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Abstract

This entry formalizes pushdown automata and proves their equiv-
alence with context-free grammars. It also shows that acceptance by
empty stack and by final state are equivalent.
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1 Pushdown Automata (PDA)

theory Pushdown__Automata
imports Main
begin

1.1 Definitions

12
12
20

In the following, we define pushdown automata and show some basic prop-
erties of them. The formalization is based on the Lean formalization by

Leichtfried[2].



We represent the transition function § by splitting it into two different
functions 41 : @ X X xI' - Q@ x I and d : Q xI' = @Q x I'*, where
0(q,a,2) :=9(q,a,Z) and 62(q, Z) := 6(q,€, Z).

record ('q,’a,’s) pda = init_state ::'q
init_symbol ::'s
final_states :: 'q set
delta  ::'q= 'a="s= ('q x 's list) set
delta__eps w'qg='s = (g x 's list) set
locale pda =

fixes M :: ('q :: finite, ‘a :: finite, 's :: finite) pda
assumes finite_delta: finite (delta M p a Z)
and finite_delta__eps: finite (delta_eps M p Z)
begin

notation delta (9)
notation delta_eps (d¢)

‘a list x 's list) set where

qpB. (¢, 8)€d MpaZ}
qB. (q,B) €de MpZ}
(¢, B) € 6e M p Z}

fun step :: ‘g x ‘a list x ‘s list = (g x
step (p, a#w, Z#a) = {(q, w, fQa) |
U {(¢, a#w, fQa) |
| step (p, I, Z#a) = {(q, [], BQa) | ¢ B.
| step (, ., [))=1{}

fun step; :: 'q x 'a list x 's list = 'q x 'a list x 's list = bool
((_~ _) [0, 50] 50) where
(p1, w1, 1) ~ (p2, wa, az) < (p2, wa, a2) € step (p1, w1, ay)

definition steps :: 'q x 'a list x 's list = 'q x 'a list x 's list = bool
((_ ~x_) [50, 50] 50) where
steps = step; Tk

inductive stepn :: nat = 'q x 'a list x 's list = 'q x 'a list x 's list = bool
where

refl,: stepn 0 (p, w, ) (p, w, a) |

stepn: stepn n (p1, w1, a1) (p2, w2, as) = stepy (p2, wa, as) (p3, ws, az) =
stepn (Suc n) (p1, w1, 1) (p3, w3, as)

abbreviation stepsn ((_ /~'(_"/ _) [50, 0, 50] 50) where
¢ ~(n) ¢/ = stepnncc’
The language accepted by empty stack:

definition accept_stack :: 'a list set where
accept_stack = {w. 3 q. (init_state M, w, [init_symbol M]) ~>x (q, [], [|)}

The language accepted by final state:

definition accept_final :: 'a list set where



accept_final = {w. I q € final_states M. I~. (init_state M, w, [init_symbol M])
~* (g, [, 1)}

1.2 Basic Lemmas

1.2.1 step and step;

lemma card_trans step: card (6 M p a Z) = card {(q, w, fQ«) | ¢ B. (¢, B) €
MpaZ}

by (rule bij betw same_card[where ?f = A\(q,3). (¢, w, fQa)]) (auto simp:
bij_betw_def inj_on__def)

lemma card_eps_step: card (e M p Z) = card {(q, w, fQ«) | ¢ B. (¢, B) € d¢e
Mp Z}

by (rule bij betw same_card[where ?f = A(q,8). (¢, w, fQa)]) (auto simp:
bij_betw_def inj_on_def)

lemma card__empty__step: card (step (p, [], Z#a)) = card (6e M p Z)
by (rule sym) (simp add: card_eps_step)

lemma finite_delta_step: finite {(q, w, 8 Q «) |q B. (¢, B) € 6 M p a Z} (is finite
24)

using bij_betw_finite[of A(¢,8). (¢, w, BQa) § M p a Z ?4] by (fastforce simp
add: bij_betw_def inj _on__def finite_delta)

lemma finite_ delta_eps_step: finite {(q, w, 8 @ «) |q 8. (¢, B) € de M p Z} (is
finite ?A)

using bij _betw_ finite[of A(q,0). (¢, w, fQ«) de M p Z ?A] by (fastforce simp
add: bij_betw_def inj _on__def finite_delta__eps)

lemma card_nonempty_step: card (step (p, aftw, Z#«a)) = card (6 M p a Z) +
card (e M p 7)

apply (simp only: step.simps)

apply (subst card_trans__step)

apply (subst card _eps_step)

apply (rule card_Un__disjoint)

apply (auto simp: finite_delta_step finite_delta__eps_step)
done

lemma finite_step: finite (step (p, w, Z#«))
by (cases w) (auto simp: finite_delta_step finite_delta__eps_step)

lemma step;__nonempty_stack: (p1, wi, a1) ~ (p2, we, az) = IZ' a’. ay =
7'#a’

by (cases a1) auto

lemma step;_empty_stack: — (py, wy, [}) ~ (p2, w, a2)
by simp

lemma step;__rule: (p1, w1, Z#ay) ~ (p2, we, ag) +— (IB. wy = w1 A ag =



BQay A (p2, B) € 0e M py Z)
V (Jap. w =a# wy A ag = BQa; A
(p2, B) € 6 M py a Z)
by (cases wy) auto

lemma step;__rule ext: (p1, wi, ay) ~ (p2, we, ag) +— (32" a’. ay = Z'#a’ A
(FB. w2 = w1 A ag = BQa’ A (p2, B) € 0e M p1 Z')
V (3aB. wy =a# ws A ag = pQa’ A

(p2, B) € 6 M py a Z"))) (is 7l «— 7r)

apply (rule iffI)

apply (metis step;__nonempty_stack stepy__rule)

apply (use stepy__rule in force)

done

lemma stepy_stack_app: (p1, wi, a1) ~ (p2, wa, as) = (p1, w1, a1 @ ) ~»

(pQ; wz, 2 @ FY)
using step;_ rule_ext by auto

1.2.2 steps

lemma steps_refl: (p, w, o) ~* (p, w, «)
by (simp add: steps_def)

lemma steps_trans: [ (p1, w1, a1) ~* (pa, wa, a2); (P2, wa, ag) ~>x (ps, ws, az)
I

= (p1, w1, o) ~x* (p3, ws, ag)

unfolding steps def using rtranclp_transjwhere ?r = step| by blast

lemma step;_ steps: (pb Wi, Oll) ~> (p2, Wz, 0l2) - (Pl» wi, Oél) ~k (Pz, wa,
ag)
by (simp add: steps_def r_into__rtranclp)

lemma steps empty_stack: (p1, wi, []) ~* (p2, wa, ) => p1 = pa A w1 = wo
Aag =]
unfolding steps def using converse_rtranclpE2 by fastforce

lemma steps_induct2[consumes 1]:

assumes 1 ~»x x2

and Ap1 wi a1 p2 wa s ps w3 az. (p1, wi, a1) ~ (P2, wa, a2) = (P2, wo,
ag) ~% (p3, w3, ag) =
P (p2, w2, az) (p3, w3, az) = P (p1, w1, a1) (p3, ws, az)
shows P z1 z2

using assms[unfolded steps _def]
proof (induction rule: converse_rtranclp_induct)

case base thus ?case by (metis prod_cases3)
next

case step thus Zcase by simp (metis prod__cases3 step;.simps)
qed



lemma steps induct2 bw[consumes 1, case _names base step):
assumes steps 1 =2
and Ap w a. P (p, w, ) (p, w, @)
and A\p1 w1 a1 p2 wa g p3 w3 az. (p1, wi, ar) ~* (p2, w2, az) = (pa,
wa, ag) ~ (p3, w3, az) =>
P (p1, w1, a1) (p2, wa, ag) = P (p1, w1, a1) (p3, w3, az)
shows P x1 z2
using assms[unfolded steps_def]
proof (induction rule: rtranclp_induct)
case base
then show ?case by (metis prod_cases3)
next
case (step)
then show ?Zcase by simp (metis prod__cases3 stepy.simps)
qed

lemmas converse_rtranclp__induct3 _auxr =

converse__rtranclp__induct [of stepy (az, ay, az) (bz, by, bz), split_rule]
lemmas steps induct =

converse__rtranclp__induct3_auzx [of M, folded steps__def ,consumes 1, case_names

refl step)

lemma step;__word__app: stepy (p1, w1, a1) (p2, we, ag) +— stepy (p1, w1 @ w,
a1) (p2, we Q w, az)
using stepy_ rule ext by simp

lemma decreasing word: (p1, wi, a1) ~>* (p2, wa, ag) = Jw. w1 = w Q wy
by (induction rule: steps_induct) (use stepi__rule__ext in auto)

1.2.3 stepn

inductive__cases stepn_ zeroE[elim!]: (p1, w1, a1) ~+(0) (p2, w2, az)
thm stepn_ zeroE

inductive__cases stepn_sucE[elim!]: (p1, w1, o) ~>(Suc n) (p2, wa, az)
thm stepn_ sucE

declare stepn.intros[simp, intro)

lemma step;__stepn_one: (p1, w1, a1) ~ (pa2, wa, ag) «— (p1, w1, a1) ~(1) (pa,
wy, Q)
by auto

lemma stepn_split_last: (Ip" w’ a’. (p1, w1, a1) ~(n) (p/, w', a’) A (p', w'; ')
~ (p27 wa, OZQ))
> (p1, w1, a1) ~(Suc n) (p2, w2, a2)
by auto

lemma stepn_split_first: (Ip’ w’ o’ (p1, w1, a1) ~ (p/, w', a') A (p/, w', &)



~(n) (p2, w2, a2))
> (p1, w1, a1) ~(Suc n) (p2, we, az) (is 2l «— 9r)
proof
assume 7/
then obtain p’ w’ o’ where r1: (p1, w1, aq) ~ (p’, w’, ') and rN: (p’, w’,
a’) ~(n) (p2, w2, a) by blast
from rN r1 show ?r
by (induction rule: stepn.induct) auto
next
show 9r = 7]
by (induction Suc n (p1, w1, 1) (p2, wa, ag) arbitrary: n ps ws ao rule:
stepn.induct)
(metis old.nat.exhaust refl,, step, stepn_zeroFE)
qed

lemma stepn__induct[consumes 1, case_names basen stepn]:
assumes z! ~>(n) z2
and An p1 w1 a1 pr we @z p3 w3 az. (p1, wi, aq) ~ (P2, wa, az) = (pa,
wa, az) ~(n) (p3, ws, az) =
P n (p2, wa, az) (ps, ws, az) = P (Suc n) (p1, w1, a1) (p3, w3, as)
shows P n x1 z2
using assms proof (induction n arbitrary: z1)
case ()
obtain p; wy a; py we ay where [simp]: 1 = (p1, wi, aq) and [simp]: 22 =
(p2, wo, 042)
by (metis prod__casesd)
from 0.prems(1) have z1 = z2 by auto
with 0.prems(2) show Zcase by simp
next
case (Suc n)
obtain p; w; a1 pa2 we ay where [simp]: 1 = (p1, w1, aq) and z2_def[simp):
22 = (p2, wa, )
by (metis prod__cases3)
from Suc.prems(1) obtain p’ w’ o’ where
rl: (p1, wi, a1) ~ (p/, w’, &) and rN: (p’, w', @’) ~(n) (p2, wa, as)
using stepn__split_first[of p1 w1 a1 n pa we az] by auto
have P n (p/, w’, a') (p2, w2, as)
using Suc.IH [unfolded x2 def, OF rN Suc.prems(2,3)] by simp
then show ?Zcase
using Suc.prems(3)[OF r1 rN]| by simp
qged

lemma stepn__trans:
assumes (p1, w1, a1) ~>(n) (p2, wa, a2)
and (p27 wa, 0[2) W(m) (pdu w3, a3)
shows (p1, wy, a1) ~(n+m) (p3, ws, as)
using assms(2,1) by (induction rule: stepn.induct) auto



lemma stepn_steps: (In. (p1, w1, a1) ~(n) (p2, w2, a)) — (p1, w1, a1) ~>x
(p2, wa, as) (is 9l «+— ?r)
proof
assume 7/
then obtain n where (p1, wi, a1) ~(n) (p2, wa, as) by blast
thus (p1, w1, a1) ~* (p2, wa, ag)
apply (induction rule: stepn.induct)
apply (rule steps_refl)
apply (simp add: step;__steps steps_trans)
done
next
show ?r = 7|
by (induction rule: steps_induct) (use stepn__split_first in blast)+
qed

lemma stepn_word_app: (p1, wi, a1) ~(n) (p2, we, as) +— (p1, w1 Q@ w, ay)
~(n) (p2, we @ w, ag) (is 2l +— 2r)
proof
show 9] — ?7r
by (induction n (p1, w1, a1) (p2, wa, ag) arbitrary: ps wa ay rule: stepn.induct)
(use step1__word__app in auto)
next
show 9r — 7]
proof (induction n (p1, w1 @ w, 1) (p2, w2 @ w, ag) arbitrary: ps wa s rule:
stepn.induct)
case (step, n pa wa ag p3 a3z wWws)
obtain w’ where ws_ def: wy = w’' Q wy Q@ w
using decreasing_word[OF stepy__steps|OF step,(3)]] by blast

with step,(2) have (p1, w1, 1) ~(n) (p2, w' @ ws, az) by simp

moreover from step,(3) wo_ def have (pa, w' @ ws, ag) ~ (ps3, w3, as)
using stepy_ word__app by force

ultimately show ?case by simp
qed simp
qed

lemma steps word__app: (p1, wi, a1) ~>* (p2, we, az) +— (p1, w1 @ w, ay) ~>x*
(p2, w2 @ w, az)
using stepn_ steps stepn__word__app by metis

lemma stepn_not_refi_split_first:
assumes (pl, w1, Oq) W(n) (p27 w2, 042)
and (p1, w1, a1) # (p2, w2, a2)
shows 3n’ p’ w’ a’. n = Suc n’ A (p1, w1, a1) ~ (p', w', &) A (p/, ', &)
~(n) (p2, w2, az)
proof —
from assms have n > 0 by fast



then obtain n’ where n = Suc n’
using not0__implies Suc by blast
with assms(1) show ?thesis
using stepn__split_first by simp
qed

lemma stepn_not_refl split_last:
assumes (p1, w1, a1) ~>(n) (p2, wa, a2)
and (p1, wi, a1) # (p2, w2, a2)
shows 3n’ p’ w’ a'. n = Suc n’ A (p1, w1, a1) ~(n’) (p’, w', a’) A (p/, W/,
0/) ~ (P2, w2, Oéz)
proof —
from assms have n > 0 by fast
then obtain n’ where n = Suc n’
using not0_implies Suc by blast
with assms(1) show %thesis
using stepn_ split_last by simp
qed

lemma steps not_refl split_first:
assumes (p1, wy, a1) ~* (p2, wa, az)
and (p1, wi, a1) # (p2, wa, a3)
shows Ip" w' a’. (p1, w1, an) ~ (p/, w', a’) A (p/, W', @') ~x (p2, w2, a2)
using assms stepn__steps stepn__not_refl_split_first by metis

lemma steps not_refl split_last:
assumes (p1, wi, a1) ~>* (P2, Wy, )
and (p1, w1, 1) # (p2, w2, az)
shows Jp" w' a’. (p1, w1, an) ~=* (p', w', ') A (p', W', @) ~ (p2, w2, az)
using assms stepn__steps stepn__not_refl_split_last by metis

lemma stepn_stack_app: (p1, w1, a1) ~>(n) (p2, w2, az) = (p1, w1, a1 @ f)
~(n) (p2, we, az @ B)

by (induction n (p1, w1, a1) (p2, we, az) arbitrary: py we ag rule: stepn.induct)
(fastforce intro: stepy__stack _app)+

lemma stepsfstackiapp: (ph Wi, 041) ok (p2a Wa, 042) = (pla wy, a1 @ 6) ~k

(p2, w2, az @ )
using stepn_ steps stepn__stack _app by metis

lemma step;_ stack__drop:
assumes (p1, w1, a1 Q y) ~ (p2, we, as @ 7)
and a; # ]
shows (pl, w1, Otl) ~ (pg, wa, 042)
proof —
from assms(1) obtain Z' o’ where ay_y_def: ay @ v = Z’' # o' and
rule: (36. we = w1 A @@y = Qa’ A (p2, B) € de M py Z7)
V (Japf. wy = a# wy A ae@y = BQa’ A (p2,8) €5 Mp1 aZ')
using stepy_ rule ezt by auto



from oy v _def assms(2) obtain o’ where ay__def: ay = Z'# o' and o’ _def:
a'=a’’ @y
using Cons_eq _append_convlof Z' o' a1 7] by auto
from rule o’ _def have (35. wy = wy A ag = fQa’’ A (pa2, B) € 6e M py Z)
V (Ja B wy =a# wy A ag = BQa’” A (p2,8) €5 M p1 a Z') by auto
with a;_ def show Zthesis
using step;_ rule by simp

qed
lemma stepn_ reads input:
assumes (p1, a # w, ar) ~(n) (p2, [], a2)
shows 3n' k q1 g2 71 v2. n = Sucn’ Ak < n' A (p1, a # w, a1) ~(k) (q1, a
# w, 71) A
(q17 a # w, ’71) ~ (QQ» w, ’72) A (CI27 w, 72) W(n/_k) (p?u []7 OZQ)
using assms proof (induction n (p1, a # w, a1) (p2, [] =+ ‘a list, as) arbitrary: py

aq rule: stepn__induct)
case (stepn n p; a1 p’ w' &)
from stepn(1) have case_dist: w' = w VvV w' = a#w (is 2l vV 2r)
using step1_ rule_ext by auto
show ?case proof (rule disjE[OF case__dist))
assume [: 7|

from [ stepn(1) have stepy (p1, a # w, aq) (p’, w, a’) by simp
moreover from [ stepn(2) have (p’, w, a’) ~(n) (p2, [], a2) by simp

ultimately show Zcase by fastforce
next

assume 7: r

obtain n’ k q; g2 v1 2 where IHI: n = Suc n’ and IH2: k < n’ and
IHS: (p', a # w, ') ~(k) (q1, a # w, v1) and IH4: (q1, a # w, 1) ~

(qu w, 72) and
TH5: (g2, w, 72) ~(n'—F) (9, [}, a2)
using stepn(3)[OF r] by blast

from [HI IH2 have Suc k < n by simp

moreover from stepn(1) r IH3 have (p1, a # w, a1) ~(Suc k) (¢1, a # w,

Y1)
using stepn__split_first by blast

moreover from [H! IH5 have stepn (n — Suc k) (g2, w, v2) (p2, [], a2) by
stmp

ultimately show ?case
using [H4 by metis
qed
qed



lemma split_word:
(pla w @ 'LU/, al) W(n) (pQ, Ha 042) = Jk q. k <nA (pla w, al) W(k) (q’ Ha
7) A (g, w's7) ~(n=k) (p2, [|, a2)
proof (induction w arbitrary: n p1 o)
case (Cons a w)
from Cons(2) obtain n’ k q1 g2 71 72 where n_def: n = Suc n’and k_lesseq_n'":
k< n'and steph: (p1, o # (w G w), a1) ~(k) (g1, a # (w © '), 1) and
stepl: (q1, a # (w @ w'), v1) ~ (g2, w @ w’, y2) and stepnk: (g2,
w @ w, y2) ~(n'=k) (p2, [, a2)
using stepn_reads_input[of n p1 a w Q w' a1 pa as] by auto
obtain k"' ¢ v where k' _lesseq_n'k: k' < n'—Fk and stepk'”: (g2, w, v2) ~ (k")
(¢, [l 7) and stepn'kk": (g, w', 7) ~(n'—k—k") (pa, [J, @)
using Cons. IH[OF stepnk| by blast
from stepk stepl have stepSuck: stepn (Suc k) (p1, a # w, a1) (g2, w, ¥2)
using stepn_word_applof Suc k p1 a # w aq g2 w 2 w’] by simp

have (p1, a # w, a1) ~(Suc k + k") (¢, [], 7)
using stepn_trans|OF stepSuck stepk’] .

moreover from n_ def stepn’kk’ have (q, w', v) ~(n — (Suc k + k")) (p2, [],
as) by simp

moreover from n_def k_lesseq n’ k' _lesseq _n'k have Suc k + k’ < n by
stmp

ultimately show “case by blast
qed fastforce

lemma split_ stack:
stepn n (p1, wi, o1 @ B1) (p2, [, [I) = Fp" m1y ma y y" w1 =y @ y' Amy +
mo =N

~(mz2) (p2, ], [1)

proof (induction n arbitrary: p1 w1 aq)
case (Suc n)
show ?case proof (cases aq)
case Nil

A (pr, g, an) ~(ma) (p [, ) A (2 y's Ba)

from Nil have stepn 0 (ps, [J, a1) (p1, [}, [[) by simp

moreover from Suc.prems Nil have stepn (Suc n) (p1, w1, 81) (p2, [, []) by
simp

ultimately show ?thesis by force
next
case (Cons Z «)
with Suc.prems obtain p’ w’ o’ where r1: step; (p1, w1, Z # o Q B1) (p/,
w’, &) and rN: stepn n (p’, w', ') (p2, (], [])
using stepn_split_firstlof p1 w1 Z # « @ By n ps [] [|] by auto

10



from r1 have rule: (3. w'=wi ANa'=Qa QB A (p', 8) € de M p, Z)
Ve w=a#w ANa'=QaQp; A((p,8)€dMp aZ)lis ?
vV or)
using step;_ rule by blast
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain 3 where wl_def: wy = w' and o’ _def: o’ = 8 Q a @ $; and
e: (p',B) € de M py Z by blast
from rN o’ _def have rN2: stepn n (p’, w’, (8 Q «) @ 1) (p2, [], []) by
simp
obtain p’’ m; mo y y’ where w’_def: w' = y Q@ y’ and m1_m2_n: my +
meog = N
and rml: stepn m1 (p', y, B Q@ a) (p”, ], []) and rm2: stepn ms (p"', y/,
B1) (p2, [, [1)
using Suc.IH[OF rN2| by blast
from e have s1: step; (p1, y, Z#a) (p’, y, Q)
using stepy_ rule by blast

from wl_def w’'_def have w; = y Q y’ by simp
moreover from mi1_m2 n have Suc m; + my = Suc n by simp

moreover from s! rm1 Cons have stepn (Suc m1) (p1, y, a1) (p", [, [])
using stepn__split_first by blast

ultimately show ?thesis
using rm2 by metis
next
assume ?r
then obtain a 8 where wi_def: wi = a # w’ and o’ _def: o' = § Q o @
B1 and tr: (p’,8) € 6 M p1 a Z by blast
from rN a’_def have rN2: stepn n (p’, w’, (8 Q «) Q 1) (p2, [], []) by
stmp
obtain p’’ m; ms y y’ where w’_def: w' = y Q y’ and m1_m2 n: m; +
mo =1
and rml: stepn m1 (p', y, B Q@ a) (p”, [], []) and rm2: stepn ms (p"', y/,
B1) (p2, [, [)
using Suc.IH[OF rN2| by blast
from tr have s1: stepy (p1, a#y, Z#«a) (p’, y, fQa) by simp

from wi1_def w’_def have wy = (a # y) Q y’ by simp
moreover from mIl_m2 n have Suc my + mo = Suc n by simp

moreover from s! rm1 Cons have stepn (Suc m1) (p1, afty, a1) (", [], [])
using stepn__split_first by blast

ultimately show ?thesis
using rm2 by metis
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qed
qed
qed blast

end

end

2 Equivalence of Final and Stack Acceptance

2.1 Stack Acceptance to Final Acceptance

Starting from a PDA that accepts by empty stack we construct an equivalent
PDA that accepts by final state, following Kozen [1].

theory Stack To Final PDA
imports Pushdown__Automata
begin

datatype ‘g st_extended = Old_st 'q | New_init | New_ final
datatype 's sym__extended = Old_sym 's | New__sym

lemma inj Old__sym: inj Old__sym
by (meson injl sym__extended.inject)

instance st_extended :: (finite) finite
proof
have x: UNIV = {t. 3¢q. t = Old_st q} U {New_init, New_final}
by auto (metis st_extended.exhaust)
show finite (UNIV :: 'a st_extended set)
by (simp add: * full _SetCompr _eq)
qed

instance sym__extended :: (finite) finite
proof
have x: UNIV = {t. 3s. t = Old_sym s} U {New_sym}
by auto (metis sym__extended.exhaust)
show finite (UNIV :: 'a sym__extended set)
by (simp add: * full _SetCompr _eq)
qed

context pda begin

fun final_of stack_delta :: 'q st_extended = 'a = 's sym__extended = ('q st__extended
x s sym__extended list) set where

final_of stack_delta (Old_st q) a (Old_sym Z) = (A(p, «). (Old_st p, map
Old_sym «)) ‘(0 M qa Z)
| final_of stack delta = {}

We slight modify the transition function from Kozen’s proof to simplify
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the formalization (see stack_to_ final_pda_ last_step):

fun final_of stack_delta_eps :: 'q st__extended = 's sym__extended = ('q st__extended
x s sym__extended list) set where

final_of _stack__delta__eps (Old_st q) (Old_sym Z) = (A(p, ). (Old_st p, map
Old_sym «)) “(d0e M q Z)
| final_of stack delta_eps New__init New_sym = {(Old__st (init_state M), [Old__sym
(init_symbol M), New_sym])}
| final_of stack_delta_eps (Old_st q) New_sym = {(New_final, [])}
| final _of stack_delta_eps _ _ = {}

definition final of stack_pda :: ('q st_extended, 'a, 's sym__extended) pda where
final_of stack _pda = ( init_state = New__init, init_symbol = New__sym, fi-
nal__states = {New__final},
delta = final_of stack__delta, delta__eps = final_of stack delta__eps
)

lemma pda_ final _of stack: pda final _of stack pda
proof (standard, goal_cases)
case (1 pz 2)
have finite (final_of _stack_delta p x 2)
by (induction p x z rule: final_of stack _delta.induct) (auto simp: finite_delta)
then show ?case
by (simp add: final _of stack_pda_def)
next
case (2 p 2)
have finite (final_of _stack_delta_eps p 2)
by (induction p z rule: final_of _stack__delta__eps.induct) (auto simp: finite_delta__eps)
then show ?case
by (simp add: final of stack_pda_ def)
qed

lemma final of stack pda_ trans:
(p,B) €Ed MqgaZ +—
(Old__st p, map Old_sym ) € 0 final_of stack pda (Old_st q) a (Old__sym
Z)
by (auto simp: final_of _stack _pda_ def inj_map__eq _map|OF inj_Old_sym])

lemma final of stack pda_ eps:

(p, B) € 0e M q Z +— (Old_st p, map Old_sym ) € e final_of stack pda
(Old_st q) (Old_sym Z)
by (auto simp: final_of stack _pda_ def inj_map_eq _map[OF inj_Old_sym])

lemma final of stack_pda_ step:
(p1, wi, 1) ~ (p2, w2, @) ¢—
pda.stepy final_of stack_pda (Old_st p1, w1, map Old_sym 1) (Old_st pa,
wa, map Old_sym «as) (is 7l +— %r)
proof
assume 7/
then obtain Z o where a;_def: a1 = Z # « and rule: (3. wy = w1 A ag =
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BQa A (p2, B) € de M py Z)
V (3ap w =a# ws Aag=pQa A (p2,8) €6 Mpy aZ)
using stepi_ rule_ext by auto
from rule have (35. we = w1 A map Old_sym as = map Old_sym § @ map
Old_sym a A (Old_st pa, map Old_sym B) € d¢ final_of _stack_pda (Old_st p1)
(Old_sym Z))
V (Ja B. w1 = a# wy A map Old_sym as = map Old_sym B @ map
Old_sym a A
(Old_st pa, map Old_sym B) € § final_of stack_pda (Old_st p1) a
(Old_sym Z))
using final_of stack _pda_trans final _of stack_pda_eps by auto
hence (35. wa = w1 A map Old_sym as = @ map Old_sym a A (Old_st pa,
B) € de final_of stack pda (Old_st p1) (Old_sym Z))
V (3a B. w1 = a# w2 A map Old_sym as =  Q map Old_sym a A
(Old_st pa, B) € § final_of _stack_pda (Old_st p1) a (Old_sym Z))
by blast
with a;_ def show or
using pda.stepy__rule[OF pda_ final_of _stack] by simp
next
assume ?r
then obtain Z a where map_a;y_ def: map Old_sym a1 = Old_sym Z # map
Old_sym a and
rule: (3 6. wy = wy; A map Old_sym as = § Q map Old_sym o A (Old__st pa,
B) € de final_of stack pda (Old_st p1) (Old_sym Z))
V (Fa B. w1 = a# we A map Old_sym as = Q map Old_sym « A
(Old_st pa,8) € ¢ final_of _stack_pda (Old_st p1) a (Old_sym Z))
using pda.stepy__rule__ext[OF pda__final_of _stack] by auto
from map a1 def have aq_def: a1 = Z # «
by (metis list.inj_map__strong list.simps(9) sym__extended.inject)
from rule have (3. wa = w1 A map Old_sym as = map Old_sym [Q map
Old_sym a A (Old_st pa, map Old_sym () € d¢ final_of _stack_pda (Old_st p1)
(Old_sym Z))
V (Fa B. wr = a# we A map Old_sym as = map Old__sym SQ map Old__sym
a A (Old_st pa, map Old_sym ) € ¢ final _of stack_pda (Old_st p1) a (Old__sym
7))
using append_eq _map__conv[where ?f = Old_sym| by metis
hence (6. we = w1 A ag = BQa A (p2, B) € de M p1 Z)
V (Jap. wy =a# wy Aag=LQa A (p2,8) €0 Mpy aZ)
using final_of stack_pda_trans final _of stack_pda__eps by (metis list.inj _map__strong
sym__extended.inject map__append)
with a;_ def show ?I
using step,_ rule by simp
qged

abbreviation o_ with _new :: ’s list = 's sym__extended list where
o__with_new o = map Old_sym o @ [New__sym]

lemma final of stack_pda__stepi_ drop:
assumes pda.stepy final _of stack_pda (Old_st py, wy, a__with _new o)
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(Old_st pa, we, a__with_new )
shows (plv Wi, al) ~ (an wa, a2)
proof —
from assms obtain Z o where a;_ with_new def: a_ with_new oy = Z # «
and
rule: (3 5. we = wy A a__with_new ay = fQa A (Old__st pa, B) € final_of _stack__delta__eps
(Old_st p1) Z)
V (Fa p. w1 = a # wa A a_with_new as = fQa A (Old_st p2,8) €
final_of _stack_delta (Old_st p1) a Z)
using pda.step1__rule__ext[OF pda__final_of _stack] by (auto simp: final_of _stack__pda__def)
from rule have Z # New_sym
by (induction Old_st p1 Z rule: final _of stack_delta__eps.induct) auto
with a1 with _new_def have map Old_sym a; # [| by auto
with assms have pda.stepy final_of stack pda (Old_st p1, w1, map Old_sym
Oél>
(Old__st pa, wa, map Old_sym «s)
using pda.stepy__stack _drop[OF pda_ final _of _stack] by blast
thus ¢thesis
using final_of stack pda__step by simp
qed

lemma final of stack pda_ from_ old:
assumes pda.step; final _of stack_pda (Old_st p1, wi, a1) (p2, wa, a2)
shows (I pa’. po = Old_st p3’) V pa = New_ final
proof —
from assms obtain Z o where
(6. we = w1 A ag = BQa A (p2, B) € final_of stack _delta__eps (Old__st

p1) Z)
V (3aB. w1 =a# wa A ag = fQa A (p2,8) € final _of stack_delta
(Old_st p1) a Z)
using pda.stepy__rule__ext[OF pda_final_of _stack] by (auto simp: final_of _stack_pda__def)+
thus Zthesis
by (induction Old_st p1 Z rule: final _of stack_delta__eps.induct) auto
qed

lemma final of stack pda_no_step_ final:

—pda.stepy final_of _stack_pda (New_ final, wy, ay) (p, w2, a2)

apply (cases a1)

apply (simp add: pda.step1__empty stack[OF pda_ final _of stack])

apply (use pda.stepy__rule[OF pda_ final_of stack] final_of stack_pda_def in
sitmp)

done

lemma final _of stack pda_ from_oldn:

assumes pda.steps final_of stack_pda (Old_st p1, wy, a1) (p2, we, as)

shows 3¢’ p2 = Old_st ¢’ V ps = New_final
by (induction (Old__st p1, w1, a1) (p2, wa, az) arbitrary: ps wa as rule: pda.steps__induct2_bw[OF
pda__final_of _stack))

(use assms final_of _stack _pda_ from__old final_of stack pda_mno_step_final in
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blast)+

lemma final of stack pda_to_old:
assumes pda.stepy final_of _stack_pda (p1, wi, a1) (Old_st pa, wa, as)
shows (3¢’ p1 = Old_st ¢') V p1 = New__init
using assms final_of stack pda_no_step_final by (metis st_extended.exhaust)

lemma final of stack pda_ bottom __elem:
assumes pda.steps final_of stack_pda (Old_st py, wy, a__with_new ay)
(Old__st p3, wa, )
shows Ja. v = a__with_new «
using assms proof (induction (Old_st p1, w1, a__with _new ;) (Old_st pa, wa,
v) arbitrary: pa we y
rule: pda.steps_induct2_bw|[OF pda_ final_of _stack])
case (8 py wy a2 w3 g p3)
obtain p,’ where py_ def: po = Old_st py’
using final_of stack_pda_ from_oldn|OF 3(1)] final_of stack pda_to old[OF
3(2)] by blast
with 3(1,3) have as_def: Ja. as = a__with_new « by simp
from 3(2)[unfolded po__def] obtain Z o where as__split: as = Z # o and rule:
(38. w3 = wa AN ag =0 Qa A (Old_st ps, B) € final_of _stack__delta__eps
(Old_st p3') Z)
V (Japf. we=0a+# ws Nag=L0QaA (0ld_stps, B) € final_of stack_delta
(Old_st pa’) a Z)
using pda.stepy__rule__ext|OF pda__final_of _stack] by (auto simp: final_of _stack_pda_ def)
from rule have 37Z'. Z = Old_sym 7'
by (induction Old_st ps’ Z rule: final_of stack_delta__eps.induct) auto
with as_ def as_ split have 3v. o = o with_new ~
by (metis hd__append list.sel(1,3) map__tl sym__extended.simps(3) tl_append if)
with rule show Zcase
by (induction Old_st ps’ Z rule: final_of _stack__delta__eps.induct, auto) (metis
map__append)—+
qed (rule assms, blast)

lemma final of stack pda_ stepn:
(p1, w1, 1) ~(n) (p2, w2, as) +—
pda.stepn final _of stack _pda n (Old_st py, wy, o with _new aq) (Old__st
P2, Wa, o with_new «ag) (is 2l +— 2r)
proof
show 9] — ?7r
proof (induction n (p1, w1, a1) (p2, we, ag) arbitrary: ps wa as rule: stepn.induct)
case (step, n pa wa ag p3 W3 Q3)
from step,, (3) have pda.step; final_of stack pda (Old__st ps, wa, map Old__sym
ag) (Old_st ps, ws, map Old__sym as)
using final_of stack pda__step by simp
hence pda.stepy final _of stack_pda (Old_st pa, wa, a_with _new as) (Old__st
p3, w3, a__with_new ag)
using pda.stepy__stack__app[OF pda__final_of _stack] by simp
with step,(2) show ?case
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by (simp add: pda.step,[|OF pda_final _of stack])
qed (simp add: pda.refl,,[OF pda_ final_of stack])
next
assume r: ?r thus 7]
proof (induction n (Old_st p1, wi, a_with_new ay) (Old_st pa, wa, a_with_new
(12)
arbitrary: pa we ag rule: pda.stepn.induct|OF pda_ final_of _stack))
case (3 n py we ag w3 Pp3 A3)
from (1) have steps 3 1: pda.steps final_of stack pda (Old_st p1, wi,
a__with_new ay) (p2, wa, az)
using pda.stepn__steps[OF pda__final_of _stack] by blast
obtain p,’ where py_def: ps = Old_st py’
using final_of stack_pda_ from_oldn|OF steps_3 1] final_of stack_pda_to_old[OF
3(3)] by blast
with steps 3 1 obtain v where ay__def: as = map Old_sym v Q [New__sym]
using final_of stack_pda__bottom__elem by blast

with py_ def 3(1,2) have pda.stepn M n (p1, w1, o) (p2’, wa, v) by simp

moreover from ps_ def as_def 3(3) have pda.stepy M (p2’, wa, ) (ps, ws,

ag)
using final_of stack pda__stepy_ drop by simp

ultimately show ?case by simp
qed (rule r, metis refl,, list.inj_map__strong sym__extended.inject)
qged

lemma final of stack pda_ steps:
(p1, w1, a1) ~x (p2, w2, az) «—
pda.steps final_of stack pda (Old_st p1, wy, a__with_new ay) (Old__st
P2, Wwa, a__with_new as)
using final_of _stack_pda__stepn pda.stepn__steps|OF pda__final_of _stack] stepn__steps
by simp

lemma final of stack_pda_ first_step:
assumes pda.stepy final_of _stack_pda (New_init, wy, [New_sym]) (p2, we, «)
shows ps = Old_st (init_state M) AN wy = wy A a = [Old_sym (init_symbol
M), New__sym]
using assms pda.step;__rule[OF pda_ final _of stack] by (simp add: final _of stack pda_def)

By not allowing any moves from the new final state, we obtain a distinct
last step, which simplifies the argument about splitting the path that the
constructed automaton takes upon accepting a word:

lemma final of stack pda_last_step:
assumes pda.stepy final _of stack_pda (p1, w1, a1) (New_final, wa, as)
shows 3¢. p1 = Old_st g AN w; = wa N a; = New_sym # o
proof —
from assms obtain Z a where ay_ def: ay = Z # « and rule:
(L. we = w1 A ag =8 Q@a A (New_final, B) € final_of stack_delta_eps
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P Z)
V (Fa . wy = a# wy ANag =0 Q@a A (New_final, B) € fi-

nal_of stack_delta p1 a Z)

using pda.stepy__rule__ext[OF pda_ final_of _stack] by (auto simp: final_of stack _pda_ def)

from rule have ws = wy; and as = o and dq. p; = Old_st g A Z = New__sym

by (induction py; Z rule: final_of stack_delta__eps.induct) auto

with a;_ def show ?thesis by simp

qed

lemma final of stack_pda__split_path:
assumes pda.stepn final_of _stack_pda (Suc (Suc n)) (New_init, wy, [New__sym])
(New__final, wa, 7)
shows 3 ¢. pda.step final_of stack pda (New_init, w1, [New__sym])
(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym]) A
pda.stepn final_of _stack_pda n (Old_st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
(Old__st q, wa, [New_sym]) A
pda.stepy final _of _stack_pda (Old_st q, wo, [New__sym])
(New_ final, wa, v) A v = |]
proof —
from assms have fstep: pda.stepy final_of stack pda (New__init, wy, [New__sym])

(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
and stepn: pda.stepn final_of stack_pda (Suc n)
(Old_st (init_state M), wy, [Old_sym (init_symbol M),
New__sym))
(New_final, ws, )
using pda.stepn__split_first|OF pda_ final_of _stack] final_of _stack pda_ first_step
by blast+
from stepn obtain ¢ where Istep: pda.stepy final _of _stack_pda (Old_st q, wa,
New__sym # 7) (New_ final, wa, )
and stepn’: pda.stepn final _of stack_pda n
(Old_st (init_state M), wy, [Old_sym (init_symbol M),
New__sym))
(Old__st q, wa, New_sym # )
using pda.stepn__split_last[OF pda__final_of _stack] final_of _stack__pda_last_step
by blast
from stepn’ have Ja. New_sym # v = a_ with_new «
using final_of stack_pda_bottom__elem pda.stepn__steps|OF pda__final_of _stack]
by (metis (no__types, opaque_lifting) Cons__eq _appendl append__Nil list.map__disc__iff
list.simps(9))
hence v = |]
by (metis Nil_is_map_conv hd__append2 hd__map list.sel(1,3) sym__extended.simps(3)
tl_append__if)
with fstep Istep stepn’ show ?thesis by auto
qged
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lemma final of stack pda_ path_length:
assumes pda.stepn final _of stack_pdan (New_init, wy, [New_sym]) (New_ final,
w2, P)/)
shows 3n’. n = Suc (Suc (Suc n'))
proof —
from assms obtain n’ where n_def: n = Suc n’ and fstep: pda.step; fi-
nal_of stack_pda (New_init, wi, [New_sym])
(Old__st (init_state M), w1, [Old_sym
(init_symbol M), New__sym))
and stepn: pda.stepn final _of stack_pda n’
(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
(New__final, wa, )
using pda.stepn_not_refl _split_first|OF pda_ final _of _stack] final_of _stack pda__first_step
by blast
from stepn obtain n’’ where n’_def: n’ = Suc n'"’
using pda.stepn_not_refl_split_last|OF pda_ final_of stack] by blast
with n_ def assms have 3 q. pda.stepn final_of stack_pda n'’
(Old_st (init_state M), w1, [Old_sym (init_symbol M),
New__sym]) (Old_st q, wa, [New__sym])
using final_of stack_pda__split_path by blast
then obtain n’"’ where n’’ = Suc n'"’
using pda.stepn_not_refl_split_last|OF pda_ final_of stack] by blast
with n_def n’_def show ?thesis by simp
qed

lemma accepted_final_of stack:
(3 q. (init_state M, w, [init_symbol M]) ~>x (q, [], [])) «— (g . q € final_states
final_of stack_pda A

pda.steps final_of _stack_pda (init_state final _of stack_pda, w, [init_symbol
final_of _stack_pdal) (g, [], 7)) (is 2l «— ?r)
proof

assume ?]

then obtain ¢ where (init_state M, w, [init_symbol M]) ~»x (q, [], []) by blast

hence pda.steps final_of stack_pda (Old__st (init_state M), w, [Old__sym (init__symbol
M), New_sym]) (Old_st q, [], [New_sym])

using final_of stack pda_ steps by simp

moreover have pda.step; final of stack pda (init_state final of stack_pda,
w, [init__symbol final_of stack_pda])
(Old__st (init_state M), w, [Old__sym (init__symbol
M), New__sym])
using pda.stepy__rule[OF pda__final_of _stack] by (simp add: final_of _stack_pda__def)

moreover have pda.step; final_of stack pda (Old_st q, [], [New__sym]) (New_ final,
I
using pda.step1__rule[OF pda_ final _of _stack] by (simp add: final_of stack_pda__def)

ultimately have al:
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pda.steps final _of stack_pda (init_state final _of stack_pda, w, [init_symbol
final_of stack _pda ) (New_final, [], [])

using pda.step,__steps|OF pda__final_of _stack] pda.steps_trans[OF pda_ final_of _stack]
by metis

moreover have New final € final_states final _of stack pda
by (simp add: final _of stack_pda_ def)

ultimately show ¢r by blast
next
assume 2r
then obtain ¢ v where ¢q_final: ¢ € final_states final_of stack__pda and
steps: pda.steps final_of stack pda (init_state final_of stack pda,
w, [init__symbol final_of stack_pda]) (g, [], v) by blast
from ¢ final have q def: ¢ = New_ final
by (simp add: final _of stack_pda__def)
with steps obtain n where stepn: pda.stepn final _of stack_pda n (New__init,
w, [New_sym]) (New_final, [, )
using pda.stepn__steps|OF pda__final_of _stack] by (fastforce simp add: fi-
nal_of _stack_pda__def)
then obtain n’ where n = Suc (Suc n’)
using final_of stack pda_ path_length by blast
with stepn obtain p where pda.stepn final _of stack _pda n’ (Old_st (init_state
M), w, [Old_sym (init_symbol M), New_sym])
(Old__st p, [], [New_sym])
using final_of stack_pda__split_path by blast
hence (init_state M, w, [(init_symbol M)]) ~(n") (p, [], [])
using final_of stack pda__stepn by simp
thus 2/
using stepn_ steps by blast
qed

lemma final of stack: pda.accept stack M = pda.accept_final final of stack_pda
unfolding accept_stack _def pda.accept_final _def[OF pda_ final _of stack] us-
ing accepted_ final of stack by blast

end
end

2.2 Final Acceptance to Stack Acceptance
Starting from a PDA that accepts by final state we construct an equivalent
PDA that accepts by empty stack, following Kozen [1].

theory Final To_Stack PDA
imports Pushdown__Automata
begin

datatype 'q st_extended = Old_st 'q | New_init | New_ final
datatype 's sym__extended = Old_sym 's | New_sym

20



lemma inj Old_sym: inj Old_sym
by (meson injl sym__extended.inject)

instance st_extended :: (finite) finite
proof
have x: UNIV = {t. 3¢q. t = Old_st q} U {New_init, New_final}
by auto (metis st_extended.exhaust)
show finite (UNIV :: 'a st_extended set)
by (simp add: * full _SetCompr _eq)
qged

instance sym__extended :: (finite) finite
proof
have x: UNIV = {t. 3s. t = Old_sym s} U {New_sym}
by auto (metis sym__extended.exhaust)
show finite (UNIV :: 'a sym__extended set)
by (simp add: * full SetCompr _eq)
qed

context pda begin

fun stack_of final delta :: 'q st_extended = 'a = 's sym__extended = ('q st__extended
x s sym__extended list) set where

stack_of final_delta (Old_st q) a (Old_sym Z) = (A(p, a). (Old_st p, map
Old_sym «)) ‘(0 M qa Z)
| stack_of _final_delta _ _ _ = {}

fun stack_of final delta_eps :: 'q st_extended = 's sym__extended = ('q st__extended
x s sym__extended list) set where

stack_of _final_delta__eps (Old_st q) (Old_sym Z) = (if ¢ € final_states M then
{(New_final, [Old_sym Z])} else {}) U

(Mp, ). (Old_st p, map Old__sym

&) * (6c M g 2)
| stack_of final delta_eps (Old_st q) New_sym = (if ¢ € final_states M then
{(New_final, [New_sym])} else {})
| stack_of _final_delta__eps New__init New__sym = {(Old_st (init_state M), [Old__sym
(init_symbol M), New__sym])}
| stack_of final delta_eps New_final = {(New_final, [])}
| stack_of final delta_eps = {}

definition stack_of final_pda :: ('q st_extended, 'a, 's sym__extended) pda where
stack_of final _pda = ( init_state = New__init, init_symbol = New__sym, fi-

nal_states = {New__final},
delta = stack_of final _delta, delta__eps = stack_of final_delta__eps)

lemma pda_ final to_stack:

pda stack_of final _pda
proof (standard, goal_cases)
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case (I pz2)
have finite (stack _of final delta p z z)
by (induction p x z rule: stack_of _final delta.induct) (auto simp: finite_delta)
then show ?Zcase
by (simp add: stack_of_final_pda__def)
next
case (2 p 2)
have finite (stack _of final delta_eps p z)
by (induction p z rule: stack_of _final_delta__eps.induct) (auto simp: finite_ delta__eps)
then show ?Zcase
by (simp add: stack_of final_pda__def)
qed

lemma stack _of final _pda_ trans:
(p,B)€d MqgaZ +—
(Old__st p, map Old_sym B) € 0 stack_of final _pda (Old_st q) a (Old__sym
7)
by (auto simp: stack_of final pda_ def inj _map_eq map|[OF inj _Old_sym])

lemma stack _of final _pda__eps:

(p, B) € 6e M q Z +— (Old_st p, map Old_sym B) € de stack_of_final_pda
(Old_st q) (Old_sym Z)
by (auto simp: stack _of final pda_ def inj _map__eq map[OF inj _Old__sym)] split:
if _splits)

lemma stack of final _pda__step:
(p1, wi, 1) ~ (p2, w2, @) +—
pda.stepy stack_of final_pda (Old__st p1, wi, map Old_sym «y) (Old__st
P2, wa, map Old_sym ag) (is 21 «+— ?r)
proof
assume 7/
then obtain Z a where a;_ def: a3 = Z#a and rule:
(E'ﬂ wo = Wy N Qo ZIB@OZ A (pz, 5) € de M py Z)
V(3ap. wy =a# wy A ag =PQa A (p2,8) €0 Mpy aZ)
using step1_ rule_ext by auto
from rule have (35. wy = wi; A map Old_sym as = map Old_sym 5 Q map
Old_sym a A
(Old__st pa, map Old_sym B) € de stack_of final pda (Old__st
p1) (Old_sym Z))
V (Ja B. wy = a # wa A map Old_sym as = map Old_sym [ Q
map Old_sym a A
(Old__st pa, map Old_sym B) € § stack_of _final_pda (Old_st p;)
a (Old_sym 7))
using stack_of final pda_ trans stack__of final _pda__eps by fastforce
hence (35. we = w1 A map Old_sym as =  Q map Old_sym o A (Old__st pa,
B) € de stack_of final pda (Old_st p1) (Old_sym Z))
V (Fa B. wy = aF# we A map Old_sym as = B Q map Old_sym a A
(Old_st pa, B) € § stack_of final_pda (Old_st p1) a (Old_sym Z)) by blast
with a;_ def show or
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using pda.stepy__rule[OF pda_ final _to_stack] by simp
next
assume 7r
then obtain Z a where map_«;_ def: map Old_sym oy = Old_sym Z # map
Old_sym o and rule:
(6. we = w1 A map Old_sym ay = Q@ map Old_sym a A
(Old__st pa, B) € de stack_of final_pda (Old_st py) (Old_sym Z))
V (Ja p. wy = a# we A map Old_sym as = SQ map Old_sym o A
(Old_st p2,B) € § stack_of final pda (Old_st p1) a (Old_sym Z))
using pda.stepy__rule__ext[OF pda__final_to__stack] by auto
from map oy def have oy def: oy = Z # «
by (metis list.inj_map__strong list.simps(9) sym__extended.inject)
from rule have (3. wo = w1 A map Old_sym as = map Old_sym [Q map
Old_sym a A
(Old__st pa, map Old_sym ) € de stack_of _final_pda (Old_st
p1) (Old_sym Z))
V (Fa 8. wy = a# wa A map Old_sym ay = map Old_sym Q@ map
Old_sym a A
(Old__st pa, map Old_sym ) € ¢ stack_of final_pda (Old_st p1)
a (Old_sym 7))
using append__eq_map__conv[where ?f = Old_sym| by metis
hence (8. wy = w1 A ag = BQa A (p2, 8) € de M py Z)
V (3ap. w =a# wy A ag =8Qa A (p2,0) €06 Mpy aZ)
using stack _of final _pda_trans stack_of final_pda__eps by (metis list.inj _map__strong
sym__extended.inject map__append)
with a;_ def show ?I
using step,_ rule by simp
qed

abbreviation a_ with _new :: 's list = 's sym__extended list where
o_with_new o = map Old_sym o @ [New__sym]

lemma stack of final _pda_ step;_ drop:
assumes pda.stepy stack_of final_pda (Old_st p1, w1, a_with _new o)
(Old__st pa, we, a__with_new aw)
shows (p1, wi, a1) ~ (p2, we, as)
proof —
from assms obtain Z o where a;_ with _new_ def: a_ with_new oy = Z # «
and rule:
(8. we = w1 A a_with_new ag = fQa A (Old__st pa, B) € stack_of _final delta__eps
(Old_st p1) Z)
V (3a 8. wy = a # wa A a_with_new as = BQa A (Old_st ps,8) €
stack_of _final _delta (Old_st p1) a Z)
using pda.stepy__rule _ext|OF pda_ final to_stack] by (auto simp: stack_of final_pda_def)
from rule have Z # New_sym
by (induction Old_st p1 Z rule: stack _of final delta__eps.induct) (auto, metis
empty_iff fst_conv singletonD st__extended.simps(5))
with ay__with_new__def have map Old_sym ay # || by auto
with assms have pda.step, stack_of final pda (Old_st pi, wy, map Old_sym
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Oél)
(Old_st pa, wa, map Old__sym as)
using pda.stepy__stack__drop[OF pda_ final_to_stack] by blast
thus ?thesis
using stack_of final pda__step by simp
qed

lemma stack of final _pda_ from old:
assumes pda.step, stack_of final_pda (Old_st p1, wi, a1) (p2, wa, a3)
shows (I pa’. po = Old_st p2’) V pa = New_final
proof —
from assms obtain Z o where rule:

(3B. wa = w1 A ag = BQa A (p2, B) € stack_of _final _delta__eps (Old__st

p1) Z)
V (Ja B. w = a# ws A as = fQa A (p2,8) € stack_of final_delta
(Old_st p1) a Z)
using pda.stepy__rule _ext|OF pda_final to_stack] by (auto simp: stack_of final_pda_def)+
thus ?thesis
by (induction Old_st p1 Z rule: stack _of final delta__eps.induct, auto) (metis
empty_iff fst_conv singletonD)+
qed

lemma stack_of final _pda_ from_ final:
assumes pda.stepy stack_of final _pda (New_final, wi, aq) (p2, we, as)
shows 3Z'. po = New_final A wy = w1 AN oy = Z'#ay
proof —
from assms obtain Z a where oy def: a3 = Z#a and rule:
(6. wa = w1 A ag = BQa A (p2,8) € stack_of final_delta_eps New_final
2)
V (3a B. wy = a# ws A ag = BQa A (p2,8) € stack_of _final_delta
New_final a Z)
using pda.stepy__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of_final_pda__def)
thus ?thesis
by (induction New_final:: 'q st__extended Z rule: stack_of _final delta__eps.induct)
auto
qed

lemma stack of final _pda_ from_ oldn:

assumes pda.steps stack _of final pda (Old_st p1, wy, a1) (p2, we, as)

shows 3¢’ po = Old_st ¢’ V ps = New_ final
proof (induction (Old_st p1, w1, a1) (p2, we, ag) arbitrary: ps ws ag rule:
pda.steps_induct2_bw[OF pda_ final_to_stack])

case (3 ps wo ag p3 w3 Q3)

then show Zcase

using stack_of final pda_ from_ final stack_of final pda_from_old by blast

qed (auto simp: assms)

lemma stack _of final _pda_to_old:
assumes pda.step; stack_of final_pda (p1, w1, 1) (Old_st pa, wa, )
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shows (3¢’ p1 = Old_st ¢') V p1 = New__init
using assms stack_of final_pda_ from_ final by (metis st_extended.exhaust)

lemma stack _of final _pda__bottom__elem:
assumes pda.steps stack_of _final_pda (Old_st p1, wi, a__with_new o) (Old_st
b2, w2, ’Y)
shows Ja. v = a__with_new «
proof (induction (Old_st p1, w1, a__with _new «q) (Old_st pa, wa, v) arbitrary:
p2 we v rule: pda.steps _induct2 bw[OF pda_final_to__stack])
case (3 p2 wo a2 w3 a3 p3)
obtain p,’ where py_ def: ps = Old_st ps’
using stack _of final _pda_ from_oldn|OF 3(1)] stack_of final_pda_to_ old[OF
3(2)] by blast
with 3(8) have as_ def: Ja. as = a_ with_new a by simp
from po_ def 3(2) obtain Z o where as_ split: as = Z # o and rule:
(6. ws = wa A ag = B Q@ a A (Old_st p3, §) € stack_of final _delta__eps
(Old_st p3’) Z)
V (Japf we=0a# ws Nag=L0QaA (0Old_stps, B) € stack_of _final _delta
(Old_st pa’) a Z)
using pda.step,__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of _final_pda__def)
hence 37'. 7 = Old_sym Z'
by (induction Old_st ps’ Z rule: stack_of final _delta__eps.induct)
(auto, meson empty_iff insert_iff prod.inject st_extended.distinct(3))
with as_ def as split have 3v. a = a__with_new -~y
by (metis hd__append list.sel(1,3) map__tl sym__extended.simps(3) tl_append__if)
with rule show ?case
by (induction Old_st ps’ Z rule: stack_of final _delta__eps.induct, auto)
(metis empty_iff fst_conv singleton_iff st_extended.distinct(8), metis
map__append,
metis map__append, metis empty_iff fst__conv singleton__iff st__extended.distinct(3))
qed (auto simp: assms)

lemma stack of final pda_ stepn:
(p1, w1, 1) ~(n) (p2, wa, az) «—
pda.stepn stack_of _final _pda n (Old_st p1, w1, a__with_new aq) (Old__st pa,
wa, a__with_new asg) (is 71 +— 2r)
proof
show 2] = ?r
proof (induction n (p1, w1, 1) (p2, we, ag) arbitrary: ps wy as rule: stepn.induct)
case (step, n pa we g pP3 W3 Q3)
from step,,(3) have pda.stepy stack_of _final _pda (Old__st ps, we, map Old__sym
ag) (Old_st p3, ws, map Old_sym «as)
using stack_of final pda_ step by simp
hence pda.stepy stack_of final_pda (Old__st pa, wa, a_with _new az) (Old__st
P3, w3, a__with _new as)
using pda.step,__stack__app|OF pda__final_to__stack] by simp
with step,(2) show ?case
by (simp add: pda.step,,|OF pda__final_to__stack))
qed (simp add: pda.refl,[OF pda__final_to__stack])
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next
assume r: ?2r thus 2]
proof (induction n (Old__st p1, w1, a__with_new ay) (Old_st pa, wa, a__with _new
a2>
arbitrary: pa wa ag rule: pda.stepn.induct]|OF pda__final_to__stack])
case (3 n py we ag w3 P3 Q3)
from 3(1) have steps 3 1: pda.steps stack_of final pda (Old_st py, wi,
a__with_new ai) (p2, wa, )
using pda.stepn__steps|OF pda__final_to__stack] by blast
obtain py’ where py_ def: ps = Old_st py’
using stack_of _final_pda__from__oldn[OF steps_3 1] stack_of _final_pda_to_old[OF
3(3)] by blast
with steps 3 1 obtain v where «ay_ def: as = a__with_new -~y
using stack_of final _pda_bottom__elem by blast

with py_ def 3(1,2) have pda.stepn M n (p1, wi, a1) (p2’, we, v) by simp

moreover from ps_ def as_def 3(3) have pda.stepy M (p2’, wa, ) (p3, ws,
0[3)
using stack_of final pda__stepy__drop by simp

ultimately show ?case by simp
qed (rule v, metis refl,, list.inj _map__ strong sym__extended.inject)
qed

lemma stack _of final _pda_ steps:
(p1, w1, o) ~x (p2, w2, a2) ¢—
pda.steps stack_of final_pda (Old_st p1, wi, a__with _new ay) (Old_st pa,
wa, a__with_new ag)
using stack_of final_pda_stepn pda.stepn__steps|OF pda__ final_to__stack] stepn__steps
by simp

lemma stack of final _pda_ final dump:
pda.steps stack_of _final _pda (New_final, w, v) (New_final, w, [])
proof (induction )
case (Cons Z )
have (New_ final, []) € stack_of _final_delta__eps New_final Z by simp
hence pda.step; stack_of final _pda (New_final, w, Z # ~) (New_ final, w, )
using pda.stepy__rule[OF pda__final _to_stack] by (simp add: stack _of final pda_ def)
with Cons.IH show ?case
using pda.stepy__steps|OF pda_ final_to__stack] pda.steps_trans|OF pda_ final_to__stack]
by blast
qed (simp add: pda.steps_refl[OF pda_final_to__stack])

lemma stack of final _pda_ first_step:
assumes pda.step; stack_of final_pda (New_init, wy, [New_sym]) (p2, wa, «)
shows py = Old_st (init_state M) N wy = wy A a = [Old_sym (init_symbol
M), New__sym]
using assms pda.step;__rule[OF pda_ final_to__stack] by (simp add: stack_of final_pda__def)
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lemma stack of final _pda__empty only final:

assumes pda.steps stack_of _final_pda (New_init, wy, [New_sym]) (q, wa, [])

shows ¢ = New_ final
proof —

from assms have pda.steps stack _of final _pda (Old_st (init_state M), wi,
[Old_sym (init_symbol M), New_sym]) (q, wa, [])

using pda.steps_not_refl_split_first[OF pda__final_to_ stack] stack_of final _pda_first_step
by blast

thus ?thesis

using stack_of _final_pda__bottom__elem[of init_state M wy [init_symbol M|

_we []] stack_of final pda_ from_oldn by fastforce
qed

lemma stack _of final pda_ split_old_final:
assumes pda.stepn stack_of _final _pda (Suc n) (Old_st p1, wi, a1) (New_final
i 'q st_extended, wo, as)
shows 3¢k v. k < n A q € final_states M A
pda.stepn stack_of final_pda k (Old_st p1, wi, a1) (Old_st q, wa, v) A
pda.stepy stack_of _final_pda (Old_st q, we, v) (New_final, we, ) A
pda.stepn stack_of _final_pda (n—k) (New_final, wa, v) (New_final, wo,
012)
using assms proof (induction Suc n (Old_st py, w1, a1) (New_final :: 'q st__extended,
w2, a2)
arbitrary: n wy as rule: pda.stepn.induct|OF pda__final_to__stack))
case (3 n py we g w3 ag)
then show Zcase proof (cases n)
case (
with 3(1) have po_ def: Old_st py = ps and w12: wq, = we and al2: a; =
s
using pda.stepn_zeroE[OF pda_ final_to_stack] by blast+
from py_ def 3(3) obtain Z « where as_ def: ay = Z # « and rule:
(6. ws = wa A ag = BQa A (New_final,) € stack _of final delta__eps
(Old_st p1) Z)
V(Japf. wy=a# ws Aag=L0Qa A (New_final,B) € stack_of final delta
(Old_st p1) a Z)
using pda.stepy__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of _final_pda__def)
from ay_ def rule have pi_ final: p1 € final_states M and w23: ws = we and
a23: a3 = Q2
by (induction Old_st p1 Z rule: stack_of final _delta__eps.induct, auto)
(meson empty_iff , meson empty_iff prod.inject singletonD, meson empty__iff,
meson empty_iff prod.inject singletonD)

from w12 w23 a12 a23 have pda.stepn stack_of final _pda 0 (Old_st p1, wy,
a1) (Old_st p1, ws, asg)
using pda.refl,|OF pda_ final_to_stack] by simp

moreover from 3(3) po__def w23 a23 have pda.step; stack_of _final _pda
(Old__st p1, ws, a3) (New_final, w3, ag) by simp
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moreover from 0 have pda.stepn stack _of final _pda (n — 0) (New_ final,
ws, ag) (New_ final, ws, as)
using pda.refl,|OF pda_final_to_stack] by simp

ultimately show %thesis
using p;_ final by blast
next
case (Suc n')
then show ?thesis proof (cases po = New_ final)
case True
with Suc 3(1,2) obtain ¢ k v where k _less: k < n’ and ¢_final: ¢q €
final_states M and
stepn: pda.stepn stack_of final_pda k (Old_st p1, w1, aq) (Old_st q, wa, )
and
stepl: pda.stepy stack_of final_pda (Old_st q, we, v) (New_ final, wa, 7)
and
stepn’: pda.stepn stack_of final _pda (n’ — k) (New_ final, wa, v) (New_ final,
wa, ) by blast
from True 8(3) obtain Z’ o’ where ay = Z' # o’ and rule:
(8. ws = wa A az = BQa’ A (New_ final,B) € stack_of final_delta__eps
New_ final Z')
V(Jap. wy=a# ws Aasg=LQa’A (New_final,f) € stack_of final_delta
New_final a Z)
using pda.step;__rule__ext[OF pda_ final_to_stack] by (auto simp: stack_of _final_pda__def)
from rule have w23: w3 = wo
by (induction New_final :: 'q st_extended Z' rule: stack_of _final delta__eps.induct)
auto

moreover from k_less Suc have k < n by simp

moreover from stepn w23 have pda.stepn stack_of _final pda k (Old__st p1,
wy, o) (Old_st q, ws, v) by simp

moreover from step! w23 have pda.stepy stack _of final _pda (Old_st q,
ws, v) (New_final, ws, v) by simp

moreover from stepn’ 3(3) True w23 Suc k__less have pda.stepn stack__of _final _pda
(n — k) (New_ final, ws, v) (New_final, ws, as)
using pda.step, [OF pda_final_to_stack] by (simp add: Suc__diff le)

ultimately show ?thesis
using ¢ _final by blast
next
case Fulse
with 3(1) obtain py’ where ps_ def: ps = Old_st ps’
using stack_of final_pda_ from__oldn pda.stepn__steps|OF pda__final_to__stack]
by blast
from py_def 3(3) obtain Z’' o’ where ay = Z' # o’ and
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(6. ws = wa A g = BQa’ A (New_final,3) € stack_of _final _delta__eps
(Old_st pa’) Z')
V (Ja . we = a # wy N ag = fQa’ A (New_final,) €
stack_of _final _delta (Old_st p2’) a Z7)
using pda.step;__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of_final_pda__def)
hence po_ final: p2' € final_states M and w23: ws = wy and a23: az = as
by (induction Old_st py’ Z' rule: stack_of final_delta__eps.induct, auto)
(meson empty_iff, meson empty_iff prod.inject singletonD, meson
empty_iff, meson empty_iff prod.inject singletonD)

from 3(1) pa_ def w23 a23 have pda.stepn stack of final _pda n (Old_st
p1, wi, a1) (Old_st p2’, w3, az) by simp

moreover from 3(3) po_ def w23 a23 have pda.step, stack_of final pda
(Old_st pa’, ws, as) (New_final, ws, ag) by simp

moreover have pda.stepn stack_of _final _pda 0 (New_ final, ws, az) (New_ final,

ws, a3)
using pda.refl,|OF pda_ final_to_stack] by simp

ultimately show ?thesis
using ps_ final by force
qed
qed
qed (simp add: assms)

lemma stack of final _pda__split_path:
assumes pda.stepn stack_of _final_pda (Suc (Suc n)) (New_init, wy, [New__sym])
(New__final, wa, )
shows dq¢ k a. kK < n A q € final_states M N pda.stepy stack_of final_pda
(New_init, wy, [New_sym])
(Old_st (init_state M), wy, [Old_sym
(init_symbol M), New__sym]) A
pda.stepn stack_of _final _pda k (Old_st (init_state M), wq, [Old_sym
(init_symbol M), New__sym))
(Old_st q, wa, &) A
pda.stepy stack_of _final_pda (Old_st q, wa, o) (New_final, wa, ) A
pda.stepn stack_of _final_pda (n—k) (New_final, wa, ) (New_ final, wo,
7)
proof —
from assms have fstep: pda.stepy stack_of _final_pda (New__init, wy, [New__sym)])

(Old_st (init_state M), wy, [Old_sym (init_symbol
M), New_sym))
and stepn: pda.stepn stack _of final pda (Suc n)
(Old_st (init_state M), w1, [Old_sym (init_symbol M),
New__sym))
(New_ final, wa, )
using pda.stepn__split_first[OF pda__final _to _stack] stack _of final _pda_ first_step

29



by blast+
from stepn have 3¢k a. k < n A q € final_states M A
pda.stepn stack_of _final _pda k (Old_st (init_state M), wy, [Old_sym
(init_symbol M), New_sym])
(Old_st q, wa, a) A
pda.stepy stack _of final pda (Old_st q, wa, @) (New_final, wa, ) A
pda.stepn stack_of final_pda (n—k) (New_final, wa, ) (New_final, wo,
7)
using stack_of final pda__split_old_ final by blast
with fstep show ?thesis by blast
qged

lemma stack of final _pda__path_length:
assumes pda.stepn stack_of _final_pda n (New_init, wy, [New__sym]) (New_ final,
wa, )
shows dn’. n = Suc (Suc n')
proof —
from assms obtain n’ where n__def: n = Suc n’ and
stepn’: pda.stepn stack_of final pda n’ (Old_st (init_state M), wy,
[Old_sym (init_symbol M), New__sym))
(New_final, wa, )
using pda.stepn_not_refl_split_first|OF pda__ final_to__stack] stack_of final_pda_ first _step
by blast
from stepn’ obtain n’’ where n’ = Suc n’’
using pda.stepn_not_refl _split_first|OF pda_ final_to_stack] by blast
with n_ def show ?thesis by simp
qged

lemma accepted_final_to_ stack:
(3q ~v. ¢ € final_states M A (init_state M, w, [init_symbol M]) ~x* (q, [], 7))
—
(3 q. pda.steps stack__of _final_pda (init_state stack_of _final_pda, w, [init_symbol
stack_of _final_pdal) (g, [], [])) (is ¢l +— ?r)
proof
assume 7]
then obtain ¢ v where q_final: q € final _states M and steps: (init_state M,
w, [init_symbol M]) ~»x (q, [], v) by blast
obtain Z o where map v def: a_ with_new v = Z#a«
by (auto intro: list.exhaust_sel)
from ¢ _final have (New_final, [Z]) € stack_of final_delta_eps (Old_st q) Z
by (induction Old_st q Z rule: stack_of final delta__eps.induct) auto

with map_~_ def have pda.stepy stack_of _final_pda (Old_st q, [], o_with_new

) (New_final, [], Z#«)
using pda.stepy__rule[OF pda__final _to__stack] by (simp add: stack _of final pda_ def)

moreover from steps have pda.steps stack_of final_pda (Old_st (init_state

M), w, [Old_sym (init_symbol M), New__sym])
(Old_st q, [], a__with_new )
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using stack_of final pda_steps by simp

moreover have pda.step; stack of final _pda (init_state stack_of final_pda,
w, [init__symbol stack__of final pda])
(Old_st (init_state M), w, [Old_sym (init_symbol
M), New_sym))
using pda.stepy__rule[OF pda__final _to_stack] by (simp add: stack _of final pda_ def)

moreover have pda.steps stack_of final_pda (New_ final, |, Z#a) (New_ final,
0. 0

using stack_of final pda_ final _dump by simp

ultimately show ¢r
using pda.step,__steps|OF pda__final_to__stack] pda.steps_trans|OF pda_ final_to__stack]
by metis
next
assume ?r
then obtain ¢ where steps: pda.steps stack_of final pda (New__init, w, [New__sym])
(¢ I, )
by (auto simp: stack_of final _pda__def)
hence ¢ def: ¢ = New_ final
using stack_of final pda__empty only final by simp
with steps obtain n where stepn: pda.stepn stack _of final_pda n (New__init,
w, [New_sym]) (New_final, [, [])
using pda.stepn__steps|OF pda_ final_to__stack] by blast
then obtain n’ where n = Suc (Suc n’)
using stack_of final pda_ path_length by blast
with stepn obtain p £ o where p_final: p € final _states M and stepn”:
pda.stepn stack _of final _pda k
(Old__st (init_state M), w, [Old_sym (init_symbol M), New__sym])
(Old_st p, [], @)
using stack_of final pda__split_path by blast
from stepn’ obtain o’ where a = o with _new o’
using stack of final _pda_bottom__elem pda.stepn__steps|OF pda_ final_to_ stack)]
by (metis (no__types, opaque__lifting) append__Cons append__Nil list.simps(8,9))
with stepn’ have pda.stepn M k (init_state M, w, [init_symbol M]) (p, [], &)
using stack_of final pda__stepn by simp
with p_final show ?I
using stepn_ steps by blast
qed

lemma final to_stack:

pda.accept_final M = pda.accept__stack stack_of final _pda

unfolding accept final def pda.accept_stack _def[OF pda_ final_to_ stack] us-
ing accepted_ final to stack by blast

end
end
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3 Equivalence of CFG and PDA

3.1 CFG to PDA

Starting from a CFG, we construct an equivalent single-state PDA. The
formalization is based on the Lean formalization by Leichtfried[2].

theory CFG_To PDA
imports

Pushdown__Automata

Context_Free Grammar.Context Free_ Grammar
begin

datatype sing st = @ _loop

instance sing_ st :: finite
proof
have x: UNIV = {Q_loop}
by (auto intro: sing_st.exhaust)
show finite (UNIV :: sing_ st set)
by (simp add: *)
qed

instance sym :: (finite, finite) finite
proof
have «: UNIV = {t. 3s. t = Nt s} U {¢. Is. t = Tm s}
by (auto intro: sym.exhaust)
show finite (UNIV :: ('a, 'b) sym set)
by (simp add: * full _SetCompr _eq)
qed

locale cfg_to_pda =
fixes G :: ('n :: finite, 't :: finite) Cfyg
assumes finite_ G: finite (Prods Q)
begin

fun pda_of cfg :: sing_st = 't = ('n,’'t) sym = (sing_st x ('n,’t) syms) set
where

pda_of cfg Q_loop a (Tm b) = (if a = b then {(Q __loop, [])} else {})
| pda_of cfg = {}

fun pda_eps_of cfg :: sing_st = ('n,'t) sym = (sing_st x ('n,’t) syms) set
where

pda__eps_of cfg Q loop (Nt A) = {(Q_loop, a)| a. (4, ) € Prods G}
| pda_eps of cfg =}

definition cfg_to_pda_pda :: (sing_st, 't, ('n,’t) sym) pda where
cfg_to_pda_pda = (| init_state = Q_loop, init_symbol = Nt (Start G), fi-
nal_states = {},
delta = pda__of cfg, delta__eps = pda__eps_of cfg
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lemma pda_cfg to pda: pda cfg to pda_pda
proof (standard, goal_cases)
case (1 pz 2)
have finite (pda_of _cfg p  z)
by (induction p x z rule: pda_of cfg.induct) auto
then show ?case
by (simp add: cfg_to_pda_pda_ def)
next
case (2 p 2)
let ?h = A(A4,a). (Q_loop, )
have x: AA. {(Q_loop, o) |a. (4, o) € Prods G} C (?h ‘ Prods G) by auto
have «x: finite (?h * Prods G)
by (simp add: finite_G)
have AA. finite {(Q _loop, a) |a. (A, a) € Prods G}
using finite_subset|OF * xx] by simp
hence finite (pda__eps_of cfg p 2)
by (induction p z rule: pda__eps_of cfg.induct) auto
then show ?case
by (simp add: c¢fg_to_pda_pda_ def)
qed

lemma cfg to_pda_cons tm:

pda.stepy cfg_to_pda_pda (Q_loop, a#w, Tm a#ty) (Q_loop, w, )
using pda.step,__rule[OF pda__cfg_to_pda) by (simp add: cfg_to_pda_pda_ def)

lemma cfg to pda_cons nt:
assumes (A, a) € Prods G
shows pda.stepy cfg_to_pda_pda (Q_loop, w, Nt A#~) (Q_loop, w, a@~)
using assms pda.step;__rule[OF pda__cfg_to_pda] by (simp add: cfg_to_pda_pda_ def)

lemma cfg to_pda_cons_tms:

pda.steps cfg_to_pda_pda (Q_loop, wQuw’, map Tm w @ ~) (Q_loop, w’, v)
proof (induction w)

case (Cons a w)

have pda.stepy cfg_to_pda_pda (Q_loop, (a # w) @ w'; map Tm (a # w) Q )
(Q _loop, w @ w', map Tm w Q =)

using cfg_to_pda_ cons tm by simp

with Cons.IH show ?case

using pda.step,__steps|OF pda__cfg_to_pda] pda.steps_trans|OF pda__cfg_to_pda]
by blast
qed (simp add: pda.steps_refl{OF pda__cfq_to_pdal)

lemma cfg to pda_nt_cons:
assumes pda.step, cfg_to_pda_pda (Q _loop, w, Nt A#~) (Q_loop, w’, B)
shows Ja. (4, a) € Prods GAB=aQy A w =w
proof —
from assms have (3 8g. w' = w A B = Bo@Qy A (Q_loop, Bo) € pda__eps_of _cfg
Q_loop (Nt A))
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V (Fa Bo-w=a# w AB=BoQyA (Q_loop,Bo) € pda_of cfg
Q_loop a (Nt A))
using pda.step,__rule[OF pda__cfg_to_pda)] by (simp add: cfg_to_pda_pda_ def)
thus ?thesis
by (induction Q_loop Nt A :: ('n, 't) sym rule: pda_eps _of cfg.induct) auto
qed

lemma cfg to pda_tm_ stack cons:
assumes pda.step, cfg_to_pda_pda (Q_loop, w, Tm a # () (Q_loop, w’, B7)
shows w=a # w' A B =7
proof —
from assms have (3Fg. w' = w A B’ = 5o@B A (Q_loop, Bo) € pda__eps_of cfyg
Q_loop (Tm a))
V (Fap Bo- w = ag#w’ A B = Bo@B A (Q_loop, Bo) € pda_of _cfg
Q_loop ag (Tm a))
using pda.stepy__rule]OF pda__cfg_to__pda] by (simp add: cfg_to_pda_pda__def)
thus ?thesis
by (induction Q_loop Tm a :: ('n, 't) sym rule: pda__eps_of cfg.induct, auto)
(metis emptyE, metis empty_iff prod.inject singletonD)
qed

lemma cfg _to pda_tm_ stack path:

assumes pda.steps cfg_to__pda_pda (Q_loop, w, Tm a # «) (Q_loop, [], [])

shows Jw’. w = a#w’ A pda.steps cfg_to_pda_pda (Q_loop, w', a) (Q_loop,
M)
proof —

from assms obtain ¢’ w’ o’ where stepl: pda.step; cfg _to_pda_pda (Q_loop,
w, Tm a # @) (¢', w’, o) and

steps: pda.steps cfg_to_pda_pda (¢', w’, a’) (Q_loop,

M)

using pda.steps_not_refl_split_first{OF pda__cfg_to_pda] by blast
have ¢’ _def: ¢/ = Q_loop
using sing_st.exhaust by blast
from step![unfolded q' _def] have (Bg. w' = w A @’ = BoQa A (Q_loop, Bo)
€ pda__eps_of cfg Q_loop (Tm a))
V (Jap Bo. w= ap#w’ A o’ = Bo@a A (Q_loop, Bo) € pda_of _cfg
Q_loop ag (Tm a))
using pda.stepy__rule[OF pda__cfg_to__pda] by (simp add: cfg_to_pda_pda__def)
hence w = a # w' A o' = «
by (induction Q_loop Tm a :: ('n, 't) sym rule: pda__eps_of _cfg.induct, auto)
(metis empty_iff, metis empty_iff prod.inject singletonD)
with steps q¢'_def show ?thesis by simp
qged

lemma cfg to pda_tms stack path:
assumes pda.steps c¢fg_to__pda_pda (Q_loop, w, map Tm v @ &) (Q_loop, [], [])
shows Jw’. w = v @ w’ A pda.steps cfg_to_pda_pda (Q_loop, w’, &) (Q_loop,

0 D)

using assms cfg_to_pda_tm_ stack_path by (induction v arbitrary: w) fastforce+
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lemma cfg to_pda_accepts if G_derives:
assumes Prods G F o =Ix map Tm w
shows pda.steps cfg_to_pda_pda (Q_loop, w, o) (Q_loop, [], [])
using assms proof (induction rule: converse _rtranclp_induct)
case base
then show ?case
using c¢fg_to_pda_cons_tmslwhere 7w’ =[] and %y = [|] by simp
next
case (step y 2)
from step(1) obtain A o ul u2 where prod: (A,a) € Prods G and y__def: y =
map Tm ul Q Nt A # u2 and z_def: 2z = map Tm ul Q@ o @ u2
using derivel iff [of Prods G y z| by blast
from step(3) z_def obtain w’ where w_def: w = ul @ w’ and
x: pda.steps cfg_to_pda_pda (Q_loop, w', a @ u2)

(Q_loop, [], 1)
using cfg_to_pda_tms_stack path by blast

from w_def y_def have pda.steps c¢fg_to__pda_pda (Q_loop, w, y) (Q_loop, w’,
Nt A # u2)
using cfg_to_pda__cons_tms by simp

moreover from prod have pda.steps cfg_to _pda_pda (Q_loop, w', Nt A # u2)
(Q_loop, w', o @ u2)
using c¢fg_to_pda__cons_nt pda.stepy__steps|OF pda__cfq_to_pda] by simp

ultimately show Zcase
using * pda.steps_trans|OF pda__cfg_to_pda] by blast
qed

lemma G_derives if cfg to_pda_ accepts:
assumes pda.steps cfg_to_pda_pda (Q_loop, w, o) (Q_loop, [], [])
shows Prods G - a =% map Tm w
using assms proof (induction (Q_loop, w, ) (Q_loop, [| =+ 't list, [| == ('n, 't)
syms)
arbitrary: w a rule: pda.steps _induct2[OF pda__cfg_to_pda))
case (3 w1 1 P W 042)
then show ?case proof (cases ay)
case (Cons Z' o)
have ps_ def: po = Q_loop
using sing_st.exhaust by blast
with 3(2,3) have IH: Prods G - as =x map Tm ws by simp
show ?thesis proof (cases Z')
case (Nt A)
with Cons pa_def 3(1) obtain « where prod: (A4, a)) € Prods G and aq__def:
as = a @ o’ and we_ def: wy = wy
using cfq_to_pda_nt_cons by blast
from Cons Nt prod as__def have Prods G+ a1 = as
using derive_iff by fast
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with IH wy_ def show ?thesis by simp
next
case (Tm a)
with Cons po__def 3(1) have w_a_def: w1 = a # wa A o’ = ag
using cfqg_to_pda_tm_ stack__cons by simp
from [H have Prods G - Tm a # as =% Tm a # map Tm ws
using derives_ Cons by auto
with Cons Tm w_«_ def show ?thesis by simp
qed
qed (simp add: 3(1) pda.step1__empty_stack|OF pda__cfg_to_pdal)
qed (simp__all add: assms)

lemma cfg_to_pda: LangS G = pda.accept_stack cfg_to_pda_pda (is ?L = ¢P)
proof
show ¢L C ?P
proof
fix x
assume z € 7L
hence Prods G + [Nt (Start G)] =* map Tm x
by (simp add: Lang_def)
hence Prods G + [Nt (Start G)] =1x map Tm z
using derivels iff derives by auto
hence pda.steps cfg_to_pda_pda (Q_loop, x, [Nt (Start G)]) (Q_loop, [], [])
using c¢fg to pda_accepts_if G__derives by simp
thus z € 7P
unfolding pda.accept__stack__def[OF pda__cfg_to_pda] by (auto simp: cfg_to_pda_pda__def)
qed
next
show 2P C ?¢L
proof
fix z
assume z € 7P
then obtain ¢ where steps: pda.steps cfg_to_pda_pda (Q_loop, z, [Nt (Start
&N (¢, 1, 1)
unfolding pda.accept_stack__def[OF pda__cfg_to_pda] by (auto simp: c¢fg_to_pda_pda__def)
have ¢ = @Q_loop
using sing st.exhaust by blast
with steps have Prods G F [Nt (Start G)] =% map Tm z
using G derives if cfg to_pda_ accepts by simp
thus z € 7L
by (simp add: Lang_def)
qed
qed

end
end
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3.2 PDA to CFG

Starting from a PDA that accepts by empty stack, we construct an equiva-
lent CFG. The formalization is based on the Lean formalization by Leicht-
fried[2].

theory PDA__To CFG
imports

Pushdown__Automata

Context_Free  Grammar.Context Free_ Grammar
begin

datatype ('q, 's) pda_nt = Start_sym | Single_sym 'q 's 'q | List_sym 'q 's list
i
q

context pda begin

abbreviation all_pushes :: 's list set where
all_pushes={a. I pgaz (p,a)ed Mqgaz}U{aIpqz (p,a)€de Mqz}

abbreviation max_push :: nat where
maz_push = Suc (Maz (length ‘ all_pushes))

abbreviation is_allowed_nt :: ('q, 's) pda_nt set where
is_allowed_nt = {List_sym p a q| p « q. length o < maz_push} U (Up Z q.
{Single_sym p Z q}) U {Start_sym}

abbreviation empty rule :: '¢ = (('q, 's) pda_nt, 'a) Prods where
empty_rule ¢ = {(List_sym q || ¢, [|)}

abbreviation trans rule :: '¢ = ‘¢ = 'a = 's = (('q, 's) pda_nt, 'a) Prods
where

trans_rule qo q1 a Z = (A(p, «). (Single_sym qo Z q1, [Tm a, Nt (List_sym p
aq)]) 0 Mg aZ

abbreviation eps _rule :: '¢ = ‘g = 's = (('q, 's) pda_nt, 'a) Prods where
eps_rule o ¢1 Z = (M(p, «). (Single_sym qo Z q1, [Nt (List_sym p a ¢1)]))
oe M q0 A

¢

fun split_rule :: ‘¢ = ('q, 's) pda_nt = (('q, 's) pda_nt, 'a) Prods where
split_rule q (List_sym po (Z#a) p1) = {(List_sym po (Z#«) p1, [Nt (Single__sym

po Z q), Nt (List_sym q a p1)])}

| split_rule _ _ = {}

abbreviation start_rule :: 'q = (('q, 's) pda_nt, 'a) Prods where
start_rule ¢ = {(Start_sym, [Nt (List_sym (init_state M) [init_symbol M] q)])}

abbreviation rule_set :: (('q, 's) pda_nt, 'a) Prods where

rule_set = (| q. empty_rule ¢) U ((Jgp a Z. trans_rule g p a Z) U (Ugp Z.
eps_rule g p Z) U
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U {split_rule q nt| ¢ nt. nt € is_allowed_nt} U ({ q. start_rule q)

definition G :: (('q, 's) pda_nt,’a) Cfg where
G = Cfg rule__set Start_sym

lemma finite_is_allowed_nt: finite (is__allowed_nt)
proof (intro finite_Unl)
show finite {List_sym (p :: 'q) (« 2 's list) q| p a q. length o < maz_push}
proof —
let 24 =UUJ(As. (M. f UNIV) “s) (M. f“{ws s list. set zs C UNIV
A length s < maz_push}) ‘ (List_sym ‘ (UNIV :: 'q set)))))

have {List_sym p « q| p « q. length o < maz_push} = 24
by auto

moreover have finite ?A (is finite (| ?B))
proof (rule finite_ Union)
show finite ?B (is finite (| ?C))
proof (rule finite_ Union)
show finite ?C by simp
next
show AM. M € ?C = finite M
using finite_lists_length_le[of UNIV maz_push| by force
qed
next
show AM. M € ?B = finite M by fastforce
qed

ultimately show ¢thesis by simp
qed
next
show finite (J(p = 'q) (Z 2 's) q. {Single_sym p Z q})
by (rule, simp)+
qed simp

lemma finite_ split_rule: finite (split_rule g nt)
by (induction q nt rule: split_rule.induct) auto

lemma finite (Prods G)
proof —

have finite (| q. empty_rule q) by simp

moreover have finite (Jqp a Z. trans_rule ¢ p a Z)
by (simp add: finite_ delta)

moreover have finite (Jqp Z. eps_rule ¢ p Z)
by (simp add: finite__delta__eps)

moreover have finite (|J {split_rule ¢ nt| ¢ nt. nt € is_allowed_nt})
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proof —
have {split_rule q nt| g nt. nt € is_allowed_nt} =J ((Mf. f ‘is_allowed_nt)
‘ (split_rule < UNIV))
by fastforce

moreover have finite (J (U ((\f. f “is_allowed_nt) ‘ (split_rule * UNIV))))
(is finite (| ?A4))
proof (rule finite_ Union)
show finite ?A (is finite ({J ?B))
proof (rule finite_ Union)
show finite 7B by simp
next
show AM. M € ?B = finite M
using finite is_allowed_nt by blast
qed
next
show A\M. M € ?A = finite M
by (auto simp: finite_split_rule)
qed

ultimately show ¢thesis by simp
qed

moreover have finite (| q. start_rule q) by simp

ultimately show “thesis
by (simp add: G_def)
qed

lemma split_rule simp:
(A, w) € split_rule g nt +—
(po Z « p1. nt = (List_sym po (Z#a) p1) A
A = List_sym py (Z#a) p1 N w = [Nt (Single_sym po Z q), Nt
(List_sym q a p1)])
by (induction q nt rule: split_rule.induct) auto

lemma pda_to_cfq derive__empty:
Prods G = [Nt (List_sym p1 [ p2)] = z +— p2 =p1 ANz =]
unfolding G_def using derive_singleton|of rule_set] split_rule simp by auto

lemma finite all_pushes: finite all_pushes

proof —
let A= (Ap, o). a) “ UgaZ. 0 MqaZU (JgZ. 6 M q2Z))
have all pushes = ?A by fast

moreover have finite ?A
by (rule, simp add: finite_delta finite_delta__eps)+

ultimately show ¢thesis by simp
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qed

lemma push_trans_leq max:
(p, @) €6 M qaZ = length & < maz_push
proof —
have (p, a) € 6 M q a Z = length o < Mazx (length ‘ all_pushes)
by (rule Maz__ge) (use finite_all_pushes in blast)+
thus (p, a) € 6 M q a Z = length o < maz_push by simp
qed

lemma push_eps leq max:
(p, @) € de M q Z = length o < max_push
proof —
have (p, a) € de M q Z = length o < Mazx (length ‘ all_pushes)
by (rule Max__ge) (use finite__all_pushes in blast)+
thus (p, @) € 0e M q Z = length o < maz_push by simp
qed

lemma pda_to_cfq derive_ split:
Prods G+ [Nt (List_sym p1 (Z#a) p2)] = w +—
(Fq. length (Z#a) < maz_push A w = [Nt (Single_sym p1 Z q), Nt (List_sym
q « p2)))
(is 2l «— 2r)
proof
assume 7/
hence (List_sym p1 (Z # ) p2, w) € rule_set
using derive__singleton[of Prods G Nt (List_sym p1 (Z # @) p2) w] by (simp
add: G_def)
thus 7r
by (auto simp: split_rule_simp)
next
assume 2r
then obtain ¢ where len_«: length (Z#«) < maz_push and w_def: w = [Nt
(Single_sym p1 Z q), Nt (List_sym q « p2)] by blast
from w_def have (List_sym p1 (Z#«a) pa, w) € split_rule q (List_sym p1 (Z
# a) pa2) by simp
with len_o have (List_sym p1 (Z#«a) pa, w) € |J {split_rule g nt| g nt. nt €
is_allowed_nt}
by (subst Union_iff) fast
hence (List_sym p1 (Z#«) pa, w) € rule_set by simp
thus 21
using derive__singleton[of Prods G Nt (List_sym p1 (Z # «) p2) w] by (simp
add: G_def)
qed

lemma pda_to_cfqg derive_single:
Prods G+ [Nt (Single_sym qo Z q1)] = w +—
Gpaa (p,a)€d Mgy aZ Aw=[Tm a, Nt (List_sym p o q1)]) V
(3p a. (p, @) € de M qo Z N w = [Nt (List_sym p o q1)])
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unfolding G_def using derive_singleton|of rule_set] split_rule simp by fast-
force

lemma pda_to_cfqg derive_start:

Prods G & [Nt Start_sym] = w +— (Iq. w = [Nt (List_sym (init_state M)
[init_symbol M] q)])

unfolding G_def using derive_singleton|of rule_set] split_rule simp by auto

lemma pda_to_cfqg derives if stepn:
assumes (g, z, 7) ~(n) (p, [], [1)
and length v < maz_push
shows Prods G & [Nt (List_sym q v p)] = map Tm z
using assms proof (induction n arbitrary:  p q v rule: less_induct)
case (less n)
then show ?Zcase proof (cases )
case Nil
from less(2) have (g, z, v) ~x* (p, [], [])
using stepn__steps by blast
with Nil have ¢ = p A z = ]
using steps _empty_stack by simp
with Nil show ?thesis
using pda_to_cfq_derive _empty by auto
next
case (Cons Z «)
with less(2) obtain n’ ¢’ z’ v’ where n_def: n = Suc n’ and
stepl: (g, &, v) ~ (¢’, ', v') and
stepn: (¢', z', ") ~(n’) (p, [], 1)
using stepn_not_refi_split_first by blast
from Cons stepl have rule: (38.z' =z A v' = BQa A (¢, B) € de M q Z)
VEaB z=a#2' Ny =8QaA(¢"8) €d MqgaZ) (is
2LV ?r)
using step,_ rule by simp
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain 3 where z_def: 2’ = z and v’_split: v/ = fQa and eps: (q’,
B) € ée M q Z by blast
from stepn v'_split obtain p’ m; ms y y’ where z’_def: 2’ = y @Q y’ and
ml m2 n’smi + mg =n’
and stepml1: stepn mq (¢', y, B) (p', [, []) and stepm?2: stepn mq
(', y's ) (p, [, [I)
using split_stack[of n’ ¢’ ' § « p] by blast
from n_def m1_m2 n' have mi1_less n: m; < n by simp
from n_def m1_m2 n' have m2_less n: mg < n by simp
from eps have len_: length 8 < maz_push
using push__eps_leq _max by blast

from Cons less(8) have Prods G & [Nt (List_sym q v p)] = [Nt (Single__sym

q Zp'), Nt (List_sym p’ a p)]
using pda_to_cfg derive_split by simp
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moreover from eps have Prods G \ [Nt (Single_sym q Z p'), Nt (List_sym
p'ap)] =
[Nt (List_sym q' B p"), Nt (List_sym p’ « p)]
using pda__to__cfg_derive__single derive__append|of Prods G [Nt (Single__sym
q Z p")] [Nt (List_sym ¢" § p")]
[Nt (List_sym p’ a p)]] by simp

moreover have Prods G - [Nt (List_sym ¢’ 8 p"), Nt (List_sym p' a p)]
= map Tm y Q [Nt (List_sym p’ « p)]
using derives__append[OF less(1)[OF m1_less_n stepml len_ S]] by simp

moreover from z_def z’_def Cons less(3) have Prods G - map Tm y Q@
[Nt (List_sym p’ «a p)] =* map Tm x
using derives_prepend[OF less(1)[OF m2_less_n stepm?2]] by auto

ultimately show ¢thesis by simp
next
assume ?r
then obtain a § where z_def: © = a # z’ and ~'_split: v' = fQa and
trans: (¢, B) € 6 M q a Z by blast
from stepn ~v'_split obtain p’ my ms y y’ where z’_def: z’ = y @Q y’ and
ml m2 n’smi + mg =n’
and stepm1: stepn my (¢', y, B) (p/, [], []) and stepm2: stepn mo
(', y's ) (p, [, [I)
using split_stacklof n’ ¢’ ' § « p] by blast
from n_def m1_m2 n' have mi1_less n: m; < n by simp
from n_def m1_m2 n’ have m2 less n: may < n by simp
from trans have len_[: length B < max_push
using push__trans_leq _max by blast

from Cons less(8) have Prods G & [Nt (List_sym q v p)] = [Nt (Single__sym
q Zp'), Nt (List_sym p’ « p)]
using pda_to_ cfg_derive_split by simp

moreover from trans have Prods G + [Nt (Single_sym q Z p’), Nt (List_sym
p ap) =
[Tm a, Nt (List_sym q' 8 p’), Nt (List_sym p’ « p)]
using pda_to_ cfg_derive_single derive_append|of Prods G [Nt (Single _sym
q Zp")] [Tm a, Nt (List_sym q' 8 p')]
[Nt (List_sym p' a p)]] by simp

moreover have Prods G + [Tm a, Nt (List_sym q' 8 p’), Nt (List_sym p’
a p)] =+
Tm a # map Tm y Q [Nt (List_sym p’ a p)]
using derives _append[OF less(1)[OF m1_less_n stepml len_f]] by (simp
add: derives_Tm__Cons)

moreover from z’_def x_def Cons less(3) have Prods G &= Tm a # map
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Tm y Q [Nt (List_sym p’ a p)] =% map Tm x
using derives_prepend[OF less(1)[OF m2_less _n stepm2], of Tm a # map
Tm y| by simp

ultimately show ?thesis by simp
qed
qed
qed

lemma derivel _append__decomp:
P uQu =l w+—
Guv. w=vQuAPFu=lu)V (3Fu v w=uQv Au=map Tmu ANPF
v =10
(is 2l +— 2r)
proof
assume ?]
then obtain A r ul u2
where Ar: (A,r) € P
and wv: vQv = map Tm ul Q@ Nt A # u2
and w: w = map Tm ul Q r Q u2
by (auto simp: derivel iff)
from uv have case_dist: (3s. u2 = s Qv A u=map Tmul Q@ Nt A # s)V
(3s.map Tmul =u@s ANv=sQNtA# u2) (is ?h1 VvV ?h2)
by (auto simp: append__eq _append__conv2 append_eq Cons__conv)
show ?r proof (rule disjE[OF case__dist])
assume ?h1
with Ar w show ?Zthesis by (fastforce simp: derivel iff)
next
assume ?h2
then obtain s where map ul_def: map Tm vl = u Q s and v_def: v = s
@ Nt A # u2 by blast
from map_ul_def obtain u’ s’ where u_def: u = map Tm u’ and s_def: s
= map Tm s’
using append_eq _map__conv[of u s Tm ul] by auto

from w map_ul_def s_def have w = u @ (map Tm s’ Q r @Q u2) by simp

moreover from Ar v_def s _def have P+ v =1l map Tm s’ Q r Q u2
using derivel _iff[of P] by blast

ultimately show ?thesis
using u__def by blast
qed
next
show r = 7]
by (auto simp add: derivel_append derivel _map_Tm__append)
qed
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lemma split_derivel”:
assumes P F z#v =I(n) u
shows (Ju’. u =u"@Q@u A PF [z] =i(n) v)V (Jw us my ma. my + ma = n
A u=map Tm w; Q uy
A PF [z] =Il(m1) map Tm wy A P+ o
:>l(m2) UQ)
using assms proof (induction n arbitrary: u)
case (Suc n)
from Suc(2) obtain w where z_v_deriveln_w: P+ = # v =l(n) w and
w__derivel_u: P+ w =1 u by auto
from Suc(1)[OF x_v_deriveln_w] have IH: (3u’". w=u"Q v A PF [z] =I(n)
u') Vv
(Fwy ug my ma. my + mg =n A w=map Tm w; Q@ uy A P+ [z] =I(m1) map
Tm wi A P v =1(mg) uz) (is 21V 2r) .
show ?case proof (rule disjE[OF IH])
assume ?[
then obtain v’ where w_def: w = v’ Q v and z_deriveln_u": P+ [z] =(n)
u’ by blast
from w_def w_derivel _u have P+ v’ Q v =1 u by simp
hence case_dist: (Jug. v =ug Qv A Pt u' =lug) V
(Fuy ug. v =u" @ us A u'=map Tm u; AN PF v=lus) (is ?hl
V %h2)
using derivel _append__decomp|of P v’ v u] by simp
show ?thesis proof (rule disjE[OF case__dist))
assume ?hl
then obtain uy where u_def: u = ug @ v and u’_derivel_u0: P+ u’' =1
ug by blast
from z_deriveln_u’ w’_derivel_u0 have P b [z] =1(Suc n) ug by auto
with u_def show ?thesis by blast
next
assume ?h2
then obtain u; u, where u_def: u = u' Q uy and u’_def: v’ = map Tm
uy and v_derivel_u2: P+ v =1 uy by blast
from z_deriveln_u’ v’ _def have P F [z] =I(n) map Tm uy by simp
with u_def v’ _def v_derivel _u2 show ?thesis by fastforce
qged
next
assume 7r
then obtain wy, us m; mo where mi_m2 n: my + my = n and w_def: w
= map Tm w; Q uy and
z_derivelmi_wl: P+ [z] =I(m1) map Tm w, and
v_derivelm2_u2: P F v =I1(mgy) us by blast
from w_def w _derivel _u have P map Tm wi; @ us =1 u by simp
then obtain u’ where u_def: u = map Tm w; @ v’ and u2_derivel_u" P+
uy =l u’
using derivel_map_Tm__append by blast

from mi1_m2_n have mi + Suc my = Suc n by simp
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moreover from v_derivelm2_u2 u2_derivel_u’' have P+ v =I(Suc my) u’

by auto

ultimately show Zthesis
using u_def x_derivelm1 _wl by blast
qed
qed simp

lemma split_derivel:
assumes P F z#v =1(n) map Tm w
shows Jw; wy my ma. m1 + me =n A w=w Qwy APF [z] =I(m1) map
Tm wy A P+ v =I(mg) map Tm wo
proof —
have case_dist: (3u’. map Tm w = v’ Q v A P+ [z] =1(n) u') V (Jwr uz my
Mmo. My + mo = n A map Tm w = map Tm wy; Q usy
A P+ [z] =Il(m1) map Tm wy A P+ v
=1(m2) ug) (is 7l V ?r)
using split_derivel [OF assms] by simp
show ?thesis proof (rule disjE[OF case__dist])
assume ?[
then obtain v’ where map w_def: map Tm w = v’ Q v and z_derives u”:
P+ [z] =1(n) u' by blast
from map w_def obtain w; ws, where w = w; @ wy and map_wy_ def:
map Tm w; = v’ and map Tm ws = v
using map__eq__append__conv[of Tm w u’ v] by blast

moreover from z_derives_u’ map_wy__def have P\ [z] =I(n) map Tm w;
by simp

moreover have P F map Tm wy =1(0) map Tm wy by simp

ultimately show ?thesis by force
next
assume ?r
then obtain wy us m; ms where m1_m2 n: mi; + ms = n and map_w_ def:
map Tm w = map Tm wy Q usy
and z_derivelmi_wl: P\ [z] =1(m1) map
Tm wy and v_derivelm2_u2: P+ v =1(msq) us by blast
from map_w_def obtain w;’ uy’ where w = wy’ @ uy’ and map (Tm :: 'c
= (b, 'c) sym) wy = map Tm w1’ and uz = map (Tm = 'c = (’b, 'c) sym) ua’
using map__eq_append__convlof Tm :: 'c = ('b, 'c) sym w map Tm w1 ug] by
blast
with m1_m2 n z derivelml_wl v_derivelm?2_u2 show ?thesis by auto
qed
qed

lemma pda_to_cfq steps if derivel:
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assumes Prods G = [Nt (List_sym q v p)] =1(n) map Tm x
shows (g, 7, 7) ~* (p, [, [)
using assms proof (induction n arbitrary:  p q v rule: less_induct)
case (less n)
then show Zcase proof (cases )
case Nil
have derives: Prods G & [Nt (List_sym q v p)] =% map Tm x
using derivels_imp_derives|OF relpowp__imp_ rtranclp]OF less(2)]] .
have p = ¢ Az = |]
proof —
from derives_start1[OF derives] obtain o where dI: Prods G + [Nt
(List_sym q v p)] = « and
ds: Prods G+ a =% map Tm x
using derive__singleton by blast
from Nil d1 have x: p = ¢ and o__def: a = ||
using pda_to_cfg_derive_empty by simp__all

from «_ def ds have #x: x = [| by simp
from * xx show ?thesis by simp
qed

with Nil show ?thesis
by (simp add: steps_refl)
next
case (Cons Z «)
from less(2) have n > 0
using gr0I by fastforce
then obtain n’ where n_def: n = Suc n’
using not0_impliesSuc by blast
with less(2) obtain v’ where [1: Prods G = [Nt (List_sym ¢ v p)] =1 v’ and
In". Prods G + ~' =Il(n') map Tm x
using relpowp__Suc_E2[of n’ derivel (Prods G) [Nt (List_sym q v p)] map
Tm x| by blast
from Cons obtain ¢’ where ' _def: v' = [Nt (Single_sym q Z q’), Nt
(List_sym q' a p)]
using pda_to_cfq derive_split derivel _imp__derive]OF 1] by blast
with [n’ have n’ > 0
using gr0I by fastforce
then obtain n’’ where n’_def: n’ = Suc n”’
using not0_implies_Suc by blast
with [n’ v’ def obtain v" where [2: Prods G + [Nt (Single_sym q Z q'), Nt
(List_sym ¢’ « p)] =1 v and
In": Prods G+ ~" =I(n"") map Tm z
using relpowp_ Suc__E2[of n'' derivel (Prods G) [Nt (Single_sym q Z q’), Nt
(List_sym q' « p)] map Tm x] by blast
from [2 obtain ~'’y where [2". Prods G + [Nt (Single_sym q Z q')] =1 ~"
and " _split: v = v Q [Nt (List_sym ¢’ « p)]
using derivel Nt_Cons by (metis append.right_neutral)
have (3¢”" a" a. (¢, &'y € M qga Z N~"y =[Tm a, Nt (List_sym q" "
) v
Fq"”a". (¢", 'y e de MqZ N~"s =[Nt (List_sym q¢"" o’ q')])
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using pda_to_cfq_derive_single derivel _imp__derive[OF 2] by simp
with v'"_split have rule: (3¢ o’ a. (¢", a') € M qa Z A
~v" = [Tm a, Nt (List_sym ¢"" o’ q’), Nt (List_sym ¢’
ap)]) v
Fq” " (¢, ") €de MqZ A
~'" = [Nt (List_sym q" o' q'), Nt (List_sym q' « p)])
(is 7l V ?r) by simp
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain ¢ o'’ a where trans: (¢, «’) € 6 M q a Z and
~" _def: 4" = [Tm a, Nt (List_sym q¢"" o’ ¢'), Nt
(List_sym q' a p)] by blast
from ~'"_def In'"’ obtain z’ where z_def: + = a2z’ and
split: Prods G = [Nt (List_sym q"" o' q'), Nt (List_sym
q" a p)] =Il(n") map Tm z’
using deriveln__Tm__Cons[of n"' Prods G a [Nt (List_sym q" o' q’), Nt
(List_sym q' a p)] map Tm x| by auto
obtain w; ws m; mo where mi_m2 n'": m; + mo = n’ and z’_def: z’
= w; @ wy
and m1_path: Prods G + [Nt (List_sym q¢" a" q")]
=Il(my1) map Tm w;
and m2_path: Prods G & [Nt (List_sym q' « p)]
=1(m2) map Tm ws
using split_derivel|OF split] by blast
from m1_m2 n'" n_def n’_def have m1_lessn: m; < n by simp
from m1_m2 n'" n_def n’_def have m2_lessn: my < n by simp

from trans z_def Cons have (q, z, v) ~ (¢, 2/, " Q «)
using step;_ rule by simp

moreover from z’_def have (¢, z/, o’ @ ) ~x (¢, wa, @)
using steps_stack__app[OF less(1)[OF m1_lessn m1_path], of a]
steps_word__applof ¢ w1 " @ « ¢’ [] a ws] by simp

moreover have (¢’, wa, a) ~x* (p, [], [])
using less(1)[OF m2_lessn m2_path| .

ultimately show ?Zthesis
unfolding steps def
by (meson converse__rtranclp__into_rtranclp rtranclp__trans)
next
assume ?r
then obtain ¢"’ o’ where eps: (¢”, a'') € 6e M q Z and
~"" _def: " = [Nt (List_sym q" o’ ¢'), Nt (List_sym
q’ a p)] by blast
from ~''_def In' have split: Prods G - [Nt (List_sym q" o’ ¢'), Nt (List_sym
q" a p)] =Il(n'") map Tm z by simp
obtain w; wy mq mo where mi_m2 n''":
w1 @ w2

m1 + me = n' and z_def: x =
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and mI1_path: Prods G - [Nt (List_sym q" "' ¢')] =1(m1)
map Tm w;
and m2_path: Prods G & [Nt (List_sym q’ a p)] =1(ma)
map Tm wo
using split_derivel|OF split] by blast
from m1_m2 n'" n_def n’_def have m1_lessn: m; < n by simp
from mi1_m2 n'"’ n_def n’_def have m2_lessn: my < n by simp

from eps Cons have (q, z, v) ~ (¢", z, &' Q «)
using step;__rule by simp

moreover from z_def have (¢", z, o’ @ a) ~x (¢/, we, @)
using steps_stack__app[OF less(1)[OF m1_lessn m1_path], of a]
steps_word__applof ¢ w1 «' @ a ¢’ [| @ ws] by simp

moreover have (¢/, ws, o) ~* (p, [, [])
using less(1)[OF m2_lessn m2_path] .

ultimately show ?thesis
using stepy__steps steps_trans by metis
qed
qed
qed

lemma pda_to_cfg: LangS G = accept_stack (is ?L = ?P)
proof
show 7L C ?P
proof
fix z
assume z € 7L
hence derives: Prods G = [Nt Start_sym] =x map Tm z
by (simp add: G_def Lang_def)
then obtain v where fs: Prods G - [Nt Start_sym| = ~ and ls: Prods G -
v =% map Tm z
using converse_rtranclpE[OF derives] by blast
from fs obtain ¢ where v = [Nt (List_sym (init_state M) [init_symbol M]
q)]
using pda__to__cfq_derive_start|of ~] by blast
with /s obtain n where Prods G & [Nt (List_sym (init_state M) [init_symbol
M] )] =1l(n) map Tm x
using derivels_iff derives[of Prods G v x| rtranclp__power|of derivel (Prods
G) v map Tm z] by blast
hence steps (init_state M, x, [init_symbol M]) (q, [], [])
using pda_to_ cfq steps if derivel by simp

thus z € 7P
by (auto simp: accept_stack__def)
qed
next

show ?P C ?L
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proof
fix z
assume z € 7P
then obtain ¢ where steps (init_state M, x, [init_symbol M]) (q, [], [])
by (auto simp: accept_stack_def)
then obtain n where (init_state M, x, [init_symbol M]) ~~(n) (g, [], [])
using stepn__steps by blast

hence Prods G F [Nt (List_sym (init_state M) [init_symbol M) q)] =* map
Tm x
using pda_to_cfg derives if stepn by simp

moreover have Prods G & [Nt Start_sym] = [Nt (List_sym (init_state M)
[init__symbol M| q)]
using pda_to_cfg derive start by simp

ultimately have Prods G + [Nt (Start G)] =% map Tm x
by (simp add: G_def)

thus z € 7L
by (simp add: Lang__def)
qed
qed
end

end
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