Ptolemy’s Theorem

Lukas Bulwahn

May 26, 2024

Abstract

This entry provides an analytic proof to Ptolemy’s Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison’s HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].

Contents

1 Ptolemy’s Theorem 1

1.1 Preliminaries 1

1.1.1 Additions to Rat theory 1

1.1.2 Additions to Transcendental theory 2

1.1.3 Addition to Finite-Cartesian-Product theory 2

1.2 Polar Form of Two-Dimensional Real-Valued Vectors 3

1.2.1 Definitions to Transfer to Polar Form and Back 3

1.2.2 Lemmas on of-radiant 3

1.2.3 Lemmas on normalize 4

1.2.4 Lemmas on radiant-of 5

1.2.5 Main Equations for Transforming to Polar Form 5

1.3 Ptolemy’s Theorem 5

1 Ptolemy’s Theorem

theory Ptolemy’s-Theorem

imports

HOL-Analysis.Multivariate-Analysis

begin

1.1 Preliminaries

1.1.1 Additions to Rat theory

hide-const (open) normalize
1.1.2 Additions to Transcendental theory

Lemmas about \(\arcsin\) and \(\arccos\) commonly involve to show that their argument is in the domain of those partial functions, i.e., the argument \(y\) is between \(-1\) and \(1\). As the argumentation for \(-1 \leq y\) and \(y \leq 1\) is often very similar, we prefer to prove \(|y| \leq 1\) to the two goals above.

The lemma for rewriting the term \(\cos(\arccos y)\) is already provided in the Isabelle distribution with name \(\text{cos-arccos-abs}\). Here, we further provide the analogue on \(\arcsin\) for rewriting \(\sin(\arcsin y)\).

Lemma sin-arcsin-abs: \(|y| \leq 1 \implies \sin(\arcsin y) = y\)

The further lemmas are the required variants from existing lemmas \(\arccos\)-bound and \(\arccos\)-ubound.

Lemma arccos-lbound-abs [simp]:

\(|y| \leq 1 \implies 0 \leq \arccos y\)

Lemma arccos-ubound-abs [simp]:

\(|y| \leq 1 \implies \arccos y \leq \pi\)

As we choose angles to be between \(0\) between \(2 \cdot \pi\), we need some lemmas to reason about the sign of \(\sin x\) for angles \(x\).

Lemma sin-ge-zero-iff:

\(\begin{align*}
\text{assumes } & 0 \leq x < 2 \cdot \pi \\
\text{shows } & 0 \leq \sin x \iff x \leq \pi
\end{align*}\)

Lemma sin-less-zero-iff:

\(\begin{align*}
\text{assumes } & 0 \leq x < 2 \cdot \pi \\
\text{shows } & \sin x < 0 \iff \pi < x
\end{align*}\)

1.1.3 Addition to Finite-Cartesian-Product theory

Here follow generally useful additions and specialised equations for two-dimensional real-valued vectors.

Lemma axis-nth-eq-0 [simp]:

\(\begin{align*}
\text{assumes } & i \neq j \\
\text{shows } & \axis i x j = 0
\end{align*}\)

Lemma norm-axis:

\(\begin{align*}
\text{fixes } & x :: \text{real} \\
\text{shows } & \norm{\axis i x} = \abs x
\end{align*}\)
lemma norm-eq-on-real-2-vec:
 fixes x :: real ^ 2
 shows norm x = sqrt ((x $ 1) ^ 2 + (x $ 2) ^ 2)
⟨proof⟩

lemma dist-eq-on-real-2-vec:
 fixes a b :: real ^ 2
 shows dist a b = sqrt ((a $ 1 - b $ 1) ^ 2 + (a $ 2 - b $ 2) ^ 2)
⟨proof⟩

1.2 Polar Form of Two-Dimensional Real-Valued Vectors

1.2.1 Definitions to Transfer to Polar Form and Back

definition of-radiant :: real ⇒ real ^ 2
 where
 of-radiant ω = axis 1 (cos ω) + axis 2 (sin ω)

definition normalize :: real ^ 2 ⇒ real ^ 2
 where
 normalize p = (if p = 0 then axis 1 1 else (1 / norm p) *R p)

definition radiant-of :: real ^ 2 ⇒ real
 where
 radiant-of p = (THE ω. 0 ≤ ω ∧ ω < 2 * pi ∧ of-radiant ω = normalize p)

The vector of-radiant ω is the vector with length 1 and angle ω to the first axis. We normalize vectors to length 1 keeping their orientation with the normalize function. Conversely, radiant-of p is the angle of vector p to the first axis, where we choose radiant-of to return angles between 0 and 2 * pi, following the usual high-school convention. With these definitions, we can express the main result norm p *R of-radiant (radiant-of p) = p. Note that the main result holds for any definition of radiant-of 0. So, we choose to define normalize 0 and radiant-of 0, such that radiant-of 0 = 0.

1.2.2 Lemmas on of-radiant

lemma nth-of-radiant-1 [simp]:
 of-radiant ω $ 1 = cos ω
⟨proof⟩

lemma nth-of-radiant-2 [simp]:
 of-radiant ω $ 2 = sin ω
⟨proof⟩

lemma norm-of-radiant:
 norm (of-radiant ω) = 1
⟨proof⟩
lemma of-radiant-plus-2pi:
\[
\text{of-radiant } (\omega + 2 \cdot \pi) = \text{of-radiant } \omega
\]
⟨proof⟩

lemma of-radiant-minus-2pi:
\[
\text{of-radiant } (\omega - 2 \cdot \pi) = \text{of-radiant } \omega
\]
⟨proof⟩

1.2.3 Lemma on normalize

lemma normalize-eq:
\[
\text{norm } p \cdot_R \text{normalize } p = p
\]
⟨proof⟩

lemma norm-normalize:
\[
\text{norm } (\text{normalize } p) = 1
\]
⟨proof⟩

lemma nth-normalize [simp]:
\[
\text{normalize } p \cdot i \leq 1
\]
⟨proof⟩

lemma normalize-square:
\[
(\text{normalize } p \cdot 1)^2 + (\text{normalize } p \cdot 2)^2 = 1
\]
⟨proof⟩

lemma nth-normalize-ge-zero-iff:
\[
0 \leq \text{normalize } p \cdot i \iff 0 \leq p \cdot i
\]
⟨proof⟩

lemma nth-normalize-less-zero-iff:
\[
\text{normalize } p \cdot i < 0 \iff p \cdot i < 0
\]
⟨proof⟩

lemma normalize-boundary-iff:
\[
|\text{normalize } p \cdot 1| = 1 \iff p \cdot 2 = 0
\]
⟨proof⟩

lemma between-normalize-if-distant-from-0:

- assumes \(\text{norm } \ p \geq 1 \)
- shows between \((0, \ p)\) \(\text{normalize } p\)
⟨proof⟩

lemma between-normalize-if-near-0:

- assumes \(\text{norm } \ p \leq 1 \)
- shows between \((0, \ \text{normalize } p)\) \(\ p\)
⟨proof⟩
1.2.4 Lemmas on \textit{radiant-of}

\textbf{lemma} \textit{radiant-of}:
\[\theta \leq \text{radiant-of}\ p \land \text{radiant-of}\ p < 2 \star \pi \land \text{of-radiant}\ (\text{radiant-of}\ p) = \text{normalize}\ p \] \langle proof \rangle

\textbf{lemma} \textit{radiant-of-bounds} [simp]:
\[\theta \leq \text{radiant-of}\ p \text{ radiant-of}\ p < 2 \star \pi \] \langle proof \rangle

\textbf{lemma} \textit{radiant-of-weak-ubound} [simp]:
\[\text{radiant-of}\ p \leq 2 \star \pi \] \langle proof \rangle

1.2.5 Main Equations for Transforming to Polar Form

\textbf{lemma} \textit{polar-form-eq}:
\[\text{norm}\ p \star R \text{ of-radiant}\ (\text{radiant-of}\ p) = p \] \langle proof \rangle

\textbf{lemma} \textit{relative-polar-form-eq}:
\[Q + \text{dist}\ P Q \star R \text{ of-radiant}\ (\text{radiant-of}\ (P - Q)) = P \] \langle proof \rangle

1.3 Ptolemy’s Theorem

\textbf{lemma} \textit{dist-circle-segment}:
\textbf{assumes} \[0 \leq \text{radius}\ 0 \leq \alpha \leq \beta \leq 2 \star \pi \]
\textbf{shows} \[\text{dist}\ (\text{center} + \text{radius} \star R \text{ of-radiant}\ \alpha) (\text{center} + \text{radius} \star R \text{ of-radiant}\ \beta) \]
\[= 2 \star \text{radius} \star \sin ((\beta - \alpha) / 2) \]
\[\text{(is lhs = rhs)} \] \langle proof \rangle

\textbf{theorem} \textit{ptolemy-trigonometric}:
\textbf{fixes} \[\omega_1 \omega_2 \omega_3 :: \text{real} \]
\textbf{shows} \[\sin (\omega_1 + \omega_2) \star \sin (\omega_2 + \omega_3) = \sin \omega_1 \star \sin \omega_3 + \sin \omega_2 \star \sin (\omega_1 + \omega_2 + \omega_3) \] \langle proof \rangle

\textbf{theorem} \textit{ptolemy}:
\textbf{fixes} \[A B C D \text{ center} :: \text{real} \]
\textbf{assumes} \[\text{dist}\ \text{center} A = \text{radius}\ \text{and} \ dist\ \text{center} B = \text{radius} \]
\textbf{assumes} \[\text{dist}\ \text{center} C = \text{radius}\ \text{and} \ dist\ \text{center} D = \text{radius} \]
\textbf{assumes} \text{ordering-of-points}:
\[\text{radiant-of}\ (A - \text{center}) \leq \text{radiant-of}\ (B - \text{center}) \]
\[\text{radiant-of}\ (B - \text{center}) \leq \text{radiant-of}\ (C - \text{center}) \]
\[\text{radiant-of}\ (C - \text{center}) \leq \text{radiant-of}\ (D - \text{center}) \]
\textbf{shows} \[\text{dist}\ A C \star \text{dist}\ B D = \text{dist}\ A B \star \text{dist}\ C D + \text{dist}\ A D \star \text{dist}\ B C \] \langle proof \rangle
References

