Ptolemy’s Theorem

Lukas Bulwahn

April 20, 2020

Abstract

This entry provides an analytic proof to Ptolemy’s Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison’s HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].

Contents

1 Ptolemy’s Theorem

1.1 Preliminaries

1.1.1 Additions to Rat theory

1.1.2 Additions to Transcendental theory

1.1.3 Addition to Finite-Cartesian-Product theory

1.2 Polar Form of Two-Dimensional Real-Valued Vectors

1.2.1 Definitions to Transfer to Polar Form and Back

1.2.2 Lemmas on \textit{of-radiant}

1.2.3 Lemmas on \textit{normalize}

1.2.4 Lemmas on \textit{radiant-of}

1.2.5 Main Equations for Transforming to Polar Form

1.3 Ptolemy’s Theorem

1 Ptolemy’s Theorem

theory Ptolemys-Theorem

imports

HOL-Analysis.Multivariate-Analysis

begin

1.1 Preliminaries

1.1.1 Additions to Rat theory

hide-const (open) normalize
1.1.2 Additions to Transcendental theory

Lemmas about \(\arcsin \) and \(\arccos \) commonly involve to show that their argument is in the domain of those partial functions, i.e., the argument \(y \) is between \(-1\) and \(1\). As the argumentation for \(-1 \leq y \) and \(y \leq 1\) is often very similar, we prefer to prove \(|y| \leq 1 \) to the two goals above.

The lemma for rewriting the term \(\cos (\arccos y) \) is already provided in the Isabelle distribution with name \texttt{cos-arccos-abs}. Here, we further provide the analogue on \(\arcsin \) for rewriting \(\sin (\arcsin y) \).

\begin{verbatim}
lemma \(\sin\)-arcsin-abs: \(|y| \leq 1 \implies \sin (\arcsin y) = y\)
\end{verbatim}

The further lemmas are the required variants from existing lemmas \texttt{arccos-lbound} and \texttt{arccos-ubound}.

\begin{verbatim}
lemma \(\arccos\)-lbound-abs \[simp\]:
\(|y| \leq 1 \implies 0 \leq \arccos y\)
\end{verbatim}

\begin{verbatim}
lemma \(\arccos\)-ubound-abs \[simp\]:
\(|y| \leq 1 \implies \arccos y \leq \pi\)
\end{verbatim}

As we choose angles to be between \(0\) between \(2 \times \pi\), we need some lemmas to reason about the sign of \(\sin x\) for angles \(x\).

\begin{verbatim}
lemma \(\sin\)-ge-zero-iff:
\begin{itemize}
 \item assumes \(0 \leq x \times 2 \times \pi\)
 \item shows \(0 \leq \sin x \iff x \leq \pi\)
\end{itemize}
\end{verbatim}

\begin{verbatim}
lemma \(\sin\)-less-zero-iff:
\begin{itemize}
 \item assumes \(0 \leq x \times 2 \times \pi\)
 \item shows \(\sin x < 0 \iff \pi < x\)
\end{itemize}
\end{verbatim}

1.1.3 Addition to Finite-Cartesian-Product theory

Here follow generally useful additions and specialised equations for two-dimensional real-valued vectors.

\begin{verbatim}
lemma \(\text{axis-nth-eq-0}\) \[simp\]:
\begin{itemize}
 \item assumes \(i \neq j\)
 \item shows \(\text{axis \(i\) \(x\ \$ \(j\) = 0}\)
\end{itemize}
\end{verbatim}

\begin{verbatim}
lemma \(\text{norm-axis}\):
\begin{itemize}
 \item fixes \(x::\text{real}\)
 \item shows \(\text{norm (axis \(i\) \(x\) = abs \(x\))}\)
\end{itemize}
\end{verbatim}
lemma norm-eq-on-real-2-vec:
 fixes \(x :: \mathbb{R}^2 \)
 shows \(\|x\| = \sqrt{(x_1)^2 + (x_2)^2} \)
⟨proof⟩

lemma dist-eq-on-real-2-vec:
 fixes \(a, b :: \mathbb{R}^2 \)
 shows \(d(a, b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2} \)
⟨proof⟩

1.2 Polar Form of Two-Dimensional Real-Valued Vectors

1.2.1 Definitions to Transfer to Polar Form and Back

definition of-radiant :: \(\mathbb{R} \Rightarrow \mathbb{R}^2 \)
where
 \(\text{of-radiant } \omega = \text{axis 1 } (\cos \omega) + \text{axis 2 } (\sin \omega) \)

definition normalize :: \(\mathbb{R}^2 \Rightarrow \mathbb{R}^2 \)
where
 \(\text{normalize } p = (\text{if } p = 0 \text{ then axis 1 } 1 \text{ else } (1 / \|p\|) \ast_R p) \)

definition radiant-of :: \(\mathbb{R}^2 \Rightarrow \mathbb{R} \)
where
 \(\text{radiant-of } p = (\text{THE } \omega. 0 \leq \omega \land \omega < 2 \ast \pi \land \text{of-radiant } \omega = \text{normalize } p) \)

The vector \(\text{of-radiant } \omega \) is the vector with length 1 and angle \(\omega \) to the first axis. We normalize vectors to length 1 keeping their orientation with the normalize function. Conversely, \(\text{radiant-of } p \) is the angle of vector \(p \) to the first axis, where we choose \(\text{radiant-of} \) to return angles between 0 and \(2 \ast \pi \), following the usual high-school convention. With these definitions, we can express the main result \(\|p\| \ast_R \text{of-radiant } (\text{radiant-of } p) = p \). Note that the main result holds for any definition of \(\text{radiant-of} \). So, we choose to define \(\text{normalize 0} \) and \(\text{radiant-of 0} \), such that \(\text{radiant-of 0} = 0 \).

1.2.2 Lemmas on \(\text{of-radiant} \)

lemma nth-of-radiant-1 [simp]:
 \(\text{of-radiant } \omega \ast 1 = \cos \omega \)
⟨proof⟩

lemma nth-of-radiant-2 [simp]:
 \(\text{of-radiant } \omega \ast 2 = \sin \omega \)
⟨proof⟩

lemma norm-of-radiant:
 \(\|\text{of-radiant } \omega\| = 1 \)
⟨proof⟩
lemma of-radiant-plus-2pi:
\[\text{of-radiant} (\omega + 2 \pi) = \text{of-radiant} \omega \]
(proof)

lemma of-radiant-minus-2pi:
\[\text{of-radiant} (\omega - 2 \pi) = \text{of-radiant} \omega \]
(proof)

1.2.3 Lemmas on normalize

lemma normalize-eq:
\[\text{norm} p \cdot R \cdot \text{normalize} p = p \]
(proof)

lemma norm-normalize:
\[\text{norm} \ (\text{normalize} p) = 1 \]
(proof)

lemma nth-normalize [simp]:
\[|\text{normalize} p \$ i| \leq 1 \]
(proof)

lemma normalize-square:
\[(\text{normalize} p \$ 1)^2 + (\text{normalize} p \$ 2)^2 = 1 \]
(proof)

lemma nth-normalize-ge-zero-iff:
\[0 \leq \text{normalize} p \$ i \iff 0 \leq p \$ i \]
(proof)

lemma nth-normalize-less-zero-iff:
\[\text{normalize} p \$ i < 0 \iff p \$ i < 0 \]
(proof)

lemma normalize-boundary-iff:
\[|\text{normalize} p \$ 1| = 1 \iff p \$ 2 = 0 \]
(proof)

lemma between-normalize-if-distant-from-0:
assumes \text{norm} p \geq 1
shows between \((0, p)\) (\text{normalize} p)
(proof)

lemma between-normalize-if-near-0:
assumes \text{norm} p \leq 1
shows between \((0, \text{normalize} p)\) p
(proof)
1.2.4 Lemmas on \texttt{radiant-of}

\textbf{lemma} \texttt{radiant-of}:\[0 \leq \texttt{radiant-of} \ p \land \texttt{radiant-of} \ p < 2 \ast \pi \land \texttt{of-radiant} \ (\texttt{radiant-of} \ p) = \texttt{normalize} \ p\)

\langle \text{proof} \rangle

\textbf{lemma} \texttt{radiant-of-bounds} \ [\texttt{simp}]:\[0 \leq \texttt{radiant-of} \ p \ \texttt{radiant-of} \ p < 2 \ast \pi\)

\langle \text{proof} \rangle

\textbf{lemma} \texttt{radiant-of-weak-ubound} \ [\texttt{simp}]:\[\texttt{radiant-of} \ p \leq 2 \ast \pi\)

\langle \text{proof} \rangle

1.2.5 Main Equations for Transforming to Polar Form

\textbf{lemma} \texttt{polar-form-eq}:\[\texttt{norm} \ p \ast R \ \texttt{of-radiant} \ (\texttt{radiant-of} \ p) = p\)

\langle \text{proof} \rangle

\textbf{lemma} \texttt{relative-polar-form-eq}:\[Q + \texttt{dist} \ P \ Q \ast R \ \texttt{of-radiant} \ (\texttt{radiant-of} \ (P - Q)) = P\)

\langle \text{proof} \rangle

1.3 Ptolemy’s Theorem

\textbf{lemma} \texttt{dist-circle-segment}:\[\texttt{assumes} \ 0 \leq \texttt{radius} \ \texttt{0} \leq \alpha \ \alpha \leq \beta \ \beta \leq 2 \ast \pi \]
\texttt{shows} \[\texttt{dist} \ (\texttt{center} + \texttt{radius} \ast R \ \texttt{of-radiant} \ \alpha) (\texttt{center} + \texttt{radius} \ast R \ \texttt{of-radiant} \ \beta) = 2 \ast \texttt{radius} \ast \sin \ (\beta - \alpha) / 2\]
\[\texttt{(is \ ?lhs = ?rhs)}\]

\langle \text{proof} \rangle

\textbf{theorem} \texttt{ptolemy-trigonometric}:\[\texttt{fixes} \ \omega_1 \ \omega_2 \ \omega_3 :: \texttt{real} \]
\texttt{shows} \[\sin (\omega_1 + \omega_2) \ast \sin (\omega_2 + \omega_3) = \sin \omega_1 \ast \sin \omega_3 + \sin \omega_2 \ast \sin (\omega_1 + \omega_2 + \omega_3)\]

\langle \text{proof} \rangle

\textbf{theorem} \texttt{ptolemy}:\[\texttt{fixes} \ A \ B \ C \ D \ \texttt{center} :: \texttt{real} \ast 2 \]
\texttt{assumes} \[\texttt{dist} \ \texttt{center} \ A = \texttt{radius} \ \texttt{and} \ \texttt{dist} \ \texttt{center} \ B = \texttt{radius} \]
\texttt{assumes} \[\texttt{dist} \ \texttt{center} \ C = \texttt{radius} \ \texttt{and} \ \texttt{dist} \ \texttt{center} \ D = \texttt{radius} \]
\texttt{assumes} \texttt{ordering-of-points}:\[\texttt{radiant-of} \ (A - \texttt{center}) \leq \texttt{radiant-of} \ (B - \texttt{center}) \]
\texttt{radiant-of} \ (B - \texttt{center}) \leq \texttt{radiant-of} \ (C - \texttt{center}) \]
\texttt{radiant-of} \ (C - \texttt{center}) \leq \texttt{radiant-of} \ (D - \texttt{center}) \]
\texttt{shows} \[\texttt{dist} \ A \ C \ast \texttt{dist} \ B \ D = \texttt{dist} \ A \ B \ast \texttt{dist} \ C \ D + \texttt{dist} \ A \ D \ast \texttt{dist} \ B \ C\]

\langle \text{proof} \rangle
References

