
Metatheory of Q0

Javier Díaz
<javier.diaz.manzi@gmail.com>

November 15, 2023

Abstract

This entry is a formalization of the metatheory of Q0 in Isabelle/HOL. Q0 [2] is a
classical higher-order logic equivalent to Church’s Simple Theory of Types. In this entry
we formalize Chapter 5 of [2], up to and including the proofs of soundness and consistency
of Q0. These proof are, to the best of our knowledge, the first to be formalized in a proof
assistant.

1

<javier.diaz.manzi@gmail.com>

Contents
1 Utilities 5

1.1 Utilities for lists . 5
1.2 Utilities for finite maps . 5

2 Syntax 10
2.1 Type symbols . 10
2.2 Variables . 11
2.3 Constants . 12
2.4 Formulas . 13
2.5 Generalized operators . 13
2.6 Subformulas . 13
2.7 Free and bound variables . 19
2.8 Free and bound occurrences . 21
2.9 Free variables for a formula in another formula 38
2.10 Replacement of subformulas . 42
2.11 Logical constants . 46
2.12 Definitions and abbreviations . 47
2.13 Well-formed formulas . 49
2.14 Substitutions . 59
2.15 Renaming of bound variables . 83

3 Boolean Algebra 88

4 Propositional Well-Formed Formulas 90
4.1 Syntax . 91
4.2 Semantics . 95

5 Proof System 108
5.1 Axioms . 108
5.2 Inference rule R . 109
5.3 Proof and derivability . 109
5.4 Hypothetical proof and derivability . 118

6 Elementary Logic 131
6.1 Proposition 5200 . 131
6.2 Proposition 5201 (Equality Rules) . 132
6.3 Proposition 5202 (Rule RR) . 133
6.4 Proposition 5203 . 134
6.5 Proposition 5204 . 136
6.6 Proposition 5205 (η-conversion) . 136
6.7 Proposition 5206 (α-conversion) . 139
6.8 Proposition 5207 (β-conversion) . 142
6.9 Proposition 5208 . 147

2

6.10 Proposition 5209 . 149
6.11 Proposition 5210 . 150
6.12 Proposition 5211 . 151
6.13 Proposition 5212 . 152
6.14 Proposition 5213 . 153
6.15 Proposition 5214 . 153
6.16 Proposition 5215 (Universal Instantiation) . 154
6.17 Proposition 5216 . 155
6.18 Proposition 5217 . 156
6.19 Proposition 5218 . 158
6.20 Proposition 5219 (Rule T) . 159
6.21 Proposition 5220 (Universal Generalization) . 159
6.22 Proposition 5221 (Substitution) . 161
6.23 Proposition 5222 (Rule of Cases) . 172
6.24 Proposition 5223 . 175
6.25 Proposition 5224 (Modus Ponens) . 176
6.26 Proposition 5225 . 177
6.27 Proposition 5226 . 178
6.28 Proposition 5227 . 179
6.29 Proposition 5228 . 180
6.30 Proposition 5229 . 180
6.31 Proposition 5230 . 181
6.32 Proposition 5231 . 183
6.33 Proposition 5232 . 184
6.34 Proposition 5233 . 186
6.35 Proposition 5234 (Rule P) . 196
6.36 Proposition 5235 . 197
6.37 Proposition 5237 (⊃ ∀ Rule) . 199
6.38 Proposition 5238 . 203
6.39 Proposition 5239 . 206
6.40 Theorem 5240 (Deduction Theorem) . 217
6.41 Proposition 5241 . 221
6.42 Proposition 5242 (Rule of Existential Generalization) 221
6.43 Proposition 5243 (Comprehension Theorem) . 222
6.44 Proposition 5244 (Existential Rule) . 224
6.45 Proposition 5245 (Rule C) . 226

7 Semantics 229
7.1 Frames . 230
7.2 Pre-models (interpretations) . 231
7.3 General models . 234
7.4 Standard models . 235
7.5 Validity . 235

3

8 Soundness 236
8.1 Proposition 5400 . 236
8.2 Proposition 5401 . 237
8.3 Proposition 5402(a) . 267
8.4 Proposition 5402(b) . 267
8.5 Theorem 5402 (Soundness Theorem) . 267

9 Consistency 268
9.1 Existence of a standard model . 268
9.2 Theorem 5403 (Consistency Theorem) . 271

4

1 Utilities
theory Utilities

imports
Finite−Map−Extras.Finite-Map-Extras

begin

1.1 Utilities for lists
fun foldr1 :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a list ⇒ ′a where

foldr1 f [x] = x
| foldr1 f (x # xs) = f x (foldr1 f xs)
| foldr1 f [] = undefined f

abbreviation lset where lset ≡ List.set

lemma rev-induct2 [consumes 1 , case-names Nil snoc]:
assumes length xs = length ys
and P [] []
and

∧
x xs y ys. length xs = length ys =⇒ P xs ys =⇒ P (xs @ [x]) (ys @ [y])

shows P xs ys
using assms proof (induction xs arbitrary: ys rule: rev-induct)

case (snoc x xs)
then show ?case by (cases ys rule: rev-cases) simp-all

qed simp

1.2 Utilities for finite maps
no-syntax

-fmaplet :: [′a, ′a] ⇒ fmaplet (- /$$:=/ -)
-fmaplets :: [′a, ′a] ⇒ fmaplet (- /[$$:=]/ -)

syntax
-fmaplet :: [′a, ′a] ⇒ fmaplet (- /�/ -)
-fmaplets :: [′a, ′a] ⇒ fmaplet (- /[�]/ -)

lemma fmdom ′-fmap-of-list [simp]:
shows fmdom ′ (fmap-of-list ps) = lset (map fst ps)
by (induction ps) force+

lemma fmran ′-singleton [simp]:
shows fmran ′ {k � v} = {v}

proof −
have v ′ ∈ fmran ′ {k � v} =⇒ v ′ = v for v ′

proof −
assume v ′ ∈ fmran ′ {k � v}
fix k ′

have fmdom ′ {k � v} = {k}
by simp

then show v ′ = v

5

proof (cases k ′ = k)
case True
with ‹v ′ ∈ fmran ′ {k � v}› show ?thesis

using fmdom ′I by fastforce
next

case False
with ‹fmdom ′ {k � v} = {k}› and ‹v ′ ∈ fmran ′ {k � v}› show ?thesis

using fmdom ′I by fastforce
qed

qed
moreover have v ∈ fmran ′ {k � v}

by (simp add: fmran ′I)
ultimately show ?thesis

by blast
qed

lemma fmran ′-fmupd [simp]:
assumes m $$ x = None
shows fmran ′ (m(x � y)) = {y} ∪ fmran ′ m

using assms proof (intro subset-antisym subsetI)
fix x ′

assume m $$ x = None and x ′ ∈ fmran ′ (m(x � y))
then show x ′ ∈ {y} ∪ fmran ′ m

by (auto simp add: fmlookup-ran ′-iff , metis option.inject)
next

fix x ′

assume m $$ x = None and x ′ ∈ {y} ∪ fmran ′ m
then show x ′ ∈ fmran ′ (m(x � y))

by (force simp add: fmlookup-ran ′-iff)
qed

lemma fmran ′-fmadd [simp]:
assumes fmdom ′ m ∩ fmdom ′ m ′ = {}
shows fmran ′ (m ++f m ′) = fmran ′ m ∪ fmran ′ m ′

using assms proof (intro subset-antisym subsetI)
fix x
assume fmdom ′ m ∩ fmdom ′ m ′ = {} and x ∈ fmran ′ (m ++f m ′)
then show x ∈ fmran ′ m ∪ fmran ′ m ′

by (auto simp add: fmlookup-ran ′-iff) meson
next

fix x
assume fmdom ′ m ∩ fmdom ′ m ′ = {} and x ∈ fmran ′ m ∪ fmran ′ m ′

then show x ∈ fmran ′ (m ++f m ′)
using fmap-disj-comm and fmlookup-ran ′-iff by fastforce

qed

lemma finite-fmran ′:
shows finite (fmran ′ m)
by (simp add: fmran ′-alt-def)

6

lemma fmap-of-zipped-list-range:
assumes length ks = length vs
and m = fmap-of-list (zip ks vs)
and k ∈ fmdom ′ m
shows m $$! k ∈ lset vs
using assms by (induction arbitrary: m rule: list-induct2) auto

lemma fmap-of-zip-nth [simp]:
assumes length ks = length vs
and distinct ks
and i < length ks
shows fmap-of-list (zip ks vs) $$! (ks ! i) = vs ! i
using assms by (simp add: fmap-of-list.rep-eq map-of-zip-nth)

lemma fmap-of-zipped-list-fmran ′ [simp]:
assumes distinct (map fst ps)
shows fmran ′ (fmap-of-list ps) = lset (map snd ps)

using assms proof (induction ps)
case Nil
then show ?case

by auto
next

case (Cons p ps)
then show ?case
proof (cases p ∈ lset ps)

case True
then show ?thesis

using Cons.prems by auto
next

case False
obtain k and v where p = (k, v)

by fastforce
with Cons.prems have k /∈ fmdom ′ (fmap-of-list ps)

by auto
then have fmap-of-list (p # ps) = {k � v} ++f fmap-of-list ps

using ‹p = (k, v)› and fmap-singleton-comm by fastforce
with Cons.prems have fmran ′ (fmap-of-list (p # ps)) = {v} ∪ fmran ′ (fmap-of-list ps)

by (simp add: ‹p = (k, v)›)
then have fmran ′ (fmap-of-list (p # ps)) = {v} ∪ lset (map snd ps)

using Cons.IH and Cons.prems by force
then show ?thesis

by (simp add: ‹p = (k, v)›)
qed

qed

lemma fmap-of-list-nth [simp]:
assumes distinct (map fst ps)

and j < length ps

7

shows fmap-of-list ps $$ ((map fst ps) ! j) = Some (map snd ps ! j)
using assms by (induction j) (simp-all add: fmap-of-list.rep-eq)

lemma fmap-of-list-nth-split [simp]:
assumes distinct xs

and j < length xs
and length ys = length xs and length zs = length xs

shows fmap-of-list (zip xs (take k ys @ drop k zs)) $$ (xs ! j) =
(if j < k then Some (take k ys ! j) else Some (drop k zs ! (j − k)))

using assms proof (induction k arbitrary: xs ys zs j)
case 0
then show ?case

by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
next

case (Suc k)
then show ?case
proof (cases xs)

case Nil
with Suc.prems(2) show ?thesis

by auto
next

case (Cons x xs ′)
let ?ps = zip xs (take (Suc k) ys @ drop (Suc k) zs)
from Cons and Suc.prems(3 ,4) obtain y and z and ys ′ and zs ′

where ys = y # ys ′ and zs = z # zs ′

by (metis length-0-conv neq-Nil-conv)
let ?ps ′ = zip xs ′ (take k ys ′ @ drop k zs ′)
from Cons have ∗: fmap-of-list ?ps = fmap-of-list ((x, y) # ?ps ′)

using ‹ys = y # ys ′› and ‹zs = z # zs ′› by fastforce
also have . . . = {x � y} ++f fmap-of-list ?ps ′

proof −
from ‹ys = y # ys ′› and ‹zs = z # zs ′› have fmap-of-list ?ps ′ $$ x = None

using Cons and Suc.prems(1 ,3 ,4) by (simp add: fmdom ′-notD)
then show ?thesis

using fmap-singleton-comm by fastforce
qed
finally have fmap-of-list ?ps = {x � y} ++f fmap-of-list ?ps ′ .
then show ?thesis
proof (cases j = 0)

case True
with ‹ys = y # ys ′› and Cons show ?thesis

by simp
next

case False
then have xs ! j = xs ′ ! (j − 1)

by (simp add: Cons)
moreover from ‹ys = y # ys ′› and ‹zs = z # zs ′› have fmdom ′ (fmap-of-list ?ps ′) = lset xs ′

using Cons and Suc.prems(3 ,4) by force
moreover from False and Suc.prems(2) and Cons have j − 1 < length xs ′

8

using le-simps(2) by auto
ultimately have fmap-of-list ?ps $$ (xs ! j) = fmap-of-list ?ps ′ $$ (xs ′ ! (j − 1))

using Cons and ∗ and Suc.prems(1) by auto
with Suc.IH and Suc.prems(1 ,3 ,4) and Cons have ∗∗: fmap-of-list ?ps $$ (xs ! j) =
(if j − 1 < k then Some (take k ys ′ ! (j − 1)) else Some (drop k zs ′ ! ((j − 1) − k)))
using ‹j − 1 < length xs ′› and ‹ys = y # ys ′› and ‹zs = z # zs ′› by simp

then show ?thesis
proof (cases j − 1 < k)

case True
with False and ∗∗ show ?thesis

using ‹ys = y # ys ′› by auto
next

case False
from Suc.prems(1) and Cons and ‹j − 1 < length xs ′› and ‹xs ! j = xs ′ ! (j − 1)› have j >

0
using nth-non-equal-first-eq by fastforce

with False have j ≥ Suc k
by simp

moreover have fmap-of-list ?ps $$ (xs ! j) = Some (drop (Suc k) zs ! (j − Suc k))
using ∗∗ and False and ‹zs = z # zs ′› by fastforce

ultimately show ?thesis
by simp

qed
qed

qed
qed

lemma fmadd-drop-cancellation [simp]:
assumes m $$ k = Some v
shows {k � v} ++f fmdrop k m = m

using assms proof (induction m)
case fmempty
then show ?case

by simp
next

case (fmupd k ′ v ′ m ′)
then show ?case
proof (cases k ′ = k)

case True
with fmupd.prems have v = v ′

by fastforce
have fmdrop k ′ (m ′(k ′ � v ′)) = m ′

unfolding fmdrop-fmupd-same using fmdrop-idle ′[OF fmdom ′-notI [OF fmupd.hyps]] by (unfold
True)

then have {k � v} ++f fmdrop k ′ (m ′(k ′ � v ′)) = {k � v} ++f m ′

by simp
then show ?thesis

using fmap-singleton-comm[OF fmupd.hyps] by (simp add: True ‹v = v ′›)
next

9

case False
with fmupd.prems have m ′ $$ k = Some v

by force
from False have {k � v} ++f fmdrop k (m ′(k ′ � v ′)) = {k � v} ++f (fmdrop k m ′)(k ′ � v ′)

by (simp add: fmdrop-fmupd)
also have . . . = ({k � v} ++f fmdrop k m ′)(k ′ � v ′)

by fastforce
also from fmupd.prems and fmupd.IH [OF ‹m ′ $$ k = Some v›] have . . . = m ′(k ′ � v ′)

by force
finally show ?thesis .

qed
qed

lemma fmap-of-list-fmmap [simp]:
shows fmap-of-list (map2 (λv ′ A ′. (v ′, f A ′)) xs ys) = fmmap f (fmap-of-list (zip xs ys))
unfolding fmmap-of-list
using cond-case-prod-eta
[where f = λv ′ A ′.(v ′, f A ′) and g = apsnd f , unfolded apsnd-conv, simplified]

by (rule arg-cong)

end

2 Syntax
theory Syntax

imports
HOL−Library.Sublist
Utilities

begin

2.1 Type symbols
datatype type =

TInd (i)
| TBool (o)
| TFun type type (infixr → 101)

primrec type-size :: type ⇒ nat where
type-size i = 1
| type-size o = 1
| type-size (α → β) = Suc (type-size α + type-size β)

primrec subtypes :: type ⇒ type set where
subtypes i = {}
| subtypes o = {}
| subtypes (α → β) = {α, β} ∪ subtypes α ∪ subtypes β

lemma subtype-size-decrease:
assumes α ∈ subtypes β

10

shows type-size α < type-size β
using assms by (induction rule: type.induct) force+

lemma subtype-is-not-type:
assumes α ∈ subtypes β
shows α 6= β
using assms and subtype-size-decrease by blast

lemma fun-type-atoms-in-subtypes:
assumes k < length ts
shows ts ! k ∈ subtypes (foldr (→) ts γ)
using assms by (induction ts arbitrary: k) (cases k, use less-Suc-eq-0-disj in ‹fastforce+›)

lemma fun-type-atoms-neq-fun-type:
assumes k < length ts
shows ts ! k 6= foldr (→) ts γ
by (fact fun-type-atoms-in-subtypes[OF assms, THEN subtype-is-not-type])

2.2 Variables

Unfortunately, the Nominal package does not support multi-sort atoms yet; therefore, we need
to implement this support from scratch.
type-synonym var = nat × type

abbreviation var-name :: var ⇒ nat where
var-name ≡ fst

abbreviation var-type :: var ⇒ type where
var-type ≡ snd

lemma fresh-var-existence:
assumes finite (vs :: var set)
obtains x where (x, α) /∈ vs
using ex-new-if-finite[OF infinite-UNIV-nat]

proof −
from assms obtain x where x /∈ var-name ‘ vs

using ex-new-if-finite[OF infinite-UNIV-nat] by fastforce
with that show ?thesis

by force
qed

lemma fresh-var-name-list-existence:
assumes finite (ns :: nat set)
obtains ns ′ where length ns ′ = n and distinct ns ′ and lset ns ′ ∩ ns = {}

using assms proof (induction n arbitrary: thesis)
case 0
then show ?case

by simp
next

11

case (Suc n)
from assms obtain ns ′ where length ns ′ = n and distinct ns ′ and lset ns ′ ∩ ns = {}

using Suc.IH by blast
moreover from assms obtain n ′ where n ′ /∈ lset ns ′ ∪ ns

using ex-new-if-finite[OF infinite-UNIV-nat] by blast
ultimately

have length (n ′ # ns ′) = Suc n and distinct (n ′ # ns ′) and lset (n ′ # ns ′) ∩ ns = {}
by simp-all

with Suc.prems(1) show ?case
by blast

qed

lemma fresh-var-list-existence:
fixes xs :: var list
and ns :: nat set
assumes finite ns
obtains vs ′ :: var list
where length vs ′ = length xs
and distinct vs ′

and var-name ‘ lset vs ′ ∩ (ns ∪ var-name ‘ lset xs) = {}
and map var-type vs ′ = map var-type xs

proof −
from assms(1) have finite (ns ∪ var-name ‘ lset xs)

by blast
then obtain ns ′

where length ns ′ = length xs
and distinct ns ′

and lset ns ′ ∩ (ns ∪ var-name ‘ lset xs) = {}
by (rule fresh-var-name-list-existence)

define vs ′′ where vs ′′ = zip ns ′ (map var-type xs)
from vs ′′-def and ‹length ns ′ = length xs› have length vs ′′ = length xs

by simp
moreover from vs ′′-def and ‹distinct ns ′› have distinct vs ′′

by (simp add: distinct-zipI1)
moreover have var-name ‘ lset vs ′′ ∩ (ns ∪ var-name ‘ lset xs) = {}

unfolding vs ′′-def
using ‹length ns ′ = length xs› and ‹lset ns ′ ∩ (ns ∪ var-name ‘ lset xs) = {}›
by (metis length-map set-map map-fst-zip)

moreover from vs ′′-def have map var-type vs ′′ = map var-type xs
by (simp add: ‹length ns ′ = length xs›)

ultimately show ?thesis
by (fact that)

qed

2.3 Constants
type-synonym con = nat × type

12

2.4 Formulas
datatype form =

FVar var
| FCon con
| FApp form form (infixl � 200)
| FAbs var form

syntax
-FVar :: nat ⇒ type ⇒ form (-- [899 , 0] 900)
-FCon :: nat ⇒ type ⇒ form ({|-|}- [899 , 0] 900)
-FAbs :: nat ⇒ type ⇒ form ⇒ form ((4λ--./ -) [0 , 0 , 104] 104)

translations
xα
 CONST FVar (x, α)
{|c|}α
 CONST FCon (c, α)
λxα. A
 CONST FAbs (x, α) A

2.5 Generalized operators

Generalized application. We define �Q? A [B1, B2, . . . , Bn] as A � B1 � B2 � · · · � Bn:
definition generalized-app :: form ⇒ form list ⇒ form (�Q? - - [241 , 241] 241) where
[simp]: �Q? A Bs = foldl (�) A Bs

Generalized abstraction. We define λQ? [x1, . . . , xn] A as λx1. · · · λxn. A:
definition generalized-abs :: var list ⇒ form ⇒ form (λQ? - - [141 , 141] 141) where
[simp]: λQ? vs A = foldr (λ(x, α) B. λxα. B) vs A

fun form-size :: form ⇒ nat where
form-size (xα) = 1
| form-size ({|c|}α) = 1
| form-size (A � B) = Suc (form-size A + form-size B)
| form-size (λxα. A) = Suc (form-size A)

fun form-depth :: form ⇒ nat where
form-depth (xα) = 0
| form-depth ({|c|}α) = 0
| form-depth (A � B) = Suc (max (form-depth A) (form-depth B))
| form-depth (λxα. A) = Suc (form-depth A)

2.6 Subformulas
fun subforms :: form ⇒ form set where

subforms (xα) = {}
| subforms ({|c|}α) = {}
| subforms (A � B) = {A, B}
| subforms (λxα. A) = {A}

datatype direction = Left («) | Right (»)
type-synonym position = direction list

13

fun positions :: form ⇒ position set where
positions (xα) = {[]}
| positions ({|c|}α) = {[]}
| positions (A � B) = {[]} ∪ {« # p | p. p ∈ positions A} ∪ {» # p | p. p ∈ positions B}
| positions (λxα. A) = {[]} ∪ {« # p | p. p ∈ positions A}

lemma empty-is-position [simp]:
shows [] ∈ positions A
by (cases A rule: positions.cases) simp-all

fun subform-at :: form ⇒ position ⇀ form where
subform-at A [] = Some A
| subform-at (A � B) (« # p) = subform-at A p
| subform-at (A � B) (» # p) = subform-at B p
| subform-at (λxα. A) (« # p) = subform-at A p
| subform-at - - = None

fun is-subform-at :: form ⇒ position ⇒ form ⇒ bool ((- �-/ -) [51 ,0 ,51] 50) where
is-subform-at A [] A ′ = (A = A ′)
| is-subform-at C (« # p) (A � B) = is-subform-at C p A
| is-subform-at C (» # p) (A � B) = is-subform-at C p B
| is-subform-at C (« # p) (λxα. A) = is-subform-at C p A
| is-subform-at - - - = False

lemma is-subform-at-alt-def :
shows A ′ �p A = (case subform-at A p of Some B ⇒ B = A ′ | None ⇒ False)
by (induction A ′ p A rule: is-subform-at.induct) auto

lemma superform-existence:
assumes B �p @ [d] C
obtains A where B �[d] A and A �p C
using assms by (induction B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-con:
assumes {|c|}α �p C
shows @A. A �p @ [d] C
using assms by (induction {|c|}α p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-var :
assumes xα �p C
shows @A. A �p @ [d] C
using assms by (induction xα p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-app:
assumes A � B �p C
shows A �p @ [«] C and B �p @ [»] C
using assms by (induction A � B p C rule: is-subform-at.induct) auto

14

lemma subform-at-subforms-abs:
assumes λxα. A �p C
shows A �p @ [«] C
using assms by (induction λxα. A p C rule: is-subform-at.induct) auto

lemma is-subform-implies-in-positions:
assumes B �p A
shows p ∈ positions A
using assms by (induction rule: is-subform-at.induct) simp-all

lemma subform-size-decrease:
assumes A �p B and p 6= []
shows form-size A < form-size B
using assms by (induction A p B rule: is-subform-at.induct) force+

lemma strict-subform-is-not-form:
assumes p 6= [] and A ′ �p A
shows A ′ 6= A
using assms and subform-size-decrease by blast

lemma no-right-subform-of-abs:
shows @B. B �» # p λxα. A
by simp

lemma subforms-from-var :
assumes A �p xα
shows A = xα and p = []
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-con:
assumes A �p {|c|}α
shows A = {|c|}α and p = []
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-app:
assumes A �p B � C
shows
(A = B � C ∧ p = []) ∨
(A 6= B � C ∧
(∃ p ′ ∈ positions B. p = « # p ′ ∧ A �p ′ B) ∨ (∃ p ′ ∈ positions C . p = » # p ′ ∧ A �p ′ C))

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma subforms-from-abs:
assumes A �p λxα. B
shows (A = λxα. B ∧ p = []) ∨ (A 6= λxα. B ∧ (∃ p ′ ∈ positions B. p = « # p ′ ∧ A �p ′ B))

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

15

lemma leftmost-subform-in-generalized-app:
shows B �replicate (length As) « �Q? B As
by (induction As arbitrary: B) (simp-all, metis replicate-append-same subform-at-subforms-app(1))

lemma self-subform-is-at-top:
assumes A �p A
shows p = []
using assms and strict-subform-is-not-form by blast

lemma at-top-is-self-subform:
assumes A �[] B
shows A = B
using assms by (auto elim: is-subform-at.elims)

lemma is-subform-at-uniqueness:
assumes B �p A and C �p A
shows B = C
using assms by (induction A arbitrary: p B C) (auto elim: is-subform-at.elims)

lemma is-subform-at-existence:
assumes p ∈ positions A
obtains B where B �p A
using assms by (induction A arbitrary: p) (auto elim: is-subform-at.elims, blast+)

lemma is-subform-at-transitivity:
assumes A �p1 B and B �p2 C
shows A �p2 @ p1

C
using assms by (induction B p2 C arbitrary: A p1 rule: is-subform-at.induct) simp-all

lemma subform-nesting:
assumes strict-prefix p ′ p
and B �p ′ A
and C �p A
shows C �drop (length p ′) p B

proof −
from assms(1) have p 6= []

using strict-prefix-simps(1) by blast
with assms(1 ,3) show ?thesis
proof (induction p arbitrary: C rule: rev-induct)

case Nil
then show ?case

by blast
next

case (snoc d p ′′)
then show ?case
proof (cases p ′′ = p ′)

case True
obtain A ′ where C �[d] A ′ and A ′ �p ′ A

16

by (fact superform-existence[OF snoc.prems(2)[unfolded True]])
from ‹A ′ �p ′ A› and assms(2) have A ′ = B

by (rule is-subform-at-uniqueness)
with ‹C �[d] A ′› have C �[d] B

by (simp only:)
with True show ?thesis

by auto
next

case False
with snoc.prems(1) have strict-prefix p ′ p ′′

using prefix-order .dual-order .strict-implies-order by fastforce
then have p ′′ 6= []

by force
moreover from snoc.prems(2) obtain A ′ where C �[d] A ′ and A ′ �p ′′ A

using superform-existence by blast
ultimately have A ′ �drop (length p ′) p ′′ B

using snoc.IH and ‹strict-prefix p ′ p ′′› by blast
with ‹C �[d] A ′› and snoc.prems(1) show ?thesis

using is-subform-at-transitivity and prefix-length-less by fastforce
qed

qed
qed

lemma loop-subform-impossibility:
assumes B �p A
and strict-prefix p ′ p
shows ¬ B �p ′ A
using assms and prefix-length-less and self-subform-is-at-top and subform-nesting by fastforce

lemma nested-subform-size-decreases:
assumes strict-prefix p ′ p
and B �p ′ A
and C �p A
shows form-size C < form-size B

proof −
from assms(1) have p 6= []

by force
have C �drop (length p ′) p B

by (fact subform-nesting[OF assms])
moreover have drop (length p ′) p 6= []

using prefix-length-less[OF assms(1)] by force
ultimately show ?thesis

using subform-size-decrease by simp
qed

definition is-subform :: form ⇒ form ⇒ bool (infix � 50) where
[simp]: A � B = (∃ p. A �p B)

17

instantiation form :: ord
begin

definition
A ≤ B ←→ A � B

definition
A < B ←→ A � B ∧ A 6= B

instance ..

end

instance form :: preorder
proof (standard, unfold less-eq-form-def less-form-def)

fix A
show A � A

unfolding is-subform-def using is-subform-at.simps(1) by blast
next

fix A and B and C
assume A � B and B � C
then show A � C

unfolding is-subform-def using is-subform-at-transitivity by blast
next

fix A and B
show A � B ∧ A 6= B ←→ A � B ∧ ¬ B � A

unfolding is-subform-def
by (metis is-subform-at.simps(1) not-less-iff-gr-or-eq subform-size-decrease)

qed

lemma position-subform-existence-equivalence:
shows p ∈ positions A ←→ (∃A ′. A ′ �p A)
by (meson is-subform-at-existence is-subform-implies-in-positions)

lemma position-prefix-is-position:
assumes p ∈ positions A and prefix p ′ p
shows p ′ ∈ positions A

using assms proof (induction p rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc d p ′′)
from snoc.prems(1) have p ′′ ∈ positions A

by (meson position-subform-existence-equivalence superform-existence)
with snoc.prems(1 ,2) show ?case

using snoc.IH by fastforce
qed

18

2.7 Free and bound variables
consts vars :: ′a ⇒ var set

overloading
vars-form ≡ vars :: form ⇒ var set
vars-form-set ≡ vars :: form set ⇒ var set

begin

fun vars-form :: form ⇒ var set where
vars-form (xα) = {(x, α)}
| vars-form ({|c|}α) = {}
| vars-form (A � B) = vars-form A ∪ vars-form B
| vars-form (λxα. A) = vars-form A ∪ {(x, α)}

fun vars-form-set :: form set ⇒ var set where
vars-form-set S = (

⋃
A ∈ S . vars A)

end

abbreviation var-names :: ′a ⇒ nat set where
var-names X ≡ var-name ‘ (vars X)

lemma vars-form-finiteness:
fixes A :: form
shows finite (vars A)
by (induction rule: vars-form.induct) simp-all

lemma vars-form-set-finiteness:
fixes S :: form set
assumes finite S
shows finite (vars S)
using assms unfolding vars-form-set.simps using vars-form-finiteness by blast

lemma form-var-names-finiteness:
fixes A :: form
shows finite (var-names A)
using vars-form-finiteness by blast

lemma form-set-var-names-finiteness:
fixes S :: form set
assumes finite S
shows finite (var-names S)
using assms and vars-form-set-finiteness by blast

consts free-vars :: ′a ⇒ var set

overloading
free-vars-form ≡ free-vars :: form ⇒ var set
free-vars-form-set ≡ free-vars :: form set ⇒ var set

19

begin

fun free-vars-form :: form ⇒ var set where
free-vars-form (xα) = {(x, α)}
| free-vars-form ({|c|}α) = {}
| free-vars-form (A � B) = free-vars-form A ∪ free-vars-form B
| free-vars-form (λxα. A) = free-vars-form A − {(x, α)}

fun free-vars-form-set :: form set ⇒ var set where
free-vars-form-set S = (

⋃
A ∈ S . free-vars A)

end

abbreviation free-var-names :: ′a ⇒ nat set where
free-var-names X ≡ var-name ‘ (free-vars X)

lemma free-vars-form-finiteness:
fixes A :: form
shows finite (free-vars A)
by (induction rule: free-vars-form.induct) simp-all

lemma free-vars-of-generalized-app:
shows free-vars (�Q? A Bs) = free-vars A ∪ free-vars (lset Bs)
by (induction Bs arbitrary: A) auto

lemma free-vars-of-generalized-abs:
shows free-vars (λQ? vs A) = free-vars A − lset vs
by (induction vs arbitrary: A) auto

lemma free-vars-in-all-vars:
fixes A :: form
shows free-vars A ⊆ vars A

proof (induction A)
case (FVar v)
then show ?case

using surj-pair [of v] by force
next

case (FCon k)
then show ?case

using surj-pair [of k] by force
next

case (FApp A B)
have free-vars (A � B) = free-vars A ∪ free-vars B

using free-vars-form.simps(3) .
also from FApp.IH have . . . ⊆ vars A ∪ vars B

by blast
also have . . . = vars (A � B)

using vars-form.simps(3)[symmetric] .
finally show ?case

20

by (simp only:)
next

case (FAbs v A)
then show ?case

using surj-pair [of v] by force
qed

lemma free-vars-in-all-vars-set:
fixes S :: form set
shows free-vars S ⊆ vars S
using free-vars-in-all-vars by fastforce

lemma singleton-form-set-vars:
shows vars {FVar y} = {y}
using surj-pair [of y] by force

fun bound-vars where
bound-vars (xα) = {}
| bound-vars ({|c|}α) = {}
| bound-vars (B � C) = bound-vars B ∪ bound-vars C
| bound-vars (λxα. B) = {(x, α)} ∪ bound-vars B

lemma vars-is-free-and-bound-vars:
shows vars A = free-vars A ∪ bound-vars A
by (induction A) auto

fun binders-at :: form ⇒ position ⇒ var set where
binders-at (A � B) (« # p) = binders-at A p
| binders-at (A � B) (» # p) = binders-at B p
| binders-at (λxα. A) (« # p) = {(x, α)} ∪ binders-at A p
| binders-at A [] = {}
| binders-at A p = {}

lemma binders-at-concat:
assumes A ′ �p A
shows binders-at A (p @ p ′) = binders-at A p ∪ binders-at A ′ p ′

using assms by (induction p A rule: is-subform-at.induct) auto

2.8 Free and bound occurrences
definition occurs-at :: var ⇒ position ⇒ form ⇒ bool where
[iff]: occurs-at v p B ←→ (FVar v �p B)

lemma occurs-at-alt-def :
shows occurs-at v [] (FVar v ′) ←→ (v = v ′)
and occurs-at v p ({|c|}α) ←→ False
and occurs-at v (« # p) (A � B) ←→ occurs-at v p A
and occurs-at v (» # p) (A � B) ←→ occurs-at v p B
and occurs-at v (« # p) (λxα. A) ←→ occurs-at v p A

21

and occurs-at v (d # p) (FVar v ′) ←→ False
and occurs-at v (» # p) (λxα. A) ←→ False
and occurs-at v [] (A � B) ←→ False
and occurs-at v [] (λxα. A) ←→ False
by (fastforce elim: is-subform-at.elims)+

definition occurs :: var ⇒ form ⇒ bool where
[iff]: occurs v B ←→ (∃ p ∈ positions B. occurs-at v p B)

lemma occurs-in-vars:
assumes occurs v A
shows v ∈ vars A
using assms by (induction A) force+

abbreviation strict-prefixes where
strict-prefixes xs ≡ [ys ← prefixes xs. ys 6= xs]

definition in-scope-of-abs :: var ⇒ position ⇒ form ⇒ bool where
[iff]: in-scope-of-abs v p B ←→ (

p 6= [] ∧
(
∃ p ′ ∈ lset (strict-prefixes p).

case (subform-at B p ′) of
Some (FAbs v ′ -) ⇒ v = v ′

| - ⇒ False
)

)

lemma in-scope-of-abs-alt-def :
shows

in-scope-of-abs v p B
←→
p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

proof
assume in-scope-of-abs v p B
then show p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

by (induction rule: subform-at.induct) force+
next

assume p 6= [] ∧ (∃ p ′ ∈ positions B. ∃C . strict-prefix p ′ p ∧ FAbs v C �p ′ B)

then show in-scope-of-abs v p B
by (induction rule: subform-at.induct) fastforce+

qed

lemma in-scope-of-abs-in-left-app:
shows in-scope-of-abs v (« # p) (A � B) ←→ in-scope-of-abs v p A
by force

lemma in-scope-of-abs-in-right-app:
shows in-scope-of-abs v (» # p) (A � B) ←→ in-scope-of-abs v p B

22

by force

lemma in-scope-of-abs-in-app:
assumes in-scope-of-abs v p (A � B)
obtains p ′ where (p = « # p ′ ∧ in-scope-of-abs v p ′ A) ∨ (p = » # p ′ ∧ in-scope-of-abs v p ′ B)

proof −
from assms obtain d and p ′ where p = d # p ′

unfolding in-scope-of-abs-def by (meson list.exhaust)
then show ?thesis
proof (cases d)

case Left
with assms and ‹p = d # p ′› show ?thesis

using that and in-scope-of-abs-in-left-app by simp
next

case Right
with assms and ‹p = d # p ′› show ?thesis

using that and in-scope-of-abs-in-right-app by simp
qed

qed

lemma not-in-scope-of-abs-in-app:
assumes
∀ p ′.
(p = « # p ′ −→ ¬ in-scope-of-abs v ′ p ′ A)
∧
(p = » # p ′ −→ ¬ in-scope-of-abs v ′ p ′ B)

shows ¬ in-scope-of-abs v ′ p (A � B)
using assms and in-scope-of-abs-in-app by metis

lemma in-scope-of-abs-in-abs:
shows in-scope-of-abs v (« # p) (FAbs v ′ B) ←→ v = v ′ ∨ in-scope-of-abs v p B

proof
assume in-scope-of-abs v (« # p) (FAbs v ′ B)
then obtain p ′ and C

where p ′ ∈ positions (FAbs v ′ B)
and strict-prefix p ′ (« # p)
and FAbs v C �p ′ FAbs v ′ B
unfolding in-scope-of-abs-alt-def by blast

then show v = v ′ ∨ in-scope-of-abs v p B
proof (cases p ′)

case Nil
with ‹FAbs v C �p ′ FAbs v ′ B› have v = v ′

by auto
then show ?thesis

by simp
next

case (Cons d p ′′)
with ‹strict-prefix p ′ (« # p)› have d = «

by simp

23

from ‹FAbs v C �p ′ FAbs v ′ B› and Cons have p ′′ ∈ positions B
by
(cases (FAbs v C , p ′, FAbs v ′ B) rule: is-subform-at.cases)
(simp-all add: is-subform-implies-in-positions)

moreover from ‹FAbs v C �p ′ FAbs v ′ B› and Cons and ‹d = «› have FAbs v C �p ′′ B
by (metis is-subform-at.simps(4) old.prod.exhaust)

moreover from ‹strict-prefix p ′ (« # p)› and Cons have strict-prefix p ′′ p
by auto

ultimately have in-scope-of-abs v p B
using in-scope-of-abs-alt-def by auto

then show ?thesis
by simp

qed
next

assume v = v ′ ∨ in-scope-of-abs v p B
then show in-scope-of-abs v (« # p) (FAbs v ′ B)

unfolding in-scope-of-abs-alt-def
using position-subform-existence-equivalence and surj-pair [of v ′]
by force

qed

lemma not-in-scope-of-abs-in-var :
shows ¬ in-scope-of-abs v p (FVar v ′)
unfolding in-scope-of-abs-def by (cases p) simp-all

lemma in-scope-of-abs-in-vars:
assumes in-scope-of-abs v p A
shows v ∈ vars A

using assms proof (induction A arbitrary: p)
case (FVar v ′)
then show ?case

using not-in-scope-of-abs-in-var by blast
next

case (FCon k)
then show ?case

using in-scope-of-abs-alt-def by (blast elim: is-subform-at.elims(2))
next

case (FApp B C)
from FApp.prems obtain d and p ′ where p = d # p ′

unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
then show ?case
proof (cases d)

case Left
with FApp.prems and ‹p = d # p ′› have in-scope-of-abs v p ′ B

using in-scope-of-abs-in-left-app by blast
then have v ∈ vars B

by (fact FApp.IH (1))
then show ?thesis

by simp

24

next
case Right
with FApp.prems and ‹p = d # p ′› have in-scope-of-abs v p ′ C

using in-scope-of-abs-in-right-app by blast
then have v ∈ vars C

by (fact FApp.IH (2))
then show ?thesis

by simp
qed

next
case (FAbs v ′ B)
then show ?case
proof (cases v = v ′)

case True
then show ?thesis

using surj-pair [of v] by force
next

case False
with FAbs.prems obtain p ′ and d where p = d # p ′

unfolding in-scope-of-abs-def by (meson neq-Nil-conv)
then show ?thesis
proof (cases d)

case Left
with FAbs.prems and False and ‹p = d # p ′› have in-scope-of-abs v p ′ B

using in-scope-of-abs-in-abs by blast
then have v ∈ vars B

by (fact FAbs.IH)
then show ?thesis

using surj-pair [of v ′] by force
next

case Right
with FAbs.prems and ‹p = d # p ′› and False show ?thesis

by (cases rule: is-subform-at.cases) auto
qed

qed
qed

lemma binders-at-alt-def :
assumes p ∈ positions A
shows binders-at A p = {v | v. in-scope-of-abs v p A}
using assms and in-set-prefixes by (induction rule: binders-at.induct) auto

definition is-bound-at :: var ⇒ position ⇒ form ⇒ bool where
[iff]: is-bound-at v p B ←→ occurs-at v p B ∧ in-scope-of-abs v p B

lemma not-is-bound-at-in-var :
shows ¬ is-bound-at v p (FVar v ′)
by (fastforce elim: is-subform-at.elims(2))

25

lemma not-is-bound-at-in-con:
shows ¬ is-bound-at v p (FCon k)
by (fastforce elim: is-subform-at.elims(2))

lemma is-bound-at-in-left-app:
shows is-bound-at v (« # p) (B � C) ←→ is-bound-at v p B
by auto

lemma is-bound-at-in-right-app:
shows is-bound-at v (» # p) (B � C) ←→ is-bound-at v p C
by auto

lemma is-bound-at-from-app:
assumes is-bound-at v p (B � C)
obtains p ′ where (p = « # p ′ ∧ is-bound-at v p ′ B) ∨ (p = » # p ′ ∧ is-bound-at v p ′ C)

proof −
from assms obtain d and p ′ where p = d # p ′

using subforms-from-app by blast
then show ?thesis
proof (cases d)

case Left
with assms and that and ‹p = d # p ′› show ?thesis

using is-bound-at-in-left-app by simp
next

case Right
with assms and that and ‹p = d # p ′› show ?thesis

using is-bound-at-in-right-app by simp
qed

qed

lemma is-bound-at-from-abs:
assumes is-bound-at v (« # p) (FAbs v ′ B)
shows v = v ′ ∨ is-bound-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-bound-at-from-absE :
assumes is-bound-at v p (FAbs v ′ B)
obtains p ′ where p = « # p ′ and v = v ′ ∨ is-bound-at v p ′ B

proof −
obtain x and α where v ′ = (x, α)

by fastforce
with assms obtain p ′ where p = « # p ′

using subforms-from-abs by blast
with assms and that show ?thesis

using is-bound-at-from-abs by simp
qed

lemma is-bound-at-to-abs:
assumes (v = v ′ ∧ occurs-at v p B) ∨ is-bound-at v p B

26

shows is-bound-at v (« # p) (FAbs v ′ B)
unfolding is-bound-at-def proof

from assms(1) show occurs-at v (« # p) (FAbs v ′ B)
using surj-pair [of v ′] by force

from assms show in-scope-of-abs v (« # p) (FAbs v ′ B)
using in-scope-of-abs-in-abs by auto

qed

lemma is-bound-at-in-bound-vars:
assumes p ∈ positions A
and is-bound-at v p A ∨ v ∈ binders-at A p
shows v ∈ bound-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C)
from FApp.prems(2) consider (a) is-bound-at v p (B � C) | (b) v ∈ binders-at (B � C) p

by blast
then show ?case
proof cases

case a
then have p 6= []

using occurs-at-alt-def (8) by blast
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C)›
consider (a1) p = « # p ′ and p ′ ∈ positions B | (a2) p = » # p ′ and p ′ ∈ positions C

by force
then show ?thesis
proof cases

case a1

from a1(1) and ‹is-bound-at v p (B � C)› have is-bound-at v p ′ B
using is-bound-at-in-left-app by blast

with a1(2) have v ∈ bound-vars B
using FApp.IH (1) by blast

then show ?thesis
by simp

next
case a2

from a2(1) and ‹is-bound-at v p (B � C)› have is-bound-at v p ′ C
using is-bound-at-in-right-app by blast

with a2(2) have v ∈ bound-vars C
using FApp.IH (2) by blast

then show ?thesis
by simp

qed
next

case b
then have p 6= []

by force
then obtain d and p ′ where p = d # p ′

27

by (meson list.exhaust)
with ‹p ∈ positions (B � C)›
consider (b1) p = « # p ′ and p ′ ∈ positions B | (b2) p = » # p ′ and p ′ ∈ positions C

by force
then show ?thesis
proof cases

case b1
from b1(1) and ‹v ∈ binders-at (B � C) p› have v ∈ binders-at B p ′

by force
with b1(2) have v ∈ bound-vars B

using FApp.IH (1) by blast
then show ?thesis

by simp
next

case b2
from b2(1) and ‹v ∈ binders-at (B � C) p› have v ∈ binders-at C p ′

by force
with b2(2) have v ∈ bound-vars C

using FApp.IH (2) by blast
then show ?thesis

by simp
qed

qed
next

case (FAbs v ′ B)
from FAbs.prems(2) consider (a) is-bound-at v p (FAbs v ′ B) | (b) v ∈ binders-at (FAbs v ′ B) p

by blast
then show ?case
proof cases

case a
then have p 6= []

using occurs-at-alt-def (9) by force
with ‹p ∈ positions (FAbs v ′ B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
from ‹p = « # p ′› and ‹is-bound-at v p (FAbs v ′ B)› have v = v ′ ∨ is-bound-at v p ′ B

using is-bound-at-from-abs by blast
then consider (a1) v = v ′ | (a2) is-bound-at v p ′ B

by blast
then show ?thesis
proof cases

case a1

then show ?thesis
using surj-pair [of v ′] by fastforce

next
case a2

then have v ∈ bound-vars B
using ‹p ′ ∈ positions B› and FAbs.IH by blast

then show ?thesis
using surj-pair [of v ′] by fastforce

28

qed
next

case b
then have p 6= []

by force
with FAbs.prems(1) obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
with b consider (b1) v = v ′ | (b2) v ∈ binders-at B p ′

by (cases FAbs v ′ B rule: positions.cases) fastforce+
then show ?thesis
proof cases

case b1
then show ?thesis

using surj-pair [of v ′] by fastforce
next

case b2
then have v ∈ bound-vars B

using ‹p ′ ∈ positions B› and FAbs.IH by blast
then show ?thesis

using surj-pair [of v ′] by fastforce
qed

qed
qed fastforce+

lemma bound-vars-in-is-bound-at:
assumes v ∈ bound-vars A
obtains p where p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p

using assms proof (induction A arbitrary: thesis rule: bound-vars.induct)
case (3 B C)
from ‹v ∈ bound-vars (B � C)› consider (a) v ∈ bound-vars B | (b) v ∈ bound-vars C

by fastforce
then show ?case
proof cases

case a
with 3 .IH (1) obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by blast
from ‹p ∈ positions B› have « # p ∈ positions (B � C)

by simp
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (a1) is-bound-at v p B | (a2) v ∈ binders-at B p

by blast
then show ?thesis
proof cases

case a1

then have is-bound-at v (« # p) (B � C)
using is-bound-at-in-left-app by blast

then show ?thesis
using 3 .prems(1) and is-subform-implies-in-positions by blast

next

29

case a2

then have v ∈ binders-at (B � C) (« # p)
by simp

then show ?thesis
using 3 .prems(1) and ‹« # p ∈ positions (B � C)› by blast

qed
next

case b
with 3 .IH (2) obtain p where p ∈ positions C and is-bound-at v p C ∨ v ∈ binders-at C p

by blast
from ‹p ∈ positions C › have » # p ∈ positions (B � C)

by simp
from ‹is-bound-at v p C ∨ v ∈ binders-at C p›
consider (b1) is-bound-at v p C | (b2) v ∈ binders-at C p

by blast
then show ?thesis
proof cases

case b1
then have is-bound-at v (» # p) (B � C)

using is-bound-at-in-right-app by blast
then show ?thesis

using 3 .prems(1) and is-subform-implies-in-positions by blast
next

case b2
then have v ∈ binders-at (B � C) (» # p)

by simp
then show ?thesis

using 3 .prems(1) and ‹» # p ∈ positions (B � C)› by blast
qed

qed
next

case (4 x α B)
from ‹v ∈ bound-vars (λxα. B)› consider (a) v = (x, α) | (b) v ∈ bound-vars B

by force
then show ?case
proof cases

case a
then have v ∈ binders-at (λxα. B) [«]

by simp
then show ?thesis

using 4 .prems(1) and is-subform-implies-in-positions by fastforce
next

case b
with 4 .IH (1) obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by blast
from ‹p ∈ positions B› have « # p ∈ positions (λxα. B)

by simp
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (b1) is-bound-at v p B | (b2) v ∈ binders-at B p

30

by blast
then show ?thesis
proof cases

case b1
then have is-bound-at v (« # p) (λxα. B)

using is-bound-at-to-abs by blast
then show ?thesis

using 4 .prems(1) and ‹« # p ∈ positions (λxα. B)› by blast
next

case b2
then have v ∈ binders-at (λxα. B) (« # p)

by simp
then show ?thesis

using 4 .prems(1) and ‹« # p ∈ positions (λxα. B)› by blast
qed

qed
qed simp-all

lemma bound-vars-alt-def :
shows bound-vars A = {v | v p. p ∈ positions A ∧ (is-bound-at v p A ∨ v ∈ binders-at A p)}
using bound-vars-in-is-bound-at and is-bound-at-in-bound-vars
by (intro subset-antisym subsetI CollectI , metis) blast

definition is-free-at :: var ⇒ position ⇒ form ⇒ bool where
[iff]: is-free-at v p B ←→ occurs-at v p B ∧ ¬ in-scope-of-abs v p B

lemma is-free-at-in-var :
shows is-free-at v [] (FVar v ′) ←→ v = v ′

by simp

lemma not-is-free-at-in-con:
shows ¬ is-free-at v [] ({|c|}α)
by simp

lemma is-free-at-in-left-app:
shows is-free-at v (« # p) (B � C) ←→ is-free-at v p B
by auto

lemma is-free-at-in-right-app:
shows is-free-at v (» # p) (B � C) ←→ is-free-at v p C
by auto

lemma is-free-at-from-app:
assumes is-free-at v p (B � C)
obtains p ′ where (p = « # p ′ ∧ is-free-at v p ′ B) ∨ (p = » # p ′ ∧ is-free-at v p ′ C)

proof −
from assms obtain d and p ′ where p = d # p ′

using subforms-from-app by blast
then show ?thesis

31

proof (cases d)
case Left
with assms and that and ‹p = d # p ′› show ?thesis

using is-free-at-in-left-app by blast
next

case Right
with assms and that and ‹p = d # p ′› show ?thesis

using is-free-at-in-right-app by blast
qed

qed

lemma is-free-at-from-abs:
assumes is-free-at v (« # p) (FAbs v ′ B)
shows is-free-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-free-at-from-absE :
assumes is-free-at v p (FAbs v ′ B)
obtains p ′ where p = « # p ′ and is-free-at v p ′ B

proof −
obtain x and α where v ′ = (x, α)

by fastforce
with assms obtain p ′ where p = « # p ′

using subforms-from-abs by blast
with assms and that show ?thesis

using is-free-at-from-abs by blast
qed

lemma is-free-at-to-abs:
assumes is-free-at v p B and v 6= v ′

shows is-free-at v (« # p) (FAbs v ′ B)
unfolding is-free-at-def proof

from assms(1) show occurs-at v (« # p) (FAbs v ′ B)
using surj-pair [of v ′] by fastforce

from assms show ¬ in-scope-of-abs v (« # p) (FAbs v ′ B)
unfolding is-free-at-def using in-scope-of-abs-in-abs by presburger

qed

lemma is-free-at-in-free-vars:
assumes p ∈ positions A and is-free-at v p A
shows v ∈ free-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C)
from ‹is-free-at v p (B � C)› have p 6= []

using occurs-at-alt-def (8) by blast
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C)›
consider (a) p = « # p ′ and p ′ ∈ positions B | (b) p = » # p ′ and p ′ ∈ positions C

32

by force
then show ?case
proof cases

case a
from a(1) and ‹is-free-at v p (B � C)› have is-free-at v p ′ B

using is-free-at-in-left-app by blast
with a(2) have v ∈ free-vars B

using FApp.IH (1) by blast
then show ?thesis

by simp
next

case b
from b(1) and ‹is-free-at v p (B � C)› have is-free-at v p ′ C

using is-free-at-in-right-app by blast
with b(2) have v ∈ free-vars C

using FApp.IH (2) by blast
then show ?thesis

by simp
qed

next
case (FAbs v ′ B)
from ‹is-free-at v p (FAbs v ′ B)› have p 6= []

using occurs-at-alt-def (9) by force
with ‹p ∈ positions (FAbs v ′ B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by (cases FAbs v ′ B rule: positions.cases) fastforce+
moreover from ‹p = « # p ′› and ‹is-free-at v p (FAbs v ′ B)› have is-free-at v p ′ B

using is-free-at-from-abs by blast
ultimately have v ∈ free-vars B

using FAbs.IH by simp
moreover from ‹p = « # p ′› and ‹is-free-at v p (FAbs v ′ B)› have v 6= v ′

using in-scope-of-abs-in-abs by blast
ultimately show ?case

using surj-pair [of v ′] by force
qed fastforce+

lemma free-vars-in-is-free-at:
assumes v ∈ free-vars A
obtains p where p ∈ positions A and is-free-at v p A

using assms proof (induction A arbitrary: thesis rule: free-vars-form.induct)
case (3 A B)
from ‹v ∈ free-vars (A � B)› consider (a) v ∈ free-vars A | (b) v ∈ free-vars B

by fastforce
then show ?case
proof cases

case a
with 3 .IH (1) obtain p where p ∈ positions A and is-free-at v p A

by blast
from ‹p ∈ positions A› have « # p ∈ positions (A � B)

by simp

33

moreover from ‹is-free-at v p A› have is-free-at v (« # p) (A � B)
using is-free-at-in-left-app by blast

ultimately show ?thesis
using 3 .prems(1) by presburger

next
case b
with 3 .IH (2) obtain p where p ∈ positions B and is-free-at v p B

by blast
from ‹p ∈ positions B› have » # p ∈ positions (A � B)

by simp
moreover from ‹is-free-at v p B› have is-free-at v (» # p) (A � B)

using is-free-at-in-right-app by blast
ultimately show ?thesis

using 3 .prems(1) by presburger
qed

next
case (4 x α A)
from ‹v ∈ free-vars (λxα. A)› have v ∈ free-vars A − {(x, α)} and v 6= (x, α)

by simp-all
then have v ∈ free-vars A

by blast
with 4 .IH obtain p where p ∈ positions A and is-free-at v p A

by blast
from ‹p ∈ positions A› have « # p ∈ positions (λxα. A)

by simp
moreover from ‹is-free-at v p A› and ‹v 6= (x, α)› have is-free-at v (« # p) (λxα. A)

using is-free-at-to-abs by blast
ultimately show ?case

using 4 .prems(1) by presburger
qed simp-all

lemma free-vars-alt-def :
shows free-vars A = {v | v p. p ∈ positions A ∧ is-free-at v p A}
using free-vars-in-is-free-at and is-free-at-in-free-vars
by (intro subset-antisym subsetI CollectI , metis) blast

In the following definition, note that the variable immeditately preceded by λ counts as a
bound variable:
definition is-bound :: var ⇒ form ⇒ bool where
[iff]: is-bound v B ←→ (∃ p ∈ positions B. is-bound-at v p B ∨ v ∈ binders-at B p)

lemma is-bound-in-app-homomorphism:
shows is-bound v (A � B) ←→ is-bound v A ∨ is-bound v B

proof
assume is-bound v (A � B)
then obtain p where p ∈ positions (A � B) and is-bound-at v p (A � B) ∨ v ∈ binders-at (A � B) p

by auto
then have p 6= []

by fastforce

34

with ‹p ∈ positions (A � B)› obtain p ′ and d where p = d # p ′

by auto
from ‹is-bound-at v p (A � B) ∨ v ∈ binders-at (A � B) p›
consider (a) is-bound-at v p (A � B) | (b) v ∈ binders-at (A � B) p

by blast
then show is-bound v A ∨ is-bound v B
proof cases

case a
then show ?thesis
proof (cases d)

case Left
then have p ′ ∈ positions A

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹is-bound-at v p (A � B)› have occurs-at v p ′ A

using Left and ‹p = d # p ′› and is-subform-at.simps(2) by force
moreover from ‹is-bound-at v p (A � B)› have in-scope-of-abs v p ′ A

using Left and ‹p = d # p ′› by fastforce
ultimately show ?thesis

by auto
next

case Right
then have p ′ ∈ positions B

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹is-bound-at v p (A � B)› have occurs-at v p ′ B

using Right and ‹p = d # p ′› and is-subform-at.simps(3) by force
moreover from ‹is-bound-at v p (A � B)› have in-scope-of-abs v p ′ B

using Right and ‹p = d # p ′› by fastforce
ultimately show ?thesis

by auto
qed

next
case b
then show ?thesis
proof (cases d)

case Left
then have p ′ ∈ positions A

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹v ∈ binders-at (A � B) p› have v ∈ binders-at A p ′

using Left and ‹p = d # p ′› by force
ultimately show ?thesis

by auto
next

case Right
then have p ′ ∈ positions B

using ‹p = d # p ′› and ‹p ∈ positions (A � B)› by fastforce
moreover from ‹v ∈ binders-at (A � B) p› have v ∈ binders-at B p ′

using Right and ‹p = d # p ′› by force
ultimately show ?thesis

by auto

35

qed
qed

next
assume is-bound v A ∨ is-bound v B
then show is-bound v (A � B)
proof (rule disjE)

assume is-bound v A
then obtain p where p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p

by auto
from ‹p ∈ positions A› have « # p ∈ positions (A � B)

by auto
from ‹is-bound-at v p A ∨ v ∈ binders-at A p›
consider (a) is-bound-at v p A | (b) v ∈ binders-at A p

by blast
then show is-bound v (A � B)
proof cases

case a
then have occurs-at v (« # p) (A � B)

by auto
moreover from a have is-bound-at v (« # p) (A � B)

by force
ultimately show is-bound v (A � B)

using ‹« # p ∈ positions (A � B)› by blast
next

case b
then have v ∈ binders-at (A � B) (« # p)

by auto
then show is-bound v (A � B)

using ‹« # p ∈ positions (A � B)› by blast
qed

next
assume is-bound v B
then obtain p where p ∈ positions B and is-bound-at v p B ∨ v ∈ binders-at B p

by auto
from ‹p ∈ positions B› have » # p ∈ positions (A � B)

by auto
from ‹is-bound-at v p B ∨ v ∈ binders-at B p›
consider (a) is-bound-at v p B | (b) v ∈ binders-at B p

by blast
then show is-bound v (A � B)
proof cases

case a
then have occurs-at v (» # p) (A � B)

by auto
moreover from a have is-bound-at v (» # p) (A � B)

by force
ultimately show is-bound v (A � B)

using ‹» # p ∈ positions (A � B)› by blast
next

36

case b
then have v ∈ binders-at (A � B) (» # p)

by auto
then show is-bound v (A � B)

using ‹» # p ∈ positions (A � B)› by blast
qed

qed
qed

lemma is-bound-in-abs-body:
assumes is-bound v A
shows is-bound v (λxα. A)

using assms unfolding is-bound-def proof
fix p
assume p ∈ positions A and is-bound-at v p A ∨ v ∈ binders-at A p
moreover from ‹p ∈ positions A› have « # p ∈ positions (λxα. A)

by simp
ultimately consider (a) is-bound-at v p A | (b) v ∈ binders-at A p

by blast
then show ∃ p ∈ positions (λxα. A). is-bound-at v p (λxα. A) ∨ v ∈ binders-at (λxα. A) p
proof cases

case a
then have is-bound-at v (« # p) (λxα. A)

by force
with ‹« # p ∈ positions (λxα. A)› show ?thesis

by blast
next

case b
then have v ∈ binders-at (λxα. A) (« # p)

by simp
with ‹« # p ∈ positions (λxα. A)› show ?thesis

by blast
qed

qed

lemma absent-var-is-not-bound:
assumes v /∈ vars A
shows ¬ is-bound v A
using assms and binders-at-alt-def and in-scope-of-abs-in-vars by blast

lemma bound-vars-alt-def2 :
shows bound-vars A = {v ∈ vars A. is-bound v A}
unfolding bound-vars-alt-def using absent-var-is-not-bound by fastforce

definition is-free :: var ⇒ form ⇒ bool where
[iff]: is-free v B ←→ (∃ p ∈ positions B. is-free-at v p B)

37

2.9 Free variables for a formula in another formula
definition is-free-for :: form ⇒ var ⇒ form ⇒ bool where
[iff]: is-free-for A v B ←→
(
∀ v ′ ∈ free-vars A.
∀ p ∈ positions B.

is-free-at v p B −→ ¬ in-scope-of-abs v ′ p B
)

lemma is-free-for-absent-var [intro]:
assumes v /∈ vars B
shows is-free-for A v B
using assms and occurs-def and is-free-at-def and occurs-in-vars by blast

lemma is-free-for-in-var [intro]:
shows is-free-for A v (xα)
using subforms-from-var(2) by force

lemma is-free-for-in-con [intro]:
shows is-free-for A v ({|c|}α)
using subforms-from-con(2) by force

lemma is-free-for-from-app:
assumes is-free-for A v (B � C)
shows is-free-for A v B and is-free-for A v C

proof −
{

fix v ′

assume v ′ ∈ free-vars A
then have ∀ p ∈ positions B. is-free-at v p B −→ ¬ in-scope-of-abs v ′ p B
proof (intro ballI impI)

fix p
assume v ′ ∈ free-vars A and p ∈ positions B and is-free-at v p B
from ‹p ∈ positions B› have « # p ∈ positions (B � C)

by simp
moreover from ‹is-free-at v p B› have is-free-at v (« # p) (B � C)

using is-free-at-in-left-app by blast
ultimately have ¬ in-scope-of-abs v ′ (« # p) (B � C)

using assms and ‹v ′ ∈ free-vars A› by blast
then show ¬ in-scope-of-abs v ′ p B

by simp
qed

}
then show is-free-for A v B

by force
next

{
fix v ′

assume v ′ ∈ free-vars A

38

then have ∀ p ∈ positions C . is-free-at v p C −→ ¬ in-scope-of-abs v ′ p C
proof (intro ballI impI)

fix p
assume v ′ ∈ free-vars A and p ∈ positions C and is-free-at v p C
from ‹p ∈ positions C › have » # p ∈ positions (B � C)

by simp
moreover from ‹is-free-at v p C › have is-free-at v (» # p) (B � C)

using is-free-at-in-right-app by blast
ultimately have ¬ in-scope-of-abs v ′ (» # p) (B � C)

using assms and ‹v ′ ∈ free-vars A› by blast
then show ¬ in-scope-of-abs v ′ p C

by simp
qed

}
then show is-free-for A v C

by force
qed

lemma is-free-for-to-app [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B � C)

unfolding is-free-for-def proof (intro ballI impI)
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions (B � C) and is-free-at v p (B � C)
from ‹is-free-at v p (B � C)› have p 6= []

using occurs-at-alt-def (8) by force
then obtain d and p ′ where p = d # p ′

by (meson list.exhaust)
with ‹p ∈ positions (B � C)›
consider (b) p = « # p ′ and p ′ ∈ positions B | (c) p = » # p ′ and p ′ ∈ positions C

by force
then show ¬ in-scope-of-abs v ′ p (B � C)
proof cases

case b
from b(1) and ‹is-free-at v p (B � C)› have is-free-at v p ′ B

using is-free-at-in-left-app by blast
with assms(1) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions B› have ¬ in-scope-of-abs v ′ p ′ B

by simp
with b(1) show ?thesis

using in-scope-of-abs-in-left-app by simp
next

case c
from c(1) and ‹is-free-at v p (B � C)› have is-free-at v p ′ C

using is-free-at-in-right-app by blast
with assms(2) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions C › have ¬ in-scope-of-abs v ′ p ′ C

by simp
with c(1) show ?thesis

using in-scope-of-abs-in-right-app by simp
qed

39

qed

lemma is-free-for-in-app:
shows is-free-for A v (B � C) ←→ is-free-for A v B ∧ is-free-for A v C
using is-free-for-from-app and is-free-for-to-app by iprover

lemma is-free-for-to-abs [intro]:
assumes is-free-for A v B and (x, α) /∈ free-vars A
shows is-free-for A v (λxα. B)

unfolding is-free-for-def proof (intro ballI impI)
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions (λxα. B) and is-free-at v p (λxα. B)
from ‹is-free-at v p (λxα. B)› have p 6= []

using occurs-at-alt-def (9) by force
with ‹p ∈ positions (λxα. B)› obtain p ′ where p = « # p ′ and p ′ ∈ positions B

by force
then show ¬ in-scope-of-abs v ′ p (λxα. B)
proof −

from ‹p = « # p ′› and ‹is-free-at v p (λxα. B)› have is-free-at v p ′ B
using is-free-at-from-abs by blast

with assms(1) and ‹v ′ ∈ free-vars A› and ‹p ′ ∈ positions B› have ¬ in-scope-of-abs v ′ p ′ B
by force

moreover from ‹v ′ ∈ free-vars A› and assms(2) have v ′ 6= (x, α)
by blast

ultimately show ?thesis
using ‹p = « # p ′› and in-scope-of-abs-in-abs by auto

qed
qed

lemma is-free-for-from-abs:
assumes is-free-for A v (λxα. B) and v 6= (x, α)
shows is-free-for A v B

unfolding is-free-for-def proof (intro ballI impI)
fix v ′ and p
assume v ′ ∈ free-vars A and p ∈ positions B and is-free-at v p B
then show ¬ in-scope-of-abs v ′ p B
proof −

from ‹is-free-at v p B› and assms(2) have is-free-at v (« # p) (λxα. B)
by (rule is-free-at-to-abs)

moreover from ‹p ∈ positions B› have « # p ∈ positions (λxα. B)
by simp

ultimately have ¬ in-scope-of-abs v ′ (« # p) (λxα. B)
using assms and ‹v ′ ∈ free-vars A› by blast

then show ?thesis
using in-scope-of-abs-in-abs by blast

qed
qed

lemma closed-is-free-for [intro]:

40

assumes free-vars A = {}
shows is-free-for A v B
using assms by force

lemma is-free-for-closed-form [intro]:
assumes free-vars B = {}
shows is-free-for A v B
using assms and is-free-at-in-free-vars by blast

lemma is-free-for-alt-def :
shows

is-free-for A v B
←→
(
@ p.
(

p ∈ positions B ∧ is-free-at v p B ∧ p 6= [] ∧
(∃ v ′ ∈ free-vars A. ∃ p ′ C . strict-prefix p ′ p ∧ FAbs v ′ C �p ′ B)

)
)

unfolding is-free-for-def
using in-scope-of-abs-alt-def and is-subform-implies-in-positions
by meson

lemma binding-var-not-free-for-in-abs:
assumes is-free x B and x 6= w
shows ¬ is-free-for (FVar w) x (FAbs w B)

proof (rule ccontr)
assume ¬ ¬ is-free-for (FVar w) x (FAbs w B)
then have
∀ v ′ ∈ free-vars (FVar w). ∀ p ∈ positions (FAbs w B). is-free-at x p (FAbs w B)
−→ ¬ in-scope-of-abs v ′ p (FAbs w B)

by force
moreover have free-vars (FVar w) = {w}

using surj-pair [of w] by force
ultimately have
∀ p ∈ positions (FAbs w B). is-free-at x p (FAbs w B) −→ ¬ in-scope-of-abs w p (FAbs w B)
by blast

moreover from assms(1) obtain p where is-free-at x p B
by fastforce

from this and assms(2) have is-free-at x (« # p) (FAbs w B)
by (rule is-free-at-to-abs)

moreover from this have « # p ∈ positions (FAbs w B)
using is-subform-implies-in-positions by force

ultimately have ¬ in-scope-of-abs w (« # p) (FAbs w B)
by blast

moreover have in-scope-of-abs w (« # p) (FAbs w B)
using in-scope-of-abs-in-abs by blast

ultimately show False

41

by contradiction
qed

lemma absent-var-is-free-for [intro]:
assumes x /∈ vars A
shows is-free-for (FVar x) y A
using in-scope-of-abs-in-vars and assms and surj-pair [of x] by fastforce

lemma form-is-free-for-absent-var [intro]:
assumes x /∈ vars A
shows is-free-for B x A
using assms and occurs-in-vars by fastforce

lemma form-with-free-binder-not-free-for :
assumes v 6= v ′ and v ′ ∈ free-vars A and v ∈ free-vars B
shows ¬ is-free-for A v (FAbs v ′ B)

proof −
from assms(3) obtain p where p ∈ positions B and is-free-at v p B

using free-vars-in-is-free-at by blast
then have « # p ∈ positions (FAbs v ′ B) and is-free-at v (« # p) (FAbs v ′ B)

using surj-pair [of v ′] and is-free-at-to-abs[OF ‹is-free-at v p B› assms(1)] by force+
moreover have in-scope-of-abs v ′ (« # p) (FAbs v ′ B)

using in-scope-of-abs-in-abs by blast
ultimately show ?thesis

using assms(2) by blast
qed

2.10 Replacement of subformulas
inductive

is-replacement-at :: form ⇒ position ⇒ form ⇒ form ⇒ bool
((4-〈|- ← -|〉 � -) [1000 , 0 , 0 , 0] 900)

where
pos-found: A〈|p ← C |〉 � C ′ if p = [] and C = C ′

| replace-left-app: (G � H)〈|« # p ← C |〉 � (G ′ � H) if p ∈ positions G and G〈|p ← C |〉 � G ′

| replace-right-app: (G � H)〈|» # p ← C |〉 � (G � H ′) if p ∈ positions H and H 〈|p ← C |〉 � H ′

| replace-abs: (λxγ . E)〈|« # p ← C |〉 � (λxγ . E ′) if p ∈ positions E and E〈|p ← C |〉 � E ′

lemma is-replacement-at-implies-in-positions:
assumes C 〈|p ← A|〉 � D
shows p ∈ positions C
using assms by (induction rule: is-replacement-at.induct) auto

declare is-replacement-at.intros [intro!]

lemma is-replacement-at-existence:
assumes p ∈ positions C
obtains D where C 〈|p ← A|〉 � D

using assms proof (induction C arbitrary: p thesis)

42

case (FApp C 1 C 2)
from FApp.prems(2) consider
(a) p = []
| (b) ∃ p ′. p = « # p ′ ∧ p ′ ∈ positions C 1

| (c) ∃ p ′. p = » # p ′ ∧ p ′ ∈ positions C 2

by fastforce
then show ?case
proof cases

case a
with FApp.prems(1) show ?thesis

by blast
next

case b
with FApp.prems(1) show ?thesis

using FApp.IH (1) and replace-left-app by meson
next

case c
with FApp.prems(1) show ?thesis

using FApp.IH (2) and replace-right-app by meson
qed

next
case (FAbs v C ′)
from FAbs.prems(2) consider (a) p = [] | (b) ∃ p ′. p = « # p ′ ∧ p ′ ∈ positions C ′

using surj-pair [of v] by fastforce
then show ?case
proof cases

case a
with FAbs.prems(1) show ?thesis

by blast
next

case b
with FAbs.prems(1 ,2) show ?thesis

using FAbs.IH and surj-pair [of v] by blast
qed

qed force+

lemma is-replacement-at-minimal-change:
assumes C 〈|p ← A|〉 � D
shows A �p D
and ∀ p ′ ∈ positions D. ¬ prefix p ′ p ∧ ¬ prefix p p ′ −→ subform-at D p ′ = subform-at C p ′

using assms by (induction rule: is-replacement-at.induct) auto

lemma is-replacement-at-binders:
assumes C 〈|p ← A|〉 � D
shows binders-at D p = binders-at C p
using assms by (induction rule: is-replacement-at.induct) simp-all

lemma is-replacement-at-occurs:
assumes C 〈|p ← A|〉 � D

43

and ¬ prefix p ′ p and ¬ prefix p p ′

shows occurs-at v p ′ C ←→ occurs-at v p ′ D
using assms proof (induction arbitrary: p ′ rule: is-replacement-at.induct)

case pos-found
then show ?case

by simp
next

case replace-left-app
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-left-app.prems(1 ,2) show ?thesis

by (cases d) (use replace-left-app.IH in force)+
qed force

next
case replace-right-app
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-right-app.prems(1 ,2) show ?thesis

by (cases d) (use replace-right-app.IH in force)+
qed force

next
case replace-abs
then show ?case
proof (cases p ′)

case (Cons d p ′′)
with replace-abs.prems(1 ,2) show ?thesis

by (cases d) (use replace-abs.IH in force)+
qed force

qed

lemma fresh-var-replacement-position-uniqueness:
assumes v /∈ vars C
and C 〈|p ← FVar v|〉 � G
and occurs-at v p ′ G
shows p ′ = p

proof (rule ccontr)
assume p ′ 6= p
from assms(2) have occurs-at v p G

by (simp add: is-replacement-at-minimal-change(1))
moreover have ∗: occurs-at v p ′ C ←→ occurs-at v p ′ G if ¬ prefix p ′ p and ¬ prefix p p ′

using assms(2) and that and is-replacement-at-occurs by blast
ultimately show False
proof (cases ¬ prefix p ′ p ∧ ¬ prefix p p ′)

case True
with assms(3) and ∗ have occurs-at v p ′ C

by simp
then have v ∈ vars C

44

using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show ?thesis

by contradiction
next

case False
have FVar v �p G

by (fact is-replacement-at-minimal-change(1)[OF assms(2)])
moreover from assms(3) have FVar v �p ′ G

by simp
ultimately show ?thesis

using ‹p ′ 6= p› and False and loop-subform-impossibility
by (blast dest: prefix-order .antisym-conv2)

qed
qed

lemma is-replacement-at-new-positions:
assumes C 〈|p ← A|〉 � D and prefix p p ′ and p ′ ∈ positions D
obtains p ′′ where p ′ = p @ p ′′ and p ′′ ∈ positions A
using assms by (induction arbitrary: thesis p ′ rule: is-replacement-at.induct, auto) blast+

lemma replacement-override:
assumes C 〈|p ← B|〉 � D and C 〈|p ← A|〉 � F
shows D〈|p ← A|〉 � F

using assms proof (induction arbitrary: F rule: is-replacement-at.induct)
case pos-found
from pos-found.hyps(1) and pos-found.prems have A = F

using is-replacement-at.simps by blast
with pos-found.hyps(1) show ?case

by blast
next

case (replace-left-app p G C G ′ H)
have p ∈ positions G ′

by (
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-left-app.hyps(2)]]

)
from replace-left-app.prems obtain F ′ where F = F ′ � H and G〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹G〈|p ← A|〉 � F ′› have G ′〈|p ← A|〉 � F ′

by (fact replace-left-app.IH)
with ‹p ∈ positions G ′› show ?case

unfolding ‹F = F ′ � H › by blast
next

case (replace-right-app p H C H ′ G)
have p ∈ positions H ′

by
(

fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-right-app.hyps(2)]]

45

)
from replace-right-app.prems obtain F ′ where F = G � F ′ and H 〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹H 〈|p ← A|〉 � F ′› have H ′〈|p ← A|〉 � F ′

by (fact replace-right-app.IH)
with ‹p ∈ positions H ′› show ?case

unfolding ‹F = G � F ′› by blast
next

case (replace-abs p E C E ′ x γ)
have p ∈ positions E ′

by
(

fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-abs.hyps(2)]]

)
from replace-abs.prems obtain F ′ where F = λxγ . F ′ and E〈|p ← A|〉 � F ′

by (fastforce elim: is-replacement-at.cases)
from ‹E〈|p ← A|〉 � F ′› have E ′〈|p ← A|〉 � F ′

by (fact replace-abs.IH)
with ‹p ∈ positions E ′› show ?case

unfolding ‹F = λxγ . F ′› by blast
qed

lemma leftmost-subform-in-generalized-app-replacement:
shows (�Q? C As)〈|replicate (length As) « ← D|〉 � (�Q? D As)
using is-replacement-at-implies-in-positions and replace-left-app
by (induction As arbitrary: D rule: rev-induct) auto

2.11 Logical constants
abbreviation (input) x where x ≡ 0
abbreviation (input) y where y ≡ Suc x
abbreviation (input) z where z ≡ Suc y
abbreviation (input) f where f ≡ Suc z
abbreviation (input) g where g ≡ Suc f
abbreviation (input) h where h ≡ Suc g
abbreviation (input) c where c ≡ Suc h
abbreviation (input) cQ where cQ ≡ Suc c
abbreviation (input) cι where cι ≡ Suc cQ

definition Q-constant-of-type :: type ⇒ con where
[simp]: Q-constant-of-type α = (cQ, α→α→o)

definition iota-constant :: con where
[simp]: iota-constant ≡ (cι, (i→o)→i)

definition Q :: type ⇒ form (Q-) where
[simp]: Qα = FCon (Q-constant-of-type α)

46

definition iota :: form (ι) where
[simp]: ι = FCon iota-constant

definition is-Q-constant-of-type :: con ⇒ type ⇒ bool where
[iff]: is-Q-constant-of-type p α ←→ p = Q-constant-of-type α

definition is-iota-constant :: con ⇒ bool where
[iff]: is-iota-constant p ←→ p = iota-constant

definition is-logical-constant :: con ⇒ bool where
[iff]: is-logical-constant p ←→ (∃β. is-Q-constant-of-type p β) ∨ is-iota-constant p

definition type-of-Q-constant :: con ⇒ type where
[simp]: type-of-Q-constant p = (THE α. is-Q-constant-of-type p α)

lemma constant-cases[case-names non-logical Q-constant ι-constant, cases type: con]:
assumes ¬ is-logical-constant p =⇒ P
and

∧
β. is-Q-constant-of-type p β =⇒ P

and is-iota-constant p =⇒ P
shows P
using assms by blast

2.12 Definitions and abbreviations
definition equality-of-type :: form ⇒ type ⇒ form ⇒ form ((- =-/ -) [103 , 0 , 103] 102) where
[simp]: A =α B = Qα � A � B

definition equivalence :: form ⇒ form ⇒ form (infixl ≡Q 102) where
[simp]: A ≡Q B = A =o B — more modular than the definition in [2]

definition true :: form (To) where
[simp]: To = Qo =o→o→o Qo

definition false :: form (Fo) where
[simp]: Fo = λxo. To =o→o λxo. xo

definition PI :: type ⇒ form (
∏

-) where
[simp]:

∏
α = Qα→o � (λxα. To)

definition forall :: nat ⇒ type ⇒ form ⇒ form ((4∀ --./ -) [0 , 0 , 141] 141) where
[simp]: ∀ xα. A =

∏
α � (λxα. A)

Generalized universal quantification. We define ∀Q
? [x1, . . . , xn] A as ∀ x1. · · · ∀ xn. A:

definition generalized-forall :: var list ⇒ form ⇒ form (∀Q
? - - [141 , 141] 141) where

[simp]: ∀Q
? vs A = foldr (λ(x, α) B. ∀ xα. B) vs A

lemma innermost-subform-in-generalized-forall:
assumes vs 6= []
shows A �foldr (λ- p. [»,«] @ p) vs [] ∀

Q
? vs A

47

using assms by (induction vs) fastforce+

lemma innermost-replacement-in-generalized-forall:
assumes vs 6= []
shows (∀Q

? vs C)〈|foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀Q
? vs B)

using assms proof (induction vs)
case Nil
then show ?case

by blast
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases vs = [])

case True
with ‹v = (x, α)› show ?thesis

unfolding True by force
next

case False
then have foldr (λ-. (@) [»,«]) vs [] ∈ positions (∀Q

? vs C)
using innermost-subform-in-generalized-forall and is-subform-implies-in-positions by blast

moreover from False have (∀Q
? vs C)〈|foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀Q

? vs B)
by (fact Cons.IH)

ultimately have (λxα. ∀Q
? vs C)〈|« # foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (λxα. ∀Q

? vs B)
by (rule replace-abs)

moreover have « # foldr (λ-. (@) [»,«]) vs [] ∈ positions (λxα. ∀Q
? vs C)

using ‹foldr (λ-. (@) [»,«]) vs [] ∈ positions (∀Q
? vs C)› by simp

ultimately have
(
∏
α � (λxα. ∀Q

? vs C))〈|» # « # foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (
∏
α � (λxα. ∀Q

? vs B))
by blast

then have (∀ xα. ∀Q
? vs C)〈|[»,«] @ foldr (λ-. (@) [»,«]) vs [] ← B|〉 � (∀ xα. ∀Q

? vs B)
by simp

then show ?thesis
unfolding ‹v = (x, α)› and generalized-forall-def and foldr .simps(2) and o-apply
and case-prod-conv .

qed
qed

lemma false-is-forall:
shows Fo = ∀ xo. xo
unfolding false-def and forall-def and PI-def and equality-of-type-def ..

definition conj-fun :: form (∧o→o→o) where
[simp]: ∧o→o→o =
λxo. λyo.
(
(λgo→o→o. go→o→o � To � To) =(o→o→o)→o (λgo→o→o. go→o→o � xo � yo)

)

48

definition conj-op :: form ⇒ form ⇒ form (infixl ∧Q 131) where
[simp]: A ∧Q B = ∧o→o→o � A � B

Generalized conjunction. We define ∧Q? [A1, . . . , An] as A1 ∧Q (· · · ∧Q (An−1 ∧Q An) · · ·):
definition generalized-conj-op :: form list ⇒ form (∧Q? - [0] 131) where
[simp]: ∧Q? As = foldr1 (∧Q) As

definition imp-fun :: form (⊃o→o→o) where — ≡ used instead of =, see [2]
[simp]: ⊃o→o→o = λxo. λyo. (xo ≡Q xo ∧Q yo)

definition imp-op :: form ⇒ form ⇒ form (infixl ⊃Q 111) where
[simp]: A ⊃Q B = ⊃o→o→o � A � B

Generalized implication. We define [A1, . . . , An] ⊃Q
? B as A1 ⊃Q (· · · ⊃Q (An ⊃Q B) · · ·):

definition generalized-imp-op :: form list ⇒ form ⇒ form (infixl ⊃Q
? 111) where

[simp]: As ⊃Q
? B = foldr (⊃Q) As B

Given the definition below, it is interesting to note that ∼Q A and Fo ≡Q A are exactly the
same formula, namely Qo � Fo � A:
definition neg :: form ⇒ form (∼Q - [141] 141) where
[simp]: ∼Q A = Qo � Fo � A

definition disj-fun :: form (∨o→o→o) where
[simp]: ∨o→o→o = λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)

definition disj-op :: form ⇒ form ⇒ form (infixl ∨Q 126) where
[simp]: A ∨Q B = ∨o→o→o � A � B

definition exists :: nat ⇒ type ⇒ form ⇒ form ((4∃ --./ -) [0 , 0 , 141] 141) where
[simp]: ∃ xα. A = ∼Q (∀ xα. ∼Q A)

lemma exists-fv:
shows free-vars (∃ xα. A) = free-vars A − {(x, α)}
by simp

definition inequality-of-type :: form ⇒ type ⇒ form ⇒ form ((- 6=-/ -) [103 , 0 , 103] 102) where
[simp]: A 6=α B = ∼Q (A =α B)

2.13 Well-formed formulas
inductive is-wff-of-type :: type ⇒ form ⇒ bool where

var-is-wff : is-wff-of-type α (xα)
| con-is-wff : is-wff-of-type α ({|c|}α)
| app-is-wff : is-wff-of-type β (A � B) if is-wff-of-type (α→β) A and is-wff-of-type α B
| abs-is-wff : is-wff-of-type (α→β) (λxα. A) if is-wff-of-type β A

definition wffs-of-type :: type ⇒ form set (wffs- [0]) where
wffsα = {f :: form. is-wff-of-type α f }

49

abbreviation wffs :: form set where
wffs ≡

⋃
α. wffsα

lemma is-wff-of-type-wffs-of-type-eq [pred-set-conv]:
shows is-wff-of-type α = (λf . f ∈ wffsα)
unfolding wffs-of-type-def by simp

lemmas wffs-of-type-intros [intro!] = is-wff-of-type.intros[to-set]
lemmas wffs-of-type-induct [consumes 1 , induct set: wffs-of-type] = is-wff-of-type.induct[to-set]
lemmas wffs-of-type-cases [consumes 1 , cases set: wffs-of-type] = is-wff-of-type.cases[to-set]
lemmas wffs-of-type-simps = is-wff-of-type.simps[to-set]

lemma generalized-app-wff [intro]:
assumes length As = length ts
and ∀ k < length As. As ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts β
shows �Q? B As ∈ wffsβ

using assms proof (induction As ts arbitrary: B rule: list-induct2)
case Nil
then show ?case

by simp
next

case (Cons A As t ts)
from Cons.prems(1) have A ∈ wffst

by fastforce
moreover from Cons.prems(2) have B ∈ wffst→foldr (→) ts β

by auto
ultimately have B � A ∈ wffsfoldr (→) ts β

by blast
moreover have ∀ k < length As. (A # As) ! (Suc k) = As ! k ∧ (t # ts) ! (Suc k) = ts ! k

by force
with Cons.prems(1) have ∀ k < length As. As ! k ∈ wffsts ! k

by fastforce
ultimately have �Q? (B � A) As ∈ wffsβ

using Cons.IH by (simp only:)
moreover have �Q? B (A # As) = �Q? (B � A) As

by simp
ultimately show ?case

by (simp only:)
qed

lemma generalized-abs-wff [intro]:
assumes B ∈ wffsβ
shows λQ? vs B ∈ wffsfoldr (→) (map snd vs) β

using assms proof (induction vs)
case Nil
then show ?case

50

by simp
next

case (Cons v vs)
let ?δ = foldr (→) (map snd vs) β
obtain x and α where v = (x, α)

by fastforce
then have FVar v ∈ wffsα

by auto
from Cons.prems have λQ? vs B ∈ wffs?δ

by (fact Cons.IH)
with ‹v = (x, α)› have FAbs v (λQ? vs B) ∈ wffsα→?δ

by blast
moreover from ‹v = (x, α)› have foldr (→) (map snd (v # vs)) β = α→?δ

by simp
moreover have λQ? (v # vs) B = FAbs v (λQ? vs B)

by simp
ultimately show ?case by (simp only:)

qed

lemma Q-wff [intro]:
shows Qα ∈ wffsα→α→o
by auto

lemma iota-wff [intro]:
shows ι ∈ wffs(i→o)→i
by auto

lemma equality-wff [intro]:
assumes A ∈ wffsα and B ∈ wffsα
shows A =α B ∈ wffso
using assms by auto

lemma equivalence-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ≡Q B ∈ wffso
using assms unfolding equivalence-def by blast

lemma true-wff [intro]:
shows To ∈ wffso
by force

lemma false-wff [intro]:
shows Fo ∈ wffso
by auto

lemma pi-wff [intro]:
shows

∏
α ∈ wffs(α→o)→o

using PI-def by fastforce

51

lemma forall-wff [intro]:
assumes A ∈ wffso
shows ∀ xα. A ∈ wffso
using assms and pi-wff unfolding forall-def by blast

lemma generalized-forall-wff [intro]:
assumes B ∈ wffso
shows ∀Q

? vs B ∈ wffso
using assms proof (induction vs)

case (Cons v vs)
then show ?case

using surj-pair [of v] by force
qed simp

lemma conj-fun-wff [intro]:
shows ∧o→o→o ∈ wffso→o→o
by auto

lemma conj-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ∧Q B ∈ wffso
using assms unfolding conj-op-def by blast

lemma imp-fun-wff [intro]:
shows ⊃o→o→o ∈ wffso→o→o
by auto

lemma imp-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ⊃Q B ∈ wffso
using assms unfolding imp-op-def by blast

lemma neg-wff [intro]:
assumes A ∈ wffso
shows ∼Q A ∈ wffso
using assms by fastforce

lemma disj-fun-wff [intro]:
shows ∨o→o→o ∈ wffso→o→o
by auto

lemma disj-op-wff [intro]:
assumes A ∈ wffso and B ∈ wffso
shows A ∨Q B ∈ wffso
using assms by auto

lemma exists-wff [intro]:
assumes A ∈ wffso
shows ∃ xα. A ∈ wffso

52

using assms by fastforce

lemma inequality-wff [intro]:
assumes A ∈ wffsα and B ∈ wffsα
shows A 6=α B ∈ wffso
using assms by fastforce

lemma wffs-from-app:
assumes A � B ∈ wffsβ
obtains α where A ∈ wffsα→β and B ∈ wffsα
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-generalized-app:
assumes �Q? B As ∈ wffsβ
obtains ts
where length ts = length As
and ∀ k < length As. As ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts β

using assms proof (induction As arbitrary: B thesis)
case Nil
then show ?case

by simp
next

case (Cons A As)
from Cons.prems have �Q? (B � A) As ∈ wffsβ

by auto
then obtain ts

where length ts = length As
and ∀ k < length As. As ! k ∈ wffsts ! k
and B � A ∈ wffsfoldr (→) ts β
using Cons.IH by blast

moreover
from ‹B � A ∈ wffsfoldr (→) ts β› obtain t where B ∈ wffst→foldr (→) ts β and A ∈ wffst

by (elim wffs-from-app)
moreover from ‹length ts = length As› have length (t # ts) = length (A # As)

by simp
moreover from ‹A ∈ wffst› and ‹∀ k < length As. As ! k ∈ wffsts ! k›
have ∀ k < length (A # As). (A # As) ! k ∈ wffs(t # ts) ! k

by (simp add: nth-Cons ′)
moreover from ‹B ∈ wffst→foldr (→) ts β› have B ∈ wffsfoldr (→) (t # ts) β

by simp
ultimately show ?case

using Cons.prems(1) by blast
qed

lemma wffs-from-abs:
assumes λxα. A ∈ wffsγ
obtains β where γ = α→β and A ∈ wffsβ

53

using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-equality:
assumes A =α B ∈ wffso
shows A ∈ wffsα and B ∈ wffsα
using assms by (fastforce elim: wffs-of-type-cases)+

lemma wffs-from-equivalence:
assumes A ≡Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding equivalence-def by (fact wffs-from-equality)+

lemma wffs-from-forall:
assumes ∀ xα. A ∈ wffso
shows A ∈ wffso
using assms unfolding forall-def and PI-def
by (fold equality-of-type-def) (drule wffs-from-equality, blast elim: wffs-from-abs)

lemma wffs-from-conj-fun:
assumes ∧o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-conj-op:
assumes A ∧Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding conj-op-def by (elim wffs-from-conj-fun)+

lemma wffs-from-imp-fun:
assumes ⊃o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-imp-op:
assumes A ⊃Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms unfolding imp-op-def by (elim wffs-from-imp-fun)+

lemma wffs-from-neg:
assumes ∼Q A ∈ wffso
shows A ∈ wffso
using assms unfolding neg-def by (fold equality-of-type-def) (drule wffs-from-equality, blast)

lemma wffs-from-disj-fun:
assumes ∨o→o→o � A � B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-disj-op:

54

assumes A ∨Q B ∈ wffso
shows A ∈ wffso and B ∈ wffso
using assms and wffs-from-disj-fun unfolding disj-op-def by blast+

lemma wffs-from-exists:
assumes ∃ xα. A ∈ wffso
shows A ∈ wffso
using assms unfolding exists-def using wffs-from-neg and wffs-from-forall by blast

lemma wffs-from-inequality:
assumes A 6=α B ∈ wffso
shows A ∈ wffsα and B ∈ wffsα
using assms unfolding inequality-of-type-def using wffs-from-equality and wffs-from-neg by me-

son+

lemma wff-has-unique-type:
assumes A ∈ wffsα and A ∈ wffsβ
shows α = β

using assms proof (induction arbitrary: α β rule: form.induct)
case (FVar v)
obtain x and γ where v = (x, γ)

by fastforce
with FVar .prems have α = γ and β = γ

by (blast elim: wffs-of-type-cases)+
then show ?case ..

next
case (FCon k)
obtain x and γ where k = (x, γ)

by fastforce
with FCon.prems have α = γ and β = γ

by (blast elim: wffs-of-type-cases)+
then show ?case ..

next
case (FApp A B)
from FApp.prems obtain α ′ and β ′ where A ∈ wffsα ′→α and A ∈ wffsβ ′→β

by (blast elim: wffs-from-app)
with FApp.IH (1) show ?case

by blast
next

case (FAbs v A)
obtain x and γ where v = (x, γ)

by fastforce
with FAbs.prems obtain α ′ and β ′

where α = γ→α ′ and β = γ→β ′ and A ∈ wffsα ′ and A ∈ wffsβ ′

by (blast elim: wffs-from-abs)
with FAbs.IH show ?case

by simp
qed

55

lemma wffs-of-type-o-induct [consumes 1 , case-names Var Con App]:
assumes A ∈ wffso
and

∧
x. P (xo)

and
∧

c. P ({|c|}o)
and

∧
A B α. A ∈ wffsα→o =⇒ B ∈ wffsα =⇒ P (A � B)

shows P A
using assms by (cases rule: wffs-of-type-cases) simp-all

lemma diff-types-implies-diff-wffs:
assumes A ∈ wffsα and B ∈ wffsβ
and α 6= β
shows A 6= B
using assms and wff-has-unique-type by blast

lemma is-free-for-in-generalized-app [intro]:
assumes is-free-for A v B and ∀C ∈ lset Cs. is-free-for A v C
shows is-free-for A v (�Q? B Cs)

using assms proof (induction Cs rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc C Cs)
from snoc.prems(2) have is-free-for A v C and ∀C ∈ lset Cs. is-free-for A v C

by simp-all
with snoc.prems(1) have is-free-for A v (�Q? B Cs)

using snoc.IH by simp
with ‹is-free-for A v C › show ?case

using is-free-for-to-app by simp
qed

lemma is-free-for-in-equality [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =α C)
using assms unfolding equality-of-type-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-con)

lemma is-free-for-in-equivalence [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ≡Q C)
using assms unfolding equivalence-def by (rule is-free-for-in-equality)

lemma is-free-for-in-true [intro]:
shows is-free-for A v (To)
by force

lemma is-free-for-in-false [intro]:
shows is-free-for A v (Fo)
unfolding false-def by (intro is-free-for-in-equality is-free-for-closed-form) simp-all

56

lemma is-free-for-in-forall [intro]:
assumes is-free-for A v B and (x, α) /∈ free-vars A
shows is-free-for A v (∀ xα. B)

unfolding forall-def and PI-def proof (fold equality-of-type-def)
have is-free-for A v (λxα. To)

using is-free-for-to-abs[OF is-free-for-in-true assms(2)] by fastforce
moreover have is-free-for A v (λxα. B)

by (fact is-free-for-to-abs[OF assms])
ultimately show is-free-for A v (λxα. To =α→o λxα. B)

by (iprover intro: assms(1) is-free-for-in-equality is-free-for-in-true is-free-for-to-abs)
qed

lemma is-free-for-in-generalized-forall [intro]:
assumes is-free-for A v B and lset vs ∩ free-vars A = {}
shows is-free-for A v (∀Q

? vs B)
using assms proof (induction vs)

case Nil
then show ?case

by simp
next

case (Cons v ′ vs)
obtain x and α where v ′ = (x, α)

by fastforce
from Cons.prems(2) have v ′ /∈ free-vars A and lset vs ∩ free-vars A = {}

by simp-all
from Cons.prems(1) and ‹lset vs ∩ free-vars A = {}› have is-free-for A v (∀Q

? vs B)
by (fact Cons.IH)

from this and ‹v ′ /∈ free-vars A›[unfolded ‹v ′ = (x, α)›] have is-free-for A v (∀ xα. ∀Q
? vs B)

by (intro is-free-for-in-forall)
with ‹v ′ = (x, α)› show ?case

by simp
qed

lemma is-free-for-in-conj [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ∧Q C)

proof −
have free-vars ∧o→o→o = {}

by force
then have is-free-for A v (∧o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (∧o→o→o � B � C)

by (intro is-free-for-to-app)
then show ?thesis

by (fold conj-op-def)
qed

lemma is-free-for-in-imp [intro]:

57

assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ⊃Q C)

proof −
have free-vars ⊃o→o→o = {}

by force
then have is-free-for A v (⊃o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (⊃o→o→o � B � C)

by (intro is-free-for-to-app)
then show ?thesis

by (fold imp-op-def)
qed

lemma is-free-for-in-neg [intro]:
assumes is-free-for A v B
shows is-free-for A v (∼Q B)
using assms unfolding neg-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-false is-free-for-in-con)

lemma is-free-for-in-disj [intro]:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B ∨Q C)

proof −
have free-vars ∨o→o→o = {}

by force
then have is-free-for A v (∨o→o→o)

using is-free-for-closed-form by fast
with assms have is-free-for A v (∨o→o→o � B � C)

by (intro is-free-for-to-app)
then show ?thesis

by (fold disj-op-def)
qed

lemma replacement-preserves-typing:
assumes C 〈|p ← B|〉 � D
and A �p C
and A ∈ wffsα and B ∈ wffsα
shows C ∈ wffsβ ←→ D ∈ wffsβ

using assms proof (induction arbitrary: β rule: is-replacement-at.induct)
case (pos-found p C C ′ A)
then show ?case

using diff-types-implies-diff-wffs by auto
qed (metis is-subform-at.simps(2 ,3 ,4) wffs-from-app wffs-from-abs wffs-of-type-simps)+

corollary replacement-preserves-typing ′:
assumes C 〈|p ← B|〉 � D
and A �p C
and A ∈ wffsα and B ∈ wffsα
and C ∈ wffsβ and D ∈ wffsγ

58

shows β = γ
using assms and replacement-preserves-typing and wff-has-unique-type by simp

Closed formulas and sentences:
definition is-closed-wff-of-type :: form ⇒ type ⇒ bool where
[iff]: is-closed-wff-of-type A α ←→ A ∈ wffsα ∧ free-vars A = {}

definition is-sentence :: form ⇒ bool where
[iff]: is-sentence A ←→ is-closed-wff-of-type A o

2.14 Substitutions
type-synonym substitution = (var , form) fmap

definition is-substitution :: substitution ⇒ bool where
[iff]: is-substitution ϑ ←→ (∀ (x, α) ∈ fmdom ′ ϑ. ϑ $$! (x, α) ∈ wffsα)

fun substitute :: substitution ⇒ form ⇒ form (S - - [51 , 51]) where
S ϑ (xα) = (case ϑ $$ (x, α) of None ⇒ xα | Some A ⇒ A)
| S ϑ ({|c|}α) = {|c|}α
| S ϑ (A � B) = (S ϑ A) � (S ϑ B)
| S ϑ (λxα. A) = (if (x, α) /∈ fmdom ′ ϑ then λxα. S ϑ A else λxα. S (fmdrop (x, α) ϑ) A)

lemma empty-substitution-neutrality:
shows S {$$} A = A
by (induction A) auto

lemma substitution-preserves-typing:
assumes is-substitution ϑ
and A ∈ wffsα
shows S ϑ A ∈ wffsα

using assms(2) and assms(1)[unfolded is-substitution-def] proof (induction arbitrary: ϑ)
case (var-is-wff α x)
then show ?case

by (cases (x, α) ∈ fmdom ′ ϑ) (use fmdom ′-notI in ‹force+›)
next

case (abs-is-wff β A α x)
then show ?case
proof (cases (x, α) ∈ fmdom ′ ϑ)

case True
then have S ϑ (λxα. A) = λxα. S (fmdrop (x, α) ϑ) A

by simp
moreover from abs-is-wff .prems have is-substitution (fmdrop (x, α) ϑ)

by fastforce
with abs-is-wff .IH have S (fmdrop (x, α) ϑ) A ∈ wffsβ

by simp
ultimately show ?thesis

by auto
next

59

case False
then have S ϑ (λxα. A) = λxα. S ϑ A

by simp
moreover from abs-is-wff .IH have S ϑ A ∈ wffsβ

using abs-is-wff .prems by blast
ultimately show ?thesis

by fastforce
qed

qed force+

lemma derived-substitution-simps:
shows S ϑ To = To
and S ϑ Fo = Fo
and S ϑ (

∏
α) =

∏
α

and S ϑ (∼Q B) = ∼Q (S ϑ B)
and S ϑ (B =α C) = (S ϑ B) =α (S ϑ C)
and S ϑ (B ∧Q C) = (S ϑ B) ∧Q (S ϑ C)
and S ϑ (B ∨Q C) = (S ϑ B) ∨Q (S ϑ C)
and S ϑ (B ⊃Q C) = (S ϑ B) ⊃Q (S ϑ C)
and S ϑ (B ≡Q C) = (S ϑ B) ≡Q (S ϑ C)
and S ϑ (B 6=α C) = (S ϑ B) 6=α (S ϑ C)
and S ϑ (∀ xα. B) = (if (x, α) /∈ fmdom ′ ϑ then ∀ xα. S ϑ B else ∀ xα. S (fmdrop (x, α) ϑ) B)
and S ϑ (∃ xα. B) = (if (x, α) /∈ fmdom ′ ϑ then ∃ xα. S ϑ B else ∃ xα. S (fmdrop (x, α) ϑ) B)
by auto

lemma generalized-app-substitution:
shows S ϑ (�Q? A Bs) = �Q? (S ϑ A) (map (λB. S ϑ B) Bs)
by (induction Bs arbitrary: A) simp-all

lemma generalized-abs-substitution:
shows S ϑ (λQ? vs A) = λQ? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

proof (induction vs arbitrary: ϑ)
case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases v /∈ fmdom ′ ϑ)

case True
then have ∗: fmdom ′ ϑ ∩ lset (v # vs) = fmdom ′ ϑ ∩ lset vs

by simp
from True have S ϑ (λQ? (v # vs) A) = λxα. S ϑ (λQ? vs A)

using ‹v = (x, α)› by auto
also have . . . = λxα. λQ? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

using Cons.IH by (simp only:)
also have . . . = λQ? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

60

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

next
case False
let ?ϑ ′ = fmdrop v ϑ
have ∗: fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ = fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′

using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
from False have S ϑ (λQ? (v # vs) A) = λxα. S ?ϑ ′ (λQ? vs A)

using ‹v = (x, α)› by auto
also have . . . = λxα. λQ? vs (S (fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′) A)

using Cons.IH by (simp only:)
also have . . . = λQ? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

qed
qed

lemma generalized-forall-substitution:
shows S ϑ (∀Q

? vs A) = ∀Q
? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)

proof (induction vs arbitrary: ϑ)
case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
then show ?case
proof (cases v /∈ fmdom ′ ϑ)

case True
then have ∗: fmdom ′ ϑ ∩ lset (v # vs) = fmdom ′ ϑ ∩ lset vs

by simp
from True have S ϑ (∀Q

? (v # vs) A) = ∀ xα. S ϑ (∀Q
? vs A)

using ‹v = (x, α)› by auto
also have . . . = ∀ xα. ∀Q

? vs (S (fmdrop-set (fmdom ′ ϑ ∩ lset vs) ϑ) A)
using Cons.IH by (simp only:)

also have . . . = ∀Q
? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

next
case False
let ?ϑ ′ = fmdrop v ϑ
have ∗: fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ = fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′

using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)
from False have S ϑ (∀Q

? (v # vs) A) = ∀ xα. S ?ϑ ′ (∀Q
? vs A)

using ‹v = (x, α)› by auto
also have . . . = ∀ xα. ∀Q

? vs (S (fmdrop-set (fmdom ′ ?ϑ ′ ∩ lset vs) ?ϑ ′) A)
using Cons.IH by (simp only:)

also have . . . = ∀Q
? (v # vs) (S (fmdrop-set (fmdom ′ ϑ ∩ lset (v # vs)) ϑ) A)

61

using ‹v = (x, α)› and ∗ by auto
finally show ?thesis .

qed
qed

lemma singleton-substitution-simps:
shows S {(x, α) � A} (yβ) = (if (x, α) 6= (y, β) then yβ else A)

and S {(x, α) � A} ({|c|}α) = {|c|}α
and S {(x, α) � A} (B � C) = (S {(x, α) � A} B) � (S {(x, α) � A} C)
and S {(x, α) � A} (λyβ . B) = λyβ . (if (x, α) = (y, β) then B else S {(x, α) � A} B)

by (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma substitution-preserves-freeness:
assumes y /∈ free-vars A and y 6= z
shows y /∈ free-vars S {x � FVar z} A

using assms(1) proof (induction A rule: free-vars-form.induct)
case (1 x ′ α)
with assms(2) show ?case

using surj-pair [of z] by (cases x = (x ′, α)) force+
next

case (4 x ′ α A)
then show ?case

using surj-pair [of z]
by (cases x = (x ′, α)) (use singleton-substitution-simps(4) in presburger , auto)

qed auto

lemma renaming-substitution-minimal-change:
assumes y /∈ vars A and y 6= z
shows y /∈ vars (S {x � FVar z} A)

using assms(1) proof (induction A rule: vars-form.induct)
case (1 x ′ α)
with assms(2) show ?case

using surj-pair [of z] by (cases x = (x ′, α)) force+
next

case (4 x ′ α A)
then show ?case

using surj-pair [of z]
by (cases x = (x ′, α)) (use singleton-substitution-simps(4) in presburger , auto)

qed auto

lemma free-var-singleton-substitution-neutrality:
assumes v /∈ free-vars A
shows S {v � B} A = A
using assms
by
(induction A rule: free-vars-form.induct)
(simp-all, metis empty-substitution-neutrality fmdrop-empty fmdrop-fmupd-same)

lemma identity-singleton-substitution-neutrality:

62

shows S {v � FVar v} A = A
by
(induction A rule: free-vars-form.induct)
(simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma free-var-in-renaming-substitution:
assumes x 6= y
shows (x, α) /∈ free-vars (S {(x, α) � yα} B)
using assms by (induction B rule: free-vars-form.induct) simp-all

lemma renaming-substitution-preserves-form-size:
shows form-size (S {v � FVar v ′} A) = form-size A

proof (induction A rule: form-size.induct)
case (1 x α)
then show ?case

using form-size.elims by auto
next

case (4 x α A)
then show ?case

by (cases v = (x, α)) (use singleton-substitution-simps(4) in presburger , auto)
qed simp-all

The following lemma corresponds to X5100 in [2]:
lemma substitution-composability:

assumes v ′ /∈ vars B
shows S {v ′ � A} S {v � FVar v ′} B = S {v � A} B

using assms proof (induction B arbitrary: v ′)
case (FAbs w C)
then show ?case
proof (cases v = w)

case True
from ‹v ′ /∈ vars (FAbs w C)› have v ′ /∈ free-vars (FAbs w C)

using free-vars-in-all-vars by blast
then have S {v ′ � A} (FAbs w C) = FAbs w C

by (rule free-var-singleton-substitution-neutrality)
from ‹v = w› have v /∈ free-vars (FAbs w C)

using surj-pair [of w] by fastforce
then have S {v � A} (FAbs w C) = FAbs w C

by (fact free-var-singleton-substitution-neutrality)
also from ‹S {v ′ � A} (FAbs w C) = FAbs w C › have . . . = S {v ′ � A} (FAbs w C)

by (simp only:)
also from ‹v = w› have . . . = S {v ′ � A} S {v � FVar v ′} (FAbs w C)

using free-var-singleton-substitution-neutrality[OF ‹v /∈ free-vars (FAbs w C)›] by (simp only:)
finally show ?thesis ..

next
case False
from FAbs.prems have v ′ /∈ vars C

using surj-pair [of w] by fastforce
then show ?thesis

63

proof (cases v ′ = w)
case True
with FAbs.prems show ?thesis

using vars-form.elims by auto
next

case False
from ‹v 6= w› have S {v � A} (FAbs w C) = FAbs w (S {v � A} C)

using surj-pair [of w] by fastforce
also from FAbs.IH have . . . = FAbs w (S {v ′ � A} S {v � FVar v ′} C)

using ‹v ′ /∈ vars C › by simp
also from ‹v ′ 6= w› have . . . = S {v ′ � A} (FAbs w (S {v � FVar v ′} C))

using surj-pair [of w] by fastforce
also from ‹v 6= w› have . . . = S {v ′ � A} S {v � FVar v ′} (FAbs w C)

using surj-pair [of w] by fastforce
finally show ?thesis ..

qed
qed

qed auto

The following lemma corresponds to X5101 in [2]:
lemma renaming-substitution-composability:

assumes z /∈ free-vars A and is-free-for (FVar z) x A
shows S {z � FVar y} S {x � FVar z} A = S {x � FVar y} A

using assms proof (induction A arbitrary: z)
case (FVar v)
then show ?case

using surj-pair [of v] and surj-pair [of z] by fastforce
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp B C)
let ?ϑzy = {z � FVar y} and ?ϑxz = {x � FVar z} and ?ϑxy = {x � FVar y}
from ‹is-free-for (FVar z) x (B � C)› have is-free-for (FVar z) x B and is-free-for (FVar z) x C

using is-free-for-from-app by iprover+
moreover from ‹z /∈ free-vars (B � C)› have z /∈ free-vars B and z /∈ free-vars C

by simp-all
ultimately have ∗: S ?ϑzy S ?ϑxz B = S ?ϑxy B and ∗∗: S ?ϑzy S ?ϑxz C = S ?ϑxy C

using FApp.IH by simp-all
have S ?ϑzy S ?ϑxz (B � C) = (S ?ϑzy S ?ϑxz B) � (S ?ϑzy S ?ϑxz C)

by simp
also from ∗ and ∗∗ have . . . = (S ?ϑxy B) � (S ?ϑxy C)

by (simp only:)
also have . . . = S ?ϑxy (B � C)

by simp
finally show ?case .

next
case (FAbs w B)

64

let ?ϑzy = {z � FVar y} and ?ϑxz = {x � FVar z} and ?ϑxy = {x � FVar y}
show ?case
proof (cases x = w)

case True
then show ?thesis
proof (cases z = w)

case True
with ‹x = w› have x /∈ free-vars (FAbs w B) and z /∈ free-vars (FAbs w B)

using surj-pair [of w] by fastforce+
from ‹x /∈ free-vars (FAbs w B)› have S ?ϑxy (FAbs w B) = FAbs w B

by (fact free-var-singleton-substitution-neutrality)
also from ‹z /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy (FAbs w B)

by (fact free-var-singleton-substitution-neutrality[symmetric])
also from ‹x /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..

next
case False
with ‹x = w› have z /∈ free-vars B and x /∈ free-vars (FAbs w B)

using ‹z /∈ free-vars (FAbs w B)› and surj-pair [of w] by fastforce+
from ‹z /∈ free-vars B› have S ?ϑzy B = B

by (fact free-var-singleton-substitution-neutrality)
from ‹x /∈ free-vars (FAbs w B)› have S ?ϑxy (FAbs w B) = FAbs w B

by (fact free-var-singleton-substitution-neutrality)
also from ‹S ?ϑzy B = B› have . . . = FAbs w (S ?ϑzy B)

by (simp only:)
also from ‹z /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy (FAbs w B)

by (simp add: ‹FAbs w B = FAbs w (S ?ϑzy B)› free-var-singleton-substitution-neutrality)
also from ‹x /∈ free-vars (FAbs w B)› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..

qed
next

case False
then show ?thesis
proof (cases z = w)

case True
have x /∈ free-vars B
proof (rule ccontr)

assume ¬ x /∈ free-vars B
with ‹x 6= w› have x ∈ free-vars (FAbs w B)

using surj-pair [of w] by fastforce
then obtain p where p ∈ positions (FAbs w B) and is-free-at x p (FAbs w B)

using free-vars-in-is-free-at by blast
with ‹is-free-for (FVar z) x (FAbs w B)› have ¬ in-scope-of-abs z p (FAbs w B)

by (meson empty-is-position is-free-at-in-free-vars is-free-at-in-var is-free-for-def)
moreover obtain p ′ where p = « # p ′

using is-free-at-from-absE [OF ‹is-free-at x p (FAbs w B)›] by blast
ultimately have z 6= w

65

using in-scope-of-abs-in-abs by blast
with ‹z = w› show False

by contradiction
qed
then have ∗: S ?ϑxy B = S ?ϑxz B

using free-var-singleton-substitution-neutrality by auto
from ‹x 6= w› have S ?ϑxy (FAbs w B) = FAbs w (S ?ϑxy B)

using surj-pair [of w] by fastforce
also from ∗ have . . . = FAbs w (S ?ϑxz B)

by (simp only:)
also from FAbs.prems(1) have . . . = S ?ϑzy (FAbs w (S ?ϑxz B))

using ‹x /∈ free-vars B› and free-var-singleton-substitution-neutrality by auto
also from ‹x 6= w› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis ..

next
case False
obtain vw and α where w = (vw, α)

by fastforce
with ‹is-free-for (FVar z) x (FAbs w B)› and ‹x 6= w› have is-free-for (FVar z) x B

using is-free-for-from-abs by iprover
moreover from ‹z /∈ free-vars (FAbs w B)› and ‹z 6= w› and ‹w = (vw, α)› have z /∈ free-vars

B
by simp

ultimately have ∗: S ?ϑzy S ?ϑxz B = S ?ϑxy B
using FAbs.IH by simp

from ‹x 6= w› have S ?ϑxy (FAbs w B) = FAbs w (S ?ϑxy B)
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

also from ∗ have . . . = FAbs w (S ?ϑzy S ?ϑxz B)
by (simp only:)

also from ‹z 6= w› have . . . = S ?ϑzy (FAbs w (S ?ϑxz B))
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

also from ‹x 6= w› have . . . = S ?ϑzy S ?ϑxz (FAbs w B)
using ‹w = (vw, α)› and free-var-singleton-substitution-neutrality by simp

finally show ?thesis ..
qed

qed
qed

lemma absent-vars-substitution-preservation:
assumes v /∈ vars A
and ∀ v ′ ∈ fmdom ′ ϑ. v /∈ vars (ϑ $$! v ′)
shows v /∈ vars (S ϑ A)

using assms proof (induction A arbitrary: ϑ)
case (FVar v ′)
then show ?case

using surj-pair [of v ′] by (cases v ′ ∈ fmdom ′ ϑ) (use fmlookup-dom ′-iff in force)+
next

case (FCon k)

66

then show ?case
using surj-pair [of k] by fastforce

next
case FApp
then show ?case

by simp
next

case (FAbs w B)
from FAbs.prems(1) have v /∈ vars B

using vars-form.elims by auto
then show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
from FAbs.prems(2) have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). v /∈ vars ((fmdrop w ϑ) $$! v ′)

by auto
with ‹v /∈ vars B› have v /∈ vars (S (fmdrop w ϑ) B)

by (fact FAbs.IH)
with FAbs.prems(1) have v /∈ vars (FAbs w (S (fmdrop w ϑ) B))

using surj-pair [of w] by fastforce
moreover from True have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
ultimately show ?thesis

by simp
next

case False
then show ?thesis

using FAbs.IH and FAbs.prems and surj-pair [of w] by fastforce
qed

qed

lemma substitution-free-absorption:
assumes ϑ $$ v = None and v /∈ free-vars B
shows S ({v � A} ++f ϑ) B = S ϑ B

using assms proof (induction B arbitrary: ϑ)
case (FAbs w B)
show ?case
proof (cases v 6= w)

case True
with FAbs.prems(2) have v /∈ free-vars B

using surj-pair [of w] by fastforce
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ({v � A} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) B)

using surj-pair [of w] by fastforce
also from ‹v 6= w› and True have . . . = FAbs w (S ({v � A} ++f fmdrop w ϑ) B)

by (simp add: fmdrop-fmupd)
also from FAbs.prems(1) and ‹v /∈ free-vars B› have . . . = FAbs w (S (fmdrop w ϑ) B)

using FAbs.IH by simp

67

also from True have . . . = S ϑ (FAbs w B)
using surj-pair [of w] by fastforce

finally show ?thesis .
next

case False
with FAbs.prems(1) have S ({v � A} ++f ϑ) (FAbs w B) = FAbs w (S ({v � A} ++f ϑ) B)

using ‹v 6= w› and surj-pair [of w] by fastforce
also from FAbs.prems(1) and ‹v /∈ free-vars B› have . . . = FAbs w (S ϑ B)

using FAbs.IH by simp
also from False have . . . = S ϑ (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis .

qed
next

case False
then have fmdrop w ({v � A} ++f ϑ) = fmdrop w ϑ

by (simp add: fmdrop-fmupd-same)
then show ?thesis

using surj-pair [of w] by (metis (no-types, lifting) fmdrop-idle ′ substitute.simps(4))
qed

qed fastforce+

lemma substitution-absorption:
assumes ϑ $$ v = None and v /∈ vars B
shows S ({v � A} ++f ϑ) B = S ϑ B
using assms by (meson free-vars-in-all-vars in-mono substitution-free-absorption)

lemma is-free-for-with-renaming-substitution:
assumes is-free-for A x B
and y /∈ vars B
and x /∈ fmdom ′ ϑ
and ∀ v ∈ fmdom ′ ϑ. y /∈ vars (ϑ $$! v)
and ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v B
shows is-free-for A y (S ({x � FVar y} ++f ϑ) B)

using assms proof (induction B arbitrary: ϑ)
case (FVar w)
then show ?case
proof (cases w = x)

case True
with FVar .prems(3) have S ({x � FVar y} ++f ϑ) (FVar w) = FVar y

using surj-pair [of w] by fastforce
then show ?thesis

using self-subform-is-at-top by fastforce
next

case False
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
from False have S ({x � FVar y} ++f ϑ) (FVar w) = S ϑ (FVar w)

68

using substitution-absorption and surj-pair [of w] by force
also from True have . . . = ϑ $$! w

using surj-pair [of w] by (metis fmdom ′-notI option.case-eq-if substitute.simps(1))
finally have S ({x � FVar y} ++f ϑ) (FVar w) = ϑ $$! w .
moreover from True and FVar .prems(4) have y /∈ vars (ϑ $$! w)

by blast
ultimately show ?thesis

using form-is-free-for-absent-var by presburger
next

case False
with FVar .prems(3) and ‹w 6= x› have S ({x � FVar y} ++f ϑ) (FVar w) = FVar w

using surj-pair [of w] by fastforce
with FVar .prems(2) show ?thesis

using form-is-free-for-absent-var by presburger
qed

qed
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp C D)
from FApp.prems(2) have y /∈ vars C and y /∈ vars D

by simp-all
from FApp.prems(1) have is-free-for A x C and is-free-for A x D

using is-free-for-from-app by iprover+
have ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v C ∧ is-free-for (ϑ $$! v) v D
proof (rule ballI)

fix v
assume v ∈ fmdom ′ ϑ
with FApp.prems(5) have is-free-for (ϑ $$! v) v (C � D)

by blast
then show is-free-for (ϑ $$! v) v C ∧ is-free-for (ϑ $$! v) v D

using is-free-for-from-app by iprover+
qed
then have
∗: ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v C and ∗∗: ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v D
by auto

have S ({x � FVar y} ++f ϑ) (C � D) = (S ({x � FVar y} ++f ϑ) C) � (S ({x � FVar y}
++f ϑ) D)

by simp
moreover have is-free-for A y (S ({x � FVar y} ++f ϑ) C)

by (rule FApp.IH (1)[OF ‹is-free-for A x C › ‹y /∈ vars C › FApp.prems(3 ,4) ∗])
moreover have is-free-for A y (S ({x � FVar y} ++f ϑ) D)

by (rule FApp.IH (2)[OF ‹is-free-for A x D› ‹y /∈ vars D› FApp.prems(3 ,4) ∗∗])
ultimately show ?case

using is-free-for-in-app by simp
next

case (FAbs w B)

69

obtain xw and αw where w = (xw, αw)
by fastforce

from FAbs.prems(2) have y /∈ vars B
using vars-form.elims by auto

then show ?case
proof (cases w = x)

case True
from True and ‹x /∈ fmdom ′ ϑ› have w /∈ fmdom ′ ϑ and x /∈ free-vars (FAbs w B)

using ‹w = (xw, αw)› by fastforce+
with True have S ({x � FVar y} ++f ϑ) (FAbs w B) = S ϑ (FAbs w B)

using substitution-free-absorption by blast
also have . . . = FAbs w (S ϑ B)

using ‹w = (xw, αw)› ‹w /∈ fmdom ′ ϑ› substitute.simps(4) by presburger
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ϑ B) .
moreover from ‹S ϑ (FAbs w B) = FAbs w (S ϑ B)› have y /∈ vars (FAbs w (S ϑ B))

using absent-vars-substitution-preservation[OF FAbs.prems(2 ,4)] by simp
ultimately show ?thesis

using is-free-for-absent-var by (simp only:)
next

case False
obtain vw and αw where w = (vw, αw)

by fastforce
from FAbs.prems(1) and ‹w 6= x› and ‹w = (vw, αw)› have is-free-for A x B

using is-free-for-from-abs by iprover
then show ?thesis
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ({x � FVar y} ++f

ϑ)) B)
using ‹w = (vw, αw)› by (simp add: fmdrop-idle ′)

also from ‹w 6= x› and True have . . . = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ) B)
by (simp add: fmdrop-fmupd)

finally
have ∗: S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ)

B) .
have ∀ v ∈ fmdom ′ (fmdrop w ϑ). is-free-for (fmdrop w ϑ $$! v) v B
proof

fix v
assume v ∈ fmdom ′ (fmdrop w ϑ)
with FAbs.prems(5) have is-free-for (fmdrop w ϑ $$! v) v (FAbs w B)

by auto
moreover from ‹v ∈ fmdom ′ (fmdrop w ϑ)› have v 6= w

by auto
ultimately show is-free-for (fmdrop w ϑ $$! v) v B

unfolding ‹w = (vw, αw)› using is-free-for-from-abs by iprover
qed
moreover from FAbs.prems(3) have x /∈ fmdom ′ (fmdrop w ϑ)

by simp
moreover from FAbs.prems(4) have ∀ v ∈ fmdom ′ (fmdrop w ϑ). y /∈ vars (fmdrop w ϑ $$! v)

70

by simp
ultimately have is-free-for A y (S ({x � FVar y} ++f fmdrop w ϑ) B)

using ‹is-free-for A x B› and ‹y /∈ vars B› and FAbs.IH by iprover
then show ?thesis
proof (cases x /∈ free-vars B)

case True
have y /∈ vars (S ({x � FVar y} ++f ϑ) (FAbs w B))
proof −

have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f fmdrop w ϑ)
B)

using ∗ .
also from ‹x /∈ free-vars B› and FAbs.prems(3) have . . . = FAbs w (S (fmdrop w ϑ) B)

using substitution-free-absorption by (simp add: fmdom ′-notD)
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S (fmdrop w ϑ) B) .
with FAbs.prems(2) and ‹w = (vw, αw)› and FAbs.prems(4) show ?thesis

using absent-vars-substitution-preservation by auto
qed
then show ?thesis

using is-free-for-absent-var by simp
next

case False
have w /∈ free-vars A
proof (rule ccontr)

assume ¬ w /∈ free-vars A
with False and ‹w 6= x› have ¬ is-free-for A x (FAbs w B)

using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False

by contradiction
qed
with ‹is-free-for A y (S ({x � FVar y} ++f fmdrop w ϑ) B)›
have is-free-for A y (FAbs w (S ({x � FVar y} ++f fmdrop w ϑ) B))

unfolding ‹w = (vw, αw)› using is-free-for-to-abs by iprover
with ∗ show ?thesis

by (simp only:)
qed

next
case False
have ∀ v ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v) v B
proof (rule ballI)

fix v
assume v ∈ fmdom ′ ϑ
with FAbs.prems(5) have is-free-for (ϑ $$! v) v (FAbs w B)

by blast
moreover from ‹v ∈ fmdom ′ ϑ› and ‹w /∈ fmdom ′ ϑ› have v 6= w

by blast
ultimately show is-free-for (ϑ $$! v) v B

unfolding ‹w = (vw, αw)› using is-free-for-from-abs by iprover
qed
with ‹is-free-for A x B› and ‹y /∈ vars B› and FAbs.prems(3 ,4)

71

have is-free-for A y (S ({x � FVar y} ++f ϑ) B)
using FAbs.IH by iprover

then show ?thesis
proof (cases x /∈ free-vars B)

case True
have y /∈ vars (S ({x � FVar y} ++f ϑ) (FAbs w B))
proof −

from False and ‹w = (vw, αw)› and ‹w 6= x›
have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f ϑ) B)

by auto
also from ‹x /∈ free-vars B› and FAbs.prems(3) have . . . = FAbs w (S ϑ B)

using substitution-free-absorption by (simp add: fmdom ′-notD)
finally have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ϑ B) .
with FAbs.prems(2 ,4) and ‹w = (vw, αw)› show ?thesis

using absent-vars-substitution-preservation by auto
qed
then show ?thesis

using is-free-for-absent-var by simp
next

case False
have w /∈ free-vars A
proof (rule ccontr)

assume ¬ w /∈ free-vars A
with False and ‹w 6= x› have ¬ is-free-for A x (FAbs w B)

using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False

by contradiction
qed
with ‹is-free-for A y (S ({x � FVar y} ++f ϑ) B)›
have is-free-for A y (FAbs w (S ({x � FVar y} ++f ϑ) B))

unfolding ‹w = (vw, αw)› using is-free-for-to-abs by iprover
moreover from ‹w /∈ fmdom ′ ϑ› and ‹w 6= x› and FAbs.prems(3)
have S ({x � FVar y} ++f ϑ) (FAbs w B) = FAbs w (S ({x � FVar y} ++f ϑ) B)

using surj-pair [of w] by fastforce
ultimately show ?thesis

by (simp only:)
qed

qed
qed

qed

The following lemma allows us to fuse a singleton substitution and a simultaneous substitution,
as long as the variable of the former does not occur anywhere in the latter:
lemma substitution-fusion:

assumes is-substitution ϑ and is-substitution {v � A}
and ϑ $$ v = None and ∀ v ′ ∈ fmdom ′ ϑ. v /∈ vars (ϑ $$! v ′)
shows S {v � A} S ϑ B = S ({v � A} ++f ϑ) B

using assms(1 ,3 ,4) proof (induction B arbitrary: ϑ)
case (FVar v ′)

72

then show ?case
proof (cases v ′ /∈ fmdom ′ ϑ)

case True
then show ?thesis

using surj-pair [of v ′] by fastforce
next

case False
then obtain A ′ where ϑ $$ v ′ = Some A ′

by (meson fmlookup-dom ′-iff)
with False and FVar .prems(3) have v /∈ vars A ′

by fastforce
then have S {v � A} A ′ = A ′

using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
from ‹ϑ $$ v ′ = Some A ′› have S {v � A} S ϑ (FVar v ′) = S {v � A} A ′

using surj-pair [of v ′] by fastforce
also from ‹S {v � A} A ′ = A ′› have . . . = A ′

by (simp only:)
also from ‹ϑ $$ v ′ = Some A ′› and ‹ϑ $$ v = None› have . . . = S ({v � A} ++f ϑ) (FVar v ′)

using surj-pair [of v ′] by fastforce
finally show ?thesis .

qed
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp C D)
have S {v � A} S ϑ (C � D) = S {v � A} ((S ϑ C) � (S ϑ D))

by auto
also have . . . = (S {v � A} S ϑ C) � (S {v � A} S ϑ D)

by simp
also from FApp.IH have . . . = (S ({v � A} ++f ϑ) C) � (S ({v � A} ++f ϑ) D)

using FApp.prems(1 ,2 ,3) by presburger
also have . . . = S ({v � A} ++f ϑ) (C � D)

by simp
finally show ?case .

next
case (FAbs w C)
obtain vw and α where w = (vw, α)

by fastforce
then show ?case
proof (cases v 6= w)

case True
show ?thesis
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S {v � A} S ϑ (FAbs w C) = S {v � A} (FAbs w (S ϑ C))

by (simp add: ‹w = (vw, α)›)
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S ϑ C)

73

by (simp add: ‹w = (vw, α)›)
also from FAbs.IH have . . . = FAbs w (S ({v � A} ++f ϑ) C)

using FAbs.prems(1 ,2 ,3) by blast
also from ‹v 6= w› and True have . . . = S ({v � A} ++f ϑ) (FAbs w C)

by (simp add: ‹w = (vw, α)›)
finally show ?thesis .

next
case False
then have S {v � A} S ϑ (FAbs w C) = S {v � A} (FAbs w (S (fmdrop w ϑ) C))

by (simp add: ‹w = (vw, α)›)
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S (fmdrop w ϑ) C)

by (simp add: ‹w = (vw, α)›)
also have . . . = FAbs w (S ({v � A} ++f fmdrop w ϑ) C)
proof −

from ‹is-substitution ϑ› have is-substitution (fmdrop w ϑ)
by fastforce

moreover from ‹ϑ $$ v = None› have (fmdrop w ϑ) $$ v = None
by force

moreover from FAbs.prems(3) have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). v /∈ vars ((fmdrop w ϑ) $$!
v ′)

by force
ultimately show ?thesis

using FAbs.IH by blast
qed
also from ‹v 6= w› have . . . = S ({v � A} ++f ϑ) (FAbs w C)

by (simp add: ‹w = (vw, α)› fmdrop-idle ′)
finally show ?thesis .

qed
next

case False
then show ?thesis
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S {v � A} S ϑ (FAbs w C) = S {v � A} (FAbs w (S ϑ C))

by (simp add: ‹w = (vw, α)›)
also from ‹¬ v 6= w› have . . . = FAbs w (S ϑ C)

using ‹w = (vw, α)› and singleton-substitution-simps(4) by presburger
also from ‹¬ v 6= w› and True have . . . = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) C)

by (simp add: fmdrop-fmupd-same fmdrop-idle ′)
also from ‹¬ v 6= w› have . . . = S ({v � A} ++f ϑ) (FAbs w C)

by (simp add: ‹w = (vw, α)›)
finally show ?thesis .

next
case False
then have S {v � A} S ϑ (FAbs w C) = S {v � A} (FAbs w (S (fmdrop w ϑ) C))

by (simp add: ‹w = (vw, α)›)
also from ‹¬ v 6= w› have . . . = FAbs w (S (fmdrop w ϑ) C)

using ‹ϑ $$ v = None› and False by (simp add: fmdom ′-notI)
also from ‹¬ v 6= w› have . . . = FAbs w (S (fmdrop w ({v � A} ++f ϑ)) C)

74

by (simp add: fmdrop-fmupd-same)
also from ‹¬ v 6= w› and False and ‹ϑ $$ v = None› have . . . = S ({v � A} ++f ϑ) (FAbs

w C)
by (simp add: fmdom ′-notI)

finally show ?thesis .
qed

qed
qed

lemma updated-substitution-is-substitution:
assumes v /∈ fmdom ′ ϑ and is-substitution (ϑ(v � A))
shows is-substitution ϑ

unfolding is-substitution-def proof (intro ballI)
fix v ′ :: var
obtain x and α where v ′ = (x, α)

by fastforce
assume v ′ ∈ fmdom ′ ϑ
with assms(2)[unfolded is-substitution-def] have v ′ ∈ fmdom ′ (ϑ(v � A))

by simp
with assms(2)[unfolded is-substitution-def] have ϑ(v � A) $$! (x, α) ∈ wffsα

using ‹v ′ = (x, α)› by fastforce
with assms(1) and ‹v ′ ∈ fmdom ′ ϑ› and ‹v ′ = (x, α)› have ϑ $$! (x, α) ∈ wffsα

by (metis fmupd-lookup)
then show case v ′ of (x, α) ⇒ ϑ $$! (x, α) ∈ wffsα

by (simp add: ‹v ′ = (x, α)›)
qed

definition is-renaming-substitution where
[iff]: is-renaming-substitution ϑ ←→ is-substitution ϑ ∧ fmpred (λ- A. ∃ v. A = FVar v) ϑ

The following lemma proves that S.
x1
α1

... xn
αn

y1α1
... ynαn

B = S.
x1
α1

y1α1

· · · S.
xn
αn

ynαn
B provided that

• x1α1
. . . xnαn

are distinct variables

• y1α1
. . . ynαn

are distinct variables, distinct from x1α1
. . . xnαn

and from all variables in B
(i.e., they are fresh variables)

In other words, simultaneously renaming distinct variables with fresh ones is equivalent to
renaming each variable one at a time.
lemma fresh-vars-substitution-unfolding:

fixes ps :: (var × form) list
assumes ϑ = fmap-of-list ps and is-renaming-substitution ϑ
and distinct (map fst ps) and distinct (map snd ps)
and vars (fmran ′ ϑ) ∩ (fmdom ′ ϑ ∪ vars B) = {}
shows S ϑ B = foldr (λ(x, y) C . S {x � y} C) ps B

using assms proof (induction ps arbitrary: ϑ)
case Nil
then have ϑ = {$$}

75

by simp
then have S ϑ B = B

using empty-substitution-neutrality by (simp only:)
with Nil show ?case

by simp
next

case (Cons p ps)
from Cons.prems(1 ,2) obtain x and y where ϑ $$ (fst p) = Some (FVar y) and p = (x, FVar y)

using surj-pair [of p] by fastforce
let ?ϑ ′ = fmap-of-list ps
from Cons.prems(1) and ‹p = (x, FVar y)› have ϑ = fmupd x (FVar y) ?ϑ ′

by simp
moreover from Cons.prems(3) and ‹p = (x, FVar y)› have x /∈ fmdom ′ ?ϑ ′

by simp
ultimately have ϑ = {x � FVar y} ++f ?ϑ ′

using fmap-singleton-comm by fastforce
with Cons.prems(2) and ‹x /∈ fmdom ′ ?ϑ ′› have is-renaming-substitution ?ϑ ′

unfolding is-renaming-substitution-def and ‹ϑ = fmupd x (FVar y) ?ϑ ′›
using updated-substitution-is-substitution by (metis fmdiff-fmupd fmdom ′-notD fmpred-filter)

from Cons.prems(2) and ‹ϑ = fmupd x (FVar y) ?ϑ ′› have is-renaming-substitution {x � FVar
y}

by auto
have

foldr (λ(x, y) C . S {x � y} C) (p # ps) B
=
S {x � FVar y} (foldr (λ(x, y) C . S {x � y} C) ps B)
by (simp add: ‹p = (x, FVar y)›)

also have . . . = S {x � FVar y} S ?ϑ ′ B
proof −

from Cons.prems(3 ,4) have distinct (map fst ps) and distinct (map snd ps)
by fastforce+

moreover have vars (fmran ′ ?ϑ ′) ∩ (fmdom ′ ?ϑ ′ ∪ vars B) = {}
proof −

have vars (fmran ′ ϑ) = vars ({FVar y} ∪ fmran ′ ?ϑ ′)
using ‹ϑ = fmupd x (FVar y) ?ϑ ′› and ‹x /∈ fmdom ′ ?ϑ ′› by (metis fmdom ′-notD fmran ′-fmupd)
then have vars (fmran ′ ϑ) = {y} ∪ vars (fmran ′ ?ϑ ′)

using singleton-form-set-vars by auto
moreover have fmdom ′ ϑ = {x} ∪ fmdom ′ ?ϑ ′

by (simp add: ‹ϑ = {x � FVar y} ++f ?ϑ ′›)
ultimately show ?thesis

using Cons.prems(5) by auto
qed
ultimately show ?thesis

using Cons.IH and ‹is-renaming-substitution ?ϑ ′› by simp
qed
also have . . . = S ({x � FVar y} ++f ?ϑ ′) B
proof (rule substitution-fusion)

show is-substitution ?ϑ ′

using ‹is-renaming-substitution ?ϑ ′› by simp

76

show is-substitution {x � FVar y}
using ‹is-renaming-substitution {x � FVar y}› by simp

show ?ϑ ′ $$ x = None
using ‹x /∈ fmdom ′ ?ϑ ′› by blast

show ∀ v ′ ∈ fmdom ′ ?ϑ ′. x /∈ vars (?ϑ ′ $$! v ′)
proof −

have x ∈ fmdom ′ ϑ
using ‹ϑ = {x � FVar y} ++f ?ϑ ′› by simp

then have x /∈ vars (fmran ′ ϑ)
using Cons.prems(5) by blast

moreover have {?ϑ ′ $$! v ′ | v ′. v ′ ∈ fmdom ′ ?ϑ ′} ⊆ fmran ′ ϑ
unfolding ‹ϑ = ?ϑ ′(x � FVar y)› using ‹?ϑ ′ $$ x = None›
by (auto simp add: fmlookup-of-list fmlookup-dom ′-iff fmran ′I weak-map-of-SomeI)

ultimately show ?thesis
by force

qed
qed
also from ‹ϑ = {x � FVar y} ++f ?ϑ ′› have . . . = S ϑ B

by (simp only:)
finally show ?case ..

qed

lemma free-vars-agreement-substitution-equality:
assumes fmdom ′ ϑ = fmdom ′ ϑ ′

and ∀ v ∈ free-vars A ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
shows S ϑ A = S ϑ ′ A

using assms proof (induction A arbitrary: ϑ ϑ ′)
case (FVar v)
have free-vars (FVar v) = {v}

using surj-pair [of v] by fastforce
with FVar have ϑ $$! v = ϑ ′ $$! v

by force
with FVar .prems(1) show ?case

using surj-pair [of v] by (metis fmdom ′-notD fmdom ′-notI option.collapse substitute.simps(1))
next

case FCon
then show ?case

by (metis prod.exhaust-sel substitute.simps(2))
next

case (FApp B C)
have S ϑ (B � C) = (S ϑ B) � (S ϑ C)

by simp
also have . . . = (S ϑ ′ B) � (S ϑ ′ C)
proof −

have ∀ v ∈ free-vars B ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
and ∀ v ∈ free-vars C ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v

using FApp.prems(2) by auto
with FApp.IH (1 ,2) and FApp.prems(1) show ?thesis

by blast

77

qed
finally show ?case

by simp
next

case (FAbs w B)
from FAbs.prems(1 ,2) have ∗: ∀ v ∈ free-vars B − {w} ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v

using surj-pair [of w] by fastforce
show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
then have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S (fmdrop w ϑ ′) B)
proof −

from ∗ have ∀ v ∈ free-vars B ∩ fmdom ′ (fmdrop w ϑ). (fmdrop w ϑ) $$! v = (fmdrop w ϑ ′) $$!
v

by simp
moreover have fmdom ′ (fmdrop w ϑ) = fmdom ′ (fmdrop w ϑ ′)

by (simp add: FAbs.prems(1))
ultimately show ?thesis

using FAbs.IH by blast
qed
finally show ?thesis

using FAbs.prems(1) and True and surj-pair [of w] by fastforce
next

case False
then have S ϑ (FAbs w B) = FAbs w (S ϑ B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S ϑ ′ B)
proof −

from ∗ have ∀ v ∈ free-vars B ∩ fmdom ′ ϑ. ϑ $$! v = ϑ ′ $$! v
using False by blast

with FAbs.prems(1) show ?thesis
using FAbs.IH by blast

qed
finally show ?thesis

using FAbs.prems(1) and False and surj-pair [of w] by fastforce
qed

qed

The following lemma proves that S. xα
Aα

S.
x1
α1

... xn
αn

A1
α1

... An
αn
B = S.

xα x1
α1

... xn
αn

Aα S. xα
Aα

A1
α1

... S. xα
Aα

An
αn

B provided

that xα is distinct from x1α1
, . . . , xnαn

and Ai
αi

is free for xiαi
in B:

lemma substitution-consolidation:
assumes v /∈ fmdom ′ ϑ
and ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B
shows S {v � A} S ϑ B = S ({v � A} ++f fmmap (λA ′. S {v � A} A ′) ϑ) B

using assms proof (induction B arbitrary: ϑ)
case (FApp B C)

78

have ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B ∧ is-free-for (ϑ $$! v ′) v ′ C
proof

fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FApp.prems(2) have is-free-for (ϑ $$! v ′) v ′ (B � C)

by blast
then show is-free-for (ϑ $$! v ′) v ′ B ∧ is-free-for (ϑ $$! v ′) v ′ C

using is-free-for-from-app by iprover
qed
with FApp.IH and FApp.prems(1) show ?case

by simp
next

case (FAbs w B)
let ?ϑ ′ = fmmap (λA ′. S {v � A} A ′) ϑ
show ?case
proof (cases w ∈ fmdom ′ ϑ)

case True
then have w ∈ fmdom ′ ?ϑ ′

by simp
with True and FAbs.prems have v 6= w

by blast
from True have S {v � A} S ϑ (FAbs w B) = S {v � A} (FAbs w (S (fmdrop w ϑ) B))

using surj-pair [of w] by fastforce
also from ‹v 6= w› have . . . = FAbs w (S {v � A} S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S (fmdrop w ({v � A} ++f ?ϑ ′)) B)
proof −

obtain xw and αw where w = (xw, αw)
by fastforce

have ∀ v ′ ∈ fmdom ′ (fmdrop w ϑ). is-free-for ((fmdrop w ϑ) $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ (fmdrop w ϑ)
with FAbs.prems(2) have is-free-for (ϑ $$! v ′) v ′ (FAbs w B)

by auto
with ‹w = (xw, αw)› and ‹v ′ ∈ fmdom ′ (fmdrop w ϑ)›
have is-free-for (ϑ $$! v ′) v ′ (λxwαw . B) and v ′ 6= (xw, αw)

by auto
then have is-free-for (ϑ $$! v ′) v ′ B

using is-free-for-from-abs by presburger
with ‹v ′ 6= (xw, αw)› and ‹w = (xw, αw)› show is-free-for (fmdrop w ϑ $$! v ′) v ′ B

by simp
qed
moreover have v /∈ fmdom ′ (fmdrop w ϑ)

by (simp add: FAbs.prems(1))
ultimately show ?thesis

using FAbs.IH and ‹v 6= w› by (simp add: fmdrop-fmupd)
qed
finally show ?thesis

79

using ‹w ∈ fmdom ′ ?ϑ ′› and surj-pair [of w] by fastforce
next

case False
then have w /∈ fmdom ′ ?ϑ ′

by simp
from FAbs.prems have v /∈ fmdom ′ ?ϑ ′

by simp
from False have ∗: S {v � A} S ϑ (FAbs w B) = S {v � A} (FAbs w (S ϑ B))

using surj-pair [of w] by fastforce
then show ?thesis
proof (cases v 6= w)

case True
then have S {v � A} (FAbs w (S ϑ B)) = FAbs w (S {v � A} (S ϑ B))

using surj-pair [of w] by fastforce
also have . . . = FAbs w (S ({v � A} ++f ?ϑ ′) B)
proof −

obtain xw and αw where w = (xw, αw)
by fastforce

have ∀ v ′ ∈ fmdom ′ ϑ. is-free-for (ϑ $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FAbs.prems(2) have is-free-for (ϑ $$! v ′) v ′ (FAbs w B)

by auto
with ‹w = (xw, αw)› and ‹v ′ ∈ fmdom ′ ϑ› and False
have is-free-for (ϑ $$! v ′) v ′ (λxwαw . B) and v ′ 6= (xw, αw)

by fastforce+
then have is-free-for (ϑ $$! v ′) v ′ B

using is-free-for-from-abs by presburger
with ‹v ′ 6= (xw, αw)› and ‹w = (xw, αw)› show is-free-for (ϑ $$! v ′) v ′ B

by simp
qed
with FAbs.IH show ?thesis

using FAbs.prems(1) by blast
qed
finally show ?thesis
proof −

assume
S {v � A} (FAbs w (S ϑ B)) = FAbs w (S ({v � A} ++f fmmap (substitute {v � A}) ϑ)

B)
moreover have w /∈ fmdom ′ ({v � A} ++f fmmap (substitute {v � A}) ϑ)

using False and True by auto
ultimately show ?thesis

using ∗ and surj-pair [of w] by fastforce
qed

next
case False
then have v /∈ free-vars (FAbs w (S ϑ B))

using surj-pair [of w] by fastforce

80

then have ∗∗: S {v � A} (FAbs w (S ϑ B)) = FAbs w (S ϑ B)
using free-var-singleton-substitution-neutrality by blast

also have . . . = FAbs w (S ?ϑ ′ B)
proof −

{
fix v ′

assume v ′ ∈ fmdom ′ ϑ
with FAbs.prems(1) have v ′ 6= v

by blast
assume v ∈ free-vars (ϑ $$! v ′) and v ′ ∈ free-vars B
with ‹v ′ 6= v› have ¬ is-free-for (ϑ $$! v ′) v ′ (FAbs v B)

using form-with-free-binder-not-free-for by blast
with FAbs.prems(2) and ‹v ′ ∈ fmdom ′ ϑ› and False have False

by blast
}
then have ∀ v ′ ∈ fmdom ′ ϑ. v /∈ free-vars (ϑ $$! v ′) ∨ v ′ /∈ free-vars B

by blast
then have ∀ v ′ ∈ fmdom ′ ϑ. v ′ ∈ free-vars B −→ S {v � A} (ϑ $$! v ′) = ϑ $$! v ′

using free-var-singleton-substitution-neutrality by blast
then have ∀ v ′ ∈ free-vars B. ϑ $$! v ′ = ?ϑ ′ $$! v ′

by (metis fmdom ′-map fmdom ′-notD fmdom ′-notI fmlookup-map option.map-sel)
then have S ϑ B = S ?ϑ ′ B

using free-vars-agreement-substitution-equality by (metis IntD1 fmdom ′-map)
then show ?thesis

by simp
qed
also from False and FAbs.prems(1) have . . . = FAbs w (S (fmdrop w ({v � A} ++f ?ϑ ′)) B)

by (simp add: fmdrop-fmupd-same fmdrop-idle ′)
also from False have . . . = S ({v � A} ++f ?ϑ ′) (FAbs w B)

using surj-pair [of w] by fastforce
finally show ?thesis

using ∗ and ∗∗ by (simp only:)
qed

qed
qed force+

lemma vars-range-substitution:
assumes is-substitution ϑ
and v /∈ vars (fmran ′ ϑ)
shows v /∈ vars (fmran ′ (fmdrop w ϑ))

using assms proof (induction ϑ)
case fmempty
then show ?case

by simp
next

case (fmupd v ′ A ϑ)
from fmdom ′-notI [OF fmupd.hyps] and fmupd.prems(1) have is-substitution ϑ

by (rule updated-substitution-is-substitution)
moreover from fmupd.prems(2) and fmupd.hyps have v /∈ vars (fmran ′ ϑ)

81

by simp
ultimately have v /∈ vars (fmran ′ (fmdrop w ϑ))

by (rule fmupd.IH)
with fmupd.hyps and fmupd.prems(2) show ?case

by (simp add: fmdrop-fmupd)
qed

lemma excluded-var-from-substitution:
assumes is-substitution ϑ
and v /∈ fmdom ′ ϑ
and v /∈ vars (fmran ′ ϑ)
and v /∈ vars A
shows v /∈ vars (S ϑ A)

using assms proof (induction A arbitrary: ϑ)
case (FVar v ′)
then show ?case
proof (cases v ′ ∈ fmdom ′ ϑ)

case True
then have ϑ $$! v ′ ∈ fmran ′ ϑ

by (simp add: fmlookup-dom ′-iff fmran ′I)
with FVar(3) have v /∈ vars (ϑ $$! v ′)

by simp
with True show ?thesis

using surj-pair [of v ′] and fmdom ′-notI by force
next

case False
with FVar .prems(4) show ?thesis

using surj-pair [of v ′] by force
qed

next
case (FCon k)
then show ?case

using surj-pair [of k] by force
next

case (FApp B C)
then show ?case

by auto
next

case (FAbs w B)
have v /∈ vars B and v 6= w

using surj-pair [of w] and FAbs.prems(4) by fastforce+
then show ?case
proof (cases w /∈ fmdom ′ ϑ)

case True
then have S ϑ (FAbs w B) = FAbs w (S ϑ B)

using surj-pair [of w] by fastforce
moreover from FAbs.IH have v /∈ vars (S ϑ B)

using FAbs.prems(1−3) and ‹v /∈ vars B› by blast
ultimately show ?thesis

82

using ‹v 6= w› and surj-pair [of w] by fastforce
next

case False
then have S ϑ (FAbs w B) = FAbs w (S (fmdrop w ϑ) B)

using surj-pair [of w] by fastforce
moreover have v /∈ vars (S (fmdrop w ϑ) B)
proof −

from FAbs.prems(1) have is-substitution (fmdrop w ϑ)
by fastforce

moreover from FAbs.prems(2) have v /∈ fmdom ′ (fmdrop w ϑ)
by simp

moreover from FAbs.prems(1 ,3) have v /∈ vars (fmran ′ (fmdrop w ϑ))
by (fact vars-range-substitution)

ultimately show ?thesis
using FAbs.IH and ‹v /∈ vars B› by simp

qed
ultimately show ?thesis

using ‹v 6= w› and surj-pair [of w] by fastforce
qed

qed

2.15 Renaming of bound variables
fun rename-bound-var :: var ⇒ nat ⇒ form ⇒ form where

rename-bound-var v y (xα) = xα
| rename-bound-var v y ({|c|}α) = {|c|}α
| rename-bound-var v y (B � C) = rename-bound-var v y B � rename-bound-var v y C
| rename-bound-var v y (λxα. B) =

(
if (x, α) = v then
λyα. S {(x, α) � yα} (rename-bound-var v y B)

else
λxα. (rename-bound-var v y B)

)

lemma rename-bound-var-preserves-typing:
assumes A ∈ wffsα
shows rename-bound-var (y, γ) z A ∈ wffsα

using assms proof (induction A)
case (abs-is-wff β A δ x)
then show ?case
proof (cases (x, δ) = (y, γ))

case True
from abs-is-wff .IH have S {(y, γ) � zγ} (rename-bound-var (y, γ) z A) ∈ wffsβ

using substitution-preserves-typing by (simp add: wffs-of-type-intros(1))
then have λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A) ∈ wffsγ→β

by blast
with True show ?thesis

by simp

83

next
case False
from abs-is-wff .IH have λxδ . rename-bound-var (y, γ) z A ∈ wffsδ→β

by blast
with False show ?thesis

by auto
qed

qed auto

lemma old-bound-var-not-free-in-abs-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows (y, γ) /∈ free-vars (rename-bound-var (y, γ) z (λyγ . A))
using assms and free-var-in-renaming-substitution by (induction A) auto

lemma rename-bound-var-free-vars:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows (z, γ) /∈ free-vars (rename-bound-var (y, γ) z A)
using assms by (induction A) auto

lemma old-bound-var-not-free-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
and (y, γ) /∈ free-vars A
shows (y, γ) /∈ free-vars (rename-bound-var (y, γ) z A)

using assms proof induction
case (abs-is-wff β A α x)
then show ?case
proof (cases (x, α) = (y, γ))

case True
with abs-is-wff .hyps and abs-is-wff .prems(2) show ?thesis

using old-bound-var-not-free-in-abs-after-renaming by auto
next

case False
with abs-is-wff .prems(2 ,3) and assms(2) show ?thesis

using abs-is-wff .IH by force
qed

qed fastforce+

lemma old-bound-var-not-ocurring-after-renaming:
assumes A ∈ wffsα
and zγ 6= yγ
shows ¬ occurs-at (y, γ) p (S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

using assms(1) proof (induction A arbitrary: p)
case (var-is-wff α x)

84

from assms(2) show ?case
using subform-size-decrease by (cases (x, α) = (y, γ)) fastforce+

next
case (con-is-wff α c)
then show ?case

using occurs-at-alt-def (2) by auto
next

case (app-is-wff α β A B)
then show ?case
proof (cases p)

case (Cons d p ′)
then show ?thesis

by (cases d) (use app-is-wff .IH in auto)
qed simp

next
case (abs-is-wff β A α x)
then show ?case
proof (cases p)

case (Cons d p ′)
then show ?thesis
proof (cases d)

case Left
have ∗: ¬ occurs-at (y, γ) p (λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

for x and α
using Left and Cons and abs-is-wff .IH by simp

then show ?thesis
proof (cases (x, α) = (y, γ))

case True
with assms(2) have

S {(y, γ) � zγ} (rename-bound-var (y, γ) z (λxα. A))
=
λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)
using free-var-in-renaming-substitution and free-var-singleton-substitution-neutrality
by simp

moreover have ¬ occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using Left and Cons and ∗ by simp

ultimately show ?thesis
by simp

next
case False
with assms(2) have

S {(y, γ) � zγ} (rename-bound-var (y, γ) z (λxα. A))
=
λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)
by simp

moreover have ¬ occurs-at (y, γ) p (λxα. S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using Left and Cons and ∗ by simp

ultimately show ?thesis
by simp

85

qed
qed (simp add: Cons)

qed simp
qed

The following lemma states that the result of rename-bound-var does not contain bound
occurrences of the renamed variable:
lemma rename-bound-var-not-bound-occurrences:

assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
and occurs-at (y, γ) p (rename-bound-var (y, γ) z A)
shows ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z A)

using assms(1 ,3 ,4) proof (induction arbitrary: p)
case (var-is-wff α x)
then show ?case

by (simp add: subforms-from-var(2))
next

case (con-is-wff α c)
then show ?case

using occurs-at-alt-def (2) by auto
next

case (app-is-wff α β B C)
from app-is-wff .prems(1) have (z, γ) /∈ vars B and (z, γ) /∈ vars C

by simp-all
from app-is-wff .prems(2)
have occurs-at (y, γ) p (rename-bound-var (y, γ) z B � rename-bound-var (y, γ) z C)

by simp
then consider
(a) ∃ p ′. p = « # p ′ ∧ occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z B)
| (b) ∃ p ′. p = » # p ′ ∧ occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z C)

using subforms-from-app by force
then show ?case
proof cases

case a
then obtain p ′ where p = « # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z B)

by blast
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z B)

using app-is-wff .IH (1)[OF ‹(z, γ) /∈ vars B›] by blast
then have ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z (B � C)) for C

using ‹p = « # p ′› and in-scope-of-abs-in-left-app by simp
then show ?thesis

by blast
next

case b
then obtain p ′ where p = » # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z C)

by blast
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z C)

using app-is-wff .IH (2)[OF ‹(z, γ) /∈ vars C ›] by blast

86

then have ¬ in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z (B � C)) for B
using ‹p = » # p ′› and in-scope-of-abs-in-right-app by simp

then show ?thesis
by blast

qed
next

case (abs-is-wff β A α x)
from abs-is-wff .prems(1) have (z, γ) /∈ vars A and (z, γ) 6= (x, α)

by fastforce+
then show ?case
proof (cases (y, γ) = (x, α))

case True
then have occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))

using abs-is-wff .prems(2) by simp
moreover have ¬ occurs-at (y, γ) p (λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A))
using old-bound-var-not-ocurring-after-renaming[OF abs-is-wff .hyps assms(2)] and subforms-from-abs

by fastforce
ultimately show ?thesis

by contradiction
next

case False
then have ∗: rename-bound-var (y, γ) z (λxα. A) = λxα. rename-bound-var (y, γ) z A

by auto
with abs-is-wff .prems(2) have occurs-at (y, γ) p (λxα. rename-bound-var (y, γ) z A)

by auto
then obtain p ′ where p = « # p ′ and occurs-at (y, γ) p ′ (rename-bound-var (y, γ) z A)

using subforms-from-abs by fastforce
then have ¬ in-scope-of-abs (z, γ) p ′ (rename-bound-var (y, γ) z A)

using abs-is-wff .IH [OF ‹(z, γ) /∈ vars A›] by blast
then have ¬ in-scope-of-abs (z, γ) (« # p ′) (λxα. rename-bound-var (y, γ) z A)

using ‹p = « # p ′› and in-scope-of-abs-in-abs and ‹(z, γ) 6= (x, α)› by auto
then show ?thesis

using ∗ and ‹p = « # p ′› by simp
qed

qed

lemma is-free-for-in-rename-bound-var :
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)

proof (rule ccontr)
assume ¬ is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)
then obtain p

where is-free-at (y, γ) p (rename-bound-var (y, γ) z A)
and in-scope-of-abs (z, γ) p (rename-bound-var (y, γ) z A)
by force

then show False
using rename-bound-var-not-bound-occurrences[OF assms] by fastforce

87

qed

lemma renaming-substitution-preserves-bound-vars:
shows bound-vars (S {(y, γ) � zγ} A) = bound-vars A

proof (induction A)
case (FAbs v A)
then show ?case

using singleton-substitution-simps(4) and surj-pair [of v]
by (cases v = (y, γ)) (presburger , force)

qed force+

lemma rename-bound-var-bound-vars:
assumes A ∈ wffsα
and zγ 6= yγ
shows (y, γ) /∈ bound-vars (rename-bound-var (y, γ) z A)
using assms and renaming-substitution-preserves-bound-vars by (induction A) auto

lemma old-var-not-free-not-occurring-after-rename:
assumes A ∈ wffsα
and zγ 6= yγ
and (y, γ) /∈ free-vars A
and (z, γ) /∈ vars A
shows (y, γ) /∈ vars (rename-bound-var (y, γ) z A)
using assms and rename-bound-var-bound-vars[OF assms(1 ,2)]
and old-bound-var-not-free-after-renaming and vars-is-free-and-bound-vars by blast

end

3 Boolean Algebra
theory Boolean-Algebra

imports
ZFC-in-HOL.ZFC-Typeclasses

begin

This theory contains an embedding of two-valued boolean algebra into V.
hide-const (open) List.set

definition bool-to-V :: bool ⇒ V where
bool-to-V = (SOME f . inj f)

lemma bool-to-V-injectivity [simp]:
shows inj bool-to-V
unfolding bool-to-V-def by (fact someI-ex[OF embeddable-class.ex-inj])

definition bool-from-V :: V ⇒ bool where
[simp]: bool-from-V = inv bool-to-V

definition top :: V (T) where

88

[simp]: T = bool-to-V True

definition bottom :: V (F) where
[simp]: F = bool-to-V False

definition two-valued-boolean-algebra-universe :: V (�) where
[simp]: � = set {T, F}

definition negation :: V ⇒ V (∼ - [141] 141) where
[simp]: ∼ p = bool-to-V (¬ bool-from-V p)

definition conjunction :: V ⇒ V ⇒ V (infixr ∧ 136) where
[simp]: p ∧ q = bool-to-V (bool-from-V p ∧ bool-from-V q)

definition disjunction :: V ⇒ V ⇒ V (infixr ∨ 131) where
[simp]: p ∨ q = ∼ (∼ p ∧ ∼ q)

definition implication :: V ⇒ V ⇒ V (infixr ⊃ 121) where
[simp]: p ⊃ q = ∼ p ∨ q

definition iff :: V ⇒ V ⇒ V (infixl ≡ 150) where
[simp]: p ≡ q = (p ⊃ q) ∧ (q ⊃ p)

lemma boolean-algebra-simps [simp]:
assumes p ∈ elts � and q ∈ elts � and r ∈ elts �
shows ∼ ∼ p = p
and ((∼ p) ≡ (∼ q)) = (p ≡ q)
and ∼ (p ≡ q) = (p ≡ (∼ q))
and (p ∨ ∼ p) = T
and (∼ p ∨ p) = T
and (p ≡ p) = T
and (∼ p) 6= p
and p 6= (∼ p)
and (T ≡ p) = p
and (p ≡ T) = p
and (F ≡ p) = (∼ p)
and (p ≡ F) = (∼ p)
and (T ⊃ p) = p
and (F ⊃ p) = T
and (p ⊃ T) = T
and (p ⊃ p) = T
and (p ⊃ F) = (∼ p)
and (p ⊃ ∼ p) = (∼ p)
and (p ∧ T) = p
and (T ∧ p) = p
and (p ∧ F) = F
and (F ∧ p) = F
and (p ∧ p) = p
and (p ∧ (p ∧ q)) = (p ∧ q)

89

and (p ∧ ∼ p) = F
and (∼ p ∧ p) = F
and (p ∨ T) = T
and (T ∨ p) = T
and (p ∨ F) = p
and (F ∨ p) = p
and (p ∨ p) = p
and (p ∨ (p ∨ q)) = (p ∨ q)
and p ∧ q = q ∧ p
and p ∧ (q ∧ r) = q ∧ (p ∧ r)
and p ∨ q = q ∨ p
and p ∨ (q ∨ r) = q ∨ (p ∨ r)
and (p ∨ q) ∨ r = p ∨ (q ∨ r)
and p ∧ (q ∨ r) = p ∧ q ∨ p ∧ r
and (p ∨ q) ∧ r = p ∧ r ∨ q ∧ r
and p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)
and (p ∧ q) ∨ r = (p ∨ r) ∧ (q ∨ r)
and (p ⊃ (q ∧ r)) = ((p ⊃ q) ∧ (p ⊃ r))
and ((p ∧ q) ⊃ r) = (p ⊃ (q ⊃ r))
and ((p ∨ q) ⊃ r) = ((p ⊃ r) ∧ (q ⊃ r))
and ((p ⊃ q) ∨ r) = (p ⊃ q ∨ r)
and (q ∨ (p ⊃ r)) = (p ⊃ q ∨ r)
and ∼ (p ∨ q) = ∼ p ∧ ∼ q
and ∼ (p ∧ q) = ∼ p ∨ ∼ q
and ∼ (p ⊃ q) = p ∧ ∼ q
and ∼ p ∨ q = (p ⊃ q)
and p ∨ ∼ q = (q ⊃ p)
and (p ⊃ q) = (∼ p) ∨ q
and p ∨ q = ∼ p ⊃ q
and (p ≡ q) = (p ⊃ q) ∧ (q ⊃ p)
and (p ⊃ q) ∧ (∼ p ⊃ q) = q
and p = T =⇒ ¬ (p = F)
and p = F =⇒ ¬ (p = T)
and p = T ∨ p = F
using assms by (auto simp add: inj-eq)

lemma tv-cases [consumes 1 , case-names top bottom, cases type: V]:
assumes p ∈ elts �
and p = T =⇒ P
and p = F =⇒ P
shows P
using assms by auto

end

4 Propositional Well-Formed Formulas
theory Propositional-Wff

imports

90

Syntax
Boolean-Algebra

begin

4.1 Syntax
inductive-set pwffs :: form set where

T-pwff : To ∈ pwffs
| F-pwff : Fo ∈ pwffs
| var-pwff : po ∈ pwffs
| neg-pwff : ∼Q A ∈ pwffs if A ∈ pwffs
| conj-pwff : A ∧Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| disj-pwff : A ∨Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| imp-pwff : A ⊃Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs
| eqv-pwff : A ≡Q B ∈ pwffs if A ∈ pwffs and B ∈ pwffs

lemmas [intro!] = pwffs.intros

lemma pwffs-distinctnesses [induct-simp]:
shows To 6= Fo
and To 6= po
and To 6= ∼Q A
and To 6= A ∧Q B
and To 6= A ∨Q B
and To 6= A ⊃Q B
and To 6= A ≡Q B
and Fo 6= po
and Fo 6= ∼Q A
and Fo 6= A ∧Q B
and Fo 6= A ∨Q B
and Fo 6= A ⊃Q B
and Fo 6= A ≡Q B
and po 6= ∼Q A
and po 6= A ∧Q B
and po 6= A ∨Q B
and po 6= A ⊃Q B
and po 6= A ≡Q B
and ∼Q A 6= B ∧Q C
and ∼Q A 6= B ∨Q C
and ∼Q A 6= B ⊃Q C
and ¬ (B = Fo ∧ A = C) =⇒ ∼Q A 6= B ≡Q C — ∼Q A is the same as Fo ≡Q A
and A ∧Q B 6= C ∨Q D
and A ∧Q B 6= C ⊃Q D
and A ∧Q B 6= C ≡Q D
and A ∨Q B 6= C ⊃Q D
and A ∨Q B 6= C ≡Q D
and A ⊃Q B 6= C ≡Q D
by simp-all

91

lemma pwffs-injectivities [induct-simp]:
shows ∼Q A = ∼Q A ′ =⇒ A = A ′

and A ∧Q B = A ′ ∧Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ∨Q B = A ′ ∨Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ⊃Q B = A ′ ⊃Q B ′ =⇒ A = A ′ ∧ B = B ′

and A ≡Q B = A ′ ≡Q B ′ =⇒ A = A ′ ∧ B = B ′

by simp-all

lemma pwff-from-neg-pwff [elim!]:
assumes ∼Q A ∈ pwffs
shows A ∈ pwffs
using assms by cases simp-all

lemma pwffs-from-conj-pwff [elim!]:
assumes A ∧Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-disj-pwff [elim!]:
assumes A ∨Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-imp-pwff [elim!]:
assumes A ⊃Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases simp-all

lemma pwffs-from-eqv-pwff [elim!]:
assumes A ≡Q B ∈ pwffs
shows {A, B} ⊆ pwffs
using assms by cases (simp-all, use F-pwff in fastforce)

lemma pwffs-subset-of-wffso:
shows pwffs ⊆ wffso

proof
fix A
assume A ∈ pwffs
then show A ∈ wffso

by induction auto
qed

lemma pwff-free-vars-simps [simp]:
shows T-fv: free-vars To = {}
and F-fv: free-vars Fo = {}
and var-fv: free-vars (po) = {(p, o)}
and neg-fv: free-vars (∼Q A) = free-vars A
and conj-fv: free-vars (A ∧Q B) = free-vars A ∪ free-vars B
and disj-fv: free-vars (A ∨Q B) = free-vars A ∪ free-vars B

92

and imp-fv: free-vars (A ⊃Q B) = free-vars A ∪ free-vars B
and eqv-fv: free-vars (A ≡Q B) = free-vars A ∪ free-vars B
by force+

lemma pwffs-free-vars-are-propositional:
assumes A ∈ pwffs
and v ∈ free-vars A
obtains p where v = (p, o)

using assms by (induction A arbitrary: thesis) auto

lemma is-free-for-in-pwff [intro]:
assumes A ∈ pwffs
and v ∈ free-vars A
shows is-free-for B v A

using assms proof (induction A)
case (neg-pwff C)
then show ?case

using is-free-for-in-neg by simp
next

case (conj-pwff C D)
from conj-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using conj-pwff .IH by (intro is-free-for-in-conj)
next

case b
have is-free-for B v C

by (fact conj-pwff .IH (1)[OF b(1)])
moreover from b(2) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-conj)
next

case c
from c(1) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact conj-pwff .IH (2)[OF c(2)])
ultimately show ?thesis

by (rule is-free-for-in-conj)
qed

next
case (disj-pwff C D)

93

from disj-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using disj-pwff .IH by (intro is-free-for-in-disj)
next

case b
have is-free-for B v C

by (fact disj-pwff .IH (1)[OF b(1)])
moreover from b(2) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-disj)
next

case c
from c(1) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact disj-pwff .IH (2)[OF c(2)])
ultimately show ?thesis

by (rule is-free-for-in-disj)
qed

next
case (imp-pwff C D)
from imp-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using imp-pwff .IH by (intro is-free-for-in-imp)
next

case b
have is-free-for B v C

by (fact imp-pwff .IH (1)[OF b(1)])
moreover from b(2) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-imp)
next

case c

94

from c(1) have is-free-for B v C
using is-free-at-in-free-vars by blast

moreover have is-free-for B v D
by (fact imp-pwff .IH (2)[OF c(2)])

ultimately show ?thesis
by (rule is-free-for-in-imp)

qed
next

case (eqv-pwff C D)
from eqv-pwff .prems consider
(a) v ∈ free-vars C and v ∈ free-vars D
| (b) v ∈ free-vars C and v /∈ free-vars D
| (c) v /∈ free-vars C and v ∈ free-vars D

by auto
then show ?case
proof cases

case a
then show ?thesis

using eqv-pwff .IH by (intro is-free-for-in-equivalence)
next

case b
have is-free-for B v C

by (fact eqv-pwff .IH (1)[OF b(1)])
moreover from b(2) have is-free-for B v D

using is-free-at-in-free-vars by blast
ultimately show ?thesis

by (rule is-free-for-in-equivalence)
next

case c
from c(1) have is-free-for B v C

using is-free-at-in-free-vars by blast
moreover have is-free-for B v D

by (fact eqv-pwff .IH (2)[OF c(2)])
ultimately show ?thesis

by (rule is-free-for-in-equivalence)
qed

qed auto

4.2 Semantics

Assignment of truth values to propositional variables:
definition is-tv-assignment :: (nat ⇒ V) ⇒ bool where
[iff]: is-tv-assignment ϕ ←→ (∀ p. ϕ p ∈ elts �)

Denotation of a pwff:
definition is-pwff-denotation-function where
[iff]: is-pwff-denotation-function V ←→
(
∀ϕ. is-tv-assignment ϕ −→

95

(
V ϕ To = T ∧
V ϕ Fo = F ∧
(∀ p. V ϕ (po) = ϕ p) ∧
(∀A. A ∈ pwffs −→ V ϕ (∼Q A) = ∼ V ϕ A) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B) ∧
(∀A B. A ∈ pwffs ∧ B ∈ pwffs −→ V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B)

)
)

lemma pwff-denotation-is-truth-value:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and is-pwff-denotation-function V
shows V ϕ A ∈ elts �

using assms(1) proof induction
case (neg-pwff A)
then have V ϕ (∼Q A) = ∼ V ϕ A

using assms(2 ,3) by auto
then show ?case

using neg-pwff .IH by auto
next

case (conj-pwff A B)
then have V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

using assms(2 ,3) by auto
then show ?case

using conj-pwff .IH by auto
next

case (disj-pwff A B)
then have V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B

using assms(2 ,3) by auto
then show ?case

using disj-pwff .IH by auto
next

case (imp-pwff A B)
then have V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

using assms(2 ,3) by blast
then show ?case

using imp-pwff .IH by auto
next

case (eqv-pwff A B)
then have V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B

using assms(2 ,3) by blast
then show ?case

using eqv-pwff .IH by auto
qed (use assms(2 ,3) in auto)

96

lemma closed-pwff-is-meaningful-regardless-of-assignment:
assumes A ∈ pwffs
and free-vars A = {}
and is-tv-assignment ϕ
and is-tv-assignment ψ
and is-pwff-denotation-function V
shows V ϕ A = V ψ A

using assms(1 ,2) proof induction
case T-pwff
have V ϕ To = T

using assms(3 ,5) by blast
also have . . . = V ψ To

using assms(4 ,5) by force
finally show ?case .

next
case F-pwff
have V ϕ Fo = F

using assms(3 ,5) by blast
also have . . . = V ψ Fo

using assms(4 ,5) by force
finally show ?case .

next
case (var-pwff p) — impossible case
then show ?case

by simp
next

case (neg-pwff A)
from ‹free-vars (∼Q A) = {}› have free-vars A = {}

by simp
have V ϕ (∼Q A) = ∼ V ϕ A

using assms(3 ,5) and neg-pwff .hyps by auto
also from ‹free-vars A = {}› have . . . = ∼ V ψ A

using assms(3−5) and neg-pwff .IH by presburger
also have . . . = V ψ (∼Q A)

using assms(4 ,5) and neg-pwff .hyps by simp
finally show ?case .

next
case (conj-pwff A B)
from ‹free-vars (A ∧Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

using assms(3 ,5) and conj-pwff .hyps(1 ,2) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ∧ V ψ B

using conj-pwff .IH (1 ,2) by presburger
also have . . . = V ψ (A ∧Q B)

using assms(4 ,5) and conj-pwff .hyps(1 ,2) by fastforce
finally show ?case .

next
case (disj-pwff A B)

97

from ‹free-vars (A ∨Q B) = {}› have free-vars A = {} and free-vars B = {}
by simp-all

have V ϕ (A ∨Q B) = V ϕ A ∨ V ϕ B
using assms(3 ,5) and disj-pwff .hyps(1 ,2) by auto

also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ∨ V ψ B
using disj-pwff .IH (1 ,2) by presburger

also have . . . = V ψ (A ∨Q B)
using assms(4 ,5) and disj-pwff .hyps(1 ,2) by fastforce

finally show ?case .
next

case (imp-pwff A B)
from ‹free-vars (A ⊃Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

using assms(3 ,5) and imp-pwff .hyps(1 ,2) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ⊃ V ψ B

using imp-pwff .IH (1 ,2) by presburger
also have . . . = V ψ (A ⊃Q B)

using assms(4 ,5) and imp-pwff .hyps(1 ,2) by fastforce
finally show ?case .

next
case (eqv-pwff A B)
from ‹free-vars (A ≡Q B) = {}› have free-vars A = {} and free-vars B = {}

by simp-all
have V ϕ (A ≡Q B) = V ϕ A ≡ V ϕ B

using assms(3 ,5) and eqv-pwff .hyps(1 ,2) by auto
also from ‹free-vars A = {}› and ‹free-vars B = {}› have . . . = V ψ A ≡ V ψ B

using eqv-pwff .IH (1 ,2) by presburger
also have . . . = V ψ (A ≡Q B)

using assms(4 ,5) and eqv-pwff .hyps(1 ,2) by fastforce
finally show ?case .

qed

inductive VB-graph for ϕ where
VB-graph-T : VB-graph ϕ To T
| VB-graph-F : VB-graph ϕ Fo F
| VB-graph-var : VB-graph ϕ (po) (ϕ p)
| VB-graph-neg: VB-graph ϕ (∼Q A) (∼ bA) if VB-graph ϕ A bA
| VB-graph-conj: VB-graph ϕ (A ∧Q B) (bA ∧ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-disj: VB-graph ϕ (A ∨Q B) (bA ∨ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-imp: VB-graph ϕ (A ⊃Q B) (bA ⊃ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB
| VB-graph-eqv: VB-graph ϕ (A ≡Q B) (bA ≡ bB) if VB-graph ϕ A bA and VB-graph ϕ B bB and A
6= Fo

lemmas [intro!] = VB-graph.intros

lemma VB-graph-denotation-is-truth-value [elim!]:
assumes VB-graph ϕ A b
and is-tv-assignment ϕ

98

shows b ∈ elts �
using assms proof induction

case (VB-graph-neg A bA)
show ?case

using VB-graph-neg.IH [OF assms(2)] by force
next

case (VB-graph-conj A bA B bB)
then show ?case

using VB-graph-conj.IH and assms(2) by force
next

case (VB-graph-disj A bA B bB)
then show ?case

using VB-graph-disj.IH and assms(2) by force
next

case (VB-graph-imp A bA B bB)
then show ?case

using VB-graph-imp.IH and assms(2) by force
next

case (VB-graph-eqv A bA B bB)
then show ?case

using VB-graph-eqv.IH and assms(2) by force
qed simp-all

lemma VB-graph-denotation-uniqueness:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and VB-graph ϕ A b and VB-graph ϕ A b ′

shows b = b ′

using assms(3 ,1 ,4) proof (induction arbitrary: b ′)
case VB-graph-T
from ‹VB-graph ϕ To b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case VB-graph-F
from ‹VB-graph ϕ Fo b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case (VB-graph-var p)
from ‹VB-graph ϕ (po) b ′› show ?case

by (cases rule: VB-graph.cases) simp-all
next

case (VB-graph-neg A bA)
with ‹VB-graph ϕ (∼Q A) b ′› have VB-graph ϕ A (∼ b ′)
proof (cases rule: VB-graph.cases)

case (VB-graph-neg A ′ bA)
from ‹∼Q A = ∼Q A ′› have A = A ′

by simp
with ‹VB-graph ϕ A ′ bA› have VB-graph ϕ A bA

by simp

99

moreover have bA = ∼ b ′

proof −
have bA ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF VB-graph-neg(3) assms(2)])
moreover from ‹bA ∈ elts �› and VB-graph-neg(2) have ∼ b ′ ∈ elts �

by fastforce
ultimately show ?thesis

using VB-graph-neg(2) by fastforce
qed
ultimately show ?thesis

by blast
qed simp-all
moreover from VB-graph-neg.prems(1) have A ∈ pwffs

by (force elim: pwffs.cases)
moreover have bA ∈ elts � and b ′ ∈ elts � and bA = ∼ b ′

proof −
show bA ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF ‹VB-graph ϕ A bA› assms(2)])
show b ′ ∈ elts �

by (fact VB-graph-denotation-is-truth-value[OF ‹VB-graph ϕ (∼Q A) b ′› assms(2)])
show bA = ∼ b ′

by (fact VB-graph-neg(2)[OF ‹A ∈ pwffs› ‹VB-graph ϕ A (∼ b ′)›])
qed
ultimately show ?case

by force
next

case (VB-graph-conj A bA B bB)
with ‹VB-graph ϕ (A ∧Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ∧ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-conj-pwff [OF VB-graph-conj.prems(1)] by blast+
ultimately show ?case

using VB-graph-conj.IH and VB-graph-conj.prems(2) by blast
next

case (VB-graph-disj A bA B bB)
from ‹VB-graph ϕ (A ∨Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ∨ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-disj-pwff [OF VB-graph-disj.prems(1)] by blast+
ultimately show ?case

using VB-graph-disj.IH and VB-graph-disj.prems(2) by blast
next

case (VB-graph-imp A bA B bB)
from ‹VB-graph ϕ (A ⊃Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ⊃ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

100

using pwffs-from-imp-pwff [OF VB-graph-imp.prems(1)] by blast+
ultimately show ?case

using VB-graph-imp.IH and VB-graph-imp.prems(2) by blast
next

case (VB-graph-eqv A bA B bB)
with ‹VB-graph ϕ (A ≡Q B) b ′› obtain bA ′ and bB ′

where b ′ = bA ′ ≡ bB ′ and VB-graph ϕ A bA ′ and VB-graph ϕ B bB ′

by (cases rule: VB-graph.cases) simp-all
moreover have A ∈ pwffs and B ∈ pwffs

using pwffs-from-eqv-pwff [OF VB-graph-eqv.prems(1)] by blast+
ultimately show ?case

using VB-graph-eqv.IH and VB-graph-eqv.prems(2) by blast
qed

lemma VB-graph-denotation-existence:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows ∃ b. VB-graph ϕ A b

using assms proof induction
case (eqv-pwff A B)
then obtain bA and bB where VB-graph ϕ A bA and VB-graph ϕ B bB

by blast
then show ?case
proof (cases A 6= Fo)

case True
then show ?thesis

using eqv-pwff .IH and eqv-pwff .prems by blast
next

case False
then have A = Fo

by blast
then show ?thesis

using VB-graph-neg[OF ‹VB-graph ϕ B bB›] by auto
qed

qed blast+

lemma VB-graph-is-functional:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows ∃ !b. VB-graph ϕ A b
using assms and VB-graph-denotation-existence and VB-graph-denotation-uniqueness by blast

definition VB :: (nat ⇒ V) ⇒ form ⇒ V where
[simp]: VB ϕ A = (THE b. VB-graph ϕ A b)

lemma VB-equality:
assumes A ∈ pwffs
and is-tv-assignment ϕ
and VB-graph ϕ A b

101

shows VB ϕ A = b
unfolding VB-def using assms using VB-graph-denotation-uniqueness by blast

lemma VB-graph-VB :
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows VB-graph ϕ A (VB ϕ A)
using VB-equality[OF assms] and VB-graph-is-functional[OF assms] by blast

named-theorems VB-simps

lemma VB-T [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ To = T
by (rule VB-equality[OF T-pwff assms], intro VB-graph-T)

lemma VB-F [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ Fo = F
by (rule VB-equality[OF F-pwff assms], intro VB-graph-F)

lemma VB-var [VB-simps]:
assumes is-tv-assignment ϕ
shows VB ϕ (po) = ϕ p
by (rule VB-equality[OF var-pwff assms], intro VB-graph-var)

lemma VB-neg [VB-simps]:
assumes A ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (∼Q A) = ∼ VB ϕ A
by (rule VB-equality[OF neg-pwff [OF assms(1)] assms(2)], intro VB-graph-neg VB-graph-VB [OF

assms])

lemma VB-disj [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ∨Q B) = VB ϕ A ∨ VB ϕ B

proof −
from assms(1 ,3) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ∨Q B) (VB ϕ A ∨ VB ϕ B)

by (intro VB-graph-disj)
with assms show ?thesis

using disj-pwff by (intro VB-equality)
qed

lemma VB-conj [VB-simps]:

102

assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ∧Q B) = VB ϕ A ∧ VB ϕ B

proof −
from assms(1 ,3) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ∧Q B) (VB ϕ A ∧ VB ϕ B)

by (intro VB-graph-conj)
with assms show ?thesis

using conj-pwff by (intro VB-equality)
qed

lemma VB-imp [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ⊃Q B) = VB ϕ A ⊃ VB ϕ B

proof −
from assms(1 ,3) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ⊃Q B) (VB ϕ A ⊃ VB ϕ B)

by (intro VB-graph-imp)
with assms show ?thesis

using imp-pwff by (intro VB-equality)
qed

lemma VB-eqv [VB-simps]:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (A ≡Q B) = VB ϕ A ≡ VB ϕ B

proof (cases A = Fo)
case True
then show ?thesis

using VB-F [OF assms(3)] and VB-neg[OF assms(2 ,3)] by force
next

case False
from assms(1 ,3) have VB-graph ϕ A (VB ϕ A)

by (intro VB-graph-VB)
moreover from assms(2 ,3) have VB-graph ϕ B (VB ϕ B)

by (intro VB-graph-VB)
ultimately have VB-graph ϕ (A ≡Q B) (VB ϕ A ≡ VB ϕ B)

using False by (intro VB-graph-eqv)
with assms show ?thesis

using eqv-pwff by (intro VB-equality)
qed

103

declare pwffs.intros [VB-simps]

lemma pwff-denotation-function-existence:
shows is-pwff-denotation-function VB

using VB-simps by simp

Tautologies:
definition is-tautology :: form ⇒ bool where
[iff]: is-tautology A ←→ A ∈ pwffs ∧ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T)

lemma tautology-is-wffo:
assumes is-tautology A
shows A ∈ wffso
using assms and pwffs-subset-of-wffso by blast

lemma propositional-implication-reflexivity-is-tautology:
shows is-tautology (po ⊃Q po)
using VB-simps by simp

lemma propositional-principle-of-simplification-is-tautology:
shows is-tautology (po ⊃Q (ro ⊃Q po))
using VB-simps by simp

lemma closed-pwff-denotation-uniqueness:
assumes A ∈ pwffs and free-vars A = {}
obtains b where ∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = b
using assms
by (meson closed-pwff-is-meaningful-regardless-of-assignment pwff-denotation-function-existence)

lemma pwff-substitution-simps:
shows S {(p, o) � A} To = To
and S {(p, o) � A} Fo = Fo
and S {(p, o) � A} (p ′o) = (if p = p ′ then A else (p ′o))
and S {(p, o) � A} (∼Q B) = ∼Q (S {(p, o) � A} B)
and S {(p, o) � A} (B ∧Q C) = (S {(p, o) � A} B) ∧Q (S {(p, o) � A} C)
and S {(p, o) � A} (B ∨Q C) = (S {(p, o) � A} B) ∨Q (S {(p, o) � A} C)
and S {(p, o) � A} (B ⊃Q C) = (S {(p, o) � A} B) ⊃Q (S {(p, o) � A} C)
and S {(p, o) � A} (B ≡Q C) = (S {(p, o) � A} B) ≡Q (S {(p, o) � A} C)
by simp-all

lemma pwff-substitution-in-pwffs:
assumes A ∈ pwffs and B ∈ pwffs
shows S {(p, o) � A} B ∈ pwffs

using assms(2) proof induction
case T-pwff
then show ?case

using pwffs.T-pwff by simp
next

case F-pwff

104

then show ?case
using pwffs.F-pwff by simp

next
case (var-pwff p)
from assms(1) show ?case

using pwffs.var-pwff by simp
next

case (neg-pwff A)
then show ?case

using pwff-substitution-simps(4) and pwffs.neg-pwff by simp
next

case (conj-pwff A B)
then show ?case

using pwff-substitution-simps(5) and pwffs.conj-pwff by simp
next

case (disj-pwff A B)
then show ?case

using pwff-substitution-simps(6) and pwffs.disj-pwff by simp
next

case (imp-pwff A B)
then show ?case

using pwff-substitution-simps(7) and pwffs.imp-pwff by simp
next

case (eqv-pwff A B)
then show ?case

using pwff-substitution-simps(8) and pwffs.eqv-pwff by simp
qed

lemma pwff-substitution-denotation:
assumes A ∈ pwffs and B ∈ pwffs
and is-tv-assignment ϕ
shows VB ϕ (S {(p, o) � A} B) = VB (ϕ(p := VB ϕ A)) B

proof −
from assms(1 ,3) have is-tv-assignment (ϕ(p := VB ϕ A))

using VB-graph-denotation-is-truth-value[OF VB-graph-VB] by simp
with assms(2 ,1 ,3) show ?thesis

using VB-simps and pwff-substitution-in-pwffs by induction auto
qed

lemma pwff-substitution-tautology-preservation:
assumes is-tautology B and A ∈ pwffs
and (p, o) ∈ free-vars B
shows is-tautology (S {(p, o) � A} B)

proof (safe, fold is-tv-assignment-def)
from assms(1 ,2) show S {(p, o) � A} B ∈ pwffs

using pwff-substitution-in-pwffs by blast
next

fix ϕ
assume is-tv-assignment ϕ

105

with assms(1 ,2) have VB ϕ (S {(p, o) � A} B) = VB (ϕ(p := VB ϕ A)) B
using pwff-substitution-denotation by blast

moreover from ‹is-tv-assignment ϕ› and assms(2) have is-tv-assignment (ϕ(p := VB ϕ A))
using VB-graph-denotation-is-truth-value[OF VB-graph-VB] by simp

with assms(1) have VB (ϕ(p := VB ϕ A)) B = T
by fastforce

ultimately show VB ϕ S {(p, o) � A} B = T
by (simp only:)

qed

lemma closed-pwff-substitution-free-vars:
assumes A ∈ pwffs and B ∈ pwffs
and free-vars A = {}
and (p, o) ∈ free-vars B
shows free-vars (S {(p, o) � A} B) = free-vars B − {(p, o)} (is ‹free-vars (S ?ϑ B) = -›)

using assms(2 ,4) proof induction
case (conj-pwff C D)
have free-vars (S ?ϑ (C ∧Q D)) = free-vars ((S ?ϑ C) ∧Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D)

by (fact conj-fv)
finally have ∗: free-vars (S ?ϑ (C ∧Q D)) = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D) .
from conj-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and conj-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (disj-pwff C D)
have free-vars (S ?ϑ (C ∨Q D)) = free-vars ((S ?ϑ C) ∨Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D)

by (fact disj-fv)
finally have ∗: free-vars (S ?ϑ (C ∨Q D)) = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D) .
from disj-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and disj-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (imp-pwff C D)
have free-vars (S ?ϑ (C ⊃Q D)) = free-vars ((S ?ϑ C) ⊃Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D)

by (fact imp-fv)

106

finally have ∗: free-vars (S ?ϑ (C ⊃Q D)) = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D) .
from imp-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and imp-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
next

case (eqv-pwff C D)
have free-vars (S ?ϑ (C ≡Q D)) = free-vars ((S ?ϑ C) ≡Q (S ?ϑ D))

by simp
also have . . . = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D)

by (fact eqv-fv)
finally have ∗: free-vars (S ?ϑ (C ≡Q D)) = free-vars (S ?ϑ C) ∪ free-vars (S ?ϑ D) .
from eqv-pwff .prems consider
(a) (p, o) ∈ free-vars C and (p, o) ∈ free-vars D
| (b) (p, o) ∈ free-vars C and (p, o) /∈ free-vars D
| (c) (p, o) /∈ free-vars C and (p, o) ∈ free-vars D

by auto
from this and ∗ and eqv-pwff .IH show ?case

using free-var-singleton-substitution-neutrality by cases auto
qed (use assms(3) in ‹force+›)

Substitution in a pwff:
definition is-pwff-substitution where
[iff]: is-pwff-substitution ϑ ←→ is-substitution ϑ ∧ (∀ (x, α) ∈ fmdom ′ ϑ. α = o)

Tautologous pwff:
definition is-tautologous :: form ⇒ bool where
[iff]: is-tautologous B ←→ (∃ϑ A. is-tautology A ∧ is-pwff-substitution ϑ ∧ B = S ϑ A)

lemma tautologous-is-wffo:
assumes is-tautologous A
shows A ∈ wffso
using assms and substitution-preserves-typing and tautology-is-wffo by blast

lemma implication-reflexivity-is-tautologous:
assumes A ∈ wffso
shows is-tautologous (A ⊃Q A)

proof −
let ?ϑ = {(x, o) � A}
have is-tautology (xo ⊃Q xo)

by (fact propositional-implication-reflexivity-is-tautology)
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have A ⊃Q A = S ?ϑ (xo ⊃Q xo)

by simp
ultimately show ?thesis

107

by blast
qed

lemma principle-of-simplification-is-tautologous:
assumes A ∈ wffso and B ∈ wffso
shows is-tautologous (A ⊃Q (B ⊃Q A))

proof −
let ?ϑ = {(x, o) � A, (y, o) � B}
have is-tautology (xo ⊃Q (yo ⊃Q xo))

by (fact propositional-principle-of-simplification-is-tautology)
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have A ⊃Q (B ⊃Q A) = S ?ϑ (xo ⊃Q (yo ⊃Q xo))

by simp
ultimately show ?thesis

by blast
qed

lemma pseudo-modus-tollens-is-tautologous:
assumes A ∈ wffso and B ∈ wffso
shows is-tautologous ((A ⊃Q ∼Q B) ⊃Q (B ⊃Q ∼Q A))

proof −
let ?ϑ = {(x, o) � A, (y, o) � B}
have is-tautology ((xo ⊃Q ∼Q yo) ⊃Q (yo ⊃Q ∼Q xo))

using VB-simps by (safe, fold is-tv-assignment-def , simp only:) simp
moreover have is-pwff-substitution ?ϑ

using assms by auto
moreover have (A ⊃Q ∼Q B) ⊃Q (B ⊃Q ∼Q A) = S ?ϑ ((xo ⊃Q ∼Q yo) ⊃Q (yo ⊃Q ∼Q xo))

by simp
ultimately show ?thesis

by blast
qed

end

5 Proof System
theory Proof-System

imports
Syntax

begin

5.1 Axioms
inductive-set

axioms :: form set
where

axiom-1 :
go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo ∈ axioms

108

| axiom-2 :
(xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα) ∈ axioms

| axiom-3 :
(fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα) ∈ axioms

| axiom-4-1-con:
(λxα. {|c|}β) � A =β {|c|}β ∈ axioms if A ∈ wffsα

| axiom-4-1-var :
(λxα. yβ) � A =β yβ ∈ axioms if A ∈ wffsα and yβ 6= xα

| axiom-4-2 :
(λxα. xα) � A =α A ∈ axioms if A ∈ wffsα

| axiom-4-3 :
(λxα. B � C) � A =β ((λxα. B) � A) � ((λxα. C) � A) ∈ axioms

if A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
| axiom-4-4 :

(λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A) ∈ axioms
if A ∈ wffsα and B ∈ wffsδ and (y, γ) /∈ {(x, α)} ∪ vars A

| axiom-4-5 :
(λxα. λxα. B) � A =α→δ (λxα. B) ∈ axioms if A ∈ wffsα and B ∈ wffsδ

| axiom-5 :
ι � (Qi � yi) =i yi ∈ axioms

lemma axioms-are-wffs-of-type-o:
shows axioms ⊆ wffso
by (intro subsetI , cases rule: axioms.cases) auto

5.2 Inference rule R
definition is-rule-R-app :: position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff]: is-rule-R-app p D C E ←→
(
∃α A B.

E = A =α B ∧ A ∈ wffsα ∧ B ∈ wffsα ∧ — E is a well-formed equality
A �p C ∧
D ∈ wffso ∧
C 〈|p ← B|〉 � D

)

lemma rule-R-original-form-is-wffo:
assumes is-rule-R-app p D C E
shows C ∈ wffso
using assms and replacement-preserves-typing by fastforce

5.3 Proof and derivability
inductive is-derivable :: form ⇒ bool where

dv-axiom: is-derivable A if A ∈ axioms
| dv-rule-R: is-derivable D if is-derivable C and is-derivable E and is-rule-R-app p D C E

lemma derivable-form-is-wffso:

109

assumes is-derivable A
shows A ∈ wffso
using assms and axioms-are-wffs-of-type-o by (fastforce elim: is-derivable.cases)

definition is-proof-step :: form list ⇒ nat ⇒ bool where
[iff]: is-proof-step S i ′←→
S ! i ′ ∈ axioms ∨
(∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p (S ! i ′) (S ! j) (S ! k))

definition is-proof :: form list ⇒ bool where
[iff]: is-proof S ←→ (∀ i ′ < length S. is-proof-step S i ′)

lemma common-prefix-is-subproof :
assumes is-proof (S @ S1)
and i ′ < length S
shows is-proof-step (S @ S2) i ′

proof −
from assms(2) have ∗: (S @ S1) ! i ′ = (S @ S2) ! i ′

by (simp add: nth-append)
moreover from assms(2) have i ′ < length (S @ S1)

by simp
ultimately obtain p and j and k where ∗∗:
(S @ S1) ! i ′ ∈ axioms ∨
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S1) ! i ′) ((S @ S1) ! j) ((S @ S1) ! k)
using assms(1) by fastforce

then consider
(axiom) (S @ S1) ! i ′ ∈ axioms
| (rule-R) {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S1) ! i ′) ((S @ S1) ! j) ((S @ S1) ! k)

by blast
then have
(S @ S2) ! i ′ ∈ axioms ∨
({j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S2) ! i ′) ((S @ S2) ! j) ((S @ S2) ! k))

proof cases
case axiom
with ∗ have (S @ S2) ! i ′ ∈ axioms

by (simp only:)
then show ?thesis ..

next
case rule-R
with assms(2) have (S @ S1) ! j = (S @ S2) ! j and (S @ S1) ! k = (S @ S2) ! k

by (simp-all add: nth-append)
then have {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p ((S @ S2) ! i ′) ((S @ S2) ! j) ((S @ S2) ! k)

using ∗ and rule-R by simp
then show ?thesis ..

qed
with ∗∗ show ?thesis

by fastforce
qed

110

lemma added-suffix-proof-preservation:
assumes is-proof S
and i ′ < length (S @ S ′) − length S ′

shows is-proof-step (S @ S ′) i ′
using assms and common-prefix-is-subproof [where S1 = []] by simp

lemma append-proof-step-is-proof :
assumes is-proof S
and is-proof-step (S @ [A]) (length (S @ [A]) − 1)
shows is-proof (S @ [A])
using assms and added-suffix-proof-preservation by (simp add: All-less-Suc)

lemma added-prefix-proof-preservation:
assumes is-proof S ′

and i ′ ∈ {length S..<length (S @ S ′)}
shows is-proof-step (S @ S ′) i ′

proof −
let ?S = S @ S ′

let ?i = i ′ − length S
from assms(2) have ?S ! i ′ = S ′ ! ?i and ?i < length S ′

by (simp-all add: nth-append less-diff-conv2)
then have is-proof-step ?S i ′ = is-proof-step S ′ ?i
proof −

from assms(1) and ‹?i < length S ′› obtain j and k and p where ∗:
S ′ ! ?i ∈ axioms ∨ ({j, k} ⊆ {0 ..<?i} ∧ is-rule-R-app p (S ′ ! ?i) (S ′ ! j) (S ′ ! k))
by fastforce

then consider
(axiom) S ′ ! ?i ∈ axioms
| (rule-R) {j, k} ⊆ {0 ..<?i} ∧ is-rule-R-app p (S ′ ! ?i) (S ′ ! j) (S ′ ! k)

by blast
then have

?S ! i ′ ∈ axioms ∨
(
{j + length S, k + length S} ⊆ {0 ..<i ′} ∧
is-rule-R-app p (?S ! i ′) (?S ! (j + length S)) (?S ! (k + length S))

)
proof cases

case axiom
with ‹?S ! i ′ = S ′ ! ?i› have ?S ! i ′ ∈ axioms

by (simp only:)
then show ?thesis ..

next
case rule-R
with assms(2) have ?S ! (j + length S) = S ′ ! j and ?S ! (k + length S) = S ′ ! k

by (simp-all add: nth-append)
with ‹?S ! i ′ = S ′ ! ?i› and rule-R have
{j + length S, k + length S} ⊆ {0 ..<i ′} ∧
is-rule-R-app p (?S ! i ′) (?S ! (j + length S)) (?S ! (k + length S))
by auto

111

then show ?thesis ..
qed
with ∗ show ?thesis

by fastforce
qed
with assms(1) and ‹?i < length S ′› show ?thesis

by simp
qed

lemma proof-but-last-is-proof :
assumes is-proof (S @ [A])
shows is-proof S
using assms and common-prefix-is-subproof [where S1 = [A] and S2 = []] by simp

lemma proof-prefix-is-proof :
assumes is-proof (S1 @ S2)
shows is-proof S1
using assms and proof-but-last-is-proof
by (induction S2 arbitrary: S1 rule: rev-induct) (simp, metis append.assoc)

lemma single-axiom-is-proof :
assumes A ∈ axioms
shows is-proof [A]
using assms by fastforce

lemma proofs-concatenation-is-proof :
assumes is-proof S1 and is-proof S2
shows is-proof (S1 @ S2)

proof −
from assms(1) have ∀ i ′ < length S1. is-proof-step (S1 @ S2) i ′

using added-suffix-proof-preservation by auto
moreover from assms(2) have ∀ i ′ ∈ {length S1..<length (S1 @ S2)}. is-proof-step (S1 @ S2) i ′

using added-prefix-proof-preservation by auto
ultimately show ?thesis

unfolding is-proof-def by (meson atLeastLessThan-iff linorder-not-le)
qed

lemma elem-of-proof-is-wffo:
assumes is-proof S and A ∈ lset S
shows A ∈ wffso
using assms and axioms-are-wffs-of-type-o
unfolding is-rule-R-app-def and is-proof-step-def and is-proof-def
by (induction S) (simp, metis (full-types) in-mono in-set-conv-nth)

lemma axiom-prepended-to-proof-is-proof :
assumes is-proof S
and A ∈ axioms
shows is-proof ([A] @ S)
using proofs-concatenation-is-proof [OF single-axiom-is-proof [OF assms(2)] assms(1)] .

112

lemma axiom-appended-to-proof-is-proof :
assumes is-proof S
and A ∈ axioms
shows is-proof (S @ [A])
using proofs-concatenation-is-proof [OF assms(1) single-axiom-is-proof [OF assms(2)]] .

lemma rule-R-app-appended-to-proof-is-proof :
assumes is-proof S
and iC < length S and S ! iC = C
and iE < length S and S ! iE = E
and is-rule-R-app p D C E
shows is-proof (S @ [D])

proof −
let ?S = S @ [D]
let ?iD = length S
from assms(2 ,4) have iC < ?iD and iE < ?iD

by fastforce+
with assms(3 ,5 ,6) have is-rule-R-app p (?S ! ?iD) (?S ! iC) (?S ! iE)

by (simp add: nth-append)
with assms(2 ,4) have ∃ p j k. {j, k} ⊆ {0 ..<?iD} ∧ is-rule-R-app p (?S ! ?iD) (?S ! j) (?S ! k)

by fastforce
then have is-proof-step ?S (length ?S − 1)

by simp
moreover from assms(1) have ∀ i ′ < length ?S − 1 . is-proof-step ?S i ′

using added-suffix-proof-preservation by auto
ultimately show ?thesis

using less-Suc-eq by auto
qed

definition is-proof-of :: form list ⇒ form ⇒ bool where
[iff]: is-proof-of S A ←→ S 6= [] ∧ is-proof S ∧ last S = A

lemma proof-prefix-is-proof-of-last:
assumes is-proof (S @ S ′) and S 6= []
shows is-proof-of S (last S)

proof −
from assms(1) have is-proof S

by (fact proof-prefix-is-proof)
with assms(2) show ?thesis

by fastforce
qed

definition is-theorem :: form ⇒ bool where
[iff]: is-theorem A ←→ (∃S. is-proof-of S A)

lemma proof-form-is-wffo:
assumes is-proof-of S A
and B ∈ lset S

113

shows B ∈ wffso
using assms and elem-of-proof-is-wffo by blast

lemma proof-form-is-theorem:
assumes is-proof S and S 6= []
and i ′ < length S
shows is-theorem (S ! i ′)

proof −
let ?S1 = take (Suc i ′) S
from assms(1) obtain S2 where is-proof (?S1 @ S2)

by (metis append-take-drop-id)
then have is-proof ?S1

by (fact proof-prefix-is-proof)
moreover from assms(3) have last ?S1 = S ! i ′

by (simp add: take-Suc-conv-app-nth)
ultimately show ?thesis
using assms(2) unfolding is-proof-of-def and is-theorem-def by (metis Zero-neq-Suc take-eq-Nil2)

qed

theorem derivable-form-is-theorem:
assumes is-derivable A
shows is-theorem A

using assms proof (induction rule: is-derivable.induct)
case (dv-axiom A)
then have is-proof [A]

by (fact single-axiom-is-proof)
moreover have last [A] = A

by simp
ultimately show ?case

by blast
next

case (dv-rule-R C E p D)
obtain SC and SE where

is-proof SC and SC 6= [] and last SC = C and
is-proof SE and SE 6= [] and last SE = E
using dv-rule-R.IH by fastforce

let ?iC = length SC − 1 and ?iE = length SC + length SE − 1 and ?iD = length SC + length
SE

let ?S = SC @ SE @ [D]
from ‹SC 6= []› have ?iC < length (SC @ SE) and ?iE < length (SC @ SE)

using linorder-not-le by fastforce+
moreover have (SC @ SE) ! ?iC = C and (SC @ SE) ! ?iE = E

using ‹SC 6= []› and ‹last SC = C ›
by
(

simp add: last-conv-nth nth-append,
metis ‹last SE = E› ‹SE 6= []› append-is-Nil-conv last-appendR last-conv-nth length-append

)
with ‹is-rule-R-app p D C E› have is-rule-R-app p D ((SC @ SE) ! ?iC) ((SC @ SE) ! ?iE)

114

using ‹(SC @ SE) ! ?iC = C › by fastforce
moreover from ‹is-proof SC› and ‹is-proof SE› have is-proof (SC @ SE)

by (fact proofs-concatenation-is-proof)
ultimately have is-proof ((SC @ SE) @ [D])

using rule-R-app-appended-to-proof-is-proof by presburger
with ‹SC 6= []› show ?case

unfolding is-proof-of-def and is-theorem-def by (metis snoc-eq-iff-butlast)
qed

theorem theorem-is-derivable-form:
assumes is-theorem A
shows is-derivable A

proof −
from assms obtain S where is-proof S and S 6= [] and last S = A

by fastforce
then show ?thesis
proof (induction length S arbitrary: S A rule: less-induct)

case less
let ?i ′ = length S − 1
from ‹S 6= []› and ‹last S = A› have S ! ?i ′ = A

by (simp add: last-conv-nth)
from ‹is-proof S› and ‹S 6= []› and ‹last S = A› have is-proof-step S ?i ′

using added-suffix-proof-preservation[where S ′ = []] by simp
then consider
(axiom) S ! ?i ′ ∈ axioms
| (rule-R) ∃ p j k. {j, k} ⊆ {0 ..<?i ′} ∧ is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)

by fastforce
then show ?case
proof cases

case axiom
with ‹S ! ?i ′ = A› show ?thesis

by (fastforce intro: dv-axiom)
next

case rule-R
then obtain p and j and k

where {j, k} ⊆ {0 ..<?i ′} and is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)
by force

let ?Sj = take (Suc j) S
let ?Sk = take (Suc k) S
obtain Sj ′ and Sk ′ where S = ?Sj @ Sj ′ and S = ?Sk @ Sk ′

by (metis append-take-drop-id)
with ‹is-proof S› have is-proof (?Sj @ Sj ′) and is-proof (?Sk @ Sk ′)

by (simp-all only:)
moreover
from ‹S = ?Sj @ Sj ′› and ‹S = ?Sk @ Sk ′› and ‹last S = A› and ‹{j, k} ⊆ {0 ..<length S −

1}›
have last Sj ′ = A and last Sk ′ = A

using length-Cons and less-le-not-le and take-Suc and take-tl and append.right-neutral
by (metis atLeastLessThan-iff diff-Suc-1 insert-subset last-appendR take-all-iff)+

115

moreover from ‹S 6= []› have ?Sj 6= [] and ?Sk 6= []
by simp-all

ultimately have is-proof-of ?Sj (last ?Sj) and is-proof-of ?Sk (last ?Sk)
using proof-prefix-is-proof-of-last [where S = ?Sj and S ′ = Sj ′]
and proof-prefix-is-proof-of-last [where S = ?Sk and S ′ = Sk ′]
by fastforce+

moreover from ‹last Sj ′ = A› and ‹last Sk ′ = A›
have length ?Sj < length S and length ?Sk < length S

using ‹{j, k} ⊆ {0 ..<length S − 1}› by force+
moreover from calculation(3 ,4) have last ?Sj = S ! j and last ?Sk = S ! k

by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff)+
ultimately have is-derivable (S ! j) and is-derivable (S ! k)

using ‹?Sj 6= []› and ‹?Sk 6= []› and less(1) by blast+
with ‹is-rule-R-app p (S ! ?i ′) (S ! j) (S ! k)› and ‹S ! ?i ′ = A› show ?thesis

by (blast intro: dv-rule-R)
qed

qed
qed

theorem theoremhood-derivability-equivalence:
shows is-theorem A ←→ is-derivable A
using derivable-form-is-theorem and theorem-is-derivable-form by blast

lemma theorem-is-wffo:
assumes is-theorem A
shows A ∈ wffso

proof −
from assms obtain S where is-proof-of S A

by blast
then have A ∈ lset S

by auto
with ‹is-proof-of S A› show ?thesis

using proof-form-is-wffo by blast
qed

lemma equality-reflexivity:
assumes A ∈ wffsα
shows is-theorem (A =α A) (is is-theorem ?A2)

proof −
let ?A1 = (λxα. xα) � A =α A
let ?S = [?A1, ?A2]
— (.1) Axiom 4.2
have is-proof-step ?S 0
proof −

from assms have ?A1 ∈ axioms
by (intro axiom-4-2)

then show ?thesis
by simp

qed

116

— (.2) Rule R: .1,.1
moreover have is-proof-step ?S 1
proof −

let ?p = [«, »]
have ∃ p j k. {j::nat, k} ⊆ {0 ..<1} ∧ is-rule-R-app ?p ?A2 (?S ! j) (?S ! k)
proof −

let ?D = ?A2 and ?j = 0 ::nat and ?k = 0
have {?j, ?k} ⊆ {0 ..<1}

by simp
moreover have is-rule-R-app ?p ?A2 (?S ! ?j) (?S ! ?k)
proof −

have (λxα. xα) � A �?p (?S ! ?j)
by force

moreover have (?S ! ?j)〈|?p ← A|〉 � ?D
by force

moreover from ‹A ∈ wffsα› have ?D ∈ wffso
by (intro equality-wff)

moreover from ‹A ∈ wffsα› have (λxα. xα) � A ∈ wffsα
by (meson wffs-of-type-simps)

ultimately show ?thesis
using ‹A ∈ wffsα› by simp

qed
ultimately show ?thesis

by meson
qed
then show ?thesis

by auto
qed
moreover have last ?S = ?A2

by simp
moreover have {0 ..<length ?S} = {0 , 1}

by (simp add: atLeast0-lessThan-Suc insert-commute)
ultimately show ?thesis

unfolding is-theorem-def and is-proof-def and is-proof-of-def
by (metis One-nat-def Suc-1 length-Cons less-2-cases list.distinct(1) list.size(3))

qed

lemma equality-reflexivity ′:
assumes A ∈ wffsα
shows is-theorem (A =α A) (is is-theorem ?A2)

proof (intro derivable-form-is-theorem)
let ?A1 = (λxα. xα) � A =α A
— (.1) Axiom 4.2
from assms have ?A1 ∈ axioms

by (intro axiom-4-2)
then have step-1 : is-derivable ?A1

by (intro dv-axiom)
— (.2) Rule R: .1,.1
then show is-derivable ?A2

117

proof −
let ?p = [«, »] and ?C = ?A1 and ?E = ?A1 and ?D = ?A2

have is-rule-R-app ?p ?D ?C ?E
proof −

have (λxα. xα) � A �?p ?C
by force

moreover have ?C 〈|?p ← A|〉 � ?D
by force

moreover from ‹A ∈ wffsα› have ?D ∈ wffso
by (intro equality-wff)

moreover from ‹A ∈ wffsα› have (λxα. xα) � A ∈ wffsα
by (meson wffs-of-type-simps)

ultimately show ?thesis
using ‹A ∈ wffsα› by simp

qed
with step-1 show ?thesis

by (blast intro: dv-rule-R)
qed

qed

5.4 Hypothetical proof and derivability

The set of free variables in X that are exposed to capture at position p in A:
definition capture-exposed-vars-at :: position ⇒ form ⇒ ′a ⇒ var set where
[simp]: capture-exposed-vars-at p A X =
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ A ∧ (x, β) ∈ free-vars X}

lemma capture-exposed-vars-at-alt-def :
assumes p ∈ positions A
shows capture-exposed-vars-at p A X = binders-at A p ∩ free-vars X
unfolding binders-at-alt-def [OF assms] and in-scope-of-abs-alt-def
using is-subform-implies-in-positions by auto

Inference rule R′:
definition rule-R ′-side-condition :: form set ⇒ position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff]: rule-R ′-side-condition H p D C E ←→

capture-exposed-vars-at p C E ∩ capture-exposed-vars-at p C H = {}

lemma rule-R ′-side-condition-alt-def :
fixes H :: form set
assumes C ∈ wffsα
shows

rule-R ′-side-condition H p D C (A =α B)
←→
(
@ x β E p ′.

strict-prefix p ′ p ∧
λxβ . E �p ′ C ∧

118

(x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H)

)
proof −

have
capture-exposed-vars-at p C (A =α B)
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}
using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast

moreover have
capture-exposed-vars-at p C H
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars H}
using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast

ultimately have
capture-exposed-vars-at p C (A =α B) ∩ capture-exposed-vars-at p C H
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B) ∧
(x, β) ∈ free-vars H}

by auto
also have
. . .
=
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H)}

by auto
finally show ?thesis

by fast
qed

definition is-rule-R ′-app :: form set ⇒ position ⇒ form ⇒ form ⇒ form ⇒ bool where
[iff]: is-rule-R ′-app H p D C E ←→ is-rule-R-app p D C E ∧ rule-R ′-side-condition H p D C E

lemma is-rule-R ′-app-alt-def :
shows

is-rule-R ′-app H p D C E
←→
(
∃α A B.

E = A =α B ∧ A ∈ wffsα ∧ B ∈ wffsα ∧ — E is a well-formed equality
A �p C ∧ D ∈ wffso ∧
C 〈|p ← B|〉 � D ∧
(
@ x β E p ′.

strict-prefix p ′ p ∧
λxβ . E �p ′ C ∧
(x, β) ∈ free-vars (A =α B) ∧
(∃H ∈ H. (x, β) ∈ free-vars H)

)

119

)
using rule-R ′-side-condition-alt-def by fastforce

lemma rule-R ′-preserves-typing:
assumes is-rule-R ′-app H p D C E
shows C ∈ wffso ←→ D ∈ wffso
using assms and replacement-preserves-typing unfolding is-rule-R-app-def and is-rule-R ′-app-def
by meson

abbreviation is-hyps :: form set ⇒ bool where
is-hyps H ≡ H ⊆ wffso ∧ finite H

inductive is-derivable-from-hyps :: form set ⇒ form ⇒ bool (- ` - [50 , 50] 50) for H where
dv-hyp: H ` A if A ∈ H and is-hyps H
| dv-thm: H ` A if is-theorem A and is-hyps H
| dv-rule-R ′: H ` D if H ` C and H ` E and is-rule-R ′-app H p D C E and is-hyps H

lemma hyp-derivable-form-is-wffso:
assumes is-derivable-from-hyps H A
shows A ∈ wffso
using assms and theorem-is-wffo by (cases rule: is-derivable-from-hyps.cases) auto

definition is-hyp-proof-step :: form set ⇒ form list ⇒ form list ⇒ nat ⇒ bool where
[iff]: is-hyp-proof-step H S1 S2 i ′←→
S2 ! i ′ ∈ H ∨
S2 ! i ′ ∈ lset S1 ∨
(∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (S2 ! i ′) (S2 ! j) (S2 ! k))

type-synonym hyp-proof = form list × form list

definition is-hyp-proof :: form set ⇒ form list ⇒ form list ⇒ bool where
[iff]: is-hyp-proof H S1 S2 ←→ (∀ i ′ < length S2. is-hyp-proof-step H S1 S2 i ′)

lemma common-prefix-is-hyp-subproof-from:
assumes is-hyp-proof H S1 (S2 @ S2 ′)
and i ′ < length S2
shows is-hyp-proof-step H S1 (S2 @ S2 ′′) i ′

proof −
let ?S = S2 @ S2 ′

from assms(2) have ?S ! i ′ = (S2 @ S2 ′′) ! i ′
by (simp add: nth-append)

moreover from assms(2) have i ′ < length ?S
by simp

ultimately obtain p and j and k where
?S ! i ′ ∈ H ∨
?S ! i ′ ∈ lset S1 ∨
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (?S ! i ′) (?S ! j) (?S ! k)
using assms(1) unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson

then consider

120

(hyp) ?S ! i ′ ∈ H
| (seq) ?S ! i ′ ∈ lset S1
| (rule-R ′) {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p (?S ! i ′) (?S ! j) (?S ! k)

by blast
then have
(S2 @ S2 ′′) ! i ′ ∈ H ∨
(S2 @ S2 ′′) ! i ′ ∈ lset S1 ∨
({j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p ((S2 @ S2 ′′) ! i ′) ((S2 @ S2 ′′) ! j) ((S2 @ S2 ′′) ! k))

proof cases
case hyp
with assms(2) have (S2 @ S2 ′′) ! i ′ ∈ H

by (simp add: nth-append)
then show ?thesis ..

next
case seq
with assms(2) have (S2 @ S2 ′′) ! i ′ ∈ lset S1

by (simp add: nth-append)
then show ?thesis

by (intro disjI1 disjI2)
next

case rule-R ′

with assms(2) have ?S ! j = (S2 @ S2 ′′) ! j and ?S ! k = (S2 @ S2 ′′) ! k
by (simp-all add: nth-append)

with assms(2) and rule-R ′ have
{j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app H p ((S2 @ S2 ′′) ! i ′) ((S2 @ S2 ′′) ! j) ((S2 @ S2 ′′) ! k)
by (metis nth-append)

then show ?thesis
by (intro disjI2)

qed
then show ?thesis

unfolding is-hyp-proof-step-def by meson
qed

lemma added-suffix-thms-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2
shows is-hyp-proof H (S1 @ S1 ′) S2
using assms by auto

lemma added-suffix-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2
and i ′ < length (S2 @ S2 ′) − length S2 ′

shows is-hyp-proof-step H S1 (S2 @ S2 ′) i ′
using assms and common-prefix-is-hyp-subproof-from[where S2 ′ = []] by auto

lemma appended-hyp-proof-step-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and is-hyp-proof-step H S1 (S2 @ [A]) (length (S2 @ [A]) − 1)
shows is-hyp-proof H S1 (S2 @ [A])

proof (standard, intro allI impI)

121

fix i ′
assume i ′ < length (S2 @ [A])
then consider (a) i ′ < length S2 | (b) i ′ = length S2

by fastforce
then show is-hyp-proof-step H S1 (S2 @ [A]) i ′
proof cases

case a
with assms(1) show ?thesis

using added-suffix-hyp-proof-preservation by simp
next

case b
with assms(2) show ?thesis

by simp
qed

qed

lemma added-prefix-hyp-proof-preservation:
assumes is-hyp-proof H S1 S2 ′

and i ′ ∈ {length S2..<length (S2 @ S2 ′)}
shows is-hyp-proof-step H S1 (S2 @ S2 ′) i ′

proof −
let ?S = S2 @ S2 ′

let ?i = i ′ − length S2
from assms(2) have ?S ! i ′ = S2 ′ ! ?i and ?i < length S2 ′

by (simp-all add: nth-append less-diff-conv2)
then have is-hyp-proof-step H S1 ?S i ′ = is-hyp-proof-step H S1 S2 ′ ?i
proof −

from assms(1) and ‹?i < length S2 ′› obtain j and k and p where
S2 ′ ! ?i ∈ H ∨
S2 ′ ! ?i ∈ lset S1 ∨
({j, k} ⊆ {0 ..<?i} ∧ is-rule-R ′-app H p (S2 ′ ! ?i) (S2 ′ ! j) (S2 ′ ! k))
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson

then consider
(hyp) S2 ′ ! ?i ∈ H
| (seq) S2 ′ ! ?i ∈ lset S1
| (rule-R ′) {j, k} ⊆ {0 ..<?i} ∧ is-rule-R ′-app H p (S2 ′ ! ?i) (S2 ′ ! j) (S2 ′ ! k)

by blast
then have

?S ! i ′ ∈ H ∨
?S ! i ′ ∈ lset S1 ∨
({j + length S2, k + length S2} ⊆ {0 ..<i ′} ∧

is-rule-R ′-app H p (?S ! i ′) (?S ! (j + length S2)) (?S ! (k + length S2)))
proof cases

case hyp
with ‹?S ! i ′ = S2 ′ ! ?i› have ?S ! i ′ ∈ H

by (simp only:)
then show ?thesis ..

next
case seq

122

with ‹?S ! i ′ = S2 ′ ! ?i› have ?S ! i ′ ∈ lset S1
by (simp only:)

then show ?thesis
by (intro disjI1 disjI2)

next
case rule-R ′

with assms(2) have ?S ! (j + length S2) = S2 ′ ! j and ?S ! (k + length S2) = S2 ′ ! k
by (simp-all add: nth-append)

with ‹?S ! i ′ = S2 ′ ! ?i› and rule-R ′ have
{j + length S2, k + length S2} ⊆ {0 ..<i ′} ∧
is-rule-R ′-app H p (?S ! i ′) (?S ! (j + length S2)) (?S ! (k + length S2))
by auto

then show ?thesis
by (intro disjI2)

qed
with assms(1) and ‹?i < length S2 ′› show ?thesis

unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
qed
with assms(1) and ‹?i < length S2 ′› show ?thesis

by simp
qed

lemma hyp-proof-but-last-is-hyp-proof :
assumes is-hyp-proof H S1 (S2 @ [A])
shows is-hyp-proof H S1 S2
using assms and common-prefix-is-hyp-subproof-from[where S2 ′ = [A] and S2 ′′ = []]
by simp

lemma hyp-proof-prefix-is-hyp-proof :
assumes is-hyp-proof H S1 (S2 @ S2 ′)
shows is-hyp-proof H S1 S2
using assms and hyp-proof-but-last-is-hyp-proof
by (induction S2 ′ arbitrary: S2 rule: rev-induct) (simp, metis append.assoc)

lemma single-hyp-is-hyp-proof :
assumes A ∈ H
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma single-thm-is-hyp-proof :
assumes A ∈ lset S1
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma hyp-proofs-from-concatenation-is-hyp-proof :
assumes is-hyp-proof H S1 S1 ′ and is-hyp-proof H S2 S2 ′

shows is-hyp-proof H (S1 @ S2) (S1 ′ @ S2 ′)
proof (standard, intro allI impI)

let ?S = S1 @ S2 and ?S ′ = S1 ′ @ S2 ′

123

fix i ′
assume i ′ < length ?S ′

then consider (a) i ′ < length S1 ′ | (b) i ′ ∈ {length S1 ′..<length ?S ′}
by fastforce

then show is-hyp-proof-step H ?S ?S ′ i ′
proof cases

case a
from ‹is-hyp-proof H S1 S1 ′› have is-hyp-proof H (S1 @ S2) S1 ′

by auto
with assms(1) and a show ?thesis

using added-suffix-hyp-proof-preservation[where S1 = S1 @ S2] by auto
next

case b
from assms(2) have is-hyp-proof H (S1 @ S2) S2 ′

by auto
with b show ?thesis

using added-prefix-hyp-proof-preservation[where S1 = S1 @ S2] by auto
qed

qed

lemma elem-of-hyp-proof-is-wffo:
assumes is-hyps H
and lset S1 ⊆ wffso
and is-hyp-proof H S1 S2
and A ∈ lset S2
shows A ∈ wffso

using assms proof (induction S2 rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc A ′ S2)
from ‹is-hyp-proof H S1 (S2 @ [A ′])› have is-hyp-proof H S1 S2

using hyp-proof-prefix-is-hyp-proof [where S2 ′ = [A ′]] by presburger
then show ?case
proof (cases A ∈ lset S2)

case True
with snoc.prems(1 ,2) and ‹is-hyp-proof H S1 S2› show ?thesis

by (fact snoc.IH)
next

case False
with snoc.prems(4) have A ′ = A

by simp
with snoc.prems(3) have
(S2 @ [A]) ! i ′ ∈ H ∨
(S2 @ [A]) ! i ′ ∈ lset S1 ∨
(S2 @ [A]) ! i ′ ∈ wffso if i ′ ∈ {0 ..<length (S2 @ [A])} for i ′
using that by auto

then have A ∈ wffso ∨ A ∈ H ∨ A ∈ lset S1 ∨ length S2 /∈ {0 ..<Suc (length S2)}

124

by (metis (no-types) length-append-singleton nth-append-length)
with assms(1) and ‹lset S1 ⊆ wffso› show ?thesis

using atLeast0-lessThan-Suc by blast
qed

qed

lemma hyp-prepended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ H
shows is-hyp-proof H S1 ([A] @ S2)
using

hyp-proofs-from-concatenation-is-hyp-proof
[

OF single-hyp-is-hyp-proof [OF assms(2)] assms(1),
where S1 = []

]
by simp

lemma hyp-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ H
shows is-hyp-proof H S1 (S2 @ [A])
using

hyp-proofs-from-concatenation-is-hyp-proof
[

OF assms(1) single-hyp-is-hyp-proof [OF assms(2)],
where S2 = []

]
by simp

lemma dropped-duplicated-thm-in-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H (A # S1) S2
and A ∈ lset S1
shows is-hyp-proof H S1 S2
using assms by auto

lemma thm-prepended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ lset S1
shows is-hyp-proof H S1 ([A] @ S2)
using hyp-proofs-from-concatenation-is-hyp-proof [OF single-thm-is-hyp-proof [OF assms(2)] assms(1)]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma thm-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S1 S2
and A ∈ lset S1
shows is-hyp-proof H S1 (S2 @ [A])
using hyp-proofs-from-concatenation-is-hyp-proof [OF assms(1) single-thm-is-hyp-proof [OF assms(2)]]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

125

lemma rule-R ′-app-appended-to-hyp-proof-is-hyp-proof :
assumes is-hyp-proof H S ′ S
and iC < length S and S ! iC = C
and iE < length S and S ! iE = E
and is-rule-R ′-app H p D C E
shows is-hyp-proof H S ′ (S @ [D])

proof (standard, intro allI impI)
let ?S = S @ [D]
fix i ′
assume i ′ < length ?S
then consider (a) i ′ < length S | (b) i ′ = length S

by fastforce
then show is-hyp-proof-step H S ′ (S @ [D]) i ′
proof cases

case a
with assms(1) show ?thesis

using added-suffix-hyp-proof-preservation by auto
next

case b
let ?iD = length S
from assms(2 ,4) have iC < ?iD and iE < ?iD

by fastforce+
with assms(3 ,5 ,6) have is-rule-R ′-app H p (?S ! ?iD) (?S ! iC) (?S ! iE)

by (simp add: nth-append)
with assms(2 ,4) have
∃ p j k. {j, k} ⊆ {0 ..<?iD} ∧ is-rule-R ′-app H p (?S ! ?iD) (?S ! j) (?S ! k)
by (intro exI)+ auto

then have is-hyp-proof-step H S ′ ?S (length ?S − 1)
by simp

moreover from b have i ′ = length ?S − 1
by simp

ultimately show ?thesis
by fast

qed
qed

definition is-hyp-proof-of :: form set ⇒ form list ⇒ form list ⇒ form ⇒ bool where
[iff]: is-hyp-proof-of H S1 S2 A ←→

is-hyps H ∧
is-proof S1 ∧
S2 6= [] ∧
is-hyp-proof H S1 S2 ∧
last S2 = A

lemma hyp-proof-prefix-is-hyp-proof-of-last:
assumes is-hyps H
and is-proof S ′′

and is-hyp-proof H S ′′ (S @ S ′) and S 6= []

126

shows is-hyp-proof-of H S ′′ S (last S)
using assms and hyp-proof-prefix-is-hyp-proof by simp

theorem hyp-derivability-implies-hyp-proof-existence:
assumes H ` A
shows ∃S1 S2. is-hyp-proof-of H S1 S2 A

using assms proof (induction rule: is-derivable-from-hyps.induct)
case (dv-hyp A)
from ‹A ∈ H› have is-hyp-proof H [] [A]

by (fact single-hyp-is-hyp-proof)
moreover have last [A] = A

by simp
moreover have is-proof []

by simp
ultimately show ?case

using ‹is-hyps H› unfolding is-hyp-proof-of-def by (meson list.discI)
next

case (dv-thm A)
then obtain S where is-proof S and S 6= [] and last S = A

by fastforce
then have is-hyp-proof H S [A]

using single-thm-is-hyp-proof by auto
with ‹is-hyps H› and ‹is-proof S› have is-hyp-proof-of H S [A] A

by fastforce
then show ?case

by (intro exI)
next

case (dv-rule-R ′ C E p D)
from dv-rule-R ′.IH obtain SC and SC ′ and SE and SE ′ where

is-hyp-proof H SC ′ SC and is-proof SC ′ and SC 6= [] and last SC = C and
is-hyp-proof H SE ′ SE and is-proof SE ′ and SE 6= [] and last SE = E
by auto

let ?iC = length SC − 1 and ?iE = length SC + length SE − 1 and ?iD = length SC + length
SE

let ?S = SC @ SE @ [D]
from ‹SC 6= []› have ?iC < length (SC @ SE) and ?iE < length (SC @ SE)

using linorder-not-le by fastforce+
moreover have (SC @ SE) ! ?iC = C and (SC @ SE) ! ?iE = E

using ‹SC 6= []› and ‹last SC = C › and ‹SE 6= []› and ‹last SE = E›
by
(

simp add: last-conv-nth nth-append,
metis append-is-Nil-conv last-appendR last-conv-nth length-append

)
with ‹is-rule-R ′-app H p D C E› have is-rule-R ′-app H p D ((SC @ SE) ! ?iC) ((SC @ SE) ! ?iE)

by fastforce
moreover from ‹is-hyp-proof H SC ′ SC› and ‹is-hyp-proof H SE ′ SE›
have is-hyp-proof H (SC ′ @ SE ′) (SC @ SE)

by (fact hyp-proofs-from-concatenation-is-hyp-proof)

127

ultimately have is-hyp-proof H (SC ′ @ SE ′) ((SC @ SE) @ [D])
using rule-R ′-app-appended-to-hyp-proof-is-hyp-proof
by presburger

moreover from ‹is-proof SC ′› and ‹is-proof SE ′› have is-proof (SC ′ @ SE ′)
by (fact proofs-concatenation-is-proof)

ultimately have is-hyp-proof-of H (SC ′ @ SE ′) ((SC @ SE) @ [D]) D
using ‹is-hyps H› by fastforce

then show ?case
by (intro exI)

qed

theorem hyp-proof-existence-implies-hyp-derivability:
assumes ∃S1 S2. is-hyp-proof-of H S1 S2 A
shows H ` A

proof −
from assms obtain S1 and S2

where is-hyps H and is-proof S1 and S2 6= [] and is-hyp-proof H S1 S2 and last S2 = A
by fastforce

then show ?thesis
proof (induction length S2 arbitrary: S2 A rule: less-induct)

case less
let ?i ′ = length S2 − 1
from ‹S2 6= []› and ‹last S2 = A› have S2 ! ?i ′ = A

by (simp add: last-conv-nth)
from ‹is-hyp-proof H S1 S2› and ‹S2 6= []› have is-hyp-proof-step H S1 S2 ?i ′

by simp
then consider
(hyp) S2 ! ?i ′ ∈ H
| (seq) S2 ! ?i ′ ∈ lset S1
| (rule-R ′) ∃ p j k. {j, k} ⊆ {0 ..<?i ′} ∧ is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)

by force
then show ?case
proof cases

case hyp
with ‹S2 ! ?i ′ = A› and ‹is-hyps H› show ?thesis

by (fastforce intro: dv-hyp)
next

case seq
from ‹S2 ! ?i ′ ∈ lset S1› and ‹S2 ! ?i ′ = A›
obtain j where S1 ! j = A and S1 6= [] and j < length S1

by (metis empty-iff in-set-conv-nth list.set(1))
with ‹is-proof S1› have is-proof (take (Suc j) S1) and take (Suc j) S1 6= []

using proof-prefix-is-proof [where S1 = take (Suc j) S1 and S2 = drop (Suc j) S1]
by simp-all

moreover from ‹S1 ! j = A› and ‹j < length S1› have last (take (Suc j) S1) = A
by (simp add: take-Suc-conv-app-nth)

ultimately have is-proof-of (take (Suc j) S1) A
by fastforce

then have is-theorem A

128

using is-theorem-def by blast
with ‹is-hyps H› show ?thesis

by (intro dv-thm)
next

case rule-R ′

then obtain p and j and k
where {j, k} ⊆ {0 ..<?i ′} and is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)
by force

let ?Sj = take (Suc j) S2 and ?Sk = take (Suc k) S2
obtain Sj ′ and Sk ′ where S2 = ?Sj @ Sj ′ and S2 = ?Sk @ Sk ′

by (metis append-take-drop-id)
then have is-hyp-proof H S1 (?Sj @ Sj ′) and is-hyp-proof H S1 (?Sk @ Sk ′)

by (simp-all only: ‹is-hyp-proof H S1 S2›)
moreover from ‹S2 6= []› and ‹S2 = ?Sj @ Sj ′› and ‹S2 = ?Sk @ Sk ′› and ‹last S2 = A›
have last Sj ′ = A and last Sk ′ = A

using ‹{j, k} ⊆ {0 ..<length S2 − 1}› and take-tl and less-le-not-le and append.right-neutral
by (metis atLeastLessThan-iff insert-subset last-appendR length-tl take-all-iff)+

moreover from ‹S2 6= []› have ?Sj 6= [] and ?Sk 6= []
by simp-all

ultimately have is-hyp-proof-of H S1 ?Sj (last ?Sj) and is-hyp-proof-of H S1 ?Sk (last ?Sk)
using hyp-proof-prefix-is-hyp-proof-of-last
[OF ‹is-hyps H› ‹is-proof S1› ‹is-hyp-proof H S1 (?Sj @ Sj ′)› ‹?Sj 6= []›]

and hyp-proof-prefix-is-hyp-proof-of-last
[OF ‹is-hyps H› ‹is-proof S1› ‹is-hyp-proof H S1 (?Sk @ Sk ′)› ‹?Sk 6= []›]

by fastforce+
moreover from ‹last Sj ′ = A› and ‹last Sk ′ = A›
have length ?Sj < length S2 and length ?Sk < length S2

using ‹{j, k} ⊆ {0 ..<length S2 − 1}› by force+
moreover from calculation(3 ,4) have last ?Sj = S2 ! j and last ?Sk = S2 ! k

by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff)+
ultimately have H ` S2 ! j and H ` S2 ! k

using ‹is-hyps H›
and less(1)[OF ‹length ?Sj < length S2›] and less(1)[OF ‹length ?Sk < length S2›]
by fast+

with ‹is-hyps H› and ‹S2 ! ?i ′ = A› show ?thesis
using ‹is-rule-R ′-app H p (S2 ! ?i ′) (S2 ! j) (S2 ! k)› by (blast intro: dv-rule-R ′)

qed
qed

qed

theorem hypothetical-derivability-proof-existence-equivalence:
shows H ` A ←→ (∃S1 S2. is-hyp-proof-of H S1 S2 A)
using hyp-derivability-implies-hyp-proof-existence and hyp-proof-existence-implies-hyp-derivability ..

proposition derivability-from-no-hyps-theoremhood-equivalence:
shows {} ` A ←→ is-theorem A

proof
assume {} ` A
then show is-theorem A

129

proof (induction rule: is-derivable-from-hyps.induct)
case (dv-rule-R ′ C E p D)
from ‹is-rule-R ′-app {} p D C E› have is-rule-R-app p D C E

by simp
moreover from ‹is-theorem C › and ‹is-theorem E› have is-derivable C and is-derivable E

using theoremhood-derivability-equivalence by (simp-all only:)
ultimately have is-derivable D

by (fastforce intro: dv-rule-R)
then show ?case

using theoremhood-derivability-equivalence by (simp only:)
qed simp

next
assume is-theorem A
then show {} ` A

by (blast intro: dv-thm)
qed

abbreviation is-derivable-from-no-hyps (` - [50] 50) where
` A ≡ {} ` A

corollary derivability-implies-hyp-derivability:
assumes ` A and is-hyps H
shows H ` A
using assms and derivability-from-no-hyps-theoremhood-equivalence and dv-thm by simp

lemma axiom-is-derivable-from-no-hyps:
assumes A ∈ axioms
shows ` A
using derivability-from-no-hyps-theoremhood-equivalence
and derivable-form-is-theorem[OF dv-axiom[OF assms]] by (simp only:)

lemma axiom-is-derivable-from-hyps:
assumes A ∈ axioms and is-hyps H
shows H ` A
using assms and axiom-is-derivable-from-no-hyps and derivability-implies-hyp-derivability by blast

lemma rule-R [consumes 2 , case-names occ-subform replacement]:
assumes ` C and ` A =α B
and A �p C and C 〈|p ← B|〉 � D
shows ` D

proof −
from assms(1 ,2) have is-derivable C and is-derivable (A =α B)

using derivability-from-no-hyps-theoremhood-equivalence
and theoremhood-derivability-equivalence by blast+

moreover have is-rule-R-app p D C (A =α B)
proof −

from assms(1−4) have D ∈ wffso and A ∈ wffsα and B ∈ wffsα
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)+

with assms(3 ,4) show ?thesis

130

by fastforce
qed
ultimately have is-derivable D

by (rule dv-rule-R)
then show ?thesis

using derivability-from-no-hyps-theoremhood-equivalence and derivable-form-is-theorem by simp
qed

lemma rule-R ′ [consumes 2 , case-names occ-subform replacement no-capture]:
assumes H ` C and H ` A =α B
and A �p C and C 〈|p ← B|〉 � D
and rule-R ′-side-condition H p D C (A =α B)
shows H ` D

using assms(1 ,2) proof (rule dv-rule-R ′)
from assms(1) show is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
moreover from assms(1−4) have D ∈ wffso

by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)
ultimately show is-rule-R ′-app H p D C (A =α B)

using assms(2−5) and hyp-derivable-form-is-wffso and wffs-from-equality
unfolding is-rule-R-app-def and is-rule-R ′-app-def by metis

qed

end

6 Elementary Logic
theory Elementary-Logic

imports
Proof-System
Propositional-Wff

begin

no-notation funcset (infixr → 60)
notation funcset (infixr 7→ 60)

6.1 Proposition 5200
proposition prop-5200 :

assumes A ∈ wffsα
shows ` A =α A
using assms and equality-reflexivity and dv-thm by simp

corollary hyp-prop-5200 :
assumes is-hyps H and A ∈ wffsα
shows H ` A =α A
using derivability-implies-hyp-derivability[OF prop-5200 [OF assms(2)] assms(1)] .

131

6.2 Proposition 5201 (Equality Rules)
proposition prop-5201-1 :

assumes H ` A and H ` A ≡Q B
shows H ` B

proof −
from assms(2) have H ` A =o B

unfolding equivalence-def .
with assms(1) show ?thesis

by (rule rule-R ′[where p = []]) auto
qed

proposition prop-5201-2 :
assumes H ` A =α B
shows H ` B =α A

proof −
have H ` A =α A
proof (rule hyp-prop-5200)

from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

show A ∈ wffsα
by (fact hyp-derivable-form-is-wffso[OF assms, THEN wffs-from-equality(1)])

qed
from this and assms show ?thesis

by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-3 :
assumes H ` A =α B and H ` B =α C
shows H ` A =α C
using assms by (rule rule-R ′[where p = [»]]) (force+, fastforce dest: subforms-from-app)

proposition prop-5201-4 :
assumes H ` A =α→β B and H ` C =α D
shows H ` A � C =β B � D

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200)

from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

from assms have A ∈ wffsα→β and C ∈ wffsα
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+

then show A � C ∈ wffsβ
by auto

qed
from this and assms(1) have H ` A � C =β B � C

by (rule rule-R ′[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)
from this and assms(2) show ?thesis

by (rule rule-R ′[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed

132

proposition prop-5201-5 :
assumes H ` A =α→β B and C ∈ wffsα
shows H ` A � C =β B � C

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200)

from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

have A ∈ wffsα→β
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])

with assms(2) show A � C ∈ wffsβ
by auto

qed
from this and assms(1) show ?thesis

by (rule rule-R ′[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-6 :
assumes H ` C =α D and A ∈ wffsα→β
shows H ` A � C =β A � D

proof −
have H ` A � C =β A � C
proof (rule hyp-prop-5200)

from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

have C ∈ wffsα
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])

with assms(2) show A � C ∈ wffsβ
by auto

qed
from this and assms(1) show ?thesis

by (rule rule-R ′[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed

lemmas Equality-Rules = prop-5201-1 prop-5201-2 prop-5201-3 prop-5201-4 prop-5201-5 prop-5201-6

6.3 Proposition 5202 (Rule RR)
proposition prop-5202 :

assumes ` A =α B ∨ ` B =α A
and p ∈ positions C and A �p C and C 〈|p ← B|〉 � D
and H ` C
shows H ` D

proof −
from assms(5) have ` C =o C

using prop-5200 and hyp-derivable-form-is-wffso by blast
moreover from assms(1) consider (a) ` A =α B | (b) ` B =α A

by blast

133

then have ` A =α B
by cases (assumption, fact Equality-Rules(2))

ultimately have ` C =o D
by (rule rule-R[where p = » # p]) (use assms(2−4) in auto)

then have H ` C =o D
proof −

from assms(5) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)

with ‹` C =o D› show ?thesis
by (fact derivability-implies-hyp-derivability)

qed
with assms(5) show ?thesis

by (rule Equality-Rules(1)[unfolded equivalence-def])
qed

lemmas rule-RR = prop-5202

6.4 Proposition 5203
proposition prop-5203 :

assumes A ∈ wffsα and B ∈ wffsβ
and ∀ v ∈ vars A. ¬ is-bound v B
shows ` (λxα. B) � A =β S {(x, α) � A} B

using assms(2 ,1 ,3) proof induction
case (var-is-wff β y)
then show ?case
proof (cases yβ = xα)

case True
then have α = β

by simp
moreover from assms(1) have ` (λxα. xα) � A =α A

using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (xα) = A

by force
ultimately show ?thesis

using True by (simp only:)
next

case False
with assms(1) have ` (λxα. yβ) � A =β yβ

using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(x, α) � A} (yβ) = yβ

by auto
ultimately show ?thesis

by (simp only:)
qed

next
case (con-is-wff β c)
from assms(1) have ` (λxα. {|c|}β) � A =β {|c|}β

using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)

134

moreover have S {(x, α) � A} ({|c|}β) = {|c|}β
by auto

ultimately show ?case
by (simp only:)

next
case (app-is-wff γ β D C)
from app-is-wff .prems(2) have not-bound-subforms: ∀ v ∈ vars A. ¬ is-bound v D ∧ ¬ is-bound v C

using is-bound-in-app-homomorphism by fast
from ‹D ∈ wffsγ→β› have ` (λxα. D) � A =γ→β S {(x, α) � A} D

using app-is-wff .IH (1)[OF assms(1)] and not-bound-subforms by simp
moreover from ‹C ∈ wffsγ› have ` (λxα. C) � A =γ S {(x, α) � A} C

using app-is-wff .IH (2)[OF assms(1)] and not-bound-subforms by simp
moreover have ` (λxα. D � C) � A =β ((λxα. D) � A) � ((λxα. C) � A)

using axiom-is-derivable-from-no-hyps[OF axiom-4-3 [OF assms(1) ‹D ∈ wffsγ→β› ‹C ∈ wffsγ›]] .
ultimately show ?case

using Equality-Rules(3 ,4) and substitute.simps(3) by presburger
next

case (abs-is-wff β D γ y)
then show ?case
proof (cases yγ = xα)

case True
then have ` (λxα. λyγ . D) � A =γ→β λyγ . D

using axiom-is-derivable-from-no-hyps[OF axiom-4-5 [OF assms(1) abs-is-wff .hyps(1)]] by fast
moreover from True have S {(x, α) � A} (λyγ . D) = λyγ . D

using empty-substitution-neutrality
by (simp add: singleton-substitution-simps(4) fmdrop-fmupd-same)

ultimately show ?thesis
by (simp only:)

next
case False
have binders-at (λyγ . D) [«] = {(y, γ)}

by simp
then have is-bound (y, γ) (λyγ . D)

by fastforce
with abs-is-wff .prems(2) have (y, γ) /∈ vars A

by blast
with ‹yγ 6= xα› have ` (λxα. λyγ . D) � A =γ→β λyγ . (λxα. D) � A

using axiom-4-4 [OF assms(1) abs-is-wff .hyps(1)] and axiom-is-derivable-from-no-hyps by blast
moreover have ` (λxα. D) � A =β S {(x, α) � A} D
proof −

have ∀ p. yγ �« # p λyγ . D −→ yγ �p D
using subforms-from-abs by fastforce

from abs-is-wff .prems(2) have ∀ v ∈ vars A. ¬ is-bound v D
using is-bound-in-abs-body by fast

then show ?thesis
by (fact abs-is-wff .IH [OF assms(1)])

qed
ultimately have ` (λxα. λyγ . D) � A =γ→β λyγ . S {(x, α) � A} D

by (rule rule-R[where p = [»,«]]) force+

135

with False show ?thesis
by simp

qed
qed

6.5 Proposition 5204
proposition prop-5204 :

assumes A ∈ wffsα and B ∈ wffsβ and C ∈ wffsβ
and ` B =β C
and ∀ v ∈ vars A. ¬ is-bound v B ∧ ¬ is-bound v C
shows ` S {(x, α) � A} (B =β C)

proof −
have ` (λxα. B) � A =β (λxα. B) � A
proof −

have (λxα. B) � A ∈ wffsβ
using assms(1 ,2) by auto

then show ?thesis
by (fact prop-5200)

qed
from this and assms(4) have ` (λxα. B) � A =β (λxα. C) � A

by (rule rule-R[where p = [»,«,«]]) force+
moreover from assms(1 ,2 ,5) have ` (λxα. B) � A =β S {(x, α) � A} B

using prop-5203 by auto
moreover from assms(1 ,3 ,5) have ` (λxα. C) � A =β S {(x, α) � A} C

using prop-5203 by auto
ultimately have ` (S {(x, α) � A} B) =β (S {(x, α) � A} C)

using Equality-Rules(2 ,3) by blast
then show ?thesis

by simp
qed

6.6 Proposition 5205 (η-conversion)
proposition prop-5205 :

shows ` fα→β =α→β (λyα. fα→β � yα)
proof −

{
fix y
assume yα 6= xα
let ?A = λyα. fα→β � yα
have ` (fα→β =α→β ?A) =o ∀ xα. (fα→β � xα =β ?A � xα)
proof −

have ` (fα→β =α→β gα→β) =o ∀ xα. (fα→β � xα =β gα→β � xα) (is ` ?B =o ?C)

using axiom-3 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
have ` S {(g, α→β) � ?A} (?B =o ?C)
proof −

have ?A ∈ wffsα→β and ?B ∈ wffso and ?C ∈ wffso
by auto

136

moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
have vars ?B = {(f, α→β), (g, α→β)} and vars ?C = {(f, α→β), (x, α), (g, α→β)}

by force+
with ‹yα 6= xα› have (y, α) /∈ vars ?B and (y, α) /∈ vars ?C

by force+
then have ¬ is-bound (y, α) ?B and ¬ is-bound (y, α) ?C

using absent-var-is-not-bound by blast+
moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C

by code-simp+
moreover from ‹v ∈ vars ?A› have v ∈ {(y, α), (f, α→β)}

by auto
ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C

by fast
qed
ultimately show ?thesis

using ‹` ?B =o ?C › and prop-5204 by presburger
qed
then show ?thesis

by simp
qed
moreover have ` ?A � xα =β fα→β � xα
proof −

have xα ∈ wffsα and fα→β � yα ∈ wffsβ
by auto

moreover have ∀ v ∈ vars (xα). ¬ is-bound v (fα→β � yα)
using ‹yα 6= xα› by auto

moreover have S {(y, α) � xα} (fα→β � yα) = fα→β � xα
by simp

ultimately show ?thesis
using prop-5203 by metis

qed
ultimately have ` (fα→β =α→β ?A) =o ∀ xα. (fα→β � xα =β fα→β � xα)

by (rule rule-R[where p = [»,»,«,»]]) force+
moreover have ` (fα→β =α→β fα→β) =o ∀ xα. (fα→β � xα =β fα→β � xα)
proof −

let ?A = fα→β
have ` (fα→β =α→β gα→β) =o ∀ xα. (fα→β � xα =β gα→β � xα) (is ` ?B =o ?C)

using axiom-3 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
have ` S {(g, α→β) � ?A} (?B =o ?C)
proof −

have ?A ∈ wffsα→β and ?B ∈ wffso and ?C ∈ wffso
by auto

moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A

137

have vars ?B = {(f, α→β), (g, α→β)} and vars ?C = {(f, α→β), (x, α), (g, α→β)}
by force+

with ‹yα 6= xα› have (y, α) /∈ vars ?B and (y, α) /∈ vars ?C
by force+

then have ¬ is-bound (y, α) ?B and ¬ is-bound (y, α) ?C
using absent-var-is-not-bound by blast+

moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C
by code-simp+

moreover from ‹v ∈ vars ?A ›have v ∈ {(y, α), (f, α→β)}
by auto

ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
by fast

qed
ultimately show ?thesis

using ‹` ?B =o ?C › and prop-5204 by presburger
qed
then show ?thesis

by simp
qed
ultimately have ` fα→β =α→β (λyα. fα→β � yα)

using Equality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) and prop-5200
by (metis wffs-of-type-intros(1))

}
note x-neq-y = this
then have §6 : ` fα→β =α→β λyα. fα→β � yα (is ` ?B =- ?C)

by simp
then have §7 : ` (λxα. fα→β � xα) =α→β (λyα. (λxα. fα→β � xα) � yα)
proof −

let ?A = λxα. fα→β � xα
have ?A ∈ wffsα→β and ?B ∈ wffsα→β and ?C ∈ wffsα→β

by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
have ¬ is-bound (x, α) ?B and ¬ is-bound (x, α) ?C

by code-simp+
moreover have ¬ is-bound (f, α→β) ?B and ¬ is-bound (f, α→β) ?C

by code-simp+
moreover from ‹v ∈ vars ?A ›have v ∈ {(x, α), (f, α→β)}

by auto
ultimately show ¬ is-bound v ?B ∧ ¬ is-bound v ?C

by fast
qed
ultimately have ` S {(f, α→β) � ?A} (?B =α→β ?C)

using §6 and prop-5204 by presburger
then show ?thesis

by simp
qed

138

have ` (λxα. fα→β � xα) =α→β (λyα. fα→β � yα)
proof −

have ` (λxα. fα→β � xα) � yα =β fα→β � yα
proof −

have yα ∈ wffsα and fα→β � xα ∈ wffsβ
by auto

moreover have ∀ v ∈ vars (yα). ¬ is-bound v (fα→β � xα)
by simp

moreover have S {(x, α) � yα} (fα→β � xα) = fα→β � yα
by simp

ultimately show ?thesis
using prop-5203 by metis

qed
from §7 and this show ?thesis

by (rule rule-R [where p = [»,«]]) force+
qed
with §6 and x-neq-y[of y] show ?thesis

using Equality-Rules(2 ,3) by blast
qed

6.7 Proposition 5206 (α-conversion)
proposition prop-5206 :

assumes A ∈ wffsα
and (z, β) /∈ free-vars A
and is-free-for (zβ) (x, β) A
shows ` (λxβ . A) =β→α (λzβ . S {(x, β) � zβ} A)

proof −
have is-substitution {(x, β) � zβ}

by auto
from this and assms(1) have S {(x, β) � zβ} A ∈ wffsα

by (fact substitution-preserves-typing)
obtain y where (y, β) /∈ {(x, β), (z, β)} ∪ vars A
proof −

have finite ({(x, β), (z, β)} ∪ vars A)
using vars-form-finiteness by blast

with that show ?thesis
using fresh-var-existence by metis

qed
then have (y, β) 6= (x, β) and (y, β) 6= (z, β) and (y, β) /∈ vars A and (y, β) /∈ free-vars A

using free-vars-in-all-vars by auto
have §1 : ` (λxβ . A) =β→α (λyβ . (λxβ . A) � yβ)
proof −

let ?A = λxβ . A
have ∗: ` fβ→α =β→α (λyβ . fβ→α � yβ) (is ` ?B =- ?C)

by (fact prop-5205)
moreover have ` S {(f, β→α) � ?A} (?B =β→α ?C)
proof −

from assms(1) have ?A ∈ wffsβ→α and ?B ∈ wffsβ→α and ?C ∈ wffsβ→α

139

by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
then consider (a) v = (x, β) | (b) v ∈ vars A

by fastforce
then show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof cases

case a
then show ?thesis

using ‹(y, β) 6= (x, β)› by force
next

case b
then have ¬ is-bound v ?B

by simp
moreover have ¬ is-bound v ?C

using b and ‹(y, β) /∈ vars A› by code-simp force
ultimately show ?thesis

by blast
qed

qed
ultimately show ?thesis

using prop-5204 and ∗ by presburger
qed
ultimately show ?thesis

by simp
qed
then have §2 : ` (λxβ . A) =β→α (λyβ . S {(x, β) � yβ} A)
proof −

have ` (λxβ . A) � yβ =α S {(x, β) � yβ} A (is ` (λxβ . ?B) � ?A =- -)
proof −

have ?A ∈ wffsβ and ?B ∈ wffsα
by blast fact

moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B
using ‹(y, β) /∈ vars A› and absent-var-is-not-bound by auto

ultimately show ?thesis
by (fact prop-5203)

qed
with §1 show ?thesis

by (rule rule-R [where p = [»,«]]) force+
qed
moreover
have §3 : ` (λzβ . S {(x, β) � zβ} A) =β→α (λyβ . (λzβ . S {(x, β) � zβ} A) � yβ)
proof −

let ?A = λzβ . S {(x, β) � zβ} A
have ∗: ` fβ→α =β→α (λyβ . fβ→α � yβ) (is ` ?B =- ?C)

by (fact prop-5205)
moreover have ` S {(f, β→α) � ?A} (?B =β→α ?C)

140

proof −
have ?A ∈ wffsβ→α and ?B ∈ wffsβ→α and ?C ∈ wffsβ→α

using ‹S {(x, β) � zβ} A ∈ wffsα› by auto
moreover have ∀ v ∈ vars ?A. ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof

fix v
assume v ∈ vars ?A
then consider (a) v = (z, β) | (b) v ∈ vars (S {(x, β) � zβ} A)

by fastforce
then show ¬ is-bound v ?B ∧ ¬ is-bound v ?C
proof cases

case a
then show ?thesis

using ‹(y, β) 6= (z, β)› by auto
next

case b
then have ¬ is-bound v ?B

by simp
moreover from b and ‹(y, β) /∈ vars A› and ‹(y, β) 6= (z, β)› have v 6= (y, β)

using renaming-substitution-minimal-change by blast
then have ¬ is-bound v ?C

by code-simp simp
ultimately show ?thesis

by blast
qed

qed
ultimately show ?thesis

using prop-5204 and ∗ by presburger
qed
ultimately show ?thesis

by simp
qed
then have §4 : ` (λzβ . S {(x, β) � zβ} A) =β→α (λyβ . S {(x, β) � yβ} A)
proof −

have ` (λzβ . S {(x, β) � zβ} A) � yβ =α S {(x, β) � yβ} A (is ` (λzβ . ?B) � ?A =- -)
proof −

have ?A ∈ wffsβ and ?B ∈ wffsα
by blast fact

moreover from ‹(y, β) /∈ vars A› and ‹(y, β) 6= (z, β)› have ∀ v ∈ vars ?A. ¬ is-bound v ?B
using absent-var-is-not-bound and renaming-substitution-minimal-change by auto

ultimately have ` (λzβ . S {(x, β) � zβ} A) � yβ =α S {(z, β) � yβ} S {(x, β) � zβ} A
using prop-5203 by fast

moreover have S {(z, β) � yβ} S {(x, β) � zβ} A = S {(x, β) � yβ} A
by (fact renaming-substitution-composability[OF assms(2 ,3)])

ultimately show ?thesis
by (simp only:)

qed
with §3 show ?thesis

by (rule rule-R [where p = [»,«]]) auto

141

qed
ultimately show ?thesis

using Equality-Rules(2 ,3) by blast
qed

lemmas α = prop-5206

6.8 Proposition 5207 (β-conversion)
context
begin

private lemma bound-var-renaming-equality:
assumes A ∈ wffsα
and zγ 6= yγ
and (z, γ) /∈ vars A
shows ` A =α rename-bound-var (y, γ) z A

using assms proof induction
case (var-is-wff α x)
then show ?case

using prop-5200 by force
next

case (con-is-wff α c)
then show ?case

using prop-5200 by force
next

case (app-is-wff α β A B)
then show ?case

using Equality-Rules(4) by auto
next

case (abs-is-wff β A α x)
then show ?case
proof (cases (y, γ) = (x, α))

case True
have ` λyγ . A =γ→β λyγ . A

by (fact abs-is-wff .hyps[THEN prop-5200 [OF wffs-of-type-intros(4)]])
moreover have ` A =β rename-bound-var (y, γ) z A

using abs-is-wff .IH [OF assms(2)] and abs-is-wff .prems(2) by fastforce
ultimately have ` λyγ . A =γ→β λyγ . rename-bound-var (y, γ) z A

by (rule rule-R[where p = [»,«]]) force+
moreover
have
` λyγ . rename-bound-var (y, γ) z A
=γ→β
λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)

proof −
have rename-bound-var (y, γ) z A ∈ wffsβ

using hyp-derivable-form-is-wffso[OF ‹` A =β rename-bound-var (y, γ) z A›]
by (blast dest: wffs-from-equality)

142

moreover from abs-is-wff .prems(2) have (z, γ) /∈ free-vars (rename-bound-var (y, γ) z A)
using rename-bound-var-free-vars[OF abs-is-wff .hyps assms(2)] by simp

moreover from abs-is-wff .prems(2) have is-free-for (zγ) (y, γ) (rename-bound-var (y, γ) z A)
using is-free-for-in-rename-bound-var [OF abs-is-wff .hyps assms(2)] by simp

ultimately show ?thesis
using α by fast

qed
ultimately have ` λyγ . A =γ→β λzγ . S {(y, γ) � zγ} (rename-bound-var (y, γ) z A)

by (rule Equality-Rules(3))
then show ?thesis

using True by auto
next

case False
have ` λxα. A =α→β λxα. A

by (fact abs-is-wff .hyps[THEN prop-5200 [OF wffs-of-type-intros(4)]])
moreover have ` A =β rename-bound-var (y, γ) z A

using abs-is-wff .IH [OF assms(2)] and abs-is-wff .prems(2) by fastforce
ultimately have ` λxα. A =α→β λxα. rename-bound-var (y, γ) z A

by (rule rule-R[where p = [»,«]]) force+
then show ?thesis

using False by auto
qed

qed

proposition prop-5207 :
assumes A ∈ wffsα and B ∈ wffsβ
and is-free-for A (x, α) B
shows ` (λxα. B) � A =β S {(x, α) � A} B

using assms proof (induction form-size B arbitrary: B β rule: less-induct)
case less
from less(3 ,1 ,2 ,4) show ?case
proof (cases B rule: wffs-of-type-cases)

case (var-is-wff y)
then show ?thesis
proof (cases yβ = xα)

case True
then have α = β

by simp
moreover from assms(1) have ` (λxα. xα) � A =α A

using axiom-4-2 by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (xα) = A

by force
ultimately show ?thesis

unfolding True and var-is-wff by simp
next

case False
with assms(1) have ` (λxα. yβ) � A =β yβ

using axiom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(x, α) � A} (yβ) = yβ

143

by auto
ultimately show ?thesis

unfolding False and var-is-wff by simp
qed

next
case (con-is-wff c)
from assms(1) have ` (λxα. {|c|}β) � A =β {|c|}β
using axiom-4-1-con by (intro axiom-is-derivable-from-no-hyps)

moreover have S {(x, α) � A} ({|c|}β) = {|c|}β
by auto

ultimately show ?thesis
by (simp only: con-is-wff)

next
case (app-is-wff γ D C)
have form-size D < form-size B and form-size C < form-size B

unfolding app-is-wff (1) by simp-all
from less(4)[unfolded app-is-wff (1)] have is-free-for A (x, α) D and is-free-for A (x, α) C

using is-free-for-from-app by iprover+
from ‹is-free-for A (x, α) D› have ` (λxα. D) � A =γ→β S {(x, α) � A} D

by (fact less(1)[OF ‹form-size D < form-size B› assms(1) app-is-wff (2)])
moreover from ‹is-free-for A (x, α) C › have ` (λxα. C) � A =γ S {(x, α) � A} C

by (fact less(1)[OF ‹form-size C < form-size B› assms(1) app-is-wff (3)])
moreover have ` (λxα. D � C) � A =β ((λxα. D) � A) � ((λxα. C) � A)

by (fact axiom-4-3 [OF assms(1) app-is-wff (2 ,3), THEN axiom-is-derivable-from-no-hyps])
ultimately show ?thesis

unfolding app-is-wff (1) using Equality-Rules(3 ,4) and substitute.simps(3) by presburger
next

case (abs-is-wff δ D γ y)
then show ?thesis
proof (cases yγ = xα)

case True
with abs-is-wff (1) have ` (λxα. λyγ . D) � A =β λyγ . D

using axiom-4-5 [OF assms(1) abs-is-wff (3)] by (simp add: axiom-is-derivable-from-no-hyps)
moreover have S {(x, α) � A} (λyγ . D) = λyγ . D

using True by (simp add: empty-substitution-neutrality fmdrop-fmupd-same)
ultimately show ?thesis

unfolding abs-is-wff (2) by (simp only:)
next

case False
have form-size D < form-size B

unfolding abs-is-wff (2) by simp
have is-free-for A (x, α) D

using is-free-for-from-abs[OF less(4)[unfolded abs-is-wff (2)]] and ‹yγ 6= xα› by blast
have ` (λxα. (λyγ . D)) � A =β λyγ . S {(x, α) � A} D
proof (cases (y, γ) /∈ vars A)

case True
with ‹yγ 6= xα› have ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A

using axiom-4-4 [OF assms(1) abs-is-wff (3)] and axiom-is-derivable-from-no-hyps by auto
moreover have ` (λxα. D) � A =δ S {(x, α) � A} D

144

by
(

fact less(1)
[OF ‹form-size D < form-size B› assms(1) ‹D ∈ wffsδ› ‹is-free-for A (x, α) D›]

)
ultimately show ?thesis

unfolding abs-is-wff (1) by (rule rule-R[where p = [»,«]]) force+
next

case False
have finite (vars {A, D})

using vars-form-finiteness and vars-form-set-finiteness by simp
then obtain z where (z, γ) /∈ ({(x, α), (y, γ)} ∪ vars {A, D})

using fresh-var-existence by (metis Un-insert-left finite.simps insert-is-Un)
then have zγ 6= xα and zγ 6= yγ and (z, γ) /∈ vars {A, D}

by simp-all
then show ?thesis
proof (cases (x, α) /∈ free-vars D)

case True
define D ′ where D ′ = S {(y, γ) � zγ} D
have is-substitution {(y, γ) � zγ}

by auto
with ‹D ∈ wffsδ› and D ′-def have D ′ ∈ wffsδ

using substitution-preserves-typing by blast
then have ` (λxα. λzγ . D ′) � A =γ→δ λzγ . (λxα. D ′) � A

using ‹zγ 6= xα› and ‹(z, γ) /∈ vars {A, D}› and axiom-4-4 [OF assms(1)]
and axiom-is-derivable-from-no-hyps
by auto

moreover have §2 : ` (λxα. D ′) � A =δ D ′

proof −
have form-size D ′ = form-size D

unfolding D ′-def by (fact renaming-substitution-preserves-form-size)
then have form-size D ′ < form-size B

using ‹form-size D < form-size B› by simp
moreover from ‹zγ 6= xα› have is-free-for A (x, α) D ′

unfolding D ′-def and is-free-for-def
using substitution-preserves-freeness[OF True] and is-free-at-in-free-vars
by fast

ultimately have ` (λxα. D ′) � A =δ S {(x, α) � A} D ′

using less(1) and assms(1) and ‹D ′ ∈ wffsδ› by simp
moreover from ‹zγ 6= xα› have (x, α) /∈ free-vars D ′

unfolding D ′-def using substitution-preserves-freeness[OF True] by fast
then have S {(x, α) � A} D ′ = D ′

by (fact free-var-singleton-substitution-neutrality)
ultimately show ?thesis

by (simp only:)
qed
ultimately have §3 : ` (λxα. λzγ . D ′) � A =γ→δ λzγ . D ′ (is ‹` ?A3 ›)

by (rule rule-R[where p = [»,«]]) force+
moreover have §4 : ` (λyγ . D) =γ→δ λzγ . D ′

145

proof −
have (z, γ) /∈ free-vars D

using ‹(z, γ) /∈ vars {A, D}› and free-vars-in-all-vars-set by auto
moreover have is-free-for (zγ) (y, γ) D

using ‹(z, γ) /∈ vars {A, D}› and absent-var-is-free-for by force
ultimately have ` λyγ . D =γ→δ λzγ . S {(y, γ) � zγ} D

using α[OF ‹D ∈ wffsδ›] by fast
then show ?thesis

using D ′-def by blast
qed
ultimately have §5 : ` (λxα. λyγ . D) � A =γ→δ λyγ . D
proof −

note rule-RR ′ = rule-RR[OF disjI2]
have §5 1: ` (λxα. λyγ . D) � A =γ→δ λzγ . D ′ (is ‹` ?A5 1›)

by (rule rule-RR ′[OF §4 , where p = [«,»,«,«] and C = ?A3]) (use §3 in ‹force+›)
show ?thesis

by (rule rule-RR ′[OF §4 , where p = [»] and C = ?A5 1]) (use §5 1 in ‹force+›)
qed
then show ?thesis

using free-var-singleton-substitution-neutrality[OF ‹(x, α) /∈ free-vars D›]
by (simp only: ‹β = γ→δ›)

next
case False
have (y, γ) /∈ free-vars A
proof (rule ccontr)

assume ¬ (y, γ) /∈ free-vars A
moreover from ‹¬ (x, α) /∈ free-vars D› obtain p

where p ∈ positions D and is-free-at (x, α) p D
using free-vars-in-is-free-at by blast

then have « # p ∈ positions (λyγ . D) and is-free-at (x, α) (« # p) (λyγ . D)
using is-free-at-to-abs[OF ‹is-free-at (x, α) p D›] and ‹yγ 6= xα› by (simp, fast)

moreover have in-scope-of-abs (y, γ) (« # p) (λyγ . D)
by force

ultimately have ¬ is-free-for A (x, α) (λyγ . D)
by blast

with ‹is-free-for A (x, α) B›[unfolded abs-is-wff (2)] show False
by contradiction

qed
define A ′ where A ′ = rename-bound-var (y, γ) z A
have A ′ ∈ wffsα

unfolding A ′-def by (fact rename-bound-var-preserves-typing[OF assms(1)])
from ‹(z, γ) /∈ vars {A, D}› have (y, γ) /∈ vars A ′

using
old-var-not-free-not-occurring-after-rename
[

OF assms(1) ‹zγ 6= yγ› ‹(y, γ) /∈ free-vars A›
]

unfolding A ′-def by simp
from A ′-def have §6 : ` A =α A ′

146

using bound-var-renaming-equality[OF assms(1) ‹zγ 6= yγ›] and ‹(z, γ) /∈ vars {A, D}›
by simp

moreover have §7 : ` (λxα. λyγ . D) � A ′ =γ→δ λyγ . (λxα. D) � A ′ (is ‹` ?A7 ›)
using axiom-4-4 [OF ‹A ′ ∈ wffsα› ‹D ∈ wffsδ›]
and ‹(y, γ) /∈ vars A ′› and ‹yγ 6= xα› and axiom-is-derivable-from-no-hyps
by auto

ultimately have §8 : ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A
proof −

note rule-RR ′ = rule-RR[OF disjI2]
have §8 1: ` (λxα. λyγ . D) � A =γ→δ λyγ . (λxα. D) � A ′ (is ‹` ?A8 1›)

by (rule rule-RR ′[OF §6 , where p = [«,»,»] and C = ?A7]) (use §7 in ‹force+›)
show ?thesis

by (rule rule-RR ′[OF §6 , where p = [»,«,»] and C = ?A8 1]) (use §8 1 in ‹force+›)
qed
moreover have form-size D < form-size B

unfolding abs-is-wff (2) by (simp only: form-size.simps(4) lessI)
with assms(1) have §9 : ` (λxα. D) � A =δ S {(x, α) � A} D

using less(1) and ‹D ∈ wffsδ› and ‹is-free-for A (x, α) D› by (simp only:)
ultimately show ?thesis

unfolding ‹β = γ→δ› by (rule rule-R[where p = [»,«]]) force+
qed

qed
then show ?thesis

unfolding abs-is-wff (2) using False and singleton-substitution-simps(4) by simp
qed

qed
qed

end

6.9 Proposition 5208
proposition prop-5208 :

assumes vs 6= [] and B ∈ wffsβ
shows ` �Q? (λQ? vs B) (map FVar vs) =β B

using assms(1) proof (induction vs rule: list-nonempty-induct)
case (single v)
obtain x and α where v = (x, α)

by fastforce
then have �Q? (λQ? [v] B) (map FVar [v]) = (λxα. B) � xα

by simp
moreover have ` (λxα. B) � xα =β B
proof −

have is-free-for (xα) (x, α) B
by fastforce

then have ` (λxα. B) � xα =β S {(x, α) � xα} B
by (rule prop-5207 [OF wffs-of-type-intros(1) assms(2)])

then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)

147

qed
ultimately show ?case

by (simp only:)
next

case (cons v vs)
obtain x and α where v = (x, α)

by fastforce
have ` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? (λQ? vs B) (map FVar vs)
proof −

have �Q? (λQ? (v # vs) B) (map FVar (v # vs)) ∈ wffsβ
proof −

have λQ? (v # vs) B ∈ wffsfoldr (→) (map snd (v # vs)) β
using generalized-abs-wff [OF assms(2)] by blast

moreover
have ∀ k < length (map FVar (v # vs)). map FVar (v # vs) ! k ∈ wffsmap snd (v # vs) ! k
proof safe

fix k
assume ∗: k < length (map FVar (v # vs))
moreover obtain x and α where (v # vs) ! k = (x, α)

by fastforce
with ∗ have map FVar (v # vs) ! k = xα and map snd (v # vs) ! k = α

by (metis length-map nth-map snd-conv)+
ultimately show map FVar (v # vs) ! k ∈ wffsmap snd (v # vs) ! k

by fastforce
qed
ultimately show ?thesis

using generalized-app-wff [where As = map FVar (v # vs) and ts = map snd (v # vs)] by
simp

qed
then have
` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? (λQ? (v # vs) B) (map FVar (v # vs))
by (fact prop-5200)

then have
` �Q? (λQ? (v # vs) B) (map FVar (v # vs)) =β �Q? ((λQ? (v # vs) B) � FVar v) (map FVar

vs)
by simp

moreover have ` (λQ? (v # vs) B) � FVar v =foldr (→) (map snd vs) β (λQ? vs B)

proof −
have ` (λQ? (v # vs) B) � FVar v =foldr (→) (map snd vs) β S {v � FVar v} (λQ? vs B)

proof −
from ‹v = (x, α)› have λQ? (v # vs) B = λxα. λQ? vs B

by simp
have λQ? vs B ∈ wffsfoldr (→) (map snd vs) β

using generalized-abs-wff [OF assms(2)] by blast
moreover have is-free-for (xα) (x, α) (λQ? vs B)

by fastforce
ultimately
have ` (λxα. λQ? vs B) � xα =foldr (→) (map snd vs) β S {(x, α) � xα} λQ? vs B

148

by (rule prop-5207 [OF wffs-of-type-intros(1)])
with ‹v = (x, α)› show ?thesis

by simp
qed

then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)

qed
ultimately show ?thesis
proof (induction rule: rule-R [where p = [»] @ replicate (length vs) «])

case occ-subform
then show ?case

unfolding equality-of-type-def using leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil is-subform-at.simps(3) length-map)

next
case replacement
then show ?case

unfolding equality-of-type-def using leftmost-subform-in-generalized-app-replacement
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil length-map replace-right-app)

qed
qed
moreover have ` �Q? (λQ? vs B) (map FVar vs) =β B

by (fact cons.IH)
ultimately show ?case

by (rule rule-R [where p = [»]]) auto
qed

6.10 Proposition 5209
proposition prop-5209 :

assumes A ∈ wffsα and B ∈ wffsβ and C ∈ wffsβ
and ` B =β C
and is-free-for A (x, α) (B =β C)

shows ` S {(x, α) � A} (B =β C)
proof −

have ` (λxα. B) � A =β (λxα. B) � A
proof −

have (λxα. B) � A ∈ wffsβ
using assms(1 ,2) by blast

then show ?thesis
by (fact prop-5200)

qed
from this and assms(4) have ` (λxα. B) � A =β (λxα. C) � A

by (rule rule-R [where p = [»,«,«]]) force+
moreover have ` (λxα. B) � A =β S {(x, α) � A} B
proof −

from assms(5)[unfolded equality-of-type-def] have is-free-for A (x, α) (Qβ � B)

by (rule is-free-for-from-app)
then have is-free-for A (x, α) B

149

by (rule is-free-for-from-app)
with assms(1 ,2) show ?thesis

by (rule prop-5207)
qed
moreover have ` (λxα. C) � A =β S {(x, α) � A} C
proof −

from assms(5)[unfolded equality-of-type-def] have is-free-for A (x, α) C
by (rule is-free-for-from-app)

with assms(1 ,3) show ?thesis
by (rule prop-5207)

qed
ultimately have ` (S {(x, α) � A} B) =β (S {(x, α) � A} C)

using Equality-Rules(2 ,3) by blast
then show ?thesis

by simp
qed

6.11 Proposition 5210
proposition prop-5210 :

assumes B ∈ wffsβ
shows ` To =o (B =β B)

proof −
have §1 :
`
((λyβ . yβ) =β→β (λyβ . yβ))
=o
∀ xβ . ((λyβ . yβ) � xβ =β (λyβ . yβ) � xβ)

proof −
have ` (fβ→β =β→β gβ→β) =o ∀ xβ . (fβ→β � xβ =β gβ→β � xβ) (is ` ?B =o ?C)

using axiom-3 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have (λyβ . yβ) ∈ wffsβ→β and ?B ∈ wffso and ?C ∈ wffso

by auto
moreover have is-free-for (λyβ . yβ) (f, β→β) (?B =o ?C)

by simp
ultimately have ` S {(f, β→β) � (λyβ . yβ)} (?B =o ?C) (is ` ?S)

using prop-5209 by presburger
moreover have ?S =
(
(λyβ . yβ) =β→β gβ→β) =o ∀ xβ . ((λyβ . yβ) � xβ =β gβ→β � xβ

) (is - = ?B ′ =o ?C ′)
by simp

ultimately have ` ?B ′ =o ?C ′

by (simp only:)
moreover from ‹(λyβ . yβ) ∈ wffsβ→β› have ?B ′ ∈ wffso and ?C ′ ∈ wffso

by auto
moreover have is-free-for (λyβ . yβ) (g, β→β) (?B ′ =o ?C ′)

by simp
ultimately have ` S {(g, β→β) � (λyβ . yβ)} (?B ′ =o ?C ′) (is ` ?S ′)

150

using prop-5209 [OF ‹(λyβ . yβ) ∈ wffsβ→β›] by blast
then show ?thesis

by simp
qed
then have ` (λxβ . To) =β→o (λxβ . (xβ =β xβ))
proof −

have λyβ . yβ ∈ wffsβ→β
by blast

then have ` λyβ . yβ =β→β λyβ . yβ
by (fact prop-5200)

with §1 have ` ∀ xβ . ((λyβ . yβ) � xβ =β (λyβ . yβ) � xβ)
using rule-R and is-subform-at.simps(1) by blast

moreover have ` (λyβ . yβ) � xβ =β xβ
using axiom-4-2 [OF wffs-of-type-intros(1)] by (rule axiom-is-derivable-from-no-hyps)

ultimately have ` ∀ xβ . (xβ =β (λyβ . yβ) � xβ)
by (rule rule-R[where p = [»,«,«,»]]) auto

from this and ‹` (λyβ . yβ) � xβ =β xβ› have ` ∀ xβ . (xβ =β xβ)

by (rule rule-R[where p = [»,«,»]]) auto
then show ?thesis

unfolding forall-def and PI-def by (fold equality-of-type-def)
qed
from this and assms have 3 : ` (λxβ . To) � B =o (λxβ . (xβ =β xβ)) � B

by (rule Equality-Rules(5))
then show ?thesis
proof −

have ` (λxβ . To) � B =o To
using prop-5207 [OF assms true-wff] by fastforce

from 3 and this have ` To =o (λxβ . (xβ =β xβ)) � B
by (rule rule-R[where p = [«,»]]) auto

moreover have ` (λxβ . (xβ =β xβ)) � B =o (B =β B)
proof −

have xβ =β xβ ∈ wffso and is-free-for B (x, β) (xβ =β xβ)

by (blast, intro is-free-for-in-equality is-free-for-in-var)
moreover have S {(x, β) � B} (xβ =β xβ) = (B =β B)

by simp
ultimately show ?thesis

using prop-5207 [OF assms] by metis
qed
ultimately show ?thesis

by (rule rule-R [where p = [»]]) auto
qed

qed

6.12 Proposition 5211
proposition prop-5211 :

shows ` (To ∧Q To) =o To
proof −

have const-T-wff : (λxo. To) ∈ wffso→o for x

151

by blast
have §1 : ` (λyo. To) � To ∧Q (λyo. To) � Fo =o ∀ xo. (λyo. To) � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C)
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?B ∈ wffso and ?C ∈ wffso
by auto

moreover have is-free-for (λyo. To) (g, o→o) (?B =o ?C)
by simp

ultimately have ` S {(g, o→o) � (λyo. To)} (?B =o ?C)
using const-T-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` To ∧Q To =o ∀ xo. To
proof −

have T-β-redex: ` (λyo. To) � A =o To if A ∈ wffso for A
using that and prop-5207 [OF that true-wff] by fastforce

from §1 and T-β-redex[OF true-wff]
have ` To ∧Q (λyo. To) � Fo =o ∀ xo. (λyo. To) � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and T-β-redex[OF false-wff] have ` To ∧Q To =o ∀ xo. (λyo. To) � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and T-β-redex[OF wffs-of-type-intros(1)] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
moreover have ` To =o ∀ xo. To

using prop-5210 [OF const-T-wff] by simp
ultimately show ?thesis

using Equality-Rules(2 ,3) by blast
qed

lemma true-is-derivable:
shows ` To
unfolding true-def using Q-wff by (rule prop-5200)

6.13 Proposition 5212
proposition prop-5212 :

shows ` To ∧Q To
proof −

have ` To
by (fact true-is-derivable)

moreover have ` (To ∧Q To) =o To
by (fact prop-5211)

then have ` To ≡Q (To ∧Q To)
unfolding equivalence-def by (fact Equality-Rules(2))

ultimately show ?thesis
by (rule Equality-Rules(1))

152

qed

6.14 Proposition 5213
proposition prop-5213 :

assumes ` A =α B and ` C =β D
shows ` (A =α B) ∧Q (C =β D)

proof −
from assms have A ∈ wffsα and C ∈ wffsβ

using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
have ` To =o (A =α A)

by (fact prop-5210 [OF ‹A ∈ wffsα›])
moreover have ` A =α B

by fact
ultimately have ` To =o (A =α B)

by (rule rule-R[where p = [»,»]]) force+
have ` To =o (C =β C)

by (fact prop-5210 [OF ‹C ∈ wffsβ›])
moreover have ` C =β D

by fact
ultimately have ` To =o (C =β D)

by (rule rule-R[where p = [»,»]]) force+
then show ?thesis
proof −

have ` To ∧Q To
by (fact prop-5212)

from this and ‹` To =o (A =α B)› have ` (A =α B) ∧Q To
by (rule rule-R[where p = [«,»]]) force+

from this and ‹` To =o (C =β D)› show ?thesis
by (rule rule-R[where p = [»]]) force+

qed
qed

6.15 Proposition 5214
proposition prop-5214 :

shows ` To ∧Q Fo =o Fo
proof −

have id-on-o-is-wff : (λxo. xo) ∈ wffso→o
by blast

have §1 : ` (λxo. xo) � To ∧Q (λxo. xo) � Fo =o ∀ xo. (λxo. xo) � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C)
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?B ∈ wffso and ?C ∈ wffso and is-free-for (λxo. xo) (g, o→o) (?B =o ?C)
by auto

ultimately have ` S {(g, o→o) � (λxo. xo)} (?B =o ?C)
using id-on-o-is-wff and prop-5209 by presburger

then show ?thesis

153

by simp
qed
then have ` To ∧Q Fo =o ∀ xo. xo
proof −

have id-β-redex: ` (λxo. xo) � A =o A if A ∈ wffso for A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-4-2 [OF that]])

from §1 and id-β-redex[OF true-wff]
have ` To ∧Q (λxo. xo) � Fo =o ∀ xo. (λxo. xo) � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and id-β-redex[OF false-wff] have ` To ∧Q Fo =o ∀ xo. (λxo. xo) � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and id-β-redex[OF wffs-of-type-intros(1)] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
then show ?thesis

by simp
qed

6.16 Proposition 5215 (Universal Instantiation)
proposition prop-5215 :

assumes H ` ∀ xα. B and A ∈ wffsα
and is-free-for A (x, α) B
shows H ` S {(x, α) � A} B

proof −
from assms(1) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
from assms(1) have H ` (λxα. To) =α→o (λxα. B)

by simp
with assms(2) have H ` (λxα. To) � A =o (λxα. B) � A

by (intro Equality-Rules(5))
then have H ` To =o S {(x, α) � A} B
proof −

have H ` (λxα. To) � A =o To
proof −

have ` (λxα. To) � A =o To
using prop-5207 [OF assms(2) true-wff is-free-for-in-true] and derived-substitution-simps(1)
by (simp only:)

from this and ‹is-hyps H› show ?thesis
by (rule derivability-implies-hyp-derivability)

qed
moreover have H ` (λxα. B) � A =o S {(x, α) � A} B
proof −

have B ∈ wffso
using hyp-derivable-form-is-wffso[OF assms(1)] by (fastforce elim: wffs-from-forall)

with assms(2 ,3) have ` (λxα. B) � A =o S {(x, α) � A} B
using prop-5207 by (simp only:)

from this and ‹is-hyps H› show ?thesis
by (rule derivability-implies-hyp-derivability)

154

qed
ultimately show ?thesis

using ‹H ` (λxα. To) � A =o (λxα. B) � A› and Equality-Rules(2 ,3) by meson
qed
then show ?thesis
proof −

have H ` To
by (fact derivability-implies-hyp-derivability[OF true-is-derivable ‹is-hyps H›])

from this and ‹H ` To =o S {(x, α) � A} B› show ?thesis
by (rule Equality-Rules(1)[unfolded equivalence-def])

qed
qed

lemmas ∀ I = prop-5215

6.17 Proposition 5216
proposition prop-5216 :

assumes A ∈ wffso
shows ` (To ∧Q A) =o A

proof −
let ?B = λxo. (To ∧Q xo =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using B-is-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
have ∗: is-free-for A (x, o) (To ∧Q xo =o xo) for A

by (intro is-free-for-in-conj is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo)

by (fact prop-5213 [OF prop-5211 prop-5214])
moreover
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo) =o ∀ xo. (To ∧Q xo =o xo)
proof −

have B-β-redex: ` ?B � A =o (To ∧Q A =o A) if A ∈ wffso for A
proof −

have To ∧Q xo =o xo ∈ wffso
by blast

moreover have S {(x, o) � A} (To ∧Q xo =o xo) = (To ∧Q A =o A)
by simp

ultimately show ?thesis

155

using ∗ and prop-5207 [OF that] by metis
qed
from §1 and B-β-redex[OF true-wff]
have ` (To ∧Q To =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-β-redex[OF false-wff]
have ` (To ∧Q To =o To) ∧Q (To ∧Q Fo =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1)] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
ultimately have ` ∀ xo. (To ∧Q xo =o xo)

by (rule rule-R[where p = []]) fastforce+
show ?thesis

using ∀ I [OF ‹` ∀ xo. (To ∧Q xo =o xo)› assms ∗] by simp
qed

6.18 Proposition 5217
proposition prop-5217 :

shows ` (To =o Fo) =o Fo
proof −

let ?B = λxo. (To =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have ∗: is-free-for A (x, o) (To =o xo) for A

by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using B-is-wff and prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` (To =o To) ∧Q (To =o Fo) =o ∀ xo. (To =o xo) (is ` ?A)
proof −

have B-β-redex: ` ?B � A =o (To =o A) if A ∈ wffso for A
proof −

have To =o xo ∈ wffso
by auto

moreover have S {(x, o) � A} (To =o xo) = (To =o A)
by simp

ultimately show ?thesis
using ∗ and prop-5207 [OF that] by metis

qed

156

from §1 and B-β-redex[OF true-wff] have ` (To =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo
by (rule rule-R[where p = [«,»,«,»]]) force+

from this and B-β-redex[OF false-wff]
have ` (To =o To) ∧Q (To =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1)] show ?thesis

by (rule rule-R[where p = [»,»,«]]) force+
qed
from prop-5210 [OF true-wff] have ` To ∧Q (To =o Fo) =o ∀ xo. (To =o xo)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A]) (force+, fact)
from this and prop-5216 [where A = To =o Fo]
have ` (To =o Fo) =o ∀ xo. (To =o xo)

by (rule rule-R [where p = [«,»]]) force+
moreover have §5 :
` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. ((λxo. To) � xo =o (λxo. xo) � xo)

proof −
have ` (fo→o =o→o go→o) =o ∀ xo. (fo→o � xo =o go→o � xo) (is ` ?C =o ?D)

using axiom-3 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have is-free-for ((λxo. To)) (f, o→o) (?C =o ?D)

by fastforce
moreover have (λxo. To) ∈ wffso→o and ?C ∈ wffso and ?D ∈ wffso

by auto
ultimately have ` S {(f, o→o) � (λxo. To)} (?C =o ?D)

using prop-5209 by presburger
then have ` ((λxo. To) =o→o go→o) =o ∀ xo. ((λxo. To) � xo =o go→o � xo)
(is ` ?C ′ =o ?D ′)
by simp

moreover have is-free-for ((λxo. xo)) (g, o→o) (?C ′ =o ?D ′)
by fastforce

moreover have (λxo. xo) ∈ wffso→o and ?C ′ ∈ wffso and ?D ′ ∈ wffso
using ‹(λxo. To) ∈ wffso→o› by auto

ultimately have ` S {(g, o→o) � (λxo. xo)} (?C ′ =o ?D ′)
using prop-5209 by presburger

then show ?thesis
by simp

qed
then have ` Fo =o ∀ xo. (To =o xo)
proof −

have ` (λxo. To) � xo =o To
using prop-5208 [where vs = [(x, o)]] and true-wff by simp

with §5 have ∗:
` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. (To =o (λxo. xo) � xo)
by (rule rule-R[where p = [»,»,«,«,»]]) force+

have ` (λxo. xo) � xo =o xo
using prop-5208 [where vs = [(x, o)]] by fastforce

with ∗ have ` ((λxo. To) =o→o (λxo. xo)) =o ∀ xo. (To =o xo)
by (rule rule-R[where p = [»,»,«,»]]) force+

then show ?thesis
by simp

157

qed
ultimately show ?thesis

using Equality-Rules(2 ,3) by blast
qed

6.19 Proposition 5218
proposition prop-5218 :

assumes A ∈ wffso
shows ` (To =o A) =o A

proof −
let ?B = λxo. ((To =o xo) =o xo)
have B-is-wff : ?B ∈ wffso→o

by auto
have §1 : ` ?B � To ∧Q ?B � Fo =o ∀ xo. ?B � xo
proof −

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?C =o ?D)
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

moreover have ?C ∈ wffso and ?D ∈ wffso and is-free-for ?B (g, o→o) (?C =o ?D)
by auto

ultimately have ` S {(g, o→o) � ?B} (?C =o ?D)
using prop-5209 [OF B-is-wff] by presburger

then show ?thesis
by simp

qed
have ∗: is-free-for A (x, o) ((To =o xo) =o xo) for A

by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §2 :
`
((To =o To) =o To) ∧Q ((To =o Fo) =o Fo)
=o
∀ xo. ((To =o xo) =o xo)

proof −
have B-β-redex: ` ?B � A =o ((To =o A) =o A) if A ∈ wffso for A
proof −

have (To =o xo) =o xo ∈ wffso
by auto

moreover have S {(x, o) � A} ((To =o xo) =o xo) = ((To =o A) =o A)
by simp

ultimately show ?thesis
using ∗ and prop-5207 [OF that] by metis

qed
from §1 and B-β-redex[OF true-wff]
have ` ((To =o To) =o To) ∧Q ?B � Fo =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-β-redex[OF false-wff]
have ` ((To =o To) =o To) ∧Q ((To =o Fo) =o Fo) =o ∀ xo. ?B � xo

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-β-redex[OF wffs-of-type-intros(1)] show ?thesis

158

by (rule rule-R[where p = [»,»,«]]) force+
qed
have §3 : ` (To =o To) =o To

by (fact Equality-Rules(2)[OF prop-5210 [OF true-wff]])
have ` ((To =o To) =o To) ∧Q ((To =o Fo) =o Fo)

by (fact prop-5213 [OF §3 prop-5217])
from this and §2 have §4 : ` ∀ xo. ((To =o xo) =o xo)

by (rule rule-R[where p = []]) fastforce+
then show ?thesis

using ∀ I [OF §4 assms ∗] by simp
qed

6.20 Proposition 5219 (Rule T)
proposition prop-5219-1 :

assumes A ∈ wffso
shows H ` A ←→ H ` To =o A

proof safe
assume H ` A
then have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` (To =o A) =o A

by (fact derivability-implies-hyp-derivability[OF prop-5218 [OF assms]])
with ‹H ` A› show H ` To =o A

using Equality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) by blast
next

assume H ` To =o A
then have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` (To =o A) =o A

by (fact derivability-implies-hyp-derivability[OF prop-5218 [OF assms]])
with ‹H ` To =o A› show H ` A

by (rule Equality-Rules(1)[unfolded equivalence-def])
qed

proposition prop-5219-2 :
assumes A ∈ wffso
shows H ` A ←→ H ` A =o To
using prop-5219-1 [OF assms] and Equality-Rules(2) by blast

lemmas rule-T = prop-5219-1 prop-5219-2

6.21 Proposition 5220 (Universal Generalization)
context
begin

private lemma const-true-α-conversion:
shows ` (λxα. To) =α→o (λzα. To)

proof −

159

have (z, α) /∈ free-vars To and is-free-for (zα) (x, α) To
by auto

then have ` (λxα. To) =α→o λzα. S {(x, α) � zα} To
by (rule prop-5206 [OF true-wff])

then show ?thesis
by simp

qed

proposition prop-5220 :
assumes H ` A
and (x, α) /∈ free-vars H
shows H ` ∀ xα. A

proof −
from ‹H ` A› have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
have H ` A

by fact
then have §2 : H ` To =o A

using rule-T (1)[OF hyp-derivable-form-is-wffso[OF ‹H ` A›]] by simp
have §3 : H ` (λxα. To) =α→o (λxα. To)

by (fact derivability-implies-hyp-derivability[OF const-true-α-conversion ‹is-hyps H›])
from §3 and §2 have H ` λxα. To =α→o λxα. A
proof (induction rule: rule-R ′[where p = [», «]])

case no-capture
have ∗: [»,«] ∈ positions (λxα. To =α→o λxα. To)

by simp
show ?case

unfolding rule-R ′-side-condition-def and capture-exposed-vars-at-alt-def [OF ∗] using assms(2)
by simp

qed force+
then show ?thesis

unfolding forall-def [unfolded PI-def , folded equality-of-type-def] .
qed

end

lemmas Gen = prop-5220

proposition generalized-Gen:
assumes H ` A
and lset vs ∩ free-vars H = {}
shows H ` ∀Q

? vs A
using assms(2) proof (induction vs)

case Nil
then show ?case

using assms(1) by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

160

by fastforce
with Cons.prems have lset vs ∩ free-vars H = {} and (x, α) /∈ free-vars H

by simp-all
from ‹lset vs ∩ free-vars H = {}› have H ` ∀Q

? vs A
by (fact Cons.IH)

with ‹(x, α) /∈ free-vars H› and ‹v = (x, α)› show ?case
using Gen by simp

qed

6.22 Proposition 5221 (Substitution)
context
begin

private lemma prop-5221-aux:
assumes H ` B
and (x, α) /∈ free-vars H
and is-free-for A (x, α) B
and A ∈ wffsα
shows H ` S {(x, α) � A} B

proof −
have H ` B

by fact
from this and assms(2) have H ` ∀ xα. B

by (rule Gen)
from this and assms(4 ,3) show ?thesis

by (rule ∀ I)
qed

proposition prop-5221 :
assumes H ` B
and is-substitution ϑ
and ∀ v ∈ fmdom ′ ϑ. var-name v /∈ free-var-names H ∧ is-free-for (ϑ $$! v) v B
and ϑ 6= {$$}
shows H ` S ϑ B

proof −
obtain xs and As

where lset xs = fmdom ′ ϑ — i.e., x1α1
, . . . , xnαn

and As = map (($$!) ϑ) xs — i.e., A1
α1
, . . . , An

αn

and length xs = card (fmdom ′ ϑ)
by (metis distinct-card finite-distinct-list finite-fmdom ′)

then have distinct xs
by (simp add: card-distinct)

from ‹lset xs = fmdom ′ ϑ› and ‹As = map (($$!) ϑ) xs› have lset As = fmran ′ ϑ
by (intro subset-antisym subsetI) (force simp add: fmlookup-dom ′-iff fmlookup-ran ′-iff)+

from assms(1) have finite (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H))
by (cases rule: is-derivable-from-hyps.cases) (simp-all add: finite-Domain vars-form-finiteness)

then obtain ys — i.e., y1α1
, . . . , ynαn

where length ys = length xs

161

and distinct ys
and ys-fresh:
(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}

and map var-type ys = map var-type xs
using fresh-var-list-existence by (metis image-Un)

have length xs = length As
by (simp add: ‹As = map (($$!) ϑ) xs›)

— H ` S.
x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

have H ` S (fmap-of-list (zip xs (take k As @ drop k (map FVar ys)))) B if k ≤ length xs for k
using that proof (induction k)

case 0
have H ` S (fmap-of-list (zip xs (map FVar ys))) B

using ‹length ys = length xs›
and ‹length xs = length As›
and ‹(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}›
and ‹lset xs = fmdom ′ ϑ›
and ‹distinct ys›
and assms(3)
and ‹map var-type ys = map var-type xs›
and ‹distinct xs›
and ‹length xs = card (fmdom ′ ϑ)›

proof (induction ys xs As arbitrary: ϑ rule: list-induct3)
case Nil
with assms(1) show ?case

using empty-substitution-neutrality by auto
next

— In the following:
• ϑ = {x1α1

� y1α1
, . . . , xnαn

� ynαn
}

• ?ϑ = {x2α2
� y2α2

, . . . , xnαn
� ynαn

}

• vx = x1α1
, and vy = y1α1

case (Cons vy ys vx xs A ′ As ′)
let ?ϑ = fmap-of-list (zip xs (map FVar ys))
from Cons.hyps(1) have lset xs = fmdom ′ ?ϑ

by simp
from Cons.hyps(1) and Cons.prems(6) have fmran ′ ?ϑ = FVar ‘ lset ys

by force
have is-substitution ?ϑ
unfolding is-substitution-def proof

fix v
assume v ∈ fmdom ′ ?ϑ
with ‹lset xs = fmdom ′ ?ϑ› obtain k where v = xs ! k and k < length xs

by (metis in-set-conv-nth)
moreover obtain α where var-type v = α

by blast
moreover from ‹k < length xs› and ‹v = xs ! k› have ?ϑ $$! v = (map FVar ys) ! k

using Cons.hyps(1) and Cons.prems(6) by auto

162

moreover from this and ‹k < length xs› obtain y and β where ?ϑ $$! v = yβ
using Cons.hyps(1) by force

ultimately have α = β
using Cons.hyps(1) and Cons.prems(5)
by (metis form.inject(1) list.inject list.simps(9) nth-map snd-conv)

then show case v of (x, α) ⇒ ?ϑ $$! (x, α) ∈ wffsα
using ‹?ϑ $$! v = yβ› and ‹var-type v = α› by fastforce

qed
have vx /∈ fmdom ′ ?ϑ

using Cons.prems(6) and ‹lset xs = fmdom ′ ?ϑ› by auto
obtain x and α where vx = (x, α)

by fastforce
have FVar vy ∈ wffsα

using Cons.prems(5) and surj-pair [of vy] unfolding ‹vx = (x, α)› by fastforce
have distinct xs

using Cons.prems(6) by fastforce
moreover have ys-fresh ′:
(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As ′) ∪ vars H ∪ lset xs)) = {}

proof −
have vars (lset (A ′ # As ′)) = vars {A ′} ∪ vars (lset As ′)

by simp
moreover have var-name ‘ (lset (vx # xs)) = {var-name vx} ∪ var-name ‘ (lset xs)

by simp
moreover from Cons.prems(1) have

var-name ‘ lset ys
∩
(

var-name ‘ (vars B) ∪ var-name ‘ (vars (lset (A ′ # As ′))) ∪ var-name ‘ (vars H)
∪ var-name ‘ (lset (vx # xs))

)
= {}
by (simp add: image-Un)

ultimately have
var-name ‘ lset ys
∩
(

var-name ‘ (vars B) ∪ var-name ‘ (vars (lset As ′)) ∪ var-name ‘ (vars H)
∪ var-name ‘ (lset (vx # xs))

)
= {}
by fast

then show ?thesis
by (simp add: image-Un)

qed
moreover have distinct ys

using Cons.prems(3) by auto
moreover have ∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B
proof

fix v

163

assume v ∈ fmdom ′ ?ϑ
with Cons.hyps(1) obtain y where ?ϑ $$! v = FVar y and y ∈ lset ys

by (metis (mono-tags, lifting) fmap-of-zipped-list-range image-iff length-map list.set-map)
moreover from Cons.prems(2 ,4) have var-name v /∈ free-var-names H

using ‹lset xs = fmdom ′ ?ϑ› and ‹v ∈ fmdom ′ ?ϑ› by auto
moreover from ‹y ∈ lset ys› have y /∈ vars B

using ys-fresh ′ by blast
then have is-free-for (FVar y) v B

by (intro absent-var-is-free-for)
ultimately show var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B

by simp
qed
moreover have map var-type ys = map var-type xs

using Cons.prems(5) by simp
moreover have length xs = card (fmdom ′ ?ϑ)

by (fact distinct-card[OF ‹distinct xs›, unfolded ‹lset xs = fmdom ′ ?ϑ›, symmetric])
— H ` S.

x2
α2

... xn
αn

y2
α2

... yn
αn

B

ultimately have H ` S ?ϑ B
using Cons.IH and ‹lset xs = fmdom ′ ?ϑ› by blast

moreover from Cons.prems(2 ,4) have (x, α) /∈ free-vars H
using ‹vx = (x, α)› by auto

moreover have is-free-for (FVar vy) (x, α) (S ?ϑ B)
proof −

have vy /∈ fmdom ′ ?ϑ
using Cons.prems(1) and ‹lset xs = fmdom ′ ?ϑ› by force

moreover have fmran ′ ?ϑ = lset (map FVar ys)
using Cons.hyps(1) and ‹distinct xs› by simp

then have vy /∈ vars (fmran ′ ?ϑ)
using Cons.prems(3) by force

moreover have vy /∈ vars B
using Cons.prems(1) by fastforce

ultimately have vy /∈ vars (S ?ϑ B)
by (rule excluded-var-from-substitution[OF ‹is-substitution ?ϑ›])

then show ?thesis
by (fact absent-var-is-free-for)

qed
— H ` S.

x1
α1

y1
α1

S.
x2
α2

... xn
αn

y2
α2

... yn
αn

B

ultimately have H ` S {(x, α) � FVar vy} (S ?ϑ B)
using ‹FVar vy ∈ wffsα› by (rule prop-5221-aux)

— S.
x1
α1

y1
α1

S.
x2
α2

... xn
αn

y2
α2

... yn
αn

B = S.
x1
α1

... xn
αn

y1
α1

... yn
αn

B

moreover have S {vx � FVar vy} S ?ϑ B = S ({vx � FVar vy} ++f ?ϑ) B
proof −

have vx /∈ lset ys
using Cons.prems(1) by fastforce

then have S {vx � FVar vy} (FVar y) = FVar y if y ∈ lset ys for y
using that and free-var-singleton-substitution-neutrality and surj-pair [of y] by fastforce

with ‹fmran ′ ?ϑ = FVar ‘ lset ys› have fmmap (λA ′. S {vx � FVar vy} A ′) ?ϑ = ?ϑ

164

by (fastforce intro: fmap.map-ident-strong)
with ‹vx /∈ fmdom ′ ?ϑ› show ?thesis

using ‹∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names H ∧ is-free-for (?ϑ $$! v) v B›
and substitution-consolidation by auto

qed
— H ` S.

x1
α1

... xn
αn

y1
α1

... yn
αn

B

ultimately show ?case
using ‹vx = (x, α)› and ‹vx /∈ fmdom ′ ?ϑ› and fmap-singleton-comm by fastforce

qed
with 0 and that show ?case

by auto
next

case (Suc k)
let ?ps = λk. zip xs (take k As @ drop k (map FVar ys))
let ?y = ys ! k and ?A = As ! k
let ?ϑ = λk. fmap-of-list (?ps k)
let ?ϑ ′ = λk. fmap-of-list (map (λ(v ′, A ′). (v ′, S {?y � ?A} A ′)) (?ps k))
have fmdom ′ (?ϑ k ′) = lset xs for k ′

by (simp add: ‹length xs = length As› ‹length ys = length xs›)
have fmdom ′ (?ϑ ′ k ′) = lset xs for k ′

using ‹length xs = length As› and ‹length ys = length xs› and fmdom ′-fmap-of-list by simp
have ?y ∈ lset ys

using Suc.prems ‹length ys = length xs› by simp
have ∀ j < length ys. ys ! j /∈ vars (H::form set) ∧ ys ! j /∈ vars B

using ‹(var-name ‘ lset ys) ∩ (var-name ‘ (vars B ∪ vars (lset As) ∪ vars H ∪ lset xs)) = {}›
by force

obtain ny and αy where (ny, αy) = ?y
using surj-pair [of ?y] by fastforce

moreover have ?A ∈ wffsαy

proof −
from Suc.prems and ‹(ny, αy) = ?y› have var-type (xs ! k) = αy

using ‹length ys = length xs› and ‹map var-type ys = map var-type xs› and Suc-le-lessD
by (metis nth-map snd-conv)

with Suc.prems and assms(2) and ‹lset xs = fmdom ′ ϑ› and ‹As = map (($$!) ϑ) xs› show
?thesis

using less-eq-Suc-le and nth-mem by fastforce
qed
ultimately have is-substitution {?y � ?A}

by auto
have wfs: is-substitution (?ϑ k) for k
unfolding is-substitution-def proof

fix v
assume v ∈ fmdom ′ (?ϑ k)
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs

by (fastforce simp add: in-set-conv-nth)
obtain α where var-type v = α

by blast
show case v of (x, α) ⇒ (?ϑ k) $$! (x, α) ∈ wffsα
proof (cases j < k)

165

case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
with assms(2) ‹v = xs ! j› and ‹v ∈ fmdom ′ (?ϑ k)› and ‹var-type v = α› and ‹j < length xs›
have (?ϑ k) $$! v ∈ wffsα

using ‹As = map (($$!) ϑ) xs› and ‹fmdom ′ (?ϑ k) = lset xs› and ‹lset xs = fmdom ′ ϑ›
by auto

then show ?thesis
using ‹var-type v = α› by force

next
case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
with ‹j < length xs› and ‹v = xs ! j› and ‹var-type v = α› and ‹length ys = length xs›
have (?ϑ k) $$! v ∈ wffsα

using ‹map var-type ys = map var-type xs› and surj-pair [of ys ! j]
by (metis nth-map snd-conv wffs-of-type-intros(1))

then show ?thesis
using ‹var-type v = α› by force

qed
qed
have ϑ ′-alt-def : ?ϑ ′ k = fmap-of-list
(zip xs
(take k (map (λA ′. S {?y � ?A} A ′) As)
@
(drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)))))

proof −
have

fmap-of-list (zip xs (map (λA ′. S {?y � ?A} A ′) (take k As @ drop k (map FVar ys))))
=
fmap-of-list
(zip xs
(map (λA ′. S {?y � ?A} A ′) (take k As)
@
(drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)))))

by (simp add: drop-map)
then show ?thesis

by (metis take-map zip-map2)
qed
— H ` S.

x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

have H ` S (?ϑ k) B
by (fact Suc.IH [OF Suc-leD[OF Suc.prems]])

— H ` S.
yk+1
αk+1

Ak+1
αk+1

S.
x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B

then have H ` S {?y � ?A} S (?ϑ k) B
proof −

from ‹(ny, αy) = ?y› and ‹length ys = length xs› have (ny, αy) /∈ free-vars H
using ‹∀ j < length ys. ys ! j /∈ vars (H::form set) ∧ ys ! j /∈ vars B›

166

and free-vars-in-all-vars-set and Suc-le-lessD[OF Suc.prems] by fastforce
moreover have is-free-for ?A (ny, αy) (S (?ϑ k) B)
proof −

have is-substitution (fmdrop (xs ! k) (?ϑ k))
using wfs and ‹fmdom ′ (?ϑ k) = lset xs› by force

moreover from Suc-le-lessD[OF Suc.prems] have var-type (xs ! k) = var-type (ys ! k)
using ‹length ys = length xs› and ‹map var-type ys = map var-type xs› by (metis nth-map)

then have is-substitution {xs ! k � FVar ?y}
unfolding is-substitution-def using ‹(ny, αy) = ?y›
by (intro ballI) (clarsimp, metis snd-eqD wffs-of-type-intros(1))

moreover have (xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
by simp

moreover have
∀ v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k)). ?y /∈ vars (fmdrop (xs ! k) (?ϑ k) $$! v)

proof
fix v
assume v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
then have v ∈ fmdom ′ (?ϑ k)

by simp
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs and j 6= k

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹(xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by (metis in-set-conv-nth)

then show ?y /∈ vars ((fmdrop (xs ! k) (?ϑ k)) $$! v)
proof (cases j < k)

case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› and ‹length xs = length As› have ?y /∈ vars (As ! j)

using ‹?y ∈ lset ys› and ys-fresh by fastforce
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
next

case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from Suc-le-lessD[OF Suc.prems] and ‹j 6= k› have ?y 6= ys ! j

by (simp add: ‹distinct ys› ‹j < length xs› ‹length ys = length xs› nth-eq-iff-index-eq)
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹xs ! k /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› and surj-pair [of ys ! j] by fastforce

qed
qed
moreover from ‹k < length xs› and ‹length ys = length xs› have ?y /∈ vars B

by (simp add: ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B›)
moreover have is-free-for ?A (xs ! k) B
proof −

from Suc-le-lessD[OF Suc.prems] and ‹lset xs = fmdom ′ ϑ› have xs ! k ∈ fmdom ′ ϑ
using nth-mem by blast

moreover from Suc.prems and ‹As = map (($$!) ϑ) xs› have ϑ $$! (xs ! k) = ?A

167

by fastforce
ultimately show ?thesis

using assms(3) by simp
qed
moreover
have ∀ v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k)). is-free-for (fmdrop (xs ! k) (?ϑ k) $$! v) v B
proof

fix v
assume v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))
then have v ∈ fmdom ′ (?ϑ k)

by simp
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v = xs ! j and j < length xs and j 6= k

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))›
and ‹(xs ! k) /∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by (metis in-set-conv-nth)

then show is-free-for (fmdrop (xs ! k) (?ϑ k) $$! v) v B
proof (cases j < k)

case True
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover have is-free-for (As ! j) v B
proof −

from ‹j < length xs› and ‹lset xs = fmdom ′ ϑ› and ‹v = xs ! j› have v ∈ fmdom ′ ϑ
using nth-mem by blast

moreover have ϑ $$! v = As ! j
by (simp add: ‹As = map (($$!) ϑ) xs› ‹j < length xs› ‹v = xs ! j›)

ultimately show ?thesis
using assms(3) by simp

qed
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
next

case False
with ‹j < length xs› and ‹v = xs ! j› have (?ϑ k) $$! v = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› and ‹length ys = length xs› have ys ! j /∈ vars B

using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› by simp
then have is-free-for (FVar (ys ! j)) v B

by (fact absent-var-is-free-for)
ultimately show ?thesis

using ‹v ∈ fmdom ′ (fmdrop (xs ! k) (?ϑ k))› by auto
qed

qed
ultimately have is-free-for ?A (ys ! k) S ({xs ! k � FVar ?y} ++f fmdrop (xs ! k) (?ϑ k)) B

using is-free-for-with-renaming-substitution by presburger
moreover have S ({xs ! k � FVar ?y} ++f fmdrop (xs ! k) (?ϑ k)) B = S (?ϑ k) B

using ‹length xs = length As› and ‹length ys = length xs› and Suc-le-eq and Suc.prems
and ‹distinct xs› by simp

ultimately show ?thesis
unfolding ‹(ny, αy) = ?y› by simp

168

qed
ultimately show ?thesis

using prop-5221-aux[OF ‹H ` S (?ϑ k) B›] and ‹?A ∈ wffsαy › and ‹(ny, αy) = ?y› by metis
qed
— S.

yk+1
αk+1

Ak+1
αk+1

S.
x1
α1

... xk
αk

xk+1
αk+1

... xn
αn

A1
α1

... Ak
αk

yk+1
αk+1

... yn
αn

B = S.
x1
α1

... xk
αk

xk+1
αk+1

xk+2
αk+2

... xn
αn

A1
α1

... Ak
αk

Ak+1
αk+1

yk+2
αk+2

... yn
αn

B

moreover have S {?y � ?A} S (?ϑ k) B = S (?ϑ (Suc k)) B
proof −

have S {?y � ?A} S (?ϑ k) B = S {?y � ?A} ++f (?ϑ ′ k) B
proof −

have ?y /∈ fmdom ′ (?ϑ k)
using ‹?y ∈ lset ys› and ‹fmdom ′ (?ϑ k) = lset xs› and ys-fresh by blast

moreover have (?ϑ ′ k) = fmmap (λA ′. S {?y � ?A} A ′) (?ϑ k)
using ‹length xs = length As› and ‹length ys = length xs› by simp

moreover have ∀ v ′ ∈ fmdom ′ (?ϑ k). is-free-for (?ϑ k $$! v ′) v ′ B
proof

fix v ′

assume v ′ ∈ fmdom ′ (?ϑ k)
with ‹fmdom ′ (?ϑ k) = lset xs› obtain j where v ′ = xs ! j and j < length xs

by (metis in-set-conv-nth)
obtain α where var-type v ′ = α

by blast
show is-free-for (?ϑ k $$! v ′) v ′ B
proof (cases j < k)

case True
with ‹j < length xs› and ‹v ′ = xs ! j› have (?ϑ k) $$! v ′ = As ! j

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹lset xs = fmdom ′ ϑ› and assms(3) have is-free-for (As ! j) (xs ! j) B

by (metis ‹As = map (($$!) ϑ) xs› ‹j < length xs› nth-map nth-mem)
ultimately show ?thesis

using ‹v ′ = xs ! j› by (simp only:)
next

case False
with ‹j < length xs› and ‹v ′ = xs ! j› have (?ϑ k) $$! v ′ = FVar (ys ! j)

using ‹distinct xs› and ‹length xs = length As› and ‹length ys = length xs› by force
moreover from ‹j < length xs› have is-free-for (FVar (ys ! j)) (xs ! j) B

using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› and ‹length ys = length xs›
and absent-var-is-free-for by presburger

ultimately show ?thesis
using ‹v ′ = xs ! j› by (simp only:)

qed
qed
ultimately show ?thesis

using substitution-consolidation by simp
qed
also have . . . = S {?y � ?A} ++f (?ϑ (Suc k)) B
proof −

have ?ϑ ′ k = ?ϑ (Suc k)
proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)

169

{
fix v ′ and A ′

assume ?ϑ ′ k $$ v ′ = Some A ′

then have v ′ ∈ fmdom ′ (?ϑ ′ k)
by (intro fmdom ′I)

then obtain j where j < length xs and xs ! j = v ′

using ‹fmdom ′ (?ϑ ′ k) = lset xs› by (metis in-set-conv-nth)
then consider (a) j < k | (b) j = k | (c) j ∈ {k<..< length xs}

by fastforce
then show ?ϑ (Suc k) $$ v ′ = Some A ′

proof cases
case a
with ϑ ′-alt-def and ‹distinct xs› and ‹j < length xs›
have ?ϑ ′ k $$ (xs ! j) = Some (take k (map (λA ′. S {?y � ?A} A ′) As) ! j)

using ‹length xs = length As› and ‹length ys = length xs› by auto
also from a and Suc.prems have . . . = Some (S {?y � ?A} (As ! j))

using ‹length xs = length As› by auto
also have . . . = Some (As ! j)
proof −

from Suc.prems and ‹length ys = length xs› have Suc k ≤ length ys
by (simp only:)

moreover have j < length As
using ‹j < length xs› and ‹length xs = length As› by (simp only:)

ultimately have ?y /∈ vars (As ! j)
using ys-fresh by force

then show ?thesis
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

qed
also from a and ‹xs ! j = v ′› and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹j < length xs› and ‹length xs = length As› and ‹length ys = length xs›
by fastforce

finally show ?thesis
using ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by simp

next
case b
then have

?ϑ ′ k $$ (xs ! k) = Some (drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)) ! 0)
using ‹distinct xs› and ‹j < length xs› and ‹length xs = length As›
and ‹length ys = length xs› and fmap-of-list-nth-split by simp

also from Suc.prems have . . . = Some (S {?y � ?A} (FVar ?y))
using ‹length ys = length xs› by simp

also from ‹(ny, αy) = ys ! k› have . . . = Some ?A
by (metis singleton-substitution-simps(1))

also from b and ‹xs ! j = v ′› and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹j < length xs› and ‹length xs = length As› and ‹length ys = length xs›
by fastforce

finally show ?thesis
using b and ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by force

next

170

case c
then have j > k

by simp
with ϑ ′-alt-def and ‹distinct xs› and ‹j < length xs› have
?ϑ ′ k $$ (xs ! j) = Some (drop k (map (λA ′. S {?y � ?A} A ′) (map FVar ys)) ! (j − k))
using fmap-of-list-nth-split and ‹length xs = length As› and ‹length ys = length xs›
by simp

also from Suc.prems and c have . . . = Some (S {?y � ?A} (FVar (ys ! j)))
using ‹length ys = length xs› by simp

also from Suc-le-lessD[OF Suc.prems] and ‹distinct ys› have . . . = Some (FVar (ys ! j))
using ‹j < length xs› and ‹k < j› and ‹length ys = length xs›
by (metis nless-le nth-eq-iff-index-eq prod.exhaust-sel singleton-substitution-simps(1))

also from c and ‹distinct xs› have . . . = ?ϑ (Suc k) $$ v ′

using ‹xs ! j = v ′› and ‹length xs = length As› and ‹length ys = length xs› by force
finally show ?thesis

using ‹?ϑ ′ k $$ v ′ = Some A ′› and ‹xs ! j = v ′› by force
qed

}
note ϑ-k-in-Sub-k = this
{

fix v ′ and A ′

assume ?ϑ (Suc k) $$ v ′ = Some A ′

then have v ′ ∈ fmdom ′ (?ϑ (Suc k))
by (intro fmdom ′I)

then obtain j where j < length xs and xs ! j = v ′

using ‹fmdom ′ (?ϑ (Suc k)) = lset xs› by (metis in-set-conv-nth)
then consider (a) j < k | (b) j = k | (c) j ∈ {k<..< length xs}

by fastforce
with ‹j < length xs› and ‹xs ! j = v ′› and ϑ-k-in-Sub-k show ?ϑ ′ k $$ v ′ = Some A ′

using ‹
∧

k ′. fmdom ′ (?ϑ ′ k ′) = lset xs› and ‹?ϑ (Suc k) $$ v ′ = Some A ′›
by (metis (mono-tags, lifting) fmlookup-dom ′-iff nth-mem)+

}
qed
then show ?thesis

by presburger
qed
also have . . . = S (?ϑ (Suc k)) B
proof −

have ?ϑ (Suc k) $$?y = None
using ‹?y ∈ lset ys› ‹

∧
k ′. fmdom ′ (?ϑ k ′) = lset xs› and ys-fresh by blast

moreover from Suc-le-lessD[OF Suc.prems] have ?y /∈ vars B
using ‹∀ j < length ys. ys ! j /∈ vars H ∧ ys ! j /∈ vars B› and ‹length ys = length xs›
by auto

ultimately show ?thesis
by (rule substitution-absorption)

qed
finally show ?thesis .

qed
— H ` S.

x1
α1

... xk
αk

xk+1
αk+1

xk+2
αk+2

... xn
αn

A1
α1

... Ak
αk

Ak+1
αk+1

yk+2
αk+2

... yn
αn

B

171

ultimately show ?case
by (simp only:)

qed
— H ` S.

x1
α1

... xn
αn

A1
α1

... An
αn

B

then have H ` S (fmap-of-list (zip xs As)) B
using ‹length xs = length As› and ‹length ys = length xs› by force

moreover have fmap-of-list (zip xs As) = ϑ
proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)

fix v and A
assume fmap-of-list (zip xs As) $$ v = Some A
with ‹lset xs = fmdom ′ ϑ› have v ∈ fmdom ′ ϑ

by (fast dest: fmap-of-list-SomeD set-zip-leftD)
with ‹fmap-of-list (zip xs As) $$ v = Some A› and ‹As = map (($$!) ϑ) xs› show ϑ $$ v = Some

A
by
(simp add: map-of-zip-map fmap-of-list.rep-eq split: if-splits)
(meson fmdom ′-notI option.exhaust-sel)

next
fix v and A
assume ϑ $$ v = Some A
with ‹As = map (($$!) ϑ) xs› show fmap-of-list (zip xs As) $$ v = Some A

using ‹lset xs = fmdom ′ ϑ› by (simp add: fmap-of-list.rep-eq fmdom ′I map-of-zip-map)
qed
ultimately show ?thesis

by (simp only:)
qed

end

lemmas Sub = prop-5221

6.23 Proposition 5222 (Rule of Cases)
lemma forall-α-conversion:

assumes A ∈ wffso
and (z, β) /∈ free-vars A
and is-free-for (zβ) (x, β) A
shows ` ∀ xβ . A =o ∀ zβ . S {(x, β) � zβ} A

proof −
from assms(1) have ∀ xβ . A ∈ wffso

by (intro forall-wff)
then have ` ∀ xβ . A =o ∀ xβ . A

by (fact prop-5200)
moreover from assms have ` (λxβ . A) =β→o (λzβ . S {(x, β) � zβ} A)

by (rule prop-5206)
ultimately show ?thesis

unfolding forall-def and PI-def by (rule rule-R [where p = [»,»]]) force+
qed

172

proposition prop-5222 :
assumes H ` S {(x, o) � To} A and H ` S {(x, o) � Fo} A
and A ∈ wffso
shows H ` A

proof −
from assms(1) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
have §1 : H ` To =o (λxo. A) � To
proof −

have ` (λxo. A) � To =o S {(x, o) � To} A
using prop-5207 [OF true-wff assms(3) closed-is-free-for] by simp

from this and assms(1) have H ` (λxo. A) � To
using rule-RR[OF disjI2 , where p = []] by fastforce

moreover have (λxo. A) � To ∈ wffso
by (fact hyp-derivable-form-is-wffso[OF ‹H ` (λxo. A) � To›])

ultimately show ?thesis
using rule-T (1) by blast

qed
moreover have §2 : H ` To =o (λxo. A) � Fo
proof −

have ` (λxo. A) � Fo =o S {(x, o) � Fo} A
using prop-5207 [OF false-wff assms(3) closed-is-free-for] by simp

from this and assms(2) have H ` (λxo. A) � Fo
using rule-RR[OF disjI2 , where p = []] by fastforce

moreover have (λxo. A) � Fo ∈ wffso
by (fact hyp-derivable-form-is-wffso[OF ‹H ` (λxo. A) � Fo›])

ultimately show ?thesis
using rule-T (1) by blast

qed
moreover from prop-5212 and ‹is-hyps H› have §3 : H ` To ∧Q To

by (rule derivability-implies-hyp-derivability)
ultimately have H ` (λxo. A) � To ∧Q (λxo. A) � Fo
proof −

from §3 and §1 have H ` (λxo. A) � To ∧Q To
by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)

from this and §2 show ?thesis
by (rule rule-R ′[where p = [»]]) (force+, fastforce dest: subforms-from-app)

qed
moreover have ` (λxo. A) � To ∧Q (λxo. A) � Fo =o ∀ xo. A
proof −

have go→o � xo ∈ wffso
by blast

have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo
using axiom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)

— By α-conversion
then have ` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo (is ` ?B =o ?C)
proof −

have ` ∀ xo. go→o � xo =o ∀ xo. go→o � xo

173

proof (cases x = x)
case True
from ‹go→o � xo ∈ wffso› have ` ∀ xo. go→o � xo =o ∀ xo. go→o � xo

by (fact prop-5200 [OF forall-wff])
with True show ?thesis

using identity-singleton-substitution-neutrality by simp
next

case False
from ‹go→o � xo ∈ wffso›
have ` ∀ xo. go→o � xo =o ∀ xo. S {(x, o) � xo} (go→o � xo)

by
(rule forall-α-conversion)
(simp add: False, intro is-free-for-to-app is-free-for-in-var)

then show ?thesis
by force

qed
with ‹` go→o � To ∧Q go→o � Fo =o ∀ xo. go→o � xo› show ?thesis

using Equality-Rules(3) by blast
qed
— By Sub
then have ∗: ` (λxo. A) � To ∧Q (λxo. A) � Fo =o ∀ xo. (λxo. A) � xo
proof −

let ?ϑ = {(g, o→o) � λxo. A}
from assms(3) have is-substitution ?ϑ

by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v (?B =o ?C)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ (?B =o ?C)
by (rule Sub [OF ‹` ?B =o ?C ›])

then show ?thesis
by simp

qed
— By λ-conversion
then show ?thesis
proof −

have ` (λxo. A) � xo =o A
using prop-5208 [where vs = [(x, o)]] and assms(3) by simp

from ∗ and this show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+

qed
qed
ultimately have H ` ∀ xo. A

using rule-RR and is-subform-at.simps(1) by (blast intro: empty-is-position)
then show ?thesis
proof −

174

have is-free-for (xo) (x, o) A
by fastforce

from ‹H ` ∀ xo. A› and wffs-of-type-intros(1) and this show ?thesis
by (rule ∀ I [of H x o A xo, unfolded identity-singleton-substitution-neutrality])

qed
qed

lemmas Cases = prop-5222

6.24 Proposition 5223
proposition prop-5223 :

shows ` (To ⊃Q yo) =o yo
proof −

have ` (To ⊃Q yo) =o (To =o (To ∧Q yo))
proof −

let ?A = (λxo. λyo. (xo ≡Q xo ∧Q yo)) � To � yo
have ?A ∈ wffso

by force
then have ` ?A =o ?A

by (fact prop-5200)
then have ` (To ⊃Q yo) =o ?A

unfolding imp-fun-def and imp-op-def .
moreover
have ` (λxo. λyo. (xo ≡Q xo ∧Q yo)) � To =o→o λyo. (To ≡Q To ∧Q yo)
proof −

have λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o
by auto

moreover
have is-free-for To (x, o) (λyo. (xo ≡Q xo ∧Q yo))

by fastforce
moreover
have S {(x, o) � To} (λyo. (xo ≡Q xo ∧Q yo)) = (λyo. (To ≡Q To ∧Q yo))

by simp
ultimately show ?thesis

using prop-5207 [OF true-wff] by metis
qed
ultimately have ∗: ` (To ⊃Q yo) =o (λyo. (To ≡Q To ∧Q yo)) � yo

by (rule rule-R [where p = [»,«]]) force+
have To ≡Q To ∧Q yo ∈ wffso

by auto
then have ` (λyo. (To ≡Q To ∧Q yo)) � yo =o (To ≡Q To ∧Q yo)

using prop-5208 [where vs = [(y, o)]] by simp
from ∗ and this show ?thesis

by (rule rule-R[where p = [»]]) force+
qed
with prop-5218 have ` (To ⊃Q yo) =o (To ∧Q yo)

using rule-R and Equality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
with prop-5216 show ?thesis

175

using rule-R and Equality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
qed

corollary generalized-prop-5223 :
assumes A ∈ wffso
shows ` (To ⊃Q A) =o A

proof −
have To ⊃Q yo ∈ wffso and is-free-for A (y, o) ((To ⊃Q yo) =o yo)
by (blast, intro is-free-for-in-equality is-free-for-in-imp is-free-for-in-true is-free-for-in-var)

from this(2) have ` S {(y, o) � A} ((To ⊃Q yo) =o yo)
by (rule prop-5209 [OF assms ‹To ⊃Q yo ∈ wffso› wffs-of-type-intros(1) prop-5223])

then show ?thesis
by simp

qed

6.25 Proposition 5224 (Modus Ponens)
proposition prop-5224 :

assumes H ` A and H ` A ⊃Q B
shows H ` B

proof −
have H ` A ⊃Q B

by fact
moreover from assms(1) have A ∈ wffso

by (fact hyp-derivable-form-is-wffso)
from this and assms(1) have H ` A =o To

using rule-T (2) by blast
ultimately have H ` To ⊃Q B

by (rule rule-R ′[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
have ` (To ⊃Q B) =o B
proof −

let ?ϑ = {(y, o) � B}
have B ∈ wffso

by (fact hyp-derivable-form-is-wffso[OF assms(2), THEN wffs-from-imp-op(2)])
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧
is-free-for (?ϑ $$! v) v ((To ⊃Q yo) =o yo)

by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ((To ⊃Q yo) =o yo)

by (rule Sub[OF prop-5223])
then show ?thesis

by simp
qed
then show ?thesis

176

by (rule rule-RR[OF disjI1 , where p = []]) (use ‹H ` To ⊃Q B› in ‹force+›)
qed

lemmas MP = prop-5224

corollary generalized-modus-ponens:
assumes H ` hs ⊃Q

? B and ∀H ∈ lset hs. H ` H
shows H ` B

using assms proof (induction hs arbitrary: B rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc H ′ hs)
from ‹∀H ∈ lset (hs @ [H ′]). H ` H › have H ` H ′

by simp
moreover have H ` H ′ ⊃Q B
proof −

from ‹H ` (hs @ [H ′]) ⊃Q
? B› have H ` hs ⊃Q

? (H ′ ⊃Q B)
by simp

moreover from ‹∀H ∈ lset (hs @ [H ′]). H ` H › have ∀H ∈ lset hs. H ` H
by simp

ultimately show ?thesis
by (elim snoc.IH)

qed
ultimately show ?case

by (rule MP)
qed

6.26 Proposition 5225
proposition prop-5225 :

shows `
∏
α � fα→o ⊃Q fα→o � xα

proof −
have fα→o � xα ∈ wffso

by blast
have §1 :
`∏

α � fα→o ⊃Q (((λfα→o. fα→o � xα) � (λxα. To))
=o
((λfα→o. fα→o � xα) � fα→o))

proof −
let ?ϑ = {(h, (α→o)→o) � λfα→o. fα→o � xα, (x, α→o) � λxα. To, (y, α→o) � fα→o}

and ?A = (xα→o =α→o yα→o) ⊃Q (h(α→o)→o � xα→o ≡Q h(α→o)→o � yα→o)
have ` ?A

by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])
moreover have λfα→o. fα→o � xα ∈ wffs(α→o)→o and λxα. To ∈ wffsα→o

and fα→o ∈ wffsα→o
by blast+

177

then have is-substitution ?ϑ
by simp

moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?A
by (rule Sub)

then show ?thesis
by simp

qed
have `

∏
α � fα→o ⊃Q (To =o fα→o � xα)

proof −
have
` (λfα→o. fα→o � xα) � (λxα. To) =o (λxα. To) � xα
(is ` (λ?x?β . ?B) � ?A =o ?C)

proof −
have ` (λ?x?β . ?B) � ?A =o S {(?x, ?β) � ?A} ?B

using prop-5207 [OF wffs-of-type-intros(4)[OF true-wff] ‹?B ∈ wffso›] by fastforce
then show ?thesis

by simp
qed
moreover have ` (λxα. To) � xα =o To

using prop-5208 [where vs = [(x, α)]] and true-wff by simp
ultimately have ` (λfα→o. fα→o � xα) � (λxα. To) =o To

by (rule Equality-Rules(3))
from §1 and this have `

∏
α � fα→o ⊃Q (To =o ((λfα→o. fα→o � xα) � fα→o))

by (rule rule-R[where p = [»,«,»]]) force+
moreover have ` (λfα→o. fα→o � xα) � fα→o =o fα→o � xα

using prop-5208 [where vs = [(f, α→o)]] by force
ultimately show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed
from this and prop-5218 [OF ‹fα→o � xα ∈ wffso›] show ?thesis

by (rule rule-R[where p = [»]]) auto
qed

6.27 Proposition 5226
proposition prop-5226 :

assumes A ∈ wffsα and B ∈ wffso
and is-free-for A (x, α) B
shows ` ∀ xα. B ⊃Q S {(x, α) � A} B

proof −
have `

∏
α � (λxα. B) ⊃Q (λxα. B) � A

proof −
let ?ϑ = {(f, α→o) � λxα. B, (x, α) � A}
have `

∏
α � fα→o ⊃Q fα→o � xα (is ` ?C)

178

by (fact prop-5225)
moreover from assms have is-substitution ?ϑ

by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C
by (code-simp, (unfold atomize-conj[symmetric])?, fastforce)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?C
by (rule Sub)

moreover have S ?ϑ ?C =
∏
α � (λxα. B) ⊃Q (λxα. B) � A

by simp
ultimately show ?thesis

by (simp only:)
qed
moreover from assms have ` (λxα. B) � A =o S {(x, α) � A} B

by (rule prop-5207)
ultimately show ?thesis

by (rule rule-R [where p = [»]]) force+
qed

6.28 Proposition 5227
corollary prop-5227 :

shows ` Fo ⊃Q xo
proof −

have ` ∀ xo. xo ⊃Q S {(x, o) � xo} (xo)
by (rule prop-5226) auto

then show ?thesis
using identity-singleton-substitution-neutrality by simp

qed

corollary generalized-prop-5227 :
assumes A ∈ wffso
shows ` Fo ⊃Q A

proof −
let ?ϑ = {(x, o) � A} and ?B = Fo ⊃Q xo
from assms have is-substitution ?ϑ

by simp
moreover have is-free-for A (x, o) ?B

by (intro is-free-for-in-false is-free-for-in-imp is-free-for-in-var)
then have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?B
by force

ultimately have ` S {(x, o) � A} (Fo ⊃Q xo)
using Sub[OF prop-5227 , where ϑ = ?ϑ] by fastforce

then show ?thesis
by simp

qed

179

6.29 Proposition 5228
proposition prop-5228 :

shows ` (To ⊃Q To) =o To
and ` (To ⊃Q Fo) =o Fo
and ` (Fo ⊃Q To) =o To
and ` (Fo ⊃Q Fo) =o To

proof −
show ` (To ⊃Q To) =o To and ` (To ⊃Q Fo) =o Fo

using generalized-prop-5223 by blast+
next

have ` Fo ⊃Q Fo and ` Fo ⊃Q To
using generalized-prop-5227 by blast+

then show ` (Fo ⊃Q To) =o To and ` (Fo ⊃Q Fo) =o To
using rule-T (2) by blast+

qed

6.30 Proposition 5229
lemma false-in-conj-provability:

assumes A ∈ wffso
shows ` Fo ∧Q A ≡Q Fo

proof −
have ` (λxo. λyo. (xo ≡Q xo ∧Q yo)) � Fo � A

by (intro generalized-prop-5227 [OF assms, unfolded imp-op-def imp-fun-def])
moreover have
`
(λxo. λyo. (xo ≡Q xo ∧Q yo)) � Fo
=o→o
λyo. (Fo ≡Q Fo ∧Q yo)

(is ` (λ?x?β . ?A) � ?B =?γ ?C)
proof −

have ?B ∈ wffs?β and ?A ∈ wffs?γ and is-free-for ?B (?x, ?β) ?A
by auto

then have ` (λ?x?β . ?A) � ?B =?γ S {(?x, ?β) � ?B} ?A
by (rule prop-5207)

moreover have S {(?x, ?β) � ?B} ?A = ?C
by simp

ultimately show ?thesis
by (simp only:)

qed
ultimately have ` (λyo. (Fo ≡Q Fo ∧Q yo)) � A

by (rule rule-R[where p = [«]]) auto
moreover have
`
(λyo. (Fo ≡Q Fo ∧Q yo)) � A
=o
(Fo ≡Q Fo ∧Q A)

(is ` (λ?x?β . ?A) � ?B =o ?C)
proof −

180

have ?B ∈ wffs?β and ?A ∈ wffso
using assms by auto

moreover have is-free-for ?B (?x, ?β) ?A
by (intro is-free-for-in-equivalence is-free-for-in-conj is-free-for-in-false) fastforce

ultimately have ` (λ?x?β . ?A) � ?B =o S {(?x, ?β) � ?B} ?A
by (rule prop-5207)

moreover
have S {(?x, ?β) � ?B} ?A = ?C

by simp
ultimately show ?thesis

by (simp only:)
qed
ultimately have ` Fo ≡Q Fo ∧Q A

by (rule rule-R[where p = []]) auto
then show ?thesis

unfolding equivalence-def by (rule Equality-Rules(2))
qed

proposition prop-5229 :
shows ` (To ∧Q To) =o To
and ` (To ∧Q Fo) =o Fo
and ` (Fo ∧Q To) =o Fo
and ` (Fo ∧Q Fo) =o Fo

proof −
show ` (To ∧Q To) =o To and ` (To ∧Q Fo) =o Fo

using prop-5216 by blast+
next

show ` (Fo ∧Q To) =o Fo and ` (Fo ∧Q Fo) =o Fo
using false-in-conj-provability and true-wff and false-wff by simp-all

qed

6.31 Proposition 5230
proposition prop-5230 :

shows ` (To ≡Q To) =o To
and ` (To ≡Q Fo) =o Fo
and ` (Fo ≡Q To) =o Fo
and ` (Fo ≡Q Fo) =o To

proof −
show ` (To ≡Q To) =o To and ` (To ≡Q Fo) =o Fo

unfolding equivalence-def using prop-5218 by blast+
next

show ` (Fo ≡Q Fo) =o To
unfolding equivalence-def by (rule Equality-Rules(2)[OF prop-5210 [OF false-wff]])

next
have §1 : ` (Fo ≡Q To) ⊃Q ((λxo. (xo ≡Q Fo)) � Fo ≡Q (λxo. (xo ≡Q Fo)) � To)
proof −

let ?ϑ = {(h, o→o) � λxo. (xo ≡Q Fo), (x, o) � Fo, (y, o) � To}
and ?A = (xo =o yo) ⊃Q (ho→o � xo ≡Q ho→o � yo)

181

have ` ?A
by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])

moreover have is-substitution ?ϑ
by auto

moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by (code-simp, unfold atomize-conj[symmetric], simp, force)+ blast

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ ?A
by (rule Sub)

then show ?thesis
by simp

qed
then have §2 : ` (Fo ≡Q To) ⊃Q ((Fo ≡Q Fo) ≡Q (To ≡Q Fo)) (is ` ?A2)
proof −

have is-free-for A (x, o) (xo ≡Q Fo) for A
by code-simp blast

have β-reduction: ` (λxo. (xo ≡Q Fo)) � A =o (A ≡Q Fo) if A ∈ wffso for A
using

prop-5207
[

OF that equivalence-wff [OF wffs-of-type-intros(1) false-wff]
‹is-free-for A (x, o) (xo ≡Q Fo)›

]
by simp

from §1 and β-reduction[OF false-wff] have
` (Fo =o To) ⊃Q ((Fo ≡Q Fo) ≡Q (λxo. (xo ≡Q Fo)) � To)
by (rule rule-R[where p = [»,«,»]]) force+

from this and β-reduction[OF true-wff] show ?thesis
by (rule rule-R[where p = [»,»]]) force+

qed
then have §3 : ` (Fo ≡Q To) ⊃Q Fo
proof −

note r1 = rule-RR[OF disjI1] and r2 = rule-RR[OF disjI2]
have §3 1: ` (Fo ≡Q To) ⊃Q ((Fo ≡Q Fo) ≡Q Fo) (is ‹` ?A3 1›)

by (rule r1 [OF prop-5218 [OF false-wff], where p = [»,»] and C = ?A2]) (use §2 in ‹force+›)
have §3 2: ` (Fo ≡Q To) ⊃Q (To ≡Q Fo) (is ‹` ?A3 2›)
by (rule r2 [OF prop-5210 [OF false-wff], where p = [»,«,»] and C = ?A3 1]) (use §3 1 in ‹force+›)
show ?thesis

by (rule r1 [OF prop-5218 [OF false-wff], where p = [»] and C = ?A3 2]) (use §3 2 in ‹force+›)
qed
then have ` (Fo ≡Q To) ≡Q ((Fo ≡Q To) ∧Q Fo)
proof −

have
`
(λxo. λyo. (xo ≡Q xo ∧Q yo)) � (Fo ≡Q To)
=o→o
S {(x, o) � Fo ≡Q To} (λyo. (xo ≡Q xo ∧Q yo))

182

by (rule prop-5207) auto
from §3 [unfolded imp-op-def imp-fun-def] and this
have ` (λyo. ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)) � Fo

by (rule rule-R[where p = [«]]) force+
moreover have
`
(λyo. ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)) � Fo
=o
S {(y, o) � Fo} ((Fo ≡Q To) ≡Q (Fo ≡Q To) ∧Q yo)

by (rule prop-5207) auto
ultimately show ?thesis

by (rule rule-R[where p = []]) force+
qed
moreover have §5 : ` xo ∧Q Fo ≡Q Fo
proof −

from prop-5229 (2 ,4) have
` S {(x, o) � To} (xo ∧Q Fo ≡Q Fo) and ` S {(x, o) � Fo} (xo ∧Q Fo ≡Q Fo)
by simp-all

moreover have xo ∧Q Fo ≡Q Fo ∈ wffso
by auto

ultimately show ?thesis
by (rule Cases)

qed
then have ` (Fo ≡Q To) ∧Q Fo ≡Q Fo
proof −

let ?ϑ = {(x, o) � Fo ≡Q To}
have is-substitution ?ϑ

by auto
moreover have ∀ v ∈ fmdom ′ ?ϑ.

var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v (xo ∧Q Fo ≡Q Fo)
by simp

moreover have ?ϑ 6= {$$}
by simp

ultimately have ` S ?ϑ (xo ∧Q Fo ≡Q Fo)
by (rule Sub[OF ‹` xo ∧Q Fo ≡Q Fo›])

then show ?thesis
by simp

qed
ultimately show ` (Fo ≡Q To) =o Fo

unfolding equivalence-def by (rule Equality-Rules(3))
qed

6.32 Proposition 5231
proposition prop-5231 :

shows ` ∼Q To =o Fo
and ` ∼Q Fo =o To
using prop-5230 (3 ,4) unfolding neg-def and equivalence-def and equality-of-type-def .

183

6.33 Proposition 5232
lemma disj-op-alt-def-provability:

assumes A ∈ wffso and B ∈ wffso
shows ` A ∨Q B =o ∼Q (∼Q A ∧Q ∼Q B)

proof −
let ?C = (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B
from assms have ?C ∈ wffso

by blast
have (∼Q (∼Q xo ∧Q ∼Q yo)) ∈ wffso

by auto
moreover obtain z where (z, o) /∈ {(x, o), (y, o)} and (z, o) /∈ free-vars A

using free-vars-form-finiteness and fresh-var-existence
by (metis Un-iff Un-insert-right free-vars-form.simps(1 ,3) inf-sup-aci(5) sup-bot-left)

then have (z, o) /∈ free-vars (∼Q (∼Q xo ∧Q ∼Q yo))
by simp

moreover have is-free-for (zo) (y, o) (∼Q (∼Q xo ∧Q ∼Q yo))
by (intro is-free-for-in-conj is-free-for-in-neg is-free-for-in-var)

ultimately have
` (λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) =o→o (λzo. S {(y, o) � zo} ∼Q (∼Q xo ∧Q ∼Q yo))
by (rule α)

then have ` (λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) =o→o (λzo. ∼Q (∼Q xo ∧Q ∼Q zo))
by simp

from prop-5200 [OF ‹?C ∈ wffso›] and this have
`
(λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A � B
=o
(λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B

by (rule rule-R[where p = [«,»,«,«,«]]) force+
moreover have λzo. ∼Q (∼Q xo ∧Q ∼Q zo) ∈ wffso→o

by blast
have
`
(λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A
=o→o
S {(x, o) � A} (λzo. ∼Q (∼Q xo ∧Q ∼Q zo))

by
(rule prop-5207)
(

fact, blast, intro is-free-for-in-neg is-free-for-in-conj is-free-for-to-abs,
(fastforce simp add: ‹(z, o) /∈ free-vars A›)+

)
then have ` (λxo. λzo. ∼Q (∼Q xo ∧Q ∼Q zo)) � A =o→o (λzo. ∼Q (∼Q A ∧Q ∼Q zo))

using ‹(z, o) /∈ free-vars (∼Q (∼Q xo ∧Q ∼Q yo))› by simp
ultimately have
` (λzo. ∼Q (∼Q A ∧Q ∼Q zo)) � B =o (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B
by (rule rule-R[where p = [«,»,«]]) force+

moreover have ` (λzo. ∼Q (∼Q A ∧Q ∼Q zo)) � B =o S {(z, o) � B} (∼Q (∼Q A ∧Q ∼Q zo))
by
(rule prop-5207)

184

(
fact, blast intro: assms(1), intro is-free-for-in-neg is-free-for-in-conj,
use ‹(z, o) /∈ free-vars A› is-free-at-in-free-vars in ‹fastforce+›

)
moreover have S {(z, o) � B} (∼Q (∼Q A ∧Q ∼Q zo)) = ∼Q (∼Q A ∧Q ∼Q B)

using free-var-singleton-substitution-neutrality[OF ‹(z, o) /∈ free-vars A›] by simp
ultimately have ` (λxo. λyo. ∼Q (∼Q xo ∧Q ∼Q yo)) � A � B =o ∼Q (∼Q A ∧Q ∼Q B)

using Equality-Rules(2 ,3) by metis
then show ?thesis

by simp
qed

context begin

private lemma prop-5232-aux:
assumes ` ∼Q (A ∧Q B) =o C
and ` ∼Q A ′ =o A and ` ∼Q B ′ =o B
shows ` A ′ ∨Q B ′ =o C

proof −
let ?D = ∼Q (A ∧Q B) =o C
from assms(2) have ` ∼Q (∼Q A ′ ∧Q B) =o C (is ‹` ?A1 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,»,«,»] and C = ?D]) (use assms(1) in ‹force+›)
from assms(3) have ` ∼Q (∼Q A ′ ∧Q ∼Q B ′) =o C

by (rule rule-RR[OF disjI2 , where p = [«,»,»,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
moreover from assms(2 ,3) have A ′ ∈ wffso and B ′ ∈ wffso

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality wffs-from-neg)+
then have ` A ′ ∨Q B ′ =o ∼Q (∼Q A ′ ∧Q ∼Q B ′)

by (rule disj-op-alt-def-provability)
ultimately show ?thesis

using prop-5201-3 by blast
qed

proposition prop-5232 :
shows ` (To ∨Q To) =o To
and ` (To ∨Q Fo) =o To
and ` (Fo ∨Q To) =o To
and ` (Fo ∨Q Fo) =o Fo

proof −
from prop-5231 (2) have ` ∼Q Fo =o To (is ‹` ?A›) .
from prop-5229 (4) have ` ∼Q (Fo ∧Q Fo) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (1) prop-5231 (1)] show ` (To ∨Q To) =o To .
from prop-5229 (3) have ` ∼Q (Fo ∧Q To) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (1) prop-5231 (2)] show ` (To ∨Q Fo) =o To .
from prop-5229 (2) have ` ∼Q (To ∧Q Fo) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (2) prop-5231 (1)] show ` (Fo ∨Q To) =o To .

next

185

from prop-5231 (1) have ` ∼Q To =o Fo (is ‹` ?A›) .
from prop-5229 (1) have ` ∼Q (To ∧Q To) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A]) (use ‹` ?A› in ‹force+›)
from prop-5232-aux[OF this prop-5231 (2) prop-5231 (2)] show ` (Fo ∨Q Fo) =o Fo .

qed

end

6.34 Proposition 5233
context begin

private lemma lem-prop-5233-no-free-vars:
assumes A ∈ pwffs and free-vars A = {}
shows (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T) −→ ` A =o To (is ?AT −→ -)
and (∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = F) −→ ` A =o Fo (is ?AF −→ -)

proof −
from assms have (?AT −→ ` A =o To) ∧ (?AF −→ ` A =o Fo)
proof induction

case T-pwff
have ` To =o To

by (rule prop-5200 [OF true-wff])
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ To = T

using VB-T by blast
then have ¬ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ To = F)

by (auto simp: inj-eq)
ultimately show ?case

by blast
next

case F-pwff
have ` Fo =o Fo

by (rule prop-5200 [OF false-wff])
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ Fo = F

using VB-F by blast
then have ¬ (∀ϕ. is-tv-assignment ϕ −→ VB ϕ Fo = T)

by (auto simp: inj-eq)
ultimately show ?case

by blast
next

case (var-pwff p) — impossible case
then show ?case

by simp
next

case (neg-pwff B)
from neg-pwff .hyps have ∼Q B ∈ pwffs and free-vars B = {}

using neg-pwff .prems by (force, auto elim: free-vars-form.elims)
consider
(a) ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = T
| (b) ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = F

186

using closed-pwff-denotation-uniqueness[OF neg-pwff .hyps ‹free-vars B = {}›]
and neg-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB]]
by (auto dest: tv-cases) metis

then show ?case
proof cases

case a
with ‹free-vars B = {}› have ` To =o B

using neg-pwff .IH and Equality-Rules(2) by blast
from prop-5231 (1)[unfolded neg-def , folded equality-of-type-def] and this
have ` ∼Q B =o Fo

unfolding neg-def [folded equality-of-type-def] by (rule rule-R[where p = [«,»,»]]) force+
moreover from a have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (∼Q B) = F

using VB-neg[OF neg-pwff .hyps] by simp
ultimately show ?thesis

by (auto simp: inj-eq)
next

case b
with ‹free-vars B = {}› have ` Fo =o B

using neg-pwff .IH and Equality-Rules(2) by blast
then have ` ∼Q B =o To

unfolding neg-def [folded equality-of-type-def]
using rule-T (2)[OF hyp-derivable-form-is-wffso] by blast

moreover from b have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (∼Q B) = T
using VB-neg[OF neg-pwff .hyps] by simp

ultimately show ?thesis
by (auto simp: inj-eq)

qed
next

case (conj-pwff B C)
from conj-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with conj-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF conj-pwff .hyps(1) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF conj-pwff .hyps(2) ‹free-vars C = {}›]
and conj-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB]]
by force+

with conj-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a

187

from prop-5229 (1) have ` To ∧Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1)] and ‹free-vars B = {}› have ` B =o To

using conj-pwff .IH (1) by simp
then have ` B ∧Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2)] and ‹free-vars C = {}› have ` C =o To

using conj-pwff .IH (2) by simp
then have ` B ∧Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) = T) −→ ` B ∧Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) 6= F

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5229 (2) have ` To ∧Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1)] and ‹free-vars B = {}› have ` B =o To

using conj-pwff .IH (1) by simp
then have ` B ∧Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2)] and ‹free-vars C = {}› have ` C =o Fo

using conj-pwff .IH (2) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5229 (3) have ` Fo ∧Q To =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded c(1)] and ‹free-vars B = {}› have ` B =o Fo

using conj-pwff .IH (1) by simp
then have ` B ∧Q To =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2)] and ‹free-vars C = {}› have ` C =o To

using conj-pwff .IH (2) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded c(1)] and C-den[unfolded c(2)]

188

by (auto simp: inj-eq)
ultimately show ?thesis

by force
next

case d
from prop-5229 (4) have ` Fo ∧Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded d(1)] and ‹free-vars B = {}› have ` B =o Fo

using conj-pwff .IH (1) by simp
then have ` B ∧Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2)] and ‹free-vars C = {}› have ` C =o Fo

using conj-pwff .IH (2) by simp
then have ` B ∧Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) = F) −→ ` B ∧Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∧Q C) 6= T

using VB-conj[OF conj-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
next

case (disj-pwff B C)
from disj-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with disj-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF disj-pwff .hyps(1) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF disj-pwff .hyps(2) ‹free-vars C = {}›]
and disj-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB]]
by force+

with disj-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5232 (1) have ` To ∨Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1)] and ‹free-vars B = {}› have ` B =o To

using disj-pwff .IH (1) by simp
then have ` B ∨Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)

189

from C-den[unfolded a(2)] and ‹free-vars C = {}› have ` C =o To
using disj-pwff .IH (2) by simp

then have ` B ∨Q C =o To
by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)

then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) = T) −→ ` B ∨Q C =o To
by blast

moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) 6= F
using VB-disj[OF disj-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5232 (2) have ` To ∨Q Fo =o To (is ‹` ?A1 ›) .
from B-den[unfolded b(1)] and ‹free-vars B = {}› have ` B =o To

using disj-pwff .IH (1) by simp
then have ` B ∨Q Fo =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2)] and ‹free-vars C = {}› have ` C =o Fo

using disj-pwff .IH (2) by simp
then have ` B ∨Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) = T) −→ ` B ∨Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) 6= F

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5232 (3) have ` Fo ∨Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded c(1)] and ‹free-vars B = {}› have ` B =o Fo

using disj-pwff .IH (1) by simp
then have ` B ∨Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2)] and ‹free-vars C = {}› have ` C =o To

using disj-pwff .IH (2) by simp
then have ` B ∨Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) = T) −→ ` B ∨Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) 6= F

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded c(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d

190

from prop-5232 (4) have ` Fo ∨Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded d(1)] and ‹free-vars B = {}› have ` B =o Fo

using disj-pwff .IH (1) by simp
then have ` B ∨Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2)] and ‹free-vars C = {}› have ` C =o Fo

using disj-pwff .IH (2) by simp
then have ` B ∨Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) = T) −→ ` B ∨Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ∨Q C) 6= T

using VB-disj[OF disj-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
using ‹` B ∨Q C =o Fo› by auto

qed
next

case (imp-pwff B C)
from imp-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with imp-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF imp-pwff .hyps(1) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF imp-pwff .hyps(2) ‹free-vars C = {}›]
and imp-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB]]
by force+

with imp-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5228 (1) have ` To ⊃Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1)] and ‹free-vars B = {}› have ` B =o To

using imp-pwff .IH (1) by simp
then have ` B ⊃Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2)] and ‹free-vars C = {}› have ` C =o To

using imp-pwff .IH (2) by simp
then have ` B ⊃Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) = T) −→ ` B ⊃Q C =o To

191

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) 6= F

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case b
from prop-5228 (2) have ` To ⊃Q Fo =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1)] and ‹free-vars B = {}› have ` B =o To

using imp-pwff .IH (1) by simp
then have ` B ⊃Q Fo =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2)] and ‹free-vars C = {}› have ` C =o Fo

using imp-pwff .IH (2) by simp
then have ` B ⊃Q C =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) = F) −→ ` B ⊃Q C =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) 6= T

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5228 (3) have ` Fo ⊃Q To =o To (is ‹` ?A1 ›) .
from B-den[unfolded c(1)] and ‹free-vars B = {}› have ` B =o Fo

using imp-pwff .IH (1) by simp
then have ` B ⊃Q To =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2)] and ‹free-vars C = {}› have ` C =o To

using imp-pwff .IH (2) by simp
then have ` B ⊃Q C =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) = T) −→ ` B ⊃Q C =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) 6= F

using VB-imp[OF imp-pwff .hyps] and B-den[unfolded c(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d
from prop-5228 (4) have ` Fo ⊃Q Fo =o To (is ‹` ?A1 ›) .
from B-den[unfolded d(1)] and ‹free-vars B = {}› have ` B =o Fo

using imp-pwff .IH (1) by simp
then have ` B ⊃Q Fo =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)

192

from C-den[unfolded d(2)] and ‹free-vars C = {}› have ` C =o Fo
using imp-pwff .IH (2) by simp

then have ` B ⊃Q C =o To
by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)

then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) = T) −→ ` B ⊃Q C =o To
by blast

moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ⊃Q C) 6= F
using VB-imp[OF imp-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
next

case (eqv-pwff B C)
from eqv-pwff .prems have free-vars B = {} and free-vars C = {}

by simp-all
with eqv-pwff .hyps obtain b and b ′

where B-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ B = b
and C-den: ∀ϕ. is-tv-assignment ϕ −→ VB ϕ C = b ′

using closed-pwff-denotation-uniqueness by metis
then have b ∈ elts � and b ′ ∈ elts �

using closed-pwff-denotation-uniqueness[OF eqv-pwff .hyps(1) ‹free-vars B = {}›]
and closed-pwff-denotation-uniqueness[OF eqv-pwff .hyps(2) ‹free-vars C = {}›]
and eqv-pwff .hyps[THEN VB-graph-denotation-is-truth-value[OF VB-graph-VB]]
by force+

with eqv-pwff .hyps consider
(a) b = T and b ′ = T
| (b) b = T and b ′ = F
| (c) b = F and b ′ = T
| (d) b = F and b ′ = F

by auto
then show ?case
proof cases

case a
from prop-5230 (1) have ` (To ≡Q To) =o To (is ‹` ?A1 ›) .
from B-den[unfolded a(1)] and ‹free-vars B = {}› have ` B =o To

using eqv-pwff .IH (1) by simp
then have ` (B ≡Q To) =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded a(2)] and ‹free-vars C = {}› have ` C =o To

using eqv-pwff .IH (2) by simp
then have ` (B ≡Q C) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) = T) −→ ` (B ≡Q C) =o To

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) 6= F

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)

ultimately show ?thesis

193

by force
next

case b
from prop-5230 (2) have ` (To ≡Q Fo) =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded b(1)] and ‹free-vars B = {}› have ` B =o To

using eqv-pwff .IH (1) by simp
then have ` (B ≡Q Fo) =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded b(2)] and ‹free-vars C = {}› have ` C =o Fo

using eqv-pwff .IH (2) by simp
then have ` (B ≡Q C) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) = F) −→ ` (B ≡Q C) =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) 6= T

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case c
from prop-5230 (3) have ` (Fo ≡Q To) =o Fo (is ‹` ?A1 ›) .
from B-den[unfolded c(1)] and ‹free-vars B = {}› have ` B =o Fo

using eqv-pwff .IH (1) by simp
then have ` (B ≡Q To) =o Fo (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded c(2)] and ‹free-vars C = {}› have ` C =o To

using eqv-pwff .IH (2) by simp
then have ` (B ≡Q C) =o Fo

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) = F) −→ ` (B ≡Q C) =o Fo

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) 6= T

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded c(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

next
case d
from prop-5230 (4) have ` (Fo ≡Q Fo) =o To (is ‹` ?A1 ›) .
from B-den[unfolded d(1)] and ‹free-vars B = {}› have ` B =o Fo

using eqv-pwff .IH (1) by simp
then have ` (B ≡Q Fo) =o To (is ‹` ?A2 ›)

by (rule rule-RR[OF disjI2 , where p = [«,»,«,»] and C = ?A1]) (use ‹` ?A1 › in ‹force+›)
from C-den[unfolded d(2)] and ‹free-vars C = {}› have ` C =o Fo

using eqv-pwff .IH (2) by simp
then have ` (B ≡Q C) =o To

by (rule rule-RR[OF disjI2 , where p = [«,»,»] and C = ?A2]) (use ‹` ?A2 › in ‹force+›)
then have (∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) = T) −→ ` (B ≡Q C) =o To

194

by blast
moreover have ∀ϕ. is-tv-assignment ϕ −→ VB ϕ (B ≡Q C) 6= F

using VB-eqv[OF eqv-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)

ultimately show ?thesis
by force

qed
qed
then show ?AT −→ ` A =o To and ?AF −→ ` A =o Fo

by blast+
qed

proposition prop-5233 :
assumes is-tautology A
shows ` A

proof −
have finite (free-vars A)

using free-vars-form-finiteness by presburger
from this and assms show ?thesis
proof (induction free-vars A arbitrary: A)

case empty
from empty(2) have A ∈ pwffs and ∀ϕ. is-tv-assignment ϕ −→ VB ϕ A = T

unfolding is-tautology-def by blast+
with empty(1) have ` A =o To

using lem-prop-5233-no-free-vars(1) by (simp only:)
then show ?case

using rule-T (2)[OF tautology-is-wffo[OF empty(2)]] by (simp only:)
next

case (insert v F)
from insert.prems have A ∈ pwffs

by blast
with insert.hyps(4) obtain p where v = (p, o)

using pwffs-free-vars-are-propositional by blast
from ‹v = (p, o)› and insert.hyps(4) have

is-tautology (S {(p, o) � To} A) and is-tautology (S {(p, o) � Fo} A)
using pwff-substitution-tautology-preservation [OF insert.prems] by blast+

moreover from insert.hyps(2 ,4) and ‹v = (p, o)› and ‹A ∈ pwffs›
have free-vars (S {(p, o) � To} A) = F and free-vars (S {(p, o) � Fo} A) = F

using closed-pwff-substitution-free-vars and T-pwff and F-pwff and T-fv and F-fv
by (metis Diff-insert-absorb insertI1)+

ultimately have ` S {(p, o) � To} A and ` S {(p, o) � Fo} A
using insert.hyps(3) by (simp-all only:)

from this and tautology-is-wffo[OF insert.prems] show ?case
by (rule Cases)

qed
qed

end

195

6.35 Proposition 5234 (Rule P)

According to the proof in [2], if [A1∧· · ·∧An] ⊃ B is tautologous, then clearly A1 ⊃ (. . . (An ⊃
B) . . .) is also tautologous. Since this is not clear to us, we prove instead the version of Rule
P found in [1]:
proposition tautologous-horn-clause-is-hyp-derivable:

assumes is-hyps H and is-hyps G
and ∀A ∈ G. H ` A
and lset hs = G
and is-tautologous (hs ⊃Q

? B)
shows H ` B

proof −
from assms(5) obtain ϑ and C

where is-tautology C
and is-substitution ϑ
and ∀ (x, α) ∈ fmdom ′ ϑ. α = o
and hs ⊃Q

? B = S ϑ C
by blast

then have ` hs ⊃Q
? B

proof (cases ϑ = {$$})
case True
with ‹hs ⊃Q

? B = S ϑ C › have C = hs ⊃Q
? B

using empty-substitution-neutrality by simp
with ‹hs ⊃Q

? B = S ϑ C › and ‹is-tautology C › show ?thesis
using prop-5233 by (simp only:)

next
case False
from ‹is-tautology C › have ` C and C ∈ pwffs

using prop-5233 by simp-all
moreover have
∀ v ∈ fmdom ′ ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (ϑ $$! v) v C

proof
fix v
assume v ∈ fmdom ′ ϑ
then show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (ϑ $$! v) v C
proof (cases v ∈ free-vars C)

case True
with ‹C ∈ pwffs› show ?thesis

using is-free-for-in-pwff by simp
next

case False
then have is-free-for (ϑ $$! v) v C

unfolding is-free-for-def using is-free-at-in-free-vars by blast
then show ?thesis

by simp
qed

qed
ultimately show ?thesis

using False and ‹is-substitution ϑ› and Sub

196

by (simp add: ‹hs ⊃Q
? B = S ϑ C ›[unfolded generalized-imp-op-def])

qed
from this and assms(1) have H ` hs ⊃Q

? B
by (rule derivability-implies-hyp-derivability)

with assms(3 ,4) show ?thesis
using generalized-modus-ponens by blast

qed

corollary tautologous-is-hyp-derivable:
assumes is-hyps H
and is-tautologous B
shows H ` B
using assms and tautologous-horn-clause-is-hyp-derivable[where G = {}] by simp

lemmas prop-5234 = tautologous-horn-clause-is-hyp-derivable tautologous-is-hyp-derivable

lemmas rule-P = prop-5234

6.36 Proposition 5235
proposition prop-5235 :

assumes A ∈ pwffs and B ∈ pwffs
and (x, α) /∈ free-vars A
shows ` ∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B)

proof −
have §1 : ` ∀ xα. (To ∨Q B) ⊃Q (To ∨Q ∀ xα. B)
proof (intro rule-P(2))

show is-tautologous (∀ xα. (To ∨Q B) ⊃Q To ∨Q ∀ xα. B)
proof −

let ?ϑ = {(x, o) � ∀ xα. (To ∨Q B), (y, o) � ∀ xα. B} and ?C = xo ⊃Q (To ∨Q (yo))
have is-tautology ?C

using VB-simps by simp
moreover from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by fastforce
moreover have ∀ xα. (To ∨Q B) ⊃Q To ∨Q ∀ xα. B = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
have §2 : ` ∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B)
proof (intro rule-P(2))

show is-tautologous (∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B))
proof −

let ?ϑ = {(x, o) � ∀ xα. B} and ?C = xo ⊃Q (Fo ∨Q (xo))
have is-tautology (xo ⊃Q (Fo ∨Q (xo))) (is ‹is-tautology ?C ›)

using VB-simps by simp
moreover from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto

197

moreover have ∀ xα. B ⊃Q (Fo ∨Q ∀ xα. B) = S ?ϑ ?C
by simp

ultimately show ?thesis
by blast

qed
qed simp
have §3 : ` B ≡Q (Fo ∨Q B)
proof (intro rule-P(2))

show is-tautologous (B ≡Q (Fo ∨Q B))
proof −

let ?ϑ = {(x, o) � B} and ?C = xo ≡Q (Fo ∨Q (xo))
have is-tautology ?C

using VB-simps by simp
moreover from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have B ≡Q (Fo ∨Q B) = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
from §2 and §3 [unfolded equivalence-def] have §4 :
` ∀ xα. (Fo ∨Q B) ⊃Q (Fo ∨Q ∀ xα. B)
by (rule rule-R[where p = [«,»,»,«]]) force+

obtain p where (p, o) /∈ vars (∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B))
by (meson fresh-var-existence vars-form-finiteness)

then have (p, o) 6= (x, α) and (p, o) /∈ vars A and (p, o) /∈ vars B
by simp-all

from ‹(p, o) /∈ vars B› have sub: S {(p, o) � C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

have §5 : ` ∀ xα. (po ∨Q B) ⊃Q (po ∨Q ∀ xα. B) (is ‹` ?C ›)
proof −

from sub and §1 have ` S {(p, o) � To} ?C
using ‹(p, o) 6= (x, α)› by auto

moreover from sub and §4 have ` S {(p, o) � Fo} ?C
using ‹(p, o) 6= (x, α)› by auto

moreover from assms(2) have ?C ∈ wffso
using pwffs-subset-of-wffso by auto

ultimately show ?thesis
by (rule Cases)

qed
then show ?thesis
proof −

let ?ϑ = {(p, o) � A}
from assms(1) have is-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C

proof

198

fix v
assume v ∈ fmdom ′ ?ϑ
then have v = (p, o)

by simp
with assms(3) and ‹(p, o) /∈ vars B› have is-free-for (?ϑ $$! v) v ?C

using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-disj) auto

moreover have var-name v /∈ free-var-names ({}::form set)
by simp

ultimately show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C
unfolding ‹v = (p, o)› by blast

qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C

by (rule Sub[OF §5])
moreover have S ?ϑ ?C = ∀ xα. (A ∨Q B) ⊃Q (A ∨Q ∀ xα. B)

using ‹(p, o) 6= (x, α)› and sub[of A] by simp fast
ultimately show ?thesis

by (simp only:)
qed

qed

6.37 Proposition 5237 (⊃ ∀ Rule)

The proof in [2] uses the pseudo-rule Q and the axiom 5 of F . Therefore, we prove such axiom,
following the proof of Theorem 143 in [1]:
context begin

private lemma prop-5237-aux:
assumes A ∈ wffso and B ∈ wffso
and (x, α) /∈ free-vars A
shows ` ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q (∀ xα. B))

proof −
have is-tautology (xo ≡Q (To ⊃Q xo)) (is ‹is-tautology ?C 1›)

using VB-simps by simp
have is-tautology (xo ⊃Q (xo ≡Q (Fo ⊃Q yo))) (is ‹is-tautology ?C 2›)

using VB-simps by simp
have §1 : ` ∀ xα. B ≡Q (To ⊃Q ∀ xα. B)
proof (intro rule-P(2))

show is-tautologous (∀ xα. B ≡Q (To ⊃Q ∀ xα. B))
proof −

let ?ϑ = {(x, o) � ∀ xα. B}
from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have ∀ xα. B ≡Q (To ⊃Q ∀ xα. B) = S ?ϑ ?C 1

by simp
ultimately show ?thesis

using ‹is-tautology ?C 1› by blast

199

qed
qed simp
have §2 : ` B ≡Q (To ⊃Q B)
proof (intro rule-P(2))

show is-tautologous (B ≡Q To ⊃Q B)
proof −

let ?ϑ = {(x, o) � B}
from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have B ≡Q To ⊃Q B = S ?ϑ ?C 1

by simp
ultimately show ?thesis

using ‹is-tautology ?C 1› by blast
qed

qed simp
have ` To

by (fact true-is-derivable)
then have §3 : ` ∀ xα. To

using Gen by simp
have §4 : ` ∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)
proof (intro rule-P(1)[where G = {∀ xα. To}])

show is-tautologous ([∀ xα. To] ⊃Q
? (∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)))

proof −
let ?ϑ = {(x, o) � ∀ xα. To, (y, o) � ∀ xα. B}
from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have [∀ xα. To] ⊃Q

? (∀ xα. To ≡Q (Fo ⊃Q ∀ xα. B)) = S ?ϑ ?C 2

by simp
ultimately show ?thesis

using ‹is-tautology ?C 2› by blast
qed

qed (use §3 in fastforce)+
have §5 : ` To ≡Q (Fo ⊃Q B)
proof (intro rule-P(2))

show is-tautologous (To ≡Q (Fo ⊃Q B))
proof −

let ?ϑ = {(x, o) � B} and ?C = To ≡Q (Fo ⊃Q xo)
have is-tautology ?C

using VB-simps by simp
moreover from assms(2) have is-pwff-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have To ≡Q (Fo ⊃Q B) = S ?ϑ ?C

by simp
ultimately show ?thesis

by blast
qed

qed simp
from §4 and §5 have §6 : ` ∀ xα. (Fo ⊃Q B) ≡Q (Fo ⊃Q ∀ xα. B)

unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+

200

from §1 and §2 have §7 : ` ∀ xα. (To ⊃Q B) ≡Q (To ⊃Q ∀ xα. B)
unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+

obtain p where (p, o) /∈ vars B and p 6= x
using fresh-var-existence and vars-form-finiteness by (metis finite-insert insert-iff)

from ‹(p, o) /∈ vars B› have sub: S {(p, o) � C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast

have §8 : ` ∀ xα. (po ⊃Q B) ≡Q (po ⊃Q ∀ xα. B) (is ‹` ?C 3›)
proof −

from sub and §7 have ` S {(p, o) � To} ?C 3

using ‹p 6= x› by auto
moreover from sub and §6 have ` S {(p, o) � Fo} ?C 3

using ‹p 6= x› by auto
moreover from assms(2) have ?C 3 ∈ wffso

using pwffs-subset-of-wffso by auto
ultimately show ?thesis

by (rule Cases)
qed
then show ?thesis
proof −

let ?ϑ = {(p, o) � A}
from assms(1) have is-substitution ?ϑ

using pwffs-subset-of-wffso by auto
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 3

proof
fix v
assume v ∈ fmdom ′ ?ϑ
then have v = (p, o)

by simp
with assms(3) and ‹(p, o) /∈ vars B› have is-free-for (?ϑ $$! v) v ?C 3

using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-equivalence) auto

moreover have var-name v /∈ free-var-names ({}::form set)
by simp

ultimately show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 3

unfolding ‹v = (p, o)› by blast
qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C 3

by (rule Sub[OF §8])
moreover have S ?ϑ ?C 3 = ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q ∀ xα. B)

using ‹p 6= x› and sub[of A] by simp
ultimately show ?thesis

by (simp only:)
qed

qed

proposition prop-5237 :

201

assumes is-hyps H
and H ` A ⊃Q B
and (x, α) /∈ free-vars ({A} ∪ H)
shows H ` A ⊃Q (∀ xα. B)

proof −
have H ` A ⊃Q B

by fact
with assms(3) have H ` ∀ xα. (A ⊃Q B)

using Gen by simp
moreover have H ` ∀ xα. (A ⊃Q B) ≡Q (A ⊃Q (∀ xα. B))
proof −

from assms(2) have A ∈ wffso and B ∈ wffso
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op)+

with assms(1 ,3) show ?thesis
using prop-5237-aux and derivability-implies-hyp-derivability by simp

qed
ultimately show ?thesis

by (rule Equality-Rules(1))
qed

lemmas ⊃∀ = prop-5237

corollary generalized-prop-5237 :
assumes is-hyps H
and H ` A ⊃Q B
and ∀ v ∈ S . v /∈ free-vars ({A} ∪ H)
and lset vs = S
shows H ` A ⊃Q (∀Q

? vs B)
using assms proof (induction vs arbitrary: S)

case Nil
then show ?case

by simp
next

case (Cons v vs)
obtain x and α where v = (x, α)

by fastforce
from Cons.prems(3) have ∗: ∀ v ′ ∈ S . v ′ /∈ free-vars ({A} ∪ H)

by blast
then show ?case
proof (cases v ∈ lset vs)

case True
with Cons.prems(4) have lset vs = S

by auto
with assms(1 ,2) and ∗ have H ` A ⊃Q ∀Q

? vs B
by (fact Cons.IH)

with True and ‹lset vs = S› and ‹v = (x, α)› and ∗ have H ` A ⊃Q (∀ xα. ∀Q
? vs B)

using prop-5237 [OF assms(1)] by simp
with ‹v = (x, α)› show ?thesis

by simp

202

next
case False
with ‹lset (v # vs) = S› have lset vs = S − {v}

by auto
moreover from ∗ have ∀ v ′ ∈ S − {v}. v ′ /∈ free-vars ({A} ∪ H)

by blast
ultimately have H ` A ⊃Q ∀Q

? vs B
using assms(1 ,2) by (intro Cons.IH)

moreover from Cons.prems(4) and ‹v = (x, α)› and ∗ have (x, α) /∈ free-vars ({A} ∪ H)
by auto

ultimately have H ` A ⊃Q (∀ xα. ∀Q
? vs B)

using assms(1) by (intro prop-5237)
with ‹v = (x, α)› show ?thesis

by simp
qed

qed

end

6.38 Proposition 5238
context begin

private lemma prop-5238-aux:
assumes A ∈ wffsα and B ∈ wffsα
shows ` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . (A =α B)

proof −
have §1 :
` (fβ→α =β→α gβ→α) ≡Q ∀ xβ . (fβ→α � xβ =α gβ→α � xβ) (is ‹` - ≡Q ∀ xβ . ?C 1›)
by (fact axiom-is-derivable-from-no-hyps[OF axiom-3])

then have §2 :
` (fβ→α =β→α gβ→α) ≡Q ∀ xβ . (fβ→α � xβ =α gβ→α � xβ) (is ‹` ?C 2›)

proof (cases x = x)
case True
with §1 show ?thesis

by (simp only:)
next

case False
have ?C 1 ∈ wffso

by blast
moreover from False have (x, β) /∈ free-vars ?C 1

by simp
moreover have is-free-for (xβ) (x, β) ?C 1

by (intro is-free-for-in-equality is-free-for-to-app) simp-all
ultimately have ` λxβ . ?C 1 =β→o λxβ . (S {(x, β) � xβ} ?C 1)

by (rule α)
from §1 and this show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed

203

then have §3 :
` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . ((λxβ . A) � xβ =α (λxβ . B) � xβ)

proof −
let ?ϑ = {(f, β→α) � λxβ . A, (g, β→α) � λxβ . B}
have λxβ . A ∈ wffsβ→α and λxβ . B ∈ wffsβ→α

by (blast intro: assms(1 ,2))+
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 2

proof
fix v
assume v ∈ fmdom ′ ?ϑ
then consider (a) v = (f, β→α) | (b) v = (g, β→α)

by fastforce
then show var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?C 2

proof cases
case a
have (x, β) /∈ free-vars (λxβ . A)

by simp
then have is-free-for (λxβ . A) (f, β→α) ?C 2

unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)

with a show ?thesis
by force

next
case b
have (x, β) /∈ free-vars (λxβ . B)

by simp
then have is-free-for (λxβ . B) (g, β→α) ?C 2

unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)

with b show ?thesis
by force

qed
qed
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?C 2

by (rule Sub[OF §2])
then show ?thesis

by simp
qed
then have §4 : ` ((λxβ . A) =β→α (λxβ . B)) ≡Q ∀ xβ . (A =α (λxβ . B) � xβ)
proof −

have ` (λxβ . A) � xβ =α A
using prop-5208 [where vs = [(x, β)]] and assms(1) by simp

from §3 and this show ?thesis
by (rule rule-R[where p = [»,»,«,«,»]]) force+

204

qed
then show ?thesis
proof −

have ` (λxβ . B) � xβ =α B
using prop-5208 [where vs = [(x, β)]] and assms(2) by simp

from §4 and this show ?thesis
by (rule rule-R[where p = [»,»,«,»]]) force+

qed
qed

proposition prop-5238 :
assumes vs 6= [] and A ∈ wffsα and B ∈ wffsα
shows ` λQ? vs A =foldr (→) (map var-type vs) α λQ? vs B ≡Q ∀Q

? vs (A =α B)

using assms proof (induction vs arbitrary: A B α rule: rev-nonempty-induct)
case (single v)
obtain x and β where v = (x, β)

by fastforce
from single.prems have
λQ? vs A =foldr (→) (map var-type vs) α λQ? vs B ≡Q ∀Q

? vs (A =α B) ∈ wffso
by blast

with single.prems and ‹v = (x, β)› show ?case
using prop-5238-aux by simp

next
case (snoc v vs)
obtain x and β where v = (x, β)

by fastforce
from snoc.prems have λxβ . A ∈ wffsβ→α and λxβ . B ∈ wffsβ→α

by auto
then have
`
λQ? vs (λxβ . A) =foldr (→) (map var-type vs) (β→α) λ

Q
? vs (λxβ . B)

≡Q

∀Q
? vs ((λxβ . A) =β→α (λxβ . B))

by (fact snoc.IH)
moreover from snoc.prems have ` λxβ . A =β→α λxβ . B ≡Q ∀ xβ . (A =α B)

by (fact prop-5238-aux)
ultimately have
`
λQ? vs (λxβ . A) =foldr (→) (map var-type vs) (β→α) λ

Q
? vs (λxβ . B)

≡Q

∀Q
? vs ∀ xβ . (A =α B)

unfolding equivalence-def proof (induction rule: rule-R[where p = » # foldr (λ-. (@) [»,«]) vs []])
case occ-subform
then show ?case

using innermost-subform-in-generalized-forall[OF snoc.hyps] and is-subform-at.simps(3)
by fastforce

next
case replacement

205

then show ?case
using innermost-replacement-in-generalized-forall[OF snoc.hyps]
and is-replacement-at-implies-in-positions and replace-right-app by force

qed
with ‹v = (x, β)› show ?case

by simp
qed

end

6.39 Proposition 5239
lemma replacement-derivability:

assumes C ∈ wffsβ
and A �p C
and ` A =α B
and C 〈|p ← B|〉 � D
shows ` C =β D

using assms proof (induction arbitrary: D p)
case (var-is-wff γ x)
from var-is-wff .prems(1) have p = [] and A = xγ

by (auto elim: is-subform-at.elims(2))
with var-is-wff .prems(2) have α = γ

using hyp-derivable-form-is-wffso and wff-has-unique-type and wffs-from-equality by blast
moreover from ‹p = []› and var-is-wff .prems(3) have D = B

using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
ultimately show ?case

using ‹A = xγ› and var-is-wff .prems(2) by (simp only:)
next

case (con-is-wff γ c)
from con-is-wff .prems(1) have p = [] and A = {|c|}γ

by (auto elim: is-subform-at.elims(2))
with con-is-wff .prems(2) have α = γ

using hyp-derivable-form-is-wffso and wff-has-unique-type
by (meson wffs-from-equality wffs-of-type-intros(2))

moreover from ‹p = []› and con-is-wff .prems(3) have D = B
using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover

ultimately show ?case
using ‹A = {|c|}γ› and con-is-wff .prems(2) by (simp only:)

next
case (app-is-wff γ δ C 1 C 2)
from app-is-wff .prems(1) consider
(a) p = []
| (b) ∃ p ′. p = « # p ′ ∧ A �p ′ C 1

| (c) ∃ p ′. p = » # p ′ ∧ A �p ′ C 2

using subforms-from-app by blast
then show ?case
proof cases

case a

206

with app-is-wff .prems(1) have A = C 1 � C 2

by simp
moreover from a and app-is-wff .prems(3) have D = B

using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from ‹A = C 1 � C 2› and ‹D = B› and app-is-wff .hyps(1 ,2) and assms(3) have α =

δ
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-equality)

ultimately show ?thesis
using assms(3) by (simp only:)

next
case b
then obtain p ′ where p = « # p ′ and A �p ′ C 1

by blast
moreover obtain D1 where D = D1 � C 2 and C 1〈|p ′← B|〉 � D1

using app-is-wff .prems(3) and ‹p = « # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C 1 =γ→δ D1

using app-is-wff .IH (1) and assms(3) by blast
moreover have ` C 2 =γ C 2

by (fact prop-5200 [OF app-is-wff .hyps(2)])
ultimately have ` C 1 � C 2 =δ D1 � C 2

using Equality-Rules(4) by (simp only:)
with ‹D = D1 � C 2› show ?thesis

by (simp only:)
next

case c
then obtain p ′ where p = » # p ′ and A �p ′ C 2

by blast
moreover obtain D2 where D = C 1 � D2 and C 2〈|p ′← B|〉 � D2

using app-is-wff .prems(3) and ‹p = » # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C 2 =γ D2

using app-is-wff .IH (2) and assms(3) by blast
moreover have ` C 1 =γ→δ C 1

by (fact prop-5200 [OF app-is-wff .hyps(1)])
ultimately have ` C 1 � C 2 =δ C 1 � D2

using Equality-Rules(4) by (simp only:)
with ‹D = C 1 � D2› show ?thesis

by (simp only:)
qed

next
case (abs-is-wff δ C ′ γ x)
from abs-is-wff .prems(1) consider (a) p = [] | (b) ∃ p ′. p = « # p ′ ∧ A �p ′ C ′

using subforms-from-abs by blast
then show ?case
proof cases

case a
with abs-is-wff .prems(1) have A = λxγ . C ′

by simp
moreover from a and abs-is-wff .prems(3) have D = B

207

using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from ‹A = λxγ . C ′› and ‹D = B› and abs-is-wff .hyps(1) and assms(3) have α =

γ→δ
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-abs wffs-from-equality)

ultimately show ?thesis
using assms(3) by (simp only:)

next
case b
then obtain p ′ where p = « # p ′ and A �p ′ C ′

by blast
moreover obtain D ′ where D = λxγ . D ′ and C ′〈|p ′← B|〉 � D ′

using abs-is-wff .prems(3) and ‹p = « # p ′› by (force dest: is-replacement-at.cases)
ultimately have ` C ′ =δ D ′

using abs-is-wff .IH and assms(3) by blast
then have ` λxγ . C ′ =γ→δ λxγ . D ′

proof −
from ‹` C ′ =δ D ′› have ` ∀ xγ . (C ′ =δ D ′)

using Gen by simp
moreover from ‹` C ′ =δ D ′› and abs-is-wff .hyps have D ′ ∈ wffsδ

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality)
with abs-is-wff .hyps have ` (λxγ . C ′ =γ→δ λxγ . D ′) ≡Q ∀ xγ . (C ′ =δ D ′)

using prop-5238 [where vs = [(x, γ)]] by simp
ultimately show ?thesis

using Equality-Rules(1 ,2) unfolding equivalence-def by blast
qed
with ‹D = λxγ . D ′› show ?thesis

by (simp only:)
qed

qed

context
begin

private lemma prop-5239-aux-1 :
assumes p ∈ positions (�Q? (FVar v) (map FVar vs))
and p 6= replicate (length vs) «
shows
(∃A B. A � B �p (�Q? (FVar v) (map FVar vs)))
∨
(∃ v ∈ lset vs. occurs-at v p (�Q? (FVar v) (map FVar vs)))

using assms proof (induction vs arbitrary: p rule: rev-induct)
case Nil
then show ?case

using surj-pair [of v] by fastforce
next

case (snoc v ′ vs)
from snoc.prems(1) consider
(a) p = []

208

| (b) p = [»]
| (c) ∃ p ′ ∈ positions (�Q? (FVar v) (map FVar vs)). p = « # p ′

using surj-pair [of v ′] by fastforce
then show ?case
proof cases

case c
then obtain p ′ where p ′ ∈ positions (�Q? (FVar v) (map FVar vs)) and p = « # p ′

by blast
from ‹p = « # p ′› and snoc.prems(2) have p ′ 6= replicate (length vs) «

by force
then have
(∃A B. A � B �p ′ �Q? (FVar v) (map FVar vs))
∨
(∃ v ∈ lset vs. occurs-at v p ′ (�Q? (FVar v) (map FVar vs)))
using ‹p ′ ∈ positions (�Q? (FVar v) (map FVar vs))› and snoc.IH by simp

with ‹p = « # p ′› show ?thesis
by auto

qed simp-all
qed

private lemma prop-5239-aux-2 :
assumes t /∈ lset vs ∪ vars C
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
and C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

shows S {t � λQ? vs A} G = G ′ (is ‹S ?ϑ G = G ′›)
proof −

have S ?ϑ (�Q? (FVar t) (map FVar vs)) = �Q? (S ?ϑ (FVar t)) (map (λv ′. S ?ϑ v ′) (map FVar
vs))

using generalized-app-substitution by blast
moreover have S ?ϑ (FVar t) = λQ? vs A

using surj-pair [of t] by fastforce
moreover from assms(1) have map (λv ′. S ?ϑ v ′) (map FVar vs) = map FVar vs

by (induction vs) auto
ultimately show ?thesis
using assms proof (induction C arbitrary: G G ′ p)

case (FVar v)
from FVar .prems(5) have p = [] and G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)+
moreover from FVar .prems(6) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?case

using FVar .prems(1−3) by (simp only:)
next

case (FCon k)
from FCon.prems(5) have p = [] and G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)+
moreover from FCon.prems(6) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?case

209

using FCon.prems(1−3) by (simp only:)
next

case (FApp C 1 C 2)
from FApp.prems(4) have t /∈ lset vs ∪ vars C 1 and t /∈ lset vs ∪ vars C 2

by auto
consider (a) p = [] | (b) ∃ p ′. p = « # p ′ | (c) ∃ p ′. p = » # p ′

by (metis direction.exhaust list.exhaust)
then show ?case
proof cases

case a
with FApp.prems(5) have G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)
moreover from FApp.prems(6) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?thesis

using FApp.prems(1−3) by (simp only:)
next

case b
then obtain p ′ where p = « # p ′

by blast
with FApp.prems(5) obtain G1 where G = G1 � C 2 and C 1〈|p ′ ← (�Q? (FVar t) (map FVar

vs))|〉 � G1

by (blast elim: is-replacement-at.cases)
moreover from ‹p = « # p ′› and FApp.prems(6)
obtain G ′

1 where G ′ = G ′
1 � C 2 and C 1〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1

by (blast elim: is-replacement-at.cases)
moreover from ‹t /∈ lset vs ∪ vars C 2› have S {t � λQ? vs A} C 2 = C 2

using surj-pair [of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)

ultimately show ?thesis
using FApp.IH (1)[OF FApp.prems(1−3) ‹t /∈ lset vs ∪ vars C 1›] by simp

next
case c
then obtain p ′ where p = » # p ′

by blast
with FApp.prems(5) obtain G2 where G = C 1 � G2 and C 2〈|p ′ ← (�Q? (FVar t) (map FVar

vs))|〉 � G2

by (blast elim: is-replacement-at.cases)
moreover from ‹p = » # p ′› and FApp.prems(6)
obtain G ′

2 where G ′ = C 1 � G ′
2 and C 2〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

2

by (blast elim: is-replacement-at.cases)
moreover from ‹t /∈ lset vs ∪ vars C 1› have S {t � λQ? vs A} C 1 = C 1

using surj-pair [of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)

ultimately show ?thesis
using FApp.IH (2)[OF FApp.prems(1−3) ‹t /∈ lset vs ∪ vars C 2›] by simp

qed
next

case (FAbs v C ′)

210

from FAbs.prems(4) have t /∈ lset vs ∪ vars C ′ and t 6= v
using vars-form.elims by blast+

from FAbs.prems(5) consider (a) p = [] | (b) ∃ p ′. p = « # p ′

using is-replacement-at.simps by blast
then show ?case
proof cases

case a
with FAbs.prems(5) have G = �Q? (FVar t) (map FVar vs)

by (blast dest: is-replacement-at.cases)
moreover from FAbs.prems(6) and ‹p = []› have G ′ = �Q? (λQ? vs A) (map FVar vs)

by (blast dest: is-replacement-at.cases)
ultimately show ?thesis

using FAbs.prems(1−3) by (simp only:)
next

case b
then obtain p ′ where p = « # p ′

by blast
then obtain G1 where G = FAbs v G1 and C ′〈|p ′← (�Q? (FVar t) (map FVar vs))|〉 � G1

using FAbs.prems(5) by (blast elim: is-replacement-at.cases)
moreover from ‹p = « # p ′› and FAbs.prems(6)
obtain G ′

1 where G ′ = FAbs v G ′
1 and C ′〈|p ′← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1

by (blast elim: is-replacement-at.cases)
ultimately have S {t � λQ? vs A} G1 = G ′

1

using FAbs.IH [OF FAbs.prems(1−3) ‹t /∈ lset vs ∪ vars C ′›] by simp
with ‹G = FAbs v G1› and ‹G ′ = FAbs v G ′

1› and ‹t 6= v› show ?thesis
using surj-pair [of v] by fastforce

qed
qed

qed

private lemma prop-5239-aux-3 :
assumes t /∈ lset vs ∪ vars {A, C}
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
and occurs-at t p ′ G
shows p ′ = p @ replicate (length vs) « (is ‹p ′ = ?pt›)

proof (cases vs = [])
case True
then have t /∈ vars C

using assms(1) by auto
moreover from True and assms(2) have C 〈|p ← FVar t|〉 � G

by force
ultimately show ?thesis

using assms(3) and True and fresh-var-replacement-position-uniqueness by simp
next

case False
show ?thesis
proof (rule ccontr)

assume p ′ 6= ?pt

have ¬ prefix ?pt p

211

by (simp add: False)
from assms(3) have p ′ ∈ positions G

using is-subform-implies-in-positions by fastforce
from assms(2) have ?pt ∈ positions G

using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis length-map)

from assms(2) have occurs-at t ?pt G
unfolding occurs-at-def using is-replacement-at-minimal-change(1) and is-subform-at-transitivity

and leftmost-subform-in-generalized-app
by (metis length-map)

moreover from assms(2) and ‹p ′ ∈ positions G› have ∗:
subform-at C p ′ = subform-at G p ′ if ¬ prefix p ′ p and ¬ prefix p p ′

using is-replacement-at-minimal-change(2) by (simp add: that(1 ,2))
ultimately show False
proof (cases ¬ prefix p ′ p ∧ ¬ prefix p p ′)

case True
with assms(3) and ∗ have occurs-at t p ′ C

using is-replacement-at-occurs[OF assms(2)] by blast
then have t ∈ vars C

using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show ?thesis

by simp
next

case False
then consider (a) prefix p ′ p | (b) prefix p p ′

by blast
then show ?thesis
proof cases

case a
with ‹occurs-at t ?pt G› and ‹p ′ 6= ?pt› and assms(3) show ?thesis

unfolding occurs-at-def using loop-subform-impossibility
by (metis prefix-order .dual-order .order-iff-strict prefix-prefix)

next
case b
have strict-prefix p ′ ?pt

proof (rule ccontr)
assume ¬ strict-prefix p ′ ?pt

then consider
(b1) p ′ = ?pt

| (b2) strict-prefix ?pt p ′

| (b3) ¬ prefix p ′ ?pt and ¬ prefix ?pt p ′

by fastforce
then show False
proof cases

case b1
with ‹p ′ 6= ?pt› show ?thesis

by contradiction
next

212

case b2
with ‹occurs-at t ?pt G› and assms(3) show ?thesis

using loop-subform-impossibility by blast
next

case b3
from b obtain p ′′ where p ′ = p @ p ′′ and p ′′ ∈ positions (�Q? (FVar t) (map FVar vs))

using is-replacement-at-new-positions and ‹p ′ ∈ positions G› and assms(2) by blast
moreover have p ′′ 6= replicate (length vs) «

using ‹p ′ = p @ p ′′› and ‹p ′ 6= ?pt› by blast
ultimately consider
(b3-1) ∃F1 F2. F1 � F2 �p ′′ (�Q? (FVar t) (map FVar vs))
| (b3-2) ∃ v ∈ lset vs. occurs-at v p ′′ (�Q? (FVar t) (map FVar vs))

using prop-5239-aux-1 and b3(1 ,2) and is-replacement-at-occurs
and leftmost-subform-in-generalized-app-replacement
by (metis (no-types, opaque-lifting) length-map prefix-append)

then show ?thesis
proof cases

case b3-1
with assms(2) and ‹p ′ = p @ p ′′› have ∃F1 F2. F1 � F2 �p ′ G

using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
with ‹occurs-at t p ′ G› show ?thesis

using is-subform-at-uniqueness by fastforce
next

case b3-2
with assms(2) and ‹p ′ = p @ p ′′› have ∃ v ∈ lset vs. occurs-at v p ′ G

unfolding occurs-at-def
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson

with assms(1 ,3) show ?thesis
using is-subform-at-uniqueness by fastforce

qed
qed

qed
with ‹occurs-at t ?pt G› and assms(3) show ?thesis

using loop-subform-impossibility by blast
qed

qed
qed

qed

private lemma prop-5239-aux-4 :
assumes t /∈ lset vs ∪ vars {A, C}
and A �p C
and lset vs ⊇ capture-exposed-vars-at p C A
and C 〈|p ← (�Q? (FVar t) (map FVar vs))|〉 � G
shows is-free-for (λQ? vs A) t G

unfolding is-free-for-def proof (intro ballI impI)
let ?pt = p @ replicate (length vs) «
from assms(4) have FVar t �?pt

G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity

213

and leftmost-subform-in-generalized-app by (metis length-map)
fix v ′ and p ′

assume v ′ ∈ free-vars (λQ? vs A) and p ′ ∈ positions G and is-free-at t p ′ G
have v ′ /∈ binders-at G ?pt

proof −
have free-vars (λQ? vs A) = free-vars A − lset vs

by (fact free-vars-of-generalized-abs)
also from assms(2 ,3) have . . . ⊆ free-vars A − (binders-at C p ∩ free-vars A)

using capture-exposed-vars-at-alt-def and is-subform-implies-in-positions by fastforce
also have . . . = free-vars A − (binders-at G p ∩ free-vars A)

using assms(2 ,4) is-replacement-at-binders is-subform-implies-in-positions by blast
finally have free-vars (λQ? vs A) ⊆ free-vars A − (binders-at G p ∩ free-vars A) .
moreover have binders-at (�Q? (FVar t) (map FVar vs)) (replicate (length vs) «) = {}

by (induction vs rule: rev-induct) simp-all
with assms(4) have binders-at G ?pt = binders-at G p

using binders-at-concat and is-replacement-at-minimal-change(1) by blast
ultimately show ?thesis

using ‹v ′ ∈ free-vars (λQ? vs A)› by blast
qed
moreover have p ′ = ?pt

by
(

fact prop-5239-aux-3
[OF assms(1 ,4) ‹is-free-at t p ′ G›[unfolded is-free-at-def , THEN conjunct1]]

)
ultimately show ¬ in-scope-of-abs v ′ p ′ G

using binders-at-alt-def [OF ‹p ′ ∈ positions G›] and in-scope-of-abs-alt-def by auto
qed

proposition prop-5239 :
assumes is-rule-R-app p D C (A =α B)
and lset vs =
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}

shows ` ∀Q
? vs (A =α B) ⊃Q (C ≡Q D)

proof −
let ?γ = foldr (→) (map var-type vs) α
obtain t where (t, ?γ) /∈ lset vs ∪ vars {A,B,C ,D}

using fresh-var-existence and vars-form-set-finiteness
by (metis List.finite-set finite.simps finite-UnI)

from assms(1) have A ∈ wffsα and B ∈ wffsα and A �p C
using wffs-from-equality[OF equality-wff] by simp-all

from assms(1) have C ∈ wffso and D ∈ wffso
using replacement-preserves-typing by fastforce+

have �Q? t?γ (map FVar vs) ∈ wffsα
using generalized-app-wff [where As = map FVar vs and ts = map var-type vs]
by (metis eq-snd-iff length-map nth-map wffs-of-type-intros(1))

from assms(1) have p ∈ positions C
using is-subform-implies-in-positions by fastforce

then obtain G where C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G

214

using is-replacement-at-existence by blast
with ‹A �p C › and ‹�Q? t?γ (map FVar vs) ∈ wffsα› have G ∈ wffso

using ‹A ∈ wffsα› and ‹C ∈ wffso› and replacement-preserves-typing by blast
let ?ϑ = {(h, ?γ→o) � λt?γ . G, (x, ?γ) � λQ? vs A, (y, ?γ) � λQ? vs B}

and ?A = (x?γ =?γ y?γ) ⊃Q (h?γ→o � x?γ ≡Q h?γ→o � y?γ)
have ` ?A

by (fact axiom-is-derivable-from-no-hyps[OF axiom-2])
moreover have λt?γ . G ∈ wffs?γ→o and λQ? vs A ∈ wffs?γ and λQ? vs B ∈ wffs?γ

by (blast intro: ‹G ∈ wffso› ‹A ∈ wffsα› ‹B ∈ wffsα›)+
then have is-substitution ?ϑ

by simp
moreover have
∀ v ∈ fmdom ′ ?ϑ. var-name v /∈ free-var-names ({}::form set) ∧ is-free-for (?ϑ $$! v) v ?A
by
(
(

code-simp, unfold atomize-conj[symmetric], simp,
use is-free-for-in-equality is-free-for-in-equivalence is-free-for-in-imp is-free-for-in-var
is-free-for-to-app in presburger

)+,
blast

)
moreover have ?ϑ 6= {$$}

by simp
ultimately have ` S ?ϑ ?A

by (rule Sub)
moreover have

S ?ϑ ?A = (λQ? vs A =?γ λ
Q

? vs B) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))
by simp

ultimately have §1 :
` (λQ? vs A =?γ λ

Q
? vs B) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))

by (simp only:)
then have §2 : ` (∀Q

? vs (A =α B)) ⊃Q ((λt?γ . G) � (λQ? vs A) ≡Q (λt?γ . G) � (λQ? vs B))

proof (cases vs = [])
case True
with §1 show ?thesis

by simp
next

case False
from §1 and prop-5238 [OF False ‹A ∈ wffsα› ‹B ∈ wffsα›] show ?thesis

unfolding equivalence-def by (rule rule-R[where p = [«,»]]) force+
qed
moreover have ` (λt?γ . G) � (λQ? vs A) =o C and ` (λt?γ . G) � (λQ? vs B) =o D
proof −

from assms(1) have B �p D
using is-replacement-at-minimal-change(1) by force

from assms(1) have D〈|p ← (�Q? t?γ (map FVar vs))|〉 � G
using ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› and replacement-override
by (meson is-rule-R-app-def)

215

from ‹B �p D› have p ∈ positions D
using is-subform-implies-in-positions by auto

from assms(1) have binders-at D p = binders-at C p
using is-replacement-at-binders by fastforce

then have binders-at D p ∩ free-vars B = binders-at C p ∩ free-vars B
by simp

with assms(2)
[

folded capture-exposed-vars-at-def ,
unfolded capture-exposed-vars-at-alt-def [OF ‹p ∈ positions C ›]

] have lset vs ⊇ capture-exposed-vars-at p D B
unfolding capture-exposed-vars-at-alt-def [OF ‹p ∈ positions D›] by auto

have is-free-for (λQ? vs A) (t, ?γ) G and is-free-for (λQ? vs B) (t, ?γ) G
proof −

have (t, ?γ) /∈ lset vs ∪ vars {A, C} and (t, ?γ) /∈ lset vs ∪ vars {B, D}
using ‹(t, ?γ) /∈ lset vs ∪ vars {A, B, C , D}› by simp-all

moreover from assms(2) have
lset vs ⊇ capture-exposed-vars-at p C A and lset vs ⊇ capture-exposed-vars-at p D B
by fastforce fact

ultimately show is-free-for (λQ? vs A) (t, ?γ) G and is-free-for (λQ? vs B) (t, ?γ) G
using prop-5239-aux-4 and ‹B �p D› and ‹A �p C › and ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉

� G›
and ‹D〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› by meson+

qed
then have ` (λt?γ . G) � (λQ? vs A) =o S {(t, ?γ) � λQ? vs A} G

and ` (λt?γ . G) � (λQ? vs B) =o S {(t, ?γ) � λQ? vs B} G
using prop-5207 [OF ‹λQ? vs A ∈ wffs?γ› ‹G ∈ wffso›]
and prop-5207 [OF ‹λQ? vs B ∈ wffs?γ› ‹G ∈ wffso›] by auto

moreover obtain G ′
1 and G ′

2

where C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′
1

and D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′
2

using is-replacement-at-existence[OF ‹p ∈ positions C ›]
and is-replacement-at-existence[OF ‹p ∈ positions D›] by metis

then have S {(t, ?γ) � λQ? vs A} G = G ′
1 and S {(t, ?γ) � λQ? vs B} G = G ′

2

proof −
have (t, ?γ) /∈ lset vs ∪ vars C and (t, ?γ) /∈ lset vs ∪ vars D

using ‹(t, ?γ) /∈ lset vs ∪ vars {A, B, C , D}› by simp-all
then show S {(t, ?γ) � λQ? vs A} G = G ′

1 and S {(t, ?γ) � λQ? vs B} G = G ′
2

using ‹C 〈|p ← (�Q? t?γ (map FVar vs))|〉 � G› and ‹D〈|p ← (�Q? t?γ map FVar vs)|〉 � G›
and ‹C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′

1›
and ‹D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′

2› and prop-5239-aux-2 by blast+
qed
ultimately have ` (λt?γ . G) � (λQ? vs A) =o G ′

1 and ` (λt?γ . G) � (λQ? vs B) =o G ′
2

by (simp-all only:)
moreover
have ` A =α (�Q? (λQ? vs A) (map FVar vs)) and ` B =α (�Q? (λQ? vs B) (map FVar vs))
unfolding atomize-conj proof (cases vs = [])

assume vs = []

216

show ` A =α �Q? (λQ? vs A) (map FVar vs) ∧ ` B =α �Q? (λQ? vs B) (map FVar vs)
unfolding ‹vs = []› using prop-5200 and ‹A ∈ wffsα› and ‹B ∈ wffsα› by simp

next
assume vs 6= []
show ` A =α �Q? (λQ? vs A) (map FVar vs) ∧ ` B =α �Q? (λQ? vs B) (map FVar vs)

using Equality-Rules(2)[OF prop-5208 [OF ‹vs 6= []›]] and ‹A ∈ wffsα› and ‹B ∈ wffsα›
by blast+

qed
with

‹C 〈|p ← (�Q? (λQ? vs A) (map FVar vs))|〉 � G ′
1›

and
‹D〈|p ← (�Q? (λQ? vs B) (map FVar vs))|〉 � G ′

2›
have ` G ′

1 =o C and ` G ′
2 =o D

using Equality-Rules(2)[OF replacement-derivability] and ‹C ∈ wffso› and ‹D ∈ wffso›
and ‹A �p C › and ‹B �p D› by blast+

ultimately show ` (λt?γ . G) � (λQ? vs A) =o C and ` (λt?γ . G) � (λQ? vs B) =o D
using Equality-Rules(3) by blast+

qed
ultimately show ?thesis
proof −

from §2 and ‹` (λt?γ . G) � (λQ? vs A) =o C › have
` (∀Q

? vs (A =α B)) ⊃Q (C ≡Q (λt?γ . G) � (λQ? vs B))

by (rule rule-R[where p = [»,«,»]]) force+
from this and ‹` (λt?γ . G) � (λQ? vs B) =o D› show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed

qed

end

6.40 Theorem 5240 (Deduction Theorem)
lemma pseudo-rule-R-is-tautologous:

assumes C ∈ wffso and D ∈ wffso and E ∈ wffso and H ∈ wffso
shows is-tautologous (((H ⊃Q C) ⊃Q ((H ⊃Q E) ⊃Q ((E ⊃Q (C ≡Q D)) ⊃Q (H ⊃Q D)))))

proof −
let ?ϑ = {(x, o) � C , (y, o) � D, (z, o) � E , (h, o) � H}
have

is-tautology
(((ho ⊃Q xo) ⊃Q ((ho ⊃Q zo) ⊃Q ((zo ⊃Q (xo ≡Q yo)) ⊃Q (ho ⊃Q yo)))))

using VB-simps by simp
moreover have is-substitution ?ϑ

using assms by auto
moreover have ∀ (x, α) ∈ fmdom ′ ?ϑ. α = o

by simp
moreover have
((H ⊃Q C) ⊃Q ((H ⊃Q E) ⊃Q ((E ⊃Q (C ≡Q D)) ⊃Q (H ⊃Q D))))
=
S ?ϑ (((ho ⊃Q xo) ⊃Q ((ho ⊃Q zo) ⊃Q ((zo ⊃Q (xo ≡Q yo)) ⊃Q (ho ⊃Q yo)))))

217

by simp
ultimately show ?thesis

by blast
qed

syntax
-HypDer :: form ⇒ form set ⇒ form ⇒ bool (-,- ` - [50 , 50 , 50] 50)

translations
H, H ` P ⇀ H ∪ {H} ` P

theorem thm-5240 :
assumes finite H
and H, H ` P
shows H ` H ⊃Q P

proof −
from ‹H, H ` P› obtain S1 and S2 where ∗: is-hyp-proof-of (H ∪ {H}) S1 S2 P

using hyp-derivability-implies-hyp-proof-existence by blast
have H ` H ⊃Q (S2 ! i ′) if i ′ <length S2 for i ′
using that proof (induction i ′ rule: less-induct)

case (less i ′)
let ?R = S2 ! i ′
from less.prems(1) and ∗ have is-hyps H

by fastforce
from less.prems and ∗ have ?R ∈ wffso

using elem-of-proof-is-wffo[simplified] by auto
from less.prems and ∗ have is-hyp-proof-step (H ∪ {H}) S1 S2 i ′

by simp
then consider
(hyp) ?R ∈ H ∪ {H}
| (seq) ?R ∈ lset S1
| (rule-R ′) ∃ j k p. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R ′-app (H ∪ {H}) p ?R (S2 ! j) (S2 ! k)

by force
then show ?case
proof cases

case hyp
then show ?thesis
proof (cases ?R = H)

case True
with ‹?R ∈ wffso› have is-tautologous (H ⊃Q ?R)

using implication-reflexivity-is-tautologous by (simp only:)
with ‹is-hyps H› show ?thesis

by (rule rule-P(2))
next

case False
with hyp have ?R ∈ H

by blast
with ‹is-hyps H› have H ` ?R

by (intro dv-hyp)
moreover from less.prems(1) and ∗ have is-tautologous (?R ⊃Q (H ⊃Q ?R))

218

using principle-of-simplification-is-tautologous[OF ‹?R ∈ wffso›] by force
moreover from ‹?R ∈ wffso› have is-hyps {?R}

by simp
ultimately show ?thesis

using rule-P(1)[where G = {?R} and hs = [?R], OF ‹is-hyps H›] by simp
qed

next
case seq
then have S1 6= []

by force
moreover from less.prems(1) and ∗ have is-proof S1

by fastforce
moreover from seq obtain i ′′ where i ′′ < length S1 and ?R = S1 ! i ′′

by (metis in-set-conv-nth)
ultimately have is-theorem ?R

using proof-form-is-theorem by fastforce
with ‹is-hyps H› have H ` ?R

by (intro dv-thm)
moreover from ‹?R ∈ wffso› and less.prems(1) and ∗ have is-tautologous (?R ⊃Q (H ⊃Q

?R))
using principle-of-simplification-is-tautologous by force

moreover from ‹?R ∈ wffso› have is-hyps {?R}
by simp

ultimately show ?thesis
using rule-P(1)[where G = {?R} and hs = [?R], OF ‹is-hyps H›] by simp

next
case rule-R ′

then obtain j and k and p
where {j, k} ⊆ {0 ..<i ′} and rule-R ′-app: is-rule-R ′-app (H ∪ {H}) p ?R (S2 ! j) (S2 ! k)
by auto

then obtain A and B and C and α where C = S2 ! j and S2 ! k = A =α B
by fastforce

with ‹{j, k} ⊆ {0 ..<i ′}› have H ` H ⊃Q C and H ` H ⊃Q (A =α B)
using less.IH and less.prems(1) by (simp, force)

define S where S ≡
{(x, β) | x β p ′ E . strict-prefix p ′ p ∧ λxβ . E �p ′ C ∧ (x, β) ∈ free-vars (A =α B)}

with ‹C = S2 ! j› and ‹S2 ! k = A =α B› have ∀ v ∈ S . v /∈ free-vars (H ∪ {H})
using rule-R ′-app by fastforce

moreover have S ⊆ free-vars (A =α B)
unfolding S-def by blast

then have finite S
by (fact rev-finite-subset[OF free-vars-form-finiteness])

then obtain vs where lset vs = S
using finite-list by blast

ultimately have H ` H ⊃Q ∀Q
? vs (A =α B)

using generalized-prop-5237 [OF ‹is-hyps H› ‹H ` H ⊃Q (A =α B)›] by simp
moreover have rule-R-app: is-rule-R-app p ?R (S2 ! j) (S2 ! k)

using rule-R ′-app by fastforce
with S-def and ‹lset vs = S› have ` ∀Q

? vs (A =α B) ⊃Q (C ≡Q ?R)

219

unfolding ‹C = S2 ! j› and ‹S2 ! k = A =α B› using prop-5239 by (simp only:)
with ‹is-hyps H› have H ` ∀Q

? vs (A =α B) ⊃Q (C ≡Q ?R)
by (elim derivability-implies-hyp-derivability)

ultimately show ?thesis
proof −

let ?A1 = H ⊃Q C and ?A2 = H ⊃Q ∀Q
? vs (A =α B)

and ?A3 = ∀Q
? vs (A =α B) ⊃Q (C ≡Q ?R)

let ?hs = [?A1, ?A2, ?A3]
let ?G = lset ?hs
from ‹H ` ?A1› have H ∈ wffso

using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(1))
moreover from ‹H ` ?A2› have ∀Q

? vs (A =α B) ∈ wffso
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(2))

moreover from ‹C = S2 ! j› and rule-R-app have C ∈ wffso
using replacement-preserves-typing by fastforce

ultimately have ∗: is-tautologous (?A1 ⊃Q (?A2 ⊃Q (?A3 ⊃Q (H ⊃Q ?R))))
using ‹?R ∈ wffso› by (intro pseudo-rule-R-is-tautologous)

moreover from ‹H ` ?A1› and ‹H ` ?A2› and ‹H ` ?A3› have is-hyps ?G
using hyp-derivable-form-is-wffso by simp

moreover from ‹H ` ?A1› and ‹H ` ?A2› and ‹H ` ?A3› have ∀A ∈ ?G. H ` A
by force

ultimately show ?thesis
using rule-P(1)[where G = ?G and hs = ?hs and B = H ⊃Q ?R, OF ‹is-hyps H›] by simp

qed
qed

qed
moreover from ‹is-hyp-proof-of (H ∪ {H}) S1 S2 P› have S2 ! (length S2 − 1) = P

using last-conv-nth by fastforce
ultimately show ?thesis

using ‹is-hyp-proof-of (H ∪ {H}) S1 S2 P› by force
qed

lemmas Deduction-Theorem = thm-5240

We prove a generalization of the Deduction Theorem, namely that if H ∪ {H 1, . . . ,Hn} ` P
then H ` H 1 ⊃Q (· · · ⊃Q (Hn ⊃Q P) · · ·):
corollary generalized-deduction-theorem:

assumes finite H and finite H ′

and H ∪ H ′ ` P
and lset hs = H ′

shows H ` hs ⊃Q
? P

using assms proof (induction hs arbitrary: H ′ P rule: rev-induct)
case Nil
then show ?case

by simp
next

case (snoc H hs)
from ‹lset (hs @ [H]) = H ′› have H ∈ H ′

by fastforce

220

from ‹lset (hs @ [H]) = H ′› obtain H ′′ where H ′′ ∪ {H} = H ′ and H ′′ = lset hs
by simp

from ‹H ′′ ∪ {H} = H ′› and ‹H ∪ H ′ ` P› have H ∪ H ′′ ∪ {H} ` P
by fastforce

with ‹finite H› and ‹finite H ′› and ‹H ′′ = lset hs› have H ∪ H ′′ ` H ⊃Q P
using Deduction-Theorem by simp

with ‹H ′′ = lset hs› and ‹finite H› have H ` foldr (⊃Q) hs (H ⊃Q P)
using snoc.IH by fastforce

moreover have (hs @ [H]) ⊃Q
? P = hs ⊃Q

? (H ⊃Q P)
by simp

ultimately show ?case
by auto

qed

6.41 Proposition 5241
proposition prop-5241 :

assumes is-hyps G
and H ` A and H ⊆ G
shows G ` A

proof (cases H = {})
case True
show ?thesis

by (fact derivability-implies-hyp-derivability[OF assms(2)[unfolded True] assms(1)])
next

case False
then obtain hs where lset hs = H and hs 6= []

using hyp-derivability-implies-hyp-proof-existence[OF assms(2)] unfolding is-hyp-proof-of-def
by (metis empty-set finite-list)

with assms(2) have ` hs ⊃Q
? A

using generalized-deduction-theorem by force
moreover from ‹lset hs = H› and assms(1 ,3) have G ` H if H ∈ lset hs for H

using that by (blast intro: dv-hyp)
ultimately show ?thesis

using assms(1) and generalized-modus-ponens and derivability-implies-hyp-derivability by meson
qed

6.42 Proposition 5242 (Rule of Existential Generalization)
proposition prop-5242 :

assumes A ∈ wffsα and B ∈ wffso
and H ` S {(x, α) � A} B
and is-free-for A (x, α) B
shows H ` ∃ xα. B

proof −
from assms(3) have is-hyps H

by (blast dest: is-derivable-from-hyps.cases)
then have H ` ∀ xα. ∼Q B ⊃Q ∼Q S {(x, α) � A} B (is ‹H ` ?C ⊃Q ∼Q ?D›)

using prop-5226 [OF assms(1) neg-wff [OF assms(2)] is-free-for-in-neg[OF assms(4)]]
unfolding derived-substitution-simps(4) using derivability-implies-hyp-derivability by (simp only:)

221

moreover have ∗: is-tautologous ((?C ⊃Q ∼Q ?D) ⊃Q (?D ⊃Q ∼Q ?C))
proof −

have ?C ∈ wffso and ?D ∈ wffso
using assms(2) and hyp-derivable-form-is-wffso[OF assms(3)] by auto

then show ?thesis
by (fact pseudo-modus-tollens-is-tautologous)

qed
moreover from assms(3) and ‹H ` ?C ⊃Q ∼Q ?D› have is-hyps {?C ⊃Q ∼Q ?D, ?D}

using hyp-derivable-form-is-wffso by force
ultimately show ?thesis

unfolding exists-def using assms(3)
and rule-P(1)
[

where G = {?C ⊃Q ∼Q ?D, ?D} and hs = [?C ⊃Q ∼Q ?D, ?D] and B = ∼Q ?C ,
OF ‹is-hyps H›

]
by simp

qed

lemmas ∃Gen = prop-5242

6.43 Proposition 5243 (Comprehension Theorem)
context
begin

private lemma prop-5243-aux:
assumes �Q? B (map FVar vs) ∈ wffsγ
and B ∈ wffsβ
and k < length vs
shows β 6= var-type (vs ! k)

proof −
from assms(1) obtain ts

where length ts = length (map FVar vs)
and ∗: ∀ k < length (map FVar vs). (map FVar vs) ! k ∈ wffsts ! k
and B ∈ wffsfoldr (→) ts γ
using wffs-from-generalized-app by force

have β = foldr (→) ts γ
by (fact wff-has-unique-type[OF assms(2) ‹B ∈ wffsfoldr (→) ts γ›])

have ts = map var-type vs
proof −

have length ts = length (map var-type vs)
by (simp add: ‹length ts = length (map FVar vs)›)

moreover have ∀ k < length ts. ts ! k = (map var-type vs) ! k
proof (intro allI impI)

fix k
assume k < length ts
with ∗ have (map FVar vs) ! k ∈ wffsts ! k

by (simp add: ‹length ts = length (map FVar vs)›)

222

with ‹k < length ts› and ‹length ts = length (map var-type vs)›
show ts ! k = (map var-type vs) ! k

using surj-pair [of vs ! k] and wff-has-unique-type and wffs-of-type-intros(1) by force
qed
ultimately show ?thesis

using list-eq-iff-nth-eq by blast
qed
with ‹β = foldr (→) ts γ› and assms(3) show ?thesis

using fun-type-atoms-neq-fun-type by (metis length-map nth-map)
qed

proposition prop-5243 :
assumes B ∈ wffsβ
and γ = foldr (→) (map var-type vs) β
and (u, γ) /∈ free-vars B
shows ` ∃ uγ . ∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)

proof (cases vs = [])
case True
with assms(2) have γ = β

by simp
from assms(1) have uβ =β B ∈ wffso

by blast
moreover have ` B =β B

by (fact prop-5200 [OF assms(1)])
then have ` S {(u, β) � B} (uβ =β B)

using free-var-singleton-substitution-neutrality[OF assms(3)] unfolding ‹γ = β› by simp
moreover from assms(3)[unfolded ‹γ = β›] have is-free-for B (u, β) (uβ =β B)

by (intro is-free-for-in-equality) (use is-free-at-in-free-vars in auto)
ultimately have ` ∃ uβ . (uβ =β B)

by (rule ∃Gen[OF assms(1)])
with ‹γ = β› and True show ?thesis

by simp
next

case False
let ?ϑ = {(u, γ) � λQ? vs B}
from assms(2) have ∗: (u, γ) 6= v if v ∈ lset vs for v
using that and fun-type-atoms-neq-fun-type by (metis in-set-conv-nth length-map nth-map snd-conv)

from False and assms(1) have ` �Q? (λQ? vs B) (map FVar vs) =β B
by (fact prop-5208)

then have ` ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β B)

using generalized-Gen by simp
moreover
have S ?ϑ (∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)) = ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β

B)
proof −

from ∗ have ∗∗: map (λA. S {(u, γ) � B} A) (map FVar vs) = map FVar vs for B
by (induction vs) fastforce+

from ∗ have
S ?ϑ (∀Q

? vs ((�Q? uγ (map FVar vs)) =β B)) = ∀Q
? vs (S ?ϑ ((�Q? uγ (map FVar vs)) =β

223

B))
using generalized-forall-substitution by force

also have . . . = ∀Q
? vs ((S ?ϑ (�Q? uγ (map FVar vs))) =β S {(u, γ) � λQ? vs B} B)

by simp
also from assms(3) have . . . = ∀Q

? vs ((S ?ϑ (�Q? uγ (map FVar vs))) =β B)
using free-var-singleton-substitution-neutrality by simp

also have . . . = ∀Q
? vs (�Q? S ?ϑ (uγ) (map (λA. S ?ϑ A) (map FVar vs)) =β B)

using generalized-app-substitution by simp
also have . . . = ∀Q

? vs (�Q? (λQ? vs B) (map (λA. S ?ϑ A) (map FVar vs)) =β B)
by simp

also from ∗∗ have . . . = ∀Q
? vs (�Q? (λQ? vs B) (map FVar vs) =β B)

by presburger
finally show ?thesis .

qed
ultimately have ` S ?ϑ (∀Q

? vs (�Q? uγ (map FVar vs) =β B))
by simp

moreover from assms(3) have is-free-for (λQ? vs B) (u, γ) (∀Q
? vs (�Q? uγ (map FVar vs) =β

B))
by
(intro is-free-for-in-generalized-forall is-free-for-in-equality is-free-for-in-generalized-app)
(use free-vars-of-generalized-abs is-free-at-in-free-vars in ‹fastforce+›)

moreover have λQ? vs B ∈ wffsγ and ∀Q
? vs (�Q? uγ (map FVar vs) =β B) ∈ wffso

proof −
have FVar (vs ! k) ∈ wffsvar-type (vs ! k) if k < length vs for k

using that and surj-pair [of vs ! k] by fastforce
with assms(2) have �Q? uγ (map FVar vs) ∈ wffsβ

using generalized-app-wff [where ts = map var-type vs] by force
with assms(1) show ∀Q

? vs (�Q? uγ (map FVar vs) =β B) ∈ wffso
by (auto simp only:)

qed (use assms(1 ,2) in blast)
ultimately show ?thesis

using ∃Gen by (simp only:)
qed

end

6.44 Proposition 5244 (Existential Rule)

The proof in [2] uses the pseudo-rule Q and 2123 of F . Therefore, we instead base our proof
on the proof of Theorem 170 in [1]:
lemma prop-5244-aux:

assumes A ∈ wffso and B ∈ wffso
and (x, α) /∈ free-vars A
shows ` ∀ xα. (B ⊃Q A) ⊃Q (∃ xα. B ⊃Q A)

proof −
have B ⊃Q A ∈ wffso

using assms by blast
moreover have is-free-for (xα) (x, α) (B ⊃Q A)

224

by simp
ultimately have ` ∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A)

using prop-5226 [where A = xα and B = B ⊃Q A, OF wffs-of-type-intros(1)]
and identity-singleton-substitution-neutrality by metis

moreover have is-hyps {∀ xα. (B ⊃Q A)}
using ‹B ⊃Q A ∈ wffso› by blast

ultimately have §1 : {∀ xα. (B ⊃Q A)} ` ∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A)
by (fact derivability-implies-hyp-derivability)

have §2 : {∀ xα. (B ⊃Q A)} ` ∀ xα. (B ⊃Q A)
using ‹B ⊃Q A ∈ wffso› by (blast intro: dv-hyp)

have §3 : {∀ xα. (B ⊃Q A)} ` ∼Q A ⊃Q ∼Q B
proof (intro rule-P(1)
[where H = {∀ xα. (B ⊃Q A)} and G = {∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A), ∀ xα. (B ⊃Q A)}])
have is-tautologous ([C ⊃Q (B ⊃Q A), C] ⊃Q

? (∼Q A ⊃Q ∼Q B)) if C ∈ wffso for C
proof −

let ?ϑ = {(x, o) � A, (y, o) � B, (z, o) � C}
have is-tautology ((zo ⊃Q (yo ⊃Q xo)) ⊃Q (zo ⊃Q (∼Q xo ⊃Q ∼Q yo)))
(is is-tautology ?A)
using VB-simps by (auto simp add: inj-eq)

moreover have is-pwff-substitution ?ϑ
using assms(1 ,2) and that by auto

moreover have [C ⊃Q (B ⊃Q A), C] ⊃Q
? (∼Q A ⊃Q ∼Q B) = S ?ϑ ?A

by simp
ultimately show ?thesis

by blast
qed
then show is-tautologous ([∀ xα. (B ⊃Q A) ⊃Q (B ⊃Q A), ∀ xα. (B ⊃Q A)] ⊃Q

? (∼Q A ⊃Q ∼Q

B))
using ‹B ⊃Q A ∈ wffso› and forall-wff by simp

qed (use §1 §2 ‹is-hyps {∀ xα. (B ⊃Q A)}› hyp-derivable-form-is-wffso[OF §1] in force)+
have §4 : {∀ xα. (B ⊃Q A)} ` ∼Q A ⊃Q ∀ xα. ∼Q B

using prop-5237 [OF ‹is-hyps {∀ xα. (B ⊃Q A)}› §3] and assms(3) by auto
have §5 : {∀ xα. (B ⊃Q A)} ` ∃ xα. B ⊃Q A
unfolding exists-def
proof (intro rule-P(1)[where H = {∀ xα. (B ⊃Q A)} and G = {∼Q A ⊃Q ∀ xα. ∼Q B}])

have is-tautologous ([∼Q A ⊃Q C] ⊃Q
? (∼Q C ⊃Q A)) if C ∈ wffso for C

proof −
let ?ϑ = {(x, o) � A, (y, o) � C}
have is-tautology ((∼Q xo ⊃Q yo) ⊃Q (∼Q yo ⊃Q xo)) (is is-tautology ?A)

using VB-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution ?ϑ

using assms(1) and that by auto
moreover have [∼Q A ⊃Q C] ⊃Q

? (∼Q C ⊃Q A) = S ?ϑ ?A
by simp

ultimately show ?thesis
by blast

qed
then show is-tautologous ([∼Q A ⊃Q ∀ xα. ∼Q B] ⊃Q

? (∼Q ∀ xα. ∼Q B ⊃Q A))
using forall-wff [OF neg-wff [OF assms(2)]] by (simp only:)

225

qed (use §4 ‹is-hyps {∀ xα. (B ⊃Q A)}› hyp-derivable-form-is-wffso[OF §4] in force)+
then show ?thesis

using Deduction-Theorem by simp
qed

proposition prop-5244 :
assumes H, B ` A
and (x, α) /∈ free-vars (H ∪ {A})
shows H, ∃ xα. B ` A

proof −
from assms(1) have is-hyps H

using hyp-derivability-implies-hyp-proof-existence by force
then have H ` B ⊃Q A

using assms(1) and Deduction-Theorem by simp
then have H ` ∀ xα. (B ⊃Q A)

using Gen and assms(2) by simp
moreover have A ∈ wffso and B ∈ wffso

by
(

fact hyp-derivable-form-is-wffso[OF assms(1)],
fact hyp-derivable-form-is-wffso[OF ‹H ` B ⊃Q A›, THEN wffs-from-imp-op(1)]

)
with assms(2) and ‹is-hyps H› have H ` ∀ xα. (B ⊃Q A) ⊃Q (∃ xα. B ⊃Q A)

using prop-5244-aux[THEN derivability-implies-hyp-derivability] by simp
ultimately have H ` ∃ xα. B ⊃Q A

by (rule MP)
then have H, ∃ xα. B ` ∃ xα. B ⊃Q A

using prop-5241 and exists-wff [OF ‹B ∈ wffso›] and ‹is-hyps H›
by (meson Un-subset-iff empty-subsetI finite.simps finite-Un inf-sup-ord(3) insert-subsetI)

moreover from ‹is-hyps H› and ‹B ∈ wffso› have is-hyps (H ∪ {∃ xα. B})
by auto

then have H, ∃ xα. B ` ∃ xα. B
using dv-hyp by simp

ultimately show ?thesis
using MP by blast

qed

lemmas ∃ -Rule = prop-5244

6.45 Proposition 5245 (Rule C)
lemma prop-5245-aux:

assumes x 6= y
and (y, α) /∈ free-vars (∃ xα. B)
and is-free-for (yα) (x, α) B
shows is-free-for (xα) (y, α) S {(x, α) � yα} B

using assms(2 ,3) proof (induction B)
case (FVar v)
then show ?case

226

using surj-pair [of v] by fastforce
next

case (FCon k)
then show ?case

using surj-pair [of k] by fastforce
next

case (FApp B1 B2)
from FApp.prems(1) have (y, α) /∈ free-vars (∃ xα. B1) and (y, α) /∈ free-vars (∃ xα. B2)

by force+
moreover from FApp.prems(2) have is-free-for (yα) (x, α) B1 and is-free-for (yα) (x, α) B2

using is-free-for-from-app by iprover+
ultimately have is-free-for (xα) (y, α) S {(x, α) � yα} B1

and is-free-for (xα) (y, α) S {(x, α) � yα} B2

using FApp.IH by simp-all
then have is-free-for (xα) (y, α) ((S {(x, α) � yα} B1) � (S {(x, α) � yα} B2))

by (intro is-free-for-to-app)
then show ?case

unfolding singleton-substitution-simps(3) .
next

case (FAbs v B ′)
obtain z and β where v = (z, β)

by fastforce
then show ?case
proof (cases v = (x, α))

case True
with FAbs.prems(1) have (y, α) /∈ free-vars (∃ xα. B ′)

by simp
moreover from assms(1) have (y, α) 6= (x, α)

by blast
ultimately have (y, α) /∈ free-vars B ′

using FAbs.prems(1) by simp
with ‹(y, α) 6= (x, α)› have (y, α) /∈ free-vars (λxα. B ′)

by simp
then have is-free-for (xα) (y, α) (λxα. B ′)

unfolding is-free-for-def using is-free-at-in-free-vars by blast
then have is-free-for (xα) (y, α) S {(x, α) � yα} (λxα. B ′)

using singleton-substitution-simps(4) by presburger
then show ?thesis

unfolding True .
next

case False
from assms(1) have (y, α) 6= (x, α)

by blast
with FAbs.prems(1) have ∗: (y, α) /∈ free-vars (∃ xα. (λzβ . B ′))

using ‹v = (z, β)› by fastforce
then show ?thesis
proof (cases (y, α) 6= v)

case True
from True[unfolded ‹v = (z, β)›] and ∗ have (y, α) /∈ free-vars (∃ xα. B ′)

227

by simp
moreover from False[unfolded ‹v = (z, β)›] have is-free-for (yα) (x, α) B ′

using is-free-for-from-abs[OF FAbs.prems(2)[unfolded ‹v = (z, β)›]] by blast
ultimately have is-free-for (xα) (y, α) (S {(x, α) � yα} B ′)

by (fact FAbs.IH)
then have is-free-for (xα) (y, α) (λzβ . (S {(x, α) � yα} B ′))

using False[unfolded ‹v = (z, β)›] by (intro is-free-for-to-abs, fastforce+)
then show ?thesis

unfolding singleton-substitution-simps(4) and ‹v = (z, β)› using ‹(z, β) 6= (x, α)› by auto
next

case False
then have v = (y, α)

by simp
have is-free-for (xα) (y, α) (λyα. S {(x, α) � yα} B ′)
proof−

have (y, α) /∈ free-vars (λyα. S {(x, α) � yα} B ′)
by simp

then show ?thesis
using is-free-at-in-free-vars by blast

qed
with‹v = (y, α)› and ‹(y, α) 6= (x, α)› show ?thesis
using singleton-substitution-simps(4) by presburger

qed
qed

qed

proposition prop-5245 :
assumes H ` ∃ xα. B
and H, S {(x, α) � yα} B ` A
and is-free-for (yα) (x, α) B
and (y, α) /∈ free-vars (H ∪ {∃ xα. B, A})
shows H ` A

proof −
from assms(1) have is-hyps H

by (blast elim: is-derivable-from-hyps.cases)
from assms(2 ,4) have H, ∃ yα. S {(x, α) � yα} B ` A

using ∃ -Rule by simp
then have ∗: H ` (∃ yα. S {(x, α) � yα} B) ⊃Q A (is ‹- ` ?F›)

using Deduction-Theorem and ‹is-hyps H› by blast
then have H ` ∃ xα. B ⊃Q A
proof (cases x = y)

case True
with ∗ show ?thesis

using identity-singleton-substitution-neutrality by force
next

case False
from assms(4) have (y, α) /∈ free-vars (∃ xα. B)

using free-vars-in-all-vars by auto
have ∼Q S {(x, α) � yα} B ∈ wffso

228

by
(

fact hyp-derivable-form-is-wffso
[OF ∗, THEN wffs-from-imp-op(1), THEN wffs-from-exists, THEN neg-wff]

)
moreover from False have (x, α) /∈ free-vars (∼Q S {(x, α) � yα} B)

using free-var-in-renaming-substitution by simp
moreover have is-free-for (xα) (y, α) (∼Q S {(x, α) � yα} B)

by (intro is-free-for-in-neg prop-5245-aux[OF False ‹(y, α) /∈ free-vars (∃ xα. B)› assms(3)])
moreover from assms(3 ,4) have S {(y, α) � xα} S {(x, α) � yα} B = B

using identity-singleton-substitution-neutrality and renaming-substitution-composability
by force

ultimately have ` (λyα. ∼Q S {(x, α) � yα} B) =α→o (λxα. ∼Q B)
using α[where A = ∼Q S {(x, α) � yα} B] by (metis derived-substitution-simps(4))

then show ?thesis
by (rule rule-RR[OF disjI1 , where p = [«,»,»,»] and C = ?F]) (use ∗ in force)+

qed
with assms(1) show ?thesis

by (rule MP)
qed

lemmas Rule-C = prop-5245

end

7 Semantics
theory Semantics

imports
ZFC-in-HOL.ZFC-Typeclasses
Syntax
Boolean-Algebra

begin

no-notation funcset (infixr → 60)
notation funcset (infixr 7→ 60)

abbreviation vfuncset :: V ⇒ V ⇒ V (infixr 7−→ 60) where
A 7−→ B ≡ VPi A (λ-. B)

notation app (infixl · 300)

syntax
-vlambda :: pttrn ⇒ V ⇒ (V ⇒ V) ⇒ V ((3λ-:- ./ -) [0 , 0 , 3] 3)

translations
λx : A. f
 CONST VLambda A (λx. f)

lemma vlambda-extensionality:
assumes

∧
x. x ∈ elts A =⇒ f x = g x

229

shows (λx : A. f x) = (λx : A. g x)
unfolding VLambda-def using assms by auto

7.1 Frames
locale frame =

fixes D :: type ⇒ V
assumes truth-values-domain-def : D o = �
and function-domain-def : ∀α β. D (α→β) ≤ D α 7−→ D β
and domain-nonemptiness: ∀α. D α 6= 0

begin

lemma function-domainD:
assumes f ∈ elts (D (α→β))
shows f ∈ elts (D α 7−→ D β)
using assms and function-domain-def by blast

lemma vlambda-from-function-domain:
assumes f ∈ elts (D (α→β))
obtains b where f = (λx : D α. b x) and ∀ x ∈ elts (D α). b x ∈ elts (D β)
using function-domainD[OF assms] by (metis VPi-D eta)

lemma app-is-domain-respecting:
assumes f ∈ elts (D (α→β)) and x ∈ elts (D α)
shows f · x ∈ elts (D β)
by (fact VPi-D[OF function-domainD[OF assms(1)] assms(2)])

One-element function on D α:
definition one-element-function :: V ⇒ type ⇒ V ({-}- [901 , 0] 900) where
[simp]: {x}α = (λy : D α. bool-to-V (y = x))

lemma one-element-function-is-domain-respecting:
shows {x}α ∈ elts (D α 7−→ D o)
unfolding one-element-function-def and truth-values-domain-def by (intro VPi-I) (simp, metis)

lemma one-element-function-simps:
shows x ∈ elts (D α) =⇒ {x}α · x = T
and [[{x, y} ⊆ elts (D α); y 6= x]] =⇒ {x}α · y = F
by simp-all

lemma one-element-function-injectivity:
assumes {x, x ′} ⊆ elts (D i) and {x}i = {x ′}i
shows x = x ′

using assms(1) and VLambda-eq-D2 [OF assms(2)[unfolded one-element-function-def]]
and injD[OF bool-to-V-injectivity] by blast

lemma one-element-function-uniqueness:
assumes x ∈ elts (D i)
shows (SOME x ′. x ′ ∈ elts (D i) ∧ {x}i = {x ′}i) = x

230

by (auto simp add: assms one-element-function-injectivity)

Identity relation on D α:
definition identity-relation :: type ⇒ V (q- [0] 100) where
[simp]: qα = (λx : D α. {x}α)

lemma identity-relation-is-domain-respecting:
shows qα ∈ elts (D α 7−→ D α 7−→ D o)
using VPi-I and one-element-function-is-domain-respecting by simp

lemma q-is-equality:
assumes {x, y} ⊆ elts (D α)
shows (qα) · x · y = T ←→ x = y
unfolding identity-relation-def
using assms and injD[OF bool-to-V-injectivity] by fastforce

Unique member selector:
definition is-unique-member-selector :: V ⇒ bool where
[iff]: is-unique-member-selector f ←→ (∀ x ∈ elts (D i). f · {x}i = x)

Assignment:
definition is-assignment :: (var ⇒ V) ⇒ bool where
[iff]: is-assignment ϕ ←→ (∀ x α. ϕ (x, α) ∈ elts (D α))

end

abbreviation one-element-function-in ({-}-- [901 , 0 , 0] 900) where
{x}αD ≡ frame.one-element-function D x α

abbreviation identity-relation-in (q-- [0 , 0] 100) where
qαD ≡ frame.identity-relation D α

ψ is a “v-variant” of ϕ if ψ is an assignment that agrees with ϕ except possibly on v:
definition is-variant-of :: (var ⇒ V) ⇒ var ⇒ (var ⇒ V) ⇒ bool (- ∼- - [51 , 0 , 51] 50) where
[iff]: ψ ∼v ϕ ←→ (∀ v ′. v ′ 6= v −→ ψ v ′ = ϕ v ′)

7.2 Pre-models (interpretations)

We use the term “pre-model” instead of “interpretation” since the latter is already a keyword:
locale premodel = frame +

fixes J :: con ⇒ V
assumes Q-denotation: ∀α. J (Q-constant-of-type α) = qα
and ι-denotation: is-unique-member-selector (J iota-constant)
and non-logical-constant-denotation: ∀ c α. ¬ is-logical-constant (c, α) −→ J (c, α) ∈ elts (D α)

begin

Wff denotation function:

231

definition is-wff-denotation-function :: ((var ⇒ V) ⇒ form ⇒ V) ⇒ bool where
[iff]: is-wff-denotation-function V ←→
(
∀ϕ. is-assignment ϕ −→
(∀A α. A ∈ wffsα −→ V ϕ A ∈ elts (D α)) ∧ — closure condition, see note in page 186
(∀ x α. V ϕ (xα) = ϕ (x, α)) ∧
(∀ c α. V ϕ ({|c|}α) = J (c, α)) ∧
(∀A B α β. A ∈ wffsβ→α ∧ B ∈ wffsβ −→ V ϕ (A � B) = (V ϕ A) · (V ϕ B)) ∧
(∀ x B α β. B ∈ wffsβ −→ V ϕ (λxα. B) = (λz : D α. V (ϕ((x, α) := z)) B))

)

lemma wff-denotation-function-is-domain-respecting:
assumes is-wff-denotation-function V
and A ∈ wffsα
and is-assignment ϕ
shows V ϕ A ∈ elts (D α)
using assms by force

lemma wff-var-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows V ϕ (xα) = ϕ (x, α)
using assms by force

lemma wff-Q-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows V ϕ (Qα) = qα
using assms and Q-denotation by force

lemma wff-iota-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
shows is-unique-member-selector (V ϕ ι)
using assms and ι-denotation by fastforce

lemma wff-non-logical-constant-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and ¬ is-logical-constant (c, α)
shows V ϕ ({|c|}α) = J (c, α)
using assms by auto

lemma wff-app-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and A ∈ wffsβ→α
and B ∈ wffsβ
shows V ϕ (A � B) = V ϕ A · V ϕ B

232

using assms by blast

lemma wff-abs-denotation:
assumes is-wff-denotation-function V
and is-assignment ϕ
and B ∈ wffsβ
shows V ϕ (λxα. B) = (λz : D α. V (ϕ((x, α) := z)) B)
using assms unfolding is-wff-denotation-function-def by metis

lemma wff-denotation-function-is-uniquely-determined:
assumes is-wff-denotation-function V
and is-wff-denotation-function V ′

and is-assignment ϕ
and A ∈ wffs
shows V ϕ A = V ′ ϕ A

proof −
obtain α where A ∈ wffsα

using assms(4) by blast
then show ?thesis
using assms(3) proof (induction A arbitrary: ϕ)

case var-is-wff
with assms(1 ,2) show ?case

by auto
next

case con-is-wff
with assms(1 ,2) show ?case

by auto
next

case app-is-wff
with assms(1 ,2) show ?case

using wff-app-denotation by metis
next

case (abs-is-wff β A α x)
have is-assignment (ϕ((x, α) := z)) if z ∈ elts (D α) for z

using that and abs-is-wff .prems by simp
then have ∗: V (ϕ((x, α) := z)) A = V ′ (ϕ((x, α) := z)) A if z ∈ elts (D α) for z

using abs-is-wff .IH and that by blast
have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

by (fact wff-abs-denotation[OF assms(1) abs-is-wff .prems abs-is-wff .hyps])
also have . . . = (λz : D α. V ′ (ϕ((x, α) := z)) A)

using ∗ and vlambda-extensionality by fastforce
also have . . . = V ′ ϕ (λxα. A)

by (fact wff-abs-denotation[OF assms(2) abs-is-wff .prems abs-is-wff .hyps, symmetric])
finally show ?case .

qed
qed

end

233

7.3 General models
type-synonym model-structure = (type ⇒ V) × (con ⇒ V) × ((var ⇒ V) ⇒ form ⇒ V)

The assumption in the following locale implies that there must exist a function that is a wff
denotation function for the pre-model, which is a requirement in the definition of general
model in [2]:
locale general-model = premodel +

fixes V :: (var ⇒ V) ⇒ form ⇒ V
assumes V-is-wff-denotation-function: is-wff-denotation-function V

begin

lemma mixed-beta-conversion:
assumes is-assignment ϕ
and y ∈ elts (D α)
and B ∈ wffsβ
shows V ϕ (λxα. B) · y = V (ϕ((x, α) := y)) B
using wff-abs-denotation[OF V-is-wff-denotation-function assms(1 ,3)] and beta[OF assms(2)] by

simp

lemma conj-fun-is-domain-respecting:
assumes is-assignment ϕ
shows V ϕ (∧o→o→o) ∈ elts (D (o→o→o))
using assms and conj-fun-wff and V-is-wff-denotation-function by auto

lemma fully-applied-conj-fun-is-domain-respecting:
assumes is-assignment ϕ
and {x, y} ⊆ elts (D o)
shows V ϕ (∧o→o→o) · x · y ∈ elts (D o)
using assms and conj-fun-is-domain-respecting and app-is-domain-respecting by (meson insert-subset)

lemma imp-fun-denotation-is-domain-respecting:
assumes is-assignment ϕ
shows V ϕ (⊃o→o→o) ∈ elts (D (o→o→o))
using assms and imp-fun-wff and V-is-wff-denotation-function by simp

lemma fully-applied-imp-fun-denotation-is-domain-respecting:
assumes is-assignment ϕ
and {x, y} ⊆ elts (D o)
shows V ϕ (⊃o→o→o) · x · y ∈ elts (D o)
using assms and imp-fun-denotation-is-domain-respecting and app-is-domain-respecting
by (meson insert-subset)

end

abbreviation is-general-model :: model-structure ⇒ bool where
is-general-model M ≡ case M of (D, J , V) ⇒ general-model D J V

234

7.4 Standard models
locale standard-model = general-model +

assumes full-function-domain-def : ∀α β. D (α→β) = D α 7−→ D β

abbreviation is-standard-model :: model-structure ⇒ bool where
is-standard-model M ≡ case M of (D, J , V) ⇒ standard-model D J V

lemma standard-model-is-general-model:
assumes is-standard-model M
shows is-general-model M
using assms and standard-model.axioms(1) by force

7.5 Validity
abbreviation is-assignment-into-frame (- ; - [51 , 51] 50) where
ϕ ; D ≡ frame.is-assignment D ϕ

abbreviation is-assignment-into-model (- ;M - [51 , 51] 50) where
ϕ ;M M ≡ (case M of (D, J , V) ⇒ ϕ ; D)

abbreviation satisfies (- |=- - [50 , 50 , 50] 50) where
M |=ϕ A ≡ case M of (D, J , V) ⇒ V ϕ A = T

abbreviation is-satisfiable-in where
is-satisfiable-in A M ≡ ∃ϕ. ϕ ;M M ∧ M |=ϕ A

abbreviation is-valid-in (- |= - [50 , 50] 50) where
M |= A ≡ ∀ϕ. ϕ ;M M −→ M |=ϕ A

abbreviation is-valid-in-the-general-sense (|= - [50] 50) where
|= A ≡ ∀M. is-general-model M −→ M |= A

abbreviation is-valid-in-the-standard-sense (|=S - [50] 50) where
|=S A ≡ ∀M. is-standard-model M −→ M |= A

abbreviation is-true-sentence-in where
is-true-sentence-in A M ≡ is-sentence A ∧ M |=undefined A — assignments are not meaningful

abbreviation is-false-sentence-in where
is-false-sentence-in A M ≡ is-sentence A ∧ ¬ M |=undefined A — assignments are not meaningful

abbreviation is-model-for where
is-model-for M G ≡ ∀A ∈ G.M |= A

lemma general-validity-in-standard-validity:
assumes |= A
shows |=S A
using assms and standard-model-is-general-model by blast

235

end

8 Soundness
theory Soundness

imports
Elementary-Logic
Semantics

begin

no-notation funcset (infixr → 60)
notation funcset (infixr 7→ 60)

8.1 Proposition 5400
proposition (in general-model) prop-5400 :

assumes A ∈ wffsα
and ϕ ; D and ψ ; D
and ∀ v ∈ free-vars A. ϕ v = ψ v
shows V ϕ A = V ψ A

proof −
from assms(1) show ?thesis
using assms(2 ,3 ,4) proof (induction A arbitrary: ϕ ψ)

case (var-is-wff α x)
have (x, α) ∈ free-vars (xα)

by simp
from assms(1) and var-is-wff .prems(1) have V ϕ (xα) = ϕ (x, α)

using V-is-wff-denotation-function by fastforce
also from ‹(x, α) ∈ free-vars (xα)› and var-is-wff .prems(3) have . . . = ψ (x, α)

by (simp only:)
also from assms(1) and var-is-wff .prems(2) have . . . = V ψ (xα)

using V-is-wff-denotation-function by fastforce
finally show ?case .

next
case (con-is-wff α c)
from assms(1) and con-is-wff .prems(1) have V ϕ ({|c|}α) = J (c, α)

using V-is-wff-denotation-function by fastforce
also from assms(1) and con-is-wff .prems(2) have . . . = V ψ ({|c|}α)

using V-is-wff-denotation-function by fastforce
finally show ?case .

next
case (app-is-wff α β A B)
have free-vars (A � B) = free-vars A ∪ free-vars B

by simp
with app-is-wff .prems(3)
have ∀ v ∈ free-vars A. ϕ v = ψ v and ∀ v ∈ free-vars B. ϕ v = ψ v

by blast+
with app-is-wff .IH and app-is-wff .prems(1 ,2) have V ϕ A = V ψ A and V ϕ B = V ψ B

by blast+

236

from assms(1) and app-is-wff .prems(1) and app-is-wff .hyps have V ϕ (A � B) = V ϕ A · V ϕ B
using V-is-wff-denotation-function by fastforce

also from ‹V ϕ A = V ψ A› and ‹V ϕ B = V ψ B› have . . . = V ψ A · V ψ B
by (simp only:)

also from assms(1) and app-is-wff .prems(2) and app-is-wff .hyps have . . . = V ψ (A � B)
using V-is-wff-denotation-function by fastforce

finally show ?case .
next

case (abs-is-wff β A α x)
have free-vars (λxα. A) = free-vars A − {(x, α)}

by simp
with abs-is-wff .prems(3) have ∀ v ∈ free-vars A. v 6= (x, α)−→ ϕ v = ψ v

by blast
then have ∀ v ∈ free-vars A. (ϕ((x, α) := z)) v = (ψ((x, α) := z)) v if z ∈ elts (D α) for z

by simp
moreover from abs-is-wff .prems(1 ,2)
have ∀ x ′ α ′. (ϕ((x, α) := z)) (x ′, α ′) ∈ elts (D α ′)

and ∀ x ′ α ′. (ψ((x, α) := z)) (x ′, α ′) ∈ elts (D α ′)
if z ∈ elts (D α) for z
using that by force+

ultimately have V-ϕ-ψ-eq: V (ϕ((x, α) := z)) A = V (ψ((x, α) := z)) A if z ∈ elts (D α) for z
using abs-is-wff .IH and that by simp

from assms(1) and abs-is-wff .prems(1) and abs-is-wff .hyps
have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
also from V-ϕ-ψ-eq have . . . = (λz : D α. V (ψ((x, α) := z)) A)

by (fact vlambda-extensionality)
also from assms(1) and abs-is-wff .hyps have . . . = V ψ (λxα. A)

using wff-abs-denotation[OF V-is-wff-denotation-function abs-is-wff .prems(2)] by simp
finally show ?case .

qed
qed

corollary (in general-model) closed-wff-is-meaningful-regardless-of-assignment:
assumes is-closed-wff-of-type A α
and ϕ ; D and ψ ; D
shows V ϕ A = V ψ A
using assms and prop-5400 by blast

8.2 Proposition 5401
lemma (in general-model) prop-5401-a:

assumes ϕ ; D
and A ∈ wffsα
and B ∈ wffsβ
shows V ϕ ((λxα. B) � A) = V (ϕ((x, α) := V ϕ A)) B

proof −
from assms(2 ,3) have λxα. B ∈ wffsα→β

by blast

237

with assms(1 ,2) have V ϕ ((λxα. B) � A) = V ϕ (λxα. B) · V ϕ A
using V-is-wff-denotation-function by blast

also from assms(1 ,3) have . . . = app (λz : D α. V (ϕ((x, α) := z)) B) (V ϕ A)
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

also from assms(1 ,2) have . . . = V (ϕ((x, α) := V ϕ A)) B
using V-is-wff-denotation-function by auto

finally show ?thesis .
qed

lemma (in general-model) prop-5401-b:
assumes ϕ ; D
and A ∈ wffsα
and B ∈ wffsα
shows V ϕ (A =α B) = T ←→ V ϕ A = V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D α)

using V-is-wff-denotation-function by auto
have V ϕ (A =α B) = V ϕ (Qα � A � B)

by simp
also from assms have . . . = V ϕ (Qα � A) · V ϕ B

using V-is-wff-denotation-function by blast
also from assms have . . . = V ϕ (Qα) · V ϕ A · V ϕ B

using Q-wff and wff-app-denotation[OF V-is-wff-denotation-function] by fastforce
also from assms(1) have . . . = (qα) · V ϕ A · V ϕ B

using Q-denotation and V-is-wff-denotation-function by fastforce
also from ‹{V ϕ A, V ϕ B} ⊆ elts (D α)› have . . . = T ←→ V ϕ A = V ϕ B

using q-is-equality by simp
finally show ?thesis .

qed

corollary (in general-model) prop-5401-b ′:
assumes ϕ ; D
and A ∈ wffso
and B ∈ wffso
shows V ϕ (A ≡Q B) = T ←→ V ϕ A = V ϕ B
using assms and prop-5401-b by auto

lemma (in general-model) prop-5401-c:
assumes ϕ ; D
shows V ϕ To = T

proof −
have Qo ∈ wffso→o→o

by blast
moreover have V ϕ To = V ϕ (Qo =o→o→o Qo)

unfolding true-def ..
ultimately have . . . = T ←→ V ϕ (Qo) = V ϕ (Qo)

using prop-5401-b and assms by blast
then show ?thesis

by simp

238

qed

lemma (in general-model) prop-5401-d:
assumes ϕ ; D
shows V ϕ Fo = F

proof −
have λxo. To ∈ wffso→o and λxo. xo ∈ wffso→o

by blast+
moreover have V ϕ Fo = V ϕ (λxo. To =o→o λxo. xo)

unfolding false-def ..
ultimately have V ϕ Fo = T ←→ V ϕ (λxo. To) = V ϕ (λxo. xo)

using prop-5401-b and assms by simp
moreover have V ϕ (λxo. To) 6= V ϕ (λxo. xo)
proof −

have V ϕ (λxo. To) = (λz : D o. T)
proof −

from assms have T-denotation: V (ϕ((x, o) := z)) To = T if z ∈ elts (D o) for z
using prop-5401-c and that by simp

from assms have V ϕ (λxo. To) = (λz : D o. V (ϕ((x, o) := z)) To)
using wff-abs-denotation[OF V-is-wff-denotation-function] by blast

also from assms and T-denotation have . . . = (λz : D o. T)
using vlambda-extensionality by fastforce

finally show ?thesis .
qed
moreover have V ϕ (λxo. xo) = (λz : D o. z)
proof −

from assms have x-denotation: V (ϕ((x, o) := z)) (xo) = z if z ∈ elts (D o) for z
using that and V-is-wff-denotation-function by auto

from assms have V ϕ (λxo. xo) = (λz : D o. V (ϕ((x, o) := z)) (xo))
using wff-abs-denotation[OF V-is-wff-denotation-function] by blast

also from x-denotation have . . . = (λz : (D o). z)
using vlambda-extensionality by fastforce

finally show ?thesis .
qed
moreover have (λz : D o. T) 6= (λz : D o. z)
proof −

from assms(1) have (λz : D o. T) · F = T
by (simp add: truth-values-domain-def)

moreover from assms(1) have (λz : D o. z) · F = F
by (simp add: truth-values-domain-def)

ultimately show ?thesis
by (auto simp add: inj-eq)

qed
ultimately show ?thesis

by simp
qed
moreover from assms have V ϕ Fo ∈ elts (D o)

using false-wff and V-is-wff-denotation-function by fast
ultimately show ?thesis

239

using assms(1) by (simp add: truth-values-domain-def)
qed

lemma (in general-model) prop-5401-e:
assumes ϕ ; D
and {x, y} ⊆ elts (D o)
shows V ϕ (∧o→o→o) · x · y = (if x = T ∧ y = T then T else F)

proof −
let ?Bleq = λgo→o→o. go→o→o � To � To
let ?Breq = λgo→o→o. go→o→o � xo � yo
let ?Beq = ?Bleq =(o→o→o)→o ?Breq

let ?By = λyo. ?Beq

let ?Bx = λxo. ?By

let ?ϕ ′ = ϕ((x, o) := x, (y, o) := y)
let ?ϕ ′′ = λg. ?ϕ ′((g, o→o→o) := g)
have go→o→o � To ∈ wffso→o

by blast
have go→o→o � To � To ∈ wffso and go→o→o � xo � yo ∈ wffso

by blast+
have ?Bleq ∈ wffs(o→o→o)→o and ?Breq ∈ wffs(o→o→o)→o

by blast+
then have ?Beq ∈ wffso and ?By ∈ wffso→o and ?Bx ∈ wffso→o→o

by blast+
have V ϕ (∧o→o→o) · x · y = V ϕ ?Bx · x · y

by simp
also from assms and ‹?By ∈ wffso→o› have . . . = V (ϕ((x, o) := x)) ?By · y

using mixed-beta-conversion by simp
also from assms and ‹?Beq ∈ wffso› have . . . = V ?ϕ ′ ?Beq

using mixed-beta-conversion by simp
finally have V ϕ (∧o→o→o) · x · y = T ←→ V ?ϕ ′ ?Bleq = V ?ϕ ′ ?Breq

using assms and ‹?Bleq ∈ wffs(o→o→o)→o› and ‹?Breq ∈ wffs(o→o→o)→o› and prop-5401-b
by simp

also have . . . ←→ (λg : D (o→o→o). g · T · T) = (λg : D (o→o→o). g · x · y)
proof −

have leq: V ?ϕ ′ ?Bleq = (λg : D (o→o→o). g · T · T)
and req: V ?ϕ ′ ?Breq = (λg : D (o→o→o). g · x · y)
proof −

from assms(1 ,2) have is-assg-ϕ ′′: ?ϕ ′′ g ; D if g ∈ elts (D (o→o→o)) for g
using that by auto

have side-eq-denotation:
V ?ϕ ′ (λgo→o→o. go→o→o � A � B) = (λg : D (o→o→o). g · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B)
if A ∈ wffso and B ∈ wffso for A and B

proof −
from that have go→o→o � A � B ∈ wffso

by blast
have V (?ϕ ′′ g) (go→o→o � A � B) = g · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B

if g ∈ elts (D (o→o→o)) for g
proof −

from ‹A ∈ wffso› have go→o→o � A ∈ wffso→o

240

by blast
with that and is-assg-ϕ ′′ and ‹B ∈ wffso› have
V (?ϕ ′′ g) (go→o→o � A � B) = V (?ϕ ′′ g) (go→o→o � A) · V (?ϕ ′′ g) B
using wff-app-denotation[OF V-is-wff-denotation-function] by simp

also from that and ‹A ∈ wffso› and is-assg-ϕ ′′ have
. . . = V (?ϕ ′′ g) (go→o→o) · V (?ϕ ′′ g) A · V (?ϕ ′′ g) B
by (metis V-is-wff-denotation-function wff-app-denotation wffs-of-type-intros(1))

finally show ?thesis
using that and is-assg-ϕ ′′ and V-is-wff-denotation-function by auto

qed
moreover from assms have is-assignment ?ϕ ′

by auto
with ‹go→o→o � A � B ∈ wffso› have
V ?ϕ ′ (λgo→o→o. go→o→o � A � B) = (λg : D (o→o→o). V (?ϕ ′′ g) (go→o→o � A � B))
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

ultimately show ?thesis
using vlambda-extensionality by fastforce

qed
— Proof of leq:
show V ?ϕ ′ ?Bleq = (λg : D (o→o→o). g · T · T)
proof −

have V (?ϕ ′′ g) To = T if g ∈ elts (D (o→o→o)) for g
using that and is-assg-ϕ ′′ and prop-5401-c by simp

then show ?thesis
using side-eq-denotation and true-wff and vlambda-extensionality by fastforce

qed
— Proof of req:
show V ?ϕ ′ ?Breq = (λg : D (o→o→o). g · x · y)
proof −

from is-assg-ϕ ′′ have V (?ϕ ′′ g) (xo) = x and V (?ϕ ′′ g) (yo) = y
if g ∈ elts (D (o→o→o)) for g
using that and V-is-wff-denotation-function by auto

with side-eq-denotation show ?thesis
using wffs-of-type-intros(1) and vlambda-extensionality by fastforce

qed
qed
then show ?thesis

by auto
qed
also have . . . ←→ (∀ g ∈ elts (D (o→o→o)). g · T · T = g · x · y)

using vlambda-extensionality and VLambda-eq-D2 by fastforce
finally have and-eqv:
V ϕ (∧o→o→o) · x · y = T ←→ (∀ g ∈ elts (D (o→o→o)). g · T · T = g · x · y)
by blast

then show ?thesis
proof −

from assms(1 ,2) have is-assg-1 : ϕ((x, o) := T) ; D
by (simp add: truth-values-domain-def)

then have is-assg-2 : ϕ((x, o) := T, (y, o) := T) ; D

241

unfolding is-assignment-def by (metis fun-upd-apply prod.sel(2))
from assms consider (a) x = T ∧ y = T | (b) x 6= T | (c) y 6= T

by blast
then show ?thesis
proof cases

case a
then have g · T · T = g · x · y if g ∈ elts (D (o→o→o)) for g

by simp
with a and and-eqv show ?thesis

by simp
next

case b
let ?g-witness = λxo. λyo. xo
have λyo. xo ∈ wffso→o

by blast
then have is-closed-wff-of-type ?g-witness (o→o→o)

by force
moreover from assms have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
ultimately have V ϕ ?g-witness · T · T = V ?ϕ ′ ?g-witness · T · T

using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from assms and ‹λyo. xo ∈ wffso→o› have
V ?ϕ ′ ?g-witness · T · T = V (?ϕ ′((x, o) := T)) (λyo. xo) · T
using mixed-beta-conversion and truth-values-domain-def by auto

also from assms(1) and ‹λyo. xo ∈ wffso→o› and is-assg-1 and calculation have
. . . = V (?ϕ ′((x, o) := T, (y, o) := T)) (xo)
using mixed-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))

also have . . . = T
using is-assg-2 and V-is-wff-denotation-function by fastforce

finally have V ϕ ?g-witness · T · T = T .
with b have V ϕ ?g-witness · T · T 6= x

by blast
moreover have x = V ϕ ?g-witness · x · y
proof −

from is-assg-ϕ ′ have x = V ?ϕ ′ (xo)
using V-is-wff-denotation-function by auto

also from assms(2) and is-assg-ϕ ′ have . . . = V ?ϕ ′ (λyo. xo) · y
using wffs-of-type-intros(1)[where x = x and α = o]
by (simp add: mixed-beta-conversion V-is-wff-denotation-function)

also from assms(2) have . . . = V ?ϕ ′ ?g-witness · x · y
using is-assg-ϕ ′ and ‹λyo. xo ∈ wffso→o›
by (simp add: mixed-beta-conversion fun-upd-twist)

also from assms(1 ,2) have . . . = V ϕ ?g-witness · x · y
using is-assg-ϕ ′ and ‹is-closed-wff-of-type ?g-witness (o→o→o)›
and closed-wff-is-meaningful-regardless-of-assignment by metis

finally show ?thesis .
qed
moreover from assms(1 ,2) have V ϕ ?g-witness ∈ elts (D (o→o→o))

242

using ‹is-closed-wff-of-type ?g-witness (o→o→o)› and V-is-wff-denotation-function by simp
ultimately have ∃ g ∈ elts (D (o→o→o)). g · T · T 6= g · x · y

by auto
moreover from assms have V ϕ (∧o→o→o) · x · y ∈ elts (D o)

by (rule fully-applied-conj-fun-is-domain-respecting)
ultimately have V ϕ (∧o→o→o) · x · y = F

using and-eqv and truth-values-domain-def by fastforce
with b show ?thesis

by simp
next

case c
let ?g-witness = λxo. λyo. yo
have λyo. yo ∈ wffso→o

by blast
then have is-closed-wff-of-type ?g-witness (o→o→o)

by force
moreover from assms(1 ,2) have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
ultimately have V ϕ ?g-witness · T · T = V ?ϕ ′ ?g-witness · T · T

using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from is-assg-1 and is-assg-ϕ ′ have . . . = V (?ϕ ′((x, o) := T)) (λyo. yo) · T

using ‹λyo. yo ∈ wffso→o› and mixed-beta-conversion and truth-values-domain-def by auto
also from assms(1) and ‹λyo. yo ∈ wffso→o› and is-assg-1 and calculation have
. . . = V (?ϕ ′((x, o) := T, (y, o) := T)) (yo)
using mixed-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))

also have . . . = T
using is-assg-2 and V-is-wff-denotation-function by force

finally have V ϕ ?g-witness · T · T = T .
with c have V ϕ ?g-witness · T · T 6= y

by blast
moreover have y = V ϕ ?g-witness · x · y
proof −

from assms(2) and is-assg-ϕ ′ have y = V ?ϕ ′ (λyo. yo) · y
using wffs-of-type-intros(1)[where x = y and α = o]
and V-is-wff-denotation-function and mixed-beta-conversion by auto

also from assms(2) and ‹λyo. yo ∈ wffso→o› have . . . = V ?ϕ ′ ?g-witness · x · y
using is-assg-ϕ ′ by (simp add: mixed-beta-conversion fun-upd-twist)

also from assms(1 ,2) have . . . = V ϕ ?g-witness · x · y
using is-assg-ϕ ′ and ‹is-closed-wff-of-type ?g-witness (o→o→o)›
and closed-wff-is-meaningful-regardless-of-assignment by metis

finally show ?thesis .
qed
moreover from assms(1) have V ϕ ?g-witness ∈ elts (D (o→o→o))

using ‹is-closed-wff-of-type ?g-witness (o→o→o)› and V-is-wff-denotation-function by auto
ultimately have ∃ g ∈ elts (D (o→o→o)). g · T · T 6= g · x · y

by auto
moreover from assms have V ϕ (∧o→o→o) · x · y ∈ elts (D o)

by (rule fully-applied-conj-fun-is-domain-respecting)

243

ultimately have V ϕ (∧o→o→o) · x · y = F
using and-eqv and truth-values-domain-def by fastforce

with c show ?thesis
by simp

qed
qed

qed

corollary (in general-model) prop-5401-e ′:
assumes ϕ ; D
and A ∈ wffso and B ∈ wffso
shows V ϕ (A ∧Q B) = V ϕ A ∧ V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
from assms(2) have ∧o→o→o � A ∈ wffso→o

by blast
have V ϕ (A ∧Q B) = V ϕ (∧o→o→o � A � B)

by simp
also from assms have . . . = V ϕ (∧o→o→o � A) · V ϕ B

using V-is-wff-denotation-function and ‹∧o→o→o � A ∈ wffso→o› by blast
also from assms have . . . = V ϕ (∧o→o→o) · V ϕ A · V ϕ B

using V-is-wff-denotation-function and conj-fun-wff by fastforce
also from assms(1 ,2) have . . . = (if V ϕ A = T ∧ V ϕ B = T then T else F)

using ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› and prop-5401-e by simp
also have . . . = V ϕ A ∧ V ϕ B

using truth-values-domain-def and ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› by fastforce
finally show ?thesis .

qed

lemma (in general-model) prop-5401-f :
assumes ϕ ; D
and {x, y} ⊆ elts (D o)
shows V ϕ (⊃o→o→o) · x · y = (if x = T ∧ y = F then F else T)

proof −
let ?ϕ ′ = ϕ((x, o) := x, (y, o) := y)
from assms(2) have {x, y} ⊆ elts �

unfolding truth-values-domain-def .
have (xo ≡Q xo ∧Q yo) ∈ wffso

by blast
then have λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o

by blast
from assms have is-assg-ϕ ′: ?ϕ ′ ; D

by simp
from assms(1) have V ?ϕ ′ (xo) = x and V ?ϕ ′ (yo) = y

using is-assg-ϕ ′ and V-is-wff-denotation-function by force+
have V ϕ (⊃o→o→o) · x · y = V ϕ (λxo. λyo. (xo ≡Q xo ∧Q yo)) · x · y

by simp
also from assms have . . . = V (ϕ((x, o) := x)) (λyo. (xo ≡Q xo ∧Q yo)) · y

244

using ‹λyo. (xo ≡Q xo ∧Q yo) ∈ wffso→o› and mixed-beta-conversion by simp
also from assms have . . . = V ?ϕ ′ (xo ≡Q xo ∧Q yo)

using mixed-beta-conversion and ‹(xo ≡Q xo ∧Q yo) ∈ wffso› by simp
finally have V ϕ (⊃o→o→o) · x · y = T ←→ V ?ϕ ′ (xo) = V ?ϕ ′ (xo ∧Q yo)

using prop-5401-b ′[OF is-assg-ϕ ′] and conj-op-wff and wffs-of-type-intros(1) by simp
also have . . . ←→ x = x ∧ y

unfolding prop-5401-e ′[OF is-assg-ϕ ′ wffs-of-type-intros(1) wffs-of-type-intros(1)]
and ‹V ?ϕ ′ (xo) = x› and ‹V ?ϕ ′ (yo) = y› ..

also have . . . ←→ x = (if x = T ∧ y = T then T else F)
using ‹{x, y} ⊆ elts �› by auto

also have . . . ←→ T = (if x = T ∧ y = F then F else T)
using ‹{x, y} ⊆ elts �› by auto

finally show ?thesis
using assms and fully-applied-imp-fun-denotation-is-domain-respecting and tv-cases
and truth-values-domain-def by metis

qed

corollary (in general-model) prop-5401-f ′:
assumes ϕ ; D
and A ∈ wffso and B ∈ wffso
shows V ϕ (A ⊃Q B) = V ϕ A ⊃ V ϕ B

proof −
from assms have {V ϕ A, V ϕ B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
from assms(2) have ⊃o→o→o � A ∈ wffso→o

by blast
have V ϕ (A ⊃Q B) = V ϕ (⊃o→o→o � A � B)

by simp
also from assms(1 ,3) have . . . = V ϕ (⊃o→o→o � A) · V ϕ B

using V-is-wff-denotation-function and ‹⊃o→o→o � A ∈ wffso→o› by blast
also from assms have . . . = V ϕ (⊃o→o→o) · V ϕ A · V ϕ B

using V-is-wff-denotation-function and imp-fun-wff by fastforce
also from assms have . . . = (if V ϕ A = T ∧ V ϕ B = F then F else T)

using ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› and prop-5401-f by simp
also have . . . = V ϕ A ⊃ V ϕ B

using truth-values-domain-def and ‹{V ϕ A, V ϕ B} ⊆ elts (D o)› by auto
finally show ?thesis .

qed

lemma (in general-model) forall-denotation:
assumes ϕ ; D
and A ∈ wffso
shows V ϕ (∀ xα. A) = T ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T)

proof −
from assms(1) have lhs: V ϕ (λxα. To) · z = T if z ∈ elts (D α) for z

using prop-5401-c and mixed-beta-conversion and that and true-wff by simp
from assms have rhs: V ϕ (λxα. A) · z = V (ϕ((x, α) := z)) A if z ∈ elts (D α) for z

using that by (simp add: mixed-beta-conversion)
from assms(2) have λxα. To ∈ wffsα→o and λxα. A ∈ wffsα→o

245

by auto
have V ϕ (∀ xα. A) = V ϕ (

∏
α � (λxα. A))

unfolding forall-def ..
also have . . . = V ϕ (Qα→o � (λxα. To) � (λxα. A))

unfolding PI-def ..
also have . . . = V ϕ ((λxα. To) =α→o (λxα. A))

unfolding equality-of-type-def ..
finally have V ϕ (∀ xα. A) = V ϕ ((λxα. To) =α→o (λxα. A)) .
moreover from assms(1 ,2) have
V ϕ ((λxα. To) =α→o (λxα. A)) = T ←→ V ϕ (λxα. To) = V ϕ (λxα. A)
using ‹λxα. To ∈ wffsα→o› and ‹λxα. A ∈ wffsα→o› and prop-5401-b by blast

moreover
have (V ϕ (λxα. To) = V ϕ (λxα. A)) ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T)
proof

assume V ϕ (λxα. To) = V ϕ (λxα. A)
with lhs and rhs show ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T

by auto
next

assume ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T
moreover from assms have V ϕ (λxα. To) = (λz : D α. V (ϕ((x, α) := z)) To)

using wff-abs-denotation[OF V-is-wff-denotation-function] by blast
moreover from assms have V ϕ (λxα. A) = (λz : D α. V (ϕ((x, α) := z)) A)

using wff-abs-denotation[OF V-is-wff-denotation-function] by blast
ultimately show V ϕ (λxα. To) = V ϕ (λxα. A)

using lhs and vlambda-extensionality by fastforce
qed
ultimately show ?thesis

by (simp only:)
qed

lemma prop-5401-g:
assumes is-general-model M
and ϕ ;M M
and A ∈ wffso
shows M |=ϕ ∀ xα. A ←→ (∀ψ. ψ ;M M ∧ ψ ∼(x, α) ϕ −→ M |=ψ A)

proof −
obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast
with assms have
M |=ϕ ∀ xα. A
←→
∀ xα. A ∈ wffso ∧ is-general-model (D, J , V) ∧ ϕ ; D ∧ V ϕ (∀ xα. A) = T
by fastforce

also from assms and ‹M = (D, J , V)› have . . . ←→ (∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A =
T)

using general-model.forall-denotation by fastforce
also have . . . ←→ (∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A)

proof
assume ∗: ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T

246

{
fix ψ
assume ψ ; D and ψ ∼(x, α) ϕ
have V ψ A = T
proof −

have ∃ z ∈ elts (D α). ψ = ϕ((x, α) := z)
proof (rule ccontr)

assume ¬ (∃ z ∈ elts (D α). ψ = ϕ((x, α) := z))
with ‹ψ ∼(x, α) ϕ› have ∀ z ∈ elts (D α). ψ (x, α) 6= z

by fastforce
then have ψ (x, α) /∈ elts (D α)

by blast
moreover from assms(1) and ‹M = (D, J , V)› and ‹ψ ; D› have ψ (x, α) ∈ elts (D α)

using general-model-def and premodel-def and frame.is-assignment-def by auto
ultimately show False

by simp
qed
with ∗ show ?thesis

by fastforce
qed
with assms(1) and ‹M = (D, J , V)› have M |=ψ A

by simp
}
then show ∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A

by blast
next

assume ∗: ∀ψ. ψ ; D ∧ ψ ∼(x, α) ϕ −→ M |=ψ A
show ∀ z ∈ elts (D α). V (ϕ((x, α) := z)) A = T
proof

fix z
assume z ∈ elts (D α)
with assms(1 ,2) and ‹M = (D, J , V)› have ϕ((x, α) := z) ; D

using general-model-def and premodel-def and frame.is-assignment-def by auto
moreover have ϕ((x, α) := z) ∼(x, α) ϕ

by simp
ultimately have M |=ϕ((x, α) := z) A

using ∗ by blast
with assms(1) and ‹M = (D, J , V)› and ‹ϕ((x, α) := z) ; D› show V (ϕ((x, α) := z)) A =

T
by simp

qed
qed
finally show ?thesis

using ‹M = (D, J , V)›
by simp

qed

lemma (in general-model) axiom-1-validity-aux:

247

assumes ϕ ; D
shows V ϕ (go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo) = T (is V ϕ (?A ≡Q ?B) = T)

proof −
let ?M = (D, J , V)
from assms have ∗: is-general-model ?M ϕ ;M ?M

using general-model-axioms by blast+
have ?A ≡Q ?B ∈ wffso

using axioms.axiom-1 and axioms-are-wffs-of-type-o by blast
have lhs: V ϕ ?A = ϕ (g, o→o) · T ∧ ϕ (g, o→o) · F
proof −

have go→o � To ∈ wffso and go→o � Fo ∈ wffso
by blast+

with assms have V ϕ ?A = V ϕ (go→o � To) ∧ V ϕ (go→o � Fo)
using prop-5401-e ′ by simp

also from assms have . . . = ϕ (g, o→o) · V ϕ (To) ∧ ϕ (g, o→o) · V ϕ (Fo)
using wff-app-denotation[OF V-is-wff-denotation-function]
and wff-var-denotation[OF V-is-wff-denotation-function]
by (metis false-wff true-wff wffs-of-type-intros(1))

finally show ?thesis
using assms and prop-5401-c and prop-5401-d by simp

qed
have V ϕ (?A ≡Q ?B) = T
proof (cases ∀ z ∈ elts (D o). ϕ (g, o→o) · z = T)

case True
with assms have ϕ (g, o→o) · T = T and ϕ (g, o→o) · F = T

using truth-values-domain-def by auto
with lhs have V ϕ ?A = T ∧ T

by (simp only:)
also have . . . = T

by simp
finally have V ϕ ?A = T .
moreover have V ϕ ?B = T
proof −

have go→o � xo ∈ wffso
by blast

moreover
{

fix ψ
assume ψ ; D and ψ ∼(x, o) ϕ
with assms have V ψ (go→o � xo) = V ψ (go→o) · V ψ (xo)

using V-is-wff-denotation-function by blast
also from ‹ψ ; D› have . . . = ψ (g, o→o) · ψ (x, o)

using V-is-wff-denotation-function by auto
also from ‹ψ ∼(x, o) ϕ› have . . . = ϕ (g, o→o) · ψ (x, o)

by simp
also from True and ‹ψ ; D› have . . . = T

by blast
finally have V ψ (go→o � xo) = T .
with assms and ‹go→o � xo ∈ wffso› have ?M |=ψ go→o � xo

248

by simp
}
ultimately have ?M |=ϕ ?B

using assms and ∗ and prop-5401-g by auto
with ∗(2) show ?thesis

by simp
qed
ultimately show ?thesis

using assms and prop-5401-b ′ and wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] by simp
next

case False
then have ∃ z ∈ elts (D o). ϕ (g, o→o) · z 6= T

by blast
moreover from ∗ have ∀ z ∈ elts (D o). ϕ (g, o→o) · z ∈ elts (D o)

using app-is-domain-respecting by blast
ultimately obtain z where z ∈ elts (D o) and ϕ (g, o→o) · z = F

using truth-values-domain-def by auto
define ψ where ψ-def : ψ = ϕ((x, o) := z)
with ∗ and ‹z ∈ elts (D o)› have ψ ; D

by simp
then have V ψ (go→o � xo) = V ψ (go→o) · V ψ (xo)

using V-is-wff-denotation-function by blast
also from ‹ψ ; D› have . . . = ψ (g, o→o) · ψ (x, o)

using V-is-wff-denotation-function by auto
also from ψ-def have . . . = ϕ (g, o→o) · z

by simp
also have . . . = F

unfolding ‹ϕ (g, o→o) · z = F› ..
finally have V ψ (go→o � xo) = F .
with ‹ψ ; D› have ¬ ?M |=ψ go→o � xo

by (auto simp add: inj-eq)
with ‹ψ ; D› and ψ-def have ¬ (∀ψ. ψ ; D ∧ ψ ∼(x, o) ϕ −→ ?M |=ψ go→o � xo)

using fun-upd-other by fastforce
with ‹¬ ?M |=ψ go→o � xo› have ¬ ?M |=ϕ ?B
using prop-5401-g[OF ∗ wffs-from-forall[OF wffs-from-equivalence(2)[OF ‹?A ≡Q ?B ∈ wffso›]]]
by blast

then have V ϕ (∀ xo. go→o � xo) 6= T
by simp

moreover from assms have V ϕ ?B ∈ elts (D o)
using wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] and V-is-wff-denotation-function by auto

ultimately have V ϕ ?B = F
by (simp add: truth-values-domain-def)

moreover have V ϕ (go→o � To ∧Q go→o � Fo) = F
proof −

from ‹z ∈ elts (D o)› and ‹ϕ (g, o→o) · z = F›
have ((ϕ (g, o→o)) · T) = F ∨ ((ϕ (g, o→o)) · F) = F

using truth-values-domain-def by fastforce
moreover from ‹z ∈ elts (D o)› and ‹ϕ (g, o→o) · z = F›

and ‹∀ z ∈ elts (D o). ϕ (g, o→o) · z ∈ elts (D o)›

249

have {(ϕ (g, o→o)) · T, (ϕ (g, o→o)) · F} ⊆ elts (D o)
by (simp add: truth-values-domain-def)

ultimately have ((ϕ (g, o→o)) · T) ∧ ((ϕ (g, o→o)) · F) = F
by auto

with lhs show ?thesis
by (simp only:)

qed
ultimately show ?thesis

using assms and prop-5401-b ′ and wffs-from-equivalence[OF ‹?A ≡Q ?B ∈ wffso›] by simp
qed
then show ?thesis .

qed

lemma axiom-1-validity:
shows |= go→o � To ∧Q go→o � Fo ≡Q ∀ xo. go→o � xo (is |= ?A ≡Q ?B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ≡Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ≡Q ?B) = T
using general-model.axiom-1-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-2-validity-aux:
assumes ϕ ; D
shows V ϕ ((xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα)) = T (is V ϕ (?A ⊃Q ?B) = T)

proof −
have ?A ⊃Q ?B ∈ wffso

using axioms.axiom-2 and axioms-are-wffs-of-type-o by blast
from ‹?A ⊃Q ?B ∈ wffso› have ?A ∈ wffso and ?B ∈ wffso

using wffs-from-imp-op by blast+
with assms have V ϕ (?A ⊃Q ?B) = V ϕ ?A ⊃ V ϕ ?B

using prop-5401-f ′ by simp
moreover from assms and ‹?A ∈ wffso› and ‹?B ∈ wffso› have {V ϕ ?A, V ϕ ?B} ⊆ elts (D o)

using V-is-wff-denotation-function by simp
then have {V ϕ ?A, V ϕ ?B} ⊆ elts �

by (simp add: truth-values-domain-def)
ultimately have V-imp-T : V ϕ (?A ⊃Q ?B) = T ←→ V ϕ ?A = F ∨ V ϕ ?B = T

by fastforce
then show ?thesis
proof (cases ϕ (x, α) = ϕ (y, α))

case True
from assms and ‹?B ∈ wffso› have V ϕ ?B = T ←→ V ϕ (hα→o � xα) = V ϕ (hα→o � yα)

250

using wffs-from-equivalence and prop-5401-b ′ by metis
moreover have V ϕ (hα→o � xα) = V ϕ (hα→o � yα)
proof −

from assms and ‹?B ∈ wffso› have V ϕ (hα→o � xα) = V ϕ (hα→o) · V ϕ (xα)
using V-is-wff-denotation-function by blast

also from assms have . . . = ϕ (h, α→o) · ϕ (x, α)
using V-is-wff-denotation-function by auto

also from True have . . . = ϕ (h, α→o) · ϕ (y, α)
by (simp only:)

also from assms have . . . = V ϕ (hα→o) · V ϕ (yα)
using V-is-wff-denotation-function by auto

also from assms and ‹?B ∈ wffso› have . . . = V ϕ (hα→o � yα)
using wff-app-denotation[OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))

finally show ?thesis .
qed
ultimately show ?thesis

using V-imp-T by simp
next

case False
from assms have V ϕ ?A = T ←→ V ϕ (xα) = V ϕ (yα)

using prop-5401-b by blast
moreover from False and assms have V ϕ (xα) 6= V ϕ (yα)

using V-is-wff-denotation-function by auto
ultimately have V ϕ ?A = F

using assms and ‹{V ϕ ?A, V ϕ ?B} ⊆ elts �› by simp
then show ?thesis

using V-imp-T by simp
qed

qed

lemma axiom-2-validity:
shows |= (xα =α yα) ⊃Q (hα→o � xα ≡Q hα→o � yα) (is |= ?A ⊃Q ?B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ⊃Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ⊃Q ?B) = T
using general-model.axiom-2-validity-aux by simp

ultimately show ?thesis
by force

qed
qed

lemma (in general-model) axiom-3-validity-aux:
assumes ϕ ; D
shows V ϕ ((fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα)) = T

251

(is V ϕ (?A ≡Q ?B) = T)
proof −

let ?M = (D, J , V)
from assms have ∗: is-general-model ?M ϕ ;M ?M

using general-model-axioms by blast+
have B ′-wffo: fα→β � xα =β gα→β � xα ∈ wffso

by blast
have ?A ≡Q ?B ∈ wffso and ?A ∈ wffso and ?B ∈ wffso
proof −

show ?A ≡Q ?B ∈ wffso
using axioms.axiom-3 and axioms-are-wffs-of-type-o
by blast

then show ?A ∈ wffso and ?B ∈ wffso
by (blast dest: wffs-from-equivalence)+

qed
have V ϕ ?A = V ϕ ?B
proof (cases ϕ (f, α→β) = ϕ (g, α→β))

case True
have V ϕ ?A = T
proof −

from assms have V ϕ (fα→β) = ϕ (f, α→β)
using V-is-wff-denotation-function by auto

also from True have . . . = ϕ (g, α→β)
by (simp only:)

also from assms have . . . = V ϕ (gα→β)
using V-is-wff-denotation-function by auto

finally have V ϕ (fα→β) = V ϕ (gα→β) .
with assms show ?thesis

using prop-5401-b by blast
qed
moreover have V ϕ ?B = T
proof −

{
fix ψ
assume ψ ; D and ψ ∼(x, α) ϕ
from assms and ‹ψ ; D› have V ψ (fα→β � xα) = V ψ (fα→β) · V ψ (xα)

using V-is-wff-denotation-function by blast
also from assms and ‹ψ ; D› have . . . = ψ (f, α→β) · ψ (x, α)

using V-is-wff-denotation-function by auto
also from ‹ψ ∼(x, α) ϕ› have . . . = ϕ (f, α→β) · ψ (x, α)

by simp
also from True have . . . = ϕ (g, α→β) · ψ (x, α)

by (simp only:)
also from ‹ψ ∼(x, α) ϕ› have . . . = ψ (g, α→β) · ψ (x, α)

by simp
also from assms and ‹ψ ; D› have . . . = V ψ (gα→β) · V ψ (xα)

using V-is-wff-denotation-function by auto
also from assms and ‹ψ ; D› have . . . = V ψ (gα→β � xα)

using wff-app-denotation[OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))

252

finally have V ψ (fα→β � xα) = V ψ (gα→β � xα) .
with B ′-wffo and assms and ‹ψ ; D› have V ψ (fα→β � xα =β gα→β � xα) = T

using prop-5401-b and wffs-from-equality by blast
with ∗(2) have ?M |=ψ fα→β � xα =β gα→β � xα

by simp
}
with ∗ and B ′-wffo have ?M |=ϕ ?B

using prop-5401-g by force
with ∗(2) show ?thesis

by auto
qed
ultimately show ?thesis ..

next
case False
from ∗ have ϕ (f, α→β) ∈ elts (D α 7−→ D β) and ϕ (g, α→β) ∈ elts (D α 7−→ D β)

by (simp-all add: function-domainD)
with False obtain z where z ∈ elts (D α) and ϕ (f, α→β) · z 6= ϕ (g, α→β) · z

by (blast dest: fun-ext)
define ψ where ψ = ϕ((x, α) := z)
from ∗ and ‹z ∈ elts (D α)› have ψ ; D and ψ ∼(x, α) ϕ

unfolding ψ-def by fastforce+
have V ψ (fα→β � xα) = ϕ (f , α→β) · z for f
proof −

from ‹ψ ; D› have V ψ (fα→β � xα) = V ψ (fα→β) · V ψ (xα)
using V-is-wff-denotation-function by blast

also from ‹ψ ; D› have . . . = ψ (f , α→β) · ψ (x, α)
using V-is-wff-denotation-function by auto

finally show ?thesis
unfolding ψ-def by simp

qed
then have V ψ (fα→β � xα) = ϕ (f, α→β) · z and V ψ (gα→β � xα) = ϕ (g, α→β) · z

by (simp-all only:)
with ‹ϕ (f, α→β) · z 6= ϕ (g, α→β) · z› have V ψ (fα→β � xα) 6= V ψ (gα→β � xα)

by simp
then have V ψ (fα→β � xα =β gα→β � xα) = F
proof −

from B ′-wffo and ‹ψ ; D› and ∗ have V ψ (fα→β � xα =β gα→β � xα) ∈ elts (D o)
using V-is-wff-denotation-function by auto

moreover from B ′-wffo have {fα→β � xα, gα→β � xα} ⊆ wffsβ
by blast

with ‹ψ ; D› and ‹V ψ (fα→β � xα) 6= V ψ (gα→β � xα)› and B ′-wffo
have V ψ (fα→β � xα =β gα→β � xα) 6= T

using prop-5401-b by simp
ultimately show ?thesis

by (simp add: truth-values-domain-def)
qed
with ‹ψ ; D› have ¬ ?M |=ψ fα→β � xα =β gα→β � xα

by (auto simp add: inj-eq)
with ‹ψ ; D› and ‹ψ ∼(x, α) ϕ›

253

have ∃ψ. ψ ; D ∧ ψ ∼(x, α) ϕ ∧ ¬ ?M |=ψ fα→β � xα =β gα→β � xα
by blast

with ∗ and B ′-wffo have ¬ ?M |=ϕ ?B
using prop-5401-g by blast

then have V ϕ ?B = F
proof −

from ‹?B ∈ wffso› and ∗ have V ϕ ?B ∈ elts (D o)
using V-is-wff-denotation-function by auto

with ‹¬ ?M |=ϕ ?B› and ‹?B ∈ wffso› show ?thesis
using truth-values-domain-def by fastforce

qed
moreover have V ϕ (fα→β =α→β gα→β) = F
proof −

from ∗ have V ϕ (fα→β) = ϕ (f, α→β) and V ϕ (gα→β) = ϕ (g, α→β)
using V-is-wff-denotation-function by auto

with False have V ϕ (fα→β) 6= V ϕ (gα→β)
by simp

with ∗ have V ϕ (fα→β =α→β gα→β) 6= T
using prop-5401-b by blast

moreover from ∗ and ‹?A ∈ wffso› have V ϕ (fα→β =α→β gα→β) ∈ elts (D o)
using V-is-wff-denotation-function by auto

ultimately show ?thesis
by (simp add: truth-values-domain-def)

qed
ultimately show ?thesis

by (simp only:)
qed
with ∗ and ‹?A ∈ wffso› and ‹?B ∈ wffso› show ?thesis

using prop-5401-b ′ by simp
qed

lemma axiom-3-validity:
shows |= (fα→β =α→β gα→β) ≡Q ∀ xα. (fα→β � xα =β gα→β � xα) (is |= ?A ≡Q ?B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A ≡Q ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (?A ≡Q ?B) = T
using general-model.axiom-3-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-1-con-validity-aux:
assumes ϕ ; D

254

and A ∈ wffsα
shows V ϕ ((λxα. {|c|}β) � A =β {|c|}β) = T

proof −
from assms(2) have (λxα. {|c|}β) � A =β {|c|}β ∈ wffso

using axioms.axiom-4-1-con and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms have V ϕ ((λxα. {|c|}β) � A) = V (ϕ((x, α) := V ϕ A)) ({|c|}β)

using prop-5401-a by blast
also have . . . = V ψ ({|c|}β)

unfolding ψ-def ..
also from assms and ψ-def have . . . = V ϕ ({|c|}β)

using V-is-wff-denotation-function by auto
finally have V ϕ ((λxα. {|c|}β) � A) = V ϕ ({|c|}β) .
with assms(1) and ‹(λxα. {|c|}β) � A =β {|c|}β ∈ wffso› show ?thesis

using wffs-from-equality(1) and prop-5401-b by blast
qed

lemma axiom-4-1-con-validity:
assumes A ∈ wffsα
shows |= (λxα. {|c|}β) � A =β {|c|}β

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. {|c|}β) � A =β {|c|}β
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. {|c|}β) � A =β {|c|}β) = T
using general-model.axiom-4-1-con-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-1-var-validity-aux:
assumes ϕ ; D
and A ∈ wffsα
and (y, β) 6= (x, α)
shows V ϕ ((λxα. yβ) � A =β yβ) = T

proof −
from assms(2) have (λxα. yβ) � A =β yβ ∈ wffso

using axioms.axiom-4-1-var and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms(1 ,2) have V ϕ ((λxα. yβ) � A) = V (ϕ((x, α) := V ϕ A)) (yβ)

using prop-5401-a by blast
also have . . . = V ψ (yβ)

unfolding ψ-def ..
also have . . . = V ϕ (yβ)
proof −

255

from assms(1 ,2) have V ϕ A ∈ elts (D α)
using V-is-wff-denotation-function by auto

with ψ-def and assms(1) have ψ ; D
by simp

moreover have free-vars (yβ) = {(y, β)}
by simp

with ψ-def and assms(3) have ∀ v ∈ free-vars (yβ). ϕ v = ψ v
by auto

ultimately show ?thesis
using prop-5400 [OF wffs-of-type-intros(1) assms(1)] by simp

qed
finally have V ϕ ((λxα. yβ) � A) = V ϕ (yβ) .
with ‹(λxα. yβ) � A =β yβ ∈ wffso› show ?thesis

using wffs-from-equality(1) and prop-5401-b[OF assms(1)] by blast
qed

lemma axiom-4-1-var-validity:
assumes A ∈ wffsα
and (y, β) 6= (x, α)
shows |= (λxα. yβ) � A =β yβ

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. yβ) � A =β yβ
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. yβ) � A =β yβ) = T
using general-model.axiom-4-1-var-validity-aux by auto

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-2-validity-aux:
assumes ϕ ; D
and A ∈ wffsα
shows V ϕ ((λxα. xα) � A =α A) = T

proof −
from assms(2) have (λxα. xα) � A =α A ∈ wffso

using axioms.axiom-4-2 and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms have V ϕ ((λxα. xα) � A) = V ψ (xα)

using prop-5401-a by blast
also from assms and ψ-def have . . . = ψ (x, α)

using V-is-wff-denotation-function by force
also from ψ-def have . . . = V ϕ A

by simp
finally have V ϕ ((λxα. xα) � A) = V ϕ A .

256

with assms(1) and ‹(λxα. xα) � A =α A ∈ wffso› show ?thesis
using wffs-from-equality and prop-5401-b by meson

qed

lemma axiom-4-2-validity:
assumes A ∈ wffsα
shows |= (λxα. xα) � A =α A

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. xα) � A =α A
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. xα) � A =α A) = T
using general-model.axiom-4-2-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-3-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
shows V ϕ ((λxα. B � C) � A =β ((λxα. B) � A) � ((λxα. C) � A)) = T
(is V ϕ (?A =β ?B) = T)

proof −
from assms(2−4) have ?A =β ?B ∈ wffso

using axioms.axiom-4-3 and axioms-are-wffs-of-type-o by blast
define ψ where ψ = ϕ((x, α) := V ϕ A)
with assms(1 ,2) have ψ ; D

using V-is-wff-denotation-function by auto
from assms and ψ-def have V ϕ ?A = V ψ (B � C)

using prop-5401-a by blast
also from assms(3 ,4) and ψ-def and ‹ψ ; D› have . . . = V ψ B · V ψ C

using V-is-wff-denotation-function by blast
also from assms(1−3) and ψ-def have . . . = V ϕ ((λxα. B) � A) · V ψ C

using prop-5401-a by simp
also from assms(1 ,2 ,4) and ψ-def have . . . = V ϕ ((λxα. B) � A) · V ϕ ((λxα. C) � A)

using prop-5401-a by simp
also have . . . = V ϕ ?B
proof −

have (λxα. B) � A ∈ wffsγ→β and (λxα. C) � A ∈ wffsγ
using assms(2−4) by blast+

with assms(1) show ?thesis
using wff-app-denotation[OF V-is-wff-denotation-function] by simp

qed
finally have V ϕ ?A = V ϕ ?B .
with assms(1) and ‹?A =β ?B ∈ wffso› show ?thesis

257

using prop-5401-b and wffs-from-equality by meson
qed

lemma axiom-4-3-validity:
assumes A ∈ wffsα and B ∈ wffsγ→β and C ∈ wffsγ
shows |= (λxα. B � C) � A =β ((λxα. B) � A) � ((λxα. C) � A) (is |= ?A =β ?B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A =β ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ (?A =β ?B) = T
using general-model.axiom-4-3-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-4-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsδ
and (y, γ) /∈ {(x, α)} ∪ vars A
shows V ϕ ((λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A)) = T
(is V ϕ (?A =γ→δ ?B) = T)

proof −
from assms(2 ,3) have ?A =γ→δ ?B ∈ wffso

using axioms.axiom-4-4 and axioms-are-wffs-of-type-o by blast
let ?D = λyγ . B
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms(1 ,2) and ψ-def have ψ ; D

using V-is-wff-denotation-function by simp
{

fix z
assume z ∈ elts (D γ)
define ϕ ′ where ϕ ′ = ϕ((y, γ) := z)
from assms(1) and ‹z ∈ elts (D γ)› and ϕ ′-def have ϕ ′ ; D

by simp
moreover from ϕ ′-def and assms(4) have ∀ v ∈ free-vars A. ϕ v = ϕ ′ v

using free-vars-in-all-vars by auto
ultimately have V ϕ A = V ϕ ′ A

using assms(1 ,2) and prop-5400 by blast
with ψ-def and ϕ ′-def and assms(4) have ϕ ′((x, α) := V ϕ ′ A) = ψ((y, γ) := z)

by auto
with ‹ψ ; D› and ‹z ∈ elts (D γ)› and assms(3) have V ψ ?D · z = V (ψ((y, γ) := z)) B

by (simp add: mixed-beta-conversion)
also from ‹ϕ ′ ; D› and assms(2 ,3) have . . . = V ϕ ′ ((λxα. B) � A)

using prop-5401-a and ‹ϕ ′((x, α) := V ϕ ′ A) = ψ((y, γ) := z)› by simp

258

also from ϕ ′-def and assms(1) and ‹z ∈ elts (D γ)› and ‹?A =γ→δ ?B ∈ wffso›
have . . . = V ϕ ?B · z

by (metis mixed-beta-conversion wffs-from-abs wffs-from-equality(2))
finally have V ψ ?D · z = V ϕ ?B · z .

}
note ∗ = this
then have V ψ ?D = V ϕ ?B
proof −

from ‹ψ ; D› and assms(3) have V ψ ?D = (λz : D γ. V (ψ((y, γ) := z)) B)
using wff-abs-denotation[OF V-is-wff-denotation-function] by simp

moreover from assms(1) have V ϕ ?B = (λz : D γ. V (ϕ((y, γ) := z)) ((λxα. B) � A))
using wffs-from-abs[OF wffs-from-equality(2)[OF ‹?A =γ→δ ?B ∈ wffso›]]
and wff-abs-denotation[OF V-is-wff-denotation-function] by meson

ultimately show ?thesis
using vlambda-extensionality and ∗ by fastforce

qed
with assms(1−3) and ψ-def have V ϕ ?A = V ϕ ?B

using prop-5401-a and wffs-of-type-intros(4) by metis
with assms(1) show ?thesis

using prop-5401-b and wffs-from-equality[OF ‹?A =γ→δ ?B ∈ wffso›] by blast
qed

lemma axiom-4-4-validity:
assumes A ∈ wffsα and B ∈ wffsδ
and (y, γ) /∈ {(x, α)} ∪ vars A
shows |= (λxα. λyγ . B) � A =γ→δ (λyγ . (λxα. B) � A) (is |= ?A =γ→δ ?B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ?A =γ→δ ?B
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from assms and ∗ and ‹M = (D, J , V)› have V ϕ (?A =γ→δ ?B) = T
using general-model.axiom-4-4-validity-aux by blast

ultimately show ?thesis
by simp

qed
qed

lemma (in general-model) axiom-4-5-validity-aux:
assumes ϕ ; D
and A ∈ wffsα and B ∈ wffsδ
shows V ϕ ((λxα. λxα. B) � A =α→δ (λxα. B)) = T

proof −
define ψ where ψ = ϕ((x, α) := V ϕ A)
from assms have wff : (λxα. λxα. B) � A =α→δ (λxα. B) ∈ wffso

using axioms.axiom-4-5 and axioms-are-wffs-of-type-o by blast
with assms(1 ,2) and ψ-def have V ϕ ((λxα. λxα. B) � A) = V ψ (λxα. B)

259

using prop-5401-a and wffs-from-equality(2) by blast
also have . . . = V ϕ (λxα. B)
proof −

have (x, α) /∈ free-vars (λxα. B)
by simp

with ψ-def have ∀ v ∈ free-vars (λxα. B). ϕ v = ψ v
by simp

moreover from ψ-def and assms(1 ,2) have ψ ; D
using V-is-wff-denotation-function by simp

moreover from assms(2 ,3) have (λxα. B) ∈ wffsα→δ
by fastforce

ultimately show ?thesis
using assms(1) and prop-5400 by metis

qed
finally have V ϕ ((λxα. λxα. B) � A) = V ϕ (λxα. B) .
with wff and assms(1) show ?thesis

using prop-5401-b and wffs-from-equality by meson
qed

lemma axiom-4-5-validity:
assumes A ∈ wffsα and B ∈ wffsδ
shows |= (λxα. λxα. B) � A =α→δ (λxα. B)

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ (λxα. λxα. B) � A =α→δ (λxα. B)
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover
from assms and ∗ and ‹M = (D, J , V)› have V ϕ ((λxα. λxα. B) � A =α→δ (λxα. B)) = T

using general-model.axiom-4-5-validity-aux by blast
ultimately show ?thesis

by simp
qed

qed

lemma (in general-model) axiom-5-validity-aux:
assumes ϕ ; D
shows V ϕ (ι � (Qi � yi) =i yi) = T

proof −
have ι � (Qi � yi) =i yi ∈ wffso

using axioms.axiom-5 and axioms-are-wffs-of-type-o by blast
have Qi � yi ∈ wffsi→o

by blast
with assms have V ϕ (ι � (Qi � yi)) = V ϕ ι · V ϕ (Qi � yi)

using V-is-wff-denotation-function by blast
also from assms have . . . = V ϕ ι · (V ϕ (Qi) · V ϕ (yi))

using wff-app-denotation[OF V-is-wff-denotation-function] by (metis Q-wff wffs-of-type-intros(1))

260

also from assms have . . . = J (cι, (i→o)→i) · (J (cQ, i→i→o) · V ϕ (yi))
using V-is-wff-denotation-function by auto

also from assms have . . . = J (cι, (i→o)→i) · ((qiD) · V ϕ (yi))
using Q-constant-of-type-def and Q-denotation by simp

also from assms have . . . = J (cι, (i→o)→i) · {V ϕ (yi)}iD
using V-is-wff-denotation-function by auto

finally have V ϕ (ι � (Qi � yi)) = J (cι, (i→o)→i) · {V ϕ (yi)}iD .
moreover from assms have J (cι, (i→o)→i) · {V ϕ (yi)}iD = V ϕ (yi)

using V-is-wff-denotation-function and ι-denotation by force
ultimately have V ϕ (ι � (Qi � yi)) = V ϕ (yi)

by (simp only:)
with assms and ‹Qi � yi ∈ wffsi→o› show ?thesis

using prop-5401-b by blast
qed

lemma axiom-5-validity:
shows |= ι � (Qi � yi) =i yi

proof (intro allI impI)
fix M and ϕ
assume ∗: is-general-model M ϕ ;M M
show M |=ϕ ι � (Qi � yi) =i yi
proof −

obtain D and J and V where M = (D, J , V)
using prod-cases3 by blast

moreover from ∗ and ‹M = (D, J , V)› have V ϕ (ι � (Qi � yi) =i yi) = T
using general-model.axiom-5-validity-aux by simp

ultimately show ?thesis
by simp

qed
qed

lemma axioms-validity:
assumes A ∈ axioms
shows |= A
using assms
and axiom-1-validity
and axiom-2-validity
and axiom-3-validity
and axiom-4-1-con-validity
and axiom-4-1-var-validity
and axiom-4-2-validity
and axiom-4-3-validity
and axiom-4-4-validity
and axiom-4-5-validity
and axiom-5-validity
by cases auto

lemma (in general-model) rule-R-validity-aux:
assumes A ∈ wffsα and B ∈ wffsα

261

and ∀ϕ. ϕ ; D −→ V ϕ A = V ϕ B
and C ∈ wffsβ and C ′ ∈ wffsβ
and p ∈ positions C and A �p C and C 〈|p ← B|〉 � C ′

shows ∀ϕ. ϕ ; D −→ V ϕ C = V ϕ C ′

proof −
from assms(8 ,3−5 ,7) show ?thesis
proof (induction arbitrary: β)

case pos-found
then show ?case

by simp
next

case (replace-left-app p G B ′ G ′ H)
show ?case
proof (intro allI impI)

fix ϕ
assume ϕ ; D
from ‹G � H ∈ wffsβ› obtain γ where G ∈ wffsγ→β and H ∈ wffsγ

by (rule wffs-from-app)
with ‹G ′ � H ∈ wffsβ› have G ′ ∈ wffsγ→β

by (metis wff-has-unique-type wffs-from-app)
from assms(1) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ∈ wffsγ›
have V ϕ (G � H) = V ϕ G · V ϕ H

using V-is-wff-denotation-function by blast
also from ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹G ′ ∈ wffsγ→β› have . . . = V ϕ G ′ · V ϕ H

using replace-left-app.IH and replace-left-app.prems(1 ,4) by simp
also from assms(1) and ‹ϕ ; D› and ‹G ′ ∈ wffsγ→β› and ‹H ∈ wffsγ›
have . . . = V ϕ (G ′ � H)

using V-is-wff-denotation-function by fastforce
finally show V ϕ (G � H) = V ϕ (G ′ � H) .

qed
next

case (replace-right-app p H B ′ H ′ G)
show ?case
proof (intro allI impI)

fix ϕ
assume ϕ ; D
from ‹G � H ∈ wffsβ› obtain γ where G ∈ wffsγ→β and H ∈ wffsγ

by (rule wffs-from-app)
with ‹G � H ′ ∈ wffsβ› have H ′ ∈ wffsγ

using wff-has-unique-type and wffs-from-app by (metis type.inject)
from assms(1) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ∈ wffsγ›
have V ϕ (G � H) = V ϕ G · V ϕ H

using V-is-wff-denotation-function by blast
also from ‹ϕ ; D› and ‹H ∈ wffsγ› and ‹H ′ ∈ wffsγ› have . . . = V ϕ G · V ϕ H ′

using replace-right-app.IH and replace-right-app.prems(1 ,4) by force
also from assms(1) and ‹ϕ ; D› and ‹G ∈ wffsγ→β› and ‹H ′ ∈ wffsγ›
have . . . = V ϕ (G � H ′)

using V-is-wff-denotation-function by fastforce

262

finally show V ϕ (G � H) = V ϕ (G � H ′) .
qed

next
case (replace-abs p E B ′ E ′ x γ)
show ?case
proof (intro allI impI)

fix ϕ
assume ϕ ; D
define ψ where ψ z = ϕ((x, γ) := z) for z
with ‹ϕ ; D› have ψ-assg: ψ z ; D if z ∈ elts (D γ) for z

by (simp add: that)
from ‹λxγ . E ∈ wffsβ› obtain δ where β = γ→δ and E ∈ wffsδ

by (rule wffs-from-abs)
with ‹λxγ . E ′ ∈ wffsβ› have E ′ ∈ wffsδ

using wffs-from-abs by blast
from assms(1) and ‹ϕ ; D› and ‹E ∈ wffsδ› and ψ-def
have V ϕ (λxγ . E) = (λz : D γ. V (ψ z) E)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
also have . . . = (λz : D γ. V (ψ z) E ′)
proof (intro vlambda-extensionality)

fix z
assume z ∈ elts (D γ)
from ‹E ∈ wffsδ› and ‹E ′ ∈ wffsδ› have ∀ϕ. ϕ ; D −→ V ϕ E = V ϕ E ′

using replace-abs.prems(1 ,4) and replace-abs.IH by simp
with ψ-assg and ‹z ∈ elts (D γ)› show V (ψ z) E = V (ψ z) E ′

by simp
qed
also from assms(1) and ‹ϕ ; D› and ‹E ′ ∈ wffsδ› and ψ-def
have . . . = V ϕ (λxγ . E ′)

using wff-abs-denotation[OF V-is-wff-denotation-function] by simp
finally show V ϕ (λxγ . E) = V ϕ (λxγ . E ′) .

qed
qed

qed

lemma rule-R-validity:
assumes C ∈ wffso and C ′ ∈ wffso and E ∈ wffso
and |= C and |= E
and is-rule-R-app p C ′ C E
shows |= C ′

proof (intro allI impI)
fix M and ϕ
assume is-general-model M and ϕ ;M M
show M |=ϕ C ′

proof −
have M |= C ′

proof −
obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast

263

from assms(6) obtain A and B and α where A ∈ wffsα and B ∈ wffsα and E = A =α B
using wffs-from-equality by (meson is-rule-R-app-def)

note ∗ = ‹is-general-model M› ‹M = (D, J , V)› ‹ϕ ;M M›
have V ϕ ′ C = V ϕ ′ C ′ if ϕ ′ ; D for ϕ ′

proof −
from assms(5) and ∗(1 ,2) and ‹A ∈ wffsα› and ‹B ∈ wffsα› and ‹E = A =α B› and that
have ∀ϕ ′. ϕ ′ ; D −→V ϕ ′ A = V ϕ ′ B

using general-model.prop-5401-b by blast
moreover
from ‹E = A =α B› and assms(6) have p ∈ positions C and A �p C and C 〈|p ← B|〉 � C ′

using is-subform-implies-in-positions by auto
ultimately show ?thesis

using ‹A ∈ wffsα› and ‹B ∈ wffsα› and ‹C ∈ wffso› and assms(2) and that and ∗(1 ,2)
and general-model.rule-R-validity-aux by blast

qed
with assms(4) and ∗(1 ,2) show ?thesis

by simp
qed
with ‹ϕ ;M M› show ?thesis

by blast
qed

qed

lemma individual-proof-step-validity:
assumes is-proof S and A ∈ lset S
shows |= A

using assms proof (induction length S arbitrary: S A rule: less-induct)
case less
from ‹A ∈ lset S› obtain i ′ where S ! i ′ = A and S 6= [] and i ′ < length S

by (metis empty-iff empty-set in-set-conv-nth)
with ‹is-proof S› have is-proof (take (Suc i ′) S) and take (Suc i ′) S 6= []

using proof-prefix-is-proof [where S1 = take (Suc i ′) S and S2 = drop (Suc i ′) S]
and append-take-drop-id by simp-all

from ‹i ′ < length S› consider (a) i ′ < length S − 1 | (b) i ′ = length S − 1
by fastforce

then show ?case
proof cases

case a
then have length (take (Suc i ′) S) < length S

by simp
with ‹S ! i ′ = A› and ‹take (Suc i ′) S 6= []› have A ∈ lset (take (Suc i ′) S)

by (simp add: take-Suc-conv-app-nth)
with ‹length (take (Suc i ′) S) < length S› and ‹is-proof (take (Suc i ′) S)› show ?thesis

using less(1) by blast
next

case b
with ‹S ! i ′ = A› and ‹S 6= []› have last S = A

using last-conv-nth by blast
with ‹is-proof S› and ‹S 6= []› and b have is-proof-step S i ′

264

using added-suffix-proof-preservation[where S ′ = []] by simp
then consider
(axiom) S ! i ′ ∈ axioms
| (rule-R) ∃ p j k. {j, k} ⊆ {0 ..<i ′} ∧ is-rule-R-app p (S ! i ′) (S ! j) (S ! k)

by fastforce
then show ?thesis
proof cases

case axiom
with ‹S ! i ′ = A› show ?thesis

by (blast dest: axioms-validity)
next

case rule-R
then obtain p and j and k

where {j, k} ⊆ {0 ..<i ′} and is-rule-R-app p (S ! i ′) (S ! j) (S ! k)
by blast

let ?Sj = take (Suc j) S and ?Sk = take (Suc k) S
obtain Sj ′ and Sk ′ where S = ?Sj @ Sj ′ and S = ?Sk @ Sk ′

by (metis append-take-drop-id)
with ‹is-proof S› have is-proof (?Sj @ Sj ′) and is-proof (?Sk @ Sk ′)

by (simp-all only:)
moreover from ‹S 6= []› have ?Sj 6= [] and ?Sk 6= []

by simp-all
ultimately have is-proof-of ?Sj (last ?Sj) and is-proof-of ?Sk (last ?Sk)

using proof-prefix-is-proof-of-last[where S = ?Sj and S ′ = Sj ′]
and proof-prefix-is-proof-of-last[where S = ?Sk and S ′ = Sk ′]
by fastforce+

moreover
from ‹{j, k} ⊆ {0 ..<i ′}› and b have length ?Sj < length S and length ?Sk < length S

by force+
moreover from calculation(3 ,4) have S ! j ∈ lset ?Sj and S ! k ∈ lset ?Sk

by (simp-all add: take-Suc-conv-app-nth)
ultimately have |= S ! j and |= S ! k

using ‹?Sj 6= []› and ‹?Sk 6= []› and less(1) unfolding is-proof-of-def by presburger+
moreover have S ! i ′ ∈ wffso and S ! j ∈ wffso and S ! k ∈ wffso

using ‹is-rule-R-app p (S ! i ′) (S ! j) (S ! k)› and replacement-preserves-typing
by force+

ultimately show ?thesis
using ‹is-rule-R-app p (S ! i ′) (S ! j) (S ! k)› and ‹S ! i ′ = A›
and rule-R-validity[where C ′ = A] by blast

qed
qed

qed

lemma semantic-modus-ponens:
assumes is-general-model M
and A ∈ wffso and B ∈ wffso
and M |= A ⊃Q B
and M |= A
shows M |= B

265

proof (intro allI impI)
fix ϕ
assume ϕ ;M M
moreover obtain D and J and V where M = (D, J , V)

using prod-cases3 by blast
ultimately have ϕ ; D

by simp
show M |=ϕ B
proof −

from assms(4) have V ϕ (A ⊃Q B) = T
using ‹M = (D, J , V)› and ‹ϕ ;M M› by auto

with assms(1−3) have V ϕ A ⊃ V ϕ B = T
using ‹M = (D, J , V)› and ‹ϕ ;M M› and general-model.prop-5401-f ′ by simp

moreover from assms(5) have V ϕ A = T
using ‹M = (D, J , V)› and ‹ϕ ; D› by auto

moreover from ‹M = (D, J , V)› and assms(1) have elts (D o) = elts �
using frame.truth-values-domain-def and general-model-def and premodel-def by fastforce

with assms and ‹M = (D, J , V)› and ‹ϕ ; D› and ‹V ϕ A = T› have {V ϕ A, V ϕ B} ⊆ elts
�

using general-model.V-is-wff-denotation-function
and premodel.wff-denotation-function-is-domain-respecting and general-model.axioms(1) by blast

ultimately have V ϕ B = T
by fastforce

with ‹M = (D, J , V)› and assms(1) and ‹ϕ ; D› show ?thesis
by simp

qed
qed

lemma generalized-semantic-modus-ponens:
assumes is-general-model M
and lset hs ⊆ wffso
and ∀H ∈ lset hs.M |= H
and P ∈ wffso
and M |= hs ⊃Q

? P
shows M |= P

using assms(2−5) proof (induction hs arbitrary: P rule: rev-induct)
case Nil
then show ?case by simp

next
case (snoc H ′ hs)
from ‹M |= (hs @ [H ′]) ⊃Q

? P› have M |= hs ⊃Q
? (H ′ ⊃Q P)

by simp
moreover from ‹∀H ∈ lset (hs @ [H ′]).M |= H › and ‹lset (hs @ [H ′]) ⊆ wffso›
have ∀H ∈ lset hs.M |= H and lset hs ⊆ wffso

by simp-all
moreover from ‹lset (hs @ [H ′]) ⊆ wffso› and ‹P ∈ wffso› have H ′ ⊃Q P ∈ wffso

by auto
ultimately have M |= H ′ ⊃Q P

by (elim snoc.IH)

266

moreover from ‹∀H ∈ lset (hs @ [H ′]).M |= H › have M |= H ′

by simp
moreover from ‹H ′ ⊃Q P ∈ wffso› have H ′ ∈ wffso

using wffs-from-imp-op(1) by blast
ultimately show ?case

using assms(1) and ‹P ∈ wffso› and semantic-modus-ponens by simp
qed

8.3 Proposition 5402(a)
proposition theoremhood-implies-validity:

assumes is-theorem A
shows |= A
using assms and individual-proof-step-validity by force

8.4 Proposition 5402(b)
proposition hyp-derivability-implies-validity:

assumes is-hyps G
and is-model-for M G
and G ` A
and is-general-model M
shows M |= A

proof −
from assms(3) have A ∈ wffso

by (fact hyp-derivable-form-is-wffso)
from ‹G ` A› and ‹is-hyps G› obtain H where finite H and H ⊆ G and H ` A

by blast
moreover from ‹finite H› obtain hs where lset hs = H

using finite-list by blast
ultimately have ` hs ⊃Q

? A
using generalized-deduction-theorem by simp

with assms(4) have M |= hs ⊃Q
? A

using derivability-from-no-hyps-theoremhood-equivalence and theoremhood-implies-validity
by blast

moreover from ‹H ⊆ G› and assms(2) have M |= H if H ∈ H for H
using that by blast

moreover from ‹H ⊆ G› and ‹lset hs = H› and assms(1) have lset hs ⊆ wffso
by blast

ultimately show ?thesis
using assms(1 ,4) and ‹A ∈ wffso› and ‹lset hs = H› and generalized-semantic-modus-ponens
by auto

qed

8.5 Theorem 5402 (Soundness Theorem)
lemmas thm-5402 = theoremhood-implies-validity hyp-derivability-implies-validity

end

267

9 Consistency
theory Consistency

imports
Soundness

begin

definition is-inconsistent-set :: form set ⇒ bool where
[iff]: is-inconsistent-set G ←→ G ` Fo

definition Q0-is-inconsistent :: bool where
[iff]: Q0-is-inconsistent ←→ ` Fo

definition is-wffo-consistent-with :: form ⇒ form set ⇒ bool where
[iff]: is-wffo-consistent-with B G ←→ ¬ is-inconsistent-set (G ∪ {B})

9.1 Existence of a standard model

We construct a standard model in which D i is the set {0}:
primrec singleton-standard-domain-family (DS) where
DS i = 1 — i.e., DS i = ZFC-in-HOL.set {0}
| DS o = �
| DS (α→β) = DS α 7−→ DS β

interpretation singleton-standard-frame: frame DS

proof unfold-locales
{

fix α
have DS α 6= 0
proof (induction α)

case (TFun β γ)
from ‹DS γ 6= 0 › obtain y where y ∈ elts (DS γ)

by fastforce
then have (λz : DS β. y) ∈ elts (DS β 7−→ DS γ)

by (intro VPi-I)
then show ?case

by force
qed simp-all

}
then show ∀α. DS α 6= 0

by (intro allI)
qed simp-all

definition singleton-standard-constant-denotation-function (J S) where
[simp]: J S k =
(

if
∃β. is-Q-constant-of-type k β

then

268

let β = type-of-Q-constant k in qβD
S

else
if

is-iota-constant k
then
λz : DS (i→o). 0

else
case k of (c, α) ⇒ SOME z. z ∈ elts (DS α)

)

interpretation singleton-standard-premodel: premodel DS J S

proof (unfold-locales)
show ∀α. J S (Q-constant-of-type α) = qαD

S

by simp
next

show singleton-standard-frame.is-unique-member-selector (J S iota-constant)
unfolding singleton-standard-frame.is-unique-member-selector-def proof

fix x
assume x ∈ elts (DS i)
then have x = 0

by simp
moreover have (λz : DS (i→o). 0) · {0}iD

S
= 0

using beta[OF singleton-standard-frame.one-element-function-is-domain-respecting]
unfolding singleton-standard-domain-family.simps(3) by blast

ultimately show (J S iota-constant) · {x}iD
S
= x

by fastforce
qed

next
show ∀ c α. ¬ is-logical-constant (c, α) −→ J S (c, α) ∈ elts (DS α)
proof (intro allI impI)

fix c and α
assume ¬ is-logical-constant (c, α)
then have J S (c, α) = (SOME z. z ∈ elts (DS α))

by auto
moreover have ∃ z. z ∈ elts (DS α)

using eq0-iff and singleton-standard-frame.domain-nonemptiness by presburger
then have (SOME z. z ∈ elts (DS α)) ∈ elts (DS α)

using some-in-eq by auto
ultimately show J S (c, α) ∈ elts (DS α)

by auto
qed

qed

fun singleton-standard-wff-denotation-function (VS) where
VS ϕ (xα) = ϕ (x, α)
| VS ϕ ({|c|}α) = J S (c, α)
| VS ϕ (A � B) = (VS ϕ A) · (VS ϕ B)
| VS ϕ (λxα. A) = (λz : DS α. VS (ϕ((x, α) := z)) A)

269

lemma singleton-standard-wff-denotation-function-closure:
assumes frame.is-assignment DS ϕ
and A ∈ wffsα
shows VS ϕ A ∈ elts (DS α)

using assms(2 ,1) proof (induction A arbitrary: ϕ)
case (var-is-wff α x)
then show ?case

by simp
next

case (con-is-wff α c)
then show ?case
proof (cases (c, α) rule: constant-cases)

case non-logical
then show ?thesis

using singleton-standard-premodel.non-logical-constant-denotation
and singleton-standard-wff-denotation-function.simps(2) by presburger

next
case (Q-constant β)
then have VS ϕ ({|c|}α) = qβD

S

by simp
moreover have qβD

S
∈ elts (DS (β→β→o))

using singleton-standard-domain-family.simps(3)
and singleton-standard-frame.identity-relation-is-domain-respecting by presburger

ultimately show ?thesis
using Q-constant by simp

next
case ι-constant
then have VS ϕ ({|c|}α) = (λz : DS (i→o). 0)

by simp
moreover have (λz : DS (i→o). 0) ∈ elts (DS ((i→o)→i))

by (simp add: VPi-I)
ultimately show ?thesis

using ι-constant by simp
qed

next
case (app-is-wff α β A B)
have VS ϕ (A � B) = (VS ϕ A) · (VS ϕ B)

using singleton-standard-wff-denotation-function.simps(3) .
moreover have VS ϕ A ∈ elts (DS (α→β)) and VS ϕ B ∈ elts (DS α)

using app-is-wff .IH and app-is-wff .prems by simp-all
ultimately show ?case

by (simp only: singleton-standard-frame.app-is-domain-respecting)
next

case (abs-is-wff β A α x)
have VS ϕ (λxα. A) = (λz : DS α. VS (ϕ((x, α) := z)) A)

using singleton-standard-wff-denotation-function.simps(4) .
moreover have VS (ϕ((x, α) := z)) A ∈ elts (DS β) if z ∈ elts (DS α) for z

using that and abs-is-wff .IH and abs-is-wff .prems by simp

270

ultimately show ?case
by (simp add: VPi-I)

qed

interpretation singleton-standard-model: standard-model DS J S VS

proof (unfold-locales)
show singleton-standard-premodel.is-wff-denotation-function VS

by (simp add: singleton-standard-wff-denotation-function-closure)
next

show ∀α β. DS (α→β) = DS α 7−→ DS β
using singleton-standard-domain-family.simps(3) by (intro allI)

qed

proposition standard-model-existence:
shows ∃M. is-standard-model M
using singleton-standard-model.standard-model-axioms by auto

9.2 Theorem 5403 (Consistency Theorem)
proposition model-existence-implies-set-consistency:

assumes is-hyps G
and ∃M. is-general-model M ∧ is-model-for M G
shows ¬ is-inconsistent-set G

proof (rule ccontr)
from assms(2) obtain D and J and V and M

where M = (D, J , V) and is-model-for M G and is-general-model M by fastforce
assume ¬ ¬ is-inconsistent-set G
then have G ` Fo

by simp
with ‹is-general-model M› have M |= Fo

using thm-5402 (2)[OF assms(1) ‹is-model-for M G›] by simp
then have V ϕ Fo = T if ϕ ; D for ϕ

using that and ‹M = (D, J , V)› by force
moreover have V ϕ Fo = F if ϕ ; D for ϕ

using ‹M = (D, J , V)› and ‹is-general-model M› and that and general-model.prop-5401-d
by simp

ultimately have @ϕ. ϕ ; D
by (auto simp add: inj-eq)

moreover have ∃ϕ. ϕ ; D
proof −
— Since by definition domains are not empty then, by using the Axiom of Choice, we can specify an

assignment ψ that simply chooses some element in the respective domain for each variable. Nonetheless,
as pointed out in Footnote 11, page 19 in [1], it is not necessary to use the Axiom of Choice to show
that assignments exist since some assignments can be described explicitly.

let ?ψ = λv. case v of (-, α) ⇒ SOME z. z ∈ elts (D α)
from ‹M = (D, J , V)› and ‹is-general-model M› have ∀α. elts (D α) 6= {}

using frame.domain-nonemptiness and premodel-def and general-model.axioms(1) by auto
with ‹M = (D, J , V)› and ‹is-general-model M› have ?ψ ; D

using frame.is-assignment-def and premodel-def and general-model.axioms(1)

271

by (metis (mono-tags) case-prod-conv some-in-eq)
then show ?thesis

by (intro exI)
qed
ultimately show False ..

qed

proposition Q0-is-consistent:
shows ¬ Q0-is-inconsistent

proof −
have ∃M. is-general-model M ∧ is-model-for M {}

using standard-model-existence and standard-model.axioms(1) by blast
then show ?thesis

using model-existence-implies-set-consistency by simp
qed

lemmas thm-5403 = Q0-is-consistent model-existence-implies-set-consistency

proposition principle-of-explosion:
assumes is-hyps G
shows is-inconsistent-set G ←→ (∀A ∈ (wffso). G ` A)

proof
assume is-inconsistent-set G
show ∀A ∈ (wffso). G ` A
proof

fix A
assume A ∈ wffso
from ‹is-inconsistent-set G› have G ` Fo

unfolding is-inconsistent-set-def .
then have G ` ∀ xo. xo

unfolding false-is-forall .
with ‹A ∈ wffso› have G ` S {(x, o) � A} (xo)

using ∀ I by fastforce
then show G ` A

by simp
qed

next
assume ∀A ∈ (wffso). G ` A
then have G ` Fo

using false-wff by (elim bspec)
then show is-inconsistent-set G

unfolding is-inconsistent-set-def .
qed

end

272

References

[1] P. B. Andrews. A Transfinite Type Theory with Type Variables, volume 36 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1965.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, volume 27 of Applied Logic Series. Springer Dordrecht, 2002.

273

	Utilities
	Utilities for lists
	Utilities for finite maps

	Syntax
	Type symbols
	Variables
	Constants
	Formulas
	Generalized operators
	Subformulas
	Free and bound variables
	Free and bound occurrences
	Free variables for a formula in another formula
	Replacement of subformulas
	Logical constants
	Definitions and abbreviations
	Well-formed formulas
	Substitutions
	Renaming of bound variables

	Boolean Algebra
	Propositional Well-Formed Formulas
	Syntax
	Semantics

	Proof System
	Axioms
	Inference rule R
	Proof and derivability
	Hypothetical proof and derivability

	Elementary Logic
	Proposition 5200
	Proposition 5201 (Equality Rules)
	Proposition 5202 (Rule RR)
	Proposition 5203
	Proposition 5204
	Proposition 5205 (-conversion)
	Proposition 5206 (-conversion)
	Proposition 5207 (-conversion)
	Proposition 5208
	Proposition 5209
	Proposition 5210
	Proposition 5211
	Proposition 5212
	Proposition 5213
	Proposition 5214
	Proposition 5215 (Universal Instantiation)
	Proposition 5216
	Proposition 5217
	Proposition 5218
	Proposition 5219 (Rule T)
	Proposition 5220 (Universal Generalization)
	Proposition 5221 (Substitution)
	Proposition 5222 (Rule of Cases)
	Proposition 5223
	Proposition 5224 (Modus Ponens)
	Proposition 5225
	Proposition 5226
	Proposition 5227
	Proposition 5228
	Proposition 5229
	Proposition 5230
	Proposition 5231
	Proposition 5232
	Proposition 5233
	Proposition 5234 (Rule P)
	Proposition 5235
	Proposition 5237 (Rule)
	Proposition 5238
	Proposition 5239
	Theorem 5240 (Deduction Theorem)
	Proposition 5241
	Proposition 5242 (Rule of Existential Generalization)
	Proposition 5243 (Comprehension Theorem)
	Proposition 5244 (Existential Rule)
	Proposition 5245 (Rule C)

	Semantics
	Frames
	Pre-models (interpretations)
	General models
	Standard models
	Validity

	Soundness
	Proposition 5400
	Proposition 5401
	Proposition 5402(a)
	Proposition 5402(b)
	Theorem 5402 (Soundness Theorem)

	Consistency
	Existence of a standard model
	Theorem 5403 (Consistency Theorem)

