def using cas-unique-in-darcs by fastforce

lemma dtree-unique-awalk-exists:
assumes v ∈ dverts t
shows ∃ !p. pre-digraph.awalk (from-dtree dt dh t) (root t) p v
using dtree-awalk-exists dtree-awalk-unique assms by blast

lemma from-dtree-directed: directed-tree (from-dtree dt dh t) (root t)
apply(unfold-locales)
by(auto simp: dtail-in-dverts dhead-in-dverts dtree.set-sel(1) dtree-unique-awalk-exists)

theorem from-dtree-fin-directed: finite-directed-tree (from-dtree dt dh t) (root t)
apply(unfold-locales)
by(auto simp: dtail-in-dverts dhead-in-dverts dtree.set-sel(1) dtree-unique-awalk-exists

finite-dverts finite-darcs)

7.3.3 Identity of Transformation Operations
lemma dhead-img-eq-root-img:

Node r xs = t
=⇒ (λe. ((dhead (Node r xs) dh e), e)) ‘ snd ‘ fset xs = (λ(x,e). (root x, e)) ‘

fset xs
using dhead-in-set-eq-root wf-arcs snd-conv image-image disjoint-darcs-if-wf-xs
by (smt (verit) case-prodE case-prod-conv image-cong)

lemma childarcs-in-out-arcs:
[[Node r xs = t; e ∈ snd ‘ fset xs]] =⇒ e ∈ out-arcs (from-dtree dt dh t) r
by force

lemma out-arcs-in-childarcs:
assumes Node r xs = t and e ∈ out-arcs (from-dtree dt dh t) r
shows e ∈ snd ‘ fset xs

proof (rule ccontr)
assume asm: e /∈ snd ‘ fset xs
have e ∈ darcs t using assms(2) by simp
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ e ∈ darcs x using assms(1)

162

asm by force
then have dtail t dt e ∈ dverts x using assms(1) dtail-in-childverts by blast
moreover have r /∈ dverts x using assms(1) wf-verts x-def by (auto simp:

wf-dverts-iff-dverts ′)
ultimately show False using assms(2) by simp

qed

lemma childarcs-eq-out-arcs:
Node r xs = t =⇒ snd ‘ fset xs = out-arcs (from-dtree dt dh t) r
using childarcs-in-out-arcs out-arcs-in-childarcs by fast

lemma dtail-in-subtree-eq-subtree:
[[is-subtree t1 t; e ∈ darcs t1]] =⇒ dtail t def e = dtail t1 def e

using wf-arcs proof(induction t rule: darcs-mset.induct)
case (1 r xs)
show ?case
proof(cases Node r xs=t1)

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ is-subtree t1 x using

1 .prems(1) by auto
then have e ∈ darcs x using 1 .prems(2) darcs-subtree-subset by blast
then have dtail (Node r xs) def e = dtail x def e

using dtail-in-child-eq-child[of x] x-def 1 .prems(3) by blast
then show ?thesis using 1 .IH x-def 1 .prems(2−3) by fastforce

qed (simp)
qed

lemma dtail-in-subdverts:
assumes e ∈ darcs x and is-subtree x t
shows dtail t def e ∈ dverts x

proof −
interpret X : wf-dtree x by (simp add: assms(2) wf-dtree-sub)
have dtail t def e = dtail x def e using dtail-in-subtree-eq-subtree assms(1 ,2) by

blast
then show ?thesis using assms(1) X .dtail-in-dverts by simp

qed

lemma dhead-in-subtree-eq-subtree:
[[is-subtree t1 t; e ∈ darcs t1]] =⇒ dhead t def e = dhead t1 def e

using wf-arcs proof(induction t)
case (Node r xs)
show ?case
proof(cases Node r xs=t1)

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs ∧ is-subtree t1 x using

Node.prems(1) by auto
then have e ∈ darcs x using Node.prems(2) darcs-subtree-subset by blast
then have dhead (Node r xs) def e = dhead x def e

using dhead-in-child-eq-child[of x] x-def Node.prems(3) by force

163

then show ?thesis using Node.IH x-def Node.prems(2−3) by fastforce
qed (simp)

qed

lemma subarcs-in-out-arcs:
assumes is-subtree (Node r xs) t and e ∈ snd ‘ fset xs
shows e ∈ out-arcs (from-dtree dt dh t) r

proof −
have e ∈ darcs (Node r xs) using assms(2) by force
then have tail (from-dtree dt dh t) e = r

using dtail-in-subtree-eq-subtree assms(1 ,2) by auto
then show ?thesis using darcs-subtree-subset assms(1 ,2) by fastforce

qed

lemma darc-in-sub-if-dtail-in-sub:
assumes dtail t dt e = v and e ∈ darcs t and (x,e1) ∈ fset xs

and is-subtree t1 x and Node r xs = t and v ∈ dverts t1
shows e ∈ darcs x

proof (rule ccontr)
assume asm: e /∈ darcs x
have e /∈ snd ‘ fset xs

using assms(1−6) asm arc-in-subtree-if-tail-in-subtree dverts-subtree-subset
by (metis subset-eq)

then obtain x2 e2 where x2-def : (x2 ,e2) ∈ fset xs ∧ e ∈ darcs x2 using
assms(2 ,5) by force

then have v ∈ dverts x using assms(4 ,6) dverts-subtree-subset by fastforce
then have v /∈ dverts x2 using assms(1−3 ,5) arc-in-subtree-if-tail-in-subtree

asm by blast
then have dtail x2 dt e 6= v using assms(1 ,5) dtail-in-childverts x2-def by fast
then have dtail t dt e = dtail x2 dt e

using assms(1 ,5) x2-def ‹v /∈ dverts x2 › dtail-in-childverts by blast
then show False using assms(1) ‹dtail x2 dt e 6= v› by simp

qed

lemma out-arcs-in-subarcs-aux:
assumes is-subtree (Node r xs) t and dtail t dt e = r and e ∈ darcs t
shows e ∈ snd ‘ fset xs

using assms wf-dtree-axioms proof(induction t)
case (Node v ys)
then interpret wf-dtree Node v ys by blast
show ?case
proof(cases Node v ys = Node r xs)

case True
then show ?thesis using dtail-root-in-set Node.prems(2 ,3) by blast

next
case False
then obtain x e1 where x-def : (x,e1) ∈ fset ys ∧ is-subtree (Node r xs) x

using Node.prems(1) by auto
then have e ∈ darcs x

164

using darc-in-sub-if-dtail-in-sub Node.prems(2 ,3) dtree.set-intros(1) by fast
moreover from this have dtail x dt e = r

using dtail-in-child-eq-child[of x] x-def Node.prems(2) wf-arcs by force
moreover from this have wf-dtree x using wf-verts wf-arcs x-def by(unfold-locales)

auto
ultimately show ?thesis using Node.IH x-def by force

qed
qed

lemma out-arcs-in-subarcs:
assumes is-subtree (Node r xs) t and e ∈ out-arcs (from-dtree dt dh t) r
shows e ∈ snd ‘ fset xs
using assms out-arcs-in-subarcs-aux by auto

lemma subarcs-eq-out-arcs:
is-subtree (Node r xs) t =⇒ snd ‘ fset xs = out-arcs (from-dtree dt dh t) r
using subarcs-in-out-arcs out-arcs-in-subarcs by fast

lemma dhead-sub-img-eq-root-img:
is-subtree (Node v ys) t
=⇒ (λe. ((dhead t dh e), e)) ‘ snd ‘ fset ys = (λ(x,e). (root x, e)) ‘ fset ys

using wf-dtree-axioms proof(induction t)
case (Node r xs)
then interpret wf-dtree Node r xs by blast
show ?case
proof(cases Node v ys = Node r xs)

case True
then show ?thesis using dhead-img-eq-root-img by simp

next
case False
then obtain x e where x-def : (x,e) ∈ fset xs ∧ is-subtree (Node v ys) x

using Node.prems(1) by auto
then interpret X : wf-dtree x using wf-verts wf-arcs by(unfold-locales) auto
have ∀ a ∈ snd ‘ fset ys. (λe. ((dhead (Node r xs) dh e), e)) a = (λe. ((dhead

x dh e), e)) a
proof

fix a
assume asm: a ∈ snd ‘ fset ys
then have a ∈ darcs x using x-def darcs-subtree-subset by fastforce
then show (λe. ((dhead (Node r xs) dh e), e)) a = (λe. ((dhead x dh e), e)) a

using dhead-in-child-eq-child[of x] x-def wf-arcs by auto
qed
then have (λe. ((dhead (Node r xs) dh e), e)) ‘ snd ‘ fset ys

= (λe. ((dhead x dh e), e)) ‘ snd ‘ fset ys
by (meson image-cong)

then show ?thesis using Node.IH x-def X .wf-dtree-axioms by force
qed

qed

165

lemma subtree-to-dtree-aux-eq:
assumes is-subtree x t and v ∈ dverts x
shows finite-directed-tree.to-dtree-aux (from-dtree dt dh t) v

= finite-directed-tree.to-dtree-aux (from-dtree dt dh x) v
∧ finite-directed-tree.to-dtree-aux (from-dtree dt dh x) (root x) = x

using assms wf-dtree-axioms proof(induction x arbitrary: t v rule: darcs-mset.induct)
case ind: (1 r xs)
then interpret wf-dtree t by blast
obtain r ′ xs ′ where r ′-def : t = Node r ′ xs ′ using dtree.exhaust by auto
interpret R-xs: wf-dtree Node r xs using ind.prems(1 ,3) wf-dtree-sub by simp
let ?todt = finite-directed-tree.to-dtree-aux
let ?T = (from-dtree dt dh t)
let ?X = (from-dtree dt dh (Node r xs))
interpret DT : finite-directed-tree ?T root t using from-dtree-fin-directed by blast
interpret XT : finite-directed-tree ?X root (Node r xs)

using R-xs.from-dtree-fin-directed by blast

have ih: ∀ y ∈ fset xs. (λ(x,e). (XT .to-dtree-aux (root x), e)) y = y
proof

fix y
assume asm: y ∈ fset xs
obtain x e where x-def : y = (x,e) by fastforce
then have is-subtree x (Node r xs) using subtree-if-child asm

by (metis image-iff prod.sel(1))
then have ?todt (from-dtree dt dh x) (root x) = x

∧ XT .to-dtree-aux (root x) = ?todt (from-dtree dt dh x) (root x)
using ind.IH R-xs.wf-dtree-axioms asm x-def dtree.set-sel(1) by blast

then have XT .to-dtree-aux (root x) = x by simp
then show (λ(x,e). (XT .to-dtree-aux (root x), e)) y = y using x-def by fast

qed
let ?f = λ(x,e). (XT .to-dtree-aux x, e)
let ?g = λe. ((dhead (Node r xs) dh e), e)
obtain ys where ys-def : XT .to-dtree-aux (root (Node r xs)) = Node r ys

using dtree.exhaust dtree.sel(1) XT .to-dtree-aux-root by metis
then have fset ys = (λe. (XT .to-dtree-aux (head ?X e), e)) ‘ out-arcs ?X r

using XT .dtree-children-img-alt XT .dtree-children-fset-id dtree.sel(1) by (smt
(verit))

also have . . . = (λe. (XT .to-dtree-aux (dhead (Node r xs) dh e), e)) ‘ (snd ‘ fset
xs)

using R-xs.childarcs-eq-out-arcs by simp
also have . . . = ?f ‘ ?g ‘ (snd ‘ fset xs) by fast
also have . . . = ?f ‘ (λ(x,e). (root x, e)) ‘ fset xs using R-xs.dhead-img-eq-root-img

by simp
also have . . . = (λ(x,e). (XT .to-dtree-aux (root x), e)) ‘ fset xs by fast
also have . . . = fset xs using ih by simp
finally have g2 : ys = xs by (simp add: fset-inject)

show ?case

166

proof(cases v = r)
case True

have 0 : ∀ y ∈ fset xs. (λ(x,e). (DT .to-dtree-aux (root x), e)) y = y
proof

fix y
assume asm: y ∈ fset xs
obtain x e where x-def : y = (x,e) by fastforce
then have is-subtree x (Node r xs) using subtree-if-child asm

by (metis image-iff prod.sel(1))
then have is-subtree x t using asm subtree-trans ind.prems(1) by blast
then have ?todt (from-dtree dt dh x) (root x) = x

∧ DT .to-dtree-aux (root x) = ?todt (from-dtree dt dh x) (root x)
using ind.IH wf-dtree-axioms asm x-def dtree.set-sel(1) by blast

then have DT .to-dtree-aux (root x) = x by simp
then show (λ(x,e). (DT .to-dtree-aux (root x), e)) y = y using x-def by fast

qed
let ?f = λ(x,e). (DT .to-dtree-aux x, e)
let ?g = λe. ((dhead (Node r ′ xs ′) dh e), e)
obtain zs where zs-def : DT .to-dtree-aux v = Node v zs

using dtree.exhaust by simp
then have fset zs = (λe. (DT .to-dtree-aux (head ?T e), e)) ‘ out-arcs ?T r

using DT .dtree-children-img-alt DT .dtree-children-fset-id True by presburger
also have . . . = (λe. (DT .to-dtree-aux (dhead t dh e), e)) ‘ (snd ‘ fset xs)

using ind.prems(1) subarcs-eq-out-arcs by force
also have . . . = ?f ‘ ?g ‘ (snd ‘ fset xs) using r ′-def by fast
also have . . . = ?f ‘ (λ(x,e). (root x, e)) ‘ fset xs

using dhead-sub-img-eq-root-img ind.prems(1) r ′-def by blast
also have . . . = (λ(x,e). (DT .to-dtree-aux (root x), e)) ‘ fset xs by fast
also have . . . = fset xs using 0 by simp
finally have g1 : zs = xs by (simp add: fset-inject)
then show ?thesis using zs-def True g2 ys-def by simp

next
case False

then obtain x1 e1 where x-def : (x1 ,e1) ∈ fset xs v ∈ dverts x1 using
ind.prems(2) by auto

then have is-subtree x1 (Node r xs) using subtree-if-child
by (metis image-iff prod.sel(1))

moreover from this have is-subtree x1 t using ind.prems(1) subtree-trans by
blast

ultimately have g1 : DT .to-dtree-aux v = XT .to-dtree-aux v
using ind.IH x-def by (metis R-xs.wf-dtree-axioms wf-dtree-axioms)

then show ?thesis using g1 g2 ys-def by blast
qed

qed

interpretation T : finite-directed-tree from-dtree dt dh t root t
using from-dtree-fin-directed by simp

167

lemma to-from-dtree-aux-id: T .to-dtree-aux dt dh (root t) = t
using subtree-to-dtree-aux-eq dtree.set-sel(1) self-subtree by blast

theorem to-from-dtree-id: T .to-dtree dt dh = t
using to-from-dtree-aux-id T .to-dtree-def by simp

end

context finite-directed-tree
begin

lemma wf-to-dtree-aux: wf-dtree (to-dtree-aux r)
unfolding wf-dtree-def using wf-dverts-to-dtree-aux wf-darcs-to-dtree-aux by

blast

theorem wf-to-dtree: wf-dtree to-dtree
unfolding to-dtree-def using wf-to-dtree-aux by blast

end

7.4 Degrees of Nodes
fun max-deg :: (′a, ′b) dtree ⇒ nat where

max-deg (Node r xs) = (if xs = {||} then 0 else max (Max (max-deg ‘ fst ‘ fset
xs)) (fcard xs))

lemma mdeg-eq-fcard-if-empty: xs = {||} =⇒ max-deg (Node r xs) = fcard xs
by simp

lemma mdeg0-if-fcard0 : fcard xs = 0 =⇒ max-deg (Node r xs) = 0
by simp

lemma mdeg0-iff-fcard0 : fcard xs = 0 ←→ max-deg (Node r xs) = 0
by simp

lemma nempty-if-mdeg-gt-fcard: max-deg (Node r xs) > fcard xs =⇒ xs 6= {||}
by auto

lemma mdeg-img-nempty: max-deg (Node r xs) > fcard xs =⇒ max-deg ‘ fst ‘ fset
xs 6= {}

using nempty-if-mdeg-gt-fcard[of xs] by fast

lemma mdeg-img-fin: finite (max-deg ‘ fst ‘ fset xs)
by simp

lemma mdeg-Max-if-gt-fcard:
max-deg (Node r xs) > fcard xs =⇒ max-deg (Node r xs) = Max (max-deg ‘ fst ‘

fset xs)

168

by (auto split: if-splits)

lemma mdeg-child-if-gt-fcard:
max-deg (Node r xs) > fcard xs =⇒ ∃ t ∈ fst ‘ fset xs. max-deg t = max-deg (Node

r xs)
unfolding mdeg-Max-if-gt-fcard using Max-in[OF mdeg-img-fin mdeg-img-nempty]

by force

lemma mdeg-child-if-wedge:
[[max-deg (Node r xs) > n; fcard xs ≤ n ∨ ¬(∀ t ∈ fst ‘ fset xs. max-deg t ≤ n)]]
=⇒ ∃ t ∈ fst ‘ fset xs. max-deg t > n

using mdeg-child-if-gt-fcard[of xs] by force

lemma maxif-eq-Max: finite X =⇒ (if X 6= {} then max x (Max X) else x) = Max
(insert x X)

by simp

lemma mdeg-img-empty-iff : max-deg ‘ fst ‘ fset xs = {} ←→ xs = {||}
by fast

lemma mdeg-alt: max-deg (Node r xs) = Max (insert (fcard xs) (max-deg ‘ fst ‘
fset xs))

using maxif-eq-Max[OF mdeg-img-fin, of xs fcard xs] mdeg-img-empty-iff [of xs]
by (auto split: if-splits)

lemma finite-fMax-union: finite Y =⇒ finite (
⋃

y∈Y . {Max (f y)})
by blast

lemma Max-union-Max-out:
assumes finite Y and ∀ y ∈ Y . finite (f y) and ∀ y ∈ Y . f y 6= {} and Y 6= {}
shows Max (

⋃
y∈Y . {Max (f y)}) = Max (

⋃
y∈Y . f y) (is ?M1=-)

proof −
have ∀ y ∈ Y . ∀ x ∈ f y. Max (f y) ≥ x using assms(2) by simp
moreover have ∀ x ∈ (

⋃
y∈Y . {Max (f y)}). ?M1 ≥ x using assms(1) by simp

moreover have M1-in: ?M1 ∈ (
⋃

y∈Y . {Max (f y)})
using assms(1 ,4) Max-in[OF finite-fMax-union] by auto

ultimately have ∀ y ∈ Y . ∀ x ∈ f y. ?M1 ≥ x by force
then have ∀ x ∈ (

⋃
y∈Y . f y). ?M1 ≥ x by blast

moreover have ?M1 ∈ (
⋃

y∈Y . (f y)) using M1-in assms(2−4) by force
ultimately show ?thesis using assms(1 ,2) Max-eqI finite-UN-I by metis

qed

lemma Max-union-Max-out-insert:
[[finite Y ; ∀ y ∈ Y . finite (f y); ∀ y ∈ Y . f y 6= {}; Y 6= {}]]
=⇒ Max (insert x (

⋃
y∈Y . {Max (f y)})) = Max (insert x (

⋃
y∈Y . f y))

using Max-union-Max-out[of Y f] by simp

lemma mdeg-alt2 : max-deg t = Max {fcard (sucs x)|x. is-subtree x t}
proof(induction t rule: max-deg.induct)

169

case (1 r xs)
then show ?case
proof(cases xs = {||})

case False
let ?f = (λt1 . {fcard (sucs x)|x. is-subtree x t1})
let ?f ′ = (λt1 . (λx. fcard (sucs x)) ‘ {x. is-subtree x t1})
have fin: finite (fst ‘ fset xs) by simp
have f-eq1 : ?f = ?f ′ by blast
then have f-eq: ∀ y∈fst ‘ fset xs. (?f y = ?f ′ y) by blast
moreover have ∀ y∈fst ‘ fset xs. finite (?f ′ y) using finite-subtrees by blast
ultimately have fin ′: ∀ y∈fst ‘ fset xs. finite (?f y) by simp
have nempty: ∀ y∈fst ‘ fset xs. {fcard (sucs x) |x. is-subtree x y} 6= {}

using self-subtree by blast
have max-deg ‘ fst ‘ fset xs = (

⋃
t1∈fst ‘ fset xs. {Max (?f t1)})

using 1 .IH [OF False] by auto
then have max-deg (Node r xs) = Max (insert (fcard xs) (

⋃
t1∈fst ‘ fset xs.

{Max (?f t1)}))
using mdeg-alt[of r xs] by simp

also have . . . = Max (insert (fcard xs) (
⋃

t1∈fst ‘ fset xs. ?f t1))
using Max-union-Max-out-insert[OF fin fin ′ nempty] by fastforce

also have . . . = Max (insert (fcard xs) ((
⋃

t1∈fst ‘ fset xs. ?f ′ t1)))
using f-eq by simp

also have . . .
= Max (insert (fcard xs) ((

⋃
t1∈fst ‘ fset xs. fcard ‘ sucs ‘ {x. is-subtree

x t1})))
using image-image by metis

also have . . .
= Max (insert (fcard xs) (fcard ‘ sucs ‘ (

⋃
t1∈fst ‘ fset xs. {x. is-subtree

x t1})))
by (metis image-UN)

also have . . .
= Max (fcard ‘ sucs ‘ (insert (Node r xs) (

⋃
t1∈fst ‘ fset xs. {x. is-subtree

x t1})))
by force

also have . . . = Max (fcard ‘ sucs ‘ {x. is-subtree x (Node r xs)})
unfolding subtrees-insert-union by blast

finally show ?thesis using f-eq1 image-image by metis
qed(simp)

qed

lemma mdeg-singleton: max-deg (Node r {|(t1 ,e1)|}) = max (max-deg t1) (fcard
{|(t1 ,e1)|})

by simp

lemma mdeg-ge-child-aux: (t1 ,e1) ∈ fset xs =⇒ max-deg t1 ≤ Max (max-deg ‘
fst ‘ fset xs)

using Max-ge[OF mdeg-img-fin] by fastforce

lemma mdeg-ge-child: (t1 ,e1) ∈ fset xs =⇒ max-deg t1 ≤ max-deg (Node r xs)

170

using mdeg-ge-child-aux by fastforce

lemma mdeg-ge-child ′: t1 ∈ fst ‘ fset xs =⇒ max-deg t1 ≤ max-deg (Node r xs)
using mdeg-ge-child[of t1] by force

lemma mdeg-ge-sub: is-subtree t1 t2 =⇒ max-deg t1 ≤ max-deg t2
proof(induction t2)

case (Node r xs)
show ?case
proof(cases Node r xs=t1)

case False
then obtain x e1 where x-def : (x,e1) ∈ fset xs is-subtree t1 x using Node.prems(1)

by auto
then have max-deg t1 ≤ max-deg x using Node.IH by force
then show ?thesis using mdeg-ge-child[OF x-def (1)] by simp

qed(simp)
qed

lemma mdeg-gt-0-if-nempty: xs 6= {||} =⇒ max-deg (Node r xs) > 0
using fcard-fempty by auto

corollary empty-if-mdeg-0 : max-deg (Node r xs) = 0 =⇒ xs = {||}
using mdeg-gt-0-if-nempty by (metis less-numeral-extra(3))

lemma nempty-if-mdeg-n0 : max-deg (Node r xs) 6= 0 =⇒ xs 6= {||}
by auto

corollary empty-iff-mdeg-0 : max-deg (Node r xs) = 0 ←→ xs = {||}
using nempty-if-mdeg-n0 empty-if-mdeg-0 by auto

lemma mdeg-root: max-deg (Node r xs) = max-deg (Node v xs)
by simp

lemma mdeg-ge-fcard: fcard xs ≤ max-deg (Node r xs)
by simp

lemma mdeg-fcard-if-fcard-ge-child:
∀ (t,e) ∈ fset xs. max-deg t ≤ fcard xs =⇒ max-deg (Node r xs) = fcard xs
using mdeg-child-if-gt-fcard[of xs r] mdeg-ge-fcard[of xs r] by fastforce

lemma mdeg-fcard-if-fcard-ge-child ′:
∀ t ∈ fst ‘ fset xs. max-deg t ≤ fcard xs =⇒ max-deg (Node r xs) = fcard xs
using mdeg-fcard-if-fcard-ge-child[of xs r] by fastforce

lemma fcard-single-1 : fcard {|x|} = 1
by (simp add: fcard-finsert)

lemma fcard-single-1-iff : fcard xs = 1 ←→ (∃ x. xs = {|x|})
by (metis all-not-fin-conv bot.extremum fcard-seteq fcard-single-1

171

finsert-fsubset le-numeral-extra(4))

lemma fcard-not0-if-elem: ∃ x. x ∈ fset xs =⇒ fcard xs 6= 0
by auto

lemma fcard1-if-le1-elem: [[fcard xs ≤ 1 ; x ∈ fset xs]] =⇒ fcard xs = 1
using fcard-not0-if-elem[of xs] by fastforce

lemma singleton-if-fcard-le1-elem: [[fcard xs ≤ 1 ; x ∈ fset xs]] =⇒ xs = {|x|}
using fcard-single-1-iff [of xs] fcard1-if-le1-elem by fastforce

lemma singleton-if-mdeg-le1-elem: [[max-deg (Node r xs) ≤ 1 ; x ∈ fset xs]] =⇒ xs
= {|x|}

using singleton-if-fcard-le1-elem[of xs] mdeg-ge-fcard[of xs] by simp

lemma singleton-if-mdeg-le1-elem-suc: [[max-deg t ≤ 1 ; x ∈ fset (sucs t)]] =⇒ sucs
t = {|x|}

using singleton-if-mdeg-le1-elem[of root t sucs t] by simp

lemma fcard0-if-le1-not-singleton: [[∀ x. xs 6= {|x|}; fcard xs ≤ 1]] =⇒ fcard xs =
0

using fcard-single-1-iff [of xs] by fastforce

lemma empty-fset-if-fcard-le1-not-singleton: [[∀ x. xs 6= {|x|}; fcard xs ≤ 1]] =⇒ xs
= {||}

using fcard0-if-le1-not-singleton by auto

lemma fcard0-if-mdeg-le1-not-single: [[∀ x. xs 6= {|x|}; max-deg (Node r xs) ≤ 1]]
=⇒ fcard xs = 0

using fcard0-if-le1-not-singleton[of xs] mdeg-ge-fcard[of xs] by simp

lemma empty-fset-if-mdeg-le1-not-single: [[∀ x. xs 6= {|x|}; max-deg (Node r xs) ≤
1]] =⇒ xs = {||}

using fcard0-if-mdeg-le1-not-single by auto

lemma fcard0-if-mdeg-le1-not-single-suc:
[[∀ x. sucs t 6= {|x|}; max-deg t ≤ 1]] =⇒ fcard (sucs t) = 0
using fcard0-if-mdeg-le1-not-single[of sucs t root t] by simp

lemma empty-fset-if-mdeg-le1-not-single-suc: [[∀ x. sucs t 6= {|x|}; max-deg t ≤ 1]]
=⇒ sucs t = {||}

using fcard0-if-mdeg-le1-not-single-suc by auto

lemma mdeg-1-singleton:
assumes max-deg (Node r xs) = 1
shows ∃ x. xs = {|x|}

proof −
obtain x where x-def : x |∈| xs

using assms by (metis all-not-fin-conv empty-iff-mdeg-0 zero-neq-one)

172

moreover have fcard xs ≤ 1 using assms mdeg-ge-fcard by metis
ultimately have xs = {|x|}
by (metis order-bot-class.bot.not-eq-extremum diff-Suc-1 diff-is-0-eq ′ fcard-finsert-disjoint

less-nat-zero-code mk-disjoint-finsert pfsubset-fcard-mono)
then show ?thesis by simp

qed

lemma subtree-child-if-dvert-notr-mdeg-le1 :
assumes max-deg (Node r xs) ≤ 1 and v 6= r and v ∈ dverts (Node r xs)
shows ∃ r ′ e zs. is-subtree (Node r ′ {|(Node v zs,e)|}) (Node r xs)

proof −
obtain r ′ ys zs where zs-def : is-subtree (Node r ′ ys) (Node r xs) Node v zs ∈

fst ‘ fset ys
using subtree-child-if-dvert-notroot[OF assms(2 ,3)] by blast

have 0 : max-deg (Node r ′ ys) ≤ 1 using mdeg-ge-sub[OF zs-def (1)] assms(1)
by simp

obtain e where {|(Node v zs,e)|} = ys
using singleton-if-mdeg-le1-elem[OF 0] zs-def (2) by fastforce

then show ?thesis using zs-def (1) by blast
qed

lemma subtree-child-if-dvert-notroot-mdeg-le1 :
[[max-deg t ≤ 1 ; v 6= root t; v ∈ dverts t]]
=⇒ ∃ r ′ e zs. is-subtree (Node r ′ {|(Node v zs,e)|}) t

using subtree-child-if-dvert-notr-mdeg-le1 [of root t sucs t] by simp

lemma mdeg-child-sucs-eq-if-gt1 :
assumes max-deg (Node r {|(t,e)|}) > 1
shows max-deg (Node r {|(t,e)|}) = max-deg (Node v (sucs t))

proof −
have fcard {|(t,e)|} = 1 using fcard-single-1 by fast
then have max-deg (Node r {|(t,e)|}) = max-deg t using assms by simp
then show ?thesis using mdeg-root[of root t sucs t v] dtree.exhaust-sel[of t] by

argo
qed

lemma mdeg-child-sucs-le: max-deg (Node v (sucs t)) ≤ max-deg (Node r {|(t,e)|})
using mdeg-root[of v sucs t root t] by simp

lemma mdeg-eq-child-if-singleton-gt1 :
max-deg (Node r {|(t1 ,e1)|}) > 1 =⇒ max-deg (Node r {|(t1 ,e1)|}) = max-deg

t1
using mdeg-singleton[of r t1] by (auto simp: fcard-single-1 max-def)

lemma fcard-gt1-if-mdeg-gt-child:
assumes max-deg (Node r xs) > n and t1 ∈ fst ‘ fset xs and max-deg t1 ≤ n

and n 6=0
shows fcard xs > 1

proof(rule ccontr)

173

assume ¬fcard xs > 1
then have fcard xs ≤ 1 by simp
then have ∃ e1 . xs = {|(t1 ,e1)|} using assms(2) singleton-if-fcard-le1-elem by

fastforce
then show False using mdeg-singleton[of r t1] assms(1 ,3 ,4) by (auto simp:

fcard-single-1)
qed

lemma fcard-gt1-if-mdeg-gt-suc:
[[max-deg t2 > n; t1 ∈ fst ‘ fset (sucs t2); max-deg t1 ≤ n; n 6=0]] =⇒ fcard (sucs

t2) > 1
using fcard-gt1-if-mdeg-gt-child[of n root t2 sucs t2] by simp

lemma fcard-gt1-if-mdeg-gt-child1 :
[[max-deg (Node r xs) > 1 ; t1 ∈ fst ‘ fset xs; max-deg t1 ≤ 1]] =⇒ fcard xs > 1
using fcard-gt1-if-mdeg-gt-child by auto

lemma fcard-gt1-if-mdeg-gt-suc1 :
[[max-deg t2 > 1 ; t1 ∈ fst ‘ fset (sucs t2); max-deg t1 ≤ 1]] =⇒ fcard (sucs t2)

> 1
using fcard-gt1-if-mdeg-gt-suc by blast

lemma fcard-lt-non-inj-f :
[[f a = f b; a ∈ fset xs; b ∈ fset xs; a 6=b]] =⇒ fcard (f |‘| xs) < fcard xs

proof(induction xs)
case (insert x xs)
then consider a ∈ fset xs b ∈ fset xs | a = x b ∈ fset xs | a ∈ fset xs b = x

by auto
then show ?case
proof(cases)

case 1
then show ?thesis

using insert.IH insert.prems(1 ,4) by (simp add: fcard-finsert-if)
next

case 2
then show ?thesis
proof(cases fcard (f |‘| xs) = fcard xs)

case True
then show ?thesis

using 2 insert.hyps insert.prems(1)
by (metis fcard-finsert-disjoint fimage-finsert finsert-fimage lessI)

next
case False
then have fcard (f |‘| xs) ≤ fcard xs using fcard-image-le by auto
then have fcard (f |‘| xs) < fcard xs using False by simp
then show ?thesis
using 2 insert.prems(1) fcard-image-le fcard-mono fimage-finsert less-le-not-le

by (metis order-class.order .not-eq-order-implies-strict finsert-fimage fsub-
set-finsertI)

174

qed
next

case 3
then show ?thesis
proof(cases fcard (f |‘| xs) = fcard xs)

case True
then show ?thesis

using 3 insert.hyps insert.prems(1)
by (metis fcard-finsert-disjoint fimage-finsert finsert-fimage lessI)

next
case False
then have fcard (f |‘| xs) ≤ fcard xs using fcard-image-le by auto
then have fcard (f |‘| xs) < fcard xs using False by simp
then show ?thesis
using 3 insert.prems(1) fcard-image-le fcard-mono fimage-finsert less-le-not-le

by (metis order-class.order .not-eq-order-implies-strict finsert-fimage fsub-
set-finsertI)

qed
qed

qed (simp)

lemma mdeg-img-le:
assumes ∀ (t,e) ∈ fset xs. max-deg (fst (f (t,e))) ≤ max-deg t
shows max-deg (Node r (f |‘| xs)) ≤ max-deg (Node r xs)

proof(cases max-deg (Node r (f |‘| xs)) = fcard (f |‘| xs))
case True
then show ?thesis using fcard-image-le[of f xs] by auto

next
case False
then have max-deg (Node r (f |‘| xs)) > fcard (f |‘| xs)

using mdeg-ge-fcard[of f |‘| xs] by simp
then obtain t1 e1 where t1-def :

(t1 ,e1) ∈ fset (f |‘| xs) max-deg t1 = max-deg (Node r (f |‘| xs))
using mdeg-child-if-gt-fcard[of f |‘| xs r]
by (metis (no-types, opaque-lifting) fst-conv imageE surj-pair)

then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs f (t2 ,e2) = (t1 ,e1) by auto
then have max-deg t2 ≥ max-deg (Node r (f |‘| xs)) using t1-def (2) assms by

fastforce
then show ?thesis using mdeg-ge-child[OF t2-def (1)] by simp

qed

lemma mdeg-img-le ′:
assumes ∀ (t,e) ∈ fset xs. max-deg (f t) ≤ max-deg t
shows max-deg (Node r ((λ(t,e). (f t, e)) |‘| xs)) ≤ max-deg (Node r xs)
using mdeg-img-le[of xs λ(t,e). (f t, e)] assms by simp

lemma mdeg-le-if-fcard-and-child-le:
[[∀ (t,e) ∈ fset xs. max-deg t ≤ m; fcard xs ≤ m]] =⇒ max-deg (Node r xs) ≤ m
using mdeg-ge-fcard mdeg-child-if-gt-fcard[of xs r] by fastforce

175

lemma mdeg-child-if-child-max:
[[∀ (t,e) ∈ fset xs. max-deg t ≤ max-deg t1 ; fcard xs ≤ max-deg t1 ; (t1 ,e1) ∈ fset

xs]]
=⇒ max-deg (Node r xs) = max-deg t1

using mdeg-le-if-fcard-and-child-le[of xs max-deg t1] mdeg-ge-child[of t1 e1 xs]
by simp

corollary mdeg-child-if-child-max ′:
[[∀ (t,e) ∈ fset xs. max-deg t ≤ max-deg t1 ; fcard xs ≤ max-deg t1 ; t1 ∈ fst ‘ fset

xs]]
=⇒ max-deg (Node r xs) = max-deg t1

using mdeg-child-if-child-max[of xs t1] by force

lemma mdeg-img-eq:
assumes ∀ (t,e) ∈ fset xs. max-deg (fst (f (t,e))) = max-deg t

and fcard (f |‘| xs) = fcard xs
shows max-deg (Node r (f |‘| xs)) = max-deg (Node r xs)

proof(cases max-deg (Node r (f |‘| xs)) = fcard (f |‘| xs))
case True
then have ∀ (t,e) ∈ fset (f |‘| xs). max-deg t ≤ fcard (f |‘| xs)

using mdeg-ge-child
by (metis (mono-tags, lifting) case-prodI2)

then have ∀ (t,e) ∈ fset xs. max-deg t ≤ fcard xs using assms by fastforce
then have max-deg (Node r xs) = fcard xs using mdeg-fcard-if-fcard-ge-child by

fast
then show ?thesis using True assms(2) by simp

next
case False
then have max-deg (Node r (f |‘| xs)) > fcard (f |‘| xs)

using mdeg-ge-fcard[of f |‘| xs] by simp
then obtain t1 e1 where t1-def :

(t1 ,e1) ∈ fset (f |‘| xs) max-deg t1 = max-deg (Node r (f |‘| xs))
using mdeg-child-if-gt-fcard[of f |‘| xs r]
by (metis (no-types, opaque-lifting) fst-conv imageE old.prod.exhaust)

then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs f (t2 ,e2) = (t1 ,e1) by auto
then have mdeg-t21 : max-deg t2 = max-deg t1 using assms(1) by auto
have ∀ (t3 ,e3) ∈ fset (f |‘| xs). max-deg t3 ≤ max-deg t1

using t1-def (2) mdeg-ge-child[where xs=f |‘| xs]
by (metis (no-types, lifting) case-prodI2)

then have ∀ (t3 ,e3) ∈ fset xs. max-deg (fst (f (t3 ,e3))) ≤ max-deg t1 by auto
then have ∀ (t3 ,e3) ∈ fset xs. max-deg t3 ≤ max-deg t2 using assms(1) mdeg-t21

by fastforce
moreover have max-deg t2 ≥ fcard xs using t1-def (2) assms(2) mdeg-t21 by

simp
ultimately have max-deg (Node r xs) = max-deg t2

using t2-def (1) mdeg-child-if-child-max by metis
then show ?thesis using t1-def (2) mdeg-t21 by simp

qed

176

lemma num-leaves-1-if-mdeg-1 : max-deg t ≤ 1 =⇒ num-leaves t = 1
proof(induction t)

case (Node r xs)
then show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then show ?thesis using empty-iff-mdeg-0 by auto

next
case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 using Node.prems mdeg-ge-child by fastforce
then show ?thesis using Node.IH t-def (1) by simp

qed
qed

lemma num-leaves-ge1 : num-leaves t ≥ 1
proof(induction t)

case (Node r xs)
show ?case
proof(cases xs = {||})

case False
then obtain t e where t-def : (t,e) ∈ fset xs by fast
then have 1 ≤ num-leaves t using Node by simp
then show ?thesis

using fset-sum-ge-elem[OF finite-fset[of xs] t-def , of λ(t,e). num-leaves t] by
auto

qed (simp)
qed

lemma num-leaves-ge-card: num-leaves (Node r xs) ≥ fcard xs
proof(cases xs = {||})

case False
have fcard xs = (

∑
x∈ fset xs. 1) using fcard.rep-eq by auto

also have . . . ≤ (
∑

x∈ fset xs. num-leaves (fst x)) using num-leaves-ge1 sum-mono
by metis

finally show ?thesis using False by (simp add: fst-def prod.case-distrib)
qed (simp add: fcard-fempty)

lemma num-leaves-root: num-leaves (Node r xs) = num-leaves (Node r ′ xs)
by simp

lemma num-leaves-singleton: num-leaves (Node r {|(t,e)|}) = num-leaves t
by simp

177

7.5 List Conversions
function dtree-to-list :: (′a, ′b) dtree ⇒ (′a× ′b) list where

dtree-to-list (Node r {|(t,e)|}) = (root t,e) # dtree-to-list t
| ∀ x. xs 6= {|x|} =⇒ dtree-to-list (Node r xs) = []

by (metis darcs-mset.cases surj-pair) auto
termination by lexicographic-order

fun dtree-from-list :: ′a ⇒ (′a× ′b) list ⇒ (′a, ′b) dtree where
dtree-from-list r [] = Node r {||}
| dtree-from-list r ((v,e)#xs) = Node r {|(dtree-from-list v xs, e)|}

fun wf-list-arcs :: (′a× ′b) list ⇒ bool where
wf-list-arcs [] = True
| wf-list-arcs ((v,e)#xs) = (e /∈ snd ‘ set xs ∧ wf-list-arcs xs)

fun wf-list-verts :: (′a× ′b) list ⇒ bool where
wf-list-verts [] = True
| wf-list-verts ((v,e)#xs) = (v /∈ fst ‘ set xs ∧ wf-list-verts xs)

lemma dtree-to-list-sub-dverts-ins:
insert (root t) (fst ‘ set (dtree-to-list t)) ⊆ dverts t

proof(induction t)
case (Node r xs)
show ?case
proof(cases ∀ x. xs 6= {|x|})

case False
then obtain t e where t-def : xs = {|(t,e)|}

using mdeg-1-singleton by fastforce
then show ?thesis using Node.IH by fastforce

qed (auto)
qed

lemma dtree-to-list-eq-dverts-ins:
max-deg t ≤ 1 =⇒ insert (root t) (fst ‘ set (dtree-to-list t)) = dverts t

proof(induction t)
case (Node r xs)
show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then have xs = {||} using empty-iff-mdeg-0 by auto
moreover from this have ∀ x. xs 6= {|x|} by blast
ultimately show ?thesis by simp

next
case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 using Node.prems mdeg-ge-child by fastforce
then have insert (root t) (fst ‘ set (dtree-to-list t)) = dverts t

178

using Node.IH t-def (2) by auto
then show ?thesis using Node.prems(1) t-def (1) by simp

qed
qed

lemma dtree-to-list-eq-dverts-sucs:
max-deg t ≤ 1 =⇒ fst ‘ set (dtree-to-list t) = (

⋃
x ∈ fset (sucs t). dverts (fst x))

proof(induction t)
case (Node r xs)
show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then have xs = {||} using empty-iff-mdeg-0 by auto
moreover from this have ∀ x. xs 6= {|x|} by blast
ultimately show ?thesis by simp

next
case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 using Node.prems mdeg-ge-child by fastforce
then have fst ‘ set (dtree-to-list t) = (

⋃
x ∈ fset (sucs t). dverts (fst x))

using Node.IH t-def (2) by auto
moreover from this have dverts t = insert (root t) (

⋃
x ∈ fset (sucs t). dverts

(fst x))
using ‹max-deg t ≤ 1 › dtree-to-list-eq-dverts-ins by fastforce

ultimately show ?thesis using Node.prems(1) t-def (1) by force
qed

qed

lemma dtree-to-list-sub-dverts:
wf-dverts t =⇒ fst ‘ set (dtree-to-list t) ⊆ dverts t − {root t}

proof(induction t)
case (Node r xs)
show ?case
proof(cases ∀ x. xs 6= {|x|})

case False
then obtain t e where t-def : xs = {|(t,e)|}

using mdeg-1-singleton by fastforce
then have wf-dverts t using Node.prems mdeg-ge-child by fastforce

then have fst ‘ set (dtree-to-list t) ⊆ dverts t − {root t} using Node.IH t-def (1)
by auto

then have fst ‘ set (dtree-to-list (Node r xs)) ⊆ dverts t
using t-def (1) dtree.set-sel(1) by auto

then show ?thesis using Node.prems(1) t-def (1) by (simp add: wf-dverts-iff-dverts ′)
qed (auto)

qed

lemma dtree-to-list-eq-dverts:

179

[[wf-dverts t; max-deg t ≤ 1]] =⇒ fst ‘ set (dtree-to-list t) = dverts t − {root t}
proof(induction t)

case (Node r xs)
show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then have xs = {||} using empty-iff-mdeg-0 by auto
moreover from this have ∀ x. xs 6= {|x|} by blast
ultimately show ?thesis by simp

next
case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 ∧ wf-dverts t using Node.prems mdeg-ge-child by

fastforce
then have fst ‘ set (dtree-to-list t) = dverts t − {root t} using Node.IH t-def (2)

by auto
then have fst ‘ set (dtree-to-list (Node r xs)) = dverts t

using t-def (1) dtree.set-sel(1) by auto
then show ?thesis using Node.prems(1) t-def (1) by (simp add: wf-dverts-iff-dverts ′)

qed
qed

lemma dtree-to-list-eq-dverts-single:
[[max-deg t ≤ 1 ; sucs t = {|(t1 ,e1)|}]] =⇒ fst ‘ set (dtree-to-list t) = dverts t1
by (simp add: dtree-to-list-eq-dverts-sucs)

lemma dtree-to-list-sub-darcs: snd ‘ set (dtree-to-list t) ⊆ darcs t
proof(induction t)

case (Node r xs)
show ?case
proof(cases ∀ x. xs 6= {|x|})

case False
then obtain t e where xs = {|(t,e)|}

using mdeg-1-singleton by fastforce
then show ?thesis using Node.IH by fastforce

qed (auto)
qed

lemma dtree-to-list-eq-darcs: max-deg t ≤ 1 =⇒ snd ‘ set (dtree-to-list t) = darcs
t
proof(induction t)

case (Node r xs)
show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then have xs = {||} using empty-iff-mdeg-0 by auto
moreover from this have ∀ x. xs 6= {|x|} by blast

180

ultimately show ?thesis by simp
next

case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 using Node.prems mdeg-ge-child by fastforce
then have snd ‘ set (dtree-to-list t) = darcs t using Node.IH t-def (2) by auto
then show ?thesis using t-def (1) by simp

qed
qed

lemma dtree-from-list-eq-dverts: dverts (dtree-from-list r xs) = insert r (fst ‘ set
xs)

by(induction xs arbitrary: r) force+

lemma dtree-from-list-eq-darcs: darcs (dtree-from-list r xs) = snd ‘ set xs
by(induction xs arbitrary: r) force+

lemma dtree-from-list-root-r [simp]: root (dtree-from-list r xs) = r
using dtree.sel(1) dtree-from-list.elims by metis

lemma dtree-from-list-v-eq-r :
Node r xs = dtree-from-list v ys =⇒ r = v
using dtree.sel(1)[of r xs] by simp

lemma dtree-from-list-fcard0-empty: fcard (sucs (dtree-from-list r [])) = 0
by simp

lemma dtree-from-list-fcard0-iff-empty: fcard (sucs (dtree-from-list r xs)) = 0 ←→
xs = []

by(induction xs) auto

lemma dtree-from-list-fcard1-iff-nempty: fcard (sucs (dtree-from-list r xs)) = 1
←→ xs 6= []

by(induction xs) (auto simp: fcard-single-1 fcard-fempty)

lemma dtree-from-list-fcard-le1 : fcard (sucs (dtree-from-list r xs)) ≤ 1
by(induction xs) (auto simp: fcard-single-1 fcard-fempty)

lemma dtree-from-empty-deg-0 : max-deg (dtree-from-list r []) = 0
by simp

lemma dtree-from-list-deg-le-1 : max-deg (dtree-from-list r xs) ≤ 1
proof(induction xs arbitrary: r)

case Nil
have max-deg (dtree-from-list r []) = 0 by simp
also have . . . ≤ 1 by blast
finally show ?case by blast

181

next
case (Cons x xs)
obtain v e where v-def : x = (v,e) by force
let ?xs = {|(dtree-from-list v xs, e)|}
have dtree-from-list r (x#xs) = Node r ?xs by (simp add: v-def)
moreover have max-deg (dtree-from-list v xs) ≤ 1 using Cons by simp
moreover have max-deg (Node r ?xs) = max (max-deg (dtree-from-list v xs))

(fcard ?xs)
using mdeg-singleton by fast

ultimately show ?case by (simp add: fcard-finsert-if max-def)
qed

lemma dtree-from-list-deg-1 : xs 6= [] ←→ max-deg (dtree-from-list r xs) = 1
proof (cases xs)

case (Cons x xs)
obtain v e where v-def : x = (v,e) by force
let ?xs = {|(dtree-from-list v xs, e)|}
have dtree-from-list r (x#xs) = Node r ?xs by (simp add: v-def)
moreover have max-deg (dtree-from-list v xs) ≤ 1 using dtree-from-list-deg-le-1

by fast
moreover have max-deg (Node r ?xs) = max (max-deg (dtree-from-list v xs))

(fcard ?xs)
using mdeg-singleton by fast

ultimately show ?thesis using Cons by (simp add: fcard-finsert-if max-def)
qed (metis dtree-from-empty-deg-0 zero-neq-one)

lemma dtree-from-list-singleton: xs 6= [] =⇒ ∃ t e. dtree-from-list r xs = Node r
{|(t,e)|}

using dtree-from-list.elims[of r xs] by fastforce

lemma dtree-from-to-list-id: max-deg t ≤ 1 =⇒ dtree-from-list (root t) (dtree-to-list
t) = t
proof(induction t)

case (Node r xs)
then show ?case
proof(cases max-deg (Node r xs) = 0)

case True
then have xs = {||} using empty-iff-mdeg-0 by auto
moreover from this have ∀ x. xs 6= {|x|} by blast
ultimately show ?thesis using Node.prems by simp

next
case False
then have max-deg (Node r xs) = 1 using Node.prems by simp
then obtain t e where t-def : xs = {|(t,e)|} (t,e) ∈ fset xs

using mdeg-1-singleton by fastforce
then have max-deg t ≤ 1 using Node.prems mdeg-ge-child by fastforce
then show ?thesis using Node.IH t-def (1) by simp

qed
qed

182

lemma dtree-to-from-list-id: dtree-to-list (dtree-from-list r xs) = xs
proof(induction xs arbitrary: r)

case Nil
then show ?case
using dtree-from-list-deg-1 dtree-from-list-deg-le-1 dtree-from-to-list-id by metis

next
case (Cons x xs)
obtain v e where v-def : x = (v,e) by force
then have dtree-to-list (dtree-from-list r (x#xs)) = (v,e)#dtree-to-list (dtree-from-list

v xs)
by (metis dtree-from-list.elims dtree-to-list.simps(1) dtree.sel(1) dtree-from-list.simps(2))

then show ?case by (simp add: v-def Cons)
qed

lemma dtree-from-list-eq-singleton-hd:
Node r0 {|(t0 ,e0)|} = dtree-from-list v1 ys =⇒ (∃ xs. (root t0 , e0) # xs = ys)
using dtree-to-list.simps(1)[of r0 t0 e0] dtree-to-from-list-id[of v1 ys] by simp

lemma dtree-from-list-eq-singleton:
Node r0 {|(t0 ,e0)|} = dtree-from-list v1 ys =⇒ r0 = v1 ∧ (∃ xs. (root t0 , e0) #

xs = ys)
using dtree-from-list-eq-singleton-hd by fastforce

lemma dtree-from-list-uneq-sequence:
[[is-subtree (Node r0 {|(t0 ,e0)|}) (dtree-from-list v1 ys);

Node r0 {|(t0 ,e0)|} 6= dtree-from-list v1 ys]]
=⇒ ∃ e as bs. as @ (r0 ,e) # (root t0 , e0) # bs = ys

proof(induction v1 ys rule: dtree-from-list.induct)
case (2 r v e xs)
then show ?case
proof(cases Node r0 {|(t0 ,e0)|} = dtree-from-list v xs)

case True
then show ?thesis using dtree-from-list-eq-singleton by fast

next
case False
then obtain e1 as bs where as @ (r0 , e1) # (root t0 , e0) # bs = xs using

2 by auto
then have ((v,e)#as) @ (r0 , e1) # (root t0 , e0) # bs = (v, e) # xs by simp
then show ?thesis by blast

qed
qed(simp)

lemma dtree-from-list-sequence:
[[is-subtree (Node r0 {|(t0 ,e0)|}) (dtree-from-list v1 ys)]]
=⇒ ∃ e as bs. as @ (r0 ,e) # (root t0 , e0) # bs = ((v1 ,e1)#ys)

using dtree-from-list-uneq-sequence[of r0 t0 e0] dtree-from-list-eq-singleton ap-
pend-Cons by fast

183

lemma dtree-from-list-eq-empty:
Node r {||} = dtree-from-list v ys =⇒ r = v ∧ ys = []
using dtree-to-from-list-id dtree-from-list-v-eq-r dtree-from-list.simps(1) by metis

lemma dtree-from-list-sucs-cases:
Node r xs = dtree-from-list v ys =⇒ xs = {||} ∨ (∃ x. xs = {|x|})
using dtree.inject dtree-from-list.simps(1) dtree-to-from-list-id dtree-to-list.simps(2)

by metis

lemma dtree-from-list-uneq-sequence-xs:
strict-subtree (Node r0 xs0) (dtree-from-list v1 ys)
=⇒ ∃ e as bs. as @ (r0 ,e) # bs = ys ∧ Node r0 xs0 = dtree-from-list r0 bs

proof(induction v1 ys rule: dtree-from-list.induct)
case (2 r v e xs)
then show ?case
proof(cases Node r0 xs0 = dtree-from-list v xs)

case True
then show ?thesis using dtree-from-list-root-r dtree.sel(1)[of r0 xs0] by fast-

force
next

case False
then obtain e1 as bs where 0 : as @ (r0 ,e1) # bs = xs Node r0 xs0 =

dtree-from-list r0 bs
using 2 unfolding strict-subtree-def by auto

then have ((v,e)#as) @ (r0 ,e1) # bs = (v,e) # xs by simp
then show ?thesis using 0 (2) by blast

qed
qed(simp add: strict-subtree-def)

lemma dtree-from-list-sequence-xs:
[[is-subtree (Node r xs) (dtree-from-list v1 ys)]]
=⇒ ∃ e as bs. as @ (r ,e) # bs = ((v1 ,e1)#ys) ∧ Node r xs = dtree-from-list r

bs
using dtree-from-list-uneq-sequence-xs[of r xs] dtree-from-list-v-eq-r strict-subtree-def
by (fast intro!: append-Cons)

lemma dtree-from-list-sequence-dverts:
[[is-subtree (Node r xs) (dtree-from-list v1 ys)]]
=⇒ ∃ e as bs. as @ (r ,e) # bs = ((v1 ,e1)#ys) ∧ dverts (Node r xs) = insert r

(fst ‘ set bs)
using dtree-from-list-sequence-xs[of r xs v1 ys e1] dtree-from-list-eq-dverts by

metis

lemma dtree-from-list-dverts-subset-set:
set bs ⊆ set ds =⇒ dverts (dtree-from-list r bs) ⊆ dverts (dtree-from-list r ds)
by (auto simp: dtree-from-list-eq-dverts)

lemma wf-darcs ′-iff-wf-list-arcs: wf-list-arcs xs ←→ wf-darcs ′ (dtree-from-list r xs)
by(induction xs arbitrary: r rule: wf-list-arcs.induct) (auto simp: dtree-from-list-eq-darcs)

184

lemma wf-darcs-iff-wf-list-arcs: wf-list-arcs xs ←→ wf-darcs (dtree-from-list r xs)
using wf-darcs ′-iff-wf-list-arcs wf-darcs-iff-darcs ′ by fast

lemma wf-dverts-iff-wf-list-verts:
r /∈ fst ‘ set xs ∧ wf-list-verts xs ←→ wf-dverts (dtree-from-list r xs)
by (induction xs arbitrary: r rule: wf-list-verts.induct)
(auto simp: dtree-from-list-eq-dverts wf-dverts-iff-dverts ′)

theorem wf-dtree-iff-wf-list:
wf-list-arcs xs ∧ r /∈ fst ‘ set xs ∧ wf-list-verts xs ←→ wf-dtree (dtree-from-list r

xs)
using wf-darcs-iff-wf-list-arcs wf-dverts-iff-wf-list-verts unfolding wf-dtree-def

by fast

lemma wf-list-arcs-if-wf-darcs: wf-darcs t =⇒ wf-list-arcs (dtree-to-list t)
proof(induction t)

case (Node r xs)
then show ?case
proof(cases ∀ x. xs 6= {|x|})

case True
then show ?thesis using dtree-to-list.simps(2) by simp

next
case False
then obtain t1 e1 where xs = {|(t1 ,e1)|} by auto
then show ?thesis

using Node dtree-to-list-sub-darcs unfolding wf-darcs-iff-darcs ′ by fastforce
qed

qed

lemma wf-list-verts-if-wf-dverts: wf-dverts t =⇒ wf-list-verts (dtree-to-list t)
proof(induction t)

case (Node r xs)
then show ?case
proof(cases ∀ x. xs 6= {|x|})

case True
then show ?thesis using dtree-to-list.simps(2) by simp

next
case False
then obtain t1 e1 where xs = {|(t1 ,e1)|} by auto

then show ?thesis using Node dtree-to-list-sub-dverts by (fastforce simp:
wf-dverts-iff-dverts ′)

qed
qed

lemma distinct-if-wf-list-arcs: wf-list-arcs xs =⇒ distinct xs
by (induction xs) force+

lemma distinct-if-wf-list-verts: wf-list-verts xs =⇒ distinct xs

185

by (induction xs) force+

lemma wf-list-arcs-alt: wf-list-arcs xs ←→ distinct (map snd xs)
by (induction xs) force+

lemma wf-list-verts-alt: wf-list-verts xs ←→ distinct (map fst xs)
by (induction xs) force+

lemma subtree-from-list-split-eq-if-wfverts:
assumes wf-list-verts (as@(r ,e)#bs)

and v /∈ fst ‘ set (as@(r ,e)#bs)
and is-subtree (Node r xs) (dtree-from-list v (as@(r ,e)#bs))

shows Node r xs = dtree-from-list r bs
proof −

have 0 : wf-list-verts ((v,e)#as@(r ,e)#bs) using assms(1 ,2) by simp
obtain as ′ e ′ bs ′ where as ′-def :

as ′@(r ,e ′)#bs ′ = (v,e)#as@(r ,e)#bs Node r xs = dtree-from-list r bs ′

using assms(3) dtree-from-list-sequence-xs[of r xs] by blast
then have 0 : wf-list-verts (as ′@(r ,e ′)#bs ′) using assms(1 ,2) by simp
have r-as ′: r /∈ fst ‘ set as ′ using 0 unfolding wf-list-verts-alt by simp
moreover have r-bs ′: r /∈ fst ‘ set bs ′ using 0 unfolding wf-list-verts-alt by

simp
moreover have (r ,e) ∈ set (as ′@(r ,e ′)#bs ′) using as ′-def (1) by simp
ultimately have (r ,e ′)= (r ,e) by force
then show ?thesis

using r-as ′ r-bs ′ as ′-def append-Cons-eq-iff [of (r ,e) as ′ bs ′ (v,e)#as bs] by
force
qed

lemma subtree-from-list-split-eq-if-wfdverts:
[[wf-dverts (dtree-from-list v (as@(r ,e)#bs));

is-subtree (Node r xs) (dtree-from-list v (as@(r ,e)#bs))]]
=⇒ Node r xs = dtree-from-list r bs

using subtree-from-list-split-eq-if-wfverts wf-dverts-iff-wf-list-verts by fast

lemma dtree-from-list-dverts-subset-wfdverts:
assumes set bs ⊆ set ds

and wf-dverts (dtree-from-list v (as@(r ,e1)#bs))
and wf-dverts (dtree-from-list v (cs@(r ,e2)#ds))
and is-subtree (Node r xs) (dtree-from-list v (as@(r ,e1)#bs))
and is-subtree (Node r ys) (dtree-from-list v (cs@(r ,e2)#ds))

shows dverts (Node r xs) ⊆ dverts (Node r ys)
using dtree-from-list-dverts-subset-set[OF assms(1)]

subtree-from-list-split-eq-if-wfdverts[OF assms(2 ,4)]
subtree-from-list-split-eq-if-wfdverts[OF assms(3 ,5)]

by simp

lemma dtree-from-list-dverts-subset-wfdverts ′:
assumes wf-dverts (dtree-from-list v as)

186

and wf-dverts (dtree-from-list v cs)
and is-subtree (Node r xs) (dtree-from-list v as)
and is-subtree (Node r ys) (dtree-from-list v cs)
and ∃ as ′ e1 bs cs ′ e2 ds. as ′@(r ,e1)#bs = as ∧ cs ′@(r ,e2)#ds = cs ∧ set

bs ⊆ set ds
shows dverts (Node r xs) ⊆ dverts (Node r ys)

using dtree-from-list-dverts-subset-wfdverts assms by metis

lemma dtree-to-list-sequence-subtree:
[[max-deg t ≤ 1 ; strict-subtree (Node r xs) t]]
=⇒ ∃ as e bs. dtree-to-list t = as@(r ,e)#bs ∧ Node r xs = dtree-from-list r bs

by (metis dtree-from-list-uneq-sequence-xs dtree-from-to-list-id)

lemma dtree-to-list-sequence-subtree ′:
[[max-deg t ≤ 1 ; strict-subtree (Node r xs) t]]
=⇒ ∃ as e bs. dtree-to-list t = as@(r ,e)#bs ∧ dtree-to-list (Node r xs) = bs

using dtree-to-from-list-id[of r] dtree-to-list-sequence-subtree[of t r xs] by fast-
force

lemma dtree-to-list-subtree-dverts-eq-fsts:
[[max-deg t ≤ 1 ; strict-subtree (Node r xs) t]]
=⇒ ∃ as e bs. dtree-to-list t = as@(r ,e)#bs ∧ insert r (fst ‘ set bs) = dverts

(Node r xs)
by (metis dtree-from-list-eq-dverts dtree-to-list-sequence-subtree)

lemma dtree-to-list-subtree-dverts-eq-fsts ′:
[[max-deg t ≤ 1 ; strict-subtree (Node r xs) t]]
=⇒ ∃ as e bs. dtree-to-list t = as@(r ,e)#bs ∧ (fst ‘ set ((r ,e)#bs)) = dverts

(Node r xs)
using dtree-to-list-subtree-dverts-eq-fsts by fastforce

lemma dtree-to-list-split-subtree:
assumes as@(r ,e)#bs = dtree-to-list t
shows ∃ xs. strict-subtree (Node r xs) t ∧ dtree-to-list (Node r xs) = bs

using assms proof(induction t arbitrary: as rule: dtree-to-list.induct)
case (1 r1 t1 e1)
show ?case
proof(cases as)

case Nil
then have dtree-to-list (Node r (sucs t1)) = bs using 1 .prems by auto
moreover have is-subtree (Node r (sucs t1)) (Node r1 {|(t1 , e1)|})

using subtree-if-child[of t1 {|(t1 , e1)|}] 1 .prems Nil by simp
moreover have Node r1 {|(t1 , e1)|} 6= (Node r (sucs t1)) by (blast intro!:

singleton-uneq ′)
ultimately show ?thesis unfolding strict-subtree-def by blast

next
case (Cons a as ′)
then show ?thesis using 1 unfolding strict-subtree-def by fastforce

qed

187

qed(simp)

lemma dtree-to-list-split-subtree-dverts-eq-fsts:
assumes max-deg t ≤ 1 and as@(r ,e)#bs = dtree-to-list t
shows ∃ xs. strict-subtree (Node r xs) t ∧ dverts (Node r xs) = insert r (fst‘set

bs)
proof −

obtain xs where xs-def :
is-subtree (Node r xs) t Node r xs 6= t dtree-to-list (Node r xs) = bs

using dtree-to-list-split-subtree[OF assms(2)] unfolding strict-subtree-def by
blast

have max-deg (Node r xs) ≤ 1 using mdeg-ge-sub[OF xs-def (1)] assms(1) by
simp

then show ?thesis
using dtree-to-list-eq-dverts-ins[of Node r xs] xs-def strict-subtree-def by auto

qed

lemma dtree-to-list-split-subtree-dverts-eq-fsts ′:
assumes max-deg t ≤ 1 and as@(r ,e)#bs = dtree-to-list t
shows ∃ xs. strict-subtree (Node r xs) t ∧ dverts (Node r xs) = (fst ‘ set ((r ,e)#bs))
using dtree-to-list-split-subtree-dverts-eq-fsts[OF assms] by simp

lemma dtree-from-list-dverts-subset-wfdverts1 :
assumes dverts t1 ⊆ fst ‘ set ((r ,e2)#bs)

and wf-dverts (dtree-from-list v (as@(r ,e2)#bs))
and is-subtree (Node r ys) (dtree-from-list v (as@(r ,e2)#bs))

shows dverts t1 ⊆ dverts (Node r ys)
using subtree-from-list-split-eq-if-wfdverts[OF assms(2 ,3)] assms(1) dtree-from-list-eq-dverts
by fastforce

lemma dtree-from-list-dverts-subset-wfdverts1 ′:
assumes wf-dverts (dtree-from-list v cs)

and is-subtree (Node r ys) (dtree-from-list v cs)
and ∃ as e bs. as@(r ,e)#bs = cs ∧ dverts t1 ⊆ fst ‘ set ((r ,e)#bs)

shows dverts t1 ⊆ dverts (Node r ys)
using dtree-from-list-dverts-subset-wfdverts1 assms by fast

lemma dtree-from-list-1-leaf : num-leaves (dtree-from-list r xs) = 1
using num-leaves-1-if-mdeg-1 dtree-from-list-deg-le-1 by fast

7.6 Inserting in Dtrees
abbreviation insert-before ::

′a ⇒ ′b ⇒ ′a ⇒ ((′a, ′b) dtree × ′b) fset ⇒ ((′a, ′b) dtree × ′b) fset where
insert-before v e y xs ≡ ffold (λ(t1 ,e1).

finsert (if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))) {||} xs

fun insert-between :: ′a ⇒ ′b ⇒ ′a ⇒ ′a ⇒ (′a, ′b) dtree ⇒ (′a, ′b) dtree where
insert-between v e x y (Node r xs) = (if x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y)

188

then Node r (insert-before v e y xs)
else if x=r then Node r (finsert (Node v {||},e) xs)
else Node r ((λ(t,e1). (insert-between v e x y t,e1)) |‘| xs))

lemma insert-between-id-if-notin: x /∈ dverts t =⇒ insert-between v e x y t = t
proof(induction t)

case (Node r xs)
have ∀ (t,e) ∈ fset xs. x /∈ dverts t using Node.prems by force
then have ∀ (t,e1) ∈ fset xs. (λ(t,e1). (insert-between v e x y t,e1)) (t,e1) =

(t,e1)
using Node.IH by auto

then have ((λ(t,e1). (insert-between v e x y t,e1)) |‘| xs) = xs
by (smt (verit, ccfv-threshold) fset.map-cong0 case-prodE fimage-ident)

then show ?case using Node.prems by simp
qed

context wf-dtree
begin

lemma insert-before-commute-aux:
assumes f = (λ(t1 ,e1). finsert (if root t1 = y1 then (Node v {|(t1 ,e1)|},e) else

(t1 ,e1)))
shows (f y ◦ f x) z = (f x ◦ f y) z

proof −
obtain t1 e1 where y-def : y = (t1 , e1) by fastforce
obtain t2 e2 where x = (t2 , e2) by fastforce
then show ?thesis using assms y-def by auto

qed

lemma insert-before-commute:
comp-fun-commute (λ(t1 ,e1). finsert (if root t1 = y1 then (Node v {|(t1 ,e1)|},e)

else (t1 ,e1)))
using comp-fun-commute-def insert-before-commute-aux by fastforce

interpretation Comm:
comp-fun-commute λ(t1 ,e1). finsert (if root t1 = y then (Node v {|(t1 ,e1)|},e)

else (t1 ,e1))
by (rule insert-before-commute)

lemma root-not-new-in-orig:
[[(t1 ,e1) ∈ fset (insert-before v e y xs); root t1 6= v]] =⇒ (t1 ,e1) ∈ fset xs

proof(induction xs)
case empty
then show ?case by simp

next
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))

189

case True
then show ?thesis using insert.IH insert.prems(2) by simp

next
case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have ?f x = (t1 ,e1) using False insert.prems(1) by force
then have x = (t1 ,e1)
by (smt (z3) insert.prems(2) dtree.sel(1) old.prod.exhaust prod.inject case-prod-conv)
then show ?thesis by simp

qed
qed

lemma root-not-y-in-new:
[[(t1 ,e1) ∈ fset xs; root t1 6= y]] =⇒ (t1 ,e1) ∈ fset (insert-before v e y xs)

proof(induction xs)
case empty
then show ?case by simp

next
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) = x)

case True
then show ?thesis using insert by auto

next
case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then show ?thesis using insert.IH insert.prems by force

qed
qed

lemma root-noty-if-in-insert-before:
[[(t1 ,e1) ∈ fset (insert-before v e y xs); v 6=y]] =⇒ root t1 6= y

proof(induction xs)
case empty
then show ?case by simp

next
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))

case True
then show ?thesis using insert.IH insert.prems(2) by fast

next
case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)

190

then have 0 : ?f x = (t1 ,e1) using insert.prems False by simp
then show ?thesis
proof(cases root t1 = v)

case True
then show ?thesis using insert.prems(2) by simp

next
case False
then show ?thesis by (smt (z3) dtree.sel(1) old.prod.exhaust prod.inject 0

case-prod-conv)
qed

qed
qed

lemma in-insert-before-child-in-orig:
[[(t1 ,e1) ∈ fset (insert-before v e y xs); (t1 ,e1) /∈ fset xs]]
=⇒ ∃ (t2 ,e2) ∈ fset xs. (Node v {|(t2 ,e2)|}) = t1 ∧ root t2 = y ∧ e1=e

proof(induction xs)
case empty
then show ?case by simp

next
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))

case True
then show ?thesis using insert.IH insert.prems(2) by simp

next
case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then show ?thesis
by (smt (z3) False Pair-inject old.prod.case case-prodI2 finsert-iff insert.prems)

qed
qed

lemma insert-before-not-y-id:
¬(∃ t. t ∈ fst ‘ fset xs ∧ root t = y) =⇒ insert-before v e y xs = xs

proof(induction xs)
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = finsert x (insert-before v e y xs)

using insert.prems
by (smt (z3) old.prod.exhaust case-prod-conv finsertCI fst-conv image-eqI)

moreover have ¬(∃ t. t ∈ fst ‘ fset xs ∧ root t = y) using insert.prems by auto
ultimately show ?case using insert.IH by blast

qed (simp)

191

lemma insert-before-alt:
insert-before v e y xs
= (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1)) |‘| xs
by(induction xs) (auto simp: Product-Type.prod.case-distrib)

lemma dverts-insert-before-aux:
∃ t. t ∈ fst ‘ fset xs ∧ root t = y
=⇒ (

⋃
x∈fset (insert-before v e y xs).

⋃
(dverts ‘ Basic-BNFs.fsts x))

= insert v (
⋃

x∈fset xs.
⋃

(dverts ‘ Basic-BNFs.fsts x))
proof(induction xs)

case empty
then show ?case by simp

next
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
obtain t1 e1 where t1-def : x = (t1 ,e1) by fastforce
then show ?case
proof(cases root t1 = y)

case True
then have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y

xs)
by (simp add: insert.hyps prod.case-distrib)

then have insert-before v e y (finsert x xs)
= finsert (Node v {|(t1 ,e1)|},e) (insert-before v e y xs)

using t1-def True by simp
then have 0 : (

⋃
x∈fset (insert-before v e y (finsert x xs)).

⋃
(dverts ‘ Ba-

sic-BNFs.fsts x))
= insert v (dverts t1) ∪ (

⋃
x∈fset (insert-before v e y xs).

⋃
(dverts ‘

Basic-BNFs.fsts x))
using t1-def by simp

have 1 : dverts (Node v {|(t1 ,e1)|}) = insert v (dverts t1) by simp
show ?thesis
proof(cases ∃ t. t ∈ fst ‘ fset xs ∧ root t = y)

case True
then show ?thesis using t1-def 0 insert.IH by simp

next
case False
then show ?thesis using t1-def 0 insert-before-not-y-id by force

qed
next

case False
then have 0 : ∃ t. t ∈ fst ‘ fset xs ∧ root t = y using insert.prems t1-def by

force
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = finsert x (insert-before v e y xs)

by (simp add: False t1-def)
then show ?thesis using insert.IH insert.prems 0 by simp

qed

192

qed

lemma insert-between-add-v-if-x-in:
x ∈ dverts t =⇒ dverts (insert-between v e x y t) = insert v (dverts t)

using wf-verts proof(induction t)
case (Node r xs)
show ?case
proof(cases x=r)

case False
then obtain t e1 where t-def : (t,e1) ∈ fset xs x ∈ dverts t using Node.prems(1)

by auto
then have ∀ (t2 ,e2) ∈ fset xs. (t,e1) 6= (t2 ,e2) −→ x /∈ dverts t2

using Node.prems(2) by (fastforce simp: wf-dverts-iff-dverts ′)
then have ∀ (t2 ,e2) ∈ fset xs. (t,e1) = (t2 ,e2) ∨ (insert-between v e x y t2)

= t2
using insert-between-id-if-notin by fast

moreover have (insert-between v e x y t,e1)
∈ fset ((λ(t,e1). (insert-between v e x y t,e1)) |‘| xs) using t-def (1) by force

moreover have dverts (insert-between v e x y t) = insert v (dverts t)
using Node.IH Node.prems(2) t-def by auto

ultimately show ?thesis using False by force
qed (auto simp: dverts-insert-before-aux)

qed

lemma insert-before-only1-new:
assumes ∀ (x,e1) ∈ fset xs. ∀ (y,e2) ∈ fset xs. (dverts x ∩ dverts y = {} ∨

(x,e1)=(y,e2))
and (t1 ,e1) 6= (t2 ,e2)
and (t1 ,e1) ∈ fset (insert-before v e y xs)
and (t2 ,e2) ∈ fset (insert-before v e y xs)

shows (t1 ,e1) ∈ fset xs ∨ (t2 ,e2) ∈ fset xs
proof (rule ccontr)

assume ¬((t1 ,e1) ∈ fset xs ∨ (t2 ,e2) ∈ fset xs)
then have asm: (t1 ,e1) /∈ fset xs (t2 ,e2) /∈ fset xs by auto
obtain t3 e3 where t3-def : (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t1 root t3 =

y e1=e
using in-insert-before-child-in-orig assms(3) asm(1) by fast

obtain t4 e4 where t4-def : (t4 , e4)∈fset xs Node v {|(t4 , e4)|} = t2 root t4 =
y e2=e

using in-insert-before-child-in-orig assms(4) asm(2) by fast
then have dverts t3 ∩ dverts t4 6= {} using t3-def (3) dtree.set-sel(1) by force
then have (t3 ,e3) = (t4 ,e4) using assms(1) t3-def (1) t4-def (1) by fast
then show False using assms(2) t3-def (2 ,4) t4-def (2 ,4) by fast

qed

lemma disjoint-dverts-aux1 :
assumes ∀ (t1 ,e1) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. (dverts t1 ∩ dverts t2 = {} ∨

(t1 ,e1)=(t2 ,e2))
and v /∈ dverts (Node r xs)

193

and (t1 ,e1) ∈ fset (insert-before v e y xs)
and (t2 ,e2) ∈ fset (insert-before v e y xs)
and (t1 ,e1) 6= (t2 ,e2)

shows dverts t1 ∩ dverts t2 = {}
proof −

consider (t1 ,e1) ∈ fset xs (t2 ,e2) ∈ fset xs
| (t1 ,e1) /∈ fset xs (t2 ,e2) ∈ fset xs
| (t1 ,e1) ∈ fset xs (t2 ,e2) /∈ fset xs

using insert-before-only1-new assms(1 ,3−5) by fast
then show ?thesis
proof(cases)

case 1
then show ?thesis using assms(1 ,5) by fast

next
case 2
obtain t3 e3 where t3-def : (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t1 root t3

= y e1=e
using in-insert-before-child-in-orig assms(3) 2 by fast

then have y 6=v using assms(2) dtree.set-sel(1) by force
then have (t3 ,e3) 6= (t2 ,e2) using assms(4) t3-def (3) root-noty-if-in-insert-before

by fast
then have dverts t3 ∩ dverts t2 = {} using assms(1) 2 (2) t3-def (1) by fast
then show ?thesis using assms(1 ,2) t3-def (1 ,2) 2 (2) by force

next
case 3
obtain t3 e3 where t3-def : (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t2 root t3

= y e2=e
using in-insert-before-child-in-orig assms(4) 3 by fast

then have y 6=v using assms(2) dtree.set-sel(1) by force
then have (t3 ,e3) 6= (t1 ,e1) using assms(3) t3-def (3) root-noty-if-in-insert-before

by fast
then have dverts t3 ∩ dverts t1 = {} using assms(1) 3 (1) t3-def (1) by fast
then show ?thesis using assms(2) t3-def (2) 3 (1) by force

qed
qed

lemma disjoint-dverts-aux1 ′:
assumes wf-dverts (Node r xs) and v /∈ dverts (Node r xs)
shows ∀ (x,e1) ∈ fset (insert-before v e y xs). ∀ (y,e2) ∈ fset (insert-before v e y

xs).
dverts x ∩ dverts y = {} ∨ (x,e1) = (y,e2)

using assms disjoint-dverts-aux1 disjoint-dverts-if-wf unfolding wf-dverts-iff-dverts ′

by fast

lemma insert-before-wf-dverts:
[[∀ (t,e1) ∈ fset xs. wf-dverts t; v /∈ dverts(Node r xs); (t1 ,e1) ∈ fset (insert-before

v e y xs)]]
=⇒ wf-dverts t1

proof(induction xs)

194

case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))

case in-xs: True
then show ?thesis
proof(cases ?f x = (t1 ,e1))

case True
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = insert-before v e y xs

using True in-xs by fastforce
then show ?thesis using insert.IH insert.prems by simp

next
case False
then show ?thesis using in-xs insert.IH insert.prems(1 ,2) by auto

qed
next

case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have ?f x = (t1 ,e1) using False insert.prems(3) by fastforce
then show ?thesis
proof(cases root t1 = v)

case True
then have (t1 ,e1) /∈ fset (finsert x xs) using insert.prems(2) dtree.set-sel(1)

by force
then obtain t2 e2 where
t2-def : (t2 , e2)∈fset (finsert x xs) Node v {|(t2 , e2)|} = t1 root t2 = y e1=e
using in-insert-before-child-in-orig[of t1] insert.prems(3) by blast

then show ?thesis using insert.prems(1 ,2) by (fastforce simp: wf-dverts-iff-dverts ′)
next

case False
then have (t1 ,e1) = x

using insert.prems(1) dtree.sel(1) ‹?f x = (t1 ,e1)›
by (smt (verit, ccfv-SIG) Pair-inject old.prod.case case-prodE finsertI1)

then show ?thesis using insert.prems(1) by auto
qed

qed
qed (simp)

lemma insert-before-root-nin-verts:
[[∀ (t,e1)∈fset xs. r /∈ dverts t; v /∈ dverts (Node r xs); (t1 ,e1) ∈ fset (insert-before

v e y xs)]]
=⇒ r /∈ dverts t1

proof(induction xs)
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case

195

proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))
case in-xs: True
then show ?thesis
proof(cases ?f x = (t1 ,e1))

case True
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = insert-before v e y xs

using True in-xs by fastforce
then show ?thesis using insert.IH insert.prems by simp

next
case False
then show ?thesis using in-xs insert.IH insert.prems(1 ,2) by auto

qed
next

case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have ?f x = (t1 ,e1) using False insert.prems(3) by fastforce
then show ?thesis
proof(cases root t1 = v)

case True
then have (t1 ,e1) /∈ fset (finsert x xs) using insert.prems(2) dtree.set-sel(1)

by force
then obtain t2 e2 where
t2-def : (t2 , e2)∈fset (finsert x xs) Node v {|(t2 , e2)|} = t1 root t2 = y e1=e
using in-insert-before-child-in-orig[of t1] insert.prems(3) by blast

then show ?thesis using insert.prems(1 ,2) by fastforce
next

case False
then have (t1 ,e1) = x

using insert.prems(1) dtree.sel(1) ‹?f x = (t1 ,e1)›
by (smt (verit, ccfv-SIG) Pair-inject old.prod.case case-prodE finsertI1)

then show ?thesis using insert.prems(1) by auto
qed

qed
qed (simp)

lemma disjoint-dverts-aux2 :
assumes wf-dverts (Node r xs) and v /∈ dverts (Node r xs)
shows ∀ (x,e1) ∈ fset (finsert (Node v {||},e) xs). ∀ (y,e2) ∈ fset (finsert (Node

v {||},e) xs).
dverts x ∩ dverts y = {} ∨ (x,e1) = (y,e2)

using assms by (fastforce simp: wf-dverts-iff-dverts ′)

lemma disjoint-dverts-aux3 :
assumes (t2 ,e2) ∈ (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs

and (t3 ,e3) ∈ (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs
and (t2 ,e2)6=(t3 ,e3)

196

and (t,e1) ∈ fset xs
and x ∈ dverts t
and wf-dverts (Node r xs)
and v /∈ dverts (Node r xs)

shows dverts t2 ∩ dverts t3 = {}
proof −

have ∀ (t2 ,e2) ∈ fset xs. (t,e1)=(t2 ,e2) ∨ x /∈ dverts t2
using assms(4−6) by (fastforce simp: wf-dverts-iff-dverts ′)

then have nt1-id: ∀ (t2 ,e2) ∈ fset xs. (t,e1) = (t2 ,e2) ∨ insert-between v e x y
t2 = t2

using insert-between-id-if-notin by fastforce
have dverts-t1 : dverts (insert-between v e x y t) = insert v (dverts t)

using assms(5−6) by (simp add: insert-between-add-v-if-x-in)
have t1-disj: ∀ (t2 ,e2) ∈ fset xs. (t,e1) = (t2 ,e2) ∨ dverts t2 ∩ insert v (dverts

t) = {}
using assms(4−7) by (fastforce simp: wf-dverts-iff-dverts ′)

consider (t2 ,e2) = (insert-between v e x y t,e1)
| (t3 ,e3) = (insert-between v e x y t,e1)
| (t2 ,e2) 6= (insert-between v e x y t,e1) (t3 ,e3) 6= (insert-between v e x y

t,e1)
by fast

then show ?thesis
proof(cases)

case 1
then have (t3 ,e3) ∈ fset xs using assms(2 ,3) nt1-id by fastforce
moreover have (t3 ,e3) 6= (t,e1) using assms(2 ,3) 1 nt1-id by fastforce
ultimately show ?thesis using 1 t1-disj dverts-t1 by fastforce

next
case 2
then have (t2 ,e2) ∈ fset xs using assms(1 ,3) nt1-id by fastforce
moreover have (t2 ,e2) 6= (t,e1) using assms(1 ,3) 2 nt1-id by auto
ultimately show ?thesis using 2 t1-disj dverts-t1 by fastforce

next
case 3
then have (t2 ,e2) ∈ fset xs using assms(1) nt1-id by fastforce
moreover have (t3 ,e3) ∈ fset xs using assms(2) 3 (2) nt1-id by auto

ultimately show ?thesis using assms(3 ,6) by (fastforce simp: wf-dverts-iff-dverts ′)
qed

qed

lemma insert-between-wf-dverts: v /∈ dverts t =⇒ wf-dverts (insert-between v e x
y t)
using wf-dtree-axioms proof(induction t)

case (Node r xs)
then interpret wf-dtree Node r xs by blast
consider x=r ∃ t. t ∈ fst ‘ fset xs ∧ root t = y

| x=r ¬(∃ t. t ∈ fst ‘ fset xs ∧ root t = y) | x 6=r by fast
then show ?case
proof(cases)

197

case 1
then have insert-between v e x y (Node r xs) = Node r (insert-before v e y xs)

by simp
moreover have ∀ (x,e1) ∈ fset (insert-before v e y xs). r /∈ dverts x

using insert-before-root-nin-verts wf-verts Node.prems(1)
by (fastforce simp: wf-dverts-iff-dverts ′)

moreover have ∀ (x,e1) ∈ fset (insert-before v e y xs). wf-dverts x
using insert-before-wf-dverts Node.prems(1) wf-verts by fastforce

moreover have ∀ (x, e1)∈fset (insert-before v e y xs).
∀ (y, e2)∈fset (insert-before v e y xs). dverts x ∩ dverts y = {} ∨ (x, e1)

= (y, e2)
using disjoint-dverts-aux1 ′ Node.prems(1) wf-verts unfolding wf-dverts-iff-dverts ′

by fast
ultimately show ?thesis by (fastforce simp: wf-dverts-iff-dverts ′)

next
case 2
then have insert-between v e x y (Node r xs) = Node r (finsert (Node v {||},e)

xs) by simp
then show ?thesis

using disjoint-dverts-aux2 [of r xs v] Node.prems(1) wf-verts
by (fastforce simp: wf-dverts-iff-dverts ′)

next
case 3
let ?f = λ(t1 ,e1). (insert-between v e x y t1 , e1)
show ?thesis
proof(cases ∃ (t1 ,e1) ∈ fset xs. x ∈ dverts t1)

case True
then obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset xs x ∈ dverts t1 by blast
then interpret T : wf-dtree t1 using wf-dtree-rec by blast
have ∀ (t2 ,e2) ∈ ?f ‘ fset xs. ∀ (t3 ,e3) ∈ ?f ‘ fset xs.

(t2 ,e2) = (t3 ,e3) ∨ dverts t2 ∩ dverts t3 = {}
using T .disjoint-dverts-aux3 Node.prems(1) t1-def wf-verts by blast

moreover have
∧

t2 e2 . (t2 ,e2) ∈ ?f ‘ fset xs −→ r /∈ dverts t2 ∧ wf-dverts
t2

proof
fix t2 e2
assume asm: (t2 ,e2) ∈ ?f ‘ fset xs
then show r /∈ dverts t2 ∧ wf-dverts t2
proof(cases (t2 ,e2) = (insert-between v e x y t1 ,e1))

case True
then have wf-dverts (insert-between v e x y t1)

using Node.IH Node.prems(1) T .wf-dtree-axioms t1-def (1) by auto
then show ?thesis

using Node.prems(1) wf-verts True T .insert-between-add-v-if-x-in t1-def
by (auto simp: wf-dverts-iff-dverts ′)

next
case False
have ∀ (t2 ,e2) ∈ fset xs. (t1 ,e1)=(t2 ,e2) ∨ x /∈ dverts t2

using wf-verts t1-def by (fastforce simp: wf-dverts-iff-dverts ′)

198

then have ∀ (t2 ,e2) ∈ fset xs. (t1 ,e1) = (t2 ,e2) ∨ insert-between v e x y
t2 = t2

using insert-between-id-if-notin by fastforce
then show ?thesis using wf-verts asm False by (fastforce simp: wf-dverts-iff-dverts ′)
qed

qed
ultimately show ?thesis using 3 by (fastforce simp: wf-dverts-iff-dverts ′)

next
case False
then show ?thesis

using wf-verts 3 insert-between-id-if-notin fst-conv
by (smt (verit, ccfv-threshold) fsts.cases dtree.inject dtree.set-cases(1)

case-prodI2)
qed

qed
qed

lemma darcs-insert-before-aux:
∃ t. t ∈ fst ‘ fset xs ∧ root t = y

=⇒ (
⋃

x∈fset (insert-before v e y xs).
⋃

(darcs ‘ Basic-BNFs.fsts x) ∪ Ba-
sic-BNFs.snds x)

= insert e (
⋃

x∈fset xs.
⋃

(darcs ‘ Basic-BNFs.fsts x) ∪ Basic-BNFs.snds
x)
proof(induction xs)

case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
let ?xs = insert-before v e y (finsert x xs)
obtain t1 e1 where t1-def : x = (t1 ,e1) by fastforce
then show ?case
proof(cases root t1 = y)

case True
then have ?xs = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have ?xs = finsert (Node v {|(t1 ,e1)|},e) (insert-before v e y xs)

using t1-def True by simp
then have 0 : (

⋃
x∈fset ?xs.

⋃
(darcs ‘ Basic-BNFs.fsts x) ∪ Basic-BNFs.snds

x)
= (

⋃
(darcs ‘ {Node v {|(t1 ,e1)|}}) ∪ {e})

∪ (
⋃

x∈fset (insert-before v e y xs).
⋃

(darcs ‘ Basic-BNFs.fsts x) ∪
Basic-BNFs.snds x)

using t1-def by simp
have 1 : dverts (Node v {|(t1 ,e1)|}) = insert v (dverts t1) by simp
show ?thesis
proof(cases ∃ t. t ∈ fst ‘ fset xs ∧ root t = y)

case True
then show ?thesis using t1-def 0 insert.IH by simp

next
case False
then show ?thesis using t1-def 0 insert-before-not-y-id by force

199

qed
next

case False
then have 0 : ∃ t. t ∈ fst ‘ fset xs ∧ root t = y using insert.prems t1-def by

force
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = finsert x (insert-before v e y xs)

by (simp add: False t1-def)
then show ?thesis using insert.IH insert.prems 0 by simp

qed
qed (simp)

lemma insert-between-add-e-if-x-in:
x ∈ dverts t =⇒ darcs (insert-between v e x y t) = insert e (darcs t)

using wf-verts proof(induction t)
case (Node r xs)
show ?case
proof(cases x=r)

case False
then obtain t e1 where t-def : (t,e1) ∈ fset xs x ∈ dverts t using Node.prems(1)

by auto
then have ∀ (t2 ,e2) ∈ fset xs. (t,e1) 6= (t2 ,e2) −→ x /∈ dverts t2

using Node.prems(2) by (fastforce simp: wf-dverts-iff-dverts ′)
then have ∀ (t2 ,e2) ∈ fset xs. (t,e1) = (t2 ,e2) ∨ (insert-between v e x y t2)

= t2
using insert-between-id-if-notin by fast

moreover have (insert-between v e x y t,e1)
∈ fset ((λ(t,e1). (insert-between v e x y t,e1)) |‘| xs) using t-def (1) by force

moreover have darcs (insert-between v e x y t) = insert e (darcs t)
using Node.IH Node.prems(2) t-def by auto

ultimately show ?thesis using False by force
qed (auto simp: darcs-insert-before-aux)

qed

lemma disjoint-darcs-aux1-aux1 :
assumes disjoint-darcs xs

and wf-dverts (Node r xs)
and v /∈ dverts (Node r xs)
and e /∈ darcs (Node r xs)
and (t1 ,e1) ∈ fset (insert-before v e y xs)
and (t2 ,e2) ∈ fset (insert-before v e y xs)
and (t1 ,e1) 6= (t2 ,e2)

shows (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
proof −

consider (t1 ,e1) ∈ fset xs (t2 ,e2) ∈ fset xs
| (t1 ,e1) /∈ fset xs (t2 ,e2) ∈ fset xs
| (t1 ,e1) ∈ fset xs (t2 ,e2) /∈ fset xs

using insert-before-only1-new assms(2 ,5−7) by (fastforce simp: wf-dverts-iff-dverts ′)

200

then show ?thesis
proof(cases)

case 1
then show ?thesis using assms(1 ,7) by fast

next
case 2
obtain t3 e3 where t3-def : (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t1 root t3

= y e1=e
using in-insert-before-child-in-orig assms(5) 2 by fast

then have v 6=y using assms(3) dtree.set-sel(1) by force
then have (t3 ,e3) 6= (t2 ,e2) using assms(6) t3-def (3) root-noty-if-in-insert-before

by fast
then have (darcs t3 ∪ {e3}) ∩ (darcs t2 ∪ {e2}) = {} using assms(1) 2 (2)

t3-def (1) by fast
then show ?thesis using assms(4) t3-def (4) 2 (2) t3-def (2) by force

next
case 3
obtain t3 e3 where t3-def : (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t2 root t3

= y e2=e
using in-insert-before-child-in-orig assms(6) 3 by fast

then have v 6=y using assms(3) dtree.set-sel(1) by force
then have (t3 ,e3) 6= (t1 ,e1) using assms(5) t3-def (3) root-noty-if-in-insert-before

by fast
then have (darcs t3 ∪ {e3}) ∩ (darcs t1 ∪ {e1}) = {} using assms(1) 3 (1)

t3-def (1) by fast
then show ?thesis using assms(4) t3-def (4) 3 (1) t3-def (2) by force

qed
qed

lemma disjoint-darcs-aux1-aux2 :
assumes disjoint-darcs xs

and e /∈ darcs (Node r xs)
and (t1 ,e1) ∈ fset (insert-before v e y xs)

shows e1 /∈ darcs t1
proof(cases (t1 ,e1) ∈ fset xs)

case True
then show ?thesis using assms(1) by fast

next
case False
then obtain t3 e3 where (t3 , e3)∈fset xs Node v {|(t3 , e3)|} = t1 e1=e

using in-insert-before-child-in-orig assms(3) by fast
then show ?thesis using assms(2) by auto

qed

lemma disjoint-darcs-aux1 :
assumes wf-dverts (Node r xs) and v /∈ dverts (Node r xs)

and wf-darcs (Node r xs) and e /∈ darcs (Node r xs)
shows disjoint-darcs (insert-before v e y xs) (is disjoint-darcs ?xs)

proof −

201

have 0 : disjoint-darcs xs using assms(3) disjoint-darcs-if-wf-xs by simp
then have ∀ (t1 ,e1) ∈ fset ?xs. e1 /∈ darcs t1

using disjoint-darcs-aux1-aux2 [of xs] assms(4) by fast
moreover have ∀ (t1 ,e1) ∈ fset ?xs. ∀ (t2 ,e2) ∈ fset ?xs.

(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {} ∨ (t1 ,e1) = (t2 ,e2)
using disjoint-darcs-aux1-aux1 [of xs] assms(1 ,2 ,4) 0 by blast

ultimately show ?thesis by fast
qed

lemma insert-before-wf-darcs:
[[wf-darcs (Node r xs); e /∈ darcs (Node r xs); (t1 ,e1) ∈ fset (insert-before v e y

xs)]]
=⇒ wf-darcs t1

proof(induction xs)
case (insert x xs)
let ?f = (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1))
show ?case
proof(cases (t1 ,e1) ∈ fset (insert-before v e y xs))

case in-xs: True
then show ?thesis
proof(cases ?f x = (t1 ,e1))

case True
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have insert-before v e y (finsert x xs) = insert-before v e y xs

using True in-xs by fastforce
moreover have disjoint-darcs xs
using disjoint-darcs-insert[OF disjoint-darcs-if-wf-xs[OF insert.prems(1)]] .

ultimately show ?thesis
using insert.IH insert.prems unfolding wf-darcs-iff-darcs ′ by force

next
case False
have disjoint-darcs xs
using disjoint-darcs-insert[OF disjoint-darcs-if-wf-xs[OF insert.prems(1)]] .

then show ?thesis
using in-xs False insert.IH insert.prems(1 ,2) by (simp add: wf-darcs-iff-darcs ′)

qed
next

case False
have insert-before v e y (finsert x xs) = finsert (?f x) (insert-before v e y xs)

by (simp add: insert.hyps prod.case-distrib)
then have 0 : ?f x = (t1 ,e1) using False insert.prems(3) by fastforce
then show ?thesis
proof(cases e1=e)

case True
then have (t1 ,e1) /∈ fset (finsert x xs) using insert.prems(2) dtree.set-sel(1)

by force
then obtain t2 e2 where
t2-def : (t2 , e2)∈fset (finsert x xs) Node v {|(t2 , e2)|} = t1 root t2 = y e1=e

202

using in-insert-before-child-in-orig[of t1] insert.prems(3) by blast
then show ?thesis

using insert.prems(1) t2-def by (fastforce simp: wf-darcs-iff-darcs ′)
next

case False
then have (t1 ,e1) = x
by (smt (z3) 0 old.prod.exhaust prod.inject case-prod-Pair-iden case-prod-conv)
then show ?thesis using insert.prems(1) by auto

qed
qed

qed (simp)

lemma disjoint-darcs-aux2 :
assumes wf-darcs (Node r xs) and e /∈ darcs (Node r xs)
shows disjoint-darcs (finsert (Node v {||},e) xs)
using assms unfolding wf-darcs-iff-darcs ′ by fastforce

lemma disjoint-darcs-aux3-aux1 :
assumes (t,e1) ∈ fset xs

and x ∈ dverts t
and wf-darcs (Node r xs)
and e /∈ darcs (Node r xs)
and (t2 ,e2) ∈ (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs
and (t3 ,e3) ∈ (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs
and (t2 ,e2)6=(t3 ,e3)
and wf-dverts (Node r xs)

shows (darcs t2 ∪ {e2}) ∩ (darcs t3 ∪ {e3}) = {}
proof −

have ∀ (t2 ,e2) ∈ fset xs. (t,e1)=(t2 ,e2) ∨ x /∈ dverts t2
using assms(1 ,2 ,8) by (fastforce simp: wf-dverts-iff-dverts ′)

then have nt1-id: ∀ (t2 ,e2) ∈ fset xs. (t,e1) = (t2 ,e2) ∨ insert-between v e x y
t2 = t2

using insert-between-id-if-notin by fastforce
have darcs-t: darcs (insert-between v e x y t) = insert e (darcs t)

using assms(2 ,3) by (simp add: insert-between-add-e-if-x-in)
consider (t2 ,e2) = (insert-between v e x y t,e1)
| (t3 ,e3) = (insert-between v e x y t,e1)
| (t2 ,e2) 6= (insert-between v e x y t,e1) (t3 ,e3) 6= (insert-between v e x y

t,e1)
by fast

then show ?thesis
proof(cases)

case 1
then have (t3 ,e3) ∈ fset xs using assms(6 ,7) nt1-id by fastforce
moreover have (t3 ,e3) 6= (t,e1) using assms(6 ,7) 1 nt1-id by fastforce
ultimately have (darcs t ∪ {e1 ,e}) ∩ (darcs t3 ∪ {e3}) = {}

using assms(1 ,3 ,4) unfolding wf-darcs-iff-darcs ′ by fastforce
then show ?thesis using 1 darcs-t by auto

next

203

case 2
then have (t2 ,e2) ∈ fset xs using assms(5 ,7) nt1-id by fastforce
moreover have (t2 ,e2) 6= (t,e1) using assms(5 ,7) 2 nt1-id by auto
ultimately have (darcs t ∪ {e1 ,e}) ∩ (darcs t2 ∪ {e2}) = {}

using assms(1 ,3 ,4) unfolding wf-darcs-iff-darcs ′ by fastforce
then show ?thesis using 2 darcs-t by force

next
case 3
then have (t2 ,e2) ∈ fset xs using assms(5) nt1-id by fastforce
moreover have (t3 ,e3) ∈ fset xs using assms(6) 3 (2) nt1-id by auto
ultimately show ?thesis using assms(3 ,7) unfolding wf-darcs-iff-darcs ′ by

fastforce
qed

qed

lemma disjoint-darcs-aux3-aux2 :
assumes (t,e1) ∈ fset xs

and x ∈ dverts t
and wf-darcs (Node r xs)
and e /∈ darcs (Node r xs)
and (t2 ,e2) ∈ (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs
and wf-dverts (Node r xs)

shows e2 /∈ darcs t2
proof(cases (t2 ,e2) ∈ fset xs)

case True
then show ?thesis using assms(3) unfolding wf-darcs-iff-darcs ′ by auto

next
case False
obtain t1 where t1-def : insert-between v e x y t1 = t2 (t1 ,e2) ∈ fset xs

using assms(5) by fast
then have x ∈ dverts t1 using insert-between-id-if-notin False by fastforce
then have t = t1 using assms(1 ,2 ,6) t1-def (2) by (fastforce simp: wf-dverts-iff-dverts ′)
then have darcs-t: darcs t2 = insert e (darcs t1)

using insert-between-add-e-if-x-in assms(2) t1-def (1) by force
then show ?thesis using assms(3 ,4) t1-def (2) unfolding wf-darcs-iff-darcs ′ by

fastforce
qed

lemma disjoint-darcs-aux3 :
assumes (t,e1) ∈ fset xs

and x ∈ dverts t
and wf-darcs (Node r xs)
and e /∈ darcs (Node r xs)
and wf-dverts (Node r xs)

shows disjoint-darcs ((λ(t1 ,e1). (insert-between v e x y t1 , e1)) |‘| xs)
proof −

let ?xs = (λ(t1 ,e1). (insert-between v e x y t1 , e1)) |‘| xs
let ?xs ′ = (λ(t1 ,e1). (insert-between v e x y t1 , e1)) ‘ fset xs
have 0 : fset ?xs = ?xs ′ by simp

204

then have ∀ (t1 ,e1) ∈ fset ?xs. e1 /∈ darcs t1
using disjoint-darcs-aux3-aux2 assms by blast

moreover have ∀ (t1 ,e1) ∈ ?xs ′. ∀ (t2 ,e2) ∈ ?xs ′.
(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {} ∨ (t1 ,e1) = (t2 ,e2)

using disjoint-darcs-aux3-aux1 assms by blast
ultimately show ?thesis using 0 by fastforce

qed

lemma insert-between-wf-darcs:
[[e /∈ darcs t; v /∈ dverts t]] =⇒ wf-darcs (insert-between v e x y t)

using wf-dtree-axioms proof(induction t)
case (Node r xs)
then interpret wf-dtree Node r xs by blast
consider x=r ∃ t. t ∈ fst ‘ fset xs ∧ root t = y

| x=r ¬(∃ t. t ∈ fst ‘ fset xs ∧ root t = y) | x 6=r by fast
then show ?case
proof(cases)

case 1
then have insert-between v e x y (Node r xs) = Node r (insert-before v e y xs)

by simp
moreover have ∀ (x,e1) ∈ fset (insert-before v e y xs). wf-darcs x

using insert-before-wf-darcs Node.prems(1) wf-arcs by fast
moreover have disjoint-darcs (insert-before v e y xs)
using disjoint-darcs-aux1 [OF wf-verts Node.prems(2) wf-arcs Node.prems(1)]

.
ultimately show ?thesis by (simp add: wf-darcs-if-darcs ′-aux)

next
case 2
then have insert-between v e x y (Node r xs) = Node r (finsert (Node v {||},e)

xs) by simp
then show ?thesis
using disjoint-darcs-aux2 Node.prems(1) wf-arcs by (simp add: wf-darcs-iff-darcs ′)

next
case 3
let ?f = λ(t1 ,e1). (insert-between v e x y t1 , e1)
show ?thesis
proof(cases ∃ (t1 ,e1) ∈ fset xs. x ∈ dverts t1)

case True
then obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset xs x ∈ dverts t1 by blast
then interpret T : wf-dtree t1 using wf-dtree-rec by blast
have

∧
t2 e2 . (t2 ,e2) ∈ fset (?f |‘| xs) −→ wf-darcs t2

proof
fix t2 e2
assume asm: (t2 ,e2) ∈ fset (?f |‘| xs)
then show wf-darcs t2
proof(cases (t2 ,e2) = (insert-between v e x y t1 ,e1))

case True
then have wf-darcs (insert-between v e x y t1)

using Node t1-def (1) T .wf-dtree-axioms

205

by (metis dtree.set-intros(2) dtree.set-intros(3) insertI1 prod-set-simps(1))
then show ?thesis using True by blast

next
case False
have ∀ (t2 ,e2) ∈ fset xs. (t1 ,e1)=(t2 ,e2) ∨ x /∈ dverts t2

using wf-verts t1-def by (fastforce simp: wf-dverts-iff-dverts ′)
then have ∀ (t2 ,e2) ∈ fset xs. (t1 ,e1) = (t2 ,e2) ∨ insert-between v e x y

t2 = t2
using insert-between-id-if-notin by fastforce

then show ?thesis using wf-arcs asm False by fastforce
qed

qed
moreover have disjoint-darcs (?f |‘| xs)

using T .disjoint-darcs-aux3 Node.prems(1) t1-def wf-arcs wf-verts by pres-
burger

ultimately show ?thesis using 3 by (fastforce simp: wf-darcs-iff-darcs ′)
next

case False
then show ?thesis

using wf-arcs 3 insert-between-id-if-notin fst-conv
by (smt (verit, ccfv-threshold) fsts.cases dtree.inject dtree.set-cases(1)

case-prodI2)
qed

qed
qed

theorem insert-between-wf-dtree:
[[e /∈ darcs t; v /∈ dverts t]] =⇒ wf-dtree (insert-between v e x y t)
by (simp add: insert-between-wf-dverts insert-between-wf-darcs wf-dtree-def)

lemma snds-neq-card-eq-card-snd:
∀ (t,e) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. e 6=e2 ∨ (t,e) = (t2 ,e2) =⇒ fcard xs = fcard

(snd |‘| xs)
proof(induction xs)

case empty
then have (snd |‘| {||}) = {||} by blast
then show ?case by (simp add: fcard-fempty)

next
case (insert x xs)
have fcard xs = fcard (snd |‘| xs) using insert.IH insert.prems by fastforce
moreover have snd x |/∈| snd |‘| xs
proof

assume asm: snd x |∈| snd |‘| xs
then obtain t e where t-def : x = (t,e) by fastforce
then obtain t2 where t2-def : (t2 ,e) |∈| xs using asm by auto
then have (t,e)6=(t2 ,e) using insert.hyps t-def by blast
moreover have (t,e) ∈ fset (finsert x xs) using t-def by simp
moreover have (t2 ,e) ∈ fset (finsert x xs) using t2-def by fastforce
ultimately show False using insert.prems by fast

206

qed
ultimately show ?case by (simp add: fcard-finsert-disjoint local.insert.hyps)

qed

lemma snds-neq-img-snds-neq:
assumes ∀ (t,e) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. e 6=e2 ∨ (t,e) = (t2 ,e2)
shows ∀ (t1 ,e1) ∈ fset ((λ(t1 ,e1). (f t1 , e1)) |‘| xs).

∀ (t2 ,e2) ∈ fset ((λ(t1 ,e1). (f t1 , e1)) |‘| xs). e1 6=e2 ∨ (t1 ,e1) = (t2 ,e2)
using assms by auto

lemma snds-neq-if-disjoint-darcs:
assumes disjoint-darcs xs
shows ∀ (t,e) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. e 6=e2 ∨ (t,e) = (t2 ,e2)
using assms by fast

lemma snds-neq-img-card-eq:
assumes ∀ (t,e) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. e 6=e2 ∨ (t,e) = (t2 ,e2)
shows fcard ((λ(t1 ,e1). (f t1 , e1)) |‘| xs) = fcard xs

proof −
let ?f = λ(t1 ,e1). (f t1 , e1)
have ∀ (t,e) ∈ fset (?f |‘| xs). ∀ (t2 ,e2) ∈ fset (?f |‘| xs). e 6=e2 ∨ (t,e) = (t2 ,e2)

using assms snds-neq-img-snds-neq by auto
then have fcard (?f |‘| xs) = fcard (snd |‘| (?f |‘| xs))

using snds-neq-card-eq-card-snd by blast
moreover have snd |‘| (?f |‘| xs) = snd |‘| xs by force
moreover have fcard xs = fcard (snd |‘| xs) using snds-neq-card-eq-card-snd

assms by blast
ultimately show ?thesis by simp

qed

lemma fst-neq-img-card-eq:
assumes ∀ (t,e) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. f t 6= f t2 ∨ (t,e) = (t2 ,e2)
shows fcard ((λ(t1 ,e1). (f t1 , e1)) |‘| xs) = fcard xs

using assms proof(induction xs)
case empty
then have (snd |‘| {||}) = {||} by blast
then show ?case by (simp add: fcard-fempty)

next
case (insert x xs)
have fcard xs = fcard ((λ(t1 ,e1). (f t1 , e1)) |‘| xs) using insert by fastforce
moreover have (λ(t1 ,e1). (f t1 , e1)) x |/∈| (λ(t1 ,e1). (f t1 , e1)) |‘| xs
proof

assume asm: (λ(t1 ,e1). (f t1 , e1)) x |∈| (λ(t1 ,e1). (f t1 , e1)) |‘| xs
then obtain t e where t-def : x = (t,e) by fastforce
then obtain t2 e2 where t2-def :

(t2 ,e2) |∈| xs (λ(t1 ,e1). (f t1 , e1)) (t2 ,e2) = (λ(t1 ,e1). (f t1 , e1)) (t,e)
using asm by auto

then have (t,e)6=(t2 ,e) using insert.hyps t-def by fast
moreover have (t,e) ∈ fset (finsert x xs) using t-def by simp

207

moreover have (t2 ,e2) ∈ fset (finsert x xs) using t2-def (1) by fastforce
ultimately show False using insert.prems t2-def (2) by fast

qed
ultimately show ?case by (simp add: fcard-finsert-disjoint local.insert.hyps)

qed

lemma x-notin-insert-before:
assumes x |/∈| xs and wf-dverts (Node r (finsert x xs))
shows (λ(t1 ,e1). if root t1 = y then (Node v {|(t1 ,e1)|},e) else (t1 ,e1)) x

|/∈| (insert-before v e y xs) (is ?f x |/∈|-)
proof (cases root (fst x) = y)

case True
then obtain t1 e1 where t1-def : x = (t1 ,e1) root t1 = y by fastforce
then have 0 : ∀ (t2 ,e2) ∈ fset xs. dverts t1 ∩ dverts t2 = {}

using assms disjoint-dverts-if-wf-aux by fastforce
then have ∀ (t2 ,e2) ∈ fset xs. root t2 6= y

by (smt (verit, del-insts) dtree.set-sel(1) t1-def (2) case-prodD case-prodI2 dis-
joint-iff)

hence @ t. t ∈ fst ‘ fset xs ∧ dtree.root t = y
by fastforce

then have 1 : (insert-before v e y xs) = xs using insert-before-not-y-id by fast-
force

have ?f x = (Node v {|(t1 ,e1)|},e) using t1-def by simp
then have ∀ (t2 ,e2) ∈ fset xs. (fst (?f x)) 6= t2 using 0 dtree.set-sel(1) by

fastforce
then have ∀ (t2 ,e2) ∈ fset (insert-before v e y xs). ?f x 6= (t2 ,e2) using 1 by

fastforce
then show ?thesis by fast

next
case False
then have x-id: ?f x = x by (smt (verit) old.prod.exhaust case-prod-conv fst-conv)
then show ?thesis
proof(cases ∃ t1 . t1 ∈ fst ‘ fset xs ∧ root t1 = y)

case True
then obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset xs root t1 = y by force
then have (t1 ,e1) ∈ fset (finsert x xs) by auto
then have 0 : ∀ (t2 ,e2) ∈ fset (finsert x xs). (t1 ,e1) = (t2 ,e2) ∨ dverts t1 ∩

dverts t2 = {}
using assms(2) disjoint-dverts-if-wf-aux by fast

then have ∀ (t2 ,e2) ∈ fset (finsert x xs). (t1 ,e1) = (t2 ,e2) ∨ root t2 6= y
using dtree.set-sel(1) t1-def (2) insert-not-empty

by (smt (verit, ccfv-threshold) Int-insert-right-if1 prod.case-eq-if insert-absorb)
then have @ t. t ∈ fst ‘ fset (xs |−| {|(t1 ,e1)|}) ∧ root t = y by fastforce
then have 1 : ?f |‘| (xs |−| {|(t1 ,e1)|}) = (xs |−| {|(t1 ,e1)|})
using insert-before-not-y-id[of xs |−| {|(t1 ,e1)|}] by (simp add: insert-before-alt)
have ?f (t1 ,e1) = (Node v {|(t1 ,e1)|},e) using t1-def by simp
then have ?f |‘| xs = finsert (Node v {|(t1 ,e1)|},e) (?f |‘| (xs |−| {|(t1 ,e1)|}))

using t1-def (1) by (metis (no-types, lifting) fimage-finsert finsert-fminus)
then have ?f |‘| xs = finsert (Node v {|(t1 ,e1)|},e) (xs |−| {|(t1 ,e1)|})

208

using 1 by simp
then have 2 : insert-before v e y xs = finsert (Node v {|(t1 ,e1)|},e) (xs |−|

{|(t1 ,e1)|})
by (simp add: insert-before-alt)

have dverts t1 ∩ dverts (fst x) = {} using 0 assms(1) t1-def (1) by fastforce
then have (Node v {|(t1 ,e1)|},e) 6= x using dtree.set-sel(1) by fastforce
then show ?thesis using 2 assms(1) x-id by auto

next
case False
then have (insert-before v e y xs) = xs using insert-before-not-y-id by fastforce
then show ?thesis using assms(1) x-id by simp

qed
qed

end

end

theory List-Dtree
imports Complex-Main Graph-Additions Dtree

begin

8 Dtrees of Lists
8.1 Functions
abbreviation remove-child :: ′a ⇒ ((′a, ′b) dtree × ′b) fset ⇒ ((′a, ′b) dtree × ′b)
fset where

remove-child x xs ≡ ffilter (λ(t,e). root t 6= x) xs

abbreviation child2 ::
′a ⇒ ((′a, ′b) dtree × ′b) fset ⇒ ((′a, ′b) dtree × ′b) fset ⇒ ((′a, ′b) dtree × ′b)

fset where
child2 x zs xs ≡ ffold (λ(t,-) b. case t of Node r ys ⇒ if r = x then ys |∪| b else

b) zs xs

Combine children sets to a single set and append element to list.
fun combine :: ′a list ⇒ ′a list ⇒ (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where

combine x y (Node r xs) = (if x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y)
then Node (r@y) (child2 y (remove-child y xs) xs)
else Node r ((λ(t,e). (combine x y t,e)) |‘| xs))

Basic wf-dverts property is not strong enough to be preserved in combine
operation.
fun dlverts :: (′a list, ′b) dtree ⇒ ′a set where

dlverts (Node r xs) = set r ∪ (
⋃

x∈fset xs. dlverts (fst x))

abbreviation disjoint-dlverts :: ((′a list, ′b) dtree × ′b) fset ⇒ bool where

209

disjoint-dlverts xs ≡
(∀ (x,e1) ∈ fset xs. ∀ (y,e2) ∈ fset xs. dlverts x ∩ dlverts y = {} ∨ (x,e1)=(y,e2))

fun wf-dlverts :: (′a list, ′b) dtree ⇒ bool where
wf-dlverts (Node r xs) =

(r 6= [] ∧ (∀ (x,e1) ∈ fset xs. set r ∩ dlverts x = {} ∧ wf-dlverts x) ∧ dis-
joint-dlverts xs)

definition wf-dlverts ′ :: (′a list, ′b) dtree ⇒ bool where
wf-dlverts ′ t ←→

wf-dverts t ∧ [] /∈ dverts t ∧ (∀ v1∈dverts t. ∀ v2∈dverts t. set v1 ∩ set v2 =
{} ∨ v1=v2)

fun wf-list-lverts :: (′a list× ′b) list ⇒ bool where
wf-list-lverts [] = True
| wf-list-lverts ((v,e)#xs) =

(v 6= [] ∧ (∀ v2 ∈ fst ‘ set xs. set v ∩ set v2 = {}) ∧ wf-list-lverts xs)

8.2 List Dtrees as Well-Formed Dtrees
lemma list-in-verts-if-lverts: x ∈ dlverts t =⇒ (∃ v ∈ dverts t. x ∈ set v)

by(induction t) fastforce

lemma list-in-verts-iff-lverts: x ∈ dlverts t ←→ (∃ v ∈ dverts t. x ∈ set v)
by(induction t) fastforce

lemma lverts-if-in-verts: [[v ∈ dverts t; x ∈ set v]] =⇒ x ∈ dlverts t
by(induction t) fastforce

lemma nempty-inter-notin-dverts: [[v 6= []; set v ∩ dlverts t = {}]] =⇒ v /∈ dverts
t

using lverts-if-in-verts disjoint-iff-not-equal equals0I set-empty by metis

lemma empty-notin-wf-dlverts: wf-dlverts t =⇒ [] /∈ dverts t
by(induction t) auto

lemma wf-dlverts ′-rec: [[wf-dlverts ′ (Node r xs); t1 ∈ fst ‘ fset xs]] =⇒ wf-dlverts ′

t1
unfolding wf-dlverts ′-def using wf-dverts-rec[of r xs t1] dverts-child-subseteq[of

t1 xs] by blast

lemma wf-dlverts ′-suc: [[wf-dlverts ′ t; t1 ∈ fst ‘ fset (sucs t)]] =⇒ wf-dlverts ′ t1
using wf-dlverts ′-rec[of root t sucs t] by simp

lemma wf-dlverts-suc: [[wf-dlverts t; t1 ∈ fst ‘ fset (sucs t)]] =⇒ wf-dlverts t1
using wf-dlverts.simps[of root t sucs t] by auto

lemma wf-dlverts-subtree: [[wf-dlverts t; is-subtree t1 t]] =⇒ wf-dlverts t1
by (induction t) auto

210

lemma dlverts-eq-dverts-union: dlverts t =
⋃

(set ‘ dverts t)
by (induction t) fastforce

lemma dlverts-eq-dverts-union ′: dlverts t = (
⋃

x∈ dverts t. set x)
using dlverts-eq-dverts-union by simp

lemma dverts-nempty: dverts t 6= {}
using dtree.set(1)[of root t sucs t] by simp

lemma dlverts-nempty-aux: [] /∈ dverts t =⇒ dlverts t 6= {}
using dverts-nempty dlverts-eq-dverts-union[of t] by fastforce

lemma dlverts-nempty-if-wf : wf-dlverts t =⇒ dlverts t 6= {}
using dlverts-nempty-aux empty-notin-wf-dlverts by blast

lemma nempty-root-in-lverts: root t 6= [] =⇒ hd (root t) ∈ dlverts t
using dtree.set-sel(1) list-in-verts-iff-lverts by fastforce

lemma roothd-in-lverts-if-wf : wf-dlverts t =⇒ hd (root t) ∈ dlverts t
using wf-dlverts.simps[of root t sucs t] nempty-root-in-lverts by auto

lemma hd-in-lverts-if-wf : [[wf-dlverts t; v ∈ dverts t]] =⇒ hd v ∈ dlverts t
using empty-notin-wf-dlverts hd-in-set[of v] lverts-if-in-verts by fast

lemma dlverts-notin-root-sucs:
[[wf-dlverts t; t1 ∈ fst ‘ fset (sucs t); x ∈ dlverts t1]] =⇒ x /∈ set (root t)
using wf-dlverts.simps[of root t sucs t] by fastforce

lemma dverts-inter-empty-if-verts-inter :
assumes dlverts x ∩ dlverts y = {} and wf-dlverts x
shows dverts x ∩ dverts y = {}

proof (rule ccontr)
assume asm: dverts x ∩ dverts y 6= {}
then obtain r where r-def : r ∈ dverts x r ∈ dverts y by blast
then have r 6= [] using assms(2) by(auto simp: empty-notin-wf-dlverts)
then obtain v where v-def : v ∈ set r by fastforce
then show False using r-def assms(1) lverts-if-in-verts by (metis IntI all-not-in-conv)

qed

lemma disjoint-dlverts-if-wf : wf-dlverts t =⇒ disjoint-dlverts (sucs t)
using wf-dlverts.simps[of root t sucs t] by simp

lemma disjoint-dlverts-subset:
assumes xs |⊆| ys and disjoint-dlverts ys
shows disjoint-dlverts xs

proof (rule ccontr)
assume ¬ disjoint-dlverts xs
then obtain x e1 y e2 where x-def : (x,e1) ∈ fset xs (y,e2) ∈ fset xs

211

dlverts x ∩ dlverts y 6= {} ∧ (x,e1)6=(y,e2)
by blast

have (x,e1) ∈ fset ys (y,e2) ∈ fset ys using x-def (1 ,2) assms(1) less-eq-fset.rep-eq
by fast+

then show False using assms(2) x-def (3) by fast
qed

lemma root-empty-inter-subset:
assumes xs |⊆| ys and ∀ (x,e1) ∈ fset ys. set r ∩ dlverts x = {}
shows ∀ (x,e1) ∈ fset xs. set r ∩ dlverts x = {}
using assms less-eq-fset.rep-eq by force

lemma wf-dlverts-sub:
assumes xs |⊆| ys and wf-dlverts (Node r ys)
shows wf-dlverts (Node r xs)

proof (rule ccontr)
assume asm: ¬wf-dlverts (Node r xs)
have disjoint-dlverts xs using assms(2) disjoint-dlverts-subset[OF assms(1)] by

simp
moreover have r 6= [] using assms(2) by simp
moreover have (∀ (x,e1) ∈ fset xs. set r ∩ dlverts x = {})

using assms(2) root-empty-inter-subset[OF assms(1)] by fastforce
ultimately obtain x e where x-def : (x,e) ∈ fset xs ¬wf-dlverts x using asm

by auto
then have (x,e) ∈ fset ys using assms(1) fin-mono by metis
then show False using assms(2) x-def (2) by fastforce

qed

lemma wf-dlverts-sucs: [[wf-dlverts t; x ∈ fset (sucs t)]] =⇒ wf-dlverts (Node (root
t) {|x|})

using wf-dlverts-sub[of {|x|} sucs t root t] by (simp add: less-eq-fset.rep-eq)

lemma wf-dverts-if-wf-dlverts: wf-dlverts t =⇒ wf-dverts t
proof(induction t)

case (Node r xs)
then have ∀ (x,e) ∈ fset xs. wf-dverts x by auto
moreover have ∀ (x,e) ∈ fset xs. r /∈ dverts x

using nempty-inter-notin-dverts Node.prems by fastforce
ultimately show ?case

using Node.prems dverts-inter-empty-if-verts-inter wf-dverts-iff-dverts ′

by (smt (verit, del-insts) wf-dlverts.simps wf-dverts ′.simps case-prodD case-prodI2)
qed

lemma notin-dlverts-child-if-wf-in-root:
[[wf-dlverts (Node r xs); x ∈ set r ; t ∈ fst ‘ fset xs]] =⇒ x /∈ dlverts t
by fastforce

lemma notin-dlverts-suc-if-wf-in-root:
[[wf-dlverts t1 ; x ∈ set (root t1); t2 ∈ fst ‘ fset (sucs t1)]] =⇒ x /∈ dlverts t2

212

using notin-dlverts-child-if-wf-in-root[of root t1 sucs t1] by simp

lemma root-if-same-lvert-wf :
[[wf-dlverts (Node r xs); x ∈ set r ; v ∈ dverts (Node r xs); x ∈ set v]] =⇒ v = r
by (fastforce simp: lverts-if-in-verts dverts-child-if-not-root notin-dlverts-child-if-wf-in-root)

lemma dverts-same-if-set-wf :
[[wf-dlverts t; v1 ∈ dverts t; v2 ∈ dverts t; x ∈ set v1 ; x ∈ set v2]] =⇒ v1 = v2

proof(induction t)
case (Node r xs)
then show ?case
proof(cases x ∈ set r)

case True
then show ?thesis using Node.prems(2 ,3 ,4 ,5) root-if-same-lvert-wf [OF Node.prems(1)]

by blast
next

case False
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs x ∈ dlverts t2

using Node.prems(2 ,4) lverts-if-in-verts by fastforce
then have ∀ (t3 ,e3)∈fset xs. (t3 ,e3) = (t2 ,e2) ∨ x /∈ dlverts t3

using Node.prems(1) by fastforce
then have v1 ∈ dverts t2 ∧ v2 ∈ dverts t2

using Node.prems(2−5) lverts-if-in-verts False by force
then show ?thesis using Node.IH t2-def (1) Node.prems(1 ,4 ,5) by auto

qed
qed

lemma dtree-from-list-empty-inter-iff :
(∀ v ∈ fst ‘ set ((v, e) # xs). set r ∩ set v = {})
←→ (∀ (x,e1) ∈ fset {|(dtree-from-list v xs,e)|}. set r ∩ dlverts x = {}) (is ?P

←→ ?Q)
proof

assume asm: ?P
have dverts (dtree-from-list v xs) = fst ‘ set ((v,e)#xs)

by(simp add: dtree-from-list-eq-dverts)
then show ?Q using list-in-verts-if-lverts asm by fastforce

next
assume asm: ?Q
have dverts (dtree-from-list v xs) = fst ‘ set ((v,e)#xs)

by(simp add: dtree-from-list-eq-dverts)
moreover have (dtree-from-list v xs,e) ∈ fset {|(dtree-from-list v xs, e)|} by

simp
ultimately show ?P using asm lverts-if-in-verts by fast

qed

lemma wf-dlverts-iff-wf-list-lverts:
(∀ v ∈ fst ‘ set xs. set r ∩ set v = {}) ∧ r 6= [] ∧ wf-list-lverts xs
←→ wf-dlverts (dtree-from-list r xs)

proof(induction xs arbitrary: r rule: wf-list-lverts.induct)

213

case (2 v e xs)
then show ?case using dtree-from-list-empty-inter-iff [of v e] by auto

qed (simp)

lemma vert-disjoint-if-not-root:
assumes wf-dlverts t

and v ∈ dverts t − {root t}
shows set (root t) ∩ set v = {}

proof −
obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset (sucs t) v ∈ dverts t1

using assms(2) dtree.set-cases(1) by force
then show ?thesis using assms(1) wf-dlverts.simps[of root t] lverts-if-in-verts

by fastforce
qed

lemma vert-disjoint-if-to-list:
[[wf-dlverts (Node r {|(t1 ,e1)|}); v ∈ fst ‘ set (dtree-to-list t1)]]
=⇒ set (root t1) ∩ set v = {}

using vert-disjoint-if-not-root dtree-to-list-sub-dverts wf-dverts-if-wf-dlverts by
fastforce

lemma wf-list-lverts-if-wf-dlverts: wf-dlverts t =⇒ wf-list-lverts (dtree-to-list t)
proof(induction t)

case (Node r xs)
then show ?case
proof(cases ∀ x. xs 6= {|x|})

case True
then show ?thesis using dtree-to-list.simps(2) by simp

next
case False
then obtain t1 e1 where t1-def : xs = {|(t1 ,e1)|} by auto
then have wf-dlverts t1 using Node.prems by simp
then have root t1 6= [] using wf-dlverts.simps[of root t1 sucs t1] by simp
then show ?thesis using Node vert-disjoint-if-to-list t1-def by fastforce

qed
qed

lemma child-in-dlverts: (t1 ,e) ∈ fset xs =⇒ dlverts t1 ⊆ dlverts (Node r xs)
by force

lemma suc-in-dlverts: (t1 ,e) ∈ fset (sucs t2) =⇒ dlverts t1 ⊆ dlverts t2
using child-in-dlverts[of t1 e sucs t2 root t2] by auto

lemma suc-in-dlverts ′: t1 ∈ fst ‘ fset (sucs t2) =⇒ dlverts t1 ⊆ dlverts t2
using suc-in-dlverts by fastforce

lemma subtree-in-dlverts: is-subtree t1 t2 =⇒ dlverts t1 ⊆ dlverts t2
by(induction t2) fastforce

214

lemma subtree-root-if-dlverts: x ∈ dlverts t =⇒ ∃ r xs. is-subtree (Node r xs) t ∧
x ∈ set r

using subtree-root-if-dverts list-in-verts-if-lverts by fast

lemma x-not-root-strict-subtree:
assumes x ∈ dlverts t and x /∈ set (root t)
shows ∃ r xs t1 . is-subtree (Node r xs) t ∧ t1 ∈ fst ‘ fset xs ∧ x ∈ set (root t1)

proof −
obtain r xs where r-def : is-subtree (Node r xs) t x ∈ set r

using subtree-root-if-dlverts[OF assms(1)] by fast
then have sub: strict-subtree (Node r xs) t using assms(2) strict-subtree-def by

fastforce
then show ?thesis using assms(2) subtree-child-if-strict-subtree[OF sub] r-def (2)

by force
qed

lemma dverts-disj-if-wf-dlverts:
[[wf-dlverts t; v1 ∈ dverts t; v2 ∈ dverts t; v1 6= v2]] =⇒ set v1 ∩ set v2 = {}
using dverts-same-if-set-wf by fast

thm empty-notin-wf-dlverts

lemma wf-dlverts ′-if-dlverts: wf-dlverts t =⇒ wf-dlverts ′ t
using wf-dlverts ′-def empty-notin-wf-dlverts dverts-disj-if-wf-dlverts wf-dverts-if-wf-dlverts
by blast

lemma disjoint-dlverts-if-wf ′-aux:
assumes wf-dlverts ′ (Node r xs)

and (t1 ,e1) ∈ fset xs
and (t2 ,e2) ∈ fset xs
and (t1 ,e1) 6= (t2 ,e2)

shows dlverts t1 ∩ dlverts t2 = {}
proof(rule ccontr)

assume dlverts t1 ∩ dlverts t2 6= {}
then obtain x y where x-def : x ∈ dverts t1 y ∈ dverts t2 set x ∩ set y 6= {}

using dlverts-eq-dverts-union[of t1] dlverts-eq-dverts-union[of t2] by auto
then have x ∈ dverts (Node r xs) y ∈ dverts (Node r xs)

using dverts-child-subseteq assms(2 ,3) by auto
moreover have x 6= y

using assms(1) disjoint-dverts-if-wf-aux[rotated, OF assms(2−4)] x-def (1 ,2)
unfolding wf-dlverts ′-def by blast

ultimately show False using assms(1) x-def (3) unfolding wf-dlverts ′-def by
blast
qed

lemma disjoint-dlverts-if-wf ′: wf-dlverts ′ (Node r xs) =⇒ disjoint-dlverts xs
using disjoint-dlverts-if-wf ′-aux by fast

lemma root-nempty-if-wf ′: wf-dlverts ′ (Node r xs) =⇒ r 6= []

215

unfolding wf-dlverts ′-def by fastforce

lemma disjoint-root-if-wf ′-aux:
assumes wf-dlverts ′ (Node r xs)

and (t1 ,e1) ∈ fset xs
shows set r ∩ dlverts t1 = {}

proof(rule ccontr)
assume set r ∩ dlverts t1 6= {}
then obtain x where x-def : x ∈ dverts t1 set x ∩ set r 6= {}

using dlverts-eq-dverts-union by fast
then have x ∈ dverts (Node r xs) using dverts-child-subseteq assms(2) by auto
moreover have r ∈ dverts (Node r xs) by simp
moreover have x 6= r

using assms x-def (1) root-not-child-if-wf-dverts unfolding wf-dlverts ′-def by
fast

ultimately show False using assms(1) x-def (2) unfolding wf-dlverts ′-def by
blast
qed

lemma disjoint-root-if-wf ′:
wf-dlverts ′ (Node r xs) =⇒ ∀ (t1 ,e1) ∈ fset xs. set r ∩ dlverts t1 = {}
using disjoint-root-if-wf ′-aux by fast

lemma wf-dlverts-if-dlverts ′: wf-dlverts ′ t =⇒ wf-dlverts t
proof(induction t)

case (Node r xs)
then have ∀ (t1 ,e1) ∈ fset xs. set r ∩ dlverts t1 = {}

using disjoint-root-if-wf ′ by blast
moreover have r 6= [] ∧ disjoint-dlverts xs

using disjoint-dlverts-if-wf ′ Node.prems root-nempty-if-wf ′ by fast
moreover have ∀ (t1 ,e1) ∈ fset xs. wf-dlverts t1

using Node wf-dlverts ′-rec by fastforce
ultimately show ?case by auto

qed

lemma wf-dlverts-iff-dlverts ′: wf-dlverts t ←→ wf-dlverts ′ t
using wf-dlverts-if-dlverts ′ wf-dlverts ′-if-dlverts by blast

locale list-dtree =
fixes t :: (′a list, ′b) dtree
assumes wf-arcs: wf-darcs t

and wf-lverts: wf-dlverts t

sublocale list-dtree ⊆ wf-dtree
using wf-arcs wf-lverts wf-dverts-if-wf-dlverts by(unfold-locales) auto

theorem list-dtree-iff-wf-list:
wf-list-arcs xs ∧ (∀ v ∈ fst ‘ set xs. set r ∩ set v = {}) ∧ r 6= [] ∧ wf-list-lverts xs
←→ list-dtree (dtree-from-list r xs)

216

using wf-darcs-iff-wf-list-arcs wf-dlverts-iff-wf-list-lverts list-dtree-def by metis

lemma list-dtree-subset:
assumes xs |⊆| ys and list-dtree (Node r ys)
shows list-dtree (Node r xs)
using wf-dlverts-sub[OF assms(1)] wf-darcs-sub[OF assms(1)] assms(2)
by (unfold-locales) (fast dest: list-dtree.wf-lverts list-dtree.wf-arcs)+

context fin-list-directed-tree
begin

lemma dlverts-disjoint:
assumes r ∈ verts T and (Node r xs) = to-dtree-aux r

and (x,e1) ∈ fset xs and (y,e2) ∈ fset xs and (x,e1) 6=(y,e2)
shows dlverts x ∩ dlverts y = {}

proof (rule ccontr)
assume dlverts x ∩ dlverts y 6= {}
then obtain v where v-def [simp]: v ∈ dlverts x v ∈ dlverts y by blast
obtain x1 where x1-def : v ∈ set x1 x1 ∈ dverts x using list-in-verts-if-lverts

by force
obtain y1 where y1-def : v ∈ set y1 y1 ∈ dverts y using list-in-verts-if-lverts

by force
have 0 : y = to-dtree-aux (Dtree.root y) using to-dtree-aux-self assms(2 ,4) by

blast
have r →T Dtree.root y
using assms(2 ,4) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv

image-iff)
then have 1 : Dtree.root y ∈ verts T using adj-in-verts(2) by simp
have r →T Dtree.root x
using assms(2 ,3) dominated-if-child by (metis (no-types, opaque-lifting) fst-conv

image-iff)
then have Dtree.root x ∈ verts T using adj-in-verts(2) by simp
moreover have x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self assms(2 ,3)

by blast
ultimately have Dtree.root x →∗

T x1 using to-dtree-aux-dverts-reachable x1-def (2)
by blast

moreover have Dtree.root y →∗
T y1 using 0 1 to-dtree-aux-dverts-reachable

y1-def (2) by blast
ultimately have x1 = y1 using disjoint-verts reachable-in-verts(2) x1-def (1)

y1-def (1) by auto
then show False using dverts-disjoint[OF assms(2−5)] x1-def (2) y1-def (2) by

blast
qed

lemma wf-dlverts-to-dtree-aux: [[r ∈ verts T ; t = to-dtree-aux r]] =⇒ wf-dlverts t
proof(induction t arbitrary: r rule: darcs-mset.induct)

case (1 r ′ xs)
then have r = r ′ by simp
have ∀ (x,e) ∈ fset xs. wf-dlverts x ∧ set r ∩ dlverts x = {}

217

proof (standard, standard, standard)
fix xp x e
assume asm: xp ∈ fset xs xp = (x,e)

then have 0 : x = to-dtree-aux (Dtree.root x) using to-dtree-aux-self 1 .prems(2)
by simp

have 2 : r →T Dtree.root x using asm 1 .prems ‹r = r ′›
by (metis (no-types, opaque-lifting) dominated-if-child fst-conv image-iff)

then have 3 : Dtree.root x ∈ verts T using adj-in-verts(2) by simp
then show wf-dlverts x using 1 .IH asm 0 by blast
have r /∈ dverts x
proof

assume r ∈ dverts x
then have Dtree.root x →∗

T r using 0 3 to-dtree-aux-dverts-reachable by
blast

then have r →+
T r using 2 by auto

then show False using reachable1-not-reverse by blast
qed
then show set r ∩ dlverts x = {}

using 0 1 .prems(1) 3 disjoint-iff-not-equal disjoint-verts list-in-verts-if-lverts
by (metis reachable-in-verts(2) to-dtree-aux-dverts-reachable)

qed
moreover have disjoint-dlverts xs using dlverts-disjoint 1 .prems by fastforce
ultimately show ?case using ‹r = r ′› by (auto simp add: 1 .prems(1) nempty-verts)

qed

lemma wf-dlverts-to-dtree: wf-dlverts to-dtree
using to-dtree-def wf-dlverts-to-dtree-aux root-in-T by blast

theorem list-dtree-to-dtree: list-dtree to-dtree
using list-dtree-def wf-dlverts-to-dtree wf-darcs-to-dtree by blast

end

context list-dtree
begin

lemma list-dtree-rec: [[Node r xs = t; (x,e) ∈ fset xs]] =⇒ list-dtree x
using wf-arcs wf-lverts by(unfold-locales) auto

lemma list-dtree-rec-suc: (x,e) ∈ fset (sucs t) =⇒ list-dtree x
using list-dtree-rec[of root t] by force

lemma list-dtree-sub: is-subtree x t =⇒ list-dtree x
using list-dtree-axioms proof(induction t rule: darcs-mset.induct)

case (1 r xs)
then interpret list-dtree Node r xs by blast
show ?case
proof(cases x = Node r xs)

case True

218

then show ?thesis by (simp add: 1 .prems)
next

case False
then show ?thesis using 1 .IH list-dtree-rec 1 .prems(1) by auto

qed
qed

theorem from-dtree-fin-list-dir : fin-list-directed-tree (root t) (from-dtree dt dh t)
unfolding fin-list-directed-tree-def fin-list-directed-tree-axioms-def
by (auto simp: from-dtree-fin-directed empty-notin-wf-dlverts[OF wf-lverts]

intro: wf-lverts dverts-same-if-set-wf)

8.3 Combining Preserves Well-Formedness
lemma remove-child-sub: remove-child x xs |⊆| xs

by auto

lemma child2-commute-aux:
assumes f = (λ(t,-) b. case t of Node r ys ⇒ if r = a then ys |∪| b else b)
shows (f y ◦ f x) z = (f x ◦ f y) z

proof −
obtain r1 ys1 e1 where y-def : y = (Node r1 ys1 , e1) by (metis dtree.exhaust

eq-snd-iff)
obtain r2 ys2 e2 where x = (Node r2 ys2 , e2) by (metis dtree.exhaust eq-snd-iff)
then show ?thesis by (simp add: assms funion-left-commute y-def)

qed

lemma child2-commute:
comp-fun-commute (λ(t,-) b. case t of Node r ys ⇒ if r = x then ys |∪| b else b)
using comp-fun-commute-def child2-commute-aux by fastforce

interpretation Comm:
comp-fun-commute λ(t,-) b. case t of Node r ys ⇒ if r = x then ys |∪| b else b
by (rule child2-commute)

lemma input-in-child2 :
zs |⊆| child2 x zs ys

proof(induction ys)
case empty
then show ?case using Comm.ffold-empty by simp

next
case (insert y ys)
then obtain r xs e where r-def : (Node r xs,e) = y by (metis dtree.exhaust

surj-pair)
let ?f = (λ(t,-) b. case t of Node r ys ⇒ if r = x then ys |∪| b else b)
show ?case
proof(cases r=x)

case True
then have ffold ?f zs (finsert y ys) = xs |∪| (ffold ?f zs ys)

219

using r-def insert.hyps by force
then show ?thesis using insert.IH by blast

next
case False
then have ffold ?f zs (finsert y ys) = (ffold ?f zs ys) using r-def insert.hyps

by force
then show ?thesis using insert.IH by blast

qed
qed

lemma child2-subset-if-input1 :
zs ′ |⊆| zs =⇒ child2 x zs ′ ys |⊆| child2 x zs ys

proof(induction ys)
case (insert y ys)
obtain r xs e where r-def : (Node r xs, e) = y by (metis dtree.exhaust surj-pair)
let ?f = (λ(t,-) b. case t of Node r ys ⇒ if r = x then ys |∪| b else b)
show ?case
proof(cases r=x)

case True
then have ffold ?f zs (finsert y ys) = xs |∪| (ffold ?f zs ys)

using r-def insert.hyps by force
moreover have ffold ?f zs ′ (finsert y ys) = xs |∪| (ffold ?f zs ′ ys)

using r-def insert.hyps True by force
ultimately show ?thesis using insert by blast

next
case False
then have ffold ?f zs (finsert y ys) = (ffold ?f zs ys) using r-def insert.hyps

by force
moreover have ffold ?f zs ′ (finsert y ys) = (ffold ?f zs ′ ys)

using r-def insert.hyps False by force
ultimately show ?thesis using insert by blast

qed
qed (simp)

lemma child2-subset-if-input2 :
ys ′ |⊆| ys =⇒ child2 x xs ys ′ |⊆| child2 x xs ys

proof(induction fcard ys arbitrary: ys)
case (Suc n)
show ?case
proof(cases ys ′ = ys)

case False
then obtain z where z-def : z |∈| ys ∧ z |/∈| ys ′ using Suc.prems by blast
then obtain zs where zs-def : finsert z zs = ys ∧ z |/∈| zs by blast
then have ys ′ |⊆| zs ∧ fcard zs = n

using Suc.prems(1) Suc.hyps(2) z-def fcard-finsert-disjoint by fastforce
then have 0 : child2 x xs ys ′ |⊆| child2 x xs zs using Suc.hyps(1) by blast
obtain r rs e where r-def : (Node r rs, e) = z by (metis dtree.exhaust surj-pair)
then show ?thesis using 0 zs-def by force

qed (simp)

220

qed (simp)

lemma darcs-split: darcs (Node r (xs|∪|ys)) = darcs (Node r xs) ∪ darcs (Node r
ys)

by simp

lemma darcs-sub-if-children-sub: xs |⊆| ys =⇒ darcs (Node r xs) ⊆ darcs (Node v
ys)
proof(induction fcard ys arbitrary: ys)

case (Suc n)
then show ?case
proof(cases ys = xs)

case False
then obtain z where z-def : z |∈| ys ∧ z |/∈| xs using Suc.prems by blast
then obtain zs where zs-def : finsert z zs = ys ∧ z |/∈| zs by blast
then have xs |⊆| zs ∧ fcard zs = n

using Suc.prems(1) Suc.hyps(2) z-def fcard-finsert-disjoint by fastforce
then have darcs (Node r xs) ⊆ darcs (Node v zs) using Suc.hyps(1) by blast
then show ?thesis using zs-def darcs-split[of v {|z|} zs] by auto

qed (simp)
qed (simp)

lemma darc-in-child2-snd-if-nin-fst:
e ∈ darcs (Node x (child2 a xs ys)) =⇒ e /∈ darcs (Node v ys) =⇒ e ∈ darcs

(Node r xs)
proof(induction ys)

case (insert y ys)
obtain r rs e1 where r-def : (Node r rs, e1) = y by (metis dtree.exhaust

surj-pair)
then have e-not-rs: e /∈ darcs (Node x rs) using insert.prems(2) by fastforce
show ?case
proof(cases r = a)

case True
then have darcs (Node x (child2 a xs (finsert y ys)))

= darcs (Node x (rs |∪| (child2 a xs ys)))
using r-def insert.hyps(1) by force

moreover have . . . = darcs (Node x rs) ∪ darcs (Node x (child2 a xs ys)) by
simp

ultimately have e ∈ darcs (Node x (child2 a xs ys)) using insert.prems(1)
e-not-rs by blast

then show ?thesis using insert.IH insert.prems(2) by simp
next

case False
then have darcs (Node x (child2 a xs (finsert y ys))) = darcs (Node x (child2

a xs ys))
using r-def insert.hyps(1) by force

then show ?thesis using insert.IH insert.prems by simp
qed

qed (simp)

221

lemma darc-in-child2-fst-if-nin-snd:
e ∈ darcs (Node x (child2 a xs ys)) =⇒ e /∈ darcs (Node v xs) =⇒ e ∈ darcs

(Node r ys)
using darc-in-child2-snd-if-nin-fst by fast

lemma darcs-child2-sub: darcs (Node x (child2 y xs ys)) ⊆ darcs (Node r xs) ∪
darcs (Node r ′ ys)

using darc-in-child2-snd-if-nin-fst by fast

lemma darcs-combine-sub-orig: darcs (combine x y t1) ⊆ darcs t1
proof(induction t1)

case ind: (Node r xs)
show ?case
proof(cases x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y))

case True
then have darcs (combine x y (Node r xs))

= darcs (Node (x@y) (child2 y (remove-child y xs) xs)) by simp
also have . . . ⊆ darcs (Node x (child2 y xs xs))

using darcs-sub-if-children-sub[of child2 y (remove-child y xs) xs child2 y xs
xs]

child2-subset-if-input1 [of remove-child y xs xs] remove-child-sub by fast
finally show ?thesis using darcs-child2-sub by fast

next
case False
then have darcs (combine x y (Node r xs))

= darcs (Node r ((λ(t,e). (combine x y t,e)) |‘| xs))
by auto

also have . . . ⊆ (
⋃
(t,e)∈fset xs.

⋃
(darcs ‘ {t}) ∪ {e})

using ind.IH wf-dtree-rec by fastforce
finally show ?thesis by force

qed
qed

lemma child2-in-child:
[[b ∈ fset (child2 a ys xs); b |/∈| ys]] =⇒ ∃ rs e. (Node a rs, e) ∈ fset xs ∧ b |∈| rs

proof(induction xs)
case (insert x xs)
obtain r rs e1 where r-def : (Node r rs, e1) = x by (metis dtree.exhaust

surj-pair)
show ?case
proof(cases r = a)

case ra: True
then have 0 : child2 a ys (finsert x xs) = rs |∪| (child2 a ys xs)

using r-def insert.hyps(1) by force
show ?thesis
proof(cases b |∈| rs)

case True
then show ?thesis using r-def ra by auto

222

next
case False
then have b ∈ fset (child2 a ys xs) using insert.prems(1) 0 by force
then show ?thesis using insert.IH insert.prems(2) by auto

qed
next

case False
then show ?thesis using insert r-def by force

qed
qed simp

lemma child-in-darcs: (y,e2) ∈ fset xs =⇒ darcs y ∪ {e2} ⊆ darcs (Node r xs)
by force

lemma disjoint-darcs-child2 :
assumes wf-darcs (Node r xs)
shows disjoint-darcs (child2 a (remove-child a xs) xs) (is disjoint-darcs ?P)

proof (rule ccontr)
assume ¬ disjoint-darcs ?P
then obtain x e1 y e2 where asm: (x,e1) ∈ fset ?P (y,e2) ∈ fset ?P (e1 ∈

darcs x ∨
((darcs x ∪ {e1}) ∩ (darcs y ∪ {e2}) 6= {} ∧ (x,e1)6=(y,e2))) by blast

note wf-darcs-iff-darcs ′[simp]
consider (x,e1) ∈ fset (remove-child a xs) e1 ∈ darcs x
| (x,e1) ∈ fset (remove-child a xs) e1 /∈ darcs x (y,e2) ∈ fset (remove-child a

xs)
| (x,e1) ∈ fset (remove-child a xs) e1 /∈ darcs x (y,e2) |/∈| (remove-child a xs)
| (x,e1) |/∈| (remove-child a xs) e1 ∈ darcs x
| (x,e1) |/∈| (remove-child a xs) e1 /∈ darcs x (y,e2) ∈ fset (remove-child a xs)
| (x,e1) |/∈| (remove-child a xs) e1 /∈ darcs x (y,e2) |/∈| (remove-child a xs)
by auto

then show False
proof(cases)

case 1
then show ?thesis using assms by auto

next
case 2
then show ?thesis using assms asm(3) by fastforce

next
case 3
then have x-xs: (x,e1) ∈ fset xs by simp
obtain rs2 re2 where r2-def : (Node a rs2 , re2) ∈ fset xs (y,e2) |∈| rs2

using child2-in-child asm(2) 3 (3) by fast
then have darcs y ∪ {e2} ⊆ darcs (Node a rs2) using child-in-darcs by fast
then have (darcs x ∪ {e1}) ∩ (darcs (Node a rs2) ∪ {re2}) 6= {} using 3 (2)

asm(3) by blast
moreover have (x,e1) 6=(Node a rs2 , re2) using 3 (1) by force
ultimately have ¬ disjoint-darcs xs using r2-def (1) x-xs by fast
then show ?thesis using assms by simp

223

next
case 4
then obtain rs1 re1 where r1-def : (Node a rs1 , re1) ∈ fset xs (x,e1) |∈| rs1

using child2-in-child asm(1) by fast
then have ¬disjoint-darcs rs1 using 4 (2) by fast
then show ?thesis using assms r1-def (1) by fastforce

next
case 5
then obtain rs1 re1 where r1-def : (Node a rs1 , re1) ∈ fset xs (x,e1) |∈| rs1

using child2-in-child asm(1) by fast
have 1 : (darcs (Node a rs1) ∪ {re1}) ∩ (darcs y ∪ {e2}) 6= {}

using r1-def (2) asm(3) 5 (2) child-in-darcs by fast
have y-xs: (y,e2) ∈ fset xs using 5 (3) by simp
then have (Node a rs1 , re1) 6=(y,e2) using 5 (3) by force
then have ¬ disjoint-darcs xs using r1-def (1) y-xs 1 by fast
then show ?thesis using assms by simp

next
case 6
then obtain rs1 re1 where r1-def : (Node a rs1 , re1) ∈ fset xs (x,e1) |∈| rs1

using child2-in-child asm(1) by fast
then have 1 : (darcs (Node a rs1) ∪ {re1}) ∩ (darcs y ∪ {e2}) 6= {}

using asm(3) 6 (2) child-in-darcs by fast
obtain rs2 re2 where r2-def : (Node a rs2 , re2) ∈ fset xs (y,e2) |∈| rs2

using child2-in-child asm(2) 6 (3) by fast
then have darcs y ∪ {e2} ⊆ darcs (Node a rs2) using child-in-darcs by fast
then have 1 : (darcs (Node a rs1) ∪ {re1}) ∩ (darcs (Node a rs2) ∪ {re2}) 6=

{}
using 1 asm(3) 6 (2) child-in-darcs by blast

then show ?thesis
proof(cases (Node a rs1 , re1) = (Node a rs2 , re2))

case True
then have (x,e1) ∈ fset rs1 ∧ (y,e2) ∈ fset rs1

using r1-def (2) r2-def (2) by fast
then show ?thesis using assms r1-def asm(3) 6 (2) by fastforce

next
case False
then have ¬ disjoint-darcs xs using r1-def (1) r2-def (1) 1 by fast
then show ?thesis using assms by simp

qed
qed

qed

lemma wf-darcs-child2 :
assumes wf-darcs (Node r xs) and (x,e) ∈ fset (child2 a (remove-child a xs) xs)
shows wf-darcs x

proof(cases (x,e) |∈| remove-child a xs)
case True
then show ?thesis using assms(1) by (fastforce simp: wf-darcs-iff-darcs ′)

next

224

case False
then obtain r rs e1 where (Node r rs, e1) ∈ fset xs ∧ (x,e) |∈| rs ∧ r = a

using child2-in-child assms(2) by fast
then show ?thesis using assms by (fastforce simp: wf-darcs-iff-darcs ′)

qed

lemma disjoint-darcs-combine:
assumes Node r xs = t
shows disjoint-darcs ((λ(t,e). (combine x y t,e)) |‘| xs)

proof −
have disjoint-darcs xs using wf-arcs assms by (fastforce simp: wf-darcs-iff-darcs ′)
then show ?thesis
using disjoint-darcs-img[of xs combine x y] by (simp add: darcs-combine-sub-orig)

qed

lemma wf-darcs-combine: wf-darcs (combine x y t)
using list-dtree-axioms proof(induction t)

case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?case
proof(cases x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y))

case True
have disjoint-darcs (child2 y (remove-child y xs) xs)

using disjoint-darcs-child2 [OF wf-arcs] by simp
moreover have ∀ (x,e) ∈ fset (child2 y (remove-child y xs) xs). wf-darcs x

using wf-darcs-child2 wf-arcs by fast
ultimately show ?thesis using True by (simp add: wf-darcs-iff-darcs ′)

next
case False
have disjoint-darcs ((λ(t,e). (combine x y t, e)) |‘| xs)

using disjoint-darcs-combine ind.prems by simp
moreover have ∀ (x,e) ∈ fset xs. list-dtree x using list-dtree-rec by blast

ultimately show ?thesis using False ind.IH ind.prems by (auto simp: wf-darcs-iff-darcs ′)
qed

qed

lemma v-in-dlverts-if-in-comb: v ∈ dlverts (combine x y t) =⇒ v ∈ dlverts t
using list-dtree-axioms proof(induction t)

case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?case
proof(cases x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y))

case x-and-y: True
show ?thesis
proof(cases v ∈ set x ∪ set y)

case True
then show ?thesis using x-and-y dtree.set-sel(1) lverts-if-in-verts by fastforce

next
case False

225

then obtain t e where t-def : (t,e) ∈ fset (child2 y (remove-child y xs) xs) v
∈ dlverts t

using x-and-y ind.prems by auto
then show ?thesis
proof(cases (t,e) |∈| (remove-child y xs))

case True
then have (t,e) ∈ fset (remove-child y xs) by fast
then show ?thesis using t-def (2) by force

next
case False
then obtain r1 rs1 re1 where r1-def : (Node r1 rs1 , re1) ∈ fset xs (t,e)

|∈| rs1
using child2-in-child t-def (1) by fast

have is-subtree t (Node r1 rs1) using subtree-if-child r1-def (2)
by (metis image-iff prod.sel(1))

moreover have is-subtree (Node r1 rs1) (Node r xs)
using subtree-if-child r1-def (1) by fastforce

ultimately have is-subtree t (Node r xs) using subtree-trans by blast
then show ?thesis using t-def (2) subtree-in-dlverts by blast

qed
qed

next
case rec: False
then show ?thesis
proof(cases v ∈ set r)

case False
then have ∃ (t,e) ∈ fset xs. v ∈ dlverts (combine x y t)

using ind.prems list-dtree-rec rec by force
then show ?thesis using ind.IH list-dtree-rec by fastforce

qed (simp)
qed

qed

lemma ex-subtree-if-in-lverts: v ∈ dlverts t1 =⇒ ∃ t2 . is-subtree t2 t1 ∧ v ∈ set
(root t2)

apply(induction t1)
apply(cases)
apply simp

by fastforce

lemma child ′-in-child2 :
assumes (Node y rs1 ,e1) ∈ fset xs and (t2 ,e2) ∈ fset rs1
shows (t2 ,e2) ∈ fset (child2 y ys xs)

using assms proof(induction xs)
case (insert x xs)
obtain r rs re where r-def : (Node r rs, re) = x by (metis dtree.exhaust surj-pair)
show ?case
proof(cases r = y)

case ry: True

226

then have 0 : child2 y ys (finsert x xs) = rs |∪| (child2 y ys xs)
using r-def insert.hyps(1) by force

then show ?thesis using insert by fastforce
next

case False
then show ?thesis using insert r-def by force

qed
qed (simp)

lemma v-in-comb-if-in-dlverts: v ∈ dlverts t =⇒ v ∈ dlverts (combine x y t)
using list-dtree-axioms proof(induction t)

case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?case
proof(cases x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y))

case x-and-y: True
then have 0 : combine x y (Node r xs) = Node (x@y) (child2 y (remove-child

y xs) xs) by simp
show ?thesis
proof(cases v ∈ set x ∪ set y)

case True
then show ?thesis using x-and-y dtree.set-sel(1) lverts-if-in-verts by fastforce

next
case False
obtain t where t-def : is-subtree t (Node r xs) v ∈ set (root t)

using ex-subtree-if-in-lverts ind.prems by fast
then have Node r xs 6= t using False x-and-y by fastforce
then obtain t1 e1 where t1-def : is-subtree t t1 (t1 ,e1) ∈ fset xs

using t-def (1) by force
then show ?thesis
proof(cases root t1 = y)

case True
then have t1 6= t using False t-def (2) by blast

then obtain rs1 where rs1-def : t1 = Node y rs1 using True dtree.exhaust-sel
by blast

then obtain t2 e2 where t2-def : is-subtree t t2 (t2 ,e2) ∈ fset rs1
using ‹t1 6=t› t1-def (1) by auto

have (t2 ,e2) ∈ fset (child2 y (remove-child y xs) xs)
using t2-def (2) rs1-def t1-def (2) child ′-in-child2 by fast

then have is-subtree t2 (combine x y (Node r xs)) using subtree-if-child 0
using self-subtree by fastforce
then have is-subtree t (combine x y (Node r xs)) using subtree-trans

t2-def (1) by blast
then show ?thesis
using t-def (2) t2-def (1) subtree-in-dlverts dtree.set-sel(1) lverts-if-in-verts

by fast
next

case False
then have (t1 ,e1) ∈ fset (remove-child y xs) using t1-def (2) by simp

227

then have (t1 ,e1) ∈ fset (child2 y (remove-child y xs) xs)
using less-eq-fset.rep-eq input-in-child2 by fast

then have is-subtree t (combine x y (Node r xs))
using 0 subtree-if-child subtree-trans t1-def (1) by auto

then show ?thesis
using t-def (2) subtree-in-dlverts dtree.set-sel(1) lverts-if-in-verts by fast

qed
qed

next
case rec: False
then show ?thesis
proof(cases v ∈ set r)

case False
then obtain t e where t-def : (t,e) ∈ fset xs v ∈ dlverts t using ind.prems

by auto
then have v ∈ dlverts (combine x y t) using ind.IH list-dtree-rec by auto
then show ?thesis using rec t-def (1) by force

qed (simp)
qed

qed

lemma dlverts-comb-id[simp]: dlverts (combine x y t) = dlverts t
using v-in-comb-if-in-dlverts v-in-dlverts-if-in-comb by blast

lemma wf-dlverts-comb-aux:
assumes ∀ (t,e) ∈ fset xs. dlverts (combine x y t) = dlverts t

and ∀ (t1 ,e1) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. dlverts t1 ∩ dlverts t2 = {} ∨
(t1 ,e1)=(t2 ,e2)

and (t1 ,e1) ∈ fset ((λ(t,e). (combine x y t, e)) |‘| xs)
and (t2 ,e2) ∈ fset ((λ(t,e). (combine x y t, e)) |‘| xs)

shows dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2)
proof −

obtain t1 ′ where t1-def : combine x y t1 ′ = t1 (t1 ′,e1) ∈ fset xs using assms(3)
by auto

obtain t2 ′ where t2-def : combine x y t2 ′ = t2 (t2 ′,e2) ∈ fset xs using assms(4)
by auto

show ?thesis
proof(cases dlverts t1 ′ ∩ dlverts t2 ′ = {})

case True
then show ?thesis using assms(1) t1-def t2-def by blast

next
case False
then show ?thesis using assms(2) t1-def t2-def by fast

qed
qed

lemma wf-dlverts-child2 :
assumes (t1 ,e) ∈ fset (child2 y (remove-child y xs) xs)

and ∀ (t,e) ∈ fset xs. wf-dlverts t

228

shows wf-dlverts t1
proof(cases (t1 ,e) |∈| (remove-child y xs))

case True
then show ?thesis using assms(2) by fastforce

next
case False
then obtain rs re where r-def : (Node y rs, re) ∈ fset xs (t1 ,e)|∈| rs

using child2-in-child assms(1) by fast
then show ?thesis using assms(2) by fastforce

qed

lemma wf-dlverts-child2-aux1 :
assumes (t1 ,e1) ∈ fset (child2 y (remove-child y xs) xs)

and ∃ t. t ∈ fst ‘ fset xs ∧ root t = y
and wf-dlverts (Node r xs)

shows set (r@y) ∩ dlverts t1 = {}
proof(cases (t1 ,e1) |∈| (remove-child y xs))

case True
then have t1-def : root t1 6= y (t1 ,e1) ∈ fset xs by fastforce+
obtain t et where t-def : (t,et) ∈ fset xs root t = y using assms(2) by force
have ∀ y ′∈ set y. y ′ /∈ dlverts t1
proof

fix y ′

assume y ′ ∈ set y
then have asm: y ′ ∈ dlverts t using t-def (2) dtree.set-sel(1) lverts-if-in-verts

by fastforce
have dlverts t1 ∩ dlverts t = {} using assms(3) t1-def t-def by fastforce
then show y ′ /∈ dlverts t1 using asm by blast

qed
then show ?thesis using assms(3) t1-def (2) by auto

next
case False
then obtain rs1 re1 where r-def : (Node y rs1 , re1) ∈ fset xs (t1 ,e1)|∈| rs1

using child2-in-child assms(1) by fast
have ∀ y ′∈ set y. y ′ /∈ dlverts t1 using assms(3) r-def by fastforce
then show ?thesis using assms(3) r-def by fastforce

qed

lemma wf-dlverts-child2-aux2 :
assumes ∀ (t1 ,e1) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs. dlverts t1 ∩ dlverts t2 = {} ∨

(t1 ,e1)=(t2 ,e2)
and ∀ (t,e) ∈ fset xs. wf-dlverts t
and (t1 ,e1) ∈ fset (child2 y (remove-child y xs) xs)
and (t2 ,e2) ∈ fset (child2 y (remove-child y xs) xs)
and (t1 ,e1)6=(t2 ,e2)

shows dlverts t1 ∩ dlverts t2 = {}
proof(cases (t1 ,e1) |∈| (remove-child y xs))

case t1-r : True
then show ?thesis

229

proof(cases (t2 ,e2) |∈| (remove-child y xs))
case True
then show ?thesis

by (smt (verit, ccfv-threshold) t1-r assms(1 ,5) Int-iff case-prodD filter-fset)
next

case False
then obtain rs2 re2 where r-def : (Node y rs2 , re2) ∈ fset xs (t2 ,e2)|∈| rs2

using child2-in-child assms(4) by fast
then show ?thesis

using t1-r assms(1) ffmember-filter inf-assoc inf-bot-right inf-commute
by (smt (verit) dtree.sel(1) semilattice-inf-class.inf .absorb-iff2 case-prodD

child-in-dlverts)
qed

next
case False
then obtain rs1 re1 where r1-def : (Node y rs1 , re1) ∈ fset xs (t1 ,e1)|∈| rs1

using child2-in-child assms(3) by fast
show ?thesis
proof(cases (t2 ,e2) |∈| (remove-child y xs))

case True
then show ?thesis

using r1-def assms(1) ffmember-filter inf-assoc inf-bot-right inf-commute
by (smt (verit) dtree.sel(1) semilattice-inf-class.inf .absorb-iff2 case-prodD

child-in-dlverts)
next

case False
then obtain rs2 re2 where r2-def : (Node y rs2 , re2) ∈ fset xs (t2 ,e2) |∈| rs2

using child2-in-child assms(4) by fast
then show ?thesis
proof(cases rs1=rs2)

case True
have ∀ (t1 ,e1) ∈ fset rs1 . ∀ (t2 ,e2) ∈ fset rs1 .

dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2)
using r1-def (1) assms(2) by fastforce

then show ?thesis
using r1-def (2) r2-def (2) assms(5) True
by (metis (mono-tags, lifting) case-prodD)

next
case False
then have dlverts (Node y rs1) ∩ dlverts (Node y rs2) = {}

using assms(1) r1-def (1) r2-def (1) by fast
then show ?thesis

using r1-def (2) r2-def (2) child-in-dlverts
by (metis order-bot-class.bot.extremum-uniqueI inf-mono)

qed
qed

qed

lemma wf-dlverts-combine: wf-dlverts (combine x y t)

230

using list-dtree-axioms proof(induction t)
case ind: (Node r xs)
then interpret list-dtree Node r xs using ind.prems by blast
show ?case
proof(cases x=r ∧ (∃ t. t ∈ fst ‘ fset xs ∧ root t = y))

case True
let ?xs = child2 y (remove-child y xs) xs
have ∀ (t1 ,e1) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs.

dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2) using wf-lverts by fastforce
moreover have ∀ (t1 ,e1) ∈ fset xs. wf-dlverts t1 using wf-lverts by fastforce
ultimately have ∀ (t1 ,e1) ∈ fset ?xs. ∀ (t2 ,e2) ∈ fset ?xs.

dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2)
using wf-dlverts-child2-aux2 [of xs] by blast

moreover have ∀ (x,e) ∈ fset ?xs. wf-dlverts x using wf-dlverts-child2 wf-lverts
by fastforce

moreover have (x@y) 6= [] using True wf-lverts by simp
moreover have ∀ (t1 ,e1) ∈ fset ?xs. set (x@y) ∩ dlverts t1 = {}

using wf-dlverts-child2-aux1 wf-lverts True by fast
ultimately have wf-dlverts (Node (x@y) ?xs) by fastforce
moreover have combine x y (Node r xs) = Node (x@y) ?xs using True by

simp
ultimately show ?thesis by argo

next
case False
let ?xs = (λ(t,e). (combine x y t, e)) |‘| xs
have 0 : ∀ (t,e) ∈ fset xs. dlverts (combine x y t) = dlverts t

using list-dtree.dlverts-comb-id list-dtree-rec by fast
have 1 : ∀ (t,e) ∈ fset ?xs. wf-dlverts t using ind.IH list-dtree-rec by auto
have 2 : ∀ (t,e) ∈ fset ?xs. set r ∩ dlverts t = {} using 0 wf-lverts by fastforce
have ∀ (t1 ,e1) ∈ fset xs. ∀ (t2 ,e2) ∈ fset xs.

dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2) using wf-lverts by fastforce
then have 3 : ∀ (t1 ,e1) ∈ fset ?xs. ∀ (t2 ,e2) ∈ fset ?xs.

dlverts t1 ∩ dlverts t2 = {} ∨ (t1 ,e1)=(t2 ,e2)
using 0 wf-dlverts-comb-aux[of xs] by blast

have 4 : combine x y (Node r xs) = Node r ?xs using False by auto
have r 6= [] using wf-lverts by simp
then show ?thesis using 1 2 3 4 by fastforce

qed
qed

theorem list-dtree-comb: list-dtree (combine x y t)
by(unfold-locales) (auto simp: wf-darcs-combine wf-dlverts-combine)

end

end

theory IKKBZ

231

imports Complex-Main CostFunctions QueryGraph List-Dtree HOL−Library.Sorting-Algorithms
begin

9 IKKBZ
9.1 Additional Proofs for Merging Lists
lemma merge-comm-if-not-equiv: ∀ x ∈ set xs. ∀ y ∈ set ys. compare cmp x y 6=
Equiv =⇒

Sorting-Algorithms.merge cmp xs ys = Sorting-Algorithms.merge cmp ys xs
apply(induction xs ys rule: Sorting-Algorithms.merge.induct)
by(auto intro: compare.quasisym-not-greater simp: compare.asym-greater)

lemma set-merge: set xs ∪ set ys = set (Sorting-Algorithms.merge cmp xs ys)
using mset-merge set-mset-mset set-mset-union by metis

lemma input-empty-if-merge-empty: Sorting-Algorithms.merge cmp xs ys = [] =⇒
xs = [] ∧ ys = []

using Un-empty set-empty2 set-merge by metis

lemma merge-assoc:
Sorting-Algorithms.merge cmp xs (Sorting-Algorithms.merge cmp ys zs)
= Sorting-Algorithms.merge cmp (Sorting-Algorithms.merge cmp xs ys) zs
(is ?merge - xs (?merge cmp - zs) = -)

proof(induction xs ?merge cmp ys zs arbitrary: ys zs taking: cmp rule: Sort-
ing-Algorithms.merge.induct)

case (2 cmp v vs)
show ?case using input-empty-if-merge-empty[OF 2 [symmetric]] by simp

next
case ind: (3 x xs r rs)
then show ?case
proof(induction ys zs taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 y ys z zs)
then show ?case

using ind compare.asym-greater
by (smt (verit, best) compare.trans-not-greater list.inject merge.simps(3))

qed (auto)
qed (simp)

lemma merge-comp-commute:
assumes ∀ x ∈ set xs. ∀ y ∈ set ys. compare cmp x y 6= Equiv
shows Sorting-Algorithms.merge cmp xs (Sorting-Algorithms.merge cmp ys zs)

= Sorting-Algorithms.merge cmp ys (Sorting-Algorithms.merge cmp xs zs)
using assms merge-assoc merge-comm-if-not-equiv by metis

lemma wf-list-arcs-merge:
[[wf-list-arcs xs; wf-list-arcs ys; snd ‘ set xs ∩ snd ‘ set ys = {}]]
=⇒ wf-list-arcs (Sorting-Algorithms.merge cmp xs ys)

proof(induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)

232

case (3 x xs y ys)
obtain v1 e1 where v1-def [simp]: x = (v1 ,e1) by force
obtain v2 e2 where v2-def [simp]: y = (v2 ,e2) by force
show ?case
proof(cases compare cmp x y = Greater)

case True
have e2 /∈ snd ‘ set (x#xs) using 3 .prems(3) by auto
moreover have e2 /∈ snd ‘ set ys using 3 .prems(2) by simp
ultimately have e2 /∈ snd ‘ set (Sorting-Algorithms.merge cmp (x#xs) ys)

using set-merge by fast
then show ?thesis using True 3 by force

next
case False
have e1 /∈ snd ‘set (y#ys) using 3 .prems(3) by auto
moreover have e1 /∈ snd ‘ set xs using 3 .prems(1) by simp
ultimately have e1 /∈ snd ‘set (Sorting-Algorithms.merge cmp xs (y#ys))

using set-merge by fast
then show ?thesis using False 3 by force

qed
qed (auto)

lemma wf-list-lverts-merge:
[[wf-list-lverts xs; wf-list-lverts ys;
∀ v1 ∈ fst ‘ set xs. ∀ v2 ∈ fst ‘ set ys. set v1 ∩ set v2 = {}]]
=⇒ wf-list-lverts (Sorting-Algorithms.merge cmp xs ys)

proof(induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)
case (3 x xs y ys)
obtain v1 e1 where v1-def [simp]: x = (v1 ,e1) by force
obtain v2 e2 where v2-def [simp]: y = (v2 ,e2) by force
show ?case
proof(cases compare cmp x y = Greater)

case True
have ∀ v ∈ fst ‘ set (x#xs). set v2 ∩ set v = {} using 3 .prems(3) by auto
moreover have ∀ v ∈ fst ‘ set ys. set v2 ∩ set v = {} using 3 .prems(2) by

simp
ultimately have ∀ v ∈ fst ‘ set (Sorting-Algorithms.merge cmp (x#xs) ys). set

v2 ∩ set v = {}
using set-merge[of x#xs] by blast

then show ?thesis using True 3 by force
next

case False
have ∀ v ∈ fst ‘ set (y#ys). set v1 ∩ set v = {} using 3 .prems(3) by auto
moreover have ∀ v ∈ fst ‘ set xs. set v1 ∩ set v = {} using 3 .prems(1) by

simp
ultimately have ∀ v ∈ fst ‘ set (Sorting-Algorithms.merge cmp xs (y#ys)). set

v1 ∩ set v = {}
using set-merge[of xs] by auto

then show ?thesis using False 3 by force
qed

233

qed (auto)

lemma merge-hd-exists-preserv:
[[∃ (t1 ,e1) ∈ fset xs. hd as = (root t1 ,e1); ∃ (t1 ,e1) ∈ fset xs. hd bs = (root t1 ,e1)]]
=⇒ ∃ (t1 ,e1) ∈ fset xs. hd (Sorting-Algorithms.merge cmp as bs) = (root t1 ,e1)

by(induction as bs rule: Sorting-Algorithms.merge.induct) auto

lemma merge-split-supset:
assumes as@r#bs = (Sorting-Algorithms.merge cmp xs ys)

shows ∃ bs ′ as ′. set bs ′ ⊆ set bs ∧ (as ′@r#bs ′ = xs ∨ as ′@r#bs ′ = ys)
using assms proof(induction xs ys arbitrary: as taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 x xs y ys)
let ?merge = Sorting-Algorithms.merge cmp
show ?case
proof(cases compare cmp x y = Greater)

case True
then show ?thesis
proof(cases as)

case Nil
have set ys ⊆ set (?merge (x#xs) ys) using set-merge by fast
then show ?thesis using Nil True 3 .prems by auto

next
case (Cons c cs)
then have cs@r#bs = ?merge (x#xs) ys using True 3 .prems by simp
then obtain as ′ bs ′ where as-def : set bs ′ ⊆ set bs as ′@r#bs ′ = x#xs ∨

as ′@r#bs ′ = ys
using 3 .IH (1)[OF True] by blast

have as ′@r#bs ′ = x#xs ∨ (y#as ′)@r#bs ′ = y#ys using as-def (2) by simp
then show ?thesis using as-def (1) by blast

qed
next

case False
then show ?thesis
proof(cases as)

case Nil
have set xs ⊆ set (?merge xs (y#ys)) using set-merge by fast
then show ?thesis using Nil False 3 .prems by auto

next
case (Cons c cs)
then have cs@r#bs = ?merge xs (y#ys) using False 3 .prems by simp

then obtain as ′ bs ′ where as-def : set bs ′ ⊆ set bs as ′@r#bs ′ = xs ∨
as ′@r#bs ′ = y#ys

using 3 .IH (2)[OF False] by blast
have (x#as ′)@r#bs ′ = x#xs ∨ as ′@r#bs ′ = y#ys using as-def (2) by simp
then show ?thesis using as-def (1) by blast

qed
qed

qed(auto)

234

lemma merge-split-supset-fst:
assumes as@(r ,e)#bs = (Sorting-Algorithms.merge cmp xs ys)
shows ∃ as ′ bs ′. set bs ′ ⊆ set bs ∧ (as ′@(r ,e)#bs ′ = xs ∨ as ′@(r ,e)#bs ′ = ys)
using merge-split-supset[OF assms] by blast

lemma merge-split-supset ′:
assumes r ∈ set (Sorting-Algorithms.merge cmp xs ys)
shows ∃ as bs as ′ bs ′. as@r#bs = (Sorting-Algorithms.merge cmp xs ys)

∧ set bs ′ ⊆ set bs ∧ (as ′@r#bs ′ = xs ∨ as ′@r#bs ′ = ys)
using merge-split-supset split-list[OF assms] by metis

lemma merge-split-supset-fst ′:
assumes r ∈ fst ‘ set (Sorting-Algorithms.merge cmp xs ys)
shows ∃ as e bs as ′ bs ′. as@(r ,e)#bs = (Sorting-Algorithms.merge cmp xs ys)

∧ set bs ′ ⊆ set bs ∧ (as ′@(r ,e)#bs ′ = xs ∨ as ′@(r ,e)#bs ′ = ys)
proof −

obtain e where (r ,e) ∈ set (Sorting-Algorithms.merge cmp xs ys) using assms
by auto

then show ?thesis using merge-split-supset ′[of (r ,e)] by blast
qed

lemma merge-split-supset-subtree:
assumes ∀ as bs. as@(r ,e)#bs = xs −→

(∃ zs. is-subtree (Node r zs) t ∧ dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs))
and ∀ as bs. as@(r ,e)#bs = ys −→

(∃ zs. is-subtree (Node r zs) t ∧ dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs))
and as@(r ,e)#bs = (Sorting-Algorithms.merge cmp xs ys)

shows ∃ zs. is-subtree (Node r zs) t ∧ dverts (Node r zs) ⊆ (fst ‘ set ((r ,e)#bs))
proof −
obtain as ′ bs ′ where bs ′-def : set bs ′⊆ set bs as ′@(r ,e)#bs ′= xs ∨ as ′@(r ,e)#bs ′

= ys
using merge-split-supset[OF assms(3)] by blast

obtain zs where zs-def : is-subtree (Node r zs) t dverts (Node r zs) ⊆ fst ‘ set
((r ,e)#bs ′)

using assms(1 ,2) bs ′-def (2) by blast
then have dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs) using bs ′-def (1) by auto
then show ?thesis using zs-def (1) by blast

qed

lemma merge-split-supset-strict-subtree:
assumes ∀ as bs. as@(r ,e)#bs = xs −→ (∃ zs. strict-subtree (Node r zs) t

∧ dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs))
and ∀ as bs. as@(r ,e)#bs = ys −→ (∃ zs. strict-subtree (Node r zs) t

∧ dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs))
and as@(r ,e)#bs = (Sorting-Algorithms.merge cmp xs ys)

shows ∃ zs. strict-subtree (Node r zs) t
∧ dverts (Node r zs) ⊆ (fst ‘ set ((r ,e)#bs))

proof −
obtain as ′ bs ′ where bs ′-def : set bs ′⊆ set bs as ′@(r ,e)#bs ′= xs ∨ as ′@(r ,e)#bs ′

235

= ys
using merge-split-supset[OF assms(3)] by blast

obtain zs where zs-def :
strict-subtree (Node r zs) t dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs ′)

using assms(1 ,2) bs ′-def (2) by blast
then have dverts (Node r zs) ⊆ fst ‘ set ((r ,e)#bs) using bs ′-def (1) by auto
then show ?thesis using zs-def (1 ,2) by blast

qed

lemma sorted-app-l: sorted cmp (xs@ys) =⇒ sorted cmp xs
by(induction xs rule: sorted.induct) auto

lemma sorted-app-r : sorted cmp (xs@ys) =⇒ sorted cmp ys
by(induction xs) (auto simp: sorted-Cons-imp-sorted)

9.2 Merging Subtrees of Ranked Dtrees
locale ranked-dtree = list-dtree t for t :: (′a list, ′b) dtree +

fixes rank :: ′a list ⇒ real
fixes cmp :: (′a list× ′b) comparator
assumes cmp-antisym:
[[v1 6= []; v2 6= []; compare cmp (v1 ,e1) (v2 ,e2) = Equiv]] =⇒ set v1 ∩ set v2

6= {} ∨ e1=e2
begin

lemma ranked-dtree-rec: [[Node r xs = t; (x,e) ∈ fset xs]] =⇒ ranked-dtree x cmp
using wf-arcs wf-lverts by(unfold-locales) (auto dest: cmp-antisym)

lemma ranked-dtree-rec-suc: (x,e) ∈ fset (sucs t) =⇒ ranked-dtree x cmp
using ranked-dtree-rec[of root t] by force

lemma ranked-dtree-subtree: is-subtree x t =⇒ ranked-dtree x cmp
using ranked-dtree-axioms proof(induction t)

case (Node r xs)
then interpret ranked-dtree Node r xs by blast
show ?case using Node ranked-dtree-rec by (cases x = Node r xs) auto

qed

9.2.1 Definitions
lift-definition cmp ′ :: (′a list× ′b) comparator is
(λx y. if rank (rev (fst x)) < rank (rev (fst y)) then Less

else if rank (rev (fst x)) > rank (rev (fst y)) then Greater
else compare cmp x y)

by (smt (z3) comp.distinct(3) compare.less-iff-sym-greater compare.refl com-
pare.trans-equiv

compare.trans-less comparator-def)

abbreviation disjoint-sets :: ((′a list, ′b) dtree × ′b) fset ⇒ bool where

236

disjoint-sets xs ≡ disjoint-darcs xs ∧ disjoint-dlverts xs ∧ (∀ (t,e) ∈ fset xs. [] /∈
dverts t)

abbreviation merge-f :: ′a list ⇒ ((′a list, ′b) dtree × ′b) fset
⇒ (′a list, ′b) dtree × ′b ⇒ (′a list × ′b) list ⇒ (′a list × ′b) list where

merge-f r xs ≡ λ(t,e) b. if (t,e) ∈ fset xs ∧ list-dtree (Node r xs)
∧ (∀ (v,e ′) ∈ set b. set v ∩ dlverts t = {} ∧ v 6= [] ∧ e ′ /∈ darcs t ∪ {e})

then Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|(t,e)|})) b else b

definition merge :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
merge t1 ≡ dtree-from-list (root t1) (ffold (merge-f (root t1) (sucs t1)) [] (sucs

t1))

9.2.2 Commutativity Proofs
lemma cmp-sets-not-dsjnt-if-equiv:
[[v1 6= []; v2 6= []]] =⇒ compare cmp ′ (v1 ,e1) (v2 ,e2) = Equiv =⇒ set v1 ∩ set

v2 6= {} ∨ e1=e2
by(auto simp: cmp ′.rep-eq dest: cmp-antisym split: if-splits)

lemma dtree-to-list-x-in-dverts:
x ∈ fst ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})) =⇒ x ∈ dverts t1
using dtree-to-list-sub-dverts-ins by auto

lemma dtree-to-list-x-in-dlverts:
x ∈ fst ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})) =⇒ set x ⊆ dlverts t1
using dtree-to-list-x-in-dverts lverts-if-in-verts by fast

lemma dtree-to-list-x1-disjoint:
dlverts t1 ∩ dlverts t2 = {}
=⇒ ∀ x1 ∈ fst ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})). set x1 ∩ dlverts t2 =

{}
using dtree-to-list-x-in-dlverts by fast

lemma dtree-to-list-xs-disjoint:
dlverts t1 ∩ dlverts t2 = {}
=⇒ ∀ x1 ∈ fst ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})).

∀ x2 ∈ fst ‘ set (dtree-to-list (Node r ′ {|(t2 ,e2)|})). set x1 ∩ set x2 = {}
using dtree-to-list-x-in-dlverts by (metis inf-mono subset-empty)

lemma dtree-to-list-e-in-darcs:
e ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})) =⇒ e ∈ darcs t1 ∪ {e1}
using dtree-to-list-sub-darcs by fastforce

lemma dtree-to-list-e-disjoint:
(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
=⇒ ∀ e ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})). e /∈ darcs t2 ∪ {e2}

using dtree-to-list-e-in-darcs by fast

237

lemma dtree-to-list-es-disjoint:
(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
=⇒ ∀ e3 ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})).

∀ e4 ∈ snd ‘ set (dtree-to-list (Node r ′ {|(t2 ,e2)|})). e3 6= e4
using dtree-to-list-e-disjoint dtree-to-list-e-in-darcs by fast

lemma dtree-to-list-xs-not-equiv:
assumes dlverts t1 ∩ dlverts t2 = {}

and (darcs t1 ∪ {e3}) ∩ (darcs t2 ∪ {e4}) = {}
and (x1 ,e1) ∈ set (dtree-to-list (Node r {|(t1 ,e3)|})) and x1 6= []
and (x2 ,e2) ∈ set (dtree-to-list (Node r ′ {|(t2 ,e4)|})) and x2 6= []

shows compare cmp ′ (x1 ,e1) (x2 ,e2) 6= Equiv
using dtree-to-list-xs-disjoint[OF assms(1)] cmp-sets-not-dsjnt-if-equiv[of x1 x2

e1 e2]
dtree-to-list-es-disjoint[OF assms(2)] assms(3−6) by fastforce

lemma merge-dtree1-not-equiv:
assumes dlverts t1 ∩ dlverts t2 = {}

and (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
and [] /∈ dverts t1
and [] /∈ dverts t2
and xs = dtree-to-list (Node r {|(t1 ,e1)|})
and ys = dtree-to-list (Node r ′ {|(t2 ,e2)|})

shows ∀ (x1 ,e1)∈set xs. ∀ (x2 ,e2)∈set ys. compare cmp ′ (x1 ,e1) (x2 ,e2) 6=
Equiv
proof −

have ∀ (x1 ,e1)∈set xs. x1 6= []
using assms(3 ,5) dtree-to-list-x-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imageI surj-pair)

moreover have ∀ (x1 ,e1)∈set ys. x1 6= []
using assms(4 ,6) dtree-to-list-x-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imageI surj-pair)

ultimately show ?thesis using dtree-to-list-xs-not-equiv[of t1 t2] assms(1 ,2 ,5 ,6)
by fast
qed

lemma merge-commute-aux1 :
assumes dlverts t1 ∩ dlverts t2 = {}

and (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
and [] /∈ dverts t1
and [] /∈ dverts t2
and xs = dtree-to-list (Node r {|(t1 ,e1)|})
and ys = dtree-to-list (Node r ′ {|(t2 ,e2)|})

shows Sorting-Algorithms.merge cmp ′ xs ys = Sorting-Algorithms.merge cmp ′

ys xs
using merge-dtree1-not-equiv merge-comm-if-not-equiv assms by fast

lemma dtree-to-list-x1-list-disjoint:
set x2 ∩ dlverts t1 = {}

238

=⇒ ∀ x1 ∈ fst ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})). set x1 ∩ set x2 = {}
using dtree-to-list-x-in-dlverts by fast

lemma dtree-to-list-e1-list-disjoint ′:
set x2 ∩ darcs t1 ∪ {e1} = {}
=⇒ ∀ x1 ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})). x1 /∈ set x2

using dtree-to-list-e-in-darcs by blast

lemma dtree-to-list-e1-list-disjoint:
e2 /∈ darcs t1 ∪ {e1}
=⇒ ∀ x1 ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})). x1 6= e2

using dtree-to-list-e-in-darcs by fast

lemma dtree-to-list-xs-list-not-equiv:
assumes (x1 ,e1) ∈ set (dtree-to-list (Node r {|(t1 ,e3)|}))

and x1 6= []
and ∀ (v,e) ∈ set ys. set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e3}
and (x2 ,e2) ∈ set ys

shows compare cmp ′ (x1 ,e1) (x2 ,e2) 6= Equiv
proof −

have set x1 ∩ set x2 = {} using dtree-to-list-x1-list-disjoint assms(1 ,3 ,4) by
fastforce

moreover have e1 6= e2 using dtree-to-list-e1-list-disjoint assms(1 ,3 ,4) by
fastforce

ultimately show ?thesis using cmp-sets-not-dsjnt-if-equiv assms(2−4) by auto
qed

lemma merge-commute-aux2 :
assumes [] /∈ dverts t1

and xs = dtree-to-list (Node r {|(t1 ,e1)|})
and ∀ (v,e) ∈ set ys. set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs t1 ∪ {e1}

shows Sorting-Algorithms.merge cmp ′ xs ys = Sorting-Algorithms.merge cmp ′

ys xs
proof −

have ∀ (x1 ,e1)∈set xs. x1 6= []
using assms(1 ,2) dtree-to-list-x-in-dverts
by (smt (verit) case-prod-conv case-prod-eta fst-conv pair-imageI surj-pair)

then have ∀ (x1 ,e1)∈set xs. ∀ (x2 ,e2)∈set ys. compare cmp ′ (x1 ,e1) (x2 ,e2) 6=
Equiv

using assms(2 ,3) dtree-to-list-xs-list-not-equiv by force
then show ?thesis using merge-comm-if-not-equiv by fast

qed

lemma merge-inter-preserv ′:
assumes f = (merge-f r xs)

and ¬(∀ (v,-) ∈ set z. set v ∩ dlverts t1 = {})
shows ¬(∀ (v,-) ∈ set (f (t2 ,e2) z). set v ∩ dlverts t1 = {})

proof(cases f (t2 ,e2) z = z)
case False

239

then have f (t2 ,e2) z = Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t2 ,e2)|})) z

by(simp add: assms(1)) meson
then show ?thesis using assms(2) set-merge by force

qed (simp add: assms(2))

lemma merge-inter-preserv:
assumes f = (merge-f r xs)

and ¬(∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ e /∈ darcs t1 ∪ {e1})
shows ¬(∀ (v,e) ∈ set (f (t2 ,e2) z). set v ∩ dlverts t1 = {} ∧ e /∈ darcs t1 ∪

{e1})
proof(cases f (t2 ,e2) z = z)

case True
then show ?thesis using assms(2) by simp

next
case False
then have f (t2 ,e2) z = Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t2 ,e2)|})) z

by(simp add: assms(1)) meson
then show ?thesis

using assms(2) set-merge[of dtree-to-list (Node r {|(t2 ,e2)|})] by simp blast
qed

lemma merge-f-eq-z-if-inter ′:
¬(∀ (v,-) ∈ set z. set v ∩ dlverts t1 = {}) =⇒ (merge-f r xs) (t1 ,e1) z = z
by auto

lemma merge-f-eq-z-if-inter :
¬(∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ e /∈ darcs t1 ∪ {e1})
=⇒ (merge-f r xs) (t1 ,e1) z = z

by auto

lemma merge-empty-inter-preserv-aux:
assumes f = (merge-f r xs)

and (t2 ,e2) ∈ fset xs
and ∀ (v,e) ∈ set z. set v ∩ dlverts t2 = {} ∧ v 6=[] ∧ e /∈ darcs t2 ∪ {e2}
and list-dtree (Node r xs)
and (t1 ,e1) ∈ fset xs
and (t1 ,e1) 6= (t2 ,e2)
and ∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs t1 ∪ {e1}

shows ∀ (v,e) ∈ set (f (t2 ,e2) z). set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs
t1 ∪ {e1}
proof −

have 0 : f (t2 ,e2) z = Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t2 ,e2)|})) z

using assms(1−6) by simp
let ?ys = dtree-to-list (Node r {|(t2 ,e2)|})
interpret list-dtree Node r xs using assms(4) .
have disjoint-dlverts xs using wf-lverts by simp

240

then have ∀ v∈fst ‘ set ?ys. set v ∩ dlverts t1 = {}
using dtree-to-list-x1-disjoint assms(2 ,5 ,6) by fast

then have 1 : ∀ v∈fst ‘ set (Sorting-Algorithms.merge cmp ′ ?ys z). set v ∩ dlverts
t1 = {}

using assms(7) set-merge[of ?ys] by fastforce
have disjoint-darcs xs using disjoint-darcs-if-wf-xs[OF wf-arcs] .
then have 2 : (darcs t2 ∪ {e2}) ∩ (darcs t1 ∪ {e1}) = {} using assms(2 ,5 ,6)

by fast
have ∀ e∈snd ‘ set ?ys. e /∈ darcs t1 ∪ {e1} using dtree-to-list-e-disjoint[OF 2]

by blast
then have 2 : ∀ e∈snd ‘ set (Sorting-Algorithms.merge cmp ′ ?ys z). e /∈ darcs t1
∪ {e1}

using assms(7) set-merge[of ?ys] by fastforce
have [] /∈ dverts t2 using assms(2) empty-notin-wf-dlverts wf-lverts by fastforce
then have ∀ v∈fst ‘ set ?ys. v 6= [] by (metis dtree-to-list-x-in-dverts)
then have ∀ v∈fst ‘ set (Sorting-Algorithms.merge cmp ′ ?ys z). v 6= []

using assms(7) set-merge[of ?ys] by fastforce
then show ?thesis using 0 1 2 by fastforce

qed

lemma merge-empty-inter-preserv:
assumes f = (merge-f r xs)

and ∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs t1 ∪ {e1}
and (t1 ,e1) ∈ fset xs
and (t1 ,e1) 6= (t2 ,e2)

shows ∀ (v,e) ∈ set (f (t2 ,e2) z). set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs
t1 ∪ {e1}
proof(cases f (t2 ,e2) z = z)

case True
then show ?thesis using assms(2) by simp

next
case False
have (t2 ,e2) ∈ fset xs using False assms(1) by simp argo
moreover have list-dtree (Node r xs) using False assms(1) by simp argo
moreover have ∀ (v,e) ∈ set z. set v ∩ dlverts t2 = {} ∧ v 6=[] ∧ e /∈ darcs t2 ∪
{e2}

using False assms(1) by simp argo
ultimately show ?thesis using merge-empty-inter-preserv-aux assms by pres-

burger
qed

lemma merge-commute-aux3 :
assumes f = (merge-f r xs)

and list-dtree (Node r xs)
and (t1 ,e1) 6= (t2 ,e2)
and (∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e1})
and (∀ (v,e) ∈ set z. set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪ {e2})
and (t1 ,e1) ∈ fset xs
and (t2 ,e2) ∈ fset xs

241

shows (f (t2 , e2) ◦ f (t1 , e1)) z = (f (t1 , e1) ◦ f (t2 , e2)) z
proof −

let ?merge = Sorting-Algorithms.merge
let ?xs = dtree-to-list (Node r {|(t1 , e1)|})
let ?ys = dtree-to-list (Node r {|(t2 , e2)|})
interpret list-dtree Node r xs using assms(2) .
have disj: dlverts t1 ∩ dlverts t2 = {} [] /∈ dverts t1 [] /∈ dverts t2
using assms(3 ,6 ,7) disjoint-dlverts-if-wf [OF wf-lverts] empty-notin-wf-dlverts[OF

wf-lverts]
by fastforce+

have disj2 : (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
using assms(2 ,3 ,6 ,7) disjoint-darcs-if-wf-aux5 [OF wf-arcs] by blast

have f (t2 , e2) z = Sorting-Algorithms.merge cmp ′ ?ys z using assms(1 ,2 ,5 ,7)
by simp

moreover have ∀ (v,e)∈set (f (t2 ,e2) z). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e
/∈ darcs t1 ∪ {e1}

using merge-empty-inter-preserv[OF assms(1)] assms(3 ,4 ,6) by simp
ultimately have 2 : (f (t1 , e1) ◦ f (t2 , e2)) z = ?merge cmp ′ ?xs (?merge cmp ′

?ys z)
using assms(1−2 ,6) by auto

have f (t1 , e1) z = Sorting-Algorithms.merge cmp ′ ?xs z using assms(1−2 ,4 ,6)
by simp

moreover have ∀ (v,e)∈set (f (t1 , e1) z). set v ∩ dlverts t2 = {} ∧ v 6=[] ∧ e /∈
darcs t2 ∪ {e2}

using merge-empty-inter-preserv[OF assms(1)] assms(3 ,5 ,7) by presburger
ultimately have 3 : (f (t2 , e2) ◦ f (t1 ,e1)) z = ?merge cmp ′ ?ys (?merge cmp ′

?xs z)
using assms(1−2 ,7) by simp

have ∀ x∈set ?xs. ∀ y∈set ?ys. compare cmp ′ x y 6= Equiv
using merge-dtree1-not-equiv[OF disj(1) disj2] disj(2 ,3) by fast

then have ?merge cmp ′ ?xs (?merge cmp ′ ?ys z) = ?merge cmp ′ ?ys (?merge
cmp ′ ?xs z)

using merge-comp-commute by blast
then show ?thesis using 2 3 by simp

qed

lemma merge-commute-aux:
assumes f = (merge-f r xs)
shows (f y ◦ f x) z = (f x ◦ f y) z

proof −
obtain t1 e1 where y-def [simp]: x = (t1 , e1) by fastforce
obtain t2 e2 where x-def [simp]: y = (t2 , e2) by fastforce
show ?thesis
proof(cases (t1 ,e1) ∈ fset xs ∧ (t2 ,e2) ∈ fset xs)

case True
then consider list-dtree (Node r xs) (t1 ,e1) 6= (t2 ,e2)

(∀ (v,e) ∈ set z . set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e1})
(∀ (v,e) ∈ set z . set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪ {e2})
| (t1 ,e1) = (t2 ,e2)

242

| ¬list-dtree (Node r xs)
| ¬(∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ e /∈ darcs t1 ∪ {e1})
| ¬(∀ (v,e) ∈ set z. set v ∩ dlverts t2 = {} ∧ e /∈ darcs t2 ∪ {e2})
| ¬(∀ (v,-) ∈ set z. v 6= [])
by fast

then show ?thesis
proof(cases)

case 1
then show ?thesis using merge-commute-aux3 [OF assms] True by simp

next
case 4
then have f x z = z by(auto simp: assms)
then have 0 : (f y ◦ f x) z = f y z by simp
have ¬(∀ (v,e) ∈ set (f y z). set v ∩ dlverts t1 = {} ∧ e /∈ darcs t1 ∪ {e1})

using merge-inter-preserv[OF assms 4] by simp
then have (f x ◦ f y) z = f y z using assms merge-f-eq-z-if-inter by auto
then show ?thesis using 0 by simp

next
case 5
then have f y z = z by(auto simp: assms)
then have 0 : (f x ◦ f y) z = f x z by simp
have ¬(∀ (v,e) ∈ set (f x z). set v ∩ dlverts t2 = {} ∧ e /∈ darcs t2 ∪ {e2})

using merge-inter-preserv[OF assms 5] by simp
then have (f y ◦ f x) z = f x z using assms merge-f-eq-z-if-inter by simp
then show ?thesis using 0 by simp

next
case 6
then have (f x ◦ f y) z = z by(auto simp: assms)
also have z = (f y ◦ f x) z using 6 by(auto simp: assms)
finally show ?thesis by simp

qed(auto simp: assms)
next

case False
then have (∀ z. f x z = z) ∨ (∀ z. f y z = z) by(auto simp: assms)
then show ?thesis by force

qed
qed

lemma merge-commute: comp-fun-commute (merge-f r xs)
using comp-fun-commute-def merge-commute-aux by blast

interpretation Comm: comp-fun-commute merge-f r xs by (rule merge-commute)

9.2.3 Merging Preserves Arcs and Verts
lemma empty-list-valid-merge:
(∀ (v,e) ∈ set []. set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e1})
by simp

243

lemma disjoint-sets-sucs: disjoint-sets (sucs t)
using empty-notin-wf-dlverts list-dtree.wf-lverts list-dtree-rec dtree.collapse

disjoint-dlverts-if-wf [OF wf-lverts] disjoint-darcs-if-wf [OF wf-arcs] by blast

lemma empty-not-elem-subset:
[[xs |⊆| ys; ∀ (t,e) ∈ fset ys. [] /∈ dverts t]] =⇒ ∀ (t,e) ∈ fset xs. [] /∈ dverts t
by (meson less-eq-fset.rep-eq subset-iff)

lemma disjoint-sets-subset:
assumes xs |⊆| ys and disjoint-sets ys
shows disjoint-sets xs
using disjoint-darcs-subset[OF assms(1)] disjoint-dlverts-subset[OF assms(1)]

empty-not-elem-subset[OF assms(1)] assms by fast

lemma merge-mdeg-le-1 : max-deg (merge t1) ≤ 1
unfolding merge-def by (rule dtree-from-list-deg-le-1)

lemma merge-mdeg-le1-sub: is-subtree t1 (merge t2) =⇒ max-deg t1 ≤ 1
using merge-mdeg-le-1 le-trans mdeg-ge-sub by fast

lemma merge-fcard-le1 : fcard (sucs (merge t1)) ≤ 1
unfolding merge-def by (rule dtree-from-list-fcard-le1)

lemma merge-fcard-le1-sub: is-subtree t1 (merge t2) =⇒ fcard (sucs t1) ≤ 1
using merge-mdeg-le1-sub mdeg-ge-fcard[of sucs t1 root t1] by force

lemma merge-f-alt:
assumes P = (λxs. list-dtree (Node r xs))

and Q = (λ(t,e) b. (∀ (v,e ′) ∈ set b. set v ∩ dlverts t = {} ∧ v 6=[] ∧ e ′ /∈
darcs t ∪ {e}))

and R = (λ(t,e) b. Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t,e)|})) b)

shows merge-f r xs = (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else R a
b)

using assms by force

lemma merge-f-alt-commute:
assumes P = (λxs. list-dtree (Node r xs))

and Q = (λ(t,e) b. (∀ (v,e ′) ∈ set b. set v ∩ dlverts t = {} ∧ v 6= [] ∧ e ′ /∈
darcs t ∪ {e}))

and R = (λ(t,e) b. Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t,e)|})) b)

shows comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ Q a b ∨ ¬ P xs then b else
R a b)
proof −

have comp-fun-commute (merge-f r xs) using merge-commute by fast
then show ?thesis using merge-f-alt[OF assms] by simp

qed

244

lemma merge-ffold-supset:
assumes xs |⊆| ys and list-dtree (Node r ys)
shows ffold (merge-f r ys) acc xs = ffold (merge-f r xs) acc xs

proof −
let ?P = λxs. list-dtree (Node r xs)
let ?Q = λ(t,e) b. (∀ (v,e ′) ∈ set b. set v ∩ dlverts t = {} ∧ v 6= [] ∧ e ′ /∈ darcs

t ∪ {e})
let ?R = λ(t,e) b. Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|(t,e)|}))

b
have 0 :

∧
xs. comp-fun-commute (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then

b else ?R a b)
using merge-f-alt-commute by blast

have ffold (λa b. if a /∈ fset ys ∨ ¬ ?Q a b ∨ ¬ ?P ys then b else ?R a b) acc xs
= ffold (λa b. if a /∈ fset xs ∨ ¬ ?Q a b ∨ ¬ ?P xs then b else ?R a b) acc xs

using ffold-commute-supset[OF assms(1), of ?P ?Q ?R, OF assms(2) list-dtree-subset
0] by auto

then show ?thesis using merge-f-alt by presburger
qed

lemma merge-f-merge-if-not-snd:
merge-f r xs (t1 ,e1) z 6= z =⇒
merge-f r xs (t1 ,e1) z = Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r
{|(t1 ,e1)|})) z

by(simp) meson

lemma merge-f-merge-if-conds:
[[list-dtree (Node r xs); ∀ (v,e) ∈ set z. set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs

t1 ∪ {e1};
(t1 ,e1) ∈ fset xs]]

=⇒ merge-f r xs (t1 ,e1) z = Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node
r {|(t1 ,e1)|})) z

by force

lemma merge-f-merge-if-conds-empty:
[[list-dtree (Node r xs); (t1 ,e1) ∈ fset xs]]
=⇒ merge-f r xs (t1 ,e1) []

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|(t1 ,e1)|})) []
using merge-f-merge-if-conds by simp

lemma merge-ffold-empty-inter-preserv:
[[list-dtree (Node r ys); xs |⊆| ys;
∀ (v,e) ∈ set z . set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs t1 ∪ {e1};
(t1 ,e1) ∈ fset ys; (t1 ,e1) /∈ fset xs; (v,e) ∈ set (ffold (merge-f r xs) z xs)]]
=⇒ set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e1}

proof(induction xs)
case (insert x xs)
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge

245

interpret list-dtree Node r ys using insert.prems(1) .
have 0 : list-dtree (Node r (finsert x xs)) using list-dtree-subset insert.prems(1 ,2)

by blast
show ?case
proof(cases ffold ?f z (finsert x xs) = ffold ?f ′ z xs)

case True
then have (v,e) ∈ set (ffold ?f ′ z xs) using insert.prems(6) by argo
then show ?thesis using insert.IH insert.prems by force

next
case not-right: False
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
show ?thesis
proof(cases (v,e) ∈ set (dtree-to-list (Node r {|(t2 ,e2)|})))

case True
have uneq: (t2 ,e2) 6= (t1 ,e1) using insert.prems(5) t2-def by fastforce
moreover have 1 : (t2 ,e2) ∈ fset ys using insert.prems(2) by fastforce

ultimately have dlverts t1 ∩ dlverts t2 = {} using insert.prems(4) wf-lverts
by fastforce

then have 2 : ∀ x1∈fst ‘ set (dtree-to-list (Node r {|(t2 , e2)|})). set x1 ∩
dlverts t1 = {}

using dtree-to-list-x1-disjoint by fast
have (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}

using insert.prems(4) uneq 1 disjoint-darcs-if-wf-aux5 wf-arcs by fast
then have 3 : ∀ e∈snd ‘ set (dtree-to-list (Node r {|(t2 , e2)|})). e /∈ darcs t1

∪ {e1}
using dtree-to-list-e-disjoint by fast

have [] /∈ dverts t2 using 1 wf-lverts empty-notin-wf-dlverts by auto
then have ∀ x1∈fst ‘ set (dtree-to-list (Node r {|(t2 , e2)|})). x1 6= []

using 1 dtree-to-list-x-in-dverts by metis
then show ?thesis using True 2 3 by fastforce

next
case False
have xs |⊆| finsert x xs by blast
then have f-xs: ffold ?f z xs = ffold ?f ′ z xs

using merge-ffold-supset 0 by presburger
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
then have 0 : ffold ?f z (finsert x xs) = ?f x (ffold ?f ′ z xs) using f-xs by

argo
then have ?f x (ffold ?f ′ z xs) 6= ffold ?f ′ z xs using not-right by argo
then have ?f (t2 ,e2) (ffold ?f ′ z xs)

= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)
using merge-f-merge-if-not-snd t2-def by blast

then have ffold ?f z (finsert x xs)
= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)

using 0 t2-def by argo
then have (v,e) ∈ set (?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold

?f ′ z xs))
using insert.prems(6) by argo

246

then have (v,e) ∈ set (ffold ?f ′ z xs) using set-merge False by fast
then show ?thesis using insert.IH insert.prems by force

qed
qed

qed (auto simp: ffold.rep-eq)

lemma merge-ffold-empty-inter-preserv ′:
[[list-dtree (Node r (finsert x xs));
∀ (v,e) ∈ set z . set v ∩ dlverts t1 = {} ∧ v 6=[] ∧ e /∈ darcs t1 ∪ {e1};
(t1 ,e1) ∈ fset (finsert x xs); (t1 ,e1) /∈ fset xs; (v,e) ∈ set (ffold (merge-f r xs)

z xs)]]
=⇒ set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1 ∪ {e1}

using merge-ffold-empty-inter-preserv[of r finsert x xs xs z t1 e1 v e] by fast

lemma merge-ffold-set-sub-union:
list-dtree (Node r xs)

=⇒ set (ffold (merge-f r xs) [] xs) ⊆ (
⋃

x∈fset xs. set (dtree-to-list (Node r
{|x|})))
proof(induction xs)

case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
have (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems empty-list-valid-merge]

by blast
have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems by blast
have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
also have . . . = ?f x (ffold ?f ′ [] xs)

using merge-ffold-supset[of xs finsert x xs r []] insert.prems by fastforce
finally have ffold ?f [] (finsert x xs)

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold
?f ′ [] xs)

using merge-f-merge-if-conds[OF insert.prems xs-val] by simp
then have set (ffold ?f [] (finsert x xs))

= set (Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold ?f ′

[] xs))
by argo

then have set (ffold ?f [] (finsert x xs))
= (set (dtree-to-list (Node r {|x|})) ∪ set (ffold ?f ′ [] xs)) using set-merge

by fast
then show ?case using 0 insert.IH insert.prems by auto

qed (simp add: ffold.rep-eq)

247

lemma merge-ffold-nempty:
[[list-dtree (Node r xs); xs 6= {||}]] =⇒ ffold (merge-f r xs) [] xs 6= []

proof(induction xs)
case (insert x xs)
define f where f = merge-f r (finsert x xs)
define f ′ where f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp ′

have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have (t2 , e2) ∈ fset (finsert x xs) by simp
moreover have (t2 , e2) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold f ′ [] xs). set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪

{e2})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

f ′-def
by blast

have ffold f [] (finsert x xs) = f x (ffold f [] xs)
using Comm.ffold-finsert[OF insert.hyps] f-def by blast

also have . . . = f x (ffold f ′ [] xs)
using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) f-def f ′-def by

fastforce
finally have ffold f [] (finsert x xs) = ?merge (dtree-to-list (Node r {|x|})) (ffold

f ′ [] xs)
using xs-val insert.prems f-def by simp

then have merge: ffold f [] (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′[] xs)

using t2-def by blast
then show ?case

using input-empty-if-merge-empty[of cmp ′ dtree-to-list (Node r {|(t2 ,e2)|})]
f-def by auto
qed(simp)

lemma merge-f-ndisjoint-sets-aux:
¬disjoint-sets xs
=⇒ ¬((t,e) ∈ fset xs ∧ disjoint-sets xs ∧ (∀ (v,-) ∈ set b. set v ∩ dlverts t = {}

∧ v 6= []))
by blast

lemma merge-f-not-list-dtree: ¬list-dtree (Node r xs) =⇒ (merge-f r xs) a b = b
using merge-f-alt by simp

lemma merge-ffold-empty-if-nwf : ¬list-dtree (Node r ys) =⇒ ffold (merge-f r ys)
[] xs = []
proof(induction xs)

case (insert x xs)
define f where f = merge-f r ys
let ?f = merge-f r ys
let ?merge = Sorting-Algorithms.merge cmp ′

248

obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have ffold f [] (finsert x xs) = ?f x (ffold f [] xs)

using Comm.ffold-finsert[OF insert.hyps] f-def by blast
then have ffold f [] (finsert x xs) = ffold f [] xs

using insert.prems merge-f-not-list-dtree by force
then show ?case using insert f-def by argo

qed (simp add: ffold.rep-eq)

lemma merge-empty-if-nwf : ¬list-dtree (Node r xs) =⇒ merge (Node r xs) = Node
r {||}

unfolding merge-def using merge-ffold-empty-if-nwf by simp

lemma merge-empty-if-nwf-sucs: ¬list-dtree t1 =⇒ merge t1 = Node (root t1) {||}
using merge-empty-if-nwf [of root t1 sucs t1] by simp

lemma merge-empty: merge (Node r {||}) = Node r {||}
proof −

have comp-fun-commute (λ(t, e) b. b)
by (simp add: comp-fun-commute-const cond-case-prod-eta)

hence dtree-from-list r (ffold (λ(t, e) b. b) [] {||}) = Node r {||}
using comp-fun-commute.ffold-empty
by (smt (verit, best) dtree-from-list.simps(1))

thus ?thesis
unfolding merge-def by simp

qed

lemma merge-empty-sucs:
assumes sucs t1 = {||}
shows merge t1 = Node (root t1) {||}

proof −
have dtree-from-list (dtree.root t1) (ffold (λ(t, e) b. b) [] {||}) = Node (dtree.root

t1) {||}
by (simp add: ffold.rep-eq)

with assms show ?thesis
unfolding merge-def by simp

qed

lemma merge-singleton-sucs:
assumes list-dtree (Node (root t1) (sucs t1)) and sucs t1 6= {||}
shows ∃ t e. merge t1 = Node (root t1) {|(t,e)|}
unfolding merge-def using merge-ffold-nempty[OF assms] dtree-from-list-singleton

by fast

lemma merge-singleton:
assumes list-dtree (Node r xs) and xs 6= {||}
shows ∃ t e. merge (Node r xs) = Node r {|(t,e)|}
unfolding merge-def dtree.sel(1) using merge-ffold-nempty[OF assms] dtree-from-list-singleton
by fastforce

249

lemma merge-cases: ∃ t e. merge (Node r xs) = Node r {|(t,e)|} ∨ merge (Node r
xs) = Node r {||}

using merge-singleton merge-empty-if-nwf merge-empty by blast

lemma merge-cases-sucs:
∃ t e. merge t1 = Node (root t1) {|(t,e)|} ∨ merge t1 = Node (root t1) {||}
using merge-singleton-sucs[of t1] merge-empty-if-nwf-sucs merge-empty-sucs by

auto

lemma merge-single-root:
(t2 ,e2) ∈ fset (sucs (merge (Node r xs))) =⇒ merge (Node r xs) = Node r
{|(t2 ,e2)|}

using merge-cases[of r xs] by fastforce

lemma merge-single-root-sucs:
(t2 ,e2) ∈ fset (sucs (merge t1)) =⇒ merge t1 = Node (root t1) {|(t2 ,e2)|}
using merge-cases-sucs[of t1] by auto

lemma merge-single-root1 :
t2 ∈ fst ‘ fset (sucs (merge (Node r xs))) =⇒ ∃ e2 . merge (Node r xs) = Node r
{|(t2 ,e2)|}

using merge-single-root by fastforce

lemma merge-single-root1-sucs:
t2 ∈ fst ‘ fset (sucs (merge t1)) =⇒ ∃ e2 . merge t1 = Node (root t1) {|(t2 ,e2)|}
using merge-single-root-sucs by fastforce

lemma merge-nempty-sucs: [[list-dtree t1 ; sucs t1 6= {||}]] =⇒ sucs (merge t1) 6=
{||}

using merge-singleton-sucs by fastforce

lemma merge-nempty: [[list-dtree (Node r xs); xs 6= {||}]] =⇒ sucs (merge (Node r
xs)) 6= {||}

using merge-singleton by fastforce

lemma merge-xs: merge (Node r xs) = dtree-from-list r (ffold (merge-f r xs) [] xs)
unfolding merge-def dtree.sel(1) dtree.sel(2) by blast

lemma merge-root-eq[simp]: root (merge t1) = root t1
unfolding merge-def by simp

lemma merge-ffold-fsts-in-childverts:
[[list-dtree (Node r xs); y ∈ fst ‘ set (ffold (merge-f r xs) [] xs)]]
=⇒ ∃ t1 ∈ fst ‘ fset xs. y ∈ dverts t1

proof(induction xs)
case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs

250

have (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

by blast
have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
then show ?case
proof(cases y ∈ fst ‘ set (ffold (merge-f r xs) [] xs))

case True
then show ?thesis using insert.IH [OF 0] by simp

next
case False
have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
also have . . . = ?f x (ffold ?f ′ [] xs)

using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) by fastforce
finally have ffold ?f [] (finsert x xs)

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold
?f ′ [] xs)

using xs-val insert.prems by simp
then have set (ffold ?f [] (finsert x xs))

= set (Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold
?f ′ [] xs))

by argo
then have set (ffold ?f [] (finsert x xs))

= (set (dtree-to-list (Node r {|x|})) ∪ set (ffold ?f ′ [] xs))
using set-merge by fast

then have y ∈ fst ‘ set (dtree-to-list (Node r {|x|})) using False insert.prems
by fast

then show ?thesis by (simp add: dtree-to-list-x-in-dverts)
qed

qed (simp add: ffold.rep-eq)

lemma verts-child-if-merge-child:
assumes t1 ∈ fst ‘ fset (sucs (merge t0)) and x ∈ dverts t1
shows ∃ t2 ∈ fst ‘ fset (sucs t0). x ∈ dverts t2

proof −
have 0 : list-dtree t0 using assms(1) merge-empty-if-nwf-sucs by fastforce
have merge t0 6= Node (root t0) {||} using assms(1) by force
then obtain e1 where e1-def : merge t0 = Node (root t0) {|(t1 ,e1)|}

using assms(1) merge-single-root1-sucs by blast
then obtain ys where ys-def :

(root t1 , e1) # ys = ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)
unfolding merge-def by (metis (no-types, lifting) dtree-to-list.simps(1) dtree-to-from-list-id)

then have merge t0 = dtree-from-list (root t0) ((root t1 , e1) # ys) unfolding
merge-def by simp

then have t1 = dtree-from-list (root t1) ys using e1-def by simp

251

then have dverts t1 = (fst ‘ set ((root t1 , e1) # ys))
using dtree-from-list-eq-dverts[of root t1 ys] by simp

then have x ∈ fst ‘ set (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0))
using assms(2) ys-def by simp

then show ?thesis using merge-ffold-fsts-in-childverts[of root t0] 0 by simp
qed

lemma sucs-dverts-eq-dtree-list:
assumes (t1 ,e1) ∈ fset (sucs t) and max-deg t1 ≤ 1
shows dverts (Node (root t) {|(t1 ,e1)|}) − {root t}

= fst ‘ set (dtree-to-list (Node (root t) {|(t1 ,e1)|}))
proof −

have {|(t1 ,e1)|} |⊆| sucs t using assms(1) by fast
then have wf : wf-dverts (Node (root t) {|(t1 ,e1)|})

using wf-verts wf-dverts-sub by (metis dtree.exhaust-sel)
have ∀ (t1 ,e1) ∈ fset (sucs t) . fcard {|(t1 ,e1)|} = 1 using fcard-single-1 by

fast
moreover have max-deg (Node (root t) {|(t1 ,e1)|}) = max (max-deg t1) (fcard
{|(t1 ,e1)|})

using mdeg-singleton by fast
ultimately have max-deg (Node (root t) {|(t1 ,e1)|}) ≤ 1

using assms by fastforce
then show ?thesis using dtree-to-list-eq-dverts[OF wf] by simp

qed

lemma merge-ffold-set-eq-union:
list-dtree (Node r xs)

=⇒ set (ffold (merge-f r xs) [] xs) = (
⋃

x∈fset xs. set (dtree-to-list (Node r
{|x|})))
proof(induction xs)

case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
have (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

by blast
have 1 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
also have . . . = ?f x (ffold ?f ′ [] xs)

using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) by fastforce
finally have ffold ?f [] (finsert x xs)

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold
?f ′ [] xs)

252

using xs-val insert.prems by simp
then have set (ffold ?f [] (finsert x xs))

= set (Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold ?f ′

[] xs))
by argo

then have set (ffold ?f [] (finsert x xs))
= (set (dtree-to-list (Node r {|x|})) ∪ set (ffold ?f ′ [] xs)) using set-merge

by fast
then show ?case using 1 insert.IH by simp

qed (simp add: ffold.rep-eq)

lemma sucs-dverts-no-root:
(t1 ,e1) ∈ fset (sucs t) =⇒ dverts (Node (root t) {|(t1 ,e1)|}) − {root t} = dverts

t1
using wf-verts wf-dverts ′.simps unfolding wf-dverts-iff-dverts ′ by fastforce

lemma dverts-merge-sub:
assumes ∀ t ∈ fst ‘ fset (sucs t0). max-deg t ≤ 1
shows dverts (merge t0) ⊆ dverts t0

proof
fix x
assume asm: x ∈ dverts (merge t0)
show x ∈ dverts t0
proof(cases x = root (merge t0))

case True
then show ?thesis by (simp add: dtree.set-sel(1))

next
case False
then obtain t1 e1 where t1-def : merge t0 = Node (root t0) ({|(t1 ,e1)|})

using merge-cases-sucs asm by fastforce
then have 0 : list-dtree (Node (root t0) (sucs t0))

using merge-empty-if-nwf-sucs by fastforce
have x ∈ fst ‘ set (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0))

using t1-def unfolding merge-def using False asm t1-def
dtree-from-list-eq-dverts[of root t0 ffold (merge-f (root t0) (sucs t0)) [] (sucs

t0)]
by auto

then obtain t2 e2 where t2-def :
(t2 ,e2) ∈ fset (sucs t0) x ∈ fst ‘ set (dtree-to-list (Node (root t0) {|(t2 ,e2)|}))
using merge-ffold-set-sub-union[OF 0] by fast

then have x ∈ dverts t2 by (simp add: dtree-to-list-x-in-dverts)
then show ?thesis using t2-def (1) dtree.set-sel(2) by fastforce

qed
qed

lemma dverts-merge-eq[simp]:
assumes ∀ t ∈ fst ‘ fset (sucs t). max-deg t ≤ 1
shows dverts (merge t) = dverts t

proof −

253

have ∀ (t1 ,e1) ∈ fset (sucs t). dverts (Node (root t) {|(t1 ,e1)|}) − {root t}
= fst ‘ set (dtree-to-list (Node (root t) {|(t1 ,e1)|}))

using sucs-dverts-eq-dtree-list assms
by (smt (verit, ccfv-threshold) case-prodI2 fst-conv image-iff)

then have ∀ (t1 ,e1) ∈ fset (sucs t). dverts t1
= fst ‘ set (dtree-to-list (Node (root t) {|(t1 ,e1)|}))

by (metis (mono-tags, lifting) sucs-dverts-no-root case-prodD case-prodI2)
then have (

⋃
x∈fset (sucs t).

⋃
(dverts ‘ Basic-BNFs.fsts x))

= (
⋃

x∈fset (sucs t). fst ‘ set (dtree-to-list (Node (root t) {|x|})))
by force

then have dverts t
= insert (root t) (

⋃
x∈fset (sucs t). fst ‘ set (dtree-to-list (Node (root t)

{|x|})))
using dtree.simps(6)[of root t sucs t] by auto

also have . . . = insert (root t) (fst ‘ set (ffold (merge-f (root t) (sucs t)) [] (sucs
t)))

using merge-ffold-set-eq-union[of root t sucs t] list-dtree-axioms by auto
also have . . . = dverts (dtree-from-list (root t) (ffold (merge-f (root t) (sucs t))

[] (sucs t)))
using dtree-from-list-eq-dverts[of root t] by blast

finally show ?thesis unfolding merge-def by blast
qed

lemma dlverts-merge-eq[simp]:
assumes ∀ t ∈ fst ‘ fset (sucs t). max-deg t ≤ 1
shows dlverts (merge t) = dlverts t
using dverts-merge-eq[OF assms] by (simp add: dlverts-eq-dverts-union)

lemma sucs-darcs-eq-dtree-list:
assumes (t1 ,e1) ∈ fset (sucs t) and max-deg t1 ≤ 1
shows darcs (Node (root t) {|(t1 ,e1)|}) = snd ‘ set (dtree-to-list (Node (root t)
{|(t1 ,e1)|}))
proof −

have ∀ (t1 ,e1) ∈ fset (sucs t) . fcard {|(t1 ,e1)|} = 1 using fcard-single-1 by
fast

moreover have max-deg (Node (root t) {|(t1 ,e1)|}) = max (max-deg t1) (fcard
{|(t1 ,e1)|})

using mdeg-singleton by fast
ultimately have max-deg (Node (root t) {|(t1 ,e1)|}) ≤ 1

using assms by fastforce
then show ?thesis using dtree-to-list-eq-darcs by blast

qed

lemma darcs-merge-eq[simp]:
assumes ∀ t ∈ fst ‘ fset (sucs t). max-deg t ≤ 1
shows darcs (merge t) = darcs t

proof −
have 0 : list-dtree (Node (root t) (sucs t)) using list-dtree-axioms by simp
have ∀ (t1 ,e1) ∈ fset (sucs t). darcs (Node (root t) {|(t1 ,e1)|})

254

= snd ‘ set (dtree-to-list (Node (root t) {|(t1 ,e1)|}))
using sucs-darcs-eq-dtree-list assms
by (smt (verit, ccfv-threshold) case-prodI2 fst-conv image-iff)

then have ∀ (t1 ,e1) ∈ fset (sucs t). darcs t1 ∪ {e1}
= snd ‘ set (dtree-to-list (Node (root t) {|(t1 ,e1)|}))

by simp
moreover have darcs t = (

⋃
(t1 ,e1)∈fset (sucs t). darcs t1 ∪ {e1})

using dtree.simps(7)[of root t sucs t] by force
ultimately have darcs t

= (
⋃
(t1 ,e1)∈fset (sucs t). snd ‘ set (dtree-to-list (Node (root t)

{|(t1 ,e1)|})))
by (smt (verit, best) Sup.SUP-cong case-prodE case-prod-conv)

also have . . . = (snd ‘ set (ffold (merge-f (root t) (sucs t)) [] (sucs t)))
using merge-ffold-set-eq-union[OF 0] by blast

also have . . . = darcs (dtree-from-list (root t) (ffold (merge-f (root t) (sucs t))
[] (sucs t)))

using dtree-from-list-eq-darcs[of root t] by fast
finally show ?thesis unfolding merge-def by blast

qed

9.2.4 Merging Preserves Well-Formedness
lemma dtree-to-list-x-in-darcs:

x ∈ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})) =⇒ x ∈ (darcs t1 ∪ {e1})
using dtree-to-list-sub-darcs by fastforce

lemma dtree-to-list-snds-disjoint:
(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
=⇒ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|})) ∩ (darcs t2 ∪ {e2}) = {}

using dtree-to-list-x-in-darcs by fast

lemma dtree-to-list-snds-disjoint2 :
(darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
=⇒ snd ‘ set (dtree-to-list (Node r {|(t1 ,e1)|}))
∩ snd ‘ set (dtree-to-list (Node r {|(t2 ,e2)|})) = {}

using disjoint-iff dtree-to-list-x-in-darcs by metis

lemma merge-ffold-arc-inter-preserv:
[[list-dtree (Node r ys); xs |⊆| ys; (darcs t1 ∪ {e1}) ∩ (snd ‘ set z) = {};
(t1 ,e1) ∈ fset ys; (t1 ,e1) /∈ fset xs]]
=⇒ (darcs t1 ∪ {e1}) ∩ (snd ‘ set (ffold (merge-f r xs) z xs)) = {}

proof(induction xs)
case (insert x xs)
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge
show ?case
proof(cases ffold ?f z (finsert x xs) = ffold ?f ′ z xs)

case True

255

then show ?thesis using insert.IH insert.prems by auto
next

case False
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce

have 0 : list-dtree (Node r (finsert x xs)) using list-dtree-subset insert.prems(1 ,2)
by blast

have (t2 ,e2) 6= (t1 ,e1) using insert.prems(5) t2-def by fastforce
moreover have (t2 ,e2) ∈ fset ys using insert.prems(2) by fastforce
moreover have disjoint-darcs ys
using disjoint-darcs-if-wf [OF list-dtree.wf-arcs [OF insert.prems(1)]] by simp

ultimately have (darcs t1 ∪ {e1}) ∩ (darcs t2 ∪ {e2}) = {}
using insert.prems(4) by fast

then have 1 : (darcs t1 ∪ {e1}) ∩ snd ‘ set (dtree-to-list (Node r {|(t2 , e2)|}))
= {}

using dtree-to-list-snds-disjoint by fast
have 2 : (darcs t1 ∪ {e1}) ∩ snd ‘ set (ffold ?f ′ z xs) = {}

using insert.IH insert.prems by simp
have xs |⊆| finsert x xs by blast
then have f-xs: ffold ?f z xs = ffold ?f ′ z xs

using merge-ffold-supset 0 by presburger
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
then have 0 : ffold ?f z (finsert x xs) = ?f x (ffold ?f ′ z xs) using f-xs by argo
then have ?f x (ffold ?f ′ z xs) 6= ffold ?f ′ z xs using False by argo
then have ?f (t2 ,e2) (ffold ?f ′ z xs)

= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)
using merge-f-merge-if-not-snd t2-def by blast

then have ffold ?f z (finsert x xs)
= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)

using 0 t2-def by argo
then have set (ffold ?f z (finsert x xs))

= set (dtree-to-list (Node r {|(t2 ,e2)|})) ∪ set (ffold ?f ′ z xs)
using set-merge[of dtree-to-list (Node r {|(t2 ,e2)|})] by presburger

then show ?thesis using 1 2 by fast
qed

qed (auto simp: ffold.rep-eq)

lemma merge-ffold-wf-list-arcs:
[[
∧

x. x ∈ fset xs =⇒ wf-darcs (Node r {|x|}); list-dtree (Node r xs)]]
=⇒ wf-list-arcs (ffold (merge-f r xs) [] xs)

proof(induction xs)
case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
have 0 : (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have t1-not-xs: (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

256

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(2) empty-list-valid-merge]

by blast
have 1 : wf-list-arcs (dtree-to-list (Node r {|x|}))

using insert.prems(1) 0 t1-def wf-list-arcs-if-wf-darcs by fast
have list-dtree (Node r xs) using list-dtree-subset insert.prems(2) by blast
then have 2 : wf-list-arcs (ffold ?f ′ [] xs) using insert.IH insert.prems by auto
have darcs (Node r {|x|}) ∩ snd ‘ set (ffold ?f ′ [] xs) = {}
using merge-ffold-arc-inter-preserv[OF insert.prems(2), of xs t1 e1 []] t1-not-xs

by auto
then have 3 : snd ‘ set (dtree-to-list (Node r {|x|})) ∩ snd ‘ set (ffold ?f ′ [] xs)

= {}
using dtree-to-list-sub-darcs by fast

have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)
using Comm.ffold-finsert[OF insert.hyps] by blast

also have . . . = ?f x (ffold ?f ′ [] xs)
using merge-ffold-supset[of xs finsert x xs r []] insert.prems(2) by fastforce

finally have ffold ?f [] (finsert x xs)
= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold

?f ′ [] xs)
using xs-val insert.prems by simp

then show ?case using wf-list-arcs-merge[OF 1 2 3] by presburger
qed (simp add: ffold.rep-eq)

lemma merge-wf-darcs: wf-darcs (merge t)
proof −

have wf-list-arcs (ffold (merge-f (root t) (sucs t)) [] (sucs t))
using merge-ffold-wf-list-arcs[OF wf-darcs-sucs[OF wf-arcs]] list-dtree-axioms

by simp
then show ?thesis using wf-darcs-iff-wf-list-arcs merge-def by fastforce

qed

lemma merge-ffold-wf-list-lverts:
[[
∧

x. x ∈ fset xs =⇒ wf-dlverts (Node r {|x|}); list-dtree (Node r xs)]]
=⇒ wf-list-lverts (ffold (merge-f r xs) [] xs)

proof(induction xs)
case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
have 0 : (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(2) empty-list-valid-merge]

by blast
have 1 : wf-list-lverts (dtree-to-list (Node r {|x|}))

using insert.prems(1) 0 t1-def wf-list-lverts-if-wf-dlverts by fast

257

have list-dtree (Node r xs) using list-dtree-subset insert.prems(2) by blast
then have 2 : wf-list-lverts (ffold ?f ′ [] xs) using insert.IH insert.prems by auto
have ∀ v2∈fst ‘ set (ffold ?f ′ [] xs). set v2 ∩ dlverts t1 = {}

using xs-val by fastforce
then have 3 : ∀ v1∈fst ‘ set (dtree-to-list (Node r {|x|})). ∀ v2∈fst ‘ set (ffold ?f ′

[] xs).
set v1 ∩ set v2 = {}

using dtree-to-list-x1-list-disjoint t1-def by fast
have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
also have . . . = ?f x (ffold ?f ′ [] xs)

using merge-ffold-supset[of xs finsert x xs r []] insert.prems(2) by fastforce
finally have ffold ?f [] (finsert x xs)

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold
?f ′ [] xs)

using xs-val insert.prems by simp
then show ?case using wf-list-lverts-merge[OF 1 2 3] by presburger

qed (simp add: ffold.rep-eq)

lemma merge-ffold-root-inter-preserv:
[[list-dtree (Node r xs); ∀ t1 ∈ fst ‘ fset xs. set r ′ ∩ dlverts t1 = {};
∀ v1 ∈ fst ‘ set z. set r ′ ∩ set v1 = {}; (v,e) ∈ set (ffold (merge-f r xs) z xs)]]
=⇒ set r ′ ∩ set v = {}

proof(induction xs)
case (insert x xs)
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge
have 0 : list-dtree (Node r xs) using insert.prems(1) list-dtree-subset by blast
show ?case
proof(cases ffold ?f z (finsert x xs) = ffold ?f ′ z xs)

case True
then show ?thesis using insert.IH [OF 0] insert.prems(2−4) by simp

next
case not-right: False
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
show ?thesis
proof(cases (v,e) ∈ set (dtree-to-list (Node r {|(t2 ,e2)|})))

case True
then show ?thesis using dtree-to-list-x1-list-disjoint insert.prems(2) by

fastforce
next

case False
have xs |⊆| finsert x xs by blast
then have f-xs: ffold ?f z xs = ffold ?f ′ z xs

using merge-ffold-supset[of xs finsert x xs] insert.prems(1) by blast
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
then have 1 : ffold ?f z (finsert x xs) = ?f x (ffold ?f ′ z xs) using f-xs by

258

argo
then have ?f x (ffold ?f ′ z xs) 6= ffold ?f ′ z xs using not-right by argo
then have ?f (t2 ,e2) (ffold ?f ′ z xs)

= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)
using merge-f-merge-if-not-snd t2-def by blast

then have ffold ?f z (finsert x xs)
= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)

using 1 t2-def by argo
then have (v,e) ∈ set (?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold

?f ′ z xs))
using insert.prems(4) by argo

then have (v,e) ∈ set (ffold ?f ′ z xs) using set-merge False by fast
then show ?thesis using insert.IH insert.prems(2−3) 0 by auto

qed
qed

qed (fastforce simp: ffold.rep-eq)

lemma merge-wf-dlverts: wf-dlverts (merge t)
proof −

have 0 : list-dtree (Node (root t) (sucs t)) using list-dtree-axioms by simp
have 1 : ∀ t1∈fst ‘ fset (sucs t). set (root t) ∩ dlverts t1 = {}

using wf-lverts wf-dlverts.simps[of root t] by fastforce
have ∀ v∈fst ‘ set (ffold (merge-f (root t) (sucs t)) [] (sucs t)). set (root t) ∩ set

v = {}
using wf-lverts merge-ffold-root-inter-preserv[OF 0 1] by force

moreover have wf-list-lverts (ffold (merge-f (root t) (sucs t)) [] (sucs t))
using merge-ffold-wf-list-lverts[OF wf-dlverts-sucs[OF wf-lverts] 0] by simp

moreover have root t 6= [] using wf-lverts wf-dlverts.elims(2) by fastforce
ultimately show ?thesis unfolding merge-def using wf-dlverts-iff-wf-list-lverts

by blast
qed

theorem merge-list-dtree: list-dtree (merge t)
using merge-wf-dlverts merge-wf-darcs list-dtree-def by blast

corollary merge-ranked-dtree: ranked-dtree (merge t) cmp
using merge-list-dtree ranked-dtree-def ranked-dtree-axioms by auto

9.2.5 Additional Merging Properties
lemma merge-ffold-distinct:
[[list-dtree (Node r xs); ∀ t1 ∈ fst ‘ fset xs. ∀ v∈dverts t1 . distinct v;
∀ v1 ∈ fst ‘ set z. distinct v1 ; v ∈ fst ‘ set (ffold (merge-f r xs) z xs)]]
=⇒ distinct v

proof(induction xs)
case (insert x xs)
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge

259

have 0 : list-dtree (Node r xs) using insert.prems(1) list-dtree-subset by blast
show ?case
proof(cases ffold ?f z (finsert x xs) = ffold ?f ′ z xs)

case True
then show ?thesis using insert.IH [OF 0] insert.prems(2−4) by simp

next
case not-right: False
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
show ?thesis
proof(cases v ∈ fst ‘ set (dtree-to-list (Node r {|(t2 ,e2)|})))

case True
have ∀ v∈dverts t2 . distinct v using insert.prems(2) by simp
then have 2 : ∀ v∈fst ‘ set (dtree-to-list (Node r {|(t2 ,e2)|})). distinct v

by (simp add: dtree-to-list-x-in-dverts)
then show ?thesis using True by auto

next
case False
have xs |⊆| finsert x xs by blast
then have f-xs: ffold ?f z xs = ffold ?f ′ z xs

using merge-ffold-supset insert.prems(1) by presburger
have ffold ?f z (finsert x xs) = ?f x (ffold ?f z xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
then have 1 : ffold ?f z (finsert x xs) = ?f x (ffold ?f ′ z xs) using f-xs by

argo
then have ?f x (ffold ?f ′ z xs) 6= ffold ?f ′ z xs using not-right by argo
then have ?f (t2 ,e2) (ffold ?f ′ z xs)

= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)
using merge-f-merge-if-not-snd t2-def by blast

then have ffold ?f z (finsert x xs)
= ?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold ?f ′ z xs)

using 1 t2-def by argo
then have v ∈ fst ‘ set (?merge cmp ′ (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold

?f ′ z xs))
using insert.prems(4) by argo

then have v ∈ fst ‘ set (ffold ?f ′ z xs) using set-merge False by fast
then show ?thesis using insert.IH [OF 0] insert.prems(2−3) by simp

qed
qed

qed (fastforce simp: ffold.rep-eq)

lemma distinct-merge:
assumes ∀ v∈dverts t. distinct v and v∈dverts (merge t)
shows distinct v

proof(cases v = root t)
case True
then show ?thesis by (simp add: dtree.set-sel(1) assms(1))

next
case False
then have 0 : v ∈ fst ‘ set (ffold (merge-f (root t) (sucs t)) [] (sucs t))

260

using merge-def assms(2) dtree-from-list-eq-dverts[of root t] by auto
moreover have ∀ t1∈fst ‘ fset (sucs t). ∀ v∈dverts t1 . distinct v

using assms(1) dverts-child-subset[of root t sucs t] by auto
moreover have ∀ v1∈fst ‘ set []. distinct v1 by simp
moreover have 0 : list-dtree (Node (root t) (sucs t)) using list-dtree-axioms by

simp
ultimately show ?thesis using merge-ffold-distinct by fast

qed

lemma merge-hd-root-eq[simp]: hd (root (merge t1)) = hd (root t1)
unfolding merge-def by auto

lemma merge-ffold-hd-is-child:
[[list-dtree (Node r xs); xs 6= {||}]]
=⇒ ∃ (t1 ,e1) ∈ fset xs. hd (ffold (merge-f r xs) [] xs) = (root t1 ,e1)

proof(induction xs)
case (insert x xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert x xs)
define f ′ where f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp ′

have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have i1 : ∃ (t1 , e1)∈fset (finsert x xs). hd (dtree-to-list (Node r {|(t2 ,e2)|})) =

(root t1 , e1)
by simp

have (t2 , e2) ∈ fset (finsert x xs) by simp
moreover have (t2 , e2) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold f ′ [] xs). set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪

{e2})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

f ′-def
by blast

have ffold f [] (finsert x xs) = f x (ffold f [] xs)
using Comm.ffold-finsert[OF insert.hyps] f-def by blast

also have . . . = f x (ffold f ′ [] xs)
using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) f-def f ′-def by

fastforce
finally have ffold f [] (finsert x xs) = ?merge (dtree-to-list (Node r {|x|})) (ffold

f ′ [] xs)
using xs-val insert.prems f-def by simp

then have merge: ffold f [] (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′[] xs)

using t2-def by blast
show ?case
proof(cases xs = {||})

case True
then show ?thesis using merge i1 f-def by (auto simp: ffold.rep-eq)

261

next
case False
then have i2 : ∃ (t1 ,e1) ∈ fset (finsert x xs). hd (ffold f ′ [] xs) = (root t1 ,e1)

using insert.IH [OF 0] f ′-def by simp
show ?thesis using merge-hd-exists-preserv[OF i1 i2] merge f-def by simp

qed
qed(simp)

lemma merge-ffold-nempty-if-child:
assumes (t1 ,e1) ∈ fset (sucs (merge t0))
shows ffold (merge-f (root t0) (sucs t0)) [] (sucs t0) 6= []
using assms unfolding merge-def by auto

lemma merge-ffold-hd-eq-child:
assumes (t1 ,e1) ∈ fset (sucs (merge t0))
shows hd (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)) = (root t1 ,e1)

proof −
have merge t0 = (dtree-from-list (root t0) (ffold (merge-f (root t0) (sucs t0)) []

(sucs t0)))
unfolding merge-def by blast

have merge t0 = (Node (root t0) {|(t1 ,e1)|}) using merge-cases-sucs[of t0]
assms by auto

have 0 : (Node (root t0) {|(t1 ,e1)|})
= (dtree-from-list (root t0) (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)))

using merge-cases-sucs[of t0] assms unfolding merge-def by fastforce
then obtain ys where (root t1 , e1) # ys = ffold (merge-f (root t0) (sucs t0))

[] (sucs t0)
using dtree-from-list-eq-singleton[OF 0] by blast

then show ?thesis using list.sel(1)[of (root t1 , e1) ys] by simp
qed

lemma merge-child-in-orig:
assumes (t1 ,e1) ∈ fset (sucs (merge t0))
shows ∃ (t2 ,e2) ∈ fset (sucs t0). (root t2 ,e2) = (root t1 ,e1)

proof −
have 0 : list-dtree (Node (root t0) (sucs t0)) using assms merge-empty-if-nwf-sucs

by fastforce
have sucs t0 6= {||} using assms merge-empty-sucs by fastforce
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset (sucs t0)

hd (ffold (merge-f (root t0) (sucs t0)) [] (sucs t0)) = (root t2 ,e2)
using merge-ffold-hd-is-child[OF 0] by blast

then show ?thesis using merge-ffold-hd-eq-child[OF assms] by auto
qed

lemma ffold-singleton: comp-fun-commute f =⇒ ffold f z {|x|} = f x z
using comp-fun-commute.ffold-finsert
by (metis comp-fun-commute.ffold-empty finsert-absorb finsert-not-fempty)

lemma ffold-singleton1 :

262

[[comp-fun-commute (λa b. if P a b then Q a b else R a b); P x z]]
=⇒ ffold (λa b. if P a b then Q a b else R a b) z {|x|} = Q x z

using ffold-singleton by fastforce

lemma ffold-singleton2 :
[[comp-fun-commute (λa b. if P a b then Q a b else R a b); ¬P x z]]
=⇒ ffold (λa b. if P a b then Q a b else R a b) z {|x|} = R x z

using ffold-singleton by fastforce

lemma merge-ffold-singleton-if-wf :
assumes list-dtree (Node r {|(t1 ,e1)|})
shows ffold (merge-f r {|(t1 ,e1)|}) [] {|(t1 ,e1)|} = dtree-to-list (Node r {|(t1 ,e1)|})

proof −
interpret Comm: comp-fun-commute merge-f r {|(t1 ,e1)|} by (rule merge-commute)
define f where f = merge-f r {|(t1 ,e1)|}
have ffold f [] {|(t1 ,e1)|} = f (t1 ,e1) (ffold f [] {||})

using Comm.ffold-finsert f-def by blast
then show ?thesis using f-def assms by (simp add: ffold.rep-eq)

qed

lemma merge-singleton-if-wf :
assumes list-dtree (Node r {|(t1 ,e1)|})
shows merge (Node r {|(t1 ,e1)|}) = dtree-from-list r (dtree-to-list (Node r

{|(t1 ,e1)|}))
using merge-ffold-singleton-if-wf [OF assms] merge-xs by simp

lemma merge-disjoint-if-child:
merge (Node r {|(t1 ,e1)|}) = Node r {|(t2 ,e2)|} =⇒ list-dtree (Node r {|(t1 ,e1)|})
using merge-empty-if-nwf by fastforce

lemma merge-root-child-eq:
merge (Node r {|(t1 ,e1)|}) = Node r {|(t2 ,e2)|} =⇒ root t1 = root t2
using merge-singleton-if-wf [OF merge-disjoint-if-child] by fastforce

lemma merge-ffold-split-subtree:
[[∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1 ; list-dtree (Node r xs);

as@(v,e)#bs = ffold (merge-f r xs) [] xs]]
=⇒ ∃ ys. strict-subtree (Node v ys) (Node r xs) ∧ dverts (Node v ys) ⊆ (fst ‘

set ((v,e)#bs))
proof(induction xs arbitrary: as bs)

case (insert x xs)
obtain t1 e1 where t1-def [simp]: x = (t1 ,e1) by fastforce
define f ′ where f ′ = merge-f r xs
let ?f = merge-f r (finsert x xs)
let ?f ′ = merge-f r xs
have (t1 , e1) ∈ fset (finsert x xs) by simp
moreover have (t1 , e1) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold ?f ′ [] xs). set v ∩ dlverts t1 = {} ∧ v 6= [] ∧ e /∈ darcs t1

263

∪ {e1})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(2) empty-list-valid-merge]

by blast
have 0 : ∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1 using insert.prems(1) by simp
have 1 : list-dtree (Node r xs) using list-dtree-subset insert.prems(2) by blast
have ffold ?f [] (finsert x xs) = ?f x (ffold ?f [] xs)

using Comm.ffold-finsert[OF insert.hyps] by blast
also have . . . = ?f x (ffold ?f ′ [] xs)

using merge-ffold-supset[of xs finsert x xs r []] insert.prems(2) by fastforce
finally have ind: ffold ?f [] (finsert x xs)

= Sorting-Algorithms.merge cmp ′ (dtree-to-list (Node r {|x|})) (ffold f ′

[] xs)
using insert.prems(2) xs-val f ′-def by simp

have max-deg (fst x) ≤ 1 using insert.prems(1) by simp
then have max-deg (Node r {|x|}) ≤ 1

using mdeg-child-sucs-eq-if-gt1 [of r fst x snd x root (fst x)] by fastforce
then have ∀ as bs. as@(v,e)#bs = dtree-to-list (Node r {|x|}) −→

(∃ zs. strict-subtree (Node v zs) (Node r {|x|})
∧ dverts (Node v zs) ⊆ fst ‘ set ((v,e)#bs))

using dtree-to-list-split-subtree-dverts-eq-fsts ′ by fast
then have left: ∀ as bs. as@(v,e)#bs = dtree-to-list (Node r {|x|}) −→

(∃ zs. strict-subtree (Node v zs) (Node r (finsert x xs))
∧ dverts (Node v zs) ⊆ fst ‘ set ((v,e)#bs))

using strict-subtree-singleton[where xs=finsert x xs] by blast
have ∀ as bs. as@(v,e)#bs = ffold f ′ [] xs −→

(∃ zs. strict-subtree (Node v zs) (Node r xs)
∧ dverts (Node v zs) ⊆ fst ‘ set ((v,e)#bs))

using insert.IH [OF 0 1] f ′-def by blast
then have right: ∀ as bs. as@(v,e)#bs = ffold f ′ [] xs −→

(∃ zs. strict-subtree (Node v zs) (Node r (finsert x xs))
∧ dverts (Node v zs) ⊆ fst ‘ set ((v,e)#bs))

using strict-subtree-subset[where r=r and xs=xs and ys=finsert x xs] by fast
then show ?case using merge-split-supset-strict-subtree[OF left right] ind in-

sert.prems(3) by simp
qed (simp add: ffold.rep-eq)

lemma merge-strict-subtree-dverts-sup:
assumes ∀ t ∈ fst ‘ fset (sucs t). max-deg t ≤ 1

and strict-subtree (Node r xs) (merge t)
shows ∃ ys. is-subtree (Node r ys) t ∧ dverts (Node r ys) ⊆ dverts (Node r xs)

proof −
have 0 : list-dtree (Node (root t) (sucs t)) using list-dtree-axioms by simp
have ∀ as r e bs. as@(r ,e)#bs = ffold (merge-f (root t) (sucs t)) [] (sucs t)
−→ (∃ ys. strict-subtree (Node r ys) (Node (root t) (sucs t))
∧ dverts (Node r ys) ⊆ fst ‘ set ((r ,e)#bs))

using merge-ffold-split-subtree[OF assms(1) 0] by blast
then have ∀ as r e bs. as@(r ,e)#bs = ffold (merge-f (root t) (sucs t)) [] (sucs

t) −→
(∃ ys. strict-subtree (Node r ys) t ∧ dverts (Node r ys) ⊆ fst ‘ set ((r ,e)#bs))

264

by simp
obtain as e bs where bs-def : as@(r ,e)#bs = ffold (merge-f (root t) (sucs t)) []

(sucs t)
using assms(2) dtree-from-list-uneq-sequence-xs[of r] unfolding merge-def by

blast
have wf-dverts (merge t) by (simp add: merge-wf-dlverts wf-dverts-if-wf-dlverts)
then have wf : wf-dverts (dtree-from-list (root t) (as@(r ,e)#bs))

unfolding merge-def bs-def .
moreover obtain ys where

strict-subtree (Node r ys) t dverts (Node r ys) ⊆ fst ‘ set ((r ,e)#bs)
using merge-ffold-split-subtree[OF assms(1) 0 bs-def] by auto

moreover have strict-subtree (Node r xs) (dtree-from-list (root t) (as@(r ,e)#bs))
using assms(2) unfolding bs-def merge-def .

ultimately show ?thesis
using dtree-from-list-dverts-subset-wfdverts1 unfolding strict-subtree-def by

fast
qed

lemma merge-subtree-dverts-supset:
assumes ∀ t∈fst ‘ fset (sucs t). max-deg t ≤ 1 and is-subtree (Node r xs) (merge

t)
shows ∃ ys. is-subtree (Node r ys) t ∧ dverts (Node r ys) ⊆ dverts (Node r xs)

proof(cases Node r xs = merge t)
case True
then obtain ys where t = Node r ys using merge-root-eq dtree.exhaust-sel

dtree.sel(1) by metis
then show ?thesis using dverts-merge-eq[OF assms(1)] True by auto

next
case False
then show ?thesis using merge-strict-subtree-dverts-sup assms strict-subtree-def

by blast
qed

lemma merge-subtree-dlverts-supset:
assumes ∀ t∈fst ‘ fset (sucs t). max-deg t ≤ 1 and is-subtree (Node r xs) (merge

t)
shows ∃ ys. is-subtree (Node r ys) t ∧ dlverts (Node r ys) ⊆ dlverts (Node r xs)

proof −
obtain ys where is-subtree (Node r ys) t dverts (Node r ys) ⊆ dverts (Node r

xs)
using merge-subtree-dverts-supset[OF assms] by blast

then show ?thesis using dlverts-eq-dverts-union[of Node r ys] dlverts-eq-dverts-union
by fast
qed

end

265

9.3 Normalizing Dtrees
context ranked-dtree
begin

9.3.1 Definitions
function normalize1 :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where

normalize1 (Node r {|(t1 ,e)|}) =
(if rank (rev (root t1)) < rank (rev r) then Node (r@root t1) (sucs t1)
else Node r {|(normalize1 t1 ,e)|})

| ∀ x. xs 6= {|x|} =⇒ normalize1 (Node r xs) = Node r ((λ(t,e). (normalize1 t,e))
|‘| xs)

by (metis darcs-mset.cases old.prod.exhaust) fast+
termination by lexicographic-order

lemma normalize1-size-decr [termination-simp]:
normalize1 t1 6= t1 =⇒ size (normalize1 t1) < size t1

proof(induction t1 rule: normalize1 .induct)
case (1 r t e)
then show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis using dtree-size-eq-root[of root t sucs t] by simp

next
case False
then show ?thesis using dtree-size-img-le 1 by auto

qed
next

case (2 xs r)
then have 0 : ∀ t ∈ fst ‘ fset xs. size (normalize1 t) ≤ size t by fastforce
moreover have ∃ t ∈ fst ‘ fset xs. size (normalize1 t) < size t

using elem-neq-if-fset-neq[of normalize1 xs] 2 by fastforce
ultimately show ?case using dtree-size-img-lt 2 .hyps by auto

qed

lemma normalize1-size-le: size (normalize1 t1) ≤ size t1
by(cases normalize1 t1=t1) (auto dest: normalize1-size-decr)

fun normalize :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
normalize t1 = (let t2 = normalize1 t1 in if t1 = t2 then t2 else normalize t2)

9.3.2 Basic Proofs
lemma root-normalize1-eq1 :
¬rank (rev (root t1)) < rank (rev r) =⇒ root (normalize1 (Node r {|(t1 ,e1)|}))

= r
by simp

lemma root-normalize1-eq1 ′:

266

¬rank (rev (root t1)) ≤ rank (rev r) =⇒ root (normalize1 (Node r {|(t1 ,e1)|}))
= r

by simp

lemma root-normalize1-eq2 : ∀ x. xs 6= {|x|} =⇒ root (normalize1 (Node r xs)) =
r

by simp

lemma fset-img-eq: ∀ x ∈ fset xs. f x = x =⇒ f |‘| xs = xs
using fset-inject[of xs f |‘| xs] by simp

lemma fset-img-uneq: f |‘| xs 6= xs =⇒ ∃ x ∈ fset xs. f x 6= x
using fset-img-eq by fastforce

lemma fset-img-uneq-prod: (λ(t,e). (f t, e)) |‘| xs 6= xs =⇒ ∃ (t,e) ∈ fset xs. f t 6=
t

using fset-img-uneq[of λ(t,e). (f t, e) xs] by auto

lemma contr-if-normalize1-uneq:
normalize1 t1 6= t1
=⇒ ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) t1 ∧ rank (rev (root t2)) < rank

(rev v)
proof(induction t1 rule: normalize1 .induct)

case (2 xs r)
then show ?case using fset-img-uneq-prod[of normalize1 xs] by fastforce

qed(fastforce)

lemma contr-before-normalize1 :
[[is-subtree (Node v {|(t1 ,e1)|}) (normalize1 t3); rank (rev (root t1)) < rank (rev

v)]]
=⇒ ∃ v ′ t2 e2 . is-subtree (Node v ′ {|(t2 ,e2)|}) t3 ∧ rank (rev (root t2)) < rank

(rev v ′)
using contr-if-normalize1-uneq by force

9.3.3 Normalizing Preserves Well-Formedness
lemma normalize1-darcs-sub: darcs (normalize1 t1) ⊆ darcs t1
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
then show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then have darcs (normalize1 (Node r {|(t,e)|})) = darcs (Node (r@root t)

(sucs t)) by simp
also have . . . = darcs (Node (root t) (sucs t)) using darcs-sub-if-children-sub

by fast
finally show ?thesis by auto

next
case False

267

then show ?thesis using 1 by auto
qed

qed (fastforce)

lemma disjoint-darcs-normalize1 :
wf-darcs t1 =⇒ disjoint-darcs ((λ(t,e). (normalize1 t,e)) |‘| (sucs t1))
using disjoint-darcs-img[OF disjoint-darcs-if-wf , of t1 normalize1]
by (simp add: normalize1-darcs-sub)

lemma wf-darcs-normalize1 : wf-darcs t1 =⇒ wf-darcs (normalize1 t1)
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis

using 1 .prems dtree.collapse singletonI finsert.rep-eq case-prodD
unfolding wf-darcs-iff-darcs ′

by (metis (no-types, lifting) wf-darcs ′.simps bot-fset.rep-eq normalize1 .simps(1))
next

case False
have disjoint-darcs {|(normalize1 t,e)|}

using normalize1-darcs-sub disjoint-darcs-if-wf-xs[OF 1 .prems] by auto
then show ?thesis using 1 False unfolding wf-darcs-iff-darcs ′ by force

qed
next

case (2 xs r)
then show ?case

using disjoint-darcs-normalize1 [OF 2 .prems]
by (fastforce simp: wf-darcs-iff-darcs ′)

qed

lemma normalize1-dlverts-eq[simp]: dlverts (normalize1 t1) = dlverts t1
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
then show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis using dlverts.simps[of root t sucs t] by force

next
case False
then show ?thesis using 1 by auto

qed
qed (fastforce)

lemma normalize1-dverts-contr-subtree:
[[v ∈ dverts (normalize1 t1); v /∈ dverts t1]]
=⇒ ∃ v2 t2 e2 . is-subtree (Node v2 {|(t2 ,e2)|}) t1
∧ v2 @ root t2 = v ∧ rank (rev (root t2)) < rank (rev v2)

268

proof(induction t1 rule: normalize1 .induct)
case (1 r t e)
show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis using 1 .prems dverts-suc-subseteq by fastforce

next
case False
then show ?thesis using 1 by auto

qed
qed(fastforce)

lemma normalize1-dverts-app-contr :
[[v ∈ dverts (normalize1 t1); v /∈ dverts t1]]
=⇒ ∃ v1∈dverts t1 . ∃ v2∈dverts t1 . v1 @ v2 = v ∧ rank (rev v2) < rank (rev

v1)
using normalize1-dverts-contr-subtree
by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts)

lemma disjoint-dlverts-img:
assumes disjoint-dlverts xs and ∀ (t,e) ∈ fset xs. dlverts (f t) ⊆ dlverts t
shows disjoint-dlverts ((λ(t,e). (f t,e)) |‘| xs) (is disjoint-dlverts ?xs)

proof (rule ccontr)
assume ¬ disjoint-dlverts ?xs
then obtain x1 e1 y1 e2 where asm: (x1 ,e1) ∈ fset ?xs (y1 ,e2) ∈ fset ?xs

dlverts x1 ∩ dlverts y1 6= {} ∧ (x1 ,e1) 6=(y1 ,e2) by blast
then obtain x2 where x2-def : f x2 = x1 (x2 ,e1) ∈ fset xs by auto
obtain y2 where y2-def : f y2 = y1 (y2 ,e2) ∈ fset xs using asm(2) by auto
have dlverts x1 ⊆ dlverts x2 using assms(2) x2-def by fast
moreover have dlverts y1 ⊆ dlverts y2 using assms(2) y2-def by fast
ultimately have ¬ disjoint-dlverts xs using asm(3) x2-def y2-def by blast
then show False using assms(1) by blast

qed

lemma disjoint-dlverts-normalize1 :
disjoint-dlverts xs =⇒ disjoint-dlverts ((λ(t,e). (normalize1 t,e)) |‘| xs)
using disjoint-dlverts-img[of xs] by simp

lemma disjoint-dlverts-normalize1-sucs:
disjoint-dlverts (sucs t1) =⇒ disjoint-dlverts ((λ(t,e). (normalize1 t,e)) |‘| (sucs

t1))
using disjoint-dlverts-img[of sucs t1] by simp

lemma disjoint-dlverts-normalize1-wf :
wf-dlverts t1 =⇒ disjoint-dlverts ((λ(t,e). (normalize1 t,e)) |‘| (sucs t1))
using disjoint-dlverts-img[OF disjoint-dlverts-if-wf , of t1] by simp

lemma disjoint-dlverts-normalize1-wf ′:
wf-dlverts (Node r xs) =⇒ disjoint-dlverts ((λ(t,e). (normalize1 t,e)) |‘| xs)

269

using disjoint-dlverts-img[OF disjoint-dlverts-if-wf , of Node r xs] by simp

lemma root-empty-inter-dlverts-normalize1 :
assumes wf-dlverts t1 and (x1 ,e1) ∈ fset ((λ(t,e). (normalize1 t,e)) |‘| (sucs

t1))
shows set (root t1) ∩ dlverts x1 = {}

proof (rule ccontr)
assume asm: set (root t1) ∩ dlverts x1 6= {}
obtain x2 where x2-def : normalize1 x2 = x1 (x2 ,e1) ∈ fset (sucs t1) using

assms(2) by auto
have set (root t1) ∩ dlverts x2 6= {} using x2-def (1) asm by force
then show False using x2-def (2) assms(1) wf-dlverts.simps[of root t1 sucs t1]

by auto
qed

lemma wf-dlverts-normalize1 : wf-dlverts t1 =⇒ wf-dlverts (normalize1 t1)
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
have 0 : ∀ (t1 ,e1) ∈ fset (sucs t). wf-dlverts t1

using 1 .prems wf-dlverts.simps[of root t sucs t] by auto
have ∀ (t1 ,e1) ∈ fset (sucs t). set (root t) ∩ dlverts t1 = {}

using 1 .prems wf-dlverts.simps[of root t] by fastforce
then have ∀ (t1 ,e1) ∈ fset (sucs t). set (r@root t) ∩ dlverts t1 = {}

using suc-in-dlverts 1 .prems by fastforce
then show ?thesis using True 0 disjoint-dlverts-if-wf [of t] 1 .prems by auto

next
case False
then show ?thesis
using root-empty-inter-dlverts-normalize1 [OF 1 .prems] disjoint-dlverts-normalize1

1 by auto
qed

next
case (2 xs r)
have ∀ (t1 ,e1) ∈ fset ((λ(t, e). (normalize1 t, e)) |‘| xs). set r ∩ dlverts t1 = {}

using root-empty-inter-dlverts-normalize1 [OF 2 .prems] by force
then show ?case using disjoint-dlverts-normalize1 2 by auto

qed

corollary list-dtree-normalize1 : list-dtree (normalize1 t)
using wf-dlverts-normalize1 [OF wf-lverts] wf-darcs-normalize1 [OF wf-arcs] list-dtree-def

by blast

corollary ranked-dtree-normalize1 : ranked-dtree (normalize1 t) cmp
using list-dtree-normalize1 ranked-dtree-def ranked-dtree-axioms by blast

lemma normalize-darcs-sub: darcs (normalize t1) ⊆ darcs t1

270

apply(induction t1 rule: normalize.induct)
by (smt (verit) normalize1-darcs-sub normalize.simps subset-trans)

lemma normalize-dlverts-eq: dlverts (normalize t1) = dlverts t1
by(induction t1 rule: normalize.induct) (metis (full-types) normalize.elims nor-

malize1-dlverts-eq)

theorem ranked-dtree-normalize: ranked-dtree (normalize t) cmp
using ranked-dtree-axioms apply(induction t rule: normalize.induct)
by (smt (verit) ranked-dtree.normalize.elims ranked-dtree.ranked-dtree-normalize1)

9.3.4 Distinctness and hd preserved
lemma distinct-normalize1 : [[∀ v∈dverts t. distinct v; v∈dverts (normalize1 t)]] =⇒
distinct v
using ranked-dtree-axioms proof(induction t rule: normalize1 .induct)

case (1 r t e)
then interpret R: ranked-dtree Node r {|(t, e)|} rank by blast
show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
interpret T : ranked-dtree t rank using R.ranked-dtree-rec by auto
have set r ∩ set (root t) = {}

using R.wf-lverts dlverts.simps[of root t sucs t] by auto
then have distinct (r@root t) by (auto simp: dtree.set-sel(1) 1 .prems(1))
moreover have ∀ v ∈ (

⋃
(t, e)∈fset (sucs t). dverts t). distinct v

using 1 .prems(1) dtree.set(1)[of root t sucs t] by fastforce
ultimately show ?thesis using dverts-root-or-child 1 .prems(2) True by auto

next
case False
then show ?thesis using R.ranked-dtree-rec 1 by auto

qed
next

case (2 xs r)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case using R.ranked-dtree-rec 2 by fastforce

qed

lemma distinct-normalize: ∀ v∈dverts t. distinct v =⇒ ∀ v∈dverts (normalize t).
distinct v
using ranked-dtree-axioms proof(induction t rule: normalize.induct)

case (1 t)
then interpret T1 : ranked-dtree t rank by blast
interpret T2 : ranked-dtree normalize1 t rank by (simp add: T1 .ranked-dtree-normalize1)
show ?case
by (smt (verit, del-insts) 1 T1 .distinct-normalize1 T2 .ranked-dtree-axioms nor-

malize.simps)
qed

271

lemma normalize1-hd-root-eq[simp]:
assumes root t1 6= []
shows hd (root (normalize1 t1)) = hd (root t1)

proof(cases ∀ x. sucs t1 6= {|x|})
case True
then show ?thesis using normalize1 .simps(2)[of sucs t1 root t1] by simp

next
case False
then obtain t e where {|(t, e)|} = sucs t1 by auto
then show ?thesis using normalize1 .simps(1)[of root t1 t e] assms by simp

qed

corollary normalize1-hd-root-eq ′:
wf-dlverts t1 =⇒ hd (root (normalize1 t1)) = hd (root t1)
using normalize1-hd-root-eq[of t1] wf-dlverts.simps[of root t1 sucs t1] by simp

lemma normalize1-root-nempty:
assumes root t1 6= []
shows root (normalize1 t1) 6= []

proof(cases ∀ x. sucs t1 6= {|x|})
case True
then show ?thesis using normalize1 .simps(2)[of sucs t1 root t1] assms by simp

next
case False
then obtain t e where {|(t, e)|} = sucs t1 by auto
then show ?thesis using normalize1 .simps(1)[of root t1 t e] assms by simp

qed

lemma normalize-hd-root-eq[simp]: root t1 6= [] =⇒ hd (root (normalize t1)) = hd
(root t1)
using ranked-dtree-axioms proof(induction t1 rule: normalize.induct)

case (1 t)
then show ?case
proof(cases t = normalize1 t)

case False
then have normalize t = normalize (normalize1 t) by (simp add: Let-def)
then show ?thesis using 1 normalize1-root-nempty by force

qed(simp)
qed

corollary normalize-hd-root-eq ′[simp]: wf-dlverts t1 =⇒ hd (root (normalize t1))
= hd (root t1)

using normalize-hd-root-eq wf-dlverts.simps[of root t1 sucs t1] by simp

9.3.5 Normalize and Sorting
lemma normalize1-uneq-if-contr :
[[is-subtree (Node r1 {|(t1 ,e1)|}) t2 ; rank (rev (root t1)) < rank (rev r1); wf-darcs

t2]]

272

=⇒ t2 6= normalize1 t2
proof(induction t2 rule: normalize1 .induct)

case (1 r t e)
then show ?case
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis using combine-uneq by fastforce

next
case False
then show ?thesis using 1 by auto

qed
next

case (2 xs r)
then obtain t e where t-def : (t,e) ∈ fset xs is-subtree (Node r1 {|(t1 ,e1)|}) t

by auto
then have t 6= normalize1 t using 2 by fastforce
then have (normalize1 t, e) /∈ fset xs

using 2 .prems(3) t-def (1) by (auto simp: wf-darcs-iff-darcs ′)
moreover have (normalize1 t, e) ∈ fset ((λ(t,e). (normalize1 t,e)) |‘| xs)

using t-def (1) by auto
ultimately have (λ(t,e). (normalize1 t,e)) |‘| xs 6= xs using t-def (1) by fastforce
then show ?case using 2 .hyps by simp

qed

lemma sorted-ranks-if-normalize1-eq:
[[wf-darcs t2 ; is-subtree (Node r1 {|(t1 ,e1)|}) t2 ; t2 = normalize1 t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))

using normalize1-uneq-if-contr by fastforce

lemma normalize-sorted-ranks:
[[is-subtree (Node r {|(t1 ,e1)|}) (normalize t)]] =⇒ rank (rev r) ≤ rank (rev (root

t1))
using ranked-dtree-axioms proof(induction t rule: normalize.induct)

case (1 t)
then interpret T : ranked-dtree t by blast
show ?case

using 1 sorted-ranks-if-normalize1-eq[OF T .wf-arcs]
by (smt (verit, ccfv-SIG) T .ranked-dtree-normalize1 normalize.simps)

qed

lift-definition cmp ′′ :: (′a list× ′b) comparator is
(λx y. if rank (rev (fst x)) < rank (rev (fst y)) then Less

else if rank (rev (fst x)) > rank (rev (fst y)) then Greater
else Equiv)

by (simp add: comparator-def)

lemma dtree-to-list-sorted-if-no-contr :
[[
∧

r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) t2 =⇒ rank (rev r1) ≤ rank (rev
(root t1))]]

273

=⇒ sorted cmp ′′ (dtree-to-list (Node r {|(t2 ,e2)|}))
proof(induction cmp ′′ dtree-to-list (Node r {|(t2 ,e2)|}) arbitrary: r t2 e2 rule:
sorted.induct)

case (2 x)
then show ?case using sorted-single[of cmp ′′ x] by simp

next
case (3 y x xs)
then obtain r1 t1 e1 where r1-def : t2 = Node r1 {|(t1 ,e1)|}

using dtree-to-list.elims[of t2] by fastforce
have y = (root t2 ,e2) using 3 .hyps(2) r1-def by simp
moreover have x = (root t1 ,e1) using 3 .hyps(2) r1-def by simp
moreover have rank (rev (root t2)) ≤ rank (rev (root t1)) using 3 .prems r1-def

by auto
ultimately have compare cmp ′′ y x 6= Greater using cmp ′′.rep-eq by simp
moreover have sorted cmp ′′ (dtree-to-list t2) using 3 r1-def by auto
ultimately show ?case using 3 r1-def by simp

qed(simp)

lemma dtree-to-list-sorted-if-no-contr ′:
[[
∧

r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) t2 =⇒ rank (rev r1) ≤ rank (rev
(root t1))]]

=⇒ sorted cmp ′′ (dtree-to-list t2)
using dtree-to-list-sorted-if-no-contr [of t2] sorted-Cons-imp-sorted by fastforce

lemma dtree-to-list-sorted-if-subtree:
[[is-subtree t1 t2 ;∧

r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) t2 =⇒ rank (rev r1) ≤ rank (rev
(root t1))]]

=⇒ sorted cmp ′′ (dtree-to-list (Node r {|(t1 ,e1)|}))
using dtree-to-list-sorted-if-no-contr subtree-trans by blast

lemma dtree-to-list-sorted-if-subtree ′:
[[is-subtree t1 t2 ;∧

r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) t2 =⇒ rank (rev r1) ≤ rank (rev
(root t1))]]

=⇒ sorted cmp ′′ (dtree-to-list t1)
using dtree-to-list-sorted-if-no-contr ′ subtree-trans by blast

lemma normalize-dtree-to-list-sorted:
is-subtree t1 (normalize t) =⇒ sorted cmp ′′ (dtree-to-list (Node r {|(t1 ,e1)|}))
using dtree-to-list-sorted-if-subtree normalize-sorted-ranks by blast

lemma normalize-dtree-to-list-sorted ′:
is-subtree t1 (normalize t) =⇒ sorted cmp ′′ (dtree-to-list t1)
using dtree-to-list-sorted-if-subtree ′ normalize-sorted-ranks by blast

lemma gt-if-rank-contr : rank (rev r0) < rank (rev r) =⇒ compare cmp ′′ (r , e)
(r0 , e0) = Greater

by (auto simp: cmp ′′.rep-eq)

274

lemma rank-le-if-ngt: compare cmp ′′ (r , e) (r0 , e0) 6= Greater =⇒ rank (rev r)
≤ rank (rev r0)

using gt-if-rank-contr by force

lemma rank-le-if-sorted-from-list:
assumes sorted cmp ′′ ((v1 ,e1)#ys) and is-subtree (Node r0 {|(t0 ,e0)|}) (dtree-from-list

v1 ys)
shows rank (rev r0) ≤ rank (rev (root t0))

proof −
obtain e as bs where e-def : as @ (r0 , e) # (root t0 , e0) # bs = ((v1 ,e1)#ys)

using dtree-from-list-sequence[OF assms(2)] by blast
then have sorted cmp ′′ (as @ (r0 , e) # (root t0 , e0) # bs) using assms(1) by

simp
then have sorted cmp ′′ ((r0 , e) # (root t0 , e0) # bs) using sorted-app-r by

blast
then show ?thesis using rank-le-if-ngt by auto

qed

lemma cmp ′-gt-if-cmp ′′-gt: compare cmp ′′ x y = Greater =⇒ compare cmp ′ x y
= Greater

by (auto simp: cmp ′.rep-eq cmp ′′.rep-eq split: if-splits)

lemma cmp ′-lt-if-cmp ′′-lt: compare cmp ′′ x y = Less =⇒ compare cmp ′ x y = Less
by (auto simp: cmp ′.rep-eq cmp ′′.rep-eq)

lemma cmp ′′-ge-if-cmp ′-gt:
compare cmp ′ x y = Greater =⇒ compare cmp ′′ x y = Greater ∨ compare cmp ′′

x y = Equiv
by (auto simp: cmp ′.rep-eq cmp ′′.rep-eq split: if-splits)

lemma cmp ′′-nlt-if-cmp ′-gt: compare cmp ′ x y = Greater =⇒ compare cmp ′′ y x
6= Greater

by (auto simp: cmp ′.rep-eq cmp ′′.rep-eq)

interpretation Comm: comp-fun-commute merge-f r xs by (rule merge-commute)

lemma sorted-cmp ′′-merge:
[[sorted cmp ′′ xs; sorted cmp ′′ ys]] =⇒ sorted cmp ′′ (Sorting-Algorithms.merge

cmp ′ xs ys)
proof(induction xs ys taking: cmp ′ rule: Sorting-Algorithms.merge.induct)

case (3 x xs y ys)
let ?merge = Sorting-Algorithms.merge cmp ′

show ?case
proof(cases compare cmp ′ x y = Greater)

case True
have ?merge (x # xs) (y#ys) = y # (?merge (x # xs) ys) using True by

simp
moreover have sorted cmp ′′ (?merge (x # xs) ys) using 3 True sorted-Cons-imp-sorted

275

by fast
ultimately show ?thesis

using cmp ′′-nlt-if-cmp ′-gt[OF True] 3 .prems sorted-rec[of cmp ′′ y]
merge.elims[of cmp ′ x#xs ys ?merge (x # xs) ys]

by metis
next

case False
have ?merge (x#xs) (y#ys) = x # (?merge xs (y#ys)) using False by simp

moreover have sorted cmp ′′ (?merge xs (y#ys)) using 3 False sorted-Cons-imp-sorted
by fast

ultimately show ?thesis
using cmp ′-gt-if-cmp ′′-gt False 3 .prems sorted-rec[of cmp ′′ x]

merge.elims[of cmp ′ xs y#ys ?merge xs (y#ys)]
by metis

qed
qed(auto)

lemma merge-ffold-sorted:
[[list-dtree (Node r xs);

∧
t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset xs; is-subtree (Node r1

{|(t1 ,e1)|}) t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))]]
=⇒ sorted cmp ′′ (ffold (merge-f r xs) [] xs)

proof(induction xs)
case (insert x xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert x xs)
define f ′ where f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp ′

have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have ind1 : sorted cmp ′′ (dtree-to-list (Node r {|(t2 ,e2)|}))

using dtree-to-list-sorted-if-no-contr insert.prems(2) by fastforce
have

∧
t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset xs; is-subtree (Node r1 {|(t1 , e1)|}) t2]]

=⇒ rank (rev r1) ≤ rank (rev (root t1))
using insert.prems(2) by fastforce

then have ind2 : sorted cmp ′′ (ffold f ′ [] xs) using insert.IH [OF 0] f ′-def by
blast

have (t2 , e2) ∈ fset (finsert x xs) by simp
moreover have (t2 , e2) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold f ′ [] xs). set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪

{e2})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

f ′-def
by blast

have ffold f [] (finsert x xs) = f x (ffold f [] xs)
using Comm.ffold-finsert[OF insert.hyps] f-def by blast

also have . . . = f x (ffold f ′ [] xs)
using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) f-def f ′-def by

276

fastforce
finally have ffold f [] (finsert x xs) = ?merge (dtree-to-list (Node r {|x|})) (ffold

f ′ [] xs)
using xs-val insert.prems f-def by simp

then have merge: ffold f [] (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′[] xs)

using t2-def by blast
then show ?case using sorted-cmp ′′-merge[OF ind1 ind2] f-def by auto

qed (simp add: ffold.rep-eq)

lemma not-single-subtree-if-nwf :
¬list-dtree (Node r xs) =⇒ ¬is-subtree (Node r1 {|(t1 ,e1)|}) (merge (Node r xs))
using merge-empty-if-nwf by simp

lemma not-single-subtree-if-nwf-sucs:
¬list-dtree t2 =⇒ ¬is-subtree (Node r1 {|(t1 ,e1)|}) (merge t2)
using merge-empty-if-nwf-sucs by simp

lemma merge-strict-subtree-nocontr :
assumes

∧
t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset xs; is-subtree (Node r1 {|(t1 ,e1)|}) t2]]

=⇒ rank (rev r1) ≤ rank (rev (root t1))
and strict-subtree (Node r1 {|(t1 ,e1)|}) (merge (Node r xs))

shows rank (rev r1) ≤ rank (rev (root t1))
proof(cases list-dtree (Node r xs))

case True
obtain e as bs where e-def : as @ (r1 , e) # (root t1 , e1) # bs = ffold (merge-f

r xs) [] xs
using dtree-from-list-uneq-sequence assms(2) unfolding merge-def dtree.sel

strict-subtree-def
by fast

have sorted cmp ′′ (ffold (merge-f r xs) [] xs)
using merge-ffold-sorted[OF True assms(1)] by simp

then have sorted cmp ′′ ((r1 , e) # (root t1 , e1) # bs)
using e-def sorted-app-r [of cmp ′′ as (r1 , e) # (root t1 , e1) # bs] by simp

then show ?thesis using rank-le-if-sorted-from-list by fastforce
next

case False
then show ?thesis using not-single-subtree-if-nwf assms(2) by (simp add: strict-subtree-def)

qed

lemma merge-strict-subtree-nocontr2 :
assumes

∧
r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) (Node r xs)

=⇒ rank (rev r1) ≤ rank (rev (root t1))
and strict-subtree (Node r1 {|(t1 ,e1)|}) (merge (Node r xs))

shows rank (rev r1) ≤ rank (rev (root t1))
using merge-strict-subtree-nocontr [OF assms] by fastforce

lemma merge-strict-subtree-nocontr-sucs:
assumes

∧
t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset (sucs t0); is-subtree (Node r1 {|(t1 ,e1)|})

277

t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))

and strict-subtree (Node r1 {|(t1 ,e1)|}) (merge t0)
shows rank (rev r1) ≤ rank (rev (root t1))

using merge-strict-subtree-nocontr [of sucs t0 r1 t1 e1 root t0] assms by simp

lemma merge-strict-subtree-nocontr-sucs2 :
assumes

∧
r1 t1 e1 . is-subtree (Node r1 {|(t1 ,e1)|}) t2 =⇒ rank (rev r1) ≤

rank (rev (root t1))
and strict-subtree (Node r1 {|(t1 ,e1)|}) (merge t2)

shows rank (rev r1) ≤ rank (rev (root t1))
using merge-strict-subtree-nocontr2 [of root t2 sucs t2] assms by auto

lemma no-contr-imp-parent:
[[is-subtree (Node r1 {|(t1 ,e1)|}) (Node r xs) =⇒ rank (rev r1) ≤ rank (rev (root

t1));
t2 ∈ fst ‘ fset xs; is-subtree (Node r1 {|(t1 ,e1)|}) t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))

using subtree-if-child subtree-trans by fast

lemma no-contr-imp-subtree:
[[
∧

t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset xs; is-subtree (Node r1 {|(t1 ,e1)|}) t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1));

is-subtree (Node r1 {|(t1 ,e1)|}) (Node r xs); ∀ x. xs 6= {|x|}]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))

by fastforce

lemma no-contr-imp-subtree-fcard:
[[
∧

t2 r1 t1 e1 . [[t2 ∈ fst ‘ fset xs; is-subtree (Node r1 {|(t1 ,e1)|}) t2]]
=⇒ rank (rev r1) ≤ rank (rev (root t1));

is-subtree (Node r1 {|(t1 ,e1)|}) (Node r xs); fcard xs 6= 1]]
=⇒ rank (rev r1) ≤ rank (rev (root t1))

using fcard-single-1-iff [of xs] by fastforce

end

9.4 Removing Wedges
context ranked-dtree
begin

fun merge1 :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
merge1 (Node r xs) = (

if fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1) then merge (Node r xs)
else Node r ((λ(t,e). (merge1 t,e)) |‘| xs))

lemma merge1-dverts-eq[simp]: dverts (merge1 t) = dverts t
using ranked-dtree-axioms proof(induction t)

case (Node r xs)

278

then interpret R: ranked-dtree Node r xs rank by blast
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis by simp

next
case False
then show ?thesis using Node.IH R.ranked-dtree-rec by auto

qed
qed

lemma merge1-dlverts-eq[simp]: dlverts (merge1 t) = dlverts t
using ranked-dtree-axioms proof(induction t)

case (Node r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis by simp

next
case False
then show ?thesis using Node.IH R.ranked-dtree-rec by auto

qed
qed

lemma dverts-merge1-img-sub:
∀ (t2 ,e2) ∈ fset xs. dverts (merge1 t2) ⊆ dverts t2
=⇒ dverts (Node r ((λ(t,e). (merge1 t,e)) |‘| xs)) ⊆ dverts (Node r xs)

by fastforce

lemma merge1-dverts-sub: dverts (merge1 t1) ⊆ dverts t1
proof(induction t1)

case (Node r xs)
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis using dverts-merge-sub by force

next
case False
then have ∀ (t2 ,e2) ∈ fset xs. dverts (merge1 t2) ⊆ dverts t2 using Node by

fastforce
then show ?thesis using False dverts-merge1-img-sub by auto

qed
qed

lemma disjoint-dlverts-merge1 : disjoint-dlverts ((λ(t,e). (merge1 t,e)) |‘| (sucs t))
proof −

have ∀ (t, e)∈fset (sucs t). dlverts (merge1 t) ⊆ dlverts t
using ranked-dtree.merge1-dlverts-eq ranked-dtree-rec[of root t] by force

279

then show ?thesis using disjoint-dlverts-img[OF disjoint-dlverts-if-wf [OF wf-lverts]]
by simp
qed

lemma root-empty-inter-dlverts-merge1 :
assumes (x1 ,e1) ∈ fset ((λ(t,e). (merge1 t,e)) |‘| (sucs t))
shows set (root t) ∩ dlverts x1 = {}

proof (rule ccontr)
assume asm: set (root t) ∩ dlverts x1 6= {}
obtain x2 where x2-def : merge1 x2 = x1 (x2 ,e1) ∈ fset (sucs t) using assms

by auto
then interpret X : ranked-dtree x2 using ranked-dtree-rec dtree.collapse by blast
have set (root t) ∩ dlverts x2 6= {} using X .merge1-dlverts-eq x2-def (1) asm

by argo
then show False using x2-def (2) wf-lverts wf-dlverts.simps[of root t sucs t] by

auto
qed

lemma wf-dlverts-merge1 : wf-dlverts (merge1 t)
using ranked-dtree-axioms proof(induction t)

case (Node r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis using R.merge-wf-dlverts by simp

next
case False
have (∀ (t,e) ∈ fset ((λ(t,e). (merge1 t,e)) |‘| xs). set r ∩ dlverts t = {} ∧

wf-dlverts t)
using R.ranked-dtree-rec Node.IH R.root-empty-inter-dlverts-merge1 by fast-

force
then show ?thesis using R.disjoint-dlverts-merge1 R.wf-lverts False by auto

qed
qed

lemma merge1-darcs-eq[simp]: darcs (merge1 t) = darcs t
using ranked-dtree-axioms proof(induction t)

case (Node r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case using Node.IH R.ranked-dtree-rec by auto

qed

lemma disjoint-darcs-merge1 : disjoint-darcs ((λ(t,e). (merge1 t,e)) |‘| (sucs t))
proof −

have ∀ (t, e)∈fset (sucs t). darcs (merge1 t) ⊆ darcs t
using ranked-dtree.merge1-darcs-eq ranked-dtree-rec[of root t] by force

then show ?thesis using disjoint-darcs-img[OF disjoint-darcs-if-wf [OF wf-arcs]]
by simp

280

qed

lemma wf-darcs-merge1 : wf-darcs (merge1 t)
using ranked-dtree-axioms proof(induction t)

case (Node r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis using R.merge-wf-darcs by simp

next
case False
then show ?thesis

using R.disjoint-darcs-merge1 R.ranked-dtree-rec Node.IH
by (auto simp: wf-darcs-iff-darcs ′)

qed
qed

theorem ranked-dtree-merge1 : ranked-dtree (merge1 t) cmp
by(unfold-locales) (auto simp: wf-darcs-merge1 wf-dlverts-merge1 dest: cmp-antisym)

lemma distinct-merge1 :
[[∀ v∈dverts t. distinct v; v∈dverts (merge1 t)]] =⇒ distinct v

using ranked-dtree-axioms proof(induction t arbitrary: v rule: merge1 .induct)
case (1 r xs)
then interpret R: ranked-dtree Node r xs rank by blast
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis using R.distinct-merge[OF 1 .prems(1)] 1 .prems(2) by simp

next
case ind: False
then show ?thesis
proof(cases v = r)

case False
have v∈dverts (merge1 (Node r xs)) ←→ v ∈ dverts (Node r ((λ(t,e). (merge1

t,e)) |‘| xs))
using ind by auto

then obtain t e where t-def : (t,e) ∈ fset xs v ∈ dverts (merge1 t)
using False 1 .prems(2) by auto

then have ∀ v∈dverts t. distinct v using 1 .prems(1) by force
then show ?thesis using 1 .IH [OF ind] t-def R.ranked-dtree-rec by fast

qed(simp add: 1 .prems(1))
qed

qed

lemma merge1-root-eq[simp]: root (merge1 t1) = root t1
by(induction t1) simp

281

lemma merge1-hd-root-eq[simp]: hd (root (merge1 t1)) = hd (root t1)
by simp

lemma merge1-mdeg-le: max-deg (merge1 t1) ≤ max-deg t1
proof(induction t1)

case (Node r xs)
then show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then have max-deg (merge1 (Node r xs)) ≤ 1 using merge-mdeg-le-1 by simp
then show ?thesis using mdeg-ge-fcard[of xs] True by simp

next
case False
have 0 : ∀ (t,e) ∈ fset xs. max-deg (merge1 t) ≤ max-deg t using Node by force
have merge1 (Node r xs) = (Node r ((λ(t, e). (merge1 t, e)) |‘| xs))

using False by auto
then show ?thesis using mdeg-img-le ′[OF 0] by simp

qed
qed

lemma merge1-childdeg-gt1-if-fcard-gt1 :
fcard (sucs (merge1 t1)) > 1 =⇒ ∃ t ∈ fst ‘ fset (sucs t1). max-deg t > 1

proof(induction t1)
case (Node r xs)
have 0 : ¬(fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

using merge-fcard-le1 [of Node r xs] Node.prems(1) by fastforce
then have fcard (sucs (merge1 (Node r xs))) ≤ fcard xs using fcard-image-le

by auto
then show ?case using 0 Node.prems(1) by fastforce

qed

lemma merge1-fcard-le: fcard (sucs (merge1 (Node r xs))) ≤ fcard xs
using fcard-image-le merge-fcard-le1 [of Node r xs] by auto

lemma merge1-subtree-if-fcard-gt1 :
[[is-subtree (Node r xs) (merge1 t1); fcard xs > 1]]
=⇒ ∃ ys. merge1 (Node r ys) = Node r xs ∧ is-subtree (Node r ys) t1 ∧ fcard

xs ≤ fcard ys
proof(induction t1)

case (Node r1 xs1)
have 0 : ¬(fcard xs1 > 1 ∧ (∀ t ∈ fst ‘ fset xs1 . max-deg t ≤ 1))

using merge-fcard-le1-sub Node.prems by fastforce
then have eq: merge1 (Node r1 xs1) = Node r1 ((λ(t,e). (merge1 t,e)) |‘| xs1)

by auto
show ?case
proof(cases Node r xs = merge1 (Node r1 xs1))

case True
moreover have r = r1 using True eq by auto
moreover have fcard xs ≤ fcard xs1 using merge1-fcard-le True dtree.sel(2)[of

282

r xs] by auto
ultimately show ?thesis using self-subtree Node.prems(2) by auto

next
case False
then obtain t2 e2 where (t2 ,e2) ∈ fset xs1 is-subtree (Node r xs) (merge1 t2)

using eq Node.prems(1) by auto
then show ?thesis using Node.IH [of (t2 ,e2) t2] Node.prems(2) by fastforce

qed
qed

lemma merge1-childdeg-gt1-if-fcard-gt1-sub:
[[is-subtree (Node r xs) (merge1 t1); fcard xs > 1]]
=⇒ ∃ ys. merge1 (Node r ys) = Node r xs ∧ is-subtree (Node r ys) t1

∧ (∃ t ∈ fst ‘ fset ys. max-deg t > 1)
using merge1-subtree-if-fcard-gt1 merge1-childdeg-gt1-if-fcard-gt1 dtree.sel(2) by

metis

lemma merge1-img-eq: ∀ (t2 ,e2) ∈ fset xs. merge1 t2 = t2 =⇒ ((λ(t,e). (merge1
t,e)) |‘| xs) = xs

using fset-img-eq[of xs λ(t,e). (merge1 t,e)] by force

lemma merge1-wedge-if-uneq:
merge1 t1 6= t1
=⇒ ∃ r xs. is-subtree (Node r xs) t1 ∧ fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg

t ≤ 1)
proof(induction t1)

case (Node r xs)
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then show ?thesis by auto

next
case False
then have merge1 (Node r xs) = Node r ((λ(t,e). (merge1 t,e)) |‘| xs) by auto
then obtain t2 e2 where (t2 ,e2) ∈ fset xs merge1 t2 6= t2

using Node.prems merge1-img-eq[of xs] by auto
then show ?thesis using Node.IH [of (t2 ,e2)] by auto

qed
qed

lemma merge1-mdeg-gt1-if-uneq:
assumes merge1 t1 6= t1
shows max-deg t1 > 1

proof −
obtain r xs where r-def : is-subtree (Node r xs) t1 1 < fcard xs

using merge1-wedge-if-uneq[OF assms] by fast
then show ?thesis using mdeg-ge-fcard[of xs] mdeg-ge-sub by force

qed

283

corollary merge1-eq-if-mdeg-le1 : max-deg t1 ≤ 1 =⇒ merge1 t1 = t1
using merge1-mdeg-gt1-if-uneq by fastforce

lemma merge1-not-merge-if-fcard-gt1 :
[[merge1 (Node r ys) = Node r xs; fcard xs > 1]] =⇒ merge (Node r ys) 6= Node

r xs
using merge-fcard-le1 [of Node r ys] by auto

lemma merge1-img-if-not-merge:
merge1 (Node r xs) 6= merge (Node r xs)
=⇒ merge1 (Node r xs) = Node r ((λ(t,e). (merge1 t,e)) |‘| xs)

by auto

lemma merge1-img-if-fcard-gt1 :
[[merge1 (Node r ys) = Node r xs; fcard xs > 1]]
=⇒ merge1 (Node r ys) = Node r ((λ(t,e). (merge1 t,e)) |‘| ys)

using merge1-img-if-not-merge merge1-not-merge-if-fcard-gt1 [of r ys] by simp

lemma merge1-elem-in-img-if-fcard-gt1 :
[[merge1 (Node r ys) = Node r xs; fcard xs > 1 ; (t2 ,e2) ∈ fset xs]]
=⇒ ∃ t1 . (t1 ,e2) ∈ fset ys ∧ merge1 t1 = t2

using merge1-img-if-fcard-gt1 by fastforce

lemma child-mdeg-gt1-if-sub-fcard-gt1 :
[[is-subtree (Node r xs) (Node v ys); Node r xs 6= Node v ys; fcard xs > 1]]
=⇒ ∃ t1 e2 . (t1 ,e2) ∈ fset ys ∧ max-deg t1 > 1

using mdeg-ge-fcard[of xs] mdeg-ge-sub by force

lemma merge1-subtree-if-mdeg-gt1 :
[[is-subtree (Node r xs) (merge1 t1); max-deg (Node r xs) > 1]]
=⇒ ∃ ys. merge1 (Node r ys) = Node r xs ∧ is-subtree (Node r ys) t1

proof(induction t1)
case (Node r1 xs1)
then have 0 : ¬(fcard xs1 > 1 ∧ (∀ t ∈ fst ‘ fset xs1 . max-deg t ≤ 1))

using merge-mdeg-le1-sub by fastforce
then have eq: merge1 (Node r1 xs1) = Node r1 ((λ(t,e). (merge1 t,e)) |‘| xs1)

by auto
show ?case
proof(cases Node r xs = merge1 (Node r1 xs1))

case True
moreover have r = r1 using True eq by auto
moreover have fcard xs ≤ fcard xs1 using merge1-fcard-le True dtree.sel(2)[of

r xs] by auto
ultimately show ?thesis using self-subtree Node.prems(2) by auto

next
case False
then obtain t2 e2 where (t2 ,e2) ∈ fset xs1 is-subtree (Node r xs) (merge1 t2)

using eq Node.prems(1) by auto
then show ?thesis using Node.IH [of (t2 ,e2) t2] Node.prems(2) by fastforce

284

qed
qed

lemma merge1-child-in-orig:
assumes merge1 (Node r ys) = Node r xs and (t1 ,e1) ∈ fset xs
shows ∃ t2 . (t2 ,e1) ∈ fset ys ∧ root t2 = root t1

proof(cases fcard ys > 1 ∧ (∀ t ∈ fst ‘ fset ys. max-deg t ≤ 1))
case True
then show ?thesis using merge-child-in-orig[of t1 e1 Node r ys] assms by auto

next
case False
then have merge1 (Node r ys) = Node r ((λ(t,e). (merge1 t,e)) |‘| ys) by auto
then show ?thesis using assms by fastforce

qed

lemma dverts-if-subtree-merge1 :
is-subtree (Node r xs) (merge1 t1) =⇒ r ∈ dverts t1
using merge1-dverts-sub dverts-subtree-subset by fastforce

lemma subtree-merge1-orig:
is-subtree (Node r xs) (merge1 t1) =⇒ ∃ ys. is-subtree (Node r ys) t1
using dverts-if-subtree-merge1 subtree-root-if-dverts by fast

lemma merge1-subtree-dlverts-supset:
is-subtree (Node r xs) (merge1 t)
=⇒ ∃ ys. is-subtree (Node r ys) t ∧ dlverts (Node r ys) ⊆ dlverts (Node r xs)

using ranked-dtree-axioms proof(induction t)
case (Node r1 xs1)
then interpret R: ranked-dtree Node r1 xs1 by simp
show ?case
proof(cases Node r xs = merge1 (Node r1 xs1))

case True
then have dlverts (Node r1 xs1) ⊆ dlverts (Node r xs) using R.merge1-dlverts-eq

by simp
moreover have r = r1 using True dtree.sel(1)[of r xs] by auto
ultimately show ?thesis by auto

next
case uneq: False
show ?thesis
proof(cases fcard xs1 > 1 ∧ (∀ t ∈ fst ‘ fset xs1 . max-deg t ≤ 1))

case True
then show ?thesis using R.merge-subtree-dlverts-supset Node.prems by simp

next
case False
then have eq: merge1 (Node r1 xs1) = Node r1 ((λ(t,e). (merge1 t,e)) |‘|

xs1) by auto
then obtain t2 e2 where (t2 ,e2) ∈ fset xs1 is-subtree (Node r xs) (merge1

t2)
using Node.prems(1) uneq by auto

285

then show ?thesis using Node.IH [of (t2 ,e2)] R.ranked-dtree-rec by auto
qed

qed
qed

end

9.5 IKKBZ-Sub
function denormalize :: (′a list, ′b) dtree ⇒ ′a list where

denormalize (Node r {|(t,e)|}) = r @ denormalize t
| ∀ x. xs 6= {|x|} =⇒ denormalize (Node r xs) = r

using dtree-to-list.cases by blast+
termination by lexicographic-order

lemma denormalize-set-eq-dlverts: max-deg t1 ≤ 1 =⇒ set (denormalize t1) =
dlverts t1
proof(induction t1 rule: denormalize.induct)

case (1 r t e)
then show ?case using mdeg-ge-child[of t e {|(t, e)|}] by force

next
case (2 xs r)
then have max-deg (Node r xs) = 0 using mdeg-1-singleton[of r xs] by fastforce
then have xs = {||} by (auto intro!: empty-if-mdeg-0)
then show ?case using 2 by auto

qed

lemma denormalize-set-sub-dlverts: set (denormalize t1) ⊆ dlverts t1
by(induction t1 rule: denormalize.induct) auto

lemma denormalize-distinct:
[[∀ v ∈ dverts t1 . distinct v; wf-dlverts t1]] =⇒ distinct (denormalize t1)

proof(induction t1 rule: denormalize.induct)
case (1 r t e)
then have set r ∩ set (denormalize t) = {} using denormalize-set-sub-dlverts

by fastforce
then show ?case using 1 by auto

next
case (2 xs r)
then show ?case by simp

qed

lemma denormalize-hd-root:
assumes root t 6= []
shows hd (denormalize t) = hd (root t)

proof(cases ∀ x. sucs t 6= {|x|})
case True
then show ?thesis using denormalize.simps(2)[of sucs t root t] by simp

next

286

case False
then obtain t1 e where {|(t1 , e)|} = sucs t by auto
then show ?thesis using denormalize.simps(1)[of root t t1 e] assms by simp

qed

lemma denormalize-hd-root-wf : wf-dlverts t =⇒ hd (denormalize t) = hd (root t)
using denormalize-hd-root empty-notin-wf-dlverts dtree.set-sel(1)[of t] by force

lemma denormalize-nempty-if-wf : wf-dlverts t =⇒ denormalize t 6= []
by (induction t rule: denormalize.induct) auto

context ranked-dtree
begin

lemma fcard-normalize-img-if-disjoint:
disjoint-darcs xs =⇒ fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) = fcard xs
using snds-neq-img-card-eq[of xs] by fast

lemma fcard-merge1-img-if-disjoint:
disjoint-darcs xs =⇒ fcard ((λ(t,e). (merge1 t,e)) |‘| xs) = fcard xs
using snds-neq-img-card-eq[of xs] by fast

lemma fsts-uneq-if-disjoint-lverts-nempty:
[[disjoint-dlverts xs; ∀ (t, e)∈fset xs. dlverts t 6= {}]]
=⇒ ∀ (t, e)∈fset xs. ∀ (t2 , e2)∈fset xs. t 6= t2 ∨ (t, e) = (t2 , e2)

by fast

lemma normalize1-dlverts-nempty:
∀ (t, e)∈fset xs. dlverts t 6= {}
=⇒ ∀ (t, e)∈fset ((λ(t, e). (normalize1 t, e)) |‘| xs). dlverts t 6= {}

by auto

lemma normalize1-fsts-uneq:
assumes disjoint-dlverts xs and ∀ (t, e)∈fset xs. dlverts t 6= {}
shows ∀ (t, e)∈fset xs. ∀ (t2 , e2)∈fset xs. normalize1 t 6= normalize1 t2 ∨ (t,e)

= (t2 ,e2)
by (smt (verit) assms Int-absorb case-prodD case-prodI2 normalize1-dlverts-eq)

lemma fcard-normalize-img-if-disjoint-lverts:
[[disjoint-dlverts xs; ∀ (t, e)∈fset xs. dlverts t 6= {}]]
=⇒ fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) = fcard xs

using fst-neq-img-card-eq[of xs normalize1] normalize1-fsts-uneq by auto

lemma fcard-normalize-img-if-wf-dlverts:
wf-dlverts (Node r xs) =⇒ fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) = fcard xs
using dlverts-nempty-if-wf fcard-normalize-img-if-disjoint-lverts[of xs] by force

lemma fcard-normalize-img-if-wf-dlverts-sucs:
wf-dlverts t1 =⇒ fcard ((λ(t,e). (normalize1 t,e)) |‘| (sucs t1)) = fcard (sucs t1)

287

using fcard-normalize-img-if-wf-dlverts[of root t1 sucs t1] by simp

lemma singleton-normalize1 :
assumes disjoint-darcs xs and ∀ x. xs 6= {|x|}
shows ∀ x. (λ(t,e). (normalize1 t,e)) |‘| xs 6= {|x|}

proof (rule ccontr)
assume ¬(∀ x. (λ(t,e). (normalize1 t,e)) |‘| xs 6= {|x|})
then obtain x where (λ(t,e). (normalize1 t,e)) |‘| xs = {|x|} by blast
then have fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) = 1 using fcard-single-1 by

force
then have fcard xs = 1 using fcard-normalize-img-if-disjoint[OF assms(1)] by

simp
then have ∃ x. xs = {|x|} using fcard-single-1-iff by fast
then show False using assms(2) by simp

qed

lemma num-leaves-normalize1-eq[simp]: wf-darcs t1 =⇒ num-leaves (normalize1
t1) = num-leaves t1
proof(induction t1)

case (Node r xs)
then show ?case
proof(cases ∀ x. xs 6= {|x|})

case True
have fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) = fcard xs

using fcard-normalize-img-if-disjoint Node.prems
by (auto simp: wf-darcs-iff-darcs ′)

moreover have ∀ t∈fst ‘ fset xs. num-leaves (normalize1 t) = num-leaves t
using Node by fastforce

ultimately show ?thesis using Node sum-img-eq[of xs] True by force
next

case False
then obtain t e where t-def : xs = {|(t,e)|} by auto
show ?thesis
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis

using t-def num-leaves-singleton num-leaves-root[of root t sucs t] by simp
next

case False
then show ?thesis

using num-leaves-singleton t-def Node by (simp add: wf-darcs-iff-darcs ′)
qed

qed
qed

lemma num-leaves-normalize-eq[simp]: wf-darcs t1 =⇒ num-leaves (normalize t1)
= num-leaves t1
proof(induction t1 rule: normalize.induct)

case (1 t)

288

then have num-leaves (normalize1 t) = num-leaves t using num-leaves-normalize1-eq
by blast

then show ?case using 1 wf-darcs-normalize1 by (smt (verit, best) normal-
ize.simps)
qed

lemma num-leaves-normalize1-le: num-leaves (normalize1 t1) ≤ num-leaves t1
proof(induction t1)

case (Node r xs)
then show ?case
proof(cases ∀ x. xs 6= {|x|})

case True
have fcard-le: fcard ((λ(t,e). (normalize1 t,e)) |‘| xs) ≤ fcard xs

by (simp add: fcard-image-le)
moreover have xs-le: ∀ t∈fst ‘ fset xs. num-leaves (normalize1 t) ≤ num-leaves

t
using Node by fastforce

ultimately show ?thesis using Node sum-img-le[of xs] xs-le ‹∀ x. xs 6= {|x|}›
by simp

next
case False
then obtain t e where t-def : xs = {|(t,e)|} by auto
show ?thesis
proof(cases rank (rev (root t)) < rank (rev r))

case True
then show ?thesis

using t-def num-leaves-singleton num-leaves-root[of root t sucs t] by simp
next

case False
then show ?thesis using num-leaves-singleton t-def Node by simp

qed
qed

qed

lemma num-leaves-normalize-le: num-leaves (normalize t1) ≤ num-leaves t1
proof(induction t1 rule: normalize.induct)

case (1 t)
then have num-leaves (normalize1 t) ≤ num-leaves t using num-leaves-normalize1-le

by blast
then show ?case using 1 by (smt (verit) le-trans normalize.simps)

qed

lemma num-leaves-merge1-le: num-leaves (merge1 t1) ≤ num-leaves t1
proof(induction t1)

case (Node r xs)
then show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then have merge1 (Node r xs) = merge (Node r xs) by simp

289

then have num-leaves (merge1 (Node r xs)) = 1
unfolding merge-def using dtree-from-list-1-leaf by fastforce

also have . . . < fcard xs using True by blast
also have . . . ≤ num-leaves (Node r xs) using num-leaves-ge-card by fast
finally show ?thesis by simp

next
case False
have ∀ t ∈ fst ‘ fset xs. num-leaves (merge1 t) ≤ num-leaves t using Node by

force
then show ?thesis using sum-img-le False by auto

qed
qed

lemma num-leaves-merge1-lt: max-deg t1 > 1 =⇒ num-leaves (merge1 t1) <
num-leaves t1
proof(induction t1)

case (Node r xs)
show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then have merge1 (Node r xs) = merge (Node r xs) by simp
then have num-leaves (merge1 (Node r xs)) = 1

unfolding merge-def using dtree-from-list-1-leaf by fastforce
also have . . . < fcard xs using True by blast
finally show ?thesis using num-leaves-ge-card less-le-trans by fast

next
case False

have 0 : xs 6= {||} using Node.prems by (metis nempty-if-mdeg-n0 not-one-less-zero)
have 1 : ∀ t ∈ fst ‘ fset xs. num-leaves (merge1 t) ≤ num-leaves t

using num-leaves-merge1-le by blast
have ∃ t ∈ fst ‘ fset xs. max-deg t > 1 using Node.prems False mdeg-child-if-wedge

by auto
then have 2 : ∃ t ∈ fst ‘ fset xs. num-leaves (merge1 t) < num-leaves t using

Node.IH by force
have 3 : ∀ t∈fst ‘ fset xs. 0 < num-leaves t

using num-leaves-ge1 by (metis neq0-conv not-one-le-zero)
from False have merge1 (Node r xs) = Node r ((λ(t,e). (merge1 t,e)) |‘| xs)

by auto
then have num-leaves (merge1 (Node r xs))

= (
∑

(t,e)∈ fset ((λ(t,e). (merge1 t,e)) |‘| xs). num-leaves t) using 0 by
auto

then show ?thesis using 0 sum-img-lt[OF 1 2 3] by simp
qed

qed

lemma ikkbz-num-leaves-decr :
max-deg t1 > 1 =⇒ num-leaves (merge1 (normalize t1)) < num-leaves t1
using num-leaves-merge1-lt num-leaves-normalize-le num-leaves-1-if-mdeg-1 num-leaves-ge1
by (metis antisym-conv2 dual-order .antisym dual-order .trans not-le-imp-less num-leaves-merge1-le)

290

function ikkbz-sub :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
ikkbz-sub t1 = (if max-deg t1 ≤ 1 then t1 else ikkbz-sub (merge1 (normalize t1)))
by auto

termination using ikkbz-num-leaves-decr by(relation measure (λt. num-leaves t))
auto

lemma ikkbz-sub-darcs-sub: darcs (ikkbz-sub t) ⊆ darcs t
using ranked-dtree-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
show ?case
proof(cases max-deg t ≤ 1)

case False
have darcs (merge1 (normalize t)) = darcs (normalize t)
using ranked-dtree.merge1-darcs-eq ranked-dtree.ranked-dtree-normalize 1 .prems

by blast
moreover have ranked-dtree (merge1 (normalize t)) cmp
using ranked-dtree.ranked-dtree-normalize 1 .prems ranked-dtree.ranked-dtree-merge1

by blast
moreover have ¬ (max-deg t ≤ 1 ∨ ¬ list-dtree t) using False ranked-dtree-def

1 .prems by blast
ultimately show ?thesis using 1 .IH normalize-darcs-sub by force

qed(simp)
qed

lemma ikkbz-sub-dlverts-eq[simp]: dlverts (ikkbz-sub t) = dlverts t
using ranked-dtree-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis by simp

next
case False
then show ?thesis

using 1 ranked-dtree.merge1-dlverts-eq[of normalize t] normalize-dlverts-eq
ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-merge1 ikkbz-sub.elims

by metis
qed

qed

lemma ikkbz-sub-wf-darcs: wf-darcs (ikkbz-sub t)
using ranked-dtree-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
then show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems list-dtree-def ranked-dtree-def by auto

next

291

case False
then show ?thesis

using 1 ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-merge1
by (metis ikkbz-sub.simps)

qed
qed

lemma ikkbz-sub-wf-dlverts: wf-dlverts (ikkbz-sub t)
using ranked-dtree-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
then show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems list-dtree-def ranked-dtree-def by auto

next
case False
then show ?thesis

using 1 ranked-dtree.ranked-dtree-normalize ranked-dtree.ranked-dtree-merge1
by (metis ikkbz-sub.simps)

qed
qed

theorem ikkbz-sub-list-dtree: list-dtree (ikkbz-sub t)
using ikkbz-sub-wf-darcs ikkbz-sub-wf-dlverts list-dtree-def by blast

corollary ikkbz-sub-ranked-dtree: ranked-dtree (ikkbz-sub t) cmp
using ikkbz-sub-list-dtree ranked-dtree-def ranked-dtree-axioms by blast

lemma ikkbz-sub-mdeg-le1 : max-deg (ikkbz-sub t1) ≤ 1
by (induction t1 rule: ikkbz-sub.induct) simp

corollary denormalize-ikkbz-eq-dlverts: set (denormalize (ikkbz-sub t)) = dlverts t
using denormalize-set-eq-dlverts ikkbz-sub-mdeg-le1 ikkbz-sub-dlverts-eq by blast

lemma distinct-ikkbz-sub: [[∀ v∈dverts t. distinct v; v∈dverts (ikkbz-sub t)]] =⇒
distinct v
using list-dtree-axioms proof(induction t arbitrary: v rule: ikkbz-sub.induct)

case (1 t)
then interpret T1 : ranked-dtree t rank cmp

using ranked-dtree-axioms by (simp add: ranked-dtree-def)
show ?case
using 1 T1 .ranked-dtree-normalize T1 .distinct-normalize ranked-dtree.merge1-dverts-eq

ranked-dtree.wf-dlverts-merge1 ranked-dtree.wf-darcs-merge1
by (metis ikkbz-sub.elims list-dtree-def)

qed

corollary distinct-denormalize-ikkbz-sub:
∀ v∈dverts t. distinct v =⇒ distinct (denormalize (ikkbz-sub t))
using distinct-ikkbz-sub ikkbz-sub-wf-dlverts denormalize-distinct by blast

292

lemma ikkbz-sub-hd-root[simp]: hd (root (ikkbz-sub t)) = hd (root t)
using list-dtree-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
then interpret T1 : ranked-dtree t rank cmp

using ranked-dtree-axioms by (simp add: ranked-dtree-def)
show ?case
using 1 merge1-hd-root-eq ranked-dtree.axioms(1) ranked-dtree.ranked-dtree-merge1
by (metis T1 .ranked-dtree-normalize T1 .wf-lverts ikkbz-sub.simps normalize-hd-root-eq ′)

qed

corollary denormalize-ikkbz-sub-hd-root[simp]: hd (denormalize (ikkbz-sub t)) =
hd (root t)

using ikkbz-sub-hd-root denormalize-hd-root
by (metis dtree.set-sel(1) empty-notin-wf-dlverts ikkbz-sub-wf-dlverts)

end

locale precedence-graph = finite-directed-tree +
fixes rank :: ′a list ⇒ real
fixes cost :: ′a list ⇒ real
fixes cmp :: (′a list× ′b) comparator
assumes asi-rank: asi rank root cost

and cmp-antisym:
[[v1 6= []; v2 6= []; compare cmp (v1 ,e1) (v2 ,e2) = Equiv]] =⇒ set v1 ∩ set v2

6= {} ∨ e1=e2
begin

definition to-list-dtree :: (′a list, ′b) dtree where
to-list-dtree = finite-directed-tree.to-dtree to-list-tree [root]

lemma to-list-dtree-single: v ∈ dverts to-list-dtree =⇒ ∃ x. v = [x] ∧ x ∈ verts T
unfolding to-list-dtree-def using to-list-tree-single
by (simp add: finite-directed-tree.dverts-eq-verts to-list-tree-finite-directed-tree)

lemma to-list-dtree-wf-dverts: wf-dverts to-list-dtree
using finite-directed-tree.wf-dverts-to-dtree[OF to-list-tree-finite-directed-tree]
by(simp add: to-list-dtree-def)

lemma to-list-dtree-wf-dlverts: wf-dlverts to-list-dtree
unfolding to-list-dtree-def
by (simp add: to-list-tree-fin-list-directed-tree fin-list-directed-tree.wf-dlverts-to-dtree)

lemma to-list-dtree-wf-darcs: wf-darcs to-list-dtree
using finite-directed-tree.wf-darcs-to-dtree[OF to-list-tree-finite-directed-tree]
by(simp add: to-list-dtree-def)

lemma to-list-dtree-list-dtree: list-dtree to-list-dtree
by(simp add: list-dtree-def to-list-dtree-wf-dlverts to-list-dtree-wf-darcs)

293

lemma to-list-dtree-ranked-dtree: ranked-dtree to-list-dtree cmp
by(auto simp: ranked-dtree-def to-list-dtree-list-dtree ranked-dtree-axioms-def dest:

cmp-antisym)

interpretation t: ranked-dtree to-list-dtree by (rule to-list-dtree-ranked-dtree)

definition ikkbz-sub :: ′a list where
ikkbz-sub = denormalize (t.ikkbz-sub to-list-dtree)

lemma dverts-eq-verts-to-list-tree: dverts to-list-dtree = pre-digraph.verts to-list-tree
unfolding to-list-dtree-def
by (simp add: finite-directed-tree.dverts-eq-verts to-list-tree-finite-directed-tree)

lemma dverts-eq-verts-img: dverts to-list-dtree = (λx. [x]) ‘ verts T
by (simp add: dverts-eq-verts-to-list-tree to-list-tree-def)

lemma dlverts-eq-verts: dlverts to-list-dtree = verts T
by (simp add: dverts-eq-verts-img dlverts-eq-dverts-union)

theorem ikkbz-set-eq-verts: set ikkbz-sub = verts T
using dlverts-eq-verts ikkbz-sub-def t.denormalize-ikkbz-eq-dlverts by simp

lemma distinct-to-list-tree: ∀ v∈verts to-list-tree. distinct v
unfolding to-list-tree-def by simp

lemma distinct-to-list-dtree: ∀ v∈dverts to-list-dtree. distinct v
using distinct-to-list-tree dverts-eq-verts-to-list-tree by blast

theorem distinct-ikkbz-sub: distinct ikkbz-sub
unfolding ikkbz-sub-def
using distinct-to-list-dtree t.distinct-denormalize-ikkbz-sub by blast

lemma to-list-dtree-root-eq-root: Dtree.root (to-list-dtree) = [root]
unfolding to-list-dtree-def
by (simp add: finite-directed-tree.to-dtree-root-eq-root to-list-tree-finite-directed-tree)

lemma to-list-dtree-hd-root-eq-root[simp]: hd (Dtree.root to-list-dtree) = root
by (simp add: to-list-dtree-root-eq-root)

theorem ikkbz-sub-hd-eq-root[simp]: hd ikkbz-sub = root
unfolding ikkbz-sub-def using t.denormalize-ikkbz-sub-hd-root to-list-dtree-root-eq-root

by simp

end

9.6 Full IKKBZ
locale tree-query-graph = undir-tree-todir G + query-graph G for G

294

locale cmp-tree-query-graph = tree-query-graph +
fixes cmp :: (′a list× ′b) comparator
assumes cmp-antisym:
[[v1 6= []; v2 6= []; compare cmp (v1 ,e1) (v2 ,e2) = Equiv]] =⇒ set v1 ∩ set v2

6= {} ∨ e1=e2

locale ikkbz-query-graph = cmp-tree-query-graph +
fixes cost :: ′a joinTree ⇒ real
fixes cost-r :: ′a ⇒ (′a list ⇒ real)
fixes rank-r :: ′a ⇒ (′a list ⇒ real)
assumes asi-rank: r ∈ verts G =⇒ asi (rank-r r) r (cost-r r)

and cost-correct:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ cost-r (first-node t) (revorder t) = cost t

begin

abbreviation ikkbz-sub :: ′a ⇒ ′a list where
ikkbz-sub r ≡ precedence-graph.ikkbz-sub (dir-tree-r r) r (rank-r r) cmp

abbreviation cost-l :: ′a list ⇒ real where
cost-l xs ≡ cost (create-ldeep xs)

lemma precedence-graph-r :
r ∈ verts G =⇒ precedence-graph (dir-tree-r r) r (rank-r r) (cost-r r) cmp
using fin-directed-tree-r cmp-antisym
by (simp add: precedence-graph-def precedence-graph-axioms-def asi-rank)

lemma nempty-if-set-eq-verts: set xs = verts G =⇒ xs 6= []
using verts-nempty by force

lemma revorder-if-set-eq-verts: set xs = verts G =⇒ revorder (create-ldeep xs) =
rev xs
using nempty-if-set-eq-verts create-ldeep-order unfolding revorder-eq-rev-inorder

by blast

lemma cost-correct ′:
[[set xs = verts G; distinct xs; no-cross-products (create-ldeep xs)]]
=⇒ cost-r (hd xs) (rev xs) = cost-l xs

using cost-correct[of create-ldeep xs] revorder-if-set-eq-verts create-ldeep-ldeep[of
xs]

unfolding valid-tree-def distinct-relations-def
by (simp add: create-ldeep-order create-ldeep-relations first-node-eq-hd nempty-if-set-eq-verts)

lemma ikkbz-sub-verts-eq: r ∈ verts G =⇒ set (ikkbz-sub r) = verts G
using precedence-graph.ikkbz-set-eq-verts precedence-graph-r verts-dir-tree-r-eq by

fast

lemma ikkbz-sub-distinct: r ∈ verts G =⇒ distinct (ikkbz-sub r)

295

using precedence-graph.distinct-ikkbz-sub precedence-graph-r by fast

lemma ikkbz-sub-hd-eq-root: r ∈ verts G =⇒ hd (ikkbz-sub r) = r
using precedence-graph.ikkbz-sub-hd-eq-root precedence-graph-r by fast

definition ikkbz :: ′a list where
ikkbz ≡ arg-min-on cost-l {ikkbz-sub r |r . r ∈ verts G}

lemma ikkbz-sub-set-fin: finite {ikkbz-sub r |r . r ∈ verts G}
by simp

lemma ikkbz-sub-set-nempty: {ikkbz-sub r |r . r ∈ verts G} 6= {}
by (simp add: verts-nempty)

lemma ikkbz-in-ikkbz-sub-set: ikkbz ∈ {ikkbz-sub r |r . r ∈ verts G}
unfolding ikkbz-def using ikkbz-sub-set-fin ikkbz-sub-set-nempty arg-min-if-finite

by blast

lemma ikkbz-eq-ikkbz-sub: ∃ r ∈ verts G. ikkbz = ikkbz-sub r
using ikkbz-in-ikkbz-sub-set by blast

lemma ikkbz-min-ikkbz-sub: r ∈ verts G =⇒ cost-l ikkbz ≤ cost-l (ikkbz-sub r)
unfolding ikkbz-def using ikkbz-sub-set-fin arg-min-least by fast

lemma ikkbz-distinct: distinct ikkbz
using ikkbz-eq-ikkbz-sub ikkbz-sub-distinct by fastforce

lemma ikkbz-set-eq-verts: set ikkbz = verts G
using ikkbz-eq-ikkbz-sub ikkbz-sub-verts-eq by force

lemma ikkbz-nempty: ikkbz 6= []
using ikkbz-set-eq-verts verts-nempty by fastforce

lemma ikkbz-hd-in-verts: hd ikkbz ∈ verts G
using ikkbz-nempty ikkbz-set-eq-verts by fastforce

lemma inorder-ikkbz: inorder (create-ldeep ikkbz) = ikkbz
using create-ldeep-order ikkbz-nempty by blast

lemma inorder-ikkbz-distinct: distinct (inorder (create-ldeep ikkbz))
using ikkbz-distinct inorder-ikkbz by simp

lemma inorder-relations-eq-verts: relations (create-ldeep ikkbz) = verts G
using ikkbz-set-eq-verts create-ldeep-relations ikkbz-nempty by blast

theorem ikkbz-valid-tree: valid-tree (create-ldeep ikkbz)
unfolding valid-tree-def distinct-relations-def
using inorder-ikkbz-distinct inorder-relations-eq-verts by blast

296

end

locale old = list-dtree t for t :: (′a list, ′b) dtree +
fixes rank :: ′a list ⇒ real

begin

function find-pos-aux :: ′a list ⇒ ′a list ⇒ (′a list, ′b) dtree ⇒ (′a list × ′a list)
where

find-pos-aux v p (Node r {|(t1 ,-)|}) =
(if rank (rev v) ≤ rank (rev r) then (p,r) else find-pos-aux v r t1)

| ∀ x. xs 6= {|x|} =⇒ find-pos-aux v p (Node r xs) =
(if rank (rev v) ≤ rank (rev r) then (p,r) else (r ,r))

by (metis combine.cases old.prod.exhaust) auto
termination by lexicographic-order

function find-pos :: ′a list ⇒ (′a list, ′b) dtree ⇒ (′a list × ′a list) where
find-pos v (Node r {|(t1 ,-)|}) = find-pos-aux v r t1
| ∀ x. xs 6= {|x|} =⇒ find-pos v (Node r xs) = (r ,r)

by (metis dtree.exhaust surj-pair) auto
termination by lexicographic-order

abbreviation insert-chain :: (′a list× ′b) list ⇒ (′a list, ′b) dtree ⇒ (′a list, ′b) dtree
where

insert-chain xs t1 ≡
foldr (λ(v,e) t2 . case find-pos v t2 of (x,y) ⇒ insert-between v e x y t2) xs t1

fun merge :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
merge (Node r xs) = ffold (λ(t,e) b. case b of Node r xs ⇒

if xs = {||} then Node r {|(t,e)|} else insert-chain (dtree-to-list t) b)
(Node r {||}) xs

lemma ffold-if-False-eq-acc:
[[∀ a. ¬P a; comp-fun-commute (λa b. if ¬P a then b else Q a b)]]
=⇒ ffold (λa b. if ¬P a then b else Q a b) acc xs = acc

proof(induction xs)
case (insert x xs)
let ?f = λa b. if ¬P a then b else Q a b
have ffold ?f acc (finsert x xs) = ?f x (ffold ?f acc xs)
using insert.hyps by (simp add: comp-fun-commute.ffold-finsert insert.prems(2))
then have ffold ?f acc (finsert x xs) = ffold ?f acc xs using insert.prems by

simp
then show ?case using insert.IH insert.prems by simp

qed(simp add: comp-fun-commute.ffold-empty)

lemma find-pos-rank-less: rank (rev v) ≤ rank (rev r) =⇒ find-pos-aux v p (Node
r xs) = (p,r)

by(cases ∃ x. xs = {|x|}) auto

297

lemma find-pos-y-in-dverts: (x,y) = find-pos-aux v p t1 =⇒ y ∈ dverts t1
proof(induction t1 arbitrary: p)

case (Node r xs)
then show ?case
proof(cases rank (rev v) ≤ rank (rev r))

case True
then show ?thesis using Node.prems by(cases ∃ x. xs = {|x|}) auto

next
case False
then show ?thesis using Node by(cases ∃ x. xs = {|x|}) fastforce+

qed
qed

lemma find-pos-x-in-dverts: (x,y) = find-pos-aux v p t1 =⇒ x ∈ dverts t1 ∨ p=x
proof(induction t1 arbitrary: p)

case (Node r xs)
then show ?case
proof(cases rank (rev v) ≤ rank (rev r))

case True
then show ?thesis using Node.prems by(cases ∃ x. xs = {|x|}) auto

next
case False
then show ?thesis using Node by(cases ∃ x. xs = {|x|}) fastforce+

qed
qed

end

end

theory IKKBZ-Optimality
imports Complex-Main CostFunctions QueryGraph IKKBZ HOL−Library.Sublist

begin

10 Optimality of IKKBZ
context directed-tree
begin
fun forward-arcs :: ′a list ⇒ bool where

forward-arcs [] = True
| forward-arcs [x] = True
| forward-arcs (x#xs) = ((∃ y ∈ set xs. y →T x) ∧ forward-arcs xs)

fun no-back-arcs :: ′a list ⇒ bool where
no-back-arcs [] = True
| no-back-arcs (x#xs) = ((@ y. y ∈ set xs ∧ y →T x) ∧ no-back-arcs xs)

298

definition forward :: ′a list ⇒ bool where
forward xs = (∀ i ∈ {1 ..(length xs − 1)}. ∃ j < i. xs!j →T xs!i)

definition no-back :: ′a list ⇒ bool where
no-back xs = (@ i j. i < j ∧ j < length xs ∧ xs!j →T xs!i)

definition seq-conform :: ′a list ⇒ bool where
seq-conform xs ≡ forward-arcs (rev xs) ∧ no-back-arcs xs

definition before :: ′a list ⇒ ′a list ⇒ bool where
before s1 s2 ≡ seq-conform s1 ∧ seq-conform s2 ∧ set s1 ∩ set s2 = {}
∧ (∃ x ∈ set s1 . ∃ y ∈ set s2 . x →T y)

definition before2 :: ′a list ⇒ ′a list ⇒ bool where
before2 s1 s2 ≡ seq-conform s1 ∧ seq-conform s2 ∧ set s1 ∩ set s2 = {}
∧ (∃ x ∈ set s1 . ∃ y ∈ set s2 . x →T y)
∧ (∀ x ∈ set s1 . ∀ v ∈ verts T − set s1 − set s2 . ¬ x →T v)

lemma before-alt1 :
(∃ i < length s1 . ∃ j < length s2 . s1 !i →T s2 !j) ←→ (∃ x ∈ set s1 . ∃ y ∈ set s2 .

x →T y)
using in-set-conv-nth by metis

lemma before-alt2 :
(∀ i < length s1 . ∀ v ∈ verts T − set s1 − set s2 . ¬ s1 !i →T v)
←→ (∀ x ∈ set s1 . ∀ v ∈ verts T − set s1 − set s2 . ¬ x →T v)

using in-set-conv-nth by metis

lemma no-back-alt-aux: (∀ i j. i ≥ j ∨ j ≥ length xs ∨ ¬(xs!j →T xs!i)) =⇒
no-back xs

using less-le-not-le no-back-def by auto

lemma no-back-alt: (∀ i j. i ≥ j ∨ j ≥ length xs ∨ ¬(xs!j →T xs!i)) ←→ no-back
xs

using no-back-alt-aux by (auto simp: no-back-def)

lemma no-back-arcs-alt-aux1 : [[no-back-arcs xs; i < j; j < length xs]] =⇒ ¬(xs!j
→T xs!i)
proof(induction xs arbitrary: i j)

case (Cons x xs)
then show ?case
proof(cases i = 0)

case True
then show ?thesis using Cons.prems by simp

next
case False
then show ?thesis using Cons by auto

qed
qed(simp)

299

lemma no-back-insert-aux:
(∀ i j. i ≥ j ∨ j ≥ length (x#xs) ∨ ¬((x#xs)!j →T (x#xs)!i))
=⇒ (∀ i j. i ≥ j ∨ j ≥ length xs ∨ ¬(xs!j →T xs!i))

by force

lemma no-back-insert: no-back (x#xs) =⇒ no-back xs
using no-back-alt no-back-insert-aux by blast

lemma no-arc-fst-if-no-back:
assumes no-back (x#xs) and y ∈ set xs
shows ¬ y →T x

proof −
have 0 : (x#xs)!0 = x by simp
obtain j where xs!j = y j < length xs using assms(2) by (auto simp: in-set-conv-nth)
then have (x#xs)!(Suc j) = y ∧ Suc j < length (x#xs) by simp
then show ?thesis using assms(1) 0 by (metis no-back-def zero-less-Suc)

qed

lemma no-back-arcs-alt-aux2 : no-back xs =⇒ no-back-arcs xs
by(induction xs) (auto simp: no-back-insert no-arc-fst-if-no-back)

lemma no-back-arcs-alt: no-back xs ←→ no-back-arcs xs
using no-back-arcs-alt-aux1 no-back-arcs-alt-aux2 no-back-alt by fastforce

lemma forward-arcs-alt-aux1 :
[[forward-arcs xs; i ∈ {1 ..(length (rev xs) − 1)}]] =⇒ ∃ j < i. (rev xs)!j →T (rev

xs)!i
proof(induction xs rule: forward-arcs.induct)

case (3 x x ′ xs)
then show ?case
proof(cases i = length (rev (x#x ′#xs)) − 1)

case True
then have i: (rev (x#x ′#xs))!i = x by (simp add: nth-append)
then obtain y where y-def : y∈set (x ′#xs) y →T x using 3 .prems by auto
then obtain j where j-def : rev (x ′#xs)!j = y j < length (rev (x ′#xs))

using in-set-conv-nth[of y] by fastforce
then have rev (x#x ′#xs)!j = y by (auto simp: nth-append)
then show ?thesis using y-def (2) i j-def (2) True by auto

next
case False
then obtain j where j-def : j < i rev (x ′ # xs)!j →T rev (x ′ # xs)!i using 3

by auto
then have rev (x#x ′#xs)!j = rev (x ′#xs)!j using 3 .prems(2) by (auto simp:

nth-append)
moreover have rev (x#x ′#xs)!i = rev (x ′#xs)!i

using 3 .prems(2) False by (auto simp: nth-append)
ultimately show ?thesis using j-def by auto

qed

300

qed(auto)

lemma forward-split-aux:
assumes forward (xs@ys) and i∈{1 ..length xs − 1}
shows ∃ j<i. xs!j →T xs!i

proof −
obtain j where j < i ∧ (xs@ys)!j →T (xs@ys)!i using assms forward-def by

force
moreover have i < length xs using assms(2) by auto
ultimately show ?thesis by (auto simp: nth-append)

qed

lemma forward-split: forward (xs@ys) =⇒ forward xs
using forward-split-aux forward-def by blast

lemma forward-cons:
forward (rev (x#xs)) =⇒ forward (rev xs)
using forward-split by simp

lemma arc-to-lst-if-forward:
assumes forward (rev (x#xs)) and xs = y#ys
shows ∃ y ∈ set xs. y →T x

proof −
have (x#xs)!0 = x by simp
have (rev xs@[x])!(length xs) = (xs@[x])!(length xs) by (metis length-rev nth-append-length)
then have i: rev (x#xs)!(length xs) = x by simp
have length xs ∈ {1 ..(length (rev (x#xs)) − 1)} using assms(2) by simp
then obtain j where j-def : j < length xs ∧ (rev (x#xs))!j →T (rev (x#xs))!length

xs
using assms(1) forward-def [of rev (x#xs)] by blast

then have rev xs!j ∈ set xs using length-rev nth-mem set-rev by metis
then have rev (x#xs)!j ∈ set xs by (auto simp: j-def nth-append)
then show ?thesis using i j-def by auto

qed

lemma forward-arcs-alt-aux2 : forward (rev xs) =⇒ forward-arcs xs
proof(induction xs rule: forward-arcs.induct)

case (3 x y xs)
then have forward-arcs (y # xs) using forward-cons by blast
then show ?case using arc-to-lst-if-forward 3 .prems by simp

qed(auto)

lemma forward-arcs-alt: forward xs ←→ forward-arcs (rev xs)
using forward-arcs-alt-aux1 forward-arcs-alt-aux2 forward-def by fastforce

corollary forward-arcs-alt ′: forward (rev xs) ←→ forward-arcs xs
using forward-arcs-alt by simp

corollary forward-arcs-split: forward-arcs (ys@xs) =⇒ forward-arcs xs

301

using forward-split[of rev xs rev ys] forward-arcs-alt by simp

lemma seq-conform-alt: seq-conform xs ←→ forward xs ∧ no-back xs
using forward-arcs-alt no-back-arcs-alt seq-conform-def by simp

lemma forward-app-aux:
assumes forward s1 forward s2 ∃ x∈set s1 . x →T hd s2 i∈{1 ..length (s1@s2) −

1}
shows ∃ j<i. (s1@s2)!j →T (s1@s2)!i

proof −
consider i∈{1 ..length s1 − 1} | i = length s1 | i∈{length s1 + 1 ..length s1 +

length s2 − 1}
using assms(4) by fastforce

then show ?thesis
proof(cases)

case 1
then obtain j where j-def : j < i s1 !j →T s1 !i using assms(1) forward-def

by blast
moreover have (s1@s2)!i = s1 !i using 1 by (auto simp: nth-append)
moreover have (s1@s2)!j = s1 !j using 1 j-def (1) by (auto simp: nth-append)
ultimately show ?thesis by auto

next
case 2
then have s2 6= [] using assms(4) by force
then have (s1@s2)!i = hd s2 using 2 assms(4) by (simp add: hd-conv-nth

nth-append)
then obtain x where x-def : x∈set s1 x →T (s1@s2)!i using assms(3) by

force
then obtain j where s1 !j = x j < length s1 by (auto simp: in-set-conv-nth)
then show ?thesis using x-def (2) 2 by (auto simp: nth-append)

next
case 3
then have i−length s1 ∈ {1 ..length s2 − 1} by fastforce
then obtain j where j-def : j < (i−length s1) s2 !j →T s2 !(i−length s1)

using assms(2) forward-def by blast
moreover have (s1@s2)!i = s2 !(i−length s1) using 3 by (auto simp: nth-append)
moreover have (s1@s2)!(j+length s1) = s2 !j using 3 j-def (1) by (auto simp:

nth-append)
ultimately have (j+length s1) < i ∧ (s1@s2)!(j+length s1) →T (s1@s2)!i

by force
then show ?thesis by blast

qed
qed

lemma forward-app: [[forward s1 ; forward s2 ; ∃ x∈set s1 . x →T hd s2]] =⇒ forward
(s1@s2)

by (simp add: forward-def forward-app-aux)

lemma before-conform1I : before s1 s2 =⇒ seq-conform s1

302

unfolding before-def by blast

lemma before-forward1I : before s1 s2 =⇒ forward s1
unfolding before-def seq-conform-alt by blast

lemma before-no-back1I : before s1 s2 =⇒ no-back s1
unfolding before-def seq-conform-alt by blast

lemma before-ArcI : before s1 s2 =⇒ ∃ x ∈ set s1 . ∃ y ∈ set s2 . x →T y
unfolding before-def by blast

lemma before-conform2I : before s1 s2 =⇒ seq-conform s2
unfolding before-def by blast

lemma before-forward2I : before s1 s2 =⇒ forward s2
unfolding before-def seq-conform-alt by blast

lemma before-no-back2I : before s1 s2 =⇒ no-back s2
unfolding before-def seq-conform-alt by blast

lemma hd-reach-all-forward-arcs:
[[hd (rev xs) ∈ verts T ; forward-arcs xs; x ∈ set xs]] =⇒ hd (rev xs) →∗

T x
proof(induction xs arbitrary: x rule: forward-arcs.induct)

case (3 z y ys)
then have 0 : (∃ y ∈ set (y#ys). y →T z) forward-arcs (y#ys) by auto
have hd-eq: hd (rev (z # y # ys)) = hd (rev (y # ys))

using hd-rev[of y#ys] by (auto simp: last-ConsR)
then show ?case
proof(cases x = z)

case True
then obtain x ′ where x ′-def : x ′ ∈ set (y#ys) x ′→T x using 3 .prems(2) by

auto
then have hd (rev (z # y # ys)) →∗

T x ′ using 3 hd-eq by simp
then show ?thesis using x ′-def (2) reachable-adj-trans by blast

next
case False
then show ?thesis using 3 hd-eq by simp

qed
qed(auto)

lemma hd-reach-all-forward:
[[hd xs ∈ verts T ; forward xs; x ∈ set xs]] =⇒ hd xs →∗

T x
using hd-reach-all-forward-arcs[of rev xs] by (simp add: forward-arcs-alt)

lemma hd-in-verts-if-forward: forward (x#y#xs) =⇒ hd (x#y#xs) ∈ verts T
unfolding forward-def by fastforce

lemma two-elems-if-length-gt1 : length xs > 1 =⇒ ∃ x y ys. x#y#ys=xs
by (metis create-ldeep-rev.cases list.size(3) One-nat-def length-Cons less-asym

303

zero-less-Suc)

lemma hd-in-verts-if-forward ′: [[length xs > 1 ; forward xs]] =⇒ hd xs ∈ verts T
using two-elems-if-length-gt1 hd-in-verts-if-forward by blast

lemma hd-reach-all-forward ′:
[[length xs > 1 ; forward xs; x ∈ set xs]] =⇒ hd xs →∗

T x
by (simp add: hd-in-verts-if-forward ′ hd-reach-all-forward)

lemma hd-reach-all-forward ′′:
[[forward (x#y#xs); z ∈ set (x#y#xs)]] =⇒ hd (x#y#xs) →∗

T z
using hd-in-verts-if-forward hd-reach-all-forward by blast

lemma no-back-if-distinct-forward: [[forward xs; distinct xs]] =⇒ no-back xs
unfolding no-back-def proof

assume ∃ i j. i < j ∧ j < length xs ∧ xs!j →T xs!i and assms: forward xs distinct
xs

then obtain i j where i-def : i < j j < length xs xs!j →T xs!i by blast
show False
proof(cases i=0)

case True
then have xs!i = hd xs using i-def (1 ,2) hd-conv-nth[of xs] by fastforce
then have xs!i →∗

T xs!j using i-def (1 ,2) assms(1) hd-reach-all-forward ′ by
simp

then have xs!i →+
T xs!j using reachable-neq-reachable1 i-def (3) by force

then show ?thesis using i-def (3) reachable1-not-reverse by blast
next

case False
then have i ∈ {1 .. length xs − 1} using i-def (1 ,2) by simp
then obtain j ′ where j ′-def : j ′ < i xs!j ′→T xs!i

using assms(1) unfolding forward-def by blast
have xs!j ′ = xs!j using i-def (3) j ′-def (2) two-in-arcs-contr by fastforce
moreover have xs!j ′ 6= xs!j

using j ′-def (1) i-def (1 ,2) assms(2) nth-eq-iff-index-eq by fastforce
ultimately show ?thesis by blast

qed
qed

corollary seq-conform-if-dstnct-fwd: [[forward xs; distinct xs]] =⇒ seq-conform xs
using no-back-if-distinct-forward seq-conform-def forward-arcs-alt no-back-arcs-alt

by blast

lemma forward-arcs-single: forward-arcs [x]
by simp

lemma forward-single: forward [x]
unfolding forward-def by simp

lemma no-back-arcs-single: no-back-arcs [x]

304

by simp

lemma no-back-single: no-back [x]
unfolding no-back-def by simp

lemma seq-conform-single: seq-conform [x]
unfolding seq-conform-def by simp

lemma forward-arc-to-head ′:
assumes forward ys and x /∈ set ys and y ∈ set ys and x →T y
shows y = hd ys

proof (rule ccontr)
assume asm: y 6= hd ys
obtain i where i-def : i < length ys ys!i = y using assms(3) by (auto simp:

in-set-conv-nth)
then have i 6= 0 using asm by (metis drop0 hd-drop-conv-nth)
then have i ∈ {1 ..(length ys − 1)} using i-def (1) by simp
then obtain j where j-def : j < i ys!j →T ys!i

using assms(1) forward-def by blast
then show False using assms(4 ,2) j-def (2) i-def two-in-arcs-contr by fastforce

qed

corollary forward-arc-to-head:
[[forward ys; set xs ∩ set ys = {}; x ∈ set xs; y ∈ set ys; x →T y]]
=⇒ y = hd ys

using forward-arc-to-head ′ by blast

lemma forward-app ′:
[[forward s1 ; forward s2 ; set s1 ∩ set s2 = {}; ∃ x∈set s1 . ∃ y∈set s2 . x →T y]]
=⇒ forward (s1@s2)

using forward-app[of s1 s2] forward-arc-to-head by blast

lemma reachable1-from-outside-dom:
[[x →+

T y; x /∈ set ys; y ∈ set ys]] =⇒ ∃ x ′. ∃ y ′ ∈ set ys. x ′ /∈ set ys ∧ x ′→T y ′

by (induction x y rule: trancl.induct) auto

lemma hd-reachable1-from-outside ′:
[[x →+

T y; forward ys; x /∈ set ys; y ∈ set ys]] =⇒ ∃ y ′ ∈ set ys. x →+
T hd ys

apply(induction x y rule: trancl.induct)
using forward-arc-to-head ′ by force+

lemma hd-reachable1-from-outside:
[[x →+

T y; forward ys; set xs ∩ set ys = {}; x ∈ set xs; y ∈ set ys]]
=⇒ ∃ y ′ ∈ set ys. x →+

T hd ys
using hd-reachable1-from-outside ′ by blast

lemma reachable1-append-old-if-arc:
assumes ∃ x∈set xs. ∃ y∈set ys. x →T y

and z /∈ set xs

305

and forward xs
and y∈set (xs @ ys)
and z →+

T y
shows ∃ y∈set ys. z →+

T y
proof(cases y ∈ set ys)

case True
then show ?thesis using assms(5) by blast

next
case False
then have y ∈ set xs using assms(4) by simp
then have 0 : z →+

T hd xs using hd-reachable1-from-outside ′[OF assms(5 ,3 ,2)]
by blast

then have 1 : hd xs ∈ verts T using reachable1-in-verts(2) by auto
obtain x y where x-def : x∈set xs y∈set ys x →T y using assms(1) by blast
then have hd xs →∗

T x using hd-reach-all-forward[OF 1 assms(3)] by simp
then have hd xs →∗

T y using x-def (3) by force
then show ?thesis using reachable1-reachable-trans[OF 0] x-def (2) by blast

qed

lemma reachable1-append-old-if-arcU :
[[∃ x∈set xs. ∃ y∈set ys. x →T y; set U ∩ set xs = {}; z ∈ set U ;

forward xs; y∈set (xs @ ys); z →+
T y]]

=⇒ ∃ y∈set ys. z →+
T y

using reachable1-append-old-if-arc[of xs ys] by auto

lemma before-arc-to-hd: before xs ys =⇒ ∃ x ∈ set xs. x →T hd ys
using forward-arc-to-head before-def seq-conform-alt by auto

lemma no-back-backarc-app1 :
[[j < length (xs@ys); j ≥ length xs; i < j; no-back ys; (xs@ys)!j →T (xs@ys)!i]]
=⇒ i < length xs

by (rule ccontr) (auto simp add: no-back-def nth-append)

lemma no-back-backarc-app2 : [[no-back xs; i < j; (xs@ys)!j →T (xs@ys)!i]] =⇒ j
≥ length xs

by (rule ccontr) (auto simp add: no-back-def nth-append)

lemma no-back-backarc-i-in-xs:
[[no-back ys; j < length (xs@ys); i < j; (xs@ys)!j →T (xs@ys)!i]]
=⇒ xs!i ∈ set xs ∧ (xs@ys)!i = xs!i

by (auto simp add: no-back-def nth-append)

lemma no-back-backarc-j-in-ys:
[[no-back xs; j < length (xs@ys); i < j; (xs@ys)!j →T (xs@ys)!i]]
=⇒ ys!(j−length xs) ∈ set ys ∧ (xs@ys)!j = ys!(j−length xs)

by (auto simp add: no-back-def nth-append)

lemma no-back-backarc-difsets:
assumes no-back xs and no-back ys

306

and i < j and j < length (xs @ ys) and (xs @ ys) ! j →T (xs @ ys) ! i
shows ∃ x ∈ set xs. ∃ y ∈ set ys. y →T x

using no-back-backarc-i-in-xs[OF assms(2 ,4 ,3)] no-back-backarc-j-in-ys[OF assms(1 ,4 ,3)]
assms(5)

by auto

lemma no-back-backarc-difsets ′:
[[no-back xs; no-back ys; ∃ i j. i < j ∧ j < length (xs@ys) ∧ (xs@ys)!j →T

(xs@ys)!i]]
=⇒ ∃ x ∈ set xs. ∃ y ∈ set ys. y →T x

using no-back-backarc-difsets by blast

lemma no-back-before-aux:
assumes seq-conform xs and seq-conform ys

and set xs ∩ set ys = {} and (∃ x∈set xs. ∃ y∈set ys. x →T y)
shows no-back (xs @ ys)

unfolding no-back-def by (metis assms adj-in-verts(2) forward-arc-to-head hd-reach-all-forward
inf-commute reachable1-not-reverse reachable-rtranclI rtrancl-into-trancl1 seq-conform-alt
no-back-backarc-difsets ′)

lemma no-back-before: before xs ys =⇒ no-back (xs@ys)
using before-def no-back-before-aux by simp

lemma seq-conform-if-before: before xs ys =⇒ seq-conform (xs@ys)
using no-back-before before-def seq-conform-alt forward-app before-arc-to-hd by

simp

lemma no-back-arc-if-fwd-dstct:
assumes forward (as@bs) and distinct (as@bs)
shows ¬(∃ x∈set bs. ∃ y∈set as. x →T y)

proof
assume ∃ x∈set bs. ∃ y∈set as. x →T y
then obtain x y where x-def : x∈set bs y∈set as x →T y by blast
then obtain i where i-def : as!i = y i < length as by (auto simp: in-set-conv-nth)
obtain j where j-def : bs!j = x j < length bs using x-def (1) by (auto simp:

in-set-conv-nth)
then have (as@bs)!(j+length as) = x by (simp add: nth-append)
moreover have (as@bs)!i = y using i-def by (simp add: nth-append)
moreover have i < (j+length as) using i-def (2) by simp
moreover have (j+length as) < length (as @ bs) using j-def by simp
ultimately show False

using no-back-if-distinct-forward[OF assms] x-def (3) unfolding no-back-def
by blast
qed

lemma no-back-reach1-if-fwd-dstct:
assumes forward (as@bs) and distinct (as@bs)
shows ¬(∃ x∈set bs. ∃ y∈set as. x →+

T y)
proof

307

assume ∃ x∈set bs. ∃ y∈set as. x →+
T y

then obtain x y where x-def : x∈set bs y∈set as x →+
T y by blast

have fwd-as: forward as using forward-split[OF assms(1)] by blast
have x-as: x /∈ set as using x-def (1) assms(2) by auto
show False
using assms(1) x-def append.assoc list.distinct(1) Nil-is-append-conv append-Nil2 [of

as@bs]
append-eq-append-conv2 [of as@bs as@bs bs as] forward-arc-to-head ′ hd-append2

hd-reach-all-forward hd-reachable1-from-outside ′[OF x-def (3) fwd-as x-as
x-def (2)]

in-set-conv-decomp-first[of y as] in-set-conv-decomp-last reachable1-from-outside-dom
reachable1-in-verts(2) reachable1-not-reverse reachable1-reachable-trans

by metis
qed

lemma split-length-i: i ≤ length bs =⇒ ∃ xs ys. xs@ys = bs ∧ length xs = i
using length-take append-take-drop-id min-absorb2 by metis

lemma split-length-i-prefix:
assumes length as ≤ i i < length (as@bs)
shows ∃ xs ys. xs@ys = bs ∧ length (as@xs) = i

proof −
obtain n where n-def : n + length as = i

using assms(1) ab-semigroup-add-class.add.commute le-Suc-ex by blast
then have n ≤ length bs using assms(2) by simp
then show ?thesis using split-length-i n-def by fastforce

qed

lemma forward-alt-aux1 :
assumes i ∈ {1 ..length xs − 1} and j<i and xs!j →T xs!i
shows ∃ as bs. as@bs = xs ∧ length as = i ∧ (∃ x ∈ set as. x →T xs!i)

proof −
obtain as bs where as@bs = xs ∧ length as = i

using assms(1) atLeastAtMost-iff diff-le-self le-trans split-length-i[of i xs] by
metis

then show ?thesis using assms(2 ,3) nth-append[of as bs j] by force
qed

lemma forward-alt-aux1 ′:
forward xs
=⇒ ∀ i ∈ {1 ..length xs − 1}. ∃ as bs. as@bs = xs ∧ length as = i ∧ (∃ x ∈ set

as. x →T xs!i)
using forward-alt-aux1 unfolding forward-def by fastforce

lemma forward-alt-aux2 :
[[as@bs = xs; length as = i; ∃ x ∈ set as. x →T xs!i]] =⇒ ∃ j<i. xs!j →T xs!i
by (auto simp add: nth-append in-set-conv-nth)

lemma forward-alt-aux2 ′:

308

∀ i ∈ {1 ..length xs − 1}. ∃ as bs. as@bs = xs ∧ length as = i ∧ (∃ x ∈ set as. x
→T xs!i)

=⇒ forward xs
using forward-alt-aux2 unfolding forward-def by blast

corollary forward-alt:
∀ i ∈ {1 ..length xs − 1}. ∃ as bs. as@bs = xs ∧ length as = i ∧ (∃ x ∈ set as. x
→T xs!i)
←→ forward xs

using forward-alt-aux1 ′[of xs] forward-alt-aux2 ′ by blast

lemma move-mid-forward-if-noarc-aux:
assumes as 6= []

and ¬(∃ x ∈ set U . ∃ y ∈ set bs. x →T y)
and forward (as@U@bs@cs)
and i ∈ {1 ..length (as@bs@U@cs) − 1}

shows ∃ j<i. (as@bs@U@cs) ! j →T (as@bs@U@cs) ! i
proof −

have 0 : i ∈ {1 ..length (as@U@bs@cs) − 1} using assms(4) by auto
consider i < length as | i ∈ {length as..length (as@bs) − 1}
| i ∈ {length (as@bs)..length (as@bs@U) − 1}
| i ≥ length (as@bs@U)
by fastforce

then show ?thesis
proof(cases)

case 1
then have (as@U@bs@cs)!i = (as@bs@U@cs)!i by (simp add: nth-append)
then obtain j where j-def : j<i (as@U@bs@cs)!j →T ((as@bs)@U@cs)!i

using assms(3) 0 unfolding forward-def by fastforce
then have (as@U@bs@cs)!j = ((as@bs)@U@cs)!j using 1 by (simp add:

nth-append)
then show ?thesis using j-def by auto

next
case 2
have ((as@bs)@U@cs)!i = bs!(i − length as)
using 2 assms(4) nth-append root-in-T directed-tree-axioms in-degree-root-zero
by (metis directed-tree.in-deg-one-imp-not-root atLeastAtMost-iff diff-diff-cancel

diff-is-0-eq diff-le-self diff-less-mono neq0-conv zero-less-diff)
then have i-in-bs: ((as@bs)@U@cs)!i ∈ set bs using assms(4) 2 by auto
have (i − length as) < length bs using 2 assms(4) by force
then have ((as@bs)@U@cs)!i = (as@U@bs@cs)!(i + length U)

using 2 by (auto simp: nth-append)
moreover have (i + length U) ∈ {1 .. length (as@U@bs@cs) − 1} using 2 0

by force
ultimately obtain j where j-def :

j < (i + length U) (as@U@bs@cs)!j →T ((as@bs)@U@cs)!i
using assms(3) unfolding forward-def by fastforce

have i < length (as@bs) using ‹i − length as < length bs› by force
moreover have length as ≤ i using 2 by simp

309

ultimately obtain xs ys where xs-def : bs = xs@ys length (as@xs) = i
using split-length-i-prefix by blast

then have j < (length (as@U@xs)) using 2 j-def (1) by simp
then have (as@U@bs@cs)!j ∈ set (as@U@xs) by (auto simp: xs-def (1)

nth-append)
then have (as@U@bs@cs)!j ∈ set (as@xs) using assms(2) j-def (2) i-in-bs by

auto
then obtain j ′ where j ′-def : j ′ < length (as@xs) (as@xs)!j ′ = (as@U@bs@cs)!j

using in-set-conv-nth[of (as@U@bs@cs)!j] nth-append by blast
then have ((as@bs)@U@cs)!j ′ = (as@U@bs@cs)!j

using nth-append[of as@xs] xs-def (1) by simp
then show ?thesis using j-def (2) j ′-def (1) xs-def (2) by force

next
case 3
then have i-len-U : i − length (as@bs) < length U using assms(4) by fastforce
have i-len-asU : i − length bs < length (as@U) using 3 assms(4) by force
have ((as@bs)@U@cs)!i = (U@cs)!(i − length (as@bs))

using 3 by (auto simp: nth-append)
also have . . . = (as@U)!(i − length bs)
using 3 i-len-U by (auto simp: ab-semigroup-add-class.add.commute nth-append)
also have . . . = (as@U@bs@cs)!(i − length bs)

using i-len-asU nth-append[of as@U] by simp
finally have 1 : ((as@bs)@U@cs)!i = (as@U@bs@cs)!(i − length bs) .
have (i − length bs) ≥ length as using 3 by auto
then have (i − length bs) ≥ 1 using assms(1) length-0-conv[of as] by force
then have (i − length bs) ∈ {1 .. length (as@U@bs@cs) − 1} using 0 by auto
then obtain j where j-def : j < (i − length bs) (as@U@bs@cs)!j →T ((as@bs)@U@cs)!i

using assms(3) 1 unfolding forward-def by fastforce
have length as ≤ (i − length bs) using 3 by auto
then obtain xs ys where xs-def : U = xs@ys length (as@xs) = (i − length bs)

using split-length-i-prefix[of as] i-len-asU by blast
then have j < (length (as@xs)) using 3 j-def (1) by simp

then have (as@U@bs@cs)!j ∈ set (as@bs@xs) by (auto simp: xs-def (1)
nth-append)

then obtain j ′ where j ′-def : j ′< length (as@bs@xs) (as@bs@xs)!j ′= (as@U@bs@cs)!j
using in-set-conv-nth[of (as@U@bs@cs)!j] by blast

then have ((as@bs)@U@cs)!j ′ = (as@U@bs@cs)!j
using nth-append[of as@bs@xs] xs-def (1) by simp

moreover have j ′ < i using j ′-def (1) xs-def (2) 3 by auto
ultimately show ?thesis using j-def (2) by force

next
case 4
have len-eq: length (as@U@bs) = length (as@bs@U) by simp
have ((as@bs)@U@cs)!i = cs!(i − length (as@bs@U))

using 4 nth-append[of as@bs@U] by simp
also have . . . = cs!(i − length (as@U@bs)) using len-eq by argo
finally have ((as@bs)@U@cs)!i = ((as@U@bs)@cs)!i using 4 nth-append[of

as@U@bs] by simp
then obtain j where j-def : j < i (as@U@bs@cs)!j →T ((as@bs)@U@cs)!i

310

using assms(3) 0 unfolding forward-def by fastforce
have length (as@U@bs) ≤ i using 4 by auto
moreover have i < length ((as@U@bs)@cs) using 0 by auto
ultimately obtain xs ys where xs-def : xs@ys = cs length ((as@U@bs) @ xs)

= i
using split-length-i-prefix[of as@U@bs i] by blast

then have j < (length (as@U@bs@xs)) using 4 j-def (1) by simp
then have (as@U@bs@cs)!j ∈ set (as@bs@U@xs) by (auto simp: xs-def (1)[symmetric]

nth-append)
then obtain j ′ where j ′-def : j ′ < length (as@bs@U@xs) (as@bs@U@xs)!j ′ =

(as@U@bs@cs)!j
using in-set-conv-nth[of (as@U@bs@cs)!j] by blast

then have ((as@bs)@U@cs)!j ′ = (as@U@bs@cs)!j
using nth-append[of as@bs@U@xs] xs-def (1)[symmetric] by simp

moreover have j ′ < i using j ′-def (1) xs-def (2) 4 by auto
ultimately show ?thesis using j-def (2) by auto

qed
qed

lemma move-mid-forward-if-noarc:
[[as 6= []; ¬(∃ x ∈ set U . ∃ y ∈ set bs. x →T y); forward (as@U@bs@cs)]]
=⇒ forward (as@bs@U@cs)

using move-mid-forward-if-noarc-aux unfolding forward-def by blast

lemma move-mid-backward-if-noarc-aux:
assumes ∃ x∈set U . x →T hd V

and forward V
and forward (as@U@bs@V@cs)
and i ∈ {1 ..length (as@U@V@bs@cs) − 1}

shows ∃ j<i. (as@U@V@bs@cs) ! j →T (as@U@V@bs@cs) ! i
proof −

have 0 : i ∈ {1 ..length (as@U@bs@V@cs) − 1} using assms(4) by auto
consider i < length (as@U) | i = length (as@U) i ≤ length (as@U@V) − 1
| i ∈ {length (as@U) + 1 ..length (as@U@V) − 1}
| i ∈ {length (as@U@V)..length (as@U@V@bs) − 1}
| i ≥ length (as@U@V@bs)
by fastforce

then show ?thesis
proof(cases)

case 1
then have (as@U@bs@V@cs)!i = (as@U@V@bs@cs)!i by (simp add: nth-append)
then obtain j where j-def : j<i (as@U@bs@V@cs)!j →T (as@U@V@bs@cs)!i

using assms(3) 0 unfolding forward-def by fastforce
then have (as@U@V@bs@cs)!j = (as@U@bs@V@cs)!j using 1 by (simp

add: nth-append)
then show ?thesis using j-def by auto

next
case 2

have (as@U@V@bs@cs)!i = (V@bs@cs)!0 using 2 (1) by (auto simp: nth-append)

311

then have (as@U@V@bs@cs)!i = hd V
using 2 assms(4) hd-append hd-conv-nth Suc-n-not-le-n atLeastAtMost-iff

le-diff-conv2
by (metis ab-semigroup-add-class.add.commute append.right-neutral Suc-eq-plus1-left)
then obtain x where x-def : x ∈ set U x →T (as@U@V@bs@cs)!i using

assms(1) by auto
then obtain j where j-def : (as@U)!j = x j < i using in-set-conv-nth[of x] 2

by fastforce
then have (as@U@V@bs@cs)!j = x using 2 (1) by (auto simp: nth-append)
then show ?thesis using j-def (2) x-def (2) by blast

next
case 3
have i − length (as@U) ∈ {1 .. length V − 1} using 3 by force
then obtain j where j-def : j < (i − length (as@U)) V !j →T V !(i − length

(as@U))
using assms(2) unfolding forward-def by blast

then have (as@U@V@bs@cs)!(j+length (as@U)) = V !j
using 3 nth-append[of as@U] nth-append[of V] by auto

moreover have (as@U@V@bs@cs)!i = V !(i − length (as@U))
using 3 nth-append[of as@U] nth-append[of V] by auto

moreover have j+length (as@U) < i using j-def (1) by simp
ultimately show ?thesis using j-def (2) by auto

next
case 4

have (as@U@V@bs@cs)!i = (bs@cs)!(i − length (as@U@V)) using 4 nth-append[of
as@U@V] by simp

also have . . . = bs!(i − length (as@U@V)) using 4 assms(4) by (auto simp:
nth-append)

also have . . . = (as@U@bs)!(i − length (as@U@V) + length (as@U)) by
(simp add: nth-append)

also have . . . = (as@U@bs)!(i − length V) using 4 by simp
finally have 1 : (as@U@V@bs@cs)!i = (as@U@bs@V@cs)!(i − length V)

using 4 assms(4) nth-append[of as@U@bs] by auto
have (i − length V) ≥ length (as@U) using 4 by auto
then have (i − length V) ≥ 1 using assms(1) length-0-conv by fastforce
then have (i − length V) ∈ {1 .. length (as@U@bs@V@cs) − 1} using 0 by

auto
then obtain j where j-def : j < i − length V (as@U@bs@V@cs)!j →T

(as@U@V@bs@cs)!i
using assms(3) 1 unfolding forward-def by fastforce

have length (as@U) ≤ (i − length V) using 4 by fastforce
moreover have (i − length V) < length ((as@U)@bs) using 4 assms(4) by

auto
ultimately obtain xs ys where xs-def : xs@ys = bs length ((as@U)@ xs) = i

− length V
using split-length-i-prefix[of as@U] by blast

then have j < (length (as@U@xs)) using 4 j-def (1) by simp
then have (as@U@bs@V@cs)!j ∈ set (as@U@V@xs) by (auto simp: xs-def (1)[symmetric]

nth-append)

312

then obtain j ′ where j ′-def : j ′ < length (as@U@V@xs) (as@U@V@xs)!j ′ =
(as@U@bs@V@cs)!j

using in-set-conv-nth[of (as@U@bs@V@cs)!j] by blast
then have (as@U@V@bs@cs)!j ′ = (as@U@bs@V@cs)!j

using nth-append[of as@U@V@xs] xs-def (1) by auto
moreover have j ′ < i using j ′-def (1) xs-def (2) 4 by auto
ultimately show ?thesis using j-def (2) by auto

next
case 5
have len-eq: length (as@U@bs@V) = length (as@U@V@bs) by simp
have (as@U@V@bs@cs)!i = cs!(i − length (as@U@V@bs))

using 5 nth-append[of as@U@V@bs] by auto
also have . . . = cs!(i − length (as@U@bs@V)) using len-eq by argo
finally have (as@U@V@bs@cs)!i = ((as@U@bs@V)@cs)!i

using 5 nth-append[of as@U@bs@V] by simp
then obtain j where j-def : j < i (as@U@bs@V@cs)!j →T (as@U@V@bs@cs)!i

using assms(3) 0 unfolding forward-def by fastforce
have length (as@U@bs@V) ≤ i using 5 by auto
moreover have i < length ((as@U@bs@V)@cs) using 0 by auto
ultimately obtain xs ys where xs-def : xs@ys = cs length ((as@U@bs@V) @

xs) = i
using split-length-i-prefix[of as@U@bs@V i] by blast

then have j < (length (as@U@bs@V@xs)) using 5 j-def (1) by simp
then have (as@U@bs@V@cs)!j ∈ set (as@U@V@bs@xs)

by (auto simp: xs-def (1)[symmetric] nth-append)
then obtain j ′ where j ′-def : j ′< length (as@U@V@bs@xs) (as@U@V@bs@xs)!j ′

= (as@U@bs@V@cs)!j
using in-set-conv-nth[of (as@U@bs@V@cs)!j] by blast

then have (as@U@V@bs@cs)!j ′ = (as@U@bs@V@cs)!j
using nth-append[of as@U@V@bs@xs] xs-def (1) by force

moreover have j ′ < i using j ′-def (1) xs-def (2) 5 by auto
ultimately show ?thesis using j-def (2) by auto

qed
qed

lemma move-mid-backward-if-noarc:
[[before U V ; forward (as@U@bs@V@cs)]] =⇒ forward (as@U@V@bs@cs)
using before-forward2I
by (simp add: forward-def before-arc-to-hd move-mid-backward-if-noarc-aux)

lemma move-mid-backward-if-noarc ′:
[[∃ x∈set U . ∃ y∈set V . x →T y; forward V ; set U ∩ set V = {}; forward

(as@U@bs@V@cs)]]
=⇒ forward (as@U@V@bs@cs)

using move-mid-backward-if-noarc-aux[of U V as bs cs] forward-arc-to-head[of V
U] forward-def

by blast

end

313

10.1 Sublist Additions
lemma fst-sublist-if-not-snd-sublist:
[[xs@ys=A@B; ¬ sublist B ys]] =⇒ ∃ as bs. as @ bs = xs ∧ bs @ ys = B
by (metis suffix-append suffix-def suffix-imp-sublist)

lemma sublist-before-if-mid:
assumes sublist U (A@V) and A @ V @ B = xs and set U ∩ set V = {} and

U 6=[]
shows ∃ as bs cs. as @ U @ bs @ V @ cs = xs

proof −
obtain C D where C-def : (C @ U) @ D = A @ V using assms(1) by (auto

simp: sublist-def)
have sublist V D

using assms(3 ,4) fst-sublist-if-not-snd-sublist[OF C-def] disjoint-iff-not-equal
last-appendR

by (metis Int-iff Un-Int-eq(1) append-Nil2 append-self-conv2 set-append last-in-set
sublist-def)

then show ?thesis using assms(2) C-def sublist-def append.assoc by metis
qed

lemma list-empty-if-subset-dsjnt: [[set xs ⊆ set ys; set xs ∩ set ys = {}]] =⇒ xs =
[]

using semilattice-inf-class.inf .orderE by fastforce

lemma empty-if-sublist-dsjnt: [[sublist xs ys; set xs ∩ set ys = {}]] =⇒ xs = []
using set-mono-sublist list-empty-if-subset-dsjnt by fast

lemma sublist-snd-if-fst-dsjnt:
assumes sublist U (V@B) and set U ∩ set V = {}
shows sublist U B

proof −
consider sublist U V | sublist U B | (∃ xs1 xs2 . U = xs1@xs2 ∧ suffix xs1 V ∧

prefix xs2 B)
using assms(1) sublist-append by blast

then show ?thesis
proof(cases)

case 1
then show ?thesis using assms(2) empty-if-sublist-dsjnt by blast

next
case 2
then show ?thesis by simp

next
case 3
then obtain xs ys where xs-def : U = xs@ys suffix xs V prefix ys B by blast
then have set xs ⊆ set V by (simp add: set-mono-suffix)

then have xs = [] using xs-def (1) assms(2) list-empty-if-subset-dsjnt by
fastforce

then show ?thesis using xs-def (1 ,3) by simp
qed

314

qed

lemma sublist-fst-if-snd-dsjnt:
assumes sublist U (B@V) and set U ∩ set V = {}
shows sublist U B

proof −
consider sublist U V | sublist U B | (∃ xs1 xs2 . U = xs1@xs2 ∧ suffix xs1 B ∧

prefix xs2 V)
using assms(1) sublist-append by blast

then show ?thesis
proof(cases)

case 1
then show ?thesis using assms(2) empty-if-sublist-dsjnt by blast

next
case 2
then show ?thesis by simp

next
case 3
then obtain xs ys where xs-def : U = xs@ys suffix xs B prefix ys V by blast
then have set ys ⊆ set V by (simp add: set-mono-prefix)

then have ys = [] using xs-def (1) assms(2) list-empty-if-subset-dsjnt by
fastforce

then show ?thesis using xs-def (1 ,2) by simp
qed

qed

lemma sublist-app: sublist (A @ B) C =⇒ sublist A C ∧ sublist B C
using sublist-order .dual-order .trans by blast

lemma sublist-Cons: sublist (A # B) C =⇒ sublist [A] C ∧ sublist B C
using sublist-app[of [A]] by simp

lemma sublist-set-elem: [[sublist xs (A@B); x ∈ set xs]] =⇒ x ∈ set A ∨ x ∈ set B
using set-mono-sublist by fastforce

lemma subset-snd-if-hd-notin-fst:
assumes sublist ys (V @ B) and hd ys /∈ set V and ys 6= []
shows set ys ⊆ set B

proof −
have ¬ sublist ys V using assms(2 ,3) by(auto simp: sublist-def)
then consider sublist ys B | (∃ xs1 xs2 . ys = xs1@xs2 ∧ suffix xs1 V ∧ prefix

xs2 B)
using assms(1) sublist-append by blast

then show ?thesis
proof(cases)

case 1
then show ?thesis using set-mono-sublist by blast

next
case 2

315

then obtain xs zs where xs-def : ys = xs@zs suffix xs V prefix zs B by blast
then have set xs ⊆ set V by (simp add: set-mono-suffix)
then have xs = [] using xs-def (1) assms(2 ,3) hd-append hd-in-set subsetD by

fastforce
then show ?thesis using xs-def (1 ,3) by (simp add: set-mono-prefix)

qed
qed

lemma suffix-ndjsnt-snd-if-nempty: [[suffix xs (A@V); V 6= []; xs 6= []]] =⇒ set xs
∩ set V 6= {}

using empty-if-sublist-dsjnt disjoint-iff
by (metis sublist-append-leftI suffix-append suffix-imp-sublist)

lemma sublist-not-mid:
assumes sublist U ((A @ V) @ B) and set U ∩ set V = {} and V 6= []
shows sublist U A ∨ sublist U B

proof −
consider sublist U A | sublist U V | (∃ xs1 xs2 . U = xs1@xs2 ∧ suffix xs1 A ∧

prefix xs2 V)
| sublist U B | (∃ xs1 xs2 . U = xs1@xs2 ∧ suffix xs1 (A@V) ∧ prefix xs2 B)

using assms(1) sublist-append by metis
then show ?thesis
proof(cases)

case 2
then show ?thesis using assms(2) empty-if-sublist-dsjnt by blast

next
case 3
then show ?thesis using assms(2) sublist-append sublist-fst-if-snd-dsjnt by

blast
next

case 5
then obtain xs ys where xs-def : U = xs@ys suffix xs (A@V) prefix ys B by

blast
then have set xs ∩ set V 6= {} ∨ xs = [] using suffix-ndjsnt-snd-if-nempty

assms(3) by blast
then have xs = [] using xs-def (1) assms(2) by auto
then show ?thesis using xs-def (1 ,3) by simp

qed(auto)
qed

lemma sublist-Y-cases-UV :
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and U ∈ Y
and V ∈ Y
and U 6= []
and V 6= []
and (∀ xs ∈ Y . sublist xs (as@U@bs@V@cs))
and xs ∈ Y

shows sublist xs as ∨ sublist xs bs ∨ sublist xs cs ∨ U = xs ∨ V = xs

316

using assms append-assoc sublist-not-mid by metis

lemma sublist-behind-if-nbefore:
assumes sublist U xs sublist V xs @ as bs cs. as @ U @ bs @ V @ cs = xs set U
∩ set V = {}

shows ∃ as bs cs. as @ V @ bs @ U @ cs = xs
proof −

have V 6= [] using assms(1 ,3) unfolding sublist-def by blast
obtain A B where A-def : A @ V @ B = xs using assms(2) by (auto simp:

sublist-def)
then have ¬sublist U A unfolding sublist-def using assms(3) by fastforce
moreover have sublist U ((A @ V) @ B) using assms(1) A-def by simp
ultimately have sublist U B using assms(4) sublist-not-mid ‹V 6=[]› by blast
then show ?thesis unfolding sublist-def using A-def by blast

qed

lemma sublists-preserv-move-U :
[[set xs ∩ set U = {}; set xs ∩ set V = {}; V 6=[]; sublist xs (as@U@bs@V@cs)]]
=⇒ sublist xs (as@bs@U@V@cs)

using append-assoc self-append-conv2 sublist-def sublist-not-mid by metis

lemma sublists-preserv-move-UY :
[[∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}; xs ∈ Y ; U ∈ Y ; V ∈ Y ;

V 6= []; sublist xs (as@U@bs@V@cs)]]
=⇒ sublist xs (as@bs@U@V@cs)

using sublists-preserv-move-U append-assoc sublist-appendI by metis

lemma sublists-preserv-move-UY-all:
[[∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}; U ∈ Y ; V ∈ Y ;

V 6= []; ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)]]
=⇒ ∀ xs ∈ Y . sublist xs (as@bs@U@V@cs)

using sublists-preserv-move-UY [of Y] by simp

lemma sublists-preserv-move-V :
[[set xs ∩ set U = {}; set xs ∩ set V = {}; U 6=[]; sublist xs (as@U@bs@V@cs)]]
=⇒ sublist xs (as@U@V@bs@cs)

using append-assoc self-append-conv2 sublist-def sublist-not-mid by metis

lemma sublists-preserv-move-VY :
[[∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}; xs ∈ Y ; U ∈ Y ; V ∈ Y ;

U 6= []; sublist xs (as@U@bs@V@cs)]]
=⇒ sublist xs (as@U@V@bs@cs)

using sublists-preserv-move-V append-assoc sublist-appendI by metis

lemma sublists-preserv-move-VY-all:
[[∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}; U ∈ Y ; V ∈ Y ;

U 6= []; ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)]]
=⇒ ∀ xs ∈ Y . sublist xs (as@U@V@bs@cs)

using sublists-preserv-move-VY [of Y] by simp

317

lemma distinct-sublist-first:
[[sublist as (x#xs); distinct (x#xs); x ∈ set as]] =⇒ take (length as) (x#xs) = as
unfolding sublist-def using distinct-app-trans-l distinct-ys-not-xs hd-in-set
by (metis list.sel(1) append-assoc append-eq-conv-conj append-self-conv2 hd-append2)

lemma distinct-sublist-first-remainder :
[[sublist as (x#xs); distinct (x#xs); x ∈ set as]] =⇒ as @ drop (length as) (x#xs)

= x#xs
using distinct-sublist-first append-take-drop-id[of length as x#xs] by fastforce

lemma distinct-set-diff : distinct (xs@ys) =⇒ set ys = set (xs@ys) − set xs
by auto

lemma list-of-sublist-concat-eq:
assumes ∀ as ∈ Y . ∀ bs ∈ Y . as = bs ∨ set as ∩ set bs = {}

and ∀ as ∈ Y . sublist as xs
and distinct xs
and set xs =

⋃
(set ‘ Y)

and finite Y
shows ∃ ys. set ys = Y ∧ concat ys = xs ∧ distinct ys

using assms proof(induction Finite-Set.card Y arbitrary: Y xs)
case (Suc n)
show ?case
proof(cases xs)

case Nil
then have Y = {[]} ∨ Y = {} using Suc.prems(4) by auto
then have set [[]] = Y ∧ concat [[]] = xs ∧ distinct [[]] using Nil Suc.hyps(2)

by auto
then show ?thesis by blast

next
case (Cons x xs ′)
then obtain as where as-def : x ∈ set as as ∈ Y using Suc.prems(4) by auto
then have 0 : as @ (drop (length as) xs) = xs

using Suc.prems(2 ,3) distinct-sublist-first-remainder Cons by fast
then have ∀ bs ∈ (Y − {as}). sublist bs (drop (length as) xs)
using Suc.prems(1 ,2) as-def (2) by (metis DiffE insertI1 sublist-snd-if-fst-dsjnt)
moreover have ∀ cs ∈ (Y − {as}). ∀ bs ∈ (Y − {as}). cs = bs ∨ set cs ∩ set

bs = {}
using Suc.prems(1) by simp

moreover have distinct (drop (length as) xs) using Suc.prems(3) by simp
moreover have set (drop (length as) xs) =

⋃
(set ‘ (Y−{as}))

using Suc.prems(1 ,3 ,4) distinct-set-diff [of as drop (length as) xs] as-def (2)
0 by auto

moreover have n = Finite-Set.card (Y−{as}) using Suc.hyps(2) as-def (2)
Suc.prems(5) by simp

ultimately obtain ys where ys-def :
set ys = (Y−{as}) concat ys = drop (length as) xs distinct ys

using Suc.hyps(1) Suc.prems(5) by blast

318

then have set (as#ys) = Y ∧ concat (as#ys) = xs ∧ distinct (as#ys) using
0 as-def (2) by auto

then show ?thesis by blast
qed

qed(auto)

lemma extract-length-decr [termination-simp]:
List.extract P xs = Some (as,x,bs) =⇒ length bs < length xs
by (simp add: extract-Some-iff)

fun separate-P :: (′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ ′a list × ′a list where
separate-P P acc xs = (case List.extract P xs of

None ⇒ (acc,xs)
| Some (as,x,bs) ⇒ (case separate-P P (x#acc) bs of (acc ′,xs ′) ⇒ (acc ′,

as@xs ′)))

lemma separate-not-P-snd: separate-P P acc xs = (as,bs) =⇒ ∀ x ∈ set bs. ¬P x
proof(induction P acc xs arbitrary: as bs rule: separate-P.induct)

case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

case None
then have bs = xs using 1 .prems by simp
then show ?thesis using None by (simp add: extract-None-iff)

next
case (Some a)
then obtain cs x ds where x-def [simp]: a = (cs,x,ds) by(cases a) auto
then obtain acc ′ xs ′ where acc ′-def : separate-P P (x#acc) ds = (acc ′,xs ′) by

fastforce
then have (acc ′, cs@xs ′) = (as,bs) using 1 .prems Some by simp
moreover have ∀ x ∈ set xs ′. ¬P x using 1 .IH acc ′-def Some x-def by blast
ultimately show ?thesis using Some by (auto simp: extract-Some-iff)

qed
qed

lemma separate-input-impl-none: separate-P P acc xs = (acc,xs) =⇒ List.extract
P xs = None

using extract-None-iff separate-not-P-snd by fast

lemma separate-input-iff-none: List.extract P xs = None ←→ separate-P P acc xs
= (acc,xs)

using separate-input-impl-none by auto

lemma separate-P-fst-acc:
separate-P P acc xs = (as,bs) =⇒ ∃ as ′. as = as ′@acc ∧ (∀ x ∈ set as ′. P x)

proof(induction P acc xs arbitrary: as bs rule: separate-P.induct)
case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

319

case None
then show ?thesis using 1 .prems by simp

next
case (Some a)
then obtain cs x ds where x-def [simp]: a = (cs,x,ds) by(cases a) auto
then obtain acc ′ xs ′ where acc ′-def : separate-P P (x#acc) ds = (acc ′,xs ′) by

fastforce
then have (acc ′, cs@xs ′) = (as,bs) using 1 .prems Some by simp
then have ∃ as ′. as = as ′@(x#acc) ∧ (∀ x ∈ set as ′. P x)

using 1 .IH acc ′-def Some x-def by blast
then show ?thesis using Some by (auto simp: extract-Some-iff)

qed
qed

lemma separate-P-fst: separate-P P [] xs = (as,bs) =⇒ ∀ x ∈ set as. P x
using separate-P-fst-acc by fastforce

10.2 Optimal Solution for Lists of Fixed Sets
lemma distinct-seteq-set-length-eq:

x ∈ {ys. set ys = xs ∧ distinct ys} =⇒ length x = Finite-Set.card xs
using distinct-card by fastforce

lemma distinct-seteq-set-Cons:
[[Finite-Set.card xs = Suc n; x ∈ {ys. set ys = xs ∧ distinct ys}]]
=⇒ ∃ y ys. y # ys = x ∧ length ys = n ∧ distinct ys ∧ finite (set ys)

using distinct-seteq-set-length-eq[of x] Suc-length-conv[of n x] by force

lemma distinct-seteq-set-Cons ′:
[[Finite-Set.card xs = Suc n; x ∈ {ys. set ys = xs ∧ distinct ys}]]
=⇒ ∃ y ys zs. y # ys = x ∧ Finite-Set.card zs = n ∧ distinct ys ∧ set ys = zs

using distinct-seteq-set-length-eq[of x] Suc-length-conv[of n x] by force

lemma distinct-seteq-set-Cons ′′:
[[Finite-Set.card xs = Suc n; x ∈ {ys. set ys = xs ∧ distinct ys}]]
=⇒ ∃ y ys zs. y # ys = x ∧ y ∈ xs
∧ set ys = zs ∧ Finite-Set.card zs = n ∧ distinct ys ∧ finite zs

using distinct-seteq-set-Cons by fastforce

lemma distinct-seteq-set-Cons-in-set:
[[Finite-Set.card xs = Suc n; x ∈ {ys. set ys = xs ∧ distinct ys}]]
=⇒ ∃ y ys zs. y#ys = x ∧ y ∈ xs ∧ Finite-Set.card zs = n ∧ ys∈{ys. set ys =

zs ∧ distinct ys}
using distinct-seteq-set-Cons ′′ by auto

lemma distinct-seteq-set-Cons-in-set ′:
[[Finite-Set.card xs = Suc n; x ∈ {ys. set ys = xs ∧ distinct ys}]]
=⇒ ∃ y ys. x = y#ys ∧ y ∈ xs ∧ ys∈{ys. set ys = (xs − {y}) ∧ distinct ys}

using distinct-seteq-set-Cons ′′ by fastforce

320

lemma distinct-seteq-eq-set-union:
Finite-Set.card xs = Suc n
=⇒ {ys. set ys = xs ∧ distinct ys}
= {y # ys |y ys. y ∈ xs ∧ ys ∈ {as. set as = (xs − {y}) ∧ distinct as}}

using distinct-seteq-set-Cons-in-set ′ by force

lemma distinct-seteq-sub-set-union:
Finite-Set.card xs = Suc n
=⇒ {ys. set ys = xs ∧ distinct ys}
⊆ {y # ys |y ys. y ∈ xs ∧ ys ∈ {as. ∃ a ∈ xs. set as = (xs − {a}) ∧ distinct

as}}
using distinct-seteq-set-Cons-in-set ′ by fast

lemma finite-set-union: [[finite ys; ∀ y ∈ ys. finite y]] =⇒ finite (
⋃

y ∈ ys. y)
by simp

lemma Cons-set-eq-union-set:
{x # y | x y y ′. x ∈ xs ∧ y ∈ y ′ ∧ y ′ ∈ ys} = {x # y | x y. x ∈ xs ∧ y ∈ (

⋃
y

∈ ys. y)}
by blast

lemma finite-set-Cons-union-finite:
[[finite xs; finite ys; ∀ y ∈ ys. finite y]]
=⇒ finite {x # y | x y. x ∈ xs ∧ y ∈ (

⋃
y ∈ ys. y)}

by (simp add: finite-image-set2)

lemma finite-set-Cons-finite:
[[finite xs; finite ys; ∀ y ∈ ys. finite y]]
=⇒ finite {x # y | x y y ′. x ∈ xs ∧ y ∈ y ′ ∧ y ′ ∈ ys}

using Cons-set-eq-union-set[of xs] by (simp add: finite-image-set2)

lemma finite-set-Cons-finite ′:
[[finite xs; finite ys]] =⇒ finite {x # y |x y. x ∈ xs ∧ y ∈ ys}
by (auto simp add: finite-image-set2)

lemma Cons-set-alt: {x # y |x y. x ∈ xs ∧ y ∈ ys} = {zs. ∃ x y. x # y = zs ∧ x
∈ xs ∧ y ∈ ys}

by blast

lemma Cons-set-sub:
assumes Finite-Set.card xs = Suc n
shows {ys. set ys = xs ∧ distinct ys}
⊆ {x # y |x y. x ∈ xs ∧ y ∈ (

⋃
y ∈ xs. {as. set as = xs − {y} ∧ distinct as})}

using distinct-seteq-eq-set-union[OF assms] by auto

lemma distinct-seteq-finite: finite xs =⇒ finite {ys. set ys = xs ∧ distinct ys}
by(blast intro: rev-finite-subset[OF finite-subset-distinct])

321

lemma distinct-setsub-split:
{ys. set ys ⊆ xs ∧ distinct ys}
= {ys. set ys = xs ∧ distinct ys} ∪ (

⋃
y ∈ xs. {ys. set ys ⊆ (xs−{y}) ∧ distinct

ys})
by blast

lemma valid-UV-lists-finite:
finite xs =⇒ finite {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct

x}
using distinct-seteq-finite by force

lemma valid-UV-lists-r-subset:
{x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x ∧ take 1 x = [r]}
⊆ {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x}
by blast

lemma valid-UV-lists-r-finite:
finite xs =⇒ finite {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct

x ∧ take 1 x = [r]}
using valid-UV-lists-finite finite-subset[OF valid-UV-lists-r-subset] by fast

lemma valid-UV-lists-arg-min-ex-aux:
[[finite ys; ys 6= {}; ys = {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧

distinct x}]]
=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z

using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma valid-UV-lists-arg-min-ex:
[[finite xs; ys 6= {}; ys = {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧

distinct x}]]
=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z

using valid-UV-lists-finite valid-UV-lists-arg-min-ex-aux[of ys] by blast

lemma valid-UV-lists-arg-min-r-ex-aux:
[[finite ys; ys 6= {};

ys = {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x ∧ take 1 x
= [r]}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma valid-UV-lists-arg-min-r-ex:
[[finite xs; ys 6= {};

ys = {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x ∧ take 1 x
= [r]}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using valid-UV-lists-r-finite[of xs] valid-UV-lists-arg-min-r-ex-aux[of ys] by blast

lemma valid-UV-lists-nemtpy:
assumes finite xs set (U@V) ⊆ xs distinct (U@V)

322

shows {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x} 6= {}
proof −

obtain cs where set cs = xs − set (U@V) ∧ distinct cs
using assms(1) finite-distinct-list[of xs − set (U@V)] by blast

then have []@U@[]@V@cs = U@V@cs set (U@V@cs) = xs distinct (U@V@cs)
using assms by auto

then show ?thesis by blast
qed

lemma valid-UV-lists-nemtpy ′:
[[finite xs; set U ∩ set V = {}; set U ⊆ xs; set V ⊆ xs; distinct U ; distinct V]]
=⇒ {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x} 6= {}

using valid-UV-lists-nemtpy[of xs] by simp

lemma valid-UV-lists-nemtpy-r :
assumes finite xs and set (U@V) ⊆ xs and distinct (U@V)

and take 1 U = [r] ∨ r /∈ set U ∪ set V and r ∈ xs
shows {x. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x ∧ take 1

x = [r]} 6= {}
proof(cases take 1 U = [r])

case True
obtain cs where set cs = xs − set (U@V) ∧ distinct cs

using assms(1) finite-distinct-list by auto
then have []@U@[]@V@cs = U@V@cs set (U@V@cs) = xs distinct (U@V@cs)

using assms by auto
then show ?thesis using True take1-singleton-app by fast

next
case False
obtain cs where cs-def : set cs = xs − ({r} ∪ set (U@V)) ∧ distinct cs

using assms(1) finite-distinct-list by auto
then have [r]@U@[]@V@cs = [r]@U@V@cs set ([r]@U@V@cs) = xs distinct

([r]@U@V@cs)
take 1 ([r]@U@V@cs) = [r]

using assms False by auto
then show ?thesis by (smt (verit, del-insts) empty-Collect-eq)

qed

lemma valid-UV-lists-nemtpy-r ′:
[[finite xs; set U ∩ set V = {}; set U ⊆ xs; set V ⊆ xs; distinct U ; distinct V ;

take 1 U = [r] ∨ r /∈ set U ∪ set V ; r ∈ xs]]
=⇒ {x. ∃ as bs cs. as@U@bs@V@cs = x ∧ set x = xs ∧ distinct x ∧ take 1 x

= [r]} 6= {}
using valid-UV-lists-nemtpy-r [of xs] by simp

lemma valid-UV-lists-arg-min-ex ′:
[[finite xs; set U ∩ set V = {}; set U ⊆ xs; set V ⊆ xs; distinct U ; distinct V ;

ys = {x. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x}]]
=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z

using valid-UV-lists-arg-min-ex[of xs] valid-UV-lists-nemtpy ′[of xs] by simp

323

lemma valid-UV-lists-arg-min-r-ex ′:
[[finite xs; set U ∩ set V = {}; set U ⊆ xs; set V ⊆ xs; distinct U ; distinct V ;

take 1 U = [r] ∨ r /∈ set U ∪ set V ; r ∈ xs;
ys = {x. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x ∧ take 1

x = [r]}]]
=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z

using valid-UV-lists-arg-min-r-ex[of xs] valid-UV-lists-nemtpy-r ′[of xs] by simp

lemma valid-UV-lists-alt:
assumes P = (λx. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x)
shows {x. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x} = {ys.

P ys}
using assms by simp

lemma valid-UV-lists-argmin-ex:
fixes cost :: ′a list ⇒ real
assumes P = (λx. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x)

and finite xs
and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V

shows ∃ as ′ bs ′ cs ′. P (as ′@U@bs ′@V@cs ′) ∧
(∀ as bs cs. P (as@U@bs@V@cs) −→ cost (as ′@U@bs ′@V@cs ′) ≤ cost

(as@U@bs@V@cs))
proof −

obtain y where y ∈ {ys. P ys} ∧ (∀ z ∈ {ys. P ys}. cost y ≤ cost z)
using valid-UV-lists-arg-min-ex ′[OF assms(2−7)] assms(1) by fastforce

then show ?thesis using assms(1) by blast
qed

lemma valid-UV-lists-argmin-ex-noP:
fixes cost :: ′a list ⇒ real
assumes finite xs

and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V

shows ∃ as ′ bs ′ cs ′. set (as ′ @ U @ bs ′ @ V @ cs ′) = xs ∧ distinct (as ′ @ U
@ bs ′ @ V @ cs ′)
∧ (∀ as bs cs. set (as @ U @ bs @ V @ cs) = xs ∧ distinct (as @ U @ bs @ V

@ cs)
−→ cost (as ′ @ U @ bs ′ @ V @ cs ′) ≤ cost (as @ U @ bs @ V @ cs))

using valid-UV-lists-argmin-ex[OF refl assms] by metis

lemma valid-UV-lists-argmin-r-ex:

324

fixes cost :: ′a list ⇒ real
assumes P = (λx. (∃ as bs cs. as@U@bs@V@cs = x) ∧ set x = xs ∧ distinct x
∧ take 1 x = [r])

and finite xs
and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V
and take 1 U = [r] ∨ r /∈ set U ∪ set V
and r ∈ xs

shows ∃ as ′ bs ′ cs ′. P (as ′@U@bs ′@V@cs ′) ∧
(∀ as bs cs. P (as@U@bs@V@cs) −→ cost (as ′@U@bs ′@V@cs ′) ≤ cost

(as@U@bs@V@cs))
proof −

obtain y where y ∈ {ys. P ys} ∧ (∀ z ∈ {ys. P ys}. cost y ≤ cost z)
using valid-UV-lists-arg-min-r-ex ′[OF assms(2−9)] assms(1) by fastforce

then show ?thesis using assms(1) by blast
qed

lemma valid-UV-lists-argmin-r-ex-noP:
fixes cost :: ′a list ⇒ real
assumes finite xs

and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V
and take 1 U = [r] ∨ r /∈ set U ∪ set V
and r ∈ xs

shows ∃ as ′ bs ′ cs ′. set (as ′ @ U @ bs ′ @ V @ cs ′) = xs
∧ distinct (as ′ @ U @ bs ′ @ V @ cs ′) ∧ take 1 (as ′ @ U @ bs ′ @ V @ cs ′) =

[r]
∧ (∀ as bs cs. set (as @ U @ bs @ V @ cs) = xs
∧ distinct (as @ U @ bs @ V @ cs) ∧ take 1 (as @ U @ bs @ V @ cs) = [r]
−→ cost (as ′ @ U @ bs ′ @ V @ cs ′) ≤ cost (as @ U @ bs @ V @ cs))

using valid-UV-lists-argmin-r-ex[OF refl assms] by metis

lemma valid-UV-lists-argmin-r-ex-noP ′:
fixes cost :: ′a list ⇒ real
assumes finite xs

and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V
and take 1 U = [r] ∨ r /∈ set U ∪ set V
and r ∈ xs

shows ∃ as ′ bs ′ cs ′. set (as ′ @ U @ bs ′ @ V @ cs ′) = xs

325

∧ distinct (as ′ @ U @ bs ′ @ V @ cs ′) ∧ take 1 (as ′ @ U @ bs ′ @ V @ cs ′) =
[r]
∧ (∀ as bs cs. set (as @ U @ bs @ V @ cs) = xs
∧ distinct (as @ U @ bs @ V @ cs) ∧ take 1 (as @ U @ bs @ V @ cs) = [r]
−→ cost (rev (as ′ @ U @ bs ′ @ V @ cs ′)) ≤ cost (rev (as @ U @ bs @ V

@ cs)))
using valid-UV-lists-argmin-r-ex-noP[OF assms] by meson

lemma take1-split-nempty: ys 6= [] =⇒ take 1 (xs@ys@zs) = take 1 (xs@ys)
by (metis append.assoc append-Nil2 gr-zeroI length-0-conv less-one same-append-eq

take-append take-eq-Nil zero-less-diff)

lemma take1-elem: [[take 1 (xs@ys) = [r]; r ∈ set xs]] =⇒ take 1 xs = [r]
using in-set-conv-decomp-last[of r xs] by auto

lemma take1-nelem: [[take 1 (xs@ys) = [r]; r /∈ set ys]] =⇒ take 1 xs = [r]
using take1-elem[of xs ys r] append-self-conv2 [of xs] hd-in-set[of ys]
by (fastforce dest: hd-eq-take1)

lemma take1-split-nelem-nempty: [[take 1 (xs@ys@zs) = [r]; ys 6= []; r /∈ set ys]]
=⇒ take 1 xs = [r]

using take1-split-nempty take1-nelem by fastforce

lemma take1-empty-if-nelem: [[take 1 (as@bs@cs) = [r]; r /∈ set as]] =⇒ as = []
using take1-split-nelem-nempty[of [] as bs@cs] by auto

lemma take1-empty-if-mid: [[take 1 (as@bs@cs) = [r]; r ∈ set bs; distinct (as@bs@cs)]]
=⇒ as = []

using take1-empty-if-nelem by fastforce

lemma take1-mid-if-elem:
[[take 1 (as@bs@cs) = [r]; r ∈ set bs; distinct (as@bs@cs)]] =⇒ take 1 bs = [r]
using take1-empty-if-mid[of as bs cs] by (fastforce intro: take1-elem)

lemma contr-optimal-nogap-no-r :
assumes asi rank r cost

and rank (rev V) ≤ rank (rev U)
and finite xs
and set U ∩ set V = {}
and set U ⊆ xs
and set V ⊆ xs
and distinct U
and distinct V
and r /∈ set U ∪ set V
and r ∈ xs

shows ∃ as ′ cs ′. distinct (as ′ @ U @ V @ cs ′) ∧ take 1 (as ′ @ U @ V @ cs ′)
= [r]

∧ set (as ′ @ U @ V @ cs ′) = xs ∧ (∀ as bs cs. set (as @ U @ bs @ V @ cs)
= xs

326

∧ distinct (as @ U @ bs @ V @ cs) ∧ take 1 (as @ U @ bs @ V @ cs) =
[r]

−→ cost (rev (as ′ @ U @ V @ cs ′)) ≤ cost (rev (as @ U @ bs @ V @
cs)))
proof −

define P where P ys ≡ set ys = xs ∧ distinct ys ∧ take 1 ys = [r] for ys
obtain as ′ bs ′ cs ′ where bs ′-def :
set (as ′@U@bs ′@V@cs ′) = xs distinct (as ′@U@bs ′@V@cs ′) take 1 (as ′@U@bs ′@V@cs ′)

= [r]
∀ as bs cs. P (as @ U @ bs @ V @ cs) −→

cost (rev (as ′ @ U @ bs ′ @ V @ cs ′)) ≤ cost (rev (as @ U @ bs @ V @
cs))

using valid-UV-lists-argmin-r-ex-noP ′[OF assms(3−8)] assms(9 ,10) unfold-
ing P-def by blast

then consider U = [] | V = [] ∨ bs ′ = []
| rank (rev bs ′) ≤ rank (rev U) U 6= [] bs ′ 6= []
| rank (rev U) ≤ rank (rev bs ′) U 6= [] V 6= [] bs ′ 6= []
by fastforce

then show ?thesis
proof(cases)

case 1
then have ∀ as bs cs. P (as @ U @ bs @ V @ cs) −→

cost (rev ((as ′@bs ′)@U@V@cs ′)) ≤ cost (rev (as @ U @ bs @ V @ cs))
using bs ′-def (4) by simp

moreover have set ((as ′@bs ′)@U@V@cs ′) = xs using bs ′-def (1) by auto
moreover have distinct ((as ′@bs ′)@U@V@cs ′) using bs ′-def (2) by auto
moreover have take 1 ((as ′@bs ′)@U@V@cs ′) = [r] using bs ′-def (3) 1 by

auto
ultimately show ?thesis unfolding P-def by blast

next
case 2
then have ∀ as bs cs. P (as @ U @ bs @ V @ cs) −→

cost (rev (as ′@U@V@bs ′@cs ′)) ≤ cost (rev (as @ U @ bs @ V @ cs))
using bs ′-def (4) by auto

moreover have set (as ′@U@V@bs ′@cs ′) = xs using bs ′-def (1) by auto
moreover have distinct (as ′@U@V@bs ′@cs ′) using bs ′-def (2) by auto
moreover have take 1 (as ′@U@V@bs ′@cs ′) = [r] using bs ′-def (3) 2 by auto
ultimately show ?thesis unfolding P-def by blast

next
case 3
have 0 : distinct (as ′@bs ′@U@V@cs ′) using bs ′-def (2) by auto
have 1 : take 1 (as ′@bs ′@U@V@cs ′) = [r]
using bs ′-def (3) assms(9) 3 (2) take1-split-nelem-nempty[of as ′ U bs ′@V@cs ′]

by simp
then have cost (rev (as ′@bs ′@U@V@cs ′)) ≤ cost (rev (as ′@U@bs ′@V@cs ′))

using asi-le-rfst[OF assms(1) 3 (1 ,3 ,2) 0] bs ′-def (3) by blast
then have ∀ as bs cs. P (as @ U @ bs @ V @ cs) −→

cost (rev ((as ′@bs ′)@U@V@cs ′)) ≤ cost (rev (as @ U @ bs @ V @ cs))
using bs ′-def (4) by fastforce

327

moreover have set ((as ′@bs ′)@U@V@cs ′) = xs using bs ′-def (1) by auto
moreover have distinct ((as ′@bs ′)@U@V@cs ′) using 0 by simp
moreover have take 1 ((as ′@bs ′)@U@V@cs ′) = [r] using 1 by simp
ultimately show ?thesis using P-def by blast

next
case 4
then have 3 : rank (rev V) ≤ rank (rev bs ′) using assms(2) by simp
have 0 : distinct ((as ′@U)@V@bs ′@cs ′) using bs ′-def (2) by auto
have 1 : take 1 (as ′@U@V@bs ′@cs ′) = [r]
using bs ′-def (3) assms(9) 4 (2) take1-split-nelem-nempty[of as ′ U bs ′@V@cs ′]

by simp
then have cost (rev (as ′@U@V@bs ′@cs ′)) ≤ cost (rev ((as ′@U)@bs ′@V@cs ′))

using asi-le-rfst[OF assms(1) 3 4 (3 ,4) 0] bs ′-def (3) by simp
then have ∀ as bs cs. P (as @ U @ bs @ V @ cs) −→

cost (rev (as ′@U@V@bs ′@cs ′)) ≤ cost (rev (as @ U @ bs @ V @ cs))
using bs ′-def (4) by fastforce

moreover have set (as ′@U@V@bs ′@cs ′) = xs using bs ′-def (1) by auto
moreover have distinct (as ′@U@V@bs ′@cs ′) using 0 by simp
ultimately show ?thesis using P-def 1 by blast

qed
qed

fun combine-lists-P :: (′a list ⇒ bool) ⇒ ′a list ⇒ ′a list list ⇒ ′a list list where
combine-lists-P - y [] = [y]
| combine-lists-P P y (x#xs) = (if P (x@y) then combine-lists-P P (x@y) xs else
(x@y)#xs)

fun make-list-P :: (′a list ⇒ bool) ⇒ ′a list list ⇒ ′a list list ⇒ ′a list list where
make-list-P P acc xs = (case List.extract P xs of

None ⇒ rev acc @ xs
| Some (as,y,bs) ⇒ make-list-P P (combine-lists-P P y (rev as @ acc)) bs)

lemma combine-lists-concat-rev-eq: concat (rev (combine-lists-P P y xs)) = concat
(rev xs) @ y

by (induction P y xs rule: combine-lists-P.induct) auto

lemma make-list-concat-rev-eq: concat (make-list-P P acc xs) = concat (rev acc)
@ concat xs
proof(induction P acc xs rule: make-list-P.induct)

case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

case (Some a)
then obtain as x bs where x-def [simp]: a = (as,x,bs) by(cases a) auto
then have concat (make-list-P P acc xs)
= concat (rev (combine-lists-P P x (rev as @ acc))) @ concat bs
using 1 Some by simp

also have . . . = concat (rev acc) @ concat (as@x#bs)
using combine-lists-concat-rev-eq[of P] by simp

328

finally show ?thesis using Some extract-SomeE by force
qed(simp)

qed

lemma combine-lists-sublists:
∃ x ∈ {y} ∪ set xs. sublist as x =⇒ ∃ x ∈ set (combine-lists-P P y xs). sublist as

x
proof (induction P y xs rule: combine-lists-P.induct)

case (2 P y x xs)
then show ?case
proof(cases sublist as x ∨ sublist as y)

case True
then have sublist as (x@y) using sublist-order .dual-order .trans by blast
then show ?thesis using 2 by force

next
case False
then show ?thesis using 2 by simp

qed
qed(simp)

lemma make-list-sublists:
∃ x ∈ set acc ∪ set xs. sublist cs x =⇒ ∃ x ∈ set (make-list-P P acc xs). sublist

cs x
proof(induction P acc xs rule: make-list-P.induct)

case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

case (Some a)
then obtain as x bs where x-def [simp]: a = (as,x,bs) by(cases a) auto
then have make-list-P P acc xs = make-list-P P (combine-lists-P P x (rev as

@ acc)) bs
using Some by simp

then have ∃ a ∈ set (combine-lists-P P x (rev as @ acc)) ∪ set bs. sublist cs a
using Some combine-lists-sublists[of x rev as @ acc cs] 1 .prems
by (auto simp: extract-Some-iff)

then show ?thesis using 1 Some by simp
qed(simp)

qed

lemma combine-lists-nempty: [[[] /∈ set xs; y 6= []]] =⇒ [] /∈ set (combine-lists-P P
y xs)

by (induction P y xs rule: combine-lists-P.induct) auto

lemma make-list-nempty:
[[[] /∈ set acc; [] /∈ set xs]] =⇒ [] /∈ set (make-list-P P acc xs)

proof (induction P acc xs rule: make-list-P.induct)
case (1 P acc xs)
show ?case
proof(cases List.extract P xs)

329

case None
then show ?thesis using 1 by simp

next
case (Some a)

then show ?thesis using 1 by (auto simp: extract-Some-iff combine-lists-nempty)
qed

qed

lemma combine-lists-notP:
∀ x∈set xs. ¬P x =⇒ (∃ x. combine-lists-P P y xs = [x]) ∨ (∀ x∈set (combine-lists-P

P y xs). ¬P x)
by (induction P y xs rule: combine-lists-P.induct) auto

lemma combine-lists-single: xs = [x] =⇒ combine-lists-P P y xs = [x@y]
by auto

lemma combine-lists-lastP:
P (last xs) =⇒ (∃ x. combine-lists-P P y xs = [x]) ∨ (P (last (combine-lists-P P

y xs)))
by (induction P y xs rule: combine-lists-P.induct) auto

lemma make-list-notP:
[[(∀ x ∈ set acc. ¬P x) ∨ P (last acc)]]
=⇒ (∀ x∈set (make-list-P P acc xs). ¬P x) ∨ (∃ y ys. make-list-P P acc xs = y

ys ∧ P y)
proof(induction P acc xs rule: make-list-P.induct)

case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

case None
then show ?thesis
proof(cases ∀ x ∈ set acc. ¬P x)

case True
from None have ∀ x ∈ set xs. ¬ P x by (simp add: extract-None-iff)
then show ?thesis using True 1 .prems None by auto

next
case False
then have acc 6= [] by auto
then have make-list-P P acc xs = last acc # rev (butlast acc) @ xs using

None by simp
then show ?thesis using False 1 .prems by blast

qed
next

case (Some a)
then obtain as x bs where x-def [simp]: a = (as,x,bs) by(cases a) auto
show ?thesis
proof(cases ∀ x ∈ set acc. ¬P x)

case True
then have ∀ x ∈ set (rev as @ acc). ¬P x using Some by (auto simp:

330

extract-Some-iff)
then have (∀ x∈set (combine-lists-P P x (rev as @ acc)). ¬ P x)

∨ P (last (combine-lists-P P x (rev as @ acc)))
using combine-lists-notP[of rev as @ acc P] by force

then show ?thesis using 1 .IH Some by simp
next

case False
then have P (last acc) ∧ acc 6= [] using 1 .prems by auto
then have P (last (rev as @ acc)) using 1 .prems by simp
then have (∀ x∈set (combine-lists-P P x (rev as @ acc)). ¬ P x)

∨ P (last (combine-lists-P P x (rev as @ acc)))
using combine-lists-lastP[of P] by force

then show ?thesis using 1 .IH Some by simp
qed

qed
qed

corollary make-list-notP-empty-acc:
(∀ x∈set (make-list-P P [] xs). ¬P x) ∨ (∃ y ys. make-list-P P [] xs = y # ys ∧

P y)
using make-list-notP[of []] by auto

definition unique-set-r :: ′a ⇒ ′a list set ⇒ ′a list ⇒ bool where
unique-set-r r Y ys ←→ set ys =

⋃
(set ‘ Y) ∧ distinct ys ∧ take 1 ys = [r]

context directed-tree
begin

definition fwd-sub :: ′a ⇒ ′a list set ⇒ ′a list ⇒ bool where
fwd-sub r Y ys ←→ unique-set-r r Y ys ∧ forward ys ∧ (∀ xs ∈ Y . sublist xs ys)

lemma distinct-mid-unique1 : [[distinct (xs@U@ys); U 6=[]; xs@U@ys = as@U@bs]]
=⇒ as = xs

using distinct-app-trans-r distinct-ys-not-xs[of xs U@ys] hd-append2 [of U] ap-
pend-is-Nil-conv[of U]

by (metis append-Cons-eq-iff distinct.simps(2) list.exhaust-sel list.set-sel(1))

lemma distinct-mid-unique2 : [[distinct (xs@U@ys); U 6=[]; xs@U@ys = as@U@bs]]
=⇒ ys = bs

using distinct-mid-unique1 by blast

lemma concat-all-sublist: ∀ x ∈ set xs. sublist x (concat xs)
using split-list by force

lemma concat-all-sublist-rev: ∀ x ∈ set xs. sublist x (concat (rev xs))
using split-list by force

lemma concat-all-sublist1 :
assumes distinct (as@U@bs)

331

and concat cs @ U @ concat ds = as@U@bs
and U 6= []
and set (cs@U#ds) = Y

shows ∃X . X ⊆ Y ∧ set as =
⋃

(set ‘ X) ∧ (∀ xs ∈ X . sublist xs as)
proof −

have eq: concat cs = as
using distinct-mid-unique1 [of concat cs U concat ds] assms(1−3) by simp

then have ∀ xs ∈ set cs. sublist xs as using concat-all-sublist by blast
then show ?thesis using eq assms(4) by fastforce

qed

lemma concat-all-sublist2 :
assumes distinct (as@U@bs)

and concat cs @ U @ concat ds = as@U@bs
and U 6= []
and set (cs@U#ds) = Y

shows ∃X . X ⊆ Y ∧ set bs =
⋃
(set ‘ X) ∧ (∀ xs ∈ X . sublist xs bs)

proof −
have eq: concat ds = bs

using distinct-mid-unique1 [of concat cs U concat ds] assms(1−3) by simp
then have ∀ xs ∈ set ds. sublist xs bs using concat-all-sublist by blast
then show ?thesis using eq assms(4) by fastforce

qed

lemma concat-split-mid:
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and finite Y
and U ∈ Y
and distinct (as@U@bs)
and set (as@U@bs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs)
and U 6= []

shows ∃ cs ds. concat cs = as ∧ concat ds = bs ∧ set (cs@U#ds) = Y ∧
distinct (cs@U#ds)
proof −

obtain ys where ys-def : set ys = Y concat ys = as@U@bs distinct ys
using list-of-sublist-concat-eq[OF assms(1 ,6 ,4 ,5 ,2)] by blast

then obtain cs ds where cs-def : cs@U#ds = ys
using assms(3) in-set-conv-decomp-first[of U ys] by blast

then have List.extract ((=) U) ys = Some (cs,U ,ds)
using extract-Some-iff [of (=) U] ys-def (3) by auto

then have concat cs @ U @ concat ds = as@U@bs using ys-def (2) cs-def by
auto

then have concat cs = as ∧ concat ds = bs
using distinct-mid-unique1 [of concat cs U] assms(4 ,7) by auto

then show ?thesis using ys-def (1 ,3) cs-def by blast
qed

lemma mid-all-sublists-set1 :

332

assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and finite Y
and U ∈ Y
and distinct (as@U@bs)
and set (as@U@bs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs)
and U 6= []

shows ∃X . X ⊆ Y ∧ set as =
⋃

(set ‘ X) ∧ (∀ xs ∈ X . sublist xs as)
proof −

obtain ys where ys-def : set ys = Y concat ys = as@U@bs distinct ys
using list-of-sublist-concat-eq[OF assms(1 ,6 ,4 ,5 ,2)] by blast

then obtain cs ds where cs-def : cs@U#ds = ys
using assms(3) in-set-conv-decomp-first[of U ys] by blast

then have List.extract ((=) U) ys = Some (cs,U ,ds)
using extract-Some-iff [of (=) U] ys-def (3) by auto

then have concat cs @ U @ concat ds = as@U@bs using ys-def (2) cs-def by
auto
then show ?thesis using cs-def ys-def (1) concat-all-sublist1 [OF assms(4)] assms(7)

by force
qed

lemma mid-all-sublists-set2 :
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and finite Y
and U ∈ Y
and distinct (as@U@bs)
and set (as@U@bs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs)
and U 6= []

shows ∃X . X ⊆ Y ∧ set bs =
⋃
(set ‘ X) ∧ (∀ xs ∈ X . sublist xs bs)

proof −
obtain ys where ys-def : set ys = Y concat ys = as@U@bs distinct ys

using list-of-sublist-concat-eq[OF assms(1 ,6 ,4 ,5 ,2)] by blast
then obtain cs ds where cs-def : cs@U#ds = ys

using assms(3) in-set-conv-decomp-first[of U ys] by blast
then have List.extract ((=) U) ys = Some (cs,U ,ds)

using extract-Some-iff [of (=) U] ys-def (3) by auto
then have concat cs @ U @ concat ds = as@U@bs using ys-def (2) cs-def by

auto
then show ?thesis using cs-def ys-def (1) concat-all-sublist2 [OF assms(4)] assms(7)

by force
qed

lemma nonempty-notin-distinct-prefix:
assumes distinct (as@bs@V@cs) and concat as ′ = as and V 6= []
shows V /∈ set as ′

proof
assume V ∈ set as ′

then have set V ⊆ set as using assms(2) by auto

333

then have set as ∩ set V 6= {} using assms(3) by (simp add: Int-absorb1)
then show False using assms(1) by auto

qed

lemma concat-split-UV :
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and finite Y
and U ∈ Y
and V ∈ Y
and distinct (as@U@bs@V@cs)
and set (as@U@bs@V@cs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)
and U 6= []
and V 6= []

shows ∃ as ′ bs ′ cs ′. concat as ′ = as ∧ concat bs ′ = bs ∧ concat cs ′ = cs
∧ set (as ′@U#bs ′@V#cs ′) = Y ∧ distinct (as ′@U#bs ′@V#cs ′)

proof −
obtain as ′ ds where as ′-def :

concat as ′= as concat ds = bs@V@cs set (as ′@U#ds) = Y distinct (as ′@U#ds)
using concat-split-mid[OF assms(1−3 ,5−8)] by auto

have 0 : distinct (bs@V@cs) using assms(5) by simp
have V /∈ set as ′

using assms(5 ,9) as ′-def (1) nonempty-notin-distinct-prefix[of as U@bs] by
auto

moreover have V 6= U using assms(5 ,8 ,9) empty-if-sublist-dsjnt[of U] by auto
ultimately have V ∈ set ds using as ′-def (3) assms(4) by auto
then show ?thesis

using as ′-def 0 assms(9) concat-append distinct-mid-unique1
by (metis concat.simps(2) distinct-mid-unique2 split-list)

qed

lemma cost-decr-if-noarc-lessrank:
assumes asi rank r cost

and b 6= []
and r /∈ set U
and U 6= []
and set (as@U@bs@cs) =

⋃
(set ‘ Y)

and distinct (as@U@bs@cs)
and take 1 (as@U@bs@cs) = [r]
and forward (as@U@bs@cs)
and concat (b#bs ′) = bs
and (∀ xs ∈ Y . sublist xs as ∨ sublist xs U

∨ (∃ x ∈ set (b#bs ′). sublist xs x) ∨ sublist xs cs)
and ¬(∃ x ∈ set U . ∃ y ∈ set b. x →T y)
and rank (rev b) < rank (rev U)

shows fwd-sub r Y (as@b@U@concat bs ′@cs)
∧ cost (rev (as@b@U@concat bs ′@cs)) < cost (rev (as@U@bs@cs))

proof −
have rank-yU : rank (rev b) < rank (rev U) using assms(12) by simp

334

have 0 : take 1 (as@b@U@concat bs ′@cs) = [r]
using take1-singleton-app take1-split-nelem-nempty[OF assms(7 ,4 ,3)] by fast

have 1 : distinct (as@b@U@ concat bs ′@cs) using assms(6 ,9) by force
have take 1 (as@U@b@concat bs ′@cs) = [r] using assms(7 ,9) by force
then have cost-lt: cost (rev (as@b@U@concat bs ′@cs)) < cost (rev (as@U@bs@cs))

using asi-lt-rfst[OF assms(1) rank-yU assms(2 ,4) 1 0] assms(9) by fastforce
have P: set (as@b@U@concat bs ′@cs) =

⋃
(set ‘ Y) using assms(5 ,9) by

fastforce
then have P: unique-set-r r Y (as@b@U@concat bs ′@cs)

using 0 1 unfolding unique-set-r-def by blast
have (∀ xs ∈ Y . sublist xs as ∨ sublist xs U ∨ sublist xs b

∨ sublist xs (concat bs ′) ∨ sublist xs cs)
using assms(10) concat-all-sublist[of bs ′]

sublist-order .dual-order .trans[where a = concat bs ′] by auto
then have all-sub: ∀ xs ∈ Y . sublist xs (as@b@U@concat bs ′@cs)

by (metis sublist-order .order .trans sublist-append-leftI sublist-append-rightI)
have as 6= [] using take1-split-nelem-nempty[OF assms(7 ,4 ,3)] by force
then have forward (as@b@U@concat bs ′@cs)

using move-mid-forward-if-noarc assms(8 ,9 ,11) by auto
then show ?thesis using assms(12) P all-sub cost-lt fwd-sub-def by blast

qed

lemma cost-decr-if-noarc-lessrank ′:
assumes asi rank r cost

and b 6= []
and r /∈ set U
and U 6= []
and set (as@U@bs@cs) =

⋃
(set ‘ Y)

and distinct (as@U@bs@cs)
and take 1 (as@U@bs@cs) = [r]
and forward (as@U@bs@cs)
and concat (b#bs ′) = bs
and (∀ xs ∈ Y . sublist xs as ∨ sublist xs U

∨ (∃ x ∈ set (b#bs ′). sublist xs x) ∨ sublist xs cs)
and ¬(∃ x ∈ set U . ∃ y ∈ set b. x →T y)
and rank (rev b) < rank (rev V)
and rank (rev V) ≤ rank (rev U)

shows fwd-sub r Y (as@b@U@concat bs ′@cs)
∧ cost (rev (as@b@U@concat bs ′@cs)) < cost (rev (as@U@bs@cs))

using cost-decr-if-noarc-lessrank[OF assms(1−11)] assms(12 ,13) by simp

lemma sublist-exists-append:
∃ a∈set ((x # xs) @ [b]). sublist ys a =⇒ ∃ a∈set(xs @ [x@b]). sublist ys a
using sublist-order .dual-order .trans by auto

lemma sublist-set-concat-cases:
∃ a∈set ((x # xs) @ [b]). sublist ys a =⇒ sublist ys (concat (rev xs)) ∨ sublist ys

x ∨ sublist ys b
using sublist-order .dual-order .trans concat-all-sublist-rev[of xs] by auto

335

lemma sublist-set-concat-or-cases-aux1 :
sublist ys as ∨ sublist ys U ∨ sublist ys cs
=⇒ sublist ys (as @ U @ concat (rev xs)) ∨ sublist ys cs

using sublist-order .dual-order .trans by blast

lemma sublist-set-concat-or-cases-aux2 :
∃ a∈set ((x # xs) @ [b]). sublist ys a
=⇒ sublist ys (as @ U @ concat (rev xs)) ∨ sublist ys x ∨ sublist ys b

using sublist-set-concat-cases[of x xs b ys] sublist-order .dual-order .trans by blast

lemma sublist-set-concat-or-cases:
sublist ys as ∨ sublist ys U ∨ (∃ a∈set ((x#xs) @ [b]). sublist ys a) ∨ sublist ys

cs =⇒
sublist ys (as@U@ concat (rev xs)) ∨ sublist ys x ∨ (∃ a∈set [b]. sublist ys a) ∨

sublist ys cs
using sublist-set-concat-or-cases-aux1 [of ys as U cs] sublist-set-concat-or-cases-aux2 [of

x xs b ys]
by auto

corollary not-reachable1-append-if-not-old:
[[¬ (∃ z∈set U . ∃ y∈set b. z →+

T y); set U ∩ set x = {}; forward x;
∃ z∈set x . ∃ y∈set b. z →T y]]
=⇒ ¬ (∃ z∈set U . ∃ y∈set (x@b). z →+

T y)
using reachable1-append-old-if-arcU [of x b U] by auto

lemma combine-lists-notP:
assumes asi rank r cost

and b 6= []
and r /∈ set U
and U 6= []
and set (as@U@bs@cs) =

⋃
(set ‘ Y)

and distinct (as@U@bs@cs)
and take 1 (as@U@bs@cs) = [r]
and forward (as@U@bs@cs)
and concat (rev ys @ [b]) = bs
and (∀ xs ∈ Y . sublist xs as ∨ sublist xs U

∨ (∃ x ∈ set (ys @ [b]). sublist xs x) ∨ sublist xs cs)
and rank (rev V) ≤ rank (rev U)
and ¬(∃ x ∈ set U . ∃ y ∈ set b. x →+

T y)
and rank (rev b) < rank (rev V)
and P = (λx. rank (rev x) < rank (rev V))
and ∀ x∈set ys. ¬P x
and ∀ xs. fwd-sub r Y xs −→ cost (rev (as@U@bs@cs)) ≤ cost (rev xs)
and ∀ x ∈ set ys. x 6= []
and ∀ x ∈ set ys. forward x
and forward b

shows ∀ x∈set (combine-lists-P P b ys). ¬P x ∧ forward x
using assms proof(induction P b ys rule: combine-lists-P.induct)

336

case (1 P b)
have 0 : concat (b#[]) = bs using 1 .prems(9) by simp
have 2 : (∀ xs ∈ Y . sublist xs as ∨ sublist xs U

∨ (∃ x ∈ set ([b]). sublist xs x) ∨ sublist xs cs) using 1 .prems(10) by simp
have 3 : ¬ (∃ x∈set U . ∃ y∈set b. x →T y) using 1 .prems(12) by blast
show ?case

using cost-decr-if-noarc-lessrank ′[OF 1 (1−8) 0 2 3 1 (13 ,11)] 1 (16) by auto
next

case (2 P b x xs)
have take 1 as = [r] using 2 .prems(3 ,4 ,7) take1-split-nelem-nempty by fast
then have r ∈ set as using in-set-takeD[of r 1] by simp
then have r /∈ set x using 2 .prems(6 ,9) by force
then have x 6= [] using 2 .prems(17) by simp

Arc between x and b otherwise not optimal.
have 4 : as@U@bs@cs = (as@U@concat (rev xs)) @ x @ b @ cs using 2 .prems(9)

by simp
have set: set ((as@U@concat (rev xs)) @ x @ b @ cs) =

⋃
(set ‘ Y)

using 2 .prems(5) 4 by simp
have dst: distinct ((as@U@concat (rev xs)) @ x @ b @ cs) using 2 .prems(6) 4

by simp
have tk1 : take 1 ((as@U@concat (rev xs)) @ x @ b @ cs) = [r] using 2 .prems(7)

4 by simp
have fwd: forward ((as@U@concat (rev xs)) @ x @ b @ cs) using 2 .prems(8) 4

by simp
have cnct: concat (b # []) = b by simp
have sblst: ∀ xs ′ ∈ Y . sublist xs ′ (as @ U @ concat (rev xs)) ∨ sublist xs ′ x

∨ (∃ a∈set [b]. sublist xs ′ a) ∨ sublist xs ′ cs
using 2 .prems(10) sublist-set-concat-or-cases[where as = as] by simp

have rank (rev b) < rank (rev x) using 2 .prems(13−15) by simp
then have arc-xb: ∃ z∈set x. ∃ y∈set b. z →T y

using 2 .prems(16) 4
cost-decr-if-noarc-lessrank[OF 2 (2 ,3) ‹r /∈set x› ‹x 6=[]› set dst tk1 fwd cnct

sblst]
by fastforce

have set x ∩ set b = {} using dst by auto
then have fwd: forward (x@b) using forward-app ′ arc-xb 2 .prems(18 ,19) by

simp
show ?case
proof(cases P (x @ b))

case True
have 0 : x @ b 6= [] using 2 .prems(2) by blast
have 1 : concat (rev xs @ [x @ b]) = bs using 2 .prems(9) by simp
have 3 : ∀ xs ′ ∈ Y . sublist xs ′ as ∨ sublist xs ′ U

∨ (∃ a∈set (xs @ [x @ b]). sublist xs ′ a) ∨ sublist xs ′ cs
using 2 .prems(10) sublist-exists-append by fast

have set U ∩ set x = {} using 4 2 .prems(6) by force
then have 4 : ¬ (∃ z∈set U . ∃ y∈set (x @ b). z →+

T y)
using not-reachable1-append-if-not-old[OF 2 .prems(12)] 2 .prems(18) arc-xb

337

by simp
have 5 : rank (rev (x @ b)) < rank (rev V) using True 2 .prems(14) by simp
show ?thesis
using 2 .IH [OF True 2 (2) 0 2 (4−9) 1 3 2 (12) 4 5 2 (15)] 2 (16−19) fwd by

auto
next

case False
then show ?thesis using 2 .prems(15 ,18) fwd by simp

qed
qed

lemma sublist-app-l: sublist ys cs =⇒ sublist ys (xs @ cs)
using sublist-order .dual-order .trans by blast

lemma sublist-split-concat:
assumes a ∈ set (acc @ (as@x#bs)) and sublist ys a
shows (∃ a∈set (rev acc @ as @ [x]). sublist ys a) ∨ sublist ys (concat bs @ cs)

proof(cases a ∈ set (rev acc @ as @ [x]))
case True
then show ?thesis using assms(2) by blast

next
case False
then have a ∈ set bs using assms(1) by simp
then show ?thesis

using assms(2) concat-all-sublist[of bs]
sublist-order .dual-order .trans[where c = ys, where b = concat bs]

by fastforce
qed

lemma sublist-split-concat ′:
∃ a ∈ set (acc @ (as@x#bs)). sublist ys a ∨ sublist ys cs
=⇒ (∃ a∈set (rev acc @ as @ [x]). sublist ys a) ∨ sublist ys (concat bs @ cs)

using sublist-split-concat sublist-app-l[of ys cs] by blast

lemma make-list-notP:
assumes asi rank r cost

and r /∈ set U
and U 6= []
and set (as@U@bs@cs) =

⋃
(set ‘ Y)

and distinct (as@U@bs@cs)
and take 1 (as@U@bs@cs) = [r]
and forward (as@U@bs@cs)
and concat (rev acc @ ys) = bs
and (∀ xs ∈ Y . sublist xs as ∨ sublist xs U

∨ (∃ x ∈ set (acc @ ys). sublist xs x) ∨ sublist xs cs)
and rank (rev V) ≤ rank (rev U)
and

∧
xs. [[xs ∈ set ys; ∃ x ∈ set U . ∃ y ∈ set xs. x →+

T y]]
=⇒ rank (rev V) ≤ rank (rev xs)

and P = (λx. rank (rev x) < rank (rev V))

338

and ∀ xs. fwd-sub r Y xs −→ cost (rev (as@U@bs@cs)) ≤ cost (rev xs)
and ∀ x ∈ set ys. x 6= []
and ∀ x ∈ set ys. forward x
and ∀ x ∈ set acc. x 6= []
and ∀ x ∈ set acc. forward x
and ∀ x ∈ set acc. ¬P x

shows ∀ x∈set (make-list-P P acc ys). ¬P x
using assms proof(induction P acc ys rule: make-list-P.induct)

case (1 P acc xs)
then show ?case
proof(cases List.extract P xs)

case None
then have ∀ x ∈ set xs. ¬ P x by (simp add: extract-None-iff)
then show ?thesis using 1 .prems(18) None by auto

next
case (Some a)
then obtain as ′ x bs ′ where x-def [simp]: a = (as ′,x,bs ′) by(cases a) auto
then have x: ∀ x ∈ set (rev as ′ @ acc). ¬P x xs = as ′@x#bs ′ rank (rev x) <

rank (rev V)
using Some 1 .prems(12 ,18) by (auto simp: extract-Some-iff)

have x 6= [] using 1 .prems(14) Some by (simp add: extract-Some-iff)
have eq: as@U@bs@cs = as@U@(concat (rev acc @ as ′ @ [x])) @ (concat bs ′

@ cs)
using 1 .prems(8) Some by (simp add: extract-Some-iff)

then have 0 : set (as@U@(concat (rev acc @ as ′ @ [x])) @ (concat bs ′ @ cs))
=

⋃
(set ‘ Y)

using 1 .prems(4) by argo
have 2 : distinct (as@U@(concat (rev acc @ as ′ @ [x])) @ (concat bs ′ @ cs))

using 1 .prems(5) eq by argo
have 3 : take 1 (as@U@(concat (rev acc @ as ′ @ [x])) @ (concat bs ′ @ cs)) =

[r]
using 1 .prems(6) eq by argo

have 4 : forward (as@U@(concat (rev acc @ as ′ @ [x])) @ (concat bs ′ @ cs))
using 1 .prems(7) eq by argo

have 5 : concat (rev (rev as ′ @ acc) @ [x]) = concat (rev acc @ as ′ @ [x]) by
simp

have 6 : ∀ xs∈Y . sublist xs as ∨ sublist xs U
∨ (∃ x∈set ((rev as ′ @ acc) @ [x]). sublist xs x) ∨ sublist xs (concat bs ′ @

cs)
using 1 .prems(9) x(2) sublist-split-concat ′[of acc as ′ x bs ′, where cs = cs]
by auto

have 7 : ¬ (∃ x ′∈set U . ∃ y∈set x. x ′ →+
T y) using 1 .prems(11) x(2 ,3) by

fastforce
have 8 : ∀ xs. fwd-sub r Y xs

−→ cost (rev (as@U@concat(rev acc@as ′@[x])@concat bs ′@cs)) ≤ cost
(rev xs)

using 1 .prems(13) eq by simp
have notP: ∀ x∈set (combine-lists-P P x (rev as ′ @ acc)). ¬ P x ∧ forward x

using 1 .prems(14−17) x(2)

339

combine-lists-notP[OF 1 (2) ‹x 6=[]› 1 (3 ,4) 0 2 3 4 5 6 1 (11) 7 x(3) 1 (13)
x(1) 8]

by auto
have cnct: concat (rev (combine-lists-P P x (rev as ′ @ acc)) @ bs ′) = bs

using 1 .prems(8) combine-lists-concat-rev-eq[of P] x(2) by simp
have sblst: ∀ xs∈Y . sublist xs as ∨ sublist xs U
∨ (∃ a∈set (combine-lists-P P x (rev as ′ @ acc) @ bs ′). sublist xs a) ∨ sublist

xs cs
using 1 .prems(9) x(2) combine-lists-sublists[of x rev as ′@acc, where P=P]

by auto
have ∀ x∈set (combine-lists-P P x (rev as ′ @ acc)). x 6= []

using combine-lists-nempty[of rev as ′ @ acc] 1 .prems(14 ,16) x(2) by auto
then have ∀ x∈set (make-list-P P (combine-lists-P P x (rev as ′ @ acc)) bs ′).

¬ P x
using 1 .IH [OF Some x-def [symmetric] refl 1 (2−8) cnct sblst 1 (11−14)]

notP x(2) 1 (15 ,16)
by simp

then show ?thesis using Some by simp
qed

qed

lemma no-back-reach1-if-fwd-dstct-bs:
[[forward (as@concat bs@V@cs); distinct (as@concat bs@V@cs); xs ∈ set bs]]
=⇒ ¬(∃ x ′∈set V . ∃ y∈set xs. x ′→+

T y)
using no-back-reach1-if-fwd-dstct[of as@concat bs V@cs] by auto

lemma mid-ranks-ge-if-reach1 :
assumes [] /∈ Y

and U ∈ Y
and distinct (as@U@bs@V@cs)
and forward (as@U@bs@V@cs)
and concat bs ′ = bs
and concat cs ′ = cs
and set (as ′@U#bs ′@V#cs ′) = Y
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

shows ∀ xs ∈ set bs ′. (∃ x∈set U . ∃ y∈set xs. x →+
T y) −→ rank (rev V) ≤

rank (rev xs)
proof −

have ∀ xs ∈ set bs ′. ∀ y∈set xs. ¬(∃ x∈set V . x →+
T y)

using assms(3−6) no-back-reach1-if-fwd-dstct-bs[of as@U] by fastforce
then have 0 : ∀ xs ∈ set bs ′. (∃ y∈set xs. ∃ x∈set U . x →+

T y)
−→ (∃ y∈set xs. ∃ x∈set U . ¬ (∃ x ′∈set V . x ′→+

T y) ∧ x →+
T y)

by blast
have ∀ xs ∈ set bs ′. xs 6= U

using assms(1−3 ,5) concat-all-sublist empty-if-sublist-dsjnt[of U U] by fast-
force

then have
∧

xs. [[xs ∈ set bs ′; ∃ y∈set xs. ∃ x∈set U . x →+
T y]]

340

=⇒ xs 6= U ∧ (∃ y∈set xs. ∃ x∈set U . ¬ (∃ x ′∈set V . x ′→+
T y) ∧ x →+

T y)
∧ xs ∈ Y

using 0 assms(7) by auto
then show ?thesis using assms(8) by blast

qed

lemma bs-ranks-only-ge:
assumes asi rank r cost

and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and r /∈ set U
and U ∈ Y
and set (as@U@bs@V@cs) =

⋃
(set ‘ Y)

and distinct (as@U@bs@V@cs)
and take 1 (as@U@bs@V@cs) = [r]
and forward (as@U@bs@V@cs)
and concat as ′ = as
and concat bs ′ = bs
and concat cs ′ = cs
and set (as ′@U#bs ′@V#cs ′) = Y
and rank (rev V) ≤ rank (rev U)
and ∀ zs. fwd-sub r Y zs −→ cost (rev (as@U@bs@V@cs)) ≤ cost (rev zs)
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

shows ∃ zs. concat zs = bs ∧ (∀ z ∈ set zs. rank (rev V) ≤ rank (rev z)) ∧ []
/∈ set zs
proof −

let ?P = λx. rank (rev x) < rank (rev V)
have U 6= [] using assms(3 ,5) by blast
have cnct: concat (rev [] @ bs ′) = bs using assms(11) by simp
have ∀ xs∈Y . sublist xs as ∨ xs = U ∨ xs = V

∨ (∃ x∈set ([] @ bs ′). sublist xs x) ∨ sublist xs cs
using assms(10 ,12 ,13) concat-all-sublist by auto

then have sblst:
∀ xs∈Y . sublist xs as ∨ sublist xs U ∨ (∃ x∈set ([] @ bs ′). sublist xs x) ∨ sublist

xs (V@cs)
using sublist-app-l by fast

have 0 :
∧

xs. [[xs ∈ set bs ′; ∃ x∈set U . ∃ y∈set xs. x →+
T y]] =⇒ rank (rev V)

≤ rank (rev xs)
using mid-ranks-ge-if-reach1 [OF assms(3 ,5 ,7 ,9 ,11−13)] assms(16) by blast

have ∀ x∈set bs ′. x 6= [] using assms(3 ,13) by auto
moreover have 2 : ∀ x∈set bs ′. forward x using assms(2 ,13) by auto
ultimately have (∀ x∈set (make-list-P ?P [] bs ′). rank (rev V) ≤ rank (rev x))

using assms(15)
make-list-notP[OF assms(1 ,4) ‹U 6=[]› assms(6−9) cnct sblst assms(14) 0

refl]
by fastforce

then show ?thesis

341

using assms(3 ,11 ,13) make-list-concat-rev-eq[of ?P []] make-list-nempty[of []
bs ′] by auto
qed

lemma cost-ge-if-all-bs-ge:
assumes asi rank r cost

and V 6= []
and distinct (as@ds@concat bs@V@cs)
and take 1 as = [r]
and forward V
and ∀ z∈set bs. rank (rev V) ≤ rank (rev z)
and [] /∈ set bs

shows cost (rev (as@ds@V@concat bs@cs)) ≤ cost (rev (as@ds@concat bs@V@cs))
using assms proof(induction bs arbitrary: ds)

case (Cons b bs)
have 0 : distinct (as@(ds@b)@concat bs@V@cs) using Cons.prems(3) by simp
have r-b: rank (rev V) ≤ rank (rev b) using Cons.prems(6) by simp
have b 6= [] using Cons.prems(7) by auto
have dst: distinct ((as@ds)@V@b@concat bs@cs) using Cons.prems(3) by auto
have take 1 ((as@ds)@V@b@concat bs@cs) = [r]

using Cons.prems(4) take1-singleton-app by metis
moreover have take 1 ((as@ds)@b@V@concat bs@cs) = [r]

using Cons.prems(4) take1-singleton-app by metis
ultimately have cost (rev (as@ds@V@b@concat bs@cs)) ≤ cost (rev (as@ds@b@V@concat

bs@cs))
using asi-le-rfst[OF Cons.prems(1) r-b Cons.prems(2) ‹b 6=[]› dst] by simp

then show ?case using Cons.IH [OF Cons.prems(1 ,2) 0] Cons.prems(4−7) by
simp
qed(simp)

lemma bs-ge-if-all-ge:
assumes asi rank r cost

and V 6= []
and distinct (as@bs@V@cs)
and take 1 as = [r]
and forward V
and concat bs ′ = bs
and ∀ z∈set bs ′. rank (rev V) ≤ rank (rev z)
and [] /∈ set bs ′

and bs 6= []
shows rank (rev V) ≤ rank (rev bs)

proof −
have dst: distinct (as@[]@concat bs ′@V@cs) using assms(3 ,6) by simp
then have cost-le: cost (rev (as@V@bs@cs)) ≤ cost (rev (as@bs@V@cs))

using cost-ge-if-all-bs-ge[OF assms(1 ,2) dst] assms(3−9) by simp
have tk1 : take 1 ((as)@bs@V@cs) = [r] using assms(4) take1-singleton-app by

metis
have tk1 ′: take 1 ((as)@V@bs@cs) = [r] using assms(4) take1-singleton-app by

metis

342

have dst: distinct ((as)@V@bs@cs) using assms(3) by auto
show ?thesis using asi-le-iff-rfst[OF assms(1 ,2 ,9) tk1 ′ tk1 dst] cost-le by simp

qed

lemma bs-ge-if-optimal:
assumes asi rank r cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and r /∈ set U
and U ∈ Y
and V ∈ Y
and distinct (as@U@bs@V@cs)
and set (as@U@bs@V@cs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)
and take 1 (as@U@bs@V@cs) = [r]
and forward (as@U@bs@V@cs)
and bs 6= []
and rank (rev V) ≤ rank (rev U)
and ∀ zs. fwd-sub r Y zs −→ cost (rev (as@U@bs@V@cs)) ≤ cost (rev zs)
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

shows rank (rev V) ≤ rank (rev bs)
proof −

obtain as ′ bs ′ cs ′ where bs ′-def : concat as ′ = as concat bs ′ = bs concat cs ′ = cs
set (as ′@U#bs ′@V#cs ′) = Y

using concat-split-UV [OF assms(2 ,5 ,7−11)] assms(4 ,7 ,8) by blast
obtain bs2 where bs2-def :

concat bs2 = bs (∀ z∈set bs2 . rank (rev V) ≤ rank (rev z)) [] /∈ set bs2
using bs-ranks-only-ge[OF assms(1 ,3 ,4 ,6 ,7 ,10 ,9 ,12 ,13) bs ′-def assms(15−17)]

by blast
have V 6= [] using assms(4 ,8) by blast
have take 1 as = [r] using take1-split-nelem-nempty[OF assms(12)] assms(4 ,6 ,7)

by blast
then have take 1 (as@U) = [r] using take1-singleton-app by fast
then show ?thesis

using bs-ge-if-all-ge[OF assms(1) ‹V 6=[]›, of as@U] bs2-def assms(3 ,8 ,9 ,14)
by auto
qed

lemma bs-ranks-only-ge-r :
assumes [] /∈ Y

and distinct (as@U@bs@V@cs)
and forward (as@U@bs@V@cs)
and as = []
and concat bs ′ = bs
and concat cs ′ = cs

343

and set (U#bs ′@V#cs ′) = Y
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

shows ∀ z ∈ set bs ′. rank (rev V) ≤ rank (rev z)
proof −

have U ∈ Y using assms(7) by auto
then have U 6= [] using assms(1) by blast
have V 6= [] using assms(1 ,7) by auto
have 0 :

∧
xs. [[xs ∈ set bs ′; ∃ x∈set U . ∃ y∈set xs. x →+

T y]] =⇒ rank (rev V)
≤ rank (rev xs)

using mid-ranks-ge-if-reach1 [OF assms(1) ‹U∈Y › assms(2 ,3 ,5 ,6), of []] assms(7 ,8)
by auto

have ∃ x y ys. x#y#ys= as@U@bs@V@cs
using ‹U 6=[]› ‹V 6=[]› append-Cons append.left-neutral list.exhaust by metis

then have hd-T : hd (as@U@bs@V@cs) ∈ verts T using hd-in-verts-if-forward
assms(3) by metis
moreover have ∀ x∈set bs ′. ∀ y∈set x. y ∈ set (as@U@bs@V@cs) using assms(5)

by auto
ultimately have ∀ x∈set bs ′. ∀ y∈set x. hd (U@bs@V@cs) →∗

T y
using hd-reach-all-forward assms(3 ,4) by auto

then have 1 : ∀ x∈set bs ′. ∀ y∈set x. hd U →∗
T y using assms(1 ,7) by auto

have ∀ x∈set bs ′. ∀ y∈set x. y /∈ set U using assms(2 ,5) by auto
then have ∀ x∈set bs ′. ∀ y∈set x. y 6= hd U using assms(1 ,7) by fastforce
then have ∀ x∈set bs ′. ∀ y∈set x. hd U →+

T y using 1 by blast
then have ∀ x∈set bs ′. ∃ y∈set x. hd U →+

T y using assms(1 ,7) by auto
then show ?thesis using 0 ‹U 6= []› hd-in-set by blast

qed

lemma bs-ge-if-rU :
assumes asi rank r cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and r ∈ set U
and U ∈ Y
and V ∈ Y
and distinct (as@U@bs@V@cs)
and set (as@U@bs@V@cs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)
and take 1 (as@U@bs@V@cs) = [r]
and forward (as@U@bs@V@cs)
and bs 6= []
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

shows rank (rev V) ≤ rank (rev bs)
proof −

344

obtain as ′ bs ′ cs ′ where bs ′-def : concat as ′ = as concat bs ′ = bs concat cs ′ = cs
set (as ′@U#bs ′@V#cs ′) = Y

using concat-split-UV [OF assms(2 ,5 ,7−11)] assms(4 ,7 ,8) by blast
have take 1 U = [r] using take1-mid-if-elem[OF assms(12 ,6 ,9)] .
moreover have as = [] using take1-empty-if-mid[OF assms(12 ,6 ,9)] .
ultimately have tk1 : take 1 (as@U) = [r] by simp
then have set (U#bs ′@V#cs ′) = Y using bs ′-def (1 ,4) assms(4) ‹as=[]› by

auto
then have 0 : (∀ z∈set bs ′. rank (rev V) ≤ rank (rev z))
using bs-ranks-only-ge-r [OF assms(4 ,9 ,13) ‹as=[]› bs ′-def (2 ,3)] assms(15) by

blast
have V 6= [] using assms(4 ,8) by blast
have [] /∈ set bs ′ using assms(4) bs ′-def (2 ,4) by auto
then show ?thesis
using bs-ge-if-all-ge[OF assms(1) ‹V 6=[]›, of as@U] 0 bs ′-def (2) tk1 assms(3 ,8 ,9 ,14)

by auto
qed

lemma sublist-before-if-before:
assumes hd xs = root and forward xs and distinct xs

and sublist U xs and sublist V xs and before U V
shows ∃ as bs cs. as @ U @ bs @ V @ cs = xs

proof (rule ccontr)
assume @ as bs cs. as @ U @ bs @ V @ cs = xs
then obtain as bs cs where V-bf-U : xs = as @ V @ bs @ U @ cs

using sublist-behind-if-nbefore[OF assms(4 ,5)] assms(6) before-def by blast
obtain x y where x-def : x ∈ set U y ∈ set V x →T y

using assms(6) before-def by auto
then obtain i where i-def : V !i = y i < length V by (auto simp: in-set-conv-nth)
then have i-xs: (as@V@bs@U@cs)!(i + length as) = y by (simp add: nth-append)
have root 6= y using x-def (3) dominated-not-root by auto
then have i + length as > 0 using i-def (2) i-xs assms(1 ,5) V-bf-U hd-conv-nth[of

xs] by force
then have i + length as ≥ 1 by linarith
then have i + length as ∈ {1 ..length (as@V@bs@U@cs) − 1} using i-def (2)

by simp
then obtain j where j-def : j < i + length as (as@V@bs@U@cs)!j →T y

using assms(2) V-bf-U i-xs unfolding forward-def by blast
then have (as@V@bs@U@cs)!j = (as@V)!j using i-def (2) by (auto simp:

nth-append)
then have (as@V@bs@U@cs)!j ∈ set (as@V) using i-def (2) j-def (1) nth-mem[of

j as@V] by simp
then have (as@V@bs@U@cs)!j 6= x using assms(3) V-bf-U x-def (1) by auto
then show False using j-def (2) x-def (3) two-in-arcs-contr by fastforce

qed

lemma forward-UV-lists-subset:
{x. set x = X ∧ distinct x ∧ take 1 x = [r] ∧ forward x ∧ (∀ xs ∈ Y . sublist xs

x)}

345

⊆ {x. set x = X ∧ distinct x}
by blast

lemma forward-UV-lists-finite:
finite xs
=⇒ finite {x. set x = xs ∧ distinct x ∧ take 1 x = [r] ∧ forward x ∧ (∀ xs ∈

Y . sublist xs x)}
using distinct-seteq-finite finite-subset[OF forward-UV-lists-subset] by auto

lemma forward-UV-lists-arg-min-ex-aux:
[[finite ys; ys 6= {};

ys = {x. set x = xs ∧ distinct x ∧ take 1 x = [r] ∧ forward x ∧ (∀ xs ∈ Y .
sublist xs x)}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma forward-UV-lists-arg-min-ex:
[[finite xs; ys 6= {};

ys = {x. set x = xs ∧ distinct x ∧ take 1 x = [r] ∧ forward x ∧ (∀ xs ∈ Y .
sublist xs x)}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using forward-UV-lists-finite forward-UV-lists-arg-min-ex-aux by auto

lemma forward-UV-lists-argmin-ex ′:
fixes f :: ′a list ⇒ real
assumes P = (λx. set x = X ∧ distinct x ∧ take 1 x = [r])

and Q = (λys. P ys ∧ forward ys ∧ (∀ xs ∈ Y . sublist xs ys))
and ∃ x. Q x

shows ∃ zs. Q zs ∧ (∀ as. Q as −→ f zs ≤ f as)
using forward-UV-lists-arg-min-ex[of X {x. Q x}] using assms by fastforce

lemma forward-UV-lists-argmin-ex:
fixes f :: ′a list ⇒ real
assumes ∃ x. fwd-sub r Y x
shows ∃ zs. fwd-sub r Y zs ∧ (∀ as. fwd-sub r Y as −→ f zs ≤ f as)
using forward-UV-lists-argmin-ex ′ assms unfolding fwd-sub-def unique-set-r-def

by simp

lemma no-gap-if-contr-seq-fwd:
assumes asi rank root cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and U ∈ Y
and V ∈ Y
and before U V
and rank (rev V) ≤ rank (rev U)
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x

346

→+
T y); xs 6= U]]

=⇒ rank (rev V) ≤ rank (rev xs)
and ∃ x. fwd-sub root Y x

shows ∃ zs. fwd-sub root Y zs ∧ sublist (U@V) zs
∧ (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

proof −
obtain zs where zs-def :

set zs =
⋃
(set ‘ Y) distinct zs take 1 zs = [root] forward zs

(∀ xs ∈ Y . sublist xs zs) (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev
as))

using forward-UV-lists-argmin-ex[OF assms(11), of λxs. cost (rev xs)]
unfolding unique-set-r-def fwd-sub-def by blast

then have hd zs = root using hd-eq-take1 by fast
then obtain as bs cs where bs-def : as @ U @ bs @ V @ cs = zs

using sublist-before-if-before zs-def (2 ,4 ,5) assms(6−8) by blast
then have bs-prems: distinct (as@U@bs@V@cs) set (as@U@bs@V@cs) =

⋃
(set

‘ Y)
∀ xs∈Y . sublist xs (as@U@bs@V@cs) take 1 (as@U@bs@V@cs) = [root] for-

ward (as@U@bs@V@cs)
using zs-def (1−5) by auto

show ?thesis
proof(cases bs = [])

case True
then have sublist (U@V) zs using bs-def sublist-def by force
then show ?thesis using zs-def unfolding unique-set-r-def fwd-sub-def by

blast
next

case bs-nempty: False
then have rank-le: rank (rev V) ≤ rank (rev bs)
proof(cases root ∈ set U)

case True
then show ?thesis

using bs-ge-if-rU [OF assms(1−5) True assms(6 ,7) bs-prems bs-nempty
assms(10)]

by blast
next

case False
have ∀ zs. fwd-sub root Y zs −→ cost (rev (as@U@bs@V@cs)) ≤ cost (rev zs)

using zs-def (6) bs-def by blast
then show ?thesis
using bs-ge-if-optimal[OF assms(1−5)] bs-nempty bs-prems False assms(6 ,7 ,9 ,10)

by blast
qed
have 0 : distinct ((as@U)@V@bs@cs) using bs-def zs-def (2) by auto
have take 1 (as@U) = [root]

using bs-def assms(4 ,6) take1-split-nempty[of U as] zs-def (3) by fastforce
then have 1 : take 1 (as@U@V@bs@cs) = [root]

using take1-singleton-app[of as@U root V@bs@cs] by simp
have 2 : ∀ xs∈Y . sublist xs (as@U@V@bs@cs)

347

using zs-def (5) bs-def sublists-preserv-move-VY-all[OF assms(2 ,6 ,7)] assms(4 ,6)
by blast

have V 6= [] using assms(4 ,7) by blast
have cost (rev (as@U@V@bs@cs)) ≤ cost (rev zs)

using asi-le-rfst[OF assms(1) rank-le ‹V 6=[]› bs-nempty 0] 1 zs-def (3) bs-def
by simp

then have cost-le: ∀ ys. fwd-sub root Y ys −→ cost (rev (as@U@V@bs@cs))
≤ cost (rev ys)

using zs-def (6) by fastforce
have forward (as@U@V@bs@cs)

using move-mid-backward-if-noarc assms(8) zs-def (4) bs-def by blast
moreover have set (as@U@V@bs@cs) =

⋃
(set ‘ Y)

unfolding zs-def (1)[symmetric] bs-def [symmetric] by force
ultimately have fwd-sub root Y (as@U@V@bs@cs)

unfolding unique-set-r-def fwd-sub-def using 0 1 2 by fastforce
moreover have sublist (U@V) (as@U@V@bs@cs) unfolding sublist-def by

fastforce
ultimately show ?thesis using cost-le by blast

qed
qed

lemma combine-union-sets-alt:
fixes X Y
defines Z ≡ X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}}

assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ set xs ∩ set ys = {}

shows Z = X ∪ (Y − {x. set x ∩
⋃
(set ‘ X) 6= {}})

unfolding assms(1) using assms(2 ,3) by fast

lemma combine-union-sets-disjoint:
fixes X Y
defines Z ≡ X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}}

assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ set xs ∩ set ys = {}

shows ∀ xs ∈ Z . ∀ ys ∈ Z . xs = ys ∨ set xs ∩ set ys = {}
unfolding Z-def using assms(2 ,3) by force

lemma combine-union-sets-set-sub1-aux:
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys
and x ∈

⋃
(set ‘ Y)

shows x ∈
⋃
(set ‘ (X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}}))

proof −
let ?Z = X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}}

obtain ys where ys-def : x ∈ set ys ys ∈ Y using assms(3) by blast
then show ?thesis
proof(cases ys ∈ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}})

case True
then show ?thesis using ys-def (1) by auto

348

next
case False
then obtain U V where U-def : U ∈ Y V ∈ Y U@V ∈ X set ys ∩ set (U@V)

6= {}
using ys-def (2) assms(2) by fast

then consider set ys ∩ set U 6= {} | set ys ∩ set V 6= {} by fastforce
then show ?thesis
proof(cases)

case 1
then have U = ys using assms(1) U-def (1) ys-def (2) by blast
then show ?thesis using ys-def (1) U-def (3) by fastforce

next
case 2
then have V = ys using assms(1) U-def (2) ys-def (2) by blast
then show ?thesis using ys-def (1) U-def (3) by fastforce

qed
qed

qed

lemma combine-union-sets-set-sub1 :
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys
shows

⋃
(set ‘ Y) ⊆

⋃
(set ‘ (X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}}))

using combine-union-sets-set-sub1-aux[OF assms] by blast

lemma combine-union-sets-set-sub2 :
assumes ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys
shows

⋃
(set ‘ (X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}})) ⊆

⋃
(set ‘ Y)

using assms by fastforce

lemma combine-union-sets-set-eq:
assumes ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}

and ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys
shows

⋃
(set ‘ (X ∪ {x. x ∈ Y ∧ set x ∩

⋃
(set ‘ X) = {}})) =

⋃
(set ‘ Y)

using combine-union-sets-set-sub1 [OF assms] combine-union-sets-set-sub2 [OF
assms(2)] by blast

lemma combine-union-sets-sublists:
assumes sublist x ys

and ∀ xs ∈ X ∪ {x. x ∈ Y ∧ set x ∩
⋃

(set ‘ X) = {}}. sublist xs ys
and xs ∈ insert x X ∪ {xs. xs ∈ Y ∧ set xs ∩

⋃
(set ‘ (insert x X)) = {}}

shows sublist xs ys
using assms by auto

lemma combine-union-sets-optimal-cost:
assumes asi rank root cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y

349

and finite Y
and ∃ x. fwd-sub root Y x
and ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys ∧ before U V ∧ rank (rev V)

≤ rank (rev U)
∧ (∀ xs ∈ Y . (∃ y∈set xs. ¬(∃ x ′∈set V . x ′→+

T y) ∧ (∃ x∈set U . x →+
T

y) ∧ xs 6= U)
−→ rank (rev V) ≤ rank (rev xs))

and ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ ¬(∃ x∈set xs. ∃ y∈set ys. x →+

T y)
and finite X

shows ∃ zs. fwd-sub root (X ∪ {x. x ∈ Y ∧ set x ∩
⋃

(set ‘ X) = {}}) zs
∧ (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

using assms(10 ,1−9) proof(induction X rule: finite-induct)
case empty
then show ?case using forward-UV-lists-argmin-ex by simp

next
case (insert x X)
let ?Y = X ∪ {xs. xs ∈ Y ∧ set xs ∩

⋃
(set ‘ X) = {}}

let ?X = insert x X ∪ {xs. xs ∈ Y ∧ set xs ∩
⋃
(set ‘ (insert x X)) = {}}

obtain zs where zs-def :
fwd-sub root ?Y zs (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

using insert.IH [OF insert(4−9)] insert.prems(7 ,8 ,9) by auto
obtain U V where U-def : U ∈ Y V ∈ Y U@V = x before U V rank (rev V)
≤ rank (rev U)
∀ xs ∈ Y . (∃ y∈set xs. ¬(∃ x ′∈set V . x ′→+

T y) ∧ (∃ x∈set U . x →+
T y) ∧ xs

6= U)
−→ rank (rev V) ≤ rank (rev xs)

using insert.prems(7) by auto
then have U : U ∈ ?Y using insert.prems(2 ,8) insert.hyps(2) by fastforce
have V : V ∈ ?Y using U-def (2 ,3) insert.prems(8) insert.hyps(2) by fastforce
have disj: ∀ xs ∈ ?Y . ∀ ys ∈ ?Y . xs = ys ∨ set xs ∩ set ys = {}

using combine-union-sets-disjoint[of Y X] insert.prems(2 ,8) by blast
have fwd: ∀ xs ∈ ?Y . forward xs

using insert.prems(3 ,7) seq-conform-alt seq-conform-if-before by fastforce
have nempty: [] /∈ ?Y using insert.prems(4 ,7) by blast
have fin: finite ?Y using insert.prems(5) insert.hyps(1) by simp
have 0 :

∧
xs. [[xs ∈ ?Y ; ∃ y∈set xs. ¬ (∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

using U-def (3 ,6) insert.prems(9) insert.hyps(2) by auto
then have ∃ zs. fwd-sub root ?Y zs ∧ sublist (U@V) zs

∧ (∀ as. fwd-sub root ?Y as −→ cost (rev zs) ≤ cost (rev as))
using no-gap-if-contr-seq-fwd[OF insert.prems(1) disj fwd nempty fin U V

U-def (4 ,5)] zs-def (1)
unfolding fwd-sub-def unique-set-r-def by blast

then obtain xs where xs-def :
fwd-sub root ?Y xs sublist (U@V) xs
(∀ as. fwd-sub root ?Y as −→ cost (rev xs) ≤ cost (rev as))

by blast

350

then have cost: (∀ as. fwd-sub root Y as −→ cost (rev xs) ≤ cost (rev as))
using zs-def by fastforce

have 0 : ∀ ys ∈ (insert x X). ∃U ∈ Y . ∃V ∈ Y . U@V = ys using insert.prems(7)
by fastforce

then have ∀ ys ∈ X . ∃U ∈ Y . ∃V ∈ Y . U@V = ys by simp
then have

⋃
(set ‘ ?Y) =

⋃
(set ‘ Y)

using combine-union-sets-set-eq[OF insert.prems(2)] by simp
then have

⋃
(set ‘ ?X) =

⋃
(set ‘ ?Y)

using combine-union-sets-set-eq[OF insert.prems(2) 0] by simp
then have P-eq: unique-set-r root ?X = unique-set-r root ?Y unfolding unique-set-r-def

by simp
have

∧
ys. [[sublist (U@V) ys; (∀ xs ∈ ?Y . sublist xs ys)]] =⇒ (∀ xs ∈ ?X . sublist

xs ys)
using combine-union-sets-sublists[of x, where Y=Y and X=X] U-def (3) by

blast
then have

∧
ys. [[sublist (U@V) ys; fwd-sub root ?Y ys]] =⇒ fwd-sub root ?X ys

unfolding P-eq fwd-sub-def by blast
then show ?case using xs-def (1 ,2) cost by blast

qed

lemma bs-ge-if-geV :
assumes asi rank r cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and U ∈ Y
and V ∈ Y
and distinct (as@U@bs@V@cs)
and set (as@U@bs@V@cs) =

⋃
(set ‘ Y)

and ∀ xs ∈ Y . sublist xs (as@U@bs@V@cs)
and take 1 (as@U@bs@V@cs) = [r]
and bs 6= []
and ∀ xs ∈ Y . xs 6= U −→ rank (rev V) ≤ rank (rev xs)

shows rank (rev V) ≤ rank (rev bs)
proof −

obtain as ′ bs ′ cs ′ where bs ′-def : concat as ′ = as concat bs ′ = bs concat cs ′ = cs
set (as ′@U#bs ′@V#cs ′) = Y

using concat-split-UV [OF assms(2 ,5−10)] assms(4 ,6 ,7) by blast
have tk1 : take 1 (as@U) = [r]

using take1-split-nempty[of U as] assms(4 ,6 ,11) by force
have ∀ z∈set bs ′. z 6= U
using bs ′-def (2) assms(4 ,6 ,8) concat-all-sublist by (fastforce dest!: empty-if-sublist-dsjnt)

then have 0 : ∀ z∈set bs ′. rank (rev V) ≤ rank (rev z)
using assms(13) bs ′-def (4) by auto

have V 6= [] using assms(4 ,7) by blast
have [] /∈ set bs ′ using assms(4) bs ′-def (2 ,4) by auto
then show ?thesis
using bs-ge-if-all-ge[OF assms(1) ‹V 6=[]›, of as@U] 0 bs ′-def (2) tk1 assms(3 ,7 ,8 ,12)

351

by auto
qed

lemma no-gap-if-geV :
assumes asi rank root cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and U ∈ Y
and V ∈ Y
and before U V
and ∀ xs ∈ Y . xs 6= U −→ rank (rev V) ≤ rank (rev xs)
and ∃ x. fwd-sub root Y x

shows ∃ zs. fwd-sub root Y zs ∧ sublist (U@V) zs
∧ (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

proof −
obtain zs where zs-def :

set zs =
⋃
(set ‘ Y) distinct zs take 1 zs = [root] forward zs

(∀ xs ∈ Y . sublist xs zs) (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev
as))

using forward-UV-lists-argmin-ex[OF assms(10), of λx. cost (rev x)]
unfolding fwd-sub-def unique-set-r-def by blast

then have hd zs = root using hd-eq-take1 by fast
then obtain as bs cs where bs-def : as @ U @ bs @ V @ cs = zs

using sublist-before-if-before zs-def (2 ,4 ,5) assms(6−8) by blast
then have bs-prems: distinct (as@U@bs@V@cs) set (as@U@bs@V@cs) =

⋃
(set

‘ Y)
∀ xs∈Y . sublist xs (as@U@bs@V@cs) take 1 (as@U@bs@V@cs) = [root]
using zs-def (1−5) by auto

show ?thesis
proof(cases bs = [])

case True
then have sublist (U@V) zs using bs-def sublist-def by force
then show ?thesis using zs-def unfolding fwd-sub-def unique-set-r-def by

blast
next

case False
then have rank-le: rank (rev V) ≤ rank (rev bs)

using bs-ge-if-geV [OF assms(1−7) bs-prems False assms(9)] by blast
have 0 : distinct ((as@U)@V@bs@cs) using bs-def zs-def (2) by auto
have take 1 (as@U) = [root]

using bs-def assms(4 ,6) take1-split-nempty[of U as] zs-def (3) by fastforce
then have 1 : take 1 (as@U@V@bs@cs) = [root]

using take1-singleton-app[of as@U root V@bs@cs] by simp
have 2 : ∀ xs∈Y . sublist xs (as@U@V@bs@cs)
using zs-def (5) bs-def sublists-preserv-move-VY-all[OF assms(2 ,6 ,7)] assms(4 ,6)

by blast
have V 6= [] using assms(4 ,7) by blast

352

have cost (rev (as@U@V@bs@cs)) ≤ cost (rev zs)
using asi-le-rfst[OF assms(1) rank-le ‹V 6=[]› False 0] 1 zs-def (3) bs-def by

simp
then have cost-le: ∀ ys. fwd-sub root Y ys −→ cost (rev (as@U@V@bs@cs))

≤ cost (rev ys)
using zs-def (6) by fastforce

have forward (as@U@V@bs@cs)
using move-mid-backward-if-noarc assms(8) zs-def (4) bs-def by blast

moreover have set (as@U@V@bs@cs) =
⋃
(set ‘ Y) using bs-def zs-def (1)

by fastforce
ultimately have fwd-sub root Y (as@U@V@bs@cs)

unfolding fwd-sub-def unique-set-r-def using 0 1 2 by auto
moreover have sublist (U@V) (as@U@V@bs@cs) unfolding sublist-def by

fastforce
ultimately show ?thesis using cost-le by blast

qed
qed

lemma app-UV-set-optimal-cost:
assumes asi rank root cost

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . forward xs
and [] /∈ Y
and finite Y
and U ∈ Y
and V ∈ Y
and before U V
and ∀ xs ∈ Y . xs 6= U −→ rank (rev V) ≤ rank (rev xs)
and ∃ x. fwd-sub root Y x

shows ∃ zs. fwd-sub root ({U@V } ∪ {x. x ∈ Y ∧ x 6= U ∧ x 6= V }) zs
∧ (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

proof −
have P-eq: unique-set-r root Y = unique-set-r root ({U@V } ∪ {x. x ∈ Y ∧ x 6=

U ∧ x 6= V })
unfolding unique-set-r-def using assms(6 ,7) by auto

have ∃ zs. fwd-sub root Y zs ∧ sublist (U@V) zs
∧ (∀ as. fwd-sub root Y as −→ cost (rev zs) ≤ cost (rev as))

using no-gap-if-geV [OF assms(1−10)] by blast
then show ?thesis unfolding P-eq fwd-sub-def by blast

qed

end

context tree-query-graph
begin

lemma no-cross-ldeep-rev-if-forward:
assumes xs 6= [] and r ∈ verts G and directed-tree.forward (dir-tree-r r) (rev

xs)

353

shows no-cross-products (create-ldeep-rev xs)
using assms proof(induction xs rule: create-ldeep-rev.induct)

case (3 x y ys)
then interpret T : directed-tree dir-tree-r r r using directed-tree-r by blast
have split: create-ldeep-rev (x#y#ys) = Join (create-ldeep-rev (y#ys)) (Relation

x) by simp
have rev (x#y#ys) ! (length (y#ys)) = x using nth-append-length[of rev (y#ys)]

by simp
moreover have length (y#ys) ∈ {1 ..length (rev (x#y#ys)) − 1} by simp
ultimately obtain j where j-def : j < (length (y#ys)) rev (x#y#ys)!j →dir-tree-r r

x
using 3 .prems(3) unfolding T .forward-def by fastforce

then have rev (x#y#ys)!j ∈ set (y#ys)
using nth-mem[of j rev (y#ys)] by (auto simp add: nth-append)

then have ∃ x ′∈relations (create-ldeep-rev (y#ys)). x ′→dir-tree-r r x
using j-def (2) create-ldeep-rev-relations[of y#ys] by blast

then have 1 : ∃ x ′∈relations (create-ldeep-rev (y#ys)). x ′→Gx
using assms(2) dir-tree-r-dom-in-G by blast

have T .forward (rev (y#ys)) using 3 .prems(3) T .forward-cons by blast
then show ?case using 1 3 by simp

qed(auto)

lemma no-cross-ldeep-if-forward:
[[xs 6= []; r ∈ verts G; directed-tree.forward (dir-tree-r r) xs]]
=⇒ no-cross-products (create-ldeep xs)

unfolding create-ldeep-def using no-cross-ldeep-rev-if-forward by simp

lemma no-cross-ldeep-if-forward ′:
[[set xs = verts G; r ∈ verts G; directed-tree.forward (dir-tree-r r) xs]]
=⇒ no-cross-products (create-ldeep xs)

using no-cross-ldeep-if-forward[of xs] by fastforce

lemma forward-if-ldeep-rev-no-cross:
assumes r ∈ verts G and no-cross-products (create-ldeep-rev xs)

and hd (rev xs) = r and distinct xs
shows directed-tree.forward-arcs (dir-tree-r r) xs

using assms proof(induction xs rule: create-ldeep-rev.induct)
case 1
then show ?case using directed-tree-r directed-tree.forward-arcs.simps(1) by

fast
next

case (2 x)
then show ?case using directed-tree-r directed-tree.forward-arcs.simps(2) by

fast
next

case (3 x y ys)
then interpret T : directed-tree dir-tree-r r r using directed-tree-r by blast
have hd (rev (y # ys)) = r using 3 .prems(3) hd-append2 [of rev (y#ys) [x]] by

simp

354

then have ind: T .forward-arcs (y#ys) using 3 by fastforce
have matching: matching-rels (create-ldeep-rev (x#y#ys))

using matching-rels-if-no-cross 3 .prems(2) by simp
have r ∈ relations (create-ldeep-rev (x#y#ys)) using 3 .prems(3)

using create-ldeep-rev-relations[of x#y#ys] hd-rev[of x#y#ys] by simp
then obtain p ′ where p ′-def :

awalk r p ′ x ∧ set (awalk-verts r p ′) ⊆ relations (create-ldeep-rev (x#y#ys))
using no-cross-awalk[OF matching 3 .prems(2)] by force

then obtain p where p-def :
apath r p x set (awalk-verts r p) ⊆ relations (create-ldeep-rev (x#y#ys))

using apath-awalk-to-apath awalk-to-apath-verts-subset by blast
then have pre-digraph.apath (dir-tree-r r) r p x using apath-in-dir-if-apath-G

by blast
moreover have r 6= x
using 3 .prems(3 ,4) T .no-back-arcs.cases[of rev (x#y#ys)] distinct-first-uneq-last[of

x]
by fastforce

ultimately obtain u where u-def :
u →dir-tree-r r x u ∈ set (pre-digraph.awalk-verts (dir-tree-r r) r p)

using p-def (2) T .awalk-verts-dom-if-uneq T .awalkI-apath by blast
then have u ∈ relations (create-ldeep-rev (x#y#ys))

using awalk-verts-G-T 3 .prems(1) p-def (2) by auto
then have u ∈ set (x#y#ys) by (simp add: create-ldeep-rev-relations)
then show ?case using u-def (1) ind T .forward-arcs.simps(3) T .loopfree.adj-not-same

by auto
qed

lemma forward-if-ldeep-no-cross:
[[r ∈ verts G; no-cross-products (create-ldeep xs); hd xs = r ; distinct xs]]
=⇒ directed-tree.forward (dir-tree-r r) xs

using forward-if-ldeep-rev-no-cross directed-tree.forward-arcs-alt directed-tree-r
by (fastforce simp: create-ldeep-def)

lemma no-cross-ldeep-iff-forward:
[[xs 6= []; r ∈ verts G; hd xs = r ; distinct xs]]
=⇒ no-cross-products (create-ldeep xs) ←→ directed-tree.forward (dir-tree-r r)

xs
using forward-if-ldeep-no-cross no-cross-ldeep-if-forward by blast

lemma no-cross-if-fwd-ldeep:
[[r ∈ verts G; left-deep t; directed-tree.forward (dir-tree-r r) (inorder t)]]
=⇒ no-cross-products t

using no-cross-ldeep-if-forward[OF inorder-nempty] by fastforce

lemma forward-if-ldeep-no-cross ′:
[[first-node t ∈ verts G; distinct-relations t; left-deep t; no-cross-products t]]
=⇒ directed-tree.forward (dir-tree-r (first-node t)) (inorder t)

using forward-if-ldeep-no-cross by (simp add: first-node-eq-hd distinct-relations-def)

355

lemma no-cross-iff-forward-ldeep:
[[first-node t ∈ verts G; distinct-relations t; left-deep t]]

=⇒ no-cross-products t ←→ directed-tree.forward (dir-tree-r (first-node t))
(inorder t)

using no-cross-if-fwd-ldeep forward-if-ldeep-no-cross ′ by blast

lemma sublist-before-if-before:
assumes hd xs = r and no-cross-products (create-ldeep xs) and r ∈ verts G and

distinct xs
and sublist U xs and sublist V xs and directed-tree.before (dir-tree-r r) U V

shows ∃ as bs cs. as @ U @ bs @ V @ cs = xs
using directed-tree.sublist-before-if-before[OF directed-tree-r] forward-if-ldeep-no-cross

assms
by blast

lemma nocross-UV-lists-subset:
{x. set x = X ∧ distinct x ∧ take 1 x = [r]
∧ no-cross-products (create-ldeep x) ∧ (∀ xs ∈ Y . sublist xs x)}

⊆ {x. set x = X ∧ distinct x}
by blast

lemma nocross-UV-lists-finite:
finite xs
=⇒ finite {x. set x = xs ∧ distinct x ∧ take 1 x = [r]
∧ no-cross-products (create-ldeep x) ∧ (∀ xs ∈ Y . sublist xs x)}

using distinct-seteq-finite finite-subset[OF nocross-UV-lists-subset] by auto

lemma nocross-UV-lists-arg-min-ex-aux:
[[finite ys; ys 6= {};

ys = {x. set x = xs ∧ distinct x ∧ take 1 x = [r]
∧ no-cross-products (create-ldeep x) ∧ (∀ xs ∈ Y . sublist xs x)}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using arg-min-if-finite(1)[of ys f] arg-min-least[of ys, where ?f = f] by auto

lemma nocross-UV-lists-arg-min-ex:
[[finite xs; ys 6= {};

ys = {x. set x = xs ∧ distinct x ∧ take 1 x = [r]
∧ no-cross-products (create-ldeep x) ∧ (∀ xs ∈ Y . sublist xs x)}]]

=⇒ ∃ y ∈ ys. ∀ z ∈ ys. (f :: ′a list ⇒ real) y ≤ f z
using nocross-UV-lists-finite nocross-UV-lists-arg-min-ex-aux by auto

lemma nocross-UV-lists-argmin-ex:
fixes f :: ′a list ⇒ real
assumes P = (λx. set x = X ∧ distinct x ∧ take 1 x = [r])

and Q = (λys. P ys ∧ no-cross-products (create-ldeep ys) ∧ (∀ xs ∈ Y . sublist
xs ys))

and ∃ x. Q x
shows ∃ zs. Q zs ∧ (∀ as. Q as −→ f zs ≤ f as)

using nocross-UV-lists-arg-min-ex[of X {x. Q x}] using assms by fastforce

356

lemma no-gap-if-contr-seq:
fixes Y r
defines X ≡

⋃
(set ‘ Y)

defines P ≡ (λys. set ys = X ∧ distinct ys ∧ take 1 ys = [r])
defines Q ≡ (λys. P ys ∧ no-cross-products (create-ldeep ys) ∧ (∀ xs ∈ Y . sublist

xs ys))
assumes asi rank r c

and ∀ xs ∈ Y . ∀ ys ∈ Y . xs = ys ∨ set xs ∩ set ys = {}
and ∀ xs ∈ Y . directed-tree.forward (dir-tree-r r) xs
and [] /∈ Y
and finite Y
and U ∈ Y
and V ∈ Y
and r ∈ verts G
and directed-tree.before (dir-tree-r r) U V
and rank (rev V) ≤ rank (rev U)
and

∧
xs. [[xs ∈ Y ; ∃ y∈set xs. ¬(∃ x ′∈set V . x ′→+

dir-tree-r r y)
∧ (∃ x∈set U . x →+

dir-tree-r r y); xs 6= U]]
=⇒ rank (rev V) ≤ rank (rev xs)

and ∃ x. Q x
shows ∃ zs. Q zs ∧ sublist (U@V) zs ∧ (∀ as. Q as −→ c (rev zs) ≤ c (rev as))

proof −
interpret T : directed-tree dir-tree-r r r using assms(11) directed-tree-r by auto
let ?Q = (λys. P ys ∧ T .forward ys ∧ (∀ xs ∈ Y . sublist xs ys))
have ?Q = Q
using no-cross-ldeep-iff-forward assms(11 ,2 ,3) hd-eq-take1 nempty-if-take1 [where

r=r] by fast
then show ?thesis

using T .no-gap-if-contr-seq-fwd[OF assms(4−10 ,12−14)] assms(15 ,1 ,2)
unfolding T .fwd-sub-def unique-set-r-def by auto

qed

end

10.3 Arc Invariants
function path-lverts :: (′a list, ′b) dtree ⇒ ′a ⇒ ′a set where

path-lverts (Node r {|(t,e)|}) x = (if x ∈ set r then {} else set r ∪ path-lverts t
x)
| ∀ x. xs 6= {|x|} =⇒ path-lverts (Node r xs) x = (if x ∈ set r then {} else set r)

by (metis darcs-mset.cases old.prod.exhaust) fast+
termination by lexicographic-order

definition path-lverts-list :: (′a list × ′b) list ⇒ ′a ⇒ ′a set where
path-lverts-list xs x = (

⋃
(t,e)∈ set (takeWhile (λ(t,e). x /∈ set t) xs). set t)

definition dom-children :: (′a list, ′b) dtree ⇒ (′a, ′b) pre-digraph ⇒ bool where
dom-children t1 T = (∀ t ∈ fst ‘ fset (sucs t1). ∀ x ∈ dverts t.

357

∃ r ∈ set (root t1) ∪ path-lverts t (hd x). r →T hd x)

abbreviation children-deg1 :: ((′a, ′b) dtree × ′b) fset ⇒ ((′a, ′b) dtree × ′b) set
where

children-deg1 xs ≡ {(t,e). (t,e) ∈ fset xs ∧ max-deg t ≤ 1}

lemma path-lverts-subset-dlverts: path-lverts t x ⊆ dlverts t
by(induction t x rule: path-lverts.induct) auto

lemma path-lverts-to-list-eq:
path-lverts t x = path-lverts-list (dtree-to-list (Node r0 {|(t,e)|})) x
by (induction t rule: dtree-to-list.induct) (auto simp: path-lverts-list-def)

lemma path-lverts-from-list-eq:
path-lverts (dtree-from-list r0 ys) x = path-lverts-list ((r0 ,e0)#ys) x
unfolding path-lverts-list-def using path-lverts.simps(2)[of {||}]
by (induction ys rule: dtree-from-list.induct) (force, cases x ∈ set r0 , auto)

lemma path-lverts-child-union-root-sub:
assumes t2 ∈ fst ‘ fset (sucs t1)
shows path-lverts t1 x ⊆ set (root t1) ∪ path-lverts t2 x

proof(cases ∀ x. sucs t1 6= {|x|})
case True
then show ?thesis using path-lverts.simps(2)[of sucs t1 root t1] by simp

next
case False
then obtain e2 where sucs t1 = {|(t2 ,e2)|} using assms by fastforce
then show ?thesis

using path-lverts.simps(1)[of root t1 t2 e2] dtree.collapse[of t1]
by(cases x ∈ set (root t1)) fastforce+

qed

lemma path-lverts-simps1-sucs:
[[x /∈ set (root t1); sucs t1 = {|(t2 ,e2)|}]]
=⇒ set (root t1) ∪ path-lverts t2 x = path-lverts t1 x

using path-lverts.simps(1)[of root t1 t2 e2 x] dtree.exhaust-sel[of t1] by argo

lemma subtree-path-lverts-sub:
[[wf-dlverts t1 ; max-deg t1 ≤ 1 ; is-subtree (Node r xs) t1 ; t2 ∈ fst ‘ fset xs; x∈set

(root t2)]]
=⇒ set r ⊆ path-lverts t1 x

proof(induction t1)
case (Node r1 xs1)
then have xs1 6= {||} by force
then have max-deg (Node r1 xs1) = 1

using Node.prems(2) empty-if-mdeg-0 [of r1 xs1] by fastforce
then obtain t e where t-def : xs1 = {|(t,e)|} using mdeg-1-singleton by fastforce
have x-t2 : x ∈ dlverts t2 using Node.prems(5) lverts-if-in-verts dtree.set-sel(1)

by fast

358

show ?case
proof(cases Node r1 xs1 = Node r xs)

case True
then show ?thesis using Node.prems(1 ,4) x-t2 t-def by force

next
case False
then have 0 : is-subtree (Node r xs) t using t-def Node.prems(3) by force
moreover have max-deg t ≤ 1 using t-def Node.prems(2) mdeg-ge-child[of t

e xs1] by simp
moreover have x /∈ set r1 using t-def x-t2 Node.prems(1 ,4) 0 subtree-in-dlverts

by force
ultimately show ?thesis using Node.IH t-def Node.prems(1 ,4 ,5) by auto

qed
qed

lemma path-lverts-empty-if-roothd:
assumes root t 6= []
shows path-lverts t (hd (root t)) = {}

proof(cases ∀ x. sucs t 6= {|x|})
case True
then show ?thesis using path-lverts.simps(2)[of sucs t root t] by force

next
case False
then obtain t1 e1 where t1-def : sucs t = {|(t1 , e1)|} by auto
then have path-lverts t (hd (root t)) =
(if hd (root t) ∈ set (root t) then {} else set (root t) ∪ path-lverts t1 (hd (root

t)))
using path-lverts.simps(1) dtree.collapse by metis

then show ?thesis using assms by simp
qed

lemma path-lverts-subset-root-if-childhd:
assumes t1 ∈ fst ‘ fset (sucs t) and root t1 6= []
shows path-lverts t (hd (root t1)) ⊆ set (root t)

proof(cases ∀ x. sucs t 6= {|x|})
case True
then show ?thesis using path-lverts.simps(2)[of sucs t root t] by simp

next
case False
then obtain e1 where sucs t = {|(t1 , e1)|} using assms(1) by fastforce
then have path-lverts t (hd (root t1)) =
(if hd (root t1) ∈ set (root t) then {} else set (root t) ∪ path-lverts t1 (hd (root

t1)))
using path-lverts.simps(1) dtree.collapse by metis

then show ?thesis using path-lverts-empty-if-roothd[OF assms(2)] by auto
qed

lemma path-lverts-list-merge-supset-xs-notin:
∀ v ∈ fst ‘ set ys. a /∈ set v

359

=⇒ path-lverts-list xs a ⊆ path-lverts-list (Sorting-Algorithms.merge cmp xs ys)
a
proof(induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 x xs y ys)
obtain v1 e1 where v1-def [simp]: x = (v1 ,e1) by force
obtain v2 e2 where y = (v2 ,e2) by force
then show ?case using 3 by (auto simp: path-lverts-list-def)

qed (auto simp: path-lverts-list-def)

lemma path-lverts-list-merge-supset-ys-notin:
∀ v ∈ fst ‘ set xs. a /∈ set v
=⇒ path-lverts-list ys a ⊆ path-lverts-list (Sorting-Algorithms.merge cmp xs ys)

a
proof(induction xs ys taking: cmp rule: Sorting-Algorithms.merge.induct)

case (3 x xs y ys)
obtain v1 e1 where v1-def [simp]: x = (v1 ,e1) by force
obtain v2 e2 where y = (v2 ,e2) by force
then show ?case using 3 by (auto simp: path-lverts-list-def)

qed (auto simp: path-lverts-list-def)

lemma path-lverts-list-merge-supset-xs:
[[∃ v ∈ fst ‘ set xs. a ∈ set v; ∀ v1 ∈ fst ‘ set xs. ∀ v2 ∈ fst ‘ set ys. set v1 ∩ set

v2 = {}]]
=⇒ path-lverts-list xs a ⊆ path-lverts-list (Sorting-Algorithms.merge cmp xs ys)

a
using path-lverts-list-merge-supset-xs-notin by fast

lemma path-lverts-list-merge-supset-ys:
[[∃ v ∈ fst ‘ set ys. a ∈ set v; ∀ v1 ∈ fst ‘ set xs. ∀ v2 ∈ fst ‘ set ys. set v1 ∩ set

v2 = {}]]
=⇒ path-lverts-list ys a ⊆ path-lverts-list (Sorting-Algorithms.merge cmp xs ys)

a
using path-lverts-list-merge-supset-ys-notin by fast

lemma dom-children-if-all-singletons:
∀ (t1 ,e1) ∈ fset xs. dom-children (Node r {|(t1 , e1)|}) T =⇒ dom-children (Node

r xs) T
by (auto simp: dom-children-def)

lemma dom-children-all-singletons:
[[dom-children (Node r xs) T ; (t1 ,e1) ∈ fset xs]] =⇒ dom-children (Node r {|(t1 ,

e1)|}) T
by (auto simp: dom-children-def)

lemma dom-children-all-singletons ′:
[[dom-children (Node r xs) T ; t1∈ fst ‘ fset xs]] =⇒ dom-children (Node r {|(t1 ,

e1)|}) T
by (auto simp: dom-children-def)

360

lemma root-arc-if-dom-root-child-nempty:
[[dom-children (Node r xs) T ; t1 ∈ fst ‘ fset xs; root t1 6= []]]
=⇒ ∃ x∈set r . ∃ y∈set (root t1). x →T y

unfolding dom-children-def using dtree.set-sel(1) path-lverts-empty-if-roothd[of
t1]

by fastforce

lemma root-arc-if-dom-root-child-wfdlverts:
[[dom-children (Node r xs) T ; t1 ∈ fst ‘ fset xs; wf-dlverts t1]]
=⇒ ∃ x∈set r . ∃ y∈set (root t1). x →T y

using root-arc-if-dom-root-child-nempty dtree.set-sel(1)[of t1] empty-notin-wf-dlverts
by fastforce

lemma root-arc-if-dom-wfdlverts:
[[dom-children (Node r xs) T ; t1 ∈ fst ‘ fset xs; wf-dlverts (Node r xs)]]
=⇒ ∃ x∈set r . ∃ y∈set (root t1). x →T y

using root-arc-if-dom-root-child-wfdlverts[of r xs T t1] by fastforce

lemma children-deg1-sub-xs: {(t,e). (t,e) ∈ fset xs ∧ max-deg t ≤ 1} ⊆ (fset xs)
by blast

lemma finite-children-deg1 : finite {(t,e). (t,e) ∈ fset xs ∧ max-deg t ≤ 1}
using children-deg1-sub-xs[of xs] by (simp add: finite-subset)

lemma finite-children-deg1 ′: {(t,e). (t,e) ∈ fset xs ∧ max-deg t ≤ 1} ∈ {A. finite
A}

using finite-children-deg1 by blast

lemma children-deg1-fset-id[simp]: fset (Abs-fset (children-deg1 xs)) = children-deg1
xs

using Abs-fset-inverse[OF finite-children-deg1 ′] by auto

lemma xs-sub-children-deg1 : ∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1 =⇒ (fset xs) ⊆
children-deg1 xs

by auto

lemma children-deg1-full:
∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1 =⇒ (Abs-fset (children-deg1 xs)) = xs
using xs-sub-children-deg1 [of xs] children-deg1-sub-xs[of xs] by (simp add: fset-inverse)

locale ranked-dtree-with-orig = ranked-dtree t rank cmp + directed-tree T root
for t :: (′a list, ′b) dtree and rank cost cmp and T :: (′a, ′b) pre-digraph and

root +
assumes asi-rank: asi rank root cost

and dom-mdeg-gt1 :
[[is-subtree (Node r xs) t; t1 ∈ fst ‘ fset xs; max-deg (Node r xs) > 1]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)
and dom-sub-contr :

[[is-subtree (Node r xs) t; t1 ∈ fst ‘ fset xs;

361

∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) ∧ rank (rev (Dtree.root
t2)) < rank (rev v)]]

=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)
and dom-contr :

[[is-subtree (Node r {|(t1 ,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r);
max-deg (Node r {|(t1 ,e1)|}) = 1]]
=⇒ dom-children (Node r {|(t1 ,e1)|}) T
and dom-wedge:

[[is-subtree (Node r xs) t; fcard xs > 1]]
=⇒ dom-children (Node r (Abs-fset (children-deg1 xs))) T
and arc-in-dlverts:

[[is-subtree (Node r xs) t; x ∈ set r ; x →T y]] =⇒ y ∈ dlverts (Node r xs)
and verts-conform: v ∈ dverts t =⇒ seq-conform v
and verts-distinct: v ∈ dverts t =⇒ distinct v

begin

lemma dom-contr ′:
[[is-subtree (Node r {|(t1 ,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r);

max-deg (Node r {|(t1 ,e1)|}) ≤ 1]]
=⇒ dom-children (Node r {|(t1 ,e1)|}) T

using dom-contr mdeg-ge-sub mdeg-singleton[of r t1] by (simp add: fcard-single-1)

lemma dom-self-contr :
[[is-subtree (Node r {|(t1 ,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r)]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using dom-sub-contr by fastforce

lemma dom-wedge-full:
[[is-subtree (Node r xs) t; fcard xs > 1 ; ∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1]]
=⇒ dom-children (Node r xs) T

using dom-wedge children-deg1-full by fastforce

lemma dom-wedge-singleton:
[[is-subtree (Node r xs) t; fcard xs > 1 ; t1 ∈ fst ‘ fset xs; max-deg t1 ≤ 1]]
=⇒ dom-children (Node r {|(t1 ,e1)|}) T

using dom-children-all-singletons ′ dom-wedge children-deg1-fset-id by fastforce

lemma arc-to-dverts-in-subtree:
[[is-subtree (Node r xs) t; x ∈ set r ; x →T y; y ∈ set v; v ∈ dverts t]]
=⇒ v ∈ dverts (Node r xs)

using list-in-verts-if-lverts[OF arc-in-dlverts] dverts-same-if-set-wf [OF wf-lverts]
dverts-subtree-subset by blast

lemma dlverts-arc-in-dlverts:
[[is-subtree t1 t; x →T y; x ∈ dlverts t1]] =⇒ y ∈ dlverts t1

proof(induction t1)
case (Node r xs)
then show ?case
proof(cases x ∈ set r)

362

case True
then show ?thesis using arc-in-dlverts Node.prems(1 ,2) by blast

next
case False
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs x ∈ dlverts t2

using Node.prems(3) by auto
then have is-subtree t2 (Node r xs) using subtree-if-child

by (metis image-iff prod.sel(1))
then have is-subtree t2 t using Node.prems(1) subtree-trans by blast
then show ?thesis using Node.IH Node.prems(2) t2-def by fastforce

qed
qed

lemma dverts-arc-in-dlverts:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x →T y]] =⇒ y ∈ dlverts t1
using dlverts-arc-in-dlverts by (simp add: lverts-if-in-verts)

lemma dverts-arc-in-dverts:
assumes is-subtree t1 t

and v1 ∈ dverts t1
and x ∈ set v1
and x →T y
and y ∈ set v2
and v2 ∈ dverts t

shows v2 ∈ dverts t1
proof −

have x ∈ dlverts t1 using assms(2 ,3) lverts-if-in-verts by fast
then obtain v where v-def : v∈dverts t1 y ∈ set v
using list-in-verts-if-lverts[OF dlverts-arc-in-dlverts] assms(1−4) lverts-if-in-verts

by blast
then show ?thesis

using dverts-same-if-set-wf [OF wf-lverts] assms(1 ,5 ,6) dverts-subtree-subset
by blast
qed

lemma dlverts-reach1-in-dlverts:
[[x →+

T y; is-subtree t1 t; x ∈ dlverts t1]] =⇒ y ∈ dlverts t1
by(induction x y rule: trancl.induct) (auto simp: dlverts-arc-in-dlverts)

lemma dlverts-reach-in-dlverts:
[[x →∗

T y; is-subtree t1 t; x ∈ dlverts t1]] =⇒ y ∈ dlverts t1
using dlverts-reach1-in-dlverts by blast

lemma dverts-reach1-in-dlverts:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x →+

T y]] =⇒ y ∈ dlverts t1
using dlverts-reach1-in-dlverts by (simp add: lverts-if-in-verts)

lemma dverts-reach-in-dlverts:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x →∗

T y]] =⇒ y ∈ dlverts t1

363

using list-in-verts-iff-lverts dverts-reach1-in-dlverts by (cases x=y,fastforce,blast)

lemma dverts-reach1-in-dverts:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x →+

T y; y ∈ set v2 ; v2 ∈ dverts t]]
=⇒ v2 ∈ dverts t1

by (meson dverts-reach1-in-dlverts dverts-arc-in-dverts list-in-verts-if-lverts tran-
clE)

lemma dverts-same-if-set-subtree:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x ∈ set v2 ; v2 ∈ dverts t]] =⇒ v1 =

v2
using dverts-same-if-set-wf [OF wf-lverts] dverts-subtree-subset by blast

lemma dverts-reach-in-dverts:
[[is-subtree t1 t; v1 ∈ dverts t1 ; x ∈ set v1 ; x →∗

T y; y ∈ set v2 ; v2 ∈ dverts t]]
=⇒ v2 ∈ dverts t1

using dverts-same-if-set-subtree dverts-reach1-in-dverts by blast

lemma dverts-reach1-in-dverts-root:
[[is-subtree t1 t; v ∈ dverts t; ∃ x∈set (Dtree.root t1). ∃ y∈set v. x →+

T y]]
=⇒ v ∈ dverts t1

using dverts-reach1-in-dverts dtree.set-sel(1) by blast

lemma dverts-reach1-in-dverts-r :
[[is-subtree (Node r xs) t; v ∈ dverts t; ∃ x∈set r . ∃ y∈set v. x →+

T y]]
=⇒ v ∈ dverts (Node r xs)

using dverts-reach1-in-dverts[of Node r xs] by (auto intro: dtree.set-intros(1))

lemma dom-mdeg-gt1-subtree:
[[is-subtree tn t; is-subtree (Node r xs) tn; t1 ∈ fst ‘ fset xs; max-deg (Node r xs)

> 1]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using dom-mdeg-gt1 subtree-trans by blast

lemma dom-sub-contr-subtree:
[[is-subtree tn t; is-subtree (Node r xs) tn; t1 ∈ fst ‘ fset xs;
∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) ∧ rank (rev (Dtree.root

t2)) < rank (rev v)]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using dom-sub-contr subtree-trans by blast

lemma dom-contr-subtree:
[[is-subtree tn t; is-subtree (Node r {|(t1 ,e1)|}) tn; rank (rev (Dtree.root t1)) <

rank (rev r);
max-deg (Node r {|(t1 ,e1)|}) = 1]]
=⇒ dom-children (Node r {|(t1 ,e1)|}) T

using dom-contr subtree-trans by blast

lemma dom-wedge-subtree:

364

[[is-subtree tn t; is-subtree (Node r xs) tn; fcard xs > 1]]
=⇒ dom-children (Node r (Abs-fset (children-deg1 xs))) T

using dom-wedge subtree-trans by blast

corollary dom-wedge-subtree ′:
is-subtree tn t =⇒∀ r xs. is-subtree (Node r xs) tn −→ fcard xs > 1
−→ dom-children (Node r (Abs-fset {(t, e). (t, e) ∈ fset xs ∧ max-deg t ≤ Suc

0})) T
by (auto simp only: dom-wedge-subtree One-nat-def [symmetric])

lemma dom-wedge-full-subtree:
[[is-subtree tn t; is-subtree (Node r xs) tn; fcard xs > 1 ; ∀ t ∈ fst ‘ fset xs. max-deg

t ≤ 1]]
=⇒ dom-children (Node r xs) T

using dom-wedge-full subtree-trans by fast

lemma arc-in-dlverts-subtree:
[[is-subtree tn t; is-subtree (Node r xs) tn; x ∈ set r ; x →T y]] =⇒ y ∈ dlverts

(Node r xs)
using arc-in-dlverts subtree-trans by blast

corollary arc-in-dlverts-subtree ′:
is-subtree tn t =⇒ ∀ r xs. is-subtree (Node r xs) tn −→ (∀ x. x ∈ set r
−→ (∀ y. x →T y −→ y ∈ set r ∨ (∃ c∈fset xs. y ∈ dlverts (fst c))))

using arc-in-dlverts-subtree by simp

lemma verts-conform-subtree: [[is-subtree tn t; v ∈ dverts tn]] =⇒ seq-conform v
using verts-conform dverts-subtree-subset by blast

lemma verts-distinct-subtree: [[is-subtree tn t; v ∈ dverts tn]] =⇒ distinct v
using verts-distinct dverts-subtree-subset by blast

lemma ranked-dtree-orig-subtree: is-subtree x t =⇒ ranked-dtree-with-orig x rank
cost cmp T root

unfolding ranked-dtree-with-orig-def ranked-dtree-with-orig-axioms-def
by (simp add: ranked-dtree-subtree directed-tree-axioms dom-mdeg-gt1-subtree

dom-contr-subtree
dom-sub-contr-subtree dom-wedge-subtree ′ arc-in-dlverts-subtree ′

verts-conform-subtree verts-distinct-subtree asi-rank)

corollary ranked-dtree-orig-rec:
[[Node r xs = t; (x,e) ∈ fset xs]] =⇒ ranked-dtree-with-orig x rank cost cmp T root
using ranked-dtree-orig-subtree[of x] subtree-if-child[of x xs] by force

lemma child-disjoint-root:
[[is-subtree (Node r xs) t; t1 ∈ fst ‘ fset xs]] =⇒ set r ∩ set (Dtree.root t1) = {}
using wf-dlverts-subtree[OF wf-lverts] dlverts-eq-dverts-union dtree.set-sel(1) by

fastforce

365

lemma distint-verts-subtree:
assumes is-subtree (Node r xs) t and t1 ∈ fst ‘ fset xs
shows distinct (r @ Dtree.root t1)

proof −
have (Dtree.root t1) ∈ dverts t using dtree.set-sel(1) assms dverts-subtree-subset

by fastforce
then show ?thesis
using verts-distinct assms(1) dverts-subtree-subset child-disjoint-root[OF assms]

by force
qed

corollary distint-verts-singleton-subtree:
is-subtree (Node r {|(t1 ,e1)|}) t =⇒ distinct (r @ Dtree.root t1)
using distint-verts-subtree by simp

lemma dom-between-child-roots:
assumes is-subtree (Node r {|(t1 ,e1)|}) t and rank (rev (Dtree.root t1)) < rank

(rev r)
shows ∃ x∈set r . ∃ y∈set (Dtree.root t1). x →T y
using dom-self-contr [OF assms] wf-dlverts-subtree[OF wf-lverts assms(1)]

hd-in-set[of Dtree.root t1] dtree.set-sel(1)[of t1] empty-notin-wf-dlverts[of t1]
by fastforce

lemma contr-before:
assumes is-subtree (Node r {|(t1 ,e1)|}) t and rank (rev (Dtree.root t1)) < rank

(rev r)
shows before r (Dtree.root t1)

proof −
have (Dtree.root t1) ∈ dverts t using dtree.set-sel(1) assms(1) dverts-subtree-subset

by fastforce
then have seq-conform (Dtree.root t1) using verts-conform by simp
moreover have seq-conform r using verts-conform assms(1) dverts-subtree-subset

by force
ultimately show ?thesis
using before-def dom-between-child-roots[OF assms] child-disjoint-root[OF assms(1)]

by auto
qed

lemma contr-forward:
assumes is-subtree (Node r {|(t1 ,e1)|}) t and rank (rev (Dtree.root t1)) < rank

(rev r)
shows forward (r@Dtree.root t1)

proof −
have (Dtree.root t1) ∈ dverts t using dtree.set-sel(1) assms(1) dverts-subtree-subset

by fastforce
then have seq-conform (Dtree.root t1) using verts-conform by simp
moreover have seq-conform r using verts-conform assms(1) dverts-subtree-subset

by force
ultimately show ?thesis

366

using seq-conform-def forward-arcs-alt dom-self-contr assms forward-app by
simp
qed

lemma contr-seq-conform:
[[is-subtree (Node r {|(t1 ,e1)|}) t; rank (rev (Dtree.root t1)) < rank (rev r)]]
=⇒ seq-conform (r @ Dtree.root t1)

using seq-conform-if-before contr-before by simp

lemma verts-forward: ∀ v ∈ dverts t. forward v
using seq-conform-alt verts-conform by simp

lemma dverts-reachable1-if-dom-children-aux-root:
assumes ∀ v∈dverts (Node r xs). ∃ x∈set r0 ∪ X ∪ path-lverts (Node r xs) (hd

v). x →T hd v
and ∀ y∈X . ∃ x∈set r0 . x →+

T y
and forward r

shows ∀ y∈set r . ∃ x∈set r0 . x →+
T y

proof(cases r = [])
case False
then have path-lverts (Node r xs) (hd r) = {}

using path-lverts-empty-if-roothd[of Node r xs] by simp
then obtain x where x-def : x∈set r0 ∪ X x →T hd r using assms(1) by auto
then have hd r ∈ verts T using adj-in-verts(2) by auto
then have ∀ y∈set r . x →+

T y
using hd-reach-all-forward x-def (2) assms(3) reachable1-reachable-trans by

blast
moreover obtain y where y ∈ set r0 y →∗

T x using assms(2) x-def by auto
ultimately show ?thesis using reachable-reachable1-trans by blast

qed(simp)

lemma dverts-reachable1-if-dom-children-aux:
[[∀ v∈dverts t1 . ∃ x∈set r0 ∪ X ∪ path-lverts t1 (hd v). x →T hd v;
∀ y∈X . ∃ x∈set r0 . x →+

T y; ∀ v∈dverts t1 . forward v; v∈dverts t1]]
=⇒ ∀ y∈set v. ∃ x∈set r0 . x →+

T y
proof(induction t1 arbitrary: X rule: dtree-to-list.induct)

case (1 r t e)
have r-reachable1 : ∀ y∈set r . ∃ x∈set r0 . x →+

T y
using dverts-reachable1-if-dom-children-aux-root[OF 1 .prems(1 ,2)] 1 .prems(3)

by simp
then show ?case
proof(cases r = v)

case True
then show ?thesis using r-reachable1 by simp

next
case False

have r-reach1 : ∀ y∈set r ∪ X . ∃ x∈set r0 . x →+
T y using 1 .prems(2)

r-reachable1 by blast
have ∀ x. path-lverts (Node r {|(t, e)|}) x ⊆ set r ∪ path-lverts t x

367

by simp
then have 0 : ∀ v∈dverts t. ∃ x∈set r0 ∪ (set r ∪ X) ∪ (path-lverts t (hd v)).

x →T hd v
using 1 .prems(1) by fastforce

then show ?thesis using 1 .IH [OF 0 r-reach1] 1 .prems(3 ,4) False by simp
qed

next
case (2 xs r)
then show ?case
proof(cases ∃ x∈set r0 ∪ X . x →T hd v)

case True
then obtain x where x-def : x∈set r0 ∪ X x →T hd v using 2 .prems(1 ,4)

by blast
then have hd v ∈ verts T using x-def (2) adj-in-verts(2) by auto
moreover have forward v using 2 .prems(3 ,4) by blast
ultimately have v-reach1 : ∀ y∈set v. x →+

T y
using hd-reach-all-forward x-def (2) reachable1-reachable-trans by blast

then show ?thesis using 2 .prems(2) x-def (1) reachable-reachable1-trans by
blast

next
case False
then obtain x where x-def : x ∈ path-lverts (Node r xs) (hd v) x →T hd v

using 2 .prems(1 ,4) by blast
then have x ∈ set r using path-lverts.simps(2)[OF 2 .hyps] empty-iff by metis
then obtain x ′ where x ′-def : x ′∈set r0 x ′→+

T x
using dverts-reachable1-if-dom-children-aux-root[OF 2 .prems(1 ,2)] 2 .prems(3)

by auto
then have x ′-v: x ′→+

T hd v using x-def (2) by simp
then have hd v ∈ verts T using x-def (2) adj-in-verts(2) by auto
moreover have forward v using 2 .prems(3 ,4) by blast
ultimately have v-reach1 : ∀ y∈set v. x ′→+

T y
using hd-reach-all-forward x ′-v reachable1-reachable-trans by blast

then show ?thesis using x ′-def (1) by blast
qed

qed

lemma dlverts-reachable1-if-dom-children-aux:
[[∀ v∈dverts t1 . ∃ x∈set r ∪ X ∪ path-lverts t1 (hd v). x →T hd v;
∀ y∈X . ∃ x∈set r . x →+

T y; ∀ v∈dverts t1 . forward v; y∈dlverts t1]]
=⇒ ∃ x∈set r . x →+

T y
using dverts-reachable1-if-dom-children-aux list-in-verts-iff-lverts[of y t1] by blast

lemma dverts-reachable1-if-dom-children:
assumes dom-children t1 T and v ∈ dverts t1 and v 6= Dtree.root t1 and
∀ v∈dverts t1 . forward v

shows ∀ y∈set v. ∃ x∈set (Dtree.root t1). x →+
T y

proof −
obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t1) v ∈ dverts t2

using assms(2 ,3) dverts-root-or-suc by force

368

then have 0 : ∀ v∈dverts t2 . ∃ x∈set (Dtree.root t1) ∪ {} ∪ path-lverts t2 (hd v).
x →T hd v

using assms(1) unfolding dom-children-def by blast
moreover have ∀ v∈dverts t2 . forward v using assms(4) t2-def (1) dverts-suc-subseteq

by blast
ultimately show ?thesis using dverts-reachable1-if-dom-children-aux t2-def (2)

by blast
qed

lemma subtree-dverts-reachable1-if-mdeg-gt1 :
[[is-subtree t1 t; max-deg t1 > 1 ; v ∈ dverts t1 ; v 6= Dtree.root t1]]
=⇒ ∀ y∈set v. ∃ x∈set (Dtree.root t1). x →+

T y
proof(induction t1)

case (Node r xs)
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs v ∈ dverts t2 by auto
then obtain x where x-def : x∈set r x →T hd (Dtree.root t2)

using dom-mdeg-gt1 Node.prems(1 ,2) by fastforce
then have t2-T : hd (Dtree.root t2) ∈ verts T using adj-in-verts(2) by simp
have is-subtree t2 (Node r xs) using subtree-if-child[of t2 xs r] t2-def (1) by force
then have subt2 : is-subtree t2 t using subtree-trans Node.prems(1) by blast
have Dtree.root t2 ∈ dverts t

using subt2 dverts-subtree-subset by (fastforce simp: dtree.set-sel(1))
then have fwd-t2 : forward (Dtree.root t2) by (simp add: verts-forward)
then have t2-reach1 : ∀ y∈set (Dtree.root t2). x →+

T y
using hd-reach-all-forward[OF t2-T fwd-t2] x-def (2) reachable1-reachable-trans

by blast
then consider Dtree.root t2 = v | Dtree.root t2 6= v max-deg t2 > 1 | Dtree.root

t2 6= v max-deg t2 ≤ 1
by fastforce

then show ?case
proof(cases)

case 1
then show ?thesis using t2-reach1 x-def (1) by auto

next
case 2
then have ∀ y∈set v. ∃ x∈set (Dtree.root t2). x →+

T y using Node.IH subt2
t2-def by simp

then show ?thesis
using t2-reach1 x-def (1) reachable1-reachable reachable1-reachable-trans
unfolding dtree.sel(1) by blast

next
case 3

then have fcard xs > 1 using Node.prems(2) t2-def (1) fcard-gt1-if-mdeg-gt-child1
by fastforce

then have dom: dom-children (Node r {|(t2 ,e2)|}) T
using dom-wedge-singleton[OF Node.prems(1)] t2-def (1) 3 (2) by fastforce

have ∀ v ∈ dverts (Node r xs). forward v
using Node.prems(1) seq-conform-alt verts-conform-subtree by blast

then have ∀ v ∈ dverts (Node r {|(t2 , e2)|}). forward v using t2-def (1) by

369

simp
then show ?thesis

using dverts-reachable1-if-dom-children[OF dom] t2-def (2) Node.prems(4)
unfolding dtree.sel(1) by simp

qed
qed

lemma subtree-dverts-reachable1-if-mdeg-gt1-singleton:
assumes is-subtree (Node r {|(t1 ,e1)|}) t

and max-deg (Node r {|(t1 ,e1)|}) > 1
and v ∈ dverts t1
and v 6= Dtree.root t1

shows ∀ y∈set v. ∃ x∈set (Dtree.root t1). x →+
T y

proof −
have is-subtree t1 t using subtree-trans[OF subtree-if-child assms(1)] by simp
then show ?thesis

using assms(2−4) mdeg-eq-child-if-singleton-gt1 [OF assms(2)]
subtree-dverts-reachable1-if-mdeg-gt1 by simp

qed

lemma subtree-dverts-reachable1-if-mdeg-le1-subcontr :
[[is-subtree t1 t; max-deg t1 ≤ 1 ; is-subtree (Node v2 {|(t2 ,e2)|}) t1 ;

rank (rev (Dtree.root t2)) < rank (rev v2); v ∈ dverts t1 ; v 6= Dtree.root t1]]
=⇒ ∀ y∈set v. ∃ x∈set (Dtree.root t1). x →+

T y
proof(induction t1)

case (Node r xs)
then show ?case
proof(cases Node v2 {|(t2 ,e2)|} = Node r xs)

case True
then have dom-children (Node r xs) T using dom-contr ′ Node.prems(1 ,2 ,4)

by blast
moreover have ∀ v ∈ dverts (Node r xs). forward v

using Node.prems(1) seq-conform-alt verts-conform-subtree by blast
ultimately show ?thesis using dverts-reachable1-if-dom-children Node.prems(5 ,6)

by blast
next

case False
then obtain t3 e3 where t3-def : (t3 ,e3) ∈ fset xs is-subtree (Node v2 {|(t2 ,e2)|})

t3
using Node.prems(3) by auto

then have t3-xs: xs = {|(t3 ,e3)|}
using Node.prems(2) by (simp add: singleton-if-mdeg-le1-elem)

then have v-t3 : v ∈ dverts t3 using Node.prems(5 ,6) by simp
then have t3-dom: ∃ x∈set r . x →T hd (Dtree.root t3)

using dom-sub-contr Node.prems(1 ,3 ,4) t3-xs by fastforce
then have t3-T : hd (Dtree.root t3) ∈ verts T using adj-in-verts(2) by blast
have is-subtree t3 (Node r xs) using subtree-if-child[of t3 xs] t3-xs by simp
then have sub-t3 : is-subtree t3 t using subtree-trans Node.prems(1) by blast
then have Dtree.root t3 ∈ dverts t

370

using dverts-subtree-subset by (fastforce simp: dtree.set-sel(1))
then have forward (Dtree.root t3) by (simp add: verts-forward)
then have t3-reach1 : ∃ x∈set r . ∀ y∈set(Dtree.root t3). x →+

T y
using hd-reach-all-forward[OF t3-T] t3-dom reachable1-reachable-trans by

blast
show ?thesis
proof(cases v = Dtree.root t3)

case True
then show ?thesis using t3-reach1 by auto

next
case False

moreover have max-deg t3 ≤ 1 using Node.prems(2) t3-def (1) mdeg-ge-child
by fastforce

ultimately have ∀ y∈set v. ∃ x∈set (Dtree.root t3). x →+
T y

using Node.IH sub-t3 t3-def Node.prems(4) v-t3 by simp
then show ?thesis

using t3-reach1 reachable1-reachable-trans reachable1-reachable unfolding
dtree.sel(1)

by blast
qed

qed
qed

lemma subtree-y-reach-if-mdeg-gt1-notroot-reach:
assumes is-subtree (Node r {|(t1 ,e1)|}) t

and max-deg (Node r {|(t1 ,e1)|}) > 1
and v 6= r
and v ∈ dverts t
and v 6= Dtree.root t1
and y ∈ set v
and ∃ x∈set r . x →+

T y
shows ∃ x ′∈set (Dtree.root t1). x ′→+

T y
proof −
have v ∈ dverts (Node r {|(t1 ,e1)|}) using dverts-reach1-in-dverts-r assms(1 ,4 ,6 ,7)

by blast
then show ?thesis using subtree-dverts-reachable1-if-mdeg-gt1-singleton assms(1−3 ,5 ,6)

by simp
qed

lemma subtree-eqroot-if-mdeg-gt1-reach:
[[is-subtree (Node r {|(t1 ,e1)|}) t; max-deg (Node r {|(t1 ,e1)|}) > 1 ; v ∈ dverts

t;
∃ y∈set v. ¬(∃ x ′∈set (Dtree.root t1). x ′→+

T y) ∧ (∃ x∈set r . x →+
T y); v 6=

r]]
=⇒ Dtree.root t1 = v

using subtree-y-reach-if-mdeg-gt1-notroot-reach by blast

lemma subtree-rank-ge-if-mdeg-gt1-reach:
[[is-subtree (Node r {|(t1 ,e1)|}) t; max-deg (Node r {|(t1 ,e1)|}) > 1 ; v ∈ dverts

371

t;
∃ y∈set v. ¬(∃ x ′∈set (Dtree.root t1). x ′→+

T y) ∧ (∃ x∈set r . x →+
T y); v 6=

r]]
=⇒ rank (rev (Dtree.root t1)) ≤ rank (rev v)

using subtree-eqroot-if-mdeg-gt1-reach by blast

lemma subtree-y-reach-if-mdeg-le1-notroot-subcontr :
assumes is-subtree (Node r {|(t1 ,e1)|}) t

and max-deg (Node r {|(t1 ,e1)|}) ≤ 1
and is-subtree (Node v2 {|(t2 ,e2)|}) t1
and rank (rev (Dtree.root t2)) < rank (rev v2)
and v 6= r
and v ∈ dverts t
and v 6= Dtree.root t1
and y ∈ set v
and ∃ x∈set r . x →+

T y
shows ∃ x ′∈set (Dtree.root t1). x ′→+

T y
proof −

have 0 : is-subtree t1 (Node r {|(t1 ,e1)|}) using subtree-if-child[of t1 {|(t1 ,e1)|}]
by simp

then have subt1 : is-subtree t1 t using assms(1) subtree-trans by blast
have v ∈ dverts (Node r {|(t1 ,e1)|})

using dverts-reach1-in-dverts-r assms(1 ,6 ,8 ,9) by blast
then have v ∈ dverts t1 using assms(5) by simp
moreover have max-deg t1 ≤ 1 using assms(2) mdeg-ge-sub[OF 0] by simp
ultimately show ?thesis

using subtree-dverts-reachable1-if-mdeg-le1-subcontr [OF subt1] assms(3 ,4 ,7 ,8)
by blast
qed

lemma rank-ge-if-mdeg-le1-dvert-nocontr :
assumes max-deg t1 ≤ 1

and @ v2 t2 e2 . is-subtree (Node v2 {|(t2 ,e2)|}) t1 ∧ rank (rev (Dtree.root
t2)) < rank (rev v2)

and v ∈ dverts t1
shows rank (rev (Dtree.root t1)) ≤ rank (rev v)

using assms proof(induction t1)
case (Node r xs)
then show ?case
proof(cases v = r)

case False
then obtain t2 e2 where t2-def : xs = {|(t2 ,e2)|} v ∈ dverts t2

using Node.prems(1 ,3) singleton-if-mdeg-le1-elem by fastforce
have max-deg t2 ≤ 1 using Node.prems(1) mdeg-ge-child[of t2 e2 xs] t2-def (1)

by simp
then have rank (rev (Dtree.root t2)) ≤ rank (rev v)

using Node.IH t2-def Node.prems(2) by fastforce
then show ?thesis using Node.prems(2) t2-def (1) by fastforce

qed(simp)

372

qed

lemma subtree-rank-ge-if-mdeg-le1-nocontr :
assumes is-subtree (Node r {|(t1 ,e1)|}) t

and max-deg (Node r {|(t1 ,e1)|}) ≤ 1
and @ v2 t2 e2 . is-subtree (Node v2 {|(t2 ,e2)|}) t1 ∧ rank (rev (Dtree.root

t2)) < rank (rev v2)
and v 6= r
and v ∈ dverts t
and y ∈ set v
and ∃ x∈set r . x →+

T y
shows rank (rev (Dtree.root t1)) ≤ rank (rev v)

proof −
have 0 : is-subtree t1 (Node r {|(t1 ,e1)|}) using subtree-if-child[of t1 {|(t1 ,e1)|}]

by simp
then have 0 : max-deg t1 ≤ 1 using assms(2) mdeg-ge-sub[OF 0] by simp
have v ∈ dverts (Node r {|(t1 ,e1)|}) using dverts-reach1-in-dverts-r assms(1 ,5−7)

by blast
then have v ∈ dverts t1 using assms(4) by simp
then show ?thesis using rank-ge-if-mdeg-le1-dvert-nocontr 0 assms(3) by blast

qed

lemma subtree-rank-ge-if-mdeg-le1 ′:
[[is-subtree (Node r {|(t1 ,e1)|}) t; max-deg (Node r {|(t1 ,e1)|}) ≤ 1 ; v 6= r ;
v ∈ dverts t; y ∈ set v; ∃ x∈set r . x →+

T y; ¬(∃ x ′∈set (Dtree.root t1). x ′→+
T

y)]]
=⇒ rank (rev (Dtree.root t1)) ≤ rank (rev v)

using subtree-y-reach-if-mdeg-le1-notroot-subcontr subtree-rank-ge-if-mdeg-le1-nocontr
apply(cases ∃ v2 t2 e2 . is-subtree (Node v2 {|(t2 ,e2)|}) t1 ∧ rank (rev (Dtree.root

t2))<rank (rev v2))
by blast+

lemma subtree-rank-ge-if-mdeg-le1 :
[[is-subtree (Node r {|(t1 ,e1)|}) t; max-deg (Node r {|(t1 ,e1)|}) ≤ 1 ; v 6= r ;

v ∈ dverts t; ∃ y ∈ set v. ¬(∃ x ′∈set (Dtree.root t1). x ′ →+
T y) ∧ (∃ x∈set r .

x →+
T y)]]

=⇒ rank (rev (Dtree.root t1)) ≤ rank (rev v)
using subtree-y-reach-if-mdeg-le1-notroot-subcontr subtree-rank-ge-if-mdeg-le1-nocontr
apply(cases ∃ v2 t2 e2 . is-subtree (Node v2 {|(t2 ,e2)|}) t1 ∧ rank (rev (Dtree.root

t2))<rank (rev v2))
by blast+

lemma subtree-rank-ge-if-reach:
[[is-subtree (Node r {|(t1 ,e1)|}) t; v 6= r ; v ∈ dverts t;
∃ y ∈ set v. ¬(∃ x ′∈set (Dtree.root t1). x ′→+

T y) ∧ (∃ x∈set r . x →+
T y)]]

=⇒ rank (rev (Dtree.root t1)) ≤ rank (rev v)
using subtree-rank-ge-if-mdeg-le1 subtree-rank-ge-if-mdeg-gt1-reach
by (cases max-deg (Node r {|(t1 ,e1)|}) ≤ 1) (auto simp del: max-deg.simps)

373

lemma subtree-rank-ge-if-reach ′:
is-subtree (Node r {|(t1 ,e1)|}) t =⇒ ∀ v ∈ dverts t.
(∃ y∈set v. ¬ (∃ x ′∈set (Dtree.root t1). x ′ →+

T y) ∧ (∃ x∈set r . x →+
T y) ∧

v 6= r)
−→ rank (rev (Dtree.root t1)) ≤ rank (rev v)

using subtree-rank-ge-if-reach by blast

10.3.1 Normalizing preserves Arc Invariants
lemma normalize1-mdeg-le: max-deg (normalize1 t1) ≤ max-deg t1
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then show ?thesis using mdeg-child-sucs-le by fastforce

next
case False
then have max-deg (normalize1 (Node r {|(t, e)|}))

= max (max-deg (normalize1 t)) (fcard {|(normalize1 t, e)|})
using mdeg-singleton by force

then show ?thesis using mdeg-singleton[of r t] 1 False by (simp add: fcard-single-1)
qed

next
case (2 xs r)
then have 0 : ∀ (t,e) ∈ fset xs. max-deg (normalize1 t) ≤ max-deg t by fastforce
have max-deg (normalize1 (Node r xs)) = max-deg (Node r ((λ(t,e). (normalize1

t,e)) |‘| xs))
using 2 .hyps by simp

then show ?case using mdeg-img-le ′[OF 0] by simp
qed

lemma normalize1-mdeg-eq:
wf-darcs t1
=⇒ max-deg (normalize1 t1) = max-deg t1 ∨ (max-deg (normalize1 t1) = 0 ∧

max-deg t1 = 1)
proof(induction t1 rule: normalize1 .induct)

case ind: (1 r t e)
then have 0 : max-deg (Node r {|(t, e)|}) ≥ 1

using mdeg-ge-fcard[of {|(t, e)|}] by (simp add: fcard-single-1)
then consider rank (rev (Dtree.root t)) < rank (rev r)
| ¬rank (rev (Dtree.root t)) < rank (rev r) max-deg (normalize1 t) ≤ 1
| ¬rank (rev (Dtree.root t)) < rank (rev r) max-deg (normalize1 t) > 1 by

linarith
then show ?case
proof(cases)

case 1
then show ?thesis

using mdeg-singleton mdeg-root fcard-single-1

374

by (metis max-def nle-le dtree.exhaust-sel leI less-one normalize1 .simps(1))
next

case 2
then have max-deg (normalize1 (Node r {|(t, e)|})) = 1

using mdeg-singleton[of r normalize1 t] by (auto simp: fcard-single-1)
moreover have max-deg (Node r {|(t, e)|}) = 1

using mdeg-singleton[of r t] ind 2
by (auto simp: fcard-single-1 wf-darcs-iff-darcs ′)

ultimately show ?thesis by simp
next

case 3
then show ?thesis

using mdeg-singleton[of r t] mdeg-singleton[of r normalize1 t] ind
by (auto simp: fcard-single-1)

qed
next

case ind: (2 xs r)
then consider max-deg (Node r xs) ≤ 1
| max-deg (Node r xs) > 1 max-deg (Node r xs) = fcard xs
| max-deg (Node r xs) > 1 fcard xs < max-deg (Node r xs)
using mdeg-ge-fcard[of xs] by fastforce

then show ?case
proof(cases)

case 1
then show ?thesis using normalize1-mdeg-le[of Node r xs] by fastforce

next
case 2
then have max-deg (Node r xs) ≤ max-deg (normalize1 (Node r xs))

using mdeg-ge-fcard[of (λ(t, e). (normalize1 t, e)) |‘| xs] ind
by (simp add: fcard-normalize-img-if-disjoint wf-darcs-iff-darcs ′)

then show ?thesis using normalize1-mdeg-le[of Node r xs] by simp
next

case 3
then obtain t e where t-def : (t,e) ∈ fset xs max-deg (Node r xs) = max-deg t

using mdeg-child-if-gt-fcard by fastforce
have max-deg (normalize1 t) ≤ max-deg (Node r ((λ(t,e). (normalize1 t,e)) |‘|

xs))
using mdeg-ge-child[of normalize1 t e (λ(t,e). (normalize1 t,e)) |‘| xs r]

t-def (1)
by fastforce

then have max-deg (Node r xs) ≤ max-deg (normalize1 (Node r xs))
using ind.hyps ind.IH [OF t-def (1) refl] ind.prems 3 (1) t-def
by (fastforce simp: wf-darcs-iff-darcs ′)

then show ?thesis using normalize1-mdeg-le[of Node r xs] by simp
qed

qed

lemma normalize1-mdeg-eq ′:
wf-dlverts t1

375

=⇒ max-deg (normalize1 t1) = max-deg t1 ∨ (max-deg (normalize1 t1) = 0 ∧
max-deg t1 = 1)
proof(induction t1 rule: normalize1 .induct)

case ind: (1 r t e)
then have 0 : max-deg (Node r {|(t, e)|}) ≥ 1

using mdeg-ge-fcard[of {|(t, e)|}] by (simp add: fcard-single-1)
then consider rank (rev (Dtree.root t)) < rank (rev r)
| ¬rank (rev (Dtree.root t)) < rank (rev r) max-deg (normalize1 t) ≤ 1
| ¬rank (rev (Dtree.root t)) < rank (rev r) max-deg (normalize1 t) > 1 by

linarith
then show ?case
proof(cases)

case 1
then show ?thesis

using mdeg-singleton[of r t] mdeg-root[of Dtree.root t sucs t]
by (auto simp: fcard-single-1 simp del: max-deg.simps)

next
case 2
then have max-deg (normalize1 (Node r {|(t, e)|})) = 1

using mdeg-singleton[of r normalize1 t] by (auto simp: fcard-single-1)
moreover have max-deg (Node r {|(t, e)|}) = 1

using mdeg-singleton[of r t] ind 2 by (auto simp: fcard-single-1)
ultimately show ?thesis by simp

next
case 3
then show ?thesis

using mdeg-singleton[of r t] mdeg-singleton[of r normalize1 t] ind
by (auto simp: fcard-single-1)

qed
next

case ind: (2 xs r)
consider max-deg (Node r xs) ≤ 1
| max-deg (Node r xs) > 1 max-deg (Node r xs) = fcard xs
| max-deg (Node r xs) > 1 fcard xs < max-deg (Node r xs)
using mdeg-ge-fcard[of xs] by fastforce

then show ?case
proof(cases)

case 1
then show ?thesis using normalize1-mdeg-le[of Node r xs] by (auto simp del:

max-deg.simps)
next

case 2
have 0 : ∀ (t, e)∈fset xs. dlverts t 6= {} using dlverts-nempty-if-wf ind.prems

by auto
then have max-deg (Node r xs) ≤ max-deg (normalize1 (Node r xs))

using mdeg-ge-fcard[of (λ(t, e). (normalize1 t, e)) |‘| xs] ind 2
by (simp add: fcard-normalize-img-if-disjoint-lverts)

then show ?thesis using normalize1-mdeg-le[of Node r xs] by simp
next

376

case 3
then obtain t e where t-def : (t,e) ∈ fset xs max-deg (Node r xs) = max-deg t

using mdeg-child-if-gt-fcard by fastforce
have max-deg (normalize1 t) ≤ max-deg (Node r ((λ(t,e). (normalize1 t,e)) |‘|

xs))
using mdeg-ge-child[of normalize1 t e (λ(t,e). (normalize1 t,e)) |‘| xs] t-def (1)
by (force simp del: max-deg.simps)

then have max-deg (Node r xs) ≤ max-deg (normalize1 (Node r xs))
using ind 3 (1) t-def by (fastforce simp del: max-deg.simps)

then show ?thesis using normalize1-mdeg-le[of Node r xs] by simp
qed

qed

lemma normalize1-dom-mdeg-gt1 :
[[is-subtree (Node r xs) (normalize1 t); t1 ∈ fst ‘ fset xs; max-deg (Node r xs) >

1]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)
case (1 r1 t e)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
have sub-t: is-subtree t (Node r1 {|(t,e)|}) using subtree-if-child[of t {|(t,e)|}]

by simp
show ?case
proof(cases Node r xs = normalize1 (Node r1 {|(t,e)|}))

case eq: True
then have 0 : max-deg (Node r1 {|(t,e)|}) > 1

by (metis normalize1-mdeg-le 1 .prems(3) less-le-trans)
then have max-t: max-deg t > 1 by (metis dtree.exhaust-sel mdeg-child-sucs-eq-if-gt1)
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have eq: Node r xs = Node (r1@Dtree.root t) (sucs t) using eq by simp
then have t1 ∈ fst ‘ fset (sucs t) using 1 .prems(2) by simp
then obtain v where v ∈ set (Dtree.root t) v →T hd (Dtree.root t1)

using R.dom-mdeg-gt1 [of Dtree.root t sucs t] sub-t max-t by auto
then show ?thesis using eq by auto

next
case False
obtain v where v-def : v ∈ set r1 v →T hd (Dtree.root t)

using max-t R.dom-mdeg-gt1 [of r1 {|(t, e)|}] 0 by auto
interpret T : ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have eq: Node r xs = Node r1 {|(normalize1 t, e)|} using False eq by simp
then have t1 = normalize1 t using 1 .prems(2) by simp
moreover have Dtree.root t 6= []

using empty-notin-wf-dlverts[OF T .wf-lverts] dtree.set-sel(1)[of t] by auto
ultimately have hd (Dtree.root t1) = hd (Dtree.root t) using normal-

ize1-hd-root-eq by blast
then show ?thesis using v-def eq by auto

qed

377

next
case uneq: False
show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have normalize1 (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)

by simp
then obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t) is-subtree (Node r xs)

t2
using uneq 1 .prems(1) by fastforce

then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node r xs) (Node r1 {|(t,e)|})

using subtree-trans subtree-if-suc t2-def (2) by auto
then show ?thesis using R.dom-mdeg-gt1 1 .prems by blast

next
case False
then have normalize1 (Node r1 {|(t,e)|}) = Node r1 {|(normalize1 t, e)|}

by simp
then have is-subtree (Node r xs) (normalize1 t) using uneq 1 .prems(1) by

auto
then show ?thesis using 1 .IH False 1 .prems(2 ,3) R.ranked-dtree-orig-rec by

simp
qed

qed
next

case (2 xs1 r1)
then interpret R: ranked-dtree-with-orig Node r1 xs1 by blast
show ?case
proof(cases Node r xs = normalize1 (Node r1 xs1))

case True
then have 0 : max-deg (Node r1 xs1) > 1

using normalize1-mdeg-le 2 .prems(3) less-le-trans by (fastforce simp del:
max-deg.simps)

then obtain t where t-def : t ∈ fst ‘ fset xs1 normalize1 t = t1
using 2 .prems(2) 2 .hyps True by fastforce

then have sub-t: is-subtree t (Node r1 xs1) using subtree-if-child by fast
then obtain v where v-def : v ∈ set r1 v →T hd (Dtree.root t)

using R.dom-mdeg-gt1 [of r1] t-def (1) 0 by auto
interpret T : ranked-dtree-with-orig t using R.ranked-dtree-orig-rec t-def (1)

by force
have Dtree.root t 6= []

using empty-notin-wf-dlverts[OF T .wf-lverts] dtree.set-sel(1)[of t] by auto
then have hd (Dtree.root t1) = hd (Dtree.root t) using normalize1-hd-root-eq

t-def (2) by blast
then show ?thesis using v-def 2 .hyps True by auto

next
case False
then show ?thesis using 2 R.ranked-dtree-orig-rec by auto

qed

378

qed

lemma child-contr-if-new-contr :
assumes ¬rank (rev (Dtree.root t1)) < rank (rev r)

and rank (rev (Dtree.root (normalize1 t1))) < rank (rev r)
shows ∃ t2 e2 . sucs t1 = {|(t2 ,e2)|} ∧ rank (rev (Dtree.root t2)) < rank (rev

(Dtree.root t1))
proof −

obtain t2 e2 where t2-def : sucs t1 = {|(t2 ,e2)|}
using root-normalize1-eq2 [of sucs t1 Dtree.root t1] assms by fastforce

then show ?thesis
using root-normalize1-eq1 [of t2 Dtree.root t1 e2] assms dtree.collapse[of t1] by

fastforce
qed

lemma sub-contr-if-new-contr :
assumes ¬rank (rev (Dtree.root t1)) < rank (rev r)

and rank (rev (Dtree.root (normalize1 t1))) < rank (rev r)
shows ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) t1 ∧ rank (rev (Dtree.root t2))

< rank (rev v)
proof −

obtain t2 e2 where t2-def : sucs t1 = {|(t2 ,e2)|} rank (rev (Dtree.root t2)) <
rank (rev (Dtree.root t1))

using child-contr-if-new-contr [OF assms] by blast
then have is-subtree (Node (Dtree.root t1) {|(t2 ,e2)|}) t1

using is-subtree.simps[of Node (Dtree.root t1) {|(t2 ,e2)|} Dtree.root t1 sucs t1]
by fastforce

then show ?thesis using t2-def (2) by blast
qed

lemma normalize1-subtree-same-hd:
[[is-subtree (Node v {|(t1 ,e1)|}) (normalize1 t)]]

=⇒ ∃ t3 e3 . (is-subtree (Node v {|(t3 ,e3)|}) t ∧ hd (Dtree.root t1) = hd
(Dtree.root t3))

∨ (∃ v2 . v = v2 @ Dtree.root t3 ∧ sucs t3 = {|(t1 ,e1)|}
∧ is-subtree (Node v2 {|(t3 ,e3)|}) t ∧ rank (rev (Dtree.root t3)) < rank (rev

v2))
using wf-lverts wf-arcs proof(induction t rule: normalize1 .induct)

case (1 r t e)
show ?case
proof(cases Node v {|(t1 ,e1)|} = normalize1 (Node r {|(t,e)|}))

case eq: True
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then show ?thesis using 1 eq by auto

next
case False
then have eq: Node v {|(t1 ,e1)|} = Node r {|(normalize1 t,e)|} using eq by

379

simp
then show ?thesis using normalize1-hd-root-eq ′ 1 .prems(2) by auto

qed
next

case uneq: False
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then obtain t2 e2 where (t2 ,e2) ∈ fset (sucs t) is-subtree (Node v {|(t1 ,e1)|})

t2
using 1 .prems(1) uneq by auto

then show ?thesis using is-subtree.simps[of Node v {|(t1 ,e1)|} Dtree.root t
sucs t] by auto

next
case False
then have is-subtree (Node v {|(t1 ,e1)|}) (normalize1 t) using 1 .prems(1)

uneq by auto
then show ?thesis

using 1 .IH 1 .prems(2 ,3) False by (auto simp: wf-darcs-iff-darcs ′)
qed

qed
next

case (2 xs r)
then have ∀ x. ((λ(t,e). (normalize1 t,e)) |‘| xs) 6= {|x|}

using singleton-normalize1 by (simp add: wf-darcs-iff-darcs ′)
then have Node v {|(t1 ,e1)|} 6= Node r ((λ(t,e). (normalize1 t,e)) |‘| xs) by

auto
then obtain t2 e2 where (t2 ,e2) ∈ fset xs ∧ is-subtree (Node v {|(t1 ,e1)|})

(normalize1 t2)
using 2 .prems(1) 2 .hyps by auto

then show ?case using 2 .IH 2 .prems(2 ,3) by (fastforce simp: wf-darcs-iff-darcs ′)
qed

lemma normalize1-dom-sub-contr :
[[is-subtree (Node r xs) (normalize1 t); t1 ∈ fst ‘ fset xs;
∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) ∧ rank (rev (Dtree.root

t2)) < rank (rev v)]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)
case (1 r1 t e)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
interpret T : ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})

using subtree-if-child[of t {|(t,e)|}] by simp
obtain v t2 e2 where v-def :

is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)

using 1 .prems(3) by blast
show ?case

380

proof(cases Node r xs = normalize1 (Node r1 {|(t,e)|}))
case eq: True
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have eq: Node r xs = Node (r1@Dtree.root t) (sucs t) using eq by simp
then consider Node r xs = Node v {|(t2 ,e2)|} max-deg (Node r xs) ≤ 1
| Node r xs 6= Node v {|(t2 ,e2)|} | max-deg (Node r xs) > 1
by linarith

then show ?thesis
proof(cases)

case 1
then have max-deg (Node (r1@Dtree.root t) (sucs t)) ≤ 1 using eq by

blast
then have max-deg t ≤ 1 using mdeg-root[of Dtree.root t sucs t] by simp
then have max-deg (Node r1 {|(t,e)|}) = 1

using mdeg-singleton[of r1 t] by (simp add: fcard-single-1)
then have dom: dom-children (Node r1 {|(t, e)|}) T using R.dom-contr

True by auto
have 0 : t1 ∈ fst ‘ fset (sucs t) using eq 1 .prems(2) by blast
then have Dtree.root t1 ∈ dverts t

using dtree.set-sel(1) T .dverts-child-subset dtree.exhaust-sel psubsetD by
metis

then obtain r2 where r2-def :
r2 ∈ set r1 ∪ path-lverts t (hd (Dtree.root t1)) r2 →T (hd (Dtree.root

t1))
using dom unfolding dom-children-def by auto

have Dtree.root t1 6= []
using empty-notin-wf-dlverts T .wf-lverts 0 T .dverts-child-subset
by (metis dtree.exhaust-sel dtree.set-sel(1) psubsetD)

then have r2 ∈ set r1 ∪ set (Dtree.root t)
using path-lverts-subset-root-if-childhd[OF 0] r2-def (1) by fast

then show ?thesis using r2-def (2) eq by auto
next

case 2
then obtain t3 e3 where t3-def :

(t3 ,e3) ∈ fset (sucs t) is-subtree (Node v {|(t2 ,e2)|}) t3
using eq v-def (1) by auto

have is-subtree t3 t using t3-def (1) subtree-if-suc by fastforce
then have is-subtree (Node v {|(t2 ,e2)|}) (Node (Dtree.root t) (sucs t))

using t3-def (2) subtree-trans by auto
moreover have t1 ∈ fst ‘ fset (sucs t) using eq 1 .prems(2) by blast

ultimately obtain v where v-def : v ∈ set (Dtree.root t) ∧ v →T hd
(Dtree.root t1)

using R.dom-sub-contr [OF sub-t] v-def (2) eq by blast
then show ?thesis using eq by auto

next
case 3

then show ?thesis using R.normalize1-dom-mdeg-gt1 1 .prems(1 ,2) by blast

381

qed
next

case False
then have eq: Node r xs = Node r1 {|(normalize1 t, e)|} using eq by simp
have hd: hd (Dtree.root (normalize1 t)) = hd (Dtree.root t)

using normalize1-hd-root-eq ′ T .wf-lverts by blast
have ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) t ∧ rank (rev (Dtree.root t2))

< rank (rev v)
using contr-before-normalize1 eq v-def sub-contr-if-new-contr False by auto

then show ?thesis using R.dom-sub-contr [of r1 {|(t,e)|}] eq 1 .prems(2) hd
by auto

qed
next

case uneq: False
show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have normalize1 (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)

by simp
then obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t) is-subtree (Node r xs)

t2
using uneq 1 .prems(1) by fastforce

then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node r xs) (Node r1 {|(t,e)|})

using subtree-trans subtree-if-child t2-def (2) by auto
then show ?thesis using R.dom-sub-contr 1 .prems(2 ,3) by fast

next
case False
then have normalize1 (Node r1 {|(t,e)|}) = Node r1 {|(normalize1 t, e)|}

by simp
then have is-subtree (Node r xs) (normalize1 t) using uneq 1 .prems(1) by

auto
then show ?thesis using 1 .IH False 1 .prems(2 ,3) R.ranked-dtree-orig-rec by

simp
qed

qed
next

case (2 xs1 r1)
then interpret R: ranked-dtree-with-orig Node r1 xs1 by blast
show ?case
proof(cases Node r xs = normalize1 (Node r1 xs1))

case True
then have eq: Node r xs = Node r1 ((λ(t,e). (normalize1 t,e)) |‘| xs1) using

2 .hyps by simp
obtain v t2 e2 where v-def :

is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)

using 2 .prems(3) by blast
obtain t where t-def : t ∈ fst ‘ fset xs1 normalize1 t = t1 using 2 .prems(2)

382

eq by force
then interpret T : ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by

force
have ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r1 xs1)

∧ rank (rev (Dtree.root t2)) < rank (rev v)
using True contr-before-normalize1 v-def by presburger

moreover have hd (Dtree.root t1) = hd (Dtree.root t)
using normalize1-hd-root-eq ′ T .wf-lverts t-def (2) by blast

ultimately show ?thesis using R.dom-sub-contr [of r1 xs1] t-def (1) eq by
auto

next
case False
then obtain t e where (t,e) ∈ fset xs1 ∧ is-subtree (Node r xs) (normalize1 t)

using 2 .prems(1) 2 .hyps by auto
then show ?thesis using 2 .IH 2 .prems(2 ,3) R.ranked-dtree-orig-rec by fast

qed
qed

lemma dom-children-combine-aux:
assumes dom-children (Node r {|(t1 , e1)|}) T

and t2 ∈ fst ‘ fset (sucs t1)
and x ∈ dverts t2

shows ∃ v ∈ set (r @ Dtree.root t1) ∪ path-lverts t2 (hd x). v →T (hd x)
using path-lverts-child-union-root-sub[OF assms(2)] assms dtree.set-sel(2)
unfolding dom-children-def by fastforce

lemma dom-children-combine:
dom-children (Node r {|(t1 , e1)|}) T =⇒ dom-children (Node (r@Dtree.root t1)

(sucs t1)) T
using dom-children-combine-aux by (simp add: dom-children-def)

lemma path-lverts-normalize1-sub:
[[wf-dlverts t1 ; x ∈ dverts (normalize1 t1); max-deg (normalize1 t1) ≤ 1]]
=⇒ path-lverts t1 (hd x) ⊆ path-lverts (normalize1 t1) (hd x)

proof(induction t1 rule: normalize1 .induct)
case (1 r t e)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then have eq: normalize1 (Node r {|(t, e)|}) = Node (r@Dtree.root t) (sucs t)

by simp
then show ?thesis
proof(cases x = r@Dtree.root t)

case True
then show ?thesis using 1 by auto

next
case False
then obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset (sucs t) x ∈ dverts t1

using 1 .prems(2) eq by auto

383

then have 0 : hd x ∈ dlverts t1
using hd-in-lverts-if-wf 1 .prems(1) wf-dlverts-sucs by force

then have hd x ∈ dlverts t using t1-def (1) suc-in-dlverts by fast
then have 2 : hd x /∈ set r using 1 .prems(1) by auto
have wf-dlverts t using 1 .prems(1) by simp
then have hd x /∈ set (Dtree.root t) using 0 t1-def (1) wf-dlverts.simps[of

Dtree.root t] by fastforce
then have hd-nin: hd x /∈ set (r @ Dtree.root t) using 2 by auto
then obtain t2 e2 where sucs t = {|(t2 ,e2)|}
using 1 .prems(3) ‹hd x ∈ dlverts t› ‹hd x /∈ set (Dtree.root t)› mdeg-root eq

by (metis dtree.collapse denormalize.simps(2) denormalize-set-eq-dlverts
surj-pair)

then show ?thesis using eq hd-nin path-lverts-simps1-sucs by fastforce
qed

next
case uneq: False
then have normalize1 (Node r {|(t, e)|}) = Node r {|(normalize1 t, e)|} by

simp
then have max-deg (normalize1 t) ≤ 1
using 1 .prems(3) mdeg-singleton[of r normalize1 t] fcard-single-1 max-def by

auto
then show ?thesis using uneq 1 by auto

qed
next

case (2 xs r)
then have max-deg (normalize1 (Node r xs)) = max-deg (Node r xs) ∨ max-deg

(Node r xs) = 1
using normalize1-mdeg-eq ′ by blast

then have max-deg (Node r xs) ≤ 1 using 2 .prems(3) by (auto simp del:
max-deg.simps)

then have fcard xs = 0
using mdeg-ge-fcard[of xs r] fcard-single-1-iff [of xs] 2 .hyps by fastforce

then show ?case using 2 by simp
qed

lemma dom-children-normalize1-aux-1 :
assumes dom-children (Node r {|(t1 , e1)|}) T

and sucs t1 = {|(t2 ,e2)|}
and wf-dlverts t1
and normalize1 t1 = Node (Dtree.root t1 @ Dtree.root t2) (sucs t2)
and max-deg t1 = 1
and x ∈ dverts (normalize1 t1)

shows ∃ v ∈ set r ∪ path-lverts (normalize1 t1) (hd x). v →T (hd x)
proof(cases x = Dtree.root t1 @ Dtree.root t2)

case True
then have 0 : hd x = hd (Dtree.root t1) using assms(3 ,4) normalize1-hd-root-eq ′

by fastforce
then obtain v where v-def : v ∈ set r ∪ path-lverts t1 (hd x) v →T (hd x)

using assms(1) dtree.set-sel(1) unfolding dom-children-def by auto

384

have Dtree.root t1 6= [] using assms(3) wf-dlverts.simps[of Dtree.root t1 sucs t1]
by simp

then show ?thesis using v-def 0 path-lverts-empty-if-roothd by auto
next

case False
then obtain t3 e3 where t3-def : (t3 ,e3) ∈ fset (sucs t2) x ∈ dverts t3

using assms(2 ,4 ,6) by auto
then have x ∈ dverts t2 using dtree.set(1)[of Dtree.root t2 sucs t2] by fastforce
then have x ∈ dverts (Node (Dtree.root t1) {|(t2 ,e2)|}) by auto
then have x ∈ dverts t1 using assms(2) dtree.exhaust-sel by metis
then obtain v where v-def : v ∈ set r ∪ path-lverts t1 (hd x) v →T (hd x)

using assms(1) dtree.set-sel(1) unfolding dom-children-def by auto
have path-lverts t1 (hd x) ⊆ path-lverts (Node (Dtree.root t1 @ Dtree.root t2)

(sucs t2)) (hd x)
using assms(3−6) normalize1-mdeg-le path-lverts-normalize1-sub by metis

then show ?thesis using v-def assms(4) by auto
qed

lemma dom-children-normalize1-1 :
[[dom-children (Node r {|(t1 , e1)|}) T ; sucs t1 = {|(t2 ,e2)|}; wf-dlverts t1 ;

normalize1 t1 = Node (Dtree.root t1 @ Dtree.root t2) (sucs t2); max-deg t1 =
1]]

=⇒ dom-children (Node r {|(normalize1 t1 , e1)|}) T
using dom-children-normalize1-aux-1 by (simp add: dom-children-def)

lemma dom-children-normalize1-aux:
assumes ∀ x∈dverts t1 . ∃ v ∈ set r0 ∪ path-lverts t1 (hd x). v →T hd x

and wf-dlverts t1
and max-deg t1 ≤ 1
and x ∈ dverts (normalize1 t1)

shows ∃ v ∈ set r0 ∪ path-lverts (normalize1 t1) (hd x). v →T (hd x)
using assms proof(induction t1 arbitrary: r0 rule: normalize1 .induct)

case (1 r t e)
have deg1 : max-deg (Node r {|(t, e)|}) = 1

using 1 .prems(3) mdeg-ge-fcard[of {|(t, e)|}] by (simp add: fcard-single-1)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
have 0 : dom-children (Node r0 {|(Node r {|(t, e)|}, e)|}) T

using 1 .prems(1) unfolding dom-children-def by simp
show ?thesis using dom-children-normalize1-aux-1 [OF 0] 1 .prems(1 ,2 ,4) deg1

True by auto
next

case ncontr : False
show ?thesis
proof(cases x = r)

case True
then show ?thesis using 1 .prems(1 ,2) by auto

next

385

case False
have wf-dlverts (normalize1 t) using 1 .prems(2) wf-dlverts-normalize1 by

auto
then have hd x ∈ dlverts (normalize1 t)

using hd-in-lverts-if-wf False ncontr 1 .prems(1 ,4) by fastforce
then have hd: hd x /∈ set r using 1 .prems(2) ncontr wf-dlverts-normalize1

by fastforce
then have eq: path-lverts (Node r {|(t, e)|}) (hd x) = set r ∪ path-lverts t

(hd x) by simp
then have eq1 : path-lverts (Node r {|(normalize1 t, e)|}) (hd x)

= set r ∪ path-lverts (normalize1 t) (hd x) by auto
have ∀ x∈dverts t. path-lverts (Node r {|(t, e)|}) (hd x) ⊆ set r ∪ path-lverts

t (hd x)
using path-lverts-child-union-root-sub by simp

then have 2 : ∀ x∈dverts t. ∃ v∈set (r0@r) ∪ path-lverts t (hd x). v →T hd x
using 1 .prems(1) by fastforce

have max-deg t ≤ 1 using 1 .prems(3) mdeg-ge-child[of t e {|(t, e)|}] by simp
then show ?thesis using 1 .IH [OF ncontr 2] 1 .prems(2 ,4) ncontr hd by auto

qed
qed

next
case (2 xs r)
then have fcard xs ≤ 1 using mdeg-ge-fcard[of xs] by simp
then have fcard xs = 0 using 2 .hyps fcard-single-1-iff [of xs] by fastforce
then show ?case using 2 by auto

qed

lemma dom-children-normalize1 :
[[dom-children (Node r0 {|(t1 ,e1)|}) T ; wf-dlverts t1 ; max-deg t1 ≤ 1]]
=⇒ dom-children (Node r0 {|(normalize1 t1 ,e1)|}) T

using dom-children-normalize1-aux by (simp add: dom-children-def)

lemma dom-children-child-self-aux:
assumes dom-children t1 T

and sucs t1 = {|(t2 , e2)|}
and rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t1))
and t = Node r {|(t1 , e1)|}
and x ∈ dverts t1

shows ∃ v ∈ set r ∪ path-lverts t1 (hd x). v →T hd x
proof(cases x = Dtree.root t1)

case True
have is-subtree (Node (Dtree.root t1) {|(t2 , e2)|}) (Node r {|(t1 , e1)|})

using subtree-if-child[of t1 {|(t1 , e1)|}] assms(2) dtree.collapse[of t1] by simp
then show ?thesis using dom-sub-contr [of r {|(t1 , e1)|}] assms(3 ,4) True by

auto
next

case False
then have x ∈ (

⋃
y∈fset (sucs t1).

⋃
(dverts ‘ Basic-BNFs.fsts y))

using assms(5) dtree.set(1)[of Dtree.root t1 sucs t1] by auto

386

then have x ∈ dverts t2 using assms(2) by auto
then obtain v where v-def : v ∈ set (Dtree.root t1) ∪ path-lverts t2 (hd x) v
→T (hd x)

using assms(1 ,2) dtree.set-sel(1) unfolding dom-children-def by auto
interpret T1 : list-dtree t1 using list-dtree-rec assms(4) by simp
interpret T2 : list-dtree t2 using T1 .list-dtree-rec-suc assms(2) by simp
have hd x ∈ dlverts t2 using ‹x ∈ dverts t2 › by (simp add: hd-in-lverts-if-wf

T2 .wf-lverts)
then have hd x /∈ set (Dtree.root t1)

using T1 .wf-lverts wf-dlverts.simps[of Dtree.root t1 sucs t1] assms(2) by fast-
force

then have path-lverts t1 (hd x) = set (Dtree.root t1) ∪ path-lverts t2 (hd x)
using assms(2) by (simp add: path-lverts-simps1-sucs)

then show ?thesis using v-def by auto
qed

lemma dom-children-child-self :
assumes dom-children t1 T

and sucs t1 = {|(t2 , e2)|}
and rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t1))
and t = Node r {|(t1 , e1)|}

shows dom-children (Node r {|(t1 , e1)|}) T
using dom-children-child-self-aux[OF assms] by (simp add: dom-children-def)

lemma normalize1-dom-contr :
[[is-subtree (Node r {|(t1 ,e1)|}) (normalize1 t); rank (rev (Dtree.root t1)) < rank

(rev r);
max-deg (Node r {|(t1 ,e1)|}) = 1]]
=⇒ dom-children (Node r {|(t1 ,e1)|}) T

using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)
case (1 r1 t e)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
interpret T : ranked-dtree-with-orig t using R.ranked-dtree-orig-rec by simp
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})

using subtree-if-child[of t {|(t,e)|}] by simp
show ?case
proof(cases Node r {|(t1 ,e1)|} = normalize1 (Node r1 {|(t,e)|}))

case eq: True
then show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have eq: Node r {|(t1 ,e1)|} = Node (r1@Dtree.root t) (sucs t) using

eq by simp
then have max-deg t = 1 using mdeg-root[of Dtree.root t sucs t] 1 by simp
then have max-deg (Node r1 {|(t,e)|}) = 1

using mdeg-singleton[of r1 t] by (simp add: fcard-single-1)
then have dom-children (Node r1 {|(t, e)|}) T using R.dom-contr [of r1 t e]

True by simp
then show ?thesis using dom-children-combine eq by simp

387

next
case False
then have eq: Node r {|(t1 ,e1)|} = Node r1 {|(normalize1 t, e)|} using eq

by simp
then obtain t2 e2 where t2-def :

sucs t = {|(t2 , e2)|} rank (rev (Dtree.root t2)) < rank (rev (Dtree.root t))
using child-contr-if-new-contr False 1 .prems(2) by blast

then have is-subtree (Node (Dtree.root t) {|(t2 , e2)|}) (Node r1 {|(t, e)|})
using sub-t by simp

have max-deg t = 1
using 1 .prems(3) eq mdeg-singleton mdeg-root t2-def
by (metis dtree.collapse fcard-single-1 normalize1 .simps(1))

then have max-deg (Node (Dtree.root t) {|(t2 , e2)|}) = 1
using t2-def (1) dtree.collapse[of t] by simp

then have dom-children (Node (Dtree.root t) (sucs t)) T
using R.dom-contr sub-t t2-def 1 .prems(3) by simp

then have dom-children t T using dtree.exhaust-sel by simp
then have dom-children (Node r1 {|(t,e)|}) T

using R.dom-children-child-self t2-def by simp
then show ?thesis using dom-children-normalize1 ‹max-deg t = 1 › T .wf-lverts

eq by auto
qed

next
case uneq: False
show ?thesis
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have normalize1 (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs t)

by simp
then obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t) is-subtree (Node r

{|(t1 ,e1)|}) t2
using uneq 1 .prems(1) by fastforce

then have is-subtree t2 t using subtree-if-suc by blast
then have is-subtree (Node r {|(t1 ,e1)|}) (Node r1 {|(t,e)|})

using subtree-trans subtree-if-child t2-def (2) by auto
then show ?thesis using R.dom-contr 1 .prems(2 ,3) by blast

next
case False
then have normalize1 (Node r1 {|(t,e)|}) = Node r1 {|(normalize1 t, e)|}

by simp
then have is-subtree (Node r {|(t1 ,e1)|}) (normalize1 t) using uneq 1 .prems(1)

by auto
then show ?thesis using 1 .IH False 1 .prems(2 ,3) R.ranked-dtree-orig-rec by

simp
qed

qed
next

case (2 xs r1)
then have eq: normalize1 (Node r1 xs) = Node r1 ((λ(t,e). (normalize1 t,e)) |‘|

388

xs)
using 2 .hyps by simp

interpret R: ranked-dtree-with-orig Node r1 xs using 2 .prems(4) by blast
have ∀ x. ((λ(t,e). (normalize1 t,e)) |‘| xs) 6= {|x|}
using singleton-normalize1 2 .hyps disjoint-darcs-if-wf-xs[OF R.wf-arcs] by auto

then have Node r {|(t1 ,e1)|} 6= Node r1 ((λ(t,e). (normalize1 t,e)) |‘| xs) by
auto

then obtain t3 e3 where t3-def :
(t3 ,e3) ∈ fset xs is-subtree (Node r {|(t1 , e1)|}) (normalize1 t3)

using 2 .prems(1) eq by auto
then show ?case using 2 .IH 2 .prems(2 ,3) R.ranked-dtree-orig-rec by simp

qed

lemma dom-children-normalize1-img-full:
assumes dom-children (Node r xs) T

and ∀ (t1 ,e1) ∈ fset xs. wf-dlverts t1
and ∀ (t1 ,e1) ∈ fset xs. max-deg t1 ≤ 1

shows dom-children (Node r ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)) T
proof −

have ∀ (t1 , e1) ∈ fset xs. dom-children (Node r {|(t1 , e1)|}) T
using dom-children-all-singletons[OF assms(1)] by blast

then have ∀ (t1 , e1) ∈ fset xs. dom-children (Node r {|(normalize1 t1 , e1)|}) T
using dom-children-normalize1 assms(2 ,3) by fast

then show ?thesis
using dom-children-if-all-singletons[of (λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs] by

fastforce
qed

lemma children-deg1-normalize1-sub:
(λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs
⊆ children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)
using normalize1-mdeg-le order-trans by auto

lemma normalize1-children-deg1-sub-if-wfarcs:
∀ (t1 ,e1)∈fset xs. wf-darcs t1
=⇒ children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)
⊆ (λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs

using normalize1-mdeg-eq by fastforce

lemma normalize1-children-deg1-eq-if-wfarcs:
∀ (t1 ,e1)∈fset xs. wf-darcs t1
=⇒ (λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs
= children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)

using children-deg1-normalize1-sub normalize1-children-deg1-sub-if-wfarcs
by (meson subset-antisym)

lemma normalize1-children-deg1-sub-if-wflverts:
∀ (t1 ,e1)∈fset xs. wf-dlverts t1
=⇒ children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)

389

⊆ (λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs
using normalize1-mdeg-eq ′ by fastforce

lemma normalize1-children-deg1-eq-if-wflverts:
∀ (t1 ,e1)∈fset xs. wf-dlverts t1
=⇒ (λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs
= children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs)

using children-deg1-normalize1-sub normalize1-children-deg1-sub-if-wflverts
by (meson subset-antisym)

lemma dom-children-normalize1-img:
assumes dom-children (Node r (Abs-fset (children-deg1 xs))) T

and ∀ (t1 ,e1) ∈ fset xs. wf-dlverts t1
shows dom-children (Node r (Abs-fset (children-deg1 ((λ(t1 ,e1). (normalize1

t1 ,e1)) |‘| xs)))) T
proof −

have ∀ (t1 , e1) ∈ children-deg1 xs. dom-children (Node r {|(t1 , e1)|}) T
using dom-children-all-singletons[OF assms(1)] children-deg1-fset-id by blast

then have ∀ (t2 , e2) ∈ (λ(t1 ,e1). (normalize1 t1 ,e1)) ‘ children-deg1 xs.
dom-children (Node r {|(t2 , e2)|}) T

using dom-children-normalize1 assms(2) by fast
then have ∀ (t2 , e2) ∈ children-deg1 ((λ(t1 ,e1). (normalize1 t1 ,e1)) |‘| xs).

dom-children (Node r {|(t2 , e2)|}) T
using normalize1-children-deg1-eq-if-wflverts[of xs] assms(2) by blast

then show ?thesis using dom-children-if-all-singletons children-deg1-fset-id
proof −

have ∀ f as p. ∃ pa. (dom-children (Node (as:: ′a list) f) p ∨ pa |∈| f) ∧ (¬ (case
pa of (d, b:: ′b) ⇒ dom-children (Node as {|(d, b)|}) p) ∨ dom-children (Node as
f) p)

using dom-children-if-all-singletons by blast
then obtain pp :: ((′a list, ′b) Dtree.dtree × ′b) fset ⇒ ′a list ⇒ (′a, ′b)

pre-digraph ⇒ (′a list, ′b) Dtree.dtree × ′b where
f1 :

∧
as f p. (dom-children (Node as f) p ∨ pp f as p |∈| f) ∧ (¬ (case pp f as

p of (d, b) ⇒ dom-children (Node as {|(d, b)|}) p) ∨ dom-children (Node as f) p)
by metis

moreover
{ assume ¬ (case pp (Abs-fset (children-deg1 ((λ(d, y). (normalize1 d, y)) |‘|

xs))) r T of (d, b) ⇒ dom-children (Node r {|(d, b)|}) T)
then have pp (Abs-fset (children-deg1 ((λ(d, y). (normalize1 d, y)) |‘| xs)))

r T /∈ children-deg1 ((λ(d, y). (normalize1 d, y)) |‘| xs)
by (smt (z3) ‹∀ (t2 , e2) ∈children-deg1 ((λ(t1 , e1). (normalize1 t1 , e1))

|‘| xs). dom-children (Node r {|(t2 , e2)|}) T ›)
then have pp (Abs-fset (children-deg1 ((λ(d, y). (normalize1 d, y)) |‘| xs)))

r T |/∈| Abs-fset (children-deg1 ((λ(d, y). (normalize1 d, y)) |‘| xs))
by (metis (no-types) children-deg1-fset-id)

then have ?thesis
using f1 by blast }

ultimately show ?thesis
by meson

390

qed
qed

lemma normalize1-dom-wedge:
[[is-subtree (Node r xs) (normalize1 t); fcard xs > 1]]
=⇒ dom-children (Node r (Abs-fset (children-deg1 xs))) T

using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)
case (1 r1 t e)
then interpret R: ranked-dtree-with-orig Node r1 {|(t,e)|} by blast
have sub-t: is-subtree (Node (Dtree.root t) (sucs t)) (Node r1 {|(t,e)|})

using subtree-if-child[of t {|(t,e)|}] by simp
show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r1))

case True
then have eq: normalize1 (Node r1 {|(t,e)|}) = Node (r1@Dtree.root t) (sucs

t) by simp
then show ?thesis
proof(cases Node r xs = normalize1 (Node r1 {|(t,e)|}))

case True
then have Node r xs = Node (r1@Dtree.root t) (sucs t) using eq by simp

then show ?thesis using R.dom-wedge[OF sub-t] 1 .prems(2) unfolding
dom-children-def by auto

next
case False
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset (sucs t) is-subtree (Node r

xs) t2
using 1 .prems(1) eq by auto
then have is-subtree (Node r xs) t using subtree-if-suc subtree-trans by

fastforce
then show ?thesis using R.dom-wedge sub-t 1 .prems(2) by simp

qed
next

case False
then show ?thesis using 1 R.ranked-dtree-orig-rec by (auto simp: fcard-single-1)

qed
next

case (2 xs1 r1)
then have eq: normalize1 (Node r1 xs1) = Node r1 ((λ(t,e). (normalize1 t,e))
|‘| xs1)

using 2 .hyps by simp
interpret R: ranked-dtree-with-orig Node r1 xs1 using 2 .prems(3) by blast
have ∀ x. ((λ(t,e). (normalize1 t,e)) |‘| xs1) 6= {|x|}
using singleton-normalize1 2 .hyps disjoint-darcs-if-wf-xs[OF R.wf-arcs] by auto

then show ?case
proof(cases Node r xs = normalize1 (Node r1 xs1))

case True
then have 1 < fcard xs1 using eq 2 .prems(2) fcard-image-le less-le-trans by

fastforce
then have dom-children (Node r1 (Abs-fset (children-deg1 xs1))) T using

391

R.dom-wedge by simp
then show ?thesis using dom-children-normalize1-img eq R.wf-lverts True by

fastforce
next

case False
then show ?thesis using 2 R.ranked-dtree-orig-rec by fastforce

qed
qed

corollary normalize1-dom-wedge ′:
∀ r xs. is-subtree (Node r xs) (normalize1 t) −→ fcard xs > 1
−→ dom-children (Node r (Abs-fset {(t, e). (t, e) ∈ fset xs ∧ max-deg t ≤ Suc

0})) T
by (auto simp only: normalize1-dom-wedge One-nat-def [symmetric])

lemma normalize1-verts-conform: v ∈ dverts (normalize1 t) =⇒ seq-conform v
using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)

case ind: (1 r t e)
then interpret R: ranked-dtree-with-orig Node r {|(t, e)|} by blast
consider rank (rev (Dtree.root t)) < rank (rev r) v = r@Dtree.root t
| rank (rev (Dtree.root t)) < rank (rev r) v 6= r@Dtree.root t
| ¬rank (rev (Dtree.root t)) < rank (rev r)
by blast

then show ?case
proof(cases)

case 1
then show ?thesis using R.contr-seq-conform by auto

next
case 2
then have v ∈ dverts (Node r {|(t, e)|}) using dverts-suc-subseteq ind.prems

by fastforce
then show ?thesis using R.verts-conform by blast

next
case 3
then show ?thesis using R.verts-conform ind R.ranked-dtree-orig-rec by auto

qed
next

case (2 xs r)
then interpret R: ranked-dtree-with-orig Node r xs by blast
show ?case using R.verts-conform 2 R.ranked-dtree-orig-rec by auto

qed

corollary normalize1-verts-distinct: v ∈ dverts (normalize1 t) =⇒ distinct v
using distinct-normalize1 verts-distinct by auto

lemma dom-mdeg-le1-aux:
assumes max-deg t ≤ 1

and is-subtree (Node v {|(t2 , e2)|}) t
and rank (rev (Dtree.root t2)) < rank (rev v)

392

and t1 ∈ fst ‘ fset (sucs t)
and x ∈ dverts t1

shows ∃ r∈set (Dtree.root t) ∪ path-lverts t1 (hd x). r →T hd x
using assms ranked-dtree-with-orig-axioms proof(induction t arbitrary: t1)

case (Node r xs)
then interpret R: ranked-dtree-with-orig Node r xs by blast
interpret T1 : ranked-dtree-with-orig t1 using Node.prems(4) R.ranked-dtree-orig-rec

by force
have fcard xs > 0 using Node.prems(4) fcard-seteq by fastforce
then have fcard xs = 1 using mdeg-ge-fcard[of xs] Node.prems(1) by simp
then obtain e1 where e1-def : xs = {|(t1 ,e1)|}

using Node.prems(4) fcard-single-1-iff [of xs] by auto
have mdeg1 : max-deg (Node r xs) = 1

using Node.prems(1) mdeg-ge-fcard[of xs] ‹fcard xs = 1 › by simp
show ?case
proof(cases Node v {|(t2 , e2)|} = Node r xs)

case True
then have dom-children (Node r xs) T

using mdeg1 Node.prems(2 ,3) R.dom-contr-subtree by blast
then show ?thesis unfolding dom-children-def using e1-def Node.prems(5)

by simp
next

case False
then have sub-t1 : is-subtree (Node v {|(t2 , e2)|}) t1

using Node.prems(2) e1-def is-subtree.simps[of Node v {|(t2 , e2)|}] by force
show ?thesis
proof(cases x = Dtree.root t1)

case True
then show ?thesis using R.dom-sub-contr [OF self-subtree] Node.prems(3)

e1-def sub-t1 by auto
next

case False
then obtain t3 where t3-def : t3 ∈ fst ‘ fset (sucs t1) x ∈ dverts t3

using Node.prems(5) dverts-root-or-child[of x Dtree.root t1 sucs t1] by
fastforce

have mdeg-t1 : max-deg t1 ≤ 1 using mdeg-ge-child[of t1 e1 xs] e1-def mdeg1
by simp

moreover have fcard (sucs t1) > 0 using t3-def fcard-seteq by fastforce
ultimately have fcard (sucs t1) = 1 using mdeg-ge-fcard[of sucs t1 Dtree.root

t1] by simp
then obtain e3 where e3-def : sucs t1 = {|(t3 , e3)|}

using t3-def fcard-single-1-iff [of sucs t1] by fastforce
have ind: ∃ r∈set (Dtree.root t1) ∪ path-lverts t3 (hd x). r →T hd x
using Node.IH mdeg-t1 e1-def sub-t1 Node.prems(3) t3-def T1 .ranked-dtree-with-orig-axioms

by auto
have hd x ∈ dlverts t3 using t3-def hd-in-lverts-if-wf T1 .wf-lverts wf-dlverts-suc

by blast
then have hd x /∈ set (Dtree.root t1)

using t3-def dlverts-notin-root-sucs[OF T1 .wf-lverts] by blast

393

then have path-lverts t1 (hd x) = set (Dtree.root t1) ∪ path-lverts t3 (hd x)
using path-lverts-simps1-sucs e3-def by fastforce

then show ?thesis using ind by blast
qed

qed
qed

lemma dom-mdeg-le1 :
assumes max-deg t ≤ 1

and is-subtree (Node v {|(t2 , e2)|}) t
and rank (rev (Dtree.root t2)) < rank (rev v)

shows dom-children t T
using dom-mdeg-le1-aux[OF assms] unfolding dom-children-def by blast

lemma dom-children-normalize1-preserv:
assumes max-deg (normalize1 t1) ≤ 1 and dom-children t1 T and wf-dlverts

t1
shows dom-children (normalize1 t1) T

using assms proof(induction t1 rule: normalize1 .induct)
case (1 r t e)
then show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then show ?thesis using 1 dom-children-combine by force

next
case False
then have max-deg (normalize1 t) ≤ 1

using 1 .prems(1) mdeg-ge-child[of normalize1 t e {|(normalize1 t,e)|}] by
simp

then have max-deg t ≤ 1 using normalize1-mdeg-eq ′ 1 .prems(3) by fastforce
then show ?thesis using dom-children-normalize1 False 1 .prems(2 ,3) by simp

qed
next

case (2 xs r)
have max-deg (Node r xs) ≤ 1

using normalize1-mdeg-eq ′[OF 2 .prems(3)] 2 .prems(1) by fastforce
then have fcard xs ≤ 1 using mdeg-ge-fcard[of xs] by simp
then have fcard xs = 0 using fcard-single-1-iff [of xs] 2 .hyps by fastforce
then have normalize1 (Node r xs) = Node r xs using 2 .hyps by simp
then show ?case using 2 .prems(2) by simp

qed

lemma dom-mdeg-le1-normalize1 :
assumes max-deg (normalize1 t) ≤ 1 and normalize1 t 6= t
shows dom-children (normalize1 t) T

proof −
obtain v t2 e2 where is-subtree (Node v {|(t2 , e2)|}) t rank (rev (Dtree.root

t2)) < rank (rev v)
using contr-if-normalize1-uneq assms(2) by blast

394

moreover have max-deg t ≤ 1 using assms(1) normalize1-mdeg-eq wf-arcs by
fastforce

ultimately show ?thesis
using dom-mdeg-le1 dom-children-normalize1-preserv assms(1) wf-lverts by

blast
qed

lemma normalize-mdeg-eq:
wf-darcs t1
=⇒ max-deg (normalize t1) = max-deg t1 ∨ (max-deg (normalize t1) = 0 ∧

max-deg t1 = 1)
apply (induction t1 rule: normalize.induct)
by (smt (verit, ccfv-threshold) normalize1-mdeg-eq wf-darcs-normalize1 normal-

ize.simps)

lemma normalize-mdeg-eq ′:
wf-dlverts t1
=⇒ max-deg (normalize t1) = max-deg t1 ∨ (max-deg (normalize t1) = 0 ∧

max-deg t1 = 1)
apply (induction t1 rule: normalize.induct)
by (smt (verit, ccfv-threshold) normalize1-mdeg-eq ′ wf-dlverts-normalize1 nor-

malize.simps)

corollary mdeg-le1-normalize:
[[max-deg (normalize t1) ≤ 1 ; wf-dlverts t1]] =⇒ max-deg t1 ≤ 1
using normalize-mdeg-eq ′ by fastforce

lemma dom-children-normalize-preserv:
assumes max-deg (normalize t1) ≤ 1 and dom-children t1 T and wf-dlverts t1
shows dom-children (normalize t1) T

using assms proof(induction t1 rule: normalize.induct)
case (1 t1)
then show ?case
proof(cases t1 = normalize1 t1)

case True
then show ?thesis using 1 .prems dom-children-normalize1-preserv by simp

next
case False
have max-deg t1 ≤ 1 using mdeg-le1-normalize 1 .prems(1 ,3) by blast
then have max-deg (normalize1 t1) ≤ 1

using normalize1-mdeg-eq ′ 1 .prems(3) by fastforce
then have dom-children (normalize1 t1) T

using dom-children-normalize1-preserv 1 .prems(2 ,3) by blast
then show ?thesis using 1 False by (simp add: Let-def wf-dlverts-normalize1)

qed
qed

lemma dom-mdeg-le1-normalize:
assumes max-deg (normalize t) ≤ 1 and normalize t 6= t

395

shows dom-children (normalize t) T
using assms ranked-dtree-with-orig-axioms proof(induction t rule: normalize.induct)

case (1 t)
then interpret T : ranked-dtree-with-orig t by blast
show ?case

using 1 T .dom-mdeg-le1-normalize1 T .wf-lverts wf-dlverts-normalize1
by (smt (verit) dom-children-normalize-preserv normalize.elims mdeg-le1-normalize)

qed

lemma normalize1-arc-in-dlverts:
[[is-subtree (Node v ys) (normalize1 t); x ∈ set v; x →T y]] =⇒ y ∈ dlverts (Node

v ys)
using ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)

case ind: (1 r t e)
then interpret R: ranked-dtree-with-orig Node r {|(t, e)|} by blast
show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then have eq: normalize1 (Node r {|(t, e)|}) = Node (r@Dtree.root t) (sucs t)

by simp
then show ?thesis
proof(cases Node v ys = Node (r@Dtree.root t) (sucs t))

case True
then consider x ∈ set r | x ∈ set (Dtree.root t) using ind.prems(2) by auto
then show ?thesis
proof(cases)

case 1
then have y ∈ dlverts (Node r {|(t, e)|})

using R.arc-in-dlverts ind.prems(3) by fastforce
then show ?thesis using eq normalize1-dlverts-eq[of Node r {|(t, e)|}] True

by simp
next

case 2
then have y ∈ dlverts t

using R.arc-in-dlverts[of Dtree.root t sucs t] ind.prems(3)
subtree-if-child[of t {|(t, e)|}] by simp

then show ?thesis using eq normalize1-dlverts-eq[of Node r {|(t, e)|}] True
by simp

qed
next

case False
then obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t) is-subtree (Node v ys)

t2
using ind.prems(1) eq by force

then have is-subtree (Node v ys) (Node r {|(t, e)|})
using subtree-trans[OF t2-def (2)] subtree-if-suc by auto

then show ?thesis using R.arc-in-dlverts ind.prems(2 ,3) by blast
qed

next

396

case nocontr : False
then show ?thesis
proof(cases Node v ys = Node r {|(normalize1 t, e)|})

case True
then have y ∈ dlverts (Node r {|(t, e)|})

using R.arc-in-dlverts ind.prems(2 ,3) by fastforce
then show ?thesis using nocontr True by simp

next
case False
then have is-subtree (Node v ys) (normalize1 t) using ind.prems(1) nocontr

by auto
then show ?thesis using ind.IH [OF nocontr] ind.prems(2 ,3) R.ranked-dtree-orig-rec

by simp
qed

qed
next

case (2 xs r)
then interpret R: ranked-dtree-with-orig Node r xs by blast
have eq: normalize1 (Node r xs) = Node r ((λ(t,e). (normalize1 t,e)) |‘| xs)

using 2 .hyps by simp
show ?case
proof(cases Node v ys = normalize1 (Node r xs))

case True
then have y ∈ dlverts (Node r xs) using R.arc-in-dlverts 2 .hyps 2 .prems(2 ,3)

by simp
then show ?thesis using True by simp

next
case False
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs is-subtree (Node v ys)

(normalize1 t2)
using 2 .hyps 2 .prems(1) by auto

then show ?thesis using 2 .IH 2 .prems(2 ,3) R.ranked-dtree-orig-rec by simp
qed

qed

lemma normalize1-arc-in-dlverts ′:
∀ r xs. is-subtree (Node r xs) (normalize1 t) −→ (∀ x. x ∈ set r
−→ (∀ y. x →T y −→ y ∈ set r ∨ (∃ x∈fset xs. y ∈ dlverts (fst x))))

using normalize1-arc-in-dlverts by simp

theorem ranked-dtree-orig-normalize1 : ranked-dtree-with-orig (normalize1 t) rank
cost cmp T root
by (simp add: ranked-dtree-with-orig-def ranked-dtree-with-orig-axioms-def asi-rank

normalize1-dom-contr normalize1-dom-mdeg-gt1 normalize1-dom-sub-contr
normalize1-dom-wedge ′ directed-tree-axioms normalize1-arc-in-dlverts ′

ranked-dtree-normalize1 normalize1-verts-conform normalize1-verts-distinct)

theorem ranked-dtree-orig-normalize: ranked-dtree-with-orig (normalize t) rank
cost cmp T root

397

using ranked-dtree-with-orig-axioms proof(induction t rule: normalize.induct)
case (1 t)
then interpret T : ranked-dtree-with-orig t by blast
show ?case using 1 .IH T .ranked-dtree-orig-normalize1 by(auto simp: Let-def)

qed

10.3.2 Merging preserves Arc Invariants
interpretation Comm: comp-fun-commute merge-f r xs by (rule merge-commute)

lemma path-lverts-supset-z:
[[list-dtree (Node r xs); ∀ t1 ∈ fst ‘ fset xs. a /∈ dlverts t1]]
=⇒ path-lverts-list z a ⊆ path-lverts-list (ffold (merge-f r xs) z xs) a

proof(induction xs)
case (insert x xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert x xs)
define f ′ where f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp ′

have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
show ?case
proof(cases ffold f z (finsert x xs) = ffold f ′ z xs)

case True
then show ?thesis using insert.IH 0 insert.prems(2) f-def f ′-def by auto

next
case False
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have 1 : ∀ v∈fst ‘ set (dtree-to-list (Node r {|(t2 , e2)|})). a /∈ set v

using insert.prems(2) dtree-to-list-x-in-dlverts by auto
have xs |⊆| finsert x xs by blast
then have f-xs: ffold f z xs = ffold f ′ z xs

using merge-ffold-supset insert.prems(1) f-def f ′-def by presburger
have ffold f z (finsert x xs) = f x (ffold f z xs)

using Comm.ffold-finsert[OF insert.hyps] f-def by blast
then have 2 : ffold f z (finsert x xs) = f x (ffold f ′ z xs) using f-xs by argo
then have f x (ffold f ′ z xs) 6= ffold f ′ z xs using False f-def f ′-def by argo
then have f (t2 ,e2) (ffold f ′ z xs)

= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′ z xs)
using merge-f-merge-if-not-snd t2-def f-def by blast

then have ffold f z (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′ z xs)

using 2 t2-def by argo
then have path-lverts-list (ffold f ′ z xs) a ⊆ path-lverts-list (ffold f z (finsert x

xs)) a
using path-lverts-list-merge-supset-ys-notin[OF 1] by presburger

then show ?thesis using insert.IH 0 insert.prems(2) f-def f ′-def by auto
qed

qed (simp add: ffold.rep-eq)

398

lemma path-lverts-merge-ffold-sup:
[[list-dtree (Node r xs); t1 ∈ fst ‘ fset xs; a ∈ dlverts t1]]
=⇒ path-lverts t1 a ⊆ path-lverts-list (ffold (merge-f r xs) [] xs) a

proof(induction xs)
case (insert x xs)
interpret Comm: comp-fun-commute merge-f r (finsert x xs) by (rule merge-commute)
define f where f = merge-f r (finsert x xs)
define f ′ where f ′ = merge-f r xs
let ?merge = Sorting-Algorithms.merge cmp ′

have 0 : list-dtree (Node r xs) using list-dtree-subset insert.prems(1) by blast
obtain t2 e2 where t2-def [simp]: x = (t2 ,e2) by fastforce
have (t2 , e2) ∈ fset (finsert x xs) by simp
moreover have (t2 , e2) /∈ fset xs using insert.hyps by fastforce
ultimately have xs-val:
(∀ (v,e) ∈ set (ffold f ′ [] xs). set v ∩ dlverts t2 = {} ∧ v 6= [] ∧ e /∈ darcs t2 ∪

{e2})
using merge-ffold-empty-inter-preserv ′[OF insert.prems(1) empty-list-valid-merge]

f ′-def
by blast

have ffold f [] (finsert x xs) = f x (ffold f [] xs)
using Comm.ffold-finsert[OF insert.hyps] f-def by blast

also have . . . = f x (ffold f ′ [] xs)
using merge-ffold-supset[of xs finsert x xs r []] insert.prems(1) f-def f ′-def by

fastforce
finally have ffold f [] (finsert x xs) = ?merge (dtree-to-list (Node r {|x|})) (ffold

f ′ [] xs)
using merge-f-merge-if-conds xs-val insert.prems f-def by simp

then have merge: ffold f [] (finsert x xs)
= ?merge (dtree-to-list (Node r {|(t2 ,e2)|})) (ffold f ′[] xs)

using t2-def by blast
show ?case
proof(cases t1 = t2)

case True
then have ∀ v∈fst ‘ set (ffold f ′ [] xs). a /∈ set v

using insert.prems(3) xs-val by fastforce
then have path-lverts-list (dtree-to-list (Node r {|(t2 ,e2)|})) a

⊆ path-lverts-list (ffold f [] (finsert x xs)) a
using merge path-lverts-list-merge-supset-xs-notin by fastforce

then show ?thesis using True f-def path-lverts-to-list-eq by force
next

case False
then have a /∈ dlverts t2 using insert.prems list-dtree.wf-lverts by fastforce
then have 1 : ∀ v∈fst ‘ set (dtree-to-list (Node r {|(t2 , e2)|})). a /∈ set v

using dtree-to-list-x-in-dlverts by fast
have path-lverts t1 a ⊆ path-lverts-list (ffold f ′ [] xs) a

using insert.IH [OF 0] insert.prems(2 ,3) False f ′-def by simp
then show ?thesis using f-def merge path-lverts-list-merge-supset-ys-notin[OF

1] by auto
qed

399

qed(simp)

lemma path-lverts-merge-sup-aux:
assumes list-dtree (Node r xs) and t1 ∈ fst ‘ fset xs and a ∈ dlverts t1

and ffold (merge-f r xs) [] xs = (v1 , e1) # ys
shows path-lverts t1 a ⊆ path-lverts (dtree-from-list v1 ys) a

proof −
have xs 6= {||} using assms(2) by auto
have path-lverts t1 a ⊆ path-lverts-list (ffold (merge-f r xs) [] xs) a

using path-lverts-merge-ffold-sup[OF assms(1−3)] .
then show ?thesis using path-lverts-from-list-eq assms(4) by fastforce

qed

lemma path-lverts-merge-sup:
assumes list-dtree (Node r xs) and t1 ∈ fst ‘ fset xs and a ∈ dlverts t1
shows ∃ t2 e2 . merge (Node r xs) = Node r {|(t2 ,e2)|}

∧ path-lverts t1 a ⊆ path-lverts t2 a
proof −

have xs 6= {||} using assms(2) by auto
then obtain t2 e2 where t2-def : merge (Node r xs) = Node r {|(t2 ,e2)|}

using merge-singleton[OF assms(1)] by blast
obtain y ys where y-def : ffold (merge-f r xs) [] xs = y # ys

using merge-ffold-nempty[OF assms(1) ‹xs 6= {||}›] list.exhaust-sel by blast
obtain v1 e1 where y = (v1 ,e1) by fastforce
then show ?thesis using merge-xs path-lverts-merge-sup-aux[OF assms] t2-def

y-def by fastforce
qed

lemma path-lverts-merge-sup-sucs:
assumes list-dtree t0 and t1 ∈ fst ‘ fset (sucs t0) and a ∈ dlverts t1
shows ∃ t2 e2 . merge t0 = Node (Dtree.root t0) {|(t2 ,e2)|}

∧ path-lverts t1 a ⊆ path-lverts t2 a
using path-lverts-merge-sup[of Dtree.root t0 sucs t0] assms by simp

lemma merge-dom-children-aux:
assumes list-dtree t0

and ∀ x∈dverts t1 . ∃ v ∈ set (Dtree.root t0) ∪ path-lverts t1 (hd x). v →T hd
x

and t1 ∈ fst ‘ fset (sucs t0)
and wf-dlverts t1
and x ∈ dverts t1

shows ∃ !t2 ∈ fst ‘ fset (sucs (merge t0)).
∃ v ∈ set (Dtree.root (merge t0)) ∪ path-lverts t2 (hd x). v →T (hd x)

proof −
have hd x ∈ dlverts t1 using assms(4 ,5) by (simp add: hd-in-lverts-if-wf)
then obtain t2 e2 where t2-def :

merge t0 = Node (Dtree.root t0) {|(t2 ,e2)|} path-lverts t1 (hd x) ⊆ path-lverts
t2 (hd x)

using path-lverts-merge-sup-sucs[OF assms(1 ,3)] by blast

400

then show ?thesis using assms(2 ,5) by force
qed

lemma merge-dom-children-aux ′:
assumes dom-children t0 T

and ∀ t1 ∈ fst ‘ fset (sucs t0). wf-dlverts t1
and t2 ∈ fst ‘ fset (sucs (merge t0))
and x ∈ dverts t2

shows ∃ v∈set (Dtree.root (merge t0)) ∪ path-lverts t2 (hd x). v →T hd x
proof −

have disj: list-dtree t0
using assms(3) merge-empty-if-nwf-sucs[of t0] by fastforce

obtain t1 where t1-def : t1 ∈ fst ‘ fset (sucs t0) x ∈ dverts t1
using verts-child-if-merge-child[OF assms(3 ,4)] by blast

then have 0 : ∀ x∈dverts t1 . ∃ v∈set (Dtree.root t0) ∪ path-lverts t1 (hd x). v
→T hd x

using assms(1) unfolding dom-children-def by blast
then have wf-dlverts t1 using t1-def (1) assms(2) by blast
then obtain t3 where t3-def : t3 ∈ fst ‘ fset (sucs (merge t0))

(∃ v∈set (Dtree.root (merge t0)) ∪ path-lverts t3 (hd x). v →T hd x)
using merge-dom-children-aux[OF disj 0] t1-def by blast

then have t3 = t2 using assms(3) merge-single-root1-sucs by fastforce
then show ?thesis using t3-def (2) by blast

qed

lemma merge-dom-children-sucs:
assumes dom-children t0 T and ∀ t1 ∈ fst ‘ fset (sucs t0). wf-dlverts t1
shows dom-children (merge t0) T
using merge-dom-children-aux ′[OF assms] dom-children-def by fast

lemma merge-dom-children:
[[dom-children (Node r xs) T ; ∀ t1 ∈ fst ‘ fset xs. wf-dlverts t1]]
=⇒ dom-children (merge (Node r xs)) T

using merge-dom-children-sucs by auto

lemma merge-dom-children-if-ndisjoint:
¬list-dtree (Node r xs) =⇒ dom-children (merge (Node r xs)) T
using merge-empty-if-nwf unfolding dom-children-def by simp

lemma merge-subtree-fcard-le1 : is-subtree (Node r xs) (merge t1) =⇒ fcard xs ≤
1

using merge-mdeg-le1-sub le-trans mdeg-ge-fcard by fast

lemma merge-dom-mdeg-gt1 :
[[is-subtree (Node r xs) (merge t2); t1 ∈ fst ‘ fset xs; max-deg (Node r xs) > 1]]
=⇒ ∃ v ∈ set r . v →T hd (Dtree.root t1)

using merge-mdeg-le1-sub by fastforce

lemma merge-root-if-contr :

401

[[
∧

r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t1 =⇒ rank (rev r1) ≤ rank (rev
(Dtree.root t2));

is-subtree (Node v {|(t2 ,e2)|}) (merge t1); rank (rev (Dtree.root t2)) < rank
(rev v)]]

=⇒ Node v {|(t2 ,e2)|} = merge t1
using merge-strict-subtree-nocontr-sucs2 [of t1 v] strict-subtree-def by fastforce

lemma merge-new-contr-fcard-gt1 :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t1 =⇒ rank (rev r1) ≤

rank (rev (Dtree.root t2))
and Node v {|(t2 ,e2)|} = (merge t1)
and rank (rev (Dtree.root t2)) < rank (rev v)

shows fcard (sucs t1) > 1
proof −

have t-v: Dtree.root t1 = v using assms(2) dtree.sel(1)[of v {|(t2 ,e2)|}] by simp
have ∀ t2 e2 . Node v {|(t2 ,e2)|} 6= t1

using assms merge-root-child-eq self-subtree less-le-not-le by metis
then have ∀ x. sucs t1 6= {|x|} using t-v dtree.collapse[of t1] by force
moreover have sucs t1 6= {||} using assms(2) merge-empty-sucs by force
ultimately show ?thesis using fcard-single-1-iff [of sucs t1] fcard-0-eq[of sucs

t1] by force
qed

lemma merge-dom-sub-contr-if-nocontr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t =⇒ rank (rev r1) ≤ rank

(rev (Dtree.root t2))
and is-subtree (Node r xs) (merge t)
and t1 ∈ fst ‘ fset xs
and ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r xs)

∧ rank (rev (Dtree.root t2)) < rank (rev v)
shows ∃ v ∈ set r . v →T hd (Dtree.root t1)

proof −
obtain v t2 e2 where t2-def :

is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)

using assms(4) by blast
then have is-subtree (Node v {|(t2 ,e2)|}) (merge t) using assms(2) subtree-trans

by blast
then have eq: Node v {|(t2 ,e2)|} = merge t using merge-root-if-contr assms(1)

t2-def (2) by blast
then have t-v: Dtree.root t = v using dtree.sel(1)[of v {|(t2 ,e2)|}] by simp
have eq2 : Node v {|(t2 ,e2)|} = Node r xs

using eq assms(2) t2-def (1) subtree-antisym[of Node v {|(t2 , e2)|}] by simp
have fcard (sucs t) > 1 using merge-new-contr-fcard-gt1 [OF assms(1) eq t2-def (2)]

by simp
then have mdeg: max-deg t > 1 using mdeg-ge-fcard[of sucs t Dtree.root t] by

simp
have sub: is-subtree (Node (Dtree.root t) (sucs t)) t using self-subtree[of t] by

simp

402

obtain e1 where e1-def : (t1 , e1)∈fset (sucs (merge t))
using assms(3) eq eq2 dtree.sel(2)[of r xs] by force

then obtain t3 where t3-def : (t3 , e1)∈fset (sucs t) Dtree.root t3 = Dtree.root
t1

using merge-child-in-orig[OF e1-def] by blast
then have ∃ v∈set (Dtree.root t). v →T hd (Dtree.root t1) using dom-mdeg-gt1

sub mdeg by fastforce
then show ?thesis using t-v eq2 by blast

qed

lemma merge-dom-contr-if-nocontr-mdeg-le1 :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t =⇒ rank (rev r1) ≤ rank

(rev (Dtree.root t2))
and is-subtree (Node r {|(t1 ,e1)|}) (merge t)
and rank (rev (Dtree.root t1)) < rank (rev r)
and ∀ t ∈ fst ‘ fset (sucs t). max-deg t ≤ 1

shows dom-children (Node r {|(t1 ,e1)|}) T
proof −
have eq: Node r {|(t1 ,e1)|} = merge t using merge-root-if-contr [OF assms(1−3)]

.
have 0 : ∀ t1∈fst ‘ fset (sucs t). wf-dlverts t1 using wf-lverts wf-dlverts-suc by

auto
have fcard (sucs t) > 1 using merge-new-contr-fcard-gt1 [OF assms(1) eq assms(3)]

by simp
then have dom-children t T using dom-wedge-full[of Dtree.root t] assms(4)

self-subtree by force
then show ?thesis using merge-dom-children-sucs 0 eq by simp

qed

lemma merge-dom-wedge:
[[is-subtree (Node r xs) (merge t1); fcard xs > 1 ; ∀ t ∈ fst ‘ fset xs. max-deg t ≤

1]]
=⇒ dom-children (Node r xs) T

using merge-subtree-fcard-le1 by fastforce

10.3.3 Merge1 preserves Arc Invariants
lemma merge1-dom-mdeg-gt1 :

assumes is-subtree (Node r xs) (merge1 t) and t1 ∈ fst ‘ fset xs and max-deg
(Node r xs) > 1

shows ∃ v ∈ set r . v →T hd (Dtree.root t1)
proof −

obtain ys where ys-def : merge1 (Node r ys) = Node r xs is-subtree (Node r ys)
t

using merge1-subtree-if-mdeg-gt1 [OF assms(1 ,3)] by blast
then obtain t3 where t3-def : t3 ∈ fst ‘ fset ys Dtree.root t3 = Dtree.root t1

using assms(2) merge1-child-in-orig by fastforce
have max-deg (Node r ys) > 1 using merge1-mdeg-le[of Node r ys] ys-def (1)

assms(3) by simp

403

then show ?thesis using dom-mdeg-gt1 [OF ys-def (2) t3-def (1)] t3-def by simp
qed

lemma max-deg1-gt-1-if-new-contr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t0 =⇒ rank (rev r1) ≤

rank (rev (Dtree.root t2))
and is-subtree (Node r {|(t1 ,e1)|}) (merge1 t0)
and rank (rev (Dtree.root t1)) < rank (rev r)

shows max-deg t0 > 1
using assms merge1-mdeg-gt1-if-uneq by force

lemma merge1-subtree-if-new-contr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t0 =⇒ rank (rev r1) ≤

rank (rev (Dtree.root t2))
and is-subtree (Node r xs) (merge1 t0)
and is-subtree (Node v {|(t1 ,e1)|}) (Node r xs)
and rank (rev (Dtree.root t1)) < rank (rev v)

shows ∃ ys. is-subtree (Node r ys) t0 ∧ merge1 (Node r ys) = Node r xs
using assms proof(induction t0)

case (Node r ′ ys)
then consider fcard ys > 1 (∀ t ∈ fst ‘ fset ys. max-deg t ≤ 1)
| ¬(fcard ys > 1 ∧ (∀ t ∈ fst ‘ fset ys. max-deg t ≤ 1)) Node r xs = merge1

(Node r ′ ys)
| ¬(fcard ys > 1 ∧ (∀ t ∈ fst ‘ fset ys. max-deg t ≤ 1)) Node r xs 6= merge1

(Node r ′ ys)
by blast

then show ?case
proof(cases)

case 1
then have is-subtree (Node v {|(t1 , e1)|}) (merge (Node r ′ ys))

using subtree-trans[OF Node.prems(3 ,2)] by force
then have Node v {|(t1 , e1)|} = merge (Node r ′ ys)

using merge-root-if-contr Node.prems(1 ,4) by blast
then have Node r xs = merge1 (Node r ′ ys)

using Node.prems(2 ,3) 1 subtree-eq-if-trans-eq1 by fastforce
then show ?thesis using 1 dtree.sel(1)[of r xs] by auto

next
case 2
then have r = r ′ using dtree.sel(1)[of r xs] by force
then show ?thesis using 2 (2) by auto

next
case 3
then have merge1 (Node r ′ ys) = Node r ′ ((λ(t,e). (merge1 t,e)) |‘| ys) by

auto
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset ys is-subtree (Node r xs)

(merge1 t2)
using Node.prems(2) 3 (2) by auto

then have subt2 : is-subtree t2 (Node r ′ ys) using subtree-if-child
by (metis fstI image-eqI)

404

then have
∧

r1 t3 e3 . is-subtree (Node r1 {|(t3 , e3)|}) t2
=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t3))

using Node.prems(1) subtree-trans by blast
then obtain ys ′ where ys-def : is-subtree (Node r ys ′) t2 merge1 (Node r ys ′)

= Node r xs
using Node.IH [OF t2-def (1)] Node.prems(3 ,4) t2-def (2) by auto

then show ?thesis using subtree-trans subt2 by blast
qed

qed

lemma merge1-dom-sub-contr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t =⇒ rank (rev r1) ≤ rank

(rev (Dtree.root t2))
and is-subtree (Node r xs) (merge1 t)
and t1 ∈ fst ‘ fset xs

and ∃ v t2 e2 . is-subtree (Node v {|(t2 ,e2)|}) (Node r xs)∧rank (rev (Dtree.root
t2))<rank (rev v)

shows ∃ v ∈ set r . v →T hd (Dtree.root t1)
proof −

obtain ys where ys-def : is-subtree (Node r ys) t merge1 (Node r ys) = Node r
xs

using merge1-subtree-if-new-contr assms(1 ,2 ,4) by blast
then interpret R: ranked-dtree-with-orig Node r ys using ranked-dtree-orig-subtree

by blast
obtain v t2 e2 where v-def :

is-subtree (Node v {|(t2 ,e2)|}) (Node r xs) rank (rev (Dtree.root t2)) < rank
(rev v)

using assms(4) by blast
then have is-subtree (Node v {|(t2 ,e2)|}) (merge1 (Node r ys)) using ys-def by

simp
then have mdeg-gt1 : max-deg (Node r ys) > 1
using max-deg1-gt-1-if-new-contr assms(1) v-def (2) subtree-trans ys-def (1) by

blast
obtain t3 where t3-def : t3 ∈ fst ‘ fset ys Dtree.root t3 = Dtree.root t1

using ys-def (2) assms(3) merge1-child-in-orig by fastforce
then show ?thesis using R.dom-mdeg-gt1 [OF self-subtree] mdeg-gt1 by fastforce

qed

lemma merge1-merge-point-if-new-contr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t0 =⇒ rank (rev r1) ≤

rank (rev (Dtree.root t2))
and wf-darcs t0
and is-subtree (Node r {|(t1 ,e1)|}) (merge1 t0)
and rank (rev (Dtree.root t1)) < rank (rev r)

shows ∃ ys. is-subtree (Node r ys) t0 ∧ fcard ys > 1 ∧ (∀ t∈ fst ‘ fset ys.
max-deg t ≤ 1)

∧ merge1 (Node r ys) = Node r {|(t1 ,e1)|}
using assms proof(induction t0)

case (Node v xs)

405

then consider fcard xs > 1 (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1)
| fcard xs ≤ 1 | fcard xs > 1 ¬(∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1)
by linarith

then show ?case
proof(cases)

case 1
then have is-subtree (Node r {|(t1 , e1)|}) (merge (Node v xs)) using Node.prems(3)

by simp
then have Node r {|(t1 , e1)|} = merge (Node v xs)

using merge-root-if-contr Node.prems(1 ,4) by blast
then show ?thesis using 1 dtree.sel(1)[of r {|(t1 , e1)|}] by auto

next
case 2
then have merge1 (Node v xs) = Node v ((λ(t,e). (merge1 t,e)) |‘| xs) by auto
then have xs 6= {||} using Node.prems(3) by force
then have fcard xs = 1 using 2 le-Suc-eq by auto
then obtain t2 e2 where t2-def : xs = {|(t2 ,e2)|} using fcard-single-1-iff [of

xs] by fast
then have Node r {|(t1 , e1)|} 6= merge1 (Node v {|(t2 ,e2)|}) using Node.prems(1 ,4)

2 by force
then have is-subtree (Node r {|(t1 , e1)|}) (merge1 t2) using Node.prems(3)

t2-def 2 by auto
moreover have

∧
r1 t3 e3 . is-subtree (Node r1 {|(t3 , e3)|}) t2

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t3))
using Node.prems(1) t2-def by fastforce

ultimately show ?thesis using Node.IH [of (t2 ,e2)] Node.prems(2 ,4) t2-def
by fastforce

next
case 3
then have fcard ((λ(t,e). (merge1 t,e)) |‘| xs) > 1

using fcard-merge1-img-if-disjoint disjoint-darcs-if-wf-xs[OF Node.prems(2)]
by simp

then have Node r {|(t1 ,e1)|} 6= merge1 (Node v xs)
using fcard-single-1-iff [of (λ(t,e). (merge1 t,e)) |‘| xs] 3 (2) by auto

moreover have merge1 (Node v xs) = Node v ((λ(t,e). (merge1 t,e)) |‘| xs)
using 3 (2) by auto

ultimately obtain t2 e2 where t2-def :
(t2 ,e2) ∈ fset xs is-subtree (Node r {|(t1 , e1)|}) (merge1 t2)

using Node.prems(3) by auto
then have is-subtree t2 (Node v xs) using subtree-if-child

by (metis fst-conv image-eqI)
then have

∧
r1 t3 e3 . is-subtree (Node r1 {|(t3 , e3)|}) t2
=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t3))

using Node.prems(1) subtree-trans by blast
then obtain ys where ys-def : is-subtree (Node r ys) t2 1 < fcard ys

(∀ t∈fst ‘ fset ys. max-deg t ≤ 1) merge1 (Node r ys) = Node r {|(t1 , e1)|}
using Node.IH [OF t2-def (1)] Node.prems(2 ,4) t2-def by fastforce

then show ?thesis using t2-def (1) by auto
qed

406

qed

lemma merge1-dom-contr :
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t =⇒ rank (rev r1) ≤ rank

(rev (Dtree.root t2))
and is-subtree (Node r {|(t1 ,e1)|}) (merge1 t)
and rank (rev (Dtree.root t1)) < rank (rev r)
and max-deg (Node r {|(t1 ,e1)|}) = 1

shows dom-children (Node r {|(t1 ,e1)|}) T
proof −

obtain ys where ys-def : is-subtree (Node r ys) t fcard ys > 1
∀ t∈fst ‘ fset ys. max-deg t ≤ 1 merge1 (Node r ys) = Node r {|(t1 ,e1)|}

using merge1-merge-point-if-new-contr wf-arcs assms(1−3) by blast
have ∀ t1∈fst ‘ fset ys. wf-dlverts t1

using ys-def (1) list-dtree.wf-lverts list-dtree-sub by fastforce
then show ?thesis using merge-dom-children-sucs[OF dom-wedge-full] ys-def

by fastforce
qed

lemma merge1-dom-children-merge-sub-aux:
assumes merge1 t = t2

and is-subtree (Node r ′ xs ′) t
and fcard xs ′ > 1
and (∀ t∈fst ‘ fset xs ′. max-deg t ≤ 1)
and max-deg t2 ≤ 1
and x ∈ dverts t2
and x 6= Dtree.root t2

shows ∃ v ∈ path-lverts t2 (hd x). v →T hd x
using assms ranked-dtree-with-orig-axioms proof(induction t arbitrary: t2)

case (Node r xs)
then interpret R: ranked-dtree-with-orig Node r xs by blast
obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset (sucs t2) x ∈ dverts t1
by (metis Node.prems(6 ,7) fsts.simps dtree.sel dtree.set-cases(1) fst-conv surj-pair)

then have t2-sucs: sucs t2 = {|(t1 ,e1)|}
using Node.prems(5) empty-iff-mdeg-0 [of Dtree.root t2 sucs t2]

mdeg-1-singleton[of Dtree.root t2 sucs t2] by auto
have wf-t2 : wf-dlverts t2 using Node.prems(1) R.wf-dlverts-merge1 by blast
then have wf-dlverts t1 using t1-def (1) wf-dlverts-suc by fastforce
then have hd x ∈ dlverts t1 using t1-def (2) hd-in-lverts-if-wf by blast
then have hd x /∈ set (Dtree.root t2) using dlverts-notin-root-sucs[OF wf-t2]

t1-def (1) by fastforce
then have path-t2 : path-lverts t2 (hd x) = set (Dtree.root t2) ∪ path-lverts t1

(hd x)
using path-lverts-simps1-sucs t2-sucs by fastforce

show ?case
proof(cases Node r xs = Node r ′ xs ′)

case True
then have merge (Node r ′ xs ′) = t2 using Node.prems(1 ,3 ,4) by simp
then have dom-children t2 T

407

using R.dom-wedge-full[OF Node.prems(2−4)] merge-dom-children R.wf-lverts
True by fastforce

then have ∃ v∈set (Dtree.root t2) ∪ path-lverts t1 (hd x). v →T hd x
using t1-def unfolding dom-children-def by auto

then show ?thesis using path-t2 by blast
next

case False
then have ¬(fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))
using Node.prems(3 ,4) child-mdeg-gt1-if-sub-fcard-gt1 [OF Node.prems(2)] by

force
then have eq: merge1 (Node r xs) = Node r ((λ(t,e). (merge1 t,e)) |‘| xs) by

auto
then obtain t3 e3 where t3-def : (t3 ,e3) ∈ fset xs is-subtree (Node r ′ xs ′) t3

using Node.prems(2) False by auto
have fcard ((λ(t,e). (merge1 t,e)) |‘| xs) = 1

using Node.prems(1) eq t2-sucs fcard-single-1 by fastforce
then have fcard xs = 1

using fcard-merge1-img-if-disjoint disjoint-darcs-if-wf-xs[OF R.wf-arcs] by
simp

then have xs = {|(t3 ,e3)|} using fcard-single-1-iff [of xs] t3-def (1) by auto
then have t13 : merge1 t3 = t1 using t2-sucs eq Node.prems(1) by force
then have mdegt3 : max-deg t1 ≤ 1

using Node.prems(5) mdeg-ge-child[of t1 e1 sucs t2 Dtree.root t2] t2-sucs by
fastforce

have mdeg-gt1 : max-deg (Node r xs) > 1
using mdeg-ge-fcard[of xs ′ r ′] Node.prems(2 ,3) mdeg-ge-sub[of Node r ′ xs ′

Node r xs]
by simp

show ?thesis
proof(cases x = Dtree.root t1)

case True
then have ∃ v∈set r . v →T hd x

using R.dom-mdeg-gt1 [of r xs] t3-def (1) mdeg-gt1 t13 by fastforce
then show ?thesis using path-t2 Node.prems(1) by auto

next
case False
then have ∃ v∈path-lverts t1 (hd x). v →T hd x
using Node.IH t1-def (2) t3-def t13 assms(3 ,4) mdegt3 R.ranked-dtree-orig-rec

by simp
then show ?thesis using path-t2 by blast

qed
qed

qed

lemma merge1-dom-children-fcard-gt1-aux:
assumes dom-children (Node r (Abs-fset (children-deg1 ys))) T

and is-subtree (Node r ys) t
and merge1 (Node r ys) = Node r xs
and fcard xs > 1

408

and max-deg t2 ≤ 1
and t2 ∈ fst ‘ fset xs
and x ∈ dverts t2

shows ∃ v∈set r ∪ path-lverts t2 (hd x). v →T hd x
proof −

obtain t1 where t1-def : t1 ∈ fst ‘ fset ys merge1 t1 = t2
using merge1-elem-in-img-if-fcard-gt1 [OF assms(3 ,4)] assms(6) by fastforce

then have x-t: x ∈ dverts t1 using merge1-dverts-sub assms(7) by blast
show ?thesis
proof(cases max-deg t1 ≤ 1)

case True
then have t1 ∈ fst ‘ fset (sucs (Node r (Abs-fset (children-deg1 ys))))

using t1-def (1) children-deg1-fset-id by force
then have ∃ v∈set r ∪ path-lverts t1 (hd x). v →T hd x

using assms(1) x-t unfolding dom-children-def by auto
then show ?thesis using t1-def (2) merge1-mdeg-gt1-if-uneq[of t1] True by

force
next

case False
then obtain r ′ xs ′ where r ′-def :

is-subtree (Node r ′ xs ′) t1 1 < fcard xs ′ (∀ t∈fst ‘ fset xs ′. max-deg t ≤ 1)
using merge1-wedge-if-uneq[of t1] assms(5) t1-def (2) by fastforce

interpret R: ranked-dtree-with-orig Node r ys using ranked-dtree-orig-subtree
assms(2) .

interpret T : ranked-dtree-with-orig t1 using R.ranked-dtree-orig-rec t1-def (1)
by force

have max-deg (Node r ys) > 1
using assms(3 ,4) merge1-fcard-le[of r ys] mdeg-ge-fcard[of ys] by simp

show ?thesis
proof (cases x = Dtree.root t2)

case True
have max-deg (Node r ys) > 1

using assms(3 ,4) merge1-fcard-le[of r ys] mdeg-ge-fcard[of ys] by simp
then show ?thesis using dom-mdeg-gt1 [OF assms(2) t1-def (1)] True t1-def (2)

by auto
next

case False
then show ?thesis
using T .merge1-dom-children-merge-sub-aux[OF t1-def (2) r ′-def assms(5 ,7)]

by blast
qed

qed
qed

lemma merge1-dom-children-fcard-gt1 :
assumes dom-children (Node r (Abs-fset (children-deg1 ys))) T

and is-subtree (Node r ys) t
and merge1 (Node r ys) = Node r xs
and fcard xs > 1

409

shows dom-children (Node r (Abs-fset (children-deg1 xs))) T
unfolding dom-children-def
using merge1-dom-children-fcard-gt1-aux[OF assms] children-deg1-fset-id[of xs]

by fastforce

lemma merge1-dom-wedge:
assumes is-subtree (Node r xs) (merge1 t) and fcard xs > 1
shows dom-children (Node r (Abs-fset (children-deg1 xs))) T

proof −
obtain ys where ys-def :

merge1 (Node r ys) = Node r xs is-subtree (Node r ys) t fcard xs ≤ fcard ys
using merge1-subtree-if-fcard-gt1 [OF assms] by blast

have dom-children (Node r (Abs-fset (children-deg1 ys))) T
using dom-wedge ys-def (2 ,3) assms(2) by simp

then show ?thesis using merge1-dom-children-fcard-gt1 ys-def (2 ,1) assms(2)
by blast
qed

corollary merge1-dom-wedge ′:
∀ r xs. is-subtree (Node r xs) (merge1 t) −→ fcard xs > 1
−→ dom-children (Node r (Abs-fset {(t, e). (t, e) ∈ fset xs ∧ max-deg t ≤ Suc

0})) T
by (auto simp only: merge1-dom-wedge One-nat-def [symmetric])

corollary merge1-verts-conform: v ∈ dverts (merge1 t) =⇒ seq-conform v
by (simp add: verts-conform)

corollary merge1-verts-distinct: [[v ∈ dverts (merge1 t)]] =⇒ distinct v
using distinct-merge1 verts-distinct by auto

lemma merge1-mdeg-le1-wedge-if-fcard-gt1 :
assumes max-deg (merge1 t1) ≤ 1

and wf-darcs t1
and is-subtree (Node v ys) t1
and fcard ys > 1

shows (∀ t ∈ fst ‘ fset ys. max-deg t ≤ 1)
using assms proof(induction t1 rule: merge1 .induct)

case (1 r xs)
then show ?case
proof(cases fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1))

case True
then have Node v ys = Node r xs

using 1 .prems(3 ,4) mdeg-ge-sub mdeg-ge-fcard[of ys] by fastforce
then show ?thesis using True by simp

next
case False
then have eq: merge1 (Node r xs) = Node r ((λ(t, e). (merge1 t, e)) |‘| xs) by

auto
have fcard ((λ(t, e). (merge1 t, e)) |‘| xs) = fcard xs

410

using fcard-merge1-img-if-disjoint disjoint-darcs-if-wf-xs[OF 1 .prems(2)] by
simp

then have fcard xs ≤ 1
by (metis 1 .prems(1) False merge1 .simps num-leaves-1-if-mdeg-1 num-leaves-ge-card)
then have Node v ys 6= Node r xs using 1 .prems(4) by auto
then obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs is-subtree (Node v ys) t2

using 1 .prems(3) by auto
then have max-deg (merge1 t2) ≤ 1

using 1 .prems(1) False eq
mdeg-ge-child[of merge1 t2 e2 (λ(t, e). (merge1 t, e)) |‘| xs]

by fastforce
then show ?thesis using 1 .IH [OF False t2-def (1) refl] t2-def 1 .prems(2 ,4)

by fastforce
qed

qed

lemma dom-mdeg-le1-merge1-aux:
assumes max-deg (merge1 t) ≤ 1

and merge1 t 6= t
and t1 ∈ fst ‘ fset (sucs (merge1 t))
and x ∈ dverts t1

shows ∃ r∈set (Dtree.root (merge1 t)) ∪ path-lverts t1 (hd x). r →T hd x
using assms ranked-dtree-with-orig-axioms proof(induction t arbitrary: t1 rule:
merge1 .induct)

case (1 r xs)
then interpret R: ranked-dtree-with-orig Node r xs by blast
show ?case
proof(cases fcard xs > 1)

case True
then have 0 : (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1)

using merge1-mdeg-le1-wedge-if-fcard-gt1 [OF 1 .prems(1) R.wf-arcs] by auto
then have dom-children (merge (Node r xs)) T
using True merge-dom-children-sucs R.dom-wedge-full R.wf-lverts self-subtree

wf-dlverts-suc
by fast

then show ?thesis unfolding dom-children-def using 1 .prems(3 ,4) 0 True
by auto

next
case False
then have rec: ¬(fcard xs > 1 ∧ (∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1)) by simp
then have eq: merge1 (Node r xs) = Node r ((λ(t,e). (merge1 t,e)) |‘| xs) by

auto
obtain t2 e2 where t2-def : xs = {|(t2 ,e2)|} merge1 t2 = t1

using 1 .prems(3) False singleton-if-fcard-le1-elem[of xs] by fastforce
show ?thesis
proof(cases x = Dtree.root t1)

case True
have max-deg (Node r xs) > 1 using merge1-mdeg-gt1-if-uneq 1 .prems(2)

by blast

411

then show ?thesis using True R.dom-mdeg-gt1 [OF self-subtree] t2-def by
auto

next
case False
then obtain t3 where t3-def : t3 ∈ fst ‘ fset (sucs (merge1 t2)) x ∈ dverts

t3
using 1 .prems(4) t2-def (2) dverts-root-or-suc by fastforce

have mdeg1 : max-deg (merge1 t2) ≤ 1
using 1 .prems(1) mdeg-ge-child[of t1 e2 (λ(t,e). (merge1 t,e)) |‘| xs] eq

t2-def
by simp

then have 0 : ∃ r∈set (Dtree.root (merge1 t2)) ∪ path-lverts t3 (hd x). r →T
hd x

using 1 .IH rec mdeg1 t3-def 1 .prems(2) eq t2-def R.ranked-dtree-orig-rec
by auto

obtain e3 where e3-def : sucs t1 = {|(t3 , e3)|}
using t3-def singleton-if-mdeg-le1-elem-suc mdeg1 t2-def (2) by fastforce

have wf-dlverts t1 using wf-dlverts-suc 1 .prems(3) R.wf-dlverts-merge1 by
blast

then have hd x ∈ dlverts t3
using t3-def (2) 1 .prems(4) list-in-verts-iff-lverts hd-in-set[of x] empty-notin-wf-dlverts

by fast
then have hd x /∈ set (Dtree.root t1)

using t3-def (1) dlverts-notin-root-sucs[OF ‹wf-dlverts t1 ›] t2-def (2) by
blast

then show ?thesis using 0 path-lverts-simps1-sucs[of hd x t1] e3-def t2-def (2)
by blast

qed
qed

qed

lemma dom-mdeg-le1-merge1 :
[[max-deg (merge1 t) ≤ 1 ; merge1 t 6= t]] =⇒ dom-children (merge1 t) T
unfolding dom-children-def using dom-mdeg-le1-merge1-aux by blast

lemma merge1-arc-in-dlverts:
[[is-subtree (Node r xs) (merge1 t); x ∈ set r ; x →T y]] =⇒ y ∈ dlverts (Node r

xs)
using merge1-subtree-dlverts-supset arc-in-dlverts by blast

theorem merge1-ranked-dtree-orig:
assumes

∧
r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t =⇒ rank (rev r1) ≤ rank

(rev (Dtree.root t2))
shows ranked-dtree-with-orig (merge1 t) rank cost cmp T root
using assms merge1-arc-in-dlverts
unfolding ranked-dtree-with-orig-def ranked-dtree-with-orig-axioms-def
by(simp add: directed-tree-axioms ranked-dtree-merge1 merge1-verts-distinct merge1-verts-conform

merge1-dom-mdeg-gt1 merge1-dom-contr merge1-dom-sub-contr merge1-dom-wedge ′

asi-rank)

412

theorem merge1-normalize-ranked-dtree-orig:
ranked-dtree-with-orig (merge1 (normalize t)) rank cost cmp T root
using ranked-dtree-with-orig.merge1-ranked-dtree-orig[OF ranked-dtree-orig-normalize]
by (simp add: normalize-sorted-ranks)

theorem ikkbz-sub-ranked-dtree-orig: ranked-dtree-with-orig (ikkbz-sub t) rank cost
cmp T root
using ranked-dtree-with-orig-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
then show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems by auto

next
case False
then show ?thesis
by (metis 1 ranked-dtree-with-orig.merge1-normalize-ranked-dtree-orig ikkbz-sub.simps)

qed
qed

10.4 Optimality of IKKBZ-Sub result constrained to Invari-
ants

lemma dtree-size-skip-decr [termination-simp]: size (Node r (sucs t1)) < size (Node
v {|(t1 ,e1)|})

using dtree-size-eq-root[of Dtree.root t1 sucs t1] by auto

lemma dtree-size-skip-decr1 : size (Node (r @ Dtree.root t1) (sucs t1)) < size
(Node r {|(t1 ,e1)|})

using dtree-size-skip-decr by auto

function normalize-full :: (′a list, ′b) dtree ⇒ (′a list, ′b) dtree where
normalize-full (Node r {|(t1 ,e1)|}) = normalize-full (Node (r@Dtree.root t1)

(sucs t1))
| ∀ x. xs 6= {|x|} =⇒ normalize-full (Node r xs) = Node r xs

using dtree-to-list.cases by blast+
termination using dtree-size-skip-decr termination in-measure wf-measure by
metis

10.4.1 Result fulfills the requirements
lemma ikkbz-sub-eq-if-mdeg-le1 : max-deg t1 ≤ 1 =⇒ ikkbz-sub t1 = t1

by simp

lemma ikkbz-sub-eq-iff-mdeg-le1 : max-deg t1 ≤ 1 ←→ ikkbz-sub t1 = t1
using ikkbz-sub-mdeg-le1 [of t1] by fastforce

lemma dom-mdeg-le1-ikkbz-sub: ikkbz-sub t 6= t =⇒ dom-children (ikkbz-sub t) T
using ranked-dtree-with-orig-axioms proof(induction t rule: ikkbz-sub.induct)

413

case (1 t)
then interpret T : ranked-dtree-with-orig t by simp
interpret NT : ranked-dtree-with-orig normalize t

using T .ranked-dtree-orig-normalize by blast
interpret MT : ranked-dtree-with-orig merge1 (normalize t)

using T .merge1-normalize-ranked-dtree-orig by blast
show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems by auto

next
case False
then show ?thesis
proof(cases max-deg (merge1 (normalize t)) ≤ 1)

case True
then show ?thesis
using NT .dom-mdeg-le1-merge1 T .dom-mdeg-le1-normalize T .list-dtree-axioms

False
by force

next
case False
then have ikkbz-sub (merge1 (normalize t)) 6= (merge1 (normalize t))

using ikkbz-sub-mdeg-le1 [of merge1 (normalize t)] by force
then show ?thesis using 1 MT .ranked-dtree-with-orig-axioms by auto

qed
qed

qed

lemma combine-denormalize-eq:
denormalize (Node r {|(t1 ,e1)|}) = denormalize (Node (r@Dtree.root t1) (sucs

t1))
by (induction t1 rule: denormalize.induct) auto

lemma normalize1-denormalize-eq: wf-dlverts t1 =⇒ denormalize (normalize1 t1)
= denormalize t1
proof(induction t1 rule: normalize1 .induct)

case (1 r t e)
then show ?case using combine-denormalize-eq[of r t] by simp

next
case (2 xs r)
then show ?case

using fcard-single-1-iff [of (λ(t,e). (normalize1 t,e)) |‘| xs] fcard-single-1-iff [of
xs]

by (auto simp: fcard-normalize-img-if-wf-dlverts)
qed

lemma normalize1-denormalize-eq ′: wf-darcs t1 =⇒ denormalize (normalize1 t1)
= denormalize t1
proof(induction t1 rule: normalize1 .induct)

414

case (1 r t e)
then show ?case using combine-denormalize-eq[of r t] by (auto simp: wf-darcs-iff-darcs ′)

next
case (2 xs r)
then show ?case

using fcard-single-1-iff [of (λ(t,e). (normalize1 t,e)) |‘| xs] fcard-single-1-iff [of
xs]

by (auto simp: fcard-normalize-img-if-disjoint wf-darcs-iff-darcs ′)
qed

lemma normalize-denormalize-eq: wf-dlverts t1 =⇒ denormalize (normalize t1) =
denormalize t1

apply (induction t1 rule: normalize.induct)
by (smt (verit) normalize1-denormalize-eq normalize.simps wf-dlverts-normalize1)

lemma normalize-denormalize-eq ′: wf-darcs t1 =⇒ denormalize (normalize t1) =
denormalize t1

apply (induction t1 rule: normalize.induct)
by (smt (verit) normalize1-denormalize-eq ′ normalize.simps wf-darcs-normalize1)

lemma normalize-full-denormalize-eq[simp]: denormalize (normalize-full t1) = de-
normalize t1
proof(induction t1 rule: normalize-full.induct)

case (1 r t e)
then show ?case using combine-denormalize-eq[of r t] by simp

qed(simp)

lemma combine-dlverts-eq: dlverts (Node r {|(t1 ,e1)|}) = dlverts (Node (r@Dtree.root
t1) (sucs t1))

using dlverts.simps[of Dtree.root t1 sucs t1] by auto

lemma normalize-full-dlverts-eq[simp]: dlverts (normalize-full t1) = dlverts t1
using combine-dlverts-eq by(induction t1 rule: normalize-full.induct) fastforce+

lemma combine-darcs-sub: darcs (Node (r@Dtree.root t1) (sucs t1)) ⊆ darcs (Node
r {|(t1 ,e1)|})

using dtree.set(2)[of Dtree.root t1 sucs t1] by auto

lemma normalize-full-darcs-sub: darcs (normalize-full t1) ⊆ darcs t1
using combine-darcs-sub by(induction t1 rule: normalize-full.induct) fastforce+

lemma combine-nempty-if-wf-dlverts: wf-dlverts (Node r {|(t1 ,e1)|}) =⇒ r @ Dtree.root
t1 6= []

by simp

lemma combine-empty-inter-if-wf-dlverts:
assumes wf-dlverts (Node r {|(t1 ,e1)|})
shows ∀ (x, e1)∈fset (sucs t1). set (r @ Dtree.root t1) ∩ dlverts x = {} ∧

wf-dlverts x

415

proof −
have ∀ (x, e1)∈fset (sucs t1). set r ∩ dlverts x = {} using suc-in-dlverts assms

by fastforce
then show ?thesis using wf-dlverts.simps[of Dtree.root t1 sucs t1] assms by

auto
qed

lemma combine-disjoint-if-wf-dlverts:
wf-dlverts (Node r {|(t1 ,e1)|}) =⇒ disjoint-dlverts (sucs t1)
using wf-dlverts.simps[of Dtree.root t1 sucs t1] by simp

lemma combine-wf-dlverts:
wf-dlverts (Node r {|(t1 ,e1)|}) =⇒ wf-dlverts (Node (r@Dtree.root t1) (sucs t1))
using combine-empty-inter-if-wf-dlverts[of r t1] wf-dlverts.simps[of Dtree.root t1

sucs t1]
by force

lemma combine-distinct:
assumes ∀ v ∈ dverts (Node r {|(t1 ,e1)|}). distinct v

and wf-dlverts (Node r {|(t1 ,e1)|})
and v ∈ dverts (Node (r@Dtree.root t1) (sucs t1))

shows distinct v
proof(cases v = r @ Dtree.root t1)

case True
have (Dtree.root t1) ∈ dverts t1 by (simp add: dtree.set-sel(1))
moreover from this have set r ∩ set (Dtree.root t1) = {}

using assms(2) lverts-if-in-verts by fastforce
ultimately show ?thesis using True assms(1) by simp

next
case False
then show ?thesis using assms(1 ,3) dverts-suc-subseteq by fastforce

qed

lemma normalize-full-wfdlverts: wf-dlverts t1 =⇒ wf-dlverts (normalize-full t1)
proof(induction t1 rule: normalize-full.induct)

case (1 r t1 e1)
then show ?case using combine-wf-dlverts[of r t1] by simp

qed(simp)

corollary normalize-full-wfdverts: wf-dlverts t1 =⇒ wf-dverts (normalize-full t1)
using normalize-full-wfdlverts by (simp add: wf-dverts-if-wf-dlverts)

lemma combine-wf-arcs: wf-darcs (Node r {|(t1 ,e1)|}) =⇒ wf-darcs (Node (r@Dtree.root
t1) (sucs t1))

using wf-darcs ′.simps[of Dtree.root t1 sucs t1] by (simp add: wf-darcs-iff-darcs ′)

lemma normalize-full-wfdarcs: wf-darcs t1 =⇒ wf-darcs (normalize-full t1)
using combine-wf-arcs by(induction t1 rule: normalize-full.induct) fastforce+

416

lemma normalize-full-dom-preserv: dom-children t1 T =⇒ dom-children (normalize-full
t1) T

by (induction t1 rule: normalize-full.induct) (auto simp: dom-children-combine)

lemma combine-forward:
assumes dom-children (Node r {|(t1 ,e1)|}) T

and ∀ v ∈ dverts (Node r {|(t1 ,e1)|}). forward v
and wf-dlverts (Node r {|(t1 ,e1)|})
and v ∈ dverts (Node (r@Dtree.root t1) (sucs t1))

shows forward v
proof(cases v = r @ Dtree.root t1)

case True
have 0 : (Dtree.root t1) ∈ dverts t1 by (simp add: dtree.set-sel(1))
then have fwd-t1 : forward (Dtree.root t1) using assms(2) by simp
moreover have set r ∩ set (Dtree.root t1) = {} using assms(3) 0 lverts-if-in-verts

by fastforce
moreover have ∃ x∈set r . ∃ y∈set (Dtree.root t1). x →T y

using assms(1 ,3) root-arc-if-dom-wfdlverts by fastforce
ultimately have ∃ x∈set r . x →T hd (Dtree.root t1) using forward-arc-to-head

by blast
moreover have fwd-r : forward r using assms(2) by simp
ultimately show ?thesis using forward-app fwd-t1 True by simp

next
case False
then show ?thesis using assms(2 ,4) dverts-suc-subseteq by fastforce

qed

lemma normalize-full-forward:
[[dom-children t1 T ; ∀ v ∈ dverts t1 . forward v; wf-dlverts t1]]
=⇒ ∀ v ∈ dverts (normalize-full t1). forward v

proof(induction t1 rule: normalize-full.induct)
case (1 r t e)
have ∀ v ∈ dverts (Node (r@Dtree.root t) (sucs t)). forward v

using combine-forward[OF 1 .prems(1 ,2 ,3)] by blast
moreover have dom-children (Node (r@Dtree.root t) (sucs t)) T

using dom-children-combine 1 .prems(1) by simp
ultimately show ?case using 1 .IH 1 .prems(3) combine-wf-dlverts[of r t e] by

fastforce
qed(auto)

lemma normalize-full-max-deg0 : max-deg t1 ≤ 1 =⇒ max-deg (normalize-full t1)
= 0
proof(induction t1 rule: normalize-full.induct)

case (1 r t e)
then show ?case using mdeg-child-sucs-le by (fastforce dest: order-trans)

next
case (2 xs r)
then show ?case using empty-fset-if-mdeg-le1-not-single by auto

qed

417

lemma normalize-full-mdeg-eq: max-deg t1 > 1 =⇒ max-deg (normalize-full t1)
= max-deg t1
proof(induction t1 rule: normalize-full.induct)

case (1 r t e)
then show ?case using mdeg-child-sucs-eq-if-gt1 by force

qed(auto)

lemma normalize-full-empty-sucs: max-deg t1 ≤ 1 =⇒ ∃ r . normalize-full t1 =
Node r {||}
proof(induction t1 rule: normalize-full.induct)

case (1 r t e)
then show ?case using mdeg-child-sucs-le by (fastforce dest: order-trans)

next
case (2 xs r)
then show ?case using empty-fset-if-mdeg-le1-not-single by auto

qed

lemma normalize-full-forward-singleton:
[[max-deg t1 ≤ 1 ; dom-children t1 T ; ∀ v ∈ dverts t1 . forward v; wf-dlverts t1]]
=⇒ ∃ r . normalize-full t1 = Node r {||} ∧ forward r

using normalize-full-empty-sucs normalize-full-forward by fastforce

lemma denormalize-empty-sucs-simp: denormalize (Node r {||}) = r
using denormalize.simps(2) by blast

lemma normalize-full-dverts-eq-denormalize:
assumes max-deg t1 ≤ 1
shows dverts (normalize-full t1) = {denormalize t1}

proof −
obtain r where r-def [simp]: normalize-full t1 = Node r {||}

using assms normalize-full-empty-sucs by blast
then have denormalize (normalize-full t1) = r by (simp add: denormalize-empty-sucs-simp)
then have r = denormalize t1 using normalize-full-denormalize-eq by blast
then show ?thesis by simp

qed

lemma normalize-full-normalize-dverts-eq-denormalize:
assumes wf-dlverts t1 and max-deg t1 ≤ 1
shows dverts (normalize-full (normalize t1)) = {denormalize t1}

proof −
have max-deg (normalize t1) ≤ 1 using assms normalize-mdeg-eq ′ by fastforce
then show ?thesis

using normalize-full-dverts-eq-denormalize normalize-denormalize-eq assms(1)
by simp
qed

lemma normalize-full-normalize-dverts-eq-denormalize ′:
assumes wf-darcs t1 and max-deg t1 ≤ 1

418

shows dverts (normalize-full (normalize t1)) = {denormalize t1}
proof −

have max-deg (normalize t1) ≤ 1 using assms normalize-mdeg-eq by fastforce
then show ?thesis
using normalize-full-dverts-eq-denormalize normalize-denormalize-eq ′ assms(1)

by simp
qed

lemma denormalize-full-forward:
[[max-deg t1 ≤ 1 ; dom-children t1 T ; ∀ v ∈ dverts t1 . forward v; wf-dlverts t1]]
=⇒ forward (denormalize (normalize-full t1))

by (metis denormalize-empty-sucs-simp normalize-full-forward-singleton)

lemma denormalize-forward:
[[max-deg t1 ≤ 1 ; dom-children t1 T ; ∀ v ∈ dverts t1 . forward v; wf-dlverts t1]]
=⇒ forward (denormalize t1)

using denormalize-full-forward by simp

lemma ikkbz-sub-forward-if-uneq: ikkbz-sub t 6= t =⇒ forward (denormalize (ikkbz-sub
t))
using denormalize-forward ikkbz-sub-mdeg-le1 dom-mdeg-le1-ikkbz-sub ikkbz-sub-wf-dlverts

ranked-dtree-with-orig.verts-forward ikkbz-sub-ranked-dtree-orig
by fast

theorem ikkbz-sub-forward:
[[max-deg t ≤ 1 =⇒ dom-children t T]] =⇒ forward (denormalize (ikkbz-sub t))
using ikkbz-sub-forward-if-uneq ikkbz-sub-eq-iff-mdeg-le1 [of t]
by (fastforce simp: verts-forward wf-lverts denormalize-forward)

lemma root-arc-singleton:
assumes dom-children (Node r {|(t1 ,e1)|}) T and wf-dlverts (Node r {|(t1 ,e1)|})
shows ∃ x∈set r . ∃ y∈set (Dtree.root t1). x →T y
using root-arc-if-dom-wfdlverts assms by fastforce

lemma before-if-dom-children-wf-conform:
assumes dom-children (Node r {|(t1 ,e1)|}) T

and ∀ v ∈ dverts (Node r {|(t1 ,e1)|}). seq-conform v
and wf-dlverts (Node r {|(t1 ,e1)|})

shows before r (Dtree.root t1)
proof −

have seq-conform (Dtree.root t1) using dtree.set-sel(1) assms(2) by auto
moreover have seq-conform r using assms(2) by auto
moreover have set r ∩ set (Dtree.root t1) = {}

using assms(3) dlverts-eq-dverts-union dtree.set-sel(1) by fastforce
ultimately show ?thesis unfolding before-def using root-arc-singleton assms(1 ,3)

by blast
qed

lemma root-arc-singleton ′:

419

assumes Node r {|(t1 ,e1)|} = t and dom-children t T
shows ∃ x∈set r . ∃ y∈set (Dtree.root t1). x →T y
using assms root-arc-singleton wf-lverts by blast

lemma root-before-if-dom:
assumes Node r {|(t1 ,e1)|} = t and dom-children t T
shows before r (Dtree.root t1)

proof −
have (Dtree.root t1) ∈ dverts t using dtree.set-sel(1) assms(1) by fastforce
then have seq-conform (Dtree.root t1) using verts-conform by simp
moreover have seq-conform r using verts-conform assms(1) by auto
ultimately show ?thesis

using before-def child-disjoint-root root-arc-singleton ′ assms by fastforce
qed

lemma combine-conform:
[[dom-children (Node r {|(t1 ,e1)|}) T ; ∀ v ∈ dverts (Node r {|(t1 ,e1)|}). seq-conform

v;
wf-dlverts (Node r {|(t1 ,e1)|}); v ∈ dverts (Node (r@Dtree.root t1) (sucs t1))]]
=⇒ seq-conform v

apply(cases v = r@Dtree.root t1)
using before-if-dom-children-wf-conform seq-conform-if-before apply fastforce

using dverts-suc-subseteq by fastforce

lemma denormalize-full-set-eq-dlverts:
max-deg t1 ≤ 1 =⇒ set (denormalize (normalize-full t1)) = dlverts t1
using denormalize-set-eq-dlverts by auto

lemma denormalize-full-set-eq-dverts-union:
max-deg t1 ≤ 1 =⇒ set (denormalize (normalize-full t1)) =

⋃
(set ‘ dverts t1)

using denormalize-full-set-eq-dlverts dlverts-eq-dverts-union by fastforce

corollary hd-eq-denormalize-full:
wf-dlverts t1 =⇒ hd (denormalize (normalize-full t1)) = hd (Dtree.root t1)
using denormalize-hd-root-wf by auto

corollary denormalize-full-nempty-if-wf :
wf-dlverts t1 =⇒ denormalize (normalize-full t1) 6= []
using denormalize-nempty-if-wf by auto

lemma take1-eq-denormalize-full:
wf-dlverts t1 =⇒ take 1 (denormalize (normalize-full t1)) = [hd (Dtree.root t1)]
using hd-eq-denormalize-full take1-eq-hd denormalize-full-nempty-if-wf by fast

lemma P-denormalize-full:
assumes wf-dlverts t1

and ∀ v ∈ dverts t1 . distinct v
and hd (Dtree.root t1) = root
and max-deg t1 ≤ 1

420

shows unique-set-r root (dverts t1) (denormalize (normalize-full t1))
using assms unique-set-r-def denormalize-full-set-eq-dverts-union

denormalize-distinct normalize-full-wfdlverts take1-eq-denormalize-full
by fastforce

lemma P-denormalize:
fixes t1 :: (′a list, ′b) dtree
assumes wf-dlverts t1

and ∀ v ∈ dverts t1 . distinct v
and hd (Dtree.root t1) = root
and max-deg t1 ≤ 1

shows unique-set-r root (dverts t1) (denormalize t1)
using assms P-denormalize-full by auto

lemma denormalize-full-fwd:
assumes wf-dlverts t1

and max-deg t1 ≤ 1
and ∀ xs ∈ (dverts t1). seq-conform xs
and dom-children t1 T

shows forward (denormalize (normalize-full t1))
using assms denormalize-forward forward-arcs-alt seq-conform-def by auto

lemma normalize-full-verts-sublist:
v ∈ dverts t1 =⇒ ∃ v2 ∈ dverts (normalize-full t1). sublist v v2

proof(induction t1 arbitrary: v rule: normalize-full.induct)
case ind: (1 r t e)
then consider v = r ∨ v = Dtree.root t | ∃ t1 ∈ fst ‘ fset (sucs t). v ∈ dverts t1

using dverts-root-or-suc by fastforce
then show ?case
proof(cases)

case 1
have ∃ a∈dverts (normalize-full (Node (r @ Dtree.root t) (sucs t))). sublist

(r@Dtree.root t) a
using ind.IH by simp

moreover have sublist v (r@Dtree.root t) using 1 by blast
ultimately show ?thesis using sublist-order .dual-order .trans by auto

next
case 2
then show ?thesis using ind.IH [of v] by fastforce

qed
next

case (2 xs r)
then show ?case by fastforce

qed

lemma normalize-full-sublist-preserv:
[[sublist xs v; v ∈ dverts t1]] =⇒ ∃ v2 ∈ dverts (normalize-full t1). sublist xs v2
using normalize-full-verts-sublist sublist-order .dual-order .trans by fast

421

lemma denormalize-full-sublist-preserv:
assumes sublist xs v and v ∈ dverts t1 and max-deg t1 ≤ 1
shows sublist xs (denormalize (normalize-full t1))

proof −
obtain r where r-def [simp]: normalize-full t1 = Node r {||}

using assms(3) normalize-full-empty-sucs by blast
have sublist xs r using normalize-full-sublist-preserv[OF assms(1 ,2)] by simp
then show ?thesis by (simp add: denormalize-empty-sucs-simp)

qed

corollary denormalize-sublist-preserv:
[[sublist xs v; v ∈ dverts (t1 ::(′a list, ′b) dtree); max-deg t1 ≤ 1]]
=⇒ sublist xs (denormalize t1)

using denormalize-full-sublist-preserv by simp

lemma Q-denormalize-full:
assumes wf-dlverts t1

and ∀ v ∈ dverts t1 . distinct v
and hd (Dtree.root t1) = root
and max-deg t1 ≤ 1
and ∀ xs ∈ (dverts t1). seq-conform xs
and dom-children t1 T

shows fwd-sub root (dverts t1) (denormalize (normalize-full t1))
using P-denormalize-full[OF assms(1−4)] assms(1 ,4−6) denormalize-full-sublist-preserv
by (auto dest: denormalize-full-fwd simp: fwd-sub-def)

corollary Q-denormalize:
assumes wf-dlverts t1

and ∀ v ∈ dverts t1 . distinct v
and hd (Dtree.root t1) = root
and max-deg t1 ≤ 1
and ∀ xs ∈ (dverts t1). seq-conform xs
and dom-children t1 T

shows fwd-sub root (dverts t1) (denormalize t1)
using Q-denormalize-full assms by simp

corollary Q-denormalize-t:
assumes hd (Dtree.root t) = root

and max-deg t ≤ 1
and dom-children t T

shows fwd-sub root (dverts t) (denormalize t)
using Q-denormalize wf-lverts assms verts-conform verts-distinct by blast

lemma P-denormalize-ikkbz-sub:
assumes hd (Dtree.root t) = root
shows unique-set-r root (dverts t) (denormalize (ikkbz-sub t))

proof −
interpret T : ranked-dtree-with-orig ikkbz-sub t using ikkbz-sub-ranked-dtree-orig

by auto

422

have ∀ v∈dverts (ikkbz-sub t). distinct v using T .verts-distinct by simp
then show ?thesis

using P-denormalize T .wf-lverts ikkbz-sub-mdeg-le1 assms ikkbz-sub-hd-root
unfolding unique-set-r-def denormalize-ikkbz-eq-dlverts dlverts-eq-dverts-union
by blast

qed

lemma merge1-sublist-preserv:
[[sublist xs v; v ∈ dverts t]] =⇒ ∃ v2 ∈ dverts (merge1 t). sublist xs v2
using sublist-order .dual-order .trans by auto

lemma normalize1-verts-sublist: v ∈ dverts t1 =⇒ ∃ v2 ∈ dverts (normalize1 t1).
sublist v v2
proof(induction t1 arbitrary: v rule: normalize1 .induct)

case ind: (1 r t e)
show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
consider v = r ∨ v = Dtree.root t | ∃ t1 ∈ fst ‘ fset (sucs t). v ∈ dverts t1

using dverts-root-or-suc using ind.prems by fastforce
then show ?thesis
proof(cases)

case 1
then show ?thesis using True by auto

next
case 2
then show ?thesis using True by fastforce

qed
next

case False
then show ?thesis using ind by auto

qed
next

case (2 xs r)
then show ?case by fastforce

qed

lemma normalize1-sublist-preserv:
[[sublist xs v; v ∈ dverts t1]] =⇒ ∃ v2 ∈ dverts (normalize1 t1). sublist xs v2
using normalize1-verts-sublist sublist-order .dual-order .trans by fast

lemma normalize-verts-sublist: v ∈ dverts t1 =⇒ ∃ v2 ∈ dverts (normalize t1).
sublist v v2
proof(induction t1 arbitrary: v rule: normalize.induct)

case (1 t1)
then show ?case
proof(cases t1 = normalize1 t1)

case True
then show ?thesis using 1 .prems by auto

423

next
case False

then have eq: normalize (normalize1 t1) = normalize t1 by (auto simp:
Let-def)

then obtain v2 where v2-def : v2 ∈ dverts (normalize1 t1) sublist v v2
using normalize1-verts-sublist 1 .prems by blast

then show ?thesis
using 1 .IH [OF refl False v2-def (1)] eq sublist-order .dual-order .trans by auto

qed
qed

lemma normalize-sublist-preserv:
[[sublist xs v; v ∈ dverts t1]] =⇒ ∃ v2 ∈ dverts (normalize t1). sublist xs v2
using normalize-verts-sublist sublist-order .dual-order .trans by fast

lemma ikkbz-sub-verts-sublist: v ∈ dverts t =⇒ ∃ v2 ∈ dverts (ikkbz-sub t). sublist
v v2
using ranked-dtree-with-orig-axioms proof(induction t arbitrary: v rule: ikkbz-sub.induct)

case (1 t)
then interpret T : ranked-dtree-with-orig t by simp
interpret NT : ranked-dtree-with-orig normalize t

using T .ranked-dtree-orig-normalize by blast
show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems(1) by auto

next
case False
then have 0 : ¬ (max-deg t ≤ 1 ∨ ¬ list-dtree t) using T .list-dtree-axioms by

auto
obtain v1 where v1-def : v1 ∈ dverts (normalize t) sublist v v1

using normalize-verts-sublist 1 .prems(1) by blast
then have v1 ∈ dverts (merge1 (normalize t)) using NT .merge1-dverts-eq by

blast
then obtain v2 where v2-def : v2 ∈ dverts (ikkbz-sub t) sublist v1 v2

using 1 0 T .merge1-normalize-ranked-dtree-orig by force
then show ?thesis using v1-def (2) sublist-order .dual-order .trans by blast

qed
qed

lemma ikkbz-sub-sublist-preserv:
[[sublist xs v; v ∈ dverts t]] =⇒ ∃ v2 ∈ dverts (ikkbz-sub t). sublist xs v2
using ikkbz-sub-verts-sublist sublist-order .dual-order .trans by fast

lemma denormalize-ikkbz-sub-verts-sublist:
∀ xs ∈ (dverts t). sublist xs (denormalize (ikkbz-sub t))
using ikkbz-sub-verts-sublist denormalize-sublist-preserv ikkbz-sub-mdeg-le1 by

blast

424

lemma denormalize-ikkbz-sub-sublist-preserv:
[[sublist xs v; v ∈ dverts t]] =⇒ sublist xs (denormalize (ikkbz-sub t))
using denormalize-ikkbz-sub-verts-sublist sublist-order .dual-order .trans by blast

lemma Q-denormalize-ikkbz-sub:
[[hd (Dtree.root t) = root; max-deg t ≤ 1 =⇒ dom-children t T]]
=⇒ fwd-sub root (dverts t) (denormalize (ikkbz-sub t))

using P-denormalize-ikkbz-sub ikkbz-sub-forward denormalize-ikkbz-sub-verts-sublist
fwd-sub-def

by blast

10.4.2 Minimal Cost of the result
lemma normalize1-dverts-app-before-contr :
[[v ∈ dverts (normalize1 t); v /∈ dverts t]]
=⇒ ∃ v1∈dverts t. ∃ v2∈dverts t. v1 @ v2 = v ∧ before v1 v2 ∧ rank (rev v2)

< rank (rev v1)
by (fastforce dest: normalize1-dverts-contr-subtree

simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalize1-dverts-app-bfr-cntr-rnks:
assumes v ∈ dverts (normalize1 t) and v /∈ dverts t
shows ∃U∈dverts t. ∃V∈dverts t. U @ V = v ∧ before U V ∧ rank (rev V) <

rank (rev U)
∧ (∀ xs ∈ dverts t. (∃ y∈set xs. ¬ (∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y) ∧ xs 6= U)
−→ rank (rev V) ≤ rank (rev xs))

using normalize1-dverts-contr-subtree[OF assms] subtree-rank-ge-if-reach ′

by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalize1-dverts-app-bfr-cntr-rnks ′:
assumes v ∈ dverts (normalize1 t) and v /∈ dverts t
shows ∃U∈dverts t. ∃V∈dverts t. U @ V = v ∧ before U V ∧ rank (rev V) ≤

rank (rev U)
∧ (∀ xs ∈ dverts t. (∃ y∈set xs. ¬ (∃ x ′∈set V . x ′ →+

T y) ∧ (∃ x∈set U . x
→+

T y) ∧ xs 6= U)
−→ rank (rev V) ≤ rank (rev xs))

using normalize1-dverts-contr-subtree[OF assms] subtree-rank-ge-if-reach ′

by (fastforce simp: single-subtree-root-dverts single-subtree-child-root-dverts contr-before)

lemma normalize1-dverts-split:
dverts (normalize1 t1)
= {v ∈ dverts (normalize1 t1). v /∈ dverts t1} ∪ {v ∈ dverts (normalize1 t1). v
∈ dverts t1}

by blast

lemma normalize1-dlverts-split:
dlverts (normalize1 t1)
=

⋃
(set ‘ {v ∈ dverts (normalize1 t1). v /∈ dverts t1})

425

∪
⋃
(set ‘ {v ∈ dverts (normalize1 t1). v ∈ dverts t1})

using dlverts-eq-dverts-union by fastforce

lemma normalize1-dsjnt-in-dverts:
assumes wf-dlverts t1

and v ∈ dverts t1
and set v ∩

⋃
(set ‘ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}) = {}

shows v ∈ dverts (normalize1 t1)
proof −

have set v ⊆ dlverts (normalize1 t1) using assms(2) lverts-if-in-verts by fast-
force

then have sub: set v ⊆
⋃

(set ‘ {v ∈ dverts (normalize1 t1). v ∈ dverts t1})
using normalize1-dlverts-split assms(3) by auto

have v 6= [] using assms(1 ,2) empty-notin-wf-dlverts by auto
then obtain x where x-def : x ∈ set v by fastforce
then show ?thesis using dverts-same-if-set-wf [OF assms(1 ,2)] x-def sub by

blast
qed

lemma normalize1-dsjnt-subset-split1 :
fixes t1
defines X ≡ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}
assumes wf-dlverts t1
shows {x. x∈dverts t1 ∧ set x ∩

⋃
(set ‘ X) = {}} ⊆ {v ∈ dverts (normalize1

t1). v ∈ dverts t1}
using assms normalize1-dsjnt-in-dverts by blast

lemma normalize1-dsjnt-subset-split2 :
fixes t1
defines X ≡ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}
assumes wf-dlverts t1
shows {v ∈ dverts (normalize1 t1). v ∈ dverts t1} ⊆ {x. x∈dverts t1 ∧ set x ∩⋃
(set ‘ X) = {}}

using dverts-same-if-set-wf [OF wf-dlverts-normalize1] assms by blast

lemma normalize1-dsjnt-subset-eq-split:
fixes t1
defines X ≡ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}
assumes wf-dlverts t1
shows {v ∈ dverts (normalize1 t1). v ∈ dverts t1} = {x. x∈dverts t1 ∧ set x ∩⋃
(set ‘ X) = {}}

using normalize1-dsjnt-subset-split1 normalize1-dsjnt-subset-split2 assms
by blast

lemma normalize1-dverts-split2 :
fixes t1
defines X ≡ {v ∈ dverts (normalize1 t1). v /∈ dverts t1}
assumes wf-dlverts t1
shows X ∪ {x. x ∈ dverts t1 ∧ set x ∩

⋃
(set ‘ X) = {}} = dverts (normalize1

426

t1)
unfolding assms(1) using normalize1-dsjnt-subset-eq-split[OF assms(2)] by

blast

lemma set-subset-if-normalize1-vert: v1 ∈ dverts (normalize1 t1) =⇒ set v1 ⊆
dlverts t1

using lverts-if-in-verts by fastforce

lemma normalize1-new-verts-not-reach1 :
assumes v1 ∈ dverts (normalize1 t) and v1 /∈ dverts t

and v2 ∈ dverts (normalize1 t) and v2 /∈ dverts t
and v1 6= v2

shows ¬(∃ x∈set v1 . ∃ y∈set v2 . x →+
T y)

using assms ranked-dtree-with-orig-axioms proof(induction t rule: normalize1 .induct)
case (1 r t e)
then interpret R: ranked-dtree-with-orig Node r {|(t, e)|} by blast
show ?case
proof(cases rank (rev (Dtree.root t)) < rank (rev r))

case True
then have eq: normalize1 (Node r {|(t, e)|}) = Node (r@Dtree.root t) (sucs t)

by simp
have v1 = r @ Dtree.root t

using 1 .prems(1 ,2) dverts-suc-subseteq unfolding eq by fastforce
moreover have v2 = r @ Dtree.root t

using 1 .prems(3 ,4) dverts-suc-subseteq unfolding eq by fastforce
ultimately show ?thesis using 1 .prems(5) by simp

next
case False
then show ?thesis using 1 R.ranked-dtree-orig-rec by simp

qed
next

case (2 xs r)
then interpret R: ranked-dtree-with-orig Node r xs by blast
have eq: normalize1 (Node r xs) = Node r ((λ(t,e). (normalize1 t,e)) |‘| xs)

using 2 .hyps by simp
obtain t1 e1 where t1-def : (t1 ,e1) ∈ fset xs v1 ∈ dverts (normalize1 t1)

using 2 .hyps 2 .prems(1 ,2) by auto
obtain t2 e2 where t2-def : (t2 ,e2) ∈ fset xs v2 ∈ dverts (normalize1 t2)

using 2 .hyps 2 .prems(3 ,4) by auto
show ?case
proof(cases t1 = t2)

case True
have v1 /∈ dverts t1 ∧ v2 /∈ dverts t2

using 2 .hyps 2 .prems(2 ,4) t1-def (1) t2-def (1) by simp
then show ?thesis using 2 .IH t1-def t2-def True 2 .prems(5) R.ranked-dtree-orig-rec

by simp
next

case False
have sub: is-subtree t1 (Node r xs) using t1-def (1) subtree-if-child[of t1 xs r]

427

by force
have set v1 ⊆ dlverts t1 using set-subset-if-normalize1-vert t1-def (2) by simp
then have reach-t1 : ∀ x ∈ set v1 . ∀ y. x →+

T y −→ y ∈ dlverts t1
using R.dlverts-reach1-in-dlverts sub by blast

have dlverts t1 ∩ dlverts t2 = {}
using R.wf-lverts t2-def (1) t1-def (1) wf-dlverts.simps[of r] False by fast

then have set v2 ∩ dlverts t1 = {} using set-subset-if-normalize1-vert t2-def (2)
by auto

then show ?thesis using reach-t1 by blast
qed

qed

lemma normalize1-dverts-split-optimal:
defines X ≡ {v ∈ dverts (normalize1 t). v /∈ dverts t}
assumes ∃ x. fwd-sub root (dverts t) x
shows ∃ zs. fwd-sub root (X ∪ {x. x ∈ dverts t ∧ set x ∩

⋃
(set ‘ X) = {}}) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
proof −

let ?Y = dverts t
have dsjt: ∀ xs ∈ ?Y . ∀ ys ∈ ?Y . xs = ys ∨ set xs ∩ set ys = {}

using dverts-same-if-set-wf [OF wf-lverts] by blast
have fwd: ∀ xs ∈ ?Y . forward xs by (simp add: verts-forward)
have nempty: [] /∈ ?Y by (simp add: empty-notin-wf-dlverts wf-lverts)
have fin: finite ?Y by (simp add: finite-dverts)
have ∀ ys ∈ X . ∃U ∈ ?Y . ∃V ∈ ?Y . U@V = ys ∧ before U V ∧ rank (rev V)
≤ rank (rev U)

∧ (∀ xs ∈ ?Y . (∃ y∈set xs. ¬(∃ x ′∈set V . x ′→+
T y) ∧ (∃ x∈set U . x →+

T
y) ∧ xs 6= U)

−→ rank (rev V) ≤ rank (rev xs))
unfolding X-def using normalize1-dverts-app-bfr-cntr-rnks ′ by blast

moreover have ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ set xs ∩ set ys = {}
unfolding X-def using dverts-same-if-set-wf [OF wf-dlverts-normalize1] wf-lverts

by blast
moreover have ∀ xs ∈ X . ∀ ys ∈ X . xs = ys ∨ ¬(∃ x∈set xs. ∃ y∈set ys. x →+

T
y)

unfolding X-def using normalize1-new-verts-not-reach1 by blast
moreover have finite X by (simp add: X-def finite-dverts)
ultimately show ?thesis
using combine-union-sets-optimal-cost[OF asi-rank dsjt fwd nempty fin assms(2)]

by simp
qed

corollary normalize1-dverts-optimal:
assumes ∃ x. fwd-sub root (dverts t) x
shows ∃ zs. fwd-sub root (dverts (normalize1 t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using normalize1-dverts-split-optimal assms normalize1-dverts-split2 [OF wf-lverts]

by simp

428

lemma normalize-dverts-optimal:
assumes ∃ x. fwd-sub root (dverts t) x
shows ∃ zs. fwd-sub root (dverts (normalize t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using assms ranked-dtree-with-orig-axioms proof(induction t rule: normalize.induct)

case (1 t)
then interpret T : ranked-dtree-with-orig t by blast
obtain zs where zs-def :

fwd-sub root (dverts (normalize1 t)) zs
∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as)

using 1 .prems T .normalize1-dverts-optimal by auto
show ?case
proof(cases t = normalize1 t)

case True
then show ?thesis using zs-def by auto

next
case False
then have eq: normalize (normalize1 t) = normalize t by (auto simp: Let-def)
have ∃ zs. fwd-sub root (dverts (normalize (normalize1 t))) zs

∧ (∀ as. fwd-sub root (dverts (normalize1 t)) as −→ cost (rev zs) ≤ cost
(rev as))

using 1 .IH False zs-def (1) T .ranked-dtree-orig-normalize1 by blast
then show ?thesis using zs-def eq by force

qed
qed

lemma merge1-dverts-optimal:
assumes ∃ x. fwd-sub root (dverts t) x
shows ∃ zs. fwd-sub root (dverts (merge1 t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using assms forward-UV-lists-argmin-ex by simp

theorem ikkbz-sub-dverts-optimal:
assumes ∃ x. fwd-sub root (dverts t) x
shows ∃ zs. fwd-sub root (dverts (ikkbz-sub t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using assms ranked-dtree-with-orig-axioms proof(induction t rule: ikkbz-sub.induct)

case (1 t)
then interpret T : ranked-dtree-with-orig t by simp
interpret NT : ranked-dtree-with-orig normalize t

using T .ranked-dtree-orig-normalize by blast
show ?case
proof(cases max-deg t ≤ 1)

case True
then show ?thesis using 1 .prems(1) forward-UV-lists-argmin-ex by auto

next
case False
then have 0 : ¬ (max-deg t ≤ 1 ∨ ¬ list-dtree t) using T .list-dtree-axioms by

auto

429

obtain zs where zs-def : fwd-sub root (dverts (merge1 (normalize t))) zs
∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as)

using 1 .prems T .normalize-dverts-optimal NT .merge1-dverts-eq by auto
have ∃ zs. fwd-sub root (dverts (ikkbz-sub (merge1 (normalize t)))) zs

∧ (∀ as. fwd-sub root (dverts (merge1 (normalize t))) as −→ cost (rev zs)
≤ cost (rev as))

using 1 .IH 0 zs-def (1) T .merge1-normalize-ranked-dtree-orig by blast
then show ?thesis using zs-def 0 by force

qed
qed

lemma ikkbz-sub-dverts-optimal ′:
assumes hd (Dtree.root t) = root and max-deg t ≤ 1 =⇒ dom-children t T
shows ∃ zs. fwd-sub root (dverts (ikkbz-sub t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using ikkbz-sub-dverts-optimal Q-denormalize-ikkbz-sub assms by blast

lemma combine-strict-subtree-orig:
assumes strict-subtree (Node r1 {|(t2 ,e2)|}) (Node (r@Dtree.root t1) (sucs t1))

shows is-subtree (Node r1 {|(t2 ,e2)|}) (Node r {|(t1 ,e1)|})
proof −

obtain t3 where t3-def : t3 ∈ fst ‘ fset (sucs t1) is-subtree (Node r1 {|(t2 ,e2)|})
t3

using assms unfolding strict-subtree-def by force
then show ?thesis using subtree-trans subtree-if-suc[OF t3-def (1)] by auto

qed

lemma combine-subtree-orig-uneq:
assumes is-subtree (Node r1 {|(t2 ,e2)|}) (Node (r@Dtree.root t1) (sucs t1))
shows Node r1 {|(t2 ,e2)|} 6= Node r {|(t1 ,e1)|}

proof −
have size (Node r1 {|(t2 ,e2)|}) ≤ size (Node (r@Dtree.root t1) (sucs t1))

using assms(1) subtree-size-le by blast
also have size (Node (r@Dtree.root t1) (sucs t1)) < size (Node r {|(t1 ,e1)|})

using dtree-size-skip-decr1 by fast
finally show ?thesis by blast

qed

lemma combine-strict-subtree-ranks-le:
assumes

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) (Node r {|(t1 ,e1)|})

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
and strict-subtree (Node r1 {|(t2 ,e2)|}) (Node (r@Dtree.root t1) (sucs t1))

shows rank (rev r1) ≤ rank (rev (Dtree.root t2))
using combine-strict-subtree-orig assms unfolding strict-subtree-def
by (fast intro!: combine-subtree-orig-uneq)

lemma subtree-child-uneq:
[[is-subtree t1 t2 ; t2 ∈ fst ‘ fset xs]] =⇒ t1 6= Node r xs
using child-uneq subtree-antisym subtree-if-child by fast

430

lemma subtree-singleton-child-uneq:
is-subtree t1 t2 =⇒ t1 6= Node r {|(t2 ,e2)|}
using subtree-child-uneq[of t1] by simp

lemma child-subtree-ranks-le-if-strict-subtree:
assumes

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) (Node r {|(t1 ,e1)|})

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
and is-subtree (Node r1 {|(t2 ,e2)|}) t1

shows rank (rev r1) ≤ rank (rev (Dtree.root t2))
using assms subtree-trans subtree-singleton-child-uneq unfolding strict-subtree-def

by fastforce

lemma verts-ge-child-if-sorted:
assumes

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) (Node r {|(t1 ,e1)|})

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
and max-deg (Node r {|(t1 ,e1)|}) ≤ 1
and v ∈ dverts t1

shows rank (rev (Dtree.root t1)) ≤ rank (rev v)
proof −

have
∧

r1 t2 e2 . is-subtree (Node r1 {|(t2 ,e2)|}) t1 =⇒ rank (rev r1) ≤ rank
(rev (Dtree.root t2))

using child-subtree-ranks-le-if-strict-subtree[OF assms(1)] by simp
moreover have max-deg t1 ≤ 1 using mdeg-ge-child[of t1 e1 {|(t1 ,e1)|}]

assms(2) by simp
ultimately show ?thesis using rank-ge-if-mdeg-le1-dvert-nocontr assms(3) by

fastforce
qed

lemma verts-ge-child-if-sorted ′:
assumes

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) (Node r {|(t1 ,e1)|})

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
and max-deg (Node r {|(t1 ,e1)|}) ≤ 1
and v ∈ dverts (Node r {|(t1 ,e1)|})
and v 6= r

shows rank (rev (Dtree.root t1)) ≤ rank (rev v)
using verts-ge-child-if-sorted[OF assms(1 ,2)] assms(3 ,4) by simp

lemma not-combined-sub-dverts-combine:
{r@Dtree.root t1} ∪ {x. x ∈ dverts (Node r {|(t1 ,e1)|}) ∧ x 6= r ∧ x 6= Dtree.root

t1}
⊆ dverts (Node (r @ Dtree.root t1) (sucs t1))

using dverts-suc-subseteq dverts-root-or-suc by fastforce

lemma dverts-combine-orig-not-combined:
assumes wf-dlverts (Node r {|(t1 ,e1)|}) and x ∈ dverts (Node (r @ Dtree.root

t1) (sucs t1)) and x 6= r@Dtree.root t1
shows x ∈ dverts (Node r {|(t1 ,e1)|}) ∧ x 6= r ∧ x 6= Dtree.root t1

proof −

431

obtain t2 where t2-def : t2 ∈ fst ‘ fset (sucs t1) x ∈ dverts t2 using assms(2 ,3)
by fastforce

have set r ∩ dlverts t2 = {} using assms(1) suc-in-dlverts ′[OF t2-def (1)] by
auto

then have x 6= r using assms(1) t2-def (2) nempty-inter-notin-dverts by auto
have Dtree.root t1 6= []
using assms(1) empty-notin-wf-dlverts single-subtree-child-root-dverts[OF self-subtree,

of t1]
by force

moreover have set (Dtree.root t1) ∩ dlverts t2 = {}
using assms(1) t2-def (1) notin-dlverts-suc-if-wf-in-root by fastforce

ultimately have x 6= Dtree.root t1 using nempty-inter-notin-dverts t2-def (2)
by blast

then show ?thesis using ‹x 6= r› t2-def dverts-suc-subseteq by auto
qed

lemma dverts-combine-sub-not-combined:
wf-dlverts (Node r {|(t1 ,e1)|}) =⇒ dverts (Node (r @ Dtree.root t1) (sucs t1))
⊆ {r@Dtree.root t1} ∪ {x. x ∈ dverts (Node r {|(t1 ,e1)|}) ∧ x 6= r ∧ x 6=

Dtree.root t1}
using dverts-combine-orig-not-combined by fast

lemma dverts-combine-eq-not-combined:
wf-dlverts (Node r {|(t1 ,e1)|}) =⇒ dverts (Node (r @ Dtree.root t1) (sucs t1))
= {r@Dtree.root t1} ∪ {x. x ∈ dverts (Node r {|(t1 ,e1)|}) ∧ x 6= r ∧ x 6=

Dtree.root t1}
using dverts-combine-sub-not-combined not-combined-sub-dverts-combine by fast

lemma normalize-full-dverts-optimal-if-sorted:
assumes asi rank root cost

and wf-dlverts t1
and ∀ xs ∈ (dverts t1). distinct xs
and ∀ xs ∈ (dverts t1). seq-conform xs
and

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) t1

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
and max-deg t1 ≤ 1
and hd (Dtree.root t1) = root
and dom-children t1 T

shows ∃ zs. fwd-sub root (dverts (normalize-full t1)) zs
∧ (∀ as. fwd-sub root (dverts t1) as −→ cost (rev zs) ≤ cost (rev as))

using assms proof(induction t1 rule: normalize-full.induct)
case (1 r t e)
let ?Y = dverts (Node r {|(t,e)|})
have dsjt: ∀ xs ∈ ?Y . ∀ ys ∈ ?Y . xs = ys ∨ set xs ∩ set ys = {}

using dverts-same-if-set-wf [OF 1 .prems(2)] by blast
have fwd: ∀ xs ∈ ?Y . forward xs using 1 .prems(4) seq-conform-alt by blast
have nempty: [] /∈ ?Y using empty-notin-wf-dlverts 1 .prems(2) by blast
have fin: finite ?Y by (simp add: finite-dverts)
have U : r ∈ dverts (Node r {|(t, e)|}) by simp

432

have V : Dtree.root t ∈ dverts (Node r {|(t, e)|})
using single-subtree-child-root-dverts self-subtree by fast

have ge: ∀ xs∈dverts (Node r {|(t, e)|}). xs 6= r −→ rank (rev (Dtree.root t)) ≤
rank (rev xs)

using verts-ge-child-if-sorted ′[OF 1 .prems(5 ,6)] by fast
moreover have bfr : before r (Dtree.root t)

using before-if-dom-children-wf-conform[OF 1 .prems(8 ,4 ,2)].
moreover have Ex: ∃ x. fwd-sub root ?Y x using Q-denormalize-full 1 .prems(1−8)

by blast
ultimately obtain zs where zs-def :

fwd-sub root ({r@Dtree.root t} ∪ {x. x ∈ ?Y ∧ x 6= r ∧ x 6= Dtree.root t}) zs
(∀ as. fwd-sub root ?Y as −→ cost (rev zs) ≤ cost (rev as))

using app-UV-set-optimal-cost[OF 1 .prems(1) dsjt fwd nempty fin U V] by
blast

have wf : wf-dlverts (Node (r @ Dtree.root t) (sucs t)) using 1 .prems(2) com-
bine-wf-dlverts by fast

moreover have dst: ∀ v∈dverts (Node (r @ Dtree.root t) (sucs t)). distinct v
using 1 .prems(2 ,3) combine-distinct by fast

moreover have seq: ∀ v∈dverts (Node (r @ Dtree.root t) (sucs t)). seq-conform
v

using 1 .prems(2 ,4 ,8) combine-conform by blast
moreover have rnk:

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) (Node (r @

Dtree.root t) (sucs t))
=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))

using combine-strict-subtree-ranks-le[OF 1 .prems(5)] by simp
moreover have mdeg: max-deg (Node (r @ Dtree.root t) (sucs t)) ≤ 1

using 1 .prems(6) mdeg-child-sucs-le
by (fastforce dest: order-trans simp del: max-deg.simps)

moreover have hd: hd (Dtree.root (Node (r @ Dtree.root t) (sucs t))) = root
using 1 .prems(2 ,7) by simp

moreover have dom: dom-children (Node (r @ Dtree.root t) (sucs t)) T
using 1 .prems(8) dom-children-combine by auto

ultimately obtain xs where xs-def :
fwd-sub root (dverts (normalize-full (Node (r @ Dtree.root t) (sucs t)))) xs
(∀ as. fwd-sub root (dverts (Node (r @ Dtree.root t) (sucs t))) as
−→ cost (rev xs) ≤ cost (rev as))

using 1 .IH 1 .prems(1) by blast
then show ?case using dverts-combine-eq-not-combined[OF 1 .prems(2)] zs-def

by force
next

case (2 xs r)
have Ex: ∃ x. fwd-sub root (dverts (Node r xs)) x

using Q-denormalize-full 2 .prems(1−8) by blast
then show ?case using 2 .hyps(1) forward-UV-lists-argmin-ex by simp

qed

corollary normalize-full-dverts-optimal-if-sorted ′:
assumes max-deg t ≤ 1

and hd (Dtree.root t) = root

433

and dom-children t T
and

∧
r1 t2 e2 . strict-subtree (Node r1 {|(t2 ,e2)|}) t

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
shows ∃ zs. fwd-sub root (dverts (normalize-full t)) zs

∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))
using normalize-full-dverts-optimal-if-sorted asi-rank wf-lverts assms
by (blast intro: verts-distinct verts-conform)

lemma normalize-full-normalize-dverts-optimal:
assumes max-deg t ≤ 1

and hd (Dtree.root t) = root
and dom-children t T

shows ∃ zs. fwd-sub root (dverts (normalize-full (normalize t))) zs
∧ (∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))

proof −
interpret NT : ranked-dtree-with-orig normalize t

using ranked-dtree-orig-normalize by auto
have mdeg: max-deg (normalize t) ≤ 1 using assms(1) normalize-mdeg-eq wf-arcs

by fastforce
moreover from this have dom: dom-children (normalize t) T

using assms(3) dom-mdeg-le1-normalize by fastforce
moreover have hd: hd (Dtree.root (normalize t)) = root

using assms(2) normalize-hd-root-eq ′ wf-lverts by blast
moreover have

∧
r1 t2 e2 . [[is-subtree (Node r1 {|(t2 ,e2)|}) (normalize t)]]

=⇒ rank (rev r1) ≤ rank (rev (Dtree.root t2))
by (simp add: normalize-sorted-ranks)

ultimately obtain xs where xs-def : fwd-sub root (dverts (normalize-full (normalize
t))) xs

(∀ as. fwd-sub root (dverts (normalize t)) as −→ cost (rev xs) ≤ cost (rev as))
using NT .normalize-full-dverts-optimal-if-sorted ′ strict-subtree-def by blast

obtain zs where zs-def : fwd-sub root (dverts (normalize t)) zs
(∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))

using normalize-dverts-optimal Q-denormalize-t assms by blast
then show ?thesis using xs-def by force

qed

lemma single-set-distinct-sublist: [[set ys = set x; distinct ys; sublist x ys]] =⇒ x
= ys

unfolding sublist-def
by (metis DiffD2 append.assoc append.left-neutral append.right-neutral list.set-intros(1)

append-Cons distinct-set-diff neq-Nil-conv distinct-app-trans-l)

lemma denormalize-optimal-if-mdeg-le1 :
assumes max-deg t ≤ 1 and hd (Dtree.root t) = root and dom-children t T
shows ∀ as. fwd-sub root (dverts t) as −→ cost (rev (denormalize t)) ≤ cost (rev

as)
proof −

obtain zs where zs-def : fwd-sub root (dverts (normalize-full (normalize t))) zs
(∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as))

434

using normalize-full-normalize-dverts-optimal assms by blast
have dverts (normalize-full (normalize t)) = {denormalize t}

using normalize-full-normalize-dverts-eq-denormalize wf-lverts assms(1) by
blast

then show ?thesis
using zs-def single-set-distinct-sublist by (auto simp: fwd-sub-def unique-set-r-def)

qed

theorem denormalize-ikkbz-sub-optimal:
assumes hd (Dtree.root t) = root and max-deg t ≤ 1 =⇒ dom-children t T
shows (∀ as. fwd-sub root (dverts t) as

−→ cost (rev (denormalize (ikkbz-sub t))) ≤ cost (rev as))
proof −

obtain zs where zs-def : fwd-sub root (dverts (ikkbz-sub t)) zs
∀ as. fwd-sub root (dverts t) as −→ cost (rev zs) ≤ cost (rev as)

using ikkbz-sub-dverts-optimal ′ assms by blast
interpret T : ranked-dtree-with-orig ikkbz-sub t using ikkbz-sub-ranked-dtree-orig

by simp
have max-deg (ikkbz-sub t) ≤ 1 using ikkbz-sub-mdeg-le1 by auto
have hd (Dtree.root (ikkbz-sub t)) = root using assms(1) ikkbz-sub-hd-root by

auto
moreover have dom-children (ikkbz-sub t) T

using assms(2) dom-mdeg-le1-ikkbz-sub ikkbz-sub-eq-iff-mdeg-le1 by auto
ultimately have ∀ as. fwd-sub root (dverts (ikkbz-sub t)) as

−→ cost (rev (denormalize (ikkbz-sub t))) ≤ cost (rev as)
using T .denormalize-optimal-if-mdeg-le1 [OF ikkbz-sub-mdeg-le1] by blast

then show ?thesis using zs-def order-trans by blast
qed

end

10.5 Arc Invariants hold for Conversion to Dtree
context precedence-graph
begin

interpretation t: ranked-dtree to-list-dtree by (rule to-list-dtree-ranked-dtree)

lemma subtree-to-list-dtree-tree-dom:
[[is-subtree (Node r xs) to-list-dtree; t ∈ fst ‘ fset xs]] =⇒ r →to-list-tree Dtree.root

t
unfolding to-list-dtree-def
using finite-directed-tree.subtree-child-dom to-list-tree-finite-directed-tree by fast-

force

lemma subtree-to-list-dtree-dom:
assumes is-subtree (Node r xs) to-list-dtree and t ∈ fst ‘ fset xs
shows hd r →T hd (Dtree.root t)

proof −

435

interpret T : directed-tree to-list-tree [root] by (rule to-list-tree-directed-tree)
have 0 : r →to-list-tree Dtree.root t using subtree-to-list-dtree-tree-dom assms by

blast
then obtain x where x-def : r = [x] ∧ x ∈ verts T using to-list-tree-single by

force
obtain y where Dtree.root t = [y] using 0 to-list-tree-single T .adj-in-verts(2)

by blast
then show ?thesis using 0 to-list-tree-def x-def (1) in-arcs-imp-in-arcs-ends by

force
qed

lemma to-list-dtree-nempty-root: is-subtree (Node r xs) to-list-dtree =⇒ r 6= []
using list-dtree.list-dtree-sub list-dtree.wf-lverts to-list-dtree-list-dtree by force

lemma dom-children-aux:
assumes is-subtree (Node r xs) to-list-dtree

and max-deg t1 ≤ 1
and (t1 ,e1) ∈ fset xs
and x ∈ dlverts t1

shows ∃ v ∈ set r ∪ path-lverts t1 x. v →T x
proof(cases x ∈ set (Dtree.root t1))

case True
have Dtree.root t1 ∈ dverts to-list-dtree

using assms(1 ,3) dverts-subtree-subset dtree.set-sel(1) by fastforce
then have Dtree.root t1 = [x] using to-list-dtree-single True by fastforce
then have 0 : hd r →T x using subtree-to-list-dtree-dom assms(1 ,3) by fastforce
have r ∈ dverts to-list-dtree using assms(1) dverts-subtree-subset by force
then have r = [hd r] using to-list-dtree-single True by fastforce
then have hd r ∈ set r using hd-in-set[of r] by blast
then show ?thesis using 0 by blast

next
case False
obtain t2 where t2-def : is-subtree t2 t1 x ∈ set (Dtree.root t2)

using assms(4) subtree-root-if-dlverts by fastforce
then obtain r1 xs1 where r1-def : is-subtree (Node r1 xs1) t1 t2 ∈ fst ‘ fset xs1
using subtree-child-if-strict-subtree t2-def False unfolding strict-subtree-def by

blast
have is-subtree (Node r1 xs1) (Node r xs) using r1-def (1) assms(3) by auto
then have sub-r1 : is-subtree (Node r1 xs1) to-list-dtree using assms(1) sub-

tree-trans by blast
have sub-t1-r : is-subtree t1 (Node r xs)

using subtree-if-child[of t1 xs] assms(3) by force
then have is-subtree t2 to-list-dtree using assms(1) subtree-trans t2-def (1) by

blast
then have Dtree.root t2 ∈ dverts to-list-dtree

using assms(1) dverts-subtree-subset dtree.set-sel(1) by fastforce
then have Dtree.root t2 = [x] using to-list-dtree-single t2-def (2) by force
then have 0 : hd r1 →T x using subtree-to-list-dtree-dom[OF sub-r1] r1-def (2)

by fastforce

436

have sub-t1-to: is-subtree t1 to-list-dtree using sub-t1-r assms(1) subtree-trans
by blast

then have wf-dlverts t1 using t.wf-lverts list-dtree-def t.list-dtree-sub by blast
moreover have max-deg t1 ≤ 1 using assms(2) sub-t1-r le-trans mdeg-ge-sub

by blast
ultimately have set r1 ⊆ path-lverts t1 x

using subtree-path-lverts-sub r1-def t2-def (2) by fast
then show ?thesis

using 0 sub-r1 dverts-subtree-subset hd-in-set[of r1] to-list-dtree-single by force
qed

lemma hd-dverts-in-dlverts:
[[is-subtree (Node r xs) to-list-dtree; (t1 ,e1) ∈ fset xs; x ∈ dverts t1]] =⇒ hd x ∈

dlverts t1
using list-dtree.list-dtree-rec list-dtree.wf-lverts hd-in-lverts-if-wf t.list-dtree-sub
by fastforce

lemma dom-children-aux2 :
[[is-subtree (Node r xs) to-list-dtree; max-deg t1 ≤ 1 ; (t1 ,e1) ∈ fset xs; x ∈ dverts

t1]]
=⇒ ∃ v ∈ set r ∪ path-lverts t1 (hd x). v →T (hd x)

using dom-children-aux hd-dverts-in-dlverts by blast

lemma dom-children-full:
[[is-subtree (Node r xs) to-list-dtree; ∀ t ∈ fst ‘ fset xs. max-deg t ≤ 1]]

=⇒ dom-children (Node r xs) T
unfolding dom-children-def using dom-children-aux2 by auto

lemma dom-children ′:
assumes is-subtree (Node r xs) to-list-dtree
shows dom-children (Node r (Abs-fset (children-deg1 xs))) T
unfolding dom-children-def dtree.sel children-deg1-fset-id
using dom-children-aux2 [OF assms(1)] by fastforce

lemma dom-children-maxdeg-1 :
[[is-subtree (Node r xs) to-list-dtree; max-deg (Node r xs) ≤ 1]]

=⇒ dom-children (Node r xs) T
proof (elim dom-children-full)

show max-deg (Node r xs) ≤ 1 =⇒ ∀ t∈fst ‘ fset xs. max-deg t ≤ 1
using mdeg-ge-child by fastforce

qed

lemma dom-child-subtree:
[[is-subtree (Node r xs) to-list-dtree; t ∈ fst ‘ fset xs]] =⇒ ∃ v∈set r . v →T hd

(Dtree.root t)
using subtree-to-list-dtree-dom hd-in-set to-list-dtree-nempty-root by blast

lemma dom-children-maxdeg-1-self :
max-deg to-list-dtree ≤ 1 =⇒ dom-children to-list-dtree T

437

using dom-children-maxdeg-1 [of Dtree.root to-list-dtree sucs to-list-dtree] self-subtree
by auto

lemma seq-conform-list-tree: ∀ v∈verts to-list-tree. seq-conform v
by (simp add: to-list-tree-def seq-conform-single)

lemma conform-list-dtree: ∀ v∈dverts to-list-dtree. seq-conform v
using seq-conform-list-tree dverts-eq-verts-to-list-tree by blast

lemma to-list-dtree-vert-single: [[v ∈ dverts to-list-dtree; x ∈ set v]] =⇒ v = [x] ∧
x ∈ verts T

using to-list-dtree-single by fastforce

lemma to-list-dtree-vert-single-sub:
[[is-subtree (Node r xs) to-list-dtree; x ∈ set r]] =⇒ r = [x] ∧ x ∈ verts T
using to-list-dtree-vert-single dverts-subtree-subset by fastforce

lemma to-list-dtree-child-if-to-list-tree-arc:
[[is-subtree (Node r xs) to-list-dtree; r →to-list-tree v]] =⇒ ∃ ys. (Node v ys) ∈ fst

‘ fset xs
using finite-directed-tree.child-if-dominated-to-dtree ′[OF to-list-tree-finite-directed-tree]
unfolding to-list-dtree-def by simp

lemma to-list-dtree-child-if-arc:
[[is-subtree (Node r xs) to-list-dtree; x ∈ set r ; x →T y]]
=⇒ ∃ ys. Node [y] ys ∈ fst ‘ fset xs

using to-list-dtree-child-if-to-list-tree-arc to-list-tree-dom-iff to-list-dtree-vert-single-sub
by auto

lemma to-list-dtree-dverts-if-arc:
[[is-subtree (Node r xs) to-list-dtree; x ∈ set r ; x →T y]] =⇒ [y] ∈ dverts (Node r

xs)
using to-list-dtree-child-if-arc[of r xs x y] by fastforce

lemma to-list-dtree-dlverts-if-arc:
[[is-subtree (Node r xs) to-list-dtree; x ∈ set r ; x →T y]] =⇒ y ∈ dlverts (Node r

xs)
using to-list-dtree-child-if-arc[of r xs x y] by fastforce

theorem to-list-dtree-ranked-orig: ranked-dtree-with-orig to-list-dtree rank cost cmp
T root

using dom-children ′ to-list-dtree-dlverts-if-arc asi-rank apply(unfold-locales)
by (auto simp: dom-children-maxdeg-1 dom-child-subtree distinct-to-list-dtree con-

form-list-dtree)

interpretation t: ranked-dtree-with-orig to-list-dtree by (rule to-list-dtree-ranked-orig)

lemma forward-ikkbz-sub: forward ikkbz-sub
using ikkbz-sub-def dom-children-maxdeg-1-self t.ikkbz-sub-forward by simp

438

10.6 Optimality of IKKBZ-Sub
lemma ikkbz-sub-optimal-Q:
(∀ as. fwd-sub root (verts to-list-tree) as −→ cost (rev ikkbz-sub) ≤ cost (rev as))
using t.denormalize-ikkbz-sub-optimal to-list-dtree-hd-root-eq-root dom-children-maxdeg-1-self
unfolding dverts-eq-verts-to-list-tree ikkbz-sub-def by blast

lemma to-list-tree-sublist-if-set-eq:
assumes set ys =

⋃
(set ‘ verts to-list-tree) and xs ∈ verts to-list-tree

shows sublist xs ys
proof −

obtain x where x-def : xs = [x] x ∈ verts T using to-list-tree-single assms(2)
by blast

then have x ∈ set ys using assms(1) to-list-tree-def by simp
then show ?thesis using x-def (1) split-list[of x ys] sublist-Cons sublist-append-leftI

by fast
qed

lemma hd-eq-tk1-if-set-eq-verts: set xs = verts T =⇒ hd xs = root ←→ take 1 xs
= [root]

using hd-eq-take1 take1-eq-hd[of xs] non-empty by fastforce

lemma ikkbz-sub-optimal:
[[set xs = verts T ; distinct xs; forward xs; hd xs = root]]
=⇒ cost (rev ikkbz-sub) ≤ cost (rev xs)

using ikkbz-sub-optimal-Q to-list-tree-sublist-if-set-eq
by (simp add: hd-eq-tk1-if-set-eq-verts to-list-tree-union-verts-eq fwd-sub-def unique-set-r-def)

end

10.7 Optimality of IKKBZ
context ikkbz-query-graph
begin

Optimality only with respect to valid solutions (i.e. contain every relation
exactly once). Furthermore, only join trees without cross products are con-
sidered.
lemma ikkbz-sub-optimal-cost-r :
[[set xs = verts G; distinct xs; no-cross-products (create-ldeep xs); hd xs = r ; r ∈

verts G]]
=⇒ cost-r r (rev (ikkbz-sub r)) ≤ cost-r r (rev xs)

using precedence-graph.ikkbz-sub-optimal verts-dir-tree-r-eq
by (fast intro: forward-if-ldeep-no-cross precedence-graph-r)

lemma ikkbz-sub-no-cross: r ∈ verts G =⇒ no-cross-products (create-ldeep (ikkbz-sub
r))

using precedence-graph.forward-ikkbz-sub ikkbz-sub-verts-eq
by (fastforce intro: no-cross-ldeep-if-forward ′ precedence-graph-r)

439

lemma ikkbz-sub-cost-r-eq-cost:
r ∈ verts G =⇒ cost-r r (rev (ikkbz-sub r)) = cost-l (ikkbz-sub r)
using ikkbz-sub-verts-eq ikkbz-sub-distinct ikkbz-sub-no-cross ikkbz-sub-hd-eq-root
by (fastforce dest: cost-correct ′)

corollary ikkbz-sub-optimal:
[[set xs = verts G; distinct xs; no-cross-products (create-ldeep xs); hd xs = r ; r ∈

verts G]]
=⇒ cost-l (ikkbz-sub r) ≤ cost-l xs

using ikkbz-sub-optimal-cost-r cost-correct ′ ikkbz-sub-cost-r-eq-cost by fastforce

lemma ikkbz-no-cross: no-cross-products (create-ldeep ikkbz)
using ikkbz-eq-ikkbz-sub ikkbz-sub-no-cross by force

lemma hd-in-verts-if-set-eq: set xs = verts G =⇒ hd xs ∈ verts G
using verts-nempty set-empty2 [of xs] by force

lemma ikkbz-optimal:
[[set xs = verts G; distinct xs; no-cross-products (create-ldeep xs)]]
=⇒ cost-l ikkbz ≤ cost-l xs

using ikkbz-min-ikkbz-sub ikkbz-sub-optimal by (fastforce intro: hd-in-verts-if-set-eq)

theorem ikkbz-optimal-tree:
[[valid-tree t; no-cross-products t; left-deep t]] =⇒ cost (create-ldeep ikkbz) ≤ cost

t
using ikkbz-optimal inorder-eq-set by (fastforce simp: distinct-relations-def valid-tree-def)

end

end

theory IKKBZ-Examples
imports IKKBZ-Optimality

begin

11 Examples of Applying IKKBZ
11.1 Computing Contributing Selectivity without Lists
context directed-tree
begin

definition contr-sel :: ′a selectivity ⇒ ′a ⇒ real where
contr-sel sel y = (if ∃ x. x →T y then sel (THE x. x →T y) y else 1)

definition tree-sel :: ′a selectivity ⇒ bool where
tree-sel sel = (∀ x y. ¬(x →T y ∨ y →T x) −→ sel x y = 1)

440

lemma contr-sel-gt0 : sel-reasonable sf =⇒ contr-sel sf x > 0
unfolding contr-sel-def sel-reasonable-def by simp

lemma contr-sel-le1 : sel-reasonable sf =⇒ contr-sel sf x ≤ 1
unfolding contr-sel-def sel-reasonable-def by simp

lemma nempty-if-not-fwd-conc: ¬forward-arcs (y#xs) =⇒ xs 6= []
by auto

lemma len-gt1-if-not-fwd-conc: ¬forward-arcs (y#xs) =⇒ length (y#xs) > 1
by auto

lemma two-elems-if-not-fwd-conc: ¬forward-arcs (y#xs) =⇒ ∃ a b cs. a # b # cs
= y#xs

by (metis forward-arcs.cases forward-arcs.simps(2))

lemma hd-reach-all-if-nfwd-app-fwd:
[[¬forward-arcs (y#xs); forward-arcs (y#ys@xs); x ∈ set (y#ys@xs)]]
=⇒ hd (rev (y#ys@xs)) →∗

T x
using hd-reach-all-forward ′[of rev (y#ys@xs)] len-gt1-if-not-fwd-conc forward-arcs-alt

by auto

lemma hd-not-y-if-if-nfwd-app-fwd:
assumes ¬forward-arcs (y#xs) and forward-arcs (y#ys@xs)
shows hd (rev (y#ys@xs)) 6= y

proof −
obtain a where a-def : a ∈ set (ys@xs) a →T y

by (metis assms Nil-is-append-conv forward-arcs.simps(3) neq-Nil-conv)
then have hd (rev (y#ys@xs)) →∗

T a using hd-reach-all-if-nfwd-app-fwd[OF
assms] by simp

then show ?thesis
using a-def (2) reachable1-not-reverse
by (metis loopfree.adj-not-same reachable-adjI reachable-neq-reachable1)

qed

lemma hd-reach1-y-if-nfwd-app-fwd:
[[¬forward-arcs (y#xs); forward-arcs (y#ys@xs)]] =⇒ hd (rev (y#ys@xs)) →+

T
y

using hd-not-y-if-if-nfwd-app-fwd hd-reach-all-if-nfwd-app-fwd by auto

lemma not-fwd-if-skip1 :
[[¬ forward-arcs (y#x#x ′#xs); forward-arcs (x#x ′#xs)]] =⇒ ¬ forward-arcs

(y#x ′#xs)
by auto

lemma fwd-arcs-conc-nlast-elem:
assumes forward-arcs xs and y ∈ set xs and y 6= last xs
shows forward-arcs (y#xs)

proof −

441

obtain as bs where as-def : as @ y # bs = xs bs 6= []
using split-list-not-last[OF assms(2 ,3)] by blast

then have forward-arcs (y#bs) using assms(1) forward-arcs-split by blast
then obtain x where x-def : x ∈ set bs x →T y

using as-def (2) by (force intro: list.exhaust)
then have x ∈ set xs using as-def (1) by auto
then show ?thesis using assms(1) x-def (2) forward-arcs.elims(3) by blast

qed

lemma fwd-app-nhead-elem: [[forward xs; y ∈ set xs; y 6= hd xs]] =⇒ forward
(xs@[y])

using fwd-arcs-conc-nlast-elem forward-arcs-alt by (simp add: last-rev)

lemma hd-last-not-fwd-arcs: ¬forward-arcs (x#xs@[x])
proof

assume asm: forward-arcs (x#xs@[x])
then obtain y where y-def : y ∈ set (xs@[x]) y →T x

by (metis append-is-Nil-conv forward-arcs.simps(3) no-back-arcs.cases)
then have hd-in-verts: hd (rev (xs @ [x])) ∈ verts T by auto
have forward-arcs (xs@[x]) using asm forward-arcs-split[of [x] xs@[x]] by simp
then have x →∗

T y using hd-reach-all-forward[OF hd-in-verts] y-def forward-arcs-alt
by simp

then show False using y-def (2) reachable1-not-reverse by auto
qed

lemma hd-not-fwd-arcs: ¬forward-arcs (ys@x#xs@[x])
using hd-last-not-fwd-arcs forward-arcs-split by blast

lemma hd-last-not-fwd: ¬forward (x#xs@[x])
using hd-last-not-fwd-arcs forward-arcs-alt by simp

lemma hd-not-fwd: ¬forward (x#xs@[x]@ys)
using hd-not-fwd-arcs forward-arcs-alt by simp

lemma y-not-dom-if-nfwd-app-fwd:
[[¬forward-arcs (y#xs); forward-arcs (y#ys@xs); x ∈ set xs]] =⇒ ¬ x →T y
using forward-arcs-split[of y#ys xs] two-elems-if-not-fwd-conc by force

lemma not-y-dom-if-nfwd-app-fwd:
[[¬forward-arcs (y#xs); forward-arcs (y#ys@xs); x ∈ set xs]] =⇒ ¬ y →T x
by (smt (verit, ccfv-threshold) append-is-Nil-conv forward-arcs-alt ′ forward-arcs-split

forward-cons fwd-app-nhead-elem hd-append hd-reach1-y-if-nfwd-app-fwd
hd-reachable1-from-outside ′ list.distinct(1) reachable1-not-reverse reachable-adjI

reachable-neq-reachable1 rev.simps(2) rev-append set-rev split-list)

lemma list-sel-aux ′1-if-tree-sel-nfwd:
[[tree-sel sel; ¬forward-arcs (y#xs); forward-arcs (y#ys@xs)]]
=⇒ list-sel-aux ′ sel xs y = 1

proof(induction xs arbitrary: ys rule: forward-arcs.induct)

442

case (2 x)
then show ?case using not-y-dom-if-nfwd-app-fwd[OF 2 (2 ,3)] by (auto simp:

tree-sel-def)
next

case (3 x x ′ xs)
then have forward-arcs (x # x ′ # xs)

using forward-arcs-split[of y#ys x#x ′#xs] by simp
then have ¬ forward-arcs (y # x ′ # xs) using not-fwd-if-skip1 3 .prems(2) by

blast
moreover have forward-arcs (y # (ys@[x]) @ x ′ # xs) using 3 by simp
ultimately have list-sel-aux ′ sel (x ′ # xs) y = 1 using 3 .IH [OF 3 .prems(1)]

by blast
then show ?case

using 3 .prems(1) y-not-dom-if-nfwd-app-fwd[OF 3 .prems(2 ,3)]
not-y-dom-if-nfwd-app-fwd[OF 3 .prems(2 ,3)]

by (simp add: tree-sel-def)
qed(simp)

lemma contr-sel-eq-list-sel-aux ′-if-tree-sel:
[[tree-sel sel; distinct (y#xs); forward-arcs (y#xs); xs 6= []]]
=⇒ contr-sel sel y = list-sel-aux ′ sel xs y

proof(induction xs rule: forward-arcs.induct)
case (2 x)
then have x →T y by simp
then have (THE x. x →T y) = x using two-in-arcs-contr by blast
then show ?case using ‹x →T y› unfolding contr-sel-def by auto

next
case (3 x x ′ xs)
then show ?case
proof(cases x →T y)

case True
then have (THE x . x →T y) = x using two-in-arcs-contr by blast

then have contr-sel: contr-sel sel y = sel x y using True unfolding contr-sel-def
by auto

have ¬forward-arcs (y#x ′#xs) using True 3 .prems(2) two-in-arcs-contr by
auto

then have list-sel-aux ′ sel (x ′#xs) y = 1
using list-sel-aux ′1-if-tree-sel-nfwd[of sel y x ′#xs [x]] 3 .prems(1 ,3) by auto

then show ?thesis using contr-sel by simp
next

case False
have ¬y →T x

using 3 .prems(2 ,3) forward-arcs-alt ′ no-back-arc-if-fwd-dstct
by (metis distinct-rev list.set-intros(1) rev.simps(2) set-rev)

then have sel x y = 1 using 3 .prems(1) False unfolding tree-sel-def by blast
then show ?thesis using 3 False by simp

qed
qed(simp)

443

corollary contr-sel-eq-list-sel-aux ′-if-tree-sel ′:
[[tree-sel sel; distinct (xs@[y]); forward (xs@[y]); xs 6= []]]
=⇒ contr-sel sel y = list-sel-aux ′ sel (rev xs) y

by (simp add: contr-sel-eq-list-sel-aux ′-if-tree-sel forward-arcs-alt)

corollary contr-sel-eq-list-sel-aux ′-if-tree-sel ′′:
[[tree-sel sel; distinct (xs@[y]); forward (xs@[y]); xs 6= []]]
=⇒ contr-sel sel y = list-sel-aux ′ sel xs y

by (simp add: contr-sel-eq-list-sel-aux ′-if-tree-sel ′ mset-x-eq-list-sel-aux ′-eq[of rev
xs])

lemma contr-sel-root[simp]: contr-sel sel root = 1
by (auto simp: contr-sel-def dest: dominated-not-root)

lemma contr-sel-notvert[simp]: v /∈ verts T =⇒ contr-sel sel v = 1
by (auto simp: contr-sel-def)

lemma hd-reach-all-forward-verts:
[[forward xs; set xs = verts T ; v ∈ verts T]] =⇒ hd xs →∗

T v
using hd-reach-all-forward list.set-sel(1)[of xs] by force

lemma hd-eq-root-if-forward-verts: [[forward xs; set xs = verts T]] =⇒ hd xs = root
using hd-reach-all-forward-verts root-if-all-reach by simp

lemma contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts:
assumes tree-sel sel and distinct xs and forward xs and set xs = verts T
shows contr-sel sel y = ldeep-s sel (rev xs) y

proof −
have hd-root: hd xs = root using hd-eq-root-if-forward-verts assms(3 ,4) by blast
consider y ∈ set xs y = root | y ∈ set xs y 6= root | y /∈ set xs by blast
then show ?thesis
proof(cases)

case 1
then show ?thesis using hd-root ldeep-s-revhd1-if-distinct assms(2) by auto

next
case 2
then obtain as bs where as-def : as @ y # bs = xs using split-list[of y] by

fastforce
then have forward (as@[y]) using assms(3) forward-split[of as@[y]] by auto
moreover have distinct (as@[y]) using assms(2) as-def by auto
moreover have as 6= [] using 2 hd-root as-def by fastforce
ultimately have contr-sel sel y = list-sel-aux ′ sel (rev as) y

using contr-sel-eq-list-sel-aux ′-if-tree-sel ′[OF assms(1)] by blast
then show ?thesis using as-def distinct-ldeep-s-eq-aux ′[of rev xs] assms(2) by

auto
next

case 3
then have contr-sel sel y = 1 using assms(4) by simp
then show ?thesis using 3 ldeep-s-1-if-nelem set-rev by fastforce

444

qed
qed

corollary contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts ′:
[[tree-sel sel; distinct xs; forward xs; set xs = verts T]]
=⇒ contr-sel sel = ldeep-s sel (rev xs)

using contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts by blast

lemma add-leaf-forward-arcs-preserv:
[[a /∈ arcs T ; u ∈ verts T ; v /∈ verts T ; forward-arcs xs]]
=⇒ directed-tree.forward-arcs (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|) xs
proof(induction xs rule: forward-arcs.induct)

case 1
then show ?case using directed-tree.forward-arcs.simps(1) add-leaf-dir-tree by

fast
next

case (2 x)
then show ?case using directed-tree.forward-arcs.simps(2) add-leaf-dir-tree by

fast
next

case (3 x y xs)
let ?T = (|verts = verts T ∪ {v}, arcs = arcs T ∪ {a},

tail = (tail T)(a := u), head = (head T)(a := v)|)
interpret T : directed-tree ?T root using add-leaf-dir-tree[OF 3 .prems(1−3)] by

blast
have T .forward-arcs (y # xs) using 3 by fastforce
then show ?case
using T .forward-arcs.simps(3)[of x y xs] add-leaf-dom-preserv 3 .prems(1 ,4) by

fastforce
qed

end

11.2 Contributing Selectivity Satisfies ASI Property
context finite-directed-tree
begin

lemma dst-fwd-arcs-all-verts-ex: ∃ xs. forward-arcs xs ∧ distinct xs ∧ set xs = verts
T
using finite-verts proof(induction rule: finite-directed-tree-induct)

case (single-vert t h root)
then show ?case using directed-tree.forward-arcs.simps(2)[OF dir-tree-single]

by fastforce
next

case (add-leaf T ′ V A t h u root a v)
define T where T ≡ (|verts = V ∪ {v}, arcs = A ∪ {a}, tail = t(a := u), head

= h(a := v)|)

445

interpret T ′: directed-tree T ′ root using add-leaf .hyps(3) by blast
interpret T : directed-tree T root using add-leaf .hyps(1 ,4−6) T ′.add-leaf-dir-tree

T-def by simp
obtain xs where xs-def : T ′.forward-arcs xs distinct xs set xs = verts T ′

using add-leaf .IH by blast
then have T .forward-arcs xs

using T ′.add-leaf-forward-arcs-preserv add-leaf .hyps(1 ,4 ,5 ,6) T-def by simp
moreover have ∃ y∈set xs. y →T v
using add-leaf .hyps(1 ,4) T-def xs-def (3) unfolding arcs-ends-def arc-to-ends-def

by force
ultimately have T .forward-arcs (v#xs) using T .forward-arcs.elims(3) by blast
then show ?case using xs-def (2 ,3) add-leaf .hyps(1 ,5) T-def by auto

qed

lemma dst-fwd-all-verts-ex: ∃ xs. forward xs ∧ distinct xs ∧ set xs = verts T
using dst-fwd-arcs-all-verts-ex forward-arcs-alt ′[symmetric] by auto

lemma c-list-asi-if-tree-sel:
fixes sf cf h r
defines rank ≡ (λl. (ldeep-T (contr-sel sf) cf l − 1) / c-list (contr-sel sf) cf h

r l)
assumes tree-sel sf

and sel-reasonable sf
and ∀ x. cf x > 0
and ∀ x. h x > 0

shows asi rank r (c-list (contr-sel sf) cf h r)
using c-list-asi assms contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts ′ dst-fwd-all-verts-ex
by fastforce

end

context tree-query-graph
begin

abbreviation sel-r :: ′a ⇒ ′a ⇒ real where
sel-r r ≡ directed-tree.contr-sel (dir-tree-r r) match-sel

Since cf is only required to be positive for verts of G, we map all others to
1.
definition cf ′ :: ′a ⇒ real where

cf ′ x = (if x ∈ verts G then cf x else 1)

definition c-list-r :: (′a ⇒ real) ⇒ ′a ⇒ ′a list ⇒ real where
c-list-r h r = c-list (sel-r r) cf ′ h r

definition rank-r :: (′a ⇒ real) ⇒ ′a ⇒ ′a list ⇒ real where
rank-r h r xs = (ldeep-T (sel-r r) cf ′ xs − 1) / c-list-r h r xs

lemma dom-in-dir-tree-r :

446

assumes r ∈ verts G and x →G y
shows x →dir-tree-r r y ∨ y →dir-tree-r r x

proof −
obtain e1 where e1-def : e1 ∈ arcs G tail G e1 = x head G e1 = y

using assms(2) unfolding arcs-ends-def arc-to-ends-def by blast
then show ?thesis
proof(cases e1 ∈ arcs (dir-tree-r r))

case True
moreover have tail (dir-tree-r r) e1 = x

using e1-def (2) tail-dir-tree-r-eq[OF assms(1)] by blast
moreover have head (dir-tree-r r) e1 = y

using e1-def (3) head-dir-tree-r-eq[OF assms(1)] by blast
ultimately show ?thesis using e1-def (1) unfolding arcs-ends-def arc-to-ends-def

by blast
next

case False
then obtain e2 where e2-def : e2 ∈ arcs (dir-tree-r r) tail G e2 = y head G

e2 = x
using arcs-compl-un-eq-arcs[OF assms(1)] e1-def by force

have tail (dir-tree-r r) e2 = y
using e2-def (2) tail-dir-tree-r-eq[OF assms(1)] by blast

moreover have head (dir-tree-r r) e2 = x
using e2-def (3) head-dir-tree-r-eq[OF assms(1)] by blast

ultimately show ?thesis using e2-def (1) unfolding arcs-ends-def arc-to-ends-def
by blast

qed
qed

lemma dom-in-dir-tree-r-iff-aux:
r ∈ verts G =⇒ (x →dir-tree-r r y ∨ y →dir-tree-r r x) ←→ (x →G y ∨ y →G x)
using dir-tree-r-dom-in-G dom-in-dir-tree-r by blast

lemma dom-in-dir-tree-r-iff :
r ∈ verts G =⇒ (x →dir-tree-r r y ∨ y →dir-tree-r r x) ←→ x →G y
using dom-in-dir-tree-r-iff-aux dominates-sym by blast

lemma dir-tree-sel[intro]: r ∈ verts G =⇒ directed-tree.tree-sel (dir-tree-r r) match-sel
unfolding directed-tree.tree-sel-def [OF directed-tree-r]
using match-sel1-if-no-arc dom-in-dir-tree-r-iff by blast

lemma pos-cards ′[intro!]: ∀ x. cf ′ x > 0
unfolding cf ′-def using pos-cards by simp

theorem c-list-asi: [[r ∈ verts G; ∀ x. h x > 0]] =⇒ asi (rank-r h r) r (c-list-r h
r)

using finite-directed-tree.c-list-asi-if-tree-sel[OF fin-directed-tree-r]
unfolding c-list-r-def rank-r-def by blast

447

11.3 Applying IKKBZ
lemma cf ′-simp: x ∈ verts G =⇒ cf ′ x = cf x

unfolding cf ′-def by simp

lemma ldeep-T-cf ′-eq: set xs ⊆ verts G =⇒ ldeep-T sf cf ′ xs = ldeep-T sf cf xs
using ldeep-T-eq-if-cf-eq[of xs] cf ′-simp by blast

lemma clist-cf ′-eq: set xs ⊆ verts G =⇒ c-list sf cf ′ h r xs = c-list sf cf h r xs
by (simp add: clist-eq-if-cf-eq ldeep-T-cf ′-eq)

lemma card-cf ′-eq: matching-rels t =⇒ card cf ′ f t = card cf f t
by (induction cf ′ f t rule: card.induct) (auto simp: matching-rels-def cf ′-simp)

lemma c-IKKBZ-cf ′-eq: matching-rels t =⇒ c-IKKBZ h cf ′ sf t = c-IKKBZ h cf
sf t

by (induction h cf ′ sf t rule: c-IKKBZ .induct) (auto simp: card-cf ′-eq cf ′-simp
matching-rels-def)

lemma c-IKKBZ-cf ′-eq ′: valid-tree t =⇒ c-IKKBZ h cf ′ sf t = c-IKKBZ h cf sf t
by (simp add: c-IKKBZ-cf ′-eq matching-rels-def valid-tree-def)

lemma c-out-cf ′-eq: matching-rels t =⇒ c-out cf ′ sf t = c-out cf sf t
by (induction cf ′ sf t rule: c-out.induct) (auto simp: card-cf ′-eq cf ′-simp match-

ing-rels-def)

lemma c-out-cf ′-eq ′: valid-tree t =⇒ c-out cf ′ sf t = c-out cf sf t
by (simp add: c-out-cf ′-eq matching-rels-def valid-tree-def)

lemma joinTree-card ′-pos[intro]: pos-rel-cards cf ′ t
by (induction t) (auto simp: pos-cards ′ pos-rel-cards-def)

lemma match-reasonable-cards ′[intro]: reasonable-cards cf ′ match-sel t
using pos-sel-reason-impl-reason by blast

lemma sel-r-gt0 : r ∈ verts G =⇒ sel-r r x > 0
using directed-tree.contr-sel-gt0 [OF directed-tree-r] by blast

lemma sel-r-le1 : r ∈ verts G =⇒ sel-r r x ≤ 1
using directed-tree.contr-sel-le1 [OF directed-tree-r] by blast

lemma sel-r-eq-ldeep-s-if-dst-fwd-verts:
[[r ∈ verts G; distinct xs; directed-tree.forward (dir-tree-r r) xs; set xs = verts G]]
=⇒ sel-r r = ldeep-s match-sel (rev xs)

using directed-tree.contr-sel-eq-ldeep-s-if-tree-dst-fwd-verts ′[OF directed-tree-r]
verts-dir-tree-r-eq

by blast

lemma sel-r-eq-ldeep-s-if-valid-fwd:
[[r ∈ verts G; valid-tree t; directed-tree.forward (dir-tree-r r) (inorder t)]]

448

=⇒ sel-r r = ldeep-s match-sel (revorder t)
unfolding valid-tree-def distinct-relations-def inorder-eq-set[symmetric] revorder-eq-rev-inorder
using sel-r-eq-ldeep-s-if-dst-fwd-verts by blast

lemma sel-r-eq-ldeep-s-if-valid-no-cross:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ sel-r (first-node t) = ldeep-s match-sel (revorder t)

using sel-r-eq-ldeep-s-if-valid-fwd forward-if-ldeep-no-cross ′

valid-tree-def first-node-in-verts-if-valid
by blast

lemma c-list-ldeep-s-eq-c-list-r-if-valid-no-cross:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ c-list (ldeep-s match-sel (revorder t)) cf ′ h (first-node t) xs
= c-list-r h (first-node t) xs

using sel-r-eq-ldeep-s-if-valid-no-cross c-list-r-def by simp

lemma c-IKKBZ-list-correct-if-simple-h:
assumes valid-tree t and no-cross-products t and left-deep t
shows c-list-r (λx. h x (cf ′ x)) (first-node t) (revorder t) = c-IKKBZ h cf

match-sel t
proof −

have (λt. c-IKKBZ h cf ′ match-sel t) t
= c-list (ldeep-s match-sel (revorder t)) cf ′ (λx. h x (cf ′ x)) (first-node t)

(revorder t)
using c-IKKBZ-eq-c-list assms(1 ,3) valid-tree-def by fast

then show ?thesis
using c-list-ldeep-s-eq-c-list-r-if-valid-no-cross assms by (simp add: c-IKKBZ-cf ′-eq ′)

qed

end

11.3.1 Applying IKKBZ on Simple Cost Functions

For simple cost functions like c-nlj and c-hj that do not depend on the con-
tributing selectivies as c-out does, the h function does not change. Therefore,
we can apply it directly using c-IKKBZ and c-list.
context cmp-tree-query-graph
begin

context
fixes h :: ′a ⇒ real ⇒ real
assumes h-pos: ∀ x. h x (cf ′ x) > 0

begin

theorem ikkbz-query-graph-if-simple-h:
defines cost ≡ c-IKKBZ h cf match-sel
defines h ′ ≡ (λx. h x (cf ′ x))
shows ikkbz-query-graph bfs sel cf G cmp cost (c-list-r h ′) (rank-r h ′)

449

unfolding ikkbz-query-graph-def ikkbz-query-graph-axioms-def assms
by (auto simp: cmp-tree-query-graph-axioms c-list-asi c-IKKBZ-list-correct-if-simple-h

h-pos)

interpretation ikkbz-query-graph bfs sel cf G cmp
c-IKKBZ h cf match-sel c-list-r (λx. h x (cf ′ x)) rank-r (λx. h x (cf ′ x))

by (fact ikkbz-query-graph-if-simple-h)

corollary ikkbz-simple-h-nempty: ikkbz 6= []
by (rule ikkbz-nempty)

corollary ikkbz-simple-h-valid-tree: valid-tree (create-ldeep ikkbz)
by (rule ikkbz-valid-tree)

corollary ikkbz-simple-h-no-cross:
no-cross-products (create-ldeep ikkbz)
by (rule ikkbz-no-cross)

theorem ikkbz-simple-h-optimal:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ c-IKKBZ h cf match-sel (create-ldeep ikkbz) ≤ c-IKKBZ h cf match-sel t

by (rule ikkbz-optimal-tree)

abbreviation ikkbz-simple-h :: ′a list where
ikkbz-simple-h ≡ ikkbz

end

We can now apply these results directly to valid cost functions like c-nlj and
c-hj.
lemma id-cf ′-gt0 : ∀ x. id (cf ′ x) > 0

by auto

corollary ikkbz-nempty-nlj: ikkbz-simple-h (λ-. id) 6= []
using ikkbz-simple-h-nempty[of λ-. id, OF id-cf ′-gt0] by blast

corollary ikkbz-valid-tree-nlj: valid-tree (create-ldeep (ikkbz-simple-h (λ-. id)))
using ikkbz-simple-h-valid-tree[of λ-. id, OF id-cf ′-gt0] by blast

corollary ikkbz-no-cross-nlj: no-cross-products (create-ldeep (ikkbz-simple-h (λ-.
id)))

using ikkbz-simple-h-no-cross[of λ-. id, OF id-cf ′-gt0] by blast

corollary ikkbz-optimal-nlj:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ c-nlj cf match-sel (create-ldeep (ikkbz-simple-h (λ-. id))) ≤ c-nlj cf match-sel

t
using ikkbz-simple-h-optimal[of λ-. id, OF id-cf ′-gt0] ikkbz-nempty-nlj
by (fastforce simp: c-nlj-IKKBZ create-ldeep-ldeep)

450

corollary ikkbz-nempty-hj: ikkbz-simple-h (λ- -. 1 .2) 6= []
using ikkbz-simple-h-nempty by force

corollary ikkbz-valid-tree-hj: valid-tree (create-ldeep (ikkbz-simple-h (λ- -. 1 .2)))
using ikkbz-simple-h-valid-tree by force

corollary ikkbz-no-cross-hj: no-cross-products (create-ldeep (ikkbz-simple-h (λ- -.
1 .2)))

using ikkbz-simple-h-no-cross by force

corollary ikkbz-optimal-hj:
[[valid-tree t; no-cross-products t; left-deep t]]

=⇒ c-hj cf match-sel (create-ldeep (ikkbz-simple-h (λ- -. 1 .2))) ≤ c-hj cf
match-sel t

using ikkbz-simple-h-optimal[of λ- -. 1 .2] ikkbz-nempty-hj
by (fastforce simp: c-hj-IKKBZ create-ldeep-ldeep)

end

11.3.2 Applying IKKBZ on C_out

Since c-out uses the contributing selectivity as part of its h, we can not use
the general approach we used for the "simple" cost functions. Instead, we
show the applicability directly.
context tree-query-graph
begin

definition c-out-list-r :: ′a ⇒ ′a list ⇒ real where
c-out-list-r r = c-list-r (λa. sel-r r a ∗ cf ′ a) r

definition c-out-rank-r :: ′a ⇒ ′a list ⇒ real where
c-out-rank-r r = rank-r (λa. sel-r r a ∗ cf ′ a) r

lemma c-out-eq-c-list-cf ′:
fixes t
defines xs ≡ revorder t
defines h ≡ (λa. ldeep-s match-sel xs a ∗ cf ′ a)
assumes distinct-relations t and left-deep t
shows c-list (ldeep-s match-sel xs) cf ′ h (first-node t) xs = c-out cf ′ match-sel t
using c-out-eq-c-list assms by blast

lemma c-out-list-correct-cf ′:
fixes t
defines h ≡ (λa. sel-r (first-node t) a ∗ cf ′ a)
assumes valid-tree t and no-cross-products t and left-deep t
shows c-list-r h (first-node t) (revorder t) = c-out cf ′ match-sel t
using c-out-eq-c-list-cf ′ assms sel-r-eq-ldeep-s-if-valid-no-cross
by (fastforce simp: valid-tree-def c-list-ldeep-s-eq-c-list-r-if-valid-no-cross)

451

lemma c-out-list-correct-cf :
fixes t
defines h ≡ (λa. sel-r (first-node t) a ∗ cf ′ a)
assumes valid-tree t and no-cross-products t and left-deep t
shows c-list-r h (first-node t) (revorder t) = c-out cf match-sel t
using c-out-list-correct-cf ′ c-out-cf ′-eq ′ assms by simp

lemma c-out-list-correct:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ c-out-list-r (first-node t) (revorder t) = c-out cf match-sel t

using c-out-list-correct-cf c-out-list-r-def by simp

lemma c-out-h-gt0 : r ∈ verts G =⇒ (λa. sel-r r a ∗ cf ′ a) x > 0
using sel-r-gt0 by (simp add: pos-cards ′)

lemma c-out-r-asi: r ∈ verts G =⇒ asi (c-out-rank-r r) r (c-out-list-r r)
using c-out-h-gt0 by (simp add: c-list-asi c-out-list-r-def c-out-rank-r-def)

end

context cmp-tree-query-graph
begin

theorem ikkbz-query-graph-c-out:
ikkbz-query-graph bfs sel cf G cmp (c-out cf match-sel) c-out-list-r c-out-rank-r
unfolding ikkbz-query-graph-def ikkbz-query-graph-axioms-def
by (auto simp: cmp-tree-query-graph-axioms c-out-r-asi c-out-list-correct)

interpretation QGout:
ikkbz-query-graph bfs sel cf G cmp c-out cf match-sel c-out-list-r c-out-rank-r
by (rule ikkbz-query-graph-c-out)

corollary ikkbz-nempty-cout: QGout.ikkbz 6= []
using QGout.ikkbz-nempty .

corollary ikkbz-valid-tree-cout: valid-tree (create-ldeep QGout.ikkbz)
using QGout.ikkbz-valid-tree .

corollary ikkbz-no-cross-cout: no-cross-products (create-ldeep QGout.ikkbz)
using QGout.ikkbz-no-cross .

corollary ikkbz-optimal-cout:
[[valid-tree t; no-cross-products t; left-deep t]]
=⇒ c-out cf match-sel (create-ldeep QGout.ikkbz) ≤ c-out cf match-sel t

using QGout.ikkbz-optimal-tree .

end

452

11.4 Instantiating Comparators with Linorders
locale alin-tree-query-graph = tree-query-graph bfs sel cf G

for bfs sel and cf :: ′a :: linorder ⇒ real and G
begin

lift-definition cmp :: (′a list× ′b) comparator is
(λx y. if hd (fst x) < hd (fst y) then Less

else if hd (fst x) > hd (fst y) then Greater else Equiv)
by(unfold-locales) (auto split: if-splits)

lemma cmp-hd-eq-if-equiv: compare cmp (v1 ,e1) (v2 ,e2) = Equiv =⇒ hd v1 = hd
v2

by(auto simp: cmp.rep-eq split: if-splits)

lemma cmp-sets-not-dsjnt-if-equiv:
[[v1 6= []; v2 6= []; compare cmp (v1 ,e1) (v2 ,e2) = Equiv]] =⇒ set v1 ∩ set v2 6=
{}

using cmp-hd-eq-if-equiv disjoint-iff-not-equal hd-in-set[of v1] by auto

lemma cmp-tree-qg: cmp-tree-query-graph bfs sel cf G cmp
by standard (simp add: cmp-sets-not-dsjnt-if-equiv)

interpretation cmp-tree-query-graph bfs sel cf G cmp
by (rule cmp-tree-qg)

thm ikkbz-optimal-hj ikkbz-optimal-cout

end

locale blin-tree-query-graph = tree-query-graph bfs sel cf G
for bfs and sel :: ′b :: linorder ⇒ real and cf G

begin

lift-definition cmp :: (′a list× ′b) comparator is
(λx y. if snd x < snd y then Less

else if snd x > snd y then Greater else Equiv)
by(unfold-locales) (auto split: if-splits)

lemma cmp-arcs-eq-if-equiv: compare cmp (v1 ,e1) (v2 ,e2) = Equiv =⇒ e1 = e2
by(auto simp: cmp.rep-eq split: if-splits)

lemma cmp-tree-qg: cmp-tree-query-graph bfs sel cf G cmp
by standard (simp add: cmp-arcs-eq-if-equiv)

interpretation cmp-tree-query-graph bfs sel cf G cmp
by (rule cmp-tree-qg)

453

thm ikkbz-optimal-hj ikkbz-optimal-cout

end

end

References

[1] C. Ballarin. Tutorial to locales and locale interpretation.

[2] S. Chaudhuri. An overview of query optimization in relational systems.
In A. O. Mendelzon and J. Paredaens, editors, Proceedings of the Sev-
enteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages
34–43. ACM Press, 1998.

[3] W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors.
VLDB’86 Twelfth International Conference on Very Large Data Bases,
August 25-28, 1986, Kyoto, Japan, Proceedings. Morgan Kaufmann,
1986.

[4] L. Fegaras. A new heuristic for optimizing large queries. In G. Quirch-
mayr, E. Schweighofer, and T. J. M. Bench-Capon, editors, Database
and Expert Systems Applications, 9th International Conference, DEXA
’98, Vienna, Austria, August 24-28, 1998, Proceedings, volume 1460 of
Lecture Notes in Computer Science, pages 726–735. Springer, 1998.

[5] T. Ibaraki and T. Kameda. On the optimal nesting order for computing
n-relational joins. ACM Trans. Database Syst., 9(3):482–502, 1984.

[6] A. Krauss. Defining recursive functions in isabelle/hol.

[7] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonre-
cursive queries. In Chu et al. [3], pages 128–137.

[8] G. Moerkotte. Building query compilers, 2020.

[9] T. Neumann and B. Radke. Query optimization lecture.

[10] T. Neumann and B. Radke. Query optimization lecture - chapter 3.

[11] T. Nipkow. Programming and proving in isabelle/hol, 2021.

[12] L. Noschinski. Graph theory. Archive of Formal Proofs, Apr. 2013.
https://isa-afp.org/entries/Graph_Theory.html, Formal proof devel-
opment.

454

https://isa-afp.org/entries/Graph_Theory.html

[13] L. C. Paulson. Isabelle - A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[14] L. Stevens and M. Abdulaziz. Fast diameter estimation.

455

	Selectivities
	Selectivity Functions
	Proofs

	Join Tree
	Functions
	Functions for Information Retrieval
	Functions for Correctness Checks
	Functions for Modifications
	Additional properties
	Cardinality Calculations for Left-deep Trees

	Proofs

	Cost Functions
	General Cost Functions
	Cost functions that are considered by IKKBZ.
	Properties of Cost Functions
	Proofs
	Equivalence Proofs
	Additional ASI Proofs

	Graph Extensions
	Vertices with Multiple Outgoing Arcs
	Vertices with Multiple Incoming Arcs

	Query Graphs
	Function for Join Trees and Selectivities
	Proofs
	Pair Query Graph

	Directed Tree Additions
	Directed Trees of Connected Trees
	Tranformation using BFS
	Tranformation using PSP-Trees

	Additions for Induction on Directed Trees
	Branching Points in Directed Trees
	Converting to Trees of Lists

	Algebraic Type for Directed Trees
	Termination Proofs
	Dtree Basic Functions
	Dtree Basic Proofs
	Finite Directed Trees to Dtree
	Well-Formed Dtrees
	Identity of Transformation Operations

	Degrees of Nodes
	List Conversions
	Inserting in Dtrees

	Dtrees of Lists
	Functions
	List Dtrees as Well-Formed Dtrees
	Combining Preserves Well-Formedness

	IKKBZ
	Additional Proofs for Merging Lists
	Merging Subtrees of Ranked Dtrees
	Definitions
	Commutativity Proofs
	Merging Preserves Arcs and Verts
	Merging Preserves Well-Formedness
	Additional Merging Properties

	Normalizing Dtrees
	Definitions
	Basic Proofs
	Normalizing Preserves Well-Formedness
	Distinctness and hd preserved
	Normalize and Sorting

	Removing Wedges
	IKKBZ-Sub
	Full IKKBZ

	Optimality of IKKBZ
	Sublist Additions
	Optimal Solution for Lists of Fixed Sets
	Arc Invariants
	Normalizing preserves Arc Invariants
	Merging preserves Arc Invariants
	Merge1 preserves Arc Invariants

	Optimality of IKKBZ-Sub result constrained to Invariants
	Result fulfills the requirements
	Minimal Cost of the result

	Arc Invariants hold for Conversion to Dtree
	Optimality of IKKBZ-Sub
	Optimality of IKKBZ

	Examples of Applying IKKBZ
	Computing Contributing Selectivity without Lists
	Contributing Selectivity Satisfies ASI Property
	Applying IKKBZ
	Applying IKKBZ on Simple Cost Functions
	Applying IKKBZ on C_out

	Instantiating Comparators with Linorders

