Metatheory of O,

Javier Diaz
<javier.diaz.manzi@gmail.com>

March 17, 2025

Abstract

This entry is a formalization of the metatheory of Qg in Isabelle/HOL. Qq [2] is a
classical higher-order logic equivalent to Church’s Simple Theory of Types. In this entry
we formalize Chapter 5 of [2], up to and including the proofs of soundness and consistency
of Qp. These proof are, to the best of our knowledge, the first to be formalized in a proof
assistant.

<javier.diaz.manzi@gmail.com>

Contents

1 Utilities 5
1.1 Utilities for lists e 5
1.2 Utilities for finite maps L 5

2 Syntax 10
2.1 Typesymbols 10
2.2 Variables 11
2.3 Constants e e e 12
2.4 Formulas 13
2.5 Generalized operators 13
2.6 Subformulas 13
2.7 Free and bound variables L oL 19
2.8 Free and bound occurrences Lo 21
2.9 Free variables for a formula in another formula 38
2.10 Replacement of subformulas L L L 42
2.11 Logical constants L 46
2.12 Definitions and abbreviations oo 47
2.13 Well-formed formulas L L 49
2.14 Substitutions e 59
2.15 Renaming of bound variables oL 83

3 Boolean Algebra 88

4 Propositional Well-Formed Formulas 91
N R 0 - 91
4.2 Semantics e e e 95

5 Proof System 108
5.1 AXiomsS ... 108
5.2 Inferencerule R. 109
5.3 Proof and derivability o o 109
5.4 Hypothetical proof and derivability 118

6 Elementary Logic 131
6.1 Proposition 5200 L L 131
6.2 Proposition 5201 (Equality Rules) 132
6.3 Proposition 5202 (Rule RR) oL oo 133
6.4 Proposition 5203o e 134
6.5 Proposition 5204 oL 136
6.6 Proposition 5205 (n-conversion)o 136
6.7 Proposition 5206 (a-conversion) 139
6.8 Proposition 5207 (f-conversion) 142
6.9 Proposition 5208o 147

6.10 Proposition 5209 L 149
6.11 Proposition 5210 L 150
6.12 Proposition 5211 e 151
6.13 Proposition 5212 Lo 152
6.14 Proposition 5213 oL Lo 153
6.15 Proposition 5214 Lo 153
6.16 Proposition 5215 (Universal Instantiation) 154
6.17 Proposition 5216 L 155
6.18 Proposition 5217 Lo 156
6.19 Proposition 5218 L 158
6.20 Proposition 5219 (Rule T) 159
6.21 Proposition 5220 (Universal Generalization) 159
6.22 Proposition 5221 (Substitution)o Lo 161
6.23 Proposition 5222 (Rule of Cases) 172
6.24 Proposition 5223 175
6.25 Proposition 5224 (Modus Ponens) 176
6.26 Proposition 5225 Lo 177
6.27 Proposition 5226 L e 178
6.28 Proposition 5227 L Lo 179
6.29 Proposition 5228 L L 180
6.30 Proposition 5229 L 180
6.31 Proposition 5230 L e e 181
6.32 Proposition 5231 L 183
6.33 Proposition 5232 184
6.34 Proposition 5233 L 186
6.35 Proposition 5234 (Rule P) Lo 196
6.36 Proposition 5235 L L 197
6.37 Proposition 5237 (DV Rule)o 199
6.38 Proposition 5238 L 203
6.39 Proposition 5239 L 206
6.40 Theorem 5240 (Deduction Theorem) 217
6.41 Proposition 5241 Lo 221
6.42 Proposition 5242 (Rule of Existential Generalization) 221
6.43 Proposition 5243 (Comprehension Theorem) 222
6.44 Proposition 5244 (Existential Rule)00 0L 224
6.45 Proposition 5245 (Rule C) oo 226
Semantics 229
7.1 Frames e e 230
7.2 Pre-models (interpretations) Lo 231
7.3 General models L 234
7.4 Standard models oL 235
75 VALY © o o oo oo 235

8 Soundness 236

8.1 Proposition 5400 236
8.2 Proposition 5401o 237
8.3 Proposition 5402(a) 267
8.4 Proposition 5402(b) 267
8.5 Theorem 5402 (Soundness Theorem) 268
9 Consistency 268
9.1 Existence of a standard modelo 268
9.2 Theorem 5403 (Consistency Theorem) 271

1 Utilities

theory Utilities
imports
Finite— Map— Extras. Finite-Map-Fxtras
begin

1.1 Utilities for lists

fun foldr1 :: ('a = 'a = 'a) = 'a list = 'a where
foldrl f [z] = =

| foldrl f (z # zs) = fx (foldrl f xs)

| foldr1 f || = undefined f

abbreviation [set where Iset = List.set

lemma rev-induct2 [consumes 1, case-names Nil snoc]:
assumes length s = length ys
and P []]
and Az zs y ys. length xs = length ys = P xs ys = P (zs Q [z]) (ys Q [y])
shows P xs ys
using assms proof (induction xs arbitrary: ys rule: rev-induct)
case (snoc z zs)
then show ?case by (cases ys rule: rev-cases) simp-all
qed simp

1.2 Utilities for finite maps

no-syntax
-fmaplet :: ['a, 'a] = fmaplet (<- /$$:=/)
-fmaplets :: ['a, 'a] = fmaplet (<- /[$%:=]/)

syntax
-fmaplet :: ['a, 'a] = fmaplet (- /—/ =)
-fmaplets :: ['a, 'a] = fmaplet (- /[—]/)

lemma fmdom’-fmap-of-list [simp):
shows fmdom’ (fmap-of-list ps) = Iset (map fst ps)
by (induction ps) force+

lemma fmran’-singleton [simpl:
shows fmran’ {k — v} = {v}
proof —
have v’ € fmran’ {k — v} = v’ = v for v’
proof —
assume v’ € fmran’ {k — v}
fix £k’
have fmdom’ {k — v} = {k}
by simp
then show v’ = v

proof (cases k' = k)
case True
with v’ € fmran’ {k — v}> show ?thesis
using fmdom'Il by fastforce
next
case Fulse
with «fmdom’ {k — v} = {k}> and v’ € fmran’ {k — v}» show %thesis
using fmdom'I by fastforce
qed
qged
moreover have v € fmran’ {k — v}
by (simp add: fmran'I)
ultimately show #thesis
by blast
qed

lemma fmran’-fmupd [simp]:
assumes m $$ z = None
shows fmran’ (m(z — y)) = {y} U fmran’ m
using assms proof (intro subset-antisym subsetl)
fix z’
assume m $$ z = None and z’ € fmran’ (m(z — y))
then show z’ € {y} U fmran’ m
by (auto simp add: fmlookup-ran’-iff, metis option.inject)
next
fix z’
assume m $$ z = None and z’ € {y} U fmran’ m
then show z’ € fmran’ (m(z — y))
by (force simp add: fmlookup-ran’-iff)
qed

lemma fmran’-fmadd [simp):
assumes fmdom’ m N fmdom’ m' = {}
shows fmran’ (m ++¢ m’) = fmran’ m U fmran’ m’
using assms proof (intro subset-antisym subsetl)
fix z
assume fmdom’ m N fmdom’ m’ = {} and = € fmran’ (m ++5 m’)
then show z € fmran’ m U fmran’ m’
by (auto simp add: fmlookup-ran’-iff) meson
next
fix z
assume fmdom’ m N fmdom’ m’ = {} and z € fmran’ m U fmran’ m’
then show z € fmran’ (m ++; m’)
using fmap-disj-comm and fmlookup-ran’-iff by fastforce
qed

lemma finite-fmran’:
shows finite (fmran’ m)
by (simp add: fmran’-alt-def)

lemma fmap-of-zipped-list-range:
assumes length ks = length vs
and m = fmap-of-list (zip ks vs)
and k € fmdom’ m
shows m $3! k € Iset vs
using assms by (induction arbitrary: m rule: list-induct2) auto

lemma fmap-of-zip-nth [simpl:
assumes length ks = length vs
and distinct ks
and i < length ks
shows fmap-of-list (zip ks vs) $3! (ks ! 4) = vs 1 4
using assms by (simp add: fmap-of-list.rep-eq map-of-zip-nth)

lemma fmap-of-zipped-list-fmran’ [simp]:
assumes distinct (map fst ps)
shows fmran’ (fmap-of-list ps) = lset (map snd ps)
using assms proof (induction ps)
case Nil
then show ?case
by auto
next
case (Cons p ps)
then show ?case
proof (cases p € Iset ps)
case True
then show ?thesis
using Cons.prems by auto
next
case Fulse
obtain %k and v where p = (k, v)
by fastforce
with Cons.prems have k ¢ fmdom’ (fmap-of-list ps)
by auto
then have fmap-of-list (p # ps) = {k — v} ++5 fmap-of-list ps
using «p = (k, v)» and fmap-singleton-comm by fastforce
with Cons.prems have fmran’ (fmap-of-list (p # ps)) = {v} U fmran’ (fmap-of-list ps)
by (simp add: <p = (k, v))
then have fmran’ (fmap-of-list (p # ps)) = {v} U lset (map snd ps)
using Cons.IH and Cons.prems by force
then show ?thesis
by (simp add: <p = (k, v)»)
qed
qed

lemma fmap-of-list-nth [simp]:
assumes distinct (map fst ps)
and j < length ps

shows fmap-of-list ps $% ((map fst ps) ! j) = Some (map snd ps ! j)
using assms by (induction j) (simp-all add: fmap-of-list.rep-eq)

lemma fmap-of-list-nth-split [simp):
assumes distinct s
and j < length xs
and length ys = length xs and length zs = length xs
shows fmap-of-list (zip xs (take k ys Q drop k 2s)) $$ (zs! j) =
(if § < k then Some (take k ys ! j) else Some (drop k zs ! (j — k)))
using assms proof (induction k arbitrary: xs ys zs j)
case (
then show ?case
by (simp add: fmap-of-list.rep-eq map-of-zip-nth)
next
case (Suc k)
then show ?case
proof (cases xs)
case Nil
with Suc.prems(2) show ?thesis
by auto
next
case (Cons z zs')
let ?ps = zip xs (take (Suc k) ys Q drop (Suc k) zs)
from Cons and Suc.prems(3,4) obtain y and z and ys’ and zs’
where ys = y # ys’ and zs = z # zs’
by (metis length-0-conv neg-Nil-conv)
let ?ps’ = zip xs’ (take k ys’ @Q drop k zs")
from Cons have *: fmap-of-list ?ps = fmap-of-list ((z, y) # ?ps’)
using (ys = y # ys"» and <zs = z # 28" by fastforce
also have ... = {z — y} ++; fmap-of-list ?ps’
proof —
from «ys = y # ys’» and <zs = z # zs"» have fmap-of-list ?ps’ $% z = None
using Cons and Suc.prems(1,3,4) by (simp add: fmdom’-notD)
then show ?thesis
using fmap-singleton-comm by fastforce
qed
finally have fmap-of-list ?ps = {x — y} ++; fmap-of-list ?ps’ .
then show ?thesis
proof (cases j = 0)
case True
with «ys = y # ys”» and Cons show ?thesis
by simp
next
case Fulse
then have zs ! j = zs'! (j — 1)
by (sitmp add: Cons)
moreover from (ys = y # ys"» and <zs = z # zs» have fmdom’ (fmap-of-list ?ps’) = Iset xs’
using Cons and Suc.prems(3,4) by force
moreover from Fulse and Suc.prems(2) and Cons have j — 1 < length xs’

using le-simps(2) by auto
ultimately have fmap-of-list ?ps $$ (zs ! j) = fmap-of-list ?ps’ $$ (xs’! (j — 1))
using Cons and * and Suc.prems(1) by auto
with Suc.IH and Suc.prems(1,3,4) and Cons have sx: fmap-of-list ?ps $3 (zs ! j) =
(if j — 1 < k then Some (take k ys'! (j — 1)) else Some (drop k zs'! ((j — 1) — k)))
using «j — 1 < length zs"» and <ys = y # ys"» and <zs = z # zs"» by simp
then show ?thesis
proof (casesj — 1 < k)
case True
with False and *x show ?thesis
using <ys = y # ys" by auto
next
case Fulse
from Suc.prems(1) and Cons and <j — 1 < length zs"» and «xs ! j = zs’! (j — 1)» have j >

using nth-non-equal-first-eq by fastforce

with False have j > Suc k
by simp

moreover have fmap-of-list ?ps $$ (xs ! j) = Some (drop (Suc k) zs ! (j — Suc k))
using ** and False and (zs = z # zs"» by fastforce

ultimately show %thesis
by simp

qed
qed
qed
qged

lemma fmadd-drop-cancellation [simp]:
assumes m $$ k£ = Some v
shows {k — v} ++¢ fmdrop k m = m
using assms proof (induction m)
case fmempty
then show ?case
by simp
next
case (fmupd k' v’ m’)
then show ?case
proof (cases k' = k)
case True
with fmupd.prems have v = v’
by fastforce
have fmdrop k' (m'(k' — v")) = m’
unfolding fmdrop-fmupd-same using fmdrop-idle’|OF fmdom’-notI[OF fmupd.hyps]] by (unfold
True)
then have {k — v} ++¢ fmdrop k' (m'(k" — v')) = {k — v} ++5 m’
by simp
then show ?thesis
using fmap-singleton-comm|[OF fmupd.hyps] by (simp add: True <v = v")
next

case Fulse

with fmupd.prems have m’ $$ k = Some v
by force

from Fulse have {k — v} ++; fmdrop k (m'(k' — v’)) = {k — v} ++4¢ (fmdrop k m') (k" — v’)
by (simp add: fmdrop-fmupd)

also have ... = ({k — v} ++4; fmdrop k m')(k’ — ')
by fastforce
also from frmupd.prems and fmupd . IH[OF <m’ $$ k = Some v] have ... = m/(k' — v’)
by force
finally show ?thesis .
qed
qged

lemma fmap-of-list-fmmap [simp]:
shows fmap-of-list (map2 (Av’ A’. (v, f A")) xs ys) = fmmap [(fmap-of-list (zip xs ys))
unfolding fmmap-of-list
using cond-case-prod-eta
[where f = Av" A'.(v/, f A’) and g = apsnd [, unfolded apsnd-conv, simplified)
by (rule arg-cong)

end

2 Syntax

theory Syntaz
imports
HOL— Library.Sublist
Utilities
begin

2.1 Type symbols

datatype type =
Tlnd (¢ir)
| TBool (<o)
| TFun type type (infixr <—» 101)

primrec type-size :: type = nat where
type-size © = 1
| type-size 0 = 1
| type-size (a — B) = Suc (type-size o + type-size B)

primrec subtypes :: type = type set where
subtypes i = {}
| subtypes o = {}
| subtypes (a — B) = {a, B} U subtypes o U subtypes S

lemma subtype-size-decrease:
assumes a € subtypes (3

10

shows type-size a < type-size (3
using assms by (induction rule: type.induct) force+

lemma subtype-is-not-type:
assumes « € subtypes [
shows «a #
using assms and subtype-size-decrease by blast

lemma fun-type-atoms-in-subtypes:
assumes k < length ts
shows ts | k € subtypes (foldr (—) ts)
using assms by (induction ts arbitrary: k) (cases k, use less-Suc-eq-0-disj in <fastforce+))

lemma fun-type-atoms-neq-fun-type:
assumes k < length ts
shows ts | k # foldr (—) ts v
by (fact fun-type-atoms-in-subtypes|OF assms, THEN subtype-is-not-type])

2.2 Variables

Unfortunately, the Nominal package does not support multi-sort atoms yet; therefore, we need
to implement this support from scratch.

type-synonym var = nat X type

abbreviation var-name :: var = nat where
var-name = fst

abbreviation var-type :: var = type where
var-type = snd

lemma fresh-var-existence:
assumes finite (vs :: var set)
obtains z where (z, a) ¢ vs
using ez-new-if-finite[OF infinite- UNIV-nat]
proof —
from assms obtain = where x ¢ var-name ‘ vs
using ex-new-if-finite[OF infinite-UNIV-nat] by fastforce
with that show ?thesis
by force
qged

lemma fresh-var-name-list-existence:

assumes finite (ns :: nat set)

obtains ns’ where length ns’ = n and distinct ns’ and Iset ns' N ns = {}
using assms proof (induction n arbitrary: thesis)

case (

then show ?case

by simp

next

11

case (Suc n)

from assms obtain ns’ where length ns’ = n and distinct ns’ and Iset ns’ N ns = {}
using Suc.IH by blast

moreover from assms obtain n’ where n’ ¢ Iset ns’ U ns
using ez-new-if-finite[OF infinite-UNIV-nat] by blast

ultimately
have length (n’ # ns’) = Suc n and distinct (n’ # ns’) and Iset (n’ # ns’) N ns = {}
by simp-all

with Suc.prems(1) show ?case
by blast

ged

lemma fresh-var-list-existence:
fixes s :: var list
and ns :: nat set
assumes finite ns
obtains vs’ :: var list
where length vs’ = length xs
and distinct vs'
and var-name ‘lset vs' N (ns U var-name * lset zs) = {}
and map var-type vs' = map var-type xs
proof —
from assms(1) have finite (ns U var-name ° lset xs)
by blast
then obtain ns’
where length ns’ = length xs
and distinct ns'
and Iset ns’' N (ns U var-name * lset zs) = {}
by (rule fresh-var-name-list-existence)
define vs"’ where vs’' = zip ns’ (map var-type xs)
from vs’-def and «(length ns’ = length xs> have length vs'’ = length zs
by simp
moreover from vs’-def and (distinct ns’> have distinct vs'’
by (simp add: distinct-zipI1)
moreover have var-name ‘ lset vs'' N (ns U var-name * lset xs) = {}
unfolding vs'’-def
using <length ns’ = length xs» and <lset ns’ N (ns U var-name ‘ lset zs) = {}
by (metis length-map set-map map-fst-zip)
moreover from vs’’-def have map var-type vs"’ = map var-type xs
by (simp add: <length ns’ = length xs»)
ultimately show “thesis
by (fact that)
qged

2.3 Constants

type-synonym con = nat X type

12

2.4 Formulas

datatype form =
FVar var
| FCon con
| FApp form form (infixl < 200)
| FAbs var form

syntax
-FVar :: nat = type = form («-» [899, 0] 900)
-FCon :: nat = type = form (<{-}-» [899, 0] 900)
-FAbs :: nat = type = form = form (<(4\-_./ - [0, 0, 104] 104)
syntax-consts
-FVar = FVar and
-FCon = FCon and
-FAbs = FAbs
translations
o = CONST FVar (z, a)
{c}a = CONST FCon (¢,)
Ao. A = CONST FAbs (z, o) A

2.5 (Generalized operators

Generalized application. We define «2, A [By, By, ..., ByJas A+ By« By« -+ » By:

definition generalized-app :: form = form list = form (<<, - - [241, 241] 241) where
[simp]: +9, A Bs = foldl (+) A Bs

Generalized abstraction. We define A2, [z1, ..., z,] A as Azy. -+ Az,. A:

definition generalized-abs :: var list = form = form (\\°, - - [141, 141] 141) where

[simp]: A2, ws A = foldr (\(z, &) B. A\zg. B) vs A

fun form-size :: form = nat where
form-size (zq) = 1
| form-size ({c}a) = 1
| form-size (A « B) = Suc (form-size A + form-size B)
| form-size (Azq,. A) = Suc (form-size A)

fun form-depth :: form = nat where
form-depth (zq) = 0
| form-depth ({clta) = 0
| form-depth (A « B) = Suc (maz (form-depth A) (form-depth B))
| form-depth (Azq. A) = Suc (form-depth A)

2.6 Subformulas

fun subforms :: form = form set where
subforms (zq) = {}

| subforms ({cla) = {}
| subforms (A« B) = {A, B}

13

| subforms (Azq. A) = {A}

datatype direction = Left (<«») | Right (¢»»)
type-synonym position = direction list

fun positions :: form = position set where
positions (zq) = {[|}
| positions ({cfa) = {[I}
| positions (A« B) = {[]} U {« # p | p. p € positions A} U {» # p | p. p € positions B}
| positions (A\xe. A) = {[]} U {« # p | p. p € positions A}

lemma empty-is-position [simp):
shows [| € positions A
by (cases A rule: positions.cases) simp-all

fun subform-at :: form = position — form where
subform-at A [] = Some A

| subform-at (A - B) (« # p) = subform-at A p

| subform-at (A« B) (» # p) = subform-at B p

| subform-at (Azq. A) (« # p) = subform-at A p

| subform-at - - = None

fun is-subform-at :: form = position = form = bool («(- <_/ -)» [51,0,51] 50) where
is-subform-at A [A (A A"

| is-subform-at C' (« # p) (A « B) = is-subform-at C p A

| is-subform-at C' (» # p) (A « B) = is-subform-at C' p B

| is-subform-at C (« # p) ()\l’a A) = is-subform-at C'p A

| is-subform-at - - - = False

lemma is-subform-at-alt-def:
shows A’ < A = (case subform-at A p of Some B = B = A’ | None = Fulse)
by (induction A’ p A rule: is-subform-at.induct) auto

lemma superform-existence:
assumes B =pa [d] C
obtains A where B j[d] Aand A =%, C
using assms by (induction B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-con:

assumes {cfq =p C

shows 71 4. A jp @ [d] C

using assms by (induction {c}o p C rule: is-subform-at.induct) auto
lemma subform-at-subforms-var:

assumes 7o =<p C

shows 3 A. A jp Q@ [d] C

using assms by (induction xq, p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-app:

14

assumes A+ B =<, C
shows A jp @ [« C and B jp @[] C
using assms by (induction A « B p C rule: is-subform-at.induct) auto

lemma subform-at-subforms-abs:
assumes \zq. A =p C
shows A jp Q@ [« C
using assms by (induction A\xq. A p C rule: is-subform-at.induct) auto

lemma is-subform-implies-in-positions:
assumes B <, A
shows p € positions A
using assms by (induction rule: is-subform-at.induct) simp-all

lemma subform-size-decrease:
assumes A <, B and p # ||
shows form-size A < form-size B
using assms by (induction A p B rule: is-subform-at.induct) force+

lemma strict-subform-is-not-form:
assumes p # [and A’ <) A
shows A’ # A

using assms and subform-size-decrease by blast

lemma no-right-subform-of-abs:
shows # B. B =y #p AZq. A
by simp

lemma subforms-from-var:
assumes A =y 7
shows A = zo and p = ||
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-con:
assumes A < {cfa
shows A = {c[}lo and p = ||
using assms by (auto elim: is-subform-at.elims)

lemma subforms-from-app:

assumes A <, B: C
shows

(A=B-Cnrp=1[)V

(A#£B-CA

(Ip’ € positions B.p =« # p' N A = B) v (3p’ € positions C.p=» # p' N A =/)

using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma subforms-from-abs:
assumes A =y Azq. B

15

shows (4 = Azq. BAp =)V (4 # Xtq. BA (3p’ € positions B.p =« # p' N A =/ B))
using assms and strict-subform-is-not-form
by (auto simp add: is-subform-implies-in-positions elim: is-subform-at.elims)

lemma leftmost-subform-in-generalized-app:

Q
shows B Zreplicate (length As) « " * B As

by (induction As arbitrary: B) (simp-all, metis replicate-append-same subform-at-subforms-app(1))

lemma self-subform-is-at-top:
assumes A <, A
shows p = |]
using assms and strict-subform-is-not-form by blast

lemma at-top-is-self-subform:
assumes A j[] B
shows A = B
using assms by (auto elim: is-subform-at.elims)

lemma is-subform-at-uniqueness:
assumes B <p Aand C =p 4
shows B = C
using assms by (induction A arbitrary: p B C) (auto elim: is-subform-at.elims)

lemma is-subform-at-existence:
assumes p € positions A
obtains B where B <, A
using assms by (induction A arbitrary: p) (auto elim: is-subform-at.elims, blast+)

lemma is-subform-at-transitivity:
assumes A <5, Band B =, C
shows A jp2 ap C

using assms by (induction B pa C arbitrary: A p1 rule: is-subform-at.induct) simp-all

lemma subform-nesting:
assumes strict-prefiz p’ p
and B jp/ A
and C =p A
shows C jdrop (length p') p B
proof —
from assms(1) have p # ||
using strict-prefiz-simps(1) by blast
with assms(1,8) show ?thesis
proof (induction p arbitrary: C rule: rev-induct)
case Nil
then show ?Zcase
by blast
next
case (snoc d p'’)

16

then show ?case
proof (cases p”’ = p’)
case True
obtain A’ where C j[d] A’ and A’ jp/ A
by (fact superform-ezistence[OF snoc.prems(2)[unfolded Truel))
from (A’ =y Ay and assms(2) have A’ = B
by (rule is-subform-at-uniqueness)
with «C j[d] A"y have C j[d} B
by (simp only:)
with True show ?thesis
by auto
next
case Fulse
with snoc.prems(1) have strict-prefix p’ p"’
using prefiz-order.dual-order.strict-implies-order by fastforce
then have p”’ # ||
by force

moreover from snoc.prems(2) obtain A’ where C =14] A’ and A’ = A

using superform-ezistence by blast

s /!
ultimately have A jd?“op () p” B

length p’
using snoc.IH and <strict-prefix p’ p'’y by blast
with «C =14] A"y and snoc.prems(1) show ?thesis
using is-subform-at-transitivity and prefiz-length-less by fastforce
qed
qed
qed

lemma loop-subform-impossibility:
assumes B =<, A
and strict-prefiz p’ p
shows = B jp/ A
using assms and prefix-length-less and self-subform-is-at-top and subform-nesting by fastforce

lemma nested-subform-size-decreases:

assumes strict-prefiz p’ p

and B jp/ A

and C =p A

shows form-size C' < form-size B
proof —

from assms(1) have p # ||

by force

have C jdmp (length p') p B

by (fact subform-nesting| OF assms])
moreover have drop (length p') p # |]
using prefiz-length-less|OF assms(1)] by force
ultimately show ?thesis
using subform-size-decrease by simp
qed

17

definition is-subform :: form = form = bool (infix <= 50) where
[simp]: A <X B = (3p. A Zp B)

instantiation form :: ord
begin

definition
A< B+—+ A<XB

definition
A<B+— A<XBANA#B

instance ..
end

instance form :: preorder
proof (standard, unfold less-eq-form-def less-form-def)
fix A
show 4 < A
unfolding is-subform-def using is-subform-at.simps(1) by blast
next
fix A and B and C
assume A < Band B C
then show A < C
unfolding is-subform-def using is-subform-at-transitivity by blast
next
fix A and B
show A< BANA#B+— A=<BAN-B=<A
unfolding is-subform-def
by (metis is-subform-at.simps(1) not-less-iff-gr-or-eq subform-size-decrease)
qed

lemma position-subform-existence-equivalence:
shows p € positions A «— (A" A" Zp A)
by (meson is-subform-at-existence is-subform-implies-in-positions)

lemma position-prefiz-is-position:
assumes p € positions A and prefiz p’ p
shows p’ € positions A
using assms proof (induction p rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc d p')
from snoc.prems(1) have p’’ € positions A
by (meson position-subform-ezistence-equivalence superform-erxistence)

18

with snoc.prems(1,2) show ?Zcase
using snoc.IH by fastforce
qed

2.7 Free and bound variables

consts vars :: 'a = var set

overloading
vars-form = vars :: form = var set
vars-form-set = vars :: form set = wvar set
begin

fun vars-form :: form = var set where
vars-form (zq) = {(z, a)}

| vars-form ({cka) = {}

| vars-form (A « B) = vars-form A U vars-form B

| vars-form (Azg. A) = vars-form A U {(z,)}

fun vars-form-set :: form set = wvar set where

vars-form-set S = ((JA € S. vars A)
end

abbreviation var-names :: 'a = nat set where
var-names X = var-name ‘ (vars X)

lemma vars-form-finiteness:
fixes A :: form
shows finite (vars A)
by (induction rule: vars-form.induct) simp-all

lemma vars-form-set-finiteness:
fixes S :: form set
assumes finite S
shows finite (vars S)
using assms unfolding vars-form-set.simps using vars-form-finiteness by blast

lemma form-var-names-finiteness:
fixes A :: form
shows finite (var-names A)
using vars-form-finiteness by blast

lemma form-set-var-names-finiteness:
fixes S :: form set
assumes finite S
shows finite (var-names S)
using assms and vars-form-set-finiteness by blast

19

consts free-vars :: 'a = var set

overloading
free-vars-form = free-vars :: form = var set
free-vars-form-set = free-vars :: form set = var set
begin

fun free-vars-form :: form = var set where
free-vars-form (zq) = {(x, @)}
| free-vars-form ({cla) = {}
| free-vars-form (A + B) = free-vars-form A U free-vars-form B
| free-vars-form (Azq. A) = free-vars-form A — {(z, o)}

fun free-vars-form-set :: form set = var set where
free-vars-form-set S = (JA € S. free-vars A)

end

abbreviation free-var-names :: 'a = nat set where
free-var-names X = var-name ‘ (free-vars X')

lemma free-vars-form-finiteness:
fixes A :: form
shows finite (free-vars A)
by (induction rule: free-vars-form.induct) simp-all

lemma free-vars-of-generalized-app:
shows free-vars (+2, A Bs) = free-vars A U free-vars (Iset Bs)
by (induction Bs arbitrary: A) auto

lemma free-vars-of-generalized-abs:
shows free-vars (A2, vs A) = free-vars A — lset vs
by (induction vs arbitrary: A) auto

lemma free-vars-in-all-vars:
fixes A :: form
shows free-vars A C vars A
proof (induction A)
case (FVar v)
then show ?case
using surj-pair[of v] by force
next
case (FCon k)
then show ?case
using surj-pair|of k| by force
next
case (FApp A B)
have free-vars (A « B) = free-vars A U free-vars B
using free-vars-form.simps(3) .

20

also from FApp.IH have ... C vars A U vars B
by blast
also have ... = vars (A « B)
using vars-form.simps(3)[symmetric] .
finally show ?Zcase
by (simp only:)
next
case (FAbs v A)
then show ?case
using surj-pair[of v] by force
ged

lemma free-vars-in-all-vars-set:
fixes S :: form set
shows free-vars S C vars S
using free-vars-in-all-vars by fastforce

lemma singleton-form-set-vars:
shows vars {FVar y} = {y}
using surj-pair[of y] by force

fun bound-vars where
bound-vars (z¢) = {}
| bound-vars ({c}o) = {}
| bound-vars (B« C') = bound-vars B U bound-vars C
| bound-vars (Azq. B) = {(z, &)} U bound-vars B

lemma vars-is-free-and-bound-vars:
shows vars A = free-vars A U bound-vars A
by (induction A) auto

fun binders-at :: form = position = var set where
binders-at (A « B) (« # p) = binders-at A p

| binders-at (A« B) (» # p) = binders-at B p

| binders-at (Azq. A) (« # p) = {(z, o)} U binders-at A p

| binders-at A [| = {}

| binders-at A p = {}

lemma binders-at-concat:
assumes A’ <) A
shows binders-at A (p @Q p’) = binders-at A p U binders-at A’ p’
using assms by (induction p A rule: is-subform-at.induct) auto

2.8 Free and bound occurrences

definition occurs-at :: var = position = form = bool where
[iff]: occurs-at v p B <— (FVar v <y B)

lemma occurs-at-alt-def:

21

shows occurs-at v [| (FVar v') «— (v = v)

and occurs-at v p ({c}a) +— False

and occurs-at v (« # p) (A« B) «— occurs-at v p A
and occurs-at v (» # p) (4 = B) +— occurs-at v p B
and occurs-at v (¢« # p) (Azq. A) <— occurs-at v p A
and occurs-at v (d # p) (FVar v") +— False

and occurs-at v (» # p) (Azq. A) +— False

and occurs-at v [] (A « B) «— False

and occurs-at v [| (Azq. A) +— False

by (fastforce elim: is-subform-at.elims)+

definition occurs :: var = form = bool where
[iff]: occurs v B <— (3 p € positions B. occurs-at v p B)

lemma occurs-in-vars:
assumes occurs v A
shows v € vars A
using assms by (induction A) force+

abbreviation strict-prefizes where
strict-prefizes xs = [ys + prefizes zs. ys # xs]

definition in-scope-of-abs :: var = position = form = bool where
[iff]: in-scope-of-abs v p B +— (
p#IA
(

dp’ € Iset (strict-prefizes p).
case (subform-at B p’) of
Some (FAbs v’ -) = v =10’
| - = False
)
)

lemma in-scope-of-abs-alt-def:
shows
in-scope-of-abs v p B
—
p # | A (3p’ € positions B. 3 C. strict-prefix p’ p A FAbs v C jp/ B)
proof
assume in-scope-of-abs v p B
then show p # [| A (3p’ € positions B. 3 C. strict-prefiz p’ p A FAbs v C =y’ B)
by (induction rule: subform-at.induct) force+
next
assume p # [| A (Ip’ € positions B. 3 C. strict-prefiz p’ p N FAbs v C jp/ B)
then show in-scope-of-abs v p B
by (induction rule: subform-at.induct) fastforce+
qed

lemma in-scope-of-abs-in-left-app:

22

shows in-scope-of-abs v (« # p) (A = B) «— in-scope-of-abs v p A
by force

lemma in-scope-of-abs-in-right-app:
shows in-scope-of-abs v (» # p) (A + B) <— in-scope-of-abs v p B
by force

lemma in-scope-of-abs-in-app:
assumes in-scope-of-abs v p (A « B)
obtains p’ where (p = « # p’ A in-scope-of-abs v p’ A) V (p = » # p’ A in-scope-of-abs v p’ B)
proof —
from assms obtain d and p’ where p = d # p’
unfolding in-scope-of-abs-def by (meson list.ezhaust)
then show ?thesis
proof (cases d)
case Left
with assms and <p = d # p’> show ?thesis
using that and in-scope-of-abs-in-left-app by simp
next
case Right
with assms and <p = d # p’> show ?Zthesis
using that and in-scope-of-abs-in-right-app by simp
qed
qed

lemma not-in-scope-of-abs-in-app:

assumes
Vp'
(p = « # p’ — = in-scope-of-abs v’ p’ A)
A

(p = » # p’ — — in-scope-of-abs v’ p’ B)
shows — in-scope-of-abs v’ p (A + B)
using assms and in-scope-of-abs-in-app by metis

lemma in-scope-of-abs-in-abs:
shows in-scope-of-abs v (« # p) (FAbs v’ B) +— v = v’ V in-scope-of-abs v p B
proof
assume in-scope-of-abs v (« # p) (FAbs v’ B)
then obtain p’ and C
where p’ € positions (FAbs v’ B)
and strict-prefix p’ (« # p)
and FAbs v C jp/ FAbs v' B
unfolding in-scope-of-abs-alt-def by blast
then show v = v’ V in-scope-of-abs v p B
proof (cases p’)
case Nil
with «FAbs v C jp/ FAbs v' B> have v = v’
by auto
then show ?thesis

23

by simp
next
case (Cons d p")
with «strict-prefix p’ (« # p)» have d = «
by simp
from (FAbs v C jp/ FAbs v/ B> and Cons have p’’ € positions B
by
(cases (FAbs v C, p’, FAbs v' B) rule: is-subform-at.cases)
(simp-all add: is-subform-implies-in-positions)
moreover from «(FAbs v C jp/ FAbs v' B> and Cons and «d = «» have FAbs v C jpu B
by (metis is-subform-at.simps(4) old.prod.exhaust)
moreover from <strict-prefiz p’ (« # p)» and Cons have strict-prefiz p'' p
by auto
ultimately have in-scope-of-abs v p B
using in-scope-of-abs-alt-def by auto
then show %thesis
by simp
qed
next
assume v = v’ V in-scope-of-abs v p B
then show in-scope-of-abs v (« # p) (FAbs v’ B)
unfolding in-scope-of-abs-alt-def
using position-subform-existence-equivalence and surj-pair|of v’
by force
qged

lemma not-in-scope-of-abs-in-var:
shows — in-scope-of-abs v p (FVar v’)
unfolding in-scope-of-abs-def by (cases p) simp-all

lemma in-scope-of-abs-in-vars:
assumes in-scope-of-abs v p A
shows v € vars A
using assms proof (induction A arbitrary: p)
case (FVar v’
then show ?case
using not-in-scope-of-abs-in-var by blast
next
case (FCon k)
then show ?case
using in-scope-of-abs-alt-def by (blast elim: is-subform-at.elims(2))
next
case (FApp B C)
from FApp.prems obtain d and p’ where p = d # p’
unfolding in-scope-of-abs-def by (meson neg-Nil-conv)
then show ?case
proof (cases d)
case Left
with FApp.prems and <p = d # p’s have in-scope-of-abs v p’ B

24

using in-scope-of-abs-in-left-app by blast
then have v € vars B
by (fact FApp.IH(1))
then show %thesis
by simp
next
case Right
with FApp.prems and <p = d # p’» have in-scope-of-abs v p’ C
using in-scope-of-abs-in-right-app by blast
then have v € vars C
by (fact FApp.IH(2))
then show ?thesis
by simp
qed
next
case (FAbs v’ B)
then show ?case
proof (cases v = v)
case True
then show %thesis
using surj-pair[of v] by force
next
case Fulse
with FAbs.prems obtain p’ and d where p = d # p’
unfolding in-scope-of-abs-def by (meson neg-Nil-conv)
then show ?thesis
proof (cases d)
case Left

with FAbs.prems and False and <p = d # p’» have in-scope-of-abs v p’ B

using in-scope-of-abs-in-abs by blast
then have v € vars B
by (fact FAbs.IH)
then show ?thesis
using surj-pair|of v'] by force
next
case Right
with FAbs.prems and «(p = d # p’» and Fualse show ?thesis
by (cases rule: is-subform-at.cases) auto
qed
qed
qed

lemma binders-at-alt-def:
assumes p € positions A
shows binders-at A p = {v | v. in-scope-of-abs v p A}
using assms and in-set-prefizes by (induction rule: binders-at.induct) auto

definition is-bound-at :: var = position = form = bool where
[iff]: is-bound-at v p B +— occurs-at v p B A in-scope-of-abs v p B

25

lemma not-is-bound-at-in-var:
shows - is-bound-at v p (FVar v’)
by (fastforce elim: is-subform-at.elims(2))

lemma not-is-bound-at-in-con:
shows - is-bound-at v p (FCon k)
by (fastforce elim: is-subform-at.elims(2))

lemma is-bound-at-in-left-app:
shows is-bound-at v (« # p) (B« C) «— is-bound-at v p B
by auto

lemma is-bound-at-in-right-app:
shows is-bound-at v (» # p) (B« C) +— is-bound-at v p C
by auto

lemma is-bound-at-from-app:
assumes is-bound-at vp (B« C)
obtains p’ where (p = « # p’ A is-bound-at v p' B) V (p = » # p’ A is-bound-at v p’ C)
proof —
from assms obtain d and p’ where p = d # p’
using subforms-from-app by blast
then show ?thesis
proof (cases d)
case Left
with assms and that and <p = d # p’» show ?thesis
using is-bound-at-in-left-app by simp
next
case Right
with assms and that and <p = d # p’» show ?thesis
using is-bound-at-in-right-app by simp
qed
qged

lemma is-bound-at-from-abs:
assumes is-bound-at v (« # p) (FAbs v’ B)
shows v = v’ V is-bound-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-bound-at-from-absE:
assumes is-bound-at v p (FAbs v’ B)
obtains p’ where p = « # p’and v = v’ V is-bound-at v p’ B
proof —
obtain z and «a where v’ = (z, a)
by fastforce
with assms obtain p’ where p = « # p’
using subforms-from-abs by blast
with assms and that show ?thesis

26

using is-bound-at-from-abs by simp
qged

lemma is-bound-at-to-abs:
assumes (v = v’ A occurs-at v p B) V is-bound-at v p B
shows is-bound-at v (« # p) (FAbs v’ B)
unfolding is-bound-at-def proof
from assms(1) show occurs-at v (« # p) (FAbs v’ B)
using surj-pair[of v] by force
from assms show in-scope-of-abs v (« # p) (FAbs v’ B)
using in-scope-of-abs-in-abs by auto
qged

lemma is-bound-at-in-bound-vars:
assumes p € positions A
and is-bound-at v p AV v € binders-at A p
shows v € bound-vars A
using assms proof (induction A arbitrary: p)
case (FApp B C)
from FApp.prems(2) consider (a) is-bound-at vp (B« C) | (b) v € binders-at (B« C) p
by blast
then show ?case
proof cases
case a
then have p # ||
using occurs-at-alt-def(8) by blast
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (a1) p = « # p’ and p’ € positions B | (a2) p = » # p’ and p’ € positions C
by force
then show ?thesis
proof cases
case a
from a;(1) and «<is-bound-at v p (B » C)» have is-bound-at v p’ B
using is-bound-at-in-left-app by blast
with a;(2) have v € bound-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case as
from as(1) and <is-bound-at v p (B « C)» have is-bound-at v p’ C
using is-bound-at-in-right-app by blast
with a2(2) have v € bound-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed

27

next
case b
then have p # ||
by force
then obtain d and p’ where p = d # p’
by (meson list.ezhaust)
with «p € positions (B« C)»
consider (b1) p = « # p’ and p’ € positions B | (ba) p = » # p’ and p’ € positions C
by force
then show Zthesis
proof cases
case b
from b;(1) and v € binders-at (B« C) p» have v € binders-at B p’
by force
with b;(2) have v € bound-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case by
from b2(1) and <v € binders-at (B« C') p> have v € binders-at C p’
by force
with b2(2) have v € bound-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed
qed
next
case (FAbs v’ B)
from FAbs.prems(2) consider (a) is-bound-at v p (FAbs v’ B) | (b) v € binders-at (FAbs v’ B) p
by blast
then show ?case
proof cases
case a
then have p # ||
using occurs-at-alt-def (9) by force
with <p € positions (FAbs v' B)»> obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
from «p = « # p’» and «is-bound-at v p (FAbs v’ B)> have v = v’ V is-bound-at v p’ B
using is-bound-at-from-abs by blast
then consider (a1) v = v’ | (az2) is-bound-at v p’ B
by blast
then show ?thesis
proof cases
case a;
then show ?thesis
using surj-pair[of v'] by fastforce
next

28

case as
then have v € bound-vars B
using «p’ € positions B> and FAbs.IH by blast
then show ?Zthesis
using surj-pair[of v'] by fastforce
qed
next
case b
then have p # ||
by force
with FAbs.prems(1) obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
with b consider (b1) v = v’ | (b2) v € binders-at B p’
by (cases FAbs v’ B rule: positions.cases) fastforce+
then show %thesis
proof cases
case b
then show ?thesis
using surj-pair|of v'] by fastforce
next
case by
then have v € bound-vars B
using (p’ € positions B> and FAbs.IH by blast
then show ?thesis
using surj-pair|of v'] by fastforce
qed
qed
qed fastforce+

lemma bound-vars-in-is-bound-at:
assumes v € bound-vars A
obtains p where p € positions A and is-bound-at v p A V v € binders-at A p
using assms proof (induction A arbitrary: thesis rule: bound-vars.induct)
case (3 B C)
from (v € bound-vars (B « C)> consider (a) v € bound-vars B | (b) v € bound-vars C
by fastforce
then show ?case
proof cases
case a
with 3.IH(1) obtain p where p € positions B and is-bound-at v p B V v € binders-at B p
by blast
from «p € positions By have « # p € positions (B « C)
by simp
from <is-bound-at v p B V v € binders-at B p»
consider (a1) is-bound-at v p B | (a2) v € binders-at B p
by blast
then show ?thesis
proof cases
case a1

29

then have is-bound-at v (« # p) (B« C)
using is-bound-at-in-left-app by blast
then show ?thesis
using 3.prems(1) and is-subform-implies-in-positions by blast
next
case ag
then have v € binders-at (B« C) (« # p)
by simp
then show ?thesis
using 3.prems(1) and <« # p € positions (B = C)» by blast
qed
next
case b
with 3.IH(2) obtain p where p € positions C and is-bound-at v p C V v € binders-at C p
by blast
from «p € positions C» have » # p € positions (B - C)
by simp
from <is-bound-at v p C V v € binders-at C p»
consider (b1) is-bound-at vp C | (b2) v € binders-at C p
by blast
then show %thesis
proof cases
case b
then have is-bound-at v (» # p) (B« C)
using is-bound-at-in-right-app by blast
then show ?thesis
using 3.prems(1) and is-subform-implies-in-positions by blast
next
case by
then have v € binders-at (B« C) (» # p)
by simp
then show ?thesis
using 3.prems(1) and <» # p € positions (B « C)» by blast
qed
qed
next
case (4 ¢ a B)
from (v € bound-vars (Azq. B)> consider (a) v = (z, «) | (b) v € bound-vars B
by force
then show ?case
proof cases
case a
then have v € binders-at (Azq. B) [«]
by simp
then show ?thesis
using /.prems(1) and is-subform-implies-in-positions by fastforce
next
case b
with 4.IH(1) obtain p where p € positions B and is-bound-at v p B V v € binders-at B p

30

by blast
from <p € positions By have « # p € positions (Azy. B)
by simp
from <is-bound-at v p B V v € binders-at B p»
consider (by) is-bound-at v p B | (b2) v € binders-at B p
by blast
then show ?thesis
proof cases
case b
then have is-bound-at v (« # p) (Azq. B)
using is-bound-at-to-abs by blast
then show ?thesis
using 4 .prems(1) and <« # p € positions (Azq. B)>» by blast
next
case by
then have v € binders-at (Azqo. B) (« # p)
by simp
then show ?thesis
using 4 .prems(1) and <« # p € positions (Azy. B)» by blast
qed
qed
qed simp-all

lemma bound-vars-alt-def:
shows bound-vars A = {v | v p. p € positions A A (is-bound-at v p AV v € binders-at A p)}
using bound-vars-in-is-bound-at and is-bound-at-in-bound-vars
by (intro subset-antisym subsetl Collectl, metis) blast

definition is-free-at :: var = position = form = bool where
[iff]: is-free-at v p B +— occurs-at v p B A\ — in-scope-of-abs v p B

lemma is-free-at-in-var:
shows is-free-at v [| (FVar v') «— v = v
by simp

!

lemma not-is-free-at-in-con:
shows — is-free-at v [| ({c}a)
by simp

lemma is-free-at-in-left-app:
shows is-free-at v (« # p) (B« C) +— is-free-at v p B
by auto

lemma is-free-at-in-right-app:
shows is-free-at v (» # p) (B« C) «— is-free-at vp C
by auto

lemma is-free-at-from-app:

assumes is-free-at v p (B« C)

31

obtains p’ where (p = « # p' A is-free-at v p’' B) V (p = » # p’ N is-free-at v p' C)
proof —
from assms obtain d and p’ where p = d # p’
using subforms-from-app by blast
then show ?thesis
proof (cases d)
case Left
with assms and that and <p = d # p’» show ?thesis
using is-free-at-in-left-app by blast
next
case Right
with assms and that and «<p = d # p’» show ?thesis
using is-free-at-in-right-app by blast
qed
qed

lemma is-free-at-from-abs:
assumes is-free-at v (« # p) (FAbs v’ B)
shows is-free-at v p B
using assms by (fastforce elim: is-subform-at.elims)

lemma is-free-at-from-absk:
assumes is-free-at v p (FAbs v’ B)
obtains p’ where p = « # p’ and is-free-at v p’ B
proof —
obtain z and « where v’ = (z, a)
by fastforce
with assms obtain p’ where p = « # p’
using subforms-from-abs by blast
with assms and that show ?thesis
using is-free-at-from-abs by blast
ged

lemma is-free-at-to-abs:
assumes is-free-at v p B and v # v’
shows is-free-at v (« # p) (FAbs v’ B)
unfolding is-free-at-def proof
from assms(1) show occurs-at v (« # p) (FAbs v’ B)
using surj-pair[of v']| by fastforce
from assms show — in-scope-of-abs v (« # p) (FAbs v’ B)
unfolding is-free-at-def using in-scope-of-abs-in-abs by presburger
ged

lemma is-free-at-in-free-vars:
assumes p € positions A and is-free-at vp A
shows v € free-vars A

using assms proof (induction A arbitrary: p)
case (FApp B C)
from «<is-free-at v p (B « C)» have p # [|

32

using occurs-at-alt-def (8) by blast
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (a) p = « # p’ and p’ € positions B | (b) p = » # p’ and p’ € positions C
by force
then show ?case
proof cases
case a
from a(1) and (is-free-at v p (B « C)» have is-free-at v p’ B
using is-free-at-in-left-app by blast
with a(2) have v € free-vars B
using FApp.IH(1) by blast
then show ?thesis
by simp
next
case b
from b(1) and <is-free-at v p (B + C)» have is-free-at v p’ C
using is-free-at-in-right-app by blast
with b(2) have v € free-vars C
using FApp.IH(2) by blast
then show ?thesis
by simp
qed
next
case (FAbs v’ B)
from <is-free-at v p (FAbs v’ B)» have p # [|
using occurs-at-alt-def(9) by force
with «p € positions (FAbs v’ B)» obtain p’ where p = « # p’ and p’ € positions B
by (cases FAbs v’ B rule: positions.cases) fastforce+
moreover from p = « # p’» and <is-free-at v p (FAbs v’ B)) have is-free-at v p’ B
using is-free-at-from-abs by blast
ultimately have v € free-vars B
using FAbs.IH by simp
moreover from «p = « # p’» and <is-free-at v p (FAbs v’ B)) have v # v’
using in-scope-of-abs-in-abs by blast
ultimately show Zcase
using surj-pair[of v] by force
qed fastforce+

lemma free-vars-in-is-free-at:
assumes v € free-vars A
obtains p where p € positions A and is-free-at v p A
using assms proof (induction A arbitrary: thesis rule: free-vars-form.induct)
case (3 A B)
from «v € free-vars (A » B)» consider (a) v € free-vars A | (b) v € free-vars B
by fastforce
then show ?case
proof cases

33

case a
with 3.1H(1) obtain p where p € positions A and is-free-at v p A
by blast
from «p € positions A> have « # p € positions (A + B)
by simp
moreover from <is-free-at v p A> have is-free-at v (« # p) (A« B)
using is-free-at-in-left-app by blast
ultimately show ?thesis
using 3.prems(1) by presburger
next
case b
with 3.1H(2) obtain p where p € positions B and is-free-at v p B
by blast
from <p € positions By have » # p € positions (A + B)
by simp
moreover from (is-free-at v p B> have is-free-at v (» # p) (A + B)
using is-free-at-in-right-app by blast
ultimately show ¢thesis
using 3.prems(1) by presburger
qed
next
case (4 z a A)
from <v € free-vars (Azq. A)> have v € free-vars A — {(z, @)} and v # (z, o)
by simp-all
then have v € free-vars A

by blast

with /.IH obtain p where p € positions A and is-free-at v p A
by blast

from «p € positions A» have « # p € positions (Azq. A)
by simp

moreover from (is-free-at v p A> and v # (z, a)) have is-free-at v (« # p) (A\zq. A)
using is-free-at-to-abs by blast
ultimately show ?case
using /.prems(1) by presburger
qed simp-all

lemma free-vars-alt-def:
shows free-vars A = {v | v p. p € positions A A is-free-at v p A}
using free-vars-in-is-free-at and is-free-at-in-free-vars
by (intro subset-antisym subsetl Collectl, metis) blast

In the following definition, note that the variable immeditately preceded by A\ counts as a
bound variable:
definition is-bound :: var = form = bool where

[¢ff]: is-bound v B <— (I p € positions B. is-bound-at v p B V v € binders-at B p)

lemma is-bound-in-app-homomorphism:
shows is-bound v (A « B) «— is-bound v A V is-bound v B
proof

34

assume is-bound v (A « B)

then obtain p where p € positions (A « B) and is-bound-at vp (A« B) V v € binders-at (A «

by auto
then have p # ||
by fastforce
with <p € positions (A + B)» obtain p’ and d where p = d # p’
by auto
from <is-bound-at vp (A« B) V v € binders-at (A + B) p
consider (a) is-bound-at v p (A« B) | (b) v € binders-at (A« B) p
by blast
then show is-bound v A V is-bound v B
proof cases
case a
then show ?thesis
proof (cases d)
case Left
then have p’ € positions A
using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from <is-bound-at v p (A « B)> have occurs-at v p’ A
using Left and <p = d # p"» and is-subform-at.simps(2) by force
moreover from <is-bound-at v p (A « B)» have in-scope-of-abs v p’ A
using Left and <p = d # p’» by fastforce
ultimately show ?thesis
by auto
next
case Right
then have p’ € positions B
using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from (is-bound-at v p (A + B)) have occurs-at v p’ B
using Right and «p = d # p’» and is-subform-at.simps(3) by force
moreover from <is-bound-at v p (A + B)) have in-scope-of-abs v p’ B
using Right and <p = d # p"» by fastforce
ultimately show ?Zthesis
by auto
qed
next
case b
then show ?thesis
proof (cases d)
case Left
then have p’ € positions A
using <p = d # p’» and <p € positions (A = B)» by fastforce
moreover from «v € binders-at (A « B) p> have v € binders-at A p’
using Left and <p = d # p’» by force
ultimately show ?Zthesis
by auto
next
case Right
then have p’ € positions B

35

B) p

using <p = d # p"» and «p € positions (A + B)» by fastforce
moreover from v € binders-at (A « B) p» have v € binders-at B p’
using Right and <p = d # p"» by force
ultimately show ?thesis
by auto
qed
qed
next
assume is-bound v A V is-bound v B
then show is-bound v (A + B)
proof (rule disjE)
assume is-bound v A
then obtain p where p € positions A and is-bound-at v p A V v € binders-at A p
by auto
from «p € positions A> have « # p € positions (A + B)
by auto
from <is-bound-at v p A V v € binders-at A p»
consider (a) is-bound-at vp A | (b) v € binders-at A p
by blast
then show is-bound v (A + B)
proof cases

case a

then have occurs-at v (« # p) (A« B)
by auto

moreover from « have is-bound-at v (¢« # p) (A « B)
by force

ultimately show is-bound v (A « B)
using <« # p € positions (A « B)» by blast
next
case b
then have v € binders-at (A « B) (« # p)
by auto
then show is-bound v (A « B)
using <« # p € positions (A « B)» by blast
qed
next
assume is-bound v B
then obtain p where p € positions B and is-bound-at v p B V v € binders-at B p
by auto
from <p € positions By have » # p € positions (A + B)
by auto
from <is-bound-at v p B V v € binders-at B p»
consider (a) is-bound-at v p B | (b) v € binders-at B p
by blast
then show is-bound v (A « B)
proof cases
case a
then have occurs-at v (» # p) (A« B)
by auto

36

moreover from a have is-bound-at v (» # p) (A + B)
by force
ultimately show is-bound v (A « B)
using » # p € positions (A « B)> by blast
next
case b
then have v € binders-at (A - B) (» # p)
by auto
then show is-bound v (A + B)
using » # p € positions (A « B)» by blast
qed
qed
qged

lemma is-bound-in-abs-body:
assumes is-bound v A
shows is-bound v (Azq. A)
using assms unfolding is-bound-def proof
fix p
assume p € positions A and is-bound-at vp AV v € binders-at A p
moreover from <«p € positions A> have « # p € positions (A\zg. A)
by simp
ultimately consider (a) is-bound-at vp A | (b) v € binders-at A p
by blast
then show Jp € positions (Azy. A). is-bound-at v p (Azg. A) V v € binders-at (Azq. A) p
proof cases
case a
then have is-bound-at v (« # p) (A\zq. A)
by force
with <« # p € positions (Azq. A)> show Zthesis
by blast
next
case b
then have v € binders-at (Azq. 4) (« # p)
by simp
with <« # p € positions (Azq. A)> show ?thesis
by blast
qed
qged

lemma absent-var-is-not-bound:
assumes v ¢ vars A
shows — is-bound v A
using assms and binders-at-alt-def and in-scope-of-abs-in-vars by blast

lemma bound-vars-alt-def2:

shows bound-vars A = {v € vars A. is-bound v A}
unfolding bound-vars-alt-def using absent-var-is-not-bound by fastforce

37

definition is-free :: var = form = bool where
[¢ff]: is-free v B <— (I p € positions B. is-free-at v p B)

2.9 Free variables for a formula in another formula

definition is-free-for :: form = var = form = bool where
[iff): is-free-for A v B +—

Yo' € free-vars A.
YV p € positions B.
is-free-at v p B — — in-scope-of-abs v’ p B
)

lemma is-free-for-absent-var [intro:
assumes v ¢ vars B
shows is-free-for A v B
using assms and occurs-def and is-free-at-def and occurs-in-vars by blast

lemma is-free-for-in-var [intro:
shows is-free-for A v (zq,)
using subforms-from-var(2) by force

lemma is-free-for-in-con [intro):
shows is-free-for A v ({cla)
using subforms-from-con(2) by force

lemma is-free-for-from-app:
assumes is-free-for A v (B« C)
shows is-free-for A v B and is-free-for A v C
proof —
{
fix v’
assume v’ € free-vars A
then have Vp € positions B. is-free-at v p B — — in-scope-of-abs v’ p B
proof (intro balll impI)
fix p
assume v’ € free-vars A and p € positions B and is-free-at v p B
from <p € positions By have « # p € positions (B« C)
by simp
moreover from <is-free-at v p B> have is-free-at v (« # p) (B« C)
using is-free-at-in-left-app by blast
ultimately have — in-scope-of-abs v’ (« # p) (B - C)
using assms and (v’ € free-vars A> by blast
then show — in-scope-of-abs v’ p B
by simp
qed
}
then show is-free-for A v B
by force

38

next
{
fix v’
assume v’ € free-vars A
then have Vp € positions C. is-free-at v p C — — in-scope-of-abs v’ p C
proof (intro balll implI)
fix p
assume v’ € free-vars A and p € positions C and is-free-at v p C
from «p € positions C» have » # p € positions (B = C)
by simp
moreover from <is-free-at v p C» have is-free-at v (» # p) (B« C)
using is-free-at-in-right-app by blast
ultimately have — in-scope-of-abs v’ (» # p) (B - C)
using assms and (v’ € free-vars A> by blast
then show — in-scope-of-abs v/ p C
by simp
qed

then show is-free-for A v C
by force
qged

lemma is-free-for-to-app [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B« C)
unfolding is-free-for-def proof (intro balll impI)
fix v' and p
assume v’ € free-vars A and p € positions (B « C) and is-free-at v p (B« C)
from <is-free-at v p (B « C)» have p # [|
using occurs-at-alt-def(8) by force
then obtain d and p’ where p = d # p’
by (meson list.exhaust)
with «p € positions (B« C)»
consider (b) p = « # p’ and p’ € positions B | (¢) p = » # p’ and p’ € positions C
by force
then show — in-scope-of-abs v’ p (B + C)
proof cases
case b
from b(1) and <is-free-at v p (B + C)> have is-free-at v p’ B
using is-free-at-in-left-app by blast
with assms(1) and v’ € free-vars Ay and <p’ € positions By have — in-scope-of-abs v’ p’ B
by simp
with b(1) show %thesis
using in-scope-of-abs-in-left-app by simp
next
case ¢
from c(1) and <is-free-at v p (B« C')» have is-free-at v p' C
using is-free-at-in-right-app by blast
with assms(2) and v’ € free-vars Ay and <p’ € positions C» have — in-scope-of-abs v’ p' C

39

by simp
with ¢(1) show %thesis
using in-scope-of-abs-in-right-app by simp
qed
qged

lemma is-free-for-in-app:
shows is-free-for A v (B + C) +— is-free-for A v B A is-free-for A v C
using is-free-for-from-app and is-free-for-to-app by iprover

lemma is-free-for-to-abs [introl:
assumes is-free-for A v B and (z,) ¢ free-vars A
shows is-free-for A v (Azq. B)
unfolding is-free-for-def proof (intro balll impI)
fix v/ and p
assume v’ € free-vars A and p € positions (A\zq. B) and is-free-at v p (Azgy. B)
from <is-free-at v p (Azq. B)> have p # |]
using occurs-at-alt-def(9) by force
with «p € positions (Azq. B)> obtain p’ where p = « # p’ and p’ € positions B
by force
then show — in-scope-of-abs v’ p (Azq. B)
proof —
from <p = « # p"» and «(is-free-at v p (Azq. B)> have is-free-at v p’ B
using is-free-at-from-abs by blast
with assms(1) and v’ € free-vars Ay and <p’ € positions By have — in-scope-of-abs v’ p’ B
by force
moreover from (v’ € free-vars A> and assms(2) have v’ # (z, «)
by blast
ultimately show ?thesis
using «(p = « # p’» and in-scope-of-abs-in-abs by auto
qed
ged

lemma is-free-for-from-abs:
assumes is-free-for A v (Azq. B) and v # (z, «)
shows is-free-for A v B
unfolding is-free-for-def proof (intro balll impI)
fix v' and p
assume v’ € free-vars A and p € positions B and is-free-at v p B
then show — in-scope-of-abs v’ p B
proof —
from (is-free-at v p B> and assms(2) have is-free-at v (« # p) (Azq. B)
by (rule is-free-at-to-abs)
moreover from <p € positions B> have « # p € positions (Azq. B)
by simp
ultimately have — in-scope-of-abs v’ (« # p) (A\zq. B)
using assms and <v’ € free-vars A> by blast
then show ?thesis
using in-scope-of-abs-in-abs by blast

40

qed
qged

lemma closed-is-free-for [intro]:
assumes free-vars A = {}
shows is-free-for A v B
using assms by force

lemma is-free-for-closed-form [intro]:
assumes free-vars B = {}
shows is-free-for A v B
using assms and is-free-at-in-free-vars by blast

lemma is-free-for-alt-def:
shows
is-free-for A v B
—
(
Bp.
(
p € positions B A is-free-at vp B A p # [| A
(v’ € free-vars A. Ap’ C. strict-prefiz p’ p N FAbs v’ C jp/ B)

)
)
unfolding is-free-for-def
using in-scope-of-abs-alt-def and is-subform-implies-in-positions
by meson

lemma binding-var-not-free-for-in-abs:
assumes is-free © B and = # w
shows — is-free-for (FVar w) x (FAbs w B)
proof (rule ccontr)

assume — — is-free-for (FVar w) x (FAbs w B)

then have
Vo' € free-vars (FVar w). Vp € positions (FAbs w B). is-free-at x p (FAbs w B)

— =1 in-scope-of-abs v’ p (FAbs w B)

by force

moreover have free-vars (FVar w) = {w}
using surj-pair|of w| by force

ultimately have
YV p € positions (FAbs w B). is-free-at p (FAbs w B) — — in-scope-of-abs w p (FAbs w B)
by blast

moreover from assms(1) obtain p where is-free-at x p B
by fastforce

from this and assms(2) have is-free-at x (« # p) (FAbs w B)
by (rule is-free-at-to-abs)

moreover from this have « # p € positions (FAbs w B)
using is-subform-implies-in-positions by force

ultimately have — in-scope-of-abs w (« # p) (FAbs w B)

41

by blast
moreover have in-scope-of-abs w (« # p) (FAbs w B)
using in-scope-of-abs-in-abs by blast
ultimately show False
by contradiction
qged

lemma absent-var-is-free-for [intro):
assumes = ¢ vars A
shows is-free-for (FVar x) y A
using in-scope-of-abs-in-vars and assms and surj-pair(of x| by fastforce

lemma form-is-free-for-absent-var [introl:
assumes = ¢ vars A
shows is-free-for B x A
using assms and occurs-in-vars by fastforce

lemma form-with-free-binder-not-free-for:
assumes v # v’ and v’ € free-vars A and v € free-vars B
shows — is-free-for A v (FAbs v’ B)
proof —
from assms(8) obtain p where p € positions B and is-free-at v p B
using free-vars-in-is-free-at by blast
then have « # p € positions (FAbs v’ B) and is-free-at v (« # p) (FAbs v’ B)
using surj-pair[of v'] and is-free-at-to-abs|OF <is-free-at v p B> assms(1)] by force+
moreover have in-scope-of-abs v’ (« # p) (FAbs v’ B)
using in-scope-of-abs-in-abs by blast
ultimately show ?thesis
using assms(2) by blast
qed

2.10 Replacement of subformulas

inductive

is-replacement-at :: form = position = form = form = bool

(((4-(- < -) & -)» [1000, 0, 0, 0] 900)
where

pos-found: A{p + C) > C'if p=[and C = C’
| replace-left-app: (G « H)(« # p < C) > (G'« H) if p € positions G and G(p < C) > G’
| replace-right-app: (G « H)({» # p «+ C) > (G « H') if p € positions H and H(p «+ C) > H'
| replace-abs: (Az~. E){« # p < C) > (Azy. E') if p € positions E and E{p < C) > E’
lemma is-replacement-at-implies-in-positions:

assumes C(p < A) > D

shows p € positions C

using assms by (induction rule: is-replacement-at.induct) auto

declare is-replacement-at.intros [intro!]

42

lemma is-replacement-at-existence:
assumes p € positions C
obtains D where C{(p < A) > D
using assms proof (induction C arbitrary: p thesis)
case (FApp C; C5)
from FApp.prems(2) consider
(@) p =
| () p’. p =« # p' A p' € positions Cy
| (¢) 3p’. p=»# p' A p' € positions Co
by fastforce
then show ?case
proof cases
case a
with FApp.prems(1) show ?thesis
by blast
next
case b
with FApp.prems(1) show ?thesis
using FApp.IH(1) and replace-left-app by meson
next
case ¢
with FApp.prems(1) show ?thesis
using FApp.IH(2) and replace-right-app by meson
qed
next
case (FAbs v C)
from FAbs.prems(2) consider (a) p =[] | (b) Ip’. p = « # p’ A p’ € positions C’
using surj-pair|of v] by fastforce
then show ?case
proof cases
case q
with FAbs.prems(1) show ?thesis
by blast
next
case b
with FAbs.prems(1,2) show ?thesis
using FAbs.IH and surj-pair|of v] by blast
qed
qed force+

lemma is-replacement-at-minimal-change:
assumes C{p «+ A) > D
shows A =<, D
and Vp' € positions D. — prefiz p’ p A — prefix p p’ — subform-at D p’ = subform-at C p’
using assms by (induction rule: is-replacement-at.induct) auto

lemma is-replacement-at-binders:

assumes C(p < A) > D
shows binders-at D p = binders-at C p

43

using assms by (induction rule: is-replacement-at.induct) simp-all

lemma is-replacement-at-occurs:
assumes C{p + A) > D
and — prefiz p’ p and — prefiz p p’
shows occurs-at v p’ C +— occurs-at v p’ D
using assms proof (induction arbitrary: p’ rule: is-replacement-at.induct)
case pos-found
then show ?case
by simp
next
case replace-left-app
then show ?case
proof (cases p’)
case (Cons d p")
with replace-left-app.prems(1,2) show ?thesis
by (cases d) (use replace-left-app.IH in force)+
qed force
next
case replace-right-app
then show ?case
proof (cases p’)
case (Cons d p')
with replace-right-app.prems(1,2) show ?thesis
by (cases d) (use replace-right-app.IH in force)+
qed force
next
case replace-abs
then show ?case
proof (cases p’)
case (Cons d p')
with replace-abs.prems(1,2) show ?thesis
by (cases d) (use replace-abs.IH in force)+
qed force
qed

lemma fresh-var-replacement-position-uniqueness:
assumes v ¢ vars C
and C(p <+ FVarv) > G
and occurs-at v p’ G
shows p’ = p
proof (rule ccontr)
assume p’ # p
from assms(2) have occurs-at vp G
by (simp add: is-replacement-at-minimal-change(1))
moreover have *: occurs-at v p’ C +— occurs-at v p’ G if — prefix p’ p and — prefiz p p’
using assms(2) and that and is-replacement-at-occurs by blast
ultimately show Fulse

proof (cases = prefix p’ p A — prefiz p p’)

44

case True
with assms(3) and * have occurs-at v p’ C
by simp
then have v € vars C
using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show ?thesis
by contradiction
next
case Fulse
have FVar v X5 G
by (fact is-replacement-at-minimal-change(1)[OF assms(2)])
moreover from assms(3) have FVar v < p’ G
by simp
ultimately show ?thesis
using «p’ # p» and False and loop-subform-impossibility
by (blast dest: prefiz-order.antisym-conv2)
qed
qed

lemma is-replacement-at-new-positions:
assumes C(p «+ A) > D and prefiz p p’ and p’ € positions D
obtains p’’ where p’ = p @ p'’ and p'’ € positions A
using assms by (induction arbitrary: thesis p’ rule: is-replacement-at.induct, auto) blast+

lemma replacement-override:
assumes C{p + B) > D and C{p « A) > F
shows D{p < A) > F
using assms proof (induction arbitrary: F rule: is-replacement-at.induct)
case pos-found
from pos-found.hyps(1) and pos-found.prems have A = F
using is-replacement-at.simps by blast
with pos-found.hyps(1) show Zcase
by blast
next
case (replace-left-app p G C G' H)
have p € positions G’
by (
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-left-app.hyps(2)]]
)
from replace-left-app.prems obtain F’ where F = F'+« H and G{p + A) > F’
by (fastforce elim: is-replacement-at.cases)
from <G(p «+ A) > F’ have G'(p + A) > F’
by (fact replace-left-app.IH)
with «p € positions G'> show ?Zcase
unfolding «F = F' - H»> by blast
next
case (replace-right-app p H C H' G)
have p € positions H'

45

by
(
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-right-app.hyps(2)]]

from replace-right-app.prems obtain F’ where FF = G « F' and H{p + A) > F'
by (fastforce elim: is-replacement-at.cases)
from <H(p < A) > F’» have H'(p + A) > F'
by (fact replace-right-app.IH)
with (p € positions H> show ?case
unfolding <F = G - F') by blast
next
case (replace-abs p E C E' z)
have p € positions E’
by
(
fact is-subform-implies-in-positions
[OF is-replacement-at-minimal-change(1)[OF replace-abs.hyps(2)]]
)

from replace-abs.prems obtain F’ where F' = \z. F' and E(p < A) > F’
by (fastforce elim: is-replacement-at.cases)
from «E(p < A) > F’» have E'{p «+ A) > F'
by (fact replace-abs.IH)
with (p € positions E'> show ?case
unfolding <F = Az~. F'» by blast
qged

lemma leftmost-subform-in-generalized-app-replacement:
shows (+C, C As)(replicate (length As) « + D) > (+<, D As)
using is-replacement-at-implies-in-positions and replace-left-app
by (induction As arbitrary: D rule: rev-induct) auto

2.11 Logical constants

abbreviation (input) r where r = 0
abbreviation (input) y where y = Suc ¢
abbreviation (input) 3 where 3 = Suc y
abbreviation (input) f where §f = Suc 3
abbreviation (input) g where g = Suc f
abbreviation (input) h where h = Suc g
abbreviation (input) ¢ where ¢ = Suc
abbreviation (input) ¢g where ¢g = Suc ¢
abbreviation (input) ¢, where ¢, = Suc ¢g

definition Q-constant-of-type :: type = con where
[simp]: Q-constant-of-type o = (¢g, a—a—0)

definition ‘ota-constant :: con where
[simp]: iota-constant = (c,, (i—0)—1)

46

definition @ :: type = form (:Q.>) where
[simp]: Qo = FCon (Q-constant-of-type «)

definition fota :: form («v») where
[simp]: « = FCon iota-constant

definition is-Q-constant-of-type :: con = type = bool where
[iff]: is-Q-constant-of-type p o +— p = Q-constant-of-type «

definition is-iota-constant :: con = bool where
[iff]: is-iota-constant p +— p = iota-constant

definition is-logical-constant :: con = bool where
[iff]: is-logical-constant p +— (3 B. is-Q-constant-of-type p B) V is-iota-constant p

definition type-of-Q-constant :: con = type where
[simp]: type-of-Q-constant p = (THE «. is-Q-constant-of-type p «)

lemma constant-cases|case-names non-logical Q-constant t-constant, cases type: con):
assumes — is-logical-constant p = P
and AS. is-Q-constant-of-type p § = P
and is-iota-constant p =—> P
shows P
using assms by blast

2.12 Definitions and abbreviations
definition equality-of-type :: form = type = form = form («(- =-/ -)» [103, 0, 103] 102) where
[simp]: A= B=Qq+A+B

definition equivalence :: form = form = form (infixl «(=<) 102) where
[simp]: A =2 B = A =, B— more modular than the definition in [2]

definition true :: form («T,>) where
[simp]: To = Qo =0—0—0 Qo

definition false :: form (<Fy)) where
[Simp]r Fo = Xo. To =0—0 Ao Yo

definition PI :: type = form (<[] ->) where
[simp]: [[a = Qa—o * (Ara- To)

definition forall :: nat = type = form = form («(4¥-../ -)» [0, 0, 141] 141) where
[simp]: Vaa. A =]]a - (Aza. A)

Generalized universal quantification. We define V<, [z, ..., z,] A asVz1. -~ YV, A:

definition generalized-forall :: var list = form = form (V< - - [141, 141] 141) where
[simp]: ¥ 2, vs A = foldr (\(z, @) B. Vzq. B) vs A

47

lemma innermost-subform-in-generalized-forall:
assumes vs # ||

shows A =fo10. (A p. [»,¢] @ p) vs | ¥ 2x V5 A
using assms by (induction vs) fastforce+

lemma innermost-replacement-in-generalized-forall:
assumes vs # ||
shows (V 2, vs C)(foldr (A-. (Q) [»,«]) vs [] < B) > (V< vs B)
using assms proof (induction vs)
case Nil
then show ?case
by blast
next
case (Cons v vs)
obtain z and « where v = (z, a)
by fastforce
then show ?case
proof (cases vs = [])
case True
with (v = (2, a)> show ?thesis
unfolding True by force
next
case Fulse
then have foldr (\-. (@) [»,«]) vs [| € positions (¥ <, vs C)
using innermost-subform-in-generalized-forall and is-subform-implies-in-positions by blast
moreover from False have (V <, vs C){foldr (\-. (Q) [»,«]) vs [| + B) > (V< vs B)
by (fact Cons.IH)
ultimately have (\zq. V<, vs C){« # foldr (A-. (Q) [»,«]) vs [| + B) > (\zg. V< vs B)
by (rule replace-abs)
moreover have « # foldr (A-. (Q) [»,«]) vs [| € positions (A\zq. ¥ 2, vs C)
using «foldr (\-. (@) [»,«]) vs [| € positions (¥ <, vs C)» by simp
ultimately have
(ITa * Aza. ¥ vs O)){» # « # foldr (A-. (Q) [»,«]) vs [+ B) > ([[a * Aza. V<, vs B))
by blast
then have (Vzq. V<, vs C){[»,«] @ foldr (A-. (Q) [»,4]) vs [] + B) > (Vaq. V<, vs B)
by simp
then show ?thesis
unfolding «v = (z,) and generalized-forall-def and foldr.simps(2) and o-apply
and case-prod-conv .
qed
qed

lemma false-is-forall:

ShOWS Fo - V;o xo

unfolding false-def and forall-def and PI-def and equality-of-type-def ..
definition conj-fun :: form (¢\A\o—o—o*) Where

[simp]: No—o—0 =

48

ALo- A\Do.
(

(Ago—0—30- Bo—so—0* To* To) =(0—0—0)—0 (Ago—s0—30- Bo—0—0 * To * Vo)

)

definition conj-op :: form = form = form (infixl <A< 131) where

[simp]: A NS B = Ap—so0A+B
Generalized conjunction. We define A2, [A1, ..., Ay] as Ay NS (- NS (Ap—1 NS Ap))
definition generalized-conj-op :: form list = form (<A2, -» [0] 131) where

[simp]: NS, As = foldrl (A9) As

definition imp-fun :: form ({Dp—0—0>) where — = used instead of =, see [2]
[simp]: Do—o—0 = ALo- ADo. (To =< 10 A2 1)

definition imp-op :: form = form = form (infixl <2<, 111) where
[Slmp] A DQ B = Do—0—0 " A-B

Generalized implication. We define [Ay, ..., A,] D2, Bas A1 D2 (--- 22 (4, D¢ B) ---):
definition generalized-imp-op :: form list = form = form (infixl <<,) 111) where

[simp]: As D2, B = foldr (D2) As B
Given the definition below, it is interesting to note that ~< A and F, =< A are exactly the
same formula, namely @, = F, » A:
definition neg :: form = form («~2 - [141] 141) where

[simp]: ~C A= Qo= Fo- A

definition disj-fun :: form (<Vo—o—0*>) Where
[simpl: Vo—so—0 = Ao Ao. ~2 (~2 1o AC ~2)

definition disj-op :: form = form = form (infixl «v<), 126) where
[Slmp] A \/Q B = Vo—so—o0 * A-B

definition ezists :: nat = type = form = form («(43--./ -)» [0, 0, 141] 141) where
[simp]: Fxq. A = ~2 (V. ~2 A)

lemma exists-fv:
shows free-vars (3zq. A) = free-vars A — {(z,)}
by simp

definition inequality-of-type :: form = type = form = form («(- #./ -)» [103, 0, 103] 102) where
(simpl: A 2o B =~ (A = B)

2.13 Well-formed formulas

inductive is-wff-of-type :: type = form = bool where
var-is-wff: is-wff-of-type a (zq,)
| con-is-wff: is-wff-of-type o ({c}a)
| app-is-wff: is-wff-of-type B (A « B) if is-wff-of-type (a«—pB) A and is-wff-of-type a B

49

| abs-is-wff: is-wff-of-type (a—LB) (Azq. A) if is-wff-of-type B A

definition wffs-of-type :: type = form set (<wffs.> [0]) where
wffse, = {f =t form. is-wff-of-type o f}

abbreviation wffs :: form set where

wffs = Ja. wffsa

lemma is-wff-of-type-wffs-of-type-eq [pred-set-convl:
shows is-wff-of-type a« = (\f. f € wffsa)
unfolding wffs-of-type-def by simp

lemmas wffs-of-type-intros [introl] = is-wff-of-type.intros|to-set]

lemmas wffs-of-type-induct [consumes 1, induct set: wffs-of-type] = is-wff-of-type.induct[to-set]
lemmas wffs-of-type-cases [consumes 1, cases set: wffs-of-type] = is-wff-of-type.cases[to-set]
lemmas wffs-of-type-simps = is-wff-of-type.simps[to-set]

lemma generalized-app-wff [intro]:
assumes length As = length ts
and Vk < length As. As ' k € wffsss 1
and B € wffsfoigr () ts 8
shows 2, B As € wﬁsﬁ
using assms proof (induction As ts arbitrary: B rule: list-induct2)
case Nil
then show ?case
by simp
next
case (Cons A As t ts)
from Cons.prems(1) have A € wffsy
by fastforce
moreover from Cons.prems(2) have B € Wifs s foldr (=) ts B
by auto
ultimately have B - A € wﬁsfoldr (=) ts 8
by blast
moreover have Vi < length As. (A # As) ! (Suc k) = As ' kA (t # ts) ! (Suc k) = ts ! k
by force
with Cons.prems(1) have Yk < length As. As ! k € wffsis 11
by fastforce
ultimately have :2, (B« A) As € wffsp
using Cons.IH by (simp only:)
moreover have 2, B (A # As) =2, (B+ A) As
by simp
ultimately show Zcase
by (simp only:)
qed

lemma generalized-abs-wff [intro]:
assumes B ¢ wﬁs/g

50

shows)\Q* vs B € wﬁsfoldr (=) (map snd vs) B

using assms proof (induction vs)
case Nil
then show ?case
by simp
next
case (Cons v vs)
let 20 = foldr (=) (map snd vs) 8
obtain z and « where v = (z, «)
by fastforce
then have F'Var v € wffsq
by auto
from Cons.prems have A9, vs B € wffsy;
by (fact Cons.IH)
with (v = (7, o)) have FAbs v (A9, vs B) € wffsy_s g5
by blast
moreover from (v = (z, a)) have foldr (=) (map snd (v # vs)) f = a—%
by simp
moreover have \9, (v # vs) B = FAbs v (\<, vs B)
by simp
ultimately show ?case by (simp only:)
qed

lemma Q-wff [intro]:
shows Qa € wffsa—a—o
by auto

lemma iota-wff [intro]:
shows | € wffs(
by auto

i—0)—>i

lemma equality-wff [intro]:
assumes A € wffsq and B € wffsq,
shows A =4 B € wffso
using assms by auto

lemma equivalence-wff [intro]:
assumes A € uffso and B € wffs,
shows A =2 B € uffs,
using assms unfolding equivalence-def by blast

lemma true-wff [intro]:
shows T € wffso
by force

lemma false-wff [intro]:

shows F, € wffso
by auto

o1

lemma pi-wff [intro]:
shows [[o € wﬁs(a_m)_)o
using Pl-def by fastforce

lemma forall-wff [introl:
assumes A € wffsy
shows Vzy. A € wffso
using assms and pi-wff unfolding forall-def by blast

lemma generalized-forall-wff [intro]:
assumes B € wffs,
shows V<, vs B € wffs,
using assms proof (induction vs)
case (Cons v vs)
then show ?case
using surj-pair|of v] by force
qed simp

lemma conj-fun-wff [intro]:
shows Ap—o0—0 € Wffso—0—0
by auto

lemma conj-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows A A2 B € wffs,
using assms unfolding conj-op-def by blast

lemma imp-fun-wff [intro]:
shows Do 00 € WfsSo—0—0
by auto

lemma imp-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows 4 D2 B € wffs,
using assms unfolding imp-op-def by blast

lemma neg-wjff [intro]:
assumes A € wffsy
shows ~2 A € wffs,
using assms by fastforce

lemma disj-fun-wff [intro]:
shows Vo050 € Wffso—o0—0
by auto

lemma disj-op-wff [intro]:
assumes A € wffsp and B € wffs,
shows A Ve B € wffs,
using assms by auto

52

lemma exists-wff [introl:
assumes A € wffsy
shows Jzy. A € wffso
using assms by fastforce

lemma inequality-wff [intro]:
assumes A € wffsq and B € wffsq
shows A #4 B € wffso
using assms by fastforce

lemma wffs-from-app:
assumes A - B € uffs
obtains o where A € wﬁsa_w and B € wffsq
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-generalized-app:
assumes 2, B As € wﬁslg
obtains ts
where length ts = length As
and Yk < length As. As ' k € wffs;s 1
and B € wffsgoigr () ts 8
using assms proof (induction As arbitrary: B thesis)
case Nil
then show ?case
by simp
next
case (Cons A As)
from Cons.prems have «2, (B« A) As € wffsg
by auto
then obtain ts
where length ts = length As
and V& < length As. As ' k € wffsis 11
and B- A € wﬁsfoldr (=) ts B
using Cons.IH by blast
moreover
from (B« A € wﬁsfoldr (=) ts B obtain ¢ where B € wﬁst—ﬁoldr (=) ts B and A € wffsy
by (elim wffs-from-app)
moreover from <length ts = length As> have length (t # ts) = length (A # As)
by simp
moreover from (A € wffsp and Vk < length As. As ! k € wffs; 1 1
have V& < length (A # As). (A # As) ' k € wﬁs(t 4 ts) 1 k
by (simp add: nth-Cons’)
moreover from (B € wﬁst%foldr (=) ts 8’ have B € wﬁsfoldr (=) (t # ts) B
by simp
ultimately show “case
using Cons.prems(1) by blast
ged

93

lemma wffs-from-abs:
assumes \zq. A € wffsy
obtains § where v = a—f and A € wﬁsﬁ
using assms by (blast elim: wffs-of-type-cases)

lemma wffs-from-equality:
assumes A =4 B € wffsy
shows A € wffsq and B € wffsy
using assms by (fastforce elim: wffs-of-type-cases)+

lemma wffs-from-equivalence:
assumes A =2 B ¢ wffs,
shows A € wffsp and B € wffs,
using assms unfolding equivalence-def by (fact wffs-from-equality)+

lemma wffs-from-forall:
assumes Vzq. A € wffsy
shows A € wffs,
using assms unfolding forall-def and PI-def
by (fold equality-of-type-def) (drule wffs-from-equality, blast elim: wffs-from-abs)

lemma wffs-from-conj-fun:
assumes NAg—o—o * A+ B € wffsy
shows A € wffsp and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-conj-op:
assumes A A€ B € wffs,
shows A € wffsp and B € wffs,
using assms unfolding conj-op-def by (elim wffs-from-conj-fun)+

lemma wffs-from-imp-fun:
assumes D900 = A = B € wffso
shows A € wffsy, and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-imp-op:
assumes A D¢ B € wffs,
shows A € wffsy, and B € wffs,
using assms unfolding imp-op-def by (elim wffs-from-imp-fun)+

lemma wffs-from-neg:
assumes ~2 A4 € wffs,
shows A € wffso
using assms unfolding neg-def by (fold equality-of-type-def) (drule wffs-from-equality, blast)

lemma wffs-from-disj-fun:
assumes Vo0 * A+ B € wffso

54

shows A € wffsy, and B € wffs,
using assms by (auto elim: wffs-from-app wffs-from-abs)

lemma wffs-from-disj-op:
assumes A V¢ B € wffs,
shows A € wffsy, and B € wffs,
using assms and wffs-from-disj-fun unfolding disj-op-def by blast+

lemma wffs-from-exists:
assumes Jzq. A € wffso
shows A € wffso
using assms unfolding exists-def using wffs-from-neg and wffs-from-forall by blast

lemma wffs-from-inequality:

assumes A #4 B € wffso

shows A € wffsq and B € wffsq

using assms unfolding inequality-of-type-def using wffs-from-equality and wffs-from-neg by me-
son—+

lemma wff-has-unique-type:
assumes A € wffsq and A € wffsg
shows a =
using assms proof (induction arbitrary: o B rule: form.induct)
case (FVar v)
obtain z and vy where v = (z,)
by fastforce
with F'Var.prems have a = v and § = v
by (blast elim: wffs-of-type-cases)+
then show ?case ..
next
case (FCon k)
obtain z and v where k = (z, v)
by fastforce
with F'Con.prems have o = v and 8 = v
by (blast elim: wffs-of-type-cases)+
then show ?case ..
next
case (FApp A B)
from FApp.prems obtain o’ and 3’ where A € wffs,/_, , and A € wﬁsﬁxﬁﬁ
by (blast elim: wffs-from-app)
with FApp.IH(1) show ?case
by blast
next
case (FAbs v A)
obtain z and v where v = (z, v)
by fastforce
with FAbs.prems obtain o’ and 3’
where a = y—a’and 8 = y—3"and A € wffs, and A € wﬁ”sﬂz
by (blast elim: wffs-from-abs)

95

with FAbs.IH show ?case
by simp
qed

lemma wffs-of-type-o-induct [consumes 1, case-names Var Con App):
assumes A € wffsy
and Az. P (zo)
and Ac. P ({clo)
and AA B a. A € wffsa—0 = B € wffso, = P (A + B)
shows P A
using assms by (cases rule: wffs-of-type-cases) simp-all

lemma diff-types-implies-diff-wffs:
assumes A € wffsq and B € wﬁ‘sﬁ
and o #
shows A # B
using assms and wff-has-unique-type by blast

lemma is-free-for-in-generalized-app [introl:
assumes is-free-for A v B and V C € lset Cs. is-free-for A v C
shows is-free-for A v (+, B Cs)
using assms proof (induction Cs rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc C Cs)
from snoc.prems(2) have is-free-for A v C and V C € Iset Cs. is-free-for A v C
by simp-all
with snoc.prems(1) have is-free-for A v (+¢, B Cs)
using snoc.IH by simp
with <is-free-for A v C» show Zcase
using is-free-for-to-app by simp
qged

lemma is-free-for-in-equality [intro:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =4 C)
using assms unfolding equality-of-type-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-con)

lemma is-free-for-in-equivalence [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B =2 C)
using assms unfolding equivalence-def by (rule is-free-for-in-equality)

lemma is-free-for-in-true [intro]:

shows is-free-for A v (Ty)
by force

o6

lemma is-free-for-in-false [intro]:
shows is-free-for A v (Fy)
unfolding false-def by (intro is-free-for-in-equality is-free-for-closed-form) simp-all

lemma is-free-for-in-forall [intro]:
assumes is-free-for A v B and (z,) ¢ free-vars A
shows is-free-for A v (Y zq. B)
unfolding forall-def and PI-def proof (fold equality-of-type-def)
have is-free-for A v (A\tq. To)
using is-free-for-to-abs|OF is-free-for-in-true assms(2)] by fastforce
moreover have is-free-for A v (A\zq. B)
by (fact is-free-for-to-abs|OF assms])
ultimately show is-free-for A v (A\ta. To =a—0 Aa. B)
by (iprover intro: assms(1) is-free-for-in-equality is-free-for-in-true is-free-for-to-abs)
qged

lemma is-free-for-in-generalized-forall [intro]:
assumes is-free-for A v B and Iset vs N free-vars A = {}
shows is-free-for A v (V <, vs B)
using assms proof (induction vs)
case Nil
then show ?case
by simp
next
case (Cons v’ vs)
obtain z and « where v’ = (z, a)
by fastforce
from Cons.prems(2) have v’ ¢ free-vars A and Iset vs N free-vars A = {}
by simp-all
from Cons.prems(1) and «Iset vs N free-vars A = {}» have is-free-for A v (¥ <, vs B)
by (fact Cons.IH)
from this and v’ ¢ free-vars A>[unfolded v’ = (x, a))] have is-free-for A v (¥ zq. V<, vs B)
by (intro is-free-for-in-forall)
with v/ = (z, a)) show Zcase
by simp
qged

lemma is-free-for-in-conj [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B A2 C)
proof —
have free-vars No—o—0 = {}
by force
then have is-free-for A v (Ap—o0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Ao—o—0 * B+ C)
by (intro is-free-for-to-app)
then show ?thesis

o7

by (fold conj-op-def)
qged

lemma is-free-for-in-imp [intro):
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B D2 C)
proof —
have free-vars Do—o—0 = {}
by force
then have is-free-for A v (Do—0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Dp—o—0* B+ C)
by (intro is-free-for-to-app)
then show ?thesis
by (fold imp-op-def)
qged

lemma is-free-for-in-neg [intro]:
assumes is-free-for A v B
shows is-free-for A v (~< B)
using assms unfolding neg-def and Q-def and Q-constant-of-type-def
by (intro is-free-for-to-app is-free-for-in-false is-free-for-in-con)

lemma is-free-for-in-disj [introl:
assumes is-free-for A v B and is-free-for A v C
shows is-free-for A v (B V< C)
proof —
have free-vars Vo—o—0 = {}
by force
then have is-free-for A v (Vo—o0—0)
using is-free-for-closed-form by fast
with assms have is-free-for A v (Vo—so—0o * B+ C)
by (intro is-free-for-to-app)
then show ?thesis
by (fold disj-op-def)
qed

lemma replacement-preserves-typing:
assumes C{p < B) > D
and A =, C
and A € wffsq, and B € wffsq,
shows C € wjj‘"sﬂ +—— D € wffsﬁ
using assms proof (induction arbitrary: B rule: is-replacement-at.induct)
case (pos-found p C C' A)
then show ?case
using diff-types-implies-diff-wffs by auto
qed (metis is-subform-at.simps(2,3,4) wffs-from-app wffs-from-abs wffs-of-type-simps)+

corollary replacement-preserves-typing’”:

o8

assumes C{p < B) > D

and A =, C

and A € wffsq, and B € wffsq,

and C € wﬁsﬁ and D € wffsy

shows 3 =~

using assms and replacement-preserves-typing and wff-has-unique-type by simp

Closed formulas and sentences:

definition is-closed-wff-of-type :: form = type = bool where
[¢ff]: is-closed-wff-of-type A o +— A € wffsq N free-vars A = {}

definition is-sentence :: form = bool where
[iff]: is-sentence A «— is-closed-wff-of-type A o

2.14 Substitutions

type-synonym substitution = (var, form) fmap

definition is-substitution :: substitution = bool where
[iff]: is-substitution ¥ <+— (¥ (z, o) € fmdom’ 9. 9 $$! (z, o) € wffsa)

fun substitute :: substitution = form = form (S - - [51, 51]) where
S ¥ (zq) = (case ¥ $$ (z,) of None = zq | Some A = A)
| S 9 ({cba) = {cla
|SY9(A-B)=(Sv¥ A)+-(SYB)
| S 9 (A\zq. A) = (if (x, &) ¢ fmdom’ O then Axg. S O A else Axg. S (fmdrop (z, o) 9) A)

lemma empty-substitution-neutrality:
shows S {$$} A = A4
by (induction A) auto

lemma substitution-preserves-typing:
assumes is-substitution v
and A € wffsq
shows S 9 A € wffsq
using assms(2) and assms(1)[unfolded is-substitution-def] proof (induction arbitrary: ©)
case (var-is-wff o x)
then show “case
by (cases (z, o)) € fmdom’ 9) (use fmdom’-notl in <force+»)
next
case (abs-is-wff f A a z)
then show “case
proof (cases (z, @) € fmdom’)
case True
then have S ¥ (A\zy. A) = Azg. S (fmdrop (z,) ¥) A
by simp
moreover from abs-is-wff.prems have is-substitution (fmdrop (z, o))
by fastforce
with abs-is-wff.IH have S (fmdrop (z, a) ¥) A € wffsg

99

by simp
ultimately show ¢thesis
by auto
next
case Fulse
then have S ¥ (Azq. A) = Azq. S Y A
by simp
moreover from abs-is-wff.IH have S ¥ A € wﬁsﬁ
using abs-is-wff.prems by blast
ultimately show ?Zthesis
by fastforce
qed
qged force+

lemma derived-substitution-simps:
shows S 9 Tyo =T,
and S 19 FO == FO

and S Y ([Ta) =[]«

and S ¥ (~¢ B) = ~2 (S¥ B)

and SV (B=q C)=(S9 B) =4 (S C)

and S 9 (B A2 C) = (SﬁB)/\Q(SﬂC)

and S (BVe C)=(S¥ B) ve (S¥ C)

and S ¥ (B 29 C) = (8193)3 (Sv 0)

and SY (B=2 C)=(S¥ B) =2 (S¥ 0)

and S ¥ (B #4 C) = (SY B) #4 (S 9 C)

and S ¢ (Vzqo. B) = (if (z, a) ¢ fmdom’ 9 then Vzq. S O B else Vig. S (fmdrop (z, o
and S ¥ (Jzq. B) = (if (z, a) ¢ fmdom’ 9 then Fzo. S ¥ B else Axq. S (fmdrop (z, «

by auto

lemma generalized-app-substitution:
shows S ¥ (+9, A Bs) =<, (S9Y A) (map (A\B. S ¥ B) Bs)
by (induction Bs arbitrary: A) simp-all

lemma generalized-abs-substitution:
shows S ¥ (A9, vs A) = A9, wvs (S (fmdrop-set (fmdom’ 9 N Iset vs) 9) A)
proof (induction vs arbitrary: ¥)
case Nil
then show “case
by simp
next
case (Cons v vs)
obtain z and « where v = (z, «)
by fastforce
then show ?case
proof (cases v & fmdom’ ¥)
case True
then have x: fmdom’ 9 N Iset (v # vs) = fmdom’ ¥ N lset vs
by simp
from True have S ¥ (A2, (v # vs) A) = 1. S 9 (A2, vs A)

60

using v = (z, «)» by auto

also have ... = \zq. A9, vs (S (fmdrop-set (fmdom’ 9 N Iset vs) ¥) A)
using Cons.IH by (simp only:)
also have ... = A2, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs)) ¥) A)

using v = (z, @) and * by auto

finally show ?thesis .

next

case Fulse

let 29’ = fmdrop v ¥

have x: fmdrop-set (fmdom’ ¥ N lset (v # vs)) ¥ = fmdrop-set (fmdom’ 29’ N Iset vs) 29’
using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)

from Fulse have S ¥ (A9, (v # vs) A) = Azq. S 29’ (A2, vs A)
using v = (z, «)» by auto

also have ... = \zq. A2, vs (S (fmdrop-set (fmdom’ 29’ N Iset vs) 29') A)
using Cons.IH by (simp only:)
also have ... = A9, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs))) A)

using v = (z, @) and * by auto
finally show #thesis .
qed
qed

lemma generalized-forall-substitution:
shows S 9 (V <, vs A) = V2, vs (S (fmdrop-set (fmdom’ ¥ N Iset vs)) A)
proof (induction vs arbitrary:)
case Nil
then show ?case
by simp
next
case (Cons v vs)
obtain z and « where v = (z, «)
by fastforce
then show ?case
proof (cases v & fmdom’ 9)
case True
then have *: fmdom’ 9 N Iset (v # vs) = fmdom’ ¥ N lset vs
by simp
from True have S ¥ (V<, (v # vs) A) = Vzo. S Y (VC, vs A)
using v = (z, «)» by auto

also have ... = Vaqo. V<, vs (S (fmdrop-set (fmdom’ 9 N Iset vs)) A)
using Cons.IH by (simp only:)
also have ... = V<, (v # vs) (S (fmdrop-set (fmdom’ Y N Iset (v # vs)) V) A)

using (v = (z, a)» and * by auto

finally show ?thesis .

next

case Fulse

let 29’ = fmdrop v ¥

have x: fmdrop-set (fmdom’ ¢ N lset (v # vs)) ¥ = fmdrop-set (fmdom’ 29’ N Iset vs) 29’
using False by clarsimp (metis Int-Diff Int-commute fmdrop-set-insert insert-Diff-single)

from False have S 9 (Y2, (v # vs) A) = V. S 29" (V< vs A)

61

using v = (z, «)» by auto

also have ... = Vaqo. V<, vs (S (fmdrop-set (fmdom’ 20’ N Iset vs) 29") A)
using Cons.IH by (simp only:)
also have ... = V<, (v # vs) (S (fmdrop-set (fmdom’ ¥ N Iset (v # vs)) V) A)

using v = (z, @) and * by auto
finally show ?thesis .
qed
qed

lemma singleton-substitution-simps:
shows S {(z, a) — A} (yg) = (if (z, @) # (y, B) then yg else A)
and S {(z, @) — A} ({c}a) = {c}a
and S {(z, a) — A} (B+ C) = (S {(z, «) — A} B) » (S {(z, @) — A} C)
and S {(z, o) — A} (A\yg. B) = Ayg. (if (z, @) = (y, B) then B else S {(z, a) — A} B)
by (simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma substitution-preserves-freeness:
assumes y ¢ free-vars A and y # z
shows y ¢ free-vars S {x — FVar z} A
using assms(1) proof (induction A rule: free-vars-form.induct)
case (1 z')
with assms(2) show ?case
using surj-pair[of z] by (cases z = (z', o)) force+
next
case (4 2’ a A)
then show ?case
using surj-pair|of z]
by (cases x = (z’,) (use singleton-substitution-simps(4) in presburger, auto)
qed auto

lemma renaming-substitution-minimal-change:
assumes y ¢ vars A and y # 2z
shows y ¢ vars (S {z — FVar z} A)
using assms(1) proof (induction A rule: vars-form.induct)
case (1 z' @)
with assms(2) show ?case
using surj-pair[of z] by (cases © = (z', o)) force+
next
case (4 z' a A)
then show ?case
using surj-pair|of |
by (cases x = (z', «)) (use singleton-substitution-simps(4) in presburger, auto)
qged auto

lemma free-var-singleton-substitution-neutrality:
assumes v ¢ free-vars A
shows S {v — B} A=A
using assms

by

62

(induction A rule: free-vars-form.induct)
(simp-all, metis empty-substitution-neutrality fmdrop-empty fmdrop-fmupd-same)

lemma identity-singleton-substitution-neutrality:
shows S {v — FVarv} A=A
by
(induction A rule: free-vars-form.induct)
(simp-all add: empty-substitution-neutrality fmdrop-fmupd-same)

lemma free-var-in-renaming-substitution:
assumes t # y
shows (z, a) ¢ free-vars (S {(z, &) — ya} B)
using assms by (induction B rule: free-vars-form.induct) simp-all

lemma renaming-substitution-preserves-form-size:
shows form-size (S {v — FVar v’} A) = form-size A
proof (induction A rule: form-size.induct)
case (1 z «)
then show ?case
using form-size.elims by auto
next
case (4 z a A)
then show ?case
by (cases v = (z, o)) (use singleton-substitution-simps(4) in presburger, auto)
qed simp-all

The following lemma corresponds to X5100 in [2]:

lemma substitution-composability:
assumes v’ ¢ vars B
shows S {v'— A} S {v»— FVarv'} B=S {v— A} B
using assms proof (induction B arbitrary: v’)
case (FAbs w C)
then show ?case
proof (cases v = w)
case True
from v’ ¢ vars (FAbs w C)» have v' ¢ free-vars (FAbs w C')
using free-vars-in-all-vars by blast
then have S {v' — A} (FAbs w C) = FAbs w C
by (rule free-var-singleton-substitution-neutrality)
from (v = w» have v ¢ free-vars (FAbs w C)
using surj-pair|of w] by fastforce
then have S {v — A} (FAbs w C) = FAbs w C
by (fact free-var-singleton-substitution-neutrality)

also from (S {v' — A} (FAbs w C') = FAbs w C> have ... = S {v' — A} (FAbs w C)
by (simp only:)
also from v = w» have ... =S {v/— A} S {v — FVar v’} (FAbs w C)

using free-var-singleton-substitution-neutrality| OF v & free-vars (FAbs w C)] by (simp only:)
finally show ?%thesis ..
next

63

case Fulse
from FAbs.prems have v' ¢ vars C
using surj-pair[of w] by fastforce
then show ?thesis
proof (cases v/ = w)
case True
with FAbs.prems show ?thesis
using vars-form.elims by auto
next
case Fulse
from v # w» have S {v — A} (FAbs w C) = FAbs w (S {v — A} O)
using surj-pair|of w] by fastforce
also from FAbs.IH have ... = FAbs w (S {v/ — A} S {v — FVar v} C)
using v’ ¢ vars C» by simp
also from v’ # w> have ... =S {v/ — A} (FAbs w (S {v — FVar v’} C))
using surj-pair|of w] by fastforce
also from v # w» have ... =8 {v'— A} S {v — FVar v’} (FAbs w C)
using surj-pair|of w] by fastforce
finally show ?thesis ..
qed
qed
qed auto

The following lemma corresponds to X5101 in [2]:

lemma renaming-substitution-composability:
assumes z ¢ free-vars A and is-free-for (FVar z) © A
shows S {z — FVar y} S {z — FVar z} A=S {z — FVary} A
using assms proof (induction A arbitrary: z)
case (FVar v)
then show ?case
using surj-pair|of v]| and surj-pair[of z] by fastforce
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp B C)
let 2., = {z — FVar y} and 29,, = {z — FVar z} and %,, = {z — FVar y}
from <is-free-for (FVar z) x (B « C)» have is-free-for (FVar z) « B and is-free-for (FVar z) z C
using is-free-for-from-app by iprover+
moreover from <z ¢ free-vars (B » C)» have z ¢ free-vars B and z ¢ free-vars C
by simp-all
ultimately have x: S 29,, S 29,, B=8 #,, Band *x: S %9, S 29,, C =S %, C
using FApp.IH by simp-all
have S 29., S %,, (B- C) = (S 29,, S %,. B) - (S #,, S %, C)
by simp
also from * and x have ... = (S %,, B) + (S %,, C)
by (simp only:)
also have ... =S %,, (B C)

64

by simp
finally show ?Zcase .
next
case (FAbs w B)
let 29,, = {z — FVar y} and %,, = {z — FVar z} and %,, = {z — FVar y}
show Zcase
proof (cases T = w)
case True
then show ?thesis
proof (cases z = w)
case True
with <z = w» have x ¢ free-vars (FAbs w B) and z ¢ free-vars (FAbs w B)
using surj-pair|[of w] by fastforce+
from «z ¢ free-vars (FAbs w B)» have S %),, (FAbs w B) = FAbs w B
by (fact free-var-singleton-substitution-neutrality)

also from <z ¢ free-vars (FAbs w B)» have ... =S %9,, (FAbs w B)
by (fact free-var-singleton-substitution-neutrality[symmetric])
also from <z ¢ free-vars (FAbs w B)» have ... =S %),, S ?9,, (FAbs w B)

using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
next
case Fulse
with <z = w» have z ¢ free-vars B and x ¢ free-vars (FAbs w B)
using <z ¢ free-vars (FAbs w B)» and surj-pair|of w] by fastforce+
from <z ¢ free-vars B> have S %),, B = B
by (fact free-var-singleton-substitution-neutrality)
from <z ¢ free-vars (FAbs w B)» have S 29,, (FAbs w B) = FAbs w B
by (fact free-var-singleton-substitution-neutrality)
also from S 29,, B = B» have ... = FAbs w (S %9,, B)
by (simp only:)
also from <z ¢ free-vars (FAbs w B)) have ... =S 7)., (FAbs w B)
by (simp add: <FAbs w B = FAbs w (S %9,, B)» free-var-singleton-substitution-neutrality)
also from <z ¢ free-vars (FAbs w B)» have ... =S %,, S ?9,, (FAbs w B)
using free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
qed
next
case Fulse
then show ?thesis
proof (cases z = w)
case True
have z ¢ free-vars B
proof (rule ccontr)
assume — z ¢ free-vars B
with «z # w» have z € free-vars (FAbs w B)
using surj-pair[of w] by fastforce
then obtain p where p € positions (FAbs w B) and is-free-at x p (FAbs w B)
using free-vars-in-is-free-at by blast
with <is-free-for (FVar z) © (FAbs w B)> have — in-scope-of-abs z p (FAbs w B)

65

by (meson empty-is-position is-free-at-in-free-vars is-free-at-in-var is-free-for-def)
moreover obtain p’ where p = « # p’
using is-free-at-from-absE[OF (is-free-at x p (FAbs w B))] by blast
ultimately have z # w
using in-scope-of-abs-in-abs by blast
with <z = w» show Fulse
by contradiction
qed
then have x: S #J,, B=S 2J,. B
using free-var-singleton-substitution-neutrality by auto
from <z # w» have S 2,, (FAbs w B) = FAbs w (S %), B)
using surj-pair|of w] by fastforce
also from * have ... = FAbs w (S 29,, B)
by (simp only:)
also from FAbs.prems(1) have ... =S %), (FAbs w (S %,. B))
using <z ¢ free-vars By and free-var-singleton-substitution-neutrality by auto
also from <z # w» have ... =S %,, S 2, (FAbs w B)
using surj-pair|of w] by fastforce
finally show ?thesis ..
next
case Fulse
obtain v,, and a where w = (vy, «)
by fastforce
with <is-free-for (F'Var z) x (FAbs w B)» and <z # w» have is-free-for (F'Var z) x B
using is-free-for-from-abs by iprover
moreover from <z ¢ free-vars (FAbs w B)» and (z # w» and «w = (v,,, a)> have z ¢ free-vars

B
by simp
ultimately have x: S 29., S 29,, B=8S #%,, B
using FAbs.IH by simp
from «z # w» have S %),, (FAbs w B) = FAbs w (S ?0,, B)
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
also from * have ... = FAbs w (S #),, S ?%,, B)
by (simp only:)
also from ¢z # w» have ... =S 23, (FAbs w (S %,. B))
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
also from <z # w» have ... =S %,, S ?2,, (FAbs w B)
using «w = (vy, @) and free-var-singleton-substitution-neutrality by simp
finally show ?thesis ..
qed
qed
ged

lemma absent-vars-substitution-preservation:
assumes v ¢ vars A
and Vv’ € fmdom’ 9. v ¢ vars (0 $$! v')
shows v ¢ vars (S ¥ A)

using assms proof (induction A arbitrary: 9)
case (FVar v’

66

then show ?case
using surj-pair[of v'] by (cases v’ € fmdom’ ¥) (use fmlookup-dom’-iff in force)+
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case FApp
then show ?case
by simp
next
case (FAbs w B)
from FAbs.prems(1) have v ¢ vars B
using vars-form.elims by auto
then show ?case
proof (cases w € fmdom’)
case True
from FAbs.prems(2) have Vv’ € fmdom’ (fmdrop w 9). v ¢ vars ((fmdrop w 9) $3! v’)
by auto
with (v ¢ vars B> have v ¢ vars (S (fmdrop w ¥) B)
by (fact FAbs.IH)
with FAbs.prems(1) have v ¢ vars (FAbs w (S (fmdrop w) B))
using surj-pair|of w] by fastforce
moreover from True have S ¥ (FAbs w B) = FAbs w (S (fmdrop w ¥) B)
using surj-pair[of w] by fastforce
ultimately show ?thesis
by simp
next
case Fulse
then show ?thesis
using FAbs.IH and FAbs.prems and surj-pair[of w] by fastforce
qed
qed

lemma substitution-free-absorption:
assumes v $$ v = None and v ¢ free-vars B
shows S ({v — A} ++,9) B=S VY B
using assms proof (induction B arbitrary:)
case (FAbs w B)
show Zcase
proof (cases v # w)
case True
with FAbs.prems(2) have v ¢ free-vars B
using surj-pair|of w] by fastforce
then show ?thesis
proof (cases w € fmdom’ 9)
case True
then have S ({v — A} ++; ¥) (FAbs w B) = FAbs w (S (fmdrop w ({v — A} ++ ¥)) B)
using surj-pair|of w] by fastforce

67

also from (v # w» and True have ... = FAbs w (S ({v — A} ++ fmdrop w 9) B)
by (simp add: fmdrop-fmupd)

also from FAbs.prems(1) and <v ¢ free-vars B> have ... = FAbs w (S (fmdrop w ¢) B)
using FAbs.IH by simp
also from True have ... = S ¢ (FAbs w B)

using surj-pair|of w] by fastforce
finally show ?thesis .
next
case Fulse
with FAbs.prems(1) have S ({v — A} ++; ¥) (FAbs w B) = FAbs w (S {v — A} ++; ¥) B)
using v # w» and surj-pair[of w] by fastforce

also from FAbs.prems(1) and v ¢ free-vars B> have ... = FAbs w (S ¥ B)
using FAbs.IH by simp
also from Fulse have ... = S ¢ (FAbs w B)

using surj-pair|of w] by fastforce
finally show ?thesis .
qed
next
case Fulse
then have fmdrop w ({v — A} ++5 V) = fmdrop w 9
by (simp add: fmdrop-fmupd-same)
then show ?thesis
using surj-pair[of w| by (metis (no-types, lifting) fmdrop-idle’ substitute.simps(4))
qed
qged fastforce+

lemma substitution-absorption:
assumes 9 $$ v = None and v ¢ vars B
shows S ({v— A} ++;9) B=S VY B
using assms by (meson free-vars-in-all-vars in-mono substitution-free-absorption)

lemma is-free-for-with-renaming-substitution:
assumes is-free-for A © B
and y ¢ vars B
and z ¢ fmdom’ ¢
and Vv € fmdom’ 9. y & vars (9 $$! v)
and Vv € fmdom’ 9. is-free-for (9 $$! v) v B
shows is-free-for A y (S ({z — FVar y} ++; 9) B)
using assms proof (induction B arbitrary:)
case (FVar w)
then show ?case
proof (cases w = x)
case True
with FVar.prems(3) have S ({z — FVar y} ++;) (FVar w) = FVar y
using surj-pair|of w] by fastforce
then show ?thesis
using self-subform-is-at-top by fastforce
next
case Fulse

68

then show ?thesis
proof (cases w € fmdom’ V)
case True
from Fulse have S ({z — FVar y} ++ 0) (FVar w) = S 9 (FVar w)
using substitution-absorption and surj-pair[of w] by force
also from True have ... = 9 $$! w
using surj-pair|[of w] by (metis fmdom’-notl option.case-eq-if substitute.simps(1))
finally have S ({z — FVar y} ++; 9) (FVar w) =9 $$! w .
moreover from True and FVar.prems(4) have y ¢ vars (9 $$! w)
by blast
ultimately show ?thesis
using form-is-free-for-absent-var by presburger
next
case Fulse
with FVar.prems(3) and «w # 2» have S ({z — FVar y} ++5 ¥) (FVar w) = FVar w
using surj-pair|of w] by fastforce
with FVar.prems(2) show ?thesis
using form-is-free-for-absent-var by presburger
qed
qed
next
case (FCon k)
then show ?case
using surj-pair[of k] by fastforce
next
case (FApp C D)
from FApp.prems(2) have y ¢ vars C and y ¢ vars D
by simp-all
from FApp.prems(1) have is-free-for A x C and is-free-for A © D
using is-free-for-from-app by iprover+
have Vv € fmdom’ 9. is-free-for (9 $$! v) v C A is-free-for (9 $$! v) v D
proof (rule balll)
fix v
assume v € fmdom’ ¥
with FApp.prems(5) have is-free-for (¢ $$! v) v (C' + D)
by blast
then show is-free-for (¢ $3! v) v C' A is-free-for (¢ $$! v) v D
using is-free-for-from-app by iprover+
qed
then have
x: Vv € fmdom’ 9. is-free-for (¥ $$! v) v C and *x: Vv € fmdom’ 9. is-free-for (9 $$! v) v D
by auto
have S ({z — FVar y} ++; 9) (C - D) = (S ({z — FVar y} ++; 9) C) « (S ({z — FVar y}
++¢9) D)
by simp
moreover have is-free-for A y (S ({z — FVar y} ++¢ 9) C)
by (rule FApp.IH(1)[OF <is-free-for A x C» <y ¢ vars C» FApp.prems(8,4) *|)
moreover have is-free-for A y (S ({z — FVar y} ++5 9) D)
by (rule FApp.IH(2)[OF <is-free-for A x Dy <y ¢ vars Dy FApp.prems(3,4) *x])

69

ultimately show ?case

using is-free-for-in-app by simp

next
case (FAbs w B)
obtain z,, and «,, where w = (z,)

by fastforce

from FAbs.prems(2) have y ¢ vars B

using vars-form.elims by auto

then show ?case
proof (cases w = 1)

case True
from True and <z ¢ fmdom’ ¥ have w ¢ fmdom’ ¥ and z ¢ free-vars (FAbs w B)
using «w = (zy,) by fastforce+
with True have S ({z — FVar y} ++5 9) (FAbs w B) = S ¥ (FAbs w B)
using substitution-free-absorption by blast
also have ... = FAbs w (S ¥ B)
using «w = (T, Q) (w & fmdom’ ¥ substitute.simps(4) by presburger
finally have S ({z — FVar y} ++;) (FAbs w B) = FAbs w (S 9 B) .
moreover from (S ¢ (FAbs w B) = FAbs w (S ¢ B)»> have y ¢ vars (FAbs w (S ¢ B))
using absent-vars-substitution-preservation|OF FAbs.prems(2,4)] by simp
ultimately show ?thesis
using is-free-for-absent-var by (simp only:)

next

case Fulse
obtain v,, and «,, where w = (v, @)
by fastforce
from FAbs.prems(1) and «w # x> and «w = (vy, ay)> have is-free-for A x B
using is-free-for-from-abs by iprover
then show ?thesis
proof (cases w € fmdom’ 9)
case True
then have S ({z — FVar y} ++ 9) (FAbs w B) = FAbs w (S (fmdrop w ({z — FVar y} ++;

) B)

using (w = (vy, @y)» by (simp add: fmdrop-idle’)

also from (w # 2> and True have ... = FAbs w (S ({z — FVar y} ++; fmdrop w ¥) B)
by (simp add: fmdrop-fmupd)

finally

have «: S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++5 fmdrop w V)

have Vv € fmdom’ (fmdrop w 9). is-free-for (fmdrop w 9 $$! v) v B
proof
fix v
assume v € fmdom’ (fmdrop w V)
with FAbs.prems(5) have is-free-for (fmdrop w 9 $$! v) v (FAbs w B)
by auto
moreover from v € fmdom’ (fmdrop w ¥)> have v # w
by auto
ultimately show is-free-for (fmdrop w 9 $$! v) v B
unfolding <w = (vy, @) using is-free-for-from-abs by iprover

70

qed

moreover from FAbs.prems(3) have z ¢ fmdom’ (fmdrop w 9)
by simp

moreover from FAbs.prems(4) have Vv € fmdom’ (fmdrop w 9). y ¢ vars (fmdrop w ¢ $$! v)
by simp

ultimately have is-free-for A y (S ({z — FVar y} ++ fmdrop w ¥) B)
using <is-free-for A By and <y ¢ vars By and FAbs.IH by iprover

then show ?thesis

proof (cases z ¢ free-vars B)

case True
have y ¢ vars (S ({z — FVar y} ++5) (FAbs w B))
proof —
have S ({z — FVar y} ++ 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++ fmdrop w 9)
B)
using * .
also from «x ¢ free-vars B> and FAbs.prems(3) have ... = FAbs w (S (fmdrop w) B)
using substitution-free-absorption by (simp add: fmdom’-notD)
finally have S ({z — FVar y} ++; ¥) (FAbs w B) = FAbs w (S (fmdrop w) B) .
with FAbs.prems(2) and «w = (vy,) and FAbs.prems(4) show ?thesis
using absent-vars-substitution-preservation by auto
qed
then show ?thesis
using is-free-for-absent-var by simp
next
case Fulse
have w ¢ free-vars A
proof (rule ccontr)
assume — w ¢ free-vars A
with Fulse and <w # x> have — is-free-for A x (FAbs w B)
using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False
by contradiction
qed
with <is-free-for A y (S ({z — FVar y} ++ fmdrop w 9) B)»
have is-free-for A y (FAbs w (S ({z — FVar y} ++5 fmdrop w ¥) B))
unfolding «w = (vy, au,)> using is-free-for-to-abs by iprover
with x show ?%thesis
by (simp only:)
qed
next
case Fulse

have Vv € fmdom’ V. is-free-for (9 $$! v) v B
proof (rule balll)
fix v
assume v € fmdom’ Y
with FAbs.prems(5) have is-free-for (9 $$! v) v (FAbs w B)
by blast
moreover from (v € fmdom’ 9> and «w ¢ fmdom’ ¢¥> have v # w
by blast

71

ultimately show is-free-for (0 $$! v) v B
unfolding «w = (vy, @) using is-free-for-from-abs by iprover
qed
with (is-free-for A © By and <y ¢ vars B> and FAbs.prems(3,4)
have is-free-for A y (S ({z — FVar y} ++; 9) B)
using FAbs.IH by iprover
then show ?thesis
proof (cases x ¢ free-vars B)
case True
have y ¢ vars (S ({z — FVar y} ++5 9) (FAbs w B))
proof —
from Fualse and <w = (vy,) and (w # o
have S ({z — FVar y} ++5 ¥) (FAbs w B) = FAbs w (S ({z — FVar y} ++5 ¥) B)
by auto
also from «z ¢ free-vars By and FAbs.prems(3) have ... = FAbs w (S ¥ B)
using substitution-free-absorption by (simp add: fmdom’-notD)
finally have S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ¥ B) .
with FAbs.prems(2,4) and «w = (vy, ay)» show ?Zthesis
using absent-vars-substitution-preservation by auto
qed
then show ?%thesis
using is-free-for-absent-var by simp
next
case Fulse
have w ¢ free-vars A
proof (rule ccontr)
assume — w ¢ free-vars A
with Fulse and <w # x> have — is-free-for A x (FAbs w B)
using form-with-free-binder-not-free-for by simp
with FAbs.prems(1) show False
by contradiction
qed
with <is-free-for A y (S ({z — FVar y} ++¢ 9) B)
have is-free-for A y (FAbs w (S ({z — FVar y} ++; ¥) B))
unfolding <w = (vy,) using is-free-for-to-abs by iprover
moreover from (w ¢ fmdom’ 9> and «w # z» and FAbs.prems(3)
have S ({z — FVar y} ++; 9) (FAbs w B) = FAbs w (S ({z — FVar y} ++¢ 9) B)
using surj-pair[of w] by fastforce
ultimately show ?thesis
by (simp only:)
qed
qed

qed

The following lemma allows us to fuse a singleton substitution and a simultaneous substitution,
as long as the variable of the former does not occur anywhere in the latter:

lemma substitution-fusion:
assumes is-substitution 9 and is-substitution {v — A}

72

and 9 $$ v = None and Vo' € fmdom’ 9. v ¢ vars (¥ $3! v')
shows S {v — A} SY¥ B=S ({v— A} ++;9) B
using assms(1,3,4) proof (induction B arbitrary: 9)
case (FVar v
then show “case
proof (cases v’ ¢ fmdom’)
case True
then show ?thesis
using surj-pair[of v] by fastforce
next
case Fulse
then obtain A’ where ¥ $$ v/ = Some A’
by (meson fmlookup-dom’-iff)
with False and FVar.prems(3) have v ¢ vars A’
by fastforce
then have S {v — A} A'= A’
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
from ¥ $$ v’ = Some A" have S {v — A} SO (FVarv') =S {v — A} A’
using surj-pair[of v] by fastforce

also from S {v — A} A’= A have ... = A’
by (simp only:)
also from <« $$ v’/ = Some A" and ¥ $§ v = None> have ... =S ({v — A} ++; 9) (FVar v’

using surj-pair[of v'] by fastforce
finally show “thesis .
qed
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp C D)
have S {v — A} SY (C-D) =S {v— A} (S¥ C) - (S Y D))

by auto

also have ... = (S{v— A} SV C) (S {v— A} SV D)
by simp

also from FApp.IH have ... = (S ({v — A} ++5) C) « (S ({v — A} ++¢ 9) D)
using FApp.prems(1,2,3) by presburger

also have ... =S ({v— A} ++; 9) (C - D)
by simp

finally show ?Zcase .

next

case (FAbs w C)
obtain v,, and o where w = (v, «)
by fastforce
then show ?case
proof (cases v # w)
case True
show ?thesis
proof (cases w ¢ fmdom’ V)

73

case True
then have S {v — A} SV (FAbs w C) =S {v — A} (FAbs w (S 9 C))
by (simp add: «<w = (vy, @)))
also from (v # w> have ... = FAbs w (S {v — A} S 9 C)
by (simp add: «w = (vy, @)))
also from FAbs.IH have ... = FAbs w (S ({v — A} ++; 9) C)
using FAbs.prems(1,2,3) by blast
also from (v # w» and True have ... =S ({v — A} ++; V) (FAbs w C)
by (simp add: <w = (vy, a))
finally show ?thesis .
next
case Fulse
then have S {v — A} S ¥ (FAbs w C) = S {v — A} (FAbs w (S (fmdrop w v9) C))
by (simp add: «<w = (vy, @)))
also from (v # w» have ... = FAbs w (S {v — A} S (fmdrop w ¥) C)
by (simp add: «w = (vy, @)))
also have ... = FAbs w (S ({v — A} ++; fmdrop w 9) C)
proof —
from <(is-substitution > have is-substitution (fmdrop w)
by fastforce
moreover from «J $$ v = None> have (fmdrop w 9) $$ v = None
by force
moreover from FAbs.prems(3) have Vv’ € fmdom’ (fmdrop w 9). v ¢ vars ((fmdrop w 9) $$!
v’)
by force
ultimately show %thesis
using FAbs.IH by blast
qed
also from (v # w» have ... =S ({v — A} ++;) (FAbs w C)
by (simp add: «w = (vy, @) fmdrop-idle’)
finally show ?thesis .
qed
next
case Fulse
then show ?thesis
proof (cases w ¢ fmdom’)
case True
then have S {v — A} S ¥ (FAbs w C) =S {v — A} (FAbs w (S 9 C))
by (simp add: «<w = (vy, @)))
also from «— v # w» have ... = FAbs w (S 9 C)
using «w = (vy, @) and singleton-substitution-simps(4) by presburger
also from <= v # w» and True have ... = FAbs w (S (fmdrop w ({v — A} ++; ¥)) C)
by (simp add: fmdrop-fmupd-same fmdrop-idle’)
also from = v # w) have ... =S ({v — A} ++5) (FAbs w C)
by (simp add: «<w = (vy, @)))
finally show ?thesis .
next
case Fulse
then have S {v — A} S ¥ (FAbs w C) = S {v — A} (FAbs w (S (fmdrop w ¥) C))

74

by (simp add: «<w = (vy, @)))

also from «— v # w» have ... = FAbs w (S (fmdrop w ¥) C)
using ¢ $% v = None> and False by (simp add: fmdom’-notI)
also from = v # w» have ... = FAbs w (S (fmdrop w ({v — A} ++ 0)) C)
by (simp add: fmdrop-fmupd-same)
also from - v # w» and False and <9 $$ v = None» have ... =S ({v — A} ++;) (FAbs
w C)

by (simp add: fmdom’-notI)
finally show ?thesis .
qed
qed
qged

lemma updated-substitution-is-substitution:
assumes v ¢ fmdom’ ¥ and is-substitution (9(v — A))
shows is-substitution U
unfolding is-substitution-def proof (intro balll)
fix v :: var
obtain z and a where v’ = (z, a)
by fastforce
assume v’ € fmdom’ 9
with assms(2)[unfolded is-substitution-def] have v’ € fmdom’ (9(v — A))
by simp
with assms(2)[unfolded is-substitution-def] have ¥(v — A) $$! (z, @) € wffsa
using v’ = (z, a)» by fastforce
with assms(1) and v’ € fmdom’ ¥ and (v’ = (z, a)> have ¥ 3! (z, @) € wffsq
by (metis fmupd-lookup)
then show case v’ of (z, o) = 9 $3! (2, a) € wffsa
by (simp add: «v' = (z, a))
qed

definition is-renaming-substitution where
[iff]: is-renaming-substitution ¥ <— is-substitution 9 A fmpred (A\- A. Jv. A = FVar v) 9

1 n 1 n
The following lemma proves that S zl‘” ;fj "B=S ;;?1 - S zf{”B provided that
ay t Jan ay an
. xal ... Zg, are distinct variables
oyl | -+ Yg, are distinct variables, distinct from rl , -+ oy and from all variables in B

(i.e., they are fresh variables)

In other words, simultaneously renaming distinct variables with fresh ones is equivalent to
renaming each variable one at a time.

lemma fresh-vars-substitution-unfolding:
fixes ps :: (var x form) list
assumes 9 = fmap-of-list ps and is-renaming-substitution 1
and distinct (map fst ps) and distinct (map snd ps)
and vars (fmran’ 9) N (fmdom’ ¥ U vars B) = {}

75

shows S ¥ B = foldr (\(z, y) C. S {z — y} C) ps B
using assms proof (induction ps arbitrary: 1)
case Nil
then have ¥ = {$$}
by simp
then have SY9 B= B
using empty-substitution-neutrality by (simp only:)
with Nil show ?Zcase
by simp
next
case (Cons p ps)
from Cons.prems(1,2) obtain z and y where 9 $$ (fst p) = Some (FVar y) and p = (z, FVar y)
using surj-pair|of p| by fastforce
let 29’ = fmap-of-list ps
from Cons.prems(1) and <p = (z, FVar y)> have 9 = fmupd z (FVar y) %9’
by simp
moreover from Cons.prems(3) and <p = (z, FVar y)> have z ¢ fmdom’ 29’
by simp
ultimately have ¥ = {z — FVar y} ++; %’
using fmap-singleton-comm by fastforce
with Cons.prems(2) and <z ¢ fmdom’ 29"y have is-renaming-substitution 29’
unfolding is-renaming-substitution-def and ¢ = frmupd x (FVar y) 29"
using updated-substitution-is-substitution by (metis fmdiff-fmupd fmdom’-notD fmpred-filter)
from Cons.prems(2) and <9 = fmupd z (FVar y) 20"y have is-renaming-substitution {z — FVar
y}
by auto
have

foldr (M (z, y) C. S {z — y} C) (p # ps) B

S {z — FVar y} (foldr (M(z, y) C. S {z — y} C) ps B)
by (simp add: <p = (z, FVar y)»)
also have ... =S {z — FVary} S %' B
proof —
from Cons.prems(3,4) have distinct (map fst ps) and distinct (map snd ps)
by fastforce+
moreover have vars (fmran’ 29') N (fmdom’ 29’ U vars B) = {}
proof —
have vars (fmran’ 9) = vars ({FVar y} U fmran’ 29)
using ¢ = fmupd x (FVar y) 29"y and <z ¢ fmdom’ 29"y by (metis fmdom’-notD fmran’-fmupd)
then have vars (fmran’ 9) = {y} U vars (fmran’ 29”)
using singleton-form-set-vars by auto
moreover have fmdom’ 9 = {z} U fmdom’ 29’
by (simp add: <0 = {z — FVar y} ++; %")
ultimately show ?thesis
using Cons.prems(5) by auto
qed
ultimately show Zthesis
using Cons.IH and <is-renaming-substitution %3’y by simp
qed

76

also have ... =S ({z — FVar y} ++; %) B
proof (rule substitution-fusion)
show is-substitution 29’
using (is-renaming-substitution 29’y by simp
show is-substitution {x — FVar y}
using <is-renaming-substitution {z — FVar y}> by simp
show 29’ $$ = = None
using <z ¢ fmdom’ 29"y by blast
show Vv’ € fmdom’ 29'. x ¢ vars (29’ $$! v’)
proof —
have z € fmdom’
using ¥ = {z — FVar y} ++5 29" by simp
then have z ¢ vars (fmran’ ¢)
using Cons.prems(5) by blast
moreover have {?9' $3! v’ | v’. v’ € fmdom’ 29’} C fmran’ ¥
unfolding < = 29/(z — FVar y)> using <29’ $$ = = None»
by (auto simp add: fmlookup-of-list fmlookup-dom’-iff fmran’l weak-map-of-Somel)
ultimately show ?thesis
by force
qed
qed
also from ¥ = {z — FVar y} ++; %> have ... =S U B
by (simp only:)
finally show ?case ..
qed

lemma free-vars-agreement-substitution-equality:
assumes fmdom’ ¥ = fmdom’ ¥’
and Vv € free-vars A N fmdom’ 9. 9 $$! v = 9’ $$! v
shows S99 A=S9' A
using assms proof (induction A arbitrary: ¥)
case (FVar v)
have free-vars (FVar v) = {v}
using surj-pair|of v] by fastforce
with FVar have 9 $$! v = 9’ $$! v
by force
with FVar.prems(1) show ?Zcase
using surj-pair[of v] by (metis fmdom’-notD fmdom’-notl option.collapse substitute.simps(1))
next
case FCon
then show ?case
by (metis prod.ezhaust-sel substitute.simps(2))
next
case (FApp B C)
have S9Y (B-C)=(S9¥ B):- (SS9 O)
by simp
also have ... = (S¥' B) - (S9' C)
proof —
have Vv € free-vars B N fmdom’ 9. 9 $$! v = 0¥’ $$! v

77

and Vv € free-vars C N fmdom’ 9. 9 $$! v = 9’ $$! v
using FApp.prems(2) by auto
with FApp.IH(1,2) and FApp.prems(1) show ?thesis
by blast
qed
finally show ?case
by simp
next
case (FAbs w B)

from FAbs.prems(1,2) have *: Vv € free-vars B — {w} N fmdom’ 9. 9 $$! v = 9’ §$! v

using surj-pair[of w] by fastforce
show ?Zcase
proof (cases w € fmdom’ ¥)
case True
then have S ¢ (FAbs w B) = FAbs w (S (fmdrop w 9) B)
using surj-pair[of w] by fastforce
also have ... = FAbs w (S (fmdrop w 9') B)
proof —

from x have Vv € free-vars B N fmdom’ (fmdrop w 9). (fmdrop w 9) $$! v = (fmdrop w ¥’) $$!

by simp
moreover have fmdom’ (fmdrop w 9) = fmdom’ (fmdrop w ')
by (simp add: FAbs.prems(1))
ultimately show ?thesis
using FAbs.IH by blast
qed
finally show ?thesis
using FAbs.prems(1) and True and surj-pair[of w] by fastforce
next
case Fulse
then have S ¢ (FAbs w B) = FAbs w (S ¥ B)
using surj-pair[of w] by fastforce
also have ... = FAbs w (S ¥’ B)
proof —
from * have Vv € free-vars B N fmdom’ 9. 9 $$! v = 9’ $$! v
using False by blast
with FAbs.prems(1) show ?thesis
using FAbs.IH by blast
qed
finally show ?thesis
using FAbs.prems(1) and False and surj-pair[of w]| by fastforce
qged
qged

) zl .ol To @k
The following lemma proves that S % S ' " B =S Lo
' o« oy o an A SA(;A})q

! o and A} is free for z, in B:
T T

that x, is distinct from x,,,..., 25

lemma substitution-consolidation:
assumes v ¢ fmdom’ 9

78

n
Ian

. ST An

T Aq i Tan

B provided

and Vv’ € fmdom’ 9. is-free-for (9 $$! v’) v’ B
shows S {v — A} SY B=S8 ({v— A} ++5 fmmap (AA". S {v — A} A") 9) B
using assms proof (induction B arbitrary:)
case (FApp B C)
have Vv’ € fmdom' 9. is-free-for (9 $$! v) v’ B A is-free-for (¢ $3! v’) v’ C
proof
fix v’
assume v’ € fmdom’ 9
with FApp.prems(2) have is-free-for (9 $$! v) v’ (B« C)
by blast
then show is-free-for (9 $$! v’) v’ B A is-free-for (9 $$! v’) v’ C
using is-free-for-from-app by iprover
qed
with FApp.IH and FApp.prems(1) show ?case
by simp
next
case (FAbs w B)
let 29’ = fmmap (AA’. S {v — A} A)) ¢
show ?Zcase
proof (cases w € fmdom’ ¥)
case True
then have w € fmdom’ %9’
by simp
with True and FAbs.prems have v # w
by blast
from True have S {v — A} S ¥ (FAbs w B) = S {v — A} (FAbs w (S (fmdrop w) B))
using surj-pair[of w] by fastforce

also from (v # w> have ... = FAbs w (S {v — A} S (fmdrop w ¥) B)
using surj-pair|of w] by fastforce

also have ... = FAbs w (S (fmdrop w ({v — A} ++; ?')) B)

proof —

obtain z,, and «,, where w = (T, Q)
by fastforce
have Vv’ € fmdom’ (fmdrop w). is-free-for ((fmdrop w) $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ (fmdrop w)
with FAbs.prems(2) have is-free-for (¢ $$! v’) v’ (FAbs w B)
by auto
with <w = (2,) and v’ € fmdom’ (fmdrop w 9)»
have is-free-for (9 $8! v') v/ (Azwa,- B) and v’ # (24, ay)
by auto
then have is-free-for (¢ $$! v’) v’ B
using is-free-for-from-abs by presburger
with v/ # (24, aw)> and (w = (T4, ay)> show is-free-for (fmdrop w 9 $$! v) v’ B
by simp
qed
moreover have v ¢ fmdom’ (fmdrop w 9)
by (simp add: FAbs.prems(1))

79

ultimately show ?thesis
using FAbs.IH and v # w> by (simp add: fmdrop-fmupd)
qed
finally show ?thesis
using «w € fmdom’ 29"y and surj-pair|of w] by fastforce
next
case Fulse
then have w ¢ fmdom’ 29’
by simp
from FAbs.prems have v ¢ fmdom’ %9’
by simp
from Fulse have x: S {v — A} S ¢ (FAbs w B) = S {v — A} (FAbs w (S 9 B))
using surj-pair|of w] by fastforce
then show ?thesis
proof (cases v # w)
case True
then have S {v — A} (FAbs w (S ¥ B)) = FAbs w (S {v — A} (S ¥ B))
using surj-pair|of w] by fastforce
also have ... = FAbs w (S ({v — A} ++5 %) B)
proof —
obtain z,, and «,, where w = (z,)
by fastforce
have Vv’ € fmdom’ 9. is-free-for (9 $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ ¥
with FAbs.prems(2) have is-free-for (¥ 3! v’) v’ (FAbs w B)
by auto
with «<w = (2, @) and «w’ € fmdom’ ¢ and Fualse
have is-free-for (9 $3! v') v/ (Azwa,,- B) and v’ # (24,)
by fastforce+
then have is-free-for (9 $$! v’) v’ B
using is-free-for-from-abs by presburger
with «v' # (24, ay) and (w = (24, ay)> show is-free-for (9 $3! v’) v’ B
by simp
qed
with FAbs.IH show ?thesis
using FAbs.prems(1) by blast
qed
finally show ?thesis
proof —
assume

S {v — A} (FAbs w (S ¥ B)) = FAbs w (S ({v — A} ++; fmmap (substitute {v — A}) 0)

moreover have w ¢ fmdom’ ({v — A} ++5 fmmap (substitute {v — A}) 0)
using False and True by auto
ultimately show “thesis
using * and surj-pair[of w] by fastforce
qed

80

next
case Fulse
then have v ¢ free-vars (FAbs w (S ¥ B))
using surj-pair|of w] by fastforce
then have #x: S {v — A} (FAbs w (S ¥ B)) = FAbs w (S ¥ B)
using free-var-singleton-substitution-neutrality by blast
also have ... = FAbs w (S %9’ B)
proof —
{
fix v’
assume v’ € fmdom’ Y
with FAbs.prems(1) have v’ # v
by blast
assume v € free-vars (9 $$! v’) and v’ € free-vars B
with v’ # v» have = is-free-for (9 $3! v') v’ (FAbs v B)
using form-with-free-binder-not-free-for by blast
with FAbs.prems(2) and v’ € fmdom’ ¢ and False have Fulse
by blast
}
then have Vv’ € fmdom’ 9. v ¢ free-vars (9 8! v') V v’ & free-vars B
by blast
then have Vv’ € fmdom’ VY. v’ € free-vars B — S {v — A} (9 $$! v) = 9 §$! v’
using free-var-singleton-substitution-neutrality by blast
then have Vv’ € free-vars B. 9 $$! v/ = 29’ $$! v’
by (metis fmdom’-map fmdom’-notD fmdom'-notl fmlookup-map option.map-sel)
then have S¢Y B=S %' B
using free-vars-agreement-substitution-equality by (metis IntD1 fmdom’-map)
then show ?thesis
by simp
qed
also from Fulse and FAbs.prems(1) have ... = FAbs w (S (fmdrop w ({v — A} ++¢ %)) B)
by (simp add: fmdrop-fmupd-same fmdrop-idle’)
also from Fulse have ... = S ({v — A} ++ 29') (FAbs w B)
using surj-pair|of w] by fastforce
finally show ?thesis
using x and #x by (simp only:)
qed
qed
qed force+

lemma vars-range-substitution:

assumes is-substitution ¥

and v ¢ vars (fmran’ 9)

shows v ¢ vars (fmran’ (fmdrop w 9))
using assms proof (induction)

case fmempty

then show ?case

by simp

next

81

case (fmupd v’ A V)

from fmdom’-notl[OF fmupd.hyps] and fmupd.prems(1) have is-substitution ¥
by (rule updated-substitution-is-substitution)

moreover from fmupd.prems(2) and fmupd.hyps have v ¢ vars (fmran’)
by simp

ultimately have v ¢ vars (fmran’ (fmdrop w)
by (rule fmupd.IH)

with frmupd.hyps and fmupd.prems(2) show Zcase
by (simp add: fmdrop-fmupd)

qged

lemma excluded-var-from-substitution:
assumes is-substitution
and v ¢ fmdom’ ¢
and v ¢ vars (fmran’)
and v ¢ vars A
shows v ¢ vars (S 9 A)
using assms proof (induction A arbitrary: 9)
case (FVar v’
then show ?case
proof (cases v’ € fmdom’ ¥)
case True
then have ¢ 3! v’ € fmran’ 9
by (simp add: fmlookup-dom'-iff fmran'T)
with FVar(3) have v ¢ vars (¥ $$! v’)
by simp
with True show ?thesis
using surj-pair[of v'| and fmdom’-notl by force
next
case Fulse
with FVar.prems(4) show ?thesis
using surj-pair[of v'] by force
qed
next
case (FCon k)
then show ?case
using surj-pair[of k] by force
next
case (FApp B C)
then show ?case
by auto
next
case (FAbs w B)
have v ¢ vars B and v # w
using surj-pair[of w] and FAbs.prems(4) by fastforce+
then show ?case
proof (cases w ¢ fmdom’ ¢)
case True
then have S ¥ (FAbs w B) = FAbs w (S ¥ B)

82

using surj-pair|of w] by fastforce
moreover from FAbs.IH have v ¢ vars (S 9 B)
using FAbs.prems(1—8) and v ¢ vars B> by blast
ultimately show ?thesis
using v # w» and surj-pair[of w] by fastforce
next
case Fulse
then have S ¢ (FAbs w B) = FAbs w (S (fmdrop w 9) B)
using surj-pair[of w] by fastforce
moreover have v ¢ vars (S (fmdrop w) B)
proof —
from FAbs.prems(1) have is-substitution (fmdrop w)
by fastforce
moreover from FAbs.prems(2) have v ¢ fmdom’ (fmdrop w)
by simp
moreover from FAbs.prems(1,3) have v ¢ vars (fmran’ (fmdrop w 1))
by (fact vars-range-substitution)
ultimately show ?thesis
using FAbs.TH and (v ¢ vars B> by simp
qed
ultimately show ?thesis
using «v # w» and surj-pair[of w] by fastforce
qed
qed

2.15 Renaming of bound variables

fun rename-bound-var :: var = nat = form = form where
rename-bound-var v y (zo) = Tq
| rename-bound-var v y ({c}a) = {c}a
| rename-bound-var vy (B« C') = rename-bound-var v y B « rename-bound-var v y C
| rename-bound-var vy (Azy. B) =

if (z, @) = v then
Ma- S {(z, @) — ya} (rename-bound-var v y B)
else
Azq. (rename-bound-var v y B)
)

lemma rename-bound-var-preserves-typing:
assumes A € wffsy
shows rename-bound-var (y, v) z A € wffsq
using assms proof (induction A)
case (abs-is-wff § A ¢ x)
then show ?case
proof (cases (z, 6) = (y, 7))
case True
from abs-is-wff.IH have S {(y, 7) — 2z} (rename-bound-var (y, v) z A) € wffsg
using substitution-preserves-typing by (simp add: wffs-of-type-intros(1))

83

then have Azy. S {(y, 7) — 2z} (rename-bound-var (y, v) z A) € wffs, .3
by blast
with True show ?thesis
by simp
next
case Fulse
from abs-is-wff IH have Azg. rename-bound-var (y, v) z A € wifss—
by blast
with Fualse show ?thesis
by auto
qed
qged auto

lemma old-bound-var-not-free-in-abs-after-renaming:
assumes A € wffsy
and zy # yy
and (z, v) ¢ vars A
shows (y, v) ¢ free-vars (rename-bound-var (y, v) z (Ay~. A))
using assms and free-var-in-renaming-substitution by (induction A) auto

lemma rename-bound-var-free-vars:
assumes A € wffsy
and zy # yy
and (z, v) ¢ vars A
shows (z, v) ¢ free-vars (rename-bound-var (y, v) z A)
using assms by (induction A) auto

lemma old-bound-var-not-free-after-renaming:
assumes A € wffsy
and zy # Yy
and (z,v) ¢ vars A
and (y, v) ¢ free-vars A
shows (y, v) ¢ free-vars (rename-bound-var (y, v) z A)
using assms proof induction
case (abs-is-wff 6 A a x)
then show ?case
proof (cases (z, a) = (y, 7¥))
case True
with abs-is-wff.hyps and abs-is-wff.prems(2) show ?thesis
using old-bound-var-not-free-in-abs-after-renaming by auto
next
case Fulse
with abs-is-wff.prems(2,3) and assms(2) show ?thesis
using abs-is-wff.IH by force
qed
qed fastforce+

lemma old-bound-var-not-ocurring-after-renaming:
assumes A € wffsq

84

shows — occurs-at (y, v) p (S {(y, v) — 24} (rename-bound-var (y, v) z A))

using assms(1) proof (induction A arbitrary: p)
case (var-is-wff o x)
from assms(2) show ?case
using subform-size-decrease by (cases (z, o) = (y, 7)) fastforce+
next
case (con-is-wff « c)
then show ?case
using occurs-at-alt-def (2) by auto
next
case (app-is-wff a 8 A B)
then show ?case
proof (cases p)
case (Cons d p')
then show ?thesis
by (cases d) (use app-is-wff.IH in auto)
qed simp
next
case (abs-is-wff f A a z)
then show “case
proof (cases p)
case (Cons d p')
then show ?thesis
proof (cases d)
case Left
have *: = occurs-at (y, v) p (Aza. S {(y, v) — 2y} (rename-bound-var (y, v) z A))
for z and «
using Left and Cons and abs-is-wff.IH by simp
then show ?thesis
proof (cases (z, &) = (y, 7))
case True
with assms(2) have
S {(y, v) = 2y} (rename-bound-var (y, v) z (Azq. A))

Azy. S {(y, v) — 2y} (rename-bound-var (y, v) z A)
using free-var-in-renaming-substitution and free-var-singleton-substitution-neutrality
by simp

moreover have — occurs-at (y,) p (Azy. S {(y, v) = 2y} (rename-bound-var (y, v) z A))
using Left and Cons and * by simp

ultimately show ?thesis
by simp

next

case Fulse

with assms(2) have
S {(y, 7v) — 2y} (rename-bound-var (y, v) z (Azq. A))

Aeo. S {(y, v) — 2y} (rename-bound-var (y, v) z A)
by simp

85

moreover have - occurs-at (y, v) p (Aza. S {(y, v) — 2y} (rename-bound-var (y, v) z A))
using Left and Cons and * by simp

ultimately show ?thesis
by simp

qged
qged (simp add: Cons)
qed simp
qed

The following lemma states that the result of remame-bound-var does not contain bound
occurrences of the renamed variable:

lemma rename-bound-var-not-bound-occurrences:
assumes A € wffsy
and zy # Yy
and (z,v) ¢ vars A
and occurs-at (y, v) p (rename-bound-var (y, v) z A)
shows — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z A)
using assms(1,3,4) proof (induction arbitrary: p)
case (var-is-wff « x)
then show ?case
by (simp add: subforms-from-var(2))
next
case (con-is-wff « ¢)
then show ?case
using occurs-at-alt-def(2) by auto
next
case (app-is-wff o 8 B C)
from app-is-wff.prems(1) have (z, v) ¢ vars B and (z, v) ¢ vars C
by simp-all
from app-is-wff.prems(2)
have occurs-at (y, v) p (rename-bound-var (y, v) z B « rename-bound-var (y,) z C)
by simp
then consider
(@) Ap’. p = « # p' A occurs-at (y, v) p’ (rename-bound-var (y, v) z B)
| () 3p’. p=» # p' A occurs-at (y, v) p’ (rename-bound-var (y, v) z C)
using subforms-from-app by force
then show ?case
proof cases
case a
then obtain p’ where p = « # p’ and occurs-at (y, v) p’ (rename-bound-var (y, v) z B)
by blast
then have — in-scope-of-abs (z, v) p’ (rename-bound-var (y,) z B)
using app-is-wff.IH(1)[OF (z, v) ¢ vars B>] by blast
then have — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z (B« C)) for C
using <p = « # p’» and in-scope-of-abs-in-left-app by simp
then show ?thesis
by blast
next
case b

86

then obtain p’ where p = » # p’ and occurs-at (y, v) p’ (rename-bound-var (y, v) z C)
by blast
then have — in-scope-of-abs (z, v) p’ (rename-bound-var (y, v) z C)
using app-is-wff.IH(2)[OF (z, v) ¢ vars C»] by blast
then have — in-scope-of-abs (z, v) p (rename-bound-var (y, v) z (B« C)) for B
using «p = » # p’ and in-scope-of-abs-in-right-app by simp
then show ?thesis
by blast
qed
next
case (abs-is-wff 8 A « 1)
from abs-is-wff.prems(1) have (z, v) ¢ vars A and (z, v) # (z,)
by fastforce+
then show ?case
proof (cases (y, v) = (z, a))
case True
then have occurs-at (y, v) p (Azv. S {(y, 7) — 2y} (rename-bound-var (y, v) z A))
using abs-is-wff.prems(2) by simp
moreover have — occurs-at (y, v) p (Azy. S {(y, 7) — 2+} (rename-bound-var (y,) z A))
using old-bound-var-not-ocurring-after-renaming| OF abs-is-wff .hyps assms(2)] and subforms-from-abs
by fastforce
ultimately show ?Zthesis
by contradiction
next
case Fulse
then have x: rename-bound-var (y, v) z (Axq. A) = Azg. rename-bound-var (y, v) z A
by auto
with abs-is-wff.prems(2) have occurs-at (y, v) p (Azq. rename-bound-var (y, v) z A)
by auto
then obtain p’ where p = « # p’ and occurs-at (y,) p’ (rename-bound-var (y, v) z A)
using subforms-from-abs by fastforce
then have — in-scope-of-abs (z, v) p' (rename-bound-var (y, v) z A)
using abs-is-wff IH[OF «(z,) ¢ vars Ay] by blast
then have — in-scope-of-abs (z, v) (« # p’) (Azq. rename-bound-var (y, v) z A)
using <p = « # p’» and in-scope-of-abs-in-abs and «(z, v) # (z, @)» by auto
then show ?thesis
using * and <p = « # p"» by simp
qed
qged

lemma is-free-for-in-rename-bound-var:

assumes A € wffsy

and zy # yy

and (z, v) ¢ vars A

shows is-free-for (zy) (y, v) (rename-bound-var (y, v) z A)
proof (rule ccontr)

assume — is-free-for (zv) (y, v) (rename-bound-var (y,) z A)

then obtain p

where is-free-at (y, v) p (rename-bound-var (y, v) z A)

87

and in-scope-of-abs (z, v) p (rename-bound-var (y, v) z A)
by force
then show Fulse
using rename-bound-var-not-bound-occurrences| OF assms] by fastforce
qged

lemma renaming-substitution-preserves-bound-vars:
shows bound-vars (S {(y, v) = 2y} A) = bound-vars A
proof (induction A)
case (FAbs v A)
then show ?case
using singleton-substitution-simps(4) and surj-pair[of v]
by (cases v = (y, 7)) (presburger, force)
qed force+

lemma rename-bound-var-bound-vars:
assumes A € wffsq
and zy # yy
shows (y, v) ¢ bound-vars (rename-bound-var (y,) z A)
using assms and renaming-substitution-preserves-bound-vars by (induction A) auto

lemma old-var-not-free-not-occurring-after-rename:
assumes A € wffsy
and zy # Yy
and (y, v) ¢ free-vars A
and (z, v) ¢ vars A
shows (y, v) ¢ vars (rename-bound-var (y, v) z A)
using assms and rename-bound-var-bound-vars|OF assms(1,2)]
and old-bound-var-not-free-after-renaming and vars-is-free-and-bound-vars by blast

end

3 Boolean Algebra

theory Boolean-Algebra
imports
ZFC-in-HOL.ZFC-Typeclasses
begin

This theory contains an embedding of two-valued boolean algebra into V.

hide-const (open) List.set

definition bool-to-V :: bool = V where
bool-to-V = (SOME f. inj f)

lemma bool-to- V-injectivity [simp]:

shows inj bool-to-V
unfolding bool-to-V-def by (fact somel-ex|OF embeddable-class.ex-inj])

88

definition bool-from-V :: V = bool where
[simp]: bool-from-V = inv bool-to-V

definition top :: V (\T)) where
[simp]: T = bool-to-V True

definition bottom :: V (<F») where
[simp]: F = bool-to-V False

definition two-valued-boolean-algebra-universe :: V («B») where
[simp]: B = set {T, F}

definition negation :: V.= V (<~ - [141] 141) where
[simp]: ~ p = bool-to-V (= bool-from-V p)

definition conjunction :: V. = V = V (infixr <A> 136) where
[simp]: p A g = bool-to-V (bool-from-V p A bool-from-V q)

definition disjunction :: V = V = V (infixr <V» 131) where
[simpl: pV g =~ (~p A~ q)

definition implication :: V = V = V (infixr «<D» 121) where
[simp]: p D q=~pVq

definition iff :: V = V = V (infixl <=) 150) where
[simpl: p = ¢ = (p D q) A (¢ D p)

lemma boolean-algebra-simps [simp):
assumes p € elts B and ¢ € elts B and r € elts B
shows ~ ~ p=1p
and ((~ p) = (~ q))
and ~ (p = ¢
and (p V ~
and (~pV p

2
-

SN~—
11
—~
2
)
2
=

oo

5 B

aa

T

=

w2

s ==
=R
HHES

M 2

p

I~

G
~—

3=
I I
?H HHE™ 7SS

Uy gy g ey,
=
Il
=

[«Y)

=]

(o8

e}

Uu

LSRN

LT

L=

V]
=
a
=
U
2
=
I
=

89

and (p AF)=F
and (F Ap)=F

and (p A p)=p

and (p A (p A q)) = (P A q)
and (p A ~ p) =

and (~p A p)=F
and (p vVT)=T

and (TVvyp) =T
and (p VF)=p

and (FVp)=p

and (p V p) =p

and (pV (pV q)=(pV q)

and pA (gAT)=gA(pAT)

and pV ¢g=qVp

andpV (¢gvVr)=qV(pVr)

and (p Vg Vr=pV(Vr)
andpA (gVr)=pAgVpATr
and (pV g Ar=pArVgAr
andpV (qAr)=(pVaq A(pVr)
and(p/\Q)Vr—(pVT) (qVvr)

and (p D (¢AT)) = ((PDQ) (pD1)
and (p A g)Dr)=(pD(¢gDr))
and (pV ¢ Dr)=((pDr)A(gDr))
and (pDg)Vr)=(pDgqgVr)
and (¢V (pDr)=(mEPDgVr)

and ~ (pV q) =~pA~g
and ~ (pAgq)=~pV ~ygq
and ~ (p D g)=pA~gq

and ~pV qg=(pDq)

and pV ~ ¢ = (¢D p)

and (p D ¢q) = (~p) V q

and pV ¢g=~pDgyg

and (p=¢q)=(pD g A (¢Dp)
and (p D ¢) A(~pDyq) =g
and p=T= - (p=F)

and p=F = - (p=T)

and p=TVp=F

using assms by (auto simp add: inj-eq)

lemma tv-cases [consumes 1, case-names top bottom, cases type: V]:
assumes p € elts B
and p=T =P
and p=F = P
shows P
using assms by auto

end

90

4 Propositional Well-Formed Formulas

theory Propositional- Wff
imports
Syntaz
Boolean-Algebra
begin

4.1 Syntax

inductive-set pwffs :: form set where

T-pwff: Ty € puwffs
| F-pwff: Fo € puffs
| var-puff: po € puwffs
| neg-pwff: ~2 A € puffs if A € puffs
| conj-pwff: A N B € puffs if A € puwffs and B € puffs
| disj-pwff: A Ve B € puffs if A € puwffs and B € puwffs
| imp-puwff: A D2 B € puffs if A € puwffs and B € puwffs
| equ-pwff: A =2 B € puffs if A € puwffs and B € puffs

lemmas [introl] = pwffs.intros

lemma puwffs-distinctnesses [induct-simp:
shows Ty # Fy

and Ty # po

and T, # ~2 4

and T, # A AC B
and T, # A Ve B
and Ty # A D2 B
and T, # A =° B
and F'y # po

and F, #~° A

and F, # ANC B

and F, # AVe B

and F, # A D2 B
and F, # A=° B

and p, # ~< A

and p, # A N B

and p, # A Ve B

and p, # A D2 B

and p, # A =° B

and ~¢ A # B A C
and ~2 A # B Ve C
and ~2 A # B>° C
and - (B=F,NA=C)= ~2 A#B=2(C— ~2 Ais thesame as F, =< A
and ANS B#CVeD
and AANC B# C D22 D
and ANC B#C=°D
and AV B# C D2 D
and AVe B# C=°D

91

and A D2 B#C=°D
by simp-all

lemma puwffs-injectivities [induct-simp):

shows ~¢ A =~ A'— A=A’

and ANC B=A'AN®B'= A=A"AB=DB'
and AVe B=A'Ve B'= A= A'"AB=DB'
and A D2 B=A"2°B'=—= A=A'"ANB=DB'
and A=° B=A4"=2B'—= A=A'ANB=DB'
by simp-all

lemma puwff-from-neg-pwff [elim!]:
assumes ~2 A € puffs
shows A € puffs
using assms by cases simp-all

lemma pwffs-from-conj-pwff [elim!]:
assumes A A€ B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma pwffs-from-disj-pwff [elim!]:
assumes A V¢ B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma pwffs-from-imp-pwff [elim!]:
assumes A D2 B € puffs
shows {4, B} C puffs
using assms by cases simp-all

lemma puwffs-from-equ-pwff [elim!]:
assumes A =° B € puffs
shows {4, B} C puffs
using assms by cases (simp-all, use F-pwff in fastforce)

lemma pwffs-subset-of-wffso:

shows puwffs C wffso
proof

fix A

assume A € puffs

then show A € wffs,

by induction auto

qed

lemma pwff-free-vars-simps [simp):
shows T-fv: free-vars Ty = {}
and F-fv: free-vars Fy = {}
and var-fu: free-vars (po) = {(p, 0)}

92

and neg-fu: free-vars (~2 A) = free-vars A

and conj-fv: free-vars (A N2 B) = free-vars A U free-vars B
and disj-fv: free-vars (A V2 B) = free-vars A U free-vars B
and imp-fv: free-vars (A D2 B) = free-vars A U free-vars B
and equ-fv: free-vars (A =< B) = free-vars A U free-vars B
by force+

lemma pwffs-free-vars-are-propositional:
assumes A € puffs
and v € free-vars A
obtains p where v = (p, 0)
using assms by (induction A arbitrary: thesis) auto

lemma is-free-for-in-pwff [intro:
assumes A € puffs
and v € free-vars A
shows is-free-for B v A
using assms proof (induction A)
case (neg-puff C)
then show ?case
using is-free-for-in-neg by simp
next
case (conj-pwff C D)
from conj-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case q
then show ?thesis
using conj-pwff.IH by (intro is-free-for-in-conj)
next
case b
have is-free-for B v C
by (fact conj-pwff IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-cony)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact conj-pwff IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-conj)

93

qed
next
case (disj-puff C D)
from disj-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using disj-pwff.IH by (intro is-free-for-in-disj)
next
case b
have is-free-for B v C
by (fact disj-pwff.IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-disj)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact disj-pwff.IH(2)[OF ¢(2)])
ultimately show ¢thesis
by (rule is-free-for-in-disj)
qed
next
case (imp-pwff C D)
from imp-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v & free-vars C' and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using imp-pwff.IH by (intro is-free-for-in-imp)
next
case b
have is-free-for B v C
by (fact imp-pwff . IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?Zthesis

94

by (rule is-free-for-in-imp)
next
case ¢
from c(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact imp-pwff.IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-imp)
qged
next
case (equ-puwff C' D)
from equ-pwff.prems consider
(a) v € free-vars C and v € free-vars D
| (b) v € free-vars C and v ¢ free-vars D
| (¢) v ¢ free-vars C and v € free-vars D
by auto
then show ?case
proof cases
case a
then show ?thesis
using equ-pwff.IH by (intro is-free-for-in-equivalence)
next
case b
have is-free-for B v C
by (fact equ-pwff IH(1)[OF b(1)])
moreover from b(2) have is-free-for B v D
using is-free-at-in-free-vars by blast
ultimately show ?thesis
by (rule is-free-for-in-equivalence)
next
case ¢
from c¢(1) have is-free-for B v C
using is-free-at-in-free-vars by blast
moreover have is-free-for B v D
by (fact equ-pwff.IH(2)[OF ¢(2)])
ultimately show ?thesis
by (rule is-free-for-in-equivalence)
qed
qged auto

4.2 Semantics

Assignment of truth values to propositional variables:

definition is-tv-assignment :: (nat = V) = bool where
[iff]: is-tv-assignment ¢ +— (V' p. ¢ p € elts B)

Denotation of a pwit:

definition is-pwff-denotation-function where

95

[iff]: is-pwff-denotation-function V +—

(
V. is-tv-assignment ¢ —>
(
(Vp. Vo (po) = ¢ p) A
(VA. A€ puffs — Vo (~2A) =~V p A) A
(VAB. Acpuffs N BE€puffs —Vp(ANEB) =VpAAY e B)A
(VAB. Acpuffs\ BE€puffs —Vp(AVEB) =V pAVYpB)A
(VAB. Acpuffs N\ BEpuffs — Ve (AD2SB) =V pADVeB)A
(VAB. Acpuffs N BEpuffs —Vp(A=2B)=Vp A=V ¢ B)
)

)

lemma pwff-denotation-is-truth-value:
assumes A € puwffs
and is-tv-assignment @
and is-pwff-denotation-function V
shows V p A € elts B
using assms(1) proof induction
case (neg-pwff A)
then have V ¢ (~2 A) =~V p A
using assms(2,3) by auto
then show ?case
using neg-pwff.IH by auto
next
case (conj-pwff A B)
then have V p (AN B) =V p ANV ¢ B
using assms(2,3) by auto
then show ?case
using conj-pwff.IH by auto
next
case (disj-pwff A B)
then have V 0 (AVe B) =V p AV YV ¢ B
using assms(2,3) by auto
then show ?case
using disj-pwff.IH by auto
next
case (imp-puff A B)
then have V ¢ (A D2 B)=Vp ADV ¢ B
using assms(2,3) by blast
then show ?case
using imp-pwff.IH by auto
next
case (equ-puff A B)
then have V p (A=°2B)=Vp A=V ¢ B
using assms(2,3) by blast
then show ?case

96

using equ-pwff.IH by auto
qed (use assms(2,3) in auto)

lemma closed-pwff-is-meaningful-regardless-of-assignment:
assumes A € puffs
and free-vars A = {}
and is-tv-assignment @
and is-tv-assignment 1)
and is-pwff-denotation-function V
shows YV p A=V ¢y A
using assms(1,2) proof induction
case T-puff
have V ¢ Ty =T
using assms(3,5) by blast
also have ... =V y T,
using assms(4,5) by force
finally show ?Zcase .
next
case F-puwff
have V ¢ Fy, =F
using assms(3,5) by blast
also have ... =V ¢ F,
using assms(4,5) by force
finally show ?Zcase .
next
case (var-pwff p) — impossible case
then show ?case
by simp
next
case (neg-puff A)
from «free-vars (~< A) = {}» have free-vars A = {}
by simp
have V o (~2 A) =~V p A
using assms(3,5) and neg-pwff.hyps by auto

also from <free-vars A = {}» have ... =~V ¢ A
using assms(3—5) and neg-pwff.IH by presburger
also have ... =V 1 (~¢ A)

using assms(4,5) and neg-pwff.hyps by simp

finally show ?Zcase .

next

case (conj-pwff A B)

from «free-vars (A A2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all

have V o (ANS B)=Vp ANV ¢ B
using assms(3,5) and conj-pwff.hyps(1,2) by auto

also from <free-vars A = {}» and <free-vars B ={}> have ... =V ¢y AAV ¢ B
using conj-pwff.IH(1,2) by presburger

also have ... =V ¢ (A A¢ B)
using assms(4,5) and conj-pwff.hyps(1,2) by fastforce

97

finally show ?Zcase .
next
case (disj-puff A B)
from «free-vars (A Ve B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V ¢ (AVe B) =V p AV VB
using assms(3,5) and disj-pwff.hyps(1,2) by auto
also from «free-vars A = {}> and «free-vars B = {}> have ... =V ¢y AV V ¢ B
using disj-pwff.IH(1,2) by presburger
also have ... =V ¢ (A V¢ B)
using assms(4,5) and disj-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
next
case (imp-puff A B)
from «free-vars (A D2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V ¢ (AD9 B)=V o ADV ¢ B
using assms(3,5) and imp-pwff.hyps(1,2) by auto
also from «free-vars A = {}» and <free-vars B = {}» have ... =V ¢ A DV ¢ B
using imp-pwff.IH(1,2) by presburger
also have ... =V ¢ (4 D B)
using assms(4,5) and imp-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
next
case (equ-pwff A B)
from «free-vars (A =2 B) = {}> have free-vars A = {} and free-vars B = {}
by simp-all
have V 9o (A=°B) =V o A=V ¢ B
using assms(3,5) and equ-pwff.hyps(1,2) by auto
also from «free-vars A = {}» and <free-vars B = {}» have ... =V ¢ A=V ¢ B
using equ-pwff.IH(1,2) by presburger
also have ... =V ¢ (4 =2 B)
using assms(4,5) and equ-pwff.hyps(1,2) by fastforce
finally show ?Zcase .
qed

inductive Vg-graph for ¢ where
Vp-graph-T: Vg-graph ¢ T, T
| Vg-graph-F: Vg-graph ¢ Fo F
| V-graph-var: Vg-graph ¢ (po) (¢ p)
| Vg-graph-neg: Vg-graph ¢ (~2 A) (~ ba) if Vg-graph ¢ A ba
| Vg-graph-conj: Vg-graph ¢ (A A9 B) (ba A bg) if V-graph ¢ A ba and Vg-graph ¢ B by
| Vg-graph-disj: Vg-graph ¢ (A VS B) (ba V bp) if Vp-graph ¢ A ba and Vg-graph ¢ B bg
| V-graph-imp: Vg-graph ¢ (A D2 B) (by D bp) if Vp-graph ¢ A by and Vg-graph ¢ B bp
| V-graph-equ: Vp-graph ¢ (A =2 B) (by = bp) if Vp-graph ¢ A by and Vp-graph ¢ B bg and A
Fo

lemmas [intro!] = Vp-graph.intros

98

lemma Vp-graph-denotation-is-truth-value [elim!]:
assumes Vp-graph ¢ A b
and is-tv-assignment @
shows b € elts B
using assms proof induction
case (Vp-graph-neg A by)
show ?Zcase
using Vpg-graph-neg. IH[OF assms(2)] by force
next
case (Vp-graph-conj A by B bp)
then show ?case
using Vg-graph-conj.IH and assms(2) by force
next
case (Vp-graph-disj A by B bp)
then show ?case
using Vpg-graph-disj. IH and assms(2) by force
next
case (Vpg-graph-imp A by B bp)
then show ?case
using Vpg-graph-imp.IH and assms(2) by force
next
case (Vp-graph-equ A by B bp)
then show ?case
using Vg-graph-equ.IH and assms(2) by force
qed simp-all

lemma Vg-graph-denotation-uniqueness:
assumes A € puffs
and is-tv-assignment @
and Vg-graph ¢ A b and Vg-graph ¢ A b’
shows b = b’
using assms(3,1,4) proof (induction arbitrary: b’
case Vp-graph-T
from «Vg-graph ¢ T, by show Zcase
by (cases rule: Vg-graph.cases) simp-all
next
case Vp-graph-F
from Vg-graph ¢ F, b’y show ?case
by (cases rule: Vg-graph.cases) simp-all
next
case (Vp-graph-var p)
from Vp-graph ¢ (po) b show ?case
by (cases rule: Vg-graph.cases) simp-all
next
case (Vp-graph-neg A ba)
with (Vg-graph ¢ (~2 A) b"» have Vg-graph ¢ A (~ b’)
proof (cases rule: Vg-graph.cases)
case (Vp-graph-neg A’ ba)
from «(~2 A = ~2 A’ have 4 = A’

99

by simp
with «Vg-graph ¢ A’ ba> have Vpg-graph ¢ A by
by simp
moreover have by = ~ b’
proof —
have by € elts B
by (fact V p-graph-denotation-is-truth-value[OF Vp-graph-neg(3) assms(2)])
moreover from by € elts By and Vp-graph-neg(2) have ~ b’ € elts B
by fastforce
ultimately show ?thesis
using Vpg-graph-neg(2) by fastforce
qed
ultimately show ?thesis
by blast
qed simp-all
moreover from Vp-graph-neg.prems(1) have A € pwffs
by (force elim: pwffs.cases)
moreover have b4 € elts B and b’ € elts B and by = ~ b’
proof —
show by € elts B
by (fact V g-graph-denotation-is-truth-value[OF <V p-graph ¢ A ba> assms(2)])
show b’ € elts B
by (fact Vg-graph-denotation-is-truth-value| OF <V g-graph ¢ (~2 A) b"» assms(2)))
show by = ~ b’
by (fact Vp-graph-neg(2)[OF <A € puffs» <Vp-graph ¢ A (~ b')3])
qged
ultimately show Zcase
by force
next
case (Vp-graph-conj A by B bp)
with Vp-graph ¢ (A A2 B) b’ obtain b4’ and bp’
where b' = by’ A bg’ and Vg-graph ¢ A bs’' and Vg-graph ¢ B bg’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € puffs and B € puffs
using pwffs-from-conj-pwff[OF V g-graph-conj.prems(1)] by blast+
ultimately show “case
using Vg-graph-conj.IH and Vg-graph-conj.prems(2) by blast
next
case (Vp-graph-disj A by B bp)
from Vg-graph ¢ (A Ve B) b’» obtain by’ and bp’
where b’ = by’ V bg’ and Vg-graph ¢ A bs’ and Vg-graph ¢ B bg’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € pwffs and B € puwffs
using pwffs-from-disj-pwff|OF Vg-graph-disj.prems(1)] by blast+
ultimately show ?case
using Vpg-graph-disj.IH and Vg-graph-disj.prems(2) by blast
next
case (Vp-graph-imp A by B bp)
from Vg-graph ¢ (A D2 B) b’ obtain by’ and bp’

100

where b' = by’ D b’ and Vg-graph ¢ A by’ and Vg-graph ¢ B b’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € pwffs and B € puwffs
using pwffs-from-imp-pwff[OF Vp-graph-imp.prems(1)] by blast+
ultimately show “case
using Vg-graph-imp.IH and Vg-graph-imp.prems(2) by blast
next
case (Vp-graph-equ A by B bp)
with (Vg-graph ¢ (A =2 B) b’ obtain bs’ and bp’
where b' = by’ = b’ and Vg-graph ¢ A by’ and Vg-graph ¢ B b’
by (cases rule: Vg-graph.cases) simp-all
moreover have A € puffs and B € puffs
using pwffs-from-equ-pwff|OF Vg-graph-equ.prems(1)] by blast+
ultimately show ?case
using Vp-graph-equ.IH and V g-graph-equ.prems(2) by blast
qged

lemma Vg-graph-denotation-existence:
assumes A € puffs
and is-tv-assignment
shows 3b. Vg-graph ¢ A b
using assms proof induction
case (equ-puff A B)
then obtain b4 and bp where Vp-graph ¢ A by and Vg-graph ¢ B bp
by blast
then show ?Zcase
proof (cases A # Fy)
case True
then show ?thesis
using equ-pwff.IH and equ-pwff.prems by blast
next
case Fulse
then have A = F,,
by blast
then show ?thesis
using Vp-graph-neg[OF Vp-graph ¢ B bp»] by auto
qged
qed blast+

lemma Vg-graph-is-functional:
assumes A € puffs
and is-tv-assignment
shows 3!b. Vg-graph ¢ A b
using assms and Vpg-graph-denotation-ezistence and V g-graph-denotation-uniqueness by blast

definition Vp :: (nat = V) = form = V where
[simp]: Vg ¢ A = (THE b. Vg-graph ¢ A b)

lemma Vp-equality:

101

assumes A € puwffs

and is-tv-assignment @

and Vpg-graph ¢ A b

shows Vg 9o A =10

unfolding Vp-def using assms using Vg-graph-denotation-uniqueness by blast

lemma Vg-graph-Vp:
assumes A € puffs
and is-tv-assignment
shows Vg-graph ¢ A Vg ¢ A)
using Vp-equality|OF assms] and V g-graph-is-functional|OF assms] by blast

named-theorems Vg-simps

lemma Vg-T [Vp-simps]:
assumes is-tv-assignment
shows Vg ¢ Ty =T
by (rule Vpg-equality[OF T-pwff assms], intro Vg-graph-T)

lemma Vg-F [Vg-simps]:
assumes is-tv-assignment
shows Vg ¢ Fp =F
by (rule Vp-equality[OF F-pwff assms|, intro Vg-graph-F')

lemma Vg-var [Vg-simps|:
assumes is-tv-assignment

shows Vi ¢ (po) = ¢ p
by (rule Vg-equality[OF var-pwff assms], intro Vg-graph-var)

lemma Vg-neg [Vg-simps|:

assumes A € puffs

and is-tv-assignment @

shows Vp ¢ (~2 A) =~ Vp p A

by (rule Vp-equality[OF neg-pwff|OF assms(1)] assms(2)], intro Vp-graph-neg Vp-graph-V g[OF
assms))

lemma Vg-disj [V p-simps]:
assumes A € puwffs and B € puwffs
and is-tv-assignment @
shows Vg ¢ (AVe B) =Vp 9o AV Vg ¢ B
proof —
from assms(1,3) have Vp-graph ¢ A (Vp ¢ A)
by (intro Vg-graph-Vp)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A VS B) (Vg ¢ AV Vg ¢ B)
by (intro Vp-graph-disj)
with assms show ?thesis
using disj-pwff by (intro Vpg-equality)

102

qed

lemma Vg-conj [Vpg-simps]:
assumes A € puffs and B € puwffs
and is-tv-assignment
shows Vg 0 (AANS B)=Vp p ANV ¢ B
proof —
from assms(1,3) have Vg-graph ¢ A (Vg ¢ A)
by (intro Vp-graph-Vp)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A A2 B) (Vg ¢ A A Vg ¢ B)
by (intro Vg-graph-conj)
with assms show ?thesis
using conj-pwff by (intro Vp-equality)
qged

lemma Vpg-imp [V p-simps]|:
assumes A € puffs and B € puwffs
and is-tv-assignment
shows Vg 0 (AD2 B)=Vp o ADVp ¢ B
proof —
from assms(1,3) have Vpg-graph ¢ A (Vp ¢ A)
by (intro Vpg-graph-Vg)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vg-graph-Vg)
ultimately have Vg-graph ¢ (A D2 B) (Vg ¢ A D Vg ¢ B)
by (intro Vg-graph-imp)
with assms show ?thesis
using imp-pwff by (intro Vp-equality)
qed

lemma Vg-equ [Vp-simps]:
assumes A € puffs and B € puwffs
and is-tv-assignment @
shows Vg p (A=2 B)=Vp o A=Vp ¢ B
proof (cases A = F,)
case True
then show ?thesis
using Vp-F[OF assms(3)] and Vp-neg[OF assms(2,3)] by force
next
case Fulse
from assms(1,3) have Vg-graph ¢ A (Vg ¢ A)
by (intro Vp-graph-Vg)
moreover from assms(2,3) have Vg-graph ¢ B (Vg ¢ B)
by (intro Vpg-graph-Vg)
ultimately have Vg-graph ¢ (A =2 B) (Vg ¢ A = V5p ¢ B)
using False by (intro V g-graph-equ)
with assms show ?thesis

103

using equ-pwff by (intro Vp-equality)
qged

declare puwjffs.intros [V g-simps]

lemma pwff-denotation-function-ezistence:
shows is-pwff-denotation-function Vg
using Vp-simps by simp

Tautologies:

definition is-tautology :: form = bool where
[iff]: is-tautology A +— A € puwffs A (V. is-tv-assignment ¢ — Vp ¢ A =T)

lemma tautology-is-wffo:
assumes is-tautology A
shows A € wffso
using assms and puwffs-subset-of-wffso by blast

lemma propositional-implication-reflexivity-is-tautology:
shows is-tautology (po D2 po)
using Vp-simps by simp

lemma propositional-principle-of-simplification-is-tautology:
shows is-tautology (po D2 (1o D2 po))
using Vp-simps by simp

lemma closed-pwff-denotation-uniqueness:
assumes A € puffs and free-vars A = {}
obtains b where V. is-tv-assignment ¢ — Vg ¢ A =b
using assms
by (meson closed-pwff-is-meaningful-regardless-of-assignment pwff-denotation-function-existence)

lemma pwff-substitution-simps:
shows S {(p, 0) — A} To =T,

and S {(p, 0) — A} Fp=Fy

and S {(p, 0) — A} (p'0) = (if p = p' then A else (p'y))

and S {(p, 0) — A} (~2 B) = ~2 (S {(p, 0) — A} B)

and S {(p, 0) — A} (B A° C) = (S {(p, o) — A} B) A2 (S {(p, 0) — A} O)
and S {(p, 0) — A} (B V© C) = (S {(p, o) — A} B) V2 (S {(p, 0) — 4} C)
and S {(p, 0) — A} (B 22 C) = (S {(p, o) — A} B) D2 (S {(p, 0) — A} C)
End S {(PZ,ZO) — A} (B=2 C) = (S {(p, o) — A} B) =2 (S {(p, 0) — A} O)

y simp-a

lemma pwff-substitution-in-pwffs:
assumes A € puwffs and B € puwffs
shows S {(p, 0) — A} B € puffs
using assms(2) proof induction
case T-pwff
then show ?case

104

using pwffs. T-pwff by simp
next
case F-puwff
then show ?Zcase
using pwffs. F-pwff by simp
next
case (var-pwff p)
from assms(1) show ?case
using pwffs.var-pwff by simp
next
case (neg-pwff A)
then show ?case
using pwff-substitution-simps(4) and pwffs.neg-pwff by simp
next
case (conj-pwff A B)
then show ?case
using pwff-substitution-simps(5) and pwffs.conj-pwff by simp
next
case (disj-puff A B)
then show ?Zcase
using pwff-substitution-simps(6) and pwffs.disj-pwff by simp
next
case (imp-puff A B)
then show ?case
using pwff-substitution-simps(7) and pwffs.imp-pwff by simp
next
case (equ-pwff A B)
then show ?case
using pwff-substitution-simps(8) and puwffs.equ-pwff by simp
qed

lemma pwff-substitution-denotation:
assumes A € puwffs and B € puffs
and is-tv-assignment @
shows Vg ¢ (S {(p, 0) — A} B) =Vg (¢(p :=Vp ¢ A)) B
proof —
from assms(1,3) have is-tv-assignment (p(p := Vg ¢ A))
using Vp-graph-denotation-is-truth-value[OF Vg-graph-Vg] by simp
with assms(2,1,3) show ?Zthesis
using Vp-simps and pwff-substitution-in-pwffs by induction auto
qed

lemma pwff-substitution-tautology-preservation:
assumes is-tautology B and A € puwffs
and (p, o) € free-vars B
shows is-tautology (S {(p, 0) — A} B)
proof (safe, fold is-tv-assignment-def)
from assms(1,2) show S {(p, 0) — A} B € puffs
using pwff-substitution-in-pwffs by blast

105

next
fix ¢
assume is-tv-assignment
with assms(1,2) have Vg ¢ (S {(p, 0) — A} B) = Vg (¢(p :=Vp ¢ A)) B
using pwff-substitution-denotation by blast
moreover from <is-tv-assignment ¢y and assms(2) have is-tv-assignment (p(p := Vg ¢ A))
using Vg-graph-denotation-is-truth-value] OF V g-graph-V g| by simp
with assms(1) have Vg (p(p :=Vpp A)) B=T
by fastforce
ultimately show Vg ¢ S {(p, 0) — A} B=T
by (simp only:)
qged

lemma closed-pwff-substitution-free-vars:
assumes A € puffs and B € puwffs
and free-vars A = {}
and (p, o) € free-vars B
shows free-vars (S {(p, 0) — A} B) = free-vars B — {(p, 0)} (is «free-vars (S 29 B) = -)
using assms(2,4) proof induction
case (conj-pwff C D)
have free-vars (S 29 (C A€ D)) = free-vars ((S 29 C) A2 (S 29 D))
by simp
also have ... = free-vars (S %) C) U free-vars (S 29 D)
by (fact conj-fv)
finally have *: free-vars (S 29 (C A2 D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from conj-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and conj-pwff.IH show ?Zcase
using free-var-singleton-substitution-neutrality by cases auto
next
case (disj-pwff C D)
have free-vars (S 29 (C V< D)) = free-vars (S 29 C) Ve (S ?29 D))
by simp
also have ... = free-vars (S % C) U free-vars (S 29 D)
by (fact disj-fv)
finally have *: free-vars (S 29 (C V< D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from disj-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) & free-vars C and (p, o) € free-vars D
by auto
from this and * and disj-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
next
case (imp-pwff C D)
have free-vars (S 29 (C D2 D)) = free-vars (S 29 C) D2 (S 29 D))

106

by simp
also have ... = free-vars (S %) C) U free-vars (S 29 D)
by (fact imp-fv)
finally have *: free-vars (S 29 (C D2 D)) = free-vars (S %9 C) U free-vars (S #9 D) .
from imp-pwff.prems consider
(a) (p, 0) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and imp-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
next
case (equ-pwff C D)
have free-vars (S 29 (C =2 D)) = free-vars ((S 29 C) =2 (S 29 D))
by simp
also have ... = free-vars (S %9 C) U free-vars (S %9 D)
by (fact equ-fv)
finally have *: free-vars (S 29 (C =2 D)) = free-vars (S 29 C) U free-vars (S 29 D) .
from equ-pwff.prems consider
(a) (p, o) € free-vars C and (p, o) € free-vars D
| (b) (p, 0) € free-vars C and (p, o) ¢ free-vars D
| (¢) (p, 0) ¢ free-vars C and (p, o) € free-vars D
by auto
from this and * and equ-pwff.IH show ?case
using free-var-singleton-substitution-neutrality by cases auto
qged (use assms(3) in <force+»)

Substitution in a pwit:

definition is-pwff-substitution where
[iff]: is-pwff-substitution ¥ +— is-substitution 9 A (V(z, a) € fmdom’ J. a = o)

Tautologous pwif:

definition is-tautologous :: form = bool where
[iff]: is-tautologous B +— (3¢ A. is-tautology A A is-pwff-substitution 3 A B =S ¢ A)

lemma tautologous-is-wffo:
assumes is-tautologous A
shows A € wffso
using assms and substitution-preserves-typing and tautology-is-wffo by blast

lemma implication-reflexivity-is-tautologous:
assumes A € wffs,
shows is-tautologous (A D2 A)
proof —
let 29 = {(z, 0) — A}
have is-tautology (ro D€ o)
by (fact propositional-implication-reflexivity-is-tautology)
moreover have is-pwff-substitution 29
using assms by auto

107

moreover have 4 52 A =8 29 (r, D2 1o)
by simp
ultimately show #thesis
by blast
qged

lemma principle-of-simplification-is-tautologous:
assumes A € wffsp and B € wffs,
shows is-tautologous (A D2 (B D2 A))
proof —
let 29 = {(z, 0) — A, (v, 0) — B}
have is-tautology (xo D2 (1o D2 o))
by (fact propositional-principle-of-simplification-is-tautology)
moreover have is-pwff-substitution 2
using assms by auto
moreover have 4 D2 (B 29 A) =S 2 (ro D2 (o D2 1o))
by simp
ultimately show ?thesis
by blast
qed

lemma pseudo-modus-tollens-is-tautologous:
assumes A € wffsp and B € wffs,
shows is-tautologous ((A D2 ~2 B) D2 (B 22 ~2 A))
proof —
let 29 = {(z, 0) — A, (v, 0) — B}
have is-tautology ((to 22 ~2 1) D2 (no 22 ~2 1))
using Vg-simps by (safe, fold is-tv-assignment-def, simp only:) simp
moreover have is-pwff-substitution 29
using assms by auto
moreover have (4 D2 ~2 B) D2 (B29 ~2 A) =S 29 ((ro D2 ~2 1) D¢ (no D2 ~2 1))
by simp
ultimately show ?thesis
by blast
qed

end

5 Proof System

theory Proof-System
imports
Syntaz
begin

5.1 Axioms

inductive-set
axioms :: form set

108

where

ariom-1:
go—so* To AC go—o* Fo =2 Vro. go—o " Lo € axioms
| aziom-2:
(ta =a Ya) o< (ha—o * ta =2 ha—o* Ya) € axioms
| aziom-3:

(fa—>ﬂ “a—f 9a—>6) =2 Via. (fa—>ﬁ *fa =g Ba—p " Ta) € axioms

| aziom-4-1-con:
(Aza. {clbg) = A =p {clpg € azioms if A € wffsa
| aziom-4-1-var:
(Azq. yﬂ) A =3 Yg € awioms if A € wffsq and Yg % Tg
| aziom-4-2:
(Azq- zo) = A = A € azioms if A € wffsy
| aziom-4-3:
(Aza. B -)« A=3 ((A\ra. B) » A) » (Aza. C) » A) € azioms
‘ if A € wffsq and B € wﬁs,yﬁﬂ and C € wffsy
ATIOM-4-4
(Aza. Ayy. B) » A =, 5 (\yy. (Aza. B) = A) € azioms
‘ if A € wffsq and B € wffsy and (y, v) ¢ {(z, a)} U vars A
axtom-4-5:
(Azq. Azq. B) « A =, _5 (A\za. B) € azioms if A € wffsq and B € wffss
| aziom-5:
Lo (Q4* v;) =i v; € azioms

lemma azioms-are-wffs-of-type-o:
shows azioms C wffs,
by (intro subsetl, cases rule: axioms.cases) auto

5.2 Inference rule R

definition is-rule-R-app :: position = form = form = form = bool where
[iff]: is-rule-R-app p D C' E +—
(
da A B.

E=A=q BANA € uwffsa N B € wffse, N — E is a well-formed equality
A=p CA
D € wffsg A
Clp<+ B)>D

)

lemma rule-R-original-form-is-wffo:
assumes is-rule-R-app p D C' E
shows C € wffso
using assms and replacement-preserves-typing by fastforce

5.3 Proof and derivability

inductive is-derivable :: form = bool where
dv-axiom: is-derivable A if A € axioms

109

| dv-rule-R: is-derivable D if is-derivable C' and is-derivable E and is-rule-R-app p D C E

lemma derivable-form-is-wffso:
assumes is-derivable A
shows A € wffso
using assms and axioms-are-wffs-of-type-o by (fastforce elim: is-derivable.cases)

definition is-proof-step :: form list = nat = bool where
[iff]: is-proof-step S i’ +—
S i’ € axioms V
3p ik {4, k} C{0..<i'} A is-rule-R-app p (S!1i) (S!j) (S'!k))

definition is-proof :: form list = bool where
[iff]: is-proof S +— (Vi’ < length S. is-proof-step S ')

lemma common-prefiz-is-subproof:
assumes is-proof (S @ Sy)
and i’ < length S
shows is-proof-step (S @ Sq) i’
proof —
from assms(2) have x: (S Q@ §1) ! i/ = (S @ Sy) ! ¢/
by (simp add: nth-append)
moreover from assms(2) have i’ < length (S Q@ S;)
by simp
ultimately obtain p and j and k where xx:
(S @ S&y) i € axioms V
{j, k} C{0..<i’} A is-rule-R-app p (S Q@ S1) 1) (S @ S1) 1)) (SQSy)!k)
using assms(1) by fastforce
then consider
(aziom) (S @ S1) ! i’ € azioms
| (rule-R) {j, k} C {0..<i'} A is-rule-R-app p ((S @ S1) 1 ¢) (S @ S1) 1j) (SQSq) k)
by blast
then have
(S @ Sy) ! i € axioms V
({7, k} € {0..<i’} A is-rule-R-app p (S @ S2) 1 i) (S @ Sa) 1'j) ((S @ S3) ! k))
proof cases
case azriom
with * have (S @ Sy) ! i’ € azioms
by (simp only:)
then show ?thesis ..
next
case rule-R
with assms(2) have (§ @ S§;)!1j=(S§@8s)!jand (SQS))k=(SQSy) !k
by (simp-all add: nth-append)
then have {j, k} C {0..<i'} A is-rule-R-app p (S @ S2) 1 i) ((S @ S2) !'j) ((S @ S3) ! k)
using * and rule-R by simp
then show ?thesis ..
qed
with xx show Zthesis

110

by fastforce
qged

lemma added-suffiz-proof-preservation:
assumes is-proof S
and i’ < length (S @ S’) — length S’
shows is-proof-step (S @ §') i’
using assms and common-prefiz-is-subproof[where S; = []] by simp

lemma append-proof-step-is-proof:
assumes is-proof S
and is-proof-step (S Q [A]) (length (S Q [A4]) — 1)
shows is-proof (S @ [A])
using assms and added-suffiz-proof-preservation by (simp add: All-less-Suc)

lemma added-prefix-proof-preservation:
assumes is-proof S’
and i’ € {length S..<length (S @ S"}
shows is-proof-step (S @ S’) i’
proof —
let 2§=8@S8’
let 2 = i’ — length S
from assms(2) have ?S ! i’ = S'! % and % < length S’
by (simp-all add: nth-append less-diff-conv2)
then have is-proof-step ¢S i’ = is-proof-step S’ i
proof —
from assms(1) and <% < length S"» obtain j and k and p where x*:
S’ % € azioms vV ({j, k} C {0..<?%} A is-rule-R-app p (S’ %) (8" j) (S' k))
by fastforce
then consider
(aziom) 8'! ?i € axioms
| (rule-R) {j, k} C {0..<?%i} A is-rule-R-app p (S’ 2i) (S8'!j) (S'1 k)
by blast
then have
281 i’ € azioms V
(
{j + length S, k + length S} C {0..<i'} A
is-rule-R-app p (28 1{') (¢S8! (j + length S)) (S ! (k + length S))
)
proof cases
case azxiom
with <2S ! i/ = 8’ %)) have 2S ! i’ € azioms
by (simp only:)
then show ?thesis ..
next
case rule-R
with assms(2) have 2S! (j + length S) = S8'!jand 25! (k + length S) =S’ k
by (simp-all add: nth-append)
with <25 ! i’ = 8’ 2> and rule-R have

111

{j + length S, k + length S} C {0..<i'} A
is-rule-R-app p (¢S 1i') (28! (j + length S)) (2S ! (k + length S))
by auto
then show “thesis ..
qed
with * show ?thesis
by fastforce
qed
with assms(1) and <% < length S’ show ?thesis
by simp
ged

lemma proof-but-last-is-proof:
assumes is-proof (S Q [4])
shows is-proof S
using assms and common-prefiz-is-subproof[where S; = [A] and Sy = []] by simp

lemma proof-prefix-is-proof:
assumes is-proof (S1 @ S3)
shows is-proof S
using assms and proof-but-last-is-proof
by (induction S arbitrary: S1 rule: rev-induct) (simp, metis append.assoc)

lemma single-axiom-is-proof:
assumes A € axioms
shows is-proof [A]
using assms by fastforce

lemma proofs-concatenation-is-proof:
assumes is-proof S and is-proof Sa
shows is-proof (S; @ Ss)
proof —
from assms(1) have Vi’ < length S1. is-proof-step (S1 @ Ss) i’
using added-suffiz-proof-preservation by auto
moreover from assms(2) have Vi’ € {length S1..<length (S1 @ S3)}. is-proof-step (S1 @ Sy) i’
using added-prefiz-proof-preservation by auto
ultimately show ?thesis
unfolding is-proof-def by (meson atLeastLess Than-iff linorder-not-le)
qged

lemma elem-of-proof-is-wffo:
assumes is-proof S and A € lset S
shows A € wffso
using assms and axioms-are-wffs-of-type-o
unfolding is-rule-R-app-def and is-proof-step-def and is-proof-def
by (induction S) (simp, metis (full-types) in-mono in-set-conv-nth)

lemma aziom-prepended-to-proof-is-proof:
assumes is-proof S

112

and A € azioms
shows is-proof ([A] @ S)
using proofs-concatenation-is-proof[OF single-aziom-is-proof [OF assms(2)] assms(1)] .

lemma aziom-appended-to-proof-is-proof:
assumes is-proof S
and A € azioms
shows is-proof (S @ [A])
using proofs-concatenation-is-proof[OF assms(1) single-axiom-is-proof[OF assms(2)]] .

lemma rule-R-app-appended-to-proof-is-proof:
assumes is-proof S
and ic < length S and S ! ic = C
and ig < length Sand S ! i = FE
and is-rule-R-app p D C E
shows is-proof (S Q [D])
proof —
let S =S8 @ [D]
let %ip = length S
from assms(2,4) have ic < %ip and igp < %ip
by fastforce+
with assms(3,5,6) have is-rule-R-app p (¢S! %ip) (¢S !ic) (S ig)
by (simp add: nth-append)
with assms(2,4) have 3p j k. {4, k} C {0..<?%p} A is-rule-R-app p (?S! %ip) (¢S 'j) (¢S k)
by fastforce
then have is-proof-step 2S (length ¢S — 1)
by simp
moreover from assms(1) have Vi’ < length ?S — 1. is-proof-step ?S i’
using added-suffiz-proof-preservation by auto
ultimately show ?thesis
using less-Suc-eq by auto
ged

definition is-proof-of :: form list = form = bool where

[iff]: is-proof-of S A +— S # [] A is-proof S A last S = A

lemma proof-prefiz-is-proof-of-last:
assumes is-proof (S @ §’) and S # ||
shows is-proof-of S (last S)
proof —
from assms(1) have is-proof S
by (fact proof-prefiz-is-proof)
with assms(2) show ?thesis
by fastforce
qed

definition is-theorem :: form = bool where
[iff]: is-theorem A <— (3S. is-proof-of S A)

113

lemma proof-form-is-wffo:
assumes is-proof-of S A
and B € Iset S
shows B € wffs,
using assms and elem-of-proof-is-wffo by blast

lemma proof-form-is-theorem:
assumes is-proof S and S # ||
and i’ < length S
shows is-theorem (S! ')
proof —
let %S, = take (Suc i) S
from assms(1) obtain S where is-proof (%S1 @ Ss)
by (metis append-take-drop-id)
then have is-proof 2S5,
by (fact proof-prefix-is-proof)
moreover from assms(3) have last 251 = S ! ¢’
by (simp add: take-Suc-conv-app-nth)
ultimately show #thesis
using assms(2) unfolding is-proof-of-def and is-theorem-def by (metis Zero-neq-Suc take-eq-Nil2)
qged

theorem derivable-form-is-theorem:
assumes is-derivable A
shows is-theorem A
using assms proof (induction rule: is-derivable.induct)
case (dv-aziom A)
then have is-proof [A]
by (fact single-aziom-is-proof)
moreover have last [A] = A
by simp
ultimately show “case
by blast
next
case (dv-rule-R C E p D)
obtain S¢ and Sg where
is-proof S¢ and S¢ # [| and last S¢ = C and
is-proof Sp and Sg # || and last Sp = E
using dv-rule-R.IH by fastforce
let ?ic = length S¢ — 1 and ?%ig = length S¢ + length Sg — 1 and %ip = length S¢ + length
Sg
let ¢S =S¢ Q@ Sg @ [D]
from «S¢ # [» have %ic < length (S¢ Q Sg) and ?ip < length (S¢ Q Sg)
using linorder-not-le by fastforce+
moreover have (S¢ @ Sg) ! %ic = C and (S¢ @ Sg) ! %ig = F
using <S¢ # []» and <last S¢ = O
by
(

simp add: last-conv-nth nth-append,

114

metis «last Sp = E» «<Sg # [append-is-Nil-conv last-appendR last-conv-nth length-append
)
with <s-rule-R-app p D C E> have is-rule-R-app p D ((S¢ @ Sg) ! %ic) ((Sc @ Sg) ! %ig)
using «(S¢ @ Sg) ! %ic = C) by fastforce
moreover from <is-proof S¢» and <is-proof Sg» have is-proof (S¢ @ Sg)
by (fact proofs-concatenation-is-proof)
ultimately have is-proof ((S¢ @ Sg) @ [D])
using rule-R-app-appended-to-proof-is-proof by presburger
with «S¢ # [> show Zcase
unfolding is-proof-of-def and is-theorem-def by (metis snoc-eq-iff-butlast)
ged

theorem theorem-is-derivable-form:
assumes is-theorem A
shows is-derivable A
proof —
from assms obtain S where is-proof S and S # [] and last S = A
by fastforce
then show ?thesis
proof (induction length S arbitrary: S A rule: less-induct)
case less
let %' = length S — 1
from «S # [» and <last S = A have §! %' = A
by (simp add: last-conv-nth)
from (is-proof S» and S # []» and <last S = A» have is-proof-step S ?i’
using added-suffiz-proof-preservation|where S’ = []] by simp
then consider
(aziom) S| %’ € azioms
| (rule-R) Ap j k. {j, k} C {0..<%'} A is-rule-R-app p (S! %) (S!j) (S!k)
by fastforce
then show ?case
proof cases
case ariom
with «S'! 7/’ = A) show ?thesis
by (fastforce intro: dv-axiom)
next
case rule-R
then obtain p and j and &
where {j, k} C {0..< %'} and is-rule-R-app p (S! %) (S'5) (S!'k)
by force
let 2S; = take (Suc j) S
let 2S) = take (Suc k) S
obtain S;’ and S;’ where S = %5; @ §;’and § = %5, @ S}/
by (metis append-take-drop-id)
with <is-proof S» have is-proof (?S; @ S;’) and is-proof (¢S, @ Sy”)
by (simp-all only:)
moreover

from S = 25; @ §;" and «S = 25, @ §;,» and <last S = A» and «{j, k} C {0..<length S —
h

115

have last S;' = A and last S’ = A
using length-Cons and less-le-not-le and take-Suc and take-tl and append.right-neutral
by (metis atLeastLess Than-iff diff-Suc-1 insert-subset last-appendR take-all-iff)+

moreover from S # [» have %S; # [| and %S;, # |]
by simp-all

ultimately have is-proof-of ¢S; (last ?S;) and is-proof-of ?Sy, (last ?Sy)
using proof-prefiz-is-proof-of-last [where S = S; and S’ = §;
and proof-prefiz-is-proof-of-last [where § = 7S, and S’ = S}
by fastforce+

moreover from <last S;' = A» and <last S’ = A>

have length 2S; < length S and length 9S) < length S
using «{j, k} C {0..<length S — 1}> by force+

moreover from calculation(3,4) have last ¢S; =S ! j and last S, = S | k
by (metis Suc-lessD last-snoc linorder-not-le nat-neg-iff take-Suc-conv-app-nth take-all-iff)+

ultimately have is-derivable (S ! j) and is-derivable (S ! k)
using «?S; # [and %Sy, # [and less(1) by blast+

with <is-rule-R-app p (S 2') (S!j) (S k) and «S! %’ = A> show ?thesis
by (blast intro: dv-rule-R)

qed
qed
qged

theorem theoremhood-derivability-equivalence:
shows is-theorem A <— is-derivable A
using derivable-form-is-theorem and theorem-is-derivable-form by blast

lemma theorem-is-wffo:
assumes is-theorem A
shows A € wffso
proof —
from assms obtain S where is-proof-of S A
by blast
then have A € Iset S
by auto
with <is-proof-of S Ay show ?thesis
using proof-form-is-wffo by blast
qged

lemma equality-refiexivity:

assumes A € wffsqy

shows is-theorem (A =4 A) (is is-theorem ?4s)
proof —

let A1 = (\tq- o) * A =a A

let ¢S = [.?Al, ?AQ]

— (.1) Axiom 4.2

have is-proof-step ?S 0

proof —

from assms have ?4; € axioms
by (intro axiom-4-2)

116

then show ?thesis
by simp
qed
— (-2) Rule R: .1,.1
moreover have is-proof-step 2S 1
proof —
let 7p = [«, »]
have 3p j k. {j:nat, k} C {0..<1} A is-rule-R-app ?p ?A5 (?S 1 5) (2S ! k)
proof —
let D = ?45 and ?j = 0::nat and %k = 0
have {%, %} C {0..<1}
by simp
moreover have is-rule-R-app ?p 7?45 (S| %j) (¢S | %k)
proof —
have (A\ta. ta) « 4 =¢p (281 %)
by force
moreover have (7S ! %j)(% < A) > ¢D
by force
moreover from A € wffsy» have ?D € wffs,
by (intro equality-wff)
moreover from (A € wffsq> have (Arg. ta) * 4 € wffsa
by (meson wffs-of-type-simps)
ultimately show ?thesis
using (A € wffsq> by simp
qed
ultimately show ?thesis
by meson
qed
then show ?thesis
by auto
qed
moreover have last ?S = 244
by simp
moreover have {0..<length ?S} = {0, 1}
by (simp add: atLeast0-lessThan-Suc insert-commute)
ultimately show “thesis
unfolding is-theorem-def and is-proof-def and is-proof-of-def
by (metis One-nat-def Suc-1 length-Cons less-2-cases list.distinct(1) list.size(3))
qged

lemma equality-reflexivity’:

assumes A € wffsy

shows is-theorem (A =q A) (is is-theorem ?As)
proof (intro derivable-form-is-theorem)

let A1 = (\tq- ta) * A =a A

— (.1) Axiom 4.2

from assms have ?A; € axioms

by (intro axiom-4-2)
then have step-1: is-derivable A,

117

by (intro dv-aziom)
— (.2) Rule R: .1,.1
then show is-derivable 24,
proof —
let ?p = [«, »] and ?C = ?4; and ?FE = ?4; and ?D = %4,
have is-rule-R-app ?p ?D ?C ?F
proof —
have (Ara. ra) + 4 2¢, 7C
by force
moreover have ?C(?% «+ A) > ?D
by force
moreover from (A € wffsqy> have ?D € wffs,
by (intro equality-wff)
moreover from <4 € wffsq> have (Mg ta) * A € wffsa
by (meson wffs-of-type-simps)
ultimately show ?thesis
using (A € wffsq> by simp
qed
with step-1 show ?thesis
by (blast intro: dv-rule-R)
qed
qged

5.4 Hypothetical proof and derivability

The set of free variables in X that are exposed to capture at position p in A:

definition capture-exposed-vars-at :: position = form = 'a = wvar set where
[simp]: capture-exposed-vars-at p A X =
{(z, B) | = B p" E. strict-prefix p' p A\ Azg. E =y AN (z, B) € free-vars X}

lemma capture-exposed-vars-at-alt-def:
assumes p € positions A
shows capture-exposed-vars-at p A X = binders-at A p N free-vars X
unfolding binders-at-alt-def[OF assms| and in-scope-of-abs-alt-def
using is-subform-implies-in-positions by auto

Inference rule R/:

definition rule-R’-side-condition :: form set = position = form = form = form = bool where
[iff]: rule-R’-side-condition H p D C'E +—
capture-exposed-vars-at p C' E N capture-exposed-vars-at p C H = {}

lemma rule-R’-side-condition-alt-def:
fixes H :: form set
assumes C € wffsq
shows
rule-R'-side-condition H p D C (A =4 B)
—

Az B Ep

118

strict-prefiz p’ p A
Azg. B iy C A
(z, B) € free-vars (A =q B) A
(3H € H. (z, B) € free-vars H)

)

proof —
have
capture-exposed-vars-at p C' (A =¢ B)

{(z, B) | = B p" E. strict-prefiz p' p A Azg. E = CA (z, B) € free-vars (A =4 B)}

using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
moreover have

capture-exposed-vars-at p C H

{(z, B) | = B p" E. strict-prefix p' p A Azg. E =, CA (z, B) € free-vars H}

using assms and capture-exposed-vars-at-alt-def unfolding capture-exposed-vars-at-def by fast
ultimately have

capture-exposed-vars-at p C' (A =q B) N capture-exposed-vars-at p C H

{(z, B) | = B p" E. strict-prefix p' p A Azg. E = C A (z, B) € free-vars (A = B) A

(z, B) € free-vars H}

by auto

also have

{(z, B) | = B p" E. strict-prefix p' p A Azg. E = C A (z, B) € free-vars (A = B) A
(3H € H. (z, B) € free-vars H)}
by auto
finally show ?thesis
by fast
qged

definition is-rule-R’-app :: form set = position = form = form = form = bool where
[iff]: is-rule-R’-app H p D C E +— is-rule-R-app p D C E A rule-R’-side-condition H p D C' E

lemma is-rule-R'-app-alt-def:
shows

is-rule-R’-app H p D C E
—

(
Jda A B.

E=A=4 BN A € uffsa N B € wffsoy N — E is a well-formed equality
A=p CAND € wffso A
Clp+ B) > DA

Bz BEp.

strict-prefiz p’ p A
)\lﬂ. E jp/ C A

119

(z, B) € free-vars (A =¢ B) A
(3H € H. (z, B) € free-vars H)
)
)
using rule-R’-side-condition-alt-def by fastforce

lemma rule-R’-preserves-typing:
assumes is-rule-R’-app H p D C E
shows C € wffsg «— D € wffso
using assms and replacement-preserves-typing unfolding is-rule-R-app-def and is-rule-R’-app-def
by meson

abbreviation is-hyps :: form set = bool where
is-hyps H = H C wffsp A finite H

inductive is-derivable-from-hyps :: form set = form = bool (<- = - [50, 50] 50) for H where
dv-hyp: H + A if A € H and is-hyps H

| dv-thm: H + A if is-theorem A and is-hyps H

| dv-rule-R’: H+ D if H+ C and H F FE and is-rule-R’-app H p D C E and is-hyps H

lemma hyp-derivable-form-is-wffso:
assumes is-derivable-from-hyps H A
shows A € wffso
using assms and theorem-is-wffo by (cases rule: is-derivable-from-hyps.cases) auto

definition is-hyp-proof-step :: form set = form list = form list = nat = bool where
[iff]: is-hyp-proof-step H S1 Sz i’ +—
Sy ! i"eHV
Sy ! i’ € lset S Vv
Bpjk. {j, k} C{0..<i'} Ais-rule-R'-app H p (S2 ! ') (S2!j) (S2! k))

type-synonym hyp-proof = form list X form list

definition is-hyp-proof :: form set = form list = form list = bool where
[iff]: is-hyp-proof H S1 So +— (Vi' < length Ss. is-hyp-proof-step H S1 Sa i')

lemma common-prefiz-is-hyp-subproof-from:
assumes is-hyp-proof H S1 (Sz @ Sy)
and i’ < length S
shows is-hyp-proof-step H S1 (S @ So"') 4’
proof —
let 2S5 = 82 Q@ 82/
from assms(2) have ?S ! i’ = (S, @ Sy”) I ¢/
by (simp add: nth-append)
moreover from assms(2) have i’ < length S
by simp
ultimately obtain p and j and k where
$Sli'eH vV
28 14" € lset S1 V

120

{j, k} € {0..<i'} A is-rule-R’-app H p (¢S i) (281 5) (S k)
using assms(1) unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
then consider
(hyp) 2S i’ e H
| (seq) 281 i’ € lset Sy
| (rule-R") {j, k} C {0..<i’} A is-rule-R’-app H p (¢S 1) (2S!j) (¢S k)
by blast
then have
(82 @ 82//) 'i'eHV
(82 @ 82//) 13/ € lset S1 V
({4, k} € {0..<i"} A is-rule-R’-app H p ((S2 @ S3") 1 ¢) ((S2 @ S2”) 1) ((S2 @ S2') 1 k))
proof cases
case hyp
with assms(2) have (S, @ S2”) i’ € H
by (simp add: nth-append)
then show ?thesis ..
next
case seq
with assms(2) have (Sz @ S”') i’ € lset S1
by (simp add: nth-append)
then show %thesis
by (intro disjI1 disjI2)
next
case rule-R’
with assms(2) have 25! j = (S @ Sy”) ! jand 25! k= (S, @Sy I k
by (simp-all add: nth-append)
with assms(2) and rule-R’ have
{j, k} € {0..<i'} A is-rule-R"-app H p ((S2 @ S3”) 1 i) ((S2 @ S37") 1j) ((S2 @ S2') 1 k)
by (metis nth-append)
then show ?thesis
by (intro disjI2)
qed
then show ?thesis
unfolding is-hyp-proof-step-def by meson
qed

lemma added-suffiz-thms-hyp-proof-preservation:
assumes is-hyp-proof H S1 So
shows is-hyp-proof H (S1 Q@ §1') Sa
using assms by auto

lemma added-suffiz-hyp-proof-preservation:
assumes is-hyp-proof H S1 So
and i’ < length (S @ Sy') — length Sy’
shows is-hyp-proof-step H S1 (S @ Sy') i’
using assms and common-prefiz-is-hyp-subproof-from[where Ss’ = [|] by auto

lemma appended-hyp-proof-step-is-hyp-proof:
assumes is-hyp-proof H S1 S»

121

and is-hyp-proof-step H S1 (S2 @ [4]) (length (S2 @ [4]) — 1)
shows is-hyp-proof H S1 (S2 @ [4])
proof (standard, intro alll impl)
fix i’
assume i’ < length (Sy @ [4])
then consider (a) i’ < length Sz | (b) i’ = length S
by fastforce
then show is-hyp-proof-step H S1 (So Q [4]) ¢’
proof cases
case a
with assms(1) show ?thesis
using added-suffiz-hyp-proof-preservation by simp
next
case b
with assms(2) show ?thesis
by simp
qed
qged

lemma added-prefix-hyp-proof-preservation:
assumes is-hyp-proof H S1 So’
and i’ € {length Ss..<length (S2 @ S3")}
shows is-hyp-proof-step H S1 (S2 @ Sy7) i’
proof —
let 25 = 82 Q@ 82/
let 2 = i’ — length Ss
from assms(2) have 2S ! i’ = Sy’! ?i and % < length Sa’
by (simp-all add: nth-append less-diff-conv2)
then have is-hyp-proof-step H S1 2S i’ = is-hyp-proof-step H S1 Sa’ ?i
proof —
from assms(1) and <% < length S2’> obtain j and k and p where
Syl %eHHV
82/! 2 € lset S1 V
({4, k} € {0..<?} A is-rule-R’-app H p (S2’! 2i) (S2'!j) (S2'! k))
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
then consider
(hyp) S2'! %i e H
| (seq) S2'! %i € lset Sy
| (rule-R") {j, k} C {0..<?%} A is-rule-R’-app H p (S2'! %) (S2’!§) (S2’ ! k)
by blast
then have
Sli'eHV
2514 € lset S; V
({j + length Sa, k + length Sa} C {0..<i'} A
is-rule-R'-app H p (28 1 i) (25! (j + length S2)) (¢S ! (k + length S3)))
proof cases
case hyp
with <2S ! i’ = Sy’ ! 2> have ?S!i' e H
by (simp only:)

122

then show ?thesis ..
next
case seq
with <?S ! i’ = Sy’ ! %) have 2S5 ! i’ € lset S;
by (simp only:)
then show ?thesis
by (intro disjI1 disjI2)
next
case rule-R’
with assms(2) have 7S ! (j + length S2) = S2’! jand 2S ! (k + length So) = S2' !l k
by (simp-all add: nth-append)
with <2S ! i’ = Sy’ ! 2> and rule-R’ have
{j + length S, k + length So} C {0..<i’} A
is-rule-R'-app H p (281 4') (28! (j + length S2)) (?S ! (k + length S2))
by auto
then show ?thesis
by (intro disjI2)
qed
with assms(1) and <% < length S2”» show ?thesis
unfolding is-hyp-proof-def and is-hyp-proof-step-def by meson
qed
with assms(1) and <% < length S2”» show %thesis
by simp
qed

lemma hyp-proof-but-last-is-hyp-proof:
assumes is-hyp-proof H S1 (S2 @ [4])
shows is-hyp-proof H S1 S»
using assms and common-prefiz-is-hyp-subproof-from[where Sy’ = [A] and S3”" = |[]]
by simp

lemma hyp-proof-prefix-is-hyp-proof:
assumes is-hyp-proof H S1 (Sz @ Sy)
shows is-hyp-proof H S1 S»
using assms and hyp-proof-but-last-is-hyp-proof
by (induction Sy’ arbitrary: Ss rule: rev-induct) (simp, metis append.assoc)

lemma single-hyp-is-hyp-proof:
assumes A € H
shows is-hyp-proof H S1 [4]
using assms by fastforce

lemma single-thm-is-hyp-proof:
assumes A € lset Sy
shows is-hyp-proof H S1 [A]
using assms by fastforce

lemma hyp-proofs-from-concatenation-is-hyp-proof:
assumes is-hyp-proof H S1 S1’ and is-hyp-proof H Sy Sa’

123

shows is-hyp-proof H (S1 @ S3) (S1' @ Sy')
proof (standard, intro alll impI)
let 2S = Sl @] 82 and ?S/ = 81, @ 82/
fix 7/
assume i’ < length 2S’
then consider (a) i’ < length S1”| (b) i’ € {length S1'..<length ?S'}
by fastforce
then show is-hyp-proof-step H 2S 28’ i’
proof cases
case a
from <is-hyp-proof H S1 81" have is-hyp-proof H (S1 Q S3) S’
by auto
with assms(1) and a show ?thesis
using added-suffiz-hyp-proof-preservation[where S = S; @ S3] by auto
next
case b
from assms(2) have is-hyp-proof H (S1 Q@ S3) So’
by auto
with b show ?thesis
using added-prefiz-hyp-proof-preservation[where S; = S1 @ Ss] by auto
qed
qged

lemma elem-of-hyp-proof-is-wffo:
assumes is-hyps H
and Iset S1 C wffso
and is-hyp-proof H S1 S»
and A € lset Sy
shows A € wffso
using assms proof (induction Sa rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc A’ S3)
from <is-hyp-proof H S1 (S2 @ [A'])» have is-hyp-proof H S1 Sa
using hyp-proof-prefiz-is-hyp-proof[where Sy’ = [A']] by presburger
then show ?case
proof (cases A € lset Ss)
case True
with snoc.prems(1,2) and <is-hyp-proof H S1 S2» show “thesis
by (fact snoc.IH)
next
case Fulse
with snoc.prems(4) have A’ = A
by simp
with snoc.prems(3) have
(S @A) 'i'eHV
(S @ [A]) i’ € lset S1 V

124

(S2 @ [A]) ! i’ € wffso if i' € {0..<length (So @ [A])} for i’
using that by auto

then have 4 € wffsp V A € HV A € lset S; V length So ¢ {0..<Suc (length S2)}
by (metis (no-types) length-append-singleton nth-append-length)

with assms(1) and <lset S1 C wffsy> show ?Zthesis
using atLeast0-lessThan-Suc by blast

qed
qed

lemma hyp-prepended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 So
and A € H
shows is-hyp-proof H S1 ([4] @ S3)
using
hyp-proofs-from-concatenation-is-hyp-proof
[
OF single-hyp-is-hyp-proof [OF assms(2)] assms(1),
where §; = ||
]

by simp

lemma hyp-appended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 S»
and A € H
shows is-hyp-proof H S1 (S2 @ [A])
using
hyp-proofs-from-concatenation-is-hyp-proof
[
OF assms(1) single-hyp-is-hyp-proof [OF assms(2)],
where S; = ||

]

by simp

lemma dropped-duplicated-thm-in-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H (A # S1) S
and A € Iset S
shows is-hyp-proof H S1 Sa
using assms by auto

lemma thm-prepended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S1 S»
and A € Iset S
shows is-hyp-proof H S1 ([4] @ S3)
using hyp-proofs-from-concatenation-is-hyp-proof [OF single-thm-is-hyp-proof [OF assms(2)] assms(1)]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma thm-appended-to-hyp-proof-is-hyp-proof:

assumes is-hyp-proof H S1 So
and A € Iset S;

125

shows is-hyp-proof H S1 (S2 Q [4])
using hyp-proofs-from-concatenation-is-hyp-proof[OF assms(1) single-thm-is-hyp-proof [OF assms(2)]]
and dropped-duplicated-thm-in-hyp-proof-is-hyp-proof by simp

lemma rule-R’-app-appended-to-hyp-proof-is-hyp-proof:
assumes is-hyp-proof H S8’ S
and ic < length S and S ! ic = C
and ig < length Sand S ! ip = FE
and is-rule-R’-app H p D C E
shows is-hyp-proof H S’ (S @ [D])
proof (standard, intro alll impI)
let S =S8 @ [D]
fix i’
assume i’ < length ?S
then consider (a) i’ < length S | (b) i’ = length S
by fastforce
then show is-hyp-proof-step H S’ (S @ [D]) i’
proof cases
case a
with assms(1) show ?thesis
using added-suffiz-hyp-proof-preservation by auto
next
case b
let %ip = length S
from assms(2,4) have ic < %ip and ig < %ip
by fastforce+
with assms(3,5,6) have is-rule-R’-app H p (2S ! %ip) (¢S Vic) (S ! ig)
by (simp add: nth-append)
with assms(2,4) have
Ipjk. {4, k} C{0..<%ip} A is-rule-R’"-app H p (2S ! %ip) (¢S 1) (¢S k)
by (intro exl)+ auto
then have is-hyp-proof-step H S’ 2S (length ¢S — 1)
by simp
moreover from b have i’ = length 7S — 1
by simp
ultimately show ?thesis
by fast
qed
qged

definition is-hyp-proof-of :: form set = form list = form list = form = bool where
[iff]: is-hyp-proof-of H S1 Sa A +—
is-hyps H A
is-proof S1 A
Sa £ [A
is-hyp-proof H S1 Sa A
last S = A

lemma hyp-proof-prefix-is-hyp-proof-of-last:

126

assumes is-hyps H

and is-proof S

and is-hyp-proof H 8" (S @ §’') and S # []

shows is-hyp-proof-of H 8" S (last S)

using assms and hyp-proof-prefiz-is-hyp-proof by simp

theorem hyp-derivability-implies-hyp-proof-existence:
assumes H + A
shows 381 Ss. is-hyp-proof-of H S1 So A
using assms proof (induction rule: is-derivable-from-hyps.induct)
case (dv-hyp A)
from <A € H» have is-hyp-proof H || [A]
by (fact single-hyp-is-hyp-proof)
moreover have last [A] = A
by simp
moreover have is-proof ||
by simp
ultimately show ?case
using <is-hyps H» unfolding is-hyp-proof-of-def by (meson list.discI)
next
case (dv-thm A)
then obtain S where is-proof S and S # [| and last S = A
by fastforce
then have is-hyp-proof H S [A]
using single-thm-is-hyp-proof by auto
with «is-hyps H» and <is-proof S> have is-hyp-proof-of H S [A] A
by fastforce
then show ?case
by (intro exl)
next
case (dv-rule-R' C E p D)
from dv-rule-R’.IH obtain Sz and S¢’ and Sg and Si’ where
is-hyp-proof H S¢’ S¢ and is-proof S¢’ and S¢ # [] and last S¢ = C and
is-hyp-proof H Sg' Sk and is-proof Sg’ and Sg # [] and last Sg = F
by auto
let %ic = length S¢ — 1 and ?ig = length S¢ + length Sp — 1 and %ip = length S¢ + length
Sk
let S = Sc @ S @ [D}
from «S¢ # [have %ic < length (S¢ Q Sg) and %ip < length (Sc Q Sg)
using linorder-not-le by fastforce+
moreover have (S¢ @ Sg) ! %ic = C and (S¢ Q Sg) ! %ig = FE
using «S¢ # [|» and <ast S¢ = C» and «Sg # [|» and dast Sg = E»
by
(
simp add: last-conv-nth nth-append,
metis append-is-Nil-conv last-appendR last-conv-nth length-append
)
with <is-rule-R’-app H p D C E» have is-rule-R’-app H p D ((S¢ @ Sg) ! %ic) ((S¢ @ Sg) ! %)
by fastforce

127

moreover from <is-hyp-proof H Sc’ Sc» and <is-hyp-proof H Sg’ Sg»

have is-hyp-proof H (S¢’ @ Sg’) (S¢ @ Sg)
by (fact hyp-proofs-from-concatenation-is-hyp-proof)

ultimately have is-hyp-proof H (S¢’ @ Sg’) ((Sc @ Sg) @ [D)])
using rule-R’-app-appended-to-hyp-proof-is-hyp-proof
by presburger

moreover from <is-proof S¢’y and <is-proof Sg’» have is-proof (S¢’ @ Sg’)
by (fact proofs-concatenation-is-proof)

ultimately have is-hyp-proof-of H (S¢' Q Sg’) ((S¢ @ Sg) @ [D]) D
using <is-hyps H»> by fastforce

then show ?case
by (intro exl)

qged

theorem hyp-proof-existence-implies-hyp-derivability:
assumes 387 Ss. is-hyp-proof-of H S1 S2 A
shows H F A
proof —
from assms obtain S; and S,
where is-hyps H and is-proof S; and Sy # [| and is-hyp-proof H S1 S and last S = A
by fastforce
then show ?thesis
proof (induction length So arbitrary: So A rule: less-induct)
case less
let i’ = length Sy — 1
from Sy # [|» and dast S; = A» have Sy | %' = A
by (simp add: last-conv-nth)
from <is-hyp-proof H S1 S2» and Sy # [» have is-hyp-proof-step H S1 Sa %i’
by simp
then consider
(hyp) S2 ! %' € H
| (seq) Sa! %’ € Iset Sy
| (rule-R") Ip j k. {4, k} C {0..<%'} A is-rule-R’™-app H p (Sa ! %i') (Sa 1)) (S2 ! k)
by force
then show ?case
proof cases
case hyp
with «Sy ! 2%/ = A> and «<is-hyps H> show ?thesis
by (fastforce intro: dv-hyp)
next
case seq
from (S ! 7' € lset Sy and Sy ! 71/ = Ay
obtain j where S; ! j = A and S; # [| and j < length S
by (metis empty-iff in-set-conv-nth list.set(1))
with (is-proof S1» have is-proof (take (Suc j) S1) and take (Suc j) S1 # |]
using proof-prefiz-is-proof[where S = take (Suc j) S; and Sy = drop (Suc j) S1]
by simp-all
moreover from «S; ! j = A and «j < length S1> have last (take (Suc j) S1) = A
by (simp add: take-Suc-conv-app-nth)

128

ultimately have is-proof-of (take (Suc j) S1) A
by fastforce
then have is-theorem A
using is-theorem-def by blast
with <is-hyps H»> show ?Zthesis
by (intro dv-thm)
next
case rule-R’
then obtain p and j and &
where {j, k} C {0..<?%'} and is-rule-R’-app H p (S2 ! ') (S2!j) (S2! k)
by force
let 2S; = take (Suc j) So and %Sy = take (Suc k) S
obtain S;’ and S;’ where S; = %5; @ S;’and S, = 4S5, @ Si’
by (metis append-take-drop-id)
then have is-hyp-proof H S, (%S; @ S;') and is-hyp-proof H S1 (¢S @ Sy”)
by (simp-all only: <is-hyp-proof H S1 S2»)
moreover from Sy # [|» and Sy = %5; @ §;"» and Sy = 45 @ Si.» and «last S; = A
have last S;' = A and last S, = A
using <{j, k} C {0..<length So — 1}> and take-tl and less-le-not-le and append.right-neutral
by (metis atLeastLess Than-iff insert-subset last-appendR length-tl take-all-iff)+
moreover from Sy # [|» have 2S; # [| and %Sy # |]
by simp-all
ultimately have is-hyp-proof-of H S1 ¢S; (last ?S;) and is-hyp-proof-of H S1 %Sy (last ?Sk)
using hyp-proof-prefiz-is-hyp-proof-of-last
[OF <is-hyps H» <is-proof S1» <is-hyp-proof H S1 (2S; Q S;')» <28, # [])]
and hyp-proof-prefiz-is-hyp-proof-of-last
[OF <is-hyps H» <is-proof Sy <is-hyp-proof H S1 (?Si Q Si')» <28k # []°]
by fastforce+
moreover from <ast S;’ = A) and <last S’ = A
have length ?S; < length Sy and length ?S), < length S
using «({j, k} C {0..<length S; — 1}» by force+
moreover from calculation(8,4) have last ?S; = So ! j and last S, = Sa ' k
by (metis Suc-lessD last-snoc linorder-not-le nat-neq-iff take-Suc-conv-app-nth take-all-iff)+
ultimately have H+ Ss ! jand HF Sy ! k
using <is-hyps H>
and less(1)[OF «<length ?S; < length S2»] and less(1)[OF «<length S, < length Sa)]
by fast+
with <is-hyps H> and S ! %' = A> show ?thesis
using <is-rule-R’-app H p (S2 ! %i') (S2 ! j) (S2 ! k)» by (blast intro: dv-rule-R’)
qed
qed
ged

theorem hypothetical-derivability-proof-existence-equivalence:
shows H + A «+— (381 Ss. is-hyp-proof-of H S1 S2 A)
using hyp-derivability-implies-hyp-proof-existence and hyp-proof-existence-implies-hyp-derivability ..

proposition derivability-from-no-hyps-theoremhood-equivalence:
shows {} - A +— is-theorem A

129

proof
assume {} F A
then show is-theorem A
proof (induction rule: is-derivable-from-hyps.induct)
case (dv-rule-R' C E p D)
from <is-rule-R’-app {} p D C E» have is-rule-R-app p D C E
by simp
moreover from <(is-theorem C» and <is-theorem E»> have is-derivable C and is-derivable E
using theoremhood-derivability-equivalence by (simp-all only:)
ultimately have is-derivable D
by (fastforce intro: dv-rule-R)
then show ?case
using theoremhood-derivability-equivalence by (simp only:)
qed simp
next
assume is-theorem A
then show {} - 4
by (blast intro: dv-thm)
qed

abbreviation is-derivable-from-no-hyps (<t -» [50] 50) where
FA={}F A

corollary derivability-implies-hyp-derivability:
assumes - A and is-hyps H
shows H F A
using assms and derivability-from-no-hyps-theoremhood-equivalence and dv-thm by simp

lemma aziom-is-derivable-from-no-hyps:
assumes A € axioms
shows F A
using derivability-from-no-hyps-theoremhood-equivalence
and derivable-form-is-theorem[OF dv-aziom|OF assms]| by (simp only:)

lemma aziom-is-derivable-from-hyps:
assumes A € azioms and is-hyps H
shows H F A
using assms and aziom-is-derivable-from-no-hyps and derivability-implies-hyp-derivability by blast

lemma rule-R [consumes 2, case-names occ-subform replacement]:
assumes - Cand - A =4 B
and A <, C and C{p < B) > D
shows - D
proof —
from assms(1,2) have is-derivable C and is-derivable (A =q B)
using derivability-from-no-hyps-theoremhood-equivalence
and theoremhood-derivability-equivalence by blast+
moreover have is-rule-R-app p D C (A =4 B)
proof —

130

from assms(1—4) have D € wffsp and A € wffsq, and B € wffsqy
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)+
with assms(3,4) show ?thesis
by fastforce
qed
ultimately have is-derivable D
by (rule dv-rule-R)
then show ?thesis
using derivability-from-no-hyps-theoremhood-equivalence and derivable-form-is-theorem by simp
qged

lemma rule-R’ [consumes 2, case-names occ-subform replacement no-capture]:
assumes H+- Cand H+ A =4 B
and A <, Cand C(p < B) > D
and rule-R’-side-condition H p D C (A =4 B)
shows H + D
using assms(1,2) proof (rule dv-rule-R’)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
moreover from assms(1—4) have D € wffs,
by (meson hyp-derivable-form-is-wffso replacement-preserves-typing wffs-from-equality)
ultimately show is-rule-R’-app H p D C (A =4 B)
using assms(2—5) and hyp-derivable-form-is-wffso and wffs-from-equality
unfolding is-rule-R-app-def and is-rule-R’-app-def by metis
qed

end

6 Elementary Logic

theory FElementary-Logic
imports
Proof-System
Propositional- Wf
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

6.1 Proposition 5200

proposition prop-5200:
assumes A € wffsy
shows - A =, A
using assms and equality-reflexivity and dv-thm by simp

corollary hyp-prop-5200:

assumes is-hyps H and A € wffsy
shows HEF A =4 A

131

using derivability-implies-hyp-derivability| OF prop-5200[OF assms(2)] assms(1)] .

6.2 Proposition 5201 (Equality Rules)

proposition prop-5201-1:
assumes H+- Aand H+ A=° B
shows H - B
proof —
from assms(2) have H + A =, B
unfolding equivalence-def .
with assms(1) show ?thesis
by (rule rule-R’[where p = []]) auto
qged

proposition prop-5201-2:
assumes H+ A =4 B
shows HF B =4 A
proof —
have H+- A=, A
proof (rule hyp-prop-5200)
from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
show A € wffsq
by (fact hyp-derivable-form-is-wffso[OF assms, THEN wffs-from-equality(1)])
qed
from this and assms show ?thesis
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-3:
assumes H+ A= Band H+ B =4 C
shows HF+ A=, C
using assms by (rule rule-R'[where p = [»]]) (force+, fastforce dest: subforms-from-app)

proposition prop-5201-4:
assumes’HFA:a_wBand’HF C=qD
showsHFA-CzﬁB-D
proof —
have’Hl—A-C:ﬁA-C
proof (rule hyp-prop-5200)
from assms show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms have A € wﬁsaﬁﬁ and C € wffsq
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
then show A - C € wﬁsﬁ

by auto
qed
from this and assms(1) have H - A- C =3 B- C
by (rule rule-R’[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)

132

from this and assms(2) show ?thesis
by (rule rule-R'[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)
qed

proposition prop-5201-5:
assumes H - A =q—p Band C € wffsq
showsHFA-CzﬁB-C’
proof —
have’Hl—A-C:ﬂA-C
proof (rule hyp-prop-5200)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have A € wffs, 4
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
with assms(2) show A - C € wffsg

by auto
qed
from this and assms(1) show ?thesis
by (rule rule-R'[where p = [»,«]]) (force+, fastforce dest: subforms-from-app)

qged

proposition prop-5201-6:
assumes H - C =o D and A € wffs,_,g
shows’Hl—A-C:ﬂA-D
proof —
have H- A+ C=5A-C
proof (rule hyp-prop-5200)
from assms(1) show is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have C € wffsq
by (fact hyp-derivable-form-is-wffso[OF assms(1), THEN wffs-from-equality(1)])
with assms(2) show A - C € wffsg

by auto
qed
from this and assms(1) show ?thesis
by (rule rule-R'[where p = [»,»]]) (force+, fastforce dest: subforms-from-app)

qed

lemmas Fquality-Rules = prop-5201-1 prop-5201-2 prop-5201-3 prop-5201-4 prop-5201-5 prop-5201-6

6.3 Proposition 5202 (Rule RR)

proposition prop-5202:
assumes - A =4 BVF B=4, A
and p € positions C and A <, C and C(p < B) > D
and H+ C
shows H + D

proof —
from assms(5) have - C =, C

133

using prop-5200 and hyp-derivable-form-is-wffso by blast
moreover from assms(1) consider (a) F A =4 B| (b)F B=4 A
by blast
then have - A =4 B
by cases (assumption, fact Equality-Rules(2))
ultimately have - C' =, D
by (rule rule-Rlwhere p = » # p|) (use assms(2—4) in auto)
then have H+ C =, D
proof —
from assms(5) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
with <+ C =, D) show ?thesis
by (fact derivability-implies-hyp-derivability)
qed
with assms(5) show ?thesis
by (rule Equality-Rules(1)[unfolded equivalence-def])
qged

lemmas rule-RR = prop-5202

6.4 Proposition 5203

proposition prop-5203:
assumes A € wffsq and B € wﬁslg
and Vv € vars A. = is-bound v B
shows - (Azq. B) » A =3 S {(z,) — A} B
using assms(2,1,3) proof induction
case (var-is-wff S y)
then show ?case
proof (cases yg = o)
case True
then have a =
by simp
moreover from assms(1) have b (Azq. 2¢) + A = A
using aziom-4-2 by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (zq) = 4
by force
ultimately show Zthesis
using True by (simp only:)
next
case Fualse
with assms(1) have - (Aza. yg) « A =5 yg
using aziom-4-1-var by (intro aziom-is-derivable-from-no-hyps)
moreover from False have S {(z, a) — A} (yg) = yg
by auto
ultimately show ¢thesis
by (simp only:)
qed
next

134

case (con-is-wff B c)
from assms(1) have b (Aza. {c}g) « A =5 {clg
using aziom-4-1-con by (intro axiom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} ({c}tg) = {c|g
by auto
ultimately show “case
by (simp only:)
next
case (app-is-wff v 8 D C)
from app-is-wff.prems(2) have not-bound-subforms: Vv € vars A. = is-bound v D A — is-bound v C
using is-bound-in-app-homomorphism by fast
from <D € wffs,_, 5> have - (Azq. D) - A =, _,5 S {(z, @) — A} D
using app-is-wff.IH(1)[OF assms(1)] and not-bound-subforms by simp
moreover from «C € wffsy> have - (Azq. C) » A =y S {(z, a) — A} C
using app-is-wff.IH(2)[OF assms(1)] and not-bound-subforms by simp
moreover have - (Azq. D« O) + A =g ((Aza. D) + 4) » ((Aza. C) + A)
using aziom-is-derivable-from-no-hyps|OF axiom-4-3[OF assms(1) <D € wffsy > «C € wffs~»]] .
ultimately show ?case
using Fquality-Rules(3,4) and substitute.simps(3) by presburger
next
case (abs-is-wff 8 D v y)
then show ?case
proof (cases yy = zq)
case True
then have b (Azq. Ayy. D)« A =, 3 Ayy. D
using aziom-is-derivable-from-no-hyps|OF axiom-4-5[OF assms(1) abs-is-wff.hyps(1)]] by fast
moreover from True have S {(z, a) — A} (Ayy. D) = Ayy. D
using empty-substitution-neutrality
by (simp add: singleton-substitution-simps(4) fmdrop-fmupd-same)
ultimately show Zthesis
by (simp only:)
next
case Fulse
have binders-at (A\y~. D) [«] = {(y, 7)}
by simp
then have is-bound (y, v) (Ay~. D)
by fastforce
with abs-is-wff.prems(2) have (y, v) ¢ vars A
by blast
with <y, # zo> have = (Azq. Ay. D) « A =y AUy (Azq. D)« A
using aziom-4-4[OF assms(1) abs-is-wff .hyps(1)] and aziom-is-derivable-from-no-hyps by blast
moreover have - (Azq. D) - A =5 S {(z, a) — A} D
proof —
have Vp. 3y, =, #p AYyy. D — yy 2p D
using subforms-from-abs by fastforce
from abs-is-wff.prems(2) have Vv € vars A. = is-bound v D
using is-bound-in-abs-body by fast
then show ?thesis
by (fact abs-is-wff.IH[OF assms(1)])

135

qed
ultimately have - (Aza. Ayy. D)+ A = 5 Ayy. S {(z, a) — A} D
by (rule rule-R[where p = [»,«]]) force+
with False show ?thesis
by simp
qed
qged

6.5 Proposition 5204

proposition prop-5204:
assumes A € wffsq and B € wffsg and C € wﬁ%
and - B =5 C
and Vv € vars A. = is-bound v B A — is-bound v C
shows = S {(z, @) — A} (B =5 C)
proof —
have - (Azq. B) + A =g (Aza. B) - A
proof —
have (Azq. B) + A € wffsg
using assms(1,2) by auto
then show ?thesis
by (fact prop-5200)

qed
from this and assms(4) have b (Azq. B) » A =5 (Azqa. C) - 4
by (rule rule-R[where p = [»,«,«]]) force+

moreover from assms(1,2,5) have - (Azq. B) » A =g S {(z, @) — A} B
using prop-5203 by auto

moreover from assms(1,3,5) have - (Azq. C) » A =3 S {(z, a) — A} C
using prop-5203 by auto

ultimately have - (S {(z, @) — A} B) =5 (S {(z, @) — A} O)
using FEquality-Rules(2,3) by blast

then show ?thesis
by simp

qed

6.6 Proposition 5205 (n-conversion)

proposition prop-5205:
shows - {3 =43 (\Ya. fasg * Ya)
proof —
{
fix y
assume Yo # o
let 2A = Ayq. fa—sp * Ya
have F (a5 =4 “A) =0 Via- (Tasp * fa = %4+ ta)
proof —
have + (foz—>ﬁ —a—f ga—>,3) =0 V&a- (foz—)ﬁ *ta =38 8a—pB " ta) (isk 7B =, ?C)
using aziom-3[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
have - S {(g, a—8) — 24} (B =, ?C)

136

proof —
have 74 € wﬁsa_w and ?B € wffsp and ?C € wffsy
by auto
moreover have Vv € vars ?A. = is-bound v B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
have vars ?B = {(f, a—f), (g, a—p)} and vars ?C = {(f, a—p), (¢, @), (g, a—S)}
by force+
with (yo # ro) have (y, o) ¢ vars B and (y, o) ¢ vars ?C
by force+
then have — is-bound (y, a) ?B and — is-bound (y, o) 7C
using absent-var-is-not-bound by blast+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from v € vars 4> have v € {(y,), (f, a—5)}
by auto
ultimately show — is-bound v ?B A — is-bound v ?C
by fast
qed
ultimately show ?thesis
using - B =, ?C» and prop-5204 by presburger
qed
then show ?thesis
by simp
qged
moreover have - 74 « 14 =8 fa—sp " ta
proof —
have 1o € wffsq and fasp * Ya € wffsﬁ
by auto
moreover have Vv € vars (ra). = is-bound v (fo— g * ya)
using (yo # o’ by auto
moreover have S {(y, @) — ta} (fa_sg * Ja) = Tasg * fa
by simp
ultimately show ?thesis
using prop-5203 by metis

qged
ultimately have - (fo,—,3 =08 ?4) =0 Via- (fasp * ta =g fasp * ta)
by (rule rule-R[where p = [»,»,«,»]]) force+

moreover have - (fa—)ﬂ “a—p fa—)ﬁ) =0 Via- (foz—)/j’ *ta =g fasp L289)
proof —

let ?A = fa_>5
have = (fo—5 =a—p 9a—p) =0 Via- (fasp * Yo =3 8a—p * ta) (is = 7B =, 7C)
using aziom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
have - S {(g, a—8) — ?A} (?B =, ?0)
proof —
have 74 ¢ wﬁsa_w and ?B € wffsp and ?C € wffsy
by auto
moreover have Vv € vars ?A. = is-bound v ?B N\ — is-bound v ?C

137

proof
fix v
assume v € vars ?A
have vars 7B = {(f, a—p), (g, a—p)} and vars ?C = {(f, a—=08), (¢, «), (g, a—=pF)}
by force+
with <yq # 1o have (y,) ¢ vars ?B and (y, «) ¢ vars ?C
by force+
then have — is-bound (y, a) ?B and — is-bound (y, o) 7C
using absent-var-is-not-bound by blast+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from v € vars 4 »have v € {(y,), (f, a—5)}
by auto
ultimately show — is-bound v ¢B A — is-bound v ?C
by fast
qged
ultimately show ?thesis
using <+ B =, ?C» and prop-5204 by presburger
qed
then show ?thesis
by simp
qed
ultimately have - f,_,3 =3 (A\ya. fasg * Ya)
using Fquality-Rules(1)[unfolded equivalence-def] and Fquality-Rules(2) and prop-5200
by (metis wffs-of-type-intros(1))

note z-neq-y = this
then have §6: - f,_,53 =43 \a- fospg * Do (isF 7B =. 7C)
by simp
then have §7: = (Ara- fo—g * o) =a—p (MWa. (Ara- fosg * Fa) * 9a)
proof —
let ?A = Ara. fos * ta
have ?A € wffs,_,5 and ?B € wffs,_,5 and ?C € wffs, g
by auto
moreover have Vv € vars ?A. = is-bound v ?B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
have — is-bound (z, @) ?B and — is-bound (r, o) ?C
by code-simp+
moreover have — is-bound (f, a—f) ?B and - is-bound (f, a—p3) ?C
by code-simp+
moreover from (v € vars ?4 yhave v € {(z, @), (f, a—p)}
by auto
ultimately show — is-bound v ?B A — is-bound v ¢C
by fast
qed
ultimately have - S {(f, a—p3) — ?A} (B =,_,5 ?C)
using §6 and prop-5204 by presburger

138

then show ?thesis

by simp
qed
have - (Arq. fa—>ﬁ) “a—p (ADa. fa—>ﬁ ' Do)
proof —
have i (Ara. foz—>5 " Ia) * Ya =B fa—)ﬁ * Yo
proof —
have 1y, € wffsq and fa_>5 " Ia € wffsﬂ
by auto
moreover have Vv € vars (9o). = is-bound v (fo— g * ra)
by simp
moreover have S {(t, @) — 0} (fass * fa) = fas * a
by simp

ultimately show ?Zthesis
using prop-5203 by metis
qed
from §7 and this show ?thesis
by (rule rule-R [where p = [»,«]]) force+
qed
with §6 and z-neg-y[of y] show ?thesis
using Fquality-Rules(2,3) by blast
qged

6.7 Proposition 5206 (a-conversion)

proposition prop-5206:
assumes A € wffsqy
and (z, 8) ¢ free-vars A
and is-free-for (23) (z, B) A
shows b (Azg. A) =5, (A\23. S {(z, B) — 23} A)
proof —
have is-substitution {(z, B) — zg}
by auto
from this and assms(1) have S {(z, 8) — 25} A € wffsa
by (fact substitution-preserves-typing)
obtain y where (y, 8) ¢ {(z, 8), (z, 8)} U vars A
proof —
have finite ({(z, 8), (2, B)} U vars A)
using vars-form-finiteness by blast
with that show ?Zthesis
using fresh-var-ezristence by metis
qed
then have (y, 8) # (z, 8) and (y, B) # (2, B) and (y,) ¢ vars A and (y, 8) ¢ free-vars A
using free-vars-in-all-vars by auto
have §1: = (Azg. A) =g_,o (Ayg. (Azg. 4) - yp)
proof —
let ?A = Azg. A
have x*: fﬁ—)a :ﬂ—m ()\yﬁ fﬂ—)oc . yﬂ) (iS F B =. ?C)
by (fact prop-5205)

139

moreover have - S {(f, f—a) — A} (B =g_,, ?C)
proof —
from assms(1) have ?A € wffsg_q and ?B € wffsg_,, and ?C € wffsg_,,
by auto
moreover have Vv € vars ?A. — is-bound v ?B N\ — is-bound v ?C
proof
fix v
assume v € vars ?A
then consider (a) v = (z, 8) | (b) v € vars A
by fastforce
then show — is-bound v ?B A — is-bound v ?C
proof cases
case a
then show ?thesis
using «(y, 8) # (x, B)» by force
next
case b
then have — is-bound v B
by simp
moreover have — is-bound v ?C
using b and «(y, 5) ¢ vars Ay by code-simp force
ultimately show Zthesis
by blast
qed
qed
ultimately show ?thesis
using prop-5204 and * by presburger
qed
ultimately show ?thesis
by simp
qed
then have §2: - (A\zg. 4) =5_,, (\yg. S {(z, B) — yg} 4)
proof —
have - (Azg. A) » yg =a S {(z, B) — yg} A (isk (A\zg. ¥B) » ?PA =_)
proof —
have 74 € wﬁsﬁ and ?B € wffsq
by blast fact
moreover have Vv € vars ?A. = is-bound v ?B
using «(y, 8) ¢ vars A» and absent-var-is-not-bound by auto
ultimately show ?thesis
by (fact prop-5203)
qed
with §1 show ?thesis
by (rule rule-R [where p = [»,«]]) force+
qed
moreover
havef§5’: F(Azg. S {(z, B) — 2} A) =0 (Ayg. (Azg. S {(z, B) — 25} A) - yp)
proof —

let ?A = Azg5. S {(z, B) — 23} 4

140

have x*: fﬁ—)a :ﬂ—m ()\yﬁ fﬁ—)a . yﬁ) (iS F B =. ?C)
by (fact prop-5205)
moreover have - S {(f, f—a) — A} (B =g_,, ?C)
proof —
have 74 € wﬁsﬂ_)a and ?B € wﬁsﬁéa and ?C € wﬁsﬁ_}a
using S {(z, B) — zﬁ} A € wffsq by auto
moreover have Vv € vars ?A. = is-bound v ?B N — is-bound v ?C
proof
fix v
assume v € vars ?A
then consider (a) v = (2, 8) | (b) v € vars (S {(z, B) — 25} A)
by fastforce
then show - is-bound v ?B A — is-bound v 7C
proof cases
case a
then show ?thesis
using «(y, 8) # (z, 8)» by auto
next
case b
then have — is-bound v B
by simp
moreover from b and «(y, 8) ¢ vars A» and «(y, 8) # (z, B)> have v # (y,)
using renaming-substitution-minimal-change by blast
then have — is-bound v 7C
by code-simp simp
ultimately show %thesis
by blast
qed
qed
ultimately show ?thesis
using prop-5204 and * by presburger
qed
ultimately show ?thesis
by simp
qed
then have §4: = (Azg. S {(z, B) — 25} A) =54 (\yg- S {(z, B) — yg} A4)
proof —
have - (Azg. S {(z, B) — 23} A) » yg =a S {(z, B) — yg} A (ist (A\zg. ?B) - A =_)
proof —
have ?A € wffsg and ?B € wffsq
by blast fact
moreover from «(y, 8) ¢ vars A> and «(y, §) # (2, §)» have Yv € vars ?A. = is-bound v ?B
using absent-var-is-not-bound and renaming-substitution-minimal-change by auto
ultimately have - (Azg. S {(z, 8) — 23} A) » yg =a S {(z, B) — yg} S {(z, B) — 25} A
using prop-5203 by fast
moreover have S {(z, 8) — yg} S {(z, B) — 23} A =S {(z, B) — yg} A
by (fact renaming-substitution-composability| OF assms(2,3)])
ultimately show ?thesis
by (simp only:)

141

qed
with §3 show ?thesis
by (rule rule-R [where p = [»,«]]) auto
qed
ultimately show ?thesis
using FEquality-Rules(2,3) by blast
qed

lemmas a = prop-5206

6.8 Proposition 5207 (/-conversion)

context
begin

private lemma bound-var-renaming-equality:
assumes A € wffsq
and 2y # Yy
and (z, v) ¢ vars A
shows - A =, rename-bound-var (y, v) z A
using assms proof induction
case (var-is-wff a x)
then show ?case
using prop-5200 by force
next
case (con-is-wff « c)
then show ?case
using prop-5200 by force
next
case (app-is-wff a 8 A B)
then show ?case
using FEquality-Rules(4) by auto
next
case (abs-is-wff f A a x)
then show ?case
proof (cases (y, v) = (z, a))
case True
have - A\y,. A =8 AYn. A
by (fact abs-is-wff .hyps| THEN prop-5200[OF wffs-of-type-intros(4)]])
moreover have - A =g rename-bound-var (y,v) z A
using abs-is-wff . IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
ultimately have - \y,. 4 =3 AYy. rename-bound-var (y,7v) z A

by (rule rule-R[where p = [»,«]]) force+
moreover
have
F Ay~. rename-bound-var (y, v) z A
=B

Ay S {(y, v) — 2~} (rename-bound-var (y, v) z A)
proof —

142

have rename-bound-var (y, v) z A € wffsg
using hyp-derivable-form-is-wffso[OF «~ A =g rename-bound-var (y, 7) z A)]
by (blast dest: wffs-from-equality)
moreover from abs-is-wff.prems(2) have (z, v) ¢ free-vars (rename-bound-var (y, v) z A)
using rename-bound-var-free-vars|OF abs-is-wff.hyps assms(2)] by simp
moreover from abs-is-wff.prems(2) have is-free-for (z) (y, v) (rename-bound-var (y, v) z A)
using is-free-for-in-rename-bound-var|OF abs-is-wff .hyps assms(2)] by simp
ultimately show ?thesis
using « by fast
qed
ultimately have - Ay,. A =, 3 Azy. S {(y, 7) — 2y} (rename-bound-var (y, v) z A)
by (rule Equality-Rules(3))
then show ?thesis
using True by auto
next
case Fulse
have - \zq. A =a—=8 ALg. A
by (fact abs-is-wff.hyps| THEN prop-5200[OF wffs-of-type-intros(4)]])
moreover have - A =g rename-bound-var (y,) z A
using abs-is-wff IH[OF assms(2)] and abs-is-wff.prems(2) by fastforce
ultimately have - Azo. A =,_,3 Aza. rename-bound-var (y, v) z A
by (rule rule-R[where p = [»,«]]) force+
then show ?thesis
using Fualse by auto
qed
qed

proposition prop-5207:
assumes A € wffsq and B € wffsg
and is-free-for A (z, o) B
shows - (Azq. B) - A =3 S {(z,) — A} B
using assms proof (induction form-size B arbitrary: B 8 rule: less-induct)
case less
from less(3,1,2,4) show ?case
proof (cases B rule: wffs-of-type-cases)
case (var-is-wff y)
then show ?thesis
proof (cases yg = za)
case True
then have a =
by simp
moreover from assms(1) have b (Azq. 2¢) * A =¢ A
using aziom-4-2 by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (zo) = 4
by force
ultimately show ?thesis
unfolding True and var-is-wff by simp
next
case Fulse

143

with assms(1) have - (Aza. yg) + A =5 yg
using aziom-4-1-var by (intro axiom-is-derivable-from-no-hyps)
moreover from False have S {(z, a) — A} (yg) = yg
by auto
ultimately show ?Zthesis
unfolding Fulse and var-is-wff by simp
qed
next
case (con-is-wff ¢)
from assms(1) have - (Aza. {c}g) - A =g {clg
using aziom-4-1-con by (intro aziom-is-derivable-from-no-hyps)
moreover have S {(z, @) — A} ({c}g) = {c}g
by auto
ultimately show ?thesis
by (simp only: con-is-wff)
next
case (app-is-wff v D C)
have form-size D < form-size B and form-size C' < form-size B
unfolding app-is-wff (1) by simp-all
from less(4)[unfolded app-is-wff(1)] have is-free-for A (z, o) D and is-free-for A (z, a) C
using is-free-for-from-app by iprover+
from (is-free-for A (z, o) D» have - (Azq. D)+ A =, _,5 S {(z, a) — A} D
by (fact less(1)[OF <form-size D < form-size By assms(1) app-is-wff(2)])
moreover from <is-free-for A (z, o) C) have = (Azq. C) + A =4 S {(z, o) — A} C
by (fact less(1)[OF <form-size C < form-size B> assms(1) app-is-wff(3)])
moreover have - (Azq. D - O) - A =g ((Aza. D) + A) = (Aza. C) - A)
by (fact aziom-4-3|OF assms(1) app-is-wff(2,3), THEN axiom-is-derivable-from-no-hyps))
ultimately show ?thesis
unfolding app-is-wff (1) using Fquality-Rules(3,4) and substitute.simps(3) by presburger
next
case (abs-is-wff 6 D v y)
then show ?thesis
proof (cases yy = zq)
case True
with abs-is-wff(1) have = (Aza. Ayy. D)« A =g Ayy. D
using aziom-4-5[OF assms(1) abs-is-wff(3)] by (simp add: axiom-is-derivable-from-no-hyps)
moreover have S {(z, a) — A} (Ayy. D) = Ay. D
using True by (simp add: empty-substitution-neutrality fmdrop-fmupd-same)
ultimately show ?Zthesis
unfolding abs-is-wff(2) by (simp only:)
next
case Fulse
have form-size D < form-size B
unfolding abs-is-wff(2) by simp
have is-free-for A (z, o) D
using is-free-for-from-abs|OF less(4)[unfolded abs-is-wff(2)]] and <yy # zq> by blast
have - (Aza. (Ayy. D)) = A =g Ayy. S {(z, a) — A} D
proof (cases (y, v) ¢ vars A)
case True

144

with (yy # 2> have - (Aza. Ayy. D) « A =, 5 Ayy. (Aza. D) - A
using aziom-4-4[OF assms(1) abs-is-wff(3)] and aziom-is-derivable-from-no-hyps by auto
moreover have - (Azq. D) - A =45 S {(z, o) — A} D
by
(
fact less(1)
[OF «form-size D < form-size By assms(1) <D € wffsg> <is-free-for A (z, a) D»]

ultimately show ?thesis
unfolding abs-is-wff (1) by (rule rule-R[where p = [»,«]]) force+
next
case Fulse
have finite (vars {A, D})
using vars-form-finiteness and vars-form-set-finiteness by simp
then obtain z where (z, v) ¢ ({(z, @), (y, v)} U vars {A, D})
using fresh-var-ezistence by (metis Un-insert-left finite.simps insert-is-Un)
then have zy # 24 and zy # yy and (z, v) & vars {A, D}
by simp-all
then show ?thesis
proof (cases (z, a) ¢ free-vars D)
case True
define D’ where D' =S {(y, v) — 2y} D
have is-substitution {(y, v) — 2y}
by auto
with <D € wffss> and D’-def have D’ € wffsg
using substitution-preserves-typing by blast
then have - (Azq. Azy. D') « A = 5 Azy. (Aza. D') - A
using <zy # x> and «(z,) & vars {A, D}» and aziom-4-4[OF assms(1)]
and azxiom-is-derivable-from-no-hyps
by auto
moreover have §2: - (Azq. D)+ A =5 D’
proof —
have form-size D' = form-size D
unfolding D'-def by (fact renaming-substitution-preserves-form-size)
then have form-size D' < form-size B
using (form-size D < form-size B> by simp
moreover from <zy # zq> have is-free-for A (z, o) D
unfolding D’-def and is-free-for-def
using substitution-preserves-freeness|OF True] and is-free-at-in-free-vars
by fast
ultimately have - (Azq. D) « A =5 S {(z, a) — A} D’
using less(1) and assms(1) and <D’ € wffss> by simp
moreover from <zy # zq> have (z, a) ¢ free-vars D'
unfolding D'-def using substitution-preserves-freeness|OF True] by fast
then have S {(z, a) — A} D'= D’
by (fact free-var-singleton-substitution-neutrality)
ultimately show ?Zthesis
by (simp only:)
qed

/

145

ultimately have §5: = (Aza. Azy. D) « A =, 5 Azy. D' (is <= 7A3))
by (rule rule-R[where p = [»,«]]) force+
moreover have §/: = (Ayy. D) =, _,5 Azy. D’
proof —
have (z,) ¢ free-vars D
using <(z, v) ¢ vars {A, D}> and free-vars-in-all-vars-set by auto
moreover have is-free-for (z~) (y,v) D
using «(z, v) ¢ vars {A, D}» and absent-var-is-free-for by force
ultimately have - Ayy. D =, .5 A2y. S {(y, 7) — 24} D
using a[OF <D € wffss»] by fast
then show ?thesis
using D’-def by blast
qed
ultimately have §5: - (Aza. Ayy. D) - A =, 5 Ayy. D
proof —
note rule-RR’ = rule-RR[OF disjI2]
have §51: = (Aza. Ayy. D) » A =, 5 Azy. D' (is <= 2A51))
by (rule rule-RR'|OF §4, where p = [«,»,«,«] and C = ?A3]) (use §3 in (force+»)
show ?thesis
by (rule rule-RR'[OF §4, where p = [»] and C = ?451]) (use §51 in <force+»)
qed
then show ?thesis
using free-var-singleton-substitution-neutrality|OF «(x,) ¢ free-vars D]
by (simp only: <8 = v—6»)
next
case Fulse
have (y, v) ¢ free-vars A
proof (rule ccontr)
assume - (y, v) ¢ free-vars A
moreover from <— (z, a) ¢ free-vars D) obtain p
where p € positions D and is-free-at (z, @) p D
using free-vars-in-is-free-at by blast
then have « # p € positions (A\y~. D) and is-free-at (z, a) (« # p) (A\yy. D)
using is-free-at-to-abs[OF (is-free-at (z, o) p Dv] and <y, # x> by (simp, fast)
moreover have in-scope-of-abs (y, v) (« # p) (A\yy. D)
by force
ultimately have — is-free-for A (z, a) (Ay. D)
by blast
with (is-free-for A (z, o) By[unfolded abs-is-wff(2)] show False
by contradiction
qed
define A’ where A’ = rename-bound-var (y, v) z A
have A’ € wffsq
unfolding A’-def by (fact rename-bound-var-preserves-typing[OF assms(1)])
from «(z, v) ¢ vars {A, D}> have (y, v) ¢ vars A’
using
old-var-not-free-not-occurring-after-rename

[

OF assms(1) <zy # yy> «(y, 7) ¢ free-vars A

146

]
unfolding A’-def by simp
from A’-def have §6: - A =4 A’
using bound-var-renaming-equality[OF assms(1) <zy # yy] and «(z, v) ¢ vars {A, D}
by simp
moreover have §7: - (Aza. Ayy. D) « A" =, 5 Ayy. (Aza. D)+ A’ (is <= 2AT»)
using aziom-4-4[OF <A’ € wffsqr <D € wffsg>)
and «(y, v) ¢ vars A"y and <y, # zo> and aziom-is-derivable-from-no-hyps
by auto
ultimately have §8: - (Aza. Ayy. D)+ A = 5 Ayy. (Aza. D)+ A
proof —
note rule-RR’ = rule-RR[OF disjI2]
have §81: - (Aza. Ayy. D) » A =, 5 Ayy. (Aza. D) -+ A’ (is <= 2A81))

by (rule rule-RR'|OF §6, where p = [¢,»,»] and C = ?A7]) (use §7 in <force+»)
show ?thesis
by (rule rule-RR'|OF §6, where p = [»,«,»] and C = ?A81]) (use §81 in <force+»)
qed

moreover have form-size D < form-size B
unfolding abs-is-wff(2) by (simp only: form-size.simps(4) lessI)
with assms(1) have §9: - (Azq. D) + A =5 S {(z,) — A} D
using less(1) and «D € wffss> and <is-free-for A (z, o) D> by (simp only:)
ultimately show ¢thesis
unfolding <3 = v—d&> by (rule rule-R[where p = [»,«]]) force+
qed
qed
then show ?thesis
unfolding abs-is-wff(2) using False and singleton-substitution-simps(4) by simp
qed
qed
qed

end

6.9 Proposition 5208

proposition prop-5208:
assumes vs # [| and B € wffsg
shows I~ +2, (A2, vs B) (map FVar vs) =3 B
using assms(1) proof (induction vs rule: list-nonempty-induct)
case (single v)
obtain z and « where v = (z, «)
by fastforce
then have <, (A<, [v] B) (map FVar [v]) = (Azq. B) » 7q
by simp
moreover have - (Azq. B) » 2o =g B
proof —
have is-free-for (zo) (z, @) B
by fastforce
then have - (Azo. B) » 2o =g S {(z, a) — za} B

147

by (rule prop-5207 [OF wffs-of-type-intros(1) assms(2)])
then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)
qed
ultimately show “case
by (simp only:)
next
case (cons v vs)
obtain z and « where v = (z, «)
by fastforce
have - :2, (A2, (v # vs) B) (map FVar (v # vs)) =g 2, (A2, vs B) (map FVar vs)
proof —
have <, (A2, (v # vs) B) (map FVar (v # vs)) € wffsg
proof —
have \2, (v # vs) B € wﬁsfoldr (=) (map snd (v # vs)) B
using generalized-abs-wff [OF assms(2)] by blast
moreover
have Vk < length (map FVar (v # vs)). map FVar (v # vs) Lk € wffsy, o sng (v # vs) | k
proof safe
fix k
assume *: k < length (map FVar (v # vs))
moreover obtain z and a where (v # vs) | k = (z, a)
by fastforce
with * have map FVar (v # vs) | k = zo and map snd (v # vs) 1 k = «
by (metis length-map nth-map snd-conv)+
ultimately show map FVar (v # vs) | k € WifS map snd (v # vs) | k
by fastforce
qged
ultimately show ?thesis
using generalized-app-wff[where As = map FVar (v # vs) and ts = map snd (v # vs)| by
stmp
qed
then have
., (A9 (v # vs) B) (map FVar (v # vs)) =3 2. (A\C, (v # vs) B) (map FVar (v # vs))
by (fact prop-5200)
then have
F 9, (A2, (v # vs) B) (map FVar (v # vs)) =3 2, (A2 (v # vs) B) » FVar v) (map FVar
vs)
by simp

moreover have - (A2, (v # vs) B) » FVar v = foldr (=) (A2, vs B)

map snd vs) (
proof —
have - (A9, (v # vs) B) « FVar v =foldr (=) (
proof —
from (v = (z, @) have A2, (v # vs) B = Azg. A9, vs B
by simp
have A\, vs B € wﬁsfoldr (=) (

) 8 S {v — FVar v} (A2, vs B)

map snd vs

map snd vs) 8
using generalized-abs-wff[OF assms(2)] by blast

moreover have is-free-for (zq) (z, a) (A9, vs B)

148

by fastforce
ultimately
have - (Azq. A9, vs B) » 24 =foldr () (map snd vs) 8 S {(z, @) — za} A9, vs B
by (rule prop-5207 [OF wffs-of-type-intros(1)])
with <v = (z, a)> show ?thesis
by simp
qed
then show ?thesis
using identity-singleton-substitution-neutrality by (simp only:)
qed
ultimately show ?thesis
proof (induction rule: rule-R [where p = [»] Q replicate (length vs) «])
case occ-subform
then show ?case
unfolding equality-of-type-def using leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil is-subform-at.simps(3) length-map)
next
case replacement
then show ?case
unfolding equality-of-type-def using leftmost-subform-in-generalized-app-replacement
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis append-Cons append-Nil length-map replace-right-app)
qed
qed
moreover have -+, (A2, vs B) (map FVar vs) =3 B
by (fact cons.IH)
ultimately show Zcase
by (rule rule-R [where p = [»]]) auto
qed

6.10 Proposition 5209

proposition prop-5209:
assumes A € wffsq and B € wjj”sﬁ and C € wﬁsﬁ
and - B =5 C
and is-free-for A (z, o) (B =g C)
shows i S {(z, @) — A} (B =5 O)
proof —
have - (Azq. B) » A =g (Aza. B) - A
proof —
have (Azq. B) + A € wffsg
using assms(1,2) by blast
then show ?thesis
by (fact prop-5200)

qed

from this and assms(4) have b (Azo. B) » A =5 (Azqa. C) - 4
by (rule rule-R [where p = [»,«,«]]) force+

moreover have - (Azq. B) - A =5 S {(z, @) — A} B

proof —

149

from assms(5)[unfolded equality-of-type-def] have is-free-for A (z, o) (Qg + B)
by (rule is-free-for-from-app)
then have is-free-for A (z, o) B
by (rule is-free-for-from-app)
with assms(1,2) show ?thesis
by (rule prop-5207)
ged
moreover have - (Azq. C) + A =g S {(z, @) — A} C
proof —
from assms(5)[unfolded equality-of-type-def] have is-free-for A (z, a) C
by (rule is-free-for-from-app)
with assms(1,3) show ?thesis
by (rule prop-5207)
qed
ultimately have - (S {(z, @) — A} B) =5 (S {(z, @) — A} O)
using FEquality-Rules(2,3) by blast
then show ?thesis
by simp
qed

6.11 Proposition 5210

proposition prop-5210:
assumes B € wﬁ%
shows = Ty =, (B =g B)
proof —
have §1:
'_
((Ang-ng) =55 (Ang- ng))
-0
Vrg. (Ang. vg) ~ 13 =g (A\ng. ng) * 13)
proof —
have - (fg,5 =58 958) =0 Vig- (fg—p " 13 =g 95p * ¥g) (s B =, ?C)
using aziom-3[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ()\1)5. Uﬁ) € wﬁsﬁ_%@ and ?B € wffsy and ?C € wffs,
by auto
moreover have is-free-for (A\ng. vg) (f, B—=8) (?B =, ?C)
by simp
ultimately have - S {(f, 6—8) — (Ang. ng)} (?B =, ?C) (is b 25)
using prop-5209 by presburger
moreover have 75 =

(M5 98) =555 858) =0 Vg (\g. g) * 15 =5 955 * 15
) (is - = ?B' =, 2C")
by simp
ultimately have - ?B' =, ?C’
by (simp only:)
moreover from «(\yg. ng) € wffsg_,z> have ?B’ € wffso and ?C’ € wffs,
by auto

150

moreover have is-free-for (A\ng. ng) (9, B—B) (B’ =, ?C)
by simp
ultimately have - S {(g, 5—3) — (Avg. vg)} (B’ =, ?C") (is - 25)
using prop-5209[OF «(Ang. ng) € wifsg_,] by blast
then show ?thesis
by simp
ged
then have & (Arg. T'o) =g, (3. (x5 =g 1))
proof —
have Apg. 95 € wifsg_p
by blast
then have +)‘U,B U/B =p—p)\1)5 U,B
by (fact prop-5200)
with §] have + V;B (()‘Uﬂ Uﬂ) . ;ﬁ =3 ()‘Uﬁ U,B) . X/B)
using rule-R and is-subform-at.simps(1) by blast
moreover have + (Anﬂ. 1)5) "I =313
using aziom-4-2[OF wffs-of-type-intros(1)] by (rule aziom-is-derivable-from-no-hyps)
ultimately have - Vrg. (x5 =g (Ang. vg) - 13)

by (rule rule-R[where p = [»,«,«,»]]) auto
from this and <= (Ang. ng) - 13 =g rp> have - Vig. (x3 =g 1)
by (rule rule-R[where p = [»,4,»]]) auto

then show ?thesis
unfolding forall-def and PI-def by (fold equality-of-type-def)
qed
from this and assms have 3: = (A\tg. To) » B =0 (Mrg. (xg =g 1)) = B
by (rule Equality-Rules(5))
then show ?thesis
proof —
have ()\}:B. To)*B=oTo
using prop-5207[OF assms true-wff] by fastforce
from 3 and this have b Ty =0 (Atg. (xg =g 13)) - B

by (rule rule-R[where p = [«,»]]) auto
moreover have - (Arg. (13 =g 1)) * B =0 (B =g B)
proof —

have 15 =5 15 € wffso and is-free-for B (xr, B) (zc/g =3 Xﬁ)
by (blast, intro is-free-for-in-equality is-free-for-in-var)
moreover have S {(r,) — B} (xg =g 13) = (B =3 B)
by simp
ultimately show ?thesis
using prop-5207[OF assms| by metis
qed
ultimately show Zthesis
by (rule rule-R [where p = [»]]) auto
qed
qed

6.12 Proposition 5211
proposition prop-5211:

151

shows - (To A2 Ty) =0 Ty
proof —
have const-T-wff: (Axo. To) € wffso—o for =
by blast
have §1: F (A\po. To) + To A2 (Ano. To) * Fo =0 Vio- (A)o. To) * Xo
proof —
have F go—0* To A2 go—so* Fo =0 Yo Go—o*to (isF ?B =, 2C)
using aziom-1 [unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ?B € wffs, and ?2C € wffso
by auto
moreover have is-free-for (A\yo. To) (g, 0—0) (?B =, ?C)
by simp
ultimately have - S {(g, 0—0) — (A\yo. To)} (?B =, ?C)
using const-T-wff and prop-5209 by presburger
then show %thesis
by simp
qed
then have - Ty AC Ty =0 Vio. To
proof —
have T-S-redex: b (A\yo. To) = A =p Ty if A € wffs, for A
using that and prop-5207[OF that true-wff] by fastforce
from §1 and T-8-redex[OF true-wff)
have - Ty A2 (A\o. To) * Fo =0 Yo (Ao. To) * Lo

by (rule rule-R[where p = [«,»,«,»]]) force+
from this and T-B-redex|[OF false-wff] have - Ty AS Ty =0 Yo (\o. To) * Lo
by (rule rule-R[where p = [«,»,»]]) force+
from this and T-B-redex[OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed

moreover have - T, =, Vio. Ty
using prop-5210[{OF const-T-wff] by simp
ultimately show ?thesis
using Fquality-Rules(2,3) by blast
qged

lemma true-is-derivable:
shows - T,
unfolding true-def using Q-wff by (rule prop-5200)

6.13 Proposition 5212

proposition prop-5212:
shows - T, AC T,
proof —
have - T
by (fact true-is-derivable)
moreover have - (T, AC T,) =, Ty
by (fact prop-5211)
then have - T, =2 (T, A2 T))

152

unfolding equivalence-def by (fact Equality-Rules(2))
ultimately show #thesis
by (rule Equality-Rules(1))
qed

6.14 Proposition 5213

proposition prop-5213:
assumes - A =4 Band - C =3 D
shows - (A =4 B) A¢ (C =5 D)
proof —
from assms have A € wffsq and C € wffs
using hyp-derivable-form-is-wffso and wffs-from-equality by blast+
have - Ty =y (A =q A)
by (fact prop-5210[OF <A € wffsq>])
moreover have - A =, B

by fact
ultimately have - T, =, (A =4 B)
by (rule rule-R[where p = [»,»]]) force+

have - Ty =, (C =g C)
by (fact prop-5210[OF «C € wffsp])
moreover have - C =3 D

by fact
ultimately have - Ty =, (C =g D)

by (rule rule-R[where p = [»,»]]) force+
then show “thesis
proof —

have - T, A T,
by (fact prop-5212)
from this and - T, =, (A =4 B)> have - (A =4 B) A® T,

by (rule rule-R[where p = [«,»]]) force+
from this and - Ty =, (C =g D)» show ?thesis
by (rule rule-R[where p = [»]]) force+
qed

qed

6.15 Proposition 5214

proposition prop-5214:
ShOWSl— TO /\Q FO =0 FO

proof —
have id-on-o-is-wff: (Aro. to) € wffso—o
by blast
have §1: = (Ato- 1o) * To NS (Ato- to) * Fo =0 Yro. (Aro- ¥o) * o
proof —

have - go—o* To NS go—0* Fo=0VYro §o—0"to (isk ?B =, ?C)
using aziom-1[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have 7B € wffs, and ?C € wffs, and is-free-for (Aro. o) (g, 0—0) (?B =, 2C)
by auto

153

ultimately have F S {(g, 0—0) — (Aro. to)} (B =, ?C)
using id-on-o-is-wff and prop-5209 by presburger
then show ?thesis
by simp
qed
then have - Ty A2 Fy =0 Y1o. 1o
proof —
have id-g-redex: - (Aro. to) » A =0 A if A € wffs, for A
by (fact aziom-is-derivable-from-no-hyps|OF aziom-4-2|OF that]])
from §1 and id-5-redex[OF true-wff]
have - T NS (Aro- to) * Fo =0 Vro- (Ato- o) * ¥o
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and id-B-redex|[OF false-wff] have - Ty A2 Fy =4 Y1o. (Aro- to) * Lo
by (rule rule-R[where p = [«,»,»]]) force+
from this and id-S-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
then show ?thesis
by simp
qed

6.16 Proposition 5215 (Universal Instantiation)

proposition prop-5215:
assumes H + Vizy. B and A € wffsqy
and is-free-for A (z,) B
shows H + S {(z, o) — A} B
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms(1) have H F (A\tq. To) =a—0 (AZa. B)
by simp
with assms(2) have H F (A\tq. To) * A =0 (A\zo. B) - A
by (intro Equality-Rules(5))
then have H - Ty =, S {(z, @) — A} B
proof —
have HE (Arto. To)» A=p Ty
proof —
have - (A\tq. To) * A =0 To
using prop-5207[OF assms(2) true-wff is-free-for-in-true] and derived-substitution-simps(1)
by (simp only:)
from this and <is-hyps H> show ?thesis
by (rule derivability-implies-hyp-derivability)
qed
moreover have H - (Azq. B) + A =4, S {(z, a) — A} B
proof —
have B € wffso
using hyp-derivable-form-is-wffso|OF assms(1)] by (fastforce elim: wffs-from-forall)
with assms(2,3) have b (Azq. B) » A =4, S {(z, a) — A} B

154

using prop-5207 by (simp only:)
from this and <is-hyps H> show ?thesis
by (rule derivability-implies-hyp-derivability)
qed
ultimately show ?thesis
using <H F (At To) * A =o (Azq. B) « Ay and Equality-Rules(2,3) by meson
qed
then show ?thesis
proof —
have H - T,
by (fact derivability-implies-hyp-derivability| OF true-is-derivable <is-hyps H»])
from this and <H F Ty =0 S {(z, @) — A} B> show ?thesis
by (rule Equality-Rules(1)[unfolded equivalence-def])
qed
qed

lemmas VI = prop-5215

6.17 Proposition 5216

proposition prop-5216:
assumes A € wffsy
shows - (Ty NS A) =, A
proof —
let ?B = Aro. (To NS Yo =o o)
have B-is-wff: B € wffso—o
by auto
have §1: - 2B+ Ty AC ?B+ Fy =0 V1o. ?B 1o
proof —
have - go—o* To NS go—0* Fo =0Vro §o—0"to (isk ?C =, ?D)
using aziom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have ?C € wffs, and ?D € wffs, and is-free-for ?B (g, o—0) (¢C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (?C =, ?D)
using B-is-wff and prop-5209 by presburger
then show ?thesis
by simp
qed
have *: is-free-for A (x, 0) (To A2 to =0 Io) for A
by (intro is-free-for-in-conj is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have - (To AC Ty =¢ To) NC (To A Fy =0 F))
by (fact prop-5213[OF prop-5211 prop-5214])
moreover
have - (To AS Ty =¢ To) A2 (To A2 Fo =0 Fo) =0 Yo (To A? 1o =0 o)
proof —
have B-B-redex: - B+ A =, (To N2 A =, A) if A € wffs, for A
proof —
have Ty AC 1o =0 Lo € Wffso
by blast

155

moreover have S {(r, 0) — A} (To A2 to =0 to) = (To A2 A =4 A)
by simp
ultimately show ?Zthesis
using x and prop-5207[OF that] by metis
qed
from §1 and B-S-redez[OF true-wff)
have - (To A Ty = To) A2 2B+ Fy =o V0. ?B 10
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-(-redex|OF false-wff]
have - (Ty AC Ty =¢ To) A° (To NC Fo =0 Fo) =0 Vo ?B 1o
by (rule rule-R[where p = [«,»,»]]) force+
from this and B-f-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
ultimately have F Vi, (To A€ 1o =0 o)
by (rule rule-R[where p = []]) fastforce+
show ?thesis
using VI[OF (- Vio. (To A 1o =0 to)» assms x| by simp
qed

6.18 Proposition 5217

proposition prop-5217:
shows - (T =p Fo) =0 Fo
proof —
let B = Aro. (To =0 o)
have B-is-wff: B € wffsp—o
by auto
have «: is-free-for A (r, 0) (T =0 to) for A
by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §1: - 2B+« Ty A° B+ Fy =0 V1o. ?B 10
proof —
have - go—o -+ T NS go—o0* Fo =00 800 o (isk ?2C =, 7D)
using aziom-1 [unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have ?C € wffsp and ?D € wffsy and is-free-for ?B (g, o—0) (?C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (¢C =, ?D)
using B-is-wff and prop-5209 by presburger
then show %thesis
by simp
qed
then have - (Ty =¢ To) A2 (T =¢ Fo) =0 Vio. (To =0 o) (is F ?4)
proof —
have B-B-redex: b 2B« A =, (Ty =0 A) if A € wffs, for A
proof —
have Ty = 1o € wffso
by auto
moreover have S {(r, 0) — A} (To =0 to) = (To =0 A)
by simp

156

ultimately show ?thesis
using * and prop-5207[OF that] by metis
qed
from §1 and B-B-redex[OF true-wff] have - (Ty = To) NS ?B+ Fy =¢ Vio. ?B 10
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-S-redex[OF false-wff]
have - (T = To) A2 (To =0 Fo) =0 Yo 7B 1o
by (rule rule-R[where p = [«,»,»]]) force+
from this and B-S-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
from prop-5210[OF true-wff] have - Ty A2 (Ty =¢ Fo) =0 V1ro. (To =0 o)
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A]) (force+, fact)
from this and prop-5216[where A = T, =, F
have - (T = Fo) =0 Yo (To =o Fo)
by (rule rule-R [where p = [«,»]]) force+
moreover have §5:
F ((Ato- To) =o0—0 (Aro- ¥0)) =0 Vro- (Ato- To) * to =0 (Aro- ¥o) * ¥o)
proof —
have ~ (fo—)o =0—o0 90—)0) =0 Vo (fo—o * to =0 Go—o * Fo) (iS = ?2C =, ?D)
using aziom-3[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
moreover have is-free-for (A\to. To)) (f, 0—0) (?C =, ?D)
by fastforce
moreover have (Arp. To) € wffso—o and ?C € wffsp, and ?D € wffs,
by auto
ultimately have F S {(f, 0—0) — (Aro. To)} (?C =, ?D)
using prop-5209 by presburger
then have - (A\ro. T'0) =0—0 80—0) =0 Vo (Aro- To) * to =0 Go—0 * Lo)
(is+ 2C" =, ?D’)
by simp
moreover have is-free-for ((Aro. to)) (g9, 0—0) (?C' =, ?D’)
by fastforce
moreover have (Arp. Io) € wffso—o and ?C’ € wffsp and ?D’ € wffs,
using «(A\ro. To) € wffso—o> by auto
ultimately have - S {(g, 0—0) — (Aro. ro)} (?C' =, ?D’)
using prop-5209 by presburger
then show %thesis
by simp
qed
then have - Fy =, Vio. (To =0 to)
proof —
have F (A\ro. To) o =0 To
using prop-5208[where vs = [(x, 0)]] and true-wff by simp
with §5 have *:
F ((Aro- To) =o0—0 (Aro- t0)) =0 Vro. (To =0 (Aro- ¥o) * to)
by (rule rule-R[where p = [»,»,4,«,»]]) force+
have ~ ()\}50- Fo) *Lo =o Yo
using prop-5208|where vs = [(x, 0)]] by fastforce
with * have F ((Aro. To) =o—0 (Aro- £0)) =0 Vo.- (To =0 to)

157

by (rule rule-R[where p = [»,»,4,»]]) force+
then show ?thesis
by simp
qed
ultimately show ?thesis
using FEquality-Rules(2,3) by blast
qed

6.19 Proposition 5218

proposition prop-5218:
assumes A € wffsy
shows F (T =9 A) = A
proof —
let 7B = Ato. ((To =0 to) =0 o)
have B-is-wff: B € wffso—o
by auto
have §1: - 2B+ Ty A? 2B+« Fy =, Vro. 2B+ 10
proof —
have - go—o* To NS go—0* Fo=0Vro §o—0"to (isk ?C =, ?D)
using aziom-1[unfolded equivalence-def] by (rule aziom-is-derivable-from-no-hyps)
moreover have ?C € wffs, and ?D € wffs, and is-free-for ?B (g, o—0) (¢C =4 ?D)
by auto
ultimately have - S {(g, 0—0) — ?B} (C =, ?D)
using prop-5209[OF B-is-wff] by presburger
then show ?thesis
by simp
qed
have x: is-free-for A (r, 0) ((To =0 to) =0 ko) for A
by (intro is-free-for-in-equality is-free-for-in-true is-free-for-in-var)
have §2:
'_
((To =o To) =o To) NS ((To =o Fo) =o Fo)
-0
Vo ((To =0 to) =0 o)
proof —
have B-S-redex: - 2B« A = (Tp =0 A) = A) if A € wffs, for A
proof —
have (T = to) =0 to € wffso
by auto
moreover have S {(r, 0) — A} ((To =0 to) =0 ¥o) = (To =0 A) =0 A)
by simp
ultimately show ?thesis
using x and prop-5207|OF that] by metis
qed
from §1 and B-S-redex[OF true-wff]
have - ((Ty =¢ To) =0 To) A€ 2B+ Fog =4 Y1o. 7B 1o
by (rule rule-R[where p = [«,»,«,»]]) force+
from this and B-j-redex|OF false-wff]

158

have '7 ((TO =0 To) =0 To) /\Q ((TO =0 Fo) =0 Fo) =0 va. ?B . xO

by (rule rule-R[where p = [«,»,»]]) force+
from this and B-g-redex|OF wffs-of-type-intros(1)] show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed

have §3: + (To =0 To) =0 To
by (fact Equality-Rules(2)[OF prop-5210 [OF true-wff]])

have - ((To =0 To) =0 To) A2 ((To =0 Fo) =0 Fo)
by (fact prop-5213|OF §3 prop-5217))

from this and §2 have §/: - Vro. ((To =0 to) =0 o)
by (rule rule-R[where p = []]) fastforce+

then show ?thesis
using V I[OF §/ assms x| by simp

qed

6.20 Proposition 5219 (Rule T)

proposition prop-5219-1:
assumes A € wffs,
shows HEF A+— HEF Ty =0 A
proof safe
assume H F A
then have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - (Ty =0 4) =0 A
by (fact derivability-implies-hyp-derivability| OF prop-5218[OF assms]])
with (HF Ay show HF Ty, =0 A
using Fquality-Rules(1)[unfolded equivalence-def] and Equality-Rules(2) by blast
next
assume H - T, =, A
then have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - (Ty =p 4) = A
by (fact derivability-implies-hyp-derivability| OF prop-5218[OF assms]])
with <HF Ty, =¢ A> show HF A
by (rule Equality-Rules(1)[unfolded equivalence-def])
qed

proposition prop-5219-2:
assumes A € wffsy
shows HH A«— HEFA=,T,
using prop-5219-1[OF assms] and Equality-Rules(2) by blast

lemmas rule-T = prop-5219-1 prop-5219-2

6.21 Proposition 5220 (Universal Generalization)

context
begin

159

private lemma const-true-a-conversion:
shows - (Azg. To) =a—0 (Mza- To)
proof —
have (z, a) ¢ free-vars Ty and is-free-for (zq) (z, @) Ty
by auto
then have - (Azo. To) =a—0 A2a- S {(z, @) — 2o} To
by (rule prop-5206[OF true-wff])
then show ?thesis
by simp
qged

proposition prop-5220:
assumes H + A
and (z, «) ¢ free-vars H
shows H F Vzo. A
proof —
from <H F A> have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
have H - A
by fact
then have §2: H+ Ty =0 A
using rule-T(1)[OF hyp-derivable-form-is-wffso|OF <H + A>]] by simp
have §3: H F (Ara- To) =a—o (Aza- To)
by (fact derivability-implies-hyp-derivability| OF const-true-a-conversion <is-hyps H»))
from §3 and §2 have H F Ato. To =a—0 Ao A
proof (induction rule: rule-R'lwhere p = [», «]])
case no-capture
have *: [»,«] € positions (A\ta. To =a—0 A\a- To)
by simp
show ?case
unfolding rule-R'-side-condition-def and capture-ezposed-vars-at-alt-def[OF | using assms(2)
by simp
qed force+
then show ?thesis
unfolding forall-def[unfolded PI-def, folded equality-of-type-def] .
qed

end
lemmas Gen = prop-5220

proposition generalized-Gen:
assumes H - A
and Iset vs N free-vars H = {}
shows H +HV2, vs A

using assms(2) proof (induction vs)
case Nil
then show ?case

using assms(1) by simp

160

next
case (Cons v vs)
obtain z and « where v = (z, a)
by fastforce
with Cons.prems have Iset vs N free-vars H = {} and (z, a) ¢ free-vars H
by simp-all
from <Iset vs N free-vars H = {}> have H - V<, vs A
by (fact Cons.IH)
with «(z, a) ¢ free-vars H> and v = (z, «)> show Zcase
using Gen by simp
ged

6.22 Proposition 5221 (Substitution)

context
begin

private lemma prop-5221-auzx:
assumes H - B
and (z, o) ¢ free-vars H
and is-free-for A (z,) B
and A € wffsq
shows H F S {(z, o) — A} B
proof —
have H + B
by fact
from this and assms(2) have H + Vzq. B
by (rule Gen)
from this and assms(4,3) show ?thesis
by (rule VI)
qed

proposition prop-5221:
assumes H - B
and is-substitution U
and Yo € fmdom’ 9. var-name v & free-var-names H A is-free-for (¢ $$! v) v B
and 9 # {$$}
shows H+S ¢ B
proof —
obtain zs and As
where Iset zs = fmdom’ 9 — ie., xl ... 20
and As = map ((3$!) V) zs —ie., AL ..., AL
and length zs = card (fmdom’ ¥)
by (metis distinct-card finite-distinct-list finite-fmdom”)
then have distinct xs
by (simp add: card-distinct)
from <lset xs = fmdom’ 9> and <As = map (($$!) 9) zs» have Iset As = fmran’ 9
by (intro subset-antisym subsetl) (force simp add: fmlookup-dom’-iff fmlookup-ran’-iff)+
from assms(1) have finite (var-name ‘ (vars B U vars (Iset As) U vars H))

161

by (cases rule: is-derivable-from-hyps.cases) (simp-all add: finite-Domain vars-form-finiteness)
then obtain ys — i.e., yél, Yl

where length ys = length xs

and distinct ys

and ys-fresh:

(var-name * lset ys) N (var-name ‘ (vars B U vars (Iset As) U vars H U lset xs)) = {}

and map var-type ys = map var-type s

using fresh-var-list-existence by (metis image-Un)
have length s = length As

by (simp add: <As = map (($$!) 9) zs»)

1

ko k41 "

Ty von Ty, Tl 11 e Ty
—H S WA B
7 +1

A}Yl A(’jtkya%_*_1 oyn

have H + S (fmap-of-list (zip xs (take k As Q drop k (map FVar ys)))) B if k < length zs for k
using that proof (induction k)
case (
have H + S (fmap-of-list (zip xs (map FVar ys))) B
using <length ys = length rs»
and <length xs = length As»
and <(var-name ‘ Iset ys) N (var-name ‘ (vars B U vars (lset As) U vars H U lset xs)) = {}
and <lset s = fmdom’ ¥»
and <distinct ys»
and assms(3)
and <map var-type ys = map var-type s
and «distinct s
and <length xs = card (fmdom’ 9)»
proof (induction ys zs As arbitrary: ¥ rule: list-induct3)
case Nil
with assms(1) show ?case
using empty-substitution-neutrality by auto
next
— In the following:

— 1 1 n n
° ﬁ_{xal Yoy Loy, Hyan}

2 2
o P ={x, —yi, -, Th —Yn }

7 am

1

— 1
o vy =T, and vy, =y,

case (Cons vy ys v, xs A’ As’)
let 29 = fmap-of-list (zip xs (map FVar ys))
from Cons.hyps(1) have lset zs = fmdom’ 29
by simp
from Cons.hyps(1) and Cons.prems(6) have fmran’ 29 = FVar ¢ Iset ys
by force
have is-substitution %)
unfolding is-substitution-def proof
fix v
assume v € fmdom’ 79
with (lset zs = fmdom’ %9) obtain k where v = zs ! k and k < length zs
by (metis in-set-conv-nth)
moreover obtain a where var-type v = «

162

by blast
moreover from <k < length zsy and v = zs ! k» have 29 $$! v = (map FVar ys) ! k
using Cons.hyps(1) and Cons.prems(6) by auto
moreover from this and <k < length xs> obtain y and 8 where 29 $$! v = Ys
using Cons.hyps(1) by force
ultimately have a = 8
using Cons.hyps(1) and Cons.prems(5)
by (metis form.inject(1) list.inject list.simps(9) nth-map snd-conv)
then show case v of (z, a) = 2 83! (z, a) € wffsa
using <29 $$! v = yp> and <var-type v = a» by fastforce
qed
have v, ¢ fmdom’ 29
using Cons.prems(6) and <set zs = fmdom’ 29 by auto
obtain z and « where v, = (z, @)
by fastforce
have F'Var v, € wffsa
using Cons.prems(5) and surj-pair|of v,] unfolding <v, = (z, a)» by fastforce
have distinct xs
using Cons.prems(6) by fastforce
moreover have ys-fresh’:
(var-name * lset ys) N (var-name ¢ (vars B U vars (Iset As") U vars H U lset xs)) = {}
proof —
have vars (Iset (A’ # As’)) = vars {A'} U vars (Iset As’)
by simp
moreover have var-name ‘ (Iset (v, # zs)) = {var-name vy} U var-name © (Iset xs)
by simp
moreover from Cons.prems(1) have
var-name ‘ lset ys
N
(
var-name ‘ (vars B) U var-name (vars (Iset (A’ # As’))) U var-name * (vars H)
U wvar-name ‘ (lset (v, # xs))
)
= {}
by (simp add: image-Un)
ultimately have
var-name ‘ lset ys
N
(
var-name ¢ (vars B) U var-name ‘ (vars (Iset As’)) U var-name ¢ (vars H)
U var-name * (lset (v, # s))

)
={}
by fast
then show ?thesis
by (simp add: image-Un)
qed
moreover have distinct ys
using Cons.prems(3) by auto

163

moreover have Vv € fmdom’ 29. var-name v ¢ free-var-names H A is-free-for (29 $3! v)
proof
fix v
assume v € fmdom’ 29
with Cons.hyps(1) obtain y where 29 $$! v = FVar y and y € Iset ys
by (metis (mono-tags, lifting) fmap-of-zipped-list-range image-iff length-map list.set-map)
moreover from Cons.prems(2,4) have var-name v ¢ free-var-names H
using <Iset xs = fmdom’ %9 and <v € fmdom’ 29> by auto
moreover from <y € Iset ys» have y ¢ vars B
using ys-fresh’ by blast
then have is-free-for (FVar y) v B
by (intro absent-var-is-free-for)
ultimately show var-name v ¢ free-var-names H A is-free-for (29 $$! v) v B
by simp
qed
moreover have map var-type ys = map var-type xs
using Cons.prems(5) by simp
moreover have length zs = card (fmdom’ %9)
by (fact distinct card|OF <distinct xsy, unfolded <lset zs = fmdom’ %%, symmetric|)
2
T T
D Y2, YR,
ultimately have HFS 2B
using Cons.IH and <lset s = fmdom’ 29> by blast
moreover from Cons.prems(2,4) have (z, «) ¢ free-vars H
using v, = (z, a)> by auto
moreover have is-free-for (FVar v,) (z, a) (S % B)
proof —
have v, ¢ fmdom’ 29
using Cons.prems(1) and <lset s = fmdom’ %9 by force
moreover have frran’ 29 = lset (map FVar ys)
using Cons.hyps(1) and <distinct zs)» by simp
then have v, ¢ vars (fmran’ 29)
using Cons.prems(3) by force
moreover have v, ¢ vars B
using Cons.prems(1) by fastforce
ultimately have v, ¢ vars (S %) B)
by (rule excluded-var-from-substitution|OF <is-substitution #9)])
then show ?thesis
by (fact absent-var-is-free-for)
qged

7’}_[- S "‘ls 0‘2"' anB

yh, T y2, yR,

ultimately lllave gH FS {(z, o) — FVar vy} (S % B)
usmg <FVa7“ vy € wffsa® by (rule prop-5221-auzx)

—S cxlS Q”B S “1 “"B

Wi, 2yl Yz, Y, YR,
moreolver h2ave S {vy — FVar vy} S % B =S ({vy, — FVar vy} ++5 %) B
proof —
have v, ¢ Iset ys
using Cons.prems(1) by fastforce

164

v B

then have S {v, — FVar v,} (FVary) = FVar y if y € Iset ys for y
using that and free-var-singleton-substitution-neutrality and surj-pair[of y] by fastforce

with «fmran’ 29 = FVar ¢ Iset ys» have fmmap (AA". S {vy — FVar vy} A') 20 = 29
by (fastforce intro: fmap.map-ident-strong)

with <v, ¢ fmdom’ 29 show ?thesis
using Vv € fmdom’ 29. var-name v ¢ free-var-names H A is-free-for (29 $$! v) v B>
and substitution-consolidation by auto

qed

Yo, YL,
ultimately show Zcase

using v, = (z, o) and v, ¢ fmdom’ 29y and fmap-singleton-comm by fastforce
qed
with 0 and that show ?case
by auto
next
case (Suc k)
let ?ps = Ak. zip xs (take k As @Q drop k (map FVar ys))
let 2y = ys! kand 24 = As ! k
let 29 = Ak. fmap-of-list (?ps k)
let 29’ = Ak. fmap-of-list (map (M\(v', A7). (v', S {%y — 24} A")) (?ps k))
have frmdom’ (29 k') = lset s for k’
by (simp add: <length xs = length As) <length ys = length xs»)
have fmdom’ (29’ k') = Iset xs for k'
using «length zs = length As> and <length ys = length zs» and fmdom’-fmap-of-list by simp
have 7y € Iset ys
using Suc.prems <length ys = length xs> by simp
have Vj < length ys. ys ! j & vars (H::form set) A ys! j ¢ vars B
using «(var-name ‘ Iset ys) N (var-name ‘ (vars B U vars (Iset As) U vars H U lset xs)) = {}P
by force
obtain n, and o, where (n,, o) = %y
using surj-pair[of ?y] by fastforce
moreover have ?A € wffsq,
proof —
from Suc.prems and «(ny, o) = ?y» have var-type (zs ! k) = a
using «<length ys = length xs) and <map var-type ys = map var-type xs» and Suc-le-lessD
by (metis nth-map snd-conv)
with Suc.prems and assms(2) and <lset zs = fmdom’ ¥ and (As = map ((33!) ¥) zs> show
7thesis
using less-eq-Suc-le and nth-mem by fastforce
qed
ultimately have is-substitution { %y — ?A}
by auto
have wfs: is-substitution (29 k) for k
unfolding is-substitution-def proof
fix v
assume v € fmdom’ (29 k)
with «fmdom’ (29 k) = Iset zs)> obtain j where v = zs ! j and j < length zs
by (fastforce simp add: in-set-conv-nth)
obtain a where var-type v = «

165

by blast
show case v of (z, &) = (20 k) $$! (z, o) € wffsa
proof (cases j < k)
case True
with «j < length zs» and v = xs ! j» have (29 k) $$! v = As ! j
using «distinct xs» and <length xs = length As) and «<length ys = length xs> by force
with assms(2) «v = zs ! j» and «v € fmdom’ (99 k)> and (var-type v = > and <j < length zs»
have (20 k) $3! v € wffsq
using <As = map (($$!) ¥) zs» and <fmdom’ (29 k) = lset zs» and «lset zs = fmdom’
by auto
then show ?thesis
using <wvar-type v = a» by force
next
case Fulse
with «j < length zs» and v = xs | j» have (20 k) $$! v = FVar (ys! j)
using «(distinct xs» and <length xs = length As> and <length ys = length xs> by force
with «j < length zs» and «v = zs | j» and <var-type v = o> and «<length ys = length s
have (29 k) $3! v € wffsa
using <map var-type ys = map var-type zs» and surj-pair[of ys ! j]
by (metis nth-map snd-conv wffs-of-type-intros(1))
then show ?%thesis
using <wvar-type v = a» by force
qed
qed
have 9'-alt-def: 29’ k = fmap-of-list
(zip s
(take k (map (AA'. S {2y — ?A} A') As)
Q@
(drop k (map (MNA'". S {2y — 24} A') (map FVar ys)))))
proof —

have
fmap-of-list (zip xs (map (AA". S {?y — ?A} A') (take k As Q drop k (map FVar ys))))

fmap-of-list
(zip zs
(map (MNA'. S {?%y — 2A} A') (take k As)

Q@
(drop k (map (AA'. S {2y — 2A} A') (map FVar ys)))))
by (simp add: drop-map)
then show ?thesis
by (metis take-map zip-map2)
qed

1 k k+1 n

:1:0‘1 apTagyq ...Iun
—HF SAI Ak Rkt n B
ap o Al Yagyq o UG,

have H - S (20 k) B
by (fact Suc.IH[OF Suc-leD[OF Suc.prems]])

k41 ko k+1 n
LS Yor i1 S Ty o T apTapyr - Tan

H L Ak o E+1 n
apil ay o Al Yoy o YG,

then have H - S {?% — ?A} S (W k) B

166

proof —
from «(n,, ay) = 2y and «length ys = length zs> have (ny, o) ¢ free-vars H
using «Vj < length ys. ys | j ¢ vars (H::form set) A ys! j & vars By
and free-vars-in-all-vars-set and Suc-le-lessD[OF Suc.prems] by fastforce
moreover have is-free-for ?A (ny, ay) (S (29 k) B)
proof —
have is-substitution (fmdrop (zs! k) (29 k))
using wfs and <fmdom’ (29 k) = lset xs» by force
moreover from Suc-le-lessD[OF Suc.prems| have var-type (zs | k) = var-type (ys ! k)
using <length ys = length xs» and <map var-type ys = map var-type x> by (metis nth-map)
then have is-substitution {zs ! k — FVar %y}
unfolding is-substitution-def using «(n,, o) = 2y
by (intro balll) (clarsimp, metis snd-eqD wffs-of-type-intros(1))
moreover have (zs ! k) ¢ fmdom’ (fmdrop (xs! k) (%9 k))
by simp
moreover have
Yo € fmdom’ (fmdrop (zs ! k) (20 k)). 2y ¢ vars (fmdrop (zs ! k) (29 k) $3! v)
proof
fix v
assume v € fmdom’ (fmdrop (zs ! k) (729 k))
then have v € fmdom’ (%9 k)
by simp
with <fmdom’ (99 k) = lset zs) obtain j where v = zs ! j and j < length zs and j # k
using «v € fmdom’ (fmdrop (xs ! k) (29 k))»
and «(zs ! k) ¢ fmdom’ (fmdrop (xzs ! k) (29 k))» by (metis in-set-conv-nth)
then show 2y ¢ vars ((fmdrop (zs ! k) (29 k)) $$! v)
proof (cases j < k)
case True
with «j < length zs» and «<v = zs | j» have (29 k) $8! v = As ! j
using <distinct zsy and <length zs = length Asy and <length ys = length xs> by force
moreover from (j < length zs» and <length zs = length As» have ?y ¢ vars (A4s! j)
using <%y € Iset ys» and ys-fresh by fastforce
ultimately show ?thesis
using «v € fmdom’ (fmdrop (zs ! k) (99 k))» by auto
next
case Fulse
with «j < length zs» and «v = zs | j» have (2 k) $$! v = FVar (ys ! j)
using <distinct xsy and <length xs = length Asy and <length ys = length xs» by force
moreover from Suc-le-lessD[OF Suc.prems] and <j # k» have %y # ys ! j
by (simp add: <distinct ys» <j < length zs) <length ys = length xs)> nth-eg-iff-indezx-eq)
ultimately show ?Zthesis
using v € fmdom’ (fmdrop (s ! k)
and <zs ! k ¢ fmdom’ (fmdrop (xs !
qed
qed
moreover from <k < length xsy and <length ys = length zs) have ?y ¢ vars B
by (simp add: <Vj < length ys. ys ! j & vars H A ys | j & vars B»)
moreover have is-free-for ?A (zs ! k) B
proof —

(29 k))»
k) (29 k))» and surj-pair[of ys ! j] by fastforce

167

from Suc-le-lessD[OF Suc.prems] and <lset zs = fmdom’ ¢ have zs | k € fmdom’ ¥
using nth-mem by blast
moreover from Suc.prems and (As = map (($3!) ¥) zs> have ¥ $$! (zs! k) = 74
by fastforce
ultimately show ?thesis
using assms(3) by simp
qed
moreover
have Vv € fmdom’ (fmdrop (zs ! k) (29 k)). is-free-for (fmdrop (zs ! k) (79 k) $3! v) v B
proof
fix v
assume v € fmdom’ (fmdrop (zs ! k) (29 k))
then have v € fmdom’ (%9 k)
by simp
with «fmdom’ (29 k) = lset xs» obtain j where v = zs | j and j < length xs and j # k
using v € fmdom’ (fmdrop (zs ! k) (29 k))»
and <«(zs ! k) ¢ fmdom’ (fmdrop (xs ! k) (29 k))» by (metis in-set-conv-nth)
then show is-free-for (fmdrop (zs ! k) (20 k) $$! v) v B
proof (cases j < k)
case True
with <j < length zs) and <v = zs ! j» have (29 k) $$! v = As ! j
using <distinct xsy and <length xs = length As» and <length ys = length xs» by force
moreover have is-free-for (As ! j) v B
proof —
from <j < length zs» and <lset zs = fmdom’ 9> and (v = zs ! j» have v € fmdom’ ¥
using nth-mem by blast
moreover have ¢ $3! v = As ! j
by (simp add: <As = map (($8!) 9) zs» <j < length z$) <v = xs |)
ultimately show ?thesis
using assms(3) by simp
qed
ultimately show ?thesis
using «v € fmdom’ (fmdrop (zs ! k) (99 k))» by auto
next
case Fulse
with «j < length zs» and «v = zs | j» have (2 k) $$! v = FVar (ys ! j)
using <distinct zs» and <length xs = length Asy and <length ys = length zs> by force
moreover from <j < length zs) and <length ys = length xs» have ys! j ¢ vars B
using «Vj < length ys. ys! j & vars H A ys ! j ¢ vars By by simp
then have is-free-for (FVar (ys!j)) v B
by (fact absent-var-is-free-for)
ultimately show ?thesis
using (v € fmdom’ (fmdrop (zs ! k) (29 k))» by auto
qed
qed
ultimately have is-free-for ?A (ys ! k) S ({zs ! k — FVar %y} ++; fmdrop (zs ! k) (29 k)) B
using is-free-for-with-renaming-substitution by presburger
moreover have S ({zs ! k — FVar ?y} ++; fmdrop (zs ' k) (79 k)) B=S (% k) B
using <length s = length As> and <length ys = length xs» and Suc-le-eq and Suc.prems

168

and «distinct xs» by simp
ultimately show ?thesis
unfolding «(n,, ay) = 2y by simp
qed
ultimately show ?thesis
using prop-5221-auz[OF <H = S (%9 k) B] and (?A € wffsq,> and «(ny, o) = ?y> by metis
qed

k41 1 ko k41 n 1 ko k+1 k42 n
S Yo 11 S Toy o TagpPagyy o Tan B=S Tay o TapPap g Pagyy v Fan

D 4 k+1 2D 41 ko k+1 - 1 k k+1 k42 .
Aapis T Aay o AS Yoy - Ya, ALy o AG Aay 1 Yoo o Ya,

moreover have S {?%y — 24} S (29 k) B =S (2 (Suc k)) B
proof —
have S {?%y — ?A} S (20 k) B=S {?% — ?A} ++; (%' k) B
proof —
have ?y ¢ fmdom’ (79 k)
using <%y € lset ys» and <fmdom’ (7?9 k) = lset zs» and ys-fresh by blast
moreover have (720’ k) = fmmap (AA". S {?y — 2A} A') (29 k)
using <length zs = length As) and <length ys = length zs> by simp
moreover have Vv’ € fmdom’ (29 k). is-free-for (29 k $$! v’) v’ B
proof
fix v’
assume v’ € fmdom’ (70 k)
with <fmdom’ (29 k) = lset zs) obtain j where v’/ = zs ! j and j < length zs
by (metis in-set-conv-nth)
obtain o where var-type v’ = «
by blast
show is-free-for (29 k $$! v’) v’ B
proof (cases j < k)
case True
with «j < length zs) and v’ = xs ! j» have (29 k) $$! v/ = As ! j
using <distinct zsy and <length zs = length Asy and «<length ys = length xs> by force
moreover from <set xs = fmdom’ 9 and assms(3) have is-free-for (As ! j) (xs! j) B
by (metis <As = map (($$!)) zs» 4 < length x> nth-map nth-mem)
ultimately show ?Zthesis
using v’ = zs ! j» by (simp only:)
next
case Fulse
with «j < length zs» and «v’ = xs ! j> have (29 k) $$! v’ = FVar (ys ! j)
using «distinct zs» and <length xs = length Asy and <length ys = length zs> by force
moreover from <j < length zs)> have is-free-for (FVar (ys!j)) (zs!j) B
using «Vj < length ys. ys! j ¢ vars H A ys ! j ¢ vars By and «length ys = length zs)
and absent-var-is-free-for by presburger
ultimately show ?Zthesis
using (v’ = zs ! j» by (simp only:)
qed
qed
ultimately show ?thesis
using substitution-consolidation by simp
qged
also have ... = S {% — 2A} ++; (29 (Suc k)) B

169

proof —
have 20" k = 29 (Suc k)
proof (intro fsubset-antisym[unfolded fmsubset-alt-def] fmpredI)

fix v/ and A’
assume 2’k $% v’ = Some A’
then have v’ € fmdom’ (29’ k)
by (intro fmdom’I)
then obtain j where j < length zs and zs ! j = v’
using <fmdom’ (29’ k) = Iset xs» by (metis in-set-conv-nth)
then consider (a) j < k| (b) j =k | (c) j € {k<..< length zs}
by fastforce
then show 29 (Suc k) $% v/ = Some A’
proof cases
case @
with 9’-alt-def and <distinct zs> and (j < length xs>
have 29" k 83 (zs ! j) = Some (take k (map (MNA'. S {%y — 2A} A') As) ! j)
using <¢length zs = length As» and <length ys = length xs)> by auto
also from a and Suc.prems have ... = Some (S {%y — ?A} (As ! j))
using <length xs = length As)» by auto
also have ... = Some (As ! j)
proof —
from Suc.prems and <length ys = length xs> have Suc k < length ys
by (simp only:)
moreover have j < length As
using «j < length zs» and <length s = length As> by (simp only:)
ultimately have ?y ¢ vars (As! j)
using ys-fresh by force
then show ?thesis
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
qed
also from a and <zs ! j = v» and <distinct xs» have ... = 29 (Suc k) $$ v’
using <j < length zs)» and <length xs = length As> and <length ys = length xs»
by fastforce
finally show ?thesis
using <29’ k $$ v’ = Some A’» and <zs ! j = vy by simp
next
case b
then have
20" k 8% (xs ! k) = Some (drop k (map (ANA". S {%y — 24} A') (map FVar ys)) ! 0)
using «distinct xs» and <j < length xs» and <length xs = length As»
and <length ys = length zs> and fmap-of-list-nth-split by simp

also from Suc.prems have ... = Some (S {?%y — ?A} (FVar ?y))
using <length ys = length xs)> by simp
also from «(n,, o) = ys ! k» have ... = Some ?4
by (metis singleton-substitution-simps(1))
also from b and <zs ! j = v/» and <distinct zs» have ... = 29 (Suc k) $$ v’

using (j < length zs) and <length xs = length As> and «<length ys = length s>
by fastforce

170

finally show ?thesis

using b and <2’ k $$ v’ = Some A"y and «xs ! j = v’» by force
next

case ¢

then have j > k
by simp

with 9'-alt-def and <distinct zs» and <j < length zs» have

20"k $$ (zs ! j) = Some (drop k (map (AA". S {2y — 24} A") (map FVar ys)) ! (j — k))
using fmap-of-list-nth-split and <length s = length As> and «<length ys = length xs»

by simp
also from Suc.prems and ¢ have ... = Some (S {%y — 24} (FVar (ys!j)))
using <length ys = length xs» by simp
also from Suc-le-lessD]OF Suc.prems| and <distinct ys» have ... = Some (FVar (ys! 7))

using ¢j < length xs» and <k < j» and <length ys = length xs»
by (metis nless-le nth-eq-iff-index-eq prod.exhaust-sel singleton-substitution-simps(1))
also from c and <distinct zs» have ... = 29 (Suc k) $$ v’
using «zs ! j = vy and «<length xs = length As> and <length ys = length xs> by force
finally show ?thesis
using <%’ k $% v/ = Some A"» and «xs ! j = v’y by force
qed

note U-k-in-Sub-k = this
{
fix v’ and A’
assume 29 (Suc k) $$ v’ = Some A’
then have v’ € fmdom’ (29 (Suc k))
by (intro fmdom'I)
then obtain j where j < length zs and zs ! j = v’
using «fmdom’ (29 (Suc k)) = Iset zs» by (metis in-set-conv-nth)
then consider (a) j < k| (b) =k | (¢) j € {k<..< length zs}
by fastforce
with «j < length zs) and <xs ! j = v» and 9-k-in-Sub-k show 29’ k $$ v/ = Some A’
using <Ak’ fmdom’ (%' k') = Iset zs» and <29 (Suc k) $$ v’ = Some A"
by (metis (mono-tags, lifting) fmlookup-dom’-iff nth-mem)-+

qed
then show ?%thesis
by presburger
qed
also have ... =S (29 (Suc k)) B
proof —
have 29 (Suc k) $% %y = None
using <%y € Iset ys» <A\k'. fmdom’ (29 k') = lset xs» and ys-fresh by blast
moreover from Suc-le-lessD[OF Suc.prems| have ?y ¢ vars B
using «Vj < length ys. ys ! j ¢ vars H A ys ! j ¢ vars By and <length ys = length xs
by auto
ultimately show “thesis
by (rule substitution-absorption)
qed

171

finally show ?thesis .

qed
Il k [Ek+1 k+2 n
77_[[S 1 X411 Y42 an B
T Al Ak Ak+l k+2 Lym
ay Ao AagpiYagio o Yay,

ultimately show Zcase
by (simp only:)
qed

—HES A j B
then have # F S meap-of-list (zip zs As)) B
using <length s = length As) and <length ys = length xs> by force
moreover have frap-of-list (zip xs As) = 9
proof (intro fsubset-antisymlunfolded fmsubset-alt-def] fmpredI)
fix v and A
assume fmap-of-list (zip xs As) $8 v = Some A
with «Iset zs = fmdom’ ¥ have v € fmdom’ ¥
by (fast dest: fmap-of-list-SomeD set-zip-leftD)
with <fmap-of-list (zip s As) $% v = Some A> and «As = map ((3!) 9) zs» show 9 $$ v = Some

by
(simp add: map-of-zip-map fmap-of-list.rep-eq split: if-splits)
(meson fmdom’-notl option.exhaust-sel)
next
fix v and A
assume ¢ $$ v = Some A
with <As = map (($3!) 9¥) zs» show fmap-of-list (zip xs As) $$ v = Some A
using <lset zs = fmdom’ ¥ by (simp add: fmap-of-list.rep-eq fmdom’'l map-of-zip-map)
ged
ultimately show #thesis
by (simp only:)
qed

end

lemmas Sub = prop-5221

6.23 Proposition 5222 (Rule of Cases)

lemma forall-a-conversion:
assumes A € wffsy
and (z, 8) ¢ free-vars A
and is-free-for (23) (z, B) A
shows - Vag. A =oVzg. S {(z, B) — 25} A
proof —
from assms(1) have Vag. A € wffso
by (intro forall-wff)
then have - Vzﬁ. A=, Vxﬁ. A
by (fact prop-5200)
moreover from assms have - (A\zg. 4) =5_,, (\25. S {(z, B) — 23} A)
by (rule prop-5206)

172

ultimately show ?thesis
unfolding forall-def and PI-def by (rule rule-R [where p = [»,»]]) force+
qed

proposition prop-5222:
assumes H F S {(z, 0) — Ty} Aand HF S {(z, 0) — Fo} A
and A € wffs,
shows H + A
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
have §1: HE Ty =9 (Azp. A) + T
proof —
have - (Azo. A) « To =0 S {(z, 0) — Ty} A
using prop-5207[OF true-wff assms(3) closed-is-free-for| by simp
from this and assms(1) have H F (Azo. 4) » Ty
using rule-RR[OF disjI2, where p = [|] by fastforce
moreover have (Azy. A) « Ty € wffso
by (fact hyp-derivable-form-is-wffso[OF <H = (Azo. A) « T p»])
ultimately show ?thesis
using rule-T(1) by blast
qed
moreover have §2: HF+ Ty = (Azp. A) = Fy
proof —
have - (Azy. A) « Fo =90 S {(z, 0) — Fo} A
using prop-5207[OF false-wff assms(3) closed-is-free-for] by simp
from this and assms(2) have H + (Azo. 4) = Fy
using rule-RR[OF disjI2, where p = [|] by fastforce
moreover have (Azy. A) « Fy € wffs,
by (fact hyp-derivable-form-is-wffso]OF <H = (Azo. A) « F])
ultimately show ?thesis
using rule-T(1) by blast
qed
moreover from prop-5212 and <is-hyps H> have §3: H + T, AC T,
by (rule derivability-implies-hyp-derivability)
ultimately have H - (Azy. A) » Ty AC (Azp. A) = F,
proof —
from §3 and §7 have H - (Azo. A) » Ty NS T
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
from this and §2 show ?thesis
by (rule rule-R'[where p = [»]]) (force+, fastforce dest: subforms-from-app)
qged
moreover have - (Azy. A) « Ty A (M\zp. A) » Fp = Vz0. A
proof —
have go—0 * to € wffso
by blast
have - go—o* T NS go—o0 " Fo=0Vro go—o"to
using aziom-1[unfolded equivalence-def] by (rule axiom-is-derivable-from-no-hyps)
— By a-conversion

173

then have - go—o + To NS go—0* Fo =070 gono 2o (isk ?B =4 70)
proof —
have - Vio. go—o0 * to =0 VZo. §o—0 * To
proof (cases z = 1)
case True
from <go—0 * to € wffso> have - Vro. go—o * to =0 Vo go—o " ko
by (fact prop-5200[OF forall-wff])
with True show ?thesis
using identity-singleton-substitution-neutrality by simp
next
case Fulse
from (gop—o " ro € wffsoe
have - Y1o. §o—s0 * to =0 Vo. S {(x, 0) — 7o} (Go—0 * Lo)
by
(rule forall-a-conversion)
(simp add: False, intro is-free-for-to-app is-free-for-in-var)
then show ?thesis
by force
qed
with (- go—o* To A go—so* Fo =0 VIo. o0 * Lo> show ?thesis
using Fquality-Rules(3) by blast
qed
— By Sub
then have *: F (\zg. A) + Ty A2 (A\zg. A) » Fo =0 Y20. (Azo. A) * 20
proof —
let 29 = {(g, 0—0) — Azo. A}
from assms(3) have is-substitution 29
by auto
moreover have
Yo € fmdom’ 20.
var-name v & free-var-names ({}::form set) A is-free-for (29 $$! v) v (?B =, ?C)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 2 # {$$}
by simp
ultimately have - S 29 (B =, ?7C)
by (rule Sub [OF <+ 2B =, ?C)))
then show ?%thesis
by simp
qed
— By A-conversion
then show ?thesis
proof —
have - (A\zy. A) » 29 =p A
using prop-5208[where vs = [(z, 0)]] and assms(3) by simp
from x and this show ?thesis
by (rule rule-R[where p = [»,»,«]]) force+
qed
qed
ultimately have H F Vz,. A

174

using rule-RR and is-subform-at.simps(1) by (blast intro: empty-is-position)
then show ?thesis
proof —
have is-free-for (zo) (z, 0) A
by fastforce
from (H F Vz,. A and wffs-of-type-intros(1) and this show ?thesis
by (rule VI[of H x 0o A xo, unfolded identity-singleton-substitution-neutrality))
qed
qed

lemmas Cases = prop-5222

6.24 Proposition 5223

proposition prop-5223:
shows - (T, 22 9y) =0 Yo
proof —
have - (T D2 1) =0 (To =0 (To A< 1y))
proof —
let 24 = (A\to. A\9o. (x0 =2 10 A2 10)) * To * 9o
have 74 € wffs,
by force
then have - 7?4 =, ?A
by (fact prop-5200)
then have - (T, D2 n,) =, 74
unfolding imp-fun-def and imp-op-def .
moreover
have F (Aro. Ao (to =<2 10 A2 10)) * To =00 A\o. (To =2 Ty A2 1)
proof —
have Ayo. (to =2 1o A o) € wffso—o
by auto
moreover
have is-free-for T (r, 0) (M\o. (to =2 1o A2 90))
by fastforce
moreover
have S {(r, 0) — To} (A\yo. (ro =2 ro A2 10)) = (\o. (T'o =2 To A° 1))
by simp
ultimately show ?thesis
using prop-5207[OF true-wff] by metis

qed

ultimately have *: - (T, D9 1) =¢ (Avo. (To =2 Ty A2 1p)) * Do
by (rule rule-R [where p = [»,«]]) force+

have T, =2 T, A2 v, € wffso
by auto

then have - (Ayo. (To =2 To A2 10)) * o =0 (To =2 Ty A2 1)
using prop-5208[where vs = [(9, 0)]] by simp
from * and this show ?thesis
by (rule rule-R[where p = [»]]) force+
qed

175

with prop-5218 have - (T, D2 1,) =0 (To A2 o)
using rule-R and Fquality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
with prop-5216 show ?thesis
using rule-R and FEquality-Rules(3) by (meson conj-op-wff true-wff wffs-of-type-intros(1))
qged

corollary generalized-prop-5223:
assumes A € wffsy
shows - (T, D2 A) =, A
proof —
have T, D9 v, € wffso and is-free-for A (1, 0) ((To D vo) =0 Yo)
by (blast, intro is-free-for-in-equality is-free-for-in-imp is-free-for-in-true is-free-for-in-var)
from this(2) have S {(n, o) — A} ((To D2 9o) =0 Do)
by (rule prop-5209[OF assms <T o D2 v, € wffse> wffs-of-type-intros(1) prop-5223])
then show ?thesis
by simp
qged

6.25 Proposition 5224 (Modus Ponens)

proposition prop-5224:
assumes H+ Aand H+ A D¢ B
shows H - B
proof —
have H - A D2 B
by fact
moreover from assms(1) have A € wffs,
by (fact hyp-derivable-form-is-wffso)
from this and assms(1) have H+ A =, Ty
using rule-T(2) by blast
ultimately have H + T, D¢ B
by (rule rule-R'[where p = [«,»]]) (force+, fastforce dest: subforms-from-app)
have - (T, D¢ B) =, B
proof —
let 29 = {(vy, o) — B}
have B € wffsy
by (fact hyp-derivable-form-is-wffso| OF assms(2), THEN wffs-from-imp-op(2)])
then have is-substitution 2
by simp
moreover have
Yo € fmdom’ 29.
var-name v ¢ free-var-names ({}::form set) A
is-free-for (29 $8! v) v ((To D2 9o) =0 o)
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 729 # {$$}
by simp
ultimately have F S 29 (T, 22 9o) =0 10)
by (rule Sub[OF prop-5223))
then show ?thesis

176

by simp
qed
then show ?thesis
by (rule rule-RR[OF disjl1, where p = []]) (use <H F T, D2 B> in <force+>)
qged

lemmas MP = prop-5224

corollary generalized-modus-ponens:
assumes H F hs D2, Band VH € lset hs. H+ H
shows H + B
using assms proof (induction hs arbitrary: B rule: rev-induct)
case Nil
then show ?case
by simp
next
case (snoc H' hs)
from VH € lset (hs @ [H']). H+ H»> have H - H'
by simp
moreover have H - H' D¢ B
proof —
from «H (hs @ [H']) D2, B> have H - hs D<, (H' D° B)
by simp
moreover from VH € lset (hs Q [H']). H+ H» have VH € lset hs. H+ H
by simp
ultimately show ?thesis
by (elim snoc.IH)
qed
ultimately show ?case
by (rule MP)
qed

6.26 Proposition 5225

proposition prop-5225:
shows - [* fa—o o9 fa—o * o
proof —
have fo—0 * ta € wffso
by blast
have §1:
l_
[Ta* faso 22 (Ma=o- fa—so * ta) * (Ata. To))
=0
((Ma—o- fa—o * ta) * fa—o))
proof —
let 20 = {(h, (a—0)—0) — Ma—o- fa—o * ta, (&, a—=0) — Ara. To, (1, a—=0) — fa—o}
and ?A = (ta—o0 =a—0 Ya—o) oe (h(a—m)—)o *Ta—o =< h(a—>o)—>o * Da—o)
have F 24
by (fact aziom-is-derivable-from-no-hyps|OF axiom-2])

177

moreover have AMfo—o. fa—o0 * ta € wﬁs(a_m)_m and A\rg. Ty € wffsqa—o
and fo—o € Wffsa—o
by blast+
then have is-substitution 29
by simp
moreover have
Yo € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v ?A
by (code-simp, (unfold atomize-conj[symmetric])?, simp)+ blast
moreover have 79 # {$$}
by simp
ultimately have - S %} 74
by (rule Sub)
then show ?thesis
by simp
qed
have F [[q * fa—o o< (To =0 fa—o * ta)
proof —
have
F (Ma—o- fa—o * ta) * (Ata- To) =0 (Ata- To) * ta
(iS - (/\?x?ﬁ. '.?B) - 2A =0 ?C)
proof —
have - (\?zgg. #B) « ?A =, S {(?z, 98) — ?4} ?B
using prop-5207[OF wffs-of-type-intros(4)|OF true-wff] «?B € wffsy] by fastforce
then show ?thesis
by simp
qed
moreover have - (A\t. To) * ta =0 To
using prop-5208[where vs = [(r, a)]] and true-wff by simp
ultimately have - (Ma—o. fa—o " ta) * Ata. To) =0 To
by (rule Equality-Rules(3))
from §1 and this have b [[o * fa—o 22 (T =0 (Ma—o- fa—o * ta) * fa—o))
by (rule rule-R[where p = [»,«,»]]) force+
moreover have - (AMa—o. fa—o * ta) * fa—o =0 fa—o * ta
using prop-5208[where vs = [(f, a—0)]] by force
ultimately show ?thesis

by (rule rule-R[where p = [»,»]]) force+
qed
from this and prop-5218[OF Fa—o * ta € wffse’] show Zthesis
by (rule rule-R[where p = [»]]) auto

qed

6.27 Proposition 5226

proposition prop-5226:

assumes A € wffsq and B € wffso

and is-free-for A (z,) B

shows - V1. B D2 S {(z, a) — A} B
proof —

have - [[o * (Azq. B) D2 (Azq. B) + A

178

proof —
let 29 = {(f, a—0) — Azqo. B, (r, a) — A}
have F [[a * fa—o 22 fa—o * ta (is - 20)
by (fact prop-5225)
moreover from assms have is-substitution 29
by auto
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (%9 $3! v) v 2C
by (code-simp, (unfold atomize-conj[symmetric])?, fastforce)+ blast
moreover have 729 # {$$}
by simp
ultimately have - S 29 ?C
by (rule Sub)
moreover have S %) ?C = [[o * (\zq. B) D¢ (Azq. B) + A
by simp
ultimately show ?thesis
by (simp only:)
qed
moreover from assms have b (Azq. B) + A =4, S {(z, a) — A} B
by (rule prop-5207)
ultimately show %thesis
by (rule rule-R [where p = [»]]) force+
qged

6.28 Proposition 5227

corollary prop-5227:
shows - F, D% 10
proof —
have - Vio. 1o D2 S {(r, 0) — 10} (xo)
by (rule prop-5226) auto
then show ?thesis
using identity-singleton-substitution-neutrality by simp
qed

corollary generalized-prop-5227:
assumes A € wffsy
shows - F, D¢ 4
proof —
let 20 = {(x, 0) — A} and ?B = F, D% 1,
from assms have is-substitution 2
by simp
moreover have is-free-for A (¢, o) B
by (intro is-free-for-in-false is-free-for-in-imp is-free-for-in-var)
then have
Yo € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 3! v) v ?B
by force
ultimately have - S {(r, 0) — A} (Fo D< 10)
using Sub[OF prop-5227, where ¥ = 2] by fastforce

179

then show ?thesis
by simp
qed

6.29 Proposition 5228

proposition prop-5228:
shows - (T, D2 Ty) =0 Ty
and - (T, D2 F,) =0 Fo
and - (F, D9 Ty) =0 Ty
and - (Fy, D9 Fy) =0 T
proof —
show F (T D2 Ty) =¢ Toand - (T, D2 F,) =0 F)
using generalized-prop-5223 by blast+
next
have - F, D¢ Foand - F, D2 T,
using generalized-prop-5227 by blast+
then show I (Fy, D9 T,) =o Toand - (Fy, D2 Fy) =o T
using rule-T(2) by blast+
qed

6.30 Proposition 5229

lemma false-in-conj-provability:
assumes A € wffsy
shows F F, A€ A =° F,
proof —
have - (Aro- Mo (to =2 10 A9 90)) » Fpr A
by (intro generalized-prop-5227[OF assms, unfolded imp-op-def imp-fun-def])
moreover have
l_
(Ato- Ao. (xo =2 10 A€ 10)) * Fo
=o0—o0
Ayo. (Fo =2 Fo A2 1)
(iS = ()\?:E_QB. ‘?A) - 2B :?’Y QC)
proof —
have 7B € wffsgg and ?4 € wifs ¢ and is-free-for ?B (%z, ?3) ?A
by auto
then have b (A\?z95. ?A) - 7B
by (rule prop-5207)
moreover have S {(%z, ?8) — ?B} ?A = ?C
by simp
ultimately show ¢thesis
by (simp only:)

=7, S {(?z, ?8) — 7B} 74

qed

ultimately have - (\y,. (Fp, =2 Fy, A9 o)) - A
by (rule rule-Rlwhere p = [«]]) auto

moreover have
l_

()\UO (FO EQ FO /\Q 00)) . A

180

-0
(Fp =2 Fo NQ A)
(is = (Afzog. PA) « 7B =, ?0)
proof —
have ?B € wffs g and A € wffso
using assms by auto
moreover have is-free-for ?B (%z, ?0) ?A
by (intro is-free-for-in-equivalence is-free-for-in-conj is-free-for-in-false) fastforce
ultimately have - (A ?xyg. A) « 7B =, S {(z, ?8) — 7B} ?A
by (rule prop-5207)
moreover
have S {(%z, 78) — ?B} ?A = ?C
by simp
ultimately show ¢thesis
by (simp only:)
qed
ultimately have - F, =2 F, A€ 4
by (rule rule-R[where p = []]) auto
then show ?thesis
unfolding equivalence-def by (rule Equality-Rules(2))
qed

proposition prop-5229:
shows - (Ty A€ Ty) =¢ To
and - (To A Fy) =0 Fy
and - (Fy AC Ty) =0 Fo
and - (Fy A€ Fy) =, F
proof —
show - (Ty AC Ty) =¢ Toand - (Ty A€ Fy) =0 F
using prop-5216 by blast+
next
show - (Fy NS Ty) =¢ Foand - (Fy A2 Fy) =¢ Fy
using false-in-conj-provability and true-wff and false-wff by simp-all
qged

6.31 Proposition 5230

proposition prop-5230:
shows - (T, =2 Ty) =0 Ty
and - (T, =2 F,) =0 F)

and - (F, =2 T,) =0 F,
and - (Fy =9 Fy) =0 T
proof —

show F (T =2 Ty) =¢ Toand - (T, =2 F,) =, F,
unfolding equivalence-def using prop-5218 by blast+
next
show - (F, =2 Fy) =, Ty
unfolding equivalence-def by (rule Equality-Rules(2)[OF prop-5210[OF false-wff]])
next

181

have §1: = (Fo =2 To) 22 ((Ato. (xo =2 Fo)) + Fo =2 (Aro. (to =2 Fo)) * To)
proof —
let 29 = {(h, 0—>0) — Aro. (xo =2 Fy), (¢, 0) — Fo, (1, 0) — Ty}
and ?A = (ro =0 Yo) o9 (ho—o " ¥o =2 hoso * o)
have F 24
by (fact axiom-is-derivable-from-no-hyps|OF aziom-2])
moreover have is-substitution %)
by auto
moreover have
Vv € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v ?A
by (code-simp, unfold atomize-conj[symmetric], simp, force)+ blast
moreover have 79 # {$$}
by simp
ultimately have - S %} 74
by (rule Sub)
then show ?thesis
by simp
qed
then have §2: - (F, =2 Ty) D2 ((Fo =2 Fy) =2 (To =2 Fy)) (is - ?242)
proof —
have is-free-for A (x, 0) (xto =2 F,) for A
by code-simp blast
have S-reduction: = (Ato. (o =2 Fy)) » A =o (A =2 F,) if A € wffs, for A
using
prop-5207
[
OF that equivalence-wff [OF wffs-of-type-intros(1) false-wff]
dis-free-for A (x, 0) (xo =2 Fo)»
]
by simp
from §1 and S-reduction|OF false-wff] have
F(Fo =0 To) D2 ((Fo =2 Fo) =2 (Ato. (to =2 Fo)) * To)
by (rule rule-R[where p = [»,«,»]]) force+
from this and SB-reduction]| OF true-wff] show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
then have §3: - (F, =2 T,) D9 F,
proof —
note 71 = rule-RR[OF disjI1] and r2 = rule-RR|[OF disjI2]
have §31: - (Fp =2 Ty) D2 ((Fo =2 F,) =2 F,) (is - ?431))
by (rule r1[OF prop-5218[OF false-wff], where p = [»,»] and C = ?42]) (use §2 in «force+>)
have §35: - (Fo =2 Ty) D2 (To =2 Fy) (is - ?439)
by (rule r2[OF prop-5210[OF false-wff], where p = [»,«,»] and C = ?431]) (use §31 in «force+»)
show ?thesis
by (rule r1[OF prop-5218[OF false-wff], where p = [»] and C = ?A35]) (use §32 in «force+)
qed
then have - (F, =2 Ty) =2 ((Fp =2 Ty) A2 Fy)
proof —
have

182

l,
(Aro- A9o. (xo =2 1o A2 00)) * (Fo =2 T))
=o0—o
S {(x, 0) = Fo =2 To} (AWo. (ro =2 10 A o))
by (rule prop-5207) auto
from §3[unfolded imp-op-def imp-fun-def] and this
have - (\yo. (Fo =2 To) =2 (Fo =2 To) A2 1))+ Fo
by (rule rule-R[where p = [«]]) force+
moreover have
'_
(Ao. (Fo =2 Ty) =2 (Fp =2 Ty) A 1y)) » F
-0
S {(n, 0) — Fo} (Fo =2 To) =2 (Fo =2 To) A o)
by (rule prop-5207) auto
ultimately show ?thesis
by (rule rule-R[where p = [|]) force+
qed
moreover have §5: -, AC F, =2 F,
proof —
from prop-5229(2,4) have
FS{(x, 0) — To} (xo A€ Fo =2 Fp)and S {(r, 0) — Fo} (1o A2 Fo =2 Fy)
by simp-all
moreover have r, AC F, =2 F, € wffso
by auto
ultimately show Zthesis
by (rule Cases)
qed
then have - (F, =2 T,) AC F, =2 F,
proof —
let 29 = {(x, 0) — Fo =2 Ty}
have is-substitution ?)
by auto
moreover have Vv € fmdom’ %9.
var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v (xo NS Fo =2 Fy)
by simp
moreover have 79 # {$$}
by simp
ultimately have - S 2 (1o AC F, =2 Fy)
by (rule SublOF (- o A2 Fo =2 Fp))
then show ?thesis
by simp
qged
ultimately show - (F, =2 T,) =, Fy
unfolding equivalence-def by (rule Equality-Rules(3))
qed

6.32 Proposition 5231
proposition prop-5231:

183

shows F ~2 T, =, Fo
aIl(i'_’\/Q FO =0 TO
using prop-5230(3,4) unfolding neg-def and equivalence-def and equality-of-type-def .

6.33 Proposition 5232

lemma disj-op-alt-def-provability:
assumes A € wffsp and B € wffs,
shows - A Ve B =, ~9 (~2 A A? ~©2 B)
proof —
let 7C = (A\to- M\o. ~2 (~2 1o A2 ~21y)) A+ B
from assms have ?C € wffs,
by blast
have (~2 (~2 o A2 ~2 1)) € wffso
by auto
moreover obtain z where (z, 0) ¢ {(¢, 0), (v, 0)} and (z, 0) ¢ free-vars A
using free-vars-form-finiteness and fresh-var-existence
by (metis Un-iff Un-insert-right free-vars-form.simps(1,3) inf-sup-aci(5) sup-bot-left)
then have (z, 0) ¢ free-vars (~2 (~< 1o A2 ~2 1))
by simp
moreover have is-free-for (zo) (9, 0) (~2 (~2 1o A2 ~2 1y))
by (intro is-free-for-in-conj is-free-for-in-neg is-free-for-in-var)
ultimately have
F (Ao ~2 (~2 10 A2 ~2 10)) =00 (A20. S {(, 0) — 2o} ~2 (~2 1o A2 ~2 1))
by (rule «)
then have - (Ahy. ~2 (~2 1o A2 ~2 1)) =030 (A2p. ~2 (~C 15 A2 ~2 2p))
by simp
from prop-5200[OF <?C € wffso’] and this have
l_
(Aro- Azo. ~2 (~2xo A2 ~2 20)) + A+ B

=o
(}\XO AUO NQ (NQ ;0 /\Q NQ Uo)) . A . B

by (rule rule-R[where p = [«,»,4,«,«]]) force+
moreover have \zy. ~9 (~2 1ty A2 ~2 2,) € wffso—o
by blast
have
F
(Ato- Azo. ~2 (~C 1o N2 ~2 29)) + A
=o0—o0
S {(x, 0) = A} (Mzo. ~2 (~2 10 A° ~° 2))
by

(rule prop-5207)
(
fact, blast, intro is-free-for-in-neg is-free-for-in-conj is-free-for-to-abs,
(fastforce simp add: «(z, 0) & free-vars A»)+
)
then have '7 (Axo)\Zo. NQ (NQ Lo /\Q NQ Zo)) . A =0—0 (AZO. NQ (NQ A /\Q NQ Zo))
using «(z, 0) ¢ free-vars (~2 (~2 ro A2 ~2 1,))» by simp
ultimately have

184

F (Azo. ~2 (~2 AN ~2 20)) « B =0 (\to- \o. ~2 (~2 10 A® ~Cp)) = A+ B
by (rule rule-R[where p = [«,»,«]]) force+
moreover have - (Azp. ~2 (~2 A A2 ~2 2,)) « B =4S {(2, 0) — B} (~2 (~2 A N2 ~2 2p))
by
(rule prop-5207)
(
fact, blast intro: assms(1), intro is-free-for-in-neg is-free-for-in-conj,
use «(z, 0) & free-vars A» is-free-at-in-free-vars in <fastforce+»
)
moreover have S {(z, 0) — B} (~2 (~2 A N? ~€9 2,)) = ~2 (~2 A N9 ~2 B)
using free-var-singleton-substitution-neutrality|OF «(z, 0) & free-vars As] by simp
ultimately have - (Aro. Apo. ~2 (~2 1o A2 ~2 1)) = A+ B =y ~2 (~2 A N2 ~2 D)
using Fquality-Rules(2,8) by metis
then show ?thesis
by simp
qged

context begin

private lemma prop-5232-aux:
assumes - ~2 (A A€ B) =, C
andF~2 A'=, Aand + ~°2 B'=, B
shows - A’ Ve B' =, C
proof —
let D = ~2 (A NS B) =, C
from assms(2) have - ~2 (~2 A" A€ B) =, C (is - ?A1))

by (rule rule-RR[OF disjI2, where p = [«,»,»,«,»] and C = ?D]) (use assms(1) in <force+>)
from assms(3) have - ~2 (~2 A’ N2 ~2 B)) =, C
by (rule rule-RR[OF disjI2, where p = [«,»,»,»] and C = ?A1]) (use <k A1) in <force+»)

moreover from assms(2,3) have A’ € wffs, and B’ € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality wffs-from-neg)+
then have - A’ Ve B/ =, ~2 (~9 A’ A2 ~2 B
by (rule disj-op-alt-def-provability)
ultimately show ?thesis
using prop-5201-3 by blast
qed

proposition prop-5232:
shows - (T, V2 Ty) =0 Ty
and - (T VQ Fy) =0 Ty
and - (F, V€ Ty) =0 Ty
and - (Fo V2 Fo) =0 F,
proof —
from prop-5231(2) have - ~2 F, =, T, (is <+ 24)) .
from prop-5229(4) have - ~2 (F, A2 Fy) =0 Ty
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use <= 24> in (force+>)
from prop-5232-auz[OF this prop-5231(1) prop-52531(1)] show F (To Ve Ty) =0 Ty -
from prop-5229(3) have - ~2 (Fy AC Ty) =0 T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use < ?A» in <force+>)

185

from prop-5232-aux[OF this prop-5231(1) prop-52581(2)] show F (To V2 Fo) =¢ Ty -
from prop-5229(2) have - ~2 (T, A9 F,) =0 T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A]) (use <= 24> in (force+>)
from prop-5232-auz[OF this prop-5231(2) prop-5231(1)] show F (Fo, VE Ty) =o Ty -
next
from prop-5231(1) have - ~2 T, =, F, (is - ?4)) .
from prop-5229(1) have - ~2 (T, A2 Ty) =0 F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A4]) (use <= 24> in «force+>)
from prop-5232-auz[OF this prop-5231(2) prop-5231(2)] show - (Fo Ve Fo) =o Fo .
qged

end

6.34 Proposition 5233

context begin

private lemma lem-prop-5233-no-free-vars:
assumes A € puwffs and free-vars A = {}
shows (V. is-tv-assignment ¢ — Vp p A=T) —F A=, Ty (is ?Ar — -)
and (V. is-tv-assignment ¢ — Vp p A=F) — F A=, Fy (is ?Ar — -)
proof —
from assms have (?Ar —F A =, To) N (Ar — F A=, Fy)
proof induction
case T-puwff
havet T, =, T
by (rule prop-5200[OF true-wff])
moreover have V. is-tv-assignment ¢ — Vp ¢ To =T
using Vp-T by blast
then have — (V. is-tv-assignment ¢ — Vg ¢ Ty = F)
by (auto simp: inj-eq)
ultimately show ?case
by blast
next
case F-puff
have - F, =, F
by (rule prop-5200[OF false-wff])
moreover have V. is-tv-assignment ¢ — Vp ¢ Fo =F
using Vp-F by blast
then have — (V. is-tv-assignment ¢ — Vp ¢ Fo =T)
by (auto simp: inj-eq)
ultimately show ?case
by blast
next
case (var-pwff p) — impossible case
then show ?case
by simp
next
case (neg-puwff B)

186

from neg-pwff.hyps have ~2 B € puwffs and free-vars B = {}
using neg-pwff.prems by (force, auto elim: free-vars-form.elims)
consider
(a) V. is-tv-assignment ¢ — Vg ¢ B=T
| (b) V. is-tv-assignment ¢ — Vg ¢ B=TF
using closed-pwff-denotation-uniqueness| OF neg-pwff.hyps <free-vars B = {})]
and neg-pwff.hyps| THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g||
by (auto dest: tv-cases) metis
then show ?case
proof cases
case a
with <free-vars B = {}» have - T, =y B
using neg-pwff.IH and Equality-Rules(2) by blast
from prop-5231(1)[unfolded neg-def, folded equality-of-type-def] and this
have - ~¢ B =, F,
unfolding neg-def[folded equality-of-type-def] by (rule rule-R[where p = [«,»,»]]) force+
moreover from o have V. is-tv-assignment o — Vg ¢ (~< B) = F
using Vg-neg|OF neg-pwff.hyps] by simp
ultimately show ?thesis
by (auto simp: inj-eq)
next
case b
with <free-vars B = {}» have - F, =, B
using neg-pwff.IH and Equality-Rules(2) by blast
then have - ~¢ B =, T,
unfolding neg-def|[folded equality-of-type-def]
using rule-T(2)[OF hyp-derivable-form-is-wffso] by blast
moreover from b have V. is-tv-assignment ¢ — Vg ¢ (~2 B) =T
using Vp-neg|OF neg-pwff.hyps] by simp
ultimately show ?Zthesis
by (auto simp: inj-eq)
qed
next
case (conj-pwff B C)
from conj-pwff.prems have free-vars B = {} and free-vars C' = {}
by simp-all
with conj-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1
and C-den: V. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF conj-pwff .hyps(1) «free-vars B = {})]
and closed-puff-denotation-uniqueness|OF conj-pwff.hyps(2) «free-vars C = {}]
and conj-pwff.hyps| THEN V g-graph-denotation-is-truth-value[OF V g-graph-V]|
by force+
with conj-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢c) b=Fand b'=T

187

| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5229(1) have - Ty A2 Ty =, Ty (is <+ ?AD)) .
from B-den|unfolded a(1)] and «free-vars B = {}> have - B =, T
using conj-pwff.IH(1) by simp
then have - B AC T, =, T, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1> in <force+»)
from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using conj-pwff.IH(2) by simp
then have - B AS C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BA2 C)=T) — F B A2 C =, Ty
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (B A2 C) #F
using Vp-conj[OF conj-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case b
from prop-5229(2) have - Ty AS Fo =, Fo (is <= ?A1)) .
from B-den|unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using conj-pwff.IH(1) by simp
then have - B AC F, =, F, (is (- ?242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, F'y
using conj-pwff.IH(2) by simp
then have - B A2 C =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2) in «<force+>)
then have (VY . is-tv-assignment ¢ — Vg ¢ (BA2 C)=F) — F BA2 C =, F,
by blast
moreover have V . is-tv-assignment ¢ — Vg ¢ (B A2 C) # T
using Vg-conj[OF conj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c
from prop-5229(3) have - F, A2 Ty =, F, (is - ?A1)) .
from B-den[unfolded ¢(1)] and «free-vars B = {}» have - B =, F,
using conj-pwff.IH(1) by simp
then have - B AC T, =, F, (is (- 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1) in <force+))
from C-denlunfolded ¢(2)] and «free-vars C = {}» have - C =, T,
using conj-pwff.IH(2) by simp
then have - B A€ C =, F,

188

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BAS C)=F) — F BA2 C =, F,
by blast
moreover have V . is-tv-assignment ¢ — Vg ¢ (B A2 C) # T
using Vg-conj[OF conj-pwff.hyps] and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case d
from prop-5229(4) have - F, NS F, = Fo (is <= ?A1») .
from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using conj-pwff.IH(1) by simp
then have - B AC F, =, F, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ A1) in <force+»)
from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using conj-pwff.IH(2) by simp
then have - B A2 C =, F,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (Y ¢. is-tv-assignment ¢ — Vg ¢ (BA2 C) =F) — F BAC C =, F,
by blast

moreover have V. is-tv-assignment ¢ — Vg o (B A2 C) # T
using Vp-conj[OF conj-pwff .hyps] and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
qed
next
case (disj-pwff B C)
from disj-puwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with disj-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF disj-puwff.hyps(1) <free-vars B = {}}]
and closed-puff-denotation-uniqueness|OF disj-pwff.hyps(2) <free-vars C' = {}]
and disj-pwff.hyps| THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g|]
by force+
with disj-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢) b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a

189

from prop-5232(1) have - Ty, Ve Ty =, Ty (is <+ 2A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}> have - B =, T
using disj-pwff . IH(1) by simp
then have - B Ve T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denfunfolded a(2)] and «<free-vars C = {}> have - C =, T,
using disj-pwff . IH(2) by simp
then have - B Ve C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BV2 C)=T) — F BVe C =, Ty
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (BVS C) # F
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5232(2) have - T, Ve F, =, T, (is - ?A1) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using disj-pwff . TH(1) by simp
then have - B Ve F, =, T, (is - ?42))
by (rule rule-RR|OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using disj-pwff . TH(2) by simp
then have - B Ve C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+)
then have (V. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) —F BV2 C =, T,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (BVS C) # F
using Vp-disj|OF disj-pwff .hyps] and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case c
from prop-5252(3) have - F, V€ T, =, T, (is - ?A1)) .
from B-den[unfolded c(1)] and «free-vars B = {}> have - B =, F,
using disj-pwff . IH(1) by simp
then have - B Ve T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ A1) in <force+>)
from C-denlunfolded ¢(2)] and «free-vars C = {}» have - C =, T,
using disj-pwff . IH(2) by simp
then have - BVe C =, T,
by (rule rule-RR|[OF disjI2, where p = [«,»,»] and C = ?A2]) (use < 2A2) in <force+))
then have (V. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) —F BVe C =, T,
by blast
moreover have V. is-tv-assignment ¢ — Vp ¢ (BVS C) #F
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]

190

by (auto simp: inj-eq)

ultimately show ?thesis
by force

next

case d

from prop-5252(4) have - F, V€ F, =, F, (is <+ ?A1») .

from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using disj-pwff . IH(1) by simp

then have - B Ve F, =, F, (is (- ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1> in <force+»)

from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using disj-pwff.IH(2) by simp

then have - B Ve C =, F,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (VY ¢. is-tv-assignment ¢ — Vg ¢ (BVS C)=T) — F BVe C =, F,
by blast

moreover have V . is-tv-assignment ¢ — Vg ¢ (BVS C) # T
using Vp-disj|OF disj-pwff .hyps| and B-den[unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
using - B Ve C =, Fy by auto
qed
next
case (imp-puff B C)
from imp-puwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with imp-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp @ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF imp-puwff.hyps(1) <free-vars B = {})]
and closed-pwff-denotation-uniqueness| OF imp-pwff.hyps(2) «free-vars C = {}]
and imp-puwff.hyps| THEN V g-graph-denotation-is-truth-value[OF V g-graph-V g|]
by force+
with imp-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢) b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5228(1) have - Ty D2 Ty =, Ty (is <+ ?A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}» have - B =, T,
using imp-pwff.IH(1) by simp
then have - B D¢ T, =, T, (is <+ ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)

2Ty

191

from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using imp-pwff.IH(2) by simp
then have - B >2 C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V ¢. is-tv-assignment ¢ — Vg ¢ (BD2 C)=T) — F B 22 C =, Ty
by blast
moreover have Y . is-tv-assignment ¢ — Vg ¢ (B D2 C) # F
using Vg-imp|OF imp-pwff .hyps] and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5228(2) have - T, D2 F, =, F, (is - ?A1)) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using imp-pwff.IH(1) by simp
then have - B D2 F, =, F, (is (+ 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using imp-pwff.IH(2) by simp
then have - B 52 C =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B D2 C)=F) — F BD2 C =, F,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg ¢ (B D2 C) # T
using Vp-imp[OF imp-pwff.hyps] and B-den[unfolded b(1)] and C-denlunfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c
from prop-5228(3) have - F, D2 Ty, =, T, (is < ?A1)) .
from B-denlunfolded ¢(1)] and «(free-vars B = {}» have - B =, F,
using imp-pwff.IH(1) by simp
then have - B D2 T, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denlunfolded c(2)] and «free-vars C = {}» have - C =, T,
using imp-pwff.IH(2) by simp
then have - B D2 C =, T,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B2 C)=T) —F B2>2 C =, T,
by blast
moreover have V. is-tv-assignment ¢ — Vp o (B D2 C) #F
using Vp-imp[OF imp-pwff.hyps] and B-den|unfolded c¢(1)] and C-den|unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case d

192

from prop-5228(4) have - F, D2 F, =, T, (is - ?A1)) .
from B-denlunfolded d(1)] and «free-vars B = {}» have - B =, F,
using imp-pwff.IH(1) by simp
then have - B D2 F, =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ A1) in <force+>)
from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using imp-pwff.IH(2) by simp
then have - B >2 C =, T,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (BD2 C)=T) — F B 22 C =, Ty
by blast

moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B 22 C) # F
using Vp-imp[OF imp-pwff.hyps] and B-den|unfolded d(1)] and C-den[unfolded d(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
qed
next
case (equ-pwff B C)
from equ-pwff.prems have free-vars B = {} and free-vars C = {}
by simp-all
with equ-pwff.hyps obtain b and b’
where B-den: V . is-tv-assignment ¢ — Vp ¢ B =1>
and C-den: V ¢. is-tv-assignment ¢ — Vg ¢ C = b’
using closed-pwff-denotation-uniqueness by metis
then have b € elts B and b’ € clts B
using closed-pwff-denotation-uniqueness|OF equ-pwff.hyps(1) «free-vars B = {}]
and closed-pwff-denotation-uniqueness|OF equ-pwff.hyps(2) «free-vars C = {}]
and equ-pwff.hyps|THEN V g-graph-denotation-is-truth-value| OF V g-graph-V g||
by force+
with equ-pwff.hyps consider
(a) b=Tand b'=T
| (b)) b=Tand b'=F
| (¢c)b=Fand b'=T
| (d) b=F and b'=F
by auto
then show ?case
proof cases
case a
from prop-5230(1) have - (T, =2 T,) =0 To (is <+ ?A1)) .
from B-den|unfolded a(1)] and «free-vars B = {}» have - B =, T,
using equ-pwff.IH(1) by simp
then have - (B =2 T,) =, T, (is - ?42))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)
from C-denlunfolded a(2)] and «free-vars C = {}» have - C =, T,
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, T
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2) in «force+>)
then have (V. is-tv-assignment ¢ — Vp ¢ (B=2 C)=T) — F (B=2 C) =, T,

193

by blast
moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B =2 C) #F
using Vg-equ[OF equ-pwff.hyps| and B-den[unfolded a(1)] and C-den[unfolded a(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case b
from prop-5230(2) have - (T, =2 F,) =, F, (is <= ?A1)) .
from B-den[unfolded b(1)] and «free-vars B = {}» have - B =, Ty
using equ-pwff.IH(1) by simp
then have - (B =2 F,) =, F, (is <+ 242))
by (rule rule-RR|[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <+ ?A1» in <force+)
from C-denlunfolded b(2)] and «free-vars C = {}» have - C =, Fy
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A2]) (use <+ ?A2» in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B =2 C) =F) — F (B =2 C) =, F,
by blast
moreover have V ¢. is-tv-assignment ¢ — Vg o (B =2 C) # T
using Vp-equ[OF equ-pwff.hyps| and B-den[unfolded b(1)] and C-den[unfolded b(2)]
by (auto simp: inj-eq)
ultimately show ?thesis
by force
next
case c¢
from prop-5230(3) have - (F, =2 Ty) =, F, (is - 241)) .
from B-den|unfolded ¢(1)] and «free-vars B = {}» have - B =, F,
using equ-pwff.IH(1) by simp
then have - (B =2 T,) =, F, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A41]) (use <+ ?A1> in <force+»)
from C-denlunfolded c(2)] and «free-vars C = {}» have - C =, T,
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, F,
by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in (force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B=2 C)=F) — F (B=2 C) =, Fo
by blast
moreover have V. is-tv-assignment ¢ — Vp ¢ (B =2 C) # T
using Vp-equ[OF equ-pwff.hyps| and B-den[unfolded c¢(1)] and C-den[unfolded c(2)]
by (auto simp: inj-eq)
ultimately show ?Zthesis
by force
next
case d
from prop-5230(4) have - (Fo, =2 Fy) =o Ty (is - 2A1)) .
from B-den|unfolded d(1)] and «free-vars B = {}> have - B =, F,
using equ-pwff.IH (1) by simp
then have - (B =2 F,) =, T, (is - 242))
by (rule rule-RR[OF disjI2, where p = [«,»,«,»] and C = ?A1]) (use <= ?A1> in <force+>)

194

from C-denlunfolded d(2)] and «free-vars C = {}» have - C =, Fy
using equ-pwff.IH(2) by simp
then have - (B =2 C) =, T,

by (rule rule-RR[OF disjI2, where p = [«,»,»] and C = ?A42]) (use <+ ?A2> in <force+>)
then have (V. is-tv-assignment ¢ — Vg ¢ (B=2 C)=T) — F (B=2 0) =, T,

by blast
moreover have Y ¢. is-tv-assignment ¢ — Vg ¢ (B =2 C) # F

using Vg-equ[OF equ-pwff.hyps| and B-den[unfolded d(1)] and C-den[unfolded d(2)]

by (auto simp: inj-eq)
ultimately show ?thesis
by force
qed
qed
then show A — + A=, Tpand ?Ar —+ A=, F,y
by blast+
qged

proposition prop-5233:
assumes is-tautology A
shows - A
proof —
have finite (free-vars A)
using free-vars-form-finiteness by presburger
from this and assms show ?thesis
proof (induction free-vars A arbitrary: A)
case empty

from empty(2) have A € puwffs and V p. is-tv-assignment ¢ — Vg ¢ A =T

unfolding is-tautology-def by blast+
with empty(1) have - A =, Ty
using lem-prop-5233-no-free-vars(1) by (simp only:)
then show ?Zcase
using rule-T(2)[OF tautology-is-wffo| OF empty(2)]] by (simp only:)
next
case (insert v F')
from insert.prems have A € pwffs
by blast
with insert.hyps(4) obtain p where v = (p, o)
using puwffs-free-vars-are-propositional by blast
from (v = (p, 0)» and insert.hyps(4) have
is-tautology (S {(p, 0) — T} A) and is-tautology (S {(p, 0) — Fo} A)
using puwff-substitution-tautology-preservation |OF insert.prems] by blast+
moreover from insert.hyps(2,4) and v = (p, o)) and <A € pwffs

have free-vars (S {(p, 0) — To} A) = F and free-vars (S {(p, 0) — Fo} A) = F
using closed-pwff-substitution-free-vars and T-pwff and F-pwff and T-fv and F-fv

by (metis Diff-insert-absorb insertll)+

ultimately have - S {(p, 0) — Ty} Aand - S {(p, 0) — Fo} A
using insert.hyps(3) by (simp-all only:)

from this and tautology-is-wffo| OF insert.prems] show ?case
by (rule Cases)

195

qed
qged

end

6.35 Proposition 5234 (Rule P)

According to the proof in [2], if [ALA---AA"] D B is tautologous, then clearly A! O (... (4" D
B)...) is also tautologous. Since this is not clear to us, we prove instead the version of Rule
P found in [1]:

proposition tautologous-horn-clause-is-hyp-derivable:
assumes is-hyps H and is-hyps G
andVAce G HFA
and lset hs = G
and is-tautologous (hs D2, B)
shows H - B
proof —
from assms(5) obtain ¥ and C
where is-tautology C
and is-substitution 1
and Y (z, a) € fmdom’ 9. o = o
and hs D2, B=S 9 C
by blast
then have + hs D2, B
proof (cases ¥ = {$$})
case True
with (hs D2, B=S ¢ C» have C = hs D2, B
using empty-substitution-neutrality by simp
with <hs D9, B =S 9 C) and «is-tautology C» show ?thesis
using prop-5233 by (simp only:)
next
case Fulse
from <is-tautology C» have - C and C € puwffs
using prop-5233 by simp-all
moreover have
Yo € fmdom’ Y. var-name v ¢ free-var-names ({}::form set) A is-free-for (¥ $$! v) v C
proof
fix v
assume v € fmdom’ 9
then show var-name v ¢ free-var-names ({}::form set) A is-free-for (¥ $$! v) v C
proof (cases v € free-vars C)
case True
with «C € puwjfs) show ?thesis
using is-free-for-in-pwff by simp
next
case Fulse
then have is-free-for (9 $$! v) v C
unfolding is-free-for-def using is-free-at-in-free-vars by blast
then show ?thesis

196

by simp
qed
qed
ultimately show ?thesis
using False and «<is-substitution 9> and Sub
by (simp add: <hs D2, B = S 9 C»[unfolded generalized-imp-op-def])
qed
from this and assms(1) have H + hs D2, B
by (rule derivability-implies-hyp-derivability)
with assms(3,4) show ?thesis
using generalized-modus-ponens by blast
qged

corollary tautologous-is-hyp-derivable:
assumes is-hyps H
and is-tautologous B
shows H F B
using assms and tautologous-horn-clause-is-hyp-derivablelwhere G = {}] by simp

lemmas prop-5234 = tautologous-horn-clause-is-hyp-derivable tautologous-is-hyp-derivable

lemmas rule-P = prop-523/

6.36 Proposition 5235

proposition prop-5235:
assumes A € puffs and B € puwffs
and (z,) ¢ free-vars A
shows - V4. (A VE B) D2 (A Ve V4. B)
proof —
have §1: - V. (To Ve B) D2 (T V2 V4. B)
proof (intro rule-P(2))
show is-tautologous (¥ zq. (To VE B) D2 Ty VC V4. B)
proof —
let 29 = {(r, 0) — Yza. (To VE B), (9, 0) — Yzq. B} and ?C =1, D2 (T V2 (o))
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by fastforce
moreover have Vz. (Ty Ve B) D¢ T, Ve Va2, B=S 2 2C
by simp
ultimately show ?Zthesis
by blast
qed
qed simp
have §2: - Vzq. B D9 (Fy Ve V4. B)
proof (intro rule-P(2))
show is-tautologous (¥ zo. B D2 (Fo VE V4. B))
proof —

197

let 29 = {(z, 0) — Vzo. B} and 2C =1, D2 (Fo V2 (t0))
have is-tautology (xo D2 (Fo VC (o)) (is <is-tautology ?C»)
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution %
using pwffs-subset-of-wffso by auto
moreover have Vz,. B D2 (Fo Ve V1. B) =S 2 2C
by simp
ultimately show ?thesis
by blast
qed
qed simp
have §3: - B =2 (F, V¢ B)
proof (intro rule-P(2))
show is-tautologous (B =< (F, V¢ B))
proof —
let 29 = {(r, 0) — B} and ?C =1, =2 (F, V€< (20))
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by auto
moreover have B =2 (F, V¢ B) =S 2 72C
by simp
ultimately show ?thesis
by blast
qed
qged simp
from §2 and §3[unfolded equivalence-def] have §4:
FVaq. (Fo Ve B) D9 (Fo Ve V4. B)
by (rule rule-R[where p = [«,»,»,«]]) force+
obtain p where (p, 0) ¢ vars (Vaq. (A VE B) D2 (A V€ V4. B))
by (meson fresh-var-existence vars-form-finiteness)
then have (p, 0) # (z, «) and (p, 0) ¢ vars A and (p, o) ¢ vars B
by simp-all
from «(p, 0) ¢ vars B> have sub: S {(p, o) — C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have §5: F Vzq. (po VC B) D2 (po Ve Vaa. B) (is «+ 20»)
proof —
from sub and §1 have - S {(p, 0) — Ty} ?C
using «(p, 0) # (z, a)» by auto
moreover from sub and §4 have - S {(p, o) — Fy} 2C
using «(p, 0) # (z, a)» by auto
moreover from assms(2) have ?C € wffs,
using pwffs-subset-of-wffso by auto
ultimately show ¢thesis
by (rule Cases)
qed
then show ?thesis
proof —
let 29 = {(p, o) — A}

198

from assms(1) have is-substitution 29
using pwffs-subset-of-wffso by auto
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $3! v) v 2C
proof
fix v
assume v € fmdom’ 29
then have v = (p, o)
by simp
with assms(3) and «(p, o) ¢ vars B> have is-free-for (29 $$! v) v 2C
using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-disj) auto
moreover have var-name v ¢ free-var-names ({}::form set)
by simp
ultimately show var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2C
unfolding v = (p, 0)» by blast
qed
moreover have 79 # {$$}
by simp
ultimately have - S %) 2C
by (rule Sub[OF §5])
moreover have S 29 ?C = V4. (A VS B) D9 (A Ve V4. B)
using «(p, 0) # (z,) and sub[of A] by simp fast
ultimately show ?thesis
by (simp only:)
qged
ged

6.37 Proposition 5237 (D V Rule)

The proof in [2] uses the pseudo-rule Q and the axiom 5 of F. Therefore, we prove such axiom,
following the proof of Theorem 143 in [1]:

context begin

private lemma prop-5237-aux:
assumes A € wffsp and B € wffs,
and (z, a) ¢ free-vars A
shows - V1. (A D¢ B) =2 (A 22 (Vaq. B))
proof —
have is-tautology (xo =< (T D2 to)) (is «<is-tautology ?C1>)
using Vg-simps by simp
have is-tautology (xo0 D2 (xo =< (Fo D 10))) (is <is-tautology ?Cs)»)
using Vp-simps by simp
have §1: - Vzo. B =2 (T, D2 V4. B)
proof (intro rule-P(2))
show is-tautologous (Vzo. B =2 (Ty D2 Vaq. B))
proof —
let 29 = {(x, 0) — Vzq. B}
from assms(2) have is-pwff-substitution %9

199

using pwffs-subset-of-wffso by auto
moreover have Vz,. B =2 (To o2 Vig. B)=S % ¢C,
by simp
ultimately show ?thesis
using (is-tautology ?C1> by blast
qed
qed simp
have §2: - B =2 (T, >° B)
proof (intro rule-P(2))
show is-tautologous (B =< T, D2 B)
proof —
let 29 = {(x, o) — B}
from assms(2) have is-pwff-substitution %
using pwffs-subset-of-wffso by auto
moreover have B=°2 T, 22 B=S 29 2C;
by simp
ultimately show ?thesis
using <is-tautology ?C1> by blast
qed
qed simp
have - T
by (fact true-is-derivable)
then have §3: - Vzo. Ty
using Gen by simp
have §/: - Vzqo. Tp =2 (Fo D2 V. B)
proof (intro rule-P(1)[where G = {Vzq. To}])
show is-tautologous ([Vzq. Ty D% (V1. To =2 (Fo D2 V4. B)))
proof —
let 29 = {(z, 0) — Yzq. To, (v, 0) — Vzq. B}
from assms(2) have is-pwff-substitution %9
using pwffs-subset-of-wffso by auto
moreover have [Vzq. To] D9, (Vaa. To =2 (Fp D2 Vao. B)) =S 29 20,
by simp
ultimately show ?thesis
using <is-tautology 7Cs» by blast
qed
qged (use §3 in fastforce)+
have §5: - T, =2 (F, D2 B)
proof (intro rule-P(2))
show is-tautologous (T, =2 (Fo D2 B))
proof —
let 29 = {(r, 0) — B} and ?C = T, =2 (F, D9 10)
have is-tautology ?C
using Vp-simps by simp
moreover from assms(2) have is-pwff-substitution 7
using pwffs-subset-of-wffso by auto
moreover have T, =< (F, D¢ B) =S 29 ?C
by simp
ultimately show ?thesis

200

by blast
qed
qed simp
from §/ and §5 have §6: - Vzq. (Fo D2 B) =2 (Fy D¢ Vzu. B)
unfolding equivalence-def by (rule rule-Rlwhere p = [«,»,»,«]]) force+
from §7 and §2 have §7: - V. (T D2 B) =2 (T D¢ V4. B)
unfolding equivalence-def by (rule rule-R[where p = [«,»,»,«]]) force+
obtain p where (p, 0) ¢ vars B and p # x
using fresh-var-existence and vars-form-finiteness by (metis finite-insert insert-iff)
from «(p, o) ¢ vars B> have sub: S {(p, o) — C} B = B for C
using free-var-singleton-substitution-neutrality and free-vars-in-all-vars by blast
have §8: - Vzq. (po D2 B) =2 (po D2 Vaqa. B) (is - ?2C3)
proof —
from sub and §7 have S {(p, 0) — Ty} ?C;
using <p # x> by auto
moreover from sub and §6 have - S {(p, 0) — F,} ?C3
using <p # z» by auto
moreover from assms(2) have ?Cs € wffs,
using pwffs-subset-of-wffso by auto
ultimately show ?thesis
by (rule Cases)
qed
then show ?thesis
proof —
let 29 = {(p, 0) — A}
from assms(1) have is-substitution 29
using puwffs-subset-of-wffso by auto
moreover have
Vv € fmdom’ ?9. var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v 2C3
proof
fix v
assume v € fmdom’ 2
then have v = (p, o)
by simp
with assms(3) and «(p, 0) ¢ vars B> have is-free-for (29 $$! v) v ?2C3
using occurs-in-vars
by (intro is-free-for-in-imp is-free-for-in-forall is-free-for-in-equivalence) auto
moreover have var-name v ¢ free-var-names ({}::form set)
by simp
ultimately show var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2C3
unfolding <v = (p, 0)» by blast
qed
moreover have 79 # {$$}
by simp
ultimately have - S 29 ?C3
by (rule Sub[OF §8])
moreover have S 79 ?C3 = V1. (A D2 B) =2 (A D2 V4. B)
using (p # z» and sub[of A] by simp
ultimately show ?Zthesis

201

by (simp only:)
qed
qed

proposition prop-5237:
assumes is-hyps H
and H - A D9 B
and (z, a) ¢ free-vars ({A} U H)
shows H - A 52 (Vzq. B)
proof —
have H - A D¢ B
by fact
with assms(3) have H - Vzq. (A D2 B)
using Gen by simp
moreover have H - Vzq. (A D2 B) =2 (A D2 (Vzqo. B))
proof —
from assms(2) have A € wffs, and B € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op)+
with assms(1,3) show ?thesis
using prop-5237-aur and derivability-implies-hyp-derivability by simp
qed
ultimately show #thesis
by (rule Equality-Rules(1))
qed

lemmas DV = prop-5237

corollary generalized-prop-5237:
assumes is-hyps H
and H+ AD° B
and Vv € S. v ¢ free-vars ({A} UH)
and lset vs = §
shows H - A 52 (V<, vs B)
using assms proof (induction vs arbitrary: S)
case Nil
then show ?case
by simp
next
case (Cons v vs)
obtain z and o« where v = (z, a)
by fastforce
from Cons.prems(3) have x: Vv’ € S. v’ ¢ free-vars ({A} U H)
by blast
then show ?case
proof (cases v € Iset vs)
case True
with Cons.prems(4) have lset vs = S
by auto
with assms(1,2) and * have H - A D2 V<, vs B

202

by (fact Cons.IH)

with True and <Iset vs = S» and v = (7, a)» and * have H - A D2 (V1. V<, vs B)
using prop-5237[OF assms(1)] by simp

with v = (z, «)» show ?Zthesis
by simp

next

case Fulse

with <lset (v # vs) = S» have lset vs = S — {v}
by auto

moreover from * have Vv’ € S — {v}. v’ ¢ free-vars ({A} U H)
by blast

ultimately have H - A D2V, vs B
using assms(1,2) by (intro Cons.IH)

moreover from Cons.prems(4) and v = (z, a)> and * have (z, o) ¢ free-vars ({A} U H)
by auto

ultimately have H - A D2 (V1. V<, vs B)
using assms(1) by (intro prop-5237)

with (v = (2, a)> show ?thesis
by simp

qed
qged

end

6.38 Proposition 5238

context begin

private lemma prop-5238-aux:
assumes A € wffsq and B € wffsq
shows F ((Azg. A) =5_,, (Azg. B)) =< Vag. (A =a B)
proof —
have §1:
= (fﬂ—m :B—Hl g,B—)a) EQ V?/B (f,B—)a . 3:,3 =« 96—>a . ;6) (iS = - EQ V{ﬂ ?Cﬁ)
by (fact axiom-is-derivable-from-no-hyps|OF axiom-3])
then have §2:
F(fs—a =p—a 85—a) =9 Vzg. (fga * 28 =a 85 =) (is (= 2Cp)
proof (cases © = 1)
case True
with §1 show ?thesis
by (simp only:)
next
case Fulse
have ?C, € wffso
by blast
moreover from Fualse have (z,) ¢ free-vars ?C
by simp
moreover have is-free-for (zg) (xr, 8) 7C1
by (intro is-free-for-in-equality is-free-for-to-app) simp-all

203

ultimately have - Arg. 7C1 =g_,, Azg. (S {(x, B) — zg} 7C1)
by (rule a)
from §1 and this show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
then have §3:
F ((/\375 A) =Ba (/\I,B B)) =2 V:CIB. ((/\atﬁ A) - T3 =a ()\LL‘B B) - arﬁ)
proof —
let 29 = {(f, B—a) — Azg. 4, (9, f—a) — Azg. B}
have Azg. Ae wﬁsﬁ_m and Azg. B € wﬁsﬂ_}a
by (blast intro: assms(1,2))+
then have is-substitution 29
by simp
moreover have
Vv € fmdom’ ?29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $$! v) v 2Co
proof
fix v
assume v € fmdom’ 29
then consider (a) v = (f, 8—a) | (b) v = (g, f—a)
by fastforce
then show var-name v ¢ free-var-names ({}::form set) A is-free-for (729 $3! v) v 2C5
proof cases
case a
have (z,) ¢ free-vars (Azg. A)
by simp
then have is-free-for (\zg. A) (f, B—a) 7C
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with a show ?thesis
by force
next
case b
have (z, 3) ¢ free-vars (Azg. B)
by simp
then have is-free-for (Azg. B) (9, f—a) ?C>
unfolding equivalence-def
by (intro is-free-for-in-equality is-free-for-in-forall is-free-for-to-app, simp-all)
with b show ?thesis
by force
qed
qed
moreover have 29 # {$$}
by simp
ultimately have - S 29 2C,
by (rule Sub[OF §2])
then show “thesis
by simp
qed
then have §4: - ((A\zg. A) =g, (Azg. B)) =< Vzg. (A =a (Azg. B) » 23)

204

proof —
have - (Azg. A) » 15 =o A
using prop-5208[where vs = [(z, 5)]] and assms(1) by simp
from §3 and this show ?thesis
by (rule rule-R[where p = [»»,«,«,»]]) force+
qed
then show ?thesis
proof —
have i~ (Azg. B) » 23 =a B
using prop-5208(where vs = [(z, 5)]] and assms(2) by simp
from §/ and this show ?thesis
by (rule rule-R[where p = [»,»,«,»]]) force+
qed
qged

proposition prop-5238:
assumes vs # [| and A € wffsq and B € wffsq
shows +)<, vs A =foldr (=) (map var-type vs) o Ae, vs B=2 V<, us (A =4 B)
using assms proof (induction vs arbitrary: A B « rule: rev-nonempty-induct)
case (single v)
obtain z and 8 where v = (z,)
by fastforce
from single.prems have
A2, vs A = foldr (=) (map var-type vs) a A, us B=2 V2, vs (A =q B) € wffso
by blast
with single.prems and v = (z, §)) show Zcase
using prop-5238-aux by simp
next
case (snoc v vs)
obtain z and 8 where v = (z,)
by fastforce
from snoc.prems have)\zﬁ. A€ wﬁ%ﬁ_m and)\xﬁ. B e wﬁ%_m
by auto
then have
l_
A9, s ()‘Iﬂ' 4) ~foldr (=) (map var-type vs) (B—a) A9, s (/\xﬂ' B)
=<
Ve, us (Azg. A) =g (Azg. B))
by (fact snoc.IH)
moreover from snoc.prems have - Azg. A =g_,, Azg. B =< Vag. (A =a B)
by (fact prop-52538-aux)
ultimately have
}7
)‘QQ* vs (Awﬂ' A) ~foldr (—) (map var-type vs) (B—a) A9, ws ()‘xﬁ' B)
Ve, vs Vzg. (A =a B)
unfolding equivalence-def proof (induction rule: rule-R{where p = » # foldr (A-. (Q) [»,«]) vs []])
case occ-subform

205

then show ?case
using innermost-subform-in-generalized-forall| OF snoc.hyps] and is-subform-at.simps(3)
by fastforce
next
case replacement
then show ?case
using innermost-replacement-in-generalized-forall]OF snoc.hyps]
and is-replacement-at-implies-in-positions and replace-right-app by force
qed
with (v = (z, 8)> show ?case
by simp
qged

end

6.39 Proposition 5239

lemma replacement-derivability:
assumes C € wﬁsg
and A <, C
and - A=, B
and C{p «+ B) > D
shows - C =3 D
using assms proof (induction arbitrary: D p)
case (var-is-wff v x)
from var-is-wff.prems(1) have p = [] and A = z~
by (auto elim: is-subform-at.elims(2))
with var-is-wff.prems(2) have o =
using hyp-derivable-form-is-wffso and wff-has-unique-type and wffs-from-equality by blast
moreover from «p = [and var-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
ultimately show Zcase
using (A = z~) and var-is-wff.prems(2) by (simp only:)
next
case (con-is-wff v ¢)
from con-is-wff.prems(1) have p = [and A = {cf}y
by (auto elim: is-subform-at.elims(2))
with con-is-wff.prems(2) have o = v
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (meson wffs-from-equality wffs-of-type-intros(2))
moreover from «p = [> and con-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and is-subform-at.simps(1) by iprover
ultimately show Zcase
using (A = {cl},» and con-is-wff.prems(2) by (simp only:)
next
case (app-is-wff v § C1 C3)
from app-is-wff.prems(1) consider
(a) p =]
| (0)dp. p=«H#p' NA jpr (o

206

|(c)3p’.p:»#p’/\Ajp/ Cs
using subforms-from-app by blast
then show ?case
proof cases
case a
with app-is-wff.prems(1) have A = Cy + Cy
by simp
moreover from a and app-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from <4 = C; - Cy» and <D = By and app-is-wff.hyps(1,2) and assms(3) have a =
0
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-equality)
ultimately show ?thesis
using assms(3) by (simp only:)
next
case b
then obtain p’ where p = « # p’ and A jp/ C1
by blast
moreover obtain D; where D = Dy « Cy and Cy{p’ < B) > D,
using app-is-wff.prems(3) and «<p = « # p"» by (force dest: is-replacement-at.cases)
ultimately have - C =0 D4
using app-is-wff.IH(1) and assms(3) by blast
moreover have - Cy =~ (3
by (fact prop-5200[OF app-is-wff.hyps(2)])
ultimately have - C; « Cy =5 D1 » Cs
using Equality-Rules(4) by (simp only:)
with <D = D; « Cy) show ?thesis
by (simp only:)
next
case ¢
then obtain p’ where p = » # p’and 4 = Cs
by blast
moreover obtain Dy where D = C; « Dy and Cq{p’ < B) > D3
using app-is-wff.prems(3) and «<p = » # p"» by (force dest: is-replacement-at.cases)
ultimately have - C3 = D>
using app-is-wff . IH(2) and assms(3) by blast
moreover have - (' =y C1
by (fact prop-5200[OF app-is-wff.hyps(1)])
ultimately have - C; « Cy =5 C1 + Do
using Fquality-Rules(4) by (simp only:)
with <D = C1 » Dy) show ?thesis
by (simp only:)
qed
next
case (abs-is-wff § C' v x)
from abs-is-wff.prems(1) consider (a) p=1[] | (b) Ip . p=« # p' N A =y’ c’
using subforms-from-abs by blast
then show ?case

207

proof cases
case a
with abs-is-wff.prems(1) have A = Az-. C’
by simp
moreover from o and abs-is-wff.prems(3) have D = B
using is-replacement-at-minimal-change(1) and at-top-is-self-subform by blast
moreover from (A = Azy. C and <D = B> and abs-is-wff .hyps(1) and assms(3) have o =
y—6
using hyp-derivable-form-is-wffso and wff-has-unique-type
by (blast dest: wffs-from-abs wffs-from-equality)
ultimately show Zthesis
using assms(3) by (simp only:)
next
case b
then obtain p’ where p = « # p’and A = c’
by blast
moreover obtain D’ where D = \z,. D" and C'(p’ +- B) > D’
using abs-is-wff.prems(3) and <p = « # p" by (force dest: is-replacement-at.cases)
ultimately have - C’' =5 D’
using abs-is-wff .IH and assms(3) by blast
then have - Azy. C' =, _,5 Azy. D’
proof —
from - C' =5 D have - V. (C' =5 D)
using Gen by simp
moreover from - C' =5 D"y and abs-is-wff.hyps have D’ € wffss
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-equality)
with abs-is-wff .hyps have b (Azy. C' =, ;5 Azy. D) =2 Vz,. (C'=5 D)
using prop-5238[where vs = [(z, 7)]] by simp
ultimately show ?thesis
using Fquality-Rules(1,2) unfolding equivalence-def by blast
qed
with (D = Azy. D’ show ?thesis
by (simp only:)
qed
qged

context
begin

private lemma prop-52589-aux-1:
assumes p € positions (+<, (FVar v) (map FVar vs))
and p # replicate (length vs) «
shows
(34 B. A+ B <y (-9, (FVar v) (map FVar vs)))
V
(3v € Iset vs. occurs-at v p (<, (FVar v) (map FVar vs)))
using assms proof (induction vs arbitrary: p rule: rev-induct)
case Nil
then show ?case

208

using surj-pair|of v] by fastforce
next
case (snoc v’ vs)
from snoc.prems(1) consider
(a) p =]
() p = D]
| (¢) 3p’ € positions (+<, (FVar v) (map FVar vs)). p = « # p’
using surj-pair[of v] by fastforce
then show ?case
proof cases
case c
then obtain p’ where p’ € positions (+2, (FVar v) (map FVar vs)) and p = « # p’
by blast
from «p = « # p’» and snoc.prems(2) have p’ # replicate (length vs) «
by force
then have
(FAB. A+ B = 2, (FVar v) (map FVar vs))
\%
(3v € Iset vs. occurs-at v p’ (+, (FVar v) (map FVar vs)))
using «p’ € positions (<, (FVar v) (map FVar vs))> and snoc.IH by simp
with <p = « # p’» show ?thesis
by auto
qed simp-all
qed

private lemma prop-5239-auz-2:
assumes t ¢ Ilset vs U vars C
and C{p + (-9, (FVart) (map FVar vs))) > G
and Cp + (-9, (A2, vs A) (map FVar vs))) > G’
shows S {t — A2, vs A} G = G’ (is«S 29 G = G")
proof —
have S 29 (+<, (FVar t) (map FVar vs)) = «2, (S 29 (FVar t)) (map (Av'. S 29 v') (map FVar
05))
using generalized-app-substitution by blast
moreover have S 29 (FVar t) = \9, vs A
using surj-pair[of t| by fastforce
moreover from assms(1) have map (Av’. S 29 v’) (map FVar vs) = map FVar vs
by (induction vs) auto
ultimately show ?thesis
using assms proof (induction C arbitrary: G G’ p)
case (FVar v)
from FVar.prems(5) have p = [| and G = <, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)+
moreover from FVar.prems(6) and «p = [)» have G’ = 2, (A<, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?case
using FVar.prems(1—38) by (simp only:)
next

case (FCon k)

209

from FCon.prems(5) have p = [| and G =+, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)+
moreover from FCon.prems(6) and «p = []» have G’ = 2, (A2, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show Zcase
using FCon.prems(1—3) by (simp only:)
next
case (FApp C1 C3)
from FApp.prems(4) have t ¢ Iset vs U vars Cy and t ¢ Iset vs U vars Co
by auto
consider (a) p=1[| (b) Ip" . p=«#p'[(c)Ip.p=»#p'
by (metis direction.ezhaust list.exhaust)
then show ?case
proof cases
case a
with FApp.prems(5) have G = <, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)
moreover from FApp.prems(6) and <p = [have G’ = +<, (A, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?Zthesis
using FApp.prems(1—3) by (simp only:)
next
case b
then obtain p’ where p = « # p’
by blast
with FApp.prems(5) obtain G; where G = Gy « Cy and Cy{p’ + (+, (FVar t) (map FVar
vs))) > Gy
by (blast elim: is-replacement-at.cases)
moreover from (p = « # p» and FApp.prems(6)
obtain G’; where G’ = G'; + Cy and C1{p’ + (+. (A9, vs A) (map FVar vs))) > G/
by (blast elim: is-replacement-at.cases)
moreover from «t ¢ Iset vs U vars Co> have S {t — A2, vs A} Oy = C3
using surj-pair|of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)
ultimately show ?thesis
using FApp.IH(1)[OF FApp.prems(1—3) <t ¢ lset vs U vars C13] by simp
next
case ¢
then obtain p’ where p = » # p’
by blast
with FApp.prems(5) obtain Gy where G = C; « Gy and Cop’ + (+, (FVar t) (map FVar
vs))) > Ga
by (blast elim: is-replacement-at.cases)
moreover from <p = » # p’» and FApp.prems(6)
obtain G’y where G’ = C; + G’y and Ca{p’ + (+ (A9, vs A) (map FVar vs))) > Gy
by (blast elim: is-replacement-at.cases)
moreover from «t ¢ Iset vs U vars Cp» have S {t — A2, vs A} C1 = C4
using surj-pair|of t] and free-var-singleton-substitution-neutrality
by (simp add: vars-is-free-and-bound-vars)

210

ultimately show ?thesis
using FApp.IH(2)[OF FApp.prems(1—38) <t ¢ lset vs U vars Cq>] by simp
qed
next
case (FAbs v C)
from FAbs.prems(4) have t ¢ Iset vs U vars C' and t # v
using vars-form.elims by blast+
from FAbs.prems(5) consider (a) p =[] | (b) Ip’. p =« # p’
using is-replacement-at.simps by blast
then show ?case
proof cases
case a
with FAbs.prems(5) have G = +2, (FVar t) (map FVar vs)
by (blast dest: is-replacement-at.cases)
moreover from FAbs.prems(6) and «p = [» have G’ = 2, (A2, vs A) (map FVar vs)
by (blast dest: is-replacement-at.cases)
ultimately show ?thesis
using FAbs.prems(1—38) by (simp only:)
next
case b
then obtain p’ where p = « # p’
by blast
then obtain G; where G = FAbs v Gy and C'(p’ <+ (+<, (FVar t) (map FVar vs))) > G4
using FAbs.prems(5) by (blast elim: is-replacement-at.cases)
moreover from p = « # p» and FAbs.prems(6)
obtain G'; where G’ = FAbs v G'; and C'{p’ + (-9, (A9, vs A) (map FVar vs))) > G’
by (blast elim: is-replacement-at.cases)
ultimately have S {t — \2, vs A} G; = G,
using FAbs. IH[OF FAbs.prems(1—3) <t & lset vs U vars C"»] by simp
with «G = FAbs v G1» and <G’ = FAbs v G'1» and <t # v> show ?thesis
using surj-pair[of v] by fastforce
qed
qed
qged

private lemma prop-5239-aux-3:
assumes t ¢ Ilset vs U vars {4, C}
and C(p < (-2, (FVar t) (map FVar vs))) > G
and occurs-at t p’ G
shows p’ = p @ replicate (length vs) « (is <p’ = ?pp»)
proof (cases vs = [])
case True
then have t ¢ vars C
using assms(1) by auto
moreover from True and assms(2) have C(p < FVart) > G
by force
ultimately show “thesis
using assms(3) and True and fresh-var-replacement-position-uniqueness by simp
next

211

case Fulse
show ?thesis
proof (rule ccontr)
assume p’ # p;
have — prefix ?p; p
by (simp add: False)
from assms(3) have p’ € positions G
using is-subform-implies-in-positions by fastforce
from assms(2) have ?p; € positions G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and is-subform-implies-in-positions and leftmost-subform-in-generalized-app
by (metis length-map)
from assms(2) have occurs-at t ?p; G
unfolding occurs-at-def using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and leftmost-subform-in-generalized-app
by (metis length-map)
moreover from assms(2) and <p’ € positions G» have x*:
subform-at C p' = subform-at G p' if — prefix p’ p and — prefiz p p’
using is-replacement-at-minimal-change(2) by (simp add: that(1,2))
ultimately show Fualse
proof (cases — prefix p’ p A — prefiz p p’)
case True
with assms(3) and * have occurs-at t p’ C
using is-replacement-at-occurs| OF assms(2)] by blast
then have t € vars C
using is-subform-implies-in-positions and occurs-in-vars by fastforce
with assms(1) show %thesis
by simp
next
case Fulse
then consider (a) prefiz p’ p | (b) prefix p p’
by blast
then show ?thesis
proof cases
case a
with <occurs-at ¢t ?p; G> and <p’ # ?p;» and assms(3) show ?thesis
unfolding occurs-at-def using loop-subform-impossibility
by (metis prefiz-order.dual-order.order-iff-strict prefiz-prefiz)
next
case b
have strict-prefiz p’ ?p;
proof (rule ccontr)
assume - strict-prefiz p’ ?p;
then consider
(b1) p' = ?pe
| (ba) strict-prefix ?ps p’
| (bs) — prefiz p’ ?p; and — prefiz ?p; p’
by fastforce
then show Fulse

212

proof cases
case b;
with <p’ # ?p;» show ?thesis
by contradiction
next
case by
with (occurs-at t ?p; G» and assms(3) show ?Zthesis
using loop-subform-impossibility by blast
next
case b3
from b obtain p’’ where p’ = p @ p’’ and p”’ € positions (+<, (FVar t) (map FVar vs))
using is-replacement-at-new-positions and «p’ € positions Gy and assms(2) by blast
moreover have p’’ # replicate (length vs) «
using «p’ = p @ p' and <p’ # ?py by blast
ultimately consider
(b3-1) 3F, Fo. F1 + Fy = (2, (FVar t) (map FVar vs))
| (b3-2) v € Iset vs. occurs-at v p" (+, (FVar t) (map FVar vs))
using prop-5239-auz-1 and bs(1,2) and is-replacement-at-occurs
and leftmost-subform-in-generalized-app-replacement
by (metis (no-types, opaque-lifting) length-map prefix-append)
then show ?thesis
proof cases
case b3-1
with assms(2) and <p’ = p @ p’y have 3F; Fy. F1 « Fo jp/ G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
with (occurs-at t p’ G» show ?thesis
using is-subform-at-uniqueness by fastforce
next
case b3_o
with assms(2) and <p’ = p @ p’’ have Fv € lset vs. occurs-at v p’ G
unfolding occurs-at-def
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity by meson
with assms(1,3) show ?thesis
using is-subform-at-uniqueness by fastforce
qed
qed
qed
with <occurs-at t ?p; G» and assms(3) show ?Zthesis
using loop-subform-impossibility by blast
qed
qed
qed
ged

private lemma prop-5259-aux-4:
assumes t ¢ lset vs U vars {4, C}
and A =, C
and Iset vs O capture-exposed-vars-at p C A
and C(p «+ (+<, (FVar t) (map FVar vs))) > G

213

shows is-free-for (A2, vs A) t G
unfolding is-free-for-def proof (intro balll impI)
let ?p, = p Q replicate (length vs) «
from assms(4) have FVar t j?pt G
using is-replacement-at-minimal-change(1) and is-subform-at-transitivity
and leftmost-subform-in-generalized-app by (metis length-map)
fix v' and p’
assume v’ € free-vars (A2, vs A) and p’ € positions G and is-free-at t p’ G
have v’ ¢ binders-at G ?p;
proof —
have free-vars (A9, vs A) = free-vars A — Iset vs
by (fact free-vars-of-generalized-abs)

also from assms(2,3) have ... C free-vars A — (binders-at C p N free-vars A)
using capture-exposed-vars-at-alt-def and is-subform-implies-in-positions by fastforce
also have ... = free-vars A — (binders-at G p N free-vars A)

using assms(2,4) is-replacement-at-binders is-subform-implies-in-positions by blast
finally have free-vars (A9, vs A) C free-vars A — (binders-at G p N free-vars A) .
moreover have binders-at (<, (FVar t) (map FVar vs)) (replicate (length vs) «) = {}
by (induction vs rule: rev-induct) simp-all
with assms(4) have binders-at G ?p; = binders-at G p
using binders-at-concat and is-replacement-at-minimal-change(1) by blast
ultimately show ?thesis
using (v’ € free-vars (A2, vs A)) by blast
qed
moreover have p’ = ?p;
by
(
fact prop-5239-aux-3
[OF assms(1,4) <is-free-at t p’ Gr[unfolded is-free-at-def, THEN conjunct!]]
)

ultimately show — in-scope-of-abs v’ p’ G
using binders-at-alt-def[OF «p' € positions G»] and in-scope-of-abs-alt-def by auto
qged

proposition prop-5239:
assumes is-rule-R-app p D C (A =4 B)
and Iset vs =
{(z, 8) | z B p’ E. strict-prefiz p’ p A Azg. B jpl C A (z, B) € free-vars (A =q B)}
shows V<, vs (A =o B) D¢ (C =2 D)
proof —
let 7y = foldr (—) (map var-type vs) «
obtain ¢ where (¢, ?y) ¢ Iset vs U vars {A,B,C,D}
using fresh-var-existence and vars-form-set-finiteness
by (metis List.finite-set finite.simps finite-Unl)
from assms(1) have A € wffsq and B € wffsq and A <, C
using wffs-from-equality| OF equality-wff] by simp-all
from assms(1) have C € wffsp and D € wffs,
using replacement-preserves-typing by fastforce+
have -2, toy (map FVar vs) € wffsa

214

using generalized-app-wff[where As = map FVar vs and ts = map var-type vs|
by (metis eq-snd-iff length-map nth-map wffs-of-type-intros(1))
from assms(1) have p € positions C
using is-subform-implies-in-positions by fastforce
then obtain G where C(p < (-2, tz, (map FVar vs))) > G
using is-replacement-at-existence by blast
with (4 <, C) and 2, toy (map FVar vs) € wffsq> have G € wffsy
using (A € wffsq> and «C € wffsy> and replacement-preserves-typing by blast
let 20 = {(h, #y—0) — Aty G, (r, #7) — S, ws A, (v, #y) — A2, vs B}
and 74 = (??'y %y U?'y) Bl (h?'y—m * Loy =9 h?’y—)o ' U?'y)
have - ¢4
by (fact axiom-is-derivable-from-no-hyps|OF axiom-2])
moreover have Aig,. G € wffsy, ., and e, vs A€ wffs ¢, and A\, vs B € wfs o,
by (blast intro: <G € wffsp> <A € wffsa> B € wffsq>)+
then have is-substitution %)
by simp
moreover have
Yo € fmdom’ 29. var-name v ¢ free-var-names ({}::form set) A is-free-for (29 $3! v) v 24
by
(
(
code-simp, unfold atomize-conj[symmetric], simp,
use is-free-for-in-equality is-free-for-in-equivalence is-free-for-in-imp is-free-for-in-var
is-free-for-to-app in presburger
)+,
blast
)
moreover have 29 #= {$$}
by simp
ultimately have - S %) 74
by (rule Sub)
moreover have
S 2 24 = (A2, vs A
by simp
ultimately have §1:
F (A2, vs A =2y A2, vs B) D2 (Atgy. G) - (A2, vs A) =2 (Atoy. G) » (A<, vs B))
by (simp only:)
then have §2: - (V<, vs (A =4 B)) D< ((Atgy. G) - (AL, vs A) =2 (Atgy. G) - (A2, vs B))
proof (cases vs = [])
case True
with §1 show ?thesis
by simp
next
case Fulse
from §1 and prop-5238[OF Fulse <A € wffsq> <B € wffsq>] show ?thesis
unfolding equivalence-def by (rule rule-R[where p = [«,»]]) force+
qed
morefover have - (Aty,. G) - (A2, vs A) =, C and (Atoy. G) - (A2, vs B) =¢ D
proof —

=2y A2, vs B) D9 (Atgy. G) = (A2, vs A) =2 (Atoy. G) + (A2, vs B))

215

from assms(1) have B <, D
using is-replacement-at-minimal-change(1) by force
from assms(1) have D{p «+ (+<, toy (map FVar vs))) > G
using «C(p «+ (-<, toy (map FVar vs))) > G» and replacement-override
by (meson is-rule-R-app-def)
from <B =y D) have p € positions D
using is-subform-implies-in-positions by auto
from assms(1) have binders-at D p = binders-at C p
using is-replacement-at-binders by fastforce
then have binders-at D p N free-vars B = binders-at C p N free-vars B
by simp
with assms(2)
[
folded capture-exposed-vars-at-def,
unfolded capture-ezposed-vars-at-alt-def[OF <p € positions C)
] have Iset vs 2O capture-exposed-vars-at p D B
unfolding capture-exposed-vars-at-alt-def[OF <p € positions D] by auto
have is-free-for (A2, vs A) (t, %y) G and is-free-for (A2, vs B) (t, ?#y) G
proof —
have (¢, ?y) ¢ Iset vs U vars {A, C} and (t, ?v) ¢ lset vs U vars {B, D}
using «(t, %) ¢ lset vs U vars {A, B, C, D}» by simp-all
moreover from assms(2) have
Iset vs D capture-exposed-vars-at p C' A and Iset vs O capture-exposed-vars-at p D B
by fastforce fact
ultimately show is-free-for (A9, vs A) (t, #y) G and is-free-for (A2, vs B) (t, #y) G
using prop-5239-auz-4 and <B <, Dy and <A <, C» and «C{p + (-, to (map FVar vs)))
> G
and «D{p + (-2, toy (map FVar vs))) > G» by meson+
qed
then have b (Aty,. G) - (A2, vs A) =0 S {(t, #y) — A9, vs A} G
and - (Atg,. G) - (A2, vs B) =5 S {(t, 7y) — A2, vs B} G
using prop-5207[OF \2, vs A € wﬁ5?7> <G € wffsy]
and prop-5207[OF (\2, vs B € wffsoy) <G € wffsey] by auto
moreover obtain G’; and G,
where C(p < (-2, (A2, vs A) (map FVar vs))) > G
and D{p «+ (-2, (A<, vs B) (map FVar vs))) > G'»
using is-replacement-at-existence[OF <p € positions C))
and is-replacement-at-existence|OF <p € positions Dy] by metis
then have S {(t, #y) — A9, vs A} G = G’y and S {(t, ?y) — A2, vs B} G = G
proof —
have (¢, 7y) ¢ Iset vs U vars C and (t, ?y) ¢ Iset vs U vars D
using «(t, ?y) ¢ Iset vs U vars {A, B, C, D}» by simp-all
then show S {(t, #y) — A9, vs A} G = G’y and S {(t, ?y) — A2, vs B} G = G
using «C(p <+ (- toy (map FVar vs))) > Gr and <D{p < (<, toy map FVar vs)) > G
and «C(p < (+<, (A9, vs A) (map FVar vs))) > G'p»
and D(p + (<, (A2, vs B) (map FVar vs))) > G’y and prop-5239-auz-2 by blast+
qed
ultimately have - (Atg,. G) - (A2, vs A) =, G'; and (Atoy. G) - (A2, vs B) =, G'5

216

by (simp-all only:)

moreover
have - A =4 (+2, (A2, vs A) (map FVar vs)) and - B =4 (+, (A2, vs B) (map FVar vs))
unfolding atomize-conj proof (cases vs = [])
assume vs = ||
show - A =4 «2, (A2, vs A) (map FVar vs) A+ B =q +2, (A9, vs B) (map FVar vs)
unfolding <vs = []» using prop-5200 and <A € wffsq> and (B € wffsq) by simp
next

assume vs # ||
show - A =4 <, (A9, vs A) (map FVar vs) A = B =4 <, (A9, vs B) (map FVar vs)
using Fquality-Rules(2)[OF prop-5208[OF <wvs # [])]] and <A € wffsq> and <B € wffsq>
by blast+
qed
with
(C{p + (+2 (A2, vs A) (map FVar vs))) > G'p»
and
(D{p + (+, (A2, vs B) (map FVar vs))) > G’y
have Gy =g Cand - G’y =, D
using Fquality-Rules(2)[OF replacement-derivability] and «C € wffso» and <D € wffsy»
and (A =p C) and (B =p D) by blast+
ultimately show = (Mg,. G) « (A9, vs A) = C and - (Atgy. G) + (A% vs B) =¢ D
using Fquality-Rules(3) by blast+
qed
ultimately show ?thesis
proof —
from §2 and < (Aty,. G) - (A2, vs A) =, C) have
F (V9 vs (A =q B)) D2 (C =2 (Mg,. G)« (A% vs B))

by (rule rule-R[where p = [»,«,»]]) force+
from this and = (Atgy. G) - (A2, vs B) =, D) show ?thesis
by (rule rule-R[where p = [»,»]]) force+
qed
qed
end

6.40 Theorem 5240 (Deduction Theorem)

lemma pseudo-rule-R-is-tautologous:
assumes C € wffsp and D € wffsp and FE € wffs, and H € wffs,
shows is-tautologous (((H 22 C) 22 ((H 22 E) 29 ((E 22 (C =< D)) 22 (H 22 D)))))
proof —
let 29 = {(z, 0) — C, (v, 0) — D, (3, 0) — E, (h, 0) — H}
have
is-tautology
(((ho 22 £0) D2 ((ho 22 350) 22 ((30 22 (ro =2 00)) 22 (ho D 10)))))
using Vp-simps by simp
moreover have is-substitution 29
using assms by auto
moreover have V (z, a) € fmdom’ 2. a = o

217

by simp

moreover have
((H 22 C) 22 ((H D22 E) 22 ((E22 (C =2 D)) D22 (H D2 D))
S 29 (((ho D2 ro) 22 ((ho D2 30) D2 ((30 22 (o =2 10)) D2 (ho D2 10)))))
by simp

ultimately show ?thesis
by blast

qed

syntax

-HypDer :: form = form set = form = bool («-,- b -» [50, 50, 50] 50)
syntax-consts

-HypDer = is-derivable-from-hyps
translations

H,H-P—~HU{H}FP

theorem thm-5240:
assumes finite H
and H, H - P
shows H+ H D¢ P
proof —
from «(H, H - P» obtain §; and S; where x: is-hyp-proof-of (H U {H}) 81 S2 P
using hyp-derivability-implies-hyp-proof-existence by blast
have H - H D2 (Sy ! i) if i’ <length S, for i’
using that proof (induction i’ rule: less-induct)
case (less i)
let R = 82 14/
from less.prems(1) and * have is-hyps H
by fastforce
from less.prems and * have 7R € wffs,
using elem-of-proof-is-wffo[simplified] by auto
from less.prems and * have is-hyp-proof-step (H U {H}) 81 So i’
by simp
then consider
(hyp) R e H U {H}
| (seq) ?R € lset Sy
| (rule-R") 3j k p. {j, k} C {0..<i'} A is-rule-R"-app (H U {H}) p R (S2!j) (S2 ! k)
by force
then show ?case
proof cases
case hyp
then show ?thesis
proof (cases 7R = H)
case True
with (7R € wffs,> have is-tautologous (H D ?R)
using implication-reflexivity-is-tautologous by (simp only:)
with «is-hyps H> show ?thesis
by (rule rule-P(2))

218

next
case Fulse
with hyp have ?R € H
by blast
with «is-hyps H> have H + 7R
by (intro dv-hyp)
moreover from less.prems(1) and * have is-tautologous (?R D (H D2 ?R))
using principle-of-simplification-is-tautologous| OF «?R € wffsy»] by force
moreover from (7R € wffs,> have is-hyps {?R}
by simp
ultimately show #thesis
using rule-P(1)[where G = {?R} and hs = [?R], OF <is-hyps H>] by simp
qed
next
case seq
then have S; # ||
by force
moreover from less.prems(1) and * have is-proof Sy
by fastforce
moreover from seq obtain ¢’ where '’ < length S; and R = S; ! 7"
by (metis in-set-conv-nth)
ultimately have is-theorem 7R
using proof-form-is-theorem by fastforce
with <is-hyps H»> have H + 7R
by (intro dv-thm)
moreover from «?R € wffsy» and less.prems(1) and * have is-tautologous (?R D (H D
’R))
using principle-of-simplification-is-tautologous by force
moreover from <?R € wffs,» have is-hyps { ?R}
by simp
ultimately show ?thesis
using rule-P(1)[where G = {?R} and hs = [?R|, OF «is-hyps H>] by simp
next
case rule-R’
then obtain j and k and p
where {j, k} C {0..<i’} and rule-R’-app: is-rule-R’-app (H U {H}) p ?R (S2!j) (S2 ! k)
by auto
then obtain A and B and C and o« where C =S; ! jand S; ' k= A =4 B
by fastforce
with «{j, k} C {0..<i’p have H - H 22 Cand H - H D2 (A =4 B)
using less.IH and less.prems(1) by (simp, force)
define S where S =
{(z, B) | x B p' E. strict-prefix p' p A Azg. B jp/ C A (z, B) € free-vars (A =4 B)}
with <C =82 ! j» and «S2 ! k = A =4 B> have Vv € S. v ¢ free-vars (H U {H})
using rule-R’-app by fastforce
moreover have S C free-vars (A =q B)
unfolding S-def by blast
then have finite S
by (fact rev-finite-subset[OF free-vars-form-finiteness))

219

then obtain vs where Iset vs = S
using finite-list by blast
ultimately have H - H 22 V<, vs (A =4 B)
using generalized-prop-5237[OF <is-hyps H> <H = H D2 (A =, B))] by simp
moreover have rule-R-app: is-rule-R-app p ?R (S2 ! j) (S2 ! k)
using rule-R’-app by fastforce
with S-def and (lset vs = S» have - V2, vs (A = B) D2 (C =< ?R)
unfolding «C = Sy ! j» and «S2 ! k = A =4 B) using prop-5239 by (simp only:)
with <is-hyps H> have H V<, vs (A =o B) D2 (C =2 ?R)
by (elim derivability-implies-hyp-derivability)
ultimately show ?thesis
proof —
let A, = H D2 C and ?4; = H D2 V9, vs (A =4 B)
and 743 =V, vs (A =q B) D2 (C =2 ?R)
let ?hs = [7A1, ?Aq, ?A3)
let G = lset ?hs
from <H F ?4;) have H € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(1))
moreover from (H - 24, have V2, vs (A =4 B) € wffs,
using hyp-derivable-form-is-wffso by (blast dest: wffs-from-imp-op(2))
moreover from «C = Sy ! j» and rule-R-app have C € wffs,
using replacement-preserves-typing by fastforce
ultimately have x: is-tautologous (?A; D2 (24, D2 (2?43 D¢ (H D2 ?R))))
using <R € wffsy> by (intro pseudo-rule-R-is-tautologous)
moreover from (H - 24, and (H F %45y and «H - 243> have is-hyps 7G
using hyp-derivable-form-is-wffso by simp
moreover from (H F Ay and (H + 245 and <H + 243 have VA e€ ?2G. HF A
by force
ultimately show ?thesis

using rule-P(1)[where G = ?G and hs = ?hs and B = H D2 ?R, OF <is-hyps H>] by simp

qed

qed

qed

moreover from <is-hyp-proof-of (H U {H}) S1 S2 P» have Sy ! (length So — 1) = P
using last-conv-nth by fastforce

ultimately show “thesis
using <is-hyp-proof-of (H U {H}) §1 S3 P» by force

ged

lemmas Deduction-Theorem = thm-5240

We prove a generalization of the Deduction Theorem, namely that if H U {Hy, ... ,H,} F P

then H - Hy D2 (--- D¢ (H, D2 P) ---):

corollary generalized-deduction-theorem:
assumes finite H and finite H’
and HUH'FP
and Iset hs = H'
shows H + hs D2, P
using assms proof (induction hs arbitrary: H' P rule: rev-induct)

220

case Nil

then show ?case
by simp

next

case (snoc H hs)

from <lset (hs @ [H]) = H"» have H € H’
by fastforce

from «lset (hs @ [H|) = H'» obtain H' where H" U {H} = H' and H'' = Iset hs
by simp

from <H”" U {H} =H"» and <H U H'+ P> have H UH"U{H} - P
by fastforce

with (finite #> and <finite H'» and (H' = Iset hs» have H U H" - H D2 P
using Deduction-Theorem by simp

with (H' = Iset hs> and «finite H»> have H F foldr (D2) hs (H D P)
using snoc.IH by fastforce

moreover have (hs Q [H]) D2, P = hs D2, (H D2 P)
by simp

ultimately show ?case
by auto

qed

6.41 Proposition 5241

proposition prop-5241:
assumes is-hyps G
and H- Aand HC G
shows G - A
proof (cases H = {})
case True
show ?thesis
by (fact derivability-implies-hyp-derivability| OF assms(2)[unfolded True] assms(1)])
next
case Fulse
then obtain hs where Iset hs = H and hs # |]
using hyp-derivability-implies-hyp-proof-existence] OF assms(2)] unfolding is-hyp-proof-of-def
by (metis empty-set finite-list)
with assms(2) have - hs D2, A
using generalized-deduction-theorem by force
moreover from <lset hs = H> and assms(1,3) have G - H if H € Iset hs for H
using that by (blast intro: dv-hyp)
ultimately show ?thesis
using assms(1) and generalized-modus-ponens and derivability-implies-hyp-derivability by meson
qed

6.42 Proposition 5242 (Rule of Existential Generalization)

proposition prop-5242:
assumes A € wffsq and B € wffsy
and X+ S {(z, a) — A} B
and is-free-for A (z,) B

221

shows H F dz4. B
proof —
from assms(3) have is-hyps H
by (blast dest: is-derivable-from-hyps.cases)
then have H - V1. ~¢ B 29 ~2 S {(z, a) — A} B (is <H F ?2C D2 ~2 ?D))
using prop-5226[OF assms(1) neg-wff[OF assms(2)] is-free-for-in-neg| OF assms(4)]]
unfolding derived-substitution-simps(4) using derivability-implies-hyp-derivability by (simp only:)
moreover have *: is-tautologous ((?7C D¢ ~2 2D) D2 (D D2 ~2 2())
proof —
have ?C € wffsy and ?D € wffso
using assms(2) and hyp-derivable-form-is-wffso| OF assms(3)] by auto
then show ?thesis
by (fact pseudo-modus-tollens-is-tautologous)
qed
moreover from assms(3) and «H - 2C D2 ~2 ?D) have is-hyps {?C D2 ~< ?D, ?D}
using hyp-derivable-form-is-wffso by force
ultimately show ?thesis
unfolding exists-def using assms(3)
and rule-P(1)
[
where G = {?C D2 ~2 ?D, ?D} and hs = [?C D2 ~2 ?D, D] and B = ~2 ?2C,
OF <is-hyps H»
]
by simp
qed

lemmas 3 Gen = prop-5242

6.43 Proposition 5243 (Comprehension Theorem)

context
begin

private lemma prop-52/3-auzx:
assumes -2, B (map FVar vs) € wffs,
and B € wffsg
and k < length vs
shows 5 # var-type (vs ! k)
proof —
from assms(1) obtain ts
where length ts = length (map FVar vs)
and *: Vk < length (map FVar vs). (map FVar vs) | k € wffsis 1 1
and B ¢ wﬁsfoldr (=) tsy
using wffs-from-generalized-app by force
have § = foldr (=) ts v
by (fact wff-has-unique-type[OF assms(2) «B € wﬁsfoldr (=) ts ,y>])
have ts = map var-type vs
proof —
have length ts = length (map var-type vs)

222

by (simp add: <length ts = length (map FVar vs)»)
moreover have Vk < length ts. ts | k = (map var-type vs) ! k
proof (intro alll impl)
fix k
assume k < length ts
with * have (map FVar vs) | k € wffsis 1 1
by (simp add: <length ts = length (map FVar vs)»)
with <k < length ts» and <length ts = length (map var-type vs)»
show ts ! k = (map var-type vs) ! k
using surj-pair[of vs | k] and wff-has-unique-type and wffs-of-type-intros(1) by force
qed
ultimately show ¢thesis
using list-eq-iff-nth-eq by blast
qed
with «8 = foldr (=) ts v and assms(3) show ?thesis
using fun-type-atoms-neq-fun-type by (metis length-map nth-map)
qged

proposition prop-5243:
assumes B € wffs
and v = foldr (—) (map var-type vs)
and (u, v) ¢ free-vars B
shows - Juy. V<, vs ((+S, uy (map FVar vs)) =g B)
proof (cases vs = [])
case True
with assms(2) have v =
by simp
from assms(1) have ug =g B € wffso
by blast
moreover have - B =5 B
by (fact prop-5200[OF assms(1)])
then have - S {(u, 8) — B} (ug =3 B)
using free-var-singleton-substitution-neutrality[OF assms(3)] unfolding «y = /3> by simp
moreover from assms(3)[unfolded <y =] have is-free-for B (u, B) (ug =g B)
by (intro is-free-for-in-equality) (use is-free-at-in-free-vars in auto)
ultimately have - Jug. (ug =g B)
by (rule 3 Gen[OF assms(1)])
with <y = 8> and True show ?thesis
by simp
next
case Fulse
let 29 = {(u, v) — A2, vs B}
from assms(2) have x: (u, v) # v if v € Iset vs for v
using that and fun-type-atoms-neq-fun-type by (metis in-set-conv-nth length-map nth-map snd-conv)
from False and assms(1) have - <, (A2, vs B) (map FVar vs) =5 B
by (fact prop-5208)
then have - V<, vs (+<, (A9, vs B) (map FVar vs) =g B)
using generalized-Gen by simp
moreover

223

have S 20 (V <, vs ((2, uy (map FVar vs)) =g B)) = v, vs (+, (A2, vs B) (map FVar vs) =3
B)
proof —
from x have sx: map (AA. S {(u, v) — B} A) (map FVar vs) = map FVar vs for B
by (induction vs) fastforce+
from * have

S 29 (V< vs ((+S4 uy (map FVar vs)) =g B)) = vV, vs (S 29 ((+9s uy (map FVar vs)) =g

B))

using generalized-forall-substitution by force

also have ... =V, vs ((S 29 (<, uy (map FVar vs))) =g S {(u,7) — e, vs B} B)
by simp

also from assms(3) have ... =V <, vs ((S 20 (-« uy (map FVar vs))) =3 B)
using free-var-singleton-substitution-neutrality by simp

also have ... =V, vs (-2, S 29 (uy) (map (AA. S 29 A) (map FVar vs)) =g B)
using generalized-app-substitution by simp

also have ... =V, vs (+2, (A<, vs B) (map (\A. S 29 A) (map FVar vs)) =g B)
by simp

also from ** have ... =V, vs (+<, (A2, vs B) (map FVar vs) =3 B)

by presburger
finally show ?thesis .

qed
ultimately have - S 20 (V< vs (+<, uy (map FVar vs) =g B))
by simp
moreover from assms(3) have is-free-for (A2, vs B) (u, v) (V< vs (+9, uy (map FVar vs) =3
B))
by

(intro is-free-for-in-generalized-forall is-free-for-in-equality is-free-for-in-generalized-app)
(use free-vars-of-generalized-abs is-free-at-in-free-vars in <fastforce+»)
moreover have A9, vs B € wffsy and V<, vs (-2, uy (map FVar vs) =g B) € wffso
proof —
have FVar (vs! k) € wﬁsvar—type (vs ! k) if k < length vs for k
using that and surj-pair[of vs ! k] by fastforce
with assms(2) have 2, uy (map FVar vs) € wffsg
using generalized-app-wff[where ts = map var-type vs] by force
with assms(1) show V<, vs (-2, uy (map FVar vs) =3 B) € wffso
by (auto simp only:)
qed (use assms(1,2) in blast)
ultimately show ?thesis
using 3 Gen by (simp only:)
qged

end

6.44 Proposition 5244 (Existential Rule)

The proof in [2] uses the pseudo-rule Q and 2123 of F. Therefore, we instead base our proof
on the proof of Theorem 170 in [1]:

lemma prop-5244-auz:

224

assumes A € uffsp and B € wffs,
and (z, a) ¢ free-vars A
shows - V4. (B D9 A) D¢ (1. B D2 A)
proof —
have B 52 A € wffs,
using assms by blast
moreover have is-free-for (zq) (z, @) (B D2 A)
by simp
ultimately have - Vz,. (B D2 A) D¢ (B D9 A)
using prop-5226[where A = 2o and B = B D2 A, OF wffs-of-type-intros(1)]
and identity-singleton-substitution-neutrality by metis
moreover have is-hyps {Vzq. (B D2 A)}
using (B D2 A € wffsy> by blast
ultimately have §7: {Vzq. (B D2 A)} - Vaq. (B D2 A) D2 (B D2 A)
by (fact derivability-implies-hyp-derivability)
have §2: {Vzq. (B D2 A)} F Vau. (B D2 A)
using «B D2 A € wffsp> by (blast intro: dv-hyp)
have §3: {Vzq. (B D2 A)} F~2 A D9 ~2 B
proof (intro rule-P(1)
[where H = {Vzq. (B D2 A)} and G = {Vzo. (B D¢ A) D2 (B D2 A), Vaa. (B D2 A)}])
have is-tautologous ([C D2 (B D2 A), C] 29 (~2 A D¢ ~2 B)) if C € wffs, for C
proof —
let 72 = {(I» 0) — A, (Ua 0) — B, (5a 0) — C}
have is-tautology ((30 22 (1o D2 10)) D2 (30 D2 (~2 1o D2 ~2 1y)))
(is is-tautology ?A)
using Vg-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution 29
using assms(1,2) and that by auto
moreover have [C D2 (B D2 A), C] 22, (~2 AD2~2B)=8S 2 24
by simp
ultimately show ?thesis
by blast
qed
then show is-tautologous ([V zq. (B D2 A) D2 (B 22 A), V1q. (B D2 A)] D9, (~2 4 D2 ~°
B))
using B D2 A € wffsy> and forall-wff by simp
qed (use §1 §2 <is-hyps {Vzq. (B D2 A)}» hyp-derivable-form-is-wffso|OF §1] in force)+
have §/: {Vzq. (B D2 A)} F~2 A D9V, ~2 B
using prop-5237[OF <is-hyps {¥ zq. (B D2 A)}> §3] and assms(3) by auto
have §5: {Vzq. (B D2 A)} F 314. BD2 A
unfolding exists-def
proof (intro rule-P(1)[where H = {Vzqo. (B D2 A)} and G = {~<¢ A D2 Vz,. ~2 B}])
have is-tautologous ([~2 A D2 O] D2, (~2 C D2 A)) if C € wffs, for C
proof —
let 29 = {(x, 0) — A4, (v, 0) — C}
have is-tautology ((~< ro D2 1vo) D2 (~2 1o D2 1)) (is is-tautology ?A)
using Vg-simps by (auto simp add: inj-eq)
moreover have is-pwff-substitution 29
using assms(1) and that by auto

225

moreover have [~2 A D2 C] D2, (~2 C D2 A) =S 29 24
by simp
ultimately show ?Zthesis
by blast
qed
then show is-tautologous ([~2 A D2 Vzq. ~< Bl D2, (~2 Vaq. ~¢ B D2 A))
using forall-wff[OF neg-wff[OF assms(2)]] by (simp only:)
qed (use §4 <is-hyps {¥Yzq. (B D2 A)}r hyp-derivable-form-is-wffso[OF §4] in force)+
then show ?thesis
using Deduction-Theorem by simp
ged

proposition prop-5244:
assumes H, BF A
and (z, a) ¢ free-vars (H U {A})
shows H, Jzo. BF A
proof —
from assms(1) have is-hyps H
using hyp-derivability-implies-hyp-proof-existence by force
then have H + B D2 A
using assms(1) and Deduction-Theorem by simp
then have H - Vz4. (B D9 A)
using Gen and assms(2) by simp
moreover have A € wffs, and B € wffs,
by
(
fact hyp-derivable-form-is-wffso[OF assms(1)],
fact hyp-derivable-form-is-wffso[OF «H F B D2 Ay, THEN wffs-from-imp-op(1)]
)
with assms(2) and <is-hyps H> have H - V1q. (B D2 A) D9 (1. B D2 A)
using prop-5244-auz| THEN derivability-implies-hyp-derivability] by simp
ultimately have H + 3z,. B D2 A
by (rule MP)
then have H, 3zo. BF 3z4. BD2 A
using prop-5241 and exists-wff[OF <B € wffsy>] and <is-hyps H»
by (meson Un-subset-iff empty-subsetl finite.simps finite-Un inf-sup-ord(3) insert-subsetl)
moreover from <is-hyps H> and <B € wffsy> have is-hyps (H U {3 zo. B})
by auto
then have H, 3zn. B+ dzy. B
using dv-hyp by simp
ultimately show “thesis
using MP by blast
qged

lemmas 3 -Rule = prop-5244

6.45 Proposition 5245 (Rule C)

lemma prop-5245-aux:

226

assumes r # y
and (y, a) ¢ free-vars (3 zq. B)
and is-free-for (yo) (z, @) B
shows is-free-for (xzq) (y, &) S {(z, @) — ya} B
using assms(2,3) proof (induction B)
case (FVar v)
then show ?case
using surj-pair[of v] by fastforce
next
case (FCon k)
then show ?case
using surj-pair|of k| by fastforce
next
case (FApp By Bs)
from FApp.prems(1) have (y, o) ¢ free-vars (3zq. B1) and (y, «) ¢ free-vars (3. Ba)
by force+
moreover from FApp.prems(2) have is-free-for (yq) (z, o) By and is-free-for (ya) (z, a) Ba
using is-free-for-from-app by iprover+
ultimately have is-free-for (zq) (v, @) S {(z, &) — ya} B1
and is-free-for (za) (y, @) S {(z, a) — ya} B2
using FApp.IH by simp-all
then have is-free-for (za) (y, @) ((S {(z, @) — ya} B1) » (S {(z, @) — ya} Ba2))
by (intro is-free-for-to-app)
then show ?case
unfolding singleton-substitution-simps(3) .
next
case (FAbs v B)
obtain z and 8 where v = (z, §)
by fastforce
then show ?case
proof (cases v = (z, a))
case True
with FAbs.prems(1) have (y, «) ¢ free-vars (3xq. B’)
by simp
moreover from assms(1) have (y, a) # (z, a)
by blast
ultimately have (y, «) ¢ free-vars B’
using FAbs.prems(1) by simp
with «(y, a) # (z,) have (y, a) ¢ free-vars (Azq. B)
by simp
then have is-free-for (zq) (y, @) (Azq. B’)
unfolding is-free-for-def using is-free-at-in-free-vars by blast
then have is-free-for (zq) (y, @) S {(z, @) — ya} (Azq. B’)
using singleton-substitution-simps(4) by presburger
then show ?thesis
unfolding True .
next
case Fulse
from assms(1) have (y, a) # (z, @)

227

by blast
with FAbs.prems(1) have x: (y, a) ¢ free-vars (3zq. (A2g. B'))
using v = (2, 8)» by fastforce
then show ?thesis
proof (cases (y, a) # v)
case True
from True[unfolded <v = (z, §))] and * have (y, o) ¢ free-vars (3. B')
by simp
moreover from Fulse[unfolded <v = (z, 8))] have is-free-for (yq) (z, @) B’
using is-free-for-from-abs|OF FAbs.prems(2)[unfolded v = (z, 8))]] by blast
ultimately have is-free-for (zq) (y, @) (S {(z, @) — ya} B’)
by (fact FAbs.IH)
then have is-free-for (za) (y, @) (Azg. (S {(z, @) — ya} B'))
using Fualse[unfolded «v = (z, B)+] by (intro is-free-for-to-abs, fastforce+)
then show ?thesis
unfolding singleton-substitution-simps(4) and v = (z, §)> using «(z, 8) # (z,) by auto
next
case Fulse
then have v = (y, a)
by simp
have is-free-for (za) (v, @) (Aya. S {(z, a) — ya} B
proof—
have (y, a) ¢ free-vars (Ayo- S {(z, @) — ya} B’)
by simp
then show ?%thesis
using is-free-at-in-free-vars by blast
qed
with«v = (y, @) and «(y,) # (z, a)> show ?thesis
using singleton-substitution-simps(4) by presburger
qed
qed
qged

proposition prop-5245:
assumes H + dzq. B
and H, S {(z, o) — ya} BF A
and is-free-for (yao) (z, @) B
and (y, @) ¢ free-vars (H U {3 zq. B, A})
shows H F A
proof —
from assms(1) have is-hyps H
by (blast elim: is-derivable-from-hyps.cases)
from assms(2,4) have H, Jyq. S {(z, &) — ya} BF 4
using 3-Rule by simp
then have *: H - (Fya. S {(z, @) — ya} B) D2 A (is - - ?F)
using Deduction-Theorem and <is-hyps H> by blast
then have H - 3z,. B D2 4
proof (cases T = y)
case True

228

with x show ?thesis
using identity-singleton-substitution-neutrality by force
next
case Fulse
from assms(4) have (y,) ¢ free-vars (3. B)
using free-vars-in-all-vars by auto
have ~2 S {(z, a) — ya} B € wffso
by
(
fact hyp-derivable-form-is-wffso
[OF %, THEN wffs-from-imp-op(1), THEN wffs-from-exists, THEN neg-wff]
)
moreover from Fulse have (z,) ¢ free-vars (~2 S {(z,) = ya} B)
using free-var-in-renaming-substitution by simp
moreover have is-free-for (1) (y, a) (~2 S {(z, a) — ya} B)
by (intro is-free-for-in-neg prop-5245-auz|OF False «(y,) ¢ free-vars (3zq. B)» assms(3)])
moreover from assms(3,4) have S {(y, o) — za} S {(z, @) — ya} B= B
using identity-singleton-substitution-neutrality and renaming-substitution-composability
by force
ultimately have - (\yq. ~2 S {(, @) — ya} B) =a—s0 (Aza. ~< B)
using a[where A = ~2 S {(z, a) — yo} B] by (metis derived-substitution-simps(4))
then show ?thesis
by (rule rule-RR|[OF disjI1, where p = [«,»,»,»] and C = ?F]) (use * in force)+
qed
with assms(1) show ?thesis
by (rule MP)
ged

lemmas Rule-C' = prop-5245

end

7 Semantics

theory Semantics
imports
ZFC-in-HOL.ZFC-Typeclasses
Syntax
Boolean-Algebra
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

abbreviation vfuncset :: V = V = V (infixr +— 60) where
A+ B=VPi A (M. B)

notation app (infixl «» 300)

229

syntax

-vlambda :: pttrn = V = (V = V) = V («(8X=x-./ -)» [0, 0, 3] 3)
syntax-consts

-vlambda = VLambda
translations

Az: A. f = CONST VLambda A (M. f)

lemma vlambda-extensionality:
assumes A\z. x € elts A = fr=gux
shows (Az: A. fz) = (Az: A. g)
unfolding VLambda-def using assms by auto

7.1 Frames

locale frame =
fixes D :: type = V
assumes truth-values-domain-def: D o = B
and function-domain-def: Vo 8. D (a—=f) < D a+— D S
and domain-nonemptiness: Va. D a # 0
begin

lemma function-domainD:
assumes f € elts (D (a—f3))
shows f € elts (D a — D f3)
using assms and function-domain-def by blast

lemma viambda-from-function-domain:
assumes [€ elts (D (a—f))
obtains b where f = (Az: D . bz) and Vz € elts (D «). bz € elts (D)
using function-domainD[OF assms| by (metis VPi-D eta)

lemma app-is-domain-respecting:
assumes f € elts (D (a—f)) and z € elts (D «)
shows f - = € elts (D f5)
by (fact VPi-D[OF function-domainD[OF assms(1)] assms(2)])

One-element function on D «:

definition one-element-function :: V = type = V («{-}.» [901, 0] 900) where
[simp]: {z}a = (Ay : D a. bool-to-V (y = x))

lemma one-element-function-is-domain-respecting:
shows {z}q € elts (D oo — D o)
unfolding one-element-function-def and truth-values-domain-def by (intro VPi-I) (simp, metis)

lemma one-element-function-simps:
shows z € elts (D o) = {z}q -2 =T
and [{z, y} C elts (D a); y # 2] = {a}a -y =F
by simp-all

230

lemma one-element-function-injectivity:
assumes {z, '} C elts (D i) and {z}; = {z'};
shows z = z’
using assms(1) and VLambda-eq-D2[OF assms(2)[unfolded one-element-function-def]]
and injD[OF bool-to- V-injectivity] by blast

lemma one-element-function-uniqueness:
assumes z € elts (D i)
shows (SOME x'. z' € elts (D i) A {z}; = {z'};) = =
by (auto simp add: assms one-element-function-injectivity)
Identity relation on D a:
definition identity-relation :: type = V (<q-» [0] 100) where
[simp]: go = (Az: D . {z}a)

lemma identity-relation-is-domain-respecting:
shows ¢q € elts (D a— D a — D o)
using VPi-I and one-element-function-is-domain-respecting by simp

lemma ¢-is-equality:
assumes {z, y} C elts (D «)
shows (¢qo) - z-y=T+—az =y
unfolding identity-relation-def
using assms and injD[OF bool-to- V-injectivity] by fastforce
Unique member selector:
definition is-unique-member-selector :: V = bool where
[iff]: is-unique-member-selector f «— (Vz € elts (D i). f - {z}; = z)
Assignment:
definition is-assignment :: (var = V) = bool where
[iff]: is-assignment ¢ +— (Va a. ¢ (z, @) € elts (D «))

end

abbreviation one-element-function-in (<{-}-7> [901, 0, 0] 900) where
{2}aP = frame.one-element-function D z o

abbreviation identity-relation-in (<q-"» [0, 0] 100) where
an = frame.identity-relation D «

1 is a “v-variant” of ¢ if 1 is an assignment that agrees with ¢ except possibly on v:

definition is-variant-of :: (var = V) = var = (var = V) = bool («- ~_ - [51, 0, 51] 50) where
[iff]: ¥ ~p @ +— (Vv v £ v — ¢ v =)

7.2 Pre-models (interpretations)

We use the term “pre-model” instead of “interpretation” since the latter is already a keyword:

231

locale premodel = frame +

fixes J ::con = V

assumes @Q-denotation: Va. J (Q-constant-of-type o) = qq

and ¢-denotation: is-unique-member-selector (J iota-constant)

and non-logical-constant-denotation: ¥V ¢ a.. = is-logical-constant (¢, o) — J (¢, a) € elts (D «)
begin

W1 denotation function:

definition is-wff-denotation-function :: ((var = V) = form = V) = bool where
[¢ff]: is-wff-denotation-function V +—
(
V. is-assignment o —>

(VA a. A€ wffsa —V o A€ elts (D a)) A — closure condition, see note in page 186
(V2 0.V ¢ (za) = ¢ (5, @) A
(Vea Ve (fcka) = T (e,) A
(VABap. Acuffsgyqg NBeuffsg — Vo (A-B)=Vepd)-VeB)A
(Ve Ba B. Beuffsg — Ve (Aza. B) = (Az: D a. V (¢((z, a) := 2)) B))

)

lemma wff-denotation-function-is-domain-respecting:
assumes is-wff-denotation-function V
and A € wffsq
and is-assignment
shows V ¢ A € elts (D «)
using assms by force

lemma wff-var-denotation:
assumes is-wff-denotation-function V
and is-assignment
shows V ¢ (zq) = ¢ (z, a)
using assms by force

lemma wff-Q-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢

shows V ¢ (Qn) = qa
using assms and @Q-denotation by force

lemma wff-iota-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢
shows is-unique-member-selector (V ¢ ()
using assms and t-denotation by fastforce

lemma wff-non-logical-constant-denotation:
assumes is-wff-denotation-function V
and is-assignment ¢
and — is-logical-constant (¢, @)
shows V ¢ ({c}a) = J (¢, a)

232

using assms by auto

lemma wff-app-denotation:
assumes is-wff-denotation-function V
and is-assignment
and A € wffsg_,q
and B € wﬁsﬁ
shows Vp (A-B)=VpA-VyB
using assms by blast

lemma wff-abs-denotation:
assumes is-wff-denotation-function V
and is-assignment
and B € wffsB
shows V ¢ (Azq. B) = (Az: D a. V (p((z, @) := 2)) B)
using assms unfolding is-wff-denotation-function-def by metis

lemma wff-denotation-function-is-uniquely-determined:
assumes is-wff-denotation-function V
and is-wff-denotation-function V'
and is-assignment
and A € wffs
showsVp A=V p A
proof —
obtain o where A € wffsy
using assms(4) by blast
then show ?thesis
using assms(3) proof (induction A arbitrary: @)
case var-is-wff
with assms(1,2) show ?case
by auto
next
case con-is-wff
with assms(1,2) show ?case
by auto
next
case app-is-wff
with assms(1,2) show ?case
using wff-app-denotation by metis
next
case (abs-is-wff f A o x)
have is-assignment (p((z, o) := 2)) if z € elts (D «) for z
using that and abs-is-wff.prems by simp
then have *: V (¢((z, o) := 2)) A = V' (p((z, @) :== 2)) Aif z € elts (D «) for 2z
using abs-is-wff.IH and that by blast
have V ¢ (Azg. 4) = Az: D a. V (o((z,) := z)) A)
by (fact wff-abs-denotation|OF assms(1) abs-is-wff.prems abs-is-wff.hyps])
also have ... = (Az: D a. V' (¢((z, a) := 2)) A)
using * and vlambda-extensionality by fastforce

233

also have ... =V’ ¢ (Azq. A)
by (fact wff-abs-denotation|OF assms(2) abs-is-wff.prems abs-is-wff .hyps, symmetric])
finally show ?Zcase .
qed
qged

end

7.3 General models

type-synonym model-structure = (type = V) x (con = V) x ((var = V) = form = V)

The assumption in the following locale implies that there must exist a function that is a wif
denotation function for the pre-model, which is a requirement in the definition of general
model in [2]:

locale general-model = premodel +

fixes V :: (var = V) = form = V

assumes V-is-wff-denotation-function: is-wff-denotation-function V
begin

lemma mized-beta-conversion:

assumes is-assignment @

and y € elts (D «)

and B € wﬁsB

shows V ¢ (Azq. B) - y =V (o((z, @) :==y)) B

using wff-abs-denotation|OF V-is-wff-denotation-function assms(1,3)] and beta] OF assms(2)] by
simp

lemma conj-fun-is-domain-respecting:
assumes is-assignment @
shows V ¢ (Ao o0—0) € elts (D (0—0—0))
using assms and conj-fun-wff and V-is-wff-denotation-function by auto

lemma fully-applied-conj-fun-is-domain-respecting:
assumes is-assignment
and {z, y} C elts (D o)
shows V ¢ (Ap—o—0) * z + y € elts (D o)
using assms and conj-fun-is-domain-respecting and app-is-domain-respecting by (meson insert-subset)

lemma imp-fun-denotation-is-domain-respecting:
assumes is-assignment @
shows V ¢ (Dp—o0—0) € elts (D (0—0—0))
using assms and imp-fun-wff and V-is-wff-denotation-function by simp

lemma fully-applied-imp-fun-denotation-is-domain-respecting:
assumes is-assignment
and {z, y} C elts (D o)
shows V ¢ (Do—o0—0) + x + y € elts (D o)
using assms and imp-fun-denotation-is-domain-respecting and app-is-domain-respecting

234

by (meson insert-subset)
end

abbreviation is-general-model :: model-structure = bool where
is-general-model M = case M of (D, J, V) = general-model D J V

7.4 Standard models

locale standard-model = general-model +
assumes full-function-domain-def: Vo 3. D (a—f) =D a — D

abbreviation is-standard-model :: model-structure = bool where
is-standard-model M = case M of (D, J, V) = standard-model D J V

lemma standard-model-is-general-model:
assumes is-standard-model M
shows is-general-model M
using assms and standard-model.azioms(1) by force

7.5 Validity

abbreviation is-assignment-into-frame (<- ~ - [51, 51] 50) where
@ ~ D = frame.is-assignment D ¢

abbreviation is-assignment-into-model (<- ~py - [51, 51] 50) where
w~opy M= (case M of (D, T, V) = ¢~ D)

abbreviation satisfies (<- - - [50, 50, 50] 50) where
My A=case M of (D, J, V)=V A=T

abbreviation is-satisfiable-in where
is-satisfiable-in A M = 3@. o~y MAM = A

abbreviation is-valid-in (- = - [50, 50] 50) where
MEA=Vo. ooy M — ME, A

abbreviation is-valid-in-the-general-sense (<= -» [50] 50) where

E A =V M. is-general-model M — M = A

abbreviation is-valid-in-the-standard-sense (=g - [50] 50) where
Es A = VM. is-standard-model M — M = A

abbreviation is-true-sentence-in where
is-true-sentence-in A M = is-sentence A N M= 4efined A — assignments are not meaningful

abbreviation is-false-sentence-in where
is-false-sentence-in A M = is-sentence A N = M ':undeﬁned A — assignments are not meaningful

abbreviation is-model-for where

235

is-model-for M G=VAe g ME A

lemma general-validity-in-standard-validity:
assumes = A
shows =g A
using assms and standard-model-is-general-model by blast

end

8 Soundness

theory Soundness
imports
Elementary-Logic
Semantics
begin

unbundle no funcset-syntax
notation funcset (infixr <+ 60)

8.1 Proposition 5400

proposition (in general-model) prop-5400:
assumes A € wffsy
and ¢ ~ D and ¢ ~ D
and Vv € free-vars A. p v =1 v
shows Vp A=V ¢y A
proof —
from assms(1) show ?thesis
using assms(2,3,4) proof (induction A arbitrary: ¢)
case (var-is-wff « x)
have (z, a) € free-vars (zq)
by simp
from assms(1) and var-is-wff .prems(1) have V ¢ (zq) = ¢ (z, @)
using V-is-wff-denotation-function by fastforce

also from «(z, o) € free-vars (zq)> and var-is-wff.prems(3) have ... = ¢ (z, a)
by (simp only:)
also from assms(1) and var-is-wff.prems(2) have ... =V ¢ (zq)

using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (con-is-wff « c)
from assms(1) and con-is-wff.prems(1) have V ¢ ({c}a) = T (¢, @)
using V-is-wff-denotation-function by fastforce
also from assms(1) and con-is-wff.prems(2) have ... =V ¢ ({c}a)
using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (app-is-wff o 8 A B)

236

have free-vars (A « B) = free-vars A U free-vars B
by simp
with app-is-wff.prems(3)
have Vv € free-vars A. ¢ v =1 v and Vv € free-vars B. p v = v
by blast+
with app-is-wff.IH and app-is-wff.prems(1,2) have V p A=V ¢ AandV ¢ B=V ¢ B
by blast+
from assms(1) and app-is-wff.prems(1) and app-is-wff.hyps have V ¢ (A B)=V o A-V ¢ B
using V-is-wff-denotation-function by fastforce

also from WV o A=V ¢ A»and <V o B=V ¢y B>have... =V ¢y A-V¢ B
by (simp only:)
also from assms(1) and app-is-wff.prems(2) and app-is-wff .hyps have ... =V p (A + B)

using V-is-wff-denotation-function by fastforce
finally show ?Zcase .
next
case (abs-is-wff 8 A « x)
have free-vars (Azq. A) = free-vars A — {(z, o)}

by simp

with abs-is-wff.prems(3) have Vv € free-vars A. v # (z, a)— p v =1V v
by blast

then have Vv € free-vars A. (¢((z, a) := 2)) v = (Y((z, o) 1= 2)) v if z € elts (D «) for z
by simp

moreover from abs-is-wff.prems(1,2)
have Vz' o'. (p((z, @) := 2)) (z/, a') € elts (D ')
and Vz' o' (¥((z, o) := 2)) (2, &) € elts (D &)
if z € elts (D «) for z
using that by force+
ultimately have V-p-ip-eq: V (p((z, o) :=2)) A =V (¢((z, o) := 2)) Aif z € elts (D «) for z
using abs-is-wff.IH and that by simp
from assms(1) and abs-is-wff.prems(1) and abs-is-wff.hyps
have V ¢ (Azg. 4) = Az: D a. V (o((z,) := 2)) A)
using wff-abs-denotation| OF V-is-wff-denotation-function] by simp
also from V-p-i)-eqg have ... = (Az: D a. V (¢Y((z, o) := 2)) A)
by (fact vlambda-extensionality)
also from assms(1) and abs-is-wff.hyps have ... =V ¢ (Azq. A)
using wff-abs-denotation| OF V-is-wff-denotation-function abs-is-wff.prems(2)] by simp
finally show ?Zcase .
qed
qged

corollary (in general-model) closed-wff-is-meaningful-regardless-of-assignment:
assumes is-closed-wff-of-type A «
and ¢ ~ D and ¢ ~ D
shows Vp A=V <y A
using assms and prop-5400 by blast

8.2 Proposition 5401

lemma (in general-model) prop-5401-a:

237

assumes ¢ ~ D

and A € wffsq

and B € wﬁsﬂ

shows V ¢ ((Azq. B) « A) =V (o((z, o) =V ¢ A)) B

proof —

from assms(2,3) have A\zq. B € wffs,_,3
by blast

with assms(1,2) have V ¢ (Azq. B) » A) =V ¢ (Azo. B) -V o A
using V-is-wff-denotation-function by blast

also from assms(1,3) have ... = app (Az: D . V (o((z, a) :=2)) B) (V ¢ A)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
also from assms(1,2) have ... =V (p((z, @) ==V ¢ A)) B

using V-is-wff-denotation-function by auto
finally show ?thesis .
qed

lemma (in general-model) prop-5401-b:
assumes ¢ ~ D
and A € wffsq
and B € wffsq
shows V o (A= B)=T+—=VpA=VyB
proof —
from assms have {V ¢ A,V ¢ B} C elts (D «)
using V-is-wff-denotation-function by auto
have V ¢ (A =4 B) =V ¢ (Qa * A+ B)
by simp
also from assms have ... =V ¢ (Qa + 4) -V ¢ B
using V-is-wff-denotation-function by blast
also from assms have ... =V ¢ (Qq) - Vo A-V ¢ B
using Q-wff and wff-app-denotation|OF V-is-wff-denotation-function] by fastforce
also from assms(1) have ... = (¢qa) - Vo AV ¢ B
using @Q-denotation and V-is-wff-denotation-function by fastforce
also from <{V 9o A,V ¢ B} Celts(Da)p have... =T +—Vp A=V ¢ B
using ¢-is-equality by simp
finally show ?thesis .
qed

corollary (in general-model) prop-5401-b’:
assumes ¢ ~ D
and A € wffs,
and B € wffso
shows Vo (A=2B) =T+ VpA=V¢B
using assms and prop-5401-b by auto

lemma (in general-model) prop-5401-c:
assumes ¢ ~ D
shows V ¢ Ty, =T

proof —
have Qy € wffso—o0—0

238

by blast

moreover have V ¢ Ty =V ¢ (Qo =0—0—0 Qo)
unfolding true-def ..

ultimately have ... = T +— V ¢ (Qo) =V ¢ (Qo)
using prop-5401-b and assms by blast

then show ?thesis
by simp

qed

lemma (in general-model) prop-5401-d:
assumes ¢ ~ D
shows V ¢ Fy=F
proof —
have A\ro. Ty € wffso—o and Are. to € wWffso—o
by blast+
moreover have V ¢ Fo =V ¢ (Aro. To =0—0 Alo- ko)
unfolding false-def ..
ultimately have V ¢ Fo =T +—V ¢ (Aro. To) =V ¢ (Ato- to)
using prop-5401-b and assms by simp
moreover have V ¢ (A\tg. To) #V ¢ (Aro- to)
proof —
have V ¢ (Ato. To) = (Az: D o. T)
proof —
from assms have T-denotation: V (p((x, 0) := z)) To = T if z € elts (D o) for z
using prop-5401-c and that by simp
from assms have V ¢ (Aro. To) = (Az: D 0. V (o((x, 0) := 2)) To)
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
also from assms and T-denotation have ... = (Az: D o. T)
using vlambda-extensionality by fastforce
finally show ?thesis .
qed
moreover have V ¢ (Aro. to) = (Az: D o. 2)
proof —
from assms have g-denotation: V (p((z, 0) := 2)) (to) = 2z if z € elts (D o) for z
using that and V-is-wff-denotation-function by auto
from assms have V ¢ (Aro. to) = (Az: D 0. V (¢((x, 0) := 2)) (ro))
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
also from r-denotation have ... = (Az: (D o). 2)
using vlambda-extensionality by fastforce
finally show ?thesis .
qed
moreover have (Az: D 0. T) # (Az: D o. 2)
proof —
from assms(1) have (Az: D o. T) -F =T
by (simp add: truth-values-domain-def)
moreover from assms(1) have (Az: D o. z) - F =F
by (simp add: truth-values-domain-def)
ultimately show ?thesis
by (auto simp add: inj-eq)

239

qed
ultimately show ¢thesis
by simp

qed
moreover from assms have V ¢ F, € elts (D o)

using false-wff and V-is-wff-denotation-function by fast
ultimately show ?thesis

using assms(1) by (simp add: truth-values-domain-def)

qed

lemma (in general-model) prop-5401-e:
assumes ¢ ~ D
and {z, y} C elts (D o)
shows V ¢ (Ap—o—0) -2 -y=(if t =T Ay =T then T else F)
proof —
let ?Bi.q = Ago—0—0- Go—o0—0* To* To
let ?B,cq = Ago—o0—0- Bo—0—0 * Lo * Yo
let ?Beg = ?Bieg ~(0—0—0)—0 ?Breq
let 2By, = A\po. 7B,
let B, = Aro. 7By
let % = o((x. 0) = 3, (v, 0) = 1)
let %" = A\g. 20'((g, 0—0—0) := g)
have go—o—0* To € wffso—o

by blast

have go—o—0* To* To € wffso and go—o—0 * Lo * Yo € Wffso
by blast+

have 7B, € wﬁs(o—w—w)—m and ?B,., € wﬁs(o_m_m)_m
by blast+

then have ?B., € wffso and ?B, € wffso—o and ?B; € wffso—o0—0
by blast+

have V ¢ (Ao—so0—0) 2 y=V @ /By -z -y
by simp

also from assms and «?B, € wffso—o> have ... =V (o((x, 0) == z)) ?By - y
using mized-beta-conversion by simp

also from assms and (?B., € wffso» have ... =V 2o’ ?B,,

using mized-beta-conversion by simp
finally have V ¢ (Ao—o—0) T+ y=T =V %' ?Bj.q =V %’ 7B,
using assms and (7B, € wﬁs(o_m_m)_m> and (?B,.q € wﬁs(o_m_m)_}& and prop-5401-b
by simp
also have ... +— (Ag: D (0—>0—0). g- T -T)=(Ag:D (0—>0—0). g-z-7y)
proof —
have leq: V %' ?Bj.q = (Ag: D (0—0—0). g+ T - T)
and req: V 20" ?Breq = (Ag: D (0—>0—0). g - T - y)
proof —
from assms(1,2) have is-assg-p'": 20" g~ D if g € elts (D (0—0—0)) for g
using that by auto
have side-eq-denotation:
V %' (Ago—0—0- Go—so—0* A B) = (Xg:D (0—=0—0). g-V (%" g) A-V (20" g) B)
if A € wffsp and B € wffs, for A and B

240

proof —
from that have go—o—0 * A = B € wffso
by blast
have V (%" ¢) (go—so—s0"AB)=g-V (%" g9) A-V (%" g) B
if g € elts (D (0—0—0)) for g
proof —
from (A € wffsy> have go—o—0 * A € wffso—o
by blast
with that and is-assg-p’’ and <B € wjffsy» have
V (%" g) (8o—s0—0 A= B) =V (%" g) (doso0—0"A4) -V (%" g) B
using wff-app-denotation| OF V-is-wff-denotation-function] by simp
also from that and <A € wffsy,> and is-assg-p'' have
o=V (%" g) (doso—0) V(%" g) A-V (%" g) B
by (metis V-is-wff-denotation-function wff-app-denotation wjffs-of-type-intros(1))
finally show ?thesis
using that and is-assg-p'’ and V-is-wff-denotation-function by auto
qed
moreover from assms have is-assignment 2o’
by auto
with <go—0—0 * A+ B € wffsy> have
V %" (Ao—o0—0- Go—s0—0* A+ B) = (Ag: D (0=0—0).V (%" g) (do—0—0* 4+ B))
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
ultimately show ?thesis
using vlambda-extensionality by fastforce
qed
— Proof of legq:
show V 2o’ ?Bi.q = (Ag: D (0—0—0). g- T -T)
proof —
have V (%p" g) To = T if g € elts (D (0—0—0)) for g
using that and is-assg-p’ and prop-5401-c by simp
then show ?thesis
using side-eq-denotation and true-wff and viambda-extensionality by fastforce
qed
— Proof of req:
show V 20’ ?B,cq = (Ag: D (0—=0—0). g+ z + y)
proof —
from is-assg-p’ have V (%" g) (xto) = zand V (%" g) (o) = y
if g € elts (D (0—0—0)) for ¢
using that and V-is-wff-denotation-function by auto
with side-eq-denotation show ?thesis
using wffs-of-type-intros(1) and vlambda-extensionality by fastforce
qged
qed
then show ?thesis
by auto
qed
also have ... +— (Vg € elts (D (0—0—0)). g- T-T=g-1z-y)
using vlambda-extensionality and VLambda-eq-D2 by fastforce
finally have and-equ:

241

Vo (Nososo) x-y=T<+— (Vg €elts (D (0>0—0).g- T -T=g-z-y)
by blast
then show ?thesis
proof —
from assms(1,2) have is-assg-1: o((z, 0) :== T) ~ D
by (simp add: truth-values-domain-def)
then have is-assg-2: p((¢r, 0) := T, (9, 0) :=T) ~ D
unfolding is-assignment-def by (metis fun-upd-apply prod.sel(2))
from assms consider (a) x =T Ay=T|(b)z#T|(c)y#T
by blast
then show ?thesis
proof cases
case a
then have g - T:- T =gz - yif g € elts (D (0—0—0)) for g
by simp
with e and and-equ show ?thesis
by simp
next
case b
let ?g-witness = Arp. A\vo. Lo
have A\yy. 1o € wffso—o
by blast
then have is-closed-wff-of-type ?g-witness (0—0—0)
by force
moreover from assms have is-assg-p’: ?p’ ~ D
by simp
ultimately have V ¢ ?g-witness - T - T =V %' ?g-witness - T - T
using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from assms and <Aye. o € wffso— o> have
V 2’ 2g-witness - T - T =V (2'((x, 0) :=T)) (A\9o.10) + T
using mized-beta-conversion and truth-values-domain-def by auto
also from assms(1) and <\yo. o € wffso— o> and is-assg-1 and calculation have
oo =V (%((x, 0) =T, (9, 0) :=T)) (xro)
using mized-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))
also have ... =T
using is-assg-2 and V-is-wff-denotation-function by fastforce
finally have V ¢ ?g-witness + T+ T =T .
with b have V ¢ ?g-witness + T + T # x
by blast
moreover have x =V ¢ ?g-witness + = - y
proof —
from is-assg-p’ have z =V 2o’ (10)
using V-is-wff-denotation-function by auto
also from assms(2) and is-assg-p’ have ... =V %' (A\9y. 1o) * ¥
using wffs-of-type-intros(1)[where z = r and a = 0
by (simp add: mized-beta-conversion V-is-wff-denotation-function)
also from assms(2) have ... =V %’ ?g-witness - z - y
using is-assg-’ and <Ayo. to € wWffsp—0’

242

by (simp add: mized-beta-conversion fun-upd-twist)
also from assms(1,2) have ... =V ¢ ?g-wilness - ¢ - y
using is-assg-¢’ and <is-closed-wff-of-type ?g-witness (0—0—0)»
and closed-wff-is-meaningful-regardless-of-assignment by metis
finally show ?thesis .
qged
moreover from assms(1,2) have V ¢ Zg-witness € elts (D (o—0—0))
using <is-closed-wff-of-type ?g-witness (0—o0—0)» and V-is-wff-denotation-function by simp
ultimately have 3¢ € elts (D (0—0—0)). g- T -T#g-z-y
by auto
moreover from assms have V ¢ (Ap—o—0) = - y € elts (D o)
by (rule fully-applied-conj-fun-is-domain-respecting)
ultimately have V ¢ (Ap—o—0) rz -y =F
using and-equ and truth-values-domain-def by fastforce
with b show ?thesis
by simp
next
case c
let ?g-witness = Arop. A9o. Ho
have Ayo. yo € wffso—o
by blast
then have is-closed-wff-of-type ?g-witness (0—0—0)
by force
moreover from assms(1,2) have is-assg-p” %'~ D
by simp
ultimately have V ¢ ?g-witness + T - T =V %2p’ ?g-witness - T «+ T
using assms(1) and closed-wff-is-meaningful-regardless-of-assignment by metis
also from is-assg-1 and is-assg-p’ have ... =V (2'((x, 0) :=T)) (A9p. 9o) + T
using (Aho. 9o € wffsp— o> and mized-beta-conversion and truth-values-domain-def by auto
also from assms(1) and Ayo. Yo € wffsp— o> and is-assg-1 and calculation have
=V (%((x 0) =T, (v, 0) := T)) (no)
using mized-beta-conversion and is-assignment-def
by (metis fun-upd-same fun-upd-twist fun-upd-upd wffs-of-type-intros(1))
also have ... =T
using is-assg-2 and V-is-wff-denotation-function by force
finally have V ¢ ¢g-witness - T - T =T .
with ¢ have V ¢ ?g-witness - T - T # y
by blast
moreover have y =V ¢ ?g-witness - © + y
proof —
from assms(2) and is-assg-o' have y =V %o’ (A\yo. o) * ¥y
using wffs-of-type-intros(1)[where z = y and o = 0]
and V-is-wff-denotation-function and mized-beta-conversion by auto

also from assms(2) and <A\yy. o € wffso—o> have ... =V 2’ ?g-witness - © - y
using is-assg-¢' by (simp add: mized-beta-conversion fun-upd-twist)
also from assms(1,2) have ... =V ¢ Zg-witness + ¢ - y

using is-assg-p’ and <is-closed-wff-of-type ?g-witness (0—o0—0)»
and closed-wff-is-meaningful-regardless-of-assignment by metis
finally show ?thesis .

243

qed

moreover from assms(1) have V ¢ ?g-witness € elts (D (0—0—0))
using <is-closed-wff-of-type ?g-witness (0—o0—0)> and V-is-wff-denotation-function by auto

ultimately have 3¢ € elts (D (0—0—0)). g- T -T#g-x-y
by auto

moreover from assms have V ¢ (Ap—o—0) * - y € elts (D o)
by (rule fully-applied-conj-fun-is-domain-respecting)

ultimately have V ¢ (Ap—o—0) rz -y =F
using and-equ and truth-values-domain-def by fastforce

with ¢ show ?thesis
by simp

qed
qed
qed

corollary (in general-model) prop-5401-e”.
assumes ¢ ~ D
and A € wffsy and B € wffs,
shows V o (ANSB)=VpAAV B
proof —
from assms have {V ¢ A,V ¢ B} C elts (D o)
using V-is-wff-denotation-function by simp
from assms(2) have Ap—o—0 = A € wffso—o

by blast
have V ¢ (A NS B) =V ¢ (Aop—so—0* A+ B)
by simp
also from assms have ... =V ¢ (Apso—0+4) -V ¢ B
using V-is-wff-denotation-function and (Ap—so—o = A € wffso— o> by blast
also from assms have ... =V ¢ (Apso—0) Ve A- V¢ B
using V-is-wff-denotation-function and conj-fun-wff by fastforce
also from assms(1,2) have ... = (if Vo A=T AV ¢ B=T then T else F)
using ({V ¢ A,V ¢ B} C elts (D o)) and prop-5401-e by simp
alsohave ... =V p ANV ¢ B

using truth-values-domain-def and «{V ¢ A, V ¢ B} C elts (D o)» by fastforce
finally show ?thesis .
qed

lemma (in general-model) prop-5401-f:
assumes ¢ ~ D
and {z, y} C elts (D o)
shows V ¢ (Dp—o—0) -y = (ifr =T Ay =F thenF else T)
proof —
let %’ = ((x, 0) == z, (9, 0) = 1)
from assms(2) have {z, y} C elts B
unfolding truth-values-domain-def .
have (10 =2 1o A9 10) € wffso
by blast
then have \yo. (r0 =2 10 A2 90) € wffso—o
by blast

244

from assms have is-assg-p": ?p’ ~ D
by simp

from assms(1) have V 2o’ (to) =z and V %' (yy) = y
using is-assg-¢’ and V-is-wff-denotation-function by force+

have V ¢ (Do—o0—0) - -y =V ¢ (Aro. A\o. (ro =210 A% 0o)) -z y
by simp

also from assms have ... =V (p((r, 0) := 7)) (M\o. (to =< 1o A< 00)) + ¥
using <Ay (zo =21, AC Vo) € wffso—o> and mized-beta-conversion by simp
also from assms have ... =V 20’ (1o =21, AC Yo)

using mized-beta-conversion and «(xo =< 1o A< 9o) € wffser by simp
finally have V ¢ (Do—so0—0) -2+ y =T =V %' (to) =V %’ (to A° o)
using prop-5401-b’[OF is-assg-p’] and conj-op-wff and wffs-of-type-intros(1) by simp
alsohave ... «—z =z Ay
unfolding prop-5401-e’|OF is-assg-p’ wffs-of-type-intros(1) wffs-of-type-intros(1)]
and V %’ (ro) = »» and <V 2’ (yo) = > ..
also have ... «+— 2= (ifx =T Ay =T then T else F)
using {z, y} C elts B> by auto
alsohave ... «— T = (ife =T Ay =F then F else T)
using «{z, y} C elts B) by auto
finally show ?thesis
using assms and fully-applied-imp-fun-denotation-is-domain-respecting and tv-cases
and truth-values-domain-def by metis
qged

corollary (in general-model) prop-5401-f":

assumes ¢ ~ D

and A € wffsp and B € wffs,

shows V9 (AD9B)=VpADVyB

proof —

from assms have {V ¢ A, V ¢ B} C elts (D o)
using V-is-wff-denotation-function by simp

from assms(2) have Dy—o—0 * A € wffso—o

by blast
have V ¢ (A D2 B) =V ¢ (Doso—0* A+ B)
by simp
also from assms(1,3) have ... =V ¢ (Do—so0—s0-A) -V ¢ B
using V-is-wff-denotation-function and «Dp—o9—0 * A € wffsp— o> by blast
also from assms have ... =V ¢ (Dp—so—0) Ve A-Vp B
using V-is-wff-denotation-function and imp-fun-wff by fastforce
also from assms have ... = (if Vo A=T AV ¢ B=F then F else T)
using ({V ¢ A,V ¢ B} C elts (D o) and prop-5401-f by simp
alsohave ... =V p ADV ¢y B

using truth-values-domain-def and «{V ¢ A,V ¢ B} C elts (D o) by auto
finally show ?thesis .
qed

lemma (in general-model) forall-denotation:

assumes ¢ ~ D
and A € wffs,

245

shows V ¢ (Vzq. A) =T «— (Vz € elts (D a). V (¢((z, a) :=2)) A=T)
proof —

from assms(1) have lhs: V ¢ (Atq. To) + 2 =T if z € elts (D «) for z
using prop-5401-c and mized-beta-conversion and that and true-wff by simp

from assms have rhs: V ¢ (Azq. A) - 2 =V (o((z, a) := 2)) A if z € elts (D «) for z
using that by (simp add: mized-beta-conversion)

from assms(2) have Aro. To € wffsa—o and Azq. A € wffsa—so
by auto

have V ¢ (Vzq. A) =V ¢ ([[a * (Aza. 4))
unfolding forall-def ..

also have ... =V ¢ (Qa—o * (Ata- To) * (Azq. A4))
unfolding PI-def ..
also have ... =V ¢ ((A\ta- To) =a—o0 (A2a. A))

unfolding equality-of-type-def ..
finally have V ¢ (Vzqo. A) =V ¢ (Ata- To) =a—0 (Aza. 4)) .
moreover from assms(1,2) have
Vo (Ata- To) =a—o Az A) =T +—=V o Ata- To) =V ¢ (Azg. A)
using Arq. To € wffsa—o> and <Azq. A € wffsqa—o> and prop-5401-b by blast
moreover
have (V ¢ (A\ta. To) =V ¢ (Azq. 4)) «— (Vz € elts (D a). V (p((z, @) :==2)) A=T)
proof
assume V ¢ (Arg. To) =V ¢ (Azg. A)
with lhs and rhs show Vz € elts (D a). V (¢((z, o) :=2)) A=T
by auto
next
assume Vz € elts (D). V (p((z, o) :=2)) A=T
moreover from assms have V ¢ (M\tq. To) = Az: D a. V (o((x, o) := 2)) Ty)
using wff-abs-denotation|OF V-is-wff-denotation-function| by blast
moreover from assms have V ¢ (Azq. A) = (Az: D a. V (p((z, o) = 2)) A)
using wff-abs-denotation|OF V-is-wff-denotation-function] by blast
ultimately show V ¢ (Arq. To) =V ¢ (Azq. A)
using lhs and vlambda-extensionality by fastforce
qed
ultimately show ?thesis
by (simp only:)
qed

lemma prop-5401-g:
assumes is-general-model M
and ¢~ M
and A € wffs,
shows M 'ng Vg A<+— (V’(/) Y~y MAY ~(z,) P — M)=¢ A)
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
with assms have
—
Viza. A € wffso A is-general-model (D, T, V) AN~ DAV o Vag. A) =T

246

by fastforce
also from assms and <M = (D, J, V)» have ... «+— (Vz € elts (D a). V (¢((z, a) == 2)) A =
T)
using general-model.forall-denotation by fastforce
also have ... +— (V. v~ D A9 ~(z,) P — M |y 4)
proof
assume *: Vz € elts (D a). V (¢((z, @) :=2)) A=T
{
fix
assume) ~ D and v ~(z, @) ¥
have VY A =T
proof —
have 3z € elts (D a). ¥ = ¢((z, o) 1= 2)
proof (rule ccontr)
assume — (Jz € elts (D a). v = o((z, a) := z))
with <) ~(z, @) P have Vz € elts (D o). ¢ (z, a) # 2
by fastforce
then have ¢ (z, a) ¢ elts (D «)
by blast
moreover from assms(1) and <M = (D, J, V)» and (¢ ~ D> have ¢ (z, a) € elts (D «)
using general-model-def and premodel-def and frame.is-assignment-def by auto
ultimately show Fulse
by simp
qed
with x show ?thesis
by fastforce

qed
with assms(1) and <M = (D, J, V)> have M |5, A
by simp
}
thenshowvw.zva/\ww(La) p— My, A
by blast
next

assume #: V). ¢ ~> DA th ~ (g o) p— My A
show Vz € elts (D a). V (¢((z, o) :=2)) A=T
proof
fix z
assume z € elts (D «)
with assms(1,2) and <M = (D, J, V) have p((z, a) := 2) ~ D
using general-model-def and premodel-def and frame.is-assignment-def by auto
moreover have ¢((z, a) := 2) Nz, a) ¥
by simp
ultimately have M ’:90((957 Q)
using * by blast
with assms(1) and <M = (D, J, V)» and <«p((z, @) := 2) ~ D> show V (¢((z, o) := 2)) A =

A

= 2z)

by simp
qed

247

qed
finally show ?thesis
using <M = (D, J, V)
by simp
qged

lemma (in general-model) axiom-1-validity-auz:
assumes @ ~ D
shows V ¢ (go—o0* To A2 §o—s0* Fo =2 Vio. go0 o) =T (isV ¢ (74 =2 ?B) = T)
proof —
let M = (D, J, V)
from assms have x: is-general-model M @ ~>pr 2M
using general-model-axzioms by blast+
have ?4 =° 2B € wffso
using azioms.azxiom-1 and axioms-are-wffs-of-type-o by blast
have lhs: V p ?A = ¢ (g, 0—0) - T A (g, 0—0) - F
proof —
have go—o * To € wffso and go—o * Fo € wffso
by blast+
with assms have V ¢ 2A =V ¢ (go—o* To) ANV ¢ (§o—so0 * Fo)
using prop-5401-¢’ by simp
also from assms have ... = ¢ (g, 0—0) -V ¢ (To) A ¢ (g, 0—0) - V ¢ (Fo)
using wff-app-denotation| OF V-is-wff-denotation-function]
and wff-var-denotation| OF V-is-wff-denotation-function]
by (metis false-wff true-wff wffs-of-type-intros(1))
finally show ?thesis
using assms and prop-5401-c and prop-5401-d by simp
qed
have V ¢ (74 =2 ?B) =T
proof (cases Vz € elts (D 0). ¢ (g, 0—0) - z="T)
case True
with assms have ¢ (g, 0—»0) - T =T and ¢ (g, 0—0) -F =T
using truth-values-domain-def by auto
with lhs have V ¢ PA =T AT
by (simp only:)
also have ... =T
by simp
finally have V ¢ A =T .
moreover have V ¢ B =T
proof —
have go—0 * to € wffso
by blast
moreover
{
fix ¢
assume ¥ ~ D and ¢ ~(, 0) P

with assms have V ¥ (go—o0 * o) =V ¥ (go—0) + V ¥ (ro)
using V-is-wff-denotation-function by blast
also from <) ~ D) have ... = ¢ (g, 0—0) - ¥ (¢, 0)

248

using V-is-wff-denotation-function by auto

also from < ~(1, 0) P have ... = ¢ (g, 0—0) - ¥ (g, 0)
by simp

also from True and <) ~ D) have ... =T
by blast

finally have V ¢ (go—o o) = T .
with assms and (go—0 * 1o € wffse> have ?M):q/; Jo—o " Yo
by simp
}
ultimately have M =, 7B
using assms and * and prop-5401-g by auto
with x(2) show ?thesis
by simp
qed
ultimately show ¢thesis
using assms and prop-5401-b" and wffs-from-equivalence[OF «?A =2 ?B € wffsy] by simp
next
case Fulse
then have 32 € elts (D o). ¢ (g, 0—0) - 2z £ T
by blast
moreover from x have Vz € elts (D o). ¢ (g, 0—0) - z € elts (D o)
using app-is-domain-respecting by blast
ultimately obtain z where z € elts (D o) and ¢ (g, 0—0) - z=F
using truth-values-domain-def by auto
define ¢ where -def: ¥ = ¢((r, 0) := 2)
with * and <z € elts (D 0)» have ¢ ~ D
by simp
then have V ¢ (go—o0 *to) =V ¥ (o—0) * V ¥ (o)
using V-is-wff-denotation-function by blast

also from) ~ Dy have ... = ¢ (g, 0—o0) - ¢ (¢, 0)
using V-is-wff-denotation-function by auto

also from v-def have ... = ¢ (g, 0—0) + 2
by simp

also have ... = F

unfolding <y (g, 0—0) - z = F» ..
finally have V ¢ (go—o *10) = F .
with <) ~» D) have - 2M |:¢ go—o * Lo
by (auto simp add: inj-eq)
with) ~ D) and ¢-def have - (V.) ~ D A ¢ N, 0) ¥ My 800 * To)
using fun-upd-other by fastforce
with (= ?M |5y go—o * 1o have = M =, 7B
using prop-5401-g[OF * wffs-from-forall|OF wffs-from-equivalence(2)[OF «?A =2 2B € wffs]]]
by blast
then have V ¢ (Vro. go—o*to) # T
by simp
moreover from assms have V ¢ ?B € elts (D o)
using wffs-from-equivalence[OF «?A =2 2B € wffso)] and V-is-wff-denotation-function by auto
ultimately have V ¢ B =F
by (simp add: truth-values-domain-def)

249

moreover have V ¢ (go—0* To A2 go—s0* Fo) = F
proof —
from <z € elts (D o)» and <p (g, 0—0) - z = F»
have ((¢ (g, 0—0)) - T) = F V ((¢ (9, 0—=0)) - F) = F
using truth-values-domain-def by fastforce
moreover from <z € elts (D o)» and <« (g, 0—0) - z =F»
and Vz € elts (D o). ¢ (g, 0—0) « z € elts (D o)»
have {(¢ (g, 0-+0)) - T, (¢ (5, 0—0)) - F} C elts (D o)
by (simp add: truth-values-domain-def)
ultimately have ((¢ (g, 0—0)) - T) A ((¢ (g, 0—0)) - F) = F
by auto
with [hs show Zthesis
by (simp only:)
qed
ultimately show ?thesis
using assms and prop-5401-b" and wffs-from-equivalence[OF «?A =2 ?B € wffsy] by simp
qed
then show ?thesis .
qed

lemma aziom-1-validity:
shows |= goso * To A° goso* Fo =2 V0. oo * to (is E 74 =2 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~»p M
show M =, 74 =° ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, 7, V) have V ¢ (?A =2 ?B) =T
using general-model.azxiom-1-validity-aux by simp
ultimately show ?Zthesis
by simp
qed
qed

lemma (in general-model) ariom-2-validity-aux:
assumes ¢ ~ D
shows V ¢ ((ta =a Ya) D2 (ha—o *ta =< baso*9a)) =T (is V ¢ (P4 D2 ?B) = T)
proof —
have 24 D9 ?B ¢ wffs,
using azioms.azxiom-2 and axioms-are-wffs-of-type-o by blast
from (?4 D2 ?B € wffsy> have ?A € wffs, and ?B € wffs,
using wffs-from-imp-op by blast+
with assms have V ¢ (A D2 ?B) =V ¢ YA DV ¢ B
using prop-5401-f' by simp
moreover from assms and «?A € wffsy> and «?B € wffsy> have {V ¢ 74,V ¢ ?B} C elts (D o)
using V-is-wff-denotation-function by simp
then have {V ¢ ?4,V ¢ ?B} C elts B

250

by (simp add: truth-values-domain-def)
ultimately have V-imp-T:V ¢ (PAD2 ?B) =T +—= Vo PA=FV V¢ ?B=T
by fastforce
then show ?thesis
proof (cases ¢ (¢, a) = ¢ (1,)
case True
from assms and «?B € wffsp) have V ¢ ?B=T +— V ¢ (ha—o *ta) =V ¢ (ha—o * Ya)
using wffs-from-equivalence and prop-5401-b’ by metis
moreover have V ¢ (ha—o *ta) =V ¢ (ha—o * Ya)
proof —
from assms and «?B € wffsp> have V ¢ (ha—o *ta) =V ¢ (ha—o) - V ¢ (ta)
using V-is-wff-denotation-function by blast

also from assms have ... = ¢ (h, a—0) - ¢ (g, @)
using V-is-wff-denotation-function by auto
also from True have ... = ¢ (h, a—0) - ¢ (9,)
by (simp only:)
also from assms have ... =V ¢ (ha—=o) + V ¢ (va)
using V-is-wff-denotation-function by auto
also from assms and «?B € wffsy> have ... =V ¢ (ha—o * o)

using wff-app-denotation|OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))
finally show ?thesis .
qed
ultimately show ¢thesis
using V-imp-T by simp
next
case Fulse
from assms have V o 2A =T «—V ¢ (ta) =V ¢ (ha)
using prop-5401-b by blast
moreover from False and assms have V ¢ (to) #V ¢ (va)
using V-is-wff-denotation-function by auto
ultimately have V ¢ 74 =F
using assms and «({V ¢ 24,V ¢ ?B} C elts By by simp
then show ?thesis
using V-imp-T by simp
qed
qed

lemma aziom-2-validity:
shows = (ta =a Ya) 22 (ha—o * fa =2 ba—o * Ya) (is = 24 D2 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M =, ?A D¢ 7B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V) have V ¢ (?A D2 ?B) =T
using general-model.axiom-2-validity-aux by simp
ultimately show ?Zthesis

251

by force
qed
qed

lemma (in general-model) axiom-3-validity-auz:
assumes ¢ ~ D
shows V ¢ ((fosp =a—p 9a—p) =2 Via. (Fa—p * ta =g 8a—p " Fa)) =T
(isV ¢ (24 =2 ?B) = T)
proof —
let M = (D, J,V)
from assms have x: is-general-model 2M ¢ ~spr 2 M
using general-model-axioms by blast+
have B'-wffo: fo_,g * ta =3 90— * ta € wifso
by blast
have ?4 =2 2B € wffs, and ?4 € wffs, and ?B € wffs,
proof —
show 74 =2 7B € wffs,
using axioms.azxiom-3 and axioms-are-wffs-of-type-o
by blast
then show ?4 € wffs, and ?B € wffs,
by (blast dest: wffs-from-equivalence)+
qed
have V ¢ A=V ¢ 7B
proof (cases ¢ (i, a—f) = ¢ (g, a—5))
case True
have V ¢ ?PA =T
proof —
from assms have V ¢ (fo5) = ¢ (f, a—=5)
using V-is-wff-denotation-function by auto

also from True have ... = ¢ (g, a—p)
by (simp only:)
also from assms have ... =V ¢ (g,3)

using V-is-wff-denotation-function by auto
finally have V ¢ (fo8) =V ¢ (84—p) -
with assms show ?thesis
using prop-5401-b by blast
qed
moreover have V ¢ B =T
proof —
{
fix ¢
assume ¥ ~ D and ~(, @) ¥
from assms and) ~ D) have V ¢ (fo5 *ta) =V ¥ (famsp) * V ¥ (ta)
using V-is-wff-denotation-function by blast

also from assms and) ~ D) have ... = ¢ (f, a—=p) - ¥ (¢, @)
using V-is-wff-denotation-function by auto

also from () ~r,) P have ... = ¢ (f, a—f) - ¥ (¢, @)
by simp

also from True have ... = ¢ (g, a—=0) - ¥ (r,)

252

by (simp only:)

also from < @) P have ... = ¢ (g, a—=f8) - ¥ (¢,)
by simp

also from assms and) ~ D) have ... =V ¢ (go—3) + V ¥ (ta)
using V-is-wff-denotation-function by auto

also from assms and) ~ D) have ... =V 1 (ga_>5 “ o)

using wff-app-denotation| OF V-is-wff-denotation-function] by (metis wffs-of-type-intros(1))
finally have V ¢ (fo—5 * ta) =V ¢ (843 " ta) -
with B’-wffo and assms and <) ~ D) have V 9 (fa—>ﬂ *a =8 Ba—f * ta) =T

using prop-5401-b and wffs-from-equality by blast
with x(2) have M =, fo5 " ta =8 803 " ta

by simp

with « and B’-wffo have ?M =, 7B
using prop-5401-g by force
with x(2) show ?thesis
by auto
qed
ultimately show ?thesis ..
next
case Fulse
from x have ¢ (f, a—p) € elts (D a — D) and ¢ (g, a—p) € elts (D a — D)
by (simp-all add: function-domainD)
with False obtain z where z € elts (D «) and ¢ (f, a—=08) + z # ¢ (g, a—=f) + 2
by (blast dest: fun-ext)
define ¢ where ¥ = ¢((z,) = 2)
from x and <z € elts (D a)» have ¢ ~ D and ¢ ~, @) ¥
unfolding -def by fastforce+
have V ¢ (fo—p *ta) = ¢ (f, a—p) + 2z for f
proof —
from) ~ D> have V ¢ (fo5 " ta) =V ¥ (fassp) - V ¥ (ta)
using V-is-wff-denotation-function by blast
also from) ~ D have ... = ¢ (f, a—p) - ¥ (¢, @)
using V-is-wff-denotation-function by auto
finally show ?thesis
unfolding v-def by simp
qed
then have V ¢ (fo5 *ta) = ¢ (f, a=B) - zand V ¢ (g4 * ta) = ¢ (8, a>B) - 2
by (simp-all only:)
with « (f, a=8) - 2 # ¢ (3, a=B) - have V ¥ (o553 * ta) # V & (80sp * Fa)
by simp
then have V ¥ (fo_,5 * fa =5 G035 * fa) = F
proof —
from B’-wffo and « ~ D) and * have V ¢ (fo—3 * ta =g 8a—3 * Fa) € elts (D o)
using V-is-wff-denotation-function by auto
moreover from B’-wffo have {fa_>5 *las Ba—p " ta} C wﬁsﬁ
by blast
with) ~ D) and <V ¢ (fog = ta) # V ¥ (84— 3 " ta)> and B'-uffo
have V ¢ (fa—>ﬁ *ta =38 8a—p " ta) # T

253

using prop-5401-b by simp
ultimately show ?thesis
by (simp add: truth-values-domain-def)
qed
with) ~ D) have = M =y, o5 * fa =g 80—g * ta
by (auto simp add: inj-eq)
with) ~ D> and <« ~(, @) P

have 3¢. Y~ DAY~ o) ¢ A2 My fasp Ta =8 8a—p * Fa
by blast
with + and B'-wffo have - ?M =, ?B
using prop-5401-g by blast
then have V ¢ B = F
proof —
from <?B € wffsy> and * have V ¢ ¢B € elts (D o)
using V-is-wff-denotation-function by auto
with (= ?M =, ?B) and <?B € wffso> show ?thesis
using truth-values-domain-def by fastforce
qed
moreover have V ¢ (fo—3 =q—3 8a—pg) = F
proof —
from have V ¢ (fo5) = ¢ (F, a—8) and V ¢ (545) = ¢ (3 a—5)
using V-is-wff-denotation-function by auto
with False have V ¢ (fo—5) # V ¢ (80—p)
by simp
with « have V ¢ (fo 3 =08 8a—p) # T
using prop-5401-b by blast
moreover from x and (%A € wffso> have V ¢ (fo—,53 =q—3 8a—p) € elts (D o)
using V-is-wff-denotation-function by auto
ultimately show ?thesis
by (simp add: truth-values-domain-def)
qed
ultimately show Zthesis
by (simp only:)
qed
with * and (%4 € wffsy> and <?B € wffsy> show ?thesis
using prop-5401-b’ by simp
qed

lemma aziom-3-validity:
shows = (o8 =amp 9a—p) =2 Via: (fasp * ta =g 9a—p * Fa) (is |5 74 =2 7B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~pr M
show M =, 74 =° ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V) have V ¢ (?A =2 ?B) =T
using general-model.axiom-3-validity-auz by simp

254

ultimately show ¢thesis
by simp
qed
qed

lemma (in general-model) axiom-4-1-con-validity-auz:
assumes ¢ ~ D
and A € wffsq
shows V ¢ ((Aza. {cltg) - A =g {c}g) =T
proof —
from assms(2) have (Aza. {clg) - A4 =g {clg € wffso
using axioms.axiom-4-1-con and azioms-are-wffs-of-type-o by blast
define ¢ where ¢ = ¢((z, a) :=V ¢ A)
from assms have V ¢ ((Aza. {cltg) = 4) =V (¢((z, a) =V ¢ A)) ({c}p)
using prop-5401-a by blast
also have ... =V ¢ ({c}y)
unfolding -def ..
also from assms and v-def have ... =V ¢ ({cftg)
using V-is-wff-denotation-function by auto
finally have V ¢ ((Aza. {c}g) » 4) =V ¢ ({c}g) -
with assms(1) and <(Aza. {cltg) = A =g {clg € wffsor show Zthesis
using wffs-from-equality(1) and prop-5401-b by blast
qed

lemma aziom-4-1-con-validity:
assumes A € wffsy
shows |= (Aza. {c}g) - A =g {cltg
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~p M
show M =y (Aza. {c}g) - A =5 {clig
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V)» have V ¢ ((Aza. {cltg) - A =g {ctg) = T
using general-model.azxiom-4-1-con-validity-aux by simp
ultimately show Zthesis
by simp
qed
qed

lemma (in general-model) axiom-4-1-var-validity-aux:
assumes ¢ ~ D
and A € wffsq
and (y, 8) # (s,)
shows V ¢ (\za. yg) » A =g yg) =T
proof —
from assms(2) have (A\za. yg) - A =g yg € wffso
using axioms.azxiom-4-1-var and axioms-are-wffs-of-type-o by blast

255

define ¢ where ¢ = ¢((z,) :=V ¢ A)
with assms(1,2) have V ¢ ((Aza. yg) = 4) =V (¢o((z,) :=V ¢ A)) (yg)
using prop-5401-a by blast

also have ... =V ¢ (yp)
unfolding v-def ..

also have ... =V ¢ (yp)

proof —

from assms(1,2) have V ¢ A € elts (D «)
using V-is-wff-denotation-function by auto
with ¢-def and assms(1) have ¢ ~ D

by simp

moreover have free-vars (yg) = {(y, 5)}
by simp

with ¢-def and assms(8) have Vv € free-vars (yﬂ). puv=vv
by auto

ultimately show ?thesis
using prop-5400[OF wffs-of-type-intros(1) assms(1)] by simp
qed
finally have V ¢ ((Aza. yg) » 4) =V ¢ (yg) -
with ((Azq. yﬁ) » A =g yg € wffso> show ?thesis
using wffs-from-equality(1) and prop-5401-b[OF assms(1)] by blast
qged

lemma azriom-4-1-var-validity:
assumes A € wffsy
and (y, 8) # (v,)
shows |= (Aza. yg) + A =5 yg
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~p M
show M =y (Aza- yg) = A =5 yg
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V)> have V ¢ ((Aza. yg) + A =5 yg) =T
using general-model.azxiom-4-1-var-validity-aux by auto
ultimately show Zthesis
by simp
qed
qed

lemma (in general-model) axiom-4-2-validity-auz:
assumes ¢ ~ D
and A € wffsq
shows V ¢ ((Azq. zo) * A =q A) =T
proof —
from assms(2) have (Azq. o) * A =a A € wffso
using axioms.azxiom-4-2 and azxioms-are-wffs-of-type-o by blast
define ¢y where ¥ = o((z, a) :=V ¢ A)

256

with assms have V ¢ ((Azq. za) * 4) =V ¢ (za)
using prop-5401-a by blast

also from assms and ¢-def have ... = ¢ (z, a)
using V-is-wff-denotation-function by force
also from v-def have ... =V ¢ A
by simp

finally have V ¢ ((Azq. za) * A) =V p A.
with assms(1) and «(Azq. zo) = A =a A € wffsp> show ?Zthesis
using wffs-from-equality and prop-5401-b by meson
qged

lemma aziom-4-2-validity:
assumes A € wffsy
shows = (Azq. o) * A =q A
proof (intro alll impl)
fix M and ¢
assume *: is-general-model M @ ~»p;y M
show M =, (Azq. 2q) * A =q A
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and * and «M = (D, J, V) have V ¢ (Azq. zq) * A =q A) =T
using general-model.axiom-4-2-validity-aux by simp
ultimately show ?thesis
by simp
qged
ged

lemma (in general-model) aziom-4-3-validity-aux:
assumes @ ~ D
and A € wffsq, and B € wﬁs,y_w and C € wffsy
shows V ¢ ((Aza. B+ C) » A =g ((Aza. B) » A) » ((Azq. C) - A)) =T
(is V¢ (?A =5 ?B) = T)
proof —
from assms(2—4) have ?A =5 ?B € wffso
using axioms.azxiom-4-3 and azxioms-are-wffs-of-type-o by blast
define ¢y where ¢ = o((z, o) :=V ¢ A)
with assms(1,2) have ¢ ~ D
using V-is-wff-denotation-function by auto
from assms and 1-def have V ¢ ?A =V) (B« C)
using prop-5401-a by blast

also from assms(3,4) and ¢-def and <) ~» Dy have ... =V ¢ B- V¢ C
using V-is-wff-denotation-function by blast

also from assms(1—3) and ¢-def have ... =V ¢ (Azq. B) = A) - V¢ C
using prop-5401-a by simp

also from assms(1,2,4) and ¢-def have ... =V ¢ (Azg. B) « A) - V ¢ ((Azg. C) - A)
using prop-5401-a by simp

also have ... =V ¢ 7B

proof —

257

have (Azq. B) + A € wffs,_,5 and (Azq. C) + A € wffsy
using assms(2—4) by blast+
with assms(1) show ?thesis
using wff-app-denotation| OF V-is-wff-denotation-function] by simp
qed
finally have V ¢ A =V ¢ ?B.
with assms(1) and YA =5 ?B € wffso) show ?thesis
using prop-5401-b and wffs-from-equality by meson
qged

lemma aziom-4-3-validity:
assumes A € wffsq and B € wjj”s,yﬁﬁ and C € wffsy
shows = (Azq. B+ C) « A =g ((Aza. B) - A) - (Aza. C) + A) (is | ?A =g ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M =, ?A =5 7B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and x and <M = (D, J, V) have V ¢ (YA =5 ?B) =T
using general-model.axiom-4-3-validity-aux by simp
ultimately show ?Zthesis
by simp
qed
qed

lemma (in general-model) aziom-4-4-validity-aux:
assumes ¢ ~ D
and A € wffsq and B € wffss
and (y, v) ¢ {(z, @)} U vars A
shows V ¢ ((Aza. Ayy. B) » A =, 5 (\yy. (\za. B) - A)) =T
(isV o (?PA=,_5 ?B) =T)
proof —
from assms(2,3) have ?A =, .5 7B € wffso
using axioms.azxiom-4-4 and azioms-are-wffs-of-type-o by blast
let 7D = \y,. B
define ¥ where ¢ = ¢((z, o) :=V ¢ A)
from assms(1,2) and v-def have ¢ ~ D
using V-is-wff-denotation-function by simp
{
fix z
assume z € elts (D v)
define ¢’ where ¢’ = ¢((y, 7) := 2)
from assms(1) and <z € elts (D v)» and ¢’-def have ¢’ ~ D
by simp
moreover from ¢’-def and assms(4) have Vv € free-vars A. ¢ v =’ v
using free-vars-in-all-vars by auto
ultimately have V ¢ A =V ¢’ A

258

using assms(1,2) and prop-5400 by blast
with i-def and ¢'-def and assms(4) have ¢'((z, @) ==V ¢’ 4) = ¥ ((y, v) = 2)
by auto
with) ~ D) and «z € elts (D v)» and assms(3) have V ¢ 2D - 2=V (¢¥((y,v) :== 2)) B
by (simp add: mized-beta-conversion)
also from (¢’ ~ D) and assms(2,3) have ... =V ¢’ (Azq. B) « A)
using prop-5401-a and «p'((z, @) :=V ¢’ A) = ¥((y, 7) := 2)» by simp
also from ¢'-def and assms(1) and <z € elts (D 7)) and YA =,_,5 7B € wffso)
have ... =V p ?B - 2
by (metis mized-beta-conversion wffs-from-abs wffs-from-equality(2))
finally have V¢ 2D - 2=V ¢ ?B - z.
}
note x = this
then have V ¢ D =V ¢ 7B
proof —
from <) ~ Dy and assms(3) have V ¢ 2D = (Az2: D~.V (¥((y, v) := 2)) B)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
moreover from assms(1) have V ¢ ?B = (Az: D ~. V (o((y, 7) == 2)) (Azq. B) + 4))
using wffs-from-abs[OF wffs-from-equality(2)[OF «?A =5 /B € wffso]]
and wff-abs-denotation|OF V-is-wff-denotation-function] by meson
ultimately show ?thesis
using vlambda-extensionality and * by fastforce
qged
with assms(1—3) and ¢-def have V ¢ ?A =V ¢ ?B
using prop-5401-a and wffs-of-type-intros(4) by metis
with assms(1) show ?thesis
using prop-5401-b and wffs-from-equality[OF «?A =5 /B € wffse>] by blast
qged

lemma aziom-4-4-validity:
assumes A € wffsq and B € wffs;
and (y, v) ¢ {(z, @)} U vars A
shows = (Aza. Ayy. B) » A =, 5 (Ayy. (Aza. B) » A) (is = ?A =, .5 ?B)
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M |=, ?A =, .5 ?B
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from assms and * and <M = (D, J, V)» have V ¢ (?A =, .5 ?B) =T
using general-model.azxiom-4-4-validity-aux by blast
ultimately show ¢thesis
by simp
qed
qged

lemma (in general-model) axiom-4-5-validity-auz:
assumes @ ~ D

259

and A € wffsq and B € wffs;
shows V ¢ ((Azq. Azq. B) - A =,_5 (Azq. B)) =T
proof —

define ¢y where ¢ = ¢((z, a) :=V ¢ A)

from assms have wff: (Azq. Azq. B) « A =,_5 (A\za. B) € wffso
using axioms.azxiom-4-5 and azioms-are-wffs-of-type-o by blast

with assms(1,2) and ¢-def have V ¢ (Azq. Azq. B) « A) =V ¢ (Azq. B)
using prop-5401-a and wffs-from-equality(2) by blast

also have ... =V ¢ (A\zq. B)
proof —
have (z, «) ¢ free-vars (Azq. B)
by simp
with ¢-def have Vv € free-vars (Azq. B). p v =19 v
by simp

moreover from ¢-def and assms(1,2) have ¢ ~ D
using V-is-wff-denotation-function by simp
moreover from assms(2,3) have (A\zq. B) € wffs,_s
by fastforce
ultimately show ?thesis
using assms(1) and prop-5400 by metis
qed
finally have V ¢ ((Azq. Azq. B) « A) =V ¢ (Azq. B) .
with wff and assms(1) show ?thesis
using prop-5401-b and wffs-from-equality by meson
qed

lemma aziom-4-5-validity:
assumes A € wffsq and B € wffsg
shows = (Azq. A2zq. B) « A =, _5 (Azq. B)
proof (intro alll impl)
fix M and ¢
assume *: is-general-model M ¢ ~>pr M
show M =y (Azq. Azq. B) » A =, s (Azq. B)
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover
from assms and * and <M = (D, J, V)» have V ¢ ((Azq. Azq. B) * A =5 (Azq. B)) =T
using general-model.azxiom-4-5-validity-auzx by blast
ultimately show ?thesis
by simp
qged
qged

lemma (in general-model) aziom-5-validity-aux:
assumes @ ~ D
shows V ¢ (1 + (Q;+9;) =;v) =T

proof —

have ¢« (Q; * ;) =; v; € wffso

260

using azioms.aziom-5 and axioms-are-wffs-of-type-o by blast
have Q; - v; € wffs;—,
by blast
with assmshave V ¢ (1 (Q;-9;) =V ot -V o (Q;+9;)
using V-is-wff-denotation-function by blast

also from assms have ... =V ot (V¢ (Q;) - V ¢ (1))
using wff-app-denotation|OF V-is-wff-denotation-function] by (metis Q-wff wffs-of-type-intros(1))
also from assms have ... = 7 (¢, (i—0)—1) « (T (cq, i—i—0) - V ¢ ()
using V-is-wff-denotation-function by auto
also from assms have ... = 7 (c,, (i—0)—i) - (¢2) - V ¢ (n;))
using @-constant-of-type-def and @Q-denotation by simp
also from assms have ... = J (c,, (i—0)—i) - {V ¢ (9)}:P

using V-is-wff-denotation-function by auto
finally have V ¢ (1 + (Q;* 0j)) = J (¢, (i—0)=i) - {V ¢ (0)}
moreover from assms have J (c,, (i—0)—=i) - {V ¢ (9)}:2 =V ¢ (vy)
using V-is-wff-denotation-function and t-denotation by force
ultimately have V ¢ (¢ + (Q;+9;)) =V ¢ ()
by (simp only:)
with assms and <Q; * v; € wffs;_,,> show ?Zthesis
using prop-5401-b by blast
qed

lemma aziom-5-validity:
shows = ¢+ (Q;* 9;) =i ;
proof (intro alll impl)
fix M and ¢
assume x: is-general-model M ¢ ~>pr M
show M = v+ (Q; * v5) =; v;
proof —
obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
moreover from * and <M = (D, J, V)» have V ¢ (v + (Q; * v;) =; v;)
using general-model.axiom-5-validity-auz by simp
ultimately show Zthesis
by simp
qed
qed

T

lemma azioms-validity:
assumes A € axioms
shows = A
using assms
and aziom-1-validity
and aziom-2-validity
and aziom-3-validity
and aziom-4-1-con-validity
and aziom-4-1-var-validity
and aziom-4-2-validity
and aziom-4-3-validity

261

and aziom-4-4-validity
and aziom-4-5-validity
and aziom-5-validity
by cases auto

lemma (in general-model) rule-R-validity-aux:
assumes A € wffsq and B € wffsq,
andVp.o~D — VA=V B
and C € uffsg and C' € wffsg
and p € positions C and A <, C' and C(p < B) > C’
showsVp. o ~D —Vp C=VypC
proof —
from assms(8,3—5,7) show ?thesis
proof (induction arbitrary: [3)
case pos-found
then show ?case
by simp
next
case (replace-left-app p G B’ G' H)
show ?case
proof (intro alll impI)
fix ¢
assume @ ~ D
from <G + H € wffsg> obtain v where G € wﬁsyﬁlg and H € wffsy
by (rule wffs-from-app)
with <«G'+ H € wffsgp> have G' € wffs, 3
by (metis wff-has-unique-type wffs-from-app)
from assms(1) and <p ~ Dy and <G € wffsy > and H € wffsy)
have V ¢ (G- H)=V o G-V H
using V-is-wff-denotation-function by blast
also from ¢y ~ D) and <G € wffs, 3> and <G’ € wffs, g have ... =V o G'- Vo H
using replace-left-app. IH and replace-left-app.prems(1,4) by simp
also from assms(1) and «p ~ D> and <G’ € wffsy_, 5> and <H € wffsy
have ... =V ¢ (G'+ H)
using V-is-wff-denotation-function by fastforce
finally show V ¢ (G- H) =V ¢ (G'- H) .
qed
next
case (replace-right-app p H B' H' G)
show ?case
proof (intro alll impI)
fix ¢
assume p ~ D
from <G - H € wﬁs@ obtain v where G € wﬁsvéﬁ and H € wffsy
by (rule wffs-from-app)
with «G - H' € wffsg) have H' € wffsy
using wff-has-unique-type and wffs-from-app by (metis type.inject)
from assms(1) and <p ~ D) and «G € wﬁsv_%(y and (H € wffsy

262

have Vo (G- H) =V G-V H
using V-is-wff-denotation-function by blast
also from (¢ ~ D) and «H € wffsy> and <H' € wffsy> have ... =V o G-V ¢ H’
using replace-right-app.IH and replace-right-app.prems(1,4) by force
also from assms(1) and «p ~ D) and <G € wffsy_, 5> and (H' € wffsy»
have ... =V ¢ (G« H')
using V-is-wff-denotation-function by fastforce
finally show V ¢ (G- H) =V ¢ (G- H') .
qed
next
case (replace-abs p E B' E' x)
show ?case
proof (intro alll impI)
fix ¢
assume p ~ D
define ¢ where ¢ z = ¢((z,) := 2) for z
with (¢ ~ D) have -assg: ¥ z ~ D if z € elts (D) for z
by (simp add: that)
from Az,. £ € wﬁ55> obtain § where § = vy—6 and E € wffss
by (rule wffs-from-abs)
with (\zy. E' € wffsg> have E' € wffss
using wffs-from-abs by blast
from assms(1) and <p ~ Dy and «F € wffss> and -def
have V ¢ (Azy. E) = (Az: D . V (¢ 2) E)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp

also have ... = (Az: D ~.V (¢ 2) E)
proof (intro vlambda-extensionality)
fix z

assume z € elts (D)
from (F € wffss> and (E’ € wffs;» have V. o ~D — Vo E=YV ¢ E’
using replace-abs.prems(1,4) and replace-abs.IH by simp
with -assg and <z € elts (D v)y» show V (¢ 2) E=V (¢ 2) E’
by simp
qed
also from assms(1) and <p ~ D) and (E’ € wffss» and ¢-def
have ... =V ¢ (Az4. E)
using wff-abs-denotation|OF V-is-wff-denotation-function] by simp
finally show V ¢ (Azy. E) =V ¢ (Azy. E') .
qed
qed
qged

lemma rule-R-validity:
assumes C € wffsy and C’ € wffso and E € wffs,
and = C and E F
and is-rule-R-app p C' C E
shows = C’
proof (intro alll impI)
fix M and ¢

263

assume is-general-model M and ¢ ~yy M

show M =, C’
proof —
have M = C’
proof —

obtain D and J and V where M = (D, J, V)
using prod-cases3 by blast
from assms(6) obtain A and B and « where A € wffsq and B € wffsq, and E = A =4 B
using wffs-from-equality by (meson is-rule-R-app-def)
note x = «is-general-model My <M = (D, T, V)s «p ~p M
have V ¢’ C =V ¢’ C'if ¢’ ~ D for ¢’
proof —
from assms(5) and *(1,2) and <A € wffsq> and (B € wffsq> and <F = A =4 B> and that
have Vo' o'~ D —V o' A=V ¢’ B
using general-model.prop-5401-b by blast
moreover
from «F = A =4 B> and assms(6) have p € positions C and A <, C and C{p < B) > C"’
using is-subform-implies-in-positions by auto
ultimately show ?thesis
using (A € wffsq> and <B € wffsq and «C € wffsy> and assms(2) and that and *(1,2)
and general-model.rule- R-validity-aux by blast
qged
with assms(4) and %(1,2) show ?thesis
by simp
qed
with <o ~pr M> show ?thesis
by blast
qed
qged

lemma individual-proof-step-validity:
assumes is-proof S and A € [set S
shows = A
using assms proof (induction length S arbitrary: S A rule: less-induct)
case less
from <A € lset S) obtain i’ where S ! i’ = A and S # || and ¢’ < length S
by (metis empty-iff empty-set in-set-conv-nth)
with <is-proof S» have is-proof (take (Suc i’) S) and take (Suc i’) S # []
using proof-prefiz-is-proof[where §1 = take (Suc i’) S and Sy = drop (Suc i’) S|
and append-take-drop-id by simp-all
from <i’ < length S» consider (a) i’ < length S — 1 | (b) i’ = length S — 1
by fastforce
then show ?case
proof cases
case a
then have length (take (Suc i) S) < length S
by simp
with «S ! i’ = A» and <take (Suc i") S # []» have A € Iset (take (Suc i’) S)
by (simp add: take-Suc-conv-app-nth)

264

with ength (take (Suc i) §) < length S» and <is-proof (take (Suc i’) S)» show %thesis
using less(1) by blast
next
case b
with <§ ! i’ = A and S # [|» have last S = A
using last-conv-nth by blast
with <is-proof &) and (S # [|> and b have is-proof-step S i’
using added-suffiz-proof-preservation|where S’ = [|] by simp
then consider
(aziom) S ! i’ € axioms
| (rule-R) Ap j k. {j, k} C {0..<i’} A is-rule-R-app p (S i) (S!j) (S!k)
by fastforce
then show ?thesis
proof cases
case azxiom
with «S ! i’ = A> show ?thesis
by (blast dest: azioms-validity)
next
case rule-R
then obtain p and j and &
where {j, k} C {0..<i’} and is-rule-R-app p (S i) (S!4) (S!k)
by blast
let 2S; = take (Suc j) S and %S; = take (Suc k) S
obtain S;’ and S;,’ where S = %5, @ S, and § = %5, @ S}’
by (metis append-take-drop-id)
with <is-proof S» have is-proof (?S; @ S;’) and is-proof (S Q@ Sy”)
by (simp-all only:)
moreover from «S # [> have %S; # [] and %Sy # ||
by simp-all
ultimately have is-proof-of ?S; (last 2S;) and is-proof-of ?Sy (last ?Sy)
using proof-prefiz-is-proof-of-lastjwhere S = 25; and S’ = S|
and proof-prefiz-is-proof-of-lastjwhere S = 25y, and S’ = S}
by fastforce+
moreover
from «({j, k} C {0..<i’}» and b have length %S; < length S and length ?Sj < length S
by force+
moreover from calculation(8,4) have S| j € Iset S; and S | k € Iset ?Sy,
by (simp-all add: take-Suc-conv-app-nth)
ultimately have =S !jand E S !k
using <%S; # [|» and %Sy # [> and less(1) unfolding is-proof-of-def by presburger+
moreover have S ! i’ € wffsp and S! j € wffsp and S! k € wffs,
using <is-rule-R-app p (S! i) (S'!j) (S! k) and replacement-preserves-typing
by force+
ultimately show ?thesis
using <is-rule-R-app p (S!1i) (S'!j) (S!'kpand<«S!i'= 4
and rule-R-validityjwhere C' = A] by blast
qed
qed
qed

265

lemma semantic-modus-ponens:
assumes is-general-model M
and A € wffsp and B € wffso
and M = A D2 B
and M = 4
shows M = B
proof (intro alll impl)
fix ¢
assume @ ~yr M
moreover obtain D and 7 and V where M = (D, J, V)
using prod-cases3 by blast
ultimately have p ~ D
by simp
show M =, B
proof —
from assms(4) have V ¢ (A D¢ B) =T
using <M = (D, J, V)» and <p ~p; M) by auto
with assms(1—3) have V o ADV ¢ B=T
using <M = (D, J, V) and <@ ~p M> and general-model.prop-5401-f' by simp
moreover from assms(5) have V ¢ A =T
using <M = (D, J, V)» and <p ~ D) by auto
moreover from (<M = (D, J, V)> and assms(1) have elts (D o) = elts B
using frame.truth-values-domain-def and general-model-def and premodel-def by fastforce
with assms and <M = (D, J, V) and <¢ ~ D) and <V p A =T have {V ¢ A,V ¢ B} C elts

B
using general-model.V-is-wff-denotation-function
and premodel. wff-denotation-function-is-domain-respecting and general-model.azioms(1) by blast
ultimately have V ¢ B =T
by fastforce
with «M = (D, J, V)> and assms(1) and <p ~ D) show ?thesis
by simp
qed
qged

lemma generalized-semantic-modus-ponens:
assumes is-general-model M
and Iset hs C wffso
and VH € lset hs. M = H
and P € wffs,
and M = hs D2, P
shows M E P
using assms(2—5) proof (induction hs arbitrary: P rule: rev-induct)
case Nil
then show ?case by simp
next
case (snoc H' hs)
from <M |= (hs @ [H']) D2, P> have M |= hs D2, (H' D2 P)
by simp

266

moreover from VH € Iset (hs @ [H']). M = H» and «set (hs Q [H]) C wffso
have V H € Iset hs. M = H and Iset hs C wffs,
by simp-all
moreover from «set (hs @ [H']) C wffsy» and «P € wffs,» have H' D2 P € wffs,
by auto
ultimately have M |= H' D¢ P
by (elim snoc.IH)
moreover from VH € lset (hs Q@ [H']). M = H» have M = H'
by simp
moreover from (H’ D¢ P € wffso» have H' € wffs,
using wffs-from-imp-op(1) by blast
ultimately show ?case
using assms(1) and <P € wffsy> and semantic-modus-ponens by simp
qed

8.3 Proposition 5402(a)

proposition theoremhood-implies-validity:
assumes is-theorem A
shows = A
using assms and individual-proof-step-validity by force

8.4 Proposition 5402(b)

proposition hyp-derivability-implies-validity:
assumes is-hyps G
and is-model-for M G
and G+ A4
and is-general-model M
shows M = A
proof —
from assms(3) have A € wffs,
by (fact hyp-derivable-form-is-wffso)
from <G F A» and «<is-hyps G» obtain H where finite H and H C Gand H - A
by blast
moreover from <finite H»> obtain hs where Iset hs = H
using finite-list by blast
ultimately have F hs D2, 4
using generalized-deduction-theorem by simp
with assms({) have M |= hs D2, A
using derivability-from-no-hyps-theoremhood-equivalence and theoremhood-implies-validity
by blast
moreover from X C G) and assms(2) have M = H if H € H for H
using that by blast
moreover from (X C G) and «lset hs = H> and assms(1) have Iset hs C wffso
by blast
ultimately show #thesis
using assms(1,4) and <A € wffsy> and «<set hs = H> and generalized-semantic-modus-ponens
by auto
qed

267

8.5 Theorem 5402 (Soundness Theorem)
lemmas thm-5402 = theoremhood-implies-validity hyp-derivability-implies-validity

end

9 Consistency

theory Consistency
imports
Soundness
begin

definition is-inconsistent-set :: form set = bool where
[iff]: is-inconsistent-set G +— G F F,

definition Qg-is-inconsistent :: bool where
[¢ff]: Qo-is-inconsistent «— F F,

definition is-wffo-consistent-with :: form = form set = bool where
[iff]: is-wffo-consistent-with B G <— — is-inconsistent-set (G U {B})

9.1 Existence of a standard model

We construct a standard model in which D 7 is the set {0}:

primrec singleton-standard-domain-family («D°)) where
D% i=1—ie., D% i= ZFC-in-HOL.set {0}

| D% 0 =B

| D% (a—B) = D% a > D%

interpretation singleton-standard-frame: frame D°
proof unfold-locales

{

fix a
have D° o # 0
proof (induction «)
case (TFun B)
from (D v # () obtain y where y € elts (D° v)
by fastforce
then have (Az: D° B. y) € elts (D% B+ D)
by (intro VPi-I)
then show ?case
by force
qed simp-all
}
then show Va. D° a # 0
by (intro alll)
qed simp-all

268

definition singleton-standard-constant-denotation-function («J°)) where
[simp]: T° k =
(

if
3 8. is-Q-constant-of-type k 3
then :
let B = type-of-Q-constant k in qﬂp
else
if
is-iota-constant k
then
Az : DY (i—0). 0
else

case k of (¢, a) = SOME z. z € elts (D)
)

interpretation singleton-standard-premodel: premodel DS J%

proof (unfold-locales)
show Va. J° (Q-constant-of-type o) = anS

by simp
next
show singleton-standard-frame.is-unique-member-selector (J° iota-constant)
unfolding singleton-standard-frame.is-unique-member-selector-def proof
fix z
assume z € elts (D7 i)
then have z = 0
by simp
moreover have (Az: D° (i—o). 0) - {O}ZDS =0
using beta[OF singleton-standard-frame.one-element-function-is-domain-respecting|
unfolding singleton-standard-domain-family.simps(3) by blast
ultimately show (J° iota-constant) - {x}iDS =z
by fastforce
qed
next
show V ¢ a. — is-logical-constant (c,) — J* (¢, @) € elts (D)
proof (intro alll impl)
fix ¢ and «
assume - is-logical-constant (c, «)
then have J° (¢, @) = (SOME z. z € elts (D° «))
by auto
moreover have 3z. z € elts (D°)
using eq0-iff and singleton-standard-frame.domain-nonemptiness by presburger
then have (SOME z. z € elts (D «)) € elts (DS «)
using some-in-eq by auto
ultimately show J° (¢, a) € elts (D° a)
by auto
qed
qged

269

fun singleton-standard-wff-denotation-function (<VS>) where
Vg (za) = ¢ (2,)

|V o ({cha) = T° (¢, a)

[VS (A«B)= (V¢ 4) - (V¢ B)

| VS o (Azq. A) = (Az: D% a. V9 (p((z, a) := 2)) A)

lemma singleton-standard-wff-denotation-function-closure:
assumes frame.is-assignment DS %
and A € wffsqy
shows VS p A € elts (D a)
using assms(2,1) proof (induction A arbitrary: ¢)
case (var-is-wff « x)
then show ?case
by simp
next
case (con-is-uff a c)
then show ?case
proof (cases (¢, «) rule: constant-cases)
case non-logical
then show ?thesis
using singleton-standard-premodel.non-logical-constant-denotation
and singleton-standard-wff-denotation-function.simps(2) by presburger
next
case (Q-constant ()

then have V° ¢ ({c}a) = q5D
by simp
moreover have qBDS € elts (D (B—p—0))
using singleton-standard-domain-family.simps(3)
and singleton-standard-frame.identity-relation-is-domain-respecting by presburger
ultimately show ¢thesis
using Q-constant by simp
next
case -constant
then have V° ¢ ({c}a) = (Az: D (i—0). 0)
by simp
moreover have (Az: D (i—o0). 0) € elts (D° ((i—0)—i))
by (simp add: VPi-I)
ultimately show ?thesis
using t-constant by simp
qed
next
case (app-is-wff o 8 A B)
have V5 o (A« B) = (VS p A) - (V5 ¢ B)
using singleton-standard-wff-denotation-function.simps(3) .
moreover have V¥ ¢ A € elts (D° (a—3)) and V° ¢ B € elts (D a)
using app-is-wff . IH and app-is-wff.prems by simp-all
ultimately show ?case
by (simp only: singleton-standard-frame.app-is-domain-respecting)
next

S

270

case (abs-is-wff 8 A « 1)

have V% ¢ (A\zq. 4) = (Az: DY a. V¥ (p((z, a) := 2)) A)
using singleton-standard-wff-denotation-function.simps(4) .

moreover have V° (¢o((z, a) := 2)) A € elts (D° B) if z € elts (D° a) for z
using that and abs-is-wff.IH and abs-is-wff.prems by simp

ultimately show Zcase
by (simp add: VPi-I)

qed

interpretation singleton-standard-model: standard-model DS J° VS
proof (unfold-locales)
show singleton-standard-premodel.is-wff-denotation-function V3
by (simp add: singleton-standard-wff-denotation-function-closure)
next
show Va 3. D° (a—fB) = DY a — D% 3
using singleton-standard-domain-family.simps(8) by (intro alll)
qged

proposition standard-model-existence:
shows 3 M. is-standard-model M
using singleton-standard-model.standard-model-axioms by auto

9.2 Theorem 5403 (Consistency Theorem)

proposition model-existence-implies-set-consistency:
assumes is-hyps G
and 3 M. is-general-model M A is-model-for M G
shows — is-inconsistent-set G
proof (rule ccontr)
from assms(2) obtain D and J and ¥V and M
where M = (D, J, V) and is-model-for M G and is-general-model M by fastforce
assume — — is-inconsistent-set G
then have G - F,
by simp
with «is-general-model M»> have M = F,

using thm-5402(2)[OF assms(1) <is-model-for M G»] by simp

then have V ¢ F, = T if ¢ ~ D for ¢

using that and <M = (D, J, V)» by force

moreover have V ¢ 'y = F if ¢ ~ D for ¢
using <M = (D, J, V)» and <is-general-model M) and that and general-model.prop-5401-d
by simp
ultimately have 3. ¢ ~ D
by (auto simp add: inj-eq)
moreover have 3¢. ¢ ~ D
proof —

— Since by definition domains are not empty then, by using the Axiom of Choice, we can specify an
assignment v that simply chooses some element in the respective domain for each variable. Nonetheless,
as pointed out in Footnote 11, page 19 in [1], it is not necessary to use the Axiom of Choice to show
that assignments exist since some assignments can be described explicitly.

271

let %) = Av. case v of (-, &) = SOME z. z € elts (D «)
from <M = (D, J, V) and <is-general-model M>» have V «. elts (D «) # {}
using frame.domain-nonemptiness and premodel-def and general-model.azioms(1) by auto
with «M = (D, J, V) and «(is-general-model M> have %) ~» D
using frame.is-assignment-def and premodel-def and general-model.azioms(1)
by (metis (mono-tags) case-prod-conv some-in-eq)
then show ?thesis
by (intro exl)
qed
ultimately show Fulse ..
ged

proposition Q-is-consistent:
shows — Qg-is-inconsistent
proof —
have I M. is-general-model M A is-model-for M {}
using standard-model-ezistence and standard-model.azioms(1) by blast
then show ?thesis
using model-existence-implies-set-consistency by simp
qed

lemmas thm-5403 = Qq-is-consistent model-existence-implies-set-consistency

proposition principle-of-explosion:
assumes is-hyps G
shows is-inconsistent-set G «— (VA € (wffsy). G F A)
proof
assume is-inconsistent-set G
show VA € (wffsp). GF A
proof
fix A
assume A € wffsy
from «<is-inconsistent-set G» have G - F,
unfolding is-inconsistent-set-def .
then have G F V. 1o
unfolding false-is-forall .
with <4 € wffsy» have G F S {(x, 0) — A} (zo)
using V I by fastforce
then show G - A
by simp
qed
next
assume VA € (wffsy). G A
then have G - F,
using false-wff by (elim bspec)
then show is-inconsistent-set G
unfolding is-inconsistent-set-def .
qged

272

end

References

[1] P. B. Andrews. A Transfinite Type Theory with Type Variables, volume 36 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1965.

[2] P.B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof, volume 27 of Applied Logic Series. Springer Dordrecht, 2002.

273

	Utilities
	Utilities for lists
	Utilities for finite maps

	Syntax
	Type symbols
	Variables
	Constants
	Formulas
	Generalized operators
	Subformulas
	Free and bound variables
	Free and bound occurrences
	Free variables for a formula in another formula
	Replacement of subformulas
	Logical constants
	Definitions and abbreviations
	Well-formed formulas
	Substitutions
	Renaming of bound variables

	Boolean Algebra
	Propositional Well-Formed Formulas
	Syntax
	Semantics

	Proof System
	Axioms
	Inference rule R
	Proof and derivability
	Hypothetical proof and derivability

	Elementary Logic
	Proposition 5200
	Proposition 5201 (Equality Rules)
	Proposition 5202 (Rule RR)
	Proposition 5203
	Proposition 5204
	Proposition 5205 (-conversion)
	Proposition 5206 (-conversion)
	Proposition 5207 (-conversion)
	Proposition 5208
	Proposition 5209
	Proposition 5210
	Proposition 5211
	Proposition 5212
	Proposition 5213
	Proposition 5214
	Proposition 5215 (Universal Instantiation)
	Proposition 5216
	Proposition 5217
	Proposition 5218
	Proposition 5219 (Rule T)
	Proposition 5220 (Universal Generalization)
	Proposition 5221 (Substitution)
	Proposition 5222 (Rule of Cases)
	Proposition 5223
	Proposition 5224 (Modus Ponens)
	Proposition 5225
	Proposition 5226
	Proposition 5227
	Proposition 5228
	Proposition 5229
	Proposition 5230
	Proposition 5231
	Proposition 5232
	Proposition 5233
	Proposition 5234 (Rule P)
	Proposition 5235
	Proposition 5237 (Rule)
	Proposition 5238
	Proposition 5239
	Theorem 5240 (Deduction Theorem)
	Proposition 5241
	Proposition 5242 (Rule of Existential Generalization)
	Proposition 5243 (Comprehension Theorem)
	Proposition 5244 (Existential Rule)
	Proposition 5245 (Rule C)

	Semantics
	Frames
	Pre-models (interpretations)
	General models
	Standard models
	Validity

	Soundness
	Proposition 5400
	Proposition 5401
	Proposition 5402(a)
	Proposition 5402(b)
	Theorem 5402 (Soundness Theorem)

	Consistency
	Existence of a standard model
	Theorem 5403 (Consistency Theorem)

