Pushdown Automata

Kaan Taskin and Tobias Nipkow
October 17, 2025

Abstract

This entry formalizes pushdown automata and proves their equiv-
alence with context-free grammars. It also shows that acceptance by
empty stack and by final state are equivalent.

Contents

1 Pushdown Automata (PDA)
1.1 Definitions
1.2 BasicLemmas.
1.2.1 stepand stepyo
1.2.2 steps
1.23 stepn.o

2 Equivalence of Final and Stack Acceptance
2.1 Stack Acceptance to Final Acceptance
2.2 Final Acceptance to Stack Acceptance

3 Equivalence of CFG and PDA
31 CFGtoPDA
32 PDAtoCFG

1 Pushdown Automata (PDA)

theory Pushdown__Automata
imports Main
begin

1.1 Definitions

12
12
20

In the following, we define pushdown automata and show some basic prop-
erties of them. The formalization is based on the Lean formalization by

Leichtfried[2].

We represent the transition function § by splitting it into two different
functions 41 : @ X X xI' - Q@ x I and d : Q xI' = @Q x I'*, where
0(q,a,2) :=9(q,a,Z) and 62(q, Z) := 6(q,€, Z).

record ('q,’a,’s) pda = init_state ::'q
init_symbol ::'s
final_states :: 'q set
delta ::'q= 'a="s= ('q x 's list) set
delta__eps w'qg='s = (g x 's list) set
locale pda =

fixes M :: ('q :: finite, ‘a :: finite, 's :: finite) pda
assumes finite_delta: finite (delta M p a Z)
and finite_delta__eps: finite (delta_eps M p Z)
begin

notation delta (9)
notation delta_eps (d¢)

‘a list x 's list) set where

qpB. (¢, 8)€d MpaZ}
qB. (q,B) €de MpZ}
(¢, B) € 6e M p Z}

fun step :: ‘g x ‘a list x ‘s list = (g x
step (p, a#w, Z#a) = {(q, w, fQa) |
U {(¢, a#w, fQa) |
| step (p, I, Z#a) = {(q, [], BQa) | ¢ B.
| step (, ., [))=1{}

fun step; :: 'q x 'a list x 's list = 'q x 'a list x 's list = bool
((_~ _) [0, 50] 50) where
(p1, w1, 1) ~ (p2, wa, az) < (p2, wa, a2) € step (p1, w1, ay)

definition steps :: 'q x 'a list x 's list = 'q x 'a list x 's list = bool
((_ ~x_) [50, 50] 50) where
steps = step; Tk

inductive stepn :: nat = 'q x 'a list x 's list = 'q x 'a list x 's list = bool
where

refl,: stepn 0 (p, w,) (p, w, a) |

stepn: stepn n (p1, w1, a1) (p2, w2, as) = stepy (p2, wa, as) (p3, ws, az) =
stepn (Suc n) (p1, w1, 1) (p3, w3, as)

abbreviation stepsn ((_ /~'(_"/ _) [50, 0, 50] 50) where
¢ ~(n) ¢/ = stepnncc’
The language accepted by empty stack:

definition accept_stack :: 'a list set where
accept_stack = {w. 3 q. (init_state M, w, [init_symbol M]) ~>x (q, [], [|)}

The language accepted by final state:

definition accept_final :: 'a list set where

accept_final = {w. I q € final_states M. I~. (init_state M, w, [init_symbol M])
~* (g, [, 1)}

1.2 Basic Lemmas

1.2.1 step and step;

lemma card_trans step: card (6 M p a Z) = card {(q, w, fQ«) | ¢ B. (¢, B) €
MpaZ}

by (rule bij betw same_card[where ?f = A\(q,3). (¢, w, fQa)]) (auto simp:
bij_betw_def inj_on__def)

lemma card_eps_step: card (e M p Z) = card {(q, w, fQ«) | ¢ B. (¢, B) € d¢e
Mp Z}

by (rule bij betw same_card[where ?f = A(q,8). (¢, w, fQa)]) (auto simp:
bij_betw_def inj_on_def)

lemma card__empty__step: card (step (p, [], Z#a)) = card (6e M p Z)
by (rule sym) (simp add: card_eps_step)

lemma finite_delta_step: finite {(q, w, 8 Q «) |q B. (¢, B) € 6 M p a Z} (is finite
24)

using bij_betw_finite[of A(¢,8). (¢, w, BQa) § M p a Z ?4] by (fastforce simp
add: bij_betw_def inj _on__def finite_delta)

lemma finite_ delta_eps_step: finite {(q, w, 8 @ «) |q 8. (¢, B) € de M p Z} (is
finite ?A)

using bij _betw_ finite[of A(q,0). (¢, w, fQ«) de M p Z ?A] by (fastforce simp
add: bij_betw_def inj _on__def finite_delta__eps)

lemma card_nonempty_step: card (step (p, aftw, Z#«a)) = card (6 M p a Z) +
card (e M p 7)

apply (simp only: step.simps)

apply (subst card_trans__step)

apply (subst card _eps_step)

apply (rule card_Un__disjoint)

apply (auto simp: finite_delta_step finite_delta__eps_step)
done

lemma finite_step: finite (step (p, w, Z#«))
by (cases w) (auto simp: finite_delta_step finite_delta__eps_step)

lemma step;__nonempty_stack: (p1, wi, a1) ~ (p2, we, az) = IZ' a’. ay =
7'#a’

by (cases a1) auto

lemma step;_empty_stack: — (py, wy, [}) ~ (p2, w, a2)
by simp

lemma step;__rule: (p1, w1, Z#ay) ~ (p2, we, ag) +— (IB. wy = w1 A ag =

BQay A (p2, B) € 0e M py Z)
V (Jap. w =a# wy A ag = BQa; A
(p2, B) € 6 M py a Z)
by (cases wy) auto

lemma step;__rule ext: (p1, wi, ay) ~ (p2, we, ag) +— (32" a’. ay = Z'#a’ A
(FB. w2 = w1 A ag = BQa’ A (p2, B) € 0e M p1 Z')
V (3aB. wy =a# ws A ag = pQa’ A

(p2, B) € 6 M py a Z"))) (is 7l «— 7r)

apply (rule iffI)

apply (metis step;__nonempty_stack stepy__rule)

apply (use stepy__rule in force)

done

lemma stepy_stack_app: (p1, wi, a1) ~ (p2, wa, as) = (p1, w1, a1 @) ~»

(pQ; wz, 2 @ FY)
using step;_ rule_ext by auto

1.2.2 steps

lemma steps_refl: (p, w, o) ~* (p, w, «)
by (simp add: steps_def)

lemma steps_trans: [(p1, w1, a1) ~* (pa, wa, a2); (P2, wa, ag) ~>x (ps, ws, az)
I

= (p1, w1, o) ~x* (p3, ws, ag)

unfolding steps def using rtranclp_transjwhere ?r = step| by blast

lemma step;_ steps: (pb Wi, Oll) ~> (p2, Wz, 0l2) - (Pl» wi, Oél) ~k (Pz, wa,
ag)
by (simp add: steps_def r_into__rtranclp)

lemma steps empty_stack: (p1, wi, []) ~* (p2, wa,) => p1 = pa A w1 = wo
Aag =]
unfolding steps def using converse_rtranclpE2 by fastforce

lemma steps_induct2[consumes 1]:

assumes 1 ~»x x2

and Ap1 wi a1 p2 wa s ps w3 az. (p1, wi, a1) ~ (P2, wa, a2) = (P2, wo,
ag) ~% (p3, w3, ag) =
P (p2, w2, az) (p3, w3, az) = P (p1, w1, a1) (p3, ws, az)
shows P z1 z2

using assms[unfolded steps _def]
proof (induction rule: converse_rtranclp_induct)

case base thus ?case by (metis prod_cases3)
next

case step thus Zcase by simp (metis prod__cases3 step;.simps)
qed

lemma steps induct2 bw[consumes 1, case _names base step):
assumes steps 1 =2
and Ap w a. P (p, w,) (p, w, @)
and A\p1 w1 a1 p2 wa g p3 w3 az. (p1, wi, ar) ~* (p2, w2, az) = (pa,
wa, ag) ~ (p3, w3, az) =>
P (p1, w1, a1) (p2, wa, ag) = P (p1, w1, a1) (p3, w3, az)
shows P x1 z2
using assms[unfolded steps_def]
proof (induction rule: rtranclp_induct)
case base
then show ?case by (metis prod_cases3)
next
case (step)
then show ?Zcase by simp (metis prod__cases3 stepy.simps)
qed

lemmas converse_rtranclp__induct3 _auxr =

converse__rtranclp__induct [of stepy (az, ay, az) (bz, by, bz), split_rule]
lemmas steps induct =

converse__rtranclp__induct3_auzx [of M, folded steps__def ,consumes 1, case_names

refl step)

lemma step;__word__app: stepy (p1, w1, a1) (p2, we, ag) +— stepy (p1, w1 @ w,
a1) (p2, we Q w, az)
using stepy_ rule ext by simp

lemma decreasing word: (p1, wi, a1) ~>* (p2, wa, ag) = Jw. w1 = w Q wy
by (induction rule: steps_induct) (use stepi__rule__ext in auto)

1.2.3 stepn

inductive__cases stepn_ zeroE[elim!]: (p1, w1, a1) ~+(0) (p2, w2, az)
thm stepn_ zeroE

inductive__cases stepn_sucE[elim!]: (p1, w1, o) ~>(Suc n) (p2, wa, az)
thm stepn_ sucE

declare stepn.intros[simp, intro)

lemma step;__stepn_one: (p1, w1, a1) ~ (pa2, wa, ag) «— (p1, w1, a1) ~(1) (pa,
wy, Q)
by auto

lemma stepn_split_last: (Ip" w’ a’. (p1, w1, a1) ~(n) (p/, w', a’) A (p', w'; ')
~ (p27 wa, OZQ))
> (p1, w1, a1) ~(Suc n) (p2, w2, a2)
by auto

lemma stepn_split_first: (Ip’ w’ o’ (p1, w1, a1) ~ (p/, w', a') A (p/, w', &)

~(n) (p2, w2, a2))
> (p1, w1, a1) ~(Suc n) (p2, we, az) (is 2l «— 9r)
proof
assume 7/
then obtain p’ w’ o’ where r1: (p1, w1, aq) ~ (p’, w’, ') and rN: (p’, w’,
a’) ~(n) (p2, w2, a) by blast
from rN r1 show ?r
by (induction rule: stepn.induct) auto
next
show 9r = 7]
by (induction Suc n (p1, w1, 1) (p2, wa, ag) arbitrary: n ps ws ao rule:
stepn.induct)
(metis old.nat.exhaust refl,, step, stepn_zeroFE)
qed

lemma stepn__induct[consumes 1, case_names basen stepn]:
assumes z! ~>(n) z2
and An p1 w1 a1 pr we @z p3 w3 az. (p1, wi, aq) ~ (P2, wa, az) = (pa,
wa, az) ~(n) (p3, ws, az) =
P n (p2, wa, az) (ps, ws, az) = P (Suc n) (p1, w1, a1) (p3, w3, as)
shows P n x1 z2
using assms proof (induction n arbitrary: z1)
case ()
obtain p; wy a; py we ay where [simp]: 1 = (p1, wi, aq) and [simp]: 22 =
(p2, wo, 042)
by (metis prod__casesd)
from 0.prems(1) have z1 = z2 by auto
with 0.prems(2) show Zcase by simp
next
case (Suc n)
obtain p; w; a1 pa2 we ay where [simp]: 1 = (p1, w1, aq) and z2_def[simp):
22 = (p2, wa,)
by (metis prod__cases3)
from Suc.prems(1) obtain p’ w’ o’ where
rl: (p1, wi, a1) ~ (p/, w’, &) and rN: (p’, w', @’) ~(n) (p2, wa, as)
using stepn__split_first[of p1 w1 a1 n pa we az] by auto
have P n (p/, w’, a') (p2, w2, as)
using Suc.IH [unfolded x2 def, OF rN Suc.prems(2,3)] by simp
then show ?Zcase
using Suc.prems(3)[OF r1 rN]| by simp
qged

lemma stepn__trans:
assumes (p1, w1, a1) ~>(n) (p2, wa, a2)
and (p27 wa, 0[2) W(m) (pdu w3, a3)
shows (p1, wy, a1) ~(n+m) (p3, ws, as)
using assms(2,1) by (induction rule: stepn.induct) auto

lemma stepn_steps: (In. (p1, w1, a1) ~(n) (p2, w2, a)) — (p1, w1, a1) ~>x
(p2, wa, as) (is 9l «+— ?r)
proof
assume 7/
then obtain n where (p1, wi, a1) ~(n) (p2, wa, as) by blast
thus (p1, w1, a1) ~* (p2, wa, ag)
apply (induction rule: stepn.induct)
apply (rule steps_refl)
apply (simp add: step;__steps steps_trans)
done
next
show ?r = 7|
by (induction rule: steps_induct) (use stepn__split_first in blast)+
qed

lemma stepn_word_app: (p1, wi, a1) ~(n) (p2, we, as) +— (p1, w1 Q@ w, ay)
~(n) (p2, we @ w, ag) (is 2l +— 2r)
proof
show 9] — ?7r
by (induction n (p1, w1, a1) (p2, wa, ag) arbitrary: ps wa ay rule: stepn.induct)
(use step1__word__app in auto)
next
show 9r — 7]
proof (induction n (p1, w1 @ w, 1) (p2, w2 @ w, ag) arbitrary: ps wa s rule:
stepn.induct)
case (step, n pa wa ag p3 a3z wWws)
obtain w’ where ws_ def: wy = w’' Q wy Q@ w
using decreasing_word[OF stepy__steps|OF step,(3)]] by blast

with step,(2) have (p1, w1, 1) ~(n) (p2, w' @ ws, az) by simp

moreover from step,(3) wo_ def have (pa, w' @ ws, ag) ~ (ps3, w3, as)
using stepy_ word__app by force

ultimately show ?case by simp
qed simp
qed

lemma steps word__app: (p1, wi, a1) ~>* (p2, we, az) +— (p1, w1 @ w, ay) ~>x*
(p2, w2 @ w, az)
using stepn_ steps stepn__word__app by metis

lemma stepn_not_refi_split_first:
assumes (pl, w1, Oq) W(n) (p27 w2, 042)
and (p1, w1, a1) # (p2, w2, a2)
shows 3n’ p’ w’ a’. n = Suc n’ A (p1, w1, a1) ~ (p', w', &) A (p/, ', &)
~(n) (p2, w2, az)
proof —
from assms have n > 0 by fast

then obtain n’ where n = Suc n’
using not0__implies Suc by blast
with assms(1) show ?thesis
using stepn__split_first by simp
qed

lemma stepn_not_refl split_last:
assumes (p1, w1, a1) ~>(n) (p2, wa, a2)
and (p1, wi, a1) # (p2, w2, a2)
shows 3n’ p’ w’ a'. n = Suc n’ A (p1, w1, a1) ~(n’) (p’, w', a’) A (p/, W/,
0/) ~ (P2, w2, Oéz)
proof —
from assms have n > 0 by fast
then obtain n’ where n = Suc n’
using not0_implies Suc by blast
with assms(1) show %thesis
using stepn_ split_last by simp
qed

lemma steps not_refl split_first:
assumes (p1, wy, a1) ~* (p2, wa, az)
and (p1, wi, a1) # (p2, wa, a3)
shows Ip" w' a’. (p1, w1, an) ~ (p/, w', a’) A (p/, W', @') ~x (p2, w2, a2)
using assms stepn__steps stepn__not_refl_split_first by metis

lemma steps not_refl split_last:
assumes (p1, wi, a1) ~>* (P2, Wy,)
and (p1, w1, 1) # (p2, w2, az)
shows Jp" w' a’. (p1, w1, an) ~=* (p', w', ') A (p', W', @) ~ (p2, w2, az)
using assms stepn__steps stepn__not_refl_split_last by metis

lemma stepn_stack_app: (p1, w1, a1) ~>(n) (p2, w2, az) = (p1, w1, a1 @ f)
~(n) (p2, we, az @ B)

by (induction n (p1, w1, a1) (p2, we, az) arbitrary: py we ag rule: stepn.induct)
(fastforce intro: stepy__stack _app)+

lemma stepsfstackiapp: (ph Wi, 041) ok (p2a Wa, 042) = (pla wy, a1 @ 6) ~k

(p2, w2, az @)
using stepn_ steps stepn__stack _app by metis

lemma step;_ stack__drop:
assumes (p1, w1, a1 Q y) ~ (p2, we, as @ 7)
and a; #]
shows (pl, w1, Otl) ~ (pg, wa, 042)
proof —
from assms(1) obtain Z' o’ where ay_y_def: ay @ v = Z’' # o' and
rule: (36. we = w1 A @@y = Qa’ A (p2, B) € de M py Z7)
V (Japf. wy = a# wy A ae@y = BQa’ A (p2,8) €5 Mp1 aZ')
using stepy_ rule ezt by auto

from oy v _def assms(2) obtain o’ where ay__def: ay = Z'# o' and o’ _def:
a'=a’’ @y
using Cons_eq _append_convlof Z' o' a1 7] by auto
from rule o’ _def have (35. wy = wy A ag = fQa’’ A (pa2, B) € 6e M py Z)
V (Ja B wy =a# wy A ag = BQa’” A (p2,8) €5 M p1 a Z') by auto
with a;_ def show Zthesis
using step;_ rule by simp

qed
lemma stepn_ reads input:
assumes (p1, a # w, ar) ~(n) (p2, [], a2)
shows 3n' k q1 g2 71 v2. n = Sucn’ Ak < n' A (p1, a # w, a1) ~(k) (q1, a
w, 71) A
(q17 a # w, ’71) ~ (QQ» w, ’72) A (CI27 w, 72) W(n/_k) (p?u []7 OZQ)
using assms proof (induction n (p1, a # w, a1) (p2, [] =+ ‘a list, as) arbitrary: py

aq rule: stepn__induct)
case (stepn n p; a1 p’ w' &)
from stepn(1) have case_dist: w' = w VvV w' = a#w (is 2l vV 2r)
using step1_ rule_ext by auto
show ?case proof (rule disjE[OF case__dist))
assume [: 7|

from [stepn(1) have stepy (p1, a # w, aq) (p’, w, a’) by simp
moreover from [stepn(2) have (p’, w, a’) ~(n) (p2, [], a2) by simp

ultimately show Zcase by fastforce
next

assume 7: r

obtain n’ k q; g2 v1 2 where IHI: n = Suc n’ and IH2: k < n’ and
IHS: (p', a # w, ') ~(k) (q1, a # w, v1) and IH4: (q1, a # w, 1) ~

(qu w, 72) and
TH5: (g2, w, 72) ~(n'—F) (9, [}, a2)
using stepn(3)[OF r] by blast

from [HI IH2 have Suc k < n by simp

moreover from stepn(1) r IH3 have (p1, a # w, a1) ~(Suc k) (¢1, a # w,

Y1)
using stepn__split_first by blast

moreover from [H! IH5 have stepn (n — Suc k) (g2, w, v2) (p2, [], a2) by
stmp

ultimately show ?case
using [H4 by metis
qed
qed

lemma split_word:
(pla w @ 'LU/, al) W(n) (pQ, Ha 042) = Jk q. k <nA (pla w, al) W(k) (q’ Ha
7) A (g, w's7) ~(n=k) (p2, [|, a2)
proof (induction w arbitrary: n p1 o)
case (Cons a w)
from Cons(2) obtain n’ k q1 g2 71 72 where n_def: n = Suc n’and k_lesseq_n'":
k< n'and steph: (p1, o # (w G w), a1) ~(k) (g1, a # (w © '), 1) and
stepl: (q1, a # (w @ w'), v1) ~ (g2, w @ w’, y2) and stepnk: (g2,
w @ w, y2) ~(n'=k) (p2, [, a2)
using stepn_reads_input[of n p1 a w Q w' a1 pa as] by auto
obtain k"' ¢ v where k' _lesseq_n'k: k' < n'—Fk and stepk'”: (g2, w, v2) ~ (k")
(¢, [l 7) and stepn'kk": (g, w', 7) ~(n'—k—k") (pa, [J, @)
using Cons. IH[OF stepnk| by blast
from stepk stepl have stepSuck: stepn (Suc k) (p1, a # w, a1) (g2, w, ¥2)
using stepn_word_applof Suc k p1 a # w aq g2 w 2 w’] by simp

have (p1, a # w, a1) ~(Suc k + k") (¢, [], 7)
using stepn_trans|OF stepSuck stepk’] .

moreover from n_ def stepn’kk’ have (q, w', v) ~(n — (Suc k + k")) (p2, [],
as) by simp

moreover from n_def k_lesseq n’ k' _lesseq _n'k have Suc k + k’ < n by
stmp

ultimately show “case by blast
qed fastforce

lemma split_ stack:
stepn n (p1, wi, o1 @ B1) (p2, [, [I) = Fp" m1y ma y y" w1 =y @ y' Amy +
mo =N

~(mz2) (p2,], [1)

proof (induction n arbitrary: p1 w1 aq)
case (Suc n)
show ?case proof (cases aq)
case Nil

A (pr, g, an) ~(ma) (p [,) A (2 y's Ba)

from Nil have stepn 0 (ps, [J, a1) (p1, [}, [[) by simp

moreover from Suc.prems Nil have stepn (Suc n) (p1, w1, 81) (p2, [, []) by
simp

ultimately show ?thesis by force
next
case (Cons Z «)
with Suc.prems obtain p’ w’ o’ where r1: step; (p1, w1, Z # o Q B1) (p/,
w’, &) and rN: stepn n (p’, w', ') (p2, (], [])
using stepn_split_firstlof p1 w1 Z # « @ By n ps [] [|] by auto

10

from r1 have rule: (3. w'=wi ANa'=Qa QB A (p', 8) € de M p, Z)
Ve w=a#w ANa'=QaQp; A((p,8)€dMp aZ)lis ?
vV or)
using step;_ rule by blast
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain 3 where wl_def: wy = w' and o’ _def: o’ = 8 Q a @ $; and
e: (p',B) € de M py Z by blast
from rN o’ _def have rN2: stepn n (p’, w’, (8 Q «) @ 1) (p2, [], []) by
simp
obtain p’’ m; mo y y’ where w’_def: w' = y Q@ y’ and m1_m2_n: my +
meog = N
and rml: stepn m1 (p', y, B Q@ a) (p”,], []) and rm2: stepn ms (p"', y/,
B1) (p2, [, [1)
using Suc.IH[OF rN2| by blast
from e have s1: step; (p1, y, Z#a) (p’, y, Q)
using stepy_ rule by blast

from wl_def w’'_def have w; = y Q y’ by simp
moreover from mi1_m2 n have Suc m; + my = Suc n by simp

moreover from s! rm1 Cons have stepn (Suc m1) (p1, y, a1) (p", [, [])
using stepn__split_first by blast

ultimately show ?thesis
using rm2 by metis
next
assume ?r
then obtain a 8 where wi_def: wi = a # w’ and o’ _def: o' = § Q o @
B1 and tr: (p’,8) € 6 M p1 a Z by blast
from rN a’_def have rN2: stepn n (p’, w’, (8 Q «) Q 1) (p2, [], []) by
stmp
obtain p’’ m; ms y y’ where w’_def: w' = y Q y’ and m1_m2 n: m; +
mo =1
and rml: stepn m1 (p', y, B Q@ a) (p”, [], []) and rm2: stepn ms (p"', y/,
B1) (p2, [, [)
using Suc.IH[OF rN2| by blast
from tr have s1: stepy (p1, a#y, Z#«a) (p’, y, fQa) by simp

from wi1_def w’_def have wy = (a # y) Q y’ by simp
moreover from mIl_m2 n have Suc my + mo = Suc n by simp

moreover from s! rm1 Cons have stepn (Suc m1) (p1, afty, a1) (", [], [])
using stepn__split_first by blast

ultimately show ?thesis
using rm2 by metis

11

qed
qed
qed blast

end

end

2 Equivalence of Final and Stack Acceptance

2.1 Stack Acceptance to Final Acceptance

Starting from a PDA that accepts by empty stack we construct an equivalent
PDA that accepts by final state, following Kozen [1].

theory Stack To Final PDA
imports Pushdown__Automata
begin

datatype ‘g st_extended = Old_st 'q | New_init | New_ final
datatype 's sym__extended = Old_sym 's | New__sym

lemma inj Old__sym: inj Old__sym
by (meson injl sym__extended.inject)

instance st_extended :: (finite) finite
proof
have x: UNIV = {t. 3¢q. t = Old_st q} U {New_init, New_final}
by auto (metis st_extended.exhaust)
show finite (UNIV :: 'a st_extended set)
by (simp add: * full _SetCompr _eq)
qed

instance sym__extended :: (finite) finite
proof
have x: UNIV = {t. 3s. t = Old_sym s} U {New_sym}
by auto (metis sym__extended.exhaust)
show finite (UNIV :: 'a sym__extended set)
by (simp add: * full _SetCompr _eq)
qed

context pda begin

fun final_of stack_delta :: 'q st_extended = 'a = 's sym__extended = ('q st__extended
x s sym__extended list) set where

final_of stack_delta (Old_st q) a (Old_sym Z) = (A(p, «). (Old_st p, map
Old_sym «)) ‘(0 M qa Z)
| final_of stack delta = {}

We slight modify the transition function from Kozen’s proof to simplify

12

the formalization (see stack_to_ final_pda_ last_step):

fun final_of stack_delta_eps :: 'q st__extended = 's sym__extended = ('q st__extended
x s sym__extended list) set where

final_of _stack__delta__eps (Old_st q) (Old_sym Z) = (A(p,). (Old_st p, map
Old_sym «)) “(d0e M q Z)
| final_of stack delta_eps New__init New_sym = {(Old__st (init_state M), [Old__sym
(init_symbol M), New_sym])}
| final_of stack_delta_eps (Old_st q) New_sym = {(New_final, [])}
| final _of stack_delta_eps _ _ = {}

definition final of stack_pda :: ('q st_extended, 'a, 's sym__extended) pda where
final_of stack _pda = (init_state = New__init, init_symbol = New__sym, fi-
nal__states = {New__final},
delta = final_of stack__delta, delta__eps = final_of stack delta__eps
)

lemma pda_ final _of stack: pda final _of stack pda
proof (standard, goal_cases)
case (1 pz 2)
have finite (final_of _stack_delta p x 2)
by (induction p x z rule: final_of stack _delta.induct) (auto simp: finite_delta)
then show ?case
by (simp add: final _of stack_pda_def)
next
case (2 p 2)
have finite (final_of _stack_delta_eps p 2)
by (induction p z rule: final_of _stack__delta__eps.induct) (auto simp: finite_delta__eps)
then show ?case
by (simp add: final of stack_pda_ def)
qed

lemma final of stack pda_ trans:
(p,B) €Ed MqgaZ +—
(Old__st p, map Old_sym) € 0 final_of stack pda (Old_st q) a (Old__sym
Z)
by (auto simp: final_of _stack _pda_ def inj_map__eq _map|OF inj_Old_sym])

lemma final of stack pda_ eps:

(p, B) € 0e M q Z +— (Old_st p, map Old_sym) € e final_of stack pda
(Old_st q) (Old_sym Z)
by (auto simp: final_of stack _pda_ def inj_map_eq _map[OF inj_Old_sym])

lemma final of stack_pda_ step:
(p1, wi, 1) ~ (p2, w2, @) ¢—
pda.stepy final_of stack_pda (Old_st p1, w1, map Old_sym 1) (Old_st pa,
wa, map Old_sym «as) (is 7l +— %r)
proof
assume 7/
then obtain Z o where a;_def: a1 = Z # « and rule: (3. wy = w1 A ag =

13

BQa A (p2, B) € de M py Z)
V (3ap w =a# ws Aag=pQa A (p2,8) €6 Mpy aZ)
using stepi_ rule_ext by auto
from rule have (35. we = w1 A map Old_sym as = map Old_sym § @ map
Old_sym a A (Old_st pa, map Old_sym B) € d¢ final_of _stack_pda (Old_st p1)
(Old_sym Z))
V (Ja B. w1 = a# wy A map Old_sym as = map Old_sym B @ map
Old_sym a A
(Old_st pa, map Old_sym B) € § final_of stack_pda (Old_st p1) a
(Old_sym Z))
using final_of stack _pda_trans final _of stack_pda_eps by auto
hence (35. wa = w1 A map Old_sym as = @ map Old_sym a A (Old_st pa,
B) € de final_of stack pda (Old_st p1) (Old_sym Z))
V (3a B. w1 = a# w2 A map Old_sym as = Q map Old_sym a A
(Old_st pa, B) € § final_of _stack_pda (Old_st p1) a (Old_sym Z))
by blast
with a;_ def show or
using pda.stepy__rule[OF pda_ final_of _stack] by simp
next
assume ?r
then obtain Z a where map_a;y_ def: map Old_sym a1 = Old_sym Z # map
Old_sym a and
rule: (3 6. wy = wy; A map Old_sym as = § Q map Old_sym o A (Old__st pa,
B) € de final_of stack pda (Old_st p1) (Old_sym Z))
V (Fa B. w1 = a# we A map Old_sym as = Q map Old_sym « A
(Old_st pa,8) € ¢ final_of _stack_pda (Old_st p1) a (Old_sym Z))
using pda.stepy__rule__ext[OF pda__final_of _stack] by auto
from map a1 def have aq_def: a1 = Z # «
by (metis list.inj_map__strong list.simps(9) sym__extended.inject)
from rule have (3. wa = w1 A map Old_sym as = map Old_sym [Q map
Old_sym a A (Old_st pa, map Old_sym () € d¢ final_of _stack_pda (Old_st p1)
(Old_sym Z))
V (Fa B. wr = a# we A map Old_sym as = map Old__sym SQ map Old__sym
a A (Old_st pa, map Old_sym) € ¢ final _of stack_pda (Old_st p1) a (Old__sym
7))
using append_eq _map__conv[where ?f = Old_sym| by metis
hence (6. we = w1 A ag = BQa A (p2, B) € de M p1 Z)
V (Jap. wy =a# wy Aag=LQa A (p2,8) €0 Mpy aZ)
using final_of stack_pda_trans final _of stack_pda__eps by (metis list.inj _map__strong
sym__extended.inject map__append)
with a;_ def show ?I
using step,_ rule by simp
qged

abbreviation o_ with _new :: ’s list = 's sym__extended list where
o__with_new o = map Old_sym o @ [New__sym]

lemma final of stack_pda__stepi_ drop:
assumes pda.stepy final _of stack_pda (Old_st py, wy, a__with _new o)

14

(Old_st pa, we, a__with_new)
shows (plv Wi, al) ~ (an wa, a2)
proof —
from assms obtain Z o where a;_ with_new def: a_ with_new oy = Z # «
and
rule: (3 5. we = wy A a__with_new ay = fQa A (Old__st pa, B) € final_of _stack__delta__eps
(Old_st p1) Z)
V (Fa p. w1 = a # wa A a_with_new as = fQa A (Old_st p2,8) €
final_of _stack_delta (Old_st p1) a Z)
using pda.step1__rule__ext[OF pda__final_of _stack] by (auto simp: final_of _stack__pda__def)
from rule have Z # New_sym
by (induction Old_st p1 Z rule: final _of stack_delta__eps.induct) auto
with a1 with _new_def have map Old_sym a; # [| by auto
with assms have pda.stepy final_of stack pda (Old_st p1, w1, map Old_sym
Oél>
(Old__st pa, wa, map Old_sym «s)
using pda.stepy__stack _drop[OF pda_ final _of _stack] by blast
thus ¢thesis
using final_of stack pda__step by simp
qed

lemma final of stack pda_ from_ old:
assumes pda.step; final _of stack_pda (Old_st p1, wi, a1) (p2, wa, a2)
shows (I pa’. po = Old_st p3’) V pa = New_ final
proof —
from assms obtain Z o where
(6. we = w1 A ag = BQa A (p2, B) € final_of stack _delta__eps (Old__st

p1) Z)
V (3aB. w1 =a# wa A ag = fQa A (p2,8) € final _of stack_delta
(Old_st p1) a Z)
using pda.stepy__rule__ext[OF pda_final_of _stack] by (auto simp: final_of _stack_pda__def)+
thus Zthesis
by (induction Old_st p1 Z rule: final _of stack_delta__eps.induct) auto
qed

lemma final of stack pda_no_step_ final:

—pda.stepy final_of _stack_pda (New_ final, wy, ay) (p, w2, a2)

apply (cases a1)

apply (simp add: pda.step1__empty stack[OF pda_ final _of stack])

apply (use pda.stepy__rule[OF pda_ final_of stack] final_of stack_pda_def in
sitmp)

done

lemma final _of stack pda_ from_oldn:

assumes pda.steps final_of stack_pda (Old_st p1, wy, a1) (p2, we, as)

shows 3¢’ p2 = Old_st ¢’ V ps = New_final
by (induction (Old__st p1, w1, a1) (p2, wa, az) arbitrary: ps wa as rule: pda.steps__induct2_bw[OF
pda__final_of _stack))

(use assms final_of _stack _pda_ from__old final_of stack pda_mno_step_final in

15

blast)+

lemma final of stack pda_to_old:
assumes pda.stepy final_of _stack_pda (p1, wi, a1) (Old_st pa, wa, as)
shows (3¢’ p1 = Old_st ¢') V p1 = New__init
using assms final_of stack pda_no_step_final by (metis st_extended.exhaust)

lemma final of stack pda_ bottom __elem:
assumes pda.steps final_of stack_pda (Old_st py, wy, a__with_new ay)
(Old__st p3, wa,)
shows Ja. v = a__with_new «
using assms proof (induction (Old_st p1, w1, a__with _new ;) (Old_st pa, wa,
v) arbitrary: pa we y
rule: pda.steps_induct2_bw|[OF pda_ final_of _stack])
case (8 py wy a2 w3 g p3)
obtain p,’ where py_ def: po = Old_st py’
using final_of stack_pda_ from_oldn|OF 3(1)] final_of stack pda_to old[OF
3(2)] by blast
with 3(1,3) have as_def: Ja. as = a__with_new « by simp
from 3(2)[unfolded po__def] obtain Z o where as__split: as = Z # o and rule:
(38. w3 = wa AN ag =0 Qa A (Old_st ps, B) € final_of _stack__delta__eps
(Old_st p3') Z)
V (Japf. we=0a+# ws Nag=L0QaA (0ld_stps, B) € final_of stack_delta
(Old_st pa’) a Z)
using pda.stepy__rule__ext|OF pda__final_of _stack] by (auto simp: final_of _stack_pda_ def)
from rule have 37Z'. Z = Old_sym 7'
by (induction Old_st ps’ Z rule: final_of stack_delta__eps.induct) auto
with as_ def as_ split have 3v. o = o with_new ~
by (metis hd__append list.sel(1,3) map__tl sym__extended.simps(3) tl_append if)
with rule show Zcase
by (induction Old_st ps’ Z rule: final_of _stack__delta__eps.induct, auto) (metis
map__append)—+
qed (rule assms, blast)

lemma final of stack pda_ stepn:
(p1, w1, 1) ~(n) (p2, w2, as) +—
pda.stepn final _of stack _pda n (Old_st py, wy, o with _new aq) (Old__st
P2, Wa, o with_new «ag) (is 2l +— 2r)
proof
show 9] — ?7r
proof (induction n (p1, w1, a1) (p2, we, ag) arbitrary: ps wa as rule: stepn.induct)
case (step, n pa wa ag p3 W3 Q3)
from step,, (3) have pda.step; final_of stack pda (Old__st ps, wa, map Old__sym
ag) (Old_st ps, ws, map Old__sym as)
using final_of stack pda__step by simp
hence pda.stepy final _of stack_pda (Old_st pa, wa, a_with _new as) (Old__st
p3, w3, a__with_new ag)
using pda.stepy__stack__app[OF pda__final_of _stack] by simp
with step,(2) show ?case

16

by (simp add: pda.step,[|OF pda_final _of stack])
qed (simp add: pda.refl,,[OF pda_ final_of stack])
next
assume r: ?r thus 7]
proof (induction n (Old_st p1, wi, a_with_new ay) (Old_st pa, wa, a_with_new
(12)
arbitrary: pa we ag rule: pda.stepn.induct|OF pda_ final_of _stack))
case (3 n py we ag w3 Pp3 A3)
from (1) have steps 3 1: pda.steps final_of stack pda (Old_st p1, wi,
a__with_new ay) (p2, wa, az)
using pda.stepn__steps[OF pda__final_of _stack] by blast
obtain p,’ where py_def: ps = Old_st py’
using final_of stack_pda_ from_oldn|OF steps_3 1] final_of stack_pda_to_old[OF
3(3)] by blast
with steps 3 1 obtain v where ay__def: as = map Old_sym v Q [New__sym]
using final_of stack_pda__bottom__elem by blast

with py_ def 3(1,2) have pda.stepn M n (p1, w1, o) (p2’, wa, v) by simp

moreover from ps_ def as_def 3(3) have pda.stepy M (p2’, wa,) (ps, ws,

ag)
using final_of stack pda__stepy_ drop by simp

ultimately show ?case by simp
qed (rule r, metis refl,, list.inj_map__strong sym__extended.inject)
qged

lemma final of stack pda_ steps:
(p1, w1, a1) ~x (p2, w2, az) «—
pda.steps final_of stack pda (Old_st p1, wy, a__with_new ay) (Old__st
P2, Wwa, a__with_new as)
using final_of _stack_pda__stepn pda.stepn__steps|OF pda__final_of _stack] stepn__steps
by simp

lemma final of stack_pda_ first_step:
assumes pda.stepy final_of _stack_pda (New_init, wy, [New_sym]) (p2, we, «)
shows ps = Old_st (init_state M) AN wy = wy A a = [Old_sym (init_symbol
M), New__sym]
using assms pda.step;__rule[OF pda_ final _of stack] by (simp add: final _of stack pda_def)

By not allowing any moves from the new final state, we obtain a distinct
last step, which simplifies the argument about splitting the path that the
constructed automaton takes upon accepting a word:

lemma final of stack pda_last_step:
assumes pda.stepy final _of stack_pda (p1, w1, a1) (New_final, wa, as)
shows 3¢. p1 = Old_st g AN w; = wa N a; = New_sym # o
proof —
from assms obtain Z a where ay_ def: ay = Z # « and rule:
(L. we = w1 A ag =8 Q@a A (New_final, B) € final_of stack_delta_eps

17

P Z)
V (Fa . wy = a# wy ANag =0 Q@a A (New_final, B) € fi-

nal_of stack_delta p1 a Z)

using pda.stepy__rule__ext[OF pda_ final_of _stack] by (auto simp: final_of stack _pda_ def)

from rule have ws = wy; and as = o and dq. p; = Old_st g A Z = New__sym

by (induction py; Z rule: final_of stack_delta__eps.induct) auto

with a;_ def show ?thesis by simp

qed

lemma final of stack_pda__split_path:
assumes pda.stepn final_of _stack_pda (Suc (Suc n)) (New_init, wy, [New__sym])
(New__final, wa, 7)
shows 3 ¢. pda.step final_of stack pda (New_init, w1, [New__sym])
(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym]) A
pda.stepn final_of _stack_pda n (Old_st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
(Old__st q, wa, [New_sym]) A
pda.stepy final _of _stack_pda (Old_st q, wo, [New__sym])
(New_ final, wa, v) A v = |]
proof —
from assms have fstep: pda.stepy final_of stack pda (New__init, wy, [New__sym])

(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
and stepn: pda.stepn final_of stack_pda (Suc n)
(Old_st (init_state M), wy, [Old_sym (init_symbol M),
New__sym))
(New_final, ws,)
using pda.stepn__split_first|OF pda_ final_of _stack] final_of _stack pda_ first_step
by blast+
from stepn obtain ¢ where Istep: pda.stepy final _of _stack_pda (Old_st q, wa,
New__sym # 7) (New_ final, wa,)
and stepn’: pda.stepn final _of stack_pda n
(Old_st (init_state M), wy, [Old_sym (init_symbol M),
New__sym))
(Old__st q, wa, New_sym #)
using pda.stepn__split_last[OF pda__final_of _stack] final_of _stack__pda_last_step
by blast
from stepn’ have Ja. New_sym # v = a_ with_new «
using final_of stack_pda_bottom__elem pda.stepn__steps|OF pda__final_of _stack]
by (metis (no__types, opaque_lifting) Cons__eq _appendl append__Nil list.map__disc__iff
list.simps(9))
hence v = |]
by (metis Nil_is_map_conv hd__append2 hd__map list.sel(1,3) sym__extended.simps(3)
tl_append__if)
with fstep Istep stepn’ show ?thesis by auto
qged

18

lemma final of stack pda_ path_length:
assumes pda.stepn final _of stack_pdan (New_init, wy, [New_sym]) (New_ final,
w2, P)/)
shows 3n’. n = Suc (Suc (Suc n'))
proof —
from assms obtain n’ where n_def: n = Suc n’ and fstep: pda.step; fi-
nal_of stack_pda (New_init, wi, [New_sym])
(Old__st (init_state M), w1, [Old_sym
(init_symbol M), New__sym))
and stepn: pda.stepn final _of stack_pda n’
(Old__st (init_state M), wy, [Old_sym
(init_symbol M), New__sym])
(New__final, wa,)
using pda.stepn_not_refl _split_first|OF pda_ final _of _stack] final_of _stack pda__first_step
by blast
from stepn obtain n’’ where n’_def: n’ = Suc n'"’
using pda.stepn_not_refl_split_last|OF pda_ final_of stack] by blast
with n_ def assms have 3 q. pda.stepn final_of stack_pda n'’
(Old_st (init_state M), w1, [Old_sym (init_symbol M),
New__sym]) (Old_st q, wa, [New__sym])
using final_of stack_pda__split_path by blast
then obtain n’"’ where n’’ = Suc n'"’
using pda.stepn_not_refl_split_last|OF pda_ final_of stack] by blast
with n_def n’_def show ?thesis by simp
qed

lemma accepted_final_of stack:
(3 q. (init_state M, w, [init_symbol M]) ~>x (q, [], [])) «— (g . q € final_states
final_of stack_pda A

pda.steps final_of _stack_pda (init_state final _of stack_pda, w, [init_symbol
final_of _stack_pdal) (g, [], 7)) (is 2l «— ?r)
proof

assume ?]

then obtain ¢ where (init_state M, w, [init_symbol M]) ~»x (q, [], []) by blast

hence pda.steps final_of stack_pda (Old__st (init_state M), w, [Old__sym (init__symbol
M), New_sym]) (Old_st q, [], [New_sym])

using final_of stack pda_ steps by simp

moreover have pda.step; final of stack pda (init_state final of stack_pda,
w, [init__symbol final_of stack_pda])
(Old__st (init_state M), w, [Old__sym (init__symbol
M), New__sym])
using pda.stepy__rule[OF pda__final_of _stack] by (simp add: final_of _stack_pda__def)

moreover have pda.step; final_of stack pda (Old_st q, [], [New__sym]) (New_ final,
I
using pda.step1__rule[OF pda_ final _of _stack] by (simp add: final_of stack_pda__def)

ultimately have al:

19

pda.steps final _of stack_pda (init_state final _of stack_pda, w, [init_symbol
final_of stack _pda) (New_final, [], [])

using pda.step,__steps|OF pda__final_of _stack] pda.steps_trans[OF pda_ final_of _stack]
by metis

moreover have New final € final_states final _of stack pda
by (simp add: final _of stack_pda_ def)

ultimately show ¢r by blast
next
assume 2r
then obtain ¢ v where ¢q_final: ¢ € final_states final_of stack__pda and
steps: pda.steps final_of stack pda (init_state final_of stack pda,
w, [init__symbol final_of stack_pda]) (g, [], v) by blast
from ¢ final have q def: ¢ = New_ final
by (simp add: final _of stack_pda__def)
with steps obtain n where stepn: pda.stepn final _of stack_pda n (New__init,
w, [New_sym]) (New_final, [,)
using pda.stepn__steps|OF pda__final_of _stack] by (fastforce simp add: fi-
nal_of _stack_pda__def)
then obtain n’ where n = Suc (Suc n’)
using final_of stack pda_ path_length by blast
with stepn obtain p where pda.stepn final _of stack _pda n’ (Old_st (init_state
M), w, [Old_sym (init_symbol M), New_sym])
(Old__st p, [], [New_sym])
using final_of stack_pda__split_path by blast
hence (init_state M, w, [(init_symbol M)]) ~(n") (p, [], [])
using final_of stack pda__stepn by simp
thus 2/
using stepn_ steps by blast
qed

lemma final of stack: pda.accept stack M = pda.accept_final final of stack_pda
unfolding accept_stack _def pda.accept_final _def[OF pda_ final _of stack] us-
ing accepted_ final of stack by blast

end
end

2.2 Final Acceptance to Stack Acceptance
Starting from a PDA that accepts by final state we construct an equivalent
PDA that accepts by empty stack, following Kozen [1].

theory Final To_Stack PDA
imports Pushdown__Automata
begin

datatype 'q st_extended = Old_st 'q | New_init | New_ final
datatype 's sym__extended = Old_sym 's | New_sym

20

lemma inj Old_sym: inj Old_sym
by (meson injl sym__extended.inject)

instance st_extended :: (finite) finite
proof
have x: UNIV = {t. 3¢q. t = Old_st q} U {New_init, New_final}
by auto (metis st_extended.exhaust)
show finite (UNIV :: 'a st_extended set)
by (simp add: * full _SetCompr _eq)
qged

instance sym__extended :: (finite) finite
proof
have x: UNIV = {t. 3s. t = Old_sym s} U {New_sym}
by auto (metis sym__extended.exhaust)
show finite (UNIV :: 'a sym__extended set)
by (simp add: * full SetCompr _eq)
qed

context pda begin

fun stack_of final delta :: 'q st_extended = 'a = 's sym__extended = ('q st__extended
x s sym__extended list) set where

stack_of final_delta (Old_st q) a (Old_sym Z) = (A(p, a). (Old_st p, map
Old_sym «)) ‘(0 M qa Z)
| stack_of _final_delta _ _ _ = {}

fun stack_of final delta_eps :: 'q st_extended = 's sym__extended = ('q st__extended
x s sym__extended list) set where

stack_of _final_delta__eps (Old_st q) (Old_sym Z) = (if ¢ € final_states M then
{(New_final, [Old_sym Z])} else {}) U

(Mp,). (Old_st p, map Old__sym

&) * (6c M g 2)
| stack_of final delta_eps (Old_st q) New_sym = (if ¢ € final_states M then
{(New_final, [New_sym])} else {})
| stack_of _final_delta__eps New__init New__sym = {(Old_st (init_state M), [Old__sym
(init_symbol M), New__sym])}
| stack_of final delta_eps New_final = {(New_final, [])}
| stack_of final delta_eps = {}

definition stack_of final_pda :: ('q st_extended, 'a, 's sym__extended) pda where
stack_of final _pda = (init_state = New__init, init_symbol = New__sym, fi-

nal_states = {New__final},
delta = stack_of final _delta, delta__eps = stack_of final_delta__eps)

lemma pda_ final to_stack:

pda stack_of final _pda
proof (standard, goal_cases)

21

case (I pz2)
have finite (stack _of final delta p z z)
by (induction p x z rule: stack_of _final delta.induct) (auto simp: finite_delta)
then show ?Zcase
by (simp add: stack_of_final_pda__def)
next
case (2 p 2)
have finite (stack _of final delta_eps p z)
by (induction p z rule: stack_of _final_delta__eps.induct) (auto simp: finite_ delta__eps)
then show ?Zcase
by (simp add: stack_of final_pda__def)
qed

lemma stack _of final _pda_ trans:
(p,B)€d MqgaZ +—
(Old__st p, map Old_sym B) € 0 stack_of final _pda (Old_st q) a (Old__sym
7)
by (auto simp: stack_of final pda_ def inj _map_eq map|[OF inj _Old_sym])

lemma stack _of final _pda__eps:

(p, B) € 6e M q Z +— (Old_st p, map Old_sym B) € de stack_of_final_pda
(Old_st q) (Old_sym Z)
by (auto simp: stack _of final pda_ def inj _map__eq map[OF inj _Old__sym)] split:
if _splits)

lemma stack of final _pda__step:
(p1, wi, 1) ~ (p2, w2, @) +—
pda.stepy stack_of final_pda (Old__st p1, wi, map Old_sym «y) (Old__st
P2, wa, map Old_sym ag) (is 21 «+— ?r)
proof
assume 7/
then obtain Z a where a;_ def: a3 = Z#a and rule:
(E'ﬂ wo = Wy N Qo ZIB@OZ A (pz, 5) € de M py Z)
V(3ap. wy =a# wy A ag =PQa A (p2,8) €0 Mpy aZ)
using step1_ rule_ext by auto
from rule have (35. wy = wi; A map Old_sym as = map Old_sym 5 Q map
Old_sym a A
(Old__st pa, map Old_sym B) € de stack_of final pda (Old__st
p1) (Old_sym Z))
V (Ja B. wy = a # wa A map Old_sym as = map Old_sym [Q
map Old_sym a A
(Old__st pa, map Old_sym B) € § stack_of _final_pda (Old_st p;)
a (Old_sym 7))
using stack_of final pda_ trans stack__of final _pda__eps by fastforce
hence (35. we = w1 A map Old_sym as = Q map Old_sym o A (Old__st pa,
B) € de stack_of final pda (Old_st p1) (Old_sym Z))
V (Fa B. wy = aF# we A map Old_sym as = B Q map Old_sym a A
(Old_st pa, B) € § stack_of final_pda (Old_st p1) a (Old_sym Z)) by blast
with a;_ def show or

22

using pda.stepy__rule[OF pda_ final _to_stack] by simp
next
assume 7r
then obtain Z a where map_«;_ def: map Old_sym oy = Old_sym Z # map
Old_sym o and rule:
(6. we = w1 A map Old_sym ay = Q@ map Old_sym a A
(Old__st pa, B) € de stack_of final_pda (Old_st py) (Old_sym Z))
V (Ja p. wy = a# we A map Old_sym as = SQ map Old_sym o A
(Old_st p2,B) € § stack_of final pda (Old_st p1) a (Old_sym Z))
using pda.stepy__rule__ext[OF pda__final_to__stack] by auto
from map oy def have oy def: oy = Z # «
by (metis list.inj_map__strong list.simps(9) sym__extended.inject)
from rule have (3. wo = w1 A map Old_sym as = map Old_sym [Q map
Old_sym a A
(Old__st pa, map Old_sym) € de stack_of _final_pda (Old_st
p1) (Old_sym Z))
V (Fa 8. wy = a# wa A map Old_sym ay = map Old_sym Q@ map
Old_sym a A
(Old__st pa, map Old_sym) € ¢ stack_of final_pda (Old_st p1)
a (Old_sym 7))
using append__eq_map__conv[where ?f = Old_sym| by metis
hence (8. wy = w1 A ag = BQa A (p2, 8) € de M py Z)
V (3ap. w =a# wy A ag =8Qa A (p2,0) €06 Mpy aZ)
using stack _of final _pda_trans stack_of final_pda__eps by (metis list.inj _map__strong
sym__extended.inject map__append)
with a;_ def show ?I
using step,_ rule by simp
qed

abbreviation a_ with _new :: 's list = 's sym__extended list where
o_with_new o = map Old_sym o @ [New__sym]

lemma stack of final _pda_ step;_ drop:
assumes pda.stepy stack_of final_pda (Old_st p1, w1, a_with _new o)
(Old__st pa, we, a__with_new aw)
shows (p1, wi, a1) ~ (p2, we, as)
proof —
from assms obtain Z o where a;_ with _new_ def: a_ with_new oy = Z # «
and rule:
(8. we = w1 A a_with_new ag = fQa A (Old__st pa, B) € stack_of _final delta__eps
(Old_st p1) Z)
V (3a 8. wy = a # wa A a_with_new as = BQa A (Old_st ps,8) €
stack_of _final _delta (Old_st p1) a Z)
using pda.stepy__rule _ext|OF pda_ final to_stack] by (auto simp: stack_of final_pda_def)
from rule have Z # New_sym
by (induction Old_st p1 Z rule: stack _of final delta__eps.induct) (auto, metis
empty_iff fst_conv singletonD st__extended.simps(5))
with ay__with_new__def have map Old_sym ay # || by auto
with assms have pda.step, stack_of final pda (Old_st pi, wy, map Old_sym

23

Oél)
(Old_st pa, wa, map Old__sym as)
using pda.stepy__stack__drop[OF pda_ final_to_stack] by blast
thus ?thesis
using stack_of final pda__step by simp
qed

lemma stack of final _pda_ from old:
assumes pda.step, stack_of final_pda (Old_st p1, wi, a1) (p2, wa, a3)
shows (I pa’. po = Old_st p2’) V pa = New_final
proof —
from assms obtain Z o where rule:

(3B. wa = w1 A ag = BQa A (p2, B) € stack_of _final _delta__eps (Old__st

p1) Z)
V (Ja B. w = a# ws A as = fQa A (p2,8) € stack_of final_delta
(Old_st p1) a Z)
using pda.stepy__rule _ext|OF pda_final to_stack] by (auto simp: stack_of final_pda_def)+
thus ?thesis
by (induction Old_st p1 Z rule: stack _of final delta__eps.induct, auto) (metis
empty_iff fst_conv singletonD)+
qed

lemma stack_of final _pda_ from_ final:
assumes pda.stepy stack_of final _pda (New_final, wi, aq) (p2, we, as)
shows 3Z'. po = New_final A wy = w1 AN oy = Z'#ay
proof —
from assms obtain Z a where oy def: a3 = Z#a and rule:
(6. wa = w1 A ag = BQa A (p2,8) € stack_of final_delta_eps New_final
2)
V (3a B. wy = a# ws A ag = BQa A (p2,8) € stack_of _final_delta
New_final a Z)
using pda.stepy__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of_final_pda__def)
thus ?thesis
by (induction New_final:: 'q st__extended Z rule: stack_of _final delta__eps.induct)
auto
qed

lemma stack of final _pda_ from_ oldn:

assumes pda.steps stack _of final pda (Old_st p1, wy, a1) (p2, we, as)

shows 3¢’ po = Old_st ¢’ V ps = New_ final
proof (induction (Old_st p1, w1, a1) (p2, we, ag) arbitrary: ps ws ag rule:
pda.steps_induct2_bw[OF pda_ final_to_stack])

case (3 ps wo ag p3 w3 Q3)

then show Zcase

using stack_of final pda_ from_ final stack_of final pda_from_old by blast

qed (auto simp: assms)

lemma stack _of final _pda_to_old:
assumes pda.step; stack_of final_pda (p1, w1, 1) (Old_st pa, wa,)

24

shows (3¢’ p1 = Old_st ¢') V p1 = New__init
using assms stack_of final_pda_ from_ final by (metis st_extended.exhaust)

lemma stack _of final _pda__bottom__elem:
assumes pda.steps stack_of _final_pda (Old_st p1, wi, a__with_new o) (Old_st
b2, w2, ’Y)
shows Ja. v = a__with_new «
proof (induction (Old_st p1, w1, a__with _new «q) (Old_st pa, wa, v) arbitrary:
p2 we v rule: pda.steps _induct2 bw[OF pda_final_to__stack])
case (3 p2 wo a2 w3 a3 p3)
obtain p,’ where py_ def: ps = Old_st ps’
using stack _of final _pda_ from_oldn|OF 3(1)] stack_of final_pda_to_ old[OF
3(2)] by blast
with 3(8) have as_ def: Ja. as = a_ with_new a by simp
from po_ def 3(2) obtain Z o where as_ split: as = Z # o and rule:
(6. ws = wa A ag = B Q@ a A (Old_st p3, §) € stack_of final _delta__eps
(Old_st p3’) Z)
V (Japf we=0a# ws Nag=L0QaA (0Old_stps, B) € stack_of _final _delta
(Old_st pa’) a Z)
using pda.step,__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of _final_pda__def)
hence 37'. 7 = Old_sym Z'
by (induction Old_st ps’ Z rule: stack_of final _delta__eps.induct)
(auto, meson empty_iff insert_iff prod.inject st_extended.distinct(3))
with as_ def as split have 3v. a = a__with_new -~y
by (metis hd__append list.sel(1,3) map__tl sym__extended.simps(3) tl_append__if)
with rule show ?case
by (induction Old_st ps’ Z rule: stack_of final _delta__eps.induct, auto)
(metis empty_iff fst_conv singleton_iff st_extended.distinct(8), metis
map__append,
metis map__append, metis empty_iff fst__conv singleton__iff st__extended.distinct(3))
qed (auto simp: assms)

lemma stack of final pda_ stepn:
(p1, w1, 1) ~(n) (p2, wa, az) «—
pda.stepn stack_of _final _pda n (Old_st p1, w1, a__with_new aq) (Old__st pa,
wa, a__with_new asg) (is 71 +— 2r)
proof
show 2] = ?r
proof (induction n (p1, w1, 1) (p2, we, ag) arbitrary: ps wy as rule: stepn.induct)
case (step, n pa we g pP3 W3 Q3)
from step,,(3) have pda.stepy stack_of _final _pda (Old__st ps, we, map Old__sym
ag) (Old_st p3, ws, map Old_sym «as)
using stack_of final pda_ step by simp
hence pda.stepy stack_of final_pda (Old__st pa, wa, a_with _new az) (Old__st
P3, w3, a__with _new as)
using pda.step,__stack__app|OF pda__final_to__stack] by simp
with step,(2) show ?case
by (simp add: pda.step,,|OF pda__final_to__stack))
qed (simp add: pda.refl,[OF pda__final_to__stack])

25

next
assume r: ?2r thus 2]
proof (induction n (Old__st p1, w1, a__with_new ay) (Old_st pa, wa, a__with _new
a2>
arbitrary: pa wa ag rule: pda.stepn.induct]|OF pda__final_to__stack])
case (3 n py we ag w3 P3 Q3)
from 3(1) have steps 3 1: pda.steps stack_of final pda (Old_st py, wi,
a__with_new ai) (p2, wa,)
using pda.stepn__steps|OF pda__final_to__stack] by blast
obtain py’ where py_ def: ps = Old_st py’
using stack_of _final_pda__from__oldn[OF steps_3 1] stack_of _final_pda_to_old[OF
3(3)] by blast
with steps 3 1 obtain v where «ay_ def: as = a__with_new -~y
using stack_of final _pda_bottom__elem by blast

with py_ def 3(1,2) have pda.stepn M n (p1, wi, a1) (p2’, we, v) by simp

moreover from ps_ def as_def 3(3) have pda.stepy M (p2’, wa,) (p3, ws,
0[3)
using stack_of final pda__stepy__drop by simp

ultimately show ?case by simp
qed (rule v, metis refl,, list.inj _map__ strong sym__extended.inject)
qed

lemma stack _of final _pda_ steps:
(p1, w1, o) ~x (p2, w2, a2) ¢—
pda.steps stack_of final_pda (Old_st p1, wi, a__with _new ay) (Old_st pa,
wa, a__with_new ag)
using stack_of final_pda_stepn pda.stepn__steps|OF pda__ final_to__stack] stepn__steps
by simp

lemma stack of final _pda_ final dump:
pda.steps stack_of _final _pda (New_final, w, v) (New_final, w, [])
proof (induction)
case (Cons Z)
have (New_ final, []) € stack_of _final_delta__eps New_final Z by simp
hence pda.step; stack_of final _pda (New_final, w, Z # ~) (New_ final, w,)
using pda.stepy__rule[OF pda__final _to_stack] by (simp add: stack _of final pda_ def)
with Cons.IH show ?case
using pda.stepy__steps|OF pda_ final_to__stack] pda.steps_trans|OF pda_ final_to__stack]
by blast
qed (simp add: pda.steps_refl[OF pda_final_to__stack])

lemma stack of final _pda_ first_step:
assumes pda.step; stack_of final_pda (New_init, wy, [New_sym]) (p2, wa, «)
shows py = Old_st (init_state M) N wy = wy A a = [Old_sym (init_symbol
M), New__sym]
using assms pda.step;__rule[OF pda_ final_to__stack] by (simp add: stack_of final_pda__def)

26

lemma stack of final _pda__empty only final:

assumes pda.steps stack_of _final_pda (New_init, wy, [New_sym]) (q, wa, [])

shows ¢ = New_ final
proof —

from assms have pda.steps stack _of final _pda (Old_st (init_state M), wi,
[Old_sym (init_symbol M), New_sym]) (q, wa, [])

using pda.steps_not_refl_split_first[OF pda__final_to_ stack] stack_of final _pda_first_step
by blast

thus ?thesis

using stack_of _final_pda__bottom__elem[of init_state M wy [init_symbol M|

_we []] stack_of final pda_ from_oldn by fastforce
qed

lemma stack _of final pda_ split_old_final:
assumes pda.stepn stack_of _final _pda (Suc n) (Old_st p1, wi, a1) (New_final
i 'q st_extended, wo, as)
shows 3¢k v. k < n A q € final_states M A
pda.stepn stack_of final_pda k (Old_st p1, wi, a1) (Old_st q, wa, v) A
pda.stepy stack_of _final_pda (Old_st q, we, v) (New_final, we,) A
pda.stepn stack_of _final_pda (n—k) (New_final, wa, v) (New_final, wo,
012)
using assms proof (induction Suc n (Old_st py, w1, a1) (New_final :: 'q st__extended,
w2, a2)
arbitrary: n wy as rule: pda.stepn.induct|OF pda__final_to__stack))
case (3 n py we g w3 ag)
then show Zcase proof (cases n)
case (
with 3(1) have po_ def: Old_st py = ps and w12: wq, = we and al2: a; =
s
using pda.stepn_zeroE[OF pda_ final_to_stack] by blast+
from py_ def 3(3) obtain Z « where as_ def: ay = Z # « and rule:
(6. ws = wa A ag = BQa A (New_final,) € stack _of final delta__eps
(Old_st p1) Z)
V(Japf. wy=a# ws Aag=L0Qa A (New_final,B) € stack_of final delta
(Old_st p1) a Z)
using pda.stepy__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of _final_pda__def)
from ay_ def rule have pi_ final: p1 € final_states M and w23: ws = we and
a23: a3 = Q2
by (induction Old_st p1 Z rule: stack_of final _delta__eps.induct, auto)
(meson empty_iff , meson empty_iff prod.inject singletonD, meson empty__iff,
meson empty_iff prod.inject singletonD)

from w12 w23 a12 a23 have pda.stepn stack_of final _pda 0 (Old_st p1, wy,
a1) (Old_st p1, ws, asg)
using pda.refl,|OF pda_ final_to_stack] by simp

moreover from 3(3) po__def w23 a23 have pda.step; stack_of _final _pda
(Old__st p1, ws, a3) (New_final, w3, ag) by simp

27

moreover from 0 have pda.stepn stack _of final _pda (n — 0) (New_ final,
ws, ag) (New_ final, ws, as)
using pda.refl,|OF pda_final_to_stack] by simp

ultimately show %thesis
using p;_ final by blast
next
case (Suc n')
then show ?thesis proof (cases po = New_ final)
case True
with Suc 3(1,2) obtain ¢ k v where k _less: k < n’ and ¢_final: ¢q €
final_states M and
stepn: pda.stepn stack_of final_pda k (Old_st p1, w1, aq) (Old_st q, wa,)
and
stepl: pda.stepy stack_of final_pda (Old_st q, we, v) (New_ final, wa, 7)
and
stepn’: pda.stepn stack_of final _pda (n’ — k) (New_ final, wa, v) (New_ final,
wa,) by blast
from True 8(3) obtain Z’ o’ where ay = Z' # o’ and rule:
(8. ws = wa A az = BQa’ A (New_ final,B) € stack_of final_delta__eps
New_ final Z')
V(Jap. wy=a# ws Aasg=LQa’A (New_final,f) € stack_of final_delta
New_final a Z)
using pda.step;__rule__ext[OF pda_ final_to_stack] by (auto simp: stack_of _final_pda__def)
from rule have w23: w3 = wo
by (induction New_final :: 'q st_extended Z' rule: stack_of _final delta__eps.induct)
auto

moreover from k_less Suc have k < n by simp

moreover from stepn w23 have pda.stepn stack_of _final pda k (Old__st p1,
wy, o) (Old_st q, ws, v) by simp

moreover from step! w23 have pda.stepy stack _of final _pda (Old_st q,
ws, v) (New_final, ws, v) by simp

moreover from stepn’ 3(3) True w23 Suc k__less have pda.stepn stack__of _final _pda
(n — k) (New_ final, ws, v) (New_final, ws, as)
using pda.step, [OF pda_final_to_stack] by (simp add: Suc__diff le)

ultimately show ?thesis
using ¢ _final by blast
next
case Fulse
with 3(1) obtain py’ where ps_ def: ps = Old_st ps’
using stack_of final_pda_ from__oldn pda.stepn__steps|OF pda__final_to__stack]
by blast
from py_def 3(3) obtain Z’' o’ where ay = Z' # o’ and

28

(6. ws = wa A g = BQa’ A (New_final,3) € stack_of _final _delta__eps
(Old_st pa’) Z')
V (Ja . we = a # wy N ag = fQa’ A (New_final,) €
stack_of _final _delta (Old_st p2’) a Z7)
using pda.step;__rule__ext[OF pda__final_to__stack] by (auto simp: stack_of_final_pda__def)
hence po_ final: p2' € final_states M and w23: ws = wy and a23: az = as
by (induction Old_st py’ Z' rule: stack_of final_delta__eps.induct, auto)
(meson empty_iff, meson empty_iff prod.inject singletonD, meson
empty_iff, meson empty_iff prod.inject singletonD)

from 3(1) pa_ def w23 a23 have pda.stepn stack of final _pda n (Old_st
p1, wi, a1) (Old_st p2’, w3, az) by simp

moreover from 3(3) po_ def w23 a23 have pda.step, stack_of final pda
(Old_st pa’, ws, as) (New_final, ws, ag) by simp

moreover have pda.stepn stack_of _final _pda 0 (New_ final, ws, az) (New_ final,

ws, a3)
using pda.refl,|OF pda_ final_to_stack] by simp

ultimately show ?thesis
using ps_ final by force
qed
qed
qed (simp add: assms)

lemma stack of final _pda__split_path:
assumes pda.stepn stack_of _final_pda (Suc (Suc n)) (New_init, wy, [New__sym])
(New__final, wa,)
shows dq¢ k a. kK < n A q € final_states M N pda.stepy stack_of final_pda
(New_init, wy, [New_sym])
(Old_st (init_state M), wy, [Old_sym
(init_symbol M), New__sym]) A
pda.stepn stack_of _final _pda k (Old_st (init_state M), wq, [Old_sym
(init_symbol M), New__sym))
(Old_st q, wa, &) A
pda.stepy stack_of _final_pda (Old_st q, wa, o) (New_final, wa,) A
pda.stepn stack_of _final_pda (n—k) (New_final, wa,) (New_ final, wo,
7)
proof —
from assms have fstep: pda.stepy stack_of _final_pda (New__init, wy, [New__sym)])

(Old_st (init_state M), wy, [Old_sym (init_symbol
M), New_sym))
and stepn: pda.stepn stack _of final pda (Suc n)
(Old_st (init_state M), w1, [Old_sym (init_symbol M),
New__sym))
(New_ final, wa,)
using pda.stepn__split_first[OF pda__final _to _stack] stack _of final _pda_ first_step

29

by blast+
from stepn have 3¢k a. k < n A q € final_states M A
pda.stepn stack_of _final _pda k (Old_st (init_state M), wy, [Old_sym
(init_symbol M), New_sym])
(Old_st q, wa, a) A
pda.stepy stack _of final pda (Old_st q, wa, @) (New_final, wa,) A
pda.stepn stack_of final_pda (n—k) (New_final, wa,) (New_final, wo,
7)
using stack_of final pda__split_old_ final by blast
with fstep show ?thesis by blast
qged

lemma stack of final _pda__path_length:
assumes pda.stepn stack_of _final_pda n (New_init, wy, [New__sym]) (New_ final,
wa,)
shows dn’. n = Suc (Suc n')
proof —
from assms obtain n’ where n__def: n = Suc n’ and
stepn’: pda.stepn stack_of final pda n’ (Old_st (init_state M), wy,
[Old_sym (init_symbol M), New__sym))
(New_final, wa,)
using pda.stepn_not_refl_split_first|OF pda__ final_to__stack] stack_of final_pda_ first _step
by blast
from stepn’ obtain n’’ where n’ = Suc n’’
using pda.stepn_not_refl _split_first|OF pda_ final_to_stack] by blast
with n_ def show ?thesis by simp
qged

lemma accepted_final_to_ stack:
(3q ~v. ¢ € final_states M A (init_state M, w, [init_symbol M]) ~x* (q, [], 7))
—
(3 q. pda.steps stack__of _final_pda (init_state stack_of _final_pda, w, [init_symbol
stack_of _final_pdal) (g, [], [])) (is ¢l +— ?r)
proof
assume 7]
then obtain ¢ v where q_final: q € final _states M and steps: (init_state M,
w, [init_symbol M]) ~»x (q, [], v) by blast
obtain Z o where map v def: a_ with_new v = Z#a«
by (auto intro: list.exhaust_sel)
from ¢ _final have (New_final, [Z]) € stack_of final_delta_eps (Old_st q) Z
by (induction Old_st q Z rule: stack_of final delta__eps.induct) auto

with map_~_ def have pda.stepy stack_of _final_pda (Old_st q, [], o_with_new

) (New_final, [], Z#«)
using pda.stepy__rule[OF pda__final _to__stack] by (simp add: stack _of final pda_ def)

moreover from steps have pda.steps stack_of final_pda (Old_st (init_state

M), w, [Old_sym (init_symbol M), New__sym])
(Old_st q, [], a__with_new)

30

using stack_of final pda_steps by simp

moreover have pda.step; stack of final _pda (init_state stack_of final_pda,
w, [init__symbol stack__of final pda])
(Old_st (init_state M), w, [Old_sym (init_symbol
M), New_sym))
using pda.stepy__rule[OF pda__final _to_stack] by (simp add: stack _of final pda_ def)

moreover have pda.steps stack_of final_pda (New_ final, |, Z#a) (New_ final,
0. 0

using stack_of final pda_ final _dump by simp

ultimately show ¢r
using pda.step,__steps|OF pda__final_to__stack] pda.steps_trans|OF pda_ final_to__stack]
by metis
next
assume ?r
then obtain ¢ where steps: pda.steps stack_of final pda (New__init, w, [New__sym])
(¢ I,)
by (auto simp: stack_of final _pda__def)
hence ¢ def: ¢ = New_ final
using stack_of final pda__empty only final by simp
with steps obtain n where stepn: pda.stepn stack _of final_pda n (New__init,
w, [New_sym]) (New_final, [, [])
using pda.stepn__steps|OF pda_ final_to__stack] by blast
then obtain n’ where n = Suc (Suc n’)
using stack_of final pda_ path_length by blast
with stepn obtain p £ o where p_final: p € final _states M and stepn”:
pda.stepn stack _of final _pda k
(Old__st (init_state M), w, [Old_sym (init_symbol M), New__sym])
(Old_st p, [], @)
using stack_of final pda__split_path by blast
from stepn’ obtain o’ where a = o with _new o’
using stack of final _pda_bottom__elem pda.stepn__steps|OF pda_ final_to_ stack)]
by (metis (no__types, opaque__lifting) append__Cons append__Nil list.simps(8,9))
with stepn’ have pda.stepn M k (init_state M, w, [init_symbol M]) (p, [], &)
using stack_of final pda__stepn by simp
with p_final show ?I
using stepn_ steps by blast
qed

lemma final to_stack:

pda.accept_final M = pda.accept__stack stack_of final _pda

unfolding accept final def pda.accept_stack _def[OF pda_ final_to_ stack] us-
ing accepted_ final to stack by blast

end
end

31

3 Equivalence of CFG and PDA

3.1 CFG to PDA

Starting from a CFG, we construct an equivalent single-state PDA. The
formalization is based on the Lean formalization by Leichtfried[2].

theory CFG_To PDA
imports

Pushdown__Automata

Context_Free Grammar.Context Free_ Grammar
begin

datatype sing st = @ _loop

instance sing_ st :: finite
proof
have x: UNIV = {Q_loop}
by (auto intro: sing_st.exhaust)
show finite (UNIV :: sing_ st set)
by (simp add: *)
qed

instance sym :: (finite, finite) finite
proof
have «: UNIV = {t. 3s. t = Nt s} U {¢. Is. t = Tm s}
by (auto intro: sym.exhaust)
show finite (UNIV :: ('a, 'b) sym set)
by (simp add: * full _SetCompr _eq)
qed

locale cfg_to_pda =
fixes G :: ('n :: finite, 't :: finite) Cfyg
assumes finite_ G: finite (Prods Q)
begin

fun pda_of cfg :: sing_st = 't = ('n,’'t) sym = (sing_st x ('n,’t) syms) set
where

pda_of cfg Q_loop a (Tm b) = (if a = b then {(Q __loop, [])} else {})
| pda_of cfg = {}

fun pda_eps_of cfg :: sing_st = ('n,'t) sym = (sing_st x ('n,’t) syms) set
where

pda__eps_of cfg Q loop (Nt A) = {(Q_loop, a)| a. (4,) € Prods G}
| pda_eps of cfg =}

definition cfg_to_pda_pda :: (sing_st, 't, ('n,’t) sym) pda where
cfg_to_pda_pda = (| init_state = Q_loop, init_symbol = Nt (Start G), fi-
nal_states = {},
delta = pda__of cfg, delta__eps = pda__eps_of cfg

32

lemma pda_cfg to pda: pda cfg to pda_pda
proof (standard, goal_cases)
case (1 pz 2)
have finite (pda_of _cfg p z)
by (induction p x z rule: pda_of cfg.induct) auto
then show ?case
by (simp add: cfg_to_pda_pda_ def)
next
case (2 p 2)
let ?h = A(A4,a). (Q_loop,)
have x: AA. {(Q_loop, o) |a. (4, o) € Prods G} C (?h ‘ Prods G) by auto
have «x: finite (?h * Prods G)
by (simp add: finite_G)
have AA. finite {(Q _loop, a) |a. (A, a) € Prods G}
using finite_subset|OF * xx] by simp
hence finite (pda__eps_of cfg p 2)
by (induction p z rule: pda__eps_of cfg.induct) auto
then show ?case
by (simp add: c¢fg_to_pda_pda_ def)
qed

lemma cfg to_pda_cons tm:

pda.stepy cfg_to_pda_pda (Q_loop, a#w, Tm a#ty) (Q_loop, w,)
using pda.step,__rule[OF pda__cfg_to_pda) by (simp add: cfg_to_pda_pda_ def)

lemma cfg to pda_cons nt:
assumes (A, a) € Prods G
shows pda.stepy cfg_to_pda_pda (Q_loop, w, Nt A#~) (Q_loop, w, a@~)
using assms pda.step;__rule[OF pda__cfg_to_pda] by (simp add: cfg_to_pda_pda_ def)

lemma cfg to_pda_cons_tms:

pda.steps cfg_to_pda_pda (Q_loop, wQuw’, map Tm w @ ~) (Q_loop, w’, v)
proof (induction w)

case (Cons a w)

have pda.stepy cfg_to_pda_pda (Q_loop, (a # w) @ w'; map Tm (a # w) Q)
(Q _loop, w @ w', map Tm w Q =)

using cfg_to_pda_ cons tm by simp

with Cons.IH show ?case

using pda.step,__steps|OF pda__cfg_to_pda] pda.steps_trans|OF pda__cfg_to_pda]
by blast
qed (simp add: pda.steps_refl{OF pda__cfq_to_pdal)

lemma cfg to pda_nt_cons:
assumes pda.step, cfg_to_pda_pda (Q _loop, w, Nt A#~) (Q_loop, w’, B)
shows Ja. (4, a) € Prods GAB=aQy A w =w
proof —
from assms have (3 8g. w' = w A B = Bo@Qy A (Q_loop, Bo) € pda__eps_of _cfg
Q_loop (Nt A))

33

V (Fa Bo-w=a# w AB=BoQyA (Q_loop,Bo) € pda_of cfg
Q_loop a (Nt A))
using pda.step,__rule[OF pda__cfg_to_pda)] by (simp add: cfg_to_pda_pda_ def)
thus ?thesis
by (induction Q_loop Nt A :: ('n, 't) sym rule: pda_eps _of cfg.induct) auto
qed

lemma cfg to pda_tm_ stack cons:
assumes pda.step, cfg_to_pda_pda (Q_loop, w, Tm a # () (Q_loop, w’, B7)
shows w=a # w' A B =7
proof —
from assms have (3Fg. w' = w A B’ = 5o@B A (Q_loop, Bo) € pda__eps_of cfyg
Q_loop (Tm a))
V (Fap Bo- w = ag#w’ A B = Bo@B A (Q_loop, Bo) € pda_of _cfg
Q_loop ag (Tm a))
using pda.stepy__rule]OF pda__cfg_to__pda] by (simp add: cfg_to_pda_pda__def)
thus ?thesis
by (induction Q_loop Tm a :: ('n, 't) sym rule: pda__eps_of cfg.induct, auto)
(metis emptyE, metis empty_iff prod.inject singletonD)
qed

lemma cfg _to pda_tm_ stack path:

assumes pda.steps cfg_to__pda_pda (Q_loop, w, Tm a # «) (Q_loop, [], [])

shows Jw’. w = a#w’ A pda.steps cfg_to_pda_pda (Q_loop, w', a) (Q_loop,
M)
proof —

from assms obtain ¢’ w’ o’ where stepl: pda.step; cfg _to_pda_pda (Q_loop,
w, Tm a # @) (¢', w’, o) and

steps: pda.steps cfg_to_pda_pda (¢', w’, a’) (Q_loop,

M)

using pda.steps_not_refl_split_first{OF pda__cfg_to_pda] by blast
have ¢’ _def: ¢/ = Q_loop
using sing_st.exhaust by blast
from step![unfolded q' _def] have (Bg. w' = w A @’ = BoQa A (Q_loop, Bo)
€ pda__eps_of cfg Q_loop (Tm a))
V (Jap Bo. w= ap#w’ A o’ = Bo@a A (Q_loop, Bo) € pda_of _cfg
Q_loop ag (Tm a))
using pda.stepy__rule[OF pda__cfg_to__pda] by (simp add: cfg_to_pda_pda__def)
hence w = a # w' A o' = «
by (induction Q_loop Tm a :: ('n, 't) sym rule: pda__eps_of _cfg.induct, auto)
(metis empty_iff, metis empty_iff prod.inject singletonD)
with steps q¢'_def show ?thesis by simp
qged

lemma cfg to pda_tms stack path:
assumes pda.steps c¢fg_to__pda_pda (Q_loop, w, map Tm v @ &) (Q_loop, [], [])
shows Jw’. w = v @ w’ A pda.steps cfg_to_pda_pda (Q_loop, w’, &) (Q_loop,

0 D)

using assms cfg_to_pda_tm_ stack_path by (induction v arbitrary: w) fastforce+

34

lemma cfg to_pda_accepts if G_derives:
assumes Prods G F o =Ix map Tm w
shows pda.steps cfg_to_pda_pda (Q_loop, w, o) (Q_loop, [], [])
using assms proof (induction rule: converse _rtranclp_induct)
case base
then show ?case
using c¢fg_to_pda_cons_tmslwhere 7w’ =[] and %y = [|] by simp
next
case (step y 2)
from step(1) obtain A o ul u2 where prod: (A,a) € Prods G and y__def: y =
map Tm ul Q Nt A # u2 and z_def: 2z = map Tm ul Q@ o @ u2
using derivel iff [of Prods G y z| by blast
from step(3) z_def obtain w’ where w_def: w = ul @ w’ and
x: pda.steps cfg_to_pda_pda (Q_loop, w', a @ u2)

(Q_loop, [], 1)
using cfg_to_pda_tms_stack path by blast

from w_def y_def have pda.steps c¢fg_to__pda_pda (Q_loop, w, y) (Q_loop, w’,
Nt A # u2)
using cfg_to_pda__cons_tms by simp

moreover from prod have pda.steps cfg_to _pda_pda (Q_loop, w', Nt A # u2)
(Q_loop, w', o @ u2)
using c¢fg_to_pda__cons_nt pda.stepy__steps|OF pda__cfq_to_pda] by simp

ultimately show Zcase
using * pda.steps_trans|OF pda__cfg_to_pda] by blast
qed

lemma G_derives if cfg to_pda_ accepts:
assumes pda.steps cfg_to_pda_pda (Q_loop, w, o) (Q_loop, [], [])
shows Prods G - a =% map Tm w
using assms proof (induction (Q_loop, w,) (Q_loop, [| =+ 't list, [| == ('n, 't)
syms)
arbitrary: w a rule: pda.steps _induct2[OF pda__cfg_to_pda))
case (3 w1 1 P W 042)
then show ?case proof (cases ay)
case (Cons Z' o)
have ps_ def: po = Q_loop
using sing_st.exhaust by blast
with 3(2,3) have IH: Prods G - as =x map Tm ws by simp
show ?thesis proof (cases Z')
case (Nt A)
with Cons pa_def 3(1) obtain « where prod: (A4, a)) € Prods G and aq__def:
as = a @ o’ and we_ def: wy = wy
using cfq_to_pda_nt_cons by blast
from Cons Nt prod as__def have Prods G+ a1 = as
using derive_iff by fast

35

with IH wy_ def show ?thesis by simp
next
case (Tm a)
with Cons po__def 3(1) have w_a_def: w1 = a # wa A o’ = ag
using cfqg_to_pda_tm_ stack__cons by simp
from [H have Prods G - Tm a # as =% Tm a # map Tm ws
using derives_ Cons by auto
with Cons Tm w_«_ def show ?thesis by simp
qed
qed (simp add: 3(1) pda.step1__empty_stack|OF pda__cfg_to_pdal)
qed (simp__all add: assms)

lemma cfg_to_pda: LangS G = pda.accept_stack cfg_to_pda_pda (is ?L = ¢P)
proof
show ¢L C ?P
proof
fix x
assume z € 7L
hence Prods G + [Nt (Start G)] =* map Tm x
by (simp add: Lang_def)
hence Prods G + [Nt (Start G)] =1x map Tm z
using derivels iff derives by auto
hence pda.steps cfg_to_pda_pda (Q_loop, x, [Nt (Start G)]) (Q_loop, [], [])
using c¢fg to pda_accepts_if G__derives by simp
thus z € 7P
unfolding pda.accept__stack__def[OF pda__cfg_to_pda] by (auto simp: cfg_to_pda_pda__def)
qed
next
show 2P C ?¢L
proof
fix z
assume z € 7P
then obtain ¢ where steps: pda.steps cfg_to_pda_pda (Q_loop, z, [Nt (Start
&N (¢, 1, 1)
unfolding pda.accept_stack__def[OF pda__cfg_to_pda] by (auto simp: c¢fg_to_pda_pda__def)
have ¢ = @Q_loop
using sing st.exhaust by blast
with steps have Prods G F [Nt (Start G)] =% map Tm z
using G derives if cfg to_pda_ accepts by simp
thus z € 7L
by (simp add: Lang_def)
qed
qed

end
end

36

3.2 PDA to CFG

Starting from a PDA that accepts by empty stack, we construct an equiva-
lent CFG. The formalization is based on the Lean formalization by Leicht-
fried[2].

theory PDA__To CFG
imports

Pushdown__Automata

Context_Free Grammar.Context Free_ Grammar
begin

datatype ('q, 's) pda_nt = Start_sym | Single_sym 'q 's 'q | List_sym 'q 's list
i
q

context pda begin

abbreviation all_pushes :: 's list set where
all_pushes={a. I pgaz (p,a)ed Mqgaz}U{aIpqz (p,a)€de Mqz}

abbreviation max_push :: nat where
maz_push = Suc (Maz (length ‘ all_pushes))

abbreviation is_allowed_nt :: ('q, 's) pda_nt set where
is_allowed_nt = {List_sym p a q| p « q. length o < maz_push} U (Up Z q.
{Single_sym p Z q}) U {Start_sym}

abbreviation empty rule :: '¢ = (('q, 's) pda_nt, 'a) Prods where
empty_rule ¢ = {(List_sym q || ¢, [|)}

abbreviation trans rule :: '¢ = ‘¢ = 'a = 's = (('q, 's) pda_nt, 'a) Prods
where

trans_rule qo q1 a Z = (A(p, «). (Single_sym qo Z q1, [Tm a, Nt (List_sym p
aq)]) 0 Mg aZ

abbreviation eps _rule :: '¢ = ‘g = 's = (('q, 's) pda_nt, 'a) Prods where
eps_rule o ¢1 Z = (M(p, «). (Single_sym qo Z q1, [Nt (List_sym p a ¢1)]))
oe M q0 A

¢

fun split_rule :: ‘¢ = ('q, 's) pda_nt = (('q, 's) pda_nt, 'a) Prods where
split_rule q (List_sym po (Z#a) p1) = {(List_sym po (Z#«) p1, [Nt (Single__sym

po Z q), Nt (List_sym q a p1)])}

| split_rule _ _ = {}

abbreviation start_rule :: 'q = (('q, 's) pda_nt, 'a) Prods where
start_rule ¢ = {(Start_sym, [Nt (List_sym (init_state M) [init_symbol M] q)])}

abbreviation rule_set :: (('q, 's) pda_nt, 'a) Prods where

rule_set = (| q. empty_rule ¢) U ((Jgp a Z. trans_rule g p a Z) U (Ugp Z.
eps_rule g p Z) U

37

U {split_rule q nt| ¢ nt. nt € is_allowed_nt} U ({ q. start_rule q)

definition G :: (('q, 's) pda_nt,’a) Cfg where
G = Cfg rule__set Start_sym

lemma finite_is_allowed_nt: finite (is__allowed_nt)
proof (intro finite_Unl)
show finite {List_sym (p :: 'q) (« 2 's list) q| p a q. length o < maz_push}
proof —
let 24 =UUJ(As. (M. f UNIV) “s) (M. f“{ws s list. set zs C UNIV
A length s < maz_push}) ‘ (List_sym ‘ (UNIV :: 'q set)))))

have {List_sym p « q| p « q. length o < maz_push} = 24
by auto

moreover have finite ?A (is finite (| ?B))
proof (rule finite_ Union)
show finite ?B (is finite (| ?C))
proof (rule finite_ Union)
show finite ?C by simp
next
show AM. M € ?C = finite M
using finite_lists_length_le[of UNIV maz_push| by force
qed
next
show AM. M € ?B = finite M by fastforce
qed

ultimately show ¢thesis by simp
qed
next
show finite (J(p = 'q) (Z 2 's) q. {Single_sym p Z q})
by (rule, simp)+
qed simp

lemma finite_ split_rule: finite (split_rule g nt)
by (induction q nt rule: split_rule.induct) auto

lemma finite (Prods G)
proof —

have finite (| q. empty_rule q) by simp

moreover have finite (Jqp a Z. trans_rule ¢ p a Z)
by (simp add: finite_ delta)

moreover have finite (Jqp Z. eps_rule ¢ p Z)
by (simp add: finite__delta__eps)

moreover have finite (|J {split_rule ¢ nt| ¢ nt. nt € is_allowed_nt})

38

proof —
have {split_rule q nt| g nt. nt € is_allowed_nt} =J ((Mf. f ‘is_allowed_nt)
‘ (split_rule < UNIV))
by fastforce

moreover have finite (J (U ((\f. f “is_allowed_nt) ‘ (split_rule * UNIV))))
(is finite (| ?A4))
proof (rule finite_ Union)
show finite ?A (is finite ({J ?B))
proof (rule finite_ Union)
show finite 7B by simp
next
show AM. M € ?B = finite M
using finite is_allowed_nt by blast
qed
next
show A\M. M € ?A = finite M
by (auto simp: finite_split_rule)
qed

ultimately show ¢thesis by simp
qed

moreover have finite (| q. start_rule q) by simp

ultimately show “thesis
by (simp add: G_def)
qed

lemma split_rule simp:
(A, w) € split_rule g nt +—
(po Z « p1. nt = (List_sym po (Z#a) p1) A
A = List_sym py (Z#a) p1 N w = [Nt (Single_sym po Z q), Nt
(List_sym q a p1)])
by (induction q nt rule: split_rule.induct) auto

lemma pda_to_cfq derive__empty:
Prods G = [Nt (List_sym p1 [p2)] = z +— p2 =p1 ANz =]
unfolding G_def using derive_singleton|of rule_set] split_rule simp by auto

lemma finite all_pushes: finite all_pushes

proof —
let A= (Ap, o). a) “ UgaZ. 0 MqaZU (JgZ. 6 M q2Z))
have all pushes = ?A by fast

moreover have finite ?A
by (rule, simp add: finite_delta finite_delta__eps)+

ultimately show ¢thesis by simp

39

qed

lemma push_trans_leq max:
(p, @) €6 M qaZ = length & < maz_push
proof —
have (p, a) € 6 M q a Z = length o < Mazx (length ‘ all_pushes)
by (rule Maz__ge) (use finite_all_pushes in blast)+
thus (p, a) € 6 M q a Z = length o < maz_push by simp
qed

lemma push_eps leq max:
(p, @) € de M q Z = length o < max_push
proof —
have (p, a) € de M q Z = length o < Mazx (length ‘ all_pushes)
by (rule Max__ge) (use finite__all_pushes in blast)+
thus (p, @) € 0e M q Z = length o < maz_push by simp
qed

lemma pda_to_cfq derive_ split:
Prods G+ [Nt (List_sym p1 (Z#a) p2)] = w +—
(Fq. length (Z#a) < maz_push A w = [Nt (Single_sym p1 Z q), Nt (List_sym
q « p2)))
(is 2l «— 2r)
proof
assume 7/
hence (List_sym p1 (Z #) p2, w) € rule_set
using derive__singleton[of Prods G Nt (List_sym p1 (Z # @) p2) w] by (simp
add: G_def)
thus 7r
by (auto simp: split_rule_simp)
next
assume 2r
then obtain ¢ where len_«: length (Z#«) < maz_push and w_def: w = [Nt
(Single_sym p1 Z q), Nt (List_sym q « p2)] by blast
from w_def have (List_sym p1 (Z#«a) pa, w) € split_rule q (List_sym p1 (Z
a) pa2) by simp
with len_o have (List_sym p1 (Z#«a) pa, w) € |J {split_rule g nt| g nt. nt €
is_allowed_nt}
by (subst Union_iff) fast
hence (List_sym p1 (Z#«) pa, w) € rule_set by simp
thus 21
using derive__singleton[of Prods G Nt (List_sym p1 (Z # «) p2) w] by (simp
add: G_def)
qed

lemma pda_to_cfqg derive_single:
Prods G+ [Nt (Single_sym qo Z q1)] = w +—
Gpaa (p,a)€d Mgy aZ Aw=[Tm a, Nt (List_sym p o q1)]) V
(3p a. (p, @) € de M qo Z N w = [Nt (List_sym p o q1)])

40

unfolding G_def using derive_singleton|of rule_set] split_rule simp by fast-
force

lemma pda_to_cfqg derive_start:

Prods G & [Nt Start_sym] = w +— (Iq. w = [Nt (List_sym (init_state M)
[init_symbol M] q)])

unfolding G_def using derive_singleton|of rule_set] split_rule simp by auto

lemma pda_to_cfqg derives if stepn:
assumes (g, z, 7) ~(n) (p, [], [1)
and length v < maz_push
shows Prods G & [Nt (List_sym q v p)] = map Tm z
using assms proof (induction n arbitrary: p q v rule: less_induct)
case (less n)
then show ?Zcase proof (cases)
case Nil
from less(2) have (g, z, v) ~x* (p, [], [])
using stepn__steps by blast
with Nil have ¢ = p A z =]
using steps _empty_stack by simp
with Nil show ?thesis
using pda_to_cfq_derive _empty by auto
next
case (Cons Z «)
with less(2) obtain n’ ¢’ z’ v’ where n_def: n = Suc n’ and
stepl: (g, &, v) ~ (¢’, ', v') and
stepn: (¢', z', ") ~(n’) (p, [], 1)
using stepn_not_refi_split_first by blast
from Cons stepl have rule: (38.z' =z A v' = BQa A (¢, B) € de M q Z)
VEaB z=a#2' Ny =8QaA(¢"8) €d MqgaZ) (is
2LV ?r)
using step,_ rule by simp
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain 3 where z_def: 2’ = z and v’_split: v/ = fQa and eps: (q’,
B) € ée M q Z by blast
from stepn v'_split obtain p’ m; ms y y’ where z’_def: 2’ = y @Q y’ and
ml m2 n’smi + mg =n’
and stepml1: stepn mq (¢', y, B) (p', [, []) and stepm?2: stepn mq
(', y's) (p, [, [I)
using split_stack[of n’ ¢’ ' § « p] by blast
from n_def m1_m2 n' have mi1_less n: m; < n by simp
from n_def m1_m2 n' have m2_less n: mg < n by simp
from eps have len_: length 8 < maz_push
using push__eps_leq _max by blast

from Cons less(8) have Prods G & [Nt (List_sym q v p)] = [Nt (Single__sym

q Zp'), Nt (List_sym p’ a p)]
using pda_to_cfg derive_split by simp

41

moreover from eps have Prods G \ [Nt (Single_sym q Z p'), Nt (List_sym
p'ap)] =
[Nt (List_sym q' B p"), Nt (List_sym p’ « p)]
using pda__to__cfg_derive__single derive__append|of Prods G [Nt (Single__sym
q Z p")] [Nt (List_sym ¢" § p")]
[Nt (List_sym p’ a p)]] by simp

moreover have Prods G - [Nt (List_sym ¢’ 8 p"), Nt (List_sym p' a p)]
= map Tm y Q [Nt (List_sym p’ « p)]
using derives__append[OF less(1)[OF m1_less_n stepml len_ S]] by simp

moreover from z_def z’_def Cons less(3) have Prods G - map Tm y Q@
[Nt (List_sym p’ «a p)] =* map Tm x
using derives_prepend[OF less(1)[OF m2_less_n stepm?2]] by auto

ultimately show ¢thesis by simp
next
assume ?r
then obtain a § where z_def: © = a # z’ and ~'_split: v' = fQa and
trans: (¢, B) € 6 M q a Z by blast
from stepn ~v'_split obtain p’ my ms y y’ where z’_def: z’ = y @Q y’ and
ml m2 n’smi + mg =n’
and stepm1: stepn my (¢', y, B) (p/, [], []) and stepm2: stepn mo
(', y's) (p, [, [I)
using split_stacklof n’ ¢’ ' § « p] by blast
from n_def m1_m2 n' have mi1_less n: m; < n by simp
from n_def m1_m2 n’ have m2 less n: may < n by simp
from trans have len_[: length B < max_push
using push__trans_leq _max by blast

from Cons less(8) have Prods G & [Nt (List_sym q v p)] = [Nt (Single__sym
q Zp'), Nt (List_sym p’ « p)]
using pda_to_ cfg_derive_split by simp

moreover from trans have Prods G + [Nt (Single_sym q Z p’), Nt (List_sym
p ap) =
[Tm a, Nt (List_sym q' 8 p’), Nt (List_sym p’ « p)]
using pda_to_ cfg_derive_single derive_append|of Prods G [Nt (Single _sym
q Zp")] [Tm a, Nt (List_sym q' 8 p')]
[Nt (List_sym p' a p)]] by simp

moreover have Prods G + [Tm a, Nt (List_sym q' 8 p’), Nt (List_sym p’
a p)] =+
Tm a # map Tm y Q [Nt (List_sym p’ a p)]
using derives _append[OF less(1)[OF m1_less_n stepml len_f]] by (simp
add: derives_Tm__Cons)

moreover from z’_def x_def Cons less(3) have Prods G &= Tm a # map

42

Tm y Q [Nt (List_sym p’ a p)] =% map Tm x
using derives_prepend[OF less(1)[OF m2_less _n stepm2], of Tm a # map
Tm y| by simp

ultimately show ?thesis by simp
qed
qed
qed

lemma derivel _append__decomp:
P uQu =l w+—
Guv. w=vQuAPFu=lu)V (3Fu v w=uQv Au=map Tmu ANPF
v =10
(is 2l +— 2r)
proof
assume ?]
then obtain A r ul u2
where Ar: (A,r) € P
and wv: vQv = map Tm ul Q@ Nt A # u2
and w: w = map Tm ul Q r Q u2
by (auto simp: derivel iff)
from uv have case_dist: (3s. u2 = s Qv A u=map Tmul Q@ Nt A # s)V
(3s.map Tmul =u@s ANv=sQNtA# u2) (is ?h1 VvV ?h2)
by (auto simp: append__eq _append__conv2 append_eq Cons__conv)
show ?r proof (rule disjE[OF case__dist])
assume ?h1
with Ar w show ?Zthesis by (fastforce simp: derivel iff)
next
assume ?h2
then obtain s where map ul_def: map Tm vl = u Q s and v_def: v = s
@ Nt A # u2 by blast
from map_ul_def obtain u’ s’ where u_def: u = map Tm u’ and s_def: s
= map Tm s’
using append_eq _map__conv[of u s Tm ul] by auto

from w map_ul_def s_def have w = u @ (map Tm s’ Q r @Q u2) by simp

moreover from Ar v_def s _def have P+ v =1l map Tm s’ Q r Q u2
using derivel _iff[of P] by blast

ultimately show ?thesis
using u__def by blast
qed
next
show r = 7]
by (auto simp add: derivel_append derivel _map_Tm__append)
qed

43

lemma split_derivel”:
assumes P F z#v =I(n) u
shows (Ju’. u =u"@Q@u A PF [z] =i(n) v)V (Jw us my ma. my + ma = n
A u=map Tm w; Q uy
A PF [z] =Il(m1) map Tm wy A P+ o
:>l(m2) UQ)
using assms proof (induction n arbitrary: u)
case (Suc n)
from Suc(2) obtain w where z_v_deriveln_w: P+ = # v =l(n) w and
w__derivel_u: P+ w =1 u by auto
from Suc(1)[OF x_v_deriveln_w] have IH: (3u’". w=u"Q v A PF [z] =I(n)
u') Vv
(Fwy ug my ma. my + mg =n A w=map Tm w; Q@ uy A P+ [z] =I(m1) map
Tm wi A P v =1(mg) uz) (is 21V 2r) .
show ?case proof (rule disjE[OF IH])
assume ?[
then obtain v’ where w_def: w = v’ Q v and z_deriveln_u": P+ [z] =(n)
u’ by blast
from w_def w_derivel _u have P+ v’ Q v =1 u by simp
hence case_dist: (Jug. v =ug Qv A Pt u' =lug) V
(Fuy ug. v =u" @ us A u'=map Tm u; AN PF v=lus) (is ?hl
V %h2)
using derivel _append__decomp|of P v’ v u] by simp
show ?thesis proof (rule disjE[OF case__dist))
assume ?hl
then obtain uy where u_def: u = ug @ v and u’_derivel_u0: P+ u’' =1
ug by blast
from z_deriveln_u’ w’_derivel_u0 have P b [z] =1(Suc n) ug by auto
with u_def show ?thesis by blast
next
assume ?h2
then obtain u; u, where u_def: u = u' Q uy and u’_def: v’ = map Tm
uy and v_derivel_u2: P+ v =1 uy by blast
from z_deriveln_u’ v’ _def have P F [z] =I(n) map Tm uy by simp
with u_def v’ _def v_derivel _u2 show ?thesis by fastforce
qged
next
assume 7r
then obtain wy, us m; mo where mi_m2 n: my + my = n and w_def: w
= map Tm w; Q uy and
z_derivelmi_wl: P+ [z] =I(m1) map Tm w, and
v_derivelm2_u2: P F v =I1(mgy) us by blast
from w_def w _derivel _u have P map Tm wi; @ us =1 u by simp
then obtain u’ where u_def: u = map Tm w; @ v’ and u2_derivel_u" P+
uy =l u’
using derivel_map_Tm__append by blast

from mi1_m2_n have mi + Suc my = Suc n by simp

44

moreover from v_derivelm2_u2 u2_derivel_u’' have P+ v =I(Suc my) u’

by auto

ultimately show Zthesis
using u_def x_derivelm1 _wl by blast
qed
qed simp

lemma split_derivel:
assumes P F z#v =1(n) map Tm w
shows Jw; wy my ma. m1 + me =n A w=w Qwy APF [z] =I(m1) map
Tm wy A P+ v =I(mg) map Tm wo
proof —
have case_dist: (3u’. map Tm w = v’ Q v A P+ [z] =1(n) u') V (Jwr uz my
Mmo. My + mo = n A map Tm w = map Tm wy; Q usy
A P+ [z] =Il(m1) map Tm wy A P+ v
=1(m2) ug) (is 7l V ?r)
using split_derivel [OF assms] by simp
show ?thesis proof (rule disjE[OF case__dist])
assume ?[
then obtain v’ where map w_def: map Tm w = v’ Q v and z_derives u”:
P+ [z] =1(n) u' by blast
from map w_def obtain w; ws, where w = w; @ wy and map_wy_ def:
map Tm w; = v’ and map Tm ws = v
using map__eq__append__conv[of Tm w u’ v] by blast

moreover from z_derives_u’ map_wy__def have P\ [z] =I(n) map Tm w;
by simp

moreover have P F map Tm wy =1(0) map Tm wy by simp

ultimately show ?thesis by force
next
assume ?r
then obtain wy us m; ms where m1_m2 n: mi; + ms = n and map_w_ def:
map Tm w = map Tm wy Q usy
and z_derivelmi_wl: P\ [z] =1(m1) map
Tm wy and v_derivelm2_u2: P+ v =1(msq) us by blast
from map_w_def obtain w;’ uy’ where w = wy’ @ uy’ and map (Tm :: 'c
= (b, 'c) sym) wy = map Tm w1’ and uz = map (Tm = 'c = (’b, 'c) sym) ua’
using map__eq_append__convlof Tm :: 'c = ('b, 'c) sym w map Tm w1 ug] by
blast
with m1_m2 n z derivelml_wl v_derivelm?2_u2 show ?thesis by auto
qed
qed

lemma pda_to_cfq steps if derivel:

45

assumes Prods G = [Nt (List_sym q v p)] =1(n) map Tm x
shows (g, 7, 7) ~* (p, [, [)
using assms proof (induction n arbitrary: p q v rule: less_induct)
case (less n)
then show Zcase proof (cases)
case Nil
have derives: Prods G & [Nt (List_sym q v p)] =% map Tm x
using derivels_imp_derives|OF relpowp__imp_ rtranclp]OF less(2)]] .
have p = ¢ Az = |]
proof —
from derives_start1[OF derives] obtain o where dI: Prods G + [Nt
(List_sym q v p)] = « and
ds: Prods G+ a =% map Tm x
using derive__singleton by blast
from Nil d1 have x: p = ¢ and o__def: a = ||
using pda_to_cfg_derive_empty by simp__all

from «_ def ds have #x: x = [| by simp
from * xx show ?thesis by simp
qed

with Nil show ?thesis
by (simp add: steps_refl)
next
case (Cons Z «)
from less(2) have n > 0
using gr0I by fastforce
then obtain n’ where n_def: n = Suc n’
using not0_impliesSuc by blast
with less(2) obtain v’ where [1: Prods G = [Nt (List_sym ¢ v p)] =1 v’ and
In". Prods G + ~' =Il(n') map Tm x
using relpowp__Suc_E2[of n’ derivel (Prods G) [Nt (List_sym q v p)] map
Tm x| by blast
from Cons obtain ¢’ where ' _def: v' = [Nt (Single_sym q Z q’), Nt
(List_sym q' a p)]
using pda_to_cfq derive_split derivel _imp__derive]OF 1] by blast
with [n’ have n’ > 0
using gr0I by fastforce
then obtain n’’ where n’_def: n’ = Suc n”’
using not0_implies_Suc by blast
with [n’ v’ def obtain v" where [2: Prods G + [Nt (Single_sym q Z q'), Nt
(List_sym ¢’ « p)] =1 v and
In": Prods G+ ~" =I(n"") map Tm z
using relpowp_ Suc__E2[of n'' derivel (Prods G) [Nt (Single_sym q Z q’), Nt
(List_sym q' « p)] map Tm x] by blast
from [2 obtain ~'’y where [2". Prods G + [Nt (Single_sym q Z q')] =1 ~"
and " _split: v = v Q [Nt (List_sym ¢’ « p)]
using derivel Nt_Cons by (metis append.right_neutral)
have (3¢”" a" a. (¢, &'y € M qga Z N~"y =[Tm a, Nt (List_sym q" "
) v
Fq"”a". (¢", 'y e de MqZ N~"s =[Nt (List_sym q¢"" o’ q')])

46

using pda_to_cfq_derive_single derivel _imp__derive[OF 2] by simp
with v'"_split have rule: (3¢ o’ a. (¢", a') € M qa Z A
~v" = [Tm a, Nt (List_sym ¢"" o’ q’), Nt (List_sym ¢’
ap)]) v
Fq” " (¢, ") €de MqZ A
~'" = [Nt (List_sym q" o' q'), Nt (List_sym q' « p)])
(is 7l V ?r) by simp
show ?thesis proof (rule disjE[OF rule])
assume ?[
then obtain ¢ o'’ a where trans: (¢, «’) € 6 M q a Z and
~" _def: 4" = [Tm a, Nt (List_sym q¢"" o’ ¢'), Nt
(List_sym q' a p)] by blast
from ~'"_def In'"’ obtain z’ where z_def: + = a2z’ and
split: Prods G = [Nt (List_sym q"" o' q'), Nt (List_sym
q" a p)] =Il(n") map Tm z’
using deriveln__Tm__Cons[of n"' Prods G a [Nt (List_sym q" o' q’), Nt
(List_sym q' a p)] map Tm x| by auto
obtain w; ws m; mo where mi_m2 n'": m; + mo = n’ and z’_def: z’
= w; @ wy
and m1_path: Prods G + [Nt (List_sym q¢" a" q")]
=Il(my1) map Tm w;
and m2_path: Prods G & [Nt (List_sym q' « p)]
=1(m2) map Tm ws
using split_derivel|OF split] by blast
from m1_m2 n'" n_def n’_def have m1_lessn: m; < n by simp
from m1_m2 n'" n_def n’_def have m2_lessn: my < n by simp

from trans z_def Cons have (q, z, v) ~ (¢, 2/, " Q «)
using step;_ rule by simp

moreover from z’_def have (¢, z/, o’ @) ~x (¢, wa, @)
using steps_stack__app[OF less(1)[OF m1_lessn m1_path], of a]
steps_word__applof ¢ w1 " @ « ¢’ [] a ws] by simp

moreover have (¢’, wa, a) ~x* (p, [], [])
using less(1)[OF m2_lessn m2_path| .

ultimately show ?Zthesis
unfolding steps def
by (meson converse__rtranclp__into_rtranclp rtranclp__trans)
next
assume ?r
then obtain ¢"’ o’ where eps: (¢”, a'') € 6e M q Z and
~"" _def: " = [Nt (List_sym q" o’ ¢'), Nt (List_sym
q’ a p)] by blast
from ~''_def In' have split: Prods G - [Nt (List_sym q" o’ ¢'), Nt (List_sym
q" a p)] =Il(n'") map Tm z by simp
obtain w; wy mq mo where mi_m2 n''":
w1 @ w2

m1 + me = n' and z_def: x =

47

and mI1_path: Prods G - [Nt (List_sym q" "' ¢')] =1(m1)
map Tm w;
and m2_path: Prods G & [Nt (List_sym q’ a p)] =1(ma)
map Tm wo
using split_derivel|OF split] by blast
from m1_m2 n'" n_def n’_def have m1_lessn: m; < n by simp
from mi1_m2 n'"’ n_def n’_def have m2_lessn: my < n by simp

from eps Cons have (q, z, v) ~ (¢", z, &' Q «)
using step;__rule by simp

moreover from z_def have (¢", z, o’ @ a) ~x (¢/, we, @)
using steps_stack__app[OF less(1)[OF m1_lessn m1_path], of a]
steps_word__applof ¢ w1 «' @ a ¢’ [| @ ws] by simp

moreover have (¢/, ws, o) ~* (p, [, [])
using less(1)[OF m2_lessn m2_path] .

ultimately show ?thesis
using stepy__steps steps_trans by metis
qed
qed
qed

lemma pda_to_cfg: LangS G = accept_stack (is ?L = ?P)
proof
show 7L C ?P
proof
fix z
assume z € 7L
hence derives: Prods G = [Nt Start_sym] =x map Tm z
by (simp add: G_def Lang_def)
then obtain v where fs: Prods G - [Nt Start_sym| = ~ and ls: Prods G -
v =% map Tm z
using converse_rtranclpE[OF derives] by blast
from fs obtain ¢ where v = [Nt (List_sym (init_state M) [init_symbol M]
q)]
using pda__to__cfq_derive_start|of ~] by blast
with /s obtain n where Prods G & [Nt (List_sym (init_state M) [init_symbol
M])] =1l(n) map Tm x
using derivels_iff derives[of Prods G v x| rtranclp__power|of derivel (Prods
G) v map Tm z] by blast
hence steps (init_state M, x, [init_symbol M]) (q, [], [])
using pda_to_ cfq steps if derivel by simp

thus z € 7P
by (auto simp: accept_stack__def)
qed
next

show ?P C ?L

48

proof
fix z
assume z € 7P
then obtain ¢ where steps (init_state M, x, [init_symbol M]) (q, [], [])
by (auto simp: accept_stack_def)
then obtain n where (init_state M, x, [init_symbol M]) ~~(n) (g, [], [])
using stepn__steps by blast

hence Prods G F [Nt (List_sym (init_state M) [init_symbol M) q)] =* map
Tm x
using pda_to_cfg derives if stepn by simp

moreover have Prods G & [Nt Start_sym] = [Nt (List_sym (init_state M)
[init__symbol M| q)]
using pda_to_cfg derive start by simp

ultimately have Prods G + [Nt (Start G)] =% map Tm x
by (simp add: G_def)

thus z € 7L
by (simp add: Lang__def)
qed
qed
end

end

References

[1] D. C. Kozen. Automata and Computability. Springer, 2007.

[2] T. Leichtfried. autth. https://github.com/shetzl/autth/tree/PDA/
autth, 2025. Accessed: 2025-09-28.

49

https://github.com/shetzl/autth/tree/PDA/autth
https://github.com/shetzl/autth/tree/PDA/autth

	Pushdown Automata (PDA)
	Definitions
	Basic Lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 step and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 step1
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 steps
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 stepn

	Equivalence of Final and Stack Acceptance
	Stack Acceptance to Final Acceptance
	Final Acceptance to Stack Acceptance

	Equivalence of CFG and PDA
	CFG to PDA
	PDA to CFG

