
Propositional Resolution and Prime Implicates
Generation

Nicolas Peltier
Laboratory of Informatics of Grenoble/CNRS

University Grenoble Alps

March 17, 2025

Abstract
We provide formal proofs in Isabelle-HOL (using mostly structured

Isar proofs) of the soundness and completeness of the Resolution rule
in propositional logic. The completeness proofs take into account the
usual redundancy elimination rules (namely tautology elimination and
subsumption), and several refinements of the Resolution rule are con-
sidered: ordered resolution (with selection functions), positive and neg-
ative resolution, semantic resolution and unit resolution (the latter re-
finement is complete only for clause sets that are Horn-renamable).
We also define a concrete procedure for computing saturated sets and
establish its soundness and completeness. The clause sets are not as-
sumed to be finite, so that the results can be applied to formulas ob-
tained by grounding sets of first-order clauses (however, a total order-
ing among atoms is assumed to be given).

Next, we show that the unrestricted Resolution rule is deductive-
complete, in the sense that it is able to generate all (prime) implicates
of any set of propositional clauses (i.e., all entailment-minimal, non-
valid, clausal consequences of the considered set). The generation of
prime implicates is an important problem, with many applications in
artificial intelligence and verification (for abductive reasoning, knowl-
edge compilation, diagnosis, debugging etc.). We also show that im-
plicates can be computed in an incremental way, by fixing an ordering
among all the atoms and resolving upon these atoms one by one in the
considered order (with no backtracking). This feature is critical for the
efficient computation of prime implicates. Building on these results,
we provide a procedure for computing such implicates and establish its
soundness and completeness.

Contents
1 Syntax of Propositional Clausal Logic 2

2 Semantics 4

1

3 Inference Rules 5
3.1 Unrestricted Resolution . 6
3.2 Ordered Resolution . 7
3.3 Ordered Resolution with Selection 8
3.4 Semantic Resolution . 8
3.5 Unit Resolution . 9
3.6 Positive and Negative Resolution 10

4 Redundancy Elimination Rules 12

5 Renaming 17

6 Soundness 24

7 Refutational Completeness 26
7.1 Ordered Resolution . 27
7.2 Ordered Resolution with Selection 35
7.3 Semantic Resolution . 42
7.4 Positive and Negative Resolution 45
7.5 Unit Resolution and Horn Renamable Clauses 46

8 Computation of Saturated Clause Sets 47

9 Prime Implicates Generation 56
9.1 Implicates and Prime Implicates 56
9.2 Generation of Prime Implicates 56
9.3 Incremental Prime Implicates Computation 61

1 Syntax of Propositional Clausal Logic

We define the usual syntactic notions of clausal propositional logic. The
set of atoms may be arbitrary (even uncountable), but a well-founded total
order is assumed to be given.
theory Propositional-Resolution

imports Main

begin

locale propositional-atoms =
fixes atom-ordering :: (′at × ′at) set
assumes

atom-ordering-wf :(wf atom-ordering)
and atom-ordering-total:(∀ x y. (x 6= y −→ ((x,y) ∈ atom-ordering ∨ (y,x) ∈

atom-ordering)))

2

and atom-ordering-trans: ∀ x y z. (x,y) ∈ atom-ordering −→ (y,z) ∈ atom-ordering
−→ (x,z) ∈ atom-ordering

and atom-ordering-irrefl: ∀ x y. (x,y) ∈ atom-ordering −→ (y,x) /∈ atom-ordering
begin

Literals are defined as usual and clauses and formulas are considered as sets.
Clause sets are not assumed to be finite (so that the results can be applied
to sets of clauses obtained by grounding first-order clauses).
datatype ′a Literal = Pos ′a | Neg ′a

definition atoms = { x:: ′at. True }

fun atom :: ′a Literal ⇒ ′a
where
(atom (Pos A)) = A |
(atom (Neg A)) = A

fun complement :: ′a Literal ⇒ ′a Literal
where
(complement (Pos A)) = (Neg A) |
(complement (Neg A)) = (Pos A)

lemma atom-property : A = (atom L) =⇒ (L = (Pos A) ∨ L = (Neg A))
by (metis atom.elims)

fun positive :: ′at Literal ⇒ bool
where
(positive (Pos A)) = True |
(positive (Neg A)) = False

fun negative :: ′at Literal ⇒ bool
where
(negative (Pos A)) = False |
(negative (Neg A)) = True

type-synonym ′a Clause = ′a Literal set

type-synonym ′a Formula = ′a Clause set

Note that the clauses are not assumed to be finite (some of the properties
below hold for infinite clauses).

The following functions return the set of atoms occurring in a clause or
formula.
fun atoms-clause :: ′at Clause ⇒ ′at set

where atoms-clause C = { A. ∃L. L ∈ C ∧ A = atom(L) }

fun atoms-formula :: ′at Formula ⇒ ′at set
where atoms-formula S = { A. ∃C . C ∈ S ∧ A ∈ atoms-clause(C) }

3

lemma atoms-formula-subset: S1 ⊆ S2 =⇒ atoms-formula S1 ⊆ atoms-formula
S2
by auto

lemma atoms-formula-union: atoms-formula (S1 ∪ S2) = atoms-formula S1 ∪
atoms-formula S2
by auto

The following predicate is useful to state that every clause in a set fulfills
some property.
definition all-fulfill :: (′at Clause ⇒ bool) ⇒ ′at Formula ⇒ bool

where all-fulfill P S = (∀C . (C ∈ S −→ (P C)))

The order on atoms induces a (non total) order among literals:
fun literal-ordering :: ′at Literal ⇒ ′at Literal ⇒ bool
where

(literal-ordering L1 L2) = ((atom L1 ,atom L2) ∈ atom-ordering)

lemma literal-ordering-trans :
assumes literal-ordering A B
assumes literal-ordering B C
shows literal-ordering A C

using assms(1) assms(2) atom-ordering-trans literal-ordering.simps by blast

definition strictly-maximal-literal :: ′at Clause ⇒ ′at Literal ⇒ bool
where

(strictly-maximal-literal S A) ≡ (A ∈ S) ∧ (∀B. (B ∈ S ∧ A 6= B) −→
(literal-ordering B A))

2 Semantics

We define the notions of interpretation, satisfiability and entailment and
establish some basic properties.
type-synonym ′a Interpretation = ′a set

fun validate-literal :: ′at Interpretation ⇒ ′at Literal ⇒ bool (infix ‹|=› 65)
where
(validate-literal I (Pos A)) = (A ∈ I) |
(validate-literal I (Neg A)) = (A /∈ I)

fun validate-clause :: ′at Interpretation ⇒ ′at Clause ⇒ bool (infix ‹|=› 65)
where
(validate-clause I C) = (∃L. (L ∈ C) ∧ (validate-literal I L))

fun validate-formula :: ′at Interpretation ⇒ ′at Formula ⇒ bool (infix ‹|=› 65)
where

4

(validate-formula I S) = (∀C . (C ∈ S −→ (validate-clause I C)))

definition satisfiable :: ′at Formula ⇒ bool
where
(satisfiable S) ≡ (∃ I . (validate-formula I S))

We define the usual notions of entailment between clauses and formulas.
definition entails :: ′at Formula ⇒ ′at Clause ⇒ bool
where
(entails S C) ≡ (∀ I . (validate-formula I S) −→ (validate-clause I C))

lemma entails-member :
assumes C ∈ S
shows entails S C

using assms unfolding entails-def by simp

definition entails-formula :: ′at Formula ⇒ ′at Formula ⇒ bool
where (entails-formula S1 S2) = (∀C ∈ S2 . (entails S1 C))

definition equivalent :: ′at Formula ⇒ ′at Formula ⇒ bool
where (equivalent S1 S2) = (entails-formula S1 S2 ∧ entails-formula S2 S1)

lemma equivalent-symmetric: equivalent S1 S2 =⇒ equivalent S2 S1
by (simp add: equivalent-def)

lemma entailment-implies-validity:
assumes entails-formula S1 S2
assumes validate-formula I S1
shows validate-formula I S2

using assms entails-def entails-formula-def by auto

lemma validity-implies-entailment:
assumes ∀ I . validate-formula I S1 −→ validate-formula I S2
shows entails-formula S1 S2

by (meson assms entails-def entails-formula-def validate-formula.elims(2))

lemma entails-transitive:
assumes entails-formula S1 S2
assumes entails-formula S2 S3
shows entails-formula S1 S3

by (meson assms entailment-implies-validity validity-implies-entailment)

lemma equivalent-transitive:
assumes equivalent S1 S2
assumes equivalent S2 S3
shows equivalent S1 S3

using assms entails-transitive equivalent-def by auto

lemma entailment-subset :

5

assumes S2 ⊆ S1
shows entails-formula S1 S2

proof −
have ∀L La. L /∈ La ∨ entails La L

by (meson entails-member)
thus ?thesis

by (meson assms entails-formula-def rev-subsetD)
qed

lemma entailed-formula-entails-implicates:
assumes entails-formula S1 S2
assumes entails S2 C
shows entails S1 C

using assms entailment-implies-validity entails-def by blast

3 Inference Rules

We first define an abstract notion of a binary inference rule.
type-synonym ′a BinaryRule = ′a Clause ⇒ ′a Clause ⇒ ′a Clause ⇒ bool

definition less-restrictive :: ′at BinaryRule ⇒ ′at BinaryRule ⇒ bool
where
(less-restrictive R1 R2) = (∀P1 P2 C . (R2 P1 P2 C) −→ ((R1 P1 P2 C) ∨ (R1

P2 P1 C)))

The following functions allow to generate all the clauses that are deducible
from a given clause set (in one step).
fun all-deducible-clauses:: ′at BinaryRule ⇒ ′at Formula ⇒ ′at Formula

where all-deducible-clauses R S = { C . ∃P1 P2 . P1 ∈ S ∧ P2 ∈ S ∧ (R P1
P2 C) }

fun add-all-deducible-clauses:: ′at BinaryRule ⇒ ′at Formula ⇒ ′at Formula
where add-all-deducible-clauses R S = (S ∪ all-deducible-clauses R S)

definition derived-clauses-are-finite :: ′at BinaryRule ⇒ bool
where derived-clauses-are-finite R =
(∀P1 P2 C . (finite P1 −→ finite P2 −→ (R P1 P2 C) −→ finite C))

lemma less-restrictive-and-finite :
assumes less-restrictive R1 R2
assumes derived-clauses-are-finite R1
shows derived-clauses-are-finite R2

by (metis assms derived-clauses-are-finite-def less-restrictive-def)

We then define the unrestricted resolution rule and usual resolution refine-
ments.

6

3.1 Unrestricted Resolution
definition resolvent :: ′at BinaryRule

where
(resolvent P1 P2 C) ≡
(∃A. ((Pos A) ∈ P1 ∧ (Neg A) ∈ P2 ∧ (C = ((P1 − { Pos A}) ∪ (P2 − {

Neg A })))))

For technical convience, we now introduce a slightly extended definition in
which resolution upon a literal not occurring in the premises is allowed (the
obtained resolvent is then redundant with the premises). If the atom is fixed
then this version of the resolution rule can be turned into a total function.
fun resolvent-upon :: ′at Clause ⇒ ′at Clause ⇒ ′at ⇒ ′at Clause
where
(resolvent-upon P1 P2 A) =

((P1 − { Pos A}) ∪ (P2 − { Neg A }))

lemma resolvent-upon-is-resolvent :
assumes Pos A ∈ P1
assumes Neg A ∈ P2
shows resolvent P1 P2 (resolvent-upon P1 P2 A)

using assms unfolding resolvent-def by auto

lemma resolvent-is-resolvent-upon :
assumes resolvent P1 P2 C
shows ∃A. C = resolvent-upon P1 P2 A

using assms unfolding resolvent-def by auto

lemma resolvent-is-finite :
shows derived-clauses-are-finite resolvent

proof (rule ccontr)
assume ¬derived-clauses-are-finite resolvent
then have ∃P1 P2 C . ¬(resolvent P1 P2 C −→ finite P1 −→ finite P2 −→

finite C)
unfolding derived-clauses-are-finite-def by blast

then obtain P1 P2 C where resolvent P1 P2 C finite P1 finite P2 and ¬finite
C by blast
from ‹resolvent P1 P2 C › ‹finite P1 › ‹finite P2 › and ‹¬finite C › show False
unfolding resolvent-def using finite-Diff and finite-Union by auto

qed

In the next subsections we introduce various resolution refinements and show
that they are more restrictive than unrestricted resolution.

3.2 Ordered Resolution

In the first refinement, resolution is only allowed on maximal literals.
definition ordered-resolvent :: ′at Clause ⇒ ′at Clause ⇒ ′at Clause ⇒ bool

7

where
(ordered-resolvent P1 P2 C) ≡
(∃A. ((C = ((P1 − { Pos A}) ∪ (P2 − { Neg A })))
∧ (strictly-maximal-literal P1 (Pos A)) ∧ (strictly-maximal-literal P2 (Neg

A))))

We now show that the maximal literal of the resolvent is always smaller
than those of the premises.
lemma resolution-and-max-literal :

assumes R = resolvent-upon P1 P2 A
assumes strictly-maximal-literal P1 (Pos A)
assumes strictly-maximal-literal P2 (Neg A)
assumes strictly-maximal-literal R M
shows (atom M , A) ∈ atom-ordering

proof −
obtain MA where M = (Pos MA) ∨ M = (Neg MA) using Literal.exhaust [of

M] by auto
hence MA = (atom M) by auto
from ‹strictly-maximal-literal R M › and ‹R = resolvent-upon P1 P2 A›

have M ∈ P1 − { Pos A } ∨ M ∈ P2 − { Neg A }
unfolding strictly-maximal-literal-def by auto

hence (MA,A) ∈ atom-ordering
proof

assume M ∈ P1 − { Pos A }
from ‹M ∈ P1 − { Pos A }› and ‹strictly-maximal-literal P1 (Pos A)›

have literal-ordering M (Pos A)
unfolding strictly-maximal-literal-def by auto

from ‹M = Pos MA ∨ M = Neg MA› and ‹literal-ordering M (Pos A)›
show (MA,A) ∈ atom-ordering by auto

next
assume M ∈ P2 − { Neg A }
from ‹M ∈ P2 − { Neg A }› and ‹strictly-maximal-literal P2 (Neg A)›
have literal-ordering M (Neg A) by (auto simp only: strictly-maximal-literal-def)
from ‹M = Pos MA ∨ M = Neg MA› and ‹literal-ordering M (Neg A)›
show (MA,A) ∈ atom-ordering by auto

qed
from this and ‹MA = atom M › show ?thesis by auto

qed

3.3 Ordered Resolution with Selection

In the next restriction strategy, some negative literals are selected with high-
est priority for applying the resolution rule, regardless of the ordering. Re-
laxed ordering restrictions also apply.
definition (selected-part Sel C) = { L. L ∈ C ∧ (∃A ∈ Sel. L = (Neg A)) }

definition ordered-sel-resolvent :: ′at set ⇒ ′at Clause ⇒ ′at Clause ⇒ ′at Clause
⇒ bool

8

where
(ordered-sel-resolvent Sel P1 P2 C) ≡
(∃A. ((C = ((P1 − { Pos A}) ∪ (P2 − { Neg A })))
∧ (strictly-maximal-literal P1 (Pos A)) ∧ ((selected-part Sel P1) = {}) ∧

(((strictly-maximal-literal P2 (Neg A)) ∧ (selected-part Sel P2) = {})
∨ (strictly-maximal-literal (selected-part Sel P2) (Neg A)))))

lemma ordered-resolvent-is-resolvent : less-restrictive resolvent ordered-resolvent
using less-restrictive-def ordered-resolvent-def resolvent-upon-is-resolvent strictly-maximal-literal-def
by auto

The next lemma states that ordered resolution with selection coincides with
ordered resolution if the selected part is empty.
lemma ordered-sel-resolvent-is-ordered-resolvent :
assumes ordered-resolvent P1 P2 C
assumes selected-part Sel P1 = {}
assumes selected-part Sel P2 = {}
shows ordered-sel-resolvent Sel P1 P2 C

using assms ordered-resolvent-def ordered-sel-resolvent-def by auto

lemma ordered-resolvent-upon-is-resolvent :
assumes strictly-maximal-literal P1 (Pos A)
assumes strictly-maximal-literal P2 (Neg A)
shows ordered-resolvent P1 P2 (resolvent-upon P1 P2 A)

using assms ordered-resolvent-def by auto

3.4 Semantic Resolution

In this strategy, resolution is applied only if one parent is false in some
(fixed) interpretation. Note that ordering restrictions still apply, although
they are relaxed.
definition validated-part :: ′at set ⇒ ′at Clause ⇒ ′at Clause
where (validated-part I C) = { L. L ∈ C ∧ (validate-literal I L) }

definition ordered-model-resolvent ::
′at Interpretation ⇒ ′at Clause ⇒ ′at Clause ⇒ ′at Clause ⇒ bool

where
(ordered-model-resolvent I P1 P2 C) =
(∃L. (C = (P1 − { L } ∪ (P2 − { complement L }))) ∧
((validated-part I P1) = {} ∧ (strictly-maximal-literal P1 L))
∧ (strictly-maximal-literal (validated-part I P2) (complement L)))

lemma ordered-model-resolvent-is-resolvent : less-restrictive resolvent (ordered-model-resolvent
I)
proof (rule ccontr)

assume ¬ less-restrictive resolvent (ordered-model-resolvent I)
then obtain P1 P2 C where ordered-model-resolvent I P1 P2 C and ¬resolvent

P1 P2 C

9

and ¬resolvent P2 P1 C unfolding less-restrictive-def by auto
from ‹ordered-model-resolvent I P1 P2 C › obtain L

where strictly-maximal-literal P1 L
and strictly-maximal-literal (validated-part I P2) (complement L)
and C = (P1 − { L }) ∪ (P2 − { complement L })
using ordered-model-resolvent-def [of I P1 P2 C] by auto

from ‹strictly-maximal-literal P1 L› have L ∈ P1 by (simp only: strictly-maximal-literal-def)
from ‹strictly-maximal-literal (validated-part I P2) (complement L)› have (complement

L) ∈ P2
by (auto simp only: strictly-maximal-literal-def validated-part-def)

obtain A where L = Pos A ∨ L = Neg A using Literal.exhaust [of L] by auto
from this and ‹C = (P1 − { L }) ∪ (P2 − { complement L })› and ‹L ∈ P1 ›

and ‹(complement L) ∈ P2 ›
have resolvent P1 P2 C ∨ resolvent P2 P1 C unfolding resolvent-def by auto

from this and ‹¬resolvent P2 P1 C › and ‹¬resolvent P1 P2 C › show False by
auto
qed

3.5 Unit Resolution

Resolution is applied only if one parent is unit (this restriction is incomplete).
definition Unit :: ′at Clause ⇒ bool

where (Unit C) = ((card C) = 1)

definition unit-resolvent :: ′at BinaryRule
where (unit-resolvent P1 P2 C) = ((∃L. (C = ((P1 − { L}) ∪ (P2 − {

complement L })))
∧ L ∈ P1 ∧ (complement L) ∈ P2) ∧ Unit P1)

lemma unit-resolvent-is-resolvent : less-restrictive resolvent unit-resolvent
proof (rule ccontr)

assume ¬ less-restrictive resolvent unit-resolvent
then obtain P1 P2 C where unit-resolvent P1 P2 C and ¬resolvent P1 P2 C

and ¬resolvent P2 P1 C unfolding less-restrictive-def by auto
from ‹unit-resolvent P1 P2 C › obtain L where L ∈ P1 and complement L ∈

P2
and C = (P1 − { L }) ∪ (P2 − { complement L })
using unit-resolvent-def [of P1 P2 C] by auto

obtain A where L = Pos A ∨ L = Neg A using Literal.exhaust [of L] by auto
from this and ‹C = (P1 − { L }) ∪ (P2 − { complement L })› and ‹L ∈ P1 ›

and ‹complement L ∈ P2 ›
have resolvent P1 P2 C ∨ resolvent P2 P1 C unfolding resolvent-def by auto

from this and ‹¬resolvent P2 P1 C › and ‹¬resolvent P1 P2 C › show False by
auto
qed

10

3.6 Positive and Negative Resolution

Resolution is applied only if one parent is positive (resp. negative). Again,
relaxed ordering restrictions apply.
definition positive-part :: ′at Clause ⇒ ′at Clause
where
(positive-part C) = { L. (∃A. L = Pos A) ∧ L ∈ C }

definition negative-part :: ′at Clause ⇒ ′at Clause
where
(negative-part C) = { L. (∃A. L = Neg A) ∧ L ∈ C }

lemma decomposition-clause-pos-neg :
C = (negative-part C) ∪ (positive-part C)

proof
show C ⊆ (negative-part C) ∪ (positive-part C)
proof

fix x assume x ∈ C
obtain A where x = Pos A ∨ x = Neg A using Literal.exhaust [of x] by auto
show x ∈ (negative-part C) ∪ (positive-part C)
proof cases

assume x = Pos A
from this and ‹x ∈ C › have x ∈ positive-part C unfolding positive-part-def

by auto
then show x ∈ (negative-part C) ∪ (positive-part C) by auto

next
assume x 6= Pos A
from this and ‹x = Pos A ∨ x = Neg A›have x = Neg A by auto

from this and ‹x ∈ C › have x ∈ negative-part C unfolding negative-part-def
by auto

then show x ∈ (negative-part C) ∪ (positive-part C) by auto
qed

qed
next

show (negative-part C) ∪ (positive-part C) ⊆ C unfolding negative-part-def
and positive-part-def by auto

qed

definition ordered-positive-resolvent :: ′at Clause ⇒ ′at Clause ⇒ ′at Clause ⇒
bool
where
(ordered-positive-resolvent P1 P2 C) =
(∃L. (C = (P1 − { L } ∪ (P2 − { complement L }))) ∧
((negative-part P1) = {} ∧ (strictly-maximal-literal P1 L))
∧ (strictly-maximal-literal (negative-part P2) (complement L)))

definition ordered-negative-resolvent :: ′at Clause ⇒ ′at Clause ⇒ ′at Clause ⇒
bool
where

11

(ordered-negative-resolvent P1 P2 C) =
(∃L. (C = (P1 − { L } ∪ (P2 − { complement L }))) ∧
((positive-part P1) = {} ∧ (strictly-maximal-literal P1 L))
∧ (strictly-maximal-literal (positive-part P2) (complement L)))

lemma positive-resolvent-is-resolvent : less-restrictive resolvent ordered-positive-resolvent
proof (rule ccontr)

assume ¬ less-restrictive resolvent ordered-positive-resolvent
then obtain P1 P2 C where ordered-positive-resolvent P1 P2 C and ¬resolvent

P1 P2 C
and ¬resolvent P2 P1 C unfolding less-restrictive-def by auto

from ‹ordered-positive-resolvent P1 P2 C › obtain L
where strictly-maximal-literal P1 L
and strictly-maximal-literal (negative-part P2)(complement L)
and C = (P1 − { L }) ∪ (P2 − { complement L })
using ordered-positive-resolvent-def [of P1 P2 C] by auto

from ‹strictly-maximal-literal P1 L› have L ∈ P1 unfolding strictly-maximal-literal-def
by auto
from ‹strictly-maximal-literal (negative-part P2) (complement L)› have (complement

L) ∈ P2
unfolding strictly-maximal-literal-def negative-part-def by auto

obtain A where L = Pos A ∨ L = Neg A using Literal.exhaust [of L] by auto
from this and ‹C = (P1 − { L }) ∪ (P2 − { complement L })› and ‹L ∈ P1 ›

and ‹(complement L) ∈ P2 ›
have resolvent P1 P2 C ∨ resolvent P2 P1 C unfolding resolvent-def by auto
from this and ‹¬(resolvent P2 P1 C)› and ‹¬(resolvent P1 P2 C)› show False

by auto
qed

lemma negative-resolvent-is-resolvent : less-restrictive resolvent ordered-negative-resolvent
proof (rule ccontr)

assume ¬ less-restrictive resolvent ordered-negative-resolvent
then obtain P1 P2 C where (ordered-negative-resolvent P1 P2 C) and ¬(resolvent

P1 P2 C)
and ¬(resolvent P2 P1 C) unfolding less-restrictive-def by auto

from ‹ordered-negative-resolvent P1 P2 C › obtain L where strictly-maximal-literal
P1 L

and strictly-maximal-literal (positive-part P2)(complement L)
and C = (P1 − { L }) ∪ (P2 − { complement L })
using ordered-negative-resolvent-def [of P1 P2 C] by auto

from ‹strictly-maximal-literal P1 L› have L ∈ P1 unfolding strictly-maximal-literal-def
by auto
from ‹strictly-maximal-literal (positive-part P2) (complement L)› have (complement

L) ∈ P2
unfolding strictly-maximal-literal-def positive-part-def by auto
obtain A where L = Pos A ∨ L = Neg A using Literal.exhaust [of L] by auto
from this and ‹C = (P1 − { L }) ∪ (P2 − { complement L })› and ‹L ∈ P1 ›

and ‹(complement L) ∈ P2 ›
have resolvent P1 P2 C ∨ resolvent P2 P1 C unfolding resolvent-def by auto

12

from this and ‹¬resolvent P2 P1 C › and ‹¬resolvent P1 P2 C › show False by
auto
qed

4 Redundancy Elimination Rules

We define the usual redundancy elimination rules.
definition tautology :: ′a Clause ⇒ bool
where
(tautology C) ≡ (∃ A. (Pos A ∈ C ∧ Neg A ∈ C))

definition subsumes :: ′a Clause ⇒ ′a Clause ⇒ bool
where
(subsumes C D) ≡ (C ⊆ D)

definition redundant :: ′a Clause ⇒ ′a Formula ⇒ bool
where

redundant C S = ((tautology C) ∨ (∃D. (D ∈ S ∧ subsumes D C)))

definition strictly-redundant :: ′a Clause ⇒ ′a Formula ⇒ bool
where

strictly-redundant C S = ((tautology C) ∨ (∃D. (D ∈ S ∧ (D ⊂ C))))

definition simplify :: ′at Formula ⇒ ′at Formula
where

simplify S = { C . C ∈ S ∧ ¬strictly-redundant C S }

We first establish some basic syntactic properties.
lemma tautology-monotonous : (tautology C) =⇒ (C ⊆ D) =⇒ (tautology D)
unfolding tautology-def by auto

lemma simplify-involutive:
shows simplify (simplify S) = (simplify S)

proof −
show ?thesis unfolding simplify-def strictly-redundant-def by auto

qed

lemma simplify-finite:
assumes all-fulfill finite S
shows all-fulfill finite (simplify S)

using assms all-fulfill-def simplify-def by auto

lemma atoms-formula-simplify:
shows atoms-formula (simplify S) ⊆ atoms-formula S

unfolding simplify-def using atoms-formula-subset by auto

lemma subsumption-preserves-redundancy :
assumes redundant C S

13

assumes subsumes C D
shows redundant D S

using assms tautology-monotonous unfolding redundant-def subsumes-def by blast

lemma subsumption-and-max-literal :
assumes subsumes C1 C2
assumes strictly-maximal-literal C1 L1
assumes strictly-maximal-literal C2 L2
assumes A1 = atom L1
assumes A2 = atom L2
shows (A1 = A2) ∨ (A1 ,A2) ∈ atom-ordering

proof −
from ‹A1 = atom L1 › have L1 = (Pos A1) ∨ L1 = (Neg A1) by (rule

atom-property)
from ‹A2 = atom L2 › have L2 = (Pos A2) ∨ L2 = (Neg A2) by (rule

atom-property)
from ‹subsumes C1 C2 › and ‹strictly-maximal-literal C1 L1 › have L1 ∈ C2

unfolding strictly-maximal-literal-def subsumes-def by auto
from ‹strictly-maximal-literal C2 L2 › and ‹L1 ∈ C2 › have L1 = L2 ∨ lit-

eral-ordering L1 L2
unfolding strictly-maximal-literal-def by auto

thus ?thesis
proof

assume L1 = L2
from ‹L1 = L2 › and ‹A1 = atom L1 › and ‹A2 = atom L2 › show ?thesis

by auto
next

assume literal-ordering L1 L2
from ‹literal-ordering L1 L2 › and ‹L1 = (Pos A1) ∨ L1 = (Neg A1)›

and ‹L2 = (Pos A2) ∨ L2 = (Neg A2)›
show ?thesis by auto

qed
qed

lemma superset-preserves-redundancy:
assumes redundant C S
assumes S ⊆ S ′

shows redundant C S ′

using assms unfolding redundant-def by blast

lemma superset-preserves-strict-redundancy:
assumes strictly-redundant C S
assumes S ⊆ SS
shows strictly-redundant C SS

using assms unfolding strictly-redundant-def by blast

The following lemmas relate the above notions with that of semantic entail-
ment and thus establish the soundness of redundancy elimination rules.
lemma tautologies-are-valid :

14

assumes tautology C
shows validate-clause I C

by (meson assms tautology-def validate-clause.simps validate-literal.simps(1)
validate-literal.simps(2))

lemma subsumption-and-semantics :
assumes subsumes C D
assumes validate-clause I C
shows validate-clause I D

using assms unfolding subsumes-def by auto

lemma redundancy-and-semantics :
assumes redundant C S
assumes validate-formula I S
shows validate-clause I C

by
(meson assms redundant-def subsumption-and-semantics tautologies-are-valid vali-
date-formula.elims)

lemma redundancy-implies-entailment:
assumes redundant C S
shows entails S C

using assms entails-def redundancy-and-semantics by auto

lemma simplify-and-membership :
assumes all-fulfill finite S
assumes T = simplify S
assumes C ∈ S
shows redundant C T

proof −
{

fix n
have ∀C . card C ≤ n −→ C ∈ S −→ redundant C T (is ?P n)
proof (induction n)

show ?P 0
proof ((rule allI),(rule impI)+)

fix C assume card C ≤ 0 and C ∈ S
from ‹card C ≤ 0 › and ‹C ∈ S› and ‹all-fulfill finite S› have C = {}

using card-0-eq
unfolding all-fulfill-def by auto

then have ¬ strictly-redundant C S unfolding strictly-redundant-def tau-
tology-def by auto

from this and ‹C ∈ S› and ‹T = simplify S› have C ∈ T using simplify-def
by auto

from this show redundant C T unfolding redundant-def subsumes-def by
auto

qed
next

fix n assume ?P n

15

show ?P (Suc n)
proof ((rule allI),(rule impI)+)

fix C assume card C ≤ (Suc n) and C ∈ S
show redundant C T
proof (rule ccontr)

assume ¬redundant C T
from this have C /∈ T unfolding redundant-def subsumes-def by auto
from this and ‹T = simplify S› and ‹C ∈ S› have strictly-redundant

C S
unfolding simplify-def strictly-redundant-def by auto

from this and ‹¬redundant C T › obtain D where D ∈ S and D ⊂ C
unfolding redundant-def strictly-redundant-def by auto
from ‹D ⊂ C › and ‹C ∈ S› and ‹all-fulfill finite S› have card D <

card C
unfolding all-fulfill-def
using psubset-card-mono by auto

from this and ‹card C ≤ (Suc n)› have card D ≤ n by auto
from this and ‹?P n› and ‹D ∈ S› have redundant D T by auto
show False
proof cases

assume tautology D
from this and ‹D ⊂ C › have tautology C unfolding tautology-def

by auto
then have redundant C T unfolding redundant-def by auto
from this and ‹¬redundant C T › show False by auto

next
assume ¬tautology D
from this and ‹redundant D T › obtain E where E ∈ T and E ⊆ D

unfolding redundant-def subsumes-def by auto
from this and ‹D ⊂ C › have E ⊆ C by auto
from this and ‹E ∈ T › and ‹¬redundant C T › show False

unfolding redundant-def and subsumes-def by auto
qed

qed
qed

qed
}

from this and ‹C ∈ S› show ?thesis by auto
qed

lemma simplify-preserves-redundancy:
assumes all-fulfill finite S
assumes redundant C S
shows redundant C (simplify S)

by (meson assms redundant-def simplify-and-membership subsumption-preserves-redundancy)

lemma simplify-preserves-strict-redundancy:
assumes all-fulfill finite S
assumes strictly-redundant C S

16

shows strictly-redundant C (simplify S)
proof ((cases tautology C),(auto simp add: strictly-redundant-def)[1])
next

assume ¬tautology C
from this and assms(2) obtain D where D ⊂ C and D ∈ S unfolding

strictly-redundant-def by auto
from ‹D ∈ S› have redundant D S unfolding redundant-def subsumes-def by

auto
from assms(1) this have redundant D (simplify S) using simplify-preserves-redundancy

by auto
from ‹¬tautology C › and ‹D ⊂ C › have ¬tautology D unfolding tautology-def

by auto
from this and ‹redundant D (simplify S)› obtain E where E ∈ simplify S

and subsumes E D unfolding redundant-def by auto
from ‹subsumes E D› and ‹D ⊂ C › have E ⊂ C unfolding subsumes-def by

auto
from this and ‹E ∈ simplify S› show strictly-redundant C (simplify S)

unfolding strictly-redundant-def by auto
qed

lemma simplify-preserves-semantic :
assumes T = simplify S
assumes all-fulfill finite S
shows validate-formula I S ←→ validate-formula I T

by (metis (mono-tags, lifting) assms mem-Collect-eq redundancy-and-semantics
simplify-and-membership

simplify-def validate-formula.simps)

lemma simplify-preserves-equivalence :
assumes T = simplify S
assumes all-fulfill finite S
shows equivalent S T

using assms equivalent-def simplify-preserves-semantic validity-implies-entailment
by auto

After simplification, the formula contains no strictly redundant clause:
definition non-redundant :: ′at Formula ⇒ bool

where non-redundant S = (∀C . (C ∈ S −→ ¬strictly-redundant C S))

lemma simplify-non-redundant:
shows non-redundant (simplify S)

by (simp add: non-redundant-def simplify-def strictly-redundant-def)

lemma deducible-clause-preserve-redundancy:
assumes redundant C S
shows redundant C (add-all-deducible-clauses R S)

using assms superset-preserves-redundancy by fastforce

17

5 Renaming

A renaming is a function changing the sign of some literals. We show that
this operation preserves most of the previous syntactic and semantic notions.
definition rename-literal :: ′at set ⇒ ′at Literal ⇒ ′at Literal
where rename-literal A L = (if ((atom L) ∈ A) then (complement L) else L)

definition rename-clause :: ′at set ⇒ ′at Clause ⇒ ′at Clause
where rename-clause A C = {L. ∃LL. LL ∈ C ∧ L = (rename-literal A LL)}

definition rename-formula :: ′at set ⇒ ′at Formula ⇒ ′at Formula
where rename-formula A S = {C . ∃CC . CC ∈ S ∧ C = (rename-clause A CC)}

lemma inverse-renaming : (rename-literal A (rename-literal A L)) = L
proof −

obtain A where at: L = (Pos A) ∨ L = (Neg A) using Literal.exhaust [of L]
by auto

from at show ?thesis unfolding rename-literal-def by auto
qed

lemma inverse-clause-renaming : (rename-clause A (rename-clause A L)) = L
proof −

show ?thesis using inverse-renaming unfolding rename-clause-def by auto
qed

lemma inverse-formula-renaming : rename-formula A (rename-formula A L) = L
proof −

show ?thesis using inverse-clause-renaming unfolding rename-formula-def by
auto
qed

lemma renaming-preserves-cardinality :
card (rename-clause A C) = card C

proof −
have im: rename-clause A C = (rename-literal A) ‘ C unfolding rename-clause-def

by auto
have inj-on (rename-literal A) C by (metis inj-onI inverse-renaming)
from this and im show ?thesis using card-image by auto

qed

lemma renaming-preserves-literal-order :
assumes literal-ordering L1 L2
shows literal-ordering (rename-literal A L1) (rename-literal A L2)

proof −
obtain A1 where at1 : L1 = (Pos A1) ∨ L1 = (Neg A1) using Literal.exhaust

[of L1] by auto
obtain A2 where at2 : L2 = (Pos A2) ∨ L2 = (Neg A2) using Literal.exhaust

[of L2] by auto
from assms and at1 and at2 show ?thesis unfolding rename-literal-def by

18

auto
qed

lemma inverse-renaming-preserves-literal-order :
assumes literal-ordering (rename-literal A L1) (rename-literal A L2)
shows literal-ordering L1 L2

by (metis assms inverse-renaming renaming-preserves-literal-order)

lemma renaming-is-injective:
assumes rename-literal A L1 = rename-literal A L2
shows L1 = L2

by (metis (no-types) assms inverse-renaming)

lemma renaming-preserves-strictly-maximal-literal :
assumes strictly-maximal-literal C L
shows strictly-maximal-literal (rename-clause A C) (rename-literal A L)

proof −
from assms have (L ∈ C) and Lismax: (∀B. (B ∈ C ∧ L 6= B) −→ (literal-ordering

B L))
unfolding strictly-maximal-literal-def by auto
from ‹L ∈ C › have (rename-literal A L) ∈ (rename-clause A C)

unfolding rename-literal-def and rename-clause-def by auto
have
∀B. (B ∈ rename-clause A C −→ rename-literal A L 6= B
−→ literal-ordering B (rename-literal A L))

proof (rule)+
fix B assume B ∈ rename-clause A C and rename-literal A L 6= B
from ‹B ∈ rename-clause A C › obtain B ′ where B ′ ∈ C and B = re-

name-literal A B ′

unfolding rename-clause-def by auto
from ‹rename-literal A L 6= B› and ‹B = rename-literal A B ′›

have rename-literal A L 6= rename-literal A B ′ by auto
hence L 6= B ′ by auto
from this and ‹B ′ ∈ C › and Lismax have literal-ordering B ′ L by auto
from this and ‹B = (rename-literal A B ′)›
show literal-ordering B (rename-literal A L) using renaming-preserves-literal-order

by auto
qed
from this and ‹(rename-literal A L) ∈ (rename-clause A C)› show ?thesis

unfolding strictly-maximal-literal-def by auto
qed

lemma renaming-and-selected-part :
selected-part UNIV C = rename-clause Sel (validated-part Sel (rename-clause Sel

C))
proof
show selected-part UNIV C ⊆ rename-clause Sel (validated-part Sel (rename-clause

Sel C))
proof

19

fix x assume x ∈ selected-part UNIV C
show x ∈ rename-clause Sel (validated-part Sel (rename-clause Sel C))
proof −

from ‹x ∈ selected-part UNIV C › obtain A where x = Neg A and x ∈ C
unfolding selected-part-def by auto

from ‹x ∈ C › have rename-literal Sel x ∈ rename-clause Sel C
unfolding rename-clause-def by blast

show x ∈ rename-clause Sel (validated-part Sel (rename-clause Sel C))
proof cases

assume A ∈ Sel
from this and ‹x = Neg A› have rename-literal Sel x = Pos A

unfolding rename-literal-def by auto
from this and ‹A ∈ Sel› have validate-literal Sel (rename-literal Sel x) by

auto
from this and ‹rename-literal Sel x ∈ rename-clause Sel C ›
have rename-literal Sel x ∈ validated-part Sel (rename-clause Sel C)

unfolding validated-part-def by auto
thus x ∈ rename-clause Sel (validated-part Sel (rename-clause Sel C))

using inverse-renaming rename-clause-def by auto
next

assume A /∈ Sel
from this and ‹x = Neg A› have rename-literal Sel x = Neg A

unfolding rename-literal-def by auto
from this and ‹A /∈ Sel› have validate-literal Sel (rename-literal Sel x) by

auto
from this and ‹rename-literal Sel x ∈ rename-clause Sel C ›
have rename-literal Sel x ∈ validated-part Sel (rename-clause Sel C)

unfolding validated-part-def by auto
thus x ∈ rename-clause Sel (validated-part Sel (rename-clause Sel C))

using inverse-renaming rename-clause-def by auto
qed

qed
qed
next
show rename-clause Sel (validated-part Sel (rename-clause Sel C)) ⊆ (selected-part

UNIV C)
proof

fix x
assume x ∈ rename-clause Sel (validated-part Sel (rename-clause Sel C))
from this obtain y where y ∈ validated-part Sel (rename-clause Sel C)

and x = rename-literal Sel y
unfolding rename-clause-def validated-part-def by auto

from ‹y ∈ validated-part Sel (rename-clause Sel C)› have
y ∈ rename-clause Sel C and validate-literal Sel y unfolding validated-part-def

by auto
from ‹y ∈ rename-clause Sel C › obtain z where z ∈ C and y = rename-literal

Sel z
unfolding rename-clause-def by auto

obtain A where zA: z = Pos A ∨ z = Neg A using Literal.exhaust [of z] by

20

auto
show x ∈ selected-part UNIV C
proof cases

assume A ∈ Sel
from this and zA and ‹y = rename-literal Sel z› have y = complement z

using rename-literal-def by auto
from this and ‹A ∈ Sel› and zA and ‹validate-literal Sel y› have y = Pos

A
and z = Neg A by auto

from this and ‹A ∈ Sel› and ‹x = rename-literal Sel y› have x = Neg A
unfolding rename-literal-def by auto

from this and ‹z ∈ C › and ‹z = Neg A› show x ∈ selected-part UNIV C
unfolding selected-part-def by auto

next
assume A /∈ Sel
from this and zA and ‹y = rename-literal Sel z› have y = z

using rename-literal-def by auto
from this and ‹A /∈ Sel› and zA and ‹validate-literal Sel y› have y = Neg

A
and z = Neg A by auto

from this and ‹A /∈ Sel› and ‹x = rename-literal Sel y› have x = Neg A
unfolding rename-literal-def by auto

from this and ‹z ∈ C › and ‹z = Neg A› show x ∈ selected-part UNIV C
unfolding selected-part-def by auto

qed
qed

qed

lemma renaming-preserves-tautology:
assumes tautology C
shows tautology (rename-clause Sel C)

proof −
from assms obtain A where Pos A ∈ C and Neg A ∈ C unfolding tautology-def

by auto
from ‹Pos A ∈ C › have rename-literal Sel (Pos A) ∈ rename-clause Sel C

unfolding rename-clause-def by auto
from ‹Neg A ∈ C › have rename-literal Sel (Neg A) ∈ rename-clause Sel C

unfolding rename-clause-def by auto
show ?thesis
proof cases

assume A ∈ Sel
from this have rename-literal Sel (Pos A) = Neg A

and rename-literal Sel (Neg A) = (Pos A)
unfolding rename-literal-def by auto

from ‹rename-literal Sel (Pos A) = (Neg A)› and ‹rename-literal Sel (Neg A)
= (Pos A)›

and ‹rename-literal Sel (Pos A) ∈ (rename-clause Sel C)›
and ‹rename-literal Sel (Neg A) ∈ (rename-clause Sel C)›
show tautology (rename-clause Sel C) unfolding tautology-def by auto

21

next
assume A /∈ Sel
from this have rename-literal Sel (Pos A) = Pos A and rename-literal Sel

(Neg A) = (Neg A)
unfolding rename-literal-def by auto

from ‹rename-literal Sel (Pos A) = Pos A› and ‹rename-literal Sel (Neg A) =
(Neg A)›

and ‹rename-literal Sel (Pos A) ∈ rename-clause Sel C ›
and ‹rename-literal Sel (Neg A) ∈ rename-clause Sel C ›
show tautology (rename-clause Sel C) unfolding tautology-def by auto

qed
qed

lemma rename-union : rename-clause Sel (C ∪ D) = rename-clause Sel C ∪
rename-clause Sel D
unfolding rename-clause-def by auto

lemma renaming-set-minus-subset :
rename-clause Sel (C − { L }) ⊆ rename-clause Sel C − {rename-literal Sel L }

proof
fix x assume x ∈ rename-clause Sel (C − { L })
then obtain y where y ∈ C − { L } and x = rename-literal Sel y

unfolding rename-clause-def by auto
from ‹y ∈ C − { L }› and ‹x = rename-literal Sel y› have x ∈ rename-clause

Sel C
unfolding rename-clause-def by auto

have x 6= rename-literal Sel L
proof

assume x = rename-literal Sel L
hence rename-literal Sel x = L using inverse-renaming by auto

from this and ‹x = rename-literal Sel y› have y = L using inverse-renaming
by auto

from this and ‹y ∈ C − { L }› show False by auto
qed
from ‹x 6= rename-literal Sel L› and ‹x ∈ rename-clause Sel C ›

show x ∈ (rename-clause Sel C) − {rename-literal Sel L } by auto
qed

lemma renaming-set-minus : rename-clause Sel (C − { L })
= (rename-clause Sel C) − {rename-literal Sel L }

proof
show rename-clause Sel (C − { L }) ⊆ (rename-clause Sel C) − {rename-literal

Sel L }
using renaming-set-minus-subset by auto

next
show (rename-clause Sel C) − {rename-literal Sel L } ⊆ rename-clause Sel (C
− { L })

proof −
have rename-clause Sel ((rename-clause Sel C) − { (rename-literal Sel L) })

22

⊆ (rename-clause Sel (rename-clause Sel C)) − {rename-literal Sel (rename-literal
Sel L) }

using renaming-set-minus-subset by auto
from this

have rename-clause Sel ((rename-clause Sel C) − { (rename-literal Sel L) })
⊆ (C − {L })

using inverse-renaming inverse-clause-renaming by auto
from this

have rename-clause Sel (rename-clause Sel ((rename-clause Sel C) − {
(rename-literal Sel L) }))

⊆ (rename-clause Sel (C − {L })) using rename-clause-def by auto
from this

show (rename-clause Sel C) − { (rename-literal Sel L) } ⊆ rename-clause Sel
(C − {L })

using inverse-renaming inverse-clause-renaming by auto
qed

qed

definition rename-interpretation :: ′at set ⇒ ′at Interpretation ⇒ ′at Interpreta-
tion
where

rename-interpretation Sel I = { A. (A ∈ I ∧ A /∈ Sel) } ∪ { A. (A /∈ I ∧ A ∈
Sel) }

lemma renaming-preserves-semantic :
assumes validate-literal I L
shows validate-literal (rename-interpretation Sel I) (rename-literal Sel L)

proof −
let ?J = rename-interpretation Sel I
obtain A where L = Pos A ∨ L = Neg A using Literal.exhaust [of L] by auto
from ‹L = Pos A ∨ L = Neg A› have atom L = A by auto
show ?thesis
proof cases

assume A ∈ Sel
from this and ‹atom L = A› have rename-literal Sel L = complement L
unfolding rename-literal-def by auto
show ?thesis
proof cases

assume L = Pos A
from this and ‹validate-literal I L› have A ∈ I by auto

from this and ‹A ∈ Sel› have A /∈ ?J unfolding rename-interpretation-def
by blast

from this and ‹L = Pos A› and ‹rename-literal Sel L = complement L›
show ?thesis by auto

next
assume L 6= Pos A
from this and ‹L = Pos A ∨ L = Neg A›have L = Neg A by auto
from this and ‹validate-literal I L› have A /∈ I by auto

from this and ‹A ∈ Sel› have A ∈ ?J unfolding rename-interpretation-def

23

by blast
from this and ‹L = Neg A› and ‹rename-literal Sel L = complement L›

show ?thesis by auto
qed
next
assume A /∈ Sel
from this and ‹atom L = A› have rename-literal Sel L = L

unfolding rename-literal-def by auto
show ?thesis
proof cases

assume L = Pos A
from this and ‹validate-literal I L› have A ∈ I by auto

from this and ‹A /∈ Sel› have A ∈ ?J unfolding rename-interpretation-def
by blast

from this and ‹L = Pos A› and ‹rename-literal Sel L = L› show ?thesis
by auto

next
assume L 6= Pos A
from this and ‹L = Pos A ∨ L = Neg A›have L = Neg A by auto
from this and ‹validate-literal I L› have A /∈ I by auto

from this and ‹A /∈ Sel› have A /∈ ?J unfolding rename-interpretation-def
by blast

from this and ‹L = Neg A› and ‹rename-literal Sel L = L› show ?thesis
by auto

qed
qed

qed

lemma renaming-preserves-satisfiability:
assumes satisfiable S
shows satisfiable (rename-formula Sel S)

proof −
from assms obtain I where validate-formula I S unfolding satisfiable-def by

auto
let ?J = rename-interpretation Sel I
have validate-formula ?J (rename-formula Sel S)
proof (rule ccontr)

assume ¬validate-formula ?J (rename-formula Sel S)
then obtain C where C ∈ S and ¬(validate-clause ?J (rename-clause Sel

C))
unfolding rename-formula-def by auto
from ‹C ∈ S› and ‹validate-formula I S› obtain L where L ∈ C

and validate-literal I L by auto
from ‹validate-literal I L› have validate-literal ?J (rename-literal Sel L)

using renaming-preserves-semantic by auto
from this and ‹L ∈ C › and ‹¬validate-clause ?J (rename-clause Sel C)› show

False
unfolding rename-clause-def by auto

qed

24

from this show ?thesis unfolding satisfiable-def by auto
qed

lemma renaming-preserves-subsumption:
assumes subsumes C D
shows subsumes (rename-clause Sel C) (rename-clause Sel D)

using assms unfolding subsumes-def rename-clause-def by auto

6 Soundness

In this section we prove that all the rules introduced in the previous section
are sound. We first introduce an abstract notion of soundness.
definition Sound :: ′at BinaryRule ⇒ bool
where
(Sound Rule) ≡ ∀ I P1 P2 C . (Rule P1 P2 C −→ (validate-clause I P1) −→

(validate-clause I P2)
−→ (validate-clause I C))

lemma soundness-and-entailment :
assumes Sound Rule
assumes Rule P1 P2 C
assumes P1 ∈ S
assumes P2 ∈ S
shows entails S C

using Sound-def assms entails-def by auto

lemma all-deducible-sound:
assumes Sound R
shows entails-formula S (all-deducible-clauses R S)

proof (rule ccontr)
assume ¬entails-formula S (all-deducible-clauses R S)
then obtain C where C ∈ all-deducible-clauses R S and ¬ entails S C

unfolding entails-formula-def by auto
from ‹C ∈ all-deducible-clauses R S› obtain P1 P2 where R P1 P2 C and P1
∈ S and P2 ∈ S

by auto
from ‹R P1 P2 C ›and assms(1) and ‹P1 ∈ S› and ‹P2 ∈ S› and ‹¬ entails

S C ›
show False using soundness-and-entailment by auto

qed

lemma add-all-deducible-sound:
assumes Sound R
shows entails-formula S (add-all-deducible-clauses R S)

by (metis UnE add-all-deducible-clauses.simps all-deducible-sound assms
entails-formula-def entails-member)

If a rule is more restrictive than a sound rule then it is necessarily sound.

25

lemma less-restrictive-correct:
assumes less-restrictive R1 R2
assumes Sound R1
shows Sound R2

using assms unfolding less-restrictive-def Sound-def by blast

We finally establish usual concrete soundness results.
theorem resolution-is-correct:
(Sound resolvent)

proof (rule ccontr)
assume ¬ (Sound resolvent)
then obtain I P1 P2 C where
resolvent P1 P2 C validate-clause I P1 validate-clause I P2 and ¬validate-clause

I C
unfolding Sound-def by blast

from ‹resolvent P1 P2 C › obtain A where
(Pos A) ∈ P1 and (Neg A) ∈ P2 and C = ((P1 − { Pos A}) ∪ (P2 − {

Neg A }))
unfolding resolvent-def by auto

show False
proof cases

assume A ∈ I
hence ¬validate-literal I (Neg A) by auto
from ‹¬validate-literal I (Neg A)› and ‹validate-clause I P2 ›

have validate-clause I (P2 − { Neg A }) by auto
from ‹validate-clause I (P2 − { Neg A })› and ‹C = ((P1 − { Pos A})

∪ (P2 − { Neg A }))›
and ‹¬validate-clause I C › show False by auto

next
assume A /∈ I
hence ¬validate-literal I (Pos A) by auto
from ‹¬validate-literal I (Pos A)› and ‹validate-clause I P1 ›

have validate-clause I (P1 − { Pos A }) by auto
from ‹validate-clause I (P1 − { Pos A })› and ‹C = ((P1 − { Pos A})

∪ (P2 − { Neg A }))›
and ‹¬validate-clause I C ›
show False by auto

qed
qed

theorem ordered-resolution-correct : Sound ordered-resolvent
using resolution-is-correct and ordered-resolvent-is-resolvent less-restrictive-correct
by auto

theorem ordered-model-resolution-correct : Sound (ordered-model-resolvent I)
using resolution-is-correct ordered-model-resolvent-is-resolvent less-restrictive-correct
by auto

theorem ordered-positive-resolution-correct : Sound ordered-positive-resolvent

26

using less-restrictive-correct positive-resolvent-is-resolvent resolution-is-correct by
auto

theorem ordered-negative-resolution-correct : Sound ordered-negative-resolvent
using less-restrictive-correct negative-resolvent-is-resolvent resolution-is-correct by
auto

theorem unit-resolvent-correct : Sound unit-resolvent
using less-restrictive-correct resolution-is-correct unit-resolvent-is-resolvent by auto

7 Refutational Completeness

In this section we establish the refutational completeness of the previous
inference rules (under adequate restrictions for the unit resolution rule).
Completeness is proven w.r.t. redundancy elimination rules, i.e., we show
that every saturated unsatisfiable clause set contains the empty clause.

We first introduce an abstract notion of saturation.
definition saturated-binary-rule :: ′a BinaryRule ⇒ ′a Formula ⇒ bool
where
(saturated-binary-rule Rule S) ≡ (∀ P1 P2 C . (((P1 ∈ S) ∧ (P2 ∈ S) ∧ (Rule

P1 P2 C)))
−→ redundant C S)

definition Complete :: ′at BinaryRule ⇒ bool
where
(Complete Rule) = (∀S . ((saturated-binary-rule Rule S) −→ (all-fulfill finite S)
−→ ({} /∈ S) −→ satisfiable S))

If a set of clauses is saturated under some rule then it is necessarily saturated
under more restrictive rules, which entails that if a rule is less restrictive than
a complete rule then it is also complete.
lemma less-restrictive-saturated:

assumes less-restrictive R1 R2
assumes saturated-binary-rule R1 S
shows saturated-binary-rule R2 S

using assms unfolding less-restrictive-def Complete-def saturated-binary-rule-def
by blast

lemma less-restrictive-complete:
assumes less-restrictive R1 R2
assumes Complete R2
shows Complete R1

using assms less-restrictive-saturated Complete-def by auto

27

7.1 Ordered Resolution

We define a function associating every set of clauses S with a “canonic”
interpretation constructed from S. If S is saturated under ordered resolution
and does not contain the empty clause then the interpretation is a model
of S. The interpretation is defined by mean of an auxiliary function that
maps every atom to a function indicating whether the atom occurs in the
interpretation corresponding to a given clause set. The auxiliary function is
defined by induction on the set of atoms.
function canonic-int-fun-ordered :: ′at ⇒ (′at Formula ⇒ bool)
where
(canonic-int-fun-ordered A) =

(λS . (∃ C . (C ∈ S) ∧ (strictly-maximal-literal C (Pos A))
∧ (∀ B. (Pos B ∈ C −→ (B, A) ∈ atom-ordering −→ (¬(canonic-int-fun-ordered

B) S)))
∧ (∀ B. (Neg B ∈ C −→ (B, A) ∈ atom-ordering −→ ((canonic-int-fun-ordered

B) S)))))
by auto
termination apply (relation atom-ordering)
by auto (simp add: atom-ordering-wf)

definition canonic-int-ordered :: ′at Formula ⇒ ′at Interpretation
where
(canonic-int-ordered S) = { A. ((canonic-int-fun-ordered A) S) }

We first prove that the canonic interpretation validates every clause having
a positive strictly maximal literal
lemma int-validate-cl-with-pos-max :

assumes strictly-maximal-literal C (Pos A)
assumes C ∈ S
shows validate-clause (canonic-int-ordered S) C

proof cases
assume c1 : (∀ B. (Pos B ∈ C −→ (B, A) ∈ atom-ordering

−→ (¬(canonic-int-fun-ordered B) S)))
show ?thesis
proof cases

assume c2 : (∀ B. (Neg B ∈ C −→ (B, A) ∈ atom-ordering
−→ ((canonic-int-fun-ordered B) S)))

have ((canonic-int-fun-ordered A) S)
proof (rule ccontr)

assume ¬ ((canonic-int-fun-ordered A) S)
from ‹¬ ((canonic-int-fun-ordered A) S)›
have e: ¬ (∃ C . (C ∈ S) ∧ (strictly-maximal-literal C (Pos A))

∧ (∀ B. (Pos B ∈ C −→ (B, A) ∈ atom-ordering −→ (¬(canonic-int-fun-ordered
B) S)))
∧ (∀ B. (Neg B ∈ C −→ (B, A) ∈ atom-ordering −→ ((canonic-int-fun-ordered

B) S))))
by ((simp only:canonic-int-fun-ordered.simps[of A]), blast)

28

from e and c1 and c2 and ‹(C ∈ S)›and ‹(strictly-maximal-literal C (Pos
A))›

show False by blast
qed
from ‹((canonic-int-fun-ordered A) S)› have A ∈ (canonic-int-ordered S)

unfolding canonic-int-ordered-def by blast
from ‹A ∈ (canonic-int-ordered S)› and ‹(strictly-maximal-literal C (Pos

A))›
show ?thesis
unfolding strictly-maximal-literal-def by auto

next
assume not-c2 : ¬(∀ B. (Neg B ∈ C −→ (B, A) ∈ atom-ordering

−→ ((canonic-int-fun-ordered B) S)))
from not-c2 obtain B where Neg B ∈ C and ¬((canonic-int-fun-ordered

B) S)
by blast
from ‹¬ ((canonic-int-fun-ordered B) S)› have B /∈ (canonic-int-ordered S)

unfolding canonic-int-ordered-def by blast
with ‹Neg B ∈ C › show ?thesis by auto

qed
next

assume not-c1 : ¬(∀ B. (Pos B ∈ C −→ (B, A) ∈ atom-ordering
−→ (¬(canonic-int-fun-ordered B) S)))

from not-c1 obtain B where Pos B ∈ C and ((canonic-int-fun-ordered B)
S)

by blast
from ‹((canonic-int-fun-ordered B) S)› have B ∈ (canonic-int-ordered S)

unfolding canonic-int-ordered-def by blast
with ‹Pos B ∈ C › show ?thesis by auto

qed

lemma strictly-maximal-literal-exists :

∀C . (((finite C) ∧ (card C) = n ∧ n 6= 0 ∧ (¬ (tautology C))))
−→ (∃A. (strictly-maximal-literal C A)) (is ?P n)

proof (induction n)
show (?P 0) by auto
next

fix n assume ?P n
show ?P (Suc n)
proof

fix C
show (finite C ∧ card C = Suc n ∧ Suc n 6= 0 ∧ ¬ (tautology C))
−→ (∃A. (strictly-maximal-literal C A))

proof
assume finite C ∧ card C = Suc n ∧ Suc n 6= 0 ∧ ¬(tautology C)
hence (finite C) and (card C) = (Suc n) and (¬ (tautology C)) by

auto

29

have C 6= {}
proof

assume C = {}
from ‹finite C › and ‹C = {}› have card C = 0 using card-0-eq by

auto
from ‹card C = 0 › and ‹card C = Suc n› show False by auto

qed
then obtain L where L ∈ C by auto

from ‹¬tautology C › have ¬tautology (C − { L }) using tautol-
ogy-monotonous

by auto
from ‹L ∈ C › and ‹finite C › have Suc (card (C − { L })) = card C

using card-Suc-Diff1 by metis
with ‹card C = Suc n› have card (C − { L }) = n by auto

show ∃A. (strictly-maximal-literal C A)
proof cases

assume card C = 1
from this and ‹card C = Suc n› have n = 0 by auto
from this and ‹finite C › and ‹card (C − { L }) = n› have C − {

L } = {}
using card-0-eq by auto

from this and ‹L ∈ C › show ?thesis unfolding strictly-maximal-literal-def
by auto

next
assume card C 6= 1

from ‹finite C › have finite (C − { L }) by auto
from ‹Suc (card (C − { L })) = card C › and ‹card C 6= 1 ›

and ‹(card (C − { L })) = n› have n 6= 0 by auto
from this and ‹finite (C − { L })› and ‹card (C − { L }) = n›

and ‹¬tautology (C − { L })› and ‹?P n›
obtain A where strictly-maximal-literal (C − { L }) A by metis
show ∃M . strictly-maximal-literal C M
proof cases

assume (atom L, atom A) ∈ atom-ordering
from this have literal-ordering L A by auto
from this and ‹strictly-maximal-literal (C − { L }) A›

have strictly-maximal-literal C A
unfolding strictly-maximal-literal-def by blast
thus ?thesis by auto

next
assume (atom L, atom A) /∈ atom-ordering

have l-cases: L = (Pos (atom L)) ∨ L = (Neg (atom L))
by ((rule atom-property [of (atom L)]), auto)

have a-cases: A = (Pos (atom A)) ∨ A = (Neg (atom A))
by ((rule atom-property [of (atom A)]), auto)

from l-cases and a-cases and‹(strictly-maximal-literal (C − {
L }) A)›

and ‹¬ (tautology C)› and ‹L ∈ C ›

30

have atom L 6= atom A
unfolding strictly-maximal-literal-def and tautology-def by auto

from this and ‹(atom L, atom A) /∈ atom-ordering› and
atom-ordering-total

have (atom A,atom L) ∈ atom-ordering by auto
hence literal-ordering A L by auto
from this and ‹L ∈ C › and ‹strictly-maximal-literal (C − { L

}) A›
and literal-ordering-trans

have strictly-maximal-literal C L unfolding strictly-maximal-literal-def
unfolding strictly-maximal-literal-def by blast
thus ?thesis by auto

qed
qed

qed
qed

qed

We then deduce that all clauses are validated.
lemma canonic-int-validates-all-clauses :

assumes saturated-binary-rule ordered-resolvent S
assumes all-fulfill finite S
assumes {} /∈ S
assumes C ∈ S
shows validate-clause (canonic-int-ordered S) C

proof cases
assume (tautology C)
thus ?thesis using tautologies-are-valid [of C (canonic-int-ordered S)] by auto

next
assume ¬tautology C
from ‹all-fulfill finite S› and ‹C ∈ S› have finite C using all-fulfill-def by

auto
from ‹{} /∈ S› and ‹C ∈ S› and ‹finite C › have card C 6= 0 using card-0-eq

by auto
from ‹¬tautology C › and ‹finite C › and ‹card C 6= 0 › obtain L

where strictly-maximal-literal C L using strictly-maximal-literal-exists by
blast

obtain A where A = atom L by auto

have inductive-lemma:
∀C L. ((C ∈ S) −→ (strictly-maximal-literal C L) −→ (A = (atom L))
−→ (validate-clause (canonic-int-ordered S) C)) (is (?Q A))

proof ((rule wf-induct [of atom-ordering ?Q A]),(rule atom-ordering-wf))
next

fix x
assume hyp-induct: ∀ y. (y,x) ∈ atom-ordering −→ (?Q y)
show ?Q x
proof (rule)+
fix C L assume C ∈ S strictly-maximal-literal C L x = (atom L)

31

show validate-clause (canonic-int-ordered S) C
proof cases

assume L = Pos x
from ‹L = Pos x› and ‹strictly-maximal-literal C L› and ‹C ∈ S›

show validate-clause (canonic-int-ordered S) C
using int-validate-cl-with-pos-max by auto

next
assume L 6= Pos x
have L = (Neg x) using ‹L 6= Pos x› ‹x = atom L› atom-property by

fastforce
show (validate-clause (canonic-int-ordered S) C)
proof (rule ccontr)

assume ¬ (validate-clause(canonic-int-ordered S) C)
from ‹(L = (Neg x))› and ‹(strictly-maximal-literal C L)›

and ‹(¬ (validate-clause (canonic-int-ordered S) C))›
have x ∈ canonic-int-ordered S unfolding strictly-maximal-literal-def

by auto
from ‹x ∈ canonic-int-ordered S› have (canonic-int-fun-ordered x) S

unfolding canonic-int-ordered-def by blast
from ‹(canonic-int-fun-ordered x) S›

have (∃ C . (C ∈ S) ∧ (strictly-maximal-literal C (Pos x))
∧ (∀ B. (Pos B ∈ C −→ (B, x) ∈ atom-ordering −→ (¬(canonic-int-fun-ordered

B) S)))
∧ (∀ B. (Neg B ∈ C −→ (B, x) ∈ atom-ordering −→ ((canonic-int-fun-ordered

B) S))))
by (simp only: canonic-int-fun-ordered.simps [of x])

then obtain D
where (D ∈ S) and (strictly-maximal-literal D (Pos x))
and a: (∀ B. (Pos B ∈ D −→ (B, x) ∈ atom-ordering

−→ (¬(canonic-int-fun-ordered B) S)))
and b: (∀ B. (Neg B ∈ D −→ (B, x) ∈ atom-ordering

−→ ((canonic-int-fun-ordered B) S)))
by blast
obtain R where R = (resolvent-upon D C x) by auto
from ‹R = resolvent-upon D C x› and ‹strictly-maximal-literal D (Pos

x)›
and ‹strictly-maximal-literal C L› and ‹L = (Neg x)› have resolvent

D C R
unfolding strictly-maximal-literal-def using resolvent-upon-is-resolvent

by auto

from ‹R = resolvent-upon D C x› and ‹strictly-maximal-literal D (Pos
x)›

and ‹strictly-maximal-literal C L› and ‹L = Neg x›
have ordered-resolvent D C R

using ordered-resolvent-upon-is-resolvent by auto

have ¬ validate-clause (canonic-int-ordered S) R
proof

32

assume validate-clause (canonic-int-ordered S) R
from ‹validate-clause (canonic-int-ordered S) R› obtain M

where (M ∈ R) and validate-literal (canonic-int-ordered S) M
by auto

from ‹M ∈ R› and ‹R = resolvent-upon D C x›
have (M ∈ (D − { Pos x })) ∨ (M ∈ (C − { Neg x })) by auto

thus False
proof

assume M ∈ (D − { Pos x })
show False
proof cases

assume ∃AA. M = (Pos AA)
from this obtain AA where M = Pos AA by auto
from ‹M ∈ D − { Pos x }› and ‹strictly-maximal-literal D (Pos

x)›
and ‹(M = Pos AA)›

have (AA,x) ∈ atom-ordering unfolding strictly-maximal-literal-def
by auto

from a and ‹(AA,x) ∈ atom-ordering› and ‹M = (Pos AA)› and
‹M ∈ (D − { Pos x })›

have ¬(canonic-int-fun-ordered AA) S by blast
from ‹¬(canonic-int-fun-ordered AA) S› have AA /∈ canonic-int-ordered

S
unfolding canonic-int-ordered-def by blast

from ‹AA /∈ canonic-int-ordered S› and ‹M = Pos AA›
and ‹validate-literal (canonic-int-ordered S) M ›
show False by auto

next
assume ¬(∃AA. M = (Pos AA))

obtain AA where M = (Pos AA) ∨ M = (Neg AA) using
Literal.exhaust [of M] by auto

from this and ‹¬(∃AA. M = (Pos AA))› have M = (Neg AA) by
auto

from ‹M ∈ (D − { Pos x })› and ‹strictly-maximal-literal D (Pos
x)›

and ‹M = (Neg AA)›
have (AA,x) ∈ atom-ordering unfolding strictly-maximal-literal-def

by auto
from b and ‹(AA,x) ∈ atom-ordering› and ‹M = (Neg AA)› and

‹M ∈ (D − { Pos x })›
have (canonic-int-fun-ordered AA) S by blast

from ‹(canonic-int-fun-ordered AA) S› have AA ∈ canonic-int-ordered
S

unfolding canonic-int-ordered-def by blast
from ‹AA ∈ canonic-int-ordered S› and ‹M = (Neg AA)›

and ‹validate-literal (canonic-int-ordered S) M › show False by
auto

qed
next

33

assume M ∈ (C − { Neg x })
from ‹¬validate-clause(canonic-int-ordered S) C › and ‹M ∈ (C − {

Neg x })›
and ‹validate-literal (canonic-int-ordered S) M › show False by auto

qed
qed
from ‹¬validate-clause (canonic-int-ordered S) R› have ¬tautology R

using tautologies-are-valid by auto
from ‹ordered-resolvent D C R› and ‹D ∈ S› and ‹C ∈ S›

and ‹saturated-binary-rule ordered-resolvent S›
have redundant R S unfolding saturated-binary-rule-def by auto

from this and ‹¬tautology R› obtain R ′ where R ′ ∈ S and subsumes
R ′ R

unfolding redundant-def by auto
from ‹R = resolvent-upon D C x› and ‹strictly-maximal-literal D (Pos

x)›
and ‹strictly-maximal-literal C L› and ‹L = (Neg x)›

have resolvent D C R unfolding strictly-maximal-literal-def
using resolvent-upon-is-resolvent by auto

from ‹all-fulfill finite S› and ‹C ∈ S› have finite C using all-fulfill-def
by auto

from ‹all-fulfill finite S› and ‹D ∈ S› have finite D using all-fulfill-def
by auto

from ‹finite C › and ‹finite D› and ‹(resolvent D C R)› have finite R
using resolvent-is-finite unfolding derived-clauses-are-finite-def by blast

from ‹finite R› and ‹subsumes R ′ R› have finite R ′ unfolding
subsumes-def

using finite-subset by auto
from ‹R ′ ∈ S› and ‹{} /∈ S› and ‹(subsumes R ′ R)› have R ′ 6= {}

unfolding subsumes-def by auto
from ‹finite R ′› and ‹R ′ 6= {}› have card R ′ 6= 0 using card-0-eq by

auto
from ‹subsumes R ′ R› and ‹¬tautology R› have ¬tautology R ′

unfolding subsumes-def
using tautology-monotonous by auto

from ‹¬tautology R ′› and ‹finite R ′› and ‹card R ′ 6= 0 › obtain LR ′

where strictly-maximal-literal R ′ LR ′ using strictly-maximal-literal-exists

by blast
from ‹finite R› and ‹finite R ′› and ‹card R ′ 6= 0 › and ‹subsumes R ′ R›

have card R 6= 0
unfolding subsumes-def by auto

from ‹¬tautology R› and ‹finite R› and ‹card R 6= 0 › obtain LR
where strictly-maximal-literal R LR using strictly-maximal-literal-exists

by blast
obtain AR and AR ′ where AR = atom LR and AR ′ = atom LR ′ by

auto
from ‹subsumes R ′ R› and ‹AR = atom LR› and ‹AR ′ = atom LR ′›

and ‹(strictly-maximal-literal R LR)›

34

and ‹(strictly-maximal-literal R ′ LR ′)› have (AR ′ = AR) ∨ (AR ′,AR)
∈ atom-ordering

using subsumption-and-max-literal by auto
from ‹R = (resolvent-upon D C x)› and ‹AR = atom LR›

and ‹strictly-maximal-literal R LR›
and ‹strictly-maximal-literal D (Pos x)›
and ‹strictly-maximal-literal C L› and ‹L = (Neg x)›

have (AR,x) ∈ atom-ordering using resolution-and-max-literal by auto
from ‹(AR,x) ∈ atom-ordering› and ‹(AR ′ = AR) ∨ (AR ′,AR) ∈

atom-ordering›
have (AR ′,x) ∈ atom-ordering using atom-ordering-trans by auto

from this and hyp-induct and ‹R ′ ∈ S› and ‹strictly-maximal-literal R ′

LR ′›
and ‹AR ′ = atom LR ′› have validate-clause (canonic-int-ordered S)

R ′ by auto
from this and ‹subsumes R ′ R› and ‹¬validate-clause (canonic-int-ordered

S) R›
show False using subsumption-and-semantics by blast

qed
qed

qed
qed
from inductive-lemma and ‹C ∈ S› and ‹strictly-maximal-literal C L› and ‹A

= atom L› show ?thesis by blast
qed

theorem ordered-resolution-is-complete :
Complete ordered-resolvent

proof (rule ccontr)
assume ¬ Complete ordered-resolvent
then obtain S where saturated-binary-rule ordered-resolvent S

and all-fulfill finite S and {} /∈ S and ¬satisfiable S unfolding Complete-def
by auto

have validate-formula (canonic-int-ordered S) S
proof (rule ccontr)

assume ¬validate-formula (canonic-int-ordered S) S
from this obtain C where C ∈ S and ¬validate-clause (canonic-int-ordered

S) C by auto
from ‹saturated-binary-rule ordered-resolvent S› and ‹all-fulfill finite S› and

‹{} /∈ S›
and ‹C ∈ S› and ‹¬validate-clause (canonic-int-ordered S) C ›
show False using canonic-int-validates-all-clauses by auto

qed
from ‹validate-formula (canonic-int-ordered S) S› and ‹¬satisfiable S› show

False
unfolding satisfiable-def by blast

qed

35

7.2 Ordered Resolution with Selection

We now consider the case where some negative literals are considered with
highest priority. The proof reuses the canonic interpretation defined in the
previous section. The interpretation is constructed using only clauses with
no selected literals. By the previous result, all such clauses must be satisfied.
We then show that the property carries over to the clauses with non empty
selected part.
definition empty-selected-part Sel S = { C . C ∈ S ∧ (selected-part Sel C) = {} }

lemma saturated-ordered-sel-res-empty-sel :
assumes saturated-binary-rule (ordered-sel-resolvent Sel) S
shows saturated-binary-rule ordered-resolvent (empty-selected-part Sel S)

proof −
show ?thesis
proof (rule ccontr)

assume ¬saturated-binary-rule ordered-resolvent (empty-selected-part Sel S)
then obtain P1 and P2 and C
where P1 ∈ empty-selected-part Sel S and P2 ∈ empty-selected-part Sel S

and ordered-resolvent P1 P2 C
and ¬redundant C (empty-selected-part Sel S)

unfolding saturated-binary-rule-def by auto
from ‹ordered-resolvent P1 P2 C › obtain A where C = ((P1 − { Pos A})

∪ (P2 − { Neg A }))
and strictly-maximal-literal P1 (Pos A) and strictly-maximal-literal P2 (Neg

A)
unfolding ordered-resolvent-def by auto

from ‹P1 ∈ empty-selected-part Sel S› have selected-part Sel P1 = {}
unfolding empty-selected-part-def by auto
from ‹P2 ∈ empty-selected-part Sel S› have selected-part Sel P2 = {}
unfolding empty-selected-part-def by auto

from ‹C = ((P1 − { Pos A}) ∪ (P2 − { Neg A }))› and ‹strictly-maximal-literal
P1 (Pos A)›

and ‹strictly-maximal-literal P2 (Neg A)› and ‹(selected-part Sel P1) = {}›
and ‹selected-part Sel P2 = {}›
have ordered-sel-resolvent Sel P1 P2 C unfolding ordered-sel-resolvent-def by

auto
from ‹saturated-binary-rule (ordered-sel-resolvent Sel) S›
have ∀P1 P2 C . (P1 ∈ S ∧ P2 ∈ S ∧ (ordered-sel-resolvent Sel P1 P2 C))

−→ redundant C S
unfolding saturated-binary-rule-def by auto

from this and ‹P1 ∈ (empty-selected-part Sel S)› and ‹P2 ∈ (empty-selected-part
Sel S)›

and ‹ordered-sel-resolvent Sel P1 P2 C › have tautology C ∨ (∃D. D ∈ S ∧
subsumes D C)

unfolding empty-selected-part-def redundant-def by auto
from this and ‹tautology C ∨ (∃D. D ∈ S ∧ subsumes D C)›

and ‹¬redundant C (empty-selected-part Sel S)›

36

obtain D where D ∈ S and subsumes D C and D /∈ empty-selected-part Sel
S

unfolding redundant-def by auto
from ‹D /∈ empty-selected-part Sel S› and ‹D ∈ S› obtain B where B ∈ Sel

and Neg B ∈ D
unfolding empty-selected-part-def selected-part-def by auto
from ‹Neg B ∈ D› this and ‹subsumes D C › have Neg B ∈ C unfolding

subsumes-def by auto
from this and ‹C = ((P1 − { Pos A}) ∪ (P2 − { Neg A }))› have Neg B

∈ (P1 ∪ P2) by auto
from ‹Neg B ∈ (P1 ∪ P2)› and ‹P1 ∈ empty-selected-part Sel S›

and ‹P2 ∈ empty-selected-part Sel S› and ‹B ∈ Sel› show False
unfolding empty-selected-part-def selected-part-def by auto

qed
qed

definition ordered-sel-resolvent-upon :: ′at set ⇒ ′at Clause ⇒ ′at Clause ⇒ ′at
Clause ⇒ ′at ⇒ bool

where
ordered-sel-resolvent-upon Sel P1 P2 C A ≡
(((C = ((P1 − { Pos A}) ∪ (P2 − { Neg A })))
∧ (strictly-maximal-literal P1 (Pos A)) ∧ ((selected-part Sel P1) = {})
∧ (((strictly-maximal-literal P2 (Neg A)) ∧ (selected-part Sel P2) = {})
∨ (strictly-maximal-literal (selected-part Sel P2) (Neg A)))))

lemma ordered-sel-resolvent-upon-is-resolvent:
assumes ordered-sel-resolvent-upon Sel P1 P2 C A
shows ordered-sel-resolvent Sel P1 P2 C

using assms unfolding ordered-sel-resolvent-upon-def and ordered-sel-resolvent-def
by auto

lemma resolution-decreases-selected-part:
assumes ordered-sel-resolvent-upon Sel P1 P2 C A
assumes Neg A ∈ P2
assumes finite P1
assumes finite P2
assumes card (selected-part Sel P2) = Suc n
shows card (selected-part Sel C) = n

proof −
from ‹finite P2 › have finite (selected-part Sel P2) unfolding selected-part-def

by auto
from ‹card (selected-part Sel P2) = (Suc n)› have card (selected-part Sel P2) 6=

0 by auto
from this and ‹finite (selected-part Sel P2)› have selected-part Sel P2 6= {}
using card-0-eq by auto
from this and ‹ordered-sel-resolvent-upon Sel P1 P2 C A› have

C = (P1 − { Pos A}) ∪ (P2 − { Neg A })
and selected-part Sel P1 = {} and strictly-maximal-literal (selected-part Sel

P2) (Neg A)

37

unfolding ordered-sel-resolvent-upon-def by auto
from ‹strictly-maximal-literal (selected-part Sel P2) (Neg A)›

have Neg A ∈ selected-part Sel P2
unfolding strictly-maximal-literal-def by auto

from this have A ∈ Sel unfolding selected-part-def by auto
from ‹selected-part Sel P1 = {}› have selected-part Sel (P1 − { Pos A}) = {}

unfolding selected-part-def by auto
from ‹Neg A ∈ (selected-part Sel P2)›

have selected-part Sel (P2 − { Neg A}) = (selected-part Sel P2) − { Neg A }
unfolding selected-part-def by auto
from ‹C = ((P1 − { Pos A}) ∪ (P2 − { Neg A }))› have
selected-part Sel C
= (selected-part Sel (P1 − { Pos A})) ∪ (selected-part Sel (P2 − { Neg A}))

unfolding selected-part-def by auto
from this and ‹selected-part Sel (P1 − { Pos A}) = {}›

and ‹selected-part Sel (P2 − { Neg A}) = selected-part Sel P2 − { Neg A }›
have selected-part Sel C = selected-part Sel P2 − { Neg A } by auto
from ‹Neg A ∈ P2 › and ‹A ∈ Sel› have Neg A ∈ selected-part Sel P2

unfolding selected-part-def by auto
from this and ‹selected-part Sel C = (selected-part Sel P2) − { Neg A }›

and ‹finite (selected-part Sel P2)›
have card (selected-part Sel C) = card (selected-part Sel P2) − 1 by auto
from this and ‹card (selected-part Sel P2) = Suc n› show ?thesis by auto

qed

lemma canonic-int-validates-all-clauses-sel :
assumes saturated-binary-rule (ordered-sel-resolvent Sel) S
assumes all-fulfill finite S
assumes {} /∈ S
assumes C ∈ S
shows validate-clause (canonic-int-ordered (empty-selected-part Sel S)) C

proof −
let ?nat-order = { (x::nat,y::nat). x < y}
let ?SE = empty-selected-part Sel S
let ?I = canonic-int-ordered ?SE
obtain n where n = card (selected-part Sel C) by auto
have ∀C . card (selected-part Sel C) = n −→ C ∈ S −→ validate-clause ?I C (is

?P n)
proof ((rule wf-induct [of ?nat-order ?P n]), (simp add:wf))
next

fix n assume ind-hyp: ∀m. (m,n) ∈ ?nat-order −→ (?P m)
show (?P n)
proof (rule+)

fix C assume card (selected-part Sel C) = n and C ∈ S
from ‹all-fulfill finite S› and ‹C ∈ S› have finite C unfolding all-fulfill-def

by auto
from this have finite (selected-part Sel C) unfolding selected-part-def by

auto
show validate-clause ?I C

38

proof (rule nat.exhaust [of n])
assume n = 0
from this and ‹card (selected-part Sel C) = n› and ‹finite (selected-part

Sel C)›
have selected-part Sel C = {} by auto

from ‹saturated-binary-rule (ordered-sel-resolvent Sel) S›
have saturated-binary-rule ordered-resolvent ?SE
using saturated-ordered-sel-res-empty-sel by auto

from ‹{} /∈ S› have {} /∈ ?SE unfolding empty-selected-part-def by auto
from ‹selected-part Sel C = {}› ‹C ∈ S› have C ∈ ?SE unfolding

empty-selected-part-def
by auto

from ‹all-fulfill finite S› have all-fulfill finite ?SE
unfolding empty-selected-part-def all-fulfill-def by auto
from this and ‹saturated-binary-rule ordered-resolvent ?SE› and ‹{} /∈

?SE› and ‹C ∈ ?SE›
show validate-clause ?I C using canonic-int-validates-all-clauses by auto

next
fix m assume n = Suc m
from this and ‹card (selected-part Sel C) = n› have selected-part Sel C 6=

{} by auto
show validate-clause ?I C
proof (rule ccontr)

assume ¬validate-clause ?I C
show False
proof (cases)

assume tautology C
from ‹tautology C › and ‹¬validate-clause ?I C › show False

using tautologies-are-valid by auto
next

assume ¬(tautology C)
hence ¬(tautology (selected-part Sel C))

unfolding selected-part-def tautology-def by auto
from ‹selected-part Sel C 6= {}› and ‹finite (selected-part Sel C)›

have card (selected-part Sel C) 6= 0 by auto
from this and ‹¬(tautology (selected-part Sel C))› and ‹finite (selected-part

Sel C)›
obtain L where strictly-maximal-literal (selected-part Sel C) L
using strictly-maximal-literal-exists [of card (selected-part Sel C)] by

blast
from ‹strictly-maximal-literal (selected-part Sel C) L› have L ∈

(selected-part Sel C)
and L ∈ C unfolding strictly-maximal-literal-def selected-part-def by

auto
from this and ‹¬validate-clause ?I C › have ¬(validate-literal ?I L) by

auto
from ‹L ∈ (selected-part Sel C)› obtain A where L = (Neg A) and A

∈ Sel
unfolding selected-part-def by auto

39

from ‹¬(validate-literal ?I L)› and ‹L = (Neg A)› have A ∈ ?I by auto
from this have ((canonic-int-fun-ordered A) ?SE) unfolding canonic-int-ordered-def

by blast
have ((∃ C . (C ∈ ?SE) ∧ (strictly-maximal-literal C (Pos A))
∧ (∀ B. (Pos B ∈ C −→ (B, A) ∈ atom-ordering
−→ (¬(canonic-int-fun-ordered B) ?SE)))
∧ (∀ B. (Neg B ∈ C −→ (B, A) ∈ atom-ordering
−→ ((canonic-int-fun-ordered B) ?SE))))) (is ?exp)

proof (rule ccontr)
assume ¬ ?exp
from this have ¬((canonic-int-fun-ordered A) ?SE)

by ((simp only:canonic-int-fun-ordered.simps [of A]), blast)
from this and ‹(canonic-int-fun-ordered A) ?SE› show False by blast

qed
then obtain D where

D ∈ ?SE and strictly-maximal-literal D (Pos A)
and c1 : (∀ B. (Pos B ∈ D −→ (B, A) ∈ atom-ordering
−→ (¬(canonic-int-fun-ordered B) ?SE)))

and c2 : (∀ B. (Neg B ∈ D −→ (B, A) ∈ atom-ordering
−→ ((canonic-int-fun-ordered B) ?SE)))

by blast
from ‹D ∈ ?SE› have (selected-part Sel D) = {} and D ∈ S

unfolding empty-selected-part-def by auto
from ‹D ∈ ?SE› and ‹all-fulfill finite S› have finite D

unfolding empty-selected-part-def all-fulfill-def by auto
let ?R = (D − { Pos A }) ∪ (C − { Neg A })

from ‹strictly-maximal-literal D (Pos A)›
and ‹strictly-maximal-literal (selected-part Sel C) L›
and ‹L = (Neg A)› and ‹(selected-part Sel D) = {}›

have (ordered-sel-resolvent-upon Sel D C ?R A)
unfolding ordered-sel-resolvent-upon-def by auto

from this have ordered-sel-resolvent Sel D C ?R
by (rule ordered-sel-resolvent-upon-is-resolvent)

from ‹(ordered-sel-resolvent-upon Sel D C ?R A)› ‹(card (selected-part
Sel C)) = n›

and ‹n = Suc m› and ‹L ∈ C › and ‹L = (Neg A)› and ‹finite D›
and ‹finite C ›

have card (selected-part Sel ?R) = m
using resolution-decreases-selected-part by auto

from ‹ordered-sel-resolvent Sel D C ?R› and ‹D ∈ S›and ‹C ∈ S›
and ‹saturated-binary-rule (ordered-sel-resolvent Sel) S›
have redundant ?R S unfolding saturated-binary-rule-def by auto

hence tautology ?R ∨ (∃RR. (RR ∈ S ∧ (subsumes RR ?R)))
unfolding redundant-def by auto

hence validate-clause ?I ?R
proof

assume tautology ?R
thus validate-clause ?I ?R by (rule tautologies-are-valid)

40

next
assume ∃R ′. R ′ ∈ S ∧ (subsumes R ′ ?R)
then obtain R ′ where R ′ ∈ S and subsumes R ′ ?R by auto
from ‹finite C ›and ‹finite D› have finite ?R by auto

from this have finite (selected-part Sel ?R) unfolding selected-part-def
by auto

from ‹subsumes R ′ ?R› have selected-part Sel R ′ ⊆ selected-part Sel
?R

unfolding selected-part-def and subsumes-def by auto
from this and ‹finite (selected-part Sel ?R)›

have card (selected-part Sel R ′) ≤ card (selected-part Sel ?R)
using card-mono by auto

from this and ‹card (selected-part Sel ?R) = m› and ‹n = Suc m›
have card (selected-part Sel R ′) < n by auto

from this and ind-hyp and ‹R ′ ∈ S› have validate-clause ?I R ′ by
auto

from this and ‹subsumes R ′ ?R› show validate-clause ?I ?R
using subsumption-and-semantics [of R ′ ?R ?I] by auto

qed
from this obtain L ′ where L ′ ∈ ?R and validate-literal ?I L ′ by auto
have L ′ /∈ D − { Pos A }
proof

assume L ′ ∈ D − { Pos A }
from this have L ′ ∈ D by auto
let ?A ′ = atom L ′

have L ′ = (Pos ?A ′) ∨ L ′ = (Neg ?A ′) using atom-property [of ?A ′

L ′] by auto
thus False
proof

assume L ′ = (Pos ?A ′)
from this and ‹strictly-maximal-literal D (Pos A)› and ‹L ′ ∈ D −

{ Pos A }›
have (?A ′,A) ∈ atom-ordering unfolding strictly-maximal-literal-def

by auto
from c1
have c1 ′: Pos ?A ′ ∈ D −→ (?A ′, A) ∈ atom-ordering

−→ (¬(canonic-int-fun-ordered ?A ′) ?SE)
by blast

from ‹L ′ ∈ D› and ‹L ′ = Pos ?A ′› have Pos ?A ′ ∈ D by auto
from c1 ′ and ‹Pos ?A ′ ∈ D› and ‹(?A ′,A) ∈ atom-ordering›
have ¬(canonic-int-fun-ordered ?A ′) ?SE by blast

from this have ?A ′ /∈ ?I unfolding canonic-int-ordered-def by
blast

from this have ¬(validate-literal ?I (Pos ?A ′)) by auto
from this and ‹L ′ = Pos ?A ′› and ‹validate-literal ?I L ′› show

False by auto
next

assume L ′ = Neg ?A ′

from this and ‹strictly-maximal-literal D (Pos A)› and ‹L ′ ∈ D −

41

{ Pos A }›
have (?A ′,A) ∈ atom-ordering unfolding strictly-maximal-literal-def

by auto
from c2

have c2 ′: Neg ?A ′ ∈ D −→ (?A ′, A) ∈ atom-ordering
−→ (canonic-int-fun-ordered ?A ′) ?SE

by blast
from ‹L ′ ∈ D› and ‹L ′ = (Neg ?A ′)› have Neg ?A ′ ∈ D by auto
from c2 ′ and ‹Neg ?A ′ ∈ D› and ‹(?A ′,A) ∈ atom-ordering›
have (canonic-int-fun-ordered ?A ′) ?SE by blast

from this have ?A ′ ∈ ?I unfolding canonic-int-ordered-def by
blast

from this have ¬validate-literal ?I (Neg ?A ′) by auto
from this and ‹L ′ = Neg ?A ′› and ‹validate-literal ?I L ′› show

False by auto
qed

qed
from this and ‹L ′ ∈ ?R› have L ′ ∈ C by auto
from this and ‹validate-literal ?I L ′› and ‹¬validate-clause ?I C › show

False by auto
qed

qed
qed

qed
qed
from ‹?P n› and ‹n = card (selected-part Sel C)› and ‹C ∈ S› show ?thesis by

auto
qed

theorem ordered-resolution-is-complete-ordered-sel :
Complete (ordered-sel-resolvent Sel)

proof (rule ccontr)
assume ¬Complete (ordered-sel-resolvent Sel)
then obtain S where saturated-binary-rule (ordered-sel-resolvent Sel) S

and all-fulfill finite S
and {} /∈ S
and ¬satisfiable S unfolding Complete-def by auto

let ?SE = empty-selected-part Sel S
let ?I = canonic-int-ordered ?SE
have validate-formula ?I S
proof (rule ccontr)

assume ¬(validate-formula ?I S)
from this obtain C where C ∈ S and ¬(validate-clause ?I C) by auto
from ‹saturated-binary-rule (ordered-sel-resolvent Sel) S› and ‹all-fulfill finite

S›
and ‹{} /∈ S› and ‹C ∈ S› and ‹¬(validate-clause ?I C)›

show False using canonic-int-validates-all-clauses-sel [of Sel S C] by auto
qed
from ‹(validate-formula ?I S)› and ‹¬(satisfiable S)› show False

42

unfolding satisfiable-def by blast
qed

7.3 Semantic Resolution

We show that under some particular renaming, model resolution simulates
ordered resolution where all negative literals are selected, which immediately
entails the refutational completeness of model resolution.
lemma ordered-res-with-selection-is-model-res :

assumes ordered-sel-resolvent UNIV P1 P2 C
shows ordered-model-resolvent Sel (rename-clause Sel P1) (rename-clause Sel

P2)
(rename-clause Sel C)

proof −
from assms obtain A
where c-def : C = ((P1 − { Pos A }) ∪ (P2 − { Neg A }))

and selected-part UNIV P1 = {}
and strictly-maximal-literal P1 (Pos A)
and disj: ((strictly-maximal-literal P2 (Neg A)) ∧ (selected-part UNIV P2) =

{})
∨ strictly-maximal-literal (selected-part UNIV P2) (Neg A)

unfolding ordered-sel-resolvent-def by blast
have rename-clause Sel ((P1 − { Pos A }) ∪ (P2 − { Neg A }))
= (rename-clause Sel (P1 − { Pos A })) ∪ rename-clause Sel (P2 − { (Neg

A) })
using rename-union [of Sel P1 − { Pos A } P2 − { Neg A }] by auto
from this and c-def have ren-c: (rename-clause Sel C) =
(rename-clause Sel (P1 − { Pos A })) ∪ rename-clause Sel (P2 − { (Neg A)

}) by auto
have m1 : (rename-clause Sel (P1 − { Pos A })) = (rename-clause Sel P1)

− { rename-literal Sel (Pos A) }
using renaming-set-minus by auto

have m2 : rename-clause Sel (P2 − { Neg A }) = (rename-clause Sel P2)
− { rename-literal Sel (Neg A) }

using renaming-set-minus by auto
from m1 and m2 and ren-c have
rc-def : (rename-clause Sel C) =
((rename-clause Sel P1) − { rename-literal Sel (Pos A) })
∪ ((rename-clause Sel P2) − { rename-literal Sel (Neg A) })

by auto
have ¬((strictly-maximal-literal P2 (Neg A)) ∧ (selected-part UNIV P2) = {})
proof

assume (strictly-maximal-literal P2 (Neg A)) ∧ (selected-part UNIV P2) = {}
from this have strictly-maximal-literal P2 (Neg A) and selected-part UNIV P2

= {} by auto
from ‹strictly-maximal-literal P2 (Neg A)› have Neg A ∈ P2

unfolding strictly-maximal-literal-def by auto
from this and ‹selected-part UNIV P2 = {}› show False unfolding se-

lected-part-def by auto

43

qed
from this and disj have strictly-maximal-literal (selected-part UNIV P2) (Neg

A) by auto
from this have strictly-maximal-literal (rename-clause Sel (validated-part Sel

(rename-clause Sel P2))) (Neg A)
using renaming-and-selected-part by auto

from this have
strictly-maximal-literal (rename-clause Sel (rename-clause Sel (validated-part

Sel (rename-clause Sel P2))))
(rename-literal Sel (Neg A)) using renaming-preserves-strictly-maximal-literal

by auto
from this have

p1 : strictly-maximal-literal (validated-part Sel (rename-clause Sel P2))
(rename-literal Sel (Neg A))

using inverse-clause-renaming by auto
from ‹strictly-maximal-literal P1 (Pos A)›
have p2 : strictly-maximal-literal (rename-clause Sel P1) (rename-literal Sel (Pos

A))
using renaming-preserves-strictly-maximal-literal by auto

from ‹(selected-part UNIV P1) = {}› have
rename-clause Sel (validated-part Sel (rename-clause Sel P1)) = {}
using renaming-and-selected-part by auto

from this have q: validated-part Sel (rename-clause Sel P1) = {}
unfolding rename-clause-def by auto

have r : rename-literal Sel (Neg A) = complement (rename-literal Sel (Pos A))
unfolding rename-literal-def by auto

from r and q and p1 and p2 and rc-def show
ordered-model-resolvent Sel (rename-clause Sel P1) (rename-clause Sel P2)(rename-clause

Sel C)
using ordered-model-resolvent-def [of Sel rename-clause Sel P1 rename-clause

Sel P2
rename-clause Sel C] by auto

qed

theorem ordered-resolution-is-complete-model-resolution:
Complete (ordered-model-resolvent Sel)

proof (rule ccontr)
assume ¬Complete (ordered-model-resolvent Sel)
then obtain S where saturated-binary-rule (ordered-model-resolvent Sel) S
and {} /∈ S and all-fulfill finite S and ¬(satisfiable S) unfolding Complete-def

by auto
let ?S ′ = rename-formula Sel S
have {} /∈ ?S ′

proof
assume {} ∈ ?S ′

then obtain V where V ∈ S and rename-clause Sel V = {} unfolding
rename-formula-def by auto

from ‹rename-clause Sel V = {}› have V = {} unfolding rename-clause-def
by auto

44

from this and ‹V ∈ S› and ‹{} /∈ S› show False by auto
qed
from ‹all-fulfill finite S› have all-fulfill finite ?S ′

unfolding all-fulfill-def rename-formula-def rename-clause-def by auto
have saturated-binary-rule (ordered-sel-resolvent UNIV) ?S ′

proof (rule ccontr)
assume ¬(saturated-binary-rule (ordered-sel-resolvent UNIV) ?S ′)
from this obtain P1 and P2 and C where P1 ∈ ?S ′ and P2 ∈ ?S ′

and ordered-sel-resolvent UNIV P1 P2 C and ¬tautology C
and not-subsumed: ∀D. (D ∈ ?S ′ −→ ¬subsumes D C)
unfolding saturated-binary-rule-def redundant-def by auto

from ‹ordered-sel-resolvent UNIV P1 P2 C ›
have ord-ren: ordered-model-resolvent Sel (rename-clause Sel P1) (rename-clause

Sel P2)
(rename-clause Sel C)

using ordered-res-with-selection-is-model-res by auto
have ¬tautology (rename-clause Sel C)

using renaming-preserves-tautology inverse-clause-renaming
by (metis ‹¬ tautology C › inverse-clause-renaming renaming-preserves-tautology)
from ‹P1 ∈ ?S ′› have rename-clause Sel P1 ∈ rename-formula Sel ?S ′

unfolding rename-formula-def by auto
hence rename-clause Sel P1 ∈ S using inverse-formula-renaming by auto
from ‹P2 ∈ ?S ′› have rename-clause Sel P2 ∈ rename-formula Sel ?S ′

unfolding rename-formula-def by auto
hence rename-clause Sel P2 ∈ S using inverse-formula-renaming by auto
from ‹¬tautology (rename-clause Sel C)› and ord-ren

and ‹saturated-binary-rule (ordered-model-resolvent Sel) S›
and ‹rename-clause Sel P1 ∈ S› and ‹rename-clause Sel P2 ∈ S›
obtain D ′ where D ′ ∈ S and subsumes D ′ (rename-clause Sel C)
unfolding saturated-binary-rule-def redundant-def by blast

from ‹subsumes D ′ (rename-clause Sel C)›
have subsumes (rename-clause Sel D ′) (rename-clause Sel (rename-clause Sel

C))
using renaming-preserves-subsumption by auto

hence subsumes (rename-clause Sel D ′) C using inverse-clause-renaming by
auto

from ‹D ′ ∈ S› have rename-clause Sel D ′ ∈ ?S ′ unfolding rename-formula-def
by auto

from this and not-subsumed and ‹subsumes (rename-clause Sel D ′) C › show
False by auto

qed
from this and ‹{} /∈ ?S ′› and ‹all-fulfill finite ?S ′› have satisfiable ?S ′

using ordered-resolution-is-complete-ordered-sel unfolding Complete-def by
auto
hence satisfiable (rename-formula Sel ?S ′) using renaming-preserves-satisfiability

by auto
from this and ‹¬satisfiable S› show False using inverse-formula-renaming by

auto
qed

45

7.4 Positive and Negative Resolution

We show that positive and negative resolution simulate model resolution
with some specific interpretation. Then completeness follows from previous
results.
lemma empty-interpretation-validate :

validate-literal {} L = (∃A. (L = Neg A))
by (meson empty-iff validate-literal.elims(2) validate-literal.simps(2))

lemma universal-interpretation-validate :
validate-literal UNIV L = (∃A. (L = Pos A))

by (meson UNIV-I validate-literal.elims(2) validate-literal.simps(1))

lemma negative-part-lemma:
(negative-part C) = (validated-part {} C)

unfolding negative-part-def validated-part-def using empty-interpretation-validate
by blast

lemma positive-part-lemma:
(positive-part C) = (validated-part UNIV C)

unfolding positive-part-def validated-part-def using universal-interpretation-validate
by blast

lemma negative-resolvent-is-model-res:
less-restrictive ordered-negative-resolvent (ordered-model-resolvent UNIV)

unfolding ordered-negative-resolvent-def ordered-model-resolvent-def less-restrictive-def

using positive-part-lemma by auto

lemma positive-resolvent-is-model-res:
less-restrictive ordered-positive-resolvent (ordered-model-resolvent {})

unfolding ordered-positive-resolvent-def ordered-model-resolvent-def less-restrictive-def

using negative-part-lemma by auto

theorem ordered-positive-resolvent-is-complete : Complete ordered-positive-resolvent
using ordered-resolution-is-complete-model-resolution less-restrictive-complete pos-
itive-resolvent-is-model-res by auto

theorem ordered-negative-resolvent-is-complete: Complete ordered-negative-resolvent
using ordered-resolution-is-complete-model-resolution less-restrictive-complete neg-
ative-resolvent-is-model-res by auto

7.5 Unit Resolution and Horn Renamable Clauses

Unit resolution is complete if the considered clause set can be transformed
into a Horn clause set by renaming. This result is proven by showing that
unit resolution simulates semantic resolution for Horn-renamable clauses (for

46

some specific interpretation).
definition Horn :: ′at Clause ⇒ bool

where (Horn C) = ((card (positive-part C)) ≤ 1)

definition Horn-renamable-formula :: ′at Formula ⇒ bool
where Horn-renamable-formula S = (∃ I . (all-fulfill Horn (rename-formula I S)))

theorem unit-resolvent-complete-for-Horn-renamable-set:
assumes saturated-binary-rule unit-resolvent S
assumes all-fulfill finite S
assumes {} /∈ S
assumes Horn-renamable-formula S
shows satisfiable S

proof −
from ‹Horn-renamable-formula S› obtain I where all-fulfill Horn (rename-formula

I S)
unfolding Horn-renamable-formula-def by auto

have saturated-binary-rule (ordered-model-resolvent I) S
proof (rule ccontr)

assume ¬saturated-binary-rule (ordered-model-resolvent I) S
then obtain P1 P2 C where ordered-model-resolvent I P1 P2 C and P1 ∈ S

and P2 ∈ S
and ¬redundant C S
unfolding saturated-binary-rule-def by auto

from ‹ordered-model-resolvent I P1 P2 C › obtain L
where def-c: C = ((P1 − { L }) ∪ (P2 − { (complement L) }))
and strictly-maximal-literal P1 L and validated-part I P1 = {}
and strictly-maximal-literal (validated-part I P2) (complement L)
unfolding ordered-model-resolvent-def by auto

from ‹strictly-maximal-literal P1 L› have L ∈ P1
unfolding strictly-maximal-literal-def by auto

from ‹strictly-maximal-literal (validated-part I P2) (complement L)› have com-
plement L ∈ P2

unfolding strictly-maximal-literal-def validated-part-def by auto
have selected-part UNIV (rename-clause I P1)
= rename-clause I (validated-part I (rename-clause I (rename-clause I P1)))

using renaming-and-selected-part [of rename-clause I P1 I] by auto
then have selected-part UNIV (rename-clause I P1) = rename-clause I

(validated-part I P1)
using inverse-clause-renaming by auto

from this and ‹validated-part I P1 = {}› have selected-part UNIV (rename-clause
I P1) = {}

unfolding rename-clause-def by auto
then have negative-part (rename-clause I P1) = {}

unfolding selected-part-def negative-part-def by auto
from ‹all-fulfill Horn (rename-formula I S)› and ‹P1 ∈ S› have Horn (rename-clause

I P1)
unfolding all-fulfill-def and rename-formula-def by auto

47

then have card (positive-part (rename-clause I P1)) ≤ 1 unfolding Horn-def
by auto

from ‹negative-part (rename-clause I P1) = {}›
have rename-clause I P1 = (positive-part (rename-clause I P1))
using decomposition-clause-pos-neg by auto

from this and ‹card (positive-part (rename-clause I P1)) ≤ 1 ›
have card (rename-clause I P1) ≤ 1 by auto

from ‹strictly-maximal-literal P1 L› have P1 6= {}
unfolding strictly-maximal-literal-def by auto

then have rename-clause I P1 6= {} unfolding rename-clause-def by auto
from ‹all-fulfill finite S› and ‹P1 ∈ S› have finite P1 unfolding all-fulfill-def

by auto
then have finite (rename-clause I P1) unfolding rename-clause-def by auto
from this and ‹rename-clause I P1 6= {}› have card(rename-clause I P1) 6= 0

using card-0-eq by auto
from this and ‹card (rename-clause I P1) ≤ 1 › have card (rename-clause I

P1) = 1 by auto
then have card P1 = 1 using renaming-preserves-cardinality by auto
then have Unit P1 unfolding Unit-def using card-image by auto

from this and ‹L ∈ P1 › and ‹complement L ∈ P2 › and def-c have unit-resolvent
P1 P2 C

unfolding unit-resolvent-def by auto
from this and ‹¬(redundant C S)› and ‹P1 ∈ S› and ‹P2 ∈ S›

and ‹saturated-binary-rule unit-resolvent S›
show False unfolding saturated-binary-rule-def by auto

qed
from this and ‹all-fulfill finite S› and ‹{} /∈ S› show ?thesis

using ordered-resolution-is-complete-model-resolution unfolding Complete-def
by auto
qed

8 Computation of Saturated Clause Sets

We now provide a concrete (rather straightforward) procedure for computing
saturated clause sets. Starting from the initial set, we define a sequence of
clause sets, where each set is obtained from the previous one by applying
the resolution rule in a systematic way, followed by redundancy elimination
rules. The algorithm is generic, in the sense that it applies to any binary
inference rule.
fun inferred-clause-sets :: ′at BinaryRule ⇒ ′at Formula ⇒ nat ⇒ ′at Formula
where
(inferred-clause-sets R S 0) = (simplify S) |
(inferred-clause-sets R S (Suc N)) =
(simplify (add-all-deducible-clauses R (inferred-clause-sets R S N)))

The saturated set is constructed by considering the set of persistent clauses,
i.e., the clauses that are generated and never deleted.

48

fun saturation :: ′at BinaryRule ⇒ ′at Formula ⇒ ′at Formula
where
saturation R S = { C . ∃N . (∀M . (M ≥ N −→ C ∈ inferred-clause-sets R S M))
}

We prove that all inference rules yield finite clauses.
theorem ordered-resolvent-is-finite : derived-clauses-are-finite ordered-resolvent
using less-restrictive-and-finite ordered-resolvent-is-resolvent resolvent-is-finite by
auto

theorem model-resolvent-is-finite : derived-clauses-are-finite (ordered-model-resolvent
I)
using less-restrictive-and-finite ordered-model-resolvent-is-resolvent resolvent-is-finite

by auto

theorem positive-resolvent-is-finite : derived-clauses-are-finite ordered-positive-resolvent
using less-restrictive-and-finite positive-resolvent-is-resolvent resolvent-is-finite by
auto

theorem negative-resolvent-is-finite : derived-clauses-are-finite ordered-negative-resolvent
using less-restrictive-and-finite negative-resolvent-is-resolvent resolvent-is-finite by
auto

theorem unit-resolvent-is-finite : derived-clauses-are-finite unit-resolvent
using less-restrictive-and-finite unit-resolvent-is-resolvent resolvent-is-finite by auto

lemma all-deducible-clauses-are-finite:
assumes derived-clauses-are-finite R
assumes all-fulfill finite S
shows all-fulfill finite (all-deducible-clauses R S)

proof (rule ccontr)
assume ¬all-fulfill finite (all-deducible-clauses R S)
from this obtain C where C ∈ all-deducible-clauses R S and ¬finite C

unfolding all-fulfill-def by auto
from ‹C ∈ all-deducible-clauses R S› have ∃ P1 P2 . R P1 P2 C ∧ P1 ∈ S ∧

P2 ∈ S by auto
then obtain P1 P2 where R P1 P2 C and P1 ∈ S and P2 ∈ S by auto
from ‹P1 ∈ S› and ‹all-fulfill finite S› have finite P1 unfolding all-fulfill-def

by auto
from ‹P2 ∈ S› and ‹all-fulfill finite S› have finite P2 unfolding all-fulfill-def

by auto
from ‹finite P1 › and ‹finite P2 › and ‹derived-clauses-are-finite R› and ‹R P1

P2 C › and ‹¬finite C › show False
unfolding derived-clauses-are-finite-def by metis

qed

This entails that all the clauses occurring in the sets in the sequence are
finite.

49

lemma all-inferred-clause-sets-are-finite:
assumes derived-clauses-are-finite R
assumes all-fulfill finite S
shows all-fulfill finite (inferred-clause-sets R S N)

proof (induction N)
from assms show all-fulfill finite (inferred-clause-sets R S 0)

using simplify-finite by auto
next

fix N assume all-fulfill finite (inferred-clause-sets R S N)
then have all-fulfill finite (all-deducible-clauses R (inferred-clause-sets R S N))
using assms(1) all-deducible-clauses-are-finite [of R inferred-clause-sets R S N]
by auto

from this and ‹all-fulfill finite (inferred-clause-sets R S N)›
have all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets R S N))
using all-fulfill-def by auto

then show all-fulfill finite (inferred-clause-sets R S (Suc N))
using simplify-finite by auto

qed

lemma add-all-deducible-clauses-finite:
assumes derived-clauses-are-finite R
assumes all-fulfill finite S
shows all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets R S N))

proof −
from assms have all-fulfill finite (all-deducible-clauses R (inferred-clause-sets R

S N))
using all-deducible-clauses-are-finite [of R inferred-clause-sets R S N]

all-inferred-clause-sets-are-finite [of R S N] by metis
then show all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets R S

N))
using assms all-fulfill-def all-inferred-clause-sets-are-finite [of R S N] by auto

qed

We show that the set of redundant clauses can only increase.
lemma sequence-of-inferred-clause-sets-is-monotonous:
assumes derived-clauses-are-finite R
assumes all-fulfill finite S
shows ∀C . redundant C (inferred-clause-sets R S N)
−→ redundant C (inferred-clause-sets R S (N+M ::nat))

proof ((induction M), auto simp del: inferred-clause-sets.simps)
fix M C assume ind-hyp: ∀C . redundant C (inferred-clause-sets R S N)
−→ redundant C (inferred-clause-sets R S (N+M ::nat))

assume redundant C (inferred-clause-sets R S N)
from this and ind-hyp have redundant C (inferred-clause-sets R S (N+M)) by

auto
then have redundant C (add-all-deducible-clauses R (inferred-clause-sets R S

(N+M)))
using deducible-clause-preserve-redundancy by auto

50

then have all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets R S
(N+M)))

using assms add-all-deducible-clauses-finite [of R S N+M] by auto
from ‹redundant C (inferred-clause-sets R S N)› and ind-hyp

have redundant C (inferred-clause-sets R S (N+M)) by auto
from ‹redundant C (inferred-clause-sets R S (N+M))›
have redundant C (add-all-deducible-clauses R (inferred-clause-sets R S (N+M)))
using deducible-clause-preserve-redundancy by blast

from this and ‹all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets
R S (N+M)))›

have redundant C (simplify (add-all-deducible-clauses R (inferred-clause-sets R
S (N+M))))

using simplify-preserves-redundancy by auto
thus redundant C (inferred-clause-sets R S (Suc (N + M))) by auto

qed

We show that non-persistent clauses are strictly redundant in some element
of the sequence.
lemma non-persistent-clauses-are-redundant:

assumes D ∈ inferred-clause-sets R S N
assumes D /∈ saturation R S
assumes all-fulfill finite S
assumes derived-clauses-are-finite R
shows ∃M . strictly-redundant D (inferred-clause-sets R S M)

proof (rule ccontr)
assume hyp: ¬(∃M . strictly-redundant D (inferred-clause-sets R S M))
{

fix M
have D ∈ (inferred-clause-sets R S (N+M))
proof (induction M)

show D ∈ inferred-clause-sets R S (N+0) using assms(1) by auto
next

fix M assume D ∈ inferred-clause-sets R S (N+M)
from this have D ∈ add-all-deducible-clauses R (inferred-clause-sets R S

(N+M)) by auto
show D ∈ (inferred-clause-sets R S (N+(Suc M)))
proof (rule ccontr)

assume D /∈ (inferred-clause-sets R S (N+(Suc M)))
from this and ‹D ∈ add-all-deducible-clauses R (inferred-clause-sets R S

(N+M))›
have strictly-redundant D (add-all-deducible-clauses R (inferred-clause-sets

R S (N+M)))
using simplify-def by auto

then have all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets
R S (N+M)))

using assms(4) assms(3) add-all-deducible-clauses-finite [of R S N+M]
by auto

from this

51

and ‹strictly-redundant D (add-all-deducible-clauses R (inferred-clause-sets
R S (N+M)))›

have strictly-redundant D (inferred-clause-sets R S (N+(Suc M)))
using simplify-preserves-strict-redundancy by auto

from this and hyp show False by blast
qed

qed
}
from assms(2) and assms(1) have ¬(∀M ′. (M ′≥ N −→ D ∈ inferred-clause-sets

R S M ′)) by auto
from this obtain M ′ where M ′ ≥ N and D /∈ inferred-clause-sets R S M ′ by

auto
from ‹M ′ ≥ N › obtain N ′:: nat where N ′ = M ′ − N by auto
have D ∈ inferred-clause-sets R S (N+(M ′−N))

by (simp add: ‹
∧

M . D ∈ inferred-clause-sets R S (N + M)›)
from this and ‹D /∈ inferred-clause-sets R S M ′› show False by (simp add: ‹N
≤ M ′›)
qed

This entails that the clauses that are redundant in some set in the sequence
are also redundant in the set of persistent clauses.
lemma persistent-clauses-subsume-redundant-clauses:

assumes redundant C (inferred-clause-sets R S N)
assumes all-fulfill finite S
assumes derived-clauses-are-finite R
assumes finite C
shows redundant C (saturation R S)

proof −
let ?nat-order = { (x::nat,y::nat). x < y}
{

fix I have ∀C N . finite C −→ card C = I
−→ (redundant C (inferred-clause-sets R S N)) −→ redundant C (saturation

R S) (is ?P I)
proof ((rule wf-induct [of ?nat-order ?P I]),(simp add:wf))
fix I assume hyp-induct: ∀ J . (J ,I) ∈ ?nat-order −→ (?P J)
show ?P I
proof ((rule allI)+,(rule impI)+)

fix C N assume finite C card C = I redundant C (inferred-clause-sets R S
N)

show redundant C (saturation R S)
proof (cases)

assume tautology C
then show redundant C (saturation R S) unfolding redundant-def by auto

next
assume ¬tautology C
from this and ‹redundant C (inferred-clause-sets R S N)› obtain D

where subsumes D C and D ∈ inferred-clause-sets R S N unfolding
redundant-def by auto

52

show redundant C (saturation R S)
proof (cases)

assume D ∈ saturation R S
from this and ‹subsumes D C › show redundant C (saturation R S)

unfolding redundant-def by auto
next

assume D /∈ saturation R S
from assms(2) assms(3) and ‹D ∈ inferred-clause-sets R S N › and ‹D

/∈ saturation R S›
obtain M where strictly-redundant D (inferred-clause-sets R S M) using

non-persistent-clauses-are-redundant [of D R S] by auto
from ‹subsumes D C › and ‹¬tautology C › have ¬tautology D

unfolding subsumes-def tautology-def by auto
from ‹strictly-redundant D (inferred-clause-sets R S M)› and ‹¬tautology

D›
obtain D ′ where D ′ ⊂ D and D ′ ∈ inferred-clause-sets R S M
unfolding strictly-redundant-def by auto

from ‹D ′⊂ D› and ‹subsumes D C › have D ′⊂ C unfolding subsumes-def
by auto

from ‹D ′ ⊂ C › and ‹finite C › have finite D ′

by (meson psubset-imp-subset rev-finite-subset)
from ‹D ′ ⊂ C › and ‹finite C › have card D ′ < card C

unfolding all-fulfill-def
using psubset-card-mono by auto

from this and ‹card C = I › have (card D ′,I) ∈ ?nat-order by auto
from ‹D ′∈ inferred-clause-sets R S M › have redundant D ′ (inferred-clause-sets

R S M)
unfolding redundant-def subsumes-def by auto

from hyp-induct and ‹(card D ′,I) ∈ ?nat-order› have ?P (card D ′) by
force

from this and ‹finite D ′› and ‹redundant D ′ (inferred-clause-sets R S M)›
have

redundant D ′ (saturation R S) by auto
show redundant C (saturation R S)

by (meson ‹D ′ ⊂ C › ‹redundant D ′ (saturation R S)›
psubset-imp-subset subsumes-def subsumption-preserves-redundancy)

qed
qed

qed
qed
}
then show redundant C (saturation R S) using assms(1) assms(4) by blast

qed

We deduce that the set of persistent clauses is saturated.
theorem persistent-clauses-are-saturated:
assumes derived-clauses-are-finite R

53

assumes all-fulfill finite S
shows saturated-binary-rule R (saturation R S)

proof (rule ccontr)
let ?S = saturation R S
assume ¬saturated-binary-rule R ?S
then obtain P1 P2 C where R P1 P2 C and P1 ∈ ?S and P2 ∈ ?S and
¬redundant C ?S

unfolding saturated-binary-rule-def by blast
from ‹P1 ∈ ?S› obtain N1 where i: ∀M . (M ≥ N1 −→ P1 ∈ (inferred-clause-sets

R S M))
by auto

from ‹P2 ∈ ?S› obtain N2 where ii: ∀M . (M ≥ N2 −→ P2 ∈ (inferred-clause-sets
R S M))

by auto
let ?N = max N1 N2
have ?N ≥ N1 and ?N ≥ N2 by auto
from this and i have P1 ∈ inferred-clause-sets R S ?N by metis
from ‹?N ≥ N2 › and ii have P2 ∈ inferred-clause-sets R S ?N by metis
from ‹R P1 P2 C › and ‹P1 ∈ inferred-clause-sets R S ?N › and ‹P2 ∈ in-

ferred-clause-sets R S ?N ›
have C ∈ all-deducible-clauses R (inferred-clause-sets R S ?N) by auto

from this have C ∈ add-all-deducible-clauses R (inferred-clause-sets R S ?N)
by auto

from assms have all-fulfill finite (inferred-clause-sets R S ?N)
using all-inferred-clause-sets-are-finite [of R S ?N] by auto

from assms have all-fulfill finite (add-all-deducible-clauses R (inferred-clause-sets
R S ?N))

using add-all-deducible-clauses-finite by auto
from this and ‹C ∈ add-all-deducible-clauses R (inferred-clause-sets R S ?N)›

have redundant C (inferred-clause-sets R S (Suc ?N))
using simplify-and-membership
[of add-all-deducible-clauses R (inferred-clause-sets R S ?N)

inferred-clause-sets R S (Suc ?N) C]
by auto

have finite P1
using ‹P1 ∈ inferred-clause-sets R S (max N1 N2)›
‹all-fulfill finite (inferred-clause-sets R S (max N1 N2))› all-fulfill-def by auto

have finite P2
using ‹P2 ∈ inferred-clause-sets R S (max N1 N2)›
‹all-fulfill finite (inferred-clause-sets R S (max N1 N2))› all-fulfill-def by auto

from ‹R P1 P2 C › and ‹finite P1 › and ‹finite P2 › and ‹derived-clauses-are-finite
R› have finite C

unfolding derived-clauses-are-finite-def by blast
from assms this and ‹redundant C (inferred-clause-sets R S (Suc ?N))›

have redundant C (saturation R S)
using persistent-clauses-subsume-redundant-clauses [of C R S Suc ?N]
by auto

54

thus False using ‹¬redundant C ?S› by auto
qed

Finally, we show that the computed saturated set is equivalent to the initial
formula.
theorem saturation-is-correct:

assumes Sound R
assumes derived-clauses-are-finite R
assumes all-fulfill finite S
shows equivalent S (saturation R S)

proof −
have entails-formula S (saturation R S)
proof (rule ccontr)

assume ¬ entails-formula S (saturation R S)
then obtain C where C ∈ saturation R S and ¬ entails S C

unfolding entails-formula-def by auto
from ‹C ∈ saturation R S› obtain N where C ∈ inferred-clause-sets R S N

by auto
{

fix N
have entails-formula S (inferred-clause-sets R S N)
proof (induction N)

show entails-formula S (inferred-clause-sets R S 0)
using assms(3) simplify-preserves-semantic validity-implies-entailment by

auto
next

fix N assume entails-formula S (inferred-clause-sets R S N)
from assms(1) have entails-formula (inferred-clause-sets R S N)
(add-all-deducible-clauses R (inferred-clause-sets R S N))
using add-all-deducible-sound by auto

from this and ‹entails-formula S (inferred-clause-sets R S N)›
have entails-formula S (add-all-deducible-clauses R (inferred-clause-sets R

S N))
using entails-transitive

[of S inferred-clause-sets R S N add-all-deducible-clauses R (inferred-clause-sets
R S N)]

by auto
have inferred-clause-sets R S (Suc N) ⊆ add-all-deducible-clauses R

(inferred-clause-sets R S N)
using simplify-def by auto

then have entails-formula (add-all-deducible-clauses R (inferred-clause-sets
R S N))

(inferred-clause-sets R S (Suc N)) using entailment-subset by auto
from this and ‹entails-formula S (add-all-deducible-clauses R (inferred-clause-sets

R S N))›
show entails-formula S (inferred-clause-sets R S (Suc N))

using entails-transitive [of S add-all-deducible-clauses R (inferred-clause-sets
R S N)]

by auto

55

qed
}
from this and ‹C ∈ inferred-clause-sets R S N › and ‹¬ entails S C › show

False
unfolding entails-formula-def by auto

qed
have entails-formula (saturation R S) S
proof (rule ccontr)

assume ¬ entails-formula (saturation R S) S
then obtain C where C ∈ S and ¬ entails (saturation R S) C

unfolding entails-formula-def by auto
from ‹C ∈ S› have redundant C S unfolding redundant-def subsumes-def by

auto
from assms(3) and ‹redundant C S› have redundant C (inferred-clause-sets

R S 0)
using simplify-preserves-redundancy by auto

from assms(3) and ‹C ∈ S› have finite C unfolding all-fulfill-def by auto
from ‹redundant C (inferred-clause-sets R S 0)› assms(2) assms(3) ‹finite C ›

have redundant C (saturation R S)
using persistent-clauses-subsume-redundant-clauses [of C R S 0] by auto

from this and ‹¬ entails (saturation R S) C › show False
using entails-formula-def redundancy-implies-entailment by auto

qed
from ‹entails-formula S (saturation R S)› and ‹entails-formula (saturation R S)

S›
show ?thesis
unfolding equivalent-def by auto

qed

end

end

9 Prime Implicates Generation

We show that the unrestricted resolution rule is deductive complete, i.e.
that it is able to generate all (prime) implicates of any given clause set.
theory Prime-Implicates

imports Propositional-Resolution

begin

context propositional-atoms

begin

56

9.1 Implicates and Prime Implicates

We first introduce the definitions of implicates and prime implicates.
definition implicates :: ′at Formula ⇒ ′at Formula

where implicates S = { C . entails S C }

definition prime-implicates :: ′at Formula ⇒ ′at Formula
where prime-implicates S = simplify (implicates S)

9.2 Generation of Prime Implicates

We introduce a function simplifying a given clause set by evaluating some
literals to false. We show that this partial evaluation operation preserves
saturatedness and that if the considered set of literals is an implicate of
the initial clause set then the partial evaluation yields a clause set that is
unsatisfiable. Then the proof follows from refutational completeness: since
the partially evaluated set is unsatisfiable and saturated it must contain
the empty clause, and therefore the initial clause set necessarily contains a
clause subsuming the implicate.
fun partial-evaluation :: ′a Formula ⇒ ′a Literal set ⇒ ′a Formula
where
(partial-evaluation S C) = { E . ∃D. D ∈ S ∧ E = D−C ∧ ¬(∃L. (L ∈ C) ∧

(complement L) ∈ D)}

lemma partial-evaluation-is-saturated :
assumes saturated-binary-rule resolvent S
shows saturated-binary-rule ordered-resolvent (partial-evaluation S C)

proof (rule ccontr)
let ?peval = partial-evaluation S C
assume ¬saturated-binary-rule ordered-resolvent ?peval
from this obtain P1 and P2 and R where P1 ∈ ?peval and P2 ∈ ?peval

and ordered-resolvent P1 P2 R and ¬(tautology R)
and not-subsumed: ¬(∃D. ((D ∈ (partial-evaluation S C)) ∧ (subsumes D

R)))
unfolding saturated-binary-rule-def and redundant-def by auto
from ‹P1 ∈ ?peval› obtain PP1 where PP1 ∈ S and P1 = PP1 − C

and i: ¬(∃L. (L ∈ C) ∧ (complement L) ∈ PP1) by auto
from ‹P2 ∈ ?peval› obtain PP2 where PP2 ∈ S and P2 = PP2 − C

and ii: ¬(∃L. (L ∈ C) ∧ (complement L) ∈ PP2) by auto
from ‹(ordered-resolvent P1 P2 R)› obtain A where

r-def : R = (P1 − { Pos A }) ∪ (P2 − { Neg A }) and (Pos A) ∈ P1 and
(Neg A) ∈ P2

unfolding ordered-resolvent-def strictly-maximal-literal-def by auto
let ?RR = (PP1 − { Pos A }) ∪ (PP2 − { Neg A })
from ‹P1 = PP1 − C › and ‹(Pos A) ∈ P1 › have (Pos A) ∈ PP1 by auto
from ‹P2 = PP2 − C › and ‹(Neg A) ∈ P2 › have (Neg A) ∈ PP2 by auto
from r-def and ‹P1 = PP1 − C › and ‹P2 = PP2 − C › have R = ?RR −

C by auto

57

from ‹(Pos A) ∈ PP1 › and ‹(Neg A) ∈ PP2 ›
have resolvent PP1 PP2 ?RR unfolding resolvent-def by auto

with ‹PP1 ∈ S› and ‹PP2 ∈ S› and ‹saturated-binary-rule resolvent S›
have tautology ?RR ∨ (∃D. (D ∈ S ∧ (subsumes D ?RR)))

unfolding saturated-binary-rule-def redundant-def by auto
thus False
proof

assume tautology ?RR
with ‹R = ?RR − C › and ‹¬tautology R›

obtain X where X ∈ C and complement X ∈ PP1 ∪ PP2
unfolding tautology-def by auto

from ‹X ∈ C › and ‹complement X ∈ PP1 ∪ PP2 › and i and ii
show False by auto

next
assume ∃D. ((D ∈ S) ∧ (subsumes D ?RR))
from this obtain D where D ∈ S and subsumes D ?RR
by auto
from ‹subsumes D ?RR› and ‹R = ?RR − C ›

have subsumes (D − C) R unfolding subsumes-def by auto
from ‹D ∈ S› and ii and i and ‹(subsumes D ?RR)› have D − C ∈ ?peval

unfolding subsumes-def by auto
with ‹subsumes (D − C) R› and not-subsumed show False by auto

qed
qed

lemma evaluation-wrt-implicate-is-unsat :
assumes entails S C
assumes ¬tautology C
shows ¬satisfiable (partial-evaluation S C)

proof
let ?peval = partial-evaluation S C
assume satisfiable ?peval
then obtain I where validate-formula I ?peval unfolding satisfiable-def by

auto
let ?J = (I − { X . (Pos X) ∈ C }) ∪ { Y . (Neg Y) ∈ C }
have ¬validate-clause ?J C
proof

assume validate-clause ?J C
then obtain L where L ∈ C and validate-literal ?J L by auto
obtain X where L = (Pos X) ∨ L = (Neg X) using Literal.exhaust [of L]

by auto
from ‹L = (Pos X) ∨ L = (Neg X)› and ‹L ∈ C › and ‹¬tautology C › and

‹validate-literal ?J L›
show False unfolding tautology-def by auto

qed
have validate-formula ?J S
proof (rule ccontr)

assume ¬ (validate-formula ?J S)
then obtain D where D ∈ S and ¬(validate-clause ?J D) by auto

58

from ‹D ∈ S› have D−C ∈ ?peval ∨ (∃L. (L ∈ C) ∧ (complement L) ∈
D)

by auto
thus False
proof

assume ∃L. (L ∈ C) ∧ (complement L) ∈ D
then obtain L where L ∈ C and complement L ∈ D by auto
obtain X where L = (Pos X) ∨ L = (Neg X) using Literal.exhaust [of L]

by auto
from this and ‹L ∈ C › and ‹¬(tautology C)› have validate-literal ?J

(complement L)
unfolding tautology-def by auto
from ‹(validate-literal ?J (complement L))› and ‹(complement L) ∈ D›

and ‹¬(validate-clause ?J D)›
show False by auto

next
assume D−C ∈ ?peval
from ‹D−C ∈ ?peval› and ‹(validate-formula I ?peval)›
have validate-clause I (D−C) using validate-formula.simps by blast
from this obtain L where L ∈ D and L /∈ C and validate-literal I L by

auto
obtain X where L = (Pos X) ∨ L = (Neg X) using Literal.exhaust [of L]

by auto
from ‹L = (Pos X) ∨ L = (Neg X)› and ‹validate-literal I L› and ‹L /∈

C ›
have validate-literal ?J L unfolding tautology-def by auto
from ‹validate-literal ?J L› and ‹L ∈ D› and ‹¬(validate-clause ?J D)›
show False by auto

qed
qed
from ‹¬validate-clause ?J C › and ‹validate-formula ?J S› and ‹entails S C ›

show False
unfolding entails-def by auto

qed

lemma entailment-and-implicates:
assumes entails-formula S1 S2
shows implicates S2 ⊆ implicates S1

using assms entailed-formula-entails-implicates implicates-def by auto

lemma equivalence-and-implicates:
assumes equivalent S1 S2
shows implicates S1 = implicates S2

using assms entailment-and-implicates equivalent-def by blast

lemma equivalence-and-prime-implicates:
assumes equivalent S1 S2
shows prime-implicates S1 = prime-implicates S2

using assms equivalence-and-implicates prime-implicates-def by auto

59

lemma unrestricted-resolution-is-deductive-complete :
assumes saturated-binary-rule resolvent S
assumes all-fulfill finite S
assumes C ∈ implicates S
shows redundant C S

proof ((cases tautology C),(simp add: redundant-def))
next

assume ¬ tautology C
have ∃D. (D ∈ S) ∧ (subsumes D C)
proof −

let ?peval = partial-evaluation S C
from ‹saturated-binary-rule resolvent S›

have saturated-binary-rule ordered-resolvent ?peval
using partial-evaluation-is-saturated by auto

from ‹C ∈ implicates S› have entails S C unfolding implicates-def by auto
from ‹entails S C › and ‹¬tautology C › have ¬satisfiable ?peval
using evaluation-wrt-implicate-is-unsat by auto
from ‹all-fulfill finite S› have all-fulfill finite ?peval unfolding all-fulfill-def

by auto
from ‹¬satisfiable ?peval› and ‹saturated-binary-rule ordered-resolvent ?peval›

and ‹all-fulfill finite ?peval›
have {} ∈ ?peval using Complete-def ordered-resolution-is-complete by blast
then show ?thesis unfolding subsumes-def by auto

qed
then show ?thesis unfolding redundant-def by auto

qed

lemma prime-implicates-generation-correct :
assumes saturated-binary-rule resolvent S
assumes non-redundant S
assumes all-fulfill finite S
shows S ⊆ prime-implicates S

proof
fix x assume x ∈ S
show x ∈ prime-implicates S
proof (rule ccontr)

assume ¬ x ∈ prime-implicates S
from ‹x ∈ S› have entails S x unfolding entails-def implicates-def by auto
then have x ∈ implicates S unfolding implicates-def by auto
with ‹¬ x ∈ (prime-implicates S)› have strictly-redundant x (implicates S)

unfolding prime-implicates-def simplify-def by auto
from this have tautology x ∨ (∃ y. (y ∈ (implicates S)) ∧ (y ⊂ x))

unfolding strictly-redundant-def by auto
then have strictly-redundant x S
proof ((cases tautology x),(simp add: strictly-redundant-def))
next

assume ¬tautology x

60

with ‹tautology x ∨ (∃ y. (y ∈ (implicates S)) ∧ (y ⊂ x))›
obtain y where y ∈ implicates S and y ⊂ x by auto

from ‹y ∈ implicates S› and ‹saturated-binary-rule resolvent S› and ‹all-fulfill
finite S›

have redundant y S using unrestricted-resolution-is-deductive-complete by
auto

from ‹y ⊂ x› and ‹¬tautology x› have ¬tautology y unfolding tautology-def
by auto

with ‹redundant y S› obtain z where z ∈ S and z ⊆ y
unfolding redundant-def subsumes-def by auto

with ‹y ⊂ x› have z ⊂ x by auto
with ‹z ∈ S› show strictly-redundant x S using strictly-redundant-def by

auto
qed
with ‹non-redundant S› and ‹x ∈ S› show False unfolding non-redundant-def

by auto
qed

qed

theorem prime-implicates-of-saturated-sets:
assumes saturated-binary-rule resolvent S
assumes all-fulfill finite S
assumes non-redundant S
shows S = prime-implicates S

proof
from assms show S ⊆ prime-implicates S using prime-implicates-generation-correct

by auto
show prime-implicates S ⊆ S
proof

fix x assume x ∈ prime-implicates S
from this have x ∈ implicates S unfolding prime-implicates-def simplify-def

by auto
with assms have redundant x S

using unrestricted-resolution-is-deductive-complete by auto
show x ∈ S
proof (rule ccontr)

assume x /∈ S
with ‹redundant x S› have strictly-redundant x S

unfolding redundant-def strictly-redundant-def subsumes-def by auto
with ‹S ⊆ prime-implicates S› have strictly-redundant x (prime-implicates

S)
unfolding strictly-redundant-def by auto

then have strictly-redundant x (implicates S)
unfolding strictly-redundant-def prime-implicates-def simplify-def by auto

with ‹x ∈ prime-implicates S› show False
unfolding prime-implicates-def simplify-def by auto

qed
qed

qed

61

9.3 Incremental Prime Implicates Computation

We show that it is possible to compute the set of prime implicates incre-
mentally i.e., to fix an ordering among atoms, and to compute the set of
resolvents upon each atom one by one, without backtracking (in the sense
that if the resolvents upon a given atom are generated at some step i then
no resolvents upon the same atom are generated at step i < j. This fea-
ture is critical in practice for the efficiency of prime implicates generation
algorithms.

We first introduce a function computing all resolvents upon a given atom.
definition all-resolvents-upon :: ′at Formula ⇒ ′at ⇒ ′at Formula
where (all-resolvents-upon S A) = { C . ∃P1 P2 . P1 ∈ S ∧ P2 ∈ S ∧ C =
(resolvent-upon P1 P2 A) }

lemma resolvent-upon-correct:
assumes P1 ∈ S
assumes P2 ∈ S
assumes C = resolvent-upon P1 P2 A
shows entails S C

proof cases
assume Pos A ∈ P1 ∧ Neg A ∈ P2
with ‹C = resolvent-upon P1 P2 A› have resolvent P1 P2 C

unfolding resolvent-def by auto
with ‹P1 ∈ S› and ‹P2 ∈ S› show ?thesis

using soundness-and-entailment resolution-is-correct by auto
next

assume ¬ (Pos A ∈ P1 ∧ Neg A ∈ P2)
with ‹C = resolvent-upon P1 P2 A› have P1 ⊆ C ∨ P2 ⊆ C by auto
with ‹P1 ∈ S› and ‹P2 ∈ S› have redundant C S

unfolding redundant-def subsumes-def by auto
then show ?thesis using redundancy-implies-entailment by auto

qed

lemma all-resolvents-upon-is-finite:
assumes all-fulfill finite S
shows all-fulfill finite (S ∪ (all-resolvents-upon S A))

using assms unfolding all-fulfill-def all-resolvents-upon-def by auto

lemma atoms-formula-resolvents:
shows atoms-formula (all-resolvents-upon S A) ⊆ atoms-formula S

unfolding all-resolvents-upon-def by auto

We define a partial saturation predicate that is restricted to a specific atom.
definition partial-saturation :: ′at Formula ⇒ ′at ⇒ ′at Formula ⇒ bool
where
(partial-saturation S A R) = (∀P1 P2 . (P1 ∈ S −→ P2 ∈ S
−→(redundant (resolvent-upon P1 P2 A) R)))

62

We show that the resolvent of two redundant clauses in a partially saturated
set is itself redundant.
lemma resolvent-upon-and-partial-saturation :

assumes redundant P1 S
assumes redundant P2 S
assumes partial-saturation S A (S ∪ R)
assumes C = resolvent-upon P1 P2 A
shows redundant C (S ∪ R)

proof (rule ccontr)
assume ¬redundant C (S ∪ R)
from ‹C = resolvent-upon P1 P2 A› have C = (P1 − { Pos A }) ∪ (P2 − {

Neg A }) by auto
from ‹¬redundant C (S ∪ R)› have ¬tautology C unfolding redundant-def by

auto
have ¬ (tautology P1)
proof

assume tautology P1
then obtain B where Pos B ∈ P1 and Neg B ∈ P1 unfolding tautology-def

by auto
show False
proof cases

assume A = B
with ‹Neg B ∈ P1 › and ‹C = (P1 − { Pos A }) ∪ (P2 − { Neg A })› have

subsumes P2 C
unfolding subsumes-def using Literal.distinct by blast

with ‹redundant P2 S› have redundant C S
using subsumption-preserves-redundancy by auto

with ‹¬redundant C (S ∪ R)› show False unfolding redundant-def by auto
next

assume A 6= B
with ‹C = (P1 − { Pos A }) ∪ (P2 − { Neg A })› and ‹Pos B ∈ P1 › and

‹Neg B ∈ P1 ›
have Pos B ∈ C and Neg B ∈ C by auto
with ‹¬redundant C (S ∪ R)› show False

unfolding tautology-def redundant-def by auto
qed

qed
with ‹redundant P1 S› obtain Q1 where Q1 ∈ S and subsumes Q1 P1

unfolding redundant-def by auto
have ¬ (tautology P2)
proof

assume tautology P2
then obtain B where Pos B ∈ P2 and Neg B ∈ P2 unfolding tautology-def

by auto
show False
proof cases

assume A = B
with ‹Pos B ∈ P2 › and ‹C = (P1 − { Pos A }) ∪ (P2 − { Neg A })› have

subsumes P1 C

63

unfolding subsumes-def using Literal.distinct by blast
with ‹redundant P1 S› have redundant C S

using subsumption-preserves-redundancy by auto
with ‹¬redundant C (S ∪ R)› show False unfolding redundant-def by auto

next
assume A 6= B
with ‹C = (P1 − { Pos A }) ∪ (P2 − { Neg A })› and ‹Pos B ∈ P2 › and

‹Neg B ∈ P2 ›
have Pos B ∈ C and Neg B ∈ C by auto
with ‹¬redundant C (S ∪ R)› show False
unfolding tautology-def redundant-def by auto

qed
qed
with ‹redundant P2 S› obtain Q2 where Q2 ∈ S and subsumes Q2 P2

unfolding redundant-def by auto
let ?res = (Q1 − { Pos A }) ∪ (Q2 − { Neg A })
have ?res = resolvent-upon Q1 Q2 A by auto
from this and ‹partial-saturation S A (S ∪ R)› and ‹Q1 ∈ S› and ‹Q2 ∈ S›

have redundant ?res (S ∪ R)
unfolding partial-saturation-def by auto

from ‹subsumes Q1 P1 › and ‹subsumes Q2 P2 › and ‹C = (P1 − { Pos A })
∪ (P2 − { Neg A })›

have subsumes ?res C unfolding subsumes-def by auto
with ‹redundant ?res (S ∪ R)› and ‹¬redundant C (S ∪ R)› show False

using subsumption-preserves-redundancy by auto
qed

We show that if R is a set of resolvents of a set of clauses S then the same
holds for S ∪ R. For the clauses in S, the premises are identical to the
resolvent and the inference is thus redundant (this trick is useful to simplify
proofs).
definition in-all-resolvents-upon:: ′at Formula ⇒ ′at ⇒ ′at Clause ⇒ bool
where

in-all-resolvents-upon S A C = (∃ P1 P2 . (P1 ∈ S ∧ P2 ∈ S ∧ C = resol-
vent-upon P1 P2 A))

lemma every-clause-is-a-resolvent:
assumes all-fulfill (in-all-resolvents-upon S A) R
assumes all-fulfill (λx. ¬(tautology x)) S
assumes P1 ∈ S ∪ R
shows in-all-resolvents-upon S A P1

proof ((cases P1 ∈ R),(metis all-fulfill-def assms(1)))
next

assume P1 /∈ R
with ‹P1 ∈ S ∪ R› have P1 ∈ S by auto
with ‹(all-fulfill (λx. ¬(tautology x)) S)› have ¬ tautology P1

unfolding all-fulfill-def by auto
from ‹¬ tautology P1 › have Neg A /∈ P1 ∨ Pos A /∈ P1 unfolding tautology-def

64

by auto
from this have P1 = (P1 − { Pos A }) ∪ (P1 − { Neg A }) by auto
with ‹P1 ∈ S› show ?thesis unfolding resolvent-def

unfolding in-all-resolvents-upon-def by auto
qed

We show that if a formula is partially saturated then it stays so when new
resolvents are added in the set.
lemma partial-saturation-is-preserved :

assumes partial-saturation S E1 S
assumes partial-saturation S E2 (S ∪ R)
assumes all-fulfill (λx. ¬(tautology x)) S
assumes all-fulfill (in-all-resolvents-upon S E2) R
shows partial-saturation (S ∪ R) E1 (S ∪ R)

proof (rule ccontr)
assume ¬ partial-saturation (S ∪ R) E1 (S ∪ R)
from this obtain P1 P2 C where P1 ∈ S ∪ R and P2 ∈ S ∪ R and C =

resolvent-upon P1 P2 E1
and ¬ redundant C (S ∪ R)
unfolding partial-saturation-def by auto

from ‹C = resolvent-upon P1 P2 E1 › have C = (P1 − { Pos E1 }) ∪ (P2 −
{ Neg E1 }) by auto

from ‹P1 ∈ S ∪ R› and assms(4) and ‹(all-fulfill (λx. ¬(tautology x)) S)›
have in-all-resolvents-upon S E2 P1 using every-clause-is-a-resolvent by auto
then obtain P1-1 P1-2 where P1-1 ∈ S and P1-2 ∈ S and P1 = resol-

vent-upon P1-1 P1-2 E2
using every-clause-is-a-resolvent unfolding in-all-resolvents-upon-def by blast

from ‹P2 ∈ S ∪ R› and assms(4) and ‹(all-fulfill (λx. ¬(tautology x)) S)›
have in-all-resolvents-upon S E2 P2 using every-clause-is-a-resolvent by auto

then obtain P2-1 P2-2 where P2-1 ∈ S and P2-2 ∈ S and P2 = resol-
vent-upon P2-1 P2-2 E2

using every-clause-is-a-resolvent unfolding in-all-resolvents-upon-def by blast
let ?R1 = resolvent-upon P1-1 P2-1 E1
from ‹partial-saturation S E1 S› and ‹P1-1 ∈ S› and ‹P2-1 ∈ S› have redun-

dant ?R1 S
unfolding partial-saturation-def by auto

let ?R2 = resolvent-upon P1-2 P2-2 E1
from ‹partial-saturation S E1 S› and ‹P1-2 ∈ S› and ‹P2-2 ∈ S› have redun-

dant ?R2 S
unfolding partial-saturation-def by auto

let ?C = resolvent-upon ?R1 ?R2 E2
from ‹C = resolvent-upon P1 P2 E1 › and ‹P2 = resolvent-upon P2-1 P2-2 E2 ›

and ‹P1 = resolvent-upon P1-1 P1-2 E2 ›
have ?C = C by auto

with ‹redundant ?R1 S› and ‹redundant ?R2 S› and ‹partial-saturation S E2
(S ∪ R)›

and ‹¬ redundant C (S ∪ R)›
show False using resolvent-upon-and-partial-saturation by auto

65

qed

The next lemma shows that the clauses inferred by applying the resolu-
tion rule upon a given atom contain no occurrence of this atom, unless the
inference is redundant.
lemma resolvents-do-not-contain-atom :

assumes ¬ tautology P1
assumes ¬ tautology P2
assumes C = resolvent-upon P1 P2 E2
assumes ¬ subsumes P1 C
assumes ¬ subsumes P2 C
shows (Neg E2) /∈ C ∧ (Pos E2) /∈ C

proof
from ‹C = resolvent-upon P1 P2 E2 › have C = (P1 − { Pos E2 }) ∪ (P2 −
{ Neg E2 })

by auto
show (Neg E2) /∈ C
proof

assume Neg E2 ∈ C
from ‹C = resolvent-upon P1 P2 E2 › have C = (P1 − { Pos E2 }) ∪ (P2 −

{ Neg E2 })
by auto

with ‹Neg E2 ∈ C › have Neg E2 ∈ P1 by auto
from ‹¬ subsumes P1 C › and ‹C = (P1 − { Pos E2 }) ∪ (P2 − { Neg E2

})› have Pos E2 ∈ P1
unfolding subsumes-def by auto

from ‹Neg E2 ∈ P1 › and ‹Pos E2 ∈ P1 › and ‹¬ tautology P1 › show False
unfolding tautology-def by auto

qed
next show (Pos E2) /∈ C
proof

assume Pos E2 ∈ C
from ‹C = resolvent-upon P1 P2 E2 › have C = (P1 − { Pos E2 }) ∪ (P2 −

{ Neg E2 })
by auto

with ‹Pos E2 ∈ C › have Pos E2 ∈ P2 by auto
from ‹¬ subsumes P2 C › and ‹C = (P1 − { Pos E2 }) ∪ (P2 − { Neg E2

})› have Neg E2 ∈ P2
unfolding subsumes-def by auto

from ‹Neg E2 ∈ P2 › and ‹Pos E2 ∈ P2 › and ‹¬ tautology P2 › show False
unfolding tautology-def by auto

qed
qed

The next lemma shows that partial saturation can be ensured by computing
all (non-redundant) resolvents upon the considered atom.
lemma ensures-partial-saturation :

assumes partial-saturation S E2 (S ∪ R)
assumes all-fulfill (λx. ¬(tautology x)) S

66

assumes all-fulfill (in-all-resolvents-upon S E2) R
assumes all-fulfill (λx. (¬redundant x S)) R
shows partial-saturation (S ∪ R) E2 (S ∪ R)

proof (rule ccontr)
assume ¬ partial-saturation (S ∪ R) E2 (S ∪ R)
from this obtain P1 P2 C where P1 ∈ S ∪ R and P2 ∈ S ∪ R and C =

resolvent-upon P1 P2 E2
and ¬ redundant C (S ∪ R)
unfolding partial-saturation-def by auto

have P1 ∈ S
proof (rule ccontr)

assume P1 /∈ S
with ‹P1 ∈ S ∪ R› have P1 ∈ R by auto
with assms(3) obtain P1-1 and P1-2 where P1-1 ∈ S and P1-2 ∈ S
and P1 = resolvent-upon P1-1 P1-2 E2
unfolding all-fulfill-def in-all-resolvents-upon-def by auto

from ‹all-fulfill (λx. ¬(tautology x)) S› and ‹P1-1 ∈ S› and ‹P1-2 ∈ S›
have ¬ tautology P1-1 and ¬ tautology P1-2
unfolding all-fulfill-def by auto

from ‹all-fulfill (λx. (¬redundant x S)) R› and ‹P1 ∈ R› and ‹P1-1 ∈ S› and
‹P1-2 ∈ S›

have ¬ subsumes P1-1 P1 and ¬ subsumes P1-2 P1
unfolding redundant-def all-fulfill-def by auto

from ‹¬ tautology P1-1 › ‹¬ tautology P1-2 › ‹¬ subsumes P1-1 P1 › and ‹¬
subsumes P1-2 P1 ›

and ‹P1 = resolvent-upon P1-1 P1-2 E2 ›
have (Neg E2) /∈ P1 ∧ (Pos E2) /∈ P1
using resolvents-do-not-contain-atom [of P1-1 P1-2 P1 E2] by auto

with ‹C = resolvent-upon P1 P2 E2 › have subsumes P1 C unfolding sub-
sumes-def by auto

with ‹¬ redundant C (S ∪ R)› and ‹P1 ∈ S ∪ R› show False unfolding
redundant-def

by auto
qed

have P2 ∈ S
proof (rule ccontr)

assume P2 /∈ S
with ‹P2 ∈ S ∪ R› have P2 ∈ R by auto
with assms(3) obtain P2-1 and P2-2 where P2-1 ∈ S and P2-2 ∈ S

and P2 = resolvent-upon P2-1 P2-2 E2
unfolding all-fulfill-def in-all-resolvents-upon-def by auto

from ‹(all-fulfill (λx. ¬(tautology x)) S)› and ‹P2-1 ∈ S› and ‹P2-2 ∈ S›
have ¬ tautology P2-1 and ¬ tautology P2-2
unfolding all-fulfill-def by auto

from ‹all-fulfill (λx. (¬redundant x S)) R› and ‹P2 ∈ R› and ‹P2-1 ∈ S› and
‹P2-2 ∈ S›

have ¬ subsumes P2-1 P2 and ¬ subsumes P2-2 P2
unfolding redundant-def all-fulfill-def by auto

from ‹¬ tautology P2-1 › ‹¬ tautology P2-2 › ‹¬ subsumes P2-1 P2 › and ‹¬

67

subsumes P2-2 P2 ›
and ‹P2 = resolvent-upon P2-1 P2-2 E2 ›
have (Neg E2) /∈ P2 ∧ (Pos E2) /∈ P2
using resolvents-do-not-contain-atom [of P2-1 P2-2 P2 E2] by auto

with ‹C = resolvent-upon P1 P2 E2 › have subsumes P2 C unfolding sub-
sumes-def by auto

with ‹¬ redundant C (S ∪ R)› and ‹P2 ∈ S ∪ R›
show False unfolding redundant-def by auto

qed
from ‹P1 ∈ S› and ‹P2 ∈ S› and ‹partial-saturation S E2 (S ∪ R)›
and ‹C = resolvent-upon P1 P2 E2 › and ‹¬ redundant C (S ∪ R)›
show False unfolding redundant-def partial-saturation-def by auto

qed

lemma resolvents-preserve-equivalence:
shows equivalent S (S ∪ (all-resolvents-upon S A))

proof −
have S ⊆ (S ∪ (all-resolvents-upon S A)) by auto
then have entails-formula (S ∪ (all-resolvents-upon S A)) S using entail-

ment-subset by auto
have entails-formula S (S ∪ (all-resolvents-upon S A))
proof (rule ccontr)

assume ¬entails-formula S (S ∪ (all-resolvents-upon S A))
from this obtain C where C ∈ (all-resolvents-upon S A) and ¬entails S C

unfolding entails-formula-def using entails-member by auto
from ‹C ∈ (all-resolvents-upon S A)› obtain P1 P2

where C = resolvent-upon P1 P2 A and P1 ∈ S and P2 ∈ S
unfolding all-resolvents-upon-def by auto

from ‹C = resolvent-upon P1 P2 A› and ‹P1 ∈ S› and ‹P2 ∈ S› have entails
S C

using resolvent-upon-correct by auto
with ‹¬entails S C › show False by auto

qed
from ‹entails-formula (S ∪ (all-resolvents-upon S A)) S›

and ‹entails-formula S (S ∪ (all-resolvents-upon S A))›
show ?thesis unfolding equivalent-def by auto

qed

Given a sequence of atoms, we define a sequence of clauses obtained by
resolving upon each atom successively. Simplification rules are applied at
each iteration step.
fun resolvents-sequence :: (nat ⇒ ′at) ⇒ ′at Formula ⇒ nat ⇒ ′at Formula
where
(resolvents-sequence A S 0) = (simplify S) |
(resolvents-sequence A S (Suc N)) =
(simplify ((resolvents-sequence A S N)
∪ (all-resolvents-upon (resolvents-sequence A S N) (A N))))

The following lemma states that partial saturation is preserved by simplifi-

68

cation.
lemma redundancy-implies-partial-saturation:

assumes partial-saturation S1 A S1
assumes S2 ⊆ S1
assumes all-fulfill (λx. redundant x S2) S1
shows partial-saturation S2 A S2

proof (rule ccontr)
assume ¬partial-saturation S2 A S2
then obtain P1 P2 C where P1 ∈ S2 P2 ∈ S2 and C = (resolvent-upon P1

P2 A)
and ¬ redundant C S2
unfolding partial-saturation-def by auto

from ‹P1 ∈ S2 › and ‹S2 ⊆ S1 › have P1 ∈ S1 by auto
from ‹P2 ∈ S2 › and ‹S2 ⊆ S1 › have P2 ∈ S1 by auto
from ‹P1 ∈ S1 › and ‹P2 ∈ S1 › and ‹partial-saturation S1 A S1 › and ‹C =

resolvent-upon P1 P2 A›
have redundant C S1 unfolding partial-saturation-def by auto

from ‹¬ redundant C S2 › have ¬tautology C unfolding redundant-def by auto
with ‹redundant C S1 › obtain D where D ∈ S1 and D ⊆ C

unfolding redundant-def subsumes-def by auto
from ‹D ∈ S1 › and ‹all-fulfill (λx. redundant x S2) S1 › have redundant D S2

unfolding all-fulfill-def by auto
from ‹¬ tautology C › and ‹D ⊆ C › have ¬ tautology D unfolding tautology-def

by auto
with ‹redundant D S2 › obtain E where E ∈ S2 and E ⊆ D

unfolding redundant-def subsumes-def by auto
from ‹E ⊆ D› and ‹D ⊆ C › have E ⊆ C by auto
from ‹E ∈ S2 › and ‹E ⊆ C › and ‹¬redundant C S2 › show False

unfolding redundant-def subsumes-def by auto
qed

The next theorem finally states that the implicate generation algorithm is
sound and complete in the sense that the final clause set in the sequence is
exactly the set of prime implicates of the considered clause set.
theorem incremental-prime-implication-generation:

assumes atoms-formula S = { X . ∃ I ::nat. I < N ∧ X = (A I) }
assumes all-fulfill finite S
shows (prime-implicates S) = (resolvents-sequence A S N)

proof −

We define a set of invariants and show that they are satisfied by all sets in
the above sequence. For the last set in the sequence, the invariants ensure
that the clause set is saturated, which entails the desired property.

let ?Final = resolvents-sequence A S N

We define some properties and show by induction that they are satisfied by
all the clause sets in the constructed sequence

let ?equiv-init = λI .(equivalent S (resolvents-sequence A S I))

69

let ?partial-saturation = λI . (∀ J ::nat. (J < I
−→ (partial-saturation (resolvents-sequence A S I) (A J) (resolvents-sequence

A S I))))
let ?no-tautologies = λI .(all-fulfill (λx. ¬(tautology x)) (resolvents-sequence A S

I))
let ?atoms-init = λI .(atoms-formula (resolvents-sequence A S I)

⊆ { X . ∃ I ::nat. I < N ∧ X = (A I)})
let ?non-redundant = λI .(non-redundant (resolvents-sequence A S I))
let ?finite =λI . (all-fulfill finite (resolvents-sequence A S I))

have ∀ I . (I ≤ N −→ (?equiv-init I) ∧ (?partial-saturation I) ∧ (?no-tautologies
I)

∧ (?atoms-init I) ∧ (?non-redundant I) ∧ (?finite I))

proof (rule allI)
fix I
show (I ≤ N
−→ (?equiv-init I) ∧ (?partial-saturation I) ∧ (?no-tautologies I) ∧ (?atoms-init

I)
∧ (?non-redundant I) ∧ (?finite I)) (is I ≤ N −→ ?P I)

proof (induction I)

We show that the properties are all satisfied by the initial clause set (after
simplification).

show 0 ≤ N −→ ?P 0
proof (rule impI)+

assume 0 ≤ N
let ?R = resolvents-sequence A S 0
from ‹all-fulfill finite S›
have ?equiv-init 0 using simplify-preserves-equivalence by auto
moreover have ?no-tautologies 0

using simplify-def strictly-redundant-def all-fulfill-def by auto
moreover have ?partial-saturation 0 by auto
moreover from ‹all-fulfill finite S› have ?finite 0 using simplify-finite

by auto
moreover have atoms-formula ?R ⊆ atoms-formula S using atoms-formula-simplify

by auto
moreover with ‹atoms-formula S = { X . ∃ I ::nat. I < N ∧ X = (A I)

}›
have v: ?atoms-init 0 unfolding simplify-def by auto

moreover have ?non-redundant 0 using simplify-non-redundant by auto
ultimately show ?P 0 by auto

qed

We then show that the properties are preserved by induction.
next
fix I assume I ≤ N −→ ?P I
show (Suc I) ≤ N −→ (?P (Suc I))
proof (rule impI)+

70

assume (Suc I) ≤ N
let ?Prec = resolvents-sequence A S I
let ?R = resolvents-sequence A S (Suc I)
from ‹Suc I ≤ N › and ‹I ≤ N −→ ?P I ›

have ?equiv-init I and ?partial-saturation I and ?no-tautologies I and
?finite I

and ?atoms-init I and ?non-redundant I by auto
have equivalent ?Prec (?Prec ∪ (all-resolvents-upon ?Prec (A I)))

using resolvents-preserve-equivalence by auto
from ‹?finite I › have all-fulfill finite (?Prec ∪ (all-resolvents-upon ?Prec

(A I)))
using all-resolvents-upon-is-finite by auto

then have all-fulfill finite (simplify (?Prec ∪ (all-resolvents-upon ?Prec (A
I))))

using simplify-finite by auto
then have ?finite (Suc I) by auto
from ‹all-fulfill finite (?Prec ∪ (all-resolvents-upon ?Prec (A I)))›

have equivalent (?Prec ∪ (all-resolvents-upon ?Prec (A I))) ?R
using simplify-preserves-equivalence by auto
from ‹equivalent ?Prec (?Prec ∪ (all-resolvents-upon ?Prec (A I)))›
and ‹equivalent (?Prec ∪ (all-resolvents-upon ?Prec (A I))) ?R›

have equivalent ?Prec ?R by (rule equivalent-transitive)
from ‹?equiv-init I › and this have ?equiv-init (Suc I) by (rule equiva-

lent-transitive)
have ?no-tautologies (Suc I) using simplify-def strictly-redundant-def

all-fulfill-def
by auto

let ?Delta = ?R − ?Prec
have ?R ⊆ ?Prec ∪ ?Delta by auto
have all-fulfill (λx. (redundant x ?R)) (?Prec ∪ ?Delta)
proof (rule ccontr)

assume ¬all-fulfill (λx. (redundant x ?R)) (?Prec ∪ ?Delta)
then obtain x where ¬redundant x ?R and x ∈ ?Prec ∪ ?Delta unfolding

all-fulfill-def
by auto
from ‹¬redundant x ?R› have ¬x ∈ ?R unfolding redundant-def sub-

sumes-def by auto
with ‹x ∈ ?Prec ∪ ?Delta› have x ∈ (?Prec ∪ (all-resolvents-upon ?Prec

(A I)))
by auto

with ‹all-fulfill finite (?Prec ∪ (all-resolvents-upon ?Prec (A I)))›
have redundant x (simplify (?Prec ∪ (all-resolvents-upon ?Prec (A I))))

using simplify-and-membership by blast
with ‹¬redundant x ?R› show False by auto

qed
have all-fulfill (in-all-resolvents-upon ?Prec (A I)) ?Delta
proof (rule ccontr)

assume ¬ (all-fulfill (in-all-resolvents-upon ?Prec (A I)) ?Delta)
then obtain C where C ∈ ?Delta

71

and ¬in-all-resolvents-upon ?Prec (A I) C
unfolding all-fulfill-def by auto

then obtain C where C ∈ ?Delta
and not-res: ∀ P1 P2 . ¬(P1 ∈ ?Prec ∧ P2 ∈ ?Prec ∧ C = resolvent-upon

P1 P2 (A I))
unfolding all-fulfill-def in-all-resolvents-upon-def by blast

from ‹C ∈ ?Delta› have C ∈ ?R and C /∈ ?Prec by auto
then have C ∈ simplify (?Prec ∪ (all-resolvents-upon ?Prec (A I))) by

auto
then have C ∈ ?Prec ∪ (all-resolvents-upon ?Prec (A I)) unfolding

simplify-def by auto
with ‹C /∈ ?Prec› have C ∈ (all-resolvents-upon ?Prec (A I)) by auto
with not-res show False unfolding all-resolvents-upon-def by auto

qed
have all-fulfill (λx. (¬redundant x ?Prec)) ?Delta
proof (rule ccontr)

assume ¬all-fulfill (λx. (¬redundant x ?Prec)) ?Delta
then obtain C where C ∈ ?Delta and redundant: redundant C ?Prec

unfolding all-fulfill-def by auto
from ‹C ∈ ?Delta› have C ∈ ?R and C /∈ ?Prec by auto

show False
proof cases

assume strictly-redundant C ?Prec
then have strictly-redundant C (?Prec ∪ (all-resolvents-upon ?Prec (A

I)))
unfolding strictly-redundant-def by auto

then have C /∈ simplify (?Prec ∪ (all-resolvents-upon ?Prec (A I)))
unfolding simplify-def by auto

then have C /∈ ?R by auto
with ‹C ∈ ?R› show False by auto
next assume ¬strictly-redundant C ?Prec
with redundant have C ∈ ?Prec

unfolding strictly-redundant-def redundant-def subsumes-def by auto
with ‹C /∈ ?Prec› show False by auto

qed
qed
have ∀ J ::nat. (J < (Suc I)) −→ (partial-saturation ?R (A J) ?R)
proof (rule ccontr)

assume ¬(∀ J ::nat. (J < (Suc I)) −→ (partial-saturation ?R (A J) ?R))
then obtain J where J < (Suc I) and ¬(partial-saturation ?R (A J)

?R) by auto
from ‹¬(partial-saturation ?R (A J) ?R)› obtain P1 P2 C

where P1 ∈ ?R and P2 ∈ ?R and C = resolvent-upon P1 P2 (A J) and
¬ redundant C ?R

unfolding partial-saturation-def by auto
have partial-saturation ?Prec (A I) (?Prec ∪ ?Delta)
proof (rule ccontr)

assume ¬partial-saturation ?Prec (A I) (?Prec ∪ ?Delta)
then obtain P1 P2 C where P1 ∈ ?Prec and P2 ∈ ?Prec

72

and C = resolvent-upon P1 P2 (A I) and
¬redundant C (?Prec ∪ ?Delta) unfolding partial-saturation-def by

auto
from ‹C = resolvent-upon P1 P2 (A I)› and ‹P1 ∈ ?Prec› and ‹P2 ∈

?Prec›
have C ∈ ?Prec ∪ (all-resolvents-upon ?Prec (A I))
unfolding all-resolvents-upon-def by auto

from ‹all-fulfill finite (?Prec ∪ (all-resolvents-upon ?Prec (A I)))›
and this have redundant C ?R
using simplify-and-membership [of ?Prec ∪ (all-resolvents-upon ?Prec

(A I)) ?R C]
by auto

with ‹?R ⊆ ?Prec ∪ ?Delta› have redundant C (?Prec ∪ ?Delta)
using superset-preserves-redundancy [of C ?R (?Prec ∪ ?Delta)] by auto
with ‹¬redundant C (?Prec ∪ ?Delta)› show False by auto

qed
show False
proof cases

assume J = I
from ‹partial-saturation ?Prec (A I) (?Prec ∪ ?Delta)› and ‹?no-tautologies

I ›
and ‹(all-fulfill (in-all-resolvents-upon ?Prec (A I)) ?Delta)›
and ‹all-fulfill (λx. (¬redundant x ?Prec)) ?Delta›
have partial-saturation (?Prec ∪ ?Delta) (A I) (?Prec ∪ ?Delta)
using ensures-partial-saturation [of ?Prec (A I) ?Delta] by auto

with ‹?R ⊆ ?Prec ∪ ?Delta›
and ‹all-fulfill (λx. (redundant x ?R)) (?Prec ∪ ?Delta)›

have partial-saturation ?R (A I) ?R using redundancy-implies-partial-saturation

by auto
with ‹J = I › and ‹¬(partial-saturation ?R (A J) ?R)› show False by

auto
next

assume J 6= I
with ‹J < (Suc I)› have J < I by auto
with ‹?partial-saturation I ›

have partial-saturation ?Prec (A J) ?Prec by auto
with ‹partial-saturation ?Prec (A I) (?Prec ∪ ?Delta)› and ‹?no-tautologies

I ›
and ‹(all-fulfill (in-all-resolvents-upon ?Prec (A I)) ?Delta)›
and ‹all-fulfill (λx. (¬redundant x ?Prec)) ?Delta›
have partial-saturation (?Prec ∪ ?Delta) (A J) (?Prec ∪ ?Delta)
using partial-saturation-is-preserved [of ?Prec A J A I ?Delta] by auto

with ‹?R ⊆ ?Prec ∪ ?Delta›
and ‹all-fulfill (λx. (redundant x ?R)) (?Prec ∪ ?Delta)›
have partial-saturation ?R (A J) ?R
using redundancy-implies-partial-saturation by auto

with ‹¬(partial-saturation ?R (A J) ?R)› show False by auto
qed

73

qed
have non-redundant ?R using simplify-non-redundant by auto
from ‹?atoms-init I › have atoms-formula (all-resolvents-upon ?Prec (A I))

⊆ { X . ∃ I ::nat. I < N ∧ X = (A I)}
using atoms-formula-resolvents [of ?Prec A I] by auto
with ‹?atoms-init I ›
have atoms-formula (?Prec ∪ (all-resolvents-upon ?Prec (A I)))

⊆ { X . ∃ I ::nat. I < N ∧ X = (A I)}
using atoms-formula-union [of ?Prec all-resolvents-upon ?Prec (A I)] by

auto
from this have atoms-formula ?R ⊆ { X . ∃ I ::nat. I < N ∧ X = (A I)}
using atoms-formula-simplify [of ?Prec ∪ (all-resolvents-upon ?Prec (A I))]

by auto
from ‹equivalent S (resolvents-sequence A S (Suc I))›

and ‹(∀ J ::nat. (J < (Suc I)
−→ (partial-saturation (resolvents-sequence A S (Suc I)) (A J)

(resolvents-sequence A S (Suc I)))))›
and ‹(all-fulfill (λx. ¬(tautology x)) (resolvents-sequence A S (Suc I)))›
and ‹(all-fulfill finite (resolvents-sequence A S (Suc I)))›
and ‹non-redundant ?R›
and ‹atoms-formula (resolvents-sequence A S (Suc I)) ⊆ { X . ∃ I ::nat.

I < N ∧ X = (A I)}›
show ?P (Suc I) by auto

qed
qed

qed

Using the above invariants, we show that the final clause set is saturated.
from this have ∀ J . (J < N −→ partial-saturation ?Final (A J) ?Final)

and atoms-formula (resolvents-sequence A S N) ⊆ { X . ∃ I ::nat. I < N ∧ X
= (A I)}

and equivalent S ?Final
and non-redundant ?Final
and all-fulfill finite ?Final

by auto
have saturated-binary-rule resolvent ?Final
proof (rule ccontr)

assume ¬ saturated-binary-rule resolvent ?Final
then obtain P1 P2 C where P1 ∈ ?Final and P2 ∈ ?Final and resolvent

P1 P2 C
and ¬redundant C ?Final
unfolding saturated-binary-rule-def by auto

from ‹resolvent P1 P2 C › obtain B where C = resolvent-upon P1 P2 B
unfolding resolvent-def by auto
show False

proof cases
assume B ∈ (atoms-formula ?Final)
with ‹atoms-formula ?Final ⊆ { X . ∃ I ::nat. I < N ∧ X = (A I) }›

obtain I where B = (A I) and I < N

74

by auto
from ‹B = (A I)› and ‹C = resolvent-upon P1 P2 B› have C = resolvent-upon

P1 P2 (A I)
by auto

from ‹∀ J . (J < N −→ partial-saturation ?Final (A J) ?Final)› and ‹B =
(A I)›and ‹I < N ›

have partial-saturation ?Final (A I) ?Final by auto
with ‹C = resolvent-upon P1 P2 (A I)›and ‹P1 ∈ ?Final› and ‹P2 ∈

?Final›
have redundant C ?Final unfolding partial-saturation-def by auto

with ‹¬redundant C ?Final› show False by auto
next

assume B /∈ atoms-formula ?Final
with ‹P1 ∈ ?Final› have B /∈ atoms-clause P1 by auto
then have Pos B /∈ P1 by auto
with ‹C = resolvent-upon P1 P2 B› have P1 ⊆ C by auto
with ‹P1 ∈ ?Final› and ‹¬redundant C ?Final› show False

unfolding redundant-def subsumes-def by auto
qed

qed
with ‹all-fulfill finite ?Final› and ‹non-redundant ?Final›
have prime-implicates ?Final = ?Final
using prime-implicates-of-saturated-sets [of ?Final] by auto

with ‹equivalent S ?Final› show ?thesis using equivalence-and-prime-implicates
by auto
qed

end
end

75

	Syntax of Propositional Clausal Logic
	Semantics
	Inference Rules
	Unrestricted Resolution
	Ordered Resolution
	Ordered Resolution with Selection
	Semantic Resolution
	Unit Resolution
	Positive and Negative Resolution

	Redundancy Elimination Rules
	Renaming
	Soundness
	Refutational Completeness
	Ordered Resolution
	Ordered Resolution with Selection
	Semantic Resolution
	Positive and Negative Resolution
	Unit Resolution and Horn Renamable Clauses

	Computation of Saturated Clause Sets
	Prime Implicates Generation
	Implicates and Prime Implicates
	Generation of Prime Implicates
	Incremental Prime Implicates Computation

