Ptolemy's Theorem

Lukas Bulwahn

March 17, 2025

Abstract

This entry provides an analytic proof to Ptolemy's Theorem using polar form transformation and trigonometric identities. In this formalization, we use ideas from John Harrison's HOL Light formalization [1] and the proof sketch on the Wikipedia entry of Ptolemy's Theorem [3]. This theorem is the 95th theorem of the Top 100 Theorems list [2].

Contents

1	Pto	lemy's T	'heorem	1
	1.1	Preliminaries		1
		1.1.1 A	Additions to Rat theory	1
		1.1.2 A	Additions to Transcendental theory	2
		1.1.3 A	Addition to Finite-Cartesian-Product theory	3
	1.2	Polar Fo	orm of Two-Dimensional Real-Valued Vectors	3
		1.2.1 I	Definitions to Transfer to Polar Form and Back	3
		1.2.2 L	Lemmas on of-radiant	4
		1.2.3 L	Lemmas on normalize	4
		1.2.4 L	Lemmas on radiant-of	6
		1.2.5 N	Main Equations for Transforming to Polar Form	8
	1.3	Ptolemy	's Theorem	8

1 Ptolemy's Theorem

 $\begin{array}{l} \textbf{theory} \ Ptolemys\text{-}Theorem \\ \textbf{imports} \\ \ HOL-Analysis. \textit{Multivariate-Analysis} \\ \textbf{begin} \end{array}$

1.1 Preliminaries

1.1.1 Additions to Rat theory

hide-const (open) normalize

1.1.2 Additions to Transcendental theory

Lemmas about arcsin and arccos commonly involve to show that their argument is in the domain of those partial functions, i.e., the argument y is between -1 and 1. As the argumentation for $-1 \le y$ and $y \le 1$ is often very similar, we prefer to prove $|y| \le 1$ to the two goals above.

The lemma for rewriting the term $cos\ (arccos\ y)$ is already provided in the Isabelle distribution with name cos-arccos-abs. Here, we further provide the analogue on arcsin for rewriting $sin\ (arcsin\ y)$.

```
lemma sin-arcsin-abs: |y| \le 1 \implies sin (arcsin y) = y by (simp \ add: \ abs-le-iff)
```

The further lemmas are the required variants from existing lemmas arccos-lbound and arccos-ubound.

```
lemma arccos-lbound-abs [simp]:
|y| \le 1 \Longrightarrow 0 \le arccos y
by (simp \ add: \ arccos-lbound)

lemma arccos-ubound-abs [simp]:
|y| \le 1 \Longrightarrow arccos \ y \le pi
by (simp \ add: \ arccos-ubound)
```

As we choose angles to be between θ between $\theta * pi$, we need some lemmas to reason about the sign of $\sin x$ for angles x.

```
lemma sin-qe-zero-iff:
  assumes 0 \le x x < 2 * pi
  \mathbf{shows}\ \theta \leq \sin\,x \longleftrightarrow x \leq pi
  assume 0 \le \sin x
  show x \leq pi
  proof (rule ccontr)
    assume \neg x \leq pi
    from this \langle x < 2 * pi \rangle have sin x < \theta
      \mathbf{using} \ \mathit{sin-lt-zero} \ \mathbf{by} \ \mathit{auto}
    from this \langle 0 \leq \sin x \rangle show False by auto
  qed
\mathbf{next}
  assume x \leq pi
  from this \langle 0 \leq x \rangle show 0 \leq \sin x by (simp add: sin-ge-zero)
qed
lemma sin-less-zero-iff:
  assumes 0 \le x \ x < 2 * pi
  shows sin \ x < \theta \longleftrightarrow pi < x
using assms sin-ge-zero-iff by fastforce
```

1.1.3 Addition to Finite-Cartesian-Product theory

Here follow generally useful additions and specialised equations for twodimensional real-valued vectors.

```
lemma axis-nth-eq-0 [simp]:
 assumes i \neq j
 shows axis i x \$ j = 0
using assms unfolding axis-def by simp
lemma norm-axis:
 fixes x :: real
 shows norm (axis i x) = abs x
by (simp add: norm-eq-sqrt-inner inner-axis-axis)
lemma norm-eq-on-real-2-vec:
 fixes x :: real
 shows norm x = sqrt((x \$ 1) ^2 + (x \$ 2) ^2)
by (simp add: norm-eq-sqrt-inner inner-vec-def UNIV-2 power2-eq-square)
lemma dist-eq-on-real-2-vec:
 fixes a \ b :: real \ \widehat{\ } 2
 shows dist a b = sqrt((a \$ 1 - b \$ 1) ^2 + (a \$ 2 - b \$ 2) ^2)
unfolding dist-norm norm-eq-on-real-2-vec by simp
```

1.2 Polar Form of Two-Dimensional Real-Valued Vectors

1.2.1 Definitions to Transfer to Polar Form and Back

```
definition of-radiant :: real \Rightarrow real \ ^2 where of-radiant \omega = axis \ 1 \ (cos \ \omega) + axis \ 2 \ (sin \ \omega)
definition normalize :: real \ ^2 \Rightarrow real \ ^2 where normalize p = (if \ p = 0 \ then \ axis \ 1 \ 1 \ else \ (1 \ / \ norm \ p) \ *_R \ p)
definition radiant-of :: real \ ^2 \Rightarrow real where radiant-of p = (THE \ \omega. \ 0 \le \omega \land \omega < 2 * pi \land of-radiant \omega = normalize \ p)
```

The vector of-radiant ω is the vector with length 1 and angle ω to the first axis. We normalize vectors to length 1 keeping their orientation with the normalize function. Conversely, radiant-of p is the angle of vector p to the first axis, where we choose radiant-of to return angles between θ and θ * θ *

```
1.2.2 Lemmas on of-radiant
```

```
lemma nth-of-radiant-1 [simp]:
  of-radiant \omega  $ 1 = \cos \omega
unfolding of-radiant-def by simp
lemma nth-of-radiant-2 [simp]:
  of-radiant \omega $ 2 = \sin \omega
unfolding of-radiant-def by simp
lemma norm-of-radiant:
 norm (of\text{-}radiant \omega) = 1
unfolding of-radiant-def norm-eq-on-real-2-vec by simp
lemma of-radiant-plus-2pi:
  of-radiant (\omega + 2 * pi) = of-radiant \omega
unfolding of-radiant-def by simp
\mathbf{lemma} \ \textit{of-radiant-minus-2pi} :
  of-radiant (\omega - 2 * pi) = of-radiant \omega
proof -
 have of-radiant (\omega - 2 * pi) = of-radiant (\omega - 2 * pi + 2 * pi)
   by (simp only: of-radiant-plus-2pi)
 also have \dots = of-radiant \omega by simp
 finally show ?thesis.
qed
1.2.3
         Lemmas on normalize
lemma normalize-eq:
 norm p *_R normalize p = p
unfolding normalize-def by simp
lemma norm-normalize:
  norm (normalize p) = 1
unfolding normalize-def by (auto simp add: norm-axis)
lemma nth-normalize [simp]:
 |normalize p \$ i| \le 1
using norm-normalize component-le-norm-cart by metis
lemma normalize-square:
 (normalize \ p \ \$ \ 1)^2 + (normalize \ p \ \$ \ 2)^2 = 1
using dot-square-norm[of normalize p]
by (simp add: inner-vec-def UNIV-2 power2-eq-square norm-normalize)
\mathbf{lemma} \ \mathit{nth}\text{-}\mathit{normalize}\text{-}\mathit{ge}\text{-}\mathit{zero}\text{-}\mathit{iff}\text{:}
  0 \leq normalize p \$ i \longleftrightarrow 0 \leq p \$ i
proof
 assume 0 \leq normalize p \$ i
```

```
from this show 0 \le p \$ i
  unfolding normalize-def by (auto split: if-split-asm simp add: zero-le-divide-iff)
\mathbf{next}
  assume 0 \le p \ i
 have 0 \le axis \ 1 \ (1 :: real) \$
   using exhaust-2[of\ i] by auto
 \mathbf{from} \ this \ \langle \theta \leq p \ \$ \ i \rangle \ \mathbf{show} \ \theta \leq normalize \ p \ \$ \ i
   unfolding normalize-def by auto
qed
lemma nth-normalize-less-zero-iff:
  normalize p \ i < 0 \longleftrightarrow p \ i < 0
using nth-normalize-ge-zero-iff leD leI by metis
lemma normalize-boundary-iff:
  |normalize \ p \ \$ \ 1| = 1 \longleftrightarrow p \ \$ \ 2 = 0
proof
 assume |normalize p \$ 1| = 1
 from this have 1: (p \$ 1) \hat{2} = norm p \hat{2}
   unfolding normalize-def by (auto split: if-split-asm simp add: power2-eq-iff)
 moreover have (p \$ 1) \hat{2} + (p \$ 2) \hat{2} = norm p \hat{2}
   using norm-eq-on-real-2-vec by auto
  ultimately show p \$ 2 = 0 by simp
\mathbf{next}
 assume p \$ 2 = 0
 from this have |p \$ 1| = norm p
   by (auto simp add: norm-eq-on-real-2-vec)
 from this show |normalize p \$ 1| = 1
   unfolding normalize-def by simp
qed
lemma between-normalize-if-distant-from-0:
 assumes norm p \geq 1
 shows between (0, p) (normalize p)
using assms by (auto simp add: between-mem-segment closed-segment-def normal-
ize-def
lemma between-normalize-if-near-0:
 assumes norm p \leq 1
 shows between (0, normalize p) p
proof -
 have 0 \leq norm \ p \ by \ simp
  from assms have p = (norm \ p \ / \ norm \ p) *_R p \land 0 \le norm \ p \land norm \ p \le 1
by auto
 from this have \exists u. p = (u / norm p) *_R p \land 0 \leq u \land u \leq 1 by blast
 from this show ?thesis
   by (auto simp add: between-mem-segment closed-segment-def normalize-def)
qed
```

1.2.4 Lemmas on radiant-of

```
lemma radiant-of:
 0 \le radiant-of p \land radiant-of p < 2 * pi \land of-radiant (radiant-of p) = normalize
proof -
 let ?a = if \ 0 \le p \ 2 then arccos(normalize \ p \ 1) else pi + arccos(-(normalize \ 1))
 have 0 \le ?a \land ?a < 2 * pi \land of\text{-radiant }?a = normalize p
 proof -
   have 0 \le ?a by auto
   moreover have ?a < 2 * pi
   proof cases
     assume 0 \le p \$ 2
     from this have ?a \le pi by simp
     from this show ?thesis
       using pi-gt-zero by linarith
   \mathbf{next}
     assume \neg \theta \leq p \$ 2
     have arccos(-normalize p \$ 1) < pi
     proof -
       have |normalize p \$ 1| \neq 1
        using \langle \neg \theta \leq p \$ 2 \rangle by (simp only: normalize-boundary-iff)
       from this have arccos(-normalize p \$ 1) \neq pi
        unfolding arccos-minus-1[symmetric] by (subst arccos-eq-iff) auto
      moreover have arccos\ (-normalize\ p\ \$\ 1) \le pi\ \mathbf{by}\ simp
       ultimately show arccos(-normalize p \$ 1) < pi by linarith
     qed
     from this \langle \neg \theta \leq p \$ 2 \rangle show ?thesis by simp
   moreover have of-radiant ?a = normalize p
   proof -
     have of-radiant ?a \ i = normalize p \ i  for i
     proof -
       have of-radiant ?a \$ 1 = normalize p \$ 1
        unfolding of-radiant-def by (simp add: cos-arccos-abs)
       moreover have of-radiant ?a \$ 2 = normalize p \$ 2
       proof cases
        assume 0 \le p \$ 2
        have sin (arccos (normalize p \$ 1)) = sqrt (1 - (normalize p \$ 1) ^2)
          by (simp add: sin-arccos-abs)
        also have \dots = normalize p \$ 2
        proof -
          have 1 - (normalize \ p \ \$ \ 1)^2 = (normalize \ p \ \$ \ 2)^2
            using normalize-square [of p] by auto
       from this \langle 0 \leq p \ 2\rangle show ?thesis by (simp add: nth-normalize-ge-zero-iff)
        qed
        finally show ?thesis
          using \langle \theta \leq p \$ 2 \rangle unfolding of-radiant-def by auto
       \mathbf{next}
```

```
assume \neg \theta \leq p \$ 2
          have -\sin(\arccos(-normalize\ p\ \$\ 1)) = -\operatorname{sqrt}(1-(normalize\ p\ \$
(1)^2
           by (simp add: sin-arccos-abs)
          also have \dots = normalize p \$ 2
          proof -
            have 1 - (normalize \ p \ \$ \ 1)^2 = (normalize \ p \ \$ \ 2)^2
              using normalize-square [of p] by auto
            from this \langle \neg \theta \leq p \$ 2 \rangle show ?thesis
              using nth-normalize-ge-zero-iff by fastforce
          qed
          finally show ?thesis
            using \langle \neg \theta \leq p \$ 2 \rangle unfolding of-radiant-def by auto
        ultimately show ?thesis by (metis exhaust-2[of i])
      from this show ?thesis by (simp add: vec-eq-iff)
    qed
    ultimately show ?thesis by blast
  qed
  moreover {
    fix \omega
    assume 0 \le \omega \land \omega < 2 * pi \land of\text{-}radiant \ \omega = normalize \ p
    from this have 0 \le \omega \le 2 * pi normalize p = of radiant \omega by auto
    from this have \cos \omega = normalize p \$ 1 \sin \omega = normalize p \$ 2 by auto
    have \omega = ?a
    proof cases
     assume 0 
      from this have \omega \leq pi
        using \langle 0 \leq \omega \rangle \langle \omega < 2 * pi \rangle \langle sin \omega = normalize p \$ 2 \rangle
        by (simp add: sin-ge-zero-iff[symmetric] nth-normalize-ge-zero-iff)
      from \langle 0 \leq \omega \rangle this have \omega = \arccos(\cos \omega) by (simp \ add: \arccos \cos)
      from \langle \cos \omega = normalize \ p \ \$ \ 1 \rangle this have \omega = arccos \ (normalize \ p \ \$ \ 1)
        by (simp add: arccos-eq-iff)
      from this show \omega = ?a using \langle \theta \leq p \$ 2 \rangle by auto
      assume \neg \theta \leq p \$ 2
      from this have \omega > pi
        using \langle 0 \leq \omega \rangle \langle \omega < 2 * pi \rangle \langle sin \omega = normalize p \$ 2 \rangle
        by (simp add: sin-less-zero-iff[symmetric] nth-normalize-less-zero-iff)
      from this \langle \omega < 2 * pi \rangle have \omega - pi = \arccos(\cos(\omega - pi))
        by (auto simp only: arccos-cos)
      from this \langle \cos \omega = normalize \ p \ \ 1 \rangle have \omega - pi = arccos \ (-normalize \ p)
$ 1) by simp
      from this have \omega = pi + arccos(-normalize p \$ 1) by simp
      from this show \omega = ?a using \langle \neg \theta \leq p \$ 2 \rangle by auto
    qed
  ultimately show ?thesis
```

```
unfolding radiant-of-def by (rule theI)
\mathbf{qed}
lemma radiant-of-bounds [simp]:
  0 \leq radiant-of p radiant-of p < 2 * pi
using radiant-of by auto
lemma radiant-of-weak-ubound [simp]:
  radiant-of p \leq 2 * pi
using radiant-of-bounds(2)[of p] by linarith
1.2.5
         Main Equations for Transforming to Polar Form
lemma polar-form-eq:
 norm \ p *_R of\mbox{-}radiant \ (radiant\mbox{-}of \ p) = p
using radiant-of normalize-eq by simp
lemma relative-polar-form-eq:
  Q + dist P Q *_R of\text{-}radiant (radiant\text{-}of (P - Q)) = P
proof -
 have norm (P - Q) *_R of-radiant (radiant-of (P - Q)) = P - Q
   unfolding polar-form-eq ..
 moreover have dist P Q = norm (P - Q) by (simp add: dist-norm)
 ultimately show ?thesis by (metis add.commute diff-add-cancel)
qed
       Ptolemy's Theorem
1.3
lemma dist-circle-segment:
 assumes 0 \le radius \ 0 \le \alpha \ \alpha \le \beta \ \beta \le 2 * pi
 shows dist (center + radius *_R of-radiant \alpha) (center + radius *_R of-radiant \beta)
= 2 * radius * sin ((\beta - \alpha) / 2)
   (is ?lhs = ?rhs)
proof -
 have trigonometry: (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = (2 * \sin ((\beta - \alpha))^2)
/(2))^2
 proof -
   have sin-diff-minus: sin((\alpha - \beta) / 2) = -sin((\beta - \alpha) / 2)
     by (simp only: sin-minus[symmetric] minus-divide-left minus-diff-eq)
   have (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 =
     (2 * sin ((\alpha + \beta) / 2) * sin ((\beta - \alpha) / 2))^2 + (2 * sin ((\alpha - \beta) / 2) * cos
((\alpha + \beta) / 2))^2
     by (simp only: cos-diff-cos sin-diff-sin)
   also have ... = (2 * sin ((\beta - \alpha) / 2))^2 * ((sin ((\alpha + \beta) / 2))^2 + (cos ((\alpha + \beta) / 2))^2)^2
+\beta)/2))^{2}
     unfolding sin-diff-minus by algebra
   also have ... = (2 * sin ((\beta - \alpha) / 2))^2 by simp
   finally show ?thesis.
 qed
```

from assms have $0 \le sin((\beta - \alpha) / 2)$ by (simp add: sin-ge-zero)

```
have ?lhs = sqrt (radius^2 * ((cos \alpha - cos \beta)^2 + (sin \alpha - sin \beta)^2))
    unfolding dist-eq-on-real-2-vec by simp algebra
  also have ... = sqrt (radius^2 * (2 * sin ((\beta - \alpha) / 2))^2) by (simp add:
trigonometry)
  also have \dots = ?rhs
    using \langle 0 \leq radius \rangle \langle 0 \leq sin((\beta - \alpha) / 2) \rangle by (simp \ add: real-sqrt-mult)
  finally show ?thesis.
qed
theorem ptolemy-trigonometric:
  fixes \omega_1 \ \omega_2 \ \omega_3 :: real
 shows \sin(\omega_1 + \omega_2) * \sin(\omega_2 + \omega_3) = \sin(\omega_1) * \sin(\omega_3) + \sin(\omega_2) * \sin(\omega_1)
\omega_2 + \omega_3
proof -
  have sin (\omega_1 + \omega_2) * sin (\omega_2 + \omega_3) = ((sin \omega_2)^2 + (cos \omega_2)^2) * sin \omega_1 * sin
\omega_3 + \sin \omega_2 * \sin (\omega_1 + \omega_2 + \omega_3)
    by (simp only: sin-add cos-add) algebra
  also have ... = \sin \omega_1 * \sin \omega_3 + \sin \omega_2 * \sin (\omega_1 + \omega_2 + \omega_3) by simp
  finally show ?thesis.
qed
theorem ptolemy:
  fixes A B C D center :: real ^2
  assumes dist center A = radius and dist center B = radius
  assumes dist center C = radius and dist center D = radius
  assumes ordering-of-points:
    radiant-of (A - center) \leq radiant-of (B - center)
    radiant-of (B - center) \leq radiant-of (C - center)
    radiant-of (C - center) \leq radiant-of (D - center)
 shows dist\ A\ C*dist\ B\ D=dist\ A\ B*dist\ C\ D+dist\ A\ D*dist\ B\ C
proof -
  from \langle dist \ center \ A = radius \rangle have 0 \leq radius by auto
  define \alpha \beta \gamma \delta
    where \alpha = radiant-of (A - center) and \beta = radiant-of (B - center)
    and \gamma = radiant\text{-}of\ (C - center) and \delta = radiant\text{-}of\ (D - center)
  from ordering-of-points have angle-basics:
    \alpha \leq \beta \ \beta \leq \gamma \ \gamma \leq \delta
    0 \leq \alpha \ \alpha \leq 2 * pi \ 0 \leq \beta \ \beta \leq 2 * pi
    0 \le \gamma \ \gamma \le 2 * pi \ 0 \le \delta \ \delta \le 2 * pi
    unfolding \alpha-def \beta-def \gamma-def \delta-def by auto
  from assms(1-4) have
    A = center + radius *_R of\mbox{-}radiant \alpha B = center + radius *_R of\mbox{-}radiant \beta
    C = center + radius *_R of\text{-radiant } \gamma D = center + radius *_R of\text{-radiant } \delta
    unfolding \alpha-def \beta-def \gamma-def \delta-def
    using relative-polar-form-eq dist-commute by metis+
  from this have dist-eqs:
    dist\ A\ C = 2 * radius * sin\ ((\gamma - \alpha) / 2)
    dist\ B\ D = 2 * radius * sin\ ((\delta - \beta) / 2)
```

```
dist\ A\ B = 2 * radius * sin ((\beta - \alpha) / 2)
            dist\ C\ D = 2 * radius * sin\ ((\delta - \gamma) / 2)
            dist\ A\ D = 2 * radius * sin ((\delta - \alpha) / 2)
            dist \ B \ C = 2 * radius * sin ((\gamma - \beta) / 2)
           using angle-basics \langle radius \geq 0 \rangle dist-circle-segment by (auto)
      have dist A \ C * dist \ B \ D = 4 * radius \ \widehat{\ } 2 * sin ((\gamma - \alpha) / 2) * sin ((\delta - \beta))
            unfolding dist-eqs by (simp add: power2-eq-square)
      also have ... = 4 * radius ^2 * (sin ((\beta - \alpha) / 2) * sin ((\delta - \gamma) / 2) + sin ((\delta - \gamma
((\gamma - \beta) / 2) * sin ((\delta - \alpha) / 2))
      proof -
           define \omega_1 \ \omega_2 \ \omega_3 where \omega_1 = (\beta - \alpha) \ / \ 2 and \omega_2 = (\gamma - \beta) \ / \ 2 and \omega_3 =
(\delta - \gamma) / 2
            have (\gamma - \alpha) / 2 = \omega_1 + \omega_2 and (\delta - \beta) / 2 = \omega_2 + \omega_3 and (\delta - \alpha) / 2
=\omega_1+\omega_2+\omega_3
                 unfolding \omega_1-def \omega_2-def \omega_3-def by (auto simp add: field-simps)
           have sin((\gamma - \alpha) / 2) * sin((\delta - \beta) / 2) = sin(\omega_1 + \omega_2) * sin(\omega_2 + \omega_3)
                 using \langle (\gamma - \alpha) / 2 = \omega_1 + \omega_2 \rangle \langle (\delta - \beta) / 2 = \omega_2 + \omega_3 \rangle by (simp only:)
           also have ... = sin \omega_1 * sin \omega_3 + sin \omega_2 * sin (\omega_1 + \omega_2 + \omega_3)
                 by (rule ptolemy-trigonometric)
           also have ... = (sin ((\beta - \alpha) / 2) * sin ((\delta - \gamma) / 2) + sin ((\gamma - \beta) / 2) *
sin ((\delta - \alpha) / 2))
                 using \omega_1-def \omega_2-def \omega_3-def \langle (\delta - \alpha) / 2 = \omega_1 + \omega_2 + \omega_3 \rangle by (simp\ only:)
           finally show ?thesis by simp
      qed
      also have ... = dist\ A\ B*dist\ C\ D+dist\ A\ D*dist\ B\ C
           unfolding dist-eqs by (simp add: distrib-left power2-eq-square)
      finally show ?thesis.
qed
end
```

References

- [1] J. Harrison. Ptolemy's theorem. https://github.com/jrh13/hol-light/blob/master/100/ptolemy.ml.
- [2] F. Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.
- [3] Wikipedia. Ptolemy's theorem wikipedia, the free encyclopedia, 2016. https://en.wikipedia.org/w/index.php?title=Ptolemy%27s_theorem&oldid=727017817 [Online; accessed 6-August-2016].