Ptolemy’s Theorem
Lukas Bulwahn
February 23, 2021

Abstract
This entry provides an analytic proof to Ptolemy’s Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison’s HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].

Contents
1 Ptolemy’s Theorem 1
 1.1 Preliminaries . 1
 1.1.1 Additions to Rat theory 1
 1.1.2 Additions to Transcendental theory 2
 1.1.3 Addition to Finite-Cartesian-Product theory 3
 1.2 Polar Form of Two-Dimensional Real-Valued Vectors 3
 1.2.1 Definitions to Transfer to Polar Form and Back . . . 3
 1.2.2 Lemmas on of-radiant 4
 1.2.3 Lemmas on normalize 4
 1.2.4 Lemmas on radiant-of 6
 1.2.5 Main Equations for Transforming to Polar Form . . . 8
 1.3 Ptolemy’s Theorem . 8

1 Ptolemy’s Theorem
theory Ptolemys-Theorem
imports
 HOL-Analysis.Multivariate-Analysis
begin

1.1 Preliminaries

1.1.1 Additions to Rat theory
hide-const (open) normalize
1.1.2 Additions to Transcendental theory

Lemmas about \arcsin and \arccos commonly involve to show that their argument is in the domain of those partial functions, i.e., the argument y is between -1 and 1. As the argumentation for $-1 \leq y$ and $y \leq 1$ is often very similar, we prefer to prove $|y| \leq 1$ to the two goals above.

The lemma for rewriting the term $\cos (\arccos y)$ is already provided in the Isabelle distribution with name cos-arccos-abs. Here, we further provide the analogue on \arcsin for rewriting $\sin (\arcsin y)$.

lemma sin-arcsin-abs:

$|y| \leq 1 \Rightarrow \sin (\arcsin y) = y$

by $(\text{simp add: abs-le-iff})$

The further lemmas are the required variants from existing lemmas arccos-lbound and arccos-ubound.

lemma arccos-lbound-abs [simp]:

$|y| \leq 1 \Rightarrow 0 \leq \arccos y$

by $(\text{simp add: arccos-lbound})$

lemma arccos-ubound-abs [simp]:

$|y| \leq 1 \Rightarrow \arccos y \leq \pi$

by $(\text{simp add: arccos-ubound})$

As we choose angles to be between 0 between $2 \times \pi$, we need some lemmas to reason about the sign of $\sin x$ for angles x.

lemma sin-ge-zero-iff:

assumes $0 \leq x < 2 \times \pi$

shows $0 \leq \sin x \longleftrightarrow x \leq \pi$

proof

assume $0 \leq \sin x$

show $x \leq \pi$

proof (rule ccontr)

assume $\neg x \leq \pi$

from this $|x < 2 \times \pi$ have $\sin x < 0$

using sin-lt-zero by auto

from this $0 \leq \sin x$ show False by auto

qed

next

assume $x \leq \pi$

from this $0 \leq x$ show $0 \leq \sin x$ by $(\text{simp add: sin-ge-zero})$

qed

lemma sin-less-zero-iff:

assumes $0 \leq x < 2 \times \pi$

shows $\sin x < 0 \longleftrightarrow \pi < x$

using assms sin-ge-zero-iff by fastforce
1.1.3 Addition to Finite-Cartesian-Product theory

Here follow generally useful additions and specialised equations for two-dimensional real-valued vectors.

lemma *axis-nth-eq-0* [simp]:
- **assumes** $i \neq j$
- **shows** $\langle \text{axis } i \rangle \times \langle \text{axis } j \rangle = 0$

using *assms unfolding* *axis-def by simp*

lemma *norm-axis*:
- **fixes** $x :: \text{real}$
- **shows** $\|\langle \text{axis } i \rangle \times x\| = \|x\|

by (*simp add:* *norm-eq-sqrt-inner inner-axis-axis*)

lemma *norm-eq-on-real-2-vec*:
- **fixes** $x :: \text{real }^2$
- **shows** $\|x\| = \sqrt{(\text{axis } 1 \cdot x_1)^2 + (\text{axis } 2 \cdot x_2)^2}$

by (*simp add: norm-eq-sqrt-inner inner-vec-def UNIV-2 power2-eq-square*)

lemma *dist-eq-on-real-2-vec*:
- **fixes** $a \cdot b :: \text{real }^2$
- **shows** $d \langle a \rangle \cdot \langle b \rangle = \sqrt{(\text{axis } 1 \cdot a - \text{axis } 1 \cdot b)^2 + (\text{axis } 2 \cdot a - \text{axis } 2 \cdot b)^2}$

unfolding *dist-norm norm-eq-on-real-2-vec by simp*

1.2 Polar Form of Two-Dimensional Real-Valued Vectors

1.2.1 Definitions to Transfer to Polar Form and Back

definition *of-radiant* :: $\text{real } \Rightarrow \text{real }^2$

where
$\langle \text{of-radiant } \omega \rangle = \langle \text{axis } 1 \rangle (\cos \omega) + \langle \text{axis } 2 \rangle (\sin \omega)$

definition *normalize* :: $\text{real }^2 \Rightarrow \text{real }^2$

where
$\langle \text{normalize } p \rangle = (\text{if } p = 0 \text{ then } \langle \text{axis } 1 \rangle 1 \text{ else } (1 / \|p\|) \cdot R p)$

definition *radiant-of* :: $\text{real }^2 \Rightarrow \text{real}$

where
$\langle \text{radiant-of } p \rangle = (\text{THE } \omega. \ 0 \leq \omega \land \omega < 2 \cdot \pi \land \text{of-radiant } \omega = \text{normalize } p)$

The vector *of-radiant* ω is the vector with length 1 and angle ω to the first axis. We normalize vectors to length 1 keeping their orientation with the normalize function. Conversely, *radiant-of* p is the angle of vector p to the first axis, where we choose *radiant-of* to return angles between 0 and $2 \cdot \pi$, following the usual high-school convention. With these definitions, we can express the main result $\|p\|^R \cdot \langle \text{of-radiant } \rangle (\text{radiant-of } p) = p$. Note that the main result holds for any definition of *radiant-of* 0. So, we choose to define *normalize* 0 and *radiant-of* 0, such that *radiant-of* 0 = 0.
1.2.2 Lemmas on of-radiant

lemma nth-of-radiant-1 [simp]:
of-radiant ω $1 = \cos \omega$
unfolding of-radiant-def by simp

lemma nth-of-radiant-2 [simp]:
of-radiant ω $2 = \sin \omega$
unfolding of-radiant-def by simp

lemma norm-of-radiant:
norm (ω) = 1
unfolding of-radiant-def norm-eq-on-real-2-vec by simp

lemma of-radiant-plus-2pi:
of-radiant ($\omega + 2 \times pi$) = of-radiant ω
unfolding of-radiant-def by simp

lemma of-radiant-minus-2pi:
of-radiant ($\omega - 2 \times pi$) = of-radiant ω
proof
 have of-radiant ($\omega - 2 \times pi$) = of-radiant ($\omega - 2 \times pi + 2 \times pi$)
 by (simp only: of-radiant-plus-2pi)
 also have ... = of-radiant ω by simp
 finally show ?thesis.
qed

1.2.3 Lemmas on normalize

lemma normalize-eq:
norm $p \times_R$ normalize $p = p$
unfolding normalize-def by simp

lemma norm-normalize:
norm (normalize p) = 1
unfolding normalize-def by (auto simp add: norm-axis)

lemma nth-normalize [simp]:
|normalize p |i| |\leq 1
using norm-normalize component-le-norm-cart by metis

lemma normalize-square:
(normalize p |1|^2 + (normalize p |2|^2 = 1
using dot-square-norm[of normalize p]
by (simp add: inner-vec-def UNIV-2 power2-eq-square norm-normalize)

lemma nth-normalize-ge-zero-iff:
$0 \leq$ normalize p i $\longleftrightarrow 0 \leq p$ i
proof
assume $0 \leq$ normalize p i
from this show \(0 \leq p \$ i \)

unfolding normalize-def by (auto split: if-split-asn simp add: zero-le-divide-iff)

next
assume \(0 \leq p \$ i \)
have \(0 \leq \text{axis 1} (1 :: \text{real}) \$ i \)
using exhaust-2[of \(i \)] by auto
from this \(0 \leq p \$ i \): show \(0 \leq \text{normalize} p \$ i \)
unfolding normalize-def by auto

qed

lemma nth-normalize-less-zero-iff:
\(\text{normalize} p \$ i < 0 \iff p \$ i < 0 \)
using nth-normalize-ge-zero-iff leD leI by metis

lemma normalize-boundary_iff:
\(|\text{normalize} p \$ 1| = 1 \iff p \$ 2 = 0 \)

proof
assume \(|\text{normalize} p \$ 1| = 1 \)
from this have \(1: (p \$ 1) \sim 2 = \text{norm} p \sim 2 \)
unfolding normalize-def by (auto split: if-split-asn simp add: power2_eq_iff)
moreover have \((p \$ 1) \sim 2 + (p \$ 2) \sim 2 = \text{norm} p \sim 2 \)
using norm_eq_on_real_2_vec by auto
ultimately show \(p \$ 2 = 0 \) by simp

next
assume \(p \$ 2 = 0 \)
from this have \(|p \$ 1| = \text{norm} p \)
by (auto simp add: norm_eq_on_real_2_vec)
from this show \(|\text{normalize} p \$ 1| = 1 \)
unfolding normalize_def by simp

qed

lemma between-normalize-if-distant-from-0:
 assumes \(\text{norm} p \geq 1 \)
 shows between \((0, p)\) (normalize p)
using assms by (auto simp add: between_mem_segment closed_segment_def normalize_def)

lemma between-normalize-if-near-0:
 assumes \(\text{norm} p \leq 1 \)
 shows between \((0, \text{normalize} p)\) \(p \)

proof
have \(0 \leq \text{norm} p \) by simp
from assms have \(p = (\text{norm} p / \text{norm} p) \ast_R p \wedge 0 \leq \text{norm} p \wedge \text{norm} p \leq 1 \) by auto
from this have \(\exists u. p = (u / \text{norm} p) \ast_R p \wedge 0 \leq u \wedge u \leq 1 \) by blast
from this show \(\text{thesis} \)
by (auto simp add: between_mem_segment closed_segment_def normalize_def)

qed
1.2.4 Lemmas on radiant-of

Lemma radiant-of:
\[0 \leq \text{radiant-of } p \land \text{radiant-of } p < 2 \cdot \pi \land \text{of-radiant } (\text{radiant-of } p) = \text{normalize } p \]

Proof –

Let $\ ?a = \text{if } 0 \leq p \cdot 2 \text{ then } \arccos (\text{normalize } p \cdot 1) \text{ else } \arccos (- (\text{normalize } p \cdot 1))$

Have $0 \leq ?a \land ?a < 2 \cdot \pi \land \text{of-radiant } ?a = \text{normalize } p$

Proof –

Have $0 \leq ?a$ by auto

Moreover have $?a < 2 \cdot \pi$

Proof cases

Assume $0 \leq p \cdot 2$

From this have $?a \leq \pi$ by simp

From this show $?\text{thesis}$

Using $\pi \cdot \text{gt-zero}$ by linarith

Next

Assume $\sim 0 \leq p \cdot 2$

Have $\arccos (- \text{normalize } p \cdot 1) < \pi$

Proof –

Have $|\text{normalize } p \cdot 1| \neq 1$

Using $\sim 0 \leq p \cdot 2$ by (simp only: normalize-boundary-iff)

From this have $\arccos (- \text{normalize } p \cdot 1) \neq \pi$

Unfolding $\arccos\text{-minus-}1\text{[symmetric]}$ by (subst $\arccos\text{-iff}$) auto

Moreover have $\arccos (- \text{normalize } p \cdot 1) \leq \pi$ by simp

Ultimately show $\arccos (- \text{normalize } p \cdot 1) < \pi$ by linarith

Qed

From this $\sim 0 \leq p \cdot 2$ show $?\text{thesis}$ by simp

Qed

Moreover have $\text{of-radiant } ?a = \text{normalize } p$

Proof –

Have $\text{of-radiant } ?a \cdot i = \text{normalize } p \cdot i$ for i

Proof –

Have $\text{of-radiant } ?a \cdot i = \text{normalize } p \cdot i$

Unfolding of-radiant-def by (simp add: cos-arccos-abs)

Moreover have $\text{of-radiant } ?a \cdot 2 = \text{normalize } p \cdot 2$

Proof cases

Assume $0 \leq p \cdot 2$

Have $\sin (\arccos (\text{normalize } p \cdot 1)) = \sqrt{1 - (\text{normalize } p \cdot 1)^2}$

Using (simp add: sin-arccos-abs)

Also have $\ldots = \text{normalize } p \cdot 2$

Proof –

Have $1 - (\text{normalize } p \cdot 1)^2 = (\text{normalize } p \cdot 2)^2$

Using $\text{normalize-square}[p]$ by auto

From this $0 \leq p \cdot 2$ show $?\text{thesis}$ by (simp add: nth-normalize-ge-zero-iff)

Qed

Finally show $?\text{thesis}$

Using $0 \leq p \cdot 2$ unfolding of-radiant-def by auto

Next
assume $\neg 0 \leq p \leq 2$

have $- \sin (\arccos (- \text{normalize } p \leq 1)) = - \sqrt{1 - (\text{normalize } p \leq 1)^2}$
by (simp add: sin-arccos-abs)
also have $\ldots = \text{normalize } p \leq 2$
proof$
\quad \text{have } 1 - (\text{normalize } p \leq 1)^2 = (\text{normalize } p \leq 2)^2$
using normalize-square[of p] by auto
from this ($\neg 0 \leq p \leq 2$) show ?thesis
using nth-normalize-ge-zero-iff by fastforce
qed
finally show ?thesis
using ($\neg 0 \leq p \leq 2$) unfolding of-radiant-def by auto
qed
ultimately show ?thesis
unfolding of-radiant-def by (rule theI)
moreover { fix ω
assume $0 \leq \omega$ ∧ $\omega < 2 * \pi$ ∧ of-radiant $\omega = \text{normalize } p$
from this have $0 \leq \omega$ ∧ $\omega < 2 * \pi$ normalize $p = \text{of-radiant } \omega$ by auto
from this have $\cos \omega = \text{normalize } p \leq 1$ $\sin \omega = \text{normalize } p \leq 2$ by auto
have $\omega = ?a$
proof cases
assume $0 \leq p \leq 2$
from this have $\omega \leq \pi$
using ($0 \leq \omega$) $\omega < 2 * \pi$ ($\sin \omega = \text{normalize } p \leq 2$)
by (simp add: sin-ge-zero-iff[symmetric] nth-normalize-ge-zero-iff)
from ($0 \leq \omega$) this have $\omega = \arccos (\cos \omega)$ by (simp add: arccos-cos)
from $\langle \cos \omega = \text{normalize } p \leq 1$ \rangle this have $\omega = \arccos (\text{normalize } p \leq 1)$
by (simp add: arccos-eq-iff)
from this show $\omega = ?a$ using ($0 \leq p \leq 2$) by auto
next
assume $\neg 0 \leq p \leq 2$
from this have $\omega > \pi$
using ($0 \leq \omega$) $\omega < 2 * \pi$ ($\sin \omega = \text{normalize } p \leq 2$)
by (simp add: sin-less-zero-iff[symmetric] nth-normalize-less-zero-iff)
from this $\omega < 2 * \pi$ have $\omega - \pi = \arccos (\omega - \pi)$
by (auto simp only: arccos-cos)
from this $\langle \cos \omega = \text{normalize } p \leq 1$ \rangle have $\omega - \pi = \arccos (- \text{normalize } p \leq 1)$
by simp
from this have $\omega = \pi + \arccos (- \text{normalize } p \leq 1)$ by simp
from this show $\omega = ?a$ using ($\neg 0 \leq p \leq 2$) by auto
qed
}
ultimately show ?thesis
unfolding radiant-of-def by (rule theI)
lemma radiant-of-bounds [simp]:
0 ≤ radiant-of p radiant-of p < 2 * pi
using radiant-of by auto

lemma radiant-of-weak-ubound [simp]:
radiant-of p ≤ 2 * pi
using radiant-of-bounds(2)[of p] by linarith

1.2.5 Main Equations for Transforming to Polar Form

lemma polar-form-eq:
norm p * R of-radiant (radiant-of p) = p
using radiant-of normalize-eq by simp

lemma relative-polar-form-eq:
Q + dist P Q * R of-radiant (radiant-of (P − Q)) = P
proof
have norm (P − Q) * R of-radiant (radiant-of (P − Q)) = P − Q
 unfolding polar-form-eq ..
moreover have dist P Q = norm (P − Q) by (simp add: dist-norm)
ultimately show ?thesis by (metis add.commute diff-add-cancel)
qed

1.3 Ptolemy’s Theorem

lemma dist-circle-segment:
assumes 0 ≤ radius 0 ≤ α α ≤ β β ≤ 2 * pi
shows dist (center + radius * R of-radiant α) (center + radius * R of-radiant β)
 = 2 * radius * sin ((β − α) / 2)
(is ?lhs = ?rhs)
proof
have trigonometry: (cos α − cos β)² + (sin α − sin β)² = (2 * sin ((β − α) / 2)²)
 unfolding sin-diff-minus by algebra
also have .. . = (2 * sin ((β − α) / 2))² * ((sin ((α + β) / 2))² + (cos ((α + β) / 2))²)
unfolding sin-diff-minus by algebra
also have .. . = (2 * sin ((β − α) / 2))² by simp
finally show ?thesis .
qed

from assms have 0 ≤ sin ((β − α) / 2) by (simp add: sin-ge-zero)
have ?lhs = sqrt (radius² * ((cos α − cos β)² + (sin α − sin β)²))
unfolding \text{dist-eq-on-real-2-vec} \text{by simp algebra}
also have \ldots = \sqrt{(\text{radius}^2 \ast (2 \ast \sin((\beta - \alpha) / 2)))} \text{by (simp add: trigonometry)}
also have \ldots = \text{?rhs}
using (\text{0} \leq \text{radius}) \text{0} \leq \text{sin((\beta - \alpha) / 2))} \text{by (simp add: real-sqrt-mult)}
finally show \text{?thesis} .
qd

\text{theorem ptolemy-trigonometric}:
fixes \omega_1 \omega_2 \omega_3 :: \text{real}
shows \sin(\omega_1 + \omega_2) \ast \sin(\omega_2 + \omega_3) = \sin(\omega_1 \ast \sin(\omega_3 + \sin(\omega_2 \ast \sin(\omega_1 + \omega_2 + \omega_3)))
proof –
\text{have sin(\omega_1 + \omega_2) \ast sin(\omega_2 + \omega_3) = ((\sin \omega_2)^2 + (\cos \omega_2)^2) \ast \sin \omega_1 \ast sin(\omega_3 + \sin(\omega_2 \ast \sin(\omega_1 + \omega_2 + \omega_3)))}
\text{by (simp only: sin-add cos-add) algebra}
also have \ldots = \text{sin \omega_1} \ast \sin \omega_3 + \sin \omega_2 \ast \sin(\omega_1 + \omega_2 + \omega_3) \text{by simp}
finally show \text{?thesis} .
qd

\text{theorem ptolemy}:
fixes A B C D center :: \text{real} ^{\text{2}}
assumes \text{dist center A = radius and dist center B = radius}
assumes \text{dist center C = radius and dist center D = radius}
assumes \text{ordering-of-points}:
\text{radiant-of (A - center) \leq} \text{radiant-of (B - center)}
\text{radiant-of (B - center) \leq} \text{radiant-of (C - center)}
\text{radiant-of (C - center) \leq} \text{radiant-of (D - center)}
shows \text{dist A C \ast dist B D = dist A B \ast dist C D} + \text{dist A D \ast dist B C}
proof –
\text{from \text{dist center A = radius} have} \text{0} \leq \text{radius by auto}
define \alpha \beta \gamma \delta
\text{where} \alpha = \text{radiant-of (A - center)} \text{and} \beta = \text{radiant-of (B - center)}
\text{and} \gamma = \text{radiant-of (C - center)} \text{and} \delta = \text{radiant-of (D - center)}
from ordering-of-points \text{have angle-basics:}
\alpha \leq \beta \leq \gamma \leq \delta
\text{0} \leq \text{\alpha} \leq \text{2} \ast \text{pi} \text{0} \leq \text{\beta} \leq \text{2} \ast \text{pi}
\text{0} \leq \gamma \leq \text{2} \ast \text{pi} \text{0} \leq \delta \leq \text{2} \ast \text{pi}
\text{unfolding \alpha-def \beta-def \gamma-def \delta-def by auto}
from \text{assms(1-4) have}
\text{A = center + radius \ast R of-radiant \alpha B = center + radius \ast R of-radiant \beta}
\text{C = center + radius \ast R of-radiant \gamma D = center + radius \ast R of-radiant \delta}
\text{unfolding \alpha-def \beta-def \gamma-def \delta-def}
\text{using \text{relative-polar-form-eq dist-commute by metis+}
from this have dist-eqs:
dist A C = 2 \ast \text{radius} \ast \sin((\gamma - \alpha) / 2)
dist B D = 2 \ast \text{radius} \ast \sin((\delta - \beta) / 2)
dist A B = 2 \ast \text{radius} \ast \sin((\beta - \alpha) / 2)
\[\text{dist } CD = 2 \times \text{radius} \times \sin \left(\frac{\delta - \gamma}{2} \right) \]
\[\text{dist } AD = 2 \times \text{radius} \times \sin \left(\frac{\delta - \alpha}{2} \right) \]
\[\text{dist } BC = 2 \times \text{radius} \times \sin \left(\frac{\gamma - \beta}{2} \right) \]

using angle-basics \(\text{radius} \geq 0 \) dist-circle-segment by (auto)

have \(\text{dist } AC \times \text{dist } BD = 4 \times \text{radius}^2 \times \sin \left(\frac{\gamma - \alpha}{2} \right) \times \sin \left(\frac{\delta - \beta}{2} \right) \)

unfolding dist-eqs by (simp add: power2-eq-square)
also have \(\ldots \times 4 \times \text{radius}^2 \times \left(\sin \left(\frac{\beta - \alpha}{2} \right) \times \sin \left(\frac{\delta - \gamma}{2} \right) + \sin \left(\frac{\gamma - \beta}{2} \right) \times \sin \left(\frac{\delta - \alpha}{2} \right) \right) \)
proof
\[\text{define } \omega_1, \omega_2, \omega_3 \text{ where } \omega_1 = \left(\frac{\beta - \alpha}{2} \right) \text{ and } \omega_2 = \left(\frac{\gamma - \beta}{2} \right) \text{ and } \omega_3 = \left(\frac{\delta - \gamma}{2} \right) \]
have \(\frac{\gamma - \alpha}{2} = \omega_1 + \omega_2 \text{ and } \frac{\delta - \beta}{2} = \omega_2 + \omega_3 \text{ and } \frac{\delta - \alpha}{2} = \omega_1 + \omega_2 + \omega_3 \)
unfolding \(\omega_1 \text{-def } \omega_2 \text{-def } \omega_3 \text{-def } \) by (auto simp add: field-simps)
have \(\sin \left(\frac{\gamma - \alpha}{2} \right) \times \sin \left(\frac{\delta - \beta}{2} \right) = \sin \left(\omega_1 + \omega_2 \right) \times \sin \left(\omega_2 + \omega_3 \right) \)
using \(\frac{\gamma - \alpha}{2} / 2 = \omega_1 + \omega_2 \) \(\frac{\delta - \beta}{2} / 2 = \omega_2 + \omega_3 \) by (simp only:)
also have \(\ldots = \sin \omega_1 \times \sin \omega_3 + \sin \omega_2 \times \sin \left(\omega_1 + \omega_2 + \omega_3 \right) \)
by (rule ptolemy-trigonometric)
also have \(\ldots = \left(\sin \left(\frac{\beta - \alpha}{2} \right) \times \sin \left(\frac{\delta - \gamma}{2} \right) \right) + \sin \left(\frac{\gamma - \beta}{2} \right) \times \sin \left(\frac{\delta - \alpha}{2} \right) \)
using \(\omega_1 \text{-def } \omega_2 \text{-def } \omega_3 \text{-def } \) \(\delta - \alpha \) / 2 = \(\omega_1 + \omega_2 + \omega_3 \) by (simp only:)
finally show ?thesis by simp
qed
also have \(\ldots = \text{dist } AB \times \text{dist } CD + \text{dist } AD \times \text{dist } BC \)
unfolding dist-eqs by (simp add: distrib-left power2-eq-square)
finally show ?thesis .
qed

end

References