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Abstract

This entry provides an analytic proof to Ptolemy’s Theorem using
polar form transformation and trigonometric identities. In this formal-
ization, we use ideas from John Harrison’s HOL Light formalization [1]
and the proof sketch on the Wikipedia entry of Ptolemy’s Theorem [3].
This theorem is the 95th theorem of the Top 100 Theorems list [2].
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1 Ptolemy’s Theorem
theory Ptolemys-Theorem
imports

HOL−Analysis.Multivariate-Analysis
begin

1.1 Preliminaries
1.1.1 Additions to Rat theory
hide-const (open) normalize
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1.1.2 Additions to Transcendental theory

Lemmas about arcsin and arccos commonly involve to show that their ar-
gument is in the domain of those partial functions, i.e., the argument y is
between − 1 and 1. As the argumentation for − 1 ≤ y and y ≤ 1 is often
very similar, we prefer to prove |y| ≤ 1 to the two goals above.
The lemma for rewriting the term cos (arccos y) is already provided in the
Isabelle distribution with name cos-arccos-abs. Here, we further provide the
analogue on arcsin for rewriting sin (arcsin y).
lemma sin-arcsin-abs: |y| ≤ 1 =⇒ sin (arcsin y) = y

by (simp add: abs-le-iff )

The further lemmas are the required variants from existing lemmas arc-
cos-lbound and arccos-ubound.
lemma arccos-lbound-abs [simp]:
|y| ≤ 1 =⇒ 0 ≤ arccos y

by (simp add: arccos-lbound)

lemma arccos-ubound-abs [simp]:
|y| ≤ 1 =⇒ arccos y ≤ pi

by (simp add: arccos-ubound)

As we choose angles to be between 0 between 2 ∗ pi, we need some lemmas
to reason about the sign of sin x for angles x.
lemma sin-ge-zero-iff :

assumes 0 ≤ x x < 2 ∗ pi
shows 0 ≤ sin x ←→ x ≤ pi

proof
assume 0 ≤ sin x
show x ≤ pi
proof (rule ccontr)

assume ¬ x ≤ pi
from this ‹x < 2 ∗ pi› have sin x < 0

using sin-lt-zero by auto
from this ‹0 ≤ sin x› show False by auto

qed
next

assume x ≤ pi
from this ‹0 ≤ x› show 0 ≤ sin x by (simp add: sin-ge-zero)

qed

lemma sin-less-zero-iff :
assumes 0 ≤ x x < 2 ∗ pi
shows sin x < 0 ←→ pi < x

using assms sin-ge-zero-iff by fastforce
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1.1.3 Addition to Finite-Cartesian-Product theory

Here follow generally useful additions and specialised equations for two-
dimensional real-valued vectors.
lemma axis-nth-eq-0 [simp]:

assumes i 6= j
shows axis i x $ j = 0

using assms unfolding axis-def by simp

lemma norm-axis:
fixes x :: real
shows norm (axis i x) = abs x

by (simp add: norm-eq-sqrt-inner inner-axis-axis)

lemma norm-eq-on-real-2-vec:
fixes x :: real ^ 2
shows norm x = sqrt ((x $ 1 ) ^ 2 + (x $ 2 ) ^ 2 )

by (simp add: norm-eq-sqrt-inner inner-vec-def UNIV-2 power2-eq-square)

lemma dist-eq-on-real-2-vec:
fixes a b :: real ^ 2
shows dist a b = sqrt ((a $ 1 − b $ 1 ) ^ 2 + (a $ 2 − b $ 2 ) ^ 2 )

unfolding dist-norm norm-eq-on-real-2-vec by simp

1.2 Polar Form of Two-Dimensional Real-Valued Vectors
1.2.1 Definitions to Transfer to Polar Form and Back
definition of-radiant :: real ⇒ real ^ 2
where

of-radiant ω = axis 1 (cos ω) + axis 2 (sin ω)

definition normalize :: real ^ 2 ⇒ real ^ 2
where

normalize p = (if p = 0 then axis 1 1 else (1 / norm p) ∗R p)

definition radiant-of :: real ^ 2 ⇒ real
where

radiant-of p = (THE ω. 0 ≤ ω ∧ ω < 2 ∗ pi ∧ of-radiant ω = normalize p)

The vector of-radiant ω is the vector with length 1 and angle ω to the first
axis. We normalize vectors to length 1 keeping their orientation with the
normalize function. Conversely, radiant-of p is the angle of vector p to the
first axis, where we choose radiant-of to return angles between 0 and 2 ∗
pi, following the usual high-school convention. With these definitions, we
can express the main result norm p ∗R of-radiant (radiant-of p) = p. Note
that the main result holds for any definition of radiant-of 0. So, we choose
to define normalize 0 and radiant-of 0, such that radiant-of 0 = 0.
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1.2.2 Lemmas on of-radiant
lemma nth-of-radiant-1 [simp]:

of-radiant ω $ 1 = cos ω
unfolding of-radiant-def by simp

lemma nth-of-radiant-2 [simp]:
of-radiant ω $ 2 = sin ω

unfolding of-radiant-def by simp

lemma norm-of-radiant:
norm (of-radiant ω) = 1

unfolding of-radiant-def norm-eq-on-real-2-vec by simp

lemma of-radiant-plus-2pi:
of-radiant (ω + 2 ∗ pi) = of-radiant ω

unfolding of-radiant-def by simp

lemma of-radiant-minus-2pi:
of-radiant (ω − 2 ∗ pi) = of-radiant ω

proof −
have of-radiant (ω − 2 ∗ pi) = of-radiant (ω − 2 ∗ pi + 2 ∗ pi)

by (simp only: of-radiant-plus-2pi)
also have . . . = of-radiant ω by simp
finally show ?thesis .

qed

1.2.3 Lemmas on normalize
lemma normalize-eq:

norm p ∗R normalize p = p
unfolding normalize-def by simp

lemma norm-normalize:
norm (normalize p) = 1

unfolding normalize-def by (auto simp add: norm-axis)

lemma nth-normalize [simp]:
|normalize p $ i| ≤ 1

using norm-normalize component-le-norm-cart by metis

lemma normalize-square:
(normalize p $ 1 )2 + (normalize p $ 2 )2 = 1

using dot-square-norm[of normalize p]
by (simp add: inner-vec-def UNIV-2 power2-eq-square norm-normalize)

lemma nth-normalize-ge-zero-iff :
0 ≤ normalize p $ i ←→ 0 ≤ p $ i

proof
assume 0 ≤ normalize p $ i
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from this show 0 ≤ p $ i
unfolding normalize-def by (auto split: if-split-asm simp add: zero-le-divide-iff )

next
assume 0 ≤ p $ i
have 0 ≤ axis 1 (1 :: real) $ i

using exhaust-2 [of i] by auto
from this ‹0 ≤ p $ i› show 0 ≤ normalize p $ i

unfolding normalize-def by auto
qed

lemma nth-normalize-less-zero-iff :
normalize p $ i < 0 ←→ p $ i < 0

using nth-normalize-ge-zero-iff leD leI by metis

lemma normalize-boundary-iff :
|normalize p $ 1 | = 1 ←→ p $ 2 = 0

proof
assume |normalize p $ 1 | = 1
from this have 1 : (p $ 1 ) ^ 2 = norm p ^ 2

unfolding normalize-def by (auto split: if-split-asm simp add: power2-eq-iff )
moreover have (p $ 1 ) ^ 2 + (p $ 2 ) ^ 2 = norm p ^ 2

using norm-eq-on-real-2-vec by auto
ultimately show p $ 2 = 0 by simp

next
assume p $ 2 = 0
from this have |p $ 1 | = norm p

by (auto simp add: norm-eq-on-real-2-vec)
from this show |normalize p $ 1 | = 1

unfolding normalize-def by simp
qed

lemma between-normalize-if-distant-from-0 :
assumes norm p ≥ 1
shows between (0 , p) (normalize p)

using assms by (auto simp add: between-mem-segment closed-segment-def normal-
ize-def )

lemma between-normalize-if-near-0 :
assumes norm p ≤ 1
shows between (0 , normalize p) p

proof −
have 0 ≤ norm p by simp
from assms have p = (norm p / norm p) ∗R p ∧ 0 ≤ norm p ∧ norm p ≤ 1

by auto
from this have ∃ u. p = (u / norm p) ∗R p ∧ 0 ≤ u ∧ u ≤ 1 by blast
from this show ?thesis

by (auto simp add: between-mem-segment closed-segment-def normalize-def )
qed

5



1.2.4 Lemmas on radiant-of
lemma radiant-of :

0 ≤ radiant-of p ∧ radiant-of p < 2 ∗ pi ∧ of-radiant (radiant-of p) = normalize
p
proof −

let ?a = if 0 ≤ p $ 2 then arccos (normalize p $ 1 ) else pi + arccos (− (normalize
p $ 1 ))

have 0 ≤ ?a ∧ ?a < 2 ∗ pi ∧ of-radiant ?a = normalize p
proof −

have 0 ≤ ?a by auto
moreover have ?a < 2 ∗ pi
proof cases

assume 0 ≤ p $ 2
from this have ?a ≤ pi by simp
from this show ?thesis

using pi-gt-zero by linarith
next

assume ¬ 0 ≤ p $ 2
have arccos (− normalize p $ 1 ) < pi
proof −

have |normalize p $ 1 | 6= 1
using ‹¬ 0 ≤ p $ 2 › by (simp only: normalize-boundary-iff )

from this have arccos (− normalize p $ 1 ) 6= pi
unfolding arccos-minus-1 [symmetric] by (subst arccos-eq-iff ) auto

moreover have arccos (− normalize p $ 1 ) ≤ pi by simp
ultimately show arccos (− normalize p $ 1 ) < pi by linarith

qed
from this ‹¬ 0 ≤ p $ 2 › show ?thesis by simp

qed
moreover have of-radiant ?a = normalize p
proof −

have of-radiant ?a $ i = normalize p $ i for i
proof −

have of-radiant ?a $ 1 = normalize p $ 1
unfolding of-radiant-def by (simp add: cos-arccos-abs)

moreover have of-radiant ?a $ 2 = normalize p $ 2
proof cases

assume 0 ≤ p $ 2
have sin (arccos (normalize p $ 1 )) = sqrt (1 − (normalize p $ 1 ) ^ 2 )

by (simp add: sin-arccos-abs)
also have . . . = normalize p $ 2
proof −

have 1 − (normalize p $ 1 )2 = (normalize p $ 2 )2
using normalize-square[of p] by auto

from this ‹0 ≤ p $ 2 › show ?thesis by (simp add: nth-normalize-ge-zero-iff )
qed
finally show ?thesis

using ‹0 ≤ p $ 2 › unfolding of-radiant-def by auto
next
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assume ¬ 0 ≤ p $ 2
have − sin (arccos (− normalize p $ 1 )) = − sqrt (1 − (normalize p $

1 )2)
by (simp add: sin-arccos-abs)

also have . . . = normalize p $ 2
proof −

have 1 − (normalize p $ 1 )2 = (normalize p $ 2 )2
using normalize-square[of p] by auto

from this ‹¬ 0 ≤ p $ 2 › show ?thesis
using nth-normalize-ge-zero-iff by fastforce

qed
finally show ?thesis

using ‹¬ 0 ≤ p $ 2 › unfolding of-radiant-def by auto
qed
ultimately show ?thesis by (metis exhaust-2 [of i])

qed
from this show ?thesis by (simp add: vec-eq-iff )

qed
ultimately show ?thesis by blast

qed
moreover {

fix ω
assume 0 ≤ ω ∧ ω < 2 ∗ pi ∧ of-radiant ω = normalize p
from this have 0 ≤ ω ω < 2 ∗ pi normalize p = of-radiant ω by auto
from this have cos ω = normalize p $ 1 sin ω = normalize p $ 2 by auto
have ω = ?a
proof cases

assume 0 ≤ p $ 2
from this have ω ≤ pi

using ‹0 ≤ ω› ‹ω < 2 ∗ pi› ‹sin ω = normalize p $ 2 ›
by (simp add: sin-ge-zero-iff [symmetric] nth-normalize-ge-zero-iff )

from ‹0 ≤ ω› this have ω = arccos (cos ω) by (simp add: arccos-cos)
from ‹cos ω = normalize p $ 1 › this have ω = arccos (normalize p $ 1 )

by (simp add: arccos-eq-iff )
from this show ω = ?a using ‹0 ≤ p $ 2 › by auto

next
assume ¬ 0 ≤ p $ 2
from this have ω > pi

using ‹0 ≤ ω› ‹ω < 2 ∗ pi› ‹sin ω = normalize p $ 2 ›
by (simp add: sin-less-zero-iff [symmetric] nth-normalize-less-zero-iff )

from this ‹ω < 2 ∗ pi› have ω − pi = arccos (cos (ω − pi))
by (auto simp only: arccos-cos)

from this ‹cos ω = normalize p $ 1 › have ω − pi = arccos (− normalize p
$ 1 ) by simp

from this have ω = pi + arccos (− normalize p $ 1 ) by simp
from this show ω = ?a using ‹¬ 0 ≤ p $ 2 › by auto

qed
}
ultimately show ?thesis
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unfolding radiant-of-def by (rule theI )
qed

lemma radiant-of-bounds [simp]:
0 ≤ radiant-of p radiant-of p < 2 ∗ pi

using radiant-of by auto

lemma radiant-of-weak-ubound [simp]:
radiant-of p ≤ 2 ∗ pi

using radiant-of-bounds(2 )[of p] by linarith

1.2.5 Main Equations for Transforming to Polar Form
lemma polar-form-eq:

norm p ∗R of-radiant (radiant-of p) = p
using radiant-of normalize-eq by simp

lemma relative-polar-form-eq:
Q + dist P Q ∗R of-radiant (radiant-of (P − Q)) = P

proof −
have norm (P − Q) ∗R of-radiant (radiant-of (P − Q)) = P − Q

unfolding polar-form-eq ..
moreover have dist P Q = norm (P − Q) by (simp add: dist-norm)
ultimately show ?thesis by (metis add.commute diff-add-cancel)

qed

1.3 Ptolemy’s Theorem
lemma dist-circle-segment:

assumes 0 ≤ radius 0 ≤ α α ≤ β β ≤ 2 ∗ pi
shows dist (center + radius ∗R of-radiant α) (center + radius ∗R of-radiant β)

= 2 ∗ radius ∗ sin ((β − α) / 2 )
(is ?lhs = ?rhs)

proof −
have trigonometry: (cos α − cos β)2 + (sin α − sin β)2 = (2 ∗ sin ((β − α)

/ 2 ))2
proof −

have sin-diff-minus: sin ((α − β) / 2 ) = − sin ((β − α) / 2 )
by (simp only: sin-minus[symmetric] minus-divide-left minus-diff-eq)

have (cos α − cos β)2 + (sin α − sin β)2 =
(2 ∗ sin ((α + β) / 2 ) ∗ sin ((β − α) / 2 ))2 + (2 ∗ sin ((α − β) / 2 ) ∗ cos

((α + β) / 2 ))2
by (simp only: cos-diff-cos sin-diff-sin)

also have . . . = (2 ∗ sin ((β − α) / 2 ))2 ∗ ((sin ((α + β) / 2 ))2 + (cos ((α
+ β) / 2 ))2)

unfolding sin-diff-minus by algebra
also have . . . = (2 ∗ sin ((β − α) / 2 ))2 by simp
finally show ?thesis .

qed
from assms have 0 ≤ sin ((β − α) / 2 ) by (simp add: sin-ge-zero)
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have ?lhs = sqrt (radius2 ∗ ((cos α − cos β)2 + (sin α − sin β)2))
unfolding dist-eq-on-real-2-vec by simp algebra

also have . . . = sqrt (radius2 ∗ (2 ∗ sin ((β − α) / 2 ))2) by (simp add:
trigonometry)

also have . . . = ?rhs
using ‹0 ≤ radius› ‹0 ≤ sin ((β − α) / 2 )› by (simp add: real-sqrt-mult)

finally show ?thesis .
qed

theorem ptolemy-trigonometric:
fixes ω1 ω2 ω3 :: real
shows sin (ω1 + ω2) ∗ sin (ω2 + ω3) = sin ω1 ∗ sin ω3 + sin ω2 ∗ sin (ω1 +

ω2 + ω3)
proof −

have sin (ω1 + ω2) ∗ sin (ω2 + ω3) = ((sin ω2)
2 + (cos ω2)

2) ∗ sin ω1 ∗ sin
ω3 + sin ω2 ∗ sin (ω1 + ω2 + ω3)

by (simp only: sin-add cos-add) algebra
also have . . . = sin ω1 ∗ sin ω3 + sin ω2 ∗ sin (ω1 + ω2 + ω3) by simp
finally show ?thesis .

qed

theorem ptolemy:
fixes A B C D center :: real ^ 2
assumes dist center A = radius and dist center B = radius
assumes dist center C = radius and dist center D = radius
assumes ordering-of-points:

radiant-of (A − center) ≤ radiant-of (B − center)
radiant-of (B − center) ≤ radiant-of (C − center)
radiant-of (C − center) ≤ radiant-of (D − center)

shows dist A C ∗ dist B D = dist A B ∗ dist C D + dist A D ∗ dist B C
proof −

from ‹dist center A = radius› have 0 ≤ radius by auto
define α β γ δ

where α = radiant-of (A − center) and β = radiant-of (B − center)
and γ = radiant-of (C − center) and δ = radiant-of (D − center)

from ordering-of-points have angle-basics:
α ≤ β β ≤ γ γ ≤ δ
0 ≤ α α ≤ 2 ∗ pi 0 ≤ β β ≤ 2 ∗ pi
0 ≤ γ γ ≤ 2 ∗ pi 0 ≤ δ δ ≤ 2 ∗ pi
unfolding α-def β-def γ-def δ-def by auto

from assms(1−4 ) have
A = center + radius ∗R of-radiant α B = center + radius ∗R of-radiant β
C = center + radius ∗R of-radiant γ D = center + radius ∗R of-radiant δ
unfolding α-def β-def γ-def δ-def
using relative-polar-form-eq dist-commute by metis+

from this have dist-eqs:
dist A C = 2 ∗ radius ∗ sin ((γ − α) / 2 )
dist B D = 2 ∗ radius ∗ sin ((δ − β) / 2 )
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dist A B = 2 ∗ radius ∗ sin ((β − α) / 2 )
dist C D = 2 ∗ radius ∗ sin ((δ − γ) / 2 )
dist A D = 2 ∗ radius ∗ sin ((δ − α) / 2 )
dist B C = 2 ∗ radius ∗ sin ((γ − β) / 2 )
using angle-basics ‹radius ≥ 0 › dist-circle-segment by (auto)

have dist A C ∗ dist B D = 4 ∗ radius ^ 2 ∗ sin ((γ − α) / 2 ) ∗ sin ((δ − β)
/ 2 )

unfolding dist-eqs by (simp add: power2-eq-square)
also have . . . = 4 ∗ radius ^ 2 ∗ (sin ((β − α) / 2 ) ∗ sin ((δ − γ) / 2 ) + sin

((γ − β) / 2 ) ∗ sin ((δ − α) / 2 ))
proof −

define ω1 ω2 ω3 where ω1 = (β − α) / 2 and ω2 = (γ − β) / 2 and ω3 =
(δ − γ) / 2

have (γ − α) / 2 = ω1 + ω2 and (δ − β) / 2 = ω2 + ω3 and (δ − α) / 2
= ω1 + ω2 + ω3

unfolding ω1-def ω2-def ω3-def by (auto simp add: field-simps)
have sin ((γ − α) / 2 ) ∗ sin ((δ − β) / 2 ) = sin (ω1 + ω2) ∗ sin (ω2 + ω3)

using ‹(γ − α) / 2 = ω1 + ω2› ‹(δ − β) / 2 = ω2 + ω3› by (simp only:)
also have . . . = sin ω1 ∗ sin ω3 + sin ω2 ∗ sin (ω1 + ω2 + ω3)

by (rule ptolemy-trigonometric)
also have . . . = (sin ((β − α) / 2 ) ∗ sin ((δ − γ) / 2 ) + sin ((γ − β) / 2 ) ∗

sin ((δ − α) / 2 ))
using ω1-def ω2-def ω3-def ‹(δ − α) / 2 = ω1 + ω2 + ω3› by (simp only:)

finally show ?thesis by simp
qed
also have . . . = dist A B ∗ dist C D + dist A D ∗ dist B C

unfolding dist-eqs by (simp add: distrib-left power2-eq-square)
finally show ?thesis .

qed

end
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