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Abstract

This entry is a formalization of the metatheory of Qg in Isabelle/HOL. Qq [2] is a
classical higher-order logic equivalent to Church’s Simple Theory of Types. In this entry
we formalize Chapter 5 of [2], up to and including the proofs of soundness and consistency
of Qp. These proof are, to the best of our knowledge, the first to be formalized in a proof
assistant.
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1 Utilities

theory Utilities
imports
Finite— Map— Extras. Finite-Map-Fxtras
begin

1.1 Utilities for lists

fun foldr1 :: ('a = 'a = 'a) = 'a list = 'a where
foldrl f [z] = =

| foldrl f (z # zs) = fx (foldrl f xs)

| foldr1 f || = undefined f

abbreviation [set where Iset = List.set

lemma rev-induct2 [consumes 1, case-names Nil snoc]:
assumes length s = length ys
and P [] ]
and Az zs y ys. length xs = length ys = P xs ys = P (zs Q [z]) (ys Q [y])
shows P xs ys
using assms proof (induction xs arbitrary: ys rule: rev-induct)
case (snoc z zs)
then show ?case by (cases ys rule: rev-cases) simp-all
qed simp

1.2 Utilities for finite maps

no-syntax
-fmaplet :: ['a, 'a] = fmaplet (<- /$$:=/ )
-fmaplets :: ['a, 'a] = fmaplet (<- /[$%:=]/ )

syntax
-fmaplet :: ['a, 'a] = fmaplet (- /—/ =)
-fmaplets :: ['a, 'a] = fmaplet (- /[—]/ )

lemma fmdom’-fmap-of-list [simp):
shows fmdom’ (fmap-of-list ps) = Iset (map fst ps)
by (induction ps) force+

lemma fmran’-singleton [simpl:
shows fmran’ {k — v} = {v}
proof —
have v’ € fmran’ {k — v} = v’ = v for v’
proof —
assume v’ € fmran’ {k — v}
fix £k’
have fmdom’ {k — v} = {k}
by simp
then show v’ = v



proof (cases k' = k)
case True
with v’ € fmran’ {k — v}> show ?thesis
using fmdom'Il by fastforce
next
case Fulse
with «fmdom’ {k — v} = {k}> and v’ € fmran’ {k — v}» show %thesis
using fmdom'I by fastforce
qed
qged
moreover have v € fmran’ {k — v}
by (simp add: fmran'I)
ultimately show #thesis
by blast
qed

lemma fmran’-fmupd [simp]:
assumes m $$ z = None
shows fmran’ (m(z — y)) = {y} U fmran’ m
using assms proof (intro subset-antisym subsetl)
fix z’
assume m $$ z = None and z’ € fmran’ (m(z — y))
then show z’ € {y} U fmran’ m
by (auto simp add: fmlookup-ran’-iff, metis option.inject)
next
fix z’
assume m $$ z = None and z’ € {y} U fmran’ m
then show z’ € fmran’ (m(z — y))
by (force simp add: fmlookup-ran’-iff)
qed

lemma fmran’-fmadd [simp):
assumes fmdom’ m N fmdom’ m' = {}
shows fmran’ (m ++¢ m’) = fmran’ m U fmran’ m’
using assms proof (intro subset-antisym subsetl)
fix z
assume fmdom’ m N fmdom’ m’ = {} and = € fmran’ (m ++5 m’)
then show z € fmran’ m U fmran’ m’
by (auto simp add: fmlookup-ran’-iff) meson
next
fix z
assume fmdom’ m N fmdom’ m’ = {} and z € fmran’ m U fmran’ m’
then show z € fmran’ (m ++; m’)
using fmap-disj-comm and fmlookup-ran’-iff by fastforce
qed

lemma finite-fmran’:
shows finite (fmran’ m)
by (simp add: fmran’-alt-def)



lemma fmap-of-zipped-list-range:
assumes length ks = length vs
and m = fmap-of-list (zip ks vs)
and k € fmdom’ m
shows m $3! k € Iset vs
using assms by (induction arbitrary: m rule: list-induct2) auto

lemma fmap-of-zip-nth [simpl:
assumes length ks = length vs
and distinct ks
and i < length ks
shows fmap-of-list (zip ks vs) $3! (ks ! 4) = vs 1 4
using assms by (simp add: fmap-of-list.rep-eq map-of-zip-nth)

lemma fmap-of-zipped-list-fmran’ [simp]:
assumes distinct (map fst ps)
shows fmran’ (fmap-of-list ps) = lset (map snd ps)
using assms proof (induction ps)
case Nil
then show ?case
by auto
next
case (Cons p ps)
then show ?case
proof (cases p € Iset ps)
case True
then show ?thesis
using Cons.prems by auto
next
case Fulse
obtain %k and v where p = (k, v)
by fastforce
with Cons.prems have k ¢ fmdom’ (fmap-of-list ps)
by auto
then have fmap-of-list (p # ps) = {k — v} ++5 fmap-of-list ps
using «p = (k, v)» and fmap-singleton-comm by fastforce
with Cons.prems have fmran’ (fmap-of-list (p # ps)) = {v} U fmran’ (fmap-of-list ps)
by (simp add: <p = (k, v))
then have fmran’ (fmap-of-list (p # ps)) = {v} U lset (map snd ps)
using Cons.IH and Cons.prems by force
then show ?thesis
by (simp add: <p = (k, v)»)
qed
qed

lemma fmap-of-list-nth [simp]:
assumes distinct (map fst ps)
and j < length ps



shows fmap-of-list ps $% ((map fst ps) ! j) = Some (map snd ps ! j)
using assms by (induction j) (simp-all add: fmap-of-list.rep-eq)

lemma fmap-of-list-nth-split [simp):
assumes distinct s
and j < length xs
and length ys = length xs and length zs = length xs
shows fmap-of-list (zip xs (take k ys Q drop k 2s)) $$ (zs! j) =
(if § < k then Some (take k ys ! j) else Some (drop k zs ! (j — k)))
using assms proof (induction k arbitrary: xs ys zs j)
case (
then show ?case
by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
next
case (Suc k)
then show ?case
proof (cases xs)
case Nil
with Suc.prems(2) show ?thesis
by auto
next
case (Cons z zs')
let ?ps = zip xs (take (Suc k) ys Q drop (Suc k) zs)
from Cons and Suc.prems(3,4) obtain y and z and ys’ and zs’
where ys = y # ys’ and zs = z # zs’
by (metis length-0-conv neg-Nil-conv)
let ?ps’ = zip xs’ (take k ys’ @Q drop k zs")
from Cons have *: fmap-of-list ?ps = fmap-of-list ((z, y) # ?ps’)
using (ys = y # ys"» and <zs = z # 28" by fastforce
also have ... = {z — y} ++; fmap-of-list ?ps’
proof —
from «ys = y # ys’» and <zs = z # zs"» have fmap-of-list ?ps’ $% z = None
using Cons and Suc.prems(1,3,4) by (simp add: fmdom’-notD)
then show ?thesis
using fmap-singleton-comm by fastforce
qed
finally have fmap-of-list ?ps = {x — y} ++; fmap-of-list ?ps’ .
then show ?thesis
proof (cases j = 0)
case True
with «ys = y # ys”» and Cons show ?thesis
by simp
next
case Fulse
then have zs ! j = zs'! (j — 1)
by (sitmp add: Cons)
moreover from (ys = y # ys"» and <zs = z # zs» have fmdom’ (fmap-of-list ?ps’) = Iset xs’
using Cons and Suc.prems(3,4) by force
moreover from Fulse and Suc.prems(2) and Cons have j — 1 < length xs’



using le-simps(2) by auto
ultimately have fmap-of-list ?ps $$ (zs ! j) = fmap-of-list ?ps’ $$ (xs’! (j — 1))
using Cons and * and Suc.prems(1) by auto
with Suc.IH and Suc.prems(1,3,4) and Cons have sx: fmap-of-list ?ps $3 (zs ! j) =
(if j — 1 < k then Some (take k ys'! (j — 1)) else Some (drop k zs'! ((j — 1) — k)))
using «j — 1 < length zs"» and <ys = y # ys"» and <zs = z # zs"» by simp
then show ?thesis
proof (casesj — 1 < k)
case True
with False and *x show ?thesis
using <ys = y # ys" by auto
next
case Fulse
from Suc.prems(1) and Cons and <j — 1 < length zs"» and «xs ! j = zs’! (j — 1)» have j >

using nth-non-equal-first-eq by fastforce

with False have j > Suc k
by simp

moreover have fmap-of-list ?ps $$ (xs ! j) = Some (drop (Suc k) zs ! (j — Suc k))
using ** and False and (zs = z # zs"» by fastforce

ultimately show %thesis
by simp

qed
qed
qed
qged

lemma fmadd-drop-cancellation [simp]:
assumes m $$ k£ = Some v
shows {k — v} ++¢ fmdrop k m = m
using assms proof (induction m)
case fmempty
then show ?case
by simp
next
case (fmupd k' v’ m’)
then show ?case
proof (cases k' = k)
case True
with fmupd.prems have v = v’
by fastforce
have fmdrop k' (m'(k' — v")) = m’
unfolding fmdrop-fmupd-same using fmdrop-idle’|OF fmdom’-notI[OF fmupd.hyps]] by (unfold
True)
then have {k — v} ++¢ fmdrop k' (m'(k" — v')) = {k — v} ++5 m’
by simp
then show ?thesis
using fmap-singleton-comm|[OF fmupd.hyps] by (simp add: True <v = v")
next



case Fulse

with fmupd.prems have m’ $$ k = Some v
by force

from Fulse have {k — v} ++; fmdrop k (m'(k' — v’)) = {k — v} ++4¢ (fmdrop k m') (k" — v’)
by (simp add: fmdrop-fmupd)

also have ... = ({k — v} ++4; fmdrop k m')(k’ — ')
by fastforce
also from frmupd.prems and fmupd . IH[OF <m’ $$ k = Some v] have ... = m/(k' — v’)
by force
finally show ?thesis .
qed
qged

lemma fmap-of-list-fmmap [simp]:
shows fmap-of-list (map2 (Av’ A’. (v, f A")) xs ys) = fmmap [ (fmap-of-list (zip xs ys))
unfolding fmmap-of-list
using cond-case-prod-eta
[where f = Av" A'.(v/, f A’) and g = apsnd [, unfolded apsnd-conv, simplified)
by (rule arg-cong)

end

2 Syntax

theory Syntaz
imports
HOL— Library.Sublist
Utilities
begin

2.1 Type symbols

datatype type =
Tlnd (¢ir)
| TBool (<o)
| TFun type type (infixr <—» 101)

primrec type-size :: type = nat where
type-size © = 1
| type-size 0 = 1
| type-size (a — B) = Suc (type-size o + type-size B)

primrec subtypes :: type = type set where
subtypes i = {}
| subtypes o = {}
| subtypes (a — B) = {a, B} U subtypes o U subtypes S

lemma subtype-size-decrease:
assumes a € subtypes (3
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shows type-size a < type-size (3
using assms by (induction rule: type.induct) force+

lemma subtype-is-not-type:
assumes « € subtypes [
shows «a #
using assms and subtype-size-decrease by blast

lemma fun-type-atoms-in-subtypes:
assumes k < length ts
shows ts | k € subtypes (foldr (—) ts )
using assms by (induction ts arbitrary: k) (cases k, use less-Suc-eq-0-disj in <fastforce+))

lemma fun-type-atoms-neq-fun-type:
assumes k < length ts
shows ts | k # foldr (—) ts v
by (fact fun-type-atoms-in-subtypes|OF assms, THEN subtype-is-not-type])

2.2 Variables

Unfortunately, the Nominal package does not support multi-sort atoms yet; therefore, we need
to implement this support from scratch.

type-synonym var = nat X type

abbreviation var-name :: var = nat where
var-name = fst

abbreviation var-type :: var = type where
var-type = snd

lemma fresh-var-existence:
assumes finite (vs :: var set)
obtains z where (z, a) ¢ vs
using ez-new-if-finite[ OF infinite- UNIV-nat]
proof —
from assms obtain = where x ¢ var-name ‘ vs
using ex-new-if-finite[ OF infinite-UNIV-nat] by fastforce
with that show ?thesis
by force
qged

lemma fresh-var-name-list-existence:

assumes finite (ns :: nat set)

obtains ns’ where length ns’ = n and distinct ns’ and Iset ns' N ns = {}
using assms proof (induction n arbitrary: thesis)

case (

then show ?case

by simp

next

11



case (Suc n)

from assms obtain ns’ where length ns’ = n and distinct ns’ and Iset ns’ N ns = {}
using Suc.IH by blast

moreover from assms obtain n’ where n’ ¢ Iset ns’ U ns
using ez-new-if-finite[OF infinite-UNIV-nat] by blast

ultimately
have length (n’ # ns’) = Suc n and distinct (n’ # ns’) and Iset (n’ # ns’) N ns = {}
by simp-all

with Suc.prems(1) show ?case
by blast

ged

lemma fresh-var-list-existence:
fixes s :: var list
and ns :: nat set
assumes finite ns
obtains vs’ :: var list
where length vs’ = length xs
and distinct vs'
and var-name ‘lset vs' N (ns U var-name * lset zs) = {}
and map var-type vs' = map var-type xs
proof —
from assms(1) have finite (ns U var-name ° lset xs)
by blast
then obtain ns’
where length ns’ = length xs
and distinct ns'
and Iset ns’' N (ns U var-name * lset zs) = {}
by (rule fresh-var-name-list-existence)
define vs"’ where vs’' = zip ns’ (map var-type xs)
from vs’-def and «(length ns’ = length xs> have length vs'’ = length zs
by simp
moreover from vs’-def and (distinct ns’> have distinct vs'’
by (simp add: distinct-zipI1)
moreover have var-name ‘ lset vs'' N (ns U var-name * lset xs) = {}
unfolding vs'’-def
using <length ns’ = length xs» and <lset ns’ N (ns U var-name ‘ lset zs) = {}
by (metis length-map set-map map-fst-zip)
moreover from vs’’-def have map var-type vs"’ = map var-type xs
by (simp add: <length ns’ = length xs»)
ultimately show “thesis
by (fact that)
qged

2.3 Constants

type-synonym con = nat X type

12



2.4 Formulas

datatype form =
FVar var
| FCon con
| FApp form form (infixl < 200)
| FAbs var form

syntax
-FVar :: nat = type = form («-» [899, 0] 900)
-FCon :: nat = type = form (<{-}-» [899, 0] 900)
-FAbs :: nat = type = form = form (<(4\-_./ - [0, 0, 104] 104)
syntax-consts
-FVar = FVar and
-FCon = FCon and
-FAbs = FAbs
translations
o = CONST FVar (z, a)
{c}a = CONST FCon (¢, )
Ao. A = CONST FAbs (z, o) A

2.5 (Generalized operators

Generalized application. We define «2, A [By, By, ..., ByJas A+ By« By« -+ » By:

definition generalized-app :: form = form list = form (<<, - - [241, 241] 241) where
[simp]: +9, A Bs = foldl (+) A Bs

Generalized abstraction. We define A2, [z1, ..., z,] A as Azy. -+ Az,. A:

definition generalized-abs :: var list = form = form (\\°, - - [141, 141] 141) where

[simp]: A2, ws A = foldr (\(z, &) B. A\zg. B) vs A

fun form-size :: form = nat where
form-size (zq) = 1
| form-size ({c}a) = 1
| form-size (A « B) = Suc (form-size A + form-size B)
| form-size (Azq,. A) = Suc (form-size A)

fun form-depth :: form = nat where
form-depth (zq) = 0
| form-depth ({clta) = 0
| form-depth (A « B) = Suc (maz (form-depth A) (form-depth B))
| form-depth (Azq. A) = Suc (form-depth A)

2.6 Subformulas

fun subforms :: form = form set where
subforms (zq) = {}

| subforms ({cla) = {}
| subforms (A« B) = {A, B}

13



| subforms (Azq. A) = {A}

datatype direction = Left (<«») | Right (¢»»)
type-synonym position = direction list

fun positions :: form = position set where
positions (zq) = {[|}
| positions ({cfa) = {[I}
| positions (A« B) = {[]} U {« # p | p. p € positions A} U {» # p | p. p € positions B}
| positions (A\xe. A) = {[]} U {« # p | p. p € positions A}

lemma empty-is-position [simp):
shows [| € positions A
by (cases A rule: positions.cases) simp-all

fun subform-at :: form = position — form where
subform-at A [] = Some A

| subform-at (A - B) (« # p) = subform-at A p

| subform-at (A« B) (» # p) = subform-at B p

| subform-at (Azq. A) (« # p) = subform-at A p

| subform-at - - = None

fun is-subform-at :: form = position = form = bool («(- <_/ -)» [51,0,51] 50) where
is-subform-at A [ A (A A"

| is-subform-at C' (« # p) (A « B) = is-subform-at C p A

| is-subform-at C' (» # p) (A « B) = is-subform-at C' p B

| is-subform-at C (« # p) ()\l’a A) = is-subform-at C'p A

| is-subform-at - - - = False

lemma is-subform-at-alt-def:
shows A’ < A = (case subform-at A p of Some B = B = A’ | None = Fulse)
by (induction A’ p A rule: is-subform-at.induct) auto

lemma superform-existence:
assumes B =pa [d] C
obtains A where B j[d] Aand A =%, C
using assms by (induction B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-con:

assumes {cfq =p C

shows 71 4. A jp @ [d] C

using assms by (induction {c}o p C rule: is-subform-at.induct) auto
lemma subform-at-subforms-var:

assumes 7o =<p C

shows 3 A. A jp Q@ [d] C

using assms by (induction xq, p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-app:

14



assumes A+ B =<, C
shows A jp @ [« C and B jp @[] C
using assms by (induction A « B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-abs:
assumes \zq. A =p C
shows A jp Q@ [« C
using assms by (induction A\xq. A p C rule: is-subform-at.induct) auto

lemma is-subform-implies-in-positions:
assumes B <, A
shows p € positions A
using assms by (induction rule: is-subform-at.induct) simp-all

lemma subform-size-decrease:
assumes A <, B and p # ||
shows form-size A < form-size B
using assms by (induction A p B rule: is-subform-at.induct) force+

lemma strict-subform-is-not-form:
assumes p # [ and A’ <) A
shows A’ # A

using assms and subform-size-decrease by blast

lemma no-right-subform-of-abs:
shows # B. B =y #p AZq. A
by simp

lemma subforms-from-var:
assumes A =y 7
shows A = zo and p = ||
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-con:
assumes A < {cfa
shows A = {c[}lo and p = ||
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-app:

assumes A <, B: C
shows

(A=B-Cnrp=1[)V

(A#£B-CA

(Ip’ € positions B.p =« # p' N A = B) v (3p’ € positions C.p=» # p' N A =/ )

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma subforms-from-abs:
assumes A =y Azq. B

15



shows (4 = Azq. BAp =)V (4 # Xtq. BA (3p’ € positions B.p =« # p' N A =/ B))
using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma leftmost-subform-in-generalized-app:

Q
shows B Zreplicate (length As) « " * B As

by (induction As arbitrary: B) (simp-all, metis replicate-append-same subform-at-subforms-app(1))

lemma self-subform-is-at-top:
assumes A <, A
shows p = |]
using assms and strict-subform-is-not-form by blast

lemma at-top-is-self-subform:
assumes A j[] B
shows A = B
using assms by (auto elim: is-subform-at.elims)

lemma is-subform-at-uniqueness:
assumes B <p Aand C =p 4
shows B = C
using assms by (induction A arbitrary: p B C) (auto elim: is-subform-at.elims)

lemma is-subform-at-existence:
assumes p € positions A
obtains B where B <, A
using assms by (induction A arbitrary: p) (auto elim: is-subform-at.elims, blast+)

lemma is-subform-at-transitivity:
assumes A <5, Band B =, C
shows A jp2 ap C

using assms by (induction B pa C arbitrary: A p1 rule: is-subform-at.induct) simp-all

lemma subform-nesting:
assumes strict-prefiz p’ p
and B jp/ A
and C =p A
shows C jdrop (length p') p B
proof —
from assms(1) have p # ||
using strict-prefiz-simps(1) by blast
with assms(1,8) show ?thesis
proof (induction p arbitrary: C rule: rev-induct)
case Nil
then show ?Zcase
by blast
next
case (snoc d p'’)
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then show ?case
proof (cases p”’ = p’)
case True
obtain A’ where C j[d] A’ and A’ jp/ A
by (fact superform-ezistence[OF snoc.prems(2)[unfolded Truel))
from (A’ =y Ay and assms(2) have A’ = B
by (rule is-subform-at-uniqueness)
with «C j[d] A"y have C j[d} B
by (simp only:)
with True show ?thesis
by auto
next
case Fulse
with snoc.prems(1) have strict-prefix p’ p"’
using prefiz-order.dual-order.strict-implies-order by fastforce
then have p”’ # ||
by force

moreover from snoc.prems(2) obtain A’ where C =14] A’ and A’ = A

using superform-ezistence by blast

s /!
ultimately have A jd?“op ( ) p” B

length p’
using snoc.IH and <strict-prefix p’ p'’y by blast
with «C =14] A"y and snoc.prems(1) show ?thesis
using is-subform-at-transitivity and prefiz-length-less by fastforce
qed
qed
qed

lemma loop-subform-impossibility:
assumes B =<, A
and strict-prefiz p’ p
shows = B jp/ A
using assms and prefix-length-less and self-subform-is-at-top and subform-nesting by fastforce

lemma nested-subform-size-decreases:

assumes strict-prefiz p’ p

and B jp/ A

and C =p A

shows form-size C' < form-size B
proof —

from assms(1) have p # ||

by force

have C jdmp (length p') p B

by (fact subform-nesting| OF assms])
moreover have drop (length p') p # |]
using prefiz-length-less|OF assms(1)] by force
ultimately show ?thesis
using subform-size-decrease by simp
qed
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definition is-subform :: form = form = bool (infix <= 50) where
[simp]: A <X B = (3p. A Zp B)

instantiation form :: ord
begin

definition
A< B+—+ A<XB

definition
A<B+— A<XBANA#B

instance ..
end

instance form :: preorder
proof (standard, unfold less-eq-form-def less-form-def)
fix A
show 4 < A
unfolding is-subform-def using is-subform-at.simps(1) by blast
next
fix A and B and C
assume A < Band B C
then show A < C
unfolding is-subform-def using is-subform-at-transitivity by blast
next
fix A and B
show A< BANA#B+— A=<BAN-B=<A
unfolding is-subform-def
by (metis is-subform-at.simps(1) not-less-iff-gr-or-eq subform-size-decrease)
qed

lemma position-subform-existence-equivalence:
shows p € positions A «— (A" A" Zp A)
by (meson is-subform-at-existence is-subform-implies-in-positions)

lemma position-prefiz-is-position:
assumes p € positions A and prefiz p’ p
shows p’ € positions A
using assms proof (induction p rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc d p')
from snoc.prems(1) have p’’ € positions A
by (meson position-subform-ezistence-equivalence superform-erxistence)
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with snoc.prems(1,2) show ?Zcase
using snoc.IH by fastforce
qed

2.7 Free and bound variables

consts vars :: 'a = var set

overloading
vars-form = vars :: form = var set
vars-form-set = vars :: form set = wvar set
begin

fun vars-form :: form = var set where
vars-form (zq) = {(z, a)}

| vars-form ({cka) = {}

| vars-form (A « B) = vars-form A U vars-form B

| vars-form (Azg. A) = vars-form A U {(z, )}

fun vars-form-set :: form set = wvar set where

vars-form-set S = ((JA € S. vars A)
end

abbreviation var-names :: 'a = nat set where
var-names X = var-name ‘ (vars X)

lemma vars-form-finiteness:
fixes A :: form
shows finite (vars A)
by (induction rule: vars-form.induct) simp-all

lemma vars-form-set-finiteness:
fixes S :: form set
assumes finite S
shows finite (vars S)
using assms unfolding vars-form-set.simps using vars-form-finiteness by blast

lemma form-var-names-finiteness:
fixes A :: form
shows finite (var-names A)
using vars-form-finiteness by blast

lemma form-set-var-names-finiteness:
fixes S :: form set
assumes finite S
shows finite (var-names S)
using assms and vars-form-set-finiteness by blast
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consts free-vars :: 'a = var set

overloading
free-vars-form = free-vars :: form = var set
free-vars-form-set = free-vars :: form set = var set
begin

fun free-vars-form :: form = var set where
free-vars-form (zq) = {(x, @)}
| free-vars-form ({cla) = {}
| free-vars-form (A + B) = free-vars-form A U free-vars-form B
| free-vars-form (Azq. A) = free-vars-form A — {(z, o)}

fun free-vars-form-set :: form set = var set where
free-vars-form-set S = (JA € S. free-vars A)

end

abbreviation free-var-names :: 'a = nat set where
free-var-names X = var-name ‘ (free-vars X')

lemma free-vars-form-finiteness:
fixes A :: form
shows finite (free-vars A)
by (induction rule: free-vars-form.induct) simp-all

lemma free-vars-of-generalized-app:
shows free-vars (+2, A Bs) = free-vars A U free-vars (Iset Bs)
by (induction Bs arbitrary: A) auto

lemma free-vars-of-generalized-abs:
shows free-vars (A2, vs A) = free-vars A — lset vs
by (induction vs arbitrary: A) auto

lemma free-vars-in-all-vars:
fixes A :: form
shows free-vars A C vars A
proof (induction A)
case (FVar v)
then show ?case
using surj-pair[of v] by force
next
case (FCon k)
then show ?case
using surj-pair|of k| by force
next
case (FApp A B)
have free-vars (A « B) = free-vars A U free-vars B
using free-vars-form.simps(3) .
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also from FApp.IH have ... C vars A U vars B
by blast
also have ... = vars (A « B)
using vars-form.simps(3)[symmetric] .
finally show ?Zcase
by (simp only:)
next
case (FAbs v A)
then show ?case
using surj-pair[of v] by force
ged

lemma free-vars-in-all-vars-set:
fixes S :: form set
shows free-vars S C vars S
using free-vars-in-all-vars by fastforce

lemma singleton-form-set-vars:
shows vars {FVar y} = {y}
using surj-pair[of y] by force

fun bound-vars where
bound-vars (z¢) = {}
| bound-vars ({c}o) = {}
| bound-vars (B« C') = bound-vars B U bound-vars C
| bound-vars (Azq. B) = {(z, &)} U bound-vars B

lemma vars-is-free-and-bound-vars:
shows vars A = free-vars A U bound-vars A
by (induction A) auto

fun binders-at :: form = position = var set where
binders-at (A « B) (« # p) = binders-at A p

| binders-at (A« B) (» # p) = binders-at B p

| binders-at (Azq. A) (« # p) = {(z, o)} U binders-at A p

| binders-at A [| = {}

| binders-at A p = {}

lemma binders-at-concat:
assumes A’ <) A
shows binders-at A (p @Q p’) = binders-at A p U binders-at A’ p’
using assms by (induction p A rule: is-subform-at.induct) auto

2.8 Free and bound occurrences

definition occurs-at :: var = position = form = bool where
[iff]: occurs-at v p B <— (FVar v <y B)

lemma occurs-at-alt-def:
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shows occurs-at v [| (FVar v') «— (v = v)

and occurs-at v p ({c}a) +— False

and occurs-at v (« # p) (A« B) «— occurs-at v p A
and occurs-at v (» # p) (4 = B) +— occurs-at v p B
and occurs-at v (¢« # p) (Azq. A) <— occurs-at v p A
and occurs-at v (d # p) (FVar v") +— False

and occurs-at v (» # p) (Azq. A) +— False

and occurs-at v [] (A « B) «— False

and occurs-at v [| (Azq. A) +— False

by (fastforce elim: is-subform-at.elims)+

definition occurs :: var = form = bool where
[iff]: occurs v B <— (3 p € positions B. occurs-at v p B)

lemma occurs-in-vars:
assumes occurs v A
shows v € vars A
using assms by (induction A) force+

abbreviation strict-prefizes where
strict-prefizes xs = [ys + prefizes zs. ys # xs]

definition in-scope-of-abs :: var = position = form = bool where
[iff]: in-scope-of-abs v p B +— (
p#IA
(

dp’ € Iset (strict-prefizes p).
case (subform-at B p’) of
Some (FAbs v’ -) = v =10’
| - = False
)
)

lemma in-scope-of-abs-alt-def:
shows
in-scope-of-abs v p B
—
p # | A (3p’ € positions B. 3 C. strict-prefix p’ p A FAbs v C jp/ B)
proof
assume in-scope-of-abs v p B
then show p # [| A (3p’ € positions B. 3 C. strict-prefiz p’ p A FAbs v C =y’ B)
by (induction rule: subform-at.induct) force+
next
assume p # [| A (Ip’ € positions B. 3 C. strict-prefiz p’ p N FAbs v C jp/ B)
then show in-scope-of-abs v p B
by (induction rule: subform-at.induct) fastforce+
qed

lemma in-scope-of-abs-in-left-app:
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shows in-scope-of-abs v (« # p) (A = B) «— in-scope-of-abs v p A
by force

lemma in-scope-of-abs-in-right-app:
shows in-scope-of-abs v (» # p) (A + B) <— in-scope-of-abs v p B
by force

lemma in-scope-of-abs-in-app:
assumes in-scope-of-abs v p (A « B)
obtains p’ where (p = « # p’ A in-scope-of-abs v p’ A) V (p = » # p’ A in-scope-of-abs v p’ B)
proof —
from assms obtain d and p’ where p = d # p’
unfolding in-scope-of-abs-def by (meson list.ezhaust)
then show ?thesis
proof (cases d)
case Left
with assms and <p = d # p’> show ?thesis
using that and in-scope-of-abs-in-left-app by simp
next
case Right
with assms and <p = d # p’> show ?Zthesis
using that and in-scope-of-abs-in-right-app by simp
qed
qed

lemma not-in-scope-of-abs-in-app:

assumes
Vp'
(p = « # p’ — = in-scope-of-abs v’ p’ A)
A

(p = » # p’ — — in-scope-of-abs v’ p’ B)
shows — in-scope-of-abs v’ p (A + B)
using assms and in-scope-of-abs-in-app by metis

lemma in-scope-of-abs-in-abs:
shows in-scope-of-abs v (« # p) (FAbs v’ B) +— v = v’ V in-scope-of-abs v p B
proof
assume in-scope-of-abs v (« # p) (FAbs v’ B)
then obtain p’ and C
where p’ € positions (FAbs v’ B)
and strict-prefix p’ (« # p)
and FAbs v C jp/ FAbs v' B
unfolding in-scope-of-abs-alt-def by blast
then show v = v’ V in-scope-of-abs v p B
proof (cases p’)
case Nil
with «FAbs v C jp/ FAbs v' B> have v = v’
by auto
then show ?thesis
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by simp
next
case (Cons d p")
with «strict-prefix p’ (« # p)» have d = «
by simp
from (FAbs v C jp/ FAbs v/ B> and Cons have p’’ € positions B
by
(cases (FAbs v C, p’, FAbs v' B) rule: is-subform-at.cases)
(simp-all add: is-subform-implies-in-positions)
moreover from «(FAbs v C jp/ FAbs v' B> and Cons and «d = «» have FAbs v C jpu B
by (metis is-subform-at.simps(4) old.prod.exhaust)
moreover from <strict-prefiz p’ (« # p)» and Cons have strict-prefiz p'' p
by auto
ultimately have in-scope-of-abs v p B
using in-scope-of-abs-alt-def by auto
then show %thesis
by simp
qed
next
assume v = v’ V in-scope-of-abs v p B
then show in-scope-of-abs v (« # p) (FAbs v’ B)
unfolding in-scope-of-abs-alt-def
using position-subform-existence-equivalence and surj-pair|of v’
by force
qged

lemma not-in-scope-of-abs-in-var:
shows — in-scope-of-abs v p (FVar v’)
unfolding in-scope-of-abs-def by (cases p) simp-all

lemma in-scope-of-abs-in-vars:
assumes in-scope-of-abs v p A
shows v € vars A
using assms proof (induction A arbitrary: p)
case (FVar v’
then show ?case
using not-in-scope-of-abs-in-var by blast
next
case (FCon k)
then show ?case
using in-scope-of-abs-alt-def by (blast elim: is-subform-at.elims(2))
next
case (FApp B C)
from FApp.prems obtain d and p’ where p = d # p’
unfolding in-scope-of-abs-def by (meson neg-Nil-conv)
then show ?case
proof (cases d)
case Left
with FApp.prems and <p = d # p’s have in-scope-of-abs v p’ B
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using in-scope-of-abs-in-left-app by blast
then have v € vars B
by (fact FApp.IH(1))
then show %thesis
by simp
next
case Right
with FApp.prems and <p = d # p’» have in-scope-of-abs v p’ C
using in-scope-of-abs-in-right-app by blast
then have v € vars C
by (fact FApp.IH(2))
then show ?thesis
by simp
qed
next
case (FAbs v’ B)
then show ?case
proof (cases v = v)
case True
then show %thesis
using surj-pair[of v] by force
next
case Fulse
with FAbs.prems obtain p’ and d where p = d # p’
unfolding in-scope-of-abs-def by (meson neg-Nil-conv)
then show ?thesis
proof (cases d)
case Left

with FAbs.prems and False and <p = d # p’» have in-scope-of-abs v p’ B

using in-scope-of-abs-in-abs by blast
then have v € vars B
by (fact FAbs.IH)
then show ?thesis
using surj-pair|of v'] by force
next
case Right
with FAbs.prems and «(p = d # p’» and Fualse show ?thesis
by (cases rule: is-subform-at.cases) auto
qed
qed
qed

lemma binders-at-alt-def:
assumes p € positions A
shows binders-at A p = {v | v. in-scope-of-abs v p A}
using assms and in-set-prefizes by (induction rule: binders-at.induct) auto

definition is-bound-at :: var = position = form = bool where
[iff]: is-bound-at v p B +— occurs-at v p B A in-scope-of-abs v p B
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lemma not-is-bound-at-in-var:
shows - is-bound-at v p (FVar v’)
by (fastforce elim: is-subform-at.elims(2))

lemma not-is-bound-at-in-con:
shows - is-bound-at v p (FCon k)
by (fastforce elim: is-subform-at.elims(2))

lemma is-bound-at-in-left-app:
shows is-bound-at v (« # p) (B« C) «— is-bound-at v p B
by auto

lemma is-bound-at-in-right-app:
shows is-bound-at v (» # p) (B« C) +— is-bound-at v p C
by auto

lemma is-bound-at-from-app:
assumes is-bound-at vp (B« C)
obtains p’ where (p = « # p’ A is-bound-at v p' B) V (p = » # p’ A is-bound-at v p’ C)
proof —
from assms obtain d and p’ where p = d # p’
using subforms-from-app by blast
then show ?thesis
proof (cases d)
case Left
with assms and that and <p = d # p’» show ?thesis
using is-bound-at-in-left-app by simp
next
case Right
with assms and that and <p = d # p’» show ?thesis
using is-bound-at-in-right-app by simp
qed
qged

lemma is-bound-at-from-abs:
assumes is-bound-at v (« # p) (FAbs v’ B)
shows v = v’ V is-bound-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-bound-at-from-absE:
assumes is-bound-at v p (FAbs v’ B)
obtains p’ where p = « # p’and v = v’ V is-bound-at v p’ B
proof —
obtain z and «a where v’ = (z, a)
by fastforce
with assms obtain p’ where p = « # p’
using subforms-from-abs by blast
with assms and that show ?thesis
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using is-bound-at-from-abs by simp
qged

lemma is-bound-at-to-abs:
assumes (v = v’ A occurs-at v p B) V is-bound-at v p B
shows is-bound-at v (« # p) (FAbs v’ B)
unfolding is-bound-at-def proof
from assms(1) show occurs-at v (« # p) (FAbs v’ B)
using surj-pair[of v] by force
from assms show in-scope-of-abs v (« # p) (FAbs v’ B)
using in-scope-of-abs-in-abs by auto
qged

lemma is-bound-at-in-bound-vars:
assumes p € positions A
and is-bound-at v p AV v € binders-at A p
shows v € bound-vars A
using assms proof (induction A arbitrary: p)
case (FApp B C)
from FApp.prems(2) consider (a) is-bound-at vp (B« C) | (b) v € binders-at (B« C) p
by blast
then show ?case
proof cases
case a
then have p # ||
using occurs-at-alt-def(8) by blast
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (a1) p = « # p’ and p’ € positions B | (a2) p = » # p’ and p’ € positions C
by force
then show ?thesis
proof cases
case a
from a;(1) and «<is-bound-at v p (B » C)» have is-bound-at v p’ B
using is-bound-at-in-left-app by blast
with a;(2) have v € bound-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case as
from as(1) and <is-bound-at v p (B « C)» have is-bound-at v p’ C
using is-bound-at-in-right-app by blast
with a2(2) have v € bound-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed
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next
case b
then have p # ||
by force
then obtain d and p’ where p = d # p’
by (meson list.ezhaust)
with «p € positions (B« C)»
consider (b1) p = « # p’ and p’ € positions B | (ba) p = » # p’ and p’ € positions C
by force
then show Zthesis
proof cases
case b
from b;(1) and v € binders-at (B« C) p» have v € binders-at B p’
by force
with b;(2) have v € bound-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case by
from b2(1) and <v € binders-at (B« C') p> have v € binders-at C p’
by force
with b2(2) have v € bound-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed
qed
next
case (FAbs v’ B)
from FAbs.prems(2) consider (a) is-bound-at v p (FAbs v’ B) | (b) v € binders-at (FAbs v’ B) p
by blast
then show ?case
proof cases
case a
then have p # ||
using occurs-at-alt-def (9) by force
with <p € positions (FAbs v' B)»> obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
from «p = « # p’» and «is-bound-at v p (FAbs v’ B)> have v = v’ V is-bound-at v p’ B
using is-bound-at-from-abs by blast
then consider (a1) v = v’ | (az2) is-bound-at v p’ B
by blast
then show ?thesis
proof cases
case a;
then show ?thesis
using surj-pair[of v'] by fastforce
next
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case as
then have v € bound-vars B
using «p’ € positions B> and FAbs.IH by blast
then show ?Zthesis
using surj-pair[of v'] by fastforce
qed
next
case b
then have p # ||
by force
with FAbs.prems(1) obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
with b consider (b1) v = v’ | (b2) v € binders-at B p’
by (cases FAbs v’ B rule: positions.cases) fastforce+
then show %thesis
proof cases
case b
then show ?thesis
using surj-pair|of v'] by fastforce
next
case by
then have v € bound-vars B
using (p’ € positions B> and FAbs.IH by blast
then show ?thesis
using surj-pair|of v'] by fastforce
qed
qed
qed fastforce+

lemma bound-vars-in-is-bound-at:
assumes v € bound-vars A
obtains p where p € positions A and is-bound-at v p A V v € binders-at A p
using assms proof (induction A arbitrary: thesis rule: bound-vars.induct)
case (3 B C)
from (v € bound-vars (B « C)> consider (a) v € bound-vars B | (b) v € bound-vars C
by fastforce
then show ?case
proof cases
case a
with 3.IH(1) obtain p where p € positions B and is-bound-at v p B V v € binders-at B p
by blast
from «p € positions By have « # p € positions (B « C)
by simp
from <is-bound-at v p B V v € binders-at B p»
consider (a1) is-bound-at v p B | (a2) v € binders-at B p
by blast
then show ?thesis
proof cases
case a1
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then have is-bound-at v (« # p) (B« C)
using is-bound-at-in-left-app by blast
then show ?thesis
using 3.prems(1) and is-subform-implies-in-positions by blast
next
case ag
then have v € binders-at (B« C) (« # p)
by simp
then show ?thesis
using 3.prems(1) and <« # p € positions (B = C)» by blast
qed
next
case b
with 3.IH(2) obtain p where p € positions C and is-bound-at v p C V v € binders-at C p
by blast
from «p € positions C» have » # p € positions (B - C)
by simp
from <is-bound-at v p C V v € binders-at C p»
consider (b1) is-bound-at vp C | (b2) v € binders-at C p
by blast
then show %thesis
proof cases
case b
then have is-bound-at v (» # p) (B« C)
using is-bound-at-in-right-app by blast
then show ?thesis
using 3.prems(1) and is-subform-implies-in-positions by blast
next
case by
then have v € binders-at (B« C) (» # p)
by simp
then show ?thesis
using 3.prems(1) and <» # p € positions (B « C)» by blast
qed
qed
next
case (4 ¢ a B)
from (v € bound-vars (Azq. B)> consider (a) v = (z, «) | (b) v € bound-vars B
by force
then show ?case
proof cases
case a
then have v € binders-at (Azq. B) [«]
by simp
then show ?thesis
using /.prems(1) and is-subform-implies-in-positions by fastforce
next
case b
with 4.IH(1) obtain p where p € positions B and is-bound-at v p B V v € binders-at B p
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by blast
from <p € positions By have « # p € positions (Azy. B)
by simp
from <is-bound-at v p B V v € binders-at B p»
consider (by) is-bound-at v p B | (b2) v € binders-at B p
by blast
then show ?thesis
proof cases
case b
then have is-bound-at v (« # p) (Azq. B)
using is-bound-at-to-abs by blast
then show ?thesis
using 4 .prems(1) and <« # p € positions (Azq. B)>» by blast
next
case by
then have v € binders-at (Azqo. B) (« # p)
by simp
then show ?thesis
using 4 .prems(1) and <« # p € positions (Azy. B)» by blast
qed
qed
qed simp-all

lemma bound-vars-alt-def:
shows bound-vars A = {v | v p. p € positions A A (is-bound-at v p AV v € binders-at A p)}
using bound-vars-in-is-bound-at and is-bound-at-in-bound-vars
by (intro subset-antisym subsetl Collectl, metis) blast

definition is-free-at :: var = position = form = bool where
[iff]: is-free-at v p B +— occurs-at v p B A\ — in-scope-of-abs v p B

lemma is-free-at-in-var:
shows is-free-at v [| (FVar v') «— v = v
by simp

!

lemma not-is-free-at-in-con:
shows — is-free-at v [| ({c}a)
by simp

lemma is-free-at-in-left-app:
shows is-free-at v (« # p) (B« C) +— is-free-at v p B
by auto

lemma is-free-at-in-right-app:
shows is-free-at v (» # p) (B« C) «— is-free-at vp C
by auto

lemma is-free-at-from-app:

assumes is-free-at v p (B« C)
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obtains p’ where (p = « # p' A is-free-at v p’' B) V (p = » # p’ N is-free-at v p' C)
proof —
from assms obtain d and p’ where p = d # p’
using subforms-from-app by blast
then show ?thesis
proof (cases d)
case Left
with assms and that and <p = d # p’» show ?thesis
using is-free-at-in-left-app by blast
next
case Right
with assms and that and «<p = d # p’» show ?thesis
using is-free-at-in-right-app by blast
qed
qed

lemma is-free-at-from-abs:
assumes is-free-at v (« # p) (FAbs v’ B)
shows is-free-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-free-at-from-absk:
assumes is-free-at v p (FAbs v’ B)
obtains p’ where p = « # p’ and is-free-at v p’ B
proof —
obtain z and « where v’ = (z, a)
by fastforce
with assms obtain p’ where p = « # p’
using subforms-from-abs by blast
with assms and that show ?thesis
using is-free-at-from-abs by blast
ged

lemma is-free-at-to-abs:
assumes is-free-at v p B and v # v’
shows is-free-at v (« # p) (FAbs v’ B)
unfolding is-free-at-def proof
from assms(1) show occurs-at v (« # p) (FAbs v’ B)
using surj-pair[of v']| by fastforce
from assms show — in-scope-of-abs v (« # p) (FAbs v’ B)
unfolding is-free-at-def using in-scope-of-abs-in-abs by presburger
ged

lemma is-free-at-in-free-vars:
assumes p € positions A and is-free-at vp A
shows v € free-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C)
from «<is-free-at v p (B « C)» have p # [|
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using occurs-at-alt-def (8) by blast
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (a) p = « # p’ and p’ € positions B | (b) p = » # p’ and p’ € positions C
by force
then show ?case
proof cases
case a
from a(1) and (is-free-at v p (B « C)» have is-free-at v p’ B
using is-free-at-in-left-app by blast
with a(2) have v € free-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case b
from b(1) and <is-free-at v p (B + C)» have is-free-at v p’ C
using is-free-at-in-right-app by blast
with b(2) have v € free-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed
next
case (FAbs v’ B)
from <is-free-at v p (FAbs v’ B)» have p # [|
using occurs-at-alt-def(9) by force
with «p € positions (FAbs v’ B)» obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
moreover from p = « # p’» and <is-free-at v p (FAbs v’ B)) have is-free-at v p’ B
using is-free-at-from-abs by blast
ultimately have v € free-vars B
using FAbs.IH by simp
moreover from «p = « # p’» and <is-free-at v p (FAbs v’ B)) have v # v’
using in-scope-of-abs-in-abs by blast
ultimately show Zcase
using surj-pair[of v] by force
qed fastforce+

lemma free-vars-in-is-free-at:
assumes v € free-vars A
obtains p where p € positions A and is-free-at v p A
using assms proof (induction A arbitrary: thesis rule: free-vars-form.induct)
case (3 A B)
from «v € free-vars (A » B)» consider (a) v € free-vars A | (b) v € free-vars B
by fastforce
then show ?case
proof cases
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case a
with 3.1H(1) obtain p where p € positions A and is-free-at v p A
by blast
from «p € positions A> have « # p € positions (A + B)
by simp
moreover from <is-free-at v p A> have is-free-at v (« # p) (A« B)
using is-free-at-in-left-app by blast
ultimately show ?thesis
using 3.prems(1) by presburger
next
case b
with 3.1H(2) obtain p where p € positions B and is-free-at v p B
by blast
from <p € positions By have » # p € positions (A + B)
by simp
moreover from (is-free-at v p B> have is-free-at v (» # p) (A + B)
using is-free-at-in-right-app by blast
ultimately show ¢thesis
using 3.prems(1) by presburger
qed
next
case (4 z a A)
from <v € free-vars (Azq. A)> have v € free-vars A — {(z, @)} and v # (z, o)
by simp-all
then have v € free-vars A

by blast

with /.IH obtain p where p € positions A and is-free-at v p A
by blast

from «p € positions A» have « # p € positions (Azq. A)
by simp

moreover from (is-free-at v p A> and v # (z, a)) have is-free-at v (« # p) (A\zq. A)
using is-free-at-to-abs by blast
ultimately show ?case
using /.prems(1) by presburger
qed simp-all

lemma free-vars-alt-def:
shows free-vars A = {v | v p. p € positions A A is-free-at v p A}
using free-vars-in-is-free-at and is-free-at-in-free-vars
by (intro subset-antisym subsetl Collectl, metis) blast

In the following definition, note that the variable immeditately preceded by A\ counts as a
bound variable:
definition is-bound :: var = form = bool where

[¢ff]: is-bound v B <— (I p € positions B. is-bound-at v p B V v € binders-at B p)

lemma is-bound-in-app-homomorphism:
shows is-bound v (A « B) «— is-bound v A V is-bound v B
proof
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assume is-bound v (A « B)

then obtain p where p € positions (A « B) and is-bound-at vp (A« B) V v € binders-at (A «

by auto
then have p # ||
by fastforce
with <p € positions (A + B)» obtain p’ and d where p = d # p’
by auto
from <is-bound-at vp (A« B) V v € binders-at (A + B) p
consider (a) is-bound-at v p (A« B) | (b) v € binders-at (A« B) p
by blast
then show is-bound v A V is-bound v B
proof cases
case a
then show ?thesis
proof (cases d)
case Left
then have p’ € positions A
using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from <is-bound-at v p (A « B)> have occurs-at v p’ A
using Left and <p = d # p"» and is-subform-at.simps(2) by force
moreover from <is-bound-at v p (A « B)» have in-scope-of-abs v p’ A
using Left and <p = d # p’» by fastforce
ultimately show ?thesis
by auto
next
case Right
then have p’ € positions B
using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from (is-bound-at v p (A + B)) have occurs-at v p’ B
using Right and «p = d # p’» and is-subform-at.simps(3) by force
moreover from <is-bound-at v p (A + B)) have in-scope-of-abs v p’ B
using Right and <p = d # p"» by fastforce
ultimately show ?Zthesis
by auto
qed
next
case b
then show ?thesis
proof (cases d)
case Left
then have p’ € positions A
using <p = d # p’» and <p € positions (A = B)» by fastforce
moreover from «v € binders-at (A « B) p> have v € binders-at A p’
using Left and <p = d # p’» by force
ultimately show ?Zthesis
by auto
next
case Right
then have p’ € positions B
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using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from v € binders-at (A « B) p» have v € binders-at B p’
using Right and <p = d # p"» by force
ultimately show ?thesis
by auto
qed
qed
next
assume is-bound v A V is-bound v B
then show is-bound v (A + B)
proof (rule disjE)
assume is-bound v A
then obtain p where p € positions A and is-bound-at v p A V v € binders-at A p
by auto
from «p € positions A> have « # p € positions (A + B)
by auto
from <is-bound-at v p A V v € binders-at A p»
consider (a) is-bound-at vp A | (b) v € binders-at A p
by blast
then show is-bound v (A + B)
proof cases

case a

then have occurs-at v (« # p) (A« B)
by auto

moreover from « have is-bound-at v (¢« # p) (A « B)
by force

ultimately show is-bound v (A « B)
using <« # p € positions (A « B)» by blast
next
case b
then have v € binders-at (A « B) (« # p)
by auto
then show is-bound v (A « B)
using <« # p € positions (A « B)» by blast
qed
next
assume is-bound v B
then obtain p where p € positions B and is-bound-at v p B V v € binders-at B p
by auto
from <p € positions By have » # p € positions (A + B)
by auto
from <is-bound-at v p B V v € binders-at B p»
consider (a) is-bound-at v p B | (b) v € binders-at B p
by blast
then show is-bound v (A « B)
proof cases
case a
then have occurs-at v (» # p) (A« B)
by auto
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moreover from a have is-bound-at v (» # p) (A + B)
by force
ultimately show is-bound v (A « B)
using » # p € positions (A « B)> by blast
next
case b
then have v € binders-at (A - B) (» # p)
by auto
then show is-bound v (A + B)
using » # p € positions (A « B)» by blast
qed
qed
qged

lemma is-bound-in-abs-body:
assumes is-bound v A
shows is-bound v (Azq. A)
using assms unfolding is-bound-def proof
fix p
assume p € positions A and is-bound-at vp AV v € binders-at A p
moreover from <«p € positions A> have « # p € positions (A\zg. A)
by simp
ultimately consider (a) is-bound-at vp A | (b) v € binders-at A p
by blast
then show Jp € positions (Azy. A). is-bound-at v p (Azg. A) V v € binders-at (Azq. A) p
proof cases
case a
then have is-bound-at v (« # p) (A\zq. A)
by force
with <« # p € positions (Azq. A)> show Zthesis
by blast
next
case b
then have v € binders-at (Azq. 4) (« # p)
by simp
with <« # p € positions (Azq. A)> show ?thesis
by blast
qed
qged

lemma absent-var-is-not-bound:
assumes v ¢ vars A
shows — is-bound v A
using assms and binders-at-alt-def and in-scope-of-abs-in-vars by blast

lemma bound-vars-alt-def2:

shows bound-vars A = {v € vars A. is-bound v A}
unfolding bound-vars-alt-def using absent-var-is-not-bound by fastforce
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definition is-free :: var = form = bool where
[¢ff]: is-free v B <— (I p € positions B. is-free-at v p B)

2.9 Free variables for a formula in another formula

definition is-free-for :: form = var = form = bool where
[iff): is-free-for A v B +—

Yo' € free-vars A.
YV p € positions B.
is-free-at v p B — — in-scope-of-abs v’ p B
)

lemma is-free-for-absent-var [intro:
assumes v ¢ vars B
shows is-free-for A v B
using assms and occurs-def and is-free-at-def and occurs-in-vars by blast

lemma is-free-for-in-var [intro:
shows is-free-for A v (zq,)
using subforms-from-var(2) by force

lemma is-free-for-in-con [intro):
shows is-free-for A v ({cla)
using subforms-from-con(2) by force

lemma is-free-for-from-app:
assumes is-free-for A v (B« C)
shows is-free-for A v B and is-free-for A v C
proof —
{
fix v’
assume v’ € free-vars A
then have Vp € positions B. is-free-at v p B — — in-scope-of-abs v’ p B
proof (intro balll impI)
fix p
assume v’ € free-vars A and p € positions B and is-free-at v p B
from <p € positions By have « # p € positions (B« C)
by simp
moreover from <is-free-at v p B> have is-free-at v (« # p) (B« C)
using is-free-at-in-left-app by blast
ultimately have — in-scope-of-abs v’ (« # p) (B - C)
using assms and (v’ € free-vars A> by blast
then show — in-scope-of-abs v’ p B
by simp
qed
}
then show is-free-for A v B
by force
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next
{
fix v’
assume v’ € free-vars A
then have Vp € positions C. is-free-at v p C — — in-scope-of-abs v’ p C
proof (intro balll implI)
fix p
assume v’ € free-vars A and p € positions C and is-free-at v p C
from «p € positions C» have » # p € positions (B = C)
by simp
moreover from <is-free-at v p C» have is-free-at v (» # p) (B« C)
using is-free-at-in-right-app by blast
ultimately have — in-scope-of-abs v’ (» # p) (B - C)
using assms and (v’ € free-vars A> by blast
then show — in-scope-of-abs v/ p C
by simp
qed

then show is-free-for A v C
by force
qged

lemma is-free-for-to-app [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B« C)
unfolding is-free-for-def proof (intro balll impI)
fix v' and p
assume v’ € free-vars A and p € positions (B « C) and is-free-at v p (B« C)
from <is-free-at v p (B « C)» have p # [|
using occurs-at-alt-def(8) by force
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (b) p = « # p’ and p’ € positions B | (¢) p = » # p’ and p’ € positions C
by force
then show — in-scope-of-abs v’ p (B + C)
proof cases
case b
from b(1) and <is-free-at v p (B + C)> have is-free-at v p’ B
using is-free-at-in-left-app by blast
with assms(1) and v’ € free-vars Ay and <p’ € positions By have — in-scope-of-abs v’ p’ B
by simp
with b(1) show %thesis
using in-scope-of-abs-in-left-app by simp
next
case ¢
from c(1) and <is-free-at v p (B« C')» have is-free-at v p' C
using is-free-at-in-right-app by blast
with assms(2) and v’ € free-vars Ay and <p’ € positions C» have — in-scope-of-abs v’ p' C
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by simp
with ¢(1) show %thesis
using in-scope-of-abs-in-right-app by simp
qed
qged

lemma is-free-for-in-app:
shows is-free-for A v (B + C) +— is-free-for A v B A is-free-for A v C
using is-free-for-from-app and is-free-for-to-app by iprover

lemma is-free-for-to-abs [introl:
assumes is-free-for A v B and (z, ) ¢ free-vars A
shows is-free-for A v (Azq. B)
unfolding is-free-for-def proof (intro balll impI)
fix v/ and p
assume v’ € free-vars A and p € positions (A\zq. B) and is-free-at v p (Azgy. B)
from <is-free-at v p (Azq. B)> have p # |]
using occurs-at-alt-def(9) by force
with «p € positions (Azq. B)> obtain p’ where p = « # p’ and p’ € positions B
by force
then show — in-scope-of-abs v’ p (Azq. B)
proof —
from <p = « # p"» and «(is-free-at v p (Azq. B)> have is-free-at v p’ B
using is-free-at-from-abs by blast
with assms(1) and v’ € free-vars Ay and <p’ € positions By have — in-scope-of-abs v’ p’ B
by force
moreover from (v’ € free-vars A> and assms(2) have v’ # (z, «)
by blast
ultimately show ?thesis
using «(p = « # p’» and in-scope-of-abs-in-abs by auto
qed
ged

lemma is-free-for-from-abs:
assumes is-free-for A v (Azq. B) and v # (z, «)
shows is-free-for A v B
unfolding is-free-for-def proof (intro balll impI)
fix v' and p
assume v’ € free-vars A and p € positions B and is-free-at v p B
then show — in-scope-of-abs v’ p B
proof —
from (is-free-at v p B> and assms(2) have is-free-at v (« # p) (Azq. B)
by (rule is-free-at-to-abs)
moreover from <p € positions B> have « # p € positions (Azq. B)
by simp
ultimately have — in-scope-of-abs v’ (« # p) (A\zq. B)
using assms and <v’ € free-vars A> by blast
then show ?thesis
using in-scope-of-abs-in-abs by blast
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qed
qged

lemma closed-is-free-for [intro]:
assumes free-vars A = {}
shows is-free-for A v B
using assms by force

lemma is-free-for-closed-form [intro]:
assumes free-vars B = {}
shows is-free-for A v B
using assms and is-free-at-in-free-vars by blast

lemma is-free-for-alt-def:
shows
is-free-for A v B
—
(
Bp.
(
p € positions B A is-free-at vp B A p # [| A
(v’ € free-vars A. Ap’ C. strict-prefiz p’ p N FAbs v’ C jp/ B)

)
)
unfolding is-free-for-def
using in-scope-of-abs-alt-def and is-subform-implies-in-positions
by meson

lemma binding-var-not-free-for-in-abs:
assumes is-free © B and = # w
shows — is-free-for (FVar w) x (FAbs w B)
proof (rule ccontr)

assume — — is-free-for (FVar w) x (FAbs w B)

then have
Vo' € free-vars (FVar w). Vp € positions (FAbs w B). is-free-at x p (FAbs w B)

— =1 in-scope-of-abs v’ p (FAbs w B)

by force

moreover have free-vars (FVar w) = {w}
using surj-pair|of w| by force

ultimately have
YV p € positions (FAbs w B). is-free-at  p (FAbs w B) — — in-scope-of-abs w p (FAbs w B)
by blast

moreover from assms(1) obtain p where is-free-at x p B
by fastforce

from this and assms(2) have is-free-at x (« # p) (FAbs w B)
by (rule is-free-at-to-abs)

moreover from this have « # p € positions (FAbs w B)
using is-subform-implies-in-positions by force

ultimately have — in-scope-of-abs w (« # p) (FAbs w B)
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by blast
moreover have in-scope-of-abs w (« # p) (FAbs w B)
using in-scope-of-abs-in-abs by blast
ultimately show False
by contradiction
qged

lemma absent-var-is-free-for [intro):
assumes = ¢ vars A
shows is-free-for (FVar x) y A
using in-scope-of-abs-in-vars and assms and surj-pair(of x| by fastforce

lemma form-is-free-for-absent-var [introl:
assumes = ¢ vars A
shows is-free-for B x A
using assms and occurs-in-vars by fastforce

lemma form-with-free-binder-not-free-for:
assumes v # v’ and v’ € free-vars A and v € free-vars B
shows — is-free-for A v (FAbs v’ B)
proof —
from assms(8) obtain p where p € positions B and is-free-at v p B
using free-vars-in-is-free-at by blast
then have « # p € positions (FAbs v’ B) and is-free-at v (« # p) (FAbs v’ B)
using surj-pair[of v'] and is-free-at-to-abs|OF <is-free-at v p B> assms(1)] by force+
moreover have in-scope-of-abs v’ (« # p) (FAbs v’ B)
using in-scope-of-abs-in-abs by blast
ultimately show ?thesis
using assms(2) by blast
qed

2.10 Replacement of subformulas

inductive

is-replacement-at :: form = position = form = form = bool

(((4-(- < -) & -)» [1000, 0, 0, 0] 900)
where

pos-found: A{p + C) > C'if p=[ and C = C’
| replace-left-app: (G « H)(« # p < C) > (G'« H) if p € positions G and G(p < C) > G’
| replace-right-app: (G « H)({» # p «+ C) > (G « H') if p € positions H and H(p «+ C) > H'
| replace-abs: (Az~. E){« # p < C) > (Azy. E') if p € positions E and E{p < C) > E’
lemma is-replacement-at-implies-in-positions:

assumes C(p < A) > D

shows p € positions C

using assms by (induction rule: is-replacement-at.induct) auto

declare is-replacement-at.intros [intro!]
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lemma is-replacement-at-existence:
assumes p € positions C
obtains D where C{(p < A) > D
using assms proof (induction C arbitrary: p thesis)
case (FApp C; C5)
from FApp.prems(2) consider
(@) p =
| () p’. p =« # p' A p' € positions Cy
| (¢) 3p’. p=»# p' A p' € positions Co
by fastforce
then show ?case
proof cases
case a
with FApp.prems(1) show ?thesis
by blast
next
case b
with FApp.prems(1) show ?thesis
using FApp.IH(1) and replace-left-app by meson
next
case ¢
with FApp.prems(1) show ?thesis
using FApp.IH(2) and replace-right-app by meson
qed
next
case (FAbs v C)
from FAbs.prems(2) consider (a) p =[] | (b) Ip’. p = « # p’ A p’ € positions C’
using surj-pair|of v] by fastforce
then show ?case
proof cases
case q
with FAbs.prems(1) show ?thesis
by blast
next
case b
with FAbs.prems(1,2) show ?thesis
using FAbs.IH and surj-pair|of v] by blast
qed
qed force+

lemma is-replacement-at-minimal-change:
assumes C{p «+ A) > D
shows A =<, D
and Vp' € positions D. — prefiz p’ p A — prefix p p’ — subform-at D p’ = subform-at C p’
using assms by (induction rule: is-replacement-at.induct) auto

lemma is-replacement-at-binders:

assumes C(p < A) > D
shows binders-at D p = binders-at C p
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using assms by (induction rule: is-replacement-at.induct) simp-all

lemma is-replacement-at-occurs:
assumes C{p + A) > D
and — prefiz p’ p and — prefiz p p’
shows occurs-at v p’ C +— occurs-at v p’ D
using assms proof (induction arbitrary: p’ rule: is-replacement-at.induct)
case pos-found
then show ?case
by simp
next
case replace-left-app
then show ?case
proof (cases p’)
case (Cons d p")
with replace-left-app.prems(1,2) show ?thesis
by (cases d) (use replace-left-app.IH in force)+
qed force
next
case replace-right-app
then show ?case
proof (cases p’)
case (Cons d p')
with replace-right-app.prems(1,2) show ?thesis
by (cases d) (use replace-right-app.IH in force)+
qed force
next
case replace-abs
then show ?case
proof (cases p’)
case (Cons d p')
with replace-abs.prems(1,2) show ?thesis
by (cases d) (use replace-abs.IH in force)+
qed force
qed

lemma fresh-var-replacement-position-uniqueness:
assumes v ¢ vars C
and C(p <+ FVarv) > G
and occurs-at v p’ G
shows p’ = p
proof (rule ccontr)
assume p’ # p
from assms(2) have occurs-at vp G
by (simp add: is-replacement-at-minimal-change(1))
moreover have *: occurs-at v p’ C +— occurs-at v p’ G if — prefix p’ p and — prefiz p p’
using assms(2) and that and is-replacement-at-occurs by blast
ultimately show Fulse

proof (cases = prefix p’ p A — prefiz p p’)
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case True
with assms(3) and * have occurs-at v p’ C
by simp
then have v € vars C
using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show ?thesis
by contradiction
next
case Fulse
have FVar v X5 G
by (fact is-replacement-at-minimal-change(1)[OF assms(2)])
moreover from assms(3) have FVar v < p’ G
by simp
ultimately show ?thesis
using «p’ # p» and False and loop-subform-impossibility
by (blast dest: prefiz-order.antisym-conv2)
qed
qed

lemma is-replacement-at-new-positions:
assumes C(p «+ A) > D and prefiz p p’ and p’ € positions D
obtains p’’ where p’ = p @ p'’ and p'’ € positions A
using assms by (induction arbitrary: thesis p’ rule: is-replacement-at.induct, auto) blast+

lemma replacement-override:
assumes C{p + B) > D and C{p « A) > F
shows D{p < A) > F
using assms proof (induction arbitrary: F rule: is-replacement-at.induct)
case pos-found
from pos-found.hyps(1) and pos-found.prems have A = F
using is-replacement-at.simps by blast
with pos-found.hyps(1) show Zcase
by blast
next
case (replace-left-app p G C G' H)
have p € positions G’
by (
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-left-app.hyps(2)]]
)
from replace-left-app.prems obtain F’ where F = F'+« H and G{p + A) > F’
by (fastforce elim: is-replacement-at.cases)
from <G(p «+ A) > F’ have G'(p + A) > F’
by (fact replace-left-app.IH)
with «p € positions G'> show ?Zcase
unfolding «F = F' - H»> by blast
next
case (replace-right-app p H C H' G)
have p € positions H'
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by
(
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-right-app.hyps(2)]]

from replace-right-app.prems obtain F’ where FF = G « F' and H{p + A) > F'
by (fastforce elim: is-replacement-at.cases)
from <H(p < A) > F’» have H'(p + A) > F'
by (fact replace-right-app.IH)
with (p € positions H> show ?case
unfolding <F = G - F') by blast
next
case (replace-abs p E C E' z )
have p € positions E’
by
(
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-abs.hyps(2)]]
)

from replace-abs.prems obtain F’ where F' = \z. F' and E(p < A) > F’
by (fastforce elim: is-replacement-at.cases)
from «E(p < A) > F’» have E'{p «+ A) > F'
by (fact replace-abs.IH)
with (p € positions E'> show ?case
unfolding <F = Az~. F'» by blast
qged

lemma leftmost-subform-in-generalized-app-replacement:
shows (+C, C As)(replicate (length As) « + D) > (+<, D As)
using is-replacement-at-implies-in-positions and replace-left-app
by (induction As arbitrary: D rule: rev-induct) auto

2.11 Logical constants

abbreviation (input) r where r = 0
abbreviation (input) y where y = Suc ¢
abbreviation (input) 3 where 3 = Suc y
abbreviation (input) f where §f = Suc 3
abbreviation (input) g where g = Suc f
abbreviation (input) h where h = Suc g
abbreviation (input) ¢ where ¢ = Suc
abbreviation (input) ¢g where ¢g = Suc ¢
abbreviation (input) ¢, where ¢, = Suc ¢g

definition Q-constant-of-type :: type = con where
[simp]: Q-constant-of-type o = (¢g, a—a—0)

definition ‘ota-constant :: con where
[simp]: iota-constant = (c,, (i—0)—1)
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definition @ :: type = form (:Q.>) where
[simp]: Qo = FCon (Q-constant-of-type «)

definition fota :: form («v») where
[simp]: « = FCon iota-constant

definition is-Q-constant-of-type :: con = type = bool where
[iff]: is-Q-constant-of-type p o +— p = Q-constant-of-type «

definition is-iota-constant :: con = bool where
[iff]: is-iota-constant p +— p = iota-constant

definition is-logical-constant :: con = bool where
[iff]: is-logical-constant p +— (3 B. is-Q-constant-of-type p B) V is-iota-constant p

definition type-of-Q-constant :: con = type where
[simp]: type-of-Q-constant p = (THE «. is-Q-constant-of-type p «)

lemma constant-cases|case-names non-logical Q-constant t-constant, cases type: con):
assumes — is-logical-constant p = P
and AS. is-Q-constant-of-type p § = P
and is-iota-constant p =—> P
shows P
using assms by blast

2.12 Definitions and abbreviations
definition equality-of-type :: form = type = form = form («(- =-/ -)» [103, 0, 103] 102) where
[simp]: A= B=Qq+A+B

definition equivalence :: form = form = form (infixl «(=<) 102) where
[simp]: A =2 B = A =, B— more modular than the definition in [2]

definition true :: form («T,>) where
[simp]: To = Qo =0—0—0 Qo

definition false :: form (<Fy)) where
[Simp]r Fo = Xo. To =0—0 Ao Yo

definition PI :: type = form (<[] ->) where
[simp]: [[a = Qa—o * (Ara- To)

definition forall :: nat = type = form = form («(4¥-../ -)» [0, 0, 141] 141) where
[simp]: Vaa. A =]]a - (Aza. A)

Generalized universal quantification. We define V<, [z, ..., z,] A asVz1. -~ YV, A:

definition generalized-forall :: var list = form = form (V< - - [141, 141] 141) where
[simp]: ¥ 2, vs A = foldr (\(z, @) B. Vzq. B) vs A
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lemma innermost-subform-in-generalized-forall:
assumes vs # ||

shows A =fo10. (A p. [»,¢] @ p) vs | ¥ 2x V5 A
using assms by (induction vs) fastforce+

lemma innermost-replacement-in-generalized-forall:
assumes vs # ||
shows (V 2, vs C)(foldr (A-. (Q) [»,«]) vs [] < B) > (V< vs B)
using assms proof (induction vs)
case Nil
then show ?case
by blast
next
case (Cons v vs)
obtain z and « where v = (z, a)
by fastforce
then show ?case
proof (cases vs = [])
case True
with (v = (2, a)> show ?thesis
unfolding True by force
next
case Fulse
then have foldr (\-. (@) [»,«]) vs [| € positions (¥ <, vs C)
using innermost-subform-in-generalized-forall and is-subform-implies-in-positions by blast
moreover from False have (V <, vs C){foldr (\-. (Q) [»,«]) vs [| + B) > (V< vs B)
by (fact Cons.IH)
ultimately have (\zq. V<, vs C){« # foldr (A-. (Q) [»,«]) vs [| + B) > (\zg. V< vs B)
by (rule replace-abs)
moreover have « # foldr (A-. (Q) [»,«]) vs [| € positions (A\zq. ¥ 2, vs C)
using «foldr (\-. (@) [»,«]) vs [| € positions (¥ <, vs C)» by simp
ultimately have
(ITa * Aza. ¥ vs O)){» # « # foldr (A-. (Q) [»,«]) vs [ + B) > ([[a * Aza. V<, vs B))
by blast
then have (Vzq. V<, vs C){[»,«] @ foldr (A-. (Q) [»,4]) vs [] + B) > (Vaq. V<, vs B)
by simp
then show ?thesis
unfolding «v = (z, ) and generalized-forall-def and foldr.simps(2) and o-apply
and case-prod-conv .
qed
qed

lemma false-is-forall:

ShOWS Fo - V;o xo

unfolding false-def and forall-def and PI-def and equality-of-type-def ..
definition conj-fun :: form (¢\A\o—o—o*) Where

[simp]: No—o—0 =
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ALo- A\Do.
(

(Ago—0—30- Bo—so—0* To* To) =(0—0—0)—0 (Ago—s0—30- Bo—0—0 * To * Vo)

)

definition conj-op :: form = form = form (infixl <A< 131) where

[simp]: A NS B = Ap—so0A+B
Generalized conjunction. We define A2, [A1, ..., Ay] as Ay NS (- NS (Ap—1 NS Ap) )
definition generalized-conj-op :: form list = form (<A2, -» [0] 131) where

[simp]: NS, As = foldrl (A9) As

definition imp-fun :: form ({Dp—0—0>) where — = used instead of =, see [2]
[simp]: Do—o—0 = ALo- ADo. (To =< 10 A2 1)

definition imp-op :: form = form = form (infixl <2<, 111) where
[Slmp] A DQ B = Do—0—0 " A-B

Generalized implication. We define [Ay, ..., A,] D2, Bas A1 D2 (--- 22 (4, D¢ B) ---):
definition generalized-imp-op :: form list = form = form (infixl <<,) 111) where

[simp]: As D2, B = foldr (D2) As B
Given the definition below, it is interesting to note that ~< A and F, =< A are exactly the
same formula, namely @, = F, » A:
definition neg :: form = form («~2 - [141] 141) where

[simp]: ~C A= Qo= Fo- A

definition disj-fun :: form (<Vo—o—0*>) Where
[simpl: Vo—so—0 = Ao Ao. ~2 (~2 1o AC ~2 )

definition disj-op :: form = form = form (infixl «v<), 126) where
[Slmp] A \/Q B = Vo—so—o0 * A-B

definition ezists :: nat = type = form = form («(43--./ -)» [0, 0, 141] 141) where
[simp]: Fxq. A = ~2 (V. ~2 A)

lemma exists-fv:
shows free-vars (3zq. A) = free-vars A — {(z, )}
by simp

definition inequality-of-type :: form = type = form = form («(- #./ -)» [103, 0, 103] 102) where
(simpl: A 2o B =~ (A = B)

2.13 Well-formed formulas

inductive is-wff-of-type :: type = form = bool where
var-is-wff: is-wff-of-type a (zq,)
| con-is-wff: is-wff-of-type o ({c}a)
| app-is-wff: is-wff-of-type B (A « B) if is-wff-of-type (a«—pB) A and is-wff-of-type a B
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| abs-is-wff: is-wff-of-type (a—LB) (Azq. A) if is-wff-of-type B A

definition wffs-of-type :: type = form set (<wffs.> [0]) where
wffse, = {f =t form. is-wff-of-type o f}

abbreviation wffs :: form set where

wffs = Ja. wffsa

lemma is-wff-of-type-wffs-of-type-eq [pred-set-convl:
shows is-wff-of-type a« = (\f. f € wffsa)
unfolding wffs-of-type-def by simp

lemmas wffs-of-type-intros [introl] = is-wff-of-type.intros|to-set]

lemmas wffs-of-type-induct [consumes 1, induct set: wffs-of-type] = is-wff-of-type.induct[to-set]
lemmas wffs-of-type-cases [consumes 1, cases set: wffs-of-type] = is-wff-of-type.cases[to-set]
lemmas wffs-of-type-simps = is-wff-of-type.simps[to-set]

lemma generalized-app-wff [intro]:
assumes length As = length ts
and Vk < length As. As ' k € wffsss 1
and B € wffsfoigr () ts 8
shows 2, B As € wﬁsﬁ
using assms proof (induction As ts arbitrary: B rule: list-induct2)
case Nil
then show ?case
by simp
next
case (Cons A As t ts)
from Cons.prems(1) have A € wffsy
by fastforce
moreover from Cons.prems(2) have B € Wifs s foldr (=) ts B
by auto
ultimately have B - A € wﬁsfoldr (=) ts 8
by blast
moreover have Vi < length As. (A # As) ! (Suc k) = As ' kA (t # ts) ! (Suc k) = ts ! k
by force
with Cons.prems(1) have Yk < length As. As ! k € wffsis 11
by fastforce
ultimately have :2, (B« A) As € wffsp
using Cons.IH by (simp only:)
moreover have 2, B (A # As) =2, (B+ A) As
by simp
ultimately show Zcase
by (simp only:)
qed

lemma generalized-abs-wff [intro]:
assumes B ¢ wﬁs/g
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shows )\Q* vs B € wﬁsfoldr (=) (map snd vs) B

using assms proof (induction vs)
case Nil
then show ?case
by simp
next
case (Cons v vs)
let 20 = foldr (=) (map snd vs) 8
obtain z and « where v = (z, «)
by fastforce
then have F'Var v € wffsq
by auto
from Cons.prems have A9, vs B € wffsy;
by (fact Cons.IH)
with (v = (7, o)) have FAbs v (A9, vs B) € wffsy_s g5
by blast
moreover from (v = (z, a)) have foldr (=) (map snd (v # vs)) f = a—%
by simp
moreover have \9, (v # vs) B = FAbs v (\<, vs B)
by simp
ultimately show ?case by (simp only:)
qed

lemma Q-wff [intro]:
shows Qa € wffsa—a—o
by auto

lemma iota-wff [intro]:
shows | € wffs(
by auto

i—0)—>i

lemma equality-wff [intro]:
assumes A € wffsq and B € wffsq,
shows A =4 B € wffso
using assms by auto

lemma equivalence-wff [intro]:
assumes A € uffso and B € wffs,
shows A =2 B € uffs,
using assms unfolding equivalence-def by blast

lemma true-wff [intro]:
shows T € wffso
by force

lemma false-wff [intro]:

shows F, € wffso
by auto
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lemma pi-wff [intro]:
shows [[ o € wﬁs(a_m)_)o
using Pl-def by fastforce

lemma forall-wff [introl:
assumes A € wffsy
shows Vzy. A € wffso
using assms and pi-wff unfolding forall-def by blast

lemma generalized-forall-wff [intro]:
assumes B € wffs,
shows V<, vs B € wffs,
using assms proof (induction vs)
case (Cons v vs)
then show ?case
using surj-pair|of v] by force
qed simp

lemma conj-fun-wff [intro]:
shows Ap—o0—0 € Wffso—0—0
by auto

lemma conj-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows A A2 B € wffs,
using assms unfolding conj-op-def by blast

lemma imp-fun-wff [intro]:
shows Do 00 € WfsSo—0—0
by auto

lemma imp-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows 4 D2 B € wffs,
using assms unfolding imp-op-def by blast

lemma neg-wjff [intro]:
assumes A € wffsy
shows ~2 A € wffs,
using assms by fastforce

lemma disj-fun-wff [intro]:
shows Vo050 € Wffso—o0—0
by auto

lemma disj-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows A Ve B € wffs,
using assms by auto
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lemma exists-wff [introl:
assumes A € wffsy
shows Jzy. A € wffso
using assms by fastforce

lemma inequality-wff [intro]:
assumes A € wffsq and B € wffsq
shows A #4 B € wffso
using assms by fastforce

lemma wffs-from-app:
assumes A - B € uffs
obtains o where A € wﬁsa_w and B € wffsq
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-generalized-app:
assumes 2, B As € wﬁslg
obtains ts
where length ts = length As
and Yk < length As. As ' k € wffs;s 1
and B € wffsgoigr () ts 8
using assms proof (induction As arbitrary: B thesis)
case Nil
then show ?case
by simp
next
case (Cons A As)
from Cons.prems have «2, (B« A) As € wffsg
by auto
then obtain ts
where length ts = length As
and V& < length As. As ' k € wffsis 11
and B- A € wﬁsfoldr (=) ts B
using Cons.IH by blast
moreover
from (B« A € wﬁsfoldr (=) ts B obtain ¢ where B € wﬁst—ﬁoldr (=) ts B and A € wffsy
by (elim wffs-from-app)
moreover from <length ts = length As> have length (t # ts) = length (A # As)
by simp
moreover from (A € wffsp and Vk < length As. As ! k € wffs; 1 1
have V& < length (A # As). (A # As) ' k € wﬁs(t 4 ts) 1 k
by (simp add: nth-Cons’)
moreover from (B € wﬁst%foldr (=) ts 8’ have B € wﬁsfoldr (=) (t # ts) B
by simp
ultimately show “case
using Cons.prems(1) by blast
ged
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lemma wffs-from-abs:
assumes \zq. A € wffsy
obtains § where v = a—f and A € wﬁsﬁ
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-equality:
assumes A =4 B € wffsy
shows A € wffsq and B € wffsy
using assms by (fastforce elim: wffs-of-type-cases)+

lemma wffs-from-equivalence:
assumes A =2 B ¢ wffs,
shows A € wffsp and B € wffs,
using assms unfolding equivalence-def by (fact wffs-from-equality)+

lemma wffs-from-forall:
assumes Vzq. A € wffsy
shows A € wffs,
using assms unfolding forall-def and PI-def
by (fold equality-of-type-def) (drule wffs-from-equality, blast elim: wffs-from-abs)

lemma wffs-from-conj-fun:
assumes NAg—o—o * A+ B € wffsy
shows A € wffsp and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-conj-op:
assumes A A€ B € wffs,
shows A € wffsp and B € wffs,
using assms unfolding conj-op-def by (elim wffs-from-conj-fun)+

lemma wffs-from-imp-fun:
assumes D900 = A = B € wffso
shows A € wffsy, and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-imp-op:
assumes A D¢ B € wffs,
shows A € wffsy, and B € wffs,
using assms unfolding imp-op-def by (elim wffs-from-imp-fun)+

lemma wffs-from-neg:
assumes ~2 A4 € wffs,
shows A € wffso
using assms unfolding neg-def by (fold equality-of-type-def) (drule wffs-from-equality, blast)

lemma wffs-from-disj-fun:
assumes Vo0 * A+ B € wffso
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shows A € wffsy, and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-disj-op:
assumes A V¢ B € wffs,
shows A € wffsy, and B € wffs,
using assms and wffs-from-disj-fun unfolding disj-op-def by blast+

lemma wffs-from-exists:
assumes Jzq. A € wffso
shows A € wffso
using assms unfolding exists-def using wffs-from-neg and wffs-from-forall by blast

lemma wffs-from-inequality:

assumes A #4 B € wffso

shows A € wffsq and B € wffsq

using assms unfolding inequality-of-type-def using wffs-from-equality and wffs-from-neg by me-
son—+

lemma wff-has-unique-type:
assumes A € wffsq and A € wffsg
shows a =
using assms proof (induction arbitrary: o B rule: form.induct)
case (FVar v)
obtain z and vy where v = (z, )
by fastforce
with F'Var.prems have a = v and § = v
by (blast elim: wffs-of-type-cases)+
then show ?case ..
next
case (FCon k)
obtain z and v where k = (z, v)
by fastforce
with F'Con.prems have o = v and 8 = v
by (blast elim: wffs-of-type-cases)+
then show ?case ..
next
case (FApp A B)
from FApp.prems obtain o’ and 3’ where A € wffs,/_, , and A € wﬁsﬁxﬁﬁ
by (blast elim: wffs-from-app)
with FApp.IH(1) show ?case
by blast
next
case (FAbs v A)
obtain z and v where v = (z, v)
by fastforce
with FAbs.prems obtain o’ and 3’
where a = y—a’and 8 = y—3"and A € wffs, and A € wﬁ”sﬂz
by (blast elim: wffs-from-abs)
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with FAbs.IH show ?case
by simp
qed

lemma wffs-of-type-o-induct [consumes 1, case-names Var Con App):
assumes A € wffsy
and Az. P (zo)
and Ac. P ({clo)
and AA B a. A € wffsa—0 = B € wffso, = P (A + B)
shows P A
using assms by (cases rule: wffs-of-type-cases) simp-all

lemma diff-types-implies-diff-wffs:
assumes A € wffsq and B € wﬁ‘sﬁ
and o #
shows A # B
using assms and wff-has-unique-type by blast

lemma is-free-for-in-generalized-app [introl:
assumes is-free-for A v B and V C € lset Cs. is-free-for A v C
shows is-free-for A v (+, B Cs)
using assms proof (induction Cs rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc C Cs)
from snoc.prems(2) have is-free-for A v C and V C € Iset Cs. is-free-for A v C
by simp-all
with snoc.prems(1) have is-free-for A v (+¢, B Cs)
using snoc.IH by simp
with <is-free-for A v C» show Zcase
using is-free-for-to-app by simp
qged

lemma is-free-for-in-equality [intro:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =4 C)
using assms unfolding equality-of-type-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-con)

lemma is-free-for-in-equivalence [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =2 C)
using assms unfolding equivalence-def by (rule is-free-for-in-equality)

lemma is-free-for-in-true [intro]:

shows is-free-for A v (Ty)
by force
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lemma is-free-for-in-false [intro]:
shows is-free-for A v (Fy)
unfolding false-def by (intro is-free-for-in-equality is-free-for-closed-form) simp-all

lemma is-free-for-in-forall [intro]:
assumes is-free-for A v B and (z, ) ¢ free-vars A
shows is-free-for A v (Y zq. B)
unfolding forall-def and PI-def proof (fold equality-of-type-def)
have is-free-for A v (A\tq. To)
using is-free-for-to-abs|OF is-free-for-in-true assms(2)] by fastforce
moreover have is-free-for A v (A\zq. B)
by (fact is-free-for-to-abs|OF assms])
ultimately show is-free-for A v (A\ta. To =a—0 Aa. B)
by (iprover intro: assms(1) is-free-for-in-equality is-free-for-in-true is-free-for-to-abs)
qged

lemma is-free-for-in-generalized-forall [intro]:
assumes is-free-for A v B and Iset vs N free-vars A = {}
shows is-free-for A v (V <, vs B)
using assms proof (induction vs)
case Nil
then show ?case
by simp
next
case (Cons v’ vs)
obtain z and « where v’ = (z, a)
by fastforce
from Cons.prems(2) have v’ ¢ free-vars A and Iset vs N free-vars A = {}
by simp-all
from Cons.prems(1) and «Iset vs N free-vars A = {}» have is-free-for A v (¥ <, vs B)
by (fact Cons.IH)
from this and v’ ¢ free-vars A>[unfolded v’ = (x, a))] have is-free-for A v (¥ zq. V<, vs B)
by (intro is-free-for-in-forall)
with v/ = (z, a)) show Zcase
by simp
qged

lemma is-free-for-in-conj [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B A2 C)
proof —
have free-vars No—o—0 = {}
by force
then have is-free-for A v (Ap—o0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Ao—o—0 * B+ C)
by (intro is-free-for-to-app)
then show ?thesis
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by (fold conj-op-def)
qged

lemma is-free-for-in-imp [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B D2 C)
proof —
have free-vars Do—o—0 = {}
by force
then have is-free-for A v (Do—0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Dp—o—0* B+ C)
by (intro is-free-for-to-app)
then show ?thesis
by (fold imp-op-def)
qged

lemma is-free-for-in-neg [intro]:
assumes is-free-for A v B
shows is-free-for A v (~< B)
using assms unfolding neg-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-false is-free-for-in-con)

lemma is-free-for-in-disj [introl:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B V< C)
proof —
have free-vars Vo—o—0 = {}
by force
then have is-free-for A v (Vo—o0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Vo—so—0o * B+ C)
by (intro is-free-for-to-app)
then show ?thesis
by (fold disj-op-def)
qed

lemma replacement-preserves-typing:
assumes C{p < B) > D
and A =, C
and A € wffsq, and B € wffsq,
shows C € wjj‘"sﬂ +—— D € wffsﬁ
using assms proof (induction arbitrary: B rule: is-replacement-at.induct)
case (pos-found p C C' A)
then show ?case
using diff-types-implies-diff-wffs by auto
qed (metis is-subform-at.simps(2,3,4) wffs-from-app wffs-from-abs wffs-of-type-simps)+

corollary replacement-preserves-typing’”:
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assumes C{p < B) > D

and A =, C

and A € wffsq, and B € wffsq,

and C € wﬁsﬁ and D € wffsy

shows 3 =~

using assms and replacement-preserves-typing and wff-has-unique-type by simp

Closed formulas and sentences:

definition is-closed-wff-of-type :: form = type = bool where
[¢ff]: is-closed-wff-of-type A o +— A € wffsq N free-vars A = {}

definition is-sentence :: form = bool where
[iff]: is-sentence A «— is-closed-wff-of-type A o

2.14 Substitutions

type-synonym substitution = (var, form) fmap

definition is-substitution :: substitution = bool where
[iff]: is-substitution ¥ <+— (¥ (z, o) € fmdom’ 9. 9 $$! (z, o) € wffsa)

fun substitute :: substitution = form = form (S - - [51, 51]) where
S ¥ (zq) = (case ¥ $$ (z, ) of None = zq | Some A = A)
| S 9 ({cba) = {cla
|SY9(A-B)=(Sv¥ A)+-(SYB)
| S 9 (A\zq. A) = (if (x, &) ¢ fmdom’ O then Axg. S O A else Axg. S (fmdrop (z, o) 9) A)

lemma empty-substitution-neutrality:
shows S {$$} A = A4
by (induction A) auto

lemma substitution-preserves-typing:
assumes is-substitution v
and A € wffsq
shows S 9 A € wffsq
using assms(2) and assms(1)[unfolded is-substitution-def] proof (induction arbitrary: ©)
case (var-is-wff o x)
then show “case
by (cases (z, o)) € fmdom’ 9) (use fmdom’-notl in <force+»)
next
case (abs-is-wff f A a z)
then show “case
proof (cases (z, @) € fmdom’ )
case True
then have S ¥ (A\zy. A) = Azg. S (fmdrop (z, ) ¥) A
by simp
moreover from abs-is-wff.prems have is-substitution (fmdrop (z, o) )
by fastforce
with abs-is-wff.IH have S (fmdrop (z, a) ¥) A € wffsg
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by simp
ultimately show ¢thesis
by auto
next
case Fulse
then have S ¥ (Azq. A) = Azq. S Y A
by simp
moreover from abs-is-wff.IH have S ¥ A € wﬁsﬁ
using abs-is-wff.prems by blast
ultimately show ?Zthesis
by fastforce
qed
qged force+

lemma derived-substitution-simps:
shows S 9 Tyo =T,
and S 19 FO == FO

and S Y ([Ta) =[]«

and S ¥ (~¢ B) = ~2 (S¥ B)

and SV (B=q C)=(S9 B) =4 (S C)

and S 9 (B A2 C) = (SﬁB)/\Q(SﬂC)

and S (BVe C)=(S¥ B) ve (S¥ C)

and S ¥ (B 29 C) = (8193)3 (Sv 0)

and SY (B=2 C)=(S¥ B) =2 (S¥ 0)

and S ¥ (B #4 C) = (SY B) #4 (S 9 C)

and S ¢ (Vzqo. B) = (if (z, a) ¢ fmdom’ 9 then Vzq. S O B else Vig. S (fmdrop (z, o
and S ¥ (Jzq. B) = (if (z, a) ¢ fmdom’ 9 then Fzo. S ¥ B else Axq. S (fmdrop (z, «

by auto

lemma generalized-app-substitution:
shows S ¥ (+9, A Bs) =<, (S9Y A) (map (A\B. S ¥ B) Bs)
by (induction Bs arbitrary: A) simp-all

lemma generalized-abs-substitution:
shows S ¥ (A9, vs A) = A9, wvs (S (fmdrop-set (fmdom’ 9 N Iset vs) 9) A)
proof (induction vs arbitrary: ¥)
case Nil
then show “case
by simp
next
case (Cons v vs)
obtain z and « where v = (z, «)
by fastforce
then show ?case
proof (cases v & fmdom’ ¥)
case True
then have x: fmdom’ 9 N Iset (v # vs) = fmdom’ ¥ N lset vs
by simp
from True have S ¥ (A2, (v # vs) A) = 1. S 9 (A2, vs A)
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using v = (z, «)» by auto

also have ... = \zq. A9, vs (S (fmdrop-set (fmdom’ 9 N Iset vs) ¥) A)
using Cons.IH by (simp only:)
also have ... = A2, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs)) ¥) A)

using v = (z, @) and * by auto

finally show ?thesis .

next

case Fulse

let 29’ = fmdrop v ¥

have x: fmdrop-set (fmdom’ ¥ N lset (v # vs)) ¥ = fmdrop-set (fmdom’ 29’ N Iset vs) 29’
using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)

from Fulse have S ¥ (A9, (v # vs) A) = Azq. S 29’ (A2, vs A)
using v = (z, «)» by auto

also have ... = \zq. A2, vs (S (fmdrop-set (fmdom’ 29’ N Iset vs) 29') A)
using Cons.IH by (simp only:)
also have ... = A9, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs)) ) A)

using v = (z, @) and * by auto
finally show #thesis .
qed
qed

lemma generalized-forall-substitution:
shows S 9 (V <, vs A) = V2, vs (S (fmdrop-set (fmdom’ ¥ N Iset vs) ) A)
proof (induction vs arbitrary: )
case Nil
then show ?case
by simp
next
case (Cons v vs)
obtain z and « where v = (z, «)
by fastforce
then show ?case
proof (cases v & fmdom’ 9)
case True
then have *: fmdom’ 9 N Iset (v # vs) = fmdom’ ¥ N lset vs
by simp
from True have S ¥ (V<, (v # vs) A) = Vzo. S Y (VC, vs A)
using v = (z, «)» by auto

also have ... = Vaqo. V<, vs (S (fmdrop-set (fmdom’ 9 N Iset vs) ) A)
using Cons.IH by (simp only:)
also have ... = V<, (v # vs) (S (fmdrop-set (fmdom’ Y N Iset (v # vs)) V) A)

using (v = (z, a)» and * by auto

finally show ?thesis .

next

case Fulse

let 29’ = fmdrop v ¥

have x: fmdrop-set (fmdom’ ¢ N lset (v # vs)) ¥ = fmdrop-set (fmdom’ 29’ N Iset vs) 29’
using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)

from False have S 9 (Y2, (v # vs) A) = V. S 29" (V< vs A)
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using v = (z, «)» by auto

also have ... = Vaqo. V<, vs (S (fmdrop-set (fmdom’ 20’ N Iset vs) 29") A)
using Cons.IH by (simp only:)
also have ... = V<, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs)) V) A)

using v = (z, @) and * by auto
finally show ?thesis .
qed
qed

lemma singleton-substitution-simps:
shows S {(z, a) — A} (yg) = (if (z, @) # (y, B) then yg else A)
and S {(z, @) — A} ({c}a) = {c}a
and S {(z, a) — A} (B+ C) = (S {(z, «) — A} B) » (S {(z, @) — A} C)
and S {(z, o) — A} (A\yg. B) = Ayg. (if (z, @) = (y, B) then B else S {(z, a) — A} B)
by (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma substitution-preserves-freeness:
assumes y ¢ free-vars A and y # z
shows y ¢ free-vars S {x — FVar z} A
using assms(1) proof (induction A rule: free-vars-form.induct)
case (1 z' )
with assms(2) show ?case
using surj-pair[of z] by (cases z = (z', o)) force+
next
case (4 2’ a A)
then show ?case
using surj-pair|of z]
by (cases x = (z’, ) (use singleton-substitution-simps(4) in presburger, auto)
qed auto

lemma renaming-substitution-minimal-change:
assumes y ¢ vars A and y # 2z
shows y ¢ vars (S {z — FVar z} A)
using assms(1) proof (induction A rule: vars-form.induct)
case (1 z' @)
with assms(2) show ?case
using surj-pair[of z] by (cases © = (z', o)) force+
next
case (4 z' a A)
then show ?case
using surj-pair|of |
by (cases x = (z', «)) (use singleton-substitution-simps(4) in presburger, auto)
qged auto

lemma free-var-singleton-substitution-neutrality:
assumes v ¢ free-vars A
shows S {v — B} A=A
using assms

by
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(induction A rule: free-vars-form.induct)
(simp-all, metis empty-substitution-neutrality fmdrop-empty fmdrop-fmupd-same)

lemma identity-singleton-substitution-neutrality:
shows S {v — FVarv} A=A
by
(induction A rule: free-vars-form.induct)
(simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma free-var-in-renaming-substitution:
assumes t # y
shows (z, a) ¢ free-vars (S {(z, &) — ya} B)
using assms by (induction B rule: free-vars-form.induct) simp-all

lemma renaming-substitution-preserves-form-size:
shows form-size (S {v — FVar v’} A) = form-size A
proof (induction A rule: form-size.induct)
case (1 z «)
then show ?case
using form-size.elims by auto
next
case (4 z a A)
then show ?case
by (cases v = (z, o)) (use singleton-substitution-simps(4) in presburger, auto)
qed simp-all

The following lemma corresponds to X5100 in [2]:

lemma substitution-composability:
assumes v’ ¢ vars B
shows S {v'— A} S {v»— FVarv'} B=S {v— A} B
using assms proof (induction B arbitrary: v’)
case (FAbs w C)
then show ?case
proof (cases v = w)
case True
from v’ ¢ vars (FAbs w C)» have v' ¢ free-vars (FAbs w C')
using free-vars-in-all-vars by blast
then have S {v' — A} (FAbs w C) = FAbs w C
by (rule free-var-singleton-substitution-neutrality)
from (v = w» have v ¢ free-vars (FAbs w C)
using surj-pair|of w] by fastforce
then have S {v — A} (FAbs w C) = FAbs w C
by (fact free-var-singleton-substitution-neutrality)

also from (S {v' — A} (FAbs w C') = FAbs w C> have ... = S {v' — A} (FAbs w C)
by (simp only:)
also from v = w» have ... =S {v/— A} S {v — FVar v’} (FAbs w C)

using free-var-singleton-substitution-neutrality| OF v & free-vars (FAbs w C)] by (simp only:)
finally show ?%thesis ..
next

63



case Fulse
from FAbs.prems have v' ¢ vars C
using surj-pair[of w] by fastforce
then show ?thesis
proof (cases v/ = w)
case True
with FAbs.prems show ?thesis
using vars-form.elims by auto
next
case Fulse
from v # w» have S {v — A} (FAbs w C) = FAbs w (S {v — A} O)
using surj-pair|of w] by fastforce
also from FAbs.IH have ... = FAbs w (S {v/ — A} S {v — FVar v} C)
using v’ ¢ vars C» by simp
also from v’ # w> have ... =S {v/ — A} (FAbs w (S {v — FVar v’} C))
using surj-pair|of w] by fastforce
also from v # w» have ... =8 {v'— A} S {v — FVar v’} (FAbs w C)
using surj-pair|of w] by fastforce
finally show ?thesis ..
qed
qed
qed auto

The following lemma corresponds to X5101 in [2]:

lemma renaming-substitution-composability:
assumes z ¢ free-vars A and is-free-for (FVar z) © A
shows S {z — FVar y} S {z — FVar z} A=S {z — FVary} A
using assms proof (induction A arbitrary: z)
case (FVar v)
then show ?case
using surj-pair|of v]| and surj-pair[of z] by fastforce
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp B C)
let 2., = {z — FVar y} and 29,, = {z — FVar z} and %,, = {z — FVar y}
from <is-free-for (FVar z) x (B « C)» have is-free-for (FVar z) « B and is-free-for (FVar z) z C
using is-free-for-from-app by iprover+
moreover from <z ¢ free-vars (B » C)» have z ¢ free-vars B and z ¢ free-vars C
by simp-all
ultimately have x: S 29,, S 29,, B=8 #,, Band *x: S %9, S 29,, C =S %, C
using FApp.IH by simp-all
have S 29., S %,, (B- C) = (S 29,, S %,. B) - (S #,, S %, C)
by simp
also from * and x have ... = (S %,, B) + (S %,, C)
by (simp only:)
also have ... =S %,, (B C)
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by simp
finally show ?Zcase .
next
case (FAbs w B)
let 29,, = {z — FVar y} and %,, = {z — FVar z} and %,, = {z — FVar y}
show Zcase
proof (cases T = w)
case True
then show ?thesis
proof (cases z = w)
case True
with <z = w» have x ¢ free-vars (FAbs w B) and z ¢ free-vars (FAbs w B)
using surj-pair|[of w] by fastforce+
from «z ¢ free-vars (FAbs w B)» have S %),, (FAbs w B) = FAbs w B
by (fact free-var-singleton-substitution-neutrality)

also from <z ¢ free-vars (FAbs w B)» have ... =S %9,, (FAbs w B)
by (fact free-var-singleton-substitution-neutrality[symmetric])
also from <z ¢ free-vars (FAbs w B)» have ... =S %),, S ?9,, (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
next
case Fulse
with <z = w» have z ¢ free-vars B and x ¢ free-vars (FAbs w B)
using <z ¢ free-vars (FAbs w B)» and surj-pair|of w] by fastforce+
from <z ¢ free-vars B> have S %),, B = B
by (fact free-var-singleton-substitution-neutrality)
from <z ¢ free-vars (FAbs w B)» have S 29,, (FAbs w B) = FAbs w B
by (fact free-var-singleton-substitution-neutrality)
also from S 29,, B = B» have ... = FAbs w (S %9,, B)
by (simp only:)
also from <z ¢ free-vars (FAbs w B)) have ... =S 7)., (FAbs w B)
by (simp add: <FAbs w B = FAbs w (S %9,, B)» free-var-singleton-substitution-neutrality)
also from <z ¢ free-vars (FAbs w B)» have ... =S %,, S ?9,, (FAbs w B)
using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
qed
next
case Fulse
then show ?thesis
proof (cases z = w)
case True
have z ¢ free-vars B
proof (rule ccontr)
assume — z ¢ free-vars B
with «z # w» have z € free-vars (FAbs w B)
using surj-pair[of w] by fastforce
then obtain p where p € positions (FAbs w B) and is-free-at x p (FAbs w B)
using free-vars-in-is-free-at by blast
with <is-free-for (FVar z) © (FAbs w B)> have — in-scope-of-abs z p (FAbs w B)
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by (meson empty-is-position is-free-at-in-free-vars is-free-at-in-var is-free-for-def)
moreover obtain p’ where p = « # p’
using is-free-at-from-absE[OF (is-free-at x p (FAbs w B))] by blast
ultimately have z # w
using in-scope-of-abs-in-abs by blast
with <z = w» show Fulse
by contradiction
qed
then have x: S #J,, B=S 2J,. B
using free-var-singleton-substitution-neutrality by auto
from <z # w» have S 2,, (FAbs w B) = FAbs w (S %), B)
using surj-pair|of w] by fastforce
also from * have ... = FAbs w (S 29,, B)
by (simp only:)
also from FAbs.prems(1) have ... =S %), (FAbs w (S %,. B))
using <z ¢ free-vars By and free-var-singleton-substitution-neutrality by auto
also from <z # w» have ... =S %,, S 2, (FAbs w B)
using surj-pair|of w] by fastforce
finally show ?thesis ..
next
case Fulse
obtain v,, and a where w = (vy, «)
by fastforce
with <is-free-for (F'Var z) x (FAbs w B)» and <z # w» have is-free-for (F'Var z) x B
using is-free-for-from-abs by iprover
moreover from <z ¢ free-vars (FAbs w B)» and (z # w» and «w = (v,,, a)> have z ¢ free-vars

B
by simp
ultimately have x: S 29., S 29,, B=8S #%,, B
using FAbs.IH by simp
from «z # w» have S %),, (FAbs w B) = FAbs w (S ?0,, B)
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
also from * have ... = FAbs w (S #),, S ?%,, B)
by (simp only:)
also from ¢z # w» have ... =S 23, (FAbs w (S %,. B))
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
also from <z # w» have ... =S %,, S ?2,, (FAbs w B)
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
qed
qed
ged

lemma absent-vars-substitution-preservation:
assumes v ¢ vars A
and Vv’ € fmdom’ 9. v ¢ vars (0 $$! v')
shows v ¢ vars (S ¥ A)

using assms proof (induction A arbitrary: 9)
case (FVar v’
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then show ?case
using surj-pair[of v'] by (cases v’ € fmdom’ ¥) (use fmlookup-dom’-iff in force)+
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case FApp
then show ?case
by simp
next
case (FAbs w B)
from FAbs.prems(1) have v ¢ vars B
using vars-form.elims by auto
then show ?case
proof (cases w € fmdom’ )
case True
from FAbs.prems(2) have Vv’ € fmdom’ (fmdrop w 9). v ¢ vars ((fmdrop w 9) $3! v’)
by auto
with (v ¢ vars B> have v ¢ vars (S (fmdrop w ¥) B)
by (fact FAbs.IH)
with FAbs.prems(1) have v ¢ vars (FAbs w (S (fmdrop w ) B))
using surj-pair|of w] by fastforce
moreover from True have S ¥ (FAbs w B) = FAbs w (S (fmdrop w ¥) B)
using surj-pair[of w] by fastforce
ultimately show ?thesis
by simp
next
case Fulse
then show ?thesis
using FAbs.IH and FAbs.prems and surj-pair[of w] by fastforce
qed
qed

lemma substitution-free-absorption:
assumes v $$ v = None and v ¢ free-vars B
shows S ({v — A} ++,9) B=S VY B
using assms proof (induction B arbitrary: )
case (FAbs w B)
show Zcase
proof (cases v # w)
case True
with FAbs.prems(2) have v ¢ free-vars B
using surj-pair|of w] by fastforce
then show ?thesis
proof (cases w € fmdom’ 9)
case True
then have S ({v — A} ++; ¥) (FAbs w B) = FAbs w (S (fmdrop w ({v — A} ++ ¥)) B)
using surj-pair|of w] by fastforce
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also from (v # w» and True have ... = FAbs w (S ({v — A} ++ fmdrop w 9) B)
by (simp add: fmdrop-fmupd)

also from FAbs.prems(1) and <v ¢ free-vars B> have ... = FAbs w (S (fmdrop w ¢) B)
using FAbs.IH by simp
also from True have ... = S ¢ (FAbs w B)

using surj-pair|of w] by fastforce
finally show ?thesis .
next
case Fulse
with FAbs.prems(1) have S ({v — A} ++; ¥) (FAbs w B) = FAbs w (S {v — A} ++; ¥) B)
using v # w» and surj-pair[of w] by fastforce

also from FAbs.prems(1) and v ¢ free-vars B> have ... = FAbs w (S ¥ B)
using FAbs.IH by simp
also from Fulse have ... = S ¢ (FAbs w B)

using surj-pair|of w] by fastforce
finally show ?thesis .
qed
next
case Fulse
then have fmdrop w ({v — A} ++5 V) = fmdrop w 9
by (simp add: fmdrop-fmupd-same)
then show ?thesis
using surj-pair[of w| by (metis (no-types, lifting) fmdrop-idle’ substitute.simps(4))
qed
qged fastforce+

lemma substitution-absorption:
assumes 9 $$ v = None and v ¢ vars B
shows S ({v— A} ++;9) B=S VY B
using assms by (meson free-vars-in-all-vars in-mono substitution-free-absorption)

lemma is-free-for-with-renaming-substitution:
assumes is-free-for A © B
and y ¢ vars B
and z ¢ fmdom’ ¢
and Vv € fmdom’ 9. y & vars (9 $$! v)
and Vv € fmdom’ 9. is-free-for (9 $$! v) v B
shows is-free-for A y (S ({z — FVar y} ++; 9) B)
using assms proof (induction B arbitrary: )
case (FVar w)
then show ?case
proof (cases w = x)
case True
with FVar.prems(3) have S ({z — FVar y} ++; ) (FVar w) = FVar y
using surj-pair|of w] by fastforce
then show ?thesis
using self-subform-is-at-top by fastforce
next
case Fulse
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then show ?thesis
proof (cases w € fmdom’ V)
case True
from Fulse have S ({z — FVar y} ++ 0) (FVar w) = S 9 (FVar w)
using substitution-absorption and surj-pair[of w] by force
also from True have ... = 9 $$! w
using surj-pair|[of w] by (metis fmdom’-notl option.case-eq-if substitute.simps(1))
finally have S ({z — FVar y} ++; 9) (FVar w) =9 $$! w .
moreover from True and FVar.prems(4) have y ¢ vars (9 $$! w)
by blast
ultimately show ?thesis
using form-is-free-for-absent-var by presburger
next
case Fulse
with FVar.prems(3) and «w # 2» have S ({z — FVar y} ++5 ¥) (FVar w) = FVar w
using surj-pair|of w] by fastforce
with FVar.prems(2) show ?thesis
using form-is-free-for-absent-var by presburger
qed
qed
next
case (FCon k)
then show ?case
using surj-pair[of k] by fastforce
next
case (FApp C D)
from FApp.prems(2) have y ¢ vars C and y ¢ vars D
by simp-all
from FApp.prems(1) have is-free-for A x C and is-free-for A © D
using is-free-for-from-app by iprover+
have Vv € fmdom’ 9. is-free-for (9 $$! v) v C A is-free-for (9 $$! v) v D
proof (rule balll)
fix v
assume v € fmdom’ ¥
with FApp.prems(5) have is-free-for (¢ $$! v) v (C' + D)
by blast
then show is-free-for (¢ $3! v) v C' A is-free-for (¢ $$! v) v D
using is-free-for-from-app by iprover+
qed
then have
x: Vv € fmdom’ 9. is-free-for (¥ $$! v) v C and *x: Vv € fmdom’ 9. is-free-for (9 $$! v) v D
by auto
have S ({z — FVar y} ++; 9) (C - D) = (S ({z — FVar y} ++; 9) C) « (S ({z — FVar y}
++¢9) D)
by simp
moreover have is-free-for A y (S ({z — FVar y} ++¢ 9) C)
by (rule FApp.IH(1)[OF <is-free-for A x C» <y ¢ vars C» FApp.prems(8,4) *|)
moreover have is-free-for A y (S ({z — FVar y} ++5 9) D)
by (rule FApp.IH(2)[OF <is-free-for A x Dy <y ¢ vars Dy FApp.prems(3,4) *x])
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ultimately show ?case

using is-free-for-in-app by simp

next
case (FAbs w B)
obtain z,, and «,, where w = (z, )

by fastforce

from FAbs.prems(2) have y ¢ vars B

using vars-form.elims by auto

then show ?case
proof (cases w = 1)

case True
from True and <z ¢ fmdom’ ¥ have w ¢ fmdom’ ¥ and z ¢ free-vars (FAbs w B)
using «w = (zy, ) by fastforce+
with True have S ({z — FVar y} ++5 9) (FAbs w B) = S ¥ (FAbs w B)
using substitution-free-absorption by blast
also have ... = FAbs w (S ¥ B)
using «w = (T, Q) (w & fmdom’ ¥ substitute.simps(4) by presburger
finally have S ({z — FVar y} ++; ) (FAbs w B) = FAbs w (S 9 B) .
moreover from (S ¢ (FAbs w B) = FAbs w (S ¢ B)»> have y ¢ vars (FAbs w (S ¢ B))
using absent-vars-substitution-preservation|OF FAbs.prems(2,4)] by simp
ultimately show ?thesis
using is-free-for-absent-var by (simp only:)

next

case Fulse
obtain v,, and «,, where w = (v, @)
by fastforce
from FAbs.prems(1) and «w # x> and «w = (vy, ay)> have is-free-for A x B
using is-free-for-from-abs by iprover
then show ?thesis
proof (cases w € fmdom’ 9)
case True
then have S ({z — FVar y} ++ 9) (FAbs w B) = FAbs w (S (fmdrop w ({z — FVar y} ++;

) B)

using (w = (vy, @y )» by (simp add: fmdrop-idle’)

also from (w # 2> and True have ... = FAbs w (S ({z — FVar y} ++; fmdrop w ¥) B)
by (simp add: fmdrop-fmupd)

finally

have «: S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++5 fmdrop w V)

have Vv € fmdom’ (fmdrop w 9). is-free-for (fmdrop w 9 $$! v) v B
proof
fix v
assume v € fmdom’ (fmdrop w V)
with FAbs.prems(5) have is-free-for (fmdrop w 9 $$! v) v (FAbs w B)
by auto
moreover from v € fmdom’ (fmdrop w ¥)> have v # w
by auto
ultimately show is-free-for (fmdrop w 9 $$! v) v B
unfolding <w = (vy, @) using is-free-for-from-abs by iprover
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qed

moreover from FAbs.prems(3) have z ¢ fmdom’ (fmdrop w 9)
by simp

moreover from FAbs.prems(4) have Vv € fmdom’ (fmdrop w 9). y ¢ vars (fmdrop w ¢ $$! v)
by simp

ultimately have is-free-for A y (S ({z — FVar y} ++ fmdrop w ¥) B)
using <is-free-for A By and <y ¢ vars By and FAbs.IH by iprover

then show ?thesis

proof (cases z ¢ free-vars B)

case True
have y ¢ vars (S ({z — FVar y} ++5 ) (FAbs w B))
proof —
have S ({z — FVar y} ++ 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++ fmdrop w 9)
B)
using * .
also from «x ¢ free-vars B> and FAbs.prems(3) have ... = FAbs w (S (fmdrop w ) B)
using substitution-free-absorption by (simp add: fmdom’-notD)
finally have S ({z — FVar y} ++; ¥) (FAbs w B) = FAbs w (S (fmdrop w ) B) .
with FAbs.prems(2) and «w = (vy, ) and FAbs.prems(4) show ?thesis
using absent-vars-substitution-preservation by auto
qed
then show ?thesis
using is-free-for-absent-var by simp
next
case Fulse
have w ¢ free-vars A
proof (rule ccontr)
assume — w ¢ free-vars A
with Fulse and <w # x> have — is-free-for A x (FAbs w B)
using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False
by contradiction
qed
with <is-free-for A y (S ({z — FVar y} ++ fmdrop w 9) B)»
have is-free-for A y (FAbs w (S ({z — FVar y} ++5 fmdrop w ¥) B))
unfolding «w = (vy, au,)> using is-free-for-to-abs by iprover
with x show ?%thesis
by (simp only:)
qed
next
case Fulse

have Vv € fmdom’ V. is-free-for (9 $$! v) v B
proof (rule balll)
fix v
assume v € fmdom’ Y
with FAbs.prems(5) have is-free-for (9 $$! v) v (FAbs w B)
by blast
moreover from (v € fmdom’ 9> and «w ¢ fmdom’ ¢¥> have v # w
by blast
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ultimately show is-free-for (0 $$! v) v B
unfolding «w = (vy, @) using is-free-for-from-abs by iprover
qed
with (is-free-for A © By and <y ¢ vars B> and FAbs.prems(3,4)
have is-free-for A y (S ({z — FVar y} ++; 9) B)
using FAbs.IH by iprover
then show ?thesis
proof (cases x ¢ free-vars B)
case True
have y ¢ vars (S ({z — FVar y} ++5 9) (FAbs w B))
proof —
from Fualse and <w = (vy, ) and (w # o
have S ({z — FVar y} ++5 ¥) (FAbs w B) = FAbs w (S ({z — FVar y} ++5 ¥) B)
by auto
also from «z ¢ free-vars By and FAbs.prems(3) have ... = FAbs w (S ¥ B)
using substitution-free-absorption by (simp add: fmdom’-notD)
finally have S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ¥ B) .
with FAbs.prems(2,4) and «w = (vy, ay)» show ?Zthesis
using absent-vars-substitution-preservation by auto
qed
then show ?%thesis
using is-free-for-absent-var by simp
next
case Fulse
have w ¢ free-vars A
proof (rule ccontr)
assume — w ¢ free-vars A
with Fulse and <w # x> have — is-free-for A x (FAbs w B)
using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False
by contradiction
qed
with <is-free-for A y (S ({z — FVar y} ++¢ 9) B)
have is-free-for A y (FAbs w (S ({z — FVar y} ++; ¥) B))
unfolding <w = (vy, ) using is-free-for-to-abs by iprover
moreover from (w ¢ fmdom’ 9> and «w # z» and FAbs.prems(3)
have S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++¢ 9) B)
using surj-pair[of w] by fastforce
ultimately show ?thesis
by (simp only:)
qed
qed

qed

The following lemma allows us to fuse a singleton substitution and a simultaneous substitution,
as long as the variable of the former does not occur anywhere in the latter:

lemma substitution-fusion:
assumes is-substitution 9 and is-substitution {v — A}
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and 9 $$ v = None and Vo' € fmdom’ 9. v ¢ vars (¥ $3! v')
shows S {v — A} SY¥ B=S ({v— A} ++;9) B
using assms(1,3,4) proof (induction B arbitrary: 9)
case (FVar v
then show “case
proof (cases v’ ¢ fmdom’ )
case True
then show ?thesis
using surj-pair[of v] by fastforce
next
case Fulse
then obtain A’ where ¥ $$ v/ = Some A’
by (meson fmlookup-dom’-iff)
with False and FVar.prems(3) have v ¢ vars A’
by fastforce
then have S {v — A} A'= A’
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
from ¥ $$ v’ = Some A" have S {v — A} SO (FVarv') =S {v — A} A’
using surj-pair[of v] by fastforce

also from S {v — A} A’= A have ... = A’
by (simp only:)
also from <« $$ v’/ = Some A" and ¥ $§ v = None> have ... =S ({v — A} ++; 9) (FVar v’

using surj-pair[of v'] by fastforce
finally show “thesis .
qed
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp C D)
have S {v — A} SY (C-D) =S {v— A} (S¥ C) - (S Y D))

by auto

also have ... = (S{v— A} SV C) (S {v— A} SV D)
by simp

also from FApp.IH have ... = (S ({v — A} ++5 ) C) « (S ({v — A} ++¢ 9) D)
using FApp.prems(1,2,3) by presburger

also have ... =S ({v— A} ++; 9) (C - D)
by simp

finally show ?Zcase .

next

case (FAbs w C)
obtain v,, and o where w = (v, «)
by fastforce
then show ?case
proof (cases v # w)
case True
show ?thesis
proof (cases w ¢ fmdom’ V)
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case True
then have S {v — A} SV (FAbs w C) =S {v — A} (FAbs w (S 9 C))
by (simp add: «<w = (vy, @)))
also from (v # w> have ... = FAbs w (S {v — A} S 9 C)
by (simp add: «w = (vy, @)))
also from FAbs.IH have ... = FAbs w (S ({v — A} ++; 9) C)
using FAbs.prems(1,2,3) by blast
also from (v # w» and True have ... =S ({v — A} ++; V) (FAbs w C)
by (simp add: <w = (vy, a))
finally show ?thesis .
next
case Fulse
then have S {v — A} S ¥ (FAbs w C) = S {v — A} (FAbs w (S (fmdrop w v9) C))
by (simp add: «<w = (vy, @)))
also from (v # w» have ... = FAbs w (S {v — A} S (fmdrop w ¥) C)
by (simp add: «w = (vy, @)))
also have ... = FAbs w (S ({v — A} ++; fmdrop w 9) C)
proof —
from <(is-substitution > have is-substitution (fmdrop w )
by fastforce
moreover from «J $$ v = None> have (fmdrop w 9) $$ v = None
by force
moreover from FAbs.prems(3) have Vv’ € fmdom’ (fmdrop w 9). v ¢ vars ((fmdrop w 9) $$!
v’)
by force
ultimately show %thesis
using FAbs.IH by blast
qed
also from (v # w» have ... =S ({v — A} ++; ) (FAbs w C)
by (simp add: «w = (vy, @) fmdrop-idle’)
finally show ?thesis .
qed
next
case Fulse
then show ?thesis
proof (cases w ¢ fmdom’ )
case True
then have S {v — A} S ¥ (FAbs w C) =S {v — A} (FAbs w (S 9 C))
by (simp add: «<w = (vy, @)))
also from «— v # w» have ... = FAbs w (S 9 C)
using «w = (vy, @) and singleton-substitution-simps(4) by presburger
also from <= v # w» and True have ... = FAbs w (S (fmdrop w ({v — A} ++; ¥)) C)
by (simp add: fmdrop-fmupd-same fmdrop-idle’)
also from = v # w) have ... =S ({v — A} ++5 ) (FAbs w C)
by (simp add: «<w = (vy, @)))
finally show ?thesis .
next
case Fulse
then have S {v — A} S ¥ (FAbs w C) = S {v — A} (FAbs w (S (fmdrop w ¥) C))
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by (simp add: «<w = (vy, @)))

also from «— v # w» have ... = FAbs w (S (fmdrop w ¥) C)
using ¢ $% v = None> and False by (simp add: fmdom’-notI)
also from = v # w» have ... = FAbs w (S (fmdrop w ({v — A} ++ 0)) C)
by (simp add: fmdrop-fmupd-same)
also from - v # w» and False and <9 $$ v = None» have ... =S ({v — A} ++; ) (FAbs
w C)

by (simp add: fmdom’-notI)
finally show ?thesis .
qed
qed
qged

lemma updated-substitution-is-substitution:
assumes v ¢ fmdom’ ¥ and is-substitution (9(v — A))
shows is-substitution U
unfolding is-substitution-def proof (intro balll)
fix v :: var
obtain z and a where v’ = (z, a)
by fastforce
assume v’ € fmdom’ 9
with assms(2)[unfolded is-substitution-def] have v’ € fmdom’ (9(v — A))
by simp
with assms(2)[unfolded is-substitution-def] have ¥(v — A) $$! (z, @) € wffsa
using v’ = (z, a)» by fastforce
with assms(1) and v’ € fmdom’ ¥ and (v’ = (z, a)> have ¥ $3$! (z, @) € wffsq
by (metis fmupd-lookup)
then show case v’ of (z, o) = 9 $3! (2, a) € wffsa
by (simp add: «v' = (z, a))
qed

definition is-renaming-substitution where
[iff]: is-renaming-substitution ¥ <— is-substitution 9 A fmpred (A\- A. Jv. A = FVar v) 9

1 n 1 n
The following lemma proves that S zl‘” ;fj "B=S ;;?1 - S zf{”B provided that
ay t Jan ay an
. xal ... Zg, are distinct variables
oyl | -+ Yg, are distinct variables, distinct from rl , -+ oy and from all variables in B

(i.e., they are fresh variables)

In other words, simultaneously renaming distinct variables with fresh ones is equivalent to
renaming each variable one at a time.

lemma fresh-vars-substitution-unfolding:
fixes ps :: (var x form) list
assumes 9 = fmap-of-list ps and is-renaming-substitution 1
and distinct (map fst ps) and distinct (map snd ps)
and vars (fmran’ 9) N (fmdom’ ¥ U vars B) = {}
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shows S ¥ B = foldr (\(z, y) C. S {z — y} C) ps B
using assms proof (induction ps arbitrary: 1)
case Nil
then have ¥ = {$$}
by simp
then have SY9 B= B
using empty-substitution-neutrality by (simp only:)
with Nil show ?Zcase
by simp
next
case (Cons p ps)
from Cons.prems(1,2) obtain z and y where 9 $$ (fst p) = Some (FVar y) and p = (z, FVar y)
using surj-pair|of p| by fastforce
let 29’ = fmap-of-list ps
from Cons.prems(1) and <p = (z, FVar y)> have 9 = fmupd z (FVar y) %9’
by simp
moreover from Cons.prems(3) and <p = (z, FVar y)> have z ¢ fmdom’ 29’
by simp
ultimately have ¥ = {z — FVar y} ++; %’
using fmap-singleton-comm by fastforce
with Cons.prems(2) and <z ¢ fmdom’ 29"y have is-renaming-substitution 29’
unfolding is-renaming-substitution-def and ¢ = frmupd x (FVar y) 29"
using updated-substitution-is-substitution by (metis fmdiff-fmupd fmdom’-notD fmpred-filter)
from Cons.prems(2) and <9 = fmupd z (FVar y) 20"y have is-renaming-substitution {z — FVar
y}
by auto
have

foldr (M (z, y) C. S {z — y} C) (p # ps) B

S {z — FVar y} (foldr (M(z, y) C. S {z — y} C) ps B)
by (simp add: <p = (z, FVar y)»)
also have ... =S {z — FVary} S %' B
proof —
from Cons.prems(3,4) have distinct (map fst ps) and distinct (map snd ps)
by fastforce+
moreover have vars (fmran’ 29') N (fmdom’ 29’ U vars B) = {}
proof —
have vars (fmran’ 9) = vars ({FVar y} U fmran’ 29)
using ¢ = fmupd x (FVar y) 29"y and <z ¢ fmdom’ 29"y by (metis fmdom’-notD fmran’-fmupd)
then have vars (fmran’ 9) = {y} U vars (fmran’ 29”)
using singleton-form-set-vars by auto
moreover have fmdom’ 9 = {z} U fmdom’ 29’
by (simp add: <0 = {z — FVar y} ++; %")
ultimately show ?thesis
using Cons.prems(5) by auto
qed
ultimately show Zthesis
using Cons.IH and <is-renaming-substitution %3’y by simp
qed
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also have ... =S ({z — FVar y} ++; %) B
proof (rule substitution-fusion)
show is-substitution 29’
using (is-renaming-substitution 29’y by simp
show is-substitution {x — FVar y}
using <is-renaming-substitution {z — FVar y}> by simp
show 29’ $$ = = None
using <z ¢ fmdom’ 29"y by blast
show Vv’ € fmdom’ 29'. x ¢ vars (29’ $$! v’)
proof —
have z € fmdom’
using ¥ = {z — FVar y} ++5 29" by simp
then have z ¢ vars (fmran’ ¢)
using Cons.prems(5) by blast
moreover have {?9' $3! v’ | v’. v’ € fmdom’ 29’} C fmran’ ¥
unfolding < = 29/(z — FVar y)> using <29’ $$ = = None»
by (auto simp add: fmlookup-of-list fmlookup-dom’-iff fmran’l weak-map-of-Somel)
ultimately show ?thesis
by force
qed
qed
also from ¥ = {z — FVar y} ++; %> have ... =S U B
by (simp only:)
finally show ?case ..
qed

lemma free-vars-agreement-substitution-equality:
assumes fmdom’ ¥ = fmdom’ ¥’
and Vv € free-vars A N fmdom’ 9. 9 $$! v = 9’ $$! v
shows S99 A=S9' A
using assms proof (induction A arbitrary: ¥ )
case (FVar v)
have free-vars (FVar v) = {v}
using surj-pair|of v] by fastforce
with FVar have 9 $$! v = 9’ $$! v
by force
with FVar.prems(1) show ?Zcase
using surj-pair[of v] by (metis fmdom’-notD fmdom’-notl option.collapse substitute.simps(1))
next
case FCon
then show ?case
by (metis prod.ezhaust-sel substitute.simps(2))
next
case (FApp B C)
have S9Y (B-C)=(S9¥ B):- (SS9 O)
by simp
also have ... = (S¥' B) - (S9' C)
proof —
have Vv € free-vars B N fmdom’ 9. 9 $$! v = 0¥’ $$! v
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and Vv € free-vars C N fmdom’ 9. 9 $$! v = 9’ $$! v
using FApp.prems(2) by auto
with FApp.IH(1,2) and FApp.prems(1) show ?thesis
by blast
qed
finally show ?case
by simp
next
case (FAbs w B)

from FAbs.prems(1,2) have *: Vv € free-vars B — {w} N fmdom’ 9. 9 $$! v = 9’ §$! v

using surj-pair[of w] by fastforce
show ?Zcase
proof (cases w € fmdom’ ¥)
case True
then have S ¢ (FAbs w B) = FAbs w (S (fmdrop w 9) B)
using surj-pair[of w] by fastforce
also have ... = FAbs w (S (fmdrop w 9') B)
proof —

from x have Vv € free-vars B N fmdom’ (fmdrop w 9). (fmdrop w 9) $$! v = (fmdrop w ¥’) $$!

by simp
moreover have fmdom’ (fmdrop w 9) = fmdom’ (fmdrop w ')
by (simp add: FAbs.prems(1))
ultimately show ?thesis
using FAbs.IH by blast
qed
finally show ?thesis
using FAbs.prems(1) and True and surj-pair[of w] by fastforce
next
case Fulse
then have S ¢ (FAbs w B) = FAbs w (S ¥ B)
using surj-pair[of w] by fastforce
also have ... = FAbs w (S ¥’ B)
proof —
from * have Vv € free-vars B N fmdom’ 9. 9 $$! v = 9’ $$! v
using False by blast
with FAbs.prems(1) show ?thesis
using FAbs.IH by blast
qed
finally show ?thesis
using FAbs.prems(1) and False and surj-pair[of w]| by fastforce
qged
qged

) zl .ol To @k
The following lemma proves that S % S ' " B =S Lo
' o« oy o an A SA(;A})q

! o and A} is free for z, in B:
T T

that x, is distinct from x,,,..., 25

lemma substitution-consolidation:
assumes v ¢ fmdom’ 9
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and Vv’ € fmdom’ 9. is-free-for (9 $$! v’) v’ B
shows S {v — A} SY B=S8 ({v— A} ++5 fmmap (AA". S {v — A} A") 9) B
using assms proof (induction B arbitrary: )
case (FApp B C)
have Vv’ € fmdom' 9. is-free-for (9 $$! v) v’ B A is-free-for (¢ $3! v’) v’ C
proof
fix v’
assume v’ € fmdom’ 9
with FApp.prems(2) have is-free-for (9 $$! v) v’ (B« C)
by blast
then show is-free-for (9 $$! v’) v’ B A is-free-for (9 $$! v’) v’ C
using is-free-for-from-app by iprover
qed
with FApp.IH and FApp.prems(1) show ?case
by simp
next
case (FAbs w B)
let 29’ = fmmap (AA’. S {v — A} A)) ¢
show ?Zcase
proof (cases w € fmdom’ ¥)
case True
then have w € fmdom’ %9’
by simp
with True and FAbs.prems have v # w
by blast
from True have S {v — A} S ¥ (FAbs w B) = S {v — A} (FAbs w (S (fmdrop w ) B))
using surj-pair[of w] by fastforce

also from (v # w> have ... = FAbs w (S {v — A} S (fmdrop w ¥) B)
using surj-pair|of w] by fastforce

also have ... = FAbs w (S (fmdrop w ({v — A} ++; ?')) B)

proof —

obtain z,, and «,, where w = (T, Q)
by fastforce
have Vv’ € fmdom’ (fmdrop w ). is-free-for ((fmdrop w ) $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ (fmdrop w )
with FAbs.prems(2) have is-free-for (¢ $$! v’) v’ (FAbs w B)
by auto
with <w = (2, ) and v’ € fmdom’ (fmdrop w 9)»
have is-free-for (9 $8! v') v/ (Azwa,- B) and v’ # (24, ay)
by auto
then have is-free-for (¢ $$! v’) v’ B
using is-free-for-from-abs by presburger
with v/ # (24, aw)> and (w = (T4, ay)> show is-free-for (fmdrop w 9 $$! v) v’ B
by simp
qed
moreover have v ¢ fmdom’ (fmdrop w 9)
by (simp add: FAbs.prems(1))
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ultimately show ?thesis
using FAbs.IH and v # w> by (simp add: fmdrop-fmupd)
qed
finally show ?thesis
using «w € fmdom’ 29"y and surj-pair|of w] by fastforce
next
case Fulse
then have w ¢ fmdom’ 29’
by simp
from FAbs.prems have v ¢ fmdom’ %9’
by simp
from Fulse have x: S {v — A} S ¢ (FAbs w B) = S {v — A} (FAbs w (S 9 B))
using surj-pair|of w] by fastforce
then show ?thesis
proof (cases v # w)
case True
then have S {v — A} (FAbs w (S ¥ B)) = FAbs w (S {v — A} (S ¥ B))
using surj-pair|of w] by fastforce
also have ... = FAbs w (S ({v — A} ++5 %) B)
proof —
obtain z,, and «,, where w = (z, )
by fastforce
have Vv’ € fmdom’ 9. is-free-for (9 $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ ¥
with FAbs.prems(2) have is-free-for (¥ $3$! v’) v’ (FAbs w B)
by auto
with «<w = (2, @) and «w’ € fmdom’ ¢ and Fualse
have is-free-for (9 $3! v') v/ (Azwa,,- B) and v’ # (24, )
by fastforce+
then have is-free-for (9 $$! v’) v’ B
using is-free-for-from-abs by presburger
with «v' # (24, ay) and (w = (24, ay)> show is-free-for (9 $3! v’) v’ B
by simp
qed
with FAbs.IH show ?thesis
using FAbs.prems(1) by blast
qed
finally show ?thesis
proof —
assume

S {v — A} (FAbs w (S ¥ B)) = FAbs w (S ({v — A} ++; fmmap (substitute {v — A}) 0)

moreover have w ¢ fmdom’ ({v — A} ++5 fmmap (substitute {v — A}) 0)
using False and True by auto
ultimately show “thesis
using * and surj-pair[of w] by fastforce
qed
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next
case Fulse
then have v ¢ free-vars (FAbs w (S ¥ B))
using surj-pair|of w] by fastforce
then have #x: S {v — A} (FAbs w (S ¥ B)) = FAbs w (S ¥ B)
using free-var-singleton-substitution-neutrality by blast
also have ... = FAbs w (S %9’ B)
proof —
{
fix v’
assume v’ € fmdom’ Y
with FAbs.prems(1) have v’ # v
by blast
assume v € free-vars (9 $$! v’) and v’ € free-vars B
with v’ # v» have = is-free-for (9 $3! v') v’ (FAbs v B)
using form-with-free-binder-not-free-for by blast
with FAbs.prems(2) and v’ € fmdom’ ¢ and False have Fulse
by blast
}
then have Vv’ € fmdom’ 9. v ¢ free-vars (9 $8$! v') V v’ & free-vars B
by blast
then have Vv’ € fmdom’ VY. v’ € free-vars B — S {v — A} (9 $$! v) = 9 §$! v’
using free-var-singleton-substitution-neutrality by blast
then have Vv’ € free-vars B. 9 $$! v/ = 29’ $$! v’
by (metis fmdom’-map fmdom’-notD fmdom'-notl fmlookup-map option.map-sel)
then have S¢Y B=S %' B
using free-vars-agreement-substitution-equality by (metis IntD1 fmdom’-map)
then show ?thesis
by simp
qed
also from Fulse and FAbs.prems(1) have ... = FAbs w (S (fmdrop w ({v — A} ++¢ %)) B)
by (simp add: fmdrop-fmupd-same fmdrop-idle’)
also from Fulse have ... = S ({v — A} ++ 29') (FAbs w B)
using surj-pair|of w] by fastforce
finally show ?thesis
using x and #x by (simp only:)
qed
qed
qed force+

lemma vars-range-substitution:

assumes is-substitution ¥

and v ¢ vars (fmran’ 9)

shows v ¢ vars (fmran’ (fmdrop w 9))
using assms proof (induction )

case fmempty

then show ?case

by simp

next
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case (fmupd v’ A V)

from fmdom’-notl[OF fmupd.hyps] and fmupd.prems(1) have is-substitution ¥
by (rule updated-substitution-is-substitution)

moreover from fmupd.prems(2) and fmupd.hyps have v ¢ vars (fmran’ )
by simp

ultimately have v ¢ vars (fmran’ (fmdrop w )
by (rule fmupd.IH)

with frmupd.hyps and fmupd.prems(2) show Zcase
by (simp add: fmdrop-fmupd)

qged

lemma excluded-var-from-substitution:
assumes is-substitution
and v ¢ fmdom’ ¢
and v ¢ vars (fmran’ )
and v ¢ vars A
shows v ¢ vars (S 9 A)
using assms proof (induction A arbitrary: 9)
case (FVar v’
then show ?case
proof (cases v’ € fmdom’ ¥)
case True
then have ¢ $3$! v’ € fmran’ 9
by (simp add: fmlookup-dom'-iff fmran'T)
with FVar(3) have v ¢ vars (¥ $$! v’)
by simp
with True show ?thesis
using surj-pair[of v'| and fmdom’-notl by force
next
case Fulse
with FVar.prems(4) show ?thesis
using surj-pair[of v'] by force
qed
next
case (FCon k)
then show ?case
using surj-pair[of k] by force
next
case (FApp B C)
then show ?case
by auto
next
case (FAbs w B)
have v ¢ vars B and v # w
using surj-pair[of w] and FAbs.prems(4) by fastforce+
then show ?case
proof (cases w ¢ fmdom’ ¢)
case True
then have S ¥ (FAbs w B) = FAbs w (S ¥ B)
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using surj-pair|of w] by fastforce
moreover from FAbs.IH have v ¢ vars (S 9 B)
using FAbs.prems(1—8) and v ¢ vars B> by blast
ultimately show ?thesis
using v # w» and surj-pair[of w] by fastforce
next
case Fulse
then have S ¢ (FAbs w B) = FAbs w (S (fmdrop w 9) B)
using surj-pair[of w] by fastforce
moreover have v ¢ vars (S (fmdrop w ) B)
proof —
from FAbs.prems(1) have is-substitution (fmdrop w )
by fastforce
moreover from FAbs.prems(2) have v ¢ fmdom’ (fmdrop w )
by simp
moreover from FAbs.prems(1,3) have v ¢ vars (fmran’ (fmdrop w 1))
by (fact vars-range-substitution)
ultimately show ?thesis
using FAbs.TH and (v ¢ vars B> by simp
qed
ultimately show ?thesis
using «v # w» and surj-pair[of w] by fastforce
qed
qed

2.15 Renaming of bound variables

fun rename-bound-var :: var = nat = form = form where
rename-bound-var v y (zo) = Tq
| rename-bound-var v y ({c}a) = {c}a
| rename-bound-var vy (B« C') = rename-bound-var v y B « rename-bound-var v y C
| rename-bound-var vy (Azy. B) =

if (z, @) = v then
Ma- S {(z, @) — ya} (rename-bound-var v y B)
else
Azq. (rename-bound-var v y B)
)

lemma rename-bound-var-preserves-typing:
assumes A € wffsy
shows rename-bound-var (y, v) z A € wffsq
using assms proof (induction A)
case (abs-is-wff § A ¢ x)
then show ?case
proof (cases (z, 6) = (y, 7))
case True
from abs-is-wff.IH have S {(y, 7) — 2z} (rename-bound-var (y, v) z A) € wffsg
using substitution-preserves-typing by (simp add: wffs-of-type-intros(1))
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then have Azy. S {(y, 7) — 2z} (rename-bound-var (y, v) z A) € wffs, .3
by blast
with True show ?thesis
by simp
next
case Fulse
from abs-is-wff IH have Azg. rename-bound-var (y, v) z A € wifss—
by blast
with Fualse show ?thesis
by auto
qed
qged auto

lemma old-bound-var-not-free-in-abs-after-renaming:
assumes A € wffsy
and zy # yy
and (z, v) ¢ vars A
shows (y, v) ¢ free-vars (rename-bound-var (y, v) z (Ay~. A))
using assms and free-var-in-renaming-substitution by (induction A) auto

lemma rename-bound-var-free-vars:
assumes A € wffsy
and zy # yy
and (z, v) ¢ vars A
shows (z, v) ¢ free-vars (rename-bound-var (y, v) z A)
using assms by (induction A) auto

lemma old-bound-var-not-free-after-renaming:
assumes A € wffsy
and zy # Yy
and (z,v) ¢ vars A
and (y, v) ¢ free-vars A
shows (y, v) ¢ free-vars (rename-bound-var (y, v) z A)
using assms proof induction
case (abs-is-wff 6 A a x)
then show ?case
proof (cases (z, a) = (y, 7¥))
case True
with abs-is-wff.hyps and abs-is-wff.prems(2) show ?thesis
using old-bound-var-not-free-in-abs-after-renaming by auto
next
case Fulse
with abs-is-wff.prems(2,3) and assms(2) show ?thesis
using abs-is-wff.IH by force
qed
qed fastforce+

lemma old-bound-var-not-ocurring-after-renaming:
assumes A € wffsq
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shows — occurs-at (y, v) p (S {(y, v) — 24} (rename-bound-var (y, v) z A))

using assms(1) proof (induction A arbitrary: p)
case (var-is-wff o x)
from assms(2) show ?case
using subform-size-decrease by (cases (z, o) = (y, 7)) fastforce+
next
case (con-is-wff « c)
then show ?case
using occurs-at-alt-def (2) by auto
next
case (app-is-wff a 8 A B)
then show ?case
proof (cases p)
case (Cons d p')
then show ?thesis
by (cases d) (use app-is-wff.IH in auto)
qed simp
next
case (abs-is-wff f A a z)
then show “case
proof (cases p)
case (Cons d p')
then show ?thesis
proof (cases d)
case Left
have *: = occurs-at (y, v) p (Aza. S {(y, v) — 2y} (rename-bound-var (y, v) z A))
for z and «
using Left and Cons and abs-is-wff.IH by simp
then show ?thesis
proof (cases (z, &) = (y, 7))
case True
with assms(2) have
S {(y, v) = 2y} (rename-bound-var (y, v) z (Azq. A))

Azy. S {(y, v) — 2y} (rename-bound-var (y, v) z A)
using free-var-in-renaming-substitution and free-var-singleton-substitution-neutrality
by simp

moreover have — occurs-at (y, ) p (Azy. S {(y, v) = 2y} (rename-bound-var (y, v) z A))
using Left and Cons and * by simp

ultimately show ?thesis
by simp

next

case Fulse

with assms(2) have
S {(y, 7v) — 2y} (rename-bound-var (y, v) z (Azq. A))

Aeo. S {(y, v) — 2y} (rename-bound-var (y, v) z A)
by simp
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moreover have - occurs-at (y, v) p (Aza. S {(y, v) — 2y} (rename-bound-var (y, v) z A))
using Left and Cons and * by simp

ultimately show ?thesis
by simp

qged
qged (simp add: Cons)
qed simp
qed

The following lemma states that the result of remame-bound-var does not contain bound
occurrences of the renamed variable:

lemma rename-bound-var-not-bound-occurrences:
assumes A € wffsy
and zy # Yy
and (z,v) ¢ vars A
and occurs-at (y, v) p (rename-bound-var (y, v) z A)
shows — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z A)
using assms(1,3,4) proof (induction arbitrary: p)
case (var-is-wff « x)
then show ?case
by (simp add: subforms-from-var(2))
next
case (con-is-wff « ¢)
then show ?case
using occurs-at-alt-def(2) by auto
next
case (app-is-wff o 8 B C)
from app-is-wff.prems(1) have (z, v) ¢ vars B and (z, v) ¢ vars C
by simp-all
from app-is-wff.prems(2)
have occurs-at (y, v) p (rename-bound-var (y, v) z B « rename-bound-var (y, ) z C)
by simp
then consider
(@) Ap’. p = « # p' A occurs-at (y, v) p’ (rename-bound-var (y, v) z B)
| () 3p’. p=» # p' A occurs-at (y, v) p’ (rename-bound-var (y, v) z C)
using subforms-from-app by force
then show ?case
proof cases
case a
then obtain p’ where p = « # p’ and occurs-at (y, v) p’ (rename-bound-var (y, v) z B)
by blast
then have — in-scope-of-abs (z, v) p’ (rename-bound-var (y, ) z B)
using app-is-wff.IH(1)[OF (z, v) ¢ vars B>] by blast
then have — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z (B« C)) for C
using <p = « # p’» and in-scope-of-abs-in-left-app by simp
then show ?thesis
by blast
next
case b
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then obtain p’ where p = » # p’ and occurs-at (y, v) p’ (rename-bound-var (y, v) z C)
by blast
then have — in-scope-of-abs (z, v) p’ (rename-bound-var (y, v) z C)
using app-is-wff.IH(2)[OF (z, v) ¢ vars C»] by blast
then have — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z (B« C)) for B
using «p = » # p’ and in-scope-of-abs-in-right-app by simp
then show ?thesis
by blast
qed
next
case (abs-is-wff 8 A « 1)
from abs-is-wff.prems(1) have (z, v) ¢ vars A and (z, v) # (z, )
by fastforce+
then show ?case
proof (cases (y, v) = (z, a))
case True
then have occurs-at (y, v) p (Azv. S {(y, 7) — 2y} (rename-bound-var (y, v) z A))
using abs-is-wff.prems(2) by simp
moreover have — occurs-at (y, v) p (Azy. S {(y, 7) — 2+} (rename-bound-var (y, ) z A))
using old-bound-var-not-ocurring-after-renaming| OF abs-is-wff .hyps assms(2)] and subforms-from-abs
by fastforce
ultimately show ?Zthesis
by contradiction
next
case Fulse
then have x: rename-bound-var (y, v) z (Axq. A) = Azg. rename-bound-var (y, v) z A
by auto
with abs-is-wff.prems(2) have occurs-at (y, v) p (Azq. rename-bound-var (y, v) z A)
by auto
then obtain p’ where p = « # p’ and occurs-at (y, ) p’ (rename-bound-var (y, v) z A)
using subforms-from-abs by fastforce
then have — in-scope-of-abs (z, v) p' (rename-bound-var (y, v) z A)
using abs-is-wff IH[OF «(z, ) ¢ vars Ay] by blast
then have — in-scope-of-abs (z, v) (« # p’) (Azq. rename-bound-var (y, v) z A)
using <p = « # p’» and in-scope-of-abs-in-abs and «(z, v) # (z, @)» by auto
then show ?thesis
using * and <p = « # p"» by simp
qed
qged

lemma is-free-for-in-rename-bound-var:

assumes A € wffsy

and zy # yy

and (z, v) ¢ vars A

shows is-free-for (zy) (y, v) (rename-bound-var (y, v) z A)
proof (rule ccontr)

assume — is-free-for (zv) (y, v) (rename-bound-var (y, ) z A)

then obtain p

where is-free-at (y, v) p (rename-bound-var (y, v) z A)
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and in-scope-of-abs (z, v) p (rename-bound-var (y, v) z A)
by force
then show Fulse
using rename-bound-var-not-bound-occurrences| OF assms] by fastforce
qged

lemma renaming-substitution-preserves-bound-vars:
shows bound-vars (S {(y, v) = 2y} A) = bound-vars A
proof (induction A)
case (FAbs v A)
then show ?case
using singleton-substitution-simps(4) and surj-pair[of v]
by (cases v = (y, 7)) (presburger, force)
qed force+

lemma rename-bound-var-bound-vars:
assumes A € wffsq
and zy # yy
shows (y, v) ¢ bound-vars (rename-bound-var (y, ) z A)
using assms and renaming-substitution-preserves-bound-vars by (induction A) auto

lemma old-var-not-free-not-occurring-after-rename:
assumes A € wffsy
and zy # Yy
and (y, v) ¢ free-vars A
and (z, v) ¢ vars A
shows (y, v) ¢ vars (rename-bound-var (y, v) z A)
using assms and rename-bound-var-bound-vars|OF assms(1,2)]
and old-bound-var-not-free-after-renaming and vars-is-free-and-bound-vars by blast

end

3 Boolean Algebra

theory Boolean-Algebra
imports
ZFC-in-HOL.ZFC-Typeclasses
begin

This theory contains an embedding of two-valued boolean algebra into V.

hide-const (open) List.set

definition bool-to-V :: bool = V where
bool-to-V = (SOME f. inj f)

lemma bool-to- V-injectivity [simp]:

shows inj bool-to-V
unfolding bool-to-V-def by (fact somel-ex|OF embeddable-class.ex-inj])
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definition bool-from-V :: V = bool where
[simp]: bool-from-V = inv bool-to-V

definition top :: V (\T)) where
[simp]: T = bool-to-V True

definition bottom :: V (<F») where
[simp]: F = bool-to-V False

definition two-valued-boolean-algebra-universe :: V («B») where
[simp]: B = set {T, F}

definition negation :: V.= V (<~ - [141] 141) where
[simp]: ~ p = bool-to-V (= bool-from-V p)

definition conjunction :: V. = V = V (infixr <A> 136) where
[simp]: p A g = bool-to-V (bool-from-V p A bool-from-V q)

definition disjunction :: V = V = V (infixr <V» 131) where
[simpl: pV g =~ (~p A~ q)

definition implication :: V = V = V (infixr «<D» 121) where
[simp]: p D q=~pVq

definition iff :: V = V = V (infixl <=) 150) where
[simpl: p = ¢ = (p D q) A (¢ D p)

lemma boolean-algebra-simps [simp):
assumes p € elts B and ¢ € elts B and r € elts B
shows ~ ~ p=1p
and ((~ p) = (~ q))
and ~ (p = ¢
and (p V ~
and (~pV p
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and (p AF)=F
and (F Ap)=F

and (p A p)=p

and (p A (p A q)) = (P A q)
and (p A ~ p) =

and (~p A p)=F
and (p vVT)=T

and (TVvyp) =T
and (p VF)=p

and (FVp)=p

and (p V p) =p

and (pV (pV q)=(pV q)

and pA (gAT)=gA(pAT)

and pV ¢g=qVp

andpV (¢gvVr)=qV(pVr)

and (p Vg Vr=pV(Vr)
andpA (gVr)=pAgVpATr
and (pV g Ar=pArVgAr
andpV (qAr)=(pVaq A(pVr)
and(p/\Q)Vr—(pVT) (qVvr)

and (p D (¢AT)) = ((PDQ) (pD1)
and (p A g)Dr)=(pD(¢gDr))
and (pV ¢ Dr)=((pDr)A(gDr))
and (pDg)Vr)=(pDgqgVr)
and (¢V (pDr)=(mEPDgVr)

and ~ (pV q) =~pA~g
and ~ (pAgq)=~pV ~ygq
and ~ (p D g)=pA~gq

and ~pV qg=(pDq)

and pV ~ ¢ = (¢D p)

and (p D ¢q) = (~p) V q

and pV ¢g=~pDgyg

and (p=¢q)=(pD g A (¢Dp)
and (p D ¢) A(~pDyq) =g
and p=T= - (p=F)

and p=F = - (p=T)

and p=TVp=F

using assms by (auto simp add: inj-eq)

lemma tv-cases [consumes 1, case-names top bottom, cases type: V]:
assumes p € elts B
and p=T =P
and p=F = P
shows P
using assms by auto

end
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4 Propositional Well-Formed Formulas

theory Propositional- Wff
imports
Syntaz
Boolean-Algebra
begin

4.1 Syntax

inductive-set pwffs :: form set where

T-pwff: Ty € puwffs
| F-pwff: Fo € puffs
| var-puff: po € puwffs
| neg-pwff: ~2 A € puffs if A € puffs
| conj-pwff: A N B € puffs if A € puwffs and B € puffs
| disj-pwff: A Ve B € puffs if A € puwffs and B € puwffs
| imp-puwff: A D2 B € puffs if A € puwffs and B € puwffs
| equ-pwff: A =2 B € puffs if A € puwffs and B € puffs

lemmas [introl] = pwffs.intros

lemma puwffs-distinctnesses [induct-simp:
shows Ty # Fy

and Ty # po

and T, # ~2 4

and T, # A AC B
and T, # A Ve B
and Ty # A D2 B
and T, # A =° B
and F'y # po

and F, #~° A

and F, # ANC B

and F, # AVe B

and F, # A D2 B
and F, # A=° B

and p, # ~< A

and p, # A N B

and p, # A Ve B

and p, # A D2 B

and p, # A =° B

and ~¢ A # B A C
and ~2 A # B Ve C
and ~2 A # B>° C
and - (B=F,NA=C)= ~2 A#B=2(C— ~2 Ais thesame as F, =< A
and ANS B#CVeD
and AANC B# C D22 D
and ANC B#C=°D
and AV B# C D2 D
and AVe B# C=°D
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and A D2 B#C=°D
by simp-all

lemma puwffs-injectivities [induct-simp):

shows ~¢ A =~ A'— A=A’

and ANC B=A'AN®B'= A=A"AB=DB'
and AVe B=A'Ve B'= A= A'"AB=DB'
and A D2 B=A"2°B'=—= A=A'"ANB=DB'
and A=° B=A4"=2B'—= A=A'ANB=DB'
by simp-all

lemma puwff-from-neg-pwff [elim!]:
assumes ~2 A € puffs
shows A € puffs
using assms by cases simp-all

lemma pwffs-from-conj-pwff [elim!]:
assumes A A€ B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma pwffs-from-disj-pwff [elim!]:
assumes A V¢ B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma pwffs-from-imp-pwff [elim!]:
assumes A D2 B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma puwffs-from-equ-pwff [elim!]:
assumes A =° B € puffs
shows {4, B} C puffs
using assms by cases (simp-all, use F-pwff in fastforce)

lemma pwffs-subset-of-wffso:

shows puwffs C wffso
proof

fix A

assume A € puffs

then show A € wffs,

by induction auto

qed

lemma pwff-free-vars-simps [simp):
shows T-fv: free-vars Ty = {}
and F-fv: free-vars Fy = {}
and var-fu: free-vars (po) = {(p, 0)}
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and neg-fu: free-vars (~2 A) = free-vars A

and conj-fv: free-vars (A N2 B) = free-vars A U free-vars B
and disj-fv: free-vars (A V2 B) = free-vars A U free-vars B
and imp-fv: free-vars (A D2 B) = free-vars A U free-vars B
and equ-fv: free-vars (A =< B) = free-vars A U free-vars B
by force+

lemma pwffs-free-vars-are-propositional:
assumes A € puffs
and v € free-vars A
obtains p where v = (p, 0)
using assms by (induction A arbitrary: thesis) auto

lemma is-free-for-in-pwff [intro:
assumes A € puffs
and v € free-vars A
shows is-free-for B v A
using assms proof (induction A)
case (neg-puff C)
then show ?case
using is-free-for-in-neg by simp
next
case (conj-pwff C D)
from conj-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case q
then show ?thesis
using conj-pwff.IH by (intro is-free-for-in-conj)
next
case b
have is-free-for B v C
by (fact conj-pwff IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-cony)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact conj-pwff IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-conj)
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qed
next
case (disj-puff C D)
from disj-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using disj-pwff.IH by (intro is-free-for-in-disj)
next
case b
have is-free-for B v C
by (fact disj-pwff.IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-disj)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact disj-pwff.IH(2)[OF ¢(2)])
ultimately show ¢thesis
by (rule is-free-for-in-disj)
qed
next
case (imp-pwff C D)
from imp-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v & free-vars C' and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using imp-pwff.IH by (intro is-free-for-in-imp)
next
case b
have is-free-for B v C
by (fact imp-pwff . IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?Zthesis
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by (rule is-free-for-in-imp)
next
case ¢
from c(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact imp-pwff.IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-imp)
qged
next
case (equ-puwff C' D)
from equ-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using equ-pwff.IH by (intro is-free-for-in-equivalence)
next
case b
have is-free-for B v C
by (fact equ-pwff IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-equivalence)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact equ-pwff.IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-equivalence)
qed
qged auto

4.2 Semantics

Assignment of truth values to propositional variables:

definition is-tv-assignment :: (nat = V) = bool where
[iff]: is-tv-assignment ¢ +— (V' p. ¢ p € elts B)

Denotation of a pwit:

definition is-pwff-denotation-function where
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[iff]: is-pwff-denotation-function V +—

(
V. is-tv-assignment ¢ —>
(
(Vp. Vo (po) = ¢ p) A
(VA. A€ puffs — Vo (~2A) =~V p A) A
(VAB. Acpuffs N BE€puffs —Vp(ANEB) =VpAAY e B)A
(VAB. Acpuffs\ BE€puffs —Vp(AVEB) =V pAVYpB)A
(VAB. Acpuffs N\ BEpuffs — Ve (AD2SB) =V pADVeB)A
(VAB. Acpuffs N BEpuffs —Vp(A=2B)=Vp A=V ¢ B)
)

)

lemma pwff-denotation-is-truth-value:
assumes A € puwffs
and is-tv-assignment @
and is-pwff-denotation-function V
shows V p A € elts B
using assms(1) proof induction
case (neg-pwff A)
then have V ¢ (~2 A) =~V p A
using assms(2,3) by auto
then show ?case
using neg-pwff.IH by auto
next
case (conj-pwff A B)
then have V p (AN B) =V p ANV ¢ B
using assms(2,3) by auto
then show ?case
using conj-pwff.IH by auto
next
case (disj-pwff A B)
then have V 0 (AVe B) =V p AV YV ¢ B
using assms(2,3) by auto
then show ?case
using disj-pwff.IH by auto
next
case (imp-puff A B)
then have V ¢ (A D2 B)=Vp ADV ¢ B
using assms(2,3) by blast
then show ?case
using imp-pwff.IH by auto
next
case (equ-puff A B)
then have V p (A=°2B)=Vp A=V ¢ B
using assms(2,3) by blast
then show ?case
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using equ-pwff.IH by auto
qed (use assms(2,3) in auto)

lemma closed-pwff-is-meaningful-regardless-of-assignment:
assumes A € puffs
and free-vars A = {}
and is-tv-assignment @
and is-tv-assignment 1)
and is-pwff-denotation-function V
shows YV p A=V ¢y A
using assms(1,2) proof induction
case T-puff
have V ¢ Ty =T
using assms(3,5) by blast
also have ... =V y T,
using assms(4,5) by force
finally show ?Zcase .
next
case F-puwff
have V ¢ Fy, =F
using assms(3,5) by blast
also have ... =V ¢ F,
using assms(4,5) by force
finally show ?Zcase .
next
case (var-pwff p) — impossible case
then show ?case
by simp
next
case (neg-puff A)
from «free-vars (~< A) = {}» have free-vars A = {}
by simp
have V o (~2 A) =~V p A
using assms(3,5) and neg-pwff.hyps by auto

also from <free-vars A = {}» have ... =~V ¢ A
using assms(3—5) and neg-pwff.IH by presburger
also have ... =V 1 (~¢ A)

using assms(4,5) and neg-pwff.hyps by simp

finally show ?Zcase .

next

case (conj-pwff A B)

from «free-vars (A A2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all

have V o (ANS B)=Vp ANV ¢ B
using assms(3,5) and conj-pwff.hyps(1,2) by auto

also from <free-vars A = {}» and <free-vars B ={}> have ... =V ¢y AAV ¢ B
using conj-pwff.IH(1,2) by presburger

also have ... =V ¢ (A A¢ B)
using assms(4,5) and conj-pwff.hyps(1,2) by fastforce
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finally show ?Zcase .
next
case (disj-puff A B)
from «free-vars (A Ve B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V ¢ (AVe B) =V p AV VB
using assms(3,5) and disj-pwff.hyps(1,2) by auto
also from «free-vars A = {}> and «free-vars B = {}> have ... =V ¢y AV V ¢ B
using disj-pwff.IH(1,2) by presburger
also have ... =V ¢ (A V¢ B)
using assms(4,5) and disj-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
next
case (imp-puff A B)
from «free-vars (A D2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V ¢ (AD9 B)=V o ADV ¢ B
using assms(3,5) and imp-pwff.hyps(1,2) by auto
also from «free-vars A = {}» and <free-vars B = {}» have ... =V ¢ A DV ¢ B
using imp-pwff.IH(1,2) by presburger
also have ... =V ¢ (4 D B)
using assms(4,5) and imp-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
next
case (equ-pwff A B)
from «free-vars (A =2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V 9o (A=°B) =V o A=V ¢ B
using assms(3,5) and equ-pwff.hyps(1,2) by auto
also from «free-vars A = {}» and <free-vars B = {}» have ... =V ¢ A=V ¢ B
using equ-pwff.IH(1,2) by presburger
also have ... =V ¢ (4 =2 B)
using assms(4,5) and equ-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
qed

inductive Vg-graph for ¢ where
Vp-graph-T: Vg-graph ¢ T, T
| Vg-graph-F: Vg-graph ¢ Fo F
| V-graph-var: Vg-graph ¢ (po) (¢ p)
| Vg-graph-neg: Vg-graph ¢ (~2 A) (~ ba) if Vg-graph ¢ A ba
| Vg-graph-conj: Vg-graph ¢ (A A9 B) (ba A bg) if V-graph ¢ A ba and Vg-graph ¢ B by
| Vg-graph-disj: Vg-graph ¢ (A VS B) (ba V bp) if Vp-graph ¢ A ba and Vg-graph ¢ B bg
| V-graph-imp: Vg-graph ¢ (A D2 B) (by D bp) if Vp-graph ¢ A by and Vg-graph ¢ B bp
| V-graph-equ: Vp-graph ¢ (A =2 B) (by = bp) if Vp-graph ¢ A by and Vp-graph ¢ B bg and A
# Fo

lemmas [intro!] = Vp-graph.intros
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lemma Vp-graph-denotation-is-truth-value [elim!]:
assumes Vp-graph ¢ A b
and is-tv-assignment @
shows b € elts B
using assms proof induction
case (Vp-graph-neg A by)
show ?Zcase
using Vpg-graph-neg. IH[OF assms(2)] by force
next
case (Vp-graph-conj A by B bp)
then show ?case
using Vg-graph-conj.IH and assms(2) by force
next
case (Vp-graph-disj A by B bp)
then show ?case
using Vpg-graph-disj. IH and assms(2) by force
next
case (Vpg-graph-imp A by B bp)
then show ?case
using Vpg-graph-imp.IH and assms(2) by force
next
case (Vp-graph-equ A by B bp)
then show ?case
using Vg-graph-equ.IH and assms(2) by force
qed simp-all

lemma Vg-graph-denotation-uniqueness:
assumes A € puffs
and is-tv-assignment @
and Vg-graph ¢ A b and Vg-graph ¢ A b’
shows b = b’
using assms(3,1,4) proof (induction arbitrary: b’
case Vp-graph-T
from «Vg-graph ¢ T, by show Zcase
by (cases rule: Vg-graph.cases) simp-all
next
case Vp-graph-F
from Vg-graph ¢ F, b’y show ?case
by (cases rule: Vg-graph.cases) simp-all
next
case (Vp-graph-var p)
from Vp-graph ¢ (po) b show ?case
by (cases rule: Vg-graph.cases) simp-all
next
case (Vp-graph-neg A ba)
with (Vg-graph ¢ (~2 A) b"» have Vg-graph ¢ A (~ b’)
proof (cases rule: Vg-graph.cases)
case (Vp-graph-neg A’ ba)
from «(~2 A = ~2 A’ have 4 = A’
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by simp
with «Vg-graph ¢ A’ ba> have Vpg-graph ¢ A by
by simp
moreover have by = ~ b’
proof —
have by € elts B
by (fact V p-graph-denotation-is-truth-value[OF Vp-graph-neg(3) assms(2)])
moreover from by € elts By and Vp-graph-neg(2) have ~ b’ € elts B
by fastforce
ultimately show ?thesis
using Vpg-graph-neg(2) by fastforce
qed
ultimately show ?thesis
by blast
qed simp-all
moreover from Vp-graph-neg.prems(1) have A € pwffs
by (force elim: pwffs.cases)
moreover have b4 € elts B and b’ € elts B and by = ~ b’
proof —
show by € elts B
by (fact V g-graph-denotation-is-truth-value[OF <V p-graph ¢ A ba> assms(2)])
show b’ € elts B
by (fact Vg-graph-denotation-is-truth-value| OF <V g-graph ¢ (~2 A) b"» assms(2)))
show by = ~ b’
by (fact Vp-graph-neg(2)[OF <A € puffs» <Vp-graph ¢ A (~ b')3])
qged
ultimately show Zcase
by force
next
case (Vp-graph-conj A by B bp)
with Vp-graph ¢ (A A2 B) b’ obtain b4’ and bp’
where b' = by’ A bg’ and Vg-graph ¢ A bs’' and Vg-graph ¢ B bg’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € puffs and B € puffs
using pwffs-from-conj-pwff[OF V g-graph-conj.prems(1)] by blast+
ultimately show “case
using Vg-graph-conj.IH and Vg-graph-conj.prems(2) by blast
next
case (Vp-graph-disj A by B bp)
from Vg-graph ¢ (A Ve B) b’» obtain by’ and bp’
where b’ = by’ V bg’ and Vg-graph ¢ A bs’ and Vg-graph ¢ B bg’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € pwffs and B € puwffs
using pwffs-from-disj-pwff|OF Vg-graph-disj.prems(1)] by blast+
ultimately show ?case
using Vpg-graph-disj.IH and Vg-graph-disj.prems(2) by blast
next
case (Vp-graph-imp A by B bp)
from Vg-graph ¢ (A D2 B) b’ obtain by’ and bp’
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where b' = by’ D b’ and Vg-graph ¢ A by’ and Vg-graph ¢ B b’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € pwffs and B € puwffs
using pwffs-from-imp-pwff[OF Vp-graph-imp.prems(1)] by blast+
ultimately show “case
using Vg-graph-imp.IH and Vg-graph-imp.prems(2) by blast
next
case (Vp-graph-equ A by B bp)
with (Vg-graph ¢ (A =2 B) b’ obtain bs’ and bp’
where b' = by’ = b’ and Vg-graph ¢ A by’ and Vg-graph ¢ B b’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € puffs and B € puffs
using pwffs-from-equ-pwff|OF Vg-graph-equ.prems(1)] by blast+
ultimately show ?case
using Vp-graph-equ.IH and V g-graph-equ.prems(2) by blast
qged

lemma Vg-graph-denotation-existence:
assumes A € puffs
and is-tv-assignment
shows 3b. Vg-graph ¢ A b
using assms proof induction
case (equ-puff A B)
then obtain b4 and bp where Vp-graph ¢ A by and Vg-graph ¢ B bp
by blast
then show ?Zcase
proof (cases A # Fy)
case True
then show ?thesis
using equ-pwff.IH and equ-pwff.prems by blast
next
case Fulse
then have A = F,,
by blast
then show ?thesis
using Vp-graph-neg[OF Vp-graph ¢ B bp»] by auto
qged
qed blast+

lemma Vg-graph-is-functional:
assumes A € puffs
and is-tv-assignment
shows 3!b. Vg-graph ¢ A b
using assms and Vpg-graph-denotation-ezistence and V g-graph-denotation-uniqueness by blast

definition Vp :: (nat = V) = form = V where
[simp]: Vg ¢ A = (THE b. Vg-graph ¢ A b)

lemma Vp-equality:
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assumes A € puwffs

and is-tv-assignment @

and Vpg-graph ¢ A b

shows Vg 9o A =10

unfolding Vp-def using assms using Vg-graph-denotation-uniqueness by blast

lemma Vg-graph-Vp:
assumes A € puffs
and is-tv-assignment
shows Vg-graph ¢ A Vg ¢ A)
using Vp-equality|OF assms] and V g-graph-is-functional|OF assms] by blast

named-theorems Vg-simps

lemma Vg-T [Vp-simps]:
assumes is-tv-assignment
shows Vg ¢ Ty =T
by (rule Vpg-equality[OF T-pwff assms], intro Vg-graph-T)

lemma Vg-F [Vg-simps]:
assumes is-tv-assignment
shows Vg ¢ Fp =F
by (rule Vp-equality[OF F-pwff assms|, intro Vg-graph-F')

lemma Vg-var [Vg-simps|:
assumes is-tv-assignment

shows Vi ¢ (po) = ¢ p
by (rule Vg-equality[OF var-pwff assms], intro Vg-graph-var)

lemma Vg-neg [Vg-simps|:

assumes A € puffs

and is-tv-assignment @

shows Vp ¢ (~2 A) =~ Vp p A

by (rule Vp-equality[OF neg-pwff|OF assms(1)] assms(2)], intro Vp-graph-neg Vp-graph-V g[OF
assms))

lemma Vg-disj [V p-simps]:
assumes A € puwffs and B € puwffs
and is-tv-assignment @
shows Vg ¢ (AVe B) =Vp 9o AV Vg ¢ B
proof —
from assms(1,3) have Vp-graph ¢ A (Vp ¢ A)
by (intro Vg-graph-Vp)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A VS B) (Vg ¢ AV Vg ¢ B)
by (intro Vp-graph-disj)
with assms show ?thesis
using disj-pwff by (intro Vpg-equality)
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qed

lemma Vg-conj [Vpg-simps]:
assumes A € puffs and B € puwffs
and is-tv-assignment
shows Vg 0 (AANS B)=Vp p ANV ¢ B
proof —
from assms(1,3) have Vg-graph ¢ A (Vg ¢ A)
by (intro Vp-graph-Vp)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A A2 B) (Vg ¢ A A Vg ¢ B)
by (intro Vg-graph-conj)
with assms show ?thesis
using conj-pwff by (intro Vp-equality)
qged

lemma Vpg-imp [V p-simps]|:
assumes A € puffs and B € puwffs
and is-tv-assignment
shows Vg 0 (AD2 B)=Vp o ADVp ¢ B
proof —
from assms(1,3) have Vpg-graph ¢ A (Vp ¢ A)
by (intro Vpg-graph-Vg)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A D2 B) (Vg ¢ A D Vg ¢ B)
by (intro Vg-graph-imp)
with assms show ?thesis
using imp-pwff by (intro Vp-equality)
qed

lemma Vg-equ [Vp-simps]:
assumes A € puffs and B € puwffs
and is-tv-assignment @
shows Vg p (A=2 B)=Vp o A=Vp ¢ B
proof (cases A = F,)
case True
then show ?thesis
using Vp-F[OF assms(3)] and Vp-neg[OF assms(2,3)] by force
next
case Fulse
from assms(1,3) have Vg-graph ¢ A (Vg ¢ A)
by (intro Vp-graph-Vg)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vpg-graph-Vg)
ultimately have Vg-graph ¢ (A =2 B) (Vg ¢ A = V5p ¢ B)
using False by (intro V g-graph-equ)
with assms show ?thesis
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using equ-pwff by (intro Vp-equality)
qged

declare puwjffs.intros [V g-simps]

lemma pwff-denotation-function-ezistence:
shows is-pwff-denotation-function Vg
using Vp-simps by simp

Tautologies:

definition is-tautology :: form = bool where
[iff]: is-tautology A +— A € puwffs A (V. is-tv-assignment ¢ — Vp ¢ A =T)

lemma tautology-is-wffo:
assumes is-tautology A
shows A € wffso
using assms and puwffs-subset-of-wffso by blast

lemma propositional-implication-reflexivity-is-tautology:
shows is-tautology (po D2 po)
using Vp-simps by simp

lemma propositional-principle-of-simplification-is-tautology:
shows is-tautology (po D2 (1o D2 po))
using Vp-simps by simp

lemma closed-pwff-denotation-uniqueness:
assumes A € puffs and free-vars A = {}
obtains b where V. is-tv-assignment ¢ — Vg ¢ A =b
using assms
by (meson closed-pwff-is-meaningful-regardless-of-assignment pwff-denotation-function-existence)

lemma pwff-substitution-simps:
shows S {(p, 0) — A} To =T,

and S {(p, 0) — A} Fp=Fy

and S {(p, 0) — A} (p'0) = (if p = p' then A else (p'y))

and S {(p, 0) — A} (~2 B) = ~2 (S {(p, 0) — A} B)

and S {(p, 0) — A} (B A° C) = (S {(p, o) — A} B) A2 (S {(p, 0) — A} O)
and S {(p, 0) — A} (B V© C) = (S {(p, o) — A} B) V2 (S {(p, 0) — 4} C)
and S {(p, 0) — A} (B 22 C) = (S {(p, o) — A} B) D2 (S {(p, 0) — A} C)
End S {(PZ,ZO) — A} (B=2 C) = (S {(p, o) — A} B) =2 (S {(p, 0) — A} O)

y simp-a

lemma pwff-substitution-in-pwffs:
assumes A € puwffs and B € puwffs
shows S {(p, 0) — A} B € puffs
using assms(2) proof induction
case T-pwff
then show ?case
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using pwffs. T-pwff by simp
next
case F-puwff
then show ?Zcase
using pwffs. F-pwff by simp
next
case (var-pwff p)
from assms(1) show ?case
using pwffs.var-pwff by simp
next
case (neg-pwff A)
then show ?case
using pwff-substitution-simps(4) and pwffs.neg-pwff by simp
next
case (conj-pwff A B)
then show ?case
using pwff-substitution-simps(5) and pwffs.conj-pwff by simp
next
case (disj-puff A B)
then show ?Zcase
using pwff-substitution-simps(6) and pwffs.disj-pwff by simp
next
case (imp-puff A B)
then show ?case
using pwff-substitution-simps(7) and pwffs.imp-pwff by simp
next
case (equ-pwff A B)
then show ?case
using pwff-substitution-simps(8) and puwffs.equ-pwff by simp
qed

lemma pwff-substitution-denotation:
assumes A € puwffs and B € puffs
and is-tv-assignment @
shows Vg ¢ (S {(p, 0) — A} B) =Vg (¢(p :=Vp ¢ A)) B
proof —
from assms(1,3) have is-tv-assignment (p(p := Vg ¢ A))
using Vp-graph-denotation-is-truth-value[OF Vg-graph-Vg] by simp
with assms(2,1,3) show ?Zthesis
using Vp-simps and pwff-substitution-in-pwffs by induction auto
qed

lemma pwff-substitution-tautology-preservation:
assumes is-tautology B and A € puwffs
and (p, o) € free-vars B
shows is-tautology (S {(p, 0) — A} B)
proof (safe, fold is-tv-assignment-def)
from assms(1,2) show S {(p, 0) — A} B € puffs
using pwff-substitution-in-pwffs by blast

105



next
fix ¢
assume is-tv-assignment
with assms(1,2) have Vg ¢ (S {(p, 0) — A} B) = Vg (¢(p :=Vp ¢ A)) B
using pwff-substitution-denotation by blast
moreover from <is-tv-assignment ¢y and assms(2) have is-tv-assignment (p(p := Vg ¢ A))
using Vg-graph-denotation-is-truth-value] OF V g-graph-V g| by simp
with assms(1) have Vg (p(p :=Vpp A)) B=T
by fastforce
ultimately show Vg ¢ S {(p, 0) — A} B=T
by (simp only:)
qged

lemma closed-pwff-substitution-free-vars:
assumes A € puffs and B € puwffs
and free-vars A = {}
and (p, o) € free-vars B
shows free-vars (S {(p, 0) — A} B) = free-vars B — {(p, 0)} (is «free-vars (S 29 B) = -)
using assms(2,4) proof induction
case (conj-pwff C D)
have free-vars (S 29 (C A€ D)) = free-vars ((S 29 C) A2 (S 29 D))
by simp
also have ... = free-vars (S %) C) U free-vars (S 29 D)
by (fact conj-fv)
finally have *: free-vars (S 29 (C A2 D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from conj-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and conj-pwff.IH show ?Zcase
using free-var-singleton-substitution-neutrality by cases auto
next
case (disj-pwff C D)
have free-vars (S 29 (C V< D)) = free-vars (S 29 C) Ve (S ?29 D))
by simp
also have ... = free-vars (S % C) U free-vars (S 29 D)
by (fact disj-fv)
finally have *: free-vars (S 29 (C V< D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from disj-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) & free-vars C and (p, o) € free-vars D
by auto
from this and * and disj-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
next
case (imp-pwff C D)
have free-vars (S 29 (C D2 D)) = free-vars (S 29 C) D2 (S 29 D))
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by simp
also have ... = free-vars (S %) C) U free-vars (S 29 D)
by (fact imp-fv)
finally have *: free-vars (S 29 (C D2 D)) = free-vars (S %9 C) U free-vars (S #9 D) .
from imp-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and imp-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
next
case (equ-pwff C D)
have free-vars (S 29 (C =2 D)) = free-vars ((S 29 C) =2 (S 29 D))
by simp
also have ... = free-vars (S %9 C) U free-vars (S %9 D)
by (fact equ-fv)
finally have *: free-vars (S 29 (C =2 D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from equ-pwff.prems consider
(a) (p, o) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and equ-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
qged (use assms(3) in <force+»)

Substitution in a pwit:

definition is-pwff-substitution where
[iff]: is-pwff-substitution ¥ +— is-substitution 9 A (V(z, a) € fmdom’ J. a = o)

Tautologous pwif:

definition is-tautologous :: form = bool where
[iff]: is-tautologous B +— (3¢ A. is-tautology A A is-pwff-substitution 3 A B =S ¢ A)

lemma tautologous-is-wffo:
assumes is-tautologous A
shows A € wffso
using assms and substitution-preserves-typing and tautology-is-wffo by blast

lemma implication-reflexivity-is-tautologous:
assumes A € wffs,
shows is-tautologous (A D2 A)
proof —
let 29 = {(z, 0) — A}
have is-tautology (ro D€ o)
by (fact propositional-implication-reflexivity-is-tautology)
moreover have is-pwff-substitution 29
using assms by auto
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moreover have 4 52 A =8 29 (r, D2 1o)
by simp
ultimately show #thesis
by blast
qged

lemma principle-of-simplification-is-tautologous:
assumes A € wffsp and B € wffs,
shows is-tautologous (A D2 (B D2 A))
proof —
let 29 = {(z, 0) — A, (v, 0) — B}
have is-tautology (xo D2 (1o D2 o))
by (fact propositional-principle-of-simplification-is-tautology)
moreover have is-pwff-substitution 2
using assms by auto
moreover have 4 D2 (B 29 A) =S 2 (ro D2 (o D2 1o))
by simp
ultimately show ?thesis
by blast
qed

lemma pseudo-modus-tollens-is-tautologous:
assumes A € wffsp and B € wffs,
shows is-tautologous ((A D2 ~2 B) D2 (B 22 ~2 A))
proof —
let 29 = {(z, 0) — A, (v, 0) — B}
have is-tautology ((to 22 ~2 1) D2 (no 22 ~2 1))
using Vg-simps by (safe, fold is-tv-assignment-def, simp only:) simp
moreover have is-pwff-substitution 29
using assms by auto
moreover have (4 D2 ~2 B) D2 (B29 ~2 A) =S 29 ((ro D2 ~2 1) D¢ (no D2 ~2 1))
by simp
ultimately show ?thesis
by blast
qed

end

5 Proof System

theory Proof-System
imports
Syntaz
begin

5.1 Axioms

inductive-set
axioms :: form set

108



where

ariom-1:
go—so* To AC go—o* Fo =2 Vro. go—o " Lo € axioms
| aziom-2:
(ta =a Ya) o< (ha—o * ta =2 ha—o* Ya) € axioms
| aziom-3:

(fa—>ﬂ “a—f 9a—>6) =2 Via. (fa—>ﬁ *fa =g Ba—p " Ta) € axioms

| aziom-4-1-con:
(Aza. {clbg) = A =p {clpg € azioms if A € wffsa
| aziom-4-1-var:
(Azq. yﬂ) A =3 Yg € awioms if A € wffsq and Yg % Tg
| aziom-4-2:
(Azq- zo) = A = A € azioms if A € wffsy
| aziom-4-3:
(Aza. B - )« A=3 ((A\ra. B) » A) » (Aza. C) » A) € azioms
‘ if A € wffsq and B € wﬁs,yﬁﬂ and C € wffsy
ATIOM-4-4
(Aza. Ayy. B) » A =, 5 (\yy. (Aza. B) = A) € azioms
‘ if A € wffsq and B € wffsy and (y, v) ¢ {(z, a)} U vars A
axtom-4-5:
(Azq. Azq. B) « A =, _5 (A\za. B) € azioms if A € wffsq and B € wffss
| aziom-5:
Lo (Q4* v;) =i v; € azioms

lemma azioms-are-wffs-of-type-o:
shows azioms C wffs,
by (intro subsetl, cases rule: axioms.cases) auto

5.2 Inference rule R

definition is-rule-R-app :: position = form = form = form = bool where
[iff]: is-rule-R-app p D C' E +—
(
da A B.

E=A=q BANA € uwffsa N B € wffse, N — E is a well-formed equality
A=p CA
D € wffsg A
Clp<+ B)>D

)

lemma rule-R-original-form-is-wffo:
assumes is-rule-R-app p D C' E
shows C € wffso
using assms and replacement-preserves-typing by fastforce

5.3 Proof and derivability

inductive is-derivable :: form = bool where
dv-axiom: is-derivable A if A € axioms
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| dv-rule-R: is-derivable D if is-derivable C' and is-derivable E and is-rule-R-app p D C E

lemma derivable-form-is-wffso:
assumes is-derivable A
shows A € wffso
using assms and axioms-are-wffs-of-type-o by (fastforce elim: is-derivable.cases)

definition is-proof-step :: form list = nat = bool where
[iff]: is-proof-step S i’ +—
S i’ € axioms V
3p ik {4, k} C{0..<i'} A is-rule-R-app p (S!1i) (S!j) (S'!k))

definition is-proof :: form list = bool where
[iff]: is-proof S +— (Vi’ < length S. is-proof-step S ')

lemma common-prefiz-is-subproof:
assumes is-proof (S @ Sy)
and i’ < length S
shows is-proof-step (S @ Sq) i’
proof —
from assms(2) have x: (S Q@ §1) ! i/ = (S @ Sy) ! ¢/
by (simp add: nth-append)
moreover from assms(2) have i’ < length (S Q@ S;)
by simp
ultimately obtain p and j and k where xx:
(S @ S&y) i € axioms V
{j, k} C{0..<i’} A is-rule-R-app p (S Q@ S1) 1) (S @ S1) 1)) (SQSy)!k)
using assms(1) by fastforce
then consider
(aziom) (S @ S1) ! i’ € azioms
| (rule-R) {j, k} C {0..<i'} A is-rule-R-app p ((S @ S1) 1 ¢) (S @ S1) 1j) (SQSq) k)
by blast
then have
(S @ Sy) ! i € axioms V
({7, k} € {0..<i’} A is-rule-R-app p (S @ S2) 1 i) (S @ Sa) 1'j) ((S @ S3) ! k))
proof cases
case azriom
with * have (S @ Sy) ! i’ € azioms
by (simp only:)
then show ?thesis ..
next
case rule-R
with assms(2) have (§ @ S§;)!1j=(S§@8s)!jand (SQS))k=(SQSy) !k
by (simp-all add: nth-append)
then have {j, k} C {0..<i'} A is-rule-R-app p (S @ S2) 1 i) ((S @ S2) !'j) ((S @ S3) ! k)
using * and rule-R by simp
then show ?thesis ..
qed
with xx show Zthesis
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by fastforce
qged

lemma added-suffiz-proof-preservation:
assumes is-proof S
and i’ < length (S @ S’) — length S’
shows is-proof-step (S @ §') i’
using assms and common-prefiz-is-subproof[where S; = []] by simp

lemma append-proof-step-is-proof:
assumes is-proof S
and is-proof-step (S Q [A]) (length (S Q [A4]) — 1)
shows is-proof (S @ [A])
using assms and added-suffiz-proof-preservation by (simp add: All-less-Suc)

lemma added-prefix-proof-preservation:
assumes is-proof S’
and i’ € {length S..<length (S @ S"}
shows is-proof-step (S @ S’) i’
proof —
let 2§=8@S8’
let 2 = i’ — length S
from assms(2) have ?S ! i’ = S'! % and % < length S’
by (simp-all add: nth-append less-diff-conv2)
then have is-proof-step ¢S i’ = is-proof-step S’ i
proof —
from assms(1) and <% < length S"» obtain j and k and p where x*:
S’ % € azioms vV ({j, k} C {0..<?%} A is-rule-R-app p (S’ %) (8" j) (S' k))
by fastforce
then consider
(aziom) 8'! ?i € axioms
| (rule-R) {j, k} C {0..<?%i} A is-rule-R-app p (S’ 2i) (S8'!j) (S'1 k)
by blast
then have
281 i’ € azioms V
(
{j + length S, k + length S} C {0..<i'} A
is-rule-R-app p (28 1{') (¢S8! (j + length S)) (S ! (k + length S))
)
proof cases
case azxiom
with <2S ! i/ = 8’ %)) have 2S ! i’ € azioms
by (simp only:)
then show ?thesis ..
next
case rule-R
with assms(2) have 2S! (j + length S) = S8'!jand 25! (k + length S) =S’ k
by (simp-all add: nth-append)
with <25 ! i’ = 8’ 2> and rule-R have
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{j + length S, k + length S} C {0..<i'} A
is-rule-R-app p (¢S 1i') (28! (j + length S)) (2S ! (k + length S))
by auto
then show “thesis ..
qed
with * show ?thesis
by fastforce
qed
with assms(1) and <% < length S’ show ?thesis
by simp
ged

lemma proof-but-last-is-proof:
assumes is-proof (S Q [4])
shows is-proof S
using assms and common-prefiz-is-subproof[where S; = [A] and Sy = []] by simp

lemma proof-prefix-is-proof:
assumes is-proof (S1 @ S3)
shows is-proof S
using assms and proof-but-last-is-proof
by (induction S arbitrary: S1 rule: rev-induct) (simp, metis append.assoc)

lemma single-axiom-is-proof:
assumes A € axioms
shows is-proof [A]
using assms by fastforce

lemma proofs-concatenation-is-proof:
assumes is-proof S and is-proof Sa
shows is-proof (S; @ Ss)
proof —
from assms(1) have Vi’ < length S1. is-proof-step (S1 @ Ss) i’
using added-suffiz-proof-preservation by auto
moreover from assms(2) have Vi’ € {length S1..<length (S1 @ S3)}. is-proof-step (S1 @ Sy) i’
using added-prefiz-proof-preservation by auto
ultimately show ?thesis
unfolding is-proof-def by (meson atLeastLess Than-iff linorder-not-le)
qged

lemma elem-of-proof-is-wffo:
assumes is-proof S and A € lset S
shows A € wffso
using assms and axioms-are-wffs-of-type-o
unfolding is-rule-R-app-def and is-proof-step-def and is-proof-def
by (induction S) (simp, metis (full-types) in-mono in-set-conv-nth)

lemma aziom-prepended-to-proof-is-proof:
assumes is-proof S
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and A € azioms
shows is-proof ([A] @ S)
using proofs-concatenation-is-proof[OF single-aziom-is-proof [OF assms(2)] assms(1)] .

lemma aziom-appended-to-proof-is-proof:
assumes is-proof S
and A € azioms
shows is-proof (S @ [A])
using proofs-concatenation-is-proof[OF assms(1) single-axiom-is-proof[OF assms(2)]] .

lemma rule-R-app-appended-to-proof-is-proof:
assumes is-proof S
and ic < length S and S ! ic = C
and ig < length Sand S ! i = FE
and is-rule-R-app p D C E
shows is-proof (S Q [D])
proof —
let S =S8 @ [D]
let %ip = length S
from assms(2,4) have ic < %ip and igp < %ip
by fastforce+
with assms(3,5,6) have is-rule-R-app p (¢S! %ip) (¢S !ic) (S ig)
by (simp add: nth-append)
with assms(2,4) have 3p j k. {4, k} C {0..<?%p} A is-rule-R-app p (?S! %ip) (¢S 'j) (¢S k)
by fastforce
then have is-proof-step 2S (length ¢S — 1)
by simp
moreover from assms(1) have Vi’ < length ?S — 1. is-proof-step ?S i’
using added-suffiz-proof-preservation by auto
ultimately show ?thesis
using less-Suc-eq by auto
ged

definition is-proof-of :: form list = form = bool where

[iff]: is-proof-of S A +— S # [] A is-proof S A last S = A

lemma proof-prefiz-is-proof-of-last:
assumes is-proof (S @ §’) and S # ||
shows is-proof-of S (last S)
proof —
from assms(1) have is-proof S
by (fact proof-prefiz-is-proof)
with assms(2) show ?thesis
by fastforce
qed

definition is-theorem :: form = bool where
[iff]: is-theorem A <— (3S. is-proof-of S A)
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lemma proof-form-is-wffo:
assumes is-proof-of S A
and B € Iset S
shows B € wffs,
using assms and elem-of-proof-is-wffo by blast

lemma proof-form-is-theorem:
assumes is-proof S and S # ||
and i’ < length S
shows is-theorem (S! ')
proof —
let %S, = take (Suc i) S
from assms(1) obtain S where is-proof (%S1 @ Ss)
by (metis append-take-drop-id)
then have is-proof 2S5,
by (fact proof-prefix-is-proof)
moreover from assms(3) have last 251 = S ! ¢’
by (simp add: take-Suc-conv-app-nth)
ultimately show #thesis
using assms(2) unfolding is-proof-of-def and is-theorem-def by (metis Zero-neq-Suc take-eq-Nil2)
qged

theorem derivable-form-is-theorem:
assumes is-derivable A
shows is-theorem A
using assms proof (induction rule: is-derivable.induct)
case (dv-aziom A)
then have is-proof [A]
by (fact single-aziom-is-proof)
moreover have last [A] = A
by simp
ultimately show “case
by blast
next
case (dv-rule-R C E p D)
obtain S¢ and Sg where
is-proof S¢ and S¢ # [| and last S¢ = C and
is-proof Sp and Sg # || and last Sp = E
using dv-rule-R.IH by fastforce
let ?ic = length S¢ — 1 and ?%ig = length S¢ + length Sg — 1 and %ip = length S¢ + length
Sg
let ¢S =S¢ Q@ Sg @ [D]
from «S¢ # [» have %ic < length (S¢ Q Sg) and ?ip < length (S¢ Q Sg)
using linorder-not-le by fastforce+
moreover have (S¢ @ Sg) ! %ic = C and (S¢ @ Sg) ! %ig = F
using <S¢ # []» and <last S¢ = O
by
(

simp add: last-conv-nth nth-append,
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metis «last Sp = E» «<Sg # [ append-is-Nil-conv last-appendR last-conv-nth length-append
)
with <s-rule-R-app p D C E> have is-rule-R-app p D ((S¢ @ Sg) ! %ic) ((Sc @ Sg) ! %ig)
using «(S¢ @ Sg) ! %ic = C) by fastforce
moreover from <is-proof S¢» and <is-proof Sg» have is-proof (S¢ @ Sg)
by (fact proofs-concatenation-is-proof)
ultimately have is-proof ((S¢ @ Sg) @ [D])
using rule-R-app-appended-to-proof-is-proof by presburger
with «S¢ # [> show Zcase
unfolding is-proof-of-def and is-theorem-def by (metis snoc-eq-iff-butlast)
ged

theorem theorem-is-derivable-form:
assumes is-theorem A
shows is-derivable A
proof —
from assms obtain S where is-proof S and S # [] and last S = A
by fastforce
then show ?thesis
proof (induction length S arbitrary: S A rule: less-induct)
case less
let %' = length S — 1
from «S # [» and <last S = A have §! %' = A
by (simp add: last-conv-nth)
from (is-proof S» and S # []» and <last S = A» have is-proof-step S ?i’
using added-suffiz-proof-preservation|where S’ = []] by simp
then consider
(aziom) S| %’ € azioms
| (rule-R) Ap j k. {j, k} C {0..<%'} A is-rule-R-app p (S! %) (S!j) (S!k)
by fastforce
then show ?case
proof cases
case ariom
with «S'! 7/’ = A) show ?thesis
by (fastforce intro: dv-axiom)
next
case rule-R
then obtain p and j and &
where {j, k} C {0..< %'} and is-rule-R-app p (S! %) (S'5) (S!'k)
by force
let 2S; = take (Suc j) S
let 2S) = take (Suc k) S
obtain S;’ and S;’ where S = %5; @ §;’and § = %5, @ S}/
by (metis append-take-drop-id)
with <is-proof S» have is-proof (?S; @ S;’) and is-proof (¢S, @ Sy”)
by (simp-all only:)
moreover

from S = 25; @ §;" and «S = 25, @ §;,» and <last S = A» and «{j, k} C {0..<length S —
h
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have last S;' = A and last S’ = A
using length-Cons and less-le-not-le and take-Suc and take-tl and append.right-neutral
by (metis atLeastLess Than-iff diff-Suc-1 insert-subset last-appendR take-all-iff )+

moreover from S # [» have %S; # [| and %S;, # |]
by simp-all

ultimately have is-proof-of ¢S; (last ?S;) and is-proof-of ?Sy, (last ?Sy)
using proof-prefiz-is-proof-of-last [where S = S; and S’ = §;
and proof-prefiz-is-proof-of-last [where § = 7S, and S’ = S}
by fastforce+

moreover from <last S;' = A» and <last S’ = A>

have length 2S; < length S and length 9S) < length S
using «{j, k} C {0..<length S — 1}> by force+

moreover from calculation(3,4) have last ¢S; =S ! j and last S, = S | k
by (metis Suc-lessD last-snoc linorder-not-le nat-neg-iff take-Suc-conv-app-nth take-all-iff )+

ultimately have is-derivable (S ! j) and is-derivable (S ! k)
using «?S; # [ and %Sy, # [ and less(1) by blast+

with <is-rule-R-app p (S 2') (S!j) (S k) and «S! %’ = A> show ?thesis
by (blast intro: dv-rule-R)

qed
qed
qged

theorem theoremhood-derivability-equivalence:
shows is-theorem A <— is-derivable A
using derivable-form-is-theorem and theorem-is-derivable-form by blast

lemma theorem-is-wffo:
assumes is-theorem A
shows A € wffso
proof —
from assms obtain S where is-proof-of S A
by blast
then have A € Iset S
by auto
with <is-proof-of S Ay show ?thesis
using proof-form-is-wffo by blast
qged

lemma equality-refiexivity:

assumes A € wffsqy

shows is-theorem (A =4 A) (is is-theorem ?4s)
proof —

let A1 = (\tq- o) * A =a A

let ¢S = [.?Al, ?AQ]

— (.1) Axiom 4.2

have is-proof-step ?S 0

proof —

from assms have ?4; € axioms
by (intro axiom-4-2)
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then show ?thesis
by simp
qed
— (-2) Rule R: .1,.1
moreover have is-proof-step 2S 1
proof —
let 7p = [«, »]
have 3p j k. {j:nat, k} C {0..<1} A is-rule-R-app ?p ?A5 (?S 1 5) (2S ! k)
proof —
let D = ?45 and ?j = 0::nat and %k = 0
have {%, %} C {0..<1}
by simp
moreover have is-rule-R-app ?p 7?45 (S| %j) (¢S | %k)
proof —
have (A\ta. ta) « 4 =¢p (281 %)
by force
moreover have (7S ! %j)( % < A) > ¢D
by force
moreover from A € wffsy» have ?D € wffs,
by (intro equality-wff)
moreover from (A € wffsq> have (Arg. ta) * 4 € wffsa
by (meson wffs-of-type-simps)
ultimately show ?thesis
using (A € wffsq> by simp
qed
ultimately show ?thesis
by meson
qed
then show ?thesis
by auto
qed
moreover have last ?S = 244
by simp
moreover have {0..<length ?S} = {0, 1}
by (simp add: atLeast0-lessThan-Suc insert-commute)
ultimately show “thesis
unfolding is-theorem-def and is-proof-def and is-proof-of-def
by (metis One-nat-def Suc-1 length-Cons less-2-cases list.distinct(1) list.size(3))
qged

lemma equality-reflexivity’:

assumes A € wffsy

shows is-theorem (A =q A) (is is-theorem ?As)
proof (intro derivable-form-is-theorem)

let A1 = (\tq- ta) * A =a A

— (.1) Axiom 4.2

from assms have ?A; € axioms

by (intro axiom-4-2)
then have step-1: is-derivable A,
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by (intro dv-aziom)
— (.2) Rule R: .1,.1
then show is-derivable 24,
proof —
let ?p = [«, »] and ?C = ?4; and ?FE = ?4; and ?D = %4,
have is-rule-R-app ?p ?D ?C ?F
proof —
have (Ara. ra) + 4 2¢, 7C
by force
moreover have ?C(?% «+ A) > ?D
by force
moreover from (A € wffsqy> have ?D € wffs,
by (intro equality-wff)
moreover from <4 € wffsq> have (Mg ta) * A € wffsa
by (meson wffs-of-type-simps)
ultimately show ?thesis
using (A € wffsq> by simp
qed
with step-1 show ?thesis
by (blast intro: dv-rule-R)
qed
qged

5.4 Hypothetical proof and derivability

The set of free variables in X that are exposed to capture at position p in A:

definition capture-exposed-vars-at :: position = form = 'a = wvar set where
[simp]: capture-exposed-vars-at p A X =
{(z, B) | = B p" E. strict-prefix p' p A\ Azg. E =y AN (z, B) € free-vars X}

lemma capture-exposed-vars-at-alt-def:
assumes p € positions A
shows capture-exposed-vars-at p A X = binders-at A p N free-vars X
unfolding binders-at-alt-def[ OF assms| and in-scope-of-abs-alt-def
using is-subform-implies-in-positions by auto

Inference rule R/:

definition rule-R’-side-condition :: form set = position = form = form = form = bool where
[iff]: rule-R’-side-condition H p D C'E +—
capture-exposed-vars-at p C' E N capture-exposed-vars-at p C H = {}

lemma rule-R’-side-condition-alt-def:
fixes H :: form set
assumes C € wffsq
shows
rule-R'-side-condition H p D C (A =4 B)
—

Az B Ep
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strict-prefiz p’ p A
Azg. B iy C A
(z, B) € free-vars (A =q B) A
(3H € H. (z, B) € free-vars H)

)

proof —
have
capture-exposed-vars-at p C' (A =¢ B)

{(z, B) | = B p" E. strict-prefiz p' p A Azg. E = CA (z, B) € free-vars (A =4 B)}

using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
moreover have

capture-exposed-vars-at p C H

{(z, B) | = B p" E. strict-prefix p' p A Azg. E =, CA (z, B) € free-vars H}

using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
ultimately have

capture-exposed-vars-at p C' (A =q B) N capture-exposed-vars-at p C H

{(z, B) | = B p" E. strict-prefix p' p A Azg. E = C A (z, B) € free-vars (A = B) A

(z, B) € free-vars H}

by auto

also have

{(z, B) | = B p" E. strict-prefix p' p A Azg. E = C A (z, B) € free-vars (A = B) A
(3H € H. (z, B) € free-vars H)}
by auto
finally show ?thesis
by fast
qged

definition is-rule-R’-app :: form set = position = form = form = form = bool where
[iff]: is-rule-R’-app H p D C E +— is-rule-R-app p D C E A rule-R’-side-condition H p D C' E

lemma is-rule-R'-app-alt-def:
shows

is-rule-R’-app H p D C E
—

(
Jda A B.

E=A=4 BN A € uffsa N B € wffsoy N — E is a well-formed equality
A=p CAND € wffso A
Clp+ B) > DA

Bz BEp.

strict-prefiz p’ p A
)\lﬂ. E jp/ C A
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(z, B) € free-vars (A =¢ B) A
(3H € H. (z, B) € free-vars H)
)
)
using rule-R’-side-condition-alt-def by fastforce

lemma rule-R’-preserves-typing:
assumes is-rule-R’-app H p D C E
shows C € wffsg «— D € wffso
using assms and replacement-preserves-typing unfolding is-rule-R-app-def and is-rule-R’-app-def
by meson

abbreviation is-hyps :: form set = bool where
is-hyps H = H C wffsp A finite H

inductive is-derivable-from-hyps :: form set = form = bool (<- = - [50, 50] 50) for H where
dv-hyp: H + A if A € H and is-hyps H

| dv-thm: H + A if is-theorem A and is-hyps H

| dv-rule-R’: H+ D if H+ C and H F FE and is-rule-R’-app H p D C E and is-hyps H

lemma hyp-derivable-form-is-wffso:
assumes is-derivable-from-hyps H A
shows A € wffso
using assms and theorem-is-wffo by (cases rule: is-derivable-from-hyps.cases) auto

definition is-hyp-proof-step :: form set = form list = form list = nat = bool where
[iff]: is-hyp-proof-step H S1 Sz i’ +—
Sy ! i"eHV
Sy ! i’ € lset S Vv
Bpjk. {j, k} C{0..<i'} Ais-rule-R'-app H p (S2 ! ') (S2!j) (S2! k))

type-synonym hyp-proof = form list X form list

definition is-hyp-proof :: form set = form list = form list = bool where
[iff]: is-hyp-proof H S1 So +— (Vi' < length Ss. is-hyp-proof-step H S1 Sa i')

lemma common-prefiz-is-hyp-subproof-from:
assumes is-hyp-proof H S1 (Sz @ Sy)
and i’ < length S
shows is-hyp-proof-step H S1 (S @ So"') 4’
proof —
let 2S5 = 82 Q@ 82/
from assms(2) have ?S ! i’ = (S, @ Sy”) I ¢/
by (simp add: nth-append)
moreover from assms(2) have i’ < length S
by simp
ultimately obtain p and j and k where
$Sli'eH vV
28 14" € lset S1 V
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{j, k} € {0..<i'} A is-rule-R’-app H p (¢S i) (281 5) (S k)
using assms(1) unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
then consider
(hyp) 2S i’ e H
| (seq) 281 i’ € lset Sy
| (rule-R") {j, k} C {0..<i’} A is-rule-R’-app H p (¢S 1) (2S!j) (¢S k)
by blast
then have
(82 @ 82//) 'i'eHV
(82 @ 82//) 13/ € lset S1 V
({4, k} € {0..<i"} A is-rule-R’-app H p ((S2 @ S3") 1 ¢) ((S2 @ S2”) 1) ((S2 @ S2') 1 k))
proof cases
case hyp
with assms(2) have (S, @ S2”) i’ € H
by (simp add: nth-append)
then show ?thesis ..
next
case seq
with assms(2) have (Sz @ S”') i’ € lset S1
by (simp add: nth-append)
then show %thesis
by (intro disjI1 disjI2)
next
case rule-R’
with assms(2) have 25! j = (S @ Sy”) ! jand 25! k= (S, @Sy I k
by (simp-all add: nth-append)
with assms(2) and rule-R’ have
{j, k} € {0..<i'} A is-rule-R"-app H p ((S2 @ S3”) 1 i) ((S2 @ S37") 1j) ((S2 @ S2') 1 k)
by (metis nth-append)
then show ?thesis
by (intro disjI2)
qed
then show ?thesis
unfolding is-hyp-proof-step-def by meson
qed

lemma added-suffiz-thms-hyp-proof-preservation:
assumes is-hyp-proof H S1 So
shows is-hyp-proof H (S1 Q@ §1') Sa
using assms by auto

lemma added-suffiz-hyp-proof-preservation:
assumes is-hyp-proof H S1 So
and i’ < length (S @ Sy') — length Sy’
shows is-hyp-proof-step H S1 (S @ Sy') i’
using assms and common-prefiz-is-hyp-subproof-from[where Ss’ = [|] by auto

lemma appended-hyp-proof-step-is-hyp-proof:
assumes is-hyp-proof H S1 S»
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and is-hyp-proof-step H S1 (S2 @ [4]) (length (S2 @ [4]) — 1)
shows is-hyp-proof H S1 (S2 @ [4])
proof (standard, intro alll impl)
fix i’
assume i’ < length (Sy @ [4])
then consider (a) i’ < length Sz | (b) i’ = length S
by fastforce
then show is-hyp-proof-step H S1 (So Q [4]) ¢’
proof cases
case a
with assms(1) show ?thesis
using added-suffiz-hyp-proof-preservation by simp
next
case b
with assms(2) show ?thesis
by simp
qed
qged

lemma added-prefix-hyp-proof-preservation:
assumes is-hyp-proof H S1 So’
and i’ € {length Ss..<length (S2 @ S3")}
shows is-hyp-proof-step H S1 (S2 @ Sy7) i’
proof —
let 25 = 82 Q@ 82/
let 2 = i’ — length Ss
from assms(2) have 2S ! i’ = Sy’! ?i and % < length Sa’
by (simp-all add: nth-append less-diff-conv2)
then have is-hyp-proof-step H S1 2S i’ = is-hyp-proof-step H S1 Sa’ ?i
proof —
from assms(1) and <% < length S2’> obtain j and k and p where
Syl %eHHV
82/! 2 € lset S1 V
({4, k} € {0..<?} A is-rule-R’-app H p (S2’! 2i) (S2'!j) (S2'! k))
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
then consider
(hyp) S2'! %i e H
| (seq) S2'! %i € lset Sy
| (rule-R") {j, k} C {0..<?%} A is-rule-R’-app H p (S2'! %) (S2’!§) (S2’ ! k)
by blast
then have
Sli'eHV
2514 € lset S; V
({j + length Sa, k + length Sa} C {0..<i'} A
is-rule-R'-app H p (28 1 i) (25! (j + length S2)) (¢S ! (k + length S3)))
proof cases
case hyp
with <2S ! i’ = Sy’ ! 2> have ?S!i' e H
by (simp only:)
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then show ?thesis ..
next
case seq
with <?S ! i’ = Sy’ ! %) have 2S5 ! i’ € lset S;
by (simp only:)
then show ?thesis
by (intro disjI1 disjI2)
next
case rule-R’
with assms(2) have 7S ! (j + length S2) = S2’! jand 2S ! (k + length So) = S2' !l k
by (simp-all add: nth-append)
with <2S ! i’ = Sy’ ! 2> and rule-R’ have
{j + length S, k + length So} C {0..<i’} A
is-rule-R'-app H p (281 4') (28! (j + length S2)) (?S ! (k + length S2))
by auto
then show ?thesis
by (intro disjI2)
qed
with assms(1) and <% < length S2”» show ?thesis
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
qed
with assms(1) and <% < length S2”» show %thesis
by simp
qed

lemma hyp-proof-but-last-is-hyp-proof:
assumes is-hyp-proof H S1 (S2 @ [4])
shows is-hyp-proof H S1 S»
using assms and common-prefiz-is-hyp-subproof-from[where Sy’ = [A] and S3”" = |[]]
by simp

lemma hyp-proof-prefix-is-hyp-proof:
assumes is-hyp-proof H S1 (Sz @ Sy)
shows is-hyp-proof H S1 S»
using assms and hyp-proof-but-last-is-hyp-proof
by (induction Sy’ arbitrary: Ss rule: rev-induct) (simp, metis append.assoc)

lemma single-hyp-is-hyp-proof:
assumes A € H
shows is-hyp-proof H S1 [4]
using assms by fastforce

lemma single-thm-is-hyp-proof:
assumes A € lset Sy
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma hyp-proofs-from-concatenation-is-hyp-proof:
assumes is-hyp-proof H S1 S1’ and is-hyp-proof H Sy Sa’
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shows is-hyp-proof H (S1 @ S3) (S1' @ Sy')
proof (standard, intro alll impI)
let 2S = Sl @] 82 and ?S/ = 81, @ 82/
fix 7/
assume i’ < length 2S’
then consider (a) i’ < length S1”| (b) i’ € {length S1'..<length ?S'}
by fastforce
then show is-hyp-proof-step H 2S 28’ i’
proof cases
case a
from <is-hyp-proof H S1 81" have is-hyp-proof H (S1 Q S3) S’
by auto
with assms(1) and a show ?thesis
using added-suffiz-hyp-proof-preservation[where S = S; @ S3] by auto
next
case b
from assms(2) have is-hyp-proof H (S1 Q@ S3) So’
by auto
with b show ?thesis
using added-prefiz-hyp-proof-preservation[where S; = S1 @ Ss] by auto
qed
qged

lemma elem-of-hyp-proof-is-wffo:
assumes is-hyps H
and Iset S1 C wffso
and is-hyp-proof H S1 S»
and A € lset Sy
shows A € wffso
using assms proof (induction Sa rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc A’ S3)
from <is-hyp-proof H S1 (S2 @ [A'])» have is-hyp-proof H S1 Sa
using hyp-proof-prefiz-is-hyp-proof[where Sy’ = [A']] by presburger
then show ?case
proof (cases A € lset Ss)
case True
with snoc.prems(1,2) and <is-hyp-proof H S1 S2» show “thesis
by (fact snoc.IH)
next
case Fulse
with snoc.prems(4) have A’ = A
by simp
with snoc.prems(3) have
(S @A) 'i'eHV
(S @ [A]) i’ € lset S1 V
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(S2 @ [A]) ! i’ € wffso if i' € {0..<length (So @ [A])} for i’
using that by auto

then have 4 € wffsp V A € HV A € lset S; V length So ¢ {0..<Suc (length S2)}
by (metis (no-types) length-append-singleton nth-append-length)

with assms(1) and <lset S1 C wffsy> show ?Zthesis
using atLeast0-lessThan-Suc by blast

qed
qed

lemma hyp-prepended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 So
and A € H
shows is-hyp-proof H S1 ([4] @ S3)
using
hyp-proofs-from-concatenation-is-hyp-proof
[
OF single-hyp-is-hyp-proof [OF assms(2)] assms(1),
where §; = ||
]

by simp

lemma hyp-appended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 S»
and A € H
shows is-hyp-proof H S1 (S2 @ [A])
using
hyp-proofs-from-concatenation-is-hyp-proof
[
OF assms(1) single-hyp-is-hyp-proof [OF assms(2)],
where S; = ||

]

by simp

lemma dropped-duplicated-thm-in-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H (A # S1) S
and A € Iset S
shows is-hyp-proof H S1 Sa
using assms by auto

lemma thm-prepended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 S»
and A € Iset S
shows is-hyp-proof H S1 ([4] @ S3)
using hyp-proofs-from-concatenation-is-hyp-proof [ OF single-thm-is-hyp-proof [OF assms(2)] assms(1)]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma thm-appended-to-hyp-proof-is-hyp-proof:

assumes is-hyp-proof H S1 So
and A € Iset S;
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shows is-hyp-proof H S1 (S2 Q [4])
using hyp-proofs-from-concatenation-is-hyp-proof[OF assms(1) single-thm-is-hyp-proof [ OF assms(2)]]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma rule-R’-app-appended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S8’ S
and ic < length S and S ! ic = C
and ig < length Sand S ! ip = FE
and is-rule-R’-app H p D C E
shows is-hyp-proof H S’ (S @ [D])
proof (standard, intro alll impI)
let S =S8 @ [D]
fix i’
assume i’ < length ?S
then consider (a) i’ < length S | (b) i’ = length S
by fastforce
then show is-hyp-proof-step H S’ (S @ [D]) i’
proof cases
case a
with assms(1) show ?thesis
using added-suffiz-hyp-proof-preservation by auto
next
case b
let %ip = length S
from assms(2,4) have ic < %ip and ig < %ip
by fastforce+
with assms(3,5,6) have is-rule-R’-app H p (2S ! %ip) (¢S Vic) (S ! ig)
by (simp add: nth-append)
with assms(2,4) have
Ipjk. {4, k} C{0..<%ip} A is-rule-R’"-app H p (2S ! %ip) (¢S 1) (¢S k)
by (intro exl)+ auto
then have is-hyp-proof-step H S’ 2S (length ¢S — 1)
by simp
moreover from b have i’ = length 7S — 1
by simp
ultimately show ?thesis
by fast
qed
qged

definition is-hyp-proof-of :: form set = form list = form list = form = bool where
[iff]: is-hyp-proof-of H S1 Sa A +—
is-hyps H A
is-proof S1 A
Sa £ [ A
is-hyp-proof H S1 Sa A
last S = A

lemma hyp-proof-prefix-is-hyp-proof-of-last:
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assumes is-hyps H

and is-proof S

and is-hyp-proof H 8" (S @ §’') and S # []

shows is-hyp-proof-of H 8" S (last S)

using assms and hyp-proof-prefiz-is-hyp-proof by simp

theorem hyp-derivability-implies-hyp-proof-existence:
assumes H + A
shows 381 Ss. is-hyp-proof-of H S1 So A
using assms proof (induction rule: is-derivable-from-hyps.induct)
case (dv-hyp A)
from <A € H» have is-hyp-proof H || [A]
by (fact single-hyp-is-hyp-proof)
moreover have last [A] = A
by simp
moreover have is-proof ||
by simp
ultimately show ?case
using <is-hyps H» unfolding is-hyp-proof-of-def by (meson list.discI)
next
case (dv-thm A)
then obtain S where is-proof S and S # [| and last S = A
by fastforce
then have is-hyp-proof H S [A]
using single-thm-is-hyp-proof by auto
with «is-hyps H» and <is-proof S> have is-hyp-proof-of H S [A] A
by fastforce
then show ?case
by (intro exl)
next
case (dv-rule-R' C E p D)
from dv-rule-R’.IH obtain Sz and S¢’ and Sg and Si’ where
is-hyp-proof H S¢’ S¢ and is-proof S¢’ and S¢ # [] and last S¢ = C and
is-hyp-proof H Sg' Sk and is-proof Sg’ and Sg # [] and last Sg = F
by auto
let %ic = length S¢ — 1 and ?ig = length S¢ + length Sp — 1 and %ip = length S¢ + length
Sk
let S = Sc @ S @ [D}
from «S¢ # [ have %ic < length (S¢ Q Sg) and %ip < length (Sc Q Sg)
using linorder-not-le by fastforce+
moreover have (S¢ @ Sg) ! %ic = C and (S¢ Q Sg) ! %ig = FE
using «S¢ # [|» and <ast S¢ = C» and «Sg # [|» and dast Sg = E»
by
(
simp add: last-conv-nth nth-append,
metis append-is-Nil-conv last-appendR last-conv-nth length-append
)
with <is-rule-R’-app H p D C E» have is-rule-R’-app H p D ((S¢ @ Sg) ! %ic) ((S¢ @ Sg) ! %)
by fastforce
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moreover from <is-hyp-proof H Sc’ Sc» and <is-hyp-proof H Sg’ Sg»

have is-hyp-proof H (S¢’ @ Sg’) (S¢ @ Sg)
by (fact hyp-proofs-from-concatenation-is-hyp-proof)

ultimately have is-hyp-proof H (S¢’ @ Sg’) ((Sc @ Sg) @ [D)])
using rule-R’-app-appended-to-hyp-proof-is-hyp-proof
by presburger

moreover from <is-proof S¢’y and <is-proof Sg’» have is-proof (S¢’ @ Sg’)
by (fact proofs-concatenation-is-proof)

ultimately have is-hyp-proof-of H (S¢' Q Sg’) ((S¢ @ Sg) @ [D]) D
using <is-hyps H»> by fastforce

then show ?case
by (intro exl)

qged

theorem hyp-proof-existence-implies-hyp-derivability:
assumes 387 Ss. is-hyp-proof-of H S1 S2 A
shows H F A
proof —
from assms obtain S; and S,
where is-hyps H and is-proof S; and Sy # [| and is-hyp-proof H S1 S and last S = A
by fastforce
then show ?thesis
proof (induction length So arbitrary: So A rule: less-induct)
case less
let i’ = length Sy — 1
from Sy # [|» and dast S; = A» have Sy | %' = A
by (simp add: last-conv-nth)
from <is-hyp-proof H S1 S2» and Sy # [» have is-hyp-proof-step H S1 Sa %i’
by simp
then consider
(hyp) S2 ! %' € H
| (seq) Sa! %’ € Iset Sy
| (rule-R") Ip j k. {4, k} C {0..<%'} A is-rule-R’™-app H p (Sa ! %i') (Sa 1)) (S2 ! k)
by force
then show ?case
proof cases
case hyp
with «Sy ! 2%/ = A> and «<is-hyps H> show ?thesis
by (fastforce intro: dv-hyp)
next
case seq
from (S ! 7' € lset Sy and Sy ! 71/ = Ay
obtain j where S; ! j = A and S; # [| and j < length S
by (metis empty-iff in-set-conv-nth list.set(1))
with (is-proof S1» have is-proof (take (Suc j) S1) and take (Suc j) S1 # |]
using proof-prefiz-is-proof[where S = take (Suc j) S; and Sy = drop (Suc j) S1]
by simp-all
moreover from «S; ! j = A and «j < length S1> have last (take (Suc j) S1) = A
by (simp add: take-Suc-conv-app-nth)
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ultimately have is-proof-of (take (Suc j) S1) A
by fastforce
then have is-theorem A
using is-theorem-def by blast
with <is-hyps H»> show ?Zthesis
by (intro dv-thm)
next
case rule-R’
then obtain p and j and &
where {j, k} C {0..<?%'} and is-rule-R’-app H p (S2 ! ') (S2!j) (S2! k)
by force
let 2S; = take (Suc j) So and %Sy = take (Suc k) S
obtain S;’ and S;’ where S; = %5; @ S;’and S, = 4S5, @ Si’
by (metis append-take-drop-id)
then have is-hyp-proof H S, (%S; @ S;') and is-hyp-proof H S1 (¢S @ Sy”)
by (simp-all only: <is-hyp-proof H S1 S2»)
moreover from Sy # [|» and Sy = %5; @ §;"» and Sy = 45 @ Si.» and «last S; = A
have last S;' = A and last S, = A
using <{j, k} C {0..<length So — 1}> and take-tl and less-le-not-le and append.right-neutral
by (metis atLeastLess Than-iff insert-subset last-appendR length-tl take-all-iff )+
moreover from Sy # [|» have 2S; # [| and %Sy # |]
by simp-all
ultimately have is-hyp-proof-of H S1 ¢S; (last ?S;) and is-hyp-proof-of H S1 %Sy (last ?Sk)
using hyp-proof-prefiz-is-hyp-proof-of-last
[OF <is-hyps H» <is-proof S1» <is-hyp-proof H S1 (2S; Q S;')» <28, # [])]
and hyp-proof-prefiz-is-hyp-proof-of-last
[OF <is-hyps H» <is-proof Sy <is-hyp-proof H S1 (?Si Q Si')» <28k # []°]
by fastforce+
moreover from <ast S;’ = A) and <last S’ = A
have length ?S; < length Sy and length ?S), < length S
using «({j, k} C {0..<length S; — 1}» by force+
moreover from calculation(8,4) have last ?S; = So ! j and last S, = Sa ' k
by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff )+
ultimately have H+ Ss ! jand HF Sy ! k
using <is-hyps H>
and less(1)[OF «<length ?S; < length S2»] and less(1)[OF «<length S, < length Sa)]
by fast+
with <is-hyps H> and S ! %' = A> show ?thesis
using <is-rule-R’-app H p (S2 ! %i') (S2 ! j) (S2 ! k)» by (blast intro: dv-rule-R’)
qed
qed
ged

theorem hypothetical-derivability-proof-existence-equivalence:
shows H + A «+— (381 Ss. is-hyp-proof-of H S1 S2 A)
using hyp-derivability-implies-hyp-proof-existence and hyp-proof-existence-implies-hyp-derivability ..

proposition derivability-from-no-hyps-theoremhood-equivalence:
shows {} - A +— is-theorem A
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proof
assume {} F A
then show is-theorem A
proof (induction rule: is-derivable-from-hyps.induct)
case (dv-rule-R' C E p D)
from <is-rule-R’-app {} p D C E» have is-rule-R-app p D C E
by simp
moreover from <(is-theorem C» and <is-theorem E»> have is-derivable C and is-derivable E
using theoremhood-derivability-equivalence by (simp-all only:)
ultimately have is-derivable D
by (fastforce intro: dv-rule-R)
then show ?case
using theoremhood-derivability-equivalence by (simp only:)
qed simp
next
assume is-theorem A
then show {} - 4
by (blast intro: dv-thm)
qed

abbreviation is-derivable-from-no-hyps (<t -» [50] 50) where
FA={}F A

corollary derivability-implies-hyp-derivability:
assumes - A and is-hyps H
shows H F A
using assms and derivability-from-no-hyps-theoremhood-equivalence and dv-thm by simp

lemma aziom-is-derivable-from-no-hyps:
assumes A € axioms
shows F A
using derivability-from-no-hyps-theoremhood-equivalence
and derivable-form-is-theorem[OF dv-aziom|OF assms]| by (simp only:)

lemma aziom-is-derivable-from-hyps:
assumes A € azioms and is-hyps H
shows H F A
using assms and aziom-is-derivable-from-no-hyps and derivability-implies-hyp-derivability by blast

lemma rule-R [consumes 2, case-names occ-subform replacement]:
assumes - Cand - A =4 B
and A <, C and C{p < B) > D
shows - D
proof —
from assms(1,2) have is-derivable C and is-derivable (A =q B)
using derivability-from-no-hyps-theoremhood-equivalence
and theoremhood-derivability-equivalence by blast+
moreover have is-rule-R-app p D C (A =4 B)
proof —
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from assms(1—4) have D € wffsp and A € wffsq, and B € wffsqy
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)+
with assms(3,4) show ?thesis
by fastforce
qed
ultimately have is-derivable D
by (rule dv-rule-R)
then show ?thesis
using derivability-from-no-hyps-theoremhood-equivalence and derivable-form-is-theorem by simp
qged

lemma rule-R’ [consumes 2, case-names occ-subform replacement no-capture]:
assumes H+- Cand H+ A =4 B
and A <, Cand C(p < B) > D
and rule-R’-side-condition H p D C (A =4 B)
shows H + D
using assms(1,2) proof (rule dv-rule-R’)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
moreover from assms(1—4) have D € wffs,
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)
ultimately show is-rule-R’-app H p D C (A =4 B)
using assms(2—5) and hyp-derivable-form-is-wffso and wffs-from-equality
unfolding is-rule-R-app-def and is-rule-R’-app-def by metis
qed

end

6 Elementary Logic

theory FElementary-Logic
imports
Proof-System
Propositional- Wf
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

6.1 Proposition 5200

proposition prop-5200:
assumes A € wffsy
shows - A =, A
using assms and equality-reflexivity and dv-thm by simp

corollary hyp-prop-5200:

assumes is-hyps H and A € wffsy
shows HEF A =4 A
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using derivability-implies-hyp-derivability| OF prop-5200[OF assms(2)] assms(1)] .

6.2 Proposition 5201 (Equality Rules)

proposition prop-5201-1:
assumes H+- Aand H+ A=° B
shows H - B
proof —
from assms(2) have H + A =, B
unfolding equivalence-def .
with assms(1) show ?thesis
by (rule rule-R’[where p = []]) auto
qged

proposition prop-5201-2:
assumes H+ A =4 B
shows HF B =4 A
proof —
have H+- A=, A
proof (rule hyp-prop-5200)
from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
show A € wffsq
by (fact hyp-derivable-form-is-wffso[OF assms, THEN wffs-from-equality(1)])
qed
from this and assms show ?thesis
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-3:
assumes H+ A= Band H+ B =4 C
shows HF+ A=, C
using assms by (rule rule-R'[where p = [»]]) (force+, fastforce dest: subforms-from-app)

proposition prop-5201-4:
assumes’HFA:a_wBand’HF C=qD
showsHFA-CzﬁB-D
proof —
have’Hl—A-C:ﬁA-C
proof (rule hyp-prop-5200)
from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms have A € wﬁsaﬁﬁ and C € wffsq
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
then show A - C € wﬁsﬁ

by auto
qed
from this and assms(1) have H - A- C =3 B- C
by (rule rule-R’[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)

132



from this and assms(2) show ?thesis
by (rule rule-R'[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-5:
assumes H - A =q—p Band C € wffsq
showsHFA-CzﬁB-C’
proof —
have’Hl—A-C:ﬂA-C
proof (rule hyp-prop-5200)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have A € wffs, 4
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
with assms(2) show A - C € wffsg

by auto
qed
from this and assms(1) show ?thesis
by (rule rule-R'[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)

qged

proposition prop-5201-6:
assumes H - C =o D and A € wffs,_,g
shows’Hl—A-C:ﬂA-D
proof —
have H- A+ C=5A-C
proof (rule hyp-prop-5200)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have C € wffsq
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
with assms(2) show A - C € wffsg

by auto
qed
from this and assms(1) show ?thesis
by (rule rule-R'[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)

qed

lemmas Fquality-Rules = prop-5201-1 prop-5201-2 prop-5201-3 prop-5201-4 prop-5201-5 prop-5201-6

6.3 Proposition 5202 (Rule RR)

proposition prop-5202:
assumes - A =4 BVF B=4, A
and p € positions C and A <, C and C(p < B) > D
and H+ C
shows H + D

proof —
from assms(5) have - C =, C
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using prop-5200 and hyp-derivable-form-is-wffso by blast
moreover from assms(1) consider (a) F A =4 B| (b)F B=4 A
by blast
then have - A =4 B
by cases (assumption, fact Equality-Rules(2))
ultimately have - C' =, D
by (rule rule-Rlwhere p = » # p|) (use assms(2—4) in auto)
then have H+ C =, D
proof —
from assms(5) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
with <+ C =, D) show ?thesis
by (fact derivability-implies-hyp-derivability)
qed
with assms(5) show ?thesis
by (rule Equality-Rules(1)[unfolded equivalence-def])
qged

lemmas rule-RR = prop-5202

6.4 Proposition 5203

proposition prop-5203:
assumes A € wffsq and B € wﬁslg
and Vv € vars A. = is-bound v B
shows - (Azq. B) » A =3 S {(z, ) — A} B
using assms(2,1,3) proof induction
case (var-is-wff S y)
then show ?case
proof (cases yg = o)
case True
then have a =
by simp
moreover from assms(1) have b (Azq. 2¢) + A = A
using aziom-4-2 by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (zq) = 4
by force
ultimately show Zthesis
using True by (simp only:)
next
case Fualse
with assms(1) have - (Aza. yg) « A =5 yg
using aziom-4-1-var by (intro aziom-is-derivable-from-no-hyps)
moreover from False have S {(z, a) — A} (yg) = yg
by auto
ultimately show ¢thesis
by (simp only:)
qed
next
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case (con-is-wff B c)
from assms(1) have b (Aza. {c}g) « A =5 {clg
using aziom-4-1-con by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} ({c}tg) = {c|g
by auto
ultimately show “case
by (simp only:)
next
case (app-is-wff v 8 D C)
from app-is-wff.prems(2) have not-bound-subforms: Vv € vars A. = is-bound v D A — is-bound v C
using is-bound-in-app-homomorphism by fast
from <D € wffs,_, 5> have - (Azq. D) - A =, _,5 S {(z, @) — A} D
using app-is-wff.IH(1)[OF assms(1)] and not-bound-subforms by simp
moreover from «C € wffsy> have - (Azq. C) » A =y S {(z, a) — A} C
using app-is-wff.IH(2)[OF assms(1)] and not-bound-subforms by simp
moreover have - (Azq. D« O) + A =g ((Aza. D) + 4) » ((Aza. C) + A)
using aziom-is-derivable-from-no-hyps|OF axiom-4-3[OF assms(1) <D € wffsy > «C € wffs~»]] .
ultimately show ?case
using Fquality-Rules(3,4) and substitute.simps(3) by presburger
next
case (abs-is-wff 8 D v y)
then show ?case
proof (cases yy = zq)
case True
then have b (Azq. Ayy. D)« A =, 3 Ayy. D
using aziom-is-derivable-from-no-hyps|OF axiom-4-5[OF assms(1) abs-is-wff.hyps(1)]] by fast
moreover from True have S {(z, a) — A} (Ayy. D) = Ayy. D
using empty-substitution-neutrality
by (simp add: singleton-substitution-simps(4) fmdrop-fmupd-same)
ultimately show Zthesis
by (simp only:)
next
case Fulse
have binders-at (A\y~. D) [«] = {(y, 7)}
by simp
then have is-bound (y, v) (Ay~. D)
by fastforce
with abs-is-wff.prems(2) have (y, v) ¢ vars A
by blast
with <y, # zo> have = (Azq. Ay. D) « A =y AUy (Azq. D)« A
using aziom-4-4[OF assms(1) abs-is-wff .hyps(1)] and aziom-is-derivable-from-no-hyps by blast
moreover have - (Azq. D) - A =5 S {(z, a) — A} D
proof —
have Vp. 3y, =, #p AYyy. D — yy 2p D
using subforms-from-abs by fastforce
from abs-is-wff.prems(2) have Vv € vars A. = is-bound v D
using is-bound-in-abs-body by fast
then show ?thesis
by (fact abs-is-wff.IH[OF assms(1)])
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qed
ultimately have - (Aza. Ayy. D)+ A = 5 Ayy. S {(z, a) — A} D
by (rule rule-R[where p = [»,«]]) force+
with False show ?thesis
by simp
qed
qged

6.5 Proposition 5204

proposition prop-5204:
assumes A € wffsq and B € wffsg and C € wﬁ%
and - B =5 C
and Vv € vars A. = is-bound v B A — is-bound v C
shows = S {(z, @) — A} (B =5 C)
proof —
have - (Azq. B) + A =g (Aza. B) - A
proof —
have (Azq. B) + A € wffsg
using assms(1,2) by auto
then show ?thesis
by (fact prop-5200)

qed
from this and assms(4) have b (Azq. B) » A =5 (Azqa. C) - 4
by (rule rule-R[where p = [»,«,«]]) force+

moreover from assms(1,2,5) have - (Azq. B) » A =g S {(z, @) — A} B
using prop-5203 by auto

moreover from assms(1,3,5) have - (Azq. C) » A =3 S {(z, a) — A} C
using prop-5203 by auto

ultimately have - (S {(z, @) — A} B) =5 (S {(z, @) — A} O)
using FEquality-Rules(2,3) by blast

then show ?thesis
by simp

qed

6.6 Proposition 5205 (n-conversion)

proposition prop-5205:
shows - {3 =43 (\Ya. fasg * Ya)
proof —
{
fix y
assume Yo # o
let 2A = Ayq. fa—sp * Ya
have F (a5 =4 “A) =0 Via- (Tasp * fa = %4+ ta)
proof —
have + (foz—>ﬁ —a—f ga—>,3) =0 V&a- (foz—)ﬁ *ta =38 8a—pB " ta) (isk 7B =, ?C)
using aziom-3[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
have - S {(g, a—8) — 24} (B =, ?C)
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proof —
have 74 € wﬁsa_w and ?B € wffsp and ?C € wffsy
by auto
moreover have Vv € vars ?A. = is-bound v B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
have vars ?B = {(f, a—f), (g, a—p)} and vars ?C = {(f, a—p), (¢, @), (g, a—S)}
by force+
with (yo # ro) have (y, o) ¢ vars B and (y, o) ¢ vars ?C
by force+
then have — is-bound (y, a) ?B and — is-bound (y, o) 7C
using absent-var-is-not-bound by blast+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from v € vars 4> have v € {(y, ), (f, a—5)}
by auto
ultimately show — is-bound v ?B A — is-bound v ?C
by fast
qed
ultimately show ?thesis
using - B =, ?C» and prop-5204 by presburger
qed
then show ?thesis
by simp
qged
moreover have - 74 « 14 =8 fa—sp " ta
proof —
have 1o € wffsq and fasp * Ya € wffsﬁ
by auto
moreover have Vv € vars (ra). = is-bound v (fo— g * ya)
using (yo # o’ by auto
moreover have S {(y, @) — ta} (fa_sg * Ja) = Tasg * fa
by simp
ultimately show ?thesis
using prop-5203 by metis

qged
ultimately have - (fo,—,3 =08 ?4) =0 Via- (fasp * ta =g fasp * ta)
by (rule rule-R[where p = [»,»,«,»]]) force+

moreover have - (fa—)ﬂ “a—p fa—)ﬁ) =0 Via- (foz—)/j’ *ta =g fasp L289)
proof —

let ?A = fa_>5
have = (fo—5 =a—p 9a—p) =0 Via- (fasp * Yo =3 8a—p * ta) (is = 7B =, 7C)
using aziom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
have - S {(g, a—8) — ?A} (?B =, ?0)
proof —
have 74 ¢ wﬁsa_w and ?B € wffsp and ?C € wffsy
by auto
moreover have Vv € vars ?A. = is-bound v ?B N\ — is-bound v ?C
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proof
fix v
assume v € vars ?A
have vars 7B = {(f, a—p), (g, a—p)} and vars ?C = {(f, a—=08), (¢, «), (g, a—=pF)}
by force+
with <yq # 1o have (y, ) ¢ vars ?B and (y, «) ¢ vars ?C
by force+
then have — is-bound (y, a) ?B and — is-bound (y, o) 7C
using absent-var-is-not-bound by blast+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from v € vars 4 »have v € {(y, ), (f, a—5)}
by auto
ultimately show — is-bound v ¢B A — is-bound v ?C
by fast
qged
ultimately show ?thesis
using <+ B =, ?C» and prop-5204 by presburger
qed
then show ?thesis
by simp
qed
ultimately have - f,_,3 =3 (A\ya. fasg * Ya)
using Fquality-Rules(1)[unfolded equivalence-def] and Fquality-Rules(2) and prop-5200
by (metis wffs-of-type-intros(1))

note z-neq-y = this
then have §6: - f,_,53 =43 \a- fospg * Do (isF 7B =. 7C)
by simp
then have §7: = (Ara- fo—g * o) =a—p (MWa. (Ara- fosg * Fa) * 9a)
proof —
let ?A = Ara. fos * ta
have ?A € wffs,_,5 and ?B € wffs,_,5 and ?C € wffs, g
by auto
moreover have Vv € vars ?A. = is-bound v ?B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
have — is-bound (z, @) ?B and — is-bound (r, o) ?C
by code-simp+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from (v € vars ?4 yhave v € {(z, @), (f, a—p)}
by auto
ultimately show — is-bound v ?B A — is-bound v ¢C
by fast
qed
ultimately have - S {(f, a—p3) — ?A} (B =,_,5 ?C)
using §6 and prop-5204 by presburger
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then show ?thesis

by simp
qed
have - (Arq. fa—>ﬁ ) “a—p (ADa. fa—>ﬁ ' Do)
proof —
have i (Ara. foz—>5 " Ia) * Ya =B fa—)ﬁ * Yo
proof —
have 1y, € wffsq and fa_>5 " Ia € wffsﬂ
by auto
moreover have Vv € vars (9o). = is-bound v (fo— g * ra)
by simp
moreover have S {(t, @) — 0} (fass * fa) = fas * a
by simp

ultimately show ?Zthesis
using prop-5203 by metis
qed
from §7 and this show ?thesis
by (rule rule-R [where p = [»,«]]) force+
qed
with §6 and z-neg-y[of y] show ?thesis
using Fquality-Rules(2,3) by blast
qged

6.7 Proposition 5206 (a-conversion)

proposition prop-5206:
assumes A € wffsqy
and (z, 8) ¢ free-vars A
and is-free-for (23) (z, B) A
shows b (Azg. A) =5, (A\23. S {(z, B) — 23} A)
proof —
have is-substitution {(z, B) — zg}
by auto
from this and assms(1) have S {(z, 8) — 25} A € wffsa
by (fact substitution-preserves-typing)
obtain y where (y, 8) ¢ {(z, 8), (z, 8)} U vars A
proof —
have finite ({(z, 8), (2, B)} U vars A)
using vars-form-finiteness by blast
with that show ?Zthesis
using fresh-var-ezristence by metis
qed
then have (y, 8) # (z, 8) and (y, B) # (2, B) and (y, ) ¢ vars A and (y, 8) ¢ free-vars A
using free-vars-in-all-vars by auto
have §1: = (Azg. A) =g_,o (Ayg. (Azg. 4) - yp)
proof —
let ?A = Azg. A
have x*: fﬁ—)a :ﬂ—m ()\yﬁ fﬂ—)oc . yﬂ) (iS F B =. ?C)
by (fact prop-5205)
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moreover have - S {(f, f—a) — A} (B =g_,, ?C)
proof —
from assms(1) have ?A € wffsg_q and ?B € wffsg_,, and ?C € wffsg_,,
by auto
moreover have Vv € vars ?A. — is-bound v ?B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
then consider (a) v = (z, 8) | (b) v € vars A
by fastforce
then show — is-bound v ?B A — is-bound v ?C
proof cases
case a
then show ?thesis
using «(y, 8) # (x, B)» by force
next
case b
then have — is-bound v B
by simp
moreover have — is-bound v ?C
using b and «(y, 5) ¢ vars Ay by code-simp force
ultimately show Zthesis
by blast
qed
qed
ultimately show ?thesis
using prop-5204 and * by presburger
qed
ultimately show ?thesis
by simp
qed
then have §2: - (A\zg. 4) =5_,, (\yg. S {(z, B) — yg} 4)
proof —
have - (Azg. A) » yg =a S {(z, B) — yg} A (isk (A\zg. ¥B) » ?PA =_ )
proof —
have 74 € wﬁsﬁ and ?B € wffsq
by blast fact
moreover have Vv € vars ?A. = is-bound v ?B
using «(y, 8) ¢ vars A» and absent-var-is-not-bound by auto
ultimately show ?thesis
by (fact prop-5203)
qed
with §1 show ?thesis
by (rule rule-R [where p = [»,«]]) force+
qed
moreover
havef§5’: F(Azg. S {(z, B) — 2} A) =0 (Ayg. (Azg. S {(z, B) — 25} A) - yp)
proof —

let ?A = Azg5. S {(z, B) — 23} 4

140



have x*: fﬁ—)a :ﬂ—m ()\yﬁ fﬁ—)a . yﬁ) (iS F B =. ?C)
by (fact prop-5205)
moreover have - S {(f, f—a) — A} (B =g_,, ?C)
proof —
have 74 € wﬁsﬂ_)a and ?B € wﬁsﬁéa and ?C € wﬁsﬁ_}a
using S {(z, B) — zﬁ} A € wffsq by auto
moreover have Vv € vars ?A. = is-bound v ?B N — is-bound v ?C
proof
fix v
assume v € vars ?A
then consider (a) v = (2, 8) | (b) v € vars (S {(z, B) — 25} A)
by fastforce
then show - is-bound v ?B A — is-bound v 7C
proof cases
case a
then show ?thesis
using «(y, 8) # (z, 8)» by auto
next
case b
then have — is-bound v B
by simp
moreover from b and «(y, 8) ¢ vars A» and «(y, 8) # (z, B)> have v # (y, )
using renaming-substitution-minimal-change by blast
then have — is-bound v 7C
by code-simp simp
ultimately show %thesis
by blast
qed
qed
ultimately show ?thesis
using prop-5204 and * by presburger
qed
ultimately show ?thesis
by simp
qed
then have §4: = (Azg. S {(z, B) — 25} A) =54 (\yg- S {(z, B) — yg} A4)
proof —
have - (Azg. S {(z, B) — 23} A) » yg =a S {(z, B) — yg} A (ist (A\zg. ?B) - A =_ )
proof —
have ?A € wffsg and ?B € wffsq
by blast fact
moreover from «(y, 8) ¢ vars A> and «(y, §) # (2, §)» have Yv € vars ?A. = is-bound v ?B
using absent-var-is-not-bound and renaming-substitution-minimal-change by auto
ultimately have - (Azg. S {(z, 8) — 23} A) » yg =a S {(z, B) — yg} S {(z, B) — 25} A
using prop-5203 by fast
moreover have S {(z, 8) — yg} S {(z, B) — 23} A =S {(z, B) — yg} A
by (fact renaming-substitution-composability| OF assms(2,3)])
ultimately show ?thesis
by (simp only:)
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qed
with §3 show ?thesis
by (rule rule-R [where p = [»,«]]) auto
qed
ultimately show ?thesis
using FEquality-Rules(2,3) by blast
qed

lemmas a = prop-5206

6.8 Proposition 5207 (/-conversion)

context
begin

private lemma bound-var-renaming-equality:
assumes A € wffsq
and 2y # Yy
and (z, v) ¢ vars A
shows - A =, rename-bound-var (y, v) z A
using assms proof induction
case (var-is-wff a x)
then show ?case
using prop-5200 by force
next
case (con-is-wff « c)
then show ?case
using prop-5200 by force
next
case (app-is-wff a 8 A B)
then show ?case
using FEquality-Rules(4) by auto
next
case (abs-is-wff f A a x)
then show ?case
proof (cases (y, v) = (z, a))
case True
have - A\y,. A =8 AYn. A
by (fact abs-is-wff .hyps| THEN prop-5200[OF wffs-of-type-intros(4)]])
moreover have - A =g rename-bound-var (y,v) z A
using abs-is-wff . IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
ultimately have - \y,. 4 =3 AYy. rename-bound-var (y,7v) z A

by (rule rule-R[where p = [»,«]]) force+
moreover
have
F Ay~. rename-bound-var (y, v) z A
=B

Ay S {(y, v) — 2~} (rename-bound-var (y, v) z A)
proof —
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have rename-bound-var (y, v) z A € wffsg
using hyp-derivable-form-is-wffso[OF «~ A =g rename-bound-var (y, 7) z A)]
by (blast dest: wffs-from-equality)
moreover from abs-is-wff.prems(2) have (z, v) ¢ free-vars (rename-bound-var (y, v) z A)
using rename-bound-var-free-vars|OF abs-is-wff.hyps assms(2)] by simp
moreover from abs-is-wff.prems(2) have is-free-for (z) (y, v) (rename-bound-var (y, v) z A)
using is-free-for-in-rename-bound-var|OF abs-is-wff .hyps assms(2)] by simp
ultimately show ?thesis
using « by fast
qed
ultimately have - Ay,. A =, 3 Azy. S {(y, 7) — 2y} (rename-bound-var (y, v) z A)
by (rule Equality-Rules(3))
then show ?thesis
using True by auto
next
case Fulse
have - \zq. A =a—=8 ALg. A
by (fact abs-is-wff.hyps| THEN prop-5200[OF wffs-of-type-intros(4)]])
moreover have - A =g rename-bound-var (y, ) z A
using abs-is-wff IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
ultimately have - Azo. A =,_,3 Aza. rename-bound-var (y, v) z A
by (rule rule-R[where p = [»,«]]) force+
then show ?thesis
using Fualse by auto
qed
qed

proposition prop-5207:
assumes A € wffsq and B € wffsg
and is-free-for A (z, o) B
shows - (Azq. B) - A =3 S {(z, ) — A} B
using assms proof (induction form-size B arbitrary: B 8 rule: less-induct)
case less
from less(3,1,2,4) show ?case
proof (cases B rule: wffs-of-type-cases)
case (var-is-wff y)
then show ?thesis
proof (cases yg = za)
case True
then have a =
by simp
moreover from assms(1) have b (Azq. 2¢) * A =¢ A
using aziom-4-2 by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (zo) = 4
by force
ultimately show ?thesis
unfolding True and var-is-wff by simp
next
case Fulse
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with assms(1) have - (Aza. yg) + A =5 yg
using aziom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(z, a) — A} (yg) = yg
by auto
ultimately show ?Zthesis
unfolding Fulse and var-is-wff by simp
qed
next
case (con-is-wff ¢)
from assms(1) have - (Aza. {c}g) - A =g {clg
using aziom-4-1-con by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, @) — A} ({c}g) = {c}g
by auto
ultimately show ?thesis
by (simp only: con-is-wff)
next
case (app-is-wff v D C)
have form-size D < form-size B and form-size C' < form-size B
unfolding app-is-wff (1) by simp-all
from less(4)[unfolded app-is-wff(1)] have is-free-for A (z, o) D and is-free-for A (z, a) C
using is-free-for-from-app by iprover+
from (is-free-for A (z, o) D» have - (Azq. D)+ A =, _,5 S {(z, a) — A} D
by (fact less(1)[OF <form-size D < form-size By assms(1) app-is-wff(2)])
moreover from <is-free-for A (z, o) C) have = (Azq. C) + A =4 S {(z, o) — A} C
by (fact less(1)[OF <form-size C < form-size B> assms(1) app-is-wff(3)])
moreover have - (Azq. D - O) - A =g ((Aza. D) + A) = (Aza. C) - A)
by (fact aziom-4-3|OF assms(1) app-is-wff(2,3), THEN axiom-is-derivable-from-no-hyps))
ultimately show ?thesis
unfolding app-is-wff (1) using Fquality-Rules(3,4) and substitute.simps(3) by presburger
next
case (abs-is-wff 6 D v y)
then show ?thesis
proof (cases yy = zq)
case True
with abs-is-wff(1) have = (Aza. Ayy. D)« A =g Ayy. D
using aziom-4-5[OF assms(1) abs-is-wff(3)] by (simp add: axiom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (Ayy. D) = Ay. D
using True by (simp add: empty-substitution-neutrality fmdrop-fmupd-same)
ultimately show ?Zthesis
unfolding abs-is-wff(2) by (simp only:)
next
case Fulse
have form-size D < form-size B
unfolding abs-is-wff(2) by simp
have is-free-for A (z, o) D
using is-free-for-from-abs|OF less(4)[unfolded abs-is-wff(2)]] and <yy # zq> by blast
have - (Aza. (Ayy. D)) = A =g Ayy. S {(z, a) — A} D
proof (cases (y, v) ¢ vars A)
case True
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with (yy # 2> have - (Aza. Ayy. D) « A =, 5 Ayy. (Aza. D) - A
using aziom-4-4[OF assms(1) abs-is-wff(3)] and aziom-is-derivable-from-no-hyps by auto
moreover have - (Azq. D) - A =45 S {(z, o) — A} D
by
(
fact less(1)
[OF «form-size D < form-size By assms(1) <D € wffsg> <is-free-for A (z, a) D»]

ultimately show ?thesis
unfolding abs-is-wff (1) by (rule rule-R[where p = [»,«]]) force+
next
case Fulse
have finite (vars {A, D})
using vars-form-finiteness and vars-form-set-finiteness by simp
then obtain z where (z, v) ¢ ({(z, @), (y, v)} U vars {A, D})
using fresh-var-ezistence by (metis Un-insert-left finite.simps insert-is-Un)
then have zy # 24 and zy # yy and (z, v) & vars {A, D}
by simp-all
then show ?thesis
proof (cases (z, a) ¢ free-vars D)
case True
define D’ where D' =S {(y, v) — 2y} D
have is-substitution {(y, v) — 2y}
by auto
with <D € wffss> and D’-def have D’ € wffsg
using substitution-preserves-typing by blast
then have - (Azq. Azy. D') « A = 5 Azy. (Aza. D') - A
using <zy # x> and «(z, ) & vars {A, D}» and aziom-4-4[OF assms(1)]
and azxiom-is-derivable-from-no-hyps
by auto
moreover have §2: - (Azq. D)+ A =5 D’
proof —
have form-size D' = form-size D
unfolding D'-def by (fact renaming-substitution-preserves-form-size)
then have form-size D' < form-size B
using (form-size D < form-size B> by simp
moreover from <zy # zq> have is-free-for A (z, o) D
unfolding D’-def and is-free-for-def
using substitution-preserves-freeness|OF True] and is-free-at-in-free-vars
by fast
ultimately have - (Azq. D) « A =5 S {(z, a) — A} D’
using less(1) and assms(1) and <D’ € wffss> by simp
moreover from <zy # zq> have (z, a) ¢ free-vars D'
unfolding D'-def using substitution-preserves-freeness|OF True] by fast
then have S {(z, a) — A} D'= D’
by (fact free-var-singleton-substitution-neutrality)
ultimately show ?Zthesis
by (simp only:)
qed

/
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ultimately have §5: = (Aza. Azy. D) « A =, 5 Azy. D' (is <= 7A3))
by (rule rule-R[where p = [»,«]]) force+
moreover have §/: = (Ayy. D) =, _,5 Azy. D’
proof —
have (z, ) ¢ free-vars D
using <(z, v) ¢ vars {A, D}> and free-vars-in-all-vars-set by auto
moreover have is-free-for (z~) (y,v) D
using «(z, v) ¢ vars {A, D}» and absent-var-is-free-for by force
ultimately have - Ayy. D =, .5 A2y. S {(y, 7) — 24} D
using a[OF <D € wffss»] by fast
then show ?thesis
using D’-def by blast
qed
ultimately have §5: - (Aza. Ayy. D) - A =, 5 Ayy. D
proof —
note rule-RR’ = rule-RR[OF disjI2]
have §51: = (Aza. Ayy. D) » A =, 5 Azy. D' (is <= 2A51))
by (rule rule-RR'|OF §4, where p = [«,»,«,«] and C = ?A3]) (use §3 in (force+»)
show ?thesis
by (rule rule-RR'[OF §4, where p = [»] and C = ?451]) (use §51 in <force+»)
qed
then show ?thesis
using free-var-singleton-substitution-neutrality|OF «(x, ) ¢ free-vars D]
by (simp only: <8 = v—6»)
next
case Fulse
have (y, v) ¢ free-vars A
proof (rule ccontr)
assume - (y, v) ¢ free-vars A
moreover from <— (z, a) ¢ free-vars D) obtain p
where p € positions D and is-free-at (z, @) p D
using free-vars-in-is-free-at by blast
then have « # p € positions (A\y~. D) and is-free-at (z, a) (« # p) (A\yy. D)
using is-free-at-to-abs[OF (is-free-at (z, o) p Dv] and <y, # x> by (simp, fast)
moreover have in-scope-of-abs (y, v) (« # p) (A\yy. D)
by force
ultimately have — is-free-for A (z, a) (Ay. D)
by blast
with (is-free-for A (z, o) By[unfolded abs-is-wff(2)] show False
by contradiction
qed
define A’ where A’ = rename-bound-var (y, v) z A
have A’ € wffsq
unfolding A’-def by (fact rename-bound-var-preserves-typing[OF assms(1)])
from «(z, v) ¢ vars {A, D}> have (y, v) ¢ vars A’
using
old-var-not-free-not-occurring-after-rename

[

OF assms(1) <zy # yy> «(y, 7) ¢ free-vars A
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]
unfolding A’-def by simp
from A’-def have §6: - A =4 A’
using bound-var-renaming-equality[OF assms(1) <zy # yy] and «(z, v) ¢ vars {A, D}
by simp
moreover have §7: - (Aza. Ayy. D) « A" =, 5 Ayy. (Aza. D)+ A’ (is <= 2AT»)
using aziom-4-4[OF <A’ € wffsqr <D € wffsg>)
and «(y, v) ¢ vars A"y and <y, # zo> and aziom-is-derivable-from-no-hyps
by auto
ultimately have §8: - (Aza. Ayy. D)+ A = 5 Ayy. (Aza. D)+ A
proof —
note rule-RR’ = rule-RR[OF disjI2]
have §81: - (Aza. Ayy. D) » A =, 5 Ayy. (Aza. D) -+ A’ (is <= 2A81))

by (rule rule-RR'|OF §6, where p = [¢,»,»] and C = ?A7]) (use §7 in <force+»)
show ?thesis
by (rule rule-RR'|OF §6, where p = [»,«,»] and C = ?A81]) (use §81 in <force+»)
qed

moreover have form-size D < form-size B
unfolding abs-is-wff(2) by (simp only: form-size.simps(4) lessI)
with assms(1) have §9: - (Azq. D) + A =5 S {(z, ) — A} D
using less(1) and «D € wffss> and <is-free-for A (z, o) D> by (simp only:)
ultimately show ¢thesis
unfolding <3 = v—d&> by (rule rule-R[where p = [»,«]]) force+
qed
qed
then show ?thesis
unfolding abs-is-wff(2) using False and singleton-substitution-simps(4) by simp
qed
qed
qed

end

6.9 Proposition 5208

proposition prop-5208:
assumes vs # [| and B € wffsg
shows I~ +2, (A2, vs B) (map FVar vs) =3 B
using assms(1) proof (induction vs rule: list-nonempty-induct)
case (single v)
obtain z and « where v = (z, «)
by fastforce
then have <, (A<, [v] B) (map FVar [v]) = (Azq. B) » 7q
by simp
moreover have - (Azq. B) » 2o =g B
proof —
have is-free-for (zo) (z, @) B
by fastforce
then have - (Azo. B) » 2o =g S {(z, a) — za} B
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by (rule prop-5207 [OF wffs-of-type-intros(1) assms(2)])
then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)
qed
ultimately show “case
by (simp only:)
next
case (cons v vs)
obtain z and « where v = (z, «)
by fastforce
have - :2, (A2, (v # vs) B) (map FVar (v # vs)) =g 2, (A2, vs B) (map FVar vs)
proof —
have <, (A2, (v # vs) B) (map FVar (v # vs)) € wffsg
proof —
have \2, (v # vs) B € wﬁsfoldr (=) (map snd (v # vs)) B
using generalized-abs-wff [OF assms(2)] by blast
moreover
have Vk < length (map FVar (v # vs)). map FVar (v # vs) Lk € wffsy, o sng (v # vs) | k
proof safe
fix k
assume *: k < length (map FVar (v # vs))
moreover obtain z and a where (v # vs) | k = (z, a)
by fastforce
with * have map FVar (v # vs) | k = zo and map snd (v # vs) 1 k = «
by (metis length-map nth-map snd-conv)+
ultimately show map FVar (v # vs) | k € WifS map snd (v # vs) | k
by fastforce
qged
ultimately show ?thesis
using generalized-app-wff[where As = map FVar (v # vs) and ts = map snd (v # vs)| by
stmp
qed
then have
., (A9 (v # vs) B) (map FVar (v # vs)) =3 2. (A\C, (v # vs) B) (map FVar (v # vs))
by (fact prop-5200)
then have
F 9, (A2, (v # vs) B) (map FVar (v # vs)) =3 2, (A2 (v # vs) B) » FVar v) (map FVar
vs)
by simp

moreover have - (A2, (v # vs) B) » FVar v = foldr (=) ( A2, vs B)

map snd vs) (
proof —
have - (A9, (v # vs) B) « FVar v =foldr (=) (
proof —
from (v = (z, @) have A2, (v # vs) B = Azg. A9, vs B
by simp
have A\, vs B € wﬁsfoldr (=) (

) 8 S {v — FVar v} (A2, vs B)

map snd vs

map snd vs) 8
using generalized-abs-wff[OF assms(2)] by blast

moreover have is-free-for (zq) (z, a) (A9, vs B)
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by fastforce
ultimately
have - (Azq. A9, vs B) » 24 =foldr () (map snd vs) 8 S {(z, @) — za} A9, vs B
by (rule prop-5207 [OF wffs-of-type-intros(1)])
with <v = (z, a)> show ?thesis
by simp
qed
then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)
qed
ultimately show ?thesis
proof (induction rule: rule-R [where p = [»] Q replicate (length vs) «])
case occ-subform
then show ?case
unfolding equality-of-type-def using leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil is-subform-at.simps(3) length-map)
next
case replacement
then show ?case
unfolding equality-of-type-def using leftmost-subform-in-generalized-app-replacement
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil length-map replace-right-app)
qed
qed
moreover have -+, (A2, vs B) (map FVar vs) =3 B
by (fact cons.IH)
ultimately show Zcase
by (rule rule-R [where p = [»]]) auto
qed

6.10 Proposition 5209

proposition prop-5209:
assumes A € wffsq and B € wjj”sﬁ and C € wﬁsﬁ
and - B =5 C
and is-free-for A (z, o) (B =g C)
shows i S {(z, @) — A} (B =5 O)
proof —
have - (Azq. B) » A =g (Aza. B) - A
proof —
have (Azq. B) + A € wffsg
using assms(1,2) by blast
then show ?thesis
by (fact prop-5200)

qed

from this and assms(4) have b (Azo. B) » A =5 (Azqa. C) - 4
by (rule rule-R [where p = [»,«,«]]) force+

moreover have - (Azq. B) - A =5 S {(z, @) — A} B

proof —
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from assms(5)[unfolded equality-of-type-def] have is-free-for A (z, o) (Qg + B)
by (rule is-free-for-from-app)
then have is-free-for A (z, o) B
by (rule is-free-for-from-app)
with assms(1,2) show ?thesis
by (rule prop-5207)
ged
moreover have - (Azq. C) + A =g S {(z, @) — A} C
proof —
from assms(5)[unfolded equality-of-type-def] have is-free-for A (z, a) C
by (rule is-free-for-from-app)
with assms(1,3) show ?thesis
by (rule prop-5207)
qed
ultimately have - (S {(z, @) — A} B) =5 (S {(z, @) — A} O)
using FEquality-Rules(2,3) by blast
then show ?thesis
by simp
qed

6.11 Proposition 5210

proposition prop-5210:
assumes B € wﬁ%
shows = Ty =, (B =g B)
proof —
have §1:
'_
((Ang-ng) =55 (Ang- ng))
-0
Vrg. (Ang. vg) ~ 13 =g (A\ng. ng) * 13)
proof —
have - (fg,5 =58 958) =0 Vig- (fg—p " 13 =g 95p * ¥g) (s B =, ?C)
using aziom-3[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ()\1)5. Uﬁ) € wﬁsﬁ_%@ and ?B € wffsy and ?C € wffs,
by auto
moreover have is-free-for (A\ng. vg) (f, B—=8) (?B =, ?C)
by simp
ultimately have - S {(f, 6—8) — (Ang. ng)} (?B =, ?C) (is b 25)
using prop-5209 by presburger
moreover have 75 =

(M5 98) =555 858) =0 Vg (\g. g) * 15 =5 955 * 15
) (is - = ?B' =, 2C")
by simp
ultimately have - ?B' =, ?C’
by (simp only:)
moreover from «(\yg. ng) € wffsg_,z> have ?B’ € wffso and ?C’ € wffs,
by auto
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moreover have is-free-for (A\ng. ng) (9, B—B) (B’ =, ?C)
by simp
ultimately have - S {(g, 5—3) — (Avg. vg)} (B’ =, ?C") (is - 25)
using prop-5209[OF «(Ang. ng) € wifsg_, ] by blast
then show ?thesis
by simp
ged
then have & (Arg. T'o) =g, (3. (x5 =g 1))
proof —
have Apg. 95 € wifsg_p
by blast
then have + )‘U,B U/B =p—p )\1)5 U,B
by (fact prop-5200)
with §] have + V;B (()‘Uﬂ Uﬂ) . ;ﬁ =3 ()‘Uﬁ U,B) . X/B)
using rule-R and is-subform-at.simps(1) by blast
moreover have + (Anﬂ. 1)5) "I =313
using aziom-4-2[OF wffs-of-type-intros(1)] by (rule aziom-is-derivable-from-no-hyps)
ultimately have - Vrg. (x5 =g (Ang. vg) - 13)

by (rule rule-R[where p = [»,«,«,»]]) auto
from this and <= (Ang. ng) - 13 =g rp> have - Vig. (x3 =g 1)
by (rule rule-R[where p = [»,4,»]]) auto

then show ?thesis
unfolding forall-def and PI-def by (fold equality-of-type-def)
qed
from this and assms have 3: = (A\tg. To) » B =0 (Mrg. (xg =g 1)) = B
by (rule Equality-Rules(5))
then show ?thesis
proof —
have ()\}:B. To)*B=oTo
using prop-5207[OF assms true-wff] by fastforce
from 3 and this have b Ty =0 (Atg. (xg =g 13)) - B

by (rule rule-R[where p = [«,»]]) auto
moreover have - (Arg. (13 =g 1)) * B =0 (B =g B)
proof —

have 15 =5 15 € wffso and is-free-for B (xr, B) (zc/g =3 Xﬁ)
by (blast, intro is-free-for-in-equality is-free-for-in-var)
moreover have S {(r, ) — B} (xg =g 13) = (B =3 B)
by simp
ultimately show ?thesis
using prop-5207[OF assms| by metis
qed
ultimately show Zthesis
by (rule rule-R [where p = [»]]) auto
qed
qed

6.12 Proposition 5211
proposition prop-5211:
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shows - (To A2 Ty) =0 Ty
proof —
have const-T-wff: (Axo. To) € wffso—o for =
by blast
have §1: F (A\po. To) + To A2 (Ano. To) * Fo =0 Vio- (A)o. To) * Xo
proof —
have F go—0* To A2 go—so* Fo =0 Yo Go—o*to (isF ?B =, 2C)
using aziom-1 [unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ?B € wffs, and ?2C € wffso
by auto
moreover have is-free-for (A\yo. To) (g, 0—0) (?B =, ?C)
by simp
ultimately have - S {(g, 0—0) — (A\yo. To)} (?B =, ?C)
using const-T-wff and prop-5209 by presburger
then show %thesis
by simp
qed
then have - Ty AC Ty =0 Vio. To
proof —
have T-S-redex: b (A\yo. To) = A =p Ty if A € wffs, for A
using that and prop-5207[OF that true-wff] by fastforce
from §1 and T-8-redex[OF true-wff)
have - Ty A2 (A\o. To) * Fo =0 Yo (Ao. To) * Lo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and T-B-redex|[OF false-wff] have - Ty AS Ty =0 Yo (\o. To) * Lo
by (rule rule-R[where p = [«,»,»]]) force+
from this and T-B-redex[OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed

moreover have - T, =, Vio. Ty
using prop-5210[{OF const-T-wff] by simp
ultimately show ?thesis
using Fquality-Rules(2,3) by blast
qged

lemma true-is-derivable:
shows - T,
unfolding true-def using Q-wff by (rule prop-5200)

6.13 Proposition 5212

proposition prop-5212:
shows - T, AC T,
proof —
have - T
by (fact true-is-derivable)
moreover have - (T, AC T,) =, Ty
by (fact prop-5211)
then have - T, =2 (T, A2 T))
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unfolding equivalence-def by (fact Equality-Rules(2))
ultimately show #thesis
by (rule Equality-Rules(1))
qed

6.14 Proposition 5213

proposition prop-5213:
assumes - A =4 Band - C =3 D
shows - (A =4 B) A¢ (C =5 D)
proof —
from assms have A € wffsq and C € wffs
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
have - Ty =y (A =q A)
by (fact prop-5210[OF <A € wffsq>])
moreover have - A =, B

by fact
ultimately have - T, =, (A =4 B)
by (rule rule-R[where p = [»,»]]) force+

have - Ty =, (C =g C)
by (fact prop-5210[OF «C € wffsp])
moreover have - C =3 D

by fact
ultimately have - Ty =, (C =g D)

by (rule rule-R[where p = [»,»]]) force+
then show “thesis
proof —

have - T, A T,
by (fact prop-5212)
from this and - T, =, (A =4 B)> have - (A =4 B) A® T,

by (rule rule-R[where p = [«,»]]) force+
from this and - Ty =, (C =g D)» show ?thesis
by (rule rule-R[where p = [»]]) force+
qed

qed

6.15 Proposition 5214

proposition prop-5214:
ShOWSl— TO /\Q FO =0 FO

proof —
have id-on-o-is-wff: (Aro. to) € wffso—o
by blast
have §1: = (Ato- 1o) * To NS (Ato- to) * Fo =0 Yro. (Aro- ¥o) * o
proof —

have - go—o* To NS go—0* Fo=0VYro §o—0"to (isk ?B =, ?C)
using aziom-1[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have 7B € wffs, and ?C € wffs, and is-free-for (Aro. o) (g, 0—0) (?B =, 2C)
by auto
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ultimately have F S {(g, 0—0) — (Aro. to)} (B =, ?C)
using id-on-o-is-wff and prop-5209 by presburger
then show ?thesis
by simp
qed
then have - Ty A2 Fy =0 Y1o. 1o
proof —
have id-g-redex: - (Aro. to) » A =0 A if A € wffs, for A
by (fact aziom-is-derivable-from-no-hyps|OF aziom-4-2|OF that]])
from §1 and id-5-redex[OF true-wff]
have - T NS (Aro- to) * Fo =0 Vro- (Ato- o) * ¥o
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and id-B-redex|[OF false-wff] have - Ty A2 Fy =4 Y1o. (Aro- to) * Lo
by (rule rule-R[where p = [«,»,»]]) force+
from this and id-S-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
then show ?thesis
by simp
qed

6.16 Proposition 5215 (Universal Instantiation)

proposition prop-5215:
assumes H + Vizy. B and A € wffsqy
and is-free-for A (z, ) B
shows H + S {(z, o) — A} B
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms(1) have H F (A\tq. To) =a—0 (AZa. B)
by simp
with assms(2) have H F (A\tq. To) * A =0 (A\zo. B) - A
by (intro Equality-Rules(5))
then have H - Ty =, S {(z, @) — A} B
proof —
have HE (Arto. To)» A=p Ty
proof —
have - (A\tq. To) * A =0 To
using prop-5207[OF assms(2) true-wff is-free-for-in-true] and derived-substitution-simps(1)
by (simp only:)
from this and <is-hyps H> show ?thesis
by (rule derivability-implies-hyp-derivability)
qed
moreover have H - (Azq. B) + A =4, S {(z, a) — A} B
proof —
have B € wffso
using hyp-derivable-form-is-wffso|OF assms(1)] by (fastforce elim: wffs-from-forall)
with assms(2,3) have b (Azq. B) » A =4, S {(z, a) — A} B
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using prop-5207 by (simp only:)
from this and <is-hyps H> show ?thesis
by (rule derivability-implies-hyp-derivability)
qed
ultimately show ?thesis
using <H F (At To) * A =o (Azq. B) « Ay and Equality-Rules(2,3) by meson
qed
then show ?thesis
proof —
have H - T,
by (fact derivability-implies-hyp-derivability| OF true-is-derivable <is-hyps H»])
from this and <H F Ty =0 S {(z, @) — A} B> show ?thesis
by (rule Equality-Rules(1)[unfolded equivalence-def])
qed
qed

lemmas VI = prop-5215

6.17 Proposition 5216

proposition prop-5216:
assumes A € wffsy
shows - (Ty NS A) =, A
proof —
let ?B = Aro. (To NS Yo =o o)
have B-is-wff: B € wffso—o
by auto
have §1: - 2B+ Ty AC ?B+ Fy =0 V1o. ?B 1o
proof —
have - go—o* To NS go—0* Fo =0Vro §o—0"to (isk ?C =, ?D)
using aziom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have ?C € wffs, and ?D € wffs, and is-free-for ?B (g, o—0) (¢C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (?C =, ?D)
using B-is-wff and prop-5209 by presburger
then show ?thesis
by simp
qed
have *: is-free-for A (x, 0) (To A2 to =0 Io) for A
by (intro is-free-for-in-conj is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have - (To AC Ty =¢ To) NC (To A Fy =0 F))
by (fact prop-5213[OF prop-5211 prop-5214])
moreover
have - (To AS Ty =¢ To) A2 (To A2 Fo =0 Fo) =0 Yo (To A? 1o =0 o)
proof —
have B-B-redex: - B+ A =, (To N2 A =, A) if A € wffs, for A
proof —
have Ty AC 1o =0 Lo € Wffso
by blast
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moreover have S {(r, 0) — A} (To A2 to =0 to) = (To A2 A =4 A)
by simp
ultimately show ?Zthesis
using x and prop-5207[OF that] by metis
qed
from §1 and B-S-redez[OF true-wff)
have - (To A Ty = To) A2 2B+ Fy =o V0. ?B 10
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-(-redex|OF false-wff]
have - (Ty AC Ty =¢ To) A° (To NC Fo =0 Fo) =0 Vo ?B 1o
by (rule rule-R[where p = [«,»,»]]) force+
from this and B-f-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
ultimately have F Vi, (To A€ 1o =0 o)
by (rule rule-R[where p = []]) fastforce+
show ?thesis
using VI[OF (- Vio. (To A 1o =0 to)» assms x| by simp
qed

6.18 Proposition 5217

proposition prop-5217:
shows - (T =p Fo) =0 Fo
proof —
let B = Aro. (To =0 o)
have B-is-wff: B € wffsp—o
by auto
have «: is-free-for A (r, 0) (T =0 to) for A
by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §1: - 2B+« Ty A° B+ Fy =0 V1o. ?B 10
proof —
have - go—o -+ T NS go—o0* Fo =00 800 o (isk ?2C =, 7D)
using aziom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have ?C € wffsp and ?D € wffsy and is-free-for ?B (g, o—0) (?C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (¢C =, ?D)
using B-is-wff and prop-5209 by presburger
then show %thesis
by simp
qed
then have - (Ty =¢ To) A2 (T =¢ Fo) =0 Vio. (To =0 o) (is F ?4)
proof —
have B-B-redex: b 2B« A =, (Ty =0 A) if A € wffs, for A
proof —
have Ty = 1o € wffso
by auto
moreover have S {(r, 0) — A} (To =0 to) = (To =0 A)
by simp
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ultimately show ?thesis
using * and prop-5207[OF that] by metis
qed
from §1 and B-B-redex[OF true-wff] have - (Ty = To) NS ?B+ Fy =¢ Vio. ?B 10
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-S-redex[OF false-wff]
have - (T = To) A2 (To =0 Fo) =0 Yo 7B 1o
by (rule rule-R[where p = [«,»,»]]) force+
from this and B-S-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
from prop-5210[OF true-wff] have - Ty A2 (Ty =¢ Fo) =0 V1ro. (To =0 o)
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A]) (force+, fact)
from this and prop-5216[where A = T, =, F
have - (T = Fo) =0 Yo (To =o Fo)
by (rule rule-R [where p = [«,»]]) force+
moreover have §5:
F ((Ato- To) =o0—0 (Aro- ¥0)) =0 Vro- (Ato- To) * to =0 (Aro- ¥o) * ¥o)
proof —
have ~ (fo—)o =0—o0 90—)0) =0 Vo (fo—o * to =0 Go—o * Fo) (iS = ?2C =, ?D)
using aziom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have is-free-for (A\to. To)) (f, 0—0) (?C =, ?D)
by fastforce
moreover have (Arp. To) € wffso—o and ?C € wffsp, and ?D € wffs,
by auto
ultimately have F S {(f, 0—0) — (Aro. To)} (?C =, ?D)
using prop-5209 by presburger
then have - (A\ro. T'0) =0—0 80—0) =0 Vo (Aro- To) * to =0 Go—0 * Lo)
(is+ 2C" =, ?D’)
by simp
moreover have is-free-for ((Aro. to)) (g9, 0—0) (?C' =, ?D’)
by fastforce
moreover have (Arp. Io) € wffso—o and ?C’ € wffsp and ?D’ € wffs,
using «(A\ro. To) € wffso—o> by auto
ultimately have - S {(g, 0—0) — (Aro. ro)} (?C' =, ?D’)
using prop-5209 by presburger
then show %thesis
by simp
qed
then have - Fy =, Vio. (To =0 to)
proof —
have F (A\ro. To) o =0 To
using prop-5208[where vs = [(x, 0)]] and true-wff by simp
with §5 have *:
F ((Aro- To) =o0—0 (Aro- t0)) =0 Vro. (To =0 (Aro- ¥o) * to)
by (rule rule-R[where p = [»,»,4,«,»]]) force+
have ~ ()\}50- Fo) *Lo =o Yo
using prop-5208|where vs = [(x, 0)]] by fastforce
with * have F ((Aro. To) =o—0 (Aro- £0)) =0 Vo.- (To =0 to)
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by (rule rule-R[where p = [»,»,4,»]]) force+
then show ?thesis
by simp
qed
ultimately show ?thesis
using FEquality-Rules(2,3) by blast
qed

6.19 Proposition 5218

proposition prop-5218:
assumes A € wffsy
shows F (T =9 A) = A
proof —
let 7B = Ato. ((To =0 to) =0 o)
have B-is-wff: B € wffso—o
by auto
have §1: - 2B+ Ty A? 2B+« Fy =, Vro. 2B+ 10
proof —
have - go—o* To NS go—0* Fo=0Vro §o—0"to (isk ?C =, ?D)
using aziom-1[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ?C € wffs, and ?D € wffs, and is-free-for ?B (g, o—0) (¢C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (C =, ?D)
using prop-5209[OF B-is-wff] by presburger
then show ?thesis
by simp
qed
have x: is-free-for A (r, 0) ((To =0 to) =0 ko) for A
by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §2:
'_
((To =o To) =o To) NS ((To =o Fo) =o Fo)
-0
Vo ((To =0 to) =0 o)
proof —
have B-S-redex: - 2B« A = (Tp =0 A) = A) if A € wffs, for A
proof —
have (T = to) =0 to € wffso
by auto
moreover have S {(r, 0) — A} ((To =0 to) =0 ¥o) = (To =0 A) =0 A)
by simp
ultimately show ?thesis
using x and prop-5207|OF that] by metis
qed
from §1 and B-S-redex[OF true-wff]
have - ((Ty =¢ To) =0 To) A€ 2B+ Fog =4 Y1o. 7B 1o
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-j-redex|OF false-wff]
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have '7 ((TO =0 To) =0 To) /\Q ((TO =0 Fo) =0 Fo) =0 va. ?B . xO

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-g-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed

have §3: + (To =0 To) =0 To
by (fact Equality-Rules(2)[OF prop-5210 [OF true-wff]])

have - ((To =0 To) =0 To) A2 ((To =0 Fo) =0 Fo)
by (fact prop-5213|OF §3 prop-5217))

from this and §2 have §/: - Vro. ((To =0 to) =0 o)
by (rule rule-R[where p = []]) fastforce+

then show ?thesis
using V I[OF §/ assms x| by simp

qed

6.20 Proposition 5219 (Rule T)

proposition prop-5219-1:
assumes A € wffs,
shows HEF A+— HEF Ty =0 A
proof safe
assume H F A
then have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - (Ty =0 4) =0 A
by (fact derivability-implies-hyp-derivability| OF prop-5218[OF assms]])
with (HF Ay show HF Ty, =0 A
using Fquality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) by blast
next
assume H - T, =, A
then have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - (Ty =p 4) = A
by (fact derivability-implies-hyp-derivability| OF prop-5218[OF assms]])
with <HF Ty, =¢ A> show HF A
by (rule Equality-Rules(1)[unfolded equivalence-def])
qed

proposition prop-5219-2:
assumes A € wffsy
shows HH A«— HEFA=,T,
using prop-5219-1[OF assms] and Equality-Rules(2) by blast

lemmas rule-T = prop-5219-1 prop-5219-2

6.21 Proposition 5220 (Universal Generalization)

context
begin
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private lemma const-true-a-conversion:
shows - (Azg. To) =a—0 (Mza- To)
proof —
have (z, a) ¢ free-vars Ty and is-free-for (zq) (z, @) Ty
by auto
then have - (Azo. To) =a—0 A2a- S {(z, @) — 2o} To
by (rule prop-5206[OF true-wff])
then show ?thesis
by simp
qged

proposition prop-5220:
assumes H + A
and (z, «) ¢ free-vars H
shows H F Vzo. A
proof —
from <H F A> have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
have H - A
by fact
then have §2: H+ Ty =0 A
using rule-T(1)[OF hyp-derivable-form-is-wffso|OF <H + A>]] by simp
have §3: H F (Ara- To) =a—o (Aza- To)
by (fact derivability-implies-hyp-derivability| OF const-true-a-conversion <is-hyps H»))
from §3 and §2 have H F Ato. To =a—0 Ao A
proof (induction rule: rule-R'lwhere p = [», «]])
case no-capture
have *: [»,«] € positions (A\ta. To =a—0 A\a- To)
by simp
show ?case
unfolding rule-R'-side-condition-def and capture-ezposed-vars-at-alt-def[OF | using assms(2)
by simp
qed force+
then show ?thesis
unfolding forall-def[unfolded PI-def, folded equality-of-type-def] .
qed

end
lemmas Gen = prop-5220

proposition generalized-Gen:
assumes H - A
and Iset vs N free-vars H = {}
shows H +HV2, vs A

using assms(2) proof (induction vs)
case Nil
then show ?case

using assms(1) by simp

160



next
case (Cons v vs)
obtain z and « where v = (z, a)
by fastforce
with Cons.prems have Iset vs N free-vars H = {} and (z, a) ¢ free-vars H
by simp-all
from <Iset vs N free-vars H = {}> have H - V<, vs A
by (fact Cons.IH)
with «(z, a) ¢ free-vars H> and v = (z, «)> show Zcase
using Gen by simp
ged

6.22 Proposition 5221 (Substitution)

context
begin

private lemma prop-5221-auzx:
assumes H - B
and (z, o) ¢ free-vars H
and is-free-for A (z, ) B
and A € wffsq
shows H F S {(z, o) — A} B
proof —
have H + B
by fact
from this and assms(2) have H + Vzq. B
by (rule Gen)
from this and assms(4,3) show ?thesis
by (rule VI)
qed

proposition prop-5221:
assumes H - B
and is-substitution U
and Yo € fmdom’ 9. var-name v & free-var-names H A is-free-for (¢ $$! v) v B
and 9 # {$$}
shows H+S ¢ B
proof —
obtain zs and As
where Iset zs = fmdom’ 9 — ie., xl ... 20
and As = map ((3$!) V) zs —ie., AL ..., AL
and length zs = card (fmdom’ ¥)
by (metis distinct-card finite-distinct-list finite-fmdom”)
then have distinct xs
by (simp add: card-distinct)
from <lset xs = fmdom’ 9> and <As = map (($$!) 9) zs» have Iset As = fmran’ 9
by (intro subset-antisym subsetl) (force simp add: fmlookup-dom’-iff fmlookup-ran’-iff )+
from assms(1) have finite (var-name ‘ (vars B U vars (Iset As) U vars H))
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by (cases rule: is-derivable-from-hyps.cases) (simp-all add: finite-Domain vars-form-finiteness)
then obtain ys — i.e., yél, Yl

where length ys = length xs

and distinct ys

and ys-fresh:

(var-name * lset ys) N (var-name ‘ (vars B U vars (Iset As) U vars H U lset xs)) = {}

and map var-type ys = map var-type s

using fresh-var-list-existence by (metis image-Un)
have length s = length As

by (simp add: <As = map (($$!) 9) zs»)

1

ko k41 "
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have H + S (fmap-of-list (zip xs (take k As Q drop k (map FVar ys)))) B if k < length zs for k
using that proof (induction k)
case (
have H + S (fmap-of-list (zip xs (map FVar ys))) B
using <length ys = length rs»
and <length xs = length As»
and <(var-name ‘ Iset ys) N (var-name ‘ (vars B U vars (lset As) U vars H U lset xs)) = {}
and <lset s = fmdom’ ¥»
and <distinct ys»
and assms(3)
and <map var-type ys = map var-type s
and «distinct s
and <length xs = card (fmdom’ 9)»
proof (induction ys zs As arbitrary: ¥ rule: list-induct3)
case Nil
with assms(1) show ?case
using empty-substitution-neutrality by auto
next
— In the following:

— 1 1 n n
° ﬁ_{xal Yoy Loy, Hyan}

2 2
o P ={x, —yi, -, Th —Yn }

7 am

1

— 1
o vy =T, and vy, =y,

case (Cons vy ys v, xs A’ As’)
let 29 = fmap-of-list (zip xs (map FVar ys))
from Cons.hyps(1) have lset zs = fmdom’ 29
by simp
from Cons.hyps(1) and Cons.prems(6) have fmran’ 29 = FVar ¢ Iset ys
by force
have is-substitution %)
unfolding is-substitution-def proof
fix v
assume v € fmdom’ 79
with (lset zs = fmdom’ %9) obtain k where v = zs ! k and k < length zs
by (metis in-set-conv-nth)
moreover obtain a where var-type v = «
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by blast
moreover from <k < length zsy and v = zs ! k» have 29 $$! v = (map FVar ys) ! k
using Cons.hyps(1) and Cons.prems(6) by auto
moreover from this and <k < length xs> obtain y and 8 where 29 $$! v = Ys
using Cons.hyps(1) by force
ultimately have a = 8
using Cons.hyps(1) and Cons.prems(5)
by (metis form.inject(1) list.inject list.simps(9) nth-map snd-conv)
then show case v of (z, a) = 2 83! (z, a) € wffsa
using <29 $$! v = yp> and <var-type v = a» by fastforce
qed
have v, ¢ fmdom’ 29
using Cons.prems(6) and <set zs = fmdom’ 29 by auto
obtain z and « where v, = (z, @)
by fastforce
have F'Var v, € wffsa
using Cons.prems(5) and surj-pair|of v,] unfolding <v, = (z, a)» by fastforce
have distinct xs
using Cons.prems(6) by fastforce
moreover have ys-fresh’:
(var-name * lset ys) N (var-name ¢ (vars B U vars (Iset As") U vars H U lset xs)) = {}
proof —
have vars (Iset (A’ # As’)) = vars {A'} U vars (Iset As’)
by simp
moreover have var-name ‘ (Iset (v, # zs)) = {var-name vy} U var-name © (Iset xs)
by simp
moreover from Cons.prems(1) have
var-name ‘ lset ys
N
(
var-name ‘ (vars B) U var-name  (vars (Iset (A’ # As’))) U var-name * (vars H)
U wvar-name ‘ (lset (v, # xs))
)
= {}
by (simp add: image-Un)
ultimately have
var-name ‘ lset ys
N
(
var-name ¢ (vars B) U var-name ‘ (vars (Iset As’)) U var-name ¢ (vars H)
U var-name * (lset (v, # s))

)
={}
by fast
then show ?thesis
by (simp add: image-Un)
qed
moreover have distinct ys
using Cons.prems(3) by auto
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moreover have Vv € fmdom’ 29. var-name v ¢ free-var-names H A is-free-for (29 $3! v)
proof
fix v
assume v € fmdom’ 29
with Cons.hyps(1) obtain y where 29 $$! v = FVar y and y € Iset ys
by (metis (mono-tags, lifting) fmap-of-zipped-list-range image-iff length-map list.set-map)
moreover from Cons.prems(2,4) have var-name v ¢ free-var-names H
using <Iset xs = fmdom’ %9 and <v € fmdom’ 29> by auto
moreover from <y € Iset ys» have y ¢ vars B
using ys-fresh’ by blast
then have is-free-for (FVar y) v B
by (intro absent-var-is-free-for)
ultimately show var-name v ¢ free-var-names H A is-free-for (29 $$! v) v B
by simp
qed
moreover have map var-type ys = map var-type xs
using Cons.prems(5) by simp
moreover have length zs = card (fmdom’ %9)
by (fact distinct card|OF <distinct xsy, unfolded <lset zs = fmdom’ %%, symmetric|)
2
T T
D Y2, YR,
ultimately have HFS 2B
using Cons.IH and <lset s = fmdom’ 29> by blast
moreover from Cons.prems(2,4) have (z, «) ¢ free-vars H
using v, = (z, a)> by auto
moreover have is-free-for (FVar v,) (z, a) (S % B)
proof —
have v, ¢ fmdom’ 29
using Cons.prems(1) and <lset s = fmdom’ %9 by force
moreover have frran’ 29 = lset (map FVar ys)
using Cons.hyps(1) and <distinct zs)» by simp
then have v, ¢ vars (fmran’ 29)
using Cons.prems(3) by force
moreover have v, ¢ vars B
using Cons.prems(1) by fastforce
ultimately have v, ¢ vars (S %) B)
by (rule excluded-var-from-substitution|OF <is-substitution #9)])
then show ?thesis
by (fact absent-var-is-free-for)
qged

7’}_[ - S "‘ls 0‘2"' anB

yh, T y2, yR,

ultimately lllave gH FS {(z, o) — FVar vy} (S % B)
usmg <FVa7“ vy € wffsa® by (rule prop-5221-auzx)

—S cxlS Q”B S “1 “"B

Wi, 2yl Yz, Y, YR,
moreolver h2ave S {vy — FVar vy} S % B =S ({vy, — FVar vy} ++5 %) B
proof —
have v, ¢ Iset ys
using Cons.prems(1) by fastforce
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then have S {v, — FVar v,} (FVary) = FVar y if y € Iset ys for y
using that and free-var-singleton-substitution-neutrality and surj-pair[of y] by fastforce

with «fmran’ 29 = FVar ¢ Iset ys» have fmmap (AA". S {vy — FVar vy} A') 20 = 29
by (fastforce intro: fmap.map-ident-strong)

with <v, ¢ fmdom’ 29 show ?thesis
using Vv € fmdom’ 29. var-name v ¢ free-var-names H A is-free-for (29 $$! v) v B>
and substitution-consolidation by auto

qed

Yo, YL,
ultimately show Zcase

using v, = (z, o) and v, ¢ fmdom’ 29y and fmap-singleton-comm by fastforce
qed
with 0 and that show ?case
by auto
next
case (Suc k)
let ?ps = Ak. zip xs (take k As @Q drop k (map FVar ys))
let 2y = ys! kand 24 = As ! k
let 29 = Ak. fmap-of-list (?ps k)
let 29’ = Ak. fmap-of-list (map (M\(v', A7). (v', S {%y — 24} A")) (?ps k))
have frmdom’ (29 k') = lset s for k’
by (simp add: <length xs = length As) <length ys = length xs»)
have fmdom’ (29’ k') = Iset xs for k'
using «length zs = length As> and <length ys = length zs» and fmdom’-fmap-of-list by simp
have 7y € Iset ys
using Suc.prems <length ys = length xs> by simp
have Vj < length ys. ys ! j & vars (H::form set) A ys! j ¢ vars B
using «(var-name ‘ Iset ys) N (var-name ‘ (vars B U vars (Iset As) U vars H U lset xs)) = {}P
by force
obtain n, and o, where (n,, o) = %y
using surj-pair[of ?y] by fastforce
moreover have ?A € wffsq,
proof —
from Suc.prems and «(ny, o) = ?y» have var-type (zs ! k) = a
using «<length ys = length xs) and <map var-type ys = map var-type xs» and Suc-le-lessD
by (metis nth-map snd-conv)
with Suc.prems and assms(2) and <lset zs = fmdom’ ¥ and (As = map ((33!) ¥) zs> show
7thesis
using less-eq-Suc-le and nth-mem by fastforce
qed
ultimately have is-substitution { %y — ?A}
by auto
have wfs: is-substitution (29 k) for k
unfolding is-substitution-def proof
fix v
assume v € fmdom’ (29 k)
with «fmdom’ (29 k) = Iset zs)> obtain j where v = zs ! j and j < length zs
by (fastforce simp add: in-set-conv-nth)
obtain a where var-type v = «
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by blast
show case v of (z, &) = (20 k) $$! (z, o) € wffsa
proof (cases j < k)
case True
with «j < length zs» and v = xs ! j» have (29 k) $$! v = As ! j
using «distinct xs» and <length xs = length As) and «<length ys = length xs> by force
with assms(2) «v = zs ! j» and «v € fmdom’ (99 k)> and (var-type v = > and <j < length zs»
have (20 k) $3! v € wffsq
using <As = map (($$!) ¥) zs» and <fmdom’ (29 k) = lset zs» and «lset zs = fmdom’
by auto
then show ?thesis
using <wvar-type v = a» by force
next
case Fulse
with «j < length zs» and v = xs | j» have (20 k) $$! v = FVar (ys! j)
using «(distinct xs» and <length xs = length As> and <length ys = length xs> by force
with «j < length zs» and «v = zs | j» and <var-type v = o> and «<length ys = length s
have (29 k) $3! v € wffsa
using <map var-type ys = map var-type zs» and surj-pair[of ys ! j]
by (metis nth-map snd-conv wffs-of-type-intros(1))
then show ?%thesis
using <wvar-type v = a» by force
qed
qed
have 9'-alt-def: 29’ k = fmap-of-list
(zip s
(take k (map (AA'. S {2y — ?A} A') As)
Q@
(drop k (map (MNA'". S {2y — 24} A') (map FVar ys)))))
proof —

have
fmap-of-list (zip xs (map (AA". S {?y — ?A} A') (take k As Q drop k (map FVar ys))))

fmap-of-list
(zip zs
(map (MNA'. S {?%y — 2A} A') (take k As)

Q@
(drop k (map (AA'. S {2y — 2A} A') (map FVar ys)))))
by (simp add: drop-map)
then show ?thesis
by (metis take-map zip-map2)
qed
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have H - S (20 k) B
by (fact Suc.IH[OF Suc-leD[OF Suc.prems]])

k41 ko k+1 n
LS Yor i1 S Ty o T apTapyr - Tan

H L Ak o E+1 n
apil ay o Al Yoy o YG,

then have H - S {?% — ?A} S (W k) B

166



proof —
from «(n,, ay) = 2y and «length ys = length zs> have (ny, o) ¢ free-vars H
using «Vj < length ys. ys | j ¢ vars (H::form set) A ys! j & vars By
and free-vars-in-all-vars-set and Suc-le-lessD[OF Suc.prems] by fastforce
moreover have is-free-for ?A (ny, ay) (S (29 k) B)
proof —
have is-substitution (fmdrop (zs! k) (29 k))
using wfs and <fmdom’ (29 k) = lset xs» by force
moreover from Suc-le-lessD[OF Suc.prems| have var-type (zs | k) = var-type (ys ! k)
using <length ys = length xs» and <map var-type ys = map var-type x> by (metis nth-map)
then have is-substitution {zs ! k — FVar %y}
unfolding is-substitution-def using «(n,, o) = 2y
by (intro balll) (clarsimp, metis snd-eqD wffs-of-type-intros(1))
moreover have (zs ! k) ¢ fmdom’ (fmdrop (xs! k) (%9 k))
by simp
moreover have
Yo € fmdom’ (fmdrop (zs ! k) (20 k)). 2y ¢ vars (fmdrop (zs ! k) (29 k) $3! v)
proof
fix v
assume v € fmdom’ (fmdrop (zs ! k) (729 k))
then have v € fmdom’ (%9 k)
by simp
with <fmdom’ (99 k) = lset zs) obtain j where v = zs ! j and j < length zs and j # k
using «v € fmdom’ (fmdrop (xs ! k) (29 k))»
and «(zs ! k) ¢ fmdom’ (fmdrop (xzs ! k) (29 k))» by (metis in-set-conv-nth)
then show 2y ¢ vars ((fmdrop (zs ! k) (29 k)) $$! v)
proof (cases j < k)
case True
with «j < length zs» and «<v = zs | j» have (29 k) $8! v = As ! j
using <distinct zsy and <length zs = length Asy and <length ys = length xs> by force
moreover from (j < length zs» and <length zs = length As» have ?y ¢ vars (A4s! j)
using <%y € Iset ys» and ys-fresh by fastforce
ultimately show ?thesis
using «v € fmdom’ (fmdrop (zs ! k) (99 k))» by auto
next
case Fulse
with «j < length zs» and «v = zs | j» have (2 k) $$! v = FVar (ys ! j)
using <distinct xsy and <length xs = length Asy and <length ys = length xs» by force
moreover from Suc-le-lessD[OF Suc.prems] and <j # k» have %y # ys ! j
by (simp add: <distinct ys» <j < length zs) <length ys = length xs)> nth-eg-iff-indezx-eq)
ultimately show ?Zthesis
using v € fmdom’ (fmdrop (s ! k)
and <zs ! k ¢ fmdom’ (fmdrop (xs !
qed
qed
moreover from <k < length xsy and <length ys = length zs) have ?y ¢ vars B
by (simp add: <Vj < length ys. ys ! j & vars H A ys | j & vars B»)
moreover have is-free-for ?A (zs ! k) B
proof —

(29 k))»
k) (29 k))» and surj-pair[of ys ! j] by fastforce
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from Suc-le-lessD[OF Suc.prems] and <lset zs = fmdom’ ¢ have zs | k € fmdom’ ¥
using nth-mem by blast
moreover from Suc.prems and (As = map (($3!) ¥) zs> have ¥ $$! (zs! k) = 74
by fastforce
ultimately show ?thesis
using assms(3) by simp
qed
moreover
have Vv € fmdom’ (fmdrop (zs ! k) (29 k)). is-free-for (fmdrop (zs ! k) (79 k) $3! v) v B
proof
fix v
assume v € fmdom’ (fmdrop (zs ! k) (29 k))
then have v € fmdom’ (%9 k)
by simp
with «fmdom’ (29 k) = lset xs» obtain j where v = zs | j and j < length xs and j # k
using v € fmdom’ (fmdrop (zs ! k) (29 k))»
and <«(zs ! k) ¢ fmdom’ (fmdrop (xs ! k) (29 k))» by (metis in-set-conv-nth)
then show is-free-for (fmdrop (zs ! k) (20 k) $$! v) v B
proof (cases j < k)
case True
with <j < length zs) and <v = zs ! j» have (29 k) $$! v = As ! j
using <distinct xsy and <length xs = length As» and <length ys = length xs» by force
moreover have is-free-for (As ! j) v B
proof —
from <j < length zs» and <lset zs = fmdom’ 9> and (v = zs ! j» have v € fmdom’ ¥
using nth-mem by blast
moreover have ¢ $3! v = As ! j
by (simp add: <As = map (($8!) 9) zs» <j < length z$) <v = xs | )
ultimately show ?thesis
using assms(3) by simp
qed
ultimately show ?thesis
using «v € fmdom’ (fmdrop (zs ! k) (99 k))» by auto
next
case Fulse
with «j < length zs» and «v = zs | j» have (2 k) $$! v = FVar (ys ! j)
using <distinct zs» and <length xs = length Asy and <length ys = length zs> by force
moreover from <j < length zs) and <length ys = length xs» have ys! j ¢ vars B
using «Vj < length ys. ys! j & vars H A ys ! j ¢ vars By by simp
then have is-free-for (FVar (ys!j)) v B
by (fact absent-var-is-free-for)
ultimately show ?thesis
using (v € fmdom’ (fmdrop (zs ! k) (29 k))» by auto
qed
qed
ultimately have is-free-for ?A (ys ! k) S ({zs ! k — FVar %y} ++; fmdrop (zs ! k) (29 k)) B
using is-free-for-with-renaming-substitution by presburger
moreover have S ({zs ! k — FVar ?y} ++; fmdrop (zs ' k) (79 k)) B=S (% k) B
using <length s = length As> and <length ys = length xs» and Suc-le-eq and Suc.prems
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and «distinct xs» by simp
ultimately show ?thesis
unfolding «(n,, ay) = 2y by simp
qed
ultimately show ?thesis
using prop-5221-auz[OF <H = S (%9 k) B] and (?A € wffsq,> and «(ny, o) = ?y> by metis
qed
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moreover have S {?%y — 24} S (29 k) B =S (2 (Suc k)) B
proof —
have S {?%y — ?A} S (20 k) B=S {?% — ?A} ++; (%' k) B
proof —
have ?y ¢ fmdom’ (79 k)
using <%y € lset ys» and <fmdom’ (7?9 k) = lset zs» and ys-fresh by blast
moreover have (720’ k) = fmmap (AA". S {?y — 2A} A') (29 k)
using <length zs = length As) and <length ys = length zs> by simp
moreover have Vv’ € fmdom’ (29 k). is-free-for (29 k $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ (70 k)
with <fmdom’ (29 k) = lset zs) obtain j where v’/ = zs ! j and j < length zs
by (metis in-set-conv-nth)
obtain o where var-type v’ = «
by blast
show is-free-for (29 k $$! v’) v’ B
proof (cases j < k)
case True
with «j < length zs) and v’ = xs ! j» have (29 k) $$! v/ = As ! j
using <distinct zsy and <length zs = length Asy and «<length ys = length xs> by force
moreover from <set xs = fmdom’ 9 and assms(3) have is-free-for (As ! j) (xs! j) B
by (metis <As = map (($$!) ) zs» 4 < length x> nth-map nth-mem)
ultimately show ?Zthesis
using v’ = zs ! j» by (simp only:)
next
case Fulse
with «j < length zs» and «v’ = xs ! j> have (29 k) $$! v’ = FVar (ys ! j)
using «distinct zs» and <length xs = length Asy and <length ys = length zs> by force
moreover from <j < length zs)> have is-free-for (FVar (ys!j)) (zs!j) B
using «Vj < length ys. ys! j ¢ vars H A ys ! j ¢ vars By and «length ys = length zs)
and absent-var-is-free-for by presburger
ultimately show ?Zthesis
using (v’ = zs ! j» by (simp only:)
qed
qed
ultimately show ?thesis
using substitution-consolidation by simp
qged
also have ... = S {% — 2A} ++; (29 (Suc k)) B
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proof —
have 20" k = 29 (Suc k)
proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)

fix v/ and A’
assume 2’k $% v’ = Some A’
then have v’ € fmdom’ (29’ k)
by (intro fmdom’I)
then obtain j where j < length zs and zs ! j = v’
using <fmdom’ (29’ k) = Iset xs» by (metis in-set-conv-nth)
then consider (a) j < k| (b) j =k | (c) j € {k<..< length zs}
by fastforce
then show 29 (Suc k) $% v/ = Some A’
proof cases
case @
with 9’-alt-def and <distinct zs> and (j < length xs>
have 29" k 83 (zs ! j) = Some (take k (map (MNA'. S {%y — 2A} A') As) ! j)
using <¢length zs = length As» and <length ys = length xs)> by auto
also from a and Suc.prems have ... = Some (S {%y — ?A} (As ! j))
using <length xs = length As)» by auto
also have ... = Some (As ! j)
proof —
from Suc.prems and <length ys = length xs> have Suc k < length ys
by (simp only:)
moreover have j < length As
using «j < length zs» and <length s = length As> by (simp only:)
ultimately have ?y ¢ vars (As! j)
using ys-fresh by force
then show ?thesis
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
qed
also from a and <zs ! j = v» and <distinct xs» have ... = 29 (Suc k) $$ v’
using <j < length zs)» and <length xs = length As> and <length ys = length xs»
by fastforce
finally show ?thesis
using <29’ k $$ v’ = Some A’» and <zs ! j = vy by simp
next
case b
then have
20" k 8% (xs ! k) = Some (drop k (map (ANA". S {%y — 24} A') (map FVar ys)) ! 0)
using «distinct xs» and <j < length xs» and <length xs = length As»
and <length ys = length zs> and fmap-of-list-nth-split by simp

also from Suc.prems have ... = Some (S {?%y — ?A} (FVar ?y))
using <length ys = length xs)> by simp
also from «(n,, o) = ys ! k» have ... = Some ?4
by (metis singleton-substitution-simps(1))
also from b and <zs ! j = v/» and <distinct zs» have ... = 29 (Suc k) $$ v’

using (j < length zs) and <length xs = length As> and «<length ys = length s>
by fastforce
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finally show ?thesis

using b and <2’ k $$ v’ = Some A"y and «xs ! j = v’» by force
next

case ¢

then have j > k
by simp

with 9'-alt-def and <distinct zs» and <j < length zs» have

20"k $$ (zs ! j) = Some (drop k (map (AA". S {2y — 24} A") (map FVar ys)) ! (j — k))
using fmap-of-list-nth-split and <length s = length As> and «<length ys = length xs»

by simp
also from Suc.prems and ¢ have ... = Some (S {%y — 24} (FVar (ys!j)))
using <length ys = length xs» by simp
also from Suc-le-lessD]OF Suc.prems| and <distinct ys» have ... = Some (FVar (ys! 7))

using ¢j < length xs» and <k < j» and <length ys = length xs»
by (metis nless-le nth-eq-iff-index-eq prod.exhaust-sel singleton-substitution-simps(1))
also from c and <distinct zs» have ... = 29 (Suc k) $$ v’
using «zs ! j = vy and «<length xs = length As> and <length ys = length xs> by force
finally show ?thesis
using <%’ k $% v/ = Some A"» and «xs ! j = v’y by force
qed

note U-k-in-Sub-k = this
{
fix v’ and A’
assume 29 (Suc k) $$ v’ = Some A’
then have v’ € fmdom’ (29 (Suc k))
by (intro fmdom'I)
then obtain j where j < length zs and zs ! j = v’
using «fmdom’ (29 (Suc k)) = Iset zs» by (metis in-set-conv-nth)
then consider (a) j < k| (b) =k | (¢) j € {k<..< length zs}
by fastforce
with «j < length zs) and <xs ! j = v» and 9-k-in-Sub-k show 29’ k $$ v/ = Some A’
using <Ak’ fmdom’ (%' k') = Iset zs» and <29 (Suc k) $$ v’ = Some A"
by (metis (mono-tags, lifting) fmlookup-dom’-iff nth-mem)-+

qed
then show ?%thesis
by presburger
qed
also have ... =S (29 (Suc k)) B
proof —
have 29 (Suc k) $% %y = None
using <%y € Iset ys» <A\k'. fmdom’ (29 k') = lset xs» and ys-fresh by blast
moreover from Suc-le-lessD[OF Suc.prems| have ?y ¢ vars B
using «Vj < length ys. ys ! j ¢ vars H A ys ! j ¢ vars By and <length ys = length xs
by auto
ultimately show “thesis
by (rule substitution-absorption)
qed
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finally show ?thesis .

qed
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ultimately show Zcase
by (simp only:)
qed

—HES A j B
then have # F S meap-of-list (zip zs As)) B
using <length s = length As) and <length ys = length xs> by force
moreover have frap-of-list (zip xs As) = 9
proof (intro fsubset-antisymlunfolded fmsubset-alt-def] fmpredI)
fix v and A
assume fmap-of-list (zip xs As) $8 v = Some A
with «Iset zs = fmdom’ ¥ have v € fmdom’ ¥
by (fast dest: fmap-of-list-SomeD set-zip-leftD)
with <fmap-of-list (zip s As) $% v = Some A> and «As = map (($3$!) 9) zs» show 9 $$ v = Some

by
(simp add: map-of-zip-map fmap-of-list.rep-eq split: if-splits)
(meson fmdom’-notl option.exhaust-sel)
next
fix v and A
assume ¢ $$ v = Some A
with <As = map (($3!) 9¥) zs» show fmap-of-list (zip xs As) $$ v = Some A
using <lset zs = fmdom’ ¥ by (simp add: fmap-of-list.rep-eq fmdom’'l map-of-zip-map)
ged
ultimately show #thesis
by (simp only:)
qed

end

lemmas Sub = prop-5221

6.23 Proposition 5222 (Rule of Cases)

lemma forall-a-conversion:
assumes A € wffsy
and (z, 8) ¢ free-vars A
and is-free-for (23) (z, B) A
shows - Vag. A =oVzg. S {(z, B) — 25} A
proof —
from assms(1) have Vag. A € wffso
by (intro forall-wff)
then have - Vzﬁ. A=, Vxﬁ. A
by (fact prop-5200)
moreover from assms have - (A\zg. 4) =5_,, (\25. S {(z, B) — 23} A)
by (rule prop-5206)

172



ultimately show ?thesis
unfolding forall-def and PI-def by (rule rule-R [where p = [»,»]]) force+
qed

proposition prop-5222:
assumes H F S {(z, 0) — Ty} Aand HF S {(z, 0) — Fo} A
and A € wffs,
shows H + A
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have §1: HE Ty =9 (Azp. A) + T
proof —
have - (Azo. A) « To =0 S {(z, 0) — Ty} A
using prop-5207[OF true-wff assms(3) closed-is-free-for| by simp
from this and assms(1) have H F (Azo. 4) » Ty
using rule-RR[OF disjI2, where p = [|] by fastforce
moreover have (Azy. A) « Ty € wffso
by (fact hyp-derivable-form-is-wffso[OF <H = (Azo. A) « T p»])
ultimately show ?thesis
using rule-T(1) by blast
qed
moreover have §2: HF+ Ty = (Azp. A) = Fy
proof —
have - (Azy. A) « Fo =90 S {(z, 0) — Fo} A
using prop-5207[OF false-wff assms(3) closed-is-free-for] by simp
from this and assms(2) have H + (Azo. 4) = Fy
using rule-RR[OF disjI2, where p = [|] by fastforce
moreover have (Azy. A) « Fy € wffs,
by (fact hyp-derivable-form-is-wffso]OF <H = (Azo. A) « F])
ultimately show ?thesis
using rule-T(1) by blast
qed
moreover from prop-5212 and <is-hyps H> have §3: H + T, AC T,
by (rule derivability-implies-hyp-derivability)
ultimately have H - (Azy. A) » Ty AC (Azp. A) = F,
proof —
from §3 and §7 have H - (Azo. A) » Ty NS T
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
from this and §2 show ?thesis
by (rule rule-R'[where p = [»]]) (force+, fastforce dest: subforms-from-app)
qged
moreover have - (Azy. A) « Ty A (M\zp. A) » Fp = Vz0. A
proof —
have go—0 * to € wffso
by blast
have - go—o* T NS go—o0 " Fo=0Vro go—o"to
using aziom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
— By a-conversion
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then have - go—o + To NS go—0* Fo =070 gono 2o (isk ?B =4 70)
proof —
have - Vio. go—o0 * to =0 VZo. §o—0 * To
proof (cases z = 1)
case True
from <go—0 * to € wffso> have - Vro. go—o * to =0 Vo go—o " ko
by (fact prop-5200[OF forall-wff])
with True show ?thesis
using identity-singleton-substitution-neutrality by simp
next
case Fulse
from (gop—o " ro € wffsoe
have - Y1o. §o—s0 * to =0 Vo. S {(x, 0) — 7o} (Go—0 * Lo)
by
(rule forall-a-conversion)
(simp add: False, intro is-free-for-to-app is-free-for-in-var)
then show ?thesis
by force
qed
with (- go—o* To A go—so* Fo =0 VIo. o0 * Lo> show ?thesis
using Fquality-Rules(3) by blast
qed
— By Sub
then have *: F (\zg. A) + Ty A2 (A\zg. A) » Fo =0 Y20. (Azo. A) * 20
proof —
let 29 = {(g, 0—0) — Azo. A}
from assms(3) have is-substitution 29
by auto
moreover have
Yo € fmdom’ 20.
var-name v & free-var-names ({}::form set) A is-free-for (29 $$! v) v (?B =, ?C)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 2 # {$$}
by simp
ultimately have - S 29 (B =, ?7C)
by (rule Sub [OF <+ 2B =, ?C)))
then show ?%thesis
by simp
qed
— By A-conversion
then show ?thesis
proof —
have - (A\zy. A) » 29 =p A
using prop-5208[where vs = [(z, 0)]] and assms(3) by simp
from x and this show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
qed
ultimately have H F Vz,. A
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using rule-RR and is-subform-at.simps(1) by (blast intro: empty-is-position)
then show ?thesis
proof —
have is-free-for (zo) (z, 0) A
by fastforce
from (H F Vz,. A and wffs-of-type-intros(1) and this show ?thesis
by (rule VI[of H x 0o A xo, unfolded identity-singleton-substitution-neutrality))
qed
qed

lemmas Cases = prop-5222

6.24 Proposition 5223

proposition prop-5223:
shows - (T, 22 9y) =0 Yo
proof —
have - (T D2 1) =0 (To =0 (To A< 1y))
proof —
let 24 = (A\to. A\9o. (x0 =2 10 A2 10)) * To * 9o
have 74 € wffs,
by force
then have - 7?4 =, ?A
by (fact prop-5200)
then have - (T, D2 n,) =, 74
unfolding imp-fun-def and imp-op-def .
moreover
have F (Aro. Ao (to =<2 10 A2 10)) * To =00 A\o. (To =2 Ty A2 1)
proof —
have Ayo. (to =2 1o A o) € wffso—o
by auto
moreover
have is-free-for T (r, 0) (M\o. (to =2 1o A2 90))
by fastforce
moreover
have S {(r, 0) — To} (A\yo. (ro =2 ro A2 10)) = (\o. (T'o =2 To A° 1))
by simp
ultimately show ?thesis
using prop-5207[OF true-wff] by metis

qed

ultimately have *: - (T, D9 1) =¢ (Avo. (To =2 Ty A2 1p)) * Do
by (rule rule-R [where p = [»,«]]) force+

have T, =2 T, A2 v, € wffso
by auto

then have - (Ayo. (To =2 To A2 10)) * o =0 (To =2 Ty A2 1)
using prop-5208[where vs = [(9, 0)]] by simp
from * and this show ?thesis
by (rule rule-R[where p = [»]]) force+
qed
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with prop-5218 have - (T, D2 1,) =0 (To A2 o)
using rule-R and Fquality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
with prop-5216 show ?thesis
using rule-R and FEquality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
qged

corollary generalized-prop-5223:
assumes A € wffsy
shows - (T, D2 A) =, A
proof —
have T, D9 v, € wffso and is-free-for A (1, 0) ((To D vo) =0 Yo)
by (blast, intro is-free-for-in-equality is-free-for-in-imp is-free-for-in-true is-free-for-in-var)
from this(2) have S {(n, o) — A} ((To D2 9o) =0 Do)
by (rule prop-5209[OF assms <T o D2 v, € wffse> wffs-of-type-intros(1) prop-5223])
then show ?thesis
by simp
qged

6.25 Proposition 5224 (Modus Ponens)

proposition prop-5224:
assumes H+ Aand H+ A D¢ B
shows H - B
proof —
have H - A D2 B
by fact
moreover from assms(1) have A € wffs,
by (fact hyp-derivable-form-is-wffso)
from this and assms(1) have H+ A =, Ty
using rule-T(2) by blast
ultimately have H + T, D¢ B
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
have - (T, D¢ B) =, B
proof —
let 29 = {(vy, o) — B}
have B € wffsy
by (fact hyp-derivable-form-is-wffso| OF assms(2), THEN wffs-from-imp-op(2)])
then have is-substitution 2
by simp
moreover have
Yo € fmdom’ 29.
var-name v ¢ free-var-names ({}::form set) A
is-free-for (29 $8! v) v ((To D2 9o) =0 o)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 729 # {$$}
by simp
ultimately have F S 29 (T, 22 9o) =0 10)
by (rule Sub[OF prop-5223))
then show ?thesis
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by simp
qed
then show ?thesis
by (rule rule-RR[OF disjl1, where p = []]) (use <H F T, D2 B> in <force+>)
qged

lemmas MP = prop-5224

corollary generalized-modus-ponens:
assumes H F hs D2, Band VH € lset hs. H+ H
shows H + B
using assms proof (induction hs arbitrary: B rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc H' hs)
from VH € lset (hs @ [H']). H+ H»> have H - H'
by simp
moreover have H - H' D¢ B
proof —
from «H  (hs @ [H']) D2, B> have H - hs D<, (H' D° B)
by simp
moreover from VH € lset (hs Q [H']). H+ H» have VH € lset hs. H+ H
by simp
ultimately show ?thesis
by (elim snoc.IH)
qed
ultimately show ?case
by (rule MP)
qed

6.26 Proposition 5225

proposition prop-5225:
shows - [ * fa—o o9 fa—o * o
proof —
have fo—0 * ta € wffso
by blast
have §1:
l_
[Ta* faso 22 (Ma=o- fa—so * ta) * (Ata. To))
=0
((Ma—o- fa—o * ta) * fa—o))
proof —
let 20 = {(h, (a—0)—0) — Ma—o- fa—o * ta, (&, a—=0) — Ara. To, (1, a—=0) — fa—o}
and ?A = (ta—o0 =a—0 Ya—o) oe (h(a—m)—)o *Ta—o =< h(a—>o)—>o * Da—o)
have F 24
by (fact aziom-is-derivable-from-no-hyps|OF axiom-2])
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moreover have AMfo—o. fa—o0 * ta € wﬁs(a_m)_m and A\rg. Ty € wffsqa—o
and fo—o € Wffsa—o
by blast+
then have is-substitution 29
by simp
moreover have
Yo € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v ?A
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 79 # {$$}
by simp
ultimately have - S %} 74
by (rule Sub)
then show ?thesis
by simp
qed
have F [[q * fa—o o< (To =0 fa—o * ta)
proof —
have
F (Ma—o- fa—o * ta) * (Ata- To) =0 (Ata- To) * ta
(iS - (/\?x?ﬁ. '.?B) - 2A =0 ?C)
proof —
have - (\?zgg. #B) « ?A =, S {(?z, 98) — ?4} ?B
using prop-5207[OF wffs-of-type-intros(4)|OF true-wff] «?B € wffsy] by fastforce
then show ?thesis
by simp
qed
moreover have - (A\t. To) * ta =0 To
using prop-5208[where vs = [(r, a)]] and true-wff by simp
ultimately have - (Ma—o. fa—o " ta) * Ata. To) =0 To
by (rule Equality-Rules(3))
from §1 and this have b [[ o * fa—o 22 (T =0 (Ma—o- fa—o * ta) * fa—o))
by (rule rule-R[where p = [»,«,»]]) force+
moreover have - (AMa—o. fa—o * ta) * fa—o =0 fa—o * ta
using prop-5208[where vs = [(f, a—0)]] by force
ultimately show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed
from this and prop-5218[OF Fa—o * ta € wffse’] show Zthesis
by (rule rule-R[where p = [»]]) auto

qed

6.27 Proposition 5226

proposition prop-5226:

assumes A € wffsq and B € wffso

and is-free-for A (z, ) B

shows - V1. B D2 S {(z, a) — A} B
proof —

have - [[o * (Azq. B) D2 (Azq. B) + A
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proof —
let 29 = {(f, a—0) — Azqo. B, (r, a) — A}
have F [[a * fa—o 22 fa—o * ta (is - 20)
by (fact prop-5225)
moreover from assms have is-substitution 29
by auto
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (%9 $3! v) v 2C
by (code-simp, (unfold atomize-conj[symmetric])?, fastforce)+ blast
moreover have 729 # {$$}
by simp
ultimately have - S 29 ?C
by (rule Sub)
moreover have S %) ?C = [[ o * (\zq. B) D¢ (Azq. B) + A
by simp
ultimately show ?thesis
by (simp only:)
qed
moreover from assms have b (Azq. B) + A =4, S {(z, a) — A} B
by (rule prop-5207)
ultimately show %thesis
by (rule rule-R [where p = [»]]) force+
qged

6.28 Proposition 5227

corollary prop-5227:
shows - F, D% 10
proof —
have - Vio. 1o D2 S {(r, 0) — 10} (xo)
by (rule prop-5226) auto
then show ?thesis
using identity-singleton-substitution-neutrality by simp
qed

corollary generalized-prop-5227:
assumes A € wffsy
shows - F, D¢ 4
proof —
let 20 = {(x, 0) — A} and ?B = F, D% 1,
from assms have is-substitution 2
by simp
moreover have is-free-for A (¢, o) B
by (intro is-free-for-in-false is-free-for-in-imp is-free-for-in-var)
then have
Yo € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $3$! v) v ?B
by force
ultimately have - S {(r, 0) — A} (Fo D< 10)
using Sub[OF prop-5227, where ¥ = 2] by fastforce
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then show ?thesis
by simp
qed

6.29 Proposition 5228

proposition prop-5228:
shows - (T, D2 Ty) =0 Ty
and - (T, D2 F,) =0 Fo
and - (F, D9 Ty) =0 Ty
and - (Fy, D9 Fy) =0 T
proof —
show F (T D2 Ty) =¢ Toand - (T, D2 F,) =0 F)
using generalized-prop-5223 by blast+
next
have - F, D¢ Foand - F, D2 T,
using generalized-prop-5227 by blast+
then show I (Fy, D9 T,) =o Toand - (Fy, D2 Fy) =o T
using rule-T(2) by blast+
qed

6.30 Proposition 5229

lemma false-in-conj-provability:
assumes A € wffsy
shows F F, A€ A =° F,
proof —
have - (Aro- Mo (to =2 10 A9 90)) » Fpr A
by (intro generalized-prop-5227[OF assms, unfolded imp-op-def imp-fun-def])
moreover have
l_
(Ato- Ao. (xo =2 10 A€ 10)) * Fo
=o0—o0
Ayo. (Fo =2 Fo A2 1)
(iS = ()\?:E_QB. ‘?A) - 2B :?’Y QC)
proof —
have 7B € wffsgg and ?4 € wifs ¢ and is-free-for ?B (%z, ?3) ?A
by auto
then have b (A\?z95. ?A) - 7B
by (rule prop-5207)
moreover have S {(%z, ?8) — ?B} ?A = ?C
by simp
ultimately show ¢thesis
by (simp only:)

=7, S {(?z, ?8) — 7B} 74

qed

ultimately have - (\y,. (Fp, =2 Fy, A9 o)) - A
by (rule rule-Rlwhere p = [«]]) auto

moreover have
l_

()\UO (FO EQ FO /\Q 00)) . A
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-0
(Fp =2 Fo NQ A)
(is = (Afzog. PA) « 7B =, ?0)
proof —
have ?B € wffs g and A € wffso
using assms by auto
moreover have is-free-for ?B (%z, ?0) ?A
by (intro is-free-for-in-equivalence is-free-for-in-conj is-free-for-in-false) fastforce
ultimately have - (A ?xyg. A) « 7B =, S {(z, ?8) — 7B} ?A
by (rule prop-5207)
moreover
have S {(%z, 78) — ?B} ?A = ?C
by simp
ultimately show ¢thesis
by (simp only:)
qed
ultimately have - F, =2 F, A€ 4
by (rule rule-R[where p = []]) auto
then show ?thesis
unfolding equivalence-def by (rule Equality-Rules(2))
qed

proposition prop-5229:
shows - (Ty A€ Ty) =¢ To
and - (To A Fy) =0 Fy
and - (Fy AC Ty) =0 Fo
and - (Fy A€ Fy) =, F
proof —
show - (Ty AC Ty) =¢ Toand - (Ty A€ Fy) =0 F
using prop-5216 by blast+
next
show - (Fy NS Ty) =¢ Foand - (Fy A2 Fy) =¢ Fy
using false-in-conj-provability and true-wff and false-wff by simp-all
qged

6.31 Proposition 5230

proposition prop-5230:
shows - (T, =2 Ty) =0 Ty
and - (T, =2 F,) =0 F)

and - (F, =2 T,) =0 F,
and - (Fy =9 Fy) =0 T
proof —

show F (T =2 Ty) =¢ Toand - (T, =2 F,) =, F,
unfolding equivalence-def using prop-5218 by blast+
next
show - (F, =2 Fy) =, Ty
unfolding equivalence-def by (rule Equality-Rules(2)[OF prop-5210[OF false-wff]])
next
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have §1: = (Fo =2 To) 22 ((Ato. (xo =2 Fo)) + Fo =2 (Aro. (to =2 Fo)) * To)
proof —
let 29 = {(h, 0—>0) — Aro. (xo =2 Fy), (¢, 0) — Fo, (1, 0) — Ty}
and ?A = (ro =0 Yo) o9 (ho—o " ¥o =2 hoso * o)
have F 24
by (fact axiom-is-derivable-from-no-hyps|OF aziom-2])
moreover have is-substitution %)
by auto
moreover have
Vv € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v ?A
by (code-simp, unfold atomize-conj[symmetric], simp, force)+ blast
moreover have 79 # {$$}
by simp
ultimately have - S %} 74
by (rule Sub)
then show ?thesis
by simp
qed
then have §2: - (F, =2 Ty) D2 ((Fo =2 Fy) =2 (To =2 Fy)) (is - ?242)
proof —
have is-free-for A (x, 0) (xto =2 F,) for A
by code-simp blast
have S-reduction: = (Ato. (o =2 Fy)) » A =o (A =2 F,) if A € wffs, for A
using
prop-5207
[
OF that equivalence-wff [ OF wffs-of-type-intros(1) false-wff]
dis-free-for A (x, 0) (xo =2 Fo)»
]
by simp
from §1 and S-reduction|OF false-wff] have
F(Fo =0 To) D2 ((Fo =2 Fo) =2 (Ato. (to =2 Fo)) * To)
by (rule rule-R[where p = [»,«,»]]) force+
from this and SB-reduction]| OF true-wff] show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
then have §3: - (F, =2 T,) D9 F,
proof —
note 71 = rule-RR[OF disjI1] and r2 = rule-RR|[OF disjI2]
have §31: - (Fp =2 Ty) D2 ((Fo =2 F,) =2 F,) (is - ?431))
by (rule r1[OF prop-5218[OF false-wff], where p = [»,»] and C = ?42]) (use §2 in «force+>)
have §35: - (Fo =2 Ty) D2 (To =2 Fy) (is - ?439)
by (rule r2[OF prop-5210[OF false-wff], where p = [»,«,»] and C = ?431]) (use §31 in «force+»)
show ?thesis
by (rule r1[OF prop-5218[OF false-wff], where p = [»] and C = ?A35]) (use §32 in «force+)
qed
then have - (F, =2 Ty) =2 ((Fp =2 Ty) A2 Fy)
proof —
have
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l,
(Aro- A9o. (xo =2 1o A2 00)) * (Fo =2 T))
=o0—o
S {(x, 0) = Fo =2 To} (AWo. (ro =2 10 A o))
by (rule prop-5207) auto
from §3[unfolded imp-op-def imp-fun-def] and this
have - (\yo. (Fo =2 To) =2 (Fo =2 To) A2 1))+ Fo
by (rule rule-R[where p = [«]]) force+
moreover have
'_
(Ao. (Fo =2 Ty) =2 (Fp =2 Ty) A 1y)) » F
-0
S {(n, 0) — Fo} (Fo =2 To) =2 (Fo =2 To) A o)
by (rule prop-5207) auto
ultimately show ?thesis
by (rule rule-R[where p = [|]) force+
qed
moreover have §5: -, AC F, =2 F,
proof —
from prop-5229(2,4) have
FS{(x, 0) — To} (xo A€ Fo =2 Fp)and S {(r, 0) — Fo} (1o A2 Fo =2 Fy)
by simp-all
moreover have r, AC F, =2 F, € wffso
by auto
ultimately show Zthesis
by (rule Cases)
qed
then have - (F, =2 T,) AC F, =2 F,
proof —
let 29 = {(x, 0) — Fo =2 Ty}
have is-substitution ?)
by auto
moreover have Vv € fmdom’ %9.
var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v (xo NS Fo =2 Fy)
by simp
moreover have 79 # {$$}
by simp
ultimately have - S 2 (1o AC F, =2 Fy)
by (rule SublOF (- o A2 Fo =2 Fp))
then show ?thesis
by simp
qged
ultimately show - (F, =2 T,) =, Fy
unfolding equivalence-def by (rule Equality-Rules(3))
qed

6.32 Proposition 5231
proposition prop-5231:
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shows F ~2 T, =, Fo
aIl(i'_’\/Q FO =0 TO
using prop-5230(3,4) unfolding neg-def and equivalence-def and equality-of-type-def .

6.33 Proposition 5232

lemma disj-op-alt-def-provability:
assumes A € wffsp and B € wffs,
shows - A Ve B =, ~9 (~2 A A? ~©2 B)
proof —
let 7C = (A\to- M\o. ~2 (~2 1o A2 ~21y)) A+ B
from assms have ?C € wffs,
by blast
have (~2 (~2 o A2 ~2 1)) € wffso
by auto
moreover obtain z where (z, 0) ¢ {(¢, 0), (v, 0)} and (z, 0) ¢ free-vars A
using free-vars-form-finiteness and fresh-var-existence
by (metis Un-iff Un-insert-right free-vars-form.simps(1,3) inf-sup-aci(5) sup-bot-left)
then have (z, 0) ¢ free-vars (~2 (~< 1o A2 ~2 1))
by simp
moreover have is-free-for (zo) (9, 0) (~2 (~2 1o A2 ~2 1y))
by (intro is-free-for-in-conj is-free-for-in-neg is-free-for-in-var)
ultimately have
F (Ao ~2 (~2 10 A2 ~2 10)) =00 (A20. S {(, 0) — 2o} ~2 (~2 1o A2 ~2 1))
by (rule «)
then have - (Ahy. ~2 (~2 1o A2 ~2 1)) =030 (A2p. ~2 (~C 15 A2 ~2 2p))
by simp
from prop-5200[OF <?C € wffso’] and this have
l_
(Aro- Azo. ~2 (~2xo A2 ~2 20)) + A+ B

=o
(}\XO AUO NQ (NQ ;0 /\Q NQ Uo)) . A . B

by (rule rule-R[where p = [«,»,4,«,«]]) force+
moreover have \zy. ~9 (~2 1ty A2 ~2 2,) € wffso—o
by blast
have
F
(Ato- Azo. ~2 (~C 1o N2 ~2 29)) + A
=o0—o0
S {(x, 0) = A} (Mzo. ~2 (~2 10 A° ~° 2))
by

(rule prop-5207)
(
fact, blast, intro is-free-for-in-neg is-free-for-in-conj is-free-for-to-abs,
(fastforce simp add: «(z, 0) & free-vars A»)+
)
then have '7 (Axo )\Zo. NQ (NQ Lo /\Q NQ Zo)) . A =0—0 (AZO. NQ (NQ A /\Q NQ Zo))
using «(z, 0) ¢ free-vars (~2 (~2 ro A2 ~2 1,))» by simp
ultimately have
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F (Azo. ~2 (~2 AN ~2 20)) « B =0 (\to- \o. ~2 (~2 10 A® ~Cp)) = A+ B
by (rule rule-R[where p = [«,»,«]]) force+
moreover have - (Azp. ~2 (~2 A A2 ~2 2,)) « B =4S {(2, 0) — B} (~2 (~2 A N2 ~2 2p))
by
(rule prop-5207)
(
fact, blast intro: assms(1), intro is-free-for-in-neg is-free-for-in-conj,
use «(z, 0) & free-vars A» is-free-at-in-free-vars in <fastforce+»
)
moreover have S {(z, 0) — B} (~2 (~2 A N? ~€9 2,)) = ~2 (~2 A N9 ~2 B)
using free-var-singleton-substitution-neutrality|OF «(z, 0) & free-vars As] by simp
ultimately have - (Aro. Apo. ~2 (~2 1o A2 ~2 1)) = A+ B =y ~2 (~2 A N2 ~2 D)
using Fquality-Rules(2,8) by metis
then show ?thesis
by simp
qged

context begin

private lemma prop-5232-aux:
assumes - ~2 (A A€ B) =, C
andF~2 A'=, Aand + ~°2 B'=, B
shows - A’ Ve B' =, C
proof —
let D = ~2 (A NS B) =, C
from assms(2) have - ~2 (~2 A" A€ B) =, C (is - ?A1))

by (rule rule-RR[OF disjI2, where p = [«,»,»,«,»] and C = ?D]) (use assms(1) in <force+>)
from assms(3) have - ~2 (~2 A’ N2 ~2 B)) =, C
by (rule rule-RR[OF disjI2, where p = [«,»,»,»] and C = ?A1]) (use <k A1) in <force+»)

moreover from assms(2,3) have A’ € wffs, and B’ € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality wffs-from-neg)+
then have - A’ Ve B/ =, ~2 (~9 A’ A2 ~2 B
by (rule disj-op-alt-def-provability)
ultimately show ?thesis
using prop-5201-3 by blast
qed

proposition prop-5232:
shows - (T, V2 Ty) =0 Ty
and - (T VQ Fy) =0 Ty
and - (F, V€ Ty) =0 Ty
and - (Fo V2 Fo) =0 F,
proof —
from prop-5231(2) have - ~2 F, =, T, (is <+ 24)) .
from prop-5229(4) have - ~2 (F, A2 Fy) =0 Ty
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use <= 24> in (force+>)
from prop-5232-auz[OF this prop-5231(1) prop-52531(1)] show F (To Ve Ty) =0 Ty -
from prop-5229(3) have - ~2 (Fy AC Ty) =0 T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use < ?A» in <force+>)

185



from prop-5232-aux[OF this prop-5231(1) prop-52581(2)] show F (To V2 Fo) =¢ Ty -
from prop-5229(2) have - ~2 (T, A9 F,) =0 T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use <= 24> in (force+>)
from prop-5232-auz[OF this prop-5231(2) prop-5231(1)] show F (Fo, VE Ty) =o Ty -
next
from prop-5231(1) have - ~2 T, =, F, (is - ?4)) .
from prop-5229(1) have - ~2 (T, A2 Ty) =0 F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A4]) (use <= 24> in «force+>)
from prop-5232-auz[OF this prop-5231(2) prop-5231(2)] show - (Fo Ve Fo) =o Fo .
qged

end

6.34 Proposition 5233

context begin

private lemma lem-prop-5233-no-free-vars:
assumes A € puwffs and free-vars A = {}
shows (V. is-tv-assignment ¢ — Vp p A=T) —F A=, Ty (is ?Ar — -)
and (V. is-tv-assignment ¢ — Vp p A=F) — F A=, Fy (is ?Ar — -)
proof —
from assms have (?Ar —F A =, To) N (Ar — F A=, Fy)
proof induction
case T-puwff
havet T, =, T
by (rule prop-5200[OF true-wff])
moreover have V. is-tv-assignment ¢ — Vp ¢ To =T
using Vp-T by blast
then have — (V. is-tv-assignment ¢ — Vg ¢ Ty = F)
by (auto simp: inj-eq)
ultimately show ?case
by blast
next
case F-puff
have - F, =, F
by (rule prop-5200[OF false-wff])
moreover have V. is-tv-assignment ¢ — Vp ¢ Fo =F
using Vp-F by blast
then have — (V. is-tv-assignment ¢ — Vp ¢ Fo =T)
by (auto simp: inj-eq)
ultimately show ?case
by blast
next
case (var-pwff p) — impossible case
then show ?case
by simp
next
case (neg-puwff B)
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from neg-pwff.hyps have ~2 B € puwffs and free-vars B = {}
using neg-pwff.prems by (force, auto elim: free-vars-form.elims)
consider
(a) V. is-tv-assignment ¢ — Vg ¢ B=T
| (b) V. is-tv-assignment ¢ — Vg ¢ B=TF
using closed-pwff-denotation-uniqueness| OF neg-pwff.hyps <free-vars B = {})]
and neg-pwff.hyps| THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g||
by (auto dest: tv-cases) metis
then show ?case
proof cases
case a
with <free-vars B = {}» have - T, =y B
using neg-pwff.IH and Equality-Rules(2) by blast
from prop-5231(1)[unfolded neg-def, folded equality-of-type-def] and this
have - ~¢ B =, F,
unfolding neg-def[folded equality-of-type-def] by (rule rule-R[where p = [«,»,»]]) force+
moreover from o have V. is-tv-assignment o — Vg ¢ (~< B) = F
using Vg-neg|OF neg-pwff.hyps] by simp
ultimately show ?thesis
by (auto simp: inj-eq)
next
case b
with <free-vars B = {}» have - F, =, B
using neg-pwff.IH and Equality-Rules(2) by blast
then have - ~¢ B =, T,
unfolding neg-def|[folded equality-of-type-def]
using rule-T(2)[OF hyp-derivable-form-is-wffso] by blast
moreover from b have V. is-tv-assignment ¢ — Vg ¢ (~2 B) =T
using Vp-neg|OF neg-pwff.hyps] by simp
ultimately show ?Zthesis
by (auto simp: inj-eq)
qed
next
case (conj-pwff B C)
from conj-pwff.prems have free-vars B = {} and free-vars C' = {}
by simp-all
with conj-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1
and C-den: V. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF conj-pwff .hyps(1) «free-vars B = {})]
and closed-puff-denotation-uniqueness|OF conj-pwff.hyps(2) «free-vars C = {}]
and conj-pwff.hyps| THEN V g-graph-denotation-is-truth-value[ OF V g-graph-V ]|
by force+
with conj-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢c) b=Fand b'=T
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| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5229(1) have - Ty A2 Ty =, Ty (is <+ ?AD)) .
from B-den|unfolded a(1)] and «free-vars B = {}> have - B =, T
using conj-pwff.IH(1) by simp
then have - B AC T, =, T, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1> in <force+»)
from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using conj-pwff.IH(2) by simp
then have - B AS C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BA2 C)=T) — F B A2 C =, Ty
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (B A2 C) #F
using Vp-conj[OF conj-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case b
from prop-5229(2) have - Ty AS Fo =, Fo (is <= ?A1)) .
from B-den|unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using conj-pwff.IH(1) by simp
then have - B AC F, =, F, (is (- ?242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, F'y
using conj-pwff.IH(2) by simp
then have - B A2 C =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2) in «<force+>)
then have (VY . is-tv-assignment ¢ — Vg ¢ (BA2 C)=F) — F BA2 C =, F,
by blast
moreover have V . is-tv-assignment ¢ — Vg ¢ (B A2 C) # T
using Vg-conj[OF conj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c
from prop-5229(3) have - F, A2 Ty =, F, (is - ?A1)) .
from B-den[unfolded ¢(1)] and «free-vars B = {}» have - B =, F,
using conj-pwff.IH(1) by simp
then have - B AC T, =, F, (is (- 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1) in <force+))
from C-denlunfolded ¢(2)] and «free-vars C = {}» have - C =, T,
using conj-pwff.IH(2) by simp
then have - B A€ C =, F,
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by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BAS C)=F) — F BA2 C =, F,
by blast
moreover have V . is-tv-assignment ¢ — Vg ¢ (B A2 C) # T
using Vg-conj[OF conj-pwff.hyps] and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case d
from prop-5229(4) have - F, NS F, = Fo (is <= ?A1») .
from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using conj-pwff.IH(1) by simp
then have - B AC F, =, F, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ A1) in <force+»)
from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using conj-pwff.IH(2) by simp
then have - B A2 C =, F,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (Y ¢. is-tv-assignment ¢ — Vg ¢ (BA2 C) =F) — F BAC C =, F,
by blast

moreover have V. is-tv-assignment ¢ — Vg o (B A2 C) # T
using Vp-conj[OF conj-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
qed
next
case (disj-pwff B C)
from disj-puwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with disj-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF disj-puwff.hyps(1) <free-vars B = {}}]
and closed-puff-denotation-uniqueness|OF disj-pwff.hyps(2) <free-vars C' = {}]
and disj-pwff.hyps| THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g|]
by force+
with disj-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢) b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
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from prop-5232(1) have - Ty, Ve Ty =, Ty (is <+ 2A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}> have - B =, T
using disj-pwff . IH(1) by simp
then have - B Ve T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denfunfolded a(2)] and «<free-vars C = {}> have - C =, T,
using disj-pwff . IH(2) by simp
then have - B Ve C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BV2 C)=T) — F BVe C =, Ty
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (BVS C) # F
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5232(2) have - T, Ve F, =, T, (is - ?A1) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using disj-pwff . TH(1) by simp
then have - B Ve F, =, T, (is - ?42))
by (rule rule-RR|OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using disj-pwff . TH(2) by simp
then have - B Ve C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+)
then have (V. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) —F BV2 C =, T,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (BVS C) # F
using Vp-disj|OF disj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case c
from prop-5252(3) have - F, V€ T, =, T, (is - ?A1)) .
from B-den[unfolded c(1)] and «free-vars B = {}> have - B =, F,
using disj-pwff . IH(1) by simp
then have - B Ve T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ A1) in <force+>)
from C-denlunfolded ¢(2)] and «free-vars C = {}» have - C =, T,
using disj-pwff . IH(2) by simp
then have - BVe C =, T,
by (rule rule-RR|[OF disjI2, where p = [«,»,»] and C = ?A2]) (use < 2A2) in <force+))
then have (V. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) —F BVe C =, T,
by blast
moreover have V. is-tv-assignment ¢ — Vp ¢ (BVS C) #F
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]
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by (auto simp: inj-eq)

ultimately show ?thesis
by force

next

case d

from prop-5252(4) have - F, V€ F, =, F, (is <+ ?A1») .

from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using disj-pwff . IH(1) by simp

then have - B Ve F, =, F, (is (- ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1> in <force+»)

from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using disj-pwff.IH(2) by simp

then have - B Ve C =, F,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (VY ¢. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) — F BVe C =, F,
by blast

moreover have V . is-tv-assignment ¢ — Vg ¢ (BVS C) # T
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
using - B Ve C =, Fy by auto
qed
next
case (imp-puff B C)
from imp-puwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with imp-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp @ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF imp-puwff.hyps(1) <free-vars B = {})]
and closed-pwff-denotation-uniqueness| OF imp-pwff.hyps(2) «free-vars C = {}]
and imp-puwff.hyps| THEN V g-graph-denotation-is-truth-value[OF V g-graph-V g|]
by force+
with imp-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢) b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5228(1) have - Ty D2 Ty =, Ty (is <+ ?A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}» have - B =, T,
using imp-pwff.IH(1) by simp
then have - B D¢ T, =, T, (is <+ ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)

2Ty
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from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using imp-pwff.IH(2) by simp
then have - B >2 C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V ¢. is-tv-assignment ¢ — Vg ¢ (BD2 C)=T) — F B 22 C =, Ty
by blast
moreover have Y . is-tv-assignment ¢ — Vg ¢ (B D2 C) # F
using Vg-imp|OF imp-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5228(2) have - T, D2 F, =, F, (is - ?A1)) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using imp-pwff.IH(1) by simp
then have - B D2 F, =, F, (is (+ 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using imp-pwff.IH(2) by simp
then have - B 52 C =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B D2 C)=F) — F BD2 C =, F,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (B D2 C) # T
using Vp-imp[OF imp-pwff.hyps] and B-den[unfolded b(1)] and C-denlunfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c
from prop-5228(3) have - F, D2 Ty, =, T, (is < ?A1)) .
from B-denlunfolded ¢(1)] and «(free-vars B = {}» have - B =, F,
using imp-pwff.IH(1) by simp
then have - B D2 T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denlunfolded c(2)] and «free-vars C = {}» have - C =, T,
using imp-pwff.IH(2) by simp
then have - B D2 C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B2 C)=T) —F B2>2 C =, T,
by blast
moreover have V. is-tv-assignment ¢ — Vp o (B D2 C) #F
using Vp-imp[OF imp-pwff.hyps] and B-den|unfolded c¢(1)] and C-den|unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case d

192



from prop-5228(4) have - F, D2 F, =, T, (is - ?A1)) .
from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using imp-pwff.IH(1) by simp
then have - B D2 F, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using imp-pwff.IH(2) by simp
then have - B >2 C =, T,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BD2 C)=T) — F B 22 C =, Ty
by blast

moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B 22 C) # F
using Vp-imp[OF imp-pwff.hyps] and B-den|unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
qed
next
case (equ-pwff B C)
from equ-pwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with equ-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF equ-pwff.hyps(1) «free-vars B = {}]
and closed-pwff-denotation-uniqueness|OF equ-pwff.hyps(2) «free-vars C = {}]
and equ-pwff.hyps|THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g||
by force+
with equ-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢c)b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5230(1) have - (T, =2 T,) =0 To (is <+ ?A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}» have - B =, T,
using equ-pwff.IH(1) by simp
then have - (B =2 T,) =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)
from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2) in «force+>)
then have (V. is-tv-assignment ¢ — Vp ¢ (B=2 C)=T) — F (B=2 C) =, T,
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by blast
moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B =2 C) #F
using Vg-equ[OF equ-pwff.hyps| and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5230(2) have - (T, =2 F,) =, F, (is <= ?A1)) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using equ-pwff.IH(1) by simp
then have - (B =2 F,) =, F, (is <+ 242))
by (rule rule-RR|[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B =2 C) =F) — F (B =2 C) =, F,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg o (B =2 C) # T
using Vp-equ[OF equ-pwff.hyps| and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c¢
from prop-5230(3) have - (F, =2 Ty) =, F, (is - 241)) .
from B-den|unfolded ¢(1)] and «free-vars B = {}» have - B =, F,
using equ-pwff.IH(1) by simp
then have - (B =2 T,) =, F, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1> in <force+»)
from C-denlunfolded c(2)] and «free-vars C = {}» have - C =, T,
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in (force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B=2 C)=F) — F (B=2 C) =, Fo
by blast
moreover have V. is-tv-assignment ¢ — Vp ¢ (B =2 C) # T
using Vp-equ[OF equ-pwff.hyps| and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case d
from prop-5230(4) have - (Fo, =2 Fy) =o Ty (is - 2A1)) .
from B-den|unfolded d(1)] and «free-vars B = {}> have - B =, F,
using equ-pwff.IH (1) by simp
then have - (B =2 F,) =, T, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)

194



from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, T,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B=2 C)=T) — F (B=2 0) =, T,

by blast
moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B =2 C) # F

using Vg-equ[OF equ-pwff.hyps| and B-den[unfolded d(1)] and C-den[unfolded d(2)]

by (auto simp: inj-eq)
ultimately show ?thesis
by force
qed
qed
then show A — + A=, Tpand ?Ar —+ A=, F,y
by blast+
qged

proposition prop-5233:
assumes is-tautology A
shows - A
proof —
have finite (free-vars A)
using free-vars-form-finiteness by presburger
from this and assms show ?thesis
proof (induction free-vars A arbitrary: A)
case empty

from empty(2) have A € puwffs and V p. is-tv-assignment ¢ — Vg ¢ A =T

unfolding is-tautology-def by blast+
with empty(1) have - A =, Ty
using lem-prop-5233-no-free-vars(1) by (simp only:)
then show ?Zcase
using rule-T(2)[OF tautology-is-wffo| OF empty(2)]] by (simp only:)
next
case (insert v F')
from insert.prems have A € pwffs
by blast
with insert.hyps(4) obtain p where v = (p, o)
using puwffs-free-vars-are-propositional by blast
from (v = (p, 0)» and insert.hyps(4) have
is-tautology (S {(p, 0) — T} A) and is-tautology (S {(p, 0) — Fo} A)
using puwff-substitution-tautology-preservation |OF insert.prems] by blast+
moreover from insert.hyps(2,4) and v = (p, o)) and <A € pwffs

have free-vars (S {(p, 0) — To} A) = F and free-vars (S {(p, 0) — Fo} A) = F
using closed-pwff-substitution-free-vars and T-pwff and F-pwff and T-fv and F-fv

by (metis Diff-insert-absorb insertll)+

ultimately have - S {(p, 0) — Ty} Aand - S {(p, 0) — Fo} A
using insert.hyps(3) by (simp-all only:)

from this and tautology-is-wffo| OF insert.prems] show ?case
by (rule Cases)
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qed
qged

end

6.35 Proposition 5234 (Rule P)

According to the proof in [2], if [ALA---AA"] D B is tautologous, then clearly A! O (... (4" D
B)...) is also tautologous. Since this is not clear to us, we prove instead the version of Rule
P found in [1]:

proposition tautologous-horn-clause-is-hyp-derivable:
assumes is-hyps H and is-hyps G
andVAce G HFA
and lset hs = G
and is-tautologous (hs D2, B)
shows H - B
proof —
from assms(5) obtain ¥ and C
where is-tautology C
and is-substitution 1
and Y (z, a) € fmdom’ 9. o = o
and hs D2, B=S 9 C
by blast
then have + hs D2, B
proof (cases ¥ = {$$})
case True
with (hs D2, B=S ¢ C» have C = hs D2, B
using empty-substitution-neutrality by simp
with <hs D9, B =S 9 C) and «is-tautology C» show ?thesis
using prop-5233 by (simp only:)
next
case Fulse
from <is-tautology C» have - C and C € puwffs
using prop-5233 by simp-all
moreover have
Yo € fmdom’ Y. var-name v ¢ free-var-names ({}::form set) A is-free-for (¥ $$! v) v C
proof
fix v
assume v € fmdom’ 9
then show var-name v ¢ free-var-names ({}::form set) A is-free-for (¥ $$! v) v C
proof (cases v € free-vars C)
case True
with «C € puwjfs) show ?thesis
using is-free-for-in-pwff by simp
next
case Fulse
then have is-free-for (9 $$! v) v C
unfolding is-free-for-def using is-free-at-in-free-vars by blast
then show ?thesis
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by simp
qed
qed
ultimately show ?thesis
using False and «<is-substitution 9> and Sub
by (simp add: <hs D2, B = S 9 C»[unfolded generalized-imp-op-def])
qed
from this and assms(1) have H + hs D2, B
by (rule derivability-implies-hyp-derivability)
with assms(3,4) show ?thesis
using generalized-modus-ponens by blast
qged

corollary tautologous-is-hyp-derivable:
assumes is-hyps H
and is-tautologous B
shows H F B
using assms and tautologous-horn-clause-is-hyp-derivablelwhere G = {}] by simp

lemmas prop-5234 = tautologous-horn-clause-is-hyp-derivable tautologous-is-hyp-derivable

lemmas rule-P = prop-523/

6.36 Proposition 5235

proposition prop-5235:
assumes A € puffs and B € puwffs
and (z, ) ¢ free-vars A
shows - V4. (A VE B) D2 (A Ve V4. B)
proof —
have §1: - V. (To Ve B) D2 (T V2 V4. B)
proof (intro rule-P(2))
show is-tautologous (¥ zq. (To VE B) D2 Ty VC V4. B)
proof —
let 29 = {(r, 0) — Yza. (To VE B), (9, 0) — Yzq. B} and ?C =1, D2 (T V2 (o))
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by fastforce
moreover have Vz. (Ty Ve B) D¢ T, Ve Va2, B=S 2 2C
by simp
ultimately show ?Zthesis
by blast
qed
qed simp
have §2: - Vzq. B D9 (Fy Ve V4. B)
proof (intro rule-P(2))
show is-tautologous (¥ zo. B D2 (Fo VE V4. B))
proof —
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let 29 = {(z, 0) — Vzo. B} and 2C =1, D2 (Fo V2 (t0))
have is-tautology (xo D2 (Fo VC (o)) (is <is-tautology ?C»)
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution %
using pwffs-subset-of-wffso by auto
moreover have Vz,. B D2 (Fo Ve V1. B) =S 2 2C
by simp
ultimately show ?thesis
by blast
qed
qed simp
have §3: - B =2 (F, V¢ B)
proof (intro rule-P(2))
show is-tautologous (B =< (F, V¢ B))
proof —
let 29 = {(r, 0) — B} and ?C =1, =2 (F, V€< (20))
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by auto
moreover have B =2 (F, V¢ B) =S 2 72C
by simp
ultimately show ?thesis
by blast
qed
qged simp
from §2 and §3[unfolded equivalence-def] have §4:
FVaq. (Fo Ve B) D9 (Fo Ve V4. B)
by (rule rule-R[where p = [«,»,»,«]]) force+
obtain p where (p, 0) ¢ vars (Vaq. (A VE B) D2 (A V€ V4. B))
by (meson fresh-var-existence vars-form-finiteness)
then have (p, 0) # (z, «) and (p, 0) ¢ vars A and (p, o) ¢ vars B
by simp-all
from «(p, 0) ¢ vars B> have sub: S {(p, o) — C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have §5: F Vzq. (po VC B) D2 (po Ve Vaa. B) (is «+ 20»)
proof —
from sub and §1 have - S {(p, 0) — Ty} ?C
using «(p, 0) # (z, a)» by auto
moreover from sub and §4 have - S {(p, o) — Fy} 2C
using «(p, 0) # (z, a)» by auto
moreover from assms(2) have ?C € wffs,
using pwffs-subset-of-wffso by auto
ultimately show ¢thesis
by (rule Cases)
qed
then show ?thesis
proof —
let 29 = {(p, o) — A}
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from assms(1) have is-substitution 29
using pwffs-subset-of-wffso by auto
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $3! v) v 2C
proof
fix v
assume v € fmdom’ 29
then have v = (p, o)
by simp
with assms(3) and «(p, o) ¢ vars B> have is-free-for (29 $$! v) v 2C
using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-disj) auto
moreover have var-name v ¢ free-var-names ({}::form set)
by simp
ultimately show var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2C
unfolding v = (p, 0)» by blast
qed
moreover have 79 # {$$}
by simp
ultimately have - S %) 2C
by (rule Sub[OF §5])
moreover have S 29 ?C = V4. (A VS B) D9 (A Ve V4. B)
using «(p, 0) # (z, ) and sub[of A] by simp fast
ultimately show ?thesis
by (simp only:)
qged
ged

6.37 Proposition 5237 (D V Rule)

The proof in [2] uses the pseudo-rule Q and the axiom 5 of F. Therefore, we prove such axiom,
following the proof of Theorem 143 in [1]:

context begin

private lemma prop-5237-aux:
assumes A € wffsp and B € wffs,
and (z, a) ¢ free-vars A
shows - V1. (A D¢ B) =2 (A 22 (Vaq. B))
proof —
have is-tautology (xo =< (T D2 to)) (is «<is-tautology ?C1>)
using Vg-simps by simp
have is-tautology (xo0 D2 (xo =< (Fo D 10))) (is <is-tautology ?Cs)»)
using Vp-simps by simp
have §1: - Vzo. B =2 (T, D2 V4. B)
proof (intro rule-P(2))
show is-tautologous (Vzo. B =2 (Ty D2 Vaq. B))
proof —
let 29 = {(x, 0) — Vzq. B}
from assms(2) have is-pwff-substitution %9

199



using pwffs-subset-of-wffso by auto
moreover have Vz,. B =2 (To o2 Vig. B)=S % ¢C,
by simp
ultimately show ?thesis
using (is-tautology ?C1> by blast
qed
qed simp
have §2: - B =2 (T, >° B)
proof (intro rule-P(2))
show is-tautologous (B =< T, D2 B)
proof —
let 29 = {(x, o) — B}
from assms(2) have is-pwff-substitution %
using pwffs-subset-of-wffso by auto
moreover have B=°2 T, 22 B=S 29 2C;
by simp
ultimately show ?thesis
using <is-tautology ?C1> by blast
qed
qed simp
have - T
by (fact true-is-derivable)
then have §3: - Vzo. Ty
using Gen by simp
have §/: - Vzqo. Tp =2 (Fo D2 V. B)
proof (intro rule-P(1)[where G = {Vzq. To}])
show is-tautologous ([Vzq. Ty D% (V1. To =2 (Fo D2 V4. B)))
proof —
let 29 = {(z, 0) — Yzq. To, (v, 0) — Vzq. B}
from assms(2) have is-pwff-substitution %9
using pwffs-subset-of-wffso by auto
moreover have [Vzq. To] D9, (Vaa. To =2 (Fp D2 Vao. B)) =S 29 20,
by simp
ultimately show ?thesis
using <is-tautology 7Cs» by blast
qed
qged (use §3 in fastforce)+
have §5: - T, =2 (F, D2 B)
proof (intro rule-P(2))
show is-tautologous (T, =2 (Fo D2 B))
proof —
let 29 = {(r, 0) — B} and ?C = T, =2 (F, D9 10)
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by auto
moreover have T, =< (F, D¢ B) =S 29 ?C
by simp
ultimately show ?thesis
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by blast
qed
qed simp
from §/ and §5 have §6: - Vzq. (Fo D2 B) =2 (Fy D¢ Vzu. B)
unfolding equivalence-def by (rule rule-Rlwhere p = [«,»,»,«]]) force+
from §7 and §2 have §7: - V. (T D2 B) =2 (T D¢ V4. B)
unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+
obtain p where (p, 0) ¢ vars B and p # x
using fresh-var-existence and vars-form-finiteness by (metis finite-insert insert-iff)
from «(p, o) ¢ vars B> have sub: S {(p, o) — C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have §8: - Vzq. (po D2 B) =2 (po D2 Vaqa. B) (is - ?2C3)
proof —
from sub and §7 have S {(p, 0) — Ty} ?C;
using <p # x> by auto
moreover from sub and §6 have - S {(p, 0) — F,} ?C3
using <p # z» by auto
moreover from assms(2) have ?Cs € wffs,
using pwffs-subset-of-wffso by auto
ultimately show ?thesis
by (rule Cases)
qed
then show ?thesis
proof —
let 29 = {(p, 0) — A}
from assms(1) have is-substitution 29
using puwffs-subset-of-wffso by auto
moreover have
Vv € fmdom’ ?9. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v 2C3
proof
fix v
assume v € fmdom’ 2
then have v = (p, o)
by simp
with assms(3) and «(p, 0) ¢ vars B> have is-free-for (29 $$! v) v ?2C3
using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-equivalence) auto
moreover have var-name v ¢ free-var-names ({}::form set)
by simp
ultimately show var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2C3
unfolding <v = (p, 0)» by blast
qed
moreover have 79 # {$$}
by simp
ultimately have - S 29 ?C3
by (rule Sub[OF §8])
moreover have S 79 ?C3 = V1. (A D2 B) =2 (A D2 V4. B)
using (p # z» and sub[of A] by simp
ultimately show ?Zthesis
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by (simp only:)
qed
qed

proposition prop-5237:
assumes is-hyps H
and H - A D9 B
and (z, a) ¢ free-vars ({A} U H)
shows H - A 52 (Vzq. B)
proof —
have H - A D¢ B
by fact
with assms(3) have H - Vzq. (A D2 B)
using Gen by simp
moreover have H - Vzq. (A D2 B) =2 (A D2 (Vzqo. B))
proof —
from assms(2) have A € wffs, and B € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op)+
with assms(1,3) show ?thesis
using prop-5237-aur and derivability-implies-hyp-derivability by simp
qed
ultimately show #thesis
by (rule Equality-Rules(1))
qed

lemmas DV = prop-5237

corollary generalized-prop-5237:
assumes is-hyps H
and H+ AD° B
and Vv € S. v ¢ free-vars ({A} UH)
and lset vs = §
shows H - A 52 (V<, vs B)
using assms proof (induction vs arbitrary: S)
case Nil
then show ?case
by simp
next
case (Cons v vs)
obtain z and o« where v = (z, a)
by fastforce
from Cons.prems(3) have x: Vv’ € S. v’ ¢ free-vars ({A} U H)
by blast
then show ?case
proof (cases v € Iset vs)
case True
with Cons.prems(4) have lset vs = S
by auto
with assms(1,2) and * have H - A D2 V<, vs B
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by (fact Cons.IH)

with True and <Iset vs = S» and v = (7, a)» and * have H - A D2 (V1. V<, vs B)
using prop-5237[OF assms(1)] by simp

with v = (z, «)» show ?Zthesis
by simp

next

case Fulse

with <lset (v # vs) = S» have lset vs = S — {v}
by auto

moreover from * have Vv’ € S — {v}. v’ ¢ free-vars ({A} U H)
by blast

ultimately have H - A D2V, vs B
using assms(1,2) by (intro Cons.IH)

moreover from Cons.prems(4) and v = (z, a)> and * have (z, o) ¢ free-vars ({A} U H)
by auto

ultimately have H - A D2 (V1. V<, vs B)
using assms(1) by (intro prop-5237)

with (v = (2, a)> show ?thesis
by simp

qed
qged

end

6.38 Proposition 5238

context begin

private lemma prop-5238-aux:
assumes A € wffsq and B € wffsq
shows F ((Azg. A) =5_,, (Azg. B)) =< Vag. (A =a B)
proof —
have §1:
= (fﬂ—m :B—Hl g,B—)a) EQ V?/B (f,B—)a . 3:,3 =« 96—>a . ;6) (iS = - EQ V{ﬂ ?Cﬁ)
by (fact axiom-is-derivable-from-no-hyps|OF axiom-3])
then have §2:
F(fs—a =p—a 85—a) =9 Vzg. (fga * 28 =a 85 = ) (is (= 2Cp)
proof (cases © = 1)
case True
with §1 show ?thesis
by (simp only:)
next
case Fulse
have ?C, € wffso
by blast
moreover from Fualse have (z, ) ¢ free-vars ?C
by simp
moreover have is-free-for (zg) (xr, 8) 7C1
by (intro is-free-for-in-equality is-free-for-to-app) simp-all
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ultimately have - Arg. 7C1 =g_,, Azg. (S {(x, B) — zg} 7C1)
by (rule a)
from §1 and this show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
then have §3:
F ((/\375 A) =Ba (/\I,B B)) =2 V:CIB. ((/\atﬁ A) - T3 =a ()\LL‘B B) - arﬁ)
proof —
let 29 = {(f, B—a) — Azg. 4, (9, f—a) — Azg. B}
have Azg. Ae wﬁsﬁ_m and Azg. B € wﬁsﬂ_}a
by (blast intro: assms(1,2))+
then have is-substitution 29
by simp
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2Co
proof
fix v
assume v € fmdom’ 29
then consider (a) v = (f, 8—a) | (b) v = (g, f—a)
by fastforce
then show var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v 2C5
proof cases
case a
have (z, ) ¢ free-vars (Azg. A)
by simp
then have is-free-for (\zg. A) (f, B—a) 7C
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with a show ?thesis
by force
next
case b
have (z, 3) ¢ free-vars (Azg. B)
by simp
then have is-free-for (Azg. B) (9, f—a) ?C>
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with b show ?thesis
by force
qed
qed
moreover have 29 # {$$}
by simp
ultimately have - S 29 2C,
by (rule Sub[OF §2])
then show “thesis
by simp
qed
then have §4: - ((A\zg. A) =g, (Azg. B)) =< Vzg. (A =a (Azg. B) » 23)
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proof —
have - (Azg. A) » 15 =o A
using prop-5208[where vs = [(z, 5)]] and assms(1) by simp
from §3 and this show ?thesis
by (rule rule-R[where p = [»»,«,«,»]]) force+
qed
then show ?thesis
proof —
have i~ (Azg. B) » 23 =a B
using prop-5208(where vs = [(z, 5)]] and assms(2) by simp
from §/ and this show ?thesis
by (rule rule-R[where p = [»,»,«,»]]) force+
qed
qged

proposition prop-5238:
assumes vs # [| and A € wffsq and B € wffsq
shows + )<, vs A =foldr (=) (map var-type vs) o Ae, vs B=2 V<, us (A =4 B)
using assms proof (induction vs arbitrary: A B « rule: rev-nonempty-induct)
case (single v)
obtain z and 8 where v = (z, )
by fastforce
from single.prems have
A2, vs A = foldr (=) (map var-type vs) a A, us B=2 V2, vs (A =q B) € wffso
by blast
with single.prems and v = (z, §)) show Zcase
using prop-5238-aux by simp
next
case (snoc v vs)
obtain z and 8 where v = (z, )
by fastforce
from snoc.prems have )\zﬁ. A€ wﬁ%ﬁ_m and )\xﬁ. B e wﬁ%_m
by auto
then have
l_
A9, s ()‘Iﬂ' 4) ~foldr (=) (map var-type vs) (B—a) A9, s (/\xﬂ' B)
=<
Ve, us (Azg. A) =g (Azg. B))
by (fact snoc.IH)
moreover from snoc.prems have - Azg. A =g_,, Azg. B =< Vag. (A =a B)
by (fact prop-52538-aux)
ultimately have
}7
)‘QQ* vs (Awﬂ' A) ~foldr (—) (map var-type vs) (B—a) A9, ws ()‘xﬁ' B)
Ve, vs Vzg. (A =a B)
unfolding equivalence-def proof (induction rule: rule-R{where p = » # foldr (A-. (Q) [»,«]) vs []])
case occ-subform
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then show ?case
using innermost-subform-in-generalized-forall| OF snoc.hyps] and is-subform-at.simps(3)
by fastforce
next
case replacement
then show ?case
using innermost-replacement-in-generalized-forall]OF snoc.hyps]
and is-replacement-at-implies-in-positions and replace-right-app by force
qed
with (v = (z, 8)> show ?case
by simp
qged

end

6.39 Proposition 5239

lemma replacement-derivability:
assumes C € wﬁsg
and A <, C
and - A=, B
and C{p «+ B) > D
shows - C =3 D
using assms proof (induction arbitrary: D p)
case (var-is-wff v x)
from var-is-wff.prems(1) have p = [] and A = z~
by (auto elim: is-subform-at.elims(2))
with var-is-wff.prems(2) have o =
using hyp-derivable-form-is-wffso and wff-has-unique-type and wffs-from-equality by blast
moreover from «p = [ and var-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
ultimately show Zcase
using (A = z~) and var-is-wff.prems(2) by (simp only:)
next
case (con-is-wff v ¢)
from con-is-wff.prems(1) have p = [ and A = {cf}y
by (auto elim: is-subform-at.elims(2))
with con-is-wff.prems(2) have o = v
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (meson wffs-from-equality wffs-of-type-intros(2))
moreover from «p = [> and con-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
ultimately show Zcase
using (A = {cl},» and con-is-wff.prems(2) by (simp only:)
next
case (app-is-wff v § C1 C3)
from app-is-wff.prems(1) consider
(a) p =]
| (0)dp. p=«H#p' NA jpr (o
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|(c)3p’.p:»#p’/\Ajp/ Cs
using subforms-from-app by blast
then show ?case
proof cases
case a
with app-is-wff.prems(1) have A = Cy + Cy
by simp
moreover from a and app-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from <4 = C; - Cy» and <D = By and app-is-wff.hyps(1,2) and assms(3) have a =
0
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-equality)
ultimately show ?thesis
using assms(3) by (simp only:)
next
case b
then obtain p’ where p = « # p’ and A jp/ C1
by blast
moreover obtain D; where D = Dy « Cy and Cy{p’ < B) > D,
using app-is-wff.prems(3) and «<p = « # p"» by (force dest: is-replacement-at.cases)
ultimately have - C =0 D4
using app-is-wff.IH(1) and assms(3) by blast
moreover have - Cy =~ (3
by (fact prop-5200[OF app-is-wff.hyps(2)])
ultimately have - C; « Cy =5 D1 » Cs
using Equality-Rules(4) by (simp only:)
with <D = D; « Cy) show ?thesis
by (simp only:)
next
case ¢
then obtain p’ where p = » # p’and 4 = Cs
by blast
moreover obtain Dy where D = C; « Dy and Cq{p’ < B) > D3
using app-is-wff.prems(3) and «<p = » # p"» by (force dest: is-replacement-at.cases)
ultimately have - C3 = D>
using app-is-wff . IH(2) and assms(3) by blast
moreover have - (' =y C1
by (fact prop-5200[OF app-is-wff.hyps(1)])
ultimately have - C; « Cy =5 C1 + Do
using Fquality-Rules(4) by (simp only:)
with <D = C1 » Dy) show ?thesis
by (simp only:)
qed
next
case (abs-is-wff § C' v x)
from abs-is-wff.prems(1) consider (a) p=1[] | (b) Ip . p=« # p' N A =y’ c’
using subforms-from-abs by blast
then show ?case
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proof cases
case a
with abs-is-wff.prems(1) have A = Az-. C’
by simp
moreover from o and abs-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from (A = Azy. C and <D = B> and abs-is-wff .hyps(1) and assms(3) have o =
y—6
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-abs wffs-from-equality)
ultimately show Zthesis
using assms(3) by (simp only:)
next
case b
then obtain p’ where p = « # p’and A = c’
by blast
moreover obtain D’ where D = \z,. D" and C'(p’ +- B) > D’
using abs-is-wff.prems(3) and <p = « # p" by (force dest: is-replacement-at.cases)
ultimately have - C’' =5 D’
using abs-is-wff .IH and assms(3) by blast
then have - Azy. C' =, _,5 Azy. D’
proof —
from - C' =5 D have - V. (C' =5 D)
using Gen by simp
moreover from - C' =5 D"y and abs-is-wff.hyps have D’ € wffss
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality)
with abs-is-wff .hyps have b (Azy. C' =, ;5 Azy. D) =2 Vz,. (C'=5 D)
using prop-5238[where vs = [(z, 7)]] by simp
ultimately show ?thesis
using Fquality-Rules(1,2) unfolding equivalence-def by blast
qed
with (D = Azy. D’ show ?thesis
by (simp only:)
qed
qged

context
begin

private lemma prop-52589-aux-1:
assumes p € positions (+<, (FVar v) (map FVar vs))
and p # replicate (length vs) «
shows
(34 B. A+ B <y (-9, (FVar v) (map FVar vs)))
V
(3v € Iset vs. occurs-at v p (<, (FVar v) (map FVar vs)))
using assms proof (induction vs arbitrary: p rule: rev-induct)
case Nil
then show ?case
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using surj-pair|of v] by fastforce
next
case (snoc v’ vs)
from snoc.prems(1) consider
(a) p =]
() p = D]
| (¢) 3p’ € positions (+<, (FVar v) (map FVar vs)). p = « # p’
using surj-pair[of v] by fastforce
then show ?case
proof cases
case c
then obtain p’ where p’ € positions (+2, (FVar v) (map FVar vs)) and p = « # p’
by blast
from «p = « # p’» and snoc.prems(2) have p’ # replicate (length vs) «
by force
then have
(FAB. A+ B = 2, (FVar v) (map FVar vs))
\%
(3v € Iset vs. occurs-at v p’ (+, (FVar v) (map FVar vs)))
using «p’ € positions (<, (FVar v) (map FVar vs))> and snoc.IH by simp
with <p = « # p’» show ?thesis
by auto
qed simp-all
qed

private lemma prop-5239-auz-2:
assumes t ¢ Ilset vs U vars C
and C{p + (-9, (FVart) (map FVar vs))) > G
and Cp + (-9, (A2, vs A) (map FVar vs))) > G’
shows S {t — A2, vs A} G = G’ (is«S 29 G = G")
proof —
have S 29 (+<, (FVar t) (map FVar vs)) = «2, (S 29 (FVar t)) (map (Av'. S 29 v') (map FVar
05))
using generalized-app-substitution by blast
moreover have S 29 (FVar t) = \9, vs A
using surj-pair[of t| by fastforce
moreover from assms(1) have map (Av’. S 29 v’) (map FVar vs) = map FVar vs
by (induction vs) auto
ultimately show ?thesis
using assms proof (induction C arbitrary: G G’ p)
case (FVar v)
from FVar.prems(5) have p = [| and G = <, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)+
moreover from FVar.prems(6) and «p = [)» have G’ = 2, (A<, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?case
using FVar.prems(1—38) by (simp only:)
next

case (FCon k)
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from FCon.prems(5) have p = [| and G =+, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)+
moreover from FCon.prems(6) and «p = []» have G’ = 2, (A2, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show Zcase
using FCon.prems(1—3) by (simp only:)
next
case (FApp C1 C3)
from FApp.prems(4) have t ¢ Iset vs U vars Cy and t ¢ Iset vs U vars Co
by auto
consider (a) p=1[ | (b) Ip" . p=«#p'[(c)Ip.p=»#p'
by (metis direction.ezhaust list.exhaust)
then show ?case
proof cases
case a
with FApp.prems(5) have G = <, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)
moreover from FApp.prems(6) and <p = [ have G’ = +<, (A, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?Zthesis
using FApp.prems(1—3) by (simp only:)
next
case b
then obtain p’ where p = « # p’
by blast
with FApp.prems(5) obtain G; where G = Gy « Cy and Cy{p’ + (+, (FVar t) (map FVar
vs))) > Gy
by (blast elim: is-replacement-at.cases)
moreover from (p = « # p» and FApp.prems(6)
obtain G’; where G’ = G'; + Cy and C1{p’ + (+. (A9, vs A) (map FVar vs))) > G/
by (blast elim: is-replacement-at.cases)
moreover from «t ¢ Iset vs U vars Co> have S {t — A2, vs A} Oy = C3
using surj-pair|of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)
ultimately show ?thesis
using FApp.IH(1)[OF FApp.prems(1—3) <t ¢ lset vs U vars C13] by simp
next
case ¢
then obtain p’ where p = » # p’
by blast
with FApp.prems(5) obtain Gy where G = C; « Gy and Cop’ + (+, (FVar t) (map FVar
vs))) > Ga
by (blast elim: is-replacement-at.cases)
moreover from <p = » # p’» and FApp.prems(6)
obtain G’y where G’ = C; + G’y and Ca{p’ + (+ (A9, vs A) (map FVar vs))) > Gy
by (blast elim: is-replacement-at.cases)
moreover from «t ¢ Iset vs U vars Cp» have S {t — A2, vs A} C1 = C4
using surj-pair|of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)
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ultimately show ?thesis
using FApp.IH(2)[OF FApp.prems(1—38) <t ¢ lset vs U vars Cq>] by simp
qed
next
case (FAbs v C)
from FAbs.prems(4) have t ¢ Iset vs U vars C' and t # v
using vars-form.elims by blast+
from FAbs.prems(5) consider (a) p =[] | (b) Ip’. p =« # p’
using is-replacement-at.simps by blast
then show ?case
proof cases
case a
with FAbs.prems(5) have G = +2, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)
moreover from FAbs.prems(6) and «p = [» have G’ = 2, (A2, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?thesis
using FAbs.prems(1—38) by (simp only:)
next
case b
then obtain p’ where p = « # p’
by blast
then obtain G; where G = FAbs v Gy and C'(p’ <+ (+<, (FVar t) (map FVar vs))) > G4
using FAbs.prems(5) by (blast elim: is-replacement-at.cases)
moreover from p = « # p» and FAbs.prems(6)
obtain G'; where G’ = FAbs v G'; and C'{p’ + (-9, (A9, vs A) (map FVar vs))) > G’
by (blast elim: is-replacement-at.cases)
ultimately have S {t — \2, vs A} G; = G,
using FAbs. IH[OF FAbs.prems(1—3) <t & lset vs U vars C"»] by simp
with «G = FAbs v G1» and <G’ = FAbs v G'1» and <t # v> show ?thesis
using surj-pair[of v] by fastforce
qed
qed
qged

private lemma prop-5239-aux-3:
assumes t ¢ Ilset vs U vars {4, C}
and C(p < (-2, (FVar t) (map FVar vs))) > G
and occurs-at t p’ G
shows p’ = p @ replicate (length vs) « (is <p’ = ?pp»)
proof (cases vs = [])
case True
then have t ¢ vars C
using assms(1) by auto
moreover from True and assms(2) have C(p < FVart) > G
by force
ultimately show “thesis
using assms(3) and True and fresh-var-replacement-position-uniqueness by simp
next
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case Fulse
show ?thesis
proof (rule ccontr)
assume p’ # p;
have — prefix ?p; p
by (simp add: False)
from assms(3) have p’ € positions G
using is-subform-implies-in-positions by fastforce
from assms(2) have ?p; € positions G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis length-map)
from assms(2) have occurs-at t ?p; G
unfolding occurs-at-def using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and leftmost-subform-in-generalized-app
by (metis length-map)
moreover from assms(2) and <p’ € positions G» have x*:
subform-at C p' = subform-at G p' if — prefix p’ p and — prefiz p p’
using is-replacement-at-minimal-change(2) by (simp add: that(1,2))
ultimately show Fualse
proof (cases — prefix p’ p A — prefiz p p’)
case True
with assms(3) and * have occurs-at t p’ C
using is-replacement-at-occurs| OF assms(2)] by blast
then have t € vars C
using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show %thesis
by simp
next
case Fulse
then consider (a) prefiz p’ p | (b) prefix p p’
by blast
then show ?thesis
proof cases
case a
with <occurs-at ¢t ?p; G> and <p’ # ?p;» and assms(3) show ?thesis
unfolding occurs-at-def using loop-subform-impossibility
by (metis prefiz-order.dual-order.order-iff-strict prefiz-prefiz)
next
case b
have strict-prefiz p’ ?p;
proof (rule ccontr)
assume - strict-prefiz p’ ?p;
then consider
(b1) p' = ?pe
| (ba) strict-prefix ?ps p’
| (bs) — prefiz p’ ?p; and — prefiz ?p; p’
by fastforce
then show Fulse
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proof cases
case b;
with <p’ # ?p;» show ?thesis
by contradiction
next
case by
with (occurs-at t ?p; G» and assms(3) show ?Zthesis
using loop-subform-impossibility by blast
next
case b3
from b obtain p’’ where p’ = p @ p’’ and p”’ € positions (+<, (FVar t) (map FVar vs))
using is-replacement-at-new-positions and «p’ € positions Gy and assms(2) by blast
moreover have p’’ # replicate (length vs) «
using «p’ = p @ p' and <p’ # ?py by blast
ultimately consider
(b3-1) 3F, Fo. F1 + Fy = (2, (FVar t) (map FVar vs))
| (b3-2) v € Iset vs. occurs-at v p" (+, (FVar t) (map FVar vs))
using prop-5239-auz-1 and bs(1,2) and is-replacement-at-occurs
and leftmost-subform-in-generalized-app-replacement
by (metis (no-types, opaque-lifting) length-map prefix-append)
then show ?thesis
proof cases
case b3-1
with assms(2) and <p’ = p @ p’y have 3F; Fy. F1 « Fo jp/ G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
with (occurs-at t p’ G» show ?thesis
using is-subform-at-uniqueness by fastforce
next
case b3_o
with assms(2) and <p’ = p @ p’’ have Fv € lset vs. occurs-at v p’ G
unfolding occurs-at-def
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
with assms(1,3) show ?thesis
using is-subform-at-uniqueness by fastforce
qed
qed
qed
with <occurs-at t ?p; G» and assms(3) show ?Zthesis
using loop-subform-impossibility by blast
qed
qed
qed
ged

private lemma prop-5259-aux-4:
assumes t ¢ lset vs U vars {4, C}
and A =, C
and Iset vs O capture-exposed-vars-at p C A
and C(p «+ (+<, (FVar t) (map FVar vs))) > G
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shows is-free-for (A2, vs A) t G
unfolding is-free-for-def proof (intro balll impI)
let ?p, = p Q replicate (length vs) «
from assms(4) have FVar t j?pt G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and leftmost-subform-in-generalized-app by (metis length-map)
fix v' and p’
assume v’ € free-vars (A2, vs A) and p’ € positions G and is-free-at t p’ G
have v’ ¢ binders-at G ?p;
proof —
have free-vars (A9, vs A) = free-vars A — Iset vs
by (fact free-vars-of-generalized-abs)

also from assms(2,3) have ... C free-vars A — (binders-at C p N free-vars A)
using capture-exposed-vars-at-alt-def and is-subform-implies-in-positions by fastforce
also have ... = free-vars A — (binders-at G p N free-vars A)

using assms(2,4) is-replacement-at-binders is-subform-implies-in-positions by blast
finally have free-vars (A9, vs A) C free-vars A — (binders-at G p N free-vars A) .
moreover have binders-at (<, (FVar t) (map FVar vs)) (replicate (length vs) «) = {}
by (induction vs rule: rev-induct) simp-all
with assms(4) have binders-at G ?p; = binders-at G p
using binders-at-concat and is-replacement-at-minimal-change(1) by blast
ultimately show ?thesis
using (v’ € free-vars (A2, vs A)) by blast
qed
moreover have p’ = ?p;
by
(
fact prop-5239-aux-3
[OF assms(1,4) <is-free-at t p’ Gr[unfolded is-free-at-def, THEN conjunct!]]
)

ultimately show — in-scope-of-abs v’ p’ G
using binders-at-alt-def[OF «p' € positions G»] and in-scope-of-abs-alt-def by auto
qged

proposition prop-5239:
assumes is-rule-R-app p D C (A =4 B)
and Iset vs =
{(z, 8) | z B p’ E. strict-prefiz p’ p A Azg. B jpl C A (z, B) € free-vars (A =q B)}
shows V<, vs (A =o B) D¢ (C =2 D)
proof —
let 7y = foldr (—) (map var-type vs) «
obtain ¢ where (¢, ?y) ¢ Iset vs U vars {A,B,C,D}
using fresh-var-existence and vars-form-set-finiteness
by (metis List.finite-set finite.simps finite-Unl)
from assms(1) have A € wffsq and B € wffsq and A <, C
using wffs-from-equality| OF equality-wff] by simp-all
from assms(1) have C € wffsp and D € wffs,
using replacement-preserves-typing by fastforce+
have -2, toy (map FVar vs) € wffsa
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using generalized-app-wff[where As = map FVar vs and ts = map var-type vs|
by (metis eq-snd-iff length-map nth-map wffs-of-type-intros(1))
from assms(1) have p € positions C
using is-subform-implies-in-positions by fastforce
then obtain G where C(p < (-2, tz, (map FVar vs))) > G
using is-replacement-at-existence by blast
with (4 <, C) and 2, toy (map FVar vs) € wffsq> have G € wffsy
using (A € wffsq> and «C € wffsy> and replacement-preserves-typing by blast
let 20 = {(h, #y—0) — Aty G, (r, #7) — S, ws A, (v, #y) — A2, vs B}
and 74 = (??'y %y U?'y) Bl (h?'y—m * Loy =9 h?’y—)o ' U?'y)
have - ¢4
by (fact axiom-is-derivable-from-no-hyps|OF axiom-2])
moreover have Aig,. G € wffsy, ., and e, vs A€ wffs ¢, and A\, vs B € wfs o,
by (blast intro: <G € wffsp> <A € wffsa> B € wffsq>)+
then have is-substitution %)
by simp
moreover have
Yo € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $3! v) v 24
by
(
(
code-simp, unfold atomize-conj[symmetric], simp,
use is-free-for-in-equality is-free-for-in-equivalence is-free-for-in-imp is-free-for-in-var
is-free-for-to-app in presburger
)+,
blast
)
moreover have 29 #= {$$}
by simp
ultimately have - S %) 74
by (rule Sub)
moreover have
S 2 24 = (A2, vs A
by simp
ultimately have §1:
F (A2, vs A =2y A2, vs B) D2 (Atgy. G) - (A2, vs A) =2 (Atoy. G) » (A<, vs B))
by (simp only:)
then have §2: - (V<, vs (A =4 B)) D< ((Atgy. G) - (AL, vs A) =2 (Atgy. G) - (A2, vs B))
proof (cases vs = [])
case True
with §1 show ?thesis
by simp
next
case Fulse
from §1 and prop-5238[OF Fulse <A € wffsq> <B € wffsq>] show ?thesis
unfolding equivalence-def by (rule rule-R[where p = [«,»]]) force+
qed
morefover have - (Aty,. G) - (A2, vs A) =, C and (Atoy. G) - (A2, vs B) =¢ D
proof —

=2y A2, vs B) D9 (Atgy. G) = (A2, vs A) =2 (Atoy. G) + (A2, vs B))
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from assms(1) have B <, D
using is-replacement-at-minimal-change(1) by force
from assms(1) have D{p «+ (+<, toy (map FVar vs))) > G
using «C(p «+ (-<, toy (map FVar vs))) > G» and replacement-override
by (meson is-rule-R-app-def)
from <B =y D) have p € positions D
using is-subform-implies-in-positions by auto
from assms(1) have binders-at D p = binders-at C p
using is-replacement-at-binders by fastforce
then have binders-at D p N free-vars B = binders-at C p N free-vars B
by simp
with assms(2)
[
folded capture-exposed-vars-at-def,
unfolded capture-ezposed-vars-at-alt-def[OF <p € positions C)
] have Iset vs 2O capture-exposed-vars-at p D B
unfolding capture-exposed-vars-at-alt-def[OF <p € positions D] by auto
have is-free-for (A2, vs A) (t, %y) G and is-free-for (A2, vs B) (t, ?#y) G
proof —
have (¢, ?y) ¢ Iset vs U vars {A, C} and (t, ?v) ¢ lset vs U vars {B, D}
using «(t, %) ¢ lset vs U vars {A, B, C, D}» by simp-all
moreover from assms(2) have
Iset vs D capture-exposed-vars-at p C' A and Iset vs O capture-exposed-vars-at p D B
by fastforce fact
ultimately show is-free-for (A9, vs A) (t, #y) G and is-free-for (A2, vs B) (t, #y) G
using prop-5239-auz-4 and <B <, Dy and <A <, C» and «C{p + (-, to (map FVar vs)))
> G
and «D{p + (-2, toy (map FVar vs))) > G» by meson+
qed
then have b (Aty,. G) - (A2, vs A) =0 S {(t, #y) — A9, vs A} G
and - (Atg,. G) - (A2, vs B) =5 S {(t, 7y) — A2, vs B} G
using prop-5207[OF \2, vs A € wﬁ5?7> <G € wffsy]
and prop-5207[OF (\2, vs B € wffsoy) <G € wffsey] by auto
moreover obtain G’; and G,
where C(p < (-2, (A2, vs A) (map FVar vs))) > G
and D{p «+ (-2, (A<, vs B) (map FVar vs))) > G'»
using is-replacement-at-existence[OF <p € positions C))
and is-replacement-at-existence|OF <p € positions Dy] by metis
then have S {(t, #y) — A9, vs A} G = G’y and S {(t, ?y) — A2, vs B} G = G
proof —
have (¢, 7y) ¢ Iset vs U vars C and (t, ?y) ¢ Iset vs U vars D
using «(t, ?y) ¢ Iset vs U vars {A, B, C, D}» by simp-all
then show S {(t, #y) — A9, vs A} G = G’y and S {(t, ?y) — A2, vs B} G = G
using «C(p <+ (- toy (map FVar vs))) > Gr and <D{p < (<, toy map FVar vs)) > G
and «C(p < (+<, (A9, vs A) (map FVar vs))) > G'p»
and D(p + (<, (A2, vs B) (map FVar vs))) > G’y and prop-5239-auz-2 by blast+
qed
ultimately have - (Atg,. G) - (A2, vs A) =, G'; and (Atoy. G) - (A2, vs B) =, G'5
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by (simp-all only:)

moreover
have - A =4 (+2, (A2, vs A) (map FVar vs)) and - B =4 (+, (A2, vs B) (map FVar vs))
unfolding atomize-conj proof (cases vs = [])
assume vs = ||
show - A =4 «2, (A2, vs A) (map FVar vs) A+ B =q +2, (A9, vs B) (map FVar vs)
unfolding <vs = []» using prop-5200 and <A € wffsq> and (B € wffsq) by simp
next

assume vs # ||
show - A =4 <, (A9, vs A) (map FVar vs) A = B =4 <, (A9, vs B) (map FVar vs)
using Fquality-Rules(2)[OF prop-5208[OF <wvs # [])]] and <A € wffsq> and <B € wffsq>
by blast+
qed
with
(C{p + (+2 (A2, vs A) (map FVar vs))) > G'p»
and
(D{p + (+, (A2, vs B) (map FVar vs))) > G’y
have Gy =g Cand - G’y =, D
using Fquality-Rules(2)[OF replacement-derivability] and «C € wffso» and <D € wffsy»
and (A =p C) and (B =p D) by blast+
ultimately show = (Mg,. G) « (A9, vs A) = C and - (Atgy. G) + (A% vs B) =¢ D
using Fquality-Rules(3) by blast+
qed
ultimately show ?thesis
proof —
from §2 and < (Aty,. G) - (A2, vs A) =, C) have
F (V9 vs (A =q B)) D2 (C =2 (Mg,. G)« (A% vs B))

by (rule rule-R[where p = [»,«,»]]) force+
from this and = (Atgy. G) - (A2, vs B) =, D) show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
qed
end

6.40 Theorem 5240 (Deduction Theorem)

lemma pseudo-rule-R-is-tautologous:
assumes C € wffsp and D € wffsp and FE € wffs, and H € wffs,
shows is-tautologous (((H 22 C) 22 ((H 22 E) 29 ((E 22 (C =< D)) 22 (H 22 D)))))
proof —
let 29 = {(z, 0) — C, (v, 0) — D, (3, 0) — E, (h, 0) — H}
have
is-tautology
(((ho 22 £0) D2 ((ho 22 350) 22 ((30 22 (ro =2 00)) 22 (ho D 10)))))
using Vp-simps by simp
moreover have is-substitution 29
using assms by auto
moreover have V (z, a) € fmdom’ 2. a = o
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by simp

moreover have
((H 22 C) 22 ((H D22 E) 22 ((E22 (C =2 D)) D22 (H D2 D))
S 29 (((ho D2 ro) 22 ((ho D2 30) D2 ((30 22 (o =2 10)) D2 (ho D2 10)))))
by simp

ultimately show ?thesis
by blast

qed

syntax

-HypDer :: form = form set = form = bool («-,- b -» [50, 50, 50] 50)
syntax-consts

-HypDer = is-derivable-from-hyps
translations

H,H-P—~HU{H}FP

theorem thm-5240:
assumes finite H
and H, H - P
shows H+ H D¢ P
proof —
from «(H, H - P» obtain §; and S; where x: is-hyp-proof-of (H U {H}) 81 S2 P
using hyp-derivability-implies-hyp-proof-existence by blast
have H - H D2 (Sy ! i) if i’ <length S, for i’
using that proof (induction i’ rule: less-induct)
case (less i)
let R = 82 14/
from less.prems(1) and * have is-hyps H
by fastforce
from less.prems and * have 7R € wffs,
using elem-of-proof-is-wffo[simplified] by auto
from less.prems and * have is-hyp-proof-step (H U {H}) 81 So i’
by simp
then consider
(hyp) R e H U {H}
| (seq) ?R € lset Sy
| (rule-R") 3j k p. {j, k} C {0..<i'} A is-rule-R"-app (H U {H}) p R (S2!j) (S2 ! k)
by force
then show ?case
proof cases
case hyp
then show ?thesis
proof (cases 7R = H)
case True
with (7R € wffs,> have is-tautologous (H D ?R)
using implication-reflexivity-is-tautologous by (simp only:)
with «is-hyps H> show ?thesis
by (rule rule-P(2))
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next
case Fulse
with hyp have ?R € H
by blast
with «is-hyps H> have H + 7R
by (intro dv-hyp)
moreover from less.prems(1) and * have is-tautologous (?R D (H D2 ?R))
using principle-of-simplification-is-tautologous| OF «?R € wffsy»] by force
moreover from (7R € wffs,> have is-hyps {?R}
by simp
ultimately show #thesis
using rule-P(1)[where G = {?R} and hs = [?R], OF <is-hyps H>] by simp
qed
next
case seq
then have S; # ||
by force
moreover from less.prems(1) and * have is-proof Sy
by fastforce
moreover from seq obtain ¢’ where '’ < length S; and R = S; ! 7"
by (metis in-set-conv-nth)
ultimately have is-theorem 7R
using proof-form-is-theorem by fastforce
with <is-hyps H»> have H + 7R
by (intro dv-thm)
moreover from «?R € wffsy» and less.prems(1) and * have is-tautologous (?R D (H D
’R))
using principle-of-simplification-is-tautologous by force
moreover from <?R € wffs,» have is-hyps { ?R}
by simp
ultimately show ?thesis
using rule-P(1)[where G = {?R} and hs = [?R|, OF «is-hyps H>] by simp
next
case rule-R’
then obtain j and k and p
where {j, k} C {0..<i’} and rule-R’-app: is-rule-R’-app (H U {H}) p ?R (S2!j) (S2 ! k)
by auto
then obtain A and B and C and o« where C =S; ! jand S; ' k= A =4 B
by fastforce
with «{j, k} C {0..<i’p have H - H 22 Cand H - H D2 (A =4 B)
using less.IH and less.prems(1) by (simp, force)
define S where S =
{(z, B) | x B p' E. strict-prefix p' p A Azg. B jp/ C A (z, B) € free-vars (A =4 B)}
with <C =82 ! j» and «S2 ! k = A =4 B> have Vv € S. v ¢ free-vars (H U {H})
using rule-R’-app by fastforce
moreover have S C free-vars (A =q B)
unfolding S-def by blast
then have finite S
by (fact rev-finite-subset[OF free-vars-form-finiteness))
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then obtain vs where Iset vs = S
using finite-list by blast
ultimately have H - H 22 V<, vs (A =4 B)
using generalized-prop-5237[OF <is-hyps H> <H = H D2 (A =, B))] by simp
moreover have rule-R-app: is-rule-R-app p ?R (S2 ! j) (S2 ! k)
using rule-R’-app by fastforce
with S-def and (lset vs = S» have - V2, vs (A = B) D2 (C =< ?R)
unfolding «C = Sy ! j» and «S2 ! k = A =4 B) using prop-5239 by (simp only:)
with <is-hyps H> have H V<, vs (A =o B) D2 (C =2 ?R)
by (elim derivability-implies-hyp-derivability)
ultimately show ?thesis
proof —
let A, = H D2 C and ?4; = H D2 V9, vs (A =4 B)
and 743 =V, vs (A =q B) D2 (C =2 ?R)
let ?hs = [7A1, ?Aq, ?A3)
let G = lset ?hs
from <H F ?4;) have H € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(1))
moreover from (H - 24, have V2, vs (A =4 B) € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(2))
moreover from «C = Sy ! j» and rule-R-app have C € wffs,
using replacement-preserves-typing by fastforce
ultimately have x: is-tautologous (?A; D2 (24, D2 (2?43 D¢ (H D2 ?R))))
using <R € wffsy> by (intro pseudo-rule-R-is-tautologous)
moreover from (H - 24, and (H F %45y and «H - 243> have is-hyps 7G
using hyp-derivable-form-is-wffso by simp
moreover from (H F Ay and (H + 245 and <H + 243 have VA e€ ?2G. HF A
by force
ultimately show ?thesis

using rule-P(1)[where G = ?G and hs = ?hs and B = H D2 ?R, OF <is-hyps H>] by simp

qed

qed

qed

moreover from <is-hyp-proof-of (H U {H}) S1 S2 P» have Sy ! (length So — 1) = P
using last-conv-nth by fastforce

ultimately show “thesis
using <is-hyp-proof-of (H U {H}) §1 S3 P» by force

ged

lemmas Deduction-Theorem = thm-5240

We prove a generalization of the Deduction Theorem, namely that if H U {Hy, ... ,H,} F P

then H - Hy D2 (--- D¢ (H, D2 P) ---):

corollary generalized-deduction-theorem:
assumes finite H and finite H’
and HUH'FP
and Iset hs = H'
shows H + hs D2, P
using assms proof (induction hs arbitrary: H' P rule: rev-induct)
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case Nil

then show ?case
by simp

next

case (snoc H hs)

from <lset (hs @ [H]) = H"» have H € H’
by fastforce

from «lset (hs @ [H|) = H'» obtain H' where H" U {H} = H' and H'' = Iset hs
by simp

from <H”" U {H} =H"» and <H U H'+ P> have H UH"U{H} - P
by fastforce

with (finite #> and <finite H'» and (H' = Iset hs» have H U H" - H D2 P
using Deduction-Theorem by simp

with (H' = Iset hs> and «finite H»> have H F foldr (D2) hs (H D P)
using snoc.IH by fastforce

moreover have (hs Q [H]) D2, P = hs D2, (H D2 P)
by simp

ultimately show ?case
by auto

qed

6.41 Proposition 5241

proposition prop-5241:
assumes is-hyps G
and H- Aand HC G
shows G - A
proof (cases H = {})
case True
show ?thesis
by (fact derivability-implies-hyp-derivability| OF assms(2)[unfolded True] assms(1)])
next
case Fulse
then obtain hs where Iset hs = H and hs # |]
using hyp-derivability-implies-hyp-proof-existence] OF assms(2)] unfolding is-hyp-proof-of-def
by (metis empty-set finite-list)
with assms(2) have - hs D2, A
using generalized-deduction-theorem by force
moreover from <lset hs = H> and assms(1,3) have G - H if H € Iset hs for H
using that by (blast intro: dv-hyp)
ultimately show ?thesis
using assms(1) and generalized-modus-ponens and derivability-implies-hyp-derivability by meson
qed

6.42 Proposition 5242 (Rule of Existential Generalization)

proposition prop-5242:
assumes A € wffsq and B € wffsy
and X+ S {(z, a) — A} B
and is-free-for A (z, ) B
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shows H F dz4. B
proof —
from assms(3) have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - V1. ~¢ B 29 ~2 S {(z, a) — A} B (is <H F ?2C D2 ~2 ?D))
using prop-5226[OF assms(1) neg-wff[OF assms(2)] is-free-for-in-neg| OF assms(4)]]
unfolding derived-substitution-simps(4 ) using derivability-implies-hyp-derivability by (simp only:)
moreover have *: is-tautologous ((?7C D¢ ~2 2D) D2 (D D2 ~2 2())
proof —
have ?C € wffsy and ?D € wffso
using assms(2) and hyp-derivable-form-is-wffso| OF assms(3)] by auto
then show ?thesis
by (fact pseudo-modus-tollens-is-tautologous)
qed
moreover from assms(3) and «H - 2C D2 ~2 ?D) have is-hyps {?C D2 ~< ?D, ?D}
using hyp-derivable-form-is-wffso by force
ultimately show ?thesis
unfolding exists-def using assms(3)
and rule-P(1)
[
where G = {?C D2 ~2 ?D, ?D} and hs = [?C D2 ~2 ?D, D] and B = ~2 ?2C,
OF <is-hyps H»
]
by simp
qed

lemmas 3 Gen = prop-5242

6.43 Proposition 5243 (Comprehension Theorem)

context
begin

private lemma prop-52/3-auzx:
assumes -2, B (map FVar vs) € wffs,
and B € wffsg
and k < length vs
shows 5 # var-type (vs ! k)
proof —
from assms(1) obtain ts
where length ts = length (map FVar vs)
and *: Vk < length (map FVar vs). (map FVar vs) | k € wffsis 1 1
and B ¢ wﬁsfoldr (=) tsy
using wffs-from-generalized-app by force
have § = foldr (=) ts v
by (fact wff-has-unique-type[OF assms(2) «B € wﬁsfoldr (=) ts ,y>])
have ts = map var-type vs
proof —
have length ts = length (map var-type vs)

222



by (simp add: <length ts = length (map FVar vs)»)
moreover have Vk < length ts. ts | k = (map var-type vs) ! k
proof (intro alll impl)
fix k
assume k < length ts
with * have (map FVar vs) | k € wffsis 1 1
by (simp add: <length ts = length (map FVar vs)»)
with <k < length ts» and <length ts = length (map var-type vs)»
show ts ! k = (map var-type vs) ! k
using surj-pair[of vs | k] and wff-has-unique-type and wffs-of-type-intros(1) by force
qed
ultimately show ¢thesis
using list-eq-iff-nth-eq by blast
qed
with «8 = foldr (=) ts v and assms(3) show ?thesis
using fun-type-atoms-neq-fun-type by (metis length-map nth-map)
qged

proposition prop-5243:
assumes B € wffs
and v = foldr (—) (map var-type vs)
and (u, v) ¢ free-vars B
shows - Juy. V<, vs ((+S, uy (map FVar vs)) =g B)
proof (cases vs = [])
case True
with assms(2) have v =
by simp
from assms(1) have ug =g B € wffso
by blast
moreover have - B =5 B
by (fact prop-5200[OF assms(1)])
then have - S {(u, 8) — B} (ug =3 B)
using free-var-singleton-substitution-neutrality[ OF assms(3)] unfolding «y = /3> by simp
moreover from assms(3)[unfolded <y = ] have is-free-for B (u, B) (ug =g B)
by (intro is-free-for-in-equality) (use is-free-at-in-free-vars in auto)
ultimately have - Jug. (ug =g B)
by (rule 3 Gen[OF assms(1)])
with <y = 8> and True show ?thesis
by simp
next
case Fulse
let 29 = {(u, v) — A2, vs B}
from assms(2) have x: (u, v) # v if v € Iset vs for v
using that and fun-type-atoms-neq-fun-type by (metis in-set-conv-nth length-map nth-map snd-conv)
from False and assms(1) have - <, (A2, vs B) (map FVar vs) =5 B
by (fact prop-5208)
then have - V<, vs (+<, (A9, vs B) (map FVar vs) =g B)
using generalized-Gen by simp
moreover
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have S 20 (V <, vs ((2, uy (map FVar vs)) =g B)) = v, vs (+, (A2, vs B) (map FVar vs) =3
B)
proof —
from x have sx: map (AA. S {(u, v) — B} A) (map FVar vs) = map FVar vs for B
by (induction vs) fastforce+
from * have

S 29 (V< vs ((+S4 uy (map FVar vs)) =g B)) = vV, vs (S 29 ((+9s uy (map FVar vs)) =g

B))

using generalized-forall-substitution by force

also have ... =V, vs ((S 29 (<, uy (map FVar vs))) =g S {(u,7) — e, vs B} B)
by simp

also from assms(3) have ... =V <, vs ((S 20 (-« uy (map FVar vs))) =3 B)
using free-var-singleton-substitution-neutrality by simp

also have ... =V, vs (-2, S 29 (uy) (map (AA. S 29 A) (map FVar vs)) =g B)
using generalized-app-substitution by simp

also have ... =V, vs (+2, (A<, vs B) (map (\A. S 29 A) (map FVar vs)) =g B)
by simp

also from ** have ... =V, vs (+<, (A2, vs B) (map FVar vs) =3 B)

by presburger
finally show ?thesis .

qed
ultimately have - S 20 (V< vs (+<, uy (map FVar vs) =g B))
by simp
moreover from assms(3) have is-free-for (A2, vs B) (u, v) (V< vs (+9, uy (map FVar vs) =3
B))
by

(intro is-free-for-in-generalized-forall is-free-for-in-equality is-free-for-in-generalized-app)
(use free-vars-of-generalized-abs is-free-at-in-free-vars in <fastforce+»)
moreover have A9, vs B € wffsy and V<, vs (-2, uy (map FVar vs) =g B) € wffso
proof —
have FVar (vs! k) € wﬁsvar—type (vs ! k) if k < length vs for k
using that and surj-pair[of vs ! k] by fastforce
with assms(2) have 2, uy (map FVar vs) € wffsg
using generalized-app-wff[where ts = map var-type vs] by force
with assms(1) show V<, vs (-2, uy (map FVar vs) =3 B) € wffso
by (auto simp only:)
qed (use assms(1,2) in blast)
ultimately show ?thesis
using 3 Gen by (simp only:)
qged

end

6.44 Proposition 5244 (Existential Rule)

The proof in [2] uses the pseudo-rule Q and 2123 of F. Therefore, we instead base our proof
on the proof of Theorem 170 in [1]:

lemma prop-5244-auz:
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assumes A € uffsp and B € wffs,
and (z, a) ¢ free-vars A
shows - V4. (B D9 A) D¢ (1. B D2 A)
proof —
have B 52 A € wffs,
using assms by blast
moreover have is-free-for (zq) (z, @) (B D2 A)
by simp
ultimately have - Vz,. (B D2 A) D¢ (B D9 A)
using prop-5226[where A = 2o and B = B D2 A, OF wffs-of-type-intros(1)]
and identity-singleton-substitution-neutrality by metis
moreover have is-hyps {Vzq. (B D2 A)}
using (B D2 A € wffsy> by blast
ultimately have §7: {Vzq. (B D2 A)} - Vaq. (B D2 A) D2 (B D2 A)
by (fact derivability-implies-hyp-derivability)
have §2: {Vzq. (B D2 A)} F Vau. (B D2 A)
using «B D2 A € wffsp> by (blast intro: dv-hyp)
have §3: {Vzq. (B D2 A)} F~2 A D9 ~2 B
proof (intro rule-P(1)
[where H = {Vzq. (B D2 A)} and G = {Vzo. (B D¢ A) D2 (B D2 A), Vaa. (B D2 A)}])
have is-tautologous ([C D2 (B D2 A), C] 29 (~2 A D¢ ~2 B)) if C € wffs, for C
proof —
let 72 = {(I» 0) — A, (Ua 0) — B, (5a 0) — C}
have is-tautology ((30 22 (1o D2 10)) D2 (30 D2 (~2 1o D2 ~2 1y)))
(is is-tautology ?A)
using Vg-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution 29
using assms(1,2) and that by auto
moreover have [C D2 (B D2 A), C] 22, (~2 AD2~2B)=8S 2 24
by simp
ultimately show ?thesis
by blast
qed
then show is-tautologous ([V zq. (B D2 A) D2 (B 22 A), V1q. (B D2 A)] D9, (~2 4 D2 ~°
B))
using B D2 A € wffsy> and forall-wff by simp
qed (use §1 §2 <is-hyps {Vzq. (B D2 A)}» hyp-derivable-form-is-wffso|OF §1] in force)+
have §/: {Vzq. (B D2 A)} F~2 A D9V, ~2 B
using prop-5237[OF <is-hyps {¥ zq. (B D2 A)}> §3] and assms(3) by auto
have §5: {Vzq. (B D2 A)} F 314. BD2 A
unfolding exists-def
proof (intro rule-P(1)[where H = {Vzqo. (B D2 A)} and G = {~<¢ A D2 Vz,. ~2 B}])
have is-tautologous ([~2 A D2 O] D2, (~2 C D2 A)) if C € wffs, for C
proof —
let 29 = {(x, 0) — A4, (v, 0) — C}
have is-tautology ((~< ro D2 1vo) D2 (~2 1o D2 1)) (is is-tautology ?A)
using Vg-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution 29
using assms(1) and that by auto
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moreover have [~2 A D2 C] D2, (~2 C D2 A) =S 29 24
by simp
ultimately show ?Zthesis
by blast
qed
then show is-tautologous ([~2 A D2 Vzq. ~< Bl D2, (~2 Vaq. ~¢ B D2 A))
using forall-wff[OF neg-wff[OF assms(2)]] by (simp only:)
qed (use §4 <is-hyps {¥Yzq. (B D2 A)}r hyp-derivable-form-is-wffso[OF §4] in force)+
then show ?thesis
using Deduction-Theorem by simp
ged

proposition prop-5244:
assumes H, BF A
and (z, a) ¢ free-vars (H U {A})
shows H, Jzo. BF A
proof —
from assms(1) have is-hyps H
using hyp-derivability-implies-hyp-proof-existence by force
then have H + B D2 A
using assms(1) and Deduction-Theorem by simp
then have H - Vz4. (B D9 A)
using Gen and assms(2) by simp
moreover have A € wffs, and B € wffs,
by
(
fact hyp-derivable-form-is-wffso[OF assms(1)],
fact hyp-derivable-form-is-wffso[OF «H F B D2 Ay, THEN wffs-from-imp-op(1)]
)
with assms(2) and <is-hyps H> have H - V1q. (B D2 A) D9 (1. B D2 A)
using prop-5244-auz| THEN derivability-implies-hyp-derivability] by simp
ultimately have H + 3z,. B D2 A
by (rule MP)
then have H, 3zo. BF 3z4. BD2 A
using prop-5241 and exists-wff[OF <B € wffsy>] and <is-hyps H»
by (meson Un-subset-iff empty-subsetl finite.simps finite-Un inf-sup-ord(3) insert-subsetl)
moreover from <is-hyps H> and <B € wffsy> have is-hyps (H U {3 zo. B})
by auto
then have H, 3zn. B+ dzy. B
using dv-hyp by simp
ultimately show “thesis
using MP by blast
qged

lemmas 3 -Rule = prop-5244

6.45 Proposition 5245 (Rule C)

lemma prop-5245-aux:
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assumes r # y
and (y, a) ¢ free-vars (3 zq. B)
and is-free-for (yo) (z, @) B
shows is-free-for (xzq) (y, &) S {(z, @) — ya} B
using assms(2,3) proof (induction B)
case (FVar v)
then show ?case
using surj-pair[of v] by fastforce
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp By Bs)
from FApp.prems(1) have (y, o) ¢ free-vars (3zq. B1) and (y, «) ¢ free-vars (3. Ba)
by force+
moreover from FApp.prems(2) have is-free-for (yq) (z, o) By and is-free-for (ya) (z, a) Ba
using is-free-for-from-app by iprover+
ultimately have is-free-for (zq) (v, @) S {(z, &) — ya} B1
and is-free-for (za) (y, @) S {(z, a) — ya} B2
using FApp.IH by simp-all
then have is-free-for (za) (y, @) ((S {(z, @) — ya} B1) » (S {(z, @) — ya} Ba2))
by (intro is-free-for-to-app)
then show ?case
unfolding singleton-substitution-simps(3) .
next
case (FAbs v B)
obtain z and 8 where v = (z, §)
by fastforce
then show ?case
proof (cases v = (z, a))
case True
with FAbs.prems(1) have (y, «) ¢ free-vars (3xq. B’)
by simp
moreover from assms(1) have (y, a) # (z, a)
by blast
ultimately have (y, «) ¢ free-vars B’
using FAbs.prems(1) by simp
with «(y, a) # (z, ) have (y, a) ¢ free-vars (Azq. B)
by simp
then have is-free-for (zq) (y, @) (Azq. B’)
unfolding is-free-for-def using is-free-at-in-free-vars by blast
then have is-free-for (zq) (y, @) S {(z, @) — ya} (Azq. B’)
using singleton-substitution-simps(4) by presburger
then show ?thesis
unfolding True .
next
case Fulse
from assms(1) have (y, a) # (z, @)
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by blast
with FAbs.prems(1) have x: (y, a) ¢ free-vars (3zq. (A2g. B'))
using v = (2, 8)» by fastforce
then show ?thesis
proof (cases (y, a) # v)
case True
from True[unfolded <v = (z, §))] and * have (y, o) ¢ free-vars (3. B')
by simp
moreover from Fulse[unfolded <v = (z, 8))] have is-free-for (yq) (z, @) B’
using is-free-for-from-abs|OF FAbs.prems(2)[unfolded v = (z, 8))]] by blast
ultimately have is-free-for (zq) (y, @) (S {(z, @) — ya} B’)
by (fact FAbs.IH)
then have is-free-for (za) (y, @) (Azg. (S {(z, @) — ya} B'))
using Fualse[unfolded «v = (z, B)+] by (intro is-free-for-to-abs, fastforce+)
then show ?thesis
unfolding singleton-substitution-simps(4) and v = (z, §)> using «(z, 8) # (z, ) by auto
next
case Fulse
then have v = (y, a)
by simp
have is-free-for (za) (v, @) (Aya. S {(z, a) — ya} B
proof—
have (y, a) ¢ free-vars (Ayo- S {(z, @) — ya} B’)
by simp
then show ?%thesis
using is-free-at-in-free-vars by blast
qed
with«v = (y, @) and «(y, ) # (z, a)> show ?thesis
using singleton-substitution-simps(4) by presburger
qed
qed
qged

proposition prop-5245:
assumes H + dzq. B
and H, S {(z, o) — ya} BF A
and is-free-for (yao) (z, @) B
and (y, @) ¢ free-vars (H U {3 zq. B, A})
shows H F A
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms(2,4) have H, Jyq. S {(z, &) — ya} BF 4
using 3-Rule by simp
then have *: H - (Fya. S {(z, @) — ya} B) D2 A (is - - ?F)
using Deduction-Theorem and <is-hyps H> by blast
then have H - 3z,. B D2 4
proof (cases T = y)
case True

228



with x show ?thesis
using identity-singleton-substitution-neutrality by force
next
case Fulse
from assms(4) have (y, ) ¢ free-vars (3. B)
using free-vars-in-all-vars by auto
have ~2 S {(z, a) — ya} B € wffso
by
(
fact hyp-derivable-form-is-wffso
[OF %, THEN wffs-from-imp-op(1), THEN wffs-from-exists, THEN neg-wff]
)
moreover from Fulse have (z, ) ¢ free-vars (~2 S {(z, ) = ya} B)
using free-var-in-renaming-substitution by simp
moreover have is-free-for (1) (y, a) (~2 S {(z, a) — ya} B)
by (intro is-free-for-in-neg prop-5245-auz|OF False «(y, ) ¢ free-vars (3zq. B)» assms(3)])
moreover from assms(3,4) have S {(y, o) — za} S {(z, @) — ya} B= B
using identity-singleton-substitution-neutrality and renaming-substitution-composability
by force
ultimately have - (\yq. ~2 S {(, @) — ya} B) =a—s0 (Aza. ~< B)
using a[where A = ~2 S {(z, a) — yo} B] by (metis derived-substitution-simps(4))
then show ?thesis
by (rule rule-RR|[OF disjI1, where p = [«,»,»,»] and C = ?F]) (use * in force)+
qed
with assms(1) show ?thesis
by (rule MP)
ged

lemmas Rule-C' = prop-5245

end

7 Semantics

theory Semantics
imports
ZFC-in-HOL.ZFC-Typeclasses
Syntax
Boolean-Algebra
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

abbreviation vfuncset :: V = V = V (infixr +— 60) where
A+ B=VPi A (M. B)

notation app (infixl «» 300)

229



syntax

-vlambda :: pttrn = V = (V = V) = V («(8X=x-./ -)» [0, 0, 3] 3)
syntax-consts

-vlambda = VLambda
translations

Az: A. f = CONST VLambda A (M. f)

lemma vlambda-extensionality:
assumes A\z. x € elts A = fr=gux
shows (Az: A. fz) = (Az: A. g )
unfolding VLambda-def using assms by auto

7.1 Frames

locale frame =
fixes D :: type = V
assumes truth-values-domain-def: D o = B
and function-domain-def: Vo 8. D (a—=f) < D a+— D S
and domain-nonemptiness: Va. D a # 0
begin

lemma function-domainD:
assumes f € elts (D (a—f3))
shows f € elts (D a — D f3)
using assms and function-domain-def by blast

lemma viambda-from-function-domain:
assumes [ € elts (D (a—f))
obtains b where f = (Az: D . bz) and Vz € elts (D «). bz € elts (D )
using function-domainD[OF assms| by (metis VPi-D eta)

lemma app-is-domain-respecting:
assumes f € elts (D (a—f)) and z € elts (D «)
shows f - = € elts (D f5)
by (fact VPi-D[OF function-domainD[OF assms(1)] assms(2)])

One-element function on D «:

definition one-element-function :: V = type = V («{-}.» [901, 0] 900) where
[simp]: {z}a = (Ay : D a. bool-to-V (y = x))

lemma one-element-function-is-domain-respecting:
shows {z}q € elts (D oo — D o)
unfolding one-element-function-def and truth-values-domain-def by (intro VPi-I) (simp, metis)

lemma one-element-function-simps:
shows z € elts (D o) = {z}q -2 =T
and [{z, y} C elts (D a); y # 2] = {a}a -y =F
by simp-all
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lemma one-element-function-injectivity:
assumes {z, '} C elts (D i) and {z}; = {z'};
shows z = z’
using assms(1) and VLambda-eq-D2[OF assms(2)[unfolded one-element-function-def]]
and injD[OF bool-to- V-injectivity] by blast

lemma one-element-function-uniqueness:
assumes z € elts (D i)
shows (SOME x'. z' € elts (D i) A {z}; = {z'};) = =
by (auto simp add: assms one-element-function-injectivity)
Identity relation on D a:
definition identity-relation :: type = V (<q-» [0] 100) where
[simp]: go = (Az: D . {z}a)

lemma identity-relation-is-domain-respecting:
shows ¢q € elts (D a— D a — D o)
using VPi-I and one-element-function-is-domain-respecting by simp

lemma ¢-is-equality:
assumes {z, y} C elts (D «)
shows (¢qo) - z-y=T+—az =y
unfolding identity-relation-def
using assms and injD[OF bool-to- V-injectivity] by fastforce
Unique member selector:
definition is-unique-member-selector :: V = bool where
[iff]: is-unique-member-selector f «— (Vz € elts (D i). f - {z}; = z)
Assignment:
definition is-assignment :: (var = V) = bool where
[iff]: is-assignment ¢ +— (Va a. ¢ (z, @) € elts (D «))

end

abbreviation one-element-function-in (<{-}-7> [901, 0, 0] 900) where
{2}aP = frame.one-element-function D z o

abbreviation identity-relation-in (<q-"» [0, 0] 100) where
an = frame.identity-relation D «

1 is a “v-variant” of ¢ if 1 is an assignment that agrees with ¢ except possibly on v:

definition is-variant-of :: (var = V) = var = (var = V) = bool («- ~_ - [51, 0, 51] 50) where
[iff]: ¥ ~p @ +— (Vv v £ v — ¢ v =)

7.2 Pre-models (interpretations)

We use the term “pre-model” instead of “interpretation” since the latter is already a keyword:
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locale premodel = frame +

fixes J ::con = V

assumes @Q-denotation: Va. J (Q-constant-of-type o) = qq

and ¢-denotation: is-unique-member-selector (J iota-constant)

and non-logical-constant-denotation: ¥V ¢ a.. = is-logical-constant (¢, o) — J (¢, a) € elts (D «)
begin

W1 denotation function:

definition is-wff-denotation-function :: ((var = V) = form = V) = bool where
[¢ff]: is-wff-denotation-function V +—
(
V. is-assignment o —>

(VA a. A€ wffsa —V o A€ elts (D a)) A — closure condition, see note in page 186
(V2 0.V ¢ (za) = ¢ (5, @) A
(Vea Ve (fcka) = T (e, ) A
(VABap. Acuffsgyqg NBeuffsg — Vo (A-B)=Vepd)-VeB)A
(Ve Ba B. Beuffsg — Ve (Aza. B) = (Az: D a. V (¢((z, a) := 2)) B))

)

lemma wff-denotation-function-is-domain-respecting:
assumes is-wff-denotation-function V
and A € wffsq
and is-assignment
shows V ¢ A € elts (D «)
using assms by force

lemma wff-var-denotation:
assumes is-wff-denotation-function V
and is-assignment
shows V ¢ (zq) = ¢ (z, a)
using assms by force

lemma wff-Q-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢

shows V ¢ (Qn) = qa
using assms and @Q-denotation by force

lemma wff-iota-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢
shows is-unique-member-selector (V ¢ ()
using assms and t-denotation by fastforce

lemma wff-non-logical-constant-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢
and — is-logical-constant (¢, @)
shows V ¢ ({c}a) = J (¢, a)
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using assms by auto

lemma wff-app-denotation:
assumes is-wff-denotation-function V
and is-assignment
and A € wffsg_,q
and B € wﬁsﬁ
shows Vp (A-B)=VpA-VyB
using assms by blast

lemma wff-abs-denotation:
assumes is-wff-denotation-function V
and is-assignment
and B € wffsB
shows V ¢ (Azq. B) = (Az: D a. V (p((z, @) := 2)) B)
using assms unfolding is-wff-denotation-function-def by metis

lemma wff-denotation-function-is-uniquely-determined:
assumes is-wff-denotation-function V
and is-wff-denotation-function V'
and is-assignment
and A € wffs
showsVp A=V p A
proof —
obtain o where A € wffsy
using assms(4) by blast
then show ?thesis
using assms(3) proof (induction A arbitrary: @)
case var-is-wff
with assms(1,2) show ?case
by auto
next
case con-is-wff
with assms(1,2) show ?case
by auto
next
case app-is-wff
with assms(1,2) show ?case
using wff-app-denotation by metis
next
case (abs-is-wff f A o x)
have is-assignment (p((z, o) := 2)) if z € elts (D «) for z
using that and abs-is-wff.prems by simp
then have *: V (¢((z, o) := 2)) A = V' (p((z, @) :== 2)) Aif z € elts (D «) for 2z
using abs-is-wff.IH and that by blast
have V ¢ (Azg. 4) = Az: D a. V (o((z, ) := z)) A)
by (fact wff-abs-denotation|OF assms(1) abs-is-wff.prems abs-is-wff.hyps])
also have ... = (Az: D a. V' (¢((z, a) := 2)) A)
using * and vlambda-extensionality by fastforce
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also have ... =V’ ¢ (Azq. A)
by (fact wff-abs-denotation|OF assms(2) abs-is-wff.prems abs-is-wff .hyps, symmetric])
finally show ?Zcase .
qed
qged

end

7.3 General models

type-synonym model-structure = (type = V) x (con = V) x ((var = V) = form = V)

The assumption in the following locale implies that there must exist a function that is a wif
denotation function for the pre-model, which is a requirement in the definition of general
model in [2]:

locale general-model = premodel +

fixes V :: (var = V) = form = V

assumes V-is-wff-denotation-function: is-wff-denotation-function V
begin

lemma mized-beta-conversion:

assumes is-assignment @

and y € elts (D «)

and B € wﬁsB

shows V ¢ (Azq. B) - y =V (o((z, @) :==y)) B

using wff-abs-denotation|OF V-is-wff-denotation-function assms(1,3)] and beta] OF assms(2)] by
simp

lemma conj-fun-is-domain-respecting:
assumes is-assignment @
shows V ¢ (Ao o0—0) € elts (D (0—0—0))
using assms and conj-fun-wff and V-is-wff-denotation-function by auto

lemma fully-applied-conj-fun-is-domain-respecting:
assumes is-assignment
and {z, y} C elts (D o)
shows V ¢ (Ap—o—0) * z + y € elts (D o)
using assms and conj-fun-is-domain-respecting and app-is-domain-respecting by (meson insert-subset)

lemma imp-fun-denotation-is-domain-respecting:
assumes is-assignment @
shows V ¢ (Dp—o0—0) € elts (D (0—0—0))
using assms and imp-fun-wff and V-is-wff-denotation-function by simp

lemma fully-applied-imp-fun-denotation-is-domain-respecting:
assumes is-assignment
and {z, y} C elts (D o)
shows V ¢ (Do—o0—0) + x + y € elts (D o)
using assms and imp-fun-denotation-is-domain-respecting and app-is-domain-respecting
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by (meson insert-subset)
end

abbreviation is-general-model :: model-structure = bool where
is-general-model M = case M of (D, J, V) = general-model D J V

7.4 Standard models

locale standard-model = general-model +
assumes full-function-domain-def: Vo 3. D (a—f) =D a — D

abbreviation is-standard-model :: model-structure = bool where
is-standard-model M = case M of (D, J, V) = standard-model D J V

lemma standard-model-is-general-model:
assumes is-standard-model M
shows is-general-model M
using assms and standard-model.azioms(1) by force

7.5 Validity

abbreviation is-assignment-into-frame (<- ~ - [51, 51] 50) where
@ ~ D = frame.is-assignment D ¢

abbreviation is-assignment-into-model (<- ~py - [51, 51] 50) where
w~opy M= (case M of (D, T, V) = ¢~ D)

abbreviation satisfies (<- - - [50, 50, 50] 50) where
My A=case M of (D, J, V)=V A=T

abbreviation is-satisfiable-in where
is-satisfiable-in A M = 3@. o~y MAM = A

abbreviation is-valid-in (- = - [50, 50] 50) where
MEA=Vo. ooy M — ME, A

abbreviation is-valid-in-the-general-sense (<= -» [50] 50) where

E A =V M. is-general-model M — M = A

abbreviation is-valid-in-the-standard-sense (=g - [50] 50) where
Es A = VM. is-standard-model M — M = A

abbreviation is-true-sentence-in where
is-true-sentence-in A M = is-sentence A N M= 4efined A — assignments are not meaningful

abbreviation is-false-sentence-in where
is-false-sentence-in A M = is-sentence A N = M ':undeﬁned A — assignments are not meaningful

abbreviation is-model-for where
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is-model-for M G=VAe g ME A

lemma general-validity-in-standard-validity:
assumes = A
shows =g A
using assms and standard-model-is-general-model by blast

end

8 Soundness

theory Soundness
imports
Elementary-Logic
Semantics
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

8.1 Proposition 5400

proposition (in general-model) prop-5400:
assumes A € wffsy
and ¢ ~ D and ¢ ~ D
and Vv € free-vars A. p v =1 v
shows Vp A=V ¢y A
proof —
from assms(1) show ?thesis
using assms(2,3,4) proof (induction A arbitrary: ¢ )
case (var-is-wff « x)
have (z, a) € free-vars (zq)
by simp
from assms(1) and var-is-wff .prems(1) have V ¢ (zq) = ¢ (z, @)
using V-is-wff-denotation-function by fastforce

also from «(z, o) € free-vars (zq)> and var-is-wff.prems(3) have ... = ¢ (z, a)
by (simp only:)
also from assms(1) and var-is-wff.prems(2) have ... =V ¢ (zq)

using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (con-is-wff « c)
from assms(1) and con-is-wff.prems(1) have V ¢ ({c}a) = T (¢, @)
using V-is-wff-denotation-function by fastforce
also from assms(1) and con-is-wff.prems(2) have ... =V ¢ ({c}a)
using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (app-is-wff o 8 A B)
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have free-vars (A « B) = free-vars A U free-vars B
by simp
with app-is-wff.prems(3)
have Vv € free-vars A. ¢ v =1 v and Vv € free-vars B. p v = v
by blast+
with app-is-wff.IH and app-is-wff.prems(1,2) have V p A=V ¢ AandV ¢ B=V ¢ B
by blast+
from assms(1) and app-is-wff.prems(1) and app-is-wff.hyps have V ¢ (A B)=V o A-V ¢ B
using V-is-wff-denotation-function by fastforce

also from WV o A=V ¢ A»and <V o B=V ¢y B>have... =V ¢y A-V¢ B
by (simp only:)
also from assms(1) and app-is-wff.prems(2) and app-is-wff .hyps have ... =V p (A + B)

using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (abs-is-wff 8 A « x)
have free-vars (Azq. A) = free-vars A — {(z, o)}

by simp

with abs-is-wff.prems(3) have Vv € free-vars A. v # (z, a)— p v =1V v
by blast

then have Vv € free-vars A. (¢((z, a) := 2)) v = (Y((z, o) 1= 2)) v if z € elts (D «) for z
by simp

moreover from abs-is-wff.prems(1,2)
have Vz' o'. (p((z, @) := 2)) (z/, a') € elts (D ')
and Vz' o' (¥((z, o) := 2)) (2, &) € elts (D &)
if z € elts (D «) for z
using that by force+
ultimately have V-p-ip-eq: V (p((z, o) :=2)) A =V (¢((z, o) := 2)) Aif z € elts (D «) for z
using abs-is-wff.IH and that by simp
from assms(1) and abs-is-wff.prems(1) and abs-is-wff.hyps
have V ¢ (Azg. 4) = Az: D a. V (o((z, ) := 2)) A)
using wff-abs-denotation| OF V-is-wff-denotation-function] by simp
also from V-p-i)-eqg have ... = (Az: D a. V (¢Y((z, o) := 2)) A)
by (fact vlambda-extensionality)
also from assms(1) and abs-is-wff.hyps have ... =V ¢ (Azq. A)
using wff-abs-denotation| OF V-is-wff-denotation-function abs-is-wff.prems(2)] by simp
finally show ?Zcase .
qed
qged

corollary (in general-model) closed-wff-is-meaningful-regardless-of-assignment:
assumes is-closed-wff-of-type A «
and ¢ ~ D and ¢ ~ D
shows Vp A=V <y A
using assms and prop-5400 by blast

8.2 Proposition 5401

lemma (in general-model) prop-5401-a:
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assumes ¢ ~ D

and A € wffsq

and B € wﬁsﬂ

shows V ¢ ((Azq. B) « A) =V (o((z, o) =V ¢ A)) B

proof —

from assms(2,3) have A\zq. B € wffs,_,3
by blast

with assms(1,2) have V ¢ (Azq. B) » A) =V ¢ (Azo. B) -V o A
using V-is-wff-denotation-function by blast

also from assms(1,3) have ... = app (Az: D . V (o((z, a) :=2)) B) (V ¢ A)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
also from assms(1,2) have ... =V (p((z, @) ==V ¢ A)) B

using V-is-wff-denotation-function by auto
finally show ?thesis .
qed

lemma (in general-model) prop-5401-b:
assumes ¢ ~ D
and A € wffsq
and B € wffsq
shows V o (A= B)=T+—=VpA=VyB
proof —
from assms have {V ¢ A,V ¢ B} C elts (D «)
using V-is-wff-denotation-function by auto
have V ¢ (A =4 B) =V ¢ (Qa * A+ B)
by simp
also from assms have ... =V ¢ (Qa + 4) -V ¢ B
using V-is-wff-denotation-function by blast
also from assms have ... =V ¢ (Qq) - Vo A-V ¢ B
using Q-wff and wff-app-denotation|OF V-is-wff-denotation-function] by fastforce
also from assms(1) have ... = (¢qa) - Vo AV ¢ B
using @Q-denotation and V-is-wff-denotation-function by fastforce
also from <{V 9o A,V ¢ B} Celts(Da)p have... =T +—Vp A=V ¢ B
using ¢-is-equality by simp
finally show ?thesis .
qed

corollary (in general-model) prop-5401-b’:
assumes ¢ ~ D
and A € wffs,
and B € wffso
shows Vo (A=2B) =T+ VpA=V¢B
using assms and prop-5401-b by auto

lemma (in general-model) prop-5401-c:
assumes ¢ ~ D
shows V ¢ Ty, =T

proof —
have Qy € wffso—o0—0
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by blast

moreover have V ¢ Ty =V ¢ (Qo =0—0—0 Qo)
unfolding true-def ..

ultimately have ... = T +— V ¢ (Qo) =V ¢ (Qo)
using prop-5401-b and assms by blast

then show ?thesis
by simp

qed

lemma (in general-model) prop-5401-d:
assumes ¢ ~ D
shows V ¢ Fy=F
proof —
have A\ro. Ty € wffso—o and Are. to € wWffso—o
by blast+
moreover have V ¢ Fo =V ¢ (Aro. To =0—0 Alo- ko)
unfolding false-def ..
ultimately have V ¢ Fo =T +—V ¢ (Aro. To) =V ¢ (Ato- to)
using prop-5401-b and assms by simp
moreover have V ¢ (A\tg. To) #V ¢ (Aro- to)
proof —
have V ¢ (Ato. To) = (Az: D o. T)
proof —
from assms have T-denotation: V (p((x, 0) := z)) To = T if z € elts (D o) for z
using prop-5401-c and that by simp
from assms have V ¢ (Aro. To) = (Az: D 0. V (o((x, 0) := 2)) To)
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
also from assms and T-denotation have ... = (Az: D o. T)
using vlambda-extensionality by fastforce
finally show ?thesis .
qed
moreover have V ¢ (Aro. to) = (Az: D o. 2)
proof —
from assms have g-denotation: V (p((z, 0) := 2)) (to) = 2z if z € elts (D o) for z
using that and V-is-wff-denotation-function by auto
from assms have V ¢ (Aro. to) = (Az: D 0. V (¢((x, 0) := 2)) (ro))
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
also from r-denotation have ... = (Az: (D o). 2)
using vlambda-extensionality by fastforce
finally show ?thesis .
qed
moreover have (Az: D 0. T) # (Az: D o. 2)
proof —
from assms(1) have (Az: D o. T) -F =T
by (simp add: truth-values-domain-def)
moreover from assms(1) have (Az: D o. z) - F =F
by (simp add: truth-values-domain-def)
ultimately show ?thesis
by (auto simp add: inj-eq)
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qed
ultimately show ¢thesis
by simp

qed
moreover from assms have V ¢ F, € elts (D o)

using false-wff and V-is-wff-denotation-function by fast
ultimately show ?thesis

using assms(1) by (simp add: truth-values-domain-def)

qed

lemma (in general-model) prop-5401-e:
assumes ¢ ~ D
and {z, y} C elts (D o)
shows V ¢ (Ap—o—0) -2 -y=(if t =T Ay =T then T else F)
proof —
let ?Bi.q = Ago—0—0- Go—o0—0* To* To
let ?B,cq = Ago—o0—0- Bo—0—0 * Lo * Yo
let ?Beg = ?Bieg ~(0—0—0)—0 ?Breq
let 2By, = A\po. 7B,
let B, = Aro. 7By
let % = o((x. 0) = 3, (v, 0) = 1)
let %" = A\g. 20'((g, 0—0—0) := g)
have go—o—0* To € wffso—o

by blast

have go—o—0* To* To € wffso and go—o—0 * Lo * Yo € Wffso
by blast+

have 7B, € wﬁs(o—w—w)—m and ?B,., € wﬁs(o_m_m)_m
by blast+

then have ?B., € wffso and ?B, € wffso—o and ?B; € wffso—o0—0
by blast+

have V ¢ (Ao—so0—0) 2 y=V @ /By -z -y
by simp

also from assms and «?B, € wffso—o> have ... =V (o((x, 0) == z)) ?By - y
using mized-beta-conversion by simp

also from assms and (?B., € wffso» have ... =V 2o’ ?B,,

using mized-beta-conversion by simp
finally have V ¢ (Ao—o—0) T+ y=T =V %' ?Bj.q =V %’ 7B,
using assms and (7B, € wﬁs(o_m_m)_m> and (?B,.q € wﬁs(o_m_m)_}& and prop-5401-b
by simp
also have ... +— (Ag: D (0—>0—0). g- T -T)=(Ag:D (0—>0—0). g-z-7y)
proof —
have leq: V %' ?Bj.q = (Ag: D (0—0—0). g+ T - T)
and req: V 20" ?Breq = (Ag: D (0—>0—0). g - T - y)
proof —
from assms(1,2) have is-assg-p'": 20" g~ D if g € elts (D (0—0—0)) for g
using that by auto
have side-eq-denotation:
V %' (Ago—0—0- Go—so—0* A B) = (Xg:D (0—=0—0). g-V (%" g) A-V (20" g) B)
if A € wffsp and B € wffs, for A and B
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proof —
from that have go—o—0 * A = B € wffso
by blast
have V (%" ¢) (go—so—s0"AB)=g-V (%" g9) A-V (%" g) B
if g € elts (D (0—0—0)) for g
proof —
from (A € wffsy> have go—o—0 * A € wffso—o
by blast
with that and is-assg-p’’ and <B € wjffsy» have
V (%" g) (8o—s0—0 A= B) =V (%" g) (doso0—0"A4) -V (%" g) B
using wff-app-denotation| OF V-is-wff-denotation-function] by simp
also from that and <A € wffsy,> and is-assg-p'' have
o=V (%" g) (doso—0) V(%" g) A-V (%" g) B
by (metis V-is-wff-denotation-function wff-app-denotation wjffs-of-type-intros(1))
finally show ?thesis
using that and is-assg-p'’ and V-is-wff-denotation-function by auto
qed
moreover from assms have is-assignment 2o’
by auto
with <go—0—0 * A+ B € wffsy> have
V %" (Ao—o0—0- Go—s0—0* A+ B) = (Ag: D (0=0—0).V (%" g) (do—0—0* 4+ B))
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
ultimately show ?thesis
using vlambda-extensionality by fastforce
qed
— Proof of legq:
show V 2o’ ?Bi.q = (Ag: D (0—0—0). g- T -T)
proof —
have V (%p" g) To = T if g € elts (D (0—0—0)) for g
using that and is-assg-p’ and prop-5401-c by simp
then show ?thesis
using side-eq-denotation and true-wff and viambda-extensionality by fastforce
qed
— Proof of req:
show V 20’ ?B,cq = (Ag: D (0—=0—0). g+ z + y)
proof —
from is-assg-p’ have V (%" g) (xto) = zand V (%" g) (o) = y
if g € elts (D (0—0—0)) for ¢
using that and V-is-wff-denotation-function by auto
with side-eq-denotation show ?thesis
using wffs-of-type-intros(1) and vlambda-extensionality by fastforce
qged
qed
then show ?thesis
by auto
qed
also have ... +— (Vg € elts (D (0—0—0)). g- T-T=g-1z-y)
using vlambda-extensionality and VLambda-eq-D2 by fastforce
finally have and-equ:
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Vo (Nososo) x-y=T<+— (Vg €elts (D (0>0—0).g- T -T=g-z-y)
by blast
then show ?thesis
proof —
from assms(1,2) have is-assg-1: o((z, 0) :== T) ~ D
by (simp add: truth-values-domain-def)
then have is-assg-2: p((¢r, 0) := T, (9, 0) :=T) ~ D
unfolding is-assignment-def by (metis fun-upd-apply prod.sel(2))
from assms consider (a) x =T Ay=T|(b)z#T|(c)y#T
by blast
then show ?thesis
proof cases
case a
then have g - T:- T =gz - yif g € elts (D (0—0—0)) for g
by simp
with e and and-equ show ?thesis
by simp
next
case b
let ?g-witness = Arp. A\vo. Lo
have A\yy. 1o € wffso—o
by blast
then have is-closed-wff-of-type ?g-witness (0—0—0)
by force
moreover from assms have is-assg-p’: ?p’ ~ D
by simp
ultimately have V ¢ ?g-witness - T - T =V %' ?g-witness - T - T
using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from assms and <Aye. o € wffso— o> have
V 2’ 2g-witness - T - T =V (2'((x, 0) :=T)) (A\9o.10) + T
using mized-beta-conversion and truth-values-domain-def by auto
also from assms(1) and <\yo. o € wffso— o> and is-assg-1 and calculation have
oo =V (%((x, 0) =T, (9, 0) :=T)) (xro)
using mized-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))
also have ... =T
using is-assg-2 and V-is-wff-denotation-function by fastforce
finally have V ¢ ?g-witness + T+ T =T .
with b have V ¢ ?g-witness + T + T # x
by blast
moreover have x =V ¢ ?g-witness + = - y
proof —
from is-assg-p’ have z =V 2o’ (10)
using V-is-wff-denotation-function by auto
also from assms(2) and is-assg-p’ have ... =V %' (A\9y. 1o) * ¥
using wffs-of-type-intros(1)[where z = r and a = 0
by (simp add: mized-beta-conversion V-is-wff-denotation-function)
also from assms(2) have ... =V %’ ?g-witness - z - y
using is-assg-’ and <Ayo. to € wWffsp—0’
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by (simp add: mized-beta-conversion fun-upd-twist)
also from assms(1,2) have ... =V ¢ ?g-wilness - ¢ - y
using is-assg-¢’ and <is-closed-wff-of-type ?g-witness (0—0—0)»
and closed-wff-is-meaningful-regardless-of-assignment by metis
finally show ?thesis .
qged
moreover from assms(1,2) have V ¢ Zg-witness € elts (D (o—0—0))
using <is-closed-wff-of-type ?g-witness (0—o0—0)» and V-is-wff-denotation-function by simp
ultimately have 3¢ € elts (D (0—0—0)). g- T -T#g-z-y
by auto
moreover from assms have V ¢ (Ap—o—0) = - y € elts (D o)
by (rule fully-applied-conj-fun-is-domain-respecting)
ultimately have V ¢ (Ap—o—0) rz -y =F
using and-equ and truth-values-domain-def by fastforce
with b show ?thesis
by simp
next
case c
let ?g-witness = Arop. A9o. Ho
have Ayo. yo € wffso—o
by blast
then have is-closed-wff-of-type ?g-witness (0—0—0)
by force
moreover from assms(1,2) have is-assg-p” %'~ D
by simp
ultimately have V ¢ ?g-witness + T - T =V %2p’ ?g-witness - T «+ T
using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from is-assg-1 and is-assg-p’ have ... =V (2'((x, 0) :=T)) (A9p. 9o) + T
using (Aho. 9o € wffsp— o> and mized-beta-conversion and truth-values-domain-def by auto
also from assms(1) and Ayo. Yo € wffsp— o> and is-assg-1 and calculation have
=V (%((x 0) =T, (v, 0) := T)) (no)
using mized-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))
also have ... =T
using is-assg-2 and V-is-wff-denotation-function by force
finally have V ¢ ¢g-witness - T - T =T .
with ¢ have V ¢ ?g-witness - T - T # y
by blast
moreover have y =V ¢ ?g-witness - © + y
proof —
from assms(2) and is-assg-o' have y =V %o’ (A\yo. o) * ¥y
using wffs-of-type-intros(1)[where z = y and o = 0]
and V-is-wff-denotation-function and mized-beta-conversion by auto

also from assms(2) and <A\yy. o € wffso—o> have ... =V 2’ ?g-witness - © - y
using is-assg-¢' by (simp add: mized-beta-conversion fun-upd-twist)
also from assms(1,2) have ... =V ¢ Zg-witness + ¢ - y

using is-assg-p’ and <is-closed-wff-of-type ?g-witness (0—o0—0)»
and closed-wff-is-meaningful-regardless-of-assignment by metis
finally show ?thesis .
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qed

moreover from assms(1) have V ¢ ?g-witness € elts (D (0—0—0))
using <is-closed-wff-of-type ?g-witness (0—o0—0)> and V-is-wff-denotation-function by auto

ultimately have 3¢ € elts (D (0—0—0)). g- T -T#g-x-y
by auto

moreover from assms have V ¢ (Ap—o—0) * - y € elts (D o)
by (rule fully-applied-conj-fun-is-domain-respecting)

ultimately have V ¢ (Ap—o—0) rz -y =F
using and-equ and truth-values-domain-def by fastforce

with ¢ show ?thesis
by simp

qed
qed
qed

corollary (in general-model) prop-5401-e”.
assumes ¢ ~ D
and A € wffsy and B € wffs,
shows V o (ANSB)=VpAAV B
proof —
from assms have {V ¢ A,V ¢ B} C elts (D o)
using V-is-wff-denotation-function by simp
from assms(2) have Ap—o—0 = A € wffso—o

by blast
have V ¢ (A NS B) =V ¢ (Aop—so—0* A+ B)
by simp
also from assms have ... =V ¢ (Apso—0+4) -V ¢ B
using V-is-wff-denotation-function and (Ap—so—o = A € wffso— o> by blast
also from assms have ... =V ¢ (Apso—0) Ve A- V¢ B
using V-is-wff-denotation-function and conj-fun-wff by fastforce
also from assms(1,2) have ... = (if Vo A=T AV ¢ B=T then T else F)
using ({V ¢ A,V ¢ B} C elts (D o)) and prop-5401-e by simp
alsohave ... =V p ANV ¢ B

using truth-values-domain-def and «{V ¢ A, V ¢ B} C elts (D o)» by fastforce
finally show ?thesis .
qed

lemma (in general-model) prop-5401-f:
assumes ¢ ~ D
and {z, y} C elts (D o)
shows V ¢ (Dp—o—0) -y = (ifr =T Ay =F thenF else T)
proof —
let %’ = ((x, 0) == z, (9, 0) = 1)
from assms(2) have {z, y} C elts B
unfolding truth-values-domain-def .
have (10 =2 1o A9 10) € wffso
by blast
then have \yo. (r0 =2 10 A2 90) € wffso—o
by blast
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from assms have is-assg-p": ?p’ ~ D
by simp

from assms(1) have V 2o’ (to) =z and V %' (yy) = y
using is-assg-¢’ and V-is-wff-denotation-function by force+

have V ¢ (Do—o0—0) - -y =V ¢ (Aro. A\o. (ro =210 A% 0o)) -z y
by simp

also from assms have ... =V (p((r, 0) := 7)) (M\o. (to =< 1o A< 00)) + ¥
using <Ay (zo =21, AC Vo) € wffso—o> and mized-beta-conversion by simp
also from assms have ... =V 20’ (1o =21, AC Yo)

using mized-beta-conversion and «(xo =< 1o A< 9o) € wffser by simp
finally have V ¢ (Do—so0—0) -2+ y =T =V %' (to) =V %’ (to A° o)
using prop-5401-b’[OF is-assg-p’] and conj-op-wff and wffs-of-type-intros(1) by simp
alsohave ... «—z =z Ay
unfolding prop-5401-e’|OF is-assg-p’ wffs-of-type-intros(1) wffs-of-type-intros(1)]
and V %’ (ro) = »» and <V 2’ (yo) = > ..
also have ... «+— 2= (ifx =T Ay =T then T else F)
using {z, y} C elts B> by auto
alsohave ... «— T = (ife =T Ay =F then F else T)
using «{z, y} C elts B) by auto
finally show ?thesis
using assms and fully-applied-imp-fun-denotation-is-domain-respecting and tv-cases
and truth-values-domain-def by metis
qged

corollary (in general-model) prop-5401-f":

assumes ¢ ~ D

and A € wffsp and B € wffs,

shows V9 (AD9B)=VpADVyB

proof —

from assms have {V ¢ A, V ¢ B} C elts (D o)
using V-is-wff-denotation-function by simp

from assms(2) have Dy—o—0 * A € wffso—o

by blast
have V ¢ (A D2 B) =V ¢ (Doso—0* A+ B)
by simp
also from assms(1,3) have ... =V ¢ (Do—so0—s0-A) -V ¢ B
using V-is-wff-denotation-function and «Dp—o9—0 * A € wffsp— o> by blast
also from assms have ... =V ¢ (Dp—so—0) Ve A-Vp B
using V-is-wff-denotation-function and imp-fun-wff by fastforce
also from assms have ... = (if Vo A=T AV ¢ B=F then F else T)
using ({V ¢ A,V ¢ B} C elts (D o) and prop-5401-f by simp
alsohave ... =V p ADV ¢y B

using truth-values-domain-def and «{V ¢ A,V ¢ B} C elts (D o) by auto
finally show ?thesis .
qed

lemma (in general-model) forall-denotation:

assumes ¢ ~ D
and A € wffs,
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shows V ¢ (Vzq. A) =T «— (Vz € elts (D a). V (¢((z, a) :=2)) A=T)
proof —

from assms(1) have lhs: V ¢ (Atq. To) + 2 =T if z € elts (D «) for z
using prop-5401-c and mized-beta-conversion and that and true-wff by simp

from assms have rhs: V ¢ (Azq. A) - 2 =V (o((z, a) := 2)) A if z € elts (D «) for z
using that by (simp add: mized-beta-conversion)

from assms(2) have Aro. To € wffsa—o and Azq. A € wffsa—so
by auto

have V ¢ (Vzq. A) =V ¢ ([[a * (Aza. 4))
unfolding forall-def ..

also have ... =V ¢ (Qa—o * (Ata- To) * (Azq. A4))
unfolding PI-def ..
also have ... =V ¢ ((A\ta- To) =a—o0 (A2a. A))

unfolding equality-of-type-def ..
finally have V ¢ (Vzqo. A) =V ¢ (Ata- To) =a—0 (Aza. 4)) .
moreover from assms(1,2) have
Vo (Ata- To) =a—o Az A) =T +—=V o Ata- To) =V ¢ (Azg. A)
using Arq. To € wffsa—o> and <Azq. A € wffsqa—o> and prop-5401-b by blast
moreover
have (V ¢ (A\ta. To) =V ¢ (Azq. 4)) «— (Vz € elts (D a). V (p((z, @) :==2)) A=T)
proof
assume V ¢ (Arg. To) =V ¢ (Azg. A)
with lhs and rhs show Vz € elts (D a). V (¢((z, o) :=2)) A=T
by auto
next
assume Vz € elts (D ). V (p((z, o) :=2)) A=T
moreover from assms have V ¢ (M\tq. To) = Az: D a. V (o((x, o) := 2)) Ty)
using wff-abs-denotation|OF V-is-wff-denotation-function| by blast
moreover from assms have V ¢ (Azq. A) = (Az: D a. V (p((z, o) = 2)) A)
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
ultimately show V ¢ (Arq. To) =V ¢ (Azq. A)
using lhs and vlambda-extensionality by fastforce
qed
ultimately show ?thesis
by (simp only:)
qed

lemma prop-5401-g:
assumes is-general-model M
and ¢~ M
and A € wffs,
shows M 'ng Vg A<+— (V’(/) Y~y MAY ~(z, ) P — M )=¢ A)
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
with assms have
—
Viza. A € wffso A is-general-model (D, T, V) AN~ DAV o Vag. A) =T
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by fastforce
also from assms and <M = (D, J, V)» have ... «+— (Vz € elts (D a). V (¢((z, a) == 2)) A =
T)
using general-model.forall-denotation by fastforce
also have ... +— (V. v~ D A9 ~(z, ) P — M |y 4)
proof
assume *: Vz € elts (D a). V (¢((z, @) :=2)) A=T
{
fix
assume ) ~ D and v ~(z, @) ¥
have VY A =T
proof —
have 3z € elts (D a). ¥ = ¢((z, o) 1= 2)
proof (rule ccontr)
assume — (Jz € elts (D a). v = o((z, a) := z))
with <) ~(z, @) P have Vz € elts (D o). ¢ (z, a) # 2
by fastforce
then have ¢ (z, a) ¢ elts (D «)
by blast
moreover from assms(1) and <M = (D, J, V)» and (¢ ~ D> have ¢ (z, a) € elts (D «)
using general-model-def and premodel-def and frame.is-assignment-def by auto
ultimately show Fulse
by simp
qed
with x show ?thesis
by fastforce

qed
with assms(1) and <M = (D, J, V)> have M |5, A
by simp
}
thenshowvw.zva/\ww(La) p— My, A
by blast
next

assume #: V). ¢ ~> DA th ~ (g o) p— My A
show Vz € elts (D a). V (¢((z, o) :=2)) A=T
proof
fix z
assume z € elts (D «)
with assms(1,2) and <M = (D, J, V) have p((z, a) := 2) ~ D
using general-model-def and premodel-def and frame.is-assignment-def by auto
moreover have ¢((z, a) := 2) Nz, a) ¥
by simp
ultimately have M ’:90((957 Q)
using * by blast
with assms(1) and <M = (D, J, V)» and <«p((z, @) := 2) ~ D> show V (¢((z, o) := 2)) A =

A

= 2z)

by simp
qed
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qed
finally show ?thesis
using <M = (D, J, V)
by simp
qged

lemma (in general-model) axiom-1-validity-auz:
assumes @ ~ D
shows V ¢ (go—o0* To A2 §o—s0* Fo =2 Vio. go0 o) =T (isV ¢ (74 =2 ?B) = T)
proof —
let M = (D, J, V)
from assms have x: is-general-model M @ ~>pr 2M
using general-model-axzioms by blast+
have ?4 =° 2B € wffso
using azioms.azxiom-1 and axioms-are-wffs-of-type-o by blast
have lhs: V p ?A = ¢ (g, 0—0) - T A (g, 0—0) - F
proof —
have go—o * To € wffso and go—o * Fo € wffso
by blast+
with assms have V ¢ 2A =V ¢ (go—o* To) ANV ¢ (§o—so0 * Fo)
using prop-5401-¢’ by simp
also from assms have ... = ¢ (g, 0—0) -V ¢ (To) A ¢ (g, 0—0) - V ¢ (Fo)
using wff-app-denotation| OF V-is-wff-denotation-function]
and wff-var-denotation| OF V-is-wff-denotation-function]
by (metis false-wff true-wff wffs-of-type-intros(1))
finally show ?thesis
using assms and prop-5401-c and prop-5401-d by simp
qed
have V ¢ (74 =2 ?B) =T
proof (cases Vz € elts (D 0). ¢ (g, 0—0) - z="T)
case True
with assms have ¢ (g, 0—»0) - T =T and ¢ (g, 0—0) -F =T
using truth-values-domain-def by auto
with lhs have V ¢ PA =T AT
by (simp only:)
also have ... =T
by simp
finally have V ¢ A =T .
moreover have V ¢ B =T
proof —
have go—0 * to € wffso
by blast
moreover
{
fix ¢
assume ¥ ~ D and ¢ ~(, 0) P

with assms have V ¥ (go—o0 * o) =V ¥ (go—0) + V ¥ (ro)
using V-is-wff-denotation-function by blast
also from <) ~ D) have ... = ¢ (g, 0—0) - ¥ (¢, 0)
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using V-is-wff-denotation-function by auto

also from < ~(1, 0) P have ... = ¢ (g, 0—0) - ¥ (g, 0)
by simp

also from True and <) ~ D) have ... =T
by blast

finally have V ¢ (go—o o) = T .
with assms and (go—0 * 1o € wffse> have ?M ):q/; Jo—o " Yo
by simp
}
ultimately have M =, 7B
using assms and * and prop-5401-g by auto
with x(2) show ?thesis
by simp
qed
ultimately show ¢thesis
using assms and prop-5401-b" and wffs-from-equivalence[OF «?A =2 ?B € wffsy] by simp
next
case Fulse
then have 32 € elts (D o). ¢ (g, 0—0) - 2z £ T
by blast
moreover from x have Vz € elts (D o). ¢ (g, 0—0) - z € elts (D o)
using app-is-domain-respecting by blast
ultimately obtain z where z € elts (D o) and ¢ (g, 0—0) - z=F
using truth-values-domain-def by auto
define ¢ where -def: ¥ = ¢((r, 0) := 2)
with * and <z € elts (D 0)» have ¢ ~ D
by simp
then have V ¢ (go—o0 *to) =V ¥ (o—0) * V ¥ (o)
using V-is-wff-denotation-function by blast

also from ) ~ Dy have ... = ¢ (g, 0—o0) - ¢ (¢, 0)
using V-is-wff-denotation-function by auto

also from v-def have ... = ¢ (g, 0—0) + 2
by simp

also have ... = F

unfolding <y (g, 0—0) - z = F» ..
finally have V ¢ (go—o *10) = F .
with <) ~» D) have - 2M |:¢ go—o * Lo
by (auto simp add: inj-eq)
with ) ~ D) and ¢-def have - (V. ) ~ D A ¢ N, 0) ¥ My 800 * To)
using fun-upd-other by fastforce
with (= ?M |5y go—o * 1o have = M =, 7B
using prop-5401-g[OF * wffs-from-forall|OF wffs-from-equivalence(2)[OF «?A =2 2B € wffs]]]
by blast
then have V ¢ (Vro. go—o*to) # T
by simp
moreover from assms have V ¢ ?B € elts (D o)
using wffs-from-equivalence[OF «?A =2 2B € wffso)] and V-is-wff-denotation-function by auto
ultimately have V ¢ B =F
by (simp add: truth-values-domain-def)
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moreover have V ¢ (go—0* To A2 go—s0* Fo) = F
proof —
from <z € elts (D o)» and <p (g, 0—0) - z = F»
have ((¢ (g, 0—0)) - T) = F V ((¢ (9, 0—=0)) - F) = F
using truth-values-domain-def by fastforce
moreover from <z € elts (D o)» and <« (g, 0—0) - z =F»
and Vz € elts (D o). ¢ (g, 0—0) « z € elts (D o)»
have {(¢ (g, 0-+0)) - T, (¢ (5, 0—0)) - F} C elts (D o)
by (simp add: truth-values-domain-def)
ultimately have ((¢ (g, 0—0)) - T) A ((¢ (g, 0—0)) - F) = F
by auto
with [hs show Zthesis
by (simp only:)
qed
ultimately show ?thesis
using assms and prop-5401-b" and wffs-from-equivalence[OF «?A =2 ?B € wffsy] by simp
qed
then show ?thesis .
qed

lemma aziom-1-validity:
shows |= goso * To A° goso* Fo =2 V0. oo * to (is E 74 =2 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~»p M
show M =, 74 =° ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, 7, V) have V ¢ (?A =2 ?B) =T
using general-model.azxiom-1-validity-aux by simp
ultimately show ?Zthesis
by simp
qed
qed

lemma (in general-model) ariom-2-validity-aux:
assumes ¢ ~ D
shows V ¢ ((ta =a Ya) D2 (ha—o *ta =< baso*9a)) =T (is V ¢ (P4 D2 ?B) = T)
proof —
have 24 D9 ?B ¢ wffs,
using azioms.azxiom-2 and axioms-are-wffs-of-type-o by blast
from (?4 D2 ?B € wffsy> have ?A € wffs, and ?B € wffs,
using wffs-from-imp-op by blast+
with assms have V ¢ (A D2 ?B) =V ¢ YA DV ¢ B
using prop-5401-f' by simp
moreover from assms and «?A € wffsy> and «?B € wffsy> have {V ¢ 74,V ¢ ?B} C elts (D o)
using V-is-wff-denotation-function by simp
then have {V ¢ ?4,V ¢ ?B} C elts B
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by (simp add: truth-values-domain-def)
ultimately have V-imp-T:V ¢ (PAD2 ?B) =T +—= Vo PA=FV V¢ ?B=T
by fastforce
then show ?thesis
proof (cases ¢ (¢, a) = ¢ (1, )
case True
from assms and «?B € wffsp) have V ¢ ?B=T +— V ¢ (ha—o *ta) =V ¢ (ha—o * Ya)
using wffs-from-equivalence and prop-5401-b’ by metis
moreover have V ¢ (ha—o *ta) =V ¢ (ha—o * Ya)
proof —
from assms and «?B € wffsp> have V ¢ (ha—o *ta) =V ¢ (ha—o) - V ¢ (ta)
using V-is-wff-denotation-function by blast

also from assms have ... = ¢ (h, a—0) - ¢ (g, @)
using V-is-wff-denotation-function by auto
also from True have ... = ¢ (h, a—0) - ¢ (9, )
by (simp only:)
also from assms have ... =V ¢ (ha—=o) + V ¢ (va)
using V-is-wff-denotation-function by auto
also from assms and «?B € wffsy> have ... =V ¢ (ha—o * o)

using wff-app-denotation|OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))
finally show ?thesis .
qed
ultimately show ¢thesis
using V-imp-T by simp
next
case Fulse
from assms have V o 2A =T «—V ¢ (ta) =V ¢ (ha)
using prop-5401-b by blast
moreover from False and assms have V ¢ (to) #V ¢ (va)
using V-is-wff-denotation-function by auto
ultimately have V ¢ 74 =F
using assms and «({V ¢ 24,V ¢ ?B} C elts By by simp
then show ?thesis
using V-imp-T by simp
qed
qed

lemma aziom-2-validity:
shows = (ta =a Ya) 22 (ha—o * fa =2 ba—o * Ya) (is = 24 D2 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M =, ?A D¢ 7B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V) have V ¢ (?A D2 ?B) =T
using general-model.axiom-2-validity-aux by simp
ultimately show ?Zthesis
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by force
qed
qed

lemma (in general-model) axiom-3-validity-auz:
assumes ¢ ~ D
shows V ¢ ((fosp =a—p 9a—p) =2 Via. (Fa—p * ta =g 8a—p " Fa)) =T
(isV ¢ (24 =2 ?B) = T)
proof —
let M = (D, J,V)
from assms have x: is-general-model 2M ¢ ~spr 2 M
using general-model-axioms by blast+
have B'-wffo: fo_,g * ta =3 90— * ta € wifso
by blast
have ?4 =2 2B € wffs, and ?4 € wffs, and ?B € wffs,
proof —
show 74 =2 7B € wffs,
using axioms.azxiom-3 and axioms-are-wffs-of-type-o
by blast
then show ?4 € wffs, and ?B € wffs,
by (blast dest: wffs-from-equivalence)+
qed
have V ¢ A=V ¢ 7B
proof (cases ¢ (i, a—f) = ¢ (g, a—5))
case True
have V ¢ ?PA =T
proof —
from assms have V ¢ (fo5) = ¢ (f, a—=5)
using V-is-wff-denotation-function by auto

also from True have ... = ¢ (g, a—p)
by (simp only:)
also from assms have ... =V ¢ (g,3)

using V-is-wff-denotation-function by auto
finally have V ¢ (fo8) =V ¢ (84—p) -
with assms show ?thesis
using prop-5401-b by blast
qed
moreover have V ¢ B =T
proof —
{
fix ¢
assume ¥ ~ D and ~(, @) ¥
from assms and ) ~ D) have V ¢ (fo5 *ta) =V ¥ (famsp) * V ¥ (ta)
using V-is-wff-denotation-function by blast

also from assms and ) ~ D) have ... = ¢ (f, a—=p) - ¥ (¢, @)
using V-is-wff-denotation-function by auto

also from () ~r, ) P have ... = ¢ (f, a—f) - ¥ (¢, @)
by simp

also from True have ... = ¢ (g, a—=0) - ¥ (r, )
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by (simp only:)

also from < @) P have ... = ¢ (g, a—=f8) - ¥ (¢, )
by simp

also from assms and ) ~ D) have ... =V ¢ (go—3) + V ¥ (ta)
using V-is-wff-denotation-function by auto

also from assms and ) ~ D) have ... =V 1 (ga_>5 “ o)

using wff-app-denotation| OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))
finally have V ¢ (fo—5 * ta) =V ¢ (843 " ta) -
with B’-wffo and assms and <) ~ D) have V 9 (fa—>ﬂ *a =8 Ba—f * ta) =T

using prop-5401-b and wffs-from-equality by blast
with x(2) have M =, fo5 " ta =8 803 " ta

by simp

with « and B’-wffo have ?M =, 7B
using prop-5401-g by force
with x(2) show ?thesis
by auto
qed
ultimately show ?thesis ..
next
case Fulse
from x have ¢ (f, a—p) € elts (D a — D ) and ¢ (g, a—p) € elts (D a — D )
by (simp-all add: function-domainD)
with False obtain z where z € elts (D «) and ¢ (f, a—=08) + z # ¢ (g, a—=f) + 2
by (blast dest: fun-ext)
define ¢ where ¥ = ¢((z, ) = 2)
from x and <z € elts (D a)» have ¢ ~ D and ¢ ~, @) ¥
unfolding -def by fastforce+
have V ¢ (fo—p *ta) = ¢ (f, a—p) + 2z for f
proof —
from ) ~ D> have V ¢ (fo5 " ta) =V ¥ (fassp) - V ¥ (ta)
using V-is-wff-denotation-function by blast
also from ) ~ D have ... = ¢ (f, a—p) - ¥ (¢, @)
using V-is-wff-denotation-function by auto
finally show ?thesis
unfolding v-def by simp
qed
then have V ¢ (fo5 *ta) = ¢ (f, a=B) - zand V ¢ (g4 * ta) = ¢ (8, a>B) - 2
by (simp-all only:)
with « (f, a=8) - 2 # ¢ (3, a=B) -  have V ¥ (o553 * ta) # V & (80sp * Fa)
by simp
then have V ¥ (fo_,5 * fa =5 G035 * fa) = F
proof —
from B’-wffo and « ~ D) and * have V ¢ (fo—3 * ta =g 8a—3 * Fa) € elts (D o)
using V-is-wff-denotation-function by auto
moreover from B’-wffo have {fa_>5 *las Ba—p " ta} C wﬁsﬁ
by blast
with ) ~ D) and <V ¢ (fog = ta) # V ¥ (84— 3 " ta)> and B'-uffo
have V ¢ (fa—>ﬁ *ta =38 8a—p " ta) # T
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using prop-5401-b by simp
ultimately show ?thesis
by (simp add: truth-values-domain-def)
qed
with ) ~ D) have = M =y, o5 * fa =g 80—g * ta
by (auto simp add: inj-eq)
with ) ~ D> and <« ~(, @) P

have 3¢. Y~ DAY~ o) ¢ A2 My fasp  Ta =8 8a—p * Fa
by blast
with + and B'-wffo have - ?M =, ?B
using prop-5401-g by blast
then have V ¢ B = F
proof —
from <?B € wffsy> and * have V ¢ ¢B € elts (D o)
using V-is-wff-denotation-function by auto
with (= ?M =, ?B) and <?B € wffso> show ?thesis
using truth-values-domain-def by fastforce
qed
moreover have V ¢ (fo—3 =q—3 8a—pg) = F
proof —
from  have V ¢ (fo5) = ¢ (F, a—8) and V ¢ (545) = ¢ (3 a—5)
using V-is-wff-denotation-function by auto
with False have V ¢ (fo—5) # V ¢ (80—p)
by simp
with « have V ¢ (fo 3 =08 8a—p) # T
using prop-5401-b by blast
moreover from x and (%A € wffso> have V ¢ (fo—,53 =q—3 8a—p) € elts (D o)
using V-is-wff-denotation-function by auto
ultimately show ?thesis
by (simp add: truth-values-domain-def)
qed
ultimately show Zthesis
by (simp only:)
qed
with * and (%4 € wffsy> and <?B € wffsy> show ?thesis
using prop-5401-b’ by simp
qed

lemma aziom-3-validity:
shows = (o8 =amp 9a—p) =2 Via: (fasp * ta =g 9a—p * Fa) (is |5 74 =2 7B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~pr M
show M =, 74 =° ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V) have V ¢ (?A =2 ?B) =T
using general-model.axiom-3-validity-auz by simp
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ultimately show ¢thesis
by simp
qed
qed

lemma (in general-model) axiom-4-1-con-validity-auz:
assumes ¢ ~ D
and A € wffsq
shows V ¢ ((Aza. {cltg) - A =g {c}g) =T
proof —
from assms(2) have (Aza. {clg) - A4 =g {clg € wffso
using axioms.axiom-4-1-con and azioms-are-wffs-of-type-o by blast
define ¢ where ¢ = ¢((z, a) :=V ¢ A)
from assms have V ¢ ((Aza. {cltg) = 4) =V (¢((z, a) =V ¢ A)) ({c}p)
using prop-5401-a by blast
also have ... =V ¢ ({c}y)
unfolding -def ..
also from assms and v-def have ... =V ¢ ({cftg)
using V-is-wff-denotation-function by auto
finally have V ¢ ((Aza. {c}g) » 4) =V ¢ ({c}g) -
with assms(1) and <(Aza. {cltg) = A =g {clg € wffsor show Zthesis
using wffs-from-equality(1) and prop-5401-b by blast
qed

lemma aziom-4-1-con-validity:
assumes A € wffsy
shows |= (Aza. {c}g) - A =g {cltg
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~p M
show M =y (Aza. {c}g) - A =5 {clig
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V)» have V ¢ ((Aza. {cltg) - A =g {ctg) = T
using general-model.azxiom-4-1-con-validity-aux by simp
ultimately show Zthesis
by simp
qed
qed

lemma (in general-model) axiom-4-1-var-validity-aux:
assumes ¢ ~ D
and A € wffsq
and (y, 8) # (s, )
shows V ¢ (\za. yg) » A =g yg) =T
proof —
from assms(2) have (A\za. yg) - A =g yg € wffso
using axioms.azxiom-4-1-var and axioms-are-wffs-of-type-o by blast
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define ¢ where ¢ = ¢((z, ) :=V ¢ A)
with assms(1,2) have V ¢ ((Aza. yg) = 4) =V (¢o((z, ) :=V ¢ A)) (yg)
using prop-5401-a by blast

also have ... =V ¢ (yp)
unfolding v-def ..

also have ... =V ¢ (yp)

proof —

from assms(1,2) have V ¢ A € elts (D «)
using V-is-wff-denotation-function by auto
with ¢-def and assms(1) have ¢ ~ D

by simp

moreover have free-vars (yg) = {(y, 5)}
by simp

with ¢-def and assms(8) have Vv € free-vars (yﬂ). puv=vv
by auto

ultimately show ?thesis
using prop-5400[OF wffs-of-type-intros(1) assms(1)] by simp
qed
finally have V ¢ ((Aza. yg) » 4) =V ¢ (yg) -
with ((Azq. yﬁ) » A =g yg € wffso> show ?thesis
using wffs-from-equality(1) and prop-5401-b[OF assms(1)] by blast
qged

lemma azriom-4-1-var-validity:
assumes A € wffsy
and (y, 8) # (v, )
shows |= (Aza. yg) + A =5 yg
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~p M
show M =y (Aza- yg) = A =5 yg
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V)> have V ¢ ((Aza. yg) + A =5 yg) =T
using general-model.azxiom-4-1-var-validity-aux by auto
ultimately show Zthesis
by simp
qed
qed

lemma (in general-model) axiom-4-2-validity-auz:
assumes ¢ ~ D
and A € wffsq
shows V ¢ ((Azq. zo) * A =q A) =T
proof —
from assms(2) have (Azq. o) * A =a A € wffso
using axioms.azxiom-4-2 and azxioms-are-wffs-of-type-o by blast
define ¢y where ¥ = o((z, a) :=V ¢ A)
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with assms have V ¢ ((Azq. za) * 4) =V ¢ (za)
using prop-5401-a by blast

also from assms and ¢-def have ... = ¢ (z, a)
using V-is-wff-denotation-function by force
also from v-def have ... =V ¢ A
by simp

finally have V ¢ ((Azq. za) * A) =V p A.
with assms(1) and «(Azq. zo) = A =a A € wffsp> show ?Zthesis
using wffs-from-equality and prop-5401-b by meson
qged

lemma aziom-4-2-validity:
assumes A € wffsy
shows = (Azq. o) * A =q A
proof (intro alll impl)
fix M and ¢
assume *: is-general-model M @ ~»p;y M
show M =, (Azq. 2q) * A =q A
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and * and «M = (D, J, V) have V ¢ (Azq. zq) * A =q A) =T
using general-model.axiom-4-2-validity-aux by simp
ultimately show ?thesis
by simp
qged
ged

lemma (in general-model) aziom-4-3-validity-aux:
assumes @ ~ D
and A € wffsq, and B € wﬁs,y_w and C € wffsy
shows V ¢ ((Aza. B+ C) » A =g ((Aza. B) » A) » ((Azq. C) - A)) =T
(is V¢ (?A =5 ?B) = T)
proof —
from assms(2—4) have ?A =5 ?B € wffso
using axioms.azxiom-4-3 and azxioms-are-wffs-of-type-o by blast
define ¢y where ¢ = o((z, o) :=V ¢ A)
with assms(1,2) have ¢ ~ D
using V-is-wff-denotation-function by auto
from assms and 1-def have V ¢ ?A =V ) (B« C)
using prop-5401-a by blast

also from assms(3,4) and ¢-def and <) ~» Dy have ... =V ¢ B- V¢ C
using V-is-wff-denotation-function by blast

also from assms(1—3) and ¢-def have ... =V ¢ (Azq. B) = A) - V¢ C
using prop-5401-a by simp

also from assms(1,2,4) and ¢-def have ... =V ¢ (Azg. B) « A) - V ¢ ((Azg. C) - A)
using prop-5401-a by simp

also have ... =V ¢ 7B

proof —
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have (Azq. B) + A € wffs,_,5 and (Azq. C) + A € wffsy
using assms(2—4) by blast+
with assms(1) show ?thesis
using wff-app-denotation| OF V-is-wff-denotation-function] by simp
qed
finally have V ¢ A =V ¢ ?B.
with assms(1) and YA =5 ?B € wffso) show ?thesis
using prop-5401-b and wffs-from-equality by meson
qged

lemma aziom-4-3-validity:
assumes A € wffsq and B € wjj”s,yﬁﬁ and C € wffsy
shows = (Azq. B+ C) « A =g ((Aza. B) - A) - (Aza. C) + A) (is | ?A =g ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M =, ?A =5 7B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V) have V ¢ (YA =5 ?B) =T
using general-model.axiom-4-3-validity-aux by simp
ultimately show ?Zthesis
by simp
qed
qed

lemma (in general-model) aziom-4-4-validity-aux:
assumes ¢ ~ D
and A € wffsq and B € wffss
and (y, v) ¢ {(z, @)} U vars A
shows V ¢ ((Aza. Ayy. B) » A =, 5 (\yy. (\za. B) - A)) =T
(isV o (?PA=,_5 ?B) =T)
proof —
from assms(2,3) have ?A =, .5 7B € wffso
using axioms.azxiom-4-4 and azioms-are-wffs-of-type-o by blast
let 7D = \y,. B
define ¥ where ¢ = ¢((z, o) :=V ¢ A)
from assms(1,2) and v-def have ¢ ~ D
using V-is-wff-denotation-function by simp
{
fix z
assume z € elts (D v)
define ¢’ where ¢’ = ¢((y, 7) := 2)
from assms(1) and <z € elts (D v)» and ¢’-def have ¢’ ~ D
by simp
moreover from ¢’-def and assms(4) have Vv € free-vars A. ¢ v =’ v
using free-vars-in-all-vars by auto
ultimately have V ¢ A =V ¢’ A
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using assms(1,2) and prop-5400 by blast
with i-def and ¢'-def and assms(4) have ¢'((z, @) ==V ¢’ 4) = ¥ ((y, v) = 2)
by auto
with ) ~ D) and «z € elts (D v)» and assms(3) have V ¢ 2D - 2=V (¢¥((y,v) :== 2)) B
by (simp add: mized-beta-conversion)
also from (¢’ ~ D) and assms(2,3) have ... =V ¢’ (Azq. B) « A)
using prop-5401-a and «p'((z, @) :=V ¢’ A) = ¥((y, 7) := 2)» by simp
also from ¢'-def and assms(1) and <z € elts (D 7)) and YA =,_,5 7B € wffso)
have ... =V p ?B - 2
by (metis mized-beta-conversion wffs-from-abs wffs-from-equality(2))
finally have V¢ 2D - 2=V ¢ ?B - z.
}
note x = this
then have V ¢ D =V ¢ 7B
proof —
from <) ~ Dy and assms(3) have V ¢ 2D = (Az2: D~.V (¥((y, v) := 2)) B)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
moreover from assms(1) have V ¢ ?B = (Az: D ~. V (o((y, 7) == 2)) (Azq. B) + 4))
using wffs-from-abs[OF wffs-from-equality(2)[OF «?A =5 /B € wffso]]
and wff-abs-denotation|OF V-is-wff-denotation-function] by meson
ultimately show ?thesis
using vlambda-extensionality and * by fastforce
qged
with assms(1—3) and ¢-def have V ¢ ?A =V ¢ ?B
using prop-5401-a and wffs-of-type-intros(4) by metis
with assms(1) show ?thesis
using prop-5401-b and wffs-from-equality[OF «?A =5 /B € wffse>] by blast
qged

lemma aziom-4-4-validity:
assumes A € wffsq and B € wffs;
and (y, v) ¢ {(z, @)} U vars A
shows = (Aza. Ayy. B) » A =, 5 (Ayy. (Aza. B) » A) (is = ?A =, .5 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M |=, ?A =, .5 ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and * and <M = (D, J, V)» have V ¢ (?A =, .5 ?B) =T
using general-model.azxiom-4-4-validity-aux by blast
ultimately show ¢thesis
by simp
qed
qged

lemma (in general-model) axiom-4-5-validity-auz:
assumes @ ~ D
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and A € wffsq and B € wffs;
shows V ¢ ((Azq. Azq. B) - A =,_5 (Azq. B)) =T
proof —

define ¢y where ¢ = ¢((z, a) :=V ¢ A)

from assms have wff: (Azq. Azq. B) « A =,_5 (A\za. B) € wffso
using axioms.azxiom-4-5 and azioms-are-wffs-of-type-o by blast

with assms(1,2) and ¢-def have V ¢ (Azq. Azq. B) « A) =V ¢ (Azq. B)
using prop-5401-a and wffs-from-equality(2) by blast

also have ... =V ¢ (A\zq. B)
proof —
have (z, «) ¢ free-vars (Azq. B)
by simp
with ¢-def have Vv € free-vars (Azq. B). p v =19 v
by simp

moreover from ¢-def and assms(1,2) have ¢ ~ D
using V-is-wff-denotation-function by simp
moreover from assms(2,3) have (A\zq. B) € wffs,_s
by fastforce
ultimately show ?thesis
using assms(1) and prop-5400 by metis
qed
finally have V ¢ ((Azq. Azq. B) « A) =V ¢ (Azq. B) .
with wff and assms(1) show ?thesis
using prop-5401-b and wffs-from-equality by meson
qed

lemma aziom-4-5-validity:
assumes A € wffsq and B € wffsg
shows = (Azq. A2zq. B) « A =, _5 (Azq. B)
proof (intro alll impl)
fix M and ¢
assume *: is-general-model M ¢ ~>pr M
show M =y (Azq. Azq. B) » A =, s (Azq. B)
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover
from assms and * and <M = (D, J, V)» have V ¢ ((Azq. Azq. B) * A =5 (Azq. B)) =T
using general-model.azxiom-4-5-validity-auzx by blast
ultimately show ?thesis
by simp
qged
qged

lemma (in general-model) aziom-5-validity-aux:
assumes @ ~ D
shows V ¢ (1 + (Q;+9;) =;v) =T

proof —

have ¢« (Q; * ;) =; v; € wffso
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using azioms.aziom-5 and axioms-are-wffs-of-type-o by blast
have Q; - v; € wffs;—,
by blast
with assmshave V ¢ (1 (Q;-9;) =V ot -V o (Q;+9;)
using V-is-wff-denotation-function by blast

also from assms have ... =V ot (V¢ (Q;) - V ¢ (1))
using wff-app-denotation|OF V-is-wff-denotation-function] by (metis Q-wff wffs-of-type-intros(1))
also from assms have ... = 7 (¢, (i—0)—1) « (T (cq, i—i—0) - V ¢ ()
using V-is-wff-denotation-function by auto
also from assms have ... = 7 (c,, (i—0)—i) - (¢2) - V ¢ (n;))
using @-constant-of-type-def and @Q-denotation by simp
also from assms have ... = J (c,, (i—0)—i) - {V ¢ (9)}:P

using V-is-wff-denotation-function by auto
finally have V ¢ (1 + (Q;* 0j)) = J (¢, (i—0)=i) - {V ¢ (0)}
moreover from assms have J (c,, (i—0)—=i) - {V ¢ (9)}:2 =V ¢ (vy)
using V-is-wff-denotation-function and t-denotation by force
ultimately have V ¢ (¢ + (Q;+9;)) =V ¢ ()
by (simp only:)
with assms and <Q; * v; € wffs;_,,> show ?Zthesis
using prop-5401-b by blast
qed

lemma aziom-5-validity:
shows = ¢+ (Q;* 9;) =i ;
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M = v+ (Q; * v5) =; v;
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V)» have V ¢ (v + (Q; * v;) =; v;)
using general-model.axiom-5-validity-auz by simp
ultimately show Zthesis
by simp
qed
qed

T

lemma azioms-validity:
assumes A € axioms
shows = A
using assms
and aziom-1-validity
and aziom-2-validity
and aziom-3-validity
and aziom-4-1-con-validity
and aziom-4-1-var-validity
and aziom-4-2-validity
and aziom-4-3-validity

261



and aziom-4-4-validity
and aziom-4-5-validity
and aziom-5-validity
by cases auto

lemma (in general-model) rule-R-validity-aux:
assumes A € wffsq and B € wffsq,
andVp.o~D — VA=V B
and C € uffsg and C' € wffsg
and p € positions C and A <, C' and C(p < B) > C’
showsVp. o ~D —Vp C=VypC
proof —
from assms(8,3—5,7) show ?thesis
proof (induction arbitrary: [3)
case pos-found
then show ?case
by simp
next
case (replace-left-app p G B’ G' H)
show ?case
proof (intro alll impI)
fix ¢
assume @ ~ D
from <G + H € wffsg> obtain v where G € wﬁsyﬁlg and H € wffsy
by (rule wffs-from-app)
with <«G'+ H € wffsgp> have G' € wffs, 3
by (metis wff-has-unique-type wffs-from-app)
from assms(1) and <p ~ Dy and <G € wffsy > and H € wffsy)
have V ¢ (G- H)=V o G-V H
using V-is-wff-denotation-function by blast
also from ¢y ~ D) and <G € wffs, 3> and <G’ € wffs, g have ... =V o G'- Vo H
using replace-left-app. IH and replace-left-app.prems(1,4) by simp
also from assms(1) and «p ~ D> and <G’ € wffsy_, 5> and <H € wffsy
have ... =V ¢ (G'+ H)
using V-is-wff-denotation-function by fastforce
finally show V ¢ (G- H) =V ¢ (G'- H) .
qed
next
case (replace-right-app p H B' H' G)
show ?case
proof (intro alll impI)
fix ¢
assume p ~ D
from <G - H € wﬁs@ obtain v where G € wﬁsvéﬁ and H € wffsy
by (rule wffs-from-app)
with «G - H' € wffsg) have H' € wffsy
using wff-has-unique-type and wffs-from-app by (metis type.inject)
from assms(1) and <p ~ D) and «G € wﬁsv_%(y and (H € wffsy
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have Vo (G- H) =V G-V H
using V-is-wff-denotation-function by blast
also from (¢ ~ D) and «H € wffsy> and <H' € wffsy> have ... =V o G-V ¢ H’
using replace-right-app.IH and replace-right-app.prems(1,4) by force
also from assms(1) and «p ~ D) and <G € wffsy_, 5> and (H' € wffsy»
have ... =V ¢ (G« H')
using V-is-wff-denotation-function by fastforce
finally show V ¢ (G- H) =V ¢ (G- H') .
qed
next
case (replace-abs p E B' E' x )
show ?case
proof (intro alll impI)
fix ¢
assume p ~ D
define ¢ where ¢ z = ¢((z, ) := 2) for z
with (¢ ~ D) have -assg: ¥ z ~ D if z € elts (D ) for z
by (simp add: that)
from Az,. £ € wﬁ55> obtain § where § = vy—6 and E € wffss
by (rule wffs-from-abs)
with (\zy. E' € wffsg> have E' € wffss
using wffs-from-abs by blast
from assms(1) and <p ~ Dy and «F € wffss> and -def
have V ¢ (Azy. E) = (Az: D . V (¢ 2) E)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp

also have ... = (Az: D ~.V (¢ 2) E)
proof (intro vlambda-extensionality)
fix z

assume z € elts (D )
from (F € wffss> and (E’ € wffs;» have V. o ~D — Vo E=YV ¢ E’
using replace-abs.prems(1,4) and replace-abs.IH by simp
with -assg and <z € elts (D v)y» show V (¢ 2) E=V (¢ 2) E’
by simp
qed
also from assms(1) and <p ~ D) and (E’ € wffss» and ¢-def
have ... =V ¢ (Az4. E)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
finally show V ¢ (Azy. E) =V ¢ (Azy. E') .
qed
qed
qged

lemma rule-R-validity:
assumes C € wffsy and C’ € wffso and E € wffs,
and = C and E F
and is-rule-R-app p C' C E
shows = C’
proof (intro alll impI)
fix M and ¢
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assume is-general-model M and ¢ ~yy M

show M =, C’
proof —
have M = C’
proof —

obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
from assms(6) obtain A and B and « where A € wffsq and B € wffsq, and E = A =4 B
using wffs-from-equality by (meson is-rule-R-app-def)
note x = «is-general-model My <M = (D, T, V)s «p ~p M
have V ¢’ C =V ¢’ C'if ¢’ ~ D for ¢’
proof —
from assms(5) and *(1,2) and <A € wffsq> and (B € wffsq> and <F = A =4 B> and that
have Vo' o'~ D —V o' A=V ¢’ B
using general-model.prop-5401-b by blast
moreover
from «F = A =4 B> and assms(6) have p € positions C and A <, C and C{p < B) > C"’
using is-subform-implies-in-positions by auto
ultimately show ?thesis
using (A € wffsq> and <B € wffsq and «C € wffsy> and assms(2) and that and *(1,2)
and general-model.rule- R-validity-aux by blast
qged
with assms(4) and %(1,2) show ?thesis
by simp
qed
with <o ~pr M> show ?thesis
by blast
qed
qged

lemma individual-proof-step-validity:
assumes is-proof S and A € [set S
shows = A
using assms proof (induction length S arbitrary: S A rule: less-induct)
case less
from <A € lset S) obtain i’ where S ! i’ = A and S # || and ¢’ < length S
by (metis empty-iff empty-set in-set-conv-nth)
with <is-proof S» have is-proof (take (Suc i’) S) and take (Suc i’) S # []
using proof-prefiz-is-proof[where §1 = take (Suc i’) S and Sy = drop (Suc i’) S|
and append-take-drop-id by simp-all
from <i’ < length S» consider (a) i’ < length S — 1 | (b) i’ = length S — 1
by fastforce
then show ?case
proof cases
case a
then have length (take (Suc i) S) < length S
by simp
with «S ! i’ = A» and <take (Suc i") S # []» have A € Iset (take (Suc i’) S)
by (simp add: take-Suc-conv-app-nth)
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with ength (take (Suc i) §) < length S» and <is-proof (take (Suc i’) S)» show %thesis
using less(1) by blast
next
case b
with <§ ! i’ = A and S # [|» have last S = A
using last-conv-nth by blast
with <is-proof &) and (S # [|> and b have is-proof-step S i’
using added-suffiz-proof-preservation|where S’ = [|] by simp
then consider
(aziom) S ! i’ € axioms
| (rule-R) Ap j k. {j, k} C {0..<i’} A is-rule-R-app p (S i) (S!j) (S!k)
by fastforce
then show ?thesis
proof cases
case azxiom
with «S ! i’ = A> show ?thesis
by (blast dest: azioms-validity)
next
case rule-R
then obtain p and j and &
where {j, k} C {0..<i’} and is-rule-R-app p (S i) (S!4) (S!k)
by blast
let 2S; = take (Suc j) S and %S; = take (Suc k) S
obtain S;’ and S;,’ where S = %5, @ S, and § = %5, @ S}’
by (metis append-take-drop-id)
with <is-proof S» have is-proof (?S; @ S;’) and is-proof (S Q@ Sy”)
by (simp-all only:)
moreover from «S # [> have %S; # [] and %Sy # ||
by simp-all
ultimately have is-proof-of ?S; (last 2S;) and is-proof-of ?Sy (last ?Sy)
using proof-prefiz-is-proof-of-lastjwhere S = 25; and S’ = S|
and proof-prefiz-is-proof-of-lastjwhere S = 25y, and S’ = S}
by fastforce+
moreover
from «({j, k} C {0..<i’}» and b have length %S; < length S and length ?Sj < length S
by force+
moreover from calculation(8,4) have S| j € Iset S; and S | k € Iset ?Sy,
by (simp-all add: take-Suc-conv-app-nth)
ultimately have =S !jand E S !k
using <%S; # [|» and %Sy # [> and less(1) unfolding is-proof-of-def by presburger+
moreover have S ! i’ € wffsp and S! j € wffsp and S! k € wffs,
using <is-rule-R-app p (S! i) (S'!j) (S! k) and replacement-preserves-typing
by force+
ultimately show ?thesis
using <is-rule-R-app p (S!1i) (S'!j) (S!'kpand<«S!i'= 4
and rule-R-validityjwhere C' = A] by blast
qed
qed
qed
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lemma semantic-modus-ponens:
assumes is-general-model M
and A € wffsp and B € wffso
and M = A D2 B
and M = 4
shows M = B
proof (intro alll impl)
fix ¢
assume @ ~yr M
moreover obtain D and 7 and V where M = (D, J, V)
using prod-cases3 by blast
ultimately have p ~ D
by simp
show M =, B
proof —
from assms(4) have V ¢ (A D¢ B) =T
using <M = (D, J, V)» and <p ~p; M) by auto
with assms(1—3) have V o ADV ¢ B=T
using <M = (D, J, V) and <@ ~p M> and general-model.prop-5401-f' by simp
moreover from assms(5) have V ¢ A =T
using <M = (D, J, V)» and <p ~ D) by auto
moreover from (<M = (D, J, V)> and assms(1) have elts (D o) = elts B
using frame.truth-values-domain-def and general-model-def and premodel-def by fastforce
with assms and <M = (D, J, V) and <¢ ~ D) and <V p A =T have {V ¢ A,V ¢ B} C elts

B
using general-model.V-is-wff-denotation-function
and premodel. wff-denotation-function-is-domain-respecting and general-model.azioms(1) by blast
ultimately have V ¢ B =T
by fastforce
with «M = (D, J, V)> and assms(1) and <p ~ D) show ?thesis
by simp
qed
qged

lemma generalized-semantic-modus-ponens:
assumes is-general-model M
and Iset hs C wffso
and VH € lset hs. M = H
and P € wffs,
and M = hs D2, P
shows M E P
using assms(2—5) proof (induction hs arbitrary: P rule: rev-induct)
case Nil
then show ?case by simp
next
case (snoc H' hs)
from <M |= (hs @ [H']) D2, P> have M |= hs D2, (H' D2 P)
by simp
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moreover from VH € Iset (hs @ [H']). M = H» and «set (hs Q [H]) C wffso
have V H € Iset hs. M = H and Iset hs C wffs,
by simp-all
moreover from «set (hs @ [H']) C wffsy» and «P € wffs,» have H' D2 P € wffs,
by auto
ultimately have M |= H' D¢ P
by (elim snoc.IH)
moreover from VH € lset (hs Q@ [H']). M = H» have M = H'
by simp
moreover from (H’ D¢ P € wffso» have H' € wffs,
using wffs-from-imp-op(1) by blast
ultimately show ?case
using assms(1) and <P € wffsy> and semantic-modus-ponens by simp
qed

8.3 Proposition 5402(a)

proposition theoremhood-implies-validity:
assumes is-theorem A
shows = A
using assms and individual-proof-step-validity by force

8.4 Proposition 5402(b)

proposition hyp-derivability-implies-validity:
assumes is-hyps G
and is-model-for M G
and G+ A4
and is-general-model M
shows M = A
proof —
from assms(3) have A € wffs,
by (fact hyp-derivable-form-is-wffso)
from <G F A» and «<is-hyps G» obtain H where finite H and H C Gand H - A
by blast
moreover from <finite H»> obtain hs where Iset hs = H
using finite-list by blast
ultimately have F hs D2, 4
using generalized-deduction-theorem by simp
with assms({) have M |= hs D2, A
using derivability-from-no-hyps-theoremhood-equivalence and theoremhood-implies-validity
by blast
moreover from X C G) and assms(2) have M = H if H € H for H
using that by blast
moreover from (X C G) and «lset hs = H> and assms(1) have Iset hs C wffso
by blast
ultimately show #thesis
using assms(1,4) and <A € wffsy> and «<set hs = H> and generalized-semantic-modus-ponens
by auto
qed
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8.5 Theorem 5402 (Soundness Theorem)
lemmas thm-5402 = theoremhood-implies-validity hyp-derivability-implies-validity

end

9 Consistency

theory Consistency
imports
Soundness
begin

definition is-inconsistent-set :: form set = bool where
[iff]: is-inconsistent-set G +— G F F,

definition Qg-is-inconsistent :: bool where
[¢ff]: Qo-is-inconsistent «— F F,

definition is-wffo-consistent-with :: form = form set = bool where
[iff]: is-wffo-consistent-with B G <— — is-inconsistent-set (G U {B})

9.1 Existence of a standard model

We construct a standard model in which D 7 is the set {0}:

primrec singleton-standard-domain-family («D°)) where
D% i=1—ie., D% i= ZFC-in-HOL.set {0}

| D% 0 =B

| D% (a—B) = D% a > D%

interpretation singleton-standard-frame: frame D°
proof unfold-locales

{

fix a
have D° o # 0
proof (induction «)
case (TFun B )
from (D v # () obtain y where y € elts (D° v)
by fastforce
then have (Az: D° B. y) € elts (D% B+ D )
by (intro VPi-I)
then show ?case
by force
qed simp-all
}
then show Va. D° a # 0
by (intro alll)
qed simp-all
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definition singleton-standard-constant-denotation-function («J°)) where
[simp]: T° k =
(

if
3 8. is-Q-constant-of-type k 3
then :
let B = type-of-Q-constant k in qﬂp
else
if
is-iota-constant k
then
Az : DY (i—0). 0
else

case k of (¢, a) = SOME z. z € elts (D )
)

interpretation singleton-standard-premodel: premodel DS J%

proof (unfold-locales)
show Va. J° (Q-constant-of-type o) = anS

by simp
next
show singleton-standard-frame.is-unique-member-selector (J° iota-constant)
unfolding singleton-standard-frame.is-unique-member-selector-def proof
fix z
assume z € elts (D7 i)
then have z = 0
by simp
moreover have (Az: D° (i—o). 0) - {O}ZDS =0
using beta[OF singleton-standard-frame.one-element-function-is-domain-respecting|
unfolding singleton-standard-domain-family.simps(3) by blast
ultimately show (J° iota-constant) - {x}iDS =z
by fastforce
qed
next
show V ¢ a. — is-logical-constant (c, ) — J* (¢, @) € elts (D )
proof (intro alll impl)
fix ¢ and «
assume - is-logical-constant (c, «)
then have J° (¢, @) = (SOME z. z € elts (D° «))
by auto
moreover have 3z. z € elts (D° )
using eq0-iff and singleton-standard-frame.domain-nonemptiness by presburger
then have (SOME z. z € elts (D «)) € elts (DS «)
using some-in-eq by auto
ultimately show J° (¢, a) € elts (D° a)
by auto
qed
qged
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fun singleton-standard-wff-denotation-function (<VS>) where
Vg (za) = ¢ (2, )

|V o ({cha) = T° (¢, a)

[ VS (A«B)= (V¢ 4) - (V¢ B)

| VS o (Azq. A) = (Az: D% a. V9 (p((z, a) := 2)) A)

lemma singleton-standard-wff-denotation-function-closure:
assumes frame.is-assignment DS %
and A € wffsqy
shows VS p A € elts (D a)
using assms(2,1) proof (induction A arbitrary: ¢)
case (var-is-wff « x)
then show ?case
by simp
next
case (con-is-uff a c)
then show ?case
proof (cases (¢, «) rule: constant-cases)
case non-logical
then show ?thesis
using singleton-standard-premodel.non-logical-constant-denotation
and singleton-standard-wff-denotation-function.simps(2) by presburger
next
case (Q-constant ()

then have V° ¢ ({c}a) = q5D
by simp
moreover have qBDS € elts (D (B—p—0))
using singleton-standard-domain-family.simps(3)
and singleton-standard-frame.identity-relation-is-domain-respecting by presburger
ultimately show ¢thesis
using Q-constant by simp
next
case -constant
then have V° ¢ ({c}a) = (Az: D (i—0). 0)
by simp
moreover have (Az: D (i—o0). 0) € elts (D° ((i—0)—i))
by (simp add: VPi-I)
ultimately show ?thesis
using t-constant by simp
qed
next
case (app-is-wff o 8 A B)
have V5 o (A« B) = (VS p A) - (V5 ¢ B)
using singleton-standard-wff-denotation-function.simps(3) .
moreover have V¥ ¢ A € elts (D° (a—3)) and V° ¢ B € elts (D a)
using app-is-wff . IH and app-is-wff.prems by simp-all
ultimately show ?case
by (simp only: singleton-standard-frame.app-is-domain-respecting)
next

S
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case (abs-is-wff 8 A « 1)

have V% ¢ (A\zq. 4) = (Az: DY a. V¥ (p((z, a) := 2)) A)
using singleton-standard-wff-denotation-function.simps(4) .

moreover have V° (¢o((z, a) := 2)) A € elts (D° B) if z € elts (D° a) for z
using that and abs-is-wff.IH and abs-is-wff.prems by simp

ultimately show Zcase
by (simp add: VPi-I)

qed

interpretation singleton-standard-model: standard-model DS J° VS
proof (unfold-locales)
show singleton-standard-premodel.is-wff-denotation-function V3
by (simp add: singleton-standard-wff-denotation-function-closure)
next
show Va 3. D° (a—fB) = DY a — D% 3
using singleton-standard-domain-family.simps(8) by (intro alll)
qged

proposition standard-model-existence:
shows 3 M. is-standard-model M
using singleton-standard-model.standard-model-axioms by auto

9.2 Theorem 5403 (Consistency Theorem)

proposition model-existence-implies-set-consistency:
assumes is-hyps G
and 3 M. is-general-model M A is-model-for M G
shows — is-inconsistent-set G
proof (rule ccontr)
from assms(2) obtain D and J and ¥V and M
where M = (D, J, V) and is-model-for M G and is-general-model M by fastforce
assume — — is-inconsistent-set G
then have G - F,
by simp
with «is-general-model M»> have M = F,

using thm-5402(2)[OF assms(1) <is-model-for M G»] by simp

then have V ¢ F, = T if ¢ ~ D for ¢

using that and <M = (D, J, V)» by force

moreover have V ¢ 'y = F if ¢ ~ D for ¢
using <M = (D, J, V)» and <is-general-model M) and that and general-model.prop-5401-d
by simp
ultimately have 3. ¢ ~ D
by (auto simp add: inj-eq)
moreover have 3¢. ¢ ~ D
proof —

— Since by definition domains are not empty then, by using the Axiom of Choice, we can specify an
assignment v that simply chooses some element in the respective domain for each variable. Nonetheless,
as pointed out in Footnote 11, page 19 in [1], it is not necessary to use the Axiom of Choice to show
that assignments exist since some assignments can be described explicitly.
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let %) = Av. case v of (-, &) = SOME z. z € elts (D «)
from <M = (D, J, V) and <is-general-model M>» have V «. elts (D «) # {}
using frame.domain-nonemptiness and premodel-def and general-model.azioms(1) by auto
with «M = (D, J, V) and «(is-general-model M> have %) ~» D
using frame.is-assignment-def and premodel-def and general-model.azioms(1)
by (metis (mono-tags) case-prod-conv some-in-eq)
then show ?thesis
by (intro exl)
qed
ultimately show Fulse ..
ged

proposition Q-is-consistent:
shows — Qg-is-inconsistent
proof —
have I M. is-general-model M A is-model-for M {}
using standard-model-ezistence and standard-model.azioms(1) by blast
then show ?thesis
using model-existence-implies-set-consistency by simp
qed

lemmas thm-5403 = Qq-is-consistent model-existence-implies-set-consistency

proposition principle-of-explosion:
assumes is-hyps G
shows is-inconsistent-set G «— (VA € (wffsy). G F A)
proof
assume is-inconsistent-set G
show VA € (wffsp). GF A
proof
fix A
assume A € wffsy
from «<is-inconsistent-set G» have G - F,
unfolding is-inconsistent-set-def .
then have G F V. 1o
unfolding false-is-forall .
with <4 € wffsy» have G F S {(x, 0) — A} (zo)
using V I by fastforce
then show G - A
by simp
qed
next
assume VA € (wffsy). G A
then have G - F,
using false-wff by (elim bspec)
then show is-inconsistent-set G
unfolding is-inconsistent-set-def .
qged
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end
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