Class-based Classical Propositional Logic

Matthew Doty

March 17, 2025

Abstract

We formulate classical propositional logic as an axiom class. Our class
represents a Hilbert-style proof system with the axioms - ¢ — ¥ — ¢,
Fle—=vY—=>x) = (=9 9 —=>x,and - ((p — L) - 1) — ¢ along
with the rule modus ponens - ¢ — ¢ = F ¢ = 9. In this axiom class
we provide lemmas to obtain Mazimally Consistent Sets via Zorn’s lemma.
We define the concrete classical propositional calculus inductively and show
it instantiates our axiom class. We formulate the usual semantics for the
propositional calculus and show strong soundness and completeness. We
provide conventional definitions of the other logical connectives and prove
various common identities. Finally, we show that the propositional calculus
embeds into any logic in our axiom class.

Contents

1 Implication Logic

1.1 Axiomatization
1.2 Common Rules
1.3 Lists of Assumptions L.

1.3.1 List Implication,

1.3.2 Deduction From a List of Assumptions

1.3.3 List Deduction as Implication Logic
1.4 The Deduction Theorem
1.5 Monotonic Growth in Deductive Power
1.6 The Deduction Theorem Revisited
1.7 Reflection
1.8 TheCutRule
1.9 Setsof Assumptions L.
1.10 Definition of Deduction

1.10.1 Interpretation as Implication Logic
1.11 The Deduction Theorem
1.12 Monotonic Growth in Deductive Power
1.13 The Deduction Theorem Revisited
1.14 Reflection
1.15 The Cut Rule
1.16 Maximally Consistent Sets For Implication Logic

Classical Propositional Logic

2.1 Axiomatization
2.2 Common Rules
2.3 Maximally Consistent Sets For Classical Logic

Classical Soundness and Completeness

3.1 Syntax
3.2 Propositional Calculus
3.3 Propositional Semanticso
3.4 Soundness and Completeness Proofs
3.5 Embedding Theorem For the Propositional Calculus

20
20
20
23

4 List Utility Theorems

Multisets o
List Mapping
Laws for Searching a List
Permutationso oo
List Duplicates oo
List Subtraction oL
Tuple Lists o o
List Intersection L.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5 Classical Logic Connectives

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Verum

Conjunction
Biconditional o oo
Negation L L
Disjunction oL
Mutual Exclusion o oo
Subtraction Lo
Negated Lists oo
Common (& Uncommon) Identities

5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.7
5.9.8
5.9.9

Biconditional Equivalence Relation
Biconditional Weakening
Conjunction Identities
Disjunction Identities
Monotony of Conjunction and Disjunction
Distribution Identities
Negation
Mutual Exclusion Identities
Miscellaneous Disjunctive Normal Form Identities

33
33
38
41
41
43
44
53
56

58
58
58
59
60
61
62
62
62
62
62
63
64
69
73
74
7
78
82

Chapter 1
Implication Logic

theory Implication-Logic
imports Main
begin

This theory presents the pure implicational fragment of intuitionistic logic.
That is to say, this is the fragment of intuitionistic logic containing impli-
cation only, and no other connectives nor falsum (i.e., 1). We shall refer to
this logic as implication logic in future discussion.

For further reference see [7].

1.1 Axiomatization

Implication logic can be given by the a Hilbert-style axiom system, following
Troelstra and Schwichtenberg [6, §1.3.9, pg. 33].

class implication-logic =
fixes deduction :: 'a = bool («F -» [60] 55)
fixes implication :: 'a = 'a = 'a (infixr «(—> 70)
assumes aziom-k: - o — Y — ¢
assumes aziom-s: F (o > ¢ = x) = (p =2 ¥) > ¢ = x
assumes modus-ponens: - o - v = F p =+ Y

1.2 Common Rules

lemma (in implication-logic) trivial-implication:
Fe e
by (meson aziom-k aziom-s modus-ponens)

lemma (in implication-logic) flip-implication:

Fle=2¢=2x) =9 —=9—=x
by (meson axiom-k axiom-s modus-ponens)

lemma (in implication-logic) hypothetical-syllogism:

FW = x) = (= Y) 2 e =X
by (meson aziom-k aziom-s modus-ponens)

lemma (in implication-logic) flip-hypothetical-syllogism:

W —=e) = (= x) = (@ —=X)
using modus-ponens flip-implication hypothetical-syllogism by blast

lemma (in implication-logic) implication-absorption:

Flo=2o—=9) 29—
by (meson axiom-k axiom-s modus-ponens)

1.3 Lists of Assumptions

1.3.1 List Implication

Implication given a list of assumptions can be expressed recursively
primrec (in implication-logic)
list-implication :: 'a list = 'a = 'a (infix <—» 80) where
l:=e=09
| W #)= p=0¢>T:m0p

1.3.2 Deduction From a List of Assumptions

Deduction from a list of assumptions can be expressed in terms of (:—).

definition (in implication-logic) list-deduction :: 'a list = 'a = bool (infix k>
60)
where
F'Fp=FT:—9p

1.3.3 List Deduction as Implication Logic

The relation (:F) may naturally be interpreted as a deduction predicate for
an instance of implication logic for a fixed list of assumptions I'.

Analogues of the two axioms of implication logic can be naturally stated
using list implication.

lemma (in implication-logic) list-implication-aziom-k:
Fo—->T:—¢
by (induct T, (simp, meson axiom-k axiom-s modus-ponens)+)

lemma (in implication-logic) list-implication-aziom-s:
FTlim(p—=2¢) 2T i1 29
by (induct T,
(simp, meson aziom-k axiom-s modus-ponens hypothetical-syllogism)+)

The lemmas - ¢ - T': > pand F T :—» (p >) > T =5 ¢ - T :—
1 jointly give rise to an interpretation of implication logic, where a list of
assumptions I' play the role of a background theory of (:).

context implication-logic begin
interpretation list-deduction-logic:
implication-logic A ¢. T :F ¢ (=)
proof qed
(meson
list-deduction-def
axiom-k
azriom-s
modus-ponens
list-implication-axiom-k
list-implication-aziom-s)+
end

The following weakening rule can also be derived.
lemma (in implication-logic) list-deduction-weaken:
Feo=T:1F¢
unfolding list-deduction-def
using modus-ponens list-implication-axiom-k
by blast

In the case of the empty list, the converse may be established.

lemma (in implication-logic) list-deduction-base-theory [simp]:

[Feo=tep
unfolding list-deduction-def
by simp

lemma (in implication-logic) list-deduction-modus-ponens:
rrp—-¢v="~IFp=T:HF19
unfolding list-deduction-def
using modus-ponens list-implication-axiom-s
by blast

1.4 The Deduction Theorem

One result in the meta-theory of implication logic is the deduction theorem,
which is a mechanism for moving antecedents back and forth from collections
of assumptions.

To develop the deduction theorem, the following two lemmas generalize -
(p=v—=2x)29Y 20— x
lemma (in implication-logic) list-flip-implicationl :
Fle#TD):=>x—->T:=(p—=x)
by (induct T,
(simp,

meson
azxiom-k
azriom-s
modus-ponens
flip-implication
hypothetical-syllogism)+)

lemma (in implication-logic) list-flip-implication2:
FT:=» (o= x) = (p#7T):—= x
by (induct T,
(simp,
meson
azxiom-k
azriom-s
modus-ponens
flip-implication
hypothetical-syllogism)—+)

Together the two lemmas above suffice to prove a form of the deduction
theorem:

theorem (in implication-logic) list-deduction-theorem:
(p# D)y =T:HFp =9
unfolding list-deduction-def
by (metis modus-ponens list-flip-implicationl list-flip-implication2)

1.5 Monotonic Growth in Deductive Power

In logic, for two sets of assumptions ® and W, if ¥ C & then the latter
theory @ is said to be stronger than former theory W. In principle, anything a
weaker theory can prove a stronger theory can prove. One way of saying this
is that deductive power increases monotonically with as the set of underlying
assumptions grow.

The monotonic growth of deductive power can be expressed as a meta-
theorem in implication logic.

The lemma F T :— (¢ = x) — (¢ # I') :— x presents a means of intro-
ducing assumptions into a list of assumptions when those assumptions have
been arrived at by an implication. The next lemma presents a means of
discharging those assumptions, which can be used in the monotonic growth
theorem to be proved.
lemma (in implication-logic) list-implication-removeAll:

FT:—= ¢ — (removedll ¢ T) :— (p —)
proof —

have V ¢. F T':— ¢ — (removeAll ¢ T') :— (¢ —)

proof (induct T")

case Nil

then show ?case by (simp, meson aziom-k)
next
case (Cons x T)
assume
inductive-hypothesis: ¥ 1. b T :— 1 — removeAll ¢ T :— (¢ — 1)
moreover {
assume @ #* x
with inductive-hypothesis
haveV . F (x # T) :—= ¢ — removeAll o (x # T) :—= (¢ =)
by (simp, meson modus-ponens hypothetical-syllogism)

}

moreover {
fix
assume p-equals-x: ¢ = x
moreover with inductive-hypothesis
have - T :— (x — ¥) — removeAll p (x # T') :— (p = x — ¥) by simp
hence - T :— (x — ¢) = removedll o (x # T) :—= (¢ = ¢
by (metis
calculation
modus-ponens
implication-absorption
list-flip-implicationl
list-flip-implication2
list-implication.simps(2))
ultimately have F (xy # ') :— ¢ — removeAll ¢ (x # T) (= (¢ = ¥)
by (simp,
metis
modus-ponens
hypothetical-syllogism
list-flip-implication
list-implication.simps(2))
}
ultimately show ?case by simp
qed
thus ?thesis by blast
qed

From lemma above presents what is needed to prove that deductive power
for lists is monotonic.

theorem (in implication-logic) list-implication-monotonic:
set X Csetl' = FX:—wp =T =0
proof —
assume set X C set I
moreover haveV ¥ p. set X CsetI' —m F X :— p > T :— ¢
proof (induct T")
case Nil
then show ?case
by (metis
list-implication.simps(1)

list-implication-axiom-k
set-empty
subset-empty)
next
case (Cons ¢ T')
assume
inductive-hypothesis: VX . set ¥ C set I' — F X :—= o =T = ¢
{
fix ¥
fix ¢
assume X-subset-relation: set ¥ C set (¢ # T)
haveF X :—» o > (W #7T) > ¢
proof —
{
assume set % C set I’
hence ?thesis
by (metis
inductive-hypothesis
azriom-k modus-ponens
flip-implication
list-implication.simps(2))
}
moreover {
let ?A = removeAll ¥ %
assume — (set ¥ C set I')
hence set ?A C set T’
using Y-subset-relation by auto
hence - A :— (Y =) > T = (Y = ¢)
using inductive-hypothesis by auto
hence ?A :—= (Y —) > (W #T') :— ¢
by (metis
modus-ponens
flip-implication
list-flip-implication2
list-implication.simps(2))
moreover have - ¥ :— ¢ = ?A (= (¢ — @)
by (simp add: local.list-implication-removeAll)
ultimately have ?thesis
using modus-ponens hypothetical-syllogism by blast
}

ultimately show ?thesis by blast
qed

thus ?case by simp
qed
ultimately show ?thesis by simp
qed

A direct consequence is that deduction from lists of assumptions is mono-

tonic as well:

theorem (in implication-logic) list-deduction-monotonic:
set X Csetl' =Y :Fp=T:1F¢p
unfolding list-deduction-def
using modus-ponens list-implication-monotonic
by blast

1.6 The Deduction Theorem Revisited

The monotonic nature of deduction allows us to prove another form of the
deduction theorem, where the assumption being discharged is completely
removed from the list of assumptions.

theorem (in implication-logic) alternate-list-deduction-theorem:
(p # T) :+ ¢ = (removedll o T) :- o — 2
by (metis
list-deduction-def
modus-ponens
filter-is-subset
list-deduction-monotonic
list-deduction-theorem
list-implication-removeAll
removeAll.simps(2)
removeAll-filter-not-eq)

1.7 Reflection

In logic the refiection principle sometimes refers to when a collection of
assumptions can deduce any of its members. It is automatically derivable
from [set ¥ C set I'; ¥ :+ ¢] = T :F ¢ among the other rules provided.

lemma (in implication-logic) list-deduction-reflection:
pesetl =T+ ¢
by (metis
list-deduction-def
insert-subset
list.simps(15)
list-deduction-monotonic
list-implication.simps(2)
list-implication-azxiom-k
order-refl)

1.8 The Cut Rule

Cut is a rule commonly presented in sequent calculi, dating back to Gerhard
Gentzen’s Investigations in Logical Deduction (1935) [4]

The cut rule is not generally necessary in sequent calculi. It can often
be shown that the rule can be eliminated without reducing the power of
the underlying logic. However, as demonstrated by George Boolos’ Don’t
Eliminate Cut (1984) [3], removing the rule can often lead to very inefficient
proof systems.

Here the rule is presented just as a meta theorem.

theorem (in implication-logic) list-deduction-cut-rule:
(p# D) FYv =At+tp=TQA:}F
by (metis
(no-types, lifting)
Un-upperl
Un-upper2
list-deduction-modus-ponens
list-deduction-monotonic
list-deduction-theorem
set-append)

The cut rule can also be strengthened to entire lists of propositions.

theorem (in implication-logic) strong-list-deduction-cut-rule:
(PAQT) -y =V pecset D. Ak =T QA
proof —
haveV ¢. (P QT -y — (V p € set . Ak p) — T QA o)
proof (induct P)
case Nil
then show ?case
by (metis
Un-iff
append.left-neutral
list-deduction-monotonic
set-append
subsetl)
next
case (Cons x ®) assume inductive-hypothesis:
V. QT :Fy — (Vpeset . A k) —T QAo
{
fix ¥ x
assume (y # @) QT - ¢
hence A: ® Q I' ;- x — v using list-deduction-theorem by auto
assume Vo € set (x #). Ao
hence B:V ¢ € set . A :F ¢
and C: A :+ x by auto
from A B have I' @ A :F xy — v using inductive-hypothesis by blast
with C have ' @ A :+ ¢
by (meson
list.set-intros(1)
list-deduction-cut-rule
list-deduction-modus-ponens
list-deduction-reflection)

10

}

thus ?case by simp
qed
moreover assume (» QT') :+ ¢
moreover assume V ¢ € set . A ¢
ultimately show ?thesis by blast
qed

1.9 Sets of Assumptions

While deduction in terms of lists of assumptions is straight-forward to define,
deduction (and the deduction theorem) is commonly given in terms of sets of
propositions. This formulation is suited to establishing strong completeness
theorems and compactness theorems.

The presentation of deduction from a set follows the presentation of list
deduction given for (:F).

1.10 Definition of Deduction

Just as deduction from a list (:F) can be defined in terms of (:—), deduction
from a set of assumptions can be expressed in terms of (:F).

definition (in implication-logic) set-deduction :: 'a set = 'a = bool (infix >
60)
where
F'te=3 V.set U CT AV g

1.10.1 Interpretation as Implication Logic

As in the case of (:+), the relation (F) may be interpreted as deduction
predicate for a fixed set of assumptions I'.

The following lemma is given in order to establish this, which asserts that
every implication logic tautology - ¢ is also a tautology for I' I~ ¢.

lemma (in implication-logic) set-deduction-weaken:
Feo=T*ky¢p
using list-deduction-base-theory set-deduction-def by fastforce

In the case of the empty set, the converse may be established.

lemma (in implication-logic) set-deduction-base-theory:

Jre=to
using list-deduction-base-theory set-deduction-def by auto

Next, a form of modus ponens is provided for (f).

lemma (in implication-logic) set-deduction-modus-ponens:

11

'ty —=¢v=Ttep=TkF9y
proof —
assume I' - p — o
then obtain ¢ where A: set ® CT'and B: @ :+ o — ¢
using set-deduction-def by blast
assume [' F ¢
then obtain ¥ where C: set ¢ C T"and D: ¥ : ¢
using set-deduction-def by blast
from B D have ® Q ¥ :}- ¢
using list-deduction-cut-rule list-deduction-theorem by blast
moreover from A C have set (¢ @ U) C T' by simp
ultimately show ?thesis
using set-deduction-def by blast
qed

context implication-logic begin
interpretation set-deduction-logic:
implication-logic A ¢. T' F ¢ (=)
proof
fix ¢ ¥
show I' - ¢ — ¢ — ¢ by (metis ariom-k set-deduction-weaken)
next
fix ¢ x
showI'F (¢ > ¥ = x) = (0 = ¢) = ¢ = x
by (metis aziom-s set-deduction-weaken)
next
fix ¢
show 'ty ¢ =TkF =Tk
using set-deduction-modus-ponens by metis
qed
end

1.11 The Deduction Theorem

The next result gives the deduction theorem for (f).

theorem (in implication-logic) set-deduction-theorem:
insert p 'Y =T ¢ — 9
proof —
have I' - ¢ — ¢ = insert p I' + ¢
by (metis
set-deduction-def
imsert-mono
list.simps(15)
list-deduction-theorem,)
moreover {
assume insert ¢ I' = ¢
then obtain ® where set ® C insert ¢ I' and @ - ¢
using set-deduction-def by auto

12

hence set (removeAll ¢ ®) C T by auto
moreover from «® : ¢ have removeAll ¢ & :F p — ¢
using modus-ponens list-implication-removeAll list-deduction-def
by blast
ultimately have I' - ¢ — o
using set-deduction-def by blast
}

ultimately show insert o I' =19 =Tt ¢ — ¢ by metis
qed

1.12 Monotonic Growth in Deductive Power

In contrast to the (:F) relation, the proof that the deductive power of (I)
grows monotonically with its assumptions may be fully automated.

theorem set-deduction-monotonic:
YCTI=Y¥Fp=T*Hk ¢
by (meson dual-order.trans set-deduction-def)

1.13 The Deduction Theorem Revisited

As a consequence of the fact that [X CT'; ¥ F ¢] = T - ¢ is automatically
provable, an alternate deduction theorem where the discharged assumption
is completely removed from the set of assumptions is just a consequence of
the more conventional insert ¢ I' = ¢ = I' + ¢ — @ rule and some basic
set identities.

theorem (in implication-logic) alternate-set-deduction-theorem:
insert p T =T —{p} o — ¢
by (metis insert-Diff-single set-deduction-theorem)

1.14 Reflection

Just as in the case of (:F), deduction from sets of assumptions makes true
the reflection principle and is automatically provable.

theorem (in implication-logic) set-deduction-reflection:
pel=THkyp
by (metis
Set.set-insert
list-implication.simps(1)
list-implication-axiom-k
set-deduction-theorem
set-deduction-weaken)

13

1.15 The Cut Rule

The final principle of () presented is the cut rule.

First, the weak form of the rule is established.

theorem (in implication-logic) set-deduction-cut-rule:

msert p 'Y —= A+ =T UAFY
proof —

assume nsert ¢ I' =

hence I' - ¢ — ¢ using set-deduction-theorem by auto

hence I' U A ¢ — 9 using set-deduction-def by auto

moreover assume A F ¢

hence I' U A I ¢ using set-deduction-def by auto

ultimately show ¢thesis using set-deduction-modus-ponens by metis
qed

Another lemma is shown next in order to establish the strong form of the
cut rule. The lemma shows the existence of a covering list of assumptions
¥ in the event some set of assumptions A proves everything in a finite set
of assumptions P.

lemma (in implication-logic) finite-set-deduction-list-deduction:
assumes finite ®
andV p € @. At ¢
shows V. set U C AN (Vp € ®. U i+ o)
using assms
proof (induct ® rule: finite-induct)
case empty thus ?case by (metis all-not-in-conv empty-subsetl set-empty)
next
case (insert x @)
assume Vo € . At p = JV. set WC AN Vo € . U i})
and Vo € insert x . Ak ¢
hence V. set ¥ C A A (Vped. ¥ i ¢) and A I x by simp+
then obtain ¥, ¥, where
set (T, Q Uy) C A
Ve Ui
Uy -y
using set-deduction-def by auto
moreover from this have V¢ € (insert x). ¥; Q Uy :+ ¢
by (metis
insert-iff
le-sup-iff
list-deduction-monotonic
order-refl set-append)
ultimately show ?case by blast
qed

With [finite ®; Vped. At ¢] = FV. set ¥ C A A (Vped. U+ @) the
strengthened form of the cut rule can be given.

14

theorem (in implication-logic) strong-set-deduction-cut-rule:
assumes @ UT o
andV p € ®. At o
shows ' U A I ¢
proof —
obtain ¥ where
A: set ¥ C ®UT and
B: Y-
using assms(1) set-deduction-def
by auto+
obtain &' I'/ where
C: set &' = set ¥ N & and
D:setTV=set XNT
by (metis inf-sup-aci(1) inter-set-filter)+
then have set (¢’ Q I'’) = set ¥ using A by auto
hence F: ®' Q I’ : ¢ using B list-deduction-monotonic by blast
hence V ¢ € set ®'. A I ¢ using assms(2) C by auto
from this obtain A’ where set A’ C A andV ¢ € set &' A’ :F ¢
using finite-set-deduction-list-deduction by blast
with strong-list-deduction-cut-rule D E
have set ('@ A’) CTU A and IV @ A’ :F ¢ by auto
thus ?thesis using set-deduction-def by blast
qed

1.16 Maximally Consistent Sets For Implication
Logic

Mazimally Consistent Sets are a common construction for proving complete-
ness of logical calculi. For a classic presentation, see Dirk van Dalen’s Logic
and Structure (2013, §1.5, pgs. 42-45) [8].

Maximally consistent sets will form the foundation of all of the model theory
we will employ in this text. In fact, apart from classical logic semantics,
conventional model theory will not be used at all.

The models we are centrally concerned are derived from maximally consis-
tent sets. These include probability measures used in completeness theorems
of probability logic found in §7?7, as well as arbitrage protection and trad-
ing strategies stipulated by our formulation of the Dutch Book Theorem we
present in §77.

Since implication logic does not have falsum, consistency is defined relative
to a formula ¢.
definition (in implication-logic)

formula-consistent :: 'a = 'a set = bool (<-—consistent -» [100] 100)

where
[simp]: o—consistent T = = (T' F)

15

Since consistency is defined relative to some ¢, maximal consistency is pre-
sented as asserting that either ¢ or ¢ — ¢ is in the consistent set I', for all
1. This coincides with the traditional definition in classical logic when ¢ is
falsum.

definition (in implication-logic)
formula-mazimally-consistent-set-def :: 'a = 'a set = bool (<-—MCS -» [100]
100)
where
[simp]: o—MCS T = (p—consistent T) A (V . p €TV (¢p = ¢) €T)

Every consistent set I' may be extended to a maximally consistent set.

However, no assumption is made regarding the cardinality of the types of
an instance of implication-logic.

As a result, typical proofs that assume a countable domain are not suitable.
Our proof leverages Zorn’s lemma.

lemma (in implication-logic) formula-consistent-extension:
assumes p—consistent I’
shows (p—consistent (insert ¢ T')) V (¢—consistent (insert (¢ — @) T))
proof —
{
assume — p—consistent insert ¢ T’
henceI' ¢ — ¢
using set-deduction-theorem
unfolding formula-consistent-def
by simp
hence ¢—consistent insert (v — @) I’
by (metis Un-absorb assms formula-consistent-def set-deduction-cut-rule)
}
thus ?thesis by blast
qed

theorem (in implication-logic) formula-mazimally-consistent-extension:
assumes @—consistent I'
shows 3 Q. (p—MCS Q) AT C Q
proof —
let T'-extensions = {X. (¢—consistent ¥) AT C X}
have 3 Q) € T-extensions. VX € T -extensions. Q C X — ¥ =
proof (rule subset-Zorn)
fix C :: 'a set set
assume subset-chain-C: subset.chain I'-extensions C
henceC: VX € (C.T C XV ¥ €C. p—consistent X
unfolding subset.chain-def
by blast+
show 3 Q € T-extensions. V L € C. £ C Q
proof cases
assume C = {} thus ?thesis using assms by blast
next

16

let 0= C
assume C # {}
hence I' C 9Q by (simp add: C(1) less-eq-Sup)
moreover have p—consistent %
proof —
{
assume — p—consistent)
then obtain w where w:
finite w
w C 2
- @p—-consistent w
unfolding
formula-consistent-def
set-deduction-def
by auto
from w(!) w(2) have 3 X € C. w C X
proof (induct w rule: finite-induct)
case empty thus ?case using «C # {}> by blast
next
case (insert ¢ w)
from this obtain ¥; X9 where
212
w Q El
¥ ecC
and Xs:
Ve Xy
Yo el
by auto
hence 21 Q EQ \Y 22 Q 21
using subset-chain-C
unfolding subset.chain-def
by blast
hence (insert ¢ w) C X1 V (insert ¢ w) C o
using ¥, ¥, by blast
thus ?case using X1 Yo by blast
qed
hence 3 ¥ € C. (p—consistent) N\ = (¢—consistent X)
using C(2) w(3)
unfolding
formula-consistent-def
set-deduction-def
by auto
hence Fualse by auto
}
thus ?thesis by blast
qed
ultimately show ?thesis by blast
qed
qed

17

then obtain () where (:
Q € T-extensions
VY € T-extensions. 1 C X — X =
by auto+
{
fix v
have (p—consistent insert ¥ Q) V (o—consistent insert (p — @) Q)
I' C insert ¢ Q
T C insert (v —) Q
using (1) formula-consistent-extension formula-consistent-def
by auto
hence insert ¢ Q € I'-extensions
V insert (P —) Q € T-extensions
by blast
hence ¢ € Q V (¢ — @) € Q using Q(2) by blast

thus ?thesis
using Q(71)
unfolding formula-mazximally-consistent-set-def-def
by blast
qed

Finally, maximally consistent sets contain anything that can be deduced
from them, and model a form of modus ponens.

lemma (in implication-logic) formula-mazimally-consistent-set-def-reflection:
p—MCST = ypel =T+
proof —
assume p—MCS T’
{
assume I' I~ o
moreover from «(p—MCS T> havey €TV (¢ >) €T =Tk ¢
unfolding
formula-mazimally-consistent-set-def-def
formula-consistent-def
by auto
ultimately have v € T’
using set-deduction-reflection set-deduction-modus-ponens
by metis
}
thusyp e I'=THF v
using set-deduction-reflection
by metis
qed

theorem (in implication-logic) formula-maximally-consistent-set-def-implication-elimination:
assumes p—MCS Q
shows (> x) €Q =Y e Q= x €N
using
assms

18

formula-mazximally-consistent-set-def-reflection
set-deduction-modus-ponens
by blast

This concludes our introduction to implication logic.

end

19

Chapter 2

Classical Propositional Logic

theory Classical-Logic
imports Implication-Logic
begin

This theory presents classical propositional logic, which is classical logic
without quantifiers.

2.1 Axiomatization

Classical propositional logic can be given by the following Hilbert-style ax-
iom system. It is émplication-logic extended with falsum and double nega-
tion.
class classical-logic = implication-logic +

fixes falsum :: 'a (xL»)

assumes double-negation: - (((p — L) — 1) —)

In some cases it is useful to assume consistency as an axiom:

class consistent-classical-logic = classical-logic +
assumes consistency: - F L

2.2 Common Rules

There are many common tautologies in classical logic. Once we have es-
tablished completeness in §3, we will be able to leverage Isabelle/HOL’s
automation for proving these elementary results.

In order to bootstrap completeness, we develop some common lemmas using
classical deduction alone.

lemma (in classical-logic)
ez-falso-quodlibet: = L — ¢
using axiom-k double-negation modus-ponens hypothetical-syllogism

20

by blast

lemma (in classical-logic)
Contraposition: - ((¢ = L) = (¢ = L)) =¥ = ¢
proof —
have [p — L, ¢, (¢ = L) = (v — L))+ L
using flip-implication list-deduction-theorem list-implication.simps(1)
unfolding list-deduction-def
by presburger
hence [¢, (¢ = L) - (v —» L) F (¢ > L) = L
using list-deduction-theorem by blast
hence [, (¢ = L) = (¥ = L)+ o
using double-negation list-deduction-weaken list-deduction-modus-ponens
by blast
thus ?thesis
using list-deduction-base-theory list-deduction-theorem by blast
qed

lemma (in classical-logic)
double-negation-converse: = ¢ — (¢ — 1) — L
by (meson axiom-k modus-ponens flip-implication)

The following lemma is sometimes referred to as The Principle of Pseudo-
Scotus[2].

lemma (in classical-logic)
pseudo-scotus: F (¢ — L) = ¢ — ¢
using ez-falso-quodlibet modus-ponens hypothetical-syllogism by blast

Another popular lemma is attributed to Charles Sanders Peirce, and has
come to be known as Peirces Law[5].

lemma (in classical-logic) Peirces-law:
Fllp =) =) —=e
proof —
have [p = L, (¢ = ¢) = @] - p = ¢
using
pseudo-scotus
list-deduction-theorem
list-deduction-weaken
by blast
hence [¢p — L, (¢ = ¥) = ¢] :F o
by (meson
list.set-intros(1)
list-deduction-reflection
list-deduction-modus-ponens
set-subset-Cons
subsetCF)
hence [p = L, (¢ = ¥) —] - L
by (meson
list.set-intros(1)

21

list-deduction-modus-ponens
list-deduction-reflection)
hence [(¢p = ¥) =] H (p = L) > L
using list-deduction-theorem by blast
hence [(¢ —) = ¢] F @
using double-negation
list-deduction-modus-ponens
list-deduction-weaken
by blast
thus ?thesis
using list-deduction-def
by auto
qed

lemma (in classical-logic) excluded-middle-elimination:
B) B (G Q) R
proof —
let 7 = [— L, ¢ = o, (p = L) = 9]
have T+ (¢ — L) = ¢
Ty — L
by (simp add: list-deduction-reflection)+
hence T - (p — L) — L
by (meson
flip-hypothetical-syllogism
list-deduction-base-theory
list-deduction-monotonic
list-deduction-theorem
set-subset-Cons)
hence 7T :+ ¢
using
double-negation
list-deduction-modus-ponens
list-deduction-weaken
by blast
hence 7" :F ¢
by (meson
list.set-intros(1)
list-deduction-modus-ponens
list-deduction-reflection
set-subset-Cons subsetCE)
hence [¢p — ¥, (p — L) = Y]+ o
using
Peirces-law
list-deduction-modus-ponens
list-deduction-theorem
list-deduction-weaken
by blast
thus ?thesis
unfolding list-deduction-def

22

by simp
qed

2.3 Maximally Consistent Sets For Classical Logic

Relativized maximally consistent sets were introduced in §1.16. Often this
is exactly what we want in a proof. A completeness theorem typically starts
by assuming ¢ is not provable, then finding a p—MCS I" which gives rise to
a model which does not make ¢ true.

A more conventional presentation says that I' is maximally consistent if
and only if = ' + 1L and V¢. ¥ € I' V vy — ¢ € I'. This conventional
presentation will come up when formulating MAXSAT in §??. This in turn
allows us to formulate MAXSAT completeness for probability inequalities
in §77, and reduce checking if a strategy will always lose money or if it will
always make money if matched to bounded MAXSAT as part of our proof
of the Dutch Book Theorem in §77 and §77? respectively.

definition (in classical-logic)
consistent :: 'a set = bool where
[simp]: consistent T' = | —consistent T

definition (in classical-logic)
mazximally-consistent-set :: 'a set = bool («MCS>) where
[simp]: MCST = L—MCS T

lemma (in classical-logic)
formula-mazimally-consistent-set-def-negation: p—MCS ' —= ¢ — 1L € T
proof —
assume p—MCS T’
{
assume ¢ —» L ¢ T
hence (¢ > 1) 5> p €T
using «p—MCS I'
unfolding formula-mazimally-consistent-set-def-def
by blast
henceT'H (p — L) = ¢
using set-deduction-reflection
by simp
hence I' + ¢
using
Peirces-law
set-deduction-modus-ponens
set-deduction-weaken
by metis
hence False
using «p—MCS T'»

23

unfolding
formula-mazimally-consistent-set-def-def
formula-consistent-def

by simp

thus ?thesis by blast
qed

Relative maximal consistency and conventional maximal consistency in fact
coincide in classical logic.

lemma (in classical-logic)
formula-mazimal-consistency: (. o—MCS T) = MCS T
proof —
{
fix ¢
have p—MCS T' = MCS T
proof —
assume p—MCS T’
have consistent T’
using
«p—MCS T
ex-falso-quodlibet [where p=¢]
set-deduction-weaken [where I'=T
set-deduction-modus-ponens
unfolding
formula-mazximally-consistent-set-def-def
consistent-def
formula-consistent-def
by metis
moreover {
fix ¥
havey - L ¢ T —= ¢ €T
proof —
assume ¢y —» 1 ¢ T
hence (¢ - 1) - o €T
using «(p—MCS T'»
unfolding formula-mazimally-consistent-set-def-def
by blast
henceT'H (¢p = L) — ¢
using set-deduction-reflection
by simp
also have I' - ¢ — L
using «(p—MCS Iy
formula-mazimally-consistent-set-def-negation
set-deduction-reflection
by simp
henceI't (¢p - 1) — L
using calculation
hypothetical-syllogism

24

[where p=t¢ — 1 and ¥=¢ and y=1]
set-deduction-weaken

[where I'=T]
set-deduction-modus-ponens
by metis
hence I' + ¢
using double-negation
[where ¢=1]
set-deduction-weaken
[where I'=T
set-deduction-modus-ponens
by metis

thus ?thesis
using «p—MCS T
formula-mazimally-consistent-set-def-reflection
by blast
qed
}
ultimately show ?Zthesis
unfolding mazimally-consistent-set-def
formula-mazximally-consistent-set-def-def
formula-consistent-def
consistent-def
by blast
qed

thus ?thesis
unfolding maximally-consistent-set-def
by metis
qed

Finally, classical logic allows us to strengthen [p—MCS Q; p — x € Q; ¢
€ Q] = x € Q to a biconditional.

lemma (in classical-logic)
formula-mazimally-consistent-set-def-implication:
assumes o—MCS T’
shows ¢ - x el =W el — xel)
proof —

{

assume hypothesis: Y € I' — xy € T
{
assume ¢ ¢ T’
have VY. ¢ - ¢ € T
by (meson assms
formula-maximally-consistent-set-def-negation
formula-mazimally-consistent-set-def-implication-elimination
formula-mazimally-consistent-set-def-reflection
pseudo-scotus set-deduction-weaken)
then have Vx ¢. insert xTH YV x > ¢ ¢T

25

by (meson assms
azxiom-k
formula-mazimally-consistent-set-def-reflection
set-deduction-modus-ponens
set-deduction-theorem
set-deduction-weaken)

hence v — x €T

by (meson <« ¢ I
assms
formula-mazximally-consistent-set-def-def

formula-mazimally-consistent-set-def-reflection
set-deduction-theorem)

}

moreover {
assume y € I
hence vy — x €T
by (metis assms
calculation
insert-absorb

formula-mazimally-consistent-set-def-reflection
set-deduction-theorem,)

}

ultimately have ¢ — x € I' using hypothesis by blast
}

thus ?thesis
using assms

formula-mazximally-consistent-set-def-implication-elimination
by metis

qed

end

26

Chapter 3

Classical Soundness and
Completeness

theory Classical-Logic-Completeness
imports Classical-Logic
begin

The following presents soundness completeness of the classical propositional
calculus for propositional semantics. The classical propositional calculus is
sometimes referred to as the sentential calculus. We give a concrete algebraic
data type for propositional formulae in §3.1. We inductively define a logical
judgement I, for these formulae. We also define the Tarski truth relation
Eprop inductively, which we present in §3.3.

The most significant results here are the embedding theorems. These the-
orems show that the propositional calculus can be embedded in any logic
extending classical-logic. These theorems are proved in §3.5.

3.1 Syntax

Here we provide the usual language for formulae in the propositional cal-
culus. It contains falsum L, implication (—), and a way of constructing
atomic propositions A ¢ . { ¢). Defining the language is straight-forward
using an algebraic data type.

datatype ’a classical-propositional-formula =
Falsum (<L»)
| Proposition 'a (<{ - }» [45])
| Implication
'a classical-propositional-formula
‘a classical-propositional-formula (infixr <—» 70)

27

3.2 Propositional Calculus

In this section we recursively define what a proof is in the classical proposi-
tional calculus. We provide the familiar K and S axioms, as well as double
negation and modus ponens.

named-theorems classical-propositional-calculus
Rules for the Propositional Calculus

inductive classical-propositional-calculus ::
'a classical-propositional-formula = bool (<Fprop -+ [60] 55)
where
aziom-k [classical-propositional-calculus]:

| aziom-s [classical-propositional-calculus]:

Fprop (¢ =¥ = x) = (¢ > ¥) = ¢ = X
| double-negation [classical-propositional-calculus):

Fprop (0 = L) = L) = ¢
| modus-ponens [classical-propositional-calculus):

l_prop Y — ’(/} - l_prop Y = l_prop 1/1

Our proof system for our propositional calculus is trivially an instance of
classical-logic. The introduction rules for -, naturally reflect the axioms
of the classical logic axiom class.

instantiation classical-propositional-formula
i (type) classical-logic
begin
definition [simp]: L = L
definition [simp]: F ¢ = Fpr0p @
definition [simp]: ¢ — ¢ = ¢ — VP
instance by standard (simp add: classical-propositional-calculus)+
end

3.3 Propositional Semantics

Below we give the typical definition of the Tarski truth relation [=p;0p.

primrec classical-propositional-semantics ::
'a set = 'a classical-propositional-formula = bool
(infix (=prop> 65)
where
M Eprop () = (p €M)
| M Eprop ¢ = ¥ = (M Fprop ¢ —> M Fprop ¥)
| M =prop L = False

Soundness of our calculus for these semantics is trivial.

theorem classical-propositional-calculus-soundness:

|_prop © = m ':prop %)
by (induct rule: classical-propositional-calculus.induct, simp+)

28

3.4 Soundness and Completeness Proofs

definition strong-classical-propositional-deduction ::
'a classical-propositional-formula set
= 'a classical-propositional-formula = bool
(infix Fprop> 65)
where
[simp]: T Fprop o =T k¢

definition strong-classical-propositional-tarski-truth ::
'a classical-propositional-formula set
= 'a classical-propositional-formula = bool
(infix «|=prop> 65)
where

[simp]: T |=prop p =V MY v € T. M Eprop 7) — M Eprop @

definition theory-propositions ::
'a classical-propositional-formula set = 'a set (<{ - [}» [50])
where

[simp]: { T} ={p . T tprop (P)}

Below we give the main lemma for completeness: the truth lemma. This
proof connects the maximally consistent sets developed in §1.16 and §2.3
with the semantics given in §3.3.

All together, the technique we are using essentially follows the approach by
Blackburn et al. [1, §4.2, pgs. 196-201].

lemma truth-lemma:

assumes MCS T’

shows I'tp0p o = { T} Fprop @
proof (induct @)

case Falsum

then show ?case using assms by auto
next

case (Proposition)

then show ?case by simp

next
case (Implication 1 x)
thus ?Zcase
unfolding strong-classical-propositional-deduction-def
by (metis
assms
mazximally-consistent-set-def
formula-mazximally-consistent-set-def-implication
classical-propositional-semantics.simps(2)
implication-classical-propositional-formula-def
set-deduction-modus-ponens
set-deduction-reflection)
qed

29

Here the truth lemma above is combined with @—consistent I' = 3.
p—MCS Q@ AT C Q proven in §3.3. These theorems together give rise to
strong completeness for the propositional calculus.

theorem classical-propositional-calculus-strong-soundness-and-completeness:
L bprop 0 =T [Fprop #
proof —
have soundness: I' Fprop © = T |Eprop ¢
proof —
assume I' I, ¢
from this obtain I'' where I': set T/ C T T : ¢
by (simp add: set-deduction-def, blast)

fix M
assume V v € . M =pr0p v
hence V v € set I'. M =p,0p v using I''(1) by auto
henceV . I'':F o — M =pr0p @
proof (induct T')
case Nil
then show ?case
by (simp add:
classical-propositional-calculus-soundness
list-deduction-def)
next
case (Cons ¢ T)
thus ?case using list-deduction-theorem by fastforce
qed
with I''(2) have I =,,,, ¢ by blast

thus I' |=pr0p @
using strong-classical-propositional-tarski-truth-def by blast
qed
have completeness: I' |=prop ¢ = T Fprop @
proof (erule contrapos-pp)
assume — ' .0, ¢
hence 3 M. (V vy € T. M =prop 7)) A M Eprop ¢

proof —
from <= I' k.., > obtain Q where : T' C Q p—MCS Q
by (meson

formula-consistent-def
formula-mazimally-consistent-extension
strong-classical-propositional-deduction-def)
hence (¢ — 1) €
using formula-mazimally-consistent-set-def-negation by blast
hence = {{ Q } =prop ¢
using ()
formula-consistent-def
formula-maximal-consistency
formula-mazimally-consistent-set-def-def
truth-lemma

30

unfolding strong-classical-propositional-deduction-def
by blast
moreover haveV v € I'. { Q } Eprop ¥
using
formula-mazximal-consistency
truth-lemma
Q
set-deduction-reflection
unfolding strong-classical-propositional-deduction-def
by blast
ultimately show %thesis by auto
qed
thus = I' [=prop ¢
unfolding strong-classical-propositional-tarski-truth-def
by simp
qged
from soundness completeness show I' b-p,0p © =T |=prop ¢
by linarith
qed

For our applications in §sec:propositional-embedding, we will only need a
weaker form of soundness and completeness rather than the stronger form
proved above.

theorem classical-propositional-calculus-soundness-and-completeness:
Fprop 0 = (YO M f=prop #)
using classical-propositional-calculus-soundness [where =]
classical-propositional-calculus-strong-soundness-and-completeness
[where p=¢ and I'={}]
strong-classical-propositional-deduction-def
[where p=¢ and I'={}]
strong-classical-propositional-tarski-truth-def
[where p=¢ and I'={}]
deduction-classical-propositional-formula-def [where p=¢)|
set-deduction-base-theory [where p=¢)]
by metis

instantiation classical-propositional-formula
i (type) consistent-classical-logic
begin
instance by standard
(simp add: classical-propositional-calculus-soundness-and-completeness)
end

31

3.5 Embedding Theorem For the Propositional Cal-
culus

A recurring technique to prove theorems in logic moving forward is embed
our theorem into the classical propositional calculus.

Using our embedding, we can leverage completeness to turn our problem
into semantics and dispatch to Isabelle/HOL’s classical theorem provers.

In future work we may make a tactic for this, but for now we just manually
leverage the technique throughout our subsequent proofs.

primrec (in classical-logic)
classical-propositional-formula-embedding
. 'a classical-propositional-formula = 'a (<(- |)» [50]) where
((p)D=v>p
[le=vD=(0ed—=>(v)
[(LD)=1
theorem (in classical-logic) propositional-calculus:
F;m"op p = F (I ¥ I)
by (induct rule: classical-propositional-calculus.induct,
(simp add: aziom-k aziom-s double-negation modus-ponens)+)

The following theorem in particular shows that it suffices to prove theorems
using classical semantics to prove theorems about the logic under investiga-
tion.

theorem (in classical-logic) propositional-semantics:
e i .
by (simp add:
classical-propositional-calculus-soundness-and-completeness
propositional-calculus)

end

32

Chapter 4

List Utility Theorems

theory List-Utilities
imports
HOL— Combinatorics. List-Permutation
begin

Throughout our work it will be necessary to reuse common lemmas regarding
lists and multisets. These results are proved in the following section and
reused by subsequent lemmas and theorems.

4.1 Multisets

lemma length-sub-mset:
assumes mset W C# mset I’
and length ¥ >= length T’
shows mset ¥ = mset '
using assms
by (metis
append-Nil2
append-eq-append-conv
leD
linorder-neqE-nat
mset-le-perm-append
perm-length
size-mset
size-mset-mono)

lemma set-exclusion-mset-simplify:

assumes — (3 ¢ € set V. ¢ € set X)
and mset W C# mset (¥ QT')
shows mset W C# mset T’

using assms

proof (induct X)
case Nil
then show ?case by simp

33

next
case (Cons o %)
then show Zcase
by (cases o € set U,
fastforce,
metis
add.commute
add-mset-add-single
diff-single-trivial
in-multiset-in-set
mset.simps(2)
notin-set-removel
remove-hd
subset-eq-diff-conv
union-code
append-Cons)
qed

lemma image-mset-cons-homomorphism:

image-mset mset (image-mset ((#) p) @) = image-mset ((+) {# ¢ #}) (image-mset
mset D)

by (induct ®, simp+)

lemma image-mset-append-homomorphism:

image-mset mset (image-mset ((Q) A) ®) = image-mset ((+) (mset A)) (image-mset
mset D)

by (induct ®, simp+)

lemma image-mset-add-collapse:

fixes A B :: 'a multiset

shows image-mset ((+) A) (image-mset ((+) B) X) = image-mset ((+) (4 +
B)) X

by (induct X, simp, simp)

lemma removel-remdups-removeAll: removel x (remdups A) = remdups (removeAll
z A)
proof (induct A)

case Nil

then show ?case by simp
next

case (Cons a A)

then show ?Zcase

by (cases a = z, (simp add: Cons)+)

qed

lemma mset-remdups:

assumes mset A = mset B

shows mset (remdups A) = mset (remdups B)
proof —

34

have V B. mset A = mset B — mset (remdups A) = mset (remdups B)
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons a A)
{
fix B
assume mset (a # A) = mset B
hence mset A = mset (removel a B)
by (metis add-mset-add-mset-same-iff
list.set-intros(1)
mset.simps(2)
mset-eq-setD
perm-remove)
hence mset (remdups A) = mset (remdups (removel a B))
using Cons.hyps by blast
hence mset (remdups (a # (remdups A))) = mset (remdups (a # (remdups
(removel a B))))
by (metis mset-eq-setD set-eq-iff-mset-remdups-eq list.simps(15))
hence mset (remdups (a # (removeAll a (remdups A))))
= mset (remdups (a # (removeAll a (remdups (removel a B)))))
by (metis insert-Diff-single list.set(2) set-eq-iff-mset-remdups-eq set-removeAll)
hence mset (remdups (a # (remdups (removeAll a A))))
= mset (remdups (a # (remdups (removeAll a (removel a B)))))
by (metis distinct-remdups distinct-removel-removeAll removel-remdups-removeAll)
hence mset (remdups (remdups (a # A))) = mset (remdups (remdups (a #
(removel a B))))
by (metis ¢mset A = mset (removel a B)»
list.set(2)
mset-eq-setD
set-eg-iff-mset-remdups-eq)
hence mset (remdups (a # A)) = mset (remdups (a # (removel a B)))
by (metis remdups-remdups)
hence mset (remdups (a # A)) = mset (remdups B)
using <mset (a # A) = mset By mset-eq-setD set-eq-iff-mset-remdups-eq by
blast
}
then show ?case by simp
qed
thus %thesis using assms by blast
qed

lemma mset-mset-map-snd-remdups:

assumes mset (map mset A) = mset (map mset B)

shows mset (map (mset o (map snd) o remdups) A) = mset (map (mset o (map
snd) o remdups) B)
proof —

{

35

fix B :: (Ya x 'b) list list
fix b:: (a x 'b) list
assume b € set B
hence mset (map (mset o (map snd) o remdups) (b # (removel b B)))
= mset (map (mset o (map snd) o remdups) B)
proof (induct B)
case Nil
then show ?Zcase by simp
next
case (Cons b’ B)
then show ?case
by (cases b = b’, simp+)
qed
}
note < = this
have
YV B (‘a x 'b) list list.
mset (map mset A) = mset (map mset B)
— mset (map (mset o (map snd) o remdups) A) = mset (map (mset o (map
snd) o remdups) B)
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons a A)
{
fix B
assume #: mset (map mset (a # A)) = mset (map mset B)
hence mset a €# mset (map mset B)
by (simp,
metis @
image-set
list.set-intros(1)
list.simps(9)
mset-eq-setD)
from this obtain b where 7:
b€ setB
mset a = mset b
by auto
with & have mset (map mset A) = mset (removel (mset b) (map mset B))
by (simp add: union-single-eq-diff)
moreover have mset B = mset (b # removel b B) using | by simp
hence mset (map mset B) = mset (map mset (b # (removel b B)))
by (simp,
metis image-mset-add-mset
mset.simps(2)
mset-removel)
ultimately have mset (map mset A) = mset (map mset (removel b B))
by simp

36

hence mset (map (mset o (map snd) o remdups) A)
= mset (map (mset o (map snd) o remdups) (removel b B))
using Cons.hyps by blast
moreover have (mset o (map snd) o remdups) a = (mset o (map snd) o
remdups) b
using {(2) mset-remdups by fastforce
ultimately have
mset (map (mset o (map snd) o remdups) (a # A))
= mset (map (mset o (map snd) o remdups) (b # (removel b B)))
by simp
moreover have
mset (map (mset o (map snd) o remdups) (b # (removel b B)))
= mset (map (mset o (map snd) o remdups) B)
using 7(1) < by blast
ultimately have
mset (map (mset o (map snd) o remdups) (a # A))
= mset (map (mset o (map snd) o remdups) B)
by simp
}
then show ?case by blast
qed
thus ?thesis using assms by blast
qed

lemma mset-remdups-append-msub:
mset (remdups A) C# mset (remdups (B @ A))
proof —
have V B. mset (remdups A) C# mset (remdups (B @ A))
proof (induct A)
case Nil
then show ?case by simp
next
case (Cons a A)
{
fix B
have {: mset (remdups (B Q (a # A))) = mset (remdups (a # (B Q A)))
by (induct B, simp+)
have mset (remdups (a # A)) C# mset (remdups (B Q (a # A)))
proof (cases a € set B A a ¢ set A)
case True
hence {: mset (removel a (remdups (B @ A))) = mset (remdups ((removeAll
a B) @ 4))
by (simp add: removel-remdups-removeAll)
hence (add-mset a (mset (remdups A)) CH# mset (remdups (B @ A)))
= (mset (remdups A) C# mset (remdups ((removeAll a B) @ A)))
using True
by (simp add: insert-subset-eq-iff)
then show %thesis
by (metis T Cons True

37

Un-insert-right
list.set(2)
mset.simps(2)
mset-subset-eq-insertD
remdups.simps(2)
set-append
set-eq-iff-mset-remdups-eq
set-mset-mset set-remdups)
next
case Fulse
then show ?thesis using 1 Cons by simp
qed

thus ?case by blast
qed
thus ?thesis by blast
qed

4.2 List Mapping

The following notation for permutations is slightly nicer when formatted in
ATRX.

notation perm (infix <= 50)

lemma map-monotonic:
assumes mset A C# mset B
shows mset (map f A) C# mset (map f B)
by (simp add: assms image-mset-subseteg-mono)

lemma perm-map-perm-list-exists:
assumes A = map [B
shows 3 B A =map fB'\ B'= B
proof —
have VB. A = map fB — (3 B A= map f B'A B'= B)
proof (induct A)
case Nil
then show Zcase by simp
next
case (Cons a A)
{
fix B
assume a # A = map f B
from this obtain b where b:
b € set B
fb=a
by (metis
(full-types)
imageFE

38

list.set-intros(1)
set-map
set-mset-mset)
hence A = (removel (fb) (map f B))
B = b # removel b B
by (metis
<a # A= map f B>
perm-remove-perm
remove-hd,
meson b(1) perm-remove)
hence A = (map f (removel b B))
by (metis (no-types)
list.simps(9)

mset-map
mset-removel
remove-hd)
from this obtain B’ where B"
A = map f B’

B’ = (removel b B)

using Cons.hyps by blast
with b have a # A = map f (b # B’)

by simp
moreover have B = b # B’

by (metis B'(2) <mset B = mset (b # removel b B)) mset.simps(2))
ultimately have 3B’. a # A = map f B'N B'= B

by (meson perm-sym)

thus ?case by blast
qed
with assms show ?thesis by blast
qed

lemma mset-sub-map-list-exists:
assumes mset & CH# mset (map f T')
shows 3 ®’. mset &' C# mset T A & = (map [D)
proof —
have V ®. mset & C# mset (map f T)
— (3 @' mset @' CH# mset T A @ = (map [D))
proof (induct T')
case Nil
then show ?case by simp
next
case (Cons v T
{
fix ¢
assume mset & CH# mset (map f (v #)
have 3®'. mset ' C# mset (y # T) A P
proof cases
assume f v € set ®

= map f D’

39

hence f v # (removel (f v) ®) = @
by force
with <mset ® C# mset (map f (v #)
have mset (removel (f v) ®) C# mset (map f T)
by (metis
insert-subset-eq-iff
list.simps(9)
mset.simps(2)
mset-removel
remove-hd)
from this Cons obtain ®’ where ¢
mset &' CH# mset T’
removel (f v) ® = map f '
by blast
hence mset (y # ') C# mset (y # T)
and f v # (removel (f v) ®) = map f (v # ©)
by simp+
hence ® = map f (v # ®)
using «f v € set ®» perm-remove
by metis
from this obtain &' where ®'"
® = map f "
O =~ # D’
using perm-map-perm-list-exists
by blast
hence mset "' C# mset (v # T)
by (metis <mset (v # ®') C# mset (v # T'))
thus ?thesis using ®’ by blast
next
assume [v ¢ set ®
have mset ® — {#f v#} = mset ®
by (metis (no-types)
f v ¢ set O
diff-single-trivial
set-mset-mset)
moreover
have mset (map f (v # T))
= add-mset (f v) (image-mset f (mset T'))
by simp
ultimately have mset ® C# mset (map f T')
by (metis (no-types)
Diff-eq-empty-iff-mset
«mset ® CH# mset (map f (v # T))
add-mset-add-single
cancel-ab-semigroup-add-class. diff-right-commute
diff-diff-add mset-map)
with Cons show ?thesis
by (metis
mset-le-perm-append

40

perm-append-single
subset-mset.order-trans)
qed
}
thus ?case using Cons by blast
qed
thus ?thesis using assms by blast
qed

4.3 Laws for Searching a List

lemma find-Some-predicate:
assumes find P ¥ = Some ¢
shows P v
using assms
proof (induct U)
case Nil
then show ?case by simp
next
case (Cons w)
then show Zcase by (cases P w, fastforce+)
qed

lemma find-Some-set-membership:
assumes find P ¥ = Some v
shows ¢ € set ¥
using assms
proof (induct U)
case Nil
then show ?case by simp
next
case (Cons w ¥)
then show ?case by (cases P w, fastforce+)
qed

4.4 Permutations

lemma perm-count-list:
assumes & = U
shows count-list ® ¢ = count-list ¥ ¢
using assms
proof (induct ® arbitrary: V)
case Nil
then show ?case
by blast
next
case (Cons x ®)
hence $: count-list © ¢ = count-list (removel x V) ¢

41

by (metis mset-removel remove-hd)
show ?case
proof cases
assume y = ¢
hence count-list (x # ®) ¢ = count-list & ¢ + 1 by simp
with { have count-list (x # ®) ¢ = count-list (removel x V) ¢ + 1
by simp
moreover
have x € set ¥
by (metis Cons.prems list.set-intros(1) set-mset-mset)
hence count-list (removel x ¥) ¢ + 1 = count-list ¥ ¢
using <y = ¢
by (induct ¥, simp, auto)
ultimately show ?thesis by simp
next
assume y # @
with { have count-list (x # ®) ¢ = count-list (removel x ¥) ¢
by simp
moreover have count-list (removel x ¥) ¢ = count-list U ¢
using «x # @
by (induct U, simp+)
ultimately show ¢thesis by simp
qed
qed

lemma count-list-append:
count-list (A Q B) a = count-list A a + count-list B a
by (induct A, simp, simp)

lemma concat-removel :
assumes ¥ € set £
shows concat L = ¥ @Q concat (removel ¥ L)
using assms
by (induct L, simp, simp, metis)

lemma concat-set-membership-mset-containment:
assumes concat I' = A
and P c set T
shows mset ® C# mset A
using assms
by (induct T, simp, simp, metis concal-removel mset-le-perm-append)

lemma (in comm-monoid-add) perm-list-summation:
assumes ¥ = @
shows (3 ¢'V. f¢') = Qo "0. [)
using assms
proof (induct ¥ arbitrary: ®)
case Nil
then show ?case by auto

42

next
case (Cons ¢ ¥ @)
hence (> o'+ V. f) = O ¢’ + (removel ¥ D). f ¢)
by (metis mset-removel remove-hd)
moreover have ¢ € set ®
by (metis Cons.prems list.set-intros(1) set-mset-mset)
hence (3¢’ « (¢ # (removel ¢ @)). f ¢') = "2 f ¢)
proof (induct)
case Nil
then show ?case by auto
next
case (Cons ¢ ®)
show ?case
proof cases
assume @ = Y
then show ?thesis by simp
next
assume @ #
hence ¢ € set ®
using Cons.prems by auto
hence (Y ¢’ « (1@ # (removel ¢ ®)). f /) = (X 9"®. f &)
using Cons.hyps by blast
hence (-~ (¢ # @). [¢’)
Z (S (04 ¢ # (removel G). [@)
by (simp add: add.left-commute)
moreover
have (¢ # (¢ # (removel ¢ ®))) = (¢ # (removel 1 (¢ # ®)))
using <@ # Y by simp
ultimately show ?thesis
by simp
qed
qed
ultimately show ?case
by simp
qed

4.5 List Duplicates

primrec duplicates :: 'a list = 'a set
where
duplicates [| = {}
| duplicates (z # zs) =
(if (z € set xs)
then insert x (duplicates xs)
else duplicates xs)

lemma duplicates-subset:

duplicates ® C set @
by (induct ®, simp, auto)

43

lemma duplicates-alt-def:
duplicates xs = {z. count-list s © > 2}
proof (induct s)
case Nil
then show Zcase by simp
next
case (Cons z zs)
assume inductive-hypothesis: duplicates s = {z. 2 < count-list xs x}
then show ?case
proof cases
assume r € set zs
hence count-list (xz # xs) © > 2
by (simp, induct xs, simp, simp, blast)
hence {y. 2 < count-list (x # xs) y}
= dnsert z {y. 2 < count-list zs y}
by (simp, blast)
thus ?thesis using inductive-hypothesis <x € set s>
by simp
next
assume z ¢ set xs
hence {y. 2 < count-list (z # zs) y} = {y. 2 < count-list zs y}
by (simp, auto)
thus ?thesis using inductive-hypothesis <z ¢ set xs»
by simp
qged
qged

4.6 List Subtraction

primrec list-subtract :: 'a list = 'a list = 'a list (infix] <©> 70)
where
xs ©[] = zs
| zs © (y # ys) = (removel y (zs © ys))

lemma list-subtract-mset-homomorphism [simp]:
mset (A © B) = mset A — mset B
by (induct B, simp, simp)

lemma list-subtract-empty [simp):
leo®=1]
by (induct ®, simp, simp)

lemma list-subtract-removel-cons-perm:
DO (p# A) = (removel ¢) S A

by (induct A, simp, simp add: add-mset-commute)

lemma [list-subtract-cons:
assumes ¢ ¢ set A

44

shows (p # D) O A= # (PO A)
using assms
by (induct A, simp, simp, blast)

lemma list-subtract-cons-absorb:
assumes count-list ¢ > count-list A ¢
shows o # (P S A) = (p# P) o A
using assms
proof (induct A arbitrary: @)
case Nil
then show ?case using list-subtract-cons by fastforce
next
case (Cons ¢ A ®)
then show ?case
proof cases
assume @ = ¢
hence ¢ € set ®
using Cons.prems count-notin by force
hence ® = ¢ # (removel ¢)
unfolding «p = »
by force
thus ?thesis using perm-count-list
by (metis
(no-types, lifting)
Cons.hyps
Cons.prems
p =
add-le-cancel-right
add-mset-diff-bothsides
count-list.simps(2)
list-subtract-mset-homomorphism
mset.simps(2))
next
assume @ # ¢
hence count-list (¢ # A) ¢ = count-list A ¢
by simp
moreover have count-list ® ¢ = count-list (removel ¥ ®) ¢
proof (induct D)
case Nil
then show ?Zcase by simp
next
case (Cons ¢’ @)
show ?case
proof cases
assume ¢’ = ¢
with «p # ¥
have count-list (¢’ # ®) ¢ = 1 + count-list ¢
count-list (removel ¢ (p’ # ®)) ¢
= 1 + count-list (removel ¥ ®) ¢

45

by simp+
with Cons show ?thesis by linarith
next
assume o’ # @
with Cons show ?thesis by (cases ¢’ = 1, simp+)
qed
qed
ultimately show #thesis
using <count-list (Y # A) ¢ < count-list D ¢»
by (metis
Cons.hyps
W # P
list-subtract-removel-cons-perm
mset.simps(2)
removel .simps(2))
qged
qed

lemma list-subtract-cons-removel-perm:
assumes ¢ € set A
shows (¢ # ®) © A = ® & (removel ¢ A)
using assms
by (metis
list-subtract-mset-homomorphism
list-subtract-removel-cons-perm
perm-remove
remove-hd)

lemma [ist-subtract-removeAll-perm:
assumes count-list & ¢ < count-list A ¢
shows ® © A = (removeAll ¢ ®) & (removeAll ¢ A)
using assms
proof (induct ® arbitrary: A)
case Nil
then show ?case by auto
next
case (Cons £ @ A)
hence ® © A = (removeAll ¢ ®) © (removeAll p A)
by (metis add-leE count-list.simps(2))
show ?case
proof cases
assume & = ¢
hence count-list ® ¢ < count-list A ¢
using <count-list (£ #) ¢ < count-list A ¢»
by auto
hence count-list ® ¢ < count-list (removel ¢ A) ¢
by (induct A, simp, auto)
hence ® © (removel ¢ A)
= removeAll ¢ ® & removeAll ¢ (removel ¢ A)

46

using Cons.hyps by blast
hence ® © (removel ¢ A) = removeAll p ® © removeAll ¢ A
by (simp add: filter-removel removeAll-filter-not-eq)
moreover have ¢ € set A and ¢ € set (¢ # P)
using ¢ = ¢
<count-list (£ # D) ¢ < count-list A ¢»
gr-implies-not0
by fastforce+
hence (¢ # ®) © A = (removel ¢ (p # ®)) © (removel ¢ A)
by (metis list-subtract-cons-removel-perm remove-hd)

hence (¢ # ®) © A = ® & (removel ¢ A) by simp
ultimately show %thesis using <€ = ¢» by auto
next
assume £ # @
show ?thesis
proof cases
assume & € set A
hence ({ #) © A = ® © removel £ A
by (meson list-subtract-cons-removel-perm)
moreover have count-list A ¢ = count-list (removel £ A) ¢
by (metis
count-list.simps(2)
€ F
& € set b
perm-count-list
perm-remove)
hence count-list ® ¢ < count-list (removel £ A) ¢
using <€ # ¢ <count-list (§ # ®) ¢ < count-list A > by auto
hence ® © removel £ A
= (removeAll ¢ ®) © (removeAll ¢ (removel £ A))
using Cons.hyps by blast
moreover
have (removeAll ¢ ®) © (removeAll ¢ (removel £ A)) =
(removeAll ¢ ®) © (removel & (removeAll v A))
by (induct A,
simp,
metis
€ F @
list-subtract.simps(2)
mset-removel
removel .simps(2)
removeAll.simps(2))
hence (removeAll ¢ ®) & (removeAll ¢ (removel & A)) =
(removeAll ¢ (£ # ®)) © (removeAll ¢ A)
by (metis
& € set b
& F @

list-subtract-cons-removel-perm

47

member-remove removeAll.simps(2)
remove-code(1))
ultimately show ?Zthesis
by presburger
next
assume ¢ ¢ set A
hence (§ # D) A=¢ # (PO A)
by fastforce
hence (£ #) © A = £ # ((removeAll ¢) & (removeAll ¢ A))
using «<® © A = removeAll ¢ ® © removeAll p A>
by simp
hence (£ # ®) © A = (£ # (removeAll ¢ ®)) & (removeAll ¢ A)
by (simp add: <€ ¢ set N> list-subtract-cons)
thus ?thesis using € #) by auto
qed
qged
qed

lemma list-subtract-permute:
assumes ¢ = U
shows P O A =T o A
using assms
by simp

lemma append-perm-list-subtract-intro:
assumes A = B Q C
shows A © C = B
proof —
from <A = B @ C» have mset (A © C) = mset B
by simp
thus “thesis by blast
qed

lemma list-subtract-concat:
assumes ¥ € set L
shows concat (L © [V]) = (concat L) & ¥
using assms
by (simp add: concat-removel)

lemma (in comm-monoid-add) listSubstract-multisubset-list-summation:
assumes mset W C# mset ¢
shows (04U, [) + (L ¢"(® 0 W), f ¢') = (D" ®. f ¢)
proof —
have V ®. mset U C# mset ¢
s (DU f) + (D@). f) = (D', f o)
proof (induct V)
case Nil
then show “case
by simp

48

next
case (Cons ¢)
{
fix ¢
assume hypothesis: mset (Y # V) CH# mset O
hence mset ¥ C# mset (removel ¢)
by (metis append-Cons mset-le-perm-append perm-remove-perm remove-hd)
hence
(S0 W f) + (X " ((removel ¥ ©) & V). f &)
= (D p’+ (removel) ®). f ¢’
using Cons.hyps by blast
moreover have (removel) ®) S U =0 S (¢ # ¥)
by (meson list-subtract-removel-cons-perm perm-sym)
hence (3 ¢%—((removel ¥) & W). f ') = (X p"(® & (1 # V). f ')
using perm-list-summation by blast
ultimately have
(D0 0. f) + (De"(® & (6 #). f o)
= (> p’+ (removel) @). f ¢
by simp
hence
(T (0 # 0). f) + (So'e(@ & (# V). f o)
= (o9’ (¥ # (removel ¢ @)). f ¢)
by (simp add: add.assoc)
moreover have ¢ € set ¢
by (metis
append-Cons
hypothesis
list.set-intros(1)
mset-le-perm-append
perm-set-eq)
hence (¢ # (removel 1 ®)) = &
by auto
hence (3¢’ « (1 # (removel v @)). f o) = (¥ 9" ®. f o)
using perm-list-summation by blast
ultimately have
(S (b # 0). f) + (So'e(@ 6 (# V). f o)
= (2. f¢)
by simp
}
then show ?case
by blast
qed
with assms show ?thesis by blast
qed

lemma [ist-subtract-set-difference-lower-bound:
set T' — set @ C set (T © D)
using subset-Diff-insert
by (induct ®, simp, fastforce)

49

lemma list-subtract-set-trivial-upper-bound:
set (L © @) C set T’
by (induct @,

simp,

simp,

meson
dual-order.trans
set-removel-subset)

lemma list-subtract-msub-eq:
assumes mset ® C#H mset T’
and length (' © ®) = m
shows length I' = m + length ®
using assms
proof —
have V T'. mset ® C# mset I’
— length (T' © ®) = m ——> length I’ = m + length ®
proof (induct)
case Nil
then show ?case by simp
next
case (Cons ¢ ®)
{
fix T :: 'a list
assume mset (¢ #) CH# mset T
length (T © (¢ # ®)) =m
moreover from this have
mset ® C# mset (removel ¢ T')
mset (T' & (¢ # ®)) = mset ((removel ¢ T') & ®)
by (metis
append-Cons
mset-le-perm-append
perm-remove-perm
remove-hd,
sitmp)
ultimately have length (removel ¢ T') = m + length ®
using Cons.hyps
by (metis mset-eg-length)
hence length (¢ # (removel ¢ I')) = m + length (¢ # ®)
by simp
moreover have ¢ € set I’
by (metis
«mset (' © (¢ # ®)) = mset (removel ¢ T © @)
«mset (o # ®) CH# mset T
«mset & CH# mset (removel ¢ I')»
add-diff-cancel-left’
add-right-cancel
eq-iff

50

impossible-Cons
list-subtract-mset-homomorphism
mset-subset-eq-exists-conv
removel-idem size-mset)
hence length (¢ # (removel ¢ T)) = length T
by (metis
One-nat-def
Suc-pred
length-Cons
length-pos-if-in-set
length-removel)
ultimately have length T' = m + length (¢ # ®) by simp

thus ?case by blast
qed
thus ?thesis using assms by blast
qed

lemma list-subtract-not-member:
assumes b ¢ set A
shows A & B = A & (removel b B)
using assms
by (induct B,
stmp,
stmp,
metis
add-mset-add-single
diff-subset-eq-self
insert-Diff M2
insert-subset-eq-iff
list-subtract-mset-homomorphism
removel-idem
set-mset-mset)

lemma list-subtract-monotonic:
assumes mset A C# mset B
shows mset (A © C) C# mset (B © C)
by (simp,
meson
assms
subset-eq-diff-conv
subset-mset.dual-order.refl
subset-mset.order-trans)

lemma map-list-subtract-mset-containment:
mset ((map f A) © (map f B)) C# mset (map f (A & B))
by (induct B, simp, simp,
metis
diff-subset-eq-self

o1

diff-zero
image-mset-add-mset
image-mset-subseteq-mono
image-mset-union
subset-eq-diff-conv
subset-eq-diff-conv)

lemma map-list-subtract-mset-equivalence:
assumes mset B C# mset A
shows mset ((map f A) © (map f B)) = mset (map f (A & B))
using assms
by (induct B, simp, simp add: image-mset-Diff)

lemma msub-list-subtract-elem-cons-msub:
assumes mset = C#H mset I’
and ¢ € set (I' © =)
shows mset (¢ # Z) C# mset T
proof —
have V T'. mset = C# mset T’
—) € set (T © E) ——> mset (¢ # Z) CH# mset T
proof (induct E)
case Nil
then show Zcase by simp
next
case (Cons £ =)
{
fix T
assume

& csetD
mset 2= C# mset (removel £ T)
P € set ((removel £€T) © E)
by (simp,
metis
ex-mset
list.set-intros(1)
mset.simps(2)
mset-eq-setD
subset-mset.le-iff-add
union-mset-add-mset-left,
metis
list-subtract.simps(1)
list-subtract.simps(2)
list-subtract-monotonic
remove-hd,
simp,
metis

52

list-subtract-removel-cons-perm
perm-set-eq)
with Cons.hyps have
mset T' = mset (§ # (removel £ T))
mset (¢ # Z) CH# mset (removel £ T)
by (simp, blast)
hence mset (¢ # £ # E) C# mset T
by (simp,
metis
add-mset-commute
mset-subset-eq-add-mset-cancel)
}
then show ?case by auto
qed
thus ?thesis using assms by blast
qed

4.7 Tuple Lists

lemma removel-pairs-list-projections-fst:
assumes (vy,0) €# mset @
shows mset (map fst (removel (v, o) ®)) = mset (map fst ®) — {# ~ #}
using assms
proof (induct @)
case Nil
then show ?case by simp
next
case (Cons ¢)
assume (v, o) €# mset (o # P)
show Zcase
proof (cases ¢ = (v, 0))
assume ¢ = (v, 0)
then show ?thesis by simp
next
assume @ # (v, o)
then have add-mset ¢ (mset ® — {#(~, o)#})
= add-mset ¢ (mset ®) — {#(v, o)#}
by force
then have add-mset (fst ¢) (image-mset fst (mset ® — {#(~, 0)#}))
= add-mset (fst ¢) (image-mset fst (mset ®)) — {#~y#}
by (metis (no-types) Cons.prems
add-mset-remove-trivial
fst-conv
image-mset-add-mset
insert-Diff M mset.simps(2))
with «p # (v, 0)» show %thesis
by simp
qed
qed

93

lemma remowvel-pairs-list-projections-snd:
assumes (v,0) €# mset @
shows mset (map snd (removel (v, o) ®)) = mset (map snd ®) — {# o #}
using assms
proof (induct)
case Nil
then show ?case by simp
next
case (Cons ¢ D)
assume (v, o) €# mset (p #)
show ?Zcase
proof (cases p = (v, o))
assume ¢ = (v, 0)
then show ?thesis by simp
next
assume @ # (v, o)
then have add-mset (snd) (image-mset snd (mset ® — {#(~, 0)#}))
= image-mset snd (mset (p # ®) — {#(~, o)#})
by auto
moreover have add-mset (snd @) (image-mset snd (mset ®))
= add-mset o (image-mset snd (mset (p # @) — {#(v, 0)#}))
by (metis (no-types)
Cons.prems
image-mset-add-mset
insert-Diff M
mset.simps(2)
snd-conv)
ultimately
have add-mset (snd) (image-mset snd (mset ® — {#(v, o)#}))
= add-mset (snd) (image-mset snd (mset ®)) — {#o#}
by simp
with <p # (v, o)) show ?thesis
by simp
qed
qed

lemma triple-list-exists:
assumes mset (map snd V) C# mset ¥
and mset ¥ C# mset (map snd A)
shows 3 Q. map (A (¢, o, -). (¢, 0)) Q=T A
mset (map (A (-, o, 7). (v, 0)) Q) CH# mset A
using assms(1)
proof (induct U)
case Nil
then show ?case by fastforce
next
case (Cons ¢ U)
from Cons obtain 2 where :

54

map ()‘ (1/}7 g, _)' (1/)7 U)) Q=v
mset (map (A (-, o, 7). (7, 0)) Q) CH# mset A
by (metis
(no-types, lifting)
diff-subset-eq-self
list.set-intros(1)
removel-pairs-list-projections-snd
remove-hd
set-mset-mset
subset-mset.dual-order.trans
surjective-pairing)
let 2Aq = map (A (-, 0, 7). (v, 0)) Q
let 2 = fst o
let %0 = snd vy
from Cons.prems have add-mset %o (image-mset snd (mset U)) C# mset ¥
by simp
then have mset ¥ — {#%#} — image-mset snd (mset V)
mset X — image-mset snd (mset V)
by (metis
(no-types)
insert-subset-eq-iff
mset-subset-eg-insertD
multi-drop-mem-not-eq
subset-mset. diff-add
subset-mset-def)
hence %0 €# mset ¥ — mset (map snd V)
using diff-single-trivial by fastforce
have mset (map snd (¢ # ¥)) C# mset (map snd A)
by (meson
Cons.prems
«mset ¥ CH# mset (map snd A)»
subset-mset.dual-order.trans)
then have
mset (map snd A) — mset (map snd (Y # ©)) + ({#} + {#snd v#})
— mset (map snd A) + ({#} + {#snd v})
— add-mset (snd) (mset (map snd ¥))
by (metis
(no-types)
list.simps(9)
mset.simps(2)
mset-subset-eq-multiset-union-diff-commute)
then have
mset (map snd A) — mset (map snd (Y # ©)) + ({#} + {#snd v#})
= mset (map snd A) — mset (map snd V)
by auto
hence %0 €# mset (map snd A) — mset (map snd V)
using add-mset-remove-trivial-eq by fastforce
moreover have snd o (A (¢, 0, -). (¢, 0)) = snd o (A (-, 7, 7). (v, 7))
by auto

95

hence map snd (?Aq) = map snd (map (A (¥, o, -). (¥, o)) Q)
by fastforce
hence map snd (?Aq) = map snd ¥
using Q(1) by simp
ultimately have %0 €# mset (map snd A) — mset (map snd ?Aq)
by simp
hence %0 €# image-mset snd (mset A — mset ?Aq)
using Q(2) by (metis image-mset-Diff mset-map)
hence %0 € snd ‘ set-mset (mset A — mset ?Aq)
by (metis in-image-mset)
from this obtain ¢ where p:
snd o = %0 o €# mset A — mset ?Aq
using imageFE by auto
from this obtain + where
(77 o) =0
by (metis prod.collapse)
with o(2) have v: (v, %0) €# mset A — mset ?Aq by auto
let %0 = (%), %0, v) # Q
have map (A (6, 7,). (1, 7)) %2 = & # ¥
using Q(1) by simp
moreover
have A: (v, snd) = (case (snd ¥, v) of (a, ¢) = (¢, a))
by auto
have B: mset (map (A(b, a, ¢). (¢, a)) Q)
+ {# case (snd ¢,) of (a, ¢) = (¢, a) #}
= mset (map (\(b, a, ¢). (¢, a)) ((fst ¥, snd ¥, v) # Q))
by simp
obtain mm
2 (e x 'a) multiset
= ('c x 'a) multiset
= ('c x 'a) multiset
where Vz0 z1. (Jv2. 20 = z1 + v2) = (20 = 1 + mm 20 1)
by moura
then have mset A = mset (map (A(b, a, ¢). (¢, a)) Q)
+ mm (mset A) (mset (map (A(b, a, ¢). (¢, a))))
by (metis Q(2) subset-mset.le-iff-add)
then have mset (map (A (-, o, 7). (7, 0)) %) CH# mset A
using A B by
(metis
Y
add-diff-cancel-left’
single-subset-iff
subset-mset.add-le-cancel-left)
ultimately show ?case by meson
qed

4.8 List Intersection

primrec list-intersect :: 'a list => 'a list => 'a list (infixl N> 60)

o6

where
A=
| zs N (y # ys) =
(if (y € set xs)
then (y # (removel y xs N ys))
else (zs N ys))

lemma list-intersect-mset-homomorphism [simp):
mset (& N V) = mset ® N# mset ¥
proof —
have V ®. mset (& N U) = mset N# mset ¥
proof (induct U)
case Nil
then show ?case by simp
next
case (Cons ¢)
{
fix ¢
have mset (® N Y # V) = mset & N# mset (Y # V)
using Cons.hyps
by (cases 1) € set D,
simp add: inter-add-right2,
stmp add: inter-add-right1)
}
then show ?case by blast
qged
thus ?thesis by simp
qed

lemma list-intersect-left-empty [simp]: [| N ® = [] by (induct @, simp+)

lemma list-diff-intersect-comp:

mset & = mset (P © U) + mset (P N ¥)

by (metis
diff-intersect-left-idem
list-intersect-mset-homomorphism
list-subtract-mset-homomorphism
subset-mset.inf-lel
subset-mset.le-imp-diff-is-add)

lemma list-intersect-left-project: mset (& N V) CH# mset
by simp

lemma list-intersect-right-project: mset (& N V) CH# mset ¥
by simp

end

o7

Chapter 5

Classical Logic Connectives

theory Classical-Connectives
imports
Classical-Logic-Completeness
List-Utilities
begin

Here we define the usual connectives for classical logic.

unbundle no funcset-syntax

5.1 Verum

definition (in classical-logic) verum :: 'a (<T»)
where
T=1—=1

lemma (in classical-logic) verum-tautology [simp]: = T
by (metis list-implication.simps(1) list-implication-axiom-k verum-def)

lemma verum-semantics [simp]:
M Eprop T
unfolding verum-def by simp

lemma (in classical-logic) verum-embedding [simp]:
(Th=T
by (simp add: classical-logic-class.verum-def verum-def)

5.2 Conjunction
definition (in classical-logic)
conjunction :: 'a = 'a = ’a (infixr > 67)

where
pNYy=(p—-9—=>1) -1

o8

primrec (in classical-logic)
arbitrary-conjunction :: 'a list = 'a («[]»)
where
no=T
[T (e#®)=pn[] o

lemma (in classical-logic) conjunction-introduction:
Fo == (e NY)
by (metis
modus-ponens
conjunction-def
list-flip-implication
list-implication.simps(1)
list-implication.simps(2))

lemma (in classical-logic) conjunction-left-elimination:
Flpny) =
by (metis (full-types)
Peirces-law
pseudo-scotus
conjunction-def
list-deduction-base-theory
list-deduction-modus-ponens
list-deduction-theorem
list-deduction-weaken)

lemma (in classical-logic) conjunction-right-elimination:
e Ny) =
by (metis (full-types)
axiom-k
Contraposition
modus-ponens
conjunction-def
flip-hypothetical-syllogism
flip-implication)

lemma (in classical-logic) conjunction-embedding [simpl:

ey d=(0edndv)
unfolding conjunction-def classical-logic-class.conjunction-def
by simp

lemma conjunction-semantics [simp]:

m ':prop ¥ M ¢ = (W):pT'Op ¥ A M ':p’!'()[) ¢)

unfolding conjunction-def by simp

5.3 Biconditional

definition (in classical-logic) biconditional :: 'a = 'a = 'a (infixr <) 75)
where

99

peoY=(—=9)0 % =)

lemma (in classical-logic) biconditional-introduction:

Fle—=v) = ¥ —=9) = (po)
by (simp add: biconditional-def conjunction-introduction)

lemma (in classical-logic) biconditional-left-elimination:

Fleey)=2e =19
by (simp add: biconditional-def conjunction-left-elimination)

lemma (in classical-logic) biconditional-right-elimination:

Flope) =29 =0
by (simp add: biconditional-def conjunction-right-elimination)

lemma (in classical-logic) biconditional-embedding [simp]:
leccvd=>0e)e ()
unfolding biconditional-def classical-logic-class.biconditional-def
by simp

lemma biconditional-semantics [simp):
m):prop © lﬁ = (m ':prop Y m):prop '(/J)
unfolding biconditional-def
by (simp, blast)

5.4 Negation

definition (in classical-logic) negation :: 'a = 'a (<~»)
where
~p=p—1

lemma (in classical-logic) negation-introduction:
Fl—=1)—=~p
unfolding negation-def
by (metis aziom-k modus-ponens implication-absorption)

lemma (in classical-logic) negation-elimination:
Fro—(p— 1)
unfolding negation-def
by (metis aziom-k modus-ponens implication-absorption)

lemma (in classical-logic) negation-embedding [simp):

(~ed=~(¢)

by (simp add:
classical-logic-class.negation-def
negation-def)

lemma negation-semantics [simp):

M Eprop ~ 0 = (0 M Fprop)
unfolding negation-def

60

by simp

5.5 Disjunction

definition (in classical-logic) disjunction :: 'a = 'a = 'a (infixr <Ly 67)
where
pUY=(p—=1)=v

primrec (in classical-logic) arbitrary-disjunction :: 'a list = 'a (|]»)
where
Ui=41
U #@)=pul]®

lemma (in classical-logic) disjunction-elimination:
Flp—=x) = @ —=x) = (pUyd) = x
proof —
let T =[p—x, ¢ —x pUY
have T+ (¢ — 1) — x
unfolding disjunction-def
by (metis hypothetical-syllogism
list-deduction-def
list-implication.simps(1)
list-implication.simps(2)
set-deduction-base-theory
set-deduction-theorem
set-deduction-weaken)
hence " :F x
using excluded-middle-elimination
list-deduction-modus-ponens
list-deduction-theorem
list-deduction-weaken
by blast
thus ?thesis
unfolding list-deduction-def
by simp
qed

lemma (in classical-logic) disjunction-left-introduction:
Fo = (pU)
unfolding disjunction-def
by (metis modus-ponens
pseudo-scotus
flip-implication)

lemma (in classical-logic) disjunction-right-introduction:
FY = (pU)
unfolding disjunction-def
using aziom-k
by simp

61

lemma (in classical-logic) disjunction-embedding [simp]:

(euv)=(edu(v)
unfolding disjunction-def classical-logic-class.disjunction-def
by simp

lemma disjunction-semantics [simp]:

M Eprop ¢ U Y = (M Eprop ¢ VM Eprop ¥)
unfolding disjunction-def
by (simp, blast)

5.6 Mutual Exclusion

primrec (in classical-logic) exclusive :: 'a list = 'a (<]]»)
where
=T
[p#P)=~(pne)N]] @

5.7 Subtraction

definition (in classical-logic) subtraction :: 'a = 'a = ’a (infixl ¢\ 69)
where p \ ¥ = @ M ~ ¢

lemma (in classical-logic) subtraction-embedding [simp):

(e \NvD=0eD\ (V)

unfolding subtraction-def classical-logic-class.subtraction-def
by simp

5.8 Negated Lists

definition (in classical-logic) map-negation :: 'a list = 'a list (<~)
where [simp|: ~ ® = map ~ D

5.9 Common (& Uncommon) Identities

5.9.1 Biconditional Equivalence Relation

lemma (in classical-logic) biconditional-reflection:
Fo<+p
by (meson
axiom-k
modus-ponens
biconditional-introduction
implication-absorption)

lemma (in classical-logic) biconditional-symmetry:
Flp o) o @)

62

by (metis (full-types) modus-ponens
biconditional-def
conjunction-def
flip-hypothetical-syllogism
flip-implication)

lemma (in classical-logic) biconditional-symmetry-rule:
Fopeoyv=F¢Yp
by (meson modus-ponens
biconditional-introduction
biconditional-left-elimination
biconditional-right-elimination)

lemma (in classical-logic) biconditional-transitivity:
Flp o) = W x) = (@ oX)
proof —
have V.M. M =prop ((0) < (¥)) = ((¥) < () = ((9) < (X))
by simp
hence - (| ({p) < (¥)) = ((¥) < () = (@) < X)) D
using propositional-semantics by blast
thus ?thesis by simp
qged

lemma (in classical-logic) biconditional-transitivity-rule:
Fooyv=—=FH)peox=Fpex
using modus-ponens biconditional-transitivity by blast

5.9.2 Biconditional Weakening

lemma (in classical-logic) biconditional-weaken:

assumes [' - p < o

shows 't p =T v

by (metis assms
biconditional-left-elimination
biconditional-right-elimination
set-deduction-modus-ponens
set-deduction-weaken)

lemma (in classical-logic) list-biconditional-weaken:

assumes ' :F o & ¢

shows I' - o =T :F 9

by (metis assms
biconditional-left-elimination
biconditional-right-elimination
list-deduction-modus-ponens
list-deduction-weaken)

lemma (in classical-logic) weak-biconditional-weaken:
assumes F ¢ < ¢

63

shows - p =+ o

by (metis assms
biconditional-left-elimination
biconditional-right-elimination
modus-ponens)

5.9.3 Conjunction Identities

lemma (in classical-logic) conjunction-negation-identity:
Fe(eNy) ¢ (g =9 — 1)
by (metis Contraposition
double-negation-converse
modus-ponens
biconditional-introduction
conjunction-def
negation-def)

lemma (in classical-logic) conjunction-set-deduction-equivalence [simp):
F'tpnNy=TkFeATHk)
by (metis set-deduction-weaken [where I'=T]
set-deduction-modus-ponens [where I'=T]
conjunction-introduction
conjunction-left-elimination
conjunction-right-elimination)

lemma (in classical-logic) conjunction-list-deduction-equivalence [simp]:
ey =T+ @Al 1)
by (metis list-deduction-weaken [where T'=T]
list-deduction-modus-ponens [where T'=T]
conjunction-introduction
conjunction-left-elimination
conjunction-right-elimination)

lemma (in classical-logic) weak-conjunction-deduction-equivalence [simpl:
Feny=(Fenrtq)

by (metis conjunction-set-deduction-equivalence set-deduction-base-theory)

lemma (in classical-logic) conjunction-set-deduction-arbitrary-equivalence [simp):
T[] 2= pesetd Tk o)
by (induct ®, simp add: set-deduction-weaken, simp)

lemma (in classical-logic) conjunction-list-deduction-arbitrary-equivalence [simp]:
P[] &= (¥ ¢ €setd. T o)
by (induct ®, simp add: list-deduction-weaken, simp)

lemma (in classical-logic) weak-conjunction-deduction-arbitrary-equivalence [simp]:

FI1®=(V ¢ € set®.)
by (induct ®, simp+)

64

lemma (in classical-logic) conjunction-commutativity:
F@ M) < (pNy)
by (metis
(full-types)
modus-ponens
biconditional-introduction
conjunction-def
flip-hypothetical-syllogism
flip-implication)

lemma (in classical-logic) conjunction-associativity:
F e) M x) < (eN (¥ X))
proof —
have V 9. M =505 (((9) M (¥)) T (X)) < () T (&) T ()
by simp
hence E (| (({#) T (¥)) N (x)) < (o) T (L) 1)) D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) arbitrary-conjunction-antitone:
set P Cset U =F[| VU =[] P
proof —
haveV ®. set ® Cset W — FH[] ¥ =[] @
proof (induct ¥)
case Nil
then show ?case
by (simp add: pseudo-scotus verum-def)
next
case (Cons ¢ ¥)
{
fix ¢
assume set & C set (Y # ¥
have F[] (W # ¥) =[] ©
proof (cases ¢ € set @)
assume ¢ € set ®
haveV p € set . F[] @ + (¢ M[] (removeAll p D))
proof (induct ®)
case Nil
then show ?case by simp
next
case (Cons x ®)
{
fix ¢
assume @ € set (x # @)
have F[] (x # @) < (¢ M [] (removeAll ¢ (x # P)))
proof cases
assume ¢ € set ¢
hence F[] ® < (p M [] (removeAll ¢ @))

)

65

using Cons.hyps «p € set ®»
by auto
hma(zfl;eel(ivzaﬁ D« (e M[] (removedll ¢ @))) —
f(X N[@) < (N x N[(removeAll ¢ ®))
phave VO M Eprop
([T @) < (@) N ([(removeAll ¢ @))))
= () 1 (1)
< (@) M () 11 ([(removeAll ¢ @)))
by auto

hence - (| ({1 ®) « ({¥) N {[] (removeAll ¢ ®))))
S (00 1 (T @)
< ((0) () AT (removeAll ¢ @))))
using propositional-semantics by blast
thus ?thesis by simp
qed
ultimately have - [] (x # @) < (¢ M x M [] (removeAll ¢ D))
using modus-ponens by auto
show ?thesis
proof cases
assume p = y
moreover
{
fix ¢
have - (x M) = (x T x M @)
unfolding conjunction-def
by (meson
azriom-s
double-negation
modus-ponens
flip-hypothetical-syllogism
flip-implication)
} note tautology = this
from - [] (x # @) < (e N x N[] (removeAll ¢ ®))»
p =
have - (x M [] (removeAll x ®)) = (x N [] ®)
unfolding biconditional-def
by (simp, metis tautology hypothetical-syllogism modus-ponens)
moreover
from - [] (x # @) < (¢ M x N[] (removeAll ¢ ®))»
(p = x»
have - (x M [] ®) — (x N [] (removeAll x ®))
unfolding biconditional-def
by (simp,
metis conjunction-right-elimination
hypothetical-syllogism
modus-ponens)
ultimately show %thesis

66

unfolding biconditional-def
by simp
next
assume @ # x
then show ?%thesis
using - [(x # @) < (@ N x O[] (removeAll p D))
by simp
qed
next
assume @ ¢ set O
hence ¢ = x x ¢ set
using <@ € set (x # P)» by auto
then show ?thesis
using biconditional-reflection
by simp
qed
}
thus ?case by blast
qed
hence F (¢ M [] (removeAll ¢ ®)) =[] ®
using modus-ponens biconditional-right-elimination «p € set ®»
by blast
moreover
from «p € set @) <set & C set (v # V)» Cons.hyps
have F [] ¥ — [] (removeAll ¢)
by (simp add: subset-insert-iff insert-absorb)
hence - (¢ M[] ¥) — (¢ N[] (removeAll ¢ ®))
unfolding conjunction-def
using
modus-ponens
hypothetical-syllogism
flip-hypothetical-syllogism
by meson
ultimately have - (¢ N [] ¥) —»[] @
using modus-ponens hypothetical-syllogism
by blast
thus ?thesis
by simp
next
assume 1) ¢ set
hence [¥ =[] ®
using Cons.hyps <set ® C set (v # V)
by auto
hence - (v N[] ¥) =[] ®
unfolding conjunction-def
by (metis
modus-ponens
conjunction-def
conjunction-right-elimination

67

hypothetical-syllogism,)
thus ?thesis
by simp
qed

thus ?case by blast
qed
thus set ® C set ¥ =[] ¥ — [| © by blast
qed

lemma (in classical-logic) arbitrary-conjunction-remdups:
F(] @) <[] (remdups)
by (simp add: arbitrary-conjunction-antitone biconditional-def)

lemma (in classical-logic) curry-uncurry:
Fle=¢—=x) e (eny) =X
proof —

haxge VLM =prop (() = (¥) = (X)) & (@) M () = (X))
y auto

hence = (| ({p) — () = () < (({p) T (¥)) = (X)) D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) list-curry-uncurry:
F(@:=x) < (12— X)
proof (induct)
case Nil
have F x « (T = x)
unfolding biconditional-def
conjunction-def
verum-def
using
azxiom-k
ex-falso-quodlibet
modus-ponens
conjunction-def
excluded-middle-elimination
set-deduction-base-theory
conjunction-set-deduction-equivalence
by metis
with Nil show ?case
by simp
next
case (Cons ¢)
have b ((¢ # @) :—= x) ¢ (¢ = (P := X))
by (simp add: biconditional-reflection)
with Cons haveF ((p # ®) = x) © (¢ =[] ® = Xx)
by (metis modus-ponens

68

biconditional-def
hypothetical-syllogism
list-implication.simps(2)
weak-conjunction-deduction-equivalence)
with curry-uncurry [where ?p=¢ and =[] ® and ?x=x]
show ?Zcase
unfolding biconditional-def
by (simp, metis modus-ponens hypothetical-syllogism)
qed

5.9.4 Disjunction Identities

lemma (in classical-logic) bivalence:
F~pUg
by (simp add: double-negation disjunction-def negation-def)

lemma (in classical-logic) implication-equivalence:

(o U W) (p = 0)

by (metis double-negation-converse
modus-ponens
biconditional-introduction
bivalence
disjunction-def
flip-hypothetical-syllogism
negation-def)

lemma (in classical-logic) disjunction-commutativity:
F@ U < (pUY)
by (meson modus-ponens
biconditional-introduction
disjunction-elimination
disjunction-left-introduction
disjunction-right-introduction)

lemma (in classical-logic) disjunction-associativity:
Flpuv)Ux) < (U Ux)
proof —
have V M. M =prop (({0) U (¥)) U (X)) < ({) U (() U (x)))
by simp
hence = ((({¥) U (¥)) U (x)) < ({¢) U (&) U (X)) D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) arbitrary-disjunction-monotone:
set D Cset V=—="F||]DP—|]| P

proof —
haveV ®. set @ Cset ¥V — F || & — || ¥
proof (induct ¥)

69

case Nil
then show ?case using verum-def verum-tautology by auto
next
case (Cons ¢ ¥)
{
fix ¢
assume set & C set (v # V)
havel | | @ — || (¥ # V)
proof cases
assume Y € set ®
have V ¢ € set . F || ® « (p U || (removedll ¢ ®))
proof (induct ®)
case Nil
then show ?case by simp
next
case (Cons x ®)
{
fix ¢
assume @ € set (x # D)
have - | | (x # @) < (¢ U || (removeAll ¢ (x # P)))
proof cases
assume ¢ € set ¢
hence - | | ® < (¢ U || (removeAll p ®))
using Cons.hyps «p € set &)
by auto
moreover
have - (|| © + (p U |] (removedll ¢ ®))) —
(xUL] @) < (pUxUL] (removeAll p ®))
proof —
have V M. M =pr0p

(U @) < (@) U (L (removeAll ¢ @))))
S (00 U (L)
S () U () U (U (removeall @)
by auto
hence F (| ({|] @) «+ ({¢) U {] (removeAll » ®))))
S (G0 UL)
< ((9) U (x) U (removeAll ¢ @))))
using propositional-semantics by blast
thus ?thesis by simp
qed
ultimately have b | | (x # @) & (¢ U x U || (removeAll ¢ ®))
using modus-ponens by auto
show ?thesis
proof cases
assume p = y
then show ?thesis
using - || (x # @) & (¢ U x U] (removeAll ¢ D))
unfolding biconditional-def
by (simp add: disjunction-def,

70

meson
azxiom-k
modus-ponens
flip-hypothetical-syllogism
implication-absorption)
next
assume @ # x
then show ?thesis
using <+ || (x # ®) & (¢ U x U] (removeAll ¢ D))
by simp
qged
next
assume @ ¢ set ¢
hence ¢ = x x ¢ set
using «p € set (x # P)» by auto
then show ?thesis
using biconditional-reflection
by simp
qed

thus ?case by blast
qged
hence - | | & — (v U || (removeAll b ®))
using modus-ponens biconditional-left-elimination i € set ®»
by blast
moreover
from «p € set @) <set & C set (¢ # V)» Cons.hyps
have | | (removeAll ¢ ®) — || ¥
by (simp add: subset-insert-iff insert-absorb)
hence F (¢ U || (removeAll ¢ ®)) — || (v # U)
using
modus-ponens
disjunction-def
hypothetical-syllogism
by fastforce
ultimately show ?thesis
by (simp, metis modus-ponens hypothetical-syllogism)
next
assume) ¢ set
hence || & —» || ¥
using Cons.hyps <set ® C set (v # V)
by auto
then show ?thesis
by (metis
arbitrary-disjunction.simps(2)
disjunction-def
list-deduction-def
list-deduction-theorem
list-deduction-weaken

71

list-implication.simps(1)
list-implication.simps(2))
qed
}
then show ?case by blast
qed
thus set ® C set V. =+ || & — | | U by blast
qed

lemma (in classical-logic) arbitrary-disjunction-remdups:
F(@) < || (remdups ®)

by (simp add: arbitrary-disjunction-monotone biconditional-def)

lemma (in classical-logic) arbitrary-disjunction-exclusion-MCS:
assumes MCS)
shows | | U ¢ Q =V ¢p € set .9 ¢Q
proof (induct U)
case Nil
then show ?case
using
assms
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
set-deduction-reflection
by (simp, blast)
next
case (Cons ¢ ¥)
have || (6 # W) ¢ Q= (W ¢ QAL ¥ ¢ Q)
by (simp add: disjunction-def,
meson
assms
formula-consistent-def
formula-maximally-consistent-set-def-def
formula-mazimally-consistent-set-def-implication
mazximally-consistent-set-def
set-deduction-reflection)
thus ?case using Cons.hyps by simp
qed

lemma (in classical-logic) contra-list-curry-uncurry:
F(@ = x) < (~x = (~ D)
proof (induct)
case Nil
then show Zcase
by (simp,
metis
biconditional-introduction
bivalence

72

disjunction-def
double-negation-converse
modus-ponens
negation-def)
next
case (Cons ¢)
hencet ([1® = x) & (~x = || (~ D))
by (metis
biconditional-symmetry-rule
biconditional-transitivity-rule
list-curry-uncurry)
have - (I (¢ # ®) = x) ¢ (~ x = L] (~ (¢ # ©)))
proof —

haveF ([] ® > x) & (~x — || (~ D))
f—>((s0ﬂ|_| ®) = x) < (~x = (e U (~ @)
proof —
have
VM Eprop
(T @) = (x)) < (~ 00 = U (~ D))
. = () M T) = () < (~ 00 = (~ (@) UL (~ D))
y auto
hence

FOUT @) = () < (~) = (U (~P))
S () N B) = () & (~ () = (~ (@) UL (~ @) D
using propositional-semantics by blast
thus “thesis by simp
qed
thus ?thesis
using - ([® = x) < (~ x = || (~ ®))» modus-ponens by auto
qed
then show ?case
using biconditional-transitivity-rule list-curry-uncurry by blast
qed

5.9.5 Monotony of Conjunction and Disjunction

lemma (in classical-logic) conjunction-monotonic-identity:
Fle =) = (eNx) = (¥ 1 x)
unfolding conjunction-def
using modus-ponens
flip-hypothetical-syllogism
by blast

lemma (in classical-logic) conjunction-monotonic:
assumes F ¢ — ¥
shows F (p M x) = (¥ M x)
using assms
modus-ponens
conjunction-monotonic-identity

73

by blast

lemma (in classical-logic) disjunction-monotonic-identity:
Flp—=9) = (pUx) = % UX)
unfolding disjunction-def
using modus-ponens
flip-hypothetical-syllogism
by blast

lemma (in classical-logic) disjunction-monotonic:
assumes - ¢ — ¢
shows - (p U x) = (¢ U x)
using assms
modus-ponens
disjunction-monotonic-identity
by blast

5.9.6 Distribution Identities

lemma (in classical-logic) conjunction-distribution:
F@Uux)Me) < (@ Ne) U ne)
proof —

havl‘: v 9;1 M Eprop (() U (X)) M () < (((¥) T {e)) U () T {e)))
Yy auto

hence = ((({¢) U (x)) M () < (&) M {e)) U () T () D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) subtraction-distribution:

F(@ux)\e) o (@ \e) U\)

by (simp add: conjunction-distribution subtraction-def)

lemma (in classical-logic) conjunction-arbitrary-distribution:
U TN e e e
proof (induct ¥)
case Nil
then show ?case
by (simp add: ex-falso-quodlibet
biconditional-def
conjunction-left-elimination)
next
case (Cons ¢ ¥)
have - (L] (4 # %) M) « (0 1) U (L %) 1)
using conjunction-distribution by auto
moreover
from Cons have
S (@) UL 9N e) o (@ne) Ul [ne v« v)

unfolding disjunction-def biconditional-def

74

by (simp, meson modus-ponens hypothetical-syllogism)
ultimately show ?case
by (simp, metis biconditional-transitivity-rule)
qed

lemma (in classical-logic) subtraction-arbitrary-distribution:

FU YN e\ ey« 7]

by (simp add: conjunction-arbitrary-distribution subtraction-def)

lemma (in classical-logic) disjunction-distribution:
FleU (X)) < ((bUy)n(eUx)
proof —

havt;e VLM =prop ((9) U () T 00)) < (((p) U () T ({) U ()
y auto

hence E (| ({¢) U ((¢¥) M (x))) < (({¢) U ()) 1 ({0) U D)) D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) implication-distribution:
Flp = @nx) < (g =)0 = x)
proof —

ha‘: VLM =prop ((0) = () T100)) < (((9) = () 1 ((p) = ()
y auto

hence = (| ({¢) = ((¥) M (x))) < (e} = () T () = (X)) D
using propositional-semantics by blast
thus ?thesis by simp
qed

lemma (in classical-logic) list-implication-distribution:
(@i (1Y) (@i 6) N (@ i)
proof (induct)
case Nil
then show ?case
by (simp add: biconditional-reflection)
next
case (Cons ¢ D)
hence F(p # @) :—» (Y Myx) & (¢ = (P> YN P:— X))
by (metis
modus-ponens
biconditional-def
hypothetical-syllogism
list-implication.simps(2)
weak-conjunction-deduction-equivalence)
moreover
have - (¢ = (2= Y 11 @ := x)) < (¢ # @) ==) N ((¢ # @) == X))
using implication-distribution by auto
ultimately show Zcase
by (simp, metis biconditional-transitivity-rule)

75

qed

lemma (in classical-logic) biconditional-conjunction-weaken:
Flaepf) = (vNa) e (yNH)
proof —

ha\lf: VM =prop (@) < (B)) = ({(1) T () < ((v) 1 (B)))
y auto

hence F (| (() < (8)) = ((() M (@) < (1) T1(6))) D
using propositional-semantics by blast
thus %thesis by simp
qged

lemma (in classical-logic) biconditional-conjunction-weaken-rule:
Flaepf)=F@HMa) < (npH)
using modus-ponens biconditional-conjunction-weaken by blast

lemma (in classical-logic) disjunction-arbitrary-distribution:
F e UM) [e Ut ¥« 0]
proof (induct ¥)
case Nil
then show ?case
unfolding disjunction-def biconditional-def
using axiom-k modus-ponens verum-tautology
by (simp, blast)
next
case (Cons ¢ U)
have - (o U] (4 # ¥)) & (¢ U) N (p UT] ®))
by (simp add: disjunction-distribution)
moreover
from biconditional-conjunction-weaken-rule
Cons
have = ((¢ L) Mo U]) <[] (map (A x . ¢ U x) (¢ # V))
by simp
ultimately show ?case
by (metis biconditional-transitivity-rule)
qed

lemma (in classical-logic) list-implication-arbitrary-distribution:
F@:=[]9) «[][®:— ¢ ¢+ U
proof (induct ¥)
case Nil
then show ?case
by (simp add: biconditional-def,
meson
azxiom-k
modus-ponens
list-implication-axiom-k
verum-tautology)
next

76

case (Cons ¢ ¥)

haveF ¢ :—» [| W # V)« (P NP =[])
using list-implication-distribution
by fastforce

moreover

from biconditional-conjunction-weaken-rule

Cons

have - (P : = ¢y MO =[] U) <[] [®:—= . ¥ + (¥ # V)]
by simp

ultimately show ?case
by (metis biconditional-transitivity-rule)

qed

lemma (in classical-logic) implication-arbitrary-distribution:
Fle=T1¥Y) <[] [p—=d. ¢« ¥
using list-implication-arbitrary-distribution [where ?®=[y]]
by simp

5.9.7 Negation

lemma (in classical-logic) double-negation-biconditional:
F~(~vp) oo
unfolding biconditional-def negation-def
by (simp add: double-negation double-negation-converse)

lemma (in classical-logic) double-negation-elimination [simp:
FE~(~p)=Tkeg
using
set-deduction-weaken
biconditional-weaken
double-negation-biconditional
by metis

lemma (in classical-logic) alt-double-negation-elimination [simp]:
F't(p—1)=L=THFop
using double-negation-elimination
unfolding negation-def
by auto

lemma (in classical-logic) base-double-negation-elimination [simp]:
F~(~vp)=Fo

by (metis double-negation-elimination set-deduction-base-theory)

lemma (in classical-logic) alt-base-double-negation-elimination [simp]:
Flp—= 1) = L=Fop
using base-double-negation-elimination
unfolding negation-def
by auto

77

5.9.8 Mutual Exclusion Identities

lemma (in classical-logic) exclusion-contrapositive-equivalence:
Flp=7) e~ (N~
proof —

have V . M =pr0p (@) = (7)) <> ~ (@) T~ (M)
by auto

hence = (((¢) = (M) & ~ {p) T~ M))
using propositional-semantics by blast
thus %thesis by simp
qged

lemma (in classical-logic) disjuction-ezclusion-equivalence:
Tt~ @n @)=V oeset@ T~ (M)
proof (induct ®)
case Nil
then show ?case
by (simp add:
conjunction-right-elimination
negation-def
set-deduction-weaken)
next
case (Cons ¢)
have - ~ (1] (¢ # @) ¢ ~ (1 (¢ U L ®))
by (simp add: biconditional-reflection)
moreover have - ~ (¢ M (U] @)« (~ W Ne) N~ (nl] ®)
proof —
have ¥ 9L M =0, ~ ((¥) 1 ((0) U (L] 9)))
S (~ () 1 (@) T~ () 11 (L D))
by auto

hence - (~ ((¢) 1 ((p) U (Ll ®)))
o (~ (@))~y nd) D

using propositional-semantics by blast
thus ?thesis by simp
qed
ultimately
have b~ (10 11| (¢ # ®)) ¢ (~ (1) M~ (1] ®))
by simp
hence I' b ~ (16 11| (¢ # @) = (I ~ (411)
N (Voeset @. T+ ~ (¢ M p)))
using set-deduction-weaken [where I'=T
conjunction-set-deduction-equivalence [where T'=T]
Cons.hyps
biconditional-def
set-deduction-modus-ponens
by metis
thus I' b~ () T (¢ # @) = (Vpeset (¢ # ©). '~ (4 1 ¢))
by simp
qed

78

lemma (in classical-logic) exclusive-eliminationl:
assumes I' + [] @
showsV ¢ € set ®.V ¢ € set D. (p #¢Y) — Tk~ (M)
using assms
proof (induct ®)
case Nil
thus ?case by auto
next
case (Cons x D)
assume I' =[] (x # @)
hence I' + [® by simp
hence Vpeset &. Vpeset . p £ — T ~ (p M)
using Cons.hyps by blast
moreover have I' =~ (x M || @)
using Tt [] (x # ®)» conjunction-set-deduction-equivalence by auto
henceV ¢ € set . T+ ~ (x M ¢)
using disjuction-ezxclusion-equivalence by auto
moreover {
fix ¢
have b ~ (x M @) = ~ (¢ 1M x)
unfolding negation-def
conjunction-def
using modus-ponens flip-hypothetical-syllogism flip-implication by blast
}
with <V ¢ € set . T ~ (x M) haveV ¢ € set . T ~ (¢ M x)
using set-deduction-weaken [where I'=T|
set-deduction-modus-ponens [where I'=T]
by blast
ultimately
show Vo € set (x # ®). VY €set (X # P). o # ¢ — Tk~ (pMNyY)
by simp
qed

lemma (in classical-logic) exclusive-elimination2:
assumes '+ [@
shows V ¢ € duplicates ®. I' = ~ ¢
using assms
proof (induct)
case Nil
then show ?case by simp
next
case (Cons ¢ D)
assume I' - [(¢ # @)
hence I' + [[@ by simp
hence V pcduplicates ®. T' ~ ¢ using Cons.hyps by auto
show ?Zcase
proof cases
assume @ € set ®
moreover {

79

fix p ¢ x
havefFN(sol‘l(wux))H(N(@Wb)”N(@”X))
proof —
have V . M):prop ~ (<¢> r ((1/’> U <X>))
. < (~ (o) @) M~ ({p) M(x)))
y auto

hence F (| ~ ({¥) M ({(¥) U () < (~ (@) T () N~ () 7 0) D

using propositional-semantics by blast
thus ?thesis by simp
qed
hence I't= ~ (¢ M (Y U x)) =Tk ~ (M) M~ (¢ 1 x)
using set-deduction-weaken
biconditional-weaken by presburger
}
moreover
have - ~ (p M) < ~ @
proof —
have ¥ 9. M [=pr0p ~ () 1 () © ~ (¢)
by auto
hence = (| ~ ((¢) M (¢)) < ~ (#))
using propositional-semantics by blast
thus ?thesis by simp
qed
henceI't~ (p M) =Tk ~ ¢
using set-deduction-weaken
biconditional-weaken by presburger
moreover have I' - ~ (¢ M || @) using <I' + [] (¢ # ®)» by simp
ultimately have I' i ~ ¢ by (induct ®, simp, simp, blast)
thus ?thesis using «p € set &y ¥V peduplicates . T' = ~ ¢ by simp
next
assume ¢ ¢ set
hence duplicates (¢ # ®) = duplicates ® by simp
then show ?thesis using <V p€duplicates ®. I' = ~ >
by auto
qed
qed

lemma (in classical-logic) exclusive-equivalence:
F'+J] @ =
((V peduplicates ©. T' I ~)
(V p € set®.V ¢ € set ®.
proof —
{
assume Y peduplicates . I' = ~ ¢
VopecsetdVpesetd (p#Y) — Tk~ (pNy)
hence '+][®
proof (induct ®)
case Nil
then show ?case

A
(0 #¢) —= Tk~ (pM4)))

80

by (simp add: set-deduction-weaken)
next
case (Cons ¢ @)
assume A: Vo€eduplicates (¢ # ®). T ~ ¢
and B: Vxe€set (p # D). Vipeset (p # D). x Y — T ~ (x N 9Y)
hence C: Tt [[® using Cons.hyps by simp
then show ?case
proof cases
assume ¢ € duplicates (¢ # @)
moreover from this have I' = ~ ¢ using A by auto
moreover have duplicates ® C set ® by (induct ®, simp, auto)
ultimately have ¢ € set ® by (metis duplicates.simps(2) subsetCFE)
hence - ~ ¢ < ~(pe M || ®)
proof (induct)
case Nil
then show ?case by simp
next
case (Cons ¢ ®)
assume @ € set (¢ # D)
then show - ~ ¢ & ~ (p M || (¥ # ®))
proof —
{
assume @ = 1
hence ?thesis
proof —
have ¥ 90 9 0 ~ () < ~ (o) 1 () L (L] ©)))
using (¢ = ¥» by auto
hence I- | ~ () © ~ () 1 ((¥) U (Ll ®))))
using propositional-semantics by blast
thus ?thesis by simp
qed
}
moreover
{
assume @ # Y
hence ¢ € set ® using «p € set (Y # P)» by auto
hence F ~ ¢ + ~ (¢ M || ®) using Cons.hyps by auto
moreover have - (~ ¢ & ~ (¢ N || @)

S (~veo~(pn (Ul)
proof —

have V 0. M =pr0p (~ () < ~ ({p) T {] ©))) —
. (~ {p) &~ (o) 1 () UL 2))))
y auto

hence = (| (~ (p) < ~ ({») N (Ll ©)))
= (~(p) &~ () M (¥) UL 2))) D

using propositional-semantics by blast
thus ?thesis by simp
qged
ultimately have ?thesis using modus-ponens by simp

81

}

ultimately show ?thesis by auto
qed
qed
with <I' - ~ ¢> have I' = ~(p M || @)
using biconditional-weaken set-deduction-weaken by blast
with <I' = [®> show ?thesis by simp
next
assume ¢ ¢ duplicates (¢ #)
hence ¢ ¢ set ® by auto
with B have Viyeset . T I ~ (¢ M ¢) by (simp, metis)
hence I' - ~ (¢ M || @)
by (simp add: disjuction-ezxclusion-equivalence)
with I' + [®» show ?thesis by simp
qed
qed
}
thus ?thesis
by (metis exclusive-elimination! exclusive-elimination2)
qed

5.9.9 Miscellaneous Disjunctive Normal Form Identities

lemma (in classical-logic) map-negation-list-implication:
F((~ D) i (~) & (o= L ®)
proof (induct)
case Nil
then show ?case
unfolding
biconditional-def
map-negation-def
negation-def
using
conjunction-introduction
modus-ponens
trivial-implication
by simp
next
case (Cons ¢ ®)
have - (~ @ :=» ~ ¢ < (p = || D))
S~ B~) o (9o (UL ®))
proof —
have VO M |- prop ((~ @ i ~ 0) < ((9) — (L ©))) =

(~ (@) = (~ D=~) & ((0) = () U)
by fastforce

hence = (| ({(~ @ := ~ ¢) < ((¢) = (L ®))) =
(~ () = (~ @ =~) © () = () U 2)))D

using propositional-semantics by blast
thus ?thesis

82

by simp

qed
with Cons show ?case
by (metis
map-negation-def
list.simps(9)
arbitrary-disjunction.simps(2)
modus-ponens
list-implication.simps(2))
qed

lemma (in classical-logic) conj-dnf-distribute:
U (map (['1 o (A ps. @ # @s)) A) < (¢ ML (map [] A))
proof (induct A)
case Nil
have F L < (oM 1)
proof —
let %0 = L < ({p) M 1)
have VO M |=p,0p % by fastforce
hence F (| % |) using propositional-semantics by blast
thus ?thesis by simp
qed
then show ?case by simp
next
case (Cons U A)
assume | | (map ([1 o (A ws. ¢ # ©s)) A) < (¢] (map [] A))
(isk %A < (¢ 1 ?B))
moreover
have - (A < (p M ?B)) = (¢ N[]) U 2A) & (oM [] ¥ U ?B))
proof —
let % = ((74) © ({¢) 1 (?B))) -
() T (T D) U (24)) & ((9) 11 ([T ®) U (ZB))
have YO M |=p,0p % by fastforce
hence | (| %o |) using propositional-semantics by blast
thus ?thesis
by simp
qed
ultimately have - ((¢o M [] ¥) U ?A) < (¢ M [] ¥ U ¢B)
using modus-ponens
by blast
moreover
have map ([] o (A ps. ¢ # ps)) A = map (A\V. ¢ N [] ¥) A by simp
ultimately show ?case by simp
qed

lemma (in classical-logic) append-dnf-distribute:

FLl (map [Jo(AP. @Q W) A)« ([] 2] (map[] A))
proof (induct ®)

83

case Nil
have F | | (map [] A)
(iskF A < (T N 24)
proof —
let % = (?4) + ((L — L) N (?4))
have YO M |=p,0p % by simp
hence - (| %p |) using propositional-semantics by blast
thus ?thesis
unfolding verum-def
by simp
qed
then show Zcase by simp
next
case (Cons ¢ ®)
have - || (map ([o (@) ®) A) < (] @ N
— 1 (map [1 (map (@)) A)) ¢ (]
by simp
with Cons have
1 (map [] (map (A 0. @ @ W) A)) (T ® 1] (map [] A))
(isk || (map[] ?4) < (BN 2C))
by meson
moreover have - | | (map [] ?A4) + (?B N 20)
S (U (map (I o (A ps. ¢ #) 74) > (¢ 11 L] (map [#4)))
= L (map ([o (A ps. ¢ # ¢s)) 2A) < ((¢ 1N #B) N 2C)
proof —
let % = (L] (map[] 24)) & ((?B) 1 (#C))
= ((LJ (map (I'1 o (A ps. @ # @s)) 2A)) < ({p) N (L] (map [] ?A))))
(L (map (T o (A @s. # 0s)) 2A)) > () N (7BY) 11 (2C))
have VO M |=p,0p % by simp
hence | (| %o |) using propositional-semantics by blast
thus ?thesis
by simp
qed
ultimately have | | (map ([] o (A ws. ¢ # ws)) ?A) < ((¢ 1N ¢B) N 2C)
using modus-ponens conj-dnf-distribute
by blast
moreover
have [| o (Q) (¢ # ®) =[] o (#) ¢ o (Q) ® by auto
hence
L (map (T © (@) (p #) A) & (7] (¢ # @) 1 2C)
=t (map ([o (#) ¢) ?4) < ((¢ N #B) 11 2C)
by simp
ultimately show ?case by meson
qed

;NTWU(WWHAD

LI (map [1 A))
e (map[] A))

unbundle funcset-syntax

end

84

Bibliography

1]

P. Blackburn, M. de Rijke, and Y. Venema. Section 4.2 Canonical Mod-
els. In Modal Logic, pages 196-201.

A. Bobenrieth. The Origins of the Use of the Argument of Trivialization
in the Twentieth Century. 31(2):111-121.

G. Boolos. Don’t Eliminate Cut. 13(4):373-378.

G. Gentzen. Untersuchungen iiber das logische schlieSSen. i.
39(1):176-210.

C. S. Peirce. On the Algebra of Logic: A Contribution to the Philosophy
of Notation. 7(2):180-196.

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43
in Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 2nd ed edition.

A. Urquhart. Implicational Formulas in Intuitionistic Logic.
39(4):661-664.

D. van Dalen. Logic and Structure. Universitext. Springer-Verlag, 5
edition.

85

	Implication Logic
	Axiomatization
	Common Rules
	Lists of Assumptions
	List Implication
	Deduction From a List of Assumptions
	List Deduction as Implication Logic

	The Deduction Theorem
	Monotonic Growth in Deductive Power
	The Deduction Theorem Revisited
	Reflection
	The Cut Rule
	Sets of Assumptions
	Definition of Deduction
	Interpretation as Implication Logic

	The Deduction Theorem
	Monotonic Growth in Deductive Power
	The Deduction Theorem Revisited
	Reflection
	The Cut Rule
	Maximally Consistent Sets For Implication Logic

	Classical Propositional Logic
	Axiomatization
	Common Rules
	Maximally Consistent Sets For Classical Logic

	Classical Soundness and Completeness
	Syntax
	Propositional Calculus
	Propositional Semantics
	Soundness and Completeness Proofs
	Embedding Theorem For the Propositional Calculus

	List Utility Theorems
	Multisets
	List Mapping
	Laws for Searching a List
	Permutations
	List Duplicates
	List Subtraction
	Tuple Lists
	List Intersection

	Classical Logic Connectives
	Verum
	Conjunction
	Biconditional
	Negation
	Disjunction
	Mutual Exclusion
	Subtraction
	Negated Lists
	Common (& Uncommon) Identities
	Biconditional Equivalence Relation
	Biconditional Weakening
	Conjunction Identities
	Disjunction Identities
	Monotony of Conjunction and Disjunction
	Distribution Identities
	Negation
	Mutual Exclusion Identities
	Miscellaneous Disjunctive Normal Form Identities

